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Abstract

This thesis is devoted to different aspects of quantum information science as well as
the closely related topic of multilinear algebra. We present several results in the fields
of quantum measurement theory, the theory of bipartite Bell inequalities, the activation
of nonlocal quantum correlations, the identification of resourceful multipartite quan-
tum states as well as the characterization of the eigenstructure of highly symmetric
real-valued tensors. Gearing towards applications of quantum technology, we develop
scalable methods that allow for the simultaneous prediction of many observables of a
multi-qubit system.

First, we investigate how quantum measurements with many outcomes can be sim-
ulated by measurements with fewer outcomes. In particular, we present a minimal
scheme that certifies this simulability based on correlations. Further, we analyze this
minimal scheme with respect to noise robustness. Afterwards, we pick up the quan-
tum measurement problem and discuss whether the realization of a partially observed
measurement is compatible with the universality of the unitary time evolution.

Second, we introduce a family of bipartite Bell inequalities and associated quantum
correlations that allow for an extremely low detection efficiency as well as high robust-
ness to noise. Further, we discuss how these inequalities can be optimized by means of
symmetry considerations. Subsequently, we examine the phenomenon of activation of
quantum correlations. We develop methods that allow for rigorous statements on the
statistical significance of such an experimental demonstration. These methods include
the construction of a suitable confidence polytope as well as an algorithm to determine
the correlation class of a quantum state.

Third, we present an algorithm that allows for finding maximally resourceful mul-
tipartite quantum states. We provide a rigorous proof of convergence and apply it to
multiple quantifiers of quantum resources, e.g., the geometric measure of entangle-
ment. This reveals an interesting connection to so-called absolutely maximally entan-
gled states. Then, we discuss the eigenstructure of certain highly symmetric tensors,
whose construction is based on simplex frames. We provide a full characterization of
the eigenvectors for an arbitrary number of parties and local dimension two. Further,
we discuss whether the eigenvectors can be obtained by the power iteration method.

The last part of this thesis is concerned with scalable methods that allow for si-
multaneously predicting many expectation values of a multi-qubit system with high
accuracy. For this purpose, we extend the technique of classical shadows, originally
based on projective measurements, to generalized measurements. This yields a simple
formulation, allowing for the incorporation of symmetries and the possibility of opti-
mizing the measurement directions towards a set of targeted observables. Moreover,
we combine classical shadows with error mitigation techniques, rendering the incor-
poration of preparation errors in the estimation of many expectation values possible.



Zusammenfassung

In dieser Dissertation werden verschiedene Fragestellungen aus den Bereichen der
Quanteninformationstheorie und dem damit verknüpften Gebiet der multilinearen Al-
gebra untersucht. Es wird eine Vielzahl von Resultaten auf den Gebieten der quanten-
mechanischen Messtheorie, der bipartiten Bellschen Ungleichungen und deren Detek-
tionseffizienz, der Aktivierung von quantenmechanischen Korrelationen, der Charak-
terisierung von Verschränkung multipartiter Systeme, als auch der Eigenstruktur von
sogenannten supersymmetrischen reellen Tensoren erbracht. Ferner werden skalier-
bare Methoden zur Berechnung von Erwartungswerten von Observablen diskutiert
und deren Relevanz für Quantencomputer erörtert.

Im ersten Abschnitt dieser Arbeit wird untersucht, inwiefern sich quantenmecha-
nische Messungen mit vielen Messausgängen vermöge Messungen mit weniger Aus-
gängen simulieren lassen. Dabei stellt sich insbesondere die Frage, wie sich diese
Simulierbarkeit auf Grundlage experimenteller Daten zertifizieren lässt. Wir präsen-
tieren ein minimales Szenario für diese Zertifizierung und diskutieren die Robust-
heit bezüglich experimenteller Fehler. Im Anschluss greifen wir das Messproblem der
Quantenmechanik auf und diskutieren, inwiefern die Realisierung einer nur partiell
beobachteten Messung kompatibel mit der unitären Zeitentwicklung der Quanten-
mechanik ist.

Im zweiten Abschnitt präsentieren wir eine Familie von bipartiten bellschen Un-
gleichungen und dazugehörigen Quantenkorrelationen, welche eine hohe Toleranz
gegenüber ineffizienten Detektoren und experimentellem Rauschen besitzt. Ferner
wird diskutiert, wie die erhaltenen bellschen Ungleichungen auf Grundlage von Sym-
metriebetrachtungen weiter optimiert werden können. Im Anschluss betrachten wir
das Phänomen der Aktivierung von Quantenkorrelationen. In diesem Kontext wer-
den Methoden entwickelt, welche einen experimentellen Nachweis mit hoher statis-
tischer Sicherheit ermöglichen. Diese umfassen die Konstruktion von einem neuarti-
gen Konfidenz-Polytop als auch einem Algorithmus, der die Korrelationsklasse eines
Quantenzustands bestimmen kann.

Im dritten Abschnitt widmen wir uns dem Auffinden von multipartiten Zuständen,
welche für gewisse Zwecke und Protokolle besonders hilfreich sind. Dazu entwickeln
wir einen Algorithmus, präsentieren einen entsprechenden Konvergenzbeweis und
illustrieren die Flexibilität durch eine Vielzahl von Anwendungen. Als Beispiel disku-
tieren wir im Detail das geometrische Maß der Verschränkung und beobachten eine
Verbindung zu sogenannten absolut-maximal verschränkten Zuständen. Im Anschluss
untersuchen wir die Eigenstruktur von reellen Tensoren, welche ausgehend von einem
Simplex-Frame konstruiert wurden. Hier liefern wir eine vollständige Klassifizierung
der Eigenstruktur für beliebige Modenzahlen und lokale Dimension zwei. Zusätzlich
erörtern wir, inwiefern die gefunden Eigenwerte mittels der Potenzmethode berechnet
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werden können.
Ein weiterer großer Teil dieser Arbeit beschäftigt sich mit skalierbaren Methoden zur

Bestimmung von Erwartungswerten von Observablen großer Quantensysteme. Dazu
erweitern wir das Konzept der auf projektiven Messungen basierenden klassischen
Schatten auf verallgemeinerte Messungen. Dies liefert eine einfachere Formulierung,
erlaubt die Einbeziehung von Symmetrien, als auch die Optimierung der Messrich-
tungen. Außerdem kombinieren wir klassische Schatten mit Techniken der Fehlermin-
imierung. Diese Kombination erlaubt es mithilfe klassischer Computer den Effekt ex-
perimenteller Ungenauigkeiten auf Erwartungswerte von Observablen zu minimieren
und somit den Bereich der Anwendbarkeit von Quantencomputern zu erweitern.
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Introduction

Quantum information science is a synthesis of two major advances of the 20th century:
quantum mechanics and information technology. Quantum mechanics describes Na-
ture at the scale of atoms and subatomic particles and has been appreciated as one
of the most accurate theories in science [1]. Despite its success, the meaning and the
origin of its counterintuitive Hilbert space formalism are difficult to grasp and many
of its implications challenge our perception of reality. On the other hand, information
technology is concerned with storing, retrieving, manipulating, and communicating
data and information [2]. It gave rise to modern computers, digital communication
and devices that are ubiquitous in our daily life. Interestingly, it turns out that concep-
tual difficulties and apparent paradoxes in the realm of quantum mechanics translate
to a new generation of protocols and devices in information technology that provide
significant advantages over their classical counterparts.

One of the most striking and apparently paradoxical features, lying at the heart of
quantum mechanics, is certainly entanglement. It entails that there exist multipartite
quantum states that do not admit a local description in terms of its constituents, exist-
ing independently of the state of the others. Consequently, an entangled state must be
seen as a single entity, regardless of the distance between the parties. That entangled
states can lead to situations that are in conflict with our classical intuition was first
pointed out in a seminal paper by Einstein, Podolsky and Rosen (EPR) [3]. According
to their view, the quantum-mechanical description of the physical reality by means
of the wave function was incomplete. However, they believed that quantum mechan-
ics could be supplemented by additional variables "restoring to the theory causality
and locality" [4], which are today known as local hidden variables (LHV). In 1964,
Bell formalized the idea of EPR and showed that the statistical predictions of quan-
tum mechanics are incompatible with the correlations allowed by any physical theory
assuming locality, realism and free will [5]. Moreover, the resulting Bell inequalities
allow for experimentally testable deviations of quantum mechanics from any theory
based on LHV models. Many experiments aimed at the demonstration of quantum
correlations by violating the Clauser-Horne-Shimony-Holt [6] inequality or one of its
equivalent versions [7]. However, early attempts were prone to loopholes, as the ex-
perimental setups suffered from inefficient detectors [8,9] or an insufficient separation
of the involved parties [10, 11]. Finally, in 2015, the first loophole-free experimental
violations of a Bell inequality were announced [12, 13].



2 Introduction

Apart from being fundamental to our understanding of Nature, the existence of
nonlocal quantum correlations is indispensable for the security of certain quantum
key distribution protocols. While the security of the first protocols, conceived by Wies-
ner [14], and Bennett and Brassard [15], relies on the no-cloning theorem [16], i.e.,
the impossibility of creating an independent and identical copy of an unknown quan-
tum state, Ekert [17] realized that interventions of an eavesdropper would introduce
"elements of physical reality" into the correlations shared between the involved par-
ties [18]. Consequently, if the observed correlations violate a Bell inequality, one can
bound an adversary’s information by using Bell’s theorem. This allows in principle for
the creation of a secure key without putting strong restrictions on the eavesdropper’s
power. These observations triggered intensive research and can be seen as the origin
of the fields of device-independent quantum key distribution [18] and self-testing [19].
Along with the rapid development of experimental tools, quantum key distribution
is nowadays routinely being demonstrated in laboratories [20] and has been used to
distribute secure keys over long distances [21]. However, at its current stage, losses
in the transmission and imperfect detectors prevent applications outside laboratories
with well controlled losses.

Another difficulty related with the formulation of quantum mechanics is that the
Hilbert space of a quantum system scales exponentially with the number of parties.
This poses severe computational problems in the field of condensed matter physics
and quantum chemistry [22] as the simulation of quantum systems is hard for clas-
sical computing machines. However, by realizing that computation is a physical pro-
cess [23], the idea of using the exponentially large Hilbert space as a resource emerged.
It was first suggested by Feynman [24] and Manin [25] that controllable quantum sys-
tems could be used for simulating other quantum systems or even for solving general
computational problems. These ideas set the stage for quantum simulators [26, 27]
and quantum computers [28], and it is believed that those devices can solve prob-
lems that are intractable for classical computers [29]. Indeed, Shor’s algorithm [30]
for prime factorization provides a scheme to factor large integers in polynomial time,
while no efficient classical analogue is known. However, this algorithm relies on the
ability to implement deep quantum circuits, which is still out of reach for current
noisy intermediate-scale quantum technology [31]. Nevertheless, it is expected that
some form of early practical quantum advantage just beyond the reach of classical
computing could be achieved even with noisy quantum computers [32–34].

In this thesis we are concerned with different aspects of quantum information sci-
ence. More precisely, we aim at obtaining a better understanding of quantum theory
from the perspective of structural and foundational questions as well as the perspec-
tive of possible applications and quantum technology.

In the first chapter, we introduce the mathematical terminology and the physical
concepts that are needed in this thesis. This includes the axiomatic framework of quan-
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tum theory, the notion of Bell nonlocality, quantum steering and local-friendliness.
Further, we recapitulate basic concepts from quantum computing and techniques from
convex optimization theory.

In the second chapter, we consider the simulability of quantum measurements with
many outcomes by means of randomizing quantum measurements with fewer out-
comes. We analyze how the irreducibility of a measurement can be certified in a
prepare-and-measure scenario with the characteristic dimension constraint. We present
a minimal scheme and a family of correlations that allow to probe the irreducible of
a three-outcome measurement on a qubit system. For this family of correlations, we
analyze the robustness with respect to noise and present two numerical methods to
upper and lower bound this robustness.

In the third chapter, we investigate the incompatibility of the universality of the
unitary time evolution and the irreversibility of a measurement event. Motivated by a
surge of revival interests in the quantum measurement problem [35–37], here we probe
the assumption that the measurement event is realized relatively to one observer, who
only partially observed the outcome of a measurement with multiple outcomes. We
propose a protocol that shows that this assumption is incompatible with the univer-
sality of the unitary time evolution given that locality and free will holds.

In the fourth chapter, we introduce a family of bipartite Bell inequalities that are con-
structed from graphs and whose classical and quantum bounds can be expressed in
terms of invariants of the underlying graph. Based on a connection to state-independent
contextuality sets, we assign to each Bell inequality quantum correlations, such that
their combination allows for an extremely low detection efficiency as well as high noise
robustness. In addition, we discuss how these inequalities can be further optimized by
means of symmetry considerations.

In the fifth chapter, we develop theoretical methods that can be used to obtain rig-
orous statements on the statistical significance of experiments demonstrating the ac-
tivation of nonlocal quantum correlations. These contain techniques to construct a
suitable confidence region in form of a polytope from the measured data and an effi-
cient algorithm to classify the correlation class of a quantum state. We illustrate how
our methods can be used to analyze the activation of quantum correlations by local
filtering, specifically, for Bell-nonlocality and quantum steerability.

In the sixth chapter, we propose an iterative algorithm to find maximally resourceful
quantum states of several particles for various applications and quantifiers. We present
a rigorous proof of convergence, discuss in detail the case of the geometric measure,
identifying physically interesting states and also deliver insights to the problem of
absolutely maximally entangled states. Moreover, we demonstrate the universality of
our approach by applying it to maximally entangled subspaces, the Schmidt-rank, the
stabilizer rank as well as the preparability in a triangle network.

In the seventh chapter, we discuss the full real eigenstructure of regular simplex
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tensors, including the robustness analysis of all normalized eigenvectors for the case
of an arbitrary number of parties and local dimension 2. We show that regular simplex
tensors have robust as well as non-robust eigenvectors with respect to the tensor power
iteration map. Moreover, we find that the normalized eigenvectors only partly coincide
with the generators from the symmetric tensor decomposition.

Finally, in chapter eight and nine, we discuss scalable methods that allow for si-
multaneously predicting many expectation values of a multi-qubit system. We present
a variant of shadow tomography which is based on generalized measurements and
provide a detailed study of the implication of symmetries. In addition, we demon-
strate how the measurement directions can be optimized towards a set of targeted
observables and how measurement errors can be mitigated. Concerning errors in the
preparation phase, we generalize error mitigation techniques, such that they can be
applied directly to classical shadows. We discuss the technique of probabilistic error
cancellation in detail and provide rigorous theoretical sample complexities.



1 Preliminaries

In this Chapter we give a concise introduction into the basic notions of quantum in-
formation theory that are needed throughout this thesis. First, we will recapitulate the
mathematical framework of quantum theory in Section 1.1. We proceed in Section 1.2
by introducing different types of bipartite correlations such as entanglement, quantum
steering and Bell nonlocality. In Section 1.3 we outline concepts from graph theory, the
notion of graph states as well as basics of the field of quantum computing. In addition,
we mention necessary computational tools from optimization theory in Section 1.4.

Of course, the aim of this Chapter is not to give a comprehensive exposition of quan-
tum theory. It is intended to provide a sufficient amount of basic knowledge, such that
the subsequent chapters can be easily understood without the need of consulting other
literature. The contents presented here can be found in any textbook about quantum
mechanics with a focus on quantum information theory, see for instance the books by
Peres [1], Holevo [38], Heinosaari and Ziman [39], or Nielsen and Chuang [29].

1.1 Mathematical framework of quantum theory

The framework of quantum theory offers the possibility to calculate probabilities for
the outcomes of measurements, given that a system was prepared in a particular state
and subjected to a particular evolution. In Section 1.1.1 we will discuss the notion of a
quantum state, which comprises all the information that is available about the system
under investigation. We then proceed in Section 1.1.2 by introducing the concept of
quantum measurements by which means we extract classical information about the
quantum system. Finally, we discuss quantum channels in Section 1.1.2 describing the
dynamics the system is subjected to.

1.1.1 Quantum states

Quantum theory starts by associating a Hilbert space H to a physical system. A Hilbert
space is a complex inner product space that is complete with respect to the metric
induced by this inner product. Here complex inner product means linearity in the first
argument, conjugate symmetry under exchange of the arguments as well as positive
definiteness, i.e., for any ψ ∈ H one has ⟨ψ|ψ⟩ > 0, unless ψ = 0 in which case the
inner product equals zero. An inner product on a space H gives rise to a hierarchy of
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structures. By virtue of ||ψ|| =
√
⟨ψ|ψ⟩, the inner product yields a norm on H, which

itself induces a metric via d(ψ, ϕ) = ||ψ − ϕ||.
The associated Hilbert space comprises all different configurations in which the

system can possibly be. To each configuration, there exists a vector of unit length
|ψ⟩ ∈ H, called ket, describing the state of the system. One assumes that |ψ⟩ contains
all information about the system that one can have, that is, knowing |ψ⟩ means to have
a full description of the actual state of the system. For this reason, a state vector |ψ⟩ is
also called a pure state.

More precisely, a quantum system having 1 ≤ d < ∞ degrees of freedom (also called
d-level system or qudit system) is associated with the Hilbert space Cd. Any such
Hilbert space admits an orthonormal basis {|α⟩} for 0 ≤ α ≤ d − 1 and any element
of H can be uniquely expanded with respect to such a basis, that is, for |ψ⟩ ∈ Cd there
are coefficients cα ∈ C, such that

|ψ⟩ =
d−1

∑
α=0

cα|α⟩. (1.1)

The number of elements that appear in a basis is called the dimension of the system.
From the normalization we directly obtain 1 = ⟨ψ|ψ⟩ = ∑d−1

α=0 |cα|2. Although there
is no distinguished basis for a Hilbert space, it is often convenient to work in the so-
called computational basis. The computational basis ket |j⟩ has entry 1 at the jth position
and 0 elsewhere. Similar, any state |ψ⟩ can be decomposed with respect to that basis

|ψ⟩ =
d−1

∑
j=0

cj|j⟩, (1.2)

where cj ∈ C for 0 ≤ j ≤ d − 1.
So far, we have considered the description of a single physical system. However, it

is often the case that the system under investigation is of composed form, that is, the
whole system consists of multiple individual constituents.

Given n particles, each associated with a Hilbert space Cdj , the joint system is de-
scribed by the Hilbert space

H = Cd1 ⊗ · · · ⊗ Cdn . (1.3)

Because H in Eq. (1.3) shares an additional tensor structure, it is also called a tensor
product space. Assuming that the independent pure quantum states of the individual
systems are {|ψj⟩}n

j=1, the state of the joint system is given by |ψ⟩ = ⊗n
j=1|ψj⟩ ∈

Cd1 ⊗ · · · ⊗ Cdn . As a tensor product space is also a vector space, any multipartite
quantum state can be expanded in any orthonormal basis. A common choice is to
expand the state with respect to the tensor product of the local computational bases.
It is often convenient to introduce the following short hand notation

|j1 j2 · · · jn⟩ := |j1⟩|j2⟩ · · · |jn⟩ := |j1⟩ ⊗ |j2⟩ ⊗ · · · ⊗ |jn⟩. (1.4)
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Then, any quantum state |ψ⟩ can be written as

|ψ⟩ =
d1

∑
j1=0

· · ·
dn

∑
jn=0

ψj1···jn |j1 · · · jn⟩, (1.5)

where ψj1···jn ∈ C is the coefficient tensor of |ψ⟩. However, it can also be useful to
decompose a multipartite state into a basis which cannot be written as tensor products
of the local bases. For example, consider the Hilbert space H = C2 ⊗ C2. The so-called
Bell states

|ϕ+⟩ = 1√
2
(|00⟩+ |11⟩),

|ϕ−⟩ = 1√
2
(|00⟩ − |11⟩),

|ψ+⟩ = 1√
2
(|01⟩+ |10⟩),

|ψ−⟩ = 1√
2
(|01⟩ − |10⟩),

(1.6)

form an orthonormal basis for the space C2 ⊗ C2, while not being tensor products of
local bases. Furthermore, for reasons that will become clear later (cf. Section 1.2.2) we
call the bipartite state

|Φd⟩ :=
1√
d

d−1

∑
j=0

|j⟩|j⟩ (1.7)

the maximally entangled quantum state of the system Cd ⊗ Cd.
If one wants to prepare a particular quantum state in the laboratory, one typically

has to deal with imperfections in the experimental settings. This often has the con-
sequence that the actually prepared state is not the targeted but a different state. As
the particular misalignment of the setup may vary for each preparation, one obtains a
statistical mixture of pure quantum states. Such a probability distribution over the set
of pure quantum states in H is called a mixed state and is represented by a self-adjoint
positive semidefinite operator in the space B(H) of bounded operators on H being of
unit trace. More formally, a density operator is given by

ϱ = ∑
j

pj|ψj⟩⟨ψj|, (1.8)

where |ψj⟩ ∈ H are pure quantum states. In order to ensure positive semidefiniteness
of ϱ, one requires that pj ≥ 0 and the unit trace property demands that ∑j pj = 1.
Clearly, any pure quantum state corresponds to a density operator ϱ and is given by
a rank one projector ϱ = |ψ⟩⟨ψ|. Notice that this correspondence is not unique as
the associated density operator ϱ is invariant under global phases of the pure state
|ψ⟩. However, we will see that quantum theory does not allow to distinguish states
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that only differ by a global phase. Consequently, identifying those states is a natural
procedure. We denote by S(H) ⊂ B(H) the set of all density operators. The state
S(Cd) ∋ ϱ = 1

d1 is called the maximally mixed state. Whether a quantum state ϱ is
pure or mixed can be directly decided by computing the so-called purity of the state,
which is defined as P(ϱ) := Tr

[
ϱ2]. A state ϱ is pure if and only if P(ϱ) = 1 and

P(ϱ) = 1
d for ϱ ∈ B(Cd) if and only if ϱ is maximally mixed. Because ϱ is self-adjoint,

the spectral theorem for self-adjoint operators guarantees that ϱ can be diagonalized
with non negative real eigenvalues {λj}j. Further, one has 1 = Tr[ϱ] = ∑j λj. This also
allows for an interpretation of mixed states in the other direction. Any mixed state
can be seen as a statistical mixture of pure states. Again, this correspondence does not
need to be unique. For instance, consider two sources S1, S2 with S1 producing the
states |0⟩ and |1⟩ each with probability 1

2 and S1 producing |x+⟩ and |x−⟩ each with
probability 1

2 , where |x+⟩ = 1√
2
(|0⟩+ |1⟩) and |x−⟩ = 1√

2
(|0⟩ − |1⟩). Then ϱS1 = ϱS2 ,

while the particular physical realization of the ensemble was different.
Given a physical system composed of two parts, lets say AB, one is often interested

in the effective quantum state that one party, lets say A, holds. This forgetting or
marginalization operation is mathematically described by the partial trace. If the state
of the joint system is an element of S(HA ⊗HB), the partial trace over system A is a
linear mapping

TrA : S(HA ⊗HB) → S(HB), (1.9)

which satisfies the relation

Tr[TrA[ϱ]W] = Tr[ϱ(1⊗ W)] (1.10)

for all ϱ ∈ S(HA ⊗ HB) and all operators W ∈ B(HB). The partial trace TrB over
subsystem B is defined in a similar way and the generalization to the multipartite case
is straightforward. It can be shown that a map defined by Eq. (1.9) and Eq. (1.10) exists
and is unique [39]. Similarly to the trace of an operator, also the partial trace can be
obtained by summing over an orthonormal basis. Indeed, if ϱ = ∑ijkl ϱ

ij
kl |ij⟩⟨kl| one has

ϱB = TrA[ϱ] = ∑
mn

∑
ijkl

ϱ
ij
kl⟨m|i⟩⟨k|n⟩|j⟩⟨l| = ∑

ijkl
ϱ

ij
kl |j⟩⟨l|. (1.11)

The partial trace is particularly easy to compute if the multipartite state |ψ⟩ is pure,
i.e., we have |ψ⟩ = ⊗n

j=1|ψj⟩. In this case, the corresponding density operator is given
by ϱ = ⊗n

j=1|ψj⟩⟨ψj| and the partial trace over subsystems S ⊂ {1, ..., n} is given by

TrS[|ψ⟩⟨ψ|] = ⊗j∈Sc |ψj⟩⟨ψj|. (1.12)

However, it should be noticed that in general taking the partial trace of a given state
does not preserve its purity. For instance, the Bell states defined in Eq. (1.6) are bipartite
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pure states, while the one-party reductions are all maximally mixed. We will discuss this
phenomenon in more detail in Section 1.2.2.

By construction, a mixed state can be seen as a statistical mixture of pure states. As
we will see now, there exists at least partially also a reverse statement, which is known
as state purification. The idea is that any mixed quantum state ϱ ∈ B(H) can be seen
as a pure state in a larger Hilbert space Q. Assume that ϱ has a decomposition of the
form ϱ = ∑j pj|ψj⟩⟨ψj|. Now consider the state

Q = H⊗K ∋ |η⟩ := ∑
j

√
pj|ψj⟩ ⊗ |j⟩, (1.13)

where {|j⟩}j is some orthonormal basis for the auxiliary Hilbert space K. The mixed
state ϱ can then be recovered from |η⟩ by tracing out the system K, that is, ϱ =

TrK[|η⟩⟨η|]. The state |η⟩ is called a purification of ϱ. Obviously, as the space K as
well as the orthonormal basis {|j⟩}j can be chosen arbitrarily, the purification is not
unique.

The Bloch sphere and operator bases

As already seen, we can expand every vector in a vector space with respect to some
basis. The set of bounded operators acting on a Hilbert space H, denoted by B(H),
is also a vector space and consequently a similar decomposition exists for operators.
Within this space, the set of density matrices arises as the intersection of the convex
cone of positive semidefinite matrices and the subspace of operators of unit trace. The
subset of B(H) containing only self-adjoint operators is denoted by BH(H) and forms
an R-linear subspace. For the case BH(C

2), that is, for qubits, there is a very popular
and common choice of basis. The Pauli operators are given by

σ0 = 1 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (1.14)

The operators σ0, σ1, σ2, σ3 are often denoted by I, X, Y, Z. The Pauli operators fulfill
a list of important properties. First, they are self-adjoint σj = σ†

j , they are traceless
Tr
[
σj
]
= 0 for 1 ≤ j ≤ 3, they are self inverse σ2

j = σ0, they fulfill the SU(2) commuta-
tion relation

[σi, σj] = 2i ∑
k

ϵijkσk, (1.15)

as well as the Dirac algebra

{σi, σj} = 2δijσ0. (1.16)

This already implies that they are orthogonal with respect to the Hilbert-Schmidt inner
product given by ⟨A, B⟩ = Tr

[
A†B

]
,

Tr
[
σ†

j σk

]
= Tr

[
σjσk

]
= 2δjk. (1.17)
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Figure 1.1: Illustration of the Bloch sphere. The red vectors denote the eigenstates of
the Pauli operators, while the green vector corresponds to an arbitrary pure
qubit state lying at the surface of the ball.

In particular, Eq. (1.16) together with σ2
j = σ0 means that Pauli operators either com-

mute or anticommute. Sometimes it is more convenient to consider a normalized vari-
ant of the Pauli operators, that is, Pj := (1/

√
2)σj such that Tr

[
PjPk

]
= δjk. In other

words, the set {P0, P1, P2, P3} is an orthonormal basis for BH(C
2) with respect to the

Hilbert-Schmidt inner product. Any qubit state can be expressed in the Pauli basis as

ρ =
1
2
(σ0 + r1σ1 + r2σ2 + r3σ3), (1.18)

where rj ∈ R for 1 ≤ j ≤ 3. In fact, this allows us to associate to each qubit density
operator ϱ faithfully a point in R3, i.e., r⃗ = (r1, r2, r3), which is called Bloch vector.
Indeed, from the positive semidefiniteness of ϱ and the normalization Tr[ϱ] = 1 it
follows that ||⃗r||2 ≤ 1. Further, one directly obtains that the purity P(ϱ) relates to
the length of the Bloch vector r⃗ via P(ϱ) = 1

2 (1 + ||⃗r||22). Consequently, there is a
bijective correspondence between qubit states and vectors in the unit ball of R3, with
the maximally mixed state at the origin and the pure states at the surface, see also
Fig. 1.1. Due to the orthogonality of the Pauli operators, one can directly compute the
coefficients rj for a given density operator ϱ via rj = Tr

[
ϱσj
]
.

As we have already seen for pure quantum states, it is often convenient to express
the global state as a combination of tensor products of the local bases. This works
similar for multipartite mixed states and is simply given by tensor products of Pauli
operators. In this way, one obtains the n-qubit basis of self-adjoint operators acting on
the tensor space (C2)⊗n as

Pn := {σα| σα = σα1 ⊗ · · · ⊗ σαn}. (1.19)

By using the orthogonality of single qubit Pauli operators and the fact that the trace is
multiplicative with respect to the tensor product, one directly obtains that Tr

[
σασβ

]
=
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2nδα1β1 · · · δαn βn . For a Pauli operator only acting on subsystem j we also write Xj and
similar for the other Pauli operators. For instance, for a four-qubit system one has
X2Y3 = IXYI = I ⊗ X ⊗ Y ⊗ I. A density operator ϱ of an n-qubit system can be
expanded with respect to the Pauli basis as

ϱ =
1
2n ∑

σα∈Pn

Tr[ϱσα]σα. (1.20)

The support of a Pauli string σα ∈ Pn is defined as the set of those positions on
which the operator σα acts nontrivial, that is, supp(σα) := {j|σαj ̸= I}. The number of
positions on which σα acts nontrivial is called the weight, wt(σα) = |supp(σα)|.

Although qubit and multi-qubit systems are very important in many applications
also systems where the local dimension of the constituents is larger play an impor-
tant role. In order to obtain a similar description of mixed states as in Eq. (1.20), one
needs Bloch representations for higher dimensions. Here the name Bloch representa-
tion refers to any choice of orthogonal basis of the operator space. However, in practice
one typically uses basis elements that also possess an additional algebraic structure.
One option for generalizing the Pauli matrices to higher spins is by using the observa-
tion that σ1, σ2, σ3 are generators of a representation of the Lie algebra su(2) associated
with the Lie group SU(2). The idea is to take as basis elements the d2 − 1 matrices
generating the Lie algebra associated to the special unitary group SU(d). There is an
easy prescription how such matrices, also called generalized Gell-Mann matrices, can
be constructed. It turns out that the set of generators decomposes into the subclass of
symmetric

λ
jk
s = |j⟩⟨k|+ |k⟩⟨j|, 0 ≤ j < k ≤ d − 1, (1.21)

of antisymmetric

λ
jk
as = −i|j⟩⟨k|+ i|k⟩⟨j|, 0 ≤ j < k ≤ d − 1, (1.22)

and of diagonal matrices

λℓ =

√
2

ℓ(ℓ+ 1)

(
ℓ

∑
j=1

|j⟩⟨j| − ℓ|ℓ+ 1⟩⟨ℓ+ 1|
)

, 0 ≤ j < k ≤ d − 2. (1.23)

It follows directly from the definition, that the generalized Gell-Mann operators are
self-adjoint and traceless. Further, they satisfy the orthogonality relations

Tr
[
λ

jk
s λ

αβ
s

]
= Tr

[
λ

jk
asλ

αβ
as

]
= 2δjαδkβ, Tr

[
λjλk

]
= 2δjk, (1.24)

while all other inner products vanish. Following the construction of the multi-qubit
Bloch representation, one can also obtain a similar variant for systems of higher di-
mension. Let Gd denote the generalized Gell-Mann operators of dimension d. Then, a
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tensor product basis can be obtained via

Λα = Λα1 ⊗ · · · ⊗ Λαn (1.25)

for Λαj ∈ Gd. Consequently, any many-particle density operator ϱ can then be ex-
panded as

ϱ =
1
2n ∑

α

Tr[Λαϱ]Λα. (1.26)

A different representation relies on the Heisenberg-Weyl or displacement basis. Al-
beit these operators share some convenient properties, e.g., they are unitary, they are
not self-adjoint. Define the phase operator X and the shift operator Z via their action
on a basis element

X|j⟩ = |(j + 1)mod d⟩, Z|j⟩ = ω j|j⟩, (1.27)

where the complex phase ω is given by ω = e
2πi

d . The operators X and Z do in general
not commute and obey the relation

ZlXm = ωlmXmZl . (1.28)

The unitaries corresponding to discrete phase-space displacements for d-level systems
are defined as

D(l, m) = ωlm/2ZlXm. (1.29)

Displacement operators have many convenient properties which make them partic-
ularly useful as a basis set. First, they are a complete set in the sense that they are a
basis for B(Cd). Second, they satisfy the following orthogonality condition

Tr[D(j, k)D(l, m)†] = d δj,lδk,m. (1.30)

Therefore, any quantum state ϱ ∈ S(Cd) can be decomposed into

ϱ =
1
d

d−1

∑
j,k=0

Tr[ϱD(j, k)]D(j, k)†. (1.31)

It should be noticed that the Bloch vector components with respect to the Heisenberg-
Weyl basis rjk = Tr[ϱD(j, k)] are generally complex, as the displacement operators are
not hermitian. Consequently, in order to fully characterize the density operator ϱ, one
has to determine d2 − 1 complex parameters.

1.1.2 Quantum measurements

Up to this point, we have only discussed how the state of a quantum system can be
described by Hilbert spaces and density operators. However, no concept introduced so
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far has been related to a quantity that could actually be observed. Quantum measure-
ments are the means by which we obtain information about a physical system. They
allow us to make predictions about observable quantities. However, in difference to
classical mechanics, the quantum-theoretical formalism only allows us in general to
predict outcome probabilities, but not the particular outcome itself. We will now in-
troduce the notion of observables and projective measurements, which are also called
projector-valued measures.

Given a quantum state ϱ ∈ B(H), an observable is described by a self-adjoint opera-
tor A ∈ B(H). In a run of an experiment, the possible observable outcomes are labeled
by the eigenvalues {aj}j of A. The probability to observe a certain outcome aj is given
by the Born rule

pj := Prob[aj|ϱ] := Tr
[
Πaj ϱ

]
, (1.32)

where Πaj is the projector corresponding to the eigenspace of A associated to eigen-
value aj. More precisely, as A is a self-adjoint operator, the spectral theorem allows for
a decomposition of the form A = ∑j ajΠaj , where the projector Πaj takes the case into
account, where the eigenspace can be degenerated, i.e., of dimension larger than one.
Because the outcomes of a measurement are related to projectors Πaj , an observable is
also called a projective measurement. Further, the expectation value of A with respect
to the state ϱ is

⟨A⟩ϱ = ∑
j

ajProb[aj|ϱ] = ∑
j

aj Tr
[
ϱΠaj

]
= Tr

[
ϱ ∑

j
ajΠaj

]
= Tr[ϱA]. (1.33)

In a similar manner as mixed states generalize the concept of pure states, positive-
operator valued measures (POVMs) generalize projective measurements. POVMs do
not only allow for incorporating the effect of experimental noise into the description
of a measurement, e.g., if the measurement apparatus is not coupling to the system
perfectly, but can also yield advantages in communication-theoretic tasks.

From an abstract perspective, any quantum measurement yields at its end a certain
outcome ω ∈ Ω, where Ω is the outcome space, i.e., the collection of all possible out-
comes that can be observed. However, it is natural to be not only interested in the
single outcomes but also in certain subsets of them. Therefore, one introduces on the
outcome space Ω an additional structure, called a σ-algebra, containing all the sets
one is typically interested in. Formally, a σ-algebra on Ω is a nonempty collection A of
subsets of Ω that is closed under complement, countable unions, and countable inter-
sections. The pair (Ω,A) is called a measurable space. If Ω is finite, it is convenient to
choose the power set of Ω as σ-algebra A, hence A contains 2|Ω| elements1. A proba-
bility measure on a measurable space (Ω,A) is a mapping µ : A → [0, 1] that satisfies

1For the case of Ω at most countable, one can show that the condition that A contains all singleton sets
{ω} for ω ∈ Ω already implies that A is given by the power set.
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the conditions µ(∅) = 0, µ(Ω) = 1 and for any countable collections {Xj}j ⊂ A of
disjoint sets of A one has µ(∪jXj) = ∑j µ(Xj). For a given event X ∈ A, the number
µ(X) is then interpreted as the probability that the event X occurs. In quantum theory,
given a Hilbert space H, one considers the associated effect space which contains all
self-adjoint positive semidefinite operators, whose spectrum is bounded by 1, that is,

E(H) := {E ∈ B(H) | 0 ≤ E ≤ 1}. (1.34)

An element E ∈ E(H) is called effect. The effect space offers a geometrical interpreta-
tion as a double cone, that is, it can be seen as the intersection of two cones.

A positive operator-valued measure (POVM) is a mapping P : (Ω,A) → E(H) such
that the conditions

P(∅) = 0 ∈ B(H), (1.35)

P(Ω) = 1, (1.36)

P
(
∪jXj

)
= ∑

j
P(Xj) (1.37)

hold, where Eq. (1.37) is with respect to all countable collections {Xj}j ⊂ A of disjoint
sets of A. By construction, a given POVM P induces a family of probability measures
µϱ on the measurable space (Ω,A) by virtue of the Born rule, that is,

A ∋ X 7→ µϱ(X) := Tr[ϱP(X)]. (1.38)

In other words, a POVM P together with the map X 7→ Tr[ϱP(X)] yields a probability
measure for every state ϱ ∈ B(H). For the case where Ω is finite, |Ω| < ∞, it is
convenient to identify a POVM with its image in the effect space. More precisely,
one regards a POVM as a collection of operators {Eω}ω∈Ω. Some comments are in
order. First, the notion of a POVM contains projective measurements as a special case.
Indeed, if one chooses the effects to be projectors, i.e., Eω = Πω, one exactly recovers
a projective measurement. Second, POVMs do not necessarily arise from a countable
outcome space Ω. A common example of a continuous outcome POVM is given by spin
measurements in random directions [39]. Consider the projection operators σ± (⃗n) :=
1
2 (1± σ⃗n⃗) for a spin direction n⃗ ∈ R3 with ||⃗n||2 = 1. If the input state ϱ ∈ B(C2) has
the Bloch decomposition ϱ = 1

2 (1+ r⃗ σ⃗), the probability to observe outcome ±1 given
that a spin measurement in direction n⃗ was implemented is

Tr[σ+ (⃗n)ϱ] = Tr[σ− (⃗n)ϱ] =
1
2
(1 + r⃗ n⃗). (1.39)

As already pointed out, a POVM together with a quantum state ϱ = 1
2 (1+ r⃗ σ⃗) induces

a probability measure on the underlying measurable space (Ω,A). Here, Ω is given by
the 2-sphere S2 ⊂ R3. Further, the associated σ-algebra A is simply given by the sub-
space σ-algebra, i.e., A = {A ∩ S2 | A ∈ B(R3)}, where B denotes the corresponding
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Borel algebra. Therefore, the corresponding probability measure on S2 is

B(S2) ∋ X 7→ µϱ(X) =
1

4π

∫
X
(1 + r⃗ n⃗) d⃗n, (1.40)

where 1
4π d⃗n refers to the surface element in spherical coordinates. Consequently, the

associated POVM is given by

B(S2) ∋ X 7→ P(X) =
1

4π

∫
X
(1+ n⃗⃗σ) d⃗n. (1.41)

We have already seen that any mixed quantum state can be regarded as a pure state
in an enlarged Hilbert space. A similar statement is true for POVMs and is known
under the name Naimark dilation [39, 40]. This theorem offers a prescription how
POVMs can be implemented in an experiment. We will state it here for the case of a
finite outcome space Ω. Let {Eω}ω∈Ω ⊂ B(H) be a POVM. Then, there exists a Hilbert
space K, a bounded operator V : K → H and a projector-valued measure {Πω}ω∈Ω

on B(K) such that

Eω = V Πω V†. (1.42)

Therefore, Naimarks theorem allows for implementing a POVM on a system H by first
coupling to another quantum system and then performing a projective measurement
{Πω}ω∈Ω on the enlarged system K.

State-update rules

A further important question is how the measurement process affects the state of the
system, that is, what the state after the measurement is. This state assignment depends
on what kind of measurement has been conducted and also on the particular update
rule. Here we will only comment on the case of projective measurements and leave the
discussion for POVMs to Section 1.1.3.

In a seminal book [41], von Neumann formulated a rule for how to obtain the state
of an ensemble of physical systems after a projective measurement A. If A is nonde-
generate, i.e., A = {|aj⟩⟨aj|} with ⟨ai|aj⟩ = δij, the measurement of A with respect to
a state ϱ leads to a collapse of the state into one of the eigenstates |aj⟩, depending on
the particular observed outcome aj. Notice that any kind of superposition of the state
is destroyed and the measurement leads to full decoherence in the entire eigenbasis of
the observable. However, if the observable is degenerated, there are in fact two differ-
ent rules, as well as certain hybrids thereof, for assigning a post-measured state to the
system.

According to von Neumann, the measurement device refines the observable A into
another commuting observable Ã, which is the actual implemented observable, having
a nondegenerate spectrum. The measurement process of A collapses the state into an
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eigenstate of Ã, removing any coherence of the original state as the degeneracy has
been lifted. It often happens that Ã arises from consecutive measurements. In this case,
A is a function of Ã, that is, A = f (Ã) for some function f and from a measurement
result ã of Ã for an individual run of the experiment one obtains the corresponding
result a = f (ã) for A. There is a second way how post-measurement states can be
assigned, which is due to Lüders [42]. Here, a system existing in a superposition of
degenerate eigenstates is unaffected by the measurement, such that coherence within
these subspaces is preserved. Given an observable A = {Πaj}, the state ϱ transforms
to

ϱ 7→
Πaj ϱΠaj

Tr
[
Πaj ϱ

] , (1.43)

given that the measurement outcome aj was observed. In principle, one can also think
about hybrid models of the von Neumann and Lüders rule, where one only lifts the
degeneracy of an observable A partially. The question is now which rule is the ap-
propriate choice. As there is no a priori choice for such an update rule that could be
derived from the postulates of quantum theory introduced so far, this question should
be answered with the help of experiments and not only theoretical considerations. The
validity of Lüders’s rule has recently been observed experimentally [43].

State discrimination tasks

In general, state discrimination tasks deal with the question how well two or multi-
ple quantum states can be distinguished in an experiment. However, in difference to
quantum state estimation procedures like quantum state tomography or parameter es-
timation, here one deals with a single copy of the input state. More formally, a source
prepares one quantum state among a set of n possible quantum states ϱ1, ..., ϱn which
are known in advance.

The particular preparation in each run follows a probability distribution, i.e., the
state ϱk occurs with probability pk and ∑k pk = 1. The task of state discrimination is
to design a (generalized) measurement which can discriminate between these states.
More precisely, one seeks a measurement N = (N1, ..., Nm) with m ≥ n, such that the
observation of the outcome k allows for an identification of the state ϱk.

In general, there are two approaches to solve the problem. In minimum error dis-
crimination one is forced to declare one of the states to be the prepared one, but one
allows for a wrong identification. This means that the POVM N has exactly as many
outcomes as state preparations. Among those POVMs, one aims to find an instance
which maximizes the success probability

Smed = ∑
k

pk Tr[Nkϱk]. (1.44)
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For the case of n = 2 pure states |ψ1⟩, |ψ2⟩ and equal probabilities p1 = p2 = 1
2 , the

optimal measurement can be derived analytically and therefore Smed can be computed
exactly. This bound is known as the Helstrom bound [44] and reads

Smed =
1
2
(1 +

√
1 − |⟨ψ1|ψ2⟩|2). (1.45)

Clearly, if the states are orthogonal, the success probability equals one and the states
can be discriminated perfectly. In case that |ψ1⟩ = |ψ2⟩, the discrimination between
them cannot succeed and we have Smed = 0. Note that the minimum error discrimina-
tion problem for n = 2 can also be solved if the two states are mixed and appear with
different probabilities [45].

On the other hand, in unambiguous state discrimination, no wrong identification is
allowed, that is, Tr[Nkϱl ] = 0 whenever k ̸= l ≤ n. However, one allows for an incon-
clusive result corresponding to the case where the identification was not successful.
Clearly, if the quantum states ϱj are not mutually orthogonal, no perfect discrimina-
tion is possible and hence one must allow for an additional measurement outcome,
corresponding to this inconclusive result. Consequently, the measurements of interest
have now m = n + 1 outcomes. Similar to the previous, the task is to find an optimal
measurement maximizing the success probability

Susd = ∑
k

pk Tr[Nkϱk]. (1.46)

Gleason’s Theorem

In the axiomatic formalization of quantum theory, which is mostly due to von Neu-
mann [41], the expectation value of an observable A with respect to a state ϱ is given
by ⟨A⟩ϱ = Tr[Aϱ]. However, one could ask the question whether one can envisage new
axioms for quantum theory that are weaker than those introduced so far and would
yield statistical predictions that differ from the rule ⟨A⟩ϱ = Tr[Aϱ]. In particular, this
points to the question whether density operators are an appropriate description of
quantum states or if there could be a more sophisticated construction. The theorem of
Gleason [46] effectively states that there is no such alternative if the dimension of the
Hilbert space is larger than 2. More formally, we are interested in the set of functions
ω : P(H) → R with P(H) the set of all projection operators of H such that

0 ≤ ω(Π) ≤ 1 ∀ Π ∈ P(H), (1.47)

ω(1) = 1, (1.48)

ω(∑
j

Πj) = ∑
j

ω(Πj), (1.49)

where the property in Eq. (1.49) holds for any set of mutually orthogonal projections,
that is, subsets {Πj}j ⊂ P(H) with ∑j Πj ≤ 1. Gleason’s theorem then states that if
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dim(H) > 2 there will exist a density operator ϱ ∈ B(H) such that ω(Π) = Tr[ϱΠ] for
all Π ∈ P(H).

1.1.3 Quantum channels

Up to this point, the introduced formalism is static and only allows for state changes
due to a measurement process. However, after the state preparation and before the
measurement, a non-trivial time evolution might occur. This evolution changes the
state of the system, for example, via an interaction of the system with the environment
or an ambient field.

Let us start by considering the state evolution of an isolated system whose initial
state is given by |ψ0⟩ ∈ H. If the system’s Hamiltonian is H, the evolution is governed
by the Schrödinger equation

ih̄
d
dt

|ψt⟩ = H|ψt⟩. (1.50)

Note that in general also the Hamiltonian can be time-dependent, H = H(t) = H0 +

V(t) for some time-dependent potential V(t), which often takes the form of an external
field. If the Hamiltonian itself is time-independent H = H0, the solution of Eq. (1.50)
is given by a matrix exponential and will read

|ψt⟩ = Ut|ψ0⟩ with Ut = e−
i
h̄ Ht, (1.51)

where |ψ0⟩ is the initial state of the system. The operators (Ut)t∈R form a strongly
continuous semigroup of unitary operators and −i 1

h̄ H is also called the generator
of time shifts [39]. This particularly implies that the evolution of an isolated system
is reversible as it is described by a unitary operation. However, there is a comple-
mentary approach for justifying why reversible dynamics on pure quantum states is
connected to a unitary evolution. From an abstract perspective, we are interested in
invertible mappings that transform the pure states of H into pure states. Let P1 de-
note the set of all rank-1 projectors associated with H, i.e., P1 = {|ψ⟩⟨ψ| : |ψ⟩ ∈ H}.
Wigner’s theorem [47] then assures that any bijective function f : P1 → P1 fulfilling
Tr[ f (|ψ⟩⟨ψ|) f (|ϕ⟩⟨ϕ|)] = |⟨ψ|ϕ⟩|2 for all |ψ⟩, |ϕ⟩ ∈ H is either unitary, i.e., f (|ψ⟩⟨ψ|) =
U|ψ⟩⟨ψ|U† for some unitary U or anti-unitary, i.e., f (|ψ⟩⟨ψ|) = U(|ψ⟩⟨ψ|)⊤U† for
some unitary U.

There is an analogue of the Schrödinger equation for mixed states, which is called
von Neumann equation. The von Neumann equation dictates that under a Hamilto-
nian H the system evolves according to

ih̄
dϱ

dt
= [H, ϱ]. (1.52)
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Similarly to Eq. (1.51), if the Hamiltonian is time-independent, the von Neumann equa-
tion can be easily solved and will yield

ϱt = Utϱ0U†
t with Ut = e−

i
h̄ Ht, (1.53)

where ϱ0 is the initial density operator of the system. The von Neumann equation has
the appealing property that it can be seen as a quantum analogue of the Liouville-
equation from classical mechanics2. However, it is often the case that the system under
consideration is not isolated and interacts with its environment. Such a system is also
called an open quantum system. For instance, assume that the system is in the state
ϱ ∈ B(HS) and couples to an environment which is initially in a pure state |ξ⟩ ∈ HE.

As the dynamics of the global system, that is, the system together with its environ-
ment, is unitary the effective dynamics of the system can be described by

ϱ 7→ σ = TrE[Uϱ ⊗ |ξ⟩⟨ξ|U†] (1.54)

for some unitary operator U ∈ B(HS ⊗HE). Time evolutions that are of the form given
by Eq. (1.54) are obviously trace preserving, that is, Tr[ϱ] = Tr[σ]. What is less obvious
is that they are in addition completely positive. Mappings being completely positive
and trace preserving (CPTP) are also called quantum channels.

A quantum channel Λ is a linear CPTP map

Λ : B(HA) → B(HB), (1.55)

where HA,HB are finite dimensional vector spaces. A linear map Λ is called positive
if it maps positive operators to positive operators. Further, Λ is called completely
positive if also the map Λ ⊗ idK : B(HA ⊗K) → B(HB ⊗K) is positive for any finite
dimensional Hilbert space K.

Given a quantum channel Λ the question is now how it relates to the state evolu-
tion in Eq. (1.54). This connection is established by the so-called Stinespring dilation
theorem [39, 48]. Suppose that Λ : S(H) → S(H) is a quantum channel acting on
the system of interest which is in the state ϱ. Then, there exists an environment, rep-
resented by the Hilbert space K, a pure state |ξ⟩ ∈ S(K) and a unitary operator
U : H⊗K → H⊗K such that Λ(ϱ) = TrK[U(ϱ ⊗ |ξ⟩⟨ξ|)U†]. Here it is important to
notice that the dilation, that is, the triple (K, |ξ⟩, U) is not uniquely determined by the
channel Λ. Indeed, an obvious reason for the non-uniqueness of the dilation is that the
dimension of the Hilbert space K is not limited.

So far, we have always regarded the states as the dynamical objects of the theory
while observables are static. This viewpoint is known as the Schrödinger picture. How-
ever, there is no reason why not the observables should evolve in time while keeping

2In statistical mechanics the Liouville equation describes the time evolution of the phase space distribu-
tion function.
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the quantum state fixed. The description of the evolution of the system from this per-
spective is referred to as Heisenberg picture. A third complementary viewpoint is the
so-called interaction picture where both, states and observables, are dynamical objects.

Representations of quantum channels

As quantum channels are linear maps, it is in principle sufficient to describe them via
their action on some set of basis vectors. This is the approach of the so-called Pauli-
transfer matrix (PTM) representation, which offers an elegant description of multi-
qubit channels. We have already seen that for an n-qubit system the set of tensorized
normalized Pauli operators {Pa}a forms an orthonormal basis for the space of ob-
servables. With respect to this set of operators one can assign to an arbitrary opera-
tor A ∈ B(H) its vector of coordinates via |A⟩⟩ = {Tr[σa A]}a. A quantum channel
Λ : B(H) → B(H) is then just a linear map assigning to a state vector |ϱ⟩⟩ a new state
vector |Λ(ϱ)⟩⟩. Consequently, the whole channel can be represented as a matrix whose
entries are given by

Λab = Tr[PaΛ(Pb)] = ⟨⟨Pa|Λ(Pb)⟩⟩. (1.56)

A different representation of a quantum channel is the so-called Kraus or operator-
sum form [39]. The Kraus decomposition asserts that any quantum channel Λ : S(H) →
S(H) can be written as

Λ(ϱ) = ∑
j

KjϱK†
j with ∑

j
K†

j Kj = 1, (1.57)

where Kj : H → H. The operators {Kj}j are called Kraus operators and the minimal
number of operators needed in order to represent the channel Λ is called the Kraus
rank of Λ. Clearly, a unitary channel ΛU(ϱ) := UϱU† for a unitary operator U has
Kraus rank one. In general, if dim(H) = d < ∞, then at most d2 Kraus operators Kj

are needed in order to represent a channel.
Further, there is a bijective correspondence between quantum channels and bipartite

quantum states. This relation is known as the Choi-Jamiołkowski isomorphism [39].
For a given quantum channel Λ : B(H) → B(K) the correspondence

JΛ := (Λ ⊗ idd)(|Φd⟩⟨Φd|), Tr[AΛ(B)] = d Tr
[

JΛ A ⊗ B⊤
]

(1.58)

is bijective for all A ∈ B(K), B ∈ B(H) and d = dim(H). The bipartite operator JΛ ∈
B(K⊗H) is called the Choi state of the map Λ. The Choi-Jamiołkowski isomorphism
enjoys many useful properties, for instance (i) JΛ ≥ 0 if and only if Λ is completely
positive, (ii) Λ is trace-preserving if and only if TrA[JΛ] = d−11, (iii) Λ is unital if and
only if TrA[JΛ] = d−11. Notice that in principle the state |Φd⟩ in the construction of
the Choi state could be replaced by any other pure quantum state, while obtaining a
similar channel-state duality. Such a correspondence will be one-to-one as long as the
respective reduced state is of full rank.
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Examples of important quantum channels

In the following we introduce some important quantum channels that usually appear
in the context of quantum information processing, where they are used to model dif-
ferent types of noise present in the system.

A very simple model of a quantum channel is the depolarizing noise channel of a
qubit system which is given by

Dp(ρ) := (1 − p)ρ + p
1

2
, (1.59)

where p ∈ [0, 1] denotes the rate of error. Physically, this corresponds to an apparatus
which outputs with probability p the depolarized qubit state 1

21 and with probability
1 − p the state ϱ. Geometrically, this channel yields a contraction of the Bloch sphere,
that is, the image of the Bloch sphere under the map Dp is a Bloch sphere of radius
p. In order to transform the channel Dp into operator-sum form, observe that for an
arbitrary ϱ we have the very useful identity

1 =
1
2
(ϱ + XϱX + YϱY + ZϱZ). (1.60)

Now substituting Eq. (1.60) into Eq. (1.59) we obtain

Dp(ϱ) = (1 − 3p
4
)1ϱ1+

p
4
(XϱX + YϱY + ZϱZ). (1.61)

Amplitude damping is an approximation to a noisy evolution that occurs in many
physical systems due to spontaneous emission of a photon from an atom and arises
from the inevitable coupling to the vacuum field. As a consequence, the atom tends
to decay from its excited state |1⟩ to its ground state |0⟩, even if the atom is in a su-
perposition of the ground and the excited state. The Kraus operators of the amplitude
damping channel Aγ of a two-level system are given by

K1 =
√

γ|0⟩⟨1| and K1 = |0⟩⟨0|+
√

1 − γ|1⟩⟨1|, (1.62)

where γ ∈ [0, 1] is the probability for the event that the system decays from the excited
state |1⟩ to the ground state |0⟩. It is obvious from the Kraus operators K1, K2 that
Aγ leaves the ground state |0⟩ invariant. On the other hand, the state |1⟩ maps to
γ|0⟩⟨0|+(1−γ)|1⟩⟨1|, thus damping the amplitude of the excited state |1⟩. In the more
general setting of an n-qubit system, one typically assumes that in first approximation
spontaneous emission acts independently on each of the qubits [49]. Therefore, the
n-qubit amplitude damping channel is simply the n-fold tensor product of the single
qubit channel Aγ.

Quantum instruments

In general, if a quantum measurement was not destructive, the system will still exist
after the measurement and one may aim to extract more information about the sys-
tem by performing a subsequent measurement. A different way of interpreting this is
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by viewing a quantum measurement as a state preparator. For instance, we will see in
Chapter 5 that local filtering is a process where upon a measurement and post-selecting
on a particular outcome a state with a higher purity is distilled. Both scenarios mo-
tivate a concept which is known as quantum instrument [39]. An instrument I is a
collection of completely positive trace-nonincreasing maps {Iω}ω∈Ω where Ω is the
outcome space such that ∑ω∈Ω Iω = Λ with Λ a quantum channel. If an instrument
{Iω}ω∈Ω acts on a quantum state ϱ it yields in dependence of the observed outcome
ω ∈ Ω the non-normalized state Iω(ϱ). The probability to observe the outcome ω

is given by Tr[Iω(ϱ)] and the state of the system after the measurement is given by
ϱω = Iω(ϱ)/ Tr[Iω(ϱ)].

Our main aim for introducing quantum channels is to complete the list of update
rules for post-measurement quantum states, see Section 1.1.2. Until now, we only have
defined a POVM on a purely statistical level without actually describing how it can be
implemented or how the state of the system changes after the measurement. A typical
instance of such an implementation is the so-called Lüders instrument. Given a POVM
{Eω}ω∈Ω one defines the maps

Iω(ϱ) :=
√

Eω ϱ
√

Eω. (1.63)

Using the cyclic property of the trace one can directly verify that for a given state ϱ the
instrument recovers the correct output statistics, i.e.,

Tr[Iω(ϱ)] = Tr
[√

Eωϱ
√

Eω

]
= Tr[Eωϱ]. (1.64)

Accordingly, the state of the system upon observing ω ∈ Ω is given by

ϱ 7→ ϱω =
Iω(ϱ)

Tr[Iω(ϱ)]
=

√
Eω ϱ

√
Eω

Tr[ϱEω ]
. (1.65)

1.1.4 The quantum measurement problem

Although the name suggests it, the quantum measurement problem is not solely con-
cerned with the role of measurements in quantum theory but points to a much more
general problem, the quantum-to-classical transition. The core question is how classi-
cal systems and classical properties that we experience in the macroscopic world can
emerge from the underlying quantum domain. Indeed, we do not observe superposi-
tions of macroscopic distinguishable positions and this paradox manifests itself in the
context of measurements in quantum theory. The results and definitions presented in
this Section are covered in Ref. [50].

The ideal von Neumann scheme

Even though a measurement apparatus appears classical, e.g., takes definite and well
distinguishable values, it consists of atoms which should admit a purely quantum
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mechanical description. It is therefore a natural question whether one can describe
the process of a measurement entirely by quantum theory, i.e., model the physical
interaction between system and apparatus using the formalism of quantum mechanics.
However, the von Neumann scheme of a quantum measurement applies to much more
situations, as it gives a simple explanation to the question how entanglement between
systems arises.

A quantum measurement typically involves a microscopic system S and a measure-
ment apparatus A. Both of them are treated as quantum systems. This means that
one associates to S the Hilbert space HS with basis {|sj⟩} and to A the Hilbert space
HA with basis {|aj⟩}. The states of the apparatus should correspond to the different
positions that a pointer can take, indicating the result of the measurement. As those
positions are typically distinguishable one assumes that the pointer states |aj⟩ are mu-
tually orthonormal. The measurement process is now a dynamical interaction between
the system S and the apparatus. As we aim to infer the state of S by means of A, the
interaction should be of the form

|sj⟩S|R⟩A 7→ |sj⟩S|aj⟩A (1.66)

for all possible values of j where |R⟩ denotes the initial state of the apparatus. The
appearance of |aj⟩ implies that the system was in the state |sj⟩. Further, if the system S
was in state |sj⟩ the joint system will be found after the interaction in the state |sj⟩|aj⟩.
Consequently, Eq. (1.66) yields a bijective correspondence between system states and
pointer states. This relation also motivates the name ideal measurement, as the interac-
tion does not disturb the initial state of the system, i.e., after the interaction with the
apparatus the system S is still in the state |sj⟩.

Applying the evolution defined in Eq. (1.66) to an arbitrary superposition of basis
states |ψ0⟩ = ∑j cj|sj⟩ with cj ∈ C yields

|ψ0⟩|R⟩ 7→ |ψt⟩ = ∑
j

cj|sj⟩|aj⟩ ∈ HS ⊗HA. (1.67)

The evolution of the factorized quantum state |ψ0⟩|R⟩ into a superposition of system-
apparatus states |ψt⟩ represents the von Neumann quantum measurement scheme.
Clearly, the superposition has been broadcasted from the system S to the apparatus.
Consequently, it is not possible to ascribe an individual state to the system S. This
raises a serious problem. If the evolution in Eq. (1.67) describes the whole measure-
ment, how can the state |ψt⟩ reflect our experience of definite outcomes? This points
to the fact that |ψt⟩ does not yield a complete description of the measurement. In this
context, the evolution in Eq. (1.67) is also called a pre-measurement [50].
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Unfolding the measurement problem

The notion of a pre-measurement offers a precise formulation of the quantum-to-
classical transition and its application to quantum measurements. In the following
we will discuss how the measurement problem can be decomposed into three sub-
problems, where two of them can be resolved via the so-called decoherence pro-
gram [50–53].

(1) The preferred basis problem: If one considers the von Neumann scheme in
Eq. (1.67), it turns out that the final state |ψt⟩ does not uniquely determine the
observable that was intended to be measured. For instance, suppose that we
intend to measure σ3 and that the initial state of the system is the +1 eigenstate
of σ1, i.e., 1√

2
(|0⟩+ |1⟩). If the pointer states are denoted by |0⟩ and |1⟩, then the

state after the evolution is given by

|ψt⟩ =
1√
2
(|00⟩+ |11⟩) = 1√

2
(|⃗n−⟩|⃗n−⟩+ |⃗n+⟩|⃗n+⟩), (1.68)

for any spin direction n⃗ (cf. Schmidt decomposition in Section 1.2.2). However,
this implies that the device A has formed correlations with both σ3 and σ⃗n. Con-
sequently, it seems that the device A has measured simultaneously two noncom-
muting observables in contradiction with the laws of quantum mechanics.

(2) The nonobservability of interference: From Eq. (1.67) it follows that superposi-
tions of macroscopic objects such as measurement devices should appear in na-
ture. However, for systems of macroscopic size interference effects are typically
observed to vanish. This raises the question why we do not observe macroscopic
interference while being predicted by the von Neumann scheme.

(3) The problem of outcomes: On the one hand, if one conducts a measurement
on a system, one would expect to obtain a definite result, e.g., a distinguishable
pointer position. On the other hand, the von Neumann scheme in Eq. (1.67) pre-
dicts that the final state will be in a superposition of system-apparatus states.
This raises the problem of how these different scenarios can be reconciled. How-
ever, even if one can explain the appearance of definite pointer states the question
remains how one arrives at a particular outcome. These two problems are termed
the problem of outcomes [50].

The thought experiment of Wigner

The problem of outcomes raises the question how one can explain the experience of
an observer to obtain a definite, classical outcome. This seems to point to the fact
that a division of the world into a part that is treated with quantum theory and a
part that is not, i.e., the classical apparatus, is necessary. However, if the location of
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the quantum-classical boundary marks the distinction between the observer and what
is being observed, what about situations that involve multiple observers? More pre-
cisely, is each observer permitted to treat the other observer as a quantum system?
Questions of this form can be seen as reformulations of the problem when and where
the collapse-inducing measurement takes place.

Consideration of scenarios involving multiple observers was initiated by Wigner [54]
and has the name thought experiment for two reasons. First, it is a purely hypothetical
experiment. Second, Wigner designed the experiment in order to support his view
that consciousness, i.e., a thoughtful observer, is necessary to complete the quantum
measurement process.

Suppose that a friend, named Alice, is located in a laboratory that is perfectly iso-
lated from its environment. Within the lab she has access to a microscopic physical
two-level system S on which she can perform a dichotomic measurement, which can
yield outcomes a = 0 or a = 1. Further, outside of the lab, there is Wigner who aims
to describe the experiment which his friend Alice has implemented inside the lab. For
him, the whole lab appears as a physical system whose evolution is governed by the
Schrödinger equation. For simplicity the friend Alice is also described by a two-level
system as this abstraction captures all the relevant information, even though Alice can
be of arbitrary complexity. We assume that before Alice implements the measurement
she is in some state |R⟩A ∈ HA. The von Neumann scheme then implies that

|0⟩S|R⟩A 7→ |0⟩S|0⟩A and |1⟩S|R⟩A 7→ |1⟩S|1⟩A. (1.69)

Suppose that the system S was initially prepared in the state |+⟩, a fact known to
Wigner. As he treats the lab as an isolated system, after the interaction, he assigns the
state

|+⟩|R⟩ 7→ |ψ⟩ = 1√
2
(|00⟩+ |11⟩). (1.70)

Wigner then enters the room to inquire about the outcome of the experiment. Alice,
describing her measurement according to the measurement postulate will answer that
she has observed either 0 or 1. Then Wigner has to conclude that from his perspective,
the superposed state in Eq. (1.70) has collapsed onto either one of its two components
|00⟩ or |11⟩. However, what would Alice have said about the outcome of the experiment
before Wigner had entered the lab and asked the first question?

At the time Wigner proposed the experiment, he concluded that the superposition
in Eq. (1.70) must be regarded as absurd as it contains two "distinct states of con-
sciousness" [54]. For him, consciousness must break the unitary evolution and induces
a collapse of the wave function onto a definite state of the conscious observer [54].
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Deutsch’s version of Wigner’s friend

The thought experiment developed by Deutsch [55] is formally similar to the previ-
ous one, but introduces two novel ideas to the setup. These two ideas will become
relevant in Section 3 when discussing the measurement problem from the viewpoint
of so-called local friendliness correlations. First, there can be a physical record of an
experiment being performed in the past, which can exist independently from its out-
come. More precisely, it allows Wigner to obtain information on whether the friend has
observed a definite outcome upon her measurement or not without revealing which
particular outcome has been observed. Second, Deutsch added a further step at the
end of the protocol where Alice’s measurement of the system S is undone. This has
the surprising consequence that Wigner can experimentally distinguish whether or not
Alice’s lab was in a superposition before he entered the laboratory.

Formally the scenario is as follows: The friend inside the lab does not only record
what she observed but also whether or not she has observed a definite outcome. For
this purpose, one allows the system where Alice stores this information, i.e., the infor-
mation of outcome and of the definiteness of the result, to be of the form HA1 ⊗HA2 .
Assume that she is initially in the state |0⟩A1 |0⟩A2 . The correspondence between the
measurement outcome and the internal state is given by

|0⟩S|0⟩A1 |0⟩A2 7→ |0⟩S|0⟩A1 |1⟩A2 and |1⟩S|0⟩A1 |0⟩A2 7→ |1⟩S|1⟩A1 |1⟩A2 . (1.71)

If the system is initially in the state |+⟩, then the interaction according to Eq. (1.71)
yields the state

|ψ⟩ = 1√
2
(|0⟩S|0⟩A1 |1⟩A2 + |1⟩S|1⟩A1 |1⟩A2) =

1√
2
(|0⟩S|0⟩A1 + |1⟩S|1⟩A1)|1⟩A2 .

(1.72)

The important point is now that we can reveal the information whether Alice has
observed a definite outcome or not without inferring any information about the par-
ticular realized outcome. For this, introduce two measurement operators

B(HA1 ⊗HA2) ∋ P = |01⟩⟨01|+ |11⟩⟨11| (1.73)

and

B(HA1 ⊗HA2) ∋ Q = |10⟩⟨10|+ |11⟩⟨11| − |00⟩⟨00| − |01⟩⟨01|. (1.74)

Clearly P is a projector and has the two eigenvalues 0, 1, where the corresponding
subspaces are degenerate and of dimension two. The λ = 0 subspace is spanned by
|00⟩ and |10⟩ while the λ = 1 subspace is spanned by |01⟩ and |11⟩. The eigenvalues
of Q are given by ±1, each with degeneracy two. The λ = 1 subspace is spanned by
|10⟩ and |11⟩ while the λ = −1 subspace is spanned by |00⟩ and |01⟩. The form of the
observables P and Q has been chosen in a thoughtful way. Indeed, a measurement of
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P reveals whether the friend sees a definite outcome or not while a measurement of
Q yields the outcome observed by Alice. Here it is crucial that the measurement of P
does not contain any information about the actually observed value a = 0 or a = 1. If
it would, then the state in Eq. (1.72) would not factorize with respect to the bipartition
SA1|A2. In addition, if Wigner would have access to the information of the realized
outcome, lets say a = 1, he would assign to Alice’s lab the state |1⟩S|1⟩A1 |1⟩A2 rather
than a superposition.

In the final step, after Alice has completed the measurement, that is, she has updated
her knowledge from |00⟩ to either |01⟩ or |11⟩ depending on the state of the system,
some external control is applied to Alice’s entire lab SA1 A2. This control restores the
information about the observable Q and the system but not about P. More precisely,
the action on basis kets is given by

|001⟩ 7→ |001⟩, |111⟩ 7→ |100⟩. (1.75)

Even though this evolution may be difficult to realize in practice, e.g., the system
may be of macroscopic size, it is not forbidden if one assumes quantum theory to be
universally valid. Thus assuming that it can be implemented, the resulting state of
Alice’s lab is

|ψ⟩ 7→ |η⟩ = 1√
2
(|001⟩+ |101⟩) = |+⟩|0⟩|1⟩. (1.76)

The state |η⟩ does not contain any information about the outcome of the measurement
and the system S has returned to its initial state. However, there still exists a record
that the experiment had been performed in the past. Now Wigner can test this super-
position by applying a direct measurement of σ1 to S. As |+⟩ is an eigenstate of σ1,
quantum theory predicts that the outcome is with certainty +1. On the other hand,
according to the measurement postulate, after Alice completes her measurement the
state would be in one of the states |001⟩ or |111⟩. Applying the external control would
yield the state |000⟩ or |100⟩. Wigner’s final measurement with respect to σ1 would
thus yield uniformly random outcomes. Therefore, this scheme distinguishes whether
or not Alice’s lab was in a superposition state.

1.2 Correlations and quantum theory

1.2.1 The EPR argument

Already in 1935 quantum theory had established itself as a very successful and accu-
rate theory and seemed fine for all practical purposes [56]. However, due to its abstract
formulation involving Hilbert spaces, it was not clear to what extend the quantum
formalism relates to the physical reality. In particular, one question was whether the
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quantum state |ψ⟩ mirrors the physical reality perfectly, i.e., whether the wave function
corresponds to something physical real.

The argument of Einstein, Podolsky and Rosen (EPR) from 1935 picks up this ques-
tion and asks for the completeness of quantum theory [3]. Even though they do not
attempt to fully characterize what a complete theory is, they present a necessary condi-
tion. They demand that every element of the physical reality must have a counterpart
in the physical theory. More precisely, if one can extinguish an element of reality for
which the physical theory cannot provide a corresponding counterpart, the physical
theory cannot be regarded as complete [50]. Further, they regard as a sufficient condi-
tion for a physical quantity to be an element of reality, that it can be predicted with
certainty without disturbing the system. This resembles our intuition that a measure-
ment of a physical quantity reveals a property that has already existed before the
measurement was performed. In their work, EPR apply the criterion for elements of
physical reality to a composite system of distant particles, i.e., any action on the first
system cannot affect the physical situation of the second. In the version of Bohm [57],
one considers a pair of qubits in the state |ψ−⟩. We have already seen in Eq. (1.68) that

|ψ−⟩ = 1√
2
(|00⟩+ |11⟩) = 1√

2
(| − −⟩+ |++⟩), (1.77)

where |±⟩ are the eigenstates of σ1. If now Alice decides to measure σ3, the wave func-
tion on Bob’s side changes to |0⟩ or |1⟩ depending on Alice’s outcome. In particular,
as Bob’s state after the measurement is in an eigenstate of σ3, the measurement of σ3

on the second system can be predicted with certainty. However, if σ1 is measured on
Alice’s side, the state of Bob will change to |+⟩ or |−⟩, and thus also can be predicted
with certainty. If one now assumes that both parties are sufficiently separated, the
measurement on the first subsystem does not cause a change in the second subsys-
tem. Therefore both, σ1 and σ3, simultaneously correspond to elements of reality. But
quantum theory precludes the simultaneous assignment of definite values to noncom-
muting operators as σ1 and σ3. From this EPR concluded that quantum theory must
be incomplete.

1.2.2 Quantum entanglement

We have seen in Section 1.1.1 that a pure multipartite quantum state is described by a
state vector of the form

|ψ⟩ = ∑
j1,...,jn

ψj1···jn |j1⟩ · · · |jn⟩ (1.78)

for certain coefficients ψj1···jn ∈ C. In general, those states cannot be written as a tensor
product of local tensor factors, i.e., |ψ⟩ ̸= |ψ1⟩ · · · |ψn⟩. If |ψ⟩ factorizes, it is called
a product state. If |ψ⟩ is not a product state, this has the consequence that it is not
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possible to assign a single state vector to each of the n subsystems. The fact that |ψ⟩
is not factorizable expresses on a formal level that |ψ⟩ is entangled. Easy examples of
entangled states are the Bell states introduced in Eq. (1.6). We will refer to entangle-
ment in pure states as pure state entanglement. In the case that |ψ⟩ is a product state,
|ψ⟩ = |ψ1⟩ · · · |ψn⟩, it is also called fully separable. Further, we call |ψ⟩ m-separable if
there exists a partition P = {P1, ..., Pm} of the set {1, ..., n} such that

|ψ⟩ = ⊗m
j=1|ψPj⟩, (1.79)

where |ψPj⟩ ∈ HPj := ⊗k∈Pj
Hk. This means that while the state factorizes with respect

to the given partition P, it could still be entangled within the subspaces HPj . If each
party independently measures an observable, that is, party j measures Aj, on a product
state, the expectation value of A = A1 ⊗ · · · ⊗ An factorizes as

⟨A⟩|ψ⟩ = Tr[A1|ψ1⟩⟨ψ1|] · · ·Tr[An|ψn⟩⟨ψn|]. (1.80)

However, for a realistic description of an experiment, mixed quantum states are the
appropriate notion. In order to extend the concept of entanglement to mixed states
one characterizes those states that should not fall into that class. This yields the set of
so-called classical correlated quantum states and entangled states are the complement
thereof. Consider a scenario where two parties Alice (A) and Bob (B) receive one part
of a quantum system ϱ ∈ B(HA ⊗HB), each originating from a different preparation
devices. Suppose that each of the devices P ∈ {A, B} has j = 0, ..., n − 1 different set-
tings and produces upon choice a quantum state ϱ

j
P. Further suppose that in addition

to the two preparation devices one has access to a random number generator which
yields random numbers among the set {0, ..., n − 1} with probability pj. Now, in each
round of the experiment, one can first draw a random number j and accordingly to the
output, one prepares the states ϱ

j
P. If Alice measures observable OA and Bob measures

observable OB, the observable statistics would be

⟨OA ⊗ OB⟩ϱ =
n−1

∑
j=1

pj Tr
[
ϱ

j
AOA

]
Tr
[
ϱ

j
BOB

]
= Tr[OA ⊗ OBϱ], (1.81)

where

ϱ = ∑
j

pjϱ
j
A ⊗ ϱ

j
B. (1.82)

States that are of the form Eq. (1.82) are called classical correlated or separable [58].
Notice that for those classical correlated states the expectation value in Eq. (1.81) does
not factorize as it was the case in Eq. (1.80). The extension to the multipartite case is
straightforward. A mixed quantum state is called m-separable if it can be written as
a convex combination of m-separable pure states. Notice that the pure states in the
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convex decomposition do not need to be m-separable with respect to the same parti-
tion. Clearly, if the state is m-separable, then it is also (m − 1)-separable. This yields a
hierarchical structure of sets among which 2-separability is the weakest notion of sep-
arability, which is also called biseparability. If a multipartite state is not biseparable, it
is called genuinely multipartite entangled. In general, in order to determine whether
a quantum state ϱ is entangled or not, one has to check whether it admits a separable
state decomposition as in Eq. (1.82). This problem is known as the separability prob-
lem. Unfortunately, this problem is computationally difficult and it is known to be
NP-hard [59, 60]. However, this does not imply that there do not exist certain subsets
of states for which entanglement could be decided efficiently. As we will see later, a
variety of entanglement criteria has been developed aiming exactly for that detection.

Pure bipartite entanglement and the Schmidt decomposition

Bipartite pure entanglement has a particularly easy structure and a complete classifica-
tion is possible. This is mostly due to the Schmidt decomposition, a direct consequence
of the singular value decomposition, which is an indispensable tool in entanglement
theory.

Theorem 1. Let |ψ⟩ ∈ HA ⊗HB be a quantum state. Then there exists a local basis {|j⟩A}j

for HA and a local basis {|j⟩B}j for HB such that

|ψ⟩ =
d−1

∑
j=0

λj|j⟩A ⊗ |j⟩B (1.83)

with positive, uniquely determined Schmidt coefficients λj and Schmidt rank d = min(dA, dB)

where dj = dim(Hj). If the λj are pairwise different, then also the Schmidt vectors |j⟩A and
|j⟩B are unique up to a phase.

The idea behind the proof of Theorem 1 is as follows. If the state is presented in an
arbitrary basis |ψ⟩ = ∑j,k ψjk|jk⟩, one can regard the coefficients as a matrix Cij = ψij. A
singular value decomposition then yields C = UDV† where U, V are unitary matrices
and D is rectangular diagonal matrix with non-negative real numbers on the diagonal.
It can be shown that the overall cost of computing the singular value decomposition
of a matrix C ∈ Cm×n requires O(mn2) operations [61]. From the decomposition of the
state in Eq. (1.83) one can directly see whether or not the state is entangled. Conse-
quently, there exists an efficient algorithm for deciding whether a bipartite pure state
is entangled.

We will call |ψ⟩ ∈ H ⊗ H with d = dim(H) a maximally entangled state, if the
Schmidt coefficients are given by λj = 1√

d
for 1 ≤ j ≤ d. Indeed, the state |Φd⟩

introduced in Eq. (1.7) is maximally entangled with respect to that definition. It should
be noticed that the demand of pairwise different Schmidt coefficients {λj}j is crucial
for the uniqueness of the Schmidt vectors. For instance, consider the state |ϕ+⟩ from
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Eq. (1.6), which is already given in the form of a Schmidt decomposition. The Schmidt
vectors correspond to the eigenstates of σ3 and the Schmidt coefficients are given by
λ1 = λ2 = 1√

2
. Due to this full degeneracy, this state admits a Schmidt decomposition

with respect to any spin direction. If we denote by σ⃗n := σ⃗ · n⃗ = ∑j njσj and by |⃗n±⟩
the eigenvector corresponding to eigenvalue ±1 of the operator σ⃗n then

|ϕ+⟩ = 1√
2
(|z−⟩|z−⟩+ |z+⟩|z+⟩) =

1√
2
(|⃗n−⟩|⃗n−⟩+ |⃗n+⟩|⃗n+⟩) (1.84)

for any spin direction n⃗ ∈ R3 with ||⃗n|| = 1. Further, states of that form fulfill many
useful identities. For instance, any maximally entangled state |ψ⟩ is of the form |ψ⟩ =
(1⊗ U)|Φd⟩ for some unitary operator U and |Φd⟩ as defined in Eq. (1.7). Further, for
any A, B ∈ B(H) one has

Tr[A ⊗ B|Φd⟩⟨Φd|] =
1
d

Tr
[

A⊤B
]
, (A ⊗ 1)|Φd⟩ = (1⊗ A⊤)|Φd⟩. (1.85)

In addition, any bipartite pure state |ψ⟩ with ϱB = TrA[|ψ⟩⟨ψ|] can be written as

|ψ⟩ = (1⊗ C)|Φd⟩, (1.86)

where C =
√

d
√

ϱBV with V : H → H an isometry [39].
There also exists a Schmidt decomposition for bipartite mixed quantum states ϱ ∈

B(HA ⊗HB), which is mathematically a direct consequence of Theorem 1. Any density
operator ϱ can be written as

ϱ = ∑ λjGA
j ⊗ GB

j , (1.87)

where λj ≥ 0 and the operators {GA
j }j, {GB

j }j form an orthonormal basis for the vector
space of observables BH(HA), BH(HB), respectively. However, apart from the analogy
to the pure case, no necessary and sufficient criterion is known to decide whether a
quantum state ϱ is entangled or not solely based on its Schmidt decomposition.

Multipartite entanglement and its classification

A different approach to gain insight into the entanglement properties of quantum
states is to consider their interconvertibility. More precisely, one could ask whether
two given quantum states |ψ1⟩ and |ψ2⟩ could be transformed into each other by
means of a set of local operations. One popular class of such local operations is the
set of local unitary (LU) operations. In this context, one calls the n-partite states
|ψ1⟩ and |ψ2⟩ LU equivalent if there exist local unitary operators U1, ..., Un such that
|ψ2⟩ = U1 ⊗ · · · ⊗ Un|ψ1⟩. This notion directly generalizes to mixed quantum states.
ϱ1 and ϱ2 are LU equivalent if and only if ϱ2 = Uϱ1U† with U = U1 ⊗ · · · ⊗ Un. Such
a local unitary operation only changes the local basis of the quantum state and is ob-
viously locally reversible. From a mathematical viewpoint, in the simplified case of
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n-qubits, one considers the action of the unitary group U(2)×n on the space (C2)⊗n,
where each copy of U(2) acts on a different spin system, i.e. on the corresponding
copy of C2. Then one asks for the orbits under the action of the local transformation
group, that is, (C2)⊗n/ U(2)×n. However, even for the smallest case of a two-qubit
system, continuous parameters are needed to label all equivalence classes [62]. Hence,
there are infinitely many different forms of entanglement. For pure states, the ques-
tion of LU equivalence of n-partite qubit states can in principle be solved via so-called
local polynomial invariants [63], which are polynomials that are invariant under local
unitary transformations. Even though one can prove that the set of such invariants is
finitely generated [64], i.e., it is sufficient to only consider a finite set of them, complete
finite sets are only known for very few simple cases.

In general, a simpler classification of multipartite entanglement classes would be
advisable. These new equivalence classes would then be given as coarse grainings of
the former, fine-grained equivalence classes. Clearly, to obtain less equivalence classes,
the set of allowed transformations must be enlarged. One of such larger classes of lo-
cal transformations is given by the set of local operations and classical communication
(LOCC). We will illustrate this for the bipartite case with parties named Alice and Bob.
A channel Λ : S(HA ⊗HB) → S(HA ⊗HB) will be called a LOCC channel, if it can be
written as a sequence of instruments and channels as well as an exchange of classical
communication. In particular, no quantum information between the different parties
can be transferred and no entanglement between the parties can be created. Note that
the quantum channel that is applied by the parties in the n-th run of the LOCC proto-
col can depend on the operations and possible measurement outcomes in the previous
n− 1 rounds. Assume that the protocol initializes with Bob performing a measurement
with outcome space Ω1, which is described by an instrument {Iω1}ω1∈Ω1 , such that

∑ω1∈Ω1
Iω1 =: EB

1 is a quantum channel. Upon observing outcome ω1, he communi-
cates ω1 to Alice. This ends the first round of the LOCC protocol. The second round
starts with Alice choosing a measurement with outcome space Ω2, corresponding to an
instrument {Iω2}ω2∈Ω2 . The particular choice can depend on the received information
ω1. Upon applying the instrument and obtaining outcome ω2, Alice communicates her
outcome ω2 to Bob, who continues his action, and so on. After the n-th information
exchange, Alice and Bob each can apply a local channel which is allowed to depend on
all the previous communicated outcomes, that is, ΛA

n+1|ωn ···ω1
⊗ ΛB

n+1|ωn ···ω1
. Finally,

as a result of the whole protocol, Alice and Bob have applied a LOCC channel of the
form

Λ = ∑
ω1···ωn

(ΛA
n+1|ωn ···ω1

⊗ ΛB
n+1|ωn ···ω1

) · · · (IA
ω2|ω1

⊗ IB
ω1
). (1.88)

It can be shown that for the case of pure quantum states deciding LOCC equivalence
of quantum states reduces to deciding LU equivalence [65].

It is often convenient to distinguish between different subclasses of LOCC protocols.
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For instance, the class LOCC0 is the class of local operations where no communication
between the parties is allowed. In this case, the general LOCC channel in Eq. (1.88)
collapses to Λ = ΛA ⊗ ΛB where ΛA, ΛB are quantum channels acting on the respec-
tive systems. A larger LOCC class is the set LOCC1a, where a single communication
round from Alice to Bob is allowed. Alice makes a measurement described by an in-
strument {Iω}ω∈Ω and obtains outcome ω, which she communicates to Bob. Upon
receiving Alice’s output, he applies a channel ΛB

ω that can depend on ω. This results
in a so-called LOCC-1a channel [66] and is of the form

LOCC1a ∋ Λ = ∑
ω∈Ω

Iω ⊗ ΛB
ω. (1.89)

Yet another different class of local transformations is the set of stochastic local op-
erations and classical communication (SLOCC). This class is conceptually the same as
LOCC with the difference that the state conversion has not to be achieved with cer-
tainty. Mathematically, one can show that an equivalent definition is the following [67]:
Two n-partite quantum states |ψ1⟩, |ψ2⟩ ∈ ⊗n

j=1Hj will be SLOCC equivalent, if and
only if there exist Aj ∈ GL(Hj) for 1 ≤ j ≤ n, such that

|ψ2⟩ = A1 ⊗ · · · ⊗ An|ψ1⟩, (1.90)

where GL(H) denotes the group of all invertible operators acting on H. In difference to
the case of LU equivalence, the number of orbits for the bipartite case is finite. Indeed,
as SLOCC transformations cannot increase the Schmidt rank of a bipartite quantum
state, the Schmidt rank is a SLOCC invariant. However, it turns out that the Schmidt
rank of the quantum state is the only invariant for SLOCC orbits and consequently,
when considering a system of the form CdA ⊗ CdB , the number of SLOCC orbits is
simply given by min(dA, dB). If in the bipartite case the Schmidt rank of the state is
larger than 1, then the state is automatically genuine entangled. Consequently, the
maximally entangled state |Ψd⟩ is a representative of the class of genuine entangled
states and it is sufficient to only consider this particular state.

Interestingly, for the case of three qubits the situation changes. Here, there are six
inequivalent entanglement classes and it turns out that there are two inequivalent
classes of genuine multipartite entanglement. The first class can be represented by the
so called GHZ state [67] given by

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) (1.91)

and the second class by the W state

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩). (1.92)

The other classes are given by the three possible classes of bipartite entanglement, i.e.,
AB|C, A|BC and AC|B, and the class of fully separable states. However, it turns out the
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class of W states is much smaller than the class of GHZ states. Indeed, by observing
that any three-qubit state |ψ⟩ can be transformed by means of LU operations into the
form [68]

|ψ⟩ = λ0|000⟩+ λ1eiϑ|100⟩+ λ2|101⟩+ λ3|110⟩+ λ4|111⟩ (1.93)

with λj ≥ 0, ∑j λ2
j = 1 and ϑ ∈ [0, π], one can see that any state within the W class has

to fulfill λ4 = ϑ = 0. As this yields a set of states which is of lower dimension than
the set of all states, this shows that the W class is a set of measure zero in the set of all
pure states.

The two classes are also different from a physical perspective. The GHZ state in
Eq. (1.91) is maximally entangled and can be seen as a generalization of the Bell states
of two qubits. In addition, this state plays an important role in the context of Bell
inequalities [69], see Section 1.2.3. The entanglement of the W state turns out to be
more robust against particle losses. Indeed, if one particle is lost in the GHZ state the
resulting state TrA[|GHZ⟩⟨GHZ|] equals the maximally mixed state of the remaining
parties B and C and is thus separable. However, for the W state, the reduced density
operator TrA[|W⟩⟨W|] is entangled.

The PPT criterion

The positive partial transpose (PPT) or Peres-Horodecki criterion is a necessary sep-
arability criterion which can be very efficiently evaluated. It states that if a bipartite
state ϱ given by

ϱ = ∑
jkmn

ϱ
jm
kn |j⟩⟨m| ⊗ |k⟩⟨n| (1.94)

is separable, then the so-called partial transpose of ϱ

ϱTA := ∑
jkmn

ϱ
mj
kn |j⟩⟨m| ⊗ |k⟩⟨n| (1.95)

will also be a valid density operator. It also guarantees positive semidefiniteness of ϱTB

what is defined in an analogues way. Consequently, entanglement of the state ϱ can
be detected whenever one of the partial transpositions of a state has a negative eigen-
value. In addition, it has the appeal that it is also sufficient for the case of qubit-qubit
systems and qubit-qutrit systems. However, for larger systems there exist entangled
states which do not violate the PPT criterion. Those states are called PPT entangled
states. A classical example of such PPT entangled states that directly comes as a con-
tinuous family are the Horodecki states in C3 ⊗C3 [70]. For λ ∈ [0, 1], the states within
this family can be written as

ϱH(λ) =
8λ

8λ + 1
ϱE +

1
8λ + 1

|ηλ⟩⟨ηλ|, (1.96)
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where |ηλ⟩ = 1√
2
|2⟩ ⊗ (

√
1 + λ|0⟩ +

√
1 − λ|2⟩) and ϱE = 1

8 (3|Φ3⟩⟨Φ3| + 1 ⊗ 1 −
(∑j |jj⟩⟨jj|) − |20⟩⟨20|). One can show that the family of states ϱH(λ) is PPT entan-
gled for any λ ∈ (0, 1) [70, 71].

Entanglement witnesses

This entanglement criterion is effectively based on the fact that the set of separable
states offers a convex structure and is a subset of the set of all quantum states. The
Hahn-Banach separation theorem then guarantees that for a given convex set and a
point outside that set, one can always construct a continuous linear functional sep-
arating the point from the set. Consequently, an entangled state lying outside of the
convex set of separable states can be detected by means of such a linear functional, also
called witness. Any linear functional f : S(H) → R is of the f (ϱ) = Tr[Wϱ] for some
operator W ∈ BH(H). Therefore, we call a hermitian operator W an entanglement
witness if

Tr[Wϱ] ≥ 0 for all separable states ϱ ∈ S(H), (1.97)

Tr[Wϱ] < 0 for at least one entangled state ϱ ∈ S(H). (1.98)

One simple construction to obtain entanglement witnesses is by considering so-called
projector-based witnesses. For a given pure entangled state |ψ⟩, one makes an ansatz
for W of the form

W = λ1− |ψ⟩⟨ψ|. (1.99)

Now one sets

λ = max
σ∈SEP

Tr[σ|ψ⟩⟨ψ|] = max
|π⟩∈SEP

|⟨π|ψ⟩|2, (1.100)

where the last equality in Eq. (1.100) follows from the fact that the maximum of a
linear function on a convex set is always attained at one of the extreme points. As
the extreme points of SEP are given by pure product states the claim follows. As a
consequence, if ⟨W⟩ϱ < 0 is measured, one can conclude that ϱ is entangled. There
exist different approaches to construct entanglement witness, for instance those that
are based on the PPT criterion.

The CCNR criterion

We have already pointed out that, in contrast to the Schmidt decomposition for pure
bipartite states, no necessary and sufficient criterion for entanglement is known which
is based on the operator Schmidt decomposition. The computable cross norm or re-
alignment (CCNR) criterion gives at least a necessary condition for the separability of
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ϱ ∈ B(HA ⊗HB). Let

ϱ = ∑
j

λjGA
j ⊗ GB

j (1.101)

be the Schmidt decomposition as defined in Eq. (1.87). The CCNR criterion states that
the operator Schmidt coefficients {λj}j of a separable quantum state ϱ fulfill

∑
j

λj ≤ 1. (1.102)

Consequently, if a state ϱ yields ∑j λj > 1 one can conclude that it is entangled. Ob-
viously, if the state is a pure product state, i.e., ϱ = |ab⟩⟨ab| the operator Schmidt
decomposition will already be given and one has λ1 = 1, thus fulfilling the criterion.

For the proof of the CCNR criterion it is crucial to notice that the sum over the
Schmidt coefficients of a state defines a norm on the set of positive semidefinite oper-
ators. Let us denote this norm by || · ||CN. As a valid norm, it has to fulfill the triangle
inequality and thus gives for any separable state ϱ

||ϱ||CN = ||∑
j

pj|ajbj⟩⟨ajbj| ||CN ≤ ∑
j

pj|| |ajbj⟩⟨ajbj| ||CN ≤ 1. (1.103)

Majorization criterion

The majorization criterion establishes a connection between the entanglement prop-
erties of a state ϱ and the eigenvalues of the reduced density operators ϱA and ϱB.
For any given density operator ϱ we denote by λ↓ the vector of eigenvalues of ϱ in
decreasing order. The majorization criterion states that if the state ϱ is separable, then

k

∑
j=1

λ↓
j (ϱ) ≤

k

∑
j=1

λ↓
j (ϱA),

k

∑
j=1

λ↓
j (ϱ) ≤

k

∑
j=1

λ↓
j (ϱB)

(1.104)

will hold for all 1 ≤ k ≤ d, where d is the dimension of the system. The particular type
of ordering of the eigenvalues that appear in Eq. (1.104) is called majorization.

Symmetric extension technique

All entanglement criteria introduced so far have not been able to detect the entan-
glement of every entangled state, even for the simplest, bipartite case. The symmetric
extension technique provides a hierarchy of separability criteria, each of which can be
efficiently solved and is in addition complete, i.e., any entangled state will be detected
by some instance of the hierarchy. Suppose a bipartite mixed state ϱ ∈ S(HA ⊗HB) is
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given. The idea is to consider multiple copies of the system HA and to derive neces-
sary criteria that must be fulfilled if the state were separable. For this purpose, we call
a state ϱ̃n ∈ S(H⊗n

A ⊗HB) a symmetric extension to n copies of HA if

TrA1,...,An−1 [ϱ̃n] = ϱ, (1.105)

Fϱ̃nF = ϱ̃n, (1.106)

where F : B(H⊗n
A ⊗HB) → B(H⊗n

A ⊗HB) performs an arbitrary permutation of the
subsystems of the tensor product space H⊗n

A . Further, one will call ϱ̃n a PPT symmetric
extension to n − 1 copies of HA if the conditions in Eq. (1.105) and Eq. (1.106) are
fulfilled and in addition ϱ̃n remains positive semidefinite under all possible partial
transpositions. Indeed, if ϱ is a separable state it will admit a decomposition of the
form

ϱ = ∑
j

pj|aj⟩⟨aj| ⊗ |bj⟩⟨bj| (1.107)

and thus the state

ϱ̃n = ∑
j

pj|aj⟩⟨aj|⊗n ⊗ |bj⟩⟨bj| (1.108)

is a valid PPT symmetric extension to n − 1 copies of HA of the quantum state ϱ.
Therefore, one naturally obtains a countable infinite family of separability criteria. In
addition, one can easily see that this family possesses a hierarchical structure, i.e.,
if ϱ has a PPT symmetric extension to n copies of HA, then it will also have a PPT
symmetric extension to n − 1 copies of HA. Indeed, a simple candidate for such an
extension given ϱ̃n would be ϱ̃n−1 = TrA[ϱ̃n], where A represents one of the copies
of HA. Clearly, ϱ̃n−1 will be symmetric with respect to the remaining copies of HA.
Further, it follows from the properties of the partial trace that ϱ̃n−1 is an extension of
ϱ to n − 1 copies of HA. Consequently, ϱ̃n−1 is a symmetric extension to n − 1 copies.
It remains to show that ϱ̃n−1 is PPT with respect to any subset of parties. Assume
the contrary, so there is a subset S such that ϱ̃

TS
n−1 is not a valid quantum state. Then,

there must be a negative eigenvalue with a corresponding eigenvector |ν⟩. If {|j⟩}j is
a basis for the system HA which has been traced out, then ⟨ν|⟨j|ϱ̃TS

n |ν⟩|j⟩ ≥ 0 for all
1 ≤ j ≤ dim(HA) as the state ϱ̃n is PPT. In particular this implies

∑
j
⟨ν|⟨j|ϱ̃TS

n |ν⟩|j⟩ = ⟨ν|
(

∑
j
⟨j|ϱ̃TS

n |j⟩
)
|ν⟩ = ⟨ν|TrA[ϱ̃

TS
n ]|ν⟩ ≥ 0. (1.109)

As the partial transposition is originally performed on the state ϱ̃n−1, the set S cannot
contain the system A which has been traced out. Therefore, one can commute the
partial trace TrA and partial transposition over the subsystem S. By definition ϱ̃n−1 =

TrA[ϱ̃n] and one arrives at

⟨ν|ϱ̃TS
n−1|ν⟩ = ⟨ν|TrA[ϱ̃n]

TS |ν⟩ = ⟨ν|TrA[ϱ̃
TS
n ]|ν⟩ ≥ 0. (1.110)
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This yields a contradiction and thus ϱ̃n−1 is a PPT symmetric extension to n − 1 copies
of HA of the quantum state ϱ.

Quantifying entanglement by measures

Apart from the approaches of characterizing and detecting entanglement, it is also
often of interest to quantify it. This is particularly important in the context when en-
tanglement is regarded as a resource. In addition, entanglement measures often offer
an operational interpretation. Further, we have already seen that any attempt to char-
acterize entanglement with respect to SLOCC results in a loss of a total ordering of
quantum states, implying that in general a SLOCC based classification of entangle-
ment would be extremely complicated. Indeed, the only systems where in principle a
finite number of SLOCC orbits can arise are of the form C2 ⊗ CdB ⊗ CdC , thus contain-
ing at least one qubit [67]. An entanglement measure E is a mapping from the set of
density matrices into the non-negative real numbers

E : S(H) → R≥0, (1.111)

such that all or some of the following properties hold.

(1) Faithfulness: E(ϱ) = 0 if and only if ϱ is separable.

(2) Monotonicity: Entanglement cannot be created by means of LOCC transforma-
tions, that is, E(Λ(ϱ)) ≤ E(ϱ) for any Λ ∈ LOCC.

(3) LU-invariance: Local unitary operations cannot affect the amount of entangle-
ment present in the system, that is, E(ϱ) = E(UϱU†) where U = U1 ⊗ · · · ⊗ Un.

(4) Convexity: Randomization of quantum states decreases the entanglement, that
is, E(pϱ + (1 − p)σ) ≤ pE(ϱ) + (1 − p)E(σ) for all ϱ, σ ∈ S(H).

(5) Additivity: The entanglement present in two uncorrelated quantum systems
equals the sum of the entanglement of both systems, that is, E(ϱ ⊗ σ) = E(ϱ) +
E(σ).

(5) Pure state reduction: For a pure state ϱ = |ψ⟩⟨ψ| the measure E reduces to
the entropy of entanglement, that is, E(|ψ⟩⟨ψ|) = (S ◦ TrA)(|ψ⟩⟨ψ|) for some
subsystem A and S(ϱ) = Tr[ϱ log(ϱ)].

(6) Superadditivity: If ϱA1 A2B1B2 is a state on the system A1 A2B1B2, where Alice
holds the system A1 A2 and Bob B1B2, the measure will satisfy

E(ϱA1 A2B1B2) ≥ E(ϱA1B1) + E(ϱA2B2). (1.112)



1.2 Correlations and quantum theory 39

The condition of faithfulness is very strong, as a faithful entanglement measure would
yield a necessary and sufficient condition for separability. Hence, there are also entan-
glement measures that may not only vanish on the set of separable states but also on
certain entangled subsets. On the other hand, the condition of monotonicity is often
replaced by the stronger assumption that E is non increasing on average under LOCC.
This means, that for a given quantum state ϱ one has

E(ϱ) ≤ ∑
j

pjE

 KjϱK†
j

Tr
[
KjϱK†

j

]
 , (1.113)

where {Kj}j are the Kraus operators describing some LOCC protocol and the proba-

bility of observing outcome j is given by pj = Tr
[
KjϱK†

j

]
. Note that the condition of

monotonicity implies LU-invariance [72].
After all, mixed states are just describing our lack of knowledge about the exact

behavior of a physical device. From this viewpoint, it seems natural to initially define
entanglement measures on the set of pure states and extend them in a certain way to
the set of mixed states. The so-called convex roof construction offers the possibility to
extend entanglement measures from the pure to the mixed regime. If E = E(|ψ⟩) is an
entanglement measure for pure states, one defines for a mixed state ϱ

E(ϱ) = inf
pj ,|ψj⟩

∑
j

pjE(|ψj⟩), (1.114)

where the infimum runs over all possible convex decompositions of ϱ into pure states,
that is, ϱ = ∑j pj|ψj⟩⟨ψj|. One advantage of the convex roof construction is that the
extended entanglement measure E(ϱ) is a convex function. However, an explicit com-
putation of the convex roof in Eq. (1.114) is not an easy task, as the optimization runs
over all convex decompositions of ϱ. This difficulty is often paired with the hardness
of evaluating the entanglement measure for pure states and typically one is more in-
terested in computing lower bounds on E(ϱ) [73].

In the following, we will discuss important entanglement measures and, if they were
defined initially on pure states, their extension to mixed quantum states. We first give
examples of entanglement measures for the bipartite case and then proceed with the
multipartite case.

(1) Concurrence: The concurrence is a bipartite entanglement measure which is orig-
inally defined for pure states by

C(|ψ⟩) =
√

2(1 −P(TrB(|ψ⟩⟨ψ|))). (1.115)

For mixed states, this definition is extended via the convex roof construction.
One advantage of C is that for the case of a two-qubit system the convex roof
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can be evaluated analytically and is solely determined by the eigenvalues of the
related operator ϱ̃ =

√√
ϱσ2 ⊗ σ2ϱ σ2 ⊗ σ2

√
ϱ. Indeed, one can show that [74]

C(ϱ) = max {0, λ1 − λ2 − λ3 − λ4}, (1.116)

where λj denote the ordered eigenvalues of ϱ̃.

(2) Entanglement of formation: This is a bipartite entanglement measure and is de-
fined as the convex roof of the von Neumann entropy

EF(ϱ) := inf
(pj ,|ψj⟩)

∑
j

pj(S ◦ TrA)(|ψj⟩⟨ψj|). (1.117)

Obviously, this measure fulfills the pure state reduction criterion. Further, it of-
fers an operational interpretation: It yields the minimal number of Bell states
that is required to build a single copy of the state [73]. For a long time it was
an open problem whether EF fulfills the requirement of additivity. It is known
that additivity of EF is an equivalent statement to superadditivity of EF [66]. By
relating the problem to a question about the production of entropy by quantum
channels it was shown that EF is indeed additive [75].

(3) Entanglement cost: The idea of this measure is to relate entanglement with its
usefulness in communication tasks. The entanglement cost yields the minimal
rate of Bell states that have to be used to create many copies of ϱ via LOCC [73].
Formally, it is given by

EC(ϱ) = inf
LOCC

lim
nout→∞

nin

nout
, (1.118)

where nin denotes the minimal number of singlets needed in order to create nout

copies of ϱ given that arbitrary LOCC operations can be performed.

(4) Distillable entanglement: Here one wants to quantify how many copies nin of the
given state ϱ are needed in order to create nout(Φd) copies of the desired singlet
state, where arbitrary LOCC operations can be performed. Formally, it is given
by

ED(ϱ) = inf
LOCC

lim
nout→∞

nin

nout(Φd)
. (1.119)

(5) Geometric measure: This measure is a proper multipartite entanglement measure
in the sense that it is not simply a bipartite measure averaged over all possible
bipartitions. It is initially defined for pure quantum states |ψ⟩ and measures how
well a state can be approximated by means of product states |π⟩. Formally, it is
given by

G(|ψ⟩) = 1 − λ2(|ψ⟩) with λ(|ψ⟩) = sup
|π⟩

|⟨ψ|π⟩|. (1.120)
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The extension to mixed states is obtained via the convex roof construction ac-
cording to Eq. (1.114). A comparison with Eq. (1.100) directly shows that the ge-
ometric measure relates to the construction of entanglement witnesses. Further,
it turns out that it offers an operational interpretation in terms of multipartite
state discrimination by means of LOCC [76]. It should be noted that in the liter-
ature there exists a different but equivalent definition of the geometric measure.
Here one studies the quantity EG(|ψ⟩) = −2 log(λ(|ψ⟩)). In addition, for many
families of important quantum states, G can be computed exactly and efficient
algorithms are known to compute upper approximations. Also from a mathe-
matical viewpoint this measure plays a distinguished role as it corresponds to
the largest eigenvalue of the coefficient tensor.

(6) Relative entropy of entanglement: The idea of this measure is to quantify the en-
tanglement via its distance to the set of separable states. The measure is defined
via

ER(ϱ) = inf
σ∈SEP

S(ϱ||σ), (1.121)

where S(ϱ||σ) = Tr[ϱ log(ϱ)− ϱ log(σ)] is the relative entropy.

(7) Robustness of entanglement: This measure quantifies how much noise can be
added to a given state ϱ until it becomes separable. Formally it is given by

R(ϱ) = inf {t ≥ 0 | 1
1 + t

(ϱ + tσ) ∈ SEP for σ ∈ SEP}. (1.122)

Clearly, if ϱ is separable, then R(ϱ) = 0.

Monogamy of entanglement

We have already seen that multipartite entanglement offers a rich structure which is
difficult to characterize. This fact is also expressed by the phenomenon of monogamy
of entanglement. It states that if Alice and Bob are maximally entangled, i.e., they
effectively share the state |Φd⟩, then they cannot be correlated at all with a third party
Charlie. In a less extreme form, this means that there is a trade-off between the amount
of entanglement between Alice and Bob and Alice and Charlie. It should be noted that
this is a pure quantum effect and has no classical analogue. In the simplest case of
three qubits the trade-off can be quantified via the so-called Coffman-Kundu-Wootters
monogamy inequality which is given in terms of the concurrence as

C2(TrC[ϱ]) + C2(TrB[ϱ]) ≤ C2(ϱA|BC), (1.123)

where ϱA|BC denotes the bipartion of the three-qubit system according to A|BC. Fur-
ther, it turns out that the monogamy relation in Eq. (1.123) can be extended to the case
of n-qubits [77].
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1.2.3 Bell nonlocality

So far, we have a dichotomy of quantum states: Either they are classical correlated or
they are entangled. From this it is apparent that one regards entanglement as nonclas-
sical correlations in quantum mechanics. However, so far we have no precise notion of
what non-classicality means and different definitions may exist. One such notion was
introduced by John Bell as a reaction to the EPR argument and is nowadays called Bell
nonlocality. That quantum theory cannot be completed in the EPR sense under the
natural assumptions of locality, realism and freedom of choice, is the content of Bell’s
theorem. Therefore, the experimental observation of a violation of a Bell inequality im-
plies that any appropriate description of nature cannot rely on a local realistic theory.

Black-box formalism

We have seen that we extract information about the system under investigation by
means of measurements. This allows us to learn the corresponding output distribu-
tion of a state with respect to that measurement. The aim of the black-box formalism
is to formulate this setting in an abstract, theory-agnostic way which only keeps infor-
mation about the structure of this information-gaining process. Any black-box exper-
iment can be specified by three types of data. First, one has to specify the number of
parties or players involved in the experiment to which we refer alphabetically as Alice
(A), Bob (B), Charlie (C), etc. Second, each party has access to a certain number of
measurement apparatuses among which they can choose in each round of the experi-
ment. The particular choice is called the input. We write MA for the number of inputs
of Alice and proceed similarly for the other parties. Third, each input will cause an
output which is an element of a given set. For simplicity, in this section, we label the
outcomes of Alice by {1, ..., mA} and proceed similar for the other parties. Further, we
assume that all parties have the same number of measurements and all measurements
for each party have the same number of outcomes. Hence a scenario is specified by the
number of players nP, the number of inputs Mk and the number of outputs mk where
k runs over all parties.

The no-signaling polytope

To keep the discussion simple, we will focus here on the bipartite case nP = 2. Black-
box experiments of this kind can be fully characterized by the resulting probability
distribution p(a, b|x, y), which is also called a behavior. In order to be a proper proba-
bility distribution, p has to fulfill positivity and normalization constraints, that is,

p(a, b|x, y) ≥ 0 ∀ a, b, x, y, (1.124)

∑
a,b

p(a, b|x, y) = 1 ∀ x, y. (1.125)



1.2 Correlations and quantum theory 43

At this point, p(a, b|x, y) does not fulfill any constraint apart from being a valid proba-
bility distribution. Therefore, MA MB(mAmB − 1) real parameters are needed in order
to fully specify p. Further, there are (mAmB)

MA MB possible deterministic distributions,
i.e., distributions where for each pair of inputs the output on either side is completely
determined.

However, if the two parties are space-like separated, then the behavior will be sub-
jected to the so-called no-signaling constraints, which are imposed by special relativity.
If the event of choosing the input at Alice’s side is space-like separated from obtaining
the output on Bob’s side, then the choice of the input at Alice’s side should not affect
the marginal distribution on Bob’s side. In particular, if Alice and Bob are space-like
separated, the no-signaling constraints will prevent that Alice can use her black-box
for instantaneous signaling. However, this possibility relies on the ability of Alice to
choose freely among the set of possible inputs, corresponding to an encoding of a mes-
sage that should be transferred. This assumption is called freedom of choice assumption.
More formally [78], the no-signaling conditions are

p(a|x, y) := ∑
b

p(a, b|x, y) = ∑
b

p(a, b|x, ỹ) = p(a|x, ỹ) := p(a|x) ∀ a, x, y, ỹ,

(1.126)

p(b|x, y) := ∑
a

p(a, b|x, y) = ∑
a

p(a, b|x̃, y) = p(b|x̃, y) := p(b|y) ∀ b, x, x̃, y.

(1.127)

Behaviors that do not fulfill the constraints in Eq. (1.126) and Eq. (1.127) are called
signaling. All others are called no-signaling (NS). Clearly, the set of no-signaling cor-
relations is bounded and constraint by linear inequalities. Therefore, it can be seen
as the intersection of hyperplanes with the set of all probability distributions. Conse-
quently, the set of NS correlations forms a polytope, called the NS polytope, and is
denoted by PNS. Due to the constraints in Eq. (1.126) and Eq. (1.127) less parameters
are needed to specify a NS correlation and they can be easily counted [79]. Indeed, the
marginal distributions p(a|x) and p(b|y) can be chosen freely, yielding MA(mA − 1)
and MB(mB − 1) free parameters. However, this does not fix the correlations between
the both parties. For any choice of inputs x, y and a fixed outcome of Bob, b = β, the
NS constraints give

p(a, β|x, y) = p(a|x)−
mB

∑
b=1
b ̸=β

p(a, b|x, y). (1.128)

Therefore, we can choose the parameters {p(a, β|x, y)}a freely under the condition that
they produce the correct marginal distributions, i.e., ∑a p(a, β|x, y) = p(β|y). Hence,
for fixed x, y and b = β, there are mA − 1 independent numbers. Consequently, one
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arrives at [78]

DNS = dim(PNS) = MA MB(mA − 1)(mB − 1) + MA(mA − 1) + MB(mB − 1).
(1.129)

This way of organizing the necessary data for specifying the NS correlations reflects
the structure of the so-called Collins-Gisin representation [80]. Here only the data
of the marginals p(a|x) with a = 1, ..., mA − 1, x = 1, ..., MA and p(b|y) with b =

1, ..., mB − 1, y = 1, ..., MB as well as the components p(a, b|x, y) for a = 1, ..., mA − 1,
b = 1, ..., mB − 1, x = 1, ..., MA, y = 1, ..., MB are given. These components can be
ordered in a correlation table. For example, for the case mA = mB = MA = MB = 2
the table takes the form

p =

 p(a = 1|x = 1) p(a = 1|x = 2)

p(b = 1|y = 1) p(1, 1|1, 1) p(1, 1|2, 1)
p(b = 1|y = 2) p(1, 1|1, 2) p(1, 1|2, 2)

 . (1.130)

This way of organizing correlation data will become important in the context of repre-
senting Bell inequalities and appears as a crucial tool in Section 4.

Local realism

Local realism can be seen as a concept that imposes additional restrictions on the
set of NS correlations. It entails the idea of the EPR argument that quantum mea-
surements reveal physical properties that are pre-determined, i.e., they have definite
values regardless of whether they are measured or not. This is in line with the "clas-
sical” viewpoint that a preparation of a physical system should encode all knowledge
about all possible subsequent measurements, that is, it should predict the outcomes of
the measurements performed by Alice and Bob.

This translates to the black-box scenario as follows: In each round of the experiment,
there exists a hidden description of a process λ such that each party’s output is gener-
ated by only taking into account the same party’s input. However, this process does
not need to be deterministic. If one knows the process λ ∈ Λ, where Λ denotes the
set of all possible processes, this means that there exist response functions pA(a|x, λ) for
Alice and pB(b|y, λ) for Bob such that

p(a, b|x, y, λ) = pA(a|x, λ)pB(b|y, λ). (1.131)

As the process is in general unknown and can in principle differ in each round, one
assumes that λ is distributed according to some probability density µ on Λ. Therefore,
the set of all probability distributions allowed by this construction is given by

p(a, b|x, y) =
∫

Λ
µ(λ)pA(a|x, λ)pB(b|y, λ)dλ. (1.132)
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A behavior that is of the form in Eq. (1.132) is called a local behavior and otherwise
nonlocal. If a given behavior is local, one will also say that it admits a local hidden
variable (LHV) model. Clearly, local behaviors fulfill the NS constraints and can be
described by using at most the number of parameters that were needed to describe
a NS behavior. Thus they can be casted in the Collins-Gisin form. Even though local
behaviors do not need to be deterministic, the deterministic ones play a distinguished
role. In a deterministic model, the local response functions pA(a|x, λ) and pB(b|y, λ)

only take the values within {0, 1}, that is,

p(a|x, λ) = δ(a, fλ(x)), p(b|y, λ) = δ(b, gλ(y)) (1.133)

for certain functions fλ, gλ. Clearly, local deterministic models can be equivalently
characterized by just giving a list of all outputs for all possible inputs, that is,

λ = {a1, ..., aMA , b1, ..., bMB}. (1.134)

In this case, one would choose the functions fλ(x) := ax ∈ λ and gλ(y) = by ∈ λ. Fur-
ther, it immediately follows that the number of possible local deterministic strategies is
given by mMA

A mMB
B . Among all (mAmB)

MA MB deterministic behaviors, these mMA
A mMB

B
deterministic behaviors are the only ones that fulfill the locality condition [81]. All
others can only be realized using signaling resources. More generally, the local deter-
ministic behaviors remain extremal points of the NS polytope, but the NS polytope
also has nonlocal extremal behaviors [81]. From a practical viewpoint, the characteri-
zation of local behaviors in Eq. (1.132) with stochastic response functions and a general
probability density µ is not amenable. In particular, it is not clear how one can prove
that a given behavior p is of this form. Intuitively, it should be possible to absorb
any kind of local randomness present in the response functions pA and pB into the
shared random variable λ. Indeed, for given x and λ, the process of obtaining output
a is a random variable A, which can be equivalently characterized by its cumulative
distribution function FA(a) = Prob[{A ≤ a}] = ∑ã≤a p(a|x, y). If we want to transfer
the randomness of pA into the hidden variable λ, we must extend λ by additional
parameters which reflect this. To do so, introduce the new local parameter λA ∈ [0, 1]
and define a new response function p̃A = p̃A(a|x, (λ, λA)) which assigns an output a
according to the deterministic rule

p̃(a|x, (λ, λA)) :=

1, if FA(a − 1) ≤ λA < FA(a),

0, otherwise.
(1.135)

If λA is uniformly chosen among [0, 1], one obtains∫ 1

0
p̃(a|x, (λ, λA))dλA =

∫ 1

0
1([FA(a − 1), FA(a)])dλA (1.136)

= FA(a)− FA(a − 1) = p(a|x, λ), (1.137)
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where 1 denotes the indicator function. The same argument works for the response
function pB of Bob and introduces the additional local parameter λB. Thus, any local
behavior can be seen as arising from a convex mixture of local deterministic behaviors.
Further, given a local deterministic behavior, it fixes the output value for any possible
input, that is, p(a, b|x, y) = δ(a, f j(x))δ(b, gk(y)). In particular, for fixed functions f j

and gk the output assignment is fixed according to

(a1 = f j(1), ..., aMA = f j(MA), b1 = gk(1), ..., gk(MB)). (1.138)

From this we can infer that any local behavior p can be obtained by marginalizing the
joint distribution over all outcomes, as it decomposes into local deterministic ones. The
previous discussion can be summarized in the following theorem, which is due to A.
Fine [82]

Theorem 2 ( [82]). For a given behavior p the following statements are equivalent.

(1) p is local.

(2) p is a convex combination of local deterministic processes

p(a, b|x, y) =
dA

∑
j=1

dB

∑
k=1

µj,kδ(a, f j(x))δ(b, gk(y)), (1.139)

where dA = mMA
A and dB = mMB

B .

(3) There exists a joint probability distribution ω : A×MA ×B×MB → [0, 1] such that each
p(a, b|x, y) can be obtained by marginalizing ω, that is,

p(a, b|x, y) = ∑
aj

j ̸=x

∑
bk

k ̸=y

ω(a1, ..., aMA , b1, ..., bMB), (1.140)

where A and B denote the outcome space of Alice and Bob, respectively.

Bell inequalities

In the following we will denote the set of all local behaviors for a given scenario by
L and refer to it as the local set. In simple terms, Bell inequalities are conditions that
an arbitrary behavior must fulfill in order to belong to the local set L. Clearly, the set
L is convex and bounded, thus compact. Further, it is clear from Theorem 2 that the
extremal points of L are exactly the deterministic behaviors. One can show [83] that
the local set has the same dimension as the no-signaling polytope, i.e., they span the
same affine space. Therefore, the local set L is a polytope embedded into RDNS . As the
number of local deterministic behaviors is mMA

A mMB
B and thus larger than DNS, some

of the extreme points must be linearly dependent.
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A Bell functional is a linear functional acting on the space RDNS with the aim to
separate some nonlocal behavior from the set of all LHV behaviors. Any Bell functional
I acting on behaviors p = {p(a, b|x, y)} can be written as

I(p) := ∑
a,b,x,y

ca,b,x,y p(a, b|x, y). (1.141)

As the local set L is compact, there exists a IL < ∞ such that maxp∈L I(p) ≤ IL. The
Bell functional I together with its local bound IL is called a Bell inequality.

The simplest nontrivial Bell scenario corresponds to the case MA = MB = mA =

mB = 2 and can be completely characterized [81, 84]. The local polytope is embedded
into R8 and comes with 24 = 16 extreme points. From this, one can obtain that the
complete polytope has 24 facets among which 16 correspond to positivity constraints.
The remaining 8 are versions of the same inequality up to relabeling. This facet in-
equality is the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality [6] and is
given by

S = E0,0 + E0,1 + E1,0 − E1,1 ≤ 2, (1.142)

where Ex,y = p(a = b|x, y)− p(a ̸= b|x, y). The term Ex,y is also called a correlation
coefficient. As the CHSH inequality can be expressed in terms of correlation coeffi-
cients, it is also called a correlation inequality. Note that the inequality in Eq. (1.142)
does not depend on the particular labeling of the outputs. However, the CHSH in-
equality is often formulated in terms of expectation values. Here one chooses the
concrete labels a, b ∈ {±1} for the outputs. As the expectation value is given by
⟨ax, by⟩ = ∑a,b abp(a, b|x, y) = Ex,y one arrives at the equivalent form

S = ⟨a0b0⟩+ ⟨a0b1⟩+ ⟨a1b0⟩ − ⟨a1b1⟩ ≤ 2. (1.143)

Symmetries and relabelings

A given Bell inequality can appear in multiple versions, yet performing the same test.
Behind this degeneracy there are in principle two reasons.

Freedom due to relabelings: We have already seen that parties, measurement
settings and outcomes simply appear as labels in order to guarantee the distinct-
ness of different events. Therefore, the property of a linear functional to be a test
for nonlocality should be preserved under a change of those labels. This results
in three different kinds of relabelings. First, one can relabel the party’s inputs. If
πA ∈ S(MA) and πB ∈ S(MB) are permutations of the inputs of Alice and Bob,
respectively, then

ca,b,x,y 7→ ca,b,πA(x),πB(b) (1.144)
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defines another version of the same Bell inequality. Second, one can relabel the
party’s outputs. For a fixed choice of input labels, let πA ∈ S(mA) and πB ∈
S(mB) be permutations of the outputs of Alice and Bob, respectively. Then

ca,b,x,y 7→ cπA(a),πB(b),x,y (1.145)

defines another version of the same Bell inequality. The third type of relabeling
is the permutation of the parties. If mA = mB and MA = MB, then

ca,b,x,y 7→ cb,a,y,x (1.146)

defines another version of the same Bell inequality. If one wants to check whether
a given behavior p is local or not, all different versions of a Bell inequality I have
to be taken into account. More precisely, one has to verify that I(p) ≤ IL for all
versions of the Bell inequality I, where IL denotes the local bound.

Freedom due to constraints: Bell inequalities are intended to act on correla-
tions which respect the normalization constraints in Eq. (1.125) as well as the
no-signaling constraints in Eq. (1.126) and Eq. (1.127). As long as the correlations
{p(a, b|x, y)} satisfy these constraints, one can rewrite any Bell functional in an
infinite number of ways. For instance, the positivity constraint p(0, 0|0, 0) ≥ 0
can be written in the form of a Bell functional with the coefficients ca,b,x,y =

−δa,0δb,0δx,0δy,0. However, due to the normalization constraints, the coefficients

c̃a,b,x,y := ca,b,x,y + µ(δx,0 − δx,1) (1.147)

define the same inequality for any µ ∈ R. Further, by using the freedom intro-
duced by the no-signaling constraints, one can obtain a well-known equivalent
form of the CHSH inequality, which is called Clauser-Horne (CH) inequality [7].
The CH inequality is given by

SCH =
1

∑
x,y=0

(−1)xy p(0, 0|x, y)− pA(0|0)− pB(0|0) ≤ 0, (1.148)

where pA and pB denote the marginal distributions for Alice and Bob, respec-
tively. Further, using the NS constraints once more, that is, replacing pA(0|0) =
p(0, 0|0, 1) + p(0, 1|0, 1) and pB(0|0) = p(0, 0|1, 0) + p(1, 0|1, 0), the CH inequal-
ity in Eq. (1.148) can be written in the so-called Eberhard form [85]

SE = p(0, 0|0, 0)− p(0, 1|0, 1)− p(1, 0|1, 0)− p(0, 0|1, 1) ≤ 0, (1.149)

which will become important in Section 4.
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The Popescu-Rohrlich box

As the set of NS correlations is a convex polytope, it can be characterized by means of
its extreme points. As all deterministic NS behaviors are local, all nonlocal extremal NS
behaviors must be nondeterministic. For the simplest setting mA = mB = MA = MB =

2, these extremal points can be constructed explicitly. Suppose we want to achieve the
algebraic maximum of the CHSH inequality in Eq. (1.142). Clearly, as |Ex,y| ≤ 1, this
algebraic limit is S = 4 and enforces that the correlation coefficients fulfill E0,0 = E1,0 =

E0,1 = −E1,1 = 1. If the measurement settings and the outcomes of Alice and Bob are
labeled by a, b, x, y ∈ {0, 1}, to achieve a value of S = 4, they have to fulfill the relation

a + b mod 2 = xy. (1.150)

From this condition one can construct 16 deterministic behaviors that are, however,
signaling. It turns out, that there exists exactly one convex combination of these be-
haviors which is contained in the NS polytope. This behavior, denoted by pPR, is given
by [86, 87]

pPR(a, b|x, y) :=

 1
2 , a + b mod 2 = xy

0, otherwise.
(1.151)

The behavior pPR, also called PR box, describes the following strategy: If Alice, Bob or
both obtain the input 0, then they always obtain the same outcome, which is uniformly
distributed, i.e., with probability 1

2 both obtain outcome 0 or outcome 1. If both parties
receive input 1, then they will always obtain distinct outcomes. Also in this case, the
local outcomes are uniformly distributed, i.e., pPR(0, 1|1, 1) = pPR(1, 0|1, 1) = 1

2 .

Quantum violations of local realism

The concepts of no-signaling and local realism do not refer to a particular physical the-
ory but impose constraints on the observable correlations, independent of a concrete
framework. Interestingly, if one assumes that quantum theory is the correct descrip-
tion of nature, i.e., all predictions of quantum theory can in principle be realized in
reality, it turns out that local realism can be violated.

More formally, one assumes that Alice and Bob share a bipartite quantum state
ϱ ∈ B(HA ⊗HB) and Alice implements generalized measurements {Ea|x}a,x and Bob
implements {Fb|y}b,y. A behavior p is called a quantum behavior3 if it can be realized

3If one prefers to take observables as the fundamental objects and thus consider the algebra of observ-
ables, this gives rise to another possible definition. Here the requirement that the measurement is of the form
Ea|x ⊗ Fb|y is replaced by [Ea|x , Fb|y] = 0 where Ea|x , Fb|y act on the joint Hilbert space HA ⊗HB. The set of all

quantum behaviors Q̃ would then be given by p(a, b|x, y) = Tr
[
ϱFa|xEb|y

]
. As one has [Fa|x ⊗1,1⊗ Eb|y] = 0,

it directly follows that Q ⊂ Q̃. Although both sets coincide for the mA = MA = mB = MB = 2 scenario [88],
recently it turned out that they are in general different [89].
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within quantum resources, i.e., there exist ϱ, {Ea|x}a,x and {Fb|y}b,y such that

p(a, b|x, y) = Tr
[
ϱEa|x ⊗ Fb|y

]
∀a, b, x, y. (1.152)

If the scenario is fixed, that is, mA, MA and mB, MB are given, one can define the quan-
tum set Q, which contains all behaviors that can be realized using quantum resources.
If the quantum state is fixed, one can define the set of all distributions that one can
obtain by performing local measurements on ϱ. For this, denote by A the set of all
generalized measurements that Alice can perform on her system and define B in a
similar manner for Bob. Then

Q(ϱ) :=
{

Tr
[
ϱEa|x ⊗ Fb|y

]
: {Ea|x}a,x ∈ A, {Eb|y}b,y ∈ B

}
. (1.153)

We call a quantum state ϱ local if it cannot violate any Bell inequality, or equivalently, if
the set of derived behaviors Q(ϱ) is contained in the local polytope L. This particularly
means that it is not sufficient to only inspect whether ϱ violates the Bell-inequalities
for a specific scenario but one has to check for all possible scenarios. It is clear that
separable quantum states can only generate local behaviors. Indeed, for any set of
local measurements {Ea|x}a,x, {Fb|y}b,y one has

p(a, b|x, y) = Tr
[
ϱEa|x ⊗ Fb|y

]
= ∑

λ

p(λ)Tr
[
ϱA

λ Ea|b

]
Tr
[
ϱB

λ Fb|y

]
. (1.154)

This is a LHV model where the local response functions are given by pA(a|x, λ) =

Tr
[
ϱA

λ Ea|x

]
and similar for Bob. This implies that entanglement is a necessary resource

for a violation of a Bell inequality.
As the dimensions of HA and HB are not specified, the Naimark dilation theorem

allows one to assume the measurements as projective and the state as pure. Clearly, the
set of quantum behaviors is a subset of the non-signaling behaviors as the marginals
of a quantum distribution pQ ∈ Q satisfies

pQ(b|x, y) = ∑
a

Tr
[
ϱFa|x ⊗ Eb|y

]
= Tr

[
ϱ(∑

a
Fa|x)⊗ Eb|y

]
= Tr

[
ϱ1⊗ Eb|y

]
=: pQ(b|y)

(1.155)

for all possible choices of x. In addition, the set of quantum correlations Q is convex.
This can be seen as a consequence of the unboundedness of the dimension of the local
systems. Indeed, assume that pk ∈ Q for 1 ≤ k ≤ n, each with quantum realization ϱk,
{E(k)

a|x}a,x and {F(k)
b|y }b,y. If (µk)

n
k=1 is a probability distribution, define the new operators

ϱ :=
n⊕

k=1

µkϱk, Ea|x :=
n⊕

k=1

E(k)
a|x , Fb|y :=

n⊕
k=1

F(k)
b|y . (1.156)

It is clear that ϱ is a valid state in a larger Hilbert space and {Ea|x}a,x and {Fb|y}b,y are
valid POVMs. The induced behavior is then given by p(a, b|x, y) = ∑k µk pk(a, b|x, y),
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which is a convex combination of the pk. Therefore, the quantum set Q is convex.
Although the set is convex, one can show that it is not closed [90].

Further, the set of quantum behaviors is a proper subset of the non-signaling poly-
tope. Indeed, we have already seen that

E00 + E01 + E10 − E11
NS
≤ 4, (1.157)

where the maximal value is attained for the PR-box. Further we have seen that the
maximal value of CHSH in any local theory is upper bounded by 2. It remains to
clarify what the largest possible value of CHSH is if one considers quantum behaviors
and whether this value allows for a discrimination between LHV models and quantum
theory. Suppose that Alice and Bob share some quantum state ϱ ∈ S(HA ⊗ HB),
where we can assume without loss of generality that the local dimensions are equal,
i.e., HA ∼= HB = H. The measurements of the two parties are {Ea|x}a,x and {Fb|y}b,y

respectively, where x, y ∈ {0, 1} and a, b ∈ {±1}. In order to be valid POVMs one
needs 0 ≤ Ea|x, Fb|y ≤ 1, implying ||Ea|x||∞, ||Fb|y||∞ ≤ 1 with equality if and only if the
measurements are projective. Within the framework of quantum theory the correlation
coefficients Ex,y in the CHSH inequality take the form

Ex,y = Tr
[
ϱ(E1|x − E−1|x)⊗ (F1|y − F−1|y)

]
:= Tr

[
ϱAx ⊗ By

]
, (1.158)

where Ax, By are hermitian operators whose spectrum is contained in the interval
[−1, 1]. This allows us to interpret the value of the CHSH functional in the quantum
state ϱ as an expectation value of an observable, that is,

⟨S⟩ = Tr[ϱS], where S = A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1. (1.159)

The operator S is called a Bell operator and the maximal value of the CHSH func-
tional achievable in quantum theory can be upper bounded by the largest eigenvalue
of the Bell operator S. This was first realized by Tsirelson who showed that a tight
upper bound is given by 2

√
2 [78]. First, notice that it is sufficient to consider projec-

tive measurements, as we have no limit on the maximal dimension of H. Therefore we
have ||Ax||∞ = ||By||∞ = 1 and A2

x = B2
y = 1. The square of the CHSH operator is

then given by

S2 = 41⊗ 1− [A0, A1]⊗ [B0, B1]. (1.160)

Further, we have ||[A0, A1]||∞ ≤ 2||A0||∞ ||A1||∞ = 2 and the same is true for the
operators on Bob’s side. Using that ||A ⊗ B||∞ = ||A||∞ ||B||∞ for general operators
and ||A2||∞ = ||A||2∞ for normal operators, one arrives at

||S||2∞ = ||S2||∞ ≤ 4||1⊗ 1||∞ + ||[A0, A1]||∞||[B0, B1]||∞ ≤ 8. (1.161)
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Consequently, ||S||∞ ≤
√

8 = 2
√

2. The bound on the CHSH operator in Eq. (1.161)
also highlights the role of the local measurements. Indeed, if A0 and A1 commute,
the second term in Eq. (1.161) will vanish and thus no violation by any quantum state
will be possible. In order to find a quantum system where we can achieve the maxi-
mal violation, consider a two-qubit maximally entangled state |ψ−⟩ together with two
projective measurements for each party. These measurements can be identified with
unit vectors using the Bloch representation. More precisely, we have Ea|x = Ea(x⃗) =
1
2 (1 + ax⃗ σ⃗) and Fb|y = Fb (⃗y) = 1

2 (1 + by⃗ σ⃗), where x⃗, y⃗ are unit vectors in R3 and
a, b ∈ {±1}. The possible behaviors for this scenario are then given by

p(a, b|x, y) = p(a, b|⃗x, y⃗) = Tr
[
|ψ−⟩⟨ψ−| Ea(x⃗)⊗ Fb (⃗y)

]
=

1
4
(1 − abx⃗ y⃗). (1.162)

It follows that the correlation coefficients Ex,y in Eq. (1.142) take the form Ex,y = x⃗ y⃗.
In total, the value of the CHSH inequality in the state |ψ−⟩ is given by

S(|ψ−⟩) = x⃗0 (⃗y0 + y⃗1) + x⃗1 (⃗y0 − y⃗1). (1.163)

From this it follows that the measurement directions x⃗0, x⃗1, y⃗0, y⃗1 for a maximal vi-
olation have to be chosen as follows. While x⃗0 can be arbitrary, we need x⃗0 x⃗1 = 0,
what fixes the directions of Alice. The measurements of Bob follow from x⃗0 and x⃗1 via
y⃗0 = 1√

2
(x⃗0 + x⃗1) and y⃗1 = 1√

2
(x⃗0 − x⃗1) [81]. For instance, on the level of operators

one can choose

A0 = σ1, A1 = σ3, B0 = 1√
2
(σ1 + σ3), B1 = 1√

2
(σ1 − σ3). (1.164)

With similar arguments and using the Bloch representation, one can derive a closed
expression for the value of the CHSH inequality with respect to any two-qubit mixed
state and projective measurements [91]. For a given state ϱ, we can compute the 3 × 3
matrix Tjk := Tr

[
ϱσj ⊗ σk

]
. The matrix T†T is a positive hermitian matrix with eigen-

values λ1 ≥ λ2 ≥ λ3. Then, one can show [91] that the largest violation of CHSH
with respect to projective measurements is 2

√
λ1 + λ2. This result has an important

consequence for general pure qubit-qubit states, as any two-qubit pure state is up to
LU transformations of the form

|ψθ⟩ = cos(θ)|00⟩+ sin(θ)|11⟩, (1.165)

where θ ∈ [0, π/4]. For a state of the form in Eq. (1.165) the matrix T is diagonal and

given by T = diag(sin(2θ),− sin(2θ), 1), hence 2
√

λ1 + λ2 = 2
√

1 + sin2(2θ). In par-
ticular, this expression is always larger than 2 unless sin(2θ) = 0, which only happens
for θ = 0. From this we can conclude that any pure entangled two-qubit state can
violate the CHSH inequality.
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The GHZ argument

As already pointed out, in order to prove that a given behavior does not belong to the
local set L it is sufficient to show that a Bell inequality can be violated. However, in cer-
tain cases it is possible to obtain a direct, logical contradiction between the predictions
of quantum theory and those resulting from a local model. Such demonstrations do
not involve any inequality. The Greenberger-Horne-Zeilinger (GHZ) argument [92,93]
involves three parties, where each has access to two measurements, labeled by 1, 2,
yielding two outcomes, labeled by ±1. Now one assumes that the three parties ob-
serve the following correlations

⟨a2b1c1⟩ = ⟨a1b2c1⟩ = ⟨a1b1c2⟩ = 1. (1.166)

In particular, as the random variable a2b1c1 ∈ {±1}, this implies that in each run of the
experiment where the setting a2b1c1 was chosen, the parties have observed a2b1c1 = 1.
If local realism holds, then the outputs are predetermined for all measurement settings,
regardless of whether they have been measured or not. Therefore, for all measurement
settings we have a valid output assignment, that is,

a2b1c1 = a1b2c1 = a1b1c2 = 1 (1.167)

in each single round. Further, as a2
1 = b2

1 = c2
1 = 1, multiplying the assignments in

Eq. (1.167) yields

a2b2c2 = 1, thus ⟨a2b2c2⟩ = 1. (1.168)

Now consider the three-partite state

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) (1.169)

and the measurements σ1 ⊗ σ2 ⊗ σ2, σ2 ⊗ σ1 ⊗ σ2 and σ2 ⊗ σ2 ⊗ σ1. It directly follows
that Eq. (1.166) is fulfilled, while ⟨σ1 ⊗ σ1 ⊗ σ1⟩ = −1. One should note that the GHZ
argument relies on the observation of perfect correlations or anticorrelations.

Hardy’s test

Hardy’s test is a Bell test which involves only two parties and is similar to the GHZ
argument based on the presence of extreme correlations in the sense that they are
deterministic, i.e., equals 0 or 1 and can be achieved in quantum theory. The setting is
equal to the CHSH setting such that each party has two inputs 1, 2 and two outputs
±1. One now enforces that

p(1, 1|1, 1) = p(−1, 1|1, 2) = p(1,−1|2, 1) = 0. (1.170)
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Thus, one forbids the occurrence of events like (1, 1|1, 1) by construction. However,
as the observables are dichotomic, the "complementary“ event must happen with cer-
tainty, that is,

b2 = 1 ⇒ a1 = 1, a1 = 1 ⇒ b1 = −1, b1 = −1 ⇒ a2 = −1. (1.171)

In particular, under the assumption of local realism, one can take the implications in
Eq. (1.171) together in order to obtain a chain of implications resulting in

b2 = 1 ⇒ a2 = −1. (1.172)

However, when these conditions are applied to quantum theory, one obtains a con-
tradiction. More precisely, there exist quantum states, the so-called Hardy states, and
measurement settings such that the conditions in Eq. (1.170) hold while p(1, 1|2, 2) >
0. The maximal value that can be achieved by using quantum theory is given by
1
2 (5

√
5 − 11) ≈ 0.09 [81]. This means that Hardy’s argument works only for 9% of

the runs of a certain experiment. Interestingly, the set of suitable states does not con-
tain maximally entangled states.

1.2.4 Quantum steering

The EPR argument relies on the ability of Alice to predict with certainty the measure-
ment outcome of certain observables of the other party, given that the same measure-
ment is performed. From this they concluded that this nonlocality must be a conse-
quence of the incompleteness of quantum theory. Schrödinger observed [94] that, by
choosing her measurement direction, Alice can steer the other side into an eigenstate
of σ1 or σ2. This steering of Bob’s wave function by Alice is in Schrödinger’s own
words magic, as in this case, Bob has to believe that Alice can influence his particle
from a distance. Here it is important to notice that no information can be conveyed by
Alice’s measurement choice as the reduced state of Bob is independent of that choice.
However, unlike EPR, he believed that the quantum state is a correct and complete
description for localized, isolated systems [95]. On the other hand, similar to EPR, he
could not easily accept the nonlocality of quantum theory. He suggested that quantum
theory is incorrect with respect to the description of delocalized, entangled states. In
particular, he believed that the quantum system hold by Bob has a definite state. There-
fore, one can assign a state to Bob’s system which is independent of the measurement
choice of Alice, i.e., one can speak about the state hold by Bob [95].

Formalizing the EPR argument

In 2007, steering was formulated in the language of quantum information, that is, it
was formulated with respect to a task [95]. Suppose that Alice can prepare a bipartite
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quantum state ϱ and sends one part of the state to Bob. She aims to prove to Bob
that she is indeed capable of preparing an entangled state, while Bob is skeptical. This
process is repeated many times and we refer to each realization as a round of the ex-
periment. In each round, Alice has access to a set of generalized measurements, labeled
by x. Upon request by Bob, she performs one among of those and obtains an outcome
a. For each setting x and outcome a, Bob remains with a conditional state, which is
described by the unnormalized density operator ϱa|x. Further, one assumes that Bob
believes that quantum theory yields the correct description of his local particle, i.e., he
uses the Born rule to compute probabilities of measurement outcomes. Hence he has
the ability to perform quantum state tomography on his particle in order to obtain a
classical description of ϱa|x. Here it is important to notice that Bob has to know a|x. Af-
ter many runs, Bob obtains a full description of the assemblage {ϱa|x}a,x of conditional
states. Now Bob may try to explain the appearance of his states without assuming that
the state shared with Alice was entangled. He supposes that his particle was initially
in a state σλ unknown to him, which occurs with probability p(λ). Then, Alice uses her
knowledge of λ and announces outcome a according to some local response function
pA(a|x, λ). The conditional states ϱa|x that can be constructed in this manner are of the
form

ϱa|x =
∫

Λ
p(λ)pA(a|x, λ)σλ dλ. (1.173)

If a representation of Bob’s conditional states of the form in Eq. (1.173) exists, Bob does
not need to assume any kind of action at a distance to explain the appearance of ϱa|x
and Alice would have failed to convince Bob that she can prepare an entangled state.
In this case, one also says that the state ϱ is unsteerable or has a local hidden state
(LHS) model. If such a LHS model does not exist, Bob must admit that Alice can steer
the state by some action at distance. Thus, Alice would have convinced Bob that she
can prepare an entangled state [95].

As an example consider the assemblage that Bob obtains in the case of the EPR
argument, which is formed by (1/2){|0⟩⟨0|, |1⟩⟨1|, |x+⟩⟨x+|, |x−⟩⟨x−|}. As the states
appearing in this assemblage are rank-1, and thus cannot be mixtures of other states.
Hence the hidden states σλ have to be proportional to the four conditional states. To
cast this in the form of Eq. (1.173) one must have p(a|x, λ) = 1 if σλ corresponds
to ϱa|x. Hence one has p(λ) = 1/2 for all λ, implying that the distribution is not
normalizable [96].

Relation to Bell nonlocality and entanglement

The LHS model in Eq. (1.173) gives also rise to a class of bipartite correlations on
the level of probability distributions. Indeed, if Bob performs quantum mechanical
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measurements, one arrives at a hybrid model of the form

p(a, b|x, y) =
∫

Λ
p(λ)pA(a|x, λ)Tr

[
Fb|yσλ

]
dλ. (1.174)

If Alice and Bob share a separable state ϱ =
∫

λ p(λ)ϱA
λ ⊗ ϱB

λ dλ and each party can
implement measurements Ea|x and Fb|y respectively, the observed correlations will be
of the form

p(a, b|x, y) =
∫

λ
p(λ)Tr

[
ϱA

λ Ea|x

]
Tr
[
ϱB

λ Fb|y

]
dλ. (1.175)

From Eq. (1.175) it is immediately clear that entanglement is a necessary resource
in order to demonstrate steering. Further, Eq. (1.174) shows that a LHS model is a
particular instance of a LHV model, where Bob’s local response function pB is given by
pB(b|y, λ) = Tr

[
σλEb|y

]
. Therefore, quantum steering relies on quantum correlations

which are intermediate between entanglement and Bell nonlocality. More precisely,
any state that violates a Bell inequality can be used for steering and any steerable
state is entangled. It can be shown that these relations are strict [95]. An important
observation is that any state admitting a LHS model automatically has a LHV model
and is therefore Bell local.

Detection of steering using SDP’s

In order to detect steering it is important to decide whether an assemblage demon-
strates steering or not, i.e., whether it can be explained by means of a LHS model. It
follows from the definition of a LHS model that one has to check whether there exist
quantum states {σλ}λ and distributions p(λ), pA(a|x, λ), such that the assemblage is of
the form in Eq. (1.173). This is in general a difficult problem, as the distributions could
be continuous. However, in the case of a fixed and finite number of measurements
and outcomes the problem becomes much simpler. Similar to Fine’s theorem for LHV

models, also for steering one can decompose the response function of Alice pA(a|x, λ)

into a finite number of deterministic distributions, i.e., into distributions that yield a
fixed output for each measurement [97]. Again, one introduces a new variable λ̃ such
that pA(a|x, λ̃) = δ(a, λ̃(x)) which can be identified with the corresponding string of
outputs

λ̃ = (λ̃(0), ..., λ̃(MA − 1)) = (a(x = 0), ..., a(x = MA − 1)). (1.176)

As there are mA outcomes and MA measurements, there are dA := mMA
A possible

deterministic assignments. Therefore, we can expand the response function pA as

pA(a|x, λ) =
dA

∑
j=1

p(λ̃j|λ)δ(a, λ̃j(x)), (1.177)
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where p(λ̃j|λ) is the weight of the deterministic distribution identified with λ̃j. If one
inserts Eq. (1.177) into Eq. (1.173) one obtains

ϱa|x =
dA

∑
j=1

∫
Λ

p(λ)p(λ̃j|λ)δ(a, λ̃j(x))σλ dλ =
dA

∑
j=1

δ(a, λ̃j(x))σ̃j, (1.178)

where σ̃j =
∫

p(λ)p(λ̃j|λ)σλ dλ. Here it is important to note that Eq. (1.178) only
involves a finite number of distributions which are known for a fixed value of 0 ≤
j ≤ MA − 1. This is in contrast to the original definition in Eq. (1.173), where the
number of local response functions could have been continuous. As we just absorbed
the randomness of the response function pA into the hidden states at Bob’s side, it
follows that

dA

∑
j=1

Tr
[
σ̃j
]
= ∑

j

∫
p(λ)p(λ̃j|λ) Tr

[
σj
]

dλ = ∑
j

∫
p(λ)p(λ̃j|λ)dλ = 1. (1.179)

Taking Eq. (1.178) and Eq. (1.179) together allows us to formulate the question of the
existence of a LHS model as a feasibility semidefinite program (SDP), that is,

given {ϱa|x}a,x

find {σλ}

subject to ∑
j

δ(a, λj(x))σj = ϱa|x ∀a, x

σj ≥ 0 ∀j.

(1.180)

This feasibility SDP can be reformulated as an explicit convex optimization prob-
lem [98]. For this, one relaxes the constraint σj ≥ 0 to σj ≥ µ1, where µ ∈ R. Hence,
the feasibility problem is equivalent to

given {ϱa|x}a,x

maximize µ

subject to ∑
j

δ(a, λj(x))σj = ϱa|x ∀a, x

σj ≥ µ1, 1 ≤ j ≤ dA,

(1.181)

where µ < 0 indicates that the assemblage demonstrates steering, while µ ≥ 0 means
that there exists a LHS model explaining the appearance of the conditional states
{ϱa|x}a,x. Apart from the fact that the explicit SDP in Eq. (1.181) can be more suit-
able from a computational perspective, it also allows for a direct application of the
duality theory of SDPs. The dual program to the optimization problem in Eq. (1.181)
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is given by

given {ϱa|x}a,x

minimize Tr

[
∑
a,x

Fa|xϱa|x

]
subject to ∑

a,x
Fa|xδ(a, λj(x)) ≥ 0 ∀j

∑
a,x,j

δ(a, λj(x))Tr[Fa|x] = 1.

(1.182)

One can use this dual formulation for the construction of steering inequalities, i.e.,
linear functionals that witness the nonexistence of a LHS model. Indeed, if the given
assemblage {ϱ̃a|x}a,x demonstrates steering, one obtains not necessarily positive, her-
mitian operators {Fa|x}a,x such that

∑
a,x

Tr
[

Fa|xϱa|x

]
≥ α (1.183)

for all assemblages {ϱa|x}a,x that admit a LHS model. Further for the given assemblage

{ϱ̃a|x}a,x one has ∑a,x Tr
[

Fa|x ϱ̃a|x

]
< α, thus witnessing the steerability of the given

assemblage.

1.2.5 The measurement problem revisited

In Section 1.1.4 we have introduced the thought experiment of Wigner’s friend and
its extension by Deutsch. Both scenarios allow in principle that each party can verify
the state which they assign to the system, i.e., the friend can simply repeat his spin
measurement of the z component and Wigner could make a Bell-type measurement on
the joint system, consisting of the spin system and the friend’s lab. Importantly, such
a measurement does not disturb the information that a definite outcome has been
observed by the friend. This particularly means that each observer is in possession
of some kind of "fact". The Deutsch proposal additionally offers the possibility that
Wigner obtains direct evidence that the friend perceives a definite outcome, which
indicates the existence of the friend’s "fact". This raises the question whether both
facts can be considered to be real, in the sense that they coexist and can jointly be
regarded as being objective properties [36].

The argumentation of Wigner as well as of Deutsch assume the validity of quantum
theory and depend crucially on the prepared state. As it turns out, extending the
scenario to two friends and two Wigners that are space-like separated allows one to
argue about the objective status of the observations of Wigner and his friend solely
based on the observed statistics of the two Wigners. This makes the status of the
quantum state irrelevant. In particular, it allows to make statements about the objective
status of the outcomes in a theory-independent manner.
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Figure 1.2: Illustration of the extended Wigner’s friend scenario (EWFS). Here we as-
sume that the measurements of each party can only yield two outcomes
0, 1.

The extended Wigner’s friend scenario

The extended Wigner’s friend scenario (EWFS) was first introduced in Ref. [35] and
formalized in Ref. [37]. It describes a bipartite version of the original Wigner’s friend
thought experiment. It involves two superobservers, named Alice and Bob, as well as
two friends, named Charlie and David, see also Fig. 1.2. Each of the friends in their
respective laboratories holds one particle from an entangled pair on which they can
perform a measurement, yielding the outcome c and d, respectively. In each run of
the experiment, Alice and Bob choose randomly and independently one of N ≥ 2
measurements, which they perform in space-like separated regions subsequent to a
space-like hypersurface containing the measurements of the friends Charlie and Deb-
bie [37]. As in the Bell scenario, the measurement choices for Alice and Bob are labeled
by x, y ∈ {1, ..., N}. Each measurement yields upon performance the corresponding
output a, b. If the first measurement is chosen, i.e., x = 1, Alice simply opens Charlie’s
laboratory and directly asks him for his observed outcome and then assigns her own
output accordingly, that is, she sets a = c. Notice that the process of asking Charlie
for his outcome is equivalent to the case where Alice makes herself a measurement on
the particle hold by Charlie. If 2 ≤ x ≤ N, Alice performs a different measurement on
Charlie’s laboratory as a whole. Bob and David proceed in a similar fashion.

Brukner [36] restricts in the EWFS to the case where x, y ∈ {1, 2}. The measurement
A1 of Alice corresponds to a direct measurement of the spin system, i.e., asking the
friend, and A2 corresponds to the outcome of a Bell-type measurement that is per-
formed on the entire lab. The measurements B1, B2 of Bob are defined in a similar
manner. Brukner then argues that if both facts can be regarded as objective, then it
should be possible to assign jointly truth values to both, the observable outcome of A1

as well as to A2, independently of which measurement has actually been performed.
This is formalized by the assumption of observer-independent facts.

Definition 3 ( [36]). Observer-independent facts (OIF): The truth values of propositions Ai
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of all observers form a Boolean algebra A. Moreover, the algebra is equipped with a (countably
additive) positive measure p(A) ≥ 0 for all statements A ∈ A, which is the probability for the
statement to be true.

If one combines the assumption of OIF with three further assumptions, one can
derive the following no-go result.

Theorem 4 ( [36]). The following statements are incompatible.

(1) Universality of quantum theory, i.e., the predictions of quantum theory hold at any scale,
even if the measured system contains objects as large as an observer.

(2) Locality in the sense of parameter independence, i.e., the choice of the measurement set-
tings of one observer has no influence on the outcomes of the other distant observers.

(3) Freedom of choice, i.e, the choice of measurement settings is statistically independent
from the rest of the experiment.

(4) Observer-independent facts in the sense of Definition 3.

The absoluteness of observed events

The EWFS introduced by Brukner allows one to obtain Bell-type inequalities to probe
under certain assumptions the coexistence of the outcomes of the friend and the
outcomes of Wigner. However, the derived Bell-inequality, which coincides with the
CHSH inequality, can be obtained from the assumptions of freedom of choice and
Kochen-Specker non-contextuality [37, 99]. This makes the assumption of locality re-
dundant and in addition does not require to consider the friend’s observations. As it
happens, the Kochen-Specker theorem [100] already shows that quantum theory does
not admit a non-contextual model and from that perspective, Theorem 4 does not pro-
vide a novel result. In particular, this raises doubts on the implications of Theorem 4

with respect to the assumption about the objectivity of the friend’s observation.
From the above discussion we see that the OIF assumption turns out to be too strong

as the set of allowed correlations observed by Alice and Bob coincides with the set of
LHV correlations. More generally, OIF entails that one can also assign truth values to
statements about hypothetical measurements that were not actually performed. From
this viewpoint, the apparent incompatibility of the assumptions, resulting from a vi-
olation of Brukners inequality Eq. (1.143), could be resolved by maintaining that un-
performed measurements have no results [37, 101]. Consequently, the idea would be
to replace the set of assumptions of Brukner by a set of weaker assumptions that only
involve statements about the nature of observed outcomes, i.e., about measurements that
have been actually implemented. As it turns out, the notion of absoluteness of observed
events (AOE) fulfills exactly that requirement.
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Definition 5 ( [37]). Absoluteness of observed events (AOE): An observed event is a real single
event, and not relative to anything or anyone.

In particular, this implies that in each run of the experiment, where Alice has im-
plemented measurement x and Bob has implemented measurement y, there exists a
well-defined value for the outcome observed by each party, i.e., for the values a, b, c, d.
The crucial point is that, according to AOE, there will only exist a measurement out-
come to the measurement x ≥ 2, if it is actually performed.

Combining AOE with the assumptions of locality and freedom of choice yields a set
of allowed correlations that is a proper superset of the correlations allowed by LHV, yet
does not contain all quantum correlations. The conjunction of these three assumptions
is called local friendliness (LF) [37].

Theorem 6 ( [37]). If a superobserver can perform arbitrary quantum operations on an ob-
server and its environment, then no physical theory can satisfy LF.

1.3 Further concepts and applications

1.3.1 Graphs and graph states

Given a multi-particle quantum system, it is often possible to align the different con-
stituents in a grid-based structure. If one also has information about the interaction
pattern between the different particles, the configuration can be associated with a
graph. In the following we will review important concepts from graph theory and
also introduce the notion of a graph state. The results and definitions presented in this
Section are covered in the book by Diestel [102] and in the review article by Hein [103].

Concepts from graph theory

Formally, a graph G is given by a pair G = (V, E) where V = {1, ..., n} and E ⊂ V ×V.
The elements of V are called vertices and the elements of E are called edges. In the
following the term graph will refer to a simple graph, i.e., a graph without loops
or multiple edges. The complement of a graph G, denoted by G, is a graph on the
same vertices V with edge set V × V \ E. This means that two distinct vertices of G
will be adjacent if and only if they are not adjacent in G. It is clear that the number
of possible graphs grows quickly with the number of vertices. Indeed, there are (n

2)

different possibilities for choosing a set of edges E in a graph consisting of n vertices.
Therefore, there are in total 2(

n
2) different graphs. However, typically one wants to

regard two graphs as being the same if they can be transformed into each other by
permuting the vertices such that this permutation respects the neighborhood structure
of the graph. Permutations of this kind are also called graph isomorphisms. More
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formally, two graphs G1 = (V1, E1) and G2 = (V2, E2) will be called isomorphic, if
there exists a bijective map φ : V1 → V2 such that

(v, w) ∈ E1 if and only if (φ(v), φ(w)) ∈ E2. (1.184)

This allows one to reduce the number of graphs and only consider those that are not
isomorphic. However, one can show that the set of nonisomorphic graphs still grows
exponentially with the number of vertices [104]. An isomorphism from G to itself is
called an automorphism of G. The set of all automorphisms of a graph forms a group,
called the automorphism group of G. Two vertices v, w ∈ V that are the endpoints of an
edge are called adjacent and we write v ∼ w to indicate this relation. The neighborhood
of a vertex v is given by all vertices that are adjacent, that is, Nv = {w ∈ V |w ∼ v}.
From the adjacency relation one can build the adjacency matrix ΓG associated to the
graph G, which is a |V| × |V|-matrix with elements

Γv,w :=

1, if v ∼ w

0, otherwise.
(1.185)

The cardinality of the neighborhood of a vertex v ∈ V, |Nv|, is called the degree of the
vertex. A vertex of degree zero is called an isolated vertex and pairwise non-adjacent
vertices are called independent. More generally, a set of vertices is independent if no
two of its elements are adjacent. An ordered list of vertices v1, ..., vn is called a (v1, vn)-
path if (vi, vi+1) ∈ E for all 1 ≤ i ≤ n − 1. A connected graph is a graph that has a
(v, w)-path for any pair v, w ∈ V and is called disconnected otherwise. A path in which
only the first and last vertex coincide is called a cycle and a graph that consists of a
single cycle is called circular graph. As already mentioned, most often one is interested
in graphs up to an isomorphism. Consequently, a map that assigns equal values to
isomorphic graphs is called a graph invariant. For instance, the number of vertices
and the number of edges are obviously invariants of a graph. In order to introduce
further graph invariants, we need more terminology. Given two graphs G1 = (V1, E1)

and G2 = (V2, E2) one calls G1 a subgraph of G2 if V1 ⊂ V2 and E1 ⊂ E2. In this case,
we also write G1 ⊂ G2. If G1 ⊂ G2 with G1 ̸= G2, we also say that G1 is a proper
subgraph of G2. If G1 ⊂ G2 such that G1 contains all edges (v, w) ∈ E2 with v, w ∈ V1,
then G1 is an induced subgraph of G2. Further, G1 ⊂ G2 is a spanning subgraph of
G2 if V1 = V2. A graph with |V| vertices is called circulant if the cyclic permutation
σ = (1, ..., |V|) is a graph automorphism. This is equivalent to say that for a circulant
graph the i-th vertex is connected to the (i − j)-th and the (i + j)-th vertex for each
j ∈ S where S ⊂ V. Therefore, one can specify a circulant graph by specifying the
number of vertices n and the list S. We will write Cin(S) to refer to such a graph. A
complete graph is a graph in which every pair of distinct vertices is connected by an
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edge. Clearly, a complete graph is uniquely specified by its number of vertices and we
write Kn to denote the complete graph with n vertices.

Definition 7. Let G = (V, E) be a graph.

(1) A clique C of G is an induced subgraph that is complete. A maximum clique of G is
a clique such that there is no clique with more vertices. The number of elements in a
maximum clique is called the clique number of G and is denoted by ω(G).

(2) The fractional packing number of G is

α∗(G) := max ∑
i∈V

pi, (1.186)

where the maximum is taken over all pi ≥ 0 and for all cliques C of G, under the
restriction ∑i∈C pi ≤ 1.

(3) The independence number of G, denoted by α, is the largest cardinality of any indepen-
dent set of G.

(4) For a subset S ⊂ V of vertices we denote by

Ξ(S) := max
v∈S

|{w ∈ S |w ∼ v}| (1.187)

the highest degree of a vertex within S with respect to the neighborhood structure induced
by S. For the particular choice of S = Sα+1, where Sα+1 is the set of all subsets of (α+ 1)
vertices of G, with α the independence number of G, the xi number of G is given by

Ξ(G) := min {Ξ(S) | S ∈ Sα+1 }. (1.188)

(5) The chromatic number of G, denoted by χ, is the smallest number of colors needed to
color the vertices of G such that no two adjacent vertices share the same color.

It is known that calculating the chromatic number χ or the clique number ω is a
NP-complete problem [105]. Clearly, for the complete graph Kn one has χ(Kn) = n
and for a generic graph on n vertices a trivial bound is given by 1 ≤ χ(G) ≤ n. If
the graph G contains a clique of size k, then k colors will be needed in order to color
that clique. Therefore, the chromatic number is at least as large as the clique number,
i.e., χ(G) ≥ ω(G). The graph G is called perfect if χ(G) = ω(G). Further, the clique
number of a graph G is equal to the independence number of the complement graph
G, i.e., ω(G) = α(G). In addition, it follows directly from the definition that for a
graph G = (V, E) and S1, S2 with S1 ⊂ S2 ⊂ V one has Ξ(S1) ≤ Ξ(S2). In particular,
this implies that for S ⊂ V containing no fewer than α + 1 vertices, where α is the
independence number of G, one has Ξ(S) ≥ Ξ(G). In addition, Ξ(G) ≥ 1 since there
is at least one edge among any set of α + 1 vertices. For example, let us consider the
complete graph K3 of three vertices, see also Fig. 1.3. Obviously, the independence
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Figure 1.3: Examples of graphs for a small number of vertices. For instance, the first
three graphs are K2, K3 = Xi3({1}) and C5. From the perspective of the
corresponding graph states, the first four graphs yield the known AME
states on two/three/five/six qubits respectively. The last graph state, the
Fano graph state [106], is a 2-uniform state on seven qubits where 32 of
its 35 three-body marginals are maximally mixed. The figure is taken from
Ref. [D].

number of this graph is α = 1 and therefore S2 = {{1, 2}, {2, 3}, {1, 3}}. For the choice
S = {1, 2} we find Ξ(S) = max {|{2}|, |{1}|}. As one finds similar results for all
other sets in S2, we can conclude that Ξ(G) = 1. Notice that the complete graph on
three vertices is also a circulant graph, that corresponds to Ci3({1}). A more advanced
example is the circulant graph Ci10({2, 3}), i.e., a graph with 10 vertices in which
vertex i is adjacent to vertices i + 1 and i + 3. Here one finds Ξ(G) = 2.

It is often the case that graphs which are highly symmetric are of particular in-
terest. The amount of symmetry that a graph possesses is measured by means of its
automorphism group. In this context, so-called vertex-transitive graphs play a distin-
guished role. A graph G will be called vertex-transitive if, for every pair of vertices,
there exists an automorphism of the graph mapping one vertex to the other. More
formally, this means that the automorphism group of the graph is transitive, i.e., the
group orbit of one vertex equals the set of all vertices V. Consequently, every vertex
of G has the same local environment and thus one cannot distinguish a vertex from
another based on the vertices and edges surrounding it. Taking again the example of
the circulant graph Ci3({1}), one directly sees that the automorphism group is gener-
ated by the cyclic permutations σ1 = (1, 2) and σ2 = (2, 3). Therefore, for any pair of
two vertices, there exists a graph automorphism mapping the one vertex to the other.
Hence Ci3({1}) is a vertex-transitive graph. In a similar manner, the circulant graph
on 5 vertices Ci5({1}) is a vertex-transitive graph, see Fig. 1.3. Its automorphism group
is generated by the cycles σ1 = (2, 5), σ2 = (3, 4) and σ3 = (1, 2, 3, 4, 5).

Definition 8. Let G = (V, E) be a graph.

(1) An orthonormal representation of G in Cd is an assignment of a unit vector |vj⟩ ∈ Cd to
each vertex j ∈ V satisfying that ⟨vj|vk⟩ = 0 for all pairs j, k ∈ V of adjacent vertices.
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(2) The orthogonal rank of G, denoted ξ, is the smallest positive integer d ≥ 1 for which
there is an orthonormal representation in Cd of G.

It is important to notice that the definition of an orthonormal representation neither
requires that different vertices are assigned different vectors, nor that nonadjacent
vertices correspond to nonorthogonal vectors. It is often the case that a further unit
vector |ψ⟩ ∈ Cd is specified together with the orthonormal representation. In this
context, such a vector is called a handle. For instance, the graph Ci3({1}) admits an
orthonormal representation in C3 by virtue of the assignment |v1⟩ = e⃗1, |v2⟩ = e⃗2 and
|v3⟩ = e⃗3. Further, as this graph is fully connected, there cannot exist an orthonormal
representation in C2. Hence the orthonormal rank of Ci3({1}) is 3.

Definition 9. Let G = (V, E) be a graph. The Lovász number of G is

ϑ(G) := max ∑
i∈V

|⟨ψ|vi⟩|2, (1.189)

where the maximum is taken over all orthonormal representations {|vj⟩}j∈V of G and all
handles |ψ⟩ in any dimension.

It can be shown that the calculation of the Lovász number of a graph G can be
rephrased as a so-called semidefinite problem [107] and can thus be numerically ap-
proximated in time bounded by a polynomial in the number of vertices of G. Further,
the so-called "sandwich theorem" [108] states that for a graph G the Lovász number ϑ

can be bounded via

ω(G) ≤ ϑ(G) ≤ χ(G). (1.190)

This implies that for a perfect graph G one has ϑ(G) = ω(G) = χ(G).

Quantum states from graphs

We now want to associate a pure multipartite quantum state to a given graph G.
The idea is that the vertices correspond to qubits and the edges represent an Ising-
type interaction. In the literature, one can find two a priori different definitions of a
graph state, which turn out to be equivalent. Given a graph G one can construct the
corresponding graph state |G⟩ as follows. For each vertex v ∈ V one initializes the
system in the state |+⟩ = 1√

2
(|0⟩ + |1⟩), which is the +1 eigenstate of the Pauli-X

operator. Consequently, the whole system is initially in the pure state |+⟩⊗n, where
n = |V|. Then, for each edge (v1, v2) = e ∈ E one applies an Ising-type interaction
between the qubits, represented by vertices v1 and v2, which is given by the controlled-
Z interaction CZ. The CZ interaction between two qubits is described by the unitary
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operator

CZ = |00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10| − |11⟩⟨11| =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1.191)

For a graph G with n vertices and e = (v1, v2) an edge, we denote by CZe the unitary
operator acting on (C2)⊗n, which implements CZ on the qubits v1 and v2, and is the
identity on the other tensor factors. With this notation, we obtain the corresponding
graph state as

|G⟩ = ∏
e∈E

CZe |+⟩⊗n. (1.192)

Consequently, the graph encodes a summary of the interaction history of the particles
which transforms the initial state |+⟩⊗n to |G⟩. From a physical viewpoint, graphs that
contain isolated vertices represent a system where certain constituents are completely
uncorrelated to the others. Therefore, the first nontrivial example of a graph state
appears for the complete graph K2 with n = 2 vertices, see also Fig. 1.3. In this case
one has

|K2⟩ = CZ12|+⟩|+⟩ = 1
2
(|00⟩+ |01⟩+ |10⟩ − |11⟩) (1.193)

=
1√
2
(|0⟩|+⟩+ |1⟩|−⟩) LU

=
1√
2
(|00⟩+ |11⟩). (1.194)

Hence this state is up to applying 1⊗ U for some unitary U equivalent to the max-
imally entangled state. The fact that the graph K2 is invariant under relabeling the
vertices is mirrored by the graph state |K2⟩ by being permutation symmetric. Let us
consider now the graph state associated to the complete graph K3 with three vertices.
Here one has

|K3⟩ = CZ12CZ23CZ31|+⟩1|+⟩2|+⟩3
LU
= |GHZ⟩, (1.195)

where |GHZ⟩ is defined in Eq. (1.91) as a representative of one of the two classes
of genuine tripartite entangled states with respect to SLOCC. Here it is important
to notice that the state |W⟩, which is a representative of the other class of genuine
tripartite entangled states, is not a graph state. Again, the fact that the graph K3 is
invariant under relabeling the vertices is reflected by the permutation symmetry of the
state|GHZ⟩.

As already mentioned, there exists an equivalent definition of a graph state which
is based on finding the common eigenstate to a specific set eigenvalues of a set of
commuting operators. This directly relates to the so-called stabilizer formalism, which
has a wide range of applications, for instance in quantum error correcting codes. For a
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given graph G one associates to each vertex j ∈ V a correlation or stabilizing operator
gj defined by

gj := Xj
⊗
k∈Nj

Zk, (1.196)

where the index indicates on which qubit the corresponding operator acts. As an ex-
ample, for the complete graph K2, the stabilizing operators are given by g1 = XZ and
g2 = ZX. Similarly, for K3 we obtain g1 = XZZ, g2 = ZXZ and g3 = ZZX. The graph
state |G⟩ associated to the graph G is then the pure |V|-qubit state fulfilling

gj|G⟩ = |G⟩ for all j = 1, ..., |V|. (1.197)

In other words, |G⟩ is the common eigenstate to the eigenvalue +1 of all stabilizing
operators gj. Clearly, if |G⟩ is a common eigenstate to the eigenvalue +1 for all the
gj, then |G⟩ is also an eigenstate to the eigenvalue +1 for all possible products of the
gj. The set of all products that can be formed from the stabilizing operators gj forms
a commutative subgroup of the Pauli group Pn, which is the group generated by the
n-fold tensor products of Pauli operators, i.e., Pn := ⟨{X, Y, Z}⊗n⟩. This subgroup is
called the stabilizer of the graph state |G⟩.

For a given graph G with associated graph state |G⟩ one can construct a basis for the
space (C2)⊗|V| such that any basis element |Gσ⟩ is an eigenstate for each of the stabiliz-
ing operators gj. In particular, the state |Gσ⟩ is an eigenstate of the stabilizing operator
gj with the eigenvalue (−1)σj , where ((−1)σ1 , ..., (−1)σ|V|) is called the signature of the
state |Gσ⟩. More precisely, one has

gj|Gσ⟩ = (−1)σj |Gσ⟩. (1.198)

Indeed, consider for σ ∈ {0, 1}|V| the state

|Gσ⟩ :=
|V|

∏
j

Z
σj
j |G⟩. (1.199)

Clearly, Zk commutes with all stabilizing operators gj as long as j ̸= k and by the
property in Eq. (1.16) it anticommutes with gk. Therefore, for all k ∈ V we have

gk|Gσ⟩ = gk

|V|

∏
j=1

Z
σj
j |G⟩ = (−1)δ(σk ,1)

|V|

∏
j=1

Z
σj
j |G⟩ = (−1)σk |Gσ⟩. (1.200)

Since there are 2|V| possible configurations for the eigenvalues (−1)σ1 , ..., (−1)σ|V| and
⟨Gσ|Gσ̃⟩ = δσ,σ̃ holds, the pure states {|Gσ⟩}σ form an orthonormal basis for (C2)⊗|V|.
From this one obtains

⟨Gσ|
2|V|

∑
j

gj|Gσ̃⟩ = 2|V|δ(σ, 0⃗)δ(σ̃, 0⃗) (1.201)
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for any of the states |Gσ⟩ and |Gσ̃⟩. Therefore, one can express the graph state as the
sum over the different elements of the stabilizer group

|G⟩⟨G| = 1
2|V| ∑

g∈S
g. (1.202)

Independent of the used definition, it is important to notice that different graphs can
yield the same graph state in the sense that the associated states coincide up to lo-
cal unitary transformations. Therefore, it would be desirable to have a criterion that
determines whether two different graphs yield up to LU equivalence the same graph
state. Although this problem is not fully resolved yet, when restricting to a subclass of
operations, the so-called local Clifford operations, there exists a simple scheme called
local complementation, which decides equivalence with respect to that class. Here it
is important to notice that the technique of local complementation is directly applied
to the graph, while LU equivalence refers to a property of the associated graph state
|G⟩. As already mentioned in Section 1.2.2, two pure states are LU equivalent if and
only if they are LOCC equivalent. For the class of graph states one can make the even
stronger statement that two graph states are LU equivalent if and only if they are
SLOCC equivalent [109]. From this it is directly clear that in the case of two and three
vertices there exists, up to LU equivalence, only one graph state.

Let us now explain the technique of local complementation in more detail. First, we
need the notion of the Clifford group on one qubit, which is the set of all operators
which map the Pauli group P1 to itself under conjugation. The definition of the n-
qubit local Clifford group is analogous. For a given graph G choose a vertex j ∈ V.
The local complementation of G with respect to the vertex j is obtained by comple-
menting the subgraph in G consisting of all vertices in its neighborhood Nj ⊂ V and
their associated edges. To complement a subgraph means to erase all the edges in the
subgraph, but instead connect the vertices which were originally disconnected. If two
graphs belong to the same local complementation orbit, i.e., they can be transformed
into each other by local complementation, their corresponding graph states will be in
the same local Clifford orbit. As local Clifford equivalence is a particular instance of
LU equivalence the graph states are also LU equivalent. However, this conclusion only
works in one direction, i.e., there exist LU equivalent graph states that are not local
Clifford equivalent [110].

1.3.2 Quantum computing

It has already been realized by the founders of information science that information is
physical [23]. In this vein, the overall idea of quantum computing is to replace the clas-
sical bits and gates in classical computation by quantum systems and quantum oper-
ations. One of the key promises of quantum computers is to allow for new algorithms
which can solve problems efficiently, while any known classical algorithm requires
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exorbitant resources [29]. These problems range from the simulation of quantum sys-
tems [24] to purely mathematical problems, like the factorization of integers [30]. How-
ever, apart from these theoretical advantages, the quantum information, i.e., the phys-
ical system carrying the information, appears to be extremely fragile. In particular,
the sensitivity to noise puts an ultimate time limit and size limit for any quantum
computation, which may nullify any quantum speedup [111]. Although the theory
of quantum error correction can in principle avoid that quantum information is cor-
rupted, it comes at the cost of a large qubit overhead. This renders the application to
the available noisy intermediate scale devices impossible [31]. In this sense, the field
of quantum error mitigation can be understood as a temporary replacement of full
error correction [32]. In the following, we introduce the concepts related to quantum
computation that are needed for the subsequent chapters of this Thesis.

Quantum gates

Classical and quantum computing relies on algorithms, which can be seen as a pre-
scription for performing a particular task, which typically depends on a given input.
Even though the processing of this input data during the computation can be arbitrar-
ily complex, the operations that can be implemented are restricted to a very finite set
of basic operations. These are the so called gates. Classically, the unit of information
is the bit, taking values in {0, 1} and a logic gate is a function f : {0, 1}m → {0, 1}n,
where m refers to the number of inputs and n to the number of outputs. An example
of such a logical gate is the NOT gate having one input and one output bit, turning
0 to 1 and 1 to 0, i.e., f (x) = 1 ⊕ x where ⊕ is addition in Z2. Further important
logical gates are the AND and the OR gate, taking two values as an input while only
having one output bit. The AND gate acts on the inputs as (x, y) 7→ xy while OR acts
as (0, 0) 7→ 0, (0, 1) 7→ 1, (1, 0) 7→ 1 and (1, 1) 7→ 1. Here it is important to notice that
the action of AND and OR is not reversible, in contrast to the action of NOT.

In quantum computing we replace the classical bit by a two-level system, i.e., a qubit.
According to the formalism of quantum theory we have to replace classical gates by
unitary operations. The NOT gate directly translates to the quantum regime via an
implementation of the Pauli X gate

X|0⟩ = |1⟩, X|1⟩ = |0⟩, (1.203)

which is represented in the circuit model as follows:

Pauli-X gate: X

Apart from the Pauli-X gate, also the corresponding Pauli-Y and Pauli-Z gates play
an important role. Further, single qubit operations that will appear frequently are the
Hadamard gate H, the phase gate S and the T gate (also called (π/8) gate). With
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respect to the computational basis they can be written as

H =
1√
2

(
1 1
1 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 ei π

4

)
(1.204)

and they are denoted in the circuit representation in a similar manner as the Pauli-X
gate. In addition, there are also the two-qubit gates

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 and SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (1.205)

In the circuit representation, the gates CZ, CNOT and SWAP are denoted by

Here CZ and CNOT are controlled gates, as the action on the second qubit depends
on the value of the first one. Indeed, the action of the CNOT gate is given by |x⟩|y⟩ 7→
|x⟩|x ⊕ y⟩, i.e., if the controlled qubit is set to |1⟩, then the target qubit (in the second
register) will be flipped and otherwise there is no action on the target qubit at all. More
generally, if U is a single qubit unitary operation, one can turn it into a controlled
unitary operation, that is, if the control qubit is in the state |1⟩, then U will be applied
to the second register, and otherwise there will be no action. Finally, at the end of each
quantum computation, there is an ideal projective measurement in the computational
basis {|0⟩, |1⟩} on each qubit. By means of this measurement, we obtain a classical
output string, whose length depends on the number of qubits being present at the end
of the computation. Typically, in order to implement an algorithm, the composition
of many elementary gates is needed and such a composition is called a circuit. Many
powerful quantum algorithms like Shor’s algorithm [30] or the quantum principle
component analysis [112] require many gates for their implementation if the input
grows. In general, the length of a quantum computation is expressed by the depth of
a quantum circuit implementing this computation.

Universal gate sets

In classical computation a logic gate is an arbitrary function f : {0, 1}m → {0, 1}n.
However, it turns out that a small set of gates is sufficient to compute an arbitrary
function f . If this is the case, we call such a set of gates a universal gate set. For instance,
for classical computation the set {AND,OR,NOT} is universal [29]. Here it is important
to notice that universal gate sets are not uniquely defined and there exist other gate
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sets that also turn out to be universal. A similar result can be obtained for quantum
computation. However, as the set of operations is continuous the definition has to be
adapted. One says that a set of gates will be universal for quantum computation, if any
unitary operation may be approximated to an arbitrary accuracy by a quantum circuit
involving only those gates. For example, it can be shown that the gate set {CNOT,H,T}
is universal for quantum computation [113]. Further, also the gate set consisting of
CNOT and all qubit operations turns out to be universal for quantum computation [29].
Even though these results ensure that one can restrict to a finite gate set, they are
silent about the efficiency of the procedure of approximating a quantum circuit using
that discrete set. Indeed, given the small coherence times on NISQ devices [31], it is
important that the decomposition does not result in too deep circuits.

Theorem 10 ( [29, 114]). Let S ⊂ SU(2) be a finite set, closed under taking the inverse such
that the generated group ⟨S⟩ is dense in SU(2). Let the accuracy ϵ > 0 be given. Then the set
Sn of all words of length n that can be built from elements of S, that is,

Sn := {
n

∏
j=1

sij | sij ∈ S} ⊂ SU(2) (1.206)

is an ϵ-net in SU(2) if n = O(log
(

1
ϵ

)c
) for c ≈ 2.

Thus Theorem 10 implies that an arbitrary single qubit gate can be approximated

up to accuracy ϵ using only O(log
(

1
ϵ

)2
) gates from a discrete set.

Quantum error correction

One of the largest problems of practical quantum computing is its sensitivity to errors
and noise. While also classical computation suffers from noise, e.g., bit flips, the situ-
ation for quantum computation is much more complicated. Classical error correction
is based on encoding information in a redundant way such that even in the presence
of noise the encoding process would recover the original data. For instance, suppose
that a classical bit should be sent through a noisy channel, which flips the bit with
a probability of p > 0 while with a probability 1 − p the bit arrives without error at
the receiver. In order to make the communication more robust against noise, i.e., to
decrease the probability that the wrong message is decoded, consider the scheme

0 7→ 000 and 1 7→ 111. (1.207)

Here the bit strings 000 and 111 are also called logical 0 and logical 1, respectively and
one says that the original message was encoded in the logical subspace. Now all three
bits are sent through the communication channel and one assumes that each of the
bits is affected independently by the noise. Therefore, the receiver probably obtains a
noisy message that he has to encode. For this, majority voting is employed, that is, if
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the message is 001 it will be decoded as 0. This simple error correction code is called
a repetition code.

However, if one would like to adapt schemes of that kind for quantum computation
one has to deal with at least three difficulties which directly relate to fundamental
aspects of quantum theory.

(1) Quantum measurements: While in classical error correction the particular bit can
be read out at any state of the computation, quantum measurements disturb the
quantum state and can destroy the information encoded into the state. However,
in order to correct an error, it is necessary to detect it first.

(2) Continuous errors: In classical computation errors can be modeled by bit flips,
which yields a discrete set. However, due to the superposition principle of quan-
tum theory, vastly different errors can occur for quantum computation, e.g. a
phase flip error.

(3) No-cloning: Encoding the information in a similar manner as in the repetition
code is not possible as an unknown quantum state can not be copied. In addition,
even the cloning of a quantum state would be allowed, it would not be possible
to measure and compare the three quantum states from the output.

A first attempt to address these problems was presented by Peres, although the
introduced "code" is not able to correct Pauli-Y errors [115]. We will outline the idea
of this scheme by the so-called bit flip code [29]. Suppose that the system is initially
in the state |ψ⟩ = α|0⟩+ β|1⟩ with α, β ∈ C. This state is encoded into the three-qubit
state |ψ̃⟩ = α|000⟩+ β|111⟩. The logical subspace in (C2)⊗3 is spanned by the logical
states |0⟩L = |000⟩ and |1⟩L = |111⟩ and we refer to |0⟩L as the logical zero and to
|1⟩L as the logical one. This three-qubit state is sent through a noisy quantum channel,
acting on each qubit independently and performs with probability p a bit flip and acts
as the identity with probability 1− p. Now suppose that, after the encoded system has
passed through the channel, the bit flip occurred on at most one qubit. Then, one can
devise a two-state error-correction procedure able to correct the state. In the first stage,
we aim to detect the error. For this, we have to perform a measurement on the encoded
state to obtain information which error has occurred. The outcome of the measurement
is called the error syndrom and determines the operation that has to be performed in
order to correct the error. Under the assumption that at most one of the qubit’s was
affected by the bit flip, there are four possible types of error: no error occurred, an
error on the first qubit occurred, an error on the second qubit occurred and an error
on the third qubit occurred. To each of these events, we assign a projection operator

Π0 = |000⟩⟨000|+ |111⟩⟨111|, Π1 = |100⟩⟨100|+ |011⟩⟨011|,

Π2 = |010⟩⟨010|+ |101⟩⟨101|, Π3 = |001⟩⟨001|+ |110⟩⟨110|.
(1.208)
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First, notice that all projection operators Π0, ..., Π3 commute and form a resolution of
the identity. Therefore, if one wants to determine the error syndrom, it is possible to
perform the measurement at once, i.e., a four-outcome projective measurement with
effects (Π0, ..., Π3) or sequentially, that is, one measures the two-outcome projective
measurements (Πj,1− Πj) for 0 ≤ j ≤ 3. Suppose that the bit flip occurred on the
first system. The noise transforms the encoded state |ψ̃⟩ into the noise corrupted state
|ψ̃N⟩ = α|100⟩ + β|011⟩. If one now implements the syndrom measurement, i.e., the
measurement of the four projectors in Eq. (1.208), one finds that ⟨ψ̃N|Π1|ψ̃N⟩ = 1. This
means that the outcome associated with Π1 appears with certainty. Because |ψ̃N⟩ lives
in the subspace which is spanned by Π1, a measurement of Π1 does not alter the state
of the system, i.e., the system is in the state |ψ̃N⟩ before and after the measurement.
Consequently, we can infer from the outcome of the measurement which particular
error has occurred. Now we are in the position to correct the state. As we know that
the first qubit was corrupted, one simply has to apply X ⊗1⊗1 to recover the encoded
state |ψ̃⟩.

Although this simple example of a quantum error correcting code (QEC) does not
take into account general and continuous errors, it can be seen as an evidence that all
the difficulties quantumness brings into error-correction can be coped with.

Quantum error mitigation

The theory of quantum error correction offers the possibility of fault tolerant quan-
tum computation given that the errors in the components are smaller than a certain
threshold pth. However, besides the difficulty in achieving this particular threshold,
the implementation of a fault-tolerant universal gate set with current codes intro-
duces another challenge due to the large qubit overhead. Indeed, one can show that
with the current technology a classically intractable computation requires hundreds of
thousands of qubits [116]. Quantum error mitigation (QEM) takes a complementary
approach of accepting hardware imperfections limiting the complexity of quantum al-
gorithms and asks for how much information can be recovered by a purely classical
post-processing of the data obtained from a noisy device. There is an important differ-
ence between QEC and QEM: While the former attempts to reduce the effect of noise
on the output in every single circuit run, the latter only aims to reduce the effective
damage for the whole ensemble of circuit runs.

1.4 Computational and algorithmic aspects

The question of whether a solution to a given problem is optimal with respect to a cer-
tain task is ubiquitous in science. Indeed, it appears in explicit form, e.g., finding the
largest value of a function within a certain set or implicit via asking for the existence
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of a solution with some desired properties. This turns the theory of optimization into
a very powerful tool. Here we will introduce different classes of optimization tech-
niques that are important in the subsequent chapters of this Thesis. The results and
definitions presented in this Section are covered in the book of Nesterov [117] or Boyd
and Vandenberghe [118].

1.4.1 General form and terminology

The most general formulation of an optimization problem we consider is given by

minimize f0(x⃗)

subject to f j(x⃗) ≤ 0, 1 ≤ j ≤ m

hj(x⃗) = 0, 1 ≤ j ≤ p.

(1.209)

Consequently, Eq. (1.209) describes the task of finding a point x⃗ ∈ Rn that minimizes
the objective function f0 : Rn → R among the set of all other x⃗ that satisfy the conditions
f j(x⃗) ≤ 0 for 1 ≤ j ≤ m and hj(x⃗) = 0 for 1 ≤ j ≤ p. In this context we refer to x⃗ ∈ Rn

as the optimization variable. Further, we call the functions f j : Rn ⊃ dom( f j) → R

the inequality constraint functions and hj : Rn ⊃ dom(hj) → R the equality constraint
functions. If no constraint functions are given, i.e., m = p = 0, the optimization prob-
lem in Eq. (1.209) is called unconstraint. In order to give a meaning to Eq. (1.209),
there should exist points which can simultaneously fulfill all the constraints. A nec-
essary condition for such a point is that it is contained in the domain D ⊂ Rn of the
optimization problem given by

D :=
m⋂

j=1

dom( f j) ∩
p⋂

j=1

dom(hj). (1.210)

Further, we call x⃗ ∈ D feasible if it satisfies all the constraints f j(x⃗) ≤ 0 as well
as hj(x⃗) = 0. In this case, the optimization problem in Eq. (1.209) is called feasible,
otherwise unfeasible. The collection of all feasible points is called the feasible set and
denotes by F . A point x⃗ ∈ F will be called strictly feasible if f j(x⃗) < 0 for 1 ≤ j ≤ m.
Geometrically, this means that a strictly feasible point x⃗ ∈ Rn lies in the interior of
F with respect to the subspace topology that is induced on the affine hull of F . To
the problem in Eq. (1.209) one associates the optimal value p∗ via p∗ := infx⃗∈F f0(x⃗).
Typically one allows the optimal value p∗ to take values in R ∪ {±∞} and in the case
that the problem is infeasible one sets p∗ = ∞. In the case that there exists a sequence
of feasible points (x⃗k)k≥1 ⊂ F such that f0(x⃗k) → −∞, one sets p∗ = −∞ and says
that the problem is unbounded from below. If f0 ≡ 0 one clearly has p∗ ∈ {0, ∞}.
Optimizing f0 ≡ 0 over a (probably empty) feasible set F is also called a feasibility
problem as it determines whether the constraints are consistent, and if so, finds a point
that satisfies them.
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1.4.2 Lagrange duality

For a given optimization problem of the form Eq. (1.209) assume that D ̸= ∅ and
denote by p∗ its optimal value. The main idea of Lagrange duality is to incorporate
the constraint functions f j and hj into the objective function f0. More precisely, one
associates the so-called Lagrangian L : Rn×m×p → R given as

L(x⃗, λ⃗, µ⃗) := f0(x⃗) +
m

∑
j=1

λj f j(x⃗) +
p

∑
j=1

µjhj(x⃗) (1.211)

to the optimization problem. Here λ⃗ and µ⃗ are called the Lagrange multilpliers or dual
variables associated with the constraints. The Lagrange dual function g : Rm×p → R

is then the minimal value of the Lagrangian L with respect to the variable x⃗ ∈ Rn,

g(⃗λ, µ⃗) := inf
x⃗∈D

L(x⃗, λ⃗, µ⃗) = inf
x⃗∈D

[ f0(x⃗) + ∑
j

λj f j(x⃗) + ∑
j

µjhj(x⃗)]. (1.212)

Clearly, if L is unbounded from below, then one has g = −∞. Here it is important
to notice that L is an affine function in the variables λ⃗ and µ⃗. As the Lagrange dual
function g is obtained as the pointwise infimum of the Lagrangian L, it follows that g
is a concave function, even the original problem is not convex. This by itself is already
a pleasant property. This raises the question how the values of g relate to the optimal
value p∗. It turns out that the dual function g yields lower bounds on the optimal
value p∗ of the original problem, which is by itself defined via a minimization. More
precisely, for any choice of λ⃗ and µ⃗ with λj ≥ 0 for all 1 ≤ j ≤ m one has g(⃗λ, µ⃗) ≤ p∗.
Indeed, if z⃗ ∈ D is a feasible point, it follows that

L(⃗z, λ⃗, µ⃗) = f0 (⃗z) + ∑
j

λj f j (⃗z) + ∑
j

hj (⃗z) ≤ f0 (⃗z), (1.213)

as all functions hj vanish for z⃗ and f j (⃗z) ≤ 0. Consequently, we obtain for the dual
function

g(⃗λ, µ⃗) = inf
x⃗∈D

L(x⃗, λ⃗, µ⃗) ≤ L(⃗z, λ⃗, µ⃗) ≤ f0 (⃗z). (1.214)

As this argument works for any feasible point z⃗, one obtains that g(⃗λ, µ⃗) yields a
lower bound on the minimal value that f0 can attain on the feasible set. Obviously, a
necessary criterion on the bound g(⃗λ, µ⃗) that one obtains for p∗ via Eq. (1.214) to be
useful in practice is that g(⃗λ, µ⃗) ̸= −∞. This means that the dual function can only
yield nontrivial lower bounds when all λj ≥ 0 and (⃗λ, µ⃗) ∈ dom(g). If this is the case
we call the pair (⃗λ, µ⃗) dual feasible. It is in the nature of the problem that we are not
satisfied by obtaining some lower bound on p∗. We are interested in the optimal lower
bound we can obtain via the dual function g(⃗λ, µ⃗), which yield parameter dependent
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bounds. This directly leads to another optimization problem

maximize g(⃗λ, µ⃗)

subject to λj ≥ 0, 1 ≤ j ≤ m

with respect to λ⃗, µ⃗.

(1.215)

The optimization problem in Eq. (1.215) is called the Lagrange dual problem, or short,
dual problem, associated with the original problem in Eq. (1.209). A pair (⃗λ∗, µ⃗∗) is
called dual optimal if it is optimal with respect to Eq. (1.215). The optimal value will
be denoted by d∗. From the previous discussion it is clear that d∗ ≤ p∗. This property
is called weak duality and the difference p∗ − d∗ ≥ 0 is called the duality gap of the
original problem. If one finds that d∗ and p∗ coincide, d∗ = p∗, one says that strong
duality holds. Even though strong duality does not hold in general, there are important
subclasses of optimization, e.g., convex or semi-definite programming, where it in
(almost) all cases hold. Further, for these subclasses easy to evaluate conditions on
the problem are known under which strong duality holds. These conditions are called
constraint qualifications.

1.4.3 Convex optimization

In convex optimization one assumes that the objective function f0 as well as all con-
straint functions f j, hj are convex. Problems of this form turn out to have a wide field
of applications and especially the subclass of semidefinite programs (SDPs) are of
paramount importance in quantum information. For instance, they can be used to
decide the separability of a multipartite quantum state [119], bounding the maximal
violation of a Bell inequality in quantum theory [120], upper bounds on the distill-
able entanglement [121], relate to invariants of graphs [107] or can used to decide the
irreducibility of a positive-operator values measure [122].

The formulation of the problem

In convex optimization one is concerned with problems of the form

minimize f0(x⃗)

subject to f j(x⃗) ≤ 0, 1 ≤ j ≤ m

Ax⃗ = b⃗,

(1.216)

where f j : dom( f j) ⊂ Rn → R convex and A ∈ Rp×n.
In this context, it turns out to be useful to introduce the concept of a α-sublevel set

Sα( f ) of a function f : Rn → R. It is defined via

Sα( f ) := {x⃗ ∈ Rn | f (x⃗) ≤ α}. (1.217)
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The first important thing to notice is that if a function f is convex also the α-sublevel
sets are convex. Indeed, for x⃗, y⃗ ∈ Sα one directly verifies that for z⃗ = λx⃗ + (1 − λ)⃗y
one has f (⃗z) ≤ λ f (x⃗) + (1 − λ) f (⃗y) ≤ α, thus z⃗ ∈ Sα. This implies that for a convex
optimization problem the feasible set itself is convex as it arises from the intersection of
the sublevel sets S0( f j) and the hyperplane given by {x⃗ ∈ Rn | Ax⃗ − b⃗ = 0}. From this
one can derive one of the most important and useful properties of convex optimization
problems. It turns out, that any local optimal point is also a global optimal point. Let F
be the feasible set with respect to the constraints in Eq. (1.216), x⃗ ∈ F a local optimal
point, that is f0(x⃗) = min { f0 (⃗z) : ||⃗z − x⃗||2 ≤ δ, z⃗ ∈ F} for some δ > 0. Now assume
that x⃗ is not globally optimal, i.e., there must exist a feasible point y⃗ ∈ F such that
f0 (⃗y) < f0(x⃗). Clearly one has ||⃗y − x⃗||2 > δ as otherwise this would contradict the
assumption of local optimality of x⃗. As F is a convex set it follows that F ∋ z⃗ =

(1 − λ)x⃗ + λy⃗ for λ = δ/(2||⃗y − x⃗||2) < 1. Obviously ||⃗x − z⃗||2 = δ/2 < δ, i.e., z⃗ lies in
the ball around x⃗ for which x⃗ is by assumption locally optimal. However, the convexity
of f0 yields

f0 (⃗z) = f0((1 − λ)x⃗ + λy⃗) ≤ (1 − λ) f0(x⃗) + λ f0 (⃗y) < f0(x⃗), (1.218)

in contradiction to the assumption. Therefore, the locally optimal point x⃗ is also glob-
ally optimal. Further, in the context of convex optimization problems, one has an easy
criterion for strong duality, called Slater’s condition. It states that for the optimization
problem in Eq. (1.216) strong duality holds if there exists a point x⃗ ∈ F that is strictly
feasible. In fact, Slater’s condition does not only imply strong duality for convex prob-
lems. It also implies that the dual optimal value is attained when d∗ > −∞.

Conic programming

The theory of convex programming allows for the optimization of a convex function
over an arbitrary convex set, which is described via the intersection of 0-sublevel sets
of convex functions. A special subclass of convex sets are convex cones which appear
to yield a robust and rich theory. A set C ⊂ Rn is called a cone if x⃗ ∈ C implies λx⃗ ∈ C
for all λ ≥ 0. If the set C is in addition convex, we will call C a convex cone. A convex
cone C will be called proper, if it is closed, has an nonempty interior and is pointed,
i.e., if x⃗ ∈ C and −x⃗ ∈ C then x⃗ = 0⃗. Given such a cone C, one can simply take the
function

f1(x⃗) :=

0, if x⃗ ∈ C

∞, otherwise
(1.219)

as the inequality constraint function in Eq. (1.216), thus reproducing the form of a
convex program. These proper cones have the property that they induce a partial
ordering on Rn that can be used to define a so-called generalized inequality. The
associated ordering to the cone C is given by x⃗ ≤ y⃗ if and only if y⃗ − x⃗ ∈ C.
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Semidefinite programming

A semidefinite program (SDP) is a conic optimization program where the convex cone
is given by the set of positive semidefinite (PSD) matrices. Therefore, a SDP has the
from

minimize c⃗⊤ x⃗

such that ∑
j

xjFj + G ≥ 0

Ax⃗ = b⃗,

(1.220)

where G, Fj are symmetric matrices and c⃗ ∈ Rn.
It often appears that the problem at hand does not directly offer a formulation as a

SDP but can be refined in that form. Typical examples include the fidelity between two
states, the trace distance, the infinity norm, as well as many of the smooth entropies.
For instance

||ϱ||∞ = sup {Tr[ϱX] | 0 ≤ X ≤ 1} = min {α |ϱ ≤ α1}. (1.221)

Linear programming

A linear program can be seen as a semidefinite program where all matrices are diag-
onal and therefore the linear matrix inequalities reduce to a set of linear inequalities.
Consequently, a linear program (LP) is of the form

minimize c⃗⊤ x⃗

subject to Ax⃗ = b⃗

x⃗ ≥ 0.

(1.222)

However, one can also interpret a linear program as a conic optimization problem,
where the cone is given by the nonnegative orthant, i.e., the set {x⃗ ∈ Rn | xj ≥ 0 ∀ j}.



2 Certifying irreducible measurements
in a prepare-and-measure scenario

The number of outcomes is a defining property of a quantum measurement. In par-
ticular, there exist measurements which cannot be simulated by randomizing simpler
measurements with fewer outcomes. These measurements are called irreducible and
provide advantages for many quantum information processing tasks. In this Chapter
we show that in a prepare-and-measure scenario the minimal scheme for certifying an
irreducible three-outcome qubit measurement requires three state preparations and
an auxiliary two-outcome measurement. Further, we provide experimentally feasible
examples for this minimal certification scheme. In addition, we discuss the dimension
assumption which is characteristic for the prepare-and-measure approach and to what
extent it can be mitigated. This Chapter is based on Project [I].

2.1 Motivation

The most general description of a quantum measurement is given by positive operator-
valued measures. The set of measurements described in this way contains instances
which are neither projective nor obtainable by combining projective measurements [40].
This class of genuinely nonprojective measurements has important applications, for
instance, in quantum computing [123, 124], quantum cryptography [125, 126], ran-
domness certification [127], and quantum tomography [128]. However, since genuinely
nonprojective measurements cannot be combined from projective measurements, their
experimental implementation is difficult and typically requires control over additional
degrees of freedoms, what can be seen as the content of the Naimark extension theo-
rem.

For example, the implementation of the so-called symmetric informationally com-
plete (SIC) POVM (see Fig. 2.3) via post-processing a projective measurement can only
be achieved by coupling the system to at least one auxiliary qubit [129]. A quantum cir-
cuit implementing such a dilation is depicted in Fig. 2.1. It is hence of interest to verify
whether an experiment has successfully implemented a nonprojective measurement.

Recently, semi-device-independent certification schemes have become the focus of
theoretical investigations [130–132] as well as experimental implementations [133–135].



80 2 Certifying irreducible measurements in a prepare-and-measure scenario

Figure 2.1: Quantum circuit implementing a SIC-POVM on a qubit. Here, U is a uni-
tary operator depending on the particular orientation of the SIC effect vec-
tors and F2 refers to the Fourier gate acting on the system. At the end of
the circuit, both particles are measured in the computational basis, i.e., a
projective measurement is performed.

Here the employed certification schemes can be divided into two classes. Those based
on Bell-like scenarios [133] and those using a prepare-and-measure scenario [130–132,
134]. In the former case, an entangled state is distributed to two spatially separated
measurement stations and the correlations between the different measurements at each
station can be used to certify the presence of a genuinely nonprojective measurement.
In the latter case, the certification consists of several preparation procedures, possi-
bly intermediate transformations, and subsequent measurements on the same system.
Both scenarios are in the sense device-independent as only very rudimentary assump-
tions need to be made about the particular implementation details of the state prepa-
rations and measurement devices.

For the Bell-like scheme, it turns out that those certification procedures can be for-
mulated such that they are agnostic to the dimension of the prepared system. Even
more, by employing the Collins-Gisin-Linden-Massar-Popescu inequalities [136,137] it
is possible to derive certificates for any number of outcomes. This pleasant property
can be seen as a consequence of the convexity of the set of all n-chotomic non-signaling
correlations [133]. This is in stark contrast to the prepare-and-measure approach. First,
nonprojective measurements can always be implemented on a system with enlarged
Hilbert space, hence an upper limit on the dimension of the prepared system is needed.
Second, the dimension constraint typically renders the set of correlations nonconvex
which makes its analysis more complex. Indeed, no family of certification criteria for
n-chotomic measurements in the prepare-and-measure scenario is known.

In this Chapter we study the structure of correlations produced by irreducible three-
outcome qubit measurements in the prepare-and-measure scenario. We begin by revis-
iting the concept of prepare-and-measure scenarios, the simulability of measurements
and unambiguous state discrimination in Section 2.2. In Section 2.3 we define the
operational setup in which a three-outcome qubit measurement can be certified. In
particular, we prove the necessity of one auxiliary measurement and three prepara-
tion procedures. We proceed by investigating the robustness of genuine trichotomic
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Figure 2.2: The structure of a prepare-and-measure scenario. The experimenter can
choose a preparation labeled by x and a measurement labeled by y. This
yields the quantum state ϱx on which a measurement My is performed,
resulting in the outcome a. Over many runs, the collected data allows one
to compute the statistics p(a|x, y).

correlations in Section 2.4. Afterwards, we discuss in Section 2.5 how the dimension
assumption on the prepared system can be partly mitigated using a variant of theory-
agnostic tomography. Finally, we analyse in Section 2.6 the experimental feasibility of
the minimal scheme and provide concrete bounds on the preparation fidelity neces-
sary.

2.2 Concepts and notation

2.2.1 The prepare-and-measure scenario

A prepare-and-measure scenario can be understood as a setup that is composed solely
of a preparation device and a measurement device, see Fig. 2.2. An experimenter can
choose among s different preparation procedures labeled by x ∈ {1, ..., s} and m differ-
ent measurements labeled y ∈ {1, ..., m}. After choosing one particular pair of prepa-
rations and measurements (x, y) the experimenter produces the state x on which the
measurement y is performed. Consequently, experiments of this kind can be fully char-
acterized by the experimentally accessible correlations p(a|x, y) which give the proba-
bility of obtaining outcome a when performing measurement y on preparation x. Here
it is important to note that the preparations as well as the measurements are consid-
ered as a black box, that is, no assumption is made about the prepared state ϱx and the
measurement description My. However, in order to render the prepare-and-measure
approach useful for discrimination tasks, one typically assumes that the dimension of
the underlying Hilbert space is fixed. In this sense, properties of the system that can
be deduced from the experimental data alone are semi-device-independent.

2.2.2 The structure of measurements

As already mentioned in Section 1.1.2, any n-outcome quantum measurement M with
n < ∞ on a d-dimensional Hilbert space can be seen as a collection of positive semidef-
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inite operators M = (M1, ..., Mn) satisfying ∑a Ma = 1. The set of all POVMs is convex,
that is, it is closed with respect to taking probabilistic mixtures and efficient algorithms
are known in order to decompose a given POVM into extremal POVMs [138].

It is interesting to notice that a similar notion of POVMs can also be introduced in
classical probability theory. Here a general n-outcome measurement on a d-dimensional
classical system is given by n vectors from the d-dimensional unit cube Cd = {x⃗ ∈
Rd | 0 ≤ x⃗j ≤ 1} such that they sum up to (1, ..., 1) ∈ Rd. Consequently, the set of all
classical n-outcome measurements is equivalent to the set of all right stochastic d × n
matrices. We mention that this classical case is identical to the quantum case when one
restricts all effects and states to be diagonal in some fixed basis. In the following we
want to distinguish between different kinds of measurements [122].

Definition 11. Let M be a generalized measurement.

(1) We call M dichotomic if it has only two nonzero outcomes, trichotomic for three nonzero
outcomes and n-chotomic in the case of n nonzero outcomes.

(2) If M has n-outcomes we say that it can be simulated with n′-chotomic POVMs (Nℓ)ℓ if
there exists a probability distribution (pℓ)ℓ such that

M = ∑
ℓ

pℓNℓ. (2.1)

Otherwise the measurement is called irreducibly n-chotomic.

For the particular case of n = 3 and n′ = 2 the simulation reduces to the random-
ization of three dichotomic measurements, that is,

(M1, M2, M3) = p1(N1|1, N2|1, 0) + p2(0, N2|2, N3|2) + p3(N1|3, 0, N3|3), (2.2)

where we write Na|ℓ for the outcome a of the measurement Nℓ. These reducible three-
outcome measurements form a convex subset of the set of all measurements. While
in d-dimensional classical probability theory all measurements are reducible to d-
outcome measurements, this is not the case for quantum theory [40]. An archetypical
counterexample is the trine POVM S which is composed of three qubit effects given by
Sa = 2

3 |Sa⟩⟨Sa| where the |Sa⟩ for a = 1, 2, 3 are located in a plane of the Bloch sphere
and are rotated by an angle of (2/3)π against each other, see also Fig. 2.3.

2.2.3 Unambiguous state discrimination

We have seen in Section 1.1.2 that unambiguous state discrimination (USD) is a special
instance of quantum state estimation. In what follows we formulate the task of USD
for the special case where the system subject to discrimination is prepared in one of
two pure states. Then one party (called Alice) randomly but with equal probability
chooses one of the two pure states |ψ1⟩ and |ψ2⟩ which are known to both parties
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Figure 2.3: Representation of the state- and effect configuration for generating tri-
chotomic correlations with the trine POVM. The states ρx are obtained
from the vectors labeled by ρ⃗x via ρx = 1

2 (1+ ∑k [⃗ρx]kσk) for x ∈ {1, 2, 3},
and the effects Ma|1 are obtained from the vectors labeled by M⃗a|1 via
Ma|1 = 1

3 (1+∑k[M⃗a|1]kσk) for a ∈ {1, 2, 3}. The figure is taken from Ref. [I].

and sends it to a receiver (called Bob). Again, as long as Alice’s two states are not
perfectly distinguishable, that is ⟨ψ1|ψ2⟩ ̸= 0, Bob cannot achieve a unit success rate in
Eq. (1.46). Bob’s best measurement in order to discriminate these states with maximal
success probability is given by the irreducibly trichotomic POVM M = (M1, M2, M3)

with

M1 =
1− |ψ2⟩⟨ψ2|
1 + |⟨ψ1|ψ2⟩|

, M2 =
1− |ψ1⟩⟨ψ1|
1 + |⟨ψ1|ψ2⟩|

(2.3)

and M3 = 1− M1 − M2. With this construction it is directly clear that if the measure-
ment yields outcome a = 1 or a = 2, then one can conclude that the received state was
|ψa⟩, while outcome a = 3 does not allow a definite statement.

2.3 Certification from correlations

Motivated by the above considerations, we define now a family of correlations that is
particularly useful for our later analysis. We consider a prepare-and-measure scenario
with three preparations, ρ1, ρ2, and ρ3, and two measurements, M1 = (M1|1, M2|1, M3|1)

and M2 = (M1|2, M2|2). The states and the measurements are chosen in such a way,
that if M2 yields the outcome 1 this implies that the received state was not ρ1 and if
the received state is ρ2, then M2 produces with certainty outcome 2. For M1 we impose
that from outcome 1 (2) it follows that the state was not ρ3 (ρ2). Since any POVM has
to obey the normalization condition, the last effect can always be calculated from the
previous ones. Hence we arrange the correlations p(a|x, y) = tr

(
ρx Ma|y

)
in a 3 × 3
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matrix P , where the rows correspond to the states and the columns to the effects
M1|1, M2|1, M1|2, that is,

P =

p(1|1, 1) p(2|1, 1) 0
p(1|2, 1) 0 1

0 p(2|3, 1) p(1|3, 2)

 . (2.4)

Since correlations of this form are motivated by USD, we refer to them as USD corre-
lations. In particular, if the dimension of the system is known to be d, we write USDd

for the set of all USD correlation achievable under this constraint. Obviously the sets
USDd obey the inclusion USDd ⊂ USDd+1 and furthermore, as we will see following,
dimension 3 is already sufficient to achieve all USD correlations, USDd = USD3 for all
d > 3. We are therefore particularly interested in the qubit case, for which we have the
following characterization.

Theorem 12. The set USD2 consists exactly of all correlations of the form

P(p, q, ξ) =

 pξ q 0
p(1 − ξ) 0 1

0 q(1 − ξ) ξ

 , (2.5)

with p, q, ξ ∈ [0, 1] such that (1 − p)(1 − q) ≥ pqξ. In addition, for a given correlations
matrix P , the states and measurements realizing P are unique, up to a global unitary trans-
formation.

Proof. Suppose that P ∈ USD2. This has consequences for the measurements M1 =

(M1|1, M2|1, M3|1), M2 = (M1|2, M2|2) and the states ρ1, ρ2, ρ3 that can realize the cor-

relations. In particular, P2,3 = tr
[
ρ2M1|2

]
= 1 and P1,3 = 0 imply ρ2 = M1|2 = |ψ⟩⟨ψ|

and ρ1 = |ψ⊥⟩⟨ψ⊥|, where |ψ⟩ and
∣∣ψ⊥〉 are two orthonormal vectors. With a similar

argument we obtain M2|1 = q|ψ⊥⟩⟨ψ⊥| with 0 ≤ q ≤ 1. It remains to consider the con-
sequences of P3,1 = 0 for ρ3 and M1|1. This requires M1|1 = p|η⊥⟩⟨η⊥| and ρ3 = |η⟩⟨η|
for some orthonormal vectors |η⟩ and

∣∣η⊥〉 and 0 ≤ p ≤ 1.
Without loss of generality, we can assume

|η⟩ =
√

ξ|ψ⟩+
√

1 − ξeiϕ|ψ⊥⟩, (2.6)

|η⊥⟩ =
√

1 − ξ|ψ⟩ − ξeiϕ|ψ⊥⟩, (2.7)

where 0 ≤ ξ ≤ 1 and ϕ ∈ R. This yields immediately Eq. (2.5) together with the condi-
tions p, q, ξ ∈ [0, 1]. For M1 to form a POVM it remains to verify that M3|1 = 1− M1|1 −
M2|1 is positive semidefinite. This reduces here to tr

(
M3|1

)
≥ 0 and det

(
M3|1

)
≥ 0

and can be equivalently expressed as the single condition (1 − p)(1 − q) ≥ pqξ.
From the above construction it is also immediately clear that conversely, any choice

of p, q, ξ satisfying the constraints in Lemma 12 is in USD2. Finally, given P , all effects
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and states are fixed by the above considerations, except for the choice of the orthonor-
mal basis {|ψ⟩ , eiϕ

∣∣ψ⊥〉}, proving the claim of a unique representation up to a unitary
transformation.

2.3.1 Certifying trichotomic measurements

In the following we are concerned with the question whether the difference between
reducible and irreducible n-outcome measurements can be observed using only the
(empirically accessible) correlations, that is, whether there exists an irreducible n-
outcome POVM M = (M1, ..., Mn) together with auxiliary measurements M2, ...,Mm

and quantum states ϱ1, ..., ϱs such that the correlations p(a|x, y) = Tr
[
ϱx Ma|y

]
can-

not stem from a reducible measurement. Correlations of this type are genuinely n-
chotomic, otherwise simulable n-chotomic. Clearly, if such correlations exist, they en-
able us to certify that the measurement M1 is indeed irreducible. In order to illustrate
the difference between the concept of genuinely irreducible measurements and gen-
uinely irreducible correlations consider the following example. Suppose that one im-
plements the trine POVM S on a qubit system, which is an irreducible three-outcome
measurement. As we will see in the following, this measurement alone can never yield
correlations which cannot be explained by a reducible measurement. Therefore, an ir-
reducible three-outcome measurement does not necessarily define genuine trichotomic
correlations.

2.3.2 The minimal scenario

Suppose that we want to certify that a given measurement apparatus implements an
irreducible n-outcome POVM M1. What is the minimal scenario in which one can
conclude from the output statistics alone that the POVM is irreducible? More precisely,
what is the minimal number of state preparations s and auxiliary measurements m −
1?.

Clearly, if one has access to s preparations and m− 1 auxiliary measurements, the set
of all possible correlations p(a|x, y) that can be obtained in a scenario without any con-
straint on the dimension of the system yields a convex set. As it turns out, this convex
set is a polytope, whose extremal points correspond to deterministic correlations [139],
that is, where all p(a|x, y) are either 0 or 1. If the dimension d of the system is at least
s then these extremal points can be obtained from a fixed choice of s orthogonal states
ϱx = |ψx⟩⟨ψx| and at most s-chotomic measurements with effects

Ma|y = ∑
x

p(a|x, y)ϱx (2.8)

Therefore all correlations can be written as convex combination of deterministic strate-
gies. Since all extreme points use the same states, the convex coefficients can be ab-
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Figure 2.4: Prepare-and-measure setup of the minimal scenario producing simulable
trichotomic correlations. On the left hand side one can choose between
three different preparation procedures x ∈ {1, 2, 3} and the corresponding
qubit state is sent to one of two measurement devices (right hand side).
The measurement device is chosen by the experimenter and this choice is
denoted by y ∈ {1, 2}. For y = 1 the measurement can yield three different
outcomes, but governed by a specific inner mechanism. It consists of three
two-outcome measurements, one of which is chosen at random. Depending
on the outcome of this measurement, an outcome is assigned to the overall
three-outcome measurement. If y = 2 the measurement device is a simple
two-outcome measurement. The figure is taken from Ref. [I].

sorbed into the effects yielding at most s-chotomic POVMs. For the case of an irre-
ducible three-outcome measurement on a qubit, n = 3 and d = 2, this implies that at
least s = 3 different states are required. From this it also follows that USDd ⊂ USD3

for all d ≥ 3 since only three different states are used in the USD correlations.
Regarding the number of auxiliary measurements m− 1, we consider the case where

no auxiliary measurements are used. In this scenario, we denote by Cd(s, n) the convex
hull of all correlations on a d-dimensional classical system and by Qd(s, n) the convex
hull of all correlations on a d-dimensional quantum system.

Theorem 13 ( [140]). The sets Cd(s, n) and Qd(s, n) coincide for all values of s, n, d. In
particular, the set of all quantum correlations Qd(s, n) is a polytope.

Since all correlations in Cd(s, n) can be obtained from d-chotomic measurements,
these property must also hold for all correlations in Qd(s, n). Therefore, the smallest
scenario which allows us to certify an irreducible three-outcome measurement on a
qubit includes at least two measurements M1 = (M1|1, M2|1, M3|1) and the auxiliary
measurement M2 = (M1|2, M2|2). An illustration of this minimal scenario can be found
in Fig. 2.4.

The set of correlations achievable in the minimal scenario with fixed d is subse-
quently denoted by CORd. Furthermore, we write SIMd for the set of all simulable
trichotomic correlations within CORd. Clearly, the correlations USDd are a subset of
CORd and SIMs ∩ USDd are the simulable trichotomic correlations within USDd.
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2.3.3 The geometry of trichotomic correlations

We now want to investigate how the sets SIM2 and COR2 are related. In contrast to
Bell-scenarios, where the convex hull of the correlations is taken, here we restrict the
study to the bare sets COR2 and SIM2. These sets are not convex, as can be seen
by considering the subset USD2, characterized by Theorem 12. In fact it is evident
that the correlations matrix D1 = P(1, 0, 1) and D2 = P(1, 1, 0) can be realized with
dichotomic measurements, that is, D1,D2 ∈ USD2 ∩ SIM2. However, no convex combi-
nation Dλ = λD1 + (1 − λ)D2 with 0 < λ < 1 can be written in the form P(p, q, ξ) as
given by Eq. (2.5). Here it is important to note that the correlations Dλ are still valid
USD correlations, that is, they are of the correct form. Hence Dλ ∈ COR2 already im-
plies Dλ ∈ USD2. The relation of the points D1 and D2 and their convex mixture Dλ to
the sets USD2 and SIM2 is illustrated in Fig. 2.5. As USD2 is an affine section of COR2,
it follows that neither COR2 nor SIM2 is convex. Our next step is to establish that not
all qubit USD correlations are simulable trichotomic.

Theorem 14. There exist correlations in USD2 that are not contained in the convex hull of
USD2 ∩ SIM2. In particular, even the convex hull of the simulable trichotomic qubit USD
correlations does not cover all qubit USD correlations

Proof. The first step is to parametrize the correlations D ∈ SIM2 ∩USD2 with D3,3 ̸= 0.
By virtue of Eq. (2.2) and the proof of Theorem 12 above, the effects of the simulated
trichotomic POVM M1 can be written as

M1|1 = p|η⊥⟩⟨η⊥| = κ1F1 + κ3(1− F3), (2.9)

M2|1 = q|ψ⊥⟩⟨ψ⊥| = κ1(1− F1) + κ2F2, (2.10)

where, compared to Eq. (2.2) we write κj in place of pj and Fj in place of Nj|j. For κ1 ̸= 0
it follows that F1 ∝ |η⊥⟩⟨η⊥| and 1− F1 ∝ |ψ⊥⟩⟨ψ⊥|, yielding F1 = |η⊥⟩⟨η⊥| = |ψ⟩⟨ψ|.
This is in contradiction to the assumption D3,3 ̸= 0 by virtue of D3,3 = Tr

[
M1|2ϱ3

]
with

ϱ3 = |η⟩⟨η| and M1|2 = |ψ⟩⟨ψ|. Therefore we can conclude that κ1 = 0. This allows
us to write κ := κ2 = 1 − κ3. This together with Eq. (2.10) implies F2 = f2|ψ⊥⟩⟨ψ⊥|
with 0 ≤ f2 ≤ 1 and κ f2 = q. Similarly, one can obtain from Eq. (2.9) that 1− F3 =

f3|η⊥⟩⟨η⊥| with (1 − κ) f3 = p. Consequently, D ∈ USD2 ∩ SIM2 with D3,3 ̸= 0 if and
only if

D =

 f3(1 − κ)ξ f2κ 0
f3(1 − κ)(1 − ξ) 0 1

0 f2κ(1 − ξ) ξ

 (2.11)

with f2, f3, κ, ξ ∈ [0, 1] and ξ ̸= 0.
In the next step we show that for any 0 < ξ < 1 there exist correlations P ∈
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Figure 2.5: Schematic illustration of the relations among the sets USD2, SIM2 and
COR2. The set COR2 of all correlations that can be obtained with a qubit in
the minimal scenario is obviously a superset of SIM2, the set of all simulable
correlations in the minimal scenario as well as USD2, the set of all correla-
tions that can be obtained with a qubit and are of the form (2.4). The points
D1 and D2 represent deterministic correlations contained in USD2 ∩ SIM2,
hence located at the boundary of any of the three sets. The dashed line
represents the convex hull of the set USD2 ∩ SIM2. The figure is taken from
Ref. [I].

USD2 \ SIM2. For this purpose we consider the linear map

W : P 7→ −P1,1 −P1,2 + P3,2 + P3,3. (2.12)

If one now chooses P = P(p, q, ξ) as in Eq. (2.4) with the choice p = 1
2 and q = 1/(ξ +

1), we verify that for any 0 < ξ < 1 the constraint (1 − p)(1 − q) ≥ pqξ is satisfied.
Further one finds that in addition W(P) < 0 holds. However, for any D as in Eq. (2.11)
we have W(D) = ξ[1 − f2κ − f3(1 − κ)] ≥ 0 and in addition for any T ∈ USD2 with
T3,3 = 0 we have immediately W(T ) = 0. Consequently W(S −P) > 0 for our choice
of P and any S ∈ SIM2 ∩ USD2, that is S ̸= P .

From this observation it readily follows that the convex hull of SIM2 ∩ USD2 does
not contain all of USD2. This is because W is a linear map and thus its minimum
over the convex hull of SIM2 ∩ USD2 is attained already for some S ∈ SIM2 ∩ USD2.
However, for this set we just proved that W(S) > W(P) for certain P ∈ USD2.

This might raise the expectation that there exists a linear inequality separating COR2

and SIM2, despite their nonconvexity discussed above. However, note that the state-
ment of Theorem 14 only concerns the subset of USD correlations and one cannot
conclude directly that the convex hull of SIM2 is a proper subset of COR2.
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2.4 Robustness of trichotomic correlations

For an experimental certification of an irreducible three-outcome measurement it is
essential to find correlations P ∈ COR2 such that the closest simulable correlations
P ′ ∈ SIM2 have a distance r of reasonable size. This distance can in principle be
measured with respect to various norms. Here we measure the distance either in terms
of the supremum norm, yielding r∞, or in terms of the Euclidean norm, yielding r2,
that is,

r∞ = max
i,j

|Pi,j −P ′
i,j|, (2.13)

r2 = (∑
i,j
(Pi,j −P ′

i,j)
2)1/2. (2.14)

According to Theorem 14, we can preliminarily focus on the family of USD correla-
tions, as it guarantees the existence of USD correlations P ∈ USD2 such that r > 0.

2.4.1 The computation of upper bounds

In order to compute r2 and r∞ we rely on numerical optimization over the set SIM2.
The optimization is nonlinear and involves three, possibly mixed quantum states as
well as four dichotomic POVMs. Here it is important to note that if the states or effects
are fixed, the problem can be rephrased as a SDP and becomes thereby easy to solve
numerically. However, technically this optimization algorithm only yields guaranteed
upper bounds on the distances, because it is based on finding the correlations in SIM2

closest to P . From a formal viewpoint, we want to compute the maximal radius r of
a ball Br(P) around a given correlation P ∈ COR2 ∩ SIM2 such that Br(P) ∩ SIM2 is
empty. For the relevant norms, this can be rephrased as the optimization problem to
minimize a real parameter t over Q ∈ SIM2 such that

− t ≤ Pi,j −Qi,j ≤ t ∀i, j, (2.15)

∑
i,j
(Pi,j −Qi,j)

2 ≤ t2. (2.16)

We write F1 = M1|1, F2 = M2|1 and F3 = M1|2 such that Qi,j = Tr
[
ϱiFj

]
. If we keep

the effects fixed, then the optimization is a semidefinite program of the following type:
Minimize t under the constraint ϱi ≥ 0 and Tr[ϱi] = 1 for i = 1, 2, 3 and either the linear
constraint given by Eq. (2.15) or the quadratic-convex constraint given by Eq. (2.16).
Similar, if we keep the states fixed, then the optimization is again a semidefinite pro-
gram, however now with the constraint on the states replaced by constraints on the
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effects, namely

F1 = F′
1 + F′

0, F2 = F′
2 + f01− F′

0, (2.17)

0 ≤ F′
0 ≤ f01, 0 ≤ F′

1 ≤ f11, 0 ≤ F′
2 ≤ f21, (2.18)

0 ≤ F3 ≤ 1, f0 + f1 + f2 = 1. (2.19)

As these small semidefinite programs can be solved very fast numerically, this invites
a seesaw optimization, where one alternates between the two optimizations until t
converges. We implement this seesaw algorithm using the Python library PICOS with
the CVXOPT back-end. As criterion for convergence we take tn−1 − tn < 10−6, where
tn is the value after n seesaw iterations. This convergence happens after at most 300

iterations. We repeat the optimization 4500 times, each time with different starting
values for ρ1, ρ2, and ρ3, where we take pure states chosen randomly according to
the Haar measure and then decrease the purity Tr

(
ρ2) to be uniformly in the interval

[ 1
2 , 1]. The same optimal value is always reached independently of the start values for

the Euclidean norm, while it occurs only for about 1% of the start values in the case of
the supremum norm. The largest distance we found is realized by the choice of P =

(0.577, 0.726, 0.276), where the seesaw algorithms yields r2 ≈ 0.0391 and r∞ ≈ 0.0177.
Larger distances can be achieved using correlations which are not confined to USD2.
In particular, choosing an arrangement involving the trine POVM, we find r2 ≈ 0.0686
and r∞ ≈ 0.0342. The exact states and measurements settings are illustrated in Fig. 2.3.
More precisely the involved states are

ϱ1 =
1
2
(1− σ3), ϱ2 =

1
2
(1−

√
3

3
σ1 −

1
2

σ3), ϱ3 =
1
2
(1+

√
3

2
σ1 −

1
2

σ3), (2.20)

and the measurement effects are

M1|1 =
1
3
(1− ϱ3), M2|1 =

2
3
(1− ϱ2), M3|1 =

2
3
(1− ϱ1), (2.21)

M1|2 = 1− ϱ1, M2|2 = ϱ1. (2.22)

2.4.2 The computation of lower bounds

However, in order to certify a given distance to the set SIM2 one has to compute a
lower bound on the distance between a given correlation and the set SIM2. Here we
will derive a numerical method to obtain lower bounds with respect to the supremum
norm and in the following we write Bϵ(P) for the ball with radius ϵ > 0 in the
supremum norm. Similar as for the case of upper bounds, for a given correlation
P ∈ USD2 we are interested in the condition on the states and the measurements
under which we have Q ∈ Bϵ(P) for ϵ > 0. By definition, any Q ∈ COR2 is of the
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form

Q =


Tr
[
ϱ1M1|1

]
Tr
[
ϱ1M2|1

]
Tr
[
ϱ1M1|2

]
Tr
[
ϱ2M1|1

]
Tr
[
ϱ2M2|1

]
Tr
[
ϱ2M1|2

]
Tr
[
ϱ3M1|1

]
Tr
[
ϱ3M2|1

]
Tr
[
ϱ3M1|2

]
 . (2.23)

However, it turns out to be useful to group the free parameters that appear in Eq. (2.23)
into two different classes. Define a = (ϱ1, ϱ2, M1|2) and b = (ϱ3, M1|1, M2|1), which to-
gether form the set of parameters of the distribution Q = Q(a, b). We now want to an-
swer the question how large ϵ > 0 can be chosen such that there is no Q(a, b) ∈ Bϵ(P)

given that the trichotomic measurement M = (M1|1, M2|1, M3|1) is limited to be simula-
ble by dichotomic measurements. In the case that Q(a, b) is a USD correlation, then the
elements Q1,3,Q2,2,Q3,1 and Q2,3 are all either 0 or 1. This imposes strong constraints
on the parameters in the set a. Indeed, if Q(a, b) = P , then the value of a is fixed up to a
unitary transformation, as we have seen in the proof of Theorem 14. Let us denote this
fixed value for a by α. In the following we will extend the argument in the proof of The-
orem 14 in order to show that Q(a, b) ∈ Bϵ(P) implies that a ∈ BO(

√
ϵ)(α). We will first

outline the idea of the argument before proceeding with the formal treatment. Because
the map (a, b) 7→ Q(a, b) is continuous, we can then show that a ∈ BO(

√
ϵ)(α) implies

Q(a, b) ∈ BO(
√

ϵ)(Q(α, b)). Since Q(a, b) ∈ Bϵ(P) and Q(a, b) ∈ BO(
√

ϵ)(Q(α, b)), the
triangle inequality directly yields that Q(α, b) ∈ Bϵ+O(

√
ϵ)(P). Therefore, we have re-

duced the problem of asking for the existence of b such that Q(a, b) ∈ Bϵ(P) to asking
for the existence of b such that Q(α, b) ∈ Bϵ+O(

√
ϵ)(P). The latter means that, for a

fixed value of ϵ and fixed values of ϱ1, ϱ2 and M1|2 (corresponding to the parameters
in the variable a), we ask for the feasibility of ϱ3, M1|1 and M2|1 (corresponding to the
parameters in the variable b) such that Q ∈ Bϵ+O(

√
ϵ)(P). Although this is not yet a

SDP it can be decomposed into a finite number of SDPs by scanning the values of ϱ3

and bounding the error in the finite scanning.
For the formal treatment we need to introduce some notation. We parametrize the

effects and the states by Bloch coordinates, that is, for an effect E we write (x0, x⃗)
which means E = (1/2)∑i xjσj. In particular, M1|1 = (x01, x⃗1), M2|1 = (x02, x⃗2) and
M1|2 = (y0, y⃗). In a similar manner, for a state ϱj we write (1, r⃗). Due to the unitary
freedom, we can always assume x⃗1 and x⃗2 to have no σ3 component and at the same
time r⃗2 to have no σ2 component. First, we show that one can bound the trace of the
effect from below, given a lower bound on the probability for that effect.

Lemma 15. Let ϱ = (1, r⃗) be a state and F = (x0, x⃗) an effect.

(1) If Tr[Fϱ] ≥ a for a ∈ R, then x0 ≥ a.

(2) If Tr[Fϱ] ≤ b for b ∈ R, then x0 ≤ 1 + b.

Proof. In order to prove (1), notice that Tr[Fϱ] = (1/2)(x0 + x⃗ · r⃗) ≥ a. Because x⃗ · r⃗ ≤
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||⃗x|| ||⃗r|| ≤ x0||⃗r|| ≤ x0, we have x0 ≥ a. To show (2), we have similarly Tr[Fϱ] =

(1/2)(x0 + x⃗ · r⃗) ≤ b yielding (1/2)(2 − x0 − c⃗ · r⃗) ≥ 1 − b. Then applying (1) one
finds that 2 − x0 ≥ 1 − b or equivalently x0 ≤ 1 + b.

Now we can apply Lemma 15 to the condition Q ∈ Bϵ(P).

Corollary 16. (1) For Q ∈ Bϵ(P) it is necessary that 1 − ϵ ≤ y0 ≤ 1 + ϵ, c1 − ϵ ≤
x01 ≤ 1 + ϵ with c1 := max {P1,2,P2,2} and c2 − ϵ ≤ x02 ≤ 1 + ϵ with c2 :=
max {P1,3,P3,3}.

(2) Q2,3 ≥ 1 − ϵ implies ||⃗y − r⃗2|| ≤
√

4ϵ + ϵ2 and Q1,3 ≤ ϵ implies ||⃗y + r⃗1|| ≤√
4ϵ + ϵ2.

Proof. The first claim in (1) is a direct consequence of 0 ≤ Q1,3 ≤ ϵ and 1 ≥ Q2,3 ≥
1 − ϵ. Similarly the second claim follows from Q1,1 ∈ Bϵ(P1,1) and Q2,1 ∈ Bϵ(P2,1)

and the third from Q1,2 ∈ Bϵ(P1,2) and Q3,2 ∈ Bϵ(P3,2). To prove (2) observe that
Q2,3 = (1/2)(y0 + y⃗ · r⃗2) ≥ 1 − ϵ implying that y⃗ · r⃗2 ≥ 2(1 − ϵ)− y0. Further one has
y⃗ · r⃗2 ≥ 2(1− ϵ)− y0 yielding that ||⃗y||2 + ||⃗r2||2 − ||⃗y − r⃗2||2 ≥ 4(1− ϵ)− 2y0. Because
||⃗y|| ≤ min {y0, 2 − y0} and ||r2|| ≤ 1, we obtain that

(min {y0, 2 − y0})2 + 2y0 − 3 + 4ϵ ≥ ||⃗y − r⃗2||2. (2.24)

The left hand side of Eq. (2.24) is maximized at y0 = 1 + ϵ, which leads to 4ϵ + ϵ2 ≥
||⃗y − r⃗2||2. The proof of the second statement in (2) is analogous to the proof presented
above.

Now we consider the constraint of the form tr[ρF] ≤ ϵ. We show that if the trace
of F is bounded from below, we can bound the purity of ρ. This also extends to the
consideration of each Bloch components of the Bloch vectors.

Lemma 17. Let ϱ = (1, r⃗) be a quantum state and F = (x0, x⃗) be an effect such that x0 ≥ c
and x⃗ having no component with respect to σ3. Then Tr[ϱF] ≤ ϵ implies that ||⃗r|| ≥ ||⃗rxy|| ≥
1 − (2ϵ/c) and |rz| ≤

√
1 − (1 − (2ϵ/c))2, where r⃗xy denotes the vector r⃗ where the σ3

component is set to 0. As a consequence, if n⃗ denotes the unit vector pointing into the direction
of r⃗xy, then ||⃗rxy − n⃗|| ≤ 2ϵ/c and ||⃗r − n⃗|| ≤ (2ϵ/c) +

√
1 − (1 − (2ϵ/c))2.

Proof. Observe that Tr[ϱF] = (1/2)(x0 + r⃗ · x⃗) = (1/2)(x0 + r⃗xy · x⃗) ≤ ϵ. This leads
to −⃗rxy · x⃗ ≥ x0 − 2ϵ. Then we have ||⃗rxy||x0 ≥ x0 − 2ϵ and thus ||⃗r|| ≥ ||⃗rxy|| ≥
1 − (2ϵ/x0) ≥ 1 − (2ϵ/c). Also 1 ≥ ||⃗rz||2 + ||⃗rxy||2 ≥ ||rz||2 + (1 − (2ϵ/c))2, such that
||⃗rz|| ≤

√
1 − (1 − (2ϵ/c))2. The latter part of the statement is obvious.

As a direct consequence of Lemma 17 we can estimate r⃗2 and r⃗3 by the unit vectors
of their projection onto the xy-plane

Corollary 18. Let r⃗2xy denote the xy component and r⃗2z the z component of r⃗2. Further, let n⃗
be the unit vector in the direction of r⃗2xy and t⃗ the unit vector in the direction of r⃗3xy.
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(1) Q3,1 ≤ ϵ implies ||⃗r3xy − t⃗|| ≤ 2ϵ/(c1 − ϵ) = ϵ3xy. Further one finds that ||⃗r3z|| ≤√
1 − (1 − 2ϵ/(c1 − ϵ))2 = ϵ3z.

(2) Q2,2 ≤ ϵ implies that ||⃗r2xy − n⃗|| ≤ 2ϵ/(c2 − ϵ) = ϵ2xy. Further one finds that
||⃗r2z|| ≤

√
1 − (1 − 2ϵ/(c2 − ϵ))2 = ϵ2z.

Now we can consider the cost of pinning the values of r⃗1, r⃗2 and r⃗3, where it is useful
to start with r⃗2. We consider the estimation of r⃗2 by n⃗. This leads to a new estimation
of the matrix elements involving ϱ1 and ϱ3. For simplicity, in the following we also
write Q ∈ P ± ϵ as a synonym of Q ∈ Bϵ(P). With this notation one finds

Q1,1 =
1
2
[x01 − n⃗ · x⃗1 + (⃗n − r⃗2xy) · x⃗1 + (⃗r2 − y⃗) · x⃗1 + (⃗y + r⃗1) · x⃗1] (2.25)

∈ 1
2
[x01 − n⃗ · x⃗1 ± (ϵ2xy + 2

√
4ϵ + ϵ2)], (2.26)

Q1,2 =
1
2
[x02 − n⃗ · x⃗2 + (⃗n − r⃗2xy) · x⃗2 + (⃗r2 − y⃗) · x⃗2 + (⃗y + r⃗1) · x⃗2] (2.27)

∈ 1
2
[x02 + (−n⃗) · x⃗2 ± (ϵ2xy + 2

√
4ϵ + ϵ2)], (2.28)

Q2,1 =
1
2
[x01 + n⃗ · x⃗1 + (⃗r2xy − n⃗) · x⃗1] ∈

1
2
[x01 + n⃗ · x⃗1 ± ϵ2xy], (2.29)

Q2,2 =
1
2
[x02 + n⃗ · x⃗2 + (⃗r2xy − n⃗) · x⃗2] ∈

1
2
[x02 + n⃗ · x⃗2 ± ϵ2xy]. (2.30)

Let us consider the error one introduces by fixing r⃗3xy to t⃗. Note that this only affects
the last row of the correlation matrix given by Eq. (2.23).

Q3,3 =
1
2
[y0 + r⃗2 · r⃗3 + (⃗y − r⃗2) · r⃗3] ∈

1
2
[y0 + r⃗2 · r⃗3 ±

√
4ϵ + ϵ2] (2.31)

∈ 1
2
[y0 + n⃗ · t⃗ ± (ϵ2xy + ϵ3xy + ϵ2xyϵ3xy + ϵ2zϵ3z +

√
4ϵ + ϵ2)], (2.32)

Q3,1 =
1
2
[x01 + x⃗1 · t⃗ + x⃗1 · (⃗r3xy − t⃗)] ∈ 1

2
[x01 + x⃗1 · t⃗ ± ϵ3xy], (2.33)

Q3,2 =
1
2
[x02 + x⃗2 · t⃗ + x⃗2 · (⃗r3xy − t⃗)] ∈ 1

2
[x02 + x⃗2 · t⃗ ± ϵ3xy]. (2.34)

From this we can conclude that, as long as Q ∈ Bϵ(P), the conditions Eqs. (2.25)-(2.34)
should be satisfied. In particular this implies the constraints on the values on the right-
hand sides of Eqs. (2.25)-(2.34). For example, Eq. (2.25) together with Q1,1 ∈ Bϵ(P1,1)

implies (1/2)(x01 + n⃗ · x⃗1) ∈ P1,1 ± [ϵ + (ϵ2xy + 2
√

4ϵ + ϵ2)]. For the other constraints
one can proceed similarly. Therefore, given ϵ arbitrary, we have to ask whether there
exist feasible n⃗ and t⃗ and (x10, x⃗1) and (x20, x⃗2) which are simulable by dichotomic
measurements such that all the constraints are satisfied.

Notice that, due to the unitary freedom mentioned earlier, one can always set n⃗ =

(1, 0, 0). If we further parametrize t⃗ = (cos(φ), sin(φ), 0), asking for the existence of
(x10, x⃗1) and (x20, x⃗2) which are simulable by dichotomic measurement, is a SDP. This
yields the following algorithm to obtain lower bounds on the distance. Scanning over
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the values of t⃗ with a certain finite step size in φ, for any value of t⃗ we set r⃗2 = n⃗,
r⃗1 = −n⃗, y⃗ = n⃗ and r⃗3 = t⃗. Set a value for ϵ and test the SDP of finding reducible M1|1
and M2|1 such that all the above mentioned constraints are satisfied. Clearly, at ϵ = 0
the SDP is infeasible as it corresponds to a point of an irreducible correlation. One
can implement a bisection method to find the exact transition point where the SDP is
infeasible. We obtain the critical error tolerance ϵc(φ). By scanning over all values of
φ, we find ϵ∗ := minφ ϵc(φ). For practical purposes, the above described procedure
is sufficient. In principle one can object that the number ϵ∗ may not be reliable due
to the finite step size scanning over the values of φ. However, this objection can be
addressed with the developed theory. The idea is that the error introduced by the
finite step size can be bounded by bounding the variation in the function ϵc(φ). That
is, we can find a number C > 0 such that |ϵc(φ + x)− ϵc(φ)| ≤ Cδ for all φ ∈ [0, 2π]

and |x| ≤ δ. Here it is interesting to observe that the variation of φ only affects the
entry Q3,3 of the correlations. A variation of δ in φ gives rise to a variation of δ⃗t
with

∣∣δ⃗t
∣∣ ≤ δ. One then sees that δQ3k ≤ δ/2. Therefore |ϵc(φ + x)− ϵc(φ)| ≤ δ/2

for any value of φ and |x| ≤ δ. If one selects a step in φ with size δ, the error in the
global minimum ϵ∗ = min ϵc(φ) is bounded by δ/4 (since the maximum distance from
any point to a computed point is δ/2). Taking δ = 2π × 10−5 is sufficient to bound
the error by π/2 × 10−5. An adaptive scheme of varying the step sizes over different
regimes of φ can be utilized to speed up the computation. Applying the algorithm
to the distribution P = P(0.577, 0.726, 0.276), which seemed optimal according to the
seesaw iterations, we can lower bound the distance to the set of simulable correlations
by r∞ ≈ 0.0022. Although this value is one order of magnitude smaller than the value
of the seesaw optimization, it emphazises the consistency of Theorem 14.

2.5 Estimating the state space dimension

As discussed, in order to certify an irreducible n-outcome measurement, knowledge
of the dimension of the prepared system is necessary. While it is possible that the di-
mension can be convincingly deduced from the experimental setup, for a fully device-
independent procedure, the dimension of the system has to be determined from cor-
relation data alone. However, the dimension of a system is a physically ill-defined
object, in the sense that any description of a system can always be embedded into a
higher dimensional system. For example, we can treat a qubit as a restricted theory of
a qutrit. But from an operational point of view, one can still assess the dimension by
determining the effective dimension, that is, the minimal dimension which explains
the experimental data. A dimension witness [141] might seem to be the appropriate
tool for this purpose, since it gives a procedure to determine a lower bound on the di-
mension. However, this is not sufficient for our purposes, because it does not exclude
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that the effective dimension can be higher than the dimension witnessed.
In general we assume that the procedure to determine the effective dimension of a

system consists of s different state preparations and m measurements. The correlations
p(a|x, y) form a matrix (Ax,ℓ)x,ℓ, where x labels the states, a labels the outcome of mea-
surement y, and ℓ enumerates all outcomes of all measurements. For a d-level system,
the rank of this matrix can be at most the affine dimension of the state space, that is,
d2 − 1. Hence determining the rank of the matrix A can give an estimate of the effective
dimension of the system. In practice, one would choose a large number of preparation
procedures and a large number of measurement procedures with the expectation, that
an estimate of the rank of A produces a reliable estimate of the affine dimension of
the state space. We mention that for consistency reasons, the preparation- and mea-
surement procedures should include those required to certify the irreducibility of the
n-outcome measurement.

While this approach can work in principle, it has to be considered with care. For an
implementation of an irreducible three-outcome measurement on a qubit, it is typi-
cally necessary to dilate the three-outcome measurement to a projective measurement
on a higher-dimensional system [40]. Despite of this, it still makes sense to speak about
an irreducible three-outcome measurement if the additional dimensions used for the
dilated measurement are not accessible due to a physical mechanism that reduces the
dimension before entering the measurement station. In a setup using the polariza-
tion degree of freedom of a photon, this may be achieved, for example, by means of a
single mode fiber. Mathematically, such a mechanism corresponds to a completely pos-
itive map Φ so that the correlations are obtained through p(a|x, y) = tr

[
Φ(ρx)Ma|y

]
.

However, then the rank of the matrix A alone is insufficient to establish the effective
dimension of the system, as can be seen by considering the dephasing qutrit-qutrit
channel Φ : ρ 7→ ∑k |k⟩⟨k| ρ |k⟩⟨k|. Using this channel, the matrix A will have rank
three, which would suggest an effective dimension of d = 2, while the actual effective
dimension is d = 3. This can be overcome by certifying that the shape of the state- and
effect space corresponds to a qubit. For methods to implement such a certification we
here refer to Ref. [142, 143].

2.6 Experimental feasibility

So far we have derived distances between given irreducible correlations and the set
of simulable correlations. However, in experiments an important quantity or bench-
mark is the fidelity in the state preparations and the measurements. This quantity is
typically smaller than 1 due to experimental imperfections and the presence of noise.
This raises the question how precise the state preparations must be in order to allow
for a demonstration of irreducibility. In order to obtain the smallest possible fidelity
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we choose the distribution generated by the states in Eq. (2.20) and the measurements
in Eq. (2.21), yielding the distances r2 ≈ 0.0686 and r∞ ≈ 0.0342. We will denote the
resulting distribution by Pt. Suppose that the measurements M1,M2 are implemented
perfectly and are given by Eq. (2.21). As we can see each entry of the correlation table
as originating from a two-outcome measurement, i.e., we forget about the structure of
the trichotomic measurement, it is sufficient to consider only one entry of the distribu-
tion Pt. The corresponding dichotomic POVM can thus be described by a single effect
E. Suppose that p = Tr[ρE]. We now want to compute the minimal fidelity between the
experimentally implemented state ρ̂ and the theoretical, ideal state which is needed in
order to ensure |p − Tr[ρ̂E]| < δ. Note that the ideal states are pure and can be written
as

|ψ1⟩ = |0⟩, |ψ2⟩ =
1
2
(|0⟩ −

√
3|1⟩), |ψ3⟩ =

1
2
(|0⟩+

√
3|1⟩). (2.35)

The idea of the proof relies on the following operational definition of the fidelity pre-
sented in Ref. [144].

Theorem 19. Let ϱ and σ be two quantum states. The fidelity F can be written as

F (ρ, σ) = min
{Fi}

[
∑
i=1

√
Tr[ρFi]Tr[σFi]

]2

, (2.36)

where the minimum is taken over all possible POVMs {Fi}.

Corollary 20. Let ρ, σ be quantum states and suppose that 1 −F (ρ, σ) < ϵ. Then we have

|Tr[Eρ]− Tr[Eσ]| ≤
√

ϵ (2.37)

for any effect E. In particular, to obtain a distribution Q such that ||Pt −Q||∞ ≤ r∞ we need
the fidelity between any target states |ψk⟩ and the corresponding experimental state ρ̂k to be

⟨ψk|ρ̂k|ψk⟩ ≥ 1 − r2
∞ ≈ 99.883%. (2.38)

Proof. Since it is sufficient to consider only one entry of the distribution P , we can view
q = Tr[ρ̂E] as part of a two-outcome POVM (also for the three-outcome measurement)
M = (E,1 − E) yielding the distribution (q, q) = (Tr[ρ̂E], Tr[ρ̂(1 − E)]). Clearly we
have

F (ρ, σ) = min
n≥1

min
(Fk)

n
k=1

[
n

∑
k=1

√
Tr[ρFk]Tr[σFk]

]2

≤ min
(Fk)

2
k=1

[
n

∑
k=1

√
Tr[ρFk]Tr[σFk]

]2

≤
[√

Tr[ρE]Tr[σE] +
√

Tr[ρ(1− E)]Tr[σ(1− E)]
]2

=:
[
√

pq +
√
(1 − p)(1 − q)

]2
=: f (p, q).

(2.39)
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Consequently, if we know that F (ρ, σ) ≥ 1 − ϵ, then we also have
√

1 − ϵ ≤ √
pq +√

(1 − p)(1 − q). More precisely, we want to solve the following optimization problem
for given ϵ > 0.

maximize δ(ϵ) := |p − q|

subject to 0 ≤ p, q ≤ 1
√

1 − ϵ ≤ f (p, q)

with respect to p, q.

(2.40)

One finds that the optimizers are given by q = (1 −
√

δ)/2, p = (1 +
√

δ)/2 and the
optimal value is

√
ϵ. Inserting the value of r∞ found for the distribution Pt yields the

claim.

2.7 Outlook and discussion

In this Chapter we have studied the structure of the correlations produced by irre-
ducible three-outcome qubit measurements in a prepare-and-measure scenario. Here
we have provided a minimal scenario in terms of the number of experimental de-
vices required. Using only one auxiliary measurement, we found that the genuine
trichotomic correlations can be separated in the Euclidean norm by r2 ≈ 0.0686. Here
the similarity of our setup to the one in Ref. [134] should be mentioned, namely, the
states and the measurements are the same, but in our setup we omit one of the aux-
iliary measurements. While this scheme is motivated by symmetry considerations,
we also used the USD correlations to systematically describe a subset of trichotomic
correlations. However, within these correlations the largest distance we obtained is
smaller, r2 ≈ 0.0347. In addition, we have provided a discussion of the minimal state
preparation fidelity needed in order to experimentally certify the irreducibility of a
three-outcome measurement. Our results are not based on a linear inequality sepa-
rating genuine and simulable trichotomic correlations and such an inequality is not
necessary for the purpose of an experimental certification. However, we also estab-
lished in Theorem 14 that such an inequality exists when the analysis is constrained
to the USD correlations.

For future research it is an interesting open question whether in our minimal sce-
nario this also holds when one considers the set of all correlations, since this would
imply that also in the minimal scenario the convex hull of all simulable correlations
does not include all trichotomic correlations. A further interesting question is if it
is possible to find a systematic approach to construct families of distributions in the
minimal scenario that are able to determine whether an implemented n-chotomic mea-
surement is irreducible. Such an approach would be highly desirable, as it would unify
recent results that actually appear in separate contexts.





3 Partially observed measurements in
the Wigner’s friend scenario

The quantum measurement problem points out that the probabilistic state update rule
after a measurement in quantum mechanics is in conflict with the natural assumption
that the unitary evolution of isolated quantum systems can be applied at any scale.
The rule suggests that the action of measuring a quantity is an absolute event, meaning
that it is the same for any observer and a process that cannot be reversed. Using the
so-called Wigner friend scenario, it has been shown that the absoluteness of a mea-
surement event imposes strong constraints on the possible observed statistics, which
can be violated by the universal validity of unitary quantum evolution. Here we con-
sider the weaker assumption that the measurement event is realized relatively to one
observer who only partially observed the outcome of a measurement. We propose a
protocol to show that this assumption in conjunction with the natural assumptions of
no superdeterminism and locality is also not compatible with the universality of the
unitary time evolution in quantum theory. This Chapter is based on Project [G].

3.1 Motivation

The quantum measurement problem [50] is often illustrated by a thought experiment
called Wigner’s friend [54], see Fig. 3.1 (a). Here an observer, called the friend Bob,
performs a measurement on a physical system in an isolated laboratory and the out-
come is reflected by a certain definite position of a pointer device. Further, a second
(super)observer called Alice, is placed outside the laboratory and one assumes that she
is capable of performing arbitrary quantum operations on Bob’s lab. However, while
Bob uses the state update rule for describing the state of his system after the mea-
surement and thus assigning the eigenstate corresponding to the observed outcome to
his system, Alice describes the lab and all of its content via a unitarily evolving quan-
tum state. This can yield a contradiction between Bob’s and Alice’s perspective, who
assigns a specific entangled state to the system and thus not ascribes a well-defined
value to the outcome of Bob’s measurement.

Indeed, the state update rule suggests that the action of measuring a quantity is
an absolute event, meaning that it cannot be reversed and is the same for any ob-
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Figure 3.1: (a) Illustration of the Wigner’s friend thought experiment. (b) Extended
version of the Wigner’s friend thought experiment.

server [35–37, 145]. This perception of measurements in quantum theory has been
highly debated. While it is supported by collapse models of the measurement pro-
cess [146, 147], it is not in line with other viewpoints which assume the universal
validity of quantum theory [50–53, 148–151]. Assuming universality of quantum me-
chanics suggests modeling the measurement process by unitary dynamics, which in
principle can always be reversed [50]. As a consequence, the measurement may be un-
done and the value of the measured quantity can be erased, as if it has never existed.

In a series of recent works [35–37], an extended version of the Wigner’s friend
thought experiment was introduced. It consists of two spatially separated laboratories,
each containing an experimenter, accompanied by a superobserver. The two experi-
menters each hold a half of an entangled particle on which they can perform mea-
surements and it is assumed that the superobservers can perform quantum operations
on the respective labs. In this context, Brukner aimed to formalize the assumption
of absolute measurement events, which results in the notion of observer independent
facts (OIF) [36, 37]. This means that measurement results exists with respect to any ob-
server regardless of whether the measurement has been actually performed or not.
As it turns out, one can put strong constraints on the observable statistics in this ex-
tended scenario by combining OIF with two seemingly natural assumptions. First, the
assumption of no superdeterminism, that guarantees that the choice of measurement
settings is uncorrelated with any relevant variables prior to that choice [5]. Second, the
assumption of locality in the sense of parameter independence [5,152], which prohibits
the influence of a local setting on a distant outcome1. However, the set of resulting
correlations coincides with those allowed by local realism and could be derived from
no superdeterminism and OIF alone without taking into account locality [153, 154].

As it turns out, OIF can be replaced by a weaker assumption [37], such that the set
of admissible correlations contains instances which are not allowed by local realism.
This assumption is called absoluteness of observed events (AOE) and entails that a mea-

1More precisely, the assumption of signal locality entails that the probability of Bob observing a partic-
ular outcome b given setting y is statistically independent of the measurement choice x of Alice. Note that
this locality is a weaker assumption than local causality where one additionally assumes that the probability
for the event (b, y) is independent of x and Alice’s outcome a, yielding an LHV model.
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surement result persists with respect to any observer only for the measurement that
has been actually performed [37]. However, one may argue that the absoluteness of a
measurement event with respect to every observer, that is, all observers exist on par, is
too strong of an assumption.

In this Chapter, we further relax the assumption of AOE and require absoluteness
of a measurement only with respect to a particular observer, which is distinguished
from other observers by partially having access to the realized measurement outcome.
The assumption that the event of measurement is realized with respect to that ob-
server is called relative event by incomplete information, short REII. We show that REII

can also be rejected by the universality of quantum mechanics under the assumptions
of no superdeterminism and locality. We begin by formalizing the assumptions and
introducing a minimal version of the extended Wigner’s friend scenario in Section 3.2.
We proceed by combining the assumptions in Section 3.3, which allows us to derive
the correlation polytope for the minimal scenario. In addition, we characterize the set
of quantum correlations and present possible quantum violations of the correlation
polytope. Afterwards, we discuss in Section 3.4 the consequences and subtleties and
introduce an extended protocol, where we allow the measurement of Charlie to have
four outcomes. Finally, we present three alternative protocols in Section 3.5, which are
used to investigate the relation between the different sets of correlations.

3.2 A minimal protocol and the assumptions

3.2.1 The scenario

To illustrate the idea we consider first a minimal protocol. Note that also in the EWFS it
is in principle possible to remove the friend of Bob without affecting the conclusion of
the experiment. Consider two parties Alice and Bob sharing two particles at different
locations. Alice stores her particle in a laboratory, in which she has another party
named Charlie playing the role of Wigner’s friend. In each run of the protocol, Charlie
performs a measurement with three possible outcomes c ∈ {0, 1, 2} on the particle.
After the measurement is completed, Alice receives a signal x ∈ {0, 1, 2}. Given the
signal x, she asks Charlie if his measurement outcome is c = x. If this is indeed the
case, Alice outputs a = x (and thus a = c) as her measurement outcome. In the other
case c ̸= x she makes a binary outcome measurement on the particle and uses the
obtained outcome to decide the output among {0, 1, 2} with the constraint that a ̸= x.
On the other hand, Bob receives a signal y ∈ {0, 1} in each run of the protocol, based
on which he chooses one of two measurements to perform on his particle in order to
obtain a binary outcome b ∈ {0, 1}. Over many runs of the protocol, the collected data
allows one to compute the statistics p(a, b|x, y), which is observed by Alice and Bob.

In the following we will derive in a similar manner as in the EWFS explicit inequal-
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Figure 3.2: Illustration of the protocol. A pair of particles are distributed to Charlie
and Bob. Charlie, playing the role of Wigner’s friend in a closed laboratory,
carries out a measurement with outcomes 0, 1, 2. Alice, playing the role of
Wigner, receives a signal x ∈ {0, 1, 2} . She asks Charlie if his outcome is
x or not. If it is x, Alice uses it as her output a. Otherwise, Alice continues
to carry out a binary outcome measurement on the system and the whole
laboratory to obtain an outcome a ∈ {0, 1, 2} but a ̸= x. Bob receives a
signal y ∈ {0, 1} and performs correspondingly one of two possible binary
outcome measurements on his particle and output the outcome b. The fig-
ure is taken from Ref. [G].

ities based on the assumption that the measurement event is realized to an observer
who only partly gains the information about the outcomes (here Alice) combined with
other natural assumptions. As we will see, these inequalities can be violated if one
assumes that quantum theory is universally valid.

3.2.2 Relative event by incomplete information

By construction of our protocol, Alice has obtained some part of information about
the outcomes of Charlie’s measurement in each of the runs of the experiment. Indeed,
even in the case x ̸= c Alice has learned that the outcome of Charlie was not x. As Alice
holds partial information of the outcome, we can directly apply REII to the scenario,
which implies that the value of c is realized in every run of the protocol. Therefore,
for any given measurement choice x and y in each of the runs, Alice can assume the
existence of a joint distribution p = p(a, b, c|x, y) such that the observed data p(a, b|x, y)
is given by marginalizing the irrelevant outcome c, that is,

p(a, b|x, y) = ∑
c
p(a, b, c|x, y). (3.1)

Here and in the following we use p to indicate that p(a, b|x, y) is experimentally ac-
cessible, rather than being hypothetical like p(a, b, c|x, y) in gothic type. It should be
noted that the inquiry of Charlies’s outcome by Alice is crucial in order to guarantee
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the existence of p. Indeed, if we are to apply our assumption REII to the EWFS, the
existence of c is not implied when Alice does not inquire Charlie at all.

Since c = x implies a = x, we directly obtain that p(a = x|c, x, y) = δxc. This means
that the existence of the variable c can be consistently revealed when it is read. By
using

p(a = x, b|c, x, y) = p(b|a = x, c, x, y)p(a = x|c, x, y), (3.2)

this then implies that

p(a = x, b|c, x, y) = δxcp(b|a = x, c, x, y) = δxcp(b|c, x, y). (3.3)

Similar to the assumption of AOE or the assumption of realism it is unknown how to
reject the thesis of REII purely by its own. However, when combining with two other
seemingly natural assumptions, namely freedom of choice (or no superdeterminism)
and locality, it put stringent constraints on the observable statistics p(a, b|x, y).

3.2.3 Freedom of choice and locality

Even we have already discussed these assumption in the context of Bell inequalities
and LF-correlations, we will present them here again for the particular scenario under
investigation. The assumption of freedom of choice demands that the random inputs
x and y are independent from the variable c, that is, p(c|x, y) = p(c). This allows us to
write

p(a, b, c|x, y) = p(c|x, y)p(a, b|c, x, y) = p(c)p(a, b|c, x, y), (3.4)

and consequently

p(a, b|x, y) = ∑
c
p(a, b|c, x, y)p(c). (3.5)

The assumption of freedom of choice is justified if Charlie makes the measurement
before Alice and Bob make the choices x and y respectively. This relies on the honesty
of Charlie and the functionality of his device. Interestingly, part of this problem can
also be addressed with our protocol, as we will see later.

The locality assumption implies that Bob’s measurement result b does not depend
on Alice’s input x and there is an analogous independence between a and y. Then

p(a|c, x, y) = p(a|c, x) and p(b|c, x, y) = p(b|c, y). (3.6)

It should be emphasized that this notion of signal locality is weaker than the so-called
local causality [5] and the probabilities p(a|b, c, x, y) and p(b|a, c, x, y) in general cannot
be further simplified. We have deliberately used the locality notion from Ref. [37],
resembling that of the local friendliness. Had we used the stronger assumption such
as local causality, Bell-like correlations were to be obtained [35–37]. We emphasize that,
in either case the assumption of REII is used instead of that of AOE.
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3.3 Combining the assumptions

The combination of the assumptions of freedom of choice, locality and REII may, in
accordance with the terminology developed in Ref. [37], be called local friendliness
under incomplete information (LFIC). Using this combination, one can put strong con-
straints on probability distribution p(a, b|x, y).

Theorem 21. All probability distribution that satisfy the LFIC assumption are of the form

p(a, b|x, y) = ∑
c
pNS(a, b|c, x, y)p(c), (3.7)

p(a = x, b|x, y) = ∑
c

δxcp(b|c, y)p(c), (3.8)

where pNS(a, b|c, x, y) is a probability distribution constrained only be the assumption of lo-
cality and freedom of choice.

Proof. We will prove the claim for the case where Alice asks Charlie for the confir-
mation whether his output is 0 when her input was x = 0. The assumption of REII

imposes that

p(a, b|x, y) = ∑
c
p(a, b, c|x, y), and p(a = 0|c, 0, y) = δ0c. (3.9)

In addition, freedom of choice and locality yield

p(c|x, y) = p(c), p(a|c, x, y) = p(a|a, x), p(b|c, x, y) = p(b|c, y). (3.10)

Taking these equations together yields the claim.

On the one hand, Eq. (3.7) can be understood as a direct consequence of Eq. (3.5)
and Eq. (3.6). On the other hand, Eq. (3.8) requires the consistency of measurement
outcomes when they are read in Eq. (3.3) and Eq. (3.7). Further it is interesting to see
that Eq. (3.7) and Eq. (3.8) are a combination of the no-signaling model [78,87] and the
local hidden variable model [155]. The mimic the scenario described in Ref. [37] we can
adjust the protocol in order to reproduce the original LF model as follows: To respond
to Alice’s query, her friend Charlie just outputs the outcome of his measurement,
which is also Alice’s final output in the next step of the protocol. In this case, Eq. (3.7)
and Eq. (3.8) reduce to

p(a, b|x, y) = ∑
c

δacp(b|c, y)p(c) (3.11)

for all values of x, which is the original LF model. In this case, the LF model is also a
local hidden variable model as there is effectively only a single measurement on Alice’s
side. However, the LFIC correlation polytope is strictly larger than the LF polytope. This
inclusion property can be illustrated by choosing a cross section in correlation space,
such that both LHV and LF correlations are empty, while the LFIC correlations are not.
For more details see Fig. 3.3.
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3.3.1 The correlation polytope

The correlations that are allowed by Theorem 21 form a polytope, to which there are
60 facets. Among those, 28 coincide with the facets of the no-signaling polytope. The
remaining 32 facets can be grouped into four equivalence classes by considering the
symmetry between measurements and outcomes, see also Section 1.2.3. Among these
facets, two classes only involve at most one measurement of Bob. Consequently, these
inequalities cannot separate between the no-signaling model and the local hidden vari-
able model and thus they are omitted. For the remaining two classes, for each we can
choose a representative inequality given by

Z1 =p(A0 = 0, B0 = 0) + p(A1 = 1, B1 = 0)− p(A2 = 1, B0 = 0)

+ p(A2 = 1, B1 = 1) ≥ 0,
(3.12)

Z2 =p(A0 = 1, B0 = 0) + p(A0 = 2, B1 = 1) + p(A1 = 1, B0 = 1)

− p(A1 = 1, B1 = 1) ≥ 0,
(3.13)

Z3 = p(A0 = 0, B0 = 1) + p(A1 = 1, B0 = 1)− p(A2 = 1, B0 = 1) ≥ 0, (3.14)

Z4 = p(A0 = 1, B0 = 1) + p(A0 = 2, B0 = 1)− p(A1 = 1, B0 = 1) ≥ 0. (3.15)

Additionally, the polytope is also constrained by three inequivalent hyperplanes which
do not stem from the no-signaling polytope

−p(A0 ̸= 0) + p(A1 = 1) + p(A2 = 2) = 0, (3.16)

−p(A0 ̸= 0, B0 = 1) + p(A1 = 1, B0 = 1) + p(A2 = 2, B0 = 1) = 0, (3.17)

−p(A0 ̸= 0, B1 = 1) + p(A1 = 1, B1 = 1) + p(A2 = 2, B1 = 1) = 0. (3.18)

However, it turns out that the inequalities from Eq. (3.14) to Eq. (3.18) also hold if
quantum theory is assumed. Therefore, the only nontrivial inequalities are Z1 and
Z2. Note that the inequality in Eq. (3.12) includes all three possible measurements on
Alice’s side, while Eq. (3.13) only includes two measurements on Alice’s side. The
inequality Eq. (3.12) resembles the CHSH inequality given in Eq. (1.142), if the event
A2 = 2 is never realized, that is, whenever the query is A2, Charlie always replies
with a negative answer. Similarly, the inequality in Eq. (3.13) reduces to the CHSH
inequality if the event A0 = 0 is never realized.

In order to visualize the polytope, one can compute a two-dimensional cross section
of the polytope with a plane defined by three points Q1,Q2, and N0. These points are
given by the following probability assignment to the measurement choices and respec-
tive outcomes where α = (

√
2 − 1)/4

√
2, β = (

√
2 + 1)/4

√
2. The point N0 can be

obtained within the no-signaling model while the points Q1, Q2 can be realized within
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N0 1 A0 = 1 A0 = 2 A1 = 1 A1 = 2 A2 = 1 A2 = 2

1 1 1/2 1/2 1/2 0 1/2 1/2

B0 = 1 1/2 0 1/2 0 0 0 1/2

B1 = 1 1/2 0 1/2 1/2 0 0 1/2

Q1 1 A0 = 1 A0 = 2 A1 = 1 A1 = 2 A2 = 1 A2 = 2

1 1 1/2 0 1/2 0 1/2 0

B0 = 1 1/2 α 0 α 0 α 0

B1 = 1 1/2 β 0 β 0 α 0

Q2 1 A0 = 1 A0 = 2 A1 = 1 A1 = 2 A2 = 1 A2 = 2

1 1 1/2 1/2 1/2 0 0 1/2

B0 = 1 1/2 β α α 0 0 α

B1 = 1 1/2 β α β 0 0 α

Table 3.1: The probability distributions N0, Q1, Q2 for the cross section in Fig. 3.3. The
table is taken from Ref. [G].

quantum theory. In fact, the point Q1 is one optimal solution for inequality Eq. (3.12)
in the sense that it yields the maximal allowed violation among all correlations al-
lowed by quantum theory. In a similar manner the point Q2 is an optimal solution for
inequality Eq. (3.8). In order to obtain a comparison between the different models, we
have presented the cross section with the polytope of statistics which is constrained
only by the locality condition, see Fig. 3.3. We refer to this polytope as the no-signaling
polytope. As expected, this polytope contains the polytope of the LFIC statistics. Inter-
estingly, the LF polytope, which coincides for this choice of cross section with the LHV

polytope, has no intersection at all with this plane.

3.3.2 The quantum violation

In Fig. 3.3 we also present the set of quantum correlations allowed by quantum me-
chanics if it is assumed to be universally valid. Its boundary is computed by the NPA
hierarchy up to the second level. It clearly indicates that quantum theory violates the
LFIC model. Accidentally, although this particular cross section expresses a symme-
try between the inequalities Z1 and Z2, the eventual inequivalence between them is
revealed by the boundary of the quantum violation.

For a concrete physical realization consider the case where Alice and Bob share a
qutrit-qubit system prepared in the state |ψt0⟩ = (1/

√
2)(|00⟩ + |11⟩). Alice’s qutrit

is stored in the laboratory and controlled by her friend Charlie. Charlie performs a
measurement in the computational basis {|0⟩, |1⟩, |2⟩}. We further assume that Charlie
is in a ready state |R⟩ before he implements the measurement. If one now assumes
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Figure 3.3: Cross sections of different models with a plane containing the points
Q1, Q2. The LFIC correlations (purple) are a subset of the NS correlations
(green). The blue line bounds the set of correlations allowed by quantum
theory within this section. Note that all correlations on this plane cannot be
described by a LHV or LF model. The figure is taken from Ref. [G].

that quantum theory is universally valid, i.e., the measurement process is described
via the Schrödinger equation, the state of the joint system of Charlie and the qutrit-
qubit system after the measurement is given by

|ψt1⟩ =
1√
2
(|0⟩M ⊗ |00⟩AB + |1⟩M ⊗ |11⟩AB), (3.19)

where the first term in the tensor products with the subscript M stands for the mea-
surement device of Charlie, while the latter refers to the qutrit-qubit system shared
by Alice and Bob. Upon receiving the random input x, Alice asks Charlie whether he
has observed outcome x. In the case of confirmation, Alice simply outputs x as her
final output. In the case that Charlie’s outcome is not x, Alice performs measurements
depending on the value of x as follows. In the case x = 0 or x = 1, Alice can perform
an arbitrary measurement and outputs the corresponding outcome. This is due to the
fact that the events A0 ̸= 0 and A1 ̸= 1 do not appear in inequality Z1 and thus the
particular choice of those measurements does not affect the violation. However, the
event A2 ̸= 2 is present in Z1 as it contains the term A2 = 1. Therefore, if x = 2, Alice
makes a unitary evolution to disentangle Charlie and his device from the qutrit-qubit
system, bringing the latter back to

|ψt1⟩ 7→ |ψt2⟩ = |R⟩M ⊗ 1√
2
(|00⟩AB + |11⟩AB), (3.20)

and thus effectively undoing Charlies measurement. Alice then performs a measure-
ment of σ1 on the qutrit in the subspace spanned by |0⟩ and |1⟩. Bob is making one of
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the two measurements

B0 =
1√
2
(−σ1 − σ3), B1 =

1√
2
(−σ1 + σ3). (3.21)

This setup allows for a maximal violation of inequality Z1 in Eq. (3.12) given by Z1 =

(1−
√

2)/2 ≈ 0.2071, corresponding to the point Q1 in Fig. 3.3. This violation is robust
with respect to mixing white noise to the state via ϱ(p) = p|ψt0⟩⟨ψt0 | + (1 − p)1/6
as long as p ≥ (2/17)(3

√
2 + 1) ≈ 0.616781. Similar, the point Q2 can be obtained by

using the state |ψt0⟩ and the measurement directions

|A0 = 0⟩ = |A1 = 2⟩ = |A2 = 1⟩ = |2⟩, (3.22)

|A0 = 1⟩ = |A2 = 0⟩ = |0⟩, (3.23)

|A0 = 2⟩ = |A2 = 2⟩ = |1⟩, (3.24)

|A1 = 0⟩ = |−⟩ , |A1 = 1⟩ = |+⟩, (3.25)

B0 =
1√
2
(σ1 − σ3), B1 =

1√
2
(−σ1 − σ3). (3.26)

3.4 Subtleties and an extended protocol

In the protocol introduced we have assumed that Charlie makes the measurement first
and then asks for the outcome. In principle, this assumption does not hold if Charlie is
not honest or his device does not function properly. For instance, Charlie can wait for
the inquiry from Alice and then implement the measurement, or Charlie can answer
without referring to the exact measurement outcome. In principle, Alice can always
open the box to check whether Charlie’s answer is consistent with the outcome of the
outcome of his measurement device or not. Thus, we can in principle assume that
Charlie’s answer is consistent with the outcome of the measurement device. However,
this cannot guarantee the no-superdeterminism assumption if the outcome of the mea-
surement, which Charlie supposedly implemented before can be impacted by Alice’s
inquiry. Therefore one has to propose another protocol to fix this loophole and to make
sure that Charlie’s answer reflects the outcome of the measurement, which does not
depend on Alice’s input used in the statistics. The protocol works as follows: For each
run of the experiment,

(1) Charlie makes a measurement and obtains one of four possible outcomes c ∈
{0, 1, 2, 3}

(2) Alice receives a random number t ∈ {0, 1, 2, 3} and inquires Charlie whether c
equals t

(3) Alice receives a random number x ∈ {0, 1, 2, 3} and inquires Charlie whether c
equals x
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(3.1) if c = x, Alice outputs a = x

(3.2) if c ̸= x, Alice continues to make a measurement and obtains an outcome a ∈
{0, 1, 2, 3} \ {x}

In each run, Bob receives an input y ∈ {0, 1}, makes a measurement and obtains an
outcome b ∈ {0, 1}. The statistics after many runs is collected to estimate the outcome
probabilities p(a, b|x, y).

According to this protocol, although c could in principle depend on t, it is indepen-
dent of x under the assumption of REII and no-superdeterminism. In the special case
that c ̸= t and x ̸= t for any fixed t, the LFIC model of the extended protocol just
reduces to our main protocol. As already discussed, this model cannot describe the
statistics predicted by quantum theory.

3.5 Further protocols

In addition to the protocols mentioned so far, we have two protocols. In difference to
those protocols, here also the LF polytope has an intersection with the plane. It turns
out that the LFIC model for the corresponding protocol differs from LHV model, the
LF model as well as the NS model.

3.5.1 Alternative protocol I

For each of the runs,

(1) Charlie makes a measurement and obtains outcome c ∈ {0, 1, 2}

(2) Alice and Bob receive the inputs x, y respectively, where x, y ∈ {0, 1}

(3.1) If x = 0, Alice asks Charlie whether c = 0

– If c = 0, Alice uses 0 as her outcome a

– If c ̸= 0, Alice continues to make a measurement and obtains an outcome
a ∈ {1, 2}

(3.2) If x = 1, Alice makes a measurement with two outcomes {0, 1} and outputs the
outcome a

(4) Independently of y, Bob makes a measurement with two outcomes {0, 1} and
outputs the outcome as b

The statistics after many runs is collected to estimate p(a, b|x, y). One finds that up
to permutations of the measurements and permutations of the outcomes, the only
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Figure 3.4: Cross sections of different models on the plane spanned by points p1, p2, p3,
where I1 is the quantity defined in the left hand-side of Eq. (3.27) and I2 is
obtained by switching the measurements B0 and B1 in I1. Notice that the
hierarchical structure of the sets is in accord with our previous discussion.
The figure is taken from Ref. [G].

non-trivial tight inequality of the correlation polytope is

I1 = p(A0 = 0, B0 = 0) + p(A0 ̸= 0, B1 = 0)

+ p(A1 = 1, B0 = 0)− p(A1 = 1, B1 = 0) ≥ 0,
(3.27)

which is in the form of the CHSH inequality. Therefore the quantum violation can be
(1/2)(1 −

√
2) with the setting

|ψ⟩ = 1√
2
(|00⟩+ |11⟩), A0 = σ3, A1 = σ1, B0 =

σ1 + σ3√
2

, B1 =
−σ1 + σ3√

2
, (3.28)

where their outputs 0, 1 are mapped to the eigenvalues ±1 and the event A0 = 0 never
happens, i.e., p(A0 = 2) = 0. The relation between the different models can be pointed
out more clearly in their cross sections with the plane spanned by the correlations
p1, p2, p3 as in Fig. 3.4, where

p1 = (1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1),

p2 = (1/2)(2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1),

p3 = (1/2)(2, 1, 1, 1, 0, a, 0, a, 0, 1, a, b),

(3.29)

where a = (2
√

2 + 2)/4
√

2 and b = (2
√

2 − 2)/4
√

2. Here it is important to note
that the statistics p3 can be generated by using the quantum setting mentioned in
Eq. (3.28). In an experiment, the observation of the point p3 directly falsifies the LFIC

model. Similarly, the observation of a point such as p0 falsifies the LF model, but can
still be explained by the LFIC model.
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3.5.2 Alternative protocol II

The main purpose of this protocol is to motivate another interesting protocol (see
alternative protocol III). To this end, we add one dichotomic measurement for Alice
without querying Charlie. For each of the runs

(1) Charlie makes a measurement and obtains outcome c ∈ {0, 1, 2}

(2) Alice and Bob receive the inputs x, y respectively, where x ∈ {0, 1, 2, 3} and
y ∈ {0, 1}

(3) If x ̸= 3, Alice inquiries Charlie whether c is equal to x

– If c = x, Alice uses c as her outcome x

– If c ̸= x, Alice continues to make a measurement and obtains an outcome
a ∈ {0, 1, 2} \ {c}

(4) If x = 3, Alice makes a measurement and obtains an outcome in {0, 1} and
outputs it as a

(5) Independently of y, Bob males a measurement with twp outcomes {0, 1} and
outputs the outcome as b

The statistics after many runs is collected to estimate p(a, b|x, y). One finds that there
are 10 different classes of linear constraints and 7 of them wither do not have two mea-
surements on Bob’s side or do have have A3 on Alice’s side. In two of the remaining
three classes, only one measurement among A1, A2, A3 appears, which is already the
case in the previous alternative protocol. The single left class is

− p(A0 ̸= 0, B0 = 1) + p(A0 ̸= 0, B1 = 1) + p(A1 = 1, B0 = 1) (3.30)

− p(A1 = 1, B1 = 1) + p(A3 = 1, B0 = 1) + p(A3 = 0, B1 = 0) ≥ 0. (3.31)

If one identifies the measurements A0, A1 and A2, i.e., one does not distinguish be-
tween the input label, Eq. (3.30) reduces to

− p(A0 = 2, B0 = 1) + p(A0 = 2, B1 = 1)

+ p(A3 = 1, B0 = 1) + p(A3 = 0, B2 = 0) ≥ 0,
(3.32)

which resembles the CHSH inequality. Therefore, the inequality in Eq. (3.30) can be
violated in quantum theory. In comparison to the protocols so far, an extra measure-
ment can indeed more flexibly reveal the difference between the models, e.g., we can
even choose the same setting for all the measurements A0, A1, A2 in quantum theory.
The inequality in Eq. (3.30) inspires another protocol, where Alice can ignore the in-
formation whether she has asked for A0, A1 or A2 and simply group them together as
one single measurement which is also called A0.
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3.5.3 Alternative protocol III

For convenience, we relabel the measurement of Alice without querying (former mea-
surement A3) as A1. Although this protocol is very similar to that of Ref. [37], here
Alice infers in each run only one outcome of Charlie instead of the whole set of out-
comes. We denote by LFIC1, LFIC2 and LFIC3 the protocols where Alice can ask one,
two and three outcomes respectively. If Alice can only ask one outcome, this protocol
coincides with alternative protocol I.

For each run of the experiment

(1) Charlie makes a measurement and obtains an outcome c ∈ {0, 1, 2}

(2) Alice and Bob receive the inputs x, y respectively, where x, y ∈ {0, 1}

(3) If x = 0, Alice chooses t = 0 in the case of LFIC1, a random number t ∈ {0, 1} in
the case of LFIC2 and a random number t ∈ {0, 1, 2} in the case of LFIC3. Then
she asks Charlie whether c is a realization of t

– If c = t, Alice uses t as her outcome

– If c ̸= t, Alice continues to make a measurement and obtains an outcome
{0, 1, 2} \ {t}

(4) If x = 1, Alice makes a measurement with two outcomes {0, 1} and outputs the
outcome a

(5) Independently of y, Bob makes a measurement with two outcomes {0, 1} and
outputs the outcome as b

The statistics after many runs is collected to estimate p(a, b|x, y). Notice that the values
of t are discarded. To compare different models in this scenario, we firstly take the
cross section of the polytopes with the plane determined by points p2 , p3 given by
Eq. (3.29) as well as

p4 = (1/2)(2, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1). (3.33)

We then express the cross section in the coordinates defined by I2 and I′1 where

I′1 =p(A0 ̸= 1, B0 = 1) + p(A0 ̸= 0, B1 = 0) + p(A1 = 1, B0 = 0)

− p(A1 = 1, B1 = 0) ≥ 0.
(3.34)

In fact I′1 corresponds to a facet of LFIC2. Interestingly, LFIC1 = NS in this scenario,
which is also reflected in Fig. 3.5. In fact, if Alice always queries the realization of 1
(or 2) instead of 0 in the LFIC1 model, this yields new polytopes which are equivalent
to the one of LFIC1 model up to certain rotation and translation. By definition, LFIC3 is
the convex hull of the union of those three polytopes corresponding to Alice’s query
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Figure 3.5: Cross sections of different models with the plane spanned by points
p2, p3, p4, where I′1 is the quantity in Eq. (3.34) and I2 is obtained by switch-
ing the measurements B0, B1 in I1 in Eq. (3.27). Notice that the hierarchical
structure of the sets is in accord, i.e., LHV ⊂ LF ⊂ LFIC ⊂ NS. The figure is
taken from Ref. [G].

for being 0, 1 and 2. This implies that any point of the NS polytope can be written as
a mixture of LFIC1 correlations. As it turns out, this is still the case if there is at least
one measurement from Alice or Bob having 2 outcomes. Surprisingly, when all the
measurements have 3 outcomes, there are points of the NS polytope which cannot be
covered by the mixture of those three LFIC1 polytopes. This hints that the structure of
the NS conditions and NS polytope in this scenario also deserves further investigation.
Besides, LFIC3 = NS implies that there is no quantum violation, as any quantum
correlation can be explained by the LFIC3 model.

3.6 Discussion of the results

The violation of the inequalities given by Eq. (3.12) and Eq. (3.13) by quantum theory
is due to the fact that the qutrit at Alice’s side still maintains entanglement with Bob’s
qubit after Charlie responses negatively to the question "is x = 2?". This points to-
wards a relevant discussion about the nature of the measurement process. Originally,
according to von Neumann [41] (see also the discussion in Section 1.1.2), a measure-
ment of a degenerate observable leads to full decoherence in the entire eigenbasis of
the observable, such that the post measurement state is diagonal in this basis. It was
later recognized by Lüders [42] that this is not the appropriate formulation. If a degen-
erate measurement is made, then according to the Lüders rule, the coherence within
the degenerate subspace is unaffected.

Our analysis of the assumption of relative event by incomplete information also
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highlights the difference between the viewpoints of von Neumann and Lüders. If we
treat Alice’s query about j and Charlie’s measurement as a single measurement c̃j

implemented and read by Alice, it constitutes a dichotomic degenerate measurement
of the qutrit. The post measurement state following Lüders’ rule still has quantum
coherence in a two-dimensional subspace and this entanglement with a remote party
can still remain. In comparison, we see that von Neumann’s rule is similar to the
assumption of REII.

The violation of our inequalities can also be seen as related to an interesting remark
by Peres in connection with the concept of contextuality [99, 101, 156]. There, in order
to justify the contextuality assumption, he argued that it is essential that for a three-
outcome measurement, Alice can construct a device to measure whether the system
gives some outcome, e.g., whether it is 2 or not, and then, at a later stage or even in a
different laboratory, decide how to complete the measurement.

Apart from the more sophisticated protocols that we have discussed, another inter-
esting extension would be to consider this quantum correlation sets with incomplete
information beyond the bipartite setting. The investigation of three-partite all-verses-
nothing-like proof such as the one discussed in Ref. [36] under incomplete informa-
tion would also be very interesting. Finally, asking for an experimental test would
require the manipulation of an entire laboratory. This brings us back to Bell’s famous
question [157]: What exactly qualifies some physical system to play the role of a mea-
surer? Does Charlie’s laboratory need to contain a physicist with a PhD? Still, proof-
of-principle demonstrations, in the spirit of Ref. [37] would be highly desirable.



4 Bipartite Bell inequalities with low
detection efficiency

Bell inequality tests, where the detection efficiency is below a certain threshold ηcrit,
can be simulated by means of local hidden variable models. If this is the case, the
quantum advantage in many Bell inequality-based protocols will vanish. Here, we in-
troduce a new method to identify Bell tests requiring a low detection efficiency and
a relatively low dimension of the local quantum systems. First, we present a family
of bipartite Bell inequalities where ηcrit can be upper bounded by a function of graph
invariants. Second, using a modified version of the so-called Gilbert’s algorithm, we
optimize the obtained inequality for smaller detection efficiency and better noise ro-
bustness. Finally, we illustrate the power of our method by developing an explicit
example, yielding a lower ηcrit and requiring lower visibility. This Chapter is based on
Project [F].

4.1 Motivation and previous works

Bell nonlocality refers to the violation of inequalities which are satisfied by any local
hidden variable (LHV) model and is a fascinating feature of quantum theory. Fur-
thermore, it is a crucial mean to accomplish tasks that are impossible with classical
resources. In an ideal Bell test, in every run the two particles being emitted by the
source would be detected, one at one party’s site and the other at the other party’s
side. However, in a real Bell test this might not be the case. This imperfect detection
is quantified by the detection efficiency η of an experimental test of a Bell inequality,
which is defined as the ratio between the number of systems detected by one party
and the number of pairs emitted by the source. Consequently, η does not only de-
pend on the efficiency of the detectors, but also on all the losses occurring during the
distribution of the state.

It was realized [158] that the experimental correlations in a Bell test can be sim-
ulated by LHV models if the detection efficiency is below a certain threshold ηcrit.
As a consequence, if η is not sufficiently high, the quantum advantage in many Bell
inequality-based protocols like randomness expansion [159,160] or secure key distribu-
tion [17,19,161,162] will vanish. Avoiding this so-called detection loophole [163] requires
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surpassing ηcrit. Here it is important to notice that ηcrit depends on the particular tar-
geted quantum correlations, i.e., the prepared state and the measurements performed,
as well as the used Bell inequality. Let us consider the case of symmetric Bell tests
and perfect visibility, i.e., the targeted (pure) quantum state is exactly prepared. For
the CHSH inequality, using the maximally entangled state and the measurements that
yield the largest violation, one finds that ηcrit = 2/(

√
2 + 1) ≈ 0.828. It was then no-

ticed that ηcrit can be lowered by considering non maximally entangled pure two-qubit
states and measurement directions that are not initially fixed [85]. By optimizing over
the states and measurement directions it was shown that ηcrit can be lowered down
to 2/3 ≈ 0.667 for the Clauser-Horn (CH) form [7] of the CHSH inequality [85]. For
Bell inequalities with four binary settings and maximally entangled states, ηcrit is not
better than for the CHSH inequality, with one exception that allows a slightly lower
value of ηcrit ≈ 0.821 [164, 165].

Although loophole-free Bell tests [13, 166] have proven that it is possible to produce
correlations between local quantum systems of dimension d = 2, which cannot be
explained by a LHV model, the value of ηcrit required in these experiments is due to
noise given by ηcrit ≥ 0.720. This value is too high for current quantum technology and
thus prevents real-life applications and in particular, applications outside laboratories
with well controlled losses, or situations involving longer distances, e.g., longer than
5km. It is in this sense that the requirement of ηcrit > 0.667 without noise and ηcrit >

0.720 with noise acts as a bottleneck. As it turns out [167], high-dimensional systems
can tolerate a detection efficiency that decreases with the dimension d of the local
quantum systems. However, an improvement over the qubit case only exists for d >

1600. For ququad systems, that is, for systems of local dimension d = 4, the detection
efficiency can be lowered down to ηcrit = 0.770 for maximally entangled states and
to ηcrit = 0.618 for non maximally entangled states [168]. For the case of N copies of
the two-qubit maximally entangled state and local Pauli measurements acting on the
corresponding qubit subsystems, one can upper bound the critical detection efficiency
by ηcrit < 0.809 for N = 2, ηcrit < 0.740 for N = 3 and ηcrit < 0.693 for N = 4 [169].
Furthermore, for local dimension d = 512, one can reduce ηcrit to 0.469 [170].

This Chapter is organized as follows. In Section 4.2 we introduce our notation and
explain different strategies to obtain ηcrit for a particular scenario. We proceed in Sec-
tion 4.3 by introducing a family of bipartite Bell inequalities where the local bound
and maximal quantum value are connected to certain graph invariants. Afterwards,
we discuss in Section 4.4 examples of correlations with low detection efficiency. As
our approach is based on graphs, we discuss in Section 4.5 how to obtain the indepen-
dence number and the Lovász number for so-called Newman graphs and proceed in
Section 4.6 by incorporating possible experimental noise. In Section 4.7 we explain how
our methods can be used to construct Bell inequalities with an arbitrary low detection
efficiency. Finally, we introduce in Section 4.8 a method that allows for an optimization
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of a Bell inequality towards smaller ηcrit and higher resistance to white noise.

4.2 Strategies to compute the detection efficiency

In an ideal Bell test, every run would end up with the result that the two particles
emitted by the source are detected. However, in a realistic Bell test this may not be the
case due to the existence of propagation losses and the imperfection of the detectors.
Consequently, a detection at one side may not be accompanied with a detection at
the other side and also, in some runs, both particles may be undetected. In some
cases, in addition to the local losses and imperfect detectors, the particles are not
emitted at well-known times. Then, the number of emitted pairs and thus the number
of runs of the Bell test will be unknown. Therefore, one typically divides the methods
for calculating ηcrit into two classes. First, there is the class of Bell tests where the
number of runs is known. This is the case in event-ready experiments [166, 171] and
in experiments with heralded detection [172–175]. Second, there is the class of Bell
tests where the number of runs is not known. This is the case in existing photonic
Bell tests with high detection efficiency. In this context, one typically uses the CH Bell
inequality [7], inequalities that can be written in terms of the CH functional [168] and
Bell inequalities that can be rewritten similarly [176].

In the following we will assume that the number of runs is known. One approach
to incorporate no-detection events into the analysis of the obtained data is to associate
the no-detection event with a new outcome of the measurement. Then, one has to find
a new Bell inequality with the same number of settings but with one more outcome per
setting than in the original Bell inequality. The experiment will be detection loophole-
free as soon as the new Bell inequality is violated. However, finding this new inequality
typically turns out to be difficult. For instance, if one adds a new outcome to all the
measurements in the (2, m, 2) Bell scenario, i.e., two parties, m settings per party and
two outcomes, then one ends up in the (2, m, 3) Bell scenario. As a consequence, the
number of deterministic LHV assignments changes from 22m to 32m. Meanwhile, the
dimension of the affine space spanned by the LHV assignments changes from 2m + m2

to 4m+ 4m2. To illustrate the hardness of the problem of finding such Bell inequalities,
notice that we do not know all Bell inequalities for any (2, m, 3) Bell scenario.

Another possibility is to associate the no-detection event with one of the existing
outcomes of each measurement and thus use the original Bell inequality. Clearly, the
experiment will be detection loophole-free as soon as the original Bell inequality is
violated. In an ideal Bell test in which we could achieve the maximum quantum value
Q of a Bell functional I, whose bound for LHV models is given by C and in which the
experimental detection efficiency is η, the experimental value Iexp of I would be

Iexp := η2Q+ η(1 − η)(QA +QB) + (1 − η)2X , (4.1)



118 4 Bipartite Bell inequalities with low detection efficiency

where QA denotes the value of I resulting of what the parties output when Alice
has detected the particle but not Bob. The definition of QB is analogous and X is the
value that the parties output when both Alice and Bob have not detected the particles.
Usually, the outputs are chosen such that X = C. The critical detection efficiency is
then defined as the smallest value of η such that Iexp still violates the local bound of
the original Bell inequality I. More precisely,

Iexp > C ⇔ ηcrit >
2C −QA −QB

C +Q−QA −QB
. (4.2)

4.3 Constructing Bell inequalities from graphs

In this Section, we will introduce a family of bipartite Bell inequalities, in which each
inequality is associated to a graph G = (V, E), such that the number of settings of each
party coincides with the number of vertices |V| of G and the number of outcomes is
two. An interesting feature of this family is that the LHV bound of each inequality
coincides with the independence number of G. This allows us to take advantage of
the vast literature on independence numbers of families of graphs to construct Bell
inequalities whose local bounds would be difficult to compute otherwise.

Recall the definition of the independence number α and the xi number Ξ of a graph
G from Section 1.3.1. The independence number of G is the largest cardinality of any
independent set of G and for the definition of Ξ we refer to Eq. (1.188).

Theorem 22. Let G = (V, E) be a graph with independence number α and xi number Ξ. Then
the linear functional

I = ∑
j∈V

p(1, 1|j, j)− 1
2Ξ ∑

(k,l)∈E
[p(1, 1|k, l) + p(1, 1|l, k)]

LHV
≤ α (4.3)

is a Bell inequality.

Proof. To obtain the upper bound of I for LHV models, we only need to consider
deterministic probability assignments. From the definition of I in Eq.(4.3) it is easy to
see that the bound cannot be less than α. Therefore, the bound can only be obtained
when the events {(1, 1|j, j)}j∈S have been assigned the value 1, where S contains no
fewer than α vertices. Let us now assume that S contains no fewer than α + 1 vertices
and let us call v the vertex in S such that

|{u | u ∼ v, u ∈ S}| = Ξ(S). (4.4)

By changing the assignment of the event (1, 1|v, v) to be zero, the increment of I is
−1 + Ξ(S)/Ξ. This is because for all i, j ∈ S

p(1, 1|i, j) = p(1, 1|j, i) = 1 (4.5)
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for the current assignment, especially for i = v or j = v. Therefore, in the case that
S contains no fewer than (α + 1) vertices, we can always set the assignment of one
event (1, 1|v, v) to be zero, such that the value of I does not decrease. This implies that
the upper bound can be obtained in the case that S contains exactly α vertices, which
implies that the upper bound can be no more than α. Consequently, the upper bound
for LHV models is exactly α.

There is a second reason why the Bell inequalities which are constructed according
to Eq. (4.3) are interesting. They allow us to establish a one-to-one connection between
a quantum value for I and another graph invariant of G. Moreover, this connection also
gives us the initial state and the local observables that provide the quantum value for I.
Recall that an orthonormal representation in Cd of a graph G = (V, E) is an assignment
of a nonzero unit vector |vj⟩ ∈ Cd to each vertex j ∈ V satisfying ⟨vj|vk⟩ = 0 for all
pairs (j, k) ∈ E. Here it is important to note that the definition of an orthonormal rep-
resentation does not require that different vertices are assigned different vectors, nor
that nonadjacent vertices correspond to nonorthogonal vectors. In certain situations it
can be useful to specify an additional unit vector |ψ⟩ ∈ Cd, called handle, together
with the orthonormal representation. Further it should be noticed that in many works
in graph theory the usual definition of orthonormal representation assigns orthogonal
vectors to nonadjacent - instead of adjacent - vertices. The smallest positive integer d
for which there exists an orthonormal representation of G in Cd is called the orthog-
onal rank of the graph and is denoted by ξ. As pure quantum states are represented
by rays, ξ is also the minimum dimension that a quantum system must have such that
adjacent vertices in G can be assigned orthogonal quantum states, or equivalently, or-
thogonal rank-one projectors. However, as already mentioned, it can be the case that
the same ray is assigned to different vertices.

Theorem 23. For any graph G = (V, E), the maximum quantum value for the inequality I
constructed according to Eq. (4.3) fulfills

Q ≥ |V|
ξ

, (4.6)

where |V| is the number of vertices and ξ is the orthogonal rank of G. The value I = |V|/ξ is
achieved by preparing the maximally entangled quantum state

|ψ⟩ = 1√
ξ

ξ−1

∑
j=0

|j⟩|j⟩ (4.7)

and using as local settings on Alice’s side the observables represented by the projectors |vj⟩⟨vj|⊗
1, with {|vj⟩} an orthonormal representation of dimension ξ of G. The local observables on
Bob’s side are represented by the projectors 1⊗ |v∗j ⟩⟨v∗j |, where |v∗j ⟩ is the complex conjugate
of |vj⟩.
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Proof. Let {|vj⟩}
|V|
j=1 ⊂ Cξ be an orthonormal representation of the graph G. Recall that

for the maximally entangled state |ψ⟩ ∈ Cξ one has Tr[|ψ⟩⟨ψ|A ⊗ B] = (1/ξ)Tr
[
A⊤B

]
for any operator A, B ∈ B(Cξ). In particular, if A is hermitian A⊤ = A∗ holds and
therefore Eq. (4.3) becomes

I = ∑
j∈V

p(1, 1|j, j)− 1
2Ξ ∑

(k,l)∈E
[p(1, 1|k, l) + p(1, 1|l, k)]

= ∑
j∈V

Tr
[
|ψ⟩⟨ψ|(|vj⟩⟨vj| ⊗ |v∗j ⟩⟨v∗j |)

]
− 1

2Ξ ∑
(k,l)∈E

{Tr[|ψ⟩⟨ψ|(|vk⟩⟨vk| ⊗ |v∗l ⟩⟨v
∗
l |)]

+ Tr[|ψ⟩⟨ψ|(|vl⟩⟨vl | ⊗ |v∗k ⟩⟨v
∗
k |)]}

=
1
ξ ∑

j∈V
|⟨vj|vj⟩|2 −

1
2Ξξ ∑

(k,l)∈E
{|⟨vk|vl⟩|2 + |⟨vl |vk⟩|2} =

|V|
ξ

.

(4.8)

The combination of Theorem 22 and Theorem 23 allows for an upper bound of the
critical detection efficiency ηcrit given in Eq. (4.2) for the quantum violation of the
Bell inequality constructed according to Eq. (4.3) from a graph G produced with the
maximally entangled state in Eq. (4.7). This bound can be calculated via invariants of
the graph G that originates the Bell inequality.

Theorem 24. For any Bell inequality of the form in Eq. (4.3) associated to a graph G = (V, E),
assuming that the number of runs is known, local models simulating the correlations produced
by the state in Eq. (4.7) and the measurements described in Theorem 23 are impossible if the
detection efficiency fulfills

η >

√
αξ

|V| ≥ ηcrit, (4.9)

where α, |V| and ξ are the independence number, the number of vertices and the orthogonal
rank of G, respectively.

Proof. To prove the claim it is useful to employ the Collins-Gisin parametrization (see
Eq. (1.130)) which allows us to write any Bell inequality as a linear combination of joint
and marginal probabilities including one less of the outcomes of each measurement.
Then, a strategy in case of no-detection is to associate the no-detection event with
outcome zero, which is assumed to be the one that does not appear explicitly in the Bell
expression. Following this strategy, the probabilities in the Bell expression transform
according to

pA(1|j) 7→ ηpA(1|j), (4.10)

pB(1|j) 7→ ηpB(1|j), (4.11)

p(1, 1|i, j) 7→ η2 p(1, 1|i, j), (4.12)
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where pA and pB denote the marginal probability of Alice and Bob, respectively. If
the Bell expression contains no marginal items, as it is the case for the inequality in
Eq. (4.3), then we have in Eq. (4.2) that QA = QB = 0. If the event of no-detection is
associated with the outcome zero, then X = 0. Consequently, the quantum value in
the ideal case becomes η2Q. In this case

ηcrit =

√
C
Q , (4.13)

where C is the upper bound of I for LHV models. Then, using Theorem 22 and Theo-
rem 23 one arrives at

ηcrit =

√
C
Q =

√
α

Q ≤
√

αξ

|V| . (4.14)

4.4 Examples of nonlocal correlations with low detection

efficiency

In the following we will make use of Theorem 24 in order to identify quantum corre-
lations and Bell inequalities that allow for a low detection efficiency ηcrit.

Recall the definition of Pn, the set of Pauli observables for a system of n ≥ 2 qubits. It
consists of the nontrivial quantum observables represented by n-term tensor products
of the Pauli matrices σ1, σ2, σ3 and the identity σ0 = 1. Clearly, the cardinality of Pn is
|Pn| = 4n − 1, as Pn does not contain the identity operator acting on the space C2n

.

Definition 25. The set Pn(C) of Pauli states for a system of n ≥ 2 qubits consists of the
common eigenstates of all the maximal subsets of Pn containing only mutually compatible
observables.

The Pauli states are also called the quantum states arising from the Pauli group [177].
The eigenvectors of each subset of maximal size of Pn containing only mutually com-
patible observables provide a unique orthonormal basis of vectors with d = 2n. One
can show [178] that there are L = ∏n

j=1(2
j + 1) such subsets and Pn is the union of

the L disjoint orthogonal bases. Accordingly, |Pn(C)| = Ld. Further, we write Pn(R)

for the subset of Pn(C) represented by vectors with all components in R. One has
|Pn(R)| = ∏n

j=1(2
j + 2).

Definition 26. The set Nd of Newman states for a quantum system of dimension d, where
d = 4k for k ∈ N, consists of the states represented by d-dimensional rays with components
±1 such that the number of −1 components is even.
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For example, the set of Newman states for k = 1 is given by

N4 = {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}. (4.15)

It should be noted that the vectors (a1, a2, a3, a4) and (−1) · (a1, a2, a3, a4) represent
the same Newman state, as they belong to the same ray. From this it directly follows
that |Nd| = 2d−2. To a given set of vectors S ⊂ Cd one can associate its graph of
orthogonality. This is the graph in which each vector is represented by a vertex and two
vertices are adjacent if and only if their corresponding vectors are mutually orthogonal.

Definition 27. The Newman graph Yd is the graph of orthogonality of Nd, where d = 4k with
k ∈ N.

4.4.1 The graph Pauli-4320

The graph of orthogonality of P4(R) has α = 72 and ϑ = α∗ = |V|/ξ = 270, where α is
the independence number, ϑ the Lovász number and α∗ the fractional packing number
of the graph. Therefore, by preparing the maximally entangled state in Eq. (4.7) of
local dimension ξ = 24 = 16 and allowing the parties to choose between the 4320
projective dichotomic measurements represented by |vj⟩⟨vj| with |vj⟩ ∈ P4(R), they
produce a violation of the Bell inequality in Eq. (4.3), which, using Theorem 23, allows
us to conclude that

ηcrit(P4(R)) ≤ 0.516, (4.16)

which is an unprecedentedly low upper bound for this dimension. Here it is important
to notice that 4320 local choices are not too many for a realistic Bell test. For example, a
photonic loophole-free Bell test may have 3502784250 trials [13], which is enough for a
Bell test in which each party has to choose between 4320 settings, as there are still 187.7
trials for each possible combination of settings (x, y). This is more than three times the
number of trials per setting (x, y) in the first loophole-free Bell test [12]. Recall that
the measurements have two outcomes, as in the test of the CHSH Bell inequality [6].
Therefore, only two detectors per party are necessary.

4.4.2 The graph Pauli-36720

We conjecture that the graph of orthogonality of P4(C) has independence number
α = 396. This conjecture is based on the fact that, after months of computation, 396 is
the largest value that we have found. In particular, we have found this number many
times, which suggests that our search is sufficiently dense. The computation is based
on a greedy-type algorithm taking into account the symmetry of the graph as well as
known upper bounds for the independence number by means of spectral graph theory.
For a given graph G = (V, E) we proceed as follows:
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(1) Compute the automorphism group of G and the corresponding orbits. These
orbits yield a partition of the vertex set {1, ..., |V|}. We denote the j-th orbit by
Oj.

(2) From each orbit Oj we select a vertex vj ∈ Oj. For this vertex there are two
possibilities:

(a) vj is part of a maximal independence set, i.e., vj ∈ I(G). In this case, we
remove vj and all adjacent vertices of vj, as the membership of vj in I(G) ex-
cludes the membership of all adjacent vertices. This produces a tuple (G1, 1)
containing a new graph G1 and 1, as we have removed one vertex from the
independent set of the original graph.

(b) vj is not part of a maximal independence set, i.e., vj /∈ I(G). In this case,
we can remove the whole orbit Oj of G with vj ∈ Oj. Note that vj specifies
this orbit uniquely as the orbits {Oj}j form a partition of the vertex set. This
procedure yields a new graph G2. As we have not removed a member of the
maximal independent set, we store the tuple (G2, 0).

(3) This procedure is iterated for each graph that appears within the decomposition,
yielding a sequence of graphs with a strictly decreasing number of vertices. Once
the number of vertices of all graphs is lower than a predefined threshold κ, for
which α can be computed directly, the decomposition terminates and yields a
set {(Gj, H j)}, where Gj is a graph and H j ∈ {0, 1}n is the collection of choices
made in each step, given that n ∈ N iterations were necessary in order to achieve
the threshold κ. The independence number of the graph G is then the maximum
over

α̃j = α(Gj) + ∑
k
(H j)k. (4.17)

However, the problem with this approach is that the number of graphs in the decom-
position grows exponentially with the decomposition depth, revealing the hardness
of the problem of computing α. If one has a sufficiently high lower bound for α(G)

given a priori, one only needs to collect those graphs appearing in the decomposition
process whose independence number is larger than this a priori bound. It is important
to note that the decomposition in step (2) can be done for any of the orbits Oj, thus one
has to choose one particular orbit in each iteration. For each orbit Oj, we can construct

two new graphs according to the cases (a) and (b) having nj
a or nj

b vertices. We choose
the orbit for which the smallest of the numbers nj

a and nj
b is largest.

In addition, ϑ = α∗ = |V|/ξ = 2295. Therefore, if the above conjecture is cor-
rect, then, by preparing the maximally entangled state in Eq. (4.7) of local dimension
ξ = 24 = 16 and allowing the parties to choose between the 36720 two-outcome mea-
surements represented by |vj⟩⟨vj| with |vj⟩ ∈ P4(C), they can provide a violation of
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the Bell inequality in Eq. (4.3) which, using Theorem 23, allows us to conclude

ηcrit(P4(C)) ≤ 0.415. (4.18)

4.5 Independence number and quantum value of

Newman graphs

While the calculation of the independence number of Pauli graphs Pn(C) and Pn(R)

relies on explicit computation, the independence number of Newman graphs Yn can
be obtained directly from their structure.

Definition 28. A Hadamard matrix of order n is a real n × n square matrix Hn in which all
its entries are either +1 or −1 and whose rows are mutually orthogonal.

It directly follows from the definition that the order n of a Hadamard matrix must
be 1, 2 or a multiple of 4. Therefore, if n is an even number, each pair of rows in
a Hadamard matrix represents two mutually orthogonal ±1-vectors in dimension n.
The same is true for the columns of Hn considered as ±1 vectors. Consequently, taking
any pair of rows (or any pair of columns), the number of matching entries must be
equal to the number of mismatching entries, exactly n/2.

Definition 29. For n ∈ N the Hadamard graph Ωn = (V, E) is the graph with vertex set
V = {−1, 1}n and edge set E = {(u⃗, v⃗) ∈ V × V | ⟨u⃗, v⃗⟩ = 0}. More precisely, each vertex is
assigned a ±1-vector of length n and two vertices are adjacent if and only if the corresponding
vectors are orthogonal.

Geometrically, the vectors assigned to the vertices of the Hadamard graph Ωn corre-
spond to the directions of the vertices of an n-dimensional hypercube centered at the
origin. Newman states may be seen as a subset of such hypercube directions. There-
fore, a Newman graph Yn is an induced subgraph of a Hadamard graph Ωn. The
graphs Ωn were introduced in Ref. [179, 180] as a tool to provide an algebraic graph
theoretic background for Hadamard matrices. Hadamard graphs play an important
role in certain quantum communication protocols [181, 182] and some proofs of the
Kochen-Specker theorem [183, 184].

Definition 30. The lexicographic product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is
a graph G = G1[G2] such that its vertex set is the cartesian product V(G) = V(G1[G2]) =

V1 ×V2, and any two vertices (v(1)i , v(2)k ) and (v(1)j , v(2)l ) in G are adjacent if and only if either

v(1)i is adjacent with v(1)j in G1 or v(1)i = v(1)j and v(2)k is adjacent with v(2)l in G2.

It should be noted that the lexicographic product is associate but not commutative,
a fact which is also emphasized by the notation.
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The independence number of the Newman graph Yn can be obtained by exploiting
a connection between Yn and the Hadamard graph Ωn [185]. By definition, the graph
Yn is a subgraph of Ωn induced by a specific subset of its vertices. Here we will focus
on those graphs Ωn for which n = 4k with k ∈ N. Otherwise, Ωn is empty for n
odd, or bipartite for n = 2 mod 4 [185]. Restricting to the first case, the first important
observation is that Ωn is the disjoint union of two isomorphic graphs, that is,

Ωn = Ωe
n ⊔ Ωo

n, (4.19)

where Ωe
n is the graph defined by the vertices corresponding to vectors with an even

number of components 1, and Ωo
n is the graph defined by the vertices corresponding to

vectors with an odd number of components 1. Therefore, the independence numbers
of the graphs are related via

α(Ωn) = α(Ωe
n) + α(Ωo

n) = 2α(Ωe
n). (4.20)

Further, for the orthogonal ranks ξ of the graphs we have

ξ(Ωn) = ξ(Ωe
n) = ξ(Ωo

n). (4.21)

The second step is to notice that Ωe
n is the lexicographic product of Yn with the comple-

ment of the complete graph on two vertices, that is, Ωe
n = Yn[K2]. By using Lemma 37

we obtain

α(Ωe
n) = α(Yn)α(K2) = 2α(Yn) and ξ(Ωe

n) = ξ(Yn). (4.22)

One can show that the orthogonal rank of Ωn is given by ξ(Ωn) = n [186, 187]. Con-
sequently, we have ξ(Yn) = ξ(Ωe

n) = ξ(Ωn) = n and the assignment of n-dimensional
rays with components −1 and 1 to the vertices of Yn, such that adjacent vertices are
assigned orthogonal rays, yields an orthogonal representation of Yn of minimum di-
mension.

On the other hand, the independence number of Hadamard graphs Ωn is not always
known. The independence number of Ωn is known for n = 4pk for k ≥ 1 where p is
an odd prime number [188] and also for the case n = 2k for k ≥ 2 [189]. In both cases
one has

α(Ωn) = 4

n
4 −1

∑
j=0

(
n − 1

j

)
. (4.23)

It still remains a conjecture whether Eq. (4.23) is also valid when n is another multiple
of 4 and the first open case is n = 40 [189]. Combining Eq. (4.20), Eq. (4.22) and
Eq. (4.23) we obtain that α(Yn) = (1/4)α(Ωn) and thus

α(Y28) = 397594 and α(Y32) = 3572224. (4.24)
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In addition, Yn has |V| = 2n−2 vertices and |E| = 2n−4( n
n/2) edges.

In the following we will show that for the cases n = 28 and n = 32 the orthogonal
rank equals their clique number. In order to prove that the Newman graphs Y28 and
Y32 contain cliques of size 28 and 32, respectively, note that such cliques correspond to
sets of pairwise orthogonal ±1-rays of cardinality 28 in dimension 28 and cardinality
32 in dimension 32, in which the number of −1 components is an even, or alternatively,
an odd number. This fact allows us to rephrase this problem in a slightly different and
more convenient way, using Hadamard matrices. Then our goal becomes to construct
adequate Hadamard matrices Hn of orders n = 28 and n = 32. Each row in Hn is a ±1-
vector in dimension n and, by definition, the n rows in Hn constitute a set of n pairwise
orthogonal ±1-vectors in dimension n. In fact, these vectors are rays since no two rows
can have the same entries with opposite signs due to the orthogonality. If necessary,
we can transform Hn into another equivalent n × n Hadamard matrix by negating
rows or columns, or by interchanging rows and columns, such that the number of −1
components of the row vectors is an even, or alternatively, an odd number. Notice that,
in the end, the resulting set of vectors corresponds to a maximum clique of size n in
the Newman graph Yn.

According to Hadamard’s conjecture, a Hadamard matrix Hn of order n = 4k exists
for every positive integer k ∈ N. At the present time, after applying the construction
methods due to Sylvester, Paley, Williamson and others, the smallest order for which
no Hadamard matrix is known is n = 668. However, there are many orders n > 668
for which Hn is known. In particular, this implies that all Newman graphs Ωn with
n = 4k with n < 668 satisfy ω(Yn) = n. There exists a well known recursive procedure
to construct Hadamard matrices Hn of order n = 2k for k ∈ N, the so-called Sylvester’s
construction [190]. Applying this procedure, H32 can be obtained. This matrix fulfills
the condition that the number of −1 entries in each row is an even number, hence
providing a clique of size 32 for the Newman graph Y32. More precisely, from H32 we
can arrive at the following clique of size 32 given by {u⃗i ⊗ u⃗j ⊗ v⃗k}, where

u⃗i, u⃗j ∈ {(1, 1, 1, 1), (1, 1,−1,−1), (1,−1, 1 − 1), (1,−1,−1, 1)},

v⃗k ∈ {(1, 1), (1,−1)}.
(4.25)

A Hadamard matrix H28 is of a more convoluted form. It can be obtained through the
so-called Paley’s construction [191]. There are 487 inequivalent matrices H28. To exhibit
a specific instance of a clique of size 28 induced in Y28, we look for a matrix H28 such
that the number of −1 entries in each row is again an even number. Such a matrix can
be found, see Ref. [192]. The set of row vectors, obtained by replacing therein each 0
entry by −1, constitutes the desired clique.

Finally, we will now prove that for the Newman graphs Y28 and Y32 the quantum
value of I given in Eq. (4.3) can be α∗(Yn) = ϑ(Yn) = |V(Yn)|/ξ(Yn), where V(Yn)

denotes the vertex set of the corresponding graph. First, notice that both Ωe
n and K2
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are vertex-transitive. Given that Ωe
n = Yn[K2] we can conclude that Yn is also vertex-

transitive, since the lexicographical product of two graphs is vertex-transitive if and
only if both graph factors are vertex-transitive [193]. Further, it is known that [186]

ϑ(Ωn) =
2n

n
. (4.26)

From Lemma 37 we know that the Lovász number ϑ is multiplicative with respect to
the lexicographical product and therefore ϑ(Ωe

n) = ϑ(Yn)ϑ(K2) = 2ϑ(Yn). Notice that
ϑ(Ωe

n) = (1/2)ϑ(Ωn) since Ωn = Ωe
n ⊔ Ωo

n. As a consequence we obtain

ϑ(Yn) =
ϑ(Ωn)

4
=

2n−2

n
. (4.27)

On the other hand, the fractional packing number of a vertex-transitive graph G =

(V, E) satisfies the relation α∗(G) = |V|/ω(G), where ω(G) is the clique number of
G. Given that |Yn| = 2n−2 and knowing from our discussion before that the clique
number for Y28 and Y32 is ω(Y28) = 28 and ω(Y32) = 32, using the vertex-transitivity,
we obtain that the quantum values of the functional in Eq. (4.3) can be

α∗(Y28) = ϑ(Y28) and α∗(Y32) = ϑ(Y32). (4.28)

Definition 31. A state-independent contextuality (SI-C) set in dimension d ≥ 3 is a set of
projectors that produces noncontextual correlations, i.e., correlations that violate some noncon-
textuality inequality, for any initial quantum state of dimension d.

State-independent contextuality sets play an important role in our method for iden-
tifying correlations with a low ηcrit, as any SI-C set can be used to produce quantum
correlations which violate the graph-based Bell inequality constructed according to
Eq.(4.3). It should be noted that a SI-C set is a sufficient but not necessary condition
for a violation of the Bell inequality in Eq. (4.3), i.e., there are sets which are not SI-C
sets and produce a quantum violation of Eq. (4.3).

Lemma 32. Let Ωn be a Hadamard graph, Ωe
n the graph defined by the vertices corresponding

to vectors with an even number of positive components and Ωo
n the graph defined by the vectors

with an odd number of positive components. For n ≥ 3 we have

∑
v⃗∈Ωe

n

v⃗⊤v⃗ = ∑
v⃗∈Ωo

n

v⃗⊤v⃗ = 2n−11n, (4.29)

∑
v⃗∈Ωe

n

v⃗ = ∑
v⃗∈Ωo

n

v⃗ = 0⃗n, (4.30)

where 0⃗n = (0, ..., 0) ∈ Rn.

Proof. We will prove the claim by induction over the number of vertices n. For n = 3
the vertices of the Hadamard graph Ω3 are given by

Ω3 = {(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1), (1,−1,−1),

(−1, 1,−1), (−1,−1, 1), (−1,−1,−1)}.
(4.31)
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From this it directly follows that Ωo
3 = {(1, 1, 1), (1,−1,−1), (−1, 1,−1), (−1,−1, 1)}

and Ωe
3 = {(−1,−1,−1), (1, 1,−1), (1,−1, 1), (−1, 1, 1)} and it can be easily verified

that Eq. (4.29) and Eq. (4.30) hold. Let us now assume that the claim holds for n = k.
Notice that, by adding an adequate extra component ±1 to the vectors of Ωe

k and Ωo
k,

we obtain orthogonal representations Ωe
k+1 and Ωo

k+1 such that

Ωe
k+1 = {(⃗v, 1) | v⃗ ∈ Ωe

k} ∪ {(⃗v,−1) | v⃗ ∈ Ωo
k}, (4.32)

Ωo
k+1 = {(⃗v, 1) | v⃗ ∈ Ωo

k} ∪ {(⃗v,−1) | v⃗ ∈ Ωe
k}. (4.33)

This implies that

∑
v⃗∈Ωe

k+1

v⃗ = ∑
v⃗∈Ωe

k

(⃗v, 1) + ∑
v⃗∈Ωo

k

(⃗v,−1) = (⃗0k, 2k−1) + (⃗0k,−2k−1) = 0⃗k+1, (4.34)

where the next to last equality follows from the fact that Ωe
k and Ωo

k have the same
number of elements, i.e., 2k−1. In a similar manner one can prove that ∑v⃗∈Ωo

k+1
v⃗ =

0⃗k+1. Further we have

∑
v⃗∈Ωe

k+1

v⃗⊤v⃗ = ∑
v⃗∈Ωe

k

(
v⃗⊤v⃗ v⃗
v⃗⊤ 1

)
+ ∑

v⃗∈Ωo
k

(
v⃗⊤v⃗ −v⃗
−v⃗⊤ 1

)
(4.35)

=

(
∑v⃗∈Ωe

k
v⃗⊤v⃗ 0⃗k

0⃗⊤k 2k−1

)
+

(
∑v⃗∈Ωo

k
v⃗⊤v⃗ 0⃗k

0⃗⊤k 2k−1

)
(4.36)

=

(
2k−11k 0⃗k

0⃗⊤k 2k−1

)
+

(
2k−11k 0⃗k

0⃗⊤k 2k−1

)
= 2k1k+1. (4.37)

In a similar manner one can prove that ∑v⃗∈Ωo
k+1

v⃗⊤v⃗ = 2k1k+1. Consequently, the claim
holds for all n ≥ 3.

Theorem 33. The set of projectors associated to the set of Newman-226 states is a SI-C set in
dimension d = 28 and the set of projectors associated to the set of Newman-230 states is a SI-C
set in dimension d = 32.

Proof. Denote by Nn the set of rays constituting an orthonormal representation for the
Newman graph Yn. It follows from Lemma 32 that

∑
v⃗∈Nn

|v⟩⟨v| = 1
2n ∑

v⃗∈Ωe
n

v⃗⊤v⃗ =
2n−2

n
1n, (4.38)

where |v⟩ denotes a normalized vector while v⃗ denotes the unnormalized version. In
the case that 2n−2/n > α(Yn), the set Nn is a SI-C set. In particular, one finds that
226/28 > 2396745 > 397594 = α(Y28) as well as 230/32 = 33554432 > 3572224 =

α(Y32). Using Eq. (4.23) it is also easy to verify that the claim is also true for n =

12, 16, 20, 36, 44, 52, 64, 68, 100, 108, 128, 196, 256, 324, 484, 500, 512, as these values are ei-
ther of the form 4pk for p prime and k ≥ 1 or of the form 2k for k ≥ 2 and also
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satisfy the relation α(Yn) < |V(Yn)|/ω(Yn) = 2n−2/n. Note that all of the listed values
are smaller than 668, which is the smallest value for which no Hadamard matrix is
known.

One important property of the set of Newman states Nn is that ηcrit tends to zero as
n grows. For instance, choosing n = 512 yields

ηcrit ≤

√
α(Y512)ξ(Y512)

|V(Y512)|
=

√
512 ∗ α(Y512)

2510 ≈ 1.6 × 10−14. (4.39)

The graphs Newman-226 and Newman-230

Using the methods presented in Section 4.5, the graph of orthogonality of N28 has
α = 397594 and ϑ = α∗ = |V|/ξ = 16777216/7 ≈ 2.3967× 106. Therefore, by preparing
the maximally entangled state in Eq. (4.7) of local dimension ξ = 28 and allowing the
parties to choose between the 226 two-outcome measurements represented by |vj⟩⟨vj|
with |vj⟩ ∈ N28, they can produce a violation of the Bell inequality in Eq. (4.3) which,
using Theorem 23, allows us to conclude that

ηcrit(N28) ≤ 0.407. (4.40)

In a similar manner, for N30 one finds α = 3572224 and ϑ = α∗ = 225. Consequently, by
preparing the maximally entangled state in Eq. (4.7) of local dimension ξ = 32 and al-
lowing the parties to choose between the 230 two-outcome measurements represented
by |vj⟩⟨vj| for |vj⟩ ∈ N30 they produce a violation of the Bell inequality in Eq. (4.3)
such that

ηcrit(N30) ≤ 0.326. (4.41)

4.6 Incorporating noise in graph-based Bell inequalities

In the context of the critical detection efficiency the effect of noise is typically modeled
by assuming that the effective state is of the form

ϱ = µ|ψ⟩⟨ψ|+ (1 − µ)
1

d2 , (4.42)

where |ψ⟩ ∈ Cd is the targeted state, µ ∈ [0, 1] is the visibility of the state and d is
the dimension of the local systems. However, it is important to note that there exist
situations where the effective state can not be represented in the form of Eq. (4.42).

Theorem 34. Let I be a Bell inequality which is constructed according to Eq. (4.3) from a
graph G = (V, E). For states given by Eq. (4.42) the critical visibility µcrit, i.e., the minimal
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value of µ in Eq. (4.42) such that one still obtains a violation of Eq. (4.3) is given by

µcrit ≤
α −Qmix
|V|
d −Qmix

, (4.43)

where

Qmix =
1
d2

(
|V| − |E|

Ξ

)
. (4.44)

Proof. As the Bell inequality in Eq. (4.3) is linear in the quantum state, we can com-
pute its value for |ψ⟩⟨ψ| and (1/d2)1 separately. If {|vj⟩}

|V|
j=1 ⊂ Cd is an orthonormal

representation of G in dimension d and we denote Πj := |vj⟩⟨vj| and Π∗
j := |v∗j ⟩⟨v∗j |,

we have

I
(
1

d2

)
=

1
d2 ∑

j∈V
Tr
[
Πj ⊗ Π∗

j

]
− 1

2d2Ξ ∑
(k,l)∈E

(Tr[Πk ⊗ Π∗
l ] + Tr[Πl ⊗ Π∗

k ]) (4.45)

=
1
d2

(
|V| − |E|

Ξ

)
=: Qmix. (4.46)

Further we know from Theorem 23 that the maximally entangled state |ψ⟩ of local
dimension d yields I(|ψ⟩⟨ψ|) = |V|/d. Therefore, for the quantum state ϱ we find

I(ϱ) = µ

(
|V|
d

−Qmix

)
+Qmix. (4.47)

A violation of I means I(ϱ) > α which yields the claim.

Theorem 35. For a Bell inequality of the form given by Eq. (4.3) originating from a graph
G = (V, E) and quantum states as in Eq. (4.42), the critical detection efficiency is given by

η2
crit ≤

αd2

|V|(µ(d − 1) + 1)− |E|(1 − µ)/Ξ
. (4.48)

Proof. The quantum violation of the Bell inequality in Eq. (4.3) with the noisy state ϱ

from Eq. (4.42) and perfect detection efficiency is given by

Q′ = µQ+ (1 − µ)Qmix, (4.49)

where Q ≥ |V|/d is the expected quantum violation and Qmix is the value for the
maximally mixed state as computed in Eq. (4.46). Thus we obtain by using Eq. (4.13)
that

η2
crit =

C
Q ≤ α

Q′ =
α

µ |V|
d + (1 − µ) 1

d2 (|V| − |E|/Ξ)
, (4.50)

which is equivalent to the expression in Eq. (4.48).
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Theorem 35 implies that, for the graph-based Bell inequalities in Eq. (4.3), ηcrit in-
creases rapidly with the number of edges unless µ is very close to 1. Therefore, al-
though experimental values of µ can be as high as 0.980 for d = 3 and 0.943 for
d = 17 [194], it would be desirable to find Bell inequalities for which the same corre-
lations, i.e., the same state and the same measurements, have a value for ηcrit and for
µcrit that is much less sensitive to noise. We address this problem in Section 4.8.

4.7 Bell inequalities with arbitrary low detection

efficiency

In the following we describe a method to construct Bell inequalities that offer a critical
detection efficiency which is arbitrarily small. More precisely, if there are no restric-
tions on the number of local settings or the local dimension of the quantum systems,
we can identify quantum correlations and a corresponding Bell inequality with re-
spect to which ηcrit is as close to zero as desired. These methods are again based on
graph-theoretical constructions.

General theory

Definition 36. The conormal product of two graphs G1 = (V1, E1) and G2 = (V2, E2) is a
graph G = G1 ∗ G2 = (V, E) such that its vertex set is the cartesian product V = V1 × V2

and any two vertices (v(1)i , v(2)k ) and (v(1)j , v(2)l ) in G1 ∗ G2 are adjacent if and only if v(1)i is

adjacent with v(1)j in G1 or v(2)k is adjacent with v(2)l in G2.

From the definition of the conormal product, it is evident that it is associative and
commutative. Further, recall the definition of a spanning subgraph. Given a graph
G = (V, E), a spanning subgraph H = (Ṽ, Ẽ) of G is a subgraph of G such that Ṽ = V.
A spanning subgraph of a graph G can therefore be seen as a subgraph that results
from G by edge deletions only. For our construction it is crucial that the lexicographical
product of graphs as well as the conormal product behave well with respect to the
calculation of the independence number and the Lovász number.

Lemma 37. Let G and H be graphs. If ∗ denotes the conormal product and ◦ the lexicographic
product, one has

(1) α(G ∗ H) = α(G)α(H) and ϑ(G ∗ H) = ϑ(G)ϑ(H).

(2) α(G ◦ H) = α(G)α(H) and ϑ(G ◦ H) = ϑ(G)ϑ(H).

The proof that α and ϑ are both multiplicative with respect to the conormal product
can be found in Ref. [108] and Ref. [195]. The same fact with respect to the lexico-
graphical product is proven in Ref. [196] and Ref. [197].
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Theorem 38. For any Bell inequality that is of the form in Eq. (4.3) and associated to a graph
G, where either G = H∗n or G = H◦n for a graph H, local models are impossible if the
detection efficiency is bounded from below by

η >

√
αnξn

|V|n ≥ ηcrit(G), (4.51)

where α, |V| and ξ are the independence number, the number of vertices and the orthogonal
rank of H, respectively.

Proof. The claim follows directly by combining Theorem 24 and Lemma 37.

The case of Pauli-240n

The graph of orthogonality of P3(R) has α = 16 and ϑ = α∗ = 30. Therefore, by
preparing the maximally entangled state in Eq. (4.7) of local dimension ξ = 23 = 8 and
allowing each of the parties to choose between the 240 two-outcome measurements
represented by |vj⟩⟨vj| with |vj⟩ ∈ P3(R), they can produce a violation of the Bell
inequality in Eq. (4.3) which, using Theorem 23, allows us to conclude that

ηcrit(P3(R)) ≤ αξ

|V| =
2
√

30
15

≈ 0.730. (4.52)

Therefore, with a system of local dimension 8n and locally measuring the observables
associated to the vertices of the n-fold lexicographical product of P3(R) with itself,
one finds

ηcrit(Pn
3 (R)) ≤

√(
8

15

)n
. (4.53)

In particular, this implies that for n = 2 one has ηcrit(P2
3 (R)) ≤ 0.533 and for n = 3

one has ηcrit(P3
3 (R)) ≤ 0.389. The interest of this method is that it tends faster to

ηcrit = 0 using smaller system dimensions d than in any previous method. However,
the downside is that, at least applied to the examples provided here, it requires too
many measurement settings.

Examples with low ηcrit and smaller number of settings

As already pointed out, most of the presented examples require too many settings to
be tested in actual experiments. This leads to the question of whether we can achieve
a low ηcrit by using a moderate number of measurement settings, e.g., less than 100.

So far, our strategy for finding examples with a low ηcrit was inspired by the graphs
of orthogonality of Pauli and Newman states. Here it is important to note that in both
cases the graph of orthogonality is a vertex-transitive graph. Therefore, in our search
for a systematic method to identify additional examples with low ηcrit, we will first
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|V| n min
√

αω/|V| |V| n min
√

αω/|V|
18 380 0.816 19 60 0.795
20 1214 0.775 21 240 0.756
22 816 0.739 23 188 0.780
24 15506 0.707 25 464 0.775
26 4236 0.734 27 1434 0.745
28 25850 0.732 29 1182 0.719
30 46308 0.707 31 2192 0.696
32 677402 0.667 33 6768 0.625
34 132580 0.64 35 11150 0.627
36 1963202 0.615 37 14602 0.604
38 814216 0.593 39 48462 0.632
40 13104170 0.571 41 52488 0.561
42 946226 0.6 43 99880 0.635
44 39134640 0.581 45 399420 0.571
46 34333800 0.562 47 364724 0.597

Table 4.1: The minimal value of
√

αω/|V|, which is a lower bound for ηcrit, for all
vertex transitive graphs with |V| ≤ 47 vertices. Here, n denotes the number
of vertex-transitive graphs with the corresponding number of vertices. The
table is taken from Ref. [F].

focus on vertex-transitive graphs. Luckily, vertex-transitive graphs have been investi-
gated for decades [198, 199] and there exist databases with all vertex-transitive graphs
with up to 47 vertices [200], all vertex-transitive graphs of degree 3 up to 1280 ver-
tices [201], and all circulant graphs with degrees at most 20 up to 65 vertices, at most
16 up to 70 vertices, and at most 12 up to 100 vertices [202]. Using these databases
we can compute ηcrit for all these graphs and their complements and then select those
which are interesting for our purpose.

For any graph G, we have the chain of inequalities

ω(G) ≤ ϑ(G) ≤ ξ(G) ≤ χ(G), (4.54)

where G denotes the complement of G and ω(G), ϑ(G), ξ(G), χ(G) are, respectively,
the clique number, the Lovász number, the orthogonal rank and the chromatic number.
The clique number ω is a trivial lower bound for ξ. The problem is that ξ cannot be
computed efficiently. However, in all the examples with low ηcrit that we have iden-
tified, ξ = ω. The idea is to use the databases and compute, for each fixed number
of vertices |V|, the minimum of

√
αω/|V|. This yields a lower bound for ηcrit that

can be expected, for maximally entangled states and before any optimization, for the
corresponding set of graphs. The results of these computations for all vertex-transitive
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graphs up to 47 vertices are summarized in Tab. 4.1. There one can see that the afore-
mentioned lower bound for ηcrit decreases as the number of vertices increases. More-
over, it suggests that, for maximally entangled states and before any optimization,
there are examples with ηcrit < 0.5 and |V| < 100 vertices. Further, we can use the
existing computational tools [203] to estimate the exact ξ. To find an orthogonal rep-
resentation in Rd or Cd with minimal ξ of the promising graphs, we can write each
vector in the orthogonal representation as a unit vector using d, or 2d, real variables
and rotate the orthogonal representation into some canonical position to reduce the
number of variables. Then, we take into account that the automorphisms of the graph,
which can be easily computed, lead to geometric symmetries in the orthogonal repre-
sentation. Using numerical optimization software, we run the minimization problem
where the objective is to minimize the sum of squares of inner products for Rd, or the
sum of squares of absolute values of inner products for Cd. In both cases the sum is
taken over those pairs of vectors that are supposed to be orthogonal in the orthogo-
nal representation. Notice that the automorphisms of the graph dramatically reduce
the number of variables in the optimization problem because now we need only one
vector for each orbit of a symmetry group.

So far we have restricted the search to vertex-transitive graphs, as they are easy to
find and admit a lot of symmetry. However, in Ref. [204] it is shown that there are
other types of graphs leading to quantum correlations based on maximally entangled
states violating a Bell inequality. These graphs are those which admit an orthonormal
representation in dimension ξ and nonnegative vertex weights w = {wj}

|V|
j=1 such that

|V|

∑
j=1

wj

ξ
> α(G, w), (4.55)

where α(G, w) is the independence number of the corresponding weighted graph.
Further, it has been shown in Ref. [205] that a condition for these graphs is that the
fractional chromatic number χ f satisfies χ f > ξ. Here it is important to note that
this condition, which is not sufficient for the graphs to have associated SI-C sets is, in
fact, sufficient for having quantum correlations based on maximally entangled states
violating a Bell inequality. Consequently, another strategy to find examples of graphs
that allow for a low ηcrit would be the following. Find graphs with χ f > ξ. For each of

these cases, find an assignment of weights w = {wj}
|V|
j=1 such that ∑j wj/ξ > α(G, w).

Then, we have

ηcrit ≤

√√√√ ξα(G, w)

∑
|V|
j=1 ωj

. (4.56)

Interestingly, since these weights are often natural numbers, e.g., for the Yu-Oh set [206]
the weights are 2 for four of the vectors and 3 for the other nine vectors [204], one can
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see the weighted graphs (G, w) as non weighted graphs G̃ with an extended num-
ber of vertices. For instance, for the Yu-Oh set, the extended graph G̃ would have
4 × 2 + 9 × 3 = 35 vertices. Then, for finding candidates that may have a low ηcrit, we
can use databases of non weighted graphs of 13 or more vertices, as it is known that
the graphs for which χ f > ξ must have at least 13 vertices [207]. There, we would first
identify graphs with χ f > ω, which is easier to compute than ξ. Since ω ≤ ξ, this is a
necessary condition. Later on, we can use again the existing computational tools [203]
to obtain ξ.

4.8 Optimizing Bell inequalities using symmetries

From the definition of the graph-based Bell inequalities in Eq. (4.3) it is directly clear
that only those probabilities p(a, b|i, j) are taken into account where either i = j or i
and j are adjacent in the graph G. However, in a Bell test Alice and Bob independently
choose their measurements in such a way that the choice of one of them is spacelike
separated from the recording of the measurement outcome of the other. Therefore,
while every observable Ai of Alice is compatible with every observable Bj of Bob,
the inequality I in Eq. (4.3) does not use most of the joint probability distributions
p(a, b|i, j). Consequently, all the not used distributions are wasted. This motivates the
following questions. What if we use the same state and the same measurement direc-
tions as for the violation of the graph-based Bell inequality in Eq. (4.3) and consider
all the joint probability distributions p(a, b|i, j)? Is it possible to obtain better Bell in-
equalities, where better refers to a higher resistance of noise, i.e., a lower µcrit, a lower
critical detection efficiency ηcrit, or even both? If one aims to design a loophole-free Bell
test, one needs that the experimental values for the visibility µexp and the detection
efficiency ηexp are above their respective critical values. That is, we need µexp > µcrit

as well as ηexp > ηcrit. In the following we compute µcrit and ηcrit for quantum states
of interest. Intentionally, the first example does not offer a low µcrit nor a low ηcrit.
However, it will guide us to attack more interesting examples.

The case of Pauli-24

In Fig. 4.1 we have illustrated the graph of orthogonality of the 24 non-normalized
states in P2(R). This graph has α = 5 and ϑ = α∗ = 6. Therefore, by preparing the
maximally entangled state in Eq. (4.7) of local dimension ξ = 22 = 4 and allowing
each of the parties to choose between the 24 two-outcome measurements which are
represented by |vj⟩⟨vj| with |vj⟩ ∈ P2(R), Alice and Bob can produce a violation of
the Bell inequality in Eq. (4.3). In particular, by using Theorem 23 we can conclude that

ηcrit(P2(R)) ≤ 0.913 (4.57)
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v15=(0,0,1,1)

v13=(1,1,0,0)v12=(-1,1,1,1)

v11=(1,-1,1,1)

v10=(1,1,-1,1)

v9=(1,1,1,-1)

v8=(1,-1,-1,1)

v7=(1,-1,1,-1)

v6=(1,1,-1,-1)

v5=(1,1,1,1)

v4=(0,0,0,1)

v1=(1,0,0,0) v24=(0,1,-1,0)

v23=(0,1,1,0)

v22=(1,0,0,-1)

v21=(1,0,0,1)

v20=(0,1,0,-1)

v19=(0,1,0,1)
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v17=(1,0,1,0)
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v2=(0,1,0,0)

v3=(0,0,1,0)

Figure 4.1: Graph of orthogonality of the 24 Pauli states in P2(R). Vertices (dots) rep-
resent states and edges connect those that are orthogonal. The 24 states can
be distributed in 6 disjoint orthogonal bases, which are indicated by thicker
edges. The figure is taken from Ref. [F].

and by using Theorem 34, we obtain that

µcrit(P2(R)) ≤ 0.911. (4.58)

4.8.1 Gilbert’s algorithm

Although the graph-based Bell inequalities in Eq. (4.3) are neither tight, i.e., they are
not facets of the local polytope, nor robust to noise, they can be further improved to
offer better detection efficiency and noise robustness. The idea is to take the obtained
graph-based Bell inequality as a starting point to obtain a new inequality, which we
will parametrise in the Collins-Gisin form, see Eq. (1.130), by employing two different
methods. The first method is a linear program which optimizes over the entire local
polytope to find the optimal Bell functional [169]. However, this technique requires
to enumerate and to store all the local deterministic points which are given by the
vertices of the local polytope. Clearly, this becomes an increasingly difficult compu-
tational task as the number of measurement settings increases. For instance, the local
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polytope corresponding to the Bell inequality with 24 settings per party derived from
P2(R) has 248 ≈ 1014 vertices. This number is too large to be stored on a standard
computer. Therefore we have to choose a different approach, which is based on the so
called Gilbert’s distance algorithm [208] and does not require to store all the vertices
of the local polytope. However, it is important to note that for our case of interest, that
is, P2(R), the problem is still intractable if Gilbert’s original algorithm is used. The
problem only becomes feasible if one incorporates symmetries that are present in the
problem.

Gilbert’s algorithm is a well known numerical method to detect collisions between
convex sets. It has been used for improving the detection efficiency of Bell inequali-
ties [169], deciding whether or not a given correlation is nonlocal [209], and the con-
struction of entanglement witnesses [210, 211]. The algorithm minimizes the distance
between local points on facets of the local polytope L and a given nonlocal point. The
minimization is achieved by iteratively finding a better local point that decreases this
distance. The algorithm terminates when the difference of distances between succes-
sive iterations falls below a certain threshold value, which is typically chosen to be
very small. The resulting Bell functional is then identified as the separating hyper-
plane between the specified nonlocal point and the local point on the facet found by
minimizing the distance.

More precisely, the algorithm is based on having access to an oracle which is capable
of maximizing over the local polytope L the overlap with a given point, i.e., the inner
product between a given point in Rn. Initially, one has to specify the local polytope
L ⊂ Rn, presented as the convex hull of its vertices, and a point q⃗ ∈ Rn associated to
the given quantum correlation. Then the algorithm proceeds as follows.

(1) Choose a point s⃗0 ∈ L.

(2) Given the input point s⃗k one uses the oracle to compute

r⃗k := argmax
p⃗∈L

⟨⃗q − s⃗k, p⃗ − s⃗k⟩ = argmax
p⃗∈L

⟨⃗q − s⃗k, p⃗⟩. (4.59)

(3) Given s⃗k and r⃗k, calculate the convex combination of both which minimizes the
distance to the quantum point q⃗, that is,

λk := argmin
λ∈[0,1]

||(1 − λ)⃗sk + λ⃗rk − q⃗||. (4.60)

(4) Define the new starting point s⃗k+1 := (1 − λk )⃗sk + λk⃗rk.

Since the objective function in Eq. (4.59) is linear and the local polytope is convex, the
maximizer will be an extreme point of L. More precisely, the maximizer r⃗k is given
by a vertex of L. The optimal value for λ in the k-th iteration of Gilbert’s algorithm,
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Figure 4.2: (a) Illustration of the standard Gilbert’s algorithm. The quantum point q⃗
lies outside of the local polytope L. Starting with an arbitrary local point
s⃗k ∈ L, the oracle yields the point r⃗k within the local polytope L, maxi-
mizing the overlap with q⃗ − s⃗k. From there, a new starting point s⃗k+1 can
be calculated. The distance of the new point s⃗k+1 to the quantum point q⃗
is smaller or equal than the distance between s⃗k and q⃗. (b) Illustration of
Gilbert’s algorithm with symmetrization. In this simple example, the quan-
tum point q⃗ and the local polytope L are invariant under the flip around
the line ℓ. After the point s⃗k+1 has been computed by means of the standard
Gilbert’s algorithm, we obtain its symmetrization ˆ⃗sk+1 for the flip around
ℓ. The point ˆ⃗sk+1 is used instead of s⃗k+1 as the new starting point for the
next iteration. The figure is taken from Ref. [F].

denoted by λk can be computed directly and is given by

λk = min
{ ⟨⃗q − s⃗k, r⃗k − s⃗k⟩

||⃗rk − s⃗k||
, 1
}

. (4.61)

In the standard Gilbert’s algorithm the oracle is implemented by enumerating all the
vertices of the local polytope L to compute the inner product in the last equality in
Eq. (4.59). For a geometrical interpretation of the iteration, see also Fig. 4.2. Therefore,
this algorithm provides a sequence of Bell functionals, which become better with each
iteration. However, one does not necessarily obtain a tight Bell inequality as in method
based on a linear program. Moreover, calculating the local bound of the resulting
Bell functional still remains a hard problem, which again requires enumerating and
storing all the local deterministic points of at least one party. This issue is also shared
by the oracle in the standard Gilbert’s algorithm, since the evaluation of Eq. (4.59) is
equivalent to find the local bound of a Bell functional.

4.8.2 Gilbert’s algorithm with symmetry

As already mentioned in Section 1.2.3, the vertices of the local polytope are invariant
under the following invertible transformations:

(1) Swapping the outcomes of a measurement setting for either Alice or Bob.

(2) Simultaneously permuting the measurement settings of Alice and Bob.
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(3) Swapping the measurement settings of Alice and Bob.

Here invariant means that the transformations map local correlations to local correla-
tions. The joint probability distributions that can be obtained by performing measure-
ments on a quantum state are also invariant under some of these transformations. We
will denote by S the subset of transformations which keep the quantum joint probabil-
ity distributions and the local polytope invariant simultaneously. If the correlations are
presented in the Collins-Gisin parametrization, see Eq. (1.130), also the Bell functional
can be rephrased in this form

I =


c(a = 1|x = 1) · · · c(a = 1|x = m)

c(b = 1|y = 1) c(1, 1|1, 1) · · · c(1, 1|m, 1)
...

...
. . .

...
c(b = 1|y = m) c(1, 1|1, m) · · · c(1, 1|m, m)

 . (4.62)

The corresponding Bell inequality can then be calculated as Tr
[
IP⊤] ≤ λ, where P

denotes the given correlations and λ the local bound of I. Under the transformations
S ∈ S we have

Tr
[
UP⊤

]
= Tr

[
IS(P)⊤

]
= Tr

[
S−1(I)P⊤

]
≤ λ, (4.63)

where S(P) is the resultant matrix after the transformation S. Consequently we have

Tr
[

IP⊤
]
= Tr

[
IP̂⊤

]
= Tr

[
ÎP⊤

]
= Tr

[
Î P̂⊤

]
, (4.64)

where

P̂ :=
1
|S|

|S|

∑
j=1

Sj(P), Î :=
1
|S|

|S|

∑
j=1

S−1
j (P), (4.65)

with |S| to be the cardinality of S . Therefore the expressions P̂ and Î can be seen as
averages of P and I with respect to the symmetry group S . Using this symmetry S , it
is sufficient to only consider inequalities that share this symmetry. In particular, given
a symmetric inequality, the vertices of the local polytope L can be partitioned into
different equivalence classes with respect to that symmetry and the local bound can
be computed by choosing only one representative out of each class. This drastically
reduces the total number of required local vertices, allowing for an enumeration of all
symmetrized local points and an evaluation of the local bound.

For convenience, here we focus on the symmetrization applied only to Alice’s mea-
surement settings. Each equivalence class consists of vertices which can be transformed
into each other by using the aforementioned symmetry transformations, while the
same is not true for vertices in different classes, that is, the partition generates disjoint
sets. This leads to a modified oracle, which can be much more efficiently evaluated
than the original one, as the number of equivalence classes could be much smaller
than the number of all vertices. As we will see in the following, this is indeed the case
for P2(R).
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4.8.3 Generating the set of symmetrized vertices

It remains to describe how to obtain the reduced set of vertices on which the opti-
mization in Eq. (4.59) has to run. In the first step, we have to determine the allowed
symmetry transformations S , which should be shared by the chosen quantum point
q⃗ and the local polytope L. The local polytope L is invariant under the permuta-
tion of parties, the permutation of measurements for each party and the permutation
of the outcomes for each measurement. By construction, the chosen quantum point
q⃗ is also invariant under the permutation of parties. However, the point q⃗ usually
changes if the outcomes of the measurements are permuted. In general, determining
the permutation symmetries of measurements in the point q⃗ can be a difficult task if
the number of measurements is large. In the particular case considered here, those
symmetry transformations correspond to the ones in the automorphism group of the
graph associated to the SI-C sets. Therefore, the symmetry transformations used in the
Gilbert’s algorithm with symmetrization are the ones in the automorphism group and
the permutation of parties. It remains to explain how the vertices are partitioned into
different equivalence classes. The first important observation is that we do not need to
generate, store and classify all vertices, as assignments with a different number of 1’s
cannot be equivalent to each other, i.e., the number of 1’s that appear in the assignment
is an invariant with respect to the symmetries considered here. Hence we start with
the assignment that only contains zeros. Obviously, this is invariant under all possible
permutations. From this, we generate all possible assignments that can be obtained by
replacing one 0 by one 1. Within this set, we check whether some of these assignments
are equivalent under the given symmetry transformations S , which are presented as
permutations. Then, we only keep one representative for each class. This procedure is
repeated until no 0 is left in the assignment vector.

By selecting only a single vertex from each equivalence class and all the vertices
of Bob, we find that the total number of deterministic assignments for Alice is 21564
for the Bell inequality corresponding to P2(R), while without symmetrization, the
number would be 224. In addition, we also modify Gilbert’s algorithm to evaluate the
Bell functional according to the symmetrization procedure in Eq. (4.65). Specifically, we
symmetrize the local point chosen in each iteration of the program after minimizing
its distance from the target nonlocal point, see Fig. 4.2 for a simple illustration. This
results in better convergence times of the algorithm since symmetrization does not
increase the distance.

4.8.4 Application to P2(R)

Applying Gilbert’s algorithm together with the symmetrization technique to the cor-
relations produced by the measurements corresponding to P2(R) and the maximally
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entangled state, we obtain the following Bell inequality:

IP2(R) ≤ 0 with IP2(R) =

 v⃗ v⃗
v⃗⊤ 012 M2

v⃗⊤ M2 012

 , (4.66)

where 012 ∈ R12×12 denotes the zero matrix, v⃗ ∈ R12 a vector which consists only of
−6’s and

M2 =



5 5 4̄ 4̄ 5 5 4̄ 4̄ 5 5 4̄ 4̄
5 5 4̄ 4̄ 4̄ 4̄ 5 5 4̄ 4̄ 5 5
4̄ 4̄ 5 5 5 5 4̄ 4̄ 4̄ 4̄ 5 5
4̄ 4̄ 5 5 4̄ 4̄ 5 5 5 5 4̄ 4̄
5 4̄ 5 4̄ 5 4̄ 5 4̄ 5 4̄ 5 4̄
5 4̄ 5 4̄ 4̄ 5 4̄ 5 4̄ 5 4̄ 5
4̄ 5 4̄ 5 5 4̄ 5 4̄ 4̄ 5 4̄ 5
4̄ 5 4̄ 5 4̄ 5 4̄ 5 5 4̄ 5 4̄
5 4̄ 4̄ 5 5 4̄ 4̄ 5 4̄ 5 5 4̄
5 4̄ 4̄ 5 4̄ 5 5 4̄ 5 4̄ 4̄ 5
4̄ 5 5 4̄ 5 4̄ 4̄ 5 5 4̄ 4̄ 5
4̄ 5 5 4̄ 4̄ 5 5 4̄ 4̄ 5 5 4̄



, (4.67)

with 4 = −4. Using the maximally entangled state in Eq. (4.7), one finds that the max-
imal quantum value is given by IP2(R) = 18. In addition, for the correlations produced
by P2(R) and the maximally entangled state, we have µcrit = 7/9 = 0.778, which
is 14.62% lower than the upper bound in Eq. (4.58) and ηcrit = 4/5 = 0.8 which is
12.38% lower than the upper bound in Eq. (4.57). We are able to prove that µcrit and
ηcrit are the smallest possible values for the correlations produced by P2(R) and the
maximally entangled state. First, we collect all the 452929 pairs of deterministic as-
signments for the two parties which achieve the maximal bound for LHV models. Each
of the assignments P can be written in the Collins-Gisin form as in Eq. (1.130). After
symmetrization, there are only 132 different matrices P̂, whose convex combination
can lead to the corresponding quantum probability matrix, either with µ = 7/9 or
with η = 4/5, as one can verify by a linear program. It is important to note that the
inequality in Eq. (4.66) is not tight. There exists a tight Bell inequality providing the
same ηcrit and µcrit as the ones for the inequality in Eq. (4.66), but it does not provide
the two zero blocks on the off-diagonal as we have in Eq. (4.66). If one wants to keep
this block structure, the inequality in Eq. (4.66) is the only solution.

Notice that the symmetries of the initial graph are crucial for finding M2 in Eq. (4.67).
For example, there are only 6 different parameters in the symmetric inequality for the
case of P2(R). In contrast, there are 624 parameters in the non-symmetric inequality
for P2(R). In the general case, there are 2m+ 2 parameters in the symmetric inequality
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for Pm(R) and Pm(C). This makes it also possible to find a better inequality without
resorting to Gilbert’s algorithm. More precisely, we can choose t different values for
each parameter, resulting in t2m+2 different inequalities. For each of the inequalities
we can verify whether it separates the target quantum point q⃗ and the local polytope
L or not. This can be done by only considering the deterministic assignments up to
symmetry. As discussed before, for the case m = 2, there are 21564 different determin-
istic assignments for Alice up to symmetry. Consequently, for a fixed inequality, that
is, for a particular choice of the parameters t, this verification can be done efficiently.
In a similar manner we can calculate ηcrit and µcrit for each inequality. As one can
see in Eq. (4.66), we can set some parameters to 0 for the optimal ηcrit and µcrit. This
observation can be used to speed up the numerical calculations further.

4.9 Conclusion and discussion

The methods introduced in this Chapter allow us to achieve ηcrit < 0.52 with local
dimensions 16 and also show how to obtain Bell inequalities with even lower ηcrit and
higher resistance to noise. Here it would be interesting to know what the values for
the visibility µ are that can be achieved experimentally in the required configurations.
More precisely, we want to know what pairs (ηexp, µexp) can be obtained for the type
of states and measurements proposed here, e.g., for d = 16 and Pauli-4320. In addi-
tion, we have introduced methods to identify further examples with low ηcrit requiring
smaller number of settings. As shown in Fig. 4.3, the first step of our method already
yields upper bounds for ηcrit which are substantially smaller than the lowest previ-
ously known values for any dimension d ≥ 16. These values indicate that there are
quantum correlations which have sufficiently low ηcrit for loophole-free Bell tests with
higher-dimensional quantum systems and, eventually, over longer distances.

Our results imply that loophole-free Bell nonlocality can be achieved in carefully
designed tests involving pairs of systems of these dimensions, going beyond previous
loophole-free Bell tests which are all based on qubits. More interestingly, our results
also imply that loophole-free Bell nonlocality can be achieved through longer dis-
tances than those in previous loophole-free Bell tests. Indeed, when photons propagate
through fibers, they experience propagation losses proportional to the propagation dis-
tance which also depend on the optical wavelength. This means that in a Bell test over
a long distance, the detection efficiency decreases with the distance. For example, with
telecom wavelengths, in 10 km of fiber, we may have losses of 0.2 dB/km, which im-
plies multiplying the detection efficiency that we had before adding the 10km of fiber
by a factor of 0.64. Therefore, if we have examples of loophole-free Bell nonlocality
requiring ηcrit < 0.5, we can achieve loophole-free nonlocality over 10 km if we have
ηexp > 0.785 before adding the 10 km of fiber, as 0.785 × 0.64 = 0.502 > 0.5. Such val-
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Figure 4.3: The critical detection efficiency ηcrit as a function of the dimension d of the
local system. The previous smallest values are those in Ref. [85, 168, 170]
and use non maximally entangled pure states. Pauli (Newman) states refer
to the case in which the local measurements are projectors on the Pauli
(Newman) states and the initial state is maximally entangled, as described
in Section 4.3. The figure is taken from Ref. [F].

ues of ηexp have been achieved in previous photonic loophole-free experiments [13],
even including fibers and couplings.





5 Certifying activation of quantum
correlations with finite data

There exist entangled quantum states that do not violate any Bell inequality in a stan-
dard Bell test, but their nonlocality can be activated if one allows for an extended
experimental setup. However, rigorous statements on the statistical significance of the
experimental demonstrations of this activation are not yet available. Behind this there
are two difficulties. First, the lack of a method to derive a suitable confidence region
from the measured data and second, the lack of an efficient technique to decide lo-
cality for every state in the confidence region. In this Chapter we show how both of
these problems can be addressed. We introduce a confidence polytope in the form of
a so-called hyperoctahedron and provide a computationally efficient method to ver-
ify whether a quantum state admits a local hidden state model, thus being unsteerable
and, consequently, Bell local. We illustrate how our methods can be used to analyze the
activation of quantum correlations by local filtering, specifically, for Bell-nonlocality
and quantum steerability. This Chapter is based on Project [C].

5.1 Motivation

In a standard Bell test, each of the two parties obtains a particle distributed from a
source and can perform measurements on their respective system. After many runs,
the correlations of the experiment can be derived from the data. Assuming quantum
theory, these correlations can be stratified into classes like quantum entanglement,
quantum steering and quantum nonlocality, with each referring to a different level of
trust in the local measurement devices [98, 155]. While entanglement can be easier to
produce and maintain, it is not enough to relax security assumptions on devices in
quantum key distribution, for which Bell-nonlocality or quantum steering is neces-
sary [17, 162, 212].The latter consist of states entangled strongly enough, to allow for
the violation of a Bell inequality or steering inequality.

Interestingly, for pure bipartite quantum states, entanglement turns out to be suffi-
cient in order to reveal Bell-nonlocality in a standard Bell test [213]. Indeed, the sim-
plest Bell inequality, the CHSH inequality [6], can be violated by any such state. Con-
sequently, the notion of entanglement and Bell-nonlocality coincides for this particular
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Figure 5.1: Illustration of the activation scenario using local filters. Similar to a stan-
dard Bell test there are two parties, Alice and Bob, as well as source (star)
distributing a pair of particles. After the parties have received their cor-
responding system, each of them performs the filtering, yielding outcome
a1, b1 ∈ {0, 1} for Alice and Bob, respectively. If both parties observe the
correct predefined outcome, they will perform the measurements which
can yield a violation of a Bell inequality. This violation will be observed
upon observing the correct outcomes a1, b1.

class of states. However, this changes if one also allows for mixed bipartite quantum
states. Indeed, Werner showed explicitly [58] that certain highly symmetric entangled
states admit a local hidden variable (LHV) model when the measurements at the parties
are limited to projective ones. The construction of LHV models for entangled quantum
states with all measurements allowed was tackled by Barrett [214]. Consequently, the
notion of separability and Bell-local states differ.

This separation of these two notions has an interesting consequence. It turns out
that the Bell nonlocality of a local but entangled quantum state can be revealed if one
allows for more complex Bell tests [215,216]. Different extensions have been proposed,
for instance, the multi-copy scenario, where ϱ admits an LHV model but ϱ⊗n can violate
a Bell inequality [217, 218]. Another approach to extend the standard Bell test is a
scenario where the observers perform a sequence of measurements rather than a single
measurement. Such an extension could involve a filter operation for each party before
performing a standard Bell test, see also Fig. 5.1. In this context it is important to
notice that the enlarged scenario with local filters does not open a loophole for the
subsequent Bell test, as the choice of the local settings x and y can be made after
applying the filters [216, 219].

There already exist experimental demonstrations of the stratification of quantum
correlations in these different classes [220] and the interconversion between them by
means of local filtering [221–223]. However, a rigorous statistical analysis of the activa-
tion of correlations faces difficulties. Indeed, while it is relatively easy to witness the
presence of entanglement, quantum steering or Bell nonlocality of the processed state
by means of measuring an appropriate inequality, it is in general difficult to demon-
strate that the initial state of the experimentally prepared system is contained within
a desired set. This is mostly due to two reasons.
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Firstly, due to sampling noise and imperfections in the experimental setup, the state
can only be determined within a certain confidence region. Current methods for state
tomography [224–226] give confidence regions which are either an ellipsoid or a poly-
tope with millions of vertices. Certifying that all states in the confidence region belong
to a certain class of correlations, such as Bell-locality, requires the inspection of every
extremal point of the confidence region, and thus cannot be carried out in practice.

Secondly, even for a confidence polytope with a small number of vertices, one still
faces the problem that for each vertex one has to decide whether it belongs to the
targeted class of correlations. The complexity of this task varies with the class of cor-
relations considered. For separable states in low dimensions one can often use criteria
like partial transposition [70, 227], which are computationally efficient. For higher-
dimensional entanglement, steering, and Bell-local states, this problem is computa-
tionally much harder and often cannot be solved in reasonable time even for a rel-
atively low number of states. Recently, this problem has received progress for sepa-
rability [228] and locality [229–234]. However, for the use case considered here, the
algorithms for Bell-local states are still too slow and yield insufficient accuracy.

In this Chapter we will present solutions to both problems and apply our meth-
ods to the activation of Bell nonlocality and quantum steerability. More precisely, in
Section 5.2 we address the first problem by introducing a simple confidence polytope
for quantum state tomography, where the number of vertices scales linearly in the di-
mension of the state space hence quadratically with the dimension of the underlying
Hilbert space. We proceed in Section 5.3 by presenting a solution to the second prob-
lem by extending the technique of polytope approximation [231] to give a fast and
accurate numerical method to solve the case of qudit-qubit systems. Afterward, we
combine in Section 5.4 both techniques and apply them to the activation protocol us-
ing local filtering. More precisely, we first present in Section 5.4.1 a family of quantum
states that are well suited for the protocol and analyze their nonlocal properties. Then,
we discuss the activation of Bell-nonlocality in Section 5.4.2 as well as the activation of
quantum steerability in Section 5.4.3. In either case, we provide a rigorous statistical
analysis resulting in explicit lower bounds on the number of experimental repetitions.

5.2 Construction of a simple confidence polytope

Obviously, for a conclusive demonstration of an activation of Bell-nonlocality or quan-
tum steering one must first demonstrate that the initially prepared quantum state is
indeed Bell-local or unsteerable. In particular, this must be achieved with a high level
of statistical significance. However, due to noise in the experimental setting, the ac-
tual prepared state may deviate from the targeted ideal state, for which locality can
be proven. This forces one to learn which high accuracy the effective prepared state,
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which can be done by means of quantum state tomography. Still, the tomographic
reconstruction has to rely on finite data and if the statistical uncertainty within that
data dominates the experimentally introduces errors, one needs in addition a statistical
confidence region in state space.

In order to obtain a full reconstruction of the density operator, one has to measure
the quantum system with a complete set of measurements. The corresponding out-
come probabilities would then allow for an identification of the underlying quantum
state, which has generated that data. In the following we write Ea|x for the effect corre-
sponding to the outcome a of the measurement setting x. According to the Born rule, if
the quantum system is prepared in the state ϱ, the probability of obtaining outcome a
given that the measurement setting was x is pa|x(ϱ) := Tr

[
Ea|xϱ

]
. In an experiment, by

implementing the measurement x, one samples from the distribution (pa|x(ϱ))a. This
yields after N trials the relative frequencies ( fa|x)a for each setting x. These frequencies
fa|x can be collected in vector, which we denote by f⃗ . In a similar manner, if the mea-
surements E = {Ea|x} are fixed and can yield in total n outcomes, the corresponding
probabilities can be organized in a vector as

ΦE : Matd(C) → Rn with ϱ 7→ ΦE(ϱ) =
{

Tr
[

Ea|xϱ
]}

a,x
. (5.1)

Note that one assumes here that the measurement operators Ea|x are known and im-
plemented perfectly. The free least-squares estimator for the underlying quantum state
ϱ is defined as the solution of the least-squares problem of minimizing the distance
between the given frequencies f⃗ and the probabilities induced by the measurement
operators Ea|x, that is,

ϱ̂ := argmin
X

{
∑
a,x

(
fa|x − Tr

[
XEa|x

])2
| X† = X, Tr[X] = 1

}
. (5.2)

Notice that the objective function in Eq. (5.2) can also be written as || f⃗ − ΦE(ϱ)||22. The
optimization in Eq. (5.2) also involves matrices that are not positive semidefinite, in
which case also the closest probability vector ΦE(X) may have negative components.
The least-squares estimator has the advantage that it admits a closed form in terms of
the map ΦE, that is,

ϱ̂ = (Φ†
E ◦ ΦE)

−1 ◦ Φ†
E( f⃗ ). (5.3)

In general, if one assumes that the number of experimental runs is sufficiently high,
one can make a Gaussian approximation, i.e., one assumes that the empirical frequen-
cies f⃗ of the measurement outcomes follow a Gaussian distribution with the mean
ΦE(ϱ) and covariance matrix Σ(ϱ). Under this assumptions, one can show that [226]

Prob[ ||ΦE(ϱ̂)− ΦE(ϱ)||2 ≤ α ] ≥ Fℓ(2Nα2). (5.4)
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Here N denotes the number of repetitions of the tomographic measurements and the
parameter α determines the upper bound on the level of confidence via the cumulative
distribution function Fℓ of the central χ2(ℓ) distribution. The parameter ℓ is the linear
dimension of the state space, that is, ℓ = d2 − 1 for a d-dimensional quantum system.
The resulting confidence region is an ellipsoid in the state space.

We now explain how to obtain an outer approximation of the confidence ellipsoid in
form of a polytope P which has only 2ℓ vertices. Notice that there already exist meth-
ods to obtain confidence regions in form of a polytope [224]. However, their number
of vertices is by far too large such that an inspection of all of them with respect to a
certain property is impossible. First notice that Eq. (5.4) can be rewritten as

Prob[ϱ ∈ ϱ̂ + αE ] ≥ Fℓ(2Nα2), (5.5)

where

E = {Y : ||ΦE(Y)||2 ≤ 1, Y = Y†, Tr[Y] = 0}. (5.6)

The set E is an ellipsoid in the set of traceless self-adjoint operators. Therefore, the
ellipsoid ϱ̂ + αE , which is the original ellipsoid from Eq. (5.6) but rescaled by a factor
of α and with center ϱ̂, constitutes a confidence region once the parameter α is chosen
according to the intended level of confidence. For example, if one aims a confidence
level of γ = 99%, α can be obtained by solving Fℓ(2Nα2) = γ. To obtain an outer
approximation of the confidence ellipsoid in the form of a hyperoctahedron, we replace
the Euclidean norm || · ||2 in the definition of the ellipsoid in Eq. (5.6) by the one-norm
|| · ||1, which is given by ||⃗v||1 = ∑j |vj|. Given m orthonormal vectors {⃗zj}m

j=1 ⊂ Rn

one has for an arbitrary vector v⃗ ∈ Rn√√√√ m

∑
j=1

⟨⃗bj, v⃗⟩2 ≥ 1√
m

m

∑
j=1

|⟨⃗bj, v⃗⟩|. (5.7)

Consequently, the set {v⃗ ∈ Rn | ∑j ⟨⃗b, v⃗⟩2 ≤ 1} is contained in the hyperoctahedron
{
√

mv⃗ ∈ Rn | ∑j |⟨⃗bj, v⃗⟩| ≤ 1} with extremal points ±
√

m b⃗j. Since we are interested
in v⃗ = ΦE(Y), we need an orthonormal basis of the range of ΦE over the set of all
hermitian operators Y with zero trace. This yields ℓ orthonormal vectors b⃗j = ΦE(Yj)

with Yj an appropriate zero-trace hermitian operator. By rescaling the parameter α by
α 7→ α/ℓ, one obtains

Prob[ϱ ∈ ϱ̂ + αP ] ≥ Fℓ

(
2N
ℓ

α2
)

, (5.8)

where P is the hyperoctahedron spanned by {±Yj}j. Note that both, the sphere and
the polytope, are deformed by the linear map ΦE, see also Fig. 5.2 for an illustration.
The deformation of the sphere and the polytope depends on the particular choice of
measurement directions E.
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Figure 5.2: Illustration of the outer approximation of a confidence region by a poly-
tope. The inner ellipsoid is the confidence region in state space that has
been obtained from the Gaussian approximation in Eq. (5.4). The outer
polytope corresponds to the outer approximation by a hyperoctahedron.
The figure is taken from Ref. [C].

5.3 Steerability with dichotomic measurements

In order to demonstrate the activation of Bell-nonlocality or quantum steerability in a
statistical rigorous manner, we have to certify that the initial state is local. This implies
the necessity of a method to decide locality for a generic quantum state. Here we
show that deciding whether a bipartite quantum state ϱ admits a local hidden state
(LHS) model for dichotomic measurements can be solved asymptotically for arbitrary
ϱ ∈ B(CdA ⊗C2), i.e., for qudit-qubit systems. This procedure relies on a reformulation
of the problem as a nesting problem of two convex objects [231, 233].

In order to determine whether a LHS model can be constructed for a quantum state
ϱ ∈ B(CdA ⊗ C2) with respect to dichotomic measurements, denoted by LHS2, one
defines the so called critical radius as

R(ϱ) := max {t ≥ 0 | ϱt admits a LHS2 model }, (5.9)

where

ϱt = tϱ + (1 − t)
1

dA
⊗ TrA[ϱ]. (5.10)

It is important to notice that in the definition of the critical radius R we only assumed
dichotomic measurements. Clearly, we have R(ϱ) ≥ 1 if and only if ϱ admits a LHS2

model. Recall that the system of Bob is given by a qubit and therefore the set of pure
quantum states corresponds to a two-dimensional sphere. We will denote the set of
pure states on Bob’s side by S . Now let µ be a probability measure on S . We denote
by K(µ) the set of all quantum states that Alice can simulate at Bob’s side using the
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measure µ. This set is called the simulability capacity of µ and is formally defined as

K(µ) = {
∫
S

g(σ)σ dµ(σ) | g : S → [0, 1]}. (5.11)

Let MA denote the set of all measurement effects of Alice. Given that the measure-
ment outcome associated with the effect E ∈ MA was observed, the corresponding
conditional state on Bob’s side is given by TrA[ϱ(E ⊗ 1)]. Consequently, the state ϱt

admits a LHS model with respect to dichotomic measurements if the conditional states
on Bob’s side are a subset of the set of states Alice can simulate for certain probability
measures µ [233], that is,

{TrA[ϱ(E ⊗ 1)] | E ∈ MA} ⊂ K(µ). (5.12)

The notion of the simulability capacity allows us to rewrite the critical radius as

R(ϱ) = maximize t

such that TrA[ϱt(E ⊗ 1)] ∈ K(µ) ∀ E ∈ MA

with respect to t, µ.

(5.13)

Here it is important to note that the nesting condition in Eq. (5.12) can be rephrased
by using the dual representation of convex sets.

Lemma 39 ( [233, 235]). Let X be a compact convex subset of a finite dimensional Euclidean
space. Then, a compact subset Y is contained in X if and only if

max
x⃗∈X

⟨⃗z, x⃗⟩ ≥ max
y⃗∈Y

⟨⃗z, y⃗⟩ (5.14)

for all vectors z⃗ in the Euclidean space.

Therefore, one can equivalently rewrite Eq. (5.12) as

max
τ∈K(µ)

⟨F, τ⟩ ≥ max
E∈MA

Tr[ϱtE ⊗ F] (5.15)

and this condition has to hold for all hermitian operators F acting on Bob’s system.
Moreover, using the definition of the simulability capacity K(µ), one can solve the
maximization of the left-hand side of Eq. (5.15) explicitly, which gives

max
τ∈K(µ)

⟨F, τ⟩ = max
g:S→[0,1]

⟨F,
∫
S

g(σ)σ dµ(σ)⟩ = max
g:S→[0,1]

∫
S
⟨F, σ⟩g(σ)dµ(σ). (5.16)

Clearly, as the function g : S → [0, 1] is arbitrary, the optimal choice is simply given by
the indicator function with respect to the set of states for which ⟨F, σ⟩ > 0. Therefore,
one arrives at

max
τ∈K(µ)

⟨F, τ⟩ =
∫
S

max {⟨F, σ⟩, 0}dµ(σ). (5.17)
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Combining Eq. (5.13) and Eq. (5.17) allows us to rewrite the critical radius as

R(ϱ) = maximize t

such that
∫
S

max {⟨F, σ⟩, 0}dµ(σ) ≥ max
E∈MA

Tr[ϱtE ⊗ F] ∀ F

with respect to t, µ.

(5.18)

This is an optimization problem over the set of probability measures supported on
the Bloch sphere S of Bob. Further, the optimization involves an infinite number of
constraints, as the whole set of hermitian operators F has to be considered. The crucial
step to solve this problem is to introduce a polytope P ⊂ R3 which is the convex
hull of ν ∈ N vertices, P = conv({σj}ν

j=1), approximating Bob’s Bloch sphere S from
inside or from the outside, which gives a lower or an upper bound on the critical ra-
dius R(ϱ), respectively. Upon approximating the Bloch sphere by a polytope P, the
probability measure µ, originally supported on S , turns into a probability distribution
supported only one the vertices of P. We will write ω = {ωj}ν

j=1 for this distribution,
where ωj = µ(σj) denotes the mass of the measure µ in the point σj. Given such a
polytope approximation P, the capacity K(µ) of µ also turns into a polytope, denoted
by KP(ω), in the operator space of Bob’s system. As a consequence, the constraints in
the optimization problem in Eq. (5.18) simplify as one only has to consider those her-
mitian operators F corresponding to normal vectors of the facets of KP(ω), which are
of finite number. This is in stark contrast to the original (exact) optimization problem
in Eq. (5.18), where an infinite number of constraints has to be considered. Crucially,
these normal vectors of KP(ω) are only dependent on the polytope approximation
P of the Bloch sphere and independent of the particular probability weights ω on the
vertices of the polytope. In order to find the normal vectors of the facets of the capacity
KP(ω) for the given polytope P, one can proceed as follows. For a certain operator F
and a probability measure of the form µ = ∑ν

j=1 ωjδσj one finds

max {⟨F, τ⟩ | τ ∈ KP(ω)}) =
ν

∑
j=1

ωj max {⟨F, σj⟩, 0}, (5.19)

where δσj denotes the point measure in the vertex σj. The operator F corresponds to a
facet of KP(ω) if the maximizers on the left-hand side in Eq. (5.19) form a hyperplane
in the four dimensional vector space over Bob’s system. The solution of the left-hand
side gives the maximizers τ∗ as

τ∗ = ∑
j∈A

ωjσj + ∑
j∈B

ωjξ jσj, (5.20)

where A := {j |⟨F, σj⟩ > 0} and B = {j | ⟨F, σj⟩ = 0} with any ξ j ∈ [0, 1]. One can see
that this forms a hyperplane if there are at least three points in B, that is, there are
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three σj ∈ P such that ⟨F, σj⟩ = 0. This means that F defines a plane that goes through
at least three points of P. In the following we will denote the set of all operators F that
define a plane going through at least three points of P by F(P). Here it is important
to notice that F(P) is independent of the probability weights ω. However, unlike to
the case where only a two-qubit system is considered, in the qudit-qubit case, one has
to face additional difficulties. The problem is that even under this polytope approx-
imation, the optimization problem in Eq. (5.18) is not yet a linear program. Indeed,
the right-hand side of the constraint in Eq. (5.18) still depends on the parameter t in
a complicated way. However, this complication can be overcome as we will explain in
the following. As the objective function is linear in E, it follows that the maximum is
attained at an extreme point of the set MA. The extreme points of MA are exactly
projections of rank ℓ with ℓ = 0, 1, ..., dA where dA denotes the dimension of Alice’s
system. Consequently one has

max
E∈MA

Tr[ϱtE ⊗ F] = max
0≤ℓ≤dA

max
E∈MA
Tr[E]=ℓ

Tr[ϱtE ⊗ F]. (5.21)

Therefore, the right-hand side of Eq. (5.21) can be rewritten as

t max
E∈MA

max
Tr[E]=ℓ

Tr[ϱE ⊗ F] +
(1 − t)ℓ

dA
Tr[ϱBF]. (5.22)

In total, we end up with a linear program which is given by

RP(ϱ) =maximize t

subject to
ν

∑
j=1

ωj max{⟨F, σj⟩, 0} ≥ tηℓ(F) + (1 − t)
ℓ

dA
Tr[ϱBF]

ν

∑
j=1

ωj = 1,

(5.23)

where the optimization is with respect to t and the probability weights {ωj}. Further,
the constraint in Eq. (5.23) has to hold for all ranks 0 ≤ ℓ ≤ dA and all operators
F ∈ F(P). In addition we have introduced the function

ηℓ(F) := max {Tr[ϱ(E ⊗ F)] | E ∈ MA , Tr[E] = ℓ}. (5.24)

Here it is important to note that ηℓ(F) is simply the sum over the ℓ maximal eigen-
values of the operator TrB[ϱ1 ⊗ F]. Therefore, for a polytope P with ν vertices, the
linear program consists of O(ν) variables and O(dAν3) constraints, which can be ef-
ficiently solved. Consequently, the size of the program is only linear in Alice’s di-
mension, rendering the analysis of general qudit-qubit states possible. Notice that
previous methods are based on the approximation of the set of measurements by a
polytope [229, 230, 232, 234], which yields a semidefinite program with an exponential
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size in the approximation polytope. These demand much higher computational re-
sources and cannot be practically applied to states that are of interest for the activation
of nonlocality.

5.4 Activation of nonlocality by local filtering

With the tools provided in Section 5.2 and Section 5.3 we can answer the question of
how many samples are needed in order to statistically conclusive verify the activation
of Bell nonlocality or quantum steerability. For both types of correlations, we consider
in the activation protocol a family of qutrit-qubit states for the system of Alice and
Bob given by

ϱµ,q := qWµ + (1 − q)|2⟩⟨2| ⊗ 1

2
, (5.25)

where 0 ≤ µ ≤ 1 and 0 ≤ q ≤ 1. Here Wµ is a qutrit-qubit embedded Werner state,
that is,

Wµ = µ|ψ−⟩⟨ψ−|+ (1 − µ)(|0⟩⟨0|+ |1⟩⟨1|)⊗ 1

4
(5.26)

and |ψ−⟩ refers to a qutrit-qubit state that is only supported on the first two levels |0⟩,
|1⟩ of the qutrit system, i.e., |ψ−⟩ = (1

√
2)(|01⟩ − |10⟩). Such a state arises naturally

for photonic qubits, when there is a loss of photons with probability q on Alice’s side
and the vacuum state is explicitly considered [236, 237].

In order to demonstrate the activation of nonlocality, Alice applies on her side the
local filter F = |2⟩⟨2|. Upon implementing the measurement (F,1− F) she sends the
measurement outcome to Bob. If the first outcome occurs, the resulting state will be a
product state and is discarded by Alice and Bob. If the second outcome is observed,
one finds that the post-measured state is given by

Tr
[
(1− F)ϱµ,q(1− F)

]−1
(1− F)ϱµ,q(1− F) = Wµ. (5.27)

In this case, Alice and Bob know that they share the Werner state Wµ and they are
ready to perform a Bell test using this state. If now µ > 1/

√
2, the state can violate the

CHSH inequality [6]. However, it should be noticed that the projection of the state onto
|0⟩⟨0|+ |1⟩⟨1| is in general very challenging to implement on a photonic platform.

As already pointed out, even before filtering and before performing a standard
Bell test, one has to perform tomography of the initially prepared system to certify
its locality. For the specific scenario of one qutrit and one qubit as in Eq. (5.25) we
choose for the tomographic measurement the Pauli operators σ1, σ2, σ3 for the qubit
and the operators σ0,1, σ0,2, σ0,3, σ1,1, σ1,2, σ1,3, σ2,1, σ2,2 for the qutrit, where σj,µ|j⟩ = |j⟩
and σj,µ|k⟩ = σµ|ℓ⟩ with ℓ = k for k < j and ℓ = k − 1 for k > j. We only include 3 of
the four outcomes for each measurement setting, which yields a smaller vector ΦE(ϱ)
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while still the analysis in Section 5.2 is applied. Notice that there is a freedom in the
orientation of the hyperoctahedron since the operators Yj only need to satisfy the or-
thogonality conditions. We choose the operators at random, such that the orientation
of the polytope does not prefer any specific direction.

5.4.1 Locality of the targeted state family

Let us now determine for which values of 0 ≤ µ ≤ 1 and 0 ≤ q ≤ 1 the states
in Eq. (5.25) are local with respect to generalized measurements. First observe that
the existence of a LHS model implies the existence of a LHV model. The idea is to
reduce the construction of a LHS model for all generalized measurements to that for
dichotomic measurements. We will make use of the following lemma, which was first
introduced in Ref. [238].

Lemma 40 ( [238, 239]). Let ϱ ∈ B(CdA ⊗ CdB) and suppose that ϱ has a LHS2 model. Then,
the state

ϱ̃ :=
1

dA
ϱ +

dA − 1
dA

σA ⊗ TrB[ϱ] (5.28)

with σA ∈ B(CdA) any arbitrary state admits a LHS model for generalized measurements.

Here it is important to notice that the proof of Lemma 40 in Ref. [239] remains valid
even when the operator ϱ is not positive semidefinite, as long as the conditional states
on Bob’s side remain positive. It has been shown that ϱµ,q admits a LHS2 model if
q ≤ 2(1 − µ) for 1/2 ≤ µ ≤ 1 or 1

2 ≤ µ ≤ 1. Using Lemma 40, one can directly see that
the state ϱµ,q admits a LHS model for all generalized measurements if q ≤ 2

3 (1 − µ)

with 1
2 ≤ µ ≤ 1 or q ≤ 1/3 with 0 ≤ µ ≤ 1

2 . This forms the area framed by the dotted
boundary in Fig. 5.3 (left).

However, it is known that the Werner state Wµ admits a LHV model with respect to
arbitrary generalized measurements for µ ≤ 5/12 [214], which is not included in the
area framed by the dotted boundary in Fig. 5.3 (left) we derived above. The idea is to
consider the convex hull of this area and the point at (µ = 5/12, q = 1). Notice that q
and µ parametrize the state space non-linearly. In order to carry out convex geometry
operations, we observe that ϱµ,q is the convex combination of three points in the state
space, namely Π ⊗ 1 with Π = |0⟩⟨0| + |1⟩⟨1|, |ψ−⟩⟨ψ−| and |2⟩⟨2| ⊗ 1, see Fig.5.3
(right). A point in this triangle represents a valid quantum state ϱµ,q and the relation
to the parameters µ and q is illustrated in Fig. 5.3 (right). Here the polygonal area in
Fig. 5.3 (left) is now no longer a polygon. The convex hull of this area is computed
by finding a line going through the point corresponding to µ = 5/12 and q = 1
that is also a tangent of this area. A detailed calculation gives the touching point at
µ0 =

√
22/4 − 1

2 , q0 = 1 −
√

22/6. The linear line connecting (µ = µ0, q = q0) and
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Figure 5.3: (left) Local properties of the family of quantum states ϱµ,q defined in
Eq. (5.25), depending on the parameters µ and q. The region colored in dark
cyan indicates the range of the parameter µ for which the Werner state Wµ

is separable, µ ≤ 1/3, and hence so is ϱµ,q. The curved, blue region repre-
sents a set of parameters for which the state can be proved to be local. If
µ, q are chosen in the activable region (red triangle), that is µ ≥ 1/

√
2 ad

q ≤ 2
3 (1− µ), Wµ violates the CHSH inequality while the state ϱµ,q remains

local. If the parameter are in that region, they can be used for activation
of Bell nonlocality. The locality of the area framed by dotted boundary can
be derived from Refs. [236–238](right) The convex hull of Π ⊗ 1, |ψ−⟩⟨ψ−|
and |2⟩⟨2| ⊗ 1 is a triangle in the state space. The yellow lines demonstrate
how the parameters q and µ for an arbitrary state (orange) in the triangle
can be computed. The dotted boundary represents the corresponding dot-
ted boundary in the left figure. The convex hull of this area with the point
q = 1, µ = 5

12 ) can be computed by finding the touching point (µ0, q0) (red).
The figures are taken from Ref. [C].

(µ = 5/12, q = 1) in Fig. 5.3 (right) is translated back to

q ≤ −29 + 6
√

22
−24 + 6

√
22 − 12µ

. (5.29)

5.4.2 Application to Bell-nonlocality

The experimental feasibility for the activation of Bell nonlocality depends critically on
the number N′ of state preparations that are needed to certify with high confidence
that the initial state ϱµ,q is local. For this aim we compute the largest scaling factor of
the confidence polytope around ϱ such that the polytope is still fully contained in the
set of local states. A lower bound on this scaling factor is given by

ϵ∗µ,q := min
s=±1

1≤j≤35

max {ϵ | R(ϱ̃µ,q + sϵYj) ≥ 1}, (5.30)
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Figure 5.4: Maximal scaling factor ϵ∗µ,q as defined in Eq. (5.30) depending on µ and
q. All parameter pairs yielding ϵ∗µ,q = 0 (red area) cannot be used for a
conclusive activation. As an inner approximation of Bob’s Bloch sphere, we
have used a icosidodecahedron which has 30 vertices. The figure is taken
from Ref. [C].

where {±Yj}j span the hyperoctahedron P with 70 vertices in total introduced in
Section 5.2 and ϱ̃µ,q is the state defined in Eq. (5.28). However, it is important to notice
that this lower bound ϵ∗µ,q is in general not tight. Indeed, there exist quantum states
that do not admit a LHS model but are Bell local. In Fig. 5.4 we display ϵ∗µ,q as a function
of the parameters µ and q for the region relevant for the activation for Bell nonlocality
using the CHSH inequality. One observes that a large area in the parameter space
yields roughly the same maximal value ϵ∗ ≈ 0.001, rendering the target parameter q
and µ robust to experimental imperfections.

It now follows from our statistical analysis that a sufficient number of state prepa-
rations is given by

N′ =
24ℓF−1

ℓ (γ)

2(ϵ∗µ,q)
2 , (5.31)

where γ denotes the desired level of confidence, the factor 24 reflects the number of
measurement settings per tomography and ℓ = 35 is the dimension of the state space.
We obtain that N′ = 7.5 × 108 state preparations are sufficient for a confidence level
of 3σ, that is, γ = 99.7%. Interestingly, if one lowers the confidence level to 1σ, that
is, γ = 68.3%, the number of samples does not decrease substantially and one finds
N′ = 4.6 × 108.
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5.4.3 Application to quantum steering

Clearly, the applicability of the methods introduced in Section 5.2 and Section 5.3 are
not restricted to the activation of Bell-nonlocality. Indeed, one could also imagine a
scenario where Bob can characterize the states he obtains, yielding more information
than just the output statistics of the black-box measurements which are then used to
obtain a possible violation of the CHSH inequality. This situation corresponds to the
activation of steerability by means of local filters. The crucial point is that the Werner
state Wµ in Eq. (5.26) becomes steerable for smaller parameters µ, i.e., Wµ can be
steerable but Bell-local.

The possibility of choosing a smaller parameter µ yields the existence of larger con-
fidence polytopes in the sense of Eq. (5.30). This implies that a smaller number of
samples is needed in order to achieve a predefined confidence level. After the filter
operation, instead of demonstrating the violation of the CHSH inequality with the
obtained black-box outputs, one shows the violation of a steering inequality, i.e., one
witnesses the non-existence of a LHS model for the filtered state. Motivated by the
work in Ref. [220], we consider the steering inequality of the form

SM :=
1
M

M

∑
j=1

⟨Aj σB
n⃗j
⟩ ≤ CM, (5.32)

where Aj ∈ {−1,+1} is a random variable describing the outcome of Alice’s mea-
surement, which is still described by a black-box as in the CHSH setting, while Bob
explains his outcomes quantum mechanically via the measurement of projective mea-
surements along the directions n⃗j ∈ R3. Further, CM denotes the largest value that SM

can take when the correlations are explained by means of a LHS model. For the Werner
state Wµ it is known that in the limit of M → ∞ there exist measurement settings for
Bob such that Wµ is steerable if and only if µ > 1/2. However, for the minimal case of
M = 2 measurements, Wµ is steerable if and only if µ ≥ 1/

√
2 where Bob’s measure-

ment directions are given by the eigenvectors of σ1 and σ2, forming a square on the
Bloch sphere. Hence in this setting we do not obtain a decrease of the allowed parame-
ter space of µ. However, if the number of measurements is increased and the directions
are chosen in an appropriate manner, the value of CM can be lowered significantly. In
fact, it is easy to show that if the state Wµ is prepared, the value of SM in Eq. (5.32)
will be given by µ. If M = 6 and the measurement directions on Bob’s side are given
by an octahedron, then one will find C6 ≈ 0.5393. Consequently, the parameter regime
can be chosen larger, i.e., one allows for µ ∈ [0.5393, 1], which will offer the possibility
for larger confidence polytopes, see also Fig. 5.5. Indeed, one finds that for µ ≈ 0.5410
and q ≈ 0.1836 the maximal size of the polytope is given by ϵ ≈ 0.048, which turns
out to be optimal for the allowed parameter region. More generally, increasing the
number of measurement directions in Eq. (5.32) does not yield a significant smaller
number of required samples. For instance, choosing M = 10 measurement directions,
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Figure 5.5: Maximal scaling factor ϵ∗µ,q as defined in Eq. (5.30) depending on µ and
q. Here one allows for smaller parameters µ as in Section 5.4.2, as Wµ be-
come steerable before it become Bell-nonlocal. All parameter pairs yielding
ϵµ,q = 0 (red area) cannot be used for conclusive activation. As an inner
approximation of Bob’s Bloch sphere, we have used a icosidodecahedron
which has 30 vertices. The figure is taken from Ref. [C].

the steerability of Wµ can be revealed by S10 for µ ≥ 0.5236 [220], which is a marginal
improvement compared to S6.

Applying our statistical analysis to the case of activation of quantum steering for
M = 6 measurements for the prepared state with parameters (µ ≈ 0.5410, q ≈ 0.1836)
yielding ϵ∗ ≈ 0.048 we find that for a confidence level of 3σ N′ = 3.2 × 107 samples
are sufficient. Similar to the activation of Bell nonlocality, lowering the confidence level
does not yield a substantial improvement in the number of samples. For instance, to
achieve a confidence level of 1σ one still needs N′ = 2.0 × 107 samples.

5.5 Conclusion and discussion

In this Chapter, we developed methods to tackle the two major theoretical problems
hindering a conclusive activation of Bell-nonlocality and quantum steerability. First,
we introduce a confidence polytope with only O(d2) vertices with d the dimension
of the quantum system which can in addition be efficiently computed. Second, we
provide an efficient method to verify whether a quantum state admits a local hidden
state model and thus being Bell local. In particular, our method only scales linearly
in the dimension dA of Alice’s system. The combination of both methods allow us
to obtain a sufficient number of state preparations that are needed to demonstrate
that the initially prepared state is indeed Bell local. This number is likely to be in
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the reach of near-future experimental setups. However, it is important to notice that
the developed methods are more general and their applicability is going beyond these
particular scenarios and can be used for the general certification of constraint quantum
correlations. For instance, such scenarios could involve the certification of one-way
steerability or the activation of bound entanglement via local filters. Further, also for
demonstrating the activation of correlations in the multi-copy scenarios, one has to
prove that the initial states are local.



6 Finding resourceful multipartite
quantum states

The access to multipartite quantum states is an indispensable requirement for many
applications in quantum information processing. Although the usefulness of a given
quantum state depends on the particular task, entanglement often appears as a re-
source. Here we design an iterative method for finding maximally resourceful multi-
partite quantum states. Choosing initially a generic state, we show that in each step
of the algorithm the resourcefulness increases. We illustrate the universality of our
method by applying it to various different resource quantifiers and present a detailed
analysis for the geometric measure of entanglement. Finally, we identify for moderate
sizes the corresponding states, revealing an interesting connection to AME states as
well as novel correlations for states preparable in the triangle network. This Chapter is
based on Project [D].

6.1 Motivation

Multipartite quantum states are ubiquitous in quantum information science. Certain
of them appear as an important resource for quantum information processing and can
be used in certain tasks to outperform their classical counterparts [15,17,240]. Indeed,
so-called magic states turn out to be a resource for fault-tolerant quantum compu-
tation [241, 242] while cluster states are resourceful for measurement-based quantum
computation [243, 244]. Additionally, the power of quantum metrology heavily relies
on the ability to prepare certain multipartite quantum states [245–247]. However, for
a particular given task, it is in general very challenging to identify those multipartite
states which can yield the largest advantage.

For many applications entanglement of the quantum state has been proven to be a
powerful resource [29]. It offers a complex and rich structure resulting in the impos-
sibility of a quantification by means of a single number. This results in a variety of
different quantifiers, each emphasizing on a different property which makes a state
a valuable resource [248–250]. A prominent example is the notion of absolutely max-
imally entangled (AME) states, which turn out to be notoriously difficult to charac-
terize [106, 251–256]. Still, the analysis of AME states is important for understanding
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quantum error correction and is regarded as one of the central problems in the field of
quantum information theory [257, 258].

The geometric measure of entanglement [259–262], quantifying the proximity of a quan-
tum state to the set of product states, has an intuitive meaning and also offers multiple
operational interpretations. For instance, it relates to multipartite state discrimination
using LOCC [76], the additivity of channel capacities [263], quantum state estima-
tion [264] and was also used to describe quantum phase transitions [265–268]. Fur-
ther, it has been realized that generic quantum states are highly entangled [269]. In
complexity theory, identifying maximally entangled states and computing their geo-
metric measures allows for the identification of cases where the MAX-N-local Hamil-
tonian problem and its product state approximation deviate maximally [270, 271]. So,
although high entanglement does not guarantee that a quantum state is useful for all
tasks [272–274], finding maximally entangled states has been recognised as a natu-
ral and important problem [271]. So far, however, maximally entangled states have
only been identified within the low-dimensional family of symmetric qubit states,
where their computation is related to the problem of distributing charges on the unit
sphere [250, 275, 276], or within the family of graph states that stem from bipartite
graphs [277].

Mathematically, the complexity of the task reflects the fact that pure multiparticle
states are described by tensors. In contrast to the matrix case, notions like ranks and
eigenvalues are for tensors much less understood and their computation turns out to
be a hard problem [278, 279]. Interestingly, the geometric measure is closely related to
the recently introduced concept of tensor eigenvalues [261, 280–283], offering a much
more complex structure as the matrix case [284] as well as to the notion of injective
tensor norms [285,286] and matrix permanents [287]. Here, maximally entangled states
offer maximal tensor eigenvalues [288] and it was conjectured that the overlap of a
multipartite qubit state with the set of product states decreases exponentially in the
number of particles [286]. So, the identification of maximally entangled states provides
valuable intuition to decide this conjecture.

In this Chapter, we design an iterative method for finding maximally resourceful
multipartite quantum states. As we illustrate this method in detail for the geometric
measure, we introduce it in Section 6.2 and explain how it can be approximated. In
Section 6.3, we present our algorithm for the simple case of three qubits and provide
in Section 6.4 a proof of its monotonicity. Then, we present our numerical findings
in Section 6.5 and analyse how the algorithm behaves for random starting points in
Section 6.6. Afterwards, we generalize our algorithm to entangled subspaces in Sec-
tion 6.7. In addition, we demonstrate the universality of our method by applying it
to the stabilizer rank in Section 6.8, to the Schmidt rank and states with fixed bond
dimension in Section 6.9 as well as to states that are preparable in the triangle scenario
in Section 6.10. Finally, we discuss in Section 6.11 how our results relate to known
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upper bounds on the maximal entanglement that can be present in a quantum system.

6.2 Concepts and notation

Any n-particle qudit state |ψ⟩ ∈ (Cd)⊗n can be expanded in the local computational
bases as

|ψ⟩ =
d

∑
j1,...,jn

ψj1,...,jn |j1⟩ · · · |jn⟩, (6.1)

where ψj1,...,jn ∈ C are the coefficients of the state. Similarly, the set of all product states
is given by states |π⟩ that are of the form |π⟩ = |π1⟩ ⊗ · · · ⊗ |πn⟩, where |πj⟩ ∈ Cd is
the description of the state hold by the jth party.1 Therefore, we can view product states
as a submanifold of all states. This motivates a geometric definition of entanglement,
which is given by measuring the proximity of |ψ⟩ to the set of product states

min
|π⟩

|| |ψ⟩ − |π⟩ ||2 (6.2)

Indeed, intuitively one would assume that a state is more entangled when it is further
away from all product states. For a given state |ψ⟩ the quantity in Eq. (6.2) yields an
optimization problem subject to the constraint that ⟨πj|πj⟩ = 1. By considering the
Lagrangian dual problem [261] one finds that a necessary condition for optimality of
a product state |π⟩ in Eq. (6.2) is given by

⟨ψ|(
n⊗

l=1
l ̸=j

|πl⟩) = λ⟨πj|, (
n⊗

l=1
l ̸=j

⟨πl |)|ψ⟩ = λ|πj⟩, (6.3)

where λ corresponds to the Lagrange multiplier enforcing the normalization constraint
⟨π|π⟩ = 1. The system of polynomial equations in Eq. (6.3) is called nonlinear eigen-
problem and the value λ ∈ [−1, 1] is called a tensor eigenvalue of |ψ⟩. The largest
possible λ for which a solution of Eq. (6.3) exists is called the entanglement eigenvalue
and the optimizer |π⟩ corresponds to the closest separable state such that

λ = max
|π⟩

|⟨ψ|π⟩|. (6.4)

As an entanglement measure should be zero for all separable states, one defines the
geometric measure of entanglement of a quantum state |ψ⟩ via [259–262]

G(|ψ⟩) := 1 − λ2(|ψ⟩), (6.5)

1More precisely, the Segre embedding refers to the map which allows one to identify the cartesian
product of two projective spaces as a projective variety. If CPn and CPm are projective spaces then they can
be seen as an embedded submanifold of CP(n+1)(m+1)−1.
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where λ denotes the largest entanglement eigenvalue of |ψ⟩ as given in Eq. (6.4). This
quantity for pure states can be extended to mixed states via the convex roof construc-
tion and is then a proper entanglement monotone [261].

While computing the entanglement eigenvalue λ for a generic pure state |ψ⟩ ∈
(Cd)⊗n is, in principle, an NP-hard problem in the local dimension d if n > 2 [279,289],
there is a simple seesaw iteration that can be used to find good approximations [290–
292]. For a three-partite state |ψ⟩ ∈ (Cd)⊗3, the algorithm starts with a random product
state |a0b0c0⟩. From this we can compute the non-normalized state |ã⟩ = ⟨b0c0|φ⟩, and
make the update

|a0⟩ 7→ |a1⟩ =
1√
⟨ã|ã⟩

|ã⟩. (6.6)

The procedure is repeated for the second qubit |b0⟩, starting in the product state
|a1b0c0⟩. This is then iterated until one reaches a fixed point. Of course, this fixed
point is not guaranteed to be the global optimum, in practice, however, this method
works very well.

6.3 A simple algorithm for maximizing the geometric

measure

We are now going to discuss the algorithm for the case of three qubits as the gener-
alization to arbitrary multiparticle systems is straightforward. As initial state |φ⟩ we
choose a random pure three qubit state. Then, we compute its closest product state
|π⟩ via the see-saw algorithm described above. We can assume without loss of gen-
erality that |π⟩ = |000⟩. Following Eq. (6.4), we write λ = |⟨φ|π⟩| for the maximal
overlap of |φ⟩ with the set of all product states. Note that for a generic quantum state
the closest product state is unique. The key idea is now to perturb the state |φ⟩ in a
way that the overlap with |π⟩ decreases. If |π⟩ is the unique closest product state and
the perturbation is small, one can then expect that the overlap with all product states
decreases. So, we consider the orthocomplement of |π⟩ = |000⟩, that is, the complex
subspace spanned by |001⟩, |010⟩, |100⟩, |011⟩, |101⟩, |110⟩, |111⟩. This subspace gives
rise to a projection operator Π = 1− |π⟩⟨π| and we compute the best approximation
of the state |φ⟩ within this subspace, given by |η⟩ = Π|φ⟩/M, where M denotes
the normalization. Then, we shift the state |φ⟩ in the direction of |η⟩ by some small
amount θ > 0. Hence the state update rule is given by

|φ⟩ 7→ |φ̃⟩ :=
1
N (|φ⟩+ θ|η⟩) (6.7)

where N is a normalization factor. In the next step, we calculate the best rank one
approximation to |φ̃⟩. This process is iterated until the geometric measure is not in-
creasing under the update rule in Eq. (6.7). In this case, one can reduce the step size or
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Figure 6.1: Schematic illustration of the iteration step of the algorithm. The set of all
states is represented by the half sphere and the set of product states by the
lower dimensional manifold P . If the algorithm is initialized in state |φ⟩
(blue arrow), we first compute the best approximation within P , denoted
by |π⟩ (light blue arrow). Then, we compute the projector into the ortho-
complement of |π⟩, which is here given by the xy-plane. The portion of |φ⟩
within the xy-plane is given by |η⟩ (gray arrow). The new state |φ̃⟩ is then
the normalized version of |φ⟩+ |η⟩. Here we have set the step size ϵ = 1.
The figure is taken from Ref. [D].

the algorithm terminates. One can directly check that the overlap with |π⟩ is smaller
for |φ̃⟩ than for |φ⟩. Indeed, one has

|⟨π|φ̃⟩|2 =
1
N 2 |⟨π|φ⟩+ θ⟨π|η⟩|2 =

λ2

N 2 < λ2 (6.8)

since N > 1 if θ > 0. In fact, a much stronger statement holds, which is also one of
the main results of this chapter.

Theorem 41. For a generic quantum state |ψ⟩ there always exists a Θ > 0 such that the
updated state |ψ̃⟩ according to Eq. (6.7) with step size θ < Θ fulfills G(|ψ⟩) < G(|ψ̃⟩).

6.4 The proof of monotonicity

As pointed out above, the algorithm relies on having access to subroutine able to
compute an approximate version of

|π⟩ = argmin{|π⟩ : 1 − |⟨φ|π⟩|2 : |π⟩ product state}. (6.9)

In the following, we will frequently make statements about generic states. In these
cases, we require the assumptions that a state is not a product state and that the best
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product state approximation |π⟩ is unique up to a phase. The first step in order to
prove monotonicity of the algorithm is to show that small variations in the initial state
can only lead to small variations in the best product state approximation. As we will
see, this follows from the more general observation that under certain conditions the
value y0, where a function f (x0, y) assumes its minimum (for a given x0), depends
continuously on x0. Further, by virtue of the canonical embedding, we can identify
any |φ⟩ ∈ Cn with a |φ̃⟩ ∈ R2n and consequently we can omit the absolute in Eq. (6.9).

Lemma 42. Let X, Y be compact and f : X × Y → R be uniformly continuous. Further,
suppose that for x0 ∈ X the value y0 := argminy∈Y f (x0, y) is unique. Then for all ε > 0 there
exists δ > 0 such that for all x ∈ Uδ(x0) we have argminy∈Y f (x, y) ⊂ Uε(y0), where Uδ(x0)

and Uε(y0) denote vicinities of x0 and y0, respectively. In other words, the function argmin is
continuous in x0.

Proof. For the given ε we can split the set Y in the vicinity Uε(y0) and its complement
Uε(y0). In particular we have

f (x0, y0) = min
y∈Uε(y0)

f (x0, y)

< min
y∈Uε(y0)

f (x0, y) =: f (x0, ỹ0), (6.10)

that is, ỹ0 denotes the value where the minimum in Uε(y0) is assumed. Let us denote
the difference between the function values as

ξ = f (x0, ỹ0)− f (x0, y0) > 0. (6.11)

By the uniform continuity we can choose δ > 0 such that for all x̃ ∈ Rn with ∥x̃− x0∥ <

δ and for all y we have

| f (x̃, y)− f (x0, y)| < ξ

2
. (6.12)

Then we have

f (x̃, y0) < f (x0, y0) +
ξ

2
, (6.13)

but for all y ∈ Uε(y0)

f (x̃, y) > f (x0, ỹ0)−
ξ

2
> f (x0, y0) +

ξ

2
, (6.14)

which implies that the minimum of f (x̃, y) lies in the vicinity Uε(y0).

Corollary 43. Let |φ⟩ be a pure quantum state and suppose that its best product state approx-
imation |π⟩ is unique. Then, for all τ > 0, there exists a ξ > 0 such that the best product state
approximation |π̃⟩ of |φ̃⟩ ∈ Uξ(|φ⟩) lies in Uτ(|π⟩).
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Proof. The function f (x, y) := |⟨x, y⟩|2 is continuous on R2n × R2n. Further, the space
B1 := {x ∈ R2n : ||x|| = 1} is compact and thus also M := B1 × B1. Then, by the
Heine-Cantor theorem [293], f is uniformly continuous on M. Since we assume |π⟩ to
be unique, we can apply Lemma 42, which guarantees for all τ > 0 the existence of
ξ > 0 such that |π̃⟩ ∈ Uτ(|π⟩) for |ψ̃⟩ ∈ Uξ(|ψ⟩).

According to Eq. (6.7), the updated state needs a renormalization given by N =

N (|ψ⟩, θ). The next ingredient for the proof of the main result is a Lemma that gives
later an upper approximation of the function 1/N .

Lemma 44. There exists C > 0 such that for all q ∈ [0, 1] and x > 0 we have

1√
1 + 2qx + x2

< 1 − qx + Cx2. (6.15)

More precisely, the above inequality holds for all C ≥ 3.

Proof. As both sides of Eq. (6.15) are positive, we can square them such that the in-
equality remains true. This yields the equivalent inequality

0 <[2C − 3q2 + 1]x2 + 2q[C − 1 + q2]x3

+ [C2 − C(4q2 − 2) + q2]x4 + 2q[C2 − C]x5 + C2x6

=: f2x2 + f3x3 + f4x4 + f5x5 + f6x6.

(6.16)

Now observe that for each of the constants fk = fk(C), there is a Ck > 0 such that
fk(C) ≥ 0 for all C ≥ Ck. Indeed, we have C2 := max{(1/2)(3q2 − 1), 0}, C3 :=
1 − q2, C5 = C6 := 1. The choice of C4 depends on whether q2 ≥ 1/2 or not. If
we denote α = |4q2 − 2|, we obtain for the case q2 < 1/2 that C2 + αC + q2 > 0,
what is trivially fulfilled for any C ≥ 1. If q2 > 1/2, we need C2 − αC + q2 > 0. But
C2 − αC + q2 ≥ C2 − αC = C(C − α) > 0, we obtain C > α. In general, we have
C4 := max{1, |4q2 − 2|}. This implies that for C ≥ C̃ := max {Ck | k = 2, ..., 6} all
coefficients are positive. Hence 0 < f2x2 implies 0 < f2x2 + f3x3 + f4x4 + f5x5 + f6x6

if x > 0. Consequently, it is sufficient to only consider the problem 0 < f2x2, what is
true for C ≥ C7 := (1/2)(3q2 − 1). Hence, choosing C ≥ max{C̃, C7} yields the claim.
Taking the maximum over all Ck with respect to q ∈ [0, 1] yields that C > 2.

Proof of Theorem 41. Let us start with some step-size θ0 > 0 that we will choose in the
end appropriately and consider

|ψ̃⟩ = 1
N (|ψ⟩+ θ0|η⟩). (6.17)

It is important to note that |η⟩ is a normalized state, that is, |η⟩ = 1/(
√

1 − λ2)(1−
|π⟩⟨π|)|ψ⟩. This yields ⟨ψ|η⟩ =

√
1 − λ2.
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The best product state approximation |π̃⟩ of |ψ̃⟩ can be parameterized using the old
product state, i.e., |π̃⟩ =

√
1 − δ2|π⟩ + δ|χ⟩, for a normalized, appropriately chosen

|χ⟩ and δ > 0. Using ⟨π|η⟩ = 0 and |⟨χ|η⟩| ≤ 1 we obtain

λ̃ := |⟨π̃|ψ̃⟩| = 1
N
∣∣ ⟨π̃|ψ⟩+ θ0δ ⟨χ|η⟩

∣∣ ≤ 1
N
(
| ⟨π̃|ψ⟩ |+ |θ0δ ⟨χ|η⟩ |

)
(6.18)

≤ 1
N (λ + δθ0). (6.19)

Using that N =
√

1 + 2θ0
√

1 − λ2 + θ2
0 and Lemma 44, there exists C > 0 such that

λ̃ < (1 − θ0

√
1 − λ2 + Cθ2

0)(λ + δθ0)

= λ + δθ0 − λ
√

1 − λ2θ0 + θ2
0
[
C(λ + δθ0)− δ

√
1 − λ2

]
= λ + θ0(δ − λ

√
1 − λ2) +O(θ2

0). (6.20)

Note that λ
√

1 − λ2 > 0, since 0 ̸= λ ̸= 1. This comes from the fact that a generic state
is not a product state with λ = 1 and any state has at least some overlap with some
product state. So, if δ < λ

√
1 − λ2 we have λ̃ < λ for suitably small θ0.

It remains to show that we can guarantee that δ obeys this condition. We start with a
given value of λ and consider a number 0 < δ1 < λ

√
1 − λ2. According to Corollary 43,

we can find a θ1 > 0 such that |π̃⟩ ∈ Uδ1(|π⟩) if |ψ̃⟩ ∈ Uθ1(|ψ⟩). Then, this gives us
an upper bound on θ0 for Eq. (6.17), so that the resulting δ < δ1 in Eq. (6.20) is small
enough to guarantee a negative slope for the linear term. Still, λ̃ < λ is not guaranteed,
due to the O(θ2

0) term in Eq. (6.20). But, for the given values of λ, δ1 and C, we can
also compute from Eq. (6.20) a second threshold θ2, which guarantees λ̃ < λ. Then
we can finally take in the statement of Theorem 41 θ = min{θ1, θ2} and the proof is
complete.

It is remarkable that in this proof the fact that |π⟩ is a product state was never
used. So, the algorithm can also be used if the overlap with states from some other
arbitrarily chosen subset of the (pure) state space shall be minimized. In particular, the
given subset must not necessarily be presented in form of a smooth submanifold, but
could also be discrete. In addition, this allows the extension to arbitrary distance-like
measures defined with respect to pure states. Further, the algorithm also applies to the
case where each particle may have a different degree of freedom, e.g., C2 ⊗C3 ⊗C5. For
this, only the subroutine computing the best rank-1 approximation has to be modified.

6.5 Maximally entangled states of the geometric measure

After a sufficient number of iterations, the algorithm yields a highly entangled state
given in coordinates with respect to a random basis. Hence, generically each compo-
nent of the tensor is nonzero. However, in order to understand the structure of the
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state, we seek for a concise representation in which most of the coefficients vanish. As
we consider two states to be equal if there is a LU transformation connecting them,
this requires a parametrization of the set of unitary matrices.

6.5.1 Finding a concise representation of quantum states

First notice, that U(d) is the semidirect product of U(1) with SU(d) and hence we can
restrict to parametrizations of SU(d). For qubits, one can make use of the fact that
SU(2) is diffeomorphic to the 3-sphere S3. In particular, an arbitrary SU(2) matrix can
be written as

U =

(
α −β∗

β α∗

)
, α, β ∈ C with |α|2 + |β|2 = 1. (6.21)

Consequently, the parametrization involves four real parameters and one quadratic
constraint. However, for d ≥ 3 the SU(d) is not homeomorphic to a sphere anymore, or
a product of them, e.g., SU(3) is not homeomorphic to S8. Consequently, for systems
of higher dimensions different approaches exist [294–296]. Here we have used the
Jarlskog parametrization [295], what is a simple recursive scheme for parametrization,
which can be easily implemented numerically. First, notice that any X ∈ U(d) can be
written as X = ΦαYΦβ where Φα = diag(eiα1 , ..., eiαd), Φβ similar and Y a unitary d × d
matrix. Now, Y is decomposed into a product of unitaries, that is, Y = ∏d

k=2 Ad,k with

Ad,k =

(
A(k) 0

0 1d−k

)
, (6.22)

U(d) ∋ A(k) =

(
1d−1 − (1 − cos(θk))|ak⟩⟨ak| sin(θk)|ak⟩

− sin(θk)⟨ak| cos(θk)

)
, (6.23)

where |ak⟩ ∈ Cd−1 normalized to one, i.e., ⟨ak|ak⟩ = 1 and θk ∈ [0, 2π) an arbitrary
angle.

We now describe how this parametrization can be used to bring the numerically
found states into a concise form. Here, two different cases can be considered. If one
has a guess for the possible state, e.g., the marginals are all maximally mixed so one
expects an AME or k-uniform state, one could compute the fidelity between the nu-
merical state |ψ⟩ and the guess |φguess⟩, i.e., sup|⟨ψ|U1 ⊗ · · · ⊗ Un|φguess⟩|. If there is
no possible candidate, the idea is to minimize a function f : U(d)× · · · × U(d) → R

depending on the state, which becomes minimal if many entries of the state van-
ish. For instance, given the state |ψ⟩ a natural candidate would be f (U1, ..., Un) =

∑ |(U1 ⊗ · · · ⊗ Un|ψ⟩)i1,...,in |. Given two states |ϕ⟩, |ψ⟩ we regard them as equal, if
F (|ψ⟩, |ϕ⟩) ≥ 1 − ϵ with ϵ < 10−6, where F denotes the fidelity.
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6.5.2 Results for qubit systems

Here we present the numerical findings of our algorithm for the case of multi-qubit
systems. A concise summary of the entanglement properties of the states found is
given in Tab. 6.1. For the minimal case of a two-qubit system, the maximally entangled
state with respect to the geometric measure is the Bell state, and the algorithm directly
converges to its maximum, see Fig. 6.3. For the larger case of three qubits, there are two
different classes of genuine multipartite entanglement with respect to SLOCC, namely
|W⟩ and |GHZ⟩, given by

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩), |GHZ⟩ = 1√

2
(|000⟩+ |111⟩). (6.24)

While G(|GHZ⟩) = 1/2, one has |W⟩ = 5/9, what turns out to be the maximizer
among all tripartite qubit states [297]. It should be noted, that in this case the maxi-
mizer belongs to the family of symmetric states. Operationally, the W state is the state
with the maximal possible bipartite entanglement in the reduced two-qubit states [67].
For four qubits, the algorithm yields after 300 iterations the state

|M̃⟩ = 1√
3
(|GHZ⟩+ e

2π
3 i|GHZ34⟩+ e

4π
3 i|GHZ24⟩), (6.25)

where |GHZij⟩ means a four-qubit GHZ state where a bit flip is applied at party i and
j, that is,

|GHZij⟩ = Xi ⊗ Xj|GHZ⟩. (6.26)

Note that the phases that appear in the superposition in Eq. (6.25) form a trine in
the complex plane and that the state is a phased Dicke state [298]. This state can be
shown to be LU equivalent to the so called Higuchi-Sudbery or M state [254, 299],
which appears as maximizer of the Tsallis α-entropy in the reduced two-particle states
for 0 < α < 2. Note that this state is not symmetric with respect to permutations of
the parties. Similar to the W state, the entanglement of the state in Eq. (6.25) appears
to be robust, that is, uncontrolled decoherence of one qubit does not completely de-
stroy the entanglement of the remaining qubits [299]. Further, as a four-qubit AME
state does not exist, the M state can be viewed as the best possible replacement, since
the one-body marginals are maximally mixed and all two-body marginals, albeit not
maximally mixed, have the same spectrum.

For five qubits the algorithm converges to a state |G5⟩, that can be identified with
the ring cluster state, which is a 5-cycle graph state, yielding a geometric measure of
0.86855 ≈ (1/36)(33−

√
3). The state |G5⟩ appears also in the context of the five-qubit

error correcting code [300]. In a similar manner, for six qubits we obtain a graph state
|G6⟩ with a measure of 0.9166 ≈ 11/12. This is again connected to quantum error
correction. Indeed, both states |G5⟩ and |G6⟩ are AME states. For seven qubits we find
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n Gsymm
max Gmax |φ⟩max

2 1/2 1/2 |ψ−⟩
3 0.5555 ≈ 5/9 0.5555 ≈ 5/9 |W⟩
4 0.6666 ≈ 2/3 0.7777 ≈ 7/9 |M⟩
5 ≈ 0.7006 0.8686 ≈ (1/36)(33 −

√
3) |G5⟩

6 0.7777 ≈ 7/9 0.9166 ≈ 11/12 |G6⟩
7 ≈ 0.7967 ≥ 0.941 MMS(7, 2)

Table 6.1: Maximally entangled states found by the algorithm for systems between two
and seven qubits. Here |φ⟩max refers to the state found by algorithm and
Gmax denotes the geometric measure of the corresponding state. Gsymm

max de-
notes the maximal entanglement among symmetric states, as shown in [275].
The table is taken from Ref. [D].

a numerical state with maximally mixed two-body marginals, where the spectra of
the three-body marginals are all the same. This gives rise to the notion of maximally
marginal symmetric states.

Definition 45. Let |ψ⟩ ∈ (Cd)⊗n be a pure n-partite qudit state. We call |ψ⟩ maximally
marginal symmetric (MMS) if for all m < ⌊ n

2 ⌋ the m-body marginals are proportional to the
identity and the spectra of all ⌊ n

2 ⌋-body marginals are equal.

Obviously, a state is MMS if and only if it ⌊ n
2 ⌋ − 1-uniform and the spectra of all

⌊ n
2 ⌋-body marginals are equal.

6.5.3 Higher-dimensional systems

Bipartite systems

For the bipartite case the generalized Bell states |ψd⟩ = (1/
√

d)∑j |jj⟩ are maximally
entangled with G(|ψd⟩) = 1 − (1/d). We find that for 2 ≤ d ≤ 10 the algorithm
yields the corresponding state |ψd⟩ with high fidelity and that the number of iterations
needed until convergence appears to be independent of d, see also Fig. 6.3.

Tripartite systems

In the three-qutrit case we obtain the total antisymmetric state |AS3⟩ given by

|AS3⟩ =
1√
6
(|012⟩+ |201⟩+ |120⟩ − |210⟩ − |102⟩ − |021⟩). (6.27)
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In general, antisymmetric states |ASn⟩ can be constructed for all n-partite n-level sys-
tems via

|ASn⟩ =
1
n! ∑

j1,...,jn

ϵj1,...,jn |j1 · · · jn⟩, (6.28)

and their geometric measure can be computed analytically as (n! − 1)/n! [301]. In the
particular case of n = 3, we obtain G = 5

6 ≈ 0.8333. Note that |Ψ3⟩ is an AME state.
More generally, in the tripartite case a procedure is known to construct AME states for
arbitrary d [302]. This leads to

AME(3, d) ∼
d−1

∑
i,j=0

|i⟩|j⟩|i + j⟩ (6.29)

where i + j is computed modulo d. Interestingly, the state AME(3, 3) that is computed
according to Eq. (6.29) only yields a measure of 2/3, thus smaller than the measure of
|AS3⟩.

Four-partite systems

For the case of four ququads, that is, four four-level systems, the algorithm gives
interesting insights into the AME problem. First, the AME(3, 4) state corresponding to
Eq. (6.29) has a geometric measure of G(AME(3, 4)) = 0.75. However, our algorithm
yields a state given by

|ψ3,4⟩ =
1

2
√

2
(|022⟩+ |033⟩+ |120⟩+ |131⟩+ |212⟩+ |203⟩+ |310⟩+ |301⟩)

(6.30)

with G(|ψ3,4⟩) = 7/8 = 0.875. After applying local unitaries, this state can be seen
as arising from three Bell pairs distributed between three parties in a triangle-like
configuration. In addition, |ψ3,4⟩ is an AME state, i.e., all one-party marginals are
maximally mixed. As the geometric measure of the states |ψ3,4⟩ and AME(3, 4) differs,
they belong to different SLOCC classes.

In the case of four qutrits the algorithm converges to a state with a geometric mea-
sure of 0.888 ≈ 8/9. This state can be identified to be the AME(4, 3) state given by [302]

AME(4, 3) =
1
3
(|0000⟩+ |0112⟩+ |0221⟩+ |1011⟩+ |1120⟩

+ |1202⟩+ |2022⟩+ |2101⟩+ |2210⟩)
(6.31)

For four ququads the algorithm converges to the antisymmetric state |AS4⟩ defined in
Eq. (6.28), yielding a measure of 23/24 ≈ 0.9583. Interestingly, while being 1-uniform,
this state is not AME. The so far only known AME(4, 4) state is a graph state [303,304],
see also Fig. 6.2, and yields a measure of 15/16 ≈ 0.9375. Finally, the recently found
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Figure 6.2: Graph of the known AME(4, 4) state [303]. The figure is taken from Ref. [D].

AME(4, 6) [258] is not maximally entangled with respect to the geometric measure.
While G(AME(4, 6)) ≈ 0.9781, our algorithm converges to a state with a measure of
G ≈ 0.9806. Further, by inspecting the marginals of the found state one finds that they
are very close to be maximally mixed. This gives strong evidence that in the case of
four quhex there exists another SLOCC inequivalent AME state.

Five-partite systems

Similar to the construction procedure of AME states for the tripartite case given by
Eq. (6.29), there exists a general method to construct AME(5, d) states [302, 305]

AME(5, d) ∼
d−1

∑
j,k,l=0

ω jk|j⟩|k⟩|j + k⟩|l + k⟩|l⟩ (6.32)

where ω = e
2πi

d . In the case of a three-dimensional system d = 3, the algorithm con-
verges to the AME(5, 3) state yielding a measure of approximately 0.96122. For the
case of five ququads, this prescription yields the state AME(5, 4) with G(AME(5, 4)) =
31/32 = 0.96875. Here the algorithm converges to a state |ψ5,4⟩ with a larger geometric
measure, in particular G(|ψ5,4⟩) > 0.975. However, here we cannot identify a closed
expression of the state. The numerical result suggests that the maximizer is again an
AME state.

The implementation and performance of the algorithm

Thanks to the update rule in Eq. (6.7), we can make use of advanced descent optimiza-
tion algorithms in order to obtain faster convergence and higher robustness against
local optima [117, 306]. We have implemented a descent algorithm with momentum
as well as the Nesterov accelerated gradient (NAG) [307]. The idea behind the mo-
mentum version is to keep track of the direction of the updates. More precisely, the
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update direction |ηn⟩ in the n-th iteration will be a running average of the previously
encountered updates |η1⟩, ..., |ηn−1⟩. For the NAG method, the update vector is, con-
trary to Eq. (6.7), evaluated at a point estimated from previous accumulated updates,
and not at |φ⟩. In general it should be noted that the seesaw algorithm for computing
the best rank one approximation is prone to local maxima. Therefore a randomization
should be used, i.e., we run the iteration for many different initial states. The number
of iterations as well as the number of initial states depends on the number of parties
and the local dimension. The iteration typically converges fast, e.g., for three qubits
10 iterations are sufficient and for five ququads, 30 iterations. For small systems the
number of initial states can be chosen small, e.g., for three qubits 10 different initial
points make the largest overlap robust while for larger systems more initial states are
necessary, e.g., for five ququads 100 points were taken. The step size θ used in the
update rule in Eq. (6.7) depends on the size of the system and on the variation of the
measure of the iterates. For systems of small and moderate size, we initially choose
θ = 0.01. After a certain number of iterations (mostly around 400), the measure of
the iterates is not increasing anymore, but fluctuates around a certain value where the
amount of fluctuation depend on the step size. In this case, the step size is reduced
according to θ 7→ θ/2 and one proceeds with the new step size. However, if θ becomes
small it is also useful to improve the precision in the computation of the best product
state approximation.

6.6 The algorithm for typical states

We have seen that the presented algorithm can yield maximally entangled states with
respect to the geometric measure. This is important as they can be seen as highly
complex quantum states that on the other hand still offer a lot of structure. From this,
two questions arise: First, how large is the gain of entanglement if one compares the
maximizer to randomly chosen states and second, how does the performance of the
algorithm behaves for such random starting points?

6.6.1 The entanglement of typical states

In order to sample from the set of pure states, i.e., |ψ⟩ ∈ (C)⊗n, we can identify
the state space with the unit sphere of Cdn

. In the following we will denote the m-
dimensional complex unit sphere by Sm−1. Further, we say that a complex-valued
random variable X is standard normal distributed, denoted by X ∼ N (0, 1), if the
real-valued random variables R(X) and I(X) are independent and standard nor-
mal distributed. In order to sample a point uniformly at random according to the
Haar measure on Sn, see also Ref. [308] for a more detailed explanation, one might
consider a sequence (X1, ..., Xn) of normal distributed independent random variables
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Figure 6.3: Performance of the algorithm for multi-qubit systems (left). Initializing
with a random state, for each iteration the geometric measure G is com-
puted. The step-size θ depends on the size of the system and we have
θn=2 = θn=3 = θn=4 = 0.01 and θn=5 = θn=6 = 0.06. For the case n = 3,
the slope starts to decrease when a measure of G ≈ 0.5 is reached, result-
ing from the fact that the GHZ state is an exceptional point of the function
and yields G(|GHZ⟩) = 0.5. A similar behavior can be observed in the case
n = 4 for the |M⟩ and |L⟩ state. Convergence of the algorithm for bipar-
tite systems of different local dimension d ∈ {2, 3, 4, 5, 10} (right). For local
dimension d ≤ 5 we have chosen the step-size as θ = 0.01. For d > 5 the
step-size was chosen as θ = 0.1. After 350 iterations, the iterates had a very
high fidelity with the d-dimensional maximally entangled state. The figure
is taken from Ref. [D].

Xj ∼ N (0, 1). Then, by the property of Gaussians, the vector (X1, ..., Xn) ∈ Cn is a ro-
tationally invariant n-dimensional Gaussian. Normalizing the vector (X1, ..., Xn) yields
a uniform random point on Sn−1.

We now numerically approximate the distribution of entanglement in multi-qubit
systems with respect to the Haar measure. The distribution for different number of
particles is presented in Fig. 6.5. To obtain the corresponding data, we have randomly
sampled n-qubit states and computed the corresponding geometric measure. For the
cases n = 3, 4 we choose 105 states. To compute the geometric measure for each of
those states, 20 iterations and 20 random starting points are sufficient in order to
obtain a robust output. Since for the larger cases n = 5, 6, 7 the dimension of the
underlying space increases, we choose 106 states and calculate the geometric measure
using 80 iterations and 100 random starting points, yielding a robust estimate for
the geometric measure. Here we regard a computation as robust, if the variance of
the outputs is smaller than 10−7. It should be noted that no analytical expression
is known neither for the exact distribution of G with respect to the Haar measure,
nor for its moments. However, using the geometric measure of the sampled quantum
states we can obtain estimates for the moments of the distribution. In order to get
optimal estimates for higher moments, i.e., with small error probabilities, one can
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Figure 6.4: The probability distribution of the geometric measure for different multi-
qubit systems. It can be easily seen that the maximum of the distribution is
shifted to higher values when the number of parties increases. By having
an approximation to the distribution, we can also calculate the first and
second moments, see Tab. 6.2. The figure is taken from Ref. [D].

use the method of U-statistics [309]. For the mean value, Hoeffding’s inequality yields
that the estimated expectation value E[G] is very close to the true value with very high
success probability. The exact numerical values can be found in Tab. 6.2. The geometric
measure of typical tensors was also recently numerically investigated in [310].

System E[G] Var[G]

3 qubits 0.3089 0.0094
4 qubits 0.4950 0.0054
5 qubits 0.6534 0.0023
6 qubits 0.7731 0.0008
7 qubits 0.8570 0.0002

Table 6.2: The first two moments of the geometric measure G for small multi-qubit
systems. The expected amount of entanglement increases with the number
of parties and concentrates around its means, which is indicated by the de-
crease of the variance. The table is taken from Ref. [D].

More generally, there exist bounds which limit the measure of sets of states having a
small amount of entanglement [273], see also Section 6.11. Particularly, for multi-qubit
system composed of more than 11 constituents, one has

µHaar[{|φ⟩ ∈ (C2)⊗n : G(|φ⟩) < 1 − 8n2

2n }] ≤ e−n2
. (6.33)

Therefore, if n is large enough, almost all states will have a geometric measure close
to 1.
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6.6.2 Performance for random starting points

To analyze the sensitivity to local maxima of the algorithm, we consider the behavior
of the iterates for different starting points for multi-qubit systems. Although in the
concrete implementation we have used 100 different staring points and selected among
those the state with the largest measure, here we will illustrate different trajectories of
the iterates for five different Haar random staring points using the same step size
ϵ = 0.05. Within the computation of the geometric measure in each step, we used 50
iterations and 50 random product states. The exact behaviors can be found in Fig. 6.5.
Here it is important to note that after the iterations each of the states has approximately
the same geometric measure. This indicates that at least for the case of a small number
of parties, the algorithm is stable with respect to local optima.

Figure 6.5: Trajectory of the geometric measure of the iterates of the algorithm for dif-
ferent staring points and different numbers of qubits. While for the case
n = 3 the different trajectories differ, this deviation becomes smaller if
the number of parties increase. However, it should be noted that after 300
iterations each state displays roughly the same amount of entanglement,
showing that at least for the case of n = 3, 4, 5, 6 the algorithm is robust
w.r.t. to local optima. It can be seen that for increasing n also the geometric
measure of the initial state increases, as the expected geometric measure
increases. Further, the different trajectories are getting more narrow with
increasing n, reflecting the concentration property of the geometric mea-
sure. The figure is taken from Ref. [D].
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6.7 The algorithm for entangled subspaces

One can extend the algorithm such that it also applies to subspaces. More precisely,
we want to construct an orthonormal basis for a subspace V ⊂ (Cd)⊗n such that the
least entangled state contained in V is as entangled as possible in comparison with all
other subspaces, that is,

Vmax := argmax
V

min
|ψ⟩∈V

G(|ψ⟩). (6.34)

Note that the notion introduced in Eq. (6.34) differs from the concept of genuine en-
tangled subspaces (GES) [311], where all states within the subspace have to be genuine
entangled. However, our algorithm can readily be modified to this situation and thus
search for GES with maximal genuine multipartite entanglement.

To keep the notation simple, we will explain the idea of the algorithm for the case
of a two-dimensional subspace of three qubits. First, we choose a two-dimensional
subspace randomly, which can be described by a projection operator P that is of the
form

P = |v⟩⟨v|+ |w⟩⟨w|, (6.35)

where ⟨v|w⟩ = 0 and |v⟩, |w⟩ ∈ (C2)⊗3. Next, we compute the best rank-one approxi-
mation to P which is given by

|π⟩ := argmax
|abc⟩

Tr[ P|abc⟩⟨abc| ]. (6.36)

This can be done with the iterative method already described in the context of finding
upper approximations of the geometric measure. More generally, the optimization
yields the best product state approximation to the state in the range of P which is
least entangled. In particular, this implies that if im(P) contains a product state, the
assigned geometric measure to P will be zero. For a given step size θ > 0 the first part
of the update rule is then given by

P 7→ P̃ := P − θ|π⟩⟨π|. (6.37)

However, the operator P̃ in Eq. (6.37) is in general not a projector and thus does not
correspond to a subspace. Therefore we compute the eigenvectors corresponding to
the two largest eigenvalues of the operator P̃ that we will call |v1⟩ and |v2⟩. The new
projection is then given by |v1⟩⟨v1|+ |v2⟩⟨v2|. Clearly, this algorithm reduces to the one
for the maximization of the geometric measure if we choose the rank of the projector
to be one.2 It is known that the maximal dimension of a subspace V of an n-partite

2This is particularly clear from the viewpoint of projective geometry. Here one identifies a one-
dimensional subspaces, a so-called ray, with points (vectors of unit length) on the unit sphere.



6.8 Application to states with a fixed stabilizer rank 179

qudit system which contains no product state is given by

dim(V) ≤ dn − dn + n − 1. (6.38)

Consequently, for a two qubit system, the maximal entangled subspace is of dimension
one and spanned by a Bell state, see Eq. (1.6). Indeed, if we apply in this case our
algorithm to larger subspaces, the measure we assign to these subspaces stay zero. For
three qubits, the algorithm converges to the W state as one basis vector and to the state

|V⟩ = 1√
3
(|001⟩+ e

2π
3 i|110⟩+ e

4π
3 i|101⟩) (6.39)

as the other. The subspace spanned by |W⟩ and |V⟩ then has a remarkable property:
All states within this subspace are maximally entangled, yielding the same geometric
measure as the W state. This has potential applications in information processing.
Indeed, in this subspace qubit states may be encoded and then any set of states is
difficult to discriminate by local means [76].

Concerning higher dimensions, we also compute the maximally entangled subspace
of dimension two for two qutrits. Here we obtain an embedded Bell state |χ1⟩ =

(1/
√

2)(|01⟩ − |10⟩) and the state

|χ2⟩ =
1√
14

(|20⟩+ |02⟩+
√

6(|21⟩+ |12⟩)), (6.40)

which can also be seen as the superposition of two Bell pairs. It turns out that the
least entangled state within this subspace has a geometric measure of 1/2. Again
applications can be envisaged, as any state in this subspace has at least one ebit of
entanglement.

6.8 Application to states with a fixed stabilizer rank

In the following, we explain how the algorithm can be used to find states which can
not be approximated well by states of a fixed stabilizer rank. For this purpose, we will
first introduce the concept of stabilizer rank and explain why it is an important tool
for the classical simulation of quantum computations. Afterwards, we introduce the
modified algorithm and present numerical results for a slight variant of the stabilizer
rank which is numerically much more tractable.

6.8.1 The stabilizer rank

The stabilizer rank χ of a multi-qubit system was first introduced in the context of
simulation of Pauli-based quantum computation (PBC) [312]. While the main aim of
Ref. [312] is to quantify how many classical resources (time) are needed in order to
simulate a PBC on (n + k) qubits by a PBC using only n qubits, their introduced



180 6 Finding resourceful multipartite quantum states

Figure 6.6: The graph corresponding to the four particle GHZ state (left) and the graph
of the four particle cluster state (middle). Performance of the algorithm for
the case of four particles (right). The optimization is implemented for stabi-
lizer rank χ = 2 in the restricted model of 32 stabilizer states, corresponding
to GHZ and cluster graph state basis. We start with a random initial state
and a step size of ϵ = 0.1 (outset). Then, we change step size to ϵ = 0.01
(inset). The figure is taken from Ref. [D].

method turned out to also improve the cost of a brute force full classical simulation. It
can be shown that a brute force classical simulation of a n-qubit PBC, which includes
state operations in the computational basis, has a simulation cost (time) of O(n2n),
where n denotes the number of qubits involved in the computation. However, one
can devise an algorithm which classically simulates a n qubit PBC in only 2αnpoly(n),
where α ≈ 0.94 [312]. The idea of the proof is to expand certain n-qubit states as a linear
combination of stabilizer states, as n-qubit stabilizer states only require O(n2) classical
bits to store [313]. The minimal number of stabilizer states needed is then called the
stabilizer rank. More precisely, for an arbitrary n-qubit state |ψ⟩, its stabilizer rank χ

is defined as the minimum number r ≥ 1 of stabilizer states needed to represent this
state, that is,

|φ⟩ =
r

∑
k=1

αk|sk⟩, (6.41)

where αk ∈ C and |sk⟩ is a stabilizer state, i.e., one has |sk⟩ = Uk|0⟩⊗n for some n-qubit
Clifford operation Uk. It is therefore highly desirable, from the practical viewpoint of
classical simulation as well as from a theoretical perspective, to know which states can
not be approximated well by stabilizer rank χ states. For this, we define the stabilizer
measure Sk : (C2)⊗n → R with

|ψ⟩ 7→ Sk(|ψ⟩) := 1 − sup{ |⟨φ|ω⟩|2 : χ(|ω⟩) = k}. (6.42)

6.8.2 The modified algorithm and results

For a fixed k, the stabilizer measure in Eq. (6.42) directly allows for an application
of the algorithm. First, generate the set of all stabilizer states and form all subsets of
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size k. Second, draw an initial state |ψ⟩ at random. Then, compute the closest stabilizer
rank k state, i.e., for given set of stabilizers |s1⟩, ..., |sk⟩, one has to maximize the overlap
of the given state |ψ⟩ with |ω⟩ = ∑k

j=1 αj|sj⟩. This is a constraint optimization over k
complex parameters α1, ..., αk subject to the normalization of the stabilizer rank k state.
If the best approximation |ω⟩ is found, one updates |ψ⟩ 7→ (1/N )(|ψ⟩+ θ|η⟩), where
|η⟩ = (1− |ω⟩⟨ω|)|ψ⟩. This procedure is then iterated.

We have implemented the algorithm for the restricted toy model, see also Fig. 6.6
(right). We initialized with a random state and iterated 300 times with a step size
of θ = 0.1 until SR

k does not increase anymore. Then we change the step size to
θ = 0.01 and iterate again 300 times. The algorithm converges to a state |ψmax⟩ yielding
SR

2 (|ψmax⟩) ≈ 0.8415. A comparison of SR
2 for different four-qubit states can be found

in Tab. 6.3.
However, the number of n qubit stabilizers S(n) can be computed explicitly [178]

and is given by S(n) = 2n ∏n
j=1(2

j + 1), which scales exponentially in the number of
qubits. For instance, one has S(3) = 1080, S(4) = 36720 and S(5) = 2423520. Further,
in order to evaluate the overlap with stabilizer rank k states, one has to inspect all (S(n)

k )

different combination and optimize over the k2 − 1 real parameter which becomes
infeasible even for small n, k. We therefore consider a non-trivial toy model, where
we restrict to a specific subset of stabilizer states. In particular, we consider the set
consisting of the graph state bases corresponding to four qubit GHZ-graph and the
four-qubit cluster-graph, see Fig. 6.6, as for four qubits there are only two inequivalent
graphs. For each graph, the set of all eigenstates with a different eigenvalue signature
is a basis for (C2)⊗4 and thus our toy model comprises 32 stabilizer states. Note that
for one graph, those states form an orthonormal basis, while the set of eigenstates
of two graphs displays a highly nontrivial geometric structure. If the optimization in
Eq. (6.42) only runs over this restricted set, we write SR

k for the corresponding stabilizer
measure. Note that contrary to the geometric measures Gm, two LU equivalent states
do not need to have the same measure Sk, as we try to maximize the overlap w.r.t. a
set that is not invariant under LU operations. Of course, the measure Sk of two states
which are Clifford equivalent is the same.

State |ψ⟩ |M⟩ |L⟩ |H⟩⊗4 |R⟩⊗4 |ψmax⟩
Measure SR

2 1/3 ≈ 0.333 1/2 ≈ 0.4457 0.4604 0.8415

Table 6.3: Results of the optimization with respect to the restricted stabilizer measure
SR

2 for rank two. The states |H⟩ and |R⟩ are magic states for which it is
conjectured to have the smallest possible stabilizer rank among all non sta-
bilizer single-qubit states [312]. The state |ψmax⟩ refers to the state found by
the algorithm for which SR

2 appears to be maximal. The table is taken from
Ref. [D].
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6.9 Application to states with a fixed Schmidt rank

In the following we explain how the algorithm can be used to find states which can
not be well approximated by states with a fixed Schmidt-rank or, for the particular
case of matrix product states, with a fixed bond dimension.

6.9.1 Schmidt rank, tensor rank and border rank

Apart from the geometric measure, there are also other quantifier of entanglement of-
fering different operational interpretations [72, 73]. One such possibility is to quantify
the amount of entanglement in a system by its dimensionality. High-dimensional quan-
tum entanglement can be exploited to tolerate larger amounts of noise in quantum
communication protocols, making them a valuable resource [314].

Let |φ⟩ be an n-particle quantum state where each constituent is a d-level quantum
system. Any such |φ⟩ can be written as

|φ⟩ =
R

∑
k=1

µk|π
(1)
k ⟩ ⊗ · · · ⊗ |π(n)

k ⟩, (6.43)

where |π(j)
k ⟩ ∈ Cd and µk ∈ C. Note that the different summands |π(1)

k ⟩ ⊗ · · · ⊗ |π(n)
k ⟩

do not have to be orthogonal as in the case of the Schmidt decomposition of bipartite
pure states. The minimal number of terms R needed in order to decompose |φ⟩ into
the form in Eq. (6.43), i.e., into a sum of rank-1 tensors, is called the tensor rank of |φ⟩
and is denoted by rk(|φ⟩). The decomposition of |φ⟩ in Eq. (6.43) is also called rank
decomposition or minimal CP decomposition [315].

The Schmidt measure P of a state |ψ⟩ is defined as P(|φ⟩) := log2 rk(|φ⟩) [316].
Clearly, in the case of a bipartite system, the minimal number of rank-1 terms needed is
given by the Schmidt rank of the state. Once P is defined for pure states, one can extend
it to the full state space of mixed quantum states in a natural way, i.e., via a convex roof
construction [317]. The Schmidt measure gives also rise to an approximation version
similar to the geometric measure. For this, define the generalized geometric measure
Gk : (Cd)⊗n → R with

|φ⟩ 7→ Gk(|φ⟩) := 1 − sup{ |⟨φ|ω⟩|2 : rk(|ω⟩) = k}, (6.44)

which measures how well a given quantum state |φ⟩ can be approximated by a state
of tensor rank k.

Therefore, the generalized geometric measure Gk gives more detailed information
about the entanglement structure present in the state |φ⟩, and reproduces the geomet-
ric measure G for the special case k = 1. Clearly, the generalized geometric measure is
a decreasing function in the rank k, that is, for given |φ⟩ we have G(|φ⟩) = G1(|φ⟩) ≤
G(|φ⟩) ≤ · · · ≤ Gµ(|φ⟩), where µ is the maximal rank that a tensor in (Cd)⊗n can



6.9 Application to states with a fixed Schmidt rank 183

have. For instance, for the bipartite case CdA ⊗ CdB , the Schmidt decomposition di-
rectly leads to µ = min{dA, dB}. For the case of three qubits, it is known [318] that
µ = 3, but for the general case only not tight upper bounds exist. Obviously, if we
find Gk(|φ⟩) = 0, then Gk̃(|φ⟩) = 0 for all k̃ ≥ k. The algorithm for maximizing the
measure Gk then proceeds as follows. First, draw the initial state |φ⟩ at random and
compute its best rank-k approximation, that is,

|ω⟩ := argmin {|ω⟩ : 1 − |⟨φ|ω⟩|2 : rk(|ω⟩) = k}. (6.45)

Second, use the update rule in Eq. (6.7) and the direction |ω⟩ to obtain iterates that
have a larger generalized geometric measure Gk.

6.9.2 Computing rank-k approximations

There are different methods to compute low rank approximations to a given tensor,
most prominently the CP-ALS algorithm, which updates each mode individually by a
least-squares optimization while keeping all other modes fixed. For a concise summary
of those methods, see Ref. [315]. However, to keep notation simple, we will generalize
the algorithm mentioned in Section 6.2 for higher rank approximations, which we
will illustrate for the three-particle case. For a given state |ψ⟩ ∈ (Cd)⊗3, consider the
Schmidt decomposition |ψ⟩A|BC = ∑D

k=1 λk|ψA
k ⟩|ψ

BC
k ⟩. For the overlap with a rank k

state given by Eq. (6.43) one finds

⟨ψ|A|BCπ⟩ =
D

∑
j=1

r

∑
k=1

λjαk⟨ψA
j |π

(A)
k ⟩⟨ψAB

j |π(B)
k ⟩|π(C)

k ⟩ =
r

∑
k=1

⟨γ̃k|π
(A)
k ⟩, (6.46)

where we have defined ⟨γ̃k| = ∑D
j=1 λjαk⟨ψAB

j |π(B)
k ⟩|π(C)

k ⟩⟨ψA
j |. Note that |γ̃k⟩ is not

normalized and we denote by |γk⟩ its normalized version. The norm is given by α′k =√
⟨γ̃k|γ̃k⟩. We now update the states of system A as well as the coefficients αk that

appear in the decomposition as |πA
k ⟩ 7→ |γk⟩ and αk 7→ α′k. This procedure is iterated

with respect to each mode and repeated many times. In order to reduce the sensitivity
for local maxima, different randomly chosen starting points |π⟩ should be used.

To test the reliability of the algorithm, we apply it to quantum states for which the
tensor rank is already known. For instance, one has rk(|GHZ⟩) = 2, rk(|W⟩) = 3 and
rk(|W⟩⊗2) = 7 [319]. However, one should notice that for tensor approximations of
higher rank (k ≥ 2) the problem of degeneracy exists, reflecting that the set of tensors
of rank k is open which is in contrast to the matrix case. In particular, for the bipartite
(matrix) case the Eckart-Young theorem ensures that the best rank k approximation
is simply given by the eigenvectors corresponding to the k largest singular values.
Further it is known that deflation techniques, i.e., compute best rank-1 approximation,
subtract it and then iterate, are not fruitful for tensors.
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A tensor is degenerate if it may be approximated arbitrarily well by tensors of lower
rank. Also well known [289, 315], we will discuss this phenomenon for the case of the
W state. The W state |W⟩ = (1/

√
3)(|001⟩+ |010⟩+ |100⟩) has tensor rank 3, but can

be approximated arbitrarily well by tensors of tensor rank-2. Consider the family of
rank 2 states

|π(α)⟩ = α

Nα
(|0⟩+ α−1|1⟩)⊗3 − α

Nα
|0⟩⊗3 with Nα =

√
3 + 3α−2 + α−4, (6.47)

where Nα assures that ⟨π(α)|π(α)⟩ = 1 for all α > 0. It directly follows that ⟨W|π(α)⟩ =√
3/

√
3 + 3x−2 + x−4 which tends to 1 for x → ∞. To emphasize that problem, one

also says that the W state has border rank 2. Therefore, it is not surprising that our
approximation algorithm yields that G2(|W⟩) is numerically 0. As it turns out, the
generalized geometric measure Gk has also the advantage that it distinguishes more
clearly between different forms of entanglement, e.g., the L state and the M state. In
particular, one finds that G3(|L⟩) = 0 while G3(|M⟩) ≈ 0.2626.

6.9.3 The modified algorithm and results

The smallest case where a maximization of G2 could be considered is in principle
(C2)⊗3. Here it is known that there are only two classes of genuine multipartite entan-
glement with respect to SLOCC, namely the GHZ and the W class [67]. Further, the
tensor rank is monotonically decreasing under SLOCC operations [316]. In particular,
one can show that the set of all tensors of rank three is the closure of the SLOCC orbit
of the W state. However, the W state has border rank two and thus all states within his
orbit. This implies the nonexistence of border rank three tensors in (C2)⊗3. As a conse-
quence, the algorithm cannot be applied to this case, as in each step the given state can
be approximated arbitrarily well by states of rank 2. Therefore the first nontrivial case
is a system of four qubits with respect to rank two and three. Here, states of border
rank three and four exist and are subsets of non-vanishing measure. We implement the
algorithm with 20 different random initial points for each case. For the case of rank
2, we identify the state to be in 7 of the 20 runs the M state and in the other cases
the four qubit cluster state. Further, the numerical computation of G2 for |C4⟩ is stable
with respect to a randomization of the starting point and one finds G2(|C4⟩) = 1/2.

In this case, the rank two approximation found by the algorithm yielding the value
G2(|C4⟩) = 1/2 can proven to be optimal. The cluster state is a graph state and we
can consider the bipartition 23|14 (see also Fig. 6.6). This effectively yields the four-
dimensional maximally entangled state |00⟩+ |11⟩+ |22⟩+ |33⟩. Because all singular
values coincide, we can choose the best rank two approximation as |00⟩+ |11⟩ which
yields a squared overlap of 1/2. As Gm(|ψ⟩1234) ≥ Gm(|ψ⟩12|34), this proves the opti-
mality. However, as the M state is not a graph state, the situation is different. For the
computation we choose 106 random starting points and make 300 iteration for each.
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Figure 6.7: Performance of the algorithm for the case of four qubits and different gen-
eralized geometric measures. The left figure shows the maximization of the
distance to the set of tensor rank 2 states, that is, the measure G2. We start
with a random state and choose a step size of ϵ = 0.05 (main). We com-
pute the rank 2 best approximation with 100 iterations and 100 random
initial points. After 150 iterations, there is no increase in the measure and
the values start to fluctuate. We then change the step size to ϵ = 0.001 and
compute the best rank 2 approximation with 200 iterations and 200 ran-
dom initial points (inset). The right figure shows the maximization of the
distance to the set of tensor rank 3 states, that is, the measure G3. Similar,
we start with a random state and choose a step size of ϵ = 0.05 (main) and
compute the best rank 3 approximation with 100 iterations and 100 random
initial points. Then, we change the step size to ϵ = 0.001 and compute the
best rank 3 approximation with 200 iterations and 200 random initial points
(inset). The figure is taken from Ref. [D].

The total computation was running for 27 hours. The optimal approximation found by
the algorithm yields G2(|M⟩) = 5.000003(9). This suggests that G2(|M⟩) = 1/2 which
would imply that the maximizer of G2 is not unique anymore in contrast to G1. For
the case of rank 3 approximations, the algorithm converges for all 20 starting points to
the M state. With a similar computation as for G2 we find that G3(|M⟩) = 0.2626050.
However, the algorithm can not be applied to maximize Gk for ≥ 4. This is due to
the fact that randomly drawn tensors in (C2)⊗4 can be approximated well by rank 4
tensors.

Application to matrix product states

In general, it is an open question which forms of nontrivial quantum dynamics can be
simulated efficiently by classical means. However, it is a celebrated result that if the
computation only involves pure states containing a restricted amount of entanglement,
such an efficient simulation is possible [320]. The power of those simulation algorithms
rely on the fact that if the entanglement present in the multi-qudit state |ψ⟩ is bounded,



186 6 Finding resourceful multipartite quantum states

a low-dimensional sparse representation of |ψ⟩ can be derived. This is the so-called
matrix product state (MPS) representation. A MPS of bond dimension χ can be written
as

|ψ⟩ =
d

∑
i1,...,in=1

Tr
[

A[1]i1 · ... · A[n]in
]
|i1 · · · in⟩, (6.48)

where A[l]il ∈ Matχ(C) for l = 1, ..., n. Any state |φ⟩ can be represented as a MPS if the
bond dimension is sufficiently large [320]. For a fixed number of parties n with local
dimension d we write MPS(χ) for the set of all MPS with bond dimension χ. Notice
that MPS(χ) is a manifold in state space, which coincides with the set of product states
for χ = 1 and has a nested structure, i.e., MPS(χ) ⊂ MPS(χ + 1). In particular, this
shows that computing the best MPS approximation of given bond dimension χ to a
given state |φ⟩ is a hard problem, which includes for χ = 1 a NP-hard problem [279,
289].

Recently, a variant of the geometric measure was introduced, where the distance is
measured with respect to the set of matrix product states of a given bond dimension
χ [321]. How well a generic multi-particle quantum state can be approximated by
matrix product states of bond dimension χ is then quantified by Ek : (Cd)⊗n → R with

|ψ⟩ 7→ Ek(|ψ⟩) := 1 − sup{|⟨ψ|ω⟩|2 : |ω⟩ ∈ MPS(χ)}. (6.49)

As already pointed out in Ref. [320], the tensor rank is not a continuous function.
Consequently, there exist states |ψ⟩ that need a high bond dimension to be represented
exactly, but very good approximations w.r.t. some norm exist where the optimizer has
a significantly lower bond dimension. This property could then be used to obtain effi-
cient simulations with small errors, even for seemingly high entangled states. Therefore,
finding states which are difficult to approximate by states with fixed bond dimension
is important as they do not allow for an efficient classical approximate simulation and
can thus be regarded as genuine quantum resources.

Further, upper bounds on the distance between an arbitrary n-particle state |ψ⟩ and
the set of MPS(χ) can be derived [322]. Indeed, one can show that for any |ω⟩ ∈
MPS(χ) one has

|| |ψ⟩ − |ω⟩ ||2 ≤ 2
n−1

∑
k=1

ϵk(χ), (6.50)

with ϵk(χ) := ∑dk
j=k+1 λ

[k]
j , where λ

[k]
j are the Schmidt coefficients of the bipartition

[1...k]|[k + 1...n] and dk is the local dimension of the smaller of the two subsystems for
that bipartition. Here our algorithm can find states for which the bound in Eq. (6.50)
will be maximal and thus gives information about its tightness.
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6.10 Application to independent triangle preparable

states

A class of quantum states with importance for quantum information processing is the
set of states which can be prepared in a quantum network [323,324]. For simplicity, in
the following we will restrict to the triangle network and assume that the independent
sources distribute pairs of qubit systems. Note that our algorithm can also be applied
to more advanced network topologies as well as to higher local dimensions. Following
Ref. [325], we call this network the independent triangle network, abbreviated ITN.
From the structure of the network, see also Fig. 6.8 (middle), we obtain that a state
|ψ⟩ can be prepared in the ITN if and only if there exist unitaries UA, UB and UC and
bipartite states |a⟩, |b⟩ and |c⟩ such that

|ψ⟩ = UA ⊗ UB ⊗ UC|abc⟩. (6.51)

Here it is important to note that the order of the subsystems is different for the uni-
taries and the states. For instance, UA acts on the joint system A1 A2 while |a⟩ defines
the joint state between B2C1. We denote the set of all states that can be prepared by
means of two-qubit sources by ∆I . However, it turns out that ∆I admits a highly non-
trivial structure [325]. Indeed, ∆I is not convex, certain separable (product) states are
not contained and it is a subset of measure zero within the entire set of quantum states.
This renders its analysis and characterisation difficult and not much is known about
the structure of this set. As triangle states constitute an important resource, it is an in-
teresting question how well a given quantum state can be approximated by states from
∆I . In order to quantify this property, we define the triangle measure T : (Cd)⊗6 → R

as

|ψ⟩ 7→ T (|ψ⟩) := 1 − sup {|⟨ψ|ω⟩|2 : |ω⟩ ∈ ∆I}. (6.52)

Clearly, for any ITN preparable state we have T = 0.

6.10.1 Network state approximations

Similar to the problem of finding the best rank-1 or best rank-k approximation to a
given state in the computation of the generalized geometric measures Gk, one can also
devise a seesaw type algorithm for computing the ITN state which maximizes the
overlap [325]. We will shortly recapitulate this algorithm. For simplicity, let us assume
that the given target state |ψ⟩ is composed out of six qubits. We initialize the algorithm
with a unitary for each party UA, UB, UC and a state for each source |a⟩,|b⟩,|c⟩. Now,
if we keep the unitaries fixed, finding a better choice for the source states can be
seen as finding the best rank one approximation with respect to a 4 × 4 × 4 system.
After updating the source states, we have to optimize for the unitaries. To compute
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Figure 6.8: The genuine multilevel scenario (left). Each of the independent sources S1

and S2 generates a bipartite entangled system and sends one part to A
and the other to B. Consequently, each of the parties receives two physical
systems on which a joint unitary transformation can be performed. The
set of all states that can be obtained in this scenario is abbreviated by ∆GM.
The independent triangle scenario (middle). Three statistically independent
sources Sa, Sb, Sc, distributing physical systems to the parties A,B,C. Upon
receiving the two independent systems, each party can perform a joined
unitary on the hold particles. The set of all states that can be obtained in
this scenario is abbreviated by ∆I . The performance of the algorithm for
the maximization of the triangle measure T (right). The figure is taken
from Ref. [D].

the optimal choice for UA, define the new state |ψ̃⟩ = 1A ⊗ UB ⊗ UC|ψ⟩. Then one
has [325]

max
UA

|Tr[UA ⊗ 1B ⊗ 1C|ψ̃⟩⟨abc|]| = max
UA

|TrA[UAρA]|, (6.53)

with ρA = TrBC[|ψ̃⟩⟨abc|]. From the singular value decomposition of ρA = UDV† one
can then derive the optimal form of UA as UA = VU†. Alternating these two opti-
mizations multiple times gives a good approximation to the optimal state. However,
it should be noted that similar to the rank one approximation routine, this algorithm
is prone to local maxima. In order to stabilize the optimal solution one should use
multiple random initial choices.

6.10.2 The modified algorithm and results

In order to maximize the measure T in Eq. (6.52) we initially choose a random starting
point |ψ⟩. We use the seesaw algorithm to compute the best network state approxima-
tion, called |ω⟩. Then we update the state according to |ψ⟩ 7→ (1/N )(|ψ⟩+ θ|η⟩) with
|η⟩ = (1− |ω⟩⟨ω|)|ψ⟩ and N ≥ 1 a normalization. This procedure is iterated.

In the simplified case of only two parties and two independent sources, the problem
of triangle preparability reduces to the multilevel entanglement problem [326], see
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Fig. 6.8 (left). In that case, the states which have the smallest overlap among the set
of all preparable states are known and can be analytically derived. In the case of four
qubits, the state

|ξ⟩ =
√

3
4
|00⟩+ 1

2
√

3
(|11⟩+ |22⟩+ |33⟩) (6.54)

has the largest distance to the set of decomposable states. Indeed, this state is found
by the algorithm with very high fidelity.

For the ITN scenario, we choose 20 random starting points and a step size of θ = 0.1.
Further, to compute the best network state approximation, i.e, the optimal unitaries
and source states, we choose 100 iterations in the seesaw routine and 500 different
initial points. This maximization procedure is iterated 200 times. Then, the step size
is changed to θ = 0.01, 0.001, 0.0001 while we also increase the precision of the com-
putation of the approximation. While the seesaw routine always makes 100 iterations,
the number of random starting points was 1000, 1500, 3000 respectively. For each of the
choices, the maximization was done for 200 steps. After 800 optimization steps in total
there was no increase in the measure T and the fluctuations were of the same size as
those arising in the computation of the best network state approximation. The conver-
gence of the algorithm is illustrated in Fig. 6.8 (right). The state found by the algorithm,
denoted by |ψmax⟩, yields a triangle measure T very close to 0.6, see Tab. 6.4. This is
very interesting as this state outperforms all states that have a high triangle measure
known so far [325]. Further, the state shares an interesting entanglement structure.
One finds that while the one-body marginals onto the first five systems have all the
same spectrum (0.4, 0.6), the marginal onto system six is approximately pure, hence
unentangled with the remaining particles.

State |ψ⟩ GHZ2 GHZ3 GHZ4 W AME(3, 4) |ψ3,4⟩ AS3 |ψ⟩max

Measure T 1
2

5
9

1
2

1
3

1
2 0 ≈ 0.46 0.6

Table 6.4: Results of the seesaw optimization yielding upper bounds on the triangle
measure T . The states AME(3, 4) and |ψ3,4⟩ are defined in Eq. (6.29) and
Eq. (6.30) respectively. AS3 is the totally antisymmetric state on three qutrits
as given by Eq. (6.28), embedded into the ququad system. The state |ψmax⟩
refers to the state found by the algorithm. The table is taken from Ref. [D].

6.11 Relation to upper bounds on the geometric measure

Our algorithm yields highly entangled states with respect to the geometric measure.
This raises the question whether their entanglement saturates fundamental upper
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bounds of this quantity. Interestingly, similar to the problem of computing the geo-
metric measure of a quantum state, finding nontrivial upper bounds turns out to be a
difficult task.

6.11.1 Bounds on the maximal entanglement

For a given physical system H = ⊗kHk with Hk
∼= Cdk one can assign the following

value

G(H) := sup{G(|φ⟩) : |φ⟩ ∈ H}, (6.55)

which is characteristic for the space H. Indeed, it can be shown that G(H) is directly
related to the inradius of BH1⊗̂ · · · ⊗̂BHn , where BHj denotes the unit ball in Hj and ⊗̂
is the projective tensor product [286], which is for two closed convex sets K1, K2 defined
as K1⊗̂K2 = conv{x ⊗ y | x ∈ K1, y ∈ K2}. Finding upper bounds on the geometric
measure means finding upper bounds on G(H), bounding the maximal amount of
entanglement that can be present in the system. However, similar to the question of
maximal tensor rank, this turns out to be a hard question with only partial answers so
far [327]. A trivial upper bound can be obtained directly from the normalization of the
state. Indeed, given an arbitrary state |ψ⟩ ∈ (Cd)⊗n there must exist a tensor product
of computational basis states |j1 · · · jn⟩ such that |⟨ψ|j1 · · · jn⟩|2 ≥ d−n. Consequently
we have that G((Cd)⊗n) ≤ 1 − d−n. Although the derivation of this bound is trivial,
it is difficult to obtain improved bounds. For instance, one could also consider upper
bounds from a convex relaxation

inf
|ψ⟩

sup
|π⟩

|⟨ψ|π⟩|2 = inf
ρ∈S

sup
σ∈SEP

Tr[ρσ] ≥ sup
σ∈SEP

inf
ρ∈S

Tr[ρσ] = sup
σ∈SEP

λmin(σ) =
1
dn ,

(6.56)

where S is the set of mixed states associated to H and SEP ⊂ S the set of separable
states. The first equality is true due to the convexity of the objective function and the
fact, that pure states (product states) are the extreme points of S (SEP). Further, for
any bounded function f (x, y) one has supx f (x, y) ≥ f (x, y) ⇒ infy supx f (x, y) ≥
infy f (x, y) and thus we obtain infy supx f (x, y) ≥ supx infy f (x, y). The last equality is
attained for the maximally mixed state. However, it should be noted that this coincides
with the trivial upper bound. This bound is not tight, even not for two qubits.

Also for the special case of symmetric states an upper bound on the geometric
measure can be derived [328]. Here it should be noted that the space of symmetric
quantum states is much smaller than the space of all states. Indeed, while the state
space for n qubits has dimension 2n, the space of symmetric states only has dimension
n + 1. In particular, one can show that for a n qudit system, the geometric measure
is upper bounded by G ≤ 1 − 1/c where c = (n+d−1

n ), which follows from a similar
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normalization argument as the upper bound for generic states, but restricting to the
Dicke basis. For n qubits this yields the bound G ≤ 1 − 1/(n + 1), which is not tight
for at least a small number of parties. However, it is interesting to see that for n ≥ 5,
the maximal entangled state found by the algorithm violates that bound.

6.11.2 Asymptotic scaling

Another open problem regards the asymptotic scaling of the geometric measure of
multi-qubit systems (see Problem 8.27 in [286]). Here the question is whether there
exists a constant C > 0 and for any n ≥ 1 a quantum state |ψ⟩ ∈ (C2)⊗n such that
G(|ψ⟩) ≥ 1 − 2−nC. If |ψ⟩ ∈ (C2)⊗n is randomly chosen according to the Haar mea-
sure, with high probability it fulfills G(|ψ⟩) ≥ 1− 2−nCn log(n), i.e., there is a parasitic
factor n log(n) [286]. Note that this bound is an improved version of Eq. (6.33) if the
number of particles is large. Although we cannot solve that problem here, we can put
bounds on the constant C under the assumption that the optimal states found by the
algorithm are indeed the global optimizers of the geometric measure. If Gmax,n denotes
the maximal measure of a n qubits system, we have Cn ≥ Cmin,n = 2n(1− Gmax,n). One
can see in Tab. 6.5 that the lower bound Cmin of the constant C grows with the num-
ber of qubits. In particular, the increase of Cmax is not decreasing with the number of
qubits n as one would expect if there would exist a constant C which is independent of
n. Indeed, in this case one would have Cmin ≤ C̃ < ∞ for all n and as optimal constant
C one can simply take the maximum (that exists by assumption) over all the Cmin.

6.11.3 The maximal entangled state and optimal norm constants

The maximal entangled state with respect to the geometric measure in a certain tensor
space H = ⊗kHk has also an interpretation from the viewpoint of normed vector
spaces. First note that ||ψ||σ = sup|π⟩|⟨π|ψ⟩| is a norm on H. Further, because H is
finite dimensional, all norms on H are equivalent, i.e., if || · || and ||| · ||| are two norms
on H, then there exist constants C1, C2 > 0 such that C1 ||ψ|| ≤ |||ψ||| ≤ C2 ||ψ|| for
all (possible un-normalized) vectors ψ ∈ H. In our case, the two norms are given by
|| · ||σ and || · ||2. From this perspective, the algorithm solves the problem of finding

C := min { ||ψ||σ||ψ||2
: ψ ∈ H}. (6.57)

Therefore, knowing C > 0 implies that ||ψ||σ ||ψ||−1
2 ≥ C for all ψ, thus C|| · ||2 ≤ ||ψ||σ.

Because the algorithm explicitly yields the minimizing state, the inequality is tight,
hence the found constant C is optimal.
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System Gmax Cmin

2 qubits 1/2 2
3 qubits 5/9 32/9 = 3.555
4 qubits 5/9 32/9 = 3.555
5 qubits (1/36)(33 −

√
3) (8/9)(3 +

√
3) ≈ 4.206

6 qubits 16/3 16/3 = 5.333
7 qubits 0.941 ≈ 7.552
8 qubits 0.961 ≈ 9.984

Table 6.5: The maximal entanglement Gmax that can be present in a certain system
according to the algorithm. This can be used to put lower bounds Cmin on
the constant C in the asymptotic scaling of the geometric measure in multi-
qubit systems. For the cases where no analytical expression of the quantum
state and thus of Gmax could be derived, i.e., 7 and 8 qubits, we have taken
the value for Gmax for the state found by the algorithm with the largest
geometric measure. For each case, the algorithm was run for 100 random
initial states while the geometric measure of the final states coincided with
very small deviation. The table is taken from Ref. [D].

6.12 Conclusion and discussion

We have presented an iterative method for the computation of maximally resourceful
quantum states. We provided a convergence analysis and showed that in each step the
resourcefulness of the iterates increases. We illustrated our approach for the special
case of the geometric measure, allowing us to identify interesting quantum states,
discover novel AME states, and characterize highly entangled subspaces which may
be useful for information processing. We further demonstrated the universality of the
algorithm for various other quantifiers, yielding novel forms of correlations in the
triangle network. Concerning further research, our results also suggest a variety of
avenues for further theoretical exploration. Can the algorithm be used to find new
AME states for cases where the existence is still open, e.g., for systems consisting of
more than five quhex, or to find new SLOCC inequivalent AME states? In particular,
we have strong numerical evidence that there exists a second AME state for the four
quhex case. From a mathematical perspective, the algorithm can give insights into the
structure of tensor spaces and could offer intuition to solve open problems concerning
the asymptotics of tensor norms [286].



7 Real eigenstructure of regular
simplex tensors

Characterizing the eigenvectors of a given tensor is an important task for many appli-
cations involving large data arrays, such as high-dimensional quantum states and data
science. However, this turns out to be in general a computationally hard problem. Here
we provide a full characterization of the real eigenstructure of regular simplex tensors.
This is supplemented by the robustness analysis of all normalized eigenvectors. The
robustness of a tensor eigenvector is of particular importance if it should be computed
by the tensor power method. Finally, we discuss the relationship between the obtained
eigenvectors and the generators from the symmetric tensor decomposition. This Chap-
ter is based on Project [H]. Each of the three authors contributed in equal parts to this
work.

7.1 Motivation

A prominent difficulty in quantum simulation is the exponentially growing dimen-
sion of the underlying Hilbert space, rendering an efficient treatment impossible. The
same problem appears in the more general context of multivariate data arrays with a
large number of modes [329, 330]. Apart from quantum physics, they play an impor-
tant role in neuroscience [331], algebraic statistics [332], computer vision [333] as well
as in the algorithmic knowledge retrieval from large datasets. Clearly, a multimodal
dataset can only be handled efficiently after imposing a certain structural representa-
tion, which typically also encodes many of its geometric properties, like symmetries
or other correlations between the tensor entries. In this context, one often focuses on a
symmetric tensor T whose entries are invariant under permutation of the indices and
are typically stored in the symmetric decomposition format,

T =
r

∑
j=1

λjv⃗⊗d
j , (7.1)

which is a linear combination of the d-fold tensor product of certain n-dimensional,
normalized vectors v⃗1, ..., v⃗r ∈ Rn, with real weights λ1, ..., λr ∈ R. The set of all sym-
metric tensors forms a vector space and is denoted by Sd(Rn). Generalizing concepts
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from linear algebra [280, 334], a real eigenpair (λ, v⃗) with λ ∈ R and v⃗ ∈ Rn of a sym-
metric tensor T ∈ Sd(Rn) fulfills T · v⃗⊗(d−1) = λv⃗, where the dot operation denotes
the partial contraction of T by v⃗ along all but one of the d modes. Eigenpairs of a
tensor are important in many applications [288], as they are highly linked to the best
rank-one approximation problem [335].

Here it is natural to look for relations between the normalized eigenvectors of a
symmetric tensor T and the generating vectors {v⃗j} of its symmetric decomposition
in Eq. (7.1). In the matrix case, i.e., T ∈ S2(Rn), these sets coincide. In contrast, in
the general setting d ≥ 2, both sets of vectors usually only coincide if one imposes
additional constraints on the vectors {v⃗j}, like orthogonality. If T ∈ Sd(Rn) has a de-
composition in the form of Eq. (7.1) such that {v⃗1, ..., v⃗r} ⊂ Rn is an orthonormal set,
the tensor T is called odeco tensor. The set of odeco tensors turns out to be structurally
rich [336]. In particular, all eigenvectors v⃗j of an odeco tensor are attractive fixed points
of the tensor power iteration map, which is used to numerically solve the tensor eigen-
value problem. However, the set of odeco tensors forms a variety [336] which is of very
small dimension, straiten its usefulness in the analysis of generic datasets.

In a recent work [337], significant progress has been made in the analysis of those
symmetric tensors T whose generating vectors v⃗j ∈ Rn constitute an overcomplete
set which is still close to an orthonormal basis, e.g., a tight frame. The set of such
frame decomposable tensors, in short, fradeco tensors, is significantly larger than the
odeco class. However, the eigenvectors of a fradeco tensor usually deviate from the
underlying frame elements and it is an open problem under which conditions the
eigenvectors of a fradeco tensor can be recovered by the tensor power method [338].

In this Chapter we focus on the special case of regular simplex tensors. These are
defined as tensors whose symmetric decomposition in Eq. (7.1) uses equal weights
λj = 1 and is induced by an overcomplete equiangular set of n + 1 vectors v⃗j from
Rn. By reformulating the tensor eigenvalue problem as an algebraic set of equations
in the barycentric coordinates of the eigenvector with respect to the frame elements
{v⃗j}, we develop a full analysis of the real eigenstructure of a regular simplex tensor
with local dimension n ≥ 2 and an arbitrary number of modes d ≥ 2. We begin by
formalizing the notion of simplex frames, tensor eigenvectors and the tensor power
iteration in Section 7.2. We proceed by translating the eigenvector property into an
equivalent system of algebraic conditions in Section 7.3, which allows us to enumerate
all possible normalized eigenpairs. Afterwards, we discuss in Section 7.4 the special
case n = 2 and in Section 7.5 the case n = 3 in more detail. In Section 7.6, we study the
robustness of all normalized eigenvectors with respect to the tensor power iteration.
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7.2 Mathematical concepts and notation

A real-valued tensor or hypermatrix of order d ∈ N and with local dimensions
n1, ..., nd ∈ N is a d-variate data field T ∈ ⊗d

j=1Rnj . Clearly, in the special case where
the number of modes d is equal to 1 or 2, T is a column vector or a matrix respectively.
Similar to our treatment of a quantum state, we denote the (i1, ...., id)-th entry of a ten-
sor T by Ti1,...,id . If all mode dimensions nj are equal to n ∈ N, the tensor T ∈ (Rn)⊗d

is called cubic. Further, a cubic tensor T is called (super)symmetric if

Ti1,...,id = Tiσ(1) ,...,iσ(d) for all permutations σ : {1, ..., d} → {1, ..., d}. (7.2)

The set of all symmetric tensors of order d and local dimension n will be denoted by
Sd(Rn). For a given vector v⃗ ∈ Rn, the d-fold tensor product v⃗⊗d ∈ Sd(Rn) is called a
symmetric rank-1 tensor. It can be easily seen that each symmetric tensor T ∈ Sd(Rn)

admits a finite symmetric decomposition as in Eq. (7.1) where v⃗1, ..., v⃗r ∈ Rn with
||⃗vj|| = 1 and λj ∈ R for 1 ≤ j ≤ r. The smallest possible number r ∈ N for which
a decomposition of the form in Eq. (7.1) exists is called the symmetric rank of T . If
the number of modes d is odd, one can assume that all weights λj which appear in
Eq. (7.1) are positive.

If T ∈ Sd(Rn) has a decomposition of the from in Eq. (7.1) such that the vectors
{v⃗1, ..., v⃗r} form an orthonormal set, T is called orthogonally decomposable or, in
short, an odeco tensor. However, the set of odeco tensors is relatively small since the
symmetric rank of an odeco tensor cannot exceed the local dimension n.

7.2.1 Tensor eigenvalues and the tensor power method

A vector v⃗ ∈ Rn \ {⃗0} is called a real eigenvector1 of T ∈ Sd(Rn) with eigenvalue
µ ∈ R [280, 334] if

T · v⃗⊗(d−1) = µv⃗. (7.3)

1Here it is important to notice that there exists a huge variety of definitions of tensor eigenvalues [288].
First, in its most general form, a number µ ∈ C is an eigenvalue of a not necessarily symmetric but cubic
tensor T ∈ (Rn)⊗d, if µ together with a nonzero vector v⃗ ∈ Cn are solutions of the homogeneous polynomial
equations T · v⃗⊗(d−1) = µv⃗, where the contraction is with respect to the first d − 1 modes. In this case,
one calls v⃗ an eigenvector of T associated with the eigenvalue µ. The eigenvalue µ ∈ C is called an H-
eigenvalue if it has a real eigenvector v⃗, which is then called H-eigenvector. As the tensor T is real-valued, it
immediately follows that if v⃗ is an H-eigenvector, the corresponding H-eigenvalue is real. An eigenvalue that
is not an H-eigenvalue is called N-eigenvalue. Notice that even though an H-eigenvalue is a real number,
a real eigenvalue is not necessarily an H-eigenvalue. Further, there are E- and Z-eigenvalues, where an
additional normalization constraint is incorporated into the definition. With the same notation as above,
µ ∈ C is called an E-eigenvalue of T if µ together with v⃗ ∈ Cn solves the system T · v⃗⊗(d−1) = µv⃗ with
v⃗⊤ v⃗ = 1. An E-eigenvalue is called a Z-eigenvalue if it has a real E-eigenvector. Again, a Z-eigenvalue is a
real E-eigenvalue but a real E-eigenvalue is not necessarily a Z-eigenvalue. See also Ref. [288].
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Here T · v⃗⊗(d−1) denotes the partial contraction of T by v⃗ along all but one of the d
modes,

(T · v⃗⊗(d−1))j :=
n

∑
i1,...,id−1=1

Ti1,...,id−1,jv⃗i1 · · · v⃗id−1
. (7.4)

It is important to note that due to the symmetry of T , it is irrelevant which particular
modes are used in the (d − 1)-fold sum in Eq. (7.4). A tuple (⃗v, µ) consisting of an
eigenvector v⃗ ∈ Rn \ {⃗0} and an associated eigenvalue µ ∈ R is called an eigenpair
of T . If in addition ||⃗v|| = 1, the eigenpair (⃗v, µ) is called normalized eigenpair2.
Normalized eigenpairs can be understood as critical points of the map v⃗ 7→ ⟨T , v⃗⊗d⟩
under the norm constraint ||⃗v|| = 1.

By construction, the left-hand side of Eq. (7.3) is (d − 1)-homogeneous in the co-
ordinates of the vector v⃗ and therefore each eigenpair (⃗v, µ) of T induces the eigen-
pair (t⃗v, td−2µ) for t ̸= 0. In particular, if (⃗v, µ) is an eigenpair of T , we obtain with
t = ||⃗v||−1 that

(
v⃗

||⃗v|| ,
µ

||⃗v||d−2 ) (7.5)

is a normalized eigenpair of T .
Similarly, by normalizing both sides in Eq. (7.3), one can see that a necessary con-

dition for a normalized vector v⃗ ∈ Rn to be an eigenvector of T ∈ Sd(Rn) with
eigenvalue µ > 0 is that v⃗ is a fixed point of the map

φ : Rn \ {⃗0} → Rn \ {⃗0}, φ(⃗v) :=
T · v⃗⊗(d−1)

||T · v⃗⊗(d−1)||
. (7.6)

More generally, if (⃗v, µ) is a normalized eigenpair of T with eigenvalue µ ̸= 0, we have
sφ(⃗v) = v⃗ with s = sign(µ) = µ/|µ|−1. The associated canonical fixed point iteration

v⃗(j+1) := φ(⃗v(j)), for j = 0, 1, ... (7.7)

is called tensor power iteration [339]. For the matrix case, i.e., T ∈ S2(Rn) this iteration
converges for any starting point 0⃗ ̸= v⃗(0) ∈ Rn to an eigenvector corresponding to the
largest eigenvalue of T in modulus. This changes for the more general case d > 2.
More precisely, there exists a distinguished class of eigenpairs with respect to their
behavior under this iteration. A unit vector v⃗ ∈ Rn is called a robust eigenvector of
T ∈ Sd(Rn) if there exists an open neighborhood of v⃗ such that the iterates that appear
in Eq. (7.7) starting with any w⃗ from this neighborhood converge to v⃗. Obviously, non-
robust eigenvectors v⃗ cannot be computed by using the tensor power iteration unless
the starting point equals v⃗. From an analytical viewpoint, the robustness of a fixed
point of the map in Eq. (7.6) can be quantified by the spectral radius of the Jacobian of
φ evaluated at that particular fixed point.

2The notion of an eigenpair induced by Eq. (7.3) corresponds to the class of H-eigenvalues and H-
eigenvectors, while a normalized eigenpair induced by Eq. (7.5) corresponds to Z-eigenvalues and Z-
eigenvectors.
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7.2.2 Frames and simplex tensors

The set of odeco tensors can be substantially enlarged by replacing the set of orthonor-
mal vectors {v⃗1, ..., v⃗r} in the symmetric decomposition by a so called frame. A family
of r ≥ n vectors {v⃗1, ..., v⃗r} ⊂ Rn is called a frame for Rn if there exist constants
B ≥ A > 0 such that

A||⃗v||2 ≤
r

∑
j=1

|⟨⃗v, v⃗j⟩|2 ≤ B||⃗v||2 (7.8)

for all vectors v⃗ ∈ Rn. A frame {v⃗1, ..., v⃗r} with equal frame constants A = B is called a
tight frame and a tight frame {v⃗1, ..., v⃗r} is called a unit-norm tight frame if additionally
||⃗vj|| = 1 for all 1 ≤ j ≤ r. It is well known [340] that a set {v⃗1, ..., v⃗r} is a unit-norm
tight frame for Rn if and only if

VV⊤ = A1, where V := (⃗v1 · · · v⃗r) ∈ Rn×r. (7.9)

Typical examples of unit-norm tight frames in Rn are given by orthonormal bases
{v⃗1, ..., v⃗n}, with r = n and A = 1, and so called simplex frames {v⃗1, ..., v⃗n+1} ⊂ Rn,
where r = n + 1, A = n+1

n and v⃗j ∈ Rn is the orthogonal projection of the j-th unit
vector e⃗j ∈ Rn+1 onto the orthogonal complement of 1⃗n+1 := (1, ..., 1) ∈ Rn+1, and
subsequent normalization. More precisely, we have

v⃗k =


√

1 + 1
n e⃗j − 1

n3/2 (
√

n + 1 − 1)⃗1n , 1 ≤ j ≤ n,

− 1√
n 1⃗n, j = n + 1.

(7.10)

Further we have

VV⊤ =
n + 1

n
1, V⊤V =

n + 1
n

1− 1
n

1⃗n+1⃗1⊤n+1, (7.11)

and the nullspace of V⊤V and of V is spanned by v⃗n+1.

7.3 Characterizing eigenpairs of regular simplex tensors

In the following we will perform an exhaustive search for eigenpairs of the simplex
tensor

T =
n+1

∑
j=1

v⃗⊗d
j , (7.12)

where n, d ≥ 2 and {v⃗1, ..., v⃗n+1} ⊂ Rn is a simplex frame. We will start our analysis
by looking at the generic case d, n ≥ 2. By using the linear independence of each n-
element subset of the simplex frame {v⃗1, ..., v⃗n+1}, we can easily deduce the following
system of equations for the coordinates of an eigenvector v⃗ ∈ Rn \ {⃗0} of T with
respect to the basis {v⃗1, ..., v⃗n} of Rn.



198 7 Real eigenstructure of regular simplex tensors

Lemma 46. (⃗v, µ) is an eigenpair of a simplex tensor T given by Eq. (7.12) if and only if
v⃗ = ∑n

k=1 αk v⃗k for some α1, . . . , αn ∈ R with ∑n
k=1 |αk| > 0 and

µαk =
(

αk −
1
n

n

∑
j=1
j ̸=k

αj

)d−1
−
(
− 1

n

n

∑
j=1

αj

)d−1
, 1 ≤ k ≤ n. (7.13)

Proof. {v⃗1, ..., v⃗n} is a basis for Rn, so that each eigenvector v⃗ ∈ Rn \ {⃗0} has a unique
representation v⃗ = ∑n

j=1 αjv⃗j with ∑n
j=1 |αj| > 0. By inserting this representation into

the eigenvector equation Eq. (7.3), and by using the normalization ||⃗vj|| = 1, Eq. (7.11)
and ∑n+1

j=1 v⃗j = 0⃗, we obtain that

µ
n

∑
k=1

αk v⃗k =
n+1

∑
k=1

〈
v⃗k,

n

∑
j=1

αjv⃗j

〉d−1
v⃗k

=
n

∑
k=1

(
αk −

1
n ∑

1≤j ̸=k≤n
αj

)d−1
v⃗k +

(
− 1

n

n

∑
j=1

αj

)d−1
v⃗n+1

=
n

∑
k=1

(αk −
1
n

n

∑
j=1
j ̸=k

αj

)d−1
−
(
− 1

n

n

∑
j=1

αj

)d−1

 v⃗k,

which yields Eq. (7.13) after using the linear independence of {v⃗1, ..., v⃗n}.

By using that each elementary tensor v⃗⊗d
k is weighted equally within T , we can

deduce the following permutation symmetry of all eigenpairs.

Lemma 47. Let (⃗v, µ) be an eigenpair of simplex tensor T given by Eq. (7.12) with v⃗ =

∑n
k=1 αk v⃗k for certain αk ∈ R. Then for each permutation σ of {1, . . . , n + 1}, also the vectors

∑n
k=1 αk v⃗σ(k) are eigenvectors of T with the same eigenvalue µ.

Proof. (⃗v, µ) is an eigenpair with v⃗ = ∑n
k=1 αk v⃗k, so that Eq. (7.13) holds true by Lemma

46. Let σ be a permutation of {1, . . . , n + 1}. If p := σ(n + 1) = n + 1, we have
{1, . . . , n} = {σ(1), . . . , σ(n)}, so that Eq. (7.13) holds true for all ασ−1(k), 1 ≤ k ≤ n,
i.e., Lemma 46 yields that

n

∑
k=1

αk v⃗σ(k) =
n

∑
k=1

ασ−1(k)v⃗k

is an eigenvector of T with eigenvalue µ. If p = σ(n + 1) ∈ {1, . . . n}, we have q :=
σ−1(n + 1) ∈ {1, . . . , n}. By using that ∑n+1

k=1 v⃗k = 0⃗ and because of the equivalence

1 ≤ σ−1(k) ≤ n ∧ σ−1(k) ̸= q ⇔ 1 ≤ k ≤ n ∧ k ̸= p, (7.14)

we can write
n

∑
k=1

αk v⃗σ(k) = αqv⃗n+1 +
n

∑
k=1
k ̸=q

αk v⃗σ(k) = −αqv⃗p +
n

∑
k=1
k ̸=p

(ασ−1(k) − αq )⃗vk.
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Therefore, it remains to prove that Eq. (7.13) holds true for

βk :=

ασ−1(k) − αq, 1 ≤ k ̸= p ≤ n,

−αq, k = p,

because then the claim follows by an application of Lemma 46. If k = p, we compute
that by means of Eq. (7.14) and Eq. (7.13),(

βp −
1
n

n

∑
j=1
j ̸=p

β j

)d−1
−
(
− 1

n

n

∑
j=1

β j

)d−1

=
(
−αq −

1
n

n

∑
j=1
j ̸=p

(ασ−1(j) − αq)
)d−1

−
( 1

n
αq −

1
n

n

∑
j=1
j ̸=p

(ασ−1(j) − αq)
)d−1

=
(
− 1

n
αq −

1
n

n

∑
j=1
j ̸=p

ασ−1(j)

)d−1
−
(

αq −
1
n ∑

j=1
j ̸=p

ασ−1(j)

)d−1

=
(
− 1

n

n

∑
j=1

αj

)d−1
−
(

αq −
1
n

n

∑
j=1
j ̸=q

αj

)d−1
= −αq = βp.

If 1 ≤ k ≤ n and k ̸= p, we can argue in a similar way, again using Eq. (7.14):(
βk −

1
n

n

∑
j=1
j ̸=k

β j

)d−1
−
(
− 1

n

n

∑
j=1

β j

)d−1

=
(

ασ−1(k) − αq +
1
n

αq −
1
n

n

∑
j=1

j/∈{k,p}

(ασ−1(j) − αq)
)d−1

−
( 1

n
αq −

1
n

n

∑
j=1
j ̸=p

(ασ−1(j) − αq)
)d−1

=
(

ασ−1(k) −
1
n

αq −
1
n

n

∑
j=1

j/∈{k,p}

ασ−1(j)

)d−1
−
(

αq −
1
n

n

∑
j=1
j ̸=p

ασ−1(j)

)d−1

=
(

ασ−1(k) −
1
n

n

∑
j=1

j ̸=σ−1(k)

αj

)d−1
−
(

αq −
1
n

n

∑
j=1
j ̸=q

αj

)d−1
= ασ−1(k) − αq = βk.

In view of the fact that Rn can be decomposed into the conical hulls{ n

∑
k=1

αk v⃗σ(k) : αk ≥ 0
}

, σ : {1, . . . , n + 1} → {1, . . . , n + 1} permutation,

Lemma 47 tells us that it suffices to compute all eigenpairs (⃗v, µ) with eigenvectors
from the set{ n

∑
k=1

αk v⃗k : αk ≥ 0,
n

∑
j=1

|αj| > 0
}
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of all nontrivial conical combinations from the linearly independent set {v⃗1, ..., v⃗n}.
What is more, by the (d − 1)-homogeneity of the right-hand side of Eq. (7.13), it is
sufficient to consider all convex combinations

v⃗ =
n

∑
k=1

sk v⃗k, 0 ≤ sk ≤ 1,
n

∑
k=1

sk = 1 (7.15)

from {v⃗1, ..., v⃗n} as eigenvector candidates. By inserting this very family of vectors into
Lemma 46, we obtain the following eigenpair conditions.

Lemma 48. Let 0 ≤ sk ≤ 1 for 1 ≤ k ≤ n − 1, and sn := 1 − ∑n−1
k=1 sk. Then (∑n

k=1 sk v⃗k, µ)

with µ ∈ R is an eigenpair of simplex tensor T given by Eq. (7.12) if and only if

µsk =
1

nd−1

((
(n + 1)sk − 1

)d−1 − (−1)d−1
)

, 1 ≤ k ≤ n. (7.16)

Proof. The claim follows by inserting αk = sk into Eq. (7.13), and by exploiting that

∑n
k=1 sk = 1.

By means of the function

g(s) :=
(
(n + 1)s − 1

)d−1 − (−1)d−1, s ∈ R, d ≥ 2, (7.17)

we can rewrite the eigencondition in Eq. (7.16) in a compact way as

µnd−1sk = g(sk), 1 ≤ k ≤ n. (7.18)

The eigenvalue µ of an eigenpair (∑n
k=1 sk v⃗k, µ), sk ≥ 0, ∑n

k=1 sk = 1, can hence be
computed by

µ =
1

nd−1

n

∑
k=1

g(sk). (7.19)

However, we still have to solve the remaining system of eigenvalue conditions

sk

n

∑
j=1

g(sj) = g(sk), 1 ≤ k ≤ n − 1,

sn = 1 −
n−1

∑
j=1

sj,

sk ≥ 0, 1 ≤ k ≤ n.

(7.20)

Example 49. If n = 2, Eq. (7.20) reads as the single equation in s = s1

s
(

g(s) + g(1 − s)
)
= g(s), 0 ≤ s ≤ 1. (7.21)

If n = 3, Eq. (7.20) reads as the coupled system of equations in s = s1 and t = s2{
s
(

g(s) + g(t) + g(1 − s − t)
)
= g(s),

t
(

g(s) + g(t) + g(1 − s − t)
)
= g(t),

s, t ≥ 0, s + t ≤ 1. (7.22)
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In order to deduce the solution set of Eq. (7.20), let us first analyze the auxiliary
function g.

Lemma 50. Let n, d ≥ 2, and let g be defined as in Eq. (7.17).

1. We have g(0) = 0, g( 1
n+1 ) = (−1)d, g( 2

n+1 ) = 1 + (−1)d, and g(1) = nd−1 +

(−1)d > 0.

2. If d ≥ 3, we have g′( 1
n+1 ) = 0.

3. If d is even, g is strictly increasing and we have g(s) > 0 for all s > 0.

4. If d is odd, g is strictly convex with a unique local minimum at s = 1
n+1 , and we have

g( 2
n+1 ) = 0, so that g(s) < 0 for 0 < s < 2

n+1 and g(s) > 0 for 2
n+1 < s ≤ 1.

5. The polynomial p : s 7→ g(s)
s is well-defined. If d = 2, p(s) = n + 1 is constant. If d is

odd, p is strictly increasing on [0, ∞). If d ≥ 4 is even, there exists a point s∗ ∈ [ 1
n , 2

n+1 )

such that p is strictly decreasing on [0, s∗] and strictly increasing on [s∗, ∞). We have
s∗ = 1

n if and only if (n, d) = (2, 4).

6. If d is odd, the m-variate polynomial

Rm ∋ (s1, . . . , sm) 7→ g
(

1 −
m

∑
k=1

sk

)
+

m

∑
k=1

g(sk)

is strictly convex, with unique minimum at s⃗∗ := ( 1
m+1 , . . . , 1

m+1 ) and value (m +

1)g( 1
m+1 ), s⃗∗ lying in the interior of the m-dimensional unit simplex

∆m :=
{
(s1, . . . , sm) : sk ≥ 0,

m

∑
j=1

sj ≤ 1
}

. (7.23)

Proof. Claim (1) follows directly from Eq. (7.17). To prove (2) let d ≥ 3. We have g′(s) =
(n + 1)(d − 1)((n + 1)s − 1)d−2, so g′( 1

n+1 ) = 0. To (3). If d is even, we see that

g(s) =
(
(n + 1)s − 1)d−1 + 1, s ∈ R,

is a composition of the strictly increasing functions s 7→ (n + 1)s − 1 and t 7→ td−1 + 1.
Therefore, s > 0 implies that g(s) > g(0) = 0. To (4). If d is odd, g is strictly convex as
a sum of the strictly convex function s 7→ ((n + 1)s − 1)d−1 and a constant. In view of
g′(0) = (n+ 1)(d− 1)(−1)d < 0 and of g(1) > 0, see (1), the convexity of g implies that
there exists exactly one further zero of g in the open interval (0, 1), namely s = 2

n+1 ,
because the oddity of d and the identity

ak − bk = (a − b)
k

∑
j=0

ajbk−1−j



202 7 Real eigenstructure of regular simplex tensors

entail that

g(s) =
(
(n + 1)s − 1

)d−1 − 1 =
(
(n + 1)s − 2

) d−2

∑
j=0

(
(n + 1)s − 1

)j.

By the continuity and strict convexity of g, it follows that g(s) < 0 for 0 < s < 2
n+1

and g(s) > 0 for 2
n+1 < s ≤ 1. To (5). In view of g(0) = 0, see (1), p(s) := g(s)

s defines
a polynomial of degree d − 2, and p(s) = n + 1 if d = 2. If d ≥ 3, we compute that for
s > 0,

p′(s) =
g′(s)s − g(s)

s2

=
(d − 1)(n + 1)s

(
(n + 1)s − 1

)d−2
+ (−1)d−1 −

(
(n + 1)s − 1

)d−1

s2

=
(d − 2)

(
(n + 1)s − 1

)d−1
+ (d − 1)

(
(n + 1)s − 1

)d−2
+ (−1)d−1

s2 .

The derivative of the numerator g′(s)s − g(s) reads as

d
ds
(

g′(s)s − g(s)
)
= g′′(s)s = (d − 1)(d − 2)(n + 1)2((n + 1)s − 1

)d−3s,

having a single zero at s = 0 and a (d − 3)-fold zero at s = 1
n+1 . Hence, if d = 2k + 1

is odd, k ≥ 1, g′(s)s − g(s) is positive if s > 0, so p is strictly increasing on [0, ∞). If
d = 2k is even, k ≥ 2, g′′(s)s is negative on (0, 1

n+1 ] and positive on ( 1
n+1 , ∞). Therefore,

in view of

g′
( 1

n + 1

) 1
n + 1

− g
( 1

n + 1

)
= −1

and

g′
( 2

n + 1

) 2
n + 1

− g
( 2

n + 1

)
= 2d − 4 > 0,

there exists a s∗ ∈ ( 1
n+1 , 2

n+1 ) such that p is strictly decreasing on [0, s∗] and strictly
increasing on [s∗, ∞). Moreover,

g′
( 1

n

) 1
n
− g
( 1

n

)
=

(d − 1)(n + 1)− 1
nd−1 − 1

is nonpositive, and negative if and only if (n, d) = (2, 4). This can be seen as follows:
Setting

cn,d :=
(d − 1)(n + 1)− 1

nd−1 , n ≥ 2, d ≥ 4,

we observe that

cn,4 =
3n + 2

n3 =
3 + 2

n
n2 ≤ 4

n2 ≤ 1,
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with equality if and only if n = 2, and

cn,d+1

cn,d
=

d(n + 1)− 1
n((d − 1)(n + 1)− 1)

≤ dn + d − 1
dn + d − 1 + n

< 1, n ≥ 2, d ≥ 4.

Therefore, if n ≥ 2 and d = 2k ≥ 4 is even, we have 1
n ≤ s∗, with equality if and only

if (n, d) = (2, 4). To (6). The m-variate polynomial

f (⃗s) := g
(

1 −
m

∑
k=1

sk

)
+

m

∑
k=1

g(sk), s⃗ = (s1, . . . , sm),

is convex as a sum of m + 1 convex functions. f is strictly convex because if s⃗, w⃗ ∈ Rm

with s⃗ ̸= w⃗, we have sk ̸= wk for at least one 1 ≤ k ≤ m, so that for each 0 < λ < 1, the
strict convexity of g implies that

f
(
λ⃗s + (1 − λ)w⃗)

= g
(

1 −
m

∑
k=1

(
λsk + (1 − λ)wk

))
+

m

∑
k=1

g
(
λsk + (1 − λ)wk

)
= g

(
λ
(

1 −
m

∑
k=1

sk

)
+ (1 − λ)

(
1 −

m

∑
k=1

wk

))
+

m

∑
k=1

g
(
λsk + (1 − λ)wk

)
< λg

(
1 −

m

∑
k=1

sk

)
+ (1 − λ)g

(
1 −

m

∑
k=1

wk

)
+

m

∑
k=1

(
λg(sk) + (1 − λ)g(wk)

)
= λ f (⃗s) + (1 − λ) f (w⃗).

Further, f is bounded from below because g is, and the minimality condition

0⃗ = ∇ f (⃗s∗) =
(

g′(s∗k )− g′
(

1 −
m

∑
j=1

s∗j
))

1≤k≤m

together with the injectivity of g′ imply that s∗k = 1
m+1 for all 1 ≤ k ≤ m, and hence

f (⃗s∗) = (m + 1)g( 1
m+1 ).

By means of Lemma 50, we are now able to enumerate all solutions of the system in
Eq. (7.20), i.e., all zeros s⃗ := (s1, . . . , sn−1) of the vector function

h⃗(⃗s) :=
(

sk

(
g
(

1 −
n−1

∑
j=1

sj

)
+

n−1

∑
j=1

g(sj)
)
− g(sk)

)
1≤k≤n−1

(7.24)

in the (n − 1)-dimensional unit simplex ∆n−1 = conv{⃗0, e⃗1, . . . , e⃗n−1} from Eq. (7.23).

Proposition 51. Let d ≥ 2, and let h⃗ be defined as in Eq. (7.24).

1. The function h⃗ vanishes at least at those s⃗ ∈ ∆n−1 such that with sn := 1 − ∑n−1
k=1 sk,

there exists a nonempty subset K ⊆ {1, . . . n} and

sk =

 1
|K| , k ∈ K,

0, k ∈ {1, . . . , n} \ K.
(7.25)
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2. If d = 2, h⃗ is identically zero.

3. If d is odd, there are no further zeros of h⃗ in ∆n−1 than those from (1).

4. If d ≥ 4 is even, h⃗ vanishes at s⃗ ∈ ∆n−1 if and only if with s∗ ∈ [ 1
n , 2

n+1 ) from
Lemma 50(5) and sn := 1 − ∑n−1

k=1 sk, there exist disjoint subsets K1 ⊂ {1, . . . , n} and
K2 ⊂ {1, . . . , n}, at least one of these being nonempty, such that either

K1 = ∅, sk =

 1
|K2|

> s∗, k ∈ K2,

0, k ∈ {1, . . . , n} \ K2,
(7.26)

or

K2 = ∅, sk =

 1
|K1|

≤ s∗, k ∈ K1,

0, k ∈ {1, . . . , n} \ K1,
(7.27)

or

K1, K2 ̸= ∅, sk =


sk1 , k ∈ K1,

sk2 , k ∈ K2,

0, k ∈ {1, . . . , n} \ (K1 ∪ K2),

(7.28)

where sk1 ∈ (0, s∗) is a zero of the polynomial

r(s) :=
g(s)

s
−

|K2|g
( 1−|K1|s

|K2|
)

1 − |K1|s
(7.29)

and

sk2 =
1 − |K1|sk1

|K2|
(7.30)

is contained in (s∗, 1].

Proof. To prove (1), let ∅ ̸= K ⊆ {1, . . . n}, and let sk ∈ [0, 1] be given as in Eq. (7.25).
Then we have

sk ≥ 0,
n

∑
k=1

sk = 1,
n−1

∑
k=1

sk = 1 − sn ≤ 1,

i.e., s⃗ := (s1, . . . , sn−1) ∈ ∆n−1. By using that g(0) = 0, see Lemma 50 (1), we compute
that for all 1 ≤ k ≤ n, regardless of whether k ∈ K or k /∈ K,

sk

n

∑
j=1

g(sj) = sk ∑
j∈K

g(sj) = sk|K|g
( 1
|K|

)
= g(sk),

so that h⃗(⃗s) = 0⃗. For the proof of (2), assume that d = 2. In this case, we have g(s) =
(n + 1)s. For each s⃗ = (s1, . . . , sn−1) ∈ ∆n−1, we obtain that with sn := 1 − ∑n−1

j=1 sk,

sk

n

∑
j=1

g(sj)− g(sk) = sk(n + 1)
n

∑
j=1

sj − (n + 1)sk = 0,
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so that h⃗ vanishes identically. To (3). Suppose that d is odd and that s⃗ ∈ ∆n−1 is a zero
of h⃗. Then with sn := 1 − ∑n−1

k=1 sk, the set K :=
{

1 ≤ k ≤ n : sk ̸= 0} is nonempty, and
g(0) = 0 yields

g(sk)

sk
=

n

∑
j=1

g(sj) = ∑
j∈K

g(sj), k ∈ K. (7.31)

The left-hand side of Eq. (7.31) is strictly increasing in sk, and the right-hand side is
strictly convex in (sj)j∈K with lower bound |K|g( 1

|K| ), see Lemma 50 (5)/(4). Therefore,
we obtain that

sk ≥
1
|K| , k ∈ K,

which, in view of ∑k∈K sk = 1, is only achievable if sk is of the form given in Eq. (7.25).
As to (4), if d ≥ 4 is even and s⃗ ∈ ∆n−1 is a zero of h⃗, like in (3), with sn := 1 − ∑n−1

k=1 sk

and K := {1 ≤ k ≤ n : sk ̸= 0} ̸= ∅, we have

g(sk)

sk
=

n

∑
j=1

g(sj) = ∑
j∈K

g(sj), k ∈ K.

Lemma 50 (5) tells us that for some s∗ ∈ [ 1
n , 2

n+1 ), the polynomial p(s) := g(s)
s of degree

d − 2 is strictly decreasing on [0, s∗] and strictly increasing on [s∗, ∞). Let us split K
into

K = K1 ∪ K2, K1 := {k ∈ K : sk ≤ s∗}, K2 := {k ∈ K : sk > s∗}.

At least one of the subsets K1 and K2 is nonempty, because K is. We consider the three
possible special cases separately.

• If K1 is empty, we obtain that by the injectivity of p on (s∗, ∞), there exists k2 ∈ K2

such that sk = sk2 for all k ∈ K2. We obtain that

g(sk2)

sk2

= ∑
j∈K

g(sj) = |K2|g(sk2)

and hence

sk =
1

|K2|
, k ∈ K2,

after dividing both sides by g(sk2) > 0, which is the situation in Eq. (7.26).

• If K2 is empty, we can argue in an analogous way: the injectivity of p on [0, s∗]
implies the existence of some k1 ∈ K1 ̸= ∅ with sk = sk1 for all k ∈ K1 and thus

sk =
1

|K1|
, k ∈ K1,

which is the situation in Eq. (7.27).
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• Finally, assume that both K1 and K2 are nonempty. As in the previous special
cases, the injectivity of p on [0, s∗] and on (s∗, ∞) implies the existence of certain
k1 ∈ K1 and k2 ∈ K2 with sk = sk1 for all k ∈ K1 and sk = sk2 for all k ∈ K2, such
that

g(sk1)

sk1

=
g(sk2)

sk2

= |K1|g(sk1) + |K2|g(sk2).

We have sk1 ̸= s∗ because of

g(sk1)

sk1

=
g(sk2)

sk2

>
g(s∗)

s∗
.

By using that |K1|sk1 + |K2|sk2 = ∑n
j=1 sj = 1, we observe that sk1 ∈ (0, s∗) is a

zero of the even-degree polynomial

r(s) := p(s)− p
(1 − |K1|s

|K2|

)
=

g(s)
s

−
|K2|g

( 1−|K1|s
|K2|

)
1 − |K1|s

from Eq. (7.29), and we have

sk2 =
1 − |K1|sk1

|K2|
,

showing Eq. (7.28) and Eq. (7.30).

Conversely, assume that arbitrary disjoint subsets K1, K2 ⊂ {1, . . . , n} are given, with
K1 ̸= ∅ or K2 ̸= ∅. If K1 = ∅ or if K2 = ∅, setting sk ∈ [0, 1] as in Eq. (7.26)
or in Eq. (7.27) and following the proof of part (1) with K replaced by K1 or by K2,
respectively, we see that h⃗(⃗s) = 0⃗. If K1 and K2 are nonempty, and if sk1 ∈ (0, s∗) is
an arbitrary zero of the polynomial r from Eq. (7.29), such that sk2 from Eq. (7.30) is
contained in (s∗, 1], we see that sk from Eq. (7.28) fulfills

sk ≥ 0,
n

∑
k=1

sk = |K1|sk1 + |K2|sk2 = 1,
n−1

∑
k=1

sk = 1 − sn ≤ 1,

i.e., s⃗ := (s1, . . . , sn−1) ∈ ∆n−1. Moreover, regardless of whether k ∈ K1, k ∈ K2 or
k /∈ K1 ∪ K2, we have

sk

n

∑
j=1

g(sj) = sk
(
|K1|g(sk1) + |K2|g(sk2)

)
= g(sk),

so that h⃗(⃗s) = 0⃗.

Remark 52. In case that d ≥ 3 is odd, the zeros of h⃗ given by Eq. (7.25) are precisely the
midpoints of the unit simplex ∆n−1 and of all its lower-dimensional facets, see also Fig. 7.1. In
particular, if n = 2, we obtain that h vanishes exactly at

s1 ∈ {0, 1
2 , 1}.
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s
0 1

2 1
(a) Zeros of h⃗ if n = 2 and d odd

(0,0) (1,0)

(0,1)

( 12 ,
1
2 )(0, 12 )

( 13 ,
1
3 )

s1

s2

( 12 ,0)

(b) Zeros of h⃗ if n = 3 and d odd

Figure 7.1: Geometric interpretation of the zero set of h⃗ for d odd. The figure is taken
from Ref. [H].

If n = 3, h⃗ vanishes exactly at

(s1, s2) ∈
{
(0, 0), (1, 0), (0, 1), ( 1

2 , 0), (0, 1
2 ), (

1
2 , 1

2 ), (
1
3 , 1

3 )
}

.

If d ≥ 4 is even, the situations in Eq. (7.26), Eq. (7.27) or Eq. (7.28) can only occur if
the respective conditions 1

|K2|
> s∗, 1

|K1|
≤ s∗ or sk1 < s∗ < sk2 are fulfilled.

Example 53. If n = 3 and d = 4, we compute that

p(s) =
g(s)

s
=

(4s − 1)3 + 1
s

= 64s2 − 48s + 12

is strictly convex with a unique global minimum at s∗ = 3
8 < 1

2 . Therefore, the situa-
tion in Eq. (7.26) occurs if and only if K1 = ∅ and |K2| ∈ {1, 2} and therefore K2 ∈
{{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}, which corresponds to the subset of zeros

{(1, 0), (0, 1), (0, 0), (
1
2

,
1
2
), (

1
2

, 0), (0,
1
2
)}

of

h⃗(⃗s) =

(
s1
(

g(s1) + g(s2) + g(1 − s1 − s2)
)
− g(s1)

s2
(

g(s1) + g(s2) + g(1 − s1 − s2)
)
− g(s2)

)

=

(
−192s3

1s2 − 192s2
1s2

2 + 32s3
1 + 288s2

1s2 + 96s1s2
2 − 48s2

1 − 96s1s2 + 16s1

−192s1s3
2 − 192s2

1s2
2 + 32s3

2 + 288s1s2
2 + 96s2

1s2 − 48s2
2 − 96s1s2 + 16s2

)
.

The constraint 1
|K1|

≤ s∗ = 3
8 in situation (7.27) can only be fulfilled if K1 = {1, 2, 3} and

K2 = ∅, which corresponds to the zero ( 1
3 , 1

3 ) of h⃗. Finally, as it concerns the situation in
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(b) Zeros of h⃗ if n = 3 and d = 4

Figure 7.2: Geometric interpretation of the zero set of h⃗ for d = 4. The figure is taken
from Ref. [H].

Eq. (7.28), the only three possible configurations are (|K1|, |K2|) ∈ {(1, 1), (1, 2), (2, 1)}. If
|K1| = |K2| = 1, the polynomial r from Eq. (7.29) reads as

r(s) =
g(s)

s
− g(1 − s)

1 − s
= 32s − 16,

having the unique zero s = 1
2 > s∗, so that this case cannot occur. If |K1| = 1 and |K2| = 2,

we obtain

r(s) =
g(s)

s
−

2g( 1−s
2 )

1 − s
= 48s2 − 40s + 8,

having the zeros 1
3 < s∗ and 1

2 > s∗. But since s := 1
3 would correspond to 1−s

2 = 1
3 which is

not strictly larger than s∗, this case cannot occur either. If |K1| = 2 and |K2| = 1, we obtain

r(s) =
g(s)

s
− g(1 − 2s)

1 − 2s
= −192s2 + 112s − 16,

having the zeros 1
3 and 1

4 , both less than s∗. The first zero s := 1
3 of r would correspond to

1 − 2s = 1
3 , which is not strictly larger than s∗, which again is not allowed. The second zero

sk1 := 1
4 of r yields the corresponding argument sk2 := 1 − 2sk1 = 1

2 and hence induces the
remaining zeros{

(
1
4

,
1
4
), (

1
4

,
1
2
), (

1
2

,
1
4
)
}

of h⃗, see also Fig. 7.2.

We are now in the position to enumerate all normalized eigenpairs of simplex tensor
T given by Eq. (7.12) in the generic case n, d ≥ 2.
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Theorem 54. Let n, d ≥ 2, and let T = ∑n+1
k=1 v⃗⊗d

k according to Eq. (7.12).

1. If d = 2, each v⃗ ∈ Rn with ∥v⃗∥ = 1 is an eigenvector of T , with positive eigenvalue

µ = 1 +
1
n

. (7.32)

2. If d ≥ 3 is odd, v⃗ ∈ Rn with ∥v⃗∥ = 1 is an eigenvector of T if and only if there exists a
nonempty subset K ⊂ {1, . . . , n + 1} of cardinality at most n, such that

v⃗ =

∑
k∈K

v⃗k∥∥∥ ∑
k∈K

v⃗k

∥∥∥ =

∑
k∈K

v⃗k√
|K|(n+1−|K|)

n

, (7.33)

and the corresponding eigenvalue is given by

µ =

(
n + 1 − |K|

)d−1 − |K|d−1

nd/2(|K|(n + 1 − |K|))d/2−1 . (7.34)

The eigenvalue 0 corresponds to the case 2|K| = n + 1. Therefore, if n is even, all
eigenvalues are different from 0.

3. If d ≥ 4 is even, v⃗ ∈ Rn with ∥v⃗∥ = 1 is an eigenvector of T if and only if one of the
following two conditions is met: Either there exists a nonempty subset K ⊂ {1, . . . , n +

1} of cardinality at most n, such that v⃗ has the form (7.33), with positive eigenvalue

µ =

(
n + 1 − |K|

)d−1
+ |K|d−1

nd/2(|K|(n + 1 − |K|))d/2−1 (7.35)

or there exist nonempty, disjoint subsets K1 ⊂ {1, . . . , n + 1} and K2 ⊂ {1, . . . , n + 1},
each of cardinality at most n, such that with s∗ ∈ [ 1

n , 2
n+1 ) from Lemma 50 (5) and

0 < sk1 ≤ s∗ < sk2 ≤ 1 with |K1|sk1 + |K2|sk2 = 1 and
g(sk1

)

sk1
=

g(sk2
)

sk2
, we have

v⃗ =

sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k∥∥∥sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k

∥∥∥ =

sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k√
(n+1)s2

k1
|K1|+(n+1)s2

k2
|K2|−1

n

(7.36)

with positive eigenvalue

µ =
|K1|((n + 1)sk1 − 1)d + |K2|((n + 1)sk2 − 1)d + n + 1 − |K1| − |K2|

nd/2((n + 1)s2
k1
|K1|+ (n + 1)s2

k2
|K2| − 1)d/2

. (7.37)

Proof. To prove (1), observe that by Eq. (7.11) we have T = (1 + 1
n )1 for d = 2,. For

the proof of (2), assume that d ≥ 3 is odd. The first identity in Eq. (7.33) follows by an
application of Lemma 47 and Proposition 51 (3). The second identity in Eq. (7.33) can
be verified by using Eq. (7.11), which yields∥∥∥ ∑

k∈K
v⃗k

∥∥∥2
= ∑

k∈K
∑
j∈K

⟨⃗vk, v⃗j⟩ = ∑
k∈K

(
1 − |K| − 1

n

)
=

|K|(n + 1 − |K|)
n

.
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As to the corresponding eigenvalue µ of v⃗ = z⃗
∥⃗z∥ , where z⃗ := ∑k∈K v⃗k, we can use that

by the oddity of d,

⟨T · z⃗⊗(d−1), z⃗⟩ = ∑
k∈K

〈
∑
j∈K

v⃗j, v⃗k

〉d
+ ∑

1≤k≤n+1
k/∈K

〈
∑
j∈K

v⃗j, v⃗k

〉d

= ∑
k∈K

(
1 − |K| − 1

n

)d
+ ∑

1≤k≤n+1
k/∈K

(
−|K|

n

)d

=
|K|(n + 1 − |K|)

nd

((
n + 1 − |K|

)d−1 − |K|d−1
)

,

which yields that the eigenvalue of z⃗ is

⟨T · z⃗⊗(d−1), z⃗⟩
∥⃗z∥2 =

(
n + 1 − |K|

)d−1 − |K|d−1

nd−1 ,

from which we can deduce Eq. (7.34) by an application of Eq. (7.5). To (3). If d ≥ 4
is even, by invoking Lemma 47, the first family of normalized eigenvectors given by
Eq. (7.33) corresponds to the situations in Eq. (7.26) and Eq. (7.27) from Proposition
51. By using that d is even, similar to the reasoning in (2), we can compute that with
z⃗ := ∑k∈K v⃗k, we have

⟨T · z⃗⊗(d−1), z⃗⟩ = |K|(n + 1 − |K|)
nd

((
n + 1 − |K|

)d−1
+ |K|d−1

)
,

which yields Eq. (7.35) after normalization. The second family of normalized eigenvec-
tors given by Eq. (7.36) corresponds to situation in Eq. (7.28), and the second identity
in Eq. (7.36) follows via a similar argument as in (2), by setting

z⃗ := sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k

and by using Eq. (7.11), K1 ∩ K2 = ∅ and sk1 |K1|+ sk2 |K2| = 1, that

∥⃗z∥2 = s2
k1

∥∥∥ ∑
k∈K1

v⃗k

∥∥∥2
+ 2sk1 sk2

〈
∑

k∈K1

v⃗k, ∑
j∈K2

v⃗j

〉
+ s2

k2

∥∥∥ ∑
k∈K2

v⃗k

∥∥∥2

= s2
k1

|K1|(n + 1 − |K1|)
n

− 2sk1 sk2

|K1||K2|
n

+ s2
k2

|K2|(n + 1 − |K2|)
n

=
1
n

(
(n + 1)s2

k1
|K1|+ (n + 1)s2

k2
|K2| − 1

)
.

As it concerns the corresponding eigenvalue µ of the vector v⃗ = z⃗
∥⃗z∥ , we combine that
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sk1 |K1|+ sk2 |K2| = 1, K1 ∩ K2 = ∅ and that d is even, which yields the positive number

⟨T · z⃗⊗(d−1), z⃗⟩ = ∑
k∈K1

⟨⃗z, v⃗k⟩d + ∑
k∈K2

⟨⃗z, v⃗k⟩d + ∑
1≤k≤n+1
k/∈K1∪K2

⟨⃗z, v⃗k⟩d

= ∑
k∈K1

(
sk1

(
1 − |K1| − 1

n

)
− sk2

|K2|
n

)d

+ ∑
k∈K2

(
sk2

(
1 − |K2| − 1

n

)
− sk1

|K1|
n

)d

+ ∑
1≤k≤n+1
k/∈K1∪K2

(
−

sk1 |K1|+ sk2 |K2|
n

)d

=
|K1|((n + 1)sk1 − 1)d + |K2|((n + 1)sk2 − 1)d + n + 1 − |K1| − |K2|

nd ,

and thus Eq. (7.37) after normalization.

7.4 Eigenstructure for local dimension n = 2

In case that the local dimension n is equal to 2, the results from the previous generic
analysis concretise as follows. The single barycentric coordinate s ∈ [0, 1] of an eigen-
vector v⃗ = s⃗v1 + (1 − s)⃗v2 has to solve the nonlinear equation Eq. (7.21). We will
therefore enumerate all real zeros of the expression

h(s) := (1 − s)g(s)− sg(1 − s) = g(s)− s
(

g(s) + g(1 − s)
)
, s ∈ R, (7.38)

in the following proposition.

Proposition 55. Let d ≥ 2. Then h from Eq. (7.38) is antisymmetric with respect to s = 1
2 ,

i.e.,

h(s) = −h(1 − s), s ∈ R. (7.39)

Moreover, depending on the parity of d, h has the following properties.

(1) If d is even, h vanishes at least at s ∈ {0, 1
3 , 1

2 , 2
3 , 1}. In particular, h is the zero polyno-

mial if d ∈ {2, 4}, and for each even d ≥ 2, we can factorize h(s) into

h(s) = −9s(s− 1)(2s− 1)(3s− 1)(3s− 2) ∑
p,q≥0

p+q≤d/2−3

(3s− 1)2p(3s− 2)2q, (7.40)

so that if d ≥ 6 is even, h does not have further real zeros than {0, 1
3 , 1

2 , 2
3 , 1}.

(2) If d is odd, h vanishes at s ∈ {0, 1
2 , 1}, and we have h(s) < 0 for 0 < s < 1

2 and
h(s) > 0 for 1

2 < s < 1.
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Proof. h obviously fulfills Eq. (7.39), which yields h( 1
2 ) = 0. Moreover, for each d ≥ 2

we have φ(0) = 0 by Lemma 50 (1), which yields h(0) = −h(1) = 0. To prove (1), let
d ≥ 2 be even. Then Lemma 50 (1) implies that g( 2

3 ) = 2g( 1
3 ), so that h( 1

3 ) = −h( 2
3 ) =

0. Therefore, h vanishes at s ∈ {0, 1
3 , 1

2 , 2
3 , 1}. If d ∈ {2, 4}, by the fundamental theorem

of algebra, h vanishes identically. We will then prove Eq. (7.40) by induction over even
dimensions d ≥ 2. To this end, let us define

hk(s) := (1 − s)
(
(3s − 1)2k−1 + 1

)
− s
(
(2 − 3s)2k−1 + 1

)
, k = 1, 2, . . . ,

which is equal to h(s) from Eq. (7.38) for d = 2k. We already know from the previous
reasoning that h1 and h2 vanish identically. Assume now that for some k ≥ 2, the
factorization

hk(s) = −9s(s − 1)(2s − 1)(3s − 1)(3s − 2) ∑
p,q≥0

p+q≤k−3

(3s − 1)2p(3s − 2)2q

holds true. Then we can compute that

hk+1 − hk(s)

= (1 − s)
(
(3s − 1)2k+1 − (3s − 1)2k−1)− s

(
(2 − 3s)2k+1 − (2 − 3s)2k−1)

= (1 − s)(3s − 1)2k−1((3s − 1)2 − 1
)
− s(2 − 3s)2k−1((2 − 3s)2 − 1

)
= −3s(s − 1)(3s − 1)(3s − 2)

(
(3s − 1)2(k−1) − (3s − 2)2(k−1))

= −9s(s − 1)(3s − 1)(3s − 2)(2s − 1)
k−2

∑
p=0

(3s − 1)2p(3s − 2)2(k−2−p),

which yields the desired factorization of hk+1, thereby proving Eq. (7.40) for all even
d ≥ 2. If d ≥ 6 is even, the trailing sum in Eq. (7.40) is nonempty and positive, so
that h does not have other real zeros than {0, 1

3 , 1
2 , 2

3 , 1}. For the proof of (2) assume
d = 2k + 1 for k ≥ 1. Then Lemma 50(4) tells us that g is strictly convex. Therefore,

g(s) + g(1 − s) ≥ 2g
( 1

2 s + 1
2 (1 − s)

)
= 2g

( 1
2
)
= 21−2k − 2, s ∈ R,

with equality if and only if s = 1
2 . On the other hand, by Lemma 50 (5), we know that

s 7→ g(s)
s is strictly increasing on (0, ∞), so that

g(s)
s

≤
g( 1

2 )
1
2

= 2g( 1
2 ) = 21−2k − 2, 0 < s ≤ 1

2
.

By combining both estimates, we obtain that

g(s) + g(1 − s) ≥ g(s)
s

, 0 < s ≤ 1
2

,

with equality only if s = 1
2 , thereby proving the claim because of the antisymmetry of

h.
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We are now in the position to enumerate all normalized eigenpairs of T in the case
n = 2.

Theorem 56. Let d ≥ 2 and n = 2, and let T = ∑3
k=1 v⃗⊗d

k according to Eq. (7.12).

(1) If d ∈ {2, 4}, each v⃗ ∈ R2 \ {0} with ∥v⃗∥2 = 1 is an eigenvector of T , with positive
eigenvalue

µ =

 3
2 , d = 2,
9
8 , d = 4.

(7.41)

(2) If d ≥ 6 is even, there are exactly 12 normalized eigenpairs (⃗v, µ) of T , given by{
(±v⃗k, 1 + 21−d) : 1 ≤ k ≤ 3

}
∪
{
(⃗vk + 2⃗vj)/

√
3, 3d/221−d) : 1 ≤ k ̸= j ≤ 3

}
,

(7.42)

and the corresponding eigenvalues are positive.

(3) If d ≥ 3 is odd, there are exactly 6 normalized eigenpairs (⃗v, µ) of T , given by{
(±v⃗k,±(1 − 21−d)) : 1 ≤ k ≤ 3

}
. (7.43)

Proof. First observe that Proposition 55 yields all eigenvectors from the convex hull
{s⃗v1 + (1 − s)⃗v2 : 0 ≤ s ≤ 1} of v⃗1 and v⃗2, which can then be mapped to normalized
eigenvectors within the conical hull {s⃗v1 + t⃗v2 : s, t ≥ 0} by means of Eq. (7.5). All
eigenvectors in the other three sectors of R2 are then found by rotation, i.e., by cyclic
shifts of v⃗1, v⃗2, v⃗3. As to (1), if d ∈ {2, 4}, Proposition 55 (1) shows that each v⃗ ∈
R2 \ {⃗0} is an eigenvector. If d = 2, we can represent each v⃗ ∈ R2 \ {⃗0} with ∥v⃗∥2 = 1
as v⃗ = αv⃗1 + βv⃗2 with α2 − αβ + β2 = 1. By using that ⟨⃗vj, v⃗k⟩ is equal to 1 if j = k and
equal to − 1

2 if j ̸= k, and by using v⃗1 + v⃗2 + v⃗3 = 0⃗, we can compute

T · v⃗ =
3

∑
k=1

⟨⃗v, v⃗k ⟩⃗vk =
(

α − β

2

)
v⃗1 +

(
β − α

2

)
v⃗2 +

(
−α

2
− β

2

)
v⃗3

=
3
2

αv⃗1 +
3
2

βv⃗2 =
3
2

v⃗.

If d = 4, a similar computation yields

T · v⃗⊗3 =
3

∑
k=1

⟨⃗v, v⃗k⟩3v⃗k =
(

α − β

2

)3
v⃗1 +

(
β − α

2

)3
v⃗2 +

(
−α

2
− β

2

)3
v⃗3

=
9
8
(α3 − α2β + αβ2 )⃗v1 +

9
8
(β3 − β2α + βα2 )⃗v2 =

9
8

v⃗.

For the proof of (2), let d ≥ 6 even. Then Proposition 55 (1) tells us that all normalized
eigenvectors from the conical hull of v⃗1 and v⃗2 are given by

v⃗1,
v⃗1 + 2⃗v2√

3
, v⃗1 + v⃗2 = −v⃗3,

2⃗v1 + v⃗2√
3

, v⃗2.
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The corresponding eigenvalues can be computed by using Eq. (7.19) and Eq. (7.5), they
read as

1 + 21−d, 3d/221−d, 1 + 21−d, 3d/221−d, 1 + 21−d,

respectively. In order to prove (3), assume that d ≥ 3 is odd. We can proceed in a similar
way as in (2). By Proposition 55 (2), the normalized eigenvectors from the conical hull
of v⃗1 and v⃗2 are given by v⃗1, v⃗1 + v⃗2 = −v⃗3, v⃗2, and the corresponding eigenvalues

1 − 21−d, −1 + 21−d, 1 − 21−d,

respectively, can be inferred from Eq. (7.19) and Eq. (7.5).

Corollary 57. If n = 2 and d ≥ 3 is odd, T = ∑3
k=1 v⃗⊗d

k is not odeco.

Proof. If d ≥ 3 is odd, there is no orthogonal set {w⃗1, w⃗2} ⊂ R2 of eigenvectors, so that
T cannot be orthogonally decomposable.

7.5 Eigenstructure for local dimension n = 3

If n = 3, the eigenstructure of the simplex tensor T = ∑4
k=1 v⃗⊗d

k is slightly more
complicated as in the previous case n = 2, but still amenable to a concrete analysis.
From Proposition 51 and Theorem 54, we can deduce the following theorem.

Theorem 58. Let d ≥ 2 and n = 3, and let T = ∑4
k=1 v⃗⊗d

k .

(1) If d = 2, each v⃗ ∈ R3 with ∥v⃗∥ = 1 is an eigenvector of T , with eigenvalue

µ =
4
3

. (7.44)

(2) If d ≥ 3 is odd, v⃗ ∈ R3 with ∥v⃗∥ = 1 is an eigenvector of T if and only if there exists a
nonempty subset K ⊂ {1, . . . , 4} of cardinality at most 3, such that

v⃗ =

∑
k∈K

v⃗k∥∥∥ ∑
k∈K

v⃗k

∥∥∥ =

∑
k∈K

v⃗k√
|K|(4−|K|)

3

, (7.45)

and the corresponding eigenvalue is given by

µ =

(
4 − |K|

)d−1 − |K|d−1

3d/2(|K|(4 − |K|))d/2−1 . (7.46)

We have µ = 0 if and only if |K| = 2, with three linearly independent eigenvectors√
3
4 (⃗v1 + v⃗2),

√
3
4 (⃗v1 + v⃗3),

√
3
4 (⃗v1 + v⃗4). (7.47)
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(3) If d ≥ 4 is even, v⃗ ∈ R3 with ∥v⃗∥ = 1 is an eigenvector of T if and only if one of the
following two conditions is met: Either there exists a nonempty subset K ⊂ {1, . . . , 4}
of cardinality at most 3, such that v⃗ has the form of Eq. (7.45), with positive eigenvalue

µ =

(
4 − |K|

)d−1
+ |K|d−1

3d/2(|K|(4 − |K|))d/2−1 . (7.48)

or there exist nonempty, disjoint subsets K1, K2 ⊂ {1, . . . , 4}, such that K1 ∪ K2 has
cardinality at most 3, and with s∗ ∈ [ 1

3 , 1
2 ) from Lemma 50 (5) and 0 < sk1 ≤ s∗ <

sk2 ≤ 1 with |K1|sk1 + |K2|sk2 = 1 and
g(sk1

)

sk1
=

g(sk2
)

sk2
, we have

v⃗ =

sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k∥∥∥sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k

∥∥∥ =

sk1 ∑
k∈K1

v⃗k + sk2 ∑
k∈K2

v⃗k√
4s2

k1
|K1|+4s2

k2
|K2|−1

3

(7.49)

with positive eigenvalue

µ =
|K1|(4sk1 − 1)d + |K2|(4sk2 − 1)d + 4 − |K1| − |K2|

3d/2(4s2
k1
|K1|+ 4s2

k2
|K2| − 1)d/2

. (7.50)

Proof. Claim (1) directly follows from Theorem 54 (1), and we have T = 4
31. For the

proof of (2), observe that Eq. (7.45) and Eq. (7.46) directly follow from part (2) of
Theorem 54. We have µ = 0 if and only if 4 − |K| = |K|, i.e., |K| = 2. This yields
(4

2) = 6 possibilities for K, K ∈
{
{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}
, but due to

∑4
k=1 v⃗k = 0⃗, there are three collinear pairs

(⃗v1 + v⃗2, v⃗3 + v⃗4), (⃗v1 + v⃗3, v⃗2 + v⃗4), (⃗v1 + v⃗4, v⃗2 + v⃗3)

of eigenvectors, from which we can deduce the linearly independent set in Eq. (7.47) of
normalized eigenvectors with zero eigenvalue. Claim (3) is part of Theorem 54 (3).

Example 59. If n = 3 and d = 4, Theorem 58 parametrizes two families of normalized eigen-
pairs. On the one hand, the 24 − 2 = 14 nonempty subsets

K ∈ {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1, 4}, {2, 3},

{2, 4}, {3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}}

of {1, . . . , 4} with at most 3 elements induce the normalized eigenvectors

v⃗ ∈ {v⃗1, v⃗2, v⃗3, v⃗4,
√

3
4 (⃗v1 + v⃗2),

√
3
4 (⃗v1 + v⃗3),

√
3
4 (⃗v1 + v⃗4),

√
3
4 (⃗v2 + v⃗3),

√
3
4 (⃗v2 + v⃗4),√

3
4 (⃗v3 + v⃗4), v⃗1 + v⃗2 + v⃗3, v⃗1 + v⃗2 + v⃗4, v⃗1 + v⃗3 + v⃗4, v⃗2 + v⃗3 + v⃗4}

from Eq. (7.45), which by means of ∑4
k=1 v⃗k = 0⃗ can be grouped into 7 pairs of collinear eigen-

vectors. The respective eigenvalues read as µ ∈ { 28
27 , 4

9 , 28
27}, occurring with multiplicity 4, 6, 4,
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respectively. On the other hand, a second family of normalized eigenpairs is given by pairs of
nonempty, disjoint subsets K1, K2 ⊂ {1, . . . , 4} with |K1| + |K2| ≤ 3 and the constraints
listed in Theorem 58 (3). There are 3 possibilities for the cardinalities |Kj| of Kj, namely(

|K1|, |K2|
)
∈
{
(1, 1), (1, 2), (2, 1)

}
.

By retracing Example 53, we see that only the case |K1| = 2 and |K2| = 1 and the correspond-
ing zeros

( 1
4 , 1

4 ), ( 1
4 , 1

2 ), ( 1
2 , 1

4 )

of h⃗ from Eq. (7.24) induce further normalized eigenvectors. Up to a normalization of
√

3
8 they

read

v⃗ ∈ {2⃗v1 + v⃗2 + v⃗3, 2⃗v1 + v⃗2 + v⃗4, 2⃗v1 + v⃗3 + v⃗4, 2⃗v2 + v⃗1 + v⃗3, 2⃗v2 + v⃗1 + v⃗4,

2⃗v2 + v⃗3 + v⃗4, 2⃗v3 + v⃗1 + v⃗2, 2⃗v3 + v⃗1 + v⃗4, 2⃗v3 + v⃗2 + v⃗4, 2⃗v4 + v⃗1 + v⃗2,

2⃗v4 + v⃗1 + v⃗3, 2⃗v4 + v⃗2 + v⃗3},

which can be grouped into 6 pairs of collinear eigenvectors, with eigenvalue µ = 8
9 each.

7.6 Robustness analysis

In this section we study the robustness of all normalized eigenvectors of a regular
simplex tensor T = ∑n+1

k=1 v⃗⊗d
k with respect to the tensor power iteration mapping φ

from Eq. (7.6), at least if n = 2 and n = 3.
In order to assess the attractivity of a given fixed point x⃗ ∈ Rn of the differentiable

mapping φ, we will determine the spectral radius of the Jacobian of φ at x⃗. We will
check whether the Jacobian of φ at x⃗ has spectral radius strictly less than one, which
indicates local contractivity of φ, or strictly greater than one, which indicates local
expansivity at least in one direction.

It is well-known, see also [338], that the Jacobian of φ at x⃗ ∈ Rn is given by

φ′(x⃗) =
d − 1∥∥T · x⃗⊗(d−1)

∥∥
(
1− (T · x⃗⊗(d−1))(T · x⃗⊗(d−1))⊤∥∥T · x⃗⊗(d−1)

∥∥2

)
T · x⃗⊗(d−2), (7.51)

where

T · x⃗⊗(d−2) :=
( n

∑
i1,...,id−2=1

Ti1,...,id−2,j,kxi1 · · · xid−2
xjxk

)
1≤j,k≤n

(7.52)

is the (d − 2)-fold partial contraction of T with x⃗⊗(d−2). In the matrix case d = 2 and
T = A, Eq. (7.51) is to be understood as

φ′(x⃗) =
1

∥Ax⃗∥

(
1− Ax⃗(Ax⃗)⊤

∥Ax⃗∥2

)
A. (7.53)
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If x⃗ ∈ Rn is a normalized eigenvector of T with eigenvalue µ, we obtain that

φ′(x⃗) =
d − 1
|µ| (1− x⃗x⃗⊤)T · x⃗⊗(d−2) =

d − 1
|µ|

(
T · x⃗⊗(d−2) − µx⃗x⃗⊤

)
, (7.54)

which for d = 2 and T = A reduces to

φ′(x⃗) =
1
|µ| (1− x⃗x⃗⊤)A. (7.55)

Before we start with the eigenvalue analysis of φ′ at a normalized tensor eigenvector
x⃗ ∈ Rn, we note that by the very structure of Eq. (7.54), we have

φ′(x⃗)x⃗ = 0⃗. (7.56)

Therefore, the spectral radius ρ(φ′(x⃗)) of the symmetric matrix φ′(x⃗) is determined
by the other eigenvectors of φ′(x⃗) which are contained in the orthogonal complement
span{x⃗}⊥.

7.6.1 Local dimension n = 2

In case that the local dimension n is equal to two, we will now explicitly compute the
spectral radius of the Jacobian of φ at each normalized eigenvector.

Theorem 60. Let d ≥ 2, and let T = ∑3
k=1 v⃗⊗d

k simplex tensor given by Eq. (7.12).

(1) If d ∈ {2, 4}, the spectral radius of φ′ at all normalized x⃗ ∈ R2 is equal to 1, i.e., there
are no robust eigenvectors.

(2) If d ≥ 6 is even, the spectral radius of φ′ at the normalized eigenvectors ±v⃗k is equal
to 3(d−1)

2d−1+1
, i.e., these normalized eigenvectors are robust. The spectral radius of φ′ at the

normalized eigenvectors (⃗vk + 2⃗vj)/
√

3, k ̸= j is equal to d−1
3 , i.e., those normalized

eigenvectors are non-robust.

(3) If d ≥ 3 is odd, the spectral radius of φ′ at all normalized eigenvectors ±v⃗k is equal to
3(d−1)
2d−1−1

, i.e., all normalized eigenvectors are non-robust for d = 3, and robust for d ≥ 5.

Proof. We begin with the proof of (1). If d = 2, we have T = ∑3
k=1 v⃗⊗2

k = 3
21. Therefore,

each x⃗ ∈ R2 \ {⃗0} with ∥x⃗∥ = 1 is an eigenvector of T with eigenvalue µ = 3
2 . By

Eq. (7.53), we obtain

φ′(x⃗) =
1

3/2
(1− x⃗x⃗⊤)

3
2
1 = 1− x⃗x⃗⊤,

which has eigenvalues 0 and 1, and thus spectral radius 1. If d = 4, Theorem 56 (1)
tells us that each x⃗ = (x1, x2) ∈ R2 \ {0} with x2

1 + x2
2 = 1 is an eigenvector of T ,
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and hence of T · x⃗⊗(d−2) ∈ R2×2, with eigenvalue µ = 9
8 . For w⃗ := (x2,−x1) ⊥ x⃗, we

compute that

(T · x⃗⊗2)w⃗ =
3

∑
k=1

⟨x⃗, v⃗k⟩2⟨w⃗, v⃗k ⟩⃗vk

= x2
1x2⃗e1 +

(
− x1

2
+

x2
√

3
2

)2(
− x2

2
− x1

√
3

2

)
(−1

2
e⃗1 +

√
3

2
e⃗2)

+
(
− x1

2
− x2

√
3

2

)2(
− x2

2
+

x1
√

3
2

)
(−1

2
e⃗1 −

√
3

2
e⃗2)

=

(
3
8 x2

1x2 +
3
8 x3

2

− 3
8 x3

1 −
3
8 x1x3

2

)
=

3
8

w⃗,

i.e., w⃗ is an eigenvector of T · x⃗⊗2 with eigenvalue 3
8 . By the orthogonality between x⃗

and w⃗, we obtain φ′(x⃗)w⃗ = 8
3 (1− x⃗x⃗⊤)(T · x⃗⊗2)w⃗ = w⃗, so that by Eq. (7.56), φ′(x⃗) has

eigenvalues 0 and 1, and thus spectral radius 1. For the proof of (2), let d ≥ 6 be even.
In this case Theorem 56 (1) tells us that there are two types of normalized eigenvectors,
namely ±v⃗k and (⃗vk + 2⃗vj)/

√
3 for 1 ≤ k ̸= j ≤ 3, with eigenvalues µ1 = 1 + 21−d and

µ2 = 3d/221−d, respectively. By using that ∑3
k=1 v⃗k v⃗⊤k = 3

21, we get

T · (±v⃗k)
⊗(d−2) =

3

∑
j=1

⟨⃗vk, v⃗j⟩d−2v⃗jv⃗⊤j = v⃗k v⃗⊤k +
1

2d−2 ∑
j ̸=k

v⃗jv⃗⊤j

=
(

1 − 1
2d−2

)
v⃗k v⃗⊤k +

3
2d−11.

Therefore, T · (±v⃗k)
⊗(d−2) has the normalized eigenvectors v⃗k and w⃗ ∈ span{v⃗k}⊥

with eigenvalues µ1 and 3
2d−1 , respectively. Hence, T · (±v⃗k)

⊗(d−2) and 1− v⃗k v⃗⊤k hav-
ing the same eigenvectors, φ′(±v⃗k) has the eigenvalues

0,
d − 1
|µ1|

3
2d−1 =

3(d − 1)
2d−1 + 1

.

The spectral radius of φ′(±v⃗k) is therefore given by

ρ
(

φ′(±v⃗k)
)
=

3(d − 1)
2d−1 + 1

,

which is strictly less than 1 if and only if d ≥ 6. Concerning the second eigenvector
family, we proceed in an analogous way. If 1 ≤ k ̸= j ≤ 3 are given, and if r ∈ {1, 2, 3}
is the index with {1, 2, 3} \ {k, j} = {r}, we have

⟨⃗vk + 2⃗vj, v⃗l⟩ =


0, l = k,
3
2 , l = j,

− 3
2 , l = r,
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which implies that

T · ((⃗vk + 2⃗vj)/
√

3)⊗(d−2) = 31−d/2
3

∑
l=1

⟨⃗vk + 2⃗vj, v⃗l⟩d−2v⃗l v⃗⊤l

=
3d/2−1

2d−2 (⃗vjv⃗⊤j + v⃗r v⃗⊤r ) =
3d/2

2d−11− 3d/2−1

2d−2 v⃗k v⃗⊤k .

Therefore, T · ((⃗vk + 2⃗vj)/
√

3)d−2 has the normalized eigenvectors (⃗vk + 2⃗vj)/
√

3 ⊥ v⃗k

and v⃗k with eigenvalues µ2 and 3d/2−1

2d−1 , respectively. Hence, T · ((⃗vk + 2⃗vj)/
√

3)⊗(d−2)

and 1− (⃗vk + 2⃗vj)(⃗vk + 2⃗vj)
⊤/3 having the same eigenvectors, φ′((⃗vk + 2⃗vj)/

√
3) has

the eigenvalues

0,
d − 1
|µ2|

3d/2−1

2d−1 =
d − 1

3
.

The spectral radius of φ′((⃗vk + 2⃗vj)/
√

3) is therefore equal to d−1
3 > 1, so that the

second family of normalized eigenvectors is not robust. It remains to prove (3). If
d ≥ 3 is odd, Theorem 56 (2) tells us that the only normalized eigenvectors of T are
given by ±v⃗k, with eigenvalues µ± = ±(1 − 21−d). By using that ∑3

k=1 v⃗k v⃗⊤k = 3
21,

similar to the reasoning in (2), we get

T · (±v⃗k)
⊗(d−2) = ±

3

∑
j=1

⟨⃗vk, v⃗j⟩d−2v⃗jv⃗⊤j = ±
(

v⃗k v⃗⊤k − 1
2d−2 ∑

j ̸=k
v⃗jv⃗⊤j

)
= ±

((
1 +

1
2d−2

)
v⃗k v⃗⊤k − 3

2d−11

)
.

Therefore, T · (±v⃗k)
⊗(d−2) has the normalized eigenvectors v⃗k and w⃗ ∈ span{v⃗k}⊥

with eigenvalues µ± and ∓ 3
2d−1 , respectively. Hence, T · (±v⃗k)

⊗(d−2) and 1 − v⃗k v⃗⊤k
having the same eigenvectors, φ′(±v⃗k) has the eigenvalues

0, ∓d − 1
|µ±|

3
2d−1 = ∓ 3(d − 1)

2d−1 − 1
.

The spectral radius of φ′(±v⃗k) is therefore given by

ρ
(

φ′(±v⃗k)
)
=

3(d − 1)
2d−1 − 1

,

which is strictly less than 1 if and only if d ≥ 5.

Example 61. In order to visualize the typical performance of the tensor power method in the
two-dimensional case, let us proceed as follows. Each point on the unit sphere in R2 is uniquely
determined by its angle (i.e., its argument), and we assign a color to each possible angle. For
each starting point v⃗(0) on the unit sphere, we iterate the tensor power method given by Eq. (7.7)
until convergence, and then paint v⃗(0) with the color of its limit point. The resulting domains
of attraction in the special case d = 7 are visualized in Fig. 7.3, together with the spanning
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Figure 7.3: Regions of attraction of the tensor power method if n = 2 and d = 7. The
figure is taken from Ref. [H].

vectors v⃗1, v⃗2 and v⃗3 of the regular simplex tensor T = ∑3
k=1 v⃗⊗d

k . It can be clearly seen that
there are six regions of attraction which moreover contain the vectors ±v⃗1,±v⃗2,±v⃗3 as their
respective centers. This observation is backed by Theorem 56 (3), which states that in this case
d = 7, all normalized eigenvectors of T are robust.

7.6.2 Local dimension n = 3

In the special case n = 3, we conduct two numerical experiments to assess the robust-
ness of a normalized eigenvector.

The first experiment is set up in a similar way as in the two-dimensional case. We as-
sign a unique color to each point on the unit sphere in R3, depending on the respective
spherical angles. In Fig. 7.4, we visualize the results of the tensor power iteration in the
cases d = 4 and d = 5. In each scenario, we can observe several regions of convergence
which correspond to the robust eigenvectors. The position of each eigenvector v⃗k is
indicated by a black dot. Each eigenvector v⃗k corresponds to two regions, as −v⃗k is
also an eigenvector.

7.7 Discussion and Conclusion

In this Chapter, we have analyzed the eigenstructure of real symmetric tensors. In
the special case of regular simplex tensors, where all weights λj in the symmetric
decomposition in Eq. (7.1) are equal and the v⃗j are induced by n + 1 equiangular
vectors in Rn, we have seen that some normalized eigenpairs are attractive fixed points
with respect to the tensor power iteration, whereas others are repelling. Therefore, as
long as the tensor power iteration is used without modification, some eigenvectors



7.7 Discussion and Conclusion 221

(a) d = 4 (b) d = 5

Figure 7.4: Regions of attraction of the tensor power method for n = 3 and d ∈ {4, 5}.
Each unit vector on upper half of the sphere is represented by its polar
angle φ ∈ [0, π) (y-axis) and its azimuthal angle ϑ ∈ [0, π] (x-axis). The
figure is taken from Ref. [H].

may not be detectable numerically. These observations induce several directions of
further research.

On the one hand, maintaining the viewpoint of the orthodox tensor power iteration,
it would be a natural generalization to study symmetric tensors whose symmetric de-
composition in Eq. (7.1) uses different weights λj and/or is induced by a set of more
than n + 1 equiangular vectors v⃗j or even a generic tight frame. Here, one might aim
at a complete characterization of those symmetric tensors which do have repelling
eigenvectors, or whose normalized eigenvectors are given by the vectors v⃗j alone. Par-
tial answers to the latter question have been given in [338]. Furthermore, the case of
complex-valued tensors seems to be open and nontrivial, because even the existence
and construction of equiangular tight frames are delicate tasks in large dimensions
(see Ref. [341, 342]).

On the other hand, algorithmic modifications could be employed to recover those
eigenvectors that are non-robust under the orthodox tensor power iteration. Shifted
tensor power iterations have been considered in [343], with good success, including a
characterization of which normalized eigenpairs can and cannot be found numerically
by such a scheme. However, it seems that further modifications are necessary to obtain
a full numerical tensor eigenvalue solver.





8 Shadow tomography with
generalized measurements

Recent advances in quantum technology require scalable techniques to efficiently ex-
tract classical information from a quantum system. However, traditional quantum state
tomography is limited to a handful of qubits and shadow tomography has been sug-
gested as a scalable replacement. While conventional shadow tomography is based on
outcomes of ideal projective measurements, here we suggest a version formulated for
generalized measurements. Based on the idea of the least-squares estimator, shadow
tomography with generalized measurements is both more general and simpler com-
pared to its original formulation. We provide a detailed study of the implication of
symmetries in shadow tomography and demonstrate how the optimization of mea-
surements for shadow tomography tailored towards a particular set of observables
can be carried out. This Chapter is based on Project [E] and Project [A].

8.1 Motivation

Quantum technology is based on our ability to manipulate quantum mechanical states
of well-isolated systems. More precisely, it is necessary to encode, to process and to
extract information from the states of the system. Extracting information in this con-
text means to design and perform measurements on the system such that observables
or other properties of the system such as its entropy can be inferred. Naively, one may
attempt to perform tomography of the state of the system. This amounts to making
a sufficiently large number of different measurements on the system such that the
density operator describing the state can be inferred [344–348]. However, when con-
sidering how the density operator is used later on, the entire information contained
in the density operator is often not needed [349]. Even more, it is impractical to even
write down the density operator when the number of qubits is large, since the dimen-
sion of the many-qubit system increases exponentially. In addition, the parameters
appearing in the density operator cannot be directly accessed due to the probabilistic
character of quantum theory and thus must be estimated by measuring the system.
More precisely, as an informative quantum measurement is destructive, many identi-
cally prepared samples are required to estimate accurately even a single parameter of
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the state. In practice, one is typically interested in certain properties of the quantum
state, such as the mean values of certain observables or its entropy. Indeed, the pre-
diction of many expectation values of a quantum state is indispensable for variational
quantum algorithms [350,351] such as the variational quantum eigensolver [352]. Aim-
ing at directly inferring the observables, bypassing the reconstruction of the density
operator, shadow tomography has been theoretically proposed [349]. Based on this
scheme, a practical procedure to realize that aim was suggested [353], which has at-
tracted a lot of attention in the research of quantum information processing. The idea
of the protocol is simple. Traditionally, quantum state tomography is thought to be
only useful given accurate enough statistics of the measurements. However, state es-
timators such as the least-squares estimator can actually be carried out in principle
for arbitrary diluted data [225], a fact well established in data science and machine
learning [306, 354]. Indeed, a single data point can contribute a noisy estimate of the
state and the final estimated state is obtained by averaging over all the data points.
As one would expect, when the data are diluted, the estimated quantum state can
be highly noisy and far away from the targeted actual state in the high-dimensional
state space. This noisy estimation is, however, sufficient to predict certain observables
or properties of the quantum states accurately [349, 353]. Crucially, estimation of ob-
servables and certain properties of the quantum states for single data points can also
be processed without writing down the density operator explicitly [353]. In order to
collect the data, it was suggested to perform random unitaries from a certain chosen
set of unitaries on the system and perform a standard ideal measurement afterwards.
Clearly, this is equivalent to randomly choosing a measurement from a predefined set.
Various applications of this technique have been found in energy estimation [355,356],
entanglement detection [357, 358], metrology [359], analyzing scrambled data [360]
and quantum chaos [361]. Further developments to improve the performance of the
scheme [362–366] and generalization to channel shadow tomography have also been
proposed [367, 368].

In this Chapter we propose a general framework for shadow tomography with gen-
eralized measurements. In Section 8.2 we formulate our more general scheme and
demonstrate that it contains the theoretical framework of the randomization of uni-
taries as a special case. So far, there is a single proposed procedure for shadow tomog-
raphy with generalized measurements [369]. The suggested protocol in Ref. [369] is,
however, based on an application of the original construction of classical shadows
upon manually synthesizing the postmeasurement states for generalized measure-
ments. On the contrary, we show that classical shadows for generalized measurements
can be derived from the least-squares estimator, which requires no further assump-
tions on the post-measurement states. In Section 8.3 we provide a detailed study of
the implication of symmetries in shadow tomography. We proceed in Section 8.4 by
demonstrating how the optimization of measurements for shadow tomography tai-
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lored towards a particular set of observables can be carried out. Afterwards, we prove
in Section 8.5 that the so-called octahedron measurement is optimal if the targeted
observables are all the projections on arbitrary pure states of a qubit. Finally, we show
in Section 8.6 how one can take the effect of noise in the measurements into account.

8.2 Formulating shadow tomography with POVMs

In this Section we will introduce a formulation of shadow tomography which is based
on generalized measurements, thus extending the original proposal in Ref. [353]. Fur-
ther we will demonstrate its connection to the least-squares estimator and explain how
expectation values of measurements can be obtained.

8.2.1 Shadow tomography with generalized measurements

Consider a quantum system of dimension D, which can be either a single qudit or
many qubits, D = 2n. Suppose that a generalized measurement E = (E1, ..., EN) with
N ∈ N outcomes is performed on the system. By virtue of the Born rule, each gener-
alized measurement defines a map ΦE, which maps a density operator ϱ ∈ B(CD) to
a probability distribution over the set of measurement outcomes. More precisely,

ΦE : MD(C) → RN , ϱ 7→ ΦE(ϱ) = (Tr
[
ϱEj
]
)N

j=1. (8.1)

When the measurement E is performed on the quantum system, an outcome j ∈
{1, ..., N} is obtained according to this distribution. Typical measurements in quan-
tum mechanics are generalized measurements whose effects Ej are rank-1 projections,
referred to as ideal measurements, see also Section 1.1.2. For example, the measure-
ment of the Pauli operator σ1 = X is an ideal measurement, whose effects are projec-
tions on the spin states in the x direction, that is, {|x+⟩⟨x+|, |x−⟩⟨x−|}. On the other
hand, randomizing three Pauli measurements σ1, σ2, σ3 is equivalent to a generalized
measurement with effects proportional to the projections on the spin states in the x, y
and z direction, i.e., (1/3){|x±⟩⟨x±|, |y±⟩⟨y±|, |z±⟩⟨z±|}. Since these effects form an
octahedron on the Bloch sphere, we refer to them as the octahedron measurement.

8.2.2 Shadows from the least-squares estimator

An unbiased linear estimator for a quantum state ϱ is a map χ : RN → MD(C) which
maps a probability distribution to a quantum state such that (χ ◦ ΦE) : MD(C) →
MD(C) acts as the identity on MD(C). In particular, this means that as long as the
statistics ΦE(ϱ) of a quantum state ϱ with respect to E can be exactly measured, χ

allows for an exact construction of the underlying quantum state ϱ. In the case that the
generalized measurement E = (Ej)

N
j=1 forms a basis for the operator space MD(C), that
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is, E is informationally complete but not overcomplete, then ΦE is invertible and one
can choose χ = Φ−1

E as an unbiased linear estimator. In the case that the generalized
measurement E is overcomplete, i.e., the effects span the operator space but it is not a
minimal generating set, the map χ is not uniquely defined. More precisely, in this case
ΦE is not surjective, such that there exist probability distributions in RN that give rise
to no state ϱ. In this situation, it is a natural choice to use the least-squares estimator
as a replacement for the inverse. For a distribution p⃗ ∈ RN the assigned state is given
by

χLS( p⃗) = arg min
τ

L(τ), where L(τ) =
N

∑
j=1

(Tr
[
τEj
]
− pj)

2. (8.2)

In order to carry out the minimization in Eq. (8.2), we consider the expansion of δL =

L(τ + δτ)− L(τ) in the first order of the small variation δτ. This yields

δL = 2
N

∑
j=1

(Tr
[
τEj
]
− pj)Tr

[
Ejδτ

]
. (8.3)

A necessary condition for the minimality of L is that δL = 0 for all choices of δτ.
Consequently, it must then hold that

N

∑
j=1

(Tr
[
τEj
]
− pj)Ej = 0. (8.4)

Using the definition of ΦE in Eq. (8.1) one can rewrite Eq. (8.4) as

Φ†
E[ΦE(τ)− p⃗] = 0 ⇒ χLS = (Φ†

EΦE)
−1Φ†

E, (8.5)

where Φ†
E : RN → MD(C) is the adjoint map of ΦE. Note that in the case of ΦE

invertible, one has χLS = Φ−1
E . Remarkably this estimator is linear, which implies that

the estimated state over the whole data set can be split into the sum of the estimated
states for the single data points. Indeed, a single observation of an outcome k can
be associated with an elementary statistics vector denoted by q⃗k := (δkj)

N
j=1 ∈ RN .

Note that in the following we always label deterministic distribution by q⃗ and general
distributions by p⃗. Repeating the measurement M times on the system results in a
string of outcomes {k j}M

j=1. The statistics of the whole data set of a string of outcomes
is given by

p⃗ =
1
M

M

∑
j=1

q⃗kj
⇒ χLS( p⃗) =

1
M

M

∑
j=1

χLS (⃗qkj
). (8.6)

Further, one finds that Φ†
E (⃗qk) = Ek and if we define the measurement channel as

CE(ϱ) = Φ†
EΦE one obtains that CE(ϱ) = ∑N

j=1 Tr
[
ϱEj
]
Ej. Following the notation in

Ref. [353], given a single data point q⃗k one can use this point to obtain a noisy estimate
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of ϱ, which is called classical shadow and is given by ϱ̂k := χ(⃗qk). Given observation k,
the classical shadow can be written as

ϱ̂k = χLS (⃗qk) = [(Φ†
EΦE)

−1](Φ†
E (⃗qk)) = C−1

E (Ek). (8.7)

It is easy to see that for an infinite number of runs of the measurement the average
of the classical shadows converges to the underlying quantum state ϱ. More precisely,
if k j ∈ {1, ..., N} denotes the measurement outcome of the kth repeat and f (j, M)

is the number of observations of outcome j ∈ {1, ..., N} given M repetitions of the
measurement in total, we have

1
M

M

∑
j=1

ϱ̂kj
= C−1(

N

∑
j=1

f (j, M)

M
Ej)

M→∞−−−→ C−1(
N

∑
j=1

Tr
[
Ejϱ
]
Ej) = C−1(C(ϱ)) = ϱ.

(8.8)

However, it is important to emphasize that the convergence in Eq. (8.8) does not
guarantee that C−1

E is a good estimator. More precisely, the convergence of the es-
timator holds true even if CE is replaced by any other invertible channel DE(ϱ) =

∑N
j=1 Tr

[
ϱEj
]
τj for arbitrary operators τj. This highlights that one should not associate

the effect Ej with the state of the system after the measurement. That C−1
E is a good es-

timator is supported by the fact that it is actually the least-squares estimator. It should
also be noted that, despite being unbiased, in general, ϱ̂k is not unit trace. The estima-
tor ϱ̂k is only unit trace if all the effects Ej that appear in the generalized measurement
E share the same trace. The linearity of the estimator in Eq. (8.7) is crucial to shadow
tomography. For instance, this allows one to estimate linear observables with single
data points and later on average the whole data set.

8.2.3 Estimation of observables and sample complexities

Each of the classical shadows given by Eq. (8.7) serves as an intermediate processed
data point for further computation of observables. Given an observable X, each of the
classical shadows ϱ̂k gives an estimate of the mean value ⟨X⟩ via x̂ = Tr[ϱ̂kX]. With the
whole data set of observations {k j}M

j=1, we obtain from the convergence of the classical
shadows in Eq. (8.8) that (1/M)∑M

j=1 x̂kj
converges to ⟨X⟩ for M → ∞. In this way,

the mean value ⟨X⟩ can be estimated. For further refinement using the median-of-
means estimation and estimation of polynomial functions of the density operator, see
Ref. [353] and Chapter 9. In total, we end up with the following protocol for shadow
tomography with a generalized measurement E = {Ej}N

j=1 for the estimation of a set
of observables X = {Xj}m

j=1.

(1) Given the measurement E, the classical shadows {ϱ̂j}N
j=1 are classically computed

using Eq. (8.7) or Eq. (8.14) depending on whether or not E admits some sym-
metry.
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(2) The quantum system is prepared in the designed state for investigation and the
measurement E is carried out. This is repeated on the system M times and the
corresponding string of outcomes {k j}M

j=1 is recorded.

(3) The mean values of the observables in the targeted set X are estimated via ⟨Xi⟩ ≈
(1/M)∑M

j=1 Tr
[
ϱ̂kj

Xi

]
using the string of observations {k j}M

j=1 obtained in the
second step.

As noted in Ref. [353], the asymptotic rate of convergence of the estimation is related to
the variance of the estimator. For an observable X the variance of the estimator can be
computed as Var[x̂k] = ∑N

j=1 Tr
[
ϱ̂jX

]2 Tr
[
ϱEj
]
− ⟨X⟩2. Ignoring the second term results

in an upper bound for the variance, and finally assuming the worst case scenario, i.e.,
a maximisation over ϱ, one arrives at the definition of the shadow norm of X [353].
More precisely,

Var[x̂k] ≤
N

∑
j=1

Tr
[
ϱ̂jX

]2 Tr
[
ϱEj
]
≤ max

ϱ
Tr

[
ϱ

N

∑
j=1

Tr
[
ϱ̂jX

]2Ej

]

= λmax[
N

∑
j=1

Tr
[
ϱ̂jX

]2Ej] =: ||X||E,

(8.9)

where λmax denotes the maximal eigenvalue of the corresponding operator. The es-
timation procedure applies not only to an observable, but equally well to a set of
observables X. Assuming that the observables by a certain normalisation all have the
same physical unit, the quality of shadow tomography with a generalised measure-
ment E can be characterised by the maximal shadow norm,

κ2
E(X) := max {||X||2E : X ∈ X}. (8.10)

Being an upper bound of the variance of the estimator, the smaller κ2
E(X), the better

the estimator accuracy. However, in practice the targeted state could be very different
from the worst case scenario assumed in obtaining the shadow norm. Therefore, it
might also be informative to consider the average of the variance with respect to a
certain ensemble of states.

8.2.4 Relation to randomized ideal measurements

As already pointed out, the often-used scheme of randomized ideal projective mea-
surements can be considered as a special realization of the generalized measurement
framework presented in Section 8.2.1. Here we will discuss how the corresponding
generalized measurement can be constructed explicitly given a randomized measure-
ment scheme. Let U be a random unitary drawn from an ensemble U of unitaries,
which is implemented on the physical system before making a measurement in the
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computational basis {|b⟩}D
b=1. This scenario corresponds to a random projective mea-

surement in the basis {U†|b⟩}D
b=1. The whole procedure effectively simulates a gener-

alized measurement with effects

E = { 1
|U |U

†|b⟩⟨b|U : U ∈ U , b = 1, ..., D}, (8.11)

where |U | is the total number of unitaries in U . Mathematically, the resulted gener-
alized measurement is a convex combination of the chosen ideal measurements. In
general, this is a well-known method for simulating generalized measurements with
ideal ones, known as preprocessing [39]. However, it should be noted that not every
generalized measurement admits such a decomposition [370].

The suggested scheme of shadow tomography using a single generalized measure-
ment brings several interesting new perspectives. Indeed, the randomized unitary de-
scription is heavily over-parametrised, i.e., having much more parameters than neces-
sary. For instance, the unitary ensemble of the Clifford group on a qubit contains 24 ele-
ments, and yet is equivalent to a single generalized measurement with 6 outcomes cor-
responding to the six directions of the three standard axes. This over-parametrisation
makes it difficult to keep track over the parameters and prevents optimisation. Using
generalized measurements also brings a new perspective on the implementation of
the procedure. A generalized measurement can be implemented by a measurement on
the ancillary system after an appropriate coupling to the objective system. While this
can still be challenging in practice, it avoids changing measurement settings, which
requires frequent (re)calibration of the setup.

8.3 Symmetries and generalized measurements

It has been observed that, for certain classes of measurements, the inverse of the
measurement channel C−1

E is particularly simple [353, 371]. We now show that this
simplicity originates from the symmetry of the corresponding generalized measure-
ment [372–374]. More precisely, we will show how the formula for the classical shad-
ows in Eq. (8.7) can be drawn just from consideration of symmetry. In order to get an
intuition of the argument, we will first present the example of the octahedron general-
ized measurement over a qubit, see Fig. 8.1. Picking a vertex of the octahedron which
corresponds to the effect Ej, we consider the symmetry rotations of the octahedron that
leave this vertex invariant. These are rotations by multiples of π/2 around the axis go-
ing through the chosen vertex. Noticeably, there is a single projection, together with
its complement, that is invariant under these rotations. This projection is the operator
corresponding to the state of the spin pointing to the vertex itself. More precisely, this
means that the effect Ej is uniquely specified by the symmetry. It then follows that also
the corresponding classical shadow ϱ̂j is invariant under these rotations, implying that
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Figure 8.1: Example of generalized measurements defined by polytopes on the Bloch
sphere: octahedron (N = 6), tetrahedron (N = 4), cube (N = 8), cubocta-
hedron (N = 12), icosahedron (N = 12), dodecahedron (N = 20), icosido-
decahedron (N = 30). The figure is taken from Ref. [E].

it must be a linear combination of Ej and the identity operator 1, i.e., ϱ̂j = aEj + b1 for
some coefficients a, b.

Let us now consider the general case of an arbitrary generalized measurement E =

(E1, ..., EN), where Ej ∈ B(CD). The unitary group acting on the space CD will be
denoted by UD(C). We say that E is symmetric [372] if there exists a subgroup G of
the permutation group over {1, ..., N}, also called symmetric group and denoted by
SN , and a unitary representation U : G → UD(C) such that Eg(k) = UgEkUg−1 . If
E is symmetric under G, then the associated map ΦE : MD(C) → RN is covariant
under the action of G, that is, ΦE(UgϱUg−1) = g[ΦE(ϱ)], where g acts on a probability
distribution p⃗ by [g( p⃗)]j = pg−1(j). Indeed, one has

ΦE(UgϱUg−1) = {Tr
[
UgϱUg−1 Ej

]
}N

j=1 = {Tr
[
ϱUg−1 EjUg

]
}N

j=1

= {Tr
[
ϱEg−1(j)

]
}N

j=1 = g[ΦE(ϱ)].
(8.12)

As a consequence, Φ†
E is also covariant under G, i.e., one has Φ†

E(g( p⃗)) = UgΦ†
E(ϱ)Ug−1

for all distributions p⃗ ∈ RN . This in turn implies that CE = Φ†
EΦE and in particular its

inverse C−1
E are also covariant under the action of the group G,

C−1
E (UgXUg−1) = UgC−1

E (X)Ug−1 , ∀ X ∈ B(CD) hermitian. (8.13)

For the octahedron measurement any outcome can be related to any other by a sym-
metry transformation. Such measurements are called uniform, which means that G
acts transitively on the outcomes. In particular, this implies that Tr

[
Ej
]

is indepen-
dent of the index j and we denote α = Tr

[
Ej
]
. Following the procedure introduced in
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Ref. [372], we consider the stabilizer subgroup Gj over j, that is, the subgroup of G
that leaves the label j invariant. It directly follows from the definition of a symmetric
measurement that the corresponding effect Ej commutes with all the unitary operators
of the stabilizer group U(Gj) := {Ug | g ∈ Gj}. Because C−1

E is covariant under G, it is
clear that ϱ̂j = C−1

E (Ej) also commutes with U(Gj).
Further, we have seen that for the octahedron the only projections commuting with

all of the unitary operators from the stabilizer group at a vertex are the spin projec-
tion in the direction of the vertex and its complement. In general, if for all outcomes
j of the measurement the set of all operators that commute with the stabilizer U(Gj)

is spanned by a single projection Πj and its complement 1− Πj, one says that E is
rigidly symmetric [372]. In other words, E is rigidly symmetric if the representation U
restricted to any stabilizer subgroup over j, Gj, has exactly two irreducible represen-
tations. This is the characterization of the property that an operator commuting with
U(Gj) can only be a linear combination of Ej and 1. Hence, if E is rigidly symmetric,
then

ϱ̂j = aEj + b1. (8.14)

To compute the coefficients a, b notice that

CE(ϱ̂k) = aCE(Ek) + bCE(1) = a
N

∑
j=1

Tr
[
EkEj

]
Ej + bα1. (8.15)

Further, the expression ϱ̂k = C−1
E (Ek) implies CE(ϱ̂k) = Ek such that the left-hand side

of Eq. (8.15) can be identified with Ek. Taking the trace of Eq. (8.15) and the trace of it
after multiplying the two sides with Ek one obtains

α = aα2 + bαD, β = aγ + bα2, (8.16)

where β = Tr
[
E2

k
]
, γ = ∑N

j=1 Tr
[
EkEj

]2 which are both independent of k due to the
uniformity. The coefficients a, b can be explicitly computed as

a =
Dβ − α2

Dγ − α3 , b =
γ − αβ

Dγ − α3 . (8.17)

It should be noted that a large class of uniform and rigidly symmetric measurements
beyond qubits exists and is studied in Ref. [372]. The corresponding parameters of the
classical shadows are presented in Tab. 8.1.

8.4 Optimization of measurements

Given a set of observables X, one would like to find the generalized measurement
E such that the maximal shadow norm is minimized. More precisely, one aims to
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d ST N Comments a b

2

8

6 Octahedron 9 −1
8 Cube 12 −1

12 Cuboctahedron 18 −1

16

12 Icosahedron 18 −1
20 Dodecahedron 30 −1
30 Icosidodecahedron 45 −1

3

24 21 28 −1
25 12 csMUB 16 −1

27

45 60 −1
60 80 −1

4

28 12 Real MUB 9 − 1
2

29

20 csMUB 25 −1
40 50 −1
80 100 −1

30 300 225 − 1
2

31

60 75 −1
480 600 −1

Table 8.1: Parameters for the inverse of the measurement channels for symmetric gen-
eralized measurements. Here d refers to the dimension of the system, ST
is the Shephard–Todd number of the corresponding symmetry group and
N is the number of outcomes of the measurement. The table is taken from
Ref. [D].

compute

E∗ := arg min
E

κ2
E(X). (8.18)

Restricted to random unitaries, this optimization is impractical to carry out. Extending
to all generalized measurements, this is simply an optimization over a convex domain.
For the minimization in Eq. (8.18) we implemented simulated annealing and found
that the obtained optima are highly reliable. We start with the discussion of the single
qubit case, which, despite being simple, is also the basis to understand the case of
many qubits.

8.4.1 The single qubit case

Consider a single qubit. For the observables that can be contained in the set X we con-
sider three different possibilities. First, we take the observables which correspond to
the four projections given by the orange tetrahedron in Fig.8.2(a). The squared shadow
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norm κ2
E(X) in this case is 2 for the tetrahedron generalized measurement defined ex-

actly by these four projections, and 3/2 for the octahedron measurement. The opti-
mizer suggests that the tetrahedron measurement plotted in violet in Fig. 8.2(a), ob-
tained by centrally inverting the orange tetrahedron, is optimal with κ2

E(X) = 1.
Second, we consider as observables the projections onto the eigenstates of the Pauli

observables, see the orange octahedron in Fig. 8.2(b). Considering as a generalized
measurement E the octahedron measurement itself, one obtains κ2

E(X) = 3/2. Interest-
ingly, the optimizer shows that κ2

E(X) = 3/2 can also be obtained with the tetrahedron
generalized measurement of four outcomes indicated in violet in Fig. 8.2(b).

Third, we consider as observables random projections distributed according to the
Haar measure on the Bloch sphere. Fig. 8.2(c) presents the shadow norms obtained
by the optimizer with respect to the number of observables. For a small number of
observables, e.g., |X| ≤ 15, the optimizer always finds measurements with a given
number of outcomes significantly better than the standard tetrahedron (N = 4) or
the octahedron (N = 6) measurements. It is interesting to see that if the number of
outcomes is fixed to be 6 or 8, the shadow norm κ2

E(X) converges to the octahedron
measurement with a value of 3/2. This indicates that the octahedron measurement is
special. As we will prove in Section 8.5, it turns out that the octahedron measurement
is optimal if X is the set of all projections on arbitrary pure states of the qubit.

8.4.2 Tensoring construction and the multi-qubit case

Shadow tomography is especially designed for the cases where the system is large.
Consider the case where the system consists of n qubits, corresponding to the total
dimension of D = 2n. In this case, shadow tomography can be performed by making
possibly different generalized measurements {E(1), ..., E(n)} on each of the qubits, each
described by a collection of Nj effects, that is, E(j) = {E(j)

k }Nj
k=1. Theoretically, this

corresponds to a measurement of a generalized measurement Etot on the whole n-
qubit system with each effect labeled by a string of outcomes k⃗ = (k(1), ..., k(n)) such
that

Etot
k⃗

= E(1)
k(1)

⊗ E(2)
k(2)

⊗ · · · ⊗ E(n)
k(n)

. (8.19)

We can now apply our previous analysis to the measurement defined by the effects
in Eq. (8.19). In fact, such a string k⃗ of outcomes corresponds simply to the classical
shadow

ϱ̂tot
k⃗

= ϱ̂
(1)
k(1)

⊗ ϱ̂
(2)
k(2)

⊗ · · · ⊗ ϱ̂
(n)
k(n)

, (8.20)

where ϱ̂
(j)
k(j) is the classical shadow corresponding to the measurement E(j) on the jth

qubit. Crucially, the typical observables of the system can be easily estimated without
explicitly computing the classical shadows in the form of a D× D matrix, which would



234 8 Shadow tomography with generalized measurements

be impractical. Indeed, an observable X on the system is often of the form X = X(1) ⊗
X(2) ⊗ · · · ⊗ X(n). Then, a single string of outcomes k⃗ gives rise to a single estimate of
⟨X⟩ as

Tr
[
ϱ̂
(1)
k(1)

X(1)
]

Tr
[
ϱ̂
(2)
k(2)

X(2)
]
· · ·Tr

[
ϱ̂
(n)
k(n)

X(n)
]
. (8.21)

The final estimate of ⟨X⟩ is as usual obtained by averaging over all data points. Observe
that it is not necessary to construct the large density operator of the whole system.
Moreover, the shadow norm of such a factorized observable also factorizes, i.e.,

||X||E = ||X(1)||E(1) ||X(2)||E(2) · · · ||X(n)||E(n) . (8.22)

We can also use our approach to optimize the generalized measurements for many-
body systems. For many qubits, the number of parameters to be optimized in Eq. (8.18)
increases exponentially. To simplify, one can assume that for a many-qubit system, the
generalized measurement is factorized as a tensor product over the qubits as discussed
above. Moreover, if there is no preference among the qubits, one can also assume that
E(1) = E(2) = · · · = E(n).

The complexity of the computation under these assumptions is only linear in the
number of qubits and the number of observables. As an example, we consider a sys-
tem of up to n = 64 qubits. We choose |X| = n observables which are products of
different component observables on single qubits. The component observables on sin-
gle qubits are randomly distributed according to the Haar measure. As the qubits
are equivalent, one might anticipate that the optimal factorizing measurement for the
qubits is similar to those that are optimized separately for each qubit. The simula-
tion confirms this expectation. In Fig. 8.2(d), for small number of qubits (n ≤ 10),
the optimizer with N = 6 and N = 8 gives significantly lower shadow norms for the
choice of tetrahedron or octahedron measurements. On the other hand, observe that as
the number of qubits increases, the obtained optimal shadow norm converges to that
given by the octahedron measurement. This points to the speciality of the octahedron
measurement on qubit-based platforms.

8.5 Optimality of measurements

We have already mentioned that the octahedron measurement plays a distinguished
role and we have seen in Section 8.4.1 that the squared shadow norm with respect
to that measurement for any projection is identically 3/2. Using this, we will now
prove that if the targeted observables are all the projections on arbitrary pure states of
the qubit, the optimal measurement would be the octahedron measurement assuming
equal trace of the effects. For a pure state |λ⟩ ∈ C2 we denote by Πλ the associated
projection operator, that is, Πλ = |λ⟩⟨λ|. We consider the problem of predicting all
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the expectation values of these projections based on classical shadows generated by a
measurement E. We characterize the predicting power of the shadow tomography by
the maximal shadow norm among all these projections,

max
λ

||Πλ||2E = max
λ

max
ϱ

N

∑
k=1

⟨λ|ϱ̂k|λ⟩2 Tr[ϱEk]. (8.23)

To show that the octahedron measurement is optimal, we assume that the measure-
ment E has uniform trace. This is typically not a restrictive assumption, since starting
with a measurement with effects of non-uniform traces, by virtually splitting each
effect in an appropriate number of identical smaller effects, a measurement with
uniform traces can be achieved. Indeed, suppose that E is a measurement with dif-
ferent traces for each effect, αj = Tr

[
Ej
]
. Then, one can always approximate αj by

a rational number. Consequently, one can choose a sufficient small number ϵ such
that αj/ϵ = Nj are all integers. Then one splits an effect Ej into Nj identical effects
(Ej/Nj, ..., Ej/Nj) and obtains a new measurement of ∑N

j=1 Nj effects. By construction,
this new measurement is uniform. If the measurement E is uniform, this implies that
the classical shadows ϱ̂k are of unit trace. In fact, one can derive an explicit formula for
the classical shadows in the Bloch representation. Recall that any hermitian operator
B(C2) ∋ X can be identified with a real vector x⃗ ∈ R4 such that X = (1/2)∑3

j=0 xjσj

with xj = Tr
[
ϱσj
]
. Notice that for two operators X, Y represented by x⃗ and y⃗ respec-

tively one has Tr[XY] = (1/2)∑3
j=0 xjyj. By the uniformity of the effects, each effect Ej

can be represented by a vector of the form (2/N)(1, r⃗j), where r⃗j ∈ R3 with ||⃗rj|| ≤ 1
and ∑N

j=1 r⃗j = 0⃗. An explicit calculation shows that

χ =

(
1 1 · · · 1

H−1 r⃗1 H−1 r⃗2 · · · H−1 r⃗N

)
with H =

1
N

N

∑
j=1

r⃗j r⃗⊤j . (8.24)

Here it is important to note that the columns of χ are exactly the classical shadows ϱ̂k

in the Bloch representation. This explicit formula for the classical shadow allows us to
explicitly compute the shadow norm. For maximizing the shadow norm in Eq. (8.23),
take the particular choice of ϱ = |λ⟩⟨λ| as an ansatz, which yields the lower bound

max
λ

||Πλ||2E ≥ max
λ

N

∑
j=1

⟨λ|ϱ̂j|λ⟩2⟨λ|Ej|λ⟩. (8.25)

Then, by replacing the maximum over the pure states λ by the average with respect to
the Haar measure µ on the Bloch sphere S , one obtains the further lower bound

max
λ

||Πλ||2E ≥
∫
S

N

∑
j=1

Tr
[
(ϱ̂j ⊗ ϱ̂j ⊗ Ej)Π⊗3

λ

]
dµ(λ). (8.26)

By employing Schur-Weyl duality for the unitary group [375], one can show that∫
S

Π⊗3
λ dµ(λ) =

1
12

[P(1,2) + P(2,3) + P(3,1)], (8.27)
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where P(1,2), P(2,3) and P(3,1) denote the operators that permute the corresponding
tensor terms in (C2)⊗3. Combining Eq. (8.26) and Eq. (8.27) one arrives at

max
λ

||Πλ||2E ≥ 1
12

N

∑
j=1

(Tr
[
ϱ̂2

j

]
Tr
[
Ej
]
+ 2 Tr

[
ϱ̂j
]

Tr
[
ϱ̂jEj

]
), (8.28)

where we have used the identities

Tr
[
(ϱ̂j ⊗ ϱ̂j ⊗ Ej)P(1,2)

]
= Tr

[
ϱ̂2

j

]
Tr
[
Ej
]
,

Tr
[
(ϱ̂j ⊗ ϱ̂j ⊗ Ej)P(2,3)

]
= Tr

[
ϱ̂j
]

Tr
[
ϱ̂jEj

]
,

Tr
[
(ϱ̂j ⊗ ϱ̂j ⊗ Ej)P(3,1)

]
= Tr

[
ϱ̂j
]

Tr
[
ϱ̂jEj

]
.

(8.29)

Using the explicit Bloch representation for Ej and ϱ̂j, one obtains

max
λ

||Πλ||2E ≥ 1
12

[3 +
1
N

N

∑
j=1

(⃗r⊤j H−2 r⃗j + 2⃗r⊤j H−1 r⃗j)]. (8.30)

Further, it is important to note that

1
N

N

∑
j=1

r⃗⊤j H−1 r⃗j =
1
N

N

∑
j=1

Tr
[

H−1 r⃗ j⃗r⊤j
]
= Tr

[
H−1H

]
= 3 (8.31)

and by a similar reasoning one obtains

1
N

N

∑
j=1

r⃗⊤j H−2 r⃗j =
1
N

N

∑
j=1

Tr
[

H−2 r⃗ j⃗r⊤j
]
= Tr

[
H−2H

]
= Tr

[
H−1

]
. (8.32)

Taking Eq. (8.30),Eq. (8.31) and Eq. (8.32) together one ends up with

max
λ

||Πλ||2E ≥ 1
12

(9 + Tr
[

H−1
]
). (8.33)

Notice that H is positive and denote its positive eigenvalues by ξ1, ξ2, ξ3. Then one
has Tr

[
H−1] = ξ−1 + ξ−2 + ξ−3 ≥ 9/(ξ1 + ξ2 + ξ3) = 9/ Tr[H]. Moreover, Tr[H] =

(1/N)∑N
j=1 r⃗⊤j r⃗j ≤ 1. Finally we arrive at

max
λ

||Πλ||2E ≥ 3
2

. (8.34)

We have already seen that the inequality in Eq. (8.34) is saturated for the octahedron
measurement, in which case, H = (1/3)1. This demonstrates that the octahedron
measurement is an optimal choice for the chosen set of observables.

8.6 Mitigation of measurement noise

Measurements that appear in realistic experimental setups are not ideal. The imperfec-
tion is due to various sources of noise in setting up the parameters of the measurement



8.6 Mitigation of measurement noise 237

Figure 8.2: Targeted observables and optimal generalized measurements. (a) For ob-
servables corresponding to four projections defined by the orange tetrahe-
dron, the measurement corresponding to the inverted tetrahedron measure-
ment (violet) is optimal. (b) For observables corresponding to eigenprojec-
tions of the Pauli observables σ1, σ2 and σ3 (orange octahedron), the violet
tetrahedron measurement is optimal. (c) Optimal shadow norms given by
the optimizer (labeled Opt with the number of measurement outcomes) as
a function of the number of single-qubit projection observables randomly
distributed according to the Haar measure. (d) Similarly, optimal shadow
norms given by the optimizer as a function of the number of qubits. The
observables are tensor products of single-qubit projections distributed ac-
cording to the Haar measure. In (c) and (d), the shadow norms for the
tetrahedron and octahedron measurements are also shown. The figure is
taken from Ref. [E].

devices, or the resolution and the accuracy of readout signals [28, 376]. For example,
suppose that the measurement E is not perfectly implemented and the device fails to
couple to the system with probability p. In this case, the device generates it output at
complete random. This can be modeled by the effects that are depolarized as

Ej 7→ (1 − p)Ej + p
1

N
, (8.35)

where E = (E1, ..., EN). Another example is the readout error, which is particularly
important for superconducting qubits [377–379]. As the name suggests, readout noise
refers to errors that occur due to a misreading of the outcomes in the computational
basis. Typically, such errors result from decoherence during the measurement process
and from overlapping support between the measured physical quantities that corre-
spond to the |0⟩ and the |1⟩ state. Errors of that kind have recently attracted a lot of
attention and different error mitigation schemes were developed [378–381]. One com-
mon model for readout noise is the tensor product noise, where one assumes that the
noise acts independently on each qubit. Note that this model does not take into ac-
count cross-talk during the readout, i.e., correlated noise between multiple qubits. We
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define q+ to be the probability that outcome 0 in the computational basis is misread
as 1 and q− to be the probability that outcome 1 in the computational basis is misread
as 0. In the case of one qubit, this can be summarised in a matrix of the form

A =

(
1 − q+ q−

q+ 1 − q−

)
(8.36)

and Aij is the probability that outcome j is correctly read as i. For a 2-outcome mea-
surement E = (E0, E1) intended, the noise A will result in a new actual measure-
ment Ẽ with effects of the form Ẽ0 = A00E0 + A01E1 and Ẽ1 = A10E0 + A11E1. For
the case of randomisation of three Pauli observables, i.e., the octahedron measure-
ment, each pair of effects corresponding to the same Pauli observable suffers from
this modification due to noise, and the effects of the generalized measurement become
1/3{(1 − q±) |t±⟩⟨t±|+ q∓ |t∓⟩⟨t∓| , t = x, y, z}. The error rate averaged over the two
bases is denoted by q := (q+ + q−)/2 and the asymmetry between them is character-
ized by ϵ := (q+ − q−)/(q+ + q−). Our formalism directly takes measurement error
correction into account, once the noisy effects with an appropriate model are used
instead of the ideal ones. To access the quality of the shadow tomography after error
correction, we choose |X| = 128 pure state projections distributed according to the
Haar measure as observables. The dependence of the maximal shadow norm κ2

E(X) on
the noise parameters for the tetrahedron and the octahedron measurements is shown
in Fig. 8.3. It is interesting to see that in either case the maximal shadow norm κ2

E(X)

depends only weakly on the small error rate, showing the robustness of shadow to-
mography against noise. However, an increasing error results in an increased shadow
norm and this in a higher number of necessary samples. This is a typical behavior for
error mitigation protocols where one obtains an unbiased estimator even in the pres-
ence of noise at the cost of an increased variance [32]. In general, the model depends
on the chosen implementation, i.e., on the dilation of the measurement. More precisely,
often the generalized measurement is implemented by an ideal measurement on n an-
cillary qubits after appropriately coupling to the system. For n ancillary qubits, each
can be affected by a different noise and hence the error matrix for the tensor prod-
uct model is given by A = A1 ⊗ · · · ⊗ An where Ak depends on the parameters q(k)+

and q(k)− . The precise effects for the noisy generalized measurement however depend
on how precisely the outcomes on the ancillary qubits represent the outcomes of the
generalized measurement.

8.7 Conclusion and discussion

In this Chapter we have presented a formulation of shadow tomography based gener-
alized measurements which is more general and simpler than the original formulation.
We showed how expectation values of observables can be estimated without the need
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Figure 8.3: Effects of depolarizing noise and simple readout error noise on the maxi-
mal shadow norm of 128 pure state projections distributed according to the
Haar measure. The figure is taken from Ref. [E].

of reconstructing the full density operator and explained how the symmetry of the
generalized measurement simplifies the calculation of the classical shadows. In ad-
dition, we proved the optimality of the octahedron measurement with respect to a
particular class of targeted observables. Finally, we discussed how noise can affect the
shadow reconstruction and how its effect on the estimated expectation values can be
mitigated.

The new formulation via generalized measurements sheds light on various aspects
of shadow tomography itself, opening a range of interesting questions for further re-
search. An extension of this framework to channel tomography would be of direct
interest. Further, it would also be important to see whether the technique of deran-
domization could be incorporated into this framework. Such a protocol would then
start with some generalized measurement E, corresponding to a randomized mea-
surement scheme, which is then adaptively modified, yielding a new measurement
Ẽ which performs at least as well as the initial one [362]. The optimality of the oc-
tahedron measurement for shadow tomography for a qubit-based system suggests a
connection between geometry and shadow tomography. Investigation of this connec-
tion and extension for higher dimensional systems would be an interesting direction.
Also the construction of optimal measurements for nonlinear functions of the density
operator, or shadow tomography of a specific set of density operators, is in demand
for further applications of shadow tomography.





9 Error mitigated classical shadows

Near-term and early fault-tolerant quantum computers are only able to prepare noisy
quantum states deviating from the targeted ideal, noise-free state. However, one often
aims to predict properties of the ideal state while just having access to a noisy device.
Here we consider error mitigation techniques such as probabilistic error cancellation,
zero-noise extrapolation and symmetry verification, which have been developed for
mitigating errors in single expected value measurements, and generalize them for mit-
igating errors in classical shadows. These classical shadows provide a description of
the quantum state that can be efficiently stored and processed. The probabilistic error
cancellation approach turns out to be most natural and we develop a thorough theo-
retical framework including rigorous sample complexities. Naturally, the sample com-
plexity for simultaneously predicting many linear properties of the ideal state turns
out to be a combination of those two. Further, we showcase in numerical simulations
a broad range of useful practical applications of our approach. This Chapter is based
on Project [B]. The main contribution of the author of this thesis to this work are the
proofs of the theorems and lemmas.

9.1 Motivation

Quantum computers and simulators are developing rapidly and can already be said
to perform certain demonstration tasks that are very difficult even with the largest
supercomputers [28, 382–384]. It is, however, still to be seen whether the technology
can achieve true practical quantum advantage, i.e., the point when these machines
can solve an otherwise impossible computational task that is relevant in fields like
quantum field theory [350], condensed matter physics [385] or material science [22,
386–388].

Quantum computers turn out to be highly vulnerable to noise. While quantum error
correction provides a comprehensive solution, its implementation poses an extreme
engineering challenge [31]. It is generally expected that in the near future some form
of early practical quantum advantage just beyond the reach of classical computing
could be achieved even with noisy quantum computers [32–34,389]. This prospect has
motivated the development of a broad range of quantum error mitigation protocols,
which has grown into an entire subfield [32]. While the range of error mitigation
techniques is very diverse, they collectively aim to mitigate the effects of gate errors in



242 9 Error mitigated classical shadows

measuring the expectation value of observables, which is a key subroutine in quantum
computing [390].

Another major challenge is that near-term quantum algorithms typically require an
extremely high number of circuit repetitions in order to suppress shot noise [351,390–
392]. To overcome this problem, the concept of classical shadows was introduced [349,
353], representing another promising approach in achieving quantum advantage. These
classical shadows allow one to extract many properties of the quantum state without
having to repeat the measurement many times. This is achieved by performing mea-
surements in random bases. The measurement outcomes as bit strings, along with
the indices of the measurement bases, form a classical shadow, which is an efficient
classical representation of the entire quantum state. Using the technique of classical
shadows, various promising applications have been proposed [393, 394] that greatly
benefit from the rich information one can access via classical shadows. For instance, in
shadow spectroscopy [394], one aims to estimate many time-dependent expected val-
ues from time-evolved quantum states, which then allows to reveal accurate spectra
through the use of efficient classical post-processing.

In this Chapter we aim to amalgamate quantum error mitigation techniques with
classical shadows. It is worth noting that prior works have considered fruitful connec-
tions between quantum error mitigation and classical shadows. For instance [395], one
can use classical shadows obtained from a noisy quantum state to perform purification-
based error mitigation [396] offline, with only access to a single copy of the state but
at an exponential complexity in the number of qubits. Further, the mitigation of er-
rors in the measurement phase has similarly been addressed [366,397]. However, these
methods assume that the task involves extracting information from a predetermined
quantum state ϱ, such as the output of a quantum device. Here we consider the practi-
cally more relevant scenario where the state ϱ is prepared by a noisy quantum circuit,
and one aims to mitigate the impact of errors induced by the noisy quantum gates. Our
focus is thus to extract properties of an ideal state ϱid, which would be generated by a
noise-free quantum computer. This approach can be seen as a generalization of quan-
tum error mitigation techniques which generally aim to extract an ideal expectation
value Tr[Oϱid] when only noisy measurements Tr[Aϱ] are available. In contrast, our
techniques are not restricted to a single expectation value but instead provide efficient
classical representations of the ideal quantum state ϱid through classical shadows, see
Fig. 9.1. While we cover most classes of conventional error mitigation techniques in-
cluding probabilistic error cancellation (PEC), zero-noise extrapolation (ZNE) and sym-
metry verification (SV), we find that PEC is the most natural to be used in combination
with classical shadows. Further, we showcase in numerical simulations a broad range
of useful practical applications that will play a crucial role in both near-term and in
the early fault-tolerance era. These examples comprise: (a) determining error mitigated
energies in variational quantum circuits, which constitutes a fundamental subroutine
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Figure 9.1: In this Chapter we assume that we only have access to a noisy quantum
computer (left) such that every circuit run (left, yellow area) gets corrupted
by gate noise, represented by the red gate elements. We aim to extract prop-
erties of a state that would be prepared by an ideal quantum computer
(right) with the use of powerful error mitigation techniques. Our approach
allows us to obtain classical shadows of the ideal quantum state (noise-free
shadow) from which we can predict many ideal properties in a classical
post-processing step (middle blue area, classical computer). In our formal-
ism, we run a series of distinct quantum circuit variants (left, yellow area)
that cast different classical shadows (noisy shadows) due to the gate noise
and due to our intentional recovery operations. Under the assumption that
the device’s error characteristics have been appropriately learned, we can
estimate the noise free shadow (middle) via classical post-processing. The
figure is taken from Ref. [B].

in near-term applications, (b) predicting many properties simultaneously in ground
state preparations to extract two-point correlators or to accelerate the training of cir-
cuit parameters, and (c) extracting error mitigated local entanglement entropies of a
ground state that is prepared by a noisy quantum circuit.

This Chapter is organized as follows. We begin by introducing our notation and reca-
pitulating the concepts of classical shadows and probabilistic error cancellation in Sec-
tion 9.2. In Section 9.3 we introduce probabilistic error canceled shadows and provide
a rigorous analysis of its performance. In addition, we discuss classical post-processing
algorithms for the pivotal scenario of Pauli basis measurements. We proceed in Sec-
tion 9.4 by combining further error mitigation techniques with classical shadows, in-
cluding zero-noise extrapolation and symmetry verification. Finally, in Section 9.5, we
demonstrate a broad range of useful practical applications, that will play a crucial role
in the near-term era.
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9.2 Introduction and notation

9.2.1 Classical shadows

The original idea of classical shadow tomography is to apply to the quantum system
of N qubits, prepared in a specific state ϱ, a unitary Qj randomly sampled from a
certain ensemble Q. Typically the ensemble corresponds to just rotating the individ-
ual qubits with single-qubit unitaries (Pauli basis measurements) or applying Clifford
rotations. This is followed by a measurement in the computational basis, yielding a
bit string b ∈ {0, 1}N as the outcome. This bit string is logged along with the mea-
surement basis forming the index l = (j, b). The collection of these indices from many
independent runs of the protocol then allows us to construct a classical shadow of the
state. A classical shadow provides a description of the quantum state that can be clas-
sically efficiently stored and manipulated, bypassing the computationally-expensive
reconstruction of the full density matrix [353].

Mathematically, we describe a particular measurement outcome l = (j, b) by a pos-
itive operator as El=pjQ†

j |b⟩⟨b|Qj. The probability ql = Tr[ϱEl ] of this outcome is a
product of a (classical) probability pj of choosing a unitary Qj and the probability of
observing the bit string b given the rotated measurement basis. The shadow protocol
can therefore be compactly described by a set E of NE = 2N |Q| positive operators
given by

E = {El=pjQ†
j |b⟩⟨b|Qj, with Qj ∈ Q, b ∈ {0, 1}N}. (9.1)

The collection E of positive operators El sums up to the identity and therefore con-
stitutes a valid generalized measurement [29]. It has been shown that formulating
shadow tomography using POVMs brings various advantages [398], see also Section 8.
Particularly relevant to our purpose, this formulation allows one to automatically ac-
count for errors in the measurement phase, which include both read-out errors and
gate errors in the implementation of the random unitaries Qj [28,31,366,376,397]. This
is carried out by simply adjusting the effects El appropriately [398, 399]. As the er-
rors in the measurement phase are subsumed into the POVM, we need only focus on
mitigating errors in the state-preparation phase.

Given the above generalised measurement, a single outcome l = (j, b) can be used
to construct a snapshot as ϱ̂l = C−1

E (El) where the channel CE is defined by

CE(ϱ) =
NE

∑
l=1

Tr[ϱEl ]El , (9.2)

which is invertible if E spans the whole space of observables [353, 398]. The snapshot
can be thought of as single-shot estimator of the prepared state ϱ. In an experiment
one repeats the above single-shot procedure Ns times, which produces a collection of
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outcomes {l1, l2, . . . , lNs}. Accordingly, a collection of snapshots can be constructed

S(ϱ, Ns) = {ϱ̂l1 , ϱ̂l2 , . . . ϱ̂lNs
},

which is called a classical shadow of ϱ. The classical shadow allows us to obtain an
unbiased estimate for the density operator in the sense ϱ = El [ϱ̂l ].

Crucial to the advantage of shadow tomography is that when the measurement E
consists of independent measurements on individual qubits, the snapshots ϱ̂l also fac-
torize into a tensor product over the qubits. It is therefore sufficient to store single-qubit
tensoring factors of ϱ̂l , instead of the exponentially large matrix itself [353]. Func-
tions of the density operator with appropriate locality, such as correlation functions
or the Rényi entropy, can also be efficiently estimated [353]. As an example, for the
experimentally-friendly case of randomized noiseless Pauli basis measurements on
the qubits, the snapshot corresponding to l = (j, b) is given explicitly by

ϱ̂l =
N⊗

i=1

[
3(Q(i)

j )†|b(i)⟩⟨b(i)|Q(i)
j − 1

]
. (9.3)

Above, b(i) is the ith bit of the N-qubit measurement outcome bit string b, and Q(i)
j

is the ith single-qubit basis transformation in the applied N-qubit Pauli basis trans-
formation Qj. In the following, we focus on this practically-pivotal randomized Pauli-
measurement scheme. However, our general formalism can immediately be applied
to other unitary ensembles such as matchgates [400], Clifford circuits [353] and be-
yond [401].

9.2.2 Probabilistic error cancellation

PEC is one of the most broadly studied error mitigation techniques [32, 381, 402] and
indeed has been implemented experimentally [33, 34]. It allows us to remove errors in
an expected value measurement under the assumption that we have a precise knowl-
edge of all the quantum gates’ error characteristics. In particular, one proceeds by
decomposing the channel U of an ideal unitary gate into a linear combination of noisy
physical gate operations Gk as U = ∑k γkGk. Negative quasiprobabilities γk < 0 are
required to formally implement the inverse of a noise channel. Thus, the above op-
eration is nonphysical, similarly as the inverse measurement channels of the shadow
protocols are nonphysical operations. For this reason, PEC only applies the decom-
position in classical post-processing, at the level of expected values and allows us to
compute ideal expected values of an observable O as a linear combination of noisy
ones as ∑k γk Tr[OGk|0⟩⟨0|].

Efficient methods have been developed for accurately learning approximate noise
models in practice [403–406]. The simplest such approach exploits the fact that noise
models are approximately local and one can thus efficiently characterize the local noise
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channel of each gate and invert them classically. Furthermore, non-local noise models
of the form ΛG = eL can be efficiently learned for the case of sparse Pauli operations
L which allows us to invert the channel trivially as ΛG−1 [405]. One then randomly
applies circuit variants that implement the operations Gk in the inverse noise channel.
Here we assume that an exact decomposition for each gate is known in advance and
thus U is supported only on the space spanned by the noisy operations Gk.

Assume now that an ideal quantum state ϱid := Ucirc|0⟩⟨0| is prepared by an ideal
circuit Ucirc = Uν ◦ · · · ◦ U2 ◦ U1 of ν gates. By introducing the vector notation k =

(k1, k2, . . . , kν), we can compactly represent the decomposition of this circuit into noisy
gate sequences as Ucirc = ∑k gkGk. Here the index k indexes all possible gate sequences
as

Gk = G(1)
k1

G(2)
k2

· · · G(ν)
kν

, gk = γ
(1)
k1

γ
(2)
k2

· · · γ
(ν)
kν

, (9.4)

and as shown above the corresponding quasiprobabilities gk factorize (the superscript

indexes individual gates, e.g., G(1)
k1

stands for the decomposition of U1). We now define
the quasiprobability decomposition of a quantum circuit.

Definition 62. The quasiprobability decomposition of an ideal circuit Ucirc is the set G :=
{(gk,Gk)}k. The associated probability distribution is p(k) := |gk|/||g||1 and here the norm
factorizes as ||g||1 = ∏ν

k=1 ||γ(k)||1 when the circuits are of a product form as in Eq. (9.4).

The above quasiprobability decomposition has been used for estimating the ideal
expected value of an observable O, Tr[OUcirc|0⟩⟨0|], by randomly sampling the noisy
expected values sign(gk)Tr

[
OGk|0⟩⟨0|

]
according to the probability distribution p(k)

and linearly combining them in a classical post-processing step [381, 402].

9.3 Probabilistic error canceled shadows

While PEC has been used in the literature to remove the bias in expectation value
measurements [32], here we apply it to classical shadows in order to obtain an effi-
cient, classical representation of the entire, ideal and noise-free state ϱid. While this
procedure even allows us to estimate the full density matrix ϱid, we will focus mostly
on efficient practical applications such as simultaneously predicting many properties
of ϱid. At a technical level, PEC shadows is a combination of two random processes,
i.e., sampling circuit variants Gk and sampling the bit strings and the basis transfor-
mations that form a shadow. We start by generalizing the PEC technique such that the
quasiprobability decomposition allows us to obtain an unbiased estimator of the full
density matrix.
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9.3.1 The protocol

Lemma 63. Given a quasiprobability decomposition G from Definition 62, by sampling the
noisy circuits Gk according to the probability distribution p(k) we obtain an unbiased estimator
of the ideal density matrix ϱid := Ucirc|0⟩⟨0| as

ϱ̂id = ||g||1 sign(gk)Gk|0⟩⟨0| (9.5)

in the sense that Ek[ϱ̂id] = ϱid.

Proof. The statement directly follows from the fact that ||g||1sign(gk)Gk is an unbiased
estimator for the ideal operation Ucirc. In particular, as we sample k according to the
probability distribution p(k), we obtain the expectation as

E
k
[ϱ̂] = E

k
[||g||1 sign(gk)Gk(|0⟩⟨0|)]

= ∑
k

p(k)||g||1 sign(gk)Gk(|0⟩⟨0|).
(9.6)

The above expression can be further simplified by collecting the constant factors as
p(k)||g||1sign(gk) = sign(gk)|gk| = gk and thus we obtain the quasiprobability decom-
position

E
k
[ϱ̂] = ∑

k
gkGk(|0⟩⟨0|) = Ucirc(|0⟩⟨0|) = ϱid. (9.7)

The above estimator has a clear operational meaning. First, choose a multi-index k
randomly according to the probability distribution p(k) and run the noisy quantum
circuit Gk. Second, the output state Gk|0⟩⟨0| is a density matrix that we multiply by
sign(gk) and with the norm ||g||1. Finally, from a formal perspective, the mean of
these matrices is an estimate of the ideal density matrix ϱid.

Regrettably, the above protocol is purely formal as the multiplication with negative
quasiprobabilities is non physical and could only be achieved in post-processing, e.g.,
after fully reconstructing the density matrix. We thus exploit classical shadows as a
powerful tool for obtaining an efficient classical description of the states which can
then be naturally assigned negative quasiprobabilities in classical post-processing. In-
deed, snapshots are not physical density matrices either, as it is apparent in Eq. (9.3).
We now state our protocol that serves as an unbiased estimator of the ideal state.

Theorem 64. Given a quasiprobability decomposition G of the ideal circuit Ucirc from Defini-
tion 62, and a classical shadow protocol with the POVM measurement E from (9.1), we define
PEC shadows as the set H := {(gk,Gk, El)}k,l and define the corresponding PEC snapshot as

ϱ̂id := ϱ̂k,l = ||g||1 sign(gk)C−1
E (El). (9.8)
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We will often use the notation ϱ̂id to abbreviate ϱ̂k,l as it is an unbiased estimator of the ideal
density matrix ϱid such that E[ϱ̂id] = E

k,l
[ϱ̂k,l ] = ϱid.

Proof. Using the abbreviation ϱ̂id ≡ ϱ̂k,l we calculate the expected value as

E
k,l
[ϱ̂id] = ∑

k,l
pk ql ϱ̂k,l , (9.9)

where pk = |gk|/||g||1 is the probability of choosing the circuit variant Gk from Defini-
tion 62 and we also use the probability ql = Tr

[
Gk(|0⟩⟨0|)El

]
of observing the POVM

outcome l given that the circuit variant Gk was implemented. We obtain the expected
value by substituting these in Eq. (9.9) as

E
k,l
[ϱ̂id] = ∑

k,l

|gk|
||g||1

Tr
[
Gk(|0⟩⟨0|)El

]
||g||1 sign(gk)C−1

E (El). (9.10)

Here we can collect and simplify all constant factors as ||g||1
|gk |
||g||1

sign(gk) = gk and
simplify the expected value as

E
k,l
[ϱ̂id] = ∑

l
tr
[(

∑
k

gkGk
)(
|0⟩⟨0|

)
El

]
C−1

E (El)

= ∑
l

Tr[ϱidEl ]C−1
E (El) = C−1

E (∑
l

Tr[ϱidEl ]El)

= (C−1
E ◦ CE)(ϱid) = ϱid.

(9.11)

Above in the first equality we simply used the linearity of the trace operation while in
the second equality we used that by definition ∑k gkGk|0⟩⟨0| = ϱid. We finally substi-
tuted the definition of the measurement channel CE(·) given by Eq. (9.2).

The averaging in Theorem 64 happens not only over the effects El indexed by l (all
basis transformations and measurement outcomes), but additionally we average over
all circuit variants indexed by k. The reason is that the measurement E = {El}l is not
performed on a fixed input density matrix ϱ as in conventional shadow tomography
but rather on the quasiprobability decomposition of the ideal state ϱid ∝ Gk|0⟩⟨0|. Let
us now summarize the resulting experimental protocol.

(1) randomly choose a multi-index k according to the probabilities p(k) and store
the sign(gk)

(2) uniformly and randomly choose a unitary rotation Qj ∈ Q and store its index j

(3) execute in a quantum computer the gate sequence Gk, the unitary rotation Qj,
perform a measurement in the standard basis and finally register its outcome b

(4) each stored index (sign(gk), j, b) uniquely identifies a classical snapshot ϱ̂k,l =

||g||1 sign(gk)C−1
E (El) where we recall that El is a POVM effect with the index

l = (j, b) from Eq. (9.1)
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(5) repeat the procedure and collect Ns classical snapshots to build a classical shadow
of the ideal state S(ϱid, Ns) = {(ϱ̂id)1, (ϱ̂id)2, . . . , (ϱ̂id)Ns}

The classical data set S(ϱid, Ns) can then be classically post-processed offline and we
detail explicit algorithms for predicting local properties in Section 9.3.3. Note that PEC
shadows produce a distribution of snapshots that is different from directly applying
conventional shadow tomography to a noise-free state ϱid, albeit with an identical
mean. The reason is that each circuit variant Gk in (9.5) yields a different distribution
of classical snapshots.

9.3.2 Rigorous performance guarantees

We first consider the pivotal practical application of predicting error mitigated ex-
pected values of observables O via the estimator ô = Tr[Oϱ̂id]. A key observation is
that in error mitigation techniques the ability to predict noise-free expected values
comes at the cost of an increased statistical variance which implies an increased num-
ber of circuit repetitions.

Lemma 65. We define the shadow norm with respect to the generalized measurement E as

||O||2E := ||
Ns

∑
l=1

Tr [ϱ̂lO]2El ||∞, (9.12)

where || · ||∞ denotes the maximal eigenvalue of the corresponding operator and ϱ̂l = C−1
E (El).

For the specific case of Pauli-basis measurements and observables that are q-local Pauli strings,
the squared shadow norm is given as 3q.

Proof. When formulating shadow tomography with generalized measurements, the
case of uniformly sampled Pauli-basis measurements corresponds to the so-called oc-
tahedron POVM [398], where the effects on a single qubit are given by

Ej =
1
3

Q†
j |b⟩⟨b|Qj, (9.13)

where b ∈ {0, 1} is a single bit and Qj is one of the three basis transformation uni-
taries that allow us to measure in the bases of the Pauli X, Y and Z operators. More
precisely, Qj is a rotation mapping |0⟩, |1⟩ to |t−⟩, |t+⟩, e.g., E1 = 1

3 Q†
1|0⟩⟨0|Q1,

E2 = 1
3 Q†

1|1⟩⟨1|Q1 with Q1 = exp(−i(π/4)Y) a rotation around the Y-axis. Thus
the effect is equivalent to 1

3 |t±⟩⟨t±| for t ∈ {x, y, z} where |t±⟩ denotes the eigenvector
corresponding to eigenvalue ±1 of the single-qubit Pauli-t operator. It follows from
the symmetry of the measurement [398] that the shadows can be computed directly
from the effects as

ϱ̂l = 9El − 1. (9.14)
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For the case of a system consisting of n qubits where one aims to estimate local ob-
servables of the form O = O1 ⊗ · · · ⊗ On, and the measurement is given by the tensor
product of local measurements E(1)

j1
⊗ · · · ⊗ E(n)

jn , with E(j) the POVM acting on the jth
qubit, the shadow norm similarly factorizes as ||O||2E = ∏j ||Oj||2E(j) . We now consider
the case when the single-qubit operator Oj acting on the jth qubit is a Pauli operator X,
Y or Z and thus tr

[
Oj
]
= 0. By the previous discussion, it is sufficient to only consider

a single qubit, thus we will suppress the index j. This yields the shadow norm

||O||2E = ||
6

∑
l=1

Tr[ϱ̂lO]2El ||∞

= ||∑
t±

1
3

Tr[(3|t±⟩⟨t±|)O]2|t±⟩⟨t±| ||∞

= 3||∑
t±
⟨t±|O|t±⟩2|t±⟩⟨t±| ||∞.

(9.15)

Now observe that if O, T ∈ {X, Y, Z} with |t±⟩ the normalized eigenvectors of T to
eigenvalues ±1, we have due to the anticommutation relation δO,T = 1

2 ⟨t±|{O, T}|t±⟩ =
±⟨t±|O|t±⟩. This implies that the sum in Eq. (9.15) collapses to the identity 1. Hence
we obtain ||O||2E = 3. When the single-qubit observable is the identity O = 1 we obtain
the shadow norm ||O||2E = 1. Consequently, for q-local Pauli strings acting on n qubits
the squared shadow norm is ||O||2E = 3q, thus independent of n.

In practice it is often the case that the set of targeted observables possess a cer-
tain structure. If this is the case, small variations to the classical shadow protocol in
which the measurement basis is sampled uniformly at random can yield a substantial
improvement with respect to sample complexity [356]. For instance, in electronic struc-
ture problems where one aims to, e.g., determine the ground-state of molecules using
a quantum algorithm, one typically starts by transforming the molecular Hamiltonian
into a qubit Hamiltonian as a sum of Pauli observables by means of an appropriate
mapping. Common types of such mappings are Jordan-Wigner (JW), Bravyi-Kitaev (BK)
and the parity (P) transformation [22]. Here it is important to note that depending
on the encoding, the different Pauli operators X, Y and Z appear with different fre-
quencies in the corresponding qubit observable. For instance, in the BK encoding, the
appearance of Pauli-Y operators is suppressed compared to X and Z. Consequently,
measuring the different Pauli bases uniformly on each qubit, i.e., using the octahedron
measurement, would be very wasteful. A similar statement concerning sample com-
plexity as in Lemma 65 can be made for the case of locally biased shadows [356, 362].
Let us assume that the bias is px, py, pz, where pt is the probability for performing the
measurement in Pauli-t basis. The corresponding POVM would be Et± = pt|t±⟩⟨t±|.
Then the classical shadow based on the measurement outcome ±1 would be

ρ̂t± = p−2
t Et± − µ − p2

t
2ptµ

1, (9.16)
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where µ = p2
x + p2

y + p2
z . With this, given a Pauli string, one can directly calculate the

shadow norm.

Lemma 66. Given an observable O and the PEC snapshot ϱ̂id from Theorem 64, the variance
of the estimator ô = Tr[Oϱ̂id] can be upper bounded as

Var[ô] ≤ ||g||21 ||O||2E, (9.17)

where || · ||2E is the shadow norm of the observable O with respect to the measurement E as
defined in Lemma 65. When O is a q-local Pauli string and we use Pauli basis measurements,
then ||O||2E = 3q as explained in Lemma 65.

Proof. Note that Var[ô] = E[(ô − E[ô])2]. As ϱ̂id is an unbiased estimator for the
ideal state, we have E[Tr(Oϱ̂id)]

2 = ⟨O⟩2 and thus Var[ô] = E[Tr(Oϱ̂id)
2] − ⟨O⟩2 ≥

E[Tr(Oϱ̂id)
2]. Hence it remains to bound the term

E
k,l

[
Tr(Oϱ̂id)

2
]
= E

k,l

[
Tr
[
O ||g||1sign(gk)C−1

E (El)
]2 ] (9.18)

= ||g||21 E
k,l

[
Tr
[
OC−1

E (El)
]2]. (9.19)

We can now calculate the expectation by recalling that pk = |gk|/||g||1 is the proba-
bility from Definition 62 of choosing the circuit variant Gk and ql = Tr

[
Gk(|0⟩⟨0|)El

]
is the probability of observing the POVM outcome l. Thus the above expectation is
calculated as

||g||21 ∑
k,l

|gk|
||g||1

× Tr
[
Gk(|0⟩⟨0|)El

]
× Tr

[
OC−1

E (El)
]2

= ||g||21 ∑
l

Tr
[
Ω(|0⟩⟨0|)El

]
× Tr

[
OC−1

E (El)
]2.

Above we introduced Ω := ||g||−1
1 ∑k |gk|Gk which is actually a permissible quantum

channel [29], i.e., a CPTP map, since by its definition it is a convex combination of
CPTP maps Gk. This expression is similar to the one in Ref. [353].

The above expression can be upper bounded by replacing the initial state |0⟩⟨0| by
a maximization over all states σ. Thus we obtain the upper bound

E
k,l

[
Tr(Oϱ̂id)

2
]

≤ ||g||21 max
σ

∑
l

Tr
[
Ω(σ)El

]
× Tr

[
OC−1

E (El)
]2

= ||g||21 max
σ

Tr
[
Ω(σ)∑

l

(
Tr
[
Oϱ̂l

]2El

)]
,

(9.20)

where we moved the summation inside the trace. By introducing the abbreviation
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Γ = ∑l Tr[Oϱ̂l ]
2El we obtain the upper bound as

E
k,l

[
Tr(Oϱ̂id)

2
]
≤ ||g||21 max

σ
Tr
[
Ω(σ)Γ

]
≤ ||g||21 max

σ
Tr
[
σΓ
]
= ||g||21 ||Γ||∞ = ||g||21 ∥O||2E.

Above we used that Ω(σ) is a valid density matrix and thus one can upper bound
the trace by the operator norm Tr

[
σΓ
]
≤ ||Γ||∞ as the largest singular value of Γ,

which is by definition the shadow norm from Lemma 65. Since ⟨O⟩2 ≥ 0, we obtain
Var[ô] ≤ ||g||21 ||O||2E − ⟨O⟩2 ≤ ||g||21 ||O||2E.

Observe that the above variance depends on two factors. The first one is the squared
shadow norm ||O||2E which determines the sample complexity of conventional shad-
ows [353]. The second factor is a multiplicative term ||g||21 which accounts for the
well-known measurement overhead associated with the conventional PEC protocol [32,
381, 402]. Some further comments are in order. First, recall that conventional classical
shadows make no assumption about the input state ϱ [353]. In contrast, in our case,
a circuit description Ucirc|0⟩⟨0| of the “input state” ϱid is actually part of the proto-
col. Of course, knowing such a description of the input state does not allow one to
classically efficiently predict its properties without using classical shadows unless the
circuit Ucirc has some special properties permitting efficient classical simulation, such
as Clifford circuits. Second, the proof in Lemma 66 involves a maximization over den-
sity matrices such that our bounds are independent of the particular quasiprobability
decomposition and thus depends only on the norm ||g||2. Third, it can be expected
that the upper bound in Lemma 66 is very pessimistic. Similar, constant factor loose-
ness of the bounds was already observed for conventional shadows [353], however the
discrepancy is strongly expected to be even larger for PEC shadows. This is due to
the maximization, as we do not take into account properties of the individual circuits
in the quasiprobability decomposition but rather apply a pessimistic global bound.
While we only state explicitly the shadow norm for the practically most important
ensemble of Pauli basis measurements, we note that bounds for other ensembles are
immediately available in the literature [353, 400, 401].

Following the approach of [353] we use concentration properties of the median of
means estimator to derive rigorous sample complexities. For the simultaneous predic-
tion of many observables O1, . . . , OM we exponentially suppress statistical outliers by
splitting the PEC shadows S(ϱid, Ns) into independent batches and then computing a
median of the means. The resulting bounds depend on two performance metrics: The
accuracy ϵ and the success probability δ. More precisely, in order to predict expectation
values of M independent observables {O1, ..., OM}, we group Ns = NbatchK indepen-
dent snapshots onto K batches B1, ...,BK each of size Nbatch. Then, for each subset Bj
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one uses the empirical mean as

µ̂i(Oj) =
1

Nbatch
∑

l∈Bi

Tr
[
Oj(ϱ̂id)l

]
. (9.21)

The final estimate for the expectation value of Oj is then obtained by the median of
the individual empirical means, that is,

µ̂K,b(Oj) := median {µ̂1(Oj), ..., µ̂K(Oj)}. (9.22)

Even though this method requires an increased number NbatchK of independent clas-
sical shadows, it is much more robust against outlier corruption. The idea is that if
µ̂K,b(Oj) deviates by more than ϵ from Tr

[
Ojϱid

]
, more than K/2 of the individual

empirical mean values must deviate by more than ϵ. This is in fact an exponentially
suppressed event. This can be made more formal by the following concentration in-
equality of the median of means estimator [407, 408],

Prob
[
|µ̂K,b(Oj)− ⟨Oj⟩| ≥

2σ√
Nbatch

]
≤ exp

(
−K

8

)
, (9.23)

where σ denotes the standard deviation.

Theorem 67. Let Ucirc be the ideal quantum circuit producing the ideal output state ϱid from
Definition 62. Suppose that we want to predict M linear properties O1, . . . , OM of the ideal
state, i.e., ⟨Oj⟩ = Tr

[
Ojϱid

]
. For fixed performance metrics ϵ, δ ∈ [0, 1] set

Nbatch =
4||g||21

ϵ2 max
1≤j≤M

||Oj||2E and K = 8 log
(

M
δ

)
. (9.24)

Then a collection of N = KNbatch independent classical shadows allows for accurately predict-
ing all ideal expectation values via median of means estimation such that

Prob[|µ̂K,b(Oj)− ⟨Oj⟩| ≤ ϵ] ≥ 1 − δ. (9.25)

Proof. This is a direct consequence of the concentration property of the median of
means estimator together with the bound on the variance from Lemma 66. Because
Var[µ̂] ≤ ||g||21||O||2E and if the accuracy is ϵ, we have Nbatch ≥ 4||g||21||O||2E ≥ 4σ2/ϵ2.
Further, as we have M measurements that we want to accurately predict with at most
failure probability δ, we need for each individual measurement exp(−K/8) ≤ δ/M.
Thus the choice K = 8 log(M/δ) yields the desired bound. In total we have

Prob[|µ̂K,b(Oj)− µj| ≥ ϵ ∀j]

= Prob[
M⋃

j=1

{|µ̂K,b(Oj)− µj| ≥ ϵ}]

≤
M

∑
j=1

Prob[|µ̂K,b(Oj)− µj| ≥ ϵ] ≤ M
δ

M
= δ.
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Figure 9.2: Illustration of the light cone of an observable O which is represented by the
measurement apparatus and only acts nontrivially on the second (from top)
qubit. The orange area indicates the qubits which are contained in the light
cone I of the observable with respect to the ideal quantum circuit (orange
boxes) U3U2U1. To simplify derivations we assume the gate noise channels
Nk are local (light green boxes) such that they are contained within the
lightcone I but our results can be extended to non-local models via [409].
The figure is taken from Ref. [B].

Finally, we consider the problem of predicting non-linear properties of the state,
which are of the form Tr[O(ϱid)

m]. We can bound the variance of any non-linear prop-
erty as follows.

Theorem 68. Given the PEC snapshots ϱ̂id from Theorem 64 we can estimate polynomial
properties of degree m of the ideal state ϱid via U-statistics of tensor products of all distinct
snapshots. The number of samples required to predict the non-linear property scales as Ns ∈
O(||g||2m

1 /ϵ2) for a desired accuracy ϵ.

Proof. In order to obtain rigorous performance guarantees of the shadow estimator,
two ingredients are needed. First, note that any polynomial function in the quantum
state can be written as a linear function in tensor products of the quantum state.
More precisely, suppose we want to estimate a polynomial function of degree m of
the quantum state ϱ, e.g., f̃ : B(H) → R with f̃ (ϱ) := Tr

[
Ãϱm], where ϱ, Ã ∈ B(H). If

C(m) denotes the cyclic permutation operator acting on m copies, that is,

C(m) : B(H⊗m) → B(H⊗m), C(m)(|ϕ1⟩|ϕ2⟩ · · · |ϕm⟩) = |ϕm⟩|ϕ1⟩ · · · |ϕm−1⟩,
(9.26)

we can associate to f̃ a function f and an operator A ∈ B(H⊗m) such that

f (ϱ) = Tr
[
Aϱ⊗m], A = Tr1[C(m+1) Ã ⊗ 1⊗m] (9.27)

and f (ϱ) = f̃ (ϱ). The second tool needed is the so called U-statistics, which often
provides a uniformly minimum variance unbiased estimator for nonlinear polynomial
functions. Suppose we have access to N independent snapshots ρ̂1, ..., ρ̂N which are
generated by an underlying state ρ and that f (ρ̂1, ..., ρ̂m) is a polynomial function in the
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shadows such that θ, what is our parameter of interest, is given by θ = E[ f (ρ̂1, ..., ρ̂m)].
The U-statistic [309] of order m is defined as

UN :=
(

N
m

)−1

∑
CN,m

f (ρ̂i1 , ..., ρ̂im), (9.28)

where CN,m is the set of all combinations of m distinct elements that one can build
out of N different snapshots. The variance of this estimator has a closed form in de-
pendence on the function f . For a U-statistic UN given by Eq. (9.28) the variance
obeys [309]

Var[UN ] =
1

(N
m)

m

∑
d=1

(
m
d

)(
N − m
m − d

)
Var[ f (d)(ρ̂1, ..., ρ̂d)], (9.29)

where

f (d)(ρ̂1, ..., ρ̂d) := E
ρ̂d+1,...,ρ̂m

[ f (ρ̂1, ..., ρ̂d, ρ̂d+1, ..., ρ̂m)].

In order to understand the scaling of Var[UN ] it is sufficient to consider a particular
instance Var[ f (d)(ρ̂1, ..., ρ̂d)]. Notice that for A ∈ B(H⊗m) as defined in Eq. (9.27) one
has

f (d)(ρ̂1, ..., ρ̂d) = Tr[Aρ̂1 ⊗ · · · ⊗ ρ̂d ⊗ ρ⊗p], (9.30)

where p = m− d with the convention that ρ⊗0 = 1 ∈ C. Further define ρ̂l = ρ̂l1 ⊗ · · · ⊗
ρ̂ld ⊗ ρp using the abbreviation ρ̂l1 ≡ (ρ̂id)l1 . For 1 ≤ d ≤ m we have

E[ f (d)(ρ̂1, ..., ρ̂d)
2] = E[Tr(Aρ̂1 ⊗ · · · ⊗ ρ̂d ⊗ ρ⊗p)2]

= ||g||2d
1 E

k1,l1
· · · E

kd ,ld
Tr[Aρ̂l ]

2 = ||g||2d
1 ∑

k1,...,kd

∑
l
(

d

∏
j=1

p(kj)p(lj|kj))Tr[Aρ̂l ]
2

= ||g||2d
1 ∑

k1,...,kd

∑
l
(

d

∏
j=1

|gkj
|

||g|| 1
)Tr[Gkj

(|0⟩⟨0|)Elj
)]Tr[Aρ̂l ]

2.

As in the proof of Lemma 66 we denote the operator Ω := ||g||−1 ∑kj
|gkj

|Gkj
for all

1 ≤ j ≤ d and write El = El1 ⊗ · · · ⊗ Eld . Then

||g||2d
1 ∑

l

d

∏
j=1

Tr[Ω(|0⟩⟨0|)Ej]Tr[Aρ̂l ]
2

= ||g||2d
1 ∑

l
Tr[Ω(|0⟩⟨0|)⊗dEl ]Tr[Aρ̂l ]

2

≤ ||g||2d
1 max

σ
Tr
[
Ω(σ)⊗d ∑

l
Tr[Aρ̂l ]

2El

]
≤ ||g||2d

1 max
σ

Tr[Ω(σ)⊗dΓ] = ||g||2d
1 ||Γ||∞,

(9.31)
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where Γ = ∑l Tr[Aϱ̂l ]
2El . Finally, we can evaluate an upper bound of the summation

in Eq. (9.29) analytically as

Var[UN ] ≤||g||2m
1 ||Γ||∞

1

(N
m)

m

∑
d=1

(
m
d

)(
N − m
m − d

)
=||g||2m

1 ||Γ||∞[1 − ((N − m)!)2

N!(N − 2m)!
].

Given the factorial formula is of O(1/N) with N ≡ Ns, the above bound implies
that the number of samples needed to predict polynomial functions of degree m with
accuracy ϵ > 0 scales as O(||g||2m

1 /ϵ2).

One can similarly apply a median of means estimator to enable simultaneous pre-
diction of many non-linear properties. We detail an explicit protocol in Section 9.3.3
for simultaneously estimating many local Rényi entropies. Note that the measurement
overhead ||g||2m

1 grows with the 2mth power of the quasiprobability norm. This is con-
sistent with our effective construction of m copies of the original noisy circuit which
leads to an effective m-fold increase in the number of noisy gates.

9.3.3 Classical post-processing algorithms

In this section we summarize reconstruction algorithms for the practically pivotal sce-
nario of Pauli basis measurements.

Algorithm 1: Estimating local observables via Pauli strings

For an arbitrary observable O we can calculate the estimator from Eq. (9.8) as

Tr
[
Oρ̂k,l

]
= ||g||1 sign(gk)Tr

[
OC−1

E (El)
]
. (9.32)

In the idealized measurement case, E simplifies as detailed in Eq. (9.1) and our classical
shadow is then a collection of Ns measurement outcomes b ∈ {0, 1}N and the corre-
sponding single-qubit Pauli measurement basis defined by the single-qubit rotations
Qk ∈ Q.

For the case O = P with P a q-local Pauli string, it admits the product form P =⊗
i∈Q P(i), while the snapshot C−1

E (El) similarly is of a product form via Eq. (9.3).
Note also that we use the index set Q to abbreviate the set of qubits on which P acts

non-trivially and |Q| = q. Thus we obtain the trace as

Tr
[

PC−1
E (El)

]
= ∏

i∈Q
Tr
[

P(i)
(

3(Q(i)
l )†|b(i)⟩⟨b(i)|Q(i)

l − 1
)]

. (9.33)

Above we have used that the trace of a tensor product simplifies to a product of traces
and that on every qubit i for which P(i) ≡ 1 the single-qubit expression evaluates to

Tr
[

P(i)
(

3(Q(i)
l )†|b(i)⟩⟨b(i)|Q(i)

l − 1
)]

= 1, (9.34)
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as the Pauli operators are traceless. The expression in Eq. (9.33) evaluates to {±3q, 0}
as we explain now. The expression evaluates to ±3q if the measurement bases defined
by Q(i)

l are the same as the single qubit Pauli matrices P(i) on the qubits i ∈ Q. Indeed,
it can be directly seen that for one factor in Eq. (9.33) one has

Tr
[

P(i)(3(Q(i)
l )†|b(i)⟩⟨b(i)|Q(i)

l − 1)
]
= 3⟨b(i)|Q(i)

l P(i)(Q(i)
l )†|b(i)⟩. (9.35)

The sign is then determined by the bits b(i) in the bit string b, i.e., it is negative if
the Hamming weight of the bit string is odd on the qubits in Q. Otherwise, if the
measurement bases appearing in Ql are not compatible with P on the qubits in Q,
then the above expression evaluates to zero. Thus we obtain the simplified estimator
as

Tr
[
Pρ̂k,l

]
= ||g||1 3q sign(gk) f (b, Ql), (9.36)

where f (b, Ql) ∈ {±1, 0}. More precisely, the function f (b, Ql) will result in 0 if the
measurement bases in Ql are incompatible with P and ±1 if the measurement bases
are compatible with P while the sign is determined by the bit string b. The recon-
struction algorithm thus takes the classical shadow data as the collection of bit strings
and Pauli measurement bases {bk, Qk}Ns

k=1, as well as the Pauli observable P, and cal-
culates the values of f (b, Qk). The algorithm has runtime O(qNs). As we reconstruct
q-local Pauli observables, we can significantly reduce the sample variance by using
so-called light-cone arguments [409, 410]. In Fig. 9.2 we illustrate the light cone that
an observable creates with respect to the ideal unitary circuit Ucirc. To simplify our
arguments, we will assume local noise models to guarantee the same light cone is
valid for all gate sequences Gk. However, the extension to non-local noise models is
straightforward [409].

Algorithm 2: Improved estimation of local observables via light cones

The idea is that for each gate that is not within the light cone of the observable P we
can “turn off” PEC, thereby not wasting the measurement budget on mitigating noisy
gates that do not affect our observable of interest. Given a q-local Pauli string P we
define the set of indices of all gates in the light cone of the observable as

I = {l | Ul is in the light cone of P}. (9.37)

Then, one can simply use Algorithm 1 with a modified set of quasiprobabilities from
Definition 62 as

||g̃||1 = ∏
l∈I

||γ(l)||1, and sign(g̃k) = ∏
l∈I

sign(γ(l)
kl
). (9.38)

The algorithm has the same asymptotic runtime O(qNs) as Algorithm 1 and only
incurs a negligible preprocessing time to determine the index set I specifically for
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each observable P. The measurement cost ||g̃||1 is thus determined by the number
of gates in the light cone of P rather than by the total number of gates ν. Imagine,
for example, noisy quantum gates with ||γ(l)||1 = 1 + p. The measurement cost is
determined by (1 + p)|I| as opposed to the worst case ||g̃||1 = (1 + p)ν where ν is the
total number of noisy gates as detailed in Ref. [409]. A significant advantage of this
procedure is that it does not require one to modify the experimental protocol, i.e., the
noise in all gates can be mitigated in the shadows.

Algorithm 3: Local purities

Here we consider the problem of estimating Rényi entropies via the purities Tr
(

ϱ2
Q

)
as RQ := − log Tr

(
ϱ2

Q

)
, where ϱQ is the reduced density matrix of the subsystem Q. In

order to simplify the notation, we abbreviate the indices of PEC snapshots as ϱ̂i := ϱ̂k,l

with i = (k, l). Given a subsystem as a set of qubits Q = {q1, ..., qm} we obtain an
unbiased estimator for the respective purity as

Tr
[
ϱ̂2

Q

]
:= Tr

[
SWAPQ,Q′ ϱ̂i ⊗ ϱ̂j

]
= ||g||21sign(gi)sign(gj) f (i, j, Q), (9.39)

where i ̸= j. This induces an unbiased estimator for the Rényi entropies via R̂Q :=
− log Tr

(
ϱ̂2

Q

)
. Here SWAPQ,Q′ swaps all pairs of qubits qk and qk+N in the system of

2N qubits in ϱ̂i ⊗ ϱ̂j. The factor f (i, j, Q) can be computed analytically using that the

snapshots are of product form ϱ̂i =
⊗N

q=1 ϱ̂
(q)
i as

f (i, j, Q) = ∏
q∈Q

Tr
[
SWAPϱ̂

(q)
i ⊗ ϱ̂

(q)
j

]
, (9.40)

where SWAP is the standard 2-qubit SWAP operator. Here we have used that traces
for qubits not in subsystem Q evaluate to 1 and that the trace of a tensor product
simplifies to a product of traces. Further, we can evaluate analytically the expression

Tr
[
SWAPϱ̂

(qk)
i ⊗ ϱ̂

(qk)
j

]
, (9.41)

as it only involves two qubits. If the single-qubit measurement bases Q(q)
k and Q(q)

l in
the snapshots are not identical, then the expression will evaluate to 1

2 . If the measure-
ment bases are identical, then the expression will evaluate to 5 given the measurement
outcome bits are identical. Otherwise it will be −4 for not identical measurement out-
come bits. The function f (i, j, Q) is then just a product of these values evaluated for
all qubits in the set Q. The algorithm simply iterates over all distinct pairs of snap-
shots and evaluates f (i, j, Q). We further multiply each snapshot outcome by the cor-
responding signs sign(gi) sign(gj) and with the squared norm ||g||21. Finally, we com-
pute the median of means of these individual outcomes. The algorithm has a runtime
of O(|Q|N2

s ). Note that the runtime is linear in the subsystem size |Q| and quadratic in
the number of shots Ns. For sufficiently small subsystems and large number of shots it
might be preferred to use the exponentially O(4|Q|Ns) scaling algorithm of Ref. [353].
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9.4 Further error mitigation techniques

9.4.1 Error extrapolated shadows

The key idea behind zero-noise extrapolation (ZNE) resides in the possibility of in-
creasing the noise in the circuit and extrapolating expected values back to the case
of zero noise. The approach is intuitive to use, requires less resources than PEC but
yields a biased estimator. A non-trivial aspect, however, is choosing the correct model
function for the extrapolation which has been extensively discussed in the litera-
ture [32,33,402]. Typical models include a linear function, an exponential function or a
linear combination of multiple exponentials. We consider extrapolation as a means for
mitigating errors in properties extracted from classical shadows. The key ingredient
we require is the ability to generate a collection of shadows at different noise strengths
S(ϱp0 , Ns), ..., S(ϱpn , Ns) such that pk ≥ p0 and p0 is the device’s lowest possible noise
strength. These shadows enable us to extract the expected values fm(p) = Tr

[
Omϱp

]
at

a given noise level p. By fitting a suitable model function f̃m(p), e.g., a linear model, to
this data set, we can approximate ideal properties of the state using an extrapolation
via the limit

Tr[Omϱid] ≈ lim
p→0

f̃m(p). (9.42)

While we could certainly leverage existing techniques for physically increasing noise
rates in a circuit to obtain S(ϱp, Ns) [32, 33], we can also exploit the power and flex-
ibility of the previously derived PEC shadows approach. Instead of considering the
quasiprobability representation of the ideal circuit in Definition 62 we can rather de-
compose the noise-boosted circuits as Ucirc(p) = ∑k gk(p)Gk with non-negative proba-
bilities gk(p). For example, in the case of local depolarising noise, the circuit variants Gk

are simply obtained by randomly inserting Pauli X, Y or Z operations after each noisy
gate with probabilities p−p0. Furthermore, Lindblad-Pauli learning directly gives ac-
cess to the continuous set of circuits Ucirc(p) [405].

Let us now state a corollary to Theorem 64 that allows us to obtain the shadows of
error boosted states ϱp := Ucirc(p)|0⟩⟨0|.

Corollary 69. Consider the parametric quasiprobability decomposition G as noise-boosted cir-
cuits Ucirc(p) with p ≥ p0. The PEC shadows from Theorem 64 which are given by H :=
{(gk(p),Gk, El)}k,l result in the simplified snapshots as ϱ̂p := ϱ̂p,(k,l) = C−1

E (El) due to
sign(gk(p)) = +1 and ||g(p)||1 = 1. It follows that ϱ̂p is an unbiased estimator of the
noise-boosted density matrix ϱp such that E[ϱ̂p] = E

k,l
[ϱ̂p,(k,l)] = ϱp.

A significant advantage in boosting the noise via p ≥ p0 rather than reducing it is
that now every quasiprobability is non-negative gk(p) ≥ 0 and thus we do not incur
a measurement overhead as described in Lemma 66 via ||g(p)||1 = 1. Nevertheless,
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the extrapolated value indeed suffers from an increased variance which implies an
increased number of samples. A more detailed discussion can be found in Ref. [32].

Note that the above scheme can be applied beyond the estimation of expectation
values. For instance, one can in principle use shadows to reconstruct partial density
matrices ϱ̂p at different noise strengths p and apply ZNE to individual matrix entries.
However, note that ZNE might require different kinds of model functions f (p) for
different properties, e.g., non-linear models for predicting non-linear properties of the
state. In contrast, the great advantage of PEC shadows is that it provides an unbiased
estimator for the entire quantum state.

9.4.2 Symmetry verified shadows

Symmetry verification is another leading quantum error mitigation technique [411,
412]. It exploits that often the ideal states to be prepared ϱid are pure states that obey
certain problem-specific symmetry group operations which are described by S ∈ S.
The fact that the ideal state is symmetric then implies that it “lives in” the subspace
defined by the projection operator

ΠS =
1
|S| ∑

S∈S

S,

which satisfies Π2
S = ΠS.

Given a noisy state ρ, one might be able to measure the above symmetries (in fact
their generators are sufficient) via, e.g., Hadamard-test circuits, and retain only circuit
runs that produce the correct symmetry outcomes [32,413]. Such post-selection projects
the noisy state back into this symmetry subspace producing the effective output state
as ϱsym = ΠSϱΠS/ Tr(ΠSϱ). We can apply conventional shadow tomography to this
symmetry-verified state ϱsym thereby effectively obtaining error mitigated shadows,
i.e., an unbiased estimator of ϱsym. The sampling overhead of this post-selection tech-
nique is Tr(ΠSϱ)−1 the inverse of the fraction of circuit runs that pass the symmetry
verification process.

Instead of post-selection, we can also perform symmetry verification at the post-
processing stage. Suppose we are interested in the expectation value of the ideal state
with respect to the target observable O. The target expectation value can be written as

Tr
(
Oϱsym

)
=

Tr(OΠSϱΠS)

Tr(ΠSϱ)
=

1
|S|

∑S,S′∈S Tr(SOS′ϱ)

∑S∈S Tr(Sϱ)
.

Conventional shadow tomography can be used well in practice for estimating SOS′

and S for all S, S′ ∈ S when the symmetries are sufficiently local, i.e., they are sup-
ported on at most weight-s Pauli operators. Then, given a Pauli observable O of weight
at most q, the effective observable SOS′ if then at most of weight-(2s+q). However, the
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sample complexity of conventional shadows with Pauli measurements grows expo-
nentially with the weight of the Pauli string and it is thus crucial that the total weight
2s+q is reasonably small.

For example, a typically used symmetry in fermionic simulation is the fermionic
particle number parity which is, however, usually a high-weight operator for stan-
dard encodings such as the Jordan-Wigner encoding. Nevertheless, one can use en-
codings that come with inherent local symmetry generators like Majorana loop encod-
ings [414], or even implement the circuit using some small quantum codes with local
stabilisers [415]. However, even if these symmetry generators are local, the number of
generators will scale with the number of qubits. Consequently some symmetries they
generate are still of high weight. Hence, in order to efficiently use shadow techniques,
we can apply verification using a constant number of local symmetry generators, such
that the highest-weight symmetry that can be generated is upper-bounded by some
constant.

We also note that the sampling cost can be reduced when the target observable O
commutes with the symmetry projector ΠS which is often the case in typical applica-
tions. In such a scenario, ΠSOΠS = OΠS and thus

Tr
(
Oϱsym

)
=

Tr(OΠSϱ)

Tr(ΠSϱ)
=

∑S∈S Tr(SOϱ)

∑S∈S Tr(Sϱ)
. (9.43)

This way, the effective observables we need to estimate from shadows are SO and S
for all S ∈ S which have a reduced weight s + q compared to the previous 2s + q.

9.5 Applications

In this Section we showcase how our approach can effectively extend the reach of
noisy quantum computers and explore its practical applications. For instance, noisy
quantum computers in either the late NISQ era or in the early fault-tolerance era will
enable us to simulate the time evolution of quantum states or to prepare ground or
eigenstates [351,390,391,393,394,416,417]. Our approach can then be used to accurately
and efficiently extract a large number of properties of these states provided that the
noise rates are reasonable, i.e., the sample overhead ||g||1 is moderate.

9.5.1 Ground-state preparation

We first consider a spin-ring Hamiltonian as

H = ∑
k∈ring(N)

ωkZk + J⃗σk · σ⃗k+1, (9.44)

with coupling J = 0.3 and on-site interaction strengths uniformly randomly generated
in the range −1 ≤ ωk ≤ 1. This spin problem is relevant in condensed-matter physics
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in understanding many-body localisation [418] but is challenging to simulate classi-
cally for large N [419, 420]. A broad range of techniques are available in the literature
for finding eigenstates of such quantum Hamiltonians using near-term or early fault-
tolerant quantum computers [351, 390, 391, 393]. Here we prepare the ground state of
this model using a variational Hamiltonian ansatz in Fig. 9.3 (left) of l = 5 layers on
12 qubits and assume local depolarising noise for two-qubit gates. More precisely, we
assume that two-qubit gates undergo depolarising noise with a probability of p while
single qubit gates, including recovery operations of PEC, can be implemented with
negligible error. The single-qubit depolarising noise channel is given by

Φp(ϱ) := (1 − p)ϱ +
p
3
(XϱX + YϱY + ZϱZ). (9.45)

The inverse of this channel can be calculated as

Φ−1
p (ϱ) = γ0ϱ + γ1XϱX + γ2YϱY + γ3ZϱZ, (9.46)

where the coefficients are given by

γ = ||γ||1 (
3 − p

2p + 3
,

−p
2p + 3

,
−p

2p + 3
,

−p
2p + 3

), (9.47)

and ||γ||1 = (3 + 2p)/(3 − 4p).

Ground state energies via PEC

Fig. 9.3 (middle) shows the error in the ground state energy estimated using conven-
tional shadows (dashed blue and dashed red) and PEC shadows (solid blue, solid red)
for an increasing number of shots Ns. Our ansatz circuit would ideally prepare the
ground state ϱid but due to gate noise we actually prepare the noisy state ϱ. Thus,
conventional shadows (dashed blue, dashed red) converge to a plateau corresponding
to the biased energy Tr(ϱH) (solid gray). This bias is significantly increased as we in-
crease the circuit error rate from ξ = 0.12 to ξ = 0.24 (dashed blue vs. dashed red),
where ξ = 2pν is the per gate error rate p times the number of noisy entangling gates
ν = 60. In contrast, PEC shadows converge to the true energy Tr(ϱidH) in standard
shot-noise scaling O(1/

√
Ns).

Local properties via PEC

Besides Hamiltonian energy estimation, which is one of the typical subroutines in
quantum computing, there is also significant value in simultaneously determining
many local observables’ expectation values. For example, the rich information from
classical shadows can be used to significantly improve parameter training or to directly
estimate Hamiltonian energy gaps by the use of efficient classical post-processing [393,
394]. In Fig. 9.3 (right), we plot errors when simultaneously estimating all 3-local Pauli
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Figure 9.3: (left) A noisy variational Hamiltonian ansatz is used to prepare the ground
state given by Eq. (9.44) but our aim is to learn properties of the noise-free
state. (middle) Energy estimation errors for different noise strengths with
conventional shadows (dashed blue, dashed red) and with PEC shadows
(solid blue, solid red). A bias (gray solid lines) is introduced when the
ground state energy Tr(ϱH) is directly estimated from the noisy quantum
state ϱ. Error mitigated shadows are unbiased as they estimate Tr(ϱidH).
Increasing the circuit error rate ξ (blue vs. red) increases the bias in stan-
dard shadows (dashed blue vs. dashed red) and increases the variance of
the error mitigated shadows (solid blue vs. solid red). Each data point is
an average over 104 experiments of a fixed shot budget Ns. (right) Error in
simultaneously estimating all 3-local Pauli strings without (blue) and with
(red) error mitigation – only the 200 observables with the highest estima-
tion error are shown and a circuit error rate ξ = 0.6 is assumed. Errors
are significantly below our rigorous bounds from Lemma 66 for PEC shad-
ows but the errors for conventional shadows can be above their respective
bounds from Ref. [353] due to the bias (right end of blue). The figure is
taken from Ref. [B].

operators for an increasing number of shots Ns. Fig. 9.3 (red) shows that the errors in
PEC shadows are always significantly below the theoretical bounds (black line) from
Lemma 66 confirming looseness of the bounds (assuming success probability δ = 10−3,
and M = 33(12

3 ) = 5940). Fig. 9.3 (blue) shows that the errors in conventional shadow
tomography are below their bounds (with ||g||1 = 1) only for a small number of shots
but then asymptotically reach a plateau due to circuit noise.

Local properties via extrapolation

We now consider the same task of simultaneously estimating expectation values of
Pauli operators but we use error extrapolation. Here we start by generating shadows
S(ϱp1 , Ns), ..., S(ϱpn , Ns) at different noise strengths which are subsequently used to
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Figure 9.4: A noisy variational Hamiltonian ansatz is used to prepare the ground state
of Eq. (9.48) whose ideal, noise-free Rényi entropies RQ can be learned with
PEC shadows. We plot purities Tr

(
ϱ2

Q

)
as a proxy for RQ := − log Tr

(
ϱ2

Q

)
.

(left) Purity heat map in the noiseless case and infinite shot limit. An in-
creasing value indicates that the subsystem Q is less entangled with the
remaining qubits. (middle-right) Absolute error in the purities due to gate
noise for a circuit error rate ξ = 0.6 and due to finite repetition using
Ns = 105. (middle) Although the entanglement pattern is approximately
recovered with conventional shadows, in some instances we observe sub-
stantial errors, i.e., the largest error is 0.27. (right) Absolute errors with PEC

shadows are significantly smaller, i.e., the largest error is 7 × 10−2 but this
figure could be further reduced by increasing Ns. The figure is taken from
Ref. [B].

compute the noisy Pauli expectation values. Fig. 9.5 shows 10 examples of expected
values (crosses) as a function of noise strength and the respective linear models we fit
(dashed lines). The intercept of the fitted model (dashed lines) is our estimate of the
exact expected value (disks) and is indeed reasonably close in the example. While ZNE

has been very effective and typically has a lower measurement overhead then PEC, it
is generally biased.

9.5.2 Error mitigated estimation of entanglement entropies

Finally, we consider an application for which classical shadows are a primary enabler
but for which error mitigation techniques have been less explored [32]. As opposed to
studying entanglement properties or verifying the presence thereof in mixed quantum
states [290, 421–423], here our primary goal is to extend the reach of noisy quantum
computers. We aim to study entanglement properties of ideally pure states which are
prepared by quantum algorithms, such as phase estimation or the variational quan-
tum eigensolver. For example, near-term quantum computers will enable us to prepare
eigenstates [351, 390, 391, 393] of quantum Hamiltonians and error mitigated entangle-
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Figure 9.5: Simultaneously estimating all 3-local Pauli operators using error extrapo-
lated shadows. We estimated noisy expected values (crosses) from shadows
of size Ns = 107 by increasing the native depolarising error rate p = 10−3

to higher levels
{

2 × 10−3, 5 × 10−3} by randomly sampling noisy circuit
variants. Using a linear model function we then extrapolate to zero noise in
order to obtain an error mitigated expectation value close to the ideal ones
(disks). The figure is taken from Ref. [B].

ment measures can be used for, e.g., characterizing phase transitions. Similarly, one
could simulate the time evolution of a collision of two molecules with an early fault-
tolerant quantum computer and investigate how entanglement builds up across the
individual subsystems. Furthermore, efficiently characterising many local correlations
in a state can be used to train models for density functional theory in order to obtain
accurate classical simulations [424].

Consider the Heisenberg chain

H = ∑
k

Jk σ⃗k · σ⃗k+1, (9.48)

with uniformly random −1 ≤ Jk ≤ 1. Its ground state is prepared with a variational
Hamiltonian ansatz of l = 8 layers on 12 qubits. This system was used in Ref. [353] to
illustrate the power of classical shadows in predicting entanglement entropies. How-
ever, the ground state was approximated by a set of noise-free singlet states [425, 426]
whereas we assume a noisy quantum computer is used for state preparation. We use
PEC shadows to extract purities Tr

(
ϱ2

Q

)
for all single and two-qubit subsystems Q.

These purities then define Rényi entropies as RQ := − log Tr
(

ϱ2
Q

)
. In Fig. 9.4, we

plot the exact purities in the noiseless case. Here disjoint blocks involving two qubits
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confirm that the ground state could be approximated by a tensor product of noise-
free singlet states. Fig. 9.4 (middle) shows the errors in estimating local purities using
shadows of size Ns = 105 for a circuit error rate ξ = 0.6. Even for this moderate error
rate conventional shadows are significantly impacted by imperfections and result in
errors as large as 0.27. Furthermore, for an increasing noise rate all purities converge
to a constant value of 1/d where d is the dimension of the subsystem. In contrast, PEC
shadows drastically improve the accuracy in Fig. 9.4 (right) and the largest error is
approximately 7 × 10−2 at a number of samples Ns = 105.

9.5.3 Further applications

The techniques presented in this Chapter enable us to approximate an unbiased es-
timator of an ideal noise free state ϱid, which can be enabling for a broad range of
further practical applications. For example, Ref. [353] proposed that classical shadows
with randomised Clifford measurements can be used to predict fidelities, such as the
fidelity of ρ with respect to a known state |ψ⟩. One can imagine applications where
the fidelity ⟨ψ|ρ|ψ⟩ is not a relevant indicator due to the impact of noise on ρ and
one rather aims to predict ⟨ψ|ϱid|ψ⟩, e.g., to quantify how well a variational quan-
tum circuit or phase estimation can prepare a known ground state thereby verifying
a circuit structure under the presence of gate noise. Furthermore, the quantum Fisher
information (QFI), which is a key quantity in quantum metrology, can be bounded
and approximated using classical shadows via techniques of Ref. [359]. Indeed, in cer-
tain applications the relevant quantity might not be the QFI of the noisy state ϱ but
rather the QFI of the noise-free state ϱid which can be approximated with the presented
techniques [427].

9.6 Discussion and conclusion

In this Chapter we considered the powerful classical shadows methodology which
allowed us to obtain an efficient classical representation of a quantum state ϱ and
thus to simultaneously predict many of its properties in classical post-processing. A
major difficulty concerning near-term and early fault-tolerant quantum computers is
that they can only prepare noisy quantum states ϱ from which we would estimate
corrupted properties. This challenge motivated the development of quantum error
mitigation techniques that allow us to estimate expected values Tr[Oϱid] of observables
O in an ideal noise-free state ϱid but with having access only to noisy expected values.

We consider a range of typical quantum error mitigation techniques and generalise
them from single expected-value measurements to the case of mitigating errors in
classical shadows. We find that PEC is the most well-suited candidate which motivates
us to develop a thorough theory of PEC shadows. In the conventional PEC approach
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one learns error characteristics of the device and counters them by a probabilistic im-
plementation of the inverse noise channel. Therefore the only source of noise is due
to a possibly imperfect knowledge of gate-error characteristics and due to finite cir-
cuit repetition. Under the assumption that the error model of the quantum device has
been appropriately learned such that a quasiprobability representation is known, we
prove that PEC shadows are an unbiased estimator of the ideal state ϱid. We addi-
tionally prove the following rigorous performance guarantees. First, we prove bounds
on the number of samples required to simultaneously predict many linear properties
of the ideal quantum state ϱid. Second, the fact that we use noisy quantum circuits
to predict ideal properties manifests in a multiplicative measurement overhead. This
overhead is identical to the cost of the conventional PEC approach and grows exponen-
tially with the number of noisy gates. Third, we prove rigorous sample complexities
for predicting non-linear properties of the ideal states. We note that our results are
completely general and apply to any shadow ensemble E via Eq. (9.1) and to any
linear or non-linear property of the quantum state. Furthermore, we provide practi-
cal post-processing protocols for the pivotal scenario of randomised measurements in
Pauli bases. Finally, we demonstrate in numerical simulations the usefulness of PEC

shadows and error extrapolated shadows, and conclude that these techniques may be
instrumental in practical applications of near-term and early fault-tolerant machines.





Summary and Outlook

This thesis was concerned with different aspects of quantum information science from
the perspective of foundational problems as well as the perspective of possible appli-
cations for quantum technology.

To summarize, we have first discussed the structure of quantum measurements from
the viewpoint of simulability. We introduced a minimal scheme that allows for the
certification of irreducible measurements by only taking into account the observed
correlations. For this semi-device independent scenario, we derived a family of cor-
relations that allow for the certification of an irreducible three-outcome measurement
on a qubit and analyzed their noise robustness. As in this case irreducibility implies
that the measurement was nonprojective, our scheme could be of interest for quantum
random number generation. More generally, it would be highly desirable to find a
systemic approach to construct families of distributions in a minimal scenario that are
able to certify the irreducibility of a measurement.

Second, we considered the quantum measurement problem and asked for the com-
patibility of the universality of the unitary time evolution with the realization of a
partially observed measurement. We introduced the concept of "relative event by in-
complete information" and showed that, if combined with locality and no superde-
terminism, it is in conflict with the predictions of quantum theory. An interesting
extension would be to consider this quantum correlation sets with incomplete infor-
mation beyond bipartite cases. The existence of a multipartite all-versus-nothing-like
proof would be an interesting open question for future research.

We proceeded by deriving Bell inequalities together with quantum correlations that
allow for an extremely low detection efficiency and high robustness to noise. These
graph-based Bell inequalities were further optimized by using a symmetrized variant
of the Gilbert’s algorithm. Our analysis relied on optimizing a Bell inequality with re-
spect to a particular quantum point, that was constructed from a state-independent
contextuality set. Starting with a quantum point that is not associated to a state-
independent contextuality set might yield Bell tests that allow for even smaller de-
tection efficiencies.

Then, we developed methods that allow for rigorous statements on the statistical
significants of experiments that demonstrate the phenomenon of activation of nonlo-
cal correlations. We presented a technique for the construction of a suitable confidence
polytope and an efficient algorithm to determine the correlation class of a quantum
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state. Their combination allowed us to compute the number of state preparations that
is necessary to demonstrate that the targeted initial state, which is intended to be ac-
tivated, is Bell-local. Here it would be interesting to know, whether this number is in
reach for near-future experimental setups, such that a concrete experimental imple-
mentation could be devised.

Furthermore, we presented an iterative method for the computation of maximally
resourceful quantum states. We illustrated our approach for the special case of the
geometric measure, allowing us to identify interesting quantum states, discover novel
absolutely maximally entangled states, and characterize highly entangled subspaces,
which may be useful for information processing. We further demonstrated the univer-
sality of the algorithm for various other quantifiers, yielding novel forms of correla-
tions in the triangle network. Concerning future projects, the algorithm could be used
to find new absolutely maximally entangled states for cases where the existence is still
open, e.g., for systems consisting of more than five quhex.

Subsequently, we discussed the real eigenstructure of regular simplex tensors. We
gave a full characterization for the case of an arbitrary number of modes and local
dimension 2. In addition, we analyzed the robustness of the eigenvectors with respect
to the tensor power iteration. Our findings may shed light on the problem of char-
acterizing those symmetric tensors, which do have repelling eigenvectors, or whose
normalized eigenvectors are given by the vectors of the underlying frame.

Finally, we introduced scalable methods for simultaneously predicting many ex-
pectation values of a multi-qubit system. We presented a formulation of shadow to-
mography with generalized measurements, which offers an interpretation as the least-
squares estimator. In addition, we described how symmetries can be incorporated,
measurements can be optimized towards a targeted set of observables, and errors in
the measurement phase can be mitigated. Moreover, we also explained how errors
during the preparation phase can be taken into account. For this, we devised a gener-
alization of error mitigation protocols and applied them to generalized classical shad-
ows. For the error mitigation scheme of probabilistic error cancellation, we developed
a thorough theoretical framework and derived corresponding sample complexities.
Further, we considered the error mitigation techniques of zero-noise extrapolation and
symmetry verification and accompanied our theoretical complexity bounds by numer-
ical simulations.
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[225] M. Guţă, J. Kahn, R. Kueng, and J. A. Tropp. Fast state tomography with optimal
error bounds. J. Phys. A 53, 204001 (2020).

[226] J. O. de Almeida, M. Kleinmann, and G. Sentís. Comparison of confidence regions
for quantum state tomography. arXiv:2303.07136 (2023).

[227] A. Peres. Separability Criterion for Density Matrices. Phys. Rev. Lett. 77, 1413

(1996).



290 Bibliography

[228] T.-A. Ohst, X.-D. Yu, O. Gühne, and H. C. Nguyen. Certifying Quantum Separa-
bility with Adaptive Polytopes. arXiv:2210.10054 (2023).

[229] D. Cavalcanti, L. Guerini, R. Rabelo, and P. Skrzypczyk. General Method for Con-
structing Local Hidden Variable Models for Entangled Quantum States. Phys. Rev.
Lett. 117, 190401 (2016).

[230] F. Hirsch, M. T. Quintino, T. Vértesi, M. F. Pusey, and N. Brunner. Algorithmic
Construction of Local Hidden Variable Models for Entangled Quantum States. Phys.
Rev. Lett. 117, 190402 (2016).

[231] H. C. Nguyen, H.-V. Nguyen, and O. Gühne. Geometry of Einstein-Podolsky-Rosen
Correlations. Phys. Rev. Lett. 122, 240401 (2019).

[232] M. Fillettaz, F. Hirsch, S. Designolle, and N. Brunner. Algorithmic construction
of local models for entangled quantum states: Optimization for two-qubit states. Phys.
Rev. A 98, 022115 (2018).

[233] H. C. Nguyen, A. Milne, T. Vu, and S. Jevtic. Quantum steering with positive
operator valued measures. J. Phys. A 51, 355302 (2018).

[234] L. Tendick, H. Kampermann, and D. Bruß. Activation of Nonlocality in Bound
Entanglement. Phys. Rev. Lett. 124, 050401 (2020).

[235] R. T. Rockafellar. Convex Analysis. Princeton University Press (1970).

[236] D. A. Evans, E. G. Cavalcanti, and H. M. Wiseman. Loss-tolerant tests of Einstein-
Podolsky-Rosen steering. Phys. Rev. A 88, 022106 (2013).

[237] T. J. Baker, S. Wollmann, G. J. Pryde, and H. M. Wiseman. Necessary condition for
steerability of arbitrary two-qubit states with loss. J. Opt. 20, 034008 (2018).

[238] M. T. Quintino, T. Vértesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acín,
and N. Brunner. Inequivalence of entanglement, steering, and Bell nonlocality for
general measurements. Phys. Rev. A 92, 032107 (2015).

[239] N. Tischler, F. Ghafari, T. J. Baker, S. Slussarenko, R. B. Patel, M. M. Weston,
S. Wollmann, L. K. Shalm, V. B. Verma, S. W. Nam, H. C. Nguyen, H. M. Wise-
man, and G. J. Pryde. Conclusive Experimental Demonstration of One-Way Einstein-
Podolsky-Rosen Steering. Phys. Rev. Lett. 121, 100401 (2018).

[240] M. J. Holland and K. Burnett. Interferometric detection of optical phase shifts at the
Heisenberg limit. Phys. Rev. Lett. 71, 1355 (1993).

[241] X. Zhou, D. W. Leung, and I. L. Chuang. Methodology for quantum logic gate
construction. Phys. Rev. A 62, 052316 (2000).



Bibliography 291

[242] S. Bravyi and A. Kitaev. Universal quantum computation with ideal Clifford gates and
noisy ancillas. Phys. Rev. Lett. 71, 022316 (2005).

[243] R. Raussendorf and H. Briegel. A One-Way Quantum Computer. Phys. Rev. Lett.
86, 5188 (2001).

[244] R. Raussendorf, D. E. Browne, and H. J. Briegel. Measurement-based quantum
computation on cluster states. Phys. Rev. A 68, 022312 (2003).

[245] P. Hyllus, W. Laskowski, R. Krischek, C. Schwemmer, W. Wieczorek, H. Wein-
furter, L. Pezzé, and A. Smerzi. Fisher information and multiparticle entanglement.
Phys. Rev. A 85, 022321 (2012).

[246] G. Tóth. Multipartite entanglement and high-precision metrology. Phys. Rev. A 85,
022322 (2012).

[247] D. Braun, G. Adesso, F. Benatti, R. Floreanini, U. Marzolino, M. W. Mitchell, and
S. Pirandola. Quantum-enhanced measurements without entanglement. Rev. Mod.
Phys. 90, 035006 (2018).

[248] V. Vedral and M. B. Plenio. Entanglement measures and purification procedures.
Phys. Rev. A 57, 1619 (1998).

[249] G. Vidal and R. Tarrach. Robustness of entanglement. Phys. Rev. A 59, 141 (1998).

[250] O. Giraud, P. Braun, and D. Braun. Quantifying quantumness and the quest for
Queens of Quantum. New J. Phys. 12, 063005 (2010).

[251] A. J. Scott. Multipartite entanglement, quantum-error-correcting codes, and entangling
power of quantum evolutions. Phys. Rev. A 69, 052330 (2004).

[252] P. Facchi, G. Florio, G. Parisi, and S. Pascazio. Maximally multipartite entangled
states. Phys. Rev. A 77, 060304(R) (2008).

[253] R. Reuvers. An algorithm to explore entanglement in small systems. Proc. R. Soc. A
474 (2018).

[254] G. Gour and N. R. Wallach. All maximally entangled four-qubit states. J. Math.
Phys. 51, 112201 (2010).

[255] F. Huber, C. Eltschka, J. Siewert, and O. Gühne. Bounds on absolutely maximally
entangled states from shadow inequalities, and the quantum MacWilliams identity. J.
Phys. A 51, 175301 (2018).

[256] D. U. Contreras and D. Goyeneche. Reconstructing the whole from its parts.
arXiv:2209.14154 (2022).



292 Bibliography

[257] P. Horodecki, L. Rudnicki, and K. Życzkowski. Five Open Problems in Quantum
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quantum combinatorial designs. Phys. Rev. A 97, 062326 (2018).

[303] W. Helwig. Absolutely Maximally Entangled Qudit Graph States. arXiv:1306.2879

(2013).

[304] A. Burchardt and Z. Raissi. Stochastic local operations with classical communication
of absolutely maximally entangled states. Phys. Rev. A 102, 022413 (2020).

[305] E. M. Rains. Nonbinary quantum codes. IEEE Trans. Inf. Theory 45, 1827 (1999).

[306] P. Mehta, M. Bukov, C.-H. Wang, A. Day, C. Richardson, C. Fisher, and
D. Schwab. A high-bias, low-variance introduction to Machine Learning for physi-
cists. Phys. Rep. 810, 1–124 (2019).

[307] Y. Nesterov. A method for unconstrained convex minimization problem with the rate of
convergence o(1/k2). Soviet. Math. Docl. 269, 543–547 (1983).
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