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Zusammenfassungen

Maschinelles Lernen und Sehen werden oft so verstanden, als beträfen sie nur Maschi-
nen und die Entwicklung von Algorithmen, welche einem Computer verschiedenste Auf-
gaben ermöglichen. Jedoch haben auch das menschliche Sehen und die menschliche
Wahrnehmung einen Einfluss auf die Zielvorgaben, wie solche Algorithmen funktionieren
sollen und wie ein Computer "sehen" soll. Die zwei Ziele dieser Dissertation sind da-
her die Untersuchung von visueller Ähnlichkeit (visual similarity) nach Gesichtspunkten
menschlicher Warnehmung und die Untersuchung von Feature-Darstellungen in tiefen Fal-
tungsnetzwerken (DCNNs).

Die Bewertung von visueller Ähnlichkeit zwischen Bildern ist zwar eine Kernaufgabe der
menschlichen Wahrnehmung, aber eine große Herausforderung für Maschinelles Sehen in
echten Anwendungen, aufgrund der Subjektivität und Mehrdeutigkeit der Problemdefini-
tion. Daher ist das erste Ziel dieser Arbeit eine grundlegende Studie von visueller Ähn-
lichkeit. Wir untersuchen eine Abgrenzung verschiedener Aspekte von Ähnlichkeit, die
eine handhabbare und realisierbare Untersuchung ermöglicht. Wir diskutieren Ähnlichkeit
auf Basis von Farbkomposition im Detail, anfangend bei menschlicher Evaluierung, bis
hin zur Modellierung mithilfe von DCNNs. Wir benutzen diese Modelle zur Schaffung
sowohl einer neuer Metrik für global Farbähnlichkeit als auch eines Farbtransfermodells.
Weiterhin verknüpfen wir Farbkomposition und Objektähnlichkeit, um ein neues Modell
für visuelle Ähnlichkeit zu definieren. Diese Kombination führt in der Anwendung, etwa
im Bereich der Bildsuche auf einer feineren Unterscheidungsebene (fine-grained image re-
trieval) zu verbesserten Ergebnissen. Unser Ansatz ist ein Prototyp, der zeigt, wie subjektive
Wahrnehmung, für Maschinen greifbar gemacht werden kann. Schliesslich entwickeln wir
auch ein wahrnehmungs-inspirierte Metrik zur Evaluierung von intrinsischen bildgeben-
den Verfahren, die im Gegensatz zu besherigen Metriken, genauere Methodikvergleiche er-
möglicht.

Das zweite Ziel dieser Dissertation bildet die Untersuchung von Merkmalsrepräsentationen
in verschiedenen Teilbereichen eines DCNNs, und stellt die Frage, wie diese Merkmale ver-
standen, effizient benutzt und verändert werden können. Merkmale aus den unteren und
mittleren Schichten eines DCNNS, angefangen bei den Bildpixeln hin zu den Faltungsergeb-
nissen der frühen Schichten, können gut als Metriken für Wahrnehmung und visuelle Ähn-
lichkeit verwendet werden. Bei Analyse der späteren Schichten eines DCNNS für Klassi-
fizierung finden wir jedoch heraus, dass in diesen Gestaltsinformationen "versteckt" sind.
Die Extraktion dieser Informationen führt uns zu einer schwach beaufsichtigten (weakly-
supervised) Segmentierungsmethodik, die sogar jenseits der Klassen funktioniert, mit de-
nen das DCNN trainiert wurde. Außerdem betrachten wir die diskriminativen Fähigkeiten



viii

dieser späteren Klassifikationsmerkmale und diskutieren eine Verbesserung der Separation
durch Verwendung von Methoden der linearen Diskriminationsanalyse während des Train-
ings. Unsere vorgeschlagene Optimierungsmethode führt zu verbesserten Klassifikation-
sergebnissen, besonders bei der Klassifikation auf einer feineren Unterscheidungsebene, die
sogar für menschliche Experten schwierig ist.

Diese Untersuchungen von visueller Ähnlichkeit und von tiefen Merkmalsrepräsentationen
in DCNNs zeigen neue Wege zu einer Theorie von Bildverständnis auf, die verschiedenste
Aspekte von Bildern, wie Farben, Gestalt und Kategorien einschließt.
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Abstract

Machine Learning and Computer Vision are often thought to relate only to machines, in-
volving the development of algorithms and teaching computers to perform various tasks.
However, human vision and perception are hidden aspects that influence how an algorithm
should function, or how we would want a computer to "see". The two goals of this thesis
are the study of perceptual visual similarity and that of feature representations from Deep
Convolutional Neural Networks (DCNNs).

Assessing visual similarity in-the-wild, a core ability of the human visual system is a chal-
lenging problem for Computer Vision because of its subjective nature and its ambiguity in
the problem definition. Therefore, the first goal of the thesis is to study the fundamental
problems of visual similarity. We raise the question if we could break down different as-
pects of similarity that make their study more tractable and computationally feasible. We
study color composition similarity in-depth, from human evaluation to its modeling using
DCNNs. We apply the models to create a new global color similarity descriptor and color
transfer method. We then couple color composition and category similarities to define a new
model for visual similarity. The combination leads to better results in fine-grained image
retrieval. Our approach is a proof of concept, showing that we can make subjective phe-
nomena scientifically tractable. We also developed a perceptual inspired metric to evaluate
intrinsic imaging methods resulting in a fairer evaluation compared to previous metrics.

The second goal of the thesis focuses on investigating what features are embedded in dif-
ferent parts of a DCNN, how we could use them efficiently, and how we can improve these
features. On the one hand, the low to mid-level features, ranging from image pixels to dif-
ferent layers of convolutional responses in a DCNN, are used in perceptual metrics and
visual similarity. On the other hand, we discover shape information "hidden" in the high-
level features of a DCNN trained for classification. The shapes extracted from the DCNN
are used to perform weakly supervised semantic segmentation that works well beyond the
classes on which the DCNN was trained. We also find a way to improve the discriminative
ability of deep classification features by incorporating Linear Discriminant Analysis objec-
tives into a DCNN training optimization. Our proposed optimization method leads to better
classification results, especially for fine-grained classification, which is challenging even for
non-expert humans.

The studies on perceptual visual similarity and deep feature representations in the thesis
shed new light on image understanding, which covers different aspects of images such as
color, shape, and category.
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Chapter 1

Introduction

“Research is formalized curiosity. It is poking and prying with a purpose.”

Zora Neale Hurston

Computer Vision is a scientific research field with a quest for computers to understand vi-
sual information such as images and videos, to form decisions and perform tasks as humans
do. Image understanding is a process of analyzing and transforming data from the form of
image signals to symbolic information that helps to interpret images. Image understanding
covers a wide range of topics from objective studies such as object recognition, tracking,
segmentation to subjective studies such as image aesthetics, saliency, visual similarity, to
name a few. Algorithms and techniques for processing images span a broad spectrum of
information levels, from low-level signal processing in early vision to high-level symbolic
features for complex cognitive tasks. This thesis aims to study visual similarity and deep
feature representations provided by Deep Convolutional Neural Networks (DCNNs), and
apply them in different Computer Vision tasks.

The thesis comprises two main parts. The first part includes work focused on perceptual
similarities such as perception-inspired evaluation metric for intrinsic imaging methods,
and a complete framework and study on color composition similarity. The second part is
the study of high-level features for shape extraction, semantic segmentation, and improving
discriminative features for classification.

Pixel-Based Perception-Inspired Metric for Intrinsic Imaging (Part I - Chapter 3)

Intrinsic imaging is a process to decompose a color image into intrinsic reflectance, shad-
ing, and specular components. The reflectance is an intrinsic surface property, the spectral
distribution of diffuse reflection of the surface. It does not change when lighting conditions
change. Unlike reflectance, the shading component changes due to the angular distribution
of incoming light, self-shadowing, and cast shadows. Similar to shading, specular reflection
is created by strong lights’ reflections at specific places on the objects’ surfaces; however, it
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is an effect that occurs on the metallic or non-metallic surface and not on scattering parti-
cles inside the material [Gro+09]. The reflectance component of an image is important for
a realistic scene reconstruction in Computer Graphics. Therefore, many intrinsic imaging
methods aim to create reliable reflectance results. To evaluate the quality of the reflectance
results from intrinsic imaging methods, Mean Squared Error (MSE) or Local Mean Squared
Error (LMSE) are often used. While MSE penalizes heavily for large errors from outliers,
LMSE cannot guarantee the global consistency of the evaluation [Gro+09]. Bell et al. [BBS14]
introduced a weighted human disagreement rate (WHDR) metric, but the metric seems to
be less discriminative among different methods’ results. Inspired by human perception
where distinctions between colors are only observable above some certain thresholds that
are studied in the Just Noticeable Difference (JND), we develop a perception-inspired metric
called Point-wise Consistency Metric (PCM) that measures the reflectance consistency with
respect to the ground-truth throughout different illuminations using perceptual color dis-
tance CIE DE2000 [LCR01; SWD05]. PCM is designed based on the main principles that if
two points are perceptually similar in the ground-truth reflectance, they should be similar
in the estimated reflectance, and the brightness differences between those two points should
also be similar in the ground-truth and the estimated reflectance. Our proposed metric re-
flects the perceptual characteristics of human vision, but at the same time, avoids the visual
illusion caused by strong shadows and specularities [OCS05]. The metric is presented in
Chapter 3. We compare the performance of our metric against LMSE on three state-of-the-
art intrinsic imaging methods. It shows that our metric evaluation is more stable across
different illumination conditions and gives fairer judgments than LMSE. This work is de-
scribed in Chapter 3 and published at the BMVC conference in 2016 [Bei+16].1

Perceptual Color Composition Similarity (Part I - Chapter 4)

A large portion of part one of the thesis contains significant work on visual similarity, which
highlights color composition similarity in Chapter 4. Visual similarity is a long-standing
Computer Vision research subject that is highly related to human vision. It is a challenging
field of study due to its subjective measure. There is no clear and concise definition of what
it means for two images to be considered visually similar. Two images can be similar, for
example, if they contain the same object, express the same photography style, or have the
same color layout. Our goal is to break visual similarity down to different aspects for which
the study is more well-defined.

While category and image type similarities are easy to handle by classification-based ma-
chine learning model, the global color similarity is more complicated, especially for images
in-the-wild. We define color composition similarity between pairs of images based on hu-
man judgments on the similarities in hues, shades, their distributions, overall layouts, fore-
ground colors versus background colors, and independent of the category. It goes beyond
pixel-based approaches, to which the CIE DE2000 metric [LCR01; SWD05] can be applied,
or patch-based approaches. Due to the complexity of natural images, hand-crafted color

1References in red are my publications, references in blue are external bibliography.



Chapter 1. Introduction 3

descriptors [AF06; BZM08; BG09; Geu+01; Kha+13; LS13; Man+01; SGS10; WGB06] cannot
predict color composition similarity well. Therefore, we are motivated to solve the color
composition similarity problem that will lead to a better model for visual similarity.

We develop an active learning approach for collecting meaningful pairs of images to evalu-
ate color composition similarity. It faces a cold start problem because there are many more
pairs of images that are visually different than similar if we were to sample images ran-
domly. We start with a small manual selection of similar pairs of images, use them for train-
ing a model to select more similar images for human evaluation, and repeat the process.
At the final step, we ask participants to rate the color similarity using a 5-point Likert-type
scale. We carefully design several crowd-sourced experiments, analyze their results, and
choose the best format of the experiments that lead to a high quality and consistently rated
dataset. As a result, we build a large-scale, high quality, and the first of its kind dataset for
color composition similarity.

The color composition similarity dataset provides the groundwork for us to train color sim-
ilarity metrics and descriptors, and learn global color similarity features. Our descriptor
outperforms existing hand-crafted color descriptors by a large margin when applied to im-
age retrieval based on visual color similarity. We also set a benchmark for evaluating global
color similarity by providing a testing dataset, which is a part of our color composition
dataset, and the similarity ranking measure using Spearman Rank Order Correlation Coef-
ficient (SROCC) between the predicted results and ground-truth ratings.

In fine-grained image retrieval, existing techniques use general visual similarity features
[BB15; Che+10; PM15; Wan+14; WKH17]. We propose to combine color similarity with
category similarity to form novel features for fine-grained image retrieval. Our model shows
superior results compared to the best of the existing methods, DeepRanking [Wan+14], with
three orders of magnitude less training data.

We also apply our global color composition similarity features to color transfer. The work
is based on neural style transfer [GEB16]. Gatys et al. discover that correlations of mid-
level features in a Deep Convolutional Neural Network (DCNN) can represent textures,
structures, and styles of images [GEB15; GEB16]. We train a DCNN to predict color com-
position similarity using the VGG19 architecture [SZ15] on our color similarity dataset. The
responses from different convolutional layers of our trained VGG19 capture color features
at different levels, from the lowest patch-based to the highest global representation. We suc-
cessfully use these mid-level features of our color VGG19 network in color transfer. To go
an extra step, we incorporate our color network with the neural style transfer network in
[GEB16] to create a new algorithm for style transfer, in which color and style are extracted
from different sources of input images. The results show that our color transfer method cre-
ates aesthetic and pleasant images, both in color transfer alone and in combination with style
transfer. The work on color composition similarity is presented in Chapter 4 and published
at the WACV conference in 2020 [HHB20].
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Shape Extraction and Semantic Segmentation (Part II - Chapter 5)

In the second part of the thesis, we present different studies on high-level features from clas-
sification DCNNs. When a network is trained for image classification, its task is mainly to
predict images’ labels. However, when trained on a large-scale dataset such as ImageNet
[Den+09] with 1,000 classes and millions of images, it raises the question of which types of
features the network captures while learning the classification task. Our work on studying
deep features started with the work from Zhou et al. [Zho+16] where the authors tried to
identify which regions in an input image that the classification network "looks at" to decide
on its prediction. In other words, it looks for regions in images that contain discriminative
features for a predicted class. The results are called Class Activation Maps (CAMs), which
can be loosely translated as a map showing regions that activate a class prediction. How-
ever, these CAMs are constructed at the size 14 × 14 pixels, which is the size of the last
convolutional layer in the network, whereas the input image size is 224× 224. Therefore,
the CAM resolution is very low when projected back to the input image.

In a separate study, we find that a classification CNN trained on ImageNet dataset [Den+09]
can embed the shape information inside its high-level convolutional features. The study was
done by analyzing convolutional responses from the network on a small dataset designed
for shape detection. The dataset contains 200 images of different objects’ shapes. We use data
augmentation to add different colors and textures to the shapes. We look for a convolutional
layer that has the least variance to the color and texture changes. We find that the shape in-
formation resides in one of the convolutional responses towards the end of the CNN. We
combine the shape information with the existing CAMs on two resolutions of an input im-
age to produce a high-resolution CAM (rCAM). Unlike existing CAM methods, our rCAM
technique can discover multiple instances in multiple resolutions of the predicted class. Our
high-resolution CAM results are very good such that we can apply them in semantic seg-
mentation. We achieve state-of-the-art results in weakly supervised semantic segmentation
without any retraining or fine-tuning the classification network. The complete work and
results are described in Chapter 5 and published at the WACV conference in 2018 [Ha+18].

Neural Discriminant Analysis (Part II - Chapter 6)

The last work, but not least, in part two of the thesis is about learning discriminant analysis
for deep classification features. Instead of just training on the loss function that measures
errors, it is possible and makes sense to strengthen the signal on the feature layers by re-
warding a high inter-class variation relative to the intra-class variance of the features. One
of the effects is that the system not only just barely classifies the training examples correctly,
but that it does so by a large margin. We have reasons to believe that classification by a
large margin generalizes better to new data. For example, Support Vector Machines (SVMs)
do exactly this, and they have a theoretical motivation using Vapnik Chervonenkis (VC)
dimension.
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To improve the discriminant of classification features, we take the objectives of Linear Dis-
criminant Analysis (LDA) and incorporate it into DCNN training. LDA is a supervised di-
mension reduction technique that transforms a feature space into a lower-dimensional space
that satisfies two conditions. The first one is to maximize the variance between classes. The
second is to minimize the variance within each class. We put these criteria in the form of
two-phase optimization for deep features using Neural Networks, hence the name Neural
Discriminant Analysis (NDA). In the first phase, NDA optimizes the Mean loss, whose goal
is to minimize the intra-class variance. In the second phase, we use a Siamese network that
receives two input images. The two images are passed through a shared weight DCNN ar-
chitecture to extract their deep features for classification. The optimization for the Siamese
is to push the two inputs further apart if they are from different classes and pull them to-
gether if they are from the same class. The NDA optimization alternates between these two
phases. We test our two-phase NDA on the fine-grained classification, where the system
needs to classify sub-classes that often have high intra-class variances such as the same ob-
ject with different colors, poses, or lighting conditions. At the same time, it can also have
low inter-class variances, such as sub-classes of birds. We achieve good improvement re-
sults on several popular fine-grained classification datasets over the baselines, which is the
classification results without using NDA. We also propose another version of NDA, where
all the losses are combined. Combining all the loss functions into one optimization is advan-
tageous in its ease of use for implementation and training. We conduct experiments with the
combined loss on CIFAR-10 dataset, a general classification dataset known to be a miniature
version of ImageNet [Den+09]. It shows that the combined loss NDA improves the classifi-
cation results on various networks and surpasses the results of the competing method by a
large margin. The details of this work are described in Chapter 6, and the work is published
at the ICIP conference in 2020 [HB20].

Thesis Overview Relating To Feature Representations

Deep features are extracted at different layers inside a DCNN. The features are presented
from the most fundamental to the highest abstract level in the direction from the input to
the output. The lowest level of features corresponds to engineered features by using vari-
ous designed kernels such as edge detection, corner detection and color blob detection, to
name a few. Mid-level features encode the texture and complex patterns of the input image.
The highest abstract features present discriminative features of input images that are very
efficient for classification or regression. The thesis includes work covering the whole range
of features, from pixel-based to high-level abstract features. An overview of the thesis is
illustrated in Figure 1.1.
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Figure 1.1: An overview of the thesis based on different levels of deep features extracted at different
parts of a Deep Convolutional Neural Network (DCNN). At an image pixel-based level, we developed
a perceptual metric to evaluate intrinsic imaging methods (in Chapter 3). For mid-level features that
represent textures and structures of images, we innovate a global color composition similarity measure
that is successfully applied in visual image retrieval and color transfer (in Chapter 4). At high-level
abstract features, we produce high-resolution Class Activation Maps (rCAM), extract shape features,
and perform weakly supervised semantic segmentation (in Chapter 5). We also introduce a Neural
Discriminant Analysis (NDA) optimization to transform the high-level features into more discriminative
features that result in better classification in general and fine-grained classification specifically (in Chap-
ter 6). (Source image for the CNN structure: https: // adeshpande3. github. io/ adeshpande3.
github. io/ A-Beginner’s-Guide-To-Understanding-Convolutional-Neural-Networks/ )

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/


Chapter 1. Introduction 7

Summary of Contributions

The main contributions of this thesis and the benefits that result from the thesis are summa-
rized as follows:

• The first contribution is a new perception-inspired metric for evaluating intrinsic imag-
ing methods. The metric evaluates intrinsic reflectance results using the perceptual
color distance CIE DE2000. The evaluations for intrinsic imaging methods using this
metric are more consistent across different illuminations than previous metrics.

• The second one is a color composition similarity dataset, the first of its kind, and an
active learning framework for studying subjective topics. The benefits derived from
this work are many folds. The active learning framework is proven to be an effective
methodology to formulate and solve subjective problems. The dataset is a valuable
data source for creating different global color similarity descriptors that yield better
image retrieval and fine-grained image retrieval results. Deep color features, trained
on the color similarity dataset using a DCNN, lead to a successful neural color trans-
fer technique with satisfying results. Furthermore, combining these color features and
content features from a classification DCNN produces a whole new type of style trans-
fer technique that allows the final result to have the color composition and image con-
tent from separate image sources.

• Thirdly, new insights into properties of different layers in classification DCNNs are
discovered, especially shape, and a method to extract shape information from a pre-
trained DCNN for image classification. As a result, a "weaker" than weakly supervised
learning method for semantic segmentation uses the extracted shape information is
developed with far more generalization ability than existing weakly supervised seg-
mentation methods.

• Finally, another significant contribution is an optimization implemented for DCNNs
based on the classical Linear Discriminant Analysis principles to learn discriminative
features. The optimization leads to improvements of the "black-box" results from clas-
sification DCNNs, especially for fine-grained classification.

As the majority of the work in this thesis is related to deep features embedded inside DC-
NNs, an overview of DCNNs and their fundamental components are described in Chapter 2.
We also demonstrate the links of different feature levels to different topics of the thesis at
the end of Chapter 2.
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Chapter 2

Convolutional Neural Networks

This chapter presents some foundations and evolutions of Artificial Neural Networks (ANN)
and Deep Convolutional Neural Networks (DCNNs). The second half will focus on study-
ing the features produced by DCNNs and demonstrate the links to my research work.

2.1 Artificial Neural Network (ANN)

“The journey of a thousand miles begins with a single step.”

Lao Tzu

The human brain is extraordinary because it is capable of hosting a unique intelligence, that
can be self-aware, study itself, and move forward to re-create its own intelligence using
machines. In 1943, the neurophysiologist Warren McCulloch and the mathematician Walter
Pitts marked the birth of Artificial Intelligence by creating electrical circuits that simulated
how neurons in the human brain were believed to work [MP43]. The McCulloch-Pitts single
neuron model (known as the M-P neuron) used linear separable logic functions (such as
AND and OR) applied on the logical input signals to produce binary classification outputs.

In 1958, Rosenblatt proposed the perceptron model that was an improvement of the M-P
neuron [Ros58]. Instead of using logical inputs and logic functions, the perceptron neuron
produces binary classifications by a weighted sum of real numerical inputs. Combining
multiple perceptrons into one layer extends the classification from binary to multiple classes.
It forms the single-layer perceptron, also known as a single-layer Artificial Neural Network
(ANN). However, from the M-P neuron to single-layer perceptron, they all share the same
limitation, which is the inability to perform non-linear classification, for example, to learn
the XOR function [MP69].

An extension of the single-layer perceptron, a multi-layer perceptron (known as ANN) has
boosted the computational power to the extent that it can theoretically solve any logic func-
tions, or be able to classify multi-class non-linear data.
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Figure 2.1: An illustration of a simplified and accepted structure of a biological neuron and its signal
transmission mechanisms. A neuron consists of a soma which is the body of the cell, dendrites that
receive and process input signals from other neurons, an axon to transmit the electrical impulses out
of the soma, and axon terminals that form synapses to other neurons. A synapse is the point of
“contact“ of one neuron to another. The process of signal transmission is: a neuron receives input
signals and processes the information in both the dendrites and the soma. In certain conditions, if
the electrical polarization near the axon hillock surpasses a certain threshold, the neuron will produce
output impulses (action potentials) that travel through the axon and transmit the signal to other
connected neurons via synapses. (Source image: https: // en. wikipedia. org/ wiki/ Neuron )

https://en.wikipedia.org/wiki/Neuron
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2.1.1 McCulloch-Pitts neuron (M-P neuron)

Loosely inspired by the biological brain neuron model, Warren McCulloch and Walter Pitts
invented the first computational neuron called McCulloch-Pitts neuron (or M-P neuron in
short). Even though neurology research continues to discover more about our brain and
neural functioning, the widely accepted simplified neuron model until today is illustrated
in Figure 2.1.

A neuron consists of several parts. It has a main body called soma which processes informa-
tion. The information propagates from one neuron cell to another in the form of electrical
impulses. A neuron receives electrical signals predominantly via its dendrites. When input
signals are received, and certain conditions are met, the neuron produces electrical impulses
(action potentials) that enable a fast transmission of information to another neuron via its
axon. At the end of an axon are axon terminals that form synapses, which allow the stimula-
tion to be passed along to other neurons.

M-P neuron model

Similar to a biological neuron, an M-P neuron also receives input signals in the form of
binary values, processes the inputs, and generates an output signal (Figure. 2.2). The pro-
cessing function comprises two steps: the first step is to aggregate the input, and the second
step is to decide on the output based on the result of the first step.

Figure 2.2: McCulloch-Pitts neuron model: the neuron receives inputs x1, x2, ..., xn that are boolean
numbers. Function g(x) aggregates the inputs and function f (g) produces the output y, which is
also a boolean value that can be used for binary classification.

Let xi ∈ 0, 1, i = 1..n be the binary inputs. gx is the function to aggregate the inputs and
f (g) is the function that decides the output y, depends on the value produced by g.

g(x) =
n

∑
i=1

xi (2.1)

f (g(x)) =

1, if g(x) ≥ θ

0, if g(x) < θ
(2.2)

y = f (g(x)) (2.3)
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The M-P neuron was designed for processing logical circuits. Let’s take an example of an
M-P neuron that represents the AND function and has two inputs x1 and x2. The output y
can only be 1 if the values of both input x1 and x2 are 1. Therefore, the functions f and g are
defined as: g(x) = x1 + x2 and f (g(x)) = 1 if g(x) ≥ 2.

2.1.2 Perceptron

Improving the limitation in the input type of M-P neuron, Rosenblatt proposed a perceptron
model [Ros58] that processes real value inputs.

Figure 2.3: A perceptron model: the neuron receives inputs x1, x2, ..., xn that are real numbers.
w1, w2, ..., wn are the weights of each input, respectively. Function g(x) is the weighted sum of the
inputs and function f (g) produces the output y, which is a boolean value that can be used for binary
classification.

Let xi ∈ R be the real number inputs and wi ∈ R be the weights respectively, i = 1..n.
gx is a function to aggregate the inputs and f (g) is the function that decides the output y,
depending on the value produced by g.

g(x) =
n

∑
i=1

wi ∗ xi (2.4)

f (g(x)) =

1, if g(x) ≥ θ

0, if g(x) < θ
(2.5)

y = f (g(x)) (2.6)

The equation 2.5 can be rewritten as:

f (g(x)) =

1, if g(x) + b ≥ 0

0, if g(x) + b < 0
(2.7)

where b = −θ and b is commonly referred to as "bias". In modern terms, f (g(x)) is called
an activation function.

With the perceptron model, the inputs and weights are real values, the weights and the
threshold θ are learned. Thus, it can be applied in many types of data with fewer restrictions
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than the M-P neuron. The Rosenblatt perceptron model is also known as a single-layer
neural network where the neuron itself is the single link between the inputs and the output
signals.

However, both models share the same limitation, which is the inability to classify non-linear
data. One example is the data in two-dimensional space, and the classification is the XOR
function [MP69] (Figure. 2.4).

Figure 2.4: Data with XOR function (
⊕

): XOR function creates non-linear data. y = x1
⊕

x2, y = 0
if x1 and x2 have the same values, otherwise, y = 1. Therefore, the red points with the coordinates
(0,0) and (1,1) belong to class 0 and the blue points with the coordinates (0,1) and (1,0) belong to
class 1.

Another limitation of the single neuron in the M-P neuron or perceptron model is that they
can only do binary classification where the output y only has boolean value 0 or 1 to repre-
sent two classes. One way to extend the existing model to fit the multi-class classification
problem is to use multiple neurons to produce multiple output numbers, which leads to the
establishment of neural networks.

2.1.3 Neural Networks

A Neural Network (NN) is a collection of neurons that are organized into layers (Figure 2.5).
It contains one input layer, one output layer, and at least one hidden layer. The hidden layers
consist of a set of neurons that individually functions as a perceptron neuron. Neurons
between two adjacent layers are fully pairwise connected. Therefore, these layers are also
called fully-connected layers.

One of the advantages of Neural Networks over the perceptron model is that a Neural Net-
work can have one or many neurons in its output layer. Single output neuron results in
binary classification, but multiple output neurons allow the network to perform multi-class
classification.

In order for a network to function correctly, the weights need to be learned such that the
difference between the output prediction and the ground-truth is minimized. A method
for iteratively updating the weights to obtain the desired output predictions is backpropoga-
tion. It was popularized to be used in Neural Network in 1986 by Rumelhart, Hinton and
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(a) Three-layer Neural Network (b) Four-layer Neural Network

Figure 2.5: Examples of Neural Networks: 2.5(a) a three-layer Neural Network with one input layer,
one hidden layer and one output layer. 2.5(b) a four-layer Neural Network with one input layer, two
hidden layers and one output layer. The output layers can have one or many neurons for a binary
or a multi-class classification, respectively. Wi are weights that pair-wise link neurons between two
adjacent layers.

Williams [RHW86], even though the backpropagation itself was first introduced much ear-
lier.

Backpropogation

When a Neural Network is used to perform classification, the input data is fed into the input
layer. The information then travels through the hidden layers and arrives at the output
layer yielding the output prediction. This process is called feedforward. In contrast to the
feedforward, the backpropagation travels from the output layer through hidden layers back
to the input layer. Backpropagation updates the network’s weights using the gradient of
the loss function. There are many types of loss functions depending on what type of outputs
the network has. In principle, a loss function measures the difference between the produced
output and the ground-truth. The gradient of the loss function is calculated with respect to
the weights and propagated backward through hidden layers. For an input-output pair, the
gradient is computed as δL/δwl

jk where L is the loss between the predicted output and the
target output, wl

jk is the weight between layer (l − 1) and layer l that links the jth neuron in
layer (l − 1) with the kth neuron in layer l. Backpropagation is efficient, thanks to the chain
rule to compute derivatives in backward fashion for one layer at a time.

Different optimizers can be used for updating the weights with backpropagation such as
gradient descent, stochastic gradient descent (SGD), Adagrad [DHS11], Adam [KB15], to
name a few. Each optimizer uses different strategies to update the weights given the com-
puted gradients. For example, gradient descent updates parameters by using gradients of
the whole dataset. In a large dataset, it takes a long time to compute gradients for all the
data. SGD, in contrast, performs a parameter update for each training data or on a subset of
the training data. Therefore, SGD is faster than gradient descent. However, SGD produces
higher fluctuations in the convergence of the objective loss. Adagrad improves over SGD by
adapting the learning rate to the parameters. While SGD uses the same learning rate for all
the parameters, Adagrad uses different learning rates for every parameter at each time-step.
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Similar to Adagrad, Adam uses an adaptive learning rate, but it also incorporates momen-
tum in the optimization. Momentum increases the updated value for a parameter when the
gradient has a steeper slope. Hence, it helps the optimizer converge faster.

Activation functions and nonlinearity

Figure 2.6: An Illustration of a single neuron of a Neural Network. The neuron computes the weighted
sum of its inputs and adding a bias value. Based on the value produced by the neuron, the activation
function f decides the output value.

The building block of Neural Networks is still a single cell neuron that has a similar mech-
anism as the perceptron neuron described in Section 2.1.2. However, the perceptron can
only separate linear data. Referring back to the activation of a perceptron in Equation 2.5,
it is easy to see that this is the step function (Figure 2.7(a)). The step function is linear.
The derivative is zero at all points except for the point 0, where the derivative is undefined.
Therefore, perceptron neurons cannot classify nonlinear data such as XOR data in Figure 2.4.

The linearity problem with the perceptron neuron is fixed in Neural Networks by using
different nonlinear activation functions f (Figure 2.6). Few commonly used activation func-
tions are described as following:

• Sigmoid: the Sigmoid function is defined as σ(x) = 1/(1 + e−x). It is a nonlinear func-
tion that maps all real numbers into the range of (0, 1) (Figure 2.7(b)). One drawback
of the Sigmoid function is that the neuron’s activation is saturated at the tail of 0 and
1. The gradient at these tail regions is close to 0. Hence, almost no signal travels back
in the backpropagation process to update the weights.

• Tanh: the Tanh function is similar to the Sigmoid function and can be described as
tanh(x) = 2σ(2x)− 1 where σ() is the Sigmoid function (Figure 2.7(c)). The Tanh acti-
vation function is nonlinear and maps real numbers to the range of (−1, 1). Similar to
Sigmoid, Tanh also suffers from the gradient vanishing problem. Different from Sig-
moid, the Tanh function is zero-centered. Depends on the specific requirements of an
individual application, one then can choose between Sigmoid and Tanh.

• Rectified Linear Unit (ReLU): The Rectified Linear Unit (ReLU) simply threshold the
activation at zero f (x) = max(0, x) (Figure 2.7(d)). Besides the simplicity of the func-
tion implementation, it is found to help with the convergence of stochastic gradient
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descent compared to the Tanh or Sigmoid function. It does not have a gradient satura-
tion problem like the Tanh and Sigmoid functions when the signal x is a large positive
number. However, ReLU also bares the zero gradient problem, which is called "dy-
ing ReLU". If a neuron falls into a state that it always produces a negative signal
(∑i wixi + b < 0), which could be due to a large negative bias, the gradient is always 0.
Therefore, the neuron’s weights and bias can never be updated, and the neuron cannot
recover from this dead state.

• Leaky ReLU: Leaky ReLU is an upgraded version of ReLU to fix the "dying ReLU"
problem by introducing small gradients for negative inputs. It is defined as f (x) = x
when x ≥ 0 and f (x) = αx when x < 0. α is a small constant such as 0.01 (Fig-
ure 2.7(e)).

• Exponential Linear Units (ELU): ELU is another alternative to fix the "dying ReLU"
problem. ELU is similar to Leaky ReLU, except the simple linear function for negative
inputs is replaced by a nonlinear function. It is defined as: f (x) = x when x ≥ 0 and
f (x) = α(ex − 1) when x < 0, α ≥ 0 (Figure 2.7(f)). Both Leaky ReLU and ELU have α

as an extra hyper-parameter for tuning.

(a) Step (b) Sigmoid (c) Tanh

(d) Rectified Linear Unit (ReLU) (e) Leaky ReLU (f) Exponential Linear Units (ELU)

Figure 2.7: Commonly used activation functions in Neural Networks.

Growing in depth

The total number of neurons and the number of hidden layers in a Neural Network define
the network’s complexity. Increasing the number of hidden layers is increasing the depth
of the neural network. It is often the case that a four-layer Neural Network performs better
than a three-layer Neural Network. However, increasing the depth of Neural Networks
further does not help much with performances. One probable reason is that images contain
hierarchical structure, and neighbor pixels and patches are correlated. These correlations
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are not captured well in Neural Networks. The search for a better architecture of a neuron
inspired network leads to the birth of Convolutional Neural Network.

2.2 Convolutional Neural Networks (CNN)

2.2.1 Fundamentals of CNN

One of the limitations of Neural Networks is the ability to learn feature representations,
especially for 2D data such as images and videos. Useful feature representation is a prereq-
uisite for achieving good performances in many Computer Vision problems. An increasing
number of neurons or number of hidden layers in a Neuron Network does not help to learn
better feature representations. Instead, the number of parameters increases significantly ev-
ery time another hidden layer is added due to fully pairwise connections between adjacent
layers. Fortunately, a new set of architectures that use convolution and pooling, together
with existing components from Neural Networks, open a whole new horizon for Machine
Learning. They are Convolutional Neural Networks (CNN).

Convolution

A 1D continuous convolution is a function that operates on two input functions and defined
as:

( f ∗ g)(t) ≡
∫ ∞

−∞
f (τ)g(t− τ)dτ (2.8)

The convolution of the functions f and g is computed by reversing the function g(τ) to
become g(−τ) and the time offset t is added to make g(t− τ) shifting along τ axis. The time
t spans from −∞ to ∞. When two functions overlap each other at the time t, the integral of
their product is computed and results in the convolution ( f ∗ g)(t).

The discrete version of the 1D convolution is defined as following:

( f ∗ g)[n] =
∞

∑
m=−∞

f [m]g[n−m] (2.9)

Many Computer Vision applications deal with 2D images and videos. Therefore, popular
CNNs use discrete 2D convolutions. A 2D convolution for an image I with a kernel W is
defined as:

(W ∗ I)(i, j) =
∞

∑
m=−∞

∞

∑
n=−∞

W[m, n] · I[i−m][j− n] (2.10)

where (i, j) is a 2D pixel coordinate on which the convolution is currently computed. The
values of m and n are from 0 to the width and height of kernel W. An example of 2D
convolutions is illustrated in Figure 2.8.
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(a) 2D convolution (b) 2D convolution results Emboss effect

Figure 2.8: Examples of 2D convolutions: 2.8(a) demonstrates a convolution between an im-
age and a 2D convolutional kernel. The input image contains source pixels, and the con-
volutional kernel (in the middle) carries the weights. The center of the kernel is placed
over the source pixel. The operator then computes the weighted sum of the source pixel
with its neighbors and outputs to the destination pixel. 2.8(b) shows an example of con-
volutions between a 2D kernel and an image to produce the Emboss effect. (Source
image: https: // developer. apple. com/ library/ archive/ documentation/ Performance/
Conceptual/ vImage/ ConvolutionOperations/ ConvolutionOperations. html )

Unlike fully connect layers in Neural Network, a convolution kernel contains much fewer
parameters. The number of parameters for a kernel W with a size of (m, n) is mn. A kernel
W is shifted across all the pixels of the original image to detect a specific pattern of fea-
tures. Hence, the weights of the kernel are shared commonly for all the pixels of the image.
Besides, this mechanism also helps to maintain the spatial relationship of features in the
original image (see Figure 2.8(b)).

A representation of an image can be formed from multiple features extracted from the im-
age by applying different filter kernels such as Sobel filters for edge detection, Gabor filters,
Gaussian filters, color filters, and more. By applying these filters directly to an RGB image,
we can extract the low-level features presented in the image. A set of convolutional kernels
applied to the same input form a convolutional layer and the output results are called activa-
tion maps or feature maps, interchangeably. As an example, Figure 2.9 displays 96 convolution
kernels in the first layer of AlexNet [KSH12] trained on ImageNet [Den+09] dataset.

Bias and Nonlinearity

Bias is a constant added to the result of a convolution, as follows:

F = ∑
i

wixi + b (2.11)

https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
https://developer.apple.com/library/archive/documentation/Performance/Conceptual/vImage/ConvolutionOperations/ConvolutionOperations.html
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Figure 2.9: A display of 96 convolution kernels in the first layer of AlexNet that is trained on ImageNet.

where F is a feature map, b is a bias, the weight wi is an individual value of the convolution
kernel W and xi is a value of a correspondent pixel in an image I. In short, it can be written
as F = W ∗ I + b. In the Equation 2.7, the bias b is a threshold for a neuron to produce the
output signal. There is an alternative interpretation. The bias helps the model to fit better on
a given data. For example, in the task of fitting a straight line y = ax + b to 2D data, without
a bias b, the line always passes through the origin (0, 0). The bias b allows the line to move
out of the origin and therefore, can lead to a better fit to the data (see Figure 2.10). Biases are
additional network parameters that a CNN needs to learn.

Figure 2.10: An example of a linear regression: fitting a line to a given data. The bias b helps to
move the line out of the origin so that the line y = ax + b can fit the data better.

Like in Neural Networks, nonlinearity is achieved by nonlinear activation functions such
as Sigmoid, ReLU, etc., as described in Section 2.1.3. When multiple convolution layers
are combined as a sequence, the nonlinear activation functions prevent all convolutional
layers from collapsing into a single layer of convolution. The sequence of convolutions and
activations can be written as: σn(Wn ∗ ...σ2(W2 ∗ (σ1(W1 ∗ I)))...)
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Pooling

Another important building block of CNNs is pooling. Pooling is applied to reduce the size
of feature maps resulted from one convolution layer before applying the next convolution
layer. In other words, pooling is an operator to down-sample the feature maps. Two types of
pooling commonly used are max pooling and average pooling. The max pooling applies the
max operator on each local patch of the feature maps, whereas the average pooling averages
each local patch. An illustration of the max pooling is presented in Figure 2.11.

Figure 2.11: An example of a 2D max pooling that has a filter size of (2,2). A stride of 2 means
that every time the filter is shifted by 2 pixels horizontally and vertically. The result is the maximum
value within the image block that the filter is applied on. (Image adapted from https: // cs231n.
github. io/ convolutional-networks/ )

Pooling techniques help to reduce the size of the feature maps. As a result, the number
of parameters for the subsequent convolution layers are reduced. The progressive down-
sampling feature maps also express the hierarchical structure of features from low-level fea-
tures such as lines and colors into higher features such as eyes and noses. For example,
the feature maps are visualized for different convolutional layers from a VGG19 network
[SZ15] pre-trained on ImageNet [Den+09] in Figure .2.14. The features in the first few con-
volutional layers have more local details. In the later layers, the features are more sparse
and more abstract that focus on different important parts of objects in the input image.

The hierarchical structure of features is an advantage of a CNN. Different levels of features
embed different characteristics that are useful in many Computer Vision applications.

Convolution and Neural Network

The combination of convolutions, nonlinear activation functions, and pooling is a great
means to learn different levels of features, from local low-level features to highly abstract
features that represent characteristics of images. The next task is to use these features for
regression, classification, and other computer vision tasks. Even though there are tradi-
tional machine learning techniques for classification such as Support Vector Machine (SVM),
Fisher Discriminant Analysis, and so on, Neural Network is the best choice to integrate with
convolutional layers (Figure 2.12).

To link the 2D convolutional features to a Neural Network, the 2D features are flattened into
a 1D feature vector that can be used as an input to the neural network. The other option is to

https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
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Figure 2.12: AlexNet [KSH12]: the first standard CNN architecture that combines
convolutions and neural networks. (Source image: https: // www. saagie. com/ blog/
object-detection-part1/ )

compute the maximum or the average of individual 2D feature maps into a single number,
and then form a 1D vector from these pooling results of all feature maps. Different with
pooling for down-sampling, this is called global pooling (Figure 2.13).

Figure 2.13: An example of a 2D global max pooling on a block that contains three feature maps.
The 2D global max pooling computes the max value for each feature map and forms a feature
vector. Therefore, the size of the feature vector is the same as the depth of the block of feature
maps. (Image adapted from https: // peltarion. com/ knowledge-center/ documentation/
modeling-view/ build-an-ai-model/ blocks/ 2d-global-average-pooling )

The size of an input image will decide the size of convolutional feature maps. Therefore, the
size of the feature vector produced by flattening the convolutional feature maps will change
according to the size of the input image. With global pooling, the feature vector’s size is
fixed and equal to the number of feature maps. Hence, by using global pooling, the network
is invariant to the size of the input images.

For different applications, different activation functions can be applied at the last layer of
the network for prediction. For example, to classify 1,000 classes, the last layer of the net-
work is a fully connected layer (Neural Network) with 1,000 neurons (see layer "FC8" of
AlexNet [KSH12] in Figure 2.12). For example, with classification, each neuron is expected
to return the probability of its corresponding class. The results are in [0, 1], and all the class

https://www.saagie.com/blog/object-detection-part1/
https://www.saagie.com/blog/object-detection-part1/
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-global-average-pooling
https://peltarion.com/knowledge-center/documentation/modeling-view/build-an-ai-model/blocks/2d-global-average-pooling
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(a) Input image

(b) Convolutional Block 1 (c) Convolutional Block 3

(d) Convolutional Block 4 (e) Convolutional Block 5

Figure 2.14: Visualizations of the convolutional features extracted from different convolutional layers
of the VGG19 [SZ15] network, pre-trained on ImageNet [Den+09]. The first 64 feature maps for each
convolutional block are displayed.

probabilities sum to 1. To specify this constraint, a Softmax activation function σ is applied
to the feature vector z from the "FC8" layer. The Softmax function is defined as follows:

σ(z)i =
ezi

∑n
j=1 eej

, and z = (z1, ..., zn) ∈ Rn (2.12)

The Softmax function has many advantages compared to other functions of which the re-
sults satisfy the probabilistic constraints such as argmax or standard normalization. For
example, let’s z = [2, 5, 2, 1]. Argmax function results [0, 1, 0, 0] which is the actual classifica-
tion ground-truth. However, argmax is not differentiable whereas Softmax is. When using
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the standard normalization, the normalized result is [0.2, 0.5, 0.2, 0.1] and the Softmax result
is [0.0445, 0.8946, 0.0445, 0.0164]. Comparing the two, the result of Softmax is closer to the
one-hot encoded ground-truth than the result of standard normalization.

Training

Combining convolutions and Neural Networks forms end-to-end Convolutional Neural
Networks. It makes the CNN feed-forward step simple in the deployment or testing phase.
More importantly, all the components of a CNN such as convolutions, activations, and fully
connected layers (neural networks) are differentiable. Therefore, it is possible to perform
end-to-end backpropagation in training. The techniques and optimizers for training CNNs
are the same as for Neural Networks that are described in Section 2.1.3.

2.2.2 CNN Architectures

The standard structure of a CNN is a series of convolutional layers with pooling in between
them. Each convolutional layer is usually accompanied by an activation function. The fea-
tures of the last convolutional layer are flattened or pooled to a single feature vector. This
feature vector is connected to a series of fully connected layers (neural network). The last
layer of the neural network is the prediction layer. An example of this standard architecture
is AlexNet [KSH12] illustrated in Figure 2.12.

Figure 2.15: An illustration of a VGG16 network architecture to classify 1,000 classes in ImageNet
[Den+09] dataset. The final layer "fc8" is activated by a softmax function. A similar network is
VGG19 which has one extra convolutional layer in block conv3, conv4 and conv5 [SZ15]. (Source
image: [Fer+17])

When adding more layers, a CNN network becomes "deeper" and therefore, the name Deep
Convolutional Neural Networks (DCNN). Unlike Neural Networks, these deep networks can
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improve the performances further. The field that studies DCNNs or uses DCNNs in research
is called deep learning. Examples of a deeper CNNs than AlexNet are VGG networks, which
are widely known as VGG16 and VGG19 networks (see Figure 2.15).

One potential problem with going deep in CNN is the vanishing gradient problem. This is
due to the large numbers of multiplications during backpropagation. This challenge does
not stop the deep learning research community. Instead, more complicated or elaborated
architectures are developed to support CNNs to move deeper. One solution is to introduce
residual blocks in ResNet architecture [He+16a]. An illustration of a residual block is in Fig-
ure 2.16.

Figure 2.16: A residual block in ResNet architecture [He+16a]. The identity function maps
the output to be the same as the input. The connection to add the identity from the previ-
ous layer is called skip connection or residual connection. (Source image: https: // mc. ai/
resnet-architecture-explained/ )

The residual block uses a skip connection to add data from one layer to a later layer and skip
intermediate layers between them. In the backpropagation, the gradient flows through the
skip connection helps to recover the diminishing gradient happens through the normal path
between adjacent layers. Using residual blocks, ResNet proves to maintain its performance
or even improve the performance when the network comprises hundreds or thousands of
layers.

Another problem with deep networks is over-fitting when the number of parameters in-
creases with the depth of the network. A solution to this is inception modules that, at the core,
take advantage of 1x1 convolution kernels. When applied on a block of activation maps,
a 1x1 kernel performs a weighted sum of all the activation maps into one single activation
map (Figure 2.17). Therefore, the subsequent convolutional kernel will have fewer weights.
As a result, the number of network parameters is reduced. Figure 2.18 illustrates how 1x1
convolutions can be used in an inception module for dimension reduction. The popular
network using the inception module is GooLeNet [Sze+15a].

Taking the strength of both work, Szegedy et al. integrated both the inception module and
the residual block to form an Inception-ResNet network. It is proven to accelerate the train-
ing process and slightly improve the performance over the Inception network [Sze+17].

https://mc.ai/resnet-architecture-explained/
https://mc.ai/resnet-architecture-explained/
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Figure 2.17: An example of a 1x1 convolutional kernel applied on a block of 3 activation maps. It
produces an output of which the depth is 1. The result is a linear combination of the activation maps
and the weights are stored in the 1x1 convolutional kernel.

Figure 2.18: An inception module with dimension reduction. A 1x1 convolution is applied to the
activation maps before applying 3x3 and 5x5 convolutions. Another 1x1 convolution is also applied
after 3x3 max pooling to reduce the depth of the pooling result. The final output is the concatenation
of all the results. (Source image: [Sze+15a])

Many other network architectures are successfully applied in various fields of research and
applications such as Generative Adversarial Networks (GAN), U-Net, Variational Auto En-
coders (VAE), to name a few. The architectures presented in this part are the core and funda-
mentals of Deep Convolutional Neural Networks (DCNN). They marked significant mile-
stones for the development of deep learning in particular and machine learning in general.
The key to move forward and dive deeper into this field is to understand these core concepts
and what they can or cannot do. The majority of the work in this thesis stems from the mo-
tivation to understand DCNNs, which are often considered as black boxes, study different
levels of deep features and apply them in solving different tasks in novel ways.
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Part I

Perceived Similarity
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“The eye sees only what the mind is prepared to comprehend.”

Robertson Davies

Part I of the thesis contains work related to perception. As we all know, perception is in
the eye of the beholder. The world that we perceive is not always the same as the reality of
the physical world. For example, in Adelson’s checker-shadow illusion in Figure 2.19, both
square A and square B have the same shade, color, and brightness. However, it appears
that square B is brighter than square A in Figure 2.19(a). It is debunked in 2.19(b) when a
rectangle of the same color connects squares A and B.

(a) (b)

Figure 2.19: Alderson’s checker-shadow illusion. In 2.19(a), we perceive that square B has lighter gray
color than square A. However, both square A and square B have the same shade of gray (2.19(b)).

First, we perceive that there is a light source from the right side of the checkerboard that casts
a shadow on the board in the area containing block B. The first illusion is to see the shadow
that is not there because of the shading on the cylinder and the soft edges at the boundaries
of shadow versus no shadow regions. The simultaneous contrast of the soft edges is related
to the Cornsweet illusion (Figure 2.20). In the Cornsweet illusion, there is a high contrast of
gradient in the middle, and the brightness on the two sides is perceived differently, but in
fact, they are the same. The simultaneous contrast is an effect of ganglion cells, which receive
signals from photoreceptive cone cells and rod cells in the retina and sending the signal to
the brain. The ganglion cells are activated when there is a contrast between the center area
and its surrounding. The second effect is the contrast between checks. Inside the perceived
shadow area, square B is surrounded by darker checks, so it appears to be much brighter.
In the light area, square A is surrounded by brighter checks, so it looks much darker. As a
whole, square B looks lighter than square A.

On the other hand, we often cannot distinguish two colors if their difference is small. Statis-
tically, in only half of the trials or less, we are able to tell two colors apart if their difference
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(a) (b)

Figure 2.20: Cornsweet illusion. In 2.20(a), we perceive that the right side is brigher than the left
side due to the high contrast between them but the truth is they have the same brightness (2.20(b))

is below a just-noticeable difference (JND) threshold. Studies on JND show that there are
physically different signals that we cannot distinguish reliably if they are too similar.

Inspired by visual perception, we develop an intrinsic imaging evaluation metric that ac-
counts for the perceptual color difference but also avoids illusions due to strong shadow at
the same time. The metric evaluates the errors in reflectance results using color differences
between pairs of neighboring pixels. Compared to existing metrics, our proposed percep-
tion inspired metric yields fairer judgments for intrinsic imaging methods. The details of
the work are presented in Chapter 3.

In Chapter 4, we investigate color composition similarity that goes beyond pixel-based or
patch-based. Given a pair of images, the similarity is measured by their global color com-
positions, including color distributions, colors of foreground objects and backgrounds, and
the overall tone. It is challenging due to the complexity of natural images, and evaluating
the color similarity on the level of the whole image is very subjective. That is why this type
of similarity is classified as perceptual similarity.

We solve the problem by developing an active learning framework for collecting meaningful
data for user experiments. It results in a large-scale coherent dataset for learning and evalu-
ating color composition similarity. Using the dataset, we train DCNNs for color composition
similarity metrics and extract global color descriptors. Combining color and category sim-
ilarities, we create a new model for visual similarity that produces better performance in
fine-grained image retrieval.

We also apply our deep metric for color composition similarity in color and style transfer.
Results of existing neural style transfer techniques [GEB16; Gat+17] are highly perceptual
and subjective. However, our neural color transfer method, which uses the correlation be-
tween mid-level features extracted from our deep CNN model trained for color composition
similarity, produces good results that are faithful to the content of the source image. The
method’s details and many example results are shown in Chapter 4.
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Declaration for Chapter 3 - Pixel Based Perception Metric for Intrinsic Imaging

This work was done in collaboration with Dr. Shida Beigpour and published at the British
Machine Vision Conference (BMVC) in 2016: "Multi-view Multi-illuminant Intrinsic Dataset"
[Bei+16]. The research was partially funded by the German Research Foundation (DFG) as
part of the research training group GRK 1564 “Imaging New Modalities”, supervised by
Prof. Dr. Andreas Kolb and Prof. Dr. Volker Blanz.

In this collaboration, Dr. Shida Beigpour worked on creating a new intrinsic dataset. I
worked on developing a new perceptual metric for evaluating intrinsic imaging methods.
My work in the paper includes developing the algorithms, coding, evaluating, and writing
parts of the paper related to the metric and its evaluation. While we collaborated closely on
the paper, each of us took full responsibility on our part.
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Chapter 3

Pixel-Based Perception-Inspired
Metric for Intrinsic Imaging

The discrete colors in a computer are represented by integers from 0-255 in three channels:
red, green, and blue (RGB). By increasing or decreasing each of these values by 1, we change
the color, and that can be easily identified or recognized by the computer. However, in most
cases, humans cannot differentiate two colors if their RGB value difference is small. We can
only discriminate between two colors if their color difference is above a threshold called Just
Noticeable Difference (JND). In the field of developing perception metrics for Computer Vi-
sion applications, it is important that these metrics reflect the perceptual characteristics of
human vision. Understanding these components has helped us to develop a useful percep-
tual metric to evaluate intrinsic imaging methods.

3.1 Intrinsic Imaging

Intrinsic imaging is a process of decomposing an image into its intrinsic components, such
as reflectance, shading, and specularity. It is a fundamental research problem in Computer
Vision and an important technique for rendering in Computer Graphics.

3.1.1 Intrinsic Imaging Formulation

Intrinsic imaging was introduced by Grosse et al. [Gro+09] based on the compact form of
the image formation model, which is widely accepted in this field as the following:

I(x) = S(x)R(x) + C(x) , (3.1)

where S, R, and C are the Shading, Reflectance, and Specularity components of the image I, x
indicates pixel coordinates. In many algorithms and datasets, for simplicity, the Specularity
component C is often omitted (Figure 3.1(a)).

Under different lighting conditions, the Shading S and Specularity C of the object surfaces
are changed accordingly. However, the Reflectance R is invariant to illumination changes. It
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(a) Intrinsic imaging decomposition
(Source image: http: // people. csail. mit. edu/ rcabezas/ research )

(b) Intrinsic imaging on different illuminations
(Source image: http: // www. cg. informatik. uni-siegen. de/ data/ iccv2015/ intrinsic/ )

Figure 3.1: An example of intrinsic imaging. In 3.1(a), an RGB image is decomposed into Shading
and Reflectance components. The Reflectance represents the color of the object’s surfaces. The
Shading is created by illuminations. In 3.1(b), different illuminations will result different Shadings but
the Reflectance is unchanged due to the intrinsic color property of the objects’ surfaces.

is important to reproduce sensible Reflectance R as it reflects the surfaces’ actual colors that
play a crucial role in realistic scene rendering (Figure 3.1(b)).

3.1.2 Multi-View Multi-Illuminant Intrinsic Dataset

Datasets with ground-truths are needed to evaluate intrinsic imaging methods. They can be
created synthetically [BM13a; Bei+13; But+12] or from real images [BKK15; BBS14; Gro+09;
TAF06]. One quest in our paper [Bei+16] is to create a novel high-resolution multi-view
dataset of complex multi-illuminant scenes with precise pixel-wise reflectance and shading
ground-truth. The dataset contains five scenes (Figure 3.2). Each scene was captured by six
cameras to create six different views with high resolution (5208× 3476) images. The scenes
were created with different colored objects and textured surfaces. There were 20 different
illumination conditions, including single, multiple, and specular illuminants. The dataset is
known to be high quality and more extensive than existing real-world intrinsic datasets. We

http://people.csail.mit.edu/rcabezas/research
http://www.cg.informatik.uni-siegen.de/data/iccv2015/intrinsic/
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Figure 3.2: Multi-View Multi-Illuminant Dataset: the five scenes (#1 to #5 from left to right)
captured by one of the six cameras.

will use this dataset and our proposed perception-inspired metric based on the reflectance
consistency to evaluate different intrinsic imaging methods in Section 3.3.

3.2 Existing Evaluation Metrics

The reflectance component is the intrinsic property of the objects’ surface and does not
change due to different illuminations. For scene reconstruction under various lighting con-
ditions tasks, such as scene re-lighting, a high-quality reflectance estimation is an important
factor for a realistic scene rendering. Perceptual inconsistencies in the reflectance caused by
effects of illuminations such as cast shadows will show up in the rendered image. That leads
to the need to have good perceptual metrics to evaluate the quality of estimated reflectances.

Intrinsic image methods often use the Mean Squared Error (MSE) or Local Mean Squared
Error (LMSE) metric to evaluate the results. As Grosse et al. stated in [Gro+09], MSE is a
strict metric. A large error in just one small area can result in a high error for the entire image.
The LMSE tries to average out the errors across the whole image by computing the MSE and
estimating the scale factor for individual patches [Gro+09]. Hence, the global consistency of
the evaluation is not enforced. Bell et al. introduced a weighted human disagreement rate
(WHDR) metric [BBS14]. The evaluation is based on human judgment on individual pairs
of points without ground-truth. Bell et al. stated that the WHDR has a margin of error of
7.5%. This could potentially result in the metric being less discriminative for methods with
similar performance.

In order to overcome the limitation of existing metrics [BBS14; Gro+09], we propose a new
perception-inspired error metric, which is based on CIE Lab color space and the standard
visual color difference measurement CIE DE2000 [LCR01; SWD05], to evaluate reflectance
results generated from intrinsic image methods against the ground-truth. The proposed
metric measures the perceptual error of the estimated reflectance without any human sub-
jective input and can be easily and automatically calculated for any new dataset. It can
also prevent evaluation error due to human visual illusion, which might occur in the case
of shadows and lighting changes [OCS05]. Therefore it is more reliable than the previous
human-based intrinsic image metric by Bell et al. [BBS14]. Our proposed metric is described
in the Section 3.3.
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3.3 Point-wise Consistency Metric (PCM)

Our main inspiration in designing a new perceptual metric is rooted in the observation that
the quality of an intrinsic image method’s result is proportional to its reflectance consistency
with respect to the ground-truth throughout different illuminations, strong shadows, and
specularity. Here, our notion of reflectance consistency conforms to the following principles:

• Firstly, if two points p and q are perceptually similar in the ground-truth reflectance,
they should also be similar in the estimated reflectance.

• Secondly, the brightness difference between a pair of points in the estimated reflectance
should be similar to the ground-truth for the same pair.

Figure 3.3 shows an example of two different estimated reflectances from two different
methods compared to the ground-truth. It is worth noting that the colors from method
B’s result are more similar to the ground-truth by the overall look than method A’s result.
However, in intrinsic imaging, it is acceptable that the estimated reflectance is different from
the ground-truth reflectance by a constant magnitude. This can be seen from the ill-posed
problem in Equation 3.1. Therefore, it is not meaningful to evaluate reflectance results by
comparing the absolute values of the results against the ground-truth. Instead, we should
evaluate the consistency in the reflectance results with respect to the ground-truth. This
consistency can be easily broken due to shadow, shading, and specularity.

Figure 3.3: An example of comparing the reflectance results of method A and method B to the
ground-truth using point-wise consistency principles. Both the results from method A and method
B have artifacts caused by the cast shadow from another object. However, the cast shadow from
method B is stronger than A. Therefore, visually, the result from method A is better than the result
of method B. This evaluation can be formulated by comparing the results at the pair of points (p, q)
to the ground-truth. The difference in colors and brightness between point p and point q in method
A is closer to the ground-truth than in method B. The final evaluation result is the average error from
many pairs of points (p, q) sampled on the entire scene.

Given a selected pair of points (p, q) that are perceptually similar in the ground-truth, the
PCM method will evaluate the values of both methods at these two points. Due to cast
shadows from the scene, both method A and B have artifacts in their reflectance results.
In this example, point q is in the cast shadow region whereas point p is not. The colors
and brightness of p and q in method B’s result are much more different than in method
A’s result. Therefore, method B’s result is less consistent with the ground-truth compared
to method A. The PCM is proposed based on these consistency principles for color and
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brightness. A complete PCM algorithm will evaluate the average error from many pairs
of points (p, q) across the entire scene. This example also shows the importance of metrics
to evaluate the consistency in intrinsic imaging. When we re-render the scene in different
lighting conditions, this shadow artifact from method B yields an unrealistic scene with
wrong shadows compared to method A.

3.3.1 Overview of the Algorithm

The algorithm for the Point-wise Consistency Metric (PCM) is summarized in the Algorithm
1 below:

Algorithm 1 Algorithm for the Point-wise Consistency Metric (PCM)
Input: a scene image I, a ground-truth reflectance G and an estimated reflectance T
Output: an average PCM error

1: Create a mask M for region of interest from the scene image I
2: Sample a set of pairs of points in the region of interest M
3: for each pair of points do
4: Compute the PCM error using their colors in the ground-truth reflectance G and the

estimated reflectance T
5: end for
6: Compute the average of PCM errors from all the selected pairs of points.
7: Return the average PCM error.

3.3.2 Point-wise Consistency Error

Given the ground-truth reflectance image G and the estimated reflectance image T, our
point-wise consistency metric works as follows:

1. Select a set of point pairs S = {(p, q)} in G that are perceptually similar.

2. Compute the point-wise consistency error PCE(G, T) as follows:

PCE(G, T) =
1
|S| ∑

(p,q)∈S
f (pceG,T(p, q)), (3.2)

f (x) =

1, x > σ

x
σ , otherwise

, (3.3)

pceG,T(p, q) = 4E00(G(p)− G(q), T(p)− T(q)), (3.4)

where 4E00 denotes CIE DE2000 color distance [LCR01; SWD05] in the Lab color space. In
the Lab space, channel L represents the brightness whereas a and b are two color channels.
By using the Lab color space in the metric, both color and brightness are taken into consider-
ation. pceG,T(p, q) is the difference between the similarity of the points in the ground-truth
and the estimated reflectance for a pair of points (p, q). G(p) and G(q) are the colors in the
ground-truth G of point p and q respectively. T(p) and T(q) are the estimated reflectances
of point p and q respectively. All the colors are in the Lab color space. The differences
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(a) Selected pair points on ground-truth reflectance (b) Selected pair points on estimated reflectance un-
der white illumination

Figure 3.4: An illustration of 200 pairs of points selection with the colour difference threshold ε = 10
and the mean distance between point pairs µd = 20

G(p) − G(q) and T(p) − T(q) are vector differences. f is a linear function to normalize
pceG,T(p, q) to [0, 1] with a cut-off threshold σ. The value of σ is set such that there are about
10% of point pairs (p, q) or less which have pceG,T(p, q) > σ for all the evaluated meth-
ods. We do not want to have many error values normalized to 1 because it will make the
evaluation between different methods less distinctive and less accurate.

3.3.3 Point Selection Strategy

We randomly select pairs of perceptually similar points in the ground-truth image G. For
every pair, the points are selected in the region of interest and need to be perceptually sim-
ilar in colors, taking both chroma and luminance into account. Furthermore, the distance
between two points in a pair also follows a normal distribution.

We define the region of interest to be on object surfaces, at properly lit pixels and not on
objects’ contours or edges. We build the mask M, forming the region of interest as below:

M = ero
(

Mscene ∩ Munder-exp
)
∩ ero(Medges) , (3.5)

where Mscene, Munder-exp, and Medges are the masks for the scene, the under exposed pixels,
and the edges inside the object, respectively. Mscene is created manually to mask out the
background of the scene. Munder-exp is produced automatically by setting the threshold for
under-exposed pixels. Medges is the edge map computed using the Canny edge detection
method. The erosions make sure that selected points are not close to the contours or edges.

We select point pairs (p, q) by first randomly select p within the region of interest M. Point q
is selected also inside M such that pixel distances in x and y axes from q to p follow a normal
distribution with standard deviation σd. To do this, a random (xq, yq) coordinate for point
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(a) Scene in RGB (b) Mscene (c) Munder−exp (d) ero(Mscene ∩
Munder-exp)

(e) Canny Edges Medges (f) Medges (g) ero(Medges) (h) Final mask M

Figure 3.5: An example of masks derived for scene #5. 3.5(a) is the RGB image of scene #5. The
mask for objects in the scene is manually created in 3.5(b). 3.5(c) is created to eliminate under-
exposed pixels. The under-exposed pixels are those whose sum values of three R, G, B channels are
below a threshold of 20. The combination of the object mask in 3.5(b) and the none under-exposed
mask in 3.5(c) followed by erosion is shown in 3.5(d). The erosion uses a disk structuring element
with size 3. 3.5(e) shows the Canny edge detection result of the scene. The edge map’s negation is
shown in 3.5(f), followed by the erosion shown in 3.5(g). This erosion uses a disk structure element
of size 1. Combining 3.5(d) and 3.5(g) results in the final mask M in 3.5(h).

q is generated follow a normal distribution of which the mean is the location of p and the
standard deviation is σd. We choose σd to be 20 for the experiments. We then check if this
point q is inside the map M. Furthermore, we only accept perceptually similar point pairs,
i.e.

4E00(G(p), G(q)) < ε , (3.6)

where ε is set to 10 as we observe that two colors are perceptually similar if their 4E00 is
less than 10 (Figure 3.4).

Notes on CIE color measures

• We use 4E00 to measure the similarity between the two selected points in Eq. (3.6)
because4E00 offers the perceptual uniformity by correcting problems with blue colors
and also improves the performance on gray colors [LCR01]. It also takes into account
the notion of a just-noticeable difference. The point selection criteria set the constraint
for the first principle of the reflectance consistency to be fulfilled.

• To compute the pair-wise consistency error, we utilize 4E00 creatively in Eq. (3.4).



40 Chapter 3. Pixel-Based Perception-Inspired Metric for Intrinsic Imaging

One can think of using 4E(G(p), G(q)), 4E(T(p), T(q)), and compute the difference
between them. However, 4E(G(p), G(q)) is used as a criterion to choose the pair of
points (p, q) that are perceptually similar. Hence, the values of 4E(G(p), G(q)) are
usually small. It leads to the difference in4E(G(p), G(q)) and4E(T(p), T(q)) closes
to 0.

• We use 4E00 with Lab color space which has a separate channel L for brightness and
two channel a and b for colors. Therefore, the error function pceG,T(p, q) in Eq. (3.4)
accounts for both brightness and color differences. When combining pceG,T(p, q) in
Eq. (3.4) with the point selection criteria in Eq. (3.6), our reflectance consistency prin-
ciples hold.

• 4E00 is not a real distance metric. Even though it is positive and symmetric, it does
not always hold the triangular inequality criteria. For example, x = (50, 2,−4), y =

(50, 1, 1), and z = (50, 1, 4) are three colors in the Lab color space. We have4E00(x, y) =
4.74,4E00(y, z) = 2.73, and4E00(x, z) = 7.52. Hence,4E00(x, y)+4E00(y, z) = 7.47.
Therefore,4E00(x, y) +4E00(y, z) < 4E00(x, z), which breaks the triangular inequal-
ity. Since PCM uses4E00 to compute consistency errors, PCM is not a distance metric
but rather just a perceptual error metric.

3.3.4 Sampling And Results

In our experiment, we scale the images in the dataset to 1042× 696 pixels to reduce the re-
flectance reconstruction time for different evaluated methods. We first start by sampling 500
pairs of points and increase 500 pairs for each iteration. The maximum number of sampling
is 16,000 pairs for an average of 120,000 pixels in the regions of interest M in our dataset.
For p percentile inliers selection, we choose p = 95. In other words, we eliminate 5% of
the highest errors. When the number of samplings is large, this 5% elimination guarantees
there are no outliers due to noises. However, we still have enough number of samplings to
evaluate the reflectance between different methods fairly. The results analysis in the Fig. 3.6
shows that the metric is able to distinct well the performance of different methods (Serra
et al. [Ser+12] vs. Barron and Malik [BM12] vs. Gehler et al. [Geh+11]) on different scenes
with different illuminations and is stable when the number of pairs increases to 8.000 and
beyond.

Our point-wise consistency metric (PCM) evaluates the reflectance reconstruction of differ-
ent methods based on the reflectance consistency principles. The principles are inspired by
human perception but, at the same time, avoid visual illusion caused by strong shadows.
The PCM can be extended to evaluate reflectance at pairs of points that are perceptually dif-
ferent. It is also possible to develop the error estimation for shading based on this perceptual
and statistical approach.
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(a) Scene #5 with green and orange illuminant

(b) Scene #2 with white and yellow illuminant

Figure 3.6: The average point-wise consistency error of scene #5 (a) and scene #2 (b) with the colour
difference threshold ε = 10 and the mean distance between pair points µd = 20. The evaluations
are on three different methods: Serra et al. [Ser+12], Barron and Malik [BM12] and Gehler et al.
[Geh+11]. PCM can discriminate the performances of these methods well and stable when the number
of sample pairs increases.

3.3.5 Evaluation

Table 3.1 presents an evaluation of three intrinsic image methods, namely: Barron and Malik
[BM12], Gehler et al. [Geh+11] and Serra et al. [Ser+12] using their publicly available codes
and default parameters on a subset of our dataset (i.e., images captured by one of the six
cameras for all the scenes and illuminations)1. We further group our illumination conditions
into four categories, i.e., easy (whitish), moderately colored, hard (strongly colored), and
specular based on their complexity level. Evaluation is performed using PMC and LMSE.

1Due to high computation time of the evaluated methods, we scale our images to 20% of their original reso-
lution.
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As PCM only evaluates reflectance data, we restrict LMSE in the same way in order to get
comparable results.

Evaluation Method easy moderate hard specular Total

PCM
Barron et al. 0.149 0.151 0.157 0.157 0.154
Gehler et al. 0.151 0.154 0.158 0.164 0.157
Serra et al. 0.123 0.125 0.125 0.126 0.125

LMSE (reflectance)
Barron et al. 0.305 0.383 0.485 0.387 0.403
Gehler et al. 0.277 0.341 0.441 0.336 0.360
Serra et al. 0.253 0.300 0.319 0.289 0.296

Table 3.1: Evaluation results of the methods Barron and Malik [BM12], Gehler et al. [Geh+11] and
Serra et al. [Ser+12] using Point-wise Consistent Metric PCM and Local Mean Squared Error (LMSE).

To give further insight into the two measures, we pick a sequence of 20 different illumina-
tions for a fixed camera pose for scene #5 (Fig. 3.2, the right most). Fig. 3.7 compares the
evaluation based on PCM and LMSE and shows the results of all three methods Barron and
Malik [BM12], Gehler et al. [Geh+11], and Serra et al. [Ser+12]. PCM delivers consistent
results ranking the methods’ performance over all 20 illumination conditions. LMSE, on the
other hand, shows large variations across different illuminations. Specifically, with LMSE,
Serra performs the best in many lighting conditions but also the worst in some others such
as in illumination #4, #5, #6, and #17.

Figure 3.7: PCM and LMSE results on scene #5 under 20 different illuminations.

Figure 3.8: Reflectance results for the three methods on scene #5, 4th illumination.

Consulting LMSE for the 4th illumination, Barron and Gehler are similar, and Serra is worse,
while for PCM Serra is better than Barron and both better than Gehler. Visually on Fig. 3.8,
all three methods deliver imperfect results for this example, but Gehler’s methods appear
to yield stronger color artifacts, e.g., on the bear’s sleeve for which PCM accounts.
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The consistent evaluation results from PCM are important because that means PCM pro-
vides higher confidence in an intrinsic imaging method’s performance. In applications
where there are only one or few lighting images for a scene, and we need to pick an intrinsic
method that works well in general, knowing that PCM has more consistent evaluation than
LMSE, it will be a logical choice to use PCM to select the best intrinsic imaging method for
the application.

3.3.6 Chapter Summary

In this chapter, my research contribution is a new perceptually inspired metric to evaluate
the intrinsic methods’ results based on the reflectance consistency principle. The metric
measures the point-wise consistency between local pairs of points, thus the name Point-
wise Consistency Metric (PCM). To facilitate the perceptual color difference, we use the
CIE DE2000 metric on the Lab color space [LCR01; SWD05]. We evaluate three state-of-
the-art intrinsic methods Barron and Malik [BM12], Gehler et al. [Geh+11] and Serra et al.
[Ser+12] on our dataset using LMSE and our proposed PCM metrics. Compared to the
popularly used LMSE metric, PCM evaluation is more stable across different illumination
conditions and more faithful to the visual appearance of intrinsic results. We believe that our
dataset and the PCM metric can help to improve the quality of intrinsic imaging methods in
complex scenes.
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Chapter 4

Perceptual Color Composition
Similarity

Visual similarity is a long-standing research problem that has not been studied thoroughly.
Its challenges come from the ambiguity in the problem definition as well as the subjective
evaluation due to individual human perception. There are many factors that contribute to
the overall visual similarity evaluation, such as object categories, image composition, color
layout, image style, and so on (see Figure 4.1 for examples).

Figure 4.1: Different aspects of visual similarity. Visual similarity is challenging and subjective. It
can be seen as visually very similar, or it can be understood as similar in different aspects such as
categories, image type, color composition, etc.

This chapter aims to study the fundamental problem of visual similarity and propose novel
ways to reduce its ambiguity in order to create better predictive models. We break down
visual similarity into sub-problems (category and color similarity), finding a way to collect
meaningful training data, and developing metrics and descriptors for color similarity. In
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contrast to existing approaches, we study visual color similarity “in-the-wild”, which goes
beyond pixel-based or patch-based approaches. For specific colors, we have a good standard
to measure the perceptual similarity that is established via the CIE 4E2000 metric [LCR01;
SWD05]. The metric indicates how similar two colors are, based on the ability of people to
distinguish individual colors. However, multiple colors interact in complex ways in natural
images. Existing metrics like CIE 4E∗ and hand-crafted color descriptors [AF06; BZM08;
BG09; Geu+01; Kha+13; LS13; Man+01; SGS10; WGB06] are not able to accurately predict
color composition similarity.

While recent methods learn visual features for image search and visual similarity [BB15;
Che+10; PM15; Wan+14; WKH17], they lack a dataset built directly from human judgments
on color similarity for training and validation. These methods are trained on datasets la-
beled with object categories such as ImageNet [Den+09] or Pascal [Eve+10]. Another set
of approaches try to separate aspects of perception by discovering and learning visual at-
tributes for image search and retrieval [DRS11; FZ07; KG13; PG11; Ras+13; SFD11; Yan+16].
The information they rely on involves textual description, attribute labeling, and supervised
learning on attribute labels. Attributes simplify the objectives of visual similarity by map-
ping a full range of perception into a discrete set of textual descriptions. Our approach is
to ask participants to visually compare and rate images directly without having to use less
accurate means of assessment such as textual descriptions.

As stated in [YG14], fine-grained similarity comparisons (including color) are critical for
building perceptually accurate models. However, it is not easy to measure the color similar-
ity for images in-the-wild due to the high complexity of natural images and the subjectivity
of perceptual judgments. Therefore, we introduce a new way to define visual color simi-
larity, as color composition, and study it directly via human evaluations. The color com-
position assessment emphasizes hues and shades, their distributions, and overall layout,
independent of the semantic category.

Figure 4.2: Different rating examples for color composition similarity. The ratings are on a 5-point
scale where 1 is the least similar, and 5 is the most similar to almost identical.

We create a dataset annotated with 5-point similarity ratings for color composition (Fig-
ure 4.2). Our dataset contrasts with other image similarity datasets that often rely on binary
labels such as INRIA Holidays [JDS08] or the triplets dataset [Wan+14]. While the dataset
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empowers us to embed the image color composition similarity according to human per-
ception, the participants’ opinion distributions show the subjectivity of the evaluation and
comparison processes.

One of the challenges for building a fine-grained similarity rating large-scale dataset is the
cold start problem that arises from the very low probability in obtaining similar image pairs
if we were to sample them randomly. We overcome this by using an active learning approach
and iterating from binary to fine-grained ratings. We also account for many measures to
ensure the quality of the dataset. As a result, we contribute a large-scale (31,248 image pairs
with at least 20 ratings each), high quality (ICC of 0.69, very high for crowd-sourcing), and
novel dataset for color composition similarity. The Intra-class Correlation Coefficient (ICC)
measures the degree to which raters resemble each other in the whole experiment and is
explained in details in Section 4.2.4. Our dataset is the first annotated dataset of its kind up
to date, to the best of our knowledge 1.

Using the dataset, we train a Siamese network to predict the distributions and mean opin-
ion scores. The network serves as a metric and a feature extractor for color composition
similarity. We compare performances and create a benchmark for existing color descriptors
and our trained color features in the field of color similarity for images in-the-wild. Trained
global features using CNNs produce a very good performance (0.913 SROCC, Spearman
correlation w.r.t the ground-truth). Even though L1 and L2 measuring on existing hand-
crafted local descriptors with dense samplings yield lower performances, it is promising
to train these descriptors to capture global features of color composition, leading to better
performances (the best case is 0.862 SROCC with HueSIFT).

Furthermore, we validate our color features and metrics in a fine-grained similarity applica-
tion (Section 4.5). Color had been previously modeled implicitly together with category. We
propose a novel approach to combine category features via pair-wise correlations and color
similarity as predicted from our models. These combined features are extracted from pairs
of images leading to improvements in accuracy compared to learning on individual content
or color features alone. Training an SVM using our proposed features on a small dataset
yields better accuracy than the state of the art. Compared to a common baseline, the best
existing method DeepRanking [Wan+14] trained on millions of images achieves a relative
improvement of 3.5%. Our model, trained on less than 50K images in total, improves by a
much higher margin of 12.5%. Despite using three orders of magnitude less training data,
the absolute improvement of our method on different validation sets is still better than the
state of the art, 86.2% for ours vs. their 85.7%.

The importance of perceptual color similarity is also reflected in its applicability in Com-
puter Vision and Computer Graphics. We successfully apply the color composition simi-
larity models in another domain: neural style transfer (Section 4.6.2). Our models provide
a new option to generate “stylized” images for which the detail style and colors are taken

1dataset download link: https://github.com/hamailan/Color-Composition-Similarity

https://github.com/hamailan/Color-Composition-Similarity
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from separate sources. The color transfer results produced by our deep metrics are faithful
to the source images.

In summary, our contributions in this chapter are:

• A general framework for modeling sub-aspects of image similarity, that is designed to
handle highly subjective measurements via crowd-sourcing and active learning.

• The first large-scale perceptual color composition similarity dataset in-the-wild with
5-point ratings collected directly from human judgments.

• A global color similarity benchmark for color descriptors.

• A new type of brief but highly generalizing features for fine-grained similarity: the
concatenation of the correlation of category features and color similarity extracted
from pairs of images. Triplet ranking using SVM on these features surpasses the state
of the art even when trained on a much smaller dataset.

• A new direction for neural style transfer in which colors are transferred from a third
input image, in addition to textures being taken from a reference (second input) image.
Thanks to our color similarity metric, we obtain good color transfer results.

4.1 Related Work For Perceptual Color Similarity

There are two groups of measurement methods that compare the colors between two im-
ages: the first group uses hand-crafted features, and the second one learns features. These
color features are known as color descriptors.

4.1.1 Hand-crafted Features for Color Similarity

From the famous SIFT descriptor [Low04] that describes local features for a set of interesting
points in an image by histograms of gradient orientations, different extensions of SIFT are
derived for color descriptors [AF06; BZM08; BG09; Geu+01; WGB06]. A common objective
of these descriptors is to be robust against changes in lighting, scale, rotation, and so on.
A complete evaluation of these SIFT variational color descriptors can be found in [SGS10].
Another set of color descriptors, introduced in the MPEG-7 standard [Man+01], relies on
transformations to various color spaces. Color descriptors are often designed to be compact
for fast indexing [LS13], or to maintain a level of photometric invariance [Kha+13]. How-
ever, all these descriptors operate locally on low-level image features and therefore lack the
ability to capture global color information.

4.1.2 Learned Features for Visual Similarity

For complex natural images, it is challenging for hand-crafted descriptors to perform well.
Deep Convolutional Neural Networks (DCNN) have been successfully applied to image
similarity. One type of methods learns similarity metrics for pairs of images using pairwise
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similarity data [BB15; Che+10; YG14; Zha+18]. Another approach uses triplet data where
a reference image is paired with a positive and a negative example [Wan+14; WKH17]. In
either case, pairwise image similarity is labeled by category, attributes, or binary classifica-
tion. When labeling by category, colors are ignored. Binary classes often relate to generic
visual similarity rather than specifically to colors. With attribute learning, the visual at-
tributes are expressed in terms of textual descriptions [DRS11; FZ07; KG13; PG11; Ras+13;
SFD11; Yan+16] and therefore over-simplify the objectives of visual and color similarity. In
this work, we aim to develop better metrics for color similarity that can also provide color
features that are beneficial for many Computer Vision applications.

4.1.3 Datasets for Perceptual Similarity

In order to train or validate perceptual similarity metrics and descriptors, we need to have
datasets that are assessed by people as ground-truth. However, there is no fine-grained rat-
ing dataset for perceptual similarity for images in-the-wild. All existing datasets are either
classification or coarse in the level of similarity or not completely in-the-wild comparison.
INRIA Holidays [JDS08] is a dataset where similar images are grouped together, and dis-
similar images are assigned to different groups. Another type is a triplet dataset [Wan+14]
that provides a coarse level of similarity. Recently published, the BAPPS dataset [Zha+18]
contains natural images and their generated distortions for learning perceptual patch simi-
larity. In this work, we fill in the missing gap by contributing a perceptual color similarity
in-the-wild dataset for which the similarity is measured by participants’ ratings on color
composition using a fine-grained 5-point scale rating. Our dataset is the largest human-
annotated dataset of its kind up to date, to the best of our knowledge.

4.2 Process to Define Perceptual Color Composition Similarity

The complexity of color composition on natural images makes it extremely challenging to
write down a set of rules or formulae to define the perceptual color composition similarity.
If we need to give a verbal definition, the similarity criteria that we are aiming at are the
layout of colors, color distribution, dominant colors, and the overall perceptual appearance
of colors in the images. Instead of relying on such a description, our approach is to capture
this definition directly via human judgments. Given a pair of reference and test images,
participants rate the degree to which the pair is similar with respect to colors exclusively.
We face two challenges. The first is selecting images for which ratings for color similar-
ity make sense. Statistically, numbers of pairs that are different in color compositions are
much higher than similar pairs. The second is to convey an unambiguous definition of color
composition similarity to participants so that they can understand and provide useful and
reliable ratings. Unlike other types of annotations, it is not easy to describe the degrees of
similarity.

Our solution to the first problem is to build the dataset in two stages. In the first stage,
we create a small binary dataset in which similarity is clearly defined: either very similar
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or completely dissimilar. We start with the least subjective data. It is possible to collect
a small set of pairs or groups of similar images by using INRIA Holidays [JDS08] dataset
and Pixabay images (https://pixabay.com/). From this starting binary dataset, we train a
small binary classification network (binary-net) to identify similar/dissimilar labels for pairs
of images. We then use the binary-net to sample more image pairs and have them annotated
by participants as similar or dissimilar. The network performance is further improved with
the extended set of annotated pairs. We name the improved binary network as improved-
binary-net. The details of the first stage development are described in Section 4.2.1.

Figure 4.3: Binary classifying images into two groups. One contains dissimilar images. The other
contains similar images in general, which could be similar in color or category. The images in the
second group can be used for ranking the similarity measurements in terms of color composition.

In the second stage, we use the improved-binary-net to select images for the rating dataset.
We ask participants to evaluate similarity on a finer-grained 5-point scale where 1 means a
pair is completely different, and 5 means the images are very similar or almost identical. It
is important to choose evaluated images such that the ratings are present for all five options.
We describe the detailed strategy in Section 4.2.2.

To solve the second problem, we ask participants to consider several cues that help them
consistently compare pairs of images, such as the presence of dominant colors, distribution
of colors, colors of foreground objects and the background, and the overall perceptual ap-
pearance of colors in the whole image. We quantify the rating from 1 to 5 as follows: 1 -
the pair of images are totally different, 2 - below 50% similar colors, 3 - about 50% similar
colors, 4 - above 50% similar colors and 5 - very similar to identical (e.g., Figure 4.4). We
present many rating examples (Figure 4.6), conduct an entrance test before participants can
start working on the project, and embed hidden test questions seamlessly into work items.
We made a pool of 150 test questions in total. Five questions are randomly selected from
the pool to make up a quiz for an individual participant. The test pairs and their expected
ratings serve as ground truth to assess whether participants’ rating criteria are consistent

https://pixabay.com/
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with the task’s requirements. In the test cases, to allow room for subjectivity, for very sim-
ilar pairs, we set the candidates for correct ratings to {4, 5}. For pairs that are absolutely
different, the correct rating candidates are set to {1, 2}. For non-extreme similarities, ratings
of {2, 3, 4} are allowed (Figure 4.7). Participants must pass the entrance test and maintain
their accuracy above 70% throughout the study.

We have 1.781 people who participated in the experiment. Among those, 1.470 passed the
entrance test (82.54%) to be qualified for the experiment. In the working process, 1.337 par-
ticipants maintained their accuracy above 70% of the hidden test questions, and hence their
ratings were valid. This is 90.95% of the qualified participants that passed the entrance test,
showing who passed the entrance test understood the tasks well and were able to perform
consistently. To get a variety of participants, we limited each participant to work on a max-
imum of 100 tasks. Each task contained a group of 8 pair ratings for 1 reference image (for
example, Figure 4.7 is 1 task). There were 837 participants maxed out the task (62.6% of
participants that have valid results). The statistic is shown in Figure 4.5. Finally, the quality
of our rating dataset is evaluated in Section 4.2.4.

Figure 4.4: Instructions and examples for crowd-source participants to rate color composition similarity.
The example to emphasize the similarity is measure in color composition aspect and not the category
aspect that most participants might misunderstand.

Figure 4.5: Statistic on passing rate of the participants.
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(a) Score 5: very similar to identical

(b) Score 4: above 50% similar colors

(c) Score 3: about 50% similar colors

(d) Score 2: below 50% similar colors

(e) Score 1: the images in each pair are totally different

Figure 4.6: Examples for each similarity score (two pairs), shown in the introduction of the crowd-
sourcing experiment.
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(a) Scores 4,5 for very similar images

(b) Scores 1,2 for dissimilar images and 2,3,4 for similar images

Figure 4.7: Different settings for test questions. The tick boxes are options set in advance. The
percentages are the rating from participants. Those images with ticked boxes are controlled questions.
Majority (around 95% on average) of the participants have the correct answers.



54 Chapter 4. Perceptual Color Composition Similarity

4.2.1 Binary Dataset and Network

Figure 4.8: Our proposed active learning framework for building color composition similarity binary
dataset: it starts with hand-picked similar image pairs (a), on which a classifier is trained (b) to select
more similar image pairs (c), which in turn are annotated for similar or dissimilar by crowd-sourcing
participants. The process is repeated by using accumulated user annotated data.

We combine the images from INRIA Holidays [JDS08] and Pixabay (https://pixabay.com/)
datasets to create our own dataset. In the INRIA Holidays dataset, similar images are
grouped together. Similar images are those of the same scene with a slight change in view
or zoom (Figure 4.9(a)). There are usually two to five images per group. With the Pixabay
dataset, similar images can be distributed widely in the dataset, but there are also cases
where similar images are clustered together by filenames (Figure 4.9(b)). However, images
with similar filenames do not always look similar. Even though the INRIA Holidays dataset
is more convenient than Pixabay for choosing similar images, it has only more than one
thousand images, whereas Pixabay has millions of images. Therefore, we need to have a
good strategy to select similar images.

(a) INRIA Holidays (b) Pixabay

Figure 4.9: Examples of similar images from INRIA Holidays [JDS08] dataset in (a) and Pixabay
https://pixabay.com/ dataset in (b). Similar images in INRIA Holidays are grouped by filename.
In contrast, images in Pixabay are not pre-grouped. Therefore, we need to have a good strategy to
select similar images.

We use an active learning approach to improve the binary network and expand the dataset
(Fig. 4.8). The process starts with an equal number of 3,591 labels each for similar and
dissimilar image pairs. This small set of labels are manually annotated by M.Sc. Roberto

https://pixabay.com/
https://pixabay.com/
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Cespi and me (Fig. 4.8(a)) and are used to train the initial binary network named binary-net
to classify similar or dissimilar images in term of color composition (Fig. 4.8(b)). We chose
pairs images such that there is the least subjectivity possible. If two images are considered
dissimilar, they should contain almost no color in common. If two images are similar, they
contain the same set of colors and layout, and they often contain the same objects as well
(Figure 4.10).

Figure 4.10: Similar vs dissimilar pairs of images.

Due to the limited amount of training data, we design a CNN architecture with few parame-
ters. Instead of using a Siamese model, we stack pairs of RGB images into six-channel inputs.
We augment the images by horizontal flips, small rotations, and swap the two inputs. By
swapping image 1 and image 2, we can double the training data and, therefore, increase the
network’s accuracy. The output of the network is softmax scores for two classes: similar and
dissimilar.

In the next step, we generate data for participants’ evaluation on new pairs of images for
binary classification using the initial binary network binary-net (Fig. 4.8(c)). We select 1,302
reference images that cover a wide variety of objects, textures, and scenes. We use binary-net
to evaluate the binary similarity between each reference image against a set of 3,000 images
from our large pool dataset. The results from the binary-net are then sorted from the most
similar to the most different based on their similarity scores.

For each reference image, only the first few dozen images are similar, and the majority of
images are different. Therefore, we select only 24 evaluated images per reference for par-
ticipants to evaluate similar or dissimilar (Figure 4.11). These 24 images consist of 1 highly
similar image from the initial set of 3,591 labels that are manually selected at the beginning,
the first 20 images resulted from the binary-net and 3 dissimilar images that are taken ran-
domly at the end of the binary-net result list. It yields 31,248 pairs of comparisons in total.

Finally, the participants’ evaluations are added to the binary dataset (Fig. 4.8(d)) and fed to
re-train the initial binary-net to increase its accuracy (Fig. 4.8(b)) up to 98.9%. This re-trained
network is called improved-binary-net. An example of retrieval results for the improved-binary-
net is presented in Figure 4.12. While the retrieval results for similar images to the reference
image are visually good, the order of the retrieval can be improved and the similarity score
to indicate the degree of similarity is missing. Therefore, in the next step, we use improved-
binary-net to select images for fined ratings in Section 4.2.2.
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Figure 4.11: Crowdsourcing for binary evaluation: similar versus dissimilar. Users were asked to answer
yes/no if an image is similar to the reference image.

Figure 4.12: Retrieval results of the improved-binary-net. Even though the retrieval results for similar
images to the reference image are visually good, the order of the retrieval can be improved, and the
similarity score to indicate the degree of similarity is missing.

4.2.2 Rating Dataset

In the subsequent crowd-sourcing process, we create a fine-grained rating dataset from the
binary set. We ask participants to evaluate the similarity for pairs of images using a 5-
point Likert-type scale, ranging from absolutely dissimilar (1) to very similar or identical
(5). The rating data comprises 1,302 reference images. There are 24 evaluated images for
each reference. It is important to choose the evaluated images such that their ratings span
the entire 5-point scale. For very similar to identical (rating 5) pairs of images, we choose
pairs from the 3,591 manual labeling data. For pairs of images for which the similarity
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ratings potentially range from 2 to 4, we select pairs from the top results of improved-binary-
net sorted by similarity scores. Dissimilar pairs of images (rating 1) are accurately chosen
from the bottom of the sorted improved-binary-net result list.

The critical factors that control the quality of the rating dataset are the rating accuracy and
consistency among work items of individual participants as well as the consistency among
all participants for each work item. To reduce biases and promote the coherence of partici-
pants’ ratings, for every reference image, we presented to participants a group of evaluated
images at a time. We asked the participants to not only rate each pair of images individually
but also compare among the group of evaluated images (Figure 4.13). If an evaluated image
A is more similar to the reference image R than an evaluated image B to R, then the rating
for A should be higher than for B and vice versa. If both images A and B are equally sim-
ilar to the reference image, then the ratings for both should be the same (Figure 4.14). This
strategy provides an additional context for rating, thus helping participants to adjust their
ratings to become more consistent.

Figure 4.13: Rating for color composition similarity. Images are presented in groups. Participants not
only rate the similarity between a rating image to the reference image but also compare the score
among the group’s images.

4.2.3 Study on Rating Strategies

We did experiments for rating color similarity between pairs of images using different strate-
gies: (a) pair comparison, (b) triplet comparison, and (c) group rating. To study the effect of
ratings of paired comparisons without and with context i.e., presenting images in a group,
we conducted a small experiment.

In pair comparison without extra context (Fig. 4.15(a)), we presented users with individual
pairs of images (randomly selected) and asked them to rate the color composition similarity
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(a) Same score. (b) Different scores.

Figure 4.14: Examples of different scenarios for score comparison within a group of image.

(a) User’s rating on pair comparison.

(b) User’s rating on triplet comparison.

Figure 4.15: Different rating strategies: pairwise rating vs. triplet comparison and rating. In pair
rating, participants are asked to rate the similarity between two images. In triplet rating, participants
are required to not only rate the similarity between image A to the reference and image B to the
reference, but also compare the similarity scores of A and B to the reference.
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for the displayed pair. In the with context comparison (Fig. 4.15(b)), we presented users
with three images (triplet comparison): a reference image R, an image A, and an image B.
We asked users to rate the color composition similarity of image A to the reference R, and
of image B to the reference R. Moreover, we also asked users to compare image A and B,
making sure the ratings are three-way consistent such that they follow the requirement in
Eq. 4.1.

S(R, A) > S(R, B)⇔ Q(R, A) > Q(R, B)

S(R, A) = S(R, B)⇔ Q(R, A) = Q(R, B)
(4.1)

where S is the perceptual similarity judgment, R is the reference image, A and B are the
evaluated images and Q is the rating.

If an evaluated image A is more similar to the reference image R than an image B is to R,
then the rating for A should be higher than for B, and vice versa. If both images A and B are
equally similar to the reference R, then their ratings should be the same (Figure 4.14).

We analyze the user agreement for both triplet comparisons and pair comparisons. Given a
reference image R and an evaluated image A, the rating Q̃(R, A) is a rating distribution from
1 to 5 for the color composition similarity between the reference image R and the evaluated
image A from all the users. Let H(Q̃) be the normalized histogram of Q̃ (bins sum to 1),
and Hk(Q̃) be the normalized histogram of Q̃ at bin k, k ∈ [1..5], and p(H) is the mean of
H(Q̃). p(H) is also known as Mean Opinion Score (MOS). Ideally, all users agree on one
rating such that p(H) ∈ [1..5] and Hp(H)(Q̃) = 1. However, users do not always agree with
their ratings. The less diverse the user ratings are, the higher the agreement. An illustration
of users’ rating distribution is in Fig. 4.16.

(a) MOS=3, Φ(H) = 1 (b) MOS=3, Φ(H) = 0.8 (c) MOS=3, Φ(H) = 0.6

Figure 4.16: Example of different rating distributions. In all three examples, the Mean Opinion Score
are the same (MOS = 3). Φ(H) is computed as ∑b

a H(Q̃) where a = 2 and b = 4 which are one
scale below and one scale above MOS value. In (a): 100% users agree on the rating 3 and therefore,
Φ(H) = 1 . In (b): Φ(H) = 0.8, users’ ratings spread out such that 80% of users vote around the
MOS. The worst case is (c) where Φ(H) = 0.6, only 60% of users rate around MOS.

To measure the users’ agreement Q̃(R, A), we sum up the normalized histogram H(Q̃)

around the MOS p(H). The result is Φ(H) = ∑b
a H(Q̃) where p(H) ∈ [a, b], and a and b

are the floor and ceiling values of the MOS. When the MOS is an integer, a and b are chosen
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to be one rating below and one above the MOS. We then compute the mean and standard
deviation of Φ(H) for all pairs of rating images.

Φ(H) measures agreement, ranging from the lowest value of 0 to the highest value of 1.
In Table 4.1, we show that both the paired and the triplet comparison have a very high
average agreement. However, the triplet comparison has a much smaller standard devi-
ation (σ(Φ(H))), meaning that the user agreement is roughly the same high value for all
pairs. Even the mean (µ(Φ(H))) is slightly lower for the triplet comparison than for paired
comparison. We prefer an experimental methodology that gives more consistent results in
the general case i.e., a high minimum agreement for any pair. This type of consistency is
suggested by the much lower standard deviation in the case of triplet comparisons. The sta-
tistical result confirms that three-way comparative judgments reduce the overall subjectivity
of user ratings.

µ(Φ(H)) σ(Φ(H))
Pairwise rating 0.983 0.204
Triplet rating 0.952 0.083

Table 4.1: Evaluation of users’ agreement for pairwise and triplet ratings.

Based on the numerical results, we conclude that pairwise rating with relative comparisons
between a group of images increases the users’ agreement. Thus, in the rating experiment,
we extend the triplet rating to group ratings where each reference image has 24 evaluated
images. The 24 evaluated images are divided into six groups of four images. Users are then
asked to compare each evaluated image to the reference image, making sure to consider the
consistency of relationships within the group (Fig. 4.13).

For this experiment, we choose to use the standard deviation described above to measure
the consistency between pair and triplet rating instead of ICC. It is because analyzing users’
rating distributions using standard deviation is more intuitive and easy to understand. We
use ICC to evaluate the final color composition similarity dataset to compare the quality of
the dataset with other subjective study datasets.

4.2.4 Quality of the Rating Dataset

One important aspect of crowd-sourcing experiments is to have a sufficient number of par-
ticipants working on each question. In highly subjective perceptual comparison tasks, we
need a more significant number of user judgments per item compared to less subjective
tasks such as object labeling. We conducted a preliminary experiment on a small part of
the dataset (559 pairs) using 40 ratings per pair. We studied how well a smaller number of
ratings can reproduce the mean of 40 ratings. We found that the mean opinion derived from
20 ratings suffices to obtain a 0.994 Pearson linear correlation with the mean for 40 ratings,
with an MAE of 0.033 on a scale of [1,5] (Figure 4.17). Hence, we chose 20 ratings per pair.

We compute the histogram of Mean Opinion Scores (MOS) on the entire color similarity
dataset. If we were to randomly sample pairs of images, there would be a very low chance
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Figure 4.17: Correlation (PLCC) between the MOS from ‘number scores‘ and the MOS from all 40
scores. The random repeated sub-sampling leads to confidence intervals that are displayed in red.

that two images were highly similar i.e., a score of 4 and above. In our dataset, we have
about 2,500 pairs (6.4% of the dataset) with ratings of 4 and above. We also have a fair
amount of pairs with MOS ratings distributed in the middle of the rating scale (See Fig. 4.18).
This distribution was possible only due to our pair selection procedure employed during the
active learning process.

Figure 4.18: Histogram of Mean Opinion Scores for the entire color composition similarity dataset.

To evaluate the quality and reliability of the dataset, we use the Intra-class Correlation Co-
efficient (ICC). In subjective ratings, ICC is often used to measure inter-rater reliability. A
high value of the ICC indicates a high degree of agreement between participants. There are
three models for ICC [KL16b]:

• One-way random-effects: each subject is rated by different sets of participants, which
are randomly selected in a population and can be generalized.

• Two-way random-effects: each subject is rated by the same set of participants, which
is randomly selected in a population and can be generalized.

• Two-way mixed-effects: only specific participants such as experts are selected, and
this cannot be generalized to other participants such as a general population.

In our dataset, due to a large number of comparisons, no participant completed all the ques-
tions. Therefore, we use the one-way random-effects ICC. The one-way ICC value on our
dataset is 0.69 (computed using ICCest() function from package ICC in the software R). It
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suggests a high agreement in the context of crowd-sourcing rating experiments for subjec-
tive studies, where values between 0.22 and 0.56 have been previously reported on different
rating datasets [HLS18; SHR16].

4.3 Computational Model of Color Composition Similarity

We train Convolutional Neural Networks (CNN) to evaluate the perceptual color compo-
sition similarity using the rating dataset. These networks can be used as similarity metrics
and color feature extractors.

(a) Siamese network for predicting ratings.

(b) Shared-weight Convolutional Block.

Figure 4.19: Siamese architecture (a) using Convolutional Neural Network (b) for training our color
similarity metrics.

Different from binary networks, rating networks allow us to rank image similarity. We train
two types of rating networks: COLSIM_RATE to predict the participants’ rating distribu-
tion and COLSIM_MOS to predict the participants’ Mean Opinion Score (MOS). Both net-
works use the same architecture as described in Fig. 4.19(a). The only difference is in the
prediction layer, where we have a single output for MOS and five outputs for rating distri-
butions. The overall architecture is a Siamese network that has two input images. Each input
is fed into a shared-weight Convolutional Block that contains a series of convolutional lay-
ers to extract features. The features from the two input images are combined by a function f
defined in Eq. 4.3. Finally, a neural network with a few fully connected layers performs the
predictions based on the combined features.
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Shared-weight Convolutional Block: we use five convolutional layers that are similar to
the Caffe implementation of AlexNet with Batch Normalization on the first two layers. The
last convolutional layer’s responses are flattened to form a feature vector v (Fig. 4.19(b)).
We also train a compact network that contains only three convolutional layers on images of
size 112×112 pixels. The compact network is smaller and faster, but there is a slight drop in
performance (Section 4.4).

Image Features Combination: to combine features of image 1 (v1) and features of image
2 (v2), we use 3 different metrics: the absolute difference da, squared difference ds and
Hadamard product dh as follows:

da(v1, v2) = ||v1 − v2||
ds(v1, v2) = ||v1 − v2||2

dh(v1, v2) = ||vj
1 � vj

2||

(4.2)

where j = 1..n, v1 ∈ Rn and v2 ∈ Rn. Let C be a concatenating operator, i.e., stacking vectors
vertically. Combined features of two images are defined by function f as follows:

f (v1, v2) = C(da(v1, v2), ds(v1, v2), dh(v1, v2)) (4.3)

The combined features resulting from Eq. 4.3 are used as the input to the Fully Connected
Layer (FCL) block (Fig. 4.19(a)).

Fully Connected Layer (FCL) Block: comprises two fully connected layers of size 512 and
128. We use dropout 0.5 for the first FCL and 0.2 for the second FCL. ReLU activation is used
throughout the whole network.

Rating Distribution Prediction: participants’ ratings are distributed over the 5-point scale.
Given a pair of images, we want to predict the participants’ rating distribution. We use dif-
ferent metrics for computing the distribution losses, including Mean Absolute Error (MAE),
Kullback-Leibler (KL) divergence, and Huber loss. The objective of the training is to mini-
mize these distribution losses. From numerical results, KL divergence consistently performs
the best. Thus, we use KL divergence in all of our rating networks. KL divergence loss be-
tween the participants’ rating distribution (ground-truth) P and predicted rating distribu-
tion Q is computed as follows:

LKL(P||Q) =
n

∑
i=1

P(i) log
P(i)
Q(i)

(4.4)

where n = 5 for the 5-point rating scale.

Mean Opinion Score (MOS) Prediction: from the participants’ rating distributions, we can
compute MOS values that are useful for image ranking. The MOS is computed as MOS =
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∑n
i=1 i · P(i) where P is the normalized rating distribution and n = 5 for a 5-point rating scale.

We also train networks that predict MOS (COLSIM_MOS) using Mean Squared Error (MSE)
loss. Our experiments show that MOS derived from predicted rating distributions has lower
errors than the results of networks that are trained directly on MOS data.

Color Features Embedding Visualization: We use t-SNE embedding to visualize the MOS
prediction from our COLSIM_MOS network. t-SNE is a technique to visualize high dimen-
sional data. One can provide raw data points to the t-SNE embedding function and it will
calculate Euclidean distances between all pairs by default. Another option is to provide t-
SNE with a pair-wise distance matrix. Here, we use the matrix of which each element is a
value between each pair of images (x, y) defined as: d(x, y) = 1−MOS(x, y), d(x, y) ∈ [0, 1].
d is positive and symmetric but is not guaranteed to follow the triangle inequality. How-
ever, t-SNE is designed to work with non-metric similarities [MH12]. Fig. 4.20 and Fig. 4.21
show the t-SNE embedding of the MOS predictions on 3,000 and 5,000 images respectively.
The 3,000 images are mixed selections of Pixabay and INRIA Holiday datasets. The 5,000
images are randomly selected from Pixabay. The images form clusters based on their domi-
nant colors.

Figure 4.20: t-SNE embedding on MOS prediction from AlexBN color similarity network for 3K images.
The 3K images are mixed selections of Pixabay images and INRIA Holiday dataset. The left image is
the overall embedding and the right image is a zoom in of a small region from the left one.

To evaluate the color features extracted from the metric network, we visualize the L2 dis-
tances between color features from our metric in Fig. 4.22(a). For comparison, we also vi-
sualize the L2 distances of fc7 content features from the VGG19 network in Fig. 4.22(b). It
shows that with content features, the colors are scattered around, such as red and green
images. Whereas with color features, the images are visually grouped correctly.
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Figure 4.21: t-SNE embedding based on MOS prediction from AlexBN color similarity network for 5K
images from Pixabay. The result shows that images are clustered very well based on colors. For a
clear visualization, only images that do not overlap with each other are rendered.

(a) Color Features (b) Cateogry Features

Figure 4.22: Visualization for color features versus category content features. Only images that do
not overlap with each other are rendered.

Using the color composition similarity dataset, we develop different color descriptors and
apply them in three applications: global color descriptor, fine-grained image retrieval, and
neural style transfer with perceptual color similarity. Each application is described in the
following sections.
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4.4 Application 1: Global Color Descriptor

Color is one of the essential elements of visual content. Color descriptors are important
to describe images and are used in many Computer Vision applications such as image re-
trieval, object recognition, scene understanding, to name a few. In the first application, we
train deep convolutional neural networks to learn global color descriptors using our color
composition similarity dataset. We compare the trained global color descriptors with exist-
ing hand-crafted color descriptors in ranking image similarity based on color composition.

In order to evaluate and compare the performances of different descriptors and networks
on perceptual color similarity measurements, we split the dataset into an 80% training set
(24,840 pairs) and a 20% test set (6,210 pairs). There are no common reference images in the
two sets. All the algorithms are trained and validated on the training set and tested on the
test set. The results reported in Table 4.2 are the SROCC on the test set, which measures
the Spearman Rank Order Correlation between the predicted results and participants’ rat-
ings. We choose SROCC over other metrics such as MAE or MSE because it accounts for the
changes in scale and non-linearity of the measurements coming from different descriptors
and methods.

Group Descriptor
correlation ρ

L1 L2
Histogram

Intersection
Trained

MOS/Rating

H
is

to
gr

am nrghistogram 0.503 0.546 0.503 -
opponent histogram 0.604 0.498 0.604 -

hue histogram 0.631 0.535 0.648 -
lab histogram -0.260 -0.336 0.670 -

SI
FT

rgsift 0.259 0.277 - -/0.754
hsvsift 0.327 0.277 - -/0.757

csift 0.351 0.318 - -/0.687
opponentsift 0.604 0.498 - -/0.636

huesift 0.631 0.535 - -/0.862

M
PE

G
7 CLD 0.290 0.562 - -/0.715

CSD 0.653 0.692 - -/0.737
SCD 0.692 0.646 - -/0.720

Le
ar

ni
ng

VGG19 + L2 - - - 0.467/-
VGG19 Transfer - - - 0.780/0.812

VGG19 Fine-tune - - - 0.832/0.863
Compact (ours) - - - 0.860/0.869
COLSIM (ours) - - - 0.902/0.913

Table 4.2: Evaluation of color descriptors and learning methods on color composition similarity. Pre-
dictions are based on L1 and L2 norms, or trained on ‘MOS’ and distribution of ‘Ratings’. The
Spearman ρ between the predictions and the MOS computed from user ratings is reported. Perfor-
mance is highest when training on distributions of ratings using the Kullback Leibler Divergence loss
function.
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We divide color descriptor methods into three groups: histogram-based, SIFT-based and
MPEG7. We use L1 and L2 for all descriptors in these three groups to measure the similar-
ity between pairs of images in the test set, rank them, and compute the SROCC. We also
train the descriptors using CNNs, and neural networks for SIFT and MPEG7 descriptors,
respectively. To extract SIFT descriptors, we densely sample the images and compute SIFT
color features at each sampled point. The resulting data is enough to train a CNN that has
a similar architecture to our COLSIM_RATE network (in Section 4.3). MPEG7 descriptors,
on the other hand, are very compact. Their sizes are 192 for Color Layout Descriptor (CLD),
and 256 for Color Structure Descriptor (CSD) and Scalable Color Descriptor (SCD). Thus, we
train a small neural network that has two fully connected layers with one prediction layer.
The features produced by descriptors for pairs of images are combined using the function f
as described in Eq. 4.3.

The numerical results show that descriptors, even though designed for color similarity, do
not correlate well with human evaluations. The maximum SROCC is 0.692 obtained with
CSD and SCD descriptors. Training a DCNN or Neural Network on the descriptors can
improve the results up to a maximum of 0.860 SROCC in the case of huesift. Nevertheless,
it takes an additional step to first compute descriptors before training them to get decent
results.

A straightforward approach is to fine-tune a network or train one from scratch on our
dataset. We do transfer learning from pre-trained features and then fine-tuning using the
VGG19 network [SZ15]. As VGG19 is trained for object categorization, it cannot perform
well out of the box on color similarity. The SROCC result for L2 distance on fc7 features of
the VGG19 is 0.467. It shows that content and color are not highly correlated. The SROCC
result of VGG19 transfer learning is 0.812 and improves to 0.863 with fine-tuning. Even
though the results are satisfying, we observe that the features in VGG19 favor classifica-
tion and hence still affect the performance of color similarity measurement. Thus, we train
a rating network COLSIM_RATE described in Section 4.3 from scratch. The SROCC of
COLSIM_RATE is 0.913, the best of all methods. We also train a Compact network that
contains 3 convolutional layers, 2 fully connected layers and 1 prediction layer on images
of size 112×112 pixels. Even though the performance is lower at 0.869 SROCC, the network
has fewer parameters while having comparable performance to the fine-tuned VGG19. The
MOS prediction network COLSIM_MOS has an SROCC of 0.902, which is slightly lower
than COLSIM_RATE.

Regarding errors, we sorted the images by their MAE and plot the ranked images in Fig-
ure 4.23(a). We plot the cumulative distribution function (CDF) of the MAE between the
participants’ distribution of ratings and our COLSIM_RATE network’s predictions in Fig-
ure 4.23(b). The MAE is below 0.1 for 70% of the test data and only increases substantially
in the last 5%.
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(a) Sorted prediction errors for all images. (b) CDF of similarity ratings MAE.

(c) Examples of different error levels (MAE). Blue graph: ground-truth, red graph: prediction.

Figure 4.23: The MAE between participants’ rating distributions and the COLSIM_RATE network’s
predictions on the test set. For most images the MAE is small, e.g., (i) and (ii) whereas only 3% have
an MAE > 0.2, e.g., (iv).

4.5 Application 2: Fine-Grained Image Retrieval

Fine-grained image similarity measures not only the content difference among image classes
but also the visual difference within a class. Image retrieval by class or categorical features
does not consider colors as a part of the ranking procedure. For instance, when searching for
an image of a black poodle, retrieval prioritizes semantic information and returns poodles
with various colors. This is not always desirable. We show that by using our visual color
similarity metric, the relevance of the ranking results is improved.

4.5.1 Related Work

Existing methods relate visual similarity to fine-grained classification or visual attribute sim-
ilarity. These two main approaches are only beginning to tackle the complex nature of per-
ceptual comparisons as part of visual search. Visual similarity is contextual because of the
subjective judgments and its use-case. For instance, a query for an image depicting a leopard
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pup at the zoo could be intended to retrieve images of leopards (pure class), young leopards
(object attribute and class), or yellow animals (color and class).

The first type of methods learn features for general visual similarity [BB15; Che+10; PM15;
Wan+14; WKH17], starting from category labels, textual descriptions, or triplet data. The
second type of approaches separate aspects of visual similarity, by learning from human-
nameable visual attributes or discovering new ones for image retrieval [DRS11; FZ07; KG13;
PG11; Ras+13; SFD11; WKH17; Yan+16]. Attribute learning complements category-level
recognition by learning the degree to which one or more attributes are present in an image.
Attributes are very specific and combining them is challenging [SFD11] due to their inter-
actions and relative importance. For instance, an animal can be yellow or furry (absolute
scale), taller or shorter (relative attributes).

We propose to separate visual similarity into multiple factors that can be individually stud-
ied. In this work, we focus on the color composition factor. This is not a per-image attribute
as we cannot quantify the amount of color composition in an image, nor can we say that
an image has more or less color composition than another. However, it allows us to better
specify the context in visual search. We use the correlation between pairs of content features
and color similarity to improve fine-grained visual similarity prediction. We show how
the colors factor can improve retrieval rankings, by controlling it separately from content
semantics and category (Section 4.5.2). Subsequently, we use the correlation of color and
category features to improve fine-grained visual similarity prediction (Section 4.5.3).

4.5.2 Content versus Color Retrieval

We perform retrieval using content features versus color features on a subset of ImageNet
[Den+09] dataset. In the context of this chapter, the term "content" can also be used inter-
changeably with "category". We measure content similarity using L2 for fc7 from VGG19
[SZ15] network, and color similarity is from our color-sim network. The similarity between
the query q and a retrieved image r is H(q, r). For a query q, we ranked the results by
content and color similarity. The visualized results show all retrieved images r such that
H(q, r) > 0.5.

In the case of retrieving the sunflower image in Figure 4.24(a), all the yellow flowers are
pushed up in their rank in the color similarity compared to the content similarity. Moreover,
the images that contain sunflowers with a blue sky background are also higher in rank for
color similarity. For the sunset image retrieval example in Figure 4.24(b), the red-orange
tone images are ranked visually more correct in color similarity compared to the content
similarity. Similarly, the same consistent results are noticeable for the mushroom retrieval
example in Figure 4.24(c).

Retrieval by combining category similarity and color similarity: We are also combining
color and category criteria for retrieval in a simple way. First we retrieve images by cate-
gory and from the first 100 retrieved images, we sort them by color similarity to the query
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(a) Sunflower retrieval

(b) Sunset retrieval

(c) Mushroom retrieval

Figure 4.24: Retrieval results, independently ranked by content and colors. The first image in each
figure is the query image.

image. The examples are shown in Figure 4.25 and Figure 4.26. We also display the results
of retrieval by category and color for reference. It shows that retrieval by each criteria works
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(a) Retrieval by category

(b) Retrieval by color

(c) Retrieval by category followed by color

Figure 4.25: Different retrieval results: retrieval by category only, by color only and by combination of
category and color. In the combination, the images are retrieved by category first, followed by color
similarity. The first image in each figure is the query image.

(a) Retrieval by category

(b) Retrieval by color

(c) Retrieval by category followed by color

Figure 4.26: Different retrieval results: retrieval by category only, by color only and by combination of
category and color. In the combination, the images are retrieved by category first, followed by color
similarity. The first image in each figure is the query image.

well based on their own measurements. The retrieval by combining both criteria results
more visual similarity towards the fine-grained image retrieval. In the Section 4.5.3, we in-
troduce a novel features that combined color similarity features and category features that
can be trained fast by SVM and be able to produce the state of the art results in fine-grained
image retrieval.

4.5.3 Features and Training Model for Fine-Grained Retrieval

From visual ranking, we go further in evaluating the potential of the COLSIM network to
be used for fine-grained similarity with more quantitative results and analysis.
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Model
Validation 14k
(not available)

Subset 5k (⊂ 14k)

L2 on ConvNet AlexNet fc8 82.8% (baseline) 73.7% (baseline)
Single-scale Ranking 84.6% -

OASIS on Single-scale Ranking 82.5% -
Single-Scale & Visual Feature 84.1% -

DeepRanking 85.7% (+3.5%) -
L2 on *sift descriptors - 62.9% - 65.4%

L2 on MPEG descriptors - 62.3% - 65.1%
L2 on COLSIM features - 69.1%

L2 on ResNet GAP - 79.1%
SVM on COLSIM correlation - 73.7%

SVM on ResNet50 GAP correlation - 84.3%
SVM on ResNet50 + COLSIM - 86.2% (+12.5%)

Table 4.3: Evaluation on the DeepRanking triplet dataset. Results for the ’Validation 14k’ column
are reproduced from [Wan+14]. We evaluate our methods on the ’Subset 5k’ triplets. "ConvNet
AlexNet fc8" and "ResNet" use L2 distance on fc8 and ResNet50 Global Average Pooling (GAP)
content features respectively. "COLSIM features" uses the result scores from our COLSIM network.
The three SVM approaches rely on COLSIM features, ResNet50 GAP content features, and the
combination between ResNet50 GAP and COLSIM features. The relative improvement of "SVM
content + COLSIM" method to the baseline is significant, in comparison to other methods.

Color
Descriptor

Combined
features

Color
features

csift 84.5% 50.7%
rgsift 84.6% 61.3%

oppsift 84.8% 64.5%
hsvsift 85.1% 62.7%
huesift 85.3% 65.4%
CLD 84.4% 61.8%
CSD 85.5% 68.9%
SCD 85.5% 62.8%

COLSIM (ours) 86.2% 73.7%

Table 4.4: Evaluation on the DeepRanking triplet dataset. We evaluate and compare our color
similarity descriptors with existing color descriptors. We show the SVM results on the 5k subset when
training with (combined) and without content features. Except COLSIM, we use L2 for the rest of
color descriptors to compute SVM features.

Our hypothesis for improving fine-grained similarity is that the combination of category and
color features helps to better predict the similarity of image pairs compared to the individual
features alone. The similarity in the categorical feature space is computed as the correlation
between two feature vectors of pairs of images. The color similarity features are extracted
from our color composition similarity metric or L2 distance for existing hand-crafted color
descriptors. The detailed formulations for the content correlation and color similarity are
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explained below. Our hypothesis is verified by numerical results in Table 4.3 and Table 4.4.

Wang et al. [Wan+14] have introduced a fine-grained similarity database which contains
5,033 ranked triplets. A triplet comprises a query Q, and two compared images A and B.
If the visual similarity sim(Q, A) > sim(Q, B) which means A is more similar to Q than B,
then the correct ordering of the triplet is (Q, A, B).

Using this dataset, we study different similarity measures on category and color features
individually and in combination. We use the L2 distance to measure the visual similarity
between pairs of images. For content features, we evaluate L2 on the fc8 layer of AlexNet
and the Global Average Pooling (GAP) layer of ResNet50. For color features, we evaluate
L2 for all color SIFT descriptors, MPEG7 descriptors and COLSIM features extracted from
our model. The L2 distance on individual types of features does not yield good results
(Table 4.4). Therefore, we train a binary classifier (SVM, RBF kernel) on the triplet data using
combinations of features. In general, the input features to the SVM are a pair of similarities
(sim(Q, A), sim(Q, B)) for a correct triplet (Q, A, B). Wrongly ranked triplets are created
from the correct ones, by reversing the relationships (sim(Q, B), sim(Q, A)).

The features that are used when training the SVM are: the direct color similarity produced
by the COLSIM network SCOLSIM(X, Y), and the Pearson Linear Correlation Coefficient
(PLCC) between GAP content features 2 FGAP extracted from a pre-trained ResNet50 net-
work. They are defined as following:

SGAP(X, Y) = PLCC(FGAP(X), FGAP(Y)) (4.5)

PLCC(x, y) =
1

n− 1

n

∑
i=1

(
xi − x

σx
)(

yi − y
σy

) (4.6)

where n is the number of dimensions of the features x, y. Therefore, the input features for
“SVM ResNet GAP correlation” is [SGAP(Q, A), SGAP(Q, B)] which contains only content
features for a triplet (Q, A, B). The input features for “SVM ResNet + COLSIM” are the
combination of content similarity and color similarity, and defined for a triplet (Q, A, B) as:

g(COLSIM, GAP) = [SCOLSIM(Q, A), SCOLSIM(Q, B), SGAP(Q, A), SGAP(Q, B)] (4.7)

4.5.4 Results Analysis and Discussion

The DCNN methods in [Wan+14] have been evaluated on a validation dataset of 14,000
triplets. However, the authors [Wan+14] make available only a subset of 5,033 triplets. We
evaluate our models on this subset by using 20 repetitions of random 80%/20% train/validation
splits. The optimal hyper-parameters for each split are estimated by 5-fold cross-validation.

2the terms category and content features are used interchangeably
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Our proposed model using the combined category and color feature similarities performs
best. We do not have access to the other methods to directly compare their performances
on the “Subset 5k” database. Thus, we use a shared baseline model for comparison: the
L2 distance between fc8 features from AlexNet [KSH12], named “ConvNet AlexNet fc8”.
This common baseline performs much better on the 14K dataset than on the subset 5K (Ta-
ble. 4.3). Therefore, we expect equivalent methods will perform better when tested on the
14K compared to the 5K subset.

State-of-the-art performance: The accuracy of our method is 86.2% compared to 85.7% for
the best DeepRanking [Wan+14] approach. However, our method shows a substantially
higher improvement of 12.5% relative to the shared baseline, compared to the improvement
of 3.5% for DeepRanking. As the performance of the baseline method on ‘Subset 5K’ (73.7%)
is much lower than on ‘Validation 14K’ (82.8%), the relative % improvement suggests a much
better overall performance for our method.

Feature combination vs individual features: Even though the SVM training on ResNet
GAP correlation and COLORSIM scores achieves the best results, we also test the model
on different hand-crafted descriptors. The results, on the right of Table 4.4, show that: (i)
COLSIM outperforms hand-crafted descriptors; (ii) the combination of content feature cor-
relation and color similarity yields better accuracy compared to using L2 on descriptors or
ResNet GAP alone.

Feature correlation vs L2 distance: Using content or color descriptors alone, we find that
training an SVM on the PLCC of the features results in a better accuracy than L2 distance
on the respective features. For instance, the accuracy for SVM on ResNet GAP correlation is
84.3% compared to 79.1% for L2 on ResNet GAP features (Table 4.3).

Features vs end-to-end training: While DeepRanking [Wan+14] used 14 million Google
search images during training, and a large set of triplets (≈ 50k), our method relies on a
much smaller set of 5,033 triplets and our own database of 30k image pairs. The improved
performance of our approach, using combined category and color features, shows that em-
bedding domain knowledge in our model achieves both excellent performance and efficient
training. Training on the proposed low-dimensional pairwise features is much faster than
an alternative end-to-end triplet network.

In this section, we present experiments with image retrieval from different aspects: color
and category and their combination. Retrieval based on combination of color and cate-
gory features produces better results toward visual similarity image retrieval. We create an
improved model for visual ranking similarity, by introducing a novel way to combine non-
homogeneous representations such as color similarity and category features. These multi-
aspect, low-dimensional features have proven to be extremely effective in training visual
ranking models, surpassing the existing state of the art ‘DeepRank’ that was trained on sub-
stantially more data. Overall, the results prove that our proposed approach better predicts
visual similarity.
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4.5.5 Analogy Image Retrieval - An Inspiration

The classic popular image retrieval that we are familiar with is retrieval using keywords
such as Google search. However, keywords are usually short and not descriptive enough
to specify in detail what image we want to retrieve. For example, the Google search for
images with keyword "duck" returns all sorts of images including natural and toy ducks
(Figure 4.27).

Figure 4.27: Results of Google search on keyword "duck". They include many types of ducks: natural
images and graphical generated, real ducks and toy ducks.

To better specify the users’ requirements for image search, we have example based image
retrieval. In this approach, a user inputs an image of which she wants to retrieve similar im-
ages. There are not many commercial platforms that currently support this type of search.
Pinterest is one of the platform that users can retrieve images based on one input image
(Figure 4.28). Once the user inputs an example image, the system will return a set of similar
images. It is unclear what criteria are used in the search engine. The resulting images can be
seen as similar to the input image in terms of image type, category or texture. Some photo-
stock search engines try to combine visual and keywords search to propose similar images
such https://www.shutterstock.com or https://pixabay.com. Google image search also
has an option for the input to be an image and return similar images. However, for many
cases, Google infers the input image’s label and use it as one of the criteria for image search.
Besides keywords, users can also specify colors as another search criterion. The color crite-
rion is a single solid color rather than the color composition of the input image.

Studying multiple aspects of visual similarity leads us towards future research on analogy
image retrieval where the inputs are multiple images. The system will identify which as-
pects the input images have in common and retrieve accordingly, assuming that the common
features in the input images reflect the user’s intention. In Figure 4.29, we show examples
of analogy retrieval. Given a pair of input images, we expect the retrieval results contain

https://www.shutterstock.com
https://pixabay.com
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Figure 4.28: Results of Pinterest search on example images. The results show similar
types of images. The retrieved images can be seen as similar in terms of image type or
category content or texture. (Source image: https: // www. searchenginejournal. com/
best-image-search-engines/ 299963/ #close )

common features with the input images. In Figure 4.29(a), the common features are color
composition similarity: images that have white objects in the center of the image with black
backgrounds. In Figure 4.29(b), the input images are two types of ducks and therefore, we
expect the results will be natural images of ducks that look like each of the input image.
Not only with color and category, images can also be evaluated in different aspects such as
image type, structure or texture. If the two input images are identical, the similarity search
criteria are high for all the aspects. Therefore, we will expect the system to return highly
visually similar images to the degree of almost identical. In the next Section 4.6, we will
explore a metric that is used to measure the texture similarity of pairs of images using deep
features generated by Convolutional Neural Networks.

In this part of the work, my broader motivation is to answer the questions "Are two images
similar?" If they are, then "Why are they similar? (or "What aspects of similarity do they
represent?"). It is the first step towards reasoning and image understanding. The results in
this chapter show that studying each individual aspect of similarity is possible and visual
similarity is better formalized from combining these individual aspects. It is the proof of
concept to the answers of my problem formulation questions "Why".

Even though we succeed in separating some factors of visual similarity and produce good
results, there are still challenges in image understanding in Computer Vision research. Un-
derstand the contexts in the images leads to a higher level of similarity such as pose, illusion,
etc. For example, in Figure 4.30, how can an algorithm abstracts the feminine lying pose be-
tween the leopard and the woman? Or how would a system interpret a cat with antlers?
Reaching this abstract level of understanding also means to abide with subtleties and re-
finement cognitive systems, as one said "the devil is in the detail".

https://www.searchenginejournal.com/best-image-search-engines/299963/#close
https://www.searchenginejournal.com/best-image-search-engines/299963/#close
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(a) Same color composition (b) Same category

Figure 4.29: Analogy retrieval: color versus category. The requirement is to understand different
similarity aspects and retrieve similar images accordingly.

Figure 4.30: The challenge of Appearance versus Category.
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4.6 Application 3: Neural Style Transfer with Perceptual Color Sim-
ilarity

In this section, we show the benefit of using a perceptual color similarity network in neural
style transfer. Neural style transfer is a set of techniques to generate a new image from a
content and a style image using Convolutional Neural Networks (CNNs). By combining
one content image with different style images and paintings, it opens unlimited possibilities
in creating artworks for everyone even without having painting skills.

Figure 4.31: An example of style versus color transfer. Both methods use the same source and target
images. The style includes both texture and color, which represents the style of the painting in the
target image. The color transfer result has the target image’s color palette while maintaining clear
content from the source image. The style transfer result is created using Gatys et al. method [GEB16],
and the color transfer result is created by using our perceptual color similarity network.

4.6.1 Related Work

One of the famous and pioneering techniques in the field is proposed by Gatys et al. [GEB16].
The method computes content and style representations of input images using the filter
responses from various layers of VGG19 [SZ15]. The image content representation is simply
the filter responses from the DCNN. The image style representation is computed using a
Gram matrix Gl ∈ RNl xNl which measures the correlations of image features in layer l:

Gl
ij = ∑

k
Fl

ikFl
jk (4.8)

where Fl
i and Fl

j are features maps i and j in layer l.

An example of how a Gram matrix is being used in texture synthesis [GEB15] is shown in
Figure 4.32. The Gram matrix is used to measure the difference between convolutional re-
sponse layers of the source texture and synthesized texture. It is also the main component for
the loss that the DCNN needs to optimize to generate target texture. The synthesized results
(Figure 4.33) show that the Gram matrix captures textures of images very well. Therefore, it
is used as the core technique for style transfer.

The style transferred image is generated by backward propagation through a CNN. The
optimization required is to minimize the total distance of content representation and style
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Figure 4.32: Gram matrix is calculated based on mid-level deep features of a Convolutional Neural
Network. For each convolutional response layer shown in the figure, the Gram matrix calculates its
feature correlation. At every layer, the difference between feature correlation of the target image and
the output image is computed. The objective loss is the weighted sum of all the differences between
two images for all the layers. (Source: [GEB15])

Figure 4.33: Results of texture synthesis using the Gram matrix. The number of parameters increases
from left to right. The larger the number of parameters is, the more response layers in the network
are selected to compute texture features. The synthesized results are more realistic when the number
of parameters increases. With 852K parameters, all the layers from the first layer up to and including
’pool4’ are selected. When reducing the number of layers such that only one layer for each scale in
the network is selected, the number of parameters is about 177K. However, the results from 177K
parameters and 852K parameters are very close in terms of quality. Based on this study, we use one
convolutional response layer for each scale in both style transfer and color transfer methods. (Source:
[GEB15])

representation with a linear weighted combination. Gatys et al. [GEB16] proposed a model
using Gram matrix to compute the style similarity between the input and the target im-
ages (Figure 4.34). Having a similar goal, Li and Wand [LW16] replace the Gram matrix
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by Markov Random Fields (MRF) on local patches of CNN responses. Thus, local spatial
constraints are enforced in the synthesized image. The other approach to synthesize style
transferred images is to use generative networks [JAF16; Zhu+17]. Johnson et al. [JAF16]
use content and style representations that are similar to Gatys et al. [GEB16] to compute
loss functions with an additional total variation regularization for smoothness. Johnson et
al. train a feed-forward network for every style and therefore, the style transferred image is
generated through a single forward pass. Different with other neural style transfer methods
that learn the feature differences between a content and a style image, Zhu et al. [Zhu+17]
use Generative Adversarial Networks (GAN) to generate images by learning the mappings
between two image collections. Ying et al. [Jin+17] present a review on different neural style
transfer methods and comparisons in more details.

Figure 4.34: A style transfer model using Gram matrix [GEB16]. The output image ~x is generated by
back propagation such that its content is close to content input ~p and its style is similar to the style
input ~a. Gram matrix is used to calculate feature correlation at every convolutional response layer for
all three images ~x,~p,~a. The content loss is computed by the sum difference between layers of the
output image ~x and the content input image ~p. The style loss is calculated by the sum difference
between layers of the output image ~x and the target style input image ~a. The objective loss is the
weighted combination of the content loss and the style loss. (Source: [GEB16])

The common property of all the neural style transfer methods is to repaint the content im-
age using textures and colors in the style image. Textures and colors are coupled together
in representing styles. In the most recent work, Gatys et al. [Gat+17] propose a method
to preserve the color of the content image. Therefore, it provides an option to synthesize
style transferred image with the color from either content or style image. Inspired by the
remarkable results from Gatys et al. [GEB16; Gat+17], we propose a method to generate a
style transferred image whose colors come from a third input image using our perceptual
color similarity network.
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4.6.2 Perceptual Color Transfer

We train a new network from scratch on our color similarity dataset. The new network,
called VGG19-COLSIM, has a similar architecture to VGG19 [SZ15] and predicts color sim-
ilarity rating distributions. Therefore, we believe the network captures features for color
representations. We do not use COLSIM networks because the Batch Normalization lay-
ers normalize filter responses. Thus, the back propagation cannot reconstruct the original
features from an input image.

Given a content image I and a color image C, a perceptual color transferred output OP
C is

produced by altering the content I during the back propagation on VGG19-COLSIM such
that the perceptual color of C and OP

C are minimized. Therefore, we use I as the initialization
for the back propagation process. The color loss is calculated as follows:

Lcolor(C, OP
C) =

L

∑
l=0

(
1

N2
l

∑
i,j

(
Gl

ij(C)− Gl
ij(O

P
C)
)2
)

(4.9)

where Gl
ij(I) and Gl

ij(O
P
C) are the color representation for content image I and generated

image OP
C respectively, calculated using the Gram matrix (Eq. 4.8), Nl is the size of layer

l. We use 5 layers {"conv1_1", "conv2_1", "conv3_1", "conv4_1", "conv5_1"} in the VGG19-
COLSIM for perceptual color transfer. The structure of our color transfer model is sim-
ilar to the structure of Gatys et al. in Figure 4.34, except that our network is trained on
color. In the style transfer model from Gatys et al. in Figure 4.34, the total loss is defined as
Ltotal = αLcontent + βLstyle. For our color transfer model, the Lstyle is replaced by our Lcolor in
Equation 4.9 such that Ltotal = αLcontent + βLcolor. Hence, the transfer factor is color compo-
sition and not image style.

4.6.3 Combining Style Transfer and Perceptual Color Transfer

In the new approach of neural style transfer with perceptual color similarity, we need three
input images: content I, color C and style S. We use Gatys’ method [GEB16] to transfer the
style of image S to the content image I and produce the output image OS = Y(I, S). Our
perceptual color transfer between content I and color C is OP

C described in Section 4.6.2. The
perceptual color and style transfer result is the combination of the luminance channel of OS

and the UV color channels of OP
C in the YUV color space. The results are shown in Section

4.6.4.

4.6.4 Results and Analysis

To achieve the style and color transfer results without our perceptual color similarity metric,
we explore two options. The first one is to use Gatys et al. method [GEB16] to transfer color
from the color image C to the content image I and the output is OG

C (Fig. 4.35(c)). We then
combine the luminance channel of OS for style transfer and the color channels of OG

C in
YUV color space to produce the output in Fig. 4.35(g). The Gram matrix of VGG19 filter
responses captures both texture and color features. Thus, the result does not only contain
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Figure 4.35: Perceptual style and color transfer results. (a) input images: input content I, color C,
style S. (e) OS: result of Gatys et al. [GEB16] transferred from style S to content I. (b) OR

C : result
of color transfer from color C to content I using Reinhard et al. method. (f) OR

S : results of Gatys et
al. [Gat+17] transferred from style image S to OR

C as content image with color preservation from OR
C .

(c) OG
C : result of Gatys et al. [GEB16] transferred from color C to content I. (g) combining style in

(e) and color in (c). (d) OP
C: result of color transfer from color C to content I using our perceptual

color similarity network. (h) combining style in (e) and color in (d).

colors, but the style of color image C as well. On the other hand, our proposed perceptual
color similarity network VGG19-COLSIM can transfer only the colors and keep the content
faithful to the input image I (Fig. 4.35(d). The results of the final color style transfer using
perceptual similarity network are visually more pleasant (Fig. 4.35(h) vs Fig. 4.35(g)).

In the other approach, we use the color transfer technique from Reinhard et al. [Rei+01] to
transfer the color from the color image C to the content image I and apply color preserving
style transfer using the Gatys et al. [Gat+17] method. We choose to transfer the color to the
content image I instead of the style image S to compare visually, even though both produce
similar results. The color transfer result of Reinhard et al. is OR

C in Fig. 4.35(b). We then use
Gatys et al. [Gat+17] to transfer style in style image S to re-color image OR

C and result OR
S

(Fig. 4.35(f)). Due to the inaccurate color transfer from the Reinhard et al. method, the colors
of OR

S are not faithful to the color image C compared to our method.

To evaluate more on the color transfer, we compare our perceptual color transfer with color
transfer method from Reinhard et al. [Rei+01]. Color transfer is a big field of research on
its own. Our aim is not to perform content aware color transfer. However, we observe that
many color transfer methods work well if source and target images are similar in content
or belong to the same image categories [FK10; Laf+14; Shi+14; Zhu+17]. The advantage of
our method is that it is versatile, working with any pairs of source and target images. We
compare ours with the established color transfer technique from Reinhard et al. [Rei+01].
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It is shown that in a majority of cases, the color transfer results from our perceptual metric
are more faithful to the source image than Reinhard et al. ’s results [Rei+01] (Figure 4.36).
Noting that even though we re-train VGG19-COLSIM from scratch on our perceptual color
similarity dataset which is much smaller than ImageNet, the color transfer using VGG19-
COLSIM performs very well.

content color Reinhard et al. perceptual color transfer

(a)

content color Reinhard et al. perceptual color transfer

(b)

Figure 4.36: Comparison of color transfer results. In Fig. 4.36(a), the result of Reinhard et al. method
[Rei+01] retains the green color of the peacock from the content image and also produces purple,
even though there is no green or purple color in the target color image. Our result, on the other hand,
produces high contrast and correct colors (blue, yellow, red and dark brown), which are all present
in the target color image. In Fig. 4.36(b), Reinhard et al. ’s method [Rei+01] generates purple and
green colors in the result, which are not present in the target color image.

Our color transfer model also has its limitation. Due to the back propagation process, the
edges in the target image could be blurred or lose their smoothness. Even though at normal
sizes of images, the defects are not obvious, they show in high resolution images. Therefore,
in our future work, we will investigate to add the edge preserving constraints and smooth-
ness prior in our loss function.

In this section, we presented a new option for neural style transfer that allows us to have
colors transferred from a different image than just from the style or content image. In gen-
eral, there are many ways to combine color and style transfer such as using different color
transfer methods or using our perceptual metric to transfer color to the content and/or style
images before applying style transfer techniques. We experiment with different methods
and examine the results. We recommend using our perceptual color metric to combine with
Gatys et al. [GEB16] style transfer technique described in section 4.6.3 to achieve the best
visual results that contain clear contents from the content images, well-defined styles from
the style images and faithful colors from the color images.
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4.6.5 More Style-Color Transfer Results

We compare the style transfer results that use our color similarity metric (sub-figure (f)) with
those using the original method of Gatys et al. [GEB16] (sub-figure (e)). When applying the
latter, colors from different objects become intermixed, whereas in our results each object’s
colors are coherently transformed. Good examples are the peacock’s body in Fig. 4.37 or
Lena in Fig. 4.39. Our method preserves better the separation between the foreground and
background, for example, the flower in Fig. 4.38 and the horse in Fig. 4.39.

Figure 4.37: (a): input images. (d): result of Gatys et al. style transfer [GEB16] between content
and style image. (b): result of Gatys et al. style transfer [GEB16] between content and color image.
(c): result of color transfer from color image to content image using our color similarity network. (e):
combination of color in (b) and style in (d). (f): combination of color in (c) and style in (d).
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Figure 4.38: (a): input images. (d): result of Gatys et al. style transfer [GEB16] between content
and style image. (b): result of Gatys et al. style transfer [GEB16] between content and color image.
(c): result of color transfer from color image to content image using our perceptual color similarity
network. (e): combination of color in (b) and style in (d). (f): combination of color in (c) and style
in (d).
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Figure 4.39: (a): input images. (d): result of Gatys et al. style transfer [GEB16] between content
and style image. (b): result of Gatys et al. style transfer [GEB16] between content and color image.
(c): result of color transfer from color image to content image using our perceptual color similarity
network. (e): combination of color in (b) and style in (d). (f): combination of color in (c) and style
in (d).
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4.6.6 More color transfer results

We compare the results of perceptual color transfer using our color similarity metric with
Reinhard et al. color transfer method [Rei+01]. The comparison shows that our metric pro-
duces results that are more faithful to the color image (Fig. 4.36 and Fig. 4.40).

content color Reinhard et al. perceptual color transfer

(a)

content color Reinhard et al. perceptual color transfer

(b)

content color Reinhard et al. perceptual color transfer

(c)

Figure 4.40: Comparison of color transfer results. In Fig. 4.40(a), our result has higher contrast
between the horse and the background than the result from Reinhard et al. method [Rei+01]. We
can see that the input images also have high contrast between the foreground and the background.
In Fig. 4.40(b), the colors in our result contain a larger diversity of hues from the color image whereas
Reinhard et al. method [Rei+01] produces fewer hues. Therefore, their result is less visually similar
to the color image than ours. In Fig. 4.40(c), both results are equally good.
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content color Reinhard et al. perceptual color transfer

(a)

Figure 4.41: Comparison of color transfer results. Our result contains off-white background where
there is no such color in the color input image. Artistically, our result looks better with higher contrast
and sharper than the result from Reinhard et al. method [Rei+01]. However, the color palette from
Reinhard’s result is closer to the color input image’s palette compared ours.

Occasionally, our color transfer results are less than ideal. For example, in Figure 4.41, the
color input image has mainly black and orange colors. However, in our result, the back-
ground color is light beige, which is influenced by the the content image’s background. It
could be due to the features of the horse in the content network being significantly larger
in magnitude compared to the features of the color image in the color network. In other
words, the content loss is much higher than the color loss. Therefore, the color transfer
method’s optimizer reduces the loss to fit the content image more than the color image. This
can happen because all the examples for color transfer in this chapter use the same set of
parameters for the weights of the content loss and the color loss. Changing the weights to
optimize more for the color loss can improve the color palette of the final result but might
reduce the sharpness that comes from the content image.

4.7 Chapter Summary

Assessing image similarity is one of the core abilities of human vision, and yet it is not easy
to design a computational model for visual similarity. It is technically relevant in Computer
Graphics and many topics of Computer Vision. However, images can be similar in one as-
pect but different in others. The notion of image similarity is, therefore, ambiguous and
subjective. In this work, we unravel the perceptual similarity by studying one particular
aspect, which is color composition, and by combining it with content and style similarity.
Our model considers the color distributions and layouts in images. Thus, our color similar-
ity metrics go beyond pixel-based, patch-based, or histogram-based methods. We take an
active learning approach to build a large color similarity rating dataset via crowd-sourcing.
Our dataset is the first of its kind and sufficiently large and diverse for learning with Deep
Convolutional Neural Networks (DCNN). We create perceptual metrics by training deep
networks using the dataset. Our metrics perform better than all existing descriptors and
methods on color comparisons. The importance of perceptual color similarity is also re-
flected in its applicability in Computer Vision and Computer Graphics. We successfully
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apply the trained models in two domains: neural style transfer and fine-grained visual sim-
ilarity. Our models provide a new option to generate “stylized” images for which the detail
style and colors are taken from separate sources. The color transfer results produced by our
deep metrics are faithful to the source images. In fine-grained similarity, it is demonstrated
that color features extracted by our metrics improve the ranking accuracy in comparison to
content features alone.

In the future, our perceptual similarity metrics can be used to select meaningful images to
train for classification that uses an active learning approach. Learning through similarities
helps to boost the generalization ability. It is also a smarter way to learn with a small amount
but more meaningful data, making the learning process more efficient.
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Part II

Deep Features





93

“Wonder is the beginning of wisdom.”

Socrates

One of the significant motivation of my work is to understand the potential and features of
Deep Convolutional Neural Networks (DCNN). In the last few years, DCNNs offer great
performances in different research fields in Computer Science. Besides searching for bet-
ter architectures, optimizers, and other ways to boost performance, a branch of research is
setting out to understand the knowledge encapsulated in a DCNN and is working towards
explainable DCNNs. In the previous chapter, we explored the mid-level features inside a
DCNN trained for classification tasks or color similarity regression tasks. We showed that
these features encapsulate the textures and colors of input images very well such that one
can have a successful color and style transfer using these features. The high-level features
(right before the classification layer or regression layer) are discriminative and representa-
tive enough to have good visual similarity image retrieval.

In this part of the thesis, we will explore the characteristics of the abstract features from
DCNNs and what they can potentially achieve in different research areas without the need
for re-training DCNNs using a large amount of data. We start by examining the classification
features in visual retrieval, with objects and textures, through a small application of multiple
example-based image retrieval. Inspired by a work to display Class Activation Maps, which
presents regions a DCNN finds features used for prediction in an input image, we study if
these features could embed extra information such as shape and, therefore, can potentially
be applied to weakly supervised segmentation. It is weakly supervised learning because
we do not need to train a network on a segmentation dataset. However, we use existing
DCNNs trained on classification and infer the shape and segment objects based on the deep
features provided by the most abstract layers of the DCNNs.

Lastly, we study the discriminative property of classifying features of DCNNs. We propose
a Neural Discriminant Analysis that increases the inter-class variance and reduces the intra-
class variance. The results show that there is room for improvement in the clustering or
discriminative optimization for deep features. We prove this in the general classification
and especially in the fine-grained classification tasks.
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Declaration for Chapter 5 - Shape Extraction and Semantic Segmentation

This work was in collaboration with Dr. Gianni Franchi and Prof. Dr. Michael Möller, and
published at the Winter Conference on Applications of Computer Vision (WACV) Confer-
ence in 2018 "Segmentation and Shape Extraction from Convolutional Neural Networks"
[Ha+18]. The research was partially funded by the German Research Foundation (DFG) as
part of the research training group GRK 1564 “Imaging New Modalities”, supervised by
Prof. Dr. Andreas Kolb and Prof. Dr. Volker Blanz.

In this work, Dr. Gianni Franchi and I worked together in almost all the parts of the paper.
It was the first deep learning project for both of us. Therefore, we shared and collaborated
closely on the implementation, including setting up the Caffe framework in different sys-
tems, coding, debugging, testing, and discussing algorithms. However, in this Chapter, the
study on multiple input example-based retrievals was done solely by me, before the collab-
oration. I brought in the Conditional Random Field (CRF) while Dr. Franchi implemented
the variogram technique. Both techniques contributed to the improved performance results.
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Chapter 5

Shape Extraction and Semantic
Segmentation

5.1 Image Feature Representation

Even though Computer Vision has many different tasks, the fundamentals of Convolutional
Neural Network architectures are usually evaluated on image classification. Often, the per-
formance of a newly proposed deep network architecture is evaluated on the ImageNet
dataset [Den+09] with 1,000 classes. In the image classification domain, ImageNet is consid-
ered the largest dataset with ground-truth for deep learning with a high number of image
classes. However, 1,000 classes are still just a fraction of the number of objects in real life that
can be captured by cameras. We want to examine if a Deep Convolutional Neural Network
(DCNN) trained on the ImageNet dataset can present features for object classes that it has
never seen or trained on before without domain adaptation or fine-tuning using a new set of
data. This will give us an answer if deep features from a pre-trained DCNN can generalize
to unseen classes.

Figure 5.1: An example of image retrieval from multiple input images.

To study deep features, I implemented a small application of image retrieval in Matlab with
a graphical interface where input images can be those that are not in the same set of classes
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in the ImageNet dataset. The special part of this application is that users can input multiple
images or snapshots of objects and place them in a canvas where they think the retrieval
images should have a similar configuration (Figure 5.1). While the application is instructive
for exploration, it is also an exciting idea that, so far, there is no commercial application yet.

5.1.1 Deep Feature Extraction

One characteristic of images in the ImageNet dataset [Den+09] is that they usually contain
only one object because one image has only one label to describe its content. On the other
hand, images in the wild are much more complicated where multiple objects can interact
and are presented in a single frame of an image. Therefore, we need to select individual
objects in every image and extract deep features for each of them. The general framework to
extract deep features for multiple regions of images in a dataset is described as in Figure 5.2.

Figure 5.2: Process of extract deep features for different region proposals from images. The pro-
posed regions in an image are first selected using algorithms in [ZD14]. Each region is fed to a
CNN BAIR Reference CaffeNet (bvlc_reference_caffenet) model from Caffe Model Zoo (https:
//caffe.berkeleyvision.org/model_zoo.html). The deep features from the last layer before
the classification layer are extracted to form a high dimensional feature space.

The region proposals of images are selected using algorithms in [ZD14]. It is a method to
generate bounding box proposals using edges. The goal is that the bounding boxes do not
cut edges. In other words, the object contours should entirely reside inside its bounding
box(es). Each region proposal is then passed through a CNN to extract the deep features. In
this application, a Caffe model BAIR Reference CaffeNet (https://caffe.berkeleyvision.
org/model_zoo.html) is used and the deep features are those extracted from the last fully
connected layer FC8, before the classification layer. We build a KD-tree to index the deep
features for all region proposals due to the high number of images and multiple region
proposals in each image. KD-tree helps to speed up the retrieval time.

5.1.2 Retrieval with Spatial Constraint

The deep features for each input image are extracted using the same Caffe model (BAIR
Reference CaffeNet). The system uses these deep features to perform k-nn searches in the KD-
tree that contains features of all the region proposals in the whole dataset to retrieve the best
k retrieval candidates for each input. Each retrieval candidate contains at least one object
instance of one query image (Figure 5.3).

https://caffe.berkeleyvision.org/model_zoo.html
https://caffe.berkeleyvision.org/model_zoo.html
https://caffe.berkeleyvision.org/model_zoo.html
https://caffe.berkeleyvision.org/model_zoo.html
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Figure 5.3: Retrieving images based on region proposals.

(a) Large angle between pair input and pair proposals.

(b) Small angle between pair input and pair proposals.

Figure 5.4: Demonstration of spatial constraint on input images and region proposals.

Finally, the constraint on the configuration (or relative positions) of the input images is used
to filter out the retrieval candidates. The system returns only images that contain all the
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instances from the input images with similar spatial configurations. A pair-wise angle be-
tween each pair of input images is calculated to measure the spatial constraint (Figure 5.4.
For each retrieval candidate, a spatial distance function is computed as:

Dk = ∑
i,j
]
(−→

Ii Ij,
−−−−→
Ri,kRj,k

)
(5.1)

where Ii, Ij are a pair of input images. Ri,k, Rj,k are two bounding boxes in the retrieval
candidate image k that contain objects represented in image Ii and Ij respectively. The an-
gle between two images or two bounding boxes is formed by a vector between two center
points. The best retrieval result is the retrieval candidate k such that k = argminDk.

5.1.3 Results

Figure 5.5: The best retrieval results from 3 input images with a spatial constraint on texture images.

We tested the results using images of which object classes are in 1,000 classes of ImageNet
[Den+09] such as bird, camera, squirrel, and classes that are not in ImageNet such as moun-
tain, tree, deer and especially wheat field textures. We get surprisingly good retrieval results,
especially for the case in Figure 5.5 and Figure 5.6(b). It shows that even with unseen classes
in training, the CNN model is able to represent distinctive features of new images well.
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(a) The best retrieval results from 3 input images with spatial constraint.

(b) The best 3 ranked results from 3 input images with spatial constraint (ranking: top down).

Figure 5.6: Retrieval results for multiple query images with the spatial constraint.

Encouraged by this finding, we proceed to study more in-depth what features embedded
in the high-level features of a CNN that are not so easily perceived. That leads us to the
discovery of object shapes hidden in the high dimensional deep feature space from networks
trained for image classification. We then extract the shape and use it for weakly supervised
semantic segmentation. The work is described in detail in Section 5.2.
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5.2 Shape Extraction And Weakly Supervised Segmentation

The era of Deep Convolutional Neural Networks (DCNNs) has led to impressive advances
in the problem of image classification. The improvements in the network architectures, for
example in AlexNet [KSH12], VGG [SZ15], or GoogLeNet [Sze+15b], as well as the training
of deeper models were made possible by the availability of extremely large-scale datasets
such as ImageNet [Den+09] in which images are annotated with labels.

On the contrary, it is challenging to create big datasets for learning-based approaches to im-
age segmentation. Such datasets require pixel-accurate labeling of thousands of images by
human observers. This is the reason why researchers have turned their attention to weakly
supervised segmentation methods such as [Baz+16; BV16; CVS17; Li+16a; Oqu+15; Zho+16]
that take advantage of training on labeled images without any pixel-wise ground-truth in-
formation (Figure 5.7). The goal is still to provide an accurate segmentation without relying
on the availability of large-scale segmentation datasets.

Figure 5.7: An illustration of fully supervised learning versus weakly supervised learning on the image
semantic segmentation task.

Zhou et al. showed in [Zho+16] that some localization information about the main object,
i.e., the object with the highest classification score, can be extracted from a DCNN that had
only been trained on image classification. Their technique is based on computing a class ac-
tivation map (CAM), which identifies those regions in an image that leads the classification
network to make a specific prediction about the image label.

Our work goes a step further by providing a high-resolution CAM that not only localizes
all the instances of the main object in the image and but also provides shape information
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(a) Input image (b) CAM1 (c) CAM2 (d) rCAM

(e) Ground truth (f) DCSM (g) DeepLabBox (h) rCAM_Box

(i) CCNN (j) SEC (k) TransferNet (l) rCAM binary

Figure 5.8: Illustrating the behavior of the proposed rCAM based shape extraction: To detect the main
objects in 5.8(a), the classical CAM method [Zho+16] provides the rough location of the foreground
cow in 5.8(b). Smaller cows are located in 5.8(c) when the input image is upsampled. However,
neither 5.8(b) or 5.8(c) is accurate enough to provide objects’ shape. Our extensions in 5.8(d) and
5.8(h) provide segmentations that are at least as detailed as the competing methods [SY16] and
[Kho+17] shown in 5.8(f) and 5.8(g), respectively, while generalizing well over a wider variety of
different datasets. Our rCAM binarized version in 5.8(l) also shows better result than those methods
that produce binary segmentation maps such as [PKD15], [KL16a] and [Hon+16] in 5.8(i), 5.8(j) and
5.8(k) respectively.

which is accurate enough to be used for image segmentation without requiring any addi-
tional training (see Figure 5.8). Opposed to the original CAM method [Zho+16], the pro-
posed method is able to locate the whole object body rather than only discriminative re-
gions, which often cover only parts of the objects. For example, animals’ heads are the most
discriminative parts and can be effectively used to classify different animals. However, we
aim to discover the whole animal body rather than just its head.

Note that our method still differs from semantic image segmentation, where every pixel in
an image is classified, and from object segmentation, where all the objects in an image are
segmented. The proposed method segments all instances of the main object in an image
only. To bridge the gap between our method and the segmentation methods, we apply our
high-resolution CAM algorithm on region proposals produced by Faster-RCNN [Ren+15].
In either case, our method is comparable to the state-of-the-art weakly supervised segmen-
tation methods, which are intensively evaluated in Section 5.2.3. Although our method does
not contain any fine-tune training stage of the classification network, it performs favorably



102 Chapter 5. Shape Extraction and Semantic Segmentation

in comparison to previous CAM methods and state-of-the-art, weakly supervised segmenta-
tion methods, particularly with respect to the ability to generalize across different datasets.

Our proposed method can be summarized in four steps: (i) Firstly, we create two CAMs
at different scales from two different resolutions of the input image using the GoogLeNet-
GAP network [Zho+16]. (ii) We extract the shape information from GoogLeNet-GAP using
a principal component analysis (PCA) on a particular set of response maps. (iii) The two
CAMs are upsampled by the guided filter [HST13] that uses the extracted shape informa-
tion. (iv) The upsampled CAMs are merged to create a high-resolution class activation map.
Finally, we use the Conditional Random Field in [Zhe+15] to improve the accuracy of the
shape prediction.

5.2.1 Related Work

The difficulty of creating large-scale image segmentation datasets for training deep neural
networks on the one hand and the urgent need to extract localization and shape informa-
tion from images, on the other hand, has sparked two lines of research, namely localization
and weakly supervised segmentation. CAM methods, which are a subset of localization
methods, try to localize objects by identifying pixels that activate the class of interest. Al-
ternatively, weakly supervised segmentation techniques use different constraints and infor-
mation that is less than segmentation ground truth to train or fine-tune DCNNs to perform
segmentation tasks. Our work falls in between these two types of approaches.

Understanding DCNNs and Class Activation Maps

In order to have a better understanding of the image classification process, various works
identify the most important pixels used by a DCNN to classify an image. Bazzani et al.
[Baz+16] apply masks at different locations on an image and classify each result. They
study the link between the positions of the masks and the classification scores to localize
objects. Simonyan et al. [SVZ13] predict a heat map by altering the input image. Oquab et al.
[Oqu+15] use a particular DCNN composed of a fully convolutional network which outputs
K images, where K is the number of classes, followed by a global max pooling (GMP) and
then a fully connected layer. Thanks to the K images before the fully connected layer, Oquab
et al. localize the pixels that activate the class. Similarly, Zhou et al. [Zho+16] proposed a
DCNN architecture, illustrated in Figure 5.12(a), that is able to classify an image. While their
architecture is similar to GoogLeNet [Sze+15b], a global average pooling (GAP) followed by
a fully connected layer is used after the fully convolutional network. According to [Zho+16],
GAP provides better localization results than GMP. Selvaraju et al. [Sel+17] propose a tech-
nique to extract the discriminative pixels based on the gradient of a DCNN. Based on CAMs
produced by Zhou et al. [Zho+16], Wei et al. proposed an adversarial erasing method to
iteratively expand the discriminative object regions [Wei+17]. Their mined regions are then
used to train semantic segmentation. All the above techniques aim to localize the most im-
portant pixels used by a DCNN to classify an image. However, they can only provide very
crude estimations of the objects’ shape.
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Weakly Supervised Object Segmentation

Recent works [Hon+16; Kho+17; KL16a; Oh+17; PKD15; SY16] have explored weakly super-
vised object segmentation. While weakly supervised learning algorithms do not have access
to the complete (semantic) segmentation of the training images, they vary strongly based
on the amount of training images and the types of annotations. [KL16a; Oh+17; PKD15;
SY16] use image class labels only, which provide information about labels of objects that are
present in each image, but do not contain any localization information. More information
can be exploited via bounding boxes as for instance, in [Kho+17]. [Hon+16; Oh+17; SY16]
learn shape information from other databases to improve semantic segmentation results.
Other techniques like [KL16a; PKD15] add some constraints on the shape of the objects.
These constraints are used as priors in order to improve the segmentation results.

Class Activation Map (CAM)

When Deep Convolutional Neural Networks (DCNNs) started to take off, they were consid-
ered as black boxes that somehow can produce impressive results, especially in classification
tasks. To understand DCNNs, what are inside the DCNNs, and how they can perform tasks
well, researchers have looked inside different parts of DCNNs and tried to visualize their
information. In classification tasks, the big question is how a DCNN makes a prediction. For
example, where the DCNN looks at to get discriminative features to decide an image con-
tains a dog. Zhou et al. [Zho+16] proposed a method to find discriminative regions that a
DCNN uses to predict classes. These regions are displayed by a map called Class Activation
Map (CAM). The process of creating CAM is described in Figure 5.9.

Figure 5.9: A Process of an existing Class Activation Map (CAM) extraction method proposed by
Zhou et al. [Zho+16]. (Source image: [Zho+16])

The process starts with GoogLeNet [Sze+15b] or similar networks such that they consist
of a series of convolutional layers, followed by a Global Average Pooling (GAP) that con-
nected to the final prediction layer. In the last convolutional layer, the network produces n
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response/feature maps. The GAP layer will compute the average for each map and, there-
fore, return a feature vector of size n. The weighted sum on the values of this feature vector
yields the class probability results that are usually normalized with the Softmax function
(See the upper part of Figure 5.9).

The weight wc
k tells how important a kth component of the feature vector’s contribution to the

prediction for class c is. In other words, it tells how important the kth response/feature map
in the last convolutional layer contribute to the prediction for class c. Zhou et al. proposed
to use these weights wc

k on the response/feature maps of the last convolutional layer to
contruct the class activation map (the lower part of Figure 5.9). To extract a CAM for a
particular class c, we only need to use all the weights wc

k of class c (Figure 5.10). Some
examples of CAM results for action recognition are shown in Figure 5.11.

Figure 5.10: Results of CAMs for different prediction classes of the same input image. (Source image:
[Zho+16])

It is impressive to be able to visualize the discriminative regions that a DCNN uses for its
predictions using a simple and elegant solution. However, the method only can produce
low-resolution CAM. This CAM method does not work well if there are different instances
of the same objects or objects with different resolutions or sizes. In the next part, we will
propose our method based on CAM to extract shape and construct high-resolution CAM.
Our method can also successfully perform weakly supervised semantic segmentation.
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Figure 5.11: Results of CAMs for predicting actions. For the teeth brushing action, the CAMs show
regions that contain part of a hand holding a whole toothbrush. For the cutting tree action, the CAMs
show regions contain a face of a human and the chainsaw. (Source image: [Zho+16])

5.2.2 High Resolution Class Activation Map (rCAM) and Shape Extraction

In this section, we present our method for producing high-resolution class activation maps
(rCAMs) that not only localize the main object in an image but also predict its shape ac-
curately. The proposed method is based on extracting shapes from the GoogLeNet-GAP
network [Zho+16] and using such information together with multi-scale CAMs to increase
their resolution. The processes and overall structure of the framework are illustrated in Fig-
ure 5.12. It consists of extracting CAMs and shapes at two different scales, using the shape
information for an upsampling of the activation maps, and finally fusing and refining the
latter to obtain the rCAM result.

Multi-scale CAMs Extraction

We use the GoogLeNet-GAP network to create CAMs [Zho+16] as the basic components for
constructing rCAM. The GoogLeNet-GAP mainly consists of convolutional layers. After the
last convolutional layer, a Global Average Pooling (GAP) is performed, and the GAP results
are fed into a fully connected layer for the final classification producing a 1000-dimensional
vector denoted P, which holds the class probabilities for the classification result. Let us
denote CCAM the set of response maps of the CAM layer and wij the fully connected weight
connecting the response map i (denoted Ci

CAM) and the coordinate j of P. The CAM of the
class j at the position x is defined in [Zho+16] as: CAM(x)j = ∑N

i=1 wijCi
CAM(x), where N

is the number of response maps of the CAM layer. For an input image I of size 224× 224,
GoogLeNet-GAP produces CAM of size 14× 14 that localizes the first object with the highest
classification probability (Figure 5.12(a)).

Instead of using a single scale we resize every input image to images I1 of size 224× 224 and
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(a) GoogLeNet-GAP with an input image size 224× 224

(b) Upsampling, Fusion and Refinement process

(c) An example of results at every stage of the whole process

Figure 5.12: Overview of the proposed rCAM method. The input image is fed into a GoogLeNet-
GAP network, [Zho+16], operating on two different scales 224× 224 and 448× 448. They produce
the class activation maps CAM1 and CAM2, the shape information maps S1 and S1, and the class
probability maps P1 and P2, respectively. In the upsampling process (middle part of (b)), S1 and S2 are
used as guidance images for a guided filter [HST13] that upsamples CAM1 and CAM2 to rCAM1 and
rCAM2. In the fusion and refinement process (right part of (b)), rCAM1 and rCAM2 are combined to
create rCAM3 and finally, the rCAM is produced by applying a dense Conditional Random Field (CRF)
[Zhe+15] to rCAM3. The example results show that rCAMs resolutions are higher than CAM such
that shapes can be perceived. With input size 448× 448, we are able to discover multiple instances
that have small sizes in the input images. By combining rCAMs at different resolutions and refining
the result by using CRF, we obtain a clear shape and high resolution rCAM.
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I2 of size 448× 448 by bilinear interpolation. The images I1 and I2 are feed-forwarded to
GoogLeNet-GAP to generate CAM1 of size 14× 14 and CAM2 of size 28× 28, respectively
(Figure 5.12(a)). We discover that while CAM1 provides the coarse discriminative regions for
the main object, CAM2 gives us finer discriminative regions that are sometimes overlooked
by CAM1 (see Figure 5.16 for an example).

The usage of the image I2 of size 448× 448 creates a zoom-out effect. The dominance of the
discriminative regions discovered in the image I1 of size 224× 224 is reduced, and the finer
discriminative regions have an opportunity to be discovered in the image I2. According to
our experiments, CAM2 is especially useful when there are multiple instances of the main
object, for example, many cows in the image in Figure 5.8. On the other hand, CAM1 is very
important for the classification and localization of the main object due to the suppression of
small objects. Therefore, CAM1 and CAM2 do not compete but complement each other.

Shape Extraction from GoogLeNet-GAP

Traditionally, object recognition or shape estimation uses hand-crafted features such as SIFT
[Low99], or descriptors like the color, texture, or gradient of an image. The robustness of a
method is based on the invariance of such features to factors such as scale, illumination, or
rotation. However, in DCNNs, one does not need to define features. Instead, the features
are learnt and embedded inside DCNNs for us to discover [Goo+09; Zho+15].

A DCNN can be divided into two parts. The first part involves a set of layers that form a
Fully Convolutional Network (FCN). Each layer in FCN contains a series of convolutional
operations followed by non-linear operators such as activation and pooling. The second
part consists of Fully Connected Layers (FCL), which lead to the classification results. We
focus on the FCN of GoogLeNet-GAP. The output of each convolution kernel in the FCN is
a response map. Our goal is to find a set of response maps that contain shape information
and extract the shape.

The FCN of the GoogLeNet-GAP architecture is a concatenation of convolution and pooling
layers: for an input image I1 of size 224 × 224, it produces response maps of sizes 112 ×
112, 56× 56, 28× 28 and 14× 14. By gathering all these response maps into four groups
according to their sizes, we have four sets of response maps Cl with l ∈ {112, 56, 28, 14}.
Each Cl is a cubic tensor such that Cl ∈ Rl×l×Dl , where Dl is the number of response maps of
size l × l. Therefore, Cl can be decomposed into l2 vectors vk where vk ∈ RDl and k ∈ [1, l2].

To condense the information of the feature maps Cl , we apply a Principal Component Anal-
ysis (PCA) [Jol02] to reduce the dimension of vk from Dl to 3 by extracting the first three
components, mapping Cl = {vk}l2

k=1 ⊂ RDl 7−→ C̃l = {ṽk}l2

k=1 ⊂ R3. The resulting princi-
pal components represent the response maps Cl by more compact sets C̃l and yield a better
understanding of the information contained in each of the feature maps, see Figure 5.13.

In order to find response maps that contain shape information, we build a small database
that is composed of 200 binary shape images, as illustrated in Figure 5.14. We perform
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color and texture transformations on these shape images and study how the response maps
change when the color and texture information varies (Figure 5.15).

C̃112 C̃56 C̃28 C̃14

(a) First principal component

(b) Second principal component

(c) third principal component

Figure 5.13: Illustration of the first three principal components of layers C112, C56, C28, and C14.
While C112 and C56 yield gradient information, C28 and C14 contain mostly shape information.
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(a) bird (b) cat (c) dog (d) camel (e) tank

Figure 5.14: An example of different shape images using white background since ImageNet contains
some images that have the objects with white background.

(a) (b) (c) (d) (e)

Figure 5.15: An example of a shape image with different colors and textures. (a) Initial shape with
white background. (b) and (c): shape images with different colors. (d) and (e): shape images with
different textures.

Let Fi be a family of color transformations, where i ∈ [1, n] and n is the number of transfor-
mations. For all n color transformations, we compute the variance V of each response map
j as follows:

V(j) =
1

200 · |Ωj| ∑
x∈Ωj

200

∑
k=1

Vk(x), (5.2)

Vk(x) =
1
n

n

∑
i=1

(
φj(Fi(Ik))−

1
n

n

∑
i=1

φj(Fi(Ik))

)2

(x), (5.3)

where Fi(Ik) is the result of color transformation i applied on image Ik. φj(Fi(Ik)) is the
response map resulting from convoluting kernel j on Fi(Ik). x is the pixel position of the
response map φj. Ωj is the spatial domain of φj and |Ωj| is the number of pixels in φj. We
compute the variance for texture transformations in the same way. We want to find a layer
that has the smallest variance.

According to our numerical experiments C̃112 and C̃56 contain mainly gradient information,
C̃28 provides shape structures, and C̃14 yields a heat map revealing the location of the main
object. This leads us to define S1 := C̃28 to be a shape representation of the input image I1.

By feeding an input image I2 of size 448 × 448 into the network and performing a PCA
of the feature maps, one again obtains four compact response maps whose resolution is
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four times larger than the resolution of the corresponding feature maps of I1. Again, the
shape information S2 is defined as the compact response map of the third layer, such that
S2 ∈ R56×56×3.

We use the shape information S1 and S2 to guide the upsampling process in Section 5.2.2.
Interestingly, our numerical experiments indicate that the main shape information can be
found in the first principal component on about 70% of the images. On the other 30%,
shapes can be found in the second or third principal component. Sometimes, the shapes can
also be contrast inverted, as shown in Figure 5.13. In the next section, we will show how
the shapes S1 and S2 can be used to increase the resolution of CAMs in order to provide
localization and shape information in one high-resolution image.

Upsampling Using Guided Filters

Localization results from CAMs are expressed in the form of blobs of discriminative regions
(see CAM1 results in Figure 5.16). They may contain only parts of the objects, for example,
heads of the animals, rather than the whole objects’ bodies. Besides that, the blob regions
cannot depict the shapes well. To solve these two problems, we use the shape information
recovered from GoogLeNet-GAP to guide the process of increasing the CAMs’ resolution.
The results we achieve are rCAMs that localize the main objects as a whole and make the
objects’ shapes perceivable. The process to increase resolution is illustrated in Figure 5.12(c).

The guided filter proposed in [HST13] is an image processing operator that smoothens im-
ages while preserving sharp edges using a guidance image G. It relies on the assumption
that inside a local window wk that is centered at pixel xk, there is a linear model between
the guidance image G and the output image O as defined in [HST13]. Hence, the guided fil-
ter preserves edges from the guidance image while being independent of its exact intensity
values. This is an important property because the shape information that we extract from
GoogLeNet-GAP can be contrast inverted.

However, similar to non-parametric kernel regression [Alt92], the size of the window wk

is very important. If the window size is too big, a large number of observations will be
considered during the regression process, and it leads to an over-smoothed estimation of the
output O. If the window size is too small, the output O will depend on too few observations,
which leads to a high variance solution. To find the optimal values for the window sizes, we
estimate them on the shapes S1 and S2 using the variogram proposed in [Cre85].

We assume that S1 and S2 follow a random process that is homogeneous and has second-
order stationary properties. That implies that two observations of the random process are
independent of their locations and only depend on their spatial distance. To measure the
spatial dependence of the data, we use the empirical variogram defined as follows:

γ̂(h) =
1

2|N(h)| ∑
i,j∈N(h)

(
S1(xi)− S1(xj)

)2 (5.4)
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where N(h) is the set of observations pairs (i, j) such that ‖xi − xj‖ = h, which is the spatial
distance between two observations, and |N(h)| is the cardinality of this set.

This empirical variogram γ̂ is approximated by a model function:

γ(h) = c1 ·
(

exp
(
− ||h||

2

2σ2

))
+ c2 (5.5)

The model function increases the generalization power of the empirical estimator. Three
parameters c1, c2, σ are estimated such that the variogram function fits the empirical one.
The σ parameter provides information about the average size of objects. So we use σ as the
size of the filter. As a result, the size of our guided filter is adapted to each image.

In order to double the resolution of a CAM using a shape prior S, we first double the size of
the CAM by bilinear interpolation. Then we apply a guided filter on the upsampled CAM
using S as the guidance image – a process which we denote by G f (U2 (CAM) , S

)
where U2

is the upscaling bilinear interpolation with a factor of 2 and G f is the guided filter process.

We increase the resolution of CAM1 of size 14× 14 using guided filters as follows:

˜CAM28×28
1 = G f (U2 (CAM1) , S1

)
, (5.6)

rCAM56×56
1 = G f

(
U2
(

˜CAM28×28
1

)
, S2

)
, (5.7)

where S1 and S2 are shapes extracted from GoogLeNet-GAP and used as guidance images.
The CAM2 extracted from the higher resolution input image is of size 28× 28 already and is
further upsampled via

rCAM56×56
2 = G f (U2 (CAM2) , S2

)
. (5.8)

As the result, we increase the resolution of both, CAM1 and CAM2, to rCAM56×56
1 and

rCAM56×56
2 both of which are of size 56× 56.

As explained in Section 5.2.2, CAM1 and CAM2 complement each other in providing coarse
and fine discriminative regions – a property that is preserved during the proposed upsam-
pling, see Figure 5.16. Therefore, it is beneficial to combine two of them in order to take
advantage of both.

Fusion and Refinement

Our goal is not only to provide high-resolution in localization and shape but also to discover
all the main object’s instances. To achieve the latter, we combine rCAM1 and rCAM2, which
provide localization and shape information at different scales.
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To do so, the rCAM56×56
1 and rCAM56×56

2 images described in the previous section are up-
sampled to a resolution of 224× 224 pixels using bilinear interpolation.

We fuse the resulting maps rCAM1 and rCAM2 via:

rCAM3 = rCAM1 · P1(idx1) + rCAM2 · P2(idx1), (5.9)

where idx1 is the index of the highest classification score of the image I1, and P1 and P2 are
vectors of classification probability for image I1 of size 224× 224 and image I2 of size 448×
448, respectively. Therefore, P1(idx1) is the classification probability of the highest predicted
class for image I1 and P2(idx1) is the classification probability of the highest predicted class
from image I1 for image I2. The output is rCAM3 that combines the advantages of both
rCAM1 and rCAM2.

To refine the accuracy of the shape prediction, we use the dense Conditional Random Field
(CRF) implemented in [Zhe+15] on rCAM3. CRF is a classical tool often used to refine the
segmentation from a coarse prediction to one that has well-defined boundaries. CRF mini-
mizes an energy function that consists of two terms: unary and pairwise energy components
as follows:

E(x) = ∑
i

ψu(xi) + ∑
i<j

ψp(xi, xj) (5.10)

where ψu(xi) is the unary cost of assigning a label xi to a pixel i and ψp(xi, xj) is the pairwise
cost of assigning labels xi, xj to pixels i, j respectively. The pairwise cost creates a smoothing
condition such that similar neighboring pixels will be assigned similar labels.

We first normalize rCAM3 to [0, 1] to create the probability map that indicates the main
object’s presence. We use rCAM3 and (1− rCAM3), which represent the foreground and
background probability, respectively, as the inputs to the CRF algorithm. The inference
output from the dense CRF is our final high-resolution rCAM.

5.2.3 Evaluations

Evaluation Datasets

Our proposed method delivers results in two aspects: main objects’ location and shape.
While many weakly supervised learning methods output bounding boxes for objects’ loca-
tions, CAM and rCAM produce probability maps (heatmaps). Therefore, instead of evalu-
ating CAM and rCAM methods on bounding box datasets, we use three datasets: Pascal-S
[Li+14], FT [Ach+09] and ImgSal [Li+13]. These datasets provide locations and shapes of
salient objects and are commonly used to evaluate salient object detection. Each dataset
has its own characteristics. While the FT dataset mainly provides a single object in each
image, Pascal-S includes multiple-object images. Pascal-S is also a fair choice for the eval-
uation because many weakly supervised segmentation methods are trained on Pascal VOC
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2012 dataset [Eve+]. For more diversity, ImgSal contains not only single-object and multiple-
object images, but also a fair amount of natural landscapes. ImgSal also contains objects that
do not have the same labels as in Pascal nor ImageNet. It is the most challenging dataset for
weakly supervised segmentation methods in our evaluation.

Evaluation Metrics

We use different F-measures [Arb+11] and Mean Absolute Error (MAE) [Per+12] to ana-
lyze the performance of various CAM methods as well as weakly supervised segmentation
methods. For F-measures, we use the Optimal Image Scale (OIS) and Optimal Dataset Scale
(ODS) [Arb+11]. OIS is computed using the best threshold for the individual image, while
in ODS, an optimal threshold is selected on the whole dataset. Despite the fact that OIS and
ODS use different approaches in selecting optimal thresholds, both F-measures are calcu-
lated using the same formula in Eq. (5.11).

Fβ =
(1 + β2)Precision× Recall

β2 × Precision + Recall
, (5.11)

where β2 = 0.3 as suggested in [Ach+09].

While F-measure metrics use the binarized heat map with optimal thresholds, the Mean
Absolute Error (MAE) proposed in [Per+12] measures the error of the original heat map
without thresholding to the binary ground truth. The results are then averaged for all the
images.

It is important to note that higher numbers of F-measures indicate improved results, whereas,
with MAE measurement, the smaller value is better.

Numerical results for various CAM methods

Input GT CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM

(a) Different CAM results on a single instance of a single object class

Input GT CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM

(b) Different CAM results on multiple instances of a single main object class

Figure 5.16: Localization and shape extraction results from various CAMs. The results are shown for
single object and multi-object images.

We analyze the performance of different CAM methods on the Pascal-S, FT, and ImgSal
datasets. The results in Table 5.1 show that the CAM method with input resolution 448× 448
does not produce better results than CAM with input resolution 224× 224. It can be viewed
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Pascal-S
Metric G-Weak CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM % increase

OIS 0.398 0.682 0.684 0.725 0.733 0.736 0.773 13.34%
ODS 0.339 0.566 0.566 0.617 0.613 0.625 0.665 17.49%
MAE 0.395 0.298 0.338 0.290 0.314 0.291 0.276 -

FT
Metric G-Weak CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM % increase
OIS 0.506 0.710 0.660 0.789 0.751 0.792 0.878 23.66%
ODS 0.448 0.643 0.568 0.714 0.660 0.714 0.803 24.88%
MAE 0.367 0.223 0.280 0.206 0.250 0.215 0.160 -

ImgSal
Metric G-Weak CAM1 CAM2 rCAM1 rCAM2 rCAM3 rCAM % increase
OIS 0.388 0.509 0.502 0.577 0.574 0.597 0.623 22.40%
ODS 0.273 0.419 0.417 0.491 0.478 0.505 0.533 27.21%
MAE 0.330 0.247 0.250 0.231 0.247 0.237 0.188 -

Table 5.1: Results of various CAM methods on Pascal-S, FT and ImgSal datasets. G-Weak [Oqu+15].
CAM1: CAM method [Zho+16] with the input size of 224× 224, CAM2: CAM method [Zho+16]
with the input size of 448× 448, rCAM1: high resolution of CAM1, rCAM2: high resolution CAM2,
rCAM3: combination of rCAM1 and rCAM2, rCAM: the result of applying CRF on rCAM3. The best
value for OIS and ODS measurements are 1. The ideal value for MAE is 0. The last column shows
the relative improvement of rCAM in comparison to CAM1 for the OIS, and ODS metrics.

as two CAMs at two different scales complement each other, rather than compete with each
other. At the resolution of 224× 224, CAM1 and rCAM1 localize the main object at the largest
size. At the resolution of 448× 448, CAM2 and rCAM2 can discover other smaller instances
of the main object class or secondary feature locations of the main object class, if there is
only one instance (Figures 5.8 and 5.16).

However, there are significant improvements between the existing CAM methods and the
high-resolution CAMs. In more details, rCAM1 (high resolution of CAM1) is better than
CAM1 and rCAM2 (high resolution of CAM2) is better than CAM2. By combining rCAM1

and rCAM2, the result (rCAM3) is better than any of the individual rCAM1 or rCAM2. Fi-
nally, the evaluation results are topped by applying CRF on rCAM3 to create our final high-
resolution CAM (rCAM). On the other hand, G-Weak [Oqu+15] is the method that uses
Global Max Pooling (GMP) [Oqu+15]. The results indicate that G-Weak yields a weaker
performance than the CAM method which uses Global Average Pooling (GAP), and also a
weaker performance than our method.
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Weakly Supervised Segmentation Comparison

We divide the weakly supervised segmentation methods into two groups: the first group
provides a binary segmentation for each class. The second group provides continuous val-
ues that represent the likelihood of the foreground (similar to a probability map after nor-
malization to the range (0,1)). We call the first one Binary Map methods and the latter one
Continuous Map methods. To evaluate the Binary Map methods, we set all the foreground
classes to 1 and the background to 0. As a result, OIS and ODS measurements are the same
for the Binary Map methods (Table 5.2).

Dataset Pascal-S FT ImgSal
Metric OIS ODS MAE OIS ODS MAE OIS ODS MAE

G1
CCNN 0.530 0.530 0.231 0.276 0.276 0.176 0.169 0.169 0.099
SEC 0.638 0.638 0.208 0.553 0.553 0.150 0.399 0.399 0.123
TransferNet 0.735 0.735 0.156 0.714 0.714 0.120 0.442 0.442 0.119

G2
DCSM 0.708 0.607 0.293 0.234 0.207 0.245 0.341 0.308 0.220
DeepLab_Box 0.781 0.716 0.318 0.805 0.747 0.329 0.564 0.503 0.356
rCAM 0.773 0.665 0.276 0.878 0.803 0.160 0.623 0.533 0.188
rCAM_Box 0.765 0.696 0.254 0.807 0.716 0.184 0.663 0.527 0.164

Table 5.2: Compasison results for different weakly supervised segmentation methods: CCNN [PKD15],
SEC [KL16a], TransferNet [Hon+16], DCSM [SY16], DeepLab_Box [Kho+17] and our rCAM meth-
ods. The methods are devided into 2 groups: Binary Map (G1) and Continuous Map (G2) based on
their CAM outputs.

The rCAM method that we describe in this chapter localizes and extracts the shapes of in-
stances of the main object at different scales. To compare with weakly supervised segmen-
tation methods, we use Faster-RCNN [Ren+15] to retrieve bounding boxes for all detected
objects. We then apply rCAM algorithm on these bounding boxes. The evaluation for this
approach is called rCAM_Box.

From the numerical results in Table 5.2, rCAM and rCAM_Box perform better than all the
competing weakly supervised segmentation methods in terms of F-measures on FT and
ImgSal datasets, on which none of the methods were trained. On the Pascal-S dataset, rCAM
and rCAM_Box also outperform majority of the methods except DeepLab_Box [Kho+17]
and TransferNet [Hon+16]. Similar to rCAM_Box, DeepLab_Box [Kho+17] method also
segments object instances inside bounding boxes proposed by the Faster-RCNN network
[Ren+15]. The performance of rCAM is inferior to DeepLab_Box [Kho+17] on the Pascal
dataset by 2-3%. It is also shown that for methods that are trained only on image labels such
as CCNN [PKD15], DCSM [SY16], and SEC [KL16a], the accuracies are consistently lower
on all three datasets than the accuracies of methods that are trained using both image labels
and segmentation ground-truth such as TransferNet [Hon+16] and DeepLab_Box [Kho+17].
We also observe a significant drop in performance from Pascal-S dataset to FT and more to
ImgSal, especially for CCNN [PKD15], SEC [KL16a] and DCSM [SY16]. This reflects the lim-
itation of these methods to generalize beyond the datasets on which they have been trained.
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They are prone to fail for classes they have not seen during training. The proposed method
is able to maintain a much higher accuracy across different datasets without the need for any
weakly supervised training or fine-tuning. It is, therefore, much better suited for datasets,
where the training data does not need to be highly representative of the test data.

With the MAE metric, Binary Map methods such as CCNN [PKD15], SEC [KL16a] and
TransferNet [Hon+16] have low error values. In the Continuous Map group, rCAM or
rCAM_Box has the lowest errors. However, we observe that the Binary Map methods miss
out more often all the segmented objects. As they cannot detect any object in an image, the
output results contain only the background.

Different difficulty levels of segmentation are illustrated in Figure 5.17 and Figure 5.18. In
the cases that objects’ labels are in the Pascal dataset, all the methods perform relatively
well even though some of the results lack some details in the shape information, e.g. CCNN
[PKD15], SEC [KL16a] and DeepLab_Box [Kho+17] in Figure 5.17(b), or CCNN [PKD15]
and SEC [KL16a] in Figure 5.17(c). If the object label is in ImageNet [Den+09] but not in the
Pascal VOC 2012 [Eve+] dataset, an accurate segmentation becomes significantly more chal-
lenging: In Figure 5.18(a), DCSM [SY16] is unable to detect any object, and SEC [KL16a] as
well as TransferNet [Hon+16] show degraded shape results. In the most difficult case where
the object’s label is neither in the Pascal VOC 2012 [Eve+] nor in the ImageNet [Den+09]
datasets, none of the methods are able to produce reasonable results except our proposed
rCAM and rCAM_Box methods (Figure 5.18(b)).

To understand the above results, it is important to note that all the weakly supervised seg-
mentation methods that we use in our comparison are trained on the Pascal dataset. They
all do well on Pascal, but their performance drops significantly when they are evaluated on
different datasets such as FT and ImgSal. Although rCAM does not need training or fine-
tuning on any dataset, its performance is already comparable to, if not better than, most of
the competing methods on Pascal. Furthermore, rCAM is able to maintain the top perfor-
mance on both FT and ImgSal, which demonstrates its robustness, as well as the ability to
generalize to a wide variety of different types of data.



5.2. Shape Extraction And Weakly Supervised Segmentation 117

Input GT CCNN SEC TransferNet

DCSM DeepLab_Box rCAM_Box rCAM

(a) Results on a single instance of a single object that is labeled in Pascal dataset

Input GT CCNN SEC TransferNet

DCSM DeepLab_Box rCAM_Box rCAM

(b) Results on multiple objects that are labeled in Pascal dataset

Input GT CCNN SEC TransferNet

DCSM DeepLab_Box rCAM_Box rCAM

(c) Results on multiple instances of one main object that are labeled in Pascal dataset

Figure 5.17: Weakly supervised segmentation results from comparison methods for various scenarios
for trained objects in Pascal dataset.
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Input GT CCNN SEC TransferNet

DCSM DeepLab_Box rCAM_Box rCAM

(a) Results on multiple instances of one main object that is not labeled in Pascal dataset

Input GT CCNN SEC TransferNet

DCSM DeepLab_Box rCAM_Box rCAM

(b) Results on single object that the label is neither in Pascal or ImageNet

Figure 5.18: Weakly supervised segmentation results from comparison methods for various scenarios
for untrained objects.
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5.2.4 Chapter Summary

In this chapter, we study high-level deep features. We show that we can use features pro-
duced by a classification DCNN trained on 1,000 ImageNet classes to retrieve images of
which labels are not part of training dataset. Furthermore, we proposed a method for ex-
tracting the location and shape information of all instances of the main object class in an im-
age. To do so, we recover the primitive shape information from inside the GoogLeNet-GAP
network. This shape information is used as guidance for the guided filter in our upsampling
process to create high resolution class activation maps (rCAMs). We ascertain the benefits
of using multi-scale rCAMs in our method, which does not require any extra training or
fine-tuning. Our evaluation shows that, regardless of the simplicity, our proposed method
outperforms existing CAM methods. Moreover, it performs on-par with competing state-
of-the-art weakly supervised segmentation methods, while being far more robust to image
data that is not well-represented by the training domain of the respective networks.
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Declaration for Chapter 6 - Neural Discriminant Analysis

This work presented in this chapter is an independent work without any collaboration. It is
entirely done by me, under the supervision of Prof. Dr. Volker Blanz. A part of the work
is published at the International Conference on Image Processing (ICIP) in 2020: "Neural
Discriminant Analysis for Fine-Grained Classification" [HB20].

I am currently collaborating with Dr. Gianni Franchi to extend the use of NDA to other
research fields such as Semi-Supervise Learning (SSL) and Out Of Distribution (OOD) pre-
diction. We achieve good results indicating that NDA helps in improving the performances
in those tasks.
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Chapter 6

Neural Discriminant Analysis

Feature learning is an important process in image and object classification, even more so
for fine-grained classification where objects have a similar global structure and subtle dif-
ferences between discriminative parts, such as between different breeds of dogs or different
sub-types of birds. In this chapter, we study methods to improve the discriminant of deep
features after training a Deep Convolutional Neural Network on a classification task. In-
spired by Linear Discriminant Analysis (LDA), we propose a two-phase optimization to
transform deep features from their original space to a lower-dimensional space using Neu-
ral Networks with two primary goals for inter- and intra-class variances. The first one is to
minimize variances within each class. The second goal is to maximize pairwise distances be-
tween features coming from different classes. The approach produces more discriminative
features that lead to improvements in classification performance.

The effectiveness of our method is shown through the evaluations of five popular fine-
grained classification datasets. We mainly focus on fine-grained classification as our pro-
posed optimization directly addresses its intrinsic challenges. At the end of the chapter, we
present a way to combine two-phase optimization into a single-phase and evaluate it on
CIFAR-10, a general classification dataset.

6.1 Introduction To Discriminant Analysis For Fine-Grained Vi-
sual Classification

The task of Fine-Grained Visual Classification (FGVC) is to classify subordinate classes un-
der one common super-class. Examples are recognizing different breeds of dogs and cats
[Kho+11; Par+12], sub-species of birds [Van+15; Wah+11], different models and manufac-
tures of cars and airplanes [Kra+13; Maj+13; Yan+15], sub-types of flowers [NZ08] or natu-
ral species [Hor+18a] and so on. On the one hand, it is challenging because the subordinate
classes share the same visual structures and appearance; the differences are very subtle. In
many cases, it requires domain experts to distinguish and label these classes by recognizing
their discriminative features for specific parts of the objects. Therefore, it is also a great chal-
lenge to obtain large-scale datasets for FGVC. On the other hand, the intra-class variance can
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be visually higher than the inter-class variance. Such cases can be seen in different colors
and poses of objects in the same class (Figure 6.1).

(a) All three are miniature poodles

(b) Siberian Husky vs. Malamute vs. Eskimo

Figure 6.1: Examples of a high intra-class variance in (a) and a low inter-class variance in (b). In
Figure (a), the miniature poodles have different colors and poses. In Figure (b), three different breeds
of dogs (Siberian Husky, Malamute and Eskimo) that are difficult to distinguish. Example images are
selected from Stanford-Dogs dataset [Kho+11].

Research on FGVC has achieved remarkable results in the past few years due to advances in
Deep Convolutional Neural Networks (DCNNs). The key to their success is in the ability to
form and extract high-level features that are discriminative in large-scale image databases.
High-level features are derived from various low-level features through convolutions and
poolings. When adapting DCNNs models to FGVC, many works focus on transfer learning
[Cui+18; ZTJ18], pooling techniques [Gao+16; LRM15; LM17], part based CNNs [Bra+14;
Hua+16; Kho+11; Lin+15; Liu+12; Zha+16a; Zha+14a], etc. The common goal is to improve
the discriminability of features that can address the subtle differences between classes and
the high variance within classes, which is specifically challenging for FGVC.

One recent approach that produces state-of-the-art results is to extract a subset of the Im-
ageNet dataset [Den+09] that is visually similar and relevant to fine-grained classification
classes and combine it with other datasets to do transfer learning and fine-tuning [Cui+18;
ZTJ18]. These methods are data-driven and take advantage of DCNNs. While the large-
scale data empowers this domain adaptation and transfer learning approach, the task of
learning discriminative features for FGVC is left to the DCNNs themselves.

Inspired by Linear Discriminant Analysis (LDA), we take on the method’s objectives and
combine it with the power of Neural Networks to improve the discriminative of features for
fine-grained classification. Our goal is to optimize the learned features produced by transfer
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learning or domain adaptation so that they become more discriminative and lead to better
classification results. This optimization focuses on solving these three criteria:

• Reducing intra-class variance by minimizing the total distance between features of
objects in the same class to their means.

• Increasing inter-class variance by transforming the feature space such that the dis-
tances between two classes in the target space are pushed further apart.

• Improving a classification DCNN’s accuracy when integrating the optimizer to the
DCNN.

To create an optimizer that satisfies those three criteria, we implement a small Neural Net-
work with a two-phase optimization approach called Neural Discriminant Analysis (NDA).
The first phase of the NDA optimization is to pull feature points within each class to the class
center (class mean). The class mean optimization is the condition for the first criterion. In the
second phase, we construct a Siamese network that uses the NDA network as a shared base.
The Siamese optimization will pull pairs of features of the same class together and push
pairs of features that belong to different classes apart. The Siamese includes both inter- and
intra-class variance optimizations using pairwise data. The pairs of features in Siamese op-
timization are moved relative to each other. Thus, the intra-class constraint provided by
the Siamese is weaker than the explicit constraint in the first phase, where all features of
the same class are forced to move closer to their class mean. Therefore, the Siamese opti-
mization is a strong condition for the second criterion, even though it also helps to hold the
first criterion. NDA optimizes both phases alternately using the explicit intra-class variance
constraint in the first phase and the Siamese optimization in the second phase, yielding bet-
ter results than using only the Siamese optimization. Finally, we train a classification layer
on the features produced by the NDA. This last step in re-train the classification layer is to
achieve the last criterion.

We evaluate our NDA optimization on five different FGVC datasets. The main goal of NDA
is to increase the performance of the original features, which are evaluated as the baseline.
With that objective, NDA performs very well. Our results top the best transfer learning
method up to 7.5% on four datasets. We also note that NDA surpasses state-of-the-art on
two datasets, matches the state-of-the-art on one dataset, and are worse in the other two. The
improvements are up to 5.4% over the state-of-the-art. We also compute standard deviations
of the classification accuracy with and without NDA optimization. The statistics show that
NDA optimization results in a more stable accuracy across different rounds of training with
random initializations.

The advantages of our method are not only about the performance but also the ease of
deploying NDA as a component to an existing network. We can connect NDA to the last
feature layer of an existing DCNN and make it end-to-end. In this work, we introduce NDA
optimization as an independent component that works on feature domains. We also develop
another version of NDA in which the losses are weighted combined and integrate with the
feature DCNN. We then train the DCNN end-to-end for classification.
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Contributions: We propose an effective two-phase optimization for a new type of feature
transformation, the Neural Discriminant Analysis (NDA). It optimizes for the objectives of
Linear Discriminant Analysis (LDA), implemented as a fully-connected Neural Network.
The NDA optimization helps to transform the original features such that they are more
discriminative for FGVC by improving the clustering for each fine-grained class. Our two-
phase NDA method significantly improves performances on several fine-grained classifica-
tion benchmark datasets. As a small independent component, NDA can be easily added to
the last feature layer of an existing DCNN to form an end-to-end network. We also combine
two-phase into a single-phase NDA optimization that integrates with the feature DCNN
for end-to-end training. The classification performances are improved significantly over the
base-line in CIFAR-10 dataset for the general classification.

6.2 Related Work

6.2.1 Fine-Grained Visual Classification (FGVC)

In the field of FGVC, the inter-class differences are often subtle. Experts distinguish subordi-
nate classes based on specific parts of the objects. Therefore, a straight-forward approach is
to learn features of object parts [Bra+14; Che+19; Far+11; Hua+16; Kho+11; Kra+14; Lin+15;
Liu+12; Par+11; Zha+16a; Zha+14a; Zha+14b; Zha+15a]. This approach often requires heavy
part annotations from domain experts and therefore it is difficult to extend to larger scale
datasets, or relies on object detection and localization [GLY19]. Some other works rely
on attribute annotations and text descriptors [HP17; Ree+16; Ved+14; Xu+18a]. Stepping
away from those types of annotations, another set of works focus on learning and using vi-
sual attention on discriminative regions [FZM17; Liu+16; PHZ18; Sun+18; Xia+15; Yan+18;
Zha+17; Zhe+17; Zhe+19]. Analyzing the filter responses from DCNNs has also led to good
part descriptors and localization [Wan+15; Zha+16b]. Utilizing the internal responses from
DCNNs, different pooling techniques have also been developed such as bilinear pooling
to study the interactions of sets of local features [CZZ17; Cui+17; Gao+16; LRM15; LM17;
Wei+18; Yu+18].

Besides the high intra-class and low inter-class variance challenge, FGVC also faces a prob-
lem from small datasets. A small size dataset with high intra-class variation does not have
enough training images to cover a variety of visual appearance such as dogs with different
poses. Thus, it can easily lead to over-fitting in training with DCNNs [Dub+18]. In order to
address this issue, researchers work on different strategies to collect more relevant images to
enrich the datasets [GHF17; Kra+16; Xie+15; Xu+18b; ZTJ18] or employ human in the loop
and human interaction to bootstrap datasets [Bra+10; Cui+16; Den+16].

Instead of collecting images from the web to augment the FGVC datasets, Cui et al. [Cui+18]
and Zhang et al. [ZTJ18] use subsets of ImageNet [Den+09] that are visually similar to
FGVC classes, in combination with iNat [Hor+18b] or L-Bird [Kra+16] dataset to do transfer
learning and fine-tuning. These methods hold state-of-the-art results in several benchmark
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datasets. This approach confirms the importance and effectiveness of discriminative feature
learning from large-scale datasets.

From high level features produced by pre-trained DCNNs for classification such as Incep-
tion [Sze+16], ResNet [He+16a; He+16b] and Inception-ResNet [Sze+17], to name a few, as
well as FGVC transfer learning [Cui+18; ZTJ18], we take a step further by transforming
deep features in order to push instances between classes apart and bring instances from the
same class closer together. Our approach is inspired by the Linear Discriminant Analysis
(LDA). However, it is implemented in a neural network architecture, thus the term Neural
Discriminant Analysis (NDA).

6.2.2 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is a popular linear data transformation technique in
Machine Learning. The goal of LDA is to find a linear projection of data that helps to sepa-
rate classes well. The objectives are to maximize the variance between classes and minimize
the variance within each class. Therefore, the computation of LDA involves between-class
and within-class scatter matrices.

Let x is a set of original data that has C classes, µi is the mean of each class Ci that has Ni

sample data for the class ith and µ is the global mean. The within-class SW scatter matrix
and between-class scatter matrix WB are computed as follows:

SW =
C

∑
i=1

Ni

∑
j=1

(xi,j − µi)(xi,j − µi)
T (6.1)

SB =
C

∑
i=1

Ni(µi − µ)(µi − µ)T (6.2)

The goal is to find a projection matrix P to project the original data to a new feature space
that maximizes the between-class variance and minimize within-class variance. The matrix
P needs to satisfy Fisher’s condition:

PLDA = arg max
P

|PTSBP|
|PTSW P| (6.3)

The solution is that column vectors v in PLDA are the generalized eigenvectors corresponding
to the largest eigenvalues λ for the equation SBv = λSWv. It can be re-written as Av = λv
where A = S−1

W SB.

Similar to Principal Component Analysis (PCA), LDA is commonly used for dimension re-
duction but in supervised learning. After projecting the original features into LDA space,
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the classification algorithms can be applied to these transformed features. As the LDA op-
timization and classification are different processes, it is difficult to have the LDA optimiza-
tion cooperated in a CNN. LDA needs to compute statistics such as mean and variance on
the whole dataset, whereas CNN training usually happens in batches due to the limits of
hardware resources.

Therefore, we develop an optimization for CNNs using the objectives of LDA, which max-
imizes the inter-class variance and minimizes the intra-class variance. Even though CNNs
can produce high classification performances on their own, there are no explicit constraints
on the feature spaces for which they should be optimized. Our optimization is served as a
mean to bridge the CNN features and the discriminant analysis objectives.

6.3 Two-phase Neural Discriminant Analysis (NDA)

6.3.1 Pre-optimized Features Extracted from Pre-trained DCNNs

Features for image classifications can be obtained from various types of network models.
A straightforward approach is to extract features from models that are pre-trained on the
ImageNet dataset [Den+09] with 1,000 classes such as Inception, [Sze+16], ResNet [He+16a;
He+16b], etc. However, in the fine-grained classification, many FGVC datasets [BGV14;
Kho+11; Maj+13; NZ08; Par+12; Van+15; Wah+11; Yan+15] contain classes that are not in
or have little overlap with ImageNet [Den+09]. The features are not representative enough
for a majority of fine-grained classes that are present in FGVC datasets. Therefore, transfer
learning and fine-tuning are necessary. Yin Cui et al. [Cui+18] combines selected images
from Imagenet [Den+09] and iNat [Hor+18b] datasets to create a training dataset that con-
tains almost 2 million images to do transfer learning and fine-tuning. As transfer learning
from pre-trained architectures to FGVC datasets is a standard approach, that does not mod-
ify the base classification network architecture, nor use special techniques or optimizations,
we opt to use pre-existing transfer learning network models from [Cui+18] to extract classi-
fication features and use them as pre-optimized data for our method.

6.3.2 Feature Discriminant Analysis

Let f be the pre-optimized features extracted from a pre-trained classification network and
F be the transformed features of f .

F = N ( f ), (6.4)

where N is a general function for feature transformation and optional dimensionality re-
duction. The optimization objectives for N are the following:

• Maximizing the fine-grained classification results: Let N 1 be the classification func-
tion to classify feature F . Let the classification results be q( f ) = N 1(F ). Maximizing
classification results is equivalent to minimizing the categorical cross entropy loss:
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H(p, q) = −∑
∀ f

p( f )log(q( f )), (6.5)

where p( f ) is the one-hot encoded classification ground-truth for the feature f .

• Minimizing intra-class variance: This is to minimize the total distances for all the
feature points F i

j of class i to their mean features, calculated as below for n classes:

LMean =
n

∑
i=1

∑
j

(
F i

j − F̄ i
)2

(6.6)

where F̄ i is the mean feature of class i.

• Maximizing inter-class variance: With this optimization, we propose to use pairs of
images. If a pair of images belong to the same class, we want to reduce the distance be-
tween the image features; otherwise, we want to increase the distance between them.
The effect is to push features from different classes apart from each other while keep-
ing features within the same class close to each other. Let y = 0 if two features Fk and
Fl are from the same class and y = 1 if they are from different classes. The optimiza-
tion for inter-class variance minimizes the following function:

LSiamese = (1− y)(1− e−d) + y ∗ e−d (6.7)

d = l2(Fk,Fl) (6.8)

d is the Euclidean distance between two features Fk and Fl .

When y = 0, Equation 6.7, which is the Siamese loss, is optimized for intra-class distance,
but this is a weak constraint compared to Equation 6.6. In the Siamese loss, the optimization
is done pairwise and batch-based, so that feature points are moved relative to each other.
The Equation 6.6 is optimized such that all the feature points move to the pre-calculated
class mean. To emphasize the importance of both intra-class variance optimization in Equa-
tion 6.6 and inter-class variance optimization in Equation 6.7, we conduct an experiment that
uses only the Siamese loss and compare it with our proposed two-phase NDA optimization
where both the Equation 6.6 and Equation 6.7 are optimized alternately. The results show
that two-phase NDA optimization produces higher classification accuracy than an optimiza-
tion that uses only Siamese loss alone (see Table 6.2).

6.3.3 Discriminant Analysis Optimization with Neural Networks

We choose to integrate the objectives of discriminant analysis in Section 6.3.2 into Neural
Networks and form Neural Discriminant Analysis (NDA) networks due to the following
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(a) Before NDA optimization (b) After NDA optimization

Figure 6.2: A demonstration of NDA optimization. In Figure (a), the extracted features from a
pre-trained network or transfer learning network are distributed with some overlap and the distance
between two classes is d1. In Figure (b), the features after NDA optimization are expected to cluster
closer to their mean and the distance between two classes is d2. d2 is expected to be larger than d1
so that the features from different classes are better separated.

reasons. We can easily add an NDA component to an existing classification model in be-
tween the final feature layer and the prediction layer. This is an advantage over using Linear
Discriminant Analysis (LDA) because the transformed features need to be trained using dif-
ferent tools for classification such as Support Vector Machine (SVM) or single-/multi-layer
neural networks. The NDA approach is flexible in design. It can be used to implement
a dimensionality reduction or a feature transformation without changing the features’ di-
mensions. However, in practice, it is better to reduce the feature dimensions with a neural
network when dealing with small size datasets. Dimensionality reduction helps to reduce
the number of training parameters while maintaining accuracy and, therefore, reducing the
chance of over-fitting. The NDA model (Figure 6.3) is designed as follows:

The feature transformation functionN in Equation 6.4 is a neural network that step-by-step
reduces the dimension of the pre-optimized features, which is our NDA network. In order to
satisfy the first objective in Equation 6.5, which is maximizing the fine-grained classification
results, we first append a single-layer neural network N 1 at the end of NDA network N
to train for classification using categorical cross-entropy loss. The result is a classification
neural network N 2 = N 1 ◦ N . This first step of training is to make sure the dimension
reduction of the NDA network N can maintain the classification ability from the original
features.

The optimizations for inter-class and intra-class variance should be done jointly. To im-
plement this, we develop a two-phase optimization for each epoch of training. In the first
phase, we optimize for the Equation 6.6. All the features f i

j are fed forward to the NDA
network, forming features F i

j and the mean features F̄ i are computed for every class i. We
then use the Mean Squared Error loss to minimize the distances between all features F i

j of
the same class i to their mean feature F̄ i.
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(a) Feature extraction

(b) NDA model

(c) NDA two-phase optimization

Figure 6.3: An overview of the Neural Discriminant Analysis model and its two-phase optimization.
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In the second phase, we optimize for the inter-class variance. We use the NDA network N
as a base to form a Siamese network S . The Siamese network S has two input features fk

and fl and outputs the Euclidean distance between Fk and Fl . If fk and fl are in the same
class, we want the output distance to be reduced, otherwise, increased. The loss function
for the Siamese network S is implemented as in Equation 6.7. In every epoch, after each
phase is optimized, the NDA network’s weights are updated. Finally, we retrain the 1-layer
prediction networkN 1 on the transformed features F produced by the NDA networkN for
fine-grained classification. This will improve the results due to the NDA optimized features.
The optimization is summarized in Algorithm2.

Algorithm 2 Algorithm for optimizing Neural Discriminant Analysis (NDA) network
Input: a set of pre-optimized features f j, j = 1..m
Output: an entire network N 2

1: Train a classification neural network N 2 = N 1 ◦ N on the whole set of pre-optimized
features f j, j = 1..m using a categorical cross-entropy loss

2: for each training epoch up to NUM_EPOCH do
3: (i) compute transformed feature Fj = N ( f j)

4: (ii) compute mean features F̄ i for every class i
5: (iii) train the NDA networkN with the Mean-Squared-Error between its outputs and

the mean F̄ i

6: (iv) compile a Siamese network using the NDA network N in each branch with
shared weights. The Siamese model outputs the Euclidean distance d between a pair
of transformed features Fk and Fl .

7: (v) optimize the Siamese loss: LSiamese = (1− y)(1− e−d) + y ∗ e−d

8: end for
9: Retrain the classification N 1 layer on the output features of the NDA network N using

a categorical cross-entropy loss for final fine-grained classification results
10: Return network N 2

An important note is that our two-phase NDA optimization alternates between Equation 6.6
(minimize mean variance) and Equation 6.7 (optimize Siamese loss) in each epoch. The
two losses are not combined into one single optimization. Therefore, no loss weights are
required.

6.4 Experiments with Two-phase NDA

6.4.1 Datasets and Feature Extraction

We evaluate our proposed method on the following FGVC datasets: Stanford-Dogs [Kho+11]
that contains 120 breeds of dogs, CUB-200-2011 [Wah+11] that has 200 types of birds, Flower-
102 [NZ08] with 102 types of flowers, Stanford-Cars [Yan+15] that has 196 types of cars and
NABirds [Van+15] with 555 classes of birds.

We use transfer learning Inception-ResNet-V2, Inception-ResNet-V2-SE and Inception-V3-
iNat models from Cui et al. [Cui+18] as base networks to compare across all datasets.
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6.4.2 Implementation

In this experiment, the NDA network N is a two-layer neural network with an input fea-
ture size of 2, 048 or 1, 536, depending on the networks that are used to extract the features.
The first hidden layer has 1, 024 nodes followed by a ReLU activation, and the last layer
has 512 nodes, also with ReLU activation. 0.35 and 0.25 dropout is added for each layer,
respectively. These parameters are chosen empirically. The classification network N 1 con-
tains only a single prediction layer with a softmax activation. By concatenating N 1 after N ,
we have a neural network N 2 = N 1 ◦ N . In the initial training, we train N 2 to reach the
reported accuracy in [Cui+18]. The number of training epochs can range from 100 to 1, 000,
depending on the datasets and the types of pre-optimized features.

The Neural Discriminant Analysis (NDA) is optimized using 20 to 30 epochs for all the
experiments. For each epoch, we need to re-compute the mean and re-generate input data
pairs for the optimizations. Therefore, the process takes much longer compared to fine-
tuning a 2-layer neural network for transfer learning.

Data sampling: After each epoch, we re-sample pairs of data for the Siamese loss optimiza-
tion in Equation 6.7. The strategy is for each image in a class, we randomly select one image
from the same class and k images from different classes. The intra / inter ratio is therefore
1 : k, where k ≥ 1. We chose k = 2, which leads to good results and surpasses the state-
of-the-art. Increasing k will significantly increase the training time. In training, the data is
shuffled randomly. Even though we use a Siamese architecture to optimize for inter-class
variance, the number of training samples for each epoch is (k+ 1)n where n is the total num-
ber of images in the dataset. Therefore, the complexity is O(n), and not O(n2) that would
correspond to sampling all pairs.

The dual objective optimization is not without perils, the two steps can be unbalanced. In
some cases, a model collapse can happen, meaning that the entire transformed feature space
collapses to one point. To address this issue, we set the learning rate for minimizing variance
to a class mean ten times smaller than the learning rate for Siamese optimization (10−5 with
SGD optimizer vs. 10−4 with RMSprop optimizer). Minimizing the variance of features from
a class can be interpreted as a pulling force that moves them towards the class centroid. In
contrast, the Siamese optimization pushes features of different classes further apart. These
two forces should be balanced for good optimization. If the pulling force is too strong, it is
easier for the NDA model to collapse after a few training epochs.

The convergence: We experiment with the learning rate and different optimizers (Adam,
RMSprop, SGD) to test the balance and solve the model collapse issue. It is shown that the
learning rate is a more important factor in reducing the probability of the model collapse.
The optimizers have mainly an effect on the convergence when training for the transfer
learning network N 2. The convergence of our two-phase optimization NDA and model
collapse scenario are demonstrated in Figure 6.4. While the Siamese Loss can be still further
reduced, the Mean Loss is approaching zero. In the model collapse situation, the Mean Loss
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is zero. Therefore, we stop the training before the Mean Loss becomes smaller than an ε

value, such as 0.003.

(a) Inc-Res-V2 on CUB-200 (b) Inc-Res-V2-SE on Stanford-Dogs

(c) An example of model collapse

Figure 6.4: (a) and (b): examples of convergences for two-phase NDA optimization (Mean Loss and
Siamese Loss) for two different networks (Inception Resnet V2 and Inception Resnet V2 SE) on two
different datasets (CUB-200 and Stanford-Dogs) respectively. (c): an example of model collapse
after the 5th epoch. When the trained model is collapsed, all the data point come to a single point.
Therefore the mean loss LMean = 0. The Siamese loss LSiamese = y ∗ e−d = 1 where d = 0 and
y = 1. So the LSiamese = 1 for pairs of points from different classes and LSiamese = 0 for pairs of
points of the same class. For this experiment, the intra / inter ratio of sample pairs is 1 : 2. If we
have n pairs of the same class, then we have 2n pairs from different classes. Hence, the sum of the
Siamese loss for all pairs of data is 2n. As we have totally 3n pairs, the average LSiamese when the
model collapse is 2/3 ≈ 0.67.

Finally, we re-train the single layer prediction network N 1. It usually takes half the number
of epochs of the transfer learning for the training to converge.

6.4.3 Results

We compare our results with the state-of-the-art in Table 6.1. We use features extracted
from Inception-ResNet-V2, Inception-ResNet-V2-SE and Inception-V3-iNat transfer learn-
ing from the method in [Cui+18]. It is worth to note that the best performances of transfer
learning networks in [Cui+18] are from Inception-V3 and Inception-ResNet-V2-SE. Even
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though the features from Inception-ResNet-V2 transfer learning do not produce the best re-
sults on their own, we are still able to top the state-of-the-art in a majority of the evaluated
datasets. Authors in [Cui+18] trained Inception-V3 by using different data-sampling strate-
gies, but there is no strategy that is able to consistently produce the best transfer learning
result on all the datasets. It is unclear which of the strategies has been applied in training
the publicly available network that we use. Thus, for Inception-V3 transfer learning results
from [Cui+18], we report the range of accuracy from all the data sampling strategies. The
training is repeated ten times, with different random initializations for each network on each
dataset. The reported results are the average performance over ten runs.

Method CUB-200 Stanford Stanford Flower NABirds
-Dogs -Cars -102

Krause et al. [Kra+16] 82.0 - 92.6 - -
Bilinear-Pooling [LRM15] 84.1 - 91.3 - -

DLA [YWD18] 85.1 - 94.1 - -
Recurrent-Attention [FZM17] 85.3 87.3 92.5 - -

Cai et al. [CZZ17] 85.3 - 91.7 - -
Object-part-Attention [PHZ18] 85.8 - 92.2 97.1 -
Grassmann-Pooling [Wei+18] 85.8 - 92.8 - -
Improved-Bi-Pooling [LM17] 85.8 - 92.0 - -

Kernel-Pooling [Cui+17] 86.2 - 92.4 - -
MA-CNN [Zhe+17] 86.5 - 92.8 - -

Pairwise-Confusion [Dub+18] 86.9 83.8 92.9 91.4 82.8
Multi-Attention [Sun+18] 86.5 84.8 93.0 - -

HBP [Yu+18] 87.1 - 93.7 - -
MetaFGNet [ZTJ18] 87.6 96.7 - - -

DCL [Che+19] 87.8 - 94.5 - -
TASN [Zhe+19] 87.9 - 93.8 - -
Ge et al. [GLY19] 90.4 97.1 - - -

Inception-V3 from [Cui+18] 82.8 - 89.3 78.5 - 85.2 88.3 - 91.4 96.3 - 97.7 82.0 - 87.9
Best of Transfer Learning [Cui+18] 89.6 88.0 93.5 97.7 87.9

NDA (Inception-V3-iNat) (ours) 87.4 89.1 99.9 95.5 83.9
NDA (Inc-Res-V2) (ours) 90.1 95.3 97.4 97.7 88.4

NDA (Inc-Res-V2-SE) (ours) 89.7 95.5 99.9 97.7 89.5

Table 6.1: Comparison of results with the state-of-the-art. Input images of dimensions 448×448 pixels
are used for all the experiments. The features used in our methods are from transfer learning networks
in [Cui+18]. The best results are reported for Transfer Learning [Cui+18] which are from their
Inception-V3 or Inception-ResNet-v2-SE transfer learning networks. Inception-V3 transfer learning
results from [Cui+18] are reported as the range of accuracy from all the data sampling strategies
as described in [Cui+18]. However, there is no strategy that is able to consistently produce the
best transfer learning result on all the datasets. We evaluate our NDA using the Inception-V3-iNat
published by the authors of [Cui+18], that is unclear to us which sampling strategy was used. All of
our results are averaged over 10 training runs. "Inc-Res" is short for Inception-ResNet.
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Method CUB-200 Stanford Stanford Flower NABirds
-Dogs -Cars -102

Siamese (Inc-Res-V2) 89.7 94.9 96.5 97.5 88.2
NDA (Inc-Res-V2) (ours) 90.1 95.3 97.4 97.7 88.4

Table 6.2: Comparison of results for NDA optimization and Siamese network (without Mean Loss).
All the parameters are kept the same. All of our results are averaged over 10 training runs. The
comparison in Table 6.1 shows that all the methods in this field compete at 0.1%, so the improvement
of NDA over Siamese is substantial.

Accuracy: MetaFGNet [ZTJ18] is a method that trains a FGVC network using extra sam-
pled images. The method produces better result on Stanford-Dogs [Kho+11] ([ZTJ18] 96.7%
vs. ours 95.5%). However, the performance on the CUB-200-2011 dataset [Wah+11] are
substantially lower ([ZTJ18] 87.6% vs. ours 90.1%). On the other hand, we make a 7.5%
improvement on Stanford-Dogs [Kho+11] compared to the baseline method [Cui+18]. Ge
et al. [GLY19] proposed a complex system that combines LSTM trained on different region
proposals of a single object with multi-loss and selective joint fine-tuning (SJFT) with im-
ages from ImageNet [Den+09] using GoogLeNet [Sze+15b]. It establishes the state-of-the-
art results on the CUB-200-2011 [Wah+11] and Stanford-Dogs [Kho+11] datasets. For the
CUB-200-2011 [Wah+11], their method exceeds our result by 0.3%. We believe that NDA
optimization is able to improve the results of MetaFGNet [ZTJ18] and Ge et al. ’s method
[GLY19] further. Our method matches the state-of-the-art in the dataset Flower-102 [NZ08],
and sets new records for the Stanford-Cars [Yan+15] and NABirds [Van+15] datasets.

With the Stanford-Dogs dataset [Kho+11], we also study how good the features produced by
the original networks are if they were pre-trained on 1,000 classes from ImageNet [Den+09].
We achieve 93.9% with the original Inception-ResNet-V2 [Sze+17], but below 80% on other
pre-trained networks such as ResNet50, InceptionV3, Xception and VGG19. As a data-
driven approach, FGVC using deep learning depends on the type of network architectures
as well as the amount of training data. It is also widely affected by how relevant the data
from the source domain is to the target domain in transfer learning [Cui+18; ZTJ18]. It is
observed and confirmed by Guérin and Boots [GB18] that even though different networks
can produce competitive classification results, the features provided by those networks have
different distributions and clusters.

With NDA optimization on the Stanford-Cars dataset using features extracted from Inception-
ResNet-V2-SE and Inception-V3-iNat, we raise the accuracy to 99.9% consistently through-
out all 10 runs (the standard deviation is therefore 0). This is due to the very good features
provided by Inception-ResNet-V2-SE and Inception-V3-iNat transfer learning networks from
[Cui+18] on this dataset. Without the NDA optimization, the average accuracy of Inception-
ResNet-V2-SE is 97.4%, and the results fluctuate from 89.1% to 99.9% (standard deviation is
3.88). This shows the consistency of the NDA optimization.

Reliability: We compute and report standard deviations of the accuracy across 10 runs per
dataset per network in Table 6.3 and visualize them in Figure 6.5. The standard deviations
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are consistently lower in all NDA optimization results compared to transfer learning. It
shows that the NDA optimization transforms the features such that the classification be-
comes more stable and reliable. High average with small standard deviation results are
much more desired, compared to lower average and high standard deviation.

Model Method CUB Stanford Stanford Flower NA-
-200 -Dogs -Cars -102 Birds

Inception-ResNet-V2
Transfer Learning 0.74 0.96 2.53 0.22 0.73

NDA Optimization 0.28 0.81 1.80 0.10 0.08
Inception-ResNet- Transfer Learning 0.69 0.37 3.88 0.13 0.06

V2-SE NDA Optimization 0.17 0.11 0.00 0.13 0.06

Inception-V3-iNat
Transfer Learning 3.96 0.86 8.32 0.50 0.09

NDA Optimization 0.27 0.40 0.00 0.23 0.10

Table 6.3: Training stability: standard deviations of accuracy over 10 trainings. The standard devi-
ations for classification using NDA optimization are consistently smaller than those of classification
without NDA optimization. It shows that the NDA optimization produces more stable results across
different trainings.

6.4.4 Discussion

Data augmentation: In this experiment, we do not use data augmentation because we em-
phasize the importance of features that can represent the objects faithfully. Data augmen-
tation often leads to unwanted distortions, which reduces the validity of the training data.
They can be useful in some cases, but they do not enrich the characteristics of the dataset
that reflects the variety of images in-the-wild.

Data pre-pocessing: When we learn discriminative features for fine-grained classification,
it is very important that the input images contain the appropriate appearance of the object
itself. In some datasets such as Stanford-Dogs [Kho+11], there are images that contain dif-
ferent objects or humans that cover significant parts of the images. Therefore, we decided
to crop parts of images that contain only relevant objects using bounding box annotations.
When cropping around bounding-boxes, we extend one of the two dimensions (width and
height) such that the aspect ratio after cropping is as close to 1 as possible. This is to avoid
over distortion when resizing the crops to the size of 448×448 pixels. For Flower-102 [NZ08]
and Stanford-Cars [Yan+15], we do not perform any cropping, and use the original images
for training. When testing, we use the original images for all the datasets without any crop-
ping or special pre-processing except those required by the deep networks used for feature
extraction.

Performance consistency: The low standard deviations during re-training show that our
method has stable and consistent performance. Looking closer, our NDA does not always
increase the accuracy above the transfer learning network baselines. If we count how often
the NDA optimization reduces the performance of transfer learning, we find that it happens
in 14% of all the training passes.
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(a) Inception-ResNet-V2

(b) Inception-ResNet-V2-SE

(c) Inception-V3

Figure 6.5: Comparison of standard deviations between transfer learning and NDA optimization results
on 10 training runs.
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Two-phase NDA optimization: Last but not least, the two-phase NDA optimization proves
its effectiveness throughout various datasets (Table 6.1). If we use only one phase of the
NDA optimization, such as Siamese Loss alone, the performance drops (Table 6.2). Without
the Mean Loss, it lacks a strong and explicit constraint for intra-class optimization. Without
Siamese Loss, there is no inter-class optimization. After the feature-based optimization is
completed, we can add the NDA neural network after the last feature layer of the base
network that was used for feature extraction to make it a complete end-to-end model for
prediction or testing.

6.5 Combined Optimization NDA

Two-phase NDA produces very good results for fine-grained classification. However, it
could be a bit complicated to implement the optimization in two phases. To simplify it, we
also present combining all the losses to optimize in one phase (Figure 6.6.

Figure 6.6: A demonstration of NDA optimization with combined loss. The NDA loss is the weighted
sum of two classification losses, two mean losses, and a Siamese loss produced by a Siamese network.

The core structure of combining losses for NDA optimization is a Siamese architecture. A
pair of input images are passed through a shared weight Siamese network. The network
produces each feature for each input image. We have five losses for the network: two Clas-
sification losses, two Mean losses (one Classification loss and one Mean loss for each image),
and a Siamese loss. All the losses are defined the same as with two-phase NDA. The Clas-
sification loss is the categorical cross entropy loss defined in Equation 6.5. The Mean losses
are defined as in Equation 6.6 and the Siamese loss is defined as in Equation 6.7. The com-
bination loss is defined as the weighted sum of all the losses as follows:

LNDA = α(LClass1 + LClass2) + β(LMean1 + LMean2 + γ ∗ LSiamese) (6.9)
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where LClass1 and LMean1 are the Classification loss and Mean loss for the first input image.
LClass2 and LMean2 are the Classification loss and Mean loss for the second input image. The
coefficients α, β, and γ are fine-tuned hyper-parameters. For all the experiments in this
section with the CIFAR-10 dataset, we use α = 1, β = 1e− 3, and γ = 1. The selection of
the values for these parameters takes into account the difference in magnitude for different
types of losses. We want to normalize the losses to the same level of magnitude. CIFAR-
10 is a general classification dataset that has 60.000 images in total with ten classes. It is
considered as a mini version of ImageNet and is widely used as a benchmark dataset for
general image classification.

We train networks end-to-end for classification on the CIFAR-10 dataset. We use the official
(train, test) split of the dataset. However, we further split the training set to 80% for training
data and 20% for validation. We only validate our training on the validation set and test on
the test set. We use two different network architectures for the Siamese: AlexNet [KSH12]
with Kaggle implementation and ResNet50 [He+16b]. The results for AlexNet Kaggle are
shown in Table 6.4.

Baseline Optimization Improvement Over Baseline
CDA [Zho+18] 60.15% 62.50% 2.35%

NDA (ours) 64.71% 70.92% 6.21%

Table 6.4: Comparison between NDA and CDA [Zho+18] on CIFAR-10 dataset using AlexNet [KSH12]
Kaggle implementation. NDA has significant better result than CDA. The NDA result is averaged
over five runs.

We compare with a competing method "Convolutional Discriminant Analysis" (CDA) pro-
posed by Zhong et al. [Zho+18] using AlexNet Kaggle base network. Different from our
Siamese architecture, CDA uses a single branch CNN with a single input image. With the
Siamese network, we can specify the Mean loss and the Siamese loss explicitly. On the
contrary, CDA’s objective is that an input image trained to be close to its class center and
further away from other classes’ centers. NDA achieves 70.92% accuracy, whereas CDA
only reaches to 62.5%. Compared to the baseline, CDA has 2.35% increase, and NDA has
6.21% improvement. We re-implement AlexNet Kaggle using Keras-Tensorflow. Due to
different framework supports, our baseline has higher accuracy than the CDA’s. The nu-
merical results conclude that our NDA achieves significantly better results than CDA and
much higher improvement from the baseline.

We also test our combined loss NDA with ResNet50 [He+16a] using Keras-Tensorflow. We
use the code for the model provided by Keras 1, as well as the pre-defined learning schedule
and 200 epochs for each training. It is reported that the accuracy of ResNet50 on CIFAR-10
is 93%. However, it is important to take note that this accuracy is reported for a training
that is validated on the test set. On the contrary, we split the default training data into 80%
for training and 20% for validation to avoid over-fitting on the test data. It also results in

1https://keras.io/examples/cifar10_resnet/

https://keras.io/examples/cifar10_resnet/
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having less data for training. We achieve the baseline accuracy 91.77%. NDA improves the
accuracy to 93%. The NDA result is averaged over three runs.

We run the experiments with different values for the hyper-parameters α, β, and γ. While we
cannot extensively search for many configurations of the hyper-parameters due to limited
resources, we find that this configuration α = 1, β = 1e− 3, and γ = 1 gives slightly better
results. However, in this case, the weight β for the Mean losses are quite small compared to
the other two; the contribution of the Mean Loss to the total loss is not so high. We believe
the results in this scenario are close to the two-phase NDA without the Mean loss.

6.6 Chapter Summary

Inspired by the objectives of Linear Discriminant Analysis (LDA) and making use of the
power of deep learning and neural networks, we propose a Neural Discriminant Analy-
sis (NDA) optimization that is useful for Fine-Grained Visual Classification (FGVC). It is
a two-phase optimization that minimizes the intra-class variance and maximizes the inter-
class variance in the deep feature domain. In order to reach these objectives, we address
many technical issues related to deep learning, such as avoiding model collapse, data pre-
processing and augmentation, pair data sampling, and most of all, the two-phase optimiza-
tion architecture that can be fully implemented with neural networks. We exceed the state-
of-the-art accuracy on several popular FGVC datasets by a large margin. The analysis also
shows that our optimization produces more stable and reliable results. Furthermore, the
NDA model can be used on its own in the deep feature domain or as a plug-in component
to existing DCNNs. We also propose a combined loss version of the NDA for convenient
end-to-end training. We achieve significant improvements from the baseline on CIFAR-10
dataset and much better results than the competing methods.
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Chapter 7

Conclusion

In this thesis, we study two aspects of image understanding: perception similarity and deep
feature representation. We have two main projects in each category. In the perception simi-
larity topic, the two projects are a perceptual intrinsic imaging metric and color composition
similarity. For deep feature representation, we study shape extraction used in semantic seg-
mentation and deep feature discriminant analysis.

We develop a perceptually inspired metric to evaluate reflectance consistency for intrin-
sic imaging that yields a stable evaluation across different illuminations. The metric takes
into account the human ability to distinguish color differences and prevents visual illusions
caused by harsh shadows. Intrinsic imaging is often used in Computer Graphics to re-
construct realistic scenes under different lighting conditions. Therefore, it is important to
produce correct reflectances with respect to the objects’ surface properties and human per-
ception. Perceptually inspired evaluation metrics like ours will help to push the quality of
intrinsic imaging methods in complex scenes that leads to more realistic rendering. For fu-
ture work, our metric can be extended to evaluate the shading components of the intrinsic
results and is an inspiration to create more perceptual evaluation metrics in other research
fields in Computer Vision and Computer Graphics.

The second project on perception similarity is color composition similarity. We derive a new
global color similarity for images in-the-wild directly from human judgments. We carefully
design the crowd-sourced experiments and propose an active learning framework to collect
meaningful data for human evaluation and ensure the consistency of subjective judgments.
We contribute to the research community an active learning framework to solve subjective
studies. Its effectiveness is proven by the results of a large-scale, high-quality dataset for
color composition similarity. Thanks to the quality of the dataset, we succeed in developing
high-performance algorithms in several Computer Vision applications. Using the dataset,
we train global descriptors for color similarity that are applied in color similarity prediction
and image retrieval. Our global color descriptor surpasses all the existing hand-crafted color
descriptors’ performances. We also propose a novel type of features for fine-grained image
retrieval by combining correlations of color features and category features between pairs
of images. Our new visual similarity feature improves the state-of-the-art result by a large
margin, using three orders of magnitude less training data than the competing method. We
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also successfully use different feature levels of our trained network on color composition
similarity in color transfer and achieve good results.

We use crowd-sourcing to conduct user studies. On the one hand, we provide explanations
for the correct answers of all the test questions so that the participants understand the tasks
better. On the other hand, participants also can give feedback on particular test questions
that they find their opinions are different from ours. This interactive process is still weak
or missing in many research areas. Computer Vision algorithms often provide the final
answers to problems, but they are unable to give reasons and justifications, even much more
in perception related topics and subjective study.

In classical Computer Vision problems, we usually seek answers for the questions "What"
such as "What is the label of an image?", "What similar images can a system retrieve?". Our
proposed approach to solve visual similarity by disentangling different factors of similarity
is a mean to answer the questions "How or Why are these images similar?". The answers are,
for example, two images can be similar because they both contain dogs, or they are both
pictures of Van Gogh’s paintings, or they both have beautiful autumn colors. It motivates
us towards creating a machine learning system that is able to give explanations and reasons
on abstract and subjective tasks, similar to visual similarity.

For future work, we will study other aspects of visual similarity, such as texture and image
structure. By combining different aspects of image similarity, we will develop an explain-
able Artificial Intelligence (AI) system. Furthermore, there is a potential for using visual
similarity in helping other learning algorithms, such as image classification. Active learn-
ing in image classification proves to be efficient. It starts with a small initial set of training
data for a network to learn classification. Incrementally, new data is selected to add to the
training based on the estimated uncertainty of the predictions from the network. There are
different measures for choosing new data where the goal is for the network to learn faster
with the least amount of training data. We believe visual similarity can be used as a criterion
in the data selection process. For example, images that are visually similar or contain objects
that look similar but belong to different classes are good candidates for learning discrimi-
native features in classification. Therefore, we will apply visual similarity in active learning
for training image classification tasks.

In the second part of the thesis, we focus on learning deep feature representations. In the
first work, our goal is to find out the information contained in high-level features from a
DCNN trained for classification. It leads to two findings: shape and Class Activation Map
(CAM). A CAM is a map of regions in an input image that the DCNN uses for a particular
class prediction. Existing methods can only produce low-resolution CAMs. By combining
shapes and low-resolution CAMs from two different scales of an input image, we produce
a high-resolution CAM (rCAM). The resolution of our rCAM is high enough that we can
perform semantic segmentation without any extra training; at the same time, we achieve
the state-of-the-art results in weakly supervised segmentation.
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It comes as a surprise to many of us that deep features from a classification network can em-
bed many types of attributes (such as shape), that when discovered, can be used efficiently
in other tasks (in our case, semantic segmentation). This work can also be applied in creating
saliency maps if we combine shape information and color features. As we all know, making
a large-scale dataset with pixel-wise ground-truth for segmentation is very expensive. Our
work shows that we can use and reuse information smartly in a cheaper way to obtain good
results. Furthermore, it inspires us to wonder and discover many features hidden in other
types of existing network architectures that are useful to solve various tasks.

Lastly, we study deep feature discriminant analysis. As deep learning is a data-driven ap-
proach, we raise the question if the features learned by a DCNN are the most discriminative
only by training on large-scale data. The answer is no; we can further improve the dis-
criminative potential of deep features by enforcing the objectives from Linear Discriminant
Analysis in the network optimization. The objectives are to reduce the intra-class variance
and increase the inter-class variance. We combine these objectives in a DCNN via our Neural
Discriminant Analysis (NDA) optimizer. Our NDA improves the baseline results on various
datasets with many types of network architectures for both general classification and fine-
grained classification. NDA also provides reliable results across different training runs. The
variances of the classification results from networks that use NDA are consistently smaller
than those of the same networks without the NDA optimization. Every time we train a
DCNN for classification, the initial network parameters, and the orders of training data are
different due to the randomized initialization and data shuffling processes. As a result, the
DCNN can converge to different local optima that lead to different prediction results. In
other words, the results from different training runs vary. It is important for a system not
only to have high accuracy but also consistent results with a small variance. Our proposed
NDA optimization improves both the performance and reliability of classification networks.

We find that NDA also has potential in other learning techniques. We extend the applicabil-
ity of NDA into Semi-Supervised Learning (SSL) and Out Of Distribution (OOD) detection
in an ongoing project. The results show that NDA further improves the performances of
those fields. We are pleased to see that traditional techniques and optimizations before the
deep learning era are still useful and can be incorporated into DCNNs, leading to improve-
ments in deep learning performances. For future work, we will improve algorithms which
apply NDA in SSL and OOD for general classification and fine-grained classification tasks
to increase their performances further.

The work in this thesis covers both technical developments in deep learning and perception-
related measures. Perception is a subjective and challenging topic. However, we believe it
should be more involved in the process of designing machine learning algorithms. There
is still not much research in the direction of perception in deep learning. Our work is an
effort to bring the two fields together. By focusing on understanding DCNNs, the state-of-
the-art techniques in Computer Vision, and studying perceptual visual similarity, we hope
to inspire further research into optimizing visual computing towards human perception.
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