
TYPE Conceptual Analysis

PUBLISHED 31 July 2023

DOI 10.3389/feduc.2023.1212419

OPEN ACCESS

EDITED BY

Prasanta Sankar Bandyopadhyay,

Montana State University, United States

REVIEWED BY

Mark Louis Taper,

Montana State University System, United States

Don Dcruz,

International Institute of Information

Technology, Hyderabad, India

*CORRESPONDENCE

Riko Kelter

riko.kelter@uni-siegen.de

†These authors have contributed equally to this

work

RECEIVED 26 April 2023

ACCEPTED 18 July 2023

PUBLISHED 31 July 2023

CITATION

Kelter R, Schnurr A and Spies S (2023) A toolbox

to demystify probabilistic and statistical

paradoxes. Front. Educ. 8:1212419.

doi: 10.3389/feduc.2023.1212419

COPYRIGHT

© 2023 Kelter, Schnurr and Spies. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

A toolbox to demystify
probabilistic and statistical
paradoxes

Riko Kelter1*†, Alexander Schnurr1† and Susanne Spies2†

1Stochastic Processes and Their Applications, Department of Mathematics, University of Siegen, Siegen,

Germany, 2Philosophy of Mathematics, Department of Mathematics, University of Siegen, Siegen,

Germany

There is a variety of empirical evidence that the coverage of paradoxes in

mathematics education helps to support thorough understanding of probabilistic

and statistical concepts. However, existing literature often focuses on extensive

analysis of a specific paradox, provides new perspectives or an analysis from a

different angle. Often neglected aspects in this context are common features

between different paradoxes and the fact, that the same situation might look

paradoxical to different people for entirely different reasons. We develop a toolbox

to demystify paradoxes in probability and statistics. Therefore, we first analyze

in which steps of stochastic modeling one might be faced with a paradoxical

situation. Secondly, we build on a representative selection of well-known

paradoxes and isolate the techniques and methods which help to explain why

people find the paradox surprising, identify the class of scenarios where the

paradox may occur and make a choice between the seemingly contradictory

conclusions. Thirdly, we present the toolbox, which helps to demystify various

paradoxical situations. This helps teachers to chose appropriate problems and

students to find the right method to resolve these problems. While the developed

toolbox is not exhaustive, it helps to dissect the anatomy of probabilistic and

statistical paradoxes.

KEYWORDS

probabilistic paradox, statistical paradox, modeling cycle, probabilistic modeling,

probabilistic intuition, Simpson’s paradox, Monty Hall paradox

1. Introduction

Paradoxes in probability and statistics have troubled scientists since centuries

(Gorroochurn, 2016). Although the technical problems leading to stochastic paradoxes

are often relatively elementary, paradoxes are important for teaching and learning and

sometimes the resolution of a paradox is much more complicated than it looks on the first

sight. The nature of a probabilistic or statistical paradox itself is difficult to describe, and

often the solutions resolving the paradoxical nature conflict with intuition and widespread

cognitive biases of human thinking (Kahneman, 2012). Wilensky (1995) showed that

through engaging with a paradoxical problem, learners develop stronger intuitions about

notions of randomness and distribution and the connections between them. Also, there is

empirical evidence that high-school teachers benefit from probability paradoxes in their

university curriculum (Lee, 2008, 2011). A state of the art survey is given in Batanero

et al. (2016), and further relevant literature includes Borovcnik (2011) and Borovcnik

and Kapadia (2014). Taken the perspective of subject-matter didactics on the one hand

and a psychological perspective on the other hand, paradoxes are considered to connect

mathematics and individual intuitions:
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"These paradoxes either stem from a conflict between

different intuitive ideas or they mark points where intuitive ideas

and mathematics diverge. It is this feature of paradoxes which

constitutes their educational value." (Borovcnik and Bentz,

1991, p. 75)

We will focus on this perspective in the present article.

Although the topic as a whole seems of relevance mostly to

mathematicians, statisticians or philosophers of science, a broad

range of paradoxes in probability and statistics emerged out of

practically relevant applications. This holds, in particular, for

statistical paradoxes such as Simpson’s or Berkson’s paradox (Pearl

et al., 2016). As a consequence the analysis and resolution of

statistical and probabilistic paradoxes is of interest also for applied

sciences such as economy, biology, medicine, and sociology.

1.1. Relevance of the topic

Figure 1 shows a Web of Science search result for articles,

conference proceedings and reviews including the keywords

"probability paradox" in relevant metadata fields (including title,

abstract, and author keywords) from years 1992 to 2022. The results

indicate that in the last three decades, the number of publications

dealing with such paradoxes has approximately quintupled and the

trend shows that interest is constantly growing.

There are at least two possible reasons for this phenomenon:

First, the emergence of many paradoxes in applied contexts implies

that from an educational perspective, the analysis and treatment

of probability paradoxes is relevant to arm students with tools

to demystify them when facing comparable problems in practical

contexts. Second, important scientific discussions are driven by

statistical paradoxes sometimes. This is illustrated by the recent

discussion about why smoking patients are more likely to suffer

from SARS-CoV-2—see Griffith et al. (2020)—which strikingly

FIGURE 1

Web of Science results for articles, conference proceedings and reviews including the keywords "probability paradox" in relevant metadata fields

(including title, abstract, and author keywords) from years 1992 to 2022.

shows that knowledge about statistical paradoxes is a requirement

to settle the discussion. In the latter, the paradoxical situation

boils down to a form of collider-bias, which is the key reason

for Berkson’s paradox to emerge (Pearl et al., 2016), and the

situation in smoking patients which suffer from SARS-CoV-2 is

comparable. Thus, knowledge about a classical paradox helps to

settle an ongoing scientific debate of large societal relevance. From a

methodological point of view, causal reasoning allows to demystify

the paradox immediately and settle the discussion. Thus, the

increasing trend shown in Figure 1 can be explained by the fact that

probabilistic and statistical paradoxes are becoming more relevant

in scientific discourse in a variety of domains. Admittedly, part of

the increase in Figure 1 could be explained by collider bias, since

the total number of publications has grown as well over the years.

However, the total number of publications has not even doubled in

that time horizon, while publications on the subject treated in the

present article has almost quintupled.

For someone who is new in the field—in particular for pupils—

it is complicated to transfer the ideas from a classical paradox to

a new setting. For a teacher it might be difficult do decide which

paradox is most suitable for his/her pupils. Our toolbox can be seen

as a guideline for the novice to isolate, why a setting with which he

is confronted seems to be paradox and how to solve this. A teacher

might use the toolbox in its connection to the stochastic modeling

cycle in order to chose the appropriate paradox for his/her lessons.

Although paradoxes of this kind play an important role in a

broad range of fields, there is little general advice how to resolve

and demystify a paradox when being confronted with it. Seldom

the uniting features of the broad palette of paradoxes is taken into

scope. In fact, most of the relevant literature focusses on a particular

paradox, provides a detailed analysis or a novel perspective from

a different methodological angle. The uniting features, however,

constitute the foundation which could serve as a starting point

to offer tools to resolve those paradoxes. In this article, we

provide such a methodological toolbox to demystify paradoxes

in probability and statistics - helpful from the applicators, the
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teachers or the learners perspective. As a foundation, we analyzed

a representative palette of popular paradoxes in the fields under

consideration, identified the key problems which lead to the

paradoxical nature, and isolated the relevant methodological tools

that help to demystify and resolve the paradoxes. Based on this

analysis we are also able to name the step within the stochastic

modeling process where the gap of intuitions occurs that leads in

each case to the paradoxical feeling. Such knowledge is very helpful

from an educators perspective.

1.2. Outline

The plan of the paper is as follows: The next section details

the connection between intuition and probabilistic paradoxes and

covers the stochastic modeling cycle. The latter builds the basis to

anchor the counter-intuitive nature of a certain paradox to different

modeling points researchers and students are faced with when

being confronted with a stochastic problem. The following section

then details three probabilistic paradoxes which are well-studied

in the literature. The focal point of this section is to isolate the

key methods and techniques which help to resolve the paradoxical

nature and come to a balanced conclusion in each case. Also, we

anchor the solutions to the stochastic modeling cycle to illustrate

which aspects are relevant to emphasize in educational contexts.

Given the breadth of coverage of these paradoxes in the literature

we only briefly provide explanations and instead showcase the

methodological arsenal that can be used to resolve each paradox.

We proceeded likewise for a representative range of paradoxes

in probability and statistics, and in the subsequent section we

summarize the results and structure the methods and techniques

to demystify probabilistic paradoxes. In the following section we

present a toolbox which helps resolving paradoxes in probability

and statistics. It distills the methodological arsenal that allows to

demystify a broad palette of paradoxes and helps to foster critical

thinking in science and education. The last section provides a

discussion and conclusion.

2. Intuition and paradoxes in
probability and statistics

Following Poundstone (2011), paradoxes generally arise as a

contradiction or conflict between two lines of reasoning—both

considered plausible. These contradictions are counterintuitive,

at least at first glance, and thus give rise to a strong sense of

paradox and irresolvability. In mathematics, such paradoxes can be

distinguished from antinomies, i.e., contradictions that cannot be

resolved in principle (Winter, 1992), and simple but well-hidden

fallacies, such as impermissible transformations. Poundstone refers

to this as the "weakest type of paradox" (Poundstone, 2011, p. 16).

Fallacies arise from erroneous mathematical operations and can be

recognized and remedied by exact retracing within mathematics.

On the other hand, Poundstone positions such paradoxes that in

principle defy solution. These include the multitude of logical and

semantic paradoxes that have been used as a source of critical

thinking since antiquity, for example in the context of thought

experiments. Paradoxes of the "common sense is wrong" type

(Poundstone, 2011, p. 18) occupy an intermediate position. In

relation to mathematics, this type arises when mathematical results

(initially) contradict "intuition" (Winter, 1992). Although these

offer individual surprises, they are in principle resolvable. Meyer

(2018, p. 177) claims that most stochastic and statistical paradoxes

are of this type and turn out to be banalities "on sufficiently close

pertinent inspection".

This assertion is consistent with the fact that, from a

psychological point of view, it is precisely in the area of probabilistic

thinking that the construction of sustainable intuitions is repeatedly

described as particularly challenging (see the list in Greer, 2001)

and the preoccupation with paradoxes is attributed a fruitful role in

stochastic concept formation (see for exampleWinter, 1992; Lesser,

1998; Büchter and Henn, 2005; Klymchuk and Kachapova, 2012).

In fact probability theory is a mathematical theory like algebra,

calculus and functional analysis. Within this theory there is no

ambiguity and there are no paradoxes. One can deal with the

mathematical objects without any intuition and or connection to

the real world. The extent to which Meyer’s assertion can be agreed

with, however, depends strongly on what is to be understood by

intuition in the field of probability and statistics. In the following,

we do not refer to the philosophical discussion since Descartes

in order to clarify the concept of intuition; rather, we would

like to limit ourselves to examining the reference objects of the

contradictory intuitions more closely. To this end, we subscribe to

the following basic assumption of Fischbein et al.:

"As a matter of fact, we see the process of learning and

understanding as a reciprocal process of communication between

a referent situation and the mathematical structure." (Fischbein

et al., 1991, p. 531)

A look at the genesis of probability theory as a (relatively

young) scientific discipline shows that it is precisely the formulation

of the mathematical structure and its axiomatic foundation that

obviously poses particular problems. Thus, a first consistent theory

was presented by Kolmogorov in 1933, while stochastic phenomena

had already been observed for thousands of years and described

mathematically at least since the Renaissance (Salsburg, 2001;

Gorroochurn, 2016). It is precisely the interplay of application

contexts on the one hand and mathematical theory formation

on the other hand that is constitutive for stochastics, which

distinguishes them from other mathematical disciplines. At least

in relation to teaching-learning situations, this interplay is often

described in the form of a cycle (the so-called "modeling cycle").

Depending on the approach, this contains three or four steps,

part of which is attributed to the "world" or "reality" and part

to "mathematics" (for different modeling-approaches see Kaiser,

2020). The connections between these stations then make it

possible to name the "process of communication between a referent

situation and the mathematical structure" (see above). According

to the realm of probabilistic and statistical reasoning addressed

in this article this can be illustrated by means of the following

extension and generalization of the cycles respectively steps by

Blum and Leiss (2007) and with special focus on probabilistic

problems (Chaput et al., 2008; Kütting and Sauer, 2011), compare

Figure 2: In the reference situation a certain question arises in the

real world (real-world phenomenon). Often, this is linked to a

Frontiers in Education 03 frontiersin.org

https://doi.org/10.3389/feduc.2023.1212419
https://www.frontiersin.org/journals/education
https://www.frontiersin.org


Kelter et al. 10.3389/feduc.2023.1212419

FIGURE 2

The stochastic modeling cycle.

narrative which is described in everyday language. This real-world

situation must be read as a stochastic situation (real-world model),

i.e., only that information is considered which can be interpreted

in a probability or statistics context (A). All relevant information

should be given at this step in order to avoid ambiguities. In

this step of "idealization" (Kaiser, 2020) an exact description of

the real situation is necessary as well as some scientific pre-

experiences or theoretical knowledge to see the relevant underlying

structure (Chaput et al., 2008). Therefore, in step A there is an

interplay between "the vague primary intuitions" of the learner

and "secondary intuitions emerging from a theoretical approach"

(Borovcnik and Bentz, 1991, p. 75).

The emerging real-world model is now mathematized and

converted into a "stochastic model" (B), thus taking the step

into the realm of mathematical structure and constructing a

stochastic model. So Step B is the place where "intuitions and

official mathematics" (Borovcnik and Bentz, 1991, p. 75) are

related. In the field of probability and statistics, the choice of the

underlying concept of probability plays a central mathematical

role and determines the stochastical intuition behind the model.

Therefore, we add the extension "Concept of probability" and its

choice (C) to the cycle. No matter which concept is preferred,

the stochastic modeling usually proceeds by selecting a family of

probability distributions for describing the observed data (Robert

and Casella, 2004). A Bayesian additionally selects a probability

measure which reflects his prior beliefs about the parameter of

interest about which statistical inference is sought (Kleijn, 2022).

The mathematical result often consists of a point estimate, interval

estimate or the result of a statistical test. Thus, the red part in

Figure 2 which visualizes the probabilistic respectively statistical

model includes the statistical model that is commonly used by

statisticians (Schervish, 1995).

After constructing the probabilistic or statistical model the

problem can be solved within the realm of mathematics and

the solution can be formulated by means of mathematics (D).

The result must be interpreted as a renewed transition from

mathematics to the world in relation to the initial situation (E).

This step includes for example the interpretation of the results

of statistical calculation in face of the real-world phenomenon

started with. Note that the interpretation of a mathematical result

depends strongly of the chosen concept of probability—Even

if the mathematical results after Step D seem to be identical,

their interpretation often must be very different depending on

the choice made in Step C. Again the "official mathematics" is

measured in the realm of (primary) intuition. If this does not

lead to convincing solutions, the real model or the probabilistic

model may have to be adapted and the cycle run through

again. It should be noted that the modeling cycle is only

an idealization to better distinguish the necessary steps and

competences. Solving application problems in practice can also go

through the individual steps less clearly or in a different order

(Kaiser, 2020).

Each step of this cycle can now be the object of stochastic

intuition. In other words, in each part of the cycle and each step

different aspects of mathematical intuition or primary intuition

(the so called common sense) can play a role. Borovcnik and Bentz

(1991) state barriers between primary and secondary intuitions

as well as between the intuition and the official mathematics.

It remains to be clarified whether intuition does not also play

an important role in the field of official mathematics. As the

following examination of well-known paradoxes shows, these

different aspects can contradict each other and then trigger the

feeling of a paradox.

In order to resolve the respective problem, it is, therefore,

particularly helpful to locate where according to the steps (A) to (E)

the contradiction lies. In this way, the respective contradictions can

then be resolved and the various aspects of stochastic intuition can

be reconciled. Paradoxes in this sense thus lead to communication

between the different points in the model building cycle and thus,

according to Fischbein et al. promote the process of learning and

understanding. On the other hand, the localization in the cycle can

be used to classify stochastic paradoxes (see Table 1), and make

the transition between paradoxes (as well as the transfer to new

situations) easier.
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3. A bird’s eye view on three
probability paradoxes

In this section, three selected paradoxes in probability and

statistics are revisited. The focus is on isolating relevant resolutions

and showcasing the methodological arsenal which allows to escape

the paradoxical nature of each problem. This exemplifies how the

toolbox that is presented in the subsequent section was built. Before

starting with the first paradox, a comment is in order which clarifies

what is meant by a resolution:

"Any claim to resolve a paradox (...) should meet some basic

criteria. First, (...) it should explain why people find the paradox

surprising or unbelievable. Second, it should identify the class

of scenarios in which the paradox can occur. Third, it should

inform us of scenarios, if any, in which the paradox cannot occur.

Finally, when the paradox does occur, and we have to make

a choice between two plausible yet contradictory statements, it

should tell us which statement is correct." (Pearl et al., 2016,

p. 202)

Thus, we follow the approach of Pearl et al. (2016); note that

essentially the same approach is proposed by Bandyopadhyay et al.

(2015), and can be traced back even earlier to Bandyoapdhyay

et al. (2011), but focus primarily on the methodological tools which

help to to identify the crucial step of the modeling cycle and

thereby explain why the paradox is surprising, identify the class of

scenarios in which the latter can arise, and make a justified decision

about which of multiple coexisting but contradictory statements is

correct. As an important addition to the points mentioned by Pearl

et al. (2016), we require that a claim to resolve a paradox should

furthermore tell us which key assumptions are made in each case to

arrive at the presumably contradictory conclusions. We now turn

to a brief analysis of Simpson’s paradox, Bertrand’s paradox, and

the two envelopes paradox.

3.1. Simpson’s paradox

Simpson’s paradox is one of the most widely studied statistical

paradoxes (Simpson, 1951). It has been treated extensively in

the literature, see Bickel et al. (1975), Wagner (1982), Julious

and Mullee (1994), Wardrop (1995), Kocik (2001), Pavlides and

Perlman (2009), Hernán et al. (2011), Pearl (2014), Norton and

Divine (2015), and Pearl et al. (2016). Pearl et al. (2016) note that in

2016 there were four new articles trying to explain the paradox from

different perspectives (including an entire PhD thesis), which shows

that it ignites interest in a broad range of researchers until today.

The paradox itself is illustrated in Table 1 which shows fictitious

data of a clinical trial investigating a promising new drug that aims

to reduce the risk of cardiovascular disease (CVD).

In both the treatment group (where patients take the drug) and

the control group (where they do not take the drug), 63 patients are

included. An important aspect is that patients are free to choose

whether they take the drug or not, thus, whether they enroll in

the treatment or control group when joining the study. Based on

Table 1, 4/42 = 0.0952 > 0.05 = 1/20 so females seem to have

TABLE 1 Fictitious study data for the cardiovascular disease trial

illustrating Simpson’s paradox.

Treatment group Control group

CVD No CVD CVD No CVD

Female 4 38 1 19

Male 9 12 14 29

Total 13 50 15 48

an increased risk of CVD when taking the drug and the latter seems

harmful. For men, 9/21 = 0.4286 > 0.32568 = 14/43 so again

the drug increases the risk of CVD for males. So far, the drug seems

harmful both for males and females.

However, investigating the total numbers in the treatment and

control group, 13/63 = 0.2063 < 0.2381 = 15/63 so the

drug seems to decrease the risk of CVD because fewer patients

suffered from CVD in the treatment group. Thus, the direction of

effect reverses: While the drug increases the risk of CVD in both

males and females, it decreases the risk when combining the two

subgroups and looking at the total data. The conclusion seems

contradictory, because the three statements (I) the drug increases

the risk of CVD in males, (II) the drug increases the risk of CVD

in females and (III) the drug reduces the risk of CVD cannot

hold simultaneously.

3.1.1. Arithmetic resolution
One of the simplest explanations of the counter-intuitive taste

of Simpson’s paradox is simple arithmetics. As stressed in the

introduction, from a purely mathematical point of view, there are

no paradoxes. Human cognitive biases influence the perception

of such phenomena, however, and often conflict with pure logic

(Gigerenzer, 2004; Kahneman, 2012; Gigerenzer and Marewski,

2015). As noted by Pearl et al. (2016), many people seem to believe

that ifA/B > a/b andC/D > c/d, it follows that (A+C)/(B+D) >

(a+ c)/(b+ d) holds. The example in Table 1 of course refutes this

claim because there we have

4

42
>

1

20
and

9

21
>

14

43
6⇒

13

63
>

15

63

and, in general, the following relationship holds:

A

B
>

a

b
and

C

D
>

c

d
6⇒

(A+ C)

(B+ D)
>

(a+ c)

(b+ d)

From a purely mathematical perspective, the paradox then

immediately vanishes. Note that this resolution simply relies on

the transition point (D) in the stochastic modeling cycle shown

in Figure 2. The mathematical result may run counter to human

cognitive biases and intuition (Kahneman, 2012), but is actually not

paradoxical at all.

However, as stressed in the introduction, such an explanation

does not inform us of scenarios where the paradox does occur and

how a choice should be made now. Does the drug work or not?

Which of the three statements (I) to (III) is wrong? Thus, a more
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encompassing resolution is required, which tackles different anchor

points in Figure 2. Therefore, the following subsection provides a

more satisfying way to resolve Simpson’s paradox.

We note that it seems as if a simple arithmetic inequality

disentangles the paradox and tackles point (D): mathematical

solution in Figure 2. However, in almost all cases we know of, there

might be other points such as the false interpretation (E) of the

obtained results, or problems with themathematization (B) because

possible confounders are ignored. We elaborate on these points in

the subsequent alternative ways to resolve Simpson’s paradox.

3.1.2. Experimental design and randomization
Females choose more often the drug according to Table 1

(42 females and 21 men take the drug), while simultaneously

experiencing a smaller rate of CVD than men in both groups (1/19

vs. 14/29 in the control group and 4/38 vs. 9/12 in the treatment

group). Thus, females seem to be less likely to suffer from CVD—

independently of whether they take the drug or not—and the large

proportion of them in the treatment group deters the study result.

Likewise, men are overproportionate in the control group (43 men

vs. 20 women) but suffer more often from CVD than women. As

a consequence, the resulting numbers do not reflect the effect that

researchers want to study, as the percentage of women and men

differs substantially in both groups. The problem boils down to

the fact that without randomizing patients into the groups with

equal probabilities—remember that patients were free to choose

whether to take the drug or not—there might be important so-

called confounding variables such as the gender of patients that

further affect the interpretation of the raw data. If patients are free

to select the treatment and gender influences the probability to pick

the latter, the distribution of gender must be approximately equal in

both groups to study the effect of the drug in the general population,

where males and females are represented approximately equally.

Thus, analysis of the experimental design is a possible resolution of

Simpson’s paradox:Without randomization the effect studied is not

the effect researchers are interested in, and the modeling in step (B)

and subsequent interpretation in step (E) of the stochasticmodeling

cycle cause problems, compare Figure 2.

3.1.3. Causal reasoning
While experimental design including randomization is one

possible take on the paradox, an analysis of the situation

through the lens of causal reasoning provides further information.

Importantly, it clearly sheds a light on which of the statements (I) to

(III) is wrong. Here, we focus on the causal calculus as outlined in

Pearl (2009), see also Pearl et al. (2016), Dawid and Musio (2022),

and Kelter (2022).

Figure 3 shows a causal diagram for Simpson’s paradox, where

primary interest lies in the effect of the drug on the risk of CVD.

As patients are not randomized into the groups, the gender has

an effect on whether a participant takes the drug or not (females

more often pick the treatment than males), and the gender also has

an effect on the risk of CVD (males are more likely to suffer from

CVD than females). The confounding variable gender thus biases

the effect of the drug on the risk of CVD, and given this causal

model, the resolution of the paradox is straightforward: One simply

must adjust for the confounder, which amounts to analyzing the

data for men and women separately and then taking the average.

For men, the CVD rate is 14/29 without and 9/12 with the

drug. For females, the CVD rate is 1/19 without and 4/38 with

the drug. Conditional on the confounding variable, these are the

gender-specific effects of the drug. As men and women are equally

frequent in the general population, taking the average yields a CVD

rate of 1
2 (

1
19 + 14

29 ) = 0.2677 without the drug, and a CVD rate of
1
2 (

4
38 +

9
12 ) = 0.4276. Based on the causal diagram the conclusion is

thus unambiguous: Adjusting for the confounding variable gender

yields the result that the drug increases the risk of CVD. Statement

(III) is wrong.

The causal reasoning comes up with a data-generating model,

a causal model how the measured data variables are related to

another, which is not available from the raw numbers in Table 1.

Thus, the resolution essentially operates at steps (B) to (E) in

Figure 2: A causal model starts at step (B) when deciding to

incorporate the confounding variable into the directed acyclic

graph, and the resulting stochastic model and mathematical result

then determine the subsequent steps and calculations, including the

interpretation at step (E).

Importantly, the causal diagram in the right panel of Figure 3

shows another possible relationship, where we presume a study in

which the exercise activity of patients is also recorded. Based on

this causal model, adjusting for exercise (e.g., analyzing the data

separately for patients who exercise only moderate, regularly, or

not at all, and building the average) would be inappropriate. The

difference between the study in Simpson’s paradox and this new

study is that now exercise is a mediating variable, and the effect of

the drug on CVDmight be mediated through patients being able to

exercise more when taking the drug. A majority of the effect of the

drug might thus work indirect through the mediator exercise, and

the aggregate data (the bottom row in the terms of Table 1) should

be used for the analysis.

In closing this section we stress that while causal reasoning

is one possible resolution of Simpson’s paradox here, there might

be cases where there is no causal explanation of it. In these

cases, it might arise in a purely mathematical fashion and an

arithmetic resolution might suffice. This underlines that depending

on the context and situation, different tools might be necessary

to resolve the same probabilistic paradox. Regarding the three

questions that a solution to a paradoxmust answer, Bandyoapdhyay

et al. (2011) argued that causality enters only at question three

for Simpson’s paradox, that is, how to proceed when faced with

contradicting solutions.

3.2. Bertrand’s paradox

Details on Bertrand’s paradox can be found in Tissier (1984),

Marinoff (1994), Shackel (2007), and the paradox is usually

described as follows:

"Consider an equilateral triangle inscribed in a circle. Suppose a

chord of the circle is chosen at random. What is the probability

that the chord is longer than a side of the triangle?" (Drory, 2015,

p. 440)
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FIGURE 3

Directed acyclic graph for the structural causal model which describes the effect of the novel drug on outcome CVD under the confounding variable

gender (left); directed acyclic graph for the structural causal model which describes the effect of the novel drug on outcome CVD under the

mediating variable exercise (right).

One finds three different "solutions" to this problem which

are attributed to Bertrand (1889). On a first glance it looks as

if probability theory yields different solutions to a well-specified

problem. However, this is not the case. Firstly, one has to specify,

whether this is a mathematical problem or a real world problem.

In the first case, the problem is not well-specified. One has to say

exactly, what is meant by "chosen at random" in this case. To be

more precise, one has to say what is exactly chosen and what the

probabilities (in the model) are. In this case, the problem can be

located at (B) in the modeling cycle. If it is meant as a real world

problem, one has to specify the structure of the random experiment:

is a stick thrown toward a circle which has been painted on the

ground? How long is the stick? How is it thrown? Questions of this

kind have to specified and answered at (A) in Figure 2. If we are

dealing with such a real random experiment, the three (different!)

models mentioned above are all models for this. One will have to

use methods from mathematical statistics to find out which of the

three is the most suitable model. Following Box (1976) all models

are wrong, but some are useful. Compare in this context also Box

(1980).

3.3. Two Envelopes Paradox

The two envelopes paradox is also treated extensively in the

literature, see for exampleMcGrew et al. (1997), Nickerson and Falk

(2006), Falk (2008), and Markosian (2011). The original problem

reads as follows, compare Falk (2008):

Imagine you are given two identical envelopes, each

containing money. One contains twice as much as the other. You

may pick one envelope and keep the money it contains. Having

chosen an envelope at will, but before inspecting it, you are given

the chance to switch envelopes. Should you switch?

Naively one could argue that it is better to switch, since the

actual envelope contains x while the expected value for the other

one is 1/2 · x · 1/2 + 2 · x · 1/2 = 5/4 · x. This seems to be a

paradox, since one should always switch to the other envelope, no

matter which one was chosen first. There is a vast literature on this

problem (see above), but the reasonable solutions boil down to the

following: if x Euro are in the first envelope, then it is equally likely

to have 1/2 · x respectively 2 · x in the other envelope. Since we

do know nothing about the amount of money in the envelopes,

if we had 2 · x in the first envelope, then x and 4 · x have to be

equally likely in the other envelope. This works in both directions.

In the end, to work with the conditional(!) expectation as above, we

need a space, which contains at least the numbers 2n · x and they

have to be all equally likely to be chosen, that is, we need a uniform

distribution on infinitely many points. And it is easy to show, that

such a model (in mathematics) does not exist. Hence, one uses here

in a naive way mathematical formulae without any mathematical

foundation. In relation to Figure 2, it becomes apparent that the

computation at step (D) is performed without any justification.

From a methodological point of view, it is worth mentioning that

a Bayesian perspective immediately resolves the paradox, because

there is no uniform prior distribution on infinitely many points

given the necessity that each point has positive probability mass.

4. Developing the toolbox

In this section, we develop the toolbox. Therefore, the

next subsection analyzes the relationship between probabilistic

paradoxes and the modeling cycle based on a representative sample

of paradoxes covered in the relevant literature. The subsequent

section then investigates how paradoxes, corresponding problems

and possible resolutions link together. Based on this analysis

relevant tools and techniques to demystify a paradox are isolated.

The toolbox itself and a detailed example how to use it is then

presented in the next section.

4.1. Relationship between the paradoxes
and the modeling cycle

Some of the paradoxes might be linked to different problems.

As an example consider the famous Monty Hall paradox which

became famous as a question from reader Craig F. Whitaker’s letter

quoted in Marilyn vos Savant’s "Ask Marilyn" column in Parade

magazine in 1990:

Suppose you’re on a game show, and you’re given the choice

of three doors: Behind one door is a car; behind the others, goats.

You pick a door, say No. 1, and the host, who knows what’s behind
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TABLE 2 Various problems which make people believe in paradoxes, the

corresponding paradoxes for which these problems are relevant, and the

corresponding point in the modeling cycle (Figure 2).

Problem Paradox Position

Missing information Monty Hall paradox A

boy-or-girl paradox A

Linguistic ambiguity boy-or-girl paradox A

Monty Hall paradox A

Ignorance of information Simpson’s paradox B, E

Model miss-specification sleeping beauty paradox B

leading digits paradox B

Monty Hall paradox B

Bertrand’s box paradox B

three prisoners problem B

Unrealistic stochastic model/ two envelopes paradox D

Model assumptions that cannot be

met

necktie paradox B, D

Interpretation of mathematical

findings

St. Petersburg paradox E

Berkson’s paradox E

Counterintuitive solution Birthday problem C, E

100 prisoners D

intransitive dice paradox E

three prisoners problem E

the doors, opens another door, say No. 3, which has a goat. He

then says to you, "Do you want to pick door No. 2?" Is it to your

advantage to switch your choice?

One could argue that some information is missing, namely

whether Mr. Hall always opens a door with a goat behind it

(whatever the choice of the player was) and whether the player

knows this. One could also say that the problem is not well defined:

some people read it as a description of a concrete situation, some

others as thought experiment (linguistic ambiguity). Both of these

problems belong to point (A) in Figure 2. Anyway: as soon as these

details are fixed (e.g., the showmaster always acts like this, and one

knows this), there is no paradox anymore. If one still feels that it

does not matter whether to switch or not, one runs into the fallacy

of wrongly assuming a uniform distribution which is a special case

of model miss-specification (B). Maybe the most simple case of a

wrongly assumed uniform distribution is in modeling the tosses of

two ideal coins (which are thrown independently) with a uniform

distribution on the number of "heads." One of the most prominent

examples might be the distribution of leading digits in a large data

set, which do not follow a uniform distribution on {1, 2, ..., 9} but

rather Benford’s law.

For Simpson’s paradox, causal reasoning argues that

confounding variables are problematic—which amounts to

ignorance of information and step (B) in the modeling cycle,

compare Table 2—while for Berkson’s paradox collider bias is a

causal resolution of the paradox. Further information is provided

in Pearl et al. (2016). The relevance of these methods for critical

thinking is shown strikingly in the discussion why smoking

patients are more likely to suffer from SARS-CoV-2, see Griffith

et al. (2020), where collider-bias is a resolution of the discussion.

Problems like the 100 prisoners "paradox" are not paradoxes

at all. It is just that the solution is far from being obvious and

one needs (in this case) deeper mathematical knowledge on cycles

within the group of permutations. This is a typical case for

problems with point (D) in the stochastic modeling cycle. A similar

statement holds for other ‘paradoxes’. As an example, the solution

of the birthday problem might look on the first glance counter-

intuitive, but it is easy to do the calculation and to actually see that

the result is true. In the literature a problem of this kind is referred

to as veridical paradox (Van Orman Quine, 1976). In Table 2 one

finds an overview on various problems which led to some of the

most famous paradoxes.

4.2. Paradoxes, corresponding problems,
and possible resolutions

We have considered more paradoxes than described in Sections

3 and 4.1. We can not present all of them in detail, but rather give

an overview in Figure 4. The most popular paradoxes discussed

in the relevant literature are shown on the left. The middle part

visualizes the seven main problems that lead to a paradoxical

perception of the situation. As can be seen from the black arrows

in the left part, for some paradoxes (e.g., Bertrand’s paradox or

Monty Hall paradox) there are multiple problems. The right part

shows the six key tools which where isolated as helpful to demystify

the paradoxes. The arrows from the problems in the middle to

the tools on the right indicate which tool helps to resolve which

paradox. As can be seen, multiple paradoxes can be demystified

by using a different probabilistic model, or by application of

causal reasoning. Also, multiple paradoxes are resolved when the

mathematical solution is simply counterintuitive or non-trivial.

Other paradoxes such as the St. Petersburg paradox or the two

envelopes problem can be resolved by applying tools such as utility

theory or Bayesian analysis.

Although the list of paradoxes, problems and tools to demystify

the latter is not exhaustive, Figure 4 shows that a representative

sample of probabilistic and statistical paradoxes—including the

most popular and widely discussed ones—can be demystified with

an arsenal of only six methodological tools. Each of the tools shown

in Figure 4 consists of a broad palette of techniques. For example,

causal reasoning includes the do-calculus (Pearl, 2009; Pearl et al.,

2016), decision-theoretic approaches (Dawid and Musio, 2022),

and other frameworks (Hernán and Robins, 2020). Bayesian

analysis is an alternative to the frequentist approach to statistical

inference and monography-length treatments are available (Robert

and Casella, 2004; Gelman et al., 2013; Kleijn, 2022). For example,

Bayesian analysis helps to demystify the Monty Hall paradox

(Baratgin, 2015) or the two envelopes paradox. Utility theory offers

a distinction between probabilistic results and their interpretation

by humans, where utility functions often are more appropriate to

interpret the practical relevance of a probabilistic result (Robert
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FIGURE 4

A graphical representation of our reasoning on the way to the toolbox: probabilistic and statistical paradoxes linked to the corresponding problems

and potential resolutions.

and Casella, 2004; Aase, 2010; Kahneman and Tversky, 2018).

Thus, utility theory often addresses point (E) in Figure 2, compare

the St. Petersburg paradox (Aase, 2010). Probabilistic modeling

itself is maybe the coarsest tool offered, because here various

meta-levels exist which include different probabilistic or statistical

models of the entire situation. Experimental design is a tool that

even escapes the formal scope of probability theory, as techniques

such as randomization influence how data sets are measured

and what can be learned of them (Matthews, 2006; Box et al.,

2009; Kelter, 2022). As a consequence, experimental design has

a direct impact on the probabilistic modeling used for a specific

paradox. The simplest but least helpful tool may be the advanced

probability theory box in Figure 4, as some paradoxes such as the

100 prisoners paradox actually are only counterintuitive. These

veridical paradoxes seldom create multiple contrasting solutions

and only require sophisticated mathematical knowledge to arrive

at the correct solution. Thus, they are often resolved by addressing

step (D) in Figure 2.

Figure 4 provides several additional insights: A variety of

paradoxes can attribute their paradoxical nature to an unrealistic

stochastic model or model misspecification (compare the arrows

leading to the boxes Unrealistic stochastic model and Model

misspecification). Model selection is a difficult topic in statistics,

and our results indicate that unrealistic or misspecified models can

yield contradictory conclusions which cause the paradoxical nature

in multiple cases. Evidentialists believe that model misspecification

and model selection should be the central focus of scientific

and statistical modeling processes (Bickel, 2022a,b). A second

class of problems which cause the paradoxical nature of a given

paradox are counterintuitive solutions and linguistic ambiguity.

Counterintuitive solutions often simply require sophisticated

mathematical knowledge and end up in veridical paradoxes.

Linguistic ambiguity can be interpreted as a lack of mathematical

formalism which eventually causes contradictory solutions because

the lack of precision causes different models or assumptions.

Missing information and ignorance of information is sometimes

a problem, but a less frequent one than the former two classes

of problems.

5. The toolbox

In this section, we present the toolbox based on the analysis

above. Therefore, some comments with regard to the isolated

problems are helpful.
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FIGURE 5

The toolbox to demystify paradoxes in probability and statistics: questions should be followed from left to right, and methodological tools are shown

arrows pointing down in case a question is answered with "Yes."

For students, linguistic ambiguity and missing information

might be the two problems that are the easiest to identify.

Also, ignorance of given information is a relatively simple to

find problem when faced with a paradoxical situation. Model

misspecification or an unrealistic probabilistic or statistical model

are much harder to isolate, because tools such as Bayesian analysis,

a check of the probabilistic modeling via the stochastic modeling

cycle in Figure 2, or advanced probability theory may help in

tackling these problems. Furthermore, experimental design and

causal reasoning provide additional tools to critically question the

assumed stochastic model.

The interpretation of mathematical findings is sometimes an

easy to solve problem, although utility theory may not always be

useful to correct a paradoxical situation. However, it should be

stressed that prospect theory is a suitable alternative to incorporate

human cognitive biases into probabilistic judgements (Tversky

and Kahneman, 1992; Kahneman, 2012). The same holds for

counterintuitive solutions, where in most cases only advanced

knowledge of probability theory can help to escape human

cognitive biases.

Figure 5 shows a visual representation of the developed toolbox

when encountering a paradoxical or counter-intuitive solution to

a probabilistic or statistical problem. The top squares show the

relevant questions students and researchers should ask, starting at

the left and proceeding from left to right. The easiest questions

are asked at the start, including linguistic ambiguities and the

lack of or ignorance of relevant information. More difficult

problems follow, including an unrealistic or possibly misspecified

stochastic model, and the interpretation of mathematical findings.

If the obtained solution still seems counterintuitive, in most cases

advanced probability theory is necessary. In all other cases, the

isolated methodological tools should be consulted to provide a

different perspective on the problem. Note that there are sometimes

simpler solutions than the tools shown in Figure 5: For example, if

there are linguistic ambiguities in the formulation of the problem,

applying causal reasoning is possibly not necessary, because it

immediately becomes clear that the lack of formalism contributes

to the paradoxical nature. Once the ambiguities are formalized

mathematically, it might happen that no counter-intuitive solution

is obtained anymore. However, in cases where such obvious fixes

do not help, consulting the methodological tools shown below

the question boxes—indicated by arrows—helps in providing a

different perspective on the problem. In some sense, the toolbox

can be seen as a stochastical specification of the plan for solving

mathematical problems by Polya (1965): While the questions in the

top row help to decode what is paradoxical about the paradox, i.e.,

to understand the problem (first step), the methodological tools

in the bottom row give hints about possible solutions and can

help to identify related problems (second step). The questions can

also be used afterwards to reflect on what demystifies the paradox

(fourth step).

Let us give a concrete example on how the toolbox might be

used in an educational context: A high school teacher wants to

deal with stochastic modeling in class. For fostering the students

probabilistic intuition and developing insight in crucial difficulties

of the modeling cycle he wants to include some paradoxes and has

read about Monty Hall and the two envelopes paradox. Checking

the toolbox above, he recognizes, that it is good to address Monty

Hall. His pupils can learn that missing information or linguistic

ambiguity can be problems, and that the way from an easy to

state real-world phenomenon to a probabilistic or even a real-

world model is not straight forward. The problem matches the

level of mathematics he can face his pupils with. He refrains from

confronting the pupils with the two envelopes paradox, because

discussing whether a uniform distribution exists on a space with

infinitely many points is far beyond what the pupils will be able to

understand and the teacher knows that. If he tackled the problem

in class, the pupils would necessarily be left with a bad feeling.

6. Conclusion and future work

Taking stock, given the methodological breadth of tools which

can help resolve probability paradoxes, it seems fruitful for students

and researchers alike to spend time in analyzing and studying

these paradoxes. Also, there is empirical evidence for this argument

(Klymchuk and Kachapova, 2012; Batanero et al., 2016). First,

most of the tools—in particular, causal reasoning, experimental

design, Bayesian analysis and probabilistic modeling—are helpful

to foster critical thinking in a wide range of sciences. Secondly,

knowledge of the original paradoxes helps to identify similar and

analog situations when being faced with them. Thus, students who
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have to deal with a range of paradoxes in their curriculum should

be expected to find similar situations and possible resolutions more

accurately than students with no prior exposure to probability

paradoxes. Also, students who are faced with these paradoxes

get a natural introduction to a wide range of techniques which

are helpful in other contexts. Our methodological toolbox helps

students, teachers and researchers to focus on key areas which help

to demystify probability paradoxes. In the future, we expect that

other tools will be added and the toolbox will grow, depending

on which paradoxes are added to the analysis and which tools

turn out to be helpful in resolving them. In this form, the toolbox

presented here is not exhaustive, but can be interpreted as a

starting point to investigate the uniting anatomy of probability

paradoxes. Furthermore, with the knowledge of the respective

problematic points in the modeling cycle, it is now possible to

integrate paradoxes more systematically into curricula.
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