Please use this identifier to cite or link to this item: http://dx.doi.org/10.25819/ubsi/2468
Files in This Item:
File Description SizeFormat
Dissertation_Ali_El-Chaikh.pdf5,59 MBAdobe PDFView/Open
Dokument Type: Doctoral Thesis
Title: Charakterisierung der Schädigungsmechanismen bei mechanischer und thermomechanischer Ermüdung einer hochfesten γ-TiAl-Legierung
Other Titles: Characterization of damage mechanisms under mechanical and thermomechanical fatigue of a y-TiAl-alloy
Characterization of damage mechanisms under mechanical and thermomechanical fatigue of a y-TiAl-alloy
Authors: El-Chaikh, Ali 
Institute: Institut für Werkstofftechnik 
Fakultät IV - Naturwissenschaftlich-Technische Fakultät 
Department Maschinenbau 
Free keywords: Thermomechanische Ermüdung, Hochtemperaturermüdung, Gamma-Titanaluminide, Modellierung, Lebensdauermodell
Dewey Decimal Classification: 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
GHBS-Clases: ZLR
Issue Date: 2020
Publish Date: 2020
Series/Report no.: Siegener werkstoffkundliche Berichte 
Source: Siegen : Lehrstuhl für Materialkunde und Werkstoffprüfung, 2020. - ISBN 978-3-00-065742-9
Abstract: 
Ziel dieser Arbeit war, das Hochtemperaturermüdungsverhalten der gamma-TiAl-Legierung TNB-V2 zu untersuchen. Zu diesem Zweck wurden gesamtdehnungsgeregelte Ermüdungsversuche unter isothermen (LCF) und thermomechanischen (TMF) Bedingungen bei einem Dehnungsverhältnis von Rε=-1 durchgeführt. Der Werkstoff zeigt unter LCF-Beanspruchung eine deutliche Abhängigkeit der Lebensdauer von der Dehnungsamplitude. Bei niedrigen Temperaturen und hoher Dehnungsamplitude führt eine dynamische Reckalterung zur Verfestigung des Werkstoffs bis zum Bruch. Die Mikrostruktur zeigt hauptsächlich Zwillingsbildung und hohe Versetzungsdichte. Ab 650°C findet bei hohen Dehnungsamplituden eine Entfestigung des Werkstoffs statt. Die Mikrostruktur weist bei Temperaturen über die BDTT eine Degradation der lamellaren Morphologie auf, in der sich überschüssige alpha2-Phase in gamma-Phase umwandelt. Unter TMF-Bean-spruchung wirkt sich die resultierende Druckmittelspannung unter In-Phase- (IP-) Beanspruchung positiv auf die Lebensdauer aus und führt bei niedrigen Dehnungsamplituden zu höheren Lebensdauern als unter LCF-Bedingung. Die TMF-Ergebnisse zeigten auch, dass eine niedrige Untertemperatur von 350°C zu verstärkt auftretender dynamischer Reckalterung führt. Dieser Effekt der dynamischen Reckalterung führt wiederum zusammen mit dem Umgebungseinfluss zu einer drastischen Reduzierung der Lebensdauer unter OP-Beanspruchung. Die Mikrostruktur zeigt im Gegensatz zu der isotherm ermüdeten Mikrostruktur keine dynamische Erholung in den gamma-Körnern. Die Versetzungen werden unter TMF-Beanspruchung während der Tieftemperaturphase erzeugt. Die Lebensdauern unter IP-, OP- und LCF-Beanspruchungen konnten durch ein gemeinsames Modell gut beschrieben werden. Das Modell besteht aus zwei Teilen. Zum einen wurde das Wechselverformungsverhalten mit Hilfe eines erweiterten Multikomponentenmodells modelliert. Zum anderen wurde ein Schädigungsparameter zur Lebensdauerbeschreibung definiert, dessen benötigten Eingangsgrößen durch das erweiterte Multikomponentenmodell geliefert werden. Durch die Kombination beider Modelle konnte bei der Lebens-dauerbeschreibung ein Mikrostrukturbezug gewährleistet werden.

Aim of this work was the investigation of the high temperature fatigue behavior of the gamma-TiAl-alloy TNB-V2. Total strain-controlled fatigue experiments under isothermal (LCF) and thermo-mechanical (TMF) conditions were performed at a strain ratio of R=-1. The alloy shows under LCF conditions a clear dependency of the fatigue life on the strain amplitude. At low temperatures and high strain amplitudes strain aging leads to a cyclic hardening until fracture. The microstructure shows mainly formation of twining and high dislocation density. Above 650°C cyclic softening takes place at high strain amplitudes. The microstructure shows above the BDTT a degradation of the lamellar morphology, where a transformation of the excess alpha2 phase into the gamma phase takes place. Under in-phase (IP)-condition the compressive mean stresses exhibit a beneficial effect on the fatigue life. This leads at low strain amplitudes to higher fatigue lives than under LCF conditions. The TMF experiments show also that a low minimum temperature of 350°C enhances the dynamic strain aging and causes together with the environment a considerable decrease of the fatigue life under out-of-phase (OP) condition. In contrast to LCF microstructure the TMF microstructure shows no dynamic recrystallisation in the gamma-grains. Under TMF condition dislocations are generated during the minimum temperature phase. The fatigue lives under IP, OP, and LCF conditions were described by means of a single model, which consists of two parts. In the first, part the TMF hysteresis loop was simulated by means of a modified multi-component model. In the second part, a damage parameter for the fatigue life description was defined. The parameters of the stress-strain response needed for this model were calculated by means of the multi-component model mentioned above. Due to the combination of these two models a microstructure reference was assured during fatigue life description.
DOI: http://dx.doi.org/10.25819/ubsi/2468
URN: urn:nbn:de:hbz:467-16195
URI: https://dspace.ub.uni-siegen.de/handle/ubsi/1619
Appears in Collections:Hochschulschriften

This item is protected by original copyright

Show full item record

Page view(s)

44
checked on Jul 4, 2020

Download(s)

8
checked on Jul 4, 2020

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.