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Abstract

The benefits of analyzing driving behavior extend across various sectors, including
insurance, transportation planning, and autonomous vehicle development. Insur-
ance companies can customize policies based on individual risk profiles, promoting
safer driving habits. In fleet management, the analysis assists in risk control,
regulatory compliance, and enhancing customer satisfaction. Additionally, it plays
a pivotal role in detecting and preventing accidents, contributing to safer road
environments.

Over the past decades, significant advancements in Machine Learning (ML) tech-
niques, particularly in learning relevant features for abstracted data representation,
have been observed. The emergence of deep learning, utilizing Deep Neural
Networks (DNNs), has further accelerated this trend, showcasing remarkable
performance with ample data. This intersection has unlocked new possibilities for
studying driving behavior, with ML playing a crucial role in extracting valuable
insights from extensive driving data sets.

However, applying ML in this domain presents challenges. This outcome can be
attributed to a variety of influencing factors. Driving involves a complex blend of
cognitive, psychomotor, and perceptual activities that are hard to quantify and
model accurately. Therefore, in this work, in-car sensor data is employed, as it
is cost-efficient, widely accessible, and provides access to comprehensive vehicle
parameters (e.g., speed and acceleration) with real-time data precision.
Driving behavior is inherently subjective, exhibiting significant variability among
individuals and even within the same individual under different circumstances,
which makes the labelling of data difficult and unreliable. To address this problem,
this study leverages both supervised and unsupervised machine learning approaches
and DNNs to detect all possible abnormal driving patterns in naturalistic driving
patterns.
Capturing comprehensive real-world driving data that can reflect the full range of
these variables is a massive, if not impossible, task. Detailed recording of individual
driving behaviors can raise significant privacy concerns, and a true ground truth
of dangerous driving behavior raises ethical considerations. This work presents a
naturalistic driving data set (performed by drivers, spanning basic to professional
skill levels) carefully assembled and supervised by experienced driving instructors.
This data set encompasses annotated hazardous driving patterns derived from
in-car sensors, which mitigates privacy concerns inherent in radar or visually-based
data modalities.
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Imbalanced data sets, a lack of positive (anomalous) samples, and interpretability
issues in complex ML models further complicate the landscape. Therefore, compre-
hensive feature extraction methods using ML and DNNs are employed in this work
to detect accidents within a naturalistic data set.

This work aims to address these challenges and gaps in the literature, focusing on
anomaly detection and event detection in driving behavior analysis. The investiga-
tion revolves around two categories of questions:

1. Utilizing primary in-car sensors using ML approaches:

• Is it feasible to use primary in-car sensors with ML approaches to detect ab-
normal driving patterns?

• Is there a benefit in employing unsupervised deep learning models for anomaly
detection compared to traditional ML models?

• Can the proposed solution be applied to a benchmark driving data set effec-
tively, considering the lack of labeled driving patterns?

2. Detecting real-world accidents based on primary in-car sensor data:

• Is it possible to detect real-world accidents using primary in-car sensor data?

• What is the best feature extraction method for accident detection, and which
features contribute significantly to the classification result?

Each of these questions is examined in detail and has led to new insights, using
advanced machine learning techniques to manage the complexity of detecting
abnormal driving behaviour, including accidents.

Chapter 2 unfolds into three significant sections, each offering valuable insights
into anomaly detection in driving patterns. The initial segment introduces
a foundational PRC framework for anomaly detection, achieving outstanding
performance with supervised k-Nearest-Neighbors (kNN) and impressive results
with unsupervised Gaussian Mixture Model (GMM). The second section delves
into unsupervised anomaly detection using the proposed PRC framework on
unlabeled Controller Area Network Bus (CAN-Bus) signal values, emphasizing the
effectiveness of Autoencoders (AEs), particularly the noteworthy Long-Short-Term
Memory Autoen coders (LSTM-AE), in detecting anomalous driving patterns
based on speed and brake signals. The final section presents a benchmarking data
set of naturalistic hazardous driving behavior, yielding remarkable results with
Handcrafted Features (HC) classified by Support Vector Machine (SVM).

In chapter 3, a framework for accident detection using in-car sensors from a
naturalistic data set is presented, employing diverse ML approaches. Notably,
the combination of Convolutional Neural Network (CNN) features and an SVM
classifier stands out, achieving impressive accuracy and showcasing promising
performance given the reliance on naturalistic accidents and the limited samples
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of severe accidents recognized by only four basic in-car sensors. Interpretability
studies reveal the complementary nature of traditional feature engineering and
DNNs in extracting optimal features from different sensor channels, enhancing
overall effectiveness.

Despite challenges in data acquisition and dealing with imbalanced data, this work
significantly advances exploring and benchmarking various anomalies and accident
detection in naturalistic driving data sets. Outstanding results indicate the strong
potential for driving behavior analysis using ML and DNNs utilizing in-car sensor
data.

7



Zusammenfassung

Aus der Analyse des Fahrverhaltens ergeben sich Vorteile in verschiedenen Bere-
ichen, darunter im Versicherungswesen, in der Verkehrsplanung sowie bei der
Entwicklung autonomer Fahrzeuge. Versicherungsunternehmen können ihre Policen
auf der Grundlage individueller Risikoprofile anpassen und so sicherere Fahrgewohn-
heiten fördern. Im Flottenmanagement hilft die Analyse bei der Risikosteuerung,
der Einhaltung regulatorischer Anforderungen und der Verbesserung der Kunden-
zufriedenheit. Darüber hinaus spielt sie eine entscheidende Rolle bei der Erkennung
und Vermeidung von Unfällen und trägt so zu einer sichereren Straßenumgebung bei.

In den letzten Jahrzehnten wurden erhebliche Fortschritte bei den Techniken des
maschinellen Lernens (ML), insbesondere beim Erlernen relevanter Merkmale zur
abstrakten Datenrepräsentation, erzielt. Das Aufkommen von Deep Learning unter
Verwendung von Deep Neural Networks (DNNs) hat diesen Trend weiter beschle-
unigt und zeigt eine bemerkenswerte Leistung bei Vorliegen grosser Datenmengen.
An diesem Schnittpunkt eröffnen sich neue Möglichkeiten für die Untersuchung des
Fahrverhaltens, wobei ML eine entscheidende Rolle bei der Gewinnung wertvoller
Erkenntnisse aus umfangreichen Fahrdatensätzen spielt.

Die Anwendung von ML in diesem Bereich ist jedoch eine Herausforderung. Dieses
Ergebnis lässt sich auf eine Vielzahl von Einflussfaktoren zurückführen. Autofahren
ist eine komplexe Mischung aus kognitiven, psychomotorischen und wahrnehmungs-
bezogenen Aktivitäten, die schwer zu quantifizieren und genau zu modellieren sind.
Deshalb werden in dieser Arbeit Sensordaten aus dem Fahrzeug verwendet, da sie
günstig und leicht zugänglich sind und Zugang zu umfassenden Fahrzeugparametern
(z. B. Geschwindigkeit und Beschleunigung) mit hoher Zeitauflösung bieten. Das
Fahrverhalten ist von Natur aus subjektiv und unterliegt erheblichen Schwankungen
zwischen einzelnen Personen und sogar innerhalb derselben Person unter verschiede-
nen Umständen, was das Labeling der Daten schwierig und unzuverlässig macht.
Um dieses Problem zu lösen, nutzt diese Studie ein sowohl überwachte als auch
unüberwachte maschinelle Lernansätze und DNNs, um alle möglichen abnormalen
Fahrmuster in echten Fahrsituationen zu erkennen.
Die Erfassung umfassender realer Fahrdaten, die das gesamte Spektrum dieser Vari-
ablen widerspiegeln können, ist eine gewaltige, wenn nicht gar unmögliche Aufgabe.
Die detaillierte Aufzeichnung des individuellen Fahrverhaltens kann erhebliche Be-
denken hinsichtlich des Datenschutzes aufwerfen, und eine echte Basiswahrheit über
gefährliches Fahrverhalten wirft ethische Fragen auf. In dieser Arbeit wird ein re-
alistischer Fahrdatensatz vorgestellt (von Fahrern mit einfachen bis hin zu profes-
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sionellen Fähigkeiten), der von erfahrenen Fahrlehrern sorgfältig zusammengestellt
und überwacht wurde.
Dieser Datensatz umfasst kommentierte gefährliche Fahrmuster, die von fahrzeug-
internen Sensoren abgeleitet wurden, was die Bedenken hinsichtlich des Daten-
schutzes, die bei Radar- oder visuellen Datenmodalitäten bestehen, ausräumt.
Unausgewogene Datensätze, ein Mangel an positiven (anomalen) Mustern und
Probleme bei der Interpretierbarkeit komplexer ML-Modelle erschweren die
Situation zusätzlich. Daher werden in dieser Arbeit umfassende Methoden zur
Merkmalsextraktion mit ML und DNNs eingesetzt, um Unfälle in einem echten
Datensatz zu erkennen.

Diese Arbeit zielt darauf ab, diese Herausforderungen und Lücken in der Liter-
atur zu adressieren, wobei der Schwerpunkt auf der Erkennung von Anomalien und
Ereignissen in der Fahrverhaltensanalyse liegt. Dabei werden Forschungsfragen aus
zwei Bereichen untersucht:

1. Nutzung der primären Sensoren im Fahrzeug durch ML-Ansätze:

• Ist es möglich, primäre fahrzeuginterne Sensoren mit ML-Ansätzen zu nutzen,
um abnormale Fahrmuster zu erkennen?

• Gibt es einen Vorteil beim Einsatz von unüberwachten Deep-Learning-
Modellen für die Erkennung von Anomalien im Vergleich zu herkömmlichen
ML-Modellen?

• Kann die vorgeschlagene Lösung effektiv auf einen Benchmark-Fahrdatensatz
angewendet werden, wenn man bedenkt, dass es keine markierten Fahrmuster
gibt?

2. Erkennung von realen Unfällen auf der Grundlage von primären Sensordaten
im Fahrzeug:

• Ist es möglich, reale Unfälle anhand von primären Sensordaten im Auto zu
erkennen?

• Welches ist die beste Methode zur Merkmalsextraktion für die Unfallerken-
nung, und welche Merkmale tragen wesentlich zum Klassifikationsergebnis bei?

Jede dieser Fragen wird detailliert untersucht und führt zu neuen Erkenntnissen,
wobei moderne Techniken des maschinellen Lernens eingesetzt werden, um die
Komplexität der Erkennung ungewöhnlichen Fahrverhaltens einschließlich Unfällen
zu beherrschen.

Kapitel 2 gliedert sich in drei Abschnitte, die jeweils Einblicke in die Erkennung
von Anomalien in Fahrmustern bieten. Im ersten Abschnitt wird ein grundlegendes
PRC-Framework für die Erkennung von Anomalien vorgestellt, das mit dem
überwachten k-Nächste-Nachbarn-Modell (kNN) eine hervorragende Leistung und
mit dem unüberwachten Gaussian Mixture Modell (GMM) sehr gute Ergebnisse
erzielt. Der zweite Abschnitt befasst sich mit der unüberwachten Erkennung
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von Anomalien unter Verwendung des entwickelten PRC-Frameworks auf nicht
gekennzeichneten CAN-Bus-Signalwerten, wobei die Effektivität von Autoencodern
(AEs), insbesondere der Long-Short-Term-Memory-Autoencoder (LSTM-AE), bei
der Erkennung anomaler Fahrmuster auf der Grundlage von Geschwindigkeits- und
Bremssignalen hervorgehoben wird. Im letzten Abschnitt wird ein Benchmarking-
Datensatz mit echtem, gefährlichen Fahrverhalten vorgestellt, der bemerkenswerte
Ergebnisse mit Handcrafted Features (HC), klassifiziert durch eine Support Vector
Machine (SVM), liefert.

In Kapitel 3 wird ein Framework für die Unfallerkennung mit fahrzeugeigenen
Sensoren aus einem Real World Datensatz vorgestellt, bei dem verschiedene
ML-Ansätze zum Einsatz kommen. Insbesondere die Kombination von Merkmalen,
die mit Hilfe eines CNN erlernt wurden, mit einem SVM Klassifikator sticht
hervor. Dieser Ansatz erreicht eine beeindruckende Genauigkeit und zeigt eine
vielversprechende Leistung, wenn man bedenkt, dass es sich um echte Unfälle und
eine begrenzte Anzahl von schweren Unfällen im Datensatz handelt, die von nur
vier grundlegenden Sensoren im Fahrzeug erkannt werden. Studien zur Interpretier-
barkeit zeigen die Komplementarität von traditioneller Vorgehensweise und DNNs
bei der Extraktion optimaler Merkmale aus verschiedenen Sensorkanälen, was die
Gesamteffektivität erhöht.

Trotz der Herausforderungen bei der Datenerfassung und dem Umgang mit unaus-
gewogenen Daten bringt diese Arbeit die Erforschung und das Benchmarking ver-
schiedener Anomalien und die Unfallerkennung in echten Fahrdatensätzen erheblich
voran. Herausragende Ergebnisse zeigen das große Potenzial für die Analyse des
Fahrverhaltens mit ML und DNNs unter Verwendung von Sensordaten im Fahrzeug.
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Chapter 1

Introduction

Driving behavior analysis is essential in enhancing road safety, optimizing trans-
portation systems, and improving overall driving experiences. By examining the
patterns and actions of drivers, it becomes possible to identify risky behaviors,
potential hazards, and areas for improvement. This analysis helps identify factors
such as aggressive driving, distracted driving, and drowsiness, which significantly
contribute to road accidents. Through the development of information and
communication technologies (ICT) such as like telematics, onboard sensors, and
data analytics, driving behavior analysis enables a deeper understanding of driver
actions, allowing for targeted interventions and proactive measures to mitigate
risks. By promoting safer driving habits and identifying areas where driver training
is necessary, this analysis reduces accidents, saves lives, and minimizes the economic
and social costs associated with road incidents.
The benefits of driving behavior analysis extend beyond road safety to various
sectors, including insurance, transportation planning, and autonomous vehicle
development. Insurance companies can leverage driving behavior data to offer
personalized policies based on individual risk profiles. This data-driven approach
allows for fairer premiums and incentivizes safer driving habits among policyholders.

The benefits of driving behavior analysis in fleet management encompasses var-
ious aspects, including risk management, regulatory compliance, and customer
satisfaction. By closely monitoring driving behaviors, fleet managers can identify
high-risk drivers and take necessary actions to mitigate potential accidents and
insurance claims. This reduces financial liabilities and promotes a safer work
environment for drivers. Furthermore, driving behavior analysis aids in ensuring
regulatory compliance by tracking factors such as speeding, seatbelt usage, and
adherence to traffic laws. This helps fleet operators avoid penalties, maintain a
positive reputation, and uphold legal obligations. Additionally, analyzing driving
behavior data enables fleet managers to provide accurate and timely information
to customers regarding delivery times, route deviations, and driver behavior. This
enhances customer satisfaction and builds trust in the reliability and professionalism
of the fleet management service.

The contribution of driving behavior analysis in accident detection and prevention
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is invaluable. By integrating advanced technologies like onboard sensors, and
artificial intelligence, real-time monitoring and analysis of driving behaviors can be
performed. This enables the detection of risky behaviors such as tailgating, sudden
lane changes, and drowsy driving, which can lead to accidents. Early identification
of such behaviors allows for timely intervention, such as issuing warnings to drivers
or triggering automatic braking systems in vehicles equipped with advanced driver
assistance systems (ADAS). Furthermore, analyzing driving behavior data can
assist in identifying patterns and trends related to specific types of accidents,
enabling targeted measures to be implemented. These measures may include traffic
engineering interventions, road signage improvements, or modifications to road
layouts to enhance safety. Overall, driving behavior analysis is a crucial tool in
accident detection and prevention, helping to reduce accidents, save lives, and
create safer road environments for all users.

Machine learning plays a pivotal role in driving behavior analysis, offering the
potential to extract valuable insights from vast amounts of data related to such
behavior. However, utilizing machine learning techniques in this domain comes
with its own set of challenges. One of the primary challenges is the need for a
sufficient amount of labeled data. Training a machine learning model to analyze
driving behavior accurately requires a substantial data set with labeled examples
of driving behaviors such as speeding, lane changes, and distractions. Collecting
and annotating such data can be time-consuming and expensive. Additionally,
the labeled data must be diverse and representative of various driving scenarios
and conditions to ensure the model’s generalization ability. Another challenge is
the complexity and variability of driving behavior itself. Driving involves various
actions, interactions, and contextual factors that influence behavior. Developing
accurate models that can effectively capture and analyze these complexities requires
sophisticated machine learning algorithms and feature engineering techniques.
It is essential to consider multiple factors, such as driver characteristics, road
conditions, traffic patterns, and environmental factors, to understand driving
behavior comprehensively.

Despite these challenges, using machine learning in driving behavior analysis of-
fers immense potential for enhancing road safety, optimizing traffic management,
and advancing autonomous driving technology. With advancements in data col-
lection technologies, improved algorithms, and access to large-scale labeled data
sets, machine learning approaches can continue to evolve and address these chal-
lenges, leading to more accurate and effective driving behavior analysis systems.
This groundbreaking thesis delves into the uncharted domain of detection of anoma-
lies in driving behavior, employing cutting-edge machine learning (ML) techniques
to unravel this intricate challenge. The thesis introduces a novel benchmark data set
meticulously crafted to capture the complexities of risky driving maneuvers in real-
world scenarios. The effectiveness of the proposed ML methodologies is rigorously
evaluated against this benchmark data set, demonstrating their remarkable precision
in discerning hazardous driving patterns. Furthermore, the thesis introduces a novel
Pattern Recognition Chain, exhibiting exceptional capability in accident detection
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within naturalistic driving data sets. This innovative approach holds promise for
revolutionizing road safety by enabling the real-time detection of hazardous driv-
ing patterns, thereby paving the way for proactive interventions to mitigate traffic
accidents.

1.1 Motivation
This section delves into the highlighting motivations and contributions of this the-
sis. Section 1.1.1 provides a comprehensive exploration of the intricate challenges
regarding anomaly detection and accident identification within the domain of driving
behavior analysis. To vividly illustrate the complexities inherent in event detection
by analyzing in-car sensor data, section 1.1.2 masterfully employs a practical exam-
ple. Section 1.2 succinctly summarizes the significant contributions made by this
thesis, showcasing how they effectively address the aforementioned challenges. To
provide a clear road map, section 1.3 offers a comprehensive overview of the structure
of this thesis.

1.1.1 Context and challenges
As in most research tasks, the most significant challenge of driving behavior analysis
is the need for appropriate ground truth data modalities for anomaly detection and
accident detection in driving patterns. The reason behind that can be attributed to
several factors:

1. Subjective interpretation: Driving behavior is inherently subjective. What
one person may consider aggressive driving, another might perceive as efficient
driving. No universally agreed-upon standard for categorizing or measuring
driving behaviors makes it challenging to establish a solid ground truth.

2. Variability in human behavior: Driving behaviors can vary significantly
between individuals and even for the same individual under different circum-
stances. This variability makes it challenging to generate a universally appli-
cable driving behavior model.

3. Complexity and multidimensionality of driving behavior:Driving in-
volves a complex blend of cognitive, psychomotor, and perceptual activities,
which are hard to quantify and model accurately. This further complicates
the establishment of concrete ground truth.

4. Lack of comprehensive real-world data: Driving happens in many con-
ditions, situations, and environments. Capturing comprehensive real-world
driving data that can reflect the full range of these variables is a massive, if
not impossible, task.

5. Privacy concerns: Detailed recording of individual driving behaviors can
raise significant privacy concerns, which could limit the availability and gran-
ularity of data needed to establish a ground truth.
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6. Ethical considerations: To get a true ground truth of driving behavior,
dangerous behaviors (like high-speed chases, drunk driving, etc.) would need
to be included, which raises ethical considerations.

In the driving behavior analysis domain, several data modalities are commonly
used to capture and analyze driving behaviors. These data modalities provide
valuable insights into driver performance, safety, and behavior. However, they
have their advantages and limitations. Telematics data, video data, external sensor
data, smartphone-derived data, and traffic data are among the most well-known
data modalities for driving behavior analysis. However, these modalities either
need more detailed information regarding the detected events or are unreliable,
inaccessible, or hard to set up. On the other hand, the benefits of ML-based
approaches depend on the sufficient amount of labeled data that are difficult to
access.

CAN-Bus (Controller Area Network) data is noteworthy and offers several advan-
tages in driving behavior analysis. The CAN-Bus is a network that enables com-
munication among various electronic components within a vehicle, providing access
to a wide range of data related to vehicle performance and driver behavior. The
following points underline the advantages and importance of using CAN-Bus data
in driving behavior analysis:

1. Comprehensive Vehicle Insights: CAN-Bus data provides comprehensive in-
sights into various vehicle parameters, such as speed, acceleration, braking,
RPM (revolutions per minute), fuel consumption, and engine temperature.
These data allows for a detailed analysis of driving behavior and performance,
helping to identify patterns, deviations, and potential risks.

2. Accurate and Real-Time Data: CAN-Bus data offers high accuracy and real-
time updates, capturing information directly from the vehicle’s electronic sys-
tems. This ensures that the driving behavior analysis is based on precise and
up-to-date data, enhancing the reliability of the findings.

3. Wide Accessibility: Most vehicles have a CAN-Bus system, that makes the
data widely accessible. This enables driving behavior analysis to be conducted
across various vehicles, allowing for comparisons, benchmarking, and general-
ization of results.

4. Objective and Quantifiable Metrics: CAN-Bus data provides objective and
quantifiable metrics for driving behavior analysis. Parameters like acceleration
rates, braking intensity, and RPM can be measured precisely, enabling the
development of standardized metrics for evaluating driver performance and
safety.

5. Cost-Efficiency: Utilizing CAN-Bus data for driving behavior analysis is cost-
effective as it eliminates the need for additional sensors or equipment. The
data is readily available within the vehicle’s electronic systems, reducing im-
plementation costs and complexity.
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6. Potential for Advanced Analysis: CAN-Bus data can be combined with other
data modalities, such as video or smartphone, to enrich the analysis. Integrat-
ing multiple data sources allows for a more comprehensive understanding of
driving behaviors, their context, and potential correlations.

7. Diagnostic Capabilities: Besides driving behavior analysis, CAN-Bus data can
also be used for vehicle diagnostics. It helps identify mechanical or electrical
issues, maintenance requirements, and potential faults, ensuring vehicle safety
and reliability.

Researchers, fleet managers, and safety organizations can gain valuable insights
into driver behaviors, vehicle performance, and overall road safety by leveraging
CAN-bus data in driving behavior analysis. The importance of CAN-Bus data
lies in its ability to provide accurate, real-time, and comprehensive information,
enabling data-driven decision-making and interventions to enhance driver safety
and optimize driving behaviors.

Nevertheless, data acquisition is one of many challenges of the research tasks in
driving behavior analysis. Identifying normal behaviors and deviating abnormalities
are the biggest problems requiring sufficient normal and anomalous driving examples
for anomaly detection. This process requires domain knowledge to understand the
underlying patterns, especially dealing with unlabeled data. Evaluating anomaly
detection performance using unsupervised ML models is an additional challenge to
be solved.

Interpreting the decisions made by machine learning models is essential for trust
and accountability. However, many complex machine learning models lack inter-
pretability, making understanding why a particular prediction or anomaly detection
was made challenging.

The first problem in case of accident detection lies in the nature of the accident event
itself. A clear definition of an accident is required to be labeled and recognized. In
most cases, distinguishing accidents with low speed, such as a slight contact of the
car with the traffic barriers, from normal driving is hard. In general, annotating
data for anomalies and accidents is a complex and subjective task. Experts must
label instances correctly, which can be time-consuming and prone to errors. More-
over, agreement on what constitutes an anomaly or accident can vary across experts.

The second problem is the lack of positive (anomalous) samples. In real-world
driving scenarios, accidents and anomalies are relatively rare compared to normal
driving behavior. This leads to imbalanced data sets, where most instances
represent normal behavior, making it difficult for machine learning models to learn
patterns related to anomalies and accidents effectively.

Based on the aforementioned challenges and the limitations of the literature in
anomaly detection and event detection in driving behavior analysis, this work is
going to find the answers to the following questions:
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• Utilizing primary in-car sensors using ML approaches: Is it possi-
ble to utilize primary in-car sensors using ML approaches to detect abnormal
driving patterns? Considering the difficulty of adequately training and inter-
preting unsupervised deep learning models, is there a benefit to using them
for anomaly detection as opposed to other traditional machine learning mod-
els? Considering the absence of annotated driving patterns, can the suggested
solution be applied to a standardized driving data set?

• Detecting real-world accidents based on primary in-car sensor data:
Is it possible to detect real-world accidents based on primary in-car sensor
data? What is the best feature extraction method for accident detection?
What features have more significant contribution to the classification result?

Before describing the contents of this thesis in more detail, the following subsection
provides an example highlighting the difficulties of extracting in-car sensor data for
driving behavior purposes. This example is taken from the LEICAR project in which
the author of this thesis was involved.

1.1.2 Example : LEICAR - Learning-based multimodal in-
terpretation of sensor data for event detection in car-
sharing fleets

The following section describes an example illustrating the difficulties in extracting
and utilizing in-car sensor data for the purpose of driving behavior analysis using
ML algorithms. Experimental results reported in this section were carried out in
the frame of the research project LEICAR (grant number: 01IS15048B), funded by
the German Federal Ministry of Education and Research (BMBF) and reported in
[1].

INVERS [2], the inventor of automated vehicle sharing, enables mobility operators
to launch, run and scale with the first and market-leading Shared Mobility Oper-
ating System. INVERS supplies carsharing operators and company fleets with a
complete modular system consisting of software and in-car technology. This tech-
nology enables the automated operation of a carsharing service or a shared pool of
company vehicles. The central element of the Inverse system is a small electronic
box installed in the vehicle. Connected to the vehicle via CAN, function-relevant
information is read from the onboard network.
The collaboration of the University of Siegen and INVERS company aims to ease the
procedure of recognizing primary in-car sensor data to enable further investigation
in the domain of event detection in driving behaviors.
By recording all messages, based on the unique IDs for each message type, trans-
mitted via the CAN-Bus it is possible to determine the associated signals with the
timestamps.
However, these data cannot be automatically assigned to a substantial value, as it
is not uncommon for several values to be combined in one single data part (e.g.,
the values of the individual wheel sensors). The way this division works can vary
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greatly depending on the type of vehicle, and that’s why we use different statistical
methods to figure out which parts belong where.

Initially, no semantics are known for the messages transmitted on the CAN-Bus.
i.e., the messages can only be understood as bit patterns. The data interpretation
will occur in a multistage process developed during this collaboration.

Based on the brief introduction to the LEICAR project, the objectives of this project
are in detail described as follows:

• In the first step, it is determined for the individual CAN message types which
bits of a message belong together, i.e. form the binary representation of the
value of a sensor signal. It is assumed that sensor signals are (essentially)
continuous, i.e. they only change by a small amount from one message to the
next. If one observes such a such a signal, the result is a statistical correlation
between the course of the numerical value from the bits k−1 ... 0 with the
course of the value of bit k. Therefore one can iteratively find all further bits
of the signal value starting from one bit, provided that the signal changes
over its entire value range. The latter is ensured by corresponding training
sequences. In the second step, characteristic properties are determined from
the signal curves found.
The second step is to determine characteristic properties from which features
for learning procedures can be derived. Examples for relevant properties of a
signal course are the statistical distribution of the signal values, the statistical
distribution of the differences of consecutive signal values, or the frequency
spectrum of the signal waveform.

• With the help of the derived features, a classifier can now be trained, to
assign a signal course to a certain type of sensor or a class of sensors and thus
to determine or limit the semantics of the signal. This is possible because the
signals of the different sensors have different distinguishable characteristics,
as is illustrated in Figure 1.1 by means of four signal characteristics. During
this procedure, additional sensors are searched to find additional correlations
if there is still no clear assignment between a particular sensor (e.g., engine
speed) and a signal waveform.

• Another important step for the reliable determination of the semantics of
signal sequences is to check their mutual correlations, which are given by
the physical properties of vehicles. For example, an acceleration curve must
be (approximately) proportional to the derivative of the speed curve. Thus,
if two signal curves are recognized as potential acceleration and speed and
indicate the expected correlation, this significantly increases the reliability of
the classification.
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• To detect advanced events, e.g., driving style or (near-)accident, the seman-
tically classified sensor signals can be fused and again assigned to a feature
extraction. From this features, the events can be classified again by ML meth-
ods.

The following section addresses the problem of classifying sensor signals transmitted
on the CAN-Bus inside cars. This work aims to solve the problem of dealing with
large amounts of CAN-Bus data, finding the semantics of the most critical signals
inside CAN-Bus in cars, independently of the car’s model and manufacture. We
aim to classify vehicle CAN-Bus data into primary sensor signals like speed, brake,
steering-angle, and throttle that assume a prior role in finding driving behaviors.

Feature extraction and classification of sensor signals in cars based on a
modified codebook approach

Due to the enormous demand for mobility and increasing road congestion, analyz-
ing driving behaviors and preventing accident-prone situations has become a vital
subject for scientific research. However, access to the car signals and their semantics
should be provided before analyzing driving patterns.
In this context, we previously conducted a comprehensive analysis of driving
patterns in order to develop an affordable, reliable, ecological, and environmen-
tally compatible mobility solution within the LEICAR project (grant number:
01IS15048B), funded by the German Federal Ministry of Education and Research
(BMBF). In this project, we had the opportunity to access to various car sensor
values through CAN-Bus interfaces. We focused on four key signals for initial
driving pattern analysis: brake, speed, steering-angle, and throttle. We established
specific markers for most car models to filter out extraneous signal values. However,
our goal of automated online event detection during driving required a model
independent of car models and capable of accurately distinguishing signal semantics
across various signal values. To achieve accurate signal classification, we proposed
two feature extraction methods: Handcrafted Feature Selection (HFS) based on
prior knowledge of distinctive signal features, and automated feature selection
(AFS) based on the codebook approach.

Feature extraction

Before extracting features based on the vehicle type and individual sensors, we
should note that our data set varies significantly in range, sampling rate, and type.
Figure 1.1 shows four types of signals available in the data set. To address this
problem, we needed to apply down-sampling and normalization on our data sets
to extract the most efficient features, representing the characteristic of our signals.
Therefore we used a sampling rate of 100 ms and zero-mean unit-variance normal-
ization.
For the feature extraction of CAN-Bus signals in cars, we introduce two categories
of handcrafted and automated methods, explained in the following subsections.
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Figure 1.1: a) Speed, b) Steering-angle, c) Brake, d) Throttle.

Manual feature extraction

For the classification with manually selected features, we computed the following 14
feature values:

• The signal’s first value (i.e., its value at the time 0) and the absolute difference
of its first and last values are relative to the signal’s maximum and minimum
values. These two features provide some coarse information about the overall
shape of the signal.

• A histogram of the values of the signal assumes using five equally sized bins
between the signal’s minimum and maximum values. This allows us to dis-
tinguish between signals that show clear peaks (e.g., brake) and signals that
assume all values with relative probability (e.g., speed).

• The median of the signal’s values relative to its minimum and maximum value.
This should allow us to distinguish between, e.g., brake (just positive peaks,
i.e., median close to the minimum) and steering-angle (peaks in both direc-
tions, i.e., median in the middle between minimum and maximum).

• The sum of the absolute differences of each signal value and the median value.
This feature provides information about the variability of the signal.

• The signal’s amplitude in five selected frequency bands (< 0.2 Hz, 0.2−0.5 Hz,
0.5−1 Hz, 1−5 Hz, > 5 Hz). The coarse spectrum helps to distinguish short
peaks (e.g., brake) from smoother signals (e.g.throttle and speed).
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All feature values are normalized into the interval [−1, 1] before they are given to
the SVM for classification.

AFS Based on the Codebook Approach

Unlike the common feature extraction representation, which is mainly based on
prior knowledge of data, the codebook approach for emotion recognition yields a
new representation of sequences, capturing remarkable differences among sensor
data without considering prior knowledge.
Our codebook approach is based on [3] with modifications. In our case, using a
different approach does not lead to desired results in finding distinguishable features
since the range of sensor data collected from the CAN-Bus has a wide variety. On
the other hand, compared to the handcrafted features, this approach has a long
computation time.
Figure 1.2 illustrates an overview of our modified codebook approach. In this
overview, the steps of the codebook-based feature extraction after having our data
sets down-sampled and normalized are as follows:

• Divide the sequence of values in the signals into sub-sequences of so-called
sub-windows with considering an overlapping factor.

• By using K-means clustering based on [4], group all subwindows into several
clusters and set the cluster centers in a so-called codeword set.

• By assigning each sub-window to the most similar cluster center (using a soft
assignment method) and representing them in a histogram with the frequency
of codewords appearing in a signal, features of any specific signals are ex-
tracted. This histogram has the same dimension as the number of clusters
and is considered a point in a multi-dimensional space.

Some remarks should be considered in implementing the codebook approach. The
window-size w for dividing each signal into sub-windows, the overlapping size l, and
the number of clusters should be chosen carefully. The codewords are high-frequency
noises caused by a small w and l. In the last step of our approach, where each sub-
windows is assigned to the most similar codeword, for flexibility, we have used a soft
assignment based on Gaussian kernel density estimation from [5].
The frequency of each cluster center cn in a given signal is represented as F (cn)
formulated as follows:

F (cn) = 1
S

S∑
s=1

Kσ(D(xs, cn))∑N
n′=1 Kσ(D(xs, cn′))

(1.1)

where
Kσ(D(xs, cn)) = 1√

2πσ
exp

(
−D(xs, cn)2

2σ2

)
(1.2)

Here D(xs, cn) is the Euclidean distance. Kσ with smoothness parameter sigma is
the Gaussian kernel density estimation.
In our modified codebook approach, the K-means algorithm based on paper [4] is
extended by adding a well-known radial basis function (RBF) kernel [6].
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Figure 1.2: An illustration of modified codebook approach, a) and b) Codewords
assignment, c) Classification training/test.

Classifier

By using handcrafted or codebook-based feature extraction, the aim is to classify
sensor data received from CAN-Bus system inside cars. Thus, like other machine
learning methods, we need to divide our data into training and testing sets. After-
ward, we applied two main classification methods. The first is an SVM classifier
based on linear and RBF kernels from papers [6] and [7].
Since the sequences captured from throttle and brake signals are very alike, we have
decided to use not only one-vs-one classifiers but also a multi-class learning approach
based on [8], which makes a significant improvement in our results.
For all of the classification tasks, the library implemented in [9] is used in our
procedure, and finally, for tuning parameters in SVM classification, [10] has been
applied to our application as well.

Results

Our data set is based on CAN-Bus traces from 30 rides with 13 car models. We
have 230 sequences of in-car signals, and the objective was to detect signals of brake,
speed, steering-angle, and throttle classes. The main parameters to be considered in
our approach are window-size, overlapping factor, and number of clusters. In order
to choose an appropriate window-size avoid capturing subtle noises and a significant
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rise and/or fall in signal values, we have chosen a window-size range from 5 to 15
samples per sub-window with a sampling rate of 100 ms. A remarkable increase
and/or decrease in signal values are visible within these ranges. The overlapping
factor is chosen to be half of the window-size. We set the range from 5 to 10 clusters
for the number of clusters in K-means clustering.
Concerning the importance of choosing the above parameters, in Figure1.3, two sets
of codewords based on different window-size, overlapping factors, and clusters are
illustrated.

Samples/window
Samples/window
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s

Figure 1.3: a) A set of codewords with window-size 8 and 5 number of clusters, b)
A set with 15 and 5 number of clusters.

In Figure1.4, a bar chart of our results based on one-vs-one and multi-class classifiers,
the classification score with different window-size is shown. Here we conclude that
the bigger window-size with a multi-class classification achieves a significantly better
result in our approach.

Conclusion and future work

Table 1.1 and Figure 1.3 demonstrate the result of different car signals’ classification
based on HFS and AFS. We demonstrated in our case that using handcrafted fea-
tures gives a slightly better classification score of 93%. Despite achieving a higher
classifier score based on HFS than the AFS, an efficient and accurate feature selec-
tion based on prior knowledge is labor and time intensive.
On the other hand, the classification result by choosing appropriate parameters
based on AFS with the help of the codebook approach has gained a significant 90%
score. Like nearly all automated approaches, the computation time of our modified
codebook approach is noticeably high compared to the HFS.
After having most prior CAN-Bus signals classified independently of car models, our
next plan is to detect sub-sequences within a trace of signal values where an event
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Figure 1.4: Accuracies of different classifiers based on AFS with different number of
samples per window. A bigger window-size with a multi-class classification achieves
a significantly better result.

Table 1.1: Performance comparison between AFS and HFS methods with different
classifiers.

Linear SVM Multi-Classification
Accuracy Accuracy

AFS 0.776 0.906
HFS 0.928 0.934

has happened. These events are time intervals containing abnormal signal value
changes, mostly during unsafe driving. We are investing our research on car signals
to point out any rare events during driving.

1.2 Thesis contributions
This thesis addresses the research questions mentioned in section 1.1.1 presented in
papers [1, 11] and described in chapters 2 and 3. The scientific contributions of the
presented work are as follows:

Anomaly detection in multimodal car sensor data: The first contribution of
this thesis attempts to find a solution to tackle the various challenges in finding
the most appropriate data modalities for analyzing driving pattern behaviors
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and the lack of accessible and affordable ground truth of proper data modalities
in driving behavior analysis.
In-car sensor data (e.g. CAN-Bus) have proven to fulfill the requirement of the
desired data modalities due to many factors. Affordability and availability, in
addition to the usability of these kinds of data independent from the vehicles
model and the year of manufacture, are among the most characteristic of the in-
car sensor data. Nevertheless, more research on ML-based anomaly detection
in driving behavior needs to be done. The second chapter of this thesis presents
an ML framework as a baseline for anomaly detection in driving patterns based
on primary in-car data. Using this framework to provide a comparison study
with supervised and unsupervised anomaly detection techniques. The novelty
of this chapter continues introducing a benchmarking data set for anomaly
detection based on car sensor data. Using the proposed framework to achieve
promising results in driving anomaly detection with real-world driving data.

Automated car accident detection based on multimodal sensor data:
Accident detection is one of the most crucial subfields of anomaly detection
in driving behavior analysis benefiting environmental or safety applications
and the growing area of fleet management. Many works address the problem
of accident detection by utilizing traffic data and external sensors (e.g.,
induction loop, acoustic sensors).
However, traffic data can be challenging to access, while external sensors can
be difficult to set up and unreliable, depending on how they are used. Also,
the need for accident detection data has limited the type of approaches used in
the past, leaving, in particular, machine learning (ML) relatively unexplored.
Thus, this chapter presents an ML framework for automated car accident
detection based on multimodal in-car sensors using state-of-the-art feature
extraction methods.
Chapter 3 of this thesis is the first study investigating ML-based accident
detection on primary in-car network data. This study is distinctive and inno-
vative research investigation on detecting natural driving accidents from the
most accessible and affordable data sources inside cars. This chapter presents
a detailed ML framework based on the PRC introduced to perform accident
detection using primary in-car network data. It also uses this framework to
compare state-of-the-art ML feature extraction techniques applicable to in-car
sensor data for accident detection based on the SHRP2 NDS crash data set
providing gas-pedal position, speed, steering-angle, and acceleration sensors.
Promising results for automated accident detection based on a naturalistic
data set are obtained using this framework.

1.3 Overview
This thesis is structured into two main chapters, each describing works carried
out by the author of this thesis to address both questions introduced in section 1.1.1.
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Chapter 2 describes the works to address the first question raised in this thesis
about using primary in-car sensor data to detect anomalies in driving behaviors
via ML approaches. This chapter proposes a Pattern Recognition Chain (PRC) to
detect anomalies in unlabeled driving patterns. Furthermore, it provides a novel
benchmark data set containing naturalistic hazardous driving patterns (with labels)
and applies the proposed PRC framework with notable results.

Chapter 3 performs the first study investigating ML-based accident detection on
primary in-car network data. It presents a detailed ML framework based on the PRC
introduced in Figure 3.1 to detect accidents using basic in-car network data. It also
uses this framework to compare state-of-the-art ML feature extraction techniques
applicable to in-car sensor data for accident detection based on SHRP2 NDS crash
data set providing gas-pedal position, speed, steering-angle, and acceleration sensors.
Promising results for automated accident detection based on a naturalistic data set
are obtained using this framework.
Finally, chapter 4 performs a summary of the findings reported in the frame of
this thesis, in particular to which extent they addressed both questions raised in
section 1.1.1 regarding the application of in-car sensor data for anomaly detection
and accident detection in driving behavior. It concludes with an analysis of the
work required to enhance and extend the proposed approaches and a discussion of
future works.
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Chapter 2

Anomaly detection in multimodal
car sensor data

2.1 Problem statement
Anomaly detection has been a vital study focus of many research areas and ap-
plication domains. Anomalous data usually contains important information about
critical incidents. Anomaly detection in time-series aims to detect or predict from a
set of training time-series whether a newly observed time-series is novel or standard.
The detection of anomalies in driving patterns based on car data has many appli-
cations, e.g. detection of vehicle faults or monitoring of driving behaviors for the
purpose of accident prevention. This chapter presents the rationale for investigating
driving anomaly detection based on multimodal car sensors. In the following sec-
tions, the state of the art in driving behavior anomaly detection is discussed. Then,
a PRC is presented to fill the gap in the literature on driving behavior anomaly
detection based on time-series data in cars. The main steps of the proposed PRC
framework during the implementation of this study are enhanced. Lastly, in the
final section of this chapter, a benchmarking data set is launched in this domain of
the research.

2.1.1 Motivation
Due to its significant influence on improving daily urban mobility, detecting anoma-
lous driving patterns is an important research focus. Apart from transportation
safety (such as advanced warning applications, e.g. Safety Awareness Services),
monitoring anomalous driving patterns can be used by fleet companies. For in-
stance, the quick dispatch of roadside assistance in case of vehicle breakdown or
restricting the vehicle’s usage in case of breaches of obligations (e.g. car racing,
off-road) are a few contributions of anomaly detection in driving behavior used by
fleet companies.
In addition to the aforementioned contributions of anomaly detection in driving
behavior, the detection of abnormal driving patterns is crucial for the detection
of accidents and near-accidents. Figure 2.1 illustrates the relationship between
anomaly detection and accident detection in driving behavior analysis. If we
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consider all the anomalous driving patterns that can appear in a driving data
set, accidents are the events that occur least frequently compared to the usual
(normal) driving events. Therefore, the ability to distinguish abnormal events from
normal ones is a significant step towards recognizing certain abnormal events as
accidents. By definition, an anomalous driving pattern does not match the normal
expected driving pattern. Therefore, a simple approach to identifying anomalous
driving behavior is to define a range representing normal patterns and consider any
observation outside this normal range as an anomaly. However, most of the time,
the boundaries representing these two classes are not easily distinguished, e.g. noise
or outliers may be interpreted as an anomaly.

Figure 2.1: Exploring the interplay of anomaly detection and accident detection in
the analysis of driving behavior.

Detecting anomalous driving patterns based on in-car sensor data is difficult to
solve due to several factors. Outliers and noise are extraneous data lack meaningful
information, impede data analysis, and contribute to biased results, while anomalies
often contain significant and crucial information. Distinguishing between outliers
and anomalies often requires extensive knowledge of the data. Depending on the
nature of the data and the availability of labels, it is sometimes difficult to define
normal and abnormal/anomalous patterns. Furthermore, the lack of labelled data
and the scarcity and complexity of anomalous driving patterns are the reasons for
the research gap in the field of driving anomaly detection based on in-car sensor
data.
This study is a novel work investigating the detection of anomalies in driving
behaviour using in-car sensor data. The following are the main contributions of
this chapter:

• Providing an ML framework as a baseline for anomaly detection in driving
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patterns based on primary in-car data. Using this framework to provide
a comparison study with supervised and unsupervised anomaly detection
techniques.

• Introducing a benchmarking data set for anomaly detection based on car
sensor data. Using the proposed framework to achieve promising results in
driving anomaly detection with real-world driving data.

The establishment of the aforementioned foundation depends on the completion of
data generation. Consequently, this chapter is divided into three primary subsections
aligned with the availability of the LEICAR project data set (see section 1.1.2). Prior
to delving into the conducted experiments, the following section provides a concise
overview of the PRC employed in this study.

2.1.2 Pattern recognition chain for anomaly detection in
driving patterns

Pattern Recognition Chain (PRC) is a generic ML framework for solving classifica-
tion tasks in various applications. It consists of discrete steps based on the focus
of the applications. The choice of methods and the focus on the importance of the
PRC steps make the different chains distinctive.
In this study, ML is used to detect anomalies in driving behavior by following a
standard PRC framework (see Figure 2.3). The proposed framework for driving
anomaly detection consists of five steps. Detailed information on each step is given
in the following subsections.

Data acquisition:

Data acquisition is always one of the most crucial steps of the PRC procedure, which
involves:

• Defining an experimental protocol for proper sensor setup

• Acquiring and merging data from appropriate sources

• Establishing a strategy for proper data labeling (in supervised learning ap-
proaches)

• Sampling the relevant sensor signals

• Converting the resulting samples to digital numerical values

The importance of data collection has several reasons. The first reason is the need
for large data sets to train ML models properly. Next, the numerous following
choices, such as the nature of the classes or the number of sensors and data
acquisition channels, significantly influence the intricacy of the problem. These
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choices include different operations depending on the ML task’s context and
purpose. The most important operations considered in our experiment are briefly
described as follows:

• Choice of classes: The decision about the number of classes and their defini-
tion is context-dependent. In anomaly detection studies, the number of classes
initially appears to be the two classes of normals and anomalies. In studies
such as [12], where anomaly detection is based on hierarchical algorithms, the
anomalous class is sorted into scored anomalies depending on the characteris-
tic of the anomalous samples. Next, defining classes is a challenging operation
which acquires a deep knowledge of the data and the class requirements. In
the field of anomaly detection in driving patterns, the class definitions are not
standardized in the literature (see section 2.2). Establishing class definitions
can also be dependent on other parameters. For instance, in the domain of
anomaly detection in driving behavior, defining classes and setting bound-
aries for class definitions are highly dependent on the implementation tools
and options available to perform such experiments in simulated or natural
environments.

• Choice of sensors: Similar to the class definitions, the choice of the sensors is
highly based on the study tasks requirement and the characteristic of classes.
In the domain of anomaly detection in driving behaviors, there are assorted
data modalities such as statistical traffic data, camera-based or sensor-based
(e.g. induction loops in traffic sensors, CAN-Bus signals) data modalities to
capture anomalous driving patterns (see section 2.2). Based on the availability
of such implementation setups and the study goal, one can choose sensors for
data acquisition of anomaly detection in driving behavior.

• Labeling strategy: Labeling data in ML means annotating raw samples
with identified information so the ML model can learn from it. Usually, labels
are chosen as integers {1, 2, 3, ..., C}, where C refers to the number of classes.
In time-series data, such as data used in this study, either a whole time-
series of one recorded sample or the subsequences (windows) of a record is
annotated with individual labels. In general, data labeling is mostly performed
manually, which requires expert knowledge and usually takes time and requires
labor. The quality and quantity of the labeled data play a critical role in the
performance of the ML models.
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Pre-processing:

Data pre-processing refers to operations that clean the data of flaws usually caused
by transmission errors or sensor failures. In particular, they include operations
such as eliminating any duplicates, or irregularities in the data, normalizing the
data to compare, filling out missing data values, which is a commonly encountered
problem, and providing the ML model data that are consistent. Data denoising is
an essential procedure for anomaly detection studies. Noise can look remarkably
like anomalies. The difference lies in the information behind it. Anomalies contain
essential information that characterizes particular events, while noise (or outlier) is
redundant or misleading information hindering the learning process. After denoising,
normalizing and synchronizing time-series are the subsequent vital procedures of
pre-processing step. Having different data from various sensors usually demands
synchronization to match the time stamps of the recorded signals. Normalization
techniques are used to unify time-series from different sensor channels to resolve this
problem. Various normalization techniques have been utilized for ML pre-processing
step. Though, The choice of pre-processing techniques is entirely dependent on the
data set.

Segementation:

Usually, time-series raw data are recorded over a long period and might contain
something other than homogeneous information. Most often, in the case of time-
series anomaly detection, the anomalous event happens during a short interval of a
long recorded sequence. Therefore, splitting the data into shorter discrete segments
is needed to reveal the underlying properties of a special event. Sliding-window is
a typical time-series segmentation approach which is most widely used. Figure 2.2
illustrates the sliding window approach. At first, a discrete time length -known as
window-size, w-, based on the average duration of the specific events (which need
to be classified) and their characteristic, is chosen. By sliding the window over the
original sequence of time-series and creating time intervals, data segments of the
chosen time length are created. In order to cover all possible creation of windows
segments and extract as much information as possible from the original raw data,
an overlapping factor l often corresponding to the 50% of the windows-size is
considered to slide over already created windows.
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Figure 2.2: Sliding Window Approach (Windowing): Applying a sliding window
technique to a speed signal sample, where W represents the window-size, and an
overlapping factor is used.

It should be noted that in the case of supervised learning, the labeling procedure
must be adjusted after segmentation. Initially, the labeling procedure is done based
on the information about the corresponding time stamps indicating the events’
starts and ends. Commonly, a whole window is annotated with the majority label
of the time interval contained in the window-sized segment.

Feature extraction:

Feature extraction is the process of reducing the dimension of the raw data into
an informative abstract representation of the data. In order to derive the most
relevant information from the data, remove the redundant noise remaining after pre-
processing and reduce a large amount of unnecessary information, the preprocessed
data is replaced by its features and then fed into the model to be trained. Extracting
features reduces the complexity of training a classifier. Suppose a classifier is trained
based on detailed information that does not represent the desired event’s high-level
characteristics. In that case, the model can not be generalized to deal with unseen
data. This so-called over-fitting can be minimized or prevented by appropriate
feature extraction approaches.
The most commonly used feature extraction approach is the traditional feature
engineering method consisting of handcrafted features that we refer to as HC in the
following sections. HC features have been implemented for decades and still serve
as a powerful tool when combined with ML classifiers. Traditionally, HC features
are engineered based on expert knowledge of the data, which is only sometimes
available. In this case, it is common to use simple statistical attributes computed on
the time-series which have shown to perform well in practice despite their simplicity.

Feature learning is the second category of feature extraction algorithms discussed
in this thesis. Feature learning is the automated procedure of learning features
by Deep Learning approaches. The increasing popularity of Deep Learning makes
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feature learning very appealing nowadays. Feature learning approaches are not
used in this part of this dissertation. The reason is that the amount of data for
the experiments in this section was insufficient for feature learning approaches.
Therefore, this section briefly explains only the feature extraction techniques used
for this experiment. The details of feature learning algorithms can be found in
section 3.3.3.

Feature Extraction Based on Handcrafted Features (HC):

Traditional HC feature extraction has been implemented for decades, and due to its
simple set-up, it still serves as a robust baseline when combined with ML classifiers.
We computed simple statistical features commonly used in many application do-
mains using time-series data for HC features. The HC features extract information
from simple statistical attributes such as minimum, maximum or percentile or
more elaborated descriptors such as features related to the frequency–domain based
on the Fourier transform of signals. These features are calculated separately for
each sensor channel. Extracted features from different sensor channels of each
segment are concatenated to obtain a feature vector. The feature vectors and their
corresponding labels are then fed to the classification model to be trained.

Classification:

Classification is the final step of the supervised ML framework to train a model
to predict class labels (categories) y ∈ Y = {1, 2, 3, ..., C}, where C is the number
of classes, for the given feature vectors x ∈ X, X = RF×N , with F and N is
the feature’s space dimension and the number of data samples, respectively. There
are two types of binary and multiclass classifiers. Anomaly detection classification
problems usually use binary classifiers where labels y ∈ Y = {0, 1} contain two
categories of normal and anomaly. Whereas multiclass classifiers involve assigning
a data sample to one of several labels.
A large number of classifiers have been introduced in the past literature. The
choice of the classifier depends on many factors, such as the classification task, the
size, the quality and the nature of the data and the available computation time.
Many classifiers aim at defining a linear function to separate classes. The most
popular linear classifiers for anomaly detection are Support Vector Machine (SVM)
(linear kernel) [13], Logistic Regression [14], and Naive Bayes [15]. Nonlinear
classifiers are used to separate data instances which are not linearly separable.
k-Nearest-Neighbors (kNN) [16], Random Forest (RF) [17], Multilayer Perceptrons
[18] and Decision Tree [19] are among the most commonly used nonlinear classifiers
for detecting anomalies in the literature. SVM can perform nonlinear classification
using kernel functions. Kernel functions (e.g. Gaussian Radial Basis) map data
into higher dimensions. Hence, data samples can be classified into separable classes
using hyperplanes.
Neural networks have been used for anomaly detection as well. In order to detect
anomalies, a neural network is first trained on the normal data. Second, each
sample is tested by the model. If the network rejects the test input, it is an
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anomaly. Autoencoder [20] and Replicator Neural Networks [21] are the most
generally used anomaly detection techniques based on neural networks.
Finding an appropriate classifier depends strongly on the characteristics of the
data. Various comparative studies have been conducted to analyze the performance
of the classifiers [22, 23]. Accuracy, precision and recall are the most common
performance metrics used to evaluate and compare classifiers’ efficiencies. F1-score
is a popular performance metric for classifiers, which is based on the so-called
harmonic mean of precision and recall.

Clustering:

Clustering is an unsupervised learning technique used to find groups of similar in-
stances in the data points. Clustering-based anomaly detection techniques are based
on these assumptions: First, normal data samples lie close to their closest cluster
centroid, and anomalous instances are far from this centroid. Second, normal data
samples belong to large clusters, while anomalies lie in small and sparse clusters.
Several clustering-based anomaly detection approaches have been presented in the
past literature. K-mean clustering [24] and Gaussian Mixture Model (GMM) [25] are
among popular clustering-based approaches applied in anomaly detection literature.
Similar to unsupervised ML algorithms, evaluating the performance clustering ap-
proaches is challenging. Most common clustering evaluations are based on experts’
knowledge, where samples of the clusters are manually compared to an existing
ground-truth. In case of availability of ground-truth labels (even for a small subset
of data samples), F -1 measure can be applied to the precision and recall of pairs.
In this way, the clustering result is not affected by the labels.

2.2 Related work
Anomaly detection in driving behavior analysis is critical in ensuring road safety
and improving driver assistance systems. Several research efforts have been devoted
to this area to develop effective techniques for detecting abnormal driving patterns
and behaviors. Due to the importance of anomaly detection in data analysis,
there has been much work in this research area. Chandola V. et al.[26] extensively
survey anomaly detection techniques developed in machine learning and statistical
domains. An extensive review of several approaches to novelty detection was given
in [27].

Detecting anomalies and outliers in vehicle sensor data is a highly interesting
topic, and analyzing the abnormal patterns might conclude to serious driving
events such as dangerous driving behaviors or near crashes and crashes. Nowadays,
preventing such events has been a major scientific concern due to the high increase
in vehicle crashes resulting in fatalities and injured drivers. Therefore there are
many researches and articles regarding driving studies and analysis. Anomaly
detection in driving patterns can be utilized for different study purposes. Some
works aim to distinguish between different driving styles like aggressive, inattentive,
drunk, and "normal "or safe driving. If we consider any driving style as a set of
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some atomic driver activities, driver distraction detection or drowsiness detection
can be included in this category of driving analysis research [28, 29].

One prominent approach is using machine learning algorithms, such as supervised
and unsupervised learning, to identify anomalies in driving data. Various features
and data sources have been proposed, including vehicle sensor data, GPS data,
and video recordings, to capture relevant driving behavior information. By
leveraging machine learning techniques, these studies have achieved promising
results in detecting abnormal events such as sudden lane changes, aggressive
acceleration or braking, and illegal maneuvers. Zhang, H. et al.[30] provides a
comprehensive overview of the existing techniques and methodologies used in
anomaly detection for driving behavior analysis. it propose a SafeDrive approach
for detecting driving anomalies. SafeDrive detects abnormal driving behaviors
by employing a State Graph (SG) - a model based on both contextual relations
between statuses of the same type of data, such as speed, at different timings,
and correctional relations between statuses of different types of data, such as
the vehicle revolutions per minute (RPM) and gear position - and then an online
detection based on the comparison of the real-time driving data stream with the SG.

Furthermore, in [31], the authors propose an unsupervised anomaly detection
method based on recurrent neural networks (RNNs). They use driving data,
including vehicle sensor data and GPS information, to train the RNN model. The
approach aims to capture temporal dependencies and detect abnormal driving
patterns. Experimental results demonstrate the effectiveness of the proposed
method in detecting various driving anomalies.

In some other research areas, as in [32] and [33], the aim is to warn the driver prior
to an incident of the risk, which can be a distraction, aggression, drunk driving, or
external risk originating from another vehicle or object. Alternatively, for instance,
[34] the aim is to score a driver’s performance on a "safety scale" based on driving
style and driver behavior analysis and provide real-time information and feedback
to assist in order to improve consciousness and promote safe driving.

Zhou, Y., et al. [35] proposes a context-aware anomaly detection approach for
driving behavior analysis. The authors integrate contextual information into the
anomaly detection process, including weather conditions, traffic patterns, and road
infrastructure. They propose a novel feature representation method that captures
driving behavior and contextual factors. Experimental results demonstrate the
approach’s effectiveness in improving anomaly detection accuracy in different
driving scenarios.

In our work, we directly capture CAN-Bus data connected through OBD adapters
to the car. After encoding the semantics of different signal IDs by statistical filter-
ing approaches, the essential, required signals for driving behavior and situations
analysis are filtered out. Firstly, we aim to detect abnormal driving patterns using
in-car sensor data independent of the car model and manufacture. In our work,
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we tackle the problem of detecting anomalies by proposing a PRC framework using
ML approaches on in-car sensor data. For this purpose, we detect anomalies in
vital car sensors such as speed and brake. Through an innovative way of utilizing
ML approaches to find anomalies with unsupervised and supervised approaches, we
ease the procedure of outlier detection in car sensor data. In addition, we provide a
benchmark data set of naturalistic anomalous driving patterns and use our proposed
framework to detect abnormal driving patterns.

2.3 Anomaly detection in driving patterns based
on speed data

2.3.1 Context
The first step in building a PRC framework (described in section 2.1.2) for detecting
anomalies in driving patterns is to establish a basic foundation based on the most
common ML approaches and test the framework on a relatively simple data
set. Following the standard PRC framework in Figure 2.3 for detecting anomaly
patterns in cars’ speed data at the beginning of LEICAR project, speed data was
derived from the CAN-Bus network of daily driving patterns.

The main goal of this section is to establish the foundation of the proposed PRC
framework, analyze the performance of state-of-the-art ML approaches on the ac-
quired CAN-Bus data, and identify potential improvements for further investigation
into anomaly detection in driving patterns using CAN-Bus data. The first step is
creating a simple data set by repeatedly driving a car over speed bumps to mimic
anomalies in wheel speed patterns. Classical ML-based approach are applied to the
aforementioned data to distinguish two classes: normal and abnormal wheel speed.
Based on our findings, we propose improvements for further investigations.

2.3.2 Methodology
In this section, we provide a concise overview of the methodologies employed for
detecting anomalies in driving behavior using speed data. We applied traditional
ML techniques to identify anomalies in the speed signals from twenty-one driving
tracks, each manually labeled for reference. Normal behavior is characterized as
driving on flat roads, while traversing over speed bumps is classified as abnormal
behavior. Traditional ML approaches are used in this part of the study. There are
two reasons for this choice. Since this is the first attempt to apply ML approaches
to CAN-Bus data to analyze driving behavior, it is more prudent to keep the model
as simple as possible and improve performance with more complex models once it
succeeds. The second reason is that the amount of data at this stage is insufficient
to train deep neural networks. A succinct description of the methods utilized is
presented in the following.
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Figure 2.3: Pattern Recognition Chain (PRC) for anomaly detection in car sensor
data based on traditional ML approaches.

Handcrafted feature extraction for anomaly detection in speed data

Features are extracted renditions of the data in a lower dimension carrying the
essential attributes of the input data. The idea of training classifiers with the
extracted features is to reduce the amount of redundant input information, which
costs time and computation power. Feature engineering involves extracting and
transforming variables from raw data so that features can be used for training and
prediction. Feature engineering can require significant technical effort based on
expert knowledge.

Handcrafted (HC) feature extraction is one of the most potent traditional feature
engineering approaches used in classification problems for decades. Due to the satis-
factory results, the extraction of handcrafted features for ML applications has been
viral. In order to acquire the best knowledge of the data of the classification prob-
lem, one must access experts’ knowledge of the desired data. However, it is only
possible to reach experts’ opinions in some cases. Therefore, with reasonably good
performance, a standard solution is to use statistical attributes of the data, such as
used in [1]. This experiment extracts nine HC features, listed in Table 2.1. For each
window of segmented speed data, a feature vector of x ∈ RF×N – with F and N
being the feature’s space dimension and the number of data samples, respectively–
is based on concatenated listed statistical attributes extracted.

Classification

For the last step of the ML framework in this experiment, two supervised, and
unsupervised classifiers are implemented to train and test the above-mentioned
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Table 2.1: List of the HC features used on speed data.

Handcrafted Features
Maximum Minimum Variance

Arithmetic mean Integral Largest gradient
Maximum Difference Meancrossing Second derivative

extracted HC features.

SVM: The first one is one-class SVM, a popular unsupervised classification
approach in anomaly detection. SVM separates the data points via hyperplanes
and maximizes the distance from them to the nearest data points from each side.
If the data points are not linearly separable, this is where the kernel functions
map the data to a higher dimensional space to be separable. One-class SVM was
initially introduced by Schölkopf et al. [36] for novelty detection. One-class SVM
maximizes the distance of the data points to the origin. This results in a binary
function capturing the probability density of the data points with an output of +1
for the training data points and -1 for anomalies.

k-Nearest-Neighbors (kNN): The second classification approach used for
this experiment is the k-nearest-neighbor classifier. kNN is a type of supervised
learning algorithm used for regression and classification. kNN predicts the correct
classes based on the distance of the tested sample to the k number of closest
training data points. From calculated distances, instances can be classified
directly, or probabilities of all class memberships can be determined. The clas-
sifier’s results depend on the optimal choice of the value k. A large k prevents
the effects of predicting the class by noise while making the class boundaries less
distinctive. However, small k raises the probability of overfitting or misclassification.

Clustering

Clustering in ML refers to a process of arranging data points into groups (called
clusters). It is an unsupervised ML approach, which groups the data based on
the data points’ similarities (in this case, the spatial distances) represented as
vectors. Clustering for anomaly detection is based on two assumptions. First,
normal data instances reflect the majority of instances contained in the data
set. Second, normal data points are close to each other in the data distribution
(based on the chosen distance metrics). Several clustering approaches are used
for ML problems, such as centroid-, distribution- and hierarchical-based methods.
In this experiment, K-mean [37], and Gaussian Mixture Model (GMM) [38] are
used, which are centroid- and distribution-based clustering approaches, respectively.

K-mean clustering: K-mean clustering elects k cluster centers and continuously
updates the cluster’s center through iterative calculation. The calculations are
based on minimizing the metric of the data points to their nearest cluster center.
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Minimizing the metrics stops as certain convergence criteria are met.

Gaussian Mixture Model (GMM) clustering: The GMM is a distribution-
based clustering approach that attempts to reconstruct the data distribution using
the Gaussian model as best as possible. GMM assumes that the data set consists
of several Gaussian distributions. As the distance from the center of a distribution
increases, the probability that a data point belongs to it decreases.

The evaluation of clustering algorithms and unsupervised ML approaches is often
subjective and difficult to interpret. If the data points were already classified
into groups, clustering would be unnecessary. However, comparing the result of
clustering with known classifications or the evaluation by a human expert is very
beneficial in the case of labeled data. In addition, clustering is a suitable approach
for data evaluation and processing in ML. Therefore, in this case, the standard
F1-score is applied to the precision and recall for the clustering methods’ evaluations.

2.3.3 Experiments and results
This section presents the implementation details of performed PRC framework, in-
cluding the above-mentioned applied algorithms, the evaluation setting, and the
results.

Data acquisition

According to the data acquisition procedure described in section 1.1.2, speed
data are collected from Ford Fiesta. The vehicle is repeatedly driven over a
speed bumper (as seen in Figure 2.4). Each driving duration varies by around
one minute. Overall the data contain twenty-one driving traces of the CAN-Bus
speed signal with a sampling frequency of 100 Hz. Speed signals from twenty-one
driving tracks are manually labeled. Normal behavior is characterized as driving
on flat roads, while traversing over speed bumps is considered as abnormal behavior.

Data pre-processing and segmentation

Before applying the proposed ML-based model, raw data have been preprocessed as
follows. First, all segments and points that resemble the noise are discarded from
further analysis. To address data bias arising from the structural characteristics
of the data acquisition system, the denoising procedure was applied to specific
time intervals of the CAN-Bus speed data, primarily at the beginning or end of
the recorded time-series. Additionally, extended periods of vehicle inactivity were
removed from the speed signals.

Then, the data were resampled to the sampling rates of 1/100, 1/200, and 1/300 ms.
The min-max normalization was applied to convert the range of signal values to 0
and 1. In the next step, pre-processed data are segmented using the sliding-window
technique. Various window-sizes from the range of w ∈ {2, 3, ..., 15} are tested in
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Figure 2.4: Speed data collection inside vehicles by driving over a bumper for the
LEICAR project at the university of Siegen.

this experiment. After segmentation, the labeling procedure is manually adjusted
according to the window-size. A subwindow is normal if no anomalous data point
is stored in the associated subwindow. A subwindow is an anomaly if at least half
of the stored segment contains anomalous behavior.

Anomaly detection in speed data using traditional ML approaches

The whole experiment is coded in Python using SciPy [39] and Scikit-learn [40].
In the context of the classification algorithms discussed in this work, there are
parameters that are not trained by the training set, namely hyperparameters that
significantly affect the performance of classifiers’ data learning and decision-making.
Grid search is a tuning technique attempting to find the best combination of pa-
rameters from the set of possible parameters space to outperform the classifiers’
performance. There are two commonly used generic grid search techniques. Grid-
searchCV is the technique used to optimize the classifiers’ hyperparameters in this
study which exhaustively considers all possible combinations of parameters while
RandomizedSearchCV samples a given number of candidates from the parameters
space distribution [41].

An ML model aims to predict previously unseen data. Overfitting happens when
the model is not generalized enough to predict unseen problems. In other words,
the model is trained too well, which fits very accurately with the training data.
Learning the hyperparameters of an ML model and testing it on the same data set
causes overfitting. An overfitted model achieves perfect performance with seen data
but would fail with yet-unseen data. A train-test split generates two non-identical
independent data sets from a given data. A ratio of 80% training data to 20%
test data is usually chosen. However, in cases where the data is small or the train
and test sets do not have the same distribution, the train-test split is a possibility
of high bias since we miss some information about the data which are not used
for training. To compare the models’ performance comprehensively and prevent
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overfitting, the data are split into a train and test folds using K-fold cross-validation
[42]. Cross-validation prevents such bias by ensuring every observation of the data
appearing in both train and test sets. K-fold cross-validation randomly splits the
data in k folds, then fits the data to k−1 folds and uses the remaining kth fold to
test the model. This process is repeated till every kth fold serves as the test set.
An average of the recorded scores will be the performance of the model. In our
case, k = 5 is chosen.

For this experiment, three sampling rates are tested, which are 100 ms, 200 ms, and
300 ms/samples. Various window-sizes corresponding to the number of samples
in a time frame are from w = 2 to w = 15 samples per window tested during the
whole experiment. An overlapping factor l of fifty percent is considered.

The details of the experiments for each experimented algorithm are described as
follows:

K-means:
For K-means clustering, a range of two to four clusters is tested in this ex-
periment. The K-means algorithm is run ten times with different random
centroids, and the maximum number of iterations of a single run is set to
three-hundreds.

Gaussian Mixture Model (GMM):
Similar to the K-means clustering, two to four mixture models are considered
for the GMM model. Each component has its own covariance matrix. The
convergence threshold is set to 10−3, and the regularization parameter of 10−6

is added to the covariance matrices. The model is one-hundred times iterated.

k-Nearest Neighbor (kNN):
Various numbers of neighbors from one to ten are considered for the kNN
classifier in this experiment. A default range of parameter space (point-to-
point radius) radius = 1.0 is set for finding neighbors.

Support Vector Machine (SVM):
For the unsupervised one-class SVM, with the help of grid search, various
combinations of γ and ν are in the range of γ ∈ {0.01, 0.1, 1.0, 10, 100, 1000}
and ν ∈ {0.1, 0.4, 0.7, 1.0} experimented. The radial basis function kernel rbf
is used for the kernel type.

Table 2.2 summarizes the experimented hyperparameters for the applied methods.

Results and analysis

The experimented methods are evaluated based on four metrics: accuracy, precision,
recall, and F1- score. The results of the aforementioned approaches are provided in
Table 2.3. The presented results are for the 1/300 ms sample rate, which achieved
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Table 2.2: Hyperparameters of the applied models for anomaly detection using speed
data.

Model Parameter Value/ Type

K-means . # clusters {2, 3, 4}
. # iterations for different centriods 10
. maximum # iteration for each run 300

GMM . # clusters {2, 3,4}
. convergence threshold 10−3

. regularization parameter 10−6

kNN . # neighbors {1 : 10}{4}
. point to point radius 1.0

SVM . γ {0.01, 0.1, 1.0,10, 100, 1000}
. ν {0.1, 0.4, 0.7, 1.0}
. kernel function rbf

Table 2.3: Evaluation metrics for the classification (in percentage) of anomalous
speed signals using different models.

Methods Accuracy Precision Recall F -1 Score
K-means 73.68 73.68 100 84.84
GMM 90.97 89.81 98.97 94.17

kNN-Unsupervised 82.66 87.85 87.85 87.85
kNN-Supervised 62.66 96.66 100 98.03

SVM 73.68 73.68 100 84.84

the best scores compared to other sample rates.

The main observations drawn from Table 2.3 are as follows. Firstly, supervised
kNN outperforms other methods with a remarkable 98.3% F1-score. GMM
model achieves the second-best result with a 94.17% F1-score which is a notable
performance for an unsupervised clustering model compared to the best score
with a supervised classifier. The third observation is the performance difference
of roughly 10% between unsupervised and supervised kNN. The last important
observation is the 100% recall score of three of the five models. To understand the
reason for such high scores, one must closely examine the nature of the data and the
pre-processing applied. As mentioned earlier, the results are based on the resampled
speed signals with a sampling rate of 1/300 ms. The data is highly unbalanced and
manually labeled. Any window containing an anomaly is considered an anomalous
sample. At a sampling rate of 1/300 ms, the total number of subwindows decreases,
but the relative number of anomalous subwindows increases. This change is due
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to the fact that the probability of a subwindow covering an anomalous region
increases when it has a larger spatial structure. Therefore, regions are classified as
anomalies if they contain abnormal patterns but mostly have normal signal behavior.

In Figure 2.5, the performance of each models based on F1-score for the tested
window-sizes w of the speed data with 1/300 ms sample-rate is illustrated. It can be
observed that all models are achieving their best performances with window-sizes
w = 14 and w = 15. Supervised kNN surpasses other models with the window-size
of w = 14.
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Figure 2.5: Model performances based on F1-score for different window-sizes. The
x-axis shows the number of samples per window (w window-sizes), and the y-axis
shows the models’ performances in F1-score.

2.3.4 Conclusion
This section presents a baseline framework for anomaly detection in driving
patterns using speed data from CAN-Bus signals. The following state-of-the-art
ML algorithms have been evaluated, both supervised and unsupervised, namely
kNN, SVM, K-mean Clustering and GMM. Based on the results and concerning the
anomaly detection quality, the supervised kNN achieved the best performance with
98.03% F1-score. In the unsupervised case, the GMM algorithm obtains 94.17%,
the second-best F1-score.

The high classification score of the supervised kNN is due to the learning with labeled
data. These results could be further improved using a larger data set with more
training examples. In addition, a more profound knowledge of anomalies’ factual
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occurrence could help train classification algorithms more effectively. Moreover, a
manageable number of hyperparameters are tested using grid search. The optimal
parameters could be further refined and the result optimized.
Another possible optimization technique can be used better to adjust the parame-
ters, such as bayesian search [43] or black-box [44]. In principle, the experiments
of the proposed framework presented in this section with the algorithms mentioned
above can be widely applied for anomaly detection in sensor time-series data.
Alternatively, data from other CAN-Bus sensors recorded in parallel can be eval-
uated and used to investigate anomalous driving patterns. Furthermore, through
the recording and analysis of data, statistical statements can be made about the
frequency of risky driving situations and accident detection.

Based on the conclusion of the current observations, the stated ML-based anomaly
detection framework will be in the following sections further explored. Additional
CAN-Bus modalities and cutting-edge ML approaches, such as deep learning meth-
ods, will be examined.

2.4 Anomaly detection in driving patterns based
on multimodal sensors from CAN-Bus data

2.4.1 Context
The previous section (see 2.3) establishes a baseline framework for anomaly detection
in driving patterns using speed data from CAN-Bus. As the first attempt and as
far as the quality and quantity of the acquired data allowed, the state-of-the-art
ML approaches have achieved promising robust results so far. Nevertheless, various
potential improvements exist to enhance and broaden the proposed framework.
Considering data acquisition as the first and most crucial step of any PRC frame-
work, as is often the case in machine learning, the quantity and quality of the data are
one of the more significant issues of the proposed PRC. In this regard, more driving
data using additional sensor modalities (e.g., brake, gas, steering-angle) are being
examined to improve and expand the proposed ML-based framework for anomaly
detection in driving patterns. Enhanced deep learning approaches of anomaly de-
tection techniques are then applied to the multimodal data, and the results are
discussed in this section.

2.4.2 Methodology
This section briefly presents the method used to detect anomalies in driving be-
havior based on multimodal CAN-Bus data. The amount of acquired data in this
state of the work enables utilizing an enhanced deep learning approach to expand
the proposed PRC framework (see 2.3). Since the available data in this section is
unlabeled, one of the most popular unsupervised ANN approaches is applied. A
succinct description of the method utilized is presented in the following.
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Anomaly detection using ANNs

The explosive success of ANNs in solving ML problems over the last decade has
made ANNs also popular in the field of anomaly detection. ANNs have been
applied to anomaly detection in multi-class as well as one-class problems. In order
to apply anomaly detection using ANNs, at first, the model is trained on the
normal training data. Second, each testing sample is fed into the model. The
underlying assumption would be that an anomaly should be rejected by the model
[45, 46]. Several ANNs have been applied in the domain of anomaly detection.
Autoencoders (AEs) is one of the most popular ANNs, which are used for solving
unsupervised anomaly detection study problems.

An autoencoder is an unsupervised neural network that seeks to learn a compressed
version of an input. AEs are composed of an input layer and an output layer of
identical dimensions, in addition to at least one hidden layer of significantly reduced
dimension. Figure 3.6 illustrates a schematic representation of AEs. The most
basic AEs have only one hidden layer. However, advanced AE approaches might
contain multiple hidden layers.

AEs aims to produce an approximation of their input by first encoding the input
data into lower dimensions and then decoding it to be as similar as possible to the
original input. AEs consist of encoder and decoder, where the encoding of data
happens on the way from input to the Hidden Layer(s) and decoding is done on
the way to output. The idea behind using AEs for anomaly detection is based on
the assumption that any anomalous input will result in a significant increase in the
model’s reconstruction error that the network provides as its output.
The concept of AEs is straightforward. However, like any simple approach, AEs
have limitations, particularly in solving complicated tasks.
The main drawback of AEs is their use of Principal Component Analysis (PCA).
PCA is an algorithm to reduce the dimensionality of the input features in the
hidden layer(s)of AEs. PCA is a linear technique, so nonlinear attributes of the
input data cannot be captured using AEs. Therefore, to learn the best from the
input data using AEs, several advanced AEs are introduced in the literature.
Among them, the most popular used in this experiment are as described as follows:

Feedforward AEs: Feedforward is the most basic implementation of the AEs,
containing two layers for each encoder and decoder part. In order to obtain a
high-level compression of the data, the encoding is set to increase the dimension of
the input enormously.

Convolutional AEs: Convolutional Autoencoder (CAE)s employ the mathemat-
ical operation convolution (∗), which in general continuous domain is defined as
follows:

W ∗ Ix,y =
a∑

dx=−a

b∑
dy=−b

Wdx,dy · Ix+dx,y+dy (2.1)
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where a and b are the size of the kernel W . The function id calculated for all x and
y on the input data.
Convolutions are often used in image processing techniques. A convolution on
time-series can be seen as applying and sliding a filter over a sequence of data
or, in other words, as a generic non-linear transformation of an input vector I.
AEs can be trained to decode(encode(I)) to learn the best filters for their input
in order to extract relevant features in a compressed manner. CAE approaches
apply convolution as either their primary encoding or in series with another feature
modification. The common reason to use Convolutional Neural Networks (CNNs)
is their ability to break down features and extract valuable information about their
shape.

Long short term memory AEs: A Long short-term memory (LSTM) AE is an
implementation of AEs using LSTM in the encoder-decoder architecture. LSTM
is a variation of ANNs capable of learning temporal dependencies of sequences of
input (such as time-series) as well as using an internal memory to remember and
use information along the network. Utilizing LSTM in the architecture of AEs
seems promising, as they can remember relationships during the learning process
and can, therefore, recognize a better representation of the input. The capability
of remembering more minor details and correlations in the data appears useful for
anomaly detection purposes. Thus an LSTM AE is tested in this experiment. More
information about the details of LSTM networks is provided in 3.3.3.

2.4.3 Experiments and results
This section presents the implementation details of the proposed ANN-based PRC
framework for anomaly detection in driving patterns based on multimodal CAN-Bus
signals, the evaluation setting, and the results. The experiments in this section of
this study are written in Python with the help of SciPy [39], Scikit-learn [40] and
Keras [47] libraries.

Data acquisition

The data set used in this part of the experiment is from the LEICAR, and the data
collection setup is as described in 1.1.2. The recorded signals contain speed, brake,
and steering-angle from seven car models, including BMW i8, Fiat Panda, Ford
Fiesta, Hyundai IONIQ, Mercedes-Benz Vito, Toyota Auris and VW-up. The data
set contains twenty-five trips with a duration of four to thirty minutes.

Data pre-processing and segmentation

To prepare the extracted speed, brake, and steering-angle data from CAN-Bus for
anomaly detection based using ANNs few pre-processing techniques are applied.
The procedure starts with removing undesired segments, which usually appear at
the beginning of data recording. After cleaning, time-series data were resampled
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at 1/50 ms (20 Hz). Then, normalization is performed to bring all signal values
from different car models to the same range of min-max. In this step, the pre-
processed data needs to be divided into segments of sequences that serve as input
to the ANNs. Sliding-window technique with window-sizes w ∈ {10, 11, ..., 25} and
overlapping factors l ∈ {5, 6, ..., 13} is applied on the data.

Anomaly detection in multimodal CAN-Bus data using Autoencoders

Before training the AEs, the data set is divided into training and testing folders
with a ratio of 80 to 20%, respectively. A few hyperparameters for training AEs,
such as batch size, epochs, negative sample ratio, and the classifier threshold, need
to be optimized. Modifying these parameters can have a significant impact on the
efficiency of the model.
Batch size is the number of training samples used for one iteration. The advantage
of training data in batches, rather than feeding the entire training set into the model
at once, is that the training procedure takes up less memory. This can be useful if
there is not enough memory on the computer to train the data all at once. Also, by
using mini-batches, the model is trained faster as the parameters of the model are
optimized after each iteration. Careful choice of the size of mini-batches is crucial
because they significantly affect the accuracy of the model.
An epoch is one complete pass of the training data set through the algorithm.
Overfitting happens when the number of epochs in a model is more than necessary.
In this way, the model learns the training data to a great extent, which fails to per-
form well on the testing set. To minimize overfitting and increase the generalization
capacity of the model, the number of epochs should be optimal. To do so, usually, a
part of the training data is assigned for validation of the model to check the perfor-
mance of the model after each epoch of training. Different epochs from 5 to 20 are
tested for each AE model, and the optimal number of epochs (20) is found manually.

The negative sample ratio is the following parameter to be considered for training
the AEs. This is an estimated linear function for adjusting the model threshold
concerning the approximated number of anomalies in the training data. For
unlabeled data, knowing the ratio of negative samples is usually impossible. This
implies that one must assume the percentage of anomalies in the training data
for the algorithm to adjust its classifier threshold. If this value needs to be more
satisfactory, it can still be easily adjusted manually after the model is built, as it is
simply an estimated linear function.

The last adjustment before training AEs is choosing the models’ activation
functions. Generally, the activation functions used in AEs are nonlinear. Details
of the structure of each AE model and their corresponding activation functions
used in this experiment are outlined below. The structure of the hyperparameters
is presented in Table 2.4. These parameters were selected based on the default
options in the Keras model, manually adjusted, and tailored to the size of our data
set

Feed-forward AE:
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Table 2.4: Hyperparameters of the AE models on CAN-Bus data.

Model Parameter Value/ Type

Feed-forward AE . # Encoder dense layers 2
. # Decoder dense layers 2
. # Neurons in layers 20
. Activation function for the first layer Tanh
. Activation function for the second layer ReLU

Convolutional AE . # Conv. blocks 1
. Conv. kernel size (3, 1)
. # Conv.kernels in each block 20
. # Neurons in the dense layer 20
. Activation function for the Conv. blocks ReLU
. Activation function for the dense layer linear

LSTM AE . # LSTM layers 2
. # Output dimensions for each LSTM cell 128
. # Neurons in the dense layer 20
. Activation function for the dense layer linear

Feed-forward AE is the most basic AE consisting of two layers for each encoder
and decoder. The activation functions used in the feed-forward AE used in this
experiment are hyperbolic tangent (Tanh) and Rectified Linear Unit (ReLU)
for the first and the second layers of the encoder and decoder, respectively.

Convolutional AE:
The convolutional AE implemented in this experiment consists of a 1D con-
volutional layer followed by a 1D Global Max Pooling layer in addition to a
Dense layer to fully connect the nodes. The activation functions used in this
model are ReLU and regular linear activation for the convolutional and dense
layers, respectively.

Long short term memory AE:
In this experiment, a basic LSTM AE is implemented with an LSTM layer
of size 128 for each encoder and decoder, followed by a fully connected dense
layer with a linear activation function. This network ensures that the input
and output dimensions are matched.

Results and analysis

In this section, the final evaluations of the above-mentioned algorithms are pre-
sented.
Before providing the results and analyzing the performance of the applied ANNs,
two factors need to be considered. Firstly, the amount of data available for this
study is larger than the data used in the section 2.3. The data includes long driving
patterns, not just driving over bumpers, and the anomalies are unknown. Since
manually labeling the data is impossible, the presented results are based on graph
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interpretations and not performance metrics. Unsupervised clustering approaches
are tested, and due to poor performance, the result is not presented here. So based
on these facts, there is no mutual ground truth for comparing the results of this
experiment to the previous section (section 2.3).

The first experiment is based on car speed data. The result of Feed-forward,
convolutional, and LSTM AEs are similar. Figure 2.6a illustrates the speed data,
and Figure 2.7b represents the detected anomalous segments with convolutional
AE. The first observation in Figure 2.7b shows a promising performance of the
model. Consecutive sharp decreases and increases within a specific distance are
considered anomalies.
It should be noted that the detected anomalies are also very dependent on the choice
of the threshold. Figure 2.7a represents the same model with a stricter threshold,
detecting only the 25 most distant anomalies. 2.6b is another example of the CAE
result on the speed data. All detected anomalies are presented in 2.8b, and the ten
most distant anomalies are marked in 2.8a. An interesting result can be observed in
2.8b. Based on the recorded description of this trace and the marked anomalies in
2.8b standing at the traffic lights are also detected as anomalous samples. However,
not all of the detected anomalies are accountable. There are samples identified
as anomalies in which the speed changes by 1% to 2% of the maximum total
velocity in 500 ms frames. Therefore, to better evaluate the performance of the
trained AEs for anomaly detection in CAN-Bus data, a simple predictable speed
sample from section 2.3.3 is tested. Figure 2.9a and 2.9b depicts the promising per-
formance of AEs in detection anomalies in driving patterns based on CAN-Bus data.
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a) Example 1: Speed data.
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b) Example 2: Speed data.

Figure 2.6: Two examples of speed data used for anomaly detection approaches.
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a) The 25 most distant anomalies.
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b) All detected anomalies.

Figure 2.7: Convolutional AE results of anomaly detection based on the speed signal.
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a) The 10 most distant anomalies.
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b) All detected anomalies.

Figure 2.8: Convolutional AE results of anomaly detection based on the speed signal.
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a) Example 1.
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b) Example 2.

Figure 2.9: Convolutional AE results of anomaly detection based on the predictable
speed samples from section 2.3.3, where the car is driven over bumpers. a) Example
1 : Anomalies in speed data and b) Example 2 : Anomalies with restricted threshold.

In the next step, the brake signal as the second input modality is added to the
experiment. The input of the AEs is concatenated speed and brake signals. In
Figures 2.10a and 2.10b , the LSTM AE result shows the 50 most distant and all
anomalies, respectively. As shown in Figures 2.10a and 2.10b, the speed values
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are now significantly unaffecting. In this case, the solid consecutive oscillations in
the brake signal determine the anomalies instead. It should be mentioned that,
in general, LSTM AE performs noticeably better than other AEs dealing with
frequent changes in speed signal.
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a) The 50 most distant anomalies.
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b) All detected anomalies.

Figure 2.10: LTSM AE results of anomaly detection based on speed and brake
signals.

Based on all observations from illustrations, the overall result of the performed ex-
periments are as follows:
AEs detect all sharp changes in speed data that appear as anomalies compared to
the rest of the speed values. Not only 100% of the abrupt speed changes detected as
anomalous samples, but some are also falsely classified. In this case, since the col-
lected data is completely balanced and the model is not overfitted, ambiguity in the
anomaly definition can be only caused by misclassification. The definition of what
constitutes an anomaly is often subjective and application-dependent. Sometimes,
anomalies may be data points that need to follow a simple, well-defined pattern,
making it challenging for any model, including autoencoders, to consistently iden-
tify them correctly.In this study, variations of AEs are also tested, but almost no
differences in the performance of different variations of AEs for anomaly detection
in driving patterns based on speed data are observed.
The performance of AEs on the multi-modal CAN-Bus signals, including speed and
brake, is more outstanding than a single modality input due to the abrupt changes
in brake compared to speed values. In this case, LSTM AE outperforms other
performed AEs by marking more accountable segments of the driving traces as
anomalous samples. A smoothed speed signal using a Gaussian filter is also tested
as an input, and no improvements in the performance are observed.

Despite the lack of accuracy metrics in this context, the promising performance
of AEs for anomaly detection in time-series data can be observed based on the
above-illustrated results.
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2.4.4 Conclusion
In this section of the study pursuing the topic of anomaly detection in driving
patterns, CAN-Bus signal values of twenty-five driving trips from various cars are
analyzed according to the proposed PRC framework. Based on the state of the
collected data (enough data for ANN models but unobtainable labels), different vari-
ations of AEs, one of the most popular unsupervised ANNs, are tested and analyzed.

According to the observed illustrations of the detected anomalies on speed data,
all AE variations have a stable performance. The choice of the threshold im-
pacts the final detection in all three variations of AE. The performance of AEs
on the multi-modal CAN-Bus signals, including speed and brake, could have
been more outstanding than a single modality. However, LSTM-AE outperforms
other AEs in detecting anomalous driving patterns based on speed and brake signals.

To further analyze the performance of the before-mentioned AE approaches, a
short overview of the collected data is necessary. Considering the underlying facts
like the data used in this part of the study few crucial remarks should be noted.
First, the recorded driving traces are normal everyday driving trips containing
no dangerous events. Secondly, the data contain neither detailed information nor
labels about the driving journeys. Therefore, AEs perform remarkably promising
by detecting sharp speed acceleration (or deceleration) and standing behind the
traffic lights as anomalous events in an uneventful daily driving trip.

Lastly, one of the most significant challenges related to unsupervised approaches is
determining the accuracy. Since the processed data is not classified/labeled, and
the objective of this work is to do so automatically, it is hard to determine the exact
rate of correct classifications by the algorithm. Generating random noise is one
proposed solutions, but mimicking dangerous situations with a mathematical model
remains difficult to mimic. This work partly addresses the problem by using data
with easily visible anomalies, although it will remain one of the most significant
limitations.
Nevertheless, these results pushed the boundaries of unsupervised anomaly de-
tection in vehicle sensor data to open the possibility for further research. The
provided framework significantly impacts solving the problem of anomaly detection
in driving patterns.

According to the above-performed study on anomaly detection in driving patterns
based on multi-modal CAN-Bus data using ANNs and the underlying challenges re-
garded data limitations, the following points summarize the remarks on future work:

• Every single step of the pre-processing impacts anomaly detection. Data trans-
formations that would inadvertently lead to compromising anomalies should
be avoided in the pre-processing steps. This requires explicit knowledge of
the data and the answers to the following questions. 1. What is an anomaly
concerning the nature of the data set? 2. What are the characteristics of the
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anomalous events we are seeking? 3. Can we define the anomalies directly, or
should we look at how the machine learning model classifies them and base
our definition on it?

• Despite the unpredictability of the data, unknown shape of anomalies, and
their ever-changing range in the collected data set of driving trips, AEs show
coherent and promising performance in finding anomalous driving patterns
based on CAN-Bus signals. Thus, further investigation of using AEs for
anomaly detection in more advanced data sets is recommended.

• Finally, the data’s quality and quantity are prerequisites for a successful
anomaly detection model. High-quality data are homogeneous, contain in-
formation describing the characteristics of the anomalies, and are preferably
labeled. Therefore, for future work, it is crucial to prepare a collection of
high-quality naturalistic data and reinvestigate the above-suggested frame-
work that has shown promising performance in anomaly detection of driving
patterns based on CAN-Bus signals far. In addition, Considering data collec-
tion for a multi-class anomaly detection model needs to be further analyzed
in future work.

2.5 Anomaly detection in benchmark data

2.5.1 Context
Anomaly detection in driving behavior is a research domain that focuses on
identifying abnormal driving patterns using various data modalities, such as traffic
data and image or sound-based data modalities. In this work, internal car sensors
are used for anomaly detection and event detection in driving patterns. The data
collected from the sensors include information such as speed, acceleration, braking,
steering-angle, and vehicle position.

Anomaly detection in driving behavior has become increasingly important in the
research domain of recent years due to the rise of autonomous vehicles and the
need to ensure the safety of drivers and passengers. An example of a contribution
to anomaly detection in driving behavior is using machine learning algorithms to
analyze sensor data and identify abnormal behavior patterns. These algorithms
can be trained on large data sets of normal driving behavior to learn what normal
behavior looks like and then use this knowledge to identify abnormal behavior.
Another contribution is the development of systems that can provide real-time
feedback to drivers when they exhibit abnormal behavior. These systems can
significantly improve driving safety by helping drivers be more aware of their
behavior and take corrective action when necessary. For example, a system may
warn a driver if they are driving too close to another vehicle or exhibiting aggressive
driving behavior.

The word anomaly can refer to various subjective events (car failure, sudden stops
caused by traffic lights or traffic jams, etc.) in the concept of driving behavior.
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In this study, anomalies are firstly defined as anomalous driving patterns that do
not match the rest and appear less frequent than daily driving patterns. Based
on this definition, any anomalous patterns such as a long stand behind traffic
lights can be the outcome of the anomaly detection in driving patterns. The
previous two subchapters present an ML-based framework with promising results
(see subchapters 2.3.3 and 2.4.3) for anomaly detection in driving behavior (daily
driving behaviors) using in-car sensor data.

However, the main purpose of anomaly detection in driving behavior is to identify
potentially dangerous driving behavior, such as sudden stops, rapid accelerations,
or swerving, and provide feedback to the driver to help prevent accidents. For this
purpose, a data set containing dangerous driving patterns, preferably with labels,
is vital. This sub-chapter introduces a naturalistic labeled benchmarking data set
for anomaly detection in driving behavior. The methods with the most promising
results mentioned in the last two sub-chapters are applied to this enhanced data
set. Ultimately, the results are presented and interpreted.

2.5.2 Methodology
The methodology of this section is a continuation of the study on the proposed PRC
framework for anomaly detection in driving behavior based on CAN-Bus signals.
The objective of this section is to present a labeled data set of naturalistic hazardous
driving behaviors to serve as a benchmark data set for detecting anomalies in driving
patterns using primary sensor data in cars. Additionally, the data set will be used
to evaluate the ML approaches used before.

Handcrafted feature extraction

For decades, handcrafted feature extraction has been a popular and effective
approach for training machine learning models. It involves manually designing and
selecting relevant features from the input data that are then used to train the model.
These features are often selected based on expert knowledge or domain-specific
understanding of the problem. For example, in image processing, handcrafted
features include texture, color, and shape descriptors. Similarly, features such as
pitch and frequency might be extracted from audio signals in speech recognition.
Despite the success of handcrafted feature extraction, it can be time-consuming
and requires significant domain expertise. Therefore, recent advancements in deep
learning have focused on automating feature extraction to reduce the need for
manual feature engineering.

Typically, the efficiency of the extracted information is optimized by an expert’s
knowledge of the relevance of the handcrafted features. However, due to insufficient
resources, experts’ knowledge is not always available. In such cases, low-level sta-
tistical attributes of the time-series data, such as minimums, maximums, standard
deviations, etc., are often used in either the time or frequency domain [48].
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Classification

SVM is one of the most popular classifiers in supervised ML applications. Based on
the last observations in this chapter of this dissertation and the popularity of SVM in
solving classification tasks in past ML works, SVM classifier is also used on the Lab
data. SVM uses different kernels capable of classification tasks in higher dimensions,
even in cases where the number of feature vector dimensions is higher than the
number of samples. A soft-margin SVM classifier uses C parameter, which grants
the ability to control how much the SVM algorithm penalizes the misclassification of
the data points. Conversely, using a high value for C leads to a decision surface that
classifies more points correctly, even at the cost of lousy generalization (overfitting)
[49]. In this case, the chosen kernel for the applied classifier is the linear kernel. The
linear kernel function is the most simple of the commonly used SVM kernels [50].
Models derived from the SVM approach described so far are, by definition, binary
classifiers. An SVM is designed to find a hyperplane that serves as a decision
boundary between two classes: normal and anomalies. However, in this part of the
study, multiple classes will be introduced in the benchmarking data set. Therefore,
it is necessary to differentiate between more than just two classes. Several
approaches exist for multiclass classification using SVC in particular and binary
classifiers in general. Generally speaking, these approaches entail constructing
many classifiers, though there is also an approach to constructing an SVC using a
multiclass objective function [51]. With our goal of constructing a classifier that
can be run on embedded, in-car hardware in mind, computational complexity
must be considered a decisive factor. This being the case, we will focus on the
One-versus-all and All-versus-all strategies.

One-versus-all classifiers (OVA), also called one against rest or winner-take-all
[52], is commonly cited as the simplest of binary classification decomposition ap-
proaches to multiclass classification. It consists of the following steps [53]:

1. Given K classes, construct K binary classifiers, where each classifier differen-
tiates a given class from the other K − 1 classes. Each classifier is trained
considering training examples of its respective class as positive instances and
training examples from one of the other K − 1 classes as negative instances.

2. Classify unknown instances using each of the K classifiers. The instance is
then considered to be of the label belonging to the classifier that produces the
maximum output.

All-versus-all classifiers (AVA), also commonly known as one against one, is
a slightly more sophisticated approach than OVA. According to [53], it works as
follows:

1. Given K classes, construct K(K−1)
2 binary classifiers - one to distinguish be-

tween each pair of classes.

2. Classify unknown instances using each of the classifiers. Voting among all
classifiers is then conducted. The label of the winning classifier is applied to
the instance.
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Performance analysis

Performance metrics are an essential component of evaluating the effectiveness of
machine learning models. They provide a quantitative measure of a model’s accuracy
and ability to generalize to unseen data. Standard performance metrics in machine
learning include accuracy, precision, recall, and F1-score.
Accuracy is the most basic performance metric that measures the proportion of
correctly classified instances. Precision measures the proportion of true positives
over the total number of predicted positives, while recall measures the proportion
of true positives over the total number of actual positives. The F1-score is the
harmonic mean of precision and recall, providing a balanced measure of a model’s
performance. In order to measure classification performance, selecting the right per-
formance metric is critical to ensure the model’s effectiveness and identify potential
areas for improvement.
Precision: also called True Positive Accuracy (TPA) [54], is defined as the ratio
of true positives (tp) to predicted positives (pp) [54]:

Precision = P = tpa = tp
pp (2.2)

Recall: also known as True Positive Rate (TPR) [54], as the name suggests, is
defined as the ratio of true positives (tp) to real positives (rp) [54]:

Recall = R = tpr = tp
rp (2.3)

F1-score: The F1-score is defined as the harmonic mean of Precision (P) and Recall
(R) [55]:

F1 = 2PR
P + R (2.4)

Multi-class classification performance evaluation: The measures defined so
far rely only on the concept of positives and negatives which translates well to an
evaluation framework for binary classification algorithms, but falls short of providing
a suitable metric for evaluating a Multi-class classification system.
A naive but also still commonly used approach that works for binary classifiers as
well as multi-class classifiers is the accuracy measure. It is simply defined as the
ratio of the number of correct predictions to the total number of predictions [56]:

Accuracy = A = ncorrect

ntotal
(2.5)

Though accuracy is independent of the number of predicted classes, it is not suitable
for working with class-imbalanced data sets [56]. Thus, in order to leverage the F1
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score metric, one may compute it in respect to every class the multi-class classifier
makes predictions for and then take an average, for example arithmetic mean, over
the scores for each class. Using arithmetic mean and n classes, average F1 score
will be defined as:

F∗1 = 1
n

n∑
i=1

F1(i) (2.6)

2.5.3 Experiments and results
This section explains the experimental setup of the study on anomaly detection in
driving behavior, including data acquisition for novel naturalistic driving patterns.
All the implementations in this study were coded in Python, using Scikit learn [41].
To have a comprehensive measure of our model’s performance throughout the whole
data set, a shuffled train-test split function from scikit learn [41] is used on the data
set. Furthermore, the details of the applied approaches and their results are in the
following subsections presented.

Data acquisition

One of the main contributions of this study was proposing a complete ML framework
that includes supplying a novel data set for anomaly detection in driving patterns
based on multimodal sensor data in cars. In order to provide a labeled data set
containing dangerous driving events for anomaly detection in driving patterns
based on multimodal in-car sensor data, some definitions are needed. According
to [57], a driving event usually refers to maneuvers occurring during the driving
task, such as acceleration, deceleration, turning, and lane change. By extension, a
dangerous driving event would then be such a maneuver if it is associated with an
elevated risk of causing harm to the driver, other traffic participants, the vehicle,
or other property. A driving pattern has previously been defined as the speed
profile along with all analysis results that may be derived from it [57]. This study
extends utilized sensor modalities containing other recorded signals, indicating
speed, brake pressure, steering-angle, and derivatives, including frontal acceleration.

The data collection is conducted by the Chair of Operating Systems and Distributed
Systems at the University of Siegen in collaboration with the company INVERS
[2] as part of the LEICAR Project (section 1.1.2). Recorded data is based on four
abnormal hazardous driving behaviors recreated by seven drivers with basic up to
professional driving skills on a training ground in Olpe, North Rhine-Westphalia,
Germany. Table 2.5 lists the vehicle models and types used in this experiment.

The hardware used for data collection consists of two Raspberry Pis with CAN-Bus
adapter shields, which are connected to the cars’ CAN-Bus ports. A GoPro camera
is installed on the dashboard of the cars facing the windscreens, and an Empathica
E4 wristband [58] are used by the drivers to mark the start and end of events
(driving). The Empatica captures the driver’s heart rate, skin conductance, and
accelerometer. Only collected signal values from the cars are used in our study.
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The Empatica wristband was connected to the Raspberry Pi via Bluetooth. Using
the Empatica button, it was possible to split the track of the recording data when
the drivers or the scenarios changed. In this way, the only contact with the drivers
was via the Empatica wristband, and the drivers were not interrupted or distracted
during the data acquisition.

Table 2.5: Cars used during data acquisition.

Model Transmission Propulsion
Audi Q3 automatic combustion
Ford Fiesta manual combustion
Opel Ampera E automatic electric
Toyota Auris manual combustion

To replicate abnormal hazardous driving patterns, four different abnormal driving
scenarios (events) were conducted and recorded at the training ground, guided and
supervised by experienced driving trainers from the training lot (see Table 2.6).

Table 2.6: Conducted driving events with corresponding labels.

Label Event
0 N/A (Normal driving)
1 Hard braking
2 Hard braking and steering
3 Aquaplaning
4 Slalom

These four abnormal hazardous driving scenarios have been designed to be repro-
ducible. Their explanations and associated labels 2.6 can be found as follows:

• Normal driving: In this experiment, a normal driving scenario is consid-
ered the baseline for detecting anomalies in driving behavior. The normal
driving events refer to smooth steering, braking, shifting, accelerating, and
decelerating the vehicle at zero to 80 km/h in the practice area.

• Emergency brake: The braking scenario is performed by accelerating to
50-80 km/h and suddenly pulling the emergency brake.

• Emergency brake plus steering: Emergency braking plus steering is per-
formed similarly to the previous scenario, in addition to forced steering after a
full braking maneuver. These two scenarios are modeled on a driver’s behavior
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reacting to sudden environmental changes, e.g., an obstruction looming before
him.

• Aquaplaning: The aquaplaning scenario was recorded on a slippery track
with water sprinklers and a kick plate. Electronic Stability Control (ESP) was
disabled on all cars to record this scenario, enabling us to capture the driver’s
reaction to the sudden loss of control over their vehicle.

• Slalom: The slalom scenario aimed to simulate aggressive driving behavior
in a way that the drivers steered around a set of pylons at increasing speeds,
trying to approach the limits of their ability to control the vehicle.

Data labeling

Assigning labels to the captured data is the most time-consuming and resource-
consuming task in the data acquisition process. The accuracy of the label
assignment can strongly influence the data quality and, thus, the efficiency of the
supervised ML models.

In order to provide a suitable application for a proper labeling procedure, a labeling
tool called supervisor was proposed by Hasse in [59]. The video recordings for
each driving track were used to identify the time intervals that are indicators of a
hazardous event, along with a graphical representation of the data for each signal
recorded with the Supervisor application. Using these modalities and depending
on the scenario, different cues were used to determine the start and end time index
of the event intervals. In addition to the manual notes taken during the events
and the synchronized video recordings, the parameters listed in Table 2.7 were
considered in the label assignment.

Table 2.7: Labeling start and end cues.

Label Event Start End
1 Hard braking deceleration start velocity = 0
2 Hard braking and steering deceleration start velocity = 0
3 Aquaplaning kick plate activation velocity = 0
4 Slalom start/ end of periodical steering-angle pattern

Data pre-processing and segmentation

The recorded data containing speed, acceleration, steering-angle, and braking
pressure of the dangerous driving events are pre-processed and segmented according
to the following steps:

• Data cleaning: Data cleaning is the procedure of adding missing data and
correcting, repairing, or removing incorrect or irrelevant data from a data
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set. Due to the connectivity issues during the recording, some of the recorded
CAN-Bus traces contained no data. Others contained several significant gaps
for unknown reasons. With this procedure, CAN-Bus traces falling into either
of those two categories were discarded.

• Data synchronization and aggregation: Within this step, the video
records corresponding to each CAN-Bus trace were used along with a graph
representation of the data for each signal, and timestamps were synchronized.
The speed, brake, and steering-angle signals were semi-automatically extracted
from the CAN-Bus traces developed as part of the LEICAR project (see 1.1.2),
resulting in a two-column text file for each signal - with the first column con-
taining the time indices and the second column containing the value for each
time index. The acceleration signal was then computed as the first derivative
of the speed signal.

• Data resampling: Though the original signals were available at a sample
rate of around 50 Hz on average, the choice was made to downsample them
to 20 Hz in order to reduce the amount of data to process in further steps. In
order to achieve this, a simple linear interpolation approach was used. Some of
the signals had one more data point than most of the other signals in a given
trace, presumably because the signals were not sampled in phase at recording
time. Those excess data points that only became apparent after resampling
were discarded.

• Data normalization: At this stage, Min-Max normalization was utilized,
adjusting the signal values to a range from 0 to 1. Although this normaliza-
tion choice has reduced the effectiveness of certain handcrafted features, the
classifier is still capable of distinguishing between classes with various features,
owing to the substantial inter-class variabilities observed in hazardous driving
events.

• Data segmentation: As in [60], a sliding time window was chosen for the
segmentation. Therefore, suitable values had to be chosen for the segment
length and the step size of the sliding window (see Figure 2.2). For the segment
length, 3s was initially chosen as an estimate for a period containing enough
information for a system to make a classification decision. In later steps,
segment lengths of 1s, 2s, and 4s were used to validate this choice. Of these
choices, a segment length of 2s provided the most accurate classification results.
The σ = 1 sample was chosen for the sliding window stride. Figure 2.11
presents one of the resulting segments of a driving sample recorded in this
study.

As the data was labeled before resampling, labels had to be resampled as well in
order to align them with the rest of the data, which resulted in non-integer label
values for some time indices. A label mapping using thresholding was applied to
adjust the suitable labels.
Let lmax be the numerical value of this label. Let (lt)t∈N0 denote the sequence of
time index-based, potentially non-integer label values lt ∈ [0, lmax] ⊂ R for one file
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Figure 2.11: A segment of the aquaplaning scenario (label 3) after normalization.

that contains data from only one scenario with label lmax. The label ls for a segment
s = [ti, tj], i ≤ j is then determined by:

ls =

lmax , if ∀lt ∈ s : lt > 1
2 lmax

0 , otherwise
(2.7)

Feature extraction for anomaly detection in lab data

The HC features in this study are from most commonly used HC features on the
time-series data as listed in Table 2.8. These features are computed individually
on each sensor channel. The feature vector of each sample is then a concatenated
vector of all extracted features of all sensor channels.

Table 2.8: List of the handcrafted features used on the Lab data. Each feature is
computed on each sensor channel independently.

Handcrafted Features
Maximum Percentile 50 First-order mean
Minimum Percentile 80 Norm of the first-order mean
Average Interquartile Second-order mean
Standard-deviation Skewness Norm of the second-order mean
Zero-crossing Kurtosis Spectral energy
Percentile 20 Auto-correlation Spectral entropy

Classification

To classify the above-mentioned extracted feature, SVM is applied. SVM is
advantageous because it can handle non-linearly separable data by transforming it
into a higher dimensional space, where a hyperplane can separate the data. SVM
also has a regularisation parameter C that helps prevent data overfitting, making
it a reliable algorithm for classification tasks. Additionally, SVM is effective even
when the number of features is larger than the number of samples, which is common
in many real-world applications.
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The chosen kernel of the SVM in this experiment is the linear kernel, a variant of
SVM that uses a linear function to find the hyperplane that separates the data
points. The linear kernel is the simplest and works by computing the dot product
between two vectors in the input space. The decision boundary of the SVM with a
linear kernel is a straight line in two dimensions, a plane in three dimensions, and a
hyperplane in higher dimensions. The linear kernel is efficient and fast to compute,
making it suitable for large datasets. However, the linear kernel can only separate
linearly separable data, which means that it may not be suitable for some complex
data sets. Nonetheless, SVM with a linear kernel is still a popular choice for many
classification tasks because of its simplicity and effectiveness.

In this experiment, the linear kernel SVM were trained with the regularization pa-
rameter C = 2k for k ∈ [1, 5]. The C parameter in SVM controls the trade-off
between maximizing the margin and minimizing the classification error. A smaller
value of C will result in a wider margin, which can lead to more generalization but
may also result in more misclassifications. Contrarily, a larger value of C will re-
sult in a smaller margin, which can lead to overfitting but may also result in fewer
misclassifications.

Results and analysis

The results of the aforementioned feature extraction approach with the linear SVM
classifier using different C parameters are provided in Table 2.9.

Table 2.9: SVM approach classification performance metrics in percent for different
values of the C parameter. F1-score are shown for each label, followed by average
and weighted F1-score and accuracy.

Measure C=2 C=4 C=8 C=16 C=32
F1(0) 97.65 97.65 97.62 97.60 97.21
F1(1) 50.00 50.00 80.00 80.00 80.00
F1(2) 78.66 79.55 79.17 80.07 70.13
F1(3) 65.29 65.62 65.17 66.94 64.40
F1(4) 68.98 69.07 67.67 66.91 71.00
Average F1 72.12 72.38 77.93 78.31 76.55
Weighted F1 95.23 95.25 95.13 95.10 94.88
Accuracy 95.58 95.60 95.54 95.50 94.84

Table 2.9 reveals various observations. First, as noted before, the accuracy measure
does not seem helpful within the context of the class-imbalanced data set, producing
a misleadingly high value of 95.58%. Thus, the average F1 score was used to identify
the best-performing run for each implementation. Secondly, SVM’s Average F1-
score indicates the best performance of 78.31% with the regularization parameter
C = 16. Moreover, the performance gap between F1 scores of different classes, most
obviously the F1 score 97.60 % of the class containing normal driving, F1(0), events
compared to the one by class aquaplaning, F1(3), with 66.94% needs a glimpse of the
quantity of the classes. Figure 2.12, shows two charts showing the class proportions
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based on negative to positive driving events and the distribution of various scenarios
in positive events, respectively.

Class balance: Positive versus negative
instances. Distribution of positive class instances.

Figure 2.12: Class distribution of the recorded data set, measured after pre-
processing and segmentation.

As previously noted, although we explicitly attempted to capture dangerous
driving situations, the class balance is still dramatically tilted toward negative
instances. This imbalance can be observed in Figure 2.12(a), which explains the
high F1(0)(the normal driving event). Delving deeper into the class distribution
among the positive instances, we can observe a substantial imbalance even within
the positive classes (see Figure 2.12(b)), which explains the performance differences
of the SVM classifier of each class.

The quality of the labeled data is the second important fact to be noted before
concluding the presented framework’s performance. Creating an actual data set
with high-quality labels has been proven to be the most challenging part of a
PRC framework. In this case, several challenges were encountered, which clearly
impacted the model’s performance. Since the windshield camera failed several
times during the recording process due to overheating problems, labeling was made
considerably more difficult in these cases and may thus have suffered in terms of
accuracy.

Another obstacle that had to be overcome was that the recorded CAN-Bus trace
files needed to be marked with usable file system timestamps. This made matching
the video recordings with CAN-Bus data considerably more difficult. In the cases
where video recordings were needed to identify an event’s start, data and video files
had to be matched based on their duration manually. In the case of aquaplaning,
extensive use of the video material recorded using the windshield camera was
required. This was primarily because the kick plate activation did not produce an
easily distinguishable pattern in any signals.

In summary, it can be said that, given the circumstances, the class distribution
of the data set and the accuracy of the labels turned out to be quite adequate
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and rendered the data set suitable for use in developing and evaluating dangerous
driving detection systems.

2.5.4 Conclusion
This subsection introduces a labeled data set of naturalistic hazardous driving
behavior for detecting anomalous driving patterns using primary in-car sensor
data. Five driving patterns, including normal driving, driving with the emergency
brake, emergency brake plus severe steering, aquaplaning, and slalom, by seven
drivers with different driving skills driving four car models are performed in a
training lot in Germany. The data are labeled via a labeling tool (supervisor [59]).
The proposed PRC framework (see 2.3) is used to classify data in a multi-class
classification task. The results presented in subsection 2.5.3 reveal a notable 78.31%
average F1 score with HC features classified by SVM. Despite various challenges in
the data acquisition procedure or the labeling task, in addition to the huge obstacle
of dealing with imbalanced data, this work greatly contributes to exploring and
benchmarking different types of dangerous driving event detection systems.

Last but not least, there are a few opportunities to improve further this study inves-
tigation in the domain of dangerous driving behavior detection using ML pipelines.
To produce a data set to be used in a real-world dangerous driving event detection
application, the data acquisition approach needs to be improved threefold.
Firstly, events with a comparatively short duration, such as hard braking, may have
to be recorded disproportionately often to even out the class imbalance, as depicted
in Figure 15b. Secondly, additional care must be taken to ensure the recording
equipment stays operational during data acquisition sessions. More readily available
video material as well as an easier means to match that video material with time
indexes found in the CAN data would have significantly contributed towards
creating more accurate labels.

For the PRC framework, the feature extraction stage is a good starting point
for optimization. In particular, studies such as [60] have found that using
an SVM in combination with a Convolutional Neural Network (CNN) Long
Short-Term Memory (LSTM) hybrid or a fusion of both of these approaches for
automated feature extraction produces improved time-series data classification
performance. In addition, employing a kernel other than the linear kernel used
for the SVC in this study, for instance, an RBF kernel, might produce better results.

2.6 Scientific discussion
This chapter investigates anomaly detection in driving patterns based on in-car sen-
sor data. The chapter examines anomaly detection in driving patterns via time-series
data in-car sensors. The first section of this chapter proposes a PRC framework to
apply ML approaches as a baseline for anomaly detection in time-series in-car sensor
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data. By using this framework, a comparison of the supervised and unsupervised
anomaly detection on the in-car sensor data is performed. Furthermore, in this
chapter’s second section, the number of in-car sensor modalities is expanded to suf-
fice to utilize a deep learning algorithm. Since the acquired data are unlabeled, an
unsupervised deep learning anomaly detection technique is applied.
Traditional handcrafted feature extraction and SVM and kNN classifiers are used to
detect abnormal driving patterns on the speed time-series. Supervised kNN classifier
achieves a notable 98.03% F1-score while kNN-unsupervised and SVM gain 87.85%
and 84.84% F1-score, respectively.
In addition to the abovementioned approaches, cluster-based ML approaches are
applied too. K-mean and Gaussian mixture models are implemented to detect
anomalous driving patterns in the speed sensor data. GMM surpasses the K-mean
clustering with a 94.17% F1-score. It is clear that the high classification score of
the supervised kNN is due to the learning with labeled data.
The notable results of the performed experiment show an apparent success of the
proposed PRC framework. Although the acquired data rarely contain severe ab-
normal driving patterns, the results reveal an evident success in finding anomalous
driving patterns detecting the least frequent driving events, such as driving on the
speed bumpers or standing behind the traffic light as abnormal driving patterns
compared to normal daily driving.
Based on the notable success of the proposed methodology for detecting abnormal
driving patterns using in-car sensor data, further improvement of this research
investigation is only possible with sufficient labeled data containing severe abnormal
driving patterns. Therefore, the final section of this chapter provides a novel driving
data benchmark acquired based on naturalistic driving events performed on a
training lot. The proposed PRC framework is then applied to the acquired data
using HCF extraction with an SVM classifier. Five driving events are classified via a
multi-class classifier, including normal driving, hard braking, steering, aquaplaning,
and slalom. The reason for not using a deep learning approach in this experiment is
the insufficient data for training and testing purposes. The results reveal a notable
average F1-score of 78.31%. This result is prospering since this performance is
based on a multi-class classification task.
The presented chapter’s overall observation of these experiments shows that it is
possible to detect abnormal driving patterns only based on primary in-car sensor
data. Using ML tools on a sufficient amount of data that the anomalies are well
defined is the primary key to conducting a successful classification task of detecting
abnormal driving patterns with in-car sensor data.

2.7 Summary
Chapter 2 presents a novel study, filling the gap in the literature on driving behavior
anomaly detection based on time-series data in cars. The lack of labeled data and
the scarcity and complexity of anomalous driving patterns are the primary reasons
for the research gap in the field of driving anomaly detection based on in-car sensor
data. Identifying abnormal driving patterns is crucial for recognizing accidents
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and near accidents. When examining all anomalous driving patterns within a data
set, accidents represent the least frequently occurring events in contrast to normal
driving events. Therefore, the ability to distinguish abnormal events from normal
ones is a big step towards recognizing certain abnormal events as accidents.

This chapter delved into anomaly detection in driving data in three main sub-
sections. The first section introduced a baseline framework for PRC anomaly
detection in driving patterns using speed data from CAN-Bus inside cars. The
state-of-the-art ML algorithms were applied and analyzed, including supervised
(KNN and SVM) and unsupervised (K-mean and GMM) approaches. Based on the
results and concerning the anomaly detection quality, the supervised KNN achieved
the best performance with 98.03% F1-score. In the unsupervised case, the GMM
algorithm obtains 94.17%, the second-best F1-score.

In the second section of chapter 2, the exploration of anomaly detection in driving
patterns continued by leveraging unlabeled CAN-Bus signal values from twenty-five
driving trips across different cars. This extended investigation, conducted within
the proposed PRC framework, not only pushed the boundaries of unsupervised
anomaly detection in in-vehicle sensor data but also paved the way for potential
future research endeavors. The provided framework significantly impacts solving
the problem of anomaly detection in driving patterns. Based on the state of the
collected data (enough data for ANN models but unobtainable labels), different
variations of AEs, one of the most popular unsupervised ANNs, are tested and
analyzed. According to the observed illustrations of the detected anomalies in
speed data, all AE variations perform similarly stable. The choice of the threshold
impacts the final detection in all three variations of AE. The performance of
AEs on the multi-modal CAN-Bus signals, including speed and brake, could have
been more outstanding than a single modality. However, LSTM-AE outperforms
other AEs in detecting anomalous driving patterns based on speed and brake signals.

In the concluding part of chapter 2, a benchmarking data set is introduced to
detect anomalous driving patterns using primary in-car sensor data. The data set
involves five distinct driving patterns performed by seven drivers across four car
models, encompassing everyday driving, emergency braking, emergency braking
with severe steering, aquaplaning, and slalom, conducted in a training lot in
Germany. Supervised labeling through a labeling tool was employed, and the
proposed PRC framework (see Figure 2.3) was utilized for multi-class classification.
The achieved results in section 2.5.3 demonstrate a noteworthy 78.31% average
F1-score with HC features classified by SVM, contributing significantly to the
exploration and benchmarking of diverse dangerous driving event detection systems,
despite challenges in data acquisition, labeling, and imbalanced data.

Overall the results of this study highlighted the following main points:

• The anomaly detection in driving behaviors based on in-car sensor data re-
quires explicit knowledge of the data and the answers to the following ques-
tions. 1. What is an anomaly concerning the nature of the data set? 2. What
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are the characteristics of the anomalous events we are seeking? 3. Can we
define the anomalies directly, or should we look at how the ML models classify
them and base our definition on them?

• In the case of unlabeled data, despite the unpredictability of the data, the
unknown shape of anomalies, and their ever-changing range in the collected
data set of driving trips, AEs show coherent and promising performance in
finding anomalous driving patterns based on CAN-Bus signals.

• In case of labeled data, section 2.5 reveals a notable 78.31% average F1-score
with HC features classified by SVM.

• Finally, the data’s quality and quantity are prerequisites for a successful
anomaly detection model. Therefore, section 2.5 introduced a benchmarking
naturalistic data set of hazardous driving behaviors, significantly contributing
to anomaly detection in the driving behavior analysis domain.
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Chapter 3

Automated car accident detection
based on multimodal sensor data

The demand for transportation in developing countries is on the rise, leading to
a significant increase in road traffic injuries and fatalities, particularly in low- and
middle-income nations [61]. According to the World Health Organization (WHO)
[62], the substantial toll of injuries and fatalities resulting from traffic accidents
underscores a global road safety crisis, with such accidents ranking among the lead-
ing causes of death for individuals aged 5 to 45. Despite ongoing advancements
in accident prevention and detection systems within the automobile industry, there
remains a pressing need for efficient automated accident detection to help save lives.
Furthermore, accident detection has significant implications for environmental and
safety applications, as well as the expanding field of fleet management. It plays a
crucial role in reducing the risks associated with both vehicles and drivers, enhancing
service quality, and cutting operational expenses. While previous literature has
proposed solutions for automated accident detection primarily relying on traffic
data or external sensors, there are challenges. Accessing traffic data can be complex,
and the setup and reliability of external sensors can be problematic depending on
their deployment. Moreover, the scarcity of accident detection data in the past
has limited the variety of approaches, with machine learning (ML) being relatively
unexplored. Consequently, this chapter introduces an ML framework for automated
car accident detection, leveraging multimodal in-car sensors and state-of-the-art
feature extraction methods.
To summarize, the contributions of this chapter are as follows:

• The content discussed in this chapter marks a groundbreaking exploration, be-
ing the inaugural investigation into ML-driven accident detection using funda-
mental in-car network data. This study stands as a distinctive and pioneering
research endeavor, as it focuses on identifying actual driving accidents using
the most readily available and cost-effective data sources within vehicles.

• Within this chapter, an in-depth ML framework is unveiled, built upon the
PRC framework depicted in Figure 3.1, designed to execute accident detection
by leveraging fundamental in-car network data. Furthermore, this framework
is employed to conduct a comparative analysis of cutting-edge ML feature ex-
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traction techniques, specifically tailored for in-car sensor data used in accident
detection. The framework is applied to the SHRP2 NDS crash data set, which
encompasses data from gas-pedal position, speed, steering-angle, and accel-
eration sensors. This comprehensive approach yields promising results in the
realm of automated accident detection using naturalistic data.

This chapter includes content previously published by Hozhabr Pour et al. in [11].
The chapter is structured as follows: Section 3.1 addresses the problem statement
and underscores the need for an ML-based framework for automatic accident detec-
tion using in-car sensors. Section 3.2 reviews related work in the field. Section 3.3
describes the proposed ML framework, illustrated in Figure 3.1, and briefly explains
the materials and techniques employed. Section 3.4 discusses the implementation
details of all applied algorithms and explores the results. In section 3.5, we present
the scientific interpretation of this study. Section 3.6 serves as the conclusion and
summary, addressing accomplishments, study limitations, and future work.

3.1 Problem statement
The research focus on identifying accident patterns is paramount within the realm
of driving analysis. As per the global status report on road safety conducted
by the WHO [62], the number of traffic-related fatalities continues to steadily
increase. Despite notable advancements in road safety through initiatives like Driver
Assistance, Safety Awareness Services, and Automatic Crash Notification (ACN)
systems, the significance of accident detection and prevention in driving studies
remains undiminished. Consequently, accident detection studies have garnered the
interest of insurance and fleet management companies [63, 64]. Furthermore, the
impact of accident analysis extends to various domains, including environmental,
road safety, and commercial applications such as insurance and loan qualifications,
where its contributions hold significant potential [65].

An important contribution of the accident detection studies is the post-crash ap-
plications concerning immediate dispatch of the emergency and roadside assistance
services [66, 67, 68, 69]. However, these studies do not analyze accident patterns but
rather imply factors such as airbag deployment to detect an accident. A recent ap-
plication of accident detection, which studies accident patterns, is automated boxes
installed in cars that minimize the service and overhead inspection cost of fleet op-
erators by detecting car damages due to minuscule accidents, bumps, accelerations
and braking manoeuvres [70].
In the domain of accident detection, studies employing machine learning (ML) are
relatively scarce, as noted in a review by Meiring [65]. Several factors contribute
to this scarcity. Firstly, in cases involving accident detection, providing positively
labeled data is exceedingly challenging. Furthermore, creating a large real-world
database containing accident events is not only costly and time-consuming but
is also hampered by the competitive nature of the automobile industry and data
privacy concerns.
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To the best of my knowledge, the most substantial database for real-world acci-
dent data, including vehicle time-series, is the one provided by the second Strategic
Highway Research Program (SHRP2) Naturalistic Driving Study (NDS) [71]. Data
scarcity in the field of accident detection is a significant impediment to developing
an automated accident detection system trained with ML, as such systems necessi-
tate large, comprehensive, unbiased, and high-quality data sets. Moreover, waiting
for new data to be generated is often required.
The complex nature of accident events itself presents substantial challenges. In
cases like these, manually labeled training data is essential, where precise conditions
characterizing the definition of an accident must be predefined. According to the
Virginia Tech Transportation Institute (VTTI) [71], an accident is defined as "any
contact that the subject vehicle has with an object, either moving or fixed, at any
speed in which kinetic energy is measurably transferred or dissipated. This also
includes non-premeditated departures from the road, as well as instances where
the subject vehicle strikes another vehicle, a roadside barrier, a pedestrian, cyclist,
animal, or object on or off the roadway."
Based on this definition, even minor incidents, such as minor tire contact with low
or no risk (e.g., clipping a curb during a tight turn), can be considered accidents.
Identifying such cases typically relies on incident reports or thorough inspections,
posing a significant challenge for automated accident detection.
Accident detection is typically framed as a binary classification problem, where input
data are used to train models representing accident and non-accident classes. ML-
based accident detection studies can be categorized based on the type of data used
to train their models.
Two broad categories emerge in the field of accident detection: one relies on traffic
data, while the other leverages external sensors such as smartphones, acoustic sen-
sors, or cameras [65]. However, the performance of prediction and detection systems
in these categories is heavily constrained by factors such as sensor availability, bud-
get, weather conditions, and traffic flow. The use of external sensors can also pose
challenges regarding installation and reliability, depending on their deployment [72].
For the aforementioned reasons, internal car data have emerged as a promising
third option for ML-based accident detection, free from the limitations mentioned
earlier. In this context, car in this work refers to a passenger vehicle. Modern cars,
manufactured from the mid-1990s onwards, come equipped with an array of sensors
that provide reliable time-series data for fundamental driving attributes, including
speed, steering-angle, and gas pedal position. This data holds significant poten-
tial for accident detection and is readily accessible by monitoring the in-car network.

For example, the on-board diagnostics (OBD) adapter represents the most accessible
means to capture driving patterns through network protocols like CAN-Bus inside
cars. Additional information on classifying and deciphering the meaning of the most
vital signals transmitted within the in-car network can be found in the previous study
in section 1.1.2.
Machine learning (ML) can be applied to in-car network data by following the
established PRC framework, which is comprehensively described in 2.1.2 and
comprises four key steps, as depicted in Figure 3.1.
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1. Data Acquisition: In the first step, the selection of sensors is based on the
nature of the classes being studied and their availability.

2. Data Pre-processing: The second step involves data pre-processing, including
tasks such as sensor calibration, unit conversion, normalization, and segmen-
tation. These operations are carried out to render the data suitable for further
analysis.

3. Feature Extraction: The next step, feature extraction, is focused on deriving
the most pertinent information from each data segment. This process results
in an abstracted and informative representation of each data segment, enabling
more effective analysis.

4. Classifier Training: In the final step, classifiers are trained to distinguish be-
tween different classes within the feature space. In this specific case study, the
goal is to differentiate between accident and non-accident driving events.

Data Acquisition Pre-processing Feature Extraction Classification
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Figure 3.1: Machine learning framework for accident detection. First, time-series
data is being acquired from in-car network signals. After pre-processing and segmen-
tation, different feature extraction approaches are applied and compared. Finally,
classifiers are trained and tested on the extracted features.

Past experience has demonstrated that each of these steps significantly influences
accident detection performance [73]. However, it’s worth noting that data acqui-
sition and pre-processing are primarily dependent on the specific data set, while
classification relies on established state-of-the-art approaches with proven reliability
from prior research.
Consequently, it is in the step of feature extraction where the potential for im-
provement is most substantial and has been the subject of extensive investigation in
previous ML studies. Therefore, conducting a study on applicable feature extraction
methods holds considerable importance in providing an ML framework for accident
detection.
Previous research on feature extraction primarily focuses on two types of techniques:
feature engineering and feature learning.

• Feature Engineering: This is a conventional approach to feature extraction
that relies on prior expert knowledge of the data. It involves crafting features
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manually, specifically tailored to the problem at hand. An example of feature
engineering is the handcrafted method, which computes simple statistical val-
ues as features from the input data or features designed by experts to address
a particular problem [60, 74, 75]. However, feature engineering may not always
be the most optimal approach, especially when expert knowledge is lacking,
and there’s no assurance that the selected features will be ideal for the task.

• Feature Learning: Feature learning is an automated process of feature ex-
traction using artificial neural networks (ANNs), which are machine learning
models known for their capability to extract highly efficient features. This
is contingent upon conducting appropriate pre-processing and segmentation
steps on the data [76]. However, working with ANNs can be intricate due to
the need to find the right parameters and effectively train the model. Ad-
ditionally, the features learned by ANNs are often challenging to interpret,
which can pose a significant challenge in various applications.

Hence, providing a comprehensive study that explores the application of both fea-
ture engineering and feature learning approaches, and analyzes the optimal feature
extraction methods despite their respective limitations, is of immense importance.
Despite the popularity of ANNs in obtaining efficient features, finding the proper
parameters and properly training the model can be complicated. Additionally, the
features learned by ANNs are usually difficult to interpret, which can be a major
obstacle to their use in many applications. Therefore, providing a comprehensive
study on applying feature engineering and feature learning approaches and analyzing
the optimal feature extraction approaches in spite of their respective drawbacks is
of tremendous importance.

3.2 Related work
The growing demand for mobility has made driving behavior analysis applications
a pivotal area of research. The outcomes of driving behavior analysis hold sub-
stantial significance for a range of sectors, including the automotive and intelligent
transportation industry, automobile insurance, and government organizations
overseeing infrastructure and public transportation. Numerous studies highlight
the importance of driving behavior analysis in the context of traffic management,
safety, and environmental concerns [77, 78, 79, 29]. Simultaneously, numerous other
studies focus on the analysis of driver behavior itself [65, 80].

Due to the diverse array of research objectives, applications, contributions, and data
sources, there is no specific study baseline or well-defined research categorization in
the domain of driving behavior analysis, especially concerning accident detection.To
comprehensively review the recent state-of-the-art in accident detection, it is
essential to provide an overview of relevant works within the broader field of
driving behavior analysis. While time-series feature extraction has been extensively
explored [81, 82], it’s noteworthy that the findings from these feature extraction
studies do not always translate seamlessly from one application domain to another.
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Consequently, this specific topic has received relatively limited attention in the
context of accident detection. Nonetheless, the relevant work regarding time-series
feature extraction used in driving behavior analysis is provided in section 2.2.

In this section, two primary categories of studies are presented. The first category
offers an overview of the state-of-the-art in ”driving behavior analysis” as a whole,
while the second category is dedicated to the literature on ”accident detection”.

3.2.1 Driving behavior analysis
Numerous previous studies have conducted comprehensive surveys within the field
of driving behavior analysis. One such study by Zinebi et al. [80] categorized driver
behavior analysis into three primary sub-applications: accident prevention, driving
style assessment, and driver intent prediction. Additionally, they identified three
categories of methods commonly used to address these challenges: index systems,
image processing, and statistical methods and machine learning.

Index systems, as one of these categories, are focused on defining specific metrics or
indices to objectively quantify high-level concepts associated with driver behavior.
An example of such an index is TTC (time to collision), introduced by Mori et
al. [83], which measures the time a vehicle takes before colliding with an object in
its environment. They used this index to calculate the environmental risk score at
a given time. Notably, they found a correlation between driver attention and the
environmental risk score, highlighting that expert drivers tend to exhibit higher
levels of awareness compared to non-expert drivers.

Image processing represents another widely adopted method for driving behavior
analysis, primarily due to the increased availability of vision sensors. An example
of image processing in the context of driving analysis is the detection of driver
drowsiness using computer vision techniques from an iPhone, coupled with GPS for
tracking the car’s position, as demonstrated in the work by Bergasa et al. [63].
The final category of methods in the reviewed literature, as presented by Zinebi
et al. [80], encompasses statistical and machine learning (ML) approaches. For
instance, Bachoo et al. [84] utilized multiple linear regression to investigate the
impact of personality traits (e.g., anger, impulsivity) on reported instances of risky
driving behavior using a cross-sectional questionnaire.

In another study, Jahangiri et al. [85] employed a random forest (RF) classifier
to categorize driver behavior into two classes: violation and compliance at sig-
nalized intersections. They leveraged various features, including distance to the
intersection, velocity, acceleration, time to the intersection, required deceleration
parameter, and velocity-based handcrafted (HC) features obtained from radar,
video cameras, and signal phase sniffers at intersections. Their models achieved
high accuracies of 97.9% and 93.6% for SVM and RF, respectively, in predicting
driving violations at signalized intersections.
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Ohn et al. [86] adopted a support vector machine (SVM) to classify driver activities
based on hand positions, using cameras placed within the vehicle. They employed
hand motions for activity classification and prediction from naturalistic driving
images. Image-based features were used to track hand motions and detect various
hand patterns in different regions of the car, with the SVM achieving a normalized
accuracy of over 80%.

All the ML-based driving behavior analysis studies reviewed in [80] are focused on
the detection of various types of driving behaviors, activities, and driving styles.
None of these studies specifically pertain to accident detection. In a separate
comprehensive study conducted by Meiring et al. [65], the focus is on driver style
analysis systems, their applications, and the artificial intelligence algorithms that
underpin these applications. This review encompasses two major categories of
driving research: driving style and studies assessing driver behavior. Within the
papers reviewed in [65], various AI, ML, and statistical algorithms are applied to
diverse driving research topics, including driver assistance, drowsiness detection,
driver distraction detection, eco-driving, road and vehicle condition monitoring,
fleet management, accident detection, and insurance applications.

The majority of the literature mentioned in [65] primarily centers around the
detection of different driving styles, encompassing categories such as normal and
safe driving, aggressive driving, inattentive driving, and drunk driving. Various
data modalities are employed in these studies, including multiple sensors like car
networks, smartphones, telematics, and video data. However, there is a notable
scarcity of literature specifically addressing accident detection. One example of
a study on accident detection is presented by Lee et al. [87]. In their work,
they proposed a log-linear model to predict crashes based on crash precursors,
specifically traffic flow conditions leading up to the crash. This predictive model
was constructed using traffic flow data obtained from traffic loop detectors.

In their study, Bagdadi et al. [88] introduced a method for recognizing critical jerks
using the naturalistic Virginia Tech Transportation Institute (VTTI) near-crash
data. They achieved a detection rate of 86% for identifying safety-critical braking
events during car driving. Critical jerks, as defined in their work [89], refer to sudden
changes in acceleration magnitude. Safety-critical braking events are identified as
events involving an abrupt braking response, leading to the creation of a critical jerk.

3.2.2 Accident detection
To facilitate a more straightforward comparison with prior research, the related
works from the literature have been categorized into two distinct groups: rule-based
and ML-based accident detection studies.
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Rule-based accident detection

Rule-based approaches are essentially straightforward problem-solving techniques
often relying on heuristic rules that draw from expert knowledge. These methods
are tailored to address specific problems and are most effective when applied
to particular data modalities and intended problems. In the realm of accident
detection, several research studies have been conducted on rule-based systems,
particularly those centered on traffic-monitoring data [90, 91, 92, 93].

Traditional traffic accident prediction typically relies on annual average traffic
volume data. In contrast, real-time traffic accident detection employs monitoring
devices such as induction loops, infrared detectors, and cameras. However, the
practicality of these specific devices is constrained by the considerable installation
and maintenance costs, as well as their limited coverage of road networks, which is
typically confined to well-known congestion-prone areas like highways, tunnels, or
bridges [72].

Conventional built-in automatic accident detection systems make use of impact
sensors or car airbag sensors to identify accidents and GPS technology to pinpoint
the accident location [94]. Sheu et al. [95] introduced a novel approach for real-time
detection and characterization of freeway incidents. In this system, incident
symptoms are extracted from raw traffic data, encompassing segment-wide inter-
lane and intra-lane traffic dynamics, lane-changing fractions, and queue lengths.
These symptoms are identified through signal processing techniques, including ex-
tended Kalman filtering and the modified sequential probability ratio test (MSPRT).

Apart from traffic data, smartphones are one of the most commonly utilized
sensors in rule-based accident detection research. For instance, Zaldivar et al. [66]
introduced an application that automatically alerts emergency services about an
accident through SMS, relying on the vehicle diagnostics interface (OBD-II). In this
system, accidents are detected through airbag triggers, which are activated when a
force overload is experienced during a frontal collision.

A slightly different approach, as proposed in [96], measures the change in tilt angle
using an accelerometer sensor and monitors speed using GPS data to detect the mo-
ment of collision and trigger an alert when an accident is detected. Another method,
presented in [97], focuses on using the smartphone’s accelerometer to monitor vehi-
cle speed and report an accident when it falls below a certain threshold. However, it
is worth noting that smartphones may not always be reliable for accident detection.
The main issue with these systems is that smartphones can tilt or fall inside the ve-
hicle at any time without an actual accident occurring. As a result, the probability
of a false positive increases, and false alarms may be reported. Past literature in
ubiquitous computing has also revealed significant differences between smartphone
brands, indicating that a machine learning model trained on one brand of smart-
phone may experience a substantial degradation in performance when used with a
smartphone from a different brand, even if the latter contains the same sensors [98].
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ML-based accident detection

Machine learning techniques exhibit notable variations in their algorithmic ap-
proach, depending on the type of input data they are applied to. Given the
substantial data requirements of machine learning and the limited availability of
labeled car accident data sets, only a small number of relevant studies are available.
Among these studies, three primary sensor modalities are commonly combined
with machine learning in the literature: traffic data, sensor data, and internal car
signals.

Studies proposing accident detection based on machine learning approaches
primarily rely on traffic monitoring data. For example, Ozbayoglu et al. [99] used
traffic-flow data from the city of Istanbul in year 2015, obtained from real-time
monitoring system (RTMS) sensors. They manually engineered specific features
related to lane velocity, occupancy, and capacity usage for each sensor. These
extracted features were then used as input for various machine learning models,
including nearest neighbor, regression trees, and feed-forward neural networks, to
predict the likelihood of an accident. It’s important to note that while the overall
accuracy of their models mostly exceeded 99%, a significant number of false alarms
were generated.

Alvi et al. [73] conducted a comprehensive literature review related to Internet of
Things (IoT)-based accident detection, prevention, and reporting systems. In this
review, various applications of IoT were introduced and referenced, and accident
detection papers were categorized into two groups: (1) conventional and (2) machine
learning/artificial intelligence-based accident detection techniques.
For the second category of the reviewed accident detection papers in [73], three
key machine learning/artificial intelligence-based approaches were discussed:
(a) fuzzy logic, (b) Support Vector Machine (SVM), and (c) Artificial Neural
Network (ANN). Pan et al. [100] utilized vehicle speed, acceleration, and lane
changing factor data from a microscopic traffic simulator to classify incidents
vs. non-incidents using an SVM. Their proposed methodology achieved an SVM
accuracy of almost 100% based on speed data. It’s important to note that their
work assumes that each vehicle collects its own traffic data and transmits it
through an On-Board Unit (OBU). Subsequently, the traffic data is gathered via
Roadside Units (RSUs) and uploaded to a central service for processing. Their sim-
ulated scenarios only considered accidents on three-lane urban roads at traffic lights.

Harlow et al. [90] introduced a system that involves a method for processing
and recognizing accidents based on recorded vehicle acoustic signals, particularly
at intersections and construction sites. They created a database of various
vehicle sounds, including car braking sounds, construction sounds, and traffic
sounds. The feature vector was obtained by computing the mel-frequency cepstral
coefficients, which were used as input for a neural network to classify events
as either crashes or non-crashes. Their study reported classification testing
results with an impressive 99% accuracy. However, it’s essential to note that this
system is designed for specific locations, such as intersections and construction sites.
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Ghosh et al. [101] introduced an accident detection approach based on a CNN
that utilizes video footage from CCTV cameras installed on highways. Their
model, employing a combination of CCTV cameras and a Raspberry Pi 3, uses a
pre-trained CNN model trained on 10, 000 accident frames and 10, 000 non-accident
frames. This approach achieves an accuracy of approximately 95% in accident
detection. However, it’s important to note that this model is limited to accidents
within the camera coverage area, potentially overlooking accidents occurring outside
this scope. Additionally, the cost of monitoring all roads and highways with Pi
cameras and Raspberry Pi can be significant. Privacy and security concerns also
need to be addressed in such a system. Weather conditions can further impact the
visibility of the cameras, affecting their reliability. The mentioned works highlight
approaches that come with inherent limitations, including privacy and security
concerns, high costs for large-scale networks, various manufacturers, industrial
challenges, power consumption, architectural complexities, heterogeneity, mobility
issues, and interoperability problems.

A solution similar to the one presented in this study, which utilizes internal car
data to address the drawbacks of other monitoring devices, was proposed by Osman
et al. [102]. This research introduces a machine learning model designed to predict
collisions using vehicle kinematic data from the SHRP2 NDS data set, including
parameters such as speed, longitudinal acceleration, lateral acceleration, yaw rate,
and pedal position. The hypothesis behind this approach is that vehicles exhibit
micro-level turbulence in their kinematic patterns in the period leading up to a
crash, known as the turbulence horizon.
In their study, Osman et al. used the standard deviation of vehicle kinematic
parameters during the period starting at the beginning of the turbulence horizon
and ending at the beginning of the prediction horizon as input features. These
features were employed to classify near-crash data and normal driving data, and
they trained and compared several classification algorithms. While their model
achieved an impressive 99% F1-score, it’s worth noting that the feature extraction
approach in this study relied on label re-computation. This method may not ensure
that the extracted features are generic enough to be successfully applied to data
sources other than the SHRP2 NDS data set. This study differs from the one by
Osman et al. in two significant ways. First, the primary focus here is on accident
detection rather than accident prevention, and, as a result, it does not include
near-crash scenarios in the data set. Second, a noteworthy aspect of this work
is the exploration of feature-learning approaches based on deep neural networks.
These networks have the capacity to automatically learn features without requiring
any prior knowledge or manual feature engineering.

3.3 Materials and methods
In this section, the proposed ML framework (Figure 3.1) will be introduced, provid-
ing a detailed explanation of its application for car accident detection using internal
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car data. Since the most substantial improvements in classification performance are
typically achieved during the feature extraction stage, the framework will be utilized
to analyze and compare the respective performances of state-of-the-art feature ex-
traction techniques. To facilitate this analysis, the acquisition, pre-processing, and
classification steps will be maintained as outlined in the following subsections.

3.3.1 Data acquisition
Data acquisition involves defining an experimental protocol to configure sensors, an-
notating data with labels, sampling relevant sensor signals, converting samples into
digital numeric values, and acquiring and merging data from appropriate sources.
Access to a suitable data set and data quality are essential prerequisites for the
successful implementation of ML-based studies. Since this study centers on accident
detection using real data, obtaining a suitable labeled database was a necessary
initial step. In the conducted experiments, the decision was made to utilize the
SHRP2 NDS database from the Virginia Tech Transportation Institute (VTTI) [71].
In the following section, a brief description of the SHRP2 data set will be provided.

SHRP2 data set

The SHRP2 research project focused on naturalistic driving behavior and involved
the monitoring of approximately 3, 400 apprentice drivers using over 277 unique car
makes/models. This study spanned six locations across the United States. The
participants’ vehicles were equipped with a comprehensive data acquisition system
(DAS) that included various sensors and data collection tools such as a forward
radar, four video cameras, a front-facing wide-angle camera, accelerometers, vehi-
cle network information, a geographic positioning system, on-board computer lane
tracking, various computer vision algorithms, and additional data storage capabili-
ties.
An accident data set was compiled from a vast number of trip log files, total-
ing 5, 512, 900 driving traces, extracted from the SHRP2 naturalistic driving study
(NDS). To identify accidents, a team of data analysts and data quality coordinators
manually validated and analyzed the log files to annotate the data. An accident was
defined as any situation where a vehicle made contact with an object, whether mov-
ing or stationary, at any speed, resulting in the measurable transfer or dissipation of
kinetic energy. This definition also encompassed non-premeditated departures from
the road, where at least one tire left the paved or intended road surface.
The acquired data set includes 546 synchronized driving traces that contain acci-
dents, and it contains various time-series data channels as shown in Table 3.1.

3.3.2 Data pre-processing and segmentation
Data pre-processing encompasses a series of operations aimed at rectifying flaws in
the data arising from issues like data transmission errors or sensor failures. These
operations include eliminating duplicates, addressing data irregularities, normalizing
the data for comparison, and handling missing data values, a common issue in data
sets. Ensuring the ML model receives consistent data is crucial for improving result
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Table 3.1: SHRP2 data set sensor channels.

Variable Name Unit Description
Time stamp millisecond Time since beginning of trip, in milliseconds

Gas pedal position none Position of the accelerator pedal
collected from the vehicle network
and normalized using manufacturer specs

Speed network km/h Vehicle speed indicated on
speedometer collected from network

Steering wheel position degree Angular position and direction of
the steering wheel from neutral position

accuracy. Raw data records are typically lengthy and may lack uniform information,
necessitating the division of data into shorter segments.
Segmentation is the process of breaking down signal values, especially time-series
data, into distinct time intervals known as windows. The segmentation and pre-
processing steps applied to the SHRP2 data set in this study are illustrated in
Figure 3.2.

Figure 3.2: Pre-processing procedure applied on SHRP2 data set for accident detec-
tion.

To synchronize the sensor channels in the SHRP2 data set, the data was resam-
pled from different sensors at a frequency of 40 Hz. Subsequently, min-max scaling
normalization was applied to bring the sensor values into the same range. For seg-
mentation, a traditional sliding time window approach was employed. The labeling
process utilized information from event descriptions provided with the SHRP2 ac-
cident data set, which includes event start and end timestamps. Based on this
information, the segment length (T) was set to 100, which corresponds to approxi-
mately 2.5 seconds. This duration was chosen to match the maximum event duration
described in the SHRP2 data set. An overlapping factor of 50% was also applied to
segment the time-series data.
The labeling process adds a label of zero or one to each time window depending on
whether the frame at a specific timestamp is part of the event. Windows containing
more than half of the duration of the frame dedicated to an accident event are labeled
as one, and the rest of the windows are labeled as zero. After the aforementioned
steps, the data consists of 34, 339 time windows, sized with dimensions T × S,
where T = 100 is the length of the time window, and S = 4 is the number of sensor
channels. Among these 34,339 time windows, only 2, 281 are positive samples. Based
on these numbers, as expected, one must deal with a notably imbalanced data set
in which the negative class represents 93.35% of the whole data set.
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3.3.3 Feature extraction
Feature extraction involves reducing the dimension of raw data to create an infor-
mative abstract representation for the classifier. This simplifies the training process
by reducing the input data size and removing irrelevant information for the classi-
fication problem.
In the following section, a brief explanation of the feature extraction techniques
used in this study is provided. Common and state-of-the-art feature extraction
approaches in time-series analysis have been applied to four in-car signals: gas pedal
position, speed, steering wheel position, and acceleration.
Two general types of feature extraction strategies will be discussed, and both will
be applied in this study for automated accident detection:

• Feature engineering: The most commonly used feature extraction approach
involves traditional feature engineering, referred to as HC in the following
sections. HC features have been employed for decades and continue to be a
powerful tool when combined with ML classifiers. Traditionally, HC features
are crafted based on expert knowledge of the data, which may not always be
available. In such cases, simple statistical attributes computed on the time-
series data are commonly used, and they have demonstrated good performance
in practice despite their simplicity. Feature engineering based on heuristic rules
found in previous literature, as seen in studies like [74, 75], was also considered
and tested in our experiments. However, due to insufficient performance, the
method and results are not presented in this work.

• Feature learning: The second category of feature extraction approaches is
feature learning, which involves the automated learning of features using deep
neural networks (DNNs). An artificial neural network (ANN) is composed of
a series of parametric functions represented by layers. ANNs typically consist
of three layers: input, hidden, and output. A deep neural network DNN is an
ANN with at least two hidden layers. Each layer comprises multiple neurons,
which are simple non-linear computational units that produce a single value
based on several inputs. In the general case, layer li with i ∈ {1 . . .L} takes the
output of the previous layer li−1 as input and applies a non-linear function to
compute its own output. The last layer typically estimates class probabilities
associated with the input data and uses a softmax activation layer with a
number of neurons equal to the number of classes.
DNNs have demonstrated exceptional feature learning capabilities, particu-
larly in image classification tasks. Since our evaluation framework maintains a
fixed classifier, a similar approach to that used by Li et al. [60] and Girshick et
al. [103] was adopted to utilize DNNs as feature extractors. The DNNs were
initially trained in a supervised manner using a softmax layer. Subsequently,
the softmax layer was removed to allow the DNN to output feature vectors,
which were then used to train the fixed classifier in the presented framework.

A brief explanation of the abovementioned feature extraction methods chosen for
this study follows.
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Feature extraction based on handcrafted features (HC)

Traditional HC feature extraction, which has been in use for decades, still proves
to be a robust baseline when combined with ML classifiers, owing to its simple
setup. HC features are derived from straightforward statistical attributes such as
minimum, maximum, percentiles, as well as more complex descriptors like those
associated with the frequency domain, computed using the Fourier transform of the
signals. In the context of HC features, 18 statistical values are commonly employed
in various application domains dealing with time-series data [60, 104]. These features
encompass calculations based on either the time-series data or their corresponding
power spectrum, as indicated in Table 3.2. Each of these features is computed
individually for every sensor channel. Subsequently, the features extracted from all
channels are concatenated to construct a feature vector with a total of 18× 4 = 72
elements.

Table 3.2: List of the handcrafted features used in this study. Each feature is
computed on each sensor channel independently.

Handcrafted Features
Maximum Average Auto-correlation
Minimum Skewness First-order mean

Percentile 20 Kurtosis Second-order mean
Percentile 50 Interquartile Standard-deviation
Percentile 80 Zero-crossing Norm of the first-order mean

Spectral entropy Spectral energy Norm of the second-order mean

To enhance classification efficiency, mitigate the risk of overfitting (reducing the
chances of making decisions based on noise), and gain more meaningful insights into
the relevant features, this study employs a feature selection approach following HC
feature extraction. As outlined by Tang et al. [105], three primary categories of
feature selection approaches exist:

• Filter-based feature selection: Filter-based feature selection approaches
evaluate features without employing any classification algorithms. A typical
filter algorithm comprises two steps. In the first step, it ranks features based
on specific criteria. In the second step, the features with the highest rankings
are selected to create classification models.

• Wrapper-based feature selection: Wrapper-based models utilize a specific
classifier to assess the quality of the selected features. A typical wrapper model
operates in three steps: I. Searching for a subset of features. II. Evaluating the
selected subset of features based on the classifier’s performance. III. Repeating
steps I and II until the desired performance is achieved.

• Embedded-based feature selection: that integrate feature selection with
classifier construction. They offer the advantages of wrapper-based models,
as they involve interactions with the classification model, while also being
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computationally less intensive compared to wrapper methods. Embedded fea-
ture selection approaches consider classifier biases and incorporate them, often
through regularization models [106].

In this study, three popular feature selection protocols from the filter-based and
wrapper-based methods were tested: ReliefF and Fisher score from the filter-based
category, and Recursive Feature Elimination (RFE) from the wrapper-based cat-
egory [107]. Among these three methods, only RFE demonstrated significant im-
provements in performance. Therefore, only the results of RFE are reported in this
work.
RFE feature selection is a wrapper-based approach that evaluates various feature
sets by training and assessing a classifier for each set and comparing their classifi-
cation performance. Each wrapper approach proposes a strategy to select sets of
input features to test, avoiding the need to test all configurations, which would be
computationally expensive. RFE begins with using all features as a complete sub-
set and training the classifier. It then eliminates features iteratively by considering
smaller and smaller feature sets. In this study, features were eliminated based on
feature importance scores returned by the classifier I selected (random forest and
support vector machine). The step size (denoted as n) and the number of features to
eliminate are determined by the lowest score. This procedure is repeated recursively
until the desired number of remaining features or the desired level of performance
is achieved.

Feature learning based on multi-layer-perceptron (MLP)

An MLP (Multi-Layer Perceptron) is the simplest and most traditional architecture
for deep learning models. This architecture is also known as a fully connected
network because neurons in layer li are connected to every neuron in layer li−1 for i
∈ [2, L], where L is the number of layers. Each connection has associated parameters
called weights. Therefore, the connection between two consecutive layers of an MLP
can be represented by the following equation:

xli = f(Wli × xli−1 + bli) (3.1)

With n(i) ∈ N∗ number of neurons in layer li, xli ∈ Rn(i) , Wli ∈ Rn(i)×n(i−1) , bli ∈
Rn(i) , Wli being the matrix of weights connecting the neurons of layer li−1 to layer
li, bli the vector of biases in layer li, xli the output of layer li and f the activation
function. Figure 3.3 illustrates the schematic of the MLP network used in this study.

Feature learning based on convolutional neural networks (CNN)

Convolutional Neural Networks (CNN) primarily consist of convolution layers and
pooling layers. Some deep learning architectures also include batch normalization
layers (see Figure 3.4). CNNs have been successfully applied in image recognition
[108, 109], various natural language processing tasks [110, 111], and time-series anal-
ysis [112]. The general form of using a convolution for the centered time stamp t is
given in the following equation:

∀t ∈ [1, T ], ct = f(ω ∗ xt−l/2:t+l/2 + b) (3.2)
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Figure 3.3: Architecture of a MLP model for accident detection with h hidden layers,
n number of classes and S number of sensor channels. Input data are first flattened
into a (T × S)-dimensional vector and and then fed to the hidden layers. All layers
are fully connected.

where ∗ designates the convolution product, ct the result of the convolution at time
t, f the activation function, x a 1D input, ω the convolutional filter of length l
and b a bias parameter. A convolution can be seen as applying and sliding a filter
over a time-series or in other words as a generic non-linear transformation of an
input vector x. For instance, if convoluting a time-series with a filter of length 3
with values equal to [1

3 ,
1
3 ,

1
3 ] is the equivalent of applying a moving average with a

sliding window of size 3.

The convolutional maps obtained after applying several convolutional kernels are
typically used as input for a pooling layer, which can be either local or global. Local
pooling operations, such as averaging or taking the maximum value in a sliding
window, are applied to downsample the input of the layer. In contrast, global
pooling involves downsampling the entire input time dimension, resulting in a single
output value. To aid the network’s convergence during training, a normalization
layer is sometimes added. Two common normalization layers used in CNNs for
time-series analysis are batch normalization [113] and instance normalization [114].
When used for classification, CNNs are often connected to a classification MLP,
where the last layer is a softmax layer, providing a distribution score over the class
variables in the data set.
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Figure 3.4: Architecture of a CNN model for accident detection. The designations
n, h and S are the number of classes, layers and sensor channels, respectively.
Convolutional layers apply convolution products on all convolution maps of the
previous layer. Pooling layers then downsample the convolutional output and pass
it to the next convolutional layer.

Feature learning based on long short-term memory (LSTM)

Long Short-Term Memory (LSTM) networks are a type of Recurrent Neural Net-
work (RNN), which are a special type of DNNs that use loops and connections
between nodes to handle temporal sequences and retain dynamic temporal informa-
tion throughout the network.
LSTM cells include internal mechanisms called gates, which manage the flow of
information over time by storing it in an internal memory, updating, outputting, or
erasing this internal state based on their input and the state from the previous time
step [115]. These gate operations can be described as follows:

ft = σ(Wf · [ht−1,xt] + bf ) (3.3)
it = σ(Wi · [ht−1,xt] + bi) (3.4)
ot = σ(Wo · [ht−1,xt] + bo) (3.5)

mt = ft ⊗mt−1 + it ⊗ σ(Wc · [ht−1,xt] + bC) (3.6)

where xt is the input vector to the LSTM cell and ht−1 the hidden state vector
also known as the output vector of the LSTM cell. ft, it and ot represent forget,
input and output gates, respectively. These gates have their own weights (W∗),
bias (b∗) and activation functions (σ). The functionality of an input, output and
forget gates are used to block the input of the cell , block its output, and erase its
internal memory at time t. mt is the memory state of the cell at time t, and ⊗ is
the element-wise multiplication of two vectors. The architecture of the RNN with
LSTM layers containing LSTM cells is shown in Figure 3.5. Like all DNNs, there
are different architectural variations of LSTM layers, and the last layer is followed
by dense and softmax layers.
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Feature learning based on an autoencoder (AE)

Autoencoders, a special type of DNNs, are trained to replicate input data at their
output by utilizing a loss function like mean squared errors in an unsupervised man-
ner. These networks perform dimensionality reduction by initially projecting input
data into an embedding space with a smaller dimensionality than the input space
using an encoder. Subsequently, they decompress the embedding to closely match
the original input using a decoder. It’s important to note that autoencoders always
have the same number of inputs as outputs. The architecture of an autoencoder is
schematically represented in Figure 3.6. For feature extraction, autoencoders are
initially trained in an unsupervised manner to reconstruct their inputs on the out-
put layer. Afterward, the decoder is removed, and the encoder is utilized to output
feature vectors.
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Figure 3.5: Architecture of a LSTM network for accident detection . The designa-
tions n, h and S are the number of classes, layers and sensor channels, respectively.
The cells in the LSTM layers have one input, forget and output gates. xt,mt and ht
refer to the cell input, memory, and output at time t, respectively, and σ designates
the activation function.

3.3.4 Classification
The final step in the ML framework is classification, which involves training a model
to predict class labels (categories) based on an input feature vector associated with a
specific data segment. The classifier establishes boundaries between different classes
within the feature space. Various popular classifiers found in past literature include
Support Vector Machine (SVM) [13], Random Forest (RF) [17], k-Nearest Neighbors
(kNN) [116], Decision Tree [117], and others.
In this study, two classifiers have been chosen due to their high performance and their
ability to mitigate overfitting in the case of high-dimensional data. These classifiers
are a soft-margin SVM (C-SVM) with a radial basis function (RBF) kernel and a
Random Forest (RF) classifier [60, 118, 119].
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Figure 3.6: Autoencoder’s architecture used for accident detection consists of en-
coder and decoder sections. The encoded layer is used as features for the feature
learning purposes; S is the number of sensor channels and h denotes the number of
hidden layers in both the encoder and decoder.

The Support Vector Machine (SVM) is a highly effective linear classifier that can
also handle non-linear cases through the use of the kernel trick. The C-SVM, or
soft-margin SVM, is a variation of the SVM that permits misclassifications during
training to prevent overfitting. It achieves this by regulating the soft-margin param-
eter, denoted as C, which controls the extent to which misclassifications are allowed.
When training an SVM with the radial basis function (RBF) kernel, two essential
parameters need to be considered: C and gamma. These parameters play a critical
role in the SVM’s performance and effectiveness.
The parameter C plays a crucial role in determining the trade-off between misclas-
sifying training examples and achieving a simpler decision surface in the Support
Vector Machine (SVM). Similarly, the parameter gamma is of great significance for
the SVM’s performance. The choice of appropriate C and gamma values is essential
for obtaining good results with the SVM.
In this study, a grid search was conducted to identify the optimal values of C and
gamma for each feature set derived from the methods mentioned above. The Ran-
dom Forest (RF) is another widely used classifier that employs ensemble techniques
with decision trees to mitigate overfitting. The primary hyperparameter in RF is
the number of trees, denoted as T . Like the SVM parameters, the number of RF
trees, T , was optimized through a one-dimensional grid search for each feature set
individually. This optimization process ensures that the classifiers are well-tuned
for the specific features they are trained on.
It’s important to highlight that DNNs are typically trained with a classification layer
as part of the network architecture. To utilize the previously mentioned classifiers
on features extracted from DNNs, the following process was required:

1. Initially, the DNN model was trained in the usual manner, including the clas-
sification layer (softmax) for class prediction.

2. After training, the classification layer (softmax) was removed from the model,
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and the output of the penultimate layer was used as an input feature for the
classifier. This penultimate layer’s output serves as the feature representation
for classification.

For feature extraction based on Autoencoders (AE), the feature representation is
directly obtained from the output of the encoder network after training the complete
AE model.

3.4 Experiments and results
This section outlines the implementation details of the proposed ML-based frame-
work for automated accident detection using multimodal in-car sensors. It also
provides information on the evaluation setup and presents the results.
All the implementations in this chapter of the dissertation were coded in Python.
Feature learning approaches using DNNs were implemented using the Keras 2.1.0
framework with a Tensorflow 1.14.0 backend, scikit-learn 0.21.3, and trained using
the ADADELTA optimizer with default parameters (initial learning rate of one) for
50 epochs, with a batch size ranging from 100 to 1000.
To comprehensively evaluate the model’s performance across the entire data set, a
K-fold cross-validation was applied, with K set to 5. In each training run, one of the
five partitions was selected as the test set, and the remaining partitions were used
for training. The details of the experiments for each feature extraction algorithm
are described as follows:

HC: The HC features consisted of 15 statistical values directly computed on the
time-series and 3 frequency-related on their power spectrum were computed
on each sensor individually and concatenated together. Then RFE feature
selection with an elimination size of three was applied.

MLP: The MLP architecture used in this study contained three dense layers and
REctified Linear Units (RELU) activation. MLP usually takes 1D inputs only,
therefore a flattened layer was used to convert the 2D input to 1D. According
to the recommendations of [113, 60], a batch normalization layer was placed
directly after the network input to improve results. Three fully connected
dense layers with RELU activation function, containing 2000 neurons each, and
a final softmax layer built up the MLP network used for this study (see Table
3.3). In Table 3.3, the values for the hyperparameters used for feature learning
approaches in this study are shown. Optimizing the hyperparameters of DNNs
is an important and difficult topic. Optimal parameters for mentioned models
were chosen after testing several manually selected configurations. Manual
hyperparameter selection is the default approach in the literature due to the
absence of other more elaborated high performing approaches.

CNN: As listed in Table 3.3, the CNN layout consisted of three blocks of batch
normalization and a convolutional layer with RELU activation followed by
dense and pooling layers. The CNN design was based on [60] with some
modifications, including a reduction in the size of the convolutional kernels
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and an increase pooling window-size, while keeping the amount of kernels the
same for each block.

LSTM: The values of all hyperparameters for the LSTM architecture are provided in
Table 3.3. Like other ANNs used in this work, a batch normalization layer
was added at the beginning and a dense and softmax layers at the end of the
network. The gate activation used in the LSTM cells is a sigmond function,
and in the dense layers, a tangent activation function was used.

AE: The AE architecture consisted of simple dense layers (three dense layers for
the Encoder and then three for the Decoder designed as a mirror), with ReLU
for the activation function. Different numbers of dense layers were tested, and
the one achieving the best performance is presented in Table 3.3.

Table 3.3: Hyperparameters of the ANN models on the SHRP2 data set.

Model Parameter Value/ Type

MLP . # Dense layers 3
. # Neurons in each layer 2000
. Activation function ReLU

CNN . # Conv. blocks 3
. Conv. kernel size for blocks 1, 2 and 3 (5, 1), (4, 1), (3, 1)
. # Conv.kernels in each block 50
. Pool size for blocks 1, 2 and 3 (2, 1), (3, 1), (4, 1)
. # Neurons in the dense layer 1000
. Activation function for the Conv. blocks Tanh
. Activation function for the dense layer ReLU

LSTM . # LSTM layers 2
. # Output dimensions for each LSTM cell 600
. # Neurons in the dense layer 512
. Activation function for the dense layer ReLU

AE . # Encoder dense layers 3
. # Neurons in layers 1, 2 and 3 5000, 3000, 1000
. Activation function ReLU

The hyperparameters for the above mentioned methods are depicted manually.
The evaluation of proposed feature extraction framework is based on three different
metrics, average F1 score, overall accuracy and weighted F1 score. F1 score is the
harmonic mean of precision and recall, and average F1 score is the mean value of
each class F1 scores. As mentioned in section 3.3.1, the used data set was strongly
imbalanced with only 6.65% positive samples, and both accuracy and weighted F1
score are very biased in case of an unbalanced data set. For this reason, the average
F1 score, which is the mean value of each class F1 score, is considered as the main
evaluation metric due to its ability to take class imbalance into account [120].
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The results of the aforementioned feature extraction approaches with both SVM
and RF classification methods are provided in Tables 3.4 and 3.5, respectively.

Table 3.4: SVM classification evaluation metrics (in percent) of different tested
feature extraction models on the SHRP2 data set.

Methods Accuracy Weighted F1 Score Average F1 Score
HC 94.34 92.99 66.56
MLP 83.60 82.30 75.00
CNN 85.72 84.90 79.10
LSTM 76.81 72.01 57.90
AE 83.40 82.40 75.50

Three main observations can be drawn from Tables 3.4 and 3.5. First, the choice of
the classifier impacts the final classification performance. RF improved the average
F1 score of HC feature extraction to 71.78%, and a notable improvement of the RF
with almost 10% more for average F1 score is for LSTM feature learning. Second,
deep feature learning outperforms feature engineering. In particular, CNN surpasses
other methods by a remarkable average F1 score of 79.10% and 78.39% for SVM
and RF, respectively. Finally, the quite decent performances with unsupervised deep
feature learning (AE) when compared to supervised feature learning, is a remarkable
observation of this study.

Table 3.5: RF classification performance metrics (in percent) of different feature
extraction models of five cross on the SHRP2 data set.

Methods Accuracy Weighted F1 Score Average F1 Score
HC 94.97 93.95 71.78
MLP 84.06 83.57 77.47
CNN 85.72 84.19 78.39
LSTM 78.00 76.61 67.22
AE 84.22 83.74 77.67

3.5 Discussion
The experiment on applying feature extraction approaches on a SHRP2 crash data
set reveals the following points: First, all feature learning approaches except LSTM
with both classifiers outperform the feature engineering. LSTMs are usually prone
to high computation time and are difficult to tune. Another reason for the poor
performances of LSTM is the length of the time horizon (T = 100) of the input
samples being too long. This happens quite often when dealing with time-series and
is one of the reasons CNNs are preferred over RNNs for time-series processing in the
literature.
CNN feature learning obtains a stable top performance with both classifiers. Ob-
tained results are consistent with the literature, which seems to indicate that CNNs
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are the most reliable architecture for time-series classification [121, 122]. To un-
derstand the difference between HC features and features created by deep feature
learning, the best features extracted by both approaches were analyzed in this work.
For HC, it is possible to use the ranking of the RFE algorithm which was applied
for feature selection.
Figure 3.7 shows the RFE on HC features for the five cross-validation folds. In
these figures, the x-axis is the RFE eliminating steps, and the y-axis shows eighteen
HC features of each sensor channel. The RFE method removes features iteratively,
starting with the ones with the least impact on the final classification performance.
As can be seen in all five Figures, the HC features extracted by gas and acceleration
sensors are the ones that are eliminated last, meaning that features from these two
sensor channels are the most important HC features selected by RFE.

Figure 3.7: RFE results per sensor channel for five cross-validation folds. The y-axis
shows the number of remaining features from each sensor, and the x-axis shows the
step by step removal of features from each sensor.

For DNNs, finding the best features is more challenging since features learned by
DNNs are hard to interpret. Instead, I decided to use an approach based on the
Jacobian matrix of the model to determine which sensor channels are the most
important and whether this matches the observation of the HC results. In case
of considering a trained DNN as an approximation of a multi-input/multi-output
function f : RL×S → RC , where L is the length of a multichannel segment X
belonging to the target data set XT , S is the number of channels, and CT is the
number of classes, it is possible to compute the Jacobian matrix of function f . Each
Jacobian value Jc,l,s(X) in the Jacobian Matrix, represents the importance of xls—
the value at the lth time point (1 ≤ l ≤ L) of the sth sensor—on the predictive
function for the cth class. It can therefore be used to indicate which parts of the input
have the most impact on the output classification score. With this, it is possible to
propose a Jacobian score similar to [123] that would indicate how important to the
final classification score a specific sensor channel is.
A channel-wise Jacobian score for ωs(X) as the average of absolute Jc,l,s(X) over
all the L time points and all the CT classes is,
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ωs(X) = 1
CT

1
L

CT∑
c=1

L∑
l=1
| Jc,l,s(X) | (3.7)

In addition, as described in [123], the global channel-wise Jacobian score Ωs is av-
eraging ωs(X) over all examples XT in the data set, where |(XT )| refers to the
cardinality of XT :

Ωs = 1
|(XT )|

∑
X∈XT

ωs(X) (3.8)

A high Ωs indicates a high importance of the sensor channel for the classification
problem. Figure 3.8 shows the Jacobian scores for the four input sensor channels
(speed, gas position, steering-angle, acceleration) and for each of the five CNNs
trained on each cross-validation fold. According to the Jacobian scores of these
sensors, steering-angle has the highest impact on the result. Speed and accelera-
tion are the second most important input signals. Finally, this study shows that
gas-position was consistently found to be considered as the least useful channel by
CNN, which is opposite to feature extraction with HC that obtained its best fea-
tures from this channel. This would indicate that the features learned by HC and
CNN are different in nature and might be complementary. Additionally, I present a
hypothesis regarding why steering-angle information was regarded as useful for the
classification problem by CNNs and not by HC. The steering-angle signal, compared
to the other sensor channels, is characterized by strong and rapid fluctuations that
might contain valuable frequency-based information for the considered classification
problem. Contrary to CNN, this information might not have been captured well
enough by the HC features that were extracted.

Gas-pedal position 
Accelerarion
Steering angle

Speed

Fold 1

Ja
co

bi
an

 S
co

re

Fold 2 Fold 3 Fold 4 Fold 5
 0

 1

 0.2

 0.4

 0.6

 0.8

Figure 3.8: Jacobian score for CNN of five cross-validation folds of four signals. A
higher Jacobian score indicates that the sensor channel contributed to the learning
of more discriminative features. The y axis represents the normalized magnitude of
the Jacobian score for each sensor channel.
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Analysis of the feature importance results led us to combine CNN features with the
optimal ranked HC features to improve the results. The same steps were used to
calculate the features as described in section 3.3.3. Then the RFE was used to rank
all features and keep only the three best ones. These features were then appended
to the 1000 features of CNN in section 3.3.3. Combined CNN features improved the
average F1 score from 79.10% to 80.12% for a SVM and from 78.39% to 79.10% for
RF classifier which seems to confirm expected hypothesis that both features contain
complementary information.

3.6 Summary
This chapter introduced a framework for accident detection using basic in-car sen-
sors from the SHRP2 naturalistic data set, employing various machine learning
approaches. The study tested state-of-the-art feature extraction methods, including
traditional manual feature extraction and feature learning, in combination with two
classifiers.
Among the approaches tested, CNN features combined with an SVM classifier out-
performed all others. This combination achieved an accuracy of 85.72%, a weighted
F1 score of 84.9%, and an average F1-score of 79.10%. These results are highly
promising, especially considering that the data set is based on naturalistic acci-
dents, with very few samples of severe accidents that can be recognized by only four
basic in-car sensors.
Additionally, the interpretability studies demonstrated that traditional manual fea-
ture engineering and DNNs were extracting their optimal features from different
sensor channels. This indicates that a combination of these approaches could be
highly effective due to their complementary nature.
The study has several limitations. Firstly, it relies on a single data set due to the
scarcity of data for this specific application, which limits the generalizability of the
results. Secondly, comparing these findings to other studies is challenging due to
variations in accident definitions and the types of input sensor channels used.
In conclusion, some key takeaways from this study include:

• Promising results can be achieved with machine learning for accident detection
using fundamental in-car sensor data.

• A deep learning feature extraction method performs better in comparison with
HC, and unsupervised feature extraction remarkably achieves the second best
performance score.

Future work will encompass four main areas. First, expanding the range of tested
sensor channels and exploring alternative learning algorithms to enhance classifica-
tion performance. Incorporating additional sensor modalities like lateral acceleration
and yaw rate, which are common in all cars, and analyzing their impact on detec-
tion performance is a potential avenue for further investigation. Second, improving
accident detection results by employing more advanced feature selection algorithms,
particularly embedded feature selection methods [124] designed for unbalanced data
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sets. Third, considering the promising results of unsupervised deep feature learning
(Autoencoders), further research into unsupervised feature learning techniques is
recommended. Lastly, to address the challenge of limited labeled data, investigating
transfer learning techniques [125] as a potential solution is worth exploring. These
directions can contribute to the ongoing development and enhancement of accident
detection systems based on in-car sensor data.

94



Chapter 4

Conclusion

4.1 Summary
Driving behavior analysis plays a pivotal role in advancing road safety, optimizing
transportation systems, enhancing driver education, and enabling the development
of advanced technologies for safer and more efficient road environments. Machine
learning, in particular, plays a crucial part in driving behavior analysis by facilitating
the extraction of valuable insights from large data sets.
Leveraging the capabilities of machine learning, driving behavior analysis can har-
ness advanced data processing, predictive modeling, and pattern recognition, ulti-
mately leading to improved road safety, personalized feedback for drivers, and more
informed decision-making for various stakeholders involved in transportation and
road management.
However, challenges persist in the ML-based driving behavior literature, primarily
due to the lack of affordable and reliable data modalities and an insufficient amount
of labeled data. Despite these challenges, this work has made contributions to the
domain, particularly in the areas of anomaly detection and accident detection, using
state-of-the-art ML approaches.
To summarize, this work addresses the questions raised in section 1.1.1 and provides
valuable insights and solutions in the field of driving behavior analysis.

• Utilizing primary in-car sensors using ML approaches: Is it possible
to utilize primary in-car sensors using ML approaches to detect abnormal
driving patterns? The first section of chapter 2 of this thesis has shown that
this is indeed possible. In-car sensors, including those measuring speed, brake,
throttle, and steering-angle, offer valuable data that can be used to identify
deviations from typical driving behavior.
Machine learning techniques are well-suited for processing and analyzing this
sensor data, enabling the detection of abnormal driving patterns. There is a
wide range of ML algorithms that can be applied, from traditional methods
such as support vector machines (SVMs) and cluster-based models to more
advanced techniques like recurrent neural networks (RNNs). The choice of
algorithm should take into account the availability of labeled data and the
volume of data to be analyzed.
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In summary, the integration of primary in-car sensors and ML approaches is a
feasible and effective way to identify abnormal driving patterns, contributing
to enhanced road safety and driver behavior analysis.
Considering the difficulty of adequately training and interpreting unsupervised
deep learning models, is there a benefit to using them for anomaly detection
as opposed to other traditional machine learning models? Indeed, there are
benefits to using unsupervised deep learning models for anomaly detection in
comparison to traditional machine learning models, as discussed in chapter
2 of this thesis. Some of these advantages include the ability of deep learn-
ing models to automatically learn intricate representations from data, handle
high-dimensional and unstructured data effectively, and potentially capture
subtle, non-linear patterns that might be challenging for traditional methods
to discern.
However, it is important to acknowledge that training and interpreting unsu-
pervised deep learning models can be more challenging and resource-intensive,
and they may require larger data sets. The complexity of deep learning models
can also make them less interpretable than some traditional ML techniques.
The choice between unsupervised deep learning models and traditional ML
models for anomaly detection should be based on the specific needs and con-
straints of the application. Factors such as the availability of labeled data,
the nature and complexity of the data, computational resources, and the in-
terpretability of the model all play a role in making an informed decision
regarding which approach to use.
Regarding the lack of labeled driving patterns, can applying the proposed solu-
tion to the benchmark driving data set be worthwhile? Utilizing the proposed
solution on a benchmark driving data set can indeed be a valuable approach,
particularly when labeled driving patterns are scarce or not readily accessible.
As demonstrated in section 2.5 of this work, the application of the proposed
PRC framework to a naturalistic data set of hazardous driving events has
shown significant success. This framework provides an effective means to de-
tect and analyze abnormal driving behavior, making it a promising tool for
improving road safety and driving behavior analysis.

• Detecting real-world accidents based on primary in-car sensor data:
Is it possible to detect real-world accidents based on primary in-car sensor
data? Detecting real-world accidents using primary in-car sensor data is indeed
feasible. These sensors, including speed, throttle, brake, steering-angle, offer
valuable information that can be harnessed to identify patterns and events
indicative of accidents or hazardous situations.
However, it is crucial to acknowledge that accident detection relying solely
on primary in-car sensor data may come with limitations. The performance
of detection can be affected by factors like sensor quality and reliability, the
availability and quality of labeled training data, and the specific context and
conditions in which accidents occur. Therefore, while primary in-car sensors
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can provide valuable insights into accident detection, it’s important to consider
these factors and their potential impact on the accuracy of detection.
What is the best feature extraction method for accident detection? What
features contribute more to the classification result? In section 3.3, various
feature extraction methods, including traditional manual feature extraction
and feature learning, were applied alongside two classifiers. Among the tested
approaches, CNN features in combination with an SVM classifier achieved
the highest performance, surpassing all others. This approach achieved an
accuracy of 85.72%, a weighted F1 score of 84.9%, and an average F1 score of
79.10%. These results are promising, given that the data set used in this study
is based on real accidents, and the recognition of severe accidents relied solely
on data from four basic in-car sensors. Furthermore, interpretability studies
demonstrated that the combined HC and DNN approaches extracted optimal
features from different sensor channels, indicating their potential for effective
combination due to their complementarity. Combined HC and DNN features
improved the average F1 score from 79.10% to 80.12% for the SVM classifier.
Based on the Jacobian scores of the sensors used, the steering-angle sensor
has the most significant impact on the results. Speed and acceleration sen-
sors come next in terms of importance. Interestingly, the results presented
in section 3.4 highlight that the gas pedal position sensor was consistently
considered the least informative channel by CNN, which contrasts with the
feature extraction using HC, where it yielded the best features. This suggests
that the features learned by HC and CNN have different characteristics and
may be complementary. As a result, a combination of CNN features with the
top-ranked HC features was explored to enhance the results.

It is important to emphasize that the research presented in this thesis represents
the pioneering study in the field of ML-based accident detection using primary in-
car network data. This study stands as a unique and innovative research endeavor,
focusing on the detection of real driving accidents using data from the most accessible
and cost-effective sources within vehicles.

4.2 Limitations
This thesis delivered a comprehensive investigation into the utilization of cutting-
edge ML techniques applied to primary in-car sensor data for the detection of anoma-
lous driving behaviors. Furthermore, it introduced an extensive ML framework,
based on the PRC, for the purpose of accident detection using primary in-car data.
The framework was then utilized to compare state-of-the-art ML feature extraction
techniques that are relevant to in-car sensor data for accident detection, specifically
based on the SHRP2 NDS crash data set.
Despite yielding promising results, the studies presented in this work have several
limitations that warrant further exploration. The most significant limitations are
summarized as follows:
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• The finite scope of the ML-based driving behavior study using pri-
mary in-car sensor data: The lack of ground truth in ML-based driving
behavior studies is attributed to various factors. Machine learning can aid in
the analysis of driving behaviors by learning from extensive data sets and un-
covering patterns and correlations. However, establishing a definitive ground
truth for driving behavior is challenging, as outlined in section 1.1.1.

• Imbalanced data set: Driving behavior studies often face challenges related
to data scarcity, particularly in the case of naturalistic data. However, the
lack of positive examples is another significant issue in this field when data is
available. For many machine learning tasks, having both positive and negative
behavior examples is essential. In the context of driving, positive examples
refer to dangerous or unacceptable behaviors, which can be challenging to
collect due to ethical and safety concerns.

• Data acquisition challenges: Collecting comprehensive and accurate driv-
ing data is often an expensive and time-consuming process. It encompasses
various aspects, including vehicle dynamics, driver reactions, and environ-
mental conditions. Moreover, it necessitates specialized equipment, such as
in-vehicle sensors, cameras, or telematics devices, and the participation of
willing individuals, which contributes to the complexity and cost. In the case
of supervised machine learning models, each data point must be precisely la-
beled. However, labeling driving data can be challenging due to the subjective
nature of what constitutes specific driving behaviors, and it can also be a
laborious and time-consuming task.

• Defining anomalies and interpreting the results: Defining anomalies
and interpreting results in driving behavior analysis can be challenging. What
may be considered an anomaly in one context might be normal behavior in an-
other. Advanced machine learning models, such as neural networks, are often
referred to as black boxes because their internal operations can be challenging
to interpret. While these models can accurately detect anomalies, explain-
ing why a specific behavior was identified as an anomaly can be difficult. This
lack of interpretability can hinder researchers and practitioners in trusting and
comprehending the results.

• The complexity of events such as accidents: Establishing a clear defini-
tion of a car accident is complex due to various factors. Accidents can vary
widely in terms of speed, impact direction, types of vehicles involved, and other
variables, all of which can significantly influence the severity of an accident.
What one person might consider a minor accident, another might deem severe,
depending on their perspective, experience, or personal bias. This subjectivity
makes it challenging to label and classify accidents accurately.
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4.3 Future work
The following directions could be explored to expand the scope of the thesis contents
and address some of the limitations previously mentioned:

• Expanding the number of sensor channels: Expanding the number of
sensor channels tested in this work is essential. Exploring different combina-
tions of sensor channels and utilizing various learning algorithms may lead to
enhanced classification performance. Additionally, including additional sensor
modalities such as lateral acceleration and yaw rate, which are readily avail-
able in most cars, and examining their impact on the detection performance
is a promising avenue for future research.

• Further investigation in unsupervised approaches: Unsupervised ap-
proaches have shown remarkable results in both anomaly detection and ac-
cident detection in this thesis. Given these promising performances, delving
deeper into the exploration of unsupervised learning techniques such as Gen-
erative Adversarial Networks (GANs) [126] in future work is highly recom-
mended. This can help uncover more insights and potentially lead to even
better results in various applications related to driving behavior analysis.

• Using advanced feature selection approaches: Chapter 3 of this thesis
highlights the importance of feature selection methods in enhancing classifica-
tion model accuracy, mitigating overfitting, and improving model robustness.
It discusses both filter-based and wrapper-based feature selection methods.
In future work, it would be valuable to explore more advanced feature selection
algorithms, such as embedded feature selection methods designed for unbal-
anced data sets [124]. This can contribute to further improving the effective-
ness of feature selection techniques, especially when dealing with imbalanced
data, which is a common scenario in driving behavior analysis.

• Bypassing insufficient labeled data: To address the issue of limited labeled
data, several techniques can be explored in future work:
Semi-Supervised Learning: This approach combines both labeled and un-
labeled data for training. It can effectively leverage a small amount of labeled
data along with a large pool of unlabeled data to improve model performance
[127] .
Active Learning: Active Learning is a process where the model is initially
trained on a small batch of labeled data. It then uses this initial training to
make predictions on unlabeled data. The model selects the instances it is most
uncertain about, and those instances are manually labeled and added to the
training data. This iterative process continues until the model’s performance
reaches a satisfactory level [128].
Transfer Learning: This approach can help overcome the challenge of lim-
ited labeled data by utilizing and fine-tuning a pre-trained model. The pre-
trained model is typically trained on a large-scale labeled data set. When the
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new task is related to the initial training task, Transfer Learning can be a pow-
erful way to leverage the knowledge encoded in the pre-trained model [129].
These techniques have the potential to expand the scope of driving behavior
analysis by making more efficient use of limited labeled data and addressing
the challenges associated with data scarcity.
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