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Symmetries in quantum networks lead to no-go
theorems for entanglement distribution and to
verification techniques
Kiara Hansenne 1, Zhen-Peng Xu 1✉, Tristan Kraft1,2 & Otfried Gühne 1

Quantum networks are promising tools for the implementation of long-range quantum

communication. The characterization of quantum correlations in networks and their useful-

ness for information processing is therefore central for the progress of the field, but so far

only results for small basic network structures or pure quantum states are known. Here we

show that symmetries provide a versatile tool for the analysis of correlations in quantum

networks. We provide an analytical approach to characterize correlations in large network

structures with arbitrary topologies. As examples, we show that entangled quantum states

with a bosonic or fermionic symmetry can not be generated in networks; moreover, cluster

and graph states are not accessible. Our methods can be used to design certification methods

for the functionality of specific links in a network and have implications for the design of

future network structures.

https://doi.org/10.1038/s41467-022-28006-3 OPEN

1 Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Siegen, Germany. 2Present address: Institute for Theoretical Physics, University of Innsbruck,
Innsbruck, Austria. ✉email: zhen-peng.xu@uni-siegen.de

NATURE COMMUNICATIONS | (2022)13:496 | https://doi.org/10.1038/s41467-022-28006-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28006-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28006-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28006-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-28006-3&domain=pdf
http://orcid.org/0000-0002-5914-002X
http://orcid.org/0000-0002-5914-002X
http://orcid.org/0000-0002-5914-002X
http://orcid.org/0000-0002-5914-002X
http://orcid.org/0000-0002-5914-002X
http://orcid.org/0000-0001-8514-2603
http://orcid.org/0000-0001-8514-2603
http://orcid.org/0000-0001-8514-2603
http://orcid.org/0000-0001-8514-2603
http://orcid.org/0000-0001-8514-2603
http://orcid.org/0000-0002-6033-0867
http://orcid.org/0000-0002-6033-0867
http://orcid.org/0000-0002-6033-0867
http://orcid.org/0000-0002-6033-0867
http://orcid.org/0000-0002-6033-0867
mailto:zhen-peng.xu@uni-siegen.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


A central paradigm for quantum information processing is
the notion of quantum networks1–4. In an abstract sense,
a quantum network consists of quantum systems as nodes

on specific locations, where some of the nodes are connected via
links. These links correspond to quantum channels, which may be
used to send quantum information (e.g., a polarized photon) or
where entanglement may be distributed. Crucial building blocks
for the links, such as photonic quantum channels between a
satellite and ground stations5–8 or the high-rate distribution of
entanglement between nodes9,10 have recently been experimen-
tally demonstrated. Clearly, such real physical implementations
are always noisy and may only work probabilistically, but there
are various theoretical approaches to deal with this11–14.
For the further progress of the field, it is essential to design

methods for the certification and benchmarking of a given net-
work structure or a single specific link within it. In view of cur-
rent experimental limitations, the question arises which states can
be prepared in the network with moderate effort, e.g., with simple
local operations. This question has attracted some attention, with
several lines of research emerging. First, the problem has been
considered in the classical setting, such as the analysis of causal
structures15–17 or in the study of hidden variable models, where
the hidden variables are not equally distributed between every
party 18–24. Concerning quantum correlations, several initial
works appeared in the last year, suggesting slightly different
definitions of network entanglement25–28. These have been fur-
ther investigated 29–31 and methods from the classical realm have
been extended to the quantum scenario32. Still, the present results
are limited to simple networks like the triangle network, noise-
free networks or networks build from specific quantum states, or
bounded to small dimensions due to numerical limitations.
In this work, we show an analytical approach to characterize

quantum correlations in arbitrary network topologies. Our
approach is based on symmetries, which may occur as permu-
tation symmetries or invariance under certain local unitary
transformations. Symmetries play an outstanding role in various
fields of physics33 and they have already turned out to be useful
for various other problems in quantum information theory34–41.
On a technical level, we combine the inflation technique for
quantum networks17,27 with estimates known from the study of
entropic uncertainty relations42–44. Based on our approach, we
derive simply testable inequalities in terms of expectation values,
which can be used to decide whether a given state may be pre-
pared in a network or not. With this we can prove that large
classes of states cannot be prepared in networks using simple
communication, for instance all multiparticle graph states with up
to twelve vertices with noise, as well as all mixed entangled per-
mutationally symmetric states. This delivers various methods for
benchmarking: First, the observation of such states in a network
certifies the implementation of advanced network protocols.
Second, our results allow to design simple tests for the proper
working of a specific link in a given network.

Results
Network entanglement. To start, let us define the types of cor-
relations that can be prepared in a network. In the simplest
scenario Alice, Bob and Charlie aim to prepare a tripartite
quantum state using three bipartite source states ϱa, ϱb and ϱc, see
Fig. 1. Parties belonging to a same source state are sent to dif-
ferent parties of the network, i.e., A, B or C, such that the global
state reads ϱABC= ϱc⊗ ϱb⊗ ϱa. Note that here the order of the
parties on both sides of the equation is different. After receiving
the states, each party may still apply a local operation EX (for
X= A, B, C), in addition these operations may be coordinated by

shared randomness. This leads to a global state of the form

ϱ ¼ ∑
λ
pλEðλÞ

A � EðλÞ
B � EðλÞ

C ϱABC
� �

; ð1Þ

and the question arises, which three-party states can be written in
this form and which cannot?
Some remarks are in order: First, the definition of network

states in Eq. (1) can directly be extended to more parties or more
advanced sources, e.g., one can consider the case of five parties
A, B, C,D, E, where some sources distribute four-party states
between some of the parties. Second, the scenario considered
uses local operations and shared randomness (LOSR) as allowed
operations, which is a smaller set than local operations and
classical communication (LOCC). In fact, LOCC are much more
difficult to implement, but using LOCC and teleportation any
tripartite state can be prepared from bipartite sources. On the
other hand, the set LOSR is strictly larger than, e.g., the unitary
operations considered in refs. 25,26. Finally, the discerning reader
may have noticed that in Eq. (1) the state ϱABC does not depend
on the shared random variable λ, but since the dimension of the
source states ϱi is not bounded one can always remove a
dependency on λ in the ϱi by enlarging the dimension27.
Equivalently, one may remove the dependency of the maps EX
on λ and the shared randomness may be carried by the source
states only.

Symmetries. Symmetry groups can act on quantum states in
different ways. First, the elements of a unitary symmetry group
may act transitively on the density matrix ϱ. That is, ϱ is invariant
under transformations like

ϱ7 �!UϱUy ¼ ϱ: ð2Þ
If ϱ ¼ ψ

�� �
ψ
� �� is pure, this implies U ψ

�� � ¼ eiϕ ψ
�� �

and ψ
�� �

is, up to
some phase, an eigenstate of some operator. Second, for pure states
one can also identify directly a certain subspace of the entire Hilbert
space that is equipped with a certain symmetry, e.g., symmetry
under exchange of two particles. Denoting by Π the projector onto
this subspace, the symmetric pure states are defined via

Π ψ
�� � ¼ ψ

�� � ð3Þ
and for mixed states one has ϱ=ΠϱΠ. Note that if ϱ ¼
∑kpk ϕk

�� �
ϕk
� �� has some decomposition into pure states, then each

ϕk
�� � ¼ Π ϕk

�� �
has to be symmetric, too.

Fig. 1 Triangle quantum network. Three sources ϱa, ϱb and ϱc distribute
parties to three nodes, Alice, Bob, and Charlie (A, B, and C). The colors
yellow, blue, and red are associated to the sources ϱa, ϱb, and ϱc
respectively. Alice, Bob, and Charlie each end up with a bipartite system
X= X1X2 on which they perform a local channel EðλÞ

X (X= A, B, C) depending
on a classical random variable λ.
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In the following, we consider mainly two types of symmetries.
First, we consider multi-qubit states obeying a symmetry as in Eq.
(2) where the symmetry operations consist of an Abelian group of
tensor products of Pauli matrices. These groups are usually
referred to as stabilizers in quantum information theory45, and
they play a central role in the construction of quantum error
correcting codes. Pure states obeying such symmetries are also
called stabilizer states, or, equivalently, graph states46,47. Second,
we consider states with a permutational (or bosonic)
symmetry36,39,48, obeying relations as in Eq. (3) with Π being
the projector onto the symmetric subspace.

GHZ states. As a warming-up exercise we discuss the
Greenberger-Horne-Zeilinger (GHZ) state of three qubits,

GHZj i ¼ 1ffiffiffi
2

p ð 000j i þ 111j iÞ ð4Þ

in the triangle scenario. This simple case was already the main
example in previous works on network correlations25–27, but it
allows us to introduce our concepts and ideas in a simple setting,
such that their full generalization is later conceivable.
The GHZ state is an eigenstate of the observables

g1 ¼ XAXBXC; g2 ¼ 1AZBZC; g3 ¼ ZAZB1C: ð5Þ
Here and in the following we use the shorthand notation
1AXBYC ¼ 1� σx � σy for tensor products of Pauli matrices.
Indeed, these gk commute and generate the stabilizer
S ¼ f1; g1; g2; g3; g1g2; g1g3; g2g3; g1g2g3g. Clearly, for any Si 2
S we have Si GHZj i ¼ GHZj i and so GHZh jSi GHZj i ¼ 1.
As a tool for studying network entanglement, we use the

inflation technique17,32. The basic idea is depicted in Fig. 2. If a
state ϱ can be prepared in the network scenario, then one can also
consider a scenario where each source state is sent two-times to
multiple copies of the parties. In this multicopy scenario, the
source states may, however, also be wired in a different manner.
In the simplest case of doubled sources, this may lead to two
different states, τ and γ. Although ϱ, τ and γ are different states,
some of their marginals are identical, see Fig. 2 and Supplemen-
tary Note 1. If one can prove that states τ and γ with the marginal
conditions do not exist, then ϱ cannot be prepared in the
network.
Let us start by considering the correlation ZAZB

� �
in ϱ,

τ and γ. The values are equal in all three states,

ZAZB

� �
ϱ
¼ ZAZB

� �
τ
¼ ZAZB

� �
γ
, and the same holds for the

correlation ZBZC

� �
: Note that these should be large, if ϱ is close

to a GHZ state, as ZAZB is an element of the stabilizer. Using the
general relation ZAZC

� �
≥ ZAZB

� �þ ZBZC

� �� 127 we can use
this to estimate ZAZC

� �
in γ. Due to the marginal conditions, we

have ZAZC

� �
γ
¼ ZA0ZC

� �
τ
, implying that this correlation in τ

must be large, if ϱ is close to a GHZ state. On the other hand, the
correlation XAXBXC

� �
corresponds also to a stabilizer element

and should be large in the state ϱ as well as in τ.
The key observation is that the observables XAXBXC and ZA0ZC

anticommute; moreover, they have only eigenvalues ±1. For this
situation, strong constraints on the expectation values are known:
IfMi are pairwise anticommuting observables with eigenvalues ± 1,
then ∑i Mi

� �2
≤ 144. This fact has already been used to derive

entropic uncertainty relations42,43 or monogamy relations49,50. For
our situation, it directly implies that for τ the correlations
XAXBXC

� �
and ZA0ZC

� �
cannot both be large. Or, expressing

everything in terms of the original state ϱ, if ZAZB

� �þ ZBZC

� ��
1≥ 0 then a condition for preparability of a state in the network is

XAXBXC

� �2 þ
�

ZAZB

� �þ ZBZC

� �� 1
	2

≤ 1: ð6Þ

This is clearly violated by the GHZ state. In fact, if one considers a
GHZ state mixed with white noise,
ϱ ¼ p GHZj i GHZh j þ ð1� pÞ1=8, then these states are detected
already for p > 4/5. Note that using the other observables of the
stabilizer and permutations of the particles, also other conditions
like YAYBXC

� �2 þ 

ZAZB

� �þ ZAZC

� �� 1
�2

≤ 1 can be derived.
Using these techniques as well as concepts based on covariance

matrices28,29 and classical networks23, one can also derive bounds
on the maximal GHZ fidelity achievable by network states. In
fact, for network states

FGHZ ¼ GHZh jϱ GHZj i≤ 1ffiffiffi
2

p � 0:7071 ð7Þ

holds, as explained in Supplementary Note 2. This is a clear
improvement on previous analytical bounds, although it does not
improve a fidelity bound obtained by numerical convex
optimization27.

Cluster and graph states. The core advantage of our approach is
the fact that it can directly be generalized to more parties and
complicated networks, while the existing numerical and analytical
approaches are mostly restricted to the triangle scenario.
Let us start the discussion with the four-qubit cluster state

C4

�� �
: This may be defined as the unique common+1-eigenstate

of

g 1 ¼ XAZB1CZD; g2 ¼ ZAXBZC1D;

g3 ¼ 1AZBXCZD; g4 ¼ ZA1BZCXD:
ð8Þ

For later generalization, it is useful to note that the choice of these
observables is motivated by a graphical analogy. For the square
graph in Fig. 3 one can associate to any vertex a stabilizing
operator in the following manner: One takes X on the vertex i,
and Z on its neighbors, i.e., the vertices connected to i. This
delivers the observables in Eq. (8), but it may also be applied to
general graphs, leading to the notion of graph states46.

If a quantum state can be prepared in the square network, then
we can consider the third order inflated state ξ shown in Fig. 3. In
the inflation ξ, the three observables XB″XD, ZB0XCZD, and
XAYBYD anticommute. These observables act on marginals that
are identical to those in ϱ. Consequently, for any state that can be

Fig. 2 Triangle network and two of its inflations. The first figure
represents the triangle network of Fig. 1, with global state ϱ and parties A, B
and C. Using the same source states (represented by lines of same color,
i.e., yellow, blue and red are associated to the sources ϱa, ϱb and ϱc of Fig. 1
respectively) and same local channels, one can build the so-called inflated
state τ with parties X, X0 (X= A, B, C). This state is separable with respect
to the ABCjA0B0C0 partition. The state γ is build similarly, but with a rewiring
of the sources, leading to an inflated state that is in general not separable
and different from τ. Still, this procedure imposes that several marginals of
ϱ, τ and γ are equal, e.g., ϱAC ¼ τA0C0 ¼ γA0C. The parties of γ are labeled in
the same way than τ. Note that this is a simplified version of Fig. 1, i.e., that
the local channels and the randomness source are not depicted but implied.
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prepared in the square network, the relation

XBXD

� �2 þ ZBXCZD

� �2 þ XAYBYD

� �2
≤ 1 ð9Þ

holds. All these observables are also within the stabilizer of the
cluster state, so the cluster state violates this inequality with an lhs
equal to three. This proves that cluster states mixed with white
noise cannot be prepared in the square network for p > 1=

ffiffiffi
3

p �
0:577: Again, with the same strategy different nonlinear witnesses
like XAXC

� �2 þ YAYBZCZD

� �2
≤ 1 for network entanglement in

the square network can be derived. This follows from the second
inflation in Fig. 3. Furthermore, it can be shown that states with a
cluster state fidelity of FC4

> 0:7377 cannot be prepared in a
network. The full discussion is given in Supplementary Note 3.
This approach can be generalized to graph states. As already

mentioned, starting from a general graph one can define a graph
state by stabilizing operators in analogy to Eq. (8). The resulting
states play an eminent role in quantum information processing.
For instance, the so-called cluster states, which correspond to
graphs of quadratic and cubic square lattices, are resource states
for measurement-based quantum computation51 and topological
error correction52,53.

Applying the presented ideas to general graphs results in the
following: If a graph contains a triangle, then under simple and
weak conditions an inequality similar to Eq. (6) can be derived.
This then excludes the preparability of noisy graph states in any
network with bipartite sources only. Note that this is a stronger
statement than proving network entanglement only for the
network corresponding to the graph, as was considered above for
the cluster state.
At first sight, the identification of a specific triangle in the

graph may seem a weak condition, but here the entanglement
theory of graph states helps: It is well known that certain
transformations of the graph, so-called local-complementations,
change the graph state only by a local unitary transformation54,55,
so one may apply these to generate the triangle with the required
properties. Indeed, this works for all cases we considered (e.g., the
full classification up to twelve qubits from refs. 56–58) and we can
summarize:

Observation 1. (a) No graph state with up to twelve vertices can be
prepared in a network with only bipartite sources. (b) If a graph
contains a vertex with degree d ≤ 3, then it cannot be prepared in
any network with bipartite sources. (c) The two- and three-
dimensional cluster states cannot be prepared in any network.

In all the cases, it follows that graph states mixed with white
noise, ϱ ¼ p Gj i Gh j þ ð1� pÞ1=2N are network entangled for
p > 4/5, independently of the number of qubits. A detailed
discussion is given in Supplementary Note 3.
As mentioned above, the exclusion of noisy graph states from

the set of network states with bipartite sources holds for all graph
states we considered. Therefore, we conjecture that this is valid
for all graph states, without restrictions on the number of parties.
We note that similar statements on entangled multiparticle

states and symmetric states were made in ref. 26. However, we
stress that the methods to obtain these results are very different
from the anticommuting method used here, and that Observation
1 is only an application of this method (see section on the
certification of network links for another use). Furthermore, the
result of ref. 26 concerning permutationally symmetric states only
holds for pure states, whereas in the next section we will see that
it holds for all permutationally symmetric states.
A natural questions that arises is whether this method might be

useful to characterize correlations in networks with more-than-
bipartite sources. While this still needs to be investigated in
details, examples show that the answer is most likely positive:
Using the anticommuting relations, we demonstrate in Supple-
mentary Note 3 that some states cannot be generated in networks
with tripartite sources.

Permutational symmetry. Now we consider multiparticle
quantum states of arbitrary dimension that obey a permutational
or bosonic symmetry. Mathematically, these states act on the
symmetric subspace only, meaning that ϱ=Π+ϱΠ+, where Π+ is
the projector on the symmetric subspace. For example, in the case
of three qubits this space is four-dimensional, and spanned by the
Dicke states D0

�� � ¼ 000j i, D1

�� � ¼ ð 001j i þ 010j i þ 100j iÞ= ffiffiffi
3

p
,

D2

�� � ¼ ð 011j i þ 101j i þ 110j iÞ= ffiffiffi
3

p
, and D3

�� � ¼ 111j i.
The symmetry has several consequences36,39. First, if one has a

decomposition ϱ ¼ ∑kpk ψk

�� �
ψk

� �� into pure states, then all ψk

�� �
have to come from the symmetric space too. Since pure
symmetric states are either fully separable



like D0

�� ��
or genuine

multiparticle entangled


like D1

�� ��
, this implies that mixed

symmetric states have also only these two possibilities. That is,
if a mixed symmetric state is separable for one bipartition, it must
be fully separable.
Second, permutational invariance can also be characterized by

the flip operator FXY ¼ ∑ij ij
�� �

XY
ji

� ��
XY

on the particles X and Y.
Symmetric multiparticle states obey ϱ= FXYϱ= ϱFXY for any pair
of particles, where the second equality directly follows from
hermiticity. Conversely, concluding full permutational symmetry
from two-particle properties only requires this relation for pairs
such that the FXY generate the full permutation group. Finally, it
is easy to check that if the marginal ϱXY of a multiparticle state ϱ
obeys ϱXY= FXYϱXY, then the full state ϱ obeys the same
relation, too.
Armed with these insights, we can explain the idea for our

main result. Consider a three-particle state with bosonic
symmetry that can be prepared in a triangle network, the
inflation γ from Fig. 2 and the reduced state γABC in this inflation.
This obeys γABC= FXYγABC for XY equal to AB or BC. Since
FABFBCFAB= FAC, this implies that the reduced state τAC0 obeys
τAC0 ¼ FAC0τAC0 and hence also the six-particle state τ. Moreover,
τ also obeys similar constraints for other pairs of particles (like
AB, BC, A0B0 and B0C0) and it is easy to see that jointly with AC0

these generate the full permutation group. So, τ must be fully
symmetric. But τ is separable with respect to the ABCjA0B0C0

bipartition, so τ and hence ϱ= τABC must be fully separable.

Fig. 3 Square network and two of its inflations. Similar to the triangle
network of Fig. 2, the state τ is generated using two copies of the sources
and channels used to generate ϱ. Then, one goes to a higher-order inflation
by using three copies of the sources and the local channels. By rewiring one
obtains the inflated state ξ. Again, one has several equalities between the
marginals of ϱ, τ, and ξ. Parties with a link of same color are connected by
an identical source, as in Fig. 2. The labels X, X0 , X″ (X=A, B, C) denote the
parties of the states.
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The same argument can easily be extended to more complex
networks, which are not restricted to use bipartite sources and
holds for states of arbitrary local dimension. We can summarize:

Observation 2. Consider a permutationally symmetric state of N
parties. This state can be generated by a network with (N− 1)-
partite sources if and only if it is fully separable.
We add that this Observation can also be extended to the case

of fermionic antisymmetry, a detailed discussion is given in the
Supplementary Note 4.

Certifying network links. For the technological implementation
of quantum networks, it is of utmost importance to design cer-
tification methods to test and benchmark different realizations.
One of the basic questions is, whether a predefined quantum link
works or not. Consider a network where the link between two
particles is absent or not properly working. For definiteness, we
may consider the square network on the lhs of Fig. 3 and the
parties A and C. In the second inflation τ we have for the mar-
ginals τAC ¼ τA0C . This implies that the observables XAXC and
ZAZC on the original state ϱ correspond to anticommuting
observables on τ, so we have XAXC

� �2 þ ZAZC

� �2
≤ 1. Using

higher-order inflations, one can extend and formulate it for
general networks: If a state can be prepared in a network with
bipartite sources but without the link AC, then

�
XAXCPR1

�2 þ �
YAYCPR2

�2 þ �
ZAZCPR3

�2
≤ 1: ð10Þ

Here the PRi
are arbitrary observables on disjoint subsets of the

other particles, Ri \ Rj ¼ ;. If a state was indeed prepared in a
real quantum network then violation of this inequality proves that
the link AC is working and distributing entanglement. In Sup-
plementary Note 5, details are discussed and examples are given,
where this test allows to certify the functionality of a link even if
the reduced state ϱAC is separable.

Discussion
We have provided an analytical method to analyze correlations
arising in quantum networks from few measurements. With this,
we have shown that large classes of states with symmetries,
namely noisy graph states and permutationally symmetric states
cannot be prepared in networks. Moreover, our approach allows
to design simple tests for the functionality of a specified link in a
network.
Our results open several research lines of interest. First, they

are of direct use to analyze quantum correlations in experiments
and to show that multiparticle entanglement is needed to generate
observed quantum correlations. Second, they are useful for the
design of networks in the realistic setting: For instance, we have
shown that the generation of graph states from bipartite sources
necessarily requires at least some communication between the
parties, which may be of relevance for quantum repeater schemes
based on graph states that have been designed59. Moreover, it has
been shown that GHZ states provide an advantage for multi-
partite conference key agreement over bipartite sources60, which
may be directly connected to the fact that their symmetric
entanglement is inaccessible in networks. Finally, our results open
the door for further studies of entanglement in networks, e.g.,
using limited communication (first results on this have recently
been reported61) or restricted quantum memories, which is
central for future realizations of a quantum internet.

Data availability
Data sharing not applicable to this article as no data sets were generated or analyzed
during the current study.

Code availability
The codes used for this study are available from the corresponding author upon
reasonable request.
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