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Abstract
In this thesis, we consider a variety of problems where solutions must be
found while adhering to some kind of restriction. We measure the perfor-
mance of our algorithms by comparing them to optimal solutions.

Online algorithms face an optimization problem and must find a solution
with incomplete knowledge of the input. Their performance is measured
using the competitive ratio. For a minimization problem this is the maximum
(or supremum) of the value achieved by the algorithm divided by the optimal
value over all instances.

Offline approximation algorithms must find a solution in polynomial time
and are compared to an optimal algorithm using the approximation ratio that
is defined analogously to the competitive ratio.

Finally, when allocating goods or chores we can define the price of fairness
which compares the welfare of an allocation that adheres to some notion of
fairness to the welfare of an optimal allocation.

In the buffer minimization problem with conflicts we are given a graph
where the nodes represent processors and the edges represent conflicts. At
any time tasks may arrive on a processor adding to this processor’s work-
load. Each processor stores its workload in a separate input buffer. The goal
is to find a scheduling strategy that minimizes the maximum used buffer size
of all processors. We introduce a new model called the flow model, where
load may not arrive in blocks but instead arrives at a fixed rate.

We discuss a variety of results, including tight or almost tight competitive
ratios for both the original and the flow model on the path with up to five
machines. We also slightly improve the lower bound on the path with m
machines and discuss algorithms with resource augmentation that achieve
good results on general graphs.

In the discrete bamboo garden trimming problem, we are given a set of n
bamboo that grow at rates v1, . . . , vn per day. Initially, the height of all plants
is zero. Each day a robotic gardener cuts down one bamboo to height zero.
The goal is to design a trimming schedule such that the height of the tallest
bamboo that is ever achieved is minimized. For this problem we improve
the approximation ratio to 7

5 using a reduction to the pinwheel-scheduling
problem. We also consider the continuous version of the problem, where the
gardener travels between plants in a metric space, and find algorithms with
constant approximation ratios for the case where this metric is a star graph.

Previous work has discussed the fair allocation of indivisible and divis-
ible goods as well as divisible chores and we fill a gap in the literature by
considering the problem of allocating contiguous blocks of indivisible chores
fairly. We show the existence of certain types of fair allocations and find the
prices of fairness for the commonly used notions of fairness.
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Zusammenfassung
In dieser Dissertation untersuchen wir Probleme, deren Lösungen unter gewis-
sen Einschränkungen gefunden werden müssen. Die Qualität unserer Algo-
rithmen messen wir durch den Vergleich mit der optimalen Lösung.

Online-Algorithmen sind mit einem Optimierungsproblem konfrontiert
und müssen Entscheidungen treffen, ohne vollständige Kenntnis der Eingabe
zu haben. Die Informationen werden dem Algorithmus erst nach und nach
übermittelt. Wir messen die Qualität eines Online-Algorithmus mithilfe des
Kompetitivitätsverhältnisses. Dies ist das Maximum (oder Supremum) des Ver-
hältnisses zwischen dem Wert des Algorithmus und dem optimalen Wert
über allen Eingaben.

Offline-Approximations-Algorithmen müssen eine Lösung in polynomieller
Zeit finden und werden ebenfalls mit einem optimalen Algorithmus ver-
glichen. Dieser Vergleich wird Approximationsverhältnis genannt und ist ana-
log zum Kompetitivitätsverhältnis definiert.

Wenn wir Güter oder Aufgaben verteilen, dann definieren wir den Preis
der Fairness. Dieser vergleicht das von einer fairen Verteilung erzielte Allge-
meinwohl mit dem von einer optimalen Verteilung erreichten.

Im Buffer-Minimierungsproblem mit Konflikten ist ein Graph gegeben,
in dem die Knoten Prozessoren und die Kanten Konflikte darstellen. Jeder-
zeit kann Last auf den Knoten ankommen, die verarbeitet werden muss. Die
Prozessoren speichern diese Last in einem Buffer. Ziel ist es, die Last zu
verarbeiten und dabei die maximal notwendige Buffergröße klein zu halten.

Wir führen hier ein neues Modell, Flow Model genannt, ein und bestim-
men das Kompetitivitätsverhältnis auf einem Pfad mit bis zu 5 Maschinen.
Zusätzlich betrachten wir Algorithmen mit Ressourcenaugmentation auf all-
gemeinen Graphen.

Im diskreten bamboo garden trimming problem wachsen n Bambusse mit
Geschwindigkeit v1, . . . , vn pro Tag. Jeden Tag wird ein Bambus auf Höhe
null geschnitten. Ziel ist es, die Höhe des größten Bambus gering zu hal-
ten. Wir verbessern das Approximationsverhältnis auf den Wert 7/5, indem
wir das Problem auf das pinwheel-scheduling problem zurückführen. Darüber
hinaus betrachten wir die kontinuierliche Version, in der sich der Gärtner
zwischen den Pflanzen bewegt, und finden konstante Approximationsalgo-
rithmen für den Fall, dass die Pflanzen auf einem Sterngraph angeordnet
sind.

In bisherigen Arbeiten wurde die faire Verteilung von teilbaren und un-
teilbaren Gütern sowie von teilbaren Aufgaben behandelt. Wir widmen uns
der Verteilung von unteilbaren Aufgaben und zeigen, wann bestimmte faire
Verteilungen existieren und bestimmen die Preise der Fairness für dieses
Problem.
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Chapter 1

Introduction

Let us assume we are running a restaurant. It is a quiet and cozy place at the
edge of town set in a beautiful bamboo garden. Inside we might imagine a
set of pinewood tables, separated by woven bamboo panels, some soft music
and an aquarium in the background. Today’s menu consists of a few Asian
specialties, we particularly recommend the mango duck.

Now that we have set the scene, let us explore some of the mathematical
problems that naturally arise in such a setting.

A group of guests arrives, perhaps a conference of mathematicians, and
we want to serve them food. After going around the table and taking orders
we return to the kitchen and are now faced with the problem of distributing
the orders among the chefs in our kitchen. Some dishes are easy to prepare
while others take more time, and we want to avoid a guest having to wait a
long time for their food.

This is a classic problem in optimization. We need to find a schedule that
minimizes our objective function which in this case is the time when the last
meal finishes being prepared. This problem is also called the job scheduling
problem and in more formal language we describe it as follows.

Given m chefs and n orders with different processing times, allocate the
orders among the chefs in such a way that the makespan, i.e. the time when
the last chef finishes processing their workload, is minimized.

This problem like many other problems considered in optimization, is
NP-hard. This means (assuming P ̸= NP) that it takes a very long time to
calculate the optimal solution. For this reason there has been great interest in
approximation algorithms that provide an approximate solution with short
computation time, i.e. with time polynomial in the size of the input.

We measure the quality of an approximation algorithm using the approx-
imation ratio. For a minimization problem this is the maximum (or supre-
mum) of the value achieved by the algorithm divided by the optimal value
over all instances. For example, this means that a 2-approximation algorithm
is always within a factor of 2 of the optimal value.

A simple approximation algorithm for the job scheduling problem goes
through the jobs one by one and assigns each job to the chef that currently has
the lowest workload. It turns out that this algorithm is a (2− 1

m )-approximation.
Thus the approximation ratio grows arbitrarily close to 2 as the number of
chefs increases.
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One might ask the question how the problem changes if the input, in this
case the set of jobs, is not known to the algorithm in advance, and instead the
jobs are revealed one by one and each job must be assigned immediately after
it is revealed. Here the algorithm needs to make decisions without knowl-
edge of future events that might affect the outcome.

We call this class of algorithms, that have to deal with incomplete infor-
mation about the future, online algorithms. We also say that approximation
algorithms that do have complete information about the input are offline.

When talking about online algorithms we are only interested in the effect
of incomplete information. This means there is no requirement that a solution
must be computed in polynomial time.

We measure the quality of an online algorithm using the competitive ra-
tio. This is again the maximum (or supremum) of the value achieved by the
online algorithm compared to the optimal value over all instances. The def-
inition is identical to that of the approximation ratio. The difference is that
online algorithms are differently restricted.

Fortunately, for the case of job scheduling the algorithm presented above
also works for the online variant of the problem and the approximation ratio
and competitive ratio are the same.

We can partition the world of optimization problems into online and of-
fline problems where in some cases, such as the scheduling problem, both
the online as well as the offline version are meaningful while other problems
are intrinsically online or offline. For example it might be natural to con-
sider most instances of linear programming to be offline while problems like
paging or the secretary problem are fully online.

Now that we have figured out the order in which we need to prepare
the food we instruct our waitress to set the table by placing a pair of chop-
sticks with each guest. Unfortunately we are short on chopsticks, however
our waitress, also a mathematician, still manages to follow our instruction
precisely by placing one chopstick to the left and right of each guest, one
between each pair of guests.

This of course means that, whenever a guest picks up two chop sticks
and eats, his neighbors cannot since at least one of their chop sticks is in use.
Sanitary reservations against the sharing of chopsticks aside, our guests are
now confronted with their very own optimization problem.

As the waiters relentlessly serve plate after plate they must figure out a
schedule that allows them to eat their meals without any guest building up
too large a backlog of uneaten food.

This optimization problem is called the buffer minimization problem with
conflicts. In more formal terms it is described as follows. We are given a graph
where the nodes represent machines and the edges represent conflicts. Each
machine is equipped with a buffer, and at any time workload may arrive in
that buffer that must be processed. However, two adjacent machines on the
graph are not allowed to work at the same time. The goal is to minimize the
maximum buffer size that is needed on any machine to store the unprocessed
workload.
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In this work we are mainly interested in the case where the graph is a
line and present tight bounds on the competitive ratio in small instances of
the problem. We also give a variety of results on larger instances and more
general graphs.

After apologizing for the inconvenience and presenting the guests with
our findings, which hopefully allow them to fully enjoy their dinner, we may
take a break in the bamboo garden outside the restaurant. This garden is
home to a robotic panda gardener, and programming this gardener is another
optimization problem.

In the bamboo garden trimming problem we are given a set of bamboo that
grow at a certain rate each day. Each day our gardener may choose one of the
bamboo and cut it down to the ground. Our goal is to find a schedule that
keeps the maximum height that any bamboo reaches as low as possible.

We improve the approximation ratio for this problem. We also consider
the continuous variation of the problem where the gardener travels between
the bamboo and cuts down a plant whenever it reaches it. We find algo-
rithms with constant approximation ratios for the case where the bamboo
are planted in a star shape, meaning the metric space the gardener travels in
is a star graph.

Finally the day comes to an end and after all the guests have left, we have
to clean up the place for the next day. This means that a variety of chores need
to be assigned among our workers. This time we are less concerned with the
time these tasks take or optimizing the results. Instead we care about the
happiness of our workers. The workers may have preferences for different
tasks and for example might prefer washing dishes to cleaning the floor or
vice versa. Some are also more motivated than others.

Our first approach might be to simply maximize overall welfare, which
means minimizing the total disutility caused by the chores. However, this
might mean allocating all chores to our most motivated workers while others
do nothing and although this allocation is optimal, it might be criticized as
extremely unfair.

To solve this dilemma we consider different commonly used notions of
fairness such as envy-freeness, equitability and proportionality. The trade-
off between optimizing welfare and fairness is called the price of fairness.
For a given problem and in particular when assigning chores, the price of
fairness is calculated as the disutility of an optimal fair allocation divided by
the disutility of an optimal allocation. If we were allocating goods instead,
we would consider welfare and use the inverse of this ratio.

Many variations of this problem have already been considered in previ-
ous works and we fill a gap in the literature by considering the specific case
where we assume the chores are positioned in some order on a line and we
are to assign contiguous blocks of indivisible chores. In our setting the contiguity
requirement might be explained by locality. For example, we might not want
to assign cleaning in the kitchen to the same person that goes on a shopping
trip.
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We prove the existence of fair allocations for this problem and calculate
the price of fairness for the different notions of fairness.

After considering all of these topics which are discussed in the following
chapters we should be well equipped to handle all challenges thrown at us
by the food service industry. And if that is not the case, at least we hopefully
have learned something interesting about optimization algorithms.

1.1 Preliminaries

An optimization problem P consists of a set of inputs I and a cost function
C. Associated with an input I ∈ I is a set of feasible solutions F(I) and each
solution J ∈ F(I) is assigned a positive real number C(I, J) called its objective
function value.

There are maximization and minimization problems, however in this work
we mostly consider minimization problems. Then the objective function
value is the cost associated with the solution.

Given any input I, an algorithm ALG produces a solution ALG[I] ∈ F(I)
and the cost of this solution is denoted as ALG(I) = C(I, ALG[I]). An opti-
mal algorithm OPT finds the optimal solution for any input, i.e. for all feasi-
ble inputs I we have

OPT(I) = min
J∈F(I)

C(I, J).

An algorithm is called a c-approximation algorithm for a minimization
problem P if for all feasible inputs I we have

ALG(I) ≤ c · OPT.

Analogously, for a maximization problem we require ALG(I) ≥ c · OPT.
In both cases the approximation factor is greater than or equal to 1 with lower
values corresponding to a better approximation.

We differentiate between online and offline algorithms. Offline algorithms
are given full information about the input before determining a solution.

When considering offline algorithms, we are primarily concerned with
problems where calculating the optimal solution is NP-hard. We require the
offline approximation algorithm to calculate its solution in time polynomial
to the size of the input.

Online algorithms, on the other hand, do not have full access to the input
in the beginning. Instead, the input is revealed to the algorithm over time (or
in a list). This means the algorithm has to make decisions with incomplete
information.

An online algorithm is called c-competitive for a minimization problem
P if for all inputs I we (again) have

ALG(I) ≤ c · OPT
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For online algorithms we do not impose any requirements on computation
efficiency. This definition is the same as for approximation algorithms but
the algorithms are differently restrained.

We now formally define the three problems considered in this work.

Buffer management with conflicts In the buffer minimization problem with
conflicts we are given a graph G = (V, E) where the nodes V represent pro-
cessors and the edges E represent conflicts. At certain times tasks arrive that
need to be processed, and each processor stores this workload in an input
buffer. By numbering the processors from 1 to m, the state of the system can
then be described by a load vector a = (a1, . . . , am). Load vectors are never
negative.

Time runs continuously and tasks may arrive at any time. The speed of a
machine describes how fast the machine can reduce its workload. A machine
that runs at speed s for a duration of length T will reduce its workload by sT
if no load arrives during that time period. At any time the algorithm may
select an independent set of vertices in the graph and run the machines on
these vertices at speed 1. In other words, two adjacent machines may not run
at the same time.

We also consider a variation where machines may run at fractional speeds
as long as two adjacent machines run at a combined speed of at most 1. This
means two adjacent machines may share processing power and both work at
speed 1

2 instead of just one machine working at speed 1 at any given time.
For bipartite graphs, and in particular the line graph, these two models

are equivalent. We can achieve fractional speeds in the original model by
rapidly switching between different independent sets.

We also introduce a variation of task arrivals called the flow model. In
the flow model, load arrives on machines at a certain rate. When load arrives
on a machine at a rate of r for a period of length T and that machine is not
running, its workload increases by rT. Load arrives at a rate of at most 1 in
the flow model.

Bamboo garden trimming In the discrete bamboo garden trimming prob-
lem (BGT), first introduced by Gasieniec et al. [51], we are given a set of n
bamboo that grow at rates v1, . . . , vn per day. We assume that these growth
rates are arranged such that v1 ≥ v2 ≥ · · · ≥ vn. Initially, the height of all
plants is zero. Each day a robotic gardener cuts down one bamboo to height
zero. The goal is to design a trimming schedule such that the height of the
tallest bamboo that is ever achieved is minimized.

In the continuous version of the problem the bamboo are distributed in
some metric space and the gardener needs to travel between the bamboo
to cut them. Cutting is done instantly and the goal is to find a route that
minimizes the maximum height of the bamboos.

Fair allocation of contiguous blocks of indivisible chores Let N = {1, .., n}
be a set of agents and M = {1, ..., m} a set of chores. We assume the chores lie
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on a line in this order. Each agent i has nonnegative disutility di(j) for chore
j.

We assume that the disutilities are additive, which means that di(M′) =
∑j∈M′ di(j) for any agent i and a subset M′ ⊆ M.

An allocation M = (M1, ...., Mn) is a partition of all chores into n bundles
so that agent i receives bundle Mi. The allocation is contiguous if each Mi
forms a contiguous block of items on the line.

The utilitarian social cost of an allocation is defined as ∑i∈N di(Mi) and the
egalitarian social cost is maxi∈N di(Mi).

We now define the notions of fairness that we consider in this thesis. An
allocation M = (M1, ...., Mn) is

• proportional if di(Mi) ≤ 1
n di(M) for all i ∈ N.

• equitable if di(Mi) = dj(Mj) for all i, j ∈ N.

• envy-free if di(Mi) ≤ di(Mj) for all i, j ∈ N.

The price of fairness (i.e., the price of proportionality, respectively envy-
freeness, equitability) is the minimal social cost achievable in fair (propor-
tional, respectively envy-free, equitable) allocations divided by the minimal
social cost achievable in arbitrary allocations. If both are 0, we define the
price of fairness to be equal to 1. The price of fairness is only defined if a fair
allocation exists, therefore we only consider such instances.

1.2 Structure and publications

The following publications are the foundation of this thesis:

[58] Felix Höhne, Sören Schmitt, and Rob van Stee. SIGACT news online
algorithms column 35: 2019 in review, SIGACT News 50, 2019

[59] Felix Höhne, Sören Schmitt, and Rob van Stee. SIGACT news online
algorithms column 35: 2020 in review, SIGACT News 51, 2020

[60] Felix Höhne, Sören Schmitt, and Rob van Stee. SIGACT news online
algorithms column 35: 2021 in review, SIGACT News 52, 2021

[61] Felix Höhne and Rob van Stee. Buffer minimization with conflicts on a
line, FAW, 2020

[62] Felix Höhne and Rob van Stee. Allocating contiguous blocks of indivis-
ible chores fairly, Information and Computation, 2021

[63] Felix Höhne and Rob van Stee. Buffer minimization with conflicts on a
line, Theoretical Computer Science, 2021

In chapter 2 we begin with a survey of contemporary results in the field
of online algorithms. Some of these results are closely related to the topics
discussed in the later chapters, but we also include some themes that have
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been of great interest but are not immediately related to the following chap-
ters. The contents of this chapter is based upon the SIGACT news column
from the years 2019 to 2021 [58, 59, 60] that presents interesting papers taken
from major conferences on a variety of online problems. These surveys have
been created together with Rob van Stee and Sören Schmidt.

Chapter 3 and 4 are devoted to the buffer minimization problem with con-
flicts. Chapter 3 is based on a series of papers published in the proceedings of
the 14-th FAW conference and Theoretical Computer Science [61, 63]. The first
paper provides results on the competitive ratio of the problem on certain line
segments while the second version of the paper considers similar instances
but introduces a new variation of the problem and thus gives results from a
different perspective. Chapter 3 combines both works and presents them in
a cohesive manner. An additional section is added that discusses results that
consider more general graphs than the line graph.

A goal to strive for when considering the buffer minimization problem
with conflicts is a sublinear upper bound on the path with m machines.
Chapter 4 considers a number of candidate algorithms that fell short on this
goal, and presents linear lower bounds for these algorithms.

In chapter 5, we adress a different problem, the bamboo garden trimming
problem. There are two versions of the problem, a discrete and a continuous
one. We improve the approximation ratio in the discrete case and present
results on the star graph in the continuous case. This paper is currently sub-
mitted to WAOA.

Finally, in chapter 6 we discuss the fair allocation of contiguous blocks of
indivisible chores and develop the prices of fairness for this problem under
different notions of fairness. This paper has been published in the journal
Information and Computation [62].

All of these papers have been created working together with my advisor
Rob van Stee.
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Chapter 2

A survey of online algorithms

In online optimization an algorithm faces an uncertain future and must irre-
vocably make decisions with incomplete information about the input. This is
a wide area of research that contains many subcategories and problems such
as scheduling, matching, bin packing and many more.

Research on each of these problems is very active and many interesting
papers are published every year.

In this chapter we present a selection of papers from this field that were
written in the years 2019 to 2021. Since research has been very active, we
have made a selection by choosing papers that have been published in major
conferences and highlighting works that are closely related to our work.

In this work we focus mainly on problems in the realm of scheduling, but
of course there are many other active and interesting topics to be found in
online optimization. The papers discussed here and similar presentations on
different topics can be found in the yearly SIGACT News column on online
optimization.

We begin by examining a topic that has recently seen a lot of progress and
is also closely related to our research.

2.1 The p-processor cup game

The p-processor cup game is a problem that naturally arises in the context of
processor scheduling. In this game, a filler distributes up to p units of water
among n cups. Then an emptier selects p cups and removes up to one unit of
water from each. The goal is to minimize the amount of water in the fullest
cup which is called the backlog. We can also think of p processors working
on one of n tasks each while p new units of work may arrive during each
slice of time.

For the single processor cup game the GREEDY algorithm (that always
chooses the highest cup) is O(log n) competitive. Positive results for the
problem mostly considered a variation of the problem which uses resource
augmentation where the filler is restricted to distributing (1 − ε)p units of
water in each step with at most 1 − δ of the water going into a single cup.

In STOC 2019, Bender et al. [14] consider this version of the problem. They
introduce a randomized algorithm called the smoothed greedy algorithm.

This algorithm first inserts a random quantity rj ∈ (0, 1) into each cup
j. Afterwards the algorithm behaves like GREEDY with one exception. If
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any of the the highest cups contains less than one unit of load, the algorithm
does not remove any load from these cups. This ensures that the randomized
quantities that differentiate cups of similar loads remain intact.

This small amount of randomization greatly improves the performance
of the algorithm on the single processor cup game and achieves backlog at
most O(k) for any k ≥ Ω(log ε−1) with probability at most 1−O(2−2k

). They
then present a simple analysis of the deterministic greedy algorithm for the
multi-processor cup game which establishes a backlog of O(ε−1 log n) as long
as d > 1/poly(n).

Using a more intricate randomized algorithm they achieve backlog O(1
ε log log n)

with probability 1 − 1
poly(n) as long as ε and δ satisfy reasonable constraints.

Additionally, they make the interesting observation that the backlog drops
to a constant with high probability if p is large enough. The algorithm main-
tains backlog 3 after any given step with probability O(1 − O(exp(ε2p))).
This means if ε is constant this brings the probability of the backlog being
super-constant down to exponentially small in p, whereas in the single pro-
cessor cup game no bounds on constant backlog can be achieved with better
than constant probability.

In SODA 2020, William Kuszmaul [82] considers the version of the prob-
lem without resource augmentation. He shows that GREEDY (the algorithm
that always chooses the highest p cups) is O(log n) competitive and this is
optimal for n ≥ 2p. This is shown using an intricate system of invariants for
the p-processor cup game.

Then he again considers the smoothed greedy algorithm and shows that
this algorithm achieves backlog O(log p+ log log n) with probability 1− 2−polylog(n)

however, in the case of the vanilla cup game this only holds for 2polylog(n)

steps. For fixed p and n large enough this becomes O(log log n) which is
asymptotically optimal. This result doubles as a smoothed analysis of the
deterministic greedy algorithm.

In SODA 2021, Michael Bender and William Kuszmaul [16] follow up
on these results once more and show that randomized algorithms can still
achieve a backlog of O(log log n) even if the adversary is not completely
oblivious. It is known that this is not possible against a fully adaptive ad-
versary. The adaptive adversary considered in this paper knows the fills
of every cup which contains more than three units of water but not of the
cups containing less than three units. The algorithm dynamically switches
between a "greedy" mode that prevents the adversary from quickly building
up the fill and a prescheduled mode that slowly leaks water from the cups
while obscuring the fills from the adversary. The second mode prevents the
filler from building up backlog over a long period of time.

In ITCS 2021, William Kuszmaul and Alek Westover [84] introduce a vari-
ation of this problem where p changes each round. They show that this ver-
sion of the problem is significantly more difficult. The optimal backlog is now
θ(n). There is a filling strategy that yields backlog Ω(n1−ε) in quasipolyno-
mial time and even straightforward randomization with a "greedy-like" al-
gorithm does not improve this result. A "greedy-like"-algorithm chooses the
fullest cup whenever possible, but uses randomization to break ties.
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Furthermore, in STOC 2021 William Kuszmaul [83] considers an alter-
nate objective function called tail size, which is the number of cups with fill
more than 2. They present a randomized algorithm that achieves tailsize
Õ(log n+ p) with high probability for poly n steps. The algorithm introduces
a randomized offset on the fill of the cups as well as a random priority on the
cups. If all cups have low fill, the algorithm chooses cups based on priority
while maintaining the offset. If there are cups with high fill then the cups are
chosen greedily. They also consider games with more than poly n steps and
show that no monotone memoryless emptying algorithm can achieve a good
guarantee in this case. However, a small resource augmentation of 1/poly n
is sufficient to overcome this barrier.

2.2 Scheduling

While the problems presented in the previous chapter were closely related to
our research, there are many more interesting topics that fall into the area of
online scheduling. In this chapter we present a selection of recent papers that
fall into this category.

One concept that naturally arises in the area of scheduling is the idea of
deadlines. For example, if we aim to maintain a certain height among the
bamboo in a garden then whenever we cut a bamboo we are given a deadline
and we need to cut the bamboo again before this deadline expires. So in this
context we are dealing with hard deadlines that must be adhered to. In other
problems it is also possible to miss a deadline as long as the value gained
by missing this deadline offsets the cost. We begin the survey of scheduling
with two problems that revolve around this idea.

In the online packet scheduling problem with deadlines, packets arrive
over time on a network switch and need to be sent across a link. Each packet
comes with a deadline and a weight. Since only one packet can be transmit-
ted per timeslot, some of the packets will inevitably expire and be lost. The
goal is to find a schedule that maximizes the weights of packets sent across
the link. The problem has been known to have a lower bound of ϕ ≈ 1.618
on the competitive ratio. In SODA 2019, Vesely et al. [110] give an algorithm
that matches the lower bound. This ϕ-competitive algorithm is based on the
concept of the plan, which at any given time t, is the maximum-weight subset
of pending packets that can be feasibly scheduled in the future (if no other
packets arrive). For each packet p in the plan P at time t there is a substi-
tute packet sub(P, p) which gets scheduled in the plan, if p gets scheduled at
time t. Greedily scheduling the heaviest pending packet may not be optimal,
since its substitute may be small. Both the weight of the packet and its sub-
stitute should be considered. The algorithm schedules p at time t such that
wp + ϕw(sub(P, p)) is maximized. This guarantees ϕ-competitiveness, but
only in certain instances in which a property called slot-monotonicity holds.

Let minwt(P, τ) be the minimum weight of a packet that can be scheduled
in some slot between the current time and a time slot τ. Slot monotonicity
holds if for a fixed τ, minwt(τ) is monotone increasing as t goes from 0 to
τ. The algorithm then increases weights and decreases deadlines forcing this
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property to hold. These changes get accounted for in the (very technical)
analysis.

In SPAA 2020, Jamalabadi et al. [72] considered an admission control
problem on parallel machines. Jobs with deadlines arrive online and need
to be assigned to a machine (potentially starting only later) or discarded im-
mediately. The goal is to maximize the total size of the accepted jobs. Of
course, the schedule must be such that all accepted jobs complete by their
deadlines.

The authors show that if each job has a small amount of slack, it is possible
to design a nearly optimal deterministic online algorithm. Here a slack of ε
means that for a job with size p, deadline d and release date r, we always
have d ≥ (1 + ε)p + r. The paper first gives a lower bound. The design of
the algorithm is then based on this lower bound construction. This is the
first such result which holds for parallel machines and does not require job
preemption or migration.

It is sometimes possible to handle a variety of seemingly disparate prob-
lems with the same algorithm. In ICALP 2021, Marcin Bienkowski et al. [19]
present an algorithm for minimizing average completion time in various on-
line scheduling problems. Their algorithm executes a routine MIMIC(γ, ω),
where γ is a parameter characteristic to the scheduling problem and ω con-
trols an initial delay.

In the deterministic version there is no initial delay, so ω = 0. For the
randomized version, ω is first chosen uniformly at random from the range
(−1, 0] and then MIMIC(γ, ω) is executed. Their routine works by computing
and later executing auxiliary schedules, each optimizing a certain function on
an already seen prefix of the input.

They classify scheduling problems as γ-resettable if they obey three re-
strictions. These problems have to allow delayed execution, so if the execu-
tor at any time t is in the initial state, it can execute an arbitrary auxiliary
τ-schedule (so a schedule of length τ) in the time interval [t, t + τ). The sec-
ond restriction is that if the executor executed a τ-schedule from the initial
state, then it must be possible to reset the executor using at most extra γ · τ
time. Lastly, the value of min(I) (the earliest time at which OPT may com-
plete some job), is required to be learned by an online algorithm at or before
time min(I) and additionally they require min(I) > 0.

The authors then show that MIMIC achieves a deterministic competitive
ratio of 3+ γ and a randomized one of 1+ (1+ γ)/ ln(2+ γ) for γ-resettable
scheduling problems.

Then they observe that three well-known problems are γ-resettable. In
the traveling repairperson problem (TRP), where requests arrive in time at
points of a metric space and need to be serviced by a server that moves at
constant speed, the goal is to minimize the sum of all completion times. For
the dial-a-ride problem (DARP), where the requests consist of a source and a
destination, the goal is to transport an object between these two points. Here
the server may carry a fixed number of objects simultaneously. The authors
observe that TRP and DARP are 1-resettable and hence, MIMIC improves the
best known deterministic upper bounds for TRP and DARP from 5.14 to 4
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and the randomized upper bounds from 3.641 to 2.821. For the scheduling
problem on m unrelated machines, where weighted jobs arrive online, the
goal is to minimize the weighted sum of completion times. This problem
is 0-resettable. MIMIC implies a deterministic upper bound of 3 (previously
best known was 4) and a randomized upper bound of 2.443 (previously best
known was 2.886). It is worthy to note that their results apply to many varia-
tions of these mentioned problems. For example, for the scheduling problem
on unrelated machines their algorithm is still applicable if preemption is al-
lowed or if there exist precedence constraints.

The next papers picks up on the notion of precedence constraint schedul-
ing. Jobs arrive online, each with processing time and weight, and need to
be scheduled on one of m machines. In the case of unrelated machines, the
processing time of a job may be different for each machine.

Precedence constraints are given by a partial order ≺ between jobs. For
jobs j and j′ with j ≺ j′ job j′ may not be started until j is finished. Naturally,
this partial order should respect release dates.

In ICALP 2019, Naveen Garg et al. [50] consider the online problem of
scheduling jobs on identical machines with precedence constraints. In the
case of identical machines, the processing time of a job is the same for every
machine. Furthermore, the algorithm is non-clairvoyant, meaning it does not
know the processing time of a job before it is finished. Garg et al. give a 10-
competitive algorithm for minimizing the total weighted completion time.

Let It be the arrived jobs that can be scheduled and Jt all arrived jobs in-
cluding the ones that can not be scheduled due to precedence constraints.
This means It ⊆ Jt. The processing time among the jobs in It is deter-
mined using a convex program that maximizes the weighted Nash welfare
∑Jt wj log Rj where Rj is the virtual rate of a job regardless whether it can cur-
rently be run. Jobs can then "donate" their allocated time to some preceding
job in It. This can be solved using a Eisenberg-Gale-type convex program.

They then extend this result to an O(1/ε)-competitive algorithm for min-
imizing the average weighted flow time. This requires a (1+ ε)-speedup and
no-surprises assumption, meaning when a job j is released, all jobs having
a precedence relationship to j are also released at the same time. That is, all
jobs in each connected component of precedence constraints have the same
release date. This assumption is shown to be necessary.

We conclude this section by reviewing two more scheduling papers. The
first one considers flow time optimization on a single machine and the second
considers the makespan on two-dimensional machines.

In the flow time scheduling problem, jobs arrive on a single machine and
the goal is to minimize the weighted sum over all jobs of the difference be-
tween release and completion time. Preemption is possible. The best known
algorithms for this problem are O(log W), O(log P) and O(log D) competi-
tive where P, D, W are the maximum ratios of processing time, weights and
density which is processing time divided by weight. These algorithms imme-
diately degrade to a polynomial factor if the processing times are distorted
by a factor up to µ even if µ = 1 + ε. Yossi Azar et al. [6] in STOC 2021
introduce algorithms that are robust when facing such distortion.
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In ICALP 2020, Cohen et al. [35] consider online 2D load balancing. Two-
dimensional vectors arrive and need to be assigned to two-dimensional ma-
chines. The goal is to minimize the makespan, which is defined as the max-
imum load of any machine in any dimension. (The load of a machine in
dimension i is the sum of the i-th entries of the vectors assigned to this ma-
chine.) This can of course be seen as a special case of vector scheduling,
which has already been (asymptotically) resolved. However, it is also a gen-
eralization of the widely studied online load balancing problem. The authors
argue that this is an important case to study as it models the case where re-
sources of two types are available and we try to minimize their usage.

First, they show that (a straightforward generalization of) the classical
load balancing algorithm has a competitive ratio of exactly 8/3. This is done
by analyzing reachable states for priority algorithms [26], which allows us
to essentially restrict our attention to two machines. In the analysis, the pair
of machines considered needs to be selected carefully, and it is therefore not
simply a matter of analyzing an algorithm which only has two machines in
the first place.

For the case where OPT is known, the authors give a best fit-type algo-
rithm with competitive ratio exactly 9/4. (For one dimension, the best known
result for this problem is 3/2.) This algorithm works by balancing between
the two dimensions and minimizing the difference in their loads subject to
the constraint that the goal competitive ratio of 2.25 is maintained. They fur-
ther analyze First Fit and show that it has competitive ratio 2.5 for known
OPT and 2.89 for unknown OPT (by maintaining a guess for OPT), beating
the simple upper bound of 3 achieved by a greedy algorithm.

Finally, they give an existence result for fixed dimension d, showing that
it is (in theory) possible to give a deterministic online algorithm with com-
petitive ratio arbitrarily close to cd, the optimal competitive ratio against the
fractional optimal solution. It is interesting that this can be achieved, espe-
cially given that cd is not actually known. As the authors stress, actually
constructing the algorithm (or to be precise, constructing the decision tree
that it needs) requires extremely large, though polynomial for fixed d and ε,
running time.

2.3 Advice and predictions

Recently, increased attention has been given to the augmentation of online al-
gorithms with advice. This advice may come in the form of machine learned
predictions. In many cases these predictions allow an algorithm to perform
much better than an algorithm that does not have access to such predictors,
and in particular it may allow such algorithms to break strong lower bounds
in a variety of problems.

The performance of an algorithm that has access to predictions is im-
pacted by the quality of the prediction. When given good but not perfect
predictions, an algorithm with advice may outperform any algorithm that
does not have access to any advice. However, it is also important to consider
how fast the performance of an algorithm degrades when given bad or even
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adversarial advice. In particular it may be possible that an algorithm starts
to perform worse than a regular algorithm if the quality of the advice is bad
enough.

We begin the survey of online algorithms with advice by presenting two
papers that particularly emphasize how the latter phenomenon may be avoided
by designing algorithms that are robust against prediction errors.

In SPAA 2021, Sungjin Im et al. [69] consider non-clairvoyant schedul-
ing with predictions that may be erroneous and even adversarial. Non-
clairvoyance means that the size of a job is only known when it completes.
This of course makes things very difficult for an online algorithm. Previ-
ous results on this problem by Manesh Purohit et al. [95] were rather pes-
simistic. The authors show that a new measure of prediction quality can
be used to obtain better results. Prediction errors that satisfy monotonicity
(if more job sizes predicted are correct, the error decreases) and a Lipschitz
condition (predictions can only be considered good if their associated opti-
mal schedule is close to the true optimal schedule) give better guarantees.
It is now possible to obtain an algorithm that is O(1/ε)-robust and (1 + ε)-
consistent in expectation. Consistency means that the performance of the
algorithm improves with good predictions and robustness means that the
algorithm gracefully handles bad predictions.

The algorithm works by repeatedly sampling a small subset of the re-
maining jobs and running half of them to completion (it may take too long to
wait until all jobs complete). This is used to obtain an estimate of the median
job size. Then, it samples some more jobs in order to estimate the error of the
predictions, but caps their running time to avoid spending too long here.

In ITCS 2020, Spyros Angelopolous et al. [2] introduced a framework for
online computation with untrusted advice. The next year in ITCS 2021, Spy-
ros Angelopolous [1] adapts this framework to the online search or cow-path-
problem. In this version of the problem, the cow is given a hint about the lo-
cation of the destination. There are two competitive ratios to consider, one for
the case where the hint is true, called consistency, and one for the case where
the hint is false, called robustness. The goal is to design an algorithm with a
good tradeoff between these two competitive ratios which means looking for
Pareto-optimal algorithms.

In a geometric strategy with base b the algorithm walks distance bi in a di-
rection along the line, alternating between the left and right side of the point
of origin. Given a hint that is the direction of the destination from the point
of origin, the distance travelled away from the direction of the hint is scaled
with a parameter d ∈ [0, 1) and this is a Pareto-optimal strategy with consis-
tency 1 + 2( b2

b2−1 + δ b3

b2−1) and robustness 1 + 2( b2

b2−1 +
1
δ

b3

b2−1). Another pos-
sibility is a hint that gives away the exact location. In this case, the algorithm
chooses a geometric strategy with parameter br such that it is r-competitive
in the case of the hint being wrong. This strategy is scaled such that the
destination lies on a point where the algorithm turns around. This avoids
wasted movement and allows for a br+1

br−1 -competitive ratio in the case of the
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hint being correct.
Finally, they give upper and lower bounds in the case that a k-bit string is

given as advice.
The paper from 2020 contains similar results on different problems such

as ski-rental, online bidding, bin packing and list update.

After considering how to deal with adversarial advice we now present a
series of papers that show how machine-learned predictions with only small
errors may be used to overcome established lower bounds in classic online
problems.

We begin with Silvio Lattanzi et al. [85] who, in SODA 2020, consider on-
line scheduling with machine learned predictions. Specifically, they consider
makespan minimization under restricted assignment. This is a special case
of unrelated machines. Jobs arrive one at a time, each annotated with its size
and a subset of m machines it can run on.

In the classical online setting, there is an Ω(log m) lower bound for the
competitive ratio. Lattanzi et al. assign weights to each machine, and frac-
tionally assign jobs according to these weights. Given predictions of these
weights with error η, they construct a O(log η)-competitive fractional assign-
ment. The second step is an online rounding algorithm that rounds any frac-
tional assignment into an integral schedule, losing an O((log log m)3) factor
in the makespan. This is nearly optimal, since they also give an Ω(log log m)
lower bound for online rounding algorithms. Combining both steps yields a
competitive ratio of O(log η(log log m)3).

We continue with a series of papers that examine the online caching prob-
lem. In the online caching problem, a sequence of items arrives one by one,
and we have a cache of fixed size. The goal is to minimize the number of page
faults. For the traditional online model, there is a lower bound of Ω(log k)
on the competitive ratio of randomized algorithms.

We can get around this lower bound by changing the model and giving
the algorithm access to more information in the form of machine learned ad-
vice. In the case of online caching, an oracle predicts when an element will
arrive again. Lykouris and Vassilvitskii [87] showed that there is a prediction
augmented caching algorithm with a competitive ratio of O(1+min(

√
η/OPT, log k))

where the prediction error is bounded by η. The dependence on k in the
competitive ratio is optimal but the dependence on η/OPT left room for
improvement. Dhruv Rohatgi in SODA 2020 [99] makes progress in clos-
ing this gap by providing an improved algorithm with competitive ratio
O(1 + min( log k

k
η

OPT , log k)) and a lower bound of Ω(log min( η/OPT
k log k , k)).

The algorithm in [87] is a marking algorithm that considers eviction chains
and trusts the oracle until the chain becomes too long and then ignores the or-
acle. A marking algorithm works in phases that start with all elements being
unmarked. When a cache hit occurs, the corresponding element is marked.
When a cache miss occurs, some unmarked element is evicted, and the new
element is inserted and marked. If all elements in the cache are marked
and a cache miss occurs, all elements are unmarked, and a new phase be-
gins. Rohatgi shows that the simple improvement of only trusting the oracle
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once at the start of each eviction chain already leads to an improved ratio of
O(1 + min( log η

OPT , log k)). Further improvement of the algorithm requires de-
viating from the marking based framework by sometimes evicting marked
elements.

Alexander Wei [112] in APPROX 2020 directly follows up on this work.
They give a substantially simpler algorithm that gives an improved com-
petitive ratio of O(1 + min(1

k
η

OPT , log k)). This algorithm compares LRU and
BLINDORACLE, the algorithm that blindly follows the oracle, and follows the
one that has performed better so far. This algorithm is optimal among de-
terministic algorithms, which means randomization is needed to approach
Ruhatgi’s lower bound.

Zhihao Jiang et al. in ICALP 2020 [73] continue this line of work by consid-
ering weighted paging (caching) with predictions. As shown by Rohatgi [99],
predicting the next arrival of an element with perfect accuracy gives a com-
petitive ratio of O(1) for unweighted paging. Furthermore it is also possible
to obtain a constant approximation when given a lookahead of l ≥ k − 2
distinct pages. However, neither of these models are sufficient to beat the
existing lower bounds for online weighted caching, which are Ω(k) for de-
terministic and Ω(log k) for randomized algorithms. Jiang et al. show that
combining both models allows for a 2-competitive algorithm. In the com-
bined model, when an item p arrives the algorithm is given the next time-
step when p will arrive again and additionally all page requests until that
request.

In ITCS 2021, Yuval Emek et al. [42] consider a variant of the online paging
problem where the online algorithm has access to multiple predictors that
produce a sequence of predictions for next page arrival times. At least one
of those predictors makes a sublinear number of errors in total. They show
that this assumption suffices to design randomized algorithms whose regret
compared to the optimal algorithm tends to zero as time goes to infinity.

When given only a single predictor with a sublinear number of errors,
simulating the optimal offline algorithm longest-distance-forward based on
the predictions yields a vanishing regret. In the full-access model the algo-
rithm is given multiple predictors and an algorithm from Avrim Blum and
Carl Burch [23] is used that, given multiple online algorithms as subroutines,
performs almost as good as the best subroutine in hindsight. In the bandit
access model only one predictor may be queried each round and they show
that the good predictor can be "chased" by the online algorithm and vanish-
ing regret can be achieved.

The final two papers considered in this section explore different approaches
of giving advice to an algorithm. The first paper again considers the paging
problem, while the second explores their model in the network flow alloca-
tion problem.

Ravi Kumar et al. in SODA 2020 [79] consider a different way of giving
the algorithm information about the request sequence. They consider a semi-
online model where request sequences are generated by walks on a directed
graph called the access graph. The algorithm knows the access graph but not
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the actual request sequence. Kumar et al. extend this model by creating sev-
eral individual request sequences using access graphs. The final sequence
given to the algorithm is then obtained by interleaving the individual se-
quences. This approach is motivated by multitasking systems that support a
number of tasks at the same time with a limited cache.

For the case of a single access graph, they give a tight competitive ratio of
Θ(b) where b is a structural parameter of the graph called branching depth.
For the interleaved model, they give a tight competitive ratio of Θ(b + log t)
where t is the maximum number of interleaved access graphs. For the case of
interleaved cashing, they reduce the problem to a coin hunting game where
a hider hides a coin in one of t bins and a seeker, that only knows the prob-
ability distribution used by the hider, tries to find that coin. Interestingly,
they show that this coin hunting game has other applications besides the in-
terleaved caching model. In particular, it can be used to yield an alternative
analysis of the classical random marking algorithm for the standard caching
problem.

In ESA 2021, Thomas Lavistate et al. [86] propose a new model for aug-
menting algorithms with predictions, by requiring that these predictions are
learnable using only a reasonable amount of past data as well as robust to
changes in the input. They build algorithms that fulfill these criteria for the
network flow allocation problem. Consider a directed acyclic graph with
capacities on each node that is not a sink or source node (nodes with only
incoming or only outgoing edges). The source nodes arrive one by one and
flow has to be fractionally directed towards a single sink node without ex-
ceeding capacities. The goal is to maximize the flow.

They provide an offline (1− ε)-approximation algorithm that uses weights
to determine the flow. These weights can be learned using only a polynomial
sample complexity. However, future inputs may not follow the same dis-
tribution. The competitive ratio of the algorithm linearly degrades as the
distance between the inputs grows, but never performs worse than the best
worst-case algorithm even if the prediction error is large. They provide simi-
lar results for the problem of restricted assignment makespan minimization.

2.4 Online matching

The most commonly studied version of online matching is bipartite online
matching, which was introduced by Karp et al. [75] in STOC 1990. In this
version, one set L of vertices is given in advance (the offline vertices) and
the other set R arrives online. There is a variety of other models, many of
which have seen a lot of progress in the last years. In this section, we present
a selection of papers covering a variety of models, beginning with a very
strong result on online matching on the line.

In 2021, the famous online matching on the line problem was nearly re-
solved. In this problem, there are n servers on given positions on the real
line. Requests (also on the line) arrive and need to be matched to the servers.
A few years ago, Krati Nayyar and Sharath Raghvendra [92] presented an
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algorithm called Robust Matching which Raghvendra [97] later showed to
be O(log n)-competitive. In ICALP 2021, Enoch Peserico and Michele Sc-
quizzato [94] give a remarkably straightforward lower bound for this prob-
lem, showing that no randomized algorithm can be o(

√
log n)-competitive

for this problem. The construction is roughly as follows (omitting some tech-
nical issues): For n = 2k, partition a line segment of length n into k subinter-
vals. The servers are distributed evenly over these subintervals, and for each
subinterval, one request arrives in it at a uniformly random location. Then,
in k rounds, this process is repeated, doubling the length of the subintervals
in each round. In total, n requests arrive, the expected online cost for each
round is Ω(n) and the expected offline cost for each request is O(

√
log n).

One year earlier in APPROX 2020, Nicole Megow and Lukas Nölke [88]
also consider the problem of online matching on the line. They consider the
situation where previous matching decisions may be changed to some ex-
tent (the algorithm has recourse) and they give an O(1)-competitive algorithm
using O(log n) recourse. The algorithm interpolates between an O(log n)-
competitive online solution without recourse and an O(1)-approximate of-
fline solution, i.e., with very large recourse. They also consider the special
case of alternating instances, in which no more than one request arrives be-
tween two adjacent servers, and give a (1+ ε)-competitive algorithm that re-
assigns each request O(ε−1.001) times. For this special case, the lower bound
of Ω(log n) without recourse still holds.

In the same workshop, Varun Gupta et al. [56] also give an O(log k)-
competitive algorithm for online matching in general metrics, using O(log k)
recourse per client, as well as a 3-competitive algorithm on the line using
O(log k) amortized recourse. They also consider the dynamic setting in which
clients and servers may arrive or depart. For this model, they present a
simple randomized O(log n)-competitive algorithm with O(log ∆) recourse,
where ∆ is the aspect ratio of the underlying metric. Without recourse, it is
not possible to achieve any nontrivial result in this setting.

In STOC 2018, Zhiyi Huang et al. [65] introduced a fully online model
in which all vertices are online. Once a vertex arrives, its incident edges to
previously arrived vertices are revealed. This is called an edge-arrival model.
Each vertex has a deadline that is after all its neighbors’ arrivals. If a vertex
is unmatched until its deadline, it must then irrevocably either be matched
to another unmatched vertex or be left unmatched. Huang et al. showed that
for bipartite graphs the competitive ratio of RANKING is between 0.5541 and
0.5671 and for general graph the algorithm is 0.5211 competitive.

In SODA 2019, Zhiyi Huang et al. [66] (an overlapping set of authors)
improve this result to a tight bound of 0.5671 on bipartite graphs. A second
result is the following: If fractional matchings are allowed then the algorithm
WATER FILLING, which at each vertex’s deadline matches its unmatched por-
tion fractionally to all neighbors with smallest matched portion, achieves a
tight competitive ratio of 2 −

√
2 = 0.585. This hardness result applies to ar-

bitrary algorithms in edge-arrival models, even when preemption is allowed,
improving the upper bound of 1

1+ln 2 = 0.5906 [43].
In FOCS 2020, Zhiyi Huang et al. [68] follow up on these results once
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more. Ideas from WATER FILLING and RANKING are used to give a 0.569-
competitive algorithm for integral matching using the online primal dual
framework. Essentially, the authors find a way to (in some cases) correct the
decisions by RANKING using the decisions by WATER FILLING (even though
that is an algorithm for fractional matching). They also give an algorithm
for fractional matching on general graphs called EAGER WATER-FILLING
which sometimes matches vertices immediately upon arrival instead of al-
ways waiting until the deadline. This algorithm achieves a competitive ratio
of 0.592.

Ashlagi et al. [3] in EC consider a variation of this problem where the
edges are weighted. They are motivated by ride-sharing and formulate their
problem as follows: At every timestep passengers arrive as vertices of a
graph. Each edge has a nonnegative weight, the utility from matching two
passenger-vertices. Passengers can only be matched within a certain window
of length d after which the passenger must be assigned a single ride and the
vertex departs. The goal is to find a weighted matching with a large total
weight in an online manner.

They first study the case where vertices arrive adversarially. The naive
greedy algorithm randomly assigns each vertex to be either a seller or a
buyer. Ashlagi et al. present an 1

4 -competitive algorithm Postponed Greedy,
which postpones this decision for as long as possible in order to gather more
information about the graph structure. They extend the model to the case
where the departure of vertices is determined stochastically. Postponed Greedy
can be adapted to be 1

8 -competitive, when the departure distribution is mem-
oryless and realized departure times are revealed to the algorithm just when
the vertex departs.

They also consider the setting where vertices arrive in a random order. A
batching algorithm which, every d+ 1 steps, computes a maximum weighted
matching among the last d + 1 arrivals, achieves a competitive ratio of 0.279.

In FOCS 2019, Buddhima Gamlath et al. [48] consider the question whether
randomization helps in online matching, in particular if beating the lower
bound of 1

2 by Karp is possible. For bipartite matching, this has been an-
swered by Karp and Vazirani [75]. Gamlath et al. show that for general vertex
arrival models, which are similar to the fully online model above but the de-
cision to match a vertex must be made on arrival of the vertex, there exists a
random 1

2 + Ω(1)-competitive algorithm. This algorithm works by skillfully
rounding a slightly better than 1

2 -fractional matching, without incurring too
high a loss. This fractional online matching algorithm was originally created
by Wang and Wong in ICALP 2015 [111]. They also consider the edge arrival
model where edges are revealed one by one and the algorithm must imme-
diately and irrevocably decide to include the edge in the matching or not.
They show that in the edge arrival model randomization does not help and
no randomized algorithm is better than 1

2 .
We continue with another paper that considers edge arrivals. In the bi-

partite matching problem with edge arrivals, the straightforward greedy al-
gorithm, that adds any arriving edge to the matching whenever possible,
achieves an optimal competitive ratio of 0.5. In ISAAC 2021, Nick Gravin
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et al. [54] consider the stochastic version of the problem where edges ar-
rive with a certain probability. They propose a class of algorithms called
prune&greedy that first prune the graph by decreasing the probabilities of
some edges and then proceed with the greedy algorithm. This yields a 0.503-
competitive ratio on arbitrary stochastic bipartite graphs. In the special case
where the graph can be pruned to a log-normalized 2-regular stochastic graph,
greedy is 0.552-competitive. These graphs extend the concept of c-regularity
to the stochastic setting. Instead of summing up the amount of edges inci-
dent to a node, a sum of weights is considered. These weights depend on the
probability with which the edge is realized. Additionally, they show that no
online-algorithm can be better than 2/3 in this setting.

There are still many more variations of the matching problem that can be
obtained by changing the way nodes and edges arrive as is illustrated by the
following papers.

Kumar et al. [78] introduce a semi-online model in ITCS, which separates
the unknown future into an adversarial part and a predicted part. The chosen
example is bipartite matching, with an offline side that is known in advance
and an online side whose nodes and incident edges are revealed one at a time.
The online side is partitioned into a predicted set of size n − d and an adver-
sarial set of size d. The algorithm knows the incidents of all predicted nodes,
but nothing about the adversarial ones. It is furthermore assumed that the
optimal solution is a perfect matching. They then give an iterative sampling
algorithm, that reserves a set of offline nodes to be matched to the adversar-
ial nodes by repeatedly selecting a random offline node that is unnecessary
for matching the predictable nodes. This gives a (1 − δ + δ2

2 (1 − 1/ε))2 com-
petitive algorithm, where δ = d/n is the fraction of adversarial nodes. An
improved algorithm samples a set of nodes that in expectation has a large
overlap with the set matched to adversarial nodes in the optimum solution.
This yields a (1 − δ + δ2(1 − 1/ε))-competitive algorithm.

These algorithms are complimented by a lower bound of (1− δε−δ), show-
ing that the algorithms are near optimal. This lower bound coincides with the
best offline bound of 1 for δ = 0 and the best online bound of (1 − 1/ε) for
δ = 1.

In ITCS 2021, Yiding Feng and Rad Niazadeh [46] consider the online
bipartite matching problem but instead of nodes being revealed one by one,
they arrive in K batches of nodes. For the original problem where nodes
arrive one by one, the algorithm BALANCE achieves a competitive ratio of
(1 − 1/e). This algorithm balances a greedy approach with the robustness
against nodes arriving in the future.

This algorithm is generalized to the batch arrival problem. In each step,
the algorithm solves a convex program that maximizes the total weight but
also subtracts a regularization term. This regularization term is based on a
set of polynomials whose degree decreases with each step. This means at the
beginning there is more regularization applied while the last step is entirely
greedy. This approach yields a 1 − (1 − 1/K)K-competitive algorithm. This
result can be extended to further variants of the problem like vertex weighted
bipartite b-matching and AdWords [90].
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In STOC 2021, Zhiyi Huang and Xinkai Shu [67] consider online stochastic
bipartite matching. In this problem, n online nodes are drawn from a set of
types by some distribution. This means a node of a certain type can be drawn
multiple times. This can be compared to the random-order model where
the type of each node is set in advance and only the order is randomized.
They improve the competitive ratio from 0.706 to 0.711 in the unweighted
case, and from 0.662 to 0.7009 in the weighted case. In the weighted case,
this is the first improvement over the weaker random-order model, and it is
achieved by designing an algorithmic amortization that replaces the analytic
one in previous works. They introduce the Poisson arrival model where each
type of node arrives following a Poisson process and the overall number of
online nodes is not fixed but drawn from a Poisson distribution. This model
is easier to analyze, and the model is asymptotically equivalent to online
stochastic matching. They use a natural linear program to lower bound the
optimal solution, and previously used linear programs are special cases of
this natural linear program.

In STOC 2020, Zhiyi Huang and Qiankun Zhang [89] consider online
matching with stochastic rewards. Each edge has a success probability and
the matching along this edge succeeds with that probability. This models on-
line advertising, where it is not certain that a user will click on an ad. This
model was introduced by Mehta and Panigrahi in FOCS 2012 [89], who fo-
cused on the case where every edge has the same success probability p. They
gave results for general p and for the case where p tends to 0 (vanishing
probabilities).

Huang and Zhang apply the randomized online primal dual framework
using the configuration LP, and achieve a competitive ratio of 0.572 (resp.
0.576) for the case of vanishing and unequal (resp. unequal) probabilities.
The previous best results were 0.534 due to Mehta et al. [91] and 0.567 [89].

After examining a variety of different arrival models, we return to the
bipartite matching problem with regular arrivals but add a twist to the ob-
jective funktion.

In FOCS 2020, Matthew Fahrbach et al. [45] consider the less studied
edge-weighted version of the online bipartite matching problem. A simple
example with three nodes and two edges, where the first arriving edge has
weight 1 and the second has weight either 0 or W for some large value W
shows that it is not possible to be competitive in this model without ad-
ditional assumptions. Fahrbach et al. consider the free disposal model, in
which previously matched edges may be disposed of for free, a widely-accepted
assumption in display advertising. For this model, the authors give the first
algorithm which beats the ratio of 1/2 by providing an algorithm with com-
petitive ratio 0.5086.

An important idea in the algorithm is to use a subroutine which the au-
thors call online correlated selection. It ensures that decisions across different
pairs of vertices are negatively correlated, and ultimately guarantees that a
vertex appearing in k pairs is selected at least once with probability greater
than 1− 2−k. Essentially, for neighbors of an online vertex, we select the least
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matched ones. For the vertex-weighted problem, this would mean those ver-
tices that have appeared in the least number of pairs. For the edge-weighted
problem, the authors use the online primal-dual framework of Devanur et
al. [39] and a formulation of the problem due to Devanur et al. [38] to design
a “least-matched” notion.

This routine may have uses in other online problems as well and thus the
question arises whether it can be extended to choices between three or more
vertices. This question is positively answered by Yongho Shin and Hyung-
Chan An [103] in ISAAC 2021. They consider a subroutine for three nodes
that simply runs two instances of the two-way-OCS and uses the output of
the first instance as well as the third vertex as input for the second instance.
The resulting probability distribution is not easy to analyze but results in an
improved competitive ratio for edge-weighted online bipartite matching of
0.5093.

To end the section on matching, we explore two papers that leave graphs
behind and consider matching problems on general metrics as well as a paper
that connects weighted bipartite matching with thruthful mechanisms.

The minimum-cost metric matching problem was already mentioned in
SIGACT 2017. There are n servers in metric space. Requests arrive online and
need to be matched to these servers. Nayyar and Raghvendra in APPROX
2016 [96] gave a tight O(log n)-competitive algorithm for the random-arrival
model. Of interest is also the case where the metric is a line or tree. Gupta et
al. [55] in ICALP 2019 consider the case where the requests arrive randomly
and are drawn independently from a known probability distribution. They
show that this case allows for a substantially better algorithm. They give an
O((log log log n)2)-competitive algorithm for this model, that is furthermore
9-competitive for tree and line metrics. In each round, the algorithm com-
putes an optimal fractional matching between remaining free servers and re-
maining requests (in expectation). New arriving requests then get matched
with probabilities according to this matching.

In SODA 2021, Yossi Azar et al. [7] consider online matching with delays.
Requests arrive over time, possibly in different locations, and the goal is to
minimize the sum of the distances between matched elements plus the total
delay, which is the time that requests are waiting to be served. The authors
consider this general case as well as the bichromatic case, where requests are
in two groups (for instance, Uber drivers and customers). The paper focuses
on concave delay functions. That is, it is not the actual delays that go into
the objective function but rather the valuations that the participants have for
these delays. It is reasonable to consider concave delays since once you have
been waiting for half an hour, an additional five minutes is not as bad as at
the start.

If delays are linear and requests all arrive at one location, a simple greedy
matching is optimal, but with concave delays you need to be much more
careful. The paper first describes how concave functions can be approxi-
mated using piecewise linear functions and then uses careful bookkeeping to
match requests in a suitable manner. In particular, a pair of requests that are
currently experiencing the same linear delay function are always matched.
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This gives an O(1)-competitive algorithm. For multiple locations, an intricate
argument using hierarchical spanning trees shows O(log n)-competitiveness;
this is not “simply” a random embedding of a general metric into an HST, but
a more involved construction.

The same results are then shown to hold for the bichromatic case using
appropriately adapted algorithms.

Thomas Kesselheim et al. [76] presented an optimal e-competitive algo-
rithm for weighted bipartite matching back in ESA 2013. Assuming bidders
arrive in a random order, this problem can be understood in terms of the
secretary problem with bidders bidding for items. As is common for the sec-
retary problem, this algorithm starts with a sampling phase and then assigns
items to the arriving bidders based on a local optima that considers all known
bidders and items.

In SODA 2019, Rebecca Reiffenhauser [98] extends this approach to a
truthful mechanism. This mechanism considers only unassigned items and
instead of using the valuation of the bidder, prices are determined using
a Vickrey-Clarke-Groves mechanism, which is designed to ensure truthful-
ness.

2.5 Online coloring

In the vertex coloring problem, the vertices of a graph must be colored in
such a way that no two adjacent nodes have the same color. Similarly, in the
edge coloring problem, adjacent edges must be colored with different colors.
Trying to minimize the amount of colors used is quite challenging.

There is an important connection between vertex coloring and the buffer
management problem with conflicts which is explained below.

The weighted fractional chromatic number in a graph G is the optimal
objective value of the following linear program:

minimize χ(G, h) = ∑
I

xI

subject to ∑
I∋i

xI = hi

xI ≥ 0

Here I denotes an independent set in the graph and h is a vector of weights
with one weight given to each node of the graph. By setting all weights to
one we get the fractional chromatic number, and if we additionally require xI
to be integral we get the chromatic number which is the minimum number
of colors needed to color the vertices of the graph.

The fractional weighted chromatic number is also the minimum time re-
quired to remove load hi from each node in the graph. Here xI can be seen as
the time independent set I runs for in the schedule.

In the online version of vertex coloring, the vertices arrive one by one
(together with all the edges adjacent to the already presented vertices) and
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must be assigned a color immediately and irrevocably. For the general vertex
coloring problem there is no hope for any algorithm to be constant compet-
itive as no algorithm can be better than o(n/ log2 n)-competitive. Therefore
it is common to study particular graph classes, and we begin this section on
online coloring with a result on unit interval graphs.

We then proceed with a variety of results on edge coloring which has been
the more active area of research.

Joanna Chybowska-Sokól et al. [34] work on the online graph coloring
problems on the intersection graphs of intervals. Here no two overlapping
intervals can be of the same color. If all intervals have length between 1 and
σ, the problem is called σ-interval coloring. The authors show that σ-interval
coloring is strictly easier than interval coloring, and σ-interval coloring is
strictly harder than unit interval coloring (where σ is 1).

They present an algorithm that for every σ ∈ with σ ≥ 1 is 1+σ-competitive
regarding the asymptotic competitive ratio. Their algorithm constructs small
and large blocks (intervals) and then uses counters for these blocks to deter-
mine the color for an incoming interval. For σ < 2, the competitive ratio is
less than 3, whereas Kierstead and Trotter [77] showed that there cannot exist
a less-than-3-competitive algorithm for (general) interval coloring.

For different values of σ, the authors present corresponding lower bounds.
They begin with showing that for every σ > 1 there is no online algorithm
for σ-interval coloring with an asymptotic competitive ratio smaller than 5/3.
Then they improve the lower bound to 7/4 for every σ > 2. Their main result
regarding lower bounds is that for every ε > 0 there is σ ≥ 1 such that there
is no online algorithm with an asymptotic competitive ratio 5/2 − ε. This
implies that there is no 2-competitive algorithm for σ-interval coloring (for
σ > 278). For unit interval graphs, the simple greedy FIRSTFIT algorithm is
2-competitive [44].

Vizing’s famous theorem on edge coloring states that any graph of maxi-
mum degree ∆ is ∆ + 1-colorable. Furthermore, Bar-Noy, Naor and Motwani
[11] showed that the trivial greedy algorithm which uses 2∆ − 1 colors is op-
timal among online algorithms for ∆ = O(log n). This leaves a conjecture
that there is an (1 + o(1))∆-edge-coloring algorithm for ∆ = ω(log n). Co-
hen et al. in FOCS 2019 [36] resolve this conjecture for one-sided adversarial
vertex arrivals in bipartite graphs. The classic fractional relaxation asks to
minimize ∑M xM subject to ∑e∈M xe = 1 for every edge e and xM ≥ 0 for
every matching M. This relaxation fractionally uses integral matchings to
cover each edge. Cohen et al. deploy a novel relaxation that integrally uses
fractional matchings to cover each edge, i.e., ∑c xe,c = 1 and the goal is to
minimize the number of non-zero fractional matchings used. This relaxation
is a lot more useful in the online setting. They then provide an optimal on-
line fractional edge coloring algorithm. If ∆ is known beforehand, setting
xe,c = 1/∆ provides a trivial 1-competitive solution. For unknown ∆, they
use an adaptation of the greedy “water-filling” algorithm. They use an asym-
metric approach where colors are picked only based on the load of the offline
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vertex. Furthermore, they introduce a constraint on the value of each edge-
color pair. This results in a more balanced allocation compared to the base
water-filling-algorithm. Finally, they present a near-lossless online rounding
scheme. Given an α-competitive fractional online algorithm, a natural ap-
proach would be to repeatedly round the α∆ fractional matchings online to
obtain α∆ integral matchings. The remaining uncolored edges require fur-
ther (o(∆)) colors. The problem with this approach is that maximum-degree
vertices will be matched ≈ ∆ times, however, there is a chance that these
matches are along previously colored edges. Instead, Cohen et al. repeatedly
round subsets of multiple fractional matchings. This subset has to be small
enough not to decrease the chance of a node being matched along an uncol-
ored edge (due to rematches), but big enough to argue that the degree of all
high degree vertices decreases at a rate of ≈ 1/α per color used. This ap-
proach yields the desired result of a (1 + o(1))∆-edge-coloring algorithm for
∆ = ω(log n) in bipartite graphs. This is matched by a tight lower bound.

The result by Cohen et al. leaves open the question whether the com-
petitive ratio of 2 of the greedy algorithm is optimal under general vertex ar-
rivals, in general graphs and in ICALP 2021, Amin Saberi and David Wajc [100]
pick up the problem again. For an input of an (unknown) bipartite graph G
and a fractional matching x in G, they present a rounding scheme algorithm
(inspired by results in [93]) that outputs a random matching M in which each
edge e ∈ E belongs to the matching with probability at least 0.527 · xe.

One result in [36] implies that α-competitive edge coloring can be reduced
to online matching under the following conditions: If an online matching al-
gorithm for any (bipartite) graph of max degree ∆ ≤ ∆′ under vertex arrivals
can match each edge with high enough probability (at least 1/(α∆′)), then
there exists a (α + o(1))-competitive (w.h.p) edge coloring algorithm for (bi-
partite) graphs of max degree ∆ = ω(log n) under vertex arrivals. Their
proposed rounding scheme satisfies the condition with α = 1/0.527 ≤ 1.9.
They then combine this result with a result implied by Howard Karloff and
David Shmoys [74]. If one can α-competitively and with high probability
color edges online on (bipartite) graphs of max degree ∆ = ω(log n) under
interleaved vertex arrivals, then one can also (α + o(1))-competitively with
high probability color edges online on general graphs of maximum degree
∆ = ω(log n) under vertex arrival.

Putting all this together, the authors present a (1.9 + o(1))-competitive
online edge coloring algorithm for general graphs of maximum degree ∆ =
ω(log n) under vertex arrival (the term o(1) is sufficiently small to imply a
competitive ratio better than 2). Hence they resolve the long standing con-
jecture in the affirmative and show that the greedy algorithm is indeed not
optimal for general online edge coloring.

In SODA 2021, Sayan Bhattacharya et al. [18] consider online edge col-
oring in the random order model and with recourse. In both models, they
present algorithms that use at most (1 + o(1))∆ colors, where ∆ is the max-
imum degree of the graph, which is presumed to be known in advance.
The algorithm is based on a distributed offline algorithm called the Nibble
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method. Nibble selects a random ε fraction of the incident edges of each ver-
tex in each round. Each edge is given a tentative color uniformly at random
from the set of colors which is not yet used by incident edges. If an edge
receives the same tentative color as an incident edge, it is marked failed and
left uncovered in this round. Since only few edges tend to fail in each round,
after some number of rounds the remaining edges can be colored greedily.
The authors adapt this algorithm by not attempting to recolor edges that fail
(because an incident edge received the same color), removing a color from
the set of allowed colors of incident edges even if a coloring fails and sam-
pling each edge independently in each round. These changes allow for a
simplified analysis and also enable the algorithm to be adapted to the online
settings considered in this paper.
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Chapter 3

Buffer management with conflicts

3.1 Introduction

Scheduling is a fundamental problem in computer science. It played an im-
portant role in the development of approximation and online algorithms.
One of the earliest online algorithms was designed for makespan scheduling
in the 1960s [53]. Many objective functions for online scheduling have been
studied over the years. In the well-known area of throughput scheduling,
the goal is to maximize the weighted or unweighted number of completed
jobs (the throughput). Each job has a deadline, and we only count the jobs
that complete by their deadlines [102].

This chapter is based on a series of two papers [61, 63]. The first was
presented 2020 in the FAW-conference. In this paper we consider a variation
of the scheduling problem in which jobs do not have deadlines. Instead, jobs
that arrive are stored in a buffer of some size until they can be processed. The
buffer minimization in multiprocessor systems with conflicts or simply buffer
minimization problem was first introduced by Chrobak et al. [33]. A sequence
of tasks needs to be scheduled in a multi-processor system with conflicts. A
conflict occurs if two processors share a common resource that they cannot
both access at the same time. The multi-processor system is modelled as an
undirected graph where the processors are the nodes of the graph. They are
in conflict if they are connected by an edge, i.e. adjacent nodes on the graph
may not run at the same time. Without loss of generality, the conflict graph
is connected.

In this paper we consider the special case where this graph is a path. At
any time tasks may arrive on a processor adding to this processor’s work-
load. Each processor stores its workload in a separate input buffer. The goal
is to find a scheduling strategy that minimizes the maximum used buffer size
of all processors.

An online algorithm processes the workload without knowledge of future
tasks. We measure the performance of such algorithms using the competitive
ratio. For the present problem, that is the ratio between the maximum used
buffer size of an online algorithm and the buffer size of an optimal offline
algorithm in the worst case. Chrobak et al. [33] provide results for several
kinds of graphs, including Kn and trees as well as graphs with up to four
vertices. In particular, they show that GREEDY is 5

2 -competitive on the graph
that has four vertices on a path, and they give a lower bound of 2 for the path
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with three vertices. In each time instant, GREEDY iteratively picks the highest
available machine and runs that machine (making its neighbors unavailable).
In the case of two adjacent machines having the same load GREEDY rapidly
switches between them. This can also be seen as both machines running at
the same time at half speed.

This paper is followed up in Theoretical Computer Science in 2021. In this
second paper we introduce the flow model. In the original model, blocks of
load can arrive at any time, with size up to the offline buffer size. In con-
trast, in the flow model load only arrives incrementally at a rate of at most
1. Clearly, any algorithm for the original model can also be used in the flow
model. However, in many cases it is possible to do better. We provide modi-
fied algorithms which are optimal for the path with up to five machines.

We assume that the size of the offline buffer is known and we scale it to
1. Chrobak et al. [33] also consider the case where the offline buffer is not
known and show that the competitive ratio in that case is at most a factor of
4 higher.

We give an example using GREEDY in the flow model. Assume there are
three machines 1, 2 and 3 which are empty at time t = 0. For one unit of time,
load arrives at a rate of 1 on machines 1 and 2. GREEDY runs both machines at
half speed. At time t = 1, GREEDY has load 1

2 on both machines 1 and 2, and
no load on machine 3. Assume the optimal offline algorithm runs machine
2 at full speed, that is at a processing rate of 1, for that unit of time. Then at
time t = 1 the optimal offline algorithm has one unit of load on machine 1,
and its other machines are empty.

For the next unit of time, load arrives at a rate of 1 on machine 3. Since the
highest available machines are 1 and 2 and they have the same load, GREEDY
initially runs all machines at speed 1

2 . This means the loads on machines
1 and 2 decrease at a rate of 1

2 while the load on machine 3 increases at a
rate of 1

2 . After 1
2 unit of time, all machines of GREEDY have load 1

4 . Since
machine 3 is still receiving load, GREEDY runs machines 1 and 3 at full speed
for the remainder of this timestep. At time t = 2, GREEDY has no load on
machine 1 and 1

4 load on machine 2 and 3. The optimal offline algorithm can
run machines 1 and 3 at full speed for the entire unit of time, therefore its
machines are empty at time t = 2.

The goal of this chapter is to coalesce the results for both versions of the
problem. Thus for each subsection we first give the results for the original
model and then add the results for the flow model. For the path with 2 and
3 machines, more emphasis is given to the flow model since the results for
the original model were already known in these cases. For paths with more
machines we emphasize the original model and then explain the changes
made for the flow model.

3.1.1 Our results

We provide lower and upper bounds on the competitive ratios on the paths
with four and five machines for both the original model as well as the flow
model. For the path with four machines the ratio 9

4 is optimal in the original
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model, while in the flow model we find optimal ratios for both the path with
four and five machines and these are 4

3 and 3
2 .

We also show that in the flow model GREEDY is 1-competitive on two
machines and give a 1-competitive algorithm on three machines. Finally,
for large m, we show that no algorithm can be better than 12

5 -competitive
on m machines in the original model. The following table sums up our and
previous bounds on the competitive ratio for different path lengths for both
versions of the problem.

Number of machines 2 3 4 5 m > 5
Lower bound 3/2 [33] 2 [33] 9/4 16/7 12/5
Upper bound 3/2 [33] 2 [33] 9/4 5/2 m/2 + 1/4
Lower bound flow 1 1 4/3 3/2 3/2
Upper bound flow 1 1 4/3 3/2 m/2 − 2/3

Before this paper, the best known lower bound on general connected
graphs (of any size) was only 2, whereas the best known upper bound is
linear in the diameter of the graph (the length of the path, in our case). This
upper bound (with a minor technical change) also applies to the flow model.

Additionally we consider a few results that go beyond the line graph. The
first is an algorithm with a competitive ratio linear in the size of the graph
that works on bipartite graphs.

Given resource-augmented machines that work at speed 1 + χε there is a
1
ε + χ + 2-competitive algorithm on general graphs. Here χ is the fractional
chromatic number of the graph.

Finally we consider the case where adjacent machines may work at a
combined speed of 1. This type of processor sharing is always allowed on
the path, since it can be achieved by rapidly switching between the ma-
chines. Whenever this type of processor sharing is allowed we get an 1

ε + 1-
competitive algorithm with machines working at speed 1 + 2ε.

3.1.2 Related work

The problem was first introduced by Chrobak et al. [33] They show that the
competitive ratio is finite for all graphs. Furthermore, they show that the
competitive ratio for the complete graph Kn is exactly Hn, the nth harmonic
number. For trees they achieve a competitive ratio of at most ∆/2 + 1, where
∆ is the tree diameter. They also give competitive ratios of GREEDY on small
graphs including a competitive ratio of 5

2 on the graph with 4 machines in a
line.

A similar model is studied by Irani and Leung [70, 71], who also introduce
a conflict graph. However, they study the conflict between jobs, not proces-
sors, and are minimizing the makespan. They show that even for paths no
algorithm is better than Ω(n)-competitive.

Bodlaender et al. [24] study a similar scenario in form of a two player
game in which one player wants to keep a water-bucket system stable, whereas
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the other player wants to cause overflows. In their case the restriction is not
that the player can only remove water from an independent set of buckets,
instead the restriction is that the player can only empty subsets of consecu-
tive buckets.

More recently, Gasieniec et al. [51] introduced the Bamboo Garden Trim-
ming Problem, which is similar to our problem, but does not feature any
conflicts. A robot may trim only one bamboo at the end of each day, while
the other bamboos grow at some rate. The goal is to find a schedule that
maintains the elevation of the garden as low as possible.

3.2 Definitions

We are given m machines on a line numbered from 1 to m. We denote the
workload of a machine by ai, thus the state of an online algorithm ALG
at a given time t can be described by the vector a = (a1, ..., am). We also
call this the configuration of the online algorithm at time t. We denote the
state or configuration of the optimal offline algorithm OPT with the vector
z = (z1, ..., zm). Load vectors are never negative. We define the delay of a
machine as di := ai − zi. Initially ai = zi = 0 for all i. Delays can be negative.
Additionally to the workloads of machines, we also refer to arriving jobs as
load, i.e. when a job arrives and the workload of that machine increases we
may say load arrives on that machine.

Time runs continuously. In the original model, tasks may arrive at any
time. The speed of a machine describes how fast the machine can reduce its
workload. A machine that runs at speed s for a duration of length T will
reduce its workload by sT if no load arrives during that timeperiod. The
combined processing rate of two adjacent machines cannot exceed 1. This
means two adjacent machines can share processing power both working at
speed 1

2 instead of just one of the machines working at speed 1 at any given
time.

As discussed above, we introduce the flow model. In the flow model,
load arrives on machines at a certain rate. When load arrives on a machine
at a rate of r for a period of length T and that machine is not running, its
workload increases by rT. Load arrives at a rate of at most 1.

The algorithms in this paper use the concept of groups of machines. A set
S of adjacent machines is called a group if all machines in S have load and no
machine adjacent to S has load.

We also consider general graphs. In this setting processor sharing is not
always allowed. Instead machines run at speed 1 and two adjacent machines
may not run at the same time. In the graph setting a group is the induced
subgraph of a maximal contiguous set of machines that all have load.
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3.2.1 Comparison between the flow model and the original
model

As noted above, any algorithm for the original model can also be used in the
flow model.

Any algorithm for the flow model can be used as a black box for the orig-
inal model by using additional buffer space. This works as follows. We scale
the input (here and in the rest of the thesis) so that the offline buffer has size
1. Incoming load is stored in reserved buffer space of size 1. Whenever there
is load in reserved buffer space, this load is transferred at a rate of 1 to the
rest of the buffer. The flow algorithm only sees and works on the load out-
side the reserved buffer space. This gives us an algorithm for the original
model at an additive loss of 1 in the competitive ratio. However, as can be
seen from the table, in several cases the difference between the flow model
and the original model is strictly less than 1 in terms of the competitive ratio
that can be achieved.

The flow model has the advantage that it leads to a simpler analysis in
many cases, and also allows for more tight results.

3.3 The path with two and three machines

For the original model, the exact competitive ratio on the paths with 2 and 3
machines were given by Chrobak et al. For the path with two machines the
ratio is 3/2 and for the path with three machines it is 2.

For the flow model we show that GREEDY is 1-competitive on the path
with two machines and give an algorithm on three machines that is also 1-
competitive.

GREEDY always runs the machine with more load. If the machines have
the same load, it runs both at half speed.

Theorem 1. GREEDY is 1-competitive on the path with two machines in the flow
model.

Proof. In the flow model it is seen easily that both machines of GREEDY have
the same load at all times. If load arrives only on one machine, the algorithm
runs that machine at full speed and the loads stay equal. Otherwise both
machines run at half speed if they have load and decrease or increase at the
same rate.

Furthermore, GREEDY never has more overall load than OPT, because the
only case in which OPT could process more load than GREEDY is if GREEDY’s
machines are empty. The overall load of OPT and thus GREEDY is at most 2,
in which case both machines of GREEDY have load 1.

Theorem 2. Algorithm 1 is 1-competitive on the path with three machines in the
flow model.

Proof. We show that di + di+1 ≤ 0 always holds for i = 1, 2. Whenever there
is a running machine in a pair, the invariant is maintained. The only situation
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Algorithm 1 (for three machines)

1. Run any group of size 1 at full speed.

2. If there is a group of size 2, run the middle machine, unless the other
machine with load has load 1 and is receiving load.

3. If all machines have load, run the two outer machines, unless the mid-
dle one has load 1 and is receiving load.

in which di + di+1 (w.l.o.g. i = 2) can increase is if machines 1 and 2 have
load, machine 2 is receiving load but not running and machine 3 is empty.
In that case, machine 1 is running, which means machine 1 has load 1 and
is receiving load. Thus d1 ≥ 0 and because the invariant holds on machines
1 and 2, d2 ≤ 0. This means the invariant also holds on machines 2 and 3.
The only cases in which the algorithm does not run a machine are if either
the machine has load less than 1 or the machine has a neighbor with load 1
that is running. In the second case, that machine has delay at most 0 due to
the invariants and therefore load at most 1.

3.4 The competitive ratio of the path with four ma-
chines

3.4.1 ...for the original model

In this section we determine the competitive ratio of the path with four ma-
chines. We begin by presenting a 9

4 -competitive algorithm:

Lemma 3. For Algorithm 2, the following invariants hold at all times.

(I1) d1 + d2 ≤ 3
4 , (I2) d2 + d3 ≤ 1

2 , (I3) d3 + d4 ≤ 3
4 , (I4) d1 + d2 + d3 + d4 ≤ 1

Proof. Whenever all machines are empty, all invariants hold. When load ar-
rives the invariants are obviously preserved. We consider task execution.

Observation 1. If ALG (any algorithm) runs a machine at full speed, invariants
(I1) to (I3) involving this machine are maintained.

ALG reduces the load on that machine by ε during the ε-step, while OPT
reduces the load of any two adjacent machines by at most ε, thus the invariant
is maintained.

Observation 2. Whenever any two machines are running, (I4) is maintained.

ALG reduces the overall load by 2ε, while OPT can increase the overall
delay by at most 2ε, therefore (I4) is maintained.
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Algorithm 2

1. Run any group of size 1 at full speed.

2. If there is a group of size 2 in the middle, meaning a1 = a4 = 0, run the
machine with higher load.

3. Else if there is a group of size 2 at the edge, run the more central ma-
chine, unless the other machine has load more than 5

4 . In that case run
the other one.

4. If there is a group of size 3, run two machines unless the middle one
has load more than 5

4 . In that case run the middle one.

5. If all machines have load, run the best parity (the parity that includes
the machine with highest load), unless both outer machines have load
more than 5

4 . In that case run the outer machines.

We show that when executing tasks, all invariants are maintained at all
times. We consider all possible configurations of the load vector. In every
situation some invariants are maintained because of the observations above.
Given these invariants we then show that the remaining invariants also hold
in that situation and are therefore also maintained.

If only one machine i of Algorithm 2 has load, Algorithm 2 runs machine i
at full speed and invariants (I1) to (I3) that involve machine i are maintained
by Observation 1. The invariants that do not involve machine i hold, because
all other machines are empty, and therefore the delay on those machines is at
most 0. Additionally, since (I1) to (I3) hold, it follows that if only machine i
has load, we have di ≤ 3

4 . The other machines are empty, therefore dj ≤ 0 for
i ̸= j. Thus (I4) holds in the case of only one machine having load, due to (I1)
to (I3) being maintained in this case.

Suppose two machines have load. If there are two groups of size 1, (I4)
is maintained by Observation 2. For the other invariants (I1) to (I3) either
one of the relevant machines is running, and Observation 1 applies, or both
machines are empty, which means the delay on these machines is at most 0.
Thus all invariants are maintained.

We next show that (I1) to (I3) are maintained whenever there are groups
of size 2.

Suppose a1 > 0 and a2 > 0 (and a3 = 0). If a1 ≤ 5
4 , machine 2 is running

and (I1) and (I2) are maintained by Observation 1. If a1 > 5
4 , this means

d1 ≥ 1
4 . Since machine 1 is running, (I1) is maintained by Observation 1.

With (I1) it follows that d2 ≤ 1
2 . Since a3 = 0 and therefore d3 ≤ 0 we get

d2 + d3 ≤ 1
2 . Thus (I2) also holds. (I3) holds, because either a3 = a4 = 0

and thus d3 + d4 ≤ 0 or a3 = 0 and a4 > 0 and (I3) is maintained because
machine 4 is running and Observation 1 applies. The case a3 > 0 and a4 > 0
is symmetrical to the one above.
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Suppose there is a group of size 2 in the middle. This means a2 > 0
and a3 > 0. Algorithm 2 runs the machine with more load. If machine 2
is running, (I1) and (I2) are maintained by Observation 1. If machine 3 is
running, (I2) and (I3) are maintained by Observation 1. To prove that (I1)
holds if machine 3 is running, assume d1 + d2 > 3

4 . Since d1 ≤ 0, d2 > 3
4 .

With (I2) d3 < − 1
4 follows. However from d2 > 3

4 we also get a2 > 3
4 and

since a2 ≤ a3, a3 > 3
4 and thus d3 > − 1

4 . This is a contradiction to d3 < − 1
4 .

This means d1 + d2 ≤ 3
4 and (I1) holds. (I3) holds if machine 2 is running,

because of symmetry.
Since (I1) to (I3) hold for groups of size 2, the combined delay of the ma-

chines in that group is at most 3
4 . If the other machines are empty, their delay

is at most 0 and (I4) holds as well. If there is a group of size 1 and a group of
size 2, all invariants are maintained by Observation 1 and Observation 2.

Suppose there is a group of size 3 and a4 = 0. Either machines 1 and 3 or
machine 2 are running, therefore (I1) and (I2) are maintained by Observation
1. If machines 1 and 3 are running (I3) and (I4) are maintained as well by
Observation 1 and Observation 2. If machine 2 is running, this means a2 > 5

4 ,
therefore d2 ≥ 1

4 . Adding (I1) and (I2) yields d1 + 2d2 + d3 ≤ 5
4 . Since d2 ≥ 1

4
and d4 ≤ 0 we get d1 + d2 + d3 + d4 ≤ 1. Therefore (I4) is also maintained, if
machine 2 is running. It remains to show that (I3) is maintained for machine
2 running. Since a2 > 5

4 , it follows that d2 ≥ 1
4 . Since (I2) is maintained,

d3 ≤ 1
4 . Machine 1 is empty, therefore d4 ≤ 0 and (I3) holds. The case a1 = 0

is symmetrical to the previous one.
Finally, suppose all machines have load. In all cases there are two ma-

chines running, therefore (I4) is maintained by Observation 2. If machines 1
and 4 are not running at the same time, two machines of the same parity are
running and all invariants are maintained by Observation 1. Machines 1 and
4 run at the same time if a1 > 5

4 and a4 > 5
4 . This means d1 ≥ 1

4 and d4 ≥ 1
4 .

From (I4) we get d2 + d3 ≤ 1
2 , thus (I2) holds. This means all invariants hold

at all times.

Theorem 4. Algorithm 2 is 9
4 -competitive on the path with four machines.

Proof. We first show that d1 < 5
4 holds at all times. Whenever a1 < 5

4 , d1 < 5
4

holds. If a1 > 5
4 and machine 1 is running, d1 does not increase. We only need

to consider the case where a1 > 5
4 and machine 1 is not running. In this case

a2 > 5
4 (Rules 4 and 5 of Algorithm 2). It follows that d2 > 1

4 and therefore
d1 < 1

2 by (I1). This means d1 < 5
4 holds at all times.

We now show that d2 < 5
4 . Again we only need to consider the case where

a2 > 5
4 , but machine 2 is not running. In this case a1 > 5

4 or a3 > 5
4 (Rule 3

and 5 of Algorithm 2). It follows that d1 > 1
4 and therefore d2 < 1

2 by (I1) or
d3 > 1

4 and therefore d2 < 1
4 by (I2). This means d2 < 5

4 holds at all times.
By symmetry the delay on each machine i is at most di = ai − zi ≤ 5

4 .
Adding zi − 1 ≤ 0 yields ai ≤ 9

4 . Therefore the algorithm is 9
4 -competitive on

the path with four machines.
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We now present a matching lower bound of 9
4 on the competitive ratio of

the path with four machines.

Lemma 5. Let the competitive ratio of ALG be equal to 2 + x. Whenever zi = 0 is
possible we have ai ≤ 1 + x.

Proof. Otherwise one unit of load arriving on machine i would yield a ratio
higher than 2 + x.

Lemma 6. If ALG has a delay of x on two adjacent machines, we can reach a state
where ALG has load at least x on those machines and all machines of OPT are empty.

Proof. Let the two adjacent machines be i and i+ 1. No load arrives until OPT
has removed its load on machines i and i + 1. Since there was a delay of x
on those machines, there is still at least x load left once OPT’s machines i and
i + 1 are empty. Then load arrives on machine i and OPT runs all machines
that have the same parity as i. After one timestep, this parity is empty for
OPT, as it has load at most 1 on each machine at all times, and the total load
of ALG on i and i + 1 has not changed. Repeat this for the other parity.

Theorem 7. No algorithm can be better than 9
4 -competitive on the path with four

machines.

Proof. Let the competitive ratio of ALG be equal to 2+ x. Suppose that x < 1
4 .

We start with both OPT’s and ALG’s machines empty. We present two phases,
consisting of repeating sets of similar inputs. The first phase creates an initial
delay on the middle two machines. Based on that, the second phase forces
a competitive ratio that is unbounded for x < 1

4 , which contradicts the as-
sumption.

Phase 1: Repeating the following set of inputs forces a total load of (almost)
1− 2x on the middle two machines of ALG in the limit, with OPT’s machines
being empty.

Let L = a2 + a3 be the combined load of the middle two machines before
the first time step. Load arrives after every timestep i. We denote the time
right before load arrives with i− and the time right after with i.

Time 0: At time 0, one unit of load arrive on machines 2 and 3 each. Thus
a2 and a3 increase by 1 each, while during the first timestep a2 + a3 decreases
by at most 1. This means at time 1−, a2 ≥ L+1

2 or a3 ≥ L+1
2 . W.l.o.g., let

a2 ≥ L+1
2 . During this timestep we allow ALG to process all existing loads

on machines 1 and 4 from previous iterations (which only makes it easier for
ALG).

Time 1: One unit of load arrives on machine 1. At time 2−, a1 + a2 ≥ L+1
2

and OPT has configuration (0, 0, 0, 0).
Time 2: One unit of load arrives on machines 1 and 2 each, while a1 + a2

decreases by at most 1 during the following timestep. This means a1 + a2 ≥
1 + L+1

2 at time 3−.
Since a possible configuration of OPT at this time is (0, 1, 0, 0), a1 ≤ 1 + x

by Lemma 5. This implies a2 ≥ L+1
2 − x at time 3−.
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TABLE 3.1: Phase 1: The notation i− refers to the state at time
i just before new jobs arrive, i refers to the state after the job
arrivals. The boxed entries are lower bounds for two adjacent

machines. Those marked with ≤ are upper bounds.

Loads of ALG Loads of OPT Next input
Time\Machines 1 2 3 4 1 2 3 4

0− ... L ... 0 0 0 0 0110
0 ... L + 2 ... 0 1 1 0

1− 0 L + 1 0 0 0 1 0 1000
1 1 L + 1 0 1 0 1 0

2− L+1
2 ... 0 0 0 0 0 1100

2 L+5
2 ... 0 1 1 0 0

3− ≤ 1 + x L+1
2 − x 0 1 0 0 0 0010

3 ≤ 1 + x L+3
2 − x 0 1 0 1 0

4− x L+1
2 − x 0 0 0 0 0 0110

Time 3: One unit of load arrives on machine 3. Then at time 4−, a2 + a3 ≥
L+1

2 − x while the machines of OPT are again empty. We can now repeat the
input if desired.

Repeating these four timesteps, we get a sequence (Ln)n with Ln+1 ≥
Ln+1

2 − x.
As long as Ln ≤ 1 − 2x, we have

1 − 2x − Ln+1 ≤ 1
2
(1 − 2x − Ln)

Since L0 = 0 ≤ 1 − 2x we find 1 − 2x − Ln+1 ≤ 1
2n (1 − 2x), so Ln+1 ≥

1 − 2x − 1
2n (1 − 2x).

Phase 1 continues until Ln > 6x − 1. This is possible because x < 1
4 and

therefore 1 − 2x > 6x − 1.

Phase 2: Again let L be the load on the middle two machines. Let B be the
load on all machines. We reset time to 0. This means after phase 1 we start
phase 2 with a load of L0 > 6x − 1.

Time 0: At time 0, one unit of load arrives on machines 2 and 3 each.
During this timestep ALG can reduce a2 + a3 by 1. We again allow ALG to
process all existing loads on machines 1 and 4 from previous iterations. For
the total load at time 1− (before new jobs arrive) we have

B ≥ L + 1

with one of the machines (w.l.o.g. machine 2) having at least load L+1
2 .
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TABLE 3.2: Phase 2: The entries for machines 2 and 3 of ALG

and the total load are lower bounds. Those marked with ≤ are
upper bounds.

Loads of ALG Loads of OPT Total load Next input
Time \Machines 1 2 and 3 4 1 2 3 4

0− ... L ... 0 0 0 0 L 0110
0 ... L + 2 ... 0 1 1 0 L + 2

1− 0 L + 1 0 0 0 1 0 L + 1 1000
1 1 L + 1 0 1 0 1 0 L + 2

2− 0 0 0 0 1110
2 1 1 1 0

3− 0 1 0 0 3
2 L − x + 3

2 1011
3 1 1 1 1 3

2 L − x + 9
2

4− 1
2

1
2

1
2

1
2

3
2 L − x + 5

2
4 1 and 4 continuous

5− ≤ 1 + x 3
2 L − 3x + 1

2 ≤ 1 + x 1 0 0 1 3
2 L − x + 5

2 0110
... ... 3

2 L − 3x + 1
2 ... 0 0 0 0 0110

Time 1 and 2: At time 1, one unit of load arrives on machine 1. After
this step OPT’s machines are empty. Then load arrives on machines 1, 2 and
3. At time 3−, OPT has configuration (0,1,0,0), however (1,0,1,0) is also a
possible configuration. Because (1,0,1,0) is a possibility, a2 ≤ 1 + x at time 3
by Lemma 5. During these two timesteps, ALG therefore has to run machine
2 (alone, since machine 4 is empty) for a duration of at least L+1

2 + 1 − (1 +

x) = L+1
2 − x. ALG can then run machines 1 and 3 for a duration of at most

2 − ( L+1
2 − x) = − 1

2 L + x + 3
2 . This decreases the overall load by at most

twice that amount. (It is less if machine 3 becomes empty.) For the total load
at time 3− we have B ≥ L + 5 − ( L+1

2 − x)− 2 · (− 1
2 L + x + 3

2) =
3
2 L − x + 3

2 .
Time 3: At time 3, one unit of load arrives on machines 1, 3 and 4 each.

This means all machines of OPT have load 1. OPT then uses processor sharing
to equally decrease the load on all machines, ending in state (1

2 , 1
2 , 1

2 , 1
2) at time

4−. However it is also possible for OPT to be in state (0,1,1,0) at time 4−. At
time 3, three units of load arrive, but ALG can only remove two in one time
unit. This means

B ≥ 3
2

L − x +
5
2

. (3.1)

at time 4−.
Time 4: Then, during timestep 5, one unit of load arrives on machines

1 and 4. This happens continuously at a constant speed of 1 over the whole
timestep. OPT continues to use processor sharing, ending in the state (1,0,0,1).
However, ALG needs to take into account that if OPT was in state (0,1,1,0) at
time 4−, OPT could have continuously run machines 1 and 4 during timestep
5. In this case it would still be in state (0,1,1,0) at time 5−.

The overall load added during this timestep is 2. This means at time 5−

we still have (3.1). Because the state (0,1,1,0) is possible for OPT, a1 ≤ 1 + x
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and a4 ≤ 1 + x by Lemma 5. The rest of the load is on the middle two
machines. Given our bound on B, the middle two machines have a load of at
least

B − 2 · (1 + x) ≥ 3
2

L − 3x +
1
2

. (3.2)

By Lemma 6 we can now reach a state where the middle two machines
have load at least 3

2 L − 3x + 1
2 and all of OPT’s machines are empty.

We can now repeat this phase if desired.
Let εn = Ln − (6x − 1). We show that εn+1 ≥ 3

2 εn. Since Ln+1 ≥ 3
2 Ln −

3x + 1
2 , we have

εn+1 − εn = Ln+1 − Ln =
1
2

Ln − 3x +
1
2
=

1
2
(6x − 1 + εn)− 3x +

1
2
=

1
2

εn,

hence εn+1 ≥ 3
2 εn. It follows that Ln ≥ L0 + ( 3

2)
nε0. Since ε0 > 0, this

implies (Ln)n grows without bound, contradicting the assumption that the
competitive ratio is 2 + x.

3.4.2 ...for the flow model

In this section we determine the competitive ratio of the path with four ma-
chines for the flow model.

Algorithm 3 (for four machines)

1. Run any group of size 1 at full speed.

2. If a1 = a4 = 0, run the machine with higher load.

3. Else if there is a group of size 2 at the edge, run the more central ma-
chine, unless the outside machine has load (at least) 4

3 and is receiving
load. In that case run the outside machine.

4. If there is a group of size 3, run the two outer machines of the group
unless the middle one has load 4

3 and is receiving load. In that case run
the middle one.

5. If all machines have load, run the best parity (even or odd), that is the
parity that includes the machine with highest load, unless both outer
machines have load 4

3 . In that case run the outer machines.

Note that this algorithm is essentially the same as the one for the original
model. We are simply changing the target value and rephrasing slightly to
account for load arriving as flow. The same is true for the invariants. The
values change but otherwise the proof remains the same.

Lemma 8. For Algorithm 3, the following invariants hold at all times.

(I1) d1 + d2 ≤ 2
3 , (I2) d2 + d3 ≤ 1

3 , (I3) d3 + d4 ≤ 2
3 , (I4) d1 + d2 + d3 + d4 ≤ 1
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Proof. Whenever all machines are empty, all invariants hold. When load ar-
rives the invariants are obviously preserved. We consider all possible config-
urations of the load vector. In every situation some invariants are maintained
because of the observations above. Given these invariants we then show that
the remaining invariants also hold in that situation and are therefore also
maintained.

If only one machine i of Algorithm 3 has load, Algorithm 3 runs machine i
at full speed and invariants (I1) to (I3) that involve machine i are maintained
by Observation 1. The invariants that do not involve machine i hold, because
all other machines are empty, and therefore the delay on those machines is at
most 0. Additionally, since (I1) to (I3) hold, it follows that if only machine i
has load, we have di ≤ 2

3 . The other machines are empty, therefore dj ≤ 0 for
i ̸= j. Thus (I4) holds in the case of only one machine having load, due to (I1)
to (I3) being maintained in this case.

Suppose two machines have load. If there are two groups of size 1, (I4)
is maintained by Observation 2. For the other invariants (I1) to (I3) either
one of the relevant machines is running, and Observation 1 applies, or both
machines are empty, which means the delay on these machines is at most 0.
Thus all invariants are maintained.

We next show that (I1) to (I3) are maintained whenever there are groups
of size 2.

Suppose a1 > 0 and a2 > 0 (and a3 = 0). If a1 ≤ 4
3 and is not receiving

load, machine 2 is running and (I1) and (I2) are maintained by Observation
1. If a1 = 4

3 and is receiving load, this means d1 ≥ 1
3 . Since machine 1 is

running, (I1) is maintained by Observation 1. With (I1) it follows that d2 ≤ 1
3 .

Since a3 = 0 and therefore d3 ≤ 0 we get d2 + d3 ≤ 1
3 . Thus (I2) also holds.

(I3) holds, because either a3 = a4 = 0 and thus d3 + d4 ≤ 0 or a3 = 0 and
a4 > 0 and (I3) is maintained because machine 4 is running and Observation
1 applies. The case a3 > 0 and a4 > 0 is symmetrical to the one above.

Suppose there is a group of size 2 in the middle. This means a2 > 0
and a3 > 0. Algorithm 3 runs the machine with more load. If machine 2
is running, (I1) and (I2) are maintained by Observation 1. If machine 3 is
running, (I2) and (I3) are maintained by Observation 1. To prove that (I1)
holds, assume d1 + d2 > 2

3 . Since d1 ≤ 0, d2 > 2
3 . With (I2) d3 < − 1

3 follows.
However, from d2 > 2

3 we also get a2 > 2
3 and since a2 ≤ a3, a3 > 2

3 and thus
d3 > − 1

3 . This is a contradiction to d3 < − 1
3 . This means d1 + d2 ≤ 2

3 and (I1)
holds. (I3) holds if machine 2 is running, because of symmetry.

Since (I1) to (I3) hold for groups of size 2, the combined delay of the ma-
chines in that group is at most 2

3 . If the other machines are empty, their delay
is at most 0 and (I4) holds as well. If there is a group of size 1 and a group of
size 2, all invariants are maintained by Observation 1 and Observation 2.

Suppose there is a group of size 3 and a4 = 0. Either machines 1 and 3 or
machine 2 are running, therefore (I1) and (I2) are maintained by Observation
1. If machines 1 and 3 are running (I3) and (I4) are maintained as well by
Observation 1 and Observation 2. If machine 2 is running, this means a2 = 4

3 ,
therefore d2 ≥ 1

3 . Adding (I1) and (I2) yields d1 + 2d2 + d3 ≤ 1. Since d2 ≥ 1
3
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and d4 ≤ 0 we get d1 + d2 + d3 + d4 ≤ 2
3 . Therefore (I4) is also maintained, if

machine 2 is running. It remains to show that (I3) is maintained for machine
2 running. Since a2 = 4

3 , it follows that d2 ≥ 1
3 . Since (I2) is maintained,

d3 ≤ 0. Machine 1 is empty, therefore d4 ≤ 0 and (I3) holds. The case a1 = 0
is symmetrical to the previous one.

Finally, suppose all machines have load. In all cases there are two ma-
chines running, therefore (I4) is maintained by Observation 2. If machines 1
and 4 are not running at the same time, two machines of the same parity are
running and all invariants are maintained by Observation 1. Machines 1 and
4 run at the same time if a1 = 4

3 and a4 = 4
3 and both are receiving flow. This

means d1 ≥ 1
3 and d4 ≥ 1

3 . From (I4) we get d2 + d3 ≤ 1
3 , thus (I2) holds. This

means all invariants hold at all times.

Theorem 9. Algorithm 3 is 4
3 -competitive on the path with four machines

Proof. There are two cases in which a machine i that has load does not get
run by the algorithm. In the first case, the load of the machine is below 4

3 .
In the second case, machine i − 1 or i + 1 has load 4

3 . Then that machine has
delay at least 1

3 . Given the invariants, machine i then has delay at most 1
3 in

this case and thus load at most 4
3 .

We now present a matching lower bound.

Theorem 10. No algorithm can be better than 4
3 -competitive on the path with four

machines.

Proof. Let R < 4
3 .

Consider an R-competitive algorithm for four machines. Denote the load
on machines 2 and 3 by L. At the beginning, L = 0.

We consider the following input. Load arrives for one time unit on ma-
chines 2 and 3. ALG then has at least L+1

2 load on one of those machines
(w.l.o.g. it is machine 2), while OPT can be empty on machines 1 and 2. Then
load arrives on machine 1 for one unit of time. After this, ALG has at least
L+1

2 load on machines 1 and 2 and OPT’s machines are empty. Load arrives
on machines 1 and 2 for one unit of time and the overall load on that pair
becomes L+1

2 + 1. At most R of that load is on machine 1 and therefore at
least L+1

2 + 1 − R is on machine 2. Finally, load arrives on machine 3 for one
unit of time. After this, OPT’s machines are empty, while ALG has at least
L+1

2 + 1− R load on machines 2 and 3. This means the load in the middle has
become larger after processing this input as long as L < L+1

2 + 1 − R. Since
R < 4

3 we can achieve L > 1
3 given enough iterations.

We next consider the following input. Again we begin by forcing a load
of L+1

2 on machine 2. Then load arrives on machines 1 and 2 for two units
of time, forcing a load of at least ( L+1

2 + 2)/2 on either machine 1 or 2. Thus
R ≥ ( L+1

2 + 2)/2. With L > 1
3 we have R > 4

3 which is a contradiction.
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3.5 The competitive ratio of the path with five ma-
chines

3.5.1 ...for the original model

In this section we first present an algorithm that achieves a competitive ratio
of 5

2 and follow up with a lower bound of 16
7 .

Algorithm 4

1. Run any group of size 1 at full speed.

2. If there is a group of size 2 at the edge, run the more central machine,
unless the other machine has load more than 3

2 .

3. Otherwise, if there is a group of size 2 run the more central machine,
unless the other machine has load more than 1.

4. If there is a group of size 3, run two machines unless the middle one
has load more than 3

2 .

5. We consider a group of size 4, e.g. machines 1 to 4. We run machines 2
and 4 unless a1 > 3

2 or a3 > 3
2 . In that case we run machines 1 and 3.

Additionally, if a1 > 3
2 and a4 > 3

2 we run machines 1 and 4. Machines
2 to 5 are symmetrical to machines 1 to 4.

6. If all machines have load, we run the odd parity, unless a2 > 3
2 or a4 >

3
2 . If a2 > 3

2 we run the even parity as long as a5 ≤ 3
2 . If a2 > 3

2 and
a5 > 3

2 we run machines 2 and 5. The case of a4 > 3
2 is symmetrical to

a2 > 3
2 .

Lemma 11. Algorithm 4 maintains the following invariants at all times.

1. di ≤ 3
2

2. di + di+1 ≤ 1 for i = 1, 4

3. di + di+1 ≤ 1
2 for i = 2, 3

4. di + di+1 + di+2 + di+3 ≤ 1

Proof. Group of size 1: If there is a group of size 1, this machine is running and
all invariants are maintained.

Group of size 2: Let there be a group of size 2 at the edge. W.l.o.g. we con-
sider machines 1 and 2. Algorithm 4 runs the more central machine, unless
the other one has load more than 3

2 . Thus since a1 ≤ 3
2 and machine 2 is run-

ning, invariant 1 is maintained. Invariant 2 and 3 are also maintained, since
every pair is either empty or has a running machine. Consider 4 adjacent
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machines, containing a group of size 2. Either there is a group of size 2 and
2 empty machines, in that case invariant 4 follows from invariant 2 or 3, or
there is a group of size 2 and a group of size 1. In that case, two machines are
running and invariant 4 is maintained.

If a1 > 3
2 , we have d1 > 1

2 and thus d2 ≤ 1
2 . Since d3 ≤ 0 invariant 3 holds

on machines 2 and 3. All other invariants clearly hold as well.
Otherwise let there be a group of size 2 not at the edge. W.l.o.g. these

machines are machines 2 and 3. Algorithm 4 runs machine 3 if a2 ≤ 1. All
invariants hold and in particular invariant 2 holds on machines 1 and 2, since
d2 ≤ 1. If a2 > 1 machine 2 runs instead. We have d2 > 0 and thus d3 < 1

2
from invariant 3 on machines 2 and 3. Therefore invariant 3 als holds on
machines 3 and 4. The other invariants clearly hold as well, in particular
invariant 1 holds on machine 3, since d3 < 1

2 .
Group of size 3: Let there be a group of size 3. Let the middle machine

be numbered i. If ai ≤ 3
2 , Algorithm 4 runs machines i − 1 and i + 1. Since

di ≤ 3
2 invariant 1 is maintained. Invariants 2 and 3 are clearly maintained as

well. Invariant 4 is maintained, because 4 adjacent machines either contain
2 running machines, or 2 machines with load and a running machine and 2
empty machines. In the second case invariant 4 follows from invariant 3. If
ai >

3
2 , Algorithm 4 runs machine i instead. We have di >

1
2 . If i − 1 is on the

edge, we get di−1 ≤ 1
2 from invariant 2 and invariant 1 is maintained. If i − 1

is not on the edge, we get di−1 ≤ 0 from invariant 3. In that case invariant 1
is maintained, as well as invariant 3 on machines i − 1 and i − 2 (since i − 2
is empty). Invariant 4 clearly holds as well. The same can be done for i + 1.
Thus all invariants are maintained.

Group of size 4: Let machines 1 to 4 be a group of size 4. Algorithm 4
runs the even parity if there is no machine with load more than 3

2 that is not
running. All invariants are maintained.

If a3 > 3
2 , Algorithm 4 runs the uneven parity. We need to consider invari-

ant 1 on machines 2 and 4, invariant 3 on machines 4 to 5 as well as invariant
4 on machines 2 to 5. We have d3 > 1

2 , thus d2 ≤ 0 and d4 ≤ 0. Invariant 1 is
maintained on machines 2 and 4 and invariant 3 is maintained on machines
4 and 5. Invariant 4 is also maintained, because we have d2 + d3 ≤ 1

2 from
invariant 1 as well as d4 ≤ 0 and d5 ≤ 0. Therefore d2 + ... + d5 ≤ 1

2 and
invariant 4 holds as well.

If a1 > 3
2 Algorithm 4 runs the uneven parity as long as a4 ≤ 1. We get

d2 ≤ 1
2 . Invariants 1,2 and 3 are clearly maintained. We need to consider

invariant 4 on machines 2 to 5. Invariant 4 is maintained on machines 1 to 4,
because machines 1 and 3 are running, which means d1 + ... + d4 ≤ 1. With
d1 > 1

2 and d5 ≤ 0 (since machine 5 is empty) we get d2 + ... + d5 ≤ 1
2 .This

means invariant 4 holds on machines 2 to 5 as well.
If both a1 > 3

2 and a4 > 1 we have d1 > 1
2 and d4 > 0 and get d1 ≤ 1

2 and
d3 ≤ 0. We need to consider invariant 3 on machines 2 and 3 and invariant 4
on machines 2 to 5. Because of d1 + d4 > 1

2 and invariant 4 on machines 1 to
4, we get d2 + d3 ≤ 1

2 and invariant 3 holds. Invariant 4 on machines 2 to 5
holds for the same reason as above.

Machines 2 to 5 are symmetrical to machines 1 to 4.
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Group of size 5: Let all machines have load. Algorithm 4 runs the uneven
parity if there is no machine with load more than 3

2 that is not running. All
invariants are maintained.

Assume a2 > 3
2 . Algorithm 4 runs the even parity as long as a5 ≤ 3

2 . We
need to consider invariant 1 on machines 1 and 3. We have d2 > 1

2 and thus
d1 ≤ 1

2 and d3 ≤ 0. Thus all invariants are maintained.
Assume a2 > 3

2 and a5 > 3
2 . Algorithm 4 runs those two machines. In-

variant 1 is maintained on machines 1, 3 and 4 for similar reasons as above.
We need to consider invariant 3 on machines 3 and 4 as well as invariant 4 on
machines 1 to 4. Since d2 > 1

2 and d5 > 1
2 we get d3 ≤ 0 and d4 ≤ 1

2 . Invariant
3 is maintained. We have d2 + ... + d5 ≤ 1. With d5 > 1

2 and d1 < 1
2 we get

d1 + ... + d4 < 1. Invariant 4 is maintained.
The case a4 > 3

2 is symmetrical to the case a2 > 3
2 .

Theorem 12. Algorithm 4 is 5
2 -competitive on P5.

Proof. Follows directly from invariant 1 in Lemma 11 above.

We now present the lower bound. The construction for four machines
forces a load of 1 − 2x on the middle two machines in phase 1. For five
machines we can force a load of 1 − x on machine 3. Applying phase 2 of the
construction for four machines with a higher starting value yields a higher
lower bound.

Lemma 13. For any competitive algorithm and any ε ∈ [0, 1], there exists a set of
inputs on P5 and n ∈ N, so that at time n, a2 ≥ 1 − ε or a4 ≥ 1 − ε and OPT is in
configuration (0, 0, 1, 0, 0).

Proof. We present a repeating set of inputs and show that, if the algorithm
never allows a load of at least 1 − ε on machines 2 or 4, the load on machine
3 grows without bound. The construction is essentially one from Chrobak et
al. (Theorem 5.4 in [33]) Load arrives after every timestep i. We denote the
time right before load arrives with i− and the time right after with i.

Let a2 + a3 = L and OPT’S machines be empty at time t−.
Time t: One unit of load arrives on machines 2 and 3 each, therefore a2 + a3 =
L + 2. At time (t + 1)−, we have a2 + a3 = L + 1, with a3 ≥ L + ε, since
a2 ≤ 1 − ε. OPT can be in the configuration (0, 1, 0, 0, 0).
Time t+1: One unit of load arrives on machine 4. At time (t + 2)−, we have
a3 + a4 = L + ε and OPT’S machines are empty.

Because of symmetry, we can now repeat these inputs starting from an
initial load of L′ = L + ε on machines 3 and 4. After every repetition the
initial load increases by ε and therefore grows without bound. Because the
load on machines 2 and 4 is bounded by 1− ε this means the load on machine
3 grows without bound. Therefore the algorithm is not competitive if it never
allows a load of at least 1 − ε on machines 2 and 4.

This means any competitive algorithm has to allow a load of at least 1 − ε
on machines 2 or 4 at some point. W.l.o.g. this happens at machine 2 at time
t−. OPT can then be in configuration (0, 0, 1, 0, 0) instead of (0, 1, 0, 0, 0). This
concludes the proof.
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Theorem 14. No Algorithm can be better than 16
7 -competitive on P5.

Proof. Let the competitive ratio of ALG be equal to 2+ x. Suppose that x < 2
7 .

W.l.o.g. let a2 ≥ 1 − ε with OPT being in the state (0, 0, 1, 0, 0). We can
reach this state for any competitive algorithm because of Lemma 13. Let the
time be 0−.

The following set of inputs forces a combined load of at least 1 − x − ε on
machines 2 and 3, while all machines of OPT are empty.
Time 0: One unit of load arrives on machine 1. At time 1−, a1 + a2 ≥ 1 − ε.
OPT’S machines are empty.
Time 1: One unit of load arrives on machine 1 and 2 each. At time 2−, a1 +
a2 ≥ 2 − ε. OPT is in configuration (1, 0, 0, 0, 0). Additionally, a1 ≤ 1 + x
because of Lemma 5. This means a2 ≥ 1 − x − ε
Time 2: One unit of load arrives on machine 3. At time 3−, a2 + a3 ≥ 1− x− ε.
All machines of OPT are empty.

We use the achieved configuration as a starting configuration and run
phase 2 (from the proof of the lower bound on P4) on machines 1 to 4. During
phase 2 the load on machines 2 and 3 grows without bound, as long as the
initial load is more than 6x − 1 and the side loads remain below 1+ x. This is
the case, because the initial load is arbitrarily close to 1 − x and x < 2

7 . This
means no algorithm can achieve a competitive ratio better than 16

7 .

3.5.2 ...for the flow model

For the path with five machines, we use the same algorithm as in the original
model and achieve a competitive ratio of 3

2 . We also give a matching lower
bound showing that the algorithm is optimal for the flow model.
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Algorithm 5 (for 5 machines)

1. Run any group of size 1 at full speed.

2. If there is a group of size 2 at the edge, run the more central machine,
unless the other machine has load 3

2 and is receiving load.

3. Otherwise if there is a group of size 2, run the more central machine,
unless the other machine has load 1 and is receiving load.

4. If there is a group of size 3, run the two outer machines unless the mid-
dle one has load 3

2 and is receiving load.

5. We consider a group of size 4, e.g. machines 1 to 4. We run machines 2
and 4 unless a1 > 3

2 or a3 > 3
2 . In that case run machines 1 and 3. Unless

a1 > 3
2 and a4 > 3

2 , in which case we run machines 1 and 4. Machines 2
to 5 are symmetrical to machines 1 to 4.

6. If all machines have load, we run the odd parity unless a2 > 3
2 or a4 > 3

2 .
If a2 > 3

2 , we run the even parity as long as a5 ≤ 3
2 . If a2 > 3

2 and a5 > 3
2 ,

we run machines 2 and 5. The case of a4 > 3
2 is symmetrical to a2 > 3

2 .

Again the algorithm as well as the proof are the same as in the original
model and in this case even the invariants remain the same.

Lemma 15. Algorithm 5 maintains the following invariants at all times.

1. di ≤ 3
2

2. di + di+1 ≤ 1 for i = 1, 4

3. di + di+1 ≤ 1
2 for i = 2, 3

4. di + di+1 + di+2 + di+3 ≤ 1

Proof. The proof is the same as for the original model.

Theorem 16. Algorithm 5 is 3
2 -competitive on the path with five machines.

Proof. There are two cases in which a machine that has load does not get run
by the algorithm. In the first case the load of the machine is below 3

2 . In the
second case the machine has a neighbor with load 3

2 . Then the neighbour has
delay at least 1

2 . Given the invariants, the original machine then has delay at
most 1

2 and thus load at most 3
2 .

We continue by showing a matching lower bound.

Lemma 17. On the path with three machines there is an input that forces a load of
1 on a machine while OPT’s load is 0 on that machine (and 1 on one other machine).
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Proof. We use a simple version of the input used by Chrobak et al. Let there
be a load of L on a pair (initially L = 0). Load arrives on both machines of the
pair for one unit of time. Either ALG allows a load of 1 on the side machine,
in which case the proof is finished, or there is at least load L+ ε on the middle
machine, with load at most 1 − ε on the side machine. For one unit of time
load arrives on both machines of the other pair. The load on the other pair
is at least L + 1 + ε and OPT can be in state (1, 0, 1). After one unit of time
OPT’s machines are empty and there is a pair with load at least L + ε. We can
repeat this input and the load on the pairs grows without bound unless ALG
allows load 1 on a side machine at some point.

Theorem 18. No algorithm can be better than 3
2 -competitive on the path with five

machines.

Proof. By Lemma 17 we can reach a state where ALG has load 1 on machine
2, 3 or 4 and OPT has load 1 on another machine. This means there is a pair
where ALG has load 1 and OPT’s machines are empty. Load arrives on both
machines for two units of time. This forces a load of at least (1 + 2)/2 = 3/2
on one of those machines.

3.6 Results on m machines

In this section we provide some results for m machines. The first result is an
(1

ε + 2)-competitive algorithm for the flow model, with machines running at
speed 1 + 2ε.

Lemma 19. In any interval of length T, at most T+2 load arrives on any two adja-
cent machines and at most T + 1 load arrives on any single machine.

Proof. Even if the buffers of OPT are empty at the start of this interval, it
can process only T load during the interval, therefore more than T + 2 load
on a pair or T + 1 load on an individual machine would make OPT’s buffer
overflow.

Algorithm 6 (for machines of speed 1 + 2ε)

Use phases of length 1
ε .

• In phase 0 do nothing.

• In phases > 0 let Li be the load that arrived on each odd machine i.
Process this load during the first Li

1+2ε time in the next phase.

• Run each even machine whenever it can be run. This means it gets run
at the end of each phase, after both of its neighbours have stopped pro-
cessing.

Theorem 20. Algorithm 6, whose machines run at (1 + 2ε)-speed, is (1
ε + 2)-

competitive.
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Proof. W.l.o.g. consider machines 1 to 3 and let the current phase be j. In
total the algorithm can process 1+2ε

ε = 1
ε + 2 load on machines 1 and 2, which

means it can process everything that could possibly arrive during phase j− 1
by Lemma 19.

The load on odd machines is highest at the start of the phase and is at
most 1

ε , because no more load can arrive during phase j − 1 and all the load
that arrived before phase j − 1 gets processed before phase j.

For the load on even machines let Li be the load that arrived during the
previous phase on machine i and consider machine 2. W.l.o.g. L1 > L3.
At the end of a phase, its load is at most 1

ε + 2 − L1. By the time it starts
processing, machine 1 has run for L1

1+2ε , which means L1
1+2ε additional load

can arrive on machine 2. Thus when machine 2 starts processing, the load is
at most 1

ε + 2 − L1 +
L1

1+2ε =
1
ε + 2 − 2εL1

1+2ε ≤
1
ε + 2.

We use an algorithm called greedy extension from Chrobak et al [33] to
achieve the following upper bounds on m > 5 machines.

Theorem 21. On the path with m > 5 machines there is a m
2 + 1

4 -competitive
algorithm for the original model and a m

2 − 2
3 -competitive algorithm for the flow

model.

Proof. Chrobak et al [33] use an algorithm called greedy extension to achieve
the following result. If there is an algorithm that achieves ratio R on the path
with k machines, then extending this path by one machine to the left and
right increases the competitive ratio by 1 (Lemma 6.1 in their paper). Thus
we get an upper bound of R + m−k

2 for paths with m > k machines with m
being of the same parity as k.

In the original model there are algorithms with competitive ratio 9
4 on 4

machines and 5
2 on 5 machines. This gives upper bounds of m

2 + 1
4 on paths

with an even number of machines and m
2 for an odd number of machines.

In the flow model there are algorithms with competitive ratio 4
3 on 4 ma-

chines and 3
2 on 5 machines. This gives upper bounds of m

2 − 2
3 on paths with

an even number of machines and m
2 − 1 for an odd number of machines.

Finally, we present a lower bound of 12
5 on m machines for the original

model.

Theorem 22. No algorithm can be better than 12
5 -competitive on m machines for m

large enough in the original model.

Proof. Let x < 2
5 .

We consider 4 adjacent machines numbered 1 to 4. We start with a load
of L on machines 2 and 3, while all machines of OPT are empty. There is a
set of inputs that forces a total load of at least 5

2 − x + 3
2 Ln > 21

10 +
3
2 Ln on all

machines combined, while OPT can be in state (1, 0, 0, 1) as well as (0, 1, 1, 0)
(phase 2 of the proof of the lower bound on P4). If we reach a state where
ALG has a delay of Ln+1 on two adjacent machines, we can reach a state
where ALG has a load of Ln+1 on these machines and all machines of OPT
are empty by Lemma 6.
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This means if, after the set of inputs, there is a delay of Ln+1 > Ln on
either machine 1, machines 2 and 3, or machine 4 we can reach a state with
a higher starting load L on two adjacent machines and can repeat the set of
inputs. This is clearly true if this load is on machines 2 and 3. If the load is
on machine 1 or machine 4, then we shift the set of considered machines to
the left or right. This is possible, because we assume the initial set of four
machines to be in the middle of the set of m machines. This means for m
large enough, there can always be empty machines to the left or right of the
considered set of four machines. Thus if there is a delay of d1 = Ln+1 on
machine 1 and OPT is in state (0, 1, 1, 0), we remove machines 3 and 4 from
the considered machines and add 2 machines to the left of machine 1. Then
we update the numbering accordingly. We can then reach a state where the
middle two machines have load Ln+1 and all machines of OPT are empty.

Next, we choose the highest load out of a1, a2 + a3 and a4 as our next load
Ln+1. Since the total load is at least 21

10 +
3
2 Ln we have Ln+1 ≥ (21

10 +
3
2 Ln)/3 =

7
10 + 1

2 Ln. Starting from load L0 = 0 this recurrence can be expressed as
Ln = 7

5 − (1
2)

n 7
5 . Thus for large enough n (which may require many iterations

and shifts and thus a large m) we get a load that is arbitrarily close to 7
5 on the

middle pair of a set of four machine, while all machines of OPT are empty. We
can now apply phase 2 of the lower bound for four machines with a starting
load of 7

5 . Since x < 2
5 , we have 7

5 > 6x − 1 and the load on the middle two
machines grows without bound as long as the side loads remain below 1+ x.
This concludes the proof.

This construction only works if one unit of load can arrive instantly. Thus
this lower bound only holds for the original model and not the flow model.

3.7 Straying from the path

In this section we explore some graphs other than the path. Chrobak et al.
already provide a few results in this direction. For one, the greedy extension
algorithm provides a linear result on tree graphs. Furthermore, they are able
to guarantee a finite competitive ratio on general graphs, however, this ratio
may be very large.

We begin with an algorithm that works on bipartite graphs, which in-
cludes trees as well as even cycles. This algorithm maintains a competitive
ratio that is linear in the size of the graph.

We then provide an algorithm with speed-up that works on general graphs,
and finally we explore a relaxation of the problem that allows for more results
on general graphs while preserving the difficulty on the path.

We start off with a few definitions that are useful in the graph setting.
In the graph setting a group is the induced subgraph of a maximal contigu-

ous set of machines that all have load. Let d be the largest diameter among
all possible groups in the graph.

In other words, it is the length of the longest path where there is no short-
cut that uses a single edge. This is because that edge would connect two
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nodes within the group. There may be a shortcut that uses two or more (con-
secutive) edges but this shortcut would travel over a node outside the group.

The algorithm aims to maintain delay d + 2 on every pair. While this
holds, the delay on any individual machine i is at most (d + 2)− (aj − 1) for
each machine j adjacent to i. This is because of the invariant and the fact that
j has load aj and therefore at least delay aj − 1. The delay on machine i can
also not be more than its load ai. We define the potential delay on a machine
as

pi := min
j∈N

((d + 2)− (aj − 1), ai)

where N is the set of neighbors of i. This is an upper bound on the delay of i.

Algorithm 7 for bipartite graphs

1. Sort machines by nonincreasing load and consider them in this order.
If a neighbor of i is running, i is skipped. Else, machine i is selected to
run if ai > d + 2.

2. Consider machine i if it has distance 2 to a machine k that is already
selected to run and if it has not already been considered during step 2.
Let j be the machine between i and k. If pi + pj > d + 2 run machine i.
Repeat this step until there are no more machines that fit the criteria.

3. Run the remaining machines without running neighbors at speed 1/2.

Rule 3 of the algorithm uses processor sharing between adjacent machines
and potentially runs two adjacent machines at half speed. This can be achieved
by rapidly switching between two independent sets. This is possible because
the graph is bipartite.

Lemma 23. On a bipartite graph, Algorithm 7 maintains a delay of d + 2 on any
pair of adjacent machines.

Proof. Consider a group of machines. If no machine with load more than
d + 2 exists, then the algorithm does not select any machine during step 1.
Since the criterion in step 2 requires a running machine, the algorithm also
does not select any machine during step 2. This means the algorithm runs
all machines at speed 1/2. The invariant is maintained for any pair that is
running at full speed, including if it contains two machines running at speed
1/2. The only pairs that are not running at full speed are either empty or
consist of an empty machine and another machine that has load at most d+ 2
under the assumption. The invariant holds on both types of pairs.

Now assume there are machines with load more than d + 2. As long as
such machines are available, the algorithm selects them during step 1 to run
at full speed.

Once the algorithm has considered all of these machines, it continues to
select machines based on the criterion in step 2. When using this criterion, the
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algorithm only selects machines that have distance 2 to a previously selected
machine.

In particular this means that for any machine that is running at full speed,
we can find a path of odd length that ends with this machine and begins with
a machine that is running at full speed and has load more than d + 2 and
every second machine on this path (the odd parity) is running at full speed.
For machines with load more than d + 2 that were selected during step 1 this
path only consists of the machine itself.

Now consider three sequential machines i, i + 1 and i + 2 on this path.
Machine i is running at full speed and has load ai. Then pi+1 ≤ (d+ 2)− (ai −
1). The algorithm only runs machine i + 2 at full speed if pi+1 + pi+2 > d + 2
which means pi+2 > ai − 1. In other words, whenever the algorithm selects a
machine during step 2 there exists another running machine within distance
2 and the load of the two machine differs by at most 1.

Combining these two observations it follows that if a machine i has (even)
distance k to a machine with load d + 2 that is running, then machine i has
load at least d + 2 − k/2 if it is running at full speed. Since the distance
between two machines is at most d in any group, any machine that is running
at full speed therefore has load at least d

2 + 2.
Any machine that is not running is either empty or adjacent to a machine

that is running at full speed and has load at least d
2 + 2. This means the delay

on a machine that is not running is at most d
2 + 1 by the invariant. Therefore

the invariant holds on pairs that consist of two machines that are not running.
If there is a pair (i, j) of adjacent machines where machine i is running at

speed 1/2 and machine j is not running, then pi + pj ≤ d + 2 otherwise the
algorithm would run machine i at full speed and the invariant holds on this
pair.

The weighted fractional chromatic number in a graph G is the optimal
objective value of the following linear program:

minimize χ(G, h) = ∑
I

xI

subject to ∑
I∋i

xI = hi

xI ≥ 0

Here I denotes an independent set in the graph and h is a vector of weights
with one weight given to each node of the graph. The fractional weighted
chromatic number is also the minimum time required to remove load hi from
each node in the graph. xI is the time independent set I runs for in that
schedule.

The fractional chromatic number χ is defined as χ(G, 1) and is equal to
the minimum time required to remove one unit of load from each node in
the graph.
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The following algorithm uses machines of speed 1 + χε and is 1
ε + 2 + χ-

competitive on any graph.

Algorithm 8 for machines of speed 1 + χε

Use phases of length T = 1+χε
ε

• In phase 0 do nothing.

• In phases > 0 consider only load that arrived in the previous phase.
First execute the fastest schedule that leads to a state where no machine
has load more than 1. Then execute the fastest schedule that removes
the remaining load.

Lemma 24. Algorithm 8 is max
(

1
ε + 1 + χ + 1

1+χε , 1
ε + 2 + χ − 1

1+χε

)
-competitive

on a graph with fractional chromatic number χ.

Proof. Consider phase j > 1. We first show that during phase j the algorithm
removes any load that arrived in phase j − 1.

Let Li be the load that arrived on machine i during phase j− 1 and let hi be
the load above 1 that arrived during phase j − 1. That is hi := max(Li − 1, 0).
Since OPT’s buffersize is 1, OPT must run machine i for at least time hi during
phase j − 1. This means there is a schedule that removes the loadvector h =
(h1, . . . , h|V|) in time T. This schedule (or a more efficient one) can be found
by computing the weighted fractional chromatic number χ(h).

Since ALG’s machines run at speed 1 + χε, this schedule can be executed
in time T

1+χε by the algorithm. This means after time T
1+χε the algorithm can

be in a state where on each machine there is at most one unit of load that
arrived during phase j − 1 and there is time T − T

1+χε remaining until the end
of phase j. We have

T − T
1 + χε

=
1 + χε

ε
− 1 + χε

ε

1
1 + χε

=
1 + χε

ε
− 1

ε
= χ

Since the algorithm is in a state where there is at most one unit of load
that arrived during phase j − 1 on any node and χ, the fractional chromatic
number, is the time required to remove one unit of load from each node, the
algorithm can clear the remaining load that arrived during phase j − 1 in
time at most χ and all load that arrived during phase j − 1 is cleared before
the end of phase j.

We now determine the maximum load that any machine can reach. As-
sume load y + hi arrives on machine i during phase j − 1 with 0 ≤ y ≤ 1 load
remaining in the buffer of OPT while load hi ≤ T is cleared by OPT.

We consider two time intervals within phase j where the load on machine
i may increase and calculate the maximum value reached for each of these
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intervals. These intervals are
[
0, T−(y+hi−1)

1+χε

]
and

[
T

1+χε , T − 1
1+χε

]
where 0 is

the beginning of phase j.
First consider the time interval

[
0, T

1+χε

]
. The algorithm clears load y +

hi − 1 before time T
1+χε and this takes time y+hi−1

1+χε . In the worst case this
happens at the end of the interval which means load may arrive for time
T−(y+hi−1)

1+χε and all of this load can be cleared by OPT. Then an additional

1 − y load may arrive which fills the buffer of OPT. Then at time T−(y+hi−1)
1+χε

machine i can have load

y + hi +
T − (y + hi − 1)

1 + χε
+ (1 − y).

This is maximized for y = 0 and we get

1 + hi +
T − (hi − 1)

1 + χε
= 1 + hi +

1
ε
+

hi − 1
1 + χε

=
1
ε
+ 1 +

(1 + χε)hi − hi + 1
1 + χε

=
1
ε
+ 1 +

χεhi + 1
1 + χε

This is maximized for hi = T and we get a load of at most

1
ε
+ 1 + χ +

1
1 + χε

on machine i.
At time T−(y+hi−1)

1+χε ALG starts running machine i and the load decreases
until time T

1+χε . At this point at most one unit of load that arrived during
phase j − 1 is left on machine i. The latest time the algorithm can start pro-
cessing this unit of load is T − 1

1+χε . At this point at most load (1 − y) +
T − 1

1+χε ≤ 1 + T − 1
1+χε can have arrived on machine i during phase j. This

means the load at time T − 1
1+χε is at most

2 + T − 1
1 + χε

= 2 +
1 + χε

ε
− 1

1 + χε
=

1
ε
+ 2 + χ − 1

1 + χε

It follows that no machine has load more than

max
(

1
ε
+ 1 + χ +

1
1 + χε

,
1
ε
+ 2 + χ − 1

1 + χε

)

Buffer management with processor sharing Consider the following vari-
ant of the buffer management problem. Machines may run at partial speeds
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as long as two adjacent machines do not run at a combined speed of more
than 1. This gives the algorithm a lot more power since for example all ma-
chines in a clique may run at speed 1

2 . Note that this type of processor shar-
ing is already possible on bipartite graphs and thus this relaxation does not
change the results on the path.

However, given this relaxation, Algorithm 7 can be used on any graph.
This means Algorithm 7 has a linear competitive ratio on any graph in this
new model.

Furthermore, this model allows us to generalize the algorithm with re-
source augmentation from paths to general graphs. With resource augmen-
tation, the algorithm may run two adjacent machines at a combined speed of
1 + 2ε. With a slightly improved analysis we even get a slightly improved
competitive ratio this time.

Algorithm 9 for machines of combined speed 1 + 2ε on pairs

Use phases of length 1
ε

• In phase 0 do nothing.

• In phases > 0 let Li be the load that arrived on machine i in the previous
phase. Run machine i at speed Liε for the entire phase.

Lemma 25. Algorithm 9 is 1
ε + 1 competitive on any graph if processor sharing is

allowed.

Proof. Let the current phase be j > 0. We first show that the algorithm does
not run any pair at speed more than 1 + 2ε. At the beginning of phase j − 1,
one unit of load may arrive on each machine of the pair, and since OPT is
running the machines of the pair at a combined speed of at most 1 during
phase j − 1, an additional 1

ε load may arrive. This means at most 1
ε + 2 load

arrives on a pair during phase j − 1. Therefore the combined speed of the
machines in a pair is at most (1

ε + 2)ε = 1 + 2ε.
During phase j the algorithm removes load 1

ε Liε = Li from machine i
which means it removes all load that arrived in phase j − 1.

We now show that there is never more than 1
ε + 1 load on any machine.

First assume machine i runs at speed at least 1 during phase j and assume
time t has passed since the beginning of phase j. Since the beginning of phase
j − 1 up to 1

ε + 1 + t load can have arrived on machine i and all load from
phases before j − 1, has already been processed. Since the machine runs at
speed at least 1 at least t load has been processed during phase j. This means
the load on the machine is at most 1

ε + 1.
Now assume machine i runs at speed less than 1 during phase j. At the

beginning of the phase the load on machine i is Li. At most 1
ε + 1 load can

arrive on machine i during phase j. The first unit of load may arrive at the
beginning of the phase and then load may arrive at a rate of 1 for the entire
phase while machine i runs at speed less than 1. This means the load is
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maximized at the end of the phase. At this point load Li has been processed
and the machine has load at most 1

ε + 1.
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Chapter 4

Lower bounds on algorithms for
the buffer management problem

Despite the large gap between the lower bound of 12/5 and the upper bound
of (m + 1)/2 an algorithm with a sublinear competitive ratio has so far been
elusive. Of course quite a few candidates have been considered. In this sec-
tion we present a series of algorithms and give lower bounds or examples to
explain why the algorithms do not perform as well as desired.

We start out with the classic algorithm GREEDY and the interesting result,
that this algorithm is not competitive on the cycle with 6 machines. This
result can then be used to find a linear lower bound on m machines, where
adding 12 machines increases the lower bound by 1

4 .
Next, we consider the greedy extension and not only confirm the linear

lower bound matching that matches the result of Chrobak et al. [33] when
we extend by one machine, but we also show that we still get linear lower
bounds when we extend by two or three machines.

GREEDY sometimes runs machines that are a distance of two apart from
each other, which leads to suboptimal throughput overall.

Another simple idea that avoids this problem is to always run a parity in
any given group. We choose the parity that contains the machine with higher
load, and if there is a tie, we run the odd parity. We find a linear lower bound
where adding six machines increases the lower bound by one.

In the last section of this chapter we consider throughput maximizing
algorithms. In particular we consider a throughput maximizing version of
Algorithm 7, the algorithm from chapter 3.7, that achieves a linear competi-
tive ratio on bipartite graphs, and we show that this algorithm is not better
than linear competitive on the line.

4.1 Greedy

We begin with the most straightforward algorithm GREEDY. This algorithm
in each step chooses the machine with the most load from the set of avail-
able machines, resolving ties arbitrarily. Whenever a machine is chosen, this
machine and its neighbors are removed from the set of available machines.

First we consider the following useful lemma:

Lemma 26. Given delay d on a pair we can reach delay d
2 + 1

2 on an individual
machine.



58 Chapter 4. Lower bounds on algorithms for the buffer management
problem

Proof. Assume ALG has delay d on a pair and load d + r with r ≤ 2. Load
arrives continuously on both machines for time 2− r. OPT runs one machine
on the pair the whole time. Afterwards the load of ALG on that pair is at least
d + 2 and OPT has one unit of load on both machines. After one more unit of
time ALG’s load on the pair is still at least d + 1 with at least 1

2 d + 1
2 of that

load being on one machine. OPT can be empty on this machine and thus this
machine has delay 1

2 d + 1
2 .

We proceed with a lower bound on the competitive ratio of GREEDY on
the path with three machines.

Lemma 27. On the path with three machines, we can reach a state where GREEDY
has load arbitrarily close to 1

2 on every machine and OPT’S machines are empty.

Proof. We use the same input as in the first phase for the lower bound on
four machines, however, since GREEDY distributes the load on the middle
two machines evenly in the first step, a fourth machine is not necessary.

Repeating the following sets of inputs forces a load of 1
2 on machines 1

and 2 each in the limit, while OPT’S machines are empty. Let L = a1 = a2 be
the load on the first two machines. In the beginning L = 0.

Time 0: Before each iteration we allow GREEDY to process all load on ma-
chine 3. Thus at time 0 GREEDY is in state (L, L, 0) while OPT is in state
(0, 0, 0). For one unit of time load arrives on machines 1 and 2. After the
timestep, GREEDY is in state (L + 1

2 , L + 1
2 , 0) and OPT in state (1, 0, 0).

Time 1: For one unit of time load arrives on machine 3. We may assume
L + 1

2 < 1 otherwise we would have had L > 1
2 in the beginning. Then all

machines run at half speed for time L + 1
2 and then every machine has load

1
2 L + 1

4 . For the remaining time of 1
2 − L, machines 1 and 3 run at full speed.

At the end of the timestep, GREEDY ends up in state (3
2 L − 1

4 , 1
2 L + 1

4 , 1
2 L + 1

4)

while OPT is in state (0, 0, 0), since 1
2 L + 1

4 − (1
2 − L) = 3

2 L − 1
4 .

We may now repeat this input with load L′ = 1
2 L+ 1

4 . The load L increases
as long as L < 1

2 and in the limit L gets arbitrarily close to 1
2 . Additionally,

since the load on the third (or first) machine is 3
2 L − 1

4 , this machine also
approaches load 1

2 in the limit. This means we get a load of (almost) 1
2 on all

three machines while OPT’S machines are empty.

This lemma holds for both the flow and the original model. We reach a
delay of 1 on two machines. Because of Lemma 26 we can then reach a delay
of 1 on an individual machine as well which results in a lower bound of 2 on
the competitive ratio of GREEDY in the original model.

After letting load arrive on a pair of machines with delay 1 for two units
of time, we reach a combined load of 3 in the flow model and an individual
machine with load 3

2 .
Chrobak et al. [33] have shown a lower bound of 5

2 on GREEDY in the
original model on the path with four machines.

Theorem 28. In the original model the algorithm GREEDY is not better than 2-
competitive on the path with three machines and 2.5-competitive on the path with
four machines.
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Theorem 29. In the flow model, the algorithm GREEDY is not better than 3
2 -competitive

on the path with three machines and four machines.

We now take a look at a cycle of 6 machines and show that, surprisingly,
GREEDY is not competitive at all in this case.

Theorem 30. GREEDY is not competitive on the cycle with 6 machines.

Proof. By Lemma 27 we can get load 1
2 on three adjacent machines. Then we

repeat this construction on the second triple while load arrives on the middle
machine of the first triple. This means we can get arbitrarily close to 1

2 on all
machines while OPT’s machines are empty.

Now let x > 1
4 and consider the state (x, x, x, x, x, x) for ALG.

Loads of ALG Loads of OPT
Time 1 2 3 4 5 6 1 2 3 4 5 6

0− x x x x x x 0 0 0 0 0 0
0 x + 1 x + 1 x + 1 x x + 1 x 1 1 1 0 1 0

1− x + 1
2 x + 1

2 x + 1
2 x x x 0 1 0 0 0 0

1 x + 1
2 x + 1

2 x + 1
2 x + 1 x x + 1 0 1 0 1 0 1

1.5 x + 1
2 x x + 1

2 x + 1
2 x x + 1

2
2− x + 1

4 x − 1
4 x + 1

4 x + 1
4 x − 1

4 x + 1
4 0 0 0 0 0 0

2 x + 1
4 x + 3

4 x + 5
4 x + 5

4 x − 1
4 x + 5

4 0 1 1 1 0 1
3− x + 1

4 x + 1
4 x + 3

4 x + 3
4 x − 1

4 x + 1
4 0 0 1 0 0 0

3 x + 5
4 x + 1

4 x + 3
4 x + 3

4 x + 3
4 x + 1

4 1 0 1 0 1 0
4− x + 1

4 x + 1
4 x + 1

4 x + 1
4 x + 1

4 x + 1
4 0 0 0 0 0 0

Time 0: GREEDY runs machine 5 for the entire timestep and thus the load
on machines 4 and 6 does not change. Meanwhile, machines 1 to 3 all run at
speed 1

2 .
Time 1: For the first half of the timestep, machines 4 and 6 have the most

load and are running, and then machine 2 may also run.
For the second half of the timestep, machines 1 and 6 and 3 and 4 share

processing time, i.e. run at half speed. This means GREEDY may run all
machines at half speed.

Time 2: Machine 6 runs for the entire timestep and thus the load on ma-
chines 5 and 1 does not change. Meanwhile, machines 2 to 4 all run at speed
1
2 .

Time 3: Machine 1 runs for the entire timestep and thus the load on ma-
chines 6 and 2 does not change. Meanwhile, machines 3 to 5 all run at speed
1
2 .

We can repeat this construction and each time the load on all machines
grows by 1

4 . Therefore GREEDY is not competitive on the cycle with 6 ma-
chines.

This result on the cycle can help us find a linear lower bound for GREEDY
on the path.
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Theorem 31. There is a linear lower bound on the competitive ratio of GREEDY on
the path with m machines.

Proof. Consider two adjacent groups of 6 machines with load x on every ma-
chine and run the construction for the cycle on both groups. We can verify
that for the first iteration, the behavior on the rightmost machine of the left
group, that is machine 6, and the leftmost machine of the right group, that is
machine 7, is the same as the behavior on the corresponding machines in the
cycle (machines 6 and 1).

Loads of ALG

Time 1 2 3 4 5 6 7 8 9 10 11 12
0− x x x x x x x x x x x x
0 x + 1 x + 1 x + 1 x x + 1 x x + 1 x + 1 x + 1 x x + 1 x

1− x + 1
2 x + 1

2 x + 1
2 x x x x + 1

2 x + 1
2 x + 1

2 x x x
1 x + 1

2 x + 1
2 x + 1

2 x + 1 x x + 1 x + 1
2 x + 1

2 x + 1
2 x x x

1.5 x + 1
4 x + 1

4 x + 1
2 x + 1

2 x x + 1
2 x + 1

2 x + 1
4 x + 1

4 x − 1
4 x − 1

4 x − 1
4

2− x x x + 1
4 x + 1

4 x − 1
4 x + 1

4 x + 1
4 x x x − 1

2 x − 1
2 x − 1

2
2 x − 1

4 x + 5
4 x + 1

4 x
3− x − 1

4 x + 1
4 x + 1

4
4 x + 1

4 x + 5
4

4− x + 1
4 x + 1

4

Now consider three adjacent groups of 6 machines with load x on every
machine and run the construction on each group. The observation above
implies that the behavior on the middle group is exactly the same as the
behavior on the cycle for one iteration of the input. This means after one
iteration all machines in the middle group have load x + 1

4 .
Now consider 5 adjacent groups of 6 machines with load x on every ma-

chine and run the construction on each group. We number the groups from
left to right. After one iteration, groups 2, 3 and 4 have load x + 1

4 on all of
their machines, since they are each adjacent to another group on both sides
and we can apply the argument for three adjacent groups.

We repeat the input again on groups 2, 3 and 4, and after this iteration the
load on all machines of group 3 is x + 1

2 . This is because we can again apply
the argument for three adjacent groups.

Extending a group of 6 machines by k other groups on each side allows
us to simulate the behavior on the cycle on the middle group for k timesteps.
Therefore adding 12 machines, six to each side, increases the lower bound by
1
4 .

4.2 The Greedy extension

In this section we consider the algorithm that provides the current upper
bounds on the buffer problem on the line, the GREEDY EXTENSION.

Let there be an algorithm that works on a segment of the line. We call this
line segment the core and the algorithm the core algorithm. We extend the
algorithm by adding one or more machines on both sides of the core.
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At any point in time the algorithm first selects machines based on the
choices of the core algorithm. Then the algorithm chooses a maximal in-
dependent set among the available machines of the extension, by greedily
selecting machines with the highest load.

Chrobak et al. show that adding one machine to the left and right in-
creases the competitive ratio by one. Repeatedly extending by one machine
from a core on a smaller line segment provides the current upper bounds on
the line with m machines.

We now examine a few variations of extending a core, not only reviewing
the lower bound on the extension with one machine but also on extensions
with up to three machines.

Lemma 32. Let machine 1 be the rightmost machine of the core that is extended to
the right by machine 2. If we can reach a delay of d on machine 1, then we can reach
a delay of d + 1 on machine 2.

Proof. Since we can reach delay d on machine 1 we can get into state (d +
1, 0) on machines 1 and 2 for ALG while OPT is in state (1, 0). Load arrives
continuously on machine 2 while no load arrives on the core, and we wait
for the algorithm on the core to clear the load on machine 1.

We can assume that the core algorithm runs machine 1 the whole time, be-
cause whenever this is not the case ALG and OPT both run machine 2 and the
situation on the extension does not change until the core algorithm resumes
processing machine 1.

Since ALG cannot run machine 2 while machine 1 is running, we end up
in state (0, d + 1) while OPT is still in state (1, 0).

In the next version of the GREEDY EXTENSION we extent the core by two
machines on each side.

Lemma 33. Let machine 1 be the rightmost machine of the core that is greedily
extended to the right by machines 2 and 3. If we can reach a delay of d on machine
1, then we can asymptotically reach a delay of 2(d + 1) on machine 2 and d + 3

2 on
machine 3.

Proof. Assume ALG is in state (0, L, L) on machines 1 to 3 while OPT’S ma-
chines are empty. In the beginning L = 0. Since we can reach delay d on
machine 1, we can eventually reach state (d + 1, L, L) with OPT being in state
(1, 0, 0). This is achieved by continuously having load arrive on machine 3
which causes the loads on the extension to remain the same while the delay
on the core grows.

Now load arrives continuously on machine 2 and we wait till the core
algorithm has cleared the load on machine 1. Again we can assume that
machine 1 simply runs the whole time until it is empty, because whenever
this is not the case load may arrive on whatever machine is running in the
extension and the state on the three machines remains the same.

ALG ends up in state (0, L + d + 1, L − d − 1) if L > d + 1 and in state
(0, L + d + 1, 0) if L ≤ d + 1 while OPT is still in state (1, 0, 0). Consider the
second case where ALG is in state (0, L+ d+ 1, 0). Load arrives continuously
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on machine 3 and after time (L + d + 1)/2 we are in state (0, L+d+1
2 , L+d+1

2 ).
OPT can clear its load on machine 1 during this time.

We can repeat this process with load L′ = L+d+1
2 and since L+d+1

2 > L for
L < d + 1 we reach state (0, d + 1, d + 1) in the limit with OPT’S machines
being empty. This also means that the first case does not occur.

With ALG being arbitrarily close to state (0, d + 1, d + 1) let one unit of
load arrive on machines 2 and 3 each. We end up in (almost) state (0, d +
2, d + 2). For one unit of time ALG runs both machines at the same speed
while OPT runs machine 3. This leads to (almost) state (0, d + 3

2 , d + 3
2) on

ALG versus (0, 1, 0) on OPT. We have reached delay (almost) d + 3
2 on ma-

chine 3.
Since L gets arbitrarily close to d + 1, and during the construction we

reach load L + d + 1 on machine 2 while OPT is empty on this machine it
follows that we can reach a delay arbitrarily close to 2(d + 1) on machine 2.

The extension algorithm above chooses greedily among the machines of
the extension if given the choice. It turns out that other strategies do not help
and no extension algorithm that extends by two machines (numbered 2 and
3) can avoid delay d + 1 on machine 3.

Lemma 34. Let machine 1 be the rightmost machine of the core that is extended
to the right by machines 2 and 3. If we can reach delay d on machine 1 then no
algorithm can avoid delay d + 1 on machine 3.

Proof. Assume the algorithm allows at most load d + 1 − ε on machine 3. We
can reach a state where ALG has load d + 1 on machine 1 and let L be the
combined load of machine 2 and 3. In the beginning L = 0.

Load arrives on machine 2 while the core algorithm processes the load on
machine 1. Again we only consider the time where machine 1 is running.
During this process load d + 1 arrives on machines 2 and 3 but at most d +
1 − ε is processed, because the algorithm can only process load on machine
3. The combined load of machines 2 and 3 is now L + ε.

Then load arrives on machine 3 until the core algorithm has again load
d + 1 on machine 1. We can repeat the process with a combined load of
L′ = L + ε on machines 2 and 3.

The load on the extension increases by ε each iteration and therefore grows
without bound.

Finally we consider greedily extending by three machines.

Lemma 35. Let machine 1 be the rightmost machine of the core that is greedily
extended to the right by machines 2, 3 and 4. If we can reach a delay of d on machine
1 then we can asymptotically reach a delay of 3(d + 1) on machine 2, 2d + 5

2 on
machine 3 and d + 7

4 on machine 4.

Proof. Assume ALG is in state (0, L, L, 0) in the beginning, with OPT’S ma-
chines being empty. As before we can reach state (d + 1, L, L, 0). While ma-
chine 1 is being processed, load arrives on machines 2 and 4. Assuming
L < 2(d + 1) we reach the state (0, L + d + 1, L

2 , L
2 ).
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Now load arrives on machine 3 until we reach state (0, 3
4 L + d

2 + 1
2 , 3

4 L +
d
2 +

1
2 , 0). This is because 1

2(L + d + 1 + L
2 ) =

3
4 L + d

2 +
1
2 .

We repeat this process. Since L < 3
4 L + d

2 + 1
2 for L < 2(d + 1) we reach

state (0, 2(d + 1), 2(d + 1), 0) in the limit. OPT’S machines are empty. Since
L gets arbitrarily close to 2(d + 1) and during the process machine 2 reaches
load L + d + 1 this also means we asymptotically reach a delay of 3(d + 1) on
machine 2.

By having one unit of load arrive on both machines 2 and 3 and having
OPT process the load on machine 3, we may reach a delay of (almost) 2d + 5

2
on machine 3.

We can then reach a state where OPT has no load on machines 3 and 4
while ALG has (almost) load 2d + 5

2 on machine 3. Load arrives continuously
on machine 4 until both machines have load d + 5

4 . Then one unit of load
arrives on both machines and after one more timestep OPT can have one
unit of load on machine 3 and no load on machine 4 while ALG has load
arbitrarily close to d + 7

4 on machine 4.

Finally we show that even with strategies other than greedy, no algorithm
that extends by three machines can avoid a delay of d + 1 on machine 4.

Lemma 36. Let machine 1 be the rightmost machine of the core that is extended to
the right by machines 2, 3 and 4. If we can reach delay d on machine 1 then no
algorithm can avoid delay d + 1 on machine 4.

Proof. Assume the algorithm allows at most load d + 1− ε on machine 4, and
we have load d + 1 on machine 1. Furthermore, let L2 be the load of machine
2 and L3,4 be the combined load of machines 3 and 4.

Load arrives continuously on machines 2 and 4 while the load on machine
1 is cleared by the algorithm. After this process the load on machine 2 is
L2 + d + 1 and the combined load of machines 3 and 4 is still at least L3,4.

We now wait while the load of d + 1 is restored on machine 1. During the
entirety of this process load arrives continuously on machine 3.

We consider two cases. First assume the algorithm never runs machine 2
for time more than d + 1 − δ with δ < ε during this process. Then after this
process the load on machine 2 is at least L2 + δ and the load on machines
3 and 4 is still at least L3,4. This is the initial situation with more load on
machine 2.

We can repeat this construction and if the algorithm never runs machine
2 for more than time d+ 1− δ during an iteration of the construction then the
load on machine 2 grows without bound.

Now assume that at some point the algorithm runs machine 2 for more
than time d + 1 − δ. This means the load on machine 3 grows by d + 1 − δ
and since the algorithm can run machine 4 for time at most d + 1 − ε the
combined load of machines 3 and 4 increases by ε − δ > 0. We can then
repeat the construction with a higher load on machines 3 and 4.

It follows that the load on machines 2 or 3 grows without bound if the
algorithm never allows a load of d + 1 on machine 4.
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4.3 Parity algorithms

In the construction against GREEDY on the cycle with 6 machines we observe
that the algorithm repeatedly runs only 2 out of 6 machines, despite all ma-
chines having load. It makes a lot of sense to always run a parity whenever
we are given a group. We still follow a greedy approach by choosing the par-
ity that contains the machine with the highest load. But sometimes there may
be a tie between the two parities. In this section we present a lower bound
to a parity algorithm that, when presented with a tie, prefers to run the odd
side.

Algorithm 10 Parity algorithm: prefer odd

1. Round the load on each machine down to the nearest integer

2. Starting from the left, repeatedly select a maximal contiguous subset
of machines that have nonzero rounded load. These subsets are called
groups.

3. In each group, run the even or the odd machines for one time unit,
depending on which machine has the highest rounded load (we run
the parity which contains the machine with highest load). In case of
tied rounded loads, run the odd machines for one time unit.

Lemma 37. There is a linear lower bound on the competitive ratio of the parity
algorithm that prefers the odd parity.

Proof. We show that there is a construction that, given n = 2 + 6(k − 1) ma-
chines, achieves delay k on the rightmost (even) machine. Furthermore the
second last machine n − 1 is empty for ALG but OPT has one unit of load
there. In other words, there is a construction on n = 2 + 6(k − 1) machines
that ends in state (. . . , 0, k) for ALG and (. . . , 1, 0) for OPT. We show this
using induction.

For k = 1, consider two machines 1 and 2 and let one unit of load arrive
on both machines. After one timestep, ALG has one unit of load on machine
2, while OPT can be empty on that machine. We reach state (0, 1) for ALG
and (1, 0) for OPT.

Now assume we reach state (. . . , 0, k) for ALG and (. . . , 1, 0) for OPT using
n = 2 + 6(k − 1) machines. We show that we can reach a delay of k + 1
on machine n + 2 while there is a delay of -1 on machine n + 1 und this
construction uses 4 additional machines to the left of machine 1.

We present a construction in two parts. In the first part we construct an
input that moves the load on machine n first to machine n+ 1 and then to ma-
chine n+ 2. The purpose of this part of the construction is to remove the load
OPT has on the second to last machine. The second part of the construction
creates a delay of k + 1 on machine n + 2.

Construction part 1, moving load: Let ALG have a combined load of k on
machines n and n+ 1 while OPT has no load on these machines. Load arrives
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continuously on machine n + 1 until the load on all machines to the left of n
is cleared (for both ALG and OPT). The load on pair (n, n + 1) is still k.

Due to the inductive hypothesis, we can use the initial construction again
to create load k on machine n − 2. ALG is now in state (0, k, 0, an, an+1) on
machines n − 3 to n + 1 with an + an+1 = k and OPT is in state (1, 0, 0, 0, 0).

Now one unit of load arrives on machines n − 2, n − 1 and n + 1 and
we reach state (0, k + 1, 1, an, an+1 + 1). ALG runs the even parity since it
contains the machine n − 2 with the highest load of k + 1 and ends up in
state (0, k, 1, an − 1, an+1 + 1). The combined delay on machines n and n + 1
is still k. Now load arrives continuously on machine n + 1 until all machines
beside the pair (n, n + 1) are cleared.

We repeat this procedure and after each step the load on machine n + 1
increases by one until eventually all of the load on machines n and n+ 1 is on
machine n + 1 and thus we have reached delay k on the odd machine n + 1
while machine n is empty for ALG and both machines are empty for OPT. We
now have a construction that given n + 3 machines (machines -1 to n + 1 in
the construction above) achieves a delay of k on the rightmost odd machine.

The same construction can be used again to move the load from machine
n+ 1 to machine n+ 2. ALG is now in state (. . . , 0, k) while OPT can be empty
on all machines. Overall, this construction uses the original n machines as
well as two additional machines to each side.

Construction part 2, increasing delay: Now load continues to arrive on
machine n + 2 until the loads on all other machines are cleared. We use the
initial construction to create load k on machine n − 2 and then, using part 1
of the construction again, move this load to the odd machine n − 1. (This
requires an additional two machines to the left.) Meanwhile, load arrives
continuously on machine n + 1. This means we can reach state (k, 0, 0, k) on
machines n − 1 to n + 2 while OPT is empty on all machines. The adjacent
machines are empty for ALG. Overall, we use four additional machines to
the left of the original n machines, and two machines to the right.

The following input on machines n − 1 to n + 2 achieves delay k + 1 on
the even machine n + 2.

Loads of ALG Loads of OPT
O E O E O E O E
k 0 0 k 0 0 0 0

k + 1 1 1 k + 1 1 1 1 1
k 1 0 k + 1 1 0 1 0

We are now in state (. . . , 0, k + 1) while OPT is in state (. . . , 1, 0) and to
reach this state n + 6 machines are required. It follows that adding 6 ma-
chines to the path increases the lower bound by 1.

The same lower bound construction also works for an algorithm that in-
stead of preferring the odd or even parity, prefers the right or left parity in a
group.
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4.4 Throughput maximization

One thing all the algorithms studied so far have in common is that they al-
ways try to run the machine with the highest load. Another promising ap-
proach is to maximize the overall throughput instead, which means trying to
run as many machines as possible.

If a group consists of an odd number of machines with load, it is obvi-
ous how to achieve this goal: We simply run the parity that contains more
machines. For even groups, however, there are more options. Perhaps the
simplest option is to treat all machines equally, that is run them all at half
speed.

Algorithm 11 Throughput maximization: Equal treatment

1. In all groups with an odd number of machines, maximize throughput.
This means running the parity that contains more machines.

2. In even groups run all machines at half speed.

Lemma 38. Algorithm 11 is not competitive even on three machines.

Proof. Let ALG be in state (0, x, 0) while OPT has no load. In the beginning
x = 0. Load arrives on machines 2 and 3 and we are in state (0, x + 1, 1). The
algorithm treats both machines the same and thus after one timestep ALG
is in state (0, x + 1

2 , 1
2) while OPT can be in state (0, 0, 1). Then load arrives

on machine 1. ALG is in state (1, x + 1
2 , 1

2). After half a timestep we end
up in (1

2 , x + 1
2 , 0). For the remaining half of the timestep, ALG runs both

machines 1 and 2 at half speed and we end up in state (1
4 , x + 1

4 , 0) and OPT
is empty. Finally load arrives continuously on machine 2 until ALG is ins
state (0, x + 1

2 , 0). We can now repeat this input and the load grows without
bound.

As we can see, this algorithm is not competitive at all, and this is mostly
because of its decision making on even groups.

Another idea would be to run either the odd or even parity when given
an even group. This approach is very similar to the one found in the parity
algorithms of the previous chapter. In fact the same lower bound still holds.
This is because the construction used in the lower bound for the parity al-
gorithm only considers even groups and the parity algorithms do maximize
throughput in this case. This means the behavior of a throughput maximiz-
ing algorithm that chooses a parity on even groups would be the same as the
behavior of the corresponding parity algorithm on these constructions. (The
parity algorithm itself does not maximize throughput since it may sometimes
run the parity with less machines on odd groups.)

Clearly a throughput maximizing algorithm needs to choose carefully
which pair to skip when given an even group.
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We use this opportunity to combine the idea of throughput maximiza-
tion with the strategy of algorithm 7 that achieves a linear upper bound on
bipartite graphs in chapter 3.7.

This strategy aims to maintain a certain delay b for each pair, and inter-
venes whenever there is a pair where this delay is in danger. This means the
algorithm looks for pairs with a potential delay of more than b. The potential
delay of a machine i on the line graph with respect to delay b is defined as

pi := min
j∈N

(b − (aj − 1), ai)

where N is the set of neighbors of i.
Whenever this is no pair with pi + pj > b, the algorithm behaves like

the simple throughput maximizing algorithm presented above. Since the de-
lay cannot increase when a pair is running at full speed, the algorithm pays
special attention to the state of the side machines.

Algorithm 12 Throughput maximization: Maintain delay b on pairs.

1. In all groups with an odd number of machines, maximize throughput.
This means running the parity that contains more machines.

2. If no side machine has load more than b, run all machines at speed 1
2 .

3. If one or both side machine has load more than b, run these side ma-
chines. Then consider machines i if it has distance two to a machine k
that is already selected to run and let j be the machine between i and k.
If pi + pj > b run machine i and repeat this step.

Otherwise if pi + pj ≤ b skip the pair (i, j) and maximize throughput
on the remaining machines.

Lemma 39. Let n be odd. On a line segment of length n we can reach a state
where Algorithm 12 has load arbitrarily close to b on every even machine and OPT’s
machines are empty.

Proof. Using the construction in Lemma 38 we can reach a state where ma-
chine 2 has load b − 1. This is because during the construction no machine
ever reaches a load above b and the algorithm behaves like Algorithm 11.

We now show that repeating the same construction after reaching load
b − 1 leads to a load arbitrarily close to b on machine 2. Let ALG be in state
(0, b − ε, 0) for ε ≤ 1 while OPT has no load. One unit of load arrives on
machines 2 and 3 and we are in state (0, b − ε + 1, 1). The algorithm prefers
machine 2 for time (1− ε) and then treats both machines the same. After one
timestep, ALG is in (0, b − ε

2 , 1 − ε
2) while OPT can be in state (0, 0, 1). Then

load arrives on machine 1 and ALG is in state (1, b− ε
2 , 1− ε

2). After time 1− ε
2

we end up in ( ε
2 , b− ε

2 , 0). For the remaining time ε
2 of the timestep, ALG runs

both machines 1 and 2 at half speed and we end up in state ( ε
4 , b − 3ε

4 , 0) and
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OPT is empty. Finally load arrives continuously on machine 2 until ALG is
ins state (0, b − ε

2 , 0). This process can be repeated and the load on machine
2 gets arbitrarily close to b.

Next we can apply an extended version of this input to a line segment
of length 5 such that the load on machine 4 gets arbitrarily close to b while
the load on machine 2 remains the same. The following table illustrates this
input. Machines 1, 4 and 5 behave just as the triple described above, while
machines 2 and 3 extend the construction.

Loads of ALG Loads of OPT
0 b 0 b − ε 0 0 0 0 0 0
0 b + 1 0 b − ε + 1 1 0 1 0 1 1
0 b 0 b − ε

2 1 − ε
2 0 0 0 0 1

1 b 1 b − ε
2 1 − ε

2 1 0 1 0 1
ε
2 b ε

2 b − ε
2 0 ε

2 0 ε
2 0 ε

2
ε
4 b − ε

4
ε
4 b − 3ε

4 0 0 0 0 0 0
Load arrives continuously on machines 2 and 4
0 b 0 b − ε

2 0 0 0 0 0 0

This can be repeated for all even machines and ALG ends up with (almost)
load b on every even machine while OPT’s machines are empty.

Lemma 40. Let n = 2(b+ 1) + 3. On a line of length n there is an input that forces
delay b + 1 on a pair against Algorithm 12.

Proof. Due to Lemma 39 we can reach a state such as (0, b, 0, b, 0, . . . , b, 0, b, 0)
for ALG while OPT’s machines are empty. For example if b = 5 we can get

(0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0)

Assume b is odd and let time be 0. For the next 2b timesteps load arrives
as follows. Machine 1 continuously receives load starting from time 0. Since
the algorithm runs machines 1 and 2 both at half speed this shifts the load
towards machine 1. After two timesteps, machines 1 and 2 are in state (1, 4)
and after 2b timesteps all load has been shifted and the machines are in state
(5, 0)

Before time 2 machine 4 and after time 2 machine 3 continuously receive
load. This does not change the behavior on machines 1 and 2. For the first
two timesteps the state of machines 3 and 4 does not change, then load get
shifted to the left similar to the first pair. After 2b timesteps machines 3 and
4 are in state (1, 4). Not all of the load is shifted as the process started later.

This pattern continues, with another pair beginning load shifting after
every two time steps. There is one exception to this pattern. Machine b + 2
gets added to the pattern at the same time as machine b + 4.

The following example illustrates the development. Machines that are
receiving load are marked with bold letters.
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(0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0)
(1, 4, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0)
(2, 3, 1, 4, 0, 5, 0, 5, 0, 5, 0, 5, 0, 5, 0)
(3, 2, 2, 3, 1, 4, 0, 5, 0, 5, 0, 5, 0, 5, 0)
(4, 1, 3, 2, 2, 3, 1, 4, 1, 4, 0, 5, 0, 5, 0)
(5, 0, 4, 1, 3, 2, 2, 3, 2, 3, 1, 4, 0, 5, 0)

Consider machines b+ 1 to b+ 4. These machines are in the middle of the
group of machines with load and we will refer to these as the middle four
machines.

Note that the middle four machines are in state (⌊ b
2⌋, ⌊ b

2⌋, ⌈ b
2⌉, ⌊ b

2⌋). Now
load arrives on every machine except the third machine of the middle four
machines which has load ⌈ b

2⌉. In the example we reach state

(6, 1, 5, 2, 4, 3, 3, 3, 3, 4, 2, 5, 1, 6, 0)

The middle four machines now have load (⌈ b
2⌉, ⌈ b

2⌉, ⌈ b
2⌉, ⌈ b

2⌉) while OPT
is in state (1, 0, 1, 1) on those machines.

pi + pi+1 > b is true on every pair considered by the algorithm. In this
situation the algorithm arbitrarily chooses a pair to skip and therefore might
not run the left pair of the middle four machines. OPT can remove its load on
that pair and this means this pair reaches delay ⌈ b

2⌉+ ⌈ b
2⌉ = b + 1. A similar

result can be achieved if b is even.

This shows that there is a linear lower bound to Algorithm 7 presented
for bipartite graphs in chapter 3. However, we can see that most of the delay
is caused by exploiting the weaknesses of the underlying simple algorithm.
The algorithm starts to carefully pick a good pair to skip only after it is al-
ready too late and all pairs have high load. A promising approach might
be to try more consistently to identify good pairs. The algorithm could for
example always choose the pair with lowest load in an even group.
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Chapter 5

The bamboo garden trimming
problem

5.1 Introduction

In the discrete bamboo garden trimming problem (BGT), first introduced
by Gasieniec et al. [51], we are given a set of n bamboo that grow at rates
v1, . . . , vn per day. We assume that these growth rates are arranged such that
v1 ≥ v2 ≥ · · · ≥ vn. Initially the height is set to zero. Each day a robotic gar-
dener cuts down one bamboo to height zero. The goal is to design a trimming
schedule such that the height of the tallest bamboo is minimized. Gasieniec
et al. gave a 2-approximation for discrete BGT which has been improved by
van Ee [109] to a 12

7 -approximation.
Both results are obtained by reducing BGT to the pinwheel scheduling

problem, a different, but closely related problem.

The pinwheel scheduling problem is motivated by the communication be-
tween a satellite and its ground station. The ground station wants to receive
messages from n satellites. Time is slotted and a satellite i sends a message
for pi consecutive timeslots before switching to a different message. Each
timeslot the ground station receives a message from a single satellite. This
means in order to guarantee that no message is missed we need to find a
schedule that allocates at least one timeslot to satellite i in any interval of pi
units of time.

We represent an instance of the pinwheel scheduling problem by the vec-
tor p = (p1, . . . , pn) of periods with which each satellite should be dialed in
on. The density of a pinwheel scheduling instance is d(p) = ∑n

i=1
1
pi

.

Then for example the instance (2, 3) has density 5
6 and can be scheduled

by repeating the sequence 12. However it turns out that the instance (2, 3, p3)
can not be scheduled regardless of the value of p3.

We may permute the elements of the pinwheel instance to be in nonde-
creasing order and aside from the instance (1) an instance can only be sched-
uled if p1 ≥ 2. Consequently, we assume 2 ≤ p1 ≤ p2 ≤ · · · ≤ pn. Another
necessary condition for schedulability is d(p) ≤ 1.

We say that b is a density guarantee for the pinwheel problem if all in-
stances p with d(p) ≤ b can be scheduled. Fishburn et al. [47] show that any
instance with density at most 0.75 can be scheduled and for the special case
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of p1 = 2 they give a guarantee of 5/6. Chan and Chin [32] conjecture that
any pinwheel problem with density at most 5

6 can be scheduled. The exam-
ple (2, 3, p3) shows that we cannot hope for a density guarantee above 5

6 for
general pinwheel instances, since this instance cannot be scheduled and may
have a density arbitrarily close to 5

6 .

If an algorithm maintains a height of K then each bamboo i must be vis-
ited at least once in a period of p∗i = ⌊ K

vi
⌋ time steps. This means there is a

BGT-schedule that maintains height K if and only if the pinwheel problem
(p∗1 , . . . , p∗n) is schedulable.

An important consideration for pinwheel scheduling and BGT is the rep-
resentation of a solution. This is because in general writing out an explicit
representation of the schedule may take exponential time and space. The so-
lutions for pinwheel scheduling provided by Fishburn as well as Chan and
Chin come in the form of fast online schedulers. These are algorithms that can
decide whether they can schedule an instance in polynomial time and then
generate each symbol of the schedule in constant time.

In the first part of this paper we present an algorithm based on a pinweel
reduction that improves the approximation ratio for discrete BGT to 10

7 .

In the second part, we consider the continuous version of the BGT prob-
lem, also introduced by Gasieniec et al. [51]. In this version the bamboo are
distributed in some metric space and the gardener needs to travel between
the bamboo to cut them. Cutting is done instantly and the goal is to find
a route that minimizes the maximum height of the bamboos. Gasieniec et
al. give a O(log n)-approximation algorithm that works in any metric space.

We are considering the case where the gardener travels on a star graph.
In this context we study a set of simple algorithms (compared to the relative
complicatedness of a pinwheel schedule) that achieve constant approxima-
tion ratios for this case.

The Deadline-Driven Strategy always cuts the bamboo with the earliest
deadline provided that the height of this bamboo has reached a certain thresh-
old. The deadline of a bamboo is the time it reaches the height the algorithm
wants to maintain. This algorithm has already been considered for discrete
BGT and there it is a 2-approximation as shown by J. Kuszmaul [81].

A second simple algorithm is Reduce-Fastest which is a 2.62-approximation
for discrete BGT as shown by Bilò et al. [20]. This algorithm always cuts the
fastest plant provided that the height of this bamboo has reached a certain
threshold.

5.1.1 Our results

For discrete BGT we propose a 10/7-approximation algorithm that is based
on a reduction to the pinwheel-problem, but using some new techniques that
improve the approximation ratio. The result can be improved to 7

5 using a
computer-assisted proof.

In the continuous version of the problem we consider a star graph. We
show that the 2.62-approximate algorithm Reduce-Fastest for discrete BGT,
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which can be seen as a special instance of a star graph, still works on arbitrary
star graphs with one bamboo on each branch and we show that it is a 6-
approximation in this case.

Furthermore, the deadline driven algorithm gives us a (2+
√

3)-approximation
on the star. This result can be extended to the case where there are multiple
bamboo on each branch of the star. Here we pay a price in the approximation
ratio and achieve a (5 +

√
21)-approximation.

5.1.2 Related work

Both the discrete and continuous version of BGT were first introduced by
Gasieniec et al. [51] They provide a variety of results. The first algorithm they
present is Reduce-Fastest, which in each step cuts the fastest growing bam-
boo above a certain height treshhold. This algorithm is a 2.62-approximation
as shown by Bilò el al. [20]. A similar algorithm is Reduce-Max that always
cuts the highest bamboo and is a 4-approximation. Both of these algorithms
are online algorithms based on simple queries. This means they are flexi-
ble and can easily adapt to changes in the input (the set of growth rates).
The final algorithm in this set of algorithms based on simple queries is the
Deadline-Driven Strategy which is a 2-approximation. The Deadline-Driven
Strategy always selects the plant that soonest reaches a certain height. Both
results for the last 2 algorithms are from J. Kuszmaul [81].

Gasieniec et al. also give a fully offline 2-approximation algorithm that
preprocesses the input and reduces the problem to a pinwheel-instance. This
approach has been improved by van Ee [109] to a 12

7 -approximation.
The closely related pinwheel-problem was first introduced by Holte et

al. [64] and then picked up by Chin and Chan [32]. They conjecture that any
pinwheel instance with density up to 5/6 can be scheduled. This conjecture
is supported by a variety of works, including Fishburn et al. [47] who show
that any instance with density at most 0.75 as well as instances with p1 =
2 and density up to 5/6 can be scheduled. Dei Wing [40] shows that the
claim also holds for low-dimensional vectors with dimension up to 5, and
more recently Gasieniec et al. [52] improve this result further by proving the
claim for instances with up to 12 elements and additionally they give a set of
schedules that solve all schedulable instances with at most 5 tasks.

There are other problems where the goal is to minimize the maximum
height or backlog reached on a machine. One example is the Minimum Back-
log Problem [24, 15, 82] where an adversary distributes water among a set of
cups and the player may empty one or more cups on their turn.

In the problem of Buffer minimization with conflicts [33] there is a set of
machines on a graph and load may arrive on these machines at any time.
The algorithm may run machines to decrease their load but machines that
are adjacent to each other on the graph may not run at the same time.
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Algorithm 13
Let H = ∑n

i=1 vi and R = 10
7 . Using binary search in the interval [H, 2H] find

the smallest K such that the following procedure returns a valid schedule and
return this schedule.

1. Given K define p∗i = ⌊ K
vi
⌋ and pi = ⌊Rp∗i ⌋.

2. Solve the pinwheel problem (p1, . . . , pn).

5.2 A 10/7-approximation for discrete BGT

Runtime We now explain that any pinwheel instance with density up to
0.75 can be solved in time O(n3) which means Algorithm 13 runs in poly-
nomial time. Note that solving or scheduling a pinwheel instance for our
purposes means finding a fast online scheduler but does not include explic-
itly writing out the schedule. Chin and Chan give an algorithm that runs in
time O(n3) and schedules any instance with density at most 7

10 . More pre-
cisely, their algorithm achieves the following guarantees based on the value
of p1:

p1 guarantuee
2 0.75
3 0.70
4 0.70833
5 0.72196
6 0.73359
7 0.73807
8 0.74470

≥ 9 > 0.75

In particular this means any instance with p1 ≥ 9 and density at most
0.75 can be scheduled in time O(n3). Fishburn et al. find schedules for the
remaining cases with small values for p1 and density up to 0.75 based on the
following idea.

They find a porous schedule, that is a schedule for the first few elements
which contains a pattern of holes, and they extend such a schedule using the
results from Chin and Chan to find a schedule for the remaining machines
that fits into the holes. For example for the instance (3, 4, p3, . . . ) we can
create a porous schedule 120120 where the 0s are the holes in the schedule.
The remaining machines after you take away machine 1 and 2 have density
at most 1

6 , thus pi ≥ 6 for i = 3, . . . . For this pattern of holes, we divide
the remaining periods by 3 and solve the resulting pinwheel-instance. For
pi = 6, 7, 8 this increases the density by a factor of not more than 4.5, thus the
density of the resulting instance is at most 3

4 with the first element of the new
instance being 2. By the table of Chin and Chan this is schedulable.

A similar argument holds for pi ≥ 9 with the density of the new sched-
ule being not more than 0.7. They further refine this approach in the paper
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but when considering the runtime we can see that we need to find a porous
schedule for the cases not covered by the table of Chin and Chan and a sched-
ule for the remaining machines. The porous schedules are given in the paper
of Fishburn et al. (in particular see table 1 of [47]) and are thus available in
O(1). Then the algorithm in [32] with runtime O(n3) is used to schedule the
remaining machines. This means pinwheel-instances with density at most
0.75 can be solved in time O(n3). In addition, Fishburn et al. show that in-
stances with p1 = 2 and density up to 5

6 can also be solved in time O(n3).

Approximation ratio In order to analyze Algorithm 13 we need to show
that the algorithm can solve the pinwheel problem it creates. To that end we
first declare some notation and consider a few helpful lemmas.

H = ∑n
i=1 vi is a lower bound on the optimal value and it is known that

there is an algorithm that produces a schedule of height 2H [51]. H is a lower
bound because as long as all bamboo have height at most H′ < H the sum
of all bamboo increases by at least H − H′ > 0 each step until it exceeds nH′.
Then there must be a bamboo with height more than H′. Thus the optimal
value is somewhere in the interval [H, 2H].

Let A ⊆ {1, . . . , n}. We create a porous schedule as described in [47] for
{pi|i /∈ A} and define hi for i ∈ A as the minimum number of holes in pi
consecutive positions of the porous schedule. Let DA = 1 − ∑k/∈A

1
p∗k

be the
maximum possible offline density of the unscheduled machines.

Lemma 41. If hi
pi
≥ DA for each i ∈ A in a porous schedule for {pk|k /∈ A} as well

as 1
pi
≤ 3

4p∗i
for all i ∈ A, then (p1, . . . , pn) is schedulable for ALG.

Proof. If hi
pi
≥ DA then

∑
i∈A

1
hi

≤ 1
DA

∑
i∈A

1
pi

≤ 1
DA

3
4

DA =
3
4

.

Thus the instance is schedulable by Lemma 2 of [47].

This Lemma allows us to schedule subsets of the machines where the ratio
p∗/p is too high and check whether the rest can be scheduled.

Lemma 42. If there is a schedule of height K then the procedure in Algorithm 13
finds a schedule of height at most 10

7 K.

Proof. Let p∗i = ⌊ K
vi
⌋. Assume there is a schedule of height K. Then there is

a solution to the pinwheel problem p∗ = (p∗1 , ..., p∗n) and thus ∑n
i=1

1
p∗i

≤ 1.
If p∗1 = 1 then there is only one plant, and the schedule is trivial. Thus we

consider p∗1 ≥ 2. The algorithm calculates the periods pi = ⌊ 10p∗i
7 ⌋ and solves

the resulting pinwheel problem. Because of the definition of p∗i the resulting
schedule has height at most 10K

7 .
We show that there is always a schedule for the pinwheel problem of ALG.

If p∗i ≥ 11 then 1
pi

is smaller than 1
p∗i

by a factor of at least 3
4 since 1

pi
=

1
⌊10/7p∗i ⌋

≤ 1
(10/7p∗i −1) ≤

3
4

1
p∗i

for p∗i ≥ 11.
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The same is true for every other p∗i except p∗i = 2 and p∗i = 4 which can
easily be verified. Thus if there is no p∗i with value 2 or 4 the density of the
pinwheel-problem is at most 3/4 and it can be scheduled. We now consider
a variety of cases where these values occur and use Lemma 41 to show that
the pinwheel-problem can be solved.

We denote these cases by listing the initial values of the instance p∗. Then
for example the notation "4,4,5" means that we are considering the case where
p∗1 = p∗2 = 4 and p∗3 = 5. This does not mean that the instance consists of
only three periods but that these are the initial periods that we are looking to
create a porous schedule for.

For each case, after creating a porous schedule, we need to show that
h
p ≥ Da as well as 1

p ≤ 3
4p∗ holds for all periods that are not yet scheduled by

the porous schedule.

2 We have p/p∗ ≥ 6/5 for all p. This can easily be verified for p∗ = 2 and
p∗ = 4 and it holds for all other periods because for those periods we
have p/p∗ ≥ 4/3. This means the density in the pinwheel-problem of
ALG is at most 5/6. Since p1 = 2 this pinwheel-problem can be solved.

3,3,4 and 3,4,4 In this case there are only three plants.

3, 4, p∗
3 ≥ 5 Then p = (4, 5, p3 ≥ 7, . . . ). ALG schedules plants 1 and 2 using

the schedule 1020. Then DA = 5/12 and h
p =

⌊ 1
2 ⌊

10
7 p∗⌋⌋

⌊ 10
7 p∗⌋ . Let p∗ = 7a + b.

Then h
p =

5a+⌊ 1
2 ⌊

10
7 b⌋⌋

10a+⌊ 10
7 b⌋ .

If 5a+⌊ 1
2 ⌊

10
7 b⌋⌋

10a+⌊ 10
7 b⌋ ≥ DA then 5(a+1)+⌊ 1

2 ⌊
10
7 b⌋⌋

10(a+1)+⌊ 10
7 b⌋ ≥ DA since 5

10 > DA.

Therefore if the inequality holds for a particular p∗, then it also holds
for all subsequent p∗ that have the same remainder after division by 7.
In particular, this means that if there are 7 consecutive periods p∗ with
h/p ≥ DA then h/p ≥ DA also holds for all subsequent periods p∗.

We can determine that h/p ≥ DA holds for p∗ ≥ 5 by looking at enough
periods (in this case periods 5 to 11). This argument is repeated in many
of the subsequent cases, and appendix A contains tables that show the
values for each case.

Furthermore 1
pi

≤ 3
4p∗i

holds for p∗ ≥ 5. This means we can schedule
this case.

4,4 Then p = (5, 5, . . . ). ALG schedules plants 1 and 2 using the schedule

10200. Then DA = 1/2. For p∗ = 7a + b we get h
p =

6a+h(⌊ 10
7 b⌋)

10a+⌊ 10
7 b⌋ . By

looking at 7 periods we can determine that h/p ≥ DA holds for p∗ ≥ 4.

Since 1
pi
≤ 3

4p∗i
holds for p∗ ≥ 5 but not p∗ = 4 we still need to consider

the case where p∗1 = p∗2 = p∗3 = 4 but we can schedule this case for
p∗3 ≥ 5.
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4,4,4 Then p = (5, 5, 5, . . . ). ALG schedules plants 1 to 3 using the schedule
12300. Then DA = 1/4. Using the same approach as in the previous
case we can determine that h/p ≥ DA holds for p∗ ≥ 4. As in the pre-
vious case this means we can schedule all cases except the case where
p∗1 = · · · = p∗4 = 4 since in this case 1

pi
≤ 3

4p∗i
is not guaranteed. How-

ever, in this case there are only four plants and therefore this case can
be scheduled as well.

In all subsequent cases, all periods except the first are greater than 4. This
means 1

pi
≤ 3

4p∗i
holds for all periods after the first and we only need to verify

h/p ≥ DA.

4,5 Then p = (5, 7, . . . ). ALG again uses the schedule 10200 but we now have
DA = 11/20. In this case h/p ≥ DA holds for p∗ ≥ 9

4,5,6 Then p = (5, 7, 8, . . . ) In this case ALG schedules the first three plants
with schedule 31002 01300 21003 01200 and DA = 23/60. Choosing

p∗ = 14a + b we get h
p =

10a+h(⌊ 10
7 b⌋)

20a+⌊ 10
7 b⌋ . We can verify that h/p ≥ DA for

p∗ ≥ 7

4,5,6,6 Then p = (5, 7, 8, 8). This case follows from p∗1 = 3, p∗2 = 4, p∗3 = 5.

4,5,7 Then p = (5, 7, 10, . . . ). Follows from the case below with the same
schedule and smaller DA.

4,5,8 Then p = (5, 7, 11, . . . ) ALG uses the schedule 21030 01200 01032 01000

and DA = 17/40. Choosing p∗ = 14a + b we get h
p =

11a+h(⌊ 10
7 b⌋)

20a+⌊ 10
7 b⌋ .

h/p ≥ DA holds for p∗ ≥ 7.

4,6 Then p = (5, 8, . . . ). ALG uses the schedule 21000 01020 01000 and DA =

7/12. Choosing p∗ = 21a + b we get h
p =

20a+h(⌊ 10
7 b⌋)

30a+⌊ 10
7 b⌋ . h/p ≥ DA holds

for p∗ ≥ 9.

4,6,6 Then p = (5, 8, 8, . . . ). Follows from the case below with the same
schedule and smaller DA.

4,6,7 Then p = (5, 8, 10 . . . ). ALG uses the schedule 21003 01020 01300 and

DA = 37
84 . Choosing p∗ = 21a + b we get h

p =
16a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋ . h/p ≥ DA

holds for p∗ ≥ 6.

4,6,8 Then p = (5, 8, 8, . . . ). ALG uses the schedule 21003 01020 01003 21000

01023 01000 and DA = 11
24 . Choosing p∗ = 21a+ b we get h

p =
17a+h(⌊ 10

7 b⌋)
30a+⌊ 10

7 b⌋ .

h/p ≥ DA holds for p∗ ≥ 9.

4,6,8,8 Then p = (5, 8, 11, 11, . . . ). ALG uses the schedule 21003 01024 01003
21004 01023 01004 and DA = 1

3 . Choosing p∗ = 21a + b we get h
p =

14a+h(⌊ 10
7 b⌋)

30a+⌊ 10
7 b⌋ . h/p ≥ DA holds for p∗ ≥ 4.
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4,7 Then p = (5, 10, . . . ). Follows from the case below with the same sched-
ule and smaller DA.

4,8 Then p = (5, 11, . . . ). ALG uses the schedule 10200 10000 and DA = 5/8.

Choosing p∗ = 7a + b we get h
p =

7a+h(⌊ 10
7 b⌋)

10a+⌊ 10
7 b⌋ . In this case h/p ≥ DA

holds for p∗ ≥ 6.

4, p∗
2 ≥ 9 Then p = (5, p2 ≥ 12, . . . ). ALG schedules plant 1 with the simple

schedule 10000. Then DA = 3
4 and we get h

p =
⌊ 4

5 ⌊
10
7 p∗⌋⌋

⌊ 10
7 p∗⌋ . Setting p∗ =

7a + b with a ∈ N, b ≤ 6 we get h
p =

8a+⌊ 4
5 ⌊

10
7 b⌋⌋

10a+⌊ 10
7 b⌋ .

h/p ≥ DA holds for p∗ ≥ 9.

Theorem 43. Algorithm 13 is a 10
7 -approximation.

Proof. This follows directly from Lemma 42. Since any height K that is at
least the optimal height is schedulable, the procedure in Algorithm 13 finds
a valid schedule of height 10

7 K for any height that is at least OPT. This means
the binary search settles on a value that is at most OPT and the algorithm
returns a schedule of height at most 10

7 OPT.

It is possible to achieve a better approximation ratio than 10
7 by setting R

in Algorithm 13 to a lower value but this requires a much larger case analysis.
This is because the periods pi will be smaller. In the next section we present
a case analysis that, using some amount of computer assistance, achieves
a ratio of 7

5 . However, the length and complexity of this proof encourages
finding new ideas for further improvements.

5.3 A 7/5-approximation for discrete BGT

By using R = 7
5 instead of R = 10

7 in Algorithm 13 we can improve the
approximation ratio to 7

5 . The proof remains mostly the same but we will
use some computer assistance to verify the individual cases. The following
lemma will help determine how long to run our program.

Lemma 44. Given a porous schedule of length λ, whenever there are 5λ consecutive
periods with h

p ≥ DA, then hp ≥ DA also holds for all subsequent periods.

Proof. Let p∗ = 5λa + b. Then h
p =

7h(λ)a+h(⌊ 10
7 b⌋)

7λa+⌊ 10
7 b⌋ .

Assume h(λ)
λ ≥ DA. In this case if h

p =
7h(λ)a+h(⌊ 10

7 b⌋)
7λa+⌊ 10

7 b⌋ ≥ DA then we also

have h
p =

7h(λ)(a+1)+h(⌊ 10
7 b⌋)

7λ(a+1)+⌊ 10
7 b⌋ ≥ DA and the result follows.
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On the other hand, if h(λ)
λ < DA, then by setting b = 0 we also have

7h(λ)a
7λa < DA for any a ∈ N, which means there can never be 5λ consecutive

periods with h
p ≥ DA.

An overview of the program used to assist the following proof can be
found in Appendix B. Furthermore, the program is also available under the
following link: https://github.com/Felixhhne/bamboo.

Theorem 45. Algorithm 13 with R = 7
5 is a 7

5 -approximation.

Proof. Let p∗i = ⌊ K
vi
⌋ and pi = ⌊ 7p∗i

5 ⌋. Assume there is a schedule of height K.
Then there is a solution to the pinwheel problem p∗ = (p∗1 , ..., p∗n) and thus
∑n

i=1
1
p∗i

≤ 1.
We need to show that there is always a schedule for the pinwheel problem

p = (p1, . . . , pn). In this case 1
pi
≤ 3

4p∗i
holds for all periods except 2, 4 and 7.

We consider all cases that involve these periods by presenting porous
schedules and determining for which periods p∗ we have h

p ≥ DA.
Verifying these cases involves looking at a large number of periods with

the help of the program in appendix B.
To keep the cases short we simply state the schedule and a value p∗ such

that h
p ≥ DA holds for this p∗ and all subsequent periods. We may also omit

the value of p∗ if a schedule completely solves a case and no subcases need
to be considered.

2 We have p/p∗ ≥ 6/5 for all p. This means the density in the pinwheel-
problem of ALG is at most 5/6. Since p1 = 2 this pinwheel-problem
can be solved.

3,3,4 and 3,4,4 In these cases there are only three plants.

3, 4, p∗
3 ≥ 5 we schedule plants 1 and 2 using the schedule 1020. h

p ≥ DA

holds for p∗ ≥ 5. This solves all cases beginning with 3 and 4 that do
not include 7 but we still need to consider cases that do include 7.

3,4,5,7 In this case there are only 4 plants. We give a short argument: Con-
sider 7 consecutive positions and assume plant 5 is scheduled in posi-
tion 4. Clearly plants 1 and 2 must each occur twice, once to the left
and right of plant 5. Then plants 3 and 4 can each only occur once in
these 7 positions. However, if plant 3 is to occur only once it must be in
position 3 or 5 (w.l.o.g position 3). Then plant 1 must occur in positions
2 and 5 which leaves not enough room to schedule plant 2.

3,4,6 and 3,4,7 using the schedule 13201020 we get p∗ ≥ 9.

3,4,6,6 to 3,4,7,8 using the schedule 13201420 we get p∗ ≥ 6. Any additional
periods of value 7 would lead to a negative density.

3,7 using the schedule 1020 1000 we get p∗ ≥ 5. (This also solves the cases
3,5,7 and 3,6,7.)

https://github.com/Felixhhne/bamboo
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3,7,7 using the schedule 1020 1030 we get p∗ ≥ 2.

3,7,7,7 using the schedule 1024 1030 we get p∗ ≥ 5.

3,7,7,7,7 using the schedule 1024 1035 we get p∗ ≥ 5. Any additional periods
of value 7 would lead to a negative density.

4 using the schedule 10000 we get p∗ ≥ 9.

4,4 follows from 2.

4,5 using the schedule 12000 10020 10002 10000 we get p∗ ≥ 9.

4,5,5 using the schedule 12003 10020 13002 10300 we get p∗ ≥ 4.

4,5,5,7 using the schedule 12043 10020 13402 10304 12003 10420 13002 14300
we get p∗ ≥ 5. This also solves any case where there are additional
periods 5 or 6 before the 7.

4,5,5,7,7 using the schedule 12043 15020 13452 10304 12503 10425 13002 14350
we get p∗ ≥ 5. Any additional periods of value 7 would lead to a
negative density.

4,5,6 using the schedule 31002 01300 21003 01200 we get p∗ ≥ 7.

4,5,6,6 follows from p∗1 = 3, p∗2 = 4, p∗3 = 5.

4,5,6,7 using the schedule 12043 10020 13402 10034 12000 13420 10032 14030
we get p∗ ≥ 8.

4,5,6,7,7 using the schedule 12043 10520 13402 15034 12005 13420 10532 14035
we get p∗ ≥ 5. Any additional periods of value 7 would lead to a
negative density.

4,5,7 using the schedule 12030 10020 10302 10003 12000 10320 10002 13000
we get p∗ ≥ 7.

4,5,7,7 using the schedule 12430 10020 14302 10043 12000 14320 10042 13000
we get p∗ ≥ 10.

4,5,7,7,7 to 4,5,7,7,10 using the schedule 12430 15020 14302 15043 12005 14320
10542 13005 we get p∗ ≥ 7. Any additional periods of value 7 would
lead to a negative density.

4,5,8 using the schedule 21030 01200 01032 01000 we get p∗ ≥ 7.

4,6 using the schedule 21000 01020 01000 we get p∗ ≥ 9.

4,6,6 follows from 3, 4.

4,6,7 using the schedule 1020 1030 we get p∗ ≥ 6.

4,6,7,7 using the schedule 10304 10200 13042 10003 12400 10032 14002 we get
p∗ ≥ 7. Any other cases involving 4, 6 and multiple periods 7 follow
from the cases with 4 and multiple periods 7 below.
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4,6,8 using the schedule 21030 01020 01003 21000 01023 01000 we get p∗ ≥ 9.

4,6,8,8 using the schedule 21003 01024 01003 21004 01023 01004 we get
p∗ ≥ 4.

4,7 using the schedule 10200 10000 12000 10002 10000 10020 10000 we get
p∗ ≥ 10.

4,7,7 and 4,7,8 using the schedule 10203 10000 12030 10002 10300 10020 13000
we get p∗ ≥ 9.

4,7,7,7 to 4,7,8,8 using the schedule 10204 10300 12040 13002 10403 10020 14030
we get p∗ ≥ 6.

4,7,7,7,7 using the schedule 15204 10305 12040 13052 10403 10520 14030 we
get p∗ ≥ 3.

4,7,7,7,7,7 using the schedule 15204 10365 12040 13652 10403 16520 14036 we
get p∗ ≥ 5. Any additional periods of value 7 would lead to a negative
density.

4,7,9 using the schedule 10203 10000 12000 13002 10000 10320 10000 we get
p∗ ≥ 9.

4,8 using the schedule 10200 10000 we get p∗ ≥ 6.

5,7 using the schedule 100200 we get p∗ ≥ 9.

5,5,7 and 5,6,7 using the schedule 1020300 we get p∗ ≥ 5. This also solves
any case where there are additional periods 5 or 6 before the 7.

5,7,7 follows from case 7, 7 below. The same is true for any other case involv-
ing 5 and multiple periods 7 except the following case.

5,7,7,7,7 using the schedule 503012040 513002041 we get p∗ ≥ 5.

6,7 using the schedule 10002000 we get p∗ ≥ 8.

6,6,7 follows from 3, 7.

6,7,7 follows from case 7, 7 below. The same is true for all other cases involv-
ing 6 and multiple periods of 7.

7 using the schedule 100000000 we get p∗ ≥ 15.

7,7 using the schedule 100002000 we get p∗ ≥ 5. Any other case involving
multiple periods of 7 can be solved with analogous simple schedules.
This also solves any case with additional periods 5 or 6 before the 7s.

7,8 using the schedule 120000000 100200000 100002000 100000020 100000002
100000000 we get p∗ ≥ 17.

7,8,8 follows from 4, 7.
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7,8,9 using the schedule 100020030 100000200 130020000 100030200 we get
p∗ ≥ 12.

7,8,9,9 to 7,8,9,11 using the schedule 140020030 100040200 130020040 100030200
we get p∗ ≥ 7.

7,8,10 using the schedule 100020030 100000200 130020000 100030200 we get
p∗ ≥ 15.

7,8,10,10 using the schedule 140020030 100040200 130020040 100030200 we
get p∗ ≥ 7.

7,8,10,11 using the schedule 140020030 100040200 130020040 100030200 we
get p∗ ≥ 12.

7,8,10,11,11 using the schedule 140025030 100040205 130020040 105030200
we get p∗ ≥ 13.

7,8,10,11,11,11 and 7,8,10,11,11,12 using the schedule 140025030 106040205
130026040 105030206 we get p∗ ≥ 9.

7,8,10,12 using the schedule 103040200 100000230 140000200 100300240 100003200
we get p∗ ≥ 17.

7,8,10,12,12 and 7,8,10,12,13 solved using the schedule 120000003 150200400
100032005 104000023 100000502 140030000 120500043 100200000 150432000
100000523 140000002 100530004.

7,8,10,12,14 using the schedule 120000053 100200400 100032005 104000023
100000052 140030000 120000543 100200000 100432050 100000023 140000052
100030004 we get p∗ ≥ 16.

7,8,10,12,14,14 and 7,8,10,12,14,15 using the schedule 120000653 100200400
100032605 104000023 100006052 140030000 120006543 100200000 100432650
100000023 140000652 100030004 we get p∗ ≥ 12.

7,8,10,12,15 and 7,8,10,12,16 solved using the same schedules as 7, 8, 10, 12, 14.

7,8,10,13 and 7,8,10,14 using the schedule 102004003 102000000 102034000 102000003
102004000 102030000 we get p∗ ≥ 12.

7,8,11 using the schedule 100000003 120000000 100203000 100002000 103000020
100000023 100000000 120003000 100200000 103002000 100000023 100000002
100003000 120000000 103200000 100002003 100000020 100003002 100000000
123000000 100200003 100002000 100003020 100000002 103000000 120000003
100200000 100023000 100000200 103000002 we get p∗ ≥ 17.

7,8,11,11 using the schedule 124000003 100200004 100023000 100004200 103000002
104000003 120000004 100203000 100024000 103000200 104000023 100000024
100003002 100004002 103000000 we get p∗ ≥ 10.
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7,8,11,12 and 7,8,11,13 solved using the schedule 124000003 100200004 100023000
100004200 103000002 104000003 120000004 100203000 100024000 103000200
104000023 100000024 100003002 100004002 103000000.

7,8,11,14 to 7,8,11,16 using the schedule 100040003 120000000 102043000 100200000
103024000 100020003 100042000 100003200 100040020 103000002 we get
p∗ ≥ 13.

7,8,12 using the same schedule as 7, 8, 11 we get p∗ ≥ 17.

7,8,12,12 using the same schedule as 7, 8, 11, 11 we get p∗ ≥ 18.

7,8,12,12,12 using the schedule 124050003 100200004 150023000 100004250
103000002 104050003 120000004 150203000 100024050 103000200 104050023
100000024 150003002 100004052 103000000 we get p∗ ≥ 18.

7,8,12,12,12,12 using the schedule 124050003 100260004 150023000 160004250
103000062 104050003 120060004 150203000 160024050 103000260 104050023
100060024 150003002 160004052 103000060 we get p∗ ≥ 9.

7,8,12,12,12,13 to 7,8,12,12,12,17 solved using the schedules for 7, 8, 13 to 7, 8, 17.

7,8,12,12,13 to 7,8,12,12,17 solved using the schedules for 7, 8, 13 to 7, 8, 17.

7,8,12,13 to 7,8,12,16 solved using the schedules for 7, 8, 13 to 7, 8, 17.

7,8,13 to 7,8,15 using the schedule 120000000 100203000 100002000 100003020
100000002 100003000 we get p∗ ≥ 11

7,8,16 and 7,8,17 using the same schedule as above we get p∗ ≥ 12.

7,9 using the schedule 100002000 100000002 100000000 102000000 we get
p∗ ≥ 15.

7,9,9 using the schedule 100002000 103000002 100003000 102000003 we get
p∗ ≥ 7.

7,9,10 to 7,9,12 using the same schedule as above we get p∗ ≥ 11.

7,9,10,10 using the schedule 140002000 103040002 100003040 102000003 we
get p∗ ≥ 12.

7,9,10,10,10 and 7,9,10,10,11 using the schedule 140052000 103040052 100003040
152000003 we get p∗ ≥ 11.

7,9,10,10,10,10 using the schedule 140052060 103040052 160003040 152060003
we get p∗ ≥ 8.

7,9,13 and 7,9,14 using the schedule 120003000 100020000 100003020 100000000
we get p∗ ≥ 12.

7,10 using the schedule 100000002 100000000 100020000 we get p∗ ≥ 15.
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7,10,10 and 7,10,11 using the schedule 100030002 100000003 100020000 we
get p∗ ≥ 9

7,10,12 using the schedule 100000023 100000000 100200300 100000020 100030000
100200000 103000020 100000003 100200000 100000320 100000000 100230000
100000020 103000000 100200003 100000020 100000300 100200000 100030020
100000000 103200000 we get p∗ ≥ 16.

7,10,12,12 follows from p1 = 6, p2 = 7 and p3 = 10.

7,10,12,13 and 7,10,12,14 using the schedule 100004023 100000000 100204300
100000020 100034000 100200000 103004020 100000003 100204000 100000320
100004000 100230000 100004020 103000000 100204003 100000020 100004300
100200000 100034020 100000000 103204000 100000023 100004000 100200300
100004020 100030000 100204000 103000020 100004003 100200000 100004320
100000000 100234000 100000020 103004000 100200003 100004020 100000300
100204000 100030020 100004000 103200000 we get p∗ ≥ 15.

7,10,12,13,13 to 7,10,12,14,14 using the schedule 100004023 100005000 100204300
100005020 100034000 100205000 103004020 100005003 100204000 100005320
100004000 100235000 100004020 103005000 100204003 100005020 100004300
100205000 100034020 100005000 103204000 100005023 100004000 100205300
100004020 100035000 100204000 103005020 100004003 100205000 100004320
100005000 100234000 100005020 103004000 100205003 100004020 100005300
100204000 100035020 100004000 103205000 we get p∗ ≥ 15.

7,10,12,13,13,13 to 7,10,12,14,14,14 using the schedule 100004023 160005000
100204300 160005020 100034000 160205000 103004020 160005003 100204000
160005320 100004000 160235000 100004020 163005000 100204003 160005020
100004300 160205000 100034020 160005000 103204000 160005023 100004000
160205300 100004020 160035000 100204000 163005020 100004003 160205000
100004320 160005000 100234000 160005020 103004000 160205003 100004020
160005300 100204000 160035020 100004000 163205000 we get p∗ ≥ 9.

7,10,13 solved using the schedule for 7, 13.

7,10,14 using the schedule 100203000 100000020 100003000 100200000 100003002
100000000 we get p∗ ≥ 15.

7,10,14,14 using the schedule 100203000 100004020 100003000 100204000 100003002
100004000 we get p∗ ≥ 6.

7,11 using the schedule 100002000 100000000 102000000 100000002 100000000
we get p∗ ≥ 16.

7,11,11 using the schedule 103002000 100000003 102000000 100003002 100000000
we get p∗ ≥ 16.

7,11,11,11 using the schedule 103002040 100000003 102040000 100003002 140000000
we get p∗ ≥ 16.
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7,11,11,11,11 using the schedule 103002045 100000003 102045000 100003002
145000000 we get p∗ ≥ 9.

7,11,11,11,12 using the same schedule as 7, 11, 11, 11, 11 we get p∗ ≥ 17.

7,11,11,11,12,12 using the schedule 103002045 160000003 102045060 100003002
145060000 we get p∗ ≥ 10.

7,11,11,11,12,13 to 7,11,12,12,12,15 using the schedule 103002045 100600003
102045000 100603002 145000000 103602045 100000003 102645000 100003002
145600000 we get p∗ ≥ 10.

7,11,11,11,12,16 using the schedule 103002045 100600003 102045000 100603002
145000000 103602045 100000003 102645000 100003002 145600000 we get
p∗ ≥ 18.

7,11,11,11,12,16,16 and 7,11,11,11,12,16,17 using the schedule 103702045 100600003
102745000 100603002 145700000 103602045 100700003 102645000 100703002
145600000 we get p∗ ≥ 9.

7,11,11,11,13 using the schedule 103002040 100500003 102040000 100503002
140000000 103502040 100000003 102540000 100003002 140500000 we get
p∗ ≥ 10.

7,11,11,11,14 and 7,11,11,11,15 using the same schedule as 7, 11, 11, 11, 13 we
get p∗ ≥ 10.

7,11,11,11,16 using the same schedule as 7, 11, 11, 11, 13 we get p∗ ≥ 18

7,11,11,11,16,16 using the schedule 103602040 100500003 102640000 100503002
140600000 103502040 100600003 102540000 100603002 140500000 we get
p∗ ≥ 9.

7,11,11,12 using the same schedule as 7, 11, 11, 11 we get p∗ ≥ 17.

7,11,11,12,12 follows from 6, 7, 11.

7,11,11,12,13 and 7,11,11,12,14 using the schedule for 7, 11, 11, 11, 13 we get
p∗ ≥ 10.

7,11,11,12,15 and 7,11,11,12,16 The first case is solved using the same sched-
ule as 7, 11, 11, 11, 13 in the second case we get p∗ ≥ 18.

7,11,11,12,16,16 and 7,11,11,12,16,17 using the same schedule as 7, 11, 11, 11, 16, 16
we get p∗ ≥ 9.

7,11,11,13 using the schedule for case 7, 13 we get p∗ ≥ 10 which solves this
case.

7,11,11,14 and 7,11,11,15 using the schedule 103042000 100000003 102040000
100003002 100040000 103002000 100040003 102000000 100043002 100000000
we get p∗ ≥ 10.
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7,11,12 using the same schedule as 7, 11, 11 we get p∗ ≥ 17.

7,11,12,12 follows from 6, 7, 11.

7,11,12,13 using the schedule for case 7, 13 we get p∗ ≥ 10 which solves this
case.

7,11,12,14 to 7,11,12,16 using the schedule 103042000 100000003 102040000
100003002 100040000 103002000 100040003 102000000 100043002 100000000
we get p∗ ≥ 18.

7,11,12,14,14 to 7,11,12,16,17 using the schedule 103042000 100500003 102040000
100503002 100040000 103502000 100040003 102500000 100043002 100500000
we solve cases 7, 11, 12, 14, 14 and 7, 11, 12, 14, 15 and in the other cases
we get p∗ ≥ 17.

7,11,12,14,16,16 to 7,11,12,16,16,16 These cases can be solved using the sched-
ule 103042000 100500603 102040000 100503602 100040000 103502600 100040003
102500600 100043002 100500600.

7,11,13 using the schedule for case 7, 13 we get p∗ ≥ 10 which solves this
case.

7,11,14 and 7,11,15 using the schedule 100302000 100000000 102300000 100000002
100300000 100002000 100300000 102000000 100300002 100000000 we get
p∗ ≥ 17.

7,11,14,14 to 7,11,15,16 using the schedule 100302000 100400000 102300000
100400002 100300000 100402000 100300000 102400000 100300002 100400000
solves all cases except 7, 11, 15, 16 where we get p∗ ≥ 17.

7,11,15,16,16 using the schedule 100302050 100400000 102300050 100400002
100300050 100402000 100300050 102400000 100300052 100400000 we get
p∗ ≥ 16.

7,12 using the schedule 100000002 100000000 100000200 100000000 100020000
100000000 102000000 we get p∗ ≥ 17.

7,12,12 follows from 6, 7.

7,12,13 using the schedule for case 7, 13 we get p∗ ≥ 10 which solves this
case.

7,12,14 using the schedule 100003002 100000000 100003200 100000000 100023000
100000000 102003000 100000002 100003000 100000200 100003000 100020000
100003000 102000000 we get p∗ ≥ 18.

7,12,14,14 to 7,12,14,17 solved using the schedule 100003002 100004000 100003200
100004000 100023000 100004000 102003000 100004002 100003000 100004200
100003000 100024000 100003000 102004000.

7,12,15 and 7,12,16 using the schedule 100030002 100000000 100000230 100000000
100020000 130000000 102000000 we get p∗ ≥ 18.



5.4. Continuous BGT on a star 87

7,12,15,15 to 7,12,16,17 using the schedule 100030002 100040000 100000230
100000040 100020000 130000000 142000000 we solve all cases except
7, 12, 16, 17 where we get p∗ ≥ 18

7,12,16,17,17 using the schedule 100030002 105040000 100000230 100005040
100020000 130000005 142000000 we get p∗ ≥ 17.

7,13 using the schedule 100002000 100000000 we get p∗ ≥ 10.

7,14 using the same schedule as above we get p∗ ≥ 18.

7,14,14 to 7,14,17 solved using the schedule 100002000 100003000.

5.4 Continuous BGT on a star

We now examine the continuous case of the BGT-problem. For this problem
Gasieniec et al. propose a O(log n)-approximation algorithm that works in
any metric space.

In this chapter we consider a metric space that is the star graph and show
that many of the constant approximation factor algorithms for discrete BGT
can be extended to the star graph with only small losses in the approximation
ratio.

5.4.1 Notation

Consider a star with n branches and ki bamboo on branch i. We number the
plants on each branch starting with the closest plant from the center. This
means plant 1 on branch i is closer to the center than plant 2 and so on.

Let hij be the speed of the j-th plant on branch i, and δij be twice the
distance of the j-th plant on branch i to the j − 1-th plant or to the center for
j = 1 while dij is twice the distance to the center itself.

We always consider twice the distance because on the star graph the algo-
rithm always returns to the center which means edges are traversed in both
directions every time. In the remainder of the chapter we often simply use
the term distance when referring to dij or δij.

We assume that the speeds are decreasing on each branch. (If there is a
plant a that is further away than plant b on a branch and has the same speed
or more, then plant b gets visited whenever plant a is visited.) When talking
about the star with only one plant on each branch we may simply write δi or
di for the distances and hi for the speed of the plant on branch i.

5.4.2 Fractional lower bounds

We now present a lower bound on the maximum height of a plant for any
algorithm. To find this lower bound we allow the algorithm to traverse the
edges at fractional periods. We assume that on average we visit one branch
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each round (one round means travelling into a branch, visiting nodes and
then returning to the center). Furthermore, if a plant a is behind a plant b on
a branch, the edge towards a cannot be traversed at a shorter period than b.
Whenever an edge towards a plant is traversed, that plant is cut.

An algorithm in this setting has a big advantage compared to an algo-
rithm in the regular setting. Thus a lower bound on this setting is also a
lower bound in the regular setting.

We illustrate the concept on a small example. Let there be a star with three
branches. On branch 1 we have first a plant of speed 1

2 at distance 1 and then
a plant of speed 1

3 at distance 2. On branch 2 we have a plant of speed 1
8 at

distance 1. On branch 3 we have a plant of speed 3
8 at distance 1.

We now set the periods that an edge is traversed with to be equal to the
inverse of the speed of the plant. This means the first plant on the first branch
gets visited every second round. The second plant on the first branch gets
visited every third round (despite this not being feasible in the original model
since 3 is not divisible by 2.) The plant on the second branch gets visited
every 8 rounds and the plant on branch 3 gets visited every 8

3 rounds.
How high does the first plant on the first branch grow? Let us call this

plant P. Since at some point we visit the second plant on this branch and
traverse the full length of 1 of the edge towards it and back, the height of P
is at least 1

2 .
However, in this example the height is determined by the time the algo-

rithm spends cutting plants on other branches. This means we consider the
time in between cuts of P when the server moves back to the center. Since
we visit P every two rounds and the plant on the second branch every 8
rounds, we can (fractionally) fit in 2

8 = 1
4 visits towards the plant on the sec-

ond branch. Similarly we traverse the distance towards the plant on the third
branch 2

8/3 = 3
4 times between cuts of P. Thus plant P grows to a height of

1
2(1 +

1
4 +

3
4) = 1 in this model.

Let edge i be traversed at a (fractional) period of fi. Consider some plant
p with speed hp and let A be the set of plants that are behind p on the branch,
while B is the set of plants towards the center on the same branch and on
other branches. Since we need to travel to the end of the branch at some
point, the height of p is at least hp ∑i∈A δi.

Each plant in the set B and the edge leading up to it may be visited fp
fi

times between cuts of p. Additionally, the edge towards p with distance
dp gets travelled once. Therefore p grows to a height of at least hp(dp +

∑i∈B
fp
fi

δi).
Consider the star graph with one plant on each branch. Set the periods

fi := 1
hi

. Consider a plant p. All other plants are in set B. Then plant p grows

to a height of hp(dp + ∑i∈B
fp
fi

di) = hp(dp + ∑i∈B
hi
hp

di) = hpdp + ∑i∈B hidi =

∑n
i=1 hidi := R. For the star with only one bamboo on each branch we may

also write R = ∑n
i=1 hiδi and this is also the definition we want to use for the

star with multiple plants on each branch.
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Now consider a star with multiple plants on each branch. Again set the
periods to fi := 1

hi
. Consider a plant p and let the maximum height it reaches

be Hp. Since we have to travel to the end of the branch at some point, we
have Hp ≥ hP ∑i∈A δi ≥ ∑i∈A hiδi. The second inequality holds because the
speeds along a branch are nonincreasing. Furthermore we get Hp ≥ hp(δp +

∑i∈B
fp
fi

δi) = hp(dp + ∑i∈B
hi
hp

δi) = hpδp + ∑i∈B hiδi

It follows that 2Hp ≥ ∑i∈A hiδi + hpdp + ∑i∈B hiδi = R and thus Hp ≥ 1
2 R.

For the periods fi := 1
hi

all plants have height at least 1
2 R. It is not possible

to achieve a lower maximum height because adjusting the periods such that
one plant grows to a smaller height increases the height of all other plants.
It follows that 1

2 R is a lower bound on the star with multiple plants on each
plant and for the same reasons R is a lower bound on the star graph.

The lower bound also does not improve if the algorithm changes periods
in between rounds, because in that case we can instead consider the aver-
age periods and compute the average maximum heights which are a lower
bound for the maximum height.

5.4.3 Algorithms on the star

We have R = ∑n
i=1 dihi. Define L = max(R, Dh1), where D is the diameter

of the star and h1 is the growth rate of the fastest bamboo. This is a lower
bound on OPT.

The Deadline-Driven algorithm always cuts the bamboo with the earliest
deadline among those with height at least L where the deadline is deter-
mined by some height the algorithm wants to maintain. This means when-
ever the algorithm visits the center it chooses the plant with the earliest dead-
line, travels towards this plant and cuts it before returning to the center. The
algorithm does not turn around when a more urgent plant reaches height L.

We say a plant is requested when it reaches height L and before that this
request is initialized at the time the plant has height 0. This happens either
after a cut or at the beginning of the process. We choose the deadline as the
time a bamboo reaches height (2 +

√
3)L.

This means each request to cut a plant consists of an initialization time, a
request time and a deadline.

Lemma 46. The Deadline-Driven algorithm maintains a height of (2 +
√

3)L.

Proof. Assume plant i reaches height (2 +
√

3)L at time T and is not cut. We
scale the time (and distance) such that L/hi = 1 which means plant i grows
by L in one timestep. This is possible because whenever we scale the length
of all edges by a factor then the heights of all plants reached in any schedule
is scaled by the same factor. This holds for both ALG and OPT which means
the approximation ratio is unaffected. We can also see this as changing the
timescale using L/hi as our unit of time.

Let t1 be the last time the algorithm is idle or busy processing a request
with deadline after T. Let time 0 be the most recent time before t1 where
plant i has height 0.
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This means in between time t1 and T the algorithm is only processing
requests with deadlines at or before T and it is not idle. Let the set of these
requests be S and let v be the earliest request time among all request in S. We
have i ∈ S, so v ≤ 1 and t1 ≥ v.

We further divide the set S into old requests S0 which are initialised be-
fore v and new requests S1 which are initialised after v. The time required
to process S0 is ∑j∈S0

dj because any bamboo with an old request must be
visited once to fulfill the request. Afterwards the bamboo either has a dead-
line after T and is not visited again or becomes part of the bamboo with new
requests. We next show that all bamboo with new requests also have an old
request. Consider the earliest new request for a bamboo. This new request
gets initialized between v and T. This means there was a previous request for
that bamboo with a deadline between v and T. This request is an old request.

The time required to process S1 is ∑j∈S1
mjdj where mj is the number of

new requests of bamboo j which are requests with initialization time after
v and a deadline before or at T. (Here j ∈ S means there is a request for
bamboo j in the set of requests S. We may also see S as a multi-set of bamboo
instead.)

It is possible that just before v a request with a deadline after T arrives
and is processed by the algorithm. The algorithm traverses a distance of r to
serve this request if it exists, otherwise r = 0. This means t1 = v + r.

We now show that ∑j∈S0
dj + ∑j∈S1

mjdj + v + r < T which contradicts
the assumption that plant i is not cut before time T.

We begin by finding upper bounds on the time required to process the
requests in S.

A bamboo with an old request must grow by at least (1 +
√

3)L in time at
most T − v to have a deadline before T which means hj(T − v) ≥ (1 +

√
3)L.

Meanwhile plant i grows by (T − v)L in time (T − v), that is hi(T − v) =
(T − v)L. It follows that

hj

hi
≥ 1 +

√
3

T − v
for j ∈ S0 (5.1)

A bamboo with new requests must grow by (2+
√

3)L exactly mj times in
time at most T − v in order to have mj deadlines before T. Then hj(T − v) ≥
mj(2 +

√
3). It follows that

hj

hi
≥ mj

2 +
√

3
T − v

for j ∈ S1 (5.2)

We can now find upper bounds for the processing times of the requests in
S. We first get

∑
j∈S0

dj
(5.1)
≤ 1

hi

T − v
1 +

√
3

∑
j∈S0

djhj <
T − v

1 +
√

3
R
hi
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and then

∑
j∈S1

mjdj
(5.2)
≤ 1

hi

T − v
2 +

√
3

∑
j∈S0

djhj <
T − v

2 +
√

3
R
hi

Given the timescale and because R ≤ L it takes time less than T−v
1+

√
3

to

process the old requests and less than T−v
2+

√
3

to process the new requests.

It remains to show T−v
1+

√
3
+ T−v

2+
√

3
+ v + r ≤ T.

We have r ≤ L/h1 ≤ L/hi = 1 where the first inequality holds because
otherwise plant 1 would grow by more than L in the time it takes to travel
distance r, and the second follows from the ordering of the plants by their
growth rate. Furthermore, since v < 1 and the earliest deadline of i is 2 +

√
3

we have T − v ≥ (1 +
√

3).
It follows

r ≤ 1 =

(
1

1 +
√

3

)(
1 +

√
3
)
≤

(
1

1 +
√

3

)
(T − v)

and then

r ≤
(

1
1 +

√
3

)
(T − v)

⇒
(

1
1 +

√
3

)
v + r ≤

(
1

1 +
√

3

)
T

⇒
(

1
1 +

√
3

)
v + r ≤

(
1

1 +
√

3

)
T +

(
1 − 1

1 +
√

3

)
T −

(
1 − 1

1 +
√

3

)
T

⇒
(

1 − 1
1 +

√
3

)
T +

(
1

1 +
√

3

)
v + r ≤ T

⇒
(

1 − 1
1 +

√
3

)
T −

(
1 − 1

1 +
√

3

)
v + v + r ≤ T

⇒ T − v
1 +

√
3
+

T − v
2 +

√
3
+ v + r ≤ T

This means we can process all requests (including the request for bi with
deadline at time T) before time T and plant i does not grow above height
(2 +

√
3)L.

For the star with multiple plants on each branch we use the Deadline-
Driven algorithm with a small modification. Whenever the algorithm visits
a bamboo bj on a branch it walks double the distance and cuts all additional
bamboo it encounters. These bamboo can be removed from the graph since
they are always cut together with bj. Then the distance between bj and the
next bamboo bi (i.e δi) on the branch is at least as much as the distance from
bj to the center (i.e. di − δi ). In particular it follows that δi ≥ di − δi and thus
di ≤ 2δi.
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Furthermore, for the bamboo with multiple plants R is not a lower bound,
but 1

2 R is, and therefore we define L = max(1
2 R, Dh1) to get a lower bound

on OPT.
For the star with multiple plants on each branch, the deadline is the point

in time a plant reaches height (5 +
√

21)L. The request time and the initial-
ization time remain the same.

Lemma 47. The modified deadline driven algorithm maintains a height of (5 +√
21)L

Proof. Assume plant i reaches height (5+
√

21)L at time T. We scale the time
(and distance) such that L/hi = 1 which means plant i grows by L in one
time step. The old and new requests S0 and S1 as well as v and r are defined
analogously to the proof for the star.

The time required to process S0 is at most ∑j∈S0
dj because any bamboo

with an old request must be visited once to fulfill the request, and in the
worst case we start from the center traversing distance dj to fulfill the re-
quest. It is possible that the algorithm is more efficient whenever plants with
consecutive deadlines lie behind each other on the same branch.

Similarly, the time required to process S1 is at most ∑j∈S1
mjdj where mj is

the number of new requests on plant bj.
Therefore in order to arrive at a contradiction we again need to show

∑j∈S0
dj + ∑j∈S1

mjdj + v + r < T which means plant i can be cut before time
T.

Again we find upper bounds on the time required to process the old and
new requests. These bounds are slightly different due to the changes in the
algorithm as well as the lower bound.

A bamboo with an old request must grow by at least (4+
√

21)L in time at
most T − v to have a deadline before T which means hj(T − v) ≥ (4+

√
21)L.

Meanwhile plant i grows by (T − v)L in time (T − v), that is hi(T − v) =
(T − v)L. It follows that

hj

hi
≥ 4 +

√
21

T − v
for j ∈ S0 (5.3)

A bamboo with new requests must grow by (5 +
√

21)L exactly mj times
in time at most T− v in order to have mj deadlines before T. Then hj(T− v) ≥
mj(5 +

√
21). It follows that

hj

hi
≥ mj

5 +
√

21
T − v

for j ∈ S1 (5.4)

We now get

∑
j∈S0

dj
(5.3)
≤ 1

hi

T − v
4 +

√
21

∑
j∈S0

djhj ≤
1
hi

T − v
4 +

√
21

∑
j∈S0

2δjhj <
T − v

4 +
√

21
2R
hi

≤ T − v
4 +

√
21

4L
hi

where we are using di ≤ 2δi in the second inequality and R ≤ 2L in the last
inequality.
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Analogously the following holds for the time required to process the new
requests

∑
j∈S1

mjdj
(5.4)
≤ 1

hi

T − v
5 +

√
21

∑
j∈S0

djhj ≤
1
hi

T − v
5 +

√
21

∑
j∈S0

2δjhj <
T − v

5 +
√

3
2R
hi

≤ T − v
5 +

√
21

4L
hi

Given the timescale this means it takes time at most 4 T−v
4+

√
21

to process the

old requests and at most 4 T−v
5+

√
21

to process the new requests. Furthermore,

since v < 1 and the earliest deadline of i is 5 +
√

21 we have T − v ≥ (4 +√
21). It follows

r ≤ 1 =

(
1

4 +
√

21

)
(4 +

√
21) ≤

(
1

4 +
√

21

)
(T − v)

⇒
(

1
4 +

√
21

)
v + r ≤

(
1

4 +
√

21

)
T

⇒
(

1
4 +

√
21

)
v + r ≤

(
1

4 +
√

21

)
T +

(
1 − 1

4 +
√

21

)
T −

(
1 − 1

4 +
√

21

)
T

⇒
(

1 − 1
4 +

√
21

)
T +

(
1

4 +
√

21

)
v + r ≤ T

⇒
(

1 − 1
4 +

√
21

)
T −

(
1 − 1

4 +
√

21

)
v + v + r ≤ T

⇒ 4
T − v

4 +
√

21
+ 4

T − v
5 +

√
21

+ v + r ≤ T

This means we can process all requests (including the request for bi with
deadline at time T) before time T and plant i does not grow above height
(5 +

√
21)L.

The algorithm Reduce-Fastest(x), introduced by Gasieniec et al. [51], cuts
the next fastest growing bamboo among those with height at least x · R. The
following proof is structured in a way similar to the proof by J. Kuszmaul for
discrete BGT [81].

Lemma 48. Reduce-Fastest(2(R + Dhmax)) is a 6-approximation on the star.

Proof. Assume that at some point there is a bamboo bi that reaches height
3(R + Dhmax). Let t1 be the most recent time bi reaches height 2(R + Dhmax)
and t3 the time it reaches height 3(R + Dhmax). Furthermore let t2 be the first
time in between t1 and t2 where the gardener visits the center. Since it takes
at most distance D to visit a plant and return to the center, the height of bi is
at most 2R + 3Dhmax at this time. We consider the set S of bamboo that are
cut at least once during the time interval [t2, t3). For bamboo j ∈ S, let mj be
the number of times the bamboo is cut in the interval [t2, t3).

Since bi already has height at least 2(R + Dhmax) when the algorithm de-
cides to cut j we have hj ≥ hi for all j ∈ S.
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For mj ≥ 2 we have hj(t3 − t2) > 2(R + Dhmax)(mj − 1) or
hj(t3−t2)

2(mj−1) >

R + Dhmax because bamboo bj needs to grow to height 2(R + Dhmax) at least
mj − 1 times in the interval in order to be cut mj times. Meanwhile, bamboo bi
grows by at most R + Dhmax during this interval and therefore R + Dhmax >
hi(t3 − t2). It follows that hj > 2(mj − 1)hi ≥ mjhi.

During the interval the algorithm visits each plant bj ∈ S a total of mj

times and travels distance dj each time. Additionally, distance di
2 is traversed

to reach plant bi.

t3 − t2 = ∑
bj∈S

mjdj +
di

2

< ∑
bj∈S

hjdj

hi
+

di

2

=
1
hi

∑
bj∈S

hjdj +
di

2

≤ 1
hi
(R − hidi) +

di

2

=
R
hi

− di

2

This however means that the interval is too short for plant bi to grow by
height R since this takes time R

hi
. This is a contradiction and thus no plant can

reach height 3(R + Dhmax) ≤ 6L.
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Chapter 6

Allocating contiguous blocks of
indivisible chores fairly

6.1 Introduction

Fair division is a classic problem in economics, that deals with the question of
how we can divide a set of resources between a number of different people
with varying likes and dislikes. This is a very relevant problem, which occurs
often in everyday social interaction and it has motivated a lot of research on
different variations of the problem.

A classical problem in this area is the so called cake cutting problem [104].
In this problem we need to divide a cake with different toppings between a
number of players who value these toppings differently. Our goal here is to
maximize the happiness of each player, which is determined by the fraction
of cake that she receives.

In this problem the players get a positive utility from their fraction of
cake, so the more cake a player receives the happier she is. We can also
consider a minimization problem, where the cake represents work that needs
to be performed by the agents. This leads to the problem of chore division [49]
where the goal is to minimize the discontent every player gets from his share
of the work.

In order to evaluate the allocations we use two different kinds of welfare,
utilitarian welfare and egalitarian welfare. To calculate the utilitarian welfare of
an allocation, we add the utilities of all players in that allocation together. To
calculate the egalitarian welfare we take the lowest utility or in the case of
chore division the highest disutility as our welfare.

The resource that has to be allocated can be divisible or indivisible. In the
first case, we can divide the resource into arbitrarily many pieces before allo-
cating them to the agents. In the second case resources are divided into a set
of distinct items, which cannot be divided further. Each item has to be fully
allocated to one agent. When talking about allocating indivisible items, we
assume these items to be lying in some order on a line.

When considering these problems of fair division, it is necessary to define
some notion of fairness. In many earlier papers [4, 30, 107] the criteria for
fairness are proportionality, equitability and envy-freeness. These are also used
in this paper.
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An allocation is proportional if every agent receives at least a fraction of
1/n of the utility that she would get if all of the resource gets allocated only to
her (at most 1/n for chores). Here n is the number of players. An allocation
is equitable if all agents get the same utility from their allocated share of the
resource. Finally, an allocation is envy-free if every agent values the share
she receives at least as much as the share any other agent receives.

As stated before, our goal is then to optimize the welfare of the players,
while maintaining some notion of fairness. Since these goals do not necessar-
ily go hand in hand, the natural question arises what the trade-off between
these goals is. To this end, Caragiannis et al. [30] and independently Bertsi-
mas et al. [17] initiated the concept of the price of fairness, which measures
this trade-off, similarly to the related and well-known concepts of price of
anarchy and price of stability. Caragiannis et al. [30] found upper and lower
bounds for the problem of cake cutting as well as chore division in the divisi-
ble and indivisible case. However, their solutions did not limit the amount of
pieces each player gets, leading to situations in which players might receive
a high number of small pieces or cake crumbs. This situation can be undesir-
able in practice. This prompted Aumann and Dombb [4] to consider the case
in which each player must be assigned a connected piece.

To calculate the price of fairness, we divide the welfare of an optimal allo-
cation by the welfare of an optimal fair allocation. For chore division we use
the inverse of that value to allow for easy comparisons (the optimal welfare
is now never more than that of an optimal fair allocation). We speak of a con-
tiguous allocation if each player gets a contiguous block of items on the line
in the case of indivisible items or a connected piece in the case of a divisible
resource.

Following the work of Aumann and Dombb [4], two different variations
of this problem have been considered. This paper fills the gap between those
works by considering both at once. Since Aumann and Dombb [4] only con-
sidered the problem of cake cutting, we can instead look at the allocation
of indivisible goods, while still holding onto the requirement of the alloca-
tions being contiguous. This problem of fair division of contiguous blocks of
indivisible items was studied by Suksompong [108].

The other variation keeps the goods divisible and instead considers again
chores instead of goods. This problem of dividing connected chores fairly
was studied by Heydrich and van Stee [57].

This paper now combines these variations and fills the gap between the
papers from Suksompong and Heydrich and van Stee, considering the price
of fairness for the fair allocation of contiguous blocks of indivisible chores.
An example where this type of problem occurs could be the allocation of
work shifts, which can not be further divided. A more specific example might
be the division of routes between train drivers. This paper is influenced by
both works; in fact many of the employed techniques are adaptations of tech-
niques used in the one paper or the other. This is also mirrored in the results.
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6.1.1 Our results

The price of proportionality is very similar between all three problems, be-
ing 1 in all cases for egalitarian welfare and n, n and n − 1 + 1

n for the com-
bination of indivisibility and chores, divisible chores and indivisible goods
respectively in the case of utilitarian welfare.

Furthermore, if we make the change from goods to chores the price of
envy-freeness changed from being bounded to being unbounded. Also, if
we change to indivisible items, the price of equitability suddenly becomes
unbounded. In this paper both changes are combined and we can observe
that now both prices of fairness are unbounded.

TABLE 6.1: Results of this work compared to [57] and [108].
(Contiguous blocks or pieces are allocated, some results only

hold for n > 2)

Chores indivisible (this work) divisible [57]
utilitarian egalitarian utilitarian egali-

tarian
lower upper

proportionality n 1 n
2 n 1

equitability ∞ n 1
envy-freeness ∞ ∞
Goods/Cakes indivisible [108] divisible [4]

utilitarian egali- utilitarian egali-
tarian tarian

lower upper lower upper
proportionality n − 1 + 1

n 1
√

n
2

⌊
√

n⌋
2 + 1 − o(1) 1

equitability ∞ n − 1 + 1
n n 1

envy-freeness ⌊
√

n⌋
2

⌊
√

n⌋
2 + 1 − o(1) n

2

√
n

2
⌊
√

n⌋
2 + 1 − o(1) n

2

It should be mentioned that [108] also deals with the existence of alloca-
tions of indivisible goods, which satisfy approximate versions of the three
notions of fairness. It is possible to obtain analogous results for indivisible
chores with only slight modifications to the proofs in [108].

In the case of equitability we do not change the definition when switch-
ing to chores, therefore the same proof that applies to goods also applies to
chores. The proof for the existence of an allocation of indivisible goods that
satisfies the approximate version of envy-freeness relies on the existence of
an envy-free allocation for divisible goods. Su showed that such an alloca-
tion also always exists for divisible chores [106]. This means the proof also
holds for chores. In the case of proportionality the proof needs to be altered
slightly. However the structure stays the same.
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6.1.2 Related work

Modern mathematicians started working on the topic of fair division in the
1940’s with Banach, Steinhaus und Knaster giving the “Last Diminisher”
mechanism for proportional divisions with n players [104]. In the follow-
ing years researchers focussed on finding algorithms to achieve fair divisions
[28, 29, 41, 105]. In particular Dubins and Spanier [41] gave an algorithm that
guarantees the existence of a contiguous proportional allocation, Cechlárová
et al. [31] showed the existence of certain contiguous equitable allocations
and Stromquist [105] proved the existence of a contiguous envy-free alloca-
tion.

The problem of fair division of chores was first mentioned by Gardner
[49]. The result of Steinhaus [104] can be applied to chores, thus a propor-
tional division always exists. Su [106] proves the existence of envy-free di-
visions of chores with connected pieces, while Heydrich and van Stee [57]
show the existence of equitable divisions with connected pieces.

The problem of the efficiency of fair divisions was first adressed by Cara-
giannis et al. [30]. They gave bounds for the price of fairness for utilitarian
welfare, considering the three notions of fairness as well as divisible and in-
divisible cakes and chores. Aumann and Dombb [4] then restricted the prob-
lem, only allowing connected pieces. This way players do not get unions
of very small pieces (crumbs) assigned. They considered the problem with
cakes, Heydrich and van Stee [57] then extended this work to chores.

Bouveret et al. [27] considered the allocation of contiguous blocks of in-
divisible items on a line and showed that determining whether a contiguous
fair allocation exists is NP-hard for proportionality and envy-freeness. Au-
mann et al. [5] considered the problem of finding a contiguous allocation
that maximizes welfare for both divisible and indivisible items, showing that
it is NP-hard to find the optimal solution, but there exists an efficient con-
stant factor approximation algorithm. Bei et al. [12] and Cohler et al. [37]
also considered this problem of maximizing welfare with additionally the
constraint of respectively proportionality and envy-freeness. Suksompong
[108] considered the problem of finding contiguous allocations of indivisible
items on a line with respect to fairness constraints and shows the existence
of certain contiguous allocations with respect to approximate versions of the
usual notions of fairness, as well as giving bounds on the price of fairness
with respect to exact proportionality, equitability and envy-freeness.

Recently, more work on the division of indivisible items and chores has
been done. Kurokawa et al. [80] consider an alternative notion of fairness for
indivisible items, the maximin share guarantee, and show that this fairness
notion cannot be guaranteed even if the number of goods is small. Aziz et al.
[9] add to this by considering indivisible chores with a weighted generalisa-
tion of maximin share. They provide a polynomial-time-constant-approximation
algorithm for their problem.

Bilo et al. [21] study the allocations of indivisible items that are envy-free
up to one good. While we assume that the items lie on a line, they generalize
this to items that lie on the vertices of a graph and allocate bundles of items
that are connected on the underlying item graph.
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Other methods of dividing goods are the egalitarian equivalent and the
competitive equilibrium with equal incomes rules, which have been com-
pared by Bogolmonaia et al [25]. For goods the competitive rule fares better,
however for chores this rule shows some disadvantages that the egalitarian
rule does not have.

Suksompong at al. [13] give a truthful envy-free mechanism for cake cut-
ting and chore division for two agents with piecewise uniform valuations
without free disposal. This means the whole cake has to get allocated. Such
a mechanism does not exist with some additional assumption, including the
assumption that connected pieces are allocated. For more agents the class of
valuations has to be restricted.

A new approach is to consider mixed cakes, where there are both good
and bad pieces. Segal-Halevi [101] considers the case of mixed cakes for envy
freeness and connected pieces and shows that a devision exists for 3 agents.
Cariagannis et al. [8] consider this generalization for indivisible goods and
chores.

6.2 Definitions

In this section we formally define the fair division problem with indivisible
chores, the notions of fairness and social welfare, as well as the price of fair-
ness, which measures the trade-off between fairness and social welfare. Since
we are in the context of chores we will refer to social welfare as social cost.

Let N = {1, .., n} be the set of agents and M = {1, ..., m} the set of chores.
We assume the chores lie on a line in this order. Each agent i has a nonneg-
ative disutility di(j) for chore j. We assume that the disutilities are additive,
which means that di(M′) = ∑j∈M′ di(j) for any agent i and a subset M′ ⊆ M.

An allocation M = (M1, ...., Mn) is a partition of all chores into n bundles
so that agent i receives bundle Mi. The allocation is contiguous if each Mi
forms a contiguous block of items on the line.

The utilitarian social cost of an allocation is defined as ∑i∈N di(Mi) and the
egalitarian social cost is maxi∈N di(Mi).

We now define the notions of fairness that we consider in this paper. An
allocation M = (M1, ...., Mn) is

• proportional if di(Mi) ≤ 1
n di(M) for all i ∈ N.

• equitable if di(Mi) = dj(Mj) for all i, j ∈ N.

• envy-free if di(Mi) ≤ di(Mj) for all i, j ∈ N.

Since fairness cannot be guaranteed in all cases we also consider approx-
imate versions of these notions. An allocation M = (M1, ...., Mn) is

• ε-proportional if di(Mi) ≤ 1
n di(M) + ε for all i ∈ N.

• ε-equitable if
∣∣di(Mi)− dj(Mj)

∣∣ ≤ ε for all i, j ∈ N.

• ε-envy-free if di(Mi) ≤ di(Mj) + ε for all i, j ∈ N.
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The price of fairness (price of proportionality, respectively envy-freeness,
equitability) is the minimal social cost achievable in fair (proportional, re-
spectively envy-free, equitable) allocations divided by the minimal social
cost achievable in arbitrary allocations. If both are 0 we define the price of
fairness to be equal to 1. The price of fairness is only defined if a fair alloca-
tion exists, therefore we only consider such instances. Following Caragiannis
et al. [30], we assume the normalization di(M) = 1.

6.3 Existence of fair allocations

We now consider the existence of fair contiguous allocations of indivisible
chores. Since achieving a completely fair allocation can not always be guar-
anteed we settle for approximate versions of the three notions of fairness.

Proportionality We begin with an algorithm that finds a n−1
n di,max-proportional

allocation. Suksompong gives an analogous result for the allocation of goods
and our proof follows their structure while making straightforward changes
to adapt the problem to the allocation of chores instead of goods.

Lemma 49. For any instance there exists a contiguous allocation M with di(Mi) ≤
1
n di(M) + n−1

n di,max for all agents i ∈ N.

Proof. Process items from left to right using the following algorithm:

1. Set the current block to the empty block

2. Add items to the current block until di(Mi) > 1
n di(M) + n−1

n di,max for
all i.

3. Remove the last item and assign the current block to an agent who val-
ues it with at most 1

n di(M) + n−1
n di,max.

4. If there is only one agent left, assign all remaining items, otherwise
return to 1.

The process also ends if there are no more items to assign, but more than
one agent is left. In this case we have found an allocation where every agent
values its block with at most 1

n di(M) + n−1
n di,max.

Now assume that the last agent does get assigned some items. Clearly
all agents but the last one get assigned a block that they value with at most
1
n di(M)+ n−1

n di,max. It remains to show that the last agent values her assigned
items with at most 1

n di(M) + n−1
n di,max.

This is done by backwards induction. We show that when there are k
agents remaining the last agent values all remaining items with at most k

n di(M)+
n−k

n di,max.
Clearly this holds for n = k. Now assume there are k + 1 agents remain-

ing and the last agent evaluates the currently remaining items with at most
k+1

n di(M) + n−k−1
n di,max.
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After step 2 of the algorithm, the last agent evaluates the current block
with at least 1

n di(M) + n−1
n di,max. Then during step 3 the block that gets as-

signed this round is evaluated by the last agent with at least 1
n di(M)− 1

n di,max.
It follows that after this block is assigned all remaining items are evaluated
with at most k

n di(M) + n−k
n di,max.

The following simple example shows that we cannot hope to improve
the additive factor in this guarantee. Assume there are n agents but only
one item. All agents value this item with disutility 1. Then the proportional
share of each agent is 1

n , but since we need to assign the entire item to a single
agent, there is an agent with disutility 1 = 1

n + n−1
n .

Sometimes we may want to choose the ordering in which chores are as-
signed to the agent. The following example shows that we cannot always
find a dmax-proportional allocation. In fact we show that there is not even a
kdmax-proportional allocation for any constant k.

Let there be m > 6k items and let m be even. Agent 1 values every item
with disutility 1 and agent 2 values only the rightmost m

2 − k items with disu-
tility 1. In a kdmax-proportional allocation we are only allowed to assign m

2 + k
items to agent 1. If agent 1 is to be assigned a leftside block, then agent 2 will
be assigned all m

2 − k items on the right side that she values at disutility 1.
Since m > 6k we get m

4 > 3
2 k and thus m

2 − k > m
4 + 1

2 k = 1
2(

m
2 − k) + k. This

means agent 2 gets assigned more than her proportional share.

Equitability The definition of ε-equitability does not change when going
from goods to chores, which means many results for chores directly apply to
goods as well, including the following result by Suksompong.

Lemma 50. Given any instance and any ordering of the agents, there exists a con-
tiguous dmax-equitable allocation in which agents are allocated blocks of items on the
line according to the ordering.

The algorithm that achieves this result first finds the block of the agent
who currently has the highest disutility and then finds the block of the agent
that currently has the lowest disutility. Should these blocks be adjacent to
each other an item is moved from the agent with highest disutility to the
one with lowest disutility. Otherwise an agent is found that sits between the
agents with highest and lowest disutility such that an item can be moved
from this agent to the agent with lowest disutility. This process gradually
lowers the gap between the highest and lowest disutility and the algorithm
ends in a dmax-equitable allocation.

This result only provides us with an approximately equitable solution,
however it does not give any guarantee about the quality of this solution.
There may be instances where this algorithm gives very high disutility for
all agents, even though there is another fair solution with lower disutility
for each agent. However when given the opportunity to choose the ordering
of the agents it is possible to find an allocation with a much better welfare
guarantee.
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There is a dmax-equitable allocation where the egalitarian social cost is op-
timal. The following lemma explains how an optimal solution can be trans-
formed into a solution that is also equitable. Unfortunately this does not give
us an efficient algorithm to calculate this solution.

Lemma 51. Given any instance, there exists a contiguous dmax-equitable allocation
with an egalitarian social cost that equals the lowest egalitarian social cost that can
be achieved by any contiguous allocation.

Proof. Let w be the lowest egalitarian social cost among all allocations of the
instance and let M = (M1, . . . , Mn) be the allocation that achieves this social
cost. There exists a contiguous allocation where all agents i receive disutility
in the range [w − dmax, w]. This can be shown by induction over the number
of agents. Clearly the claim holds for n = 1 agent.

Now assume the claim holds for n − 1 agent. We now increase the size of
the first agents block, by taking items from his right side neighbor, until the
first agents disutility is in the interval [w − dmax, w]. This is possible because
the agent values no single item with more than dmax and therefore we do not
overshoot the interval when adding an item. We also do not undershoot the
interval, because if we run out of items before reaching a value within the
interval, then we have found a solution with less social cost than w.

We repeat this process with the next agents in numerical order. The pro-
cess ends if we have either run out of items to give to the current agent or all
agents up to agent n − 1 receive a disutility with a value in [w − dmax, w].

If after this process all agents receive disutility in the range [w − dmax, w]
we are done. Otherwise agent n receives disutility less than w − dmax. If that
is the case we now increase the size of agent n’s block by giving him items
from his left side neighbors until agent n receives disutility in the interval
[w − dmax, w). We do not undershoot the interval for the same reason as be-
fore with agent 1. We also do not overshoot the interval because the agent
values no single item with more than dmax and in the beginning agent n’s
disutility is strictly less than w − dmax. Note in particular that the disutility
of agent n, after receiving these items, is strictly less than w.

Now remove agent n and its block. There is an allocation that assigns the
remaining items among agents 1 to n − 1 with egalitarian social cost w and
no allocation with lower egalitarian social cost. This is because the existence
of an allocation with lower egalitarian social cost than w for the partial in-
stance would imply an allocation with lower egalitarian social cost than w
for the entire instance, which is reached by adding the block of n back to this
allocation.

By the inductive hypothesis there is an allocation on the partial instance
where agents 1 to n − 1 receive disutility in the interval [w − dmax, w]. Agent
n also receives disutility in the interval [w − dmax, w] which proves the claim.

Envy-freeness We now consider the existence of envy-free allocation. It
is known that for divisible chores a contiguous envy-free allocation always
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exists. We can round this allocation to a 2dmax-envy-free allocation. This
result is completely analogous to the result for goods.

Lemma 52. Given any instance, there exists a 2dmax-envy-free allocation.

Proof. Let the set of chores be represented by the interval [0, m]. For j ∈ M,
agent i has uniform disutility di(j) for the interval [j− 1, j]. Consider an envy-
free allocation of this set of chores. We round this allocation as follows. For
each item j if point j is in the interior of a piece, allocate the full item to the
agent who owns that piece. Otherwise, if point j is at the boundary of two
pieces belonging to different agents, assign item j to the left agent.

Agent i does not loose more than di,max during the rounding. Also no
agent gains more than di,max from the perspective of agent i. Therefore agent
i has envy at most 2di,max towards any other agent.

We can get a slightly better result if there are only two agents. Due to
Lemma 49 there is an allocation where agent 1 receives at most disutility
1
2 d1(M) + 1

2 d1,max. Then agent 2 receives at least disutility 1
2 d1(M)− 1

2 d1,max
from the perspective of agent 1. Because of symmetry this implies a dmax-
envy-free allocation for two agents.

6.4 The price of proportionality

We begin with the price of proportionality. We first consider the utilitarian
version, then the egalitarian one.

Theorem 53. The utilitarian price of proportionality for contiguous allocations of
indivisible chores is n.

Proof. Upper bound: If the contiguous allocation with minimum utilitarian
social cost is also proportional, then the price of proportionality is 1.

If the contiguous allocation with minimum utilitarian social cost is not
proportional, then at least one agent has disutility more than 1

n . Therefore,
the utilitarian social cost of this allocation is more than 1

n . A proportional
allocation has at most a utilitarian social cost of 1, since all agents have disu-
tility at most 1

n . Therefore, the price of proportionality in this case is upper-
bounded by 1/ 1

n = n.

Lower bound for n > 2: Let m = n and 0 < ε < 1. In this proof we
denote the n players and chores as {0, .., n − 1} instead of {1, .., n}. Choose
the following disutilities. For i = 0, ..., n − 2 :

di(j) =


1
n − ε j = i
2ε j = i + 1 (mod n)
2
n − ε j = i + 2 (mod n)
1
n otherwise
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Finally,

dn−1(j) =


1
n + ε j = 0
1
n − ε j = n − 1
1
n j = 1, ..., n − 2.

For example n = 4: 
1
4 − ε 2ε 2

4 − ε 1
4

1
4

1
4 − ε 2ε 2

4 − ε

2
4 − ε 1

4
1
4 − ε 2ε

1
4 + ε 1

4
1
4

1
4 − ε


The best proportional allocation allocates one chore to each player cor-

responding to the main diagonal of the matrix, giving 1
n − ε to every agent,

thus the utilitarian social cost is n
(

1
n − ε

)
= 1 − nε.

There exists a contiguous allocation which assigns 1
n + ε to agent n − 1

and 2ε to all other agents, giving utilitarian social cost 1
n + (2n − 1)ε. This is

achieved by giving item i to player i − 1 (mod n) for i = 0, . . . , n − 1. (For ε
sufficiently small, it is easy to check that this is in fact the optimal contiguous
allocation.)

Therefore the price of proportionality is lower bounded by 1−nε
1
n+(2n−1)ε

which

is arbitrarily close to n for sufficiently small ε.

Lower bound for n = 2: For n = 2 consider the following example: Let
m = 4.

d1(1) = d1(3) = d2(2) = d2(4) = 1
2 − ε,

d1(2) = d1(4) = d2(1) = d2(3) = ε.
A proportional allocation has to give both agents two pieces with each

agent receiving 1
2 giving a total disutility of 1. There is however a nonpropor-

tional allocation that gives agent 1 pieces 2, 3 and 4 yielding disutility 1
2 + ϵ

and agent 2 piece 1 yielding disutility ϵ giving a total disutility of 1
2 + 2ϵ. For

small enough ϵ the price of fairness is arbitrarily close to 2.

Theorem 54. The egalitarian price of proportionality for contiguous allocations of
indivisible chores is 1.

Proof. If a proportional contiguous allocation exists, it follows that the opti-
mal contiguous allocation is also proportional.

This can be shown via contraposition. If the optimal contiguous allocation
is not proportional, it follows that the egalitarian social cost of any allocation
is more than 1

n . Then a proportional allocation does not exist.
This means that the best proportional contiguous allocation and the opti-

mal contiguous allocation are the same and the price of proportionality is 1.
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6.5 The price of equitability

We now turn to the price of equitability. The results differ when n = 2 com-
pared to n > 2.

Theorem 55. The utilitarian price of equitability for contiguous allocations of indi-
visible chores is 2 for n = 2 and unbounded for n > 2.

Proof. We consider two cases n = 2 and n > 2.

Case 1: n = 2 In an equitable contiguous allocation with minimum utilitar-
ian social cost, both agents have disutility x ≤ 1

2 , otherwise they can switch
their bundles. Assume without loss of generality that the first agent gets the
leftmost chore in this optimal equitable allocation.

Consider an arbitrary allocation. If the first agent gets the leftmost chore,
at least one of the agents gets at least disutility x, because at least one of the
agents gets a block that is at least as big as the block he gets in the equitable
optimal allocation. On the other hand, if the second agent gets the leftmost
chore, at least one of the agents gets at least disutility 1 − x ≥ x.

Therefore, the egalitarian social cost of any contiguous allocation is at
least x. The ratio of the equitable contiguous allocation with minimum utili-
tarian social cost to the contiguous allocation with minimum utilitarian social
cost is then at most 2x/x = 2.

The following example shows that the bound is tight. Let m = 4 and
d1(1) = d1(3) = d2(2) = d2(4) = 1

2 and di(j) = 0 otherwise. The minimum
utilitarian social cost of a contiguous allocation is 1

2 (e.g., by giving piece 1
to player 2 and the other pieces to player 1), whereas that of an equitable
contiguous allocation is 1, as both players must receive the same valuation.

Case 2: n > 2 Let m = n.
The disutilities are assigned as follows: di(i) = 1 − ε. The remaining

disutilities are chosen such that

• the remaining disutilities sum up to ε for each agent.

• the remaining disutilities are all pairwise distinct.

• d1(2) + d2(3)... + dn−2(n − 1) + dn−1(n) + dn(1) = ε



1 − ε d1(2) . . . . . . d1(n)

d2(1) 1 − ε
...

... . . . ...

... 1 − ε dn−1(n)
dn(1) . . . . . . dn(n − 1) 1 − ε


There exists an allocation with disutility ε (We assign chore i + 1 mod n to

player i). Thus the utilitarian social cost of the optimal contiguous allocation
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is at most ε. The only possible equitable allocation is to assign 1 − ε to every
agent, giving the utilitarian social cost n − nε.

As ε goes to 0, the utilitarian social cost of the equitable allocation ap-
proaches n, while the utilitarian social cost of the optimal allocation approaches
0. Therefore, the price of equitability becomes arbitrarily large as ε approaches
0.

Theorem 56. The egalitarian price of equitability for contiguous allocations of in-
divisible chores is 1 for n = 2 and unbounded for n > 2.

Proof. We again consider n = 2 and n > 2.

Case 1: n = 2 Similarly to Theorem 55, the following holds. In an equitable
contiguous allocation with minimum egalitarian social cost, both agents have
utility x ≤ 1

2 , otherwise they can switch their bundles. Assume without
loss of generality that the first agent gets the leftmost chore in this optimal
allocation. Consider any contiguous allocation. If the first agent gets the
leftmost chore, at least one of the agents gets at least disutility x, because at
least one of the agents gets a block that is at least as big as the block he gets in
the optimal equitable allocation. On the other hand, if the second agent gets
the leftmost chore, at least one of the agents gets at least disutility 1 − x ≥ x.
Therefore, the egalitarian social cost of any contiguous allocation is at least x.
This means the equitable contiguous allocation is optimal for the egalitarian
social cost, so the price of equitability is 1.

Case 2: n > 2 We consider the same example as in Theorem 55. In this
case the egalitarian social cost of the (only) equitable contiguous allocation is
1
n − ε. The optimal contiguous allocation has egalitarian social cost less than
ε. Thus as ε approaches 0, the price of equitability becomes arbitrarily high.

6.6 The price of envy-freeness

Finally we consider the price of envy-freeness. Since for n = 2 envy-freeness
is equivalent to proportionality, we only give results for n > 2.

Theorem 57. The price of envy-freeness for contiguous allocations of indivisible
chores is unbounded for both utilitarian and egalitarian social cost for n > 2.

Proof. Let 0 < ε < 1
2(n−1)2 and m = (n − 1)2 + 1. First consider a situation

with (n − 1)2 pieces. We divide the chores into n − 1 groups of n − 1 pieces
each, and each group contains one piece for every player {1, ..., n − 1}. The
first piece of the first group is associated with player 1, the second with player
2 and so on, until the last piece of the first group is associated with player n−
1. The pieces of the second group are then associated with players 2, 3, ..., n −
1, 1 (in this order). Generally, the pieces of the i-th group are associated with
players i, i + 1, ..., n − 1, 1, ..., i − 1.
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We call the first piece of each group a “Type A”-piece and the other pieces
“Type B”-pieces. Every player values the only “type A”-piece associated with
her as 1− (n− 2)ε and the “Type B”-pieces associated with her as ε. All other
valuations are 0.

We now divide the very last piece with index (n − 1)2 and replace it with
2 pieces, dividing the disutilities evenly between them. This means that the
player that this piece is associated with (player n − 2) values these pieces as
ε
2 and the other players value them as 0. Finally player n values every piece
but the last two as 1

(n−1)2 . The last two are valued as 1
2(n−1)2 .

Consider the following contiguous allocation, which allocates pieces 1 to
n − 2 to player n − 1 and the pieces i(n − 1) to i(n − 1) + (n − 2) to player i
for i = 1, ..., n − 2. This leaves pieces (n − 1)2 and (n − 1)2 + 1 which are also
given to player n − 2. In this allocation only player n − 2 receives disutility
ε, giving a utilitarian and egalitarian social cost of ε.

FIGURE 6.1: Example with n = 4. The numbers above the
pieces indicate the players associated with these pieces; all
other players (except player n) have valuation 0 for these pieces.
The valuation for player n (here 4) for all pieces is identical
(apart from the last two items) and is indicated by the dot-
ted line. Below the pieces are the optimal and the best possi-
ble envy-free allocation. The numbers above the lines indicate
players, and the numbers below the lines indicate their valua-
tion for their assigned block. (Player n receives nothing in the

optimal allocation.)

We now show that this allocation is optimal by first proving the following
lemma.

Lemma 58. For the instance described above, there is no contiguous allocation where
all players have disutility 0.

Proof. Assume there is such an allocation. Clearly, player n does not receive
any chore in this allocation, as it has nonzero disutility for every chore. This
means that the allocation assigns all pieces to the first n − 1 players with
disutility 0 for each player.

Starting from piece 1, there is no player who can cover all of group 1
while getting disutility 0, because group 1 contains a piece for which this
player receives disutility more than 0. We can only assign the pieces up to
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the first disliked piece for the player. Choose any player and assign as many
pieces as possible to her, starting from piece 1.

Next, we have to assign pieces starting from the first disliked piece of
the player that we have previously assigned pieces to. Again there is no
player who can cover all of group 2 while getting disutility 0, because group
2 contains a disliked piece for that player. Repeating this argument for all
n − 1 groups, it follows that the pieces starting from the last disliked piece
of the last player that got pieces assigned to her stay unassigned. This is a
contradiction, as all pieces must be assigned. This proves Lemma 58.

If we assign any piece to player n we get at least disutility 1
2(n−1)2 > ε.

The only other possibility to achieve social cost less than ε is to assign one
of the last two pieces to player n − 2 and try to cover all the groups with the
remaining players. Using similar argumentation to the proof of Lemma 58,
we can show that there is no allocation that assigns only one of the last two
pieces to player n − 2 and also covers the rest of the pieces with disutility 0.

Case 1: player n − 2 gets the last piece. Again we try to cover the groups
from left to right with the remaining n − 2 players. (Since player n does not
receive anything.) We can only cover the pieces up the second last disliked
piece in group n − 2 of the last player that we assign pieces to, leaving unas-
signed pieces in group n − 2 and n − 1.

Case 2: We assign pieces (n − 3)(n − 1) + 2 (second piece in group n − 2)
to (n − 1)2 to player n − 2. (This consists of the second last piece and all
contiguous pieces before that for which player n − 2 has disutility 0.)

We then need to assign the last piece to another player, leaving us in a
situation in which we have to cover groups 1 to n − 3 with n − 3 players.
Since every player can cover each group only up to her disliked piece we
have unassigned pieces in group n − 3 remaining.

Hence, the given allocation with egalitarian and utilitarian social cost ε is
optimal. The optimal allocation is however not envy-free since player n − 2
envies player n, because the empty piece is preferred by every player.

Lemma 58 states that it is impossible to divide the chores between the
first n− 1 players without giving player n a piece and without giving anyone
disutility. To achieve an envy-free contiguous allocation we therefore have to
give player n a piece. The smallest piece we can give player n is the last piece,
valued as 1

2(n−1)2 .
Therefore to get the optimal contiguous allocation which is also envy-free,

we start with the optimal allocation and give player n the last piece instead
of player n − 2. (This is the smallest possible change to the optimal allocation
that yields envy-freeness. Thus the resulting allocation is the optimal envy-
free allocation.) Player n− 2 does not envy n, since he values both allocations
as ε

2 . The other players’ allocations each contain at least one piece that player
n − 2 dislikes, therefore she also does not envy them.
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Player n envies no one, because she got the piece she dislikes the least
allocated to her, while all other players also have at least one piece player n
dislikes allocated to them. The other players get disutility 0, therefore they
do not envy anyone. The best contiguous envy-free allocation then achieves
utilitarian social cost ε

2 +
1

2(n−1)2 and egalitarian social cost 1
2(n−1)2 .

In conclusion, we have a utilitarian price of envy-freeness 1
2 +

1
2(n−1)2ε

and

egalitarian price of envy-freeness 1
2(n−1)2ε

. As ε goes to 0, these values grow
without bound.
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Chapter 7

Discussion and open problems

In this thesis we explored a variety of topics in the realm of offline and online
scheduling as well as allocation of chores. We now summarize our most im-
portant results and pose some open questions that hopefully inspire further
research.

We begin with the buffer management problem with conflicts presented
in chapter 3. Our results on the line graph are depicted in the following table
and include tight or almost tight bound for small line segments. In particular,
the introduction of the flow model allows for tight results on the path with 5
machines.

Number of machines 2 3 4 5 m > 5
Lower bound 3/2 [33] 2 [33] 9/4 16/7 12/5
Upper bound 3/2 [33] 2 [33] 9/4 5/2 m/2 + 1/4
Lower bound flow 1 1 4/3 3/2 3/2
Upper bound flow 1 1 4/3 3/2 m/2 − 2/3

The situation is much different when considering m machines where we
slightly improve the lower bound from 2 to 12/5 but still have a very big
gap between the constant lower bound and linear upper bound. This leads
to perhaps the most interesting open question of this thesis:

• What is the competitive ratio of the buffer management problem on the
path with m machines?

In chapter 4, we provide linear lower bounds to a variety of algorithms
for the buffer management problem. Nevertheless, there are still plenty of
algorithms that can be tried and we hope to eventually find an algorithm
with a sublinear competitive ratio.

We also consider a few results on graphs that are more general than the
line graph. The first of these results is a linear competitive algorithm that
works on bipartite graphs. We then discuss a 1

ε + 2 + χ-competitive algo-
rithm that works on any graph and uses machines of speed 1 + χε.

Finally, we examine a relaxation of the problem where the algorithm is
allowed to freely share processing power, i.e. two adjacent machines may
run at a combined speed of 1. In this context we find a 1

ε + 1-competitive
algorithm with machines working at speed 1 + 2ε. This result also holds on
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the line graph, since this type of processor sharing is already possible on
these graphs.

It would be interesting to find good algorithms for even more classes of
graphs. A good starting point might be cycles with an odd number of ma-
chines.

• Is there a linear-competitive algorithm for cycles with an odd number
of machines?

In the discrete bamboo garden trimming problem presented in chapter 5
we find a 10/7-approximation algorithm that is based on a reduction to the
pinwheel problem. This result can be improved to a 7/5-approximation after
going through an extensive case analysis. Here we are of course interested
in finding the true value for the approximation ratio of the problem. We con-
jecture that it should be possible to reach an approximation ratio arbitrarily
close to 4/3 but new ideas will be required to work around the large case
analysis. Additionally, resolving the 5/6-conjecture for pinwheel would also
directly improve our algorithm.

• Can we further improve the approximation ratio for discrete BGT?

• Can we resolve the 5/6-conjecture for pinwheel?

In the continuous version of the problem we show that the deadline-
driven strategy is a (2 +

√
3)-approximation on the star graph and a (5 +√

21)-approximation on a star graph with multiple plants. Additionally, the
algorithm Reduce-fastest(2R + 2Dhmax) is a 6-approximation. It would be
interesting to answer the following questions:

• What is the approximation ratio of reduce-max on the star?

• Can we extend these results to larger classes of graphs such as tree
graphs?

For the problem of allocating goods or chores on the line presented in
chapter 6, prices of fairness have previously been considered for indivisible
as well as divisible goods and additionally divisible chores.

We fill a gap in the literature by providing the prices of fairness for indi-
visible chores and all of these results are presented in the table below.
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Chores indivisible (this work) divisible [57]
utilitarian egalitarian utilitarian egali-

tarian
lower upper

proportionality n 1 n
2 n 1

equitability ∞ n 1
envy-freeness ∞ ∞
Goods/Cakes indivisible [108] divisible [4]

utilitarian egali- utilitarian egali-
tarian tarian

lower upper lower upper
proportionality n − 1 + 1

n 1
√

n
2

⌊
√

n⌋
2 + 1 − o(1) 1

equitability ∞ n − 1 + 1
n n 1

envy-freeness ⌊
√

n⌋
2

⌊
√

n⌋
2 + 1 − o(1) n

2

√
n

2
⌊
√

n⌋
2 + 1 − o(1) n

2

Besides the prices of fairness we also consider the existence of approxi-
mate versions of the notions of fairness and here we find an interesting ques-
tion that is still open.

• Is there an efficient algorithm that computes a dmax-equitable allocation
with a good welfare guarantee?

This question has also been asked in the context of goods. We can always
transform an optimal allocation into a dmax-equitable one, but this does not
lead to a constructive algorithm.
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Appendix A

Tables for discrete BGT

Case 3, 4, p∗3 ≥ 5 with schedule 1020:

p∗ p h h/p DA
5 7 3 0.429 0.417
6 8 4 0.5
7 10 5 0.5
8 11 5 0.45
9 12 6 0.5

10 14 7 0.5
11 15 7 0.47
12 17 8 0.47

Case 4, 4 with schedule 10200

p∗ p h h/p DA
4 5 3 0.6 0.5
5 7 4 0.57
6 8 4 0.5
7 10 6 0.6
8 11 6 0.54
9 12 7 0.58
10 14 8 0.57
11 15 9 0.6

Case 4, 4, 4 with schedule 12300

p∗ p h h/p DA
4 5 2 0.4 0.25
5 7 2 0.28
6 8 2 0.25
7 10 4 0.4
8 11 4 0.36
9 12 4 0.33
10 14 5 0.36
11 15 6 0.4
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Case 4, 5 with schedule 10200

p∗ p h h/p DA
9 12 7 0.5833333333 0.55
10 14 8 0.5714285714
11 15 9 0.6
12 17 10 0.5882352941
13 18 10 0.5555555556
14 20 12 0.6
15 21 12 0.5714285714
16 22 13 0.5909090909

Case 4, 5, 6 with schedule 31002 01300
21003 01200

p∗ p h h/p DA
7 10 5 0.5 0.38
8 11 5 0.45
9 12 5 0.42
10 14 6 0.43
11 15 7 0.47
12 17 8 0.47
13 18 8 0.44
14 20 10 0.5
15 21 10 0.48
16 22 10 0.45
17 24 11 0.45
18 25 12 0.48

19 27 13 0.48
20 28 13 0.46
21 30 15 0.5

Case 4, 5, 8 with schedule 21030 01200
01032 01000

p∗ p h h/p DA
7 10 5 0.5 0.425
8 11 5 0.45
9 12 6 0.5
10 14 7 0.5
11 15 7 0.47
12 17 8 0.47
13 18 9 0.5
14 20 11 0.55
15 21 11 0.52
16 22 11 0.5
17 24 12 0.5
18 25 13 0.52
19 27 14 0.525
20 28 14 0.5
21 30 16 0.53

Case 4, 6 with schedule 21000 01020
01000

p∗ p h h/p DA
9 12 7 0.58 0.583
10 14 9 0.64
11 15 10 0.67
12 17 10 0.59
13 18 11 0.61
14 20 13 0.65
15 21 13 0.62
16 22 14 0.64
17 24 15 0.63
18 25 16 0,64
19 27 17 0.63
20 28 18 0.64
21 30 20 0.67
22 31 20 0.65
23 32 20 0.63
24 34 22 0.65
25 35 23 0.66
26 37 24 0.65
27 38 25 0.66
28 40 26 0.65
29 41 26 0.63
30 42 27 0.649
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Case 4, 6, 8 with schedule 21003 01020
01003 21000 01023 01000

p∗ p h h/p DA
9 12 6 0.5 0.458
10 14 7 0.5
11 15 8 0.53
12 17 8 0.47
13 18 9 0.5
14 20 11 0.55
15 21 11 0.52
16 22 12 0.55
17 24 12 0.5
18 25 13 0.52
19 27 14 0.52
20 28 15 0.54
21 30 17 0.57
22 31 17 0.55
23 32 17 0.53
24 34 18 0.53
25 35 19 0.54
26 37 20 0.54
27 38 21 0.55
28 40 22 0.55
29 41 22 0.53
30 42 23 0.546

Case 4, 6, 8, 8 with schedule 21003
01024 01003 21004 01023 01004

p∗ p h h/p DA
4 5 2 0.4 0.333
5 7 3 0.43
6 8 3 0.375
7 10 4 0.4
8 11 4 0.36
9 12 5 0.42
10 14 6 0.43
11 15 7 0.47
12 17 7 0.41
13 18 7 0.39
14 20 9 0.45
15 21 9 0.43
16 22 10 0.45
17 24 10 0.42
18 25 11 0.44
19 27 12 0.44
20 28 12 0.43
21 30 14 0.47
22 31 14 0.45
23 32 14 0.44
24 34 15 0.44
25 35 16 0.46

Case 4, 8 with schedule 10200 10000

p∗ p h h/p DA
6 8 5 0.625 0.625
7 10 7 0.7
8 11 7 0.64
9 12 8 0.67
10 14 9 0.64
11 15 10 0.67
12 17 11 0.65
13 18 12 0.67
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Appendix B

A case verification program for
discrete BGT

In this section we give an overview over the program used in the proof of the
7
5 -approximation for discrete BGT, beginning with the input.

#include <iostream >
#include <math.h>
#include <list >
#include <vector >
#include <string >
using namespace std;

//INPUT:
//

float factor = 7.0 / 5.0;
int periodarray [] = { 3,7,7 };
string schedulestring = "1020␣1030";

//
// ///////////////////////

After the input section there are two assisting functions. The first one tests
the validity of a schedule and the second converts the schedule from a string
into a vector.

void testschedule(vector <int > schedulevector , vector <
int > periodvector){

vector <int > dists;
for (int j = 0; j < periodvector.size(); j++)

{
dists.push_back (0);
float f = factor*periodvector[j];
periodvector[j] = floorf(f);

}
int counter = 0;
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for (int i = 0; i < 2 * schedulevector.size();
i++) { //We go through the schedule

twice and measure the distance inbetween
occurences of each period

for (int j = 0; j < periodvector.size
(); j++) {

dists[j]++;
if (schedulevector[counter] ==

j+1) {
dists[j] = 0;

}
if (dists[j] >= periodvector[j

]) {
cout << "Invalid␣

schedule!" << j <<
"␣";

cin.get();
}

}
counter = counter +1;
counter = counter % schedulevector.

size();
}

}

void convert(vector <int > * emptyvector) {
for (int i = 0; i < schedulestring.length (); i

++) {
if (schedulestring[i] != ’␣’) {

emptyvector ->push_back(stoi(
schedulestring.substr(i, 1)
));

}
}

}

The next function determines the minimum number of holes in p consec-
utive positions in the schedule, i.e determines h for a given p.

int countholes(vector <int > schedulevector , int p) {
// Determine the overall number of holes in the

schedule
int overallholes = 0;
for (int i = 0; i < schedulevector.size(); i

++) {
if (schedulevector[i] == 0) {

overallholes ++;
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}
}
int c = p / schedulevector.size();
int d = p % schedulevector.size();
//p=c*schedulesize+d
// Determine the minimum number of holes in d

consecutive positions
int start = 0;
int min = schedulevector.size();
while (start < schedulevector.size()) {

int holesinsection = 0;
int counter = start;
for (int i = 0; i < d; i++) {

counter = counter +1;
counter = counter %

schedulevector.size();
if (schedulevector[counter] ==

0) {
holesinsection ++;

}
}
if (holesinsection < min) {

min = holesinsection;
}
start ++;

}
return c*overallholes+min;

}

In the main part we iterate over p∗, trying to find a sufficiently large set
of consecutive periods where h

p ≥ Da holds.

int main() {
// Converting the input into vectors
vector <int > schedulevector;
convert (& schedulevector);
vector <int > periodvector(std:: begin(

periodarray), std::end(periodarray));

//Is this schedule valid?
testschedule(schedulevector , periodvector);

// Calculate D_A
float DA = 1.0;
for (int i = 0; i < periodvector.size(); i++)

{
DA = DA - 1.0 / periodvector[i];
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}
cout << "DA␣" << DA << "␣";
cin.get();

// Determine a suitable amount of iterations
and check h/p \geq D_A for these periods

int iterations = schedulevector.size() * 5 +
100;

int pstar = 0;
for (int i = 1; i < iterations; i++) {

float f = factor*i;
int p = floorf(f);
int h = countholes(schedulevector , p);
float temp = h;
temp = temp / p;
temp = temp - DA;
if (temp < 0) {

pstar = i;
}
cout << "Iteration:␣" << i << endl;

}
cout << "Result:␣p*␣ >=␣" << pstar +1;
cin.get();

}
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