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Abstract

Image clustering is one of the most important task of unsupervised learning in the area of
computer vision. Deep learning approaches allow models to be trained on large datasets. In
this thesis, image clustering objectives in the context of Triplet Loss induced embedding
space are evaluated. Specifically, a simplification of the well-known Triplet Loss is proposed
for learning an embedding space from data. This proposed loss function is designed for the
Minimum Cost Multicut Problem. Furthermore, we highlight one key aspect of the Minimum
Cost Multicut Problem in terms of scalability and propose a novel approach to overcome
this issue. We show empirically, that the proposed algorithm achieves a significant speedup
while preserving the clustering accuracy at the same time. The algorithm is able to cluster a
dataset with approximately 100.000 images in under one minute using 40 computing threads,
where the embedding space is trained with the simplified Triplet Loss. We then apply our
proposed loss function on multiple person tracking problems. This problem is treated as a
clustering problems on an imbalanced dataset, where each individual, unique person from the
scene is considered as one cluster. We compare the tracking performance from two different
approaches: the proposed Triplet Loss and an AutoEncoder architecture with reconstruction
loss. Experiments show the effectiveness of the clustering task on a tracking application.
Finally, we provide an empirical study on embedding space, trained on classification models.
Various state-of-the-art models are evaluated against image corruptions. Our key finding
suggests to utilize clustering as a predictor for model robustness.



xii

Das Clustering von Bildern ist eine der wichtigsten Aufgaben des unüberwachten Lernens
im Bereich der Computer Vision. Deep-Learning-Ansätze ermöglichen das Trainieren von
Modellen auf großen Datensätzen. In dieser Arbeit werden die Ziele der Bildclusterung im
Kontext des Triplet Loss induzierten Einbettungsraums bewertet. Insbesondere wird eine
Vereinfachung des bekannten Triplet Loss für das Lernen eines Einbettungsraums aus Daten
vorgeschlagen. Diese vorgeschlagene Verlustfunktion ist für das Minimum Cost Multicut
Problem konzipiert. Darüber hinaus heben wir einen Schlüsselaspekt des Minimum Cost
Multicut Problems in Bezug auf die Skalierbarkeit hervor und schlagen einen neuen Ansatz
vor, um dieses Problem zu überwinden. Wir zeigen empirisch, dass der vorgeschlagene
Algorithmus eine signifikante Beschleunigung bei gleichzeitiger Beibehaltung der Clustering-
Genauigkeit erreicht. Der Algorithmus ist in der Lage, einen Datensatz mit ca. 100.000
Bildern in weniger als einer Minute zu clustern, wobei 40 Threads zum Einsatz kommen
und der Einbettungsraum mit dem vereinfachten Triplet Loss trainiert wird. Anschließend
wenden wir die von uns vorgeschlagene Verlustfunktion auf das Problem der Verfolgung
mehrerer Personen an. Dieses Problem wird als ein Clustering-Problem auf einem unausge-
wogenen Datensatz behandelt, wobei jede einzelne, einzigartige Person aus der Szene als
ein Cluster betrachtet wird. Wir vergleichen die Verfolgungsleistung von zwei verschiede-
nen Ansätzen: den vorgeschlagenen Triplet Loss und eine AutoEncoder-Architektur mit
Rekonstruktionsverlust. Experimente zeigen die Effektivität der Clustering-Aufgabe in einer
Tracking-Anwendung. Schließlich bieten wir eine empirische Studie zum Einbettungsraum,
die auf Klassifizierungsmodellen trainiert wurde. Verschiedene Modelle auf dem neuesten
Stand der Technik werden anhand von Bildverfälschungen bewertet. Unsere wichtigste
Erkenntnis ist, dass Clustering als Prädiktor für die Robustheit des Modells verwendet
werden sollte.
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Chapter 1

Introduction

Computer vision allows the computer to understand visual representation of the real-world.
While we humans have an incredible skill to detect and recognize known objects, a computer
uses a set of algorithms in an attempt to solve the similar task. Our retina works similar to
an active pixel sensor: it receives light signals and processes it. However, seeing an object
through stimuli on our retina is one thing. Understanding the scenery is yet another challenge,
particularly for a computer. The main difference between computers and humans in terms of
image processing layers is our brain: while scientists have some hints regarding the function-
ality of the different areas of our brain, the exact way how it works still remains unanswered.
On the other hand, computers formulate vision tasks as mathematical functions in order to
represent real world problems and solving these equations enables the computer to perceive
the real world through sensors. The objective of computer scientists is to develop a set of
algorithms in order to solve these vision tasks. Image data are considered as unstructured
data, where each pixel are represented as numerical values. When pixels are aligned in a
certain order, it becomes visual features. Humans can recognize such features effortlessly
while computers have very hard time to do the same task. Figure 1.1 illustrates the challenge
for computers vision to detect known objects. In a), the array of numbers represents the
pixel values, which represents a heart shape (b). The size of the image is 7x7 pixels in width
and height and the heart covers the whole image. A high resolution image is displayed in
c). Consider the following visual task: detection of the heart-shape as shown in c) on the
high resolution image c). Humans can immediately recognize the visual feature (e.g. edges
around heart-shape or color) while computer scientists have to design a way to find the target
object. A very primitive way would be to scan through the whole image to find the pattern by
matching the arrays. Despite the simplicity of such algorithm, it is inefficient and most likely
ineffective due to transformations such as rotation (as shown in c) red).



2 Introduction

Fig. 1.1 Representation of an image in a computer.

An image is represented as an array of numbers (a). Each value correspond to a pixel, which
forms the content (b) through the correct alignment. Humans have incredible capability to
detect and recognize known objects on images (c) despite the rotation or translation of the
target object. A simple pixel-by-pixel matching approach may fail to detect the heart-shapes
in c).

With the introduction of convolutional neural network (CNN) [100] in the late 20th
century, many solutions for computer vision tasks today are fundamentally based on the
same principle: the visual features are extracted by applying a large number of filters on
images. Such process is called convolution and the learned visual features can be invariant
to any sort of rotation or translation of objects on an image. The main advantage of such
algorithms are the fact that they follow a black-box strategy, where the applied filters are
learned automatically based on the specific training dataset and target function (details are
provided in the in section 1.2.1). Another big advantage is the fact that the process of
convolutions can be highly parallelized on a modern graphical processing unit (GPU), which
makes the learning and inference highly efficient. As the hardware improves over the last few
years, algorithms are proposed by the vision community and their claimed results consistently
beat the state-of-the-art (SOTA) performance on visual tasks 1.

1https://paperswithcode.com/sota/image-classification-on-imagenet

https://paperswithcode.com/sota/image-classification-on-imagenet
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The key challenge is to define the clear (mathematical) objective for the vision task and
gather the required data for the given problem. Often, data for approximating real-world
problems through such mathematical functions are insufficient, which leads to poor ability
to generalize. For instance the company Tesla 2 utilizes real time data from more than one
million vehicles to develop a full self-driving algorithm based on computer vision only. Yet,
full self-driving task still remains subject to future research.

In general, computer vision task can be categorized in four major fields: (1) image
classification, (2) object detection, (3) image segmentation and (4) image generation as
shown in Figure 1.2. These problems are mostly solved by supervised training and has
been studied over last few decades. Various benchmark datasets [34, 25, 134, 99] have been
proposed for specific tasks in order to evaluate the performance of the models. Recently,
additional benchmark datasets [52, 54] have been proposed to specific target robustness of
image classification models. Despite the recent success of transformer models [123, 32] on
computer vision tasks, CNNs are still more suitable for real-world applications due to its
efficiency in learning.

Fig. 1.2 Four Tasks of Computer Vision.

2https://www.tesla.com/AI

https://www.tesla.com/AI


4 Introduction

1.1 Motivation

The recent success of deep learning methods (e.g. based on CNNs) are mostly driven
by supervised learning methods: large number of label data are utilized in order to train
the models for the specific tasks such as image classification or segmentation. However,
benchmark datasets such as ImageNet [134] or MOT16 [115] often do not reflect the actual
claimed results. This mismatch is caused by a mix of hypothesis bias and overfit in test
dataset. For instance authors in [130] showed a significant generalization gap in classification
performance when re-evaluation existing models on a new dataset. Apart from the benchmark
datasets, real-world tasks often require additional new sets of data with labels for the specific
target scenario in order to perform well for the specific task. In practices, one would first
utilize a pre-trained model based on a large dataset, such as ImageNet, and then fine-tune
the task to the specific scenario with a smaller dataset. Nevertheless, depending on the
complexity of the task, the need for labeled data is inevitable and collecting such data can be
time-consuming.

In contrast, unsupervised methods do not require label data. Such approach automatically
finds pattern or visual features that are important for further processing, such as classification.
One of the most important task of unsupervised learning is clustering of data: without
any given label data, it finds structure or natural groups in the given dataset. For instance,
K-Means iteratively clusters data based on some distance measure, which can be based on
some features. It assumes data points to be around its center. Many deep learning approaches
have been proposed in the past [164, 41, 118, 47] that is based on CNNs. Often, traditional
clustering methods such as K-Means are incorporated [35, 14] as well.

On the other hand, the graph-based approach Minimum Cost Multicut Problem [85, 149,
78] has also shown promising results for clustering problems. In this particular approach, data
are treated as nodes in a graph and distance measures between two nodes are required. Such
metric can be for instance the Euclidean distance. The key challenge here is to find the right
distance or similarity measure between two data points. Weak supervision can then be utilized
in this approach, which is a good compromise between fully supervised and unsupervised
learning, especially when there are very few labels available. A classic approach of such
weak-supervised learning is the Triplet Loss function, where label information about the
data are only available on a higher level (such as triplets). It is also called Metric Learning:
an embedding space (or feature vector) is learned as opposed to [164, 14], where a specific
size of output is defined and a softmax layer is required to categorize the output. Such
embedding space can either be trained from scratch or fine-tuned via pre-trained models.
Nevertheless, the distance metric is constructed task-specific and can be used for various
tasks such clustering or nearest-neighbour classification [136].
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1.2 Fundamentals

This section provides an introduction to deep neural network as well as an overview of the
deep learning and how a model is trained by optimizing mathematical functions.

1.2.1 Deep Neural Network

Deep Neural Network (DNN) describes a set of algorithms that utilizes large amount of
unstructured data in order to learn a target function by optimizing a loss function. Unlike
traditional machine learning methods such as linear regression or K-Means, it often does
not require sophisticated pre-processing of data. This is especially interesting in the area of
computer vision, where input data are directly treated as input signals for the model. The
structure of neural networks is inspired by our biological system, where nodes are intercon-
nected and electronic signals are sent between nodes, which makes large and distributed
communication possible. From the mathematical point of view, the input signals are mapped
to another signal (e.g. label data) via a non-linear function f . Figure 1.3 depicts a biological
neuron and mathematical model with f . The biological neuron (a) consists of dendrites, cell
body and axon. Similarly, a neuron from a deep network (b) also consists of input xn, the
weight wn and output y. Information is feedforwarded via the dot product:

y =
n

∑
i

xi ·wi (1.1)

In practice, an additional real value b is added to y before it it is passed to a non-linear
function f :

y = f (
n

∑
i

xi ·wi +b) (1.2)

The additional parameter b is called bias and f the activation function, respectively.
By passing the weighed sum y into a non-linear activation function f , the model is able to
map data into a complex, non-linear separable space through training. Figure 1.4 shows a
dataset, that is non-linear separable. The color circles are data from different classes in a
two-dimensional space. A logistic regression model fails to separate the data (a), while a
neural network successfully perform the separation of the data (b).
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Fig. 1.3 Neural Network inspired by Biological Systems.

Deep Neural Network (b) is inspired by our biological system (a). Dendrites receive message
and information are processed in the cell body. Electric signals are then transmitted via the
axons.

Activation Functions Three most popular non-linear activation functions are Sigmoid-,
Tanh- or Rectified Linear Unit-function (ReLU). While the activation function converts the
weighed sum of the input (Equation 1.2), the choice of function determines the range of the
output values:

• Sigmoid-function: y ∈ [0,1]

• Tanh-function: y ∈ [−1,1]

• ReLU-function: y ∈ [0,∞]

Consequently, the choice of activation functions also affects the trainability (e.g. time,
until it reaches convergence) of the neural network: in order to actually learn from data, the
weights wn inside a neural network have to be adjusted iteratively in a way, that the model
outputs the desired value given the input data. Figure 1.5 illustrates the three activation
functions.
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Fig. 1.4 Non-Linearity in Data.

An attempt to separate data of a non-linear separable dataset with two dimensions (x0 and x1)
via logistic regression (a) and neural network (b).

Loss Functions In order to be able to adjust the weights, data are first feedforwarded across
multiple layers. At the last layer, the expected value is compared with the actual output of
the network and the degree of correctness is defined by the loss-function. For instance, if the
loss value of the neural network outputs zero, it is performing the task perfectly based on
the given data. In practice, a perfectly trained model (e.g. loss = 0) is never achieved and
the learning is often stopped at a certain iteration or if the loss value converges to a value
(minima). Choosing the right loss function is crucial and is often depending on the specific
objective. For instance, Cross Entropy Loss is most often chosen in a classification task,
where the number of predicted class is known. Regression tasks often utilizes Mean Squared
Error Loss (MSE) or Mean Absolute Error Loss (MAE). On the other hand, metric learning
(details in Chapter 2.1) optimizes the distance between data points in a high dimensional
space (called embedding space or latent space): instead of comparing the output label, as
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Fig. 1.5 Activation Functions.

Three most popular activation functions used in deep neural neutwork, enabling non-linearity.

done for instance in Cross Entropy Loss, multi-dimensional vectors are being compared.
Popular loss functions are Contrastive Loss or Triplet Loss.

Backpropagation Data inside the hidden layers have no chance to know, if the current
representation is fitting the data or not until it reaches the last output layer. Each hidden layer
therefore rely on the previous layer. Based on the loss function as described previously, the
amount of adjustment is done successively layer by layer. The derivative of the activation
value y points the direction of the adjustments of wn during backpropagation. This explains,
why activation functions are typically differentiable. Finding a good minima in context of
deep neural network has been subject to ongoing research [103, 81, 82].

Hardware acceleration Figure 1.6 shows an example of a neural network with one hidden
layer. All layers and weights are represented as matrices. When feedforwarding input data
xi, the matrices are multiplied by taking the dot product (shown in red). Therefore, each
layer at each point in time only depends on its adjacent matrices (e.g. weights wi) and
thus the dot product for each layer can be computed parallel on different compute threads.
Modern graphical processing units (GPUs) have significantly more threads as opposed to the
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Fig. 1.6 Matrix multiplication for parallelization.

Matrix multiplication allows fast and parallel processing due to the large number of compute
threads.

central processing unit (CPU), which consequently accelerates the training and inference of
neural network models. In practice, GPUs process data several orders of magnitude faster
than CPUs due to highly-parallel computation. Modern deep learning frameworks such as
Tensorflow 3 or Pytorch 4 simplify the process of development of models by integrating the
interface of the hardware (e.g. CUDA) into their framework. Thus, the computationally
expensive operations are not only accelerated by modern GPUs, open-source frameworks
also allow scientists to easily build, train and deploy their models.

3https://www.tensorflow.org/
4https://pytorch.org/

https://www.tensorflow.org/
https://pytorch.org/
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1.2.2 Convolutional Neural Network

Deep neural network with simple matrices as shown in Figure 1.6 are also called Multi-layer
perceptrons (MLP). In computer vision, the input signals are images, which consists of pixels,
for example as shown in Figure 1.1. Yet, representing each pixel value as input on a MLP is
infeasible due to the large number of weights. The number of parameters grows significantly
since each node within the hidden layers are interconnected with another, which are also
called fully connected layers. The large amount of parameters not only makes the training
inefficient, but it is also impossible to fit a large MLP into a modern GPU. Furthermore,
arguably the biggest drawback using fully connected layers only for image processing is the
inability to preserve spatial information, such as rotation or translation.

Convolutional Neural Network (CNN) solves exactly these two problems: 1) reducing
unnecessary training parameters and 2) preserving spatial information. Input data in vision
tasks are 2-dimensional. Hence, features, that are stored as simple numerical values have
in fact dependencies. Unlike MLP, where the pixel values are individually mapped to the
adjacent layers, a CNN uses the convolution operation with kernels. This is shown in
Figure 1.7. Hence, the mapping of pixels are done by considering the surrounding pixels.
Furthermore, the convolution operation is repeated for all pixels using the same kernel.

Fig. 1.7 Convolution Operation.

Apply convolution operation on 2-dimensional input data using a 3x3 kernel in order to
obtain the feature map.
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This way, the spatial dependency is preserved and features that are detected by the kernel
at a specific location within the image can be detected on another location as well since the
weights (e.g. kernel) are shared. The size of the kernel as well as the padding or stride are
parameters, that are defined by the architecture of the model. By stacking multiple kernels
with different settings on different color channels of an image, the convolutional neural
network is able to learn efficiently and effectively visual features. Convolutional layers, that
are close to input layers learn low level features such lines or edges. Increasing the depth
allows the model to learn high level representation ob objects such as round shapes or eyes
of humans. The total number of parameters ultimately depends on the kernel size and the
number of different kernels, which allows flexibility in designing the model’s architecture.
In contrast, the size of a fully connected layer is always fixed to the number of inputs as well
as the hidden layers’ size. Due to the lack of spatial preservation, different weights are often
used for representing the same image feature, which leads to inefficiency. This is shown in
Figure 1.8: the object heart appears on different locations in the image. While the CNN uses
the same filter on both images, the MLP activates different units inside the hidden layers due
to change in input values (marked as red).

Fig. 1.8 Multi-layer Perceptrons vs. Convolutional Neural Network.

Convolutional Neural Network (CNN) preserves spatial information due to weight sharing.
Multi-layer perceptron on the other hand uses same different activations for the same feature,
which is inefficient.
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Pooling Non-linearity is achieved by using non-linear activation. On one hand, the model
is able to map various input data into the function, on the other hand, they are differentiable.
Another important aspect of convolution is the pooling operation. It down samples the data
and provide yet another form of non-linearity at the same time. By down sampling the
feature map within the convolutional neural network, the number of spatial size is decreased.
A low resolution version of the feature map still contains important information. Pooling
increases the location of important information and discard those, that are not relevant. In
fact, pooling allows the learned feature to be invariant to translations. Furthermore, it also
leads to reduction of parameters, which increases the efficiency of the learning process.
Figure 1.9 shows two popular pooling methods used in deep convolutional neural networks:
1) Max-pooling and Average-pooling. The pool size is 2x2, which the output size is reduced
by a factor of 2 in width and height. The different colors illustrate the area, which will
be aggregated. While Max-pooling chooses the largest value of the colored area, Average-
pooling in contrast computes the mean. In practice, pooling operation is performed directly
on the output feature map of each convolution layer. Similar to the convolution operation,
the size of the pooling is a parameter, that is defined by the architecture of the model. After
pooling, the activation is performed, for instance using ReLu.

Fig. 1.9 Pooling Layer.

Two popular pooling operations: Max- and average Pooling. The example shows the
operation on a 6x6 input image with a pooling size of 2x2. The output dimension is halved.
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CNN-Architecture Most CNN models from the literature [94, 174, 70, 51, 145, 172, 73,
153] follows the same structure: several convolutional- and pooling layers with a fixed
number of kernels are stacked together in series. The size of the feature map is successively
reduced, allowing the model learn low-level features at the beginning of the model first. As
the depth of the model increases, high level features are learned from the input data. The last
layer contains a fully connected layer and the features are represented as a vector. Depending
on the vision task, another fully connected layer is added, for instance in classification.
In contrast, metric learning for instance directly uses the feature vector to create a high
dimensional feature space (Chapter 2). Figure 1.10 shows the AlexNet [92] architecture,
which contains convolutional layers, two full connected layer and a classification head.
The model was introduced to solve the ImageNet [134] classification task, which contains
1000 unique classes. The input layer takes an image with a resolution of 224x224 with
three channels for colors. It has in total five convolutional layers and two fully connected
layers as well as the classification head, which outputs the prediction of the class. CNN has
also successfully been applied to many other vision tasks, e.g. image generation [43, 22],
clustering [15], or segmentation [133]. Recently, the focus has been shifted to the search
for the best architectures based on the specific vision task. Different methods has been
proposed [107, 80, 147]. For instance [174] was discovered through neural architecture
search [33].

Fig. 1.10 AlexNet Architecture.

AlexNet [92] architecture for solving image classifcation task on ImageNet [134]. It consists
of five convolutional layers and two fully connected layers. The dimension is successively
reduced while the number of kernels are increased.
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1.3 Theoretical Background

This section presents some theoretical background of several algorithms, that are related to
this thesis. Specifically, an overview of different clustering techniques is presented. These
approaches work well on traditional, structured data as well as on deep visual features.

1.3.1 Similarity Metric

Deep visual features that are learned from data are often represented as a multi-dimensional
vector. Extracting these features requires the images to be passed through the trained model
in order to obtain the vectors. Given an input image xi and a trained model with parameters
θ , the deep visual feature zi of xi is obtained by passing xi through the function function
fθ : X → Z, with fθ (xi) ∈ Rd and d represents the dimension of the feature space. Standard
clustering methods from statistics and data mining can then be utilized to generate clusters.
Methods such as Nearest Neighbour classifier or K-Means rely on proximity of the data
in the high dimensional (latent) space. Most distance metrics compare pairs of variables
(e.g. vectors). Thus the distance between two points in the deep feature space represent the
similarity or dissimilarity of the images. There are various metrics to measure similarities for
clustering methods.

Euclidean Distance:

∥ fθ (xi)− fθ (x j)∥2 =

√√√√ d

∑
k=1

([ fθ (xi)]k − [ fθ (x j)]k)2, (1.3)

Squared Distance:

∥ fθ (xi)− fθ (x j)∥2
2 =

d

∑
k=1

([ fθ (xi)]k − [ fθ (x j)]k)
2, (1.4)

Manhatten Distance:

∥ fθ (xi)− fθ (x j)∥1 =
d

∑
k=1

|[ fθ (xi)]k − [ fθ (x j)]k|, (1.5)

where [ fθ (xi)]k is the k-the element of d-dimensional point fθ (xi).
Choosing the right similarity will affect the clustering result. For instance in metric

learning, the distance is used directly in the optimization function, e.g. with Triplet Loss
(Chapter 2). Figure 1.11 illustrates the difference between Euclidean and Manhatten Distance
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in the two dimensional feature space. The distance between the coordinate (0, 0) and (2, 2) is
greater when measuring with Manhatten distance.

Fig. 1.11 Distance Metrics.

Choosing the right distance metric is essential as it affects the shape of clusters in the feature
space. The example shows the difference between Euclidiean Distance and Manhatten
Distance between point (0, 0) and (2, 2) in a two dimensional space. The latter has a larger
distance.

The usage of distance metric is essential in clustering. Data, that are closed to each other
are more similar than when they are far apart. If the distance is zero, then the two data is
considered as equivalent. In computer vision, deep visual features, that are extracted from
some convolutional neural network often have very high dimension with size d. Furthermore,
the features are represented as numerical floating point due to the non-linear activation
functions, as shown previously. The authors in [1] show that Manhatten distance (L1 norm)
is preferred over Euclidiean distance (L2 norm) for distance based algorithms (such as
K-Means) for data with very high dimensions. This is due to the curse of dimensionality.
Thus they in fact propose a Lk norm with k < 1. However, this for utilizing fractional norm
is later falsified by the authors in [116]. Euclidean distance still remains a popular choice for
similarity measure when comparing deep visual features, for instance it is used in Triplet Loss
for training facial recognition systems [136] or Reconstruction Loss in AutoEncoders [156].
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1.3.2 K-Means Clustering

K-Means Clustering aims to partition a given dataset (e.g. images) into K clusters. This
parameter K is essential and has to be specified in advance. In other words, the assumed
number of clusters is known before the actual clustering. K-Means requires no label and
thus belongs to the family of unsupervised learning methods. The goal of this clustering
algorithm is to minimize the intra-cluster distance by assigning each data point iteratively to
the nearest centroid based on a distance metric, e.g. such as Euclidean Distance (1.3). Given
an image dataset X with a total size of N, each data point (image) xi ∈ X , i ∈ 1, . . . ,N, is
mapped with the function f , with f (xi) being a point with a dimension size of d. The point
is obtained via the function f from a trained convolutional neural network model. K-Means
iteratively assigns each point f (xi) to one specific Cluster ck. This cluster is selected based
on the distance metric between f (xi) and the cluster centroid µk, which is the mean over all
assigned f (xi):

µk =
1
|ck| ∑

xi∈ck

f (xi) (1.6)

Centroid µk is re-calculated once all xi is assigned to a cluster ck. Although it is possible
that the algorithm converges at a very early stage (e.g. no changes in cluster assignment), it is
a good practice to set a maximum number of iterations t, which limits the cluster assignment
process. Thus the complexity of K-Means is O(t ∗N ∗K ∗d). The objective is defined as:

K

∑
k=1

∑
xi∈ck

|| f (xi)−µk||2 (1.7)

Algorithm 1 K-Means Clustering

1: input: number of K clusters, images X , mapping function f
2: randomly initialize K centroids µk
3: while centroid µk has changed for any k ∈ 1, . . . ,K do
4: assign all mapped images f (xi) to nearest µk
5: recompute all µk
6: end while

Despite its efficiency, the main drawback of K-Means is the input parameter K: the number
of expected clusters is often known, especially in real-world problems, where label data is not
available or hard to obtain. Choosing an inappropriate K results in poor performance in terms
of cluster accuracy. Figure 1.12 illustrates the Elbow method for finding the optimal input
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parameter K. The x- and y-axis represents the number of clusters K and the sum of squared
distance between each point to its cluster centroid, respectively. Increasing the number of
clusters will reduce the sum of squared distances of all clusters. If there exists an optimal K
from the dataset, this is often shown as a bend as illustrated in Figure 1.12.

Fig. 1.12 Elbow technique for K-Means.

Elbow technique for finding the best input parameter K. The bend (in red) indicates that K is
most likely to have optimal clusters.

However, finding K using the elbow method on deep visual features may output different
results. Caron et al. [14] use K-Means to cluster ImageNet [28] dataset. Visual features are
first extracted via convolutional neural network. In one experiment, the authors show that the
optimal K is 10.000. However, one would expect the optimal K to be 1.000 since the dataset
contains exactly 1.000 classes. Their method thus suggests an over-clustering of ImageNet
dataset, which may be desired in practice as this means, that the resulting clusters are more
fine-grained. For instance the class label horse can be clustered as white horse and zebras.
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1.3.3 Minimum Cost Multicut Problem

Minimum Cost Multicut Problem, also called Correlational Clustering takes an input graph
and separate the data through cutting its edges. Assuming an undirected graph G = (V,E)
is given, where nodes v ∈ V represent images and edges e ∈ E encode their respective
connectivity. Additionally, a given real valued costs c : E → R is defined on all edges, which
represent the node affinities or similarity. The similarity measure (refer to Section 1.3.1) is
crucial and is calculated in a pairwise manner between all nodes. The goal is to determine
edge labels y : E → {0,1} defining a graph decomposition such that every partition of the
graph corresponds to exactly one class. For instance an edge label of 0 means join of two
nodes while 1 represents a cut, leading to decomposition of the nodes. To infer such an edge
labeling, we can solve instances of the Minimum Cost Multicut Problem with respect to the
graph G and costs c, defined as follows [23, 27]:

min
y∈{0,1}E ∑

e∈E
ceye (1.8)

s.t. ∀C ∈ cycles(G) ∀e ∈C : ye ≤ ∑
e′∈C\{e}

ye′ (1.9)

The objective is to minimize (1.8) with respect to the assigned real valued costs of the
edges and the corresponding cycle inequality constraint in Eq. (1.9). The cycle inequality
constraint ensures that the edge labeling y induces a decomposition of G. In [23], it was
shown to be sufficient to enforce Eq. (1.9) on all chordless cycles. A visualization can be
found in Figure 1.13. Left illustrates an example of a constraint violation while right depicts
an example of satisfied constraint, thus leading to correct decomposition of G. In the example,
a complete graph G with 3 nodes A, B and C is shown. Node A and B belong to the same
class (marked as blue). A single cut violates the constraint 1.9 thus a minimum of two cuts is
required to decompose G.
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Typically, if cut probabilities between pairs of nodes are available, the costs are computed
using the logit function logit(p) = log p

1−p to generate the real valued edge costs. This deci-
sion boundary or threshold τ is learned from the data. Threshold τ represents the decision
boundary for multicuts, which will be explained in detail in section 2.3.3. With these costs
set appropriately, e.g. τ is set correctly, the optimal solution of minimum cost multicut
problems not only yields an optimal cluster assignment but also estimates the number of
clusters automatically. Furthermore, this problem is able to generate small clusters and does
not necessarily provide balanced sized clusters. However, we later show in Chapter 2 that
this highly depends on the distribution of the data points in the learned feature or embedding
space. Threshold τ may still fail to correctly separate the boundaries. In order to overcome
this problem, τ can be derived directly from the optimization function, which is also one key
contribution of this work. This will be discussed in Section 2.3.3.

Fig. 1.13 Visualization of Cycle Constraint.

Visualization of cycle constraint for Minimum Cost Multicut Problem. A graph G with 3
nodes are shown. Left example violates the cycle inequality constraint (Equation 1.9). Right
satisfies due to cut of two edges, which results in separation clusters.
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1.3.4 Minimum Cost Lifted Multicut Problem

An extension with long range edges is called the Minimum Cost Lifted Multicut Problem.
These lifted edges are added as a second set of edges in the graph and thus provide only
additional information. The regular edges remain unchanged and define the possible solutions
to the clustering problem.

For a given, undirected graph G = (V,E) and an additional edge set F ⊆
(V

2

)
\E and any

real valued cost function c : E ∪F → R, the 01 linear program written below is an instance
of the Minimum Cost Lifted Multicut Problem (LMP) w.r.t. G, F and c [84]:

min
y∈YEF

∑
e∈E∪F

ceye (1.10)

with YEF ⊆ {0,1}E∪F the set of all y ∈ {0,1}E∪F with

∀C ∈ cycles(G) ∀e ∈C : ye ≤ ∑
e′∈C\{e}

ye′ (1.11)

∀vw ∈ F ∀P ∈ vw-paths(G) : yvw ≤ ∑
e∈P

ye (1.12)

∀vw ∈ F ∀C ∈ vw-cuts(G) : 1− yvw ≤ ∑
e∈C

(1− ye) (1.13)

The above inequalities Eq. (1.11) make sure that, as before, the resulting edge labeling is
actually inducing a decomposition of G. Eq. (1.12) enforces the same constraints on cycles
involving edges from F , i.e. so called lifted edges, and Eq.(1.13) makes sure that nodes that
are connected via a lifted edge e ∈ F are connected via some path along original edges e′ ∈ E
as well. Thus, this formulation allows for a generalization of the cost function to include
long range information without altering the set of feasible solutions.

Figure 1.14 illustrates an example of the regular and the lifted multicuts. Node A, B,
C and D belongs to the same cluster, however the negative pairs AB and CD results in
separation. Due to the positive pair AD, the regular multicuts (left) results in two clusters, (A,
D) and (B, C), respectively. On the other hand, a lifted edge (right) provides additional, long
range edge between node A and D with a strong similarity value. This result in one single
cluster (A, B, C, D) when solving this via lifted multicuts.
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Fig. 1.14 Comparison Regular vs. Lifted Multicuts.

Example of for nodes, which belongs to the same class. Left shows the regular multicuts and
right lifted multicuts, respectively. The negative pairs A, B and C, D results will separate the
graph into two clusters using regular multicuts. On the other hand, lifted multicuts will join
everything together correctly.

Optimization

The Minimum Cost Multicut Problem (1.8) as well as the Minimum Lifted Multicut Prob-
lem (1.10) are NP-hard [6] and even APX-hard [27, 66]. Nonetheless, instances have been
solved within tight bounds, for example in [2] using a branch-and-cut approach. While
this can be reasonably fast for some easier problem instances, it can take arbitrarily long
for others. Thus, primal heuristics such as the one proposed in [84, 79, 7] or [8] are often
employed in practice and show convincing results in various scenarios [84, 149, 72]. Further-
more, another challenge is the memory size that is required to construct G. For instance, a
clustering problem of images with a total dataset size of n, constructing a complete graph G
results in total n(n−1)

2 edges. This is often infeasible when considering large dataset such as
ImageNet [134]. We will later propose an approach to solve large graphs in Chapter 3.
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1.4 Contribution

We first evaluate models trained with Triplet Loss functions for image clustering problems
based on two approaches: K-Means and Minimum Cost Multicuts. We also investigate the
behaviour of label noise applied on triplets and reveals interesting behaviour of different
Triplet Losses on both clustering algorithms. Based on this observation, we proposed a
simplification of Triplet Loss from [171], which has several advantages: it is more robust
against label noises, performs the best and, most importantly, the decision for cut and join on
Minimum Cost Multicut Problem is directly learned during the optimization process, which
is a significant parameter to tune. This important finding is presented in Chapter 2.

With the proposed simplification of the Triplet Loss, a new algorithm is then proposed
in order to scale up the Minimum Cost Multicut Problem on clustering problem, which is
presented in Chapter 3. One key disadvantage of the Minimum Cost Multicut Problem is the
fact that it does not scale well on very large datasets. Since a graph is build, the number of
edges E of a complete graph is equal to |E| = n(n−1)

2 where n is the total dataset size. We
show in Chapter 3, that our proposed algorithm is able to cluster a large number of data
under a few seconds by utilizing data parallelism: the given dataset is splitted in disjoint sets
and distributed on multiple computing threads. Each individual thread contains only a small
subset of the data from the dataset, thus leading to a significantly smaller graph. Clustering
task is applied on each individual graph in parallel and once the these tasks are solved, the
results are merged together. We show that the runtime decreases when using more compute
threads on a machine. Yet, no significant drop in performance (e.g. clustering accuracy)
is observed. Furthermore, a theoretical proof for the speedup and memory complexity is
provided as well.

In Chapter 4, we then apply the Minimum Cost Multicut Problem on a real-world problem
where a Multiple-Object-Tracking problem (MOT) is treated as a classical clustering problem.
We compare our proposed Triplet Loss approach with a fully unsupervised approach based
on an convolutional AutoEncoder.

In Chapter 5, we show that clustering can be utilized as robustness predictor on classification
models: first, the embedding space of several pre-trained models are evaluated. We show
that that intra- and inter-class distances are not suitable as a direct indicator for a model’s
robustness. Instead, we propose a combination of two clustering methods and reveal a
significant correlation between classification accuracy, robustness and clusterability.
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Chapter 2

Feature Embedding of Image Data

In this Chapter, we introduce embedding learning methods for clustering image data, which
is based on a concept and evaluation we previously published in [64]. The work has been
supervised by Prof. Dr. Janis Keuper and Prof. Dr. Margret Keuper.

We first give an overview of two popular clustering techniques, K-Means and Minimum Cost
Multicuts and explain the main differences of both methods. Then, we explain how such
embedding for clustering is obtained via Deep Learning methods and we introduce three
optimization loss functions. A thorough comparison of both clustering methods on three
training losses are compared. The contributions of this chapter are:

• We conduct a thorough study of the clustering behavior of two popular clustering
approaches, K-Means andminimum cost multicuts , applied to learnt embedding spaces
from three Triplet Loss formulations on the CIFAR-10 [93] dataset under a varying
amount of label noise

• Our study reveals that, while the traditional Triplet Loss [136] is well suited for
K-Means clustering, its performance drops under the looser assumptions made by
minimum cost multicuts.

• We propose a simplification of the Triplet Loss from [171] (2.3), which allows to
directly compute the probability of two data points for belonging to disjoint components
and is robust against noise in both clustering scenarios.

• Our proposed Triplet Loss variant outperforms both previous versions in terms of
clustering performance and stability under label noise on the CIFAR-10 dataset.
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2.1 Introduction

In computer vision, many different convolutional neural network (CNN) architectures have
been proposed [94, 174, 70, 51, 145, 172, 67, 144]. All of them have one thing in com-
mon: the main goal is to automatically learn (deep) features, that can be classified. Such
classification task assumes a fix number of output classes in order to learn the features.
However, in real-world scenarios, the number of classes are often unknown thus clustering
task or unsupervised learning are crucial when the goal is to group similar data. Furthermore,
clustering also leverages the intrinsic data properties such as data density distributions or
pairwise distances instead of annotations in order to group. The main challenge however
is to find a good measure for similarity or distance metric. One such a metric could be the
Euclidean distance of two data points (or images in computer visions) based on learned
features. A simple choice is for instance raw pixel values of an image. Centroid-based
algorithms such as K-Means can be applied though this is often neither effective nor feasible
for images with higher resolutions, and it shows poor generalization. One approach is to
utilize deep features of images with convolutional neural network: first, the dimension of the
image (e.g. raw image pixels) is reduced into a lower (embedding) space with a non-linear
mapping function. Secondly, the learned features are then clustered, which labels are not
required. Deep features are learned through optimization of specific loss function with CNNs.
For instance classification task often uses cross entropy loss. On the other hand, a popular
loss function for learning embeddings, where the target number of classes are unknown, is
the Triplet Loss [136]: three images are given such that the CNN learns to organize images of
the same class closer to one another in the embedding space than images of different classes.
Using the resulting embedding as features, one can run traditional clustering methods such
as K-Means clustering as for example done in [164]. The clustering performance highly
depends on the learned feature, e.g. how close or far similar or dissimilar data points are
in the embedding space. Furthermore, when selecting a clustering algorithm, assumptions
about the distribution of the data are being made: K-Means clustering assumes that the data
points are evenly distributed around the cluster centroids. Such assumption may not be
suitable for real world problems as a strict distinction between classes is often not possible
as shown in Figure 2.1. Images of class trucks, pickup trucks and cars are projected in the
embedding space based on some features. The left part of the figure shows the embedding
space of the three classes that are well distributed. This assumption is made when performing
the centroid based clustering K-Means, where the data (images) are distributed around the
centroids. However, in reality, the distribution may appear in a smooth transition between
trucks, pickup trucks and cars: this transition is spread in the embedding space.
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Fig. 2.1 Embedding Space: Assumption vs. Reality.

Images of class cars, trucks and pickup trucks are projected in the embedding space based
on their features. Centroid-based clustering such as K-Means assume the data to be spread
evenly across its centroid (shown in left) while in reality, it may appear to have a smooth
transition, e.g. between trucks and cars, there is pickup truck as shown on the right.

Though in both cases, K-Means may still yield more or less the same clustering results,
we argue that optimization of models (e.g. model training) should consider such behaviour.
Additionally, K-Means also requires one to specify the number of clusters beforehand.
Heuristics such as the elbow method are employed in order to determine the optimal number
of clusters. In many practical tasks, this specific scenario might still be unrealistic because,
for example, the number of objects to be grouped is simply unknown or because data points
from the same class lie on a more complex manifold. This motivates us to additionally
consider a graph-based approach, where no data specific knowledge is required, i.e. the
Minimum Cost Multicut Problem, also known as correlation clustering [23, 27]. When
features are learned through optimization of some loss functions, the training parameters
can be utilized to derive parameters for the graph-based clustering, which will be explained
further in the next section. This has the advantage that clustering can be done directly without
the search for other parameters (such as the number of clusters K in K-Means). Furthermore,
if the number of clusters are unknown, loss functions such as cross entropy loss are not
suitable for optimizing the model.
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Fig. 2.2 Summary of Experiment Setup: Investigation of three Triplet Losses.

Summary of the experiment setup in three steps: 1) dataset is trained using the Triplet Loss.
Here, we add random noises (in red) by selecting wrong samples in the training data. 2) We
cluster data using graph-based approach based on the learned embedding features (in blue).
3) Evaluation of clustering accuracy.

In the context of these two common clustering techniques, we want to study the properties
of embeddings resulting from two common variants of the Triplet Loss [136, 171] and
investigate their susceptibility to label noise in the training data. By label noise, we mean
wrong pairs of images that are sampled during training (more details in the next section).
Additionally, we propose and study a third variant of the Triplet Loss, which shows promise
in the context of both minimum cost multicuts as well as K-Means clustering and can be
understood as a simplification of the loss proposed in [171]. Both share the desired property
to directly allow the extraction of pairwise cut probabilities between data points from the
embedding space without an intermediate learning step. Specifically, we train a CNN on
the CIFAR-10 image classification dataset [93] to learn discriminative features using the
three variants of the Triplet Loss, where we apply noise to the training labels for positive
and negative samples. We evaluate the resulting embeddings by comparing the resulting
clustering performance using minimum cost multicuts and K-Means clustering. Figure 2.2
illustrates our experimental setup.
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2.2 Related Work

2.2.1 Clustering

Many clustering approaches on computer vision problems are based on dimensionality
reduction, where a non-linear mapping function is applied. The key challenge is to learn
distinctive features without using label information. One popular way is to use an autoencoder,
where an input image is encoded into a embedding of lower dimension and then the decoder
attempts to reconstruct its original. The embedding is then used as feature space for the
clustering methods: For instance, Xie et al. [164] first train an autoencoder and then use
the same dataset and fine-tune it by training it again using a KL-divergence loss. Another
approach based on autoencoder is [41], which uses the reconstruction loss along with relative
entropy to jointly train the network. Similar approaches can be found in [165, 152, 76].
Recently, generative models have been proposed for clustering tasks [118, 40]. A large scale
study on clustering is proposed by Caron et al. [14], which iteratively groups the features
with a K-Means during the optimization. The parameter k was estimated via elbow heuristics.

2.2.2 Correlation Clustering

Correlation Clustering, also referred to as the Minimum Cost Multicut Problem [23, 27] is
a popular choice when the number of clusters are unknown. One such practical scenario is
multiple object tracking, where pedestrians are tracked by just providing their detections [85,
140, 24, 56, 58]. Correlation clustering allows to group the data points based on pairwise
cut probabilities without any cluster size bias and optimizes the number of clusters along
with the data association. The crucial part there is to define or learn cut probabilities based
on features. For instance [148] uses DeepMatching [159] as a similarity measure, followed
by a logistic regression. An alternative is to use features from embeddings learnt through a
Siamese network [149]. The training is based on pairs of images where the network outputs
a binary decision, e.g. same or different person. This is closely related to our work, since
we also want to obtain discriminative features by training a CNN with the Triplet Loss. The
main advantage here is that the feature space is directly optimized from training data thus can
be mapped to Euclidean space and the distances correspond to similarity measures. However,
instead of a binary output as done in [149] (e.g. same or different), we want our network to
learn an embedding of a fixed vector length, e.g. 32 dimensions.
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2.2.3 Deep Embedding Learning

The main idea of learning embeddings is to attract similar data points to one another in a
lower dimensional space while pushing dissimilar samples away from one another. While
the Contrastive Loss [46] fixes the positive and negative pairs by a fixed distance, it can be
restrictive to variations in the embedding space [163]. In contrast, the Triplet Loss [136]
captures the relative similarity of pairs of data points instead of absolute similarities. It has
been widely used for embedding learning [120, 173, 59, 31]. However, Zhang et al. [171]
highlighted three major issues and thus proposed an Improved Triplet Loss by enforcing
intra- and intercluster constraints. We compare these two Triplet Loss formulations and
propose a simplification of the formulation from Zhang et al., which outperforms both other
formulations in practice.
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Fig. 2.3 AlexNet Architecture: Proposed vs. Original.

Top: Proposed model architecture. Bottom: original Alexnet [93] architecture. Softmax
layers (in orange) and classification head is removed in our proposed model in order to learn
feature vectors from images. The size of the fully connected layers are replaced (in red).

2.3 Contribution

In this Chapter, we describe the setup of our study. First, we introduce the network archi-
tecture and the different variations of the Triplet Loss in Chapter 2.3.1 and 2.3.2. Then, in
Chapter 2.3.3, we explain the correlation clustering method, also called the Minimum Cost
Multicut Problem. Chapter 2.4 describes the used dataset as well as the evaluation metric.

2.3.1 CNN-Architecture

We use AlexNet [94] as a CNN-backbone as done in [14]. Furthermore, we also replaced the
local response layers with batch normalization as done in [14]. However, in order to reduce
the feature dimensionality, we changed the size of the last two fully-connected layers from
4096 to 64 and 32, respectively. This is also due to the fact that the model was introduced
for image classification on ImageNet [134], which has significant larger input size. The
images are often resized or cropped to a dimension of 256 by 256 in width and height. Our
experiments on the other hand evaluates the CIFAR-10 dataset, which all images have a
resolution of 32 by 32 in width and height. Furthermore, we removed the classification head
in order to obtain feature vectors from images only. The architecture change is shown in
Figure 2.3.
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Fig. 2.4 Visualization of Triplet Loss.

Visualization of Triplet Loss (Equation 2.1). An anchor is utilized to compare positive and
negative match. The margin determines the minimum distance, resulting in loss value (red
dashed line).

2.3.2 Loss Function

The Triplet Loss is an cost function that uses a reference point, called anchor in order to
compare a positive pair and a negative pair, thus requiring in total three data point in one
single comparison. Unlike classification tasks where cross entropy is used to predict class
labels directly, a distance is learned from input data. This is also called metric learning
and the advantage is that the similarity between two data points such as two images can
be directly compared via Euclidean distance: the further they are apart, the less they are
similar (and vice versa). The main goal is to maximize the distance between the negative
pairs, e.g. images from different classes, while minimizing the positive pairs (images from
the same classes, respectively). Figure 2.4 visualizes one triplet: the reference point (anchor)
is depicted as light gray circle. The green and red line show the distance between the positive
(green) and negative (red) pair. Margin (gray line) is a parameter that has to be specified by
the user. It represent the degree of difficulty for triplets during the optimization and it only
allows non-negative values. When positive samples are exactly far away from the negative
samples by the value margin, the loss is zero. Any further distance (resulting in negative
loss) will not be considered. The main idea of margin is that the training can focus on more
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difficult triplets. In this example, the margin is larger than the distance difference between
the positive and engative pairs, thus the loss becomes a positive value.

Given any model architecture (such as a convolutional neural network) with trainable
parameters θ , we want to map an input image xi with a non-linear function fθ : X → Z,
with f (xi) ∈ Rd . In our case, xi is the image of the i-th sample from the dataset with a total
number of n samples, xi ∈ Xn

i=1 and d is the dimension of the embedding space. d is much
smaller than the dimension of the input image. Given a set of three images, xa

i , xn
j and xp

k ,
the embedding features are learned by simply minimizing the Triplet Loss [136] over the
parameters θ of our deep neural network. Here, the parameter α sets the margin of the
similarity difference between the positive sample xp

k and negative sample xn
j and the anchor

image xa
i :

Ltriplet =
n

∑
i=1

[∥ f (xa
i )− f (xp

i )∥
2 −∥ f (xa

i )− f (xn
i )∥2 +α]+ (2.1)

Figure 2.4 visualizes Equation 2.1. Our approach is based on the assumption that
embedding features, learned from the regular Triplet Loss (2.1) can produce high variances
in inter- and intra-cluster distances, because it only considers relative differences between
the distances of positive and negative pairs. This objective is suitable for K-Means clustering.
Yet, the attempt to learn whether two data points should belong to the same or to a different
class from their pairwise distances might fail, when the intra- and inter cluster samples are
equally far away. This is shown in Figure 2.5 where the correct decision boundaries are
marked by green lines. In contrast, the red line, at the same Euclidean distance as the green
lines, indicates a false separation of data. This motivates us to consider losses that preserve
the distance equally between the positive pairs during the optimization. Similar to [171], we
therefore add an additional term to equation (2.1), which we denote as Triplet Loss_2 [171]:

Ltriplet_2 = Ltriplet +[∥ f (xa
i )− f (xp

i )∥
2 −β ]+ (2.2)

The additive term in equation (2.2) introduces an additional parameter β , which sets
the maximum distance between the positive pairs, e.g. the intra-cluster distance. As the
regular Triplet Loss only considers the distance difference between the positive and negative
pairs, set by the parameter α , we propose a third loss function, which considers the absolute
distance for the positive and negative pairs (instead of distance difference):
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Fig. 2.5 Decision Boundary in Embedding Space.

Visualization of a possible data distribution trained with Triplet Loss [136] (Equation 2.1):
different intra-cluster distances over different classes make it impossible to learn one distance
threshold at which data points should belong to different components. A logistic regression
model could thus not learn cluster boundaries for graph partition. The correct decision
boundaries are marked by green lines while the red line shows a wrong separation of data.
Our aim is to propose new Triplet Loss to stabilize such distances.

Ltriplet_3 = [α −∥ f (xa
i )− f (xn

j)∥2]++[∥ f (xa
i )− f (xp

k )∥
2 −β ]+ (2.3)

We argue that this variant of the Triplet Loss is more intuitive than Triplet Loss_2 because
it directly pushes positive pairs within a certain margin β while driving negative pairs apart
with a minimum distance α . Within these margins, it still allows for varying distances,
which is in contrast to for example Siamese approaches or the contrastive loss [46]. Despite
having an additional hyper-parameter β , we will show later that this in fact beneficial for our
proposed end-to-end framework for feature learning and clustering approach (Section 2.5).
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2.3.3 Pairwise Cut Probabilities for Multicuts

We formulate the following image clustering task as a Minimum Cost Multicut Problem as
described in Section 1.3.3: each node in the graph G represents an image xi that we want to
assign to a class label (instead of edge labels as presented previously). The weight of the
edges between two nodes represents the similarity between the two images. The similarity
is computed based on the Euclidean distance of in embedding feature, for instance using a
CNN-model:

di, j = ∥ f (xi)− f (x j)∥ (2.4)

The more similar two images are, the less di, j becomes. Once the similarity of two images
is obtained, we seek to estimate their probability p ∈ [0,1] to belong to distinct classes. A
decision function can be learned through a logistic regression using the label information,
e.g. positive pairs are mapped to the value 0 while negative pairs are mapped to 1 as shown
previously in Figure 2.5. The threshold value τ is therefore represented as the boundary
between two classes: if a distance (similarity) between two nodes is below τ , it will be joined.
Consequently, two nodes with a distance larger than τ will be separated.

However, with the Triplet Loss_2 (Equation 2.2) and the proposed Triplet Loss_3 (Equa-
tion 2.3), the distance threshold τ can be automatically derived from the training parameters
α and β , if they are set correctly. That is, if the intra-cluster distances were set exactly half of
the inter-cluster distances during the optimization with the two losses, the decision boundary
can be automatically estimated. Since β restricts the maximum distance of positive pairs to
exactly β = α/2, the distance threshold τ of the logistic function is computed as:

τ =
√

(α +β )/2 (2.5)

Thus the additional step of learning τ from data is not necessary anymore. The embedding
space that is essentially optimized for correlational clustering. Note that this is not possible
for the Triplet Loss from Equation (2.1) because it only considers relative distances.
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2.4 Experiments and Results on CIFAR-10

In this Chapter, we present the experiments and the results of our study. CIFAR-10 [93]
is a popular dataset for image classification tasks. It contains 50.000 train and 10.000 test
data samples of tiny images, which are 32 by 32 pixels in width and height. Each sample
is assigned a label that belongs to one of the ten classes: airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, and truck. All models are trained for 100 epochs with a batch
size of 100 and a learning rate of 0.001 using AdamOptimizer [88]. First, we compare the
performance of the Minimum Cost Multicuts and K-Means clustering using different Triplet
Losses in Chapter 2.4.1. Then, we present some insights related to inter- and intra-cluster
distances in Chapter 2.4.2. In Chapter 2.4.3, we present our study on the feature learning
under label noise. The results are shown in Table 2.1. In Chapter 2.4.4, we present some
qualitative results.

2.4.1 Evaluation of Cluster Accuracy

We compare the CNN models that are optimized with the three different losses. Specifically,
we train an AlexNet model as described previously in Secion 2.3.1 on CIFAR-10 dataset
with the three Triplet Losses. Then, embedding features of images from the test dataset
are extracted and we evaluate two different clustering methods, K-Means and correlational
clustering. Here, clustering the embedding features with K-Means require the parameter K
to be set correctly. On CIFAR-10, this is set to K = 10 (thus introducing external knowledge
to the clustering process). On the other hand, correlational clustering requires the threshold
parameter τ in order to cluster the data correctly. For Triplet Loss (2.1), an additional
regression model is trained using the label information in order to estimate the threshold,
while for (2.2) and (2.3), the threshold is computed directly from the optimization parameters
using equation (2.5).

Evaluation Metric. While K-Means outputs exactly K = 10 clusters, the number of
clusters resulting from correlational clustering is arbitrary large. In order to evaluate
the performance of the two clustering algorithms, we resort to the clustering accuracy
metric using the label information from the dataset. The former clustering algorithm is
straightforward since it K = 10 represents the number of different classes from CIFAR-10
dataset. The latter is calculated based on the Hungarian algorithm [95], where the best match
between the predicted and the true labels are found. That is, if more than 10 clusters are
found, anything above K = 10 is considered as false positive, thus lowers the clustering
performance.
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All experiments are executed five times with different random seeds and we report the
average number over the clustering accuracy.

Results. Figure 2.6 shows the clustering accuracy for different variants of the Triplet
Loss. The average clustering performances for both, K-Means and Minimum Cost Multicuts
(denoted as correlational clustering), over five runs are depicted above the bars, while the
standard deviations are shown as black lines. First, we observe that Triplet Loss_2 (2.2)
and Triplet Loss_3 (2.3) outperform (2.1) on multicut clustering (left). However, k-means
(right) performs better on all our experiments given the fact that K = 10 is known. The
highest performance is achieved when we train the CNN-model with the Triplet Loss_3 (2.3),
where the average accuracy is 80.5% (red). For k-means, the Triplet Loss_2 shows worse
performance than the regular one [136], while the proposed, simpler version, Triplet Loss_3,
performs best in both scenarios.

Fig. 2.6 Clustering Performance of three different Triplet Losses.

Comparison of three different losses on clustering performance. The numbers on the x-
axis represent the triplet loss type while the y-axis shows the average cluster accuracy on
five runs. The black line indicates the standard deviation. Triplet Loss_2 (2.2) and our
Triplet Loss_3 (2.3) perform better than the regular Triplet Loss for minimum cost multicuts.
However, K-Means consistently achieves better results given the fact that the parameter K is
set correctly (shown in right). For K-Means, the Triplet Loss_2 shows worse performance
than the regular one [136], while the proposed, simpler version, Triplet Loss_3, performs
best in both scenarios.
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2.4.2 Inter- and Intra-cluster distances

In this experiment, we investigate the inter- and intra-cluster distances from the dataset that
is embedded in the trained neural network on the three Triplet Losses. Figure 2.7 compares
the cluster distances of the samples. The red curve represents the average pairwise distances
of the samples within a cluster (intra-cluster distance) while the blue curve shows the aver-
age distances of one cluster to its nearest cluster (inter-cluster distance). Furthermore, the
color range represents the standard deviation σ and 2σ of the cluster distances. The y-axis
shows the Euclidean distance while the x-axis depicts the 10 classes of the evaluated dataset
CIFAR-10.

Results. As illustrated in Figure 2.7 a), both distances show significant variances when
trained with the regular Triplet Loss (2.1). These large variances are represented as large blue
and red bars. Furthermore, class cat and dog show a significant overlap in their inter- and
intra cluster distances, which prevents the logistic regression from setting the right decision
boundary as explained in Figure 2.5. This also explains, why the clustering performance
is the lowest among the three Triplet Losses (refer to Figure 2.6 a). In contrast, Triplet
Loss_2 (2.2) and Triplet Loss_3 (2.3) produce more consistent and stable results. At the
same time, the cluster performance is also higher, as shown previously. More importantly, a
clear separation of the inter- and intra-cluster distance is observed for both methods (b and c).
This validates our hypothesis that the embedding space from the trained model using Triplet
Loss_2 and Triplet Loss_3 allows a better separation of data compared to the regular Triplet
Loss.
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2.4.3 Triplet Loss with Label Noise

In this experiment, we investigate the sensitivity of the different Triplet Losses towards
label noise. Specifically, we randomly select wrong triplets during the training process of
our CNN-model and evaluate the clustering performance based on the embedding features,
trained on all three loss variants from Subsection 2.3.2. Figure 2.8 depicts three examples of
triplets. The experiments were conducted repeatedly five times with different seeds and we
report the mean cluster accuracies in %. The parameters α and β are fixed to 0.8 and 0.4,
respectively.

Fig. 2.8 Label Noise for Triplet Loss.

Illustration of three different triplets, where node A and C belonging to the same class. A
positive noise indicates that all three nodes shares a positive edge label while a negative
triplet consists of only negative edge labels.

Results. Table 2.1 shows our complete evaluation with various setups: we applied differ-
ent amounts of label noise on triplets for positive and negative pairs. The x-axis represents
the noise for the negatives while the y-axis indicates noise on positive pairs within the triplet.
These wrong pairs are retrieved randomly. All results are reported as average clustering
accuracy over five runs of training. In Table 2.1 top, we present the performance using
Minimum Cost Multicuts while the bottom rows show the results of K-Means clustering Note
that K-Means requires to specify the number of clusters K, beforehand (on CIFAR-10, we
know k = 10), while Minimum Cost Multicut do not require this dataset specific knowledge.
Without noise added, considering the CNN-model trained with the same loss function, K-
Means seems more stable against noise and outperforms the Minimum Cost Multicuts on
average by 1-2% and the highest clustering accuracy when no noises are added. In Figure 2.9,
we give a more detailed analysis of these results.

Remark: When sampling the triplets randomly on balanced dataset with K-clusters, the
chance to get a true positive and true negative pair is 1

K and K−1
K respectively.
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Clustering Performance vs. Sample Noise

Figure 2.9 shows the clustering accuracy against the percentage of noise that is applied to the
sampling. Top left, we only add noise to the positive pairs while selecting correct negative
samples and evaluate using Minimum Cost Multicuts, i.e. without introducing knowledge on
the number of classes. Our first observation is that Triplet Loss_2 (2.2) is the most sensitive
to noise among all three loss variants. This is shown in Figure 2.9 in blue. The regular Triplet
Loss (2.1) and Triplet Loss_3 (2.3) still achieve and average clustering accuracy of 75.0%,
respectively, even though 20% of wrong samples are used for training. A similar behavior can
be observed in top right, where we evaluate the same embeddings using K-Means clustering.

The observations are slightly different when adding label noise to the negative pairs,
Figure 2.9, second row. Even when introducing 10% noise, which corresponds to drawing
negative samples completely at random in a balanced 10 class classification problem, all
loss variants are relatively robust, especially for K-Means clustering (Figure 2.9, second row,
right). Yet, the proposed Triplet Loss_3 again performs best.

In the bottom row of Figure 2.9, we consider an equal amount of noise on both posi-
tive and negative samples (corresponding to the diagonal in Table 2.1). In this setting, the
proposed Triplet Loss_3 again shows higher stability than the two previous variants when
clustering using Minimum Cost Multicuts Figure 2.9 (bottom left). For K-Means clustering,
the improvement over the Triplet Loss [136] is marginal. This result is actually expected:
The traditional Triplet Loss [136] creates an embedding such that, for every data point, data
points from the same class are closer than points from any other class. This fits well with the
K-Means clustering objective, assigning every points to the nearest cluster center, regardless
their absolute distance. Yet, it can be problematic in the context of correlation clustering,
where the minimum absolute distance between two clusters matters.
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Fig. 2.9 Cluster Accuracy vs. Sample Noise.

Average cluster accuracy against the percentage of noise, that is applied to the sampling.
Noises on positive and negative pairs are applied on first and second row, respectively while
the last row is evaluated on an equal amount of label noise of both, positive and negative
pairs. The first column shows the results of the minimum cost multicuts while the second
column employs K-Means. The amount of noise (i.e. wrong pairs) is indicated in x-axis.
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2.4.4 Qualitative Results

Figure 2.10 shows a TSNE-visualization [112] of the embedding features learned from the
CNN-model using the Triplet Loss_3 (2.3) variant. We use the Minimum Cost Multicuts
approach to cluster CIFAR-10 test dataset. In the particular experiment example, the total
number of clusters is 44 while the cluster accuracy is 80.27%. The different colors represent
the found class labels while in the ground truth, there are only 10 classes on the CIFAR10
dataset (which is shown in the legend). Any other found clusters are considered as false
positives and thus lower the cluster accuracy. However, there are in fact 34 small clusters
that contain less than 10 images. Three examples of such mini clusters are shown in bottom
left and right as well as on the top left corner. Even though there are false positives shown
in the examples of the smaller clusters, the Minimum Cost Multicuts approach explores
meaningful sub-clusters within a class label, which may be desirable on real-world scenarios.
For instance, instead of finding the class horse (in cyan), a subclass white-horses is also
found, as shown in Figure 2.10, bottom right.

Fig. 2.10 TSNE-Visualization CIFAR-10 with a Multicuts.

TSNE-Visualization of the clusters on CIFAR-10 using a multicut approach. In this example,
the cluster accuracy is 80.27% trained on a CNN-model with the Triplet Loss (2.3) and the
total number of clusters is 44. The color represents the 10 largest clusters found. There are
33 small clusters (< 10 items), for instance bottom left and right are two clusters shown
containing 7 images each. False positives within the clusters are marked as red. The cluster
on the upper left corner contains images from bird, cat, automobile (x3), planes and trucks.
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2.5 Conclusion

In this Chapter, we presented an extensive study on three different variations of the Triplet
Loss. Specifically, we have studied the clustering behavior of K-Means andMinimum Cost
Multicuts, applied to learnt embedding spaces from three Triplet Loss formulations on the
CIFAR-10 [93] dataset under a varying amount of label noise. We find that, while the
traditional Triplet Loss [136] is well suited for K-Means clustering, its performance drops
under the looser assumptions made by Minimum Cost Multicuts. We proposed a simplification
of the Triplet Loss from [171], which allows to directly compute the probability of two data
points for belonging to disjoint components. In a line of experiments on the CIFAR-10 dataset,
we show that this proposed loss is robust against label noise in both clustering scenarios
and outperforms both previous Triplet Loss versions in terms of clustering performance and
stability. Our hypothesis is that the embedding space trained with the proposed Triplet Loss
yields allows better separation of the data. This is validated in another experiment, where the
intra- and inter-cluster distances are analyzed: the regular Triplet Loss shows large overlap
thus making the separation of data challenging. In the last experiment, a qualitative result is
presented. We showed that the minimum cost multicuts is able to find sub-classes, which are
not defined from the original dataset and we argue that such clustering approach is generally
favourable over centroid-based clustering since the distribution of the data in the embedding
space is arbitrary and the number of clusters is unknown. With our proposed Triplet Loss,
a CNN is trained specific for the Minimum Cost Multicut Problem, where threshold τ is
directly derived from the training parameter α and β .

2.6 Limitation

Currently, the sampling method is done in a supervised way (e.g. triplets are selected using
the label information). Furthermore, it has been shown in [163] that the selection of triplets
also influences the performance greatly, which we have not investigated in this work. Another
problem is that the propose graph-based approach does not scale on larger datasets due to the
large size of the graph, which we previously addressed in Section 1.3.4. Not only is solving
the problem NP-Hard, it also requires a significant large amount of memory to create graph
G. In the next chapter, we will introduce a novel approach to solve this problem by proposing
a multi-stage multicuts that is able to solve large graphs and show theoretical proof.





Chapter 3

Scalable Multicuts

In this Chapter, we introduce a novel approach to cluster large number of data using Minimum
Cost Multicuts. The content of this chapter is based on the approach, that we previously
published in [60]. In addition to this, a theoretical proof is provided to verify our claim. The
full proof is contributed by the co-author, Avraam Chatzimichailidis, while I contributed the
idea, algorithmic implementation and experimental evaluation. The work has been supervised
by Prof. Dr. Janis Keuper and Prof. Dr. Margret Keuper.

The rest of this chapter is structured as follows: an introduction is provided in Section 3.1,
followed by related work in Section 3.2. The main idea of our approach is explained in
Section 3.3 and evaluations of the proposed method are provided in Section 3.4.

3.1 Introduction

Clustering data based on some feature measure has been a major interest in machine learning,
especially in the area of computer vision. So far, we have shown in the previous chapter, that
if pairwise similarities between data points in a set are given, one can partition (e.g. cluster)
the data. Such similarity can be obtained via metric learning, such as using the Triplet Loss.
The advantage is that the number of clusters does not have to be determined beforehand.
This is important as data specific knowledge remains unknown for real world problems.
Correlational Clustering, also called Minimum Cost Multicuts, solves such clustering tasks
globally and in a deterministic way. Data points (e.g. nodes) form a graph G with a cost on
the edges between each other, where these costs are often computed using some features
based on deep learning models (explained in 2.3.3). The graph is partitioned based on this
cost. Previous experiment of clustering task on CIFAR-10 has shown promising results in
terms of clustering performance and stability. Our proposed Triplet Loss 2.3 yields best
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performance on graph-based clustering and is, at the same time, less susceptible against label
noise. Although G can be either a complete graph or a graph with arbitrary number of edges,
solving the Minimum Cost Multicut Problem is know to be NP-hard. With the increase in
data size (e.g. nodes in G), solving such a task remains a big challenge.

Contributions. To overcome this challenge, we propose MSM (Multi-Stage Multicuts)
to solve the Minimum Cost Multicut Problem on large graphs. Specifically, MSM utilizes
data parallelism to achieve significant speedup while preserving the performance on image
clustering tasks. This straightforward method divides a single, large clustering problem
into small disjoint sets across different CPU threads on a shared memory system. This
has two main advantages: (1) the clustering tasks become smaller on each thread and (2)
the optimization on each set is done concurrently. Our key contributions of this paper are
summarized as follows:

• We provide MSM: Multi-Stage Mulicuts approach based on Minimum Cost Multicuts,
that is capable of solving large graphs using features from deep neural networks. MSM
runs concurrently on multiple CPU threads, allowing to solve large image clustering
problems.

• Theoretical proof for the speedup as well as the memory complexity.

• The performance of MSM is evaluated on multiple scenarios based on image clustering
tasks on CelebA, CIFAR10 and CIFAR100 dataset.
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3.2 Related Work

Image Clustering. The goal of image clustering is to assign class labels to a given set of data
based on their semantic features. These semantic features for clustering are often obtained via
convolutional neural networks (CNN) [94, 21], where dimensions are successively reduced
via non-linear mapping functions on each layer. A joint optimization approach is proposed in
[14, 15], where these features are learned and clustered via assigned pseudo-labels. However,
[170] shows that this method leads to unstable training and propose a decomposing feature
clustering approach to tackle this issue. [45] propose a Graph-Convolutional Network ap-
proach with LSTM for a density-aware face clustering. [105] seeks fairness in clustering
by hiding sensitive features that are based on min-max game strategy. Other methods, such
as autoencoders [164, 41], generative models [118, 40] or transformer [16] have also been
proposed to solve image clustering tasks.

Minimum Cost Multicuts. Minimum Cost Multicuts, also called Correlational cluster-
ing [23, 27] is a graph-based clustering technique, where data points are represented in a
graph and pairwise similarities between the nodes are utilized to optimize (e.g. cluster) the
overall problem. This technique has shown success in various computer vision applications,
such as multiple object tracking [85], motion and image segmentation [78, 162], pose estima-
tion [127] and image clustering [64]. The Minimum Cost Multicut Problem is known to be
NP-hard [27]. However, the use of heuristic solvers [83, 8] yield reasonable results in practice.

Parallel Computing. Parallel computing describes the process of partitioning a problem
into smaller ones and solving these sub problems simultaneously. Recently data paral-
lelism [26, 92] and model parallelism [48, 71] have been explored in the context of deep
learning. In [122], a parallel Multicuts approach for binary graphs is proposed. In order to
scale to bigger datasets, our proposed MSM makes use of the data parallel approach, where
each worker holds a copy of the full model locally, as well as a fraction of the whole dataset.
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3.3 MSM: Multi-Stage Multicuts

In this Chapter, we explain our proposed algorithm: Multi-Stage Multicuts (MSM), which
allows parallelization across multiple CPU threads (worker) with shared memory in order
to solve a large image clustering problem. An overview of MSM is shown in Figure 3.1. A
dataset is too large to be solved on a single CPU thread. First, the number of stages and the
available resources have to be specified. At stage one, all available resources are utilized:
the large dataset is divided into equally large, disjoint sets. On each CPU thread, clustering
tasks are solved simultaneously and the results are then forwarded to the next stage (marked
as red). Here, not all the available compute resources are utilized anymore. The clustering
tasks are done on the intermediate results from the previous stage. At the final stage, which
consists of only one single worker, the results are sent back to all previous stages (marked as
green). Through this work, we will use the term worker for CPU threads.

Fig. 3.1 Overview of MSM: Multi-Stage Multicuts.

Our Multi-Stage Multicuts (MSM) procedure: at stage 1, we evenly divide a given dataset into
small, disjoint sets and distribute this to individual computing units to solve the Minimum
Cost Multicut Problem concurrently. The results are forwarded to the next units in the
following stage, where the intermediate results are being merged (red arrow). This process
is repeated until the final stage L is reached. The merge result is sent back to all previous
computing units via backpropagation (green arrow).
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This Chapter is structured as follows: formal definitions of MSM is first described in
Chapter 3.3.1. In Chapter 3.3.2, we briefly recap the Minimum Cost Multicut Problem, which
we already formally introduced previously in Chapter 1.3.3. Specifically, we emphasize how
the number of edges can affect the algorithm speed. We discuss the challenge of the Minimum
Cost Multicut Problem in Chapter 3.3.2 on a single CPU thread and how to overcome this
issue. In Chapter 3.3.3, we introduce our proposed algorithm for solving large graphs on
multiple CPU threads and the theoretical proof for the speedup and memory complexity is
provided in 3.3.4.

3.3.1 Notation and Methods

Given a set of available workers |Sk| at stage k, each individual CPU thread is represented
as si,k ∈ Sk with ∀i ∈ N : 1 ≤ i ≤ w. At stage S1, the number of workers is set to |S1| = w.
Furthermore, a defined number of stage L = k is given, where the number of workers are
reduced successively:

|Sk|< |Sk−1| (3.1)

A dataset X with a total size of |X | is randomly divided into disjoint sets across the
workers |S1|. At stage one, each worker si,1 ∈ S1 holds n = |X |

|S1| samples of X . Since MSM is
based on pairwise comparison of data, the permutation of the splits as well as the distribution
of the classes within a batch will not affect the clustering performance in noticeable way (we
show this in our experiments).

In order to obtain the cluster labels yi,k, each individual worker solves an instance of
Minimum Cost Multicut Problem with respect to the graph G, which is explained previously
in subsection 1.3.3. Each cluster label yi,k is then forwarded during the next stage to Sk+1

to compute the joint solution (red arrow). Details are explained in 3.3.3. This process is
repeated until the final stage L is reached. The results of SL−1 are forwarded to one single
worker |SL|= 1. Cluster labels are then sent back to all other workers via backpropagation
(green arrow).

The following section is divided into three parts. Section 3.3.2 describes the image
clustering task using Multicuts with different graph sizes. Then, our algorithm is introduced
in Section 3.3.3. The theoretical proof of our proposed algorithm is presented in Section
3.3.4.
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3.3.2 Image Clustering with Multicuts

The advantage of Multicuts clustering is the fact that pairwise comparisons are performed. In
contrast, centroid-based clustering methods such as k-means assumes data of same clusters to
be distributed evenly around its center or have the same density. However, such assumptions
do not perform well on real-world face clustering [45]. We assume that each pair of nodes of
the undirected graph G has at most one edge with a cost c. Consequently, a complete graph
with n nodes has in total |E|= n(n−1)

2 edges.

Sparsity

In context of image clustering using Multicuts, it is desired to have as many edges as possible
during the graph creation (e.g. complete) as more pairs of images are being compared with.
Figure 3.2 a) depicts the final cluster accuracy (in blue) on the CIFAR-10 [93] Test dataset as
well as the file size (in red) against the sparsity of the graph: 1.0 represents a complete graph
while 0.5 means that half of the edges are being randomly removed in order to save memory.
This experiment uses a single worker for solving the the Minimum Cost Multicut Problem
as done in Section 2.4.1: a convolutional neural network model is trained using the Triplet
Loss_3 (Equation 2.3) and the embedding features of images are extracted and clustered. The
experiments were conducted over five runes. We observe the clustering accuracy converges
to a value at average 80%, which is consistent with the previous reported numbers. Since
this is the case, it is safe to assume that at sparsity=1.0 (e.g. complete graph), the highest
clustering accuracy is reached. When using very few edges only (sparsity at around 0.01),
performance drops significantly. The red box depicts an area with higher standard deviation.
At the same time, the size of the graph file is increasing. Figure 3.2 b) illustrates the runtime
in seconds and file size of a complete graph (e.g. sparsity=1.0) for different dataset size. One
can observe that the larger the dataset size, the longer the runtime becomes for solving the
problem and more memory it consumes.



3.3 MSM: Multi-Stage Multicuts 53

Fig. 3.2 Multicuts on Single CPU Thread.

Minimum Cost Multicuts for image clustering task on a single worker. In a), a subset of
CIFAR10 (1000 images) is used to evaluate the clustering performance as well as the graph
size for different sparsity setups. A sparty of 0.5 means that half of the edges are removed
during the construction of G. In b), a complete graph (e.g. sparsity=1.0) is being evaluated
for different dataset size. Graph file is stored uncompressed as an edge list.
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3.3.3 MSM: Multi-Stage Multicuts

Our approach is based on the idea to use multiple CPU threads (worker) on a shared memory
system to solve the image clustering problem. The dataset X is decomposed into disjoint sets
with equal size, reducing the size of graph G in order to solve the minimum cost multicut
problem in a reasonable amount of time. Figure 3.2 b) shows the relation between runtime
and number of data (e.g. nodes in G).

At the initial stage k = 1, each worker of si,1 ∈ |S1| with |S1|= w carries n = |X |
w samples

of |X |, which represents the number of nodes in G. The higher the available resource (number
of workers w), the faster MSM processes at S1 since n gets smaller. The output class labels
yi,k ∈ Yk for each sample are forwarded to stage Sk+1 and the joint solution is computed by
worker si,k+1 ∈ Sk+1.

Merge Process

An illustration is shown in Figure 3.3 a): the results of two disjoint sets are merged together.
At stage S2, the goal is to find the same cluster in workers from the previous stage si,1 ∈ S1

and si+1,1 ∈ S1. Figure 3.3 b) depicts the merge process: the centroid of the individual
clusters using their cluster labels is computed. The centroids are used as new nodes, allowing
the next stage to form a graph of centroids and the clustering process is repeated until the last
stage is reached. The size of the graph (thus the runtime) of the next stage mainly depends
on the number of output clusters yi from previous stage as well as the number of incoming
disjoint sets (e.g. number of workers), that are being merged. The number of samples for
si,k ∈ Sk with k > 1 is defined as follows:

ni,k = ∑
j∈Ik

i

unique(y j,k−1) (3.2)

where Ik
i represents the set of all workers in the prior stage that are joint together to

worker si,k. The full MSM algorithm is described in Algorithm 2
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Fig. 3.3 MSM with Two-Stages (L = 2).

Combining results of disjoint sets from two different workers: a) two sets are being merged
for the next stage. In b), the centroids of different clusters from previous stage are being used
to form a new minimum cost Multicut problem.

Algorithm 2 MSM: Multi-Stage Multicuts

1: Input: data X , number of workers w, Stages L
2: Set k = 1
3: Split data X to worker si ∈ S1
4: Extract embedding zn via deep neural network
5: Obtain clusters yn based on zn using Multicuts
6: while Final Stage L not reached do
7: Sk sends yn and zn to Sk+1
8: Sk+1 compute centroids: z̃n
9: Obtain new clusters yn based on z̃n using Multicuts

10: k = k+1
11: end while
12: for All stages do
13: Backpropagate cluster labels yn
14: yn = Translate yn
15: end for
16: Output: yn
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3.3.4 Theoretical Proof

Here, we formally show the theoretical speed up of MSM. Given a set of n nodes V , we split

V into k disjoint subsets V1, V2, ..., Vk. (Vi ∩Vj =∅ for i ̸= j and
k⋃

i=1
Vi =V )

We denote the resulting graph that is built from set Vi as Gi(Vi,Ei). The aim is to minimize
the minimum cost multicut problem with respect to Gi as defined in equation 1.8:

min
y∈{0,1}E ∑

e∈Ei

ceye (3.3)

z(k+1)
i = f (V (k)

i ,y(k)i ) (3.4)

V (k+1)
l =

⋃
i∈I(k+1)

l

z(k+1)
i (3.5)

The function f computes the centroids of the nodes in V (k)
i . I(k+1)

l is the set of indices of
workers in stage k whose results are combined for worker l in stage k+1.

The function h(k+1)(C(k)
l ) = y(k+1)

l relates the indices found by the Multicuts with index
in I(k+1)

l to the indices found by the Multicut of worker l in the next stage. The set of indices
that are combined for worker l in the stage k+1 is C(k)

l = {y(k)i |i ∈ I(k+1)
l }. This is done in

order to backpropagate the indices found in the last stage to the input data with h−1(y(k+1)
l ).

In our case the function h is a lookup table that keeps track of all the indices at a given stage.
For a fully connected Multicut with number of nodes |V | = n the algorithm scales

in O(n2(n−1)
2 ) [148]. For L stages with Sk workers at stage k one obtains the following

complexity

L

∑
k=1

Sk

∑
i=1

n2
k,i(nk,i −1)

2︸ ︷︷ ︸
Rk

(3.6)

where nk,i is the number of nodes for worker i in stage k.
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Let gk = ∑
L
k=1 nk,i be the number of nodes of all workers in stage k. Note that g1 = n, the

size of the original dataset.

Assumption 1 In order to find an upper bound we assume a balanced data allocation for
each worker in each stage, therefore

ni,k =
gk

Sk
(3.7)

The total number of nodes in stage k, gk, does not grow in size in the next round,
gk+1 ≤ gk.

The following relationship holds

gk = pk−1gk−1 (3.8)

with 0 < pk ≤ 1.

Assumption 2 The series of (pk)1≤k is monotonically increasing and satisfies the following
inequality

pk ≥ p
k−1

k
k−1 (3.9)

This is in line with what is being observed in the case of continually decreasing workers.
The workers in the first stage are able to cluster most of the dataset, resulting in a much
smaller p than what is achieved in later stages.

Assumption 3 The number of workers Sk is decreasing with each stage k, Sk+1 < Sk.
In stage k one has a complexity of
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Rk
(3.7)
=

Sk

∑
i=1

(gk
Sk
)2(gk

Sk
−1)

2

= Sk
(gk

Sk
)2(gk

Sk
−1)

2

(3.10)

Since 1 ≤ Sk we have

Sk
(gk

Sk
)2(gk

Sk
−1)

2
≤ 1

S2
k

g2
k(gk −1)

2
(3.11)

Given g1 = n one can observe that

gk = n
k−1

∏
i=1

pi ≤ npk−1
k−1 (3.12)

With this relationship we can simplify expression (3.11)

1
S2

k

g2
k(gk −1)

2
≤ 1

S2
k

(npk−1
k−1)

2(npk−1
k−1 −1)

2
(3.13)

since pi ≤ 1 we obtain for stage k the following expression

Rk ≤
1
S2

k

(npk−1
k−1)

2(npk−1
k−1 −1)

2
≤

p3(k−1)
k−1

S2
k

n2(n−1)
2

(3.14)

If we set this back into expression (3.6), we obtain for an L-stage Multicut

L

∑
k=1

Rk ≤
n2(n−1)

2

L

∑
k=1

p3(k−1)
k−1

S2
k

(3.15)

Note that we have SL = 1 and 1
Sk

≤ 1. Since Sk+1 < Sk we can write
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n2(n−1)
2

L

∑
k=1

p3(k−1)
k−1

S2
k

≤ n2(n−1)
2

L

∑
k=1

p3(k−1)
k−1

(L+1− k)2 (3.16)
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Since we have p0 = 1, the first term is split off the sum

n2(n−1)
2

L

∑
k=1

p3(k−1)
k−1

S2
k

=
n2(n−1)

2


L

∑
k=2

p3(k−1)
k−1

(L+1− k)2︸ ︷︷ ︸
(I)

+
1
L2

 (3.17)

Now focus on term (I) from equation (3.17):

L

∑
k=2

p3(k−1)
k−1

(L+1− k)2 =
L−1

∑
k=1

p3k
k

(L− k)2 (3.18)

Denote lk = p3k
k . Since pk is monotonically increasing, with pk satisfying (3.9), we also

have lk monotonically increasing. Therefore we have that the maximum of (lk)1≤k≤L−1 is
lL−1 = max({lk : k = 1, ...,L−1}). Thus we have

L−1

∑
k=1

lk
(L− k)2 < lL−1

L−1

∑
k=1

1
(L− k)2 (3.19)

One can rearrange the term in the sum so that one obtains

lL−1

L−1

∑
k=1

1
(L− k)2 = p3(L−1)

L−1

L−1

∑
k=1

1
k2 (3.20)

We have that

L−1

∑
k=1

1
k2 =

π2

6
−ψ

(1)(L) (3.21)

Here ψ(1)(x) represents the first derivative of the digamma function.

ψ
(1)(x) =

∞

∑
k=0

1
(k+ x)2 >

1
x2 (3.22)
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Using the inequality in (3.22) this allows us to put an upper bound on expression (3.21)

L−1

∑
k=1

1
k2 =

π2

6
−ψ

(1)(L)<
π2

6
− 1

L2 (3.23)

Putting this result back into equation (3.20)

p3(L−1)
L−1

L−1

∑
k=1

1
k2︸ ︷︷ ︸

(I)

< p3(L−1)
L−1

(
π2

6
− 1

L2

)
(3.24)

Putting (3.24) into (3.17) and (3.17) into (3.15) we obtain the following upper bound for
the complexity for an L-stage Multicut under Assumptions 1-3:

L

∑
k=1

Sk

∑
i=1

n2
k,i(nk,i −1)

2
<

n2(n−1)
2

(
p3(L−1)

L−1

(
π2

6
− 1

L2

)
+

1
L2

)
︸ ︷︷ ︸

h(pL−1,L)

(3.25)

Inequality (3.25) gives an upper bound to the complexity of our algorithm. It also relates
the complexity of the L-stage Multicut to the regular approach that has complexity of n2(n−1)

2 .
Whether the L-stage Multicut has lower computational complexity depends on the function
h(pL−1,L). If h(pL−1,L)≤ 1 the L-stage Multicut has lower complexity than a single Mul-
ticut on the entire dataset. The function h(pL−1,L) can be seen in Figure 3.4 for different
numbers of stages L.

The memory complexity of the naive Multicut approach on a dataset of size n scales with
a complexity of n2(n−1)

2 .

On the other hand, in the MSM approach, the memory scales at most like
n2(n−1)

2 maxk∈[1,L]
(∏

k−1
i=1 pk)

3

S2
k

. This allows a reduction in the very first stage by 1
S2

1
. In later

stages p is much smaller than one, thus the memory requirement on different workers are
still much smaller than the naive approach. This allows to train much bigger datasets than
what has previously been possible.
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Fig. 3.4 Visualization of the function h(pL−1,L) for different stages L.

3.4 Experiments

In this section, we evaluate MSM algorithm on various datasets (Table 3.1) for image
clustering tasks. They vary in terms of dataset size and number of unique classes. Attribute
haircolors of CelebA [108] dataset is selected for this clustering tasks, which consists of
small number of class. On the other hand, the train and test dataset is swapped in order
to evaluate a significant large graph with more than 100k nodes. While CIFAR-10 and
CIFAR-100 are similar dataset, they vary in number of unique classes. In other words, there
are less samples for each class and more unique classes in CIFAR-100, which makes the
learning more challenging.
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Runtime

We measure the runtime in seconds as well as the cluster accuracy, finding the best matches
between the predicted cluster and true label as described previously in Section 2.4.1.All
experiments are run on the same hardware and setup with multiple runs. If not specified,
we report the mean number over five runs as well as its standard deviation. The features are
extracted from models based on weakly-supervised learning. We specify this in the according
subsection of each experiment. The aim is to show, that, for a given problem, MSM can
speedup clustering using Multicuts clustering method without any noticeable performance
drop. The rest of this Chapter explains the experiments on the datasets: first, a two-stage
approach on CIFAR-10 dataset is evaluated in Chapter 3.4.1. Then, we compare different
sparsity setup and stages on a significant larger dataset in the following Chapters. Lastly in
Chapter 3.4.5, we evaluate a 4-Stage approach on CIFAR-100 dataset.

DATASET TRAIN SIZE TEST SIZE # CLASSES

CELEBA [108] 12.293 101.642 5
CIFAR10 [93] 50.000 10.000 10
CIFAR100 [93] 50.000 10.000 100

Table 3.1 MSM: Datasets used for image clustering tasks.

3.4.1 Two-Stage Approach on CIFAR-10 Dataset

In this experiment, we evaluate our MSM on CIFAR-10 based on a two-stage approach
(L = 2), meaning that we split the dataset across S1 workers during the first stage as shown in
Figure 3.3 a). Each worker si solves the Minimum Cost Multicut Problem on a smaller dataset
and the results (cluster labels) are forwarded to the next stage. All intermediate results are
merged in one worker (S2 = 1) to compute the final results. An example of the merge process
with two workers from previous stage is illustrated in Figure 3.3 b).

Embeddings

We train a deep neural network with our proposed Triplet Loss (Equation 2.3) for multicuts.
The threshold for cuts and joins are derived from the training parameters. We also compute
all the embeddings offline. This way, the GPUs are not required to extract the embeddings
during the clustering task.
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Results

We are comparing this method in terms of runtime as well as clustering accuracy on the
full test dataset. As shown previously in Figure 3.2, one single worker takes on average
930.64±8.44 seconds to solve the problem. Increasing the number of workers by 2 using
MSM (S1 = 2) reduces the runtime of the problem by more than half (361.29± 16.4587
seconds). While the runtime is decreasing, the cluster accuracy remains the same, which is
80.54%±0.36%, as shown in Figure 3.5. Furthermore, we observe that additional computa-
tion is required for the merge process (shown as gray dashed line). The more workers are
used, the more time it takes for combining the results. However, the major time are spent on
the clustering task for each individual worker (shown as red line).

Fig. 3.5 MSM on CIFAR-10: Runtime and Cluster Accuracy.

Runtime and Cluster Accuracy on CIFAR-10 test dataset using different number of workers
in first stage (S1). The Multicut runtime is reduced significantly when more workers are
utilized. The runtime for merge (e.g. second stage) remains very low and the cluster accuracy
is consistently around 80%.
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3.4.2 Sparsity is Influencing the Runtime on Merge

In this experiment, we evaluate MSM on CelebA dataset [108]. We use the attribute haircol-
ors for the image clustering task, which consists of five following classes: bald, gray_hair,
blond_hair, black_hair and brown_hair.

Embeddings

We trained a deep neural network as in the previous experiment, using a modified Triplet
Loss (Equation 2.3). Here we swapped the train and test (see Table 3.1). We show the
performance of MSM on a larger image clustering problem. The top row of Figure 3.6
shows the performance of MSM on CelebA dataset for a two stage clustering L = 2 (as in
section 3.4.1). However, in this particular experiment, we enforce sparsity, where the number
of total edges are reduced. Having less edges will speed up the algorithm but tends to produce
more clusters thus decreasing the total cluster accuracy (as shown previously in Figure 3.2).
We also use up to S1 = 40 workers for this image clustering task. The grey line depicts the
runtime of each individual, concurrent worker for the clustering task via Multicuts while the
dashed line shows the runtime for merging the results (e.g. the last stage |SL|). The sum of
both (total runtime) is represented as red line.

Results

The runtime decreases when adding more workers to MSM. Moreover, only a small drop
in clustering performance is observed (blue line). However, Figure 3.6 top left shows, that
at roughly S1 = 25 workers, the runtime of merge process (dashed line) of MSM begins to
overtake the runtime of each individual Multicuts process (gray line).

This effect is amplified by further removing more edges from the initial graph (sparsity=
0.01) at S1 . This is illustrated in Figure 3.6 top right. Not only does the performance of the
clustering task drop, but also the total runtime increases when using more workers. When
increasing the sparsity of the graph (=overcluster), the merge process in S2 = 1 becomes the
bottleneck and no performance gain is achieved but rather the opposite instead.
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Fig. 3.6 MSM: Evaluation on CelebA Dataset.

Evaluation of MSM on CelebA Dataset: L = 2 vs. L = 3 using different (sparse) input graphs
on CelebA Dataset. We compare the performance in terms of runtime (in seconds) and cluster
accuracy. First row: MSM with two stages (L = 2). Second row: MSM with three stages
(L = 3). Third row: comparison of L = 2 and L = 3. The columns represent different sparse
graph for the initial stage. When using a two stage approach (L = 2) with graphs as depicted
on first row, second column, adding more workers will increase the runtime significantly
since we merge all results to one single worker in the last stage. We can avoid such bottleneck
by adding an additional stage (L = 3), which is shown in the second row, second column (be
aware of the scaling).
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3.4.3 MSM with 3-Stages on CelebA

When the output of Sk becomes too large, sending all the intermediate solutions to one
single worker (e.g. Sk+1 = 1) for processing the final result is not beneficial for MSM as
it creates a bottleneck. We therefore investigate the effects of MSM with L = 3 stages on
image clustering tasks. Specifically, we ran the same experiments as previously. On each
intermediate stage, we reduce the number of workers by half. For instance if we set S1 = 40,
then S2 = 20 and S3 = 1, respectively. This way, we successively reduce the number of data
on each layer.

Results

Figure 3.6 second row illustrates the performance of MSM with L = 3 stages. The total
runtime slightly improves compared to MSM with L = 2 stages. However, on second row
right, we see a significant performance increase for L = 3. Similarly, we also observe a drop
in cluster accuracy when increasing the number of workers. The last row shows the direct
comparison between L = 2 vs. L = 3 stages MSM.

3.4.4 Qualitative Results

Figure 3.7 shows a TSNE [112] visualization of the embedding space of CeleA dataset and
the clustering results of both methods. The ground truth is displayed in a) while b) and c)
shows k-means and the Minimum Cost Multicuts with its clustering performance of 85.51%
and 85.17%, respectively. While k-means outputs exactly give clusters, the Minimum Cost
Multicuts is able to discover new clusters (in red). Interestingly, this new cluster is located
between the class bald and black_hair. Looking closer to some examples of the clusters,
which are shown in 3.8, one can observe that it mostly contains person from certain ethnicity,
e.g. dark skin and bald. Such cluster is not defined on this dataset, however, the Mulitcuts
clustering is able to discover it.

On the other hand, the input parameter of K-Means algorithm was set to K = 5. Although
this information is known from the dataset, the optimal number of K is verified in another
experiment. Figure 3.9 shows the Elbow method for finding the optimal number of clusters
on the dataset, which is K = 5. The experiment is repeated five times with different random
seed on each run with a search range of 1 < K < 15, which is shown in x-axis. Instead of
showing the sum squared distance between the data point and its cluster center (y-axis), the
cluster performance is evaluated, similar as done in [15]. However, in contrast to the authors
method, which suggest an over-clustering, our experiment shows an optimal number for the
dataset is k = 5, which is consistent with the class labels.
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Fig. 3.7 MSM on CelebA dataset: Discovery of new Cluster.

While the dataset has 5 different classes, MSM is able to detect a new cluster.

Fig. 3.8 More Examples of new Clusters.
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Fig. 3.9 Use ground truth in order to find the optimal k on CelebA dataset.

The optimal parameter for K for K-Means for the CelebA dataset is 5.

3.4.5 MSM with 4-Stages on CIFAR100

CIFAR100 Test dataset has in total 10.000 samples with 100 unique, balanced clusters. These
100 unique clusters are further grouped into 20 super clusters, for instance the class trees
consists of tree = {maple,oak, palm, pine,willow} Figure 3.10 shows the cluster accuracy
as well as the total runtime in seconds. We use the embedding from [89] and evaluated MSM
for L = 3 and L = 4.

Results

While the clustering accuracy remains very stable (average of 75.7% ±0.4%), we observe
different runtimes for L3 and L4. The fastest clustering solution (115.83s ±1.75s) in this
experiment is obtained with L = 4 and 12 workers for the initial stage (S1 = 12), which is
circled in back on Figure 3.10. Increasing the number of workers slows down MSM. The
best clustering accuracy is 75.7% with 578 unique clusters in total.
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Fig. 3.10 MSM on CIFAR100 Dataset with L = 3 vs. L = 4.

Evaluation of MSM on CIFAR100 dataset: L = 3 vs. L = 4. We compare the performance
in terms of runtime (in seconds) and cluster accuracy. The optimal runtime for L = 4 is
achieved with S1 = 12 workers.

Figure 3.11 shows the embedding space of the CIFAR100 dataset. Example of the cluster
tree is displayed as well. Despite having a clustering performance of 75.7%, the distribution
of the images across the clusters varies significantly. This is shown in Figure 3.12. While the
test dataset contains 10.000 images with 100 class labels, it is expected to have 100 clusters
with each 100 data since the dataset is balanced as well. However, the histogram shows a
significant large number of single clusters (484) and a very few very large clusters with more
than 100 images. These super large clusters contribute significantly to the error rate as they
contain disproportionately many images. Thus the individual cluster accuracies are between
29%−48%. On the other hand, the small clusters containing only a single image contribute
very little to the error rate. For instance, 484 single clusters contributes only 484

10.000 = 4.84%
to the error rate.
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Fig. 3.11 MSM on CIFAR100 Dataset: example cluster tree.

Fig. 3.12 MSM on CIFAR100 Dataset: Cluster Histogram.

The optimal distribution for CIFAR100 is around 100. The errors are contributed by some
large clusters, which have low cluster accuracy.



72 Scalable Multicuts

3.5 Conclusion & Future Work

In this Chapter, we presented MSM, a Multi-Stage parallel Multicuts algorithm for clustering
data based on a given graph of pair-wise distances between entities. This algorithm utilized
the previously introduced Triplet Loss for a graph-based clustering. We showed that MSM
provides good scalability on shared memory systems, while preserving the accuracy of the
originally sequential Multicuts clustering. The theoretical proof for the proposed algorithm
is provided as well.

The advantage of the Minimum Cost Multicut Problem is the fact, that it is possible to
perform pairwise comparisons of data. This allow us to overcome certain assumptions of
data distributions, such as a priors known numbers of clusters or priors on cluster density
and shape as in popular methods like k-means. However, optimizing such a data requires
significant amount of resources such as memory and computation time. We observe that
for image clustering task, MSM provides significant speedup using without any noticeable
drop in cluster accuracy. We reported the runtime in seconds on different datasets with
different number of classes, for example MSM is clusters a dataset (CelebA with 5 classes)
of 100.000 images in one minute. Our aim is to provide a Multicuts clustering approach
that is capable of solving a large graph within a reasonable amount of time. We believe that
Multicuts clustering approaches enable new possibilities for research towards unsupervised
learning. Later in Chapter 5, we show that using MSM algorithm on large dataset such as
ImageNet [134], we are able to not only cluster dataset with a large number of unique classes,
but we are also able to utilize clustering as a performance measure for robustness of models.

Limitation

MSM introduces different hyperparameters such as sparsity of the input graphs, number of
available resources and number of stages. One interesting research direction for the future is
to investigate a heuristic for automatically finding the optimal setup for a given problem and
dataset. Currently, the number of stages is set manually.



Chapter 4

Application on Multiple Object Tracking

In this Chapter, we apply the clustering approach on Multiple Object Tracking (MOT)
application. The content of this chapter is based on the approach, that we previously published
in [62, 63]. While I contributed the idea, algorithmic implementation and experimental
evaluation, the work has been supervised by Prof. Dr. Janis Keuper and Prof. Dr. Margret
Keuper. The co-authors Amirhossein Kardoost and Franz-Josef Pfreundt in [62] contributed
to insightful discussions.

4.1 Introduction

The objective of multiple object tracking is to find a trajectory for each individual object
of interest in a given input video. Specific interest has been devoted to the specific task of
multiple person tracking [169, 55, 148, 149, 109]. Most successful approaches follow the
Tracking-By-Detection paradigm. First, an object (pedestrian) detector is used in order to
retrieve the position of each person within each frame. Secondly, the output detections of
same persons across video frames are associated over space and time in order to form unique
trajectories. Since objects might get occluded during the video sequence or the detector
might simply fail on some examples, successful approaches are usually based not solely on
spatial but also on appearance cues. These are learned from annotated data, for example
using Siamese networks for person re-identification [149]. Such association of data and
re-identification of persons can be treated as a clustering task of detections.
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4.2 Motivation

Supervised approaches for person re-identification require large amounts of sequence specific
data in order to achieve good performance. For this reason, multiple object tracking bench-
marks such as MOT [115] are providing a training sequence recorded in a sufficiently similar
setting for every test sequence. The results of our experiments in table 4.1 confirm this
dependency and show the high variance in the quality of supervised approaches, depending
on the data used for training. The standard approach to solve this problem is to incorporate
additional annotated training data. For example, [168, 37] showed that additional data is
key to improving the overall tracking performance. Thus, publicly available, annotated
training data currently seems not to be sufficient for training reliable person re-identification
networks. Furthermore, recording and labeling sufficient data in a setting close to a final
test scenario usually comes at a high price. Hence, the need for methods with a low amount
of supervision becomes obvious and motivates us to propose a multiple object tracking
method based on self-supervision. While self-supervised learning methods [90] have been
successfully exploited in other vision tasks [124, 113, 53, 167, 102, 157], a direct application
to tracking is non-trivial: Learning suitable object appearance metrics for object tracking in a
self-supervised way is challenging since, compared to classical clustering problems, visual
features of the same person may change over time due to pose and viewpoint changes and
partial occlusion. Other issues, such as frequent and long range full occlusion or background
noises, makes pedestrian tracking even more challenging.

In this Chapter, we propose an approach for learning appearance features for multiple
object tracking without utilizing human annotations of the data. Our approach is based on
two observations: I) given an image sequence, many data associations can be made reliably
from pure spatio-temporal cues such as the intersection over union (IoU) of bounding boxes
within one frame or between neighboring frames. II) Resulting tracklets, carry important
information about the variation of an object’s appearance over time, for example by changes
of the pose or viewpoint. In our model, we cluster the initial data based on simple spatial cues
using the recently successful minimum cost multicut approach [148]. The resulting clustering
information is then injected into a convolutional AutoEncoder to enforce detections with the
same, spatio-temporally determined label to be close to one-another in the latent space (see
Fig.4.1). Thus, the resulting latent data representation is encoding not only the pure object
appearance, but also the expected appearance variations within one object ID. Distances
between such latent representations can serve to re-identify objects even after long temporal
distances, where no reliable spatio-temporal cues could be extracted. We use the resulting
information in the minimum cost lifted multicut framework, similar to the formulation of
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Table 4.1 Relative Tracking Performance on Transfer Task.

Results for training with one training sequence using GT annotations1 for the tracklet generation,
and evaluating on other training sequences with different viewpoints and resolutions. This table
shows the relative MOTA changes for non-matching sequences on MOT17, FRCNN in comparison to
the baseline (bold). Columns represent the training sequence, rows the test sequence. The tracking
performance heavily depends on the employed training data and can become unstable across domains.

Train (Supervised)
MOT-02 MOT-04 MOT-05 MOT-09 MOT-10 MOT-11 MOT-13

Te
st

MOT-02 100.0 -0.3 -0.3 -19.2 -9.1 -12.5 -9.5
MOT-04 0.0 100.0 0.0 -19.3 -4.9 -11.5 -4.9
MOT-05 -0.6 -1.2 100.0 -3.2 -5.1 -3.4 -5.1
MOT-09 -0.2 -0.4 -0.2 100.0 -2.9 -0.5 -2.5
MOT-10 0.8 0.6 1.2 0.6 100.0 0.6 0.4
MOT-11 0.0 -0.2 -0.2 0.2 -1.2 100.0 -1.4
MOT-13 0.4 -1.1 -0.4 -3.8 -0.8 -2.7 100.0

Tang [149], whose method is based on Siamese networks trained in a fully supervised way.
To summarize, our contributions are:

• We present an approach for multiple object tracking, including long range connections
between objects, which is completely supervision-free in the sense that no human
annotations of person IDs are employed.

• We propose to inject spatio-temporally derived information into convolutional AutoEn-
coder in order to produce a suitable data embedding space for multiple object tracking
and compare this with the previously proposed Triplet Loss.

• We evaluate our approach on the challenging MOT17 benchmark and show competitive
results without using training annotations.

The rest of the chapter is structured as follows: Section 4.3 discusses the related work
on multiple object tracking. Our self-supervised approach on multiple object tracking is
explained in Chapter 4.4. In Chapter 4.5, we show the tracking performance of the proposed
method in the MOT Benchmark [115] and conclude in Section 4.6.

1Specifically, we mine GT tracklets from the detections with IoU > 0.5 with the GT as e.g. done in [98].
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4.3 Related Work

4.3.1 Multiple Object Tracking

In Multiple Object Tracking according to the Tracking by Detection paradigm, the objec-
tive is to associate detections of individual persons, which may have spatial or temporal
changes in the video. Thus re-identification over a long range remains a challenging task.
Multiple object tracking by linking bounding box detections (tracking by detection) was
studied, e.g., in [126, 4, 69, 3, 38, 169, 57, 150, 57, 55]. These works solve the combina-
torial problem of linking detections over time via different formulations e.g. via integer
linear programming [142, 158], MAP estimation [126], CRFs [96], continuous optimization
[4] or dominant sets [151]. In such approaches, the pre-grouping of detections into track-
lets or non-maximum suppression are commonly used to reduce the computational costs
[69, 160, 3, 38, 169, 161, 57, 150]. For example Zamir et al. [169] use generalized minimum
clique graphs to generate tracklets as well as the final object trajectories. Non-maximum
suppression also plays a crucial role in disjoint path formulations, such as [126, 158, 17]. In
the work of Tang et al. [148], local pairwise features based on DeepMatching are used to
solve a multicut problem. The affinity measure is invariant to camera motion and thus makes
it reliable for short term occlusions. An extension of this work is found in [149], where
additional long range information is included. By introducing a lifted edge in the graph, an
improvement of person re-identification has been achieved. Similarly, [65] uses lifted edges
as an extension to the disjoint path problem. [12] exploits the tracking formulation using a
Message Passing Networks (MPNs). In [85], low-level point trajectories and the detections
are combined to jointly solve a co-clustering problem, where dependencies are established
between the low-level points and the detections. Henschel et al. [56] solves the multiple
object tracking problem by incorporating additional head detecion to the full body detection
while in [58], they use a body and joint detector to improve the quality of the provided
noisy detections from the benchmark. Other works that treat Multiple Object Tracking as
a graph-based problem can be found in [55], [84, 86, 96] and [169]. In contrast, [111]
introduces a tracklet-to-tracklet method based on a combination of Deep Neural Networks,
called Deep Siamese Bi-GRU. The visual appearance of detections are extracted with CNNs
and RNNs in order to generate a tracklet of individuals. These tracklets are then split and re-
connected such that occluded persons are correctly re-identified. The framework uses spatial
and temporal information from the detector to associate the tracklets. The approach in [9]
exploits the bounding box information by learning from detectors first and combined with a
re-identification model trained on a siamese network. While the state of the art approaches in
MOT17 Challenge are all based on supervised learning [56, 87, 139, 18], there are similar
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works in [104, 110], which attempt to solve person re-identification (ReID) problems in an
unsupervised manner.

4.3.2 Self-supervised learning

Self-supervised learning aims to generate pseudo labels automatically from a pretext task,
and then employs these labels to train and solve for the actual downstream task. This is
especially useful when no labeled data is available. Thus self-supervised approaches can
be applied to many specific real-world problems. An extensive review of recent methods
is presented in [77]. For instance [124] uses a motion-based approach to obtain labels to
train a convolutional neural network for semantic segmentation problems. Another work on
self-supervision based on motion can be found in [113] The idea of Doersch et al. [30] is to
predict the position of eight spatial configurations given an image pair. In [125] semantic
inpainting task is solved using a context encoder to predict missing pixels of an image.
Hendrycks et al. [53] use a self-supervised method to improve the robustness of deep learning
models. Lee et al. [102] propose an approach to improve object detection by recycling the
bounding box labels while Ye et al. [167] use a progressive latent model to learn a customized
detector based on spatio-temporal proposals.
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4.4 Method

The proposed approach is based on the idea to learn, from simple spatial data associations
between object detections in image sequences, which appearance variations are to be expected
within one object for the task of multiple object tracking. An overview of our workflow
implementing this idea is given in Fig. 4.1.

Step 1

The object detection bounding boxes are extracted along with their spatial information such
that spatial correspondences between detections in neighboring frames can be computed.
Based on these simple spatial associations, detections can be grouped into tracklets in order to
obtain cluster labels using clustering approaches such as correlation clustering as introduced
in 1.3.3.

Step 2

A convolutional AutoEncoder is trained to learn the visual features of detections. The ob-
jective is to learn a latent space representation which can serve to match the same object
in different video frames. Thus, the information about spatial cluster labels from the first
stage is used as the centroid of latent features. Distances between latent representations of
data samples and their centroids are minimized in the convolutional AutoEncoder using a
clustering loss.

Lastly, the data are transformed into the latent space of the trained AutoEncoder to extract
pairwise appearance distances which are expected to encode the desired invariances. Such
pairwise appearance distances are used to not only provide additional grouping information
between nearby detections, but also for detections with long temporal distance. The final
detection grouping is computed using minimum cost lifted multicuts [84].
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Fig. 4.1 Multiple Object Tracking in Two Steps.

Summary of our approach in two steps: 1. First, weak cluster labels (tracklets) are obtained
from spatio-temporal vicinity using Minimum Cost Multicuts [23]. 2. Then, visual features
are learned by an AutoEncoder, with an additional data association loss within the track-
lets. The AutoEncoder provides a stable appearance embedding while the additional loss
forces detections within one tracklet to have similar embeddings. This facilitates to extract
affinities between detections to compute the final tracking with re-identification using lifted
multicuts [149].

This section is divided into three subsections: Section 4.4.1 describes the Minimum
Cost (Lifted) Multicuts approach employed for obtaining the initial spatial cluster labels
(e.g. tracklets), as well as for the generation of the final tracking result. Section 4.4.2
describes the feature learning process using a convolutional AutoEncoder and cluster labels,
and section 4.4.4 describes the computation of the joint spatial and appearance metrics used
in the final data association step within the minimum cost Lifted Multicuts framework.
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4.4.1 Multicut Formulation

We follow Tang [149] and phrase the multiple target tracking problem as a graph partitioning
problem, more concretely, as a minimum cost (lifted) multicut problem. This formulation
can serve as well for an initial tracklet generation process, which will help us to inject cues
learned from spatial information into the appearance features, as it can be used to gener-
ate the final tracking result using short- and long-range information between object detections.

While the plain Minimum Cost Multicut Problem (refer to Chapter 1.3.3 for the formal
definition) has shown good performance in multiple object tracking scenarios with only short
range information available [148], the cost function actually has a rather limited expres-
siveness. In particular, when we want to add connectivity cues between temporally distant
bounding boxes, we can only do so by inserting a direct edge into the graph. This facilitates
solutions that directly connect such distant nodes even if this link is not justified by any path
through space and time. This limitation is alleviated by the formulation of minimum cost
Lifted Multicuts [84].

Spatio-Temporal Tracklet Generation

Since the proposed approach is self-supervised in a sense that no annotated labels from the
dataset are used in the training process, it is challenging to effectively learn such probabilities.
To approach this challenge, we first extract reliable point matches between neighboring
frames using DeepMatching [132] as done before e.g. in [148, 149, 85]. Instead of learning
a regression model on features derived from the resulting point matches, we simply assume
that the intersection over union (IoU) of retrieved matched within pairs of detections (denoted
by IoUDM) is an approximation to the true IoU. Thus, when IoUDM > 0.7, we can be sure
we are looking at the same object in different frames. While this rough estimation is not
suitable in the actual tracking task since it clearly over-estimates the cut probability, it can be
used to perform a pre-grouping of detections that definitely belong to the same person. The
computation of pairwise cut probabilities used in the lifted multicut step for the final tracking
task is described in section 4.4.4.
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4.4.2 Deep Convolutional AutoEncoder

A convolutional AutoEncoder takes an input image, feed forward it into a latent space and
reconstructs it with the objective to learn meaningful features in an unsupervised manner.
Unlike training with Triplet Loss, where specific image pairs from different classes are
selected, the AutoEncoder requires no training labels at all. It consists of two parts: the
encoder fθ (.) and a decoder gφ (.), where θ and φ are trainable parameters of the encoder
and decoder, respectively. For a given input video, there are in total n detections xi ∈ Xn

i=1,
the objective is to find a meaningful encoding zi, where the dimension of zi is much lower
than xi. The used convolutional AutoEncoder first maps the input data into a latent space
Z with a non-linear function fθ : X → Z, then decodes Z to its input with gφ : Z → X . The
encoding and reconstruction is achieved by minimizing the following loss equation:

Lae = min
θ ,φ

N

∑
i=1

L2(g( f (xi)),xi) (4.1)

where L2 is the least-squared loss L2(x,y) = ∥x− y∥2. Similar to the work of [165], we
add an additional clustering term to minimize the distance between learned features and their
cluster center c̃i from the spatio-temporal tracklet labels.

Lae_c = min
θ ,φ

N

∑
i=1

L2(g( f (xi)),xi)λ +L2( f (xi), c̃i)(1−λ ) (4.2)

The parameter λ ∈ [0,1] balances between reconstruction and clustering loss. When
choosing 0 < λ < 1, the reconstruction part (Eq. (4.1)) can be considered to be a data-
dependent regularization for the clustering. To compute the centroid ci, the whole dataset is
passed through the AutoEncoder once:

c̃i =
1
N

N

∑
i=1

f (xi) (4.3)

We use a deep AutoEncoder with five convolutional and max-pooling layers for the
encoder and five de-convolutional and upsample layers for the decoder, respectively. Further-
more, batch normalization is applied on each layer and initialized using Xavier Initialization
[42]. The input image size is halved after each layer while the number of filters are doubled.
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The size of latent space is set to 32. The input layer takes a colored image with dimension
128×128 in width and height and we applied ReLu activation functions on each layer. An
overview of the architecture is provided in 4.2.

Fig. 4.2 AutoEncoder Architecture.

Convolutional AutoEncoder with five convolutional layers in encoder and de-convolutional
layers in decoder, respectively. The center contains the latent space with a vector size of total
32, which is used as feature (latent) vector for similarity measure.
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4.4.3 AutoEncoder combined with Proposed Triplet Loss

The convolutional deep AutoEncoder can be extended along with the previously proposed
Triplet Loss 2.3. This additive term can be optimized jointly with Lae_c (4.2):

Lae_Triplet = Lae_c +LTriplet_3 (4.4)

Figure 4.3 illustrates the training overview, incorporating the proposed Triplet Loss. First,
bounding boxes from video sequences are retrieved: the green line represents positive pair,
which is selected purely based on spatio-temporal features from two adjacent frames (e.g.
frame 1 and 2). The one with highest intersection over union (IoU) is selected. In contrast,
the negative pair (in red) is selected within the same frame. This is done at random with the
condition that no overlap between the anchor and negative bounding box is allowed. All
three additive lost terms are depicted in blue.

Fig. 4.3 Apply proposed Triplet Loss 2.3 on multiple person tracking.

Three images are selected in order to train a CNN to learn visual features. Positive pair
(green) is selected based on spatio-temporal features between two adjacent frames, e.g.
intersection of union. Negative pair (red) is selected randomly within the same frame, where
no overlap of its bounding box positions are allowed.



84 Application on Multiple Object Tracking

Fi
g.

4.
4

C
om

pa
ri

so
n

w
ith

an
d

w
ith

ou
tC

lu
st

er
in

g
L

os
s.

N
ea

re
st

ne
ig

hb
or

of
th

e
qu

er
y

de
te

ct
io

n
(le

ft
m

os
td

et
ec

tio
n)

w
ith

in
46

fr
am

es
w

ith
a

st
ep

si
ze

of
5

fr
am

es
of

th
e

se
qu

en
ce

M
O

T1
7-

09
-

SD
P

w
ith

ou
t(

L a
e)

an
d

w
ith

(L
ae

_c
)t

he
se

lf
-s

up
er

vi
se

d
cl

us
te

ri
ng

lo
ss

.W
ith

ou
tc

lu
st

er
in

g
lo

ss
,t

he
de

te
ct

io
ns

on
th

e
gi

rl
ar

e
sp

re
ad

ov
er

se
ve

ra
lc

lu
st

er
s

an
d

a
fa

ls
e

as
so

ci
at

io
n

is
m

ad
e

by
th

e
ne

ar
es

tn
ei

gh
bo

r.
T

he
se

m
is

ta
ke

s
ar

e
co

rr
ec

te
d

by
th

e
cl

us
te

ri
ng

lo
ss

.
Fu

rt
he

rm
or

e,
op

tim
iz

in
g

w
ith

L a
e_

c
sh

ow
s

lo
w

er
th

e
E

uc
lid

ea
n

di
st

an
ce

(i
n

bl
ue

).



4.4 Method 85

4.4.4 AutoEncoder-based Similarity Measure

We use the trained AutoEncoder to estimate the similarity of two detections xi and x j of a
video sequence based on the Euclidean distance in the latent space:

di, j = ∥ f (xi)− f (x j)∥ (4.5)

Figure 4.4 shows the nearest neighbor of a selected frame t (left box marked in red) from
the sequence MOT17-09 and frame t + 5 · k. The example illustrates that the location of
detections with the same ID are close to one another in the latent space even over a long
distance of up to 40 frames. Yet, false positives can appear. The example also shows that
change in appearance affects the AutoEncoder distance, further denoted dAE. For instance
in the first row, frame 1 and frame 6 are very similar due to the same detection position of
the person within the bounding box as well as the direction the girl is looking to. At frame
41, the girl (in Fig. 4.4) slightly turned towards another person. Although the correct nearest
neighbour was retrieved, the distance dAE almost doubled (in blue: distance 4.83 compared
to 2.96 at frame 6). Another observation is that the position of the bounding box influences
the latent space distance. Such behavior easily allows for false positive associations. In the
second row, in the first detection from the left (frame 5), the detection of the person is slightly
shifted to the left. At frame 15, 20 or 25, the position is slightly zoomed and dAE increases.
Yet, it is overall more stable and less false positive associations are made.

The distance is directly used to a binary logistic regression to compute the cut probability
of the respective edge in graph G. The label that is used for the regression comes from the
DeepMatching IoU. If IoUDM(xi,x j) < Tlow for a threshold Tlow, xi and x j most certainly
belong to different objects. If IoUDM(xi,x j)> Thigh for a different threshold Thigh, they are
very likely to match. Formally, we estimate a probability pe ∈ [0,1] between two detections
using a feature vector f (e) by regressing the parameters β of a logistic function:

pe =
1

1+ exp(−⟨β , f (e)⟩)
(4.6)

Thus, the costs ce can intuitively be computed by the logit. To robustly estimate these
probabilities, we set Tlow and Thigh most conservatively to 0.1 and 0.7, respectively.

From this partial, purely spatially induced labeling, we can estimate cut probabilities for
all available features combinations, i.e. possible combinations of IoUDM and dAE within
nearby frames and only dAE for distant frames.
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Table 4.2 Multiple Object Tracking: Ablation Study on Performance

Tracking Performance using different features on the MOT17 Training Dataset. The third
column refers to the frame distance over which bounding boxes are connected in the graph.
dAE represents the AutoEncoder latent space distance while dAE+C includes the clustering
term, respectively. Our proposed approach includes lifted edges [149] between frames of
distance 10, 20 and 30.

No Features Distance MOTA IDs FP FN

1 IoUDM 1-3 47.2 3,062 7,868 167,068
2 dAE 1-3 35.2 4,378 10,213 203,868
3 dAE+C 1-3 37.6 3,830 8,951 197,308
4 Combined (1+2) 1-3 49.4 1,730 7,536 161,057
5 Combined (1+3) 1-3 49.4 1,713 7,786 161,084

6 IoUDM 1-5 47.2 2,731 12,195 163,055
7 dAE 1-3 35.8 4,623 6,867 204,697
8 dAE+C 1-5 35.2 4,378 10,213 203,868
9 Combined (6+7) 1-5 49.7 1,567 9,067 158,788

10 Combined (6+8) 1-5 49.8 1,569 8,869 158,715

11 AutoEncoder (Lae_c) 1-5 50.2 1,458 8,466 157,936
12 Triplet Loss (Lae_Triplet) 1-5 50.2 1,381 8,794 157,462

4.5 Experiments and Results

We evaluate the proposed method on the MOT17 Benchmark [115] for multiple person track-
ing. The dataset consists of 14 sequences, divided into train and test sets with 7 sequences
each. For all sequences, three different detection sets are provided, from the detectors
SDP[166], DPM[36] and FRCNN [131], thus yielding 21 sequences in both data splits.
While SDP and FRCNN provide reliable detections, the performance of the DPM detector is
relatively noise and many detections are show poor localization.

The settings between the training and testing scenes are very similar such as moving/static
camera, place of recording or view angle, such that learning-based methods usually train on
the most similar training sequence for every test sequence. For the evaluation, we use the
standard CLEAR MOTA metric [99]. We reported Tracking Accuracy (MOTA), Precision
(MOTP), number of identity switches (IDs), mostly tracked trajectories ratio (MT) and mostly
lost trajectories (ML).
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Table 4.3 Multiple Object Tracking Comparison.

Tracking result compared to other methods on the MOT17 dataset. The best performance is
marked in bold.

Sequence Method MOTA IDs FP FN

eHAF17[140] Supervised 51.8 1,834 33,212 236,772
AFN17[138] Supervised 51.5 2,593 22,391 248,420
YOONKJ17[138] Supervised 51.4 2,593 29,051 243,202
NOTA[19] Supervised 51.3 2,285 20,148 252,531
jCC[85] Supervised 51.2 1,802 25,937 247,822

AutoEncoder (Lae_c) Self-Supervised 48.1 2,328 17,480 272,602
Triplet Loss (Lae_Triplet) Self-Supervised 47.9 2,082 15,827 276,179

After providing our implementation details, we report an ablation study on the training
sequences of MOT17 in section 4.5.1. Our final results are discussed in section 4.5.2.

Implementation Details

Our implementation is based on the Tensorflow Deep Learning Framework. We use a convo-
lutional AutoEncoder in order to extract features by optimizing the equation (4.2). Thus no
pre-training or any other ground truth is required. Furthermore, our pre-processing step is
only limited to extracting the provided detections from all sequences and resizing them to
the corresponding size of the AutoEncoder input layer. Thus the detections from the MOT17
dataset are directly fed to the AutoEncoder. For each sequence from the dataset (MOT17-01
to MOT17-14 with the detector SDP, FRCNN and DPM), one individual model is trained
with the same setup and training parameters. However, it is important to note that the number
of detections for each individual person varies significantly: This is due to the fact that
individual pedestrians are captured in a scene over many frames while others are quickly
passing by or simply missed by the detector. while some pedestrians are staying in the scene
for a long time, others are passing by quickly out of the scene. This results different cluster
sizes. To balance this, randomized batches of detections are applied during the training,
where each batch contains only images from one single frame. This way, one iteration of
training contains only detections from unique persons. The initial learning rate is set to
LR = 0.001 and decays exponentially by a factor of 10 over time. The balancing parameter
between reconstruction and clustering loss is set to λ = 0 at the beginning in order to first
learn the visual features of the video sequences. After five epochs, the cluster information is
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included in the training, e.g. λ is set to 0.95 to encode the appearance variations from the
spatio-temporal clusters into the latent space of the AutoEncoder.

From Clusters to Tracklets

To transform detection clusters into actual tracks, we follow the procedure proposed in [148],
i.e. from all detections within one cluster, we select the one with the best detection score pre
frame. Clusters containing less than 5 detections are completely removed and gaps in the
resulting tracklets are filled using bilinear interpolation.

4.5.1 Ablation Study

We investigated feature setups in the Minimum Cost Multicuts framework. The cut probability
between pairs of nodes are computed using a logistic regression function. Adding new
features directly affects the edge cost between pairs thus resulting in different clustering
performances. Here, we investigate the extent to which our proposed appearance model
improves the tracking performance.

Comparison of different setups

Table 4.2 shows the evaluated setups and the resulting tracking performance scores. The
column Features lists the added features to the logistic regression model. The temporal
distances over which bounding boxes are connected in the graph are marked in the column
Distances. The tracking accuracy of experiment 1 and 6, which uses IoUDM only, is 47.2%.
Experiment 2+3 and 7+8 compare the different AutoEncoder models: the Euclidean distance
(dAE) from the AutoEncoder latent space is computed in order to estimate the similarity of
each pair detections. Here, dAE denotes the latent space distance before adding the clustering
loss while dAE+C denotes the distance after training of the AutoEncoder with the clustering
loss, i.e. our proposed appearance method.

Best performance with proposed method

The benefit from using the clustering loss on the model training is obvious: for both distances
(1-3 and 1-5 frames), the performance is significantly higher. For distance 1-3, dAE+C has a
tracking accuracy of 37.6 compared to dAE (35.2) and for distance 1-5, the MOTA scores
are 35.2 and 35.8 for dAE+C and dAE, respectively. Although the scores are lower than using
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Fig. 4.5 TSNE Visualization of AutoEncoder Latent Space.

TSNE Visualization of the latent space of the trained AutoEncoder for the sequence MOT17-
04 FRCNN. The colors represent the assigned person IDs. As the appearance changes for
example due to pose changes, the latent representations vary smoothly.

IoUDM, combining them both together increases the performance further. This is shown in
experiment 4+5 and 9+10, where the best score is achieved with in experiment 10 (proposed
method). We also observe that the number of identity switches (IDs) is reduced with our
setup. Finally, we add lifted long range edges and solve the resulting Minimum Cost Lifted
Multicuts Problem on G. Our best performance is achieved using the setup of experiment 11
with a MOTA of 50.2% using all model components.
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TSNE-Visualization

Figure 4.5 shows the TSNE-Visualization [112] of the latent space from the sequence MOT17-
04-FRCNN. Our proposed AutoEncoder learned the visual features without supervision.
The different colors represent the cluster labels. As shown in the example circled on the
bottom left, similar looking persons are very closed to one another in the latent space: The
sitting person in white shirt and the lady, wearing a white shirt (example in bottom left).
The visualization also shows, that the same person may change the appearance over time
(example on the bottom right). In the latent space, the snake-like shape may indicate that the
viewpoint or pose of a person may have changed over time, causing a continuous appearance
change. When standing still, the change is minimal, which is also observed in the example
on the top right corner. While for nearby frames, we can compute pairwise cues based on
the distance between latent feature representation (dAE), as well as on spatial cues (IoUDM),
spatial information can not be used to associate detections over longer temporal distances.
However, to facilitate the re-identification of objects after being fully or partly occluded, such
long-range information is needed. In these cases, we have to purely rely on the learned latent
space distance dAE.

4.5.2 Results

Tracking Performance on test data

Here, we present and discuss our final tracking results on the MOT17 test dataset. Compared
to the performance on the training dataset, the MOTA score of our proposed approach is
slightly lower (Training: 50.2% vs. Testing: 48.1%), which is within the observed variance
between different sequences, neglecting excessive parameter tuning. The best performance is
achieved in conjunction with the SDP-detector while the performance on the noisier DPM
detections are weaker (detailed tables are provided in the supplementary material). While
supervised approaches can also train their models w.r.t. the overlap of provided detections
with the ground truth and thus compensate for poor detector quality, our self-supervised
approach depends on reasonable object detections.
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Comparison with other tracking approaches

We compare our method with five other reported tracking methods eHAF17[140], AFN17[138],
YOONKJ17[138], NOTA[19] and jCC[85]. Unlike better performing approaches on the MOT
benchmark, these methods use the provided public detections directly without employing
any repair mechanism in order to improve the bounding box quality.

We consider a tracking method as supervised when ground truth data is used (for example
label data for learning a regression function) or if any pre-trained model is included in
the approach. Table 4.3 gives an overview of the scores in different metrics that is being
evaluated. The best on each category is marked in bold. Our proposed method is competitive
given the fact that no pre-trained model or any other ground truth is employed. Without
using any of the provided human annotations and with identical parameter settings for all
sequences and detectors, our resulting MOTA scores are shown to be competitive. Note
especially the relatively low number of ID switches.

Yet, as discussed above, our model currently has no mechanism that would allow to repair
erroneous detection such as it is done e.g. in [9], [12] or [37] or by the current state-of-the-art
approach Lif_T[65].

When comparing more closely the average MOTA scores we achieve per detector over all
sequences, our proposed method reaches 46.9% on the SDP detector while [9] reach 47.1%.
For a state-of-the-art detector, our method performs thus competitive with supervised one.
Yet, on the noisy DPM detections, our approach is outperformed by 10% (49.0 [9] vs. 34.3
(Ours)), decreasing the total average significantly.

4.6 Conclusion

In this Chapter, we applied the clustering technique on a real-world problem. Specifically,
we presented an approach towards tracking of multiple persons without the supervision by
human annotations based on deep convolutional AutoEncoder. First, we group the data based
on their spatial-temporal features to obtain weak clusters (tracklets). The clustering is done
using the Lifted Minimum cost multicuts, where similarity measures are first soley based on
spatial-temporal features. Combining the visual features learned from an AutoEncoder with
these tracklets, we are able to automatically create robust appearance cues enabling multiple
person tracking over a long distance. The result of our proposed method achieves a tracking
accuracy of 48.1% on the MOT17 benchmark.





Chapter 5

Clustering as Robustness Predictor

In this Chapter, we use clustering as a indicator for measuring robustness of deep neural
networks. The content of this chapter is based on the approach, that we previously published
in [61]. While I contributed the idea, algorithmic implementation and experimental evaluation,
the work has been supervised by Prof. Dr. Janis Keuper and Prof. Dr. Margret Keuper.
The co-authors Avraam Chatzimichailidis and Franz-Josef Pfreundt in [61] contributed to
insightful discussions.

5.1 Introduction

We want to apply previously introduced Minimum Cost Multicuts and K-Means clustering
in order to predict, whether a model is robust against corruptions of input data, since deep
learning approaches have shown rapid progress on computer vision tasks. Much work has
been dedicated to train ever deeper models with improved validation and test accuracies and
efficient training schemes [174, 67, 106, 68]. Recently, this progress has been accompanied
by discussions on the robustness of the resulting model [29]. Specifically, the focus shifted
towards the following two questions:

1. How can we train models that are robust with respect to specific kinds of perturbations?

2. How can we assess the robustness of a given model?

These two questions represent fundamentally different perspectives on the same problem.
While the first question assumes that the expected set of perturbations is known during model
training, the second question rather aims at estimating a models behavior in unforeseen cases
and predict its robustness without explicitly testing on specific kinds of corrupted data.
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Fig. 5.1 Clustering as a Predictor.

Predicting the robustness of models using our proposed cluster purity indicator (ppurity): The
correlation between ppurity of models trained on the original ImageNet with the measured
test accuracy on ImageNet-C is R2 = 0.87.

In this Chapter, we address the second research question. We argue that the clustering
performance in a model’s latent space can be an indicator for a model’s robustness. For this
purpose, we introduce cluster purity as a robustness measure in order to predict the behavior
of models against data corruption and adversarial attacks. Specifically, we evaluate various
classification models [94, 174, 70, 51, 145, 172, 73, 153] on the ImageNet-C [52] dataset of
corrupted ImageNet images where we measure the robustness of a model as the ratio between
the accuracy on corrupted data and clean data. The key result of this paper is illustrated in
figure 5.1: it shows that the model robustness is strongly correlated to the relative clustering
performance on the models’ latent spaces, i.e. the ratio between the cluster purity and the
classification accuracy, both evaluated on clean data. The clusterability of a model’s feature
space can therefore be considered as an easily accessible indicator for model robustness.

In summary, our work contributes the following:
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• We study the feature spaces of several ImageNet pre-trained models including the state-
of-the-art CNN models [174, 70, 51, 145, 172] and the recently proposed transformer
models [153] and evaluate their model robustness on the ImageNet-C dataset and
against adversarial attacks.

• We show that intra- and inter-class distances extracted from classification models are
not suitable as a direct indicator for a model’s robustness.

• We provide a study of two clustering methods, K-Means and the Minimum Cost
Multicut Problem (MP) and analyze the correlation between classification accuracy,
robustness and clusterability.

• We show that the relative clustering accuracy, i.e. the ratio between classification and
clustering performance, is a strong indicator for the robustness of the classification
model under ImageNet-C corruptions.

This Chapter is structured as follows: We first review the related work on image classification,
model robustness and deep clustering approaches in Chapter 5.2, then we propose the
methodology for the feature space analysis in Chapter 5.3. Our experiments and results are
discussed in Chapter 5.4.1.
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5.2 Related Work

Image Classification

Convolutional neural networks (CNN) have shown great success in computer vision. In
particular, from the classification of handwritten characters [101] to images [93], CNN-based
methods consistently achieve state-of-the-art in various benchmarks. With the introduction
of ImageNet [134], a dataset with higher resolution images and one thousand diverse classes
is available to benchmark the classification accuracy of ever better performing networks [94,
174, 70, 51, 145, 172], ranging from small and compact netork [67] to large models [144]
with over 100 millions of parameters.

Transformers

Recently, transformer network architectures, which were originally introduced in the area of
natural language processing [155], have been successfully applied to the image classification
task [20, 32]. The performance of transformer networks is competitive despite having no
convolutional layers. However, transformer models require long training times and large
amounts of data [32] in order to generalize well. A more efficient approach for training
has been proposed in [153], which is based on a teacher-student strategy (distillation).
Similarly, [16] uses the same strategy on self-supervised tasks.

Model Robustness

Convolutional neural networks are susceptible to distribution shifts [129] between train
and test data [121, 39, 52, 135]. This concerns both visible input domain shifts by for
example considering corrupted, noisy or blurred data, as well as imperceptible changes in
the input, induced by [117, 44, 97]. These explicitly maximize the error rate of classification
models [146, 11] and thereby reveal model weaknesses. Many methods have been proposed to
improve the adversarial robustness by specific training procedures, e.g. [117, 75]. In contrast,
input distribution shifts induced by various kinds of noise as modeled in the ImageNet-C [52]
dataset mimic the robustness of a model in unconstrained environments, for example under
diverse weather conditions. This aspect is crucial if we consider scenarios like autonomous
driving, where we want to ensure robust behaviour for example under strong rain. Therefore,
we focus on the latter aspect and investigate the behaviour of various pre-trained models under
ImageNet-C corruptions but also evaluate the proposed robustness measure on adversarial
perturbations [117, 75].
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Clustering

Clustering approaches, deep clustering approaches in particular, have shown to benefit from
well structured feature spaces. Such approaches therefore aim at optimizing the latent
representations for example using variational autoencoders or Gaussian mixture model or
K-Means priors [128, 164, 41, 40, 14]. [14] iteratively groups points using K-Means during
the latent space optimization. Conversely, we are investigating the actual feature space
learned from image classification tasks using clusterability as a measure for its robustness.
Therefore, we apply clustering approaches on pre-trained feature spaces. Further, while the
above mentioned methods rely on a K-Means-like clustering, i.e. data is clustered into a given
number of clusters, we also evaluate clusters from a similarity driven clustering approach,
the Minimum Cost Multicut Problem [6].
The Multicut Problem, aka. Correlation Clustering, groups similar data points together by
pairwise terms: data (e.g. images) are represented as nodes in a graph. The real valued
weight of an edge between two nodes measures their similarity. Clusters are obtained by
cutting edges in order to decompose the graph and minimize the cut cost. This problem is
known to be NP-hard [27]. In practice, heuristic solvers often perform reasonably [83, 8].
Correlational Clustering has various applications in computer vision, such as motion tracking
and segmentation [85, 162], image clustering [62] or multiple object tracking [149, 62].
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5.3 Feature Space Analysis

Our aim is to establish indicators for a model’s robustness from the structure of its induced
latent space. Therefore, we first extract latent space samples, i.e. feature representations of
input test images. The latent space structure is subsequently analyzed using two different
clustering approaches. K-Means is clustering data based on distances to a fixed number
of cluster means and can therefore be interpreted as a proxy of how well the latent space
distribution can be represented by a univariate Gaussian mixture model. The Minimum Cost
Multicut Problem formulation clusters data points based on their pairwise distances and
therefore imposes less constraints on the data manifold to be clustered. Figure 5.2 gives
an overview of the methodology. First, we briefly recap classification models as feature
extractors in Chapter 5.3.1. The K-Means and Minimum Cost Multicut Problem on the image
clustering task are explained in Chapter 5.3.2. In Chapter 5.3.3, we review evaluation metrics
for measuring the clustering performance and in Chapter 5.3.4, we present our proposed
metrics for robustness estimation.

Fig. 5.2 Robustness Predictor: Experiment Setup.

The robustness of a model is measured by its relative classification performance, which
is the ratio between clean and corrupted (in red arrow) data.. The latent space or features
(in blue) of various classification models is sampled using ImageNet images. The feature
representations are then clustered with the K-Means and Multicuts clustering approaches.
The correlation is visualized in 5.1.
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Table 5.1 List of Classification Models.

Classification models: all models are trained and evaluated on the ImageNet [134] dataset,
sorted by performance. We report the Top1 classification accuracy in %. The first ten models
are based on convolutional layers while the last two are transformer networks.

MODEL FEATURES PARAM TOP1 %

ALEXNET [94] 4096 61.1M 56.4
VGG11 [174] 4096 132.9M 69.0
VGG16 [174] 4096 138.4M 71.6
BNINCEPTION [73] 1024 11.3M 73.5
NASNETAMOBILE [174] 1056 5.3M 74.1
DENSENET121 [70] 1024 7.9M 74.6
RESNET50 [51] 2048 25.6M 76.0
RESNET101 [51] 2048 44.5M 77.4
INCRESNV2 [145] 1536 55.8M 80.2
POLYNET [172] 2048 95.3M 81.0

DEIT-TINY [153] 192 5.9M 74.5
DEIT-SMALL [153] 384 22.4M 81.2

5.3.1 Extracting Features from Classification Models

Classification models with multiple classes are often trained with softmax cross-entropy and
it has been shown that features, learned from vanilla softmax cross-entropy achieve a high
performance in transfer accuracy [91]. In order to obtain the learned features from images,
the last layer of the trained model (classifier) is removed, which is often done for instance in
transfer learning [137, 141] or clustering tasks [164]. The model encodes an image xi with a
function fθ (.), with pre-trained parameters θ . Table 5.1 shows the different classification
models with their according feature dimensions as well as the number of parameters and their
top 1 classification accuracy in %. We investigate models which vary significantly in their
architectures, including CNNs and transformer models, their number of parameters, ranging
from 3.5M to 138M, as well as their test accuracy, ranging from 56.4% to 81.2% top-1 scores.
We use features extracted from the full ImageNet test set as latent space samples for our
analysis as shown in 5.2.
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5.3.2 Latent Space Clustering

K-Means is a simple and effective method to cluster N data points into K clusters Sk,
k = 1, . . . ,K. As K is set a priori, this method produces exactly the number of defined clusters
by minimizing the intra-cluster distance:

K

∑
k=1

∑
xi∈Sk

|| f (xi)−µk||2 (5.1)

where the centroid µk is computed as the mean of features 1
|Sk| ∑xi∈Sk

f (xi) in cluster k.

The Minimum Cost Multicut Problem is a graph-based clustering approach. Consider-
ing an undirected graph G = (V,E), with v ∈ V being the images xi of the dataset X with
|V | = N samples, a complete graph with N nodes has in total |E| = N(N−1)

2 edges. A real
valued cost w : E → R is assigned to every edge e ∈ E. While the decision, whether an edge
is joined or cut, is made based on the edge label y : E →{0,1}, the decision boundary can
be derived from training parameters as we proposed in Chapter 2, directly learned from the
dataset [62, 149] or simply estimated empirically (via parameter search). The inference of
such edge labels is defined previously in Chapter 1.3.3 (Equation 1.8).

Practically, the edge costs are computed from pairwise distances in the feature space. The
distance di, j between two features f (xi) and f (x j) is calculated from the pre-trained model
or encoder f , where xi and x j are two distinct images from the test dataset, respectively, as

di, j = || f (xi)− f (x j)||2 . (5.2)

A logistic regression model estimates the probability from the pairwise distance di, j of
the edge between f (xi) and f (x j). This cut probability is then converted into real valued edge
costs w using the logit function logit(p) = log p

1−p such that similar features are connected
by an edge with positive, i.e. attractive weight and dissimilar features are connected by edges
with negative, i.e. repulsive weight. The decision boundary (i.e. the threshold on d, which
indicates when to cut or to join) is estimated empirically in our experiments.
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Fig. 5.3 Evaluation Metric for Clusters.

Evaluation metrics with 4 clusters with 3 unique classes. Cluster Accuracy: The best match
for class dark circle is cluster 3, since it contains the most frequent items from the same class.
Cluster 4 is considered as false positive. Purity score on the other hand does not penalize
cluster 4. Thus, the purity score is higher than the cluster accuracy (80% vs. 73%).

5.3.3 Cluster Quality Measures

We use two popular external evaluation metrics (i.e. label information are used) to measure
the clustering performance: Cluster Accuracy (ACC) and Purity Score. The former metric
is calculated based on the Hungarian algorithm [95], where the best match between the
predicted and the true labels are found. The purity score assigns data in a cluster to the class
with the most frequent label [74]. Formally, given a set of K clusters CLk and a set of classes
L with a total number of N data samples, the purity is computed as follows:

1
N ∑

k∈K
max
ℓ∈L

|CLk ∩ ℓ| (5.3)

The advantage of using this metric is two-fold: on one hand, it is suitable if the dataset
is balanced and on the other hand, purity score does not penalize having a large number of
clusters. Figure 5.3 depicts an example of both metrics.

5.3.4 Performance Measure

Next, we derive a measure based on the latent space clustering performance, that allows to
draw conclusions on a model’s robustness without evaluating the model on corrupted data.
Thereby, we measure a model’s robustness as its relative classification accuracy, i.e. the ratio
between its classification accuracy on corrupted data and on clean data:

Robustness =
ModelACC∗

s,c

ModelACC
(5.4)
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Parameters c and s are corruption type and severity level (or intensity), respectively for
non-adversarial attacks such as ImageNet-C. The aggregated value over all severity levels
s ∈ S̃ on all corruption types c ∈CORR is calculated as follows:

ACC∗
all =

1
|CORR| ∑

c∈CORR

1
|S̃|

|S̃|

∑
s=1

ACC∗
s,c (5.5)

According to equation 5.4, perfectly robust models therefore have a robustness of 1, smaller
values indicate lower robustness. Based on the above considerations on model robustness
and clustering performance, we propose to consider the relative clustering performance as
an indicator for the model robustness and show empirically that there exists a strong corre-
lation between both. The relative clustering performance, i.e. the ratio between clustering
performance and classification accuracy ModelACC is defined as follows:

p =
clustering performance

ModelACC
(5.6)

Here, we consider the clustering accuracy CACC and purity score Cpurity as a performance
measures for our experiments, i.e.

pACC =
CACC

ModelACC
and ppurity =

Cpurity

ModelACC

respectively.

Correlation Metrics. The degree of correlation is computed based on the coefficient of
determination R2 and Kendall rank correlation coefficient τ , respectively with a value of
1.0 being perfectly correlated while 0 means no correlation at all. An example for R2 is
illustrated in Figure 5.1 and τ in Figure 5.12.

Baseline Indicator: Class Overlap ∆. Our hypothesis is that an initial well-separated fea-
ture space of a classification model provides a good estimate regarding the model robustness.
A simple method to determine such a separation would be to observe the intra- and inter-class
distances between data samples in the feature space. If an overlap between classes exists,
they are not well separated, which may indicate weak models. We define this setting as a
baseline in order to show that latent space clustering provides significantly more information.
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To investigate this, we define the overlap ∆ between the intra- and inter-class distances as
follows:

∆ = (µintra +σintra)− (µinter +σinter) (5.7)

µ and σ represent the mean and standard deviation of the intra- and inter-class distances.

5.4 Experiments

This Chapter is structured as follows: we first explain the setup of our experiments in 5.4.1.
Then, we present the clustering results in Chapter 5.4.2 where we analyse the clustering
accuracy and purity for the two considered clustering approaches on the feature spaces of the
different models. Section 5.4.3 shows that the intra- and inter-class distances cannot directly
be used as robustness indicators. In Section 5.4.4, we consider the relationship between the
model classification robustness under corruptions and the relative clustering performance of
the considered clustering methods and metrics. We show that both clustering accuracy and
cluster purity, computed on the feature spaces of clean data, allow to derive indicators for a
model’s expected robustness under corruptions. Thereby, the purity score is more stable than
the clustering accuracy and the information provided by K-Means clustering and Multicuts
complement one another. In Section 5.4.5, we evaluate the proposed robustness indicator in
the context of adversarial attacks.

5.4.1 Setup

Our experiments are based on the ImageNet [134] dataset. We use our MSM approach for
Minimum Cost Multicuts Problem, which we introduced in Chapter 3. All models were pre-
trained on the original training dataset. We evaluate 10 CNN-based models and 2 transformer
architectures deit-t and deit-s (t stands for tiny and s for small). An overview is provided
in Table 5.1. On Multicuts, the decision, whether a distance di, j needs to be cut or joined
is based on the threshold parameter (decision boundary or τ̃). Setting it too high results
in less clusters while choosing a small value will output a large number of small clusters.
This threshold is crucial for the clustering performance and we provide the relationship
between this hyper-parameter and the different performance metrics in Figure 5.4. Since all
models are pre-trained on classification tasks, the decision boundary multicuts cannot be
derived from the training parameters as described in Chapter 2. We therefore empirically
estimated on a smaller dataset first and once the optimal threshold τ̃ is found, it is applied to
the complete test dataset. In our experiments, we chose the threshold with the highest cluster
accuracy.



104 Clustering as Robustness Predictor

Fig. 5.4 Find Threshold on Pre-Trained models.

Threshold on Multicuts: In our experiments, we selected the threshold with the highest
cluster accuracy (blue line). Blue line represents the cluster accuracy and orange bar the
purity score, divided by cluster types, e.g. Cluster containing only one single image (dark
orange) and clusters with more than one image within a cluster (light orange). Furthermore,
the red line shows the total number of unique clusters.
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ImageNet-C. We evaluate the robustness of the considered models against corruptions
using the ImageNet-C [52] dataset and report the model accuracy for classification and
clustering tasks. Figure 5.5 illustrates an example of considered image corruptions: the
first row shows the different severity levels s = 1, . . . ,5 of the corruption brightness, with
1 being the lowest and 5 the strongest corruption. The second row shows other kinds of
image perturbations c at severity level 5 such as fog, frost, gaussian blur, jpeg_compression
or pixelate. Each corruption c has 5 severity levels s = 1, . . . ,5. All models are trained on the
clean dataset and the numbers are evaluated on the full test dataset, as done in [52].

Fig. 5.5 ImageNet-C Examples.

ImageNet-C dataset: first row shows the original image and the corruption brightness for
different severity levels. Second row: examples of other corruption types at severity level 5.
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5.4.2 Classification vs. Clustering

Table 5.2 summarizes the evaluation in three categories: classification, K-Means and Mul-
ticuts. Additionally, Figure 5.6, 5.7, 5.8 and 5.9 provide details of the experiments on
ImageNet-C. There are in total |CORR|= 19 corruption types with each |S̃|= 5 severity lev-
els on ImageNet-C. For the classification task, the numbers are reported in top 1% accuracy
for all five levels of corruption (denoted as 1−5). On K-Means and multicuts, we report the
clustering metrics as presented in Chapter 5.3.3.

Transformer has highest accuracy

The transformer deit-s shows the highest top 1% accuracy on the classification task both on
clean and on corrupted data for all severity levels. Inceptionresnetv2 and polynet perform
only slightly worse on clean data but are more strongly affected by the ImageNet-C data
corruptions than deit-s. Alexnet shows the worse performance across all corruption levels.
Although resnet50 outperforms bninception, nasnetamobile and densenet121 it is less robust
against corruption. This is also illustrated later Chapter 5.4.4 in Figure 5.10 (right).

Purity and Cluster Accuracy

Considering the clustering accuracy and purity, the K-Means and the Multicuts behave
significantly different from one another. K-Means clustering achieves about 70% accuracy
for models with the highest clean classification accuracy. Yet, its accuracy is much better for
the deit-t latent space than for example for the densenet121 induced latent space, although
the clean classification accuracy of both networks is comparable.

K-Means works well on Transformers

Overall, the K-Means clustering works surprisingly well on the transformer models. The
Multicuts clustering showed the highest clustering accuracy on the inceptionresnetv2 model.
The cluster purity was comparably high for the best transformer model deit-s. Note that our
goal is to derive from the clustering performance an indicator for model robustness, i.e. we
expect clustering to be less accurate when models are less robust to noise.
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Fig. 5.6 K-Means: cluster accuracy on ImageNet-C, grouped by severity levels

Cluster accuracy decreases as severity level goes up.
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Fig. 5.7 K-Means: cluster purity on ImageNet-C, grouped by severity levels

Cluster purity decreases as severity level goes up.
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Fig. 5.8 Multicuts: cluster accuracy on ImageNet-C, grouped by severity levels

Cluster accuracy decreases as severity level goes up.
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Fig. 5.9 Multicuts: cluster purity on ImageNet-C, grouped by severity levels

Cluster purity remains stable as severity level goes up for some models.
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Table 5.3 Baseline Indicator for Model Robustness.

Baseline indicators for model robustness: The table shows the correlation between overlap ∆

and model robustness for different corruption severity levels. Second row shows the rank
correlation τ̃ between the actual model robustness rank and the predicted rank using ∆.

SEVERITY

METRIC 1 2 3 4 5 TOTAL

R2 0.27 0.29 0.27 0.25 0.26 0.27
τ̃ 0.48 0.52 0.52 0.52 0.52 0.48

5.4.3 Baseline Indicators: Intra- and Inter class-distances

Table 5.3 shows the correlation (as R2) and the ranking correlation τ̃ between the class
overlap baseline indicator ∆, which we detailed in section 5.3.3, and the model robustness,
grouped by severity level. We use equation 5.4 to calculate the robustness for severity level
s over all corruptions and compare them with ∆. The last column shows the correlation on
all corruption levels. All 12 models are considered. The rank correlation τ̃ is calculated by
comparing the model’s robustness rank and the overlap ∆ ranking. Initial well-separated
feature spaces (thus a low ∆) should have a high correlation with their model’s robustness.
Despite its simplicity, this metric ∆ correlates poorly with a highest score of R2 = 0.29 and
τ̃ = 0.52. This observation rejects the simple hypothesis about the overlap of intra- and
inter-class distances and it suggests that using ∆ is not sufficiently informative as an indicator
for model robustness.

5.4.4 Robustness Indicators: Clustering Measures

In the following we evaluate our proposed clustering driven robustness indicator. Specifically,
we want to investigate the effects of different clustering measures on the correlation coefficient
R2. Table 5.4 gives an overview of the strength of correlation on different severity levels and
clustering metrics on K-Means and multicuts. Column ∆ shows the correlation on robustness
using the overlap of intra- and inter-class distances as previously discussed. Furthermore,
the columns ACC and P are showing the correlation between the model robustness and the
clustering accuracy and purity, respectively. The last column shows the combination of both
clustering methods in one metric. K-Means and multicuts have an R2 value of R2 = 0.83
and R2 = 0.55 for clustering accuracy on all corruption levels. On the purity score, both
methods show a slightly higher correlation of R2 = 0.83 and R2 = 0.71, respectively for the
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Table 5.4 Correlation by Severity Levels.

Correlation with different metrics and severity levels: the reported numbers are the
coefficient of determination (R2) on different clustering metrics. Column ∆ is the overlap
(from Table 5.3). Column ACC and Purity (denoted as P.) are used to compute the correlation
coefficient R2. The last column is the combination of both clustering methods, i.e. last
column Purity is equation 5.8. The highest score is marked in bold.

METRIC: R2 K-MEANS MULTICUTS COMBINED

SEVERITY ∆ ACC P. ACC P. ACC P.

1 0.27 0.85 0.85 0.48 0.67 0.54 0.82
2 0.29 0.87 0.87 0.51 0.70 0.58 0.86
3 0.27 0.84 0.83 0.55 0.73 0.61 0.87
4 0.25 0.79 0.79 0.58 0.72 0.64 0.87
5 0.26 0.75 0.84 0.57 0.68 0.64 0.84

ALL 0.27 0.83 0.83 0.55 0.71 0.62 0.87

sum over all corruptions (last row of Table 5.4). This indicated that latent space clusterablity
of clean test images K-Means is a valid indicator for model robustness under corruptions.
However, we show that both clustering methods are complementary when combining their
purity scores with

ppurityK−Means·multicuts =
CK−Means

purity ·Cmulticut
purity

ModelACC
. (5.8)

This measure shows the highest correlation with the model robustness with R2 = 0.87 (refer
to Figure 5.1 in Chapter 5.1 for the full correlation plot). Additionally, the combination of
purity scores of both methods also yields more consistent results across different severity
levels.
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Fig. 5.10 Robustness Ranking.

Change in robustness ranking based on predicted (left) vs. actual (right) model robustness
on ImageNet-C using clustering metric pACCK−Means on total corruptions τ̃ = 0.79. Top is the
least robust model (Rank = 12) while the bottom shows the most robust model (Rank = 1).
The highest score is marked in bold.

Model Ranking. Next, we evaluate whether our proposed robustness indicator is able
to retrieve the correct ranking in terms of model robustness for our set of classification
models. The rank correlation is measured as the Kendall rank coefficient τ̃ . Table 5.5
shows the results for different setups. Here, K-Means shows a more consistent and better
correlation with highest rank correlation of τ̃ = 0.82 on ACC and Purity. Again, all clustering
metrics outperform the ∆ baseline. Figure 5.10 illustrates one example of the change of
rank between the predicted (left) and actual (right) model robustness. The prediction is done
using pACCK−Means , which has a rank correlation of τ̃ = 0.79. Our proposed measure is able
to rank different models according to their robustness. The three worse performing models
(alexnet, vgg11 and vgg16) are correctly retrieved. The largest ranking gap of 3 positions is
observed for nasnetamobile and resnet50. In this particular example, the value for alexnet is
calculated as follows: 14.6

56.4 ∗100 = 25.9 and 20.2
56.4 ∗100 = 35.8 for predicted and actual values,

respectively.
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Table 5.5 Rank Correlation by Severity.

Rank correlation with different metrics and severity levels: the reported numbers are the
rank coefficient (τ̃) on different clustering metrics. Column ∆ is the overlap (from Table 5.3).
Column ACC and Purity (denoted as P.) are the used compute the rank correlation coefficient
τ̃ . The last column is the combination of both clustering methods, i.e. last column Purity is
Equation 5.8. The highest score is marked in bold.

METRIC: τ̃ K-MEANS MULTICUTS COMBINED

SEVERITY ∆ ACC P. ACC P. ACC P.

1 0.48 0.79 0.79 0.61 0.52 0.73 0.73
2 0.52 0.82 0.82 0.64 0.55 0.76 0.76
3 0.52 0.82 0.82 0.70 0.61 0.82 0.76
4 0.52 0.82 0.82 0.70 0.61 0.82 0.76
5 0.52 0.82 0.82 0.70 0.61 0.82 0.76

ALL 0.48 0.79 0.79 0.67 0.58 0.79 0.73

Latent Space Visualization. Umap [114], a scalable dimensionality reduction method
similar to the popular technique TSNE[154], has been applied to features on 10 randomly
selected classes of the ImageNet dataset for visualization. Figure 5.11 shows one example
of the corruption brightness for 2 different models: the first column shows features without
any corruptions (clean). As the severity level increases, a collapse is observed for instance
on alexnet: well-separated clusters (i.e. different colors) are being pulled into a direction
in the latent space as the severity increases. The model with the highest robustness, i.e.
deit-s, preserves the clusters well, which explains the high relative clustering performance.
This verifies our assumption on the correlation between clusterability and robustness of
classification models, that were evaluated in ImageNet-C dataset.
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5.4.5 Adversarial Robustness

So far, we have shown that our proposed approach can effectively indicate the robustness of
classification models towards visible image corruptions and shifts in the data distributions
provided by the ImageNet-C benchmark. Here, we extend this evaluation to intentional,
non-visible corruptions induced by adversarial attacks. Using the proposed clustering metric
ppurityK−Means·multicuts as an estimator, we evaluate all 12 models with ImageNet test dataset
under two adversarial attacks: DeepFool [117], FGSM [44] and PGM [97] with different
perturbation sizes epsilon. Figure 5.12 shows the results of all three attacks across all 12
models: left (a) represents the correlation of determination R2 while on the right (b) the
classification accuracy, respectively. Epsilon (x-axis) is the perturbation size of the attacks.
For small epsilon, we expect lower correlations since the model accuracy should hardly
be affected. As epsilon increases, some models are more robust than others, i.e. better
preserve their classification accuracy. In this range, we see a relatively strong correlation of
the proposed indicator and the relative robust accuracy, albeit weaker than the correlation
with robustness to corruptions, with R2 = 0.66, R2 = 0.44 and R2 = 0.44 for DeepFool and
FGSM and PGM, respectively. When epsilon becomes too large, the correlation becomes
weaker. Our method therefore works well for adversarial examples within a certain range of
epsilons. In contrast, no gradients need to be computed (e.g. clustering with K-Means), thus
requiring less compute resources as opposed to FGSM and PGM.

Fig. 5.12 Correlation on Adversarial Robustness.

Correlation of our proposed clustering metric on different adversarial attacks with different
strengths (Epsilon). Dashed line represents the classification accuracy and solid line the
coefficient of determination R2, respectively.
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5.5 Conclusion

In this Chapter, we presented a study of the feature space of several pre-trained models on
ImageNet including state-of-the-art CNN models and the recently proposed transformer
models and we evaluated the robustness on ImageNet-C dataset and extended our evaluation
on adversarial robustness as well. We propose a novel way to estimate the robustness
behavior of trained models by analyzing the learned feature-space structure. Specifically,
we presented a comprehensive study of two clustering methods, K-Means and the Minimum
Cost Multicuts Problem on ImageNet, where the classification accuracy, clusterability and
robustness are analyzed. We show that the relative clustering performance gives a strong
indication regarding the model’s robustness. We argue that if data in a feature space are
distributed in a way that can be clustered effectively, then the model are less susceptible
against data corruptions. While K-Means assumes that the data are well distributed around
its centroid, Minimum Cost Multicuts on the other use pairwise comparisons to obtain the
clusters. Both considered clustering methods show complementary behaviour in our analysis:
the coefficient of determination is R2 = 0.87 when combining the purity scores of both
methods. Our experiments also show that this indicator is lower, albeit still significant for
adversarial robustness (R2 = 0.66 and R2 = 0.44). Additionally, our proposed method is
able estimate the order of robust models (τ = 0.79) on ImageNet-C. This novel method is
simple yet effective and allows the estimation of robustness of any given classification model
without explicitly testing on any specific test data. To the best of our knowledge, we are the
first to propose such technique for estimating model robustness.



Chapter 6

Conclusion

The Minimum Cost Multicut Problem has been proven to be effective on various computer
vision tasks, especially when clustering a large number of image data. Unlike K-Means,
where data are assigned to a fixed number (e.g. K clusters) of predefined cluster centers,
pairwise comparisons are made and objective is solved as one graph problem by cutting or
joining of nodes. To obtain such pairwise distance, an embedding space from the dataset
is calculated, for instance the Euclidean Distance from two data points. The key aspect of
this approach is to find a good representation of similarity. Such feature or embedding space
can be obtained via supervised, weak-supervised (Triplet Loss) or completely unsupervised
(AutoEncoder). The main contribution of this thesis is to learn such embedding space for the
Minimum Cost Multicut Problem and its application on Computer Vision problems.

6.1 Summary of Contribution

Triplet Loss for Minimum Cost Multicut Problem This thesis first introduces a metric
learning technique for the Minimum Cost Multicut Problem in Chapter 2. We evaluated
two variants of Triplet Losses, that is well-known in the literature. A simplification of the
Triplet Loss is then proposed, which enables a more robust graph-based clustering against
label noises. Experiments on CIFAR10 dataset validate our initial assumption regarding
the embedding space, trained on regular Triplet Loss. A comprehensive study on the other
variants of the function were then conducted: not only does the proposed version of Triplet
Loss performs better on image clustering tasks, it allows the embedding space to be optimized
specifically for the Minimum Cost Multicut Problem. Thus the threshold for cut and join
can be directly derived from the training parameters. This threshold has to be learned from
additional training otherwise (for instance using logistic regression).
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MSM - Multi-Stage Multicuts

While the Minimum Cost Multicut Problem performs well when using a correct distance
measure, such as the Euclidean distance trained an embedding space, many practical applica-
tions may not be suitable as when the dataset becomes very large. We therefore proposed a
scalable version of the Minimum Cost Multicut Problem in Chapter 3, which is called MSM.
Since the size of the graph grows quadratic to the number of data points (nodes), splitting
the complete dataset in disjoint small sets reduces the total size significantly, thus leading to
speedup. Yet, the performance of the actual clustering task is not affected significantly. Our
experiments on CelebA dataset shows, that MSM with 40 computing threads can cluster a
dataset of over 100k images under just one minute. This allows the Minimum Cost Multicut
Problem to able to scale up when sufficient compute resources are available.

Multiple Object Tracking

We then applied Minimum Cost Multicut Problem on the Multiple Object Tracking problem
in Chapter 4. Additionally, long-range distances are included as well. First, an AutoEncoder
approach is proposed to learn an embedding space. During the optimization, additional
spatio-temporal features are included. We also compared this supervision free approach with
our proposed Triplet Loss and experiments on MOT17 dataset show, that both methods are
similar and competitive.

Robustness Predictor

Finally, Chapter 5 utilizes clustering approach in order to predict the robustness of classifi-
cation models. Specifically, several ImageNet pretrained models are evaluated on various
forms of image corruptions, including adversarial attacks. The experiments show that the
intuitive intra- and inter class distances from pretrained models are not suitable as direct
indicators for model robustness. Instead, the relative clustering accuracy of the combined
method, K-Means and Minimum Cost Multicut Problem, shows a very strong indication for
model robustness under ImageNet-C corruptions. Both considered clustering methods show
complementary behaviour in our analysis.
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6.2 Future Work

Minimum Cost Multicut Problem has been widely studied in computer vision. The main
advantage is that no prior knowledge is required in order to decompose the given graph.
However, the performance is highly depending on the similarity measure. This can be
obtained by training an embedding space for a given task from a dataset. While this thesis
proposes a simplification of the previously proposed Triplet Loss [171], that is suitable to
learn such embedding space for the Minimum Cost Multicut Problem, we point out some
future research directions and possible extensions to this work:

Architectures

Embedding space can be obtained via training, such as optimizing the Triplet Loss. When
the task specific training is done, a simple distance measure represents the similarity of the
data, e.g. the closer the points are together, the more similar they are. This is essential for
the Minimum Cost Multicut Problem as it requires pairwise distances for decomposition of
the given graph. In our experiments, such as in Chapter 2, 3 or 4, we used AlexNet [94]
architecture, as we followed the approach as done in [14, 119]. However, it is unclear,
how other architecture such as VGG [174], Densenet [70] or Resnet [51] affect the overall
clustering performance. Recently, transformers [13, 10, 153, 32, 16] have been consistently
achieving state-of-the-art performance in classification tasks. It is worthwhile to research on
transformer-based architecture as well for metric learning, such as using Triplet Loss.

MSM

In Chapter 3, one key problem with multicuts is highlighted: scalability. When a dataset
becomes too large, it is infeasible to decompose the large graph in a realistic runtime on a
modern computer. Furthermore, the size of the graph becomes too large to fit on a memory.
We presented MSM to overcome this problem. By dividing the whole dataset into small,
disjoint sets, the size of the graph is reduced greatly. While small performance drop is
observed, the overall speedup gain is significant. However, additional hyperparameters are
introduced such as the number of stages or sparsity of graph. Furthermore, for a given number
of available resources, it is still to be investigated, whether utilizing all compute resources
will lead to optimal performance. When introducing additional stages, overhead is generated
when merging the intermediate results. Furthermore, the output of the intermediate stages are
ultimately affected by the total number of clusters, as they become the new number nodes for
the next stage. Therefore, it is not clear yet, how the number of available resources, number
of stages, sparsity and prior knowledge about the dataset affect the proposed algorithm.
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Real-Time Tracking

In Chapter 4, we applied our proposed method on multiple person tracking. This has
been done in the past already [85, 149]. Specifically, the tracking problem is treated as
clustering tasks, where detection from persons are considered as nodes in graph G. The
graph decomposition is done on the whole dataset, which makes this approach completely
offline. In practice, it is desired to have an effective, real-time (online) tracking algorithm.
One possible solution would be to set a fixed window size of frames at timestamp t −1 and
solve the Minimum Cost Multicut Problem. Then, similar as done in our proposed MSM,
the task is repeated at timestamp t and the intermediate result is merged. Enabling Minimum
Cost Multicut Problem on real-time tracking problems can be a promising direction of future
work.

Explainable AI

As deep neural networks becomes better in specific computer vision tasks, much attention
has been given toward explainability of classification models recently [143, 5, 49, 50]. While
feature attributions show the effect of each feature on the model prediction, we provided
an empirical approach towards explainability of classification models by looking at the
embedding space of the model (see Chapter 5). One key finding is the relationship between
clusterability and robustness against corruptions. This can be considered as a complementary
tool for existing techniques.
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