
Adaptive Time-Triggered
Network-on-Chip-based Multi-Core
Architecture: Enhancing Safety and

Energy Efficiency

Lehrstuhl für Embedded Systems
Siegen, Deutschland

DISSERTATION
zur Erlangung des Grades

eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

vorgelegt von

Andrianoelisoa Nambinina, Rakotojaona

eingereicht bei der Naturwissenschaftlich-Technischen Fakultat
der Universität Siegen
Siegen, Januar 2024

Adaptive Time-Triggered
Network-on-Chip-based Multi-Core
Architecture: Enhancing Safety and

Energy Efficiency

Chair for Embedded Systems
Siegen, Germany

DISSERTATION
for the Degree of

Doctor of Engineering

Submitted by

Andrianoelisoa Nambinina, Rakotojaona

Submitted to the Faculty of Natural Sciences and Technology
University of Siegen
Siegen, January 2024

Gutachter

Betreuer und erster Gutachter
Prof. Dr. Roman Obermaisser

Universität Siegen

Zweiter Gutachter
Prof. Dr. Carlos Valderrama

University of Mons

Vorsitzender der Promotionskommission
Prof. Dr. Roland Wismüller

Universität Siegen

Tag der mündlichen Prüfung
26. August 2024

Gedruckt auf alterungsbeständigem holz- und säurefreiem Papier.

1

Acknowledgements

I would like to express my sincere gratitude to Professor Dr. Roman Obermaisser
for his exceptional mentorship. His guidance has been invaluable, fostering my
growth as a research scientist. I am particularly grateful for his encouragement of
my research and his priceless advice, both in the field and beyond.

I extend my heartfelt thanks to my colleagues for fostering a pleasant atmosphere
and a harmonious working environment throughout my tenure. Their unwavering
support and collaboration have been instrumental in my professional growth.

I am deeply grateful to my mother, Véronique de Jesus, whose unwavering sup-
port during challenging times has been a constant source of strength. I also want
to express my gratitude to my beloved wife, Manda. Her enduring patience and
overwhelming emotional support have been invaluable throughout my professional
career, playing a crucial role in helping me achieve my goals.

My heartfelt thanks go to my sister, Lalaina, and my brothers, Naina, Dapa, and
Dora, for their unwavering support. Additionally, I extend my appreciation to my
in-laws for their presence and support during critical moments when I was immersed
in my research.

Special gratitude is reserved for my friend, Taurai George Rebanowako, for read-
ing my chapters and providing helpful feedback. His insightful comments have sig-
nificantly improved the quality of this work.

Last but not least, I want to extend my heartfelt appreciation to my family and
friends for their unwavering support and encouragement throughout my journey.

Rakotojaona Andrianoelisoa Nambinina

2

Declaration of Authorship

I hereby declare that I am the sole author and composer of this thesis entitled “Adap-
tive Time-Triggered Network-on-Chip-based Multi-Core Architecture: Enhancing
Safety and Energy Efficiency,” and that the work contained herein is presented en-
tirely on my own. Where I have consulted the work of others, this is always clearly
stated. All statements taken literally from other writings or referred to by analogy
are marked, and their sources are always given. It has been clearly stated where any
part of the thesis has previously been submitted for a degree or any other qualifi-
cation at this University or any other institution. I further declare that I have not
submitted this thesis at any other institution to obtain a degree.

3

List of Publications Related to
this Dissertation

1. Rakotojaona Nambinina, Daniel Onwuchekwa, Hamidreza Ahmadian, Dinesh
Goyal, and Roman Obermaisser. “Time-Triggered Frequency Scaling in Network-
on-Chip for Safety-Relevant Embedded Systems”. In: IEEE 2021 Interna-
tional Conference on Smart Generation Computing, Communication and Net-
working (SMART GENCON). 2021.

2. Rakotojaona Nambinina, Daniel Onwuchekwa, Sabikun Nahar, Darshak She-
ladiya, and Roman Obermaisser. “Extension of the LISNoC (Network-on-chip)
with an AXI-based Network Interface”. In: IEEE 2022 6th International Con-
ference on Computing Methodologies and Communication (ICCMC). 2022.

3. Daniel Onwuchekwa, Josepaul Paulachan, Rakotojaona Nambinina, and Ro-
man Obermaisser. “Time-triggered Network Interface Extension for the Versal
Network-on-Chip”. In: IEEE 2023 International Conference on Artificial In-
telligence in Information and Communication (ICAIIC). 2023.

4. Rakotojaona Nambinina, Daniel Onwuchekwa, and Roman Obermaisser. “Latency-
Aware Frequency Scaling in Time-Triggered Network-on-Chip Architecture”.
In: IEEE 2023 7th International Conference on Computing Methodologies and
Communication (ICCMC). 2023.

5. Rakotojaona Nambinina, Veit Wiese, Pascal Muoka, Daniel Onwuchekwa, and
Roman Obermaisser. “Adaptive Time-Triggered Network-on-Chip Architec-
ture: Enhancing Safety”. In: IEEE 3rd Smart GenCon 2023. 2023.

4

Abstract

Real-time computing systems are designed to meet strict timing constraints and re-
spond to events or inputs within specified deadlines. These systems are commonly
used in safety-critical applications such as spacecraft, medical devices, industrial
control, and automotive systems. Engineers rely on various scheduling techniques to
ensure that timing constraints are met. One such technique is static resource alloca-
tion in time-triggered systems. Static resource allocation offers valuable advantages
in terms of system dependability by minimizing message congestion and contention,
enabling efficient resource usage in network-on-chip (NoC) architectures. This is
achieved through the pre-allocation of resources and scheduling of tasks, resulting
in improved system throughput and reduced jitter. The time-triggered concept in
NoC architectures provides precise knowledge about the permitted points in time
for message exchanges between cores, serving as a fundamental building block for
fault containment, real-time support, and enhanced system performance.

While static resource allocation excels in minimizing congestion and contention
and contributes to system dependability, it may pose challenges in accommodat-
ing dynamic workloads and evolving requirements. Additionally, it can limit the
achievement of fault tolerance, a crucial aspect of ensuring safety in safety-critical
systems. To address these limitations, this thesis focuses on developing fault tol-
erance and energy-saving techniques tailored explicitly for NoC-based multi-core
architectures to enhance their safety and energy efficiency.

The main goal is to incorporate fault tolerance mechanisms, such as adaptation
and redundancy, into time-triggered systems without compromising the benefits of
static resource allocation. The adaptation technique within the NoC is designed to
support multiple schedules, allowing the NoC to switch schedules during run-time in
response to context events, such as permanent faults in NoC resources (e.g., routers,
links, network interfaces, and cores). By dynamically reconfiguring the schedule
upon the occurrence of a permanent fault, the faulty component is effectively iso-
lated, and tasks or messages are redistributed to other available resources. This
ensures the system’s operational continuity despite faults that could lead to mes-
sage corruption, delays, or losses within NoC resources. This adaptation technique
improves the system’s safety by providing flexibility in resource allocation without
sacrificing the benefits of static resource allocation.

Furthermore, this thesis incorporates seamless redundancy techniques to enhance
the system’s safety, especially in scenarios involving transient and permanent faults.
This technique selectively applies message replication and fusion to safety-critical
messages at the network interface, minimizing overhead in non-critical parts of the
system. It safeguards critical data from potential failures caused by message cor-
ruption, delays, and losses in routers or links during message exchanges.

5

The thesis also focuses on improving energy efficiency in multi-core chips by
providing low-power services. By incorporating time-triggered communication into
NoC-based multi-core architectures, deterministic communication is achieved by
scheduling the message’s injection time and specifying the frequency to be used
by each router at different points in time. This predetermined frequency in the
schedule allows routers to adjust their frequencies accordingly during their active
time and to clock gate the idle routers, enhancing energy efficiency and preserving
the deterministic behaviour of the NoC communication.

Moreover, the adaptation techniques in the NoC are used to reconfigure the op-
erating frequency of the NoC based on workload or power requirement variations by
switching between schedules, further optimizing energy consumption. Integrating
features such as time-triggered capability, adaptation, time-triggered frequency scal-
ing, and seamless redundancy mechanisms into NoC-based multi-core architectures
represents a significant advancement over the current state of the art. The results of
this work have significant implications for applications relying on high-performance,
safe, and energy-efficient multi-core systems in various domains, such as healthcare
and transportation.

6

Kurzfassung

Echtzeit Computersysteme sind darauf ausgelegt, strenge Zeitvorgaben zu erfüllen
und auf Ereignisse oder Eingaben innerhalb festgelegter Fristen zu reagieren. Diese
Systeme werden häufig in sicherheitskritischen Anwendungen wie Raumfahrt, medi-
zinischen Geräten, industrieller Steuerung und Fahrzeugsystemen eingesetzt. Inge-
nieure verlassen sich auf verschiedene Terminplanungstechniken, um sicherzustellen,
dass zeitliche Vorgaben eingehalten werden. Eine solche Technik ist die statische
Ressourcenzuweisung in zeitgesteuerten Systemen. Die statische Ressourcenzuweisung
bietet wertvolle Vorteile in Bezug auf die Systemzuverlässigkeit, indem sie die Nachrich-
tenüberlastung und kontention minimiert und eine effiziente Ressourcennutzung in
Network-on-Chip (NoC) Architekturen ermöglicht. Dies wird durch die vorzeit-
ige Zuweisung von Ressourcen und die Terminplanung von Aufgaben erreicht, was
zu einer verbesserten Systemdurchsatzrate und verringerter Jitter führt. Das zeit-
gesteuerte Konzept in NoC-Architekturen liefert präzises Wissen über die erlaubten
Zeitpunkte für den Austausch von Nachrichten zwischen Kernen und dient als grundle-
gender Baustein für Fehleindämmung, Echtzeitunterstützung und verbesserte Sys-
temleistung.

Obwohl die statische Ressourcenzuweisung hervorragend darin ist, Überlastung
und Kontention zu minimieren und zur Systemzuverlässigkeit beizutragen, kann sie
Herausforderungen bei der Anpassung an dynamische Arbeitslasten und sich en-
twickelnde Anforderungen darstellen. Darüber hinaus kann sie die Erreichung von
Fehlertoleranz beeinträchtigen, einem entscheidenden Aspekt für die Sicherheit in
sicherheitskritischen Systemen. Um diesen Einschränkungen zu begegnen, konzen-
triert sich diese Arbeit darauf, Fehlertoleranz und energiesparende Techniken speziell
für NoC-basierte Mehrkernarchitekturen zu entwickeln, um deren Sicherheit und En-
ergieeffizienz zu verbessern.

Das Hauptziel besteht darin, Fehlertoleranzmechanismen wie Anpassung und
Redundanz in zeitgesteuerte Systeme zu integrieren, ohne die Effizienzvorteile der
statischen Ressourcenzuweisung zu beeinträchtigen. Die Anpassungstechnik inner-
halb des NoC ist darauf ausgelegt, mehrere Zeitpläne zu unterstützen, wodurch
das NoC während der Laufzeit in Reaktion auf Kontextereignisse wie permanente
Fehler in NoC-Ressourcen (z. B. Router, Links, Netzwerkschnittstellen und Kerne)
Zeitpläne wechseln kann. Durch die dynamische Rekonfiguration des Zeitplans
bei Auftreten eines permanenten Fehlers wird die fehlerhafte Komponente effektiv
isoliert, und Aufgaben oder Nachrichten werden auf andere verfügbare Ressourcen
umverteilt. Dies gewährleistet die Betriebskontinuität des Systems trotz Fehler, die
zu Nachrichtenkorruption, Verzögerungen oder Verlusten in NoC-Ressourcen führen
könnten. Diese Anpassungstechnik verbessert die Sicherheit des Systems, indem sie
Flexibilität bei der Ressourcenzuweisung bietet, ohne die Effizienz der statischen
Ressourcenzuweisung zu beeinträchtigen.

7

Darüber hinaus integriert diese Arbeit nahtlose Redundanztechniken, um die
Sicherheit des Systems zu verbessern, insbesondere in Szenarien mit vorübergehenden
und permanenten Fehlern. Diese Technik wendet selektiv Nachrichtenreplikation
und fusion auf sicherheitskritische Nachrichten an der Netzwerkschnittstelle an,
um Überkopf in nicht-kritischen Teilen des Systems zu minimieren. Dies schützt
kritische Daten vor potenziellen Ausfällen aufgrund von Nachrichtenkorruption,
Verzögerungen und Verlusten in Routern oder Links während des Nachrichtenaus-
tauschs.

Die Arbeit konzentriert sich auch darauf, die Energieeffizienz von Mehrkernchips
durch Bereitstellung von energiearmen Diensten zu verbessern. Durch die Inte-
gration der zeitgesteuerten Kommunikation in NoC-basierte Mehrkernarchitekturen
wird deterministische Kommunikation erreicht, indem die Einspritzzeit der Nachricht
und die Frequenz, die von jedem Router zu verschiedenen Zeitpunkten verwendet
werden soll, geplant werden. Diese vorbestimmte Frequenz im Zeitplan ermöglicht es
den Routern, ihre Frequenzen während ihrer aktiven Zeit entsprechend anzupassen
und die inaktiven Router zu takten, um die Energieeffizienz zu steigern und das
deterministische Verhalten der NoC-Kommunikation zu bewahren.

Darüber hinaus werden die Anpassungstechniken im NoC verwendet, um die Be-
triebsfrequenz des NoC basierend auf Arbeitslast oder Leistungsanforderungsschwank-
ungen durch Wechsel zwischen Zeitplänen neu zu konfigurieren und damit den En-
ergieverbrauch weiter zu optimieren. Die Integration von Funktionen wie zeitges-
teuerter Fähigkeit, Anpassung, zeitgesteuerter Frequenzskalierung und nahtlosen
Redundanzmechanismen in NoC-basierte Mehrkernarchitekturen stellt eine bedeu-
tende Weiterentwicklung gegenüber dem aktuellen Stand der Technik dar. Die
Ergebnisse dieser Arbeit haben bedeutende Auswirkungen auf Anwendungen, die auf
leistungsstarken, sicheren und energieeffizienten Mehrkernsystemen in verschiedenen
Bereichen wie Gesundheitswesen und Verkehr angewiesen sind.

8

Contents

1 Introduction 17
1.1 Motivation . 18

1.1.1 Trend Towards Mixed Criticality 18
1.1.2 Trend Towards System-on-Chip 18
1.1.3 Trend Towards Time-Triggered System-on-Chip Architecture . 19
1.1.4 Trend Towards Adaptability in System-on-Chip 19
1.1.5 Trend Towards Redundancy in Multi-core Architecture 19
1.1.6 Trend Towards Energy Efficiency in Multi-core Architecture . 20

1.2 Contribution . 20
1.3 Structure of Thesis . 21

2 Basic Concepts 22
2.1 Multi-core Architectures . 22
2.2 On-chip Communication . 23

2.2.1 Bus . 23
2.2.2 Network-on-Chip . 24

2.3 Real-time Systems . 26
2.4 Event-triggered and Time-triggered Systems 27
2.5 Faults and Fault Tolerance in Multi-Core Architectures 27

2.5.1 Faults . 28
2.5.2 Dependability . 28
2.5.3 Fault Tolerance Techniques 29

2.6 Power Saving Techniques in Multi-core Architectures 30

3 Network-on-Chip 31
3.1 Network-on-Chip Basics . 31

3.1.1 OSI Layers in a NoC . 32
3.2 Network-on-Chip Topology Architecture 33

3.2.1 Mesh Network Topology in Network-on-Chip 33
3.2.2 Torus Network Topology in Network-on-Chip 34
3.2.3 Ring Network Topology in Network-on-Chip 34
3.2.4 Star Network Topology in Network-on-Chip 34
3.2.5 Tree-based Network Topology in Network-on-Chip 35
3.2.6 Irregular or Custom Network Topology in Network-on-Chip . 35

3.3 Network Interface . 36
3.4 Generic On-Chip Switch Architecture 37

3.4.1 Effects of Fault on Router Pipeline 39
3.5 Switching Methodology . 40

9

3.5.1 Store and Forward . 41
3.5.2 Wormhole Switching . 41
3.5.3 Circuit Switching . 41
3.5.4 Virtual Channels . 41

3.6 Routing Algorithms . 42
3.6.1 Deterministic Routing . 42
3.6.2 Adaptive Routing . 42
3.6.3 Stochastic Routing . 43

3.7 Deadlock and Livelock in Network-on-Chip Systems 43

4 Related Work and Research Gaps 45
4.1 Requirements . 45
4.2 Network-on-Chip . 46
4.3 Fault Tolerance Techniques for NoC 49
4.4 Low Power Techniques for NoC . 51
4.5 Research Gaps in the State of the Art 53

5 System Model 55
5.1 Adaptive Time-Triggered Network-on-Chip Architecture 55

5.1.1 LIS Network-on-Chip (LISNoC) 57
5.1.2 Time-Triggered Control in ATTNoC 57
5.1.3 Adaptation in ATTNoC . 59
5.1.4 Fault Model . 62
5.1.5 Power Model . 63
5.1.6 Tile . 64
5.1.7 Network Interface . 66
5.1.8 Router . 70
5.1.9 Global Time Base (GTB) . 72

6 Energy Efficiency and Fault Tolerance for ATTNoC 74
6.1 Adaptation in Time-Triggered Network-on-Chip Architecture 74

6.1.1 Energy Efficiency for ATTNoC 75
6.1.2 Fault Recovery for ATTNoC 75
6.1.3 Architecture of Adaptation Unit in ATTNoC 75
6.1.4 Fault Model in the Adaptation Unit 78
6.1.5 Adaptation Unit Architecture 78

6.2 Time-Triggered Frequency Scaling for ATTNoC 83
6.2.1 Architecture of TTFS . 84
6.2.2 Different TTFS Techniques in ATTNoC 85
6.2.3 Summary of TTFS Techniques in ATTNoC 88

6.3 Seamless Redundancy in ATTNoC 88
6.3.1 Mixed-Criticality Architecture based on Mesh Topology 89
6.3.2 Fault Model for SCNI . 89
6.3.3 Conceptual Model of Extended TTNI 90

7 Results and Discussion 94
7.1 Experiment Goal . 94
7.2 Field Programmable Gate Array (FPGA)-based Prototypes 95
7.3 Performance Analysis of ATTNoC . 97

10

7.3.1 Experimental Setup . 97
7.3.2 Results and Discussion . 98

7.4 TTFS Energy Efficiency Scenarios in ATTNoC 102
7.4.1 Experimental Setup . 102
7.4.2 Results and Discussion . 108

7.5 Fault Tolerance Techniques in ATTNoC 111
7.5.1 Experiment Setup Based on Predefined Test Case 111
7.5.2 Experiment Setup Based on Randomized Test Case 118

8 Conclusion and Future Work 123

11

List of Abbreviations

ANoC Asynchronous Network-on-Chip

APB Advanced Peripheral Bus

ASIC Application-Specific Integrated Circuit

ATTNoC Adaptive Time-Triggered Network-on-Chip

AU Agreement Unit

AXI Advanced eXtensible Interface

ATMA Adaptive Time-triggered Multi-core Architecture

BE Best Effort

BIST Built-In Self Test

CA Context Agreement

CM Context Monitor

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DDR Distributed Dynamic Routing Algorithm

DTL Diode-Transistor Logic

DVFS Dynamic Voltage and Frequency Scaling

EDC Error Detection Codes

ECC Error Correction Codes

FCR Fault Containment Region

FIFO First In First Out

FPGA Field Programmable Gate Array

GALS Globally Asynchronous Locally Synchronous

GTB Global Time Base

HPB High-Performance Bus

IC Integrated Circuit

I/O Input/Output

12

IP Intellectual Property

LISNoC LIS Network-on-Chip

LUT Lookup Table

MCS Mixed Criticality Systems

ML-AHB Multi-Layered Advanced High-performance Bus

MPSoC Multi-Processor System-on-Chip

NI Network Interface

NoC Network-on-Chip

NSCNI Non Safety Critical Network Interface

OCP Open Core Protocol

PE Processing Elements

PL Programmable Logic

PS Processing System

QoS Quality-of-Service

RC Rate Constraint

SA Switch Allocation

SCNI Safety Critical Network Interface

SoC System-on-Chip

SPIN Scalable Programmable Interconnection Network

TLM Transaction-Level Modeling

TT Time-Triggered

TTFS Time-Triggered Frequency Scaling

TTNI Time-Triggered Network Interface

TTNoC Time-Triggered Network-on-Chip

TMR Triple Modular Redundancy

VA Virtual channel Arbitration

VC Virtual Channel

VCI Virtual Component Interface

XBAR Crossbar

13

List of Figures

2.1 Example of multi-core architecture 23
2.2 3x3 mesh NoC architecture . 25
2.3 Fault-error-failure mechanism . 28

3.1 3x3 mesh NoC architecture. PE: Processing elements, NI: Network
interface and R: Router . 32

3.2 ISO/OSI reference model for NoC [Tat+14] 32
3.3 Six different common network topologies 36
3.4 Network adapter or network interface 37
3.5 Generic one router architecture [Agr21] 38
3.6 Data flow in router . 39

5.1 Physical and logical system model of ATTNoC 56
5.2 Example of frequency scaling with four routers in ATTNoC 58
5.3 Schedule entries of a time-triggered dispatcher in TTNI. 58
5.4 Schedule entries of a time-triggered dispatcher in the adaptation unit. 59
5.5 Example of multiple schedules linked to each other by event 60
5.6 Global adaptation by changing the injection time of ATTNoC when

slack occurs . 61
5.7 Global adaptation by isolating a faulty router in ATTNoC 61
5.8 FCR in ATTNoC architecture . 62
5.9 Non-safety critical NI . 66
5.10 Adaptive time-triggered dispatcher in NI 68
5.11 Safety critical NI . 69
5.12 Router architecture of the ATTNoC 71
5.13 GTB Based on IEEE 1588 time format 73
5.14 64 Bit GTB . 73

6.1 Ring topology of adaption units (6 AUs) 76
6.2 Triple-ring topology of adaption units (6 AUs) 76
6.3 Architecture of adaptation unit in ATTNoC 77
6.4 Architecture of context monitor . 79
6.5 32-bit-string local context . 79
6.6 Context monitor state machine . 80
6.7 Context agreement architecture . 81
6.8 Context agreement state machine . 82
6.9 Time-triggered dispatcher . 82
6.10 Protocol timeline: The protocol phases overlap, as the collection

phase of the next execution starts as soon as the propagation of the
current execution begins [Len20], [Obe+19] 83

14

6.11 TTFS in ATTNoC : Example 2x2 mesh topology 84
6.12 Block diagram of TTFS . 84
6.13 State machine of frequency controller 85
6.14 Global techniques, all routers are operated at the same frequency . . 86
6.15 Cluster techniques, all frequencies of routers located in one region are

operated simultaneously. 87
6.16 router-based techniques, the frequency of one router is scheduled in-

dividually . 87
6.17 Mixed-criticality system with mesh topology 89
6.18 Extended TTNI with redundancy controller 91
6.19 State machine of redundancy controller at the sender in SCNI 91
6.20 State machine of redundancy controller at the receiver in SCNI 92

7.1 Overall system. A simple view of the ATTNoC architecture on the
Xilinx Zynq-MPSoC ZCU102 (FPGA) 95

7.2 3x3 LISNoC and ATTNoC architecture 98
7.3 Packet size vs latency of message-1 99
7.4 Packet size vs latency of message-2 100
7.5 Packet size vs Jitter of message 1 . 101
7.6 Packet size vs jitter of message 2 . 101
7.7 Example of ATTNoC without frequency scaling in the router 103
7.8 Example of ATTNoC with clock-gating 104
7.9 Example of ATTNoC with frequency scaling with multiple clock domain107
7.10 Case2: Power consumption of TTFS using different approaches. . . . 109
7.11 Case-3: Power consumption of TTFS using different approaches. . . . 109
7.12 Comparison of power consumption of TTFS using different approaches

for three cases (1, 2, 3). 110
7.13 Example of an ATTNoC set up with a permanent fault in the link

connecting NI3 and R6, which is indicated in red, and which uses
multiple schedules . 112

7.14 Illustration of messages exchanged between NI3 and NI2, without
redundancy mechanism, fault is activated 113

7.15 Illustration of messages exchanged between NI3 and NI2, with redun-
dancy mechanism, fault is activated 114

7.16 Illustration of messages exchanged between NI3 and NI1, without
adaptation, fault is activated . 114

7.17 Illustration of messages exchanged between NI3 and NI1, with adap-
tation (flits are rerouted), the fault is activated 115

7.18 Fault scenario S= {F1,F2,F3} and communication schedule in the
ATTNoC. 116

7.19 Fault scenario S= {F1,F2,F3}. Red in the architecture highlights an
error. 117

7.20 Comparison of the total packet received in four cases in ATTNoC
communication. 118

7.21 Block diagram of ATTNoC with Fault Injection IP (FI-IP). 120
7.22 Flow of transient fault injection [Lal12]. 120
7.23 Comparison of uncorrupted packets received vs error rate for the three

cases . 121

15

List of Tables

5.1 Permanent fault in ATTNoC . 63
5.2 Redundancy sender controller operation 70
5.3 Redundancy Receiver Data Selection 70
5.4 Routing opcode . 71

7.1 Resource usage of the ATTNoC . 96
7.2 Packet size vs latency of message-1 98
7.3 Packet size vs latency of message-2 99
7.4 Case-1: ATTNoC without frequency scaling 103
7.5 Case-2: ATTNoC with clock-gating using global approach 105
7.6 Case-2: ATTNoC with clock-gating using cluster approach 105
7.7 Case-2: ATTNoC with clock-gating using router-based approach . . . 106
7.8 Case-3: ATTNoC with frequency scaling using global approach 107
7.9 Case-3: ATTNoC with frequency scaling using cluster approach . . . 108
7.10 Case-3: ATTNoC with frequency scaling using router-based approach 108

16

Chapter 1

Introduction

Over the past few decades, the development of integrated circuits has played a
crucial role in driving exponential growth in computing power. This growth can be
attributed to Moore’s Law, a prediction made by Gordon Moore, co-founder of Intel,
in 1965. Moore’s Law predicts that the number of transistors on an integrated circuit
doubles approximately every 18 months. Remarkably, the semiconductor industry
has managed to keep up with this prediction, integrating billions of transistors on a
single chip. This increase in transistor count has facilitated the development of more
complex devices, including multi-core processors. As the number of cores on a single
chip increased, the limitations of shared bus architectures became more apparent
due to limited bandwidth, scalability challenges, lack of flexibility, non-deterministic
communication, and vulnerability to single points of failure. These limitations have
led to the emergence of Network-on-Chips (NoCs) as a new communication paradigm
[WCK08]. NoCs provide a packet-switched communication network with multiple
paths for various communication flows, thereby addressing the inefficiencies of shared
bus architectures.

In safety-critical applications, such as automotive and avionics systems, deter-
ministic communication is crucial to ensure predictable and timely message trans-
mission and reception. This predictability is vital for meeting real-time require-
ments and maintaining timing guarantees, which is essential in real-time applica-
tions. Time-triggered communication plays a critical role in fulfilling these real-
time demands. However, static resource allocation in time-triggered communication
presents challenges when dealing with dynamic workloads and evolving system re-
quirements, necessitating a more flexible approach. Additionally, it poses difficulties
in achieving fault tolerance, a critical aspect for ensuring safety in safety-critical
systems. To address these challenges, this thesis introduces the Adaptive Time-
Triggered Network-on-Chip (ATTNoC) architecture designed for multi-core systems
to balance energy efficiency and safety. This architecture extends the functionality
of an event-triggered-based NoC called LISNoC [TUM] to support time-triggered
communication. Additionally, the architecture incorporates fault tolerance mecha-
nisms, such as adaptation and redundancy, to enhance the system’s safety in the
presence of permanent and transient faults.

The ATTNoC supports multiple schedules, allowing it to switch between them
in response to context events, such as permanent faults in routers, links, Network
Interfaces (NIs), or cores [Obe+19], [MAO18]. This capability enhances safety by
isolating faulty sub-components and redistributing tasks or messages to other avail-

17

CHAPTER 1. INTRODUCTION

able resources. Consequently, communication within the system can continue to
operate even when a permanent fault occurs in the NoC resources. Moreover, seam-
less redundancy is employed in the ATTNoC to enhance its safety, where critical
messages can be transmitted via dual channels to tolerate permanent and transient
faults in the routers and links. This approach eliminates the need for fully duplicat-
ing NoC resources, reducing overhead [Nam+23].

ATTNoC achieves energy efficiency at the router level through Time-Triggered
Frequency Scaling (TTFS) techniques [NOO23]. In ATTNoC, the injection times of
messages and the frequency with which they are used in each router are scheduled in
advance. This allows routers to scale and clock gate the router frequency according
to a predefined schedule, improving energy efficiency while preserving the determin-
istic behaviour of communications in ATTNoC. Furthermore, adaptive techniques
in the NoC allows for dynamic frequency adjustments based on events, such as slack
and workload variation, by switching between schedules. For example, a dynamic
slack event in the cores or NoC may require adjusting the operating frequency and
the injection time of messages in the NoC to reduce energy consumption. Combining
adaptation, seamless redundancy, and time-triggered frequency scaling techniques
in a time-triggered NoC-based architecture can significantly enhance these systems’
safety and energy efficiency.

The following section will delve into this work’s underlying motivation and con-
tributions.

1.1 Motivation

The following technical developments in embedded systems can be identified as the
driving forces behind the architecture used in this thesis.

1.1.1 Trend Towards Mixed Criticality

Mixed-criticality systems (MCSs) have gained attention in various embedded sys-
tems domains due to their ability to integrate multiple functions onto a single com-
puting platform. This integration offers benefits such as reduced hardware costs,
weight, and energy consumption [BD07], [Col+22]. However, when subsystems with
varying levels of importance coexist on a shared platform, a fault-tolerant infras-
tructure becomes necessary to prevent interference between low-critical and safety-
critical subsystems. Designing such systems is challenging, as it requires balancing
safety and segregation while maintaining performance for low-critical subsystems.
To fulfil these requirements, the platform must incorporate safety features that en-
sure system-wide segregation and spatial and temporal partitioning. This infrastruc-
ture should be capable of managing the complexities associated with both ensuring
safety and delivering optimal performance for the various subsystems.

1.1.2 Trend Towards System-on-Chip

The trend towards system-on-chip (SoC) design is driven by the need to integrate
complex functionalities onto a single chip. SoCs bring about improved performance,
cost efficiency, and lower power consumption by assembling prefabricated compo-
nents known as intellectual property (IP) blocks on a chip [Lee+05]. These IP

18

CHAPTER 1. INTRODUCTION

blocks include processors, memory, interfaces, and specialized units. The NoC in-
frastructure enables efficient communication between these components, providing
several advantages such as energy efficiency, reliable data transmission, scalability,
and parallel communication. Researchers are constantly improving NoC architec-
tures, power management, and safety enhancements that will significantly impact
the future of embedded systems.

1.1.3 Trend Towards Time-Triggered System-on-Chip Ar-
chitecture

The demand for deterministic behaviour and real-time responsiveness in systems
drives the trend toward time-triggered system-on-chip architectures [Obe+08]. These
architectures are increasingly favoured in real-time applications that require high
reliability and timing predictability. As technology advances, the adoption of time-
triggered architectures in safety-critical applications is predicted to grow, signifi-
cantly shaping the future of system-on-chip design and enabling advanced function-
alities in various domains such as transportation and automotive. To address this
need, the ATTNoC architecture incorporates time-triggered capability in the net-
work interface of an event-triggered NoC architecture, known as LISNoC [TUM],
to support deterministic communication. It allows the underlying NoC to support
mixed-criticality applications and communication types, including time-triggered,
rate-constrained, and best-effort.

1.1.4 Trend Towards Adaptability in System-on-Chip

Adaptation in time-triggered systems is driven by the objectives of achieving higher
energy efficiency, fault recovery, and the ability to respond to changing environmen-
tal conditions [Obe+19]. Adaptive SoCs offer the flexibility and dynamic behaviour
necessary to address these challenges effectively. Integrating time-triggered NoC
architectures with adaptability features plays a crucial role in overcoming the lim-
itations of static resource allocation in time-triggered systems. By incorporating
adaptability, the NoC can support multiple schedules and allow the NoC to re-
configure its schedule when a context event occurs, such as a permanent fault in
NoC resources. Furthermore, adaptability enables power-saving by adjusting sys-
tem components’ frequencies and voltage based on their activity level.

1.1.5 Trend Towards Redundancy in Multi-core Architec-
ture

The increasing need for enhanced reliability, fault tolerance, and system resilience
drives the trend toward redundancy in multi-core architecture [CS18]. Redundancy
mechanisms have gained significant interest in NoC architectures. By incorporating
these mechanisms in the NoC, permanent and transient faults within the network
can be tolerated. However, fully duplicating the NoC resources can lead to increased
overheads. Hence, there is a rising demand for low-cost, low-power, and resource-
efficient redundancy designs in NoC-based multi-core platforms.

19

CHAPTER 1. INTRODUCTION

1.1.6 Trend Towards Energy Efficiency in Multi-core Archi-
tecture

The demand for longer battery life in embedded devices drives the growing trend
toward energy efficiency in multi-core architecture. In this sense, using a configurable
platform that can configure the frequency and voltage within the device during
run-time is becoming more attractive as it can reduce the required power of the
platform [Obe+19]. In NoC-based multi-core architectures, various techniques are
introduced to improve power usage within the chip, such as DVFS, power gating,
and clock gating. However, the use of such techniques may affect the performance
as well as the safety of the systems. To strike a balance between power efficiency
and performance, it is essential to consider the impact on deadlines when employing
these power-saving techniques. The chosen approach should aim to minimize the
occurrence of missed deadlines resulting from frequency and voltage scaling. This
consideration ensures that power-saving techniques do not compromise the system’s
ability to meet critical timing requirements and maintain the safety guarantees for
real-time application.

1.2 Contribution

This work focuses on developing an adaptive time-triggered network-on-chip (AT-
TNoC) for multi-core architectures. The aim is to enhance the system’s fault toler-
ance and energy efficiency. To accomplish these objectives, we have integrated fault
tolerance and power-saving techniques into the ATTNoC architecture. By incorpo-
rating fault tolerance mechanisms, ATTNoC ensures reliable network functionality
in the presence of faults. This is particularly crucial in safety-critical systems, where
failures can lead to severe consequences. Furthermore, the power-saving techniques
integrated into ATTNoC address the demand for energy-efficient designs for com-
puting platforms with limited power resources. Overall, this research contributes to
the state of the art in the following ways:

• This research extends the functionalities of event-triggered-based NoC archi-
tectures, such as LISNoC [TUM], by incorporating source-based routing and
time-triggered communication. These features enable deterministic communi-
cation in NoC, crucial for preventing message conflicts and meeting deadlines
in real-time applications. Additionally, the adaptation techniques in ATTNoC
provide fault tolerance through dynamic reconfiguration of network schedules.
This allows the system to respond to contextual events, such as permanent
faults in NoC resources like NIs, routers, cores, and links [Obe+19], [MAO18],
[Nam+23]. The research’s contribution is particularly valuable for applica-
tions that require high fault tolerance and real-time responsiveness, such as
automotive, aerospace, medical devices, and industrial control systems.

• Seamless redundancy in ATTNoC: The ATTNoC architecture is extended to
support seamless redundancy in the Time-Triggered Network Interface (TTNI).
This mechanism enables message duplication and data transmission over a dual
channel, ensuring continuous data transmission even during network failures
due to transient or permanent faults. The architecture includes two types
of network interfaces: Safety-critical NI (SCNI) and non-safety-critical NI

20

CHAPTER 1. INTRODUCTION

(NSCNI), making it suitable for mixed-critical systems. The SCNI supports
redundancy, guaranteeing uninterrupted data flow even in network failures or
faults in routers or links. In contrast, the NSCNI, designed for non-safety-
critical applications, does not require redundancy. By incorporating seamless
redundancy, the ATTNoC architecture provides a more reliable and fault-
tolerant solution for applications requiring high safety [Nam+23].

• Router-level frequency scaling: This work introduces a technique called time-
triggered frequency scaling (TTFS) [Nam+21], [NOO23]. In the ATTNoC
architecture, messages’ injection time and the routers’ operating frequency
are scheduled in advance. This allows routers to adjust their frequency ac-
cording to a predefined schedule rather than maintaining a static frequency
for idle and active routers. In addition to TTFS, clock gating is employed
to turn off the clock frequency of idle routers according to a schedule. This
further conserves energy. The adaptive approaches implemented in ATTNoC
allow dynamic switching between schedules in response to context events. For
example, if the system temperature exceeds a certain threshold, the schedule
can be adapted to adjust the operating frequency of routers to prevent over-
heating. This flexibility enables ATTNoC to adapt to changing conditions and
optimize energy consumption.

Overall, this research represents an advancement in NoC-based multi-core archi-
tecture. The innovative features and capabilities of the ATTNoC architecture can
facilitate the development of more reliable and efficient systems for multi-core plat-
forms, which are becoming increasingly crucial in today’s technological landscape.

1.3 Structure of Thesis

The thesis is structured as follows: The first chapter introduces the topic, motiva-
tion, and contribution of the thesis. Chapter 2 presents the concepts that serve as
the background for the thesis and provides a comprehensive discussion of the funda-
mental concepts and information necessary to understand it. Chapter 3 introduces
NoC technology and offers a detailed explanation of an NoC, including its various
components. Chapter 4 presents related work that compares several closely related
results to the approach used in this thesis. Chapter 5 describes the system model
used in this thesis, including the integrated safety and power-saving techniques in
the ATTNoC architecture. Chapter 6 presents the energy efficiency and fault tol-
erance techniques used in the ATTNoC. In Chapter 7, a series of experiments and
evaluations are performed to demonstrate how the system meets the requirements
defined in this thesis. Finally, the conclusion of this thesis is presented in Chapter
8.

21

Chapter 2

Basic Concepts

This chapter introduces the basic concepts needed to understand the subsequent
sections of the thesis. It covers several topics relevant to the thesis, including multi-
core architecture, on-chip communications, real-time systems, time-triggered and
event-triggered systems, fault tolerance, and power-saving techniques. Section 2.1
provides an overview of multi-core architectures used as the primary target systems
in this thesis. It discusses the basic concepts and principles of multi-core systems,
highlighting their benefits and challenges. Section 2.2 focuses on explaining on-chip
communication, highlighting the differences between traditional bus-based commu-
nication and NoC communication. Section 2.3 gives an overview of real-time sys-
tems, introducing basic concepts and different types of real-time systems. Section
2.4 discusses the concepts of time-triggered and event-triggered systems, explaining
the differences between these two paradigms of system behaviour and highlighting
their respective advantages. The topic of fault tolerance techniques is discussed in
Section 2.5, where various methods and strategies are explored to ensure the cor-
rectness of the system in case of faults. The final Section 2.6 discusses power-saving
techniques, including approaches and methods for optimizing power consumption in
computing systems.

2.1 Multi-core Architectures

Multi-core architectures are a design concept that integrates multiple processors or
cores on a single chip in computing systems, as depicted in Figure 2.1. This concept
aims to improve overall processing performance by processing tasks simultaneously
on different cores. It offers several benefits, including improved performance through
parallel processing, enhanced scalability to handle increasing workloads, efficient re-
source usage, and cost efficiency due to better performance per watt [Nae+10],
[Fre+10]. In addition, a multi-core architecture provides improved responsiveness,
fault tolerance and compatibility with parallel programming models. To benefit
from the advantages of a multi-core architecture, efficient programming techniques
and algorithms that effectively leverage parallelism are essential. However, the ef-
fectiveness of multi-core systems for individual applications depends on the degree
of parallelism in the workload. Moving to a multi-core architecture may require
software optimizations and redesign to fully use the available cores, which can be
complex and time-consuming. On-chip communication is essential for designing a
multi-core architecture as it enables efficient data sharing between cores. It also

22

CHAPTER 2. BASIC CONCEPTS

provides effective inter-core collaboration and synchronization, improving the per-
formance and scalability of multi-core systems.

Core 0 Core 1

L1 Cache L1 Cache

L2 Cache

Processor 0

Core n Core n +1

L1 Cache L1 Cache

L2 Cache

Processor n

On-Chip Communication (BUS/ Networks-on-Chip)

Main Memory

Figure 2.1: Example of multi-core architecture

2.2 On-chip Communication

On-chip communication in multi-core architectures is responsible for data exchange
and coordination among multiple processing elements within a System-on-Chip
(SoC). Traditionally, on-chip communication was implemented using buses, with
all cores connected to a common communication bus. However, as the number of
cores increased, bus-based communication became a performance bottleneck due to
limited bandwidth and increased contention for accessing the bus. To overcome
these limitations, a more efficient approach called Network-on-Chip (NoC) was in-
troduced [SCB09], [Ava+10]. The following sub-sections explain common on-chip
communication used in multi-core architectures.

2.2.1 Bus

In the context of on-chip communication, a bus refers to a shared communication
path connecting multiple cores within a SoC. It consists of wires or conductors that
carry data, control signals, and address information between the cores. The bus
architecture typically comprises three main components:

• Data bus: The data bus transfers the actual data between the cores. It fa-
cilitates parallel transmission, transmitting multiple bits or bytes simultane-
ously. The width of the data bus determines the number of bits that can be
transferred in parallel during each cycle. For instance, a 64-bit data bus can
transmit 64 bits in a single cycle.

23

CHAPTER 2. BASIC CONCEPTS

• Address bus: The address bus specifies the memory locations or I/O devices
the cores intend to access for reading or writing data. It carries the necessary
address information required to identify the source or destination of the data.

• Control bus: The control bus plays a crucial role in coordinating the activities
of the cores and the bus itself. It is responsible for transmitting control signals
that control various operations. These signals include read/write, memory
select, interrupt, clock, and various synchronization signals. The control bus
ensures proper synchronization and coordination between the cores and facil-
itates the orderly execution of operations within the system.

The Advanced Microcontroller Bus Architecture (AMBA), developed by ARM, is
a widely adopted standard bus in multi-core architectures [STS11]. It is a standard-
ized interface between SoC design components, including multiple cores, memory,
and peripherals. The AMBA bus architecture encompasses several specifications,
with one of the most commonly used being the Advanced High-Performance Bus
(AHB). AHB is designed to connect high-performance cores, memories, and other
peripherals, providing a high-bandwidth bus capable of supporting burst transfers,
pipelining, and multiple bus masters. On the other hand, the Advanced Periph-
eral Bus (APB) is a low-power, low-bandwidth bus primarily used for connecting
slower peripherals and control functions. It offers a simplified interface suitable for
devices with lower data transfer requirements. The Advanced eXtensible Interface
(AXI) is available for more demanding requirements. AXI is a high-performance,
high-bandwidth bus with a more advanced and flexible interface. It supports burst
transfers, out-of-order transactions, multiple outstanding transactions, and sepa-
rate read and write channels. These AMBA bus specifications, such as AHB, APB,
and AXI, provide standardized and scalable solutions for on-chip communications
in multi-core architectures. They facilitate efficient data transfer and connectivity
between cores and peripherals, enhancing overall system performance and function-
ality.

2.2.2 Network-on-Chip

Network-on-Chips (NoCs) are communication infrastructures used in multi-core ar-
chitectures to facilitate efficient data exchange and coordination among multiple
processor cores. Unlike traditional bus-based communication, NoCs replace the
shared bus with a network composed of interconnected routers. This approach of-
fers improved scalability, higher bandwidth, lower latency, and enhanced overall sys-
tem performance. The primary components of an NoC architecture include routers,
links, network interfaces, and cores, as depicted in Figure 2.2.

• Processing elements: Refers to the computing units or cores within the multi-
core architecture responsible for executing the actual processing tasks. De-
pending on the design, these processing elements can be general-purpose pro-
cessor cores, specialized accelerators, or a combination of both.

• Routers: Routers are integral components of an NoC architecture and are
crucial in forwarding data packets between cores. Each core in the multi-
core architecture is connected to a router. Routers have multiple input and
output ports to receive and forward data packets. They use routing algorithms

24

CHAPTER 2. BASIC CONCEPTS

to determine the optimal path for data transmission, considering congestion,
latency, and available bandwidth.

• Links represent the physical or logical connections between two routers or
between a router and a network interface within the NoC architecture. These
links define the communication paths to transfer data between the components.
A link typically consists of one or more wires or physical channels that carry
data signals, control signals, and synchronization signals. Depending on the
specific NoC architecture, links can be point-to-point or shared among multiple
components.

• Network interfaces: Network interfaces serve as the interfaces between the
processing cores and the NoC architecture. Each processing core in the multi-
core architecture is connected to a network interface, which acts as the entry
and exit point for data packets entering and leaving the NoC. The network
interface handles the conversion of data packets between the format used by
the core and the format required by the NoC, ensuring compatibility. It en-
capsulates data from the core into packets and transmits them to the NoC,
and vice versa, when receiving packets from the NoC, it extracts the data and
delivers it to the corresponding core for processing.

R R R

R R R

R R R

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

link

Figure 2.2: 3x3 mesh NoC architecture

NoC architectures can take various forms, such as mesh, torus, and tree-based,
tailored to specific design requirements and constraints. Unlike traditional bus-based
communication, NoCs provide several advantages, including scalability, higher band-
width, reduced latency, fault tolerance, and power efficiency [AS14]. These benefits
improve system performance, responsiveness, reliability, and energy optimization.
Scalability is a crucial benefit of NoCs as they employ a network-based approach
that easily accommodates numerous cores. The parallel and concurrent communica-
tion in NoCs enables efficient system scaling as the number of cores increases. NoCs
offer higher bandwidth than buses, allowing faster data transmission. This increased
bandwidth enhances system performance by facilitating efficient and timely data ex-
change between cores. Addressing latency in communication is another strength of

25

CHAPTER 2. BASIC CONCEPTS

NoCs. By using multiple parallel paths and efficient routing algorithms, NoCs sig-
nificantly reduce communication latency. This results in faster data transmission
and improved system responsiveness. Fault tolerance is an additional advantage of
NoCs. By incorporating fault tolerance mechanisms, NoCs ensure reliable commu-
nication even in the presence of faulty connections or routers. This enhances system
reliability and enables uninterrupted operation despite failures. Power efficiency is a
notable aspect of NoCs in multi-core architectures. By selectively activating routers
and links based on communication demands, NoCs reduce overall power consump-
tion. This optimization of energy usage contributes to extended device battery life
and improved energy efficiency. In summary, NoCs provide a versatile and effi-
cient communication infrastructure for multi-core architectures, offering scalability,
higher bandwidth, reduced latency, fault tolerance, and power efficiency [AS14].
These benefits collectively enhance system performance, responsiveness, reliability,
and energy optimization.

2.3 Real-time Systems

Real-time systems are computer systems designed to operate within specific time
constraints, processing and responding to events as they occur. These systems are
crucial for time-critical applications that require accurate and timely data processing
and event handling [TH99]. In a real-time system, proper functioning relies not only
on the correctness of the computation but also on the timeliness of its execution.
To ensure timely execution, the system must process data, respond to events, and
deliver results within predefined deadlines. Failure to meet these deadlines can result
in severe consequences, such as equipment failure, loss of life, or financial loss. Three
types of real-time systems are commonly recognized: Hard real-time systems, soft
real-time systems, and firm real-time systems [AA14], [AGMK94], [LC06].

• Hard real-time systems have strict deadlines that must be guaranteed, and
the system must ensure that tasks are completed within the specified time
frame. An example of a hard real-time system is the autonomous vehicle
control system used in self-driving vehicles. These systems rely on timely and
accurate vehicle control, where failure to meet strict deadlines can lead to
accidents or loss of vehicle control.

• Soft real-time systems are flexible when meeting deadlines and can tolerate
some processing delays. However, maintaining overall system performance is
still crucial. An example of a soft real-time system is a multimedia stream-
ing application, like a video streaming service. While ensuring uninterrupted
delivery of data packets and maintaining a smooth data stream is essential,
occasional delays or buffering can be tolerated without significantly impacting
the user experience. The system can recover from such delays and continue
streaming seamlessly.

• Firm real-time systems are designed to handle tasks with specific deadlines
and ensure they are completed on time. These systems aim to balance the
need for strict timelines with some flexibility. An example of a firm real-time
system is an online reservation platform, like an airline ticket booking system.

26

CHAPTER 2. BASIC CONCEPTS

While immediate transaction processing is essential, occasional delays can be
tolerated as long as they are infrequent and not excessively prolonged.

2.4 Event-triggered and Time-triggered Systems

In embedded real-time systems, processing and communication activities can be
divided into two categories based on the triggering of tasks and messages. These
categories are often referred to as event-triggered and time-triggered systems.

• Event-triggered systems: Tasks and messages are activated in response to spe-
cific events or occurrences. The events can originate from activities within
the computer system (e.g., task termination) or state changes in the natural
environment (e.g., alarm conditions indicated by a sensor element). Event-
triggered systems are often used in interactive applications like web applica-
tions, mobile applications, and desktop user interfaces. Examples of event-
triggered systems include web-based chat applications, gaming systems, and
intelligent home automation systems [Mur+15].

• Time-triggered systems schedule tasks and messages according to a predeter-
mined schedule. This ensures that tasks and messages are executed and sent
at specific times, which provides predictable behaviour. Time-triggered sys-
tems are commonly used in safety-critical applications such as aircraft controls,
medical equipment, and industrial automation systems [Mur+15].

Both event-triggered and time-triggered systems have advantages and are suit-
able for different applications. Event-triggered systems offer flexibility and adapt-
ability to changing conditions, while time-triggered systems offer predictability and
determinism. The choice between these two categories depends on the embedded
system’s requirements and the application type.

2.5 Faults and Fault Tolerance in Multi-Core Ar-

chitectures

Multi-core architectures are increasingly used in embedded devices across health-
care, transportation, and telecommunications sectors, showcasing their advanced
capabilities. It is of utmost importance to ensure the reliable functioning of these
architectures due to the potential consequences of failures. While some may have
catastrophic outcomes, not all failures result in such severe consequences. The im-
pact of a failure depends on the application, task criticality, and preventive measures.
In critical systems, like healthcare or transportation, failures can have serious impli-
cations, including safety risks and financial losses. In other scenarios, consequences
such as system slowdowns, temporary disruptions, or data loss without significant
harm may be less severe. Integrating fault tolerance techniques into the architecture
is essential to manage and mitigate potential faults and system failures [Saf+22].
The following sub-sections will discuss crucial definitions and concepts in this area.

27

CHAPTER 2. BASIC CONCEPTS

2.5.1 Faults

Faults in a multi-core architecture include unexpected deviations that may result
from hardware malfunctions, software bugs, or external disturbances. These faults
can be classified into different categories depending on their nature and duration.
Transient faults are temporary faults or deviations that occur in the system but
resolve themselves over time. They are often caused by external factors such as fluc-
tuations in the power supply or electromagnetic interference. These transient faults
may affect the system’s normal behaviour but are not permanent or of long dura-
tion. In contrast, permanent faults are persistent problems until they are corrected.
Hardware malfunctions, such as defective components or faulty circuitry, usually
cause them. Unlike transient faults, permanent faults do not correct themselves and
require intervention or repair to restore proper system function. There is also a cat-
egory of faults called intermittent faults. Intermittent faults occur sporadically and
unpredictably and present challenges in diagnosis and troubleshooting. They can
occur as transient faults that resolve themselves over time or as permanent faults
that require corrective action. The unpredictable nature of intermittent faults makes
them challenging to identify and troubleshoot effectively. It is important to note
that faults, regardless of their nature, can cause errors within the system. These
errors can propagate through the system and affect various components or processes.
Over time, the propagation of errors can lead to system failures where the system
can no longer reliably perform its intended functions [Jab+17].

Fault
Activation

Error
Contamination

Failure

Figure 2.3: Fault-error-failure mechanism

2.5.2 Dependability

Dependability refers to the reliability and trustworthiness of a computing system
in consistently providing the intended functionality, even in the presence of faults
[ALR01]. It encompasses several important attributes:

• Availability: Refers to the ability of the system to remain accessible and oper-
ational when needed. It ensures the system is consistently available to perform
its intended tasks without excessive downtime or interruption. System failures
must be minimized to achieve high availability, and measures must be taken
to ensure rapid recovery from failures.

• Reliability: Refers to the consistent performance of the system in performing
its intended function over a period of time without failures or errors. It ensures
that the system operates correctly and consistently and produces accurate
results as expected. Reliability measures focus on reducing the likelihood of
failures and addressing potential problems affecting system performance.

• Safety and security: Safety and security are critical reliability aspects. Safety
is about protecting the system and its users from hazards or risks that could
cause physical harm. On the other hand, security focuses on protecting the

28

CHAPTER 2. BASIC CONCEPTS

system from unauthorized access, malicious attacks, and data breaches. Safety
and security measures are essential for maintaining the system’s integrity and
trustworthiness and protecting users’ privacy and sensitive data.

Fault tolerance techniques are used to achieve reliability. These techniques aim
to mitigate the effects of faults, such as hardware failures or software errors, and
ensure system stability and resilience. By incorporating fault tolerance mechanisms,
the multi-core architecture can operate reliably and safely, minimizing the impact
of faults and maintaining the intended functionality.

2.5.3 Fault Tolerance Techniques

Fault tolerance techniques refer to the strategies and mechanisms used to ensure the
continued operation and reliability of a system or application when faults or failures
occur. These techniques aim to minimize the impact of faults and prevent them from
causing system-wide failures or data loss. They can be divided into hardware-based
and software-based approaches.

Hardware-based fault tolerance techniques

Hardware-based fault tolerance techniques involve using redundant components and
mechanisms to detect and correct faults. Examples include:

• Redundant processors: Multiple processors are used, and tasks are distributed
among them. The workload can be seamlessly transferred to the remaining
processors if one processor fails.

• Redundant memory modules: Duplicate memory modules store the same data,
enabling error detection and recovery if one module fails.

• Redundant communication channels: Multiple communication channels are
established, and data is transmitted over different paths. If one channel has a
fault, the system can switch to another one.

Software-based fault tolerance techniques

Software-based fault tolerance techniques focus on fault detection, handling, and
recovery mechanisms implemented at the software level. Examples include:

• Error checking and correction codes: Additional data (such as parity bits) are
added to transmitted data to detect and correct errors caused by bit flips or
noise.

• Error detection algorithms: Various algorithms identify errors, such as check-
sums or cyclic redundancy checks (CRC), enabling error detection and subse-
quent recovery actions.

• Error recovery protocols: Protocols are designed to handle error recovery,
including retransmission of lost or corrupted data, checkpointing mechanisms,
or redundancy management.

29

CHAPTER 2. BASIC CONCEPTS

Software-based fault tolerance techniques often work with hardware-based tech-
niques to provide comprehensive fault tolerance. By combining the two approaches,
systems can detect and recover from faults at multiple levels, increasing reliability
and resilience.

2.6 Power Saving Techniques in Multi-core Ar-

chitectures

Power-saving techniques refer to strategies and methods used in multi-core architec-
tures to reduce power consumption while maintaining or optimizing system perfor-
mance [Jin+15]. In multi-core architectures, power-saving techniques are critical for
improving energy efficiency and extending battery life in embedded systems. Here
are some commonly used power-saving techniques:

• Dynamic Voltage and Frequency Scaling (DVFS): DVFS adjusts each compo-
nent’s operating voltage and frequency based on the workload. By dynamically
scaling these parameters, the respective component can be operated at lower
power during periods of low activity, which saves energy [CKP18].

• Clock gating: With clock gating, clock signals for unused or underutilized
components within the multi-core architecture are selectively switched off.
This technique prevents unnecessary power consumption by eliminating clock
cycles in non-active parts of the system [KKD18].

• Core Shutdown: In scenarios where fewer cores can handle the workload, un-
used cores can be temporarily shut down or put into a low-power state. This
technique reduces power consumption by disabling unused cores until their
processing power is needed [Sei+09].

• Task Migration: Active tasks are dynamically shifted between cores to achieve
load balancing and energy efficiency in task migration. Distributing the work-
load evenly across cores can save power by minimizing the use of cores with
higher energy consumption.

• Power Gating: Power gating completely shuts down power to unused com-
ponents or entire cores. This technique reduces static power consumption by
cutting power to components not actively used [KKD18].

• Dynamic Power Management: Dynamic Power Management techniques in-
telligently adapt power consumption based on real-time workload demands.
These techniques ensure efficient power usage without sacrificing performance
by dynamically adjusting operating parameters and optimizing power alloca-
tion [Tan+14].

30

Chapter 3

Network-on-Chip

This chapter provides a comprehensive overview of Network-on-Chip (NoC) archi-
tectures. It covers the crucial elements of NoC design, including network topologies,
on-chip switch architecture, switching methods, routing algorithms, and the critical
issues related to deadlock and livelock. The chapter begins with an overview of NoC
topologies and discusses their benefits and challenges. It then explains the network
interface in NoCs and the generic on-chip switch architecture. It also provides in-
sight into the internal workings of NoC switches. Various switching methods, such
as store-and-forward, wormhole, and circuit switching, are discussed. The concept
of virtual channels, which improves the performance and flexibility of packet switch-
ing, is also discussed. In addition, the chapter provides an overview of the routing
algorithms used in NoCs. It covers deterministic, adaptive, and stochastic routing
algorithms and explains their underlying principles, advantages, and limitations.
Moreover, the chapter highlights the critical problems of deadlock and livelock in
NoC architectures. It explains these phenomena’ concepts, causes, and effects and
presents strategies and techniques for avoiding and limiting deadlocks and livelocks.

3.1 Network-on-Chip Basics

The NoC is a communication infrastructure integrated into the System-on-Chip
(SoC). Its purpose is to establish connections between components, whether they are
heterogeneous or homogeneous. The NoC consists of several key features, including
processing elements (PEs), routers, links, and network interfaces (NIs), as shown
in Figure 3.1. PEs are functional units within the NoC, including cores, gateways,
storage, or I/O units. Routers are key intermediaries responsible for routing and
directing the flow of packets within the NoC, enabling communication between PEs.
Links establish physical connections between routers. NIs serve as interfaces between
the PEs and the NoC. They act as a bridge between the internal communications
infrastructure of the PEs and the NoC, enabling the PEs to send and receive packets
within the NoC. NIs perform tasks such as packet creation, packet injection from
the sender PE into the NoC, and reception of packets from the NoC for delivery to
the appropriate destination PE.

31

CHAPTER 3. NETWORK-ON-CHIP

R R R

R R R

R R R

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

PE
NI

link

Figure 3.1: 3x3 mesh NoC architecture. PE: Processing elements, NI: Network
interface and R: Router

3.1.1 OSI Layers in a NoC

In an NoC architecture, the protocol stack plays a crucial role in ensuring efficient
and reliable communication between the various components of the system. It is a
hierarchical structure consisting of multiple layers with defined functions and respon-
sibilities, as depicted in Figure 3.2. These layers work together to ensure seamless
data transmission and coordination within the NoC.

Source Core

Network
Adapter

Destination
Core

Network
Adapter

Source Node Intermediate Node Destination
Node

messages/ transactions

packet/ streams

physical link physical link

flits/ phits

Application
&

Presentation
Layers

Session
&

Transport
Layers

Network
Layer

Link &
Data

Layers

Figure 3.2: ISO/OSI reference model for NoC [Tat+14]

• Application & presentation layers: The application layer provides high-level
services and functionalities for the applications running on the NoC. It includes

32

CHAPTER 3. NETWORK-ON-CHIP

protocols and mechanisms specific to the application requirements. The pre-
sentation layer takes care of data representation and formatting and ensures
compatibility and interoperability between the different components in the
NoC [Tat+14].

• Session & transport layers: The session layer establishes, maintains, and ter-
minates communication sessions between processing elements (PEs) within
the NoC. It manages synchronization, coordination, and session-level proto-
cols to support reliable communication. The transport layer ensures reliable
and orderly data transmission between sender and receiver PEs in the NoC.
It establishes end-to-end connections, controls data flow, and manages error
recovery mechanisms [Tat+14].

• Network layer: The network layer is responsible for routing and addressing
within the NoC. It determines the optimal paths and routes for delivering
packets over the network based on routing algorithms. In addition, this layer
manages the logical organization and configuration of the NoC, including the
assignment of addresses to PEs and routing tables in routers [Tat+14].

• Link & data layers: The link layer ensures reliable and error-free data frame
transmission between neighbouring NoC routers. It deals with framing, error
detection and correction, and flow control. The data layer focuses on the
physical transmission of data over the NoC communication, including tasks
such as signal coding, modulation, and physical connectivity between routers
[Tat+14].

3.2 Network-on-Chip Topology Architecture

The network topology is the arrangement and interconnection of processing elements
and routers within a NoC. This topology plays a critical role in defining the struc-
ture and organization of the communication network within a SoC. Its purpose is to
enable efficient data transmission and communication between the different compo-
nents within the SoC. The chosen network topology significantly impacts communi-
cation efficiency, scalability, fault tolerance, and overall system performance. This
section provides an overview of various NoC topology architectures that are com-
monly used. These architectures include mesh, tree-based, and custom topologies
[PT16].

3.2.1 Mesh Network Topology in Network-on-Chip

A mesh topology is commonly used to connect processing elements (PEs) or IP cores
on a chip. The chip is divided into a grid-like arrangement of PEs, and each PE is
connected to its neighbouring PEs to form a mesh network. The mesh topology al-
lows multiple direct paths between PEs, which makes data communication efficient
and reduces message transmission time. There are two types of mesh network topolo-
gies: 2D and 3D mesh. In a 2D mesh, the PEs are arranged in a two-dimensional
grid, and each PE has four neighbours (north, south, east, and west). In a 3D mesh,
on the other hand, the PEs are arranged in a three-dimensional grid, and each
PE has six neighbours (north, south, east, west, top, and bottom). The 3D mesh

33

CHAPTER 3. NETWORK-ON-CHIP

topology provides many communication paths that support efficient data routing
in vertically stacked chip layers. Mesh topologies in NoCs offer several advantages.
First, they provide scalable interconnectivity that enables easy expansion of the
mesh size by adding more PEs to the grid. The direct point-to-point connections
minimize the distance and time required for PEs to communicate. In addition, the
mesh structure enables fault tolerance, as data can be rerouted over alternate paths
in case of a link failure.

3.2.2 Torus Network Topology in Network-on-Chip

A torus topology is a cyclic, multidimensional structure with a torus shape. It
has similarities to a mesh but contains wraparound connections, i.e., the PEs are
connected in a loop. This wraparound connectivity allows seamless communication
between PEs on opposite torus edges. Torus network topologies can be implemented
in 2D or 3D configurations, depending on the desired dimensionality of the connec-
tion. The torus structure provides multiple paths for efficient data communication
and low-latency connections. Each processing element (PE) is directly connected
to its neighbouring PEs, allowing data to traverse the torus in a minimal number
of hops. This direct connection enables efficient nearest-neighbour communication,
meaning PEs can easily exchange data with their immediate neighbours. In addi-
tion, torus topologies exhibit fault tolerance. In case of a link or PE failure, data
can be rerouted through alternate paths due to wraparound connections. This re-
dundancy ensures that communication can continue even if certain connections or
PEs are unavailable.

3.2.3 Ring Network Topology in Network-on-Chip

A ring network topology is a circular arrangement in which each processing element
(PE) or IP core is connected to its neighbouring PEs in a closed loop. Data is trans-
mitted in a unidirectional manner and passes through each PE until it reaches its
destination. Each PE is connected to its immediate neighbours to form a loop. The
ring structure provides a regular connection pattern, enabling efficient data trans-
mission and low-latency communication. Ring network topologies offer advantages
such as balanced load distribution between PEs and simplified routing algorithms.
They also have higher fault tolerance than linear topologies because data can be
rerouted in the opposite direction if a link or PE fails. However, there are some lim-
itations. Communication between non-adjacent PEs in the ring can result in longer
paths and higher latency. In addition, the closed structure can make it difficult to
dynamically insert or remove PEs without disrupting the entire network. Despite
these challenges, ring network topologies are suitable for specific NoC applications,
especially those with regular traffic patterns or those where simplicity is essential to
the design considerations.

3.2.4 Star Network Topology in Network-on-Chip

A star network topology is a centralized structure in which all processing elements
(PEs) or IP cores are connected to a central hub or switch. Each PE has its link
or channel connecting it to the central hub. The hub manages the routing and dis-
tribution of data and acts as a central point of control and coordination. The star

34

CHAPTER 3. NETWORK-ON-CHIP

structure simplifies routing because all communications pass through the hub, allow-
ing for easy management and control of the network. The hub efficiently aggregates
and distributes data to PEs, allowing for flexible routing and data manipulation. It
also provides fault isolation, as the failure of one PE or link does not directly affect
others. However, star network topologies can have limitations. The central hub
can become a single point of failure or a performance bottleneck if communication
demands exceed capacity. PEs further away from the hub may experience higher
latency. Scalability can also be a challenge. Despite these challenges, star network
topologies in NoC designs require centralized control, efficient data distribution, and
fault isolation. They find application in systems with high communication coordi-
nation or when the central hub provides additional functions such as buffering or
protocol conversion.

3.2.5 Tree-based Network Topology in Network-on-Chip

In NoCs, a tree-based network topology is commonly used to connect processing
elements (PEs) or IP cores. This hierarchical structure has a central node or root
connected to multiple child nodes, which may have child nodes. This arrangement
facilitates efficient data communication and resource sharing among PEs. The tree’s
root node serves as the central hub or controller responsible for managing and coor-
dinating communications within the NoC. The lower-level nodes represent individ-
ual PEs or subnets, and the hierarchical structure enables organized data routing
and management. Tree-based network topologies offer advantages such as efficient
data distribution and centralized control. The hierarchical structure allows the root
node to distribute data or control signals to the appropriate child nodes, reducing
communication overhead. Centralized control also simplifies the management and
coordination of the NoC. However, tree-based topologies can have scalability and
fault tolerance limitations. Due to the hierarchical structure, longer communication
paths and higher latency may occur for certain PEs. In addition, if the root node
fails, the entire NoC may become non-functional.

3.2.6 Irregular or Custom Network Topology in Network-
on-Chip

Irregular or custom network topologies are unique and user-defined interconnection
schemes to meet specific chip design or application requirements. Unlike predefined
topological structures such as mesh or tree, irregular topologies do not follow a fixed
pattern or arrangement. Instead, irregular or custom network topologies are de-
signed in NoCs based on several factors. These factors include the communication
patterns of the IP cores, desired performance metrics (e.g., latency or bandwidth),
power consumption constraints, and available chip area. The goal of using irregular
or custom topologies is to tailor the network connections to the specific require-
ments of the chip design or application. This customization allows for optimized
communication and resource allocation while considering the system’s unique char-
acteristics and requirements. By deviating from predefined structures, irregular
topologies provide flexibility and the ability to optimize communication within the
chip. However, designing and implementing custom topologies can be more com-
plex and difficult than predefined topologies. Overall, irregular or custom network

35

CHAPTER 3. NETWORK-ON-CHIP

topologies in NoCs enable customized interconnection schemes that better meet the
specific requirements and constraints of a particular chip design or application.

Mesh

Star

Tree Indirect

Ring
Torus

Figure 3.3: Six different common network topologies

3.3 Network Interface

The network interface (NI) module serves as the crucial link between the IP cores
and the NoC by accommodating the diverse interface protocols of each IP core. Its
primary purpose is to facilitate the separation of computation and communication,
enabling independent reuse of the core and communication infrastructure. The
NI module, also known as the network adapter, can be further divided into two
components: the front-end and the back-end, as illustrated in Figure 3.4:

• The front-end component manages core requests and operates without direct
knowledge of the underlying NoC. Typically, this portion is implemented as a
socket using widely adopted protocols such as OCP (OCPIP 2011), VCI (VSI
Alliance 2011), AXI (ARM 2011), DTL (Philips Semiconductors 2002), and
others. The front end efficiently handles core communication with the NoC by
employing these protocols, allowing seamless integration of different IP cores
into the overall system.

• The back-end component is responsible for handling the network protocol
within the NI. It performs essential functions such as packet assembly and
decomposition, buffer reordering management, synchronization protocol im-
plementation, and providing support to the router for storage, among other
responsibilities. By carrying out these tasks, the back end ensures efficient
and reliable data transmission within the NoC, optimizing performance and
ensuring the integrity of communication.

The combined operation of front-end and back-end components within the NI
module is critical to the overall system architecture, enabling effective communica-

36

CHAPTER 3. NETWORK-ON-CHIP

tion between IP cores and the NoC while maintaining modularity and reusability of
system components.

Network Adapter

Front End

Back End

NoC

Core

Figure 3.4: Network adapter or network interface

3.4 Generic On-Chip Switch Architecture

A router plays a crucial role in the NoC architecture by forwarding data packets
between devices or networks. It usually has P input and P output ports forming a
PxP configuration. In the context of 2D mesh and torus topologies, P is set to 5,
consisting of four inputs from the cardinal directions (north, east, south, and west)
and one input from the local processing element (PE) connected to the NoC router.
Depending on the design, these input and output channels can be unidirectional
or bidirectional. Buffering is essential in a network router to address congestion,
output link contention, and delays caused by router-internal processing tasks such
as routing computation. These factors can hinder the smooth flow of data. In NoC
routers that use virtual channels, each input port consists of multiple first-in-first-
out (FIFO) buffers representing different virtual channels. Figure 3.5 shows these
virtual channels, where each input port is equipped with v virtual channels. The
control logic serves as the central component of a NoC router. It includes four
main elements: Routing computation (RC), the virtual channel arbitration logic
(VA), the switch allocation (SA), and the crossbar (XBAR). These elements work
harmoniously to ensure efficient operation and data forwarding within the router,
as depicted in Figure 3.5.

• The routing computation (RC) unit is an essential component of an NoC
router. Its main task is determining the optimal routing path for incoming
packets based on the destination address in the packet header. The RC uses
several techniques, including deterministic and adaptive approaches, to per-
form these routing computations. Deterministic routing relies on predefined
algorithms such as XY routing, where the routing path is predetermined based
on the coordinates of the destination address. On the other hand, adaptive
routing dynamically selects the routing path based on the current network
conditions, e.g., load balancing or congestion avoidance. The RC operates

37

CHAPTER 3. NETWORK-ON-CHIP

Crossbar (PXP)

Switch Allocator (SA)

VC Arbiter (VA)

Routing
Computation (RC)

VC1

VC-v

VC Identifier

Input
Port 1

Input
Port P

C
re

di
t

ou
t

In
pu

t
ch

an
ne

l P
C

re
di

t
ou

t
In

pu
t

ch
an

ne
l 1

O
ut

pu
t

ch
an

ne
l P

O
ut

pu
t

ch
an

ne
l 1

C
re

di
t

in

Generic NoC Router

Figure 3.5: Generic one router architecture [Agr21]

packet-by-packet, performing the routing computation once for each packet
that passes through the router. In particular, it focuses on the header flit of
the packet, which contains essential information about the destination address.
By accurately determining the appropriate outbound and virtual channels for
the header flit, RC ensures that the packet is efficiently routed to its intended
destination within the network.

• Virtual channel arbitration (VA) is a crucial process in NoC routers that deter-
mines which packet is allowed to use the physical channel, considering factors
such as packet priority and fairness. The primary purpose of VA is to ensure
controlled and orderly packet transmission and minimize conflicts and con-
gestion within the router. The process of VA involves several steps. First,
requests are generated from the input ports of the router. These requests are
then queued in the virtual channel buffers. In the next step, arbitration deci-
sions are made based on the queued requests, considering packet priority and
fairness factors. The arbitration decisions determine which packets are ap-
proved for transmission. The approved packets are then transmitted over the
physical channel. Finally, the VA process includes buffer management to en-
sure efficient use of resources. By effectively managing the VA process, routers
optimize resource usage and provide reliable communication while maintaining
high-quality service.

• Switch allocation (SA) is a critical aspect of a generic router architecture as
it efficiently allocates available switching resources within the router. Switch
allocation includes both input port allocation and output port allocation. In-
put port allocation determines the output port or ports to which incoming
packets should be forwarded based on routing decisions. On the other hand,
output port allocation establishes connections in the switching fabric to for-

38

CHAPTER 3. NETWORK-ON-CHIP

ward packets to the selected output port. Various mechanisms can be used for
switch allocation, including shared memory, crossbar switching, and output
queuing. The choice of mechanism depends on factors such as performance
requirements and available hardware resources. To optimize switch allocation,
advanced scheduling and arbitration algorithms can be used. These algorithms
help improve router performance by efficiently managing switching resource al-
location.

• Crossbar: In a router architecture, the crossbar plays a central role as a switch-
ing fabric that connects multiple input and output ports. Regardless of the
number of virtual channels or flits that can be sent from different virtual chan-
nel buffers, each input port in the router shares a single crossbar port. This
decision allows the size of the crossbar to be kept small and independent of the
number of virtual channels. The router architecture efficiently uses switching
resources by sharing the crossbar port among the input ports.

The virtual channel router functions through a pipeline, as seen in Figure 3.6.
Each packet passes through four pipeline phases: RC, VA, SA, and switch traversal
(ST). To facilitate the processing of the packets, they are divided into smaller units
called flits, which include a header, a body, and a tail flit. The RC and VA steps
are performed exclusively on the head flit since it contains the necessary routing
information. Once the RC and VA phases are completed, a dedicated data path is
reserved for the packet within the virtual channel router. Subsequently, the body
and tail flits follow the head flit through the reserved path. The SA and ST phases
are the same for all flits and involve each flit sending a request to SA. If the request
is granted, the flit can traverse the crossbar in the next cycle. After the last flit is
ejected, the reserved path is released [LGY10].

RC VA SA STHead flit

SA STBody/ tail flit

Figure 3.6: Data flow in router

3.4.1 Effects of Fault on Router Pipeline

The router pipeline provides efficient forwarding and processing of packets within a
network infrastructure. However, failures within the router pipeline can significantly
impact its functionality and performance. This subsection examines the effects of
errors in the router pipeline to show the possible consequences and the resulting
impact on network operations.

Routing Computation Fault scenario

Faults in the RC unit of an input port can lead to inaccuracies in output port compu-
tations. However, the lookahead routing protocol minimizes immediate misrouting

39

CHAPTER 3. NETWORK-ON-CHIP

at the current router by correctly directing packets toward the intended output port.
This reduces the chances of misrouting at the current router. It is important to note
that misrouting can still occur in downstream routers if the incorrect computation
remains a valid output port direction. In such cases, the packet may experience
additional latency as it is redirected toward the correct destination by the next
downstream router. In the case of source-based routing, which relies solely on the
source address for routing decisions, faults in the RC unit cannot be rectified. If the
incorrect computation results in an invalid output port direction, the packet may
become trapped in the downstream router, potentially leading to a deadlock. In such
instances, the downstream router may drop the packet, necessitating retransmission
later to ensure successful delivery [Sha+20].

Virtual Channel Arbitration Stage Fault Scenario

If a fault occurs in the arbiter of the VA stage, it can lead to two possible scenar-
ios: Miss-allocation or no-allocation of the downstream VC. In the case of miss-
allocation, when the downstream VC is already occupied, the subsequent packet
overwrites the previous one, causing data corruption. On the other hand, in the
case of no allocation, the packet remains in the buffer without progressing further.
This situation results in significant performance degradation, potentially leading to
a deadlock [Sha+20].

Switch Allocation Stage Fault Scenario

If a fault occurs in the arbiter of the first stage of SA, it blocks packets at the asso-
ciated input port. As a result, the packets within that input port cannot progress
through the subsequent stages of SA. Similarly, a fault in the arbiter of the sec-
ond stage of SA renders the output port inaccessible, preventing packets from being
transmitted to their intended destinations. In both scenarios, the fault causes the
entire input port to become permanently isolated, disrupting the flow of packets
and hindering their progress within the network. This isolation of the input port re-
sults in significant performance degradation, as the affected packets cannot proceed
beyond the SA stages. Moreover, the situation poses a potential risk of deadlock,
where the network reaches a state where no further progress can be made.

Crossbar Fault Scenario

A fault occurring in a multiplexer within the crossbar can render an output port
inaccessible, severely disrupting the overall operation of the router. However, em-
ploying adaptive routing or bypassing faulty multiplexers can mitigate the impact
of the fault on the router’s function. By dynamically adjusting the routing paths
or bypassing the faulty components, the router can continue operating, albeit with
reduced performance or capacity. Additionally, this adaptive approach enables the
router to maintain functionality despite the presence of faulty multiplexers [Sha+20].

3.5 Switching Methodology

In NoC architectures, the switching methodology refers to routers’ specific tech-
niques to facilitate forwarding data packets between processing elements (PEs) or

40

CHAPTER 3. NETWORK-ON-CHIP

IP cores within the chip. Various switching methodologies are available, each offering
different trade-offs in terms of factors such as latency, throughput, complexity, and
resource usage. This section overviews several commonly used switching method-
ologies in NoC designs.

3.5.1 Store and Forward

Store and forward is a widely employed switching methodology in NoC systems. In
this approach, the entire data packet is received and stored in the switch’s input
buffer before being forwarded to the output port. The switch examines the packet’s
header to determine the appropriate output port. Store and forward switching offers
advantages such as error detection and correction capabilities, as the entire packet
is received and verified. However, it introduces additional latency due to the need
to buffer the entire packet before forwarding.

3.5.2 Wormhole Switching

Wormhole switching is a low-latency switching methodology commonly used in NoC
designs. This approach divides data packets into smaller flits (flow control digits),
typically consisting of a header, body, and tail. Each flit is transmitted through
the switch progressively, starting from the input port towards the output port. The
switch examines the flit’s header to determine the appropriate routing path and
forwards it when the resources are available. Wormhole switching reduces latency
by enabling pipelined transmission of flits, but it requires careful flow control to
avoid deadlock situations.

3.5.3 Circuit Switching

Circuit switching is a switching methodology commonly used in traditional telecom-
munication networks. In NoC, circuit switching establishes a dedicated path or
circuit between the source and destination PEs for the duration of a communica-
tion session. Once the circuit is established, data packets are transmitted along the
pre-allocated path without requiring header processing at each intermediate switch.
Circuit switching offers low latency since there is no packet contention or routing
decisions to be made during the transmission. However, circuit switching may result
in inefficient resource usage when dealing with sporadic or bursty traffic patterns.

3.5.4 Virtual Channels

Virtual Channels (VCs) are used with various switching methodologies to improve
the performance and flexibility of NoC designs. Virtual channels partition the phys-
ical links between switches into multiple logical channels. Each virtual channel
operates independently, allowing for concurrent transmission of packets or flits and
reducing the effects of contention and blocking. As a result, virtual channels en-
able better usage of the network resources and enhance the overall throughput and
efficiency of the NoC. By understanding and selecting the appropriate switching
methodology, designers can optimize the performance, latency, and resource usage
of NoC systems according to specific application requirements and traffic patterns.
The choice of switching methodology depends on factors such as desired latency,

41

CHAPTER 3. NETWORK-ON-CHIP

bandwidth, reliability, and the trade-offs between complexity and performance. As
a result, NoC architectures often combine multiple switching methodologies and use
virtual channels to balance performance, scalability, and flexibility.

3.6 Routing Algorithms

Routing algorithms play a crucial role in NoC architectures by determining the
paths data packets take from source processing elements (PEs) to their destina-
tions. In addition, these algorithms define the route selection process and impact
factors such as latency, throughput, energy consumption, and fault tolerance. This
section provides an overview of three commonly used routing algorithms in NoC de-
signs: Deterministic, adaptive, and stochastic routing, along with examples of each
algorithm.

3.6.1 Deterministic Routing

Deterministic routing algorithms follow predetermined paths or routes based on the
packet’s source and destination addresses. These algorithms rely on pre-computed
routing tables or fixed mappings to determine the next hop or output port for
packet forwarding. One example of a deterministic routing algorithm is XY routing.
The NoC is organized as a 2D grid in XY routing, where each processing element
(PE) is assigned an XY coordinate. The routing decision is made by comparing
the X and Y coordinates of the source and destination PEs. The packet is then
forwarded in either the X or Y direction, depending on the difference in coordinates.
Another example of a deterministic routing algorithm is source-based routing. This
algorithm determines the routing path at the source network interface (NI). When
messages flow through the routers, each router examines the routing information in
the packets’ header flits to determine the next hops. This deterministic algorithm
guarantees deadlock-free routing and simple implementation, but it may suffer from
congestion if multiple packets contend for the same paths.

3.6.2 Adaptive Routing

Adaptive routing algorithms adjust the routing paths based on real-time network
conditions, such as traffic load, congestion, or link availability. These algorithms
make routing decisions at run-time, considering the network’s current state and
alternative paths’ availability. One example of an adaptive routing algorithm is
the Distributed Dynamic Routing (DDR) algorithm. DDR algorithm operates by
periodically exchanging network information among neighbouring switches. Each
switch maintains a local network view, including traffic loads and link status. Based
on this information, switches collaboratively make routing decisions by selecting
paths with lower congestion or fewer faults. The DDR algorithm allows the network
to adapt to changing conditions and balance the load across the network. However,
it requires additional signalling and communication overhead [NLB00].

42

CHAPTER 3. NETWORK-ON-CHIP

3.6.3 Stochastic Routing

The Stochastic Routing algorithm is a probabilistic approach used in NoC architec-
tures to optimize communication by adapting routing decisions based on statistical
information [DS10]. In an NoC with a mesh or torus topology, each router monitors
the traffic on its input and output ports, keeping track of statistics such as packet
arrival rates and congestion levels. When a packet arrives at a router, the Stochas-
tic Routing algorithm probabilistically selects an output port for forwarding. The
selection is based on statistical information, including traffic patterns, congestion
levels, and packet arrival rates. The algorithm dynamically adjusts the probabilities
of selecting each output port based on the current network conditions. For example,
if a port is congested, its probability of selection may be reduced to alleviate conges-
tion. Load balancing is achieved by distributing traffic evenly across the network,
considering the current traffic distribution. This helps minimize overall congestion
and latency. The algorithm also incorporates fault tolerance by avoiding faulty or
congested links. It reroutes packets through alternative paths whenever possible to
ensure reliable communication. While Stochastic Routing has advantages in opti-
mizing communication in NoC architectures, it is essential to consider the increased
complexity, non-deterministic behaviour, challenges in achieving deterministic QoS,
potential performance variability and added overhead as potential disadvantages of
this approach.

3.7 Deadlock and Livelock in Network-on-Chip

Systems

In the NoC architecture, the issues of deadlock and livelock are of utmost impor-
tance as they can significantly impact the efficient functioning of the network and
hinder the progress of processing elements (PEs) and routers. In the context of NoC
architecture, deadlock arises when there is a circular dependence in the allocation
of resources, leading to multiple PEs or routers being unable to make any progress.
This situation typically occurs when a PE waits for a message to be forwarded by
a router while the router waits for an available output port. Consequently, com-
munication between PEs and the routing of messages come to a halt, resulting in
a system deadlock [JB17]. In contrast, livelock refers to a scenario where PEs or
routers continuously engage in unproductive actions that fail to advance the over-
all system. Unlike deadlock, where processes are blocked, livelock involves endless
and futile activities that do not contribute to meaningful progress. This can lead
to a decrease in system efficiency and performance [JB17]. Therefore, effectively
addressing deadlock and livelock issues in NoC systems necessitates carefully con-
sidering and implementing suitable strategies. Various techniques can be employed,
including efficient resource allocation algorithms, deadlock detection mechanisms,
and intelligent routing protocols. These strategies aim to prevent circular depen-
dencies, break deadlock situations, and mitigate livelock by incorporating intelli-
gent decision-making and adaptive behaviours. Moreover, system designers must
consider factors such as message priorities, network congestion, and load balancing
to minimize the occurrence of deadlock and livelock. Proper synchronization and
communication protocols, combined with effective deadlock detection and recovery
mechanisms, can help ensure the smooth operation of NoC systems and maximize

43

CHAPTER 3. NETWORK-ON-CHIP

their performance. By comprehending the challenges posed by deadlock and livelock
in NoC systems, researchers and designers can develop robust and reliable architec-
tures that optimize resource usage, enhance system scalability, and maintain efficient
communication among PEs and routers.

44

Chapter 4

Related Work and Research Gaps

This chapter highlights the different techniques used in Network-on-Chip (NoC)
architectures to enhance the safety and energy efficiency of NoC-based multicore ar-
chitectures. It begins by outlining the requirements of the Adaptive Time-Triggered
Networks-on-Chip (ATTNoC) architecture. Then, it presents an overview of exist-
ing NoC architectures, highlighting the advantages and limitations of each approach.
Furthermore, the chapter explores how NoCs use fault tolerance techniques to im-
prove reliability. This includes an in-depth analysis of redundancy-based approaches
and adaptation techniques, providing insight into their advantages and limitations.
Additionally, the chapter discusses the latest technologies implemented in NoCs to
optimize power consumption. This involves examining the details of voltage and
frequency scaling techniques and clock and power gating. The chapter emphasizes
how various NoC architectures can effectively use these techniques to reduce power
consumption while maintaining performance. In addition, the chapter highlights
the current research gap and identifies areas where researchers can improve further.
This chapter offers valuable information to researchers and engineers working on
NoC architectures. It provides a comprehensive understanding of the various tech-
niques used to enhance the safety and power efficiency of NoCs, enabling readers to
make informed decisions when designing and implementing NoC architectures.

4.1 Requirements

The ATTNoC-based multi-core architecture is designed to meet the high-performance
requirements of embedded systems by providing capabilities such as real-time oper-
ation, adaptability, fault tolerance, energy efficiency, and an open-source NoC-based
design. The architecture must fulfil critical requirements for the system’s success
to achieve these capabilities. Firstly, the architecture addresses the fundamental
requirement of real-time capability (RE1) for embedded systems. This involves the
need for the system to respond promptly and predictably to events. To ensure real-
time capability, the ATTNoC architecture uses time-triggered communication in the
network, minimizing delays and jitter to achieve predictable response times. Adapt-
ability (RE2) is identified as crucial for systems operating in dynamic environments
where workload and system requirements frequently change. The ATTNoC archi-
tecture achieves adaptability through multiple schedules at the network interface,
allowing the platform to reconfigure its schedule in response to contextual events,
thus enabling the system to meet evolving requirements. Fault tolerance (RE3) is

45

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

essential for safety-critical systems in harsh environments where transient or per-
manent faults can occur. The ATTNoC architecture addresses fault tolerance at
the network interface level through seamless redundancy mechanisms. These mech-
anisms duplicate critical data at the network interface and transfer it using a dual
channel, enhancing the system’s fault tolerance in the event of faults in NoC routers
or links. Energy efficiency (RE4) is identified as crucial for systems operating with
limited energy sources. The ATTNoC architecture incorporates frequency scaling at
the router level to achieve energy efficiency. This involves integrating frequency scal-
ing into the schedule, where ATTNoC schedules the injection time of messages and
predefined specific frequencies to be used in different time slots within the period.
This approach enables the routers’ frequencies to be adjusted according to the pre-
defined schedule, resulting in optimized power consumption without compromising
system performance. An open-source NoC-based architecture (RE5) is considered
essential for the ATTNoC architecture to gain widespread adoption and support.
The architecture is based on an open-source NoC architecture, allowing develop-
ers to customize and modify the system according to their requirements, making
it flexible and adaptable. Lastly, the ATTNoC architecture ensures deadlock-free
operation at the router level (RE6). Deadlocks can occur when multiple routers
wait for each other to release resources, leading to system failure. The architecture
uses source-based routing and time-triggered communication to predefine message
routes and schedule message injection times to avoid cyclic paths and resource con-
tention within NoC routers. By incorporating these requirements and techniques,
the ATTNoC architecture aims to deliver reliable, efficient, high-performance sys-
tems operations, meeting the demands of modern computing applications.

4.2 Network-on-Chip

Using multi-core processors in embedded systems has created new high-performance
applications, such as real-time data processing and complex control algorithms.
Additionally, these processors have generated interest in Network-on-Chip (NoC)
networks for inter-core data communication. NoCs offer scalability, parallelism, sys-
tem modularity, high-frequency operation, and power efficiency [TUM], [Nam+22],
[Bei+05], [Fer+04], [Che+13], [Bar+06], [Adr+03], [Sch07]. However, shared re-
sources like caches, buses, and inputs/outputs in multi-core architectures introduce
non-determinism in execution time analysis. To meet Quality of Service (QoS) re-
quirements, researchers have suggested employing resource reservation and priority-
based mechanisms to ensure guaranteed levels of latency and bandwidth. Various
NoC architectures have been proposed in the literature, each with strengths and
weaknesses. This section reviews existing NoC architectures and compares them to
our adaptive time-triggered NoC (ATTNoC) architecture. The LISNoC architecture
[TUM] is an open-source NoC architecture that uses wormhole packet switching for
flit transmission within the NoC. It employs three flow control signals (flit, valid,
and ready) to ensure reliable packet delivery. The architecture supports virtual
channels that enable concurrent communication and improve the performance of
NoC routers. However, the LISNoC only supports event-triggered communication
and does not support source-based routing and time-triggered communication. To
address these limitations, we extended the LISNoC to support source-based routing
and time-triggered communication [Nam+22]. This extension allows us to schedule

46

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

the communication of the NoC and route the data based on the route defined by
the schedule, which is stored in the network interface of the NoC. Furthermore,
the time-triggered communication at the network interface allows the NI to inject
messages based on a predefined time retrieved from the schedule. By injecting mes-
sages at predefined times, communication between processing elements (PEs) can
be more deterministic. This is especially important in real-time systems or applica-
tions where precise timing is crucial. Moreover, the adaptation feature incorporated
in the NoC enables the NoC to re-configure its communication schedule, such as
rerouting a message due to a permanent fault that blocks communication within the
NoC or re-configuring the frequency used in the NoC based on the current workload.
We also added a redundancy mechanism to some critical NIs to transfer messages
using dual channels to increase the reliability of the systems. The asynchronous NoC
(ANoC) architecture proposed in [Bei+05] is an asynchronous NoC architecture that
incorporates both Quality of Service (QoS) and Transaction-Level Modeling (TLM).
It enhances efficiency and reduces latency for prioritised packets using wormhole
packet switching and virtual channels. The architecture is designed to work with
a 2D mesh network, where nodes are arranged in a grid-like structure. Each node
is connected to its neighbouring nodes, allowing for efficient communication. Each
node connects to a network interface featuring a Globally Asynchronous Locally
Synchronous (GALS) interface. This interface facilitates synchronisation between
the synchronous and asynchronous domains. In contrast, the ATTNoC architec-
ture, as the name suggests, employs time-triggered communication. It incorporates
a time-triggered mechanism to control and schedule communication within the NoC.
This approach ensures deterministic behaviour and enables the provision of real-time
guarantees. Moreover, the time-triggered architectures use a global clock synchro-
nising NoC communication. This differs from the asynchronous nature of the ANoC
architecture, where communication occurs without a global time-based clock. The
Hermes Network on Chip is introduced by Moraes et al. [Fer+04]. Moraes et al.
reviewed the state of the art for NoC in their work. An infrastructure called Hermes
is described, which implements packet-switching techniques, mesh topology, and
related interconnection architectures. The primary element of Hermes is a switch
with five bidirectional ports connected to four other switches and a local IP core.
The switch applies an XY routing algorithm and uses input queueing. However, our
design supports a dynamic routing algorithm, which allows the NoC to re-configure
its route when a context event occurs. It also supports virtual channels that can
minimise the NoC’s latency. The GALS NoC architecture [Che+13] solves the clock
distribution problem by linking asynchronous routers to synchronous blocks. It
uses wormhole packet switching with an XY routing algorithm and supports mesh
topologies. In contrast, our design uses the global time to share the timing view
between distributed components that may run with different clocks. Moreover, an
adaptation routing algorithm is supported, allowing the NoC to re-configure the
path in case of a fault. AEthereal and Nostrum [Mik+04], [Bar+06] use a resource
reservation mechanism to provide guaranteed services for both throughput and la-
tency while accommodating best-effort communication. These architectures employ
a mesh topology and implement a multi-layered advanced high-performance bus
(ML-AHB) interconnection architecture in the case of AEthereal. The ML-AHB
architecture allows parallel access between multiple masters and slaves, enabling
efficient communication within the system. Our design introduces an interconnect

47

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

structure using the NI (Network Interface) based on the AXI (Advanced eXtensible
Interface) protocol. This design choice provides a scalable solution for interconnect-
ing various components within the system-on-chip (SoC). This scalable intercon-
necting structure offers flexibility and facilitates efficient communication between
different subsystems within the SoC. The SPIN (Scalable Programmable Intercon-
nection Network) NoC architecture [Adr+03] introduces two on-chip communication
templates based on bus and NoC approaches. In SPIN, packets are forwarded when
a router receives their headers, a wormhole switching technique. SPIN has adap-
tive and distributed routing and supports the fat-tree topology. The RSPIN router
serves as a fundamental component in a SPIN network, featuring eight ports, with
each port having multiple input and output channels to facilitate efficient commu-
nication within the network. On the contrary, the ATTNoC supports the mesh
topology, which offers better scalability. In a mesh topology, each router within the
network is directly connected to every other router in the system. This means a
direct communication path between routers, allowing for efficient and direct data
exchange. In a fat tree, some routers are connected to more routers than others.
This can create bottlenecks and limit the scalability of the system. The NoC in
the Xilinx Versal architecture is described in [Swa+19]. This 7nm SoC from Xilinx
contains a hardened NoC, which unifies communication between hardened accelera-
tor functions, FPGA fabric, memory subsystem, and processor system. The Versal
NoC uses an irregular topology built from reusable building components that can
link in various ways for various devices. The Versal NoC distinguishes itself from
competitors by allowing users to select the QoS at the design stage. The Versal
NoC communicates with devices via the AXI standard and supports AXI streams.
The router architecture is simplified, offering design flexibility and improved band-
width usage. However, different features are still missing in the Versal NoC, such as
adaptability, seamless redundancy mechanisms, and time-triggered features, which
are the main features of this thesis. Moreover, VERSAL NoC is only supported in
the Versal ACAP platform and cannot be used on other platforms.

The Time-Triggered NoC (TTNoC) [Sch07] introduces an on-chip time-triggered
interconnection to facilitate predictable communication in real-time systems. Using
simple routers and a pseudo-static communication schedule allows for efficient data
transfer and fault isolation, which is particularly useful when dealing with diverse
critical components. In our design, we extend the open-source LISNoC to incorpo-
rate time-triggered capability, enabling the Network Interface (NI) to inject mes-
sages at predetermined intervals. Moreover, the NI supports multiple schedules to
facilitate adaptive communication and allows the NoC to re-configure its schedule in
response to events. The Adaptive Time-Triggered Multi-Core Architecture (ATMA)
[Obe+19], proposed by Obermaisser et al., extends the TTNoC architecture [Sch07]
by incorporating adaptability features. These features enable the NoC to reconfig-
ure its schedule based on contextual events, such as faults in NoC resources, thereby
enhancing the fault tolerance capability of the architecture. However, the ATMA
architecture lacks mechanisms to handle rapidly occurring transient faults and does
not support frequency scaling at the router level, limiting its energy efficiency. We
propose the Time-Triggered Frequency Scaling (TTFS) technique to address these
limitations. This technique enhances energy efficiency at the router level by enabling
the router to adjust its frequency according to a predetermined schedule. It aims to
enhance energy efficiency while preserving the deterministic behaviour of the NoC

48

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

communication. Additionally, we extend the TTNI architecture of ATMA to sup-
port a seamless redundancy mechanism. These redundancy features incorporated in
the TTNI allow for the exchange of critical data through a dual channel while using
normal operation for low-criticality data without redundancy. This design avoids
the need for fully duplicated NoC components, resulting in low overhead. These
crucial features improve performance efficiency and reduce overhead in multi-core
architectures [TUM], [Nam+21], [NOO23], [Obe+19], [Nam+23].

4.3 Fault Tolerance Techniques for NoC

Fault tolerance in NoC architectures has made significant progress in detecting, cor-
recting, and masking faults. One commonly used approach is spatial redundancy,
where protected NoC components are replicated to achieve adequate fault tolerance.
Spatial redundancy can be classified into static, dynamic, and hybrid redundancy
[Dub08]. Static redundancy passively masks faults, while dynamic redundancy de-
tects faults and takes corrective action. Hybrid redundancy combines both static
and dynamic methods [Rad+13]. For example, triple modular redundancy (TMR) is
a well-known static redundancy technique that can mask a single fault but requires
significant additional hardware [Dub08]. Redundancy can be applied at different lay-
ers of an NoC, e.g., links, routers, NIs, or cores. At the data link layer, techniques
like TMR and spare wires are widely employed to ensure the proper functionality
of link lines and control signals within the NoC. TMR protects critical control sig-
nals, such as the NACK signal in hop-to-hop communication [Mur+06], [LLP10],
and logic elements like the crossbar multiplexer, ensuring correct switching even in
the presence of faults [Egh+10]. To enhance NoC connectivity and ensure uninter-
rupted communication even in the presence of faulty links, Kakoee et al. [KBB11]
proposed a method that duplicates all physical links between routers and incorpo-
rates dynamic redundancy. This approach involves replacing detected faulty links
with spare links. The number of spare links used determines the fault tolerance
capability of the system. However, reliable fault detection methods are crucial for
adequate dynamic fault tolerance to prevent undetected faults from compromising
system safety. Techniques such as Hamming code, configuration vectors with tris-
tate gates, or Built-In Self Test (BIST) can be employed for fault detection. While
spatial redundancy provides significant fault tolerance capacity, it often comes with
considerable overhead. To reduce this overhead, two trade-offs need to be made.
First, the granularity of redundancy should be carefully determined to optimize
costs. For example, in the case of TMR, the cost heavily depends on the partition
granularity [Con+06a]. The second trade-off is combining spatial redundancy with
other techniques to reduce overall costs. The system can improve fault tolerance
by integrating spatial redundancy with complementary fault tolerance techniques
while considering the associated overhead. This approach enables efficient resource
allocation and balances the trade-off between fault tolerance and cost efficiency. In
addition to spatial redundancy, it is essential to consider additional techniques to
ensure the reliability of the entire NoC platform. NoCs are susceptible to various
faults, including transient and intermittent faults [KK19]. Fault recovery is the
ultimate goal of fault-tolerant systems. Error detection codes (EDC), error cor-
rection codes (ECC), and advanced coding schemes such as Reed-Solomon codes
can be used to detect and correct a transient fault such as by bit flips which oc-

49

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

cur due to low noise margins, electromagnetic coupling effects, or crosstalk [AA05],
[Kim+14], [Ouy+21], [Wan+15]. Temporal redundancy, such as retransmission at
the link-to-link or end-to-end level at different time intervals, is one approach for
tolerating transient faults by retransmitting data during a transient fault [Ouy+21].
This method can help improve fault tolerance by introducing redundancy in the
transmission. On the other hand, traditional end-to-end retransmission introduces
significant packet latency and requires additional infrastructure support, such as
an ack/nack protocol. To mitigate these drawbacks, a hop-by-hop retransmission
scheme is often used. This scheme can reduce overall end-to-end latency by handling
retransmission locally at each hop rather than relying on acknowledgements from
the destination, as in the case of traditional end-to-end retransmission. Additionally,
detecting and tolerating faults in the control path of routers pose significant chal-
lenges. Such faults can lead to errors in the routing algorithm and result in incorrect
establishment of connections between input and output ports. Therefore, it is cru-
cial to develop and implement effective strategies that ensure the reliable functioning
of the network and mitigate potential disruptions. One standard solution involves
disabling faulty components and using an appropriate routing algorithm to bypass
disabled links, routers, or both. However, many of these methods require halting
network operations and resetting the system. The new topology is discovered during
the setup phase, and the network can resume functioning under the new configura-
tion. Some suggestions aim to avoid the costly reset [Wan+15], [DeO+12], but they
may result in packet loss during the transition phase. Nevertheless, these propos-
als protect the network from entering deadlock situations without needing a reset.
Several approaches, including architectural solutions and retransmission techniques,
have been proposed and combined in architecture to increase network reliability
against transient faults [Con+06b]. One such proposal, Bulletproof [Mot+13], in-
tegrates techniques like triple modular redundancy, end-to-end fault detection, and
resource sparing at different levels (system, component, and gate levels). It explores
the trade-offs between area, power, latency, and reliability, but a comprehensive
method that satisfies various trade-offs is needed. The fault tolerance techniques
presented in this work contribute to the field of fault tolerance in NoCs by offering
several key advantages over existing state-of-the-art approaches. The contributions
of this work can be summarized as follows: Dynamic schedule reconfiguration: In-
stead of relying on a fixed schedule commonly used in NoC architectures, this work
introduces dynamic reconfiguration of the NoC schedule based on context events.
This approach allows the system to use multiple schedules and adaptively recon-
figure the schedule based on context events, making the system more flexible and
adaptable. By responding to changing conditions, the system enhances its fault tol-
erance capabilities [Obe+19]. Seamless redundancy integration at the NI level: This
mechanism enables the NI to duplicate critical data and transmit it over different
paths, allowing the system to tolerate transient and permanent faults in the routers
and links during message exchanges. Since only the critical data is duplicated within
NIs, there is no need to duplicate all messages within the NoC, resulting in lower
overhead. The time-triggered communication mechanism in the NoC reduces the
risk of message collisions and delays, ensuring that messages are transmitted within
a specific time. This mechanism is crucial in real-time applications where timely
message delivery is essential. By enhancing the reliability of message delivery, the
system optimizes performance, leading to better overall system efficiency. By in-

50

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

corporating seamless redundancy mechanisms, time-triggered communication, and
adaptation techniques, the presented approaches contribute to fault tolerance in
the NoC domain. They provide valuable insights into improving network reliabil-
ity, adaptability, and communication efficiency, furthering the understanding and
implementation of fault tolerance in NoC architectures.

4.4 Low Power Techniques for NoC

In recent years, a significant amount of research has been conducted on low-power ar-
chitectures for multi-core systems using Network-on-Chip (NoC). These techniques
are designed to reduce power consumption by adjusting the supply voltage, fre-
quency scaling, clock gating, and adaptive routing algorithms [Man+21]. It is
essential to manage the power of NoCs efficiently in order to achieve energy effi-
ciency in multi-core platforms, and various state-of-the-art approaches provide a
wide range of low-power techniques. One of the most important aspects of reducing
power consumption is manipulating the supply voltage, which has a direct effect on
dynamic and static power [Man+21]. Various techniques have been developed to
control the supply voltage. One of these techniques involves using different supply
voltages (Multi-Voltage) for different components in combination with level shifters.
However, it is essential to note that these techniques may introduce delays and addi-
tional power consumption, potentially impacting the system’s performance. Another
effective technique is frequency and voltage scaling, which involves the power man-
ager controlling different power modes based on the required temporal behaviour.
This approach allows for adjusting the supply voltage and clock frequency accord-
ing to the specific demands of the system. Additionally, instead of scaling down the
supply voltage when certain system parts are idle, components can be completely
switched off for an extended period, saving power. Other low-power techniques en-
compass multiple power modes (e.g., idle, sleep), effective cache usage, selectively
clock-gated caches, small architectures with reduced static power, Dynamic Power
Management (DPM), and application-driven and operating-system-driven solutions.
Integrating these techniques into the scheduling and design of software tasks is vital
for maximizing power savings. However, when applying these low-power techniques
to mixed-critical systems, certain limitations emerge due to their impact on timing
[Mot+13]. For instance, voltage/frequency scaling can introduce varying execution
times, while switching off components can result in different response times as they
need to be powered on first. These complexities in timing behaviour and the poten-
tial impact on critical components pose challenges in fully using these techniques
in safety-critical systems [VHL14]. Consequently, safety-critical systems make less
extensive use of these power-saving methods.

Several studies have explored the application of low-power techniques in various
computing architectures or platforms. For example, in a study cited as [Ila+20],
researchers proposed a data-driven frequency scaling technique that resulted in a
15% reduction in the energy consumption of GPUs compared to baseline policies.
Another study [Che+20] investigated the impact of dynamic voltage and frequency
scaling (DVFS) techniques on power consumption in low-power microcontrollers
within wireless sensor networks, highlighting the significance of DVFS on power
consumption and processor energy. Researchers in [PCG19] proposed a method
for scaling the voltage and frequency of multi-core CPUs, achieving average energy

51

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

savings of 25% and 22% for different microprocessors by dynamically adjusting volt-
age and frequency settings based on optimal policies. It is important to note that
while these studies are related to power management, they differ from the present
research, which explicitly focuses on frequency scaling in NoC routers. Additionally,
in [Vai+19], the authors emphasised the importance of considering the granularity
of DVFS (dynamic voltage and frequency scaling) in design to improve energy effi-
ciency. Disregarding DVFS granularity could potentially increase power consump-
tion by 19%, compromising the system’s overall energy efficiency. However, this work
primarily focused on the core level rather than the NoC routers, differentiating it
from the research presented here. Furthermore, a study proposed a Learning-enabled
Energy-Aware Dynamic Voltage/Frequency Scaling method in [M+18] to improve
power consumption in NoCs. This technique employed machine learning to compen-
sate for the performance-energy trade-off and enabled proactive energy management
through an offline-trained regression model. The simulation results demonstrated an
average dynamic energy saving of 17% with minimal throughput loss and no increase
in latency. In contrast, this thesis focuses on enhancing the energy efficiency of NoCs
by scaling their frequency using a time-triggered concept. The goal is to preserve
the deterministic communication behaviour while achieving improved energy effi-
ciency in the systems. In [Nam+21], a technique called Time-Triggered Frequency
Scaling (TTFS) is introduced to enhance the energy efficiency of NoC-based multi-
core architectures. TTFS enables frequency scaling in NoC routers according to a
predefined schedule while preserving NoC performance. However, the architecture
introduced in [Nam+21] uses a centralized controller to scale the frequency of NoC
routers, which can be susceptible to failure. The current research extends the TTFS
technique by introducing a distributed controller to address this limitation. This
distributed controller is responsible for scaling the frequency of each router based
on a schedule, thereby improving the system’s reliability. Existing state-of-the-art
research reveals that implementing low-power techniques in processors, NoCs, or
microcontrollers can significantly enhance the power consumption of these systems.
However, most of these low-power techniques primarily focus on non-real-time ap-
plications. In contrast, this thesis proposes a distributed Time-Triggered Frequency
Scaling (TTFS) technique as a power-saving approach to improve the energy effi-
ciency of NoCs while maintaining their deterministic behaviour [Nam+21], [NOO23].
The TTFS technique employs a distributed controller that scales the frequency of
NoC routers according to a predefined schedule using the time-triggered concept,
aiming to enhance the energy efficiency of the NoC. Three different approaches are
used to evaluate power consumption within the TTFS framework. The first ap-
proach, known as the global approach, synchronizes the frequency of routers across
all routers. The schedule determines the operating frequency of the active routers
while clock-gating the routers during the idle time of all routers according to a
schedule. The second approach, called the cluster-based approach, divides the NoC
into multiple clusters, each operating at a frequency determined by the schedule.
Lastly, the router-based approach assigns individual schedules to each router, allow-
ing them independent operating frequencies, regardless of the overall NoC or cluster
frequencies. By incorporating techniques such as global, cluster, and router-based
approaches into the TTFS framework, the thesis aims to address power consumption
challenges in NoCs and provide effective power-saving solutions while considering the
system’s real-time requirements. In summary, while existing research has made sig-

52

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

nificant progress in low-power techniques for processors, NoCs, and microcontrollers,
most of these approaches have primarily focused on non-real-time applications and
the core level. On the contrary, the present research proposes the TTFS technique
as a distributed power-saving approach for NoCs, with the aim of improving energy
efficiency while meeting real-time demands.

4.5 Research Gaps in the State of the Art

The research on NoC-based multi-core architectures has identified three critical gaps
that need to be addressed. First, addressing permanent faults in NoC platforms
while considering the overheads is crucial. This is because permanent faults can
lead to system failures if mishandled. However, addressing permanent faults can
also introduce overheads, such as replicating data or using more complex routing al-
gorithms. Therefore, it is essential to balance fault tolerance and overheads. Second,
optimizing energy efficiency for real-time applications requires additional support for
frequency scaling at the router level. This involves the development of mechanisms
that enable routers to adjust their operating frequencies while meeting real-time
requirements. Lastly, ensuring the reliability of the entire NoC platform requires
comprehensive solutions. The Adaptive Time-Triggered Multi-Core Architecture
(ATMA), introduced in [Obe+19], offers adaptability and fault tolerance but needs
to overcome certain limitations. Specifically, it lacks mechanisms to effectively han-
dle rapidly occurring transient faults, which is crucial for real-time systems with
stringent safety requirements. Addressing this deficiency requires comprehensive
fault tolerance techniques considering trade-offs between area, power consumption,
latency, and reliability. Seamless redundancy mechanisms can enhance system reli-
ability without incurring excessive overhead. The seamless redundancy mechanisms
enable the NI to transfer critical messages through a dual channel while transferring
a non-critical message to a single channel. This improves reliability without the need
for full duplication of NoC resources. Adaptation techniques play a vital role in fault
recovery and energy efficiency by enabling the NoC to reconfigure its schedule, facil-
itating message rerouting, or adjusting injection times or the operating frequency of
NoC based on workload. This flexibility optimizes reliability and energy efficiency
within the NoC. Existing low-power techniques for NoC-based multi-core systems
primarily focus on non-real-time applications, overlooking the need for comprehen-
sive power-saving approaches that address real-time requirements. Power consump-
tion optimization mainly targets the processor or core level, with limited attention
given to the NoC router level. This highlights the lack of a holistic approach that
integrates power-saving techniques at both the core and NoC levels while effectively
addressing real-time requirements. To address the identified gaps, a comprehensive
solution is required to reduce power consumption while meeting real-time demands.
Time-Triggered Frequency Scaling (TTFS) emerges as a promising technique that
scales the frequency of NoCs based on a predefined schedule. By scheduling the fre-
quency used in the routers in advance, the operating frequency can be clock-gated
or scaled up or down according to the schedule, enhancing energy efficiency while
preserving deterministic communication behaviour. Time-triggered mechanisms en-
sure deterministic communication by injecting each message into the NoC according
to a predefined schedule. This aims to avoid message collisions in the NoC and pre-
serve the deterministic behaviour of the NoC communication. A comprehensive

53

CHAPTER 4. RELATED WORK AND RESEARCH GAPS

solution can be achieved by integrating TTFS, seamless redundancy mechanisms,
adaptation techniques, and time-triggered mechanisms. This integrated approach
effectively addresses the critical research gaps, leading to improved fault tolerance
and energy efficiency in NoC-based multi-core architectures [Obe+19], [Nam+21],
[NOO23], [TUM].

54

Chapter 5

System Model

This chapter presents the system model of an adaptive time-triggered multi-core ar-
chitecture based on Networks-on-Chip (NoC). It provides a comprehensive overview
of the architecture’s components and functionality and the building blocks, inter-
faces, and services employed in the system.

5.1 Adaptive Time-Triggered Network-on-Chip

Architecture

The Adaptive Time-Triggered Network-on-Chip (ATTNoC) is an NoC-based multi-
core architecture designed with fault tolerance and power-saving techniques to pro-
vide safety and energy efficiency. The ATTNoC integrates several services to fulfill
the requirements outlined in section 4.1. These services include time-triggered com-
munications, adaptability, fault tolerance, and energy efficiency while upholding
system safety. These services are described in the following items.

• Time-triggered communication: This service facilitates the exchange of mes-
sages within the NoC based on a predefined schedule, ensuring consistent and
predictable communication. By adhering to the NoC schedule, each message
and task can access resources at predetermined times, preventing message col-
lision and reducing the risk of missed deadlines that can negatively impact
real-time applications.

• Fault tolerance through adaptation: The network interface (NI) in ATTNoC
supports multiple schedules, allowing it to switch between schedules in re-
sponse to context events like permanent faults in NoC resources such as NIs,
routers, cores, and links. This ensures that the systems continue to operate
despite faults in the NoC resources. This approach aims to preserve the cru-
cial time-triggered system properties, including implicit synchronization and
avoidance of resource contention[Obe+19].

• Seamless redundancy mechanisms: The ATTNoC architecture introduces two
types of time-triggered network interfaces (TTNIs) to support mixed-criticality:
Safety Critical NI (SCNI) and Non-Safety Critical NI (NSCNI). SCNI has
two modes of operation: redundant and non-redundant. In redundant mode,

55

CHAPTER 5. SYSTEM MODEL

SCNI transmits critical messages over a dual channel, while non-critical mes-
sages use a single channel to optimize resource usage. NSCNI only supports
non-redundant mode.

• Time-triggered frequency scaling (TTFS) is a technique in which the frequency
of each router is predetermined and scheduled in advance. This approach en-
ables NoC routers to adjust their operating frequency based on a predefined
schedule during their active time. By clock-gating the idle routers and adjust-
ing the frequency of active routers based on the predefined schedule, energy
consumption is optimized while maintaining deterministic behaviour in the
system. This ensures that messages are delivered within specified time con-
straints while enhancing energy efficiency within the NoC.

The ATTNoC architecture builds upon the open-source event-triggered LISNoC
presented in Section 5.1.1. It supports topologies like meshes and connects resources
like hard and soft processors, memory subsystems, etc. Figure 5.1 gives an overview
of the ATTNoC architecture. It consists of tiles interconnected through an NoC.
The NoC comprises routers connected to other routers and tiles via communication
links. Each tile consists of three parts: cores for application services, an adaptation
unit (indicated by the blue area in Figure 5.1) composed of four elements: con-
text monitor, context agreement, schedule memory, and time-triggered dispatcher
to switch between schedules during context events, and SCNI and NSCNI to access
the NoC. Furthermore, the platform services employed in the ATTNoC are illus-
trated on the right side of Figure 5.1. These services encompass global time-based
functionality, serving as a time reference within the ATTNoC. Time-triggered fre-
quency scaling is used as a power-saving technique at the router level. Adaptation
techniques enable the NoC to reconfigure its schedule. Seamless redundancy allows
the NI to duplicate and transfer critical data through a dual channel. Lastly, time-
triggered communication enables the NoC to inject messages into the NoC based on
a predefined schedule.

Router Router

Router Router Router

Router Router

Tile

Router

Tile

Router

Tile Tile

Processor

Context
Monitor

Context
Agreement

Schedule
Memory

Time-triggered Dispatcher

Local Memory Non-Safety Critical NI

Processor

Context
Monitor

Context
Agreement

Schedule
Memory

Time-triggered Dispatcher

Local Memory Safety Critical NI

Global Time Time-Triggered
Frequency Scaling

Adaptation Service Seamless Redundancy

Time-Triggered Communication

Resources (Computational, Adaptation Unit,
Communication, I/O, Memory)

Platform ServicesPhysical Model

Figure 5.1: Physical and logical system model of ATTNoC

56

CHAPTER 5. SYSTEM MODEL

5.1.1 LIS Network-on-Chip (LISNoC)

LISNoC is an event-triggered-based Network-on-Chip (NoC). It is an open-source
NoC implemented in Verilog, primarily used for academic purposes [TUM]. It serves
as the foundation for implementing ATTNoC, which incorporates fault tolerance and
power-saving techniques. Some of the main features of LISNoC include virtual chan-
nel support, flexible configuration, wormhole routing, and round-robin arbitration
[TUM]. The LISNoC uses a packet format for data transmission, dividing each
packet into flits. The header of each packet contains all the necessary information
about the destination processing element. Moreover, the LISNoC has expanded
to include source-based routing, time-triggered communication, adaptability, and
redundancy mechanisms to support predictable communication and real-time ap-
plications. Furthermore, the LISNoC has been extended to support power-saving
techniques. These techniques involve clock-gating the idle routers and scaling the
frequency of active routers based on a predefined schedule to optimize energy con-
sumption and preserve deterministic communication within the NoC routers. Ad-
ditionally, fault tolerance techniques have been integrated into the router. In the
event of a permanent fault, such as an open link or a stuck-at ’0’ or ’1’, the router
is designed to bypass local input/output ports and the router crossbar by switching
between schedules. This bypass mode allows the data to be sent through alternative
paths, enabling the system to tolerate faults and maintain reliable communication
within the NoC.

5.1.2 Time-Triggered Control in ATTNoC

ATTNoC is an enhanced version of LISNoC that incorporates time-triggered com-
munication, enabling message exchanges based on a predefined schedule. It con-
sists of two distinct time-triggered controllers serving different functions. The first
controller in the TTNI is responsible for scheduling communication, computation,
and frequency scaling within ATTNoC routers. Its primary role is to ensure that
all tasks and messages are transmitted within specific time constraints, promoting
reliable and predictable communication. The second controller is situated in the
adaptation unit and is responsible for scheduling the components of the adaptation
unit, including the context monitor (CM), context agreement (CA), and schedule
switching. This controller also ensures that the distributed TTNI performs schedule
switching simultaneously with any context event, e.g., slack and permanent faults
in NoC resources like NIs, cores, routers, and links.

Time-Triggered Controller in Time-triggered Network Interface

The time-triggered controller in the NI is responsible for scheduling communication,
computation, and the frequency to be used in the routers. The TTNIs rely on global
time-based synchronization to maintain a consistent timing view in the ATTNoC.
Since the frequency for each router is predefined in the schedule, the time-triggered
dispatcher, which triggers message injection and frequency scaling, can adjust the
operating frequency of active routers and clock-gate idle routers according to the
schedule to save energy. The dispatcher also ensures that the router frequency
is clock-gated when no messages pass through, preserving NoC performance and
meeting message deadlines.

57

CHAPTER 5. SYSTEM MODEL

Active Idle Active

(FqL,t1) (Fqhalf,t2)

Router-1

Active Idle

(FqL,t1)

Router-2

Active Active

(FqL,t1) (FqH,t2)

Router-3

Active Active Idle

(Fqhalf,t1) (FqL,t2)

Router-4

Idle

Period

Active router with
 full frequency = f

Active router with
half frequency = f/2

Idle router with
clock gated

(Fq, t): (Frequency Used,
Time to adjust frequency)
FqL: Clock gated,
FqH: Router operated
at full frequency
Fqhalf: Router operated
at half frequency

Figure 5.2: Example of frequency scaling with four routers in ATTNoC

As depicted in Figure 5.2, routers in the system are designed to accommodate
multiple clock domains, including full frequency, half frequency, and clock gating.
The time-triggered dispatcher triggers the frequency scaling on the routers and de-
fines the operating frequency of each router according to the schedule. During idle
periods, the router’s frequency is set to clock gating mode, which helps conserve
power. However, during active periods, the router’s frequency is adjusted according
to the schedule.

Figure 5.3 illustrates the structure of the schedule entries within the ATTNoC
architecture. These schedule entries are organized as a linked list and include the
InstantMsg, InstantFreq, PortID, RouterID, FreqMode, and Next values.

InstantMsg InstantFreq PortID RouterID FreqMode Next

Figure 5.3: Schedule entries of a time-triggered dispatcher in TTNI.

• InstantMsg represents the specific time at which a message is injected.

• InstantFreq indicates the time the router’s frequency is adjusted.

• PortID indicates the ID of the port from which the message is injected.

• RouterID refers to the unique identification number assigned to a router. For
example, when the NI is connected to two routers, the RouterID specifies
which of the two router frequencies connected to the NI should be adjusted.

• FreqMode defines the operating frequency used by the router.

• Next is a pointer indicating the schedule’s next entry.

58

CHAPTER 5. SYSTEM MODEL

Time-Triggered Controller in Adaptation Unit

The time-triggered controller within the adaptation unit is crucial for scheduling
various resources, such as the context monitor, context agreement, and schedule
switching, as described in section 5.1.6. This scheduling process relies on a prede-
termined schedule to ensure simultaneous switching between schedules across dis-
tributed network interfaces (NIs) when a context event occurs. Synchronization is
essential when the ATTNoC switches between schedules to prevent one NI from op-
erating with a new schedule (S1) while another continues operating with the initial
schedule (S0). Failure to properly synchronize the schedules in the distributed NIs
can result in delays within the NoC due to message collisions between the original
and new schedules configured in different NIs. Figure 5.4 presents the structure
of the schedule entries for controlling the adaptation in the ATTNoC. The sched-
ule for adaptation entries consists of Instant, AdaptationLogicID, and Next values.
These entries are essential for effectively managing and coordinating the adaptation
processes throughout the NoC.

Instant AdaptationLogicID Next

Figure 5.4: Schedule entries of a time-triggered dispatcher in the adaptation unit.

• Instant indicates when the context monitor, context agreement, or switching
schedule is triggered in the ATTNoC.

• AdaptationLogicID: The ID of the schedule entries determines which subcom-
ponents of the adaptation unit, such as the context monitor, context agree-
ment, and schedule switching, should be triggered.

• The next is a pointer that indicates the subsequent entry of the schedule.

5.1.3 Adaptation in ATTNoC

In the ATTNoC architecture, the network interface is designed to support multiple
schedules computed offline and stored in a specific memory. This allows schedule
switching in response to context events occurring in the NoC, such as permanent
faults. Figure 5.5 illustrates an example of multiple schedules, with each schedule
connected through a global context event. This global context event enables the
ATTNoC to transition from one schedule to another. Incorporating adaptation
features into ATTNoC primarily aims to enhance energy efficiency and facilitate
fault recovery [Obe+19]. The subsequent sections will explore how adaptation is
employed to achieve these goals within ATTNoC.

Adaptation for Energy Efficiency

Dynamic slack in the system provides an opportunity to preserve system perfor-
mance while reducing energy consumption in the ATTNoC. This dynamic slack can
be effectively used through two strategies: local adaptation and global adaptation
[Obe+19]. Local adaptation is employed when a core experiences slack, allowing a
task to be completed ahead of its scheduled time. By locally reducing the processor

59

CHAPTER 5. SYSTEM MODEL

e3

S3

S4

e4

S1

S2 S7

S0

e1

e2

e6

S6

e7

Sx Schedule

event (Slack, fault in NoC resources like routers, links, NIs, and cores)

Figure 5.5: Example of multiple schedules linked to each other by event

frequency during the slack period, power consumption in the core can be effectively
reduced [Obe+19]. One key advantage of local adaptation is that it optimizes the
schedule of a specific core without impacting the rest of the system. The interface
between the core’s local schedule and the NoC’s communication schedule remains
unchanged, ensuring that message injection remains unaffected. Local adaptation is
particularly beneficial when the slack time is less than twice the duration required
for ATTNoC to transition from one schedule to another. It allows efficient power
savings within individual cores while maintaining overall performance. However,
global adaptation focuses on changes within a subsystem, such as a core, result-
ing in temporal or spatial modifications in the usage of shared resources. Figure
5.6 illustrates an example of global adaptation, where dynamic slack occurs within
the sender core that needs to transmit data to another core. Adjustments to the
ATTNoC schedule are made to accommodate this slack by modifying the injection
time of messages. As a result, the transmitter core can transmit the data earlier
during the slack period. This adjustment enables the receiving cores to begin their
computations earlier, giving them more time until their deadlines. Furthermore, the
surplus slack time budget can be used to reduce the clock frequency of the receiver
cores, resulting in more significant energy savings by lowering the frequency of mul-
tiple receivers, as opposed to focusing solely on a single sender core, as observed in
local adaptation [Obe+19].

Adaptation for Fault Recovery

The adaptation techniques employed in the ATTNoC allow for tolerating perma-
nent faults that may occur within the NoC during run-time. By reconfiguring the
ATTNoC with a new schedule and isolating the faulty component, these techniques
enable the system to continue functioning effectively. An example scenario in Fig-
ure 5.7 illustrates the need for schedule switching due to a permanent fault. In this
scenario, router R4 is assumed to be faulty, causing any messages passing through

60

CHAPTER 5. SYSTEM MODEL

T1

T3

T3

T

Tile 0

Tile 1

Tile 2

Tile 3

Task Adaptation Time

Slack

T2
T2

T2

T3

Message

Task T1 done

T3 done

Figure 5.6: Global adaptation by changing the injection time of ATTNoC when
slack occurs

it to fail to reach their intended destinations. To overcome this fault and ensure
proper communication, the ATTNoC must undergo a schedule change. The failed
router R4 is removed in the new schedule, and all messages that pass through R4
are rerouted to alternative paths, as demonstrated in Figure 5.7. Through this
adaptation process, the ATTNoC effectively addresses the permanent fault by ad-
justing its schedule and rerouting the messages to isolate the faulty component. By
isolating the faulty component and reconfiguring the system accordingly, the AT-
TNoC maintains its functionality and ensures uninterrupted communication within
the network.

Source

R6 R7 R8

R3 R4 R5

R0 R1 R2

Destinat

R

Source

R6 R7 R8

R3 R4 R5

R0 R1 R2

Destinat

Initial Schedule Next Schedule

Adapatation

Source - Destinat : "Source-R7-R4-R1-Destinat" Source - Destinat : "Source-R7-R8-R5-R2-Destinat"

Figure 5.7: Global adaptation by isolating a faulty router in ATTNoC

61

CHAPTER 5. SYSTEM MODEL

5.1.4 Fault Model

A fault model is a method used to identify potential faults in a system. Faults not
considered in the model are guaranteed not to be covered by the fault tolerance
techniques used in the ATTNoC.

Failure Mode

We simulate permanent faults that may occur in the ATTNoC components, such as
routers, links, NIs, and cores. Therefore, the fault tolerance techniques employed in
the ATTNoC must be resilient against failures of cores, links, routers, and NIs.

Fault Containment Region

The fault containment regions (FCRs) are where faults may occur at run-time and
are tolerated. It is the delimiter of the immediate impact of a fault and is defined
to cover the cores, links, and NIs as shown in Figure 5.8. No faults that originate
within an FCR should negatively impact another FCR. This means that in case
of permanent faults, the core should still be able to compute tasks and exchange
messages to maintain its functionality. Table 5.1 below shows how each permanent

Input port

Input port

Crossbar

Output port

Output port

NI

PE

1

2
4

3
5

6

7 8

TO ROUTERS

Figure 5.8: FCR in ATTNoC architecture

fault corresponds to a fault type in high-level abstraction.

62

CHAPTER 5. SYSTEM MODEL

Component ID Location

1 Router fault
2 Input router fault (FIFO)
3 Output router fault (FIFO)
4 Crossbar fault
5 Router-Router link fault
6 Router-NI link fault
7 NI fault
8 Processing element fault

Table 5.1: Permanent fault in ATTNoC

Fault Assumptions

We defined our FCR to cover NIs, routers, links, and cores. This means we accept
that a fault can happen with this FCR but may not immediately impact the other
FCRs. Here, we consider three common faults that can occur during run-time in
the NoC and cause the system to enter a faulty state. The first fault is a delay,
which can be critical in real-time applications where message delays can cause the
system to miss its deadline. The faulty component responsible for this delay slows
down any message that passes through the faulty component, often in the routers,
NIs, links, or cores. The second fault we consider is message corruption. In this
case, the faulty component corrupts any message that passes through the faulty
component. The third fault we consider is an open circuit in the ATTNoC, where
the data passing the faulty component is always lost. The adaptation features
implemented in the ATTNoC are designed to tolerate and accommodate such delays,
message corruption, and dropped messages that persist throughout the system’s
lifetime, eventually leading to system failure. However, it is essential to note that
the adaptation features within the ATTNoC are not intended to tolerate transient
faults, as these faults can be rapidly recovered within a few clock cycles. Therefore,
there is no need for the systems to reconfigure their schedules for transient faults.
Nevertheless, the redundancy mechanisms implemented in the SCNI are specifically
designed to tolerate transient and permanent faults occurring in the routers and
links of the NoC during the exchange of critical messages between SCNIs. This is
achieved through redundant transmissions by duplicating the critical messages and
transmitting them through dual channels in the NoC, as described in Section 5.1.7.

5.1.5 Power Model

In digital circuits, power consumption is typically observed in two phases: The ac-
tive phase and the standby phase. During the active phase, the circuit inputs are
active, producing the output, leading to dynamic and static power consumption.
Dynamic power is dissipated when a transistor switches from high to low, resulting
in an output. Short-circuit power consumption and power loss due to leakage also
contribute to power dissipation during the active phase. However, due to the com-
plexity of modern multiprocessor system-on-a-chip (MPSoCs), accurately modelling
power consumption can be challenging. A viable approach for modelling the power
consumption of Network-on-Chip (NoC) is to model the building blocks’ compo-

63

CHAPTER 5. SYSTEM MODEL

nents, primarily composed of logic gates [Nam+21]. The total power in the digital
complementary metal-oxide-semiconductor (CMOS) circuit can be expressed as:

Ptotal = PDyn + PStat (5.1)

where PDyn represents dynamic power, and PStat represents static power.
The dynamic power can be further broken down into switching power and short-

circuit power:

PDyn = PSW + PSC (5.2)

where PSW is the switching power, and PSC is the short-circuit power.
The switching power (PSW) is given by:

PSW = α · F · CL · (Vdd)
2 (5.3)

where α is the activity factor, F is the clock frequency, CL is the load capacitance,
and Vdd is the power voltage.

The short-circuit power (PSC) is approximately 10% of the dynamic power:

PSC = 10% · PDyn (5.4)

The static power (PStat) is due to the leakage current in each logic block and is
proportional to the supply voltage (Vdd). It can be approximated using:

PStat ≈ β · Vdd · e−Vth/γ·VT (5.5)

Where β and γ are experimentally derived constants, Vth is the threshold volt-
age, and VT is the Boltzmann thermal voltage that is linearly proportional to the
temperature [Nam+21].

Overall, Equations 5.1 to 5.5 provide a framework for modelling power consump-
tion in digital circuits, considering both dynamic and static power components.
These equations can be useful for optimizing power consumption in digital circuits,
particularly in complex MPSoCs and NoCs.

5.1.6 Tile

A tile is a building block of an ATTNoC that comprises a processing element, an
adaptation unit (cf. blue in Figure 5.1), and a NI, as depicted in Figure 5.1. The
processing element in the ATTNoC can be a hard processor or a soft processor,
such as MicroBlaze, and it can also be an AI engine or network gateways that serve
as an interface between the on-chip and off-chip domains. The processing elements
are typically used for computations. The NI interface interconnects the tile to the
router, as described in section 5.1.7. Finally, the adaptation unit manages and
coordinates adaptation services within the NoC. It consists of a context monitor, a
context agreement unit, a schedule memory, and a TT schedule, as described in the
following items.

• The context monitor (CM) is responsible for reading the state of the local con-
text from the adjacent core. The local context can be an application running
on a core (e.g., slack) or a context event resulting from a fault within NoC
resources. In ATTNoC, each tile has a distributed CM. A schedule is followed

64

CHAPTER 5. SYSTEM MODEL

to enable simultaneous monitoring of neighbouring cores by each CM. The
time-triggered concept facilitates synchronization in the adaptation unit, en-
suring that each CM in ATTNoC receives its local context event at a specific
time defined by the schedule.

• Context agreement (CA): Through the Interactive Consistency Protocol (ICP)
[Len20], the CAs establish a globally consistent context vector (global context)
by collecting and agreeing on the local contexts reported by all CMs on the
respective tile. The CAs initiate a synchronized context distribution phase
based on a predefined schedule. Via the ICP, the local context is distributed
in a triple-ring structure across the adaptation unit. The local context is sent
to and collected from the nearest neighbour in the network and concatenated
into a global context vector. All resources have consistent system information
at the end of the distribution phase. At this point, the ICP converges, and
the CAs agree on the system state. The agreed context vector is the globally
consistent context vector representing the system state at all resources. The
schedule memory uses the globally consistent context vector to determine the
next schedule to be adapted based on the global context event.

• The Schedule memory stores multiple schedules generated offline, which are
used in the ATTNoC for schedule switching when a context event occurs.
Each schedule in the memory is mapped with a context event. The schedule
memory is accompanied by a schedule memory controller that receives the
global context from the CA block. A lookup table maps the context events
to their corresponding addresses in the schedule memory, where the schedules
are stored. The schedule memory controller fetches the corresponding schedule
using the provided addresses to adapt and retrieve the desired schedule. Once
retrieved, the schedule is written to a designated port on the core interface of
the NI to facilitate schedule switching. The time-triggered dispatcher within
the adaptation unit initiates the actual schedule switching. By scheduling
the switching of schedules based on predefined schedules, collisions between
schedules in the ATTNoC can be avoided. This ensures that each NI switches
schedules simultaneously, maintaining a coherent operation of schedules within
the ATTNoC.

• Time-triggered dispatcher: This component is responsible for managing the
execution of the adaptation unit by following predetermined time-triggered
schedules. Its primary role is to schedule and coordinate the CM and CA op-
erations, triggering the schedule switching in the TTNI. The dispatcher ensures
that all distributed TTNIs switch schedules simultaneously. This synchroniza-
tion is crucial to ensure that all TTNIs operate with the same schedule. By
doing so, the dispatcher prevents situations where certain TTNIs may still
be using a previous schedule (S0) while others have already transitioned to a
new schedule (S1). Maintaining consistency across all TTNIs is paramount,
as inconsistencies could lead to system failures or malfunctions. Different TT-
NIs operating with different schedules can disrupt the system’s intended be-
haviour and result in unpredictable and undesirable outcomes. Therefore, the
time-triggered dispatcher ensures that all TTNIs switch schedules in unison to
maintain system-wide synchronization and prevent inconsistencies.

65

CHAPTER 5. SYSTEM MODEL

5.1.7 Network Interface

The NI serves as the interface connecting the processing element, such as a core or a
processor, with the routers in an NoC. The TTNI is an enhanced version of the NI
that incorporates time-triggered and adaptive features, allowing the NoC to inject
messages into the network based on a predefined schedule. Additionally, it enables
the NI to switch schedules in response to context events. This enhanced functionality
increases flexibility for scheduling and ensures that messages are delivered within
the deadlines, which is crucial in real-time applications.

Non-Safety Critical Network Interface

The NSCNI is a temporal and spatial partitioning layer built on top of an NoC.
The NSCNI is designed to support mixed-criticality systems, where different system
components have different levels of criticality. To achieve this, the NSCNI provides
different communication channels with different levels of criticality. These channels
can be configured as time-triggered, rate-constrained, or best-effort. Time-triggered
channels are deterministic, meaning that messages are transmitted at predetermined
times. This is useful for critical components that require guaranteed timing for their
messages to be delivered. Rate-constrained channels limit the rate of messages that
can be transmitted. This is useful for components that require a certain level of
bandwidth but do not have strict timing requirements. Best-effort channels have
no guarantees on message delivery but can be used for non-critical components
where occasional message loss is acceptable [AO15]. Figure 5.9 shows the building
blocks of NSCNI. It consists of five building blocks: Core interface, adaptive time-
triggered dispatcher, packetization, depacketization, and memory that stores paths.
In addition, there is an AXI wrapper, an interface that connects the tile to the NI,
and the router interface that connects NI to the router. The components of the
NSCNI are described below:

BE

TT

RC

BE

TT

RC

Adaptive Time-
triggered Dispatcher

Memory Store Path

Packetization

Depacketization

R
outer Interface

S_AXI

Figure 5.9: Non-safety critical NI

• The core interface is the communication link between the processing element
and the NI. It facilitates the exchange of messages between cores and NIs.

66

CHAPTER 5. SYSTEM MODEL

The core interface is equipped with a FIFO port that can be configured as an
input and output port according to the schedule. The output port of the core
interface is responsible for queuing messages from the processing element. It
stores these messages until they are ready to be transmitted. On the other
hand, the input port of the core interface receives messages from the NoC
side and forwards them to the processing element for further processing. The
core interface incorporates an AXI (Advanced eXtensible Interface) wrapper
to ensure efficient communication with the processing element. This wrapper
enables optimized data transfer between the core interface and the processing
element. When the processing element intends to send a message to the NoC,
it initiates an AXI write transaction. This transaction allows the processing
element to queue the new message to the output port of the core interface.
Before transferring the data to the core interface, the AXI protocol ensures
a proper handshaking protocol between the processing element and the NI.
This ensures that the data is reliably and accurately transmitted. Each port
within the core interface can be configured by the schedule as BE (best-effort),
TT (time-triggered), or RC (rate-constrained). These designations determine
the specific characteristics and behaviour of the messages transmitted through
that port.

• The adaptive time-triggered dispatcher is responsible for scheduling commu-
nication and reconfiguring the schedule when a context event occurs. The
module consists of the schedule loader and the time-triggered dispatcher, as
shown in Figure 5.10. The schedule loader is responsible for reconfiguring the
schedule within the TTNI whenever a context event occurs. It receives signals
from the adaptation unit indicating a context event and initiates the neces-
sary schedule reconfiguration process. This ensures that the TTNI can adapt
to changing circumstances and requirements. On the other hand, the time-
triggered dispatcher ensures the injection of messages into the NoC based on a
predefined schedule. The dispatcher logic within the time-triggered dispatcher
component retrieves schedule information from the schedule memory. It com-
pares this schedule information with the current time of the global time base.
When a match is found, the dispatcher logic triggers the injection of messages
located in the core interface, enabling them to be transmitted through the
NoC. The adaptive control unit within the schedule loader functions as a state
machine that controls the schedule switching within the TTNI when a global
context event occurs. It manages the transition between different schedules to
ensure the TTNI operates with the appropriate schedule based on the global
context event. The schedule memory is a dual memory that stores the current
and next schedules to be adopted. The dispatcher reads the current schedule
from this memory and uses it to determine the timing and sequence of message
injection. The progression of global time guides the dispatcher’s actions as it
aligns message transmission with the predefined schedule.

• Packetization and depacketization are crucial processes in the communication
flow between the core interface and the router within the TTNI. Packetiza-
tion involves encoding messages from the core interface before transmitting
them to the router. This encoding step prepares the messages to be efficiently
transmitted over the NoC. In addition, it involves organizing the messages

67

CHAPTER 5. SYSTEM MODEL

Adaptive Control Unit State
Machine

Tx schedule
 C

hange

N
ew

 Schedule

Schedule Memory 1

Schedule Memory 1

M
U

X Dispatcher

Read Addr mem2

Read Addr mem1

Tx M
essage

 Injection

Core Interface of TTNI

Adaptation Unit Core

Time-triggered DispatcherSchedule Loader

GTB

Figure 5.10: Adaptive time-triggered dispatcher in NI

into packets, smaller data units that can be easily transmitted through the
network. On the other hand, depacketization is receiving messages from the
NoC router and decoding them before writing them back to the core inter-
face. This step reverses the packetization process and prepares the messages
for further processing by the connected processing element.

• The router interface is an interface that connects both the router and NI. The
router and NI use a handshaking protocol to transfer data from the router to
NI or vice versa.

• Memory store path: Since source-based routing is used in the ATTNoC, the
route for each message is predetermined and stored in a memory called the
memory store path within the TTNI. When packetization forms a packet, the
message’s path is retrieved from the memory and added to the head flit of
each packet.

Safety Critical Network Interface

The SCNI extends the functionality of the NSCNI by incorporating a seamless re-
dundancy mechanism. It introduces additional components, such as the redundancy
sender and receiver controller, to enable efficient redundant transmission within the
NI, as shown in Figure 5.11. The SCNI uses dual packetization and depacketization
modules to support redundant message transmission. These modules are connected
to separate routers that allow the SCNI to transmit duplicate messages over two
paths within the NoC. The redundancy controller manages the redundancy mode
operation. The redundancy controller duplicates messages from the core interface
when the redundant mode is required. Otherwise, it activates one of the packetiza-
tion blocks for normal transmission. On the receiver side, the redundancy controller
selects messages from both depacketization modules based on the order in which
they were received and their integrity, as determined by a CRC (Cyclic Redundancy
Check).

68

CHAPTER 5. SYSTEM MODEL

Adaptive Time-
triggered Dispatcher

Redundancy
 Sender Controller

Redundancy
Receiver Controller

Packetization 1

Packetization 2

Router 1
Interface

depacketization 1

depacketization 2

Router 2
Interface

Memory Store
Path1

Memory Store
Path2

BE (Non Redundant)

TT (Redundant)

RC (Non Redundant)

BE (Non Redundant)

TT (Redundant)

TT (Non Redundant)

S_AXI

Redudancy Mode Controller

Figure 5.11: Safety critical NI

• The redundancy sender controller plays a crucial role in determining the redun-
dancy mode operation of the SCNI. It decides whether the NI should transmit
data redundantly or non-redundantly. During the design phase, each output
port of the core interface is pre-configured to indicate its intended transmission
mode. The triggering of output ports for message injection follows a predefined
schedule set by the Time-Triggered (TT) dispatcher. When the output port
of the core interface is triggered to inject messages, the redundancy sender
controller receives data from the core interface along with a three-bit con-
troller signal. This signal helps determine the redundancy mode operation of
the SCNI. The behaviour of the redundancy sender controller is summarized
in Table 5.2. For instance, when the control bits are ”100,” it indicates that
messages from the output port of the core interface originate from a redundant
port. In this case, the redundancy sender controller duplicates the messages
and transmits them through both packetization blocks using a dual channel.
If the control bits are ”010,” only the first packetization block receives data,
and the second packetization block remains inactive. Consequently, transmis-
sion is handled exclusively by the first packetization block. Similarly, when
the control bits are ”001,” the second packetization block receives data, while
the first packetization block remains inactive. In this scenario, the second
packetization block handles the transfer of flits (flow control units).

• The redundancy receiver controller in the SCNI is responsible for selecting
the correct data from two depacketization blocks based on data correctness
and the sequence number of messages. The redundancy receiver controller
performs several checks upon receiving data from the depacketization blocks.
First, it uses the sequence number of the packet’s head flits to identify the
corresponding data from the dual channels. Next, it performs a CRC (Cyclic
Redundancy Check) on the received data to determine its correctness. The

69

CHAPTER 5. SYSTEM MODEL

Control bit of
redundancy
controller

Seamless
redundancy
operation

Activated
packetization

”100” Seamless
redundancy mode

Both packetization
are activated

”010” Non-redundant Packetization 1 is
only activated

”001” Non-redundant Packetization 2 is
only activated

Table 5.2: Redundancy sender controller operation

redundancy receiver controller maintains a status register that stores the cor-
rectness status of the received data. A value of ”10” indicates that the data
is not corrupted, while a value of ”01” signifies data corruption. Based on
the status of the data, the redundancy receiver controller decides which data
to accept. The decision process is described in Table 5.3. If both data from
the depacketization processes are not corrupted, the redundancy receiver con-
troller accepts the data from the first depacketization process and discards
the data from the second process. When one of the data is corrupted, the
redundancy receiver controller accepts the non-corrupted data and discards
the corrupted data from one of the depacketization blocks.

Status
Depacketization 1

Status
Depacketization 2

Selected data from

”01” ”01” Dropped both data
”01” ”10” Depacketization 2
”10” ”01” Depacketization 1
”10” ”10” Depacketization 1
”10” ”x” Depacketization 1
”x” ”10” Depacketization 2

Table 5.3: Redundancy Receiver Data Selection

5.1.8 Router

The router architecture used in ATTNoC is described in this section. The router
consists of input buffers, a connection matrix, a set of output buffers, and a control
unit (VC allocator, SW allocator). The buffers at the input and output ports queue
the data transmitted over the channels. These buffers enable local storage of data
that cannot be immediately forwarded. Each router has five channels corresponding
to South, East, North, West, and Local. The South, East, North, and West channels
connect neighbouring routers, while the Local channel communicates with the core.
The router uses a source routing algorithm to route data from the input port to
the output port of the router. This means that the routing decision for the output
port is made within the router, depending on the routing opcode. The destination

70

CHAPTER 5. SYSTEM MODEL

of each packet is defined in the first flit (header) at the source NI. Each opcode
consists of five bits that configure the direction in the router. The routing opcodes
for the corresponding directions are provided in Table 5.4. Wormhole flow control
is employed in ATTNoC because it supports low latency and reduced buffer size
compared to other flow control methods like store and forward, making it suitable
for real-time communication [Bet97].

‘

Direction Routing opcode

”NORTH” ”5’b00001”
”EAST” ”5’b00010”
”SOUTH” ”5’b00100”
”WEST” ”5’b01000”
”LOCAL” ”5’b10000”

Table 5.4: Routing opcode

Figure 5.12 shows the internal structure of the router. The router consists of six
main components, which are explained below:

FIFO & VC

FIFO & VC

FIFO & VC

FIFO & VC

FIFO & VC

Crossbar

SW Allocator
VC Allocator

FIFO & VC

FIFO & VC

FIFO & VC

FIFO & VC

FIFO & VC

Buffer

By Pass
Controller

Frequency
Controller

Frequency
of Router

Schedule of Router from Adjacent NI

EAST

WEST

NORTH

SOUTH

LOCAL

MUX

Ctr

Output Port
Selector

MUX

MUX

MUX

4 bit by pass controller

EAST

WEST

NORTH

SOUTH

LOCAL

Control Data flow

Configure Router

Default path
, By pass

Default path
, By pass

ROUTER

Figure 5.12: Router architecture of the ATTNoC

• First-In-First-Out Buffer: This memory is used to buffer incoming and out-
going data in the router. The buffers of FIFO are replicated in the input and
output ports of the switch for virtual channel communication.

• Crossbar: This component is used to connect the input and output ports of
the router. All possible input data lines are connected to the input ports of
the crossbar multiplexers. The output data of the input data lines is then

71

CHAPTER 5. SYSTEM MODEL

controlled by the arbiter using high-priority-based messages. Time-triggered
messages have the highest priority, followed by rate-constrained and best-effort
messages.

• Router configuration (cf. yellow area in figure 5.12): This module is responsi-
ble for configuring the frequency of routers according to a predefined schedule
from the NI. It also controls the data flow of the router. Flits can either flow
through the crossbar, which is the normal operating mode of the router, or
bypass the crossbar, as shown in Figure 5.12, to tolerate a permanent fault
occurring in the input buffer, crossbar, or output buffer.

• Frequency Controller: This block is responsible for setting the frequency of
each router based on the configuration received from the schedule provided by
NI.

• Bypass controller: This component allows the router to transmit data through
the router or bypass path. The bypass path is enabled only when data from
the NI interface is blocked due to the router’s local input port, router crossbar,
or output port failure.

• Output port selector: This component determines the appropriate output port
for a flit within a router when the bypass path transmits data. First, the flit is
buffered until the neighbouring router is ready to receive it. Then, the output
port selector uses the opcodes in the header flit to decide which output port
to forward the data to the next hop.

• VC Allocator and SW Allocator: These components are part of the control
unit and are responsible for allocating virtual channels (VCs) and switch (SW)
resources within the router. The VC allocator assigns VCs to different traffic
flows, while the SW allocator determines the appropriate paths for the flits to
traverse through the switch matrix.

5.1.9 Global Time Base (GTB)

The ATTNoC operates with multiple clock domains, including those used in the
heterogeneous core, NoC, and GTB. Power management requires different clock
frequencies for individual IP blocks, with low-frequency clocks used for some blocks
and high-frequency clocks for specialized hardware. To achieve system-wide time
synchronization, the GTB is used in the ATTNoC. The GTB employs the IEEE
I588 time format and uses a 64-bit counter vector driven by a macro-tick clock with
a frequency denoted as fmacrotick [Kop92]. The switching rate of a particular bit,
called the period bit, determines the period. The counter vector of the time format
implements the phase as a slice whose width is called the phase slice width and is
configurable. A period starts when all bits in the phase slice are set to ”0”. A bit to
the right of the period bit of that period is the location of the phase slice. Dead bits
are not as crucial as a macro-tick bit. The implemented counter vector is shown in
Figure 5.13, where the period bit and phase slice are designated as follows.

A 64-bit binary counter vector based on the physical second and nanoseconds
are used to construct the unified time format. This time format defines nanoseconds
as the largest granularity of the global time base. So the largest granularity is 2−31

72

CHAPTER 5. SYSTEM MODEL

63 62 61 33 32 31 30 29 28 27 26 25...

Phase Sclice

24 23 22 21 20 19 18 17 2 1 0...

Period bit Phase slice bit Macro tick bit

232 231 230 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6... 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-29 2-30 2-31...

Figure 5.13: GTB Based on IEEE 1588 time format

sec ≈ 465 ps, while the global time base has a horizon of about 232 sec ≈ 136 years.
Figure 5.14 shows the 64-bit GTB [Abu17].

Figure 5.14: 64 Bit GTB

The main goal of the GTB, as stated in its introduction, is to provide a global
time base for all tiles, even if the ATTNoC components operate with multiple clock
domains. The time-triggered dispatcher in the TTNI and the adaptation unit can
use the global time base in conjunction with a precomputed schedule loaded into each
schedule memory of the TTNI or the adaptation unit to determine the appropriate
time to start an action or to inject messages into the NoC.

73

Chapter 6

Energy Efficiency and Fault
Tolerance for ATTNoC

The development of Network-on-Chips (NoCs) is driven by the need for efficient
and reliable communication in System-on-Chip (SoC) designs. Fault tolerance and
low-power techniques are critical factors in NoC design, as they directly impact the
system’s reliability and energy efficiency. Preventing failures and ensuring system
reliability is paramount in NoC design, while low-power techniques are vital for
extending the battery life of mobile devices and other low-power systems. This sec-
tion addresses the fault tolerance and power-saving techniques used in the Adaptive
Time-Triggered NoC (ATTNoC). These techniques include adaptation, redundancy
mechanisms, and time-triggered frequency scaling. By combining these techniques,
ATTNoC provides a reliable and energy-efficient communication solution that is
essential for the success of modern SoCs.

6.1 Adaptation in Time-Triggered Network-on-Chip

Architecture

The ATTNoC architecture supports dynamic schedule adjustments during run-time
based on specific events such as permanent faults in NoC resources, including NIs,
routers, cores, and links, and slack occurring in cores and NoCs. These adjustments
are made while preserving important time-triggered properties, such as synchroniza-
tion, temporal predictability, and avoidance of resource contention [Obe+19]. This
approach enhances the system’s reliability during fault events and optimizes energy
efficiency by effectively using slack in cores and NoCs without compromising sys-
tem performance [Obe+19]. Through adaptation, ATTNoC can tolerate permanent
faults in NoC resources by reconfiguring the network with new schedules to isolate
faulty components and migrate tasks or messages to other resources. Additionally,
the ATTNoC architecture can adjust its operating frequency dynamically to accom-
modate workload fluctuations, improving energy efficiency. The following section
describes the motivation for adaptation in the ATTNoC architecture and explains
how the main blocks of the adaptation unit achieve the adaptation techniques.

74

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

6.1.1 Energy Efficiency for ATTNoC

The importance of energy efficiency in safety-critical systems, such as avionics, can-
not be overstated. Inefficient energy usage can cause critical issues, such as com-
ponent failure, fire hazards, and reduced battery life. To ensure safe operation
during flight, avionics systems must be designed with stringent energy efficiency
requirements [AMP19]. Traditional energy management techniques, such as Dy-
namic Voltage and Frequency Scaling (DVFS) and clock gating, have limited appli-
cability in these systems due to the challenges associated with certifying multi-core
processors and determining Worst-case Execution Times (WCETs) [Pro16]. Safety-
critical systems demand predictable timing behaviour due to their critical appli-
cations. Here, the ATTNoC-based multi-core architecture emerges as a promising
solution for power management in safety-critical systems without compromising tim-
ing predictability. The architecture is built on an adaptable time-triggered system,
offering inherent determinism vital for safety-critical applications. One of its main
advantages is time-triggered frequency scaling, which allows routers to adjust their
operating frequencies according to a predefined schedule within the system. This
feature of frequency scaling guarantees that the power consumed is optimized while
the system’s timing predictability remains unaffected. Moreover, the adaptive na-
ture of the ATTNoC architecture enables dynamic switching between schedules in
response to specific events, such as slack or changes in system demands. The flexibil-
ity of ATTNoC allows it to adapt to changing conditions efficiently, ensuring optimal
system performance and meeting the demands of real-time applications [Obe+19].

6.1.2 Fault Recovery for ATTNoC

In safety-critical embedded systems, dependability and fault tolerance are of utmost
importance. N-modular redundancy is a widely used technique for ensuring fault
tolerance, but it is costly in terms of chip resources and energy consumption. In par-
ticular, emerging safety-critical application areas like autonomous vehicles demand
more cost-effective solutions. Fault recovery provides a promising alternative that
involves re-configuring the system to avoid failed resources. For example, if a sensor
fails in an autonomous vehicle, the system can reconfigure to rely on other avail-
able sensors to maintain safe operation. This can be achieved by using adaptation
techniques in the ATTNoC architecture, which allow the ATTNoC to reconfigure
its schedules when a context event occurs in the NoC resources, such as faults in
links, routers, NIs, and cores, and isolating the faulty components to maintain the
functionality of the systems. ATTNoC uses precomputed schedules to reconfigure
the system during run-time. By switching between schedules, the ATTNoC can
recover from faults [Obe+19], [MAO18].

6.1.3 Architecture of Adaptation Unit in ATTNoC

The Adaptation Unit (AU) is a crucial component of the ATTNoC architecture. Its
primary function is to enable schedule switching within the network when specific
context events, such as slack or faults, occur in the NoC resources. This capability
allows the NoC operation to continue even in the presence of permanent faults
by re-configuring the ATTNoC with a new schedule, isolating faulty components,
and redistributing tasks/messages to other resources. In ATTNoC, each Network

75

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

Interface (NI) can dynamically adjust its message injection time or the operating
frequency of the NoC during run-time based on context events occurring in the NoC
resources. To reconfigure the schedule in the NoC, each adaptation unit exchanges
a local context to ensure that they all have the same information, known as the
global context. Based on this global context, the new schedule is determined, which
is used to reconfigure the ATTNoC. The adaptation units are interconnected in a
ring structure as depicted in Figure 6.1, facilitating the efficient distribution of their
local contexts.

AU AU AU

AU AU AU

AU Adaptation Unit

Figure 6.1: Ring topology of adaption units (6 AUs)

In Figure 6.1, six adaptation units are connected in a ring structure. The context
agreement, a sub-component of each adaptation unit, is responsible for exchanging
local context information between adjacent context agreements. However, perma-
nent and transient faults in the context agreement or a link connecting two context
agreements can result in inconsistencies in the network. This may lead to different
global contexts being maintained by different units. To address this issue, a fault-
tolerant technique suggests adding a triple-ring to the existing structure [Len20].
The triple ring enables the exchange of triple redundant messages and facilitates
communication among non-direct neighbouring context agreements, as illustrated
in Figure 6.2. These redundant messages can serve as message recovery through a
voting mechanism.

AU AU AU

AU AU AU

Figure 6.2: Triple-ring topology of adaption units (6 AUs)

The architecture of the adaptation unit in ATTNoC is depicted in Figure 6.3. It
consists of several components, each serving a specific purpose to ensure the smooth
operation of the unit. These components include the context monitor (CM), context
agreement (CA), time-triggered dispatcher (TT dispatcher), and schedule memory.

76

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

Each component operates according to a schedule managed by the time-triggered
dispatcher. The CM reads the local context from the adjacent core and reports
it to the CA. The CA ensures that all operational CAs have consistent context
information, ensuring consistent system behaviour. The schedule memory contains
the precomputed multiple schedules, and the relevant schedule is chosen based on
the agreed context provided by the CA. Finally, the TT dispatcher triggers the
CM, CA and schedule switching in the TTNI based on the schedule retrieved from
the schedule memory of the time-triggered dispatcher of the adaptation unit to
synchronize the operation of the distributed adaptation unit in the ATTNoC.

Context
Monitor

Context
Agreement

Local
context

TT
Dispatcher

Tx CM

Tx CA

Schedule Memory Schedule

Tx schedule change

Agree
context

Context
Monitor

Context
Agreement

Local
context

TT
Dispatcher

Tx CM

Tx CA

Schedule Memory Schedule

Tx schedule change

Agree
context

TTNI 0

Adaptation Unit 0

Adaptation Unit n

TTNI n
Schedule

LISNoC

Triple R
ing Structure (Exchanged of Local C

ontext)

Core 0

Core n

AXI Interconnect

AXI Interconnect

Data

Local Context

Data

Local Context

Figure 6.3: Architecture of adaptation unit in ATTNoC

The following section will discuss the potential failure modes, fault containment
regions (FCR), and fault assumptions related to the adaptation unit architecture.
Afterwards, we will delve into each component’s architecture and state machine
within the adaptation unit. The state machine outlines how each component behaves
when it changes states, responds to inputs, and performs operations.

77

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

6.1.4 Fault Model in the Adaptation Unit

The fault tolerance techniques used in the adaptation unit (AU) ensure that the
exchange of local context between context agreements (CA) within the ATTNoC
is not hindered by faults, preserving system functionality. However, fault tolerance
mechanisms used in the AU do not address faults originating from the context
monitor (CM). Corrupted information introduced by CMs is not within the scope
of the current fault tolerance approach.

Failure Mode

The fault model considers both permanent and transient faults. Therefore, the CAs
block must be able to handle any incorrect behaviour displayed by CAs connected
through a triple-ring structure and any potential link failures.

Fault Containment Region (FCR)

The fault containment region (FCR) is a designated area where faults can occur
during run-time and be tolerated to limit immediate impact. In the adaptation unit
architecture, each CA block and the link that connects CAs are included in the FCR.
This guarantees that any faults within the area will not have a negative impact on
other FCRs. Even if permanent faults occur and affect the links between CAs, the
exchange of local context should still proceed correctly within each FCR.

Fault Assumptions

The fault model defines three fault types related to message correctness within the
adaptation unit:

• Corrupted message: A message is considered corrupted if received but dif-
fers in context from the original message. Corruptions can occur in the CA
component during context exchange or due to transmission failures on the link.

• Lost message: A message is lost when it fails to reach its intended recipient
due to a fault with CAs or the links connecting them.

• Delayed message: A message is delayed if it arrives at the destination in CA
significantly later than expected due to transmission failures or delays in the
links or CAs.

6.1.5 Adaptation Unit Architecture

The adaptation unit plays a crucial role in reconfiguring schedules within the AT-
TNoC. Herein, we provided a detailed description of its constituent components.

Context Monitor (CM)

The context monitor (CM) is responsible for collects and reports adaptation-relevant
information to the adaptation unit by checking the current context values from the
adjacent core. To observe the slack that occurred in the core, the execution of
each task in the core was recorded, including the actual execution time compared

78

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

to the WCET. This involves modifying the code of each task to track the start and
end times by using instrumentation techniques [Kas+15]. The CM then uses this
information to form the local context. Figure 6.4 illustrates that the CM comprises
three key elements: CM interface, controller, and memory. These components work
together to collect and analyze data on task execution and slack, enabling the system
to optimize resource usage while meeting real-time requirements.

CM
Interface

CM Controller

CM Memory

Context Monitor (CM)

Core CA

Time-triggered Dispatcher

Figure 6.4: Architecture of context monitor

The CM interface is an AXI interface that facilitates communication between
the core and the CM, receiving the local context from the adjacent core. On the
other hand, the CM controller functions as a state machine that encodes context
information from the CM interface. The CM memory is a dedicated memory unit
that stores the encoded local context information from the CM controller. The CM
controller operates through a state machine, as depicted in Figure 6.6. It starts
in a ”Wait for Triggered Context” state, where the reported context is set to null,
and no context is detected. Upon being triggered by the time-triggered dispatcher,
the CM moves to the ”Read Context” state, which reads the local context from
the CM interface and checks its validity. If the context is deemed valid, indicating
the detection of slack or a permanent fault, the CM controller transitions to the
”Write Context” state. Here, it encodes the received context into a 32-bit bit string
with context information, as depicted in Figure 6.5, and stores the 32-bit string in
the CM memory. If no context event is detected, the state machine will move to
the ”Context Null” state and convert the null context into a 32-bit string. In both
the ”Write Context” and ”Context Null” states, the state machine will then return
to the ”Wait for Triggered Context” state and wait for the next trigger from the
time-triggered dispatcher of the adaptation unit.

Context type
(2-bit)

Context Validity
(1-bit)

Task ID
(4-bit)

Device ID
(5-bit)

Context Content
(15-bit)

Reserve
(5-bit)

Figure 6.5: 32-bit-string local context

Within a system, a 32-bit string’s local context manages data related to events,
as shown in Figure 6.5. It consists of six fields, with the first reserved for future
expansion. The second field, ”Context Validity,” indicates whether the context is
valid. This is useful when the core detects a slack or fault in the network. The

79

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

third field, ”Context Type,” specifies whether the event is a slack or a fault. The
fourth field is the ”Task ID,” which contains the ID of the scheduled task where
the slack event originated. The fifth field is the ”Context Content,” which encodes
the fault in the adjacent NI, link, router, or core connected to the adaptation unit.
Depending on the context, it can also indicate the percentage of slack that occurs
in the cores. Finally, the sixth field is the ”Device ID,” which contains the ID of the
adaptation unit.

Read
Context

Wait for
triggered
context tx

context

Write
Context

Context
Null

invalid context

valid context

Figure 6.6: Context monitor state machine

Context Agreement (CA)

The Context Agreement (CA) allows the exchange of local context information be-
tween multiple distributed CAs, ensuring that all CAs are aware of local context
events occurring in other CAs. The CA employs a triple-ring structure, as shown
in Figure 6.2, as a network topology to facilitate communication between CAs, thus
improving reliability and providing redundancy during the transfer of local context.
This structure enables local context exchange in three ways: clockwise, counterclock-
wise, and through a non-adjacent CAs connector. The local context received from
the clockwise channel is stored in the left memory of each CA, while the counter-
clockwise channel provides local context stored in the right memory. Additionally,
the redundant local context received through the third channel is stored in the cen-
tral memory, as shown in Figure 6.7. Once the local context has been distributed to
all CAs, the CA compares the information stored in the three memories to detect
any corrupted context or discrepancies. The redundant local context information re-
ceived over the third channel can be used for voting to determine the correct context
information. The triple-ring structure is designed to withstand various faults that
could affect the exchange of local context, such as corruption, delays, or loss of local
context in the CAs or the links connecting them. The CA architecture comprises
four fundamental components: the CA controller, left memory, right memory, and
central memory, as depicted in Figure 6.7. These components facilitate the exchange
of local context between the distributed CAs in the ATTNoC architecture. By using
redundancy mechanisms within the CAs, this architecture ensures a consistent and
reliable exchange of local context.

80

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

CA Controller

Memory
Left

Central
Memory

Memory
Right

CA Controller

Memory
Left

Central
Memory

Memory
Right

Triple R
ing Structure

CA 0

CA n

CM 0

CM n

Figure 6.7: Context agreement architecture

The CA controller manages three memories in the CA block: left, right, and
central. These memories store the local context before exchanging it with other CAs.
Memory left receives the local context from the clockwise direction, memory right
receives it from the counterclockwise direction, and the central memory receives
the local context from the two CAs that are not direct neighbours, as shown in
Figure 6.2. The CA operates on a predefined schedule set by the time-triggered
dispatcher. As shown in Figure 6.8, the state machine of the CA controller responds
to a triggered signal from the time-triggered dispatcher. It begins in the ”Wait
for Triggered” state, where its output memory is initialized and disabled. When
triggered, the state machine transitions to the ”Read context from CM” state. In
this state, the CA reads the local context from the CM and saves it in a local register.
After collecting the context events from the CM, the state machine transitions to
the ”Write” state, where it writes the input context to the three available memories
(left, right, and central). Then, it moves to the ”Read” state, where it synchronously
reads input context from neighbouring units. These contexts are saved in the output
memories as input contexts, along with the CA ID of the context origin. The state
machine then moves to the ”Check all context” state, where it compares the received
CA IDs with the local ID. If any received IDs match the local ID, indicating that
the local context is distributed to all CAs, the state machine then transitions to the
”Compare received context” state. In this state, the three input contexts from the
three memories (left, right, and central) are compared. If the three copies of input
contexts from the clockwise, counterclockwise, and third ring are equal, the state
machine transitions to the ”Agree context from left Memory” state. However, if one

81

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

of the received contexts differs from the other two, the state machine transitions to
the ”Agree on one of two contexts” state to tolerate the faulty context. Suppose
all the received contexts differ from clockwise, counterclockwise, and the third ring
connection. In that case, the state machine transitions to the ”report redundancy
failure,” reporting that the redundant paths in the CA are corrupted. For both the
”Agree on context from left Memory” and ”Agree on one of two contexts” states,
the state machine returns to the initial state, where it waits for the next trigger
from the time-triggered dispatcher.

Wait for
trigger

Read context
from CM

Write

Read

Check all
context

Agree on one
of two contexttwo context equal

Compare
received
context

Agree context
from left

all global context equal

report
redundancy

failure

all global context not equal

Figure 6.8: Context agreement state machine

Time-triggered Dispatcher in Adaptation Unit

The time-triggered dispatcher is a crucial part of the adaptation unit, responsible
for triggering the operation of the CM, CA, and schedule switching in the ATTNoC
according to a predefined time. Figure 6.9 shows that it comprises two essential
components: the dispatching logic and schedule memory.

Dispatcher

Schedule
Memory

GTB

Adaptation
Unit

Time-triggered Dispatcher

Figure 6.9: Time-triggered dispatcher

The schedule memory stores the precomputed schedule for the adaptation unit.
The dispatcher logic triggers the CM, CA, and schedule switching within the AT-
TNoC according to this precomputed schedule to synchronize all distributed adap-
tation units within the ATTNoC. The predetermined schedules are computed offline
and loaded into the schedule memory during system start-up. To ensure the exe-
cution of scheduled actions, the dispatcher retrieves the schedule from the schedule
memory and compares it with the current time received from the global time base

82

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

(GTB). When the dispatcher detects a match between the schedule and the current
time, it triggers the corresponding adaptation unit to execute the scheduled action
[AO15], [PNO23].

Timeline for the Agreement

The agreement protocol in the ATTNoC follows a specific timeline to ensure synchro-
nized activities among the adaptation units and TTNI modules, enabling cohesive
system operation. This timeline includes several scheduled activities that occur in
a specific order. These activities include synchronized schedule switching, trigger-
ing the CA for local context exchange, and activating the CM to read the reported
local context from the adjacent core. The timeline begins with the adaptation unit
collecting essential information about the system’s current state by gathering local
context data. This data plays a crucial role in making adaptation decisions. Once
collected, the local context data is transmitted for exchange between the adaptation
units. During this exchange, the assumed context state remains unchanged to main-
tain consistency. This is achieved by temporarily freezing the context state, ensuring
that the exchanged information reflects a consistent context without concurrent up-
dates. While the context state is frozen, any new context events that occur are
collected but not immediately integrated into the ongoing local context exchange.
Instead, these events are stored for future exchanges between the adaption unit and
the CM. This storage allows for an up-to-date and comprehensive understanding of
the system state, as the stored events are incorporated into subsequent exchanges
of local context. The timeline, illustrated in Figure 6.10, shows the overlap between
the propagation phase of a protocol execution starting at time t and the context
collection phase of the subsequent execution of the protocol starting at t + 1 [Len20].

Exchange of context
value and establishment

of global context

time

State relevant for changes State relevant for changes

Local context gathering

Figure 6.10: Protocol timeline: The protocol phases overlap, as the collection phase
of the next execution starts as soon as the propagation of the current execution
begins [Len20], [Obe+19]

6.2 Time-Triggered Frequency Scaling for ATTNoC

Time-triggered frequency scaling (TTFS) is a low-power technique used in the NoC
to adjust the clock frequency of individual routers according to a predefined schedule
[Nam+21] [NOO23]. In an ATTNoC-based system, the processing elements com-
municate and perform computational tasks according to a predetermined schedule,
enabling deterministic communication among the networks. TTFS leverages this de-
terminism to scale the frequency of a NoC router according to a predefined schedule,

83

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

thus minimizing power consumption. This technique offers several advantages over
other power management methods. One key advantage is the ability to adjust the
frequency of the routers or clock gate the routers according to a predefined schedule,
resulting in improved power efficiency for the NoC. Additionally, the time-triggered
nature of TTFS guarantees system predictability and determinism, even when fre-
quency changes occur. In the following sections, we will examine the structure of
TTFS and investigate the different methods offered by TTFS for enhancing energy
efficiency.

6.2.1 Architecture of TTFS

TTFS plays a vital role in the ATTNoC architecture by enabling frequency scaling
at the router level based on the schedule received from the TTNI. This capability
is crucial for efficient power management in the ATTNoC. As shown in Figure 6.11,
the example illustrates an ATTNoC architecture equipped with router configuration
responsible for configuring the operating frequency used by the routers and selecting
the router communication mode, whether it is a normal operation where messages
pass through the crossbar, or a bypass mode to bypass the crossbar when permanent
faults occur in the routers, as described in Section 5.12. The TTFS functionality
is integrated into the router configuration (highlighted in yellow in Figure 6.11). It
facilitates the configuration of the frequency of each router, which the frequency
controller manages.

TTNI

TTNI

Router
Configu-
ration

Router
Configu-
ration

Router
Configu-
ration

Router
Configu-
ration

Core

Core Core

CoreTTNI

TTNI

Router

clk

Router

clk

Router

clk

Router

clk

Figure 6.11: TTFS in ATTNoC : Example 2x2 mesh topology

Frequency
Controller

Clock1

Clock2

Clockn

0

1

S0

Mux

Multiple Clock Source

By Pass
Controller

Router Configuration
Frequency Controller

Configure Router (Schedule)

Figure 6.12: Block diagram of TTFS

84

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

The TTFS comprises two major blocks: Frequency controller and multiple clock
source, as shown in Figure 6.12. The frequency controller is responsible for selecting
the frequency to be used by the router according to the schedule. The multiple-
clock source includes multiple clock domains, and the output of this multiple-clock
source is the frequency that operates the router’s clock. Therefore, the frequency
controller determines the output frequency of the multiple clock source. This fre-
quency controller is a state machine (depicted in Figure 6.13) that regulates the
clock frequency of each router in the ATTNoC. The state machine of the frequency
controller transitions between the states ”WaitTrigger”, ”CheckFreqUsed”, ”Full-
Frequency”, ”HalfFrequency”, and ”clock gated”. The state machine begins in the
”WaitTrigger” state, where it waits for a trigger signal from the dispatcher of the
TTNI. When a trigger signal is received, the state machine transitions to the ”Check-
FreqUsed” state. In this state, the state machine checks the FreqUsed value and
transitions to the appropriate state depending on the frequency. If FreqUsed set by
the schedule is full, the state machine transitions to the ”FullFrequency” state. In
this state, the frequency controller configures the router’s clock to operate in full
frequency mode and then transitions back to the ”WaitTrigger” state. If FreqUsed
is half, the state machine transitions to the ”HalfFrequency” state. In this state,
the frequency controller configures the router’s clock to operate at half frequency
before returning to the ”WaitTrigger” state. Finally, if FreqUsed is clock gated, the
frequency controller operates the router’s clock with a clock gate, then goes back to
the ”WaitTrigger” state and waits for another trigger signal from the dispatcher of
the TTNI. This approach ensures that the frequency controller adjusts the frequency
of routers according to the predefined schedule, enhancing energy efficiency while
preserving predictability in NoC communication.

WaitTrigger
tx context

Check
FreqUsed

Full frequency

Clock gated

full

gated

Half frequency
half

Figure 6.13: State machine of frequency controller

6.2.2 Different TTFS Techniques in ATTNoC

Reducing power consumption is a major concern in NoC architectures. To ad-
dress this challenge, TTFS has introduced three techniques using global, cluster,
and router-based approaches. These techniques are designed to effectively decrease
power consumption within the ATTNoC.

• Global Level: This approach is employed in the NoC architecture to efficiently
manage power consumption by allowing the NoC to adjust its frequency during

85

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

run-time according to a predefined schedule. At the global level, the frequency
of NoC routers is uniform. This means that when communication is scheduled,
all NoC routers operate with the same frequency determined by the schedule.
Moreover, when any communication is scheduled in the NoC, the frequency of
all routers is clock-gated according to the same schedule. To achieve this, a
schedule dictates the frequency used in the NoC routers. During the shared
idle times of all routers, clock gating is applied to reduce power consumption
effectively. However, all routers must have a common idle time for optimal
energy efficiency. If there are variations in idle times between routers, some
routers may remain active while others are idle, ultimately reducing the overall
effectiveness of the approach [Nam+21].

6 7 8

3 4 5

0 1 2

6 8

3 5

0 2

m1

Figure 6.14: Global techniques, all routers are operated at the same frequency

Figure 6.14 illustrates the global technique employed in TTFS. On the left side
of the figure, all routers are depicted in an idle state, with their frequencies
being clock-gated during a shared idle time as per the schedule. This approach
conserves energy and minimizes unnecessary resource usage during periods of
inactivity. However, when communication is scheduled in the NoC, all routers
become active, and the schedule assigns a predetermined frequency value to
all routers. This is depicted on the right side of the figure, where the frequency
of all routers is operated with a frequency defined by the schedule to promote
efficient network operation during active communication periods.

• The cluster-level approach is used in NoC design to manage power consump-
tion efficiently. It involves dividing the network into multiple regions or clus-
ters, each with its own frequency control mechanism. In regions where data
transmission is scheduled to occur, all the routers located in that region are
set to operational frequencies defined by the schedule. However, in regions
without data transmission, all routers in that region are either clock-gated or
adjusted to a lower value according to the schedule to minimize power con-
sumption. Clock-gating is a technique that turns off the clock signal to a
specific section of the circuit, resulting in reduced power consumption. This
approach enables the NoC system to effectively reduce power consumption by
adjusting the frequency of routers in specific regions according to a predefined
schedule [Nam+21].

Figure 6.15 illustrates the cluster technique used in TTFS. The ATTNoC is
divided into two regions: Region one and region two. To conserve energy,
the frequency of all routers in a region is clock-gated when all routers share

86

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

6 8

3 5

0 2

6

3 5

0 2

Region 1 Region 2 Region 1 Region 2

m1 m2

Figure 6.15: Cluster techniques, all frequencies of routers located in one region are
operated simultaneously.

a common idle time. This approach minimizes power consumption during
periods of inactivity. However, when communication is scheduled in a specific
region, all routers in that region become active, and the schedule determines
the frequency at which all routers in that region operate. This frequency
assignment ensures efficient regional operation during active communication
periods. The combined use of TTFS and the cluster technique contributes to
reduced power consumption, effectively enhancing the energy efficiency of the
NoC architecture.

• The router-based approach efficiently manages power consumption within the
NoC by controlling the frequency of individual routers based on their pre-
defined schedules. Active routers operate at frequencies determined by their
schedules, enabling frequency scaling at the router level. On the other hand,
idle routers are clock-gated and scaled down according to their specific sched-
ules. Unlike cluster and global levels, where router frequencies are synchro-
nized within the same region or the entire NoC, the router-based approach
allows each router to have a different frequency. This feature provides pre-
cise control over the frequency of each router, leading to optimal power con-
sumption aligned with the specific data transmission scheduled in advance
[Nam+21].

6 8

3 5

0 2

6

3 5

0 2

m1 m2

Figure 6.16: router-based techniques, the frequency of one router is scheduled indi-
vidually

Figure 6.16 illustrates how TTFS employs a distributed frequency controller to
manage the frequency of each router within the NoC based on a predefined schedule.

87

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

Active routers’ frequencies are adjusted according to the schedule, whereas idle
routers undergo clock-gating to conserve power. This approach effectively reduces
power consumption and extends the battery life of battery-operated devices that
use routers, ultimately enhancing energy efficiency.

6.2.3 Summary of TTFS Techniques in ATTNoC

The TTFS technique in ATTNoC introduces three distinct approaches to optimize
power consumption: the global, cluster, and router-based approaches.

• Global Approach: The global approach aims to synchronize the frequency of
all routers in the NoC. The frequency of active routers may vary according to a
predetermined schedule, and routers are clock-gated when they have a common
idle time, resulting in lower energy consumption in the NoC architecture.

• Cluster Approach: In the cluster approach, the NoC is partitioned into re-
gions or clusters, each with its frequency control mechanism. The operating
frequency within each cluster is synchronized and dictated by the schedule
when data is scheduled for transmission. However, in instances where no data
transmissions are scheduled within a particular cluster, that cluster’s operat-
ing frequency is clock-gated per the schedule. This regional frequency control
optimizes power consumption for specific network sections, enhancing energy
efficiency.

• Router-based Approach: The router-based approach focuses on controlling
the frequency of individual routers based on their specific schedules. Each
router’s specific schedule determines its operating frequency during its active
time. The frequency of routers is scaled down and clock-gated when the routers
are scheduled to be idle, contributing to power optimization and preserving
deterministic communication behaviour within the NoC.

Overall, the TTFS technique compares these three approaches to find a suitable
way to reduce power consumption within the NoC. By employing global frequency
synchronization, regional frequency synchronization, and individual router frequency
management, the TTFS technique enhances energy efficiency and optimizes power
consumption in ATTNoC-based systems. Each approach provides unique advantages
in managing power consumption in the NoC, contributing to the overall goal of
energy-efficient operation in ATTNoC-based devices.

6.3 Seamless Redundancy in ATTNoC

The main requirement in mixed-criticality systems is to achieve fault containment,
which aims to prevent faults in a non-safety-critical application from affecting safety-
critical applications. This section introduces the seamless redundancy mechanism for
on-chip networks based on ATTNoC, as presented in the system model in Chapter 5.
The architecture is designed to support time-triggered messages with deterministic
behaviour and minimal jitters, which helps minimize message transmission delays
and ensures timely delivery within the ATTNoC architecture. The Safety-Critical NI
(SCNI) plays a crucial role in supporting the redundancy mechanism by duplicating

88

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

critical messages at the NI and transferring them via different redundant paths in
the NoC according to a predefined schedule. This redundancy mechanism enhances
reliability and fault tolerance within the ATTNoC architecture [Nam+23].

6.3.1 Mixed-Criticality Architecture based on Mesh Topol-
ogy

The architecture depicted in Figure 6.17 is an example of a mixed-criticality archi-
tecture that addresses the challenges of developing safety-critical systems requiring
high reliability and fault tolerance. This design comprises four interconnected cores
through an NoC, which provides a communication infrastructure for the system.
The NoC contains two distinct types of NIs: Non-Safety Critical NI (NSCNI) and
Safety Critical NI (SCNI). The NSCNI is a non-redundant NI connected to a single
router in the NoC. It is suitable for use in non-safety-critical systems where high
reliability and fault tolerance are not major concerns. Additionally, the NSCNI of-
fers lower resource usage than the SCNI, making it an economical option in these
systems. In contrast, the SCNI is a redundant NI connected to two routers in the
NoC. The SCNI uses dual channels for time-triggered communication and transmits
messages redundantly using two distinct paths to ensure reliable communication.
This redundancy improves the reliability and fault tolerance of the system, making
it a suitable choice for use in safety-critical systems. By incorporating both NSCNI
and SCNI in the same architecture, the ATTNoC design enables efficient commu-
nication, improving the safety-critical system’s reliability while optimizing resource
usage in non-safety-critical systems. Additionally, this approach ensures that the
system is reliable and cost-effective.

Router Router Router

Router Router Router

Router Router Router

NSCNI

NSCNI

SCNI SCNI

Figure 6.17: Mixed-criticality system with mesh topology

6.3.2 Fault Model for SCNI

The design of fault tolerance in the SCNI focusses on ensuring uninterrupted ex-
change of critical messages between SCNIs, thus preserving system functionality. It

89

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

is important to note that the fault tolerance design for SCNI does not explicitly
address faults originating from the cores connected to SCNI.

Failure Mode

The fault model acknowledges the possibility of permanent and transient faults.
SCNIs handle erroneous behaviour displayed by routers or link failures within the
NoC while transmitting critical messages between SCNIs.

Fault Containment Region

The Fault Containment Region (FCR) encompasses the links and routers in the
NoC. Its main objective is to prevent faults from propagating to other FCRs. Even
if faults affect links and routers, the exchange of critical messages between SCNIs
should continue without interruption.

Fault Assumptions

The fault model defines three types of fault related to message correctness within
the FCR that the system can tolerate:

• Lost message: A message is classified as lost if it fails to reach the intended
receiver due to a link or router failure during transmission.

• Delayed message: A message is classified as delayed if it reaches the destination
NI with a significant delay due to transmission failures or delays in the link or
router. Delays are critical factors in real-time applications, as they can cause
the system to miss its deadline.

• Corrupted message: A message is considered corrupted if received, but its
content has been altered or corrupted during transmission.

SCNI can mitigate errors by identifying and categorizing these faults, thereby en-
suring reliable communication within the FCRs.

6.3.3 Conceptual Model of Extended TTNI

The SCNI is a network interface in the NoC designed to ensure reliable communi-
cation between various components in safety-critical systems, including those used
in aviation, automotive, and industrial control applications. As depicted in Figure
6.18, the SCNI incorporates two ports: redundant and non-redundant. These ports
can be configured during the design phase to facilitate the transmission of criti-
cal messages through a redundant path, which involves duplicating the message in
the NI. On the other hand, non-critical messages are transmitted through a non-
redundant path to conserve resources. The SCNI uses time-triggered communication
to provide deterministic behaviour, which is crucial in real-time systems. To main-
tain communication reliability, the SCNI employs an error detection mechanism that
uses a Cyclic Redundancy Check (CRC) to verify the integrity of messages. This
method involves adding a checksum to the data block to detect transmission errors.
The error detection mechanisms can recognize transmission errors, and the redun-
dancy controller can then choose the correct data at the receiver NI without needing

90

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

three copies of the data, as described in the redundancy controller at SCNI in the
following section.

Redundant Port Non Redundant Port

Redundancy Sender
Controller

Redundancy Receiver
Controller

TT Message BE, RC Message

Packetization Depacketization

Schedule C
onfiguration

SCNI

CORE

Router Router

Figure 6.18: Extended TTNI with redundancy controller

Redundancy Controller in SCNI

The redundancy controller is responsible for managing the transmission of both re-
dundant and non-redundant messages in the SCNI. Each output port within the core
interface is configured to handle redundant or non-redundant messages. When a re-
dundant port receives an incoming message, the redundancy controller duplicates it
and sends it through multiple redundant paths. This ensures that the network re-
mains highly available and resilient despite potential failures. This redundancy also
prevents data loss or disruption in case one of the transmission paths fails. On the
other hand, when an incoming message is received from a non-redundant port, the
redundancy controller uses a precomputed schedule to determine the appropriate
path for routing the message. The SCNI provides two paths, and the redundancy
controller decides which path the non-redundant message should take. To minimize
the risk of message collisions within the NoC, redundant and non-redundant mes-
sages from the output port of the core interface are injected at predefined times. By
adhering to these predefined injection times, the NoC can effectively reduce the risk
of message collisions during message exchange.

Check
Incoming

 Msg

Wait trigger
port

tx

Redundant
transmission

Non
Redundant

transmi-
ssion

non redundant

redundant

Figure 6.19: State machine of redundancy controller at the sender in SCNI

The redundancy controller is positioned at both the source and the sink of the
SCNI. The redundancy controller in the sender is responsible for sending the mes-

91

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

sages from the source, and the redundancy controller in the receiver is responsible
for receiving the messages from the source. The state machine of the redundancy
controller at the sender in the SCNI is illustrated in Figure 6.19. The state ma-
chine begins in the ”Wait trigger port” state, waiting for a trigger signal from the
time-triggered dispatcher to inject the messages. Upon receiving the trigger signal,
the state machine transitions to the ”Check Incoming Message” state, examining
the message type received from the core interface. Suppose the message is from the
redundant port. Next, the state machine transitions to the ”Redundant Transmis-
sion” state, where the redundancy controller duplicates the message and sends it
over the redundant path. If the message is from the non-redundant port, the state
machine transitions to the ”Non-Redundant Transmission” state, where the message
is sent using a non-redundant transmission. In both the ”Redundant Transmission”
and ”Non-Redundant Transmission” states, the state machine transitions to the
”Wait trigger port” after the message has been successfully transmitted. On the
other hand, the redundancy controller at the receiver receives duplicate messages
and selects the original message based on the correctness of the data from the two
depacketizations in the SCNI, as illustrated in the state machine shown in Figure
6.20.

Wait
Status

Read
Message 2

Read
Message 1

Report
redundancy

failure

check
status

m1 valid

m2 valid

m1 and m2 invalid

tx

Figure 6.20: State machine of redundancy controller at the receiver in SCNI

The state machine depicted in Figure 6.20 begins in the ”Wait Status” state.
It remains in that state until it receives a trigger signal from depacketization that
restores the message by removing the head and tail flits. Upon receiving the trigger
signal, the state machine transitions to the ”Check Status” state, examining the
validity of messages from two different paths. In this context, a valid message
means that the message has reached the destination within a specific time and that
no corruption has occurred during transmission. If both messages from the first and
second paths are valid, the state machine transitions to the ”Read Message 1” state,
where it reads the message from the first depacketization and returns to the ”Wait
Status” state to wait for the next trigger signal. If the message from the first path
is valid while the second path is invalid (corrupted or did not reach the destination
within the specified time), the state machine still transitions to ”Read Message 1”
and returns to the ”Wait Status” state. However, suppose the message from the first
path is invalid while the second message is valid. In that case, the state machine
transitions to the ”Read Message 2” state and receives the second message while

92

CHAPTER 6. ENERGY EFFICIENCY AND FAULT TOLERANCE FOR
ATTNOC

discarding the corrupted message from the first path. Suppose both messages from
the first and second paths are invalid. In that case, the state machine transitions
to the ”Report Redundancy Failure” state. In this state, the state machine reports
a fault in both redundant paths and returns to the ”Wait Status” state to wait for
upcoming messages.

93

Chapter 7

Results and Discussion

This chapter presents a comprehensive overview of the experimental setup used
to assess the performance, energy efficiency, and fault tolerance techniques of the
ATTNoC architecture. To evaluate the effectiveness of the ATTNoC architecture,
multiple factors were considered. These factors included end-to-end latency, jitter,
the number of uncorrupted messages under fault injection, and energy consumption.
A comparison was conducted between the energy consumption of the ATTNoC
architecture and the baseline LISNoC architecture without energy-saving techniques.
Additionally, faults causing delays, corruption, and message dropping in the NoC
components, including NIs, links, and routers, were deliberately introduced into the
system to evaluate the architecture’s ability to handle faults during runtime. The
analysis of the ATTNoC architecture offers valuable insights into its potential to
improve the reliability and performance of NoCs. The results obtained from these
experiments serve as guidance for the future development and optimization of NoC
designs.

7.1 Experiment Goal

The experiment aims to evaluate the performance of the ATTNoC architecture in
improving the reliability and energy efficiency of NoCs, which play a crucial role in
modern computing systems. The experiments assess the impact of time-triggered
frequency scaling (TTFS) in ATTNoC on energy consumption. Moreover, system
reliability is evaluated by introducing transient and permanent faults during run-
time, considering fault tolerance techniques such as redundancy mechanisms and
adaptability. To achieve these goals, tests and measurements are conducted on the
ATTNoC, focusing on parameters such as latency, jitter, packet size variation, and
energy consumption. These parameters provide insights into the system’s perfor-
mance. Finally, the experimental results are analyzed to assess performance, energy
efficiency, and the ability to tolerate faults. These findings have significant implica-
tions for designing more efficient and reliable NoCs.

94

CHAPTER 7. RESULTS AND DISCUSSION

7.2 Field Programmable Gate Array (FPGA)-based

Prototypes

The ATTNoC architecture is expected to use application-specific integrated circuit
(ASIC) technology in the future, allowing it to be implemented on silicon dies using
lithographic masks. ASICs are typically much more power-efficient than FPGAs,
and they can also be much faster. However, developing ASICs is expensive and
risky, as design errors cannot be easily corrected once silicon production has started.
Therefore, the current focus is on developing and testing the ATTNoC architecture
using FPGAs, which are cost-effective and do not require a specialized infrastruc-
ture. FPGAs are based on look-up tables (LUTs), which provide flexibility and
make modifying designs and test series easier. FPGA vendors offer complete devel-
opment kits, including professional vendor support and access to a user community.
For instance, a given circuit implemented in LUTs of an FPGA may require up to
35 times more area and can be between 3-5 times slower than an ASIC implemen-
tation. Furthermore, FPGAs consume about 14 times more dynamic power than
an equivalent ASIC on average [KR07]. The ATTNoC architecture presented in the
system model was implemented on a Xilinx Zynq-MPSoC ZCU102 evaluation board
to evaluate the functional behaviour of the ATTNoC architecture and the resource
usage on the FPGA.

32-bit AXI Master Port
Central InterconnectUart

CLOCK
Generation

AXI INTERCONNECT

ATTNoC

32-bit AXI Slave

32
-b

it
A

XI
 S

la
ve

A
XI IN

TER
C

O
N

N
EC

T 32
-b

it
A

XI
 S

la
ve

32-bit AXI Slave

AXI INTERCONNECT

MicroBlaze

MicroBlaze

A
XI IN

TER
C

O
N

N
EC

T

MicroBlaze

Adaptation Unit

Adaptation Unit

Adaptation Unit

Adaptation Unit

32-bit A
XI M

aster Port

32-bit A
XI M

aster Port

32-bit AXI Master Port

Global Time
Base

CLK0

Application Processor Unit
PS

PL

Figure 7.1: Overall system. A simple view of the ATTNoC architecture on the
Xilinx Zynq-MPSoC ZCU102 (FPGA)

95

CHAPTER 7. RESULTS AND DISCUSSION

The ZCU102 is a Zynq UltraScale+ MPSoC Evaluation Kit that integrates a
robust processing system (PS) and user-programmable logic (PL), commonly re-
ferred to as FPGA, within a single device. The PL contains the ATTNoC with
3x3 routers, adaptation units, GTB, and soft processors. Figure 7.1 illustrates
that one processing element was located in the PS, which contained a quad-core
Arm®Cortex®-A53 processor. On the other hand, the other three processing el-
ements were deployed in the programmable logic, and each processing element had
a single processing core that was realized as a soft-core MicroBlaze processor. The
LISNoC was also used as a basis for implementing the ATTNoC.

Hardware LUT % LUT used Slice Registers % Slice
Registers used

Softcore
(MicroBlaze x3)

12036 4.39 9849 1.80

LISNoC router
(3x3)

49320 17.99 32625 5.95

TTNI (Without
Redundancy)
x2

25670 9.37 21258 3.87

TTNI (With
Redundancy)
x2

25914 9.45 21584 3.93

Adaptation
Units x4

1812 0.66 3608 0.66

GTB 2 0.00 57 0.01

Table 7.1: Resource usage of the ATTNoC

Table 7.1 outlines the resource usage for various hardware components within
the ATTNoC architecture. The resource usage for each component is measured in
terms of look-up tables (LUTs) and slice registers. The soft cores (MicroBlaze x3)
use fewer resources, specifically 12036 LUTs and 9849 slice registers. This is be-
cause they are programmable processors implemented in the FPGA, with limited
hardware resources compared to dedicated components like the ATTNoC. However,
the LISNoC router (3x3) demands more resources, requiring 49320 LUTs and 32625
slice registers. Routers handle routing and data packet switching, necessitating a
larger resource allocation to manage the significant data traffic and buffering re-
quirements. The specific router configuration impacts resource usage, including the
number and size of input/output ports and the number of virtual channels sup-
ported. The TTNI, serving as the communication interface between routers and
other processing elements, exhibits higher resource usage than the routers. The
non-redundant version of the two TTNIs uses 25670 LUTs and 21258 slice registers.
In contrast, the redundant version requires slightly more resources, with 25914 LUTs
and 21584 slice registers for two TTNIs with redundancy mechanisms. Redundancy
in the TTNI enables message transfer through two channels, providing fault toler-
ance in case one channel fails. The four adaptation units, responsible for schedule
switching, demonstrate relatively low resource usage compared to other components,
using 1092 LUTs and 3280 slice registers for all four units combined. Lastly, the
GTB (global time base), responsible for global time synchronization, exhibits the

96

CHAPTER 7. RESULTS AND DISCUSSION

lowest resource consumption, using only 2 LUTs and 57 slice registers.

7.3 Performance Analysis of ATTNoC

A performance analysis was conducted to assess the effectiveness of the time-triggered
features in ATTNoC. The study involved measuring the latency of the baseline
event-triggered LISNoC and comparing it to the extended version of LISNoC with
time-triggered features, referred to as ATTNoC. Through this analysis, the impact of
time-triggered features on the latency performance of the system was determined.
The following section details the experimental setup used to evaluate the perfor-
mance of LISNoC and ATTNoC, and presents the results obtained [NOO23].

7.3.1 Experimental Setup

The experimental setup used in this study involved adding a time-stamp module to
each TTNI of the two NoCs, namely LISNoC and ATTNoC. The time-stamp module
was added to both the source and sink of the NI to record the injection and arrival
time of messages at the NI sender and receiver. The TTNI is a hardware interface be-
tween the processing element and the NoC. The added time stamp records the value
of the global time base (GTB), a time reference used to synchronize the distributed
TTNIs in the ATTNoC. To measure the latency of messages in the ATTNoC and
compare it to that of the LISNoC, multiple messages with different packet sizes were
injected into the NoC via the source NI, and its injection time was recorded. The
time stamp was then added to the message packet. Upon reaching its destination
NI, the arrival time was recorded, allowing for latency calculation by subtracting
the injection time from the arrival time. This approach effectively measured and
compared the latency and jitters of the LISNoC and ATTNoC. In the experiment,
messages were sent through the NoCs to assess the baseline LISNoC and ATTNoC
performance, as depicted in Figure 7.2. Two messages were intentionally designed to
share a resource to simulate congestion and evaluate the NoCs’ performance under
such conditions. This allowed observation of how baseline LISNoC and ATTNoC
handled congestion scenarios and assessed their effectiveness in managing resource
sharing and maintaining performance. The experiment involved transmitting mes-
sages with different packet sizes from 2 to 16 between processing elements within
the ATTNoC and LISNoC. Both NoCs were operated at a frequency of 200 MHz,
and the experiment was repeated multiple times to ensure statistical significance.
The recorded latencies were stored in a log file to determine the average, worst-case
latency, and jitters of the two NoCs. It is important to note that the time-stamp
is added in the TTNI module and records the time between transmitting messages
between two TTNIs. Thus, any delay caused by the processing elements and the
time in which messages are stored in the core interface of the TTNI before their
injection into the NoC is not considered in the latency and jitter. This limitation
should be taken into account when interpreting the experiment’s results.

97

CHAPTER 7. RESULTS AND DISCUSSION

TTNI-6 TTNI-7 TTNI-8

TTNI-3 TTNI-4 TTNI-5

TTNI-0 TTNI-2

C
or
e

TTNI-1

C
or
e

C
or
e

C
or
e

C
or
e

C
or
e

C
or
e

C
or
e

C
or
e

msg1 msg2

Figure 7.2: 3x3 LISNoC and ATTNoC architecture

7.3.2 Results and Discussion

To evaluate the performance of the LISNoC and the ATTNoC, two essential perfor-
mance metrics are considered: latency and jitter. The latency of each message was
measured and recorded in Tables 7.2 and 7.3. The recorded latency values were then
used to calculate the jitter for both the LISNoC and the ATTNoC using equation
7.1.

Jitter = Latencymax − Latencymin (7.1)

Latency refers to the delay between transmitting a message from a source NI to a
destination NI within the NoC. It represents the time difference between when the
message is injected into the NoC and when it is received at its intended destina-
tion. On the other hand, jitter measures the variation or fluctuation in the latency
experienced by messages travelling through the NoC. It is calculated as the differ-
ence between the maximum and minimum latency values for a given communication
path.

Tables 7.2 and 7.3 display the average and worst-case latency, along with the
minimum latency for messages ”msg1” and ”msg2”, in both the baseline LISNoC
and the ATTNoC. These tables compare the performance variations between the
two networks, highlighting their distinctive characteristics.

Packet
Size

LISNoC
Avg
Latency
(ns)

LISNoC
Max
Latency
(ns)

LISNoC
Min La-
tency
(ns)

ATTNoC
Avg
Latency
(ns)

ATTNoC
Max
Latency
(ns)

ATTNoC
Min La-
tency
(ns)

2 785 2367 317 550 705 317
4 1850 2589 446 1100 1461 446
8 3600 3982 546 1870 2179 546
16 10605 13958 1912 4210 4602 1912

Table 7.2: Packet size vs latency of message-1

98

CHAPTER 7. RESULTS AND DISCUSSION

Packet
Size

LISNoC
Avg
Latency
(ns)

LISNoC
Max
Latency

LISNoC
Min La-
tency

ATTNoC
Avg
Latency
(ns)

ATTNoC
Max
Latency
(ns)

ATTNoC
Min La-
tency

2 180 285 115 125 262 115
4 340 395 198 249 370 198
8 840 1280 380 450 560 380
16 2100 3252 760 875 1035 760

Table 7.3: Packet size vs latency of message-2

Figures 7.3 and 7.4 present a comparison of average and worst-case latency versus
packet size between two different NoC architectures: ATTNoC and baseline LISNoC.
The analysis focuses on two messages with different packet sizes exchanged between
four cores: Core 0, connected to NI 0, which sends the message ”msg1” to core 7,
connected to NI 7, and core 2, connected to NI 2, which sends the message ”msg2”
to core 5, connected to NI 5. In this context, both messages traverse the same
link that connects two routers, specifically R2 and R4. This scenario leads to the
potential for congestion within the network as multiple messages contend for the
same network resources. The x-axis of the figures represents the burst length, indi-
cating the number of flits transmitted, while the y-axis represents latency measured
in nanoseconds. The blue and red lines in the figures illustrate the worst-case and
average latency of the LISNoC, while the green and violet lines represent the average
and worst-case latency of the ATTNoC.

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

Packet Size

L
at
en
cy

(n
s)

LISNoC Avg Latency
LISNoC Max Latency
ATTNoC Max Latency
ATTNoC Avg Latency

Figure 7.3: Packet size vs latency of message-1

99

CHAPTER 7. RESULTS AND DISCUSSION

2 4 8 16
0

500

1,000

1,500

2,000

2,500

3,000

3,500

Packet Size

L
at
en
cy

(n
s)

LISNoC Avg Latency
LISNoC Max Latency
ATTNoC Max Latency
ATTNoC Avg Latency

Figure 7.4: Packet size vs latency of message-2

Figure 7.3 and 7.4 illustrate the latency versus packet size for LISNoC and AT-
TNoC with different packet sizes. From these figures, the ATTNoC demonstrates
lower latency than the LISNoC when operating at a frequency of 200 MHz and using
a flit size of 32 bits for both NoC architectures. The average latency graphs, plotted
for each message and various packet sizes, clearly illustrate significant differences
between the two NoCs. The latency curve for the ATTNoC exhibits nearly linear
behaviour for both messages (”msg1” and ”msg2”). In contrast, the latency for the
LISNoC shows a sudden increase as the packet size escalates from 2 to 16. These
findings indicate that the ATTNoC design is more efficient and handles inter-core
communication within FPGA designs, providing more consistent and predictable
latency behaviour and improved overall system performance. On the other hand,
the LISNoC introduces significant delay due to the shared link used by both mes-
sages during transmission from two different cores. This sharing of resources leads
to congestion and negatively impacts the latency performance of the LISNoC. How-
ever, for the best-case scenario (minimum latency) for both the LISNoC and the
ATTNoC, they have almost the same latency as depicted in Table 7.2 and 7.3. It is
important to note that the recorded latency measurements do not account for the
delay introduced during the exchange of messages between the core and NI, as well
as the delay experienced when messages wait for injection in the core interface in
the case of the ATTNoC. These additional delays are not taken into consideration
in the latency measurements.

Figures 7.5 and 7.6 present a comparative analysis of the jitters observed in
the ATTNoC and the baseline LISNoC for messages ”msg1” and ”msg2”. These
messages are injected into the NoCs and share the same link, resulting in network
congestion, as depicted in Figure 7.2. The x-axis of the figures represents the packet
size, determined by the number of flits transmitted, while the y-axis represents
the measured jitters in nanoseconds (ns). The blue line in the plots represents
the jitter observed in the ATTNoC, and the red line corresponds to the jitter in
the LISNoC. By examining these figures, we gain insights into the comparative
jitter performance of the two NoC architectures. The plotted data illustrates the
variations in message arrival times and their impact on system timing. Additionally,

100

CHAPTER 7. RESULTS AND DISCUSSION

the congestion caused by the shared link between the two messages further influences
the jitter characteristics.

2 4 8 16
0

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

Packet Size

J
it
te
r
(n
s)

LISNoC Jitter
ATTNoC Jitter

Figure 7.5: Packet size vs Jitter of message 1

2 4 8 16
0

500

1,000

1,500

2,000

2,500

3,000

Packet Size

J
it
te
r

LISNoC Jitter
ATTNoC Jitter

Figure 7.6: Packet size vs jitter of message 2

Figure 7.5 and 7.6 compare the average jitter for different packet sizes between
the ATTNoC and the baseline LISNoC architectures [TUM]. Specifically, Figure 7.6
compares the jitter for ”msg2,” revealing a consistent gradient relationship between
jitter and packet size in the ATTNoC. However, in the case of the LISNoC without
time-triggered communication, the jitter experiences a rapid increase as the burst
length expands from 2 to 16 in both messages. Similarly, Figure 7.5 compares the
jitters versus the packet size for ”msg1,” demonstrating a low jitter of the ATTNoC
over the LISNoC for packet sizes 2, 4, 8, and 16. The results show that the ATTNoC
offers improved jitter compared to the LISNoC and is better suited for applications
where consistent and minimal variation in message arrival times is crucial, such as
real-time applications. On the contrary, the LISNoC exhibits a significant increase

101

CHAPTER 7. RESULTS AND DISCUSSION

in jitter with larger packet sizes, making it less desirable in situations that require
precise timing and low-jitter communication.

7.4 TTFS Energy Efficiency Scenarios in ATTNoC

An energy efficiency estimation analysis was conducted to evaluate the effectiveness
of using time-triggered frequency scaling (TTFS), which is a power-saving technique
used in the ATTNoC architecture. The analysis involved estimating the power
consumption of the routers in the network using the open-source tool ORION 3.0
[KLN15]. This tool can estimate power consumption at various levels of abstraction,
including microarchitecture, implementation, and operating parameters, as well as
multiple router register transfer levels [KLN15], [Nam+21]. By estimating the power
consumption of the routers, it was possible to evaluate the energy efficiency of the
ATTNoC architecture. The power estimation analysis enabled a comparison of the
energy efficiency of the ATTNoC architecture with and without TTFS. The analysis
results can be used to optimize the frequency scaling of the routers to achieve better
energy efficiency.

7.4.1 Experimental Setup

The ATTNoC architecture incorporates a power-saving technique known as TTFS,
allowing NoC routers to adjust their operating frequency based on a predefined
schedule. The primary objective of this technique is to reduce power consumption
in multi-core chips. TTFS involves three methods: global, cluster, and router-based
approaches, all of which are detailed in Section 6.2.2. To assess the power-saving
methods employed by the ATTNoC at the router level, these techniques are applied
in three distinct cases:

• Case 1: ATTNoC without power-saving techniques. In this case (see Fig-
ure 7.7), the ATTNoC operates without any frequency scaling, meaning all
routers consistently maintain a fixed frequency. The power consumption of
the network routers is evaluated when power-saving techniques are not used.
Since the frequency of all routers remains fixed, the three approaches (global,
cluster, and router-based) consume the same power.

• Case 2: ATTNoC with clock-gating. In this case (see Figure 7.8), the frequency
used in the routers is predefined in advance. When the routers are scheduled
to be active, the time-triggered dispatcher sets a specific frequency for them
to operate. However, when the routers are scheduled to be idle, the time-
triggered dispatcher triggers the clock-gating operation, allowing the routers
to be clock-gated and conserve energy.

• Case 3: ATTNoC incorporates TTFS and clock-gating. In this case (see Fig-
ure 7.9), the frequencies of the routers are adjusted over time according to
a predefined schedule. Multiple clock domains are used to achieve this fre-
quency scaling at the router level. Conversely, the clock of idle routers is
gated according to the schedule to save energy.

102

CHAPTER 7. RESULTS AND DISCUSSION

By examining these three cases, we can evaluate the effectiveness of different
power-saving methods used by the ATTNoC at the router level. This analysis pro-
vides valuable insights into the energy efficiency and power optimization capabilities
of the ATTNoC architecture.

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

ATTNoC without TTFS

R Full Frequency : F

Figure 7.7: Example of ATTNoC without frequency scaling in the router

Table 7.4 presents the experimental setup used to evaluate the energy efficiency
of the ATTNoC when no power-saving techniques (case-1) are employed. In this
case, various messages were exchanged between cores, each message with different
deadlines.

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of Ac-
tive
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle (µJ)

1 R6, R7 9 0 full 100 22.32 0
2 R3, R4,

R1
9 0 full 120 26.78 0

3 R3, R4,
R5, R2

9 0 full 520 116.71 0

4 R7, R4,
R1

9 0 full 120 26.78 0

5 R8, R5,
R2

9 0 full 120 26.78 0

No Msgs - 9 0 full 560 125.00 0

Table 7.4: Case-1: ATTNoC without frequency scaling

103

CHAPTER 7. RESULTS AND DISCUSSION

As seen in Table 7.4, five messages are transmitted within a fixed period of 1.54
ms in the described setup. Each message follows a specific path from the source to
the destination core, passing through different routers. The active routers operate
at a frequency defined by the schedule to facilitate message forwarding between the
source and destination cores. However, in case 1, no power-saving techniques are
applied, resulting in all routers operating at full frequency even when no messages
are being transmitted. This absence of power-saving measures leads to increased
power consumption within the ATTNoC.

The second case involves an ATTNoC with clock-gating, where active routers
operate at full frequency, and idle routers are clock-gated according to a predefined
schedule (see Figure 7.8). The figure below illustrates the global, cluster, and router-
based approaches to case 2.

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

Global-based approach

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

Cluster-based approach

Region 1 Region 2

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

Router-based approach

R R RFull Frequency : F Clock gated Half Frequency : F/2

Figure 7.8: Example of ATTNoC with clock-gating

In the second case, the power consumption of the ATTNoC routers is evaluated
using global, cluster, and router-based approaches, as shown in Figure 7.8. These
techniques optimize the system’s energy efficiency by clock-gating the idle routers.
The global approach is used to enhance the power consumption of the ATTNoC
architecture, and the experimental setup for this approach is presented in Table
7.5. In the global approach, all routers in the network operate at the same clock
frequency. When specific routers are scheduled to transmit data, all routers in the
NoC are active and operating with a full frequency mode. However, the frequency
of all routers is clock-gated when all routers in the network are idle. This approach
aims to reduce the power consumption of NoC routers by clock-gating the idle
routers during the common idle time of all routers. By doing so, the total power
consumption of the network can be reduced.

104

CHAPTER 7. RESULTS AND DISCUSSION

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of Ac-
tive
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle (µJ)

1 R6, R7 9 0 full 100 22.32 0
2 R3, R4,

R1
9 0 full 120 26.78 0

3 R3, R4,
R5, R2

9 0 full 520 116.07 0

4 R7, R4,
R1

9 0 full 120 26.78 0

5 R8, R5,
R2

9 0 full 120 26.78 0

No Msgs - 0 9 full 560 0 2.97

Table 7.5: Case-2: ATTNoC with clock-gating using global approach

Table 7.6 shows the setup used to evaluate the power consumption of the AT-
TNoC using the cluster approach. This approach divides the network into several
clusters or regions. The frequency of all routers in the cluster is the same during
active times and idle times. When a specific router in the region is scheduled to
transmit data, all routers in that region are synchronized to operate at the same
frequency according to a schedule. It is assumed that the operating frequency is in
full frequency mode, and the frequency of all routers in the cluster is clock-gated
only during the common idle time of the routers in the cluster.

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of
Active
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle
(µJ)

1 R6, R7 6 3 full 100 14.88 0.17
2 R3, R4,

R1
6 3 full 120 17.85 0.21

3 R3, R4,
R5, R2

9 0 full 520 116.07 0

4 R7, R4,
R1

6 3 full 120 17.85 0.21

5 R8, R5,
R2

3 6 full 120 8.92 0.42

No Msgs - 0 9 full 560 0 2.97

Table 7.6: Case-2: ATTNoC with clock-gating using cluster approach

105

CHAPTER 7. RESULTS AND DISCUSSION

The configuration used to evaluate the power consumption of ATTNoC using
the router-based approach is presented in Table 7.7. In this approach, the operating
frequency of each router is determined by its schedule and synchronized with the
scheduled messages for transmission. Unlike the global and cluster approaches, the
frequency of each router is independent of the frequency of the region or the entire
NoC. With this approach, the operating frequency of active routers is specifically
set when scheduled to transmit messages. This ensures that routers activate only
during data transmission, while inactive routers are clock-gated according to their
schedules, effectively reducing power consumption.

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of
Active
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle
(µJ)

1 R6, R7 2 7 full 100 4.96 0.41
2 R3, R4,

R1
3 6 full 120 8.92 0.42

3 R3, R4,
R5, R2

4 5 full 520 51.58 1.53

4 R7, R4,
R1

3 6 full 120 8.92 0.42

5 R8, R5,
R2

3 6 full 120 8.92 0.42

No Msgs - 0 9 full 560 0 2.973

Table 7.7: Case-2: ATTNoC with clock-gating using router-based approach

The third case (see Figure 7.9) presents an example of an ATTNoC with multiple
clock domains, including full-frequency and half-frequency modes. The dispatcher
within the TTNI plays a crucial role in triggering frequency scaling and clock-gating
operations within the ATTNoC. It efficiently schedules the timing for adjusting the
frequency of routers and assigns specific frequencies to be used. As a result, the
active router can adjust its frequency mode according to the predefined schedule.
When messages requiring high bandwidth are scheduled, the NoC routers operate
in high-frequency mode. Conversely, the half-frequency mode is used for scheduled
communications with lower bandwidth requirements. The frequency controller in the
TTFS module configures the router frequency based on the configuration informa-
tion received from the time-triggered dispatcher of the TTNI. This approach allows
for the optimization of power consumption in routers transmitting low-criticality
messages by incorporating the half-frequency mode. Additionally, inactive routers
are often subjected to clock-gating to conserve power. Notably, this frequency ad-
justment in the routers is solely based on a time-triggered schedule, essential for
preserving the deterministic communication within the ATTNoC.

106

CHAPTER 7. RESULTS AND DISCUSSION

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

Global-based approach

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

Cluster-based approach

Region 1 Region 2

R6 R7 R8

R0

R5

R2

R4

R1

R3NI2

NI0

NI1

NI3

msg1

msg2

Router-based approach

R R RFull Frequency : F Clock gated Half Frequency : F/2

Figure 7.9: Example of ATTNoC with frequency scaling with multiple clock domain

In the third case, the active routers have two clock ranges: full-frequency and
half-frequency modes. In full-frequency mode, they operate at 200 MHz; in half-
frequency mode, they operate at 100 MHz. The experiment is similar to ”Case 2,”
but with the addition of using multiple clock ranges to adjust the frequency of the
routers based on a predetermined schedule. The main goal of this experiment is to
assess the power consumption of the ATTNoC while using TTFS with different clock
domains, specifically focusing on the global, cluster, and router-based approaches.
Tables 7.8, 7.9, and 7.10 present the configurations used for the power evaluation of
the ATTNoC under consideration when TTFS is applied.

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of
Active
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle
(µJ)

1 R6, R7 9 0 half 100 22.04 0
2 R3, R4,

R1
9 0 half 120 26.45 0

3 R3, R4,
R5, R2

9 0 half 520 114.62 0

4 R7, R4,
R1

9 0 full 120 26.78 0

5 R8, R5,
R2

9 0 full 120 26.78 0

No Msgs - 0 9 full 560 0 2.97

Table 7.8: Case-3: ATTNoC with frequency scaling using global approach

107

CHAPTER 7. RESULTS AND DISCUSSION

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of
Active
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle
(µJ)

1 R6, R7 6 3 half 100 14.69 0.17
2 R3, R4,

R1
6 3 half 120 17.63 0.21

3 R3, R4,
R5, R2

9 0 half 520 114.62 0

4 R7, R4,
R1

6 3 full 120 17.85 0.21

5 R8, R5,
R2

3 6 full 120 8.92 0.42

No Msgs - 0 9 full 560 0 2.97

Table 7.9: Case-3: ATTNoC with frequency scaling using cluster approach

Msgs ID Message
Path

Active
Routers

Idle
Routers

Operating
Fre-
quency
of
Active
Routers

Deadlines
(µs)

Energy
Active
(µJ)

Energy
Idle
(µJ)

1 R6, R7 2 7 half 100 4.89 0.41
2 R3, R4,

R1
3 6 half 120 8.81 0.42

3 R3, R4,
R5, R2

4 5 half 520 50.94 1.53

4 R7, R4,
R1

3 6 full 120 8.92 0.42

5 R8, R5,
R2

3 6 full 120 8.92 0.42

No Msgs - 0 9 full 560 0 2.97

Table 7.10: Case-3: ATTNoC with frequency scaling using router-based approach

7.4.2 Results and Discussion

To establish a baseline measurement, the energy consumption of the ATTNoC is
recorded without using power-saving techniques. Table 7.4 shows the baseline energy
consumption, which is 343.75 µJ for ATTNoC without power-saving techniques.
This measurement serves as a reference for evaluating energy efficiency in subsequent
cases where power-saving techniques are considered.

108

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.10 illustrates the energy consumption of a 3x3 ATTNoC in case 2, con-
sidering the global, cluster, and router-based approaches. Among these approaches,
the global approach exhibits the highest energy consumption, measuring 221.72 µJ.
The cluster approach follows with an energy consumption of 179.59 µJ, while the
router-based approach demonstrates the lowest energy consumption at 89.52 µJ.
These results indicate that the router-based approach is the most energy-efficient,
as it consumes the least energy. Conversely, the global approach consumes the
highest energy, making it the least energy-efficient option.

0

100

200

221.72

179.59

89.52

Approach

E
n
er
gy

co
n
su
m
p
ti
on

(µ
J
) Global

Cluster
router-based

Figure 7.10: Case2: Power consumption of TTFS using different approaches.

The figure provided below compares the power consumption of the 3x3 AT-
TNoC in case 3, considering three different techniques: Global, cluster-based, and
router-based. Figure 7.11 illustrates the energy consumption for each approach.
The global approach produced the highest energy consumption among the three
techniques, measuring 219.65 µJ. The cluster-based approach exhibited lower en-
ergy consumption at 177.73 µJ, while the router-based approach demonstrated the
lowest energy consumption at 88.70 µJ.

0

100

200

219.65

177.73

88.7

Approach

E
n
er
gy

co
n
su
m
p
ti
on

(µ
J
) Global

Cluster
router-based

Figure 7.11: Case-3: Power consumption of TTFS using different approaches.

109

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.12 summarizes the comparison of power consumption for the ATTNoC
architecture using three different power-saving techniques: global, cluster, and router-
based approaches. The figure presents three cases: Case 1: Represents the use of
ATTNoC without any power-saving techniques. Case 2: Represents the use of AT-
TNoC with clock-gating techniques. Case 3: Represents the use of ATTNoC with
clock-gating and frequency scaling, allowing the NoC routers to adjust their oper-
ating frequency according to a predefined schedule.

Global Cluster Router
0

50

100

150

200

250

300

350

Approach

E
n
er
gy

co
n
su
m
p
ti
on

(µ
J
)

Case 1
Case 2
Case 3

Figure 7.12: Comparison of power consumption of TTFS using different approaches
for three cases (1, 2, 3).

Figure 7.12 presents a comprehensive comparison of power consumption in the
ATTNoC architecture using different approaches (global, cluster, and router-based)
for three cases (1, 2, and 3). In case 1, used as a baseline with no power-saving
techniques employed, the energy consumption for all three approaches is 343.75 µJ.
In case 2, clock-gating techniques are employed, resulting in optimized energy con-
sumption in the ATTNoC router. Case 2 shows a significant reduction in energy
consumption compared to case 1: 221.72 µJ for the global approach, 179.59 µJ for
the cluster approach, and the router-based approach consumes the least energy at
89.52 µJ. Case 3 implements frequency scaling with multiple clock domains, en-
abling routers in the ATTNoC to operate at different frequencies, leading to further
optimization of energy consumption. This approach achieves even lower energy
consumption levels: 219.65 µJ for the global approach, 177.73 µJ for the cluster ap-
proach, with the router-based approach exhibiting the lowest energy consumption
at 88.70 µJ. Comparing the energy consumption values across the three cases, case
3, with frequency scaling using multiple clock domains, demonstrates the most effi-
cient energy consumption in the ATTNoC architecture. The figure also illustrates
the variations in energy consumption among the global, cluster, and router-based

110

CHAPTER 7. RESULTS AND DISCUSSION

approaches across the three cases (1, 2, and 3). The router-based approach consis-
tently exhibits the lowest energy consumption among the three when using power-
saving techniques, especially in cases 2 and 3. However, it is essential to consider the
trade-offs between energy consumption and memory requirements for each approach
in the context of the specific application and the available hardware resources. The
router-based approach necessitates maintaining individual schedules for each router,
while the global and cluster approaches only require schedules for the entire NoC
or individual clusters, respectively. While this difference in memory requirements
and energy consumption influences the suitability of each approach for different
applications, the choice between the three approaches should be made based on a
comprehensive evaluation of both energy consumption and memory requirements
in the context of the specific application and the available hardware resources. If
energy efficiency is the primary concern and memory resources are not a limiting
factor, then the router-based approach may be a viable option. However, the global
or cluster approach may be more suitable if memory resources are limited.

7.5 Fault Tolerance Techniques in ATTNoC

This study evaluates the fault tolerance techniques used in the ATTNoC architec-
ture, which include seamless redundancy and adaptation features. The adaptation
features in the ATTNoC architecture was designed to tolerate permanent faults in
the NoC resources, such as links, cores, NIs, and routers. Additionally, seamless
redundancy mechanisms were designed to tolerate transient and permanent faults
within the NoC components, such as links and routers, during the exchange of criti-
cal messages between safety-critical NIs (SCNIs). Two distinct tests were conducted
to assess the effectiveness of the fault tolerance techniques used in ATTNoC. The
first test adopted a predefined test case approach, intentionally introducing specific
faults that caused message delays, corruptions, and losses within the NoC. A de-
signed test bench was used to observe the system’s response to these faults, including
permanent and transient ones. The primary goal of this test was to quantify the
number of uncorrupted packets received by the destination core, thereby indicating
the system’s reliability under known and controlled fault conditions. Following the
predefined test case approach, a subsequent testing phase took a different approach.
Randomized faults in the form of transient faults through message corruption were
introduced in the NoC to evaluate the effectiveness of seamless redundancy in the
ATTNoC when exchanging critical messages. This test aimed to assess the capabil-
ity of the redundancy techniques used in the ATTNoC for tolerating transient faults.
The analysis mainly focused on assessing the system’s response to known perma-
nent and transient faults in the first test scenario using the test case approach. The
second test scenario also examined the system’s adaptability to unpredictable fault
events in the NoC resources, such as message corruption. By combining the results
of these distinct test scenarios, the study aimed to comprehensively understand the
inherent fault tolerance capabilities of the ATTNoC architecture.

7.5.1 Experiment Setup Based on Predefined Test Case

This experiment aimed to comprehensively assess the effectiveness of the fault tol-
erance techniques used in the ATTNoC, focusing on adaptation and seamless re-

111

CHAPTER 7. RESULTS AND DISCUSSION

dundancy in tolerating both permanent and transient faults that may occur in the
NoC resources, such as routers, NIs, and links. A test case approach was employed
to achieve this assessment, intentionally introducing various types of faults, includ-
ing permanent and non-permanent ones, into the NoC resources. These faults were
designed to create scenarios such as delays, lost messages, and corrupted messages
within the faulty NoC resources. By adopting this approach, the experiment estab-
lished a controlled environment to evaluate the system’s resilience and effectiveness
in mitigating the impact of the introduced faults. In the subsequent section, we will
dive into the functional behaviour of the ATTNoC in the presence of a permanent
fault that causes messages to drop. Subsequently, we will provide a detailed descrip-
tion of the experimental setup used to assess the reliability of the ATTNoC using
the predefined test case, as presented in Section 7.5.1.

Functional Behaviour of the ATTNoC in the Event of a Permanent Fault

This study illustrated the functional behaviour of the ATTNoC architecture when
a permanent fault occurs in the NoC resources, leading to dropped messages. The
experiment uses the Vivado Xilinx tool to simulate communication between four
cores under various configurations, as illustrated in Figure 7.13. These configurations
include scenarios with and without redundancy mechanisms and with and without
adaptation features in the ATTNoC. Specifically, a permanent fault was introduced
into the link connecting R6 and NI3, resulting in dropped flits passing through
the link. The simulation results, presented in Figures 7.14 to 7.17, illustrate the
communication between the four NIs as depicted in Figure 7.13.

R6 R8

R3 R4 R5

R0 R2

NSCNI
(NI-1)

NSCNI
(NI-0)

SCNI
(NI-2)

R7

R1

R6 R8

R3 R4 R5

R0 R2

NSCNI
(NI-1)

NSCNI
(NI-0)

SCNI
(NI-2)

R7

R1

ATTNoC is operating with schedule 0 ATTNoC is operating with schedule 1

msg2msg1

SCNI
(NI-3)

msg1

msg2

msg2

SCNI
(NI-3)

Figure 7.13: Example of an ATTNoC set up with a permanent fault in the link
connecting NI3 and R6, which is indicated in red, and which uses multiple schedules

Figure 7.13 shows the experimental setup used to evaluate the communication
behaviour of the ATTNoC architecture when a permanent fault is introduced. In
this setup, four network interfaces (NIs) exchange two messages, namely message
1 (msg1) and message 2 (msg2). NI3 sends messages to NI1 and NI2 at different
injection times. Schedule 0, shown on the left side of the figure, illustrates that NI3
sends the message msg1 to NI1 through the R6-R7 path and the message msg2 to

112

CHAPTER 7. RESULTS AND DISCUSSION

NI2 through the R6-R7-R8 path. However, if a permanent fault occurs in the link
that connects NI3 and router R6, the adaptation features of the ATTNoC architec-
ture enable the NoC to switch schedules depending on the context event. In this
case, the ATTNoC switches to schedule 1, as shown on the right side of Figure 7.13,
when the link connecting NI3 and router R6 fails. This schedule switching main-
tains communication within the network by activating the redundancy mechanism
in NI3, which allows NI3 to transfer duplicated messages through dual channels.
Moreover, by rerouting the message msg1 through a different path (R0-R1-R4-R7),
the ATTNoC can isolate the faulty link.

Evaluation of ATTNoC Functional Behaviour Under Permanent Fault
Scenarios

The ATTNoC communication was simulated using the Vivado Xilinx tools to evalu-
ate the functional behaviour of the ATTNoC when a permanent fault is introduced
in the NoC resources, such as routers, network interfaces (NI), and links. Figure
7.14 illustrates the simulation result of the communication between NI3 and NI2
when the redundancy mechanism is disabled in the ATTNoC. In this scenario, the
messages are transmitted through the R6-R7-R8 path to reach NI2.

Figure 7.14: Illustration of messages exchanged between NI3 and NI2, without re-
dundancy mechanism, fault is activated

The simulation results depicted in Figure 7.14 demonstrate that NI3 successfully
transmits a packet of six flits to NI2. However, despite the successful transmission at
NI3, the flits are not received at the intended destination, NI2. This communication
failure is attributed to a faulty connection between router R6 and NI3, through
which the messages pass. This simulation result highlights the impact of permanent
faults in NoC resources such as routers, NIs, links, and cores, which can disrupt
communication in the NoC. It emphasises the importance of implementing fault
tolerance techniques, such as redundancy mechanisms, to ensure reliable and efficient
system operation.

Including redundancy mechanisms in the ATTNoC architecture, as depicted in
Figure 7.15, mitigates the impact of permanent and transient faults occurring within
the network. In this scenario, the redundancy mechanisms in the TTNI are enabled,
which allows the safety-critical network interface (SCNI) to duplicate messages at
the sender NI and transmit them through a dual channel. More specifically, the NI3
sender transmits the messages to the destination NI2 through a dual channel using
the R6-R7-R8 and R0-R1-R2 paths.

113

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.15: Illustration of messages exchanged between NI3 and NI2, with redun-
dancy mechanism, fault is activated

This simulation result demonstrates the effectiveness of redundancy mechanisms
in the ATTNoC architecture. The safety-critical network interface (SCNI) duplicates
messages at the source NI3 and transmits them to the destination NI2 through two
separate paths: R6-R7-R8 and R0-R1-R2. In Figure 7.15, it can be observed that
despite the corruption of the first packet caused by the faulty connection between
NI3 and router R6, the redundant packet successfully reaches the destination NI2,
ensuring the reliable and efficient operation of the system. This outcome emphasizes
the importance of incorporating redundancy mechanisms in developing NoCs to
enhance their reliability.

This setup focuses on the communication between NI3 and NI1, as depicted
in Figure 7.13. The messages are transmitted from NI3 to NI1 through the R6-
R7 path. It is important to note that in this specific scenario, the adaptation
functions are disabled. The network interface cannot dynamically adapt to changing
communication conditions.

Figure 7.16: Illustration of messages exchanged between NI3 and NI1, without adap-
tation, fault is activated

As shown in Figure 7.16, the sender NI3 successfully transmits a packet of six
flits to destination NI1. However, due to the permanent fault introduced in the
link between NI3 and router R6, causing the dropped flit to traverse that link,
the messages do not reach destination NI1. This illustrates the potential impact
of a NoC component fault on communications within the NoC and underscores the
importance of implementing fault tolerance techniques, such as adaptation functions.
These techniques enable the network to reroute messages when a persistent fault
occurs. By rerouting messages, the network can isolate the faulty resources in the
NoC and distribute tasks or messages to other available resources, ensuring the
system’s continued operation in the presence of a permanent fault.

114

CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.17 depicts the communication between NI3 and NI1, highlighting the
incorporation of adaptation techniques into the ATTNoC architecture. Specifically,
the links connecting router R6 with NI3 intentionally introduce a persistent fault.
Adaptation techniques in the ATTNoC empower the network to switch schedules and
isolate the faulty NoC resources, ensuring the continuous operation of the ATTNoC
even in the presence of faults. Figure 7.17 illustrates the outcome of communica-
tion that demonstrates the successful support of adaptation techniques within the
ATTNoC.

Figure 7.17: Illustration of messages exchanged between NI3 and NI1, with adapta-
tion (flits are rerouted), the fault is activated

The simulation results demonstrated that incorporating adaptation techniques
in the NoC’s communication enhanced the system’s ability to adapt to faulty com-
munication components. In Figure 7.17, when the link between NI3 and router R6
failed to transmit messages, the adaptation techniques played a crucial role by redi-
recting the data through an alternate path, specifically R0-R1-R4-R7, by switching
between schedules. This outcome emphasizes the effectiveness of adaptation tech-
niques in ensuring the reliable operation of the NoC. By dynamically rerouting the
data when a permanent fault occurs in the NoC resources, the NoC can overcome
disruptions and successfully deliver messages to their intended destinations.

Experimental Setup based on Permanent and Transient Faults

In this experimental setup, a 3x3 mesh ATTNoC architecture was designed using
Vivado Xilinx and subjected to various fault conditions, including delay, message
corruption, and open link, as depicted in Figure 7.19. The study used a fault model
with four parameters: F = {StartTime, Duration, Location, Fault-Type}, where the
StartTime indicates when the fault occurs, duration represents how long the fault
persists, location indicates where the fault occurs, and Fault-type represents the type
of fault. These parameters were varied to evaluate the system’s reliability under
different fault conditions. In addition, the total number of uncorrupted received
packets was used to assess the system’s ability to tolerate a fault when fault tolerance
techniques were used. The experimental setup allowed for assessing the effectiveness
of the adaptation techniques and redundancy built into the ATTNoC architecture
in tolerating faults, providing valuable insights into its reliability under different
conditions. The fault scenario depicted in Figure 7.18 and 7.19 was used to assess
the ATTNoC system’s functional behaviour under different fault conditions and
three fault types (F1, F2, and F3). Each fault scenario can contain multiple faults
S = {F1,..., Fn}. The following points describe the fault scenarios used in the
experiments.

115

CHAPTER 7. RESULTS AND DISCUSSION

• The fault denoted as F1 represents a permanent fault that occurs at the net-
work link that connects R6 to NI2. This fault leads to message corruption.
The fault is activated when the time reaches 600 times the period, equal to 600
* T with T = 488.28 µs. Here, the period refers to the interval used for time-
triggered communication, allowing eight packets to be exchanged between the
NoC every period, as depicted in Figure 7.19. The term ”permanent” signi-
fies that the fault is persistent and does not resolve independently, requiring
maintenance or intervention to rectify it.

• The fault denoted as F2 is a non-permanent fault at router R7 in the net-
work. This fault introduces a delay of 10 clock cycles for each message passing
through the affected router. The fault is activated when the time reaches 250
times the period. It remains active for a single period, after which the faulty
link is automatically recovered.

• The fault known as F3 is a non-permanent fault that occurs at the link con-
necting routers R1 and R2 in the NoC. This fault results in the dropping of flits
transmitted through this link. The fault is activated when the time reaches
300 times the period. It remains active for a single period, after which the
faulty link is automatically recovered.

F1 F1 F1

F2 F2

F3 F3

F1 F1Link NI2-R6

Router R7

Link R1-R2

Figure 7.18: Fault scenario S= {F1,F2,F3} and communication schedule in the
ATTNoC.

Figure 7.19 illustrates the fault scenario (S = {F1, F2, F3}) in the ATTNoC
architecture, where the routers and links shown in red indicate faulty NoC compo-
nents. The table on the right side of the figure presents the communication schedules
used in the experiment. Schedule 0 represents the initial schedule, while schedule 1
is the precomputed schedule to which the system can switch when a permanent fault
occurs in the link connecting NI2 and router R6. This configuration was designed to
simulate a scenario involving faulty communication components within the network.

116

CHAPTER 7. RESULTS AND DISCUSSION

R8

R3 R5

R0 R2

SCNI
(NI3)

NSCNI
(NI0)

NSCNI
(NI1)

R1

R4

R7
F1

NI (Source) NI (Sink) Path Path

Schedule 0 Schedule 1 (Permanent fault
on link NI2-R6)

0 1 R7-R4-R1 R7-R4-R1

1 0 R1-R4-R7 R1-R4-R7

2 3 R6-R7-R8/
Redundant (R0-R1-R2))

R6-R7-R8/
Redundant (R0-R1-R2))

3 2 R8-R7-R6/
Redundant (R2-R1-R0)

R8-R7-R6/
Redundant (R2-R1-R0)

2 1 R0-R1 R0-R1

2 0 R6-R7 R0-R1-R4-R7

3 1 R2-R1 R2-R1

0 2 R7-R6 R7-R4-R3-R0

NI

R7
F2

F3

R6

SCNI
(NI2)

Figure 7.19: Fault scenario S= {F1,F2,F3}. Red in the architecture highlights an
error.

To evaluate the effectiveness of fault tolerance mechanisms in ATTNoC, a com-
parative analysis was conducted between different configurations, some with fault
tolerance techniques such as redundancy and adaptation mechanisms, and others
without. The ATTNoC configuration used for this experiment includes four net-
work interfaces (NIs) that facilitate the exchange of eight packets in a period equal
to 488.28 µs. The experimental setup involved exchanging 8,000 packets for evalu-
ation, focusing on the fault scenario denoted as S={F1, F2, F3}.

Results and Discussion

Figure 7.20 presents the total number of packets received between the cores for four
cases. The x-axis represents the four cases, while the y-axis displays the total num-
ber of packets received for each case. Case 1 represented the ATTNoC operating
without any faults and received the highest number of packets at 8000, serving as
a reference for the system’s optimal performance under normal conditions. Cases
2-4 depict the ATTNoC with faults, resulting in fewer packets received. Specifi-
cally, Case 2 shows the ATTNoC without fault tolerance techniques, where faults
were introduced, leading to the lowest number of packets received at 6399. This
indicates that faults can significantly impact the reliability of the system, resulting
in a considerable loss of packets. In Case 3, the ATTNoC has redundancy features
but no adaptation features. It received a total of 7203 packets, which is higher
than the ATTNoC without any redundancy and adaptation features. This indicates
that redundancy mechanisms can be useful in reducing the impact of faults. Case
4 presents the ATTNoC with adaptation features and redundancy mechanisms, re-
ceiving the highest number of packets at 7994, particularly when Fault S = {F1,
F2, F3} was injected. This result highlights the effectiveness of incorporating re-
dundancy and adaptation mechanisms in ATTNoC design to enhance its reliability
in the event of transient and permanent faults. The comparison results confirm
the significance of redundancy and adaptation features when designing an ATTNoC
architecture. These features help maintain the system’s reliability, even in the pres-
ence of faults, increasing its robustness and highlighting the importance of including
them in ATTNoC design, specifically when designing safety-critical systems. How-
ever, incorporating fault tolerance techniques such as redundancy and adaptation

117

CHAPTER 7. RESULTS AND DISCUSSION

in the ATTNoC can increase resource usage in the NoC, resulting in overheads (as
depicted in Table 7.1).

0

2,000

4,000

6,000

8,000
8,000

6,399
7,203

7,994

Cases

T
ot
al

P
ac
ke
t
R
ec
ei
ve
d

Case 1
Case 2
Case 3
Case 4

Figure 7.20: Comparison of the total packet received in four cases in ATTNoC
communication.

7.5.2 Experiment Setup Based on Randomized Test Case

This experiment assessed the seamless redundancy mechanisms employed in AT-
TNoC when encountering transient faults in the fault containment region, as out-
lined in section 6.3.2. These mechanisms are specifically designed to tolerate tran-
sient and permanent faults that may arise in the routers and links of ATTNoC
during critical message exchanges between safety-critical Network Interfaces (SC-
NIs). One of the targeted faults was message corruption that can occur in the NoC
resources, such as links and routers. This leads to the corruption of information
exchanged between cores or potentially misrouting data to the wrong destination
when the head flit containing the data route is corrupted. To effectively simulate
message corruption within the ATTNoC, a technique known as ”flipping a bit” was
employed. This involved intentionally introducing bit flips to corrupt messages and
impact the data within NoC resources.

The redundancy mechanisms integrated into network interfaces (NIs) played a
crucial role in the experiment, explicitly designed to minimize the impact of tran-
sient faults and improve overall system reliability. While ATTNoC’s adaptation
techniques primarily focused on addressing permanent faults, the evaluation also
extended to understanding how these redundancy mechanisms effectively mitigated
the effects of transient faults that could corrupt messages within NoC resources such
as links and routers.

The following section will describe the experimental setup, present the results,
and provide detailed evaluations of the findings.

118

CHAPTER 7. RESULTS AND DISCUSSION

Experiment Setup

An intellectual property (IP) for injecting faults, proposed by [Lal12], was integrated
into the experimental setup. It aimed to introduce transient faults into the fault
containment regions defined for seamless redundancy mechanisms, as described in
6.3.2. The goal was to assess the effectiveness of redundancy mechanisms employed
in the ATTNoC in tolerating such faults. These transient faults occurred sporadi-
cally and recovered within a few clock cycles. The fault injection IP was positioned
between the router and the network interface, allowing it to corrupt messages ex-
changed within the ATTNoC, potentially leading to message corruption. To achieve
its purpose, the fault injection IP used two Linear Feedback Shift Registers (LF-
SRs) and a third LFSR, as shown in Figure 7.22. The first two LFSRs were used as
pseudo-random number generators. The specified number of bits from both LFSRs
were compared. When these specific bits were equal, the fault injection IP could
corrupt the flits passing through the links, potentially resulting in corrupted mes-
sages, misrouted data, and congestion within the NoC. The third LFSR, which was
6 bits in size, determined the specific bit of the flits where the corruption occurred.
Since the data flit was only 34 bits, values higher than 34 were considered invalid,
and no corruption was injected. Thus, values ranging from 0 to 33 were effectively
used to determine the position of the corruption within the 34-bit flit. Two of these
bits indicated the type of flits (head, body, or last), while the remaining bits stored
the actual data or opcode. The fault injection rate could be adjusted by modifying
the number of matching bits to compare the two output data from the two LFSRs.
More matching bits (e.g., 7) resulted in a lower fault injection rate, simulating spo-
radic fault events, while fewer matching bits (e.g., 3) led to a higher fault injection
rate, simulating more frequent incidents. A moderate value, such as 5, balanced
fault frequency and system reliability evaluation, allowing for an adequate assess-
ment of the impact of redundancy mechanisms on the ATTNoC system’s reliability.
Communication within the ATTNoC followed a time-triggered schedule, allowing
eight packets to be transmitted within a specific time defined by the schedule. Each
period lasted approximately 488.28 µs, and each packet consisted of 16 flits, each
composed of 32 bits. The experimental setup involved the exchange of 50,000 pack-
ets for evaluation. To assess the reliability of the ATTNoC, three distinct cases were
established: The baseline case without injected faults, the case with disabled redun-
dancy in the safety-critical NI while faults continued to be injected, and the case
activating the redundancy mechanism in the safety-critical NI and injecting faults
using the fault injection IP. Through these experimental cases, the study aimed to
gain insights into how redundancy mechanisms enhance the reliability of the AT-
TNoC, particularly in the presence of transient faults. The evaluation provided
valuable information about the system’s fault tolerance capabilities, shedding light
on the effectiveness of redundancy strategies in critical communication scenarios.

119

CHAPTER 7. RESULTS AND DISCUSSION

R8

R3 R5

R0

SCNI
(NI3)

R1

R4

NI (Source) NI (Sink) Path Path

With Redudancy
Mechanisms

WIthout Redundancy
Mechanisms

0 1 R7-R4-R1 R7-R4-R1

1 0 R1-R4-R7 R1-R4-R7

2 3 R6-R7-R8/
Redundant (R0-R1-R2)) R6-R7-R8

3 2 R8-R7-R6/
Redundant (R2-R1-R0) R8-R7-R6

2 1 R0-R1 R0-R1

2 0 R6-R7 R6-R7

3 1 R2-R1 R2-R1

0 2 R7-R6 R7-R6

NI

R6

SCNI
(NI2)

R7

FI-IP

FI-IP FI-IP

FI-IP

NSCNI
(NI1)

FI-IP

NSCNI
(NI0)

FI-IP

FI-IP Fault Injection IP

R2

Figure 7.21: Block diagram of ATTNoC with Fault Injection IP (FI-IP).

No. of Bits Match?

Fault Insertion

Data Out

6-bit LFSRData In

No

Yes

32-bit LFSR 32-bit LFSR

Figure 7.22: Flow of transient fault injection [Lal12].

Experiment Results and Discussion

The objective of the experiment was to evaluate the effects of transient faults that
cause message corruption in the ATTNoC and assess the efficiency of redundancy
mechanisms to tolerate such faults. The results were analyzed and compared across
three cases, as illustrated in Figure 7.23. This figure compares the number of packets
received without corruption and the error rate for each case. The observations from
the analysis are as follows.

120

CHAPTER 7. RESULTS AND DISCUSSION

3 5 7
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
·104

Number of bit-matched

U
n
co
rr
u
p
te
d
re
ce
iv
ed

p
ac
ke
ts

Case 1
Case 2
Case 3

Figure 7.23: Comparison of uncorrupted packets received vs error rate for the three
cases

In Case 1 (blue), no faults were injected, and the number of uncorrupted packets
remained constant at 50,000, providing a reference for an ideal fault-free scenario.
In Case 2 (red), transient faults were injected without redundancy mechanisms, re-
sulting in an increasing number of corrupted packets as the number of matching bits
between the two LFSRs decreased. For instance, with three matching bits, approx-
imately 23,611 packets remained uncorrupted, highlighting the impact of transient
faults on system reliability without redundancy. In Case 3 (green), transient faults
were injected with redundancy mechanisms, significantly improving the system’s
fault tolerance even at higher fault injection rates. With three matched bits, about
36,805 packets remained uncorrupted, indicating that the redundancy mechanisms
effectively mitigated the effects of transient faults and preserved more uncorrupted
packets compared to Case 2. This result highlights the negative impact of transient
faults that cause message corruption in the ATTNoC, which reduces the number of
uncorrupted packets received at the NI receiver. However, using redundancy mech-
anisms in the ATTNoC design mitigated this effect, improved fault tolerance, and
preserved more uncorrupted packets. It is important to note that only the safety-
critical NI uses redundancy, while the non-safety-critical NI lacks redundancy sup-
port and requires other fault tolerance mechanisms, such as temporal redundancy
using retransmission, to handle message corruption. However, retransmission due
to corruption can introduce delays in communication.

Minimizing the number of corrupted packets can free up bandwidth, allowing
more data transmission, and improving overall system performance. Although re-
dundancy mechanisms enhance fault tolerance, they can also introduce additional
overheads, such as increased resource usage. For example, incorporating redundancy

121

CHAPTER 7. RESULTS AND DISCUSSION

mechanisms into time-triggered network interfaces (TTNI) resulted in an increase
in the number of registers and LUTs, as illustrated in Table 7.1.

Based on the results in Figure 7.23, the importance of using redundancy mech-
anisms in safety-critical applications, such as avionics or defence systems, becomes
evident [HEAc]. However, for applications where stringent safety requirements
are not paramount, like video processing, some transient faults that corrupt mes-
sages can be tolerated to some extent. In the case of video data, a transient fault
causing corruption in a single pixel does not significantly affect the overall qual-
ity of the video. Therefore, extensive redundancy mechanisms or error correction
techniques may be less crucial in such scenarios. The decision to use redundancy
mechanisms should be based on the specific requirements and criticality of the ap-
plication. Safety-critical domains require robust fault-tolerant measures to ensure
reliable operation and avoid potential hazards. In contrast, for less safety-critical
applications, the impact of transient faults on system functionality or output qual-
ity may be tolerable, allowing a more flexible approach to implementing redundancy
mechanisms.

122

Chapter 8

Conclusion and Future Work

In conclusion, the NoC-based multi-core architecture presented in this thesis offers a
versatile solution to enhance energy efficiency and reliability in embedded systems,
particularly in real-time applications. The ATTNoC architecture achieves a bal-
ance between energy efficiency, reliability, and performance through the integration
of time-triggered communication, seamless redundancy, adaptation, and frequency
scaling. The need for energy-efficient and safe applications in embedded systems
has been the driving force behind this research. The ATTNoC architecture ad-
dresses these challenges by incorporating redundancy and adaptation mechanisms.
The NoC’s adaptability allows for schedule switching in response to context events,
ensuring the isolation of faulty resources and the seamless transfer of tasks or mes-
sages to alternative resources. This mechanism guarantees reliable communication
and efficient use of resources. Moreover, seamless redundancy at the NI level pro-
vides dual-channel transmission for critical messages, allowing the NoC to tolerate
faults in routers or links during message exchanges. The fault tolerance mechanism
efficiently handles router faults by rerouting messages, thereby maintaining unin-
terrupted communication. Additionally, adopting time-triggered frequency scaling
within the ATTNoC architecture enables predictable communication and facilitates
frequency scaling of routers based on a predefined schedule. This approach reduces
power consumption while ensuring predictable communication within the system.
The research extends the functionality of event-triggered NoC architectures, specif-
ically LISNoC, by introducing source-based routing, adaptability, seamless redun-
dancy, and time-triggered frequency scaling. These extensions enhance its capabili-
ties, making it suitable for real-time systems, adaptable to changing requirements,
energy-efficient, and deadlock-free. In future work, the architecture’s capabilities
could be further expanded to support more complex multi-core systems and opti-
mize static power usage to improve energy efficiency further. AI-based solutions for
event prediction and schedule generation based on this event prediction also hold
promise in enhancing the architecture’s resource usage without requiring a large
amount of memory to store pre-computed schedules. Predicting events in advance
and storing AI-generated schedules in memory could reduce the time and memory
overhead required for schedule switching. This approach could enhance the archi-
tecture’s efficiency and responsiveness, making it even more effective in meeting the
demands of real-time embedded systems. Overall, the ATTNoC-based multi-core
architecture provides a comprehensive and practical solution for enhancing energy
efficiency and reliability in embedded systems, particularly in high-performance and

123

CHAPTER 8. CONCLUSION AND FUTURE WORK

safety-critical applications. Its potential impact is significant, as it has the potential
to revolutionize NoC-based multi-core platforms, enabling the development of more
efficient and dependable embedded systems. The architecture effectively addresses
the challenges of energy efficiency, reliability and performance, offering a pathway to
achieve higher performance, energy efficiency, and reliability in embedded systems
commonly used in real-time applications.

124

Bibliography

[Abu17] Mohammed Abuteir. “Architecture design for distributed mixed-criticality
systems based on multi-core chips”. PhD thesis. Universität Siegen,
2017. url: https://dspace.ub.uni-siegen.de/handle/ubsi/1131.

[AGMK94] Adelberg, Garcia-Molina, and Kao. “Emulating soft real-time schedul-
ing using traditional operating system schedulers”. In: 1994 Proceed-
ings Real-Time Systems Symposium. 1994, pp. 292–298. doi: 10.1109/
REAL.1994.342704.

[Adr+03] A. Adriahantenaina et al. “SPIN: a scalable, packet switched, on-chip
micro-network”. In: 2003 Design, Automation and Test in Europe Con-
ference and Exhibition. 2003, 70–73 suppl. doi: 10.1109/DATE.2003.
1253808.

[Agr21] Pankaj Agrawal. “An Efficient Virtual Channel Router for NoC’s”. In:
May 2021.

[AO15] Hamidreza Ahmadian and Roman Obermaisser. “Time-Triggered Ex-
tension Layer for On-Chip Network Interfaces in Mixed-Criticality Sys-
tems”. In: 2015 Euromicro Conference on Digital System Design. 2015,
pp. 693–699. doi: 10.1109/DSD.2015.33.

[AA14] Hussain Al-Asaad. “Real time scheduling of multiple executions of
tasks to achieve fault tolerance in multiprocessor systems”. In: 2014
IEEE AUTOTEST. 2014, pp. 323–328. doi: 10.1109/AUTEST.2014.
6935165.

[AS14] Kaushal Amandeep and Singh Sarbdeep. “Network on Chip Architec-
ture and Routing Techniques: A survey”. In: International Journal of
Research in Engineering and Science (IJRES) 2 (2014).

[AA05] Aniket and R. Arunachalam. “A novel algorithm for testing crosstalk
induced delay faults in VLSI circuits”. In: 18th International Confer-
ence on VLSI Design held jointly with 4th International Conference on
Embedded Systems Design. 2005, pp. 479–484. doi: 10.1109/ICVD.
2005.125.

[AMP19] Jyotika Athavale, Riccardo Mariani, and Michael Paulitsch. “Flight
Safety Certification Implications for Complex Multi-Core Processor
Based Avionics Systems”. In: 2019 IEEE International Reliability Physics
Symposium (IRPS). 2019, pp. 1–6. doi: 10.1109/IRPS.2019.8720422.

125

https://dspace.ub.uni-siegen.de/handle/ubsi/1131
https://doi.org/10.1109/REAL.1994.342704
https://doi.org/10.1109/REAL.1994.342704
https://doi.org/10.1109/DATE.2003.1253808
https://doi.org/10.1109/DATE.2003.1253808
https://doi.org/10.1109/DSD.2015.33
https://doi.org/10.1109/AUTEST.2014.6935165
https://doi.org/10.1109/AUTEST.2014.6935165
https://doi.org/10.1109/ICVD.2005.125
https://doi.org/10.1109/ICVD.2005.125
https://doi.org/10.1109/IRPS.2019.8720422

BIBLIOGRAPHY

[Ava+10] Annie Avakian et al. “A reconfigurable architecture for multicore sys-
tems”. In: 2010 IEEE International Symposium on Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW). 2010, pp. 1–8. doi:
10.1109/IPDPSW.2010.5470753.

[ALR01] Algirdas Avizienis, Jean-claude Laprie, and Brian Randell. “Funda-
mental Concepts of Dependability”. In: (Sept. 2001).

[Bar+06] Chris Bartels et al. “Comparison of An Æthereal Network on Chip and
A Traditional Interconnect for A Multi-Processor DVB-T System on
Chip”. In: 2006 IFIP International Conference on Very Large Scale
Integration. 2006, pp. 80–85. doi: 10.1109/VLSISOC.2006.313208.

[Bei+05] E. Beigne et al. “An asynchronous NOC architecture providing low
latency service and its multi-level design framework”. In: 11th IEEE
International Symposium on Asynchronous Circuits and Systems. 2005,
pp. 54–63. doi: 10.1109/ASYNC.2005.10.

[Bet97] Sharad Sundaresan; Riccardo Bettati. “Distributed Connection Man-
agement for Real-Time Communication over Wormhole-Routed Net-
works”. In: ICDCS ’97: Proceedings of the 17th International Confer-
ence on Distributed Computing Systems (ICDCS ’97). 1997.

[BD07] Alan Burns and Robert I Davis. “A survey of research into mixed
criticality systems”. In: ACM Computing Surveys (CSUR). Vol. 50. 6.
2007.

[CKP18] Jehee Cha, Jiho Kim, and Yongjun Park. “Core-level DVFS for Spatial
Multitasking GPUs”. In: TENCON 2018 - 2018 IEEE Region 10 Con-
ference. 2018, pp. 1525–1528. doi: 10.1109/TENCON.2018.8650072.

[Che+20] R. Cheour et al. “Accurate Dynamic Voltage and Frequency Scaling
Measurement for Low-Power Microcontrollors in Wireless Sensor Net-
works”. In: 2020 Microelectronics Journal. 2020. doi: DOI:10.1016/
j.mejo.2020.104874.

[Che+13] Kazem Cheshmi et al. “Quota setting router architecture for quality
of service in GALS NoC”. In: 2013 International Symposium on Rapid
System Prototyping (RSP). 2013, pp. 44–50. doi: 10.1109/RSP.2013.
6683957.

[CS18] Avishek Choudhury and Biplab K. Sikdar. “Modeling Analysis of Re-
dundancy Based Fault Tolerance for Permanent Faults in Chip Mul-
tiprocessor Cache”. In: 2018 31st International Conference on VLSI
Design and 2018 17th International Conference on Embedded Systems
(VLSID). 2018, pp. 115–120. doi: 10.1109/VLSID.2018.47.

[Col+22] Louella Colaco et al. “ARMS: An Analysis Framework for Mixed Crit-
icality Systems”. In: 2022 IEEE 1st International Conference on Data,
Decision and Systems (ICDDS). 2022, pp. 1–6. doi: 10.1109/ICDDS56399.
2022.10037556.

[Con+06a] K. Constantinides et al. “BulletProof: a defect-tolerant CMP switch ar-
chitecture”. In: The Twelfth International Symposium on High-Performance
Computer Architecture, 2006. 2006, pp. 5–16. doi: 10.1109/HPCA.
2006.1598108.

126

https://doi.org/10.1109/IPDPSW.2010.5470753
https://doi.org/10.1109/VLSISOC.2006.313208
https://doi.org/10.1109/ASYNC.2005.10
https://doi.org/10.1109/TENCON.2018.8650072
https://doi.org/DOI: 10.1016/j.mejo.2020.104874
https://doi.org/DOI: 10.1016/j.mejo.2020.104874
https://doi.org/10.1109/RSP.2013.6683957
https://doi.org/10.1109/RSP.2013.6683957
https://doi.org/10.1109/VLSID.2018.47
https://doi.org/10.1109/ICDDS56399.2022.10037556
https://doi.org/10.1109/ICDDS56399.2022.10037556
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108

BIBLIOGRAPHY

[Con+06b] K Constantinides et al. “BulletProof: a defect-tolerant CMP switch ar-
chitecture”. In: The Twelfth International Symposium on High-Performance
Computer Architecture, 2006. 2006, pp. 5–16. doi: 10.1109/HPCA.
2006.1598108.

[DeO+12] Andrew DeOrio et al. “A Reliable Routing Architecture and Algorithm
for NoCs”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 31.5 (2012), pp. 726–739. doi: 10.1109/
TCAD.2011.2181509.

[DS10] Ulhas Deshmukh and Vineet Sahula. “Stochastic Automata Network
Based Approach for Performance Evaluation of Network-on-Chip Com-
munication Architecture”. In: 2010 IEEE Computer Society Annual
Symposium on VLSI. 2010, pp. 351–356. doi: 10.1109/ISVLSI.2010.
97.

[Dub08] Elena Dubrova. Fault-Tolerant Design: An Introduction. Kluwer Aca-
demic Publishers, 2008.

[Egh+10] Ashkan Eghbal et al. “Designing fault-tolerant network-on-chip router
architecture”. In: International Journal of Electronics 97.10 (2010),
pp. 1181–1192. doi: 10.1080/00207217.2010.512016. eprint: https:
//doi.org/10.1080/00207217.2010.512016. url: https://doi.
org/10.1080/00207217.2010.512016.

[Fer+04] M. Fernando et al. “Hermes: an infrastructure for low area overhead
packet- switching networks on chip”. In: Integration, vol. 38, no. 1, pp.
69-93, 2004. 2004, pp. 69–93.

[Fre+10] Henrique Cota de Freitas et al. “Impact of Parallel Workloads on NoC
Architecture Design”. In: 2010 18th Euromicro Conference on Parallel,
Distributed and Network-based Processing. 2010, pp. 551–555. doi: 10.
1109/PDP.2010.53.

[HEAc] RICK HEARN. “Military Embedded Systems”. In: Optimizing avion-
ics reliability with dissimilar redundant architectures (Dec 06, 2018).
url: https://militaryembedded.com/avionics/computers/optimizing-
reliability-dissimilar-redundant-architectures.

[Ila+20] S. Ilager et al. “A Data-Driven Frequency Scaling Approach for Deadline-
aware Energy Efficient Scheduling on Graphics Processing Units (GPUs)”.
In: 2020 20th IEEE/ACM International Symposium on Cluster, Cloud
and Internet Computing (CCGRID). Los Alamitos, CA, USA: IEEE
Computer Society, 2020, pp. 579–588. doi: 10.1109/CCGrid49817.
2020.00-35. url: https://doi.ieeecomputersociety.org/10.
1109/CCGrid49817.2020.00-35.

[Jab+17] Gul Jabeen et al. “Hybrid software reliability prediction model based
on residual errors”. In: 2017 8th IEEE International Conference on
Software Engineering and Service Science (ICSESS). 2017, pp. 479–
482. doi: 10.1109/ICSESS.2017.8342959.

127

https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/HPCA.2006.1598108
https://doi.org/10.1109/TCAD.2011.2181509
https://doi.org/10.1109/TCAD.2011.2181509
https://doi.org/10.1109/ISVLSI.2010.97
https://doi.org/10.1109/ISVLSI.2010.97
https://doi.org/10.1080/00207217.2010.512016
https://doi.org/10.1080/00207217.2010.512016
https://doi.org/10.1080/00207217.2010.512016
https://doi.org/10.1080/00207217.2010.512016
https://doi.org/10.1080/00207217.2010.512016
https://doi.org/10.1109/PDP.2010.53
https://doi.org/10.1109/PDP.2010.53
https://militaryembedded.com/avionics/computers/optimizing-reliability-dissimilar-redundant-architectures
https://militaryembedded.com/avionics/computers/optimizing-reliability-dissimilar-redundant-architectures
https://doi.org/10.1109/CCGrid49817.2020.00-35
https://doi.org/10.1109/CCGrid49817.2020.00-35
https://doi.ieeecomputersociety.org/10.1109/CCGrid49817.2020.00-35
https://doi.ieeecomputersociety.org/10.1109/CCGrid49817.2020.00-35
https://doi.org/10.1109/ICSESS.2017.8342959

BIBLIOGRAPHY

[JB17] Vahid Janfaza and Elaheh Baharlouei. “A new fault-tolerant deadlock-
free fully adaptive routing in NOC”. In: 2017 IEEE East-West Design
Test Symposium (EWDTS). 2017, pp. 1–6. doi: 10.1109/EWDTS.2017.
8110139.

[Jin+15] Jie Jin et al. “Low power design for on-chip networking processing
system”. In: 2015 28th IEEE International System-on-Chip Conference
(SOCC). 2015, pp. 154–159. doi: 10.1109/SOCC.2015.7406931.

[KK19] Nassima Kadri and Mouloud Koudil. “A survey on fault-tolerant appli-
cation mapping techniques for Network-on-Chip”. In: Journal of Sys-
tems Architecture 92 (2019), pp. 39–52. issn: 1383-7621. doi: https:
//doi.org/10.1016/j.sysarc.2018.10.001. url: https://www.
sciencedirect.com/science/article/pii/S1383762118301498.

[KLN15] Andrew B. Kahng, Bill Lin, and Siddhartha Nath. “ORION3.0: A
Comprehensive NoC Router Estimation Tool”. In: IEEE Embedded
Systems Letters 7.2 (2015), pp. 41–45. doi: 10 . 1109 / LES . 2015 .
2402197.

[KBB11] Mohammad Reza Kakoee, Valeria Bertacco, and Luca Benini. “Re-
liNoC: A reliable network for priority-based on-chip communication”.
In: 2011 Design, Automation Test in Europe. 2011, pp. 1–6. doi:
10.1109/DATE.2011.5763112.

[Kas+15] Hany Kashif et al. “Static slack-based instrumentation of programs”.
In: Sept. 2015, pp. 1–8. doi: 10.1109/ETFA.2015.7301505.

[Kim+14] Yoongu Kim et al. “Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors”. In: 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA). 2014,
pp. 361–372. doi: 10.1109/ISCA.2014.6853210.

[Kop92] Hermann Kopetz. “Sparse time versus dense time in distributed real-
time systems”. In: [1992] Proceedings of the 12th International Con-
ference on Distributed Computing Systems (1992), pp. 460–467. url:
https://api.semanticscholar.org/CorpusID:45095041.

[KKD18] Harekrishna Kumar, Anjan Kumar, and Vinay Kumar Deolia. “En-
abling Concurrent Clock and Power Gating in 32 Bit ROM”. In: 2018
9th International Conference on Computing, Communication and Net-
working Technologies (ICCCNT). 2018, pp. 1–6. doi: 10.1109/ICCCNT.
2018.8493779.

[KR07] Ian Kuon and Jonathan Rose. “Measuring the Gap Between FPGAs
and ASICs”. In: IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems 26.2 (2007), pp. 203–215. doi: 10.1109/
TCAD.2006.884574.

[Lal12] P. Lala. “Transient and Permanent Fault Injection in VHDL Descrip-
tion of Digital Circuits”. In: Circuits and Systems, 2012. Vol. 3. 2.
2012, pp. 192–199. doi: 10.4236/cs.2012.32026.

128

https://doi.org/10.1109/EWDTS.2017.8110139
https://doi.org/10.1109/EWDTS.2017.8110139
https://doi.org/10.1109/SOCC.2015.7406931
https://doi.org/https://doi.org/10.1016/j.sysarc.2018.10.001
https://doi.org/https://doi.org/10.1016/j.sysarc.2018.10.001
https://www.sciencedirect.com/science/article/pii/S1383762118301498
https://www.sciencedirect.com/science/article/pii/S1383762118301498
https://doi.org/10.1109/LES.2015.2402197
https://doi.org/10.1109/LES.2015.2402197
https://doi.org/10.1109/DATE.2011.5763112
https://doi.org/10.1109/ETFA.2015.7301505
https://doi.org/10.1109/ISCA.2014.6853210
https://api.semanticscholar.org/CorpusID:45095041
https://doi.org/10.1109/ICCCNT.2018.8493779
https://doi.org/10.1109/ICCCNT.2018.8493779
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.1109/TCAD.2006.884574
https://doi.org/10.4236/cs.2012.32026

BIBLIOGRAPHY

[Lee+05] Se-Joong Lee et al. “Packet-switched on-chip interconnection network
for system-on-chip applications”. In: IEEE Transactions on Circuits
and Systems II: Express Briefs 52.6 (2005), pp. 308–312. doi: 10.
1109/TCSII.2005.848972.

[LLP10] Teijo Lehtonen, Pasi Liljeberg, and Juha Plosila. “Analysis of Forward
Error Correction Methods for Nanoscale Networks-On-Chip”. In: May
2010. doi: 10.4108/ICST.NANONET2007.2035.

[Len20] Alina Lenz. “System-wide, fault-tolerant state agreement protocol for
time-triggered MPSoC”. PhD thesis. Universität Siegen, 2020. doi:
http://dx.doi.org/10.25819/ubsi/5958. url: https://dspace.
ub.uni-siegen.de/handle/ubsi/1734.

[LC06] Jian Lin and A.M.K. Cheng. “Maximizing Guaranteed QoS in (m, k)-
firm Real-time Systems”. In: 12th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA’06).
2006, pp. 402–410. doi: 10.1109/RTCSA.2006.43.

[LGY10] Feiyang Liu, Huaxi Gu, and Yintang Yang. “Performance study of
virtual-channel router for Network-on-Chip”. In: 2010 International
Conference On Computer Design and Applications. Vol. 5. 2010, pp. V5–
255–V5–259. doi: 10.1109/ICCDA.2010.5541185.

[M+18] Clark M et al. “Lead: Learning-enabled energy-aware dynamic volt-
age/frequency scaling in nocs”. In: 2018 55th ACM/ESDA/IEEE De-
sign Automation Conference (DAC), pp. 1-6, 2018. 2018, pp. 1–6.

[MAO18] Adele Maleki, Hamidreza Ahmadian, and Roman Obermaisser. “Fault-
Tolerant and Energy-Efficient Communication in Mixed-Criticality Networks-
on-Chips”. In: 2018 IEEE Nordic Circuits and Systems Conference
(NORCAS): NORCHIP and International Symposium of System-on-
Chip (SoC). 2018, pp. 1–7. doi: 10.1109/NORCHIP.2018.8573469.

[Man+21] Riman Mandal et al. “11 - A survey and critical analysis on energy
generation from datacenter”. In: Data Deduplication Approaches. Ed.
by Tin Thein Thwel and G.R. Sinha. Academic Press, 2021, pp. 203–
230. isbn: 978-0-12-823395-5. doi: https://doi.org/10.1016/B978-
0-12-823395-5.00005-7. url: https://www.sciencedirect.com/
science/article/pii/B9780128233955000057.

[Mik+04] Millberg Mikael et al. “Guaranteed Bandwidth using Looped Contain-
ers in Temporally Disjoint Networks within the Nostrum Network on
Chip”. In: IEEE, 2004. 2004, pp. 5–16.

[Mot+13] Boris Motruk et al. “Power Monitoring for Mixed-Criticality on a
Many-Core Platform”. In: Architecture of Computing Systems – ARCS
2013. Ed. by Hana Kubátová et al. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 13–24. isbn: 978-3-642-36424-2.

[Mur+06] S. Murali et al. “A multi-path routing strategy with guaranteed in-
order packet delivery and fault-tolerance for networks on chip”. In:
2006 43rd ACM/IEEE Design Automation Conference. 2006, pp. 845–
848. doi: 10.1145/1146909.1147124.

129

https://doi.org/10.1109/TCSII.2005.848972
https://doi.org/10.1109/TCSII.2005.848972
https://doi.org/10.4108/ICST.NANONET2007.2035
https://doi.org/http://dx.doi.org/10.25819/ubsi/5958
https://dspace.ub.uni-siegen.de/handle/ubsi/1734
https://dspace.ub.uni-siegen.de/handle/ubsi/1734
https://doi.org/10.1109/RTCSA.2006.43
https://doi.org/10.1109/ICCDA.2010.5541185
https://doi.org/10.1109/NORCHIP.2018.8573469
https://doi.org/https://doi.org/10.1016/B978-0-12-823395-5.00005-7
https://doi.org/https://doi.org/10.1016/B978-0-12-823395-5.00005-7
https://www.sciencedirect.com/science/article/pii/B9780128233955000057
https://www.sciencedirect.com/science/article/pii/B9780128233955000057
https://doi.org/10.1145/1146909.1147124

BIBLIOGRAPHY

[Mur+15] Ayman Murshed et al. “Scheduling and allocation of time-triggered
and event-triggered services for multi-core processors with networks-
on-a-chip”. In: 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN). 2015, pp. 1424–1431. doi: 10 . 1109 / INDIN .
2015.7281942.

[Nae+10] Abdul Naeem et al. “Scalability of weak consistency in NoC based
multicore architectures”. In: Proceedings of 2010 IEEE International
Symposium on Circuits and Systems. 2010, pp. 3497–3500. doi: 10.
1109/ISCAS.2010.5537833.

[NOO23] Rakotojaona Nambinina, Daniel Onwuchekwa, and Roman Obermaisser.
“Latency-Aware Frequency Scaling in Time-Triggered Network-on-Chip
Architecture”. In: 2023 7th International Conference on Computing
Methodologies and Communication (ICCMC). 2023, pp. 1480–1488.
doi: 10.1109/ICCMC56507.2023.10084313.

[Nam+21] Rakotojaona Nambinina et al. “Time-Triggered Frequency Scaling in
Network-on-Chip for Safety-Relevant Embedded Systems”. In: 2021
International Conference on Smart Generation Computing, Commu-
nication and Networking (SMART GENCON). 2021, pp. 1–7. doi:
10.1109/SMARTGENCON51891.2021.9645782.

[Nam+22] Rakotojaona Nambinina et al. “Extension of the LISNoC (Network
-on-chip) with an AXI-based Network Interface”. In: 2022 6th Interna-
tional Conference on Computing Methodologies and Communication
(ICCMC). 2022, pp. 682–686. doi: 10 . 1109 / ICCMC53470 . 2022 .

9753813.

[Nam+23] Rakotojaona Nambinina et al. “Adaptive Time-Triggered Network-on-
Chip Architecture: Enhancing Safety”. In: IEEE 3rd Smart GenCon
2023. Dec. 2023.

[NLB00] N. Nikaein, H. Labiod, and C. Bonnet. “DDR-distributed dynamic
routing algorithm for mobile ad hoc networks”. In: 2000 First Annual
Workshop on Mobile and Ad Hoc Networking and Computing. Mobi-
HOC (Cat. No.00EX444). 2000, pp. 19–27. doi: 10.1109/MOBHOC.
2000.869209.

[Obe+08] Roman Obermaisser et al. “The time-triggered System-on-a-Chip ar-
chitecture”. In: 2008 IEEE International Symposium on Industrial Elec-
tronics. 2008, pp. 1941–1947. doi: 10.1109/ISIE.2008.4677135.

[Obe+19] Roman Obermaisser et al. “Adaptive Time-Triggered Multi-Core Ar-
chitecture”. In: Designs 3.1 (2019). issn: 2411-9660. doi: 10.3390/
designs3010007. url: https://www.mdpi.com/2411-9660/3/1/7.

[Ouy+21] Yiming Ouyang et al. “Fault-tolerant design for data efficient retrans-
mission in WiNoC”. In: Tsinghua Science and Technology 26.1 (2021),
pp. 85–94. doi: 10.26599/TST.2019.9010039.

130

https://doi.org/10.1109/INDIN.2015.7281942
https://doi.org/10.1109/INDIN.2015.7281942
https://doi.org/10.1109/ISCAS.2010.5537833
https://doi.org/10.1109/ISCAS.2010.5537833
https://doi.org/10.1109/ICCMC56507.2023.10084313
https://doi.org/10.1109/SMARTGENCON51891.2021.9645782
https://doi.org/10.1109/ICCMC53470.2022.9753813
https://doi.org/10.1109/ICCMC53470.2022.9753813
https://doi.org/10.1109/MOBHOC.2000.869209
https://doi.org/10.1109/MOBHOC.2000.869209
https://doi.org/10.1109/ISIE.2008.4677135
https://doi.org/10.3390/designs3010007
https://doi.org/10.3390/designs3010007
https://www.mdpi.com/2411-9660/3/1/7
https://doi.org/10.26599/TST.2019.9010039

BIBLIOGRAPHY

[PCG19] George Papadimitriou, Athanasios Chatzidimitriou, and Dimitris Gi-
zopoulos. “Adaptive Voltage/Frequency Scaling and Core Allocation
for Balanced Energy and Performance on Multicore CPUs”. In: 2019
IEEE International Symposium on High Performance Computer Archi-
tecture (HPCA). 2019, pp. 133–146. doi: 10.1109/HPCA.2019.00033.

[PT16] Shuchi A. Parkhani and Vaishali A. Tehre. “A Survey of Different
Topologies for Network-on-Chip Architecture”. In: 2016.

[PNO23] Daniel Onwuchekwa Josepaul Paulachan, Rakotojaona Nambinina, and
Roman Obermaisser. “Time-triggered Network Interface Extension for
the Versal Network-on-Chip”. In: 2023 International Conference on
Artificial Intelligence in Information and Communication (ICAIIC)
(2023).

[Pro16] Position Paper–Multi core Processors. “Certification Authorities Soft-
ware Team (CAST) Federal Aviation Administration.” In: CAST-32A;
Technical report. 2016.

[Rad+13] Martin Radetzki et al. “Methods for Fault Tolerance in Networks-on-
Chip”. In: ACM Computing Surveys (CSUR) 46 (Oct. 2013). doi: 10.
1145/2522968.2522976.

[Saf+22] Sepideh Safari et al. “A Survey of Fault-Tolerance Techniques for Em-
bedded Systems From the Perspective of Power, Energy, and Thermal
Issues”. In: IEEE Access 10 (2022), pp. 12229–12251. doi: 10.1109/
ACCESS.2022.3144217.

[SCB09] V Sanju, Niranjan N Chiplunkar, and Bini Y Baby. “Design of a generic
network on chip frame work for store forward routing for 2D mesh
topology”. In: 2009 International Conference on Emerging Trends in
Electronic and Photonic Devices Systems. 2009, pp. 104–107. doi:
10.1109/ELECTRO.2009.5441163.

[Sch07] Martin Schoeberl. “A Time-Triggered Network-on-Chip”. In: 2007 In-
ternational Conference on Field Programmable Logic and Applications.
2007, pp. 377–382. doi: 10.1109/FPL.2007.4380675.

[Sei+09] Ciprian Seiculescu et al. “NoC topology synthesis for supporting shut-
down of voltage islands in SoCs”. In: 2009 46th ACM/IEEE Design
Automation Conference. 2009, pp. 822–825. doi: 10.1145/1629911.
1630121.

[Sha+20] Muhammad Akmal Shafique et al. “NoCGuard: A Reliable Network-
on-Chip Router Architecture”. In: Electronics 9.2 (2020). issn: 2079-
9292. doi: 10.3390/electronics9020342. url: https://www.mdpi.
com/2079-9292/9/2/342.

[STS11] Anurag Shrivastav, G.S. Tomar, and Ashutosh Kumar Singh. “Perfor-
mance Comparison of AMBA Bus-Based System-On-Chip Communi-
cation Protocol”. In: 2011 International Conference on Communication
Systems and Network Technologies. 2011, pp. 449–454. doi: 10.1109/
CSNT.2011.98.

131

https://doi.org/10.1109/HPCA.2019.00033
https://doi.org/10.1145/2522968.2522976
https://doi.org/10.1145/2522968.2522976
https://doi.org/10.1109/ACCESS.2022.3144217
https://doi.org/10.1109/ACCESS.2022.3144217
https://doi.org/10.1109/ELECTRO.2009.5441163
https://doi.org/10.1109/FPL.2007.4380675
https://doi.org/10.1145/1629911.1630121
https://doi.org/10.1145/1629911.1630121
https://doi.org/10.3390/electronics9020342
https://www.mdpi.com/2079-9292/9/2/342
https://www.mdpi.com/2079-9292/9/2/342
https://doi.org/10.1109/CSNT.2011.98
https://doi.org/10.1109/CSNT.2011.98

BIBLIOGRAPHY

[Swa+19] Ian Swarbrick et al. “Versal Network-on-Chip (NoC)”. In: 2019 IEEE
Symposium on High-Performance Interconnects (HOTI). 2019, pp. 13–
17. doi: 10.1109/HOTI.2019.00016.

[Tan+14] Li Tan et al. “A survey of power and energy efficient techniques for
high performance numerical linear algebra operations”. In: Parallel
Computing 40.10 (2014), pp. 559–573. issn: 0167-8191. doi: https:
//doi.org/10.1016/j.parco.2014.09.001. url: https://www.
sciencedirect.com/science/article/pii/S0167819114001112.

[Tat+14] Konstantinos Tatas et al. Designing 2D and 3D network-on-chip ar-
chitectures. Springer, 2014.

[TH99] H. Thane and H. Hansson. “Towards systematic testing of distributed
real-time systems”. In: Proceedings 20th IEEE Real-Time Systems Sym-
posium (Cat. No.99CB37054). 1999, pp. 360–369. doi: 10.1109/REAL.
1999.818863.

[TUM] TUM. LISNoC. https://www.ce.cit.tum.de/lis/forschung/
aktuelle-projekte/optimsoc/lis-noc/. Accessed 2020-12-25.

[Vai+19] Sundriyal Vaibhav et al. “Effect of frequency scaling granularity on
energy-saving strategies”. In: 2019 International Journal of High per-
formance computing applications. 2019.

[VHL14] Marcus Völp, Marcus Hähnel, and Adam Lackorzynski. “Has energy
surpassed timeliness? Scheduling energy-constrained mixed-criticality
systems”. In: 2014 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). 2014, pp. 275–284. doi: 10 .
1109/RTAS.2014.6926009.

[WCK08] Isask’har Walter, Israel Cidon, and Avinoam Kolodny. “BENoC: A
Bus-Enhanced Network on-Chip for a Power Efficient CMP”. In: IEEE
Computer Architecture Letters 7.2 (2008), pp. 61–64. doi: 10.1109/L-
CA.2008.11.

[Wan+15] Junshi Wang et al. “Design of Fault-Tolerant and Reliable Networks-
on-Chip”. In: 2015 IEEE Computer Society Annual Symposium on
VLSI. 2015, pp. 545–550. doi: 10.1109/ISVLSI.2015.33.

132

https://doi.org/10.1109/HOTI.2019.00016
https://doi.org/https://doi.org/10.1016/j.parco.2014.09.001
https://doi.org/https://doi.org/10.1016/j.parco.2014.09.001
https://www.sciencedirect.com/science/article/pii/S0167819114001112
https://www.sciencedirect.com/science/article/pii/S0167819114001112
https://doi.org/10.1109/REAL.1999.818863
https://doi.org/10.1109/REAL.1999.818863
https://www.ce.cit.tum.de/lis/forschung/aktuelle-projekte/optimsoc/lis-noc/
https://www.ce.cit.tum.de/lis/forschung/aktuelle-projekte/optimsoc/lis-noc/
https://doi.org/10.1109/RTAS.2014.6926009
https://doi.org/10.1109/RTAS.2014.6926009
https://doi.org/10.1109/L-CA.2008.11
https://doi.org/10.1109/L-CA.2008.11
https://doi.org/10.1109/ISVLSI.2015.33

	Title page
	Acknowledgements
	List of Publications Related to this Dissertation
	Abstract
	Kurzfassung
	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Trend Towards Mixed Criticality
	Trend Towards System-on-Chip
	Trend Towards Time-Triggered System-on-Chip Architecture
	Trend Towards Adaptability in System-on-Chip
	Trend Towards Redundancy in Multi-core Architecture
	Trend Towards Energy Efficiency in Multi-core Architecture

	Contribution
	Structure of Thesis

	Basic Concepts
	Multi-core Architectures
	On-chip Communication
	Bus
	Network-on-Chip

	Real-time Systems
	Event-triggered and Time-triggered Systems
	Faults and Fault Tolerance in Multi-Core Architectures
	Faults
	Dependability
	Fault Tolerance Techniques

	Power Saving Techniques in Multi-core Architectures

	Network-on-Chip
	Network-on-Chip Basics
	OSI Layers in a NoC

	Network-on-Chip Topology Architecture
	Mesh Network Topology in Network-on-Chip
	Torus Network Topology in Network-on-Chip
	Ring Network Topology in Network-on-Chip
	Star Network Topology in Network-on-Chip
	Tree-based Network Topology in Network-on-Chip
	Irregular or Custom Network Topology in Network-on-Chip

	Network Interface
	Generic On-Chip Switch Architecture
	Effects of Fault on Router Pipeline

	Switching Methodology
	Store and Forward
	Wormhole Switching
	Circuit Switching
	Virtual Channels

	Routing Algorithms
	Deterministic Routing
	Adaptive Routing
	Stochastic Routing

	Deadlock and Livelock in Network-on-Chip Systems

	Related Work and Research Gaps
	Requirements
	Network-on-Chip
	Fault Tolerance Techniques for NoC
	Low Power Techniques for NoC
	Research Gaps in the State of the Art

	System Model
	 Adaptive Time-Triggered Network-on-Chip Architecture
	LIS Network-on-Chip (LISNoC)
	Time-Triggered Control in ATTNoC
	Adaptation in ATTNoC
	Fault Model
	Power Model
	Tile
	Network Interface
	Router
	Global Time Base (GTB)

	Energy Efficiency and Fault Tolerance for ATTNoC
	Adaptation in Time-Triggered Network-on-Chip Architecture
	Energy Efficiency for ATTNoC
	Fault Recovery for ATTNoC
	Architecture of Adaptation Unit in ATTNoC
	Fault Model in the Adaptation Unit
	Adaptation Unit Architecture

	Time-Triggered Frequency Scaling for ATTNoC
	Architecture of TTFS
	Different TTFS Techniques in ATTNoC
	Summary of TTFS Techniques in ATTNoC

	Seamless Redundancy in ATTNoC
	Mixed-Criticality Architecture based on Mesh Topology
	Fault Model for SCNI
	Conceptual Model of Extended TTNI

	Results and Discussion
	Experiment Goal
	Field Programmable Gate Array (FPGA)-based Prototypes
	Performance Analysis of ATTNoC
	Experimental Setup
	Results and Discussion

	TTFS Energy Efficiency Scenarios in ATTNoC
	Experimental Setup
	Results and Discussion

	Fault Tolerance Techniques in ATTNoC
	Experiment Setup Based on Predefined Test Case
	Experiment Setup Based on Randomized Test Case

	Conclusion and Future Work
	Bibliography

