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Abstract

In recent years, fiber-reinforced materials have risen to prominence in a variety of ap-
plications spanning from aircraft and automobile engineering to medical technology and
biological materials. Despite the scientific progress in understanding this class of mate-
rials achieved in diverse research contributions, the precise modeling and simulation of
macroscopic systems with dedicated microstructure up to ultimate fracture remains an
open research field in mechanics.
The present work presents a novel numerical approach to analyze the thermomechanical
behavior within composite materials including the inelastic regime up to final failure.
Therefore, a second-gradient theory is combined with phase-field methods to fracture.
In particular, we assume that the polymeric matrix material undergoes ductile fracture,
whereas continuously embedded fibers undergo brittle fracture as it is typical e.g. for
roving glass reinforced thermoplastics. A hybrid phase-field approach is developed and
applied in conjunction with a modified Gurson-Tvergaard-Needleman GTN-type plastic-
ity model accounting for a temperature-dependent growth of voids on microscale. The
mechanical response of the arising microstructure of the woven fabric gives rise to addi-
tional higher-order terms, representing homogenized bending contributions of the fibers.
Eventually, a series of tests is conducted for this physically comprehensive multifield for-
mulation to investigate various types and sequences of failure within long fiber-reinforced
polymers.





Kurzfassung

In den letzten Jahren haben faserverstärkte Werkstoffe in einer Vielzahl von Anwendun-
gen vom Flugzeug- und Automobilbau über die Medizintechnik bis hin zu biologischen
Materialien eine immense Bedeutung gewonnen. Trotz der wissenschaftlichen Fortschritte
im Verständnis dieser Materialklassen, die in diversen Forschungsbeiträgen erzielt wur-
den, bleibt die präzise Modellierung und Simulation makroskopischer Systeme mit dedi-
zierter Mikrostruktur bis hin zum endgültigen Bruch ein offenes Forschungsfeld in der
Mechanik. Die vorliegende Arbeit stellt einen neuartigen numerischen Ansatz vor, um
das thermomechanische Verhalten in Verbundwerkstoffen einschließlich des inelastischen
Regimes bis zum endgültigen Versagen zu analysieren. Dazu wird eine zweite Gradi-
enten Theorie mit Phasenfeldmethoden für den Bruch kombiniert. Insbesondere wird
davon ausgegangen, dass das polymere Matrixmaterial einen duktilen Bruch erfährt,
während kontinuierlich eingebettete Fasern einen Sprödbruch erfahren, wie er z.B. für
glasfaserverstärkte Thermoplaste typisch ist. Es wird ein hybrider Phasenfeldansatz en-
twickelt und in Verbindung mit einem modifizierten Gurson-Tvergaard-Needleman GTN-
Plastizitätsmodell angewendet, das ein temperaturabhängiges Wachstum von Hohlräu-
men auf der Mikroskala berücksichtigt. Die mechanische Charakterisierung der entste-
henden Mikrostruktur des Gewebes führt zu zusätzlichen Termen höherer Ordnung, die
homogenisierte Biegebeiträge der Fasern darstellen. Schließlich wird für diese physikalisch
umfassende Mehrfeldformulierung eine Versuchsreihe durchgeführt, um verschiedene Ver-
sagensarten und -folgen in langfaserverstärkten Polymeren zu untersuchen.
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1 Introduction

Composite materials have played a significant part in human development throughout
history. Thus, the combination of clay and straw for the production of bricks is known
from the excavation of the city of Çatalhöyük [77], the first documented city, dated back
to about 8000 BC. Whilst straw improves the tensile capacity of clay, it will also act to
assist in keeping the moisture content of the material more constant throughout, leading
to less drying shrinkage cracks.

In the development of polymeric fiber composites, the low density and high strength fiber
material, typically glass or carbon, is combined with a polymer matrix in order to create
geometrically defined components. The matrix serves not only to shape the material,
but also to transfer loads to the fibers and to protect the fibers from environmental
influences and abrasive wear caused by mutual contact. An early example of the use of
polymer matrix composites are the Micarta aircraft propellers from around 1920 onwards
[71]. Due to their excellent cost-performance ratio as well as their adjustable mechanical
properties, fiber-reinforced composites are nowadays used in a wide range of industrial
applications. In recent years, new types of additive manufacturing machines have been
developed and brought to market that are capable of designing customized composites
by introducing fibers into the produced parts during the manufacturing process. Until
now, however, the design of structural composite components has been governed by an
incomplete knowledge, which is mainly based on empiricism.

However, the dramatic increase in computing power over the past decades has made possi-
ble more and more realistic simulations of complex materials. We can now resolve sophis-
ticated micro structures in a multi-physical environment using brute-force computations
within a continuum mechanical framework. New challenges arise for the implementation
of composite materials in a suitable simulation environment in order to obtain realistic
predictions of the material behavior. In particular, the distribution and orientation of
the fibers on the microscale have a significant influence on the macroscale mechanics.
Although of great interest to the industry as a whole, numerical prediction of thermome-
chanical macroscopic systems with dedicated microstructure behavior including arbitrary
three-dimensional fracture patterns of fiber-reinforced polymers is currently subject to
large uncertainties and still under research. This is a dramatic information deficit, since
fiber-reinforced polymers are already in use in vital structures.



2 1 Introduction

1.1 State of the art and objectives

1.1.1 Strain-gradient formulations for fiber-reinforced materials

Fiber-reinforced materials can be understood as having detailed microstructure because
the length scales of the embedded fibers are small compared to the surrounding continuum.
A very general framework for including the effects of microstructures within a continuum
formulation was presented in the seminal and fundamental work on higher-order theories
by Mindlin [89, 90], see also the work of Germain [53], Toupin [121, 122], and Eringen
[21].

A number of publications establish a connection between the microstructure and the
macroscopic formulation as generalized continua, see, among others [81, 49, 60, 105],
see also [72, 67, 97, 98, 129] for more details on the mathematical structure. Specific
mechanical problems such as elastic meshes have been treated by Steigmann et al. [118,
115, 117, 116], for application to panthographic structures see dell’Isola et al. [31, 32].

Within the present work a model of a woven fabric as presented in Steigmann [116] will
be first be embedded into the Kirchhoff-Love shell theory and then be adapted to three-
dimensional continua. Therein, the in-plane flexural resistance of the fibers is taken into
account in addition to first-gradient anisotropic effects. We will demonstrate on the basis
of experimental results that a classical Cauchy continuum theory without higher-gradient
contributions can only be adapted to a specific fiber orientation and load case, but never
independently on the orientation. In contrast, the proposed formulation as generalized
continuum with higher-gradient contributions allows for an independent modeling without
recalibration of the material for the specific fiber direction. Further discussions on higher-
order contributions for the constitutive modeling of composites have been presented in
Asmanoglo and Menzel [10, 11], using the framework as provided in the preliminary work
of Spencer and Soldatos [114] and Soldatos [113]. Note that we will show here, that
the formulation as proposed by dell’Isola et al. [32] can be recast into the formulation of
Asmanoglo and Menzel [10, 11].

To obtain the corresponding constitutive information, classical homogenization methods
are often applied, which are usually limited to the first gradient anisotropic contributions.
In particular, full-field homogenizations are usually based on a unit cell discretized with
finite elements (see, e.g., in Fish [46] for a comprehensive review of multiscale methods)
and have been applied to composites, including in Wang et al. [125], see also the references
in Mishnaevsky [93]. Basic ideas on the homogenization of continua with micromorphic
mesostructure can be found in Hirschberger [59]. Recent studies on the homogenization
of continua with micromorphic properties can be found in Hutter [65].

For the spatial discretization, B-spline based shape functions are used, which originate
from the field of Computer Aided Design (CAD). The corresponding finite element frame-
work is commonly known as isogeometric analysis (IGA), see Hughes et al. [64] and Cot-
trell et al. [26]. IGA allows to control the differentiability of the shape functions and is
therefore suitable for higher-gradient continua, see Fischer et al. [45] for applications to
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strain-gradient elasticity. Kirchhoff-Love shell formulations have also been analyzed in
recent years using the concept of IGA, see Kiendl et al. [69, 70], among others.

1.1.2 Phase-field approach to fracture

Along this line, Choo and Sun [22] have developed a framework that combines a phase-
field approach to fracture with a pressure-sensitive plasticity for modeling brittle fracture
to ductile flow in geological materials. A coupled crystal-plasticity-phase-field fracture
formulation based on experimental observations was presented in Diehl et al. [33]. A
gradient-extended plasticity model for overcoming mesh sensitivities, such as that pre-
sented in De Borst and Mühlhaus [30], Fleck et al. [47], Menzel and Steinmann [82], Geers
[52], Anand et al. [9], Dimitrijevic and Hackl [34], Miehe et al. [87], Aldakheel [3, 5], Wulf-
inghoff and Böhlke [127], and Forest [48] was applied to phase-field breaking problems in
Aldakheel et al. [4], Miehe et al. [84], Aldakheel [2], and Dittmann et al. [35].

A variety of phenomenological and micromechanical approaches exist in the literature for
modeling the diverse damage mechanisms in the polymers used here as matrix materials.
To describe such phenomena, material behavior at the microscale must be included in
the continuum formulation. In particular, the growth of microvoids prior to ultimate
fracture must be considered at the macroscale, as rooted in the seminal work of Gurson
[56, 57]. In this work, a macroscopic flow surface was developed by homogenizing a
porous representative volume element with assumed rigid plastic flow, which degrades
with increasing void fraction. Later, this model was used by Tvergaard [123], Tvergaard
and Needleman [124], Needleman and Tvergaard [96], Leblond et al. [74], Nahshon and
Hutchinson [95], Xue et al. [128], Li et al. [76], and Huespe et al. [62] to account for damage
growth, extending the flow criterion function by introducing new material parameters to
account for nucleation and coalescence effects. In Hutter et al. [63] and Reusch et al.
[103, 104], nonlocal Gurson models were presented to overcome the nonphysical mesh
sensitivity in the softening materials. Recent works on the application of this model
to polyamide, as commonly used for fiber-reinforced thermoplastics, can be found, for
example, in Selles et al. [109] and Cayzac et al. [20]. Thermomechanical extensions of
the Gurson-type model with brittle crack propagation in thermoelastic solids were shown
in Dittmann et al. [39] and Miehe et al. [86]. An extension towards finite-strain thermo-
poros-plasticity based on the phase-field approach was recently developed in Dittmann et
al. [36].

In this contribution, we introduce a novel hybrid phase-field model to simulate failure
mechanisms in fiber-reinforced materials. In particular, we assume that the polymeric ma-
trix material undergoes ductile fracture, whereas continuously embedded fibers undergo
brittle fracture. The matrix and fiber material are associated with indepedent phase-
fields. A modified Gurson-Tvergaard-Needleman GTN-type plasticity model accounting
for a temperature-dependent growth of voids on microscale is furthermore applied to the
polymeric matrix material. Eventually, a series of tests is conducted for this physically
comprehensive multifield formulation to investigate different kinds and sequences of failure
within long fiber-reinforced polymers.



4 1 Introduction

1.2 Outline of the thesis

The outline of the thesis is as follows. Chapter 2 introduces the basic notations and
concepts of classical continuum mechanics used in this thesis. The approach to sim-
ulate porous-ductile fracture in isotropic thermo-elasto-plastic solids subjected to large
deformations is then presented in Chapter 3. Chapter 4 provides an introduction to gen-
eralized continuum mechanics for microstructured materials. A very specific generalized
continuum formulation for fiber materials is then outlined in Chapter 5. The complete
framework for modeling and simulation of fiber-reinforced polymers, including the inelas-
tic regime up to ultimate failure, is presented in Chapter 6. Finally, conclusions are drawn
in Chapter 7.



2 Fundamentals

This chapter introduces the basic notations and concepts of this work. After recalling
some tensor operations, the principle equations of non-linear continuum mechanics are
presented. Next, the kinematics of Kirchhoff-Love shells are outlined. Finally, the phase-
field approach to non-linear brittle fracture and the isogeometric concept for finite element
analysis are introduced.

2.1 Tensor notations

In order to provide a clear representation of mathematical operations used therein we
recall and define some specific tensor operations. Let a ∈ R

3 be a vector, A ∈ R
3 ×R

3 a
second-order tensor and A ∈ R

3 × R
3 × R

3 a third-order tensor.

We denote the symmetric, skew-symmetric, spheric, and deviatoric part of a second-order
tensor, respectively, as

sym(A) =
1

2
(A+AT ), skew(A) =

1

2
(A−AT ),

sph(A) =
1

3
tr(A)I, dev(A) = A− sph(A)I,

where I is the identity matrix.

In addition, we define the gradient with respect to the reference and current configuration
∇(•) and ∇x(•) of a vector field as

[∇a]iJ =
∂[a]i
∂[X]J

and [∇xa]ij =
∂[a]i
∂[x]j

(2.1)

and of a second-order tensor field as

[∇A]iJK =
∂[A]iJ
∂[X]K

and [∇xA]iJk =
∂[A]iJ
∂[x]k

(2.2)

respectively. The divergence operator with respect to the reference configuration Div(•)
or ∇ · (•) of a second-order tensor field A and third-order tensor field A is defined as

[∇ ·A]i =
∂[A]iJ
∂[X]J

and [∇ ·A]iJ =
∂[A]iJK
∂[X]K

, (2.3)
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respectively. Finally, the double contractions of a second-order and third-order tensor,
i.e. a = A : A and b = A : A, are defined as

[a]k = [A]ij : [A]ijk and [b]i = [A]ijk : [A]jk, (2.4)

respectively.

2.2 Continuum mechanics

This section recalls the fundamental concepts of classical continuum mechanics at finite
strains, also referred to as Cauchy-Boltzmann theory or first-gradient theory. First, the
basic kinematical relations and deformation measures are introduced. Then, the concept
of internal contact actions, i.e. stress and heat flux are presented. Finally, the physical
balance equations are outlined, along with their associated local forms, i.e. the Eulerian
equations of motion. A more extensive and systematical presentation of these arguments
can be found in e.g. [23, 61, 110, 17].

2.2.1 Kinematics of finite deformation

Motion

A continuum body is a set of material points that are in bijective correspondence, at each
instant of time, with the geometrical points of a region of the Euclidean space, denoted as
R

3. The abstraction of continuum body is an approximation since the actual structure of
the materials is discontinuous, but it is necessary for performing the classical mathematical
operation (e.g. differentiation) and widely validated through experiments.

Under the infinite possible configurations of the body, we call reference configuration B0

and current configuration B the configurations of the body at time t = 0 and t ∈ R
+,

respectively. The two configurations are equivalently called Lagrangian and Eulerian
configuration and the material points are labeled as X and x, respectively. The generic
nonlinear transformation that maps the reference configuration into the current one de-
fined as

x = ϕ(X, t) (2.5)

is called placement.

Deformation Gradient

The second-order tensor

F = ∇ϕ (2.6)
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ϕ

B0 B

X
x

dV

dA

dX
dx

dv = JdV

da = cof(F ) dA

Figure 2.1: Motion of a material body in the reference configuration B0 with position X

and current configuration B with position x at time t.

is called the deformation gradient. In the three-dimensional configuration, this tensor has
nine independent components and characterizes the motion in the neighbor of a material
point.

The determinant of the deformation gradient characterizes the measure of the volume
change. To exclude self-penetration, the Jacobian determinant must always assume a
value greater than zero

J = det(F ) =
1

6
(F × F ) : F > 0. (2.7)

With the definition of the deformation gradient and its determinant, it is possible to
define the deformation of a surface and volume element from the reference to the current
configuration with

da = JF−1 dA = cof(F ) dA =
1

2
(F × F ) dA and dv = det(F ) dV. (2.8)

The Jacobian determinant J is thus a measure for the relative change in volume during a
deformation. Note that the tensor cross product operation, see [29], was utilized for the
first time in the domain of solid mechanics in Bonet et al. [16].

The deformation gradient can be decomposed in a multiplicative form through the polar
decomposition, and one can obtain:

F = R ·U = V ·R (2.9)

which is called right and left polar decomposition. R is an orthogonal tensor (i.e.
RT = R−1and det(R) = 1) and it represents a rotation, and U and V are symmetric
and definite positive tensors. These two tensors are called right and left stretch tensor,
respectively, and are linked via the rotation tensor through the formula

V = R ·U ·RT . (2.10)



8 2 Fundamentals

Deformation Measures

Having defined the deformation gradient F and keeping in mind that it is not a suitable
quantity for strain measures, we introduce the most common strain tensors related to
either the material or the spatial description used in the field of nonlinear solid continuum
mechanics. The two symmetric and positive definite strain tensors

C = U 2 = F TF

b = R2 = FF T
(2.11)

are known as the right Cauchy-Green tensor C, and the left Cauchy-Green tensor b,
present in the reference configuration and in the current configuration, respectively.

2.2.2 Stress tensors and heat flux

In this section, we recall the concept of the internal actions, i.e. contact stresses and heat
fluxes, based on Euler’s cut principle. Therefore we consider an arbitrary subdomain Γ
cut out of the body B as illustrated in Figure 2.2.

B

n t

h

x

Γ

Figure 2.2: Euler’s cut principle, with the mechanical traction vector t = σn, and the
heat flux h = q · n

Stress tensors

The Cauchy traction vector t, acting within a given spatial point x depends on the
orientation of the unit vector n. The Cauchy theorem implies that a linear mapping
exists

t = σn, (2.12)

with the Cauchy stress tensor σ, which can be proved to be symmetrical (by imposing
the balance of moments). The Cauchy theorem is also valid for the first Piola-Kirchhoff
traction vector T , leading to

T = PN , (2.13)
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with the first Piola-Kirchhoff stress tensor P which in spite of the Cauchy stress tensor,
is not symmetric. Another stress tensor can be defined through the Cauchy stress tensor
σ and the Jacobian determinant J

τ = Jσ, (2.14)

in which the tensor τ is referred as Kirchhoff stress tensor. The second Piola-Kirchoff
stress tensor S is defined as the pulled-back of the Kirchoff stress tensor τ . This tensor
is a symmetric tensor that does not have a physical interpretation. It is defined as

S = F−1τF −T . (2.15)

The following relationships between the stress tensors defined above can be derived

P = JσF −T

S = F−1P ,

S = JF−1σF −T .

(2.16)

Heat flux

The Stokes heat flux theorem is the thermodynamic equivalent of Cauchy’s stress theorem
(2.12). It postulates the linear mapping for the heat flux vector h on Γ

h = q(x, t) · n, (2.17)

with the Cauchy heat flux vector q, see Figure 2.2. The Lagrangian counterparts can be
defined as

H = Q ·N with Q = JF−1q. (2.18)

2.2.3 Balance laws

Balance laws are used to refer to the overarching principles or rules of nature. They
apply to all types of materials and possess an axiomatic nature. They can be constructed
in either a global integral form, affecting the whole body, or a differential local form,
affecting each location on the body. Balance rules are used to relate an object’s external
loads to its internal quantities. If these quantities remain constant during a process, they
are referred to as conservation laws. The global and local balance principles of mass,
linear momentum, angular momentum, and energy are briefly introduced in this section,
as well as the entropy inequality using the first and second laws of thermodynamics.
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Balance of mass

With the spatial density field ρ(x, t) and the material density field ρ0(X) the conservation
of mass of an infinitesimal volume reads

m =

∫

B0

ρ0 dV =

∫

B

ρ dv = const. (2.19)

Using (2.8) the local form can be deduced as

ρ0 = ρJ . (2.20)

Balance of linear momentum

The conservation of linear momentum is a generalization of Newton’s second law applied
to a continuum body. As such, it is also known as the first Eulerian equation of motion
and reads

d

dt

∫

B

vρ dv =

∫

B

b dv +

∫

∂B

t da (2.21)

Here, v is the spatial velocity field, b is an external body force field per unit volume (e.g.
gravity). Using the Cauchy stress theorem and the divergence theorem, the local form is
given by

∇ · P + b− ρ0v̇ = 0 (2.22)

Balance of angular momentum

The balance of angular momentum is the rotational analog of the linear momentum and
is obtained by differentiating the angular momentum with respect to time

d

dt

∫

B

x× vρ dv =

∫

B

x× b dv +

∫

∂B

x× t da, (2.23)

leading to the local form

σ = σT . (2.24)
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Balance of energy - The first law of thermodynamics

The balance of total energy reads

d

dt

∫

B

(
1

2
ρ |v|2 + u) dv =

∫

∂B

(b · v +R) dv +

∫

∂B

(t · v − h) da, (2.25)

with the stored internal energy per unit volume u and a given heat source R.

The local form

d

dt
u = P : Ḟ −∇ ·Q+R (2.26)

can be interpreted as the first law of thermodynamics, stating that the rate of change
of total energy (kinetic and internal) of a system equals the total energy input into that
system, conducted by mechanical and thermal energy.

Dissipation postulate - The second law of thermodynamics

The second law of thermodynamics is founded on the notion of entropy and describes
energy changes in terms of their direction. For example, it defines that heat is always
transported from a warmer to a cooler location within a continuum. In the subject
of irreversible continuum mechanics, such as damage mechanics, entropy is a critical
quantity.

The second law of thermodynamics can be defined as

T = Ṡ − Q ≥ 0, (2.27)

with the total production of entropy T per unit time, the rate of change of entropy Ṡ and
the rate of entropy input Q. It can be derived into the local dissipation postulate

Dint = P : Ḟ − η θ̇ − Ψ̇−
1

θ
Q · ∇θ ≥ 0, (2.28)

known as the Clausius–Duhem inequality, with the free Helmholtz energy Ψ, the entropy
η and the absolute temperature field θ.

2.3 Shell kinematics

This section presents the basic kinematics of Kirchhoff-Love shells used for the formulation
of fiber-reinforced sheets in Chapter 5. Shells, defined as planar structural elements with
a small thickness relative to their planar dimensions, are used in a variety of engineering
applications. Plate and shell theories in continuum mechanics exploit this length scale
disparity to reduce the three-dimensional problem of solid mechanics to a two-dimensional
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one. The two most common formulations are the Mindlin-Reissner and the Kirchhoff-Love
models. In the first case, the kinematics is determined by the displacements and rotations
of the mean surface, while in the second case only the displacements are needed. With
the advent of the isogeometric concept, see Section 2.5, the continuity required by the
weak formulation of Kirchhoff-Love shells can be easily achieved.

B0

θ3
θ3

r̄

x
X

r

Ω0

Ω

ez

ex ey

θ1

θ1

θ2

θ2

A1
A2

g1

g2G1

G2 n = g3

N = G3

Figure 2.3: Kinematics of the continuum shell in the undeformed and deformed config-
uration.

To be specific, we consider a three-dimensional continuum shell element as depicted in
Figure 2.3, whose points in the Euclidean three-dimensional space R

3 are addressed by
the convected coordinates (θ1, θ2, θ3). The reference placement X : B0 → R

3 is the
embedding∗

X(θi) = r̄(θα) + θ3N(θα) , (2.29)

where r̄ := r̄(θα) is the parametrization of the reference mid-surface Ω0 ⊂ R
3, which

comes along with the covariant basis Aα and the unit normal vector field N defined by

Aα := r̄,α and N :=
A1 ×A2

‖A1 ×A2‖
, (2.30)

where r̄,α := ∂r̄
∂θα

. Note that common operations defined on R
3 are extended for vector and

tensor fields in a pointwise fashion. For instance, the scalar field ‖A1×A2‖ is determined
by ‖A1 ×A2‖(θ

α) := ‖(A1(θ
α) ×A2(θ

α)‖, where we applied the cross product × of R3

together with the standard Euclidean norm ‖v‖ :=
√

(v · v), v ∈ R
3 induced by the inner

product · of R3. In the reference placement (2.29), the coordinates are chosen such that
θ3 ∈ [−h/2, h/2] denotes the coordinate in thickness direction with h as the thickness of
the body.

∗ Greek and Latin indices range in the sets {1, 2} and {1, 2, 3}, respectively. Moreover, we will apply
Einstein summation convention for repeated upper and lower indices.
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The deformation of the body is described by the function x : B → R
3, which incorporates

the Kirchhoff hypothesis by the kinematical ansatz

x(θi) = r(θα) + θ3n(θα) . (2.31)

Here, r := r(θα) is the parametrization of the deformed mid-surface Ω ⊂ R
3, which comes

along with the covariant basis aα and the unit normal vector field n defined by

aα := r,α and n :=
a1 × a2

‖a1 × a2‖
. (2.32)

The kinematical restriction (2.31) allows to describe the body’s deformation exclusively
by the geometry of the mid-surface Ω. Therefore, we introduce some important geometric
objects, that play a central role in the development of the mechanical theory. For a
concise treatment of surface geometry, we refer to [24]. The co- and contravariant metric
coefficients of the deformed mid-surface Ω are defined by

aαβ := aα · aβ and [aαβ(θα)] := [aαβ(θ
α)]−1 , (2.33)

where the square brackets indicate the component matrix. Consequently, it holds that
aαβ a

βµ = δµα. The contravariant basis aα is introduced by the relation aα · aβ = δαβ
and can therefore be expressed as aα = aαβ aβ, which in turn leads to aαβ = aα · aβ . By
definition of the cross-product, we can rewrite ‖a1×a2‖

2 = [(a1 ·a1) (a2 ·a2)−(a1 ·a2)
2] =

det(aαβ). The partial derivatives of the covariant base vectors and the normal vectors can
be expressed using the Gauss and Weingarten equations

r,αβ = aα,β = Γσ
αβ aσ + bαβ n and n,α = −bαβ a

β , (2.34)

where we use the Christoffel symbols of the second kind Γσ
αβ and the covariant components

of the curvature tensor bαβ defined by

Γσ
αβ := aσ · aα,β and bαβ := aα,β · n . (2.35)

Note that (2.34)1 can also be expressed as

aα,β = Γαβσ a
σ + bαβ n , (2.36)

where
Γαβσ = aσ · aα,β = aλ · aα,β aλσ = Γλ

αβ aλσ (2.37)

denotes the Christoffel symbols of the first kind. Analogously, we can define the above
introduced objects and relations also for the reference mid-surface Ω0 using the co- and
contravariant metric coefficients Aαβ and Aαβ , the contravariant base vectors Aα, the
Christoffel symbols of the second kind Γ̄σ

αβ , as well as the covariant components of the
curvature tensor Bαβ.

The surface-deformation gradient F , defined by dr = F dr̄, can be computed by inserting
dθα = dθβAβ · Aα = r̄,β dθ

β · Aα = dr̄ · Aα into the expression dr = r,α dθα =
aα( dr̄ ·Aα) = (aα ⊗Aα) dr̄ and is consequently given by

F = aα ⊗Aα . (2.38)
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The covariant base vectors gi = x,i of the three-dimensional body in the deformed con-
figuration are

gα(θ
i) = aα(θ

α) + θ3n,α(θ
α) and g3(θ

i) = n(θα) (2.39)

and Gi = X,i in the reference configuration

Gα(θ
i) = Aα(θ

α) + θ3N,α(θ
α) and G3(θ

i) = N(θα) . (2.40)

The covariant metric coefficients gij = gi·gj of the three-dimensional body in the deformed
configuration are determined as

gαβ(θ
i) = aαβ(θ

α)− 2 θ3 bαβ(θ
α) + (θ3)2n,α(θ

α) · n,β(θ
α) ,

gα3(θ
i) = g3α(θ

i) = 0 ,

g33(θ
i) = 1 ,

(2.41)

where we applied the definitions (2.33) and (2.34)2 together with the properties n ·n = 1,
aα · n = 0 and n,α · n = 0. Analogously, we obtain the covariant metric coefficients
Gij = Gi ·Gj in the reference configuration

Gαβ(θ
i) = Aαβ(θ

α)− 2 θ3Bαβ(θ
α) + (θ3)2N,α(θ

α) ·N,β(θ
α) ,

Gα3(θ
i) = G3α(θ

i) = 0 ,

G33(θ
i) = 1 .

(2.42)

Neglecting the quadratic term in equations (2.41) and (2.42) yields

gαβ(θ
i) = aαβ(θ

α)− 2 θ3 bαβ(θ
α) and Gαβ(θ

i) = Aαβ(θ
α)− 2 θ3Bαβ(θ

α) (2.43)

assuming a linear behavior through the thickness of the body. Due to the block structure
of the metric coefficient matrices, the contravariant base vectors gi and Gi in the deformed
and the reference configuration can be computed as

gα = gαβ gβ , g3 = g3 = n, [gαβ(θi)] = [gαβ(θ
i)]−1 , (2.44)

and

Gα = Gαβ Gβ, G3 = G3 = N , [Gαβ(θi)] = [Gαβ(θ
i)]−1 , (2.45)

respectively. Similar to the surface-deformation gradient F , the deformation gradient of
the three-dimensional body F̂ is

F̂ = gi ⊗Gi , (2.46)

which is easily obtained by dx = x,i dθ
i = gi( dX ·Gi) = (gi ⊗Gi) dX = F̂ dX .

the right Cauchy-Green deformation tensor for the surface is

C := F TF = Cαβ A
α ⊗Aβ , (2.47)
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where we have defined Cαβ(aαβ(θ
α)) := aαβ(θ

α). Introducing the difference

Sλ
αβ := Γλ

αβ − Γ̄λ
αβ and Sαβλ := Sσ

αβ aσλ = Γαβλ − Γ̄σ
αβ aσλ , (2.48)

it is convenient to define the second covariant derivative of the deformation with respect
to the reference configuration as

r|αβ := r,αβ − Γ̄σ
αβ aσ = (Γσ

αβ − Γ̄σ
αβ)aσ + bαβ n

= Sσ
αβ aσ + bαβ n = Sαβσ a

σ + bαβ n .
(2.49)

Thus, we obtain
(r|αβ −Bαβ n)⊗Aα ⊗Aβ = aσ ⊗ Sσ − n⊗ κ (2.50)

with

Sσ := Sσ
αβ A

α ⊗Aβ and κ := καβ A
α ⊗Aβ = (Bαβ − bαβ)A

α ⊗Aβ , (2.51)

where in-plane and out-of-plane curvatures can be addressed by eight and four compo-
nents, respectively.

For the matrix material, the right Cauchy-Green tensor reads

Ĉ = F̂ T F̂ = gij G
i ⊗Gj , (2.52)

whose covariant components coincide with the metric components of (2.41); note that
higher-order terms in θ3 are neglected. Due to the dependence of the metric coefficients
(2.43) on the first and second fundamental form, it is convenient to introduce the com-
ponents of the right Cauchy-Green tensor as Ĉij(aαβ(θ

α), καβ(θ
α), θ3) = gij(θ

i). The
kinematical restriction in (2.31) does not allow for any change in thickness direction. For
a fixed θ3 = θ̃3, the surface elements of the embedded surfaces in the reference and the
deformed configurations X(θα, θ̃3) and x(θα, θ̃3), respectively, are

da(θα, θ̃3) = ‖g1(θ
α, θ̃3)× g2(θ

α, θ̃3)‖ dθ1 dθ2 =

√
det(gαβ(θα, θ̃3) dθ

1 dθ2 , (2.53)

dA(θα, θ̃3) = ‖G1(θ
α, θ̃3)×G2(θ

α, θ̃3)‖ dθ1 dθ2 =
√
det(Gαβ(θα, θ̃3)) dθ

1 dθ2 . (2.54)

Consequently, the in-plane Jacobian determinant

Ĵ0(θ
i) :=

√
det(Ĉ(θi)) =

√
det(gαβ(θα, θ3))

det(Gαβ(θα, θ3))
(2.55)

can be interpreted as the areal dilatation, i.e. the ratio between the deformed and the
reference area elements da and dA, respectively.

2.4 Phase field approach to fracture

The modeling of fracture phenomena with phase-field methods have gained increasing
attention in recent years. In this section we will introduce the underlying concepts for the
case of non-linear brittle fracture. In subsequent chapters an extended hybrid model will
be deduced for porous-ductile fracture in fiber-reinforced thermo-elastic-plastic solids.
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2.4.1 Crack regularization

∂B0

B0

Γ

∂B0

B0

s = 1

s = 0

Figure 2.4: A schematic representation of an approximation of an internal discontinuity
by a phase-field

We consider an arbitrary elastic body of the bounded domain B0 in the reference con-
figuration and an evolving internal discontinuity boundary Γ , that represents a set of
discrete cracks, as shown in Figure 2.4. In accordance with the classical brittle fracture
approach of Griffith [55], crack nucleation and propagation arises upon the attainment of
a critical local fracture energy density gc. The total potential energy of the body then
reads

W pot = W e +W f =

∫

B0

Ψe dV +

∫

Γ

gc dA, (2.56)

whose minimization can describe the entire fracture process, controlled by a potential
elastic strain energy term and a term related to the work required for the creation of new
surfaces.

The tracking of the crack discontinuity boundaries in classical fracture approaches often
requires complex and costly computations, particularly when considering complex shaped
cracks or even crack branching. The underlying concept of the phase-field formulation is
to approximate the discrete fracture surface with a continuous scalar field, the so called
phase-field s(X, t), where the value s = 0 refers to the undamaged and s = 1 to the fully
broken state of the material. Thus, the crack surface energy can be approximated as

∫

Γ

gc dA ≈

∫

B0

Ψf(s) dV =

∫

B0

gc γ(s) dV, (2.57)

with a crack density functional γ, typically defined as

γ(s,∇(s)) =
1

2 l
s2 +

l

2
∇(s) · ∇(s). (2.58)

The smooth bases of isogeometric analysis presented in Section 2.5.2 provide a convenient
computational framework to apply higher-order regularization and thus obtain better ac-
curacy and convergence rates, see Borden et al. [19]. The common fourth-order approach
reads

γ(s,∇(s),∆(s)) =
1

4 l
s2 +

l

2
∇(s) · ∇(s) +

l3

4
∆(s)∆(s). (2.59)
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The length scale parameter l in the the crack density functionals characterizes the width
of the smeared crack profile. For s → 0, the approximation converges to the sharp crack
Γ. It can also be considered as a material property governing the critical value of stress
required for the crack initiation or growth. For a one-dimensional bar under tension, l
can be derived with the critical tensile stress σcr as

l =
27E gc
256 σcr

2
, (2.60)

see [13] for details. Though an extension in higher dimensions and complex mixed-mode
fracture analysis is difficult, this can give a rough estimation on how to choose l. In
order to correctly resolve the steep gradient of the smooth crack profile, a fine element
discretization should be employed in the region where a crack is expected.

-5 -2 -1 0 1 2 5

1

 2nd   order

 4th
   order

s

x
l

Figure 2.5: Analytical solution for unidimensional phase-field profiles for second- and
fourth-order formulations

The unidimensional analytical solution of the corresponding Euler equations of the crack
density functionals (2.58) and (2.59), after minimizing

∫
B0

gc γ(s) dV and imposing the
initial condition s(0) = 0, are depicted in Figure 2.5. Note that the higher-order formu-
lation has a slightly narrower profile, meaning that a smaller region needs to have a fine
mesh in order to correctly resolve the crack. For this and for the abovementioned reasons,
the fourth-order model is adopted for the simulations in this work.

2.4.2 Elastic strain energy

Next, the loss of material stiffness in the crack is incorporated via the degradation of the
strain energy through the phase-field. The simplest constitutive description would be

Ψe(F , s) = g(s) Ψ(F ) (2.61)

with the linear degradation function g(s) = (1 − s). Assuming that fracture requires
a local state of tension, a physically more reasonable formulation distinguishes between
crack-insensitive compressive (−) and crack-sensitive tensile components (+). A common
additive decomposition of the strain energy density reads

Ψe(F , s) = g(s) Ψ+(F ) + Ψ−(F ), (2.62)
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where the degradation induced by the phase-field acts only on the tension term of the
strain energy function. A possible formulation for large deformation, proposed by Amor
et al. [8] and Borden [18], is based on a the following decomposition of the strain energy
into volumetric and deviatoric parts

if J < 1

{
Ψ+ = Ψdev(F )

Ψ− = Ψvol(J)

elseif J ≥ 1

{
Ψ+ = Ψdev(F ) + Ψvol(J)

Ψ− = 0
.

(2.63)

Multiplicative decomposition of crack-sensitive and -insensitive components have also
been proposed over the principal stretches λa for the non-linear regime. Hesch et al. [126]
introduced an anisotropic split via λa = λ−

a λ+
a with

λ±
a =

(λa − 1)± | λa − 1 |

2
+ 1 (2.64)

leading to the fracture insensitive part of the deformation gradient

F̃ =
∑

a

(λ+
a )

g(s)
λ−
a na ⊗Na, (2.65)

where na and Na denote the principal directions of the left and right stretch tensors,
respectively. Since the just mentioned decomposition is not compatible with a standard
elastoplasticity formulation, which relies on different mechanisms for the deviatoric and
volumetric contributions, we introduce a novel multiplicative decomposition in this work,
defining the fracture insensitive, isochoric part of the deformation gradient and the frac-
ture insensitive of the Jacobian determinant as

˜̄F =
∑

a

(J−1/dλa)
g(s)na ⊗Na and J̃ =

{
Jg(s) if J > 1

J else
. (2.66)

The associated elastic strain energy reads

Ψe(F , s) = Ψdev(
˜̄F (F , s)) + Ψvol(J̃(F , s)) (2.67)

for which typical decoupled strain energies can be taken into account.

Note that more alternative formulations for the tension-compression split have also been
presented, like decompositions based on the symmetric and antisymmetric parts of the
strain tensor [51] or with respect to the crack orientation [119].

The degradation function g(s) controls the transition of the behavior of the material from
the intact to the cracked state and has generally the following properties

g(0) = 1, g(1) = 0 and g′(1) = 0. (2.68)
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Commonly, the following quadratic degradation function is considered

g(s) = (1− s)2 + ε. (2.69)

The positive small factor ε ≈ 0 can be used for avoiding zero stiffness of the material in
a fully cracked state. With a more general cubic degradation function in the form

g(s) = (ag − 2) (1− s)3 + (3− ag) (1− s)2 + ε (2.70)

a small but positive slope of the function at s = 0 allowing better crack nucleation
is achieved with small positive values for the degradation modeling parameter ag. For
brittle fracture, a perfectly linear stress-strain relationship, i.e. a pure elastic behavior
with no softening prior to crack nucleation can be observed with with ag → 0, see [18].

2.4.3 Balance equation of the phase-field

By varying the density functions of the stored energy with respect to s, we obtain the
additional constitutive quantities

H = −δsΨ̂
e = −∂sΨ̂

e

rf = δsΨ̂
f = ∂sΨ̂

f −Div[∂∇sΨ̂
f ] =

gc
lf

s− gc lf ∆s,

namely the driving force of the phase-field H and the crack resistance force rf . Note
that the second order functional Γ is considered here. The strong form of the mechanical
system can then be extended with

H =
gc
lf

s− gc lf ∆s. (2.71)

2.5 Isogeometric analysis

In this section we provide an introduction of the isogeometric concept used for all geomet-
rical discretizations in this work. In conventional finite element analysis, the spline-based
CAD geometry is approximated with low-order, usually linear, Lagrange polynomials ba-
sis functions. The term "isogeometric analysis" implies that the FEA model employs the
same spline-based description as in the CAD geometry. Additionally, it provides higher
continuity of the finite element approximation, needed for certain models, i.e. the fourth-
order phase-field model, the Kirchhoff-Love theory and the strain-gradient formulation of
the fiber material.
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2.5.1 B-splines and NURBS

Univariate B-splines

Univariate B-spline functions are piecewise polynomial functions with compact support.
They are defined in parametric space using a so-called knot vector denoted Ξ . In a one-
dimensional space the knot vector is a set of finite and monotonically increasing sequence
of real numbers Ξ = [ξ1, ξ2, . . . , ξn+p+1], where p is the polynomial degree and n is the
number of basis functions of the B-spline.

Using the convention that a fraction in front of the basis functions is set equal to zero in
the case of the denominator being zero (i.e. 0

0
:= 0), the B-spline functions are defined

recursively on the vector of knots with the Cox-de Boor formula [27] as

Bi
p(ξ) =

ξ − ξi
ξi+p − ξi

Bi
p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Bi+1

p−1(ξ), (2.72)

beginning with

Bi
0(ξ) =





1 if ξi ≤ ξ < ξi+1

0 otherwise
(2.73)

for p = 0. It can be noted that for p = 0 and p = 1, the basis functions of isogeometric
analysis are identical to those of the standard piecewise constant and linear finite elements,
respectively.

Each knot represents a coordinate value in the parametric space. If the knot vector is
chosen equal to a set of following integers, we refer to natural B-spline. If the knots are
distributed uniformly, the vector of knot is said to be uniform. It is said to be open
if the first and last knots are repeated p + 1times. Open knot vectors are standard in
the CAD literature. In one dimension, basis functions formed from open knot vectors
are interpolatory at the ends of the parametric space interval, [ξ1, ξm+p+1], and at the
corners of patches in multiple dimension but they are not, in general, interpolatory at
interior knots. An example of quadratic basis functions for an open, uniform knot vector
is presented in Figure 2.6.

In general, basis functions of degree p have p − 1 continuous derivatives. If a knot is
repeated k times (with k < p), then the number of continuous derivatives decreases by
k. When the multiplicity of a knot is exactly p (i.e. k = p), the B-spline basis functions
are C0 continuous at that knot point. This is illustrated in Figure 2.6 at the location
of the repeated knot ξ = 4. Furthermore, if the multiplicity of the knot point is p + 1
(i.e. k = p + 1) the B-spline basis functions are discontinuous at that knot point and as
a result two separate B-splines patches are formed.

In the perspective of finite element analysis, the univariate B-spline basis functions, as
well as the multivariate B-spline and NURBS basis functions have important features,
namely
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0 1 2 3 4 5
0

1

C−1 C1 C0 C−1

Figure 2.6: Quadratic basis functions for the open-uniform knot vector
ξ = [0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5] with varying degrees of regularity.

• Partition of unity
∑
i

Bi
p(ξ) ≡ 1.

• Nonnegativity over the entire domain Bi
p(ξ) ≥ 0

• Compact support of each Bi
p(ξ) in [ξi, ξi+p+1],

• Linear independence
∑
i

Bi
p(ξ)ci ≡ 0 ⇔ ci = 0

The derivatives of B-spline functions are represented in terms of lower-order B-spline
basis. Thus, the first derivative of the ith B-spline basis function of degree p is given by

d

dξ
Bi

p(ξ) =
p

ξi+p − ξi
Bi

p−1(ξ)−
p

ξi+p+1 − ξi+1

Bi+1
p−1(ξ) (2.74)

and consequently the jth derivative with

dj

dξk
Bi

p(ξ) =
p

ξi+p − ξi

(
dj−1

dξj−1
Bi

p−1(ξ)

)
−

p

ξi+p+1 − ξi+1

(
dj−1

dξj−1
Bi+1

p−1(ξ)

)
. (2.75)

Multivariate B-splines

One can easily extend the previous concepts to define multivariate B-splines for dimension
d ∈ {2, 3} by using the dyadic product Ξ = Ξ1 ⊗ . . .⊗ Ξd of univariate knot vectors Ξi,
with the direction in the parameter space i ∈ {1, . . . , d}. More precisely multivariate
B-splines are defined as

BG = Bi
p(ξ) =

d∏

l=1

Bil
pl
(ξl), (2.76)
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with the associated univariate B-spline basis functions Bil
pl
(ξl) where the multi indexes

i = [i1, . . . , id] and p = [p1, . . . , pd] represent the position in the tensor product and the
polynomial degree in the parameter space, respectively. The assignment of the global
numbering index G to the multi index i can be found [26].

Using (2.74) and (2.75), the jth partial derivative of the Gth multivariate B-spline with
respect to ξl can be obtained as

∂kBG

∂ξkl
=

∂k

∂ξkl
Bil

pl
(ξl)

d∏

l̂=1
l̂ 6=l

B
i
l̂
p
l̂
(ξ l̂), (2.77)

NURBS

B-splines are convenient for free-form modeling, but they lack the ability to exactly repre-
sent some simple shapes such as circles, cylinders and ellipsoids. This limitations can be
overcome with the extension to non-uniform rational B-splines (NURBS), which enable
more control over local geometry shape due to non-uniform treatment of each control
point influence on the curve. This is obtained by the use of weights wi for each control
point respectively according to

NG = N i
p(ξ) =

d∏
l=1

Bil
pl
(ξl)wi

∑
j

d∏
l=1

Bjl
pl(ξ

l)wj

, (2.78)

Note that by setting the same value for each weight we obtain the original B-spline.

By applying the quotient rule, the partial derivative of NA with respect to ξl reads

∂NG

∂ξl
=

∑
B

BB wB
∂BA

∂ξl
−BA

∑
B

∂BB

∂ξl
wB

(∑
B

BB wB

)2 wA. (2.79)

Higher jth order derivatives can be obtained by

∂kNG

∂ξlj
=

∂jBG

∂ξlj
wG −

k∑
m=1

(
k

m

)
∂k−mNG

∂ξlk−m

∑
B

∂mBB

∂ξlm
wB

∑
B

BB wB
. (2.80)
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Hierarchical refinement

The univariate and multivariate B-splines and NURBS can be refined by different ways
without changing the shape of the geometry.

Through knot insertion, the solution space is enriched by adding more basis functions
of the same order while keeping the spline unchanged. Insertion of new knot values clearly
has similarities with the classical h-refinement strategy in FEA.

In the process of order elevation, the B-Spline/NURBS-order is raised by increasing the
multiplicity of each knot (and without adding any new knots values). It can be thought
of as p-refinement in FEA.

Lastly, hierarchical refinement of multivariate B-spline and NURBS bases have been
proposed in [35] with preservation of the global properties in terms of smoothness and
continuity of the unrefined mesh.

2.5.2 Geometric discretization

In the isogeometric analysis framework, the computational domain is not approximated,
but exactly described. To be specific, we introduce a non-linear transformation from the
parametric space B̂ into the physical space B

T : B̂ → B

ξ → X.
(2.81)

By associating the NURBS basis functions NG with a net of control points XG ∈ R
d

related to the geometry under consideration, i.e. a curve or surface as seen in Figure 2.7,
we obtain

G = T (ξ) =
∑

G

NGXG =
∑

i

N i
p(ξ)Xi. (2.82)

Figure 2.7: Physical mesh and control mesh of a quadratic NURBS curve (left) and a
quadratic NURBS surface (right). The red points denote the control points.
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Accordingly, rational approximations of the deformed geometry ϕ and its variation δϕ
are defined as

ϕh =
∑

G

NGXG, δϕh =
∑

G

NGδXG, (2.83)

which we can insert into the corresponding terms of the balance equations to obtain the
discrete formulation of our problem.



3 Phase-Field Modeling of Non-Linear

Thermo-Porous Ductile Fracture

In this chapter, we present a framework for simulating porous-ductile fracture in isotropic
thermo-elastic-plastic solids subjected to large deformations. The proposed model is
based on a triple multiplicative decomposition of the deformation gradient and an expo-
nential update scheme for the plastic return map in the time discrete setting. In addi-
tion, a modified Gurson–Tvergaard–Needleman GTN-type strain-gradient thermoplastic-
ity model is combined with a second-gradient phase-field fracture approach to account for
a temperature-dependent growth of voids on microscale followed by crack initiation and
propagation on macroscale. The multi-physical formulation is completed by incorporating
an energy transfer into the thermal field such that the temperature distribution depends
on the evolution of the plastic strain and the crack phase-field. Eventually, this physi-
cally comprehensive fracture formulation is validated by experimental data and applied to
complex three-dimensional geometries. Based on the available comparative experimen-
tal data, the specific material models and parameters in this chapter are provisionally
adapted for steel-like materials. Generally applicable to thermo-elastic-plastic solids, the
framework and formulations presented here are specifically adapted to the final polymeric
matrix material in the subsequent chapters.

3.1 Configuration and kinematics

As introduced in Chapter 2, we consider a body of interest B0 ∈ R
3 in its reference

configuration, along with the deformation mapping ϕ(X, t), the material deformation
gradient F (X, t), the crack phase-field s(X, t) and the absolute temperature θ(X, t).

Regarding the plasticity, we introduce the equivalent plastic strain α(X, t) and its dual
dissipative resistance force rp(X, t) as

α(X, t) : B0 × T → R and rp(X, t) : B0 × T → R. (3.1)

The plastic deformation gradient F p represents an additional strain measure field

F p(X, t) : B0 × T → R
3×3, with Jp = det[F p] ≥ 1. (3.2)

Within the framework of a GTN-type plasticity model, the void volume fraction f is
introduced as a micromechanically motivated damage parameter for growing cavitation
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in plastic solids

f(X, t) : B0 × T → [f0, ff ] with f =
volume of voids

total volume
, (3.3)

where f0 is the initial porosity and ff is the final void volume fraction. The above
introduced variables characterize a multi-field setting of porous-ductile fracture in thermo-
elastic-plastic solids based on five independent fields

U := {ϕ, s, θ, α, rp}, (3.4)

the finite deformation map ϕ, the absolute temperature θ, the crack phase-field s, the
equivalent plastic strain α and the dissipative plastic resistance force rp. Note that the
Lagrangian plastic deformation map F p and the void volume fraction f will be condensed
within the balance equations.

As is common in nonlinear elastoplasticity, we apply a multiplicative split of the defor-
mation gradient and its determinant, and obtain the elastic components

F e = F (F p)−1 and Je = J (Jp)−1. (3.5)

Postulating that fracture requires a local state of tensile/shear deformation as discussed
in [8, 88, 37, 40], we define the fracture insensitive, isochoric part of the deformation
gradient and the fracture insensitive of the Jacobian determinant as follows

˜̄F e =
∑

a

˜̄λe
ana ⊗Na and J̃e =

{
(Je)g(s) if Je > 1

Je else
. (3.6)

The degradation function g(s) is often defined by the following cubic function g(s) =
(ag − 2) (1−s)3+(3− ag) (1−s)2, where ag ∈ (0, 2] is a degradation modeling parameter.
Note that we use a simplified quadratic degradation function (1 − s)2, which is obtained

by setting ag = 2. Moreover, ˜̄λe
a = (λ̄e

a)
g(s) are distortional stretches, defined via the

isochoric, elastic parts of the principal stretches λ̄e
a = (Je)−1/dλe

a, and finally, the vectors
na and Na represent the principal directions of the left and right stretch tensors, see
[37].

Furthermore, in order to subsequently derive objective (frame-independent) constitutive
relations, we introduce the elastic left Cauchy-Green

be = F (Cp)−1F T (3.7)

with Cp = (F p)TF p. Consequently, the fracture insensitive part of the elastic left
Cauchy-Green tensor reads

˜̄be = ˜̄F e ( ˜̄F e)T =
∑

a

(˜̄λe
a)

2na ⊗ na. (3.8)

In contrast to the isochoric von Mises plasticity using J =
√

det[be], the volumetric plastic
void growth considered in this work leads to the total determinant

J =
√
det[be]

√
det[Cp]. (3.9)
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3.2 Variational formulation

Next, we propose the constitutive framework for the thermomechanical damage model.
To be specific, we introduce constitutive energetic and dissipative functions and derive the
necessary relations and evolution laws to formulate the multi-field variational problem.

3.2.1 Energetic response function

By coupling gradient thermoplasticity with gradient damage mechanics, the density func-
tion of the stored energy Ψ̂ for the multi-field problem is defined by

Ψ̂ = Ψ̂e(F ,F p, s, θ) + Ψ̂θ(θ) + Ψ̂p(α,∇α, θ) + Ψ̂f(s,∇s,∆s). (3.10)

The elastic contribution is composed of volumetric and deviatoric parts as

Ψ̂e = Ψ̂e
vol(J̃

e(J, Jp, s), θ) + Ψ̂e
dev(

˜̄F e(F ,F p, J, s)) (3.11)

where, without prejudice to the generality, we consider in the examples an extended
Neo-Hookean material law given as follows

Ψ̂e
vol(J̃

e, θ) =
κ

2

(
(J̃e)2 − 1

2
− ln[J̃e]

)
−

3

2
β κ (θ − θ0)

(
J̃e −

1

J̃e

)
(3.12)

and
Ψ̂e

dev(
˜̄F e) =

µ

2
( ˜̄F e : ˜̄F e − 3). (3.13)

Therein, µ > 0 and κ > 0 denote the shear modulus and the bulk modulus, respectively.
θ0 is a reference temperature and β is the linear thermal expansion coefficient. Moreover,

for a compact representation we introduce the abbreviation ˜̄F e : ˜̄F e =
∑
a

(˜̄λe
a)

2. Next, the

purely thermal contribution to the energy (3.10) is assumed in the simple form

Ψ̂θ(θ) = c

(
θ − θ0 − θ ln

(
θ

θ0

))
, (3.14)

where c ≥ 0 is a constant parameter representing the specific heat capacity. Satisfying
the heat conduction inequality via Duhamel’s law of heat conduction, we define the Piola-
Kirchhoff heat flux vector as

Q(F , s, θ,∇θ) := −K(F , s, θ)∇θ. (3.15)

Phenomenologically motivated, we formulate the material thermal conductivity tensor K
in terms of the phase-field parameter s

K(F , s, θ) := [K0 (1− wK (θ − θ0)) (1− s) +Kconv s]C−1, (3.16)
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so that when a fracture occurs, the conduction degenerates locally and leads to a pure
convection problem where the heat transfer depends on the crack opening width. More-
over, wK is a thermal softening parameter, K0 is a conductivity parameter related to the
reference temperature, Kconv is a convection parameter and C = F TF denotes the right
Cauchy-Green tensor.

Based on the particular formulation for gradient plasticity in [2, 5, 37, 35], the plastic
energy contribution is defined in terms of the equivalent plastic strain α, its gradient ∇α
and the temperature field θ as

Ψ̂p(α,∇2 α, θ) =

α∫

0

ŷ(α̃, θ) dα̃+ y0(θ)
l2p
2
‖∇α‖2 . (3.17)

As described in [2], lp is a plastic length scale associated with a strain-gradient hardening
effect that takes size effects into account in order to resolve the nonphysical mesh sensi-
tivity of localized plastic deformation in softening materials. The temperature-dependent
isotropic local hardening function ŷ(α, θ) can be determined experimentally for the re-
spective material. In the context of metal plasticity we use this particular saturation-type
function outlined in [112]

ŷ(α, θ) = y∞(θ)− (y∞(θ)− y0(θ)) exp[−ωpα] + h(θ)α, (3.18)

with the three temperature-dependent material parameters y0 > 0, y∞ ≥ y0 and h ≥ 0
defined as

y0(θ) = y0(θ0) (1− ω0(θ − θ0)),

h(θ) = h(θ0) (1− ωh(θ − θ0)),

y∞(θ) = y∞(θ0) (1− ωh(θ − θ0)).

(3.19)

Here, ωh is the hardening/softening parameter, ω0 is the flow stress softening parameter
and ωp is the saturation parameter. The initial yield stress y0 determines the threshold of

the effective elastic response. The variational derivative of Ψ̂p with respect to α yields

rp := δαΨ̂
p = ∂αΨ̂

p − Div[∂∇αΨ̂
p] (3.20)

reflecting the characteristics of the gradient-extended model under consideration.

Lastly, following the phase-field approach to fracture introduced in Section 2.4.3 , the
phase-field fracture contribution is given in terms of the crack-density function as

Ψ̂f(s,∇s,∆s) = ĝc(α) γ̂(s,∇s,∆s)

=
ĝc(α)

4lf
s2 +

ĝc(α) lf
2

∇s · ∇s +
ĝc(α) l

3
f

4
(∆s)2.

(3.21)

In the context of ductile fracture, we first require that lp ≥ lf such that the regularized
crack zone lies inside of the plastic zone. Secondly, we propose a degradation of the
Griffith-type critical energy release rate ĝc. In Miehe et al. [83], Ψ̂p(α,∇α) is degraded as
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well and thus, included in the driving force of the phase-field. This behavior can be equiv-
alently described by decreasing the local fracture energy by a factor of 1− 1

gcγ′(s)
g′(s)Ψ̂p.

Physically interpreted we can state that the critical fracture energy is decreased by the
amount of energy included by the plastic work density function. Regarding the exponen-
tial character of Ψ̂p, we therefore propose the following degradation of the critical fracture
energy density

ĝc(α) = gc,p + gc,e exp[−ωfα], (3.22)

using the modeling parameters {gc,e, gc,p, ωf}.

Finally, the crack resistance force can be obtained by the variational derivative with
respect to s

rf := δsΨ̂
f = ∂sΨ̂

f −Div[∂∇sΨ̂
f ] + ∆[∂∆sΨ̂

f ]. (3.23)

3.2.2 Dissipative response function

Regarding the porous elastoplastic material behavior, we consider a GTN type function
based on [57, 123, 96], which implicitly defines the microscopic effective stress σ̄ := σ̄(τ )
in terms of the Kirchhoff stress τ = σ/J and the void volume fraction f

ΥG(τ , σ̄) :=
σ2
eq

σ̄2
+ 2q1fcosh

[
3

2
q2
p

σ̄

]
−

(
1 + (q1f)

2
)
= 0, (3.24)

Here, σeq =
√

3/2 ‖τdev/J‖ represents the von Mises equivalent stress, whereas p =
1
3
tr[τ/J ] denotes the local pressure along with the growth-based void volume fraction

f and fitting parameters q1 ≈ 1.5 and q2 ≈ 1.0, see [6, 85]. Note that for q1 = 0
the influence of the pressure and the void volume fraction vanishes, i.e. in this case the
Gurson-type yield criterion is identical with the classical von Mises yield criterion with
σ̄ = σeq. Focusing on void growth and thereby neglecting other influences such as void
nucleation or void softening due to shear, the evolution form of the void growth reads
ḟ = (1− f)tr[dp]. In line with [85], the current void volume fraction is given in terms of
the plastic deformation as

f = 1−
1− f0
Jp

(3.25)

with the initial void volume fraction f0. With the effective stress σ̄(τ ) and the dissipative
resistance force rp we define the plastic yield function as

Φ̂p(σ̄(τ ), rp) = σ̄(τ )− rp. (3.26)

A plastic Lagrange multiplier λp is introduced to enforce the Karush-Kuhn-Tucker con-
ditions

λp ≥ 0, Φ̂p ≤ 0, λpΦ̂p = 0. (3.27)
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For the incorporation of the fracture mechanical behavior, we define crack threshold
function as

Φ̂f(H− rf) = H− rf , (3.28)

where the energetic driving force H is bounded by the crack resistance force rf dual to the
fracture phase-field s. Similar to plasticity, we introduce a fracture Lagrange multiplier
λf to enforce the Karush-Kuhn-Tucker conditions

λf ≥ 0, Φ̂f ≤ 0, λf Φ̂f = 0. (3.29)

3.2.3 Evolution equations

The evolution of the thermo-elastic parts of the energetic function is given by

d

dt
Ψ̂e,θ :=

d

dt

[
Ψ̂e + Ψ̂θ

]
=

∂Ψ̂e

∂be
: ḃe +

∂Ψ̂e

∂s
ṡ+

∂
(
Ψ̂e + Ψ̂θ

)

∂θ
θ̇, (3.30)

with the material time derivative

ḃe = lbe + belT + F (Ċp)−1F T, Ċp = (Ḟ p)TF p + (F p)TḞ p . (3.31)

In case of isotropy, the skew-symmetric part of the spatial velocity gradient vanishes, i.e.
l = d, and ∂beΨ̂

e commutes with be such that the first term in (3.30) can be written as

∂Ψ̂e

∂be
: ḃe =

[
∂Ψ̂e

∂be
be

]
: d+

[
be
∂Ψ̂e

∂be

]
: d+

[
∂Ψ̂e

∂be
be

]
: [F (Ċp)−1F T(be)−1]

=

[
2
∂Ψ̂e

∂be
be

]
: [d− dp] ,

(3.32)

where dp = −1
2
F (Ċp)−1F T(be)−1 denotes the Eulerian plastic rate of deformation ten-

sor.

Regarding the partial derivatives in (3.30), we introduce first relations related to the
Kirchhoff stress

τ = τdev + τvol

= 2

(
∂Ψ̂e

dev

∂be
+

∂Ψ̂e
vol

∂be

)
be,

(3.33)

along with the driving force of the crack phase-field

H = −
∂Ψ̂e

∂s
, (3.34)

and the specific entropy

η = −
∂
(
Ψ̂e + Ψ̂θ

)

∂θ
. (3.35)
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Based on the concept of maximum dissipation, we define an extended dissipation potential
and obtain a constrained optimization problem as

V̂ := sup︸︷︷︸
τ ,rp,H−rf

sup︸︷︷︸
λp,λf

[
τ : dp − J(1− f)rpα̇ + (H− rf)ṡ− λpΦ̂p(τ , rp)− λfΦ̂f(H− rf)

]
,

(3.36)
where the Lagrange parameters λp and λf control the non-smooth evolution of the plastic-
ity and the fracture, respectively. This allows us to define the associated plastic evolution
equations as follows

dp = λp∂Φ̂
p

∂τ
and α̇ = −

λp

J(1− f)

∂Φ̂p

∂rp
, (3.37)

as well as the evolution equation for the crack phase-field as

ṡ = λf ∂Φ̂f

∂(H − rf)
(3.38)

along with the loading-unloading conditions introduced in (3.27) and (3.29). A penalty
regularization of the Lagrange multipliers can be utilized as follows

λp =
1

ηp

〈
Φ̂p(τ , rp)

〉
≥ 0 and λf =

1

ηf

〈
Φ̂f(H− rf)

〉
≥ 0, (3.39)

where ηp and ηf are additional material parameters which characterize the viscosity of
the plastic deformation and the crack propagation. Moreover, the Macaulay brackets
are defined by 〈x〉 := (x + |x|)/2. Eventually, we define the internal dissipation density
function Dint as follows

Dint := νp τ : dp + νf Hṡ, (3.40)

where νp is a constant dissipation factor typically chosen in the range of 85% to 95% in
the context of thermoplasticity, see [112, 130, 75]. In addition, νf is introduced as fracture
dissipation factor based on the discussions related to an energy transfer into the thermal
field in [38, 107] and the references therein.

3.2.4 Strong and weak form

The strong form of the coupled problem is summarized in Table 3.1.
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1. Stress equilibrium
div[σ] + b = 0 (3.41)

2. Energy balance
θη̇ + Div[Q]−Dint −R = 0 (3.42)

3. Fracture force
δsΨ̂ + (H− rf) = 0 (3.43)

4. Hardening force
δαΨ̂

p − rp = 0 (3.44)

5. Plastic force

− 2
∂Ψ̂e

∂be
be + τ = 0 (3.45)

6. Plastic strain

dp − λp ∂Φ̂
p

∂τ
= 0, λp =

1

ηp
〈Φ̂p〉 (3.46)

7. Equivalent strain

− α̇−
λp

J(1− f)

∂Φ̂p

∂rp
= 0 (3.47)

8. Phase-field

ṡ− λf ∂Φ̂f

∂(H− rf)
= 0, λf =

1

ηf
〈Φ̂f〉 (3.48)

9. Dirichlet and Neumann conditions

ϕ = ϕ̄(X, t) on ∂Bϕd

0 and τF−TN = T̄ (X, t) on ∂Bϕn

θ = θ̄(X, t) on ∂Bθd
0 and −Q ·N = QN on ∂Bθn

s = 1 on ∂Bsd

0 and ∇

(
l2f
2
∆s− s

)
·N = 0 on ∂Bsn

0

α = 0 on ∂Bαd

0 and ∇α ·N = 0 on ∂Bαn

0

(3.49)

10. Initial conditions

ϕ(X, 0) = ϕ0, ϕ̇(X, 0) = v0, θ(X, 0) = θ0, s(X, 0) = 0, α(X, 0) = 0, rp(X, 0) = 0
(3.50)

Table 3.1: Strong formulation of the coupled problem.

Moreover, the admissible test functions related to an extended set of global primary fields
U is given as δU := {δϕ, δs, δθ, δα, δrp} i.e. the variations of the deformation, the crack
phase-field, the absolute temperature and the isotropic hardening along with its dual
driving force. Their spaces are defined as

Vϕ = {δϕ ∈ H1(B0) | δϕ = 0 on ∂Bϕd
0 },

Vs = {δs ∈ H2(B0) | δs = 0 on ∂Bsd
0 ∧ ∇δs ·N on ∂B0},

Vθ = {δθ ∈ H1(B0) | δθ = 0 on ∂Bθd
0 },

Vα = {δα ∈ H1(B0) | δα = 0 on ∂Bαd
0 },

Vrp = {δrp ∈ L2(B0)},

(3.51)
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where Hk and k ≥ 0 denotes the Sobolev functional space of square integrable functions
and derivatives. Note that the phase-field is required to be in H2(B0), which has substan-
tial effects for the numerical solution of the coupled problem using finite elements. The
weak form of the balance equations of the coupled phase-field approach to porous-ductile
fracture in non-linear thermo-elasto-plastic solids reads

Gϕ :=

∫

B0

[τ : ∇[δϕ]− δϕ ·B] dV −

∫

∂Bϕn
0

δϕ · T̄ dA = 0,

Gs :=

∫

B0

[
δs ηf ṡ− δs χf

(
H−

ĝc
2lf

s

)
+ χf ĝc lf ∇s · ∇δs+

χf ĝcl
3
f

2
∆s∆δs

]
dV = 0,

Gθ :=

∫

B0

[δθ (θη̇ −Dint −R)−Q · ∇δθ] dV +

∫

∂Bθn
0

δθ H dA = 0,

Gα :=

∫

B0

[
δα (ŷ − rp) + y0(θ) l

2
p ∇α · ∇δα

]
dV = 0,

Grp :=

∫

B0

δrp

(
ηpα̇− χp

Φ̂p(τ , rp)

J(1− f)

)
dV = 0.

(3.52)

Here, b and B are given body forces per unit volume of the deformed and reference con-
figuration, respectively, N is the outward unit normal vector and T̄ the surface traction
at the boundary. Moreover, R represents the heat supply per unit volume and H = Q ·N
the heat supply on the thermal Neumann boundary. Appropriate Dirichlet conditions are
given in Table 3.1, where ϕ̄ denotes a prescribed deformation and θ̄ a prescribed temper-
ature. Additionally, the Dirichlet boundary condition for the crack phase-field is given
by

s = 1 on ∂Bsd
0 ∈ Γl, (3.53)

ensuring that a broken state remains broken. The Karush-Kuhn-Tucker conditions in
(3.27) and (3.29) are evaluated by inserting local variables defined as

χf =:





1 for Φ̂f > 0

0 otherwise
and χp =:





1 for Φ̂p > 0

0 otherwise
. (3.54)

Note that by using the local variable χf in (3.52)2, we demand ṡ ≥ 0 for thermodynamical
consistency, avoiding a transfer of energy from the fracture phase-field into the mechanical
field. This prevents healing effects, which may be taken into account as well. We can
also set χf ≡ 1 and restrict only the fully broken state, i.e. we allow for healing until the
phase-field reaches one.
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3.3 Spatial discretization

Following the isogeometric analysis approach presented in Section 2.5.2 and the approxi-
mations of the deformed geometry ϕ and its variation δϕ defined there, the approxima-
tions of the phase-field s and the temperature field θ as well as their variations δs and δθ
read

sh =
∑

A∈I

RAsA, δsh =
∑

A∈I

RAδsA (3.55)

and

θh =
∑

A∈I

RAθA, δθh =
∑

A∈I

RAδθA. (3.56)

Therein, we use the same spline based approximations for all fields, satisfying the required
continuity sh, δsh ∈ H2(B0) of the fourth-order phase-field approach, where the global
shape functions RA : B0 → R are associated with control points A ∈ I = {1, . . . , N}
with the total number of control points N.

For the hardening variable α and its variation δα, as well as for its dual driving force rp

and its variation δrp, we make use of linear shape functions Na defined on the physical
mesh representation of the NURBS geometry with nodes a ∈ J = {1, . . . , n} with the
corresponding number of control points n:

αh =
∑

a∈J

Naαa, δαh =
∑

a∈J

Naδαa (3.57)

and

rp,h =
∑

a∈J

Narpa , δrp,h =
∑

a∈J

Naδrpa . (3.58)

The more natural choice of approximating the two plastic fields with the same quadratic
NURBS shape functions leads to oscillations within both fields, indicating stability issues
as already observed in [7]. The above described scheme has shown to be stable and
numerically robust within our numerical examples.



3.3 Spatial discretization 35

Inserting the approximations into (3.52) yields the semi-discrete set of coupled equations

Gh
ϕ := δqA ·



∫

B0

τ h∇[RA] dV − F ext,A


 ,

Gh
s := δsA


MAB

s ṡB −

∫

B0

RAHh dV +KAB
s sB


 ,

Gh
θ := δθA



∫

B0

(
η̇hRARBθB − RADh

int −∇RAQh
)
dV −Qext,A


 ,

Gh
α := δαa



∫

B0

Na(ŷh −N brpb ) dV +Kab
α αb


 ,

Gh
rp := δrpa


Mab

rp α̇b −

∫

B0

χpN
a Φ̂

p,h(τ h, rp,h)

Jh(1− fh)
dV


 .

(3.59)

The Kirchhoff stress tensor, the local entropy and the phase-field driving force are given
by

τ h = 2
∂Ψ̂e,h(˜̄be,h, sh, θh)

∂be,h
be,h, Hh = −

∂Ψ̂e,h(˜̄be,h, sh, θh)

∂sh
and ηh = −

∂Ψ̂e,θ,h(˜̄be,h, sh, θh)

∂θh
,

(3.60)
respectively. The semi-discrete definition of the heat flux vector along with the conduc-
tivity tensor read

Qh = Kh ∇RA θA and Kh = [K0 (1−ωK (θh−θ0)) (1−sh)+Kconv sh] (Ch)−1, (3.61)

where
Ch = qA · qB ∇RA ⊗∇RB. (3.62)

Moreover, the semi-discrete external contributions in (3.59)1 and (3.59)3 are formulated
as

F ext,A =

∫

B0

RAB dV +

∫

∂Bϕn
0

RAT̄ dA and Qext,A =

∫

B0

RAR dV +

∫

∂Bθn
0

RAQN dA.

(3.63)
The coefficients of the matrices in (3.59)2 are given by

MAB
s = ηf

∫

B0

RARB dV,

KAB
s =

1

lf

∫

B0

ghcχf

(
1

2
RARB + l2f∇RA · ∇RB +

l4f
2
∆RA∆RB

)
dV,

(3.64)
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whereas the matrices in (3.59)4 and (3.59)5 take the form

Kab
α = y0l

2
p

∫

B0

∇Na · ∇N b dV and Mab
rp = ηp

∫

B0

NaN b dV. (3.65)

The semi-discrete definitions of the critical fracture energy density and the local hardening
function read

ghc = gc,p + gc,e exp[−ωfα
h] (3.66)

and

ŷh = y∞(θh)− (y∞(θh)− y0(θ
h)) exp[−ωpα

h] + h(θh)αh, (3.67)

respectively. The discrete void volume fraction optained from fh = 1− (1− f0)/J
p,h with

Jp,h =
√

det[Cp,h] and Jh the discrete version of the Jacobian determinant. Eventually,
the internal dissipation in semi-discrete form reads

Dh
int := νp τ

h : dp,h + νf H
hṡh, (3.68)

using the semi-discrete evaluation of the plastic deformation rate tensor dp,h.

3.4 Temporal discretization

Finally, in order to obtain a set of non-linear algebraic equations to be solved via a Newton-
Raphson method, we discretize the semi-discrete coupled problem (3.59) in time. There-
fore, we subdivide the considered time interval T into a sequence of times t0, . . . , tn, tn+1

, . . . T , where (•)n and (•)n+1 denote the value of a given physical quantity at time tn
and tn+1, respectively. Suppose that the discrete set of state variables at tn given by
UA,n := {qA,n, sA,n, θA,n, αA,n, r

p
A,n} and the local plastic deformation variable Cp,h

n at
time tn are known and the time step size ∆t = tn+1 − tn is given. Then, the goal is to
determine the corresponding fields at time tn+1 via the algorithmic approximation to the
weak formulation (3.59) defined as
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Gh,n+1
ϕ := δqA ·



∫

B0

τ h
n+1∇[RA] dV − F

ext,A
n+1


 ,

Gh,n+1
s := δsA


MAB

s

sB,n+1 − sB,n

∆t
−

∫

B0

RAHh
n+1 dV +KAB

s,n+1sB,n+1


 ,

Gh,n+1
θ := δθA



∫

B0

(
ηhn+1 − ηhn

∆t
RARBθB,n+1 −RADh

int,n+1 −∇RAQh
n+1

)
dV −Qext,A

n+1


 ,

Gh,n+1
α := δαa



∫

B0

Na(ŷhn+1 −N brpb,n+1) dV +Kab
α αb,n+1


 ,

Gh,n+1
rp := δrpa


Mab

rp
αb,n+1 − αb,n

∆t
−

∫

B0

χp,n+1N
a Φ̂

p,h
n+1(τ

h
n+1, r

p,h
n+1)

Jh
n+1(1− fh

n+1)
dV


 .

(3.69)
Hereby, a full-discrete definition of the internal dissipation is given by

Dh
int,n+1 := νp τ

h
n+1 : d

p,h
n+1 + νf H

h
n+1

shn+1 − shn
∆t

. (3.70)

Taking into account small values for the plastic viscosity parameter ηp, we propose the
following approximation

τ h
n+1 : d

p,h
n+1 ≈ Jh

n+1(1− fh
n+1) r

p,h
n+1

αh
n+1 − αh

n

∆t
(3.71)

such that the internal dissipation can be recast as

Dh
int,n+1 := νp J

h
n+1(1− fh

n+1) r
p,h
n+1N

aαa,n+1 − αa,n

∆t
+ νf H

h
n+1R

A sA,n+1 − sA,n

∆t
(3.72)

for practical reasons.

Note that we apply a staggered scheme for the solution of the multi-field problem, i.e.
the displacement field along with the plastic and hardening fields {qA,n+1,C

p,h
n+1, αA,n+1

and rpA,n+1}, the crack phase-field sA,n+1 and the temperature field θA,n+1 are solved
successively. For the time integration of the plastic evolution equations, the construction
of a return mapping algorithm is most crucial. Therefore, we define a trial state as ∗

betr = Fn+1(C
p)−1

n F T
n+1 (3.73)

assuming that no further plastic deformation occurs within the time step. Based on this
trial state, we evaluate the yield criteria (6.37). If Φ̂p

tr ≤ 0, then the process is purely

∗ For the sake of readability, we neglect the labeling of the spatial approximation in the following.



38 3 Phase-Field Modeling of Non-Linear Thermo-Porous Ductile Fracture

elastic and the elastic trial state is the solution. If on the other hand Φ̂p
tr > 0, then the

trial state is not admissible and a plastic correction is required. Therefore, we apply an
exponential integration scheme regarding (3.37) which leads to

(Cp)−1
n+1 = exp

[
− 2∆tλp

n+1F
−1
n+1nn+1Fn+1

]
(Cp)−1

n , nn+1 =
∂Φ̂p

n+1

∂τn+1

(3.74)

and

(λe
a,n+1)

2 = (λe
a,tr)

2exp
[
− 2∆tλp

n+1na,n+1

]
, (3.75)

respectively. Note that in contrast to standard von Mises plasticity nn+1 6= ntr and
‖nn+1‖ 6= 1, i.e. the plastic correction has to be performed by the Lagrange multiplier
λp
n+1 as well as the components na,n+1 which can be obtained by solving the non-linear

relations

Φ̂p
n+1 − ηpλ

p
n+1 = 0 and

∂Φ̂p
n+1

∂τa,n+1
− na,n+1 = 0 (3.76)

via an internal Newton-Raphson iteration. In addition, the void volume fraction fn+1 is
locally calculated by

fn+1 = max
{
f0, 1− (1− f0)/

√
det[Cp

n+1]
}
. (3.77)

An overview of the return map algorithm is given in Box 1.
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Fn+1,C
p
n, αn+1, r

p
n+1, sn(frozen), θn(frozen)

Compute trial state:

betr = Fn+1(C
p
n)

−1F T
n+1

[(λe
a,tr)

2,na] = eig(betr)

fn = max
{
f0, 1− (1− f0)/

√
det[Cp

n]
}
.

Je
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∏
a
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a,tr
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tr)

− 2
3
g
∑
a

(
(λe

a,tr)
2g − 1

3

∑
i

(λe
i,tr)

2g

)
na ⊗ na

if Je
tr > 1 then
ptr =

κ
2
(Jn+1)

−1 ((Je
tr)

g − (Je
tr)

−g − 3β(θn − θ0)(1 + (Je
tr)

−2g)) g(Je
tr)

g

else
ptr =

κ
2
(Jp

n)
−1 (Je

tr − (Je
tr)

−1 − 3β(θn − θ0)(1 + (Je
tr)

−2))
end
solve σ̄tr

3‖τdev,tr‖
2

2(σ̄tr)2(Jn+1)2
+ 2q1fn cosh

[
3
2q2

ptr

σ̄tr

]
−
(
1 + (q1fn)

2
)
= 0

Φ̂p
tr = σ̄tr − rpn+1

if Φ̂p
tr > 0 then
solve λp

n+1, na,n+1

3‖τdev,n+1‖
2

2(σ̄n+1)2(Jn+1)2
+ 2q1fn cosh

[
3
2q2

pn+1

σ̄n+1

]
−
(
1 + (q1fn)

2
)
= 0

σ̄n+1 − rpn+1 − ηpλ
p
n+1 = 0

∂Φ̂p

n+1

∂τa,n+1
− na,n+1 = 0

with (λe
a,n+1)

2 = (λe
a,tr)

2exp
[
− 2∆tλp

n+1na,n+1

]

Compute: λe
a,n+1, τdev,n+1(λ

e
a,n+1), pn+1(λ

e
a,n+1)

τn+1 = τdev,n+1 + pn+1Jn+1I

else
λp
n+1 = 0

λe
a,n+1 = λe

a,tr

τn+1 = τdev,tr + ptrJn+1I

end

Box 1: Return mapping algorithm.

3.5 Numerical examples

In this section we demonstrate the accuracy and performance of the newly developed
phase-field formulation for thermo-porous ductile fracture. In particular, two examples
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are considered. Firstly, a benchmark example with experimental data allows us to explore
the full range of porous thermoplastic material behavior, so that we end up with a com-
prehensive validated material setting summarized in 3.2. Finally, a second example from
the third Sandia Fracture Challenge is used to demonstrate the ability of the model to be
applied to more complex geometries that produce three-dimensional fracture patterns.

3.5.1 Tensile test

u

u = 0

Figure 3.1: Tensile test. Reference configuration and computational mesh.

The following benchmark example has been presented in Ambati et al. [7], where experi-
mental data of steel 1.0553 are used to adjust the ductile fracture model proposed therein.
For the numerical investigations in this section, we address the following issues:

I For the present model, physically more comprehensive model, the results have to be
in a good agreement with the experimental results in terms of hardening, necking,
crack initialization, propagation and failure as well.

II For a physical reasonable formulation of ductile fracture, a non-negative dissipation
of energy must be taken into account. This has to investigated for the elastoplastic
behavior as well as for the fracture mechanical behavior, cf. (3.40).

III The modeling of the critical fracture energy density plays an important role for the
ductile fracture behavior. Regarding the definition in (3.22), we have to investigate
the effect of gc,p on crack initialization.
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Elastic parameters

Shear modulus µ 73255MPa

Bulk modulus κ 150000MPa

Plastic parameters

Yield stress y0(θ0) 345.6MPa

Ultimate yield stress y∞(θ0) 688.25MPa

Hardening modulus h(θ0) 300MPa

Saturation exponent ωp 16.93

Thermal softening parameter ωh 0.002K−1

Thermal softening parameter ω0 0.002K−1

Plastic viscosity ηp 1 · 10−7MPa · s

Plastic length scale lp 0.78125mm

Initial void fraction f0 0.005

Gurson fitting parameter q1 1.5

Gurson fitting parameter q2 1

Phase-field fracture parameters

Brittle critical fracture energy gce0 825 kJ/m2

Ductile critical fracture energy gcp0 175 kJ/m2

Saturation exponent ωf 42.325

Fracture viscosity ηf 1 · 10−7MPa · s

Fracture length scale lf 0.78125mm

Thermal parameters

Specific heat capacity c 3588 kJ/(m3 ·K)

Thermal expansion coefficient β 1 · 10−5K−1

Conductivity K0 45W/(m ·K)

Convection Kconv 0W/(m ·K)

Conductivity softening parameter ωK 0K−1

Reference temperature θ0 293K

Plastic dissipation factor νp 0.9

Fracture dissipation factor νf 0.9

Table 3.2: Material setting of the steel 1.0553 used for the numerical simulations in this
section.

IV It is well known for phase-field formulations to brittle fracture, that the fracture
length scale lf has the character of a material parameter and influences the crack
initialization significantly. A study of the fracture length scale parameter is indis-
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pensable, since we suppose that the effect is more pronounced for ductile fracture.

V To overcome mesh sensitivities we have proposed a gradient extended plasticity
model as given in (3.17). A comparison of different plastic length scale parameters
up to a local plasticity model has to be part of a comprehensive investigation of the
model.

VI In [7], possible oscillations of the stress field are addressed. With regard to the
four-field formulation along with the proposed approximation scheme, we have to
investigate whether oscillations occur within the results.

VII For the present model, a Gurson-type yield criterion is applied taking into account
the growth of micro-voids. In comparison to a standard von Mises type yield crite-
rion, the behavior in terms of hardening, necking and crack initialization has to be
investigated.

VIII A temperature-dependent formulation of the hardening behavior is incorporated
within the present model which determines the elastic response such that we expect
an impact on crack initialization as well. Therefore, investigations based on isother-
mal simulations at different temperature levels are useful to understand the model
in more detail.

IX For a physically correct representation of the thermomechanical behavior, an energy
transfer into the thermal field is taken into account via the internal dissipation func-
tion defined in (3.40). By conducting fully coupled simulations with different values
of the dissipation factors, the interaction of the different fields can be investigated
for the entire thermomechanical process.

X Due to the thermomechanical coupling, the formulation is strongly rate-dependent.
To investigate this effect, we conduct further simulations and apply different defor-
mation rates.

The benchmark problem considers a flat I-shaped specimen of size 140mm×20mm×3mm
with reduced width of 12.5mm in the middle. The length of the flaps is 25mm and the
radius in the transition is 15mm. Figure 3.1 shows the geometry in the reference config-
uration along with the applied boundary conditions and the computational mesh. The
outer 20mm of both flaps are subject to Dirichlet boundary conditions. To be specific,
the lower flap is fixed in space and the upper flap is moved upwards by a displacement
rate of 0.5mm/min within a quasi-static simulation setting neglecting inertia effects. For
the thermal field, no heat in- or outflow is allowed, i.e. the system is adiabatically iso-
lated. The used computational mesh consists of in total 1936 quadratic NURBS elements
including a two level local refinement of the region in which plastification, necking and
crack propagation is expected.

Regarding point I, Figure 3.2 demonstrates a good agreement of the load deflection result
obtained by an isothermal simulation at θ = 293K and the experimental result given in [7].
Therein and in what follows, the displacement is measured at ±25mm from the center
of the specimen. Note that we obtain no significant softening effect due to the crack
phase-field before crack initialization. In our opinion, this is the correct representation of
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Figure 3.2: Tensile test. Load deflection result of the present model and the experiment
given in [7].

the problem, since inertia effects are neglected within the simulations. Nevertheless, we
can reproduce a softer behavior at crack initialization by increasing the fracture viscosity
parameter ηf .

As shown in Figure 3.3, and in accordance with the experiment, the crack phase-field
begins to evolve from the center of the specimen, driven by plastic strain localization.

Next, the non-negative energy dissipation is checked, as addressed in item II. In Fig-
ure 3.4 we see that both the dissipation due to plastification and the crack growth take
positive values throughout the process, which is consistent with the second law of thermo-
dynamics. As for the plastic part, once the yield stress is reached, the system dissipates
energy, which is enhanced by the strain hardening behavior. In contrast, dissipation into
the fracture phase-field is much lower until crack propagation. Thereafter, a sudden in-
crease in fracture mechanical dissipation occurs up to a value of 216.5038W and plastic
dissipation ceases as dissipation of elastic energy by crack propagation leads to a lower
stress level.

Concerning point III, we next consider the effect of different values of the reduced critical
crack energy density gc,p. In Figure 3.5, we can observe that crack initiation depends
strongly on gc,p. A change of one percent with respect to the initial critical crack energy
density gc,e significantly shifts the point at which the material begins to crack, but has no
effect on the material behavior before that. This is in agreement with the observations
in Figure 3.2 and our assumption of abrupt failure of steel-like material in a quasi-static
simulation environment. A similar effect can be observed by varying the fracture length
scale parameter, as shown in Figure 3.6. Note that this confirms our conjecture in item
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0
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s [-]
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0.65

α [-]

Figure 3.3: Tensile test. Result of an isothermal simulation at θ = 293K. The crack
phase-field (first row) and the equivalent plastic strain (second row) are plot-
ted at displacements of u±25 = [10.50, 11.6, 12.5]mm. Additionally, the con-
stricted cross-section in the middle of specimen is shown, where the solid line
represents the undeformed configuration.

IV that the length scale has a large effect on crack initiation and therefore we need to fix
the value of lf for all subsequent simulations.

Figure 3.7 shows results for different values of the plastic length scale lp, as addressed in
point V. As expected, the results deviate slightly when necking occurs, but since in this
case the differences in plastic deformation are too small, there is no visible change with
respect to crack initiation. Further numerical investigations regarding the plastic length
scale in [37, 2], have shown the size effects to overcome the unphysical mesh sensitivity
of the localized plastic deformation and consequently the crack initiation.

Regarding point VII, an investigation of the modified Gurson model with different values
of the fitting parameters up to a purely isochoric model with q1 = q2 = 0 is shown in
Figure 3.8 and 3.10. The von Mises stress distribution and the void volume fraction
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Figure 3.4: Tensile test. Dissipation of energy due to plastification and crack growth.
The fracture mechanical dissipation part reaches a value of 216.5038W which
is not captured in the diagram for reasons of clarity.

Figure 3.5: Tensile test. Load deflection results for different values of gc,p.

at crack initiation are shown in Figure 3.10. Here it can be observed that the necking
behavior is more pronounced by increasing the Gurson parameters, i.e., by increasing
the volumetric fraction within the model, which is clearly visible by the deformed cross
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Figure 3.6: Tensile test. Load deflection results for different values of lf .

Figure 3.7: Tensile test. Load deflection results for different values of lp.

section in the center of the specimen. This increase in volumetric plastic deformation
leads to a shift in crack initiation, which is also shown by the load deflection result in
Figure 3.8. Note that the fracture evolution is governed by the elastic response, so the



3.5 Numerical examples 47

Figure 3.8: Tensile test. Load deflection result of isothermal simulations at θ = 293K
and different values of the Gurson fitting parameters.

Figure 3.9: Tensile test. Load deflection result of isothermal simulations at different
temperatures.

maximum stress value at crack initiation is almost identical, but the applied load differs
due to the different constricted cross sections.

Concerning point VIII, the temperature dependence of the model is addressed next.
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Therefore, the load deformation result is depicted in Figure 3.9 for isothermal simulations
with different temperatures. As expected, higher temperature reduces the yield stress and
due to this effect on the elastic response, the measured displacement at crack initiation
is larger, i.e., we obtain larger plastic deformations. This can also be seen in Figure 3.11,
where the results of equivalent plastic strain and void volume fraction are plotted.

615615
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f [-]f [-]f [-]

Figure 3.10: Tensile test. Result of isothermal simulations at θ = 293K and different
values of Gurson fitting parameters q1 = {0, 1.5, 1.5} and q2 = {0, 1, 1.5}
(from left to right). The von Mises stress (first row) and void volume
fraction (second row) are plotted at crack initialization.

Adressing point IX and point X, similar effects can be observed by increasing the
deformation rate and dissipation factors for fully coupled simulations with an initial tem-
perature of 293K. As shown in Figure 3.12, an increase in these parameters leads to
greater and more localized heating, and thus greater plastic deformations, as discussed
above. However, since the heating is local, unlike the isothermal setting, we obtain a shift
in crack initiation to smaller displacements measured at ±25mm from the center of the
specimen, see Figure 3.14.

Finally, Figure 3.13 shows all relevant physical quantities obtained by the fully coupled
simulation with u̇ = 0.5mm/min and νf = νp = 0.9. To be precise, the crack phase-
field, absolute temperature, equivalent plastic strain, dual strain hardening force, void
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Figure 3.11: Tensile test. Result of isothermal simulations at temperatures of θ = {293,
313, 333}K. The equivalent plastic strain (first row) and the void volume
fraction (second row) are plotted at crack initialization.

volume fraction, and von Mises stress distribution at different displacement steps are
presented. Note that we do not observe any kind of oscillations as addressed in point
VI. Uniform discretization of all fields, i.e., discretization using quadratic NURBS-based
shape functions, leads to strong oscillations in the dual hardening force field and stress
field, causing the simulation to stop. It is evident that the plastic deformation remains
persistent in case of fracture, so residual stresses remain after the specimen is completely
fractured. Also, it is evident from Figure 3.13 that the plastic deformation remains
persistent in case of fracture, so residual stresses are generated within the specimen.
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Figure 3.12: Tensile test. Absolute temperature result (first row), equivalent plastic
strain result (second row) and void volume fraction result (third row) of fully
coupled simulations at crack initialization using different deformation rates
u̇ = {0.5, 60, 60}mm/min and dissipation factors νf = νp = {0.9, 0.5, 0.9}
(from left to right).
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0.005 f [-] 0.013
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Figure 3.13: Tensile test. Crack phase-field result (first row), absolute tem-
perature result (second row), equivalent plastic strain result
(third row), dual hardening force result (fourth row), void vol-
ume fraction result (fifth row) and von Mises stress result (sixth
row) at displacements of u±25 = [7.92, 10.12, 10.94, 11.26, 11.46,
11.47, 11.51, 11.52, 11.56, 11.58, 11.59, 11.65]mm.
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Figure 3.14: Tensile test. Load deflection result of fully coupled simulations using
different values of the deformation rate and dissipation factors.

3.5.2 Third Sandia Fracture Challenge

This last example illustrates the applicability of the thermo-porous fracture model to
complex three-dimensional geometries. Therefore we consider the geometry of the third
Sandia Fracture Challenge†.The geometry in the reference configuration along with the
applied boundary conditions and the computational mesh is shown in Figure 3.15. The
examined specimen of size 56mm× 18mm× 8mm with a reduced width of 12mm in the
middle contains multiple internal channels and cavities. The initial temperature of the
body is 293K and no heat in- or outflow is allowed. For an efficient and simple construc-
tion of the computational mesh based on the given CAD data, the geometry is discretized
by 111492 Lagrangian tetrahedral elements, whereby a quadratic approximation is used
for the displacement field, the crack phase-field and the temperature field and a linear
approximation for both hardening fields. Within the quasi-static simulation setting, the
lower end of the hollow body is fixed in space while the upper end is moved upwards
by a displacement rate of 0.2mm/min Regarding the material setting, steel like parame-
ters are applied as given in Table 3.2 along with plastic and fracture dissipation factors
νp = νf = 0.5 and GTN parameters f0 = 0.0005, q1 = 0.75 and q2 = 0.5.

Figure 3.18 shows the crack phase-field, the equivalent plastic strain, the von Mises stress
distribution and the absolute temperature at different displacements steps. The crack

† CAD data are taken from the following webpage:
https://drive.google.com/drive/folders/0B8nFwdOwWu0YRkJ4Q0VJWEVCdGM.
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u

u = 0

Figure 3.15: Third SFC. Reference configuration and computational mesh (sectional
view).

phase-field initiates near the intersection between the through hole and the angled chan-
nels which is driven by the plastic strain evolution. Subsequently, the crack propagates
along the channels as shown in Figure 3.18 (first row). At the fully broken state, plas-
tic deformations remain persistent within the specimen inducing pronounced residual
stresses, see Figure 3.18 (third row). Regarding the thermal field, a global cooling down
can be observed in the beginning due to the expansion of the specimen. Afterwards, the
specimen warms up due to plastification and fracture induced energy dissipation. At the
fully ruptured state, an increase of temperature of about 2K can be observed, see Fig-
ure 3.18 (fourth row). Note that this warming affects the hardening behavior and thus
also the fracture behavior as pointed out in the previous example. Moreover, the energy
dissipation occurs above the conical channel and the internal cavity which impedes an
heat flux into the lower part of the specimen such that the upper part warms up slightly
faster.

Eventually, the load deflection curve is depicted in Figure 3.16. Therein, we can observe a
pronounced hardening and necking behavior before crack initialization. Figure 3.17 shows
the results of the crack phase-field at fully ruptured state; the fully broken elements have
been removed for visualization purpose.
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Figure 3.16: Third SFC. Load deflection result.
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Figure 3.17: Third SFC. Results of the crack phase-field at fully ruptured state.
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Figure 3.18: Third SFC. Crack phase-field result (first row), equivalent plastic strain
result (second row), von Mises stress result (third row) and absolute tem-
perature result (fourth row) at displacements of u = [1.2, 2.3, 3.9, 5]mm.





4 Generalized Continuum Mechanics

for Micro-Structured Materials

Although most materials look macroscopically homogeneous, on sufficiently small scales
they usually encompass a distinct microstructure related to their individual microcom-
ponents, e.g., blood cells, grains, single crystals, fibers, etc. As long as the spatial scales
of the continuum differ by many order from those of the underlying microstructure, the
classical continuum approach presented in the previous chapter can account for complex
material behavior, especially in combination with elaborate constitutive models. How-
ever, if a structure under consideration is comparatively small, i.e. approaching a typical
length of the intrinsic microstructure, size effects appear, typically characterized by as
a stiffer response for a smaller specimen size. In the absence of a characteristic mi-
crostructural length scale, e.g. size of embedded fibers or spacing between grains or
crystals, classical continuum theory cannot reproduce these macroscopic manifestations
of microstructure.

The main objective of this chapter is to introduce the so-called generalized continuum
(or microcontinuum) theories to overcome these limitations. Generalized continua can be
classified into two main groups, see Figure 4.1 and [81, 80, 50]. Higher grade continua
are characterized by higher order spatial derivatives of the displacement field, such as in
the second gradient theory of Mindlin [92] or by the gradient of internal variables as in
strain-gradient plasticity [1, 99]. Higher order continua, generally known as micromorphic
continua, are represented with additional degrees of freedom that are a priori independent
from the usual three degrees of freedom of the continuum point [21].

After presenting the basic kinematics following [21], of this two main groups of microstruc-
tured continua, we will focus on the micromorphic theory of Eringen and Mindlin [44, 92]
for linear elasticity and demonstrate how it incorporates many other models as special
cases, such as the Cosserat [25] or second gradient theory [78]. The latter will be used
in the following chapters to account for size effects in the modeling of fiber composite
reinforcements.
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Figure 4.1: Classification of continuum materials.
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4.1 Kinematics

4.1.1 Configuration and motions

Higher-order gradient theory

ϕ

B0 B

X x

∆X ∆x

S
s

dX
dx

Figure 4.2: Nonlinear deformation mapping

Considering a three-dimensional body in its Lagrangian and Eulerian configuration B0

and B, the deformation of a material point P, identified by its position vector X and x,
is described via the mapping

x := ϕ(X, t). (4.1)

We additionally introduce the deformation of a material line L. The material tangent at
the material finite line element S around the material point P with material placement
X is denoted by ∆X, as depicted in Figure 4.2. In the vicinity of P , the following Taylor
series expansion may be used to generate the mapping of this finite tangent element

∆x := ∇ϕ ·∆X +
1

2
∇(∇ϕ) : (∆X ⊗∆X) + φ(∆X3+). (4.2)

In the classical Cauchy-Boltzmann continuum, only the linear tangent map ∇ϕ is taken
into account, and thus neglecting the quadratic term ∇(∇ϕ) and terms of cubic and
higher degree φ(δX3+). This requires that the dimensions over which macroscopic gra-
dients occur are much larger than characteristic length scales of the microstructure. As
a consequence, only infinitesimal line elements or the tangent vector dX on S at the
position X affects the deformation map.

dx := ∇ϕ · dX. (4.3)

When the linear term in the nonlinear deformation mapping (4.2) is combined with the
quadratic or even higher terms, the classical continuum is extended to a gradient contin-
uum. When third- and higher-order terms are omitted, this corresponds to a second-order
gradient theory, which is a specific instance of Mindlin’s second gradient model [91]. As
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will be explained in more detail later, a size effect is introduced by the second-gradient
∇(∇ϕ), which can be related to the curvature in the material line and thus will be used
to model the size-dependent curvature effects of the embedded fibers.

Higher gradients of internal fields are used analogously e.g. in theories of gradient plas-
ticity or gradient electromechanics, see [41, 1, 99, 100, 101].

Micromorphic media

ϕ

ϕ̄

X
x

X̄
x̄

B0 B

B̄0 B̄

Figure 4.3: Micromorphic deformation maps.

Rather than considering higher gradients of deformation, the micromorphic theory extends
the classical continuum in a more general approach by introducing additional degrees of
freedom per continuum point. More precisely, at each point P in the (macro)continuum,
a microcontinuum B̄0 with a set of directors x̄α with α = 1, ..., N is attached, see Figure
4.3. These directors represent additional degrees of freedom required to characterize the
microstructural behavior, and denote the orientations and intrinsic deformations of the
material points of P . Particularly well demonstrated in the physical representations of
microdeformation in crystalline solids [21], both the geometric point P and the vectors x̄α

have their own independent motion. In contrast to highe- order micromorphic continua
where the directors are higher-order tensors, we focus on first-order micromorphic continua
with N = 1 and second-order directors.

In addition to the classical deformation mapping, the so called macromotion

x := ϕ(X, t) (4.4)
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we define a corresponding mapping for the micromotion, mapping the attached directors
from the reference configuration into the current one

x̄ := ϕ̂(X, X̄, t). (4.5)

In comparison to the macroscopic scales of the body, the material particles are consid-
ered to be of very small size. Consequently, the micromotion 4.5 is generally linearly
approximated as

x̄ := ϕ̄(X, t) · X̄ (4.6)

with the second-order microdeformation tensor ϕ̄(X, t).

As originally defined by Eringen [44], a material body is referred to as a micromorphic
continuum (of grade one), if its motions are described by (4.4) and (4.6) and have unique
inverses

X = ϕ−1(X, t)

X̄ = ϕ̄−1(X, t) · x̄.
(4.7)

In order to retain the right-hand screw orientations of the frame of reference, and ensure
the physical assumption of continuity, indestructibility and impenetrability of matter, we
assume

det(∇ϕ) > 0 (4.8)

and
det(ϕ̄) = 1/ det(ϕ̄−1) > 0. (4.9)

ϕ

X
x
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D2D3
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d2

d3
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e1
e2
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Figure 4.4: Deformable directors of the micromorphic continuum

As shown in Figure 4.4, a material point possesses, in addition to the three usual trans-
lations, three deformable directors which represent the degrees of freedom arising from
microdeformations and are denoted by

dj = ϕ̄ij(X, t)ei,

Dj = ϕ̄ij
−1(X, t)Ei

(4.10)
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with the components cartesian unit vectors Ei and ei(i = 1, 2, 3) in the material and
spatial configuration, respectively.

4.1.2 Rotation and subclasses

With the three distinct deformable directors, and its total of 12 degrees of freedom, the
general micromorphic continuum formulation is appropriate for the modelling of many
complex materials like polymers with flexible molecules, liquid crystals with side chains,
animal blood with deformable cells, etc. Its microdeformation can be illustrated with the
deformable director triad shown in Figure 4.5.

Moreover, the micromorphic continuum includes many subtheories, each of which is de-
fined by imposing specific constraints on the microdeformation, see Figure 4.1 . A detailed
systematic presentation can be found in [50]. In what follows, we will briefly discuss the
most common of these, namely the micropolar, the mircrostretch and the microstrain
continuum. Later in the chapter, we will show how a second-gradient theory can be
obtained by imposing analogous kinematic constraints on the generalized micromorphic
continua.

B̄0 B̄

R̄ · Ū

Figure 4.5: Micromorphic deformation (deformable director triad)

Just like the deformation gradient introduced in Chapter 2, the microdeformation tensor
includes both stretch and rotation

ϕ̄ = R̄ · Ū , (4.11)

where R̄ is the orthogonal microrotation tensor (i.e., R̄−1 = R̄T and det(R̄) = 1) and Ū

is the symmetric and definite positive right microstretch tensor.

B̄0 B̄

R̄

Figure 4.6: Micropolar deformation (rigid director triad)
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A micropolar continuum (often simply referred to as Cosserat continuum) as illustrated
with the rigid director triad in Figure 4.6 may only experience rotation

x̄ = R̄ · X̄. (4.12)

The micropolar theory is typically used for the investigation of granular or multimolecular
materials, like rigid chopped fibres, elastic solids with rigid granular inclusions, liquid
crystals, animal blood, etc. [15, 120].

B̄0 B̄

λ̄R̄

Figure 4.7: Microstretch deformation (extensible director triad)

Besides a rotation R̄, also one scalar stretch variable λ̄ is considered to account for
isotropic expansion and contraction of a microstretch continuum without microshear-
ing

x̄ = λ̄R̄ · X̄ . (4.13)

In addition to the micropolar director triad with fixed angles, the director triad of is
isotropically deformable as shown in Figure 4.7. Chopped elastic fibres, animal bones or
inviscid liquids are typically simulated as a microstrech continuum [50].

In a microstrain continuum, the rotation is neglected, rather only the stretch tensor
Ū is considered

x̄ = Ū · X̄, (4.14)

as illustrated in Figure 4.8 . The director triad allows for pure stretch, which is charac-
terized by the fact that the principle directions maintain their direction. The microstrain
theory is used e.g. for metallic foams [50].

B̄0 B̄

Ū

Figure 4.8: Microstrain deformation (stretchable director triad excluding rotation)
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4.2 Micromorphic linear elasticity

With the introduced kinematic framework for generalized continuum mechanics, a mature
and growing field of research has emerged over the last 50 years to conceptualize appro-
priate constitutive theories and corresponding deformation measures for a wide range
of microstructured materials. In the following chapters, we will present a specific mi-
crostructured constitutive formulation at finite strains for the mechanical simulation of
fiber composite reinforcements. However, since the main objective of this chapter is to
give a concise introduction to general microcontinuum theories and demonstrate how they
can be suitably constrained to obtain more specific models, i.e., a second-gradient theory,
we next present the linear theory of micromorphic elasticity developed by Mindlin [92].
Moreover, the paradigmatic structure of the linear model allows a more straightforward
understanding of the general concept, by avoiding the mathematical complexity brought
by nonlinearities. This specific linear model has been used to describe a variety of phys-
ical phenomena, such as polymers with deformable molecules, biological tissues, simple
harmonic waves, etc. [43].

4.2.1 Deformation measures

Rather than the (macroscopic) deformation map ϕ, we consider the classical displacement
field in the small strain theory

u = x−X. (4.15)

Moreover, Mindlin specified the following objective Lagrangian strain measures for in-
finitesimal deformations, namely the classical linearized macro deformation strain ten-
sor

E =
1

2
(∇u+∇uT), (4.16)

the relative micro-macro deformation

γ = ∇u− ϕ̄, (4.17)

and the gradient of the microdeformation (third-order tensor)

K = ∇ϕ̄. (4.18)

4.2.2 Energetic response

The general form of the micromorphic strain energy density introduced in [92] is a function
of the 42 kinematic variables Eij , γij and Kijk, and is of the type

Ψ = Ψ(Eij, γij,Kijk) =
1

2
aijklEijEkl +

1

2
bijklγijγkl +

1

2
cijklmnKijkKlmn

+ dijklmγijKklm + eijklmKijkElm + fijklγijEkl.
(4.19)
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Due to the symmetries of the strain tensors, only 903 of the 1764 introduced scalar
material coefficients are independed. Assuming an isotropic material, the number of
independent constitutive parameters further decreases to 18 (see [92]), leading to an
energy function

Ψ =
1

2
λEiiEjj + µEijEij +

1

2
b1γiiγjj +

1

2
b2γijγij +

1

2
b3γijγji

+ c1KiikKkjj + c2KiikKjkj +
1

2
c3KiikKjjk +

1

2
c4KijjKikk

+ c5KijjKkik +
1

2
c6KijiKkjk +

1

2
c7KijkKijk + c8KijkKjki

+
1

2
c9KijkKikj +

1

2
c10KijkKjik +

1

2
c11KijkKkji

+ f1γiiEjj + f2(γij + γji)Eij .

(4.20)

Depending on the particular microstructured material behavior under consideration, more
specific and simplified formulations have been developed. For instance, an energy density
function with only 6 constitutive coefficients was introduced in [78], which qualitatively
still reflects all material characteristics of the general micromorphic model of Mindlin

Ψ = µe||sym(∇u− ϕ̄)||2 +
λe

2
(tr(∇u− ϕ̄))2 + µh||sym(ϕ̄)||2 +

λh

2
(tr(ϕ̄))2

µc||skew(∇u− ϕ̄)||2 +
αg

2
||∇ϕ̄||2.

(4.21)

Here, the microscopic Lamé moduli µh and λh are related to the response of a represen-
tative volume element of the substructure. Along with the classical macroscopic Lamé
moduli µ and λ obtained in experiments for large material samples with assumed hetero-
geneous structure and a characteristic length of zero, the isotropic scale transition param-
eters µe and λe can be determined from homogenization theory, see [78]. The Cosserat
couple modulus µc which governs the asymmetry of the force stresses is i.e. used to
describe the mechanical behavior of very particular metamaterials as lattice structures
and phonon crystals. Finally, αg accounts for different microstructural effects, i.e. the
curvature depencence or some particular optic waves propagation.

Along with the following restrictions for the introduced material parameters

µe > 0, µc > 0, 3λe + 2µe > 0, µh > 0, 3λh + 2µh > 0, αc > 0. (4.22)

the well-posedness and positive definiteness of the formulation has been outlined in [78]. A
thorough identification of the relations for the 6 coefficients proposed here to specific micro
and macro deformation modes, and the relations in terms of the parameters introduced
by Mindlin is outlined in [78].

Although we will ignore inertia effects in the scope of this work, we briefly introduce the
micromorphic kinetic energy potential for the sake of completeness, as

T =
1

2
ρ ‖u,t‖

2 +
1

2
ρ̄ ‖ϕ̄,t‖

2 (4.23)
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with the macroscopic and microscopic mass densities ρ and ρ̄ defined per unit of macro
volume.

Considering the dimensionless of the second order tensor ϕ̄, the coefficient ρ̄ has a dimen-
sion of a bulk density multiplied by the square of the length. With the real density of the
microstructure ρ′ , and a characteristic length l directly associated to the characteristic
size of the microscopic inclusions, the microscopic mass density may be written as

ρ̄ = l2ρ′, (4.24)

see [78].

Note that in contrast to this special form with a single characteristic length, there are
also more general types of kinetic energies that take into account different characteristic
lengths lij and therefore for more intricate microstructures [92].

4.2.3 Strong form

Ignoring inertia effects, the equations of motion for a linear micromorphic continuum will
be derived through the principle of virtual work δW int − δW ext = 0.

For the elastic potential energy given in (4.21), we derive the internal virtual work as

δW int =

∫

B0

(∂Ψ
∂E

: δE +
∂Ψ

∂γ
: δγ +

∂Ψ

∂K
: ·δK

)
dV. (4.25)

Regarding the partial derivatives therein, we introduce the work conjugate stresses to the
strain components

σ1 =
∂Ψ

∂E
= σT

1 ,

σ2 =
∂Ψ

∂γ
,

S =
∂Ψ

∂K
,

(4.26)

namely, the Cauchy stress, the relative stress and the double stress, respectively.

Using the symmetry of σ1 and the definition of the corresponding deformation measures,
we obtain

δW int =

∫

B0

σ1 : δ∇u+ σ2 : (δ∇u− δϕ̄) +S : ·δ∇ϕ̄ dV (4.27)

After an integration by parts

δW int =

∫

B0

−∇·(σ1+σ2)·δu+∇·(δu·(σ1+σ2))−(σ2+∇·S)·δϕ̄+∇·(δϕ̄ : S) dV (4.28)
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the application of the divergence theorem with the unit normal vector N to the boundary
surface ∂B0 yields

δW int =

∫

B0

−∇·(σ1+σ2) ·δu−(σ2+∇·S) ·δϕ̄dV +

∫

∂B0

((σ1+σ2)N) ·δu+SN : δϕ̄ dA.

(4.29)

Note that all further integrations by parts incorporating the boundaries ∂2B0 and ∂3B0

and subsequently leading to external edge and wedge forces are omitted for the sake of
conciseness.

Following [78] the external contributions can be formulated as

δW ext =

∫

B0

b · δu+B : δϕ̄ dV +

∫

Γt
0

t · δu dA+

∫

ΓT
0

T : δϕ̄ dA (4.30)

where b is an external body force per unit volume, B an external double force per unit
volume, t is an external traction force per unit area and T is an external double traction
force per unit area, acting at the respective Neumann boundaries Γt

0 and ΓT
0 (see ? for

further details).

Eventually, assuming arbitrary variations of the introduced kinematical fields δu and δϕ̄,
we obtain the local form of the problem as

∇ · (σ1 + σ2) + b = 0

∇ ·S+ σ2 +B = 0
(4.31)

supplemented by the boundary conditions

u = uD on Γu
0

ϕ̄ = ϕ̄D on Γϕ̄
0

(σ1 + σ2)N = t on Γt
0

KN = T on ΓT
0

(4.32)

with prescribed fields uD and ϕ̄D, at the mechanical Dirichlet boundaries Γu
0 and Γϕ̄

0 .

4.2.4 Special case: second-gradient / strain-gradient theory

We have already shown in Section 4.1.2, it is possible to impose appropriate constraints
on the additional degrees of freedom inherent in a micromorphic theory in order to derive
more specialized models, such as the micropolar/Cosserat theory. In this final section, we
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will derive the second-gradient model from the micromorphic theory for linear elasticity
introduced earlier.

In particular, we have to constrain any relative micro-macro deformation

γ = ∇u− ϕ̄
!
= 0 (4.33)

and subsequently enforcing the microdeformation to be equal to the gradient of (macro)
displacement

ϕ̄
!
= ∇u. (4.34)

The double stress then reads

S =
∂Ψ

∂∇∇u
, (4.35)

leading to the internal virtual work

δW int =

∫

B0

σ1 : δ∇u+S : ·δ∇∇u dV. (4.36)

and the equilibrium condition

∇ · (σ1 −∇ ·S) + b = 0. (4.37)

Regarding the simplified strain energy function (4.21), this limit case can be numerically
obtained e.g. by simultaneously enforcing µe → ∞ and µc → ∞ and thus obtaining a
function of the first- and second-gradient of the displacement

Ψ(∇u,∇∇u) = µh ‖sym(∇u)‖2 +
λh

2
(tr(∇u))2 +

αg

2
‖∇∇u‖2 . (4.38)

Note that alternative equivalent formulations can be derived with the strain tensor and
its gradient Ψ((E,∇E) or analogously for finite strains with the deformation gradient
and its gradient Ψ((F ,∇F ) as shown in the next chapter, thereupon "strain-gradient"
and "second-gradient" theories are often used interchangeably.



5 A Non-Linear Strain-Gradient

Formulation for Fiber-Reinforced

Composites

In this chapter we focus on a generalized continuum formulation with higher-order contri-
butions for mechanical simulation of fiber materials. In the modeling of fiber-reinforced
composites, it is well established to consider the fiber direction in the stored energy in
order to account for the transverse isotropy of the overall material, induced by a single
family of fibers. However, this approach does not account for the length scale dependent
size effects, i.e. the in-plane flexural resistance of the fibers. By using a generalized
continuum model based on the strain-gradient, the gradient of the fiber direction vector
can be considered as an additional parameter of the stored energy density function. As a
result, the improved model presented in this chapter accounts for the bending stiffness of
the fibers, thereby allowing independent material modeling without recalibration for the
specific fiber direction or load case. Along with additional material parameters, increased
continuity requirements on the weak Sobolev space follow in the finite element analysis.
Here, the isogeometric approach offers a framework that satisfies these weak formulation
criteria.
The chapter is structured as follows: Firstly, a second-gradient theory is applied to
Kirchhoff-Love shell elements. In particular, we embed a model of a woven fabric as pre-
sented in the work of Steigmann [116] to account for the in- and out-of-plane flexural resis-
tances of the fibers. Shells, as dimensionally reduced approximations of three-dimensional
continua, enable a more straightforward presentation including a micromechanical and
empirical motivation as well as a detailed verification of the higher-gradient contribu-
tions with analytical results. Moreover, the higher-gradient formulation of the fabric is
validated with experimental measurements on organic sheets. Finally, a corresponding
formulation for fiber-reinforced materials will be extended to general three-dimensional
generalized continua, and verified by the means of two bending tests.
Note that throughout the chapter plastic, damage, fracture, and thermal effects as well
as fiber-matrix interactions are omitted for now and considered later.
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5.1 Shell element formulation

5.1.1 Micromechanical and experimental motivation

The classical constitutive equations are homogeneous and do not include any natural
length scale, and therefore cannot account for any size effects, such as effects of fiber
diameter or fiber spacing, observed in real fiber composites.To illustrate the theoretical
basis for expecting size effects, it is sufficient to consider pure bending in plane strain of
a linear elastic plate with variable Young’s modulus. In terms of rectangular Cartesian
coordinates (x, y, z), suppose the middle surface of the plate lies in the plane y = 0,
and the lateral surfaces are y = ±h. Assuming that the plate undergoes a pure bending
deformation, as in the elementary Euler–Bernoulli bending theory, the displacement in
the x direction is

u =
x y

R
, (5.1)

where R is the radius of curvature of the deformed plate. Further, suppose that the
extension modulus E in the x direction depends on y, so that E = E(y), with mean value
E0, where

E0 =
1

2h

h∫

−h

E(y)dy. (5.2)

Then the stress component σxx is

σxx = E(y)
∂u

∂x
= E(y)

y

R
, (5.3)

and the bending moment applied to a section x = const., per unit length in the z direction,
is

Mz =

h∫

−h

σxxydy =
1

R

h∫

−h

E(y)y2dy, (5.4)

and so the bending stiffness B is

B = MzR =

h∫

−h

E(y)y2dy. (5.5)

On the other hand, if the extension modulus has the constant value E0 the bending
stiffness is

B0 =

h∫

−h

E0y
2dy =

2

3
E0h

3, (5.6)

Clearly, in general B and B0 are not the same. To take a simple example for illustration,
let

E(y) = E0 −E1 cos
πy

d
where d = h/N, (5.7)
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Figure 5.1: DIC measurement of a 25 [mm] specimen in 45◦ configuration, colors indicate
local stretches in horizontal direction in [mm/m].

and N is an odd integer. Thus d is a measure of the scale of the inhomogeneity of the
material. Then from (5.5)

B = B0 +
4d2hE1

π2
= B0 +B1

d2

h2
, B1 =

6E1

E0π2
B0, (5.8)

and so the bending stiffness differs from B0 by a term of order (d/h)2. In the theory of
classical fiber-reinforced materials, it is explicitly assumed that the fibers are infinitely
thin and thus infinitely flexible, with the bending stiffness for a single fiber (represented
by a mathematical curve in the theory) being zero. This clearly corresponds to the limit
d/h → 0 in (5.7). To relax this assumption while remaining within a continuum theory, it
is necessary to introduce a length scale into the theory that effectively endows the fibers
with bending stiffness.

The in-plane curvature resistance of fibers exhibits the same microstructural size effects.
The digital image correlation (DIC) of a thermoplastic composite laminate, also known
as an organic sheet, is shown in Figure 5.1.The additional penalty imposed by the fiber
in-plane flexure is seen in the deformation patterns of the DIC measurement in compar-
ison to the straight red line drawn in the figure. The chapter’s proposed computational
model for advanced mechanical modeling of fiber materials will be validated using the
aforementioned prototypical composite material.

5.1.2 Kinematics

We consider a fiber-reinforced composite as a Kirchhoff-Love shell, as introduced in Sec-
tion 2.3 with the therein presented configuration and enhanced kinematics. The derived
standard deformation measures aαβ and καβ with respect to stretch and out-of-plane
curvature and the additional measure Sσ

αβ for in-plane curvature are first examined for
material symmetry and objectivity. Furthermore, specific deformation measures for the
embedded fibers are derived and discussed.

For the matrix material, we use the standard Kirchhoff-Love strain measure, namely the
right Cauchy-Green tensor and the in-plane Jacobian determinant, as outlined in Section
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2.3

Ĉ = F̂ TF̂ = gijG
i ⊗Gj , (5.9)

and

Ĵ0(θ
i) :=

√
det(Ĉ(θi)) =

√
det(gαβ(θα, θ3))

det(Gαβ(θα, θ3))
. (5.10)

Frame invariance

The present formulation is based on the work of Steigmann [116], who used the Mur-
doch–Cohen [94] definition of material symmetry to derive the canonical forms of the
strain-energy functions for woven fabrics with bending resistance. In the following, the
invariance of the introduced measures {aαβ , κα,β, S

σ
α,β} under superposed rigid body mo-

tions will be briefly demonstrated. This includes translational as well as rotational in-
variance of the strain energy which in turn implies satisfaction for conservation of linear
and angular momentum, see Hesch & Betsch [58] and Marsden & Ratiu [79] for further
details.

We define rigid motions of the form

r+ := u+Qr , (5.11)

where u ∈ E
3 and Q ∈ SO(3) is a rotation tensor with the property QTQ = I. Then,

the first and second partial derivative read

a+
α = Qr,α and a+

αβ = Qr,αβ . (5.12)

From the covariant metric coefficients we obtain

a+αβ = a+
α · a+

β = (Qr,α) · (Qr,β) = r,α ·QTQ︸ ︷︷ ︸
=I

r,β = aαβ (5.13)

which clearly holds also for the contravariant metric coefficients, i.e. (aαβ)+ = aαβ. With
regards to this finding, we can demonstrate

S+
αβλ = Γ+

αβλ−Γ̄λ
αβa

+
αλ = (Qr,λ)·(Qr,αβ)−Γ̄λ

αβaαλ = r,λ·Q
TQ︸ ︷︷ ︸
=I

r,αβ−Γ̄λ
αβaαλ = Sαβλ (5.14)

as well as

(Sσ
αβ)

+ = S+
αβλ(a

σλ)+ = Sαβλa
σλ = Sσ

αβ , (5.15)
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i.e. the frame invariance of the co- and contravariant in-plane curvature tensor is con-
firmed. Eventually, we obtain for the out-of-plane curvature tensor

κ+
αβ = Bαβ − b+αβ

= Bαβ −Qr,αβ ·
Qa1 ×Qa2

‖Qa1 ×Qa2‖

= Bαβ −
det(Qr,αβ,Qa1,Qa2)√

det(a+αβ)

= Bαβ − det(Q)︸ ︷︷ ︸
=1

det(r,αβ,a1,a2)√
det(aαβ)

= καβ .

(5.16)

confirming again the frame invariance.

Fiber deformation measures

Following Steigmann and dell’Isola [117], we now derive additional deformation measures
for the embedded fibers which all can be considered as functions of aαβ, S

σ
αβ, καβ and

θα. Thus, we focus on the mathematical modeling of fibers as curves with appropri-
ate kinematical and constitutive structure to capture the mechanical properties of the
reinforcement.

The two fiber threads interlaced at right angles to each other, the so-called warp and weft
threads of the woven fabric, are characterized by their constant orthogonal vector fields
in the reference configuration M and L. Described in the reference mid-surface Ω, and
not necessarily with unit length, they can be written as

L = LαAα and M = MαAα . (5.17)

On the deformed mid-surface ω they are denoted by l and m and can be represented as

l = lαaα and m = mαaα . (5.18)

Since the fibers are convected as material curves, the tangent vectors are related by

λ1l = F
L

‖L‖
and λ2l = F

M

‖M‖
(5.19)

where we made use of the fiber stretches

λ1 :=

∣∣∣∣
∣∣∣∣
FL

‖L‖

∣∣∣∣
∣∣∣∣ =

√
aαβLαLβ

√
AµνLµLν

and λ2 :=

∣∣∣∣
∣∣∣∣
FM

‖M‖

∣∣∣∣
∣∣∣∣ =

√
aαβMαMβ

√
AµνMµMν

. (5.20)



74 5 A Non-Linear Strain-Gradient Formulation for Fiber-Reinforced Composites

The corresponding contravariant components are connected by

Lα = λ1‖L‖lα =
√

aµνLµLν lα and Mα = λ2‖M‖Mα =
√

aµνMµMνmα . (5.21)

Furthermore, the change of angle between the fibers can be formulated as

ϕ := acos

(
AαβL

αMβ

√
AµνLµLνAσρMσMρ

)
− acos

(
aαβL

αMβ

√
aµνLµLνaσρMσMρ

)
. (5.22)

Hereby, the first term is π/2 for initially orthogonal fibers.

To study the change of the tangent vectors l and m within the deformed mid-surface, we
introduce the auxiliary unit tangent vectors

p = n× l , q = n×m . (5.23)

Moreover, let l̃ : B → E
3 and m̃ : B → E

3 be such that

l(θα) = l̃(r(θα)) and m(θα) = m̃(r(θα)) . (5.24)

Then the gradients

∇l̃(r) = l,α ⊗ aα and ∇m̃(r) = m,α ⊗ aα (5.25)

are easily obtained by inserting dθα = dr · aα into the expressions dl = l,α dθ
α =

l,α( dr · aα) = (l,α ⊗ aα) dr and dm = m,α dθ
α = (m,α ⊗ aα) dr, respectively. Since

‖l‖ = ‖m‖ = 1, we have l · l,α = m · m,α = 0 and the partial derivatives of the unit
vectors l and m can be expressed in the right-handed orthonormal bases {l,p,n} and
{m, q,n} as

l,α = (l,α · p)p+ (l,α · n)n and m,α = (m,α · q)q + (m,α · n)n. (5.26)

Using (5.18) together with the Gauss and Weingarten equation (2.34), the normal com-
ponents in (5.26) can be expressed using the covariant components of the mid-surface
curvature bαβ as

l,α · n = (lβaβ),α · n = lβbβα and m,α · n = (mβaβ),α · n = mβbβα . (5.27)

The change of the unit tangent vectors in tangential direction can therefore be represented
by

∇l̃(r)l = lαl,α = ηlp+ κln and ∇m̃(r)m = mαm,α = ηmq + κmn (5.28)

with the normal fiber curvatures

κl := bαβl
αlβ =

bαβL
αLβ

aµνLµLν
and κm := bαβm

αmβ =
bαβM

αMβ

aµνMµMν
(5.29)

and the geodesic curvatures

ηl := lαl,α · p and ηm := mαm,α · q . (5.30)
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The change of the unit tangent vectors of one fiber family in direction of the other fiber
family leads to

∇l̃(r)m = mαl,α = φlp+ τn and ∇m̃(r)m = mαm,α = φmq + τn , (5.31)

where we recognize the torsion and the respective Tchebychev curvatures, [118],

τ := bαβl
αmβ =

bαβL
αMβ

√
aµνLµLνaσρMσMρ

, φl := mα(l,α · p) , φm := lα(m,α · q) . (5.32)

Similarly to (5.29) and (5.32), we can introduce the normal fiber curvatures κL, κM and
the torsion τ̄ on the reference mid-surface as

κL :=
BαβL

αLβ

AµνLµLν
, κM :=

BαβM
αMβ

AµνMµMν
and τ̄ :=

BαβL
αMβ

√
AµνLµLνAσρMσMρ

. (5.33)

Because these definitions rely on unit tangent vectors, the normalization by ‖L‖ and
‖M‖ are involved in here.

As strain measures that captures the change in the normal curvature of the fibers, i.e. by
out-of-plane bending, we choose

K1 := −
καβL

αLβ

AµνLµLν
= λ2

1κl − κL and K2 := −
καβM

αMβ

AµνMµMν
= λ2

2κm − κM . (5.34)

The change in torsion by twisting the fibers is given by

K3 := −
καβL

αMβ

√
AµνLµLνAσρMσMρ

= λ1λ2τ − τ̄ . (5.35)

Finally, to describe the deformation of the fibers within the tangent planes of the mid-
surfaces, like in-plane-bending, we introduce as strain measures

gL :=
LαLβSαβσ

AµνLµLν
aσ , gM :=

MαMβSαβσ

AµνMµMν
aσ and Γ :=

LαMβSαβσ√
AµνLµLνAσρMσMρ

aσ .

(5.36)
For initially straight fibers, the deformation measures (5.36) can be represented as

gL = λ1ηlp+ (L · ∇λ1)l , gM = λ2ηmq + (M · ∇λ2)m

Γ = (L · ∇λ2)m+ λ1λ2φmq = (M · ∇λ1)l + λ1λ2φlp ,
(5.37)

with the stretch gradients as ∇λ1 = λ1,αA
α and ∇λ2 = λ2,αA

α (see Equation (58) and
(59) in [117]). We refer to Section 2.4 of [117], where also the general precurved situation
is analyzed. However, the restriction to straight fibers lies only in the representation
(5.37), which should help to get more insight into strain measures (5.36). In fact, these
strain measures obtained by the contraction of the fiber tangents of the reference mid-
surface with the third-order tensor aσ⊗Sσ represent a combination of the gradients of the
fiber stretch and in-plane-deformation of the fibers described by geodesic and Tchebychev
curvatures.
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5.1.3 Variational formulation

Energetic response

For the matrix material we assume the strain energy function per unit reference volume
Ψiso(Ĉij, θ

i), for the fibers per unit reference area Ψfib(aαβ, Sαβσ, καβ , θ
α). Moreover, we

assume that the embedded fibers have a height of hf such that the space occupied by
matrix material in the reference configuration is defined by {X(θi)|θ3 ∈ ̟iso}, where
̟iso =

[
−h

2
, h

2

]
\
(
−hf

2
, hf

2

)
. For the overall composite we obtain for the strain energy

defined per unit reference area of the surface

Ψ(aαβ, Sαβσ, καβ , θ
α) =

∫

̟iso

Ψiso(Ĉij(aαβ, καβ , θ
3), θi) dθ3+Ψfib(aαβ , Sαβσ, καβ, θ

α) . (5.38)

Assuming a plane stress distribution in the three-dimensional continuum together with
a decoupling of in-plane and thickness deformations, we use this specific incompressible
neo-Hookean strain energy function for the matrix material

Ψiso =
1

2
µ

(
tr(ĈαβG

α ⊗Gβ) +

(
1

Ĵ0

)2

− 3

)
=

1

2
µ

(
ĈαβG

αβ +
det(Gµν)

det(Ĉαβ)
− 3

)
, (5.39)

with the shear modulus µ. Note that this is a correction on a constitutive level for the too
restrictive kinematical ansatz 2.31, which does not allow for thickness deformation. In the
numerical examples, we will also consider a compressible neo-Hookean matrix material,
given by

Ψiso =
1

2
µ(J−2/3tr(Ĉ)− 3) +

1

4
κ(J2 − 1− 2ln(J)). (5.40)

Since the plane stress condition cannot be inserted analytically here, we have to condense
the corresponding conditions numerically. For details we refer to Kiendl et al. [70].

Assuming rectangular cross-sections for the embedded fibers, we adopt the following strain
energy function

Ψfib =

2∑

α=1

aα
2
(λα−1)2+

a3
2
tan(ϕ)2+

3∑

i=1

ki
2
(Ki)

2+
1

2
(g1(gL ·gL)+g2(gM ·gM)+g3(Γ ·Γ))

(5.41)
where the constant material parameters ai are associated to the stretch and the change of
angle between the fibers. In particular, aα = Eαhf correlates to Young’s modulus Eα of the
particular fiber, whereas a3 = Ghf represents the shear stiffness of a shell continuum. Note
that the fiber formulation does not take any Poisson effect into account, i.e. the Poisson’s
ratio ν = 0 and thus, G = 1

2
E in a classical continuum. In the present formulation,

G represents the stiffness against twist between the fibers and is in general independent
of the fiber stiffness. The out-of-plane bending stiffness kα depends on the particular
microstructure of the embedded fibers, i.e. on the second moment of area, such that
kα = EαIα/bα. Here, bα denotes a representative in-plane length scale of the fiber, such
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that we obtain a bending stiffness of kα = Eαh
3
f /12 for a continuously distributed fiber.

Analogously, we obtain for the in-plane bending stiffness gα = Eαb
2
αhf/12. Note that other

microstructures are possible, although characteristics like fiber height and width have to
be discussed and validated for the particular geometry. Eventually, the terms associated
with k3 and g3 control the fiber torsion as well as the in-plane deformation captured by
Tchebychev curvatures and strain-gradients, see (5.37). Assuming that the same fibers
are used in both directions, the same material parameters can be applied for both fibers,
i.e. a1 = a2, k1 = k2 and g1 = g2. Moreover, we note that the used strain measures of the
fiber components associated with curvature terms account always for combined effects of
the gradients of the fiber stretch and bending. Thus, the identification of the material
parameters in terms of classical beam theory is limited, as we will show in Section 3.5.

Principle of virtual work

With the strain energy function presented, we can define the internal energy as

W int =

∫

Ω

ΨdA. (5.42)

For the finite element analysis, we discretize the virtual work expression as

δW int =

∫

Ω



∫

̟iso

δΨiso(Ĉij(aαβ, καβ , θ
3), θi) dθ3 + δΨfib(aαβ, Sαβσ, καβ , θ

α)


 dA . (5.43)

Introducing the stress resultants for the matrix and fiber contributions directly related to
the mid-surface, respectively as

nαβ
fib :=

∂Ψfib

∂aαβ
, mαβ

fib :=
∂Ψfib

∂καβ
and mαβσ

fib :=
∂Ψfib

∂Sαβσ
(5.44)

and

nαβ
iso :=

∫

̟iso

∂Ψiso

∂Ĉαβ

dθ3 and mαβ
iso :=

∫

̟iso

2θ3
∂Ψiso

∂Ĉαβ

dθ3, (5.45)

along with δĈij = δαi δ
β
j (δaαβ + 2θ3δκαβ) yields

δW int =

∫

Ω

[
(nαβ

iso + nαβ
fib )δaαβ + (mαβ

iso +mαβ
fib )δκαβ +mαβσ

fib δSαβσ

]
dA . (5.46)

Applying the strain energy function of the matrix material given in (5.39) and using
[Ĉαβ] = [Ĉαβ ]

−1 together with

∂

∂Ĉµν

( 1

det(Ĉαβ)

)
= −

1

det(Ĉαβ)2
det(Ĉλσ)Ĉ

µν = −
Ĉµν

det(Ĉαβ)
(5.47)
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we get
∂Ψiso

∂Ĉµν

=
1

2
µ

(
Gµν −

det(Gµν)

det(Ĉαβ)
Ĉµν

)
(5.48)

that has to be integrated in thickness direction to obtain the stress resultants.

The corresponding stress resultants of the first term (5.44)1 reads

nαβ
fib =

∂Ψfib

∂λ1

∂λ1

∂aαβ
+

∂Ψfib

∂λ2

∂λ2

∂aαβ
+

∂Ψfib

∂ϕ

∂ϕ

∂aαβ
+

∂Ψfib

∂Cσµ

∂Cσµ

∂aαβ

=a1(λ1 − 1)
∂λ1

∂aαβ
+ a2(λ2 − 1)

∂λ2

∂aαβ
+ 2a3

tan(ϕ)

cos2(ϕ)

∂ϕ

∂aαβ

+

(
g1
(LγLλSγλσ)(L

ζLιSζιµ)

(AµνLµLν)2
+ g2

(MγMλSγλσ)(M
ζM ιSζιµ)

(AµνMµMν)2

+ g3
(LγMλSγλσ)(L

ζM ιSζιµ)

AµνLµLνAσρMσMρ

)
∂Cσµ

∂aαβ
,

(5.49)

where we have made use of (5.41) as strain energy function of the fiber material and

gL · gL =
(LαLβSαβσ)(L

γLλSγλµ)C
σµ

(AµνLµLν)2
,

gM · gM =
(MαMβSαβσ)(M

γMλSγλµ)C
σµ

(AµνMµMν)2
,

Γ · Γ =
(LαMβSαβσ)(L

γMλSγλµ)C
σµ

AµνLµLνAσρMσMρ
.

(5.50)

Moreover, the relations

∂λ1

∂aαβ
=

1

2

LαLβ

√
aσλLσLλAµνLµLν

,
∂λ2

∂aαβ
=

1

2

MαMβ

√
aσλMσMλAµνMµMν

(5.51)

and

∂ϕ

aαβ
=

1√
1−

(aαβLαMβ)2

aµνLµLνaσρMσMρ

(
LαMβ

√
aµνLµLνaσρMσMρ

−
aαβL

αMβ

2(aµνLµLνaσρMσMρ)3/2
(aµνL

µLνMσMρ + LµLνaσρM
σMρ)

) (5.52)

as well as the partial derivative of the contravariant metric

∂Cσµ

∂aαβ
=

∂Cσµ

∂Cαβ

= −CσαCβµ (5.53)

have been used. For the second term (5.44)2, the stress resultants of the out-of-plane
bending moments reads

mαβ
fib = −k1K1

LαLβ

AµνLµLν
− k2K2

MαMβ

AµνMµMν
− k3K3

LαMβ

√
AµνLµLνAσρMσMρ

, (5.54)
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whereas the third term (5.44)3 yields

mαβσ
fib =g1

LαLβ(LγLλSγλµ)

(AµνLµLν)2
Cσµ + g2

MαMβ(MγMλSγλµ)

(AµνMµMν)2
Cσµ+

g3
LαMβ(LγMλSγλµ)

AµνLµLνAσρMσMρ
Cσµ .

(5.55)

The variations of aαβ, καβ and Sαβσ can be expressed in terms of δr(θα) = r̂,ε(θ
α, ε0),

which is the variational derivative of r∗ induced by the one-parameter family r̂(θα, ε) for
which r̂(θα, ε0) = r(θα) holds. The variation of the covariant base vectors as well as the
partial derivatives thereof are δaα = δr,α and δaα,β = δr,αβ, respectively. The variation
of the first fundamental form (2.33) can be written as

δaαβ = aα · δaβ + aβ · δaα . (5.56)

The variation of the out-of-plane curvature changes is due to (2.51) and (2.35) given by

δκαβ = −(δaα,β · n+ aα,β · δn) , (5.57)

where the variation of the unit normal vector reads

δn =
(I − n⊗ n)(a1 × δa2 + δa1 × a2)

‖a1 × a2‖
(5.58)

using the identity map I. Eventually, the variation of the in-plane curvature (2.48) gives
rise to

δSαβσ = δaα,β · aσ + aα,β · δaσ − Γ̄λ
αβ(aλ · δaσ + aσ · δaλ) . (5.59)

Strong and weak form

To identify and collect the resulting bending moments and normal stress contributions, we
reorganize the virtual work expression. First, we reorganize the variation of the curvature
tensor as follows

δbαβ = n · δaα,β + aα,β · δn ,

= n ·
[
δaα,β − Γσ

αβδaσ

]
,

(5.60)

where we make use of aσ · δn = −n · δaσ and n · δn = 0 along with the Gauss and
Weingarten relation (2.34)1. Taking the second covariant derivative introduced in (2.49)
into account yields

δbαβ = n ·
[
δr|αβ − Sσ

αβδaσ

]
. (5.61)

Next, the covariant term Sαβσ = (Γλ
αβ − Γ̄λ

αβ)aλσ gives rise to

δSαβσ = δΓαβσ − Γ̄λ
αβδaλσ , (5.62)

∗ For details on the functional space of the admissible test functions see end of Section 5.1.3.
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which yields after some tedious, but straight forward manipulations

δSαβσ = aσ · δr|αβ +
[
bαβn+ Sλ

αβaλ

]
· δaσ . (5.63)

Note that we can rewrite the energy equivalently in terms of the contravariant form Sσ
αβ,

which can be rewritten as

δSσ
αβ = aσ · δr|αβ +

[
bαβa

σλn− Sλ
αβa

σ
]
· δaλ , (5.64)

see Steigmann [116] for details. The above redefinition of the variation of the different
strain measures in terms of δaσ = δr,σ and δr|αβ = δr,αβ− Γ̄σ

αβδr,σ allows us now to write
the internal virtual work as

δΨ = Nα · δr,α +Mαβ · δr|αβ . (5.65)

Comparing (5.38) and (5.46) with (5.56), (5.61) and (5.63) yields

Nα =

[
2

(
∂Ψ

∂aαβ

)sym(αβ)

+

(
∂Ψ

∂Sγλα

)sym(γλ)

Sβ
γλ

]
aβ+

[(
∂Ψ

∂Sγλα

)sym(γλ)

bγλ +

(
∂Ψ

∂κγλ

)sym(γλ)

Sα
γλ

]
n

(5.66)

and

Mαβ =

(
∂Ψ

∂Sαβσ

)sym(αβ)

aσ −

(
∂Ψ

∂καβ

)sym(αβ)

n . (5.67)

Here, the symmetric part of the derivative (•)symαβ is introduced, where the symmetry
condition is applied with respect to α and β, i.e.

(
∂Ψ

∂Sαβσ

)sym(αβ)

=
1

2

(
∂Ψ

∂Sαβσ

+
∂Ψ

∂Sβασ

)
. (5.68)

Next, we resolve the second covariant derivative

Mαβ · δr|αβ = Mαβ · δr,αβ −M γλΓ̄α
γλ · δr,α , (5.69)

such that we obtain for the virtual internal work

δΨ = Ñα · δr,α +Mαβ · δr,αβ , (5.70)

where

Ñα = Nα −M γλΓ̄α
γλ . (5.71)

Insertion in (5.46) and subsequent integration by parts yields

δW int =

∫

Ω

[
(Ñα −M

αβ
,β ) · δr +Mαβ · δr,β

]
,α
−

[
Ñα

,α −M
αβ
,αβ

]
· δr dA . (5.72)
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The results of the divergence theorem applied on the first term can be decomposed in
normal and tangential direction, i.e. normal and tangential to the edges of the shell

∫

∂Ω

[
(Ñα −M

αβ
,β ) · δr +Mαβ · δr,β

]
να dS =

∫

∂Ω

(Ñα · δr)να − (Mαβ
,β · δr)να+(Mαβ · δr,ν)νανβ + (Mαβ · δr,τ)νατβ dS

(5.73)
where ν = ναA

α is the rightward unit normal to ∂Ω and τ = ταA
α the tangential unit

vector. Moreover, δr,ν = ναδr,α and δr,τ = ταδr,α are the corresponding derivatives,
decomposed in tangential and normal direction. A secondary integration by parts with
subsequent application of the divergence theorem of the last term on the right hand side
of (5.73) on the boundary ∂Ω of the shell yields

∫

∂Ω

Mαβνατβ · δr,τ dS =
∑

∂2Ω

[Mαβνατβ]i · δri −

∫

∂Ω

(Mαβνατβ)
′ · δr dS , (5.74)

where (•)′ = d(•)/ dS and the square brackets refer to the corner i at the boundary.
Assuming that the principle of virtual work 0 = δW int − δW ext is valid with respect to
the corresponding functional spaces of admissible solution and test functions defined at
the end of this section, the external contribution can be formulated as

δW ext =

∫

Ω

g · δr dA+

∫

Υ

t · δr + µ · δr,ν dS +
∑

i

fi · δri . (5.75)

where the edge Υ is assumed to be an open set on ∂Ω and the vertices i ∈ Ξ = [1, .., n]
are defined on ∂2Ω. Moreover, g denotes a distributed load, e.g. gravitational load.
Eventually, we obtain the strong form of the second gradient problem as

(Ñα −M
αβ
,β ),α + g = 0 on Ω , (5.76)

with boundary conditions at the edges

r = r̃ on Υr ,

Ñανα −M
αβ
,β να − (Mαβνατβ)

′ = t on Υt ,

r,ν = k̃ on Υk ,

Mαβνανβ = µ on Υµ

(5.77)

and at the vertices
ri = r̃i on Ξd ,[

Mαβνατβ
]
i
= fi on Ξf

(5.78)

of the shell. As usual for fourth-order boundary value problems, we decompose the
whole boundary twice. First, Υ = Υr ∪ Υt, with respect to Υr ∩ Υt = ∅, and second,
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Υ = Υk ∪ Υµ, with respect to Υk ∩ Υµ = ∅. Note that Υr,t,k,µ are open sets on ∂Ω, and
we have additionally Ξ = Ξf ∪ Ξd with respect to Ξf ∩ Ξd = ∅.

Eventually, we introduce the functional space of admissible solutions

S = {r ∈ H2(Ω) | r = r̃ on Υr, r,ν = k̃ on Υk, ri = r̃i on Ξd} , (5.79)

and the space of admissible trial or test functions

V = {δr ∈ H2(Ω) | δr = 0 on Υr, δr,ν = 0 on Υk, δri = 0 on Ξd} , (5.80)

required for the principle of virtual work. Note that the enforcement of the gradient terms
in the space of admissible solutions is not trivial, see Schuß et al. [108] for details.

5.1.4 Spatial discretization

Due to the particular continuity requirements that follow from the incorporation of the
curvature coefficients into the presented model, the isogeometric method is employed
for the finite element analysis. Therefore, polynomial approximations of the deformed
geometry in the shell mid-surface geometry r and its variation δr are defined as

rh =
∑

I∈I

RIqI and δrh =
∑

J∈I

RJδqJ , (5.81)

respectively, where qI ∈ R
3 and δqJ ∈ R

3.

The approximations of the tangent vectors and their respective variations read

ah
α := rh

,α =
∑

I∈I

RI
,αqI and δah

α := δrh
,α =

∑

J∈J

RJ
,αδqJ . (5.82)

Thus, the approximations of the normal vector and its variation are given as

nh :=
ah
1 × ah

2

‖ah
1 × ah

2‖
and δnh :=

(I − nh ⊗ nh)(ah
1 × δah

2 + δah
1 × ah

2)

‖ah
1 × ah

2‖
. (5.83)

The approximations of the second covariant derivative and its variation read

ah
α,β := rh

,αβ =
∑

I∈I

RI
,αβqI and δah

α,β := δrh
,αβ =

∑

J∈J

RJ
,αβδqJ . (5.84)

Moreover, the membrane strains, the in- and out-of-plane curvature as well as their vari-
ations are discretized as

ahαβ = ah
α · ah

β and δahαβ = ah
α · δah

β + ah
β · δa

h
α , (5.85)

κh
αβ = ah

α,β · n
h and δκh

αβ = δah
α,β · n

h + ah
α,β · δn

h , (5.86)
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Sh
αβσ = ah

α,β · a
h
σ − Γ̄h,λ

αβ a
h
σλ and δSh

αβσ = δah
α,β · a

h
σ + ah

α,β · δa
h
σ − Γ̄h,λ

αβ δa
h
σλ . (5.87)

To complete the approximation of the strain measures, the discrete right Cauchy-Green
tensor and its variation are given as follows

Ĉh
αβ = ahαβ − 2θ3ah

α,β · n
h and δĈh

αβ = δahαβ + 2θ3δκh
α,β . (5.88)

Now, using above approximations the discrete version of the internal virtual work given
in (5.46) reads

δW int,h =

∫

Ωh

[
(nαβ

iso,h + nαβ
fib,h)δa

h
αβ + (mαβ

iso,h +mαβ
fib,h)δκ

h
αβ +mαβσ

fib,hδS
h
αβσ

]
dA , (5.89)

where discrete versions of the stress resultants for the matrix material are given as

nαβ
iso,h =

∫

̟iso

∂Ψiso,h(Ĉh
ij)

∂Ĉh
αβ

dθ3 and mαβ
iso,h =

∫

̟iso

2θ3
∂Ψiso,h(Ĉh

ij)

∂Ĉh
αβ

dθ3 (5.90)

and for the fiber material as

nαβ
fib,h =

∂Ψfib,h(ahαβ, S
h
αβσ, κ

h
αβ)

∂ahαβ
,

mαβ
fib,h =

∂Ψfib,h(ahαβ, S
h
αβσ, κ

h
αβ)

∂κh
αβ

,

mαβσ
fib,h =

∂Ψfib,h(ahαβ, S
h
αβσ, κ

h
αβ)

∂Sh
αβσ

.

(5.91)

Moreover, the discrete version of the external virtual work given in (5.75) reads

δW ext,h =

∫

Ωh

g · δrh dA+

∫

Υh

t · δrh + µ · (να,hδrh
,α) dS +

∑

i

fi · δr
h
i , (5.92)

where νh = να,hAα is the discrete version of the rightward unit normal to ∂Ωh.

5.1.5 Numerical examples

Figure 5.2: Computational mesh.

Incompressible matrix material

Shear modulus µ 2 [MPa]

Fiber material

Young’s modulus E 6 [MPa]

Thickness hf 0.001 [m]

Table 5.1: Material setting of the composite material.
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The objective of this section is to present a series of numerical examples and to demon-
strate the accuracy and performance of the proposed second gradient model. To begin,
we examine a series of benchmark examples in terms of analytical solutions, verifying the
comprehensive fiber material formulation.

u1

u2
α

Figure 5.3: Tensile test. Problem setting. The lines illustrate the fiber structure.

Secondly, the combined matrix and fiber material is calibrated and validated with various
experimental tests under different loading conditions and fiber orientations.

Figure 5.4: Tensile test. Strain energy density of the matrix material at displacement
u = 0.15 [m].

With the adjusted set of material parameters obtained in the previous examples, we ex-
amine a final example, demonstrating the application of the model to a more complex,
non-planar geometry. In addition, the influence of the novel in-plane bending contribu-
tions of the fiber materials is particularly emphasized.

Verification

In a step by step verification of the numerical framework, we conduct several numerical
tests which allow us to investigate each effect of the fiber material separately. Unless
otherwise defined, a shell of size l × b = 0.15 [m] × 0.1 [m] discretized by 3 × 2 cubic
B-spline based elements is applied. The computational mesh and the material setting are
given in Figure 5.2 and Table 5.1, respectively. Note that for each B-spline based mesh
considered in this section, knot vectors of the structure [θα1 = . . . = θαpα+1 < . . . < θαnα+1 =
. . . = θαnα+pα+1] are applied.

Tensile test

We start our investigation with a tensile test to verify the behavior related to a stretching
of the fibers, i.e. we set a1 = a2 = hfE = 12 [kN/m] and neglect all other contributions
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Figure 5.5: Tensile test. Strain energy density of the fiber material (left) and the
composite material (right) at displacement u = 0.15 [m] and fiber configura-
tions of α = [0◦, 15◦, 30◦, 45◦] (from top to bottom. The lines illustrate the
deformed fiber structure.

of the fiber material. The left edge of a shell is fixed and the right edge is moved in
e1-direction by u, see Figure 5.3 for details.

In Figure 5.4, the strain energy per unit reference area is depicted for the pure matrix
material using a shell thickness of h = 0.002 [m]. Moreover, strain energy densities for
the pure fiber material with hf = 0.002 [m] as well as for the composite material using
the setting from Table 5.1 are shown in Figure 5.5. Therein fiber orientations of α =
[0◦, 15◦, 30◦, 45◦] are applied. Note that the fiber material in the 0◦ configuration does not
experience lateral strains under longitudinal displacement conditions at the right edge.
Here, we obtain a constant energy density of 6 [kJ/m2] which is in accordance with the
analytical solution, i.e.

∑
α

aα(λα − 1)2/2 with λ1 = 2 and λ2 = 1.

Figure 5.6 shows the load deflection result, where results for the pure matrix material,
the pure fiber material and the composite material are considered. Concerning the fiber
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Figure 5.6: Tensile test. Load deflection result of the fiber and matrix material (left)
and the composite material (right).

u

α

e3

e2

e1

Figure 5.7: Shear test. Problem setting. The lines illustrate the fiber structure.

material with a 0◦ fiber orientation, we obtain a load of 1.2 [kN] which matches again with
the analytical solution. This can be calculated in a straightforward manner using (5.66)
and (5.77) by which we obtain a constant traction at the right boundary of t = a1u

l
e1.

Shear test

Next, we deal with a simple shear test. To be specific, the lower edge of a shell is fixed, the
left and right edges are fixed in e2-direction and the upper edge is moved in e1-direction
by u as illustrated in Figure 5.7. To verify the implementation, numerical results using
pure fiber material (hf = 0.002 [m]) have to match analytical solutions. Therefore, we set
α = 0◦, a1 = a2 = 12 [kN] and a3 = hfµ = 4 [kN/m]. All other parameters are set equal
to zero.

Figure 5.8 and Figure 5.9 show the distribution of the strain energy density and the load
deflection result, respectively. Therein, we obtain a homogeneous strain energy density of
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Figure 5.8: Shear test. Strain energy density of the fiber material at displacement
u = 0.1 [m]. The lines illustrate the deformed fiber structure.

Figure 5.9: Shear test. Load deflection result. Numerical and analytical solutions of
resultant forces at the right edge Υ1 (left) and upper edge Υ2 (right) are
depicted.

α

µ

e2

e1

e3

Figure 5.10: Out-of-plane bending test. Problem setting. The lines illustrate the
fiber structure.
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3029.3 [J/m2]. The obtained results are in accordance to analytical solutions, which will
be derived next.

Assuming a linear parametrization of the reference mid-surface

r̄ = θ1e1 + θ2e2 with θ1 ∈ [0, l] and θ2 ∈ [0, b] , (5.93)

the analytical solution for pure fiber material with a fiber configuration of α = 0◦ can
be derived as follows. Note that we obtain A1 = e1 and A2 = e2 due to (5.93). The
isochoric deformed configuration of the mid-surface shown in Figure 5.8 is described by

r(θ1, θ2) =

(
θ1 +

θ2u

b

)
e1 + θ2e2 , (5.94)

where u is the predefined displacement of the upper boundary, see Figure 5.7. Now,
applying (2.32) and (2.33) we obtain

λ1 = 1, λ2 =

√(u
b

)2

+ 1 and ϕ =
π

2
− acos




u

b√(u
b

)2

+ 1


 (5.95)

as fiber stretches and the change of angle between the fibers, respectively. Insertion of
the strain measures into (5.41) and (5.77) yields

Ψfib =
a2
2

(√(u
b

)2

+ 1− 1

)2

+
a3
2
tan


π

2
− acos




u
b√(

u
b
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2

(5.96)

and after some straightforward calculations

N 1 = a3Π
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0
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 , (5.97)

where the abbreviation

Π =

tan
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is applied. Eventually, using (5.77) we can evaluate the resultant forces at the right
boundary Υ1 and upper boundary Υ2 as

FΥ1 =

∫

Υ1

[
N 1 N 2

]
νΥ1 dS = N 1b and FΥ2 =

∫

Υ2

[
N 1 N 2

]
νΥ2 dS = N 2l , (5.99)

respectively, where νΥ1 = [1, 0]T and νΥ2 = [0, 1]T are corresponding unit normal vectors.
Thus, for the final deformation state, i.e. u/b = 1, we obtain

Ψfib(u = 0.1 [m]) ≈ 3029.3
J

m2
(5.100)

as homogeneous strain energy distribution and the forces at the boundaries are

FΥ1(u = 0.1 [m]) =




0

800

0


 [N] and FΥ2(u = 0.1 [m]) ≈




−72.8

1127.2

0


 [N] . (5.101)

Out-of-plane bending test

Figure 5.11: Out-of-plane bending test. Configuration of the shell and strain energy
distribution at different load steps. Pure matrix material (left) and pure
fiber material (right) are applied. The lines illustrate the deformed fiber
structure.

For the out-of-plane bending test, the left edge of a shell is clamped and the right edge
is subject to an external out-of-plane torque µ = Me2 as shown in Figure 5.10. In
contrast to previous tests, the shell used for this test has a length of l = 1 [m] and a
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Figure 5.12: Out-of-plane bending test. Convergence results.

width of b = 0.1 [m] in the reference configuration, see Figure 5.11. Using a thickness of
h = 0.002 [m] for pure matrix material and a thickness of hf = 0.002 [m] for pure fiber
material, the area moment of inertia is obtained by I = bh3/12 = bh3

f /12 = 66.6667 [mm4].
The applied torque M = 2πEI/l is chosen such that the shell describes a perfect circle in
the asymptotic limit (see e.g. [69]) which holds for the fiber material by setting α = 0◦,
a1 = hfE = 12 [kN/m] and k1 = EI/b = 0.004 [Nm]. Moreover, for the matrix material
we apply the compressible model given in (5.40) with µ = E/2 = 3 [MPa] and κ = E/3 =
2 [MPa] which corresponds to a Poisson ratio of ν = 0.

α
µ

e3

e2

e1

Figure 5.13: In-plane bending test. Problem setting. The lines illustrate the fiber
structure.

In Figure 5.11, the configuration of the shell is plotted along with the strain energy
distribution for pure matrix and pure fiber material at different load steps. The results
shown therein are obtained by 80 × 8 cubic B-spline based elements. Moreover, Figure
5.12 shows the convergence properties for both materials, where the error is determined
as gap between the ends of the shell. Here, we observe a limit of convergence at a value
of approximately 10−4 [m] for pure matrix material, whereas for pure fiber material an
error of less than 2 · 10−8 [m] is obtained. Note that the limit of convergence using pure
matrix material can be justified by known locking effects of Kirchhoff-Love shell elements
as it may occur even for high polynomial approximations, see e.g. [66, 12, 54, 42, 14]. In
addition, the usage of an internal Newton-Raphson iteration within the implementation of
a compressible neo-Hookean model for the matrix material also limits the convergence.

In-plane bending test
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Figure 5.14: In-plane bending test. Configuration of the shell and strain energy distri-
bution at different load steps using pure fiber material. The lines illustrate
the deformed fiber structure.

∆φ̄

α

e3

e2

e1

Figure 5.15: Torsion test. Problem setting. The lines illustrate the fiber structure.

Next, a verification of the in-plane bending behavior of the fiber material is demonstrated.
Therefore, we use the shell mesh defined for the out-of-plane bending test and set α = 0◦,
a1 = hfE = 12 [kN/m] with hf = 0.002 [m] and g1 = g2 = EĪ/b = 10 [Nm] with Ī =
hfb

3/12 = 166667 [mm4]. All other parameters of the fiber material are set equal to zero.
Moreover, we apply µ = Me3 as an external in-plane bending torque, see Figure 5.13 for
details. Again, the applied torque M = 2πEĪ/l is chosen such that the shell describes a
perfect circle in the asymptotic limit, which is demonstrated in Figure 5.14. Even if this
result is not physically reasonable for a real composite due to the material penetration,
it verifies the implementation related to in-plane bending of pure fiber material.

Torsion test
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Figure 5.16: Torsion test. Strain energy distribution of the fiber material at ∆φ̄ = 180◦

using different fiber configurations α = [0◦, 15◦, 30◦, 45◦] (from left to right
and top to bottom). The lines illustrate the deformed fiber structure.

Eventually, we verify the numerical framework related to a torsional deformation of the
fiber material, see Figure 5.15. Therefore, the deformation is predetermined such that the
shell undergoes a constant twist of ∂φ̄/∂X1 = 1200 [◦/m] with X1 = X ·e1. Moreover, the
parameters of the fiber material are defined by hf = 0.002 [m] and k3 = µIp/b = 5.002 [Nm]
with a polar moment of inertia Ip = bhf(b

2 + h2
f )/12 = 166733 [mm4]. Again, all other

parameters are set equal to zero.

Strain energy densities obtained at ∆φ̄ = 180◦ are depicted in Figure 5.16 for different
fiber configurations. As expected, we obtain a highly stressed region along the central axis
of the shell especially in the 0◦ fiber configuration, whereas the fiber material does not
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Figure 5.17: Torsion test. Twist of fiber at ∆φ̄ = 180◦ using a fiber configuration
of α = 0◦ (left) and 45◦ (right). The lines illustrate the deformed fiber
structure.

contribute to the strain energy in the 45◦ configuration since the fibers are not twisted.
This is also evident in Figure 5.17, where the twist of fiber is plotted for fiber configurations
of α = 0◦ and α = 45◦. Concerning the 0◦ configuration, fibers in e1-direction undergo a
twist of ∂φ̄/∂X1 = 1200 [◦/m] at the central axis of the shell. Moreover, analytical details
related to the torsional test will be detailed next, verifying the numerical results shown
in Figure 5.16.

Assuming a linear parametrization of the reference mid-surface, cf. (5.93), with θ1 ∈ [0, l]
and θ2 ∈ [−b/2, b/2] such that A1 = e1 and A2 = e2, strain energy distributions for
pure fiber material with different fiber configurations can be evaluated as follows. The
predefined deformation of the mid-surface shown in Figure 5.16 and 5.17, respectively, is
described by

r(θ1, θ2) = θ1e1 + θ2 cos

(
πθ1

l

)
e2 + θ2 sin

(
πθ1

l

)
e3 . (5.102)

Applying (2.32), (2.35)2 and (2.51)2 we obtain

κ11 = κ22 = 0 and κ12 = κ21 = −
π√

(θ2π)2 + l2
. (5.103)

Concerning different fiber configurations defined by α, the vector fields L and M in the
reference configuration are given by

L1 = cos(α), L2 = sin(α), M1 = − sin(α), M2 = cos(α) . (5.104)
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Eventually, insertion of these derivations into (5.41) yields

Ψfib =
k3
2
(K3)

2 =
k3
2

π2

(θ2π)2 + l2
(cos(α)2 − sin(α)2)2 . (5.105)

Note that for the evaluation all material parameters are set equal to zero excepted k3.
Obviously, for the α = 45◦ fiber configuration, the strain energy distribution related to a
torsional deformation of the shell is identical to zero, whereas for each other configuration,
the highest value is obtained at the central axis of the shell, i.e. at θ2 = 0. We obtain for
the α = 0◦ fiber configuration

Ψfib(θ2 = 0) ≈ 1097.06
J

m2
and Ψfib(θ2 = b/2) = Ψfib(θ2 = −b/2) ≈ 523.25

J

m2
,

(5.106)
for the α = 15◦ fiber configuration

Ψfib(θ2 = 0) ≈ 822.8
J

m2
and Ψfib(θ2 = b/2) = Ψfib(θ2 = −b/2) ≈ 392.44

J

m2
(5.107)

and for the α = 30◦ fiber configuration

Ψfib(θ2 = 0) ≈ 274.27
J

m2
and Ψfib(θ2 = b/2) = Ψfib(θ2 = −b/2) ≈ 130.81

J

m2
.

(5.108)

Calibration and validation

We investigate Tepex®dynalite 102-RG600(1)/47 from LANXESS as prototypical com-
posite material, consisting of 47% vol. of a woven fabric (roving glass) and polycapro-
lactam (PA 6) as matrix material. The matrix material is hydrophilic with a maximum
absorption of moisture between 2.6% and 3.4%. For the investigations presented here, a
single layer material with layer thickness of 0.5 [mm] has been specifically manufactured
for this test, since multi-layered material with different fiber angles intermix various phys-
ical effects within the measurements.

Figure 5.18: Tension test. Clamping devise with 36 mm specimen, undeformed config-
uration.

The surrounding matrix material stiffens the woven fabric and connects the junctions of
the fibers. The fibers within the composite material have significant bending stiffness
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due to the matrix material surrounding every single string within the fibers. Additional
stiffening mechanisms are present depending on the actual weave of the woven fabric, since
the fibers are subject to frictional behavior at the junctions. These effects arise only for
the combined composite material and thus, cannot be separated within the experimental
investigations, i.e. we always obtain a mean value of the material characteristics.

0
0 2 4 6 8 10

500

1000

1500

Exp.1

Exp.2

Exp.3

[mm]

[N]

Figure 5.19: Tension test. Experimental force-displacement curves for 25 [mm] speci-
men with 30◦ fiber orientation.

The matrix material is in general governed by a far more complex constitutive behavior in
the inelastic regime. Moreover, fibers and matrix might separate in the presence of large
deformations, i.e. both materials can be characterized by separately assigned deformation
fields, coupled via corresponding constitutive laws. For now, we restrict ourself to the
hyperelastic regime without fiber separation.

Tension test

We first elaborated tension tests with 0◦, 15◦, 30◦ and 45◦ fiber orientation. Here, experi-
mental data of 25 [mm] specimen are compared with numerical results using 34×10 cubic
elements. Shear and bulk modulus used within the compressible model (5.40) for the PA
6 matrix material are assumed to be µ = 384.62 [N/mm2] and κ = 833.33 [N/mm2],
respectively. This setting corresponds to Young’s modulus of Eiso = 1000 [N/mm2] and
Poisson ratio of ν = 0.3. Moreover, for the glass fibers we assume Efib = 73000 [N/mm2].
The thickness of the material is h = 0.5 [mm], with 47% vol. of woven fabric, from which
50% are aligned in L and M direction, respectively. Thus, we obtain the material con-
stants for the fiber stretch contributions via 0.5hEfib × 0.47 as a1/2 = 8577.5 [N/mm],
which corresponds to a combined Young’s modulus of 17685 [N/mm2]. As can be seen in
Figure 5.20 for the 0◦ fiber orientation, the simulation fits perfectly the experiments.

The value for a3 = 250 [N/mm] is related to the interaction between the fibers and can
not be derived from other constants. Thus, we have fitted the value to the experimental
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Figure 5.20: Tension test. Force-displacement curves of the tension test for 25 [mm]
specimen with 0◦, 15◦, 30◦ and 45◦ fiber orientation (left to right, top to
down). Simulation results are compared with experimental investigations.
Additionally, simulation results without in-plane bending stiffness (Sim.
wb) are shown to highlight the global effect of the non-classical in-plane
curvature term.

observation obtained by a fiber orientation of 45◦, see Figure 5.20 (right, bottom). The
bending stiffness g1 = g2 on the other hand is related to Young’s modulus via g1/2 =
EfibĪ/b = 893500 [Nmm], where the second moment of inertia is Ī = b3hf/12 with hf =
0.47h. Note that this approach is only a motivation for choosing the material constants
g1 and g2, since this allows us a comparison with analytical results as shown in Section
5.1.5. The values k1/2/3 do not contribute in these tension tests and g3 was set to zero.
Additional simulation results presented in Figure 5.20 demonstrate the effects of the in-
plane bending term, i.e. we set g1 = g2 = 0, to compare the results with an anisotropic
Kirchhoff-Love shell formulation neglecting the higher-gradient terms.

This example shows that the bending stiffness has considerable effects on the global
stiffness and is not negligible. The constitutive parameters chosen with respect to the
different matrix and fiber materials and the respective geometry allow for a nearly perfect
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Figure 5.21: Bending test. Deformed configuration.
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Figure 5.22: Bending test. Force-displacement curves of the out-of-plane bending test
for a 25 [mm] specimen with 0◦ fiber orientation. Simulation results are
compared with experimental investigations.

prediction of the macroscopic behavior of this material with microstructure. Only the
parameter a3 is fitted, since the shear stiffness of the fibers depends on the weave of the
fabric and the production process in terms of applied pressure, heat and cooling rate.
This result illustrates the necessity to include higher-gradient terms in the model for
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Figure 5.23: Bending test. Permanent deformation of the sample after a full loading
cycle.

fiber-reinforced polymers.

Figure 5.24: Tension test. DIC measurement of a 25 [mm] specimen in 45◦ configura-
tion (top) and simulation results (bottom) at 4.6 [mm] total displacement,
colors indicate local stretches in horizontal direction in [mm/m]. Black lines
indicate the fiber direction in the current configuration.
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Bending test

Next, we investigate the out-of-plane bending stiffness, hence we validate the values for
k1 and k2. Therefore, a 4-point bending test as shown in Figure 5.21 is conducted. For
the experiments, a stack of 5 specimen with 125 [mm]× 25 [mm] in 0◦ fiber configuration
were used, such that we expect a stiffness of 5 times k1/2 = EfibI/b = 78.949 [Nmm],
where I = bh3

f /12 and hf = 0.47h. The support structure has a width of 40 [mm] between
the inner brackets, and 30 [mm] between the outer and the inner brackets, such that the
whole device has a width of 100 [mm].

For the numerical validation, we discretize the shell with 50 × 10 cubic elements with
prescribed displacements in upward direction at the contact points of the support struc-
ture, such that the shell can slide over the bracket points and the system is subject to
pure bending. The results in Figure 5.22 demonstrate the consistency of the formulation
with the experimental observations until a displacement of about 15 [mm]. Afterwards,
inelastic effects can be observed, resulting in a permanent deformation of the sample as
can be observed in Figure 5.23. After a displacement of 25 [mm], the sample starts to
slip over the brackets.

Figure 5.25: Tension test. DIC measurement of a 36 [mm] specimen in 60◦ configura-
tion (top) and simulation results (bottom) at 4.6 [mm] total displacement,
colors indicate local stretches in horizontal direction in [mm/m].

Digital Image correlation

Finally, we show in Figure 5.24 (top) the results of the Digital image correlation for the 25
[mm] specimen with 45◦ fiber orientation and a total displacement on the left boundary
of 4.6 [mm]. Note that both sides are clamped in such a way that the displacement is
prescribed and, additionally, the higher-order boundary conditions are also set, preventing
in-plane twist and torsion of the fibers. A direct comparison with simulation results is not
feasible, since the current model does not incorporate elastic softening or inelastic effects of
the polymeric matrix material. However, we want to highlight the strain-gradient effects
in terms of the resulting deformation patterns. Therefore, the stiffness of the matrix
material Eiso and the bending stiffness g1 and g2 is reduced by a factor of 500 to fit the
globally reduced stiffness of the inelastic deformed composite. The bending stiffness of
the pure fiber is nearly zero, but contribute considerably to the global stiffness if the fibers
are embedded within the matrix material. If the matrix is subject to inelastic effects, the
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bending stiffness is effected as well. Note that we have observed pronounced inelastic
deformations by evaluating hysteresis curves. A detailed investigation of inelastic effects
including plastification of the matrix material will follow in the next chapter. In both
plots in Figure 5.24, the strain-gradient effects result in the stiffness of the fibers against
in-plane bending, which can be observed at the crosspoint of the fibers as highlighted by
the red line.

Using the same material setting, we compare next results for a 36 [mm] specimen in
30/60◦ configuration, see Figure 5.25. As can be seen, the deformation patterns fit in
general, although the fibers at the vertices of the sample already start to fracture.

As final result of this section, we summarize the determined and validated material setting
of our prototypical composite material Tepex®dynalite 102-RG600(1)/47 in Table 5.2.

Warp and weft direction are given in 0◦ and 90◦ direction, respectively. Both exhibits a
slightly different material behavior and are not perfectly aligned due to the production
process. This can be calibrated using different values for a1/2 and g1/2, which we omit
here since the general behavior of this second-gradient material is the key issue in this
paper.

Compressible matrix material (PA 6)

Shear modulus µ 384.62 [N/mm2]

Bulk modulus κ 833.33 [N/mm2]

Fiber material (roving glass)

Tensile stiffness a1, a2 8577.5 [N/mm]

Shear stiffness a3 250 [N/mm]

In-plane bending stiffness g1, g2 893500 [Nmm]

Out-of-plane bending stiffness k1, k2 78.949 [Nmm]

Table 5.2: Material setting of Tepex®dynalite 102-RG600(1)/47.

Shaft example

This last example demonstrates the applicability of the proposed model to complex ge-
ometries with non-planar reference configurations. Therefore we consider a shaft of length
50 [mm] and radius 50/π [mm] as shown in Figure 5.26, using the validated material set-
ting given in Table 5.2. Additionally, we set g3 = 0 and k3 = 0. The discretization of
the shaft consists of 200 cubic B-spline based elements. To obtain a closed cylinder, the
extended Mortar method [108] is applied between the opposing edges in peripheral direc-
tion of the shell, maintaining G1-continuity, see also Dittmann et al. [40] for more details.
The displacement on the left in e2-direction of the cylinder is fixed in space, whereas the
displacement on the right is fixed on the (e1, e3)-plane and rotated as illustrated in Figure
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5.26. Note that no higher-order boundary conditions according to (5.77)3 and (5.78) are
applied.

∆φ̄
α

e1

e2e3

Figure 5.26: Shaft example. Problem setting and computational mesh.

First, we investigate a pure matrix material. After a prescribed angle of ∆φ̄ = 3.3◦, the
shell starts to buckle. The last state of equilibrium is obtained at an angle of ∆φ̄ =
12.6◦. Note that e.g. an arc length method can be used to calculate further states in the
geometrically unstable regime. In Figure 5.28, the applied torque necessary to obtain the
prescribed twist at the right hand side of the shell versus the angle of twist ∆φ̄ is plotted
for the pure matrix as well as for the composite material with different fiber orientations
with and without the in-plane bending terms.

0 1[kJ/m2]

Figure 5.27: Shaft example. Strain energy density of the matrix material.

Next, the composite material is investigated. In Figure 5.30, top left, the strain energy for
a 0◦ fiber configuration after a prescribed twist of ∆φ̄ = 90◦ is displayed. Note that the
fiber orientation and not the computational mesh is shown. The corresponding torque is
given again in Figure 5.28. Several issues can be highlighted here. First, the higher-order
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boundary conditions as presented in (5.77)3 are not set and thus, the fibers can twist in-
plane at the boundary. This can be observed very well in Figure 5.30, top left. If bending
would be prohibited at the boundary, the fibers have to remain orthogonal with regard to
the boundary. Since these additional boundary conditions are unknown to a first gradient
theory or even to the classical Kirchhoff-Love shell theory which only considers the out-
and not the in-plane contributions, the proposed formulation is the only way to enforce
this consistently within the mechanical formulation. Second, the in-plane terms stabilize
the shell against buckling. Figure 5.31, top left, shows the results if the additional in-
plane terms are not present, i.e. the material constants g1 and g2 are set to zero. Thus,
we obtain the results for an anisotropic Kirchhoff-Love formulation, usual fitted via a
first-gradient homogenization process, showing large buckling modes. To illustrate this
further, the strain energy of the in-plane contributions for the deformed configuration (cf.
Figure 5.31, top left) is plotted in Figure 5.29. As can be observed, a dramatic increase
of the in-plane strain energy occurs for this heavily deformed configuration, hence, in the
mechanical equilibrium this buckling mode is not possible.

Additionally, results for 15◦, 30◦ and 45◦ fiber orientation are plotted (top right, lower
left and lower right picture in Figure 5.30 and 5.31). The corresponding torque is plotted
again in Figure 5.28. Notably, a nearly constant strain energy distribution can be observed
in Figure 5.30, lower right and top left.

Figure 5.28: Shaft example. Torque versus angle of twist. Displayed are the results
for the pure matrix material, the composite and the composite without the
additional in-plane contributions (composite*).
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0 750[kJ/m2]

Figure 5.29: Shaft example. Estimated strain energy density of the in-plane contribu-
tion using the deformed configuration in 5.31, top left.

98 102[kJ/m2] 50 150[kJ/m2]

100 220[kJ/m2] 68.5 70.5[kJ/m2]

Figure 5.30: Shaft example. Strain energy density of the composite material with
different fiber orientations α = [0◦, 15◦, 30◦, 45◦] (from left to right and top
to bottom) plotted at the final deformation state marked in Figure 5.28.
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20 100[kJ/m2] 0 11[kJ/m2]

0 3[kJ/m2] 11 19[kJ/m2]

Figure 5.31: Shaft example. Strain energy density of the composite material with
different fiber orientations α = [0◦, 15◦, 30◦, 45◦] (from left to right and top
to bottom) without in-plane contributions plotted at the final deformation
state marked in Figure 5.28.

5.2 Solid element formulation

In the previous section, we used experimental results to demonstrate that our shell for-
mulation with higher-order in-plane bending contributions, in contrast to the classical
Cauchy continuum, allows for independent modeling of the composite without the need
to recalibrate the material setting for specific fiber orientation. In this section, this gen-
eralized continuum formulation for long fiber materials is adapted to a more general
three-dimensional solid element, in a more straightforward manner. As in the previous
section, we focus on modeling of the mechanical behavior of the fibers, and use a stan-
dard elastic matrix material. To avoid being too repetitive, we will skip over the spatial
discretization, which will be discussed in depth in the following chapter. The implemen-
tation is then verified by numerical examples, focusing on the validating of the bending
contributions.
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5.2.1 Configuration and kinematics

As introduced in Chapter 2 in the context of classical continuum mechanics, we consider a
body of interest B0 ∈ R

3 in its reference configuration along with the deformation mapping
ϕ(X, t). The deformation gradient F (X, t) with J :=det[F ] > 0 can also be defined in
terms of the principal stretches λa with a = {1, 2, 3} and the principal directions of the
left and right stretch tensors na and Na as

F =
∑

a

λana ⊗Na and J =
∏

a

λa. (5.109)

Since we intend to extend the matrix material to elastoplasticity in the next chapter,
which relies on different mechanisms for the deviatoric and volumetric contributions, we
introduce the isochoric components of the principal strains

λ̄a = (J )−1/3λa =
∏

b

(λb)
−1/3λa, (5.110)

and define the isochoric deformation gradient as

F̄ =
∑

a

λ̄ana ⊗Na. (5.111)

Given that these deformation measurements adequately characterize a typical elastic ma-
trix material, we now focus on the fiber material.

Discussions on higher-order contributions for the constitutive modeling of composites with
flexural resistance have previously been addressed, i.e. in Asmanoglo and Menzel [10, 11],
using the framework as provided in the preliminary work of Spencer and Soldatos [114]
and Soldatos [113]. Since the formulation is in terms of the reference configuration, the
non-orthogonality of the fibers in the actual configuration has no effect as long as the
reference configuration is orthogonal.

A completely different but very straightforward and physically illustrative approach was
presented by dell’Isola [31]. Therein a detailed investigation of a Piola homogenization of
a discrete system of extensional and rotational 2D springs is investigated. We will derive
the exact same deformation measures within a strain-gradient continuum framework and
as a general extension to 3D, and show that it can be recast into the formulation of
Asmanoglo and Menzel [10, 11].

As with the shells, we introduce two fiber threads oriented in the L and M directions,
respectively, where L and M are constant orthogonal unit vector fields within the body
in the reference configuration. We then derive the stretch of the respective fiber

λL = ‖l‖ = ‖FL‖ and λM = ‖m‖ = ‖FM‖. (5.112)

With the normalized fiber directions

l̃ =
l

λL
=

FL

‖FL‖
and m̃ =

m

λM
=

FM

‖FM‖
(5.113)
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we then define the change of the angle between both fiber threads as

ϕ = acos(l̃ · m̃)−
π

2

= acos

(
(FL) · (FM)

‖FL‖‖FM‖

)
−

π

2
.

(5.114)

Eventually the corresponding measure for the shear deformation of the fiber material
yields

φ = tan(ϕ). (5.115)

Within the context of generalized continua, specifically the strain-gradient theory, the
fiber bending is described taking into account the gradients of the deformed fiber vectors,
i.e. ∇l = ∇FL and ∇m = ∇FM . In particular, we consider

∇lL = λL∇l̃L + (∇λL ·L)l̃ and ∇mM = λM∇m̃M + (∇λM ·M)m̃ (5.116)

which are projections of the fiber configuration gradients onto the initial fiber direction, cf.
Asmanoglo and Menzel [10]. These expressions include terms related to stretch gradients
of the fibers as well as fiber curvatures. We introduce the curvature measure for the fiber
initially aligned in L-direction as

κL =
1

λL
∇l̃L

=
1

λ2
L

(∇l− l̃ ⊗∇λL)L

=
1

‖FL‖2

(
∇FL−

FL

‖FL‖
⊗

(
FL

‖FL‖
⊗ L

)
: ∇F

)
L

(5.117)

and for the fiber initially aligned in M -direction as

κM =
1

λM
∇m̃M

=
1

λ2
M

(∇m− m̃⊗∇λM)M

=
1

‖FM‖2

(
∇FM −

FM

‖FM‖
⊗

(
FM

‖FM‖
⊗M

)
: ∇F

)
M .

(5.118)

5.2.2 Variational formulation

Energetic response

The stored elastic energy density of the composite material is defined by the functional

Ψ = ζΨmat(F̄ , J ) +
1− ζ

2
Ψfib(λL, λM, φ,κL,κM) (5.119)
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where ζ ∈ [0, 1] is the volume fraction of the matrix material. As a representative matrix
material, we use the modified volumetric-isochoric decoupled Ogden material model

Ψmat = Ψiso
mat

(
F̄ (λ1, λ2, λ3)

)
+ Ψvol

mat (J (λ1, λ2, λ3))

=
∑

a

∑

b

µb

αb

(
(λ̄a)

αb − 1
)

+
κ

β2

(
β ln(J ) + (J )−β − 1

)
. (5.120)

The parameters µb and αb with b = {1, . . . , N} are related to the shear modulus and the
parameters κ and β are related to the bulk modulus. Assuming that the fiber portion in
both directions is identical, the corresponding contribution of the fiber material is defined
by

Ψfib =
1

2
a
(
(λL − 1)2 + (λM − 1)2

)
+ b φ2

+
1

2
(κL · cκL + κM · cκM)

(5.121)

where a and b are stiffness parameters related to stretch and shear of the fiber material.
Moreover, the stiffness tensor related to fiber curvature is given as

c = c#(l ⊗ l+m⊗m) + c⊥n⊗ n with n = l×m. (5.122)

Previous works such as Asmanoglo and Menzel [10], used a scalar bending parameter,
resulting in an isodirectional bending stiffness and thus limited modeling capabilities. In
the proposed tensorial argument c, the different stiffness parameters c# and c⊥ can be
interpreted as the in-plane and out-of-plane bending stiffness, respectively. These can
in turn account for the geometric dependence, namely the respective plane moment of
inertia of the fiber bundle, as detailled in Section 5.1.5. Note that we assume the same
cross section for both fiber threads.

Regarding the partial derivatives therein, we introduce first relations related to the Kirch-
hoff stress τ = τmat + τfib as

τmat = τ dev
mat + τ vol

mat

=
∑

a

(
τdevmat,a + τvolmat,a

)
na ⊗ na

= ζ
∑

a

λa

(
∂Ψiso

mat

∂λa

+
∂Ψvol

mat

∂λa

)
na ⊗ na

(5.123)

and

τfib =
1− ζ

2

(
∂Ψfib

∂λL

∂λL

∂F
+

∂Ψfib

∂λM

∂λM

∂F
+

∂Ψfib

∂φ

∂φ

∂F
+

∂Ψfib

∂κL

∂κL

∂F
+

∂Ψfib

∂κM

∂κM

∂F

)
F T,

(5.124)
the higher-order stress of the fiber materials as

Pfib =
1− ζ

2

(
∂Ψfib

∂κL

∂κL

∂∇F
+

∂Ψfib

∂κM

∂κM

∂∇F

)
. (5.125)
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Strong Form

To identify and collect the internal contributions to the boundaries of the mechanical
field, i.e. the resulting bending moments and normal stress contributions, we derive the
internal virtual work as

δW int =

∫

B0

δΨmat + δΨfib dV =

∫

B0

τ : ∇xδϕ+P : · ∇∇δϕ dV. (5.126)

The usage of the transformation

τ : ∇xδϕ = τF −T : ∇δϕ (5.127)

along with integration by parts yields

δW int =

∫

B0

−∇·(τF −T) ·δϕ+∇·(δϕ ·τF−T)−∇·P : ∇δϕ+∇·(∇δϕ : P) dV. (5.128)

A second integration by parts related to the third term yields

δW int =

∫

B0

∇·(∇·P−τF −T)·δϕ+∇·(δϕ·(τF −T−∇·P))+∇·(∇δϕ : P) dV. (5.129)

In a last step, we apply the divergence theorem for the second and third term such that
we obtain

δW int =

∫

B0

∇ · (∇ ·P− τF−T) · δϕ dV +

∫

∂B0

((τF −T −∇ ·P)N) · δϕ+PN : ∇δϕ dA.

(5.130)

Note that also contributions in tangential direction at the boundaries can be considered
such that further integrations by parts incorporates the boundaries ∂2B0 and ∂3B0 which
represent curves and points, see e.g. Schulte et al. [106] and Javili et al. [67]. Assum-
ing that the principle of virtual work δW int − δW ext = 0 is valid with respect to the
corresponding functional spaces of admissible solution and test functions, the external
contribution can be formulated as

δW ext =

∫

B0

B · δϕ+

∫

ΓT
0

T̄ · δϕ dA+

∫

ΓM
0

M̄ : ∇δϕ dA, (5.131)

where B is a given body force per unit volume of the reference configuration. Moreover,
T̄ and M̄ are a surface traction and a surface torque acting at the mechanical Neumann
boundaries ΓT

0 and ΓM
0 . Eventually, we obtain the local form of the mechanical problem

as
∇ · (τF −T −∇ ·P) +B = 0 (5.132)
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1. Stress equilibrium
∇ · (τF−T −∇ ·P) +B = 0 (5.136)

2. Kirchhoff stress

τ = τmat + τfib, τmat = ζ
∑

a

λa

∂Ψmat

∂λa

na ⊗ na, τfib =
1− ζ

2

∂Ψfib

∂F
FT (5.137)

3. Dirichlet and Neumann conditions

ϕ = ϕ̄(X, t) on Γϕ
0 , (τF−T −∇ ·P)N = T̄ (X, t) on ΓT

0

∇ϕN = ∇ϕ̄(X, t)N on Γ∇ϕ
0 , PN = M̄(X, t) on ΓM

0

(5.138)

4. Initial conditions
ϕ(X, 0) = ϕ0, ϕ̇(X, 0) = v0, (5.139)

Table 5.3: Strong formulation of the problem.

supplemented by boundary conditions

ϕ = ϕ̄ on Γϕ
0

∇ϕN = ∇ϕ̄N on Γ∇ϕ
0

(τF −T −∇ ·P)N = T̄ on ΓT
0

PN = M̄ on ΓM
0

(5.133)

with prescribed fields ϕ̄ and ∇ϕ̄N at the mechanical Dirichlet boundaries Γϕ
0 and Γ∇ϕ

0 .
As usual for fourth-order boundary value problems, the entire boundary is decomposed
twice, i.e. Γ0 = Γϕ

0 ∪ ΓT
0 with Γϕ

0 ∩ ΓT
0 = ∅ and Γ0 = Γ∇ϕ

0 ∪ ΓM
0 with Γ∇ϕ

0 ∩ ΓM
0 = ∅.

For details related to the enforcement of the gradient condition given in (5.133)2 see e.g.
Schuß et al. [108]. The problem in the strong form is summarized in 5.3.

Weak Form

Based on the derivations concerning the mechanical field within the previous section, the
set of admissible test functions related to δϕ and its space are defined as

Vϕ = {δϕ ∈ H2(B0) | δϕ = 0 onΓϕ
0 , ∇δϕN = 0 onΓ∇ϕ

0 }, (5.134)

included within the Sobolev functional space of square integrable functions and derivatives
Hk with k ≥ 0. Then, the weak form of the multifield problem reads

∫

B0

∇xδϕ : τ +∇∇δϕ : ·P− δϕ ·B dV −

∫

ΓT
0

δϕ · T̄ dA−

∫

ΓM
0

∇δϕ : M̄ dA = 0.
(5.135)

Note that we neglect inertia terms within the mechanical balance equation, i.e. we consider
only quasi static problems.
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5.2.3 Numerical examples

The following examples are dedicated to the verification of the higher-order bending
contributions of the fiber material. In particular, we investigate the in-plane bending
behavior using a benchmark test from the previous section with the shell formulation,
as well as the out-of-plane bending behavior using a 4-point bending test. Additional
examples demonstrating the capabilities of the proposed formulation for endless fiber-
reinforced polymers are explored in the subsequent section.

In-plane bending test

µ̄
e2

e1

e3

Figure 5.32: In-plane bending test. Problem setting. The lines illustrate the fiber
structure.

We consider the same in-plane bending benchmark test as in Section 5.1.5, where the
left edge of a Kirchhoff-Love shell is clamped while the right edge is subjected to an
external in-plane torque, chosen to match a reference analytical solution. To verify the
proposed formulation in terms of in-plane bending stiffness parameterization, we take the
shell deformation result, extrude it to the corresponding 3D geometry and calculate the
energy. The plate is of size L×W ×H = 10 [mm]×1 [mm]×0.5mm and is discretized by
8×2×1 quadratic B-spline based elements, see Figure 5.32. Furthermore, we assume that
the plate consists of a single fiber bundle with a cross section of A = HW = 0.5mm2 and
a tensile stiffness of Efib = 79000N/mm2. The area moments of inertia of the fiber bundle
with respect to the e3-axis and the e2-axis are given by Ie3 = HW 3/12 = 0.0417mm4

and Ie2 = WH3/12 = 0.0104mm4, respectively. Using these quantities we calibrate the
bending stiffness parameters as c# = EfibIe3/A = 6583.3333N and c⊥ = EfibIe2/A =
2212N.

In Figure 5.33, the strain energy density is depicted for both the Kirchhoff-Love shell
formulation as well as the proposed higher-order continuum formulation. Therein, we can
observe the same homogeneous distributions which verifies the calibration of the in-plane
bending stiffness parameter c#. Note that the parameter c⊥ does not contribute to the
simulation result, but will be investigated within the next example.

4-point bending test

Next, the out-of-plane bending behavior of the fiber material is investigated using a 4-
point bending test. Therefore, we consider again a rectangular geometry of size L×W ×
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0.080 0.081[J/mm3]

Figure 5.33: In-plane bending test. Strain energy distribution of the Kirchhoff-Love
shell formulation (left) and higher-gradient continuum formulation (right).

ϑ

Figure 5.34: In-plane bending test. Problem setting. The lines illustrate the fiber
structure.

H = 125 [mm] × 25 [mm] × 0.5mm discretized by 50 × 10 × 2 quadratic B-spline based
elements. The bidirectional composite material has a matrix volume ratio of ζ = 0.53 and
the fibers are aligned in the ϑ = 0◦ configuration, see Figure 5.34 for the details on the fiber
orientation. The four point bending test as shown in Figure 5.35 leads to a pure out-of-
plane bending deformation of the structure. In particular, we prevent the displacement in
upward direction for the outer support points and prescribe a displacement in downward
direction for the inner contact points. Additionally, the left support point is horizontally
fixed, whereas we allow sliding for the other contact points. The material setting of
the matrix material reads µ = 1630.4N/mm2 and α1 = 2 for the deviatoric part and
κ = 6250N/mm2 and β = −2 for the volumetric part, which corresponds to a Young’s
modulus of Emat = 4500N/mm2 and a Poisson’s ratio of ν = 0.38.

Figure 5.35: 4-point bending test. Boundary conditions of the 4-point bending test.
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Two different settings of the fiber material properties are applied assuming a single layer
of fibers over thickness direction. Firstly, we set the tensile stiffness of the fibers to
a = Efib = 79000N/mm2 and the bending stiffness to c⊥ = 0N. Secondly, we set the
tensile stiffness of the fibers to zero and adjust the bending stiffness as c⊥ = EfibH

2/12 =
1645.83N.

The applied bending stiffness of the continuum fiber model correlates to the out-of-plane
bending stiffness for a shell model with the same height. As shown in the previous exam-
ple, the proposed strain-gradient continuum formulation matches the contributions of a
gradient shell formulation, provided that the stiffness is chosen properly. Thus, if we re-
solve the thickness of sufficiently flat geometry with in the continuum model to obtain the
same deformation as expected for the shell theory, a coincident bending behavior of the
structure should result. Figure 5.36 shows the load deflection result for the investigated
material settings. As expected, both results match in a good agreement, i.e. the ten-
sion/compression behavior of the continuum fiber model in this bending example can be
described by the bending terms themselves. This is an important and well known result,
as strain-gradient contributions emanate from a length-scale dependent microstructure
and if this microstructure is already resolved by the first-order continuum framework, the
second-order contributions must be removed.

Figure 5.36: 4-point bending test. Force-displacement curves for bending tests.



6 A Hybrid Phase-Field Model for

Fracture in Fiber-Reinforced

Polymers

Based on the concepts established in the preceding chapters, we now develop a comprehen-
sive multifield framework for thermomechanical simulation of fiber-reinforced composites
undergoing large deformations, and taking into account the microstructural size effects
of the embeded fibers as well as inelastic, damage, and ultimate failure mechanisms.
In particular, the polymeric matrix material is assumed to undergo porous-ductile frac-
ture, while continuously embedded fibers undergo brittle fracture, as is characteristical
e.g. for glass fiber-reinforced thermoplastics. A hybrid phase-field approach is developed
and applied in conjunction with a modified Gurson-Tvergaard-Needelman GTN strain-
gradient plasticity model that accounts for temperature-dependent growth of voids at the
microscale. The mechanical response of the emerging woven fabric microstructure leads
to additional higher-order terms representing homogenized bending contributions of the
fibers. Considering the previous chapters, the underlying concepts and kinematic frame-
works are only briefly introduced, with the focus instead on the multifield constitutive
formulation for fiber-reinforced polymers. Eventually, a series of representative numerical
examples, using a prototypical roving glass fiber-reinforced polyamide-6 (PA6) composite,
is used to investigate the algorithmic performance and modeling capabilities, i.e. different
kinds and sequences of failure within long fiber-reinforced polymers.

6.1 Configuration and kinematics

We consider a fiber-reinforced composite as a three-dimensional continuum body, along
with the fields and kinematic framework introduced in Chapter 5 and Chapter 3. As-
suming that the fiber deformation is congruent with the matrix deformation, we consider
the joint field mapping ϕ(X, t) and the material deformation gradient F = ∇ϕ(X, t)
with its determinant J = det(F ) > 0. Moreover, we presume the absolute temperature
θ(X, t) as a further common field representing the thermal state of the matrix as well as
the fiber material.

Regarding the damage behavior of the matrix material, the variables introduced in Chap-
ter 3 describe the porous plasticity and ductile fracture of the matrix material. Namely,
we consider the equivalent plastic strain α(X, t) its dual, the dissipative resistance force
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rp(X, t), the plastic deformation map F p(X, t), the void volume fraction f(X, t), and
the crack phase-field s(X, t).

Note that the biphasic character of semi-crystalline polymers, such as the matrix ma-
terial polyamide-6 (PA6) considered in the numerical examples, is often modeled by a
multi-mechanism (MM) constitutive model [20, 109] . Therein, the amorphous and crys-
talline phases are each characterized by their own inelastic strain field and porosity vari-
able. Due to the significant influence of the fibers, we opted for a more straightforward
approach for modeling the matrix material’s mean mechanical effects, using a unified
porous-elastoplastic model with averaged fields and material parameters, as in [73]. Fur-
thermore, in agreement with the literature for the PA6 under study [68], porosity is
assumed to be caused only by void growth. Consequently, void nucleation are neglected
which simplifies the evolution laws of the isotropic hardening.

In addition, we propose a hybrid phase-field formulation for the fracture modeling of
the fibers. Assuming the woven fiber reinforcement structure as in chapter ?, with the
constant and orthogonal unit vector fields in the reference configuration of the two fiber
filaments, L and M , we introduce the order parameters

sL(X, t) : B0 × T → R with sL ∈ [0, 1] and ṡL ≥ 0 (6.1)

and
sM(X, t) : B0 × T → R with sM ∈ [0, 1] and ṡM ≥ 0 (6.2)

describing the crack phase-field of the fiber aligned in L-direction and M -direction. As
for the matrix material, the values s = 0 refers to the undamaged and s = 1 to the fully
ruptured state of the fiber material.

The variables introduced above characterize a multi-field setting for the formulation of
temperature-dependent micro- and macromechanical damage in fiber-reinforced compos-
ites based on seven independent fields

U = [ϕ, θ, α, rp, s, sL, sM], (6.3)

the finite deformation map ϕ, the absolute temperature field θ, the equivalent plastic
strain field α, the dissipative plastic resistance force rp, the crack phase-field s of the ma-
trix material, and the dual crack phase-field [sL, sM] of the fiber material. The Lagrangian
plastic deformation map F p and the void volume fraction f will be condensed within the
balance equations.

The deformation measures for the porous-plastic fracture-degenerated matrix material
are exactly the same as those introduced in Chapter 3. After a threefold multiplicative
decomposition, namely an elasto-plastic decomposition, a volumetric-deviatoric decompo-
sition and a fracture in-& sensitive decomposition over the eigenvalues, we finally obtain
the elastic fracture insensitive part of the isochoric deformation gradient and the Jacobian
determinant as

˜̄F e =
∑

a

˜̄λe
ana ⊗Na and J̃e =





∏
a

(λe
a)

g(s) if
∏
a

λe
a > 1

∏
a

λe
a else

, (6.4)
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where g = ag((1−s)3−(1−s)2)−2(1−s)3+3(1−s)2 is the adjustable degradation function

via the modeling parameter ag. Moreover, ˜̄λe
a = (λ̄e

a)
g(s) are distortional stretches, defined

via the isochoric, elastic parts of the principal stretches λ̄e
a =

∏
b

(λe
b)

−1/3λe
a, and lastly,

the vectors na and Na represent the principal directions of the left and right stretch
tensors.

Regarding the fiber material, we use the deformation measures derived in Chapter 5.
Along with the classical contributions for woven fiber structures considering the fiber
directions, as in the stretches of the respective fiber threads

λL = ‖FL‖ and λM = ‖FM‖ (6.5)

and the shear deformation

φ = tan

(
acos

(
(FL) · (FM)

‖FL‖‖FM‖

)
−

π

2

)
, (6.6)

we additionally consider the curvature measures that take into account the deformed fiber
vectors ∇l = ∇FL and ∇m = ∇FM

κL =
1

‖FL‖2

(
∇FL−

FL

‖FL‖
⊗

(
FL

‖FL‖
⊗ L

)
: ∇F

)
L (6.7)

and

κM =
1

‖FM‖2

(
∇FM −

FM

‖FM‖
⊗

(
FM

‖FM‖
⊗M

)
: ∇F

)
M . (6.8)

Next, we incorporate the hybrid crack phase-field into the fiber kinematics. Assuming
that the fiber material is brittle compared to the matrix material and that fiber rupture
requires a local tensile state, we formulate fracture insensitive parts of the stretches as

λ̃L =

{
(λL)

gL(sL) if λL > 1

λL else
and λ̃M =

{
(λM)

gM(sM) if λM > 1

λM else
, (6.9)

where we use the same type of adjustable degradation function as for the matrix g• =
ag•((1−s•)

3−(1−s•)
2)−2(1−s•)

3+3(1−s•)
2. Note that the • indicates the respective fiber

direction L and M . For the shear deformation we propose the following degradation

φ̃ = gL(sL)gM(sM)φ, (6.10)

where in case of single fiber rupture the shear is completely degraded even if the remaining
fiber is undamaged. Finally, the fracture insensitive measures of the fiber curvatures take
the straighforward form

κ̃L = gL(sL)κL and κ̃M = gM(sM)κM. (6.11)
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6.2 Variational formulation

Next, we propose the constitutive framework for thermomechanical damage in fiber-
reinforced composites. To be specific, we introduce constitutive energetic and dissipative
response functions based on the above definitions and derive the required relations and
evolution laws to formulate the multifield variational problem.

6.2.1 Energetic response

The stored thermoelastic energy density of the composite material is defined by the func-
tional

Ψ = ζΨe,θ
mat(

˜̄F e, J̃e, θ) +
1− ζ

2
Ψe,θ

fib(λ̃L, λ̃M, φ̃, κ̃L, κ̃M, θ)

= ζ
(
Ψe

mat(
˜̄F e, J̃e, θ) + Ψθ

mat(θ)
)
+

1− ζ

2

(
Ψe

fib(λ̃L, λ̃M, φ̃, κ̃L, κ̃M, θ) + Ψθ
fib(θ)

)
,

(6.12)
where ζ ∈ [0, 1] is the volume fraction of the matrix material. The elastic contribution
to the stored energy function of the matrix material is decomposed into volumetric and
deviatoric parts

Ψe
mat = Ψe,iso

mat

(
˜̄F e(λe

1, λ
e
2, λ

e
3, s), θ

)
+Ψe,vol

mat

(
J̃e(λe

1, λ
e
2, λ

e
3, s), θ

)
. (6.13)

As a representative non-linear constitutive law, a modified Ogden material model with
the associated strain energy density function

Ψe,iso
mat =

∑

a

∑

b

µb

αb

(
(˜̄λe

a)
αb − 1

)
(6.14)

and

Ψe,vol
mat =

κ

β2

(
β ln(J̃e) + (J̃e)−β − 1

)
− 3

ǫκ

γ
(θ − θ0)

(
(J̃e)γ − 1

)
(6.15)

is used for the numerical examples. The parameters µb and αb with b = {1, . . . , N}
are related to the shear modulus and the parameters κ and β are related to the bulk
modulus. Moreover, θ0 is a reference temperature and the parameters ǫ and γ are related
to the thermal expansion coefficient. Assuming that the fiber portion in both directions
is identical, the corresponding elastic contribution of the fiber material is defined by

Ψe
fib =

1

2
a
(
(λ̃L − 1)2 + (λ̃M − 1)2

)
+ b φ̃2

+
1

2
(κ̃L · c κ̃L + κ̃M · c κ̃M) + aυ(θ − θ0)

(
(λ̃L − 1) + (λ̃M − 1)

) (6.16)

where υ denotes the thermal expansion coefficient and a, b and c are stiffness parameters
related to stretch, shear and curvature of the fiber material, as introduced in Chapter 5.
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Next, the purely thermal contributions to the stored energy of the matrix and the fiber
material are defined by

Ψθ
mat = cmat

(
θ − θ0 − θ ln

(
θ

θ0

))
(6.17)

and

Ψθ
fib = 2cfib

(
θ − θ0 − θ ln

(
θ

θ0

))
, (6.18)

respectively. Therein, cmat and cfib are constant parameters representing specific heat
capacities of the respective material.

The evolution of the stored thermoelastic energy is given by

d

dt
Ψ = ζ

(
∑

a

∂Ψe
mat

∂λe
a

λ̇e
a +

∂Ψe
mat

∂s
ṡ+

∂(Ψe
mat +Ψθ

mat)

∂θ
θ̇

)

+
1− ζ

2

(
∂Ψe

fib

∂F
Ḟ +

∂Ψe
fib

∂∇F
∇Ḟ +

∂Ψe
fib

∂sL
ṡL +

∂Ψe
fib

∂sM
ṡM +

∂(Ψe
fib +Ψθ

fib)

∂θ
θ̇

)
.

(6.19)

Regarding the partial derivatives therein, we introduce first relations related to the Kirch-
hoff stress τ = τmat + τfib as

τmat = τ dev
mat + τ vol

mat

=
∑

a

(
τdevmat,a + τvolmat,a

)
na ⊗ na

= ζ
∑

a

λe
a

(
∂Ψe,iso

mat

∂λe
a

+
∂Ψe,vol

mat

∂λe
a

)
na ⊗ na

(6.20)

and

τfib =
1− ζ

2

(
∂Ψe

fib

∂λ̃L

∂λ̃L

∂F
+

∂Ψe
fib

∂λ̃M

∂λ̃M

∂F
+

∂Ψe
fib

∂φ̃

∂φ̃

∂F
+

∂Ψe
fib

∂κ̃L

∂κ̃L

∂F
+

∂Ψe
fib

∂κ̃M

∂κ̃M

∂F

)
F T,

(6.21)
the higher-order stress of the fiber material as

Pfib =
1− ζ

2

(
∂Ψe

fib

∂κ̃L

∂κ̃L

∂∇F
+

∂Ψe
fib

∂κ̃M

∂κ̃M

∂∇F

)
, (6.22)

the driving force of the respective crack phase-field as

H = −ζ
∂Ψe

mat

∂s
, HL = −

1− ζ

2

∂Ψe
fib

∂sL
, HM = −

1− ζ

2

∂Ψe
fib

∂sM
(6.23)

and the specific entropy as

η = ηmat + ηfib

= −ζ
∂(Ψe

mat +Ψθ
mat)

∂θ
−

1− ζ

2

∂(Ψe
fib +Ψθ

fib)

∂θ
.

(6.24)
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Moreover, we introduce a dissipation function

Dint = νpmatτmat : d
p + νfmatHṡ+ νffib(HLṡL +HMṡM), (6.25)

to account for a transfer of dissipated energy due to plastification and fracture into the
thermal field, where dp denotes the Eulerian plastic rate of deformation tensor. The
above relations are derived in a thermodynamically consistent manner by assuming that
the dissipated energy is completely transfered into the thermal field, i.e. by setting νpmat =
νfmat = νffib = 1. Note, however, that the plastic dissipation factor νpmat is typically chosen
in the range of 85% to 95% in the context of thermoplasticity, see e.g. [111, 130, 75]. In
addition, based on experimental observations it is reasonable to set fracture dissipation
factors to νfmat < 1 and νffib < 1, see the discussion related to an energy transfer into the
thermal field in [39, 107] and the references therein.

To model the plastic and fracture mechanical response, we introduce an auxiliary func-
tional as

Ψ̂ = ζ
(
Ψ̂p

mat(α,∇α, θ) + Ψ̂f
mat(s,∇s, α)

)
+

1− ζ

2
Ψ̂f

fib(sL,∇sL, sM,∇sM). (6.26)

As introduced in Chapter 3, the plastic contribution Ψ̂p
mat describes the response of

isotropic strain-gradient hardening related to the matrix material, with the equivalent
plastic strain α its gradient ∇α and the plastic length scale lp

Ψ̂p
mat(α,∇α, θ) =

α∫

0

y(ᾱ, θ) dᾱ + y0(θ)
l2p
2
‖∇α‖2. (6.27)

The isotropic local strain hardening function y(α, θ) developed specifically for the semi-
crystalline polyamide-6 in the framework of a multi-mechanism model [20, 109] is adapted
for a unified approach (monomechanism) as in [73]. Furthermore the function is extended
to thermoplasticity following [111, 102, 28]. In particular, we obtain the saturation-type
function

y(α, θ) = y0(θ) + y1(θ)exp[ωp1α] + y2(θ)(1− exp[−ωp2α]), (6.28)

with the three temperature-dependent material parameters y0 > 0, y1 ≥ 0 and y2 ≥ 0
defined as

y0(θ) = y0(θref)(1− ωt0(θ − θref)),

y1(θ) = y1(θref)(1− ωt1(θ − θref)),

y2(θ) = y2(θref)(1− ωt2(θ − θref)).

(6.29)

Therein, the initial yield stress y0 + y1 determines the threshold of the effective elastic
response, y2(θ)(1−exp[−ωp2α]) describes an initial hardening stage. y1(θ)exp[ωp1α] allows
for the simulation of rheo-hardening, in which large stretches of fibrils leads to an abrupt
increase of stress. Moreover, ωp1 and ωp2 are saturation parameters and ωt0, ωt1 and ωt2

are thermal hardening/softening parameters.
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Next, we formulate fracture contributions for the matrix as well as the fiber material.
As in the previous chapters, we approximate a sharp crack surface Γ• by a regularized
functional

Γ̂•(s•,∇s•) =

∫

B0

γ̂•(s•,∇s•) dV with γ̂•(s•,∇s•) =
1

2lf•
(s2• + l2f•‖∇s•‖

2), (6.30)

based on a specific crack regularization profile γ̂• defined per unit volume of the reference
configuration and the fracture length scale lf• which controls the regularization. Con-
cerning ductile fracture of the matrix material, we require that lp ≥ lf such that the
regularized crack zone lies inside of the plastic zone. Using the regularization given in
(6.30), the approximated fracture energy of the composite material reads

W f ≈

∫

B0

ζgc(α)γ̂(s,∇s) +
1− ζ

2
(gcL γ̂L(sL,∇sL) + gcM γ̂M(sM,∇sM)) dV. (6.31)

Here, gc• denotes the Griffith-type critical energy density required to create fracture within
the respective material. For the matrix material, the critical energy density is decomposed
additively into elastic and plastic contributions as gc(α) = gc,p + gc,e exp(−ωfα), with the
modeling parameter ωf . Summarized, the phase-field fracture contributions are given in
terms of crack density functions as

Ψ̂f
mat = gc(α)γ̂(s,∇s)

=
gc(α)

2lf
(s2 + l2f ‖∇s‖2)

(6.32)

and
Ψ̂f

fib = gcL γ̂L(sL,∇sL) + gcM γ̂M(sM,∇sM)

=
gcL
2lfL

(s2L + l2fL‖∇sL‖
2) +

gcM
2lfM

(s2M + l2fM‖∇sM‖
2).

(6.33)

Eventually, we obtain the dissipative resistance forces of the plastic field and the respective
crack phase-field via the variational derivatives of Ψ̂ with respect to α and s• as

rp = ζδαΨ̂
p
mat = ζ(∂αΨ̂

p
mat −∇ · (∂∇αΨ̂

p
mat)) (6.34)

and
rf• = δs•Ψ̂ = ∂s•Ψ̂−∇ · (∂∇s•Ψ̂). (6.35)

6.2.2 Dissipative response

The composite’s dissipative response and evolution equations, which are very similar
to the structure developed in Chapter 3, are now adapted and extended for fiber frac-
ture. Regarding the porous elastoplastic behavior of the polyamide matrix material,
multi-mechanism models [20, 109, 68] are commonly used in which local information such
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as plastic strains, stresses, and damages are taken into account in each phase of semi-
crystalline polymers via several GTN-type yield functions [57, 123, 96]. Since in the
context of this work, we are only interested in the mean mechanical effects of the matrix
material, a unified GTN-type yield function [73] is used, which implicitly defines averaged
quantities, i.e. the effective scalar stress σ̄ := σ̄(σmat, f) in terms of the Cauchy stress
tensor σmat = τmat/J and the void volume fraction f

ΥG(σ̄,σmat, f) =
σ2
eq

σ̄2
+ 2q1fcosh

[
3

2
q2
p

σ̄

]
−
(
1 + (q1f)

2
)
= 0. (6.36)

Here, σeq =
√

3/2 ‖τ dev
mat/J‖ denotes the von Mises equivalent stress, p = 1

3
tr[τmat/J ] the

pressure and q1/2 are fitting parameters. Note that for q1 = 0 the influence of the pressure
and the void volume fraction vanishes, i.e. σ̄ = σeq. With the effective stress σ̄ and the
dissipative resistance force rp we define the plastic yield function as

Φp (σ̄(σmat, f), r
p) = σ̄ − rp. (6.37)

As standard practice for polymide [68], we neglect other influences such as void nucleation
or void softening due to shear, and obtain the evolution form of the void growth ḟ =
(1 − f)tr[dp]. Following [85], the current void volume fraction is given in terms of the
plastic deformation as

f = 1−
1− f0
Jp

. (6.38)

A plastic Lagrange multiplier λp is introduced to enforce the Karush-Kuhn-Tucker con-
ditions

λp ≥ 0, Φp ≤ 0, λpΦp = 0. (6.39)

For the incorporation of the fracture mechanical behavior, we define crack threshold
functions as

Φf
•(H• − rf•) = H• − rf• (6.40)

where the energetic driving forces H• are bounded by crack resistance forces rf• dual to
the crack phase-field variables s•. Similar to plasticity, we introduce fracture Lagrange
multipliers λf

• to enforce the Karush-Kuhn-Tucker conditions of the respective crack phase-
field

λf
• ≥ 0, Φf

• ≤ 0, λf
•Φ

f
• = 0. (6.41)

Based on the concept of maximum dissipation and the set C = [σmat, r
p,H − rf ,HL −

rfL,HM − rfM, λ
p, λf , λf

L, λ
f
M], we define an extended dissipation potential and obtain a

constrained optimization problem as where the Lagrange multipliers λp and λf
• control

the non-smooth evolution of plasticity and fracture, respectively. Then, the associated
plastic evolution equations follows as

dp = λp ∂Φp

∂σmat
and α̇ = −

λp

1− f

∂Φp

∂rp
(6.42)

and the evolution equation of the respective crack phase-field as

ṡ• = λf
•

∂Φf
•

∂(H• − rf•)
. (6.43)
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A penalty regularization of the Lagrange multipliers can be utilized as follows∗

λp =
1

ηp
〈Φp〉np ≥ 0, λf =

1

ηf
〈Φf〉 ≥ 0, λf

L =
1

ηfL
〈Φf

L〉 ≥ 0 and λf
M =

1

ηfM
〈Φf

M〉 ≥ 0,

(6.44)
where ηp, np and ηf• are material parameters which characterize the viscosity of plastifi-
cation and crack propagation. Note that in the sense of continuum setting as defined in
(6.12) and (6.26), the rates obtained in (6.42) and (6.43) are weighted by the respective
volume fraction ζ and (1− ζ)/2, respectively.

6.2.3 Heat conduction

Assuming that the absolute temperature θ(X, t) as a common field representing the ther-
mal state of the matrix as well as the fiber material, we introduce a relation for the
Piola-Kirchhoff heat flux vector as

Q(F , θ, s) = −K(F , s)∇θ (6.45)

which is known as Duhamel’s law of heat conduction. The thermal conductivity tensor is
defined as

K = (K(1− s) +Kconvs)F−1F−T. (6.46)

In case of fracture, the conduction degenerates locally such that we achieve a pure con-
vection problem and the heat transfer depends mainly on the crack opening width of the
matrix material. Here, we formulate the conductivity tensor K in terms of the phase-field
parameter s. Moreover, K = ζKmat + (1 − ζ)Kfib is a average conductivity parameter
related to the composite material and Kconv is a convection parameter.

6.2.4 Coupled problem

Based on the derivations concerning the mechanical field of the fiber-reinforced material
just introduced, the set of admissible test functions related to U is given as

δU = [δϕ, δθ, δα, δrp, δs, δsL, δsM], (6.47)

i.e. variations of the deformation, the absolute temperature, the equivalent plastic strain,
the dual plastic resistance force, the crack phase-field of the matrix material and the
variables of the dual crack phase-field of the fiber material, where their spaces are defined

∗ The Macaulay brackets are defined by 〈x〉 = (x + |x|)/2.
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as

Vϕ = {δϕ ∈ H2(B0) | δϕ = 0 onΓϕ
0 , ∇δϕN = 0 onΓ∇ϕ

0 },

Vθ = {δθ ∈ H1(B0) | δθ = 0 onΓθ
0},

Vα = {δα ∈ H1(B0) | δα = 0 onΓα
0},

Vrp = {δrp ∈ L2(B0)},

Vs = {δs ∈ H1(B0) | δs = 0 on Γ̄},

VsL = {δsL ∈ H1(B0) | δsL = 0 on Γ̄L},

VsM = {δsM ∈ H1(B0) | δsM = 0 on Γ̄M}

(6.48)

included within the Sobolev functional space of square integrable functions and derivatives
Hk with k ≥ 0. Then, the weak form of the coupled multifield problem reads

∫

B0

∇xδϕ : τ +∇∇δϕ : ·P− δϕ ·B dV −

∫

ΓT
0

δϕ · T̄ dA−

∫

ΓM
0

∇δϕ : M̄ dA = 0,

∫

B0

δθ(θη̇ −Dint −R)−∇δθ ·Q dV −

∫

ΓQ
0

δθQ̄ dA = 0,

∫

B0

(
δα(ζy − rp) + ζy0l

2
p∇δα · ∇α

)
dV = 0,

∫

B0

δrp
(
ηpα̇−

χp(Φ
p)np

1− f

)
dV = 0,

∫

B0

δsηf ṡ− δsχf

(
H−

ζgc
lf

s

)
+ χfζgc∇δs · ∇s dV = 0,

∫

B0

δsLηfL ṡL − δsLχfL

(
HL −

(1− ζ)gcL
2lfL

sL

)
+ χfL

1− ζ

2
gcL∇δsL · ∇sL dV = 0,

∫

B0

δsMηfM ṡM − δsMχfM

(
HM −

(1− ζ)gcM
2lfM

sM

)
+ χfM

1− ζ

2
gcM∇δsM · ∇sM dV = 0,

(6.49)
where R is a given heat supply per unit volume of the reference configuration and Q̄ is a
heat supply across the thermal Neumann boundary ΓQ

0 . For each other field, homogeneous
Neumann boundary conditions are applied and appropriate thermal Dirichlet boundary
conditions are formulated in terms of prescribed temperature θ̄, see Table 6.1. Note
that we neglect inertia terms within the mechanical balance equation, i.e. we consider
only quasi static problems. Additionally, internal conditions for the crack phase-field
equations are given by

s• = 1 on Γ̄• ⊂ Γ̂•, (6.50)
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ensuring that a fully broken state remains broken. The Karush-Kuhn Tucker conditions
in (6.39) and (6.41), are evaluated by inserting local variables defined as

χp =:





1 for Φp > 0

0 otherwise
and χf• =:





1 for Φf
• > 0

0 otherwise
. (6.51)

Using local variables χf• in (6.49), we demand ṡ• ≥ 0 for thermodynamical consistency,
avoiding a transfer of dissipated energy back into the mechanical field. This prevents
healing effects, which may be taken into account as well. We can also set χf• ≡ 1 and
restrict only the fully broken state, i.e. we allow for healing until the respective crack
phase-field reaches the value one.

6.3 Spatial discretization

Due to the inclusion of curvature contributions in the fiber material, the mechanical part
of the variational problem requires approximation functions, which are globally at least
C1-continuous to satisfy ϕh, δϕh ∈ H2(Bh

0 ). Therefore we apply the isogeometric analysis
approach introduced in Section 2.5.2. Inserting the corresponding approximations and
their variations ( ϕh, δϕh, sh•, δs

h
•, θ

h, δθh, αh, δαh, rp,h, δrp,h) into (6.49) yields the semi-
discrete set of coupled equations

δqA·



∫

B0

τ h∇xR
A +Ph : ∇∇RA dV − F ext,A


 = 0,

δθA



∫

B0

(
η̇hRARBθB −RADh

int −∇RAQh
)
dV −Qext,A


 = 0,

δαi



∫

B0

N i(ζyh −N jrpj ) dV +Kij
α αj


 = 0,

δrpi


M ij

rpα̇j −

∫

B0

χpN
i (Φp,h)np

Jh(1− fh)
dV


 = 0,

δs•,A


MAB

s•
ṡ•,B −

∫

B0

RAHh
• dV +KAB

s•
s•,B


 = 0.

(6.66)

Therein, τ h, Ph, ηh and Hh
• are semi-discrete versions of the Kirchhoff stress tensor, the

higher-order stress tensor, the local entropy and the phase-field driving forces obtained
via the partial derivatives of the semi-discrete stored energy density

Ψh = Ψh( ˜̄F e,h, J̃e,h, θh, λ̃h
L, λ̃

h
M, φ̃

h, κ̃h
L, κ̃

h
M), (6.67)
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1. Stress equilibrium
∇ · (τF−T −∇ ·P) +B = 0 (6.52)

2. Kirchhoff stress

τ = τmat + τfib, τmat = ζ
∑

a

λe
a

∂Ψe
mat

∂λe
a

na ⊗ na, τfib =
1− ζ

2

∂Ψe
fib

∂F
FT (6.53)

3. Higher-order stress
P =

1− ζ

2

∂Ψe
fib

∂∇F
(6.54)

4. Energy balance
θη̇ +∇ ·Q−Dint −R = 0 (6.55)

5. Entropy

η = ηmat + ηfib, ηmat = −ζ
∂
(
Ψe

mat +Ψθ
mat

)

∂θ
, ηfib = −

1− ζ

2

∂
(
Ψe

fib +Ψθ
fib

)

∂θ

6. Dissipation
Dint = νpmat

τmat : d
p + νfmat

Hṡ+ νffib(HLṡL +HMṡM) (6.56)

7. Piola-Kirchhoff heat flux

Q = −K∇θ, K = (K(1− s) +Kconvs)F−1F−T (6.57)

8. Plastic strain
dp − λp ∂Φp

∂σmat
= 0, λp =

1

ηp
〈Φp〉np , σmat = τmat/J (6.58)

9. Equivalent plastic strain
− α̇−

λp

1− f

∂Φp

∂rp
= 0 (6.59)

10. Plastic resistance force
rp = ζδαΨ̂

p
mat (6.60)

11. Crack phase-field equations

ṡ• − λf
•

∂Φf
•

∂(H• − rf•)
= 0, λf

• =
1

ηf•
〈Φf

•〉 (6.61)

12. Crack phase-field driving forces
H• = −

∂Ψe

∂s•
(6.62)

13. Fracture resistance forces
rf• = δs•Ψ̂ (6.63)

14. Dirichlet and Neumann conditions

ϕ = ϕ̄(X, t) on Γϕ
0 , (τF−T −∇ ·P)N = T̄ (X, t) on ΓT

0

∇ϕ = ∇ϕ̄(X, t) on Γ∇ϕ
0 , PN = M̄(X, t) on ΓM

0

θ = θ̄(X, t) on Γθ
0, −Q ·N = Q̄ on ΓQ

0

α = 0 on Γα
0 , ∇α ·N = 0 on Γ∇α

0

s• = 1 on Γ̄•, ∇s• ·N = 0 on Γ0

(6.64)

15. Initial conditions

ϕ(X, 0) = ϕ0, ϕ̇(X, 0) = v0, θ(X, 0) = θ0, α(X, 0) = 0, rp(X, 0) = 0, s•(X, 0) = 0 (6.65)

Table 6.1: Strong formulation of the coupled problem
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cf. (6.12)-(6.24). Dh
int and Qh are semi-discrete definitions of the dissipation density and

heat flux, cf. (6.25), (6.45) and (6.46). Moreover, the semi-discrete external contributions
in (6.66)1 and (6.66)2 are formulated as

F ext,A =

∫

B0

RAB dV +

∫

ΓT
0

RAT̄ dA+

∫

ΓM
0

M̄∇RA dA (6.68)

and

Qext,A =

∫

B0

RAR dV +

∫

∂Bθn
0

RAQ̄ dA. (6.69)

The coefficients of the matrices in (6.66)3 and (6.66)4 take the form

Kab
α = ζy0l

2
p

∫

B0

∇Na · ∇N b dV and Mab
rp = ηp

∫

B0

NaN b dV, (6.70)

whereas the matrices in (6.66)5 are given by

MAB
s•

= ηf•

∫

B0

RARB dV,

KAB
s =

ζ

lf

∫

B0

ghcχf

(
RARB + l2f∇RA · ∇RB

)
dV,

KAB
sL

=
1− ζ

2lfL

∫

B0

ghcLχfL

(
RARB + l2fL∇RA · ∇RB

)
dV,

KAB
sM

=
1− ζ

2lfM

∫

B0

ghcMχfM

(
RARB + l2fM∇RA · ∇RB

)
dV.

(6.71)

Eventually, the semi-discrete functions ŷh, Φp,h and ghc denote the local hardening, the
plastic yield and the critical fracture energy density, cf. (6.28) and (6.37).

6.4 Temporal discretization

Following the framework established in Section 3.4 ,the semi-discrete coupled problem
(6.66) is discretized in time to obtain a set of non-linear algebraic equations to be solved



126 6 A Hybrid Phase-Field Model for Fracture in Fiber-Reinforced Polymers

via a Newton-Raphson method

δqA·



∫

B0

τ h
n+1(∇xR

A)n+1 +Ph
n+1∇∇RA dV − F

ext,A
n+1


 = 0,

δθA



∫

B0

(
ηhn+1 − ηhn

∆t
RARBθB,n+1 − RADh

int,n+1 −∇RAQh
n+1

)
dV −Qext,A

n+1


 = 0,

δαi



∫

B0

N i(ζyhn+1 −N jrpj,n+1) dV +Kij
α αj,n+1


 = 0,

δrpi


M ij

rp
αj,n+1 − αj,n

∆t
−

∫

B0

χp,n+1N
i (Φp,h

n+1)
np

Jh
n+1(1− fh

n+1)
dV


 = 0,

δs•,A


MAB

s•

s•,B,n+1 − s•,B,n

∆t
−

∫

B0

RAHh
•,n+1 dV +KAB

s•,n+1s•,B,n+1


 = 0.

(6.72)
Therein, a full-discrete definition of the internal dissipation using small values for the
plastic viscosity parameter ηp, is given by

Dh
int,n+1 := νpmatJ

h
n+1(1− fh

n+1) r
p,h
n+1N

aαa,n+1 − αa,n

∆t
+ νfmat H

h
n+1R

A sA,n+1 − sA,n

∆t

+ νffib

(
Hh

L,n+1R
A sL,A,n+1 − sL,A,n

∆t
+Hh

M,n+1R
A sM,A,n+1 − sM,A,n

∆t

)

(6.73)

Note that we apply a staggered scheme for the solution of the multi-field problem, i.e. the
displacement field along with the plastic and hardening fields {qA,n+1, αi,n+1, r

p
i,n+1,F

p,h
n+1},

the crack phase-fields s•,A,n+1 and the temperature field θA,n+1 are solved successively.

For the time integration of the plastic evolution equations, the exponential integration
scheme introduced in the context of the return-mapping algorithm in Section 3.4 is for-
mulated in terms of the eigenvalues as

λe
a,n+1 = λe

a,trexp
[
−∆tλp

n+1na,n+1

]
with na,n+1 =

∂Φp
n+1

∂σmat,a,n+1
, (6.74)

where σmat,a,n+1 = (τdevmat,a,n+1 + τvolmat,a,n+1)/Jn+1. Note that in contrast to standard von
Mises plasticity nn+1 6= ntr and ‖nn+1‖ 6= 1, i.e. the plastic correction has to be performed
by the Lagrange multiplier λp

n+1 as well as the components na,n+1 which can be obtained
by solving the non-linear relations

Φ̂p
n+1 − ηpλ

p
n+1 = 0 and

∂Φp
n+1

∂σmat,a,n+1
− na,n+1 = 0 (6.75)

via an internal Newton-Raphson iteration.
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6.5 Numerical examples

In this section, we investigate the accuracy and performance of the proposed formulation
for endless fiber-reinforced polymers. After verifying the higher-order contributions of the
fiber material using two simple bending tests in the previous Chapter, we now focus on a
series of tensile tests that demonstrate the ability of the proposed hybrid phase-field model
to investigate different failure mechanisms for a roving glass composite material depending
on the fiber configuration. This study is complemented by thermal investigations of the
damage behavior of the model and its influence on the ultimate failure. Without loss of
generality, we use an neo-Hook’s model for the matrix material in all examples, i.e., we
put b = 1 and α1 = 2 in (6.14).

In particular, we consider a flat specimen of size L × W × H = 125 [mm] × 25 [mm] ×
2 [mm]. Figure 6.1 and 6.4 show the geometry in the reference configuration along with
the applied boundary conditions and fiber configurations. Dirichlet boundary conditions
are applied to the outer regions of length 20 [mm]. More specifically, one flap is fixed
and the other flap is moved at a displacement rate of 0.5 [mm]/[s] within a quasi-static
simulation setting neglecting inertial effects. The computational mesh consists of 2432
square NURBS elements. The material setting, representing a prototypical roving glass
fiber-reinforced polyamide-6 (PA6) composite, is summarized in table 6.2. We assume a
square cross-section of fibers with Afib = 0.0025mm2 and obtain a bending stiffness of
c⊥ = c# = EfibAfib/12 = 16.46 [N].

ϑ

u = 0

u

Figure 6.1: Tensile Test (unidirectional). Problem setting. The lines illustrate the
fiber structure.

6.5.1 Unidirectional fiber reinforcement

We begin by examining the behavior of a unidirectionally reinforced composite with fiber
orientations of ϑ = [0◦, 10◦, 20◦, 30◦, 40◦, 65◦, 90◦], see Figure 6.1. The load deflection
results for isothermal simulations at θ = 293K are shown in Figure 6.2. It denotes
the crack initialization and final fracture of the fiber material by � and ◦, respectively.
Also, crack initialization and final fracture of the matrix material are indicated by ⋄ and
×, respectively. Figure 6.3 shows the crack phase-field results of the fiber material and
matrix material along with the plastic strain field results for the marked points. Note that
the black mark indicates conditions without fiber fracture, since the specimen is already
completely fractured.
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Figure 6.2: Tensile Test (unidirectional). Load deflection results for unidirectional
fiber reinforcements with different orientations.

For a fiber orientation of ϑ = 0◦, the fibers account for most of the load transfer due
to the different Young’s modulus and fracture abruptly in the center of the specimen ➀.
Subsequently, the matrix material undergoes plastification and ductile fracture due to
an abrupt load redistribution ➁. Notably, the increased strain rates result in a strong
viscoplastic behavior within the matrix material, which is regulated by the viscous regu-
larization parameter.

In the unidirectional 10◦ fiber configuration, the fibers begin to crack near the clamping
zones ➂, which is further driven by the bending contribution to the crack driving force.
This process is slowed down by the strain hardening behavior of the matrix material ➃.
In the ➄ state, the fibers are fully ruptured and the matrix material starts to fracture in
the same area.

At fiber orientation ϑ = 20◦, the brittle fracture of the fibers starts again near the clamping
zones ➅. However, more plastification and thus solidification of the matrix material ➆

occurs, so that the fiber and matrix material undergo final rupture nearly at the same
deformation state ➇.

Applying a fiber orientation of ϑ = 30◦, direct load transfer between both boundaries by
the fibers is not possible since fibers which are clamped at the lower end do not reach the
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Figure 6.3: Tensile Test (unidirectional). Results of the fiber crack phase-field (first
row), the plastic strain field (second row) and crack phase-field of the matrix
material (third row). The results are shown for the different deformation
states and fiber configurations marked in Figure 6.2.
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ϑ

u = 0

u

Figure 6.4: Tensile Test (bidirectional). Problem setting. The lines illustrate the
fiber structure.

upper clamping zone. Hence, the load has to be transferred towards the matrix material,
resulting in higher plastification ➈ and ductile fracture at the center of the specimen ➉.
Note that the fibers begin to fracture only in small areas near the clamping zones ➈.

For fiber orientations of ϑ = [40◦, 65◦, 90◦], the fiber material does not fracture due to
small loads acting in fiber direction ➊–➍. Instead, the matrix material undergoes suitable
plastification and subsequently ductile fracture leading to failure orthogonal to the fiber
orientations. Concerning the ϑ = 90◦ fiber configuration, the fibers controls the necking
which can be observed by comparing the deformation with the results obtained for pure
matrix material ➎. This is also evident in the marginally increased stiffness of the load
deflection results prior to crack initiation, where the results are almost equal up to a
displacement of u = 40 [mm].

6.5.2 Bidirectional fiber reinforcement

Next, we examine the same tensile test using a bidirectionally reinforced material with
fiber orientations of ϑ = [0◦, 10◦, 20◦, 30◦, 45◦] as shown in Figure 6.4. The load- defor-
mation results for isothermal simulations at θ = 293 [K] are shown in Figure 6.5. Again,
the crack initialization and final fracture of the fiber material are represented by � and
◦, respectively. The final rupture of the matrix material is indicated by ×. The crack
phase-field results of the fiber and matrix material as well as the plastic strain results are
shown in Figure 6.6. Note that only the phase-field results of the fiber oriented in the ϑ
direction are plotted.

For fiber orientations of ϑ = [0◦, 10◦, 20◦], the bidirectionally reinforced material exhibits
similar behavior to its corresponding unidirectionally reinforced counterparts. The ad-
ditional orthogonal fiber merely provides higher necking resistance ➀–➇. In addition,
the orthogonal fiber configuration restricts relative motion between the respective fibers,
resulting in somewhat stiffer material behavior. This must be explored experimentally,
which is outside the limits of the current work.

For fiber orientations of ϑ = [30◦, 45◦], this effect becomes more pronounced, as can be
seen in Figure 6.5. As previously discussed, the additional orthogonal oriented fibers
counteract the necking behavior due to the Poisson effect of the matrix material, causing
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Figure 6.5: Tensile Test (bidirectional). Load deflection results for bidirectional,
orthotropic fiber reinforcements with different orientations.

fractures within the matrix material near the clamping zones rather than in the center of
the specimen ➈–➌.

6.5.3 Thermal investigation

Finally, we analyse the temperature dependence of the proposed model. For this purpose,
we repeat the tension test with a unidirectional fiber reinforcement as shown in Figure
6.1 using a fiber orientation of ϑ = 30◦.

Figure 6.7 depicts the load deflection result for isothermal simulations using temperatures
of θ = [253, 273, 293] [K]. The corresponding crack phase-field results of the fiber and
matrix material as well as the plastic strain results are shown for the final deformation
step in Figure 6.8. As previously observed, the matrix material experiences significant
plastic deformations for θ = 293 [K], followed by fiber fracture in small areas near the
clamping zones, and finally the matrix material experiences ductile fracture in the center
of the specimen. Reduced temperatures increase the yield stress of the matrix material,
resulting in higher elastic energy and thus earlier, less ductile fracture of the matrix
material. Note that in isothermal simulations with θ = [253, 273] [K], the matrix material
fails prior to the occurrence of any fiber cracks.
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Figure 6.6: Tensile Test (bidirectional). Results of the fiber crack phase-field (first
row) as well as the plastic strain field (second row) and crack phase-field
of the matrix material (third row). The results are shown for the different
deformation states and fiber configurations marked in Figure 6.5.
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Figure 6.7: Thermal investigations. Load deflection results for isothermal simulations
at different temperatures of θ = [253, 273, 293] [K] and a fiber orientation of
ϑ = 30◦.
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Figure 6.8: Thermal investigations. Results of isothermal simulations at different
temperatures of θ = [253, 273, 293] [K] (each from left to right) and a fiber
orientation of ϑ = 30◦. Results are shown for the fiber crack phase-field
(first block), the plastic strain field (second block) and crack phase-field of
the matrix material (third block) at the last deformation state marked in
Figure 6.7.
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Elastic parameters

Shear modulus µ 1630MPa

Shear exponent α 2

Bulk modulus κ 6250MPa

Bulk parameter β −2

Matrix volume ratio ζ 0.53

Tensile stiffness a 79000MPa

Shear stiffness b 0MPa

Bending stiffness [c⊥, c#] [16.46, 16.46]N

Plastic parameters

Yield stress [y0(θref), y1(θref), y2(θref)] [22, 56.8, 30]MPa

Saturation exponent [ωp1, ωp2] [1, 115]

Thermal softening parameter [ωt0, ωt1, ωt2] [0.4, 0.4, 0.4]K−1

Viscoplastic parameter ηp 5000MPa · s

Viscoplastic exponent np 1

Plastic length scale lp 3.1mm

Initial void fraction f0 0.01

Gurson fitting parameter [q1, q2] [3, 0.8]

Phase-field fracture parameters

Brittle critical fracture energy [gc,e, gcL , gcM ] [500, 500, 500] kJ/m2

Ductile critical fracture energy gc,p 50 kJ/m2

Saturation exponent ωf 3

Fracture viscosity [ηf , ηfL , ηfM ] [1, 1, 1] · 10−7MPa · s

Fracture length scale [lf , lfL , lfM ] [3.1, 3.1, 3.1]mm

Degradation parameter [ag, agL , agM ] [0.001, 0.001, 0.001]

Thermal parameters

Specific heat capacity [cmat, cfib] [1860, 2080] kJ/(m3 ·K)

Thermal expansion coefficient [ǫ, υ] [106, 5] · 10−6K−1

Thermal expansion parameter γ 1

Conductivity K 0.25W/(m ·K)

Convection Kconv 0W/(m ·K)

Reference temperature θref 293K

Fracture & plastic dissipation factor [νpmat
, νfmat

, νffib ] [0.9, 0.9, 0.9]

Table 6.2: Material setting of the fiber-reinforced composite (PA 6/Roving glass).



7 Summary and outlook

7.1 Summary

The non-linear framework presented in this work allows for a comprehensive investiga-
tion of damage and fracture in fiber-reinforced polymers. The combination of a second-
gradient theory, a novel hybrid phase-field model and a temperature dependent GTN-
type plasticity model provides a numerical framework which is able to describe different
failure mechanisms in detail. This approach allows for improvements in the design of
such composite materials since we are able to predict fiber and matrix failure and their
sequence dependent on the fiber orientation. Moreover, due to the fully-coupled, ther-
momechanical microstructural approach we can optimize the fiber orientation for specific
loads and thermal states. The verification and adjustment of the corresponding material
parameters allows us to identify the physical effects of the higher-order terms in this pro-
totypical second-gradient material. Several numerical tests conducted within this work
have demonstrate the capability of the proposed framework to investigate such a complex
behavior including the growth of microvoids, plasification and necking, crack initiation
and propagation within the composite material and its components, respectively.

7.2 Outlook

Based on the present contribution the following research projects are currently in progress
or in application:

• A framework for simulating thermoplastics with short fiber-reinforcements, which
are easier and cheaper to produce than continuous fiber composites, is currently
under development

• A variationally consistent multidimensional coupling approach for fiber-reinforced
polymers where the Youngs moduli vary widely is under investigation

• Contact mechanics for second- and third-gradient materials based on the concept
of mortar-type methods are in progress

• A research project on the simulation of the cracking process in bar-reinforced ultra-
high performance concrete (UHPFRC) is currently in application
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