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Abstract

With limited control over quantum systems, how can we extract information
about them and characterize their properties? This thesis addresses this ques-
tion from several perspectives. After explaining the basic concepts of quantum
information, we investigate various methods for the analysis of quantum states.

In the first part of the thesis, we develop abstract theories of the so-called
randomized measurements. The idea is to randomly rotate measurement direc-
tions and examine quantum correlations based on the statistical moments of the
resulting probability distribution. This method eliminates the need for calibra-
tion of measurement devices or a common reference frame between spatially-
separated parties. First, we present several criteria for detecting multipartite en-
tanglement and bound entanglement from randomized measurements. Next, we
propose hierarchies of multiqubit entanglement criteria and analyze the statisti-
cal significance using large deviation bounds. Finally, we provide the complete
characterization of two-qubit entanglement from randomized measurements.

In the second part, we explore several applications of randomized measure-
ments. First, we probe the dimensionality of entanglement from work fluc-
tuations in randomized two-point energy measurement protocols in thermo-
dynamic systems. Second, we advance reference-frame-independent quantum
metrology to estimate precision under nonlinear Hamiltonian dynamics. Third,
we introduce different approaches to characterize spin squeezing by establishing
the scheme of collective randomized measurements. Lastly, we advance meth-
ods to certify entanglement based on the moments of the partially transposed
density matrix.

In the last part, we deepen the understanding of quantum correlations from
geometrical viewpoints. First, we study various constraints on three-qubit states
in terms of two-body correlations. Second, we offer quantum speed limits de-
scribing the divergence of a perturbed open system from its unperturbed trajec-
tory. Finally, we provide a formulation to discuss the sensitivity of multiparticle
entanglement under the classicalization of one particle.

Keywords: Quantum information theory, Separability problems, Entanglement
detection, Bloch decompositions, Spin squeezing, Randomized measurements,
Haar random unitaries, Reference-frame-independent scenarios, Local unitary
invariants
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Zusammenfassung

Wie können wir bei begrenzter Kontrolle über Quantensysteme Informationen
über sie gewinnen und ihre Eigenschaften charakterisieren? In dieser Arbeit
wird diese Frage aus verschiedenen Blickwinkeln betrachtet. Nachdem wir die
grundlegenden Konzepte der Quanteninformationstheorie erläutert haben, un-
tersuchen wir verschiedene Methoden zur Analyse von Quantenzuständen.

Im ersten Teil der Arbeit entwickeln wir abstrakte Theorien zu den sogenan-
nten randomisierten Messungen. Die Idee besteht darin, die Messrichtungen
zufällig zu drehen und Quantenkorrelationen auf der Grundlage der statistis-
chen Momente der resultierenden Wahrscheinlichkeitsverteilung zu untersuchen.
Diese Methode macht eine Kalibrierung der Messgeräte oder einen gemein-
samen Bezugsrahmen zwischen räumlich getrennten Parteien überflüssig. Zunä-
chst stellen wir mehrere Kriterien für die Detektierung von Mehrteilchen-Versch-
ränkung und bound entanglement mithilfe randomisierter Messungen vor. Als
nächstes schlagen wir Hierarchien von Multiqubit-Verschränkungskriterien vor
und analysieren die statistische Signifikanz unter Verwendung statistischer Ab-
schätzungen. Schließlich liefern wir eine vollständige Charakterisierung der
Zwei-Qubit-Verschränkung aus zufälligen Messungen.

Im zweiten Teil untersuchen wir verschiedene Anwendungen von randomisi-
erten Messungen. Zunächst untersuchen wir die Dimensionalität der Verschrän-
kung anhand von Arbeitsfluktuationen in randomisierten Zwei-Punkt-Energiem-
essprotokollen in thermodynamischen Systemen. Zweitens entwickeln wir die
vom Bezugssystem unabhängige Quantenmetrologie weiter, um die Präzision
unter nichtlinearer Hamilton-Dynamik abzuschätzen. Drittens stellen wir ver-
schiedene Ansätze zur Charakterisierung von Spin-Squeezing vor, indem wir das
Schema kollektiver randomisierter Messungen etablieren. Schließlich entwick-
eln wir Methoden zum Nachweis der Verschränkung auf der Grundlage der
Momente der teilweise transponierten Dichtematrix.

Im letzten Teil vertiefen wir das Verständnis von Quantenkorrelationen unter
geometrischen Gesichtspunkten. Erstens untersuchen wir verschiedene Beschrä-
nkungen für Drei-Qubit-Zustände in Form von Zwei-Teilchen-Korrelationen. Z-
weitens leiten wir Quantengeschwindigkeitsgrenzen her, die die Abweichung
eines gestörten offenen Systems von seiner ungestörten Trajektorie beschreiben.
Schließlich liefern wir eine Formulierung, um die Empfindlichkeit der Mehrteilc-
hen-Verschränkung bei der Classicalization eines Teilchens zu diskutieren.
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Preface

According to Asher Peres, “The simple and obvious truth is that quantum phe-
nomena do not occur in a Hilbert space. They occur in a laboratory. If you visit
a real laboratory, you will never find there Hermitian operators. All you can
see are emitters (lasers, ion guns, synchrotrons and the like) and detectors. The
experimenter controls the emission process and observes detection events.", as
stated in Ref. [12]. This thesis underscores Peres’s standpoint on quantum me-
chanics and aims to tackle several scenarios with limited control over quantum
systems.

Measurement involves extracting information from a system. As the basic
unit of information, a classical bit has discrete values of either 0 or 1. In contrast,
a quantum bit (qubit) can exist in a superposition of the two different states
due to its characterization by continuous parameters. This distinction has pro-
found implications for information processing. At the same time, qubit systems
are more susceptible to disruptions. Measuring a quantum system disrupts its
superposition.

Entanglement is a superposition of products of states in a composite quan-
tum system. It was initially considered by Einstein, Podolsky, and Rosen [13]
and Schrödinger [14] as “spooky action at a distance" and later recognized by
Bell [15, 16] as a quantum phenomenon testable in experiments. Its properties
underlie the phenomenon of non-locality, which cannot be simulated classically,
and attract the attention of physicists not only from fundamental but also op-
erational perspectives, in terms of a valuable resource for enhancing the perfor-
mance of information processing.

Quantum information processing stands on the existence of entanglement.
On the other hand, a crucial challenge is to determine whether a quantum state
created in a laboratory is indeed entangled [17]. Despite the rapid development
of experimental technologies, detecting the signature of entanglement remains
difficult due to unavoidable noise effects or imperfect measurement setups.

Then, how can we extract information about an entangled quantum system
under limited control? This thesis delves into the possibilities when measure-
ments are randomly performed. We will see that randomized measurements
are potent tools for analyzing quantum systems. In particular, we will develop
several strategies for how randomized measurements allow us to detect and
characterize entanglement.

This thesis is organized as follows. In Chapter 1, we give basic introductions
to quantum information, entanglement, metrology, randomized measurements,
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and quantum designs.
In Chapters 2, 3, 4, we advance abstract theories of the randomized mea-

surements. In Chapter 2, we discuss the detection of tripartite entanglement and
bound entanglement from randomized measurements. In Chapter 3, we provide
criteria for multiqubit entanglement and develop the statistically significant test
of randomized measurements. In Chapter 4, we consider two-qubit entangled
states and show that they can be completely characterized from randomized
measurements.

In Chapters 5, 6, 7, 8, we discuss several applications of randomized measure-
ments. In Chapter 5, we consider randomized two-point energy measurement
protocols in thermodynamic systems and verify the dimensionality of entan-
glement from work fluctuations. In Chapter 6, we discuss quantum metrology
in nonlinear Hamiltonian dynamics and show that parameter estimation can
be possible in a reference-frame-independent manner. In Chapter 7, we estab-
lish the scheme of collective randomized measurements to detect entanglement
in quantum ensembles. In Chapter 8, we develop the entanglement detection
based on the moments of the partially transposed density matrix. In Chapter 9,
we summarize several technical calculations associated with Haar integrals, giv-
ing the proofs of Results presented in this thesis.

In Chapter 10, we discuss the geometry of two-body correlations in three-
qubit states. In Chapter 11, we propose quantum speed limits describing the
divergence of a perturbed open system from its unperturbed trajectory. In Chap-
ter 12, we discuss the sensitivity of multiparticle entanglement under the classi-
calization of one particle.
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Chapter 1

Basic concepts and tools

1.1 Quantum information

In this section, we will give a brief introduction to quantum information. In
quantum information processing tasks, the main research interests may be di-
vided into three parts: states, operations, and measurements. This section de-
scribes each of the basic concepts which are necessary to understand this thesis.
Also, we explain how to analyze quantum systems. Finally, we summarize sev-
eral mathematical formulas as useful tools for theoretical research in quantum
information. For more general introductions to quantum mechanics and quan-
tum information, see [18–24].

1.1.1 States

Formulations: To describe quantum states, there are two formulations: state
vectors and density matrices. On the one hand, the state vector formulation
describes a quantum state in an isolated physical system. Here, the state is
defined as a unit complex column vector |ψ⟩ in a d-dimensional Hilbert space
Hd with d ≥ 2. This quantum state is called pure. Here we used the bra-
ket notation to express the vector, where ⟨ψ| denotes the conjugate transpose
(Hermitian) of the column vector |ψ⟩, that is, |ψ⟩† = ⟨ψ|. The normalization
condition is given by ⟨ψ|ψ⟩ = 1.

To explain the notation explicitly, the ket is |a⟩ = (a1, a2, . . . , ad)
⊤ ∈ Hd for

complex elements ai for i = 1, . . . , d, while its bra is ⟨a| = (a∗1 , a∗2 , . . . , a∗d) with the
complex conjugate a∗i of ai. The inner product is defined as ⟨a|b⟩ = ∑d

i=1 a∗i bi.
The density matrix formulation describes a quantum state in an ensemble of

pure states {pi, |ψi⟩}. This state is represented as a d× d matrix given by

ϱ = ∑
i

pi |ψi⟩⟨ψi| , (1.1.1)

where pi implies the probabilities to obtain the state |ψi⟩ with pi ∈ [0, 1] and
∑i pi = 1. Then the state is called mixed unless pi = 1 for some i. It is important
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to note that the density matrix satisfies

ϱ† = ϱ, tr(ϱ) = 1, ϱ ≥ 0. (1.1.2)

The first property means that the matrix has all real eigenvalues. The second
one means that the sum of its diagonal elements is equal to one. The third
one means that all its eigenvalues are nonnegative (or positive-semidefinite).
These properties, respectively, correspond to the fact that the probability is real,
normalized, and nonnegative. Often, we call a matrix a quantum state if it
satisfies these three conditions. Note that the matrix X is nonnegative ⇔ X ≥ 0
⇔ ⟨ψ|X|ψ⟩ ≥ 0 for any |ψ⟩ ⇔ X = ∑i λi |xi⟩⟨xi| for the eigenvalues λi ≥ 0 for
all i.

Rank: Let us consider the eigenvalue decomposition of a state ϱ ∈ Hd:

ϱ =
r

∑
i=1

λi |ϕi⟩⟨ϕi| , (1.1.3)

where λi are eigenvalues and |ψi⟩ are corresponding eigenvectors. The condi-
tions in Eq. (1.1.2) lead to λi ∈ [0, 1] and ∑r

i=1 λi = 1. Here r ∈ {1, 2, . . . , d} is
called the rank of the state ϱ. A state with r = 1 is pure. Otherwise, it is mixed.

Maximally mixed state: A d-dimensional quantum state is called the maxi-
mally (or completely) mixed state if ϱmm = 1d/d, where 1d is the d× d identity
matrix. The maximally mixed state has rank d. This state can be recognized as
the noisiest state in the sense that it has no information about the system, similar
to white noise.

Qubits and qudits: Let {|i⟩}d−1
i=0 be the set of computational bases (orthonor-

mal bases) in a d-dimensional system for |i⟩ ∈ Hd with ⟨i|j⟩ = δij. Here, δij
denotes the Kronecker delta symbol.

In quantum information, a two-dimensional state with d = 2 is commonly
referred to as a qubit, as the counterpart to the bit in classical information. The
computational basis states are given by

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
. (1.1.4)

Using these bases, we can parameterize any single-qubit pure state as

|θ, ϕ⟩ = cos
(

θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ , (1.1.5)

where both real parameters are defined in θ ∈ [0, π] and ϕ ∈ [0, 2π]. Note that
⟨θ, ϕ|θ, ϕ⟩ = 1 due to cos2 (θ) + sin2 (θ) = 1. Also, the corresponding density
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matrix is given by

ϱ(θ, ϕ) = |θ, ϕ⟩⟨θ, ϕ| =

 cos2
(

θ
2

)
1
2 e−iϕ sin(θ)

1
2 eiϕ sin(θ) sin2

(
θ
2

)  . (1.1.6)

In general, a d-dimensional state is called the qudit. For instance, a three-
dimensional state with d = 3 is called a qutrit, where its computational basis
states are given by

|0⟩ =

1
0
0

 , |1⟩ =

0
1
0

 , |2⟩ =

0
0
1

 . (1.1.7)

In a similar manner of Eq. (1.1.5), any pure single-qutrit state can be written as

|θ, ϕ, χ1, χ2⟩ = eiχ1 sin (θ) cos (ϕ) |0⟩+ eiχ2 sin (θ) sin (ϕ) |1⟩+ cos (θ) |2⟩ , (1.1.8)

where θ, ϕ ∈ [0, π/2] and χ1, χ2 ∈ [0, 2π] with ⟨θ, ϕ, χ1, χ2|θ, ϕ, χ1, χ2⟩ = 1.

Purity: The amount of the mixedness of a state can be characterized by the
purity for a state ϱ ∈ Hd:

γ(ϱ) = tr(ϱ2) ∈ [1/d, 1] . (1.1.9)

The pure state has the maximum value γ(ψ) = 1, because ϱ2 = ϱ. On the
other hand, the mixed state has γ(ϱ) < 1, and especially, the maximally mixed
state has the minimum value γ(ϱmm) = 1/d. Calculating its purity allows us to
know whether a given density matrix ϱ is pure or mixed. In the following, we
summarize several remarks about the purity.

• Positivity conditions: Recalling the eigenvalue decomposition in Eq. (1.1.3),
we can have γ(ϱ) = ∑r

i=1 λ2
i , where λi are eigenvalues of ϱ and r is the

rank. In the case of single qubits, one can conversely determine the two
eigenvalues using the purity and the normalization condition tr(ϱ) = λ1 +
λ2 = 1. That is, the positive-semidefinite condition of a single-qubit state ϱ
can be replaced by 1/2 ≤ γ(ϱ) ≤ 1. However, this is not the case in higher
dimensions.

• Rank bound: For a rank-r state ϱr, the lower bound of the purity is given
by

γ(ϱr) ≥
1
r

, (1.1.10)

where we used the inequality between the arithmetic mean and quadratic
mean: ∑n

i=1 x2
i /n ≥ [∑n

i=1 xi/n]2, for positive xi.
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• Linear entropy: The purity is related to the so-called linear entropy:

SL(ϱ) =
d

d− 1
[1− γ(ϱ)] ∈ [0, 1]. (1.1.11)

The reason we call it entropy is that linear entropy can be derived from von
Neumann’s entropy (see [19]) using Taylor’s expansions of the logarithm
of a density matrix.

Thermal states: Let H be a nondegenerate Hamiltonian with the eigenvalues
Ei and the corresponding eigenvectors |Ei⟩. In an analogy with the canonical
state in statistical physics, we denote the thermal state as

τ =
e−βH

Z
, Z = tr(e−βH), (1.1.12)

where β denotes the inverse temperature. Here we note that the matrix expo-
nential for an operator A is defined by the power series eA = ∑∞

n=0 An/n!. Thus,
the thermal state can be rewritten as

τ = ∑
i

pi |Ei⟩⟨Ei| , (1.1.13)

where pi = e−βEi /Z ∈ [0, 1] and ∑i pi = 1.
The purity of the thermal state is given by γ(τ) = ∑i p2

i . For zero temperature
β → ∞, the thermal state can be pure since pi → 1. On the other hand, for
infinite temperature β → 0, it can be maximally mixed, since pi → 1/Z and
Z = d.

Bloch decomposition of single-qubit state: Any single-qubit state ϱ ∈ H2 can
be decomposed into the following form:

ϱ =
1
2
(
12 + axσx + ayσy + azσz

)
, (1.1.14)

where the coefficients ai are real and obey ai ∈ [−1, 1]. Here, the σi for i = x, y, z
are called the Pauli matrices given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 1

)
. (1.1.15)

satisfying the properties:

σ†
i = σi, tr(σi) = 0, tr(σiσj) = 2δij, σiσj = δij12 + i ∑

k
ϵijkσk, (1.1.16)

where δij denotes the Kronecker-delta symbol and ϵijk denotes the Levi-Civita
symbol. Clearly, the form (1.1.14) satisfies the conditions that ϱ† = ϱ and tr(ϱ) =
1. Also, the positive-semidefinite condition can be replaced by

|a|2 = a2
x + a2

y + a2
z ∈ [0, 1], (1.1.17)
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where a = (ax, ay, az)⊤. This is because, as mentioned already, ϱ ≥ 0 is equiva-
lent to 1/2 ≤ γ(ϱ) ≤ 1 for qubits, and the purity is given by

γ(ϱ) =
1
2

(
1 + |a|2

)
. (1.1.18)

There are relations between the Pauli matrices and the computational bases:

|0⟩⟨0| = 1
2
(12 + σz), |1⟩⟨1| = 1

2
(12 − σz),

|0⟩⟨1| = 1
2
(σx + iσy), |1⟩⟨0| = 1

2
(σx − iσy). (1.1.19)

Using these relations, the pure state |θ, ϕ⟩ in Eq. (1.1.6) has the following Bloch
elements: ax = sin(θ) cos(ϕ), ay = sin(θ) sin(ϕ), and az = cos(θ). This can be
interpreted as a point (θ, ϕ) on the three-dimensional unit sphere in spherical
coordinates, called the Bloch sphere. This result provides geometrical insights
into the Bloch decomposition, which can map every single-qubit state to a point
on the Bloch sphere. There, a pure state corresponds to a point on the surface,
while a mixed state corresponds to a point inside the Bloch sphere. The value
|a|2 ∈ [0, 1] represents the length from its origin, which can measure how mixed
the state is. It is essential to note that this length remains invariant under any
rotation on the Bloch sphere.

Bloch decomposition of single-qudit state: In general, any single-qudit state
ϱ ∈ Hd can be written in the form of the generalized Bloch decomposition:

ϱ =
1
d

(
1d +

d2−1

∑
i=1

aiλi

)
, (1.1.20)

where λi are called the Gell-Mann matrices and the d-dimensional extensions of
Pauli matrices satisfying the properties:

λ†
i = λi, tr(λi) = 0, tr(λiλj) = dδij, (1.1.21)

λiλj =
1
2
(
[λi, λj] + {λi, λj}

)
= dδij1d +

1
2 ∑

k
(ηS

ijk + iηA
ijk)λk, (1.1.22)

ηS
ijk =

1
d

tr(λi{λj, λk}), ηA
ijk =

−i
d

tr(λi[λj, λk]), (1.1.23)

where [A, B] = AB− BA denotes the commutator and {A, B} = AB + BA de-
notes the anticommutator. Here ηS

ijk is a completely symmetric tensor, while ηA
ijk

is a completely antisymmetric tensor. That is, ηS
ijk does not flip the sign under

the exchange of each pair of its indices, while ηA
ijk flips the sign.

The purity is given by

γ(ϱ) =
1
d

(
1 + |a|2

)
. (1.1.24)
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This directly leads to the condition |a|2 ∈ [0, d − 1] with a = (a1, . . . , ad2−1)
⊤

on the (d2 − 1)-dimensional unit sphere. In a similar manner to Pauli matrices,
there are relations between the Gell-Mann matrices and the computational bases.
In fact, the Gell-Mann matrices are divided into three types:

{λi}d2−1
i=1 = {λs

jk, λa
jk, λd

l }, (1.1.25)

where each matrix is respectively called symmetric, antisymmetric, or diagonal
Gell-Mann matrix:

λs
jk =

√
d
2
(|j⟩⟨k|+ |k⟩⟨j|) , for 0 ≤ j < k ≤ d− 1, (1.1.26)

λa
jk =

√
d
2
(−i |j⟩⟨k|+ i |k⟩⟨j|) , for 0 ≤ j < k ≤ d− 1, (1.1.27)

λd
l =

√
d
L

(
l

∑
j=0

Πj − (l + 1)Πl+1

)
, for 0 ≤ l ≤ d− 2, (1.1.28)

where L = (l + 1)(l + 2) and Πj = |j⟩⟨j|. For details about Gell-Mann matrices,
see [25–28].

Qutrit Gell-Mann matrices: Here we write the Gell-Mann matrices in qutrit
systems with d = 3 as follows:

λ1 =

√
3
2

0 1 0
1 0 0
0 0 0

 , λ2 =

√
3
2

0 −i 0
i 0 0
0 0 0

 , λ3 =

√
3
2

1 0 0
0 −1 0
0 0 0

 ,

λ4 =

√
3
2

0 0 1
0 0 0
1 0 0

 , λ5 =

√
3
2

0 0 −i
0 0 0
i 0 0

 , λ6 =

√
3
2

0 0 0
0 0 1
0 1 0

 ,

λ7 =

√
3
2

0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
2

1 0 0
0 1 0
0 0 −2

 . (1.1.29)

Notice that

λs
01 = λ1, λs

02 = λ4, λs
12 = λ6,

λa
01 = λ2, λa

02 = λ5, λa
12 = λ7,

λd
0 = λ3, λd

1 = λ8. (1.1.30)
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For the state |θ, ϕ, χ1, χ2⟩ in Eq. (1.1.8), the elements of the eight-dimensional
vector a are given by

a1 =

√
3
2

sin2(θ) cos (∆) sin(2ϕ), a2 = −
√

3
2

sin2(θ) sin (∆) sin(2ϕ),

a3 =

√
3
2

sin2(θ) cos(2ϕ), a4 =
√

6 sin(θ) cos(θ) cos (χ1) cos(ϕ),

a5 = −
√

6 sin(θ) cos(θ) sin (χ1) cos(ϕ), a6 =
√

6 sin(θ) cos(θ) cos (χ2) sin(ϕ),

a7 = −
√

6 sin(θ) cos(θ) sin (χ2) sin(ϕ), a8 = −3 cos(2θ) + 1
2
√

2
, (1.1.31)

where ∆ = χ1 − χ2. For details about qutrit systems, see [29–31].

1.1.2 Operations

Definitions: A quantum operation (dynamics) describes a transformation that
changes a quantum state to a quantum state. The operation is defined as a map
Φ such that Φ(ϱ) = ϱ′, where ϱ ∈ Hd and ϱ′ ∈ Hd′ . We can understand the
above as saying that the input state ϱ can be transformed into the output ϱ′ via
the physical process or channel Φ. Note that d is not necessarily equal to d′. For
the sake of simplicity, in the following, we consider the case where d = d′.

Mathematically, a quantum operation Φ must satisfy

tr[Φ(ϱ)] = 1, Φ
(
∑ piϱi

)
= ∑ piΦ(ϱi), Φ(ϱ) ≥ 0. (1.1.32)

The first condition is called trace-preserving, the second is called convex-linearity,
and the third is called positivity-preserving. That is, we require the quantum op-
eration to preserve the three conditions of quantum states in Eq. (1.1.2). More-
over, in addition to these properties, the quantum operation must satisfy another
physical condition: even when Φ acts on a subsystem of ϱ, the positivity of ϱ
must hold. This is called complete positivity, which will be explained more
precisely in Sec. 1.1.4.

Kraus representations: For a state ϱ ∈ Hd, any quantum operation can be
written as the so-called Kraus representation:

Φ(ϱ) =
r

∑
i=1

KiϱK†
i . (1.1.33)

The trace-preserving condition leads to

tr[Φ(ϱ)] = tr

[
r

∑
i=1

KiϱK†
i

]
= tr

[
r

∑
i=1

K†
i Kiϱ

]
= tr(ϱ). (1.1.34)

Thus, Kraus operators Ki should satisfy
r

∑
i=1

K†
i Ki = 1d. (1.1.35)
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Here r is called the Kraus rank with the range r ∈ {1, . . . , d2}. This is in analogy
with the rank of a quantum state. Note that the choice of the Ki is not unique.

Unitary operations: For a state ϱ ∈ Hd, a quantum operation is called unitary
if

Φ(ϱ) = UϱU†, (1.1.36)

where U is a unitary matrix such that U−1 = U†, that is, UU† = U†U = 1d. The
unitary operation can be regarded as a rank-one Kraus representation.

Let us note that the unitary matrix can be written as

U(θ) = e−iθH, (1.1.37)

where θ is a real parameter such as time t and H is a Hermitian matrix such as
the Hamiltonian. In general, computing unitary matrices for a given Hamilto-
nian would be demanding because of nontrivial complicated higher-order terms.
On the other hand, if a Hamiltonian is a so-called involutory matrix, that is,
H2 = 1d, then the unitary can be simplified as follows:

U(θ) = cos (θ)1d − i sin (θ)H. (1.1.38)

Finally, we note that any unitary operation cannot change the purity of a
quantum state: γ(UϱU†) = tr(UϱU†UϱU†) = tr(ϱ2) = γ(ϱ). In a single-qubit
system, the unitary operation can be regarded as a transformation between two
points on the surface of the Bloch sphere.

Single-qubit unitary operations: In general, we can write the single-qubit
Hamiltonian as

H = ∑
i=x,y,z

uiσi = u · σ, (1.1.39)

where u = (ux, uy, uz) is a unit real vector with |u|2 = 1 and σ = (σx, σy, σz)
is the vector of Pauli matrices. That is, any single-qubit unitary matrix can be
given by

U (θ,u) = cos (θ)12 − i sin (θ)u · σ, (1.1.40)

where we use H2 = 12.
This unitary operation describes not only rotations, but also transformations

between any two points on the Bloch sphere. For instance, taking an initial state
as |0⟩ and the vector u0 with ux = − sin (ϕ), uy = cos (ϕ), uz = 0, we can find
the expression in Eq. (1.1.6):

ϱ(θ, ϕ) = U (θ/2,u0) |0⟩⟨0|U (θ/2,u0)
† . (1.1.41)

In general, for any single-qubit state with the Bloch vector a in Eq. (1.1.14), the
unitary operation U (θ,u) can map its element ai to a′i as follows:

a′i = tr
[
σiU (θ,u) ϱU (θ,u)†

]
≡

3

∑
j=1

Oijaj, (1.1.42)
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where

Oij =
1
2

tr
[
σiU (θ,u) σjU (θ,u)†

]
=

1
2

tr
[
σi (cos (θ)12 − i sin (θ)u · σ) σj (cos (θ)12 + i sin (θ)u · σ)

]
=
[
cos2 (θ)− sin2 (θ)

]
δij − sin (θ) cos (θ)∑

k
ukϵijk + 2 sin2 (θ)uiuj. (1.1.43)

Connection between SU(2) and SO(3): A set of all n× n matrices is called the
special unitary group SU(n) if every matrix is unitary with determinant 1. For
example, we can notice that U (θ,u) ∈ SU(2), where the single-qubit unitary
U (θ,u) given in Eq. (1.1.40) and its determinant can be shown to be 1 using
Jacobi’s formula det eA = etr(A) for a matrix A:

det U (θ,u) = eiθ tr(u·σ) = 1. (1.1.44)

A set of all n × n matrices is called the special orthogonal group SO(n) if
every matrix is orthogonal with determinant 1, that is, O⊤O = OO⊤ = 1n and
det O = 1 for O ∈ SO(n), where (·)⊤ denotes the transposition. Let us recall
that any orthogonal matrix can be written as follows, in a similar manner to
Eq. (1.1.37):

O = eωK (1.1.45)

where ω is a real parameter and K is a skew-symmetric matrix with K⊤ = −K.
In particular, for an orthogonal matrix O ∈ SO(3), the matrix K can be given by
the so-called cross-product matrix:

K =

 0 −kz ky
kz 0 −kx
−ky kx 0

 , (1.1.46)

where tr(K) = 0, k2
x + k2

y + k2
z = 1, and K3 = −K. Using the Taylor expansion,

we can rewrite the orthogonal matrix O ∈ SO(3) as

O = 13 + sin (ω)K + [1− cos (ω)]K2. (1.1.47)

This matrix form is called Rodrigues’ rotation formula.
Now it is important to notice that the expression in Eq. (1.1.47) coincides with

the matrix given in Eq. (1.1.43) if ω = θ/2 and k = u. That is, the single-qubit
U (θ/2,u) ∈ SU(2) can represent the orthogonal rotation O ∈ SO(3) of a point
on the Bloch sphere by an angle θ about the u axis. On the mathematical side,
this relation is known as the isomorphic mapping of SU(2) onto SO(3). For
details, see [18, 32–35].
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Unital operations: A quantum operation is called unital if

ΦU

(
1d
d

)
=

1d
d

. (1.1.48)

That is, the maximally mixed state is a fixed point of the unital operation. This
condition implies that the Kraus operators obey

∑
i

K†
i Ki = ∑

i
KiK†

i = 1. (1.1.49)

Otherwise, a quantum operation is called non-unital. Such an operation can
turn the maximally mixed state into another quantum state, which can increase
the amount of purity. A typical example is (generalized) amplitude damping.

Identical operations: A quantum operation is called identical if id(ϱ) = 1ϱ1 =
ϱ, for any quantum state ϱ. That is, applying this operation implies that we do
not touch the state.

Depolarizing operations: The depolarizing operation describes the state trans-
formation such that an input state is obtained with probability p and the maxi-
mally mixed state is obtained with probability 1− p. That is, for a state ϱ ∈ Hd,

D(ϱ) = pϱ +
1− p

d
1d. (1.1.50)

By definition, the depolarizing operation is unital.
For single-qubit cases, its Kraus operators are given by

Ki =

√
1− p

4
σi, K4 =

√
3p− 1

4
12, (1.1.51)

with Pauli matrices σi for i = 1, 2, 3. This follows from the fact that for a single-
qubit state ϱ, it holds that

1
2
12 =

1
4
(
12ϱ12 + σxϱσx + σyϱσy + σzϱσz

)
. (1.1.52)

One can check this relation by substituting the Bloch decomposition in Eq. (1.1.14)
into the above form and using the property σiσjσi = −σj for i ̸= j. Moreover, in
general, it holds

1d
d

=
1
d

(
d

∑
i=1
|i⟩⟨i|

)
tr(ϱ) =

1
d

d

∑
i,j=1
|i⟩⟨j| ϱ |j⟩⟨i| . (1.1.53)

Based on the relation in Eq. (1.1.28), one can then find the form of the Kraus
operators of the d-dimensional depolarizing operation.
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Finally, we consider the change of purity under the depolarizing operation:

γ[D(ϱ)] = tr

[(
pϱ +

1− p
d

1d

)2
]
= p2γ(ϱ) +

1− p2

d
. (1.1.54)

Thus, the purity monotonically decreases under the depolarizing operation. Us-
ing the relation in Eq. (1.1.24) between the purity and the Bloch length |a|2 for
an initial state ϱ, we can have

p =

√
dγ[D(ϱ)]− 1
|a|2 . (1.1.55)

That is, the noise parameter p can be estimated by measuring the purities of the
initial and output states.

Universal state inversions: For a single-qubit state ϱ, a map is called spin-flip
if

S2(ϱ) = σyϱ⊤σy =
1
2

(
12 − ∑

i=x,y,z
aiσi

)
, (1.1.56)

where we use the Bloch decomposition in Eq. (1.1.14) and notice that σ⊤y = −σy

with the transposition (·)⊤. It is important to note that this map preserves the
positivity condition. Also, we can rewrite the spin-flip as

S2(ϱ) = tr(ϱ)12 − ϱ. (1.1.57)

In general, for a single-qudit state ϱ, a map is called the universal state inver-
sion if

Sd(ϱ) = tr(ϱ)1d − ϱ. (1.1.58)

From the eigenvalue decomposition, one can immediately see that Sd(ϱ) pre-
serves the positivity condition. Clearly, it thus holds that tr[ϱSd(ϱ)] ≥ 0, where
tr(AB) ≥ 0 for positive operators A, B. This inequality implies that the purity is
bounded by one: γ(ϱ) ≤ 1. Finally, we note that in the viewpoint of the Bloch
decomposition in Eq. (1.1.20), the universal state inversion can be rewritten as

Sd(ϱ) =
1
d

[
(d− 1)1d −

d2−1

∑
i=1

aiλi

]
. (1.1.59)

For details about universal state inversions, see [36–38].

Liouville-von Neumann equation: Consider the infinitesimal time evolution
from time t to t + ∆t in a unitary operation U(t + ∆t, t), for small ∆t:

ϱ(t + ∆t) = U(t + ∆t, t)ϱ(t)U†(t + ∆t, t). (1.1.60)
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Here we can express the matrix exponential of the unitary in Eq. (1.1.37) using
the Taylor expansion:

U(t + ∆t, t) = 1− i∆tH +O[(∆t)2]. (1.1.61)

Substituting this form into Eq. (1.1.60), we have

ϱ(t + ∆t) = ϱ(t)− i∆t[H, ϱ(t)] +O[(∆t)2], (1.1.62)

where [A, B] = AB − BA. Considering the limit ∆t → 0, we can arrive at the
Liouville-von Neumann equation:

dϱ

dt
= −i[H, ϱ]. (1.1.63)

This dynamics can describe the time-reversal evolution of a quantum state in an
isolated system.

Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) equation: Let us consider
the infinitesimal time evolution from t to t+∆t in a Kraus operation Φt+∆t,t with
an operator Ki(t + ∆t, t), for small ∆t:

ϱ(t + ∆t) =
r

∑
i=1

Ki(t + ∆t, t)ϱ(t)K†
i (t + ∆t, t). (1.1.64)

Here we assume that this form is valid for any time t > 0. Then we can always
write

K1(t + ∆t, t) = 1− i∆tH − ∆t
2 ∑

i≥1
|gi|2L†

i Li +O[(∆t)2], (1.1.65)

Ki ̸=1(t + ∆t, t) =
√

∆tgiLi +O[∆t], (1.1.66)

where |gi|2 has units of [1/time] and the dimensionless (∆t)g2
i is kept but its

higher orders are neglected, in analogy to the so-called van Hove limit in statis-
tical physics [39]. Note that these Kraus operators satisfy the trace-preserving
condition, up to the first order of ∆t. Substituting these into Eq. (1.1.64), we have

ϱ(t + ∆t) = ϱ(t)− i∆t[H, ϱ(t)]− ∆t
2 ∑

i≥1
|gi|2

(
{L†

i Li, ϱ(t)} − 2Liϱ(t)L†
i

)
+O[(∆t)3/2], (1.1.67)

where [A, B] = AB− BA and {A, B} = AB + BA. Considering the limit ∆t→ 0,
we arrive at the Gorini–Kossakowski–Sudarshan–Lindblad equation:

dϱ

dt
= −i[H, ϱ]− 1

2 ∑
i≥1
|gi|2

(
{L†

i Li, ϱ} − 2LiϱL†
i

)
. (1.1.68)
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Here, the first term on the right-hand side is the same as the Liouville-von
Neumann equation and describes the time-reversible effects of the unitary evo-
lution. On the other hand, the other terms represent additional effects and de-
scribe the time-irreversible quantum dissipation arising from interaction with
the environment in the open system. In particular, this open dynamics may be
often called Markovian, which is independent of the history of the process. This
memoryless property may stem from the assumption that the form in Eq. (1.1.64)
holds for any time t > 0. In mathematical words, this assumption means that
the Kraus representation forms a one-parameter semi-group. For details about
open quantum systems, see [40–44].

1.1.3 Measurements

Experimental facts: Consider a large number of quantum states, where each
state is identically the same. Let us perform a measurement for each state in
order to know a physical quantity, such as energy, momentum, and angular
momentum. After a measurement, the resulting outcome is obtained. Here are
four experimental facts in quantum mechanics:

1. Each outcome may be different for the same measurement.

2. Any outcome can have real value.

3. Each outcome can occur with a certain probability, depending on the mea-
surement setting and quantum state.

4. The state after the measurement can be different from the state before the
measurement.

In the following, we will describe the theory of quantum measurements that can
explain the above experimental facts.

Projective measurements: We call a Hermitian operator M observable if it acts
on the quantum state of a system and is associated with a physical quantity that
can be measured. Examples are Pauli matrices and Hamiltonians. A projec-
tive measurement is described by the observable M ∈ Hd. Here its eigenvalue
decomposition is given by

M = ∑
i

miΠi, (1.1.69)

where mi is an eigenvalue and Πi are its corresponding projectors with

Π†
i = Πi, ∑

i
Πi = 1d, ΠiΠj = δijΠi, Πi ≥ 0. (1.1.70)

Suppose that we perform a measurement of the observable M on a quantum
state ϱ. The following rules can explain the experimental facts very well:

1. Each outcome of the measurement is given by one of the eigenvalues {mi}.
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2. Any outcome mi has a real value since M is Hermitian.

3. The i-th outcome mi is known to be obtained with the probability pi fol-
lowing from the so-called Born rule

pi = tr(ϱΠi). (1.1.71)

4. After this measurement, the state ϱ becomes

ϱ→ ϱ′i =
1

tr(ϱΠi)
ΠiϱΠi, (1.1.72)

which occurs with the probability pi. This update is often called the col-
lapse of the quantum state.

Consider a case in which we know that the measurement is performed but we
do not know which outcome occurs. In this case, a quantum state can be written
as a mixture of possible post-measurement states:

ϱ′ = ∑
i

piϱ
′
i = ∑

i
ΠiϱΠi. (1.1.73)

This can coincide with the process described by the Kraus representation with
Ki = Πi discussed in Eq. (1.1.33). Here the trace-preserving condition corre-
sponds to ∑i Πi = 1d.

POVM measurements: The notion of quantum measurements can be gener-
alized, to what are known as positive operator-valued measure (POVM) mea-
surements. Roughly speaking, it may be a mixture of projective measurements
in analogy with the relation between pure and mixed states. For instance, let
us toss a coin and make either of two measurements Ma or Mb, depending on
whether it is the head or tail. How can we describe this measurement process?

More mathematically, let {Mx}x=a,b,...,z be the collection of observables, where
Mx ∈ Hd have eigenvalues mx

i with corresponding projectors Πx
i . Consider a sit-

uation in which a measurement Mx is performed with a probability qx. For the
sake of simplicity, let us assume that every observable Mx has the same outcome
values (eigenvalues) mi for any i, but different projectors. Such examples are the
Pauli matrices {σx, σy, σz}. The probability to obtain the i-th outcome mi is given
by

pi = qatr(ϱΠa
i ) + qbtr(ϱΠb

i ) + · · ·+ qztr(ϱΠz
i )

= tr
[
ϱ
(

qaΠa
i + qbΠb

i + · · ·+ qzΠz
i

)]
. (1.1.74)

Here we notice the following relations

∑
x

qxΠx
i ≥ 0, ∑

i
∑
x

qxΠx
i = ∑

x
qx

(
∑

i
Πx

i

)
= 1d, (1.1.75)
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where we use that the convex combination of positive matrices is positive and
qx is the probability.

General quantum measurements are described by POVM measurements, a
collection of operators {Ei} with Ei ∈ Hd, such that

E†
i = Ei, ∑

i
Ei = 1d, Ei ≥ 0. (1.1.76)

In quantum information, the operators Ei are often called effects. The probability
to obtain the i-th outcome is given by

pi = tr(ϱEi). (1.1.77)

To discuss how the state changes after the POVM measurement, we first recall
that a Hermitian matrix X is positive if and only if it can be written as X = A† A
for a matrix A. Thus the effects can be rewritten as

Ei = K†
i Ki, (1.1.78)

for operators Ki. After the measurement, the post-measurement state can be
given by

ϱ→ ϱ′i =
1

tr(ϱEi)
KiϱK†

i . (1.1.79)

In a similar manner to projective measurements, if we do not know the out-
comes, then the state is mixed between post-measurement states:

ϱ′ = ∑
i

piϱ
′
i = ∑

i
KiϱK†

i . (1.1.80)

The condition ∑i Ei = ∑i K†
i Ki = 1d represents the trace-preserving condition in

the Kraus representation.
We remark that for effects Ei, there exist unitary matrices Ui such that Ki =

Ui
√

Ei. This is the polar decomposition of the operators Ki, which satisfies K†
i Ki =

Mi. That is, there is unitary freedom in the Kraus representation, and the op-
eration is not uniquely determined. As a special case, the so-called von Neu-
mann–Lüders rule allows us to describe the post-measurement state as

ϱ→ ϱ′i =
1

tr(ϱEi)

√
Eiϱ
√

Ei. (1.1.81)

Noisy measurements: Suppose that we perform a projective measurement Πi
with noisy error probability ε and produce a completely random outcome with
probability 1− ε. The corresponding POVMs are given by

Pi = εΠi +
1− ε

d
1d ≥ 0,

d

∑
i=1

Pi = 0, (1.1.82)
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where we assume that the projectors Πi have rank 1 and d outcomes. The prob-
ability to obtain the outcome i is given by

pi(ε) = tr(ϱPi). (1.1.83)

To see the expression of the post-measurement state, we begin by noting that√
Pi = fεΠi + gε1d. (1.1.84)

Here we used that 1d = Πi + ∑i ̸=j Πj and defined that

fε =

√
ε +

1− ε

d
−
√

1− ε

d
, gε =

√
1− ε

d
, (1.1.85)

with the normalization condition

f 2
ε + 2 fεgε + dg2

ε = 1. (1.1.86)

Using the von Neumann–Lüders rule, the post-measurement state is given by

ϱ′i(ε) =
1

pi(ε)

√
Piϱ
√

Pi =
1

pi(ε)

[
f 2
ε ΠiϱΠi + g2

ε ϱ + fεgε(Πiϱ + ϱΠi)
]

. (1.1.87)

The first term on the right-hand side represents the post-measurement state by
the (noiseless) projective measurement, while the second term represents the
state from the measurement that does not touch the state. The third term repre-
sents an additional contribution at a finite ε ∈ (0, 1).

In particular, this measurement is called sharp if ε→ 1, while it is called weak
if ε → 0. The sharp measurement process can change the state significantly, but
a lot of information about the state can be extracted. On the other hand, a
weak measurement process can keep the state mostly unchanged, but provide
little information about the state. That is, there is a trade-off relation between
extractable information and state change. For details about noisy measurements,
see [45–47].

In the above noisy measurement scheme, let us consider the mixture of post-
measurement states:

ϱ′(ε) = ∑
i

pi(ε)ϱ
′
i(ε) = f 2

ε ξ + κεϱ, ξ = ∑
i

ΠiϱΠi, κε = gε(2 fε + dgε), (1.1.88)

where we use ∑i Πi = 1d. Now, we can introduce the part of the results pro-
posed in Ref. [4]: For the state’s purity, it holds that

γ[ϱ′(ε)] ≤ γ(ϱ), (1.1.89)

which is saturated by the limit ε→ 0.
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Proof. Here we show the above inequality, following the description of Ref. [4].
The purity of ϱ′(ε) is given by

γ[ϱ′(ε)] = f 4
ε γ(ξ) + κ2

ε γ(ϱ) + 2 f 2
ε κεtr(ξϱ). (1.1.90)

Here we notice that γ(ξ) = tr
[
(∑i ΠiϱΠi)

2
]
= tr(ξϱ) = ∑i tr [ΠiϱΠiϱ] . This

yields

γ[ϱ′(ε)] =
(

f 4
ε + 2 f 2

ε κε

)
∑

i
tr [ΠiϱΠiϱ] + κ2

ε γ(ϱ). (1.1.91)

Moreover, we can find the upper bound of the first term in the above equation

∑
i

tr [ΠiϱΠiϱ] ≤∑
i

tr
[
Πiϱ

2
]
= γ(ϱ). (1.1.92)

Here we used the inequality tr(ABAB) ≤ tr(A2B2) for any Hermitian opera-
tors A, B, which can be shown in Sec. 1.1.7. Finally, using the normalization
condition (1.1.86), we can complete the proof.

In Chapter 5, we will discuss the extension of Eq. (1.1.89) to two-qudit sys-
tems and the application in the scheme of two-point measurements.

Expectation of observable: Consider a quantum state ϱ and perform a mea-
surement with an observable M. Denote the measurement outcome as mi with
its corresponding probability as pi. The expectation of the observable is defined
as

⟨M⟩ϱ = ∑
i

mi pi, (1.1.93)

where the subscript ϱ is made to stress that the expectation depends on the
state. For details about the expectation, see Sec. 1.1.5. In the case of projective
measurements, the probability is given by pi = tr(ϱΠi) following from the Born
rule in Eq. (1.1.71) with the projector Πi for the corresponding eigenvalue mi of
M. Then the expectation can be rewritten as

⟨M⟩ϱ = ∑
i

mitr(ϱΠi) = tr(ϱM). (1.1.94)

In the case of POVM measurements, one method to define the expectation
is to decompose the observable M using POVMs, not projectors. As examples
of references, we would like to highlight the works in Refs. [4, 47]. To such
POVM decomposition, we consider the noisy POVM measurements Pi = εΠi +
(1− ε)1d/d in Eq. (1.1.82) with the probability pi(ε) = tr(ϱPi). Now one notices
that

∑
i

mi pi(ε) = ε⟨M⟩ϱ +
1− ε

d
tr(M) ̸= ⟨M⟩ϱ. (1.1.95)
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To find the form of the expectation ⟨M⟩ϱ, we should rescale and shift the out-
come value. Let us assign appropriate values as measurement outcomes to ei:

ei =
1
ε

mi −
1− ε

dε
tr(M). (1.1.96)

Then we can have that ⟨M⟩ϱ = ∑i ei pi(ε). This result is based on the POVM
decomposition of the observable M:

M = ∑
i

eiPi. (1.1.97)

1.1.4 Composite quantum systems

Quantum states in composite systems

Reduced states: Quantum states consisting of two or more particles can be
described by tensor products in each Hilbert space. For instance, consider two
parties, called Alice (A) and Bob (B). The whole system of A and B is described
as a quantum state ϱAB ∈ HA⊗HB. This state can contain quantum information
about the whole system. On the other hand, the local subsystem A (or B) can be
described as its reduced state ϱA ∈ HA (or ϱB ∈ HB), which contains marginal
information about the local system. Here the reduced state is obtained by taking
a partial trace over the subsystem:

ϱA = trB(ϱAB), ϱB = trA(ϱAB). (1.1.98)

In a similar manner, for an N-particle quantum state ϱ ∈ H1 ⊗ · · · ⊗ HN,
its k-particle reduced state on system X = (X1, . . . , Xk) is obtained by taking a
partial trace over subsystem Xc:

ϱX = trXc(ϱ), (1.1.99)

where Xc denotes the complement of X.

Bloch decomposition of N-qudit states: We begin by considering the case with
two-qudit states, that is, ϱAB ∈ HA

d ⊗HB
d . In a similar manner to single-qudit

states, we can write the state in the Bloch decomposition of a two-qudit state

ϱAB =
1
d2

(
1⊗2

d +
d2−1

∑
i=1

aiλi ⊗ 1d +
d2−1

∑
i=1

bi1d ⊗ λi +
d2−1

∑
i,j=1

tijλi ⊗ λj

)
. (1.1.100)

Here, each vector a, b respectively describes local quantum system A, B, whereas
the matrix T = (tij) describes two-body correlation in the whole system. Clearly,
the reduced state ϱA = trB(ϱAB) arrives at the same form of the single-qudit state
in Eq. (1.1.20).
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Similarly, any N-qudit state ϱ ∈ H1
d ⊗ · · · ⊗HN

d can be written as

ϱ =
1

dN

d2−1

∑
i1,...,iN=0

αi1,...,iN λi1 ⊗ · · · λiN , (1.1.101)

where λ0 = 1d and αi1,...,iN denoted the k-fold tensor 1 ≤ k ≤ N if the number of
non-identity terms in λi1 ⊗ · · · ⊗ λiN is k, describing k-body correlation in ϱ. For
the sake of simplicity, let us rewrite this form as

ϱ =
1

dN

(
1⊗N

d + P1 + P2 + · · ·+ PN

)
, (1.1.102)

where the Hermitian operators Pk for k = 1, 2, . . . , N denote the sum of all terms
coming from the basis elements with weight k

Pk(ϱ) =
d2−1

∑
i1,··· ,iN=0,

wt(λi1
⊗···⊗λiN )=k

αi1···iN λi1 ⊗ · · · ⊗ λiN , (1.1.103)

where the weight wt(λi1 ⊗ · · · ⊗ λiN) is the number of non-identity Gell-Mann
matrices. This expression will be used to define the so-called sector lengths in
Eq. (1.4.7).

Quantum operations in composite systems

Complete positivity: Consider a two-particle state ϱAB. Suppose that we per-
form the identical operation (nothing) idA on local subsystem A but apply a
quantum operation ΦB on local subsystem B. This process can be described as

ϱ′AB = (idA ⊗ΦB)(ϱAB). (1.1.104)

Clearly, taking the partial trace over subsystem A leads to that

ϱ′B = trA(ϱ
′
AB) = ΦB(ϱB). (1.1.105)

Here, we should require the map ΦB to preserve the positivity of not only the
reduced state ϱ′B but also the whole state ϱ′AB. This additional condition is
called the complete positivity (CP). Often a quantum operation is referred to
as a completely-positive and trace-preserving (CPTP) map.

Local unitary operations: For an N-qudit quantum state ϱ ∈ H1
d ⊗ · · · ⊗HN

d , a
quantum operation is called local unitary if

ΦLU(ϱ) = (U1 ⊗ · · · ⊗UN)ϱ(U†
1 ⊗ · · · ⊗U†

N), (1.1.106)

21



where the unitary Ui acts on the i-th subsystem for i = 1, . . . , N. In a similar
way to the exponential form (1.1.37), the local unitary can be generated by the
local Hamiltonian HL:

e−iθHL = e−iθH1 ⊗ · · · ⊗ e−iθHN , (1.1.107)
HL = H1 ⊗ 12...N + · · ·+ 11...N−1 ⊗ HN. (1.1.108)

A typical example is the collective angular momentum in N-qubit systems:

Jl =
1
2

N

∑
i=1

σ
(i)
l , (1.1.109)

where σ
(i)
l is the l-th Pauli matrix acting on the i-th subsystem for l = x, y, z.

This leads to

e−iθ Jl =

[
cos

(
θ

2

)
12 + i sin

(
θ

2

)
σl

]⊗N
. (1.1.110)

In particular, this operation is known as the collective spin rotation, which we
will discuss in more detail in Sec. 1.3. We remark that any local unitary operation
cannot change the purity of any reduced state. That is, γ(ϱ′X) = γ(UXϱXU†

X) =
γ(ϱX) for any reduced state ϱ′X = trXc [ΦLU(ϱ)] and Xc the complement of a set
X.

Two-qubit local unitary operations: Consider the case where a two-qubit state
ϱAB is transformed by a local unitary operation UA ⊗UB into another state ϱ′AB:
ϱ′AB = (UA ⊗UB)ϱAB(UA ⊗UB)

†. The Bloch decomposition of the state ϱ′AB can
be written as

ϱ′AB =
1
4

(
1⊗2

2 +
3

∑
i=1

a′iσi ⊗ 12 +
3

∑
i=1

b′i12 ⊗ σi +
3

∑
i,j=1

t′ijσi ⊗ σj

)
, (1.1.111)

where a′ = OAa, b′ = OBb, and T′ = OATO⊤B with the orthogonal matrices OA
and OB discussed in Eq. (1.1.42). Here the matrix T′ can be diagonalized by a
specific local unitary

T′ = diag(τ1, τ2, τ3), (1.1.112)

where τi are eigenvalues of T′. Rearranging the notations, we can write any
two-qubit state ϱAB in the following Bloch decomposition, up to local unitaries:

ϱAB =
1
4

(
1⊗2

2 +
3

∑
i=1

aiσi ⊗ 12 +
3

∑
i=1

bi12 ⊗ σi +
3

∑
i=1

τiσi ⊗ σi

)
. (1.1.113)

Nonlocal unitary operations: In two-qubit systems, one of the most famous
nonlocal unitary operations is the controlled-NOT (CNOT) gate:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.1.114)
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This unitary can change a state as follows:

UCNOT (a|00⟩+b |01⟩+c |10⟩+d |11⟩) = a|00⟩+b |01⟩+c |11⟩+d |10⟩ . (1.1.115)

In general, any two-qubit unitary operation can be written in the following
form:

UAB = (VA ⊗VB)e−iH(WA ⊗WB), (1.1.116)
H = cxσx ⊗ σx + cyσy ⊗ σy + czσz ⊗ σz, (1.1.117)

for single-qubit unitaries VA, VB, WA, WB and 0 ≤ cz ≤ cy ≤ cx ≤ π/4. Denoting
the vector c = (cx, cy, cz), we give the following summary:

• If UAB = UA ⊗UB, then c = (0, 0, 0).

• If UAB = UCNOT, then c = (π/4, 0, 0).

• If UAB = S, then c = (π/4, π/4, π/4).

Here S denotes the SWAP operation that will be explained in the next paragraph.
In this way, one can characterize two-qubit nonlocal unitaries, independently of
local unitaries. For details about this decomposition, see [48–51].

In N-qubit systems, an example of nonlocal unitary operations is the squeez-
ing operation

U = e−iθ J2
l , (1.1.118)

where Jl is the collective angular momentum for l = x, y, z. Note that one can
also consider the higher-order extensions such as Jk

l for k ≥ 3. The squeezing
operation is known to create a useful state in quantum parameter estimation
tasks, for details see Sec. 1.3.

SWAP operation: The SWAP (flip) operation can exchange two particles:

S |a⟩ ⊗ |b⟩ = |b⟩ ⊗ |a⟩ . (1.1.119)

The SWAP operator is written as

S =
d2−1

∑
i,j=0
|i⟩⟨j| ⊗ |j⟩⟨i| . (1.1.120)

The eigenvalues of S are ±1. Note that the SWAP is Hermitian, unitary, and
involutory: S† = S, S† = S−1, and S2 = 1d. There are many useful formulas
related to the SWAP operator, called SWAP tricks, for details see Sec. 1.1.7.
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Permutation operations: For a permutation π : abc → π(a)π(b)π(c), a per-
mutation operation Wπ ∈ H⊗3

d can exchange a three-particle state as follows:

Wπ |a⟩ ⊗ |b⟩ ⊗ |c⟩ = |π(a)⟩ ⊗ |π(b)⟩ ⊗ |π(c)⟩ . (1.1.121)

For instance, the permutation π(a) = b, π(b) = c, π(c) = a, leads to

Wπ |a⟩ ⊗ |b⟩ ⊗ |c⟩ = |b⟩ ⊗ |c⟩ ⊗ |a⟩ . (1.1.122)

In total, there are six (= 3!) permutations, including the identical operation.
Let us discuss the permutation operation in N particle systems. Let Sym(N)

be the symmetric group on the set {1, 2, . . . , N} and let π = π(1) . . . π(N) ∈
Sym(N) be a permutation. A permutation operator Wπ ∈ H⊗N

d is given by

Wπ |i1, . . . , iN⟩ = |iπ(1), . . . , iπ(N)⟩ . (1.1.123)

In the following, we make several remarks about permutation operations:

• Group structure: The set of permutation operators forms a group structure.
That is, the product of any two permutations is also a permutation, and
there exists an identity and inverse of all operations. Note that there are
N! permutations.

• Differences from SWAP: Permutation operators do not mutually commute
for N ≥ 3 in general. Also, permutation operators are not Hermitian for
N ≥ 3 in general.

• Any permutation operator can be (not uniquely) represented as the prod-
uct of permutations of two particles, that is, SWAP operations.

• Any permutation operator is unitary since SWAP operations are unitary.

• The following permutation operator is called the cyclic operator

Wcyc |i1, i2, . . . , iN⟩ = |i2, . . . , iN, i1⟩ . (1.1.124)

For details about permutation operations, see [52–54] and Sec. 1.1.7.

LOCC operations: Consider the scenario in which Alice and Bob are spatially
separated (such as in Germany and Japan), and they share a quantum state
ϱAB ∈ HA

d ⊗HB
d . A quantum operation is called a local operation if

[ΦA ⊗ΦB](ϱAB) = ∑
i,j
(Ai ⊗ Bj)ϱAB(A†

i ⊗ B†
j ), (1.1.125)

where Kraus operators Ai and Bj respectively act on subsystem A and B with
∑i A†

i Ai = ∑i B†
i Bi = 1d.

A more general class of quantum operations is called local operations and
classical communication (LOCC). To be more specific, suppose that Alice starts
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by performing a POVM measurement from {Ai} locally on the state and obtains
an outcome i. Then Alice sends the result to Bob using classical communi-
cation such as telephone calls. After Bob receives the result, Bob performs a
local POVM measurement {Bi

j} depending on i, and then obtains an outcome j.
Again, Bob transmits the result back to Alice, and Alice applies POVM measure-
ments {Aij

k } depending on i, j. They repeat these local operations and classical
communication over many rounds.

Mathematically, the LOCC operations can be written as follows:

ΦLOCC(ϱAB)= ∑
i,j,k,l...

(· · · Aij
kAi)⊗(· · ·B

ijk
l Bi

j)ϱAB(· · ·A
ij
kAi)

†⊗(· · ·Bijk
l Bi

j)
†, (1.1.126)

where each operator follows the trace-preserving condition:

∑
i

A†
i Ai = ∑

j
(Bi

j)
†Bi

j = ∑
k
(Aij

k )
† Aij

k = ∑
l
(Bijk

l )†Bijk
l = · · · = 1d. (1.1.127)

Based on the above properties, we can rewrite the LOCC operation as

ΦLOCC(ϱAB) = ∑
x
(Ãx ⊗ B̃x)ϱAB(Ã†

x ⊗ B̃†
x). (1.1.128)

Finally, a quantum operation is called separable operation if

ΦSEP(ϱAB) = ∑
i
(Ai ⊗ Bi)ϱAB(A†

i ⊗ B†
i ), (1.1.129)

where ∑i A†
i Ai ⊗ B†

i Bi = 1⊗2
d . It is important to note that there are separable

operations that cannot be implemented by LOCC operations even with infinite
rounds. For details about LOCC operations, see [55].

SLOCC operations: For a two-particle state ϱAB ∈ HA
d ⊗HB

d , a quantum oper-
ation is called stochastic local operation and classical communication SLOCC if
it can describe the LOCC transformation with some probability and not neces-
sarily satisfy the trace-preserving condition:

ΦSLOCC(ϱAB) = (A⊗ B)ϱAB(A† ⊗ B†), (1.1.130)

where A, B are arbitrarily invertible matrices with A† A⊗ B†B ≤ 1⊗2
d .

Local filtering operations: For a two-particle quantum state ϱAB ∈ HA
d ⊗HB

d ,
a quantum operation is called local filtering if it maps ϱAB as follows:

ΦLF(ϱAB) = (FA ⊗ FB)ϱAB(F†
A ⊗ F†

B) =
1
d2

(
1⊗2

d +
d2−1

∑
i=1

tiλi ⊗ λj

)
, (1.1.131)

where FA, FB are arbitrary invertible matrices and we use the Bloch decomposi-
tion in Eq. (1.1.100). The local filtering operation can make the reduced states
maximally mixed, that is, trX[ΦLF(ϱAB)] = 1d/d for X = A, B. This is one of
the SLOCC operations and provides the analytically tractable expression of the
state. For details about local filtering operations, see [56–60].
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Generalized universal state inversions: For an N-qubit state ϱ ∈ H⊗N
2 , we call

a map the generalized spin-flip if

N⊗
i=1

S (i)2 (ϱ) = σ⊗N
y ϱ⊤σ⊗N

y , (1.1.132)

where S (i)2 is the spin-flip map in Eq. (1.1.56) on the i-th subsystem. This map

preserves the positivity of ϱ since S (i)2 is the positive map.
In general, a map is called generalized universal state inversion if

N⊗
i=1

S (i)d (ϱ) =

[
N

∏
X=1

(trX(·)⊗ idX − id)

]
(ϱ), (1.1.133)

where S (i)d is the universal state inversion in Eq. (1.1.58) on the i-th subsystem.
Using the expression in Eq. (1.1.102), we can rewrite

N⊗
i=1

S (i)d (ϱ) =
1

dN

[
(d− 1)N1⊗N

d − (d− 1)N−1P1 + (d− 1)N−2P2

− (d− 1)N−3P3 + · · ·+ (−1)N−1(d− 1)PN−1 + (−1)NPN

]
. (1.1.134)

This operation will be used to characterize the positivity of multipartite quantum
states, see Sec. 1.4.2. For details about generalized universal state inversions,
see [27, 61–63].

Bell-diagonal states: For a two-qubit state ϱAB, we consider the following op-
eration:

ΦSAB
2
(ϱAB) =

1
2

ϱAB +
1
2
S (A)

2 ⊗ S (B)
2 (ϱAB), (1.1.135)

where S (X)
2 is the spin-flip map in subsystem X = A, B. This mixing operation

can eliminate the local Bloch vector, leading to

ΦSAB
2
(ϱAB) =

1
4

(
1⊗2

2 +
3

∑
i,j=1

tijσi ⊗ σj

)
. (1.1.136)

We should note that this does not result from local filtering operations.
Recalling that the matrix T = (tij) can be diagonalized by applying a specific

local unitary [see Eq. (1.1.113)], we can have the so-called Bell-diagonal state:

ϱBD = (UA ⊗UB)ΦSAB
2
(ϱAB)(UA ⊗UB)

† =
1
4

(
1⊗2

2 +
3

∑
i=1

τiσi ⊗ σi

)
. (1.1.137)

This state has only three parameters, so it is easily analytically tractable. For
details about this state, see [64] and Sec. 1.2.3.
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Twirling operations: For an N-particle quantum state ϱ ∈ H⊗N
d , the twirling

operation is defined as

ΦTwirl(ϱ) =
∫

dU U⊗Nϱ(U†)⊗N, (1.1.138)

where the integral taken with respect to the so-called Haar unitary measure.
Before proceeding, let us recap the notion of the Haar measure.

Let U (d) be the group of all d× d unitary matrices. The Haar unitary measure
is the uniform probability measure over the unitary group U (d). Consider an
integral of f (U) over the unitary group U (d) with respect to the Haar measure
dU. One of the most important properties of the Haar measure is the left and
right invariance under shifts via multiplication by a unitary V ∈ U (d), that is,∫

dU = 1,
∫

dU f (U) =
∫

dU f (VU) =
∫

dU f (UV), (1.1.139)

see Refs. [65–69] for further details. A general parametrization of the unitary
group U (d) and the associated Haar measure are known [67, 70]. For instance,
any single-qubit unitary (d = 2) can be written in the so-called Euler angle
representation U(α, β, γ) = Uz(α)Uy(β)Uz(γ), where Ui(θ) = e−iθσi/2 for i = y, z
and the Haar measure dU = sin β dα dβ dγ, see [18].

Let us make several remarks about twirling operations.

• ΦTwirl(ϱ) is completely positive and trace preserving.

• For an Hermitian operator X ∈ H⊗N
d , it holds that

tr[ΦTwirl(ϱ)X] = tr[ϱΦTwirl(X)]. (1.1.140)

• A quantum state ϱ is called a Werner state [71] if

ΦTwirl(ϱW) = ϱW. (1.1.141)

For instance, for N = 2, the Werner state can be represented by

ϱW = a1⊗2
d + bS, (1.1.142)

for some coefficient a, b and the SWAP in Eq. (1.1.119). Regarding the
normalization condition and the positivity constraint, it can be rewritten
as

ϱW =
a
d21

⊗2
d +

1− a
d

S, (1.1.143)

for a ∈ [d/(d + 1), d/(d− 1)].

• The twirling operation can be investigated using a famous result in repre-
sentation theory [72, 73], called the Schur–Weyl duality. It leads to

ΦTwirl(ϱ) = ∑
π∈Sym(N)

cπWπ, (1.1.144)

for coefficients cπ and the permutation operators Wπ in Eq. (1.1.123).

For details about twirling operations and Haar unitary integrals, see Ref. [74]
and Sec. 1.5 and Chapter 9.
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Quantum measurements in composite systems

Collective observables: For a N-particle system, an observable M is called
collective if

MC = M1⊗12...N +11⊗M2⊗13...N · · ·+11...N−1⊗MN =
N

∑
i=1

Mi⊗1ī, (1.1.145)

where Mi and 1i are respectively an observable and an identity acting on the i-th
subsystem. Note that often 1ī is removed for a short notation. Examples are the
collective angular moment Jl = (1/2)∑N

i=1 σ
(i)
l in Eq. (1.1.109) or more generally

the N-qudit collective operator

Gl =
1
d

N

∑
i=1

λ
(i)
l , (1.1.146)

with the Gell-Mann matrix λ
(i)
l for i = 1, 2, . . . , d2 − 1.

Product and non-product observables: For an N-particle system, an observ-
able M is called product if

MP = M1 ⊗M2 ⊗ · · · ⊗MN, (1.1.147)

while it is called non-product if it cannot be written in product form

MNP =
N

∑
i=1

mi M
(i)
1 ⊗M(i)

2 ⊗ · · · ⊗M(i)
N , (1.1.148)

with mi being real coefficients, not necessarily a minimal decomposition. Exam-
ples are respectively given by

Mz = σz ⊗ σz ⊗ · · · ⊗ σz, Mxyz = ∑
i=x,y,z

σi ⊗ σi ⊗ · · · ⊗ σi, (1.1.149)

where σi denotes the Pauli matrix.
For the sake of simplicity, consider the case of N = 2. Recall that the eigenval-

ues of σz are ±1 and the corresponding normalized eigenstates are respectively
|z,+⟩ = |0⟩ and |z,−⟩ = |1⟩. Letting the projectors Π± = |z,±⟩⟨z,±|, the
product observable Mz can be written as

MAB
z = ΠA

+ ⊗ΠB
+ −ΠA

− ⊗ΠB
+ −ΠA

+ ⊗ΠB
− + ΠA

− ⊗ΠB
−, (1.1.150)

whereas the non-product observable has a more complicated form. In practice,
product observables are typically easily accessible, so they are more commonly
considered. On the other hand, non-product observables are also useful to ex-
tract further quantum information about the state. For more details, see [22,
75–80].
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1.1.5 Classical statistics

In this subsection, we will give a short introduction to classical statistics. For
details, see [81–84].

Definitions: Let X be a random variable with a probability of taking a certain
value. Let x be the value of a random variable X and let px be its corresponding
probability to obtain the outcome x. The value x is either continuous or discrete.
Here we consider discrete cases, where px ∈ [0, 1] and ∑x px = 1. Then we
define the expectation and variance as

E(X) = ∑
x

xpx, (1.1.151)

Var(X) = E[(X−E(X))2] = E(X2)− [E(X)]2. (1.1.152)

Binomial distribution: Suppose that we throw a coin and obtain an outcome
that is either heads or tails with corresponding probability p or 1 − p. After
repeating n times, the probability of seeing heads k times is given by the binomial
distribution B(n, p).

To be more precise, we denote a random variable X as the number of heads
counted in n trials. Let us write X ∼ B(n, p) if the random variable X follows the
binomial distribution B(n, p), where the probability to get k number of heads is
given by

px =

(
n
k

)
pk(1− p)n−k. (1.1.153)

The expectation and variance are given by

E(X) =
n

∑
k=0

k
(

n
k

)
pk(1− p)n−k = np, Var(X) = np(1− p). (1.1.154)

Normal distribution: For a random variable X, we write X ∼ N (µ, σ2) if it
follows the normal distribution N (µ, σ2) given by

px =
1√
2πσ

e−
(x−µ)2

2σ2 , (1.1.155)

where X is a continuous random variable. The expectation and variance are
given by

E(X) =
1√
2πσ

∫ ∞

−∞
xe−

(x−µ)2

2σ2 = µ, Var(X) = σ2. (1.1.156)

The normal distribution plays a critical role in statistics. One of the main reasons
is that many certain distributions tend to the normal distribution according to
the central limit theorem that will be explained in Eq. (1.1.168).
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Moment problems: For a random variable X following a given probability
distribution px, the t-th moment is defined as

µt ≡ E(Xt) = ∑
x

xt px. (1.1.157)

This leads to a sequence of moments, that is, µ(n) = (µ0, µ1, . . . , µn). The mo-
ment problems ask the converse: For a given sequence µ(n), does there exist a
probability px and a random variable X such that µt = ∑ xt px for t = 0, 1, . . . , n?
In particular, the so-called Hamburger moment problem considers the case with
real x, whereas the so-called Stieltjes moment problem considers the case with
positive x.

Dependence and correlation: Let px,y be the joint probability of two random
variables X, Y to obtain the pair (x, y). For the joint probability px,y, its marginal
probabilities of X and Y are defined as px = ∑y px,y and py = ∑x px,y. Two
random variables X, Y are called independent if and only if px,y = px py for all
x, y. Two random variables X, Y are called identically distributed if and only if
px = py for all x, y.

For two random variables X, Y and parameters a, b, c, it holds that

E(aX + bY + c) = aE(X) + bE(Y) + c, (1.1.158)

Var(aX + bY + c) = a2 Var(X) + b2 Var(Y) + 2ab Cov(X, Y), (1.1.159)

where Cov(X, Y) is called the covariance

Cov(X, Y) = E[(X−E(X))(Y−E(Y))] = E[XY]−E[X]E[Y]. (1.1.160)

The covariance can quantify the correlation between random variables X and Y.
It is important to note that correlation is different from dependence. In fact, if X
and Y are independent, then Cov(X, Y) = 0, that is, they are uncorrelated. On
the other hand, even if Cov(X, Y) = 0, they are not always independent.

Finite statistics: Suppose that we are interested in collecting all data on heights
in a country. This type of data set is called the population. Let us denote the pop-
ulation probability distribution as px and the population expectation (variance)
as µ (and σ2). In practical settings, µ and σ2 are considered unknown/known.
Since it cannot be possible to collect all the data in practical experiments, we
should take a finite sample X1, X2, . . . , Xn from the population. This sampling
allows us to extract information about µ and σ2 in the population.

Often this sampling is assumed to be random so that X1, X2, . . . , Xn are rec-
ognized as independent and identically distributed (i.i.d.) random variables
following the probability distribution px. This leads to that E(Xi) = µ and
Var(Xi) = σ2 for any i. The task is to estimate, for example, µ and σ2, from a
finite number of measurements.
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Unbiased estimators: Let us denote the statistical parameter that we want to
know as θ such as µ or σ2 in the population. The so-called estimator θ̃ is often
required to satisfy two properties. The first is consistency, that is, θ̃ approaches
to θ for a large n. The second is unbiasedness, that is, the expectation of θ̃
becomes θ:

E(θ̃) = θ. (1.1.161)

For instance, consider the sample mean of i.i.d. random variables X1, . . . , Xn

X̃ =
1
n

n

∑
i=1

Xi. (1.1.162)

This is an unbiased estimator for µ:

E(X̃) =
1
n

n

∑
i=1

E(Xi) =
1
n

n

∑
i=1

µ = µ. (1.1.163)

In a similar way, let us consider the sample variance

S̃2 =
1
n

n

∑
i=1

(Xi − X̃)2. (1.1.164)

Naively thinking, one may expect that S̃2 can be also the unbiased estimator for
σ2, but this is not correct:

E(S̃2) =
1
n

n

∑
i=1

[
E(X2

i )− 2E(XiX̃) +E(X̃2)
]
=

n− 1
n

σ2, (1.1.165)

where we use that E(X2
i ) = σ2 + µ2 and E(XiXj) = E(Xi)E(Xj) = µ2 for i ̸= j.

That is, using the sample variance S̃2 can lead to the underestimation for σ2.
Accordingly, the unbiased estimator for σ2 is given by

Ũ2 =
n

n− 1
S̃2. (1.1.166)

Law of large numbers: Consider i.i.d. random variables X1, X2, . . . , Xn with
E(Xi) = µ for any i. The law of large numbers states that the sample mean
converges to the expectation µ for a large n:

X̃ =
1
n

n

∑
i=1

Xi → µ, for large n. (1.1.167)

This theorem can be used to guarantee the consistency condition of estimators
for a large sample.
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Central limit theorem: Consider i.i.d. random variables X1, X2, . . . , Xn with
E(Xi) = µ and Var(Xi) = σ2 for any i. The central limit theorem states that the
sample mean follows the normal distribution with N (µ, σ2/n) for a large n:

X̃ =
1
n

n

∑
i=1

Xi ∼ N (µ, σ2/n), for large n. (1.1.168)

Here we make two important remarks. First, the central limit theorem does
not assume anything about the probability distribution. Second, since the vari-
ance is given by σ2/n, the larger the number of samples, the smaller the variance,
and therefore the more accurate the estimation. The fact that the variance de-
creases in order 1/n is often called the shot-noise scaling. As we will see Sec. 1.3,
in quantum metrology, the variance can scale beyond the shot-noise scaling.

Statistical significance: Suppose that we are interested in a statistical param-
eter θ in the population and try to create an unbiased estimator θ̃ for θ from
experimental data. In practice, the estimator should deviate from θ, but we may
want to know how far it is. More precisely, we may be concerned with the prob-
ability that θ̃ deviates from θ by a constant margin δ. This probability is called
the p-value, which is characterized by the so-called statistical significance level
α:

Prob(|θ̃ − θ| ≥ δ) ≤ α. (1.1.169)

Often, δ is called the error or accuracy, δ/θ is called the relative error, and γ =
1− α is called the confidence level.

Concentration inequalities: A practical tool to estimate the p-value is the con-
centration inequalities. A common example is the Markov inequality, which
states that for a nonnegative random variable X, the following holds

Prob(X ≥ δ) ≤ E(X)

δ
, (1.1.170)

for any δ > 0. For a large δ, the right-hand side becomes small.
Another famous example is known as the Chebyshev inequality, which is the

case of the Markov inequality when X → (X− µ)2 and δ→ (δσ)2. It states for a
random variable X with E(X) = µ and Var(X) = σ2, it holds that

Prob(|X− µ| ≥ δ) ≤ σ2

δ2 , (1.1.171)

for any δ > 0. As a random variable X, let us take the sample mean X̃ for n
random variables with E(X̃) = µ and Var(X̃) = σ2/n. Then the Chebyshev
inequality becomes

Prob(|X̃− µ| ≥ δ) ≤ σ2

nδ2 . (1.1.172)
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In particular, for a large n, the right-hand side converges to zero. This implies
the law of large numbers.

In practice, the Chebyshev inequality can be employed in the following way.
Since n = σ2/(δ2α) with the statistically significant level α, if we take, e.g., µ = 2,
σ2 = 0.5, α = 0.05, and δ/µ = 0.05, then the number of measurement times is
given by n = 0.5/(0.05× 0.12) = 1000. That is, 1000 measurements are required
to conclude that there is at most a 5% probability that the expectation estimation
deviates from the true value by at least 10% relative error.

Other examples of concentration inequalities include Cantelli, Bernstein, Ho-
effding, and McDiarmid inequalities as well as Chernoff bounds. In Chapter 3,
we will apply concentration inequalities for statistically significant tests in ran-
domized measurements.

1.1.6 Analyzing quantum states

State tomography: Consider an experimental situation where we create a quan-
tum state ϱ in a laboratory but we do not know the elements of the density matrix
in ϱ. The task is to obtain information about the density matrix ϱ by measuring
several observables M1, M2, . . .. That is, we want to reconstruct the state ϱ using
the expectations tr(ϱM1), tr(ϱM2) . . .. The set of such measurements is called
tomographically complete if we can uniquely identify the quantum state.

For instance, the set of the Pauli matrices {σx, σy, σz} is tomographically com-
plete to reconstruct a single-qubit state. In fact, we notice that ai = tr(ϱσi) = ⟨σi⟩
in the Bloch decomposition in Eq. (1.1.14). Knowing all the expectations allows
us to reconstruct the state as

ϱrecs =
1
2

(
12 + ∑

i=x,y,z
⟨σi⟩σi

)
. (1.1.173)

Since the Pauli matrix σi has ±1 eigenvalues with the corresponding eigen-
states |i,±⟩ for i = x, y, z, one can express the expectation as ⟨σi⟩ = p(i,+) −
p(i,−), for the probabilities given by p(i,±) = ⟨i,±|ϱ|i,±⟩. Note that due to
the normalization condition p(i,+) + p(i,−) = 1, the expectation can be esti-
mated by repeating projective measurements on only one basis. Suppose that
we perform N times measurements in total to estimate ⟨σz⟩. Now the number
of outcomes to get +1 value, say N+, is a random variable following the bino-
mial distribution with probability p+: N+ ∼ B(N, p+), see Sec. 1.1.5. Using the
result that E(N+) = Np+, it turns out that the quantity Z̃ = [(2N+/N)− 1] is
an unbiased estimator for ⟨σz⟩. That is, it holds that E(Z̃) = ⟨σz⟩. According
to the central limit theorem, for large N, one can estimate the expectation with
high precision.

Quantum state tomography has two major downsides. First, a reconstructed
state ϱrecs can have negative eigenvalues. This is because the number of mea-
surements is finite in practice, and it is not possible to know the exact values of
all expectations due to statistical errors. Second, when the number of particles
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increases, the number of necessary measurements grows exponentially. In an
N-qubit state, 3N measurements are required for the complete reconstruction of
the state. For details about quantum state tomography, see [85–87].

Fidelity and trace distance: For two quantum states ϱ and σ, there are two
common ways to quantify how much they are close to each other. One way is to
use the fidelity F(ϱ, σ) defined as

F(ϱ, σ) = tr
[√√

σϱ
√

σ

]
. (1.1.174)

This can be equivalently expressed as F(ϱ, σ) = tr(|√ϱ
√

σ|), where the absolute
value of an operator A is defined as |A| =

√
A† A. The range is given by 0 ≤

F(ϱ, σ) ≤ 1. Here F(ϱ, σ) = 1 if and only if ϱ = σ, while F(ϱ, σ) = 0 if and
only if ϱ are σ live on orthogonal subspaces. Note that the fidelity is symmetric:
F(ϱ, σ) = F(σ, ϱ). For two pure states |ψ⟩ and |ϕ⟩, it can be rewritten as

F(|ψ⟩ , |ϕ⟩) = | ⟨ψ|ϕ⟩ |. (1.1.175)

Another way to distinguish two states is to use the trace distance D(ϱ, σ)
defined as

D(ϱ, σ) =
1
2
∥ϱ− σ∥Tr =

1
2

tr(|ϱ− σ|), (1.1.176)

where ∥X∥Tr is the sum of the singular values of X. The range is given by
0 ≤ D(ϱ, σ) ≤ 1. The trace distance satisfies the triangle inequality

D(ϱ, σ) ≤ D(ϱ, ξ) + D(ξ, σ), (1.1.177)

for states ϱ, σ, ξ.
A common property between the fidelity and the trace distance is called the

contractivity under completely positive (CP) operations: For a CP map Φ, it
holds that

F(ϱ, σ) ≤ F(Φ(ϱ), Φ(σ)), (1.1.178)
D(ϱ, σ) ≥ D(Φ(ϱ), Φ(σ)). (1.1.179)

This property implies that when two states are acted on a CP operation, it be-
comes more difficult to distinguish between them.

It may be useful to note the so-called Fuchs–van de Graaf inequalities [88]:

1− F(ϱ, σ) ≤ D(ϱ, σ) ≤
√

1− F2(ϱ, σ). (1.1.180)

Using these inequalities allows us to estimate the trace distance from the fidelity,
and vice versa.
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Let us introduce the distance measures based on fidelity. For two quantum
states ϱ and σ, the Bures distance and angle are respectively defined as

DB(ϱ, σ) =
√

2(1− F(ϱ, σ)), (1.1.181)

AB(ϱ, σ) = arccos F(ϱ, σ), (1.1.182)
DB(ϱ, σ) ≤ AB(ϱ, σ), (1.1.183)

where F(ϱ, σ) is the fidelity defined in Eq. (1.1.174). Note that the Bures distance
and angle obey the triangle inequality and the contractivity under CP operations.
For details about the fidelity and trace distance, see [19, 89, 90].

Fubini-Study metric: For pure states |ψ1⟩ and |ψ2⟩, the Bures distance is given
by

D2
B(|ψ1⟩ , |ψ2⟩) = 2(1− | ⟨ψ1|ψ2⟩ |). (1.1.184)

Letting |ψ1⟩ = |ψ(t)⟩ (= |ψ⟩) and |ψ2⟩ = |ψ(t + dt)⟩ for time t > 0, one has

⟨ψ(t)|ψ(t + dt)⟩ = 1 + dt ⟨ψ|∂tψ⟩ |+
(dt)2

2!
⟨ψ|∂2

t ψ⟩ |+O((dt)3), (1.1.185)

where |∂tψ⟩ = ∂
∂t |ψ⟩ and |∂2

t ψ⟩ = ∂2

∂t2 |ψ⟩. This leads to

| ⟨ψ(t)|ψ(t + dt)⟩ | = 1− (dt)2

2
⟨∂tψ|(1− |ψ⟩⟨ψ|)|∂tψ⟩ , (1.1.186)

where we used that ∂t ⟨ψ|ψ⟩ = 0, ⟨∂2ψ|ψ⟩ + ⟨ψ|∂2ψ⟩ = −2 ⟨∂ψ|∂ψ⟩, and (1 +
x)1/2 ≈ 1 + x/2. Finally, the Bures distance is given by

D2
B(|ψ(t)⟩ , |ψ(t + dt)⟩) = gFS(dt)2, (1.1.187)

where we ignore terms in at least O((dt)3) and gFS = ⟨∂tψ|(1− |ψ⟩⟨ψ|)|∂tψ⟩ is
the so-called Fubini-Study metric.

The Fubini-Study metric is a measure of how much a quantum state changes
under unitary dynamics for an infinitesimally short time. That is, a large gFS im-
plies that the two states |ψ(t)⟩ and |ψ(t + dt)⟩ become more distinguishable un-
der a parameter shift t. For more details about the Fubini-Study metric, see [23].

Quantum Fisher metric: The quantum Fisher metric is the generalization of the
Fubini-Study metric for mixed quantum states. Now suppose that a quantum
state ϱ(θ) is changed to ϱ(θ + dθ) under the unitary operation Uθ = exp (−iθA)
and the corresponding Hermitian generator A. One can show that the Bures
distance is given by

D2
B[ϱ(θ), ϱ(θ + dθ)] =

1
4
FQ(θ)(dθ)2, (1.1.188)

where we ignore terms in at least O((dθ)3) and FQ(θ) is called the quantum
Fisher metric that will be defined below. For details about the quantum Fisher
metric, see [91–93].
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Proof. Here we explain the proof of Eq. (1.1.188), following the description of
Ref. [94]. We begin by writing the fidelity in Eq. (1.1.174) as

F[ϱ(θ), ϱ(θ + dθ)] = tr[
√

M], M ≡
√

ϱ(θ)ϱ(θ + dθ)
√

ϱ(θ). (1.1.189)

Hereafter we denote that ϱ(θ) = ϱ. Expanding ϱ(θ + dθ) in terms of (dθ), one
can represent

√
M as

√
M =

√
ϱ2 + (dθ)A +

(dθ)2

2!
B, A ≡ √ϱ(∂θϱ)

√
ϱ, B ≡ √ϱ(∂2

θϱ)
√

ϱ,

(1.1.190)

where we ignore terms in at least O((dθ)3). To proceed, let us suppose that
√

M
can be also rewritten as

√
M = ϱ + (dθ)X + (dθ)2Y, (1.1.191)

for some operators X, Y. Now one can immediately find the relation

A = ϱX + Xϱ,
B
2
= ϱY + Yϱ + X2. (1.1.192)

To complete the derivation, it is sufficient to find the expressions of tr(X) and
tr(Y). For the eigenvalue decomposition ϱ(θ) = ∑i pi(θ) |ψi(θ)⟩⟨ψi(θ)| with the
eigenvalue pi(θ) and ⟨ψi(θ)|ψj(θ)⟩ = δij, the above relation Eq. (1.1.192) leads to

Xij =
Aij

pi + pj
=

√
pi
√pj

pi + pj
(∂θϱ)ij, (1.1.193)

Yii =
Bii

4pi
− 1

2pi
∑

j
XijXji =

(∂2
θϱ)ii

4
− 1

2 ∑
j

pj

(pi + pj)2 (∂θϱ)ij(∂θϱ)ji, (1.1.194)

where we denote pi(θ) = pi. A straightforward calculation can yield

(∂θϱ)ij = (∂θ pi)δij + (pj − pi) ⟨ψi|∂θψj⟩ , (1.1.195)

(∂2
θϱ)ij = (∂2

θ pi)δij + 2(∂θ pj − ∂θ pi) ⟨ψi|∂θψj⟩+ pj ⟨ψi|∂2
θψj⟩+ pi ⟨∂2

θψi|ψj⟩
+ 2 ∑

j
pj ⟨ψi|∂θψj⟩ ⟨∂θψj|ψj⟩ . (1.1.196)

Thus we can obtain

tr(X) =
1
2 ∑

i
(∂θ pi) = 0, (1.1.197)

tr(Y) = −1
8 ∑

i

(∂θ pi)
2

pi
− 1

2 ∑
i

pi ⟨∂θψi|∂θψi⟩+ ∑
i,j

2pi p2
j

(pi + pj)2 | ⟨ψi|∂θψj⟩ |2

= −1
8

{
∑

i

(∂θ pi)
2

pi
+ 4 ∑

i,j

[
pj −

2pi pj

pi + pj

]
| ⟨ψi|∂θψj⟩ |2

}

= −1
8

{
∑

i

(∂θ pi)
2

pi
+ 4 ∑

i,j

pi(pi − pj)
2

(pi + pj)2 | ⟨ψi|∂θψj⟩ |2
}

, (1.1.198)
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where we used that

• (∂θϱ)ij(∂θϱ)ji = (∂θ pi)
2δij + (pi − pj)

2| ⟨ψi|∂θψj⟩ |2,

• ⟨ψi|∂2
θψi⟩+ ⟨∂2

θψi|ψi⟩ = −2 ⟨∂θψi|∂θψi⟩,

• ∑i,j[2pi p2
j /(pi + pj)

2]| ⟨ψi|∂θψj⟩ |2 = ∑i,j[pi pj/(pi + pj)]| ⟨ψi|∂θψj⟩ |2.

Finally, we can arrive at:

D2
B[ϱ(θ), ϱ(θ + dθ)] = 2(1− F[ϱ(θ), ϱ(θ + dθ)])

= 2[1− tr(
√

M)]

= 2
{

1− [1 + (dθ)tr(X) + (dθ)2tr(Y)]
}

=
1
4
FQ(θ)(dθ)2, (1.1.199)

where the quantum Fisher metric is defined as

FQ(θ) = ∑
i

(∂θ pi)
2

pi
+ 4 ∑

i,j

pi(pi − pj)
2

(pi + pj)2 | ⟨ψi|∂θψj⟩ |2

= ∑
i,j

4pi|(∂θϱ)ij|2

(pi + pj)2 = 2 ∑
i,j

|(∂θϱ)ij|2

pi + pj
. (1.1.200)

Quantum Fisher information (QFI): Consider the case where the initial state
is independent of the parameter θ and the time evolution is unitary Uθ =
exp (−iθA): ϱ(0) → ϱ(θ) = Uθϱ(0)U†

θ . Then the first term in the quantum
Fisher metric in Eq.(1.1.200) vanishes and the QFI can be simplified to

FQ(ϱ, A) = 2 ∑
i,j

(pi − pj)
2

pi + pj
| ⟨ψi|A|ψj⟩ |2. (1.1.201)

This quantity is often called the quantum Fisher information (QFI), which can
characterize how much a state ϱ is sensitive against the parameter shifting θ
by the unitary transformation. The QFI plays an important role in quantum
metrology, for details see Sec. 1.3. Note that the term QFI can also be used
outside of the unitary case.

Uncertainty relations: Suppose that we perform measurements of an observ-
able A on a quantum state ϱ. As explained in Sec. 1.1.3, the expectation is given
by ⟨A⟩ϱ = tr(ϱA). Here we introduce the variance as

(∆A)2
ϱ = ⟨(A− ⟨A⟩ϱ)2⟩ϱ = ⟨A2⟩ϱ − ⟨A⟩2ϱ, (1.1.202)
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where hereafter we take out the subscript ϱ. This implies a variation in the
measurement outcome of the observable A. For two observables A, B, the well-
known Kennard-Robertson inequality states that

(∆A)2 (∆B)2 ≥ 1
4
|⟨[A, B]⟩|2. (1.1.203)

This inequality can be understood as follows: In the case where one prepares N
copies of ϱ and measures A with N/2 particles and B with N/2 particles, if the
variance of A is small, then the variance of B should be large, and vice versa.
For details about uncertainty relations, see [18, 95].

Quantum speed limits: How fast can a quantum state evolve in time? This
question asks about the ultimate limit of time evolution in quantum mechanics.
Often this limitation is referred to as the quantum speed limit. Historically, this
was addressed by Mandelstam and Tamm in Ref. [96], and later Margolus and
Levitin made another formulation Ref. [97]. Here we will explain the description
of the work by Mandelstam and Tamm, following the description of Ref. [98].

Let us begin by considering the projector A = Π0 = |ψ0⟩⟨ψ0| = A2, the
Hamiltonian B = H, and the state ϱ = |ψt⟩⟨ψt| with |ψt⟩ = e−iHt/h̄ |ψ0⟩. Letting
⟨X⟩t = ⟨ψt|X|ψt⟩ for X = A, B, we have that (∆A)2

t = ⟨A⟩t(1 − ⟨A⟩t) and
|⟨[A, B]⟩t| = h̄|∂t⟨A⟩t|. Inserting this into the Kennard-Robertson inequality
leads to

(∆H) ≥ h̄
2

|∂t⟨A⟩t|√
⟨A⟩t(1− ⟨A⟩t)

. (1.1.204)

Taking a time integral from 0 to ∆t and assuming that |ψ∆t⟩ is orthogonal to
|ψ0⟩, one can straightforwardly derive the so-called Mandelstam-Tamm bound:

∆t ≥ πh̄
2(∆H)

≡ τQSL. (1.1.205)

Note that ∆t is a physical time scale. An interpretation of this bound is as
follows: A larger energy variance implies the fast time evolution of a quantum
state, and the minimal time is given by τQSL = πh̄/2(∆H).

The Mandelstam-Tamm bound can be understood from the geometrical view-
point. Denote γ as the actual trajectory path that the initial state |ψ0⟩ takes to its
orthogonal state |ψ∆t⟩. For a qubit system, this can be understood as a path on
the surface of the Bloch sphere. The length of the path γ can be described using
the Bures distance in Eq. (1.1.187):

γ =
∫ ∆t

0
ds
√

gFS, (1.1.206)

with Fubini-Study metric gFS. Due to the triangle inequality, the path γ can be
larger than or equal to the (minimal) shortest path denoted as L(|ψ0⟩ , |ψ∆t⟩).
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Letting the speed v =
√

gFS and its the time-average ⟨v⟩∆t = (1/∆t)
∫ ∆t

0 ds v, it
holds that

∆t ≥ L(|ψ0⟩ , |ψ∆t⟩)
⟨v⟩∆t

. (1.1.207)

This results in the fact that ∆t = τQSL if and only if L(|ψ0⟩ , |ψ∆t⟩) is the shortest,
that is, geodesic. We remark that for mixed states, instead of the Fubini-Study
metric gFS, the quantum Fisher metric can be considered. For details about
quantum speed limits, see [98, 99].

Reference frames: Here let us briefly explain the concept of quantum refer-
ence frames, following the description of Ref. [100]. Any information, whether
classical or quantum, can be classified into two types. The first type is known
as speakable (fungible) information, which can be described independently of
its encoding/decoding within any physical system and with any degree of free-
dom. Examples of speakable information include simple communication using
’yes’ or ’no,’ or classical bits represented as ’0’ or ’1.’ On the other hand, the
second type is unspeakable (non-fungible) information, which cannot be com-
municated verbally and relies on a physical system for its description. Examples
of unspeakable information include spatial direction, spin rotation, or timing of
an event. The concept of a reference frame serves as an abstract coordinate sys-
tem to transform unspoken information into speakable information, similar to
the way gyroscopes and clocks work.

In quantum mechanics, a system possessing a reference frame can be con-
verted to another system with a different reference frame through a transforma-
tion involving an element denoted as g ∈ G. Typically, G represents a finite,
continuous, compact Lie group with a group-invariant (Haar unitary) measure.
For instance, a phase reference in the group U(1) involves phase shifts, while a
Cartesian frame in SO(3) is represented by the group SU(2), corresponding to
spin rotations.

In this thesis, we will frequently employ the notion of a reference frame
based on the group SU(d) for a d-dimensional state. It is essential to note that
aligning local reference frames between parties can be considered a quantum
resource in information processing tasks [101]. Consequently, reference frame-
independent measurement schemes (the randomized measurement schemes that
we will discuss later) can offer many practical advantages in the analysis of
quantum states compared to standard techniques.

1.1.7 Mathematical tools

In this subsection, we will give a summary of useful mathematical formulas. For
details about further formulas and inequalities, see Refs. [102–104]. For details
about Haar unitary integrals, see Sec. 1.5 and Chapter 9.
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Trace formuals

• The Cauchy-Schwarz inequality:

|tr(A†B)|2 ≤ tr(A† A)tr(B†B), (1.1.208)

for matrices A, B.

• The von Neumann inequality:

|tr(AB)| ≤∑
i

aibi, (1.1.209)

where ai and bi are respectively singular values of matrices A and B with
a1 ≥ a2 ≥ · · · and b1 ≥ b2 ≥ · · · .

• For Hermitian A and n ≥ 2, it holds that |tr(Xn)| ≤ [tr(X2)]n/2.

• For Hermitian A, B, it holds that tr(ABAB) ≤ tr(A2B2). This comes from
the fact that tr(X2) ≥ 0 for X = AB− BA.

• For a positive A and n ≥ 1, it holds that tr(An) ≤ [tr(A)]n.

• For positive A and B, it holds that tr(AB) ≥ 0.

• The inequalities of the harmonic mean, geometric mean, arithmetic mean,
and quadratic mean: for a positive A, it holds that

n
[tr(A−1)]

≤ (det A)1/n ≤ 1
n

tr(A) ≤
√

1
n

tr(A2) (1.1.210)

• For a positive A with tr(A) = 1, it holds that

[tr(A2)]2 ≤ tr(A3), (1.1.211)

which was introduced in [105].

• tr(A⊗ B) = tr(A)tr(B) and tr(A⊗n) = [tr(A)]n.

SWAP formulas

• The SWAP operator S in Eq. (1.1.120) can be also rewritten as

S =
1
d

d2−1

∑
i=0

λi ⊗ λi, (1.1.212)

where λi are the Gell-Mann matrices discussed in Subsection (1.1.1).

• Since S2 = 1d, this leads to the formula

d2−1

∑
i=1

λ2
i = (d2 − 1)1d. (1.1.213)
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• For the structure constants of Gell-Mann matrices in Eq. (1.1.23), it holds
that

d2−1

∑
i,j=1

ηS
ijkηS

ijm = 2(d2 − 4)δkm,
d2−1

∑
i,j=1

ηA
ijkηA

ijm = 2d2δkm. (1.1.214)

For details, see [106].

• The SWAP operator S can be also rewritten as

S = d |Ψ+⟩⟨Ψ+|⊤A , (1.1.215)

where |Ψ+⟩ = (1/
√

d)∑d−1
i=0 |i⟩ ⊗ |i⟩ and (·)⊤A denotes the partial transpo-

sition on A.

• For X = (x1, x2, · · · , xn) and Y = (y1, y2, · · · , yn), the SWAP SXY can be
decomposed into

SX,Y = Sx1,y1 ⊗ Sx2,y2 ⊗ · · · ⊗ Sxn,yn , (1.1.216)

which was discussed in [107].

• For matrices A, B, the following is often called the SWAP trick:

tr[(A⊗ B)S] = tr(AB). (1.1.217)

Also it holds that

tr2[(A⊗ B)S] = AB, tr1[(A⊗ B)S] = BA, (1.1.218)
tr2[S(A⊗ B)] = BA, tr1[S(A⊗ B)] = AB. (1.1.219)

For details, see [27].

• For states ϱ and σ, it holds that

tr1[e−itS(ϱ⊗ σ)eitS] = (cos2 t)σ + (sin2 t)ϱ− i(sin t)(ϱσ− σϱ), (1.1.220)

which was introduced in [108].

• The cyclic operator Wcyc ∈ H⊗k
d in Eq. (1.1.124) can be written as

Wcyc =
1

dk−1

d2−1

∑
i1,i2,...,ik−1=1

λi1 ⊗ λi2 ⊗ · · · ⊗ λik−1 ⊗ ν† (1.1.221)

with ν = λi1λi2 · · · λik−1 , which was explicitly written in Ref. [109]. The
cyclic operator can be decomposed into k − 1 pairwise SWAP operators,
see Refs. [107, 110, 111].
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• Consider the other cyclic operator Winv as

Winv |i1, i2, . . . , ik⟩ = |ik, i1, . . . , ik−1⟩ . (1.1.222)

Then it holds that Winv = W−1
cyc = W⊤cyc.

• Let WX
cyc be the cyclic operator with WX

cyc |i, j, k⟩X = |j, k, i⟩X acting on the
subsystem X = A, B of the three copies. Then it holds that

2
(

WA
cyc ⊗WB

inv + WA
inv ⊗WB

cyc

)
= MA

+ ⊗MB
+ −MA

− ⊗MB
−, (1.1.223)

where MX
± = WX

cyc ±WX
inv for X = A, B. For details, see [112].

• For matrices A1, A2, . . . , Ak, the generalization of the SWAP trick is given
by

tr[(A1 ⊗ A2 ⊗ · · · ⊗ Ak)Wcyc] = tr(A1A2 . . . Ak). (1.1.224)

For details, see [107, 113–115].

Other useful formulas

• Consider a set of observables {Ai}n
i=1 such that Ai Aj + Aj Ai = 0 and A2

i =
1 for all i, j = 1, 2, . . . , n, that is, the Ai anti-commute pairwise and have ±1
eigenvalues. For this set, it holds that ∑n

i=1⟨Ai⟩2ϱ ≤ 1 for a quantum state
ϱ. For details, see Ref. [116].

• For real x, y, it holds that

max(x, y) =
x + y

2
+
|x− y|

2
min(x, y) =

x + y
2
− |x− y|

2
. (1.1.225)

• For real x, y, it holds that |x + y| ≤ |x|+ |y| and ||x| − |y|| ≤ |x− y|.

• Baker–Campbell–Hausdorff formula:

eABe−A = B + [A, B] +
1
2!
[A, [A, B]] +

1
3!
[A, [A, [A, B]]] + · · · . (1.1.226)

For details, see [117].
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1.2 Quantum entanglement

In this section, we will give a brief introduction to quantum entanglement. In
the theory of quantum entanglement, the major interest may be its detection
and quantification. This section describes each of the basic concepts which are
necessary to understand this thesis. For more general introductions to quantum
entanglement, see [17, 60, 118–123].

1.2.1 Bipartite entanglement

Definitions: A pure bipartite quantum state |ψ⟩AB is called a product state if it
can be written in the product form

|ψ⟩prod = |a⟩ ⊗ |b⟩ . (1.2.1)

A state is called entangled if it cannot be written in any product form. For
example, a two-qubit product state is given by |0⟩ ⊗ |0⟩ = |00⟩, while a two-
qubit entangled state is given by

|ψ⟩ent = (|00⟩+ |11⟩)/
√

2. (1.2.2)

In practice, quantum states cannot be often assumed to be pure due to noise
effects, so we next define entanglement in mixed states.

A mixed state ϱAB is called separable if it can be written as

ϱsep = ∑
i

piϱ
A
i ⊗ ϱB

i , (1.2.3)

where ϱA
i , ϱB

i are quantum states and pi is the probability with pi ∈ [0, 1] and
∑i pi = 1. Note that the set of separable states is compact and convex. A state is
entangled if it cannot be written in the separable form. An example of two-qubit
mixed states is given by

ϱ(p) = p |ψ⟩⟨ψ|ent +
1− p

4
1⊗2

2 . (1.2.4)

For p = 1 this is the entangled state, while for p = 0 it is the maximally mixed
state (separable state). A natural question arises: What is the transition point
p between entanglement and separability? In Sec. 1.2.3, we will address this
question.

High-dimensional entanglement: Consider a d ⊗ d-dimensional pure quan-
tum state |ψ⟩AB. According to the so-called Schmidt decomposition, any |ψ⟩AB
can be written as follows, up to local unitaries:

|ψ⟩AB =
r

∑
i=1

√
λi |ei⟩ ⊗ | fi⟩ , (1.2.5)
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with ⟨ei|ej⟩ = ⟨ fi| f j⟩ = δij and ∑r
i=1 λi = 1. The number r = r(ψAB) is

called the Schmidt rank, which is equal to the rank of the reduced state ϱX =
trXc(|ψ⟩⟨ψ|AB) for X = A, B. The state |ψ⟩AB is separable if and only if r = 1,
while it is entangled if and only if r > 1. In particular, the entanglement with
r ≫ 2 is often called high-dimensional entanglement. Note that 1 ≤ r ≤ d.

The generalization of the Schmidt rank to mixed states ϱAB is known as the
Schmidt number:

SN(ϱAB) = min
{pi,ψi}

max
{ψi}

r(ψi), (1.2.6)

where {pi, ψi} = {pi, ψi : ϱAB = ∑i pi |ψi⟩⟨ψi|} is the set of all ensemble realiza-
tions of ϱAB. The sets Sk of all bipartite states with SN ≤ k form a hierarchy of
convex and compact subsets in state space, Sk ⊂ Sk+1, (the structure of Russian
dolls), where S1 is the set of separable states. For details about Schmidt number,
see [124].

Maximal entanglement: Consider the Schmidt decomposition of |ψ⟩AB ∈ HA
d ⊗

HB
d . A pure state is called maximally entangled if its

√
λi = 1/

√
d, that is,

|ψ+⟩ = 1√
d

d−1

∑
i=0
|ii⟩ , (1.2.7)

where |ii⟩ = |i⟩ ⊗ |i⟩. Here, we express the basis using the computational bases.
Since the Schmidt decomposition has the form up to local unitary, the maximally
entangled state is not uniquely determined.

For d = 2, we have four orthonormal bases of maximally entangled states.
Commonly, they are called the Bell states:

|Φ±⟩ = 1
2
(|00⟩ ± |11⟩) , |Ψ±⟩ = 1

2
(|01⟩ ± |10⟩) . (1.2.8)

Note that the convex combination of these four Bell states are called the Bell-
diagonal states defined in Eq. (1.1.137).

Another definition of the maximally entangled states is as follows: A pure
state is maximally entangled if its reduced states are maximally mixed, that is,

ϱX = trXc(|ψ⟩⟨ψ|AB) =
1d
d

, (1.2.9)

for X = A, B. That is, the purity of the reduced state is given by γ(ϱX) = 1/d.

Operational definition: A state is called separable if it can be created by LOCC
operations ΦLOCC(ϱ) given in Eq. (1.1.126). On the other hand, the state is called
entangled if it cannot be created by LOCC operations. We note that entangled
states can be created by non-LOCC operations, while all non-LOCC operations
(all nonlocal operations) cannot always create entanglement. For instance, the
SWAP operation S defined in Eq. (1.1.119) is one of the nonlocal operations but
it cannot create entanglement for a product state |00⟩.
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On the operational side, the maximally entangled state is known as a state
that can create any bipartite quantum state using LOCC operations. This is based
on the concept of majorization, which plays an important role in the resource
theory [125, 126]. That is, the maximally entangled state can be recognized as a
quantum state that has maximally useful resource for state generation.

Quantum teleportation: Here we discuss the usefulness of entanglement in
information-processing tasks. Consider a situation where Alice and Bob are
spatially separated and they share a two-qubit entangled state, say the Bell state
|Φ+⟩AB defined in Eq. (1.2.8). Suppose that Alice has another unknown single-
qubit state in subsystem A′ and Alice wants to send this state to Bob. Here
assume that Alice does not know the state, that is, Alice does not know the
parameters α, β for |ψ⟩A′ = α |0⟩A′ + β |1⟩A′ . Now the total state is a three-qubit
state and given by: |Φ+⟩AB ⊗ |ψ⟩A′ .

Quantum teleportation is a protocol allowing Alice to teleport the state in
the system A′ to the state in system B by performing measurements for the basis
of Bell states in Eq. (1.2.8) on the system A and A′. More precisely, consider
the measurement basis {|Φ±⟩ , |Ψ±⟩}AA′ in Eq. (1.2.8). Then the straightforward
calculation leads to

(|Φ±⟩⟨Φ±|AA′ ⊗ 1B) |Φ+⟩AB ⊗ |ψ⟩A′ =
1
2
|Φ±⟩AA′ ⊗ |ψ±⟩B , (1.2.10)

(|Ψ±⟩⟨Ψ±|AA′ ⊗ 1B) |Φ+⟩AB ⊗ |ψ⟩A′ =
1
2
|Ψ±⟩AA′ ⊗ |ϕ±⟩B , (1.2.11)

where |ψ±⟩B = α |0⟩B ± β |1⟩B and |ϕ±⟩B = α |1⟩B ± β |0⟩B. According to the
measurement rule, the probability to obtain the outcome can be computed by
the squared norm of the post-measurement state. Then Alice can find either of
|Φ±⟩ , |Ψ±⟩ with probability 1/4.

Clearly, Bob does not know the result that Alice obtained from the mea-
surement. So, Alice has to tell the message about the two-bit result to Bob.
Depending on the result, Bob performs a local operation with the unitary Pauli
operation U = σi to Bob’s state for i = 0, 1, 2, 3. Then Bob can obtain the state
|ψ⟩B that is the same as the state in Alice’s system A′ at the beginning. This
means that Alice teleported the state |ψ⟩A′ to Bob.

In the following, we make several remarks, for details see [127, 128].

• Typical misconceptions:

Quantum teleportation does not occur faster than the speed of light. This
is because Alice has to send the measurement result to Bob classically via
telephone or other ways.

Quantum teleportation does not teleport actual physical objects. It tele-
ports quantum information as unknown coefficients of superposition.

Quantum teleportation does not mean copying/cloning an unknown state.
In fact, this is consistent with the so-called no-cloning theorem, stating that
an arbitrary unknown quantum state cannot be copied/cloned [129, 130].
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• Entanglement swapping: Quantum teleportation transfers an unknown
state but destroys the initial entanglement. More precisely, it swaps the
entangled state on system AB to the one on AA′.

• Generalizations: Quantum teleportation can be possible even if an initial
entangled state on system AB is not the Bell state, that is, not necessar-
ily maximally entangled. Also, it can be generalized to high-dimensional
cases. For details, see [131] and Eq. (1.2.60).

• Experiments: Quantum teleportation has been realized experimentally [132,
133] and also the ground-to-satellite demonstration has been conducted
over distances of 1, 400 kilometers [134].

1.2.2 Multipartite entanglement

Genuine tripartite entanglement: Consider a three-particle state |ψ⟩ABC. A
state is called fully separable if

|ψ⟩fs = |a⟩ ⊗ |b⟩ ⊗ |c⟩ . (1.2.12)

A three-qubit example is given by |000⟩. If the state is not fully separable, then
it is entangled. For instance, a state is called biseparable for a bipartition A|BC
if

|ψ⟩A|BC = |ϕ⟩A ⊗ |ϕ⟩BC . (1.2.13)

Here the state |ϕ⟩BC ∈ HB
d ⊗HC

d may be entangled, but the total state is separated
with respect to A versus BC. A three-qubit example is |0⟩ ⊗ |Φ+⟩ with the Bell
state |Φ+⟩. Similarly, we can define the biseparable states for bipartitions B|CA
and C|AB. A state is called genuine tripartite entangled if it cannot be written in
any biseparable form. Typical examples of genuine three-qubit entangled states:
the so-called Greenberger–Horne–Zeilinger (GHZ) state and W state

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩) , (1.2.14)

|W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩) . (1.2.15)

Consider a mixed quantum state ϱABC ∈ HA
d ⊗HB

d ⊗HC
d . A state is called

fully separable if
ϱfs = ∑

i
piϱ

A
i ⊗ ϱB

i ⊗ ϱC
i , (1.2.16)

where the pi form a probability distribution. Also, a state is called biseparable
for a bipartition A|BC if

ϱA|BC = ∑
i

qA
i ϱA

i ⊗ ϱBC
i , (1.2.17)
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where the qA
i form a probability distribution and ϱBC

i may be entangled. Simi-
larly, one can define biseparable states with respect to the two other bipartitions
as B|CA and C|AB. Moreover, one can define mixtures of biseparable states with
respect to different partitions, i.e., states of the form

ϱbs = pAϱA|BC + pBϱB|CA + pCϱC|AB, (1.2.18)

where the pA, pB, pC form convex weights. A mixed state is called genuine tri-
partite entangled if it cannot be written in the form of ϱbs. A typical example of
three-qubit mixed states is given by

ϱ(g, w) = gϱGHZ + wϱW +
1− g− w

8
1⊗3

2 , (1.2.19)

where 0 ≤ g, w ≤ 1 and ϱGHZ = |GHZ⟩⟨GHZ| and ϱW = |W⟩⟨W|. In Chapter 2,
we will discuss the detailed analysis of the state ϱ(g, w).

Difference between GHZ and W states: There are several differences between
the three-qubit GHZ and W states. First, their reduced states are different. That
is,

ϱGHZ
XY =

1
2


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , ϱGHZ
X =

1
2

(
1 0
0 1

)
, (1.2.20)

ϱW
XY =

1
3


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , ϱW
X =

1
3

(
2 0
0 1

)
, (1.2.21)

where ϱXY = trZ(ϱ) and ϱX = trYZ(ϱ) are respectively two-qubit and single-
qubit states for any X, Y, Z = A, B, C. In fact, ϱGHZ

XY is separable but ϱW
XY is

entangled. This implies that the entanglement of the GHZ state is sensitive to
particle losses, while the entanglement of the W state is robust.

Genuine N-partite entanglement: Consider a N-particle state ϱ. A state is
fully separable if

ϱfs = ∑
i

piϱ
1
i ⊗ ϱ2

i ⊗ · · · ϱN
i , (1.2.22)

where pi forms the probability distribution. A state is called biseparable for a
bipartition M|M̄ for M = {1, 2, . . . , N} if

ϱM|M̄ = ∑
i

qM
i ϱM

i ⊗ ϱM̄
i , (1.2.23)

where pM
i forms the probability distribution and M̄ is the complement of M. In a

similar manner to the three-particle case, one can define mixtures of biseparable
states for all bipartitions:

ϱbs = ∑
M

pMϱM|M̄, (1.2.24)
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where this summation includes at most 2N−1− 1 terms. A state is called genuine
N-partite entangled if it cannot be written the form of ϱbs. As an example, the
N-qudit GHZ state can be given by

|GHZ(N, d)⟩ = 1√
d

d−1

∑
i=0
|i⟩⊗N . (1.2.25)

For d = 2, this is equivalent to the maximally entangled state |ψ+⟩ in Eq. (1.2.7).

k-separability: Let us discuss another different form of multiparticle entangle-
ment. The idea is to extend the concept of fully separability to k-separability (or
k-partitionability) by taking into account the number of separable partitions. For
a N-particle state |ψ⟩ ∈ H⊗N

d , a state is k-separable if it can be written as

|ψk-sep⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕk⟩ . (1.2.26)

The mixed state can be also defined using the convex mixture of pure k-separable
states. Here for k = N, this is equivalent to the full separability. If a state is not
2-separable, then it is called genuinely N-particle entangled. For example, the
following state is 100-qubit 12-separable:

|ψ100,12⟩ = |GHZ20⟩⊗3 ⊗ |GHZ10⟩⊗2 ⊗ |GHZ5⟩⊗2 ⊗ |Φ+⟩⊗5 , (1.2.27)

where we denote that |GHZN⟩ = |GHZ(N, 2)⟩ in Eq. (1.2.25).

GHZ and W states: Consider a N-qubit GHZ state and W state

|GHZN⟩ =
1√
2

(
|0⟩⊗N + |1⟩⊗N

)
, (1.2.28)

|WN⟩ =
1√
N

(|100 . . . 0⟩+ |010 . . . 0⟩ · · ·+ |00 . . . 01⟩) . (1.2.29)

Let us take a partial trace over the subsystem 1. Then their reduced states are
given by

tr1[|GHZN⟩⟨GHZN |] =
1
2

(
|0⟩⟨0|⊗(N−1) + |1⟩⟨1|⊗(N−1)

)
, (1.2.30)

tr1[|WN⟩⟨WN |] =
1
N
|0⟩⟨0|⊗(N−1) +

N − 1
N
|WN−1⟩⟨WN−1| . (1.2.31)

As a result, we can see that the reduced state of the GHZ state is separable but
the reduced state of the W state is entangled, similarly with the result in the
three-qubit case. That is, the entanglement of the GHZ state is fragile under the
loss of a particle, while the entanglement of the W state is robust.
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Dicke states: For a N-qubit system, the Dicke state with m excitations is de-
fined as

|DN,m⟩ =
(

N
m

)− 1
2

∑
k

πk

(
|1⟩⊗m ⊗ |0⟩⊗(N−m)

)
, (1.2.32)

where the summation in ∑k πk is overall different permutations between the
qubits and integer m with 0 ≤ m ≤ N.

There are three remarks. First, the Dicke state can be the generalization of
the W state in Eq. (1.2.29): |DN,1⟩ = |WN⟩. Second, the two-qubit reduced states
are given by

ϱ
(2)
N,m =

1
N(N − 1)


a 0 0 0
0 b b 0
0 b b 0
0 0 0 c

 , (1.2.33)

where ϱ
(2)
N,m = tr{1,2,...,N}/{a,b}(|DN,m⟩⟨DN,m|) for any a, b = 1, 2, · · · , N with a +

2b + c = N(N − 1), a = (N −m)(N −m− 1), b = m(N −m), and c = m(m− 1).
For N = 3 and m = 1, this state coincides with Eq. (1.2.21). In fact, the reduced
state ϱ

(2)
N,m is entangled for any N ≥ 3 and m ∈ [1, N − 1] (this can be checked

using the so-called PPT criterion, which will be explained in the next subsection).
Third, the Dicke state is one of the so-called spin-squeezed states, which have
metrologically important meanings. For details about Dicke states, see [135] and
Sec. 1.3.

Multipartite maximal entanglement: In multipartite systems, the structure of
entanglement becomes much richer and more complicated than in bipartite sys-
tems. In the state space of a bipartite system, there is an ordering structure in
terms of quantum resource theories [101]. In this sense, the maximally entan-
gled state can be defined as an entangled state in which any bipartite state can
be created by LOCC operations.

On the other hand, in multipartite systems, such an ordering structure no
longer exists, and the concept of maximally entangled states cannot be uniquely
defined. In fact, three-qubit pure states are divided into two classes: the GHZ
class and the W class. As mentioned already, the GHZ state cannot be trans-
formed to the W state and vice versa with LOCC operations, even if they are not
required to reach the state with probability one SLOCC operations in Eq. (1.1.130)
[136, 137]. This distinction leads to different roles the GME states play in infor-
mation processing tasks [138–140]. For four-qubit states, there is already an
infinite collection of such classes, which can be grouped into nine families [141].

In addition to the GHZ state and Dicke state, several notions of genuinely
multipartite entanglement were discussed. Examples are cluster states [142],
graph states [143], hypergraph states [144], absolutely maximally entangled states
[145, 146], phased Dicke states [147–152], singlet states (1.3.23), and totally anti-
symmetric states (1.3.30).
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1.2.3 Entanglement detection

Separability problem: The separability problem is as follows: Given a quan-
tum state, is it separable or entangled? There are many studies to address this
question, but still, the general solution is unknown. Here we summarize several
issues about the separability problem.

• Complexity: In general, determining whether a state is entangled is a com-
plicated mathematical problem, even if the density matrix is completely
known. In fact, the separability problem is known to belong to the NP-
hard class of computational complexity [153].

• Practical issues: In the case of pure states, the separability problem is rather
straightforward, but the situation becomes much more complicated when
mixed states are considered. In practical scenarios, quantum states created
in a lab are mixed due to the irreducible presence of noise, lack of experi-
mental control, and environmental decoherence. Moreover, large quantum
states may not be completely analyzed due to the exponentially increas-
ing dimension of the Hilbert space, and then their density matrices are
supposed to be unknown. Therefore, it is desirable to find efficient ex-
perimental methods to estimate the entanglement of such imperfect and
unknown states.

• Limited quantum control: In experiments, sometimes only partial infor-
mation about the state is accessible. If some a priori information about the
state is available, such as that an experiment is aimed at producing a certain
entangled state, then so-called entanglement witnesses may allow for effi-
cient detection using directly measurable observables [154, 155], which will
be explained in this section. In other situations where one cannot be sure
about the appropriate description of measurements and cannot trust the
underlying quantum devices, it is still possible to certify entanglement in a
device-independent manner [156], using, e.g. Bell-type inequalities, based
only on the measurement data observed from input-output statistics [157,
158]. Moreover, when considering ensembles of quantum particles, such
as cold atoms, individual control over local subsystems may be lost, but
entanglement can still be characterized by measuring collective angular
momenta and applying spin-squeezing inequalities [159–161], which will
be explained in Sec. 1.3.

• Meaningful entanglement: Addressing the separability problem can high-
light the differences in correlations between quantum and classical physics.
The features of entanglement, such as the negativity of conditional en-
tropy [162, 163], monogamy of entanglement [164, 165], and the presence
of bound entanglement [166, 167], are associated with entanglement con-
ditions from fundamental and operational viewpoints. In fact, whether a
given entangled state is useful or not, can be decided by certain thresholds
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in terms of several quantum communication protocols [127, 131, 168] and
quantum metrology [169–171].

• Generalizations: As a generalization of the separability problem, one can
ask, for example, how many partitions are separated in a multipartite state
based on the concept of k-separability [172, 173], or how many particles
are entangled based on the concept of k-producibility [174–177]. Other in-
teresting concepts are given by k-stretchability [178–180], tensor rank [181],
and the bipartite and multipartite dimensionality [182–184] of entangle-
ment. Genuine multipartite entanglement can in turn again be classified
into several types, such as the W class or GHZ class of states. More re-
cently, also different notions of network entanglement came into the focus
of attention [185–187].

Introduction to Bell inequalities: To better understand the quantum world, let
us begin by considering the limitations of the classical world. Note that classical
mechanics is just one type of classical theory among many classical theories, so
simply listing its laws does not fully explain the classical world.

Consider a situation where Alice and Bob are spatially separated and each
receives a black box sent from a source. Inside the black box is a ball that cannot
be seen from the outside. Balls have different properties: A1 = (Black, White),
A2 = (Big, Small), B1 = (Hard, Soft), and B2 = (Elastic, Plastic). Alice and Bob
should ask questions to know its properties. In fact, Alice can choose to ask a
question for either A1, A2, whereas Bob can choose to ask a question for either
B1, B2. When the results of Black, Big, Hard, Elastic are obtained, they label +1,
whereas when the results of White, Small, Soft, Plastic are obtained, they label
−1. That is, A1, A2, B1, B2 = ±1.

Clearly, B1 + B2 = −2, 0, 2 as well as B1 − B2 = −2, 0, 2. Since A1, A2 =
±1, one can notice that S ≡ A1(B1 + B2) + A2(B1 − B2) = ±2. Suppose that
this scheme is repeated many times, and Alice and Bob randomly choose their
measurements every time, independent of their respective choices. Now one can
have that the expectation ⟨S⟩ is bounded as

−2 ≤ ⟨S⟩ ≤ 2. (1.2.34)

Such an inequality is called Bell’s inequality [15, 16], which holds when we also
consider other scenarios with two outcomes in the classical world. Note here that
asking questions corresponds to performing measurements with two outcomes.
It is essential that quantum mechanics can violate Bell’s inequality.

Let us discuss this more precisely. Now one can notice that this inequality
can be derived by implicitly imposing two assumptions in the classical world:
(i) Locality: Any operation on Alice’s system should not immediately affect the
measurement results of Bob’s system located far away. That is, the properties
of Alice’s ball are independent of the properties measured of Bob’s ball, and
vice versa (ii) Reality: Properties of balls have predetermined values even before
they are measured. That is, each ball has properties, independent of whether
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it is measured or not. If either Locality or Reality is violated, the inequality is
violated.

Clauser-Horne-Shimony-Holt (CHSH) inequality: To formulate the Bell in-
equality in more detail, consider a scenario in which Alice and Bob share a
state that can be characterized by a parameter variable λ. They perform mea-
surements in this state, where each measurement direction can be respectively
controlled by a parameter θA or θB. Let us denote Alice’s measurement result
as a function Aλ(θA), as well as Bob’s one Bλ(θB). The measurement result
depends on the state with the parameter λ and the measurement setting with
θA, θB.

Let us assume the following on this model: (i) −1 ≤ Aλ(θA),Bλ(θB) ≤ 1 (ii)
Aλ(θA),Bλ(θB) are deterministically determined by λ and θ. (iii) the variable λ
is hidden and occurs with a probability pλ. (iv) After the many measurements,
the expectation of Aλ(θA)Bλ(θB) can be written

⟨A1B1⟩ =
∫

dpλ Aλ(θA)Bλ(θB). (1.2.35)

This is known as a local hidden variable (LHV) model. By changing the mea-
surement direction as ϕA, ϕB, we consider the following quantity:

⟨S⟩ = ⟨A1B1⟩+ ⟨A2B1⟩+ ⟨A1B2⟩ − ⟨A2B2⟩, (1.2.36)

⟨A1B2⟩ =
∫

dpλ Aλ(θA)Bλ(ϕB), (1.2.37)

⟨A2B1⟩ =
∫

dpλ Aλ(ϕA)Bλ(θB), (1.2.38)

⟨A2B2⟩ =
∫

dpλ Aλ(ϕA)Bλ(ϕB). (1.2.39)

In the LHV model, the expectation ⟨S⟩ is bounded as

−2 ≤ ⟨S⟩ ≤ 2. (1.2.40)

This is the so-called Clauser-Horne-Shimony-Holt (CHSH) inequality as the sim-
plest Bell inequality [188].

Let us take four observables with ±1 eigenvalues: A1, A2, B1, B2. For simplic-
ity, we take A1 = σx ⊗ 12, A2 = σy ⊗ 12, B1 = 12 ⊗ σx, and B2 = 12 ⊗ σy, where
σx, σy are Pauli matrices. For the observable S ≡ A1(B1 + B2) + A2(B1 − B2) =

(2− 2i) |00⟩⟨11|+ (2 + 2i) |11⟩⟨00|, since the eigenvalues of S are 0,±2
√

2, the
absolute value of the expectation can be larger than 2. This suggests that CHSH
inequality can be violated in quantum mechanics.

To elaborate on this point explicitly, we write the eigenstates with ±2
√

2 as

|ψ+⟩ =
1√
2

(
e−i π

4 |00⟩+ |11⟩
)

, |ψ−⟩ =
1√
2

(
ei 3π

4 |00⟩+ |11⟩
)

. (1.2.41)
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These states are entangled, so the violation of the Bell inequality implies the
presence of entanglement. This is one of the examples of detecting quantum
entanglement. Note that any separable state obeys the Bell inequality, while all
mixed entangled states cannot always violate the Bell inequality. That is, the
Bell inequality cannot be a necessary and sufficient condition for entanglement
in general. For details about Bell inequalities, see [189, 190].

Bell operator: Let us discuss another formulation of the CHSH inequality. For
this aim, we define the so-called Bell operator as

B =
3

∑
i,j=1

[ai(cj + dj) + bi(cj − dj)]σi ⊗ σj, (1.2.42)

where a, b, c, and d are real unit vectors. The CHSH inequality can be reformu-
lated as the expectation ⟨B⟩ ≤ 2 for separable states. In Ref. [191], it has been
shown that the maximum expectation value over all parameters is given by

max
a,b,c,d

⟨B⟩ = 2
√

λ2
1 + λ2

2, (1.2.43)

where λ1 and λ2 are the two largest singular values of the correlation matrix
T = (tij) in the Bloch decomposition in Eq. (1.1.100). If this is bigger than 2, it
means that the state is entangled. In fact, the Bell state has λ1 = λ2 = 1, and
therefore max⟨B⟩ = 2

√
2. For details, see [192, 193] and Chapter 4.

Positive partial transpose (PPT) criterion: Let X be a d× d matrix and X⊤ be
its transposition. Since det (X) = det (X⊤), they have the same characteristic
polynomial: det (λ1d − X) = det (λ1d − X⊤). This implies that the eigenvalues
of X are equal to the eigenvalues of X⊤. Therefore, if X is a positive matrix, then
its transpose is also positive. For a product matrix X = XA ⊗ XB, let us denote
the partial transposition as X⊤B = XA ⊗ X⊤B . Clearly, if X is positive, then its
partial transpose is also positive.

The well-known positive partial transpose (PPT) criterion [194] states as fol-
lows: If a bipartite quantum state is separable, then its partial transpose is posi-
tive:

ϱAB ∈ SEP→ ϱ⊤B
AB ≥ 0. (1.2.44)

In the following we make several remarks about the PPT criterion.

• Proof: The proof of the PPT criterion is very straightforward:

ϱ⊤B
sep = ∑

i
piϱ

A
i ⊗ (ϱB

i )
⊤ = ∑

i
piϱ

A
i ⊗ σB

i ≥ 0, (1.2.45)

where σB
i is also a quantum state since the transposition is a positive map.
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• NPT entanglement: The violation of the PPT criterion implies that the state
is entangled. Such an entangled state is called the negative partial trans-
pose (NPT) state, while the quantum state that obeys the PPT criterion is
called a PPT state.

• Low dimensions: For a quantum state ϱAB ∈ HdA ⊗HdB with dA × dB ≤ 6,
if the state ϱAB is PPT, then it is separable. That is, for a two-qubit state
or 2⊗ 3-dimensional state, the PPT criterion is necessary and sufficient for
separability [195].

• Reformulation 1: In the case of two-qubit entangled states, exactly one
eigenvalue becomes negative under the partial transposition [196]. Thus,
for two-qubit states, the PPT criterion becomes equivalent to

det (ϱ⊤B
AB) ≥ 0, (1.2.46)

which was discussed in [197], and see Eq. (1.4.40).

• Reformulation 2: For the Bell-diagonal state in Eq. (1.1.137), the PPT crite-
rion can be simply written as

3

∑
i=1
|τi| ≤ 1, (1.2.47)

which was discussed in [64] and see Sec 1.4.

• Reformulation 3: For a symmetric state ϱAB such that SϱAB = ϱABS = ϱAB
for the SWAP operator S, the PPT criterion becomes equivalent to

⟨A⊗ A⟩ϱAB ≥ 0, (1.2.48)

for all observables A. For two-qubit systems, the equivalent conditions are
given by

ϱAB ∈ SEP⇔ ϱAB ∈ PPT⇔ X ≥ 0⇔ C ≥ 0, (1.2.49)

where and X is defined from the Bloch representation ϱAB = 1
4 ∑3

i,j=0 Xijσi⊗
σj and C is the Schur complement of X given by Cµν = Xµν − Xµ0X0ν for
µ, ν = 1, 2, 3. For details, see [198, 199] and Chapter 7.

• Reformulation 4: For a three-qubit symmetric state ϱABC such that SxyϱABC =
ϱABCSxy = ϱABC for the SWAP operator Sxy with x, y = A, B, C [for details
see in Eq. (1.3.27)], it holds that

ϱABC ∈ Full-SEP⇔ ϱABC ∈ PPT⇔ Z ≥ 0. (1.2.50)

where Z is a 8× 8 matrix defined by Z(µa),(νb) = ∑3
τ=0 Xτµν(στ)a,b for µ, ν =

0, 1, 2, 3 and a, b = 0, 1 and X is defined from ϱABC = 1
8 ∑3

i,j,k=0 Xijkσi ⊗
σj ⊗ σk. Here ϱABC ∈ PPT means that it is PPT for all bipartitions. The
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reason that this condition becomes equivalent to the full separability is
that the state lives in the so-called symmetric subspace. In this space, the
2× 4-separability condition turns out to be the 2× 3-separability condition,
which is equivalent to the PPT criterion. For details, see [199]. For further
extensions, see [200–202].

• PPT entanglement: The set of PPT states is an outer approximation of
the set of separable states in general. Then, in higher dimensions, there
exist entangled states that cannot be detected by the PPT criterion: PPT
entanglement. For details, see Sec. 1.2.4 and Chapter 2.

• Practical issues: To employ the PPT criterion, we have to know all the
elements of the density matrix. This requirement could be challenging in
experiments, especially for a large quantum state, since state tomography
could be demanding.

• Lesson: One important lesson from the PPT criterion is that one can turn
the separability problem into a positivity problem. This can relax sepa-
rability issues/conditions in terms of moment problems [105] that will be
discussed in Chapter 8, and quantum marginal problems [203].

Reduction criterion: We begin by recalling that the universal state inversion is
a positive map, discussed in Eq. (1.1.58): Sd(ϱ) = tr(ϱ)1d − ϱ ≥ 0 for a state
ϱ. The reduction criterion [37, 204] states the following: If a bipartite quantum
state ϱAB is separable, then

(idA ⊗ Sd)(ϱAB) = 1⊗ ϱA − ϱAB ≥ 0. (1.2.51)

Similarly, it holds that (Sd ⊗ idB)(ϱAB) = ϱB ⊗ 1− ϱAB ≥ 0.
The violation of the reduction criterion implies that the state is entangled. It

is important to note that the reduction criterion is strictly weaker than the PPT
criterion. That is, if an entangled state is detected by the reduction criterion, then
it must be also detected by the PPT criterion, while even if the entangled state
is detected by the PPT criterion, it is not necessarily detected by the reduction
criterion. This is because the reduction map is decomposable using the transpose
map [37].

Entropic criterion: Let γ(ϱ) = tr(ϱ2) be the purity of a state ϱ. The (second-
order) entropic criterion [64] can state as follows: If a bipartite quantum state
ϱAB is separable, then

γ(ϱAB) ≤ γ(ϱA), γ(ϱAB) ≤ γ(ϱB). (1.2.52)

This violation implies that the state is entangled. In the following, we make
several remarks.
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• Proof: This can be proven using the reduction criterion. Since tr(AB) ≥ 0
for positive matrices A, B, one can find the inequality for a separable state:

tr [ϱAB(idA ⊗ Sd)(ϱAB)] ≥ 0. (1.2.53)

This directly leads to the expression of the entropic criterion. Therefore,
the second-order entropic criterion is strictly weaker than the reduction
criterion (therefore weaker than the PPT criterion).

• Reformulation 1: This criterion can be rewritten in other forms based
on the linear (or Tsallis) entropy or the so-called second-order Rényi en-
tropy [205]:

H2(ϱA) ≤ H2(ϱAB), H2(ϱA) ≤ H2(ϱAB), H2(ϱ) = − log
[
tr(ϱ2)

]
.

(1.2.54)

• Generalizations: This criterion was extended to higher-order cases [206–
208] [also see Eq. (1.4.30)] and moreover the so-called majorization cri-
terion using the state’s spectrum [23, 209]. It has been shown that the
majorization criterion is strictly weaker than the reduction criterion [210].

• Reformulation 2: One can rewrite the entropic criterion using the SWAP
trick discussed in Sec. 1.1.7:

tr[ϱ⊗2
ABWAB] ≥ 0, WAB = SA ⊗ 1⊗2

B − SAB. (1.2.55)

This reformulation can be understood as follows: The expectation of the
observable WAB acting on two copies of the system is nonnegative for all
separable states. This reformulation was generalized to higher-order cases,
for details see [211].

• Practical issues: The entropy criterion is weaker than the PPT criterion, but
it is not necessary to know all the elements of the density matrix. Once
the purities of the reduced state and the global state, one can apply this
criterion to detect entanglement. This could allow for more experimentally
friendly relaxation in practical situations.

Entanglement witnesses: An observableW is called the entanglement witness
if tr(Wϱsep) ≥ 0 for all separable states ϱsep, but tr(Wϱent) < 0 for some entan-
gled states ϱent. Therefore, for an observable, if its expectation is negative, we
can detect entanglement. In the following, we make several remarks.

• Mathematical side: For any entangled state, there exists an entanglement
witness. More mathematically, for a compact convex set (separable set)
and its outer point (entangled state), there exists a hyperplane that sepa-
rates them, according to the so-called Hahn–Banach separation theorem,
for details see [17].
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• Practical side: Since tr(Wϱ) is the expectation of the observable, it is a di-
rectly measurable quantity in practice. In experimental setups, the method
of entanglement witnesses is then frequently employed to detect entangle-
ment. For example, let us suppose that we have prior knowledge about the
state of an experiment, specifically that it is intended to generate a partic-
ular entangled state. In such cases, entanglement witnesses can effectively
verify the presence of entanglement.

• Equivalence: However, it is not easy to construct entanglement witnesses
in general. Following the so-called Choi-Jamiolkowski isomorphism [212–
214], connecting quantum states and channels, this problem is equivalent
to the problem of distinguishing positive and completely positive maps,
for details see [17, 154, 155].

• CHSH inequality: An example of the entanglement witnesses is the CHSH
inequality. Recalling the Bell operator B in Eq. (1.2.42), the witnessWCHSH
is given by

WCHSH = 21⊗2
2 −B. (1.2.56)

For details see [215].

Fidelity witnesses: As discussed in Sec. 1.1, the method to know how close a
given quantum state ϱ is to a known target entangled state |ψ⟩ is the fidelity:

Fψ(ϱ) ≡ ⟨ψ|ϱ|ψ⟩ . (1.2.57)

Note that this fidelity is the squared fidelity defined in Eq. (1.1.174). Now an
observableWα is called the fidelity-based entanglement witness if

Wα = α1− |ψ⟩⟨ψ| , (1.2.58)

such that
α = max

ϱsep
Fψ(ϱsep) = max

ϕ∈SEP
|⟨ϕ|ψ⟩|2. (1.2.59)

Clearly, it holds that tr(Wαϱsep) ≥ 0. Using the Schmidt decomposition of |ψ⟩ in
Eq. (1.2.5), the parameter α can be simply evaluated as α = λ1 with the maximal
coefficient λ1 [78]. Here we make several remarks.

• Detectability: In Ref. [216], the method of fidelity-based witnesses was
shown to have limited power to detect entanglement. More precisely, the
notion of faithful entangled states was considered as the entangled states
that can be detected by fidelity-based witnesses, and in the numerical
approaches, such faithful entangled states were found to rarely exist in
higher dimensional systems. More systematic approaches were discussed
in Ref. [217].
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• Teleportation: For the fidelity-based entanglement witnessWα, the value α
of the maximally entangled state |ψ+⟩ in Eq. (1.2.7) is given by 1/d. Sim-
ilarly, one can consider other types of maximally entangled states which
are equivalent to |ψ+⟩ under locally unitary transformations. In Ref. [218],
fidelity-based witnesses were studied from operational viewpoints by in-
troducing the so-called maximal singlet fraction (or fully entangled frac-
tion):

F (ϱAB) ≡ max
ψ∈ME

⟨ψ|ϱAB|ψ⟩ = max
UA,UB

⟨ψ+|UA ⊗UBϱABU†
A ⊗U†

B|ψ+⟩ ,

(1.2.60)
where ME is the set of maximally entangled (ME) states. It has been shown
that an entangled state has F (ϱAB) > 1/d if and only if it shows usefulness
beyond the classical regime in teleportation protocols. For details, see [120,
219].

• Simplifications: In Ref. [220], it has been shown that an entangled state ϱAB
is faithful if and only if there are local unitaries UA ⊗UB such that

FU(ϱAB) ≡ ⟨ψ+|UA ⊗UBϱABU†
A ⊗U†

B|ψ+⟩ > 1
d

. (1.2.61)

Moreover, for a two-qubit ϱAB, the quantity FU(ϱAB) can become analyti-
cally tractable and can be given by

FU(ϱAB) = λmax. (1.2.62)

Here λmax is the maximal eigenvalues of the operator X2(ϱAB) defined as

X2(ϱAB) = ϱAB −
1
2
(ϱA ⊗ 12 + 12 ⊗ ϱB) +

1
4
1⊗2

2

=
1
4

(
1⊗2

2 +
3

∑
i,j=1

tijσi ⊗ σj

)
, (1.2.63)

where tij denotes the elements of the two-body correlation matrix based
on the Bloch decomposition in Eq. (1.1.100). Thus, a two-qubit entangled
ϱAB is faithful if and only if λmax > 1/2. Now it is important to notice
that one can transform the operator X2(ϱAB) into the Bell diagonal form
in Eq. (1.1.137) by applying local unitary operators. Letting ϱ′AB = UA ⊗
UBϱABU†

A ⊗U†
B with the diagonal entries τi for i = 1, 2, 3, one can find that

FU(ϱAB)=
1
4

max{1−τ1−τ2−τ3, 1−τ1+τ2+τ3, 1+τ1−τ2+τ3, 1+τ1+τ2−τ3}.
(1.2.64)

This scheme has been experimentally implemented [221]. In Chapter 4,
this expression of FU(ϱAB) will be used in randomized measurements.
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Several detections of two-qubit entanglement: Let us consider the two-qubit
mixed state ϱ(p) in Eq. (1.2.4) and test several criteria using the CHSH inequal-
ity (1.2.43), the PPT criterion (1.2.44), the entropic criterion (1.2.52), and the fi-
delity witness (1.2.64). Let us denote the respective transition points between
the separable and entanglement of ϱ(p) as pCHSH, pPPT, pent, pfid. Straightfor-
ward calculation leads to

pPPT=
1
3
≈0.33< pent=

1√
3
≈0.577< pfid=

2
3
≈0.66< pCHSH=

1√
2
≈0.71.

(1.2.65)

1.2.4 Bound entanglement

Concepts: Suppose that we have k copies of a bipartite quantum state: ϱ⊗k
AB. The

task is to distill (convert) these copies into the maximally entangled state |ψ+⟩
via LOCC operations. If this is possible, a state is called distillable. Otherwise,
it is called undistillable [166]. In the following, we summarize several known
facts, for details see [120, 219, 222, 223].

• Pure states: First of all, clearly, all separable states are undistillable. Then
distillable states should be entangled. Also, all pure entangled states are
distillable. Therefore a mixed state is sometimes called distillable if it can
be distilled into pure entangled states.

• Dimensionality: All entangled two-qubit mixed states are distillable. Then
undistillable entanglement, often called bound entanglement, exists only
in high-dimensional systems.

• PPT states: If an entangled state violates the reduction criterion (1.2.51),
the state is distillable. In fact, all PPT entangled states are bound entan-
gled. This suggests that bound entanglement has a weak form of high-
dimensional entanglement. This raises the converse question of whether
all bound entangled states are PPT entangled? In other words, are all NPT
entangled states distillable? The existence of NPT-bound entanglement is
known as one of the most challenging and important open problems in
quantum information [224].

• Peres conjecture: Asher Peres conjectured that all bound entangled states
cannot violate Bell inequalities [225]. This problem is still open, while in
the multipartite case, this conjecture is known to be wrong [226, 227]. Fur-
thermore, the term stronger Peres conjecture was introduced in the sense
that all bound entangled states cannot violate the so-called steering in-
equalities [228, 229]. This stronger Peres conjecture was disproved in [230],
that is, there exist steering bound entangled states.

• Specific cases: The Werner state in Eq. (1.1.143) cannot be bound entangled.
This is because it is separable if and only if PPT. Also, rank-two bound
entangled states do not exist. For details, see [167, 231].
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• Usefulness: Bound entanglement seems useless in information processing
tasks. However, its utility has been demonstrated in quantum cryptogra-
phy [232, 233] and metrology [234, 235].

• Multipartite systems: In an analogy with bipartite states, the notion of
multipartite bound entanglement can be defined. Importantly, there are
several multipartite states that are PPT (or bound) entangled for a bipar-
tition but NPT entangled for other bipartitions [120]. Thus, the definition
cannot be uniquely determined. It might be standard to call a multipartite
state bound entangled if it is PPT (or bound) for all bipartitions but not
fully separable.

• Remark: As a more restricted class, there exist multipartite states that are
separable for all bipartitions but not fully separable [236]. The GHZ diag-
onal states that are PPT for any bipartition are separable for any biparti-
tion [237].

Detection of PPT (bound) entanglement: Given a quantum state, how can we
prove that it is PPT (bound) entangled? There are two steps. First, we apply the
PPT criterion. If it is violated, then it is NPT entangled. If not, we have to show
that the state is still entangled. For this purpose, several criteria are considered.

Here we summarize their terms and references, for details see [17, 120, 238]:
Range criterion [239], Computable cross norm or realignment (CCNR) crite-
rion [240–242], Its extensions [243], de Vicente criterion [244] that will be ex-
plained below, Permutation criteria [245], Criteria based on uncertainty rela-
tions [246–248], Covariance matrix criterion [59, 249], Criterion based on sym-
metric informationally complete positive operator valued measure (SIC POVM)
[250], The whole family of entanglement criteria [251], Breuer–Hall map cri-
terion [62, 63], Spin-squeezing inequalities [160], Criteria using the Cauchy-
Schwarz and the Hölder inequality [252] Stronger criteria based on quantum
Fisher information [253, 254], E4 criterion [255], and Polytope adaption tech-
nique [256].

de Vicente criterion: The de Vicente criterion states that any bipartite separable
ϱAB in dA ⊗ dB systems obeys

∥T∥tr ≤
√
(dA − 1)(dB − 1), (1.2.66)

where T is a correlation matrix in Eq. (1.1.100) in the case of asymmetric dimen-
sions and ∥X∥tr is the trace norm of a matrix X, that is, the sum of its singular
values. The violation of this inequality implies that the state is entangled. In the
following, we make three important remarks, for details see [60, 244].

• Detection of PPT entanglement: The de Vicente criterion is complementary
to the PPT criterion. More precisely, the de Vicente criterion sometimes
can detect entangled states which cannot be detected by the PPT criterion,
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while the PPT criterion sometimes can detect entangled states which can-
not be detected by the de Vicente criterion. Neither is strictly stronger than
the other. Thus, if one wants to detect bound entangled states, it makes
sense to apply the de Vicente criterion.

• Hierarchy: In the case with dA = dB, the de Vicente criterion is strictly
weaker than the CCNR criterion. On the other hand, the de Vicente crite-
rion becomes strictly stronger than the CCNR criterion if the reduced states
ϱA and ϱB are maximally mixed and dA ̸= dB. Both are equivalent if the
reduced states ϱA = ϱB = 1d/d and dA = dB = d.

• Generalizations: The de Vicente criterion is based only on the two-body
correlation matrix. In a similar manner, its multipartite extensions have
been proposed in terms of correlation tensors [257]. Also, it has been gen-
eralized to criteria for Schmidt numbers [258].

List of bound entangled states

In this subsubsection, we will make the list of bound entangled states. Other
examples are given in [166, 256, 259–264]. In Table 1.1, we describe several
properties of bound entangled states.

States Rank γ(ϱAB) γ(ϱA), γ(ϱB) ϱAB
?
= ϱ⊤B

AB ∥T∥tr
ϱ(Ech) 4 1/4 11/32 ≈ 0.344 No 2.37
ϱcb 4 1/4 1/3 Yes 2.5
ϱUPB 4 1/4 35/96 ≈ 0.365 Yes 2.11
σ(p) 7 h1(p) 1/3 No h2(p)
ϱsteering 4 0.295 0.395, 0.452 Yes 2.18
ϱMS 9 m1(α) 1/3 No m2(α)

Table 1.1: Results for several bound entangled states discussed in 3 ⊗ 3-
dimensional systems. For the state ϱcb, each parameter is m = n =
b = −3/5, a = 3/5, c = −d = 6/5. For the state σ(p), for
p ∈ (3, 4], h1(p) = [2(p − 5)p + 37]/147 ∈ (0.170, 0.197], and h2(p) =

(2/7)
(√

3(p− 5)p + 19 + 6
)
∈ (2, 2.47]. For the state ϱMS, β = −0.025 and

γ = 0, for α ∈ (0.175, 0.225) m1(α) = α(80α − 1)/90 + 67/600 ∈ (0.137, 0.154)
and m2(α) =

(
40α− 1 +

√
40α(40α + 1) + 1

)
/10 ∈ (0.137, 0.154).

Quantum grid states: For d⊗ d-dimensional systems, consider a pure entan-
gled state forming

|i, j; k, l⟩ = 1√
2
(|ij⟩ − |kl⟩) , (1.2.67)

with 0 ≤ i, j, k, l < d. A quantum d⊗ d-dimensional grid state is defined as the
uniform mixture of pure states |i, j; k, l⟩. That is, for a given set E = {|i, j; k, l⟩},
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it can be defined as
ϱ(E) =

1
|E| ∑
|e⟩∈E
|e⟩⟨e| . (1.2.68)

Note that not all quantum grid states are separable, and moreover, there
are some grid states that can have bound entanglement. In particular, a 3⊗ 3-
dimensional bound entangled grid state is called the cross-hatch state with the
set

Ech = {|0, 0; 1, 2⟩ , |1, 0; 2, 2⟩ , |0, 1; 2, 0⟩ , |0, 2; 2; 1⟩}. (1.2.69)

For details, see Fig. 2 (a) in [265]. Note that the density matrix is given by

ϱ(Ech) =
1
8



1 0 0 0 0 −1 0 0 0
0 1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1 0
0 0 0 1 0 0 0 0 −1
0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 0 0 0 0 1 0 0
0 0 −1 0 0 0 0 1 0
0 0 0 −1 0 0 0 0 1


. (1.2.70)

Chessboard states: For 3⊗ 3-dimensional systems, consider a family of quan-
tum states

ϱcb = N
4

∑
i=1
|Vi⟩⟨Vi| , (1.2.71)

where N = 1/ ∑i ⟨Vi |Vi⟩ is a normalization factor and

|V1⟩ = (m, 0, s; 0, n, 0; 0, 0, 0), |V2⟩ = (0, a, 0; b, 0, c; 0, 0, 0), (1.2.72)
|V3⟩ = (n, 0, 0; 0,−m, 0; t, 0, 0), |V4⟩ = (0, b, 0;−a, 0, 0; 0, d, 0), (1.2.73)

with free real parameters a, b, c, d, m, n and s = ac
n , t = ad

m . The matrix form of
this state can then be expressed as

ϱcb=N



m2 + n2 0 ms 0 0 0 nt 0 0
0 a2 + b2 0 0 0 ac 0 bd 0

sm 0 s2 0 sn 0 0 0 0
0 0 0 a2 + b2 0 bc 0 −ad 0
0 0 ns 0 m2 + n2 0 −mt 0 0
0 ac 0 cb 0 c2 0 0 0
tn 0 0 0 −tm 0 t2 0 0
0 bd 0 −da 0 0 0 d2 0
0 0 0 0 0 0 0 0 0


,

(1.2.74)
where N = 2a2 + 2b2 + c2 + d2 + 2m2 + 2n2 + s2 + t2. The states ϱcb are called
the chessboard states because their 8× 8 matrix form looks like a chessboard,
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originally introduced by Dagmar Bruß and Asher Peres [266]. The state is in-
variant under the partial transposition. On the other hand, according to the
range criterion [239], ϱcb is entangled. Thus, the chessboard states are bound
entangled.

Unextendible product bases: For 3⊗ 3-dimensional systems, let us consider
five product states

|ψ0⟩ =
1√
2
|0⟩ (|0⟩ − |1⟩), |ψ1⟩ =

1√
2
(|0⟩ − |1⟩) |2⟩ , (1.2.75)

|ψ2⟩ =
1√
2
|2⟩ (|1⟩ − |2⟩), |ψ3⟩ =

1√
2
(|1⟩ − |2⟩) |0⟩ , (1.2.76)

|ψ4⟩ =
1
3
(|0⟩+ |1⟩+ |2⟩)(|0⟩+ |1⟩+ |2⟩). (1.2.77)

Notice that all of these five product states are orthogonal to all pairs, and another
product state cannot be orthogonal to all pairs. These product states are said to
form an unextendible product basis (UPB) [267]. From these states, one can
construct the mixed state

ϱUPB =
1
4

(
1−

4

∑
i=0
|ψi⟩⟨ψi|

)
. (1.2.78)

Here, ϱUPB is the state on the space that is orthogonal to the space spanned by
the UPB. Then, ϱUPB has no product states in the range. According to the range
criterion [239], ϱUPB should be entangled. On the other hand, one can notice that
ϱUPB is invariant under the partial transposition: ϱUPB = ϱ⊤B

UPB ≥ 0. Hence, ϱUPB
is a bound entangled state. Note that the density matrix is given by

ϱUPB =
1

72



7 7 −2 −2 −2 −2 −2 −2 −2
7 7 −2 −2 −2 −2 −2 −2 −2
−2 −2 7 −2 −2 7 −2 −2 −2
−2 −2 −2 7 −2 −2 7 −2 −2
−2 −2 −2 −2 16 −2 −2 −2 −2
−2 −2 7 −2 −2 7 −2 −2 −2
−2 −2 −2 7 −2 −2 7 −2 −2
−2 −2 −2 −2 −2 −2 −2 7 7
−2 −2 −2 −2 −2 −2 −2 7 7


. (1.2.79)

3⊗ 3 Horodecki state: For 3⊗ 3-dimensional systems, consider the mixed state

σ(p) =
2
7
|ψ+⟩⟨ψ+|+ p

7
σ+ +

5− p
7

σ−, 2 ≤ p ≤ 5, (1.2.80)
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where the two-qutrit maximally entangled state |ψ+⟩ = 1√
3
(|00⟩+ |11⟩+ |22⟩)

and

σ+ =
1
3
(|01⟩⟨01|+ |12⟩⟨12|+ |20⟩⟨20|), (1.2.81)

σ− =
1
3
(|10⟩⟨10|+ |21⟩⟨21|+ |02⟩⟨02|). (1.2.82)

It turns out that the state σ(p) is PPT in the range 2 ≤ p ≤ 4. To characterize
this state further, one can employ a non-decomposable positive map Λ such that
(1⊗Λ)σ ≱ 0. An example is

Λ

a11 a12 a13
a21 a22 a23
a31 a32 a33

 =

 a11 −a12 −a13
−a21 a22 −a23
−a31 −a32 a33

+

a22 0 0
0 a33 0
0 0 a11

 . (1.2.83)

This non-decomposable map allows us to classify this state as follows [268]: the
state σ(p) is not detected as entangled for 2 ≤ p ≤ 3, PPT (bound) entangled for
3 < p ≤ 4, and NPT entangled for 4 < p ≤ 5. Note that the density matrix is
given by

σ(p) =
1
21



2 0 0 0 2 0 0 0 2
0 p 0 0 0 0 0 0 0
0 0 5− p 0 0 0 0 0 0
0 0 0 5− p 0 0 0 0 0
2 0 0 0 2 0 0 0 2
0 0 0 0 0 p 0 0 0
0 0 0 0 0 0 p 0 0
0 0 0 0 0 0 0 5− p 0
2 0 0 0 2 0 0 0 2


. (1.2.84)

Steering bound entangled state: For 3⊗ 3-dimensional systems, consider the
mixed state

ϱsteering = λ1 |ψ1⟩⟨ψ1|+ λ2 |ψ2⟩⟨ψ2|+ λ3(|ψ3⟩⟨ψ3|+ |ψ̃3⟩⟨ψ̃3|), (1.2.85)

where the normalized states are

|ψ1⟩ =
1√
2
(|12⟩+ |21⟩), |ψ2⟩ =

1√
3
(|00⟩+ |11⟩ − |22⟩), (1.2.86)

|ψ3⟩ = m1 |01⟩+ m2 |10⟩+ m3(|11⟩+ |22⟩), (1.2.87)
|ψ̃3⟩ = m1 |02⟩ −m2 |20⟩+ m3(|21⟩ − |12⟩), (1.2.88)

with mi ≥ 0 and

λ1 = 1− 2 + 3m1m2

4− 2m2
1 + m1m2 − 2m2

2
, λ3 =

1
4− 2m2

1 + m1m2 − 2m2
2

, (1.2.89)

and λ2 = 1− λ1 − 2λ3. In this choice of parameter, the state ϱsteering is invariant
under the partial transposition. If m1 = 0.2162 and m2 = 0.4363, this state is
steerable. For details, see [230].
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Magic simplex states: For 3⊗ 3-dimensional systems, consider the mixed state

ϱMS =
1− α− β− γ

8
19 + α |ψ00⟩⟨ψ00|+ β |ψ01⟩⟨ψ01|+ γ |ψ02⟩⟨ψ02| , (1.2.90)

where

|ψij⟩ = (13 ⊗ XiZj) |ψ00⟩ , |ψ00⟩ =
1√
3

2

∑
i=0
|ii⟩ , (1.2.91)

with

X =

0 1 0
0 0 1
1 0 0

 , Z =

1 0 0
0 w 0
0 0 w

 , w = e2πi/3. (1.2.92)

Note that the density matrix is given by

ϱMS =
1
9



2M + 1 0 0 0 3G2 0 0 0 3G2
0 M̄ 0 0 0 0 0 0 0
0 0 M̄ 0 0 0 0 0 0
0 0 0 M̄ 0 0 0 0 0

3G1 0 0 0 2M + 1 0 0 0 3M
0 0 0 0 0 M̄ 0 0 0
0 0 0 0 0 0 M̄ 0 0
0 0 0 0 0 0 0 M̄ 0

3G1 0 0 0 3M 0 0 0 2M + 1


, (1.2.93)

where M = α + β + γ, M̄ = 1−M, G1 = α + βi2/3 − γ 3
√

i, and G2 = α + βi2/3 −
γ 3
√

i. For α ∈ (0.175, 0.225), β ∈ (−0.075,−0.025), and γ = 0, this state can be
bound entangled. For details, see [269, 270].

4⊗ 4 Piani state: For 4⊗ 4-dimensional systems, consider the orthogonal pro-
jections

Pij = |Ψij⟩⟨Ψij| , (1.2.94)

where |Ψij⟩ = (1⊗ σij) |Ψ4
+⟩, |Ψ4

+⟩ = 1
2 ∑3

k=0 |kk⟩, and σij = σi ⊗ σj with Pauli
matrices. With these projections, one can construct the state

ϱBE=
1
6
(P02 + P11 + P23 + P31 + P32 + P33) (1.2.95)

=
1
6

(
Φ+

ABΨ−A′B′+Ψ+
ABΨ+

A′B′+Ψ−ABΦ−A′B′+Φ−ABΨ+
A′B′+Φ−ABΨ−A′B′+Φ−ABΦ−A′B′

)
,

where Φ+, Φ−, Ψ+, Ψ− are also projectors on the Bell states. It has been shown
that the state ϱBE is the 4⊗ 4 bound entangled under the bipartition of AA′|BB′.
For details, see [271].
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4⊗ 2 Horodecki state: For 4⊗ 2-dimensional systems, consider the state

ϱHDK =
1
h



2t 0 0 0 0 0 2t 0
0 2t 0 0 0 0 0 2t
0 0 t + 1 0 0 0 0 t′

0 0 0 2t 2t 0 0 0
0 0 0 2t 2t 0 0 0
0 0 0 0 0 2t 0 0
2t 0 0 0 0 0 2t 0
0 2t t′ 0 0 0 0 t + 1


, (1.2.96)

where t′ =
√

1− t2, h = 2(1 + 7t) and 0 < t < 1. Note that this state can be
also regarded as a three-qubit state. Then the parties AB are in 4-dimensional
systems and the party C is in 2-dimensional systems. This state is NPT entangled
for A|BC and AC|B, but PPT entangled for AB|C. For details, see [239].

2⊗ 2⊗ 2 bound entangled states: For 2⊗ 2⊗ 2-dimensional systems, consider
the followings unnormalized states:

ϱUPB ∝



7 1 1 1̄ 1 1̄ 1̄ 1
1 3 1̄ 1 1̄ 3̄ 1 1̄
1 1̄ 3 3̄ 1̄ 1 1 1̄
1̄ 1 3̄ 3 1 1̄ 1̄ 1
1 1̄ 1̄ 1 3 1 3̄ 1̄
1̄ 3̄ 1 1̄ 1 3 1̄ 1
1̄ 1 1 1̄ 3̄ 1̄ 3 1
1 1̄ 1̄ 1 1̄ 1 1 7


, ϱADMA ∝



1 0 0 0 0 0 0 1
0 a 0 0 0 0 0 0
0 0 b 0 0 0 0 0
0 0 0 c 0 0 0 0
0 0 0 0 1/c 0 0 0
0 0 0 0 0 1/b 0 0
0 0 0 0 0 0 1/a 0
1 0 0 0 0 0 0 1


,

(1.2.97)

ϱAK ∝



x 0 0 0 0 0 0 2
0 y 0 0 0 0 2 0
0 0 y 0 0 2̄ 0 0
0 0 0 y 2 0 0 0
0 0 0 2 y 0 0 0
0 0 2̄ 0 0 y 0 0
0 2 0 0 0 0 y 0
2 0 0 0 0 0 0 x


, ϱPH ∝



2z 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0
0 1 1 0 1 0 0 0
0 0 0 1/z 0 0 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 1/z 0 0
0 0 0 0 0 0 1/z 0
0 0 0 0 0 0 0 0


,

(1.2.98)

where 1̄ = −1, 2̄ = −2, 3̄ = −3, a, b, c, x, y, z > 0, abc ̸= 1, and x = y + 4. These
states have been already known: ϱUPB in Ref. [267], ϱADMA in Ref. [137], ϱAK
in Ref. [272], and the Hyllus state ϱPH in Eq. (2.105) in Ref. [273]. Note that
ϱAK is entangled for 2 ≤ y ≤ 2.828 but separable for y ≥ 2

√
2. Also ϱUPB is

permutationally symmetric.
Let us summarize the property of these states. The first common property

of them is that they are separable for any bipartition, but not fully separa-
ble. In that sense, they are not multipartite distillable and then bound entan-
gled [236]. Second, their matrix ranks are, respectively, given by Rank(ϱUPB) = 4,
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Rank(ϱADMA) = 7, Rank(ϱAK) = 8, and Rank(ϱPH) = 5. Finally, these bound
entangled states can be detected with the help of the previously presented en-
tanglement criteria in Refs. [236, 245, 274].

Also consider the following three-qubit thermal state with the Heisenberg
chain model:

ϱH = e(−HH/T)/Z, HH = ∑
i=1,2,3

σi
Xσi+1

X + σi
Yσi+1

Y + σi
Zσi+1

Z , (1.2.99)

with temperature T and Z = tr[exp (−HH/T)]. This thermal state has been
shown to be bound entangled in the temperature range T ∈ [4.33, 5.46], in
the sense that they are separable for any bipartition but not fully separable in
Refs. [160, 275] and Table II in [276], where the bound entanglement can be
detected by the optimal spin squeezing inequality.

1.2.5 Entanglement measures

Requirements: For a bipartite quantum state ϱAB, an entanglement measure
E(ϱAB) is required to satisfy the following conditions:

• Entanglement cannot increase under LOCC:

E[ΦLOCC(ϱAB)] ≤ E(ϱAB), (1.2.100)

for any LOCC operation ΦLOCC in Eq. (1.1.126). It is also usual to require
the stronger requirement: E(ϱAB) cannot increase on average under LOCC
operations:

∑
i

piE(σi) ≤ E(ϱAB), (1.2.101)

where σi = (1/pi)KiϱABK†
i with the Kraus operators Ki of ΦLOCC and pi =

tr(KiϱABK†
i ) is the probability to obtain an outcome i.

• Entanglement vanishes in separable states:

E(ϱAB) = 0, for any ϱAB ∈ SEP. (1.2.102)

• As an additional requirement, the convex property is often imposed:

E

(
∑

i
piϱi

)
≤∑

i
piE(ϱi), (1.2.103)

where ϱAB = ∑i piϱi is a mixed state.

In particular, an entanglement measure E(ϱAB) is called LOCC monotone if
it satisfies Eqs. (1.2.101, 1.2.102, 1.2.103).
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FLAGS condition: There is a simple test to know whether an entanglement
measure is LOCC monotone or not. An entanglement measure E(ϱAB) is LOCC
monotone if and only if

• it is invariant under any local unitary:

E(UA ⊗UBϱABU†
A ⊗U†

B) = E(ϱAB), (1.2.104)

for all unitaries UA, UB.

• it satisfies the so-called FLAGS condition:

E

(
∑

i
piϱ

i
AB ⊗ |i⟩⟨i|X

)
= ∑

i
piE(ϱi

AB), (1.2.105)

where |i⟩X are local orthogonal bases (flags) for X = A′, B′.

Notice that the LOCC monotone inequalities are replaced by the two equal-
ities. The FLAGS condition can be understood as follows: Given a mixture of
states with local flags, the entanglement of the mixture is equivalent to the aver-
age entanglement of the individual states. For details about FLAGS conditions,
see [277, 278].

Concurrence: For a two-qubit state ϱAB, the concurrence is defined as

C(ϱAB) = max{λ1 − λ2 − λ3 − λ4, 0}, (1.2.106)

where λi are, in decreasing order, the eigenvalue of the matrix R:

R =
√√

ϱAB(σy ⊗ σy)ϱ∗AB(σy ⊗ σy)
√

ϱAB, (1.2.107)

and ϱ∗AB is the complex conjugation of ϱAB. Then one can analytically compute
the concurrence for a two-qubit entangled state [36].

It is important to note that concurrence is directly connected to the so-called
entanglement of formation:

EF(ϱAB) = h

(
1 +

√
1− C2(ϱAB)

2

)
, (1.2.108)

where h(x) = −x log2 x − (1− x) log2 (1− x). Here, the entanglement of for-
mation is a LOCC monotone entanglement measure and has a clear operational
meaning. It quantifies how many singlet states we require to create the state ϱAB
in the asymptotic sense.

Negativity: Negativity is an entanglement measure defined as

N(ϱAB) = ∑
λi<0
|λi|, (1.2.109)

where λi are eigenvalues of the partial transpose state ϱ⊤B
AB [279]. We remark that

N(ϱAB) = 0 if a state ϱAB is PPT. Thus, negativity cannot quantify the amount
of PPT entanglement. On the other hand, one can straightforwardly compute
negativity.
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Squashed entanglement: Squashed entanglement is an entanglement measure
defined as

Esq(ϱAB) = min
γABX

1
2

I(A : B|X), (1.2.110)

where I(A : B|X) = S(AX) + S(BX)− S(ABX)− S(X) is the quantum condi-
tional mutual information. Here, γABX is any extension of ϱAB, that is, ϱAB =
trX(γABX), and S(M) is the von Neumann entropy of system M. Squashed en-
tanglement is known to be LOCC monotone. For details, see [280, 281].

Monogamy relation and three-tangle: For any three-qubit pure state |ψABC⟩,
it holds that

C2(A : BC) ≥ C2(A : B) + C2(A : C), (1.2.111)

where this is permutationally invariant. Here, C2(A : BC) is the squared con-
currence between A and BC, which can be expressed as C2(A : BC) = 4 det ϱA.
Also, C2(X : Y) are squared concurrence of the reduced state ϱXY = trZ(ϱABC)
for X, Y, Z = A, B, C.

For instance, if ϱXY is maximally entangled, then C2(A : B) = 1. On the other
hand, since ϱA is maximally mixed, one has that C2(A : BC) = 1. Therefore,
C2(A : C) turns out to be zero. This implies that when A and B are maximally
entangled, each system cannot be entangled with C. In general, this inequality
indicates the fundamental limitation between three-qubit correlations. Often this
is called Coffman-Kundu-Wootters (CKW) monogamy relation [164].

Motivated by the CKW relation, the entanglement of a three-qubit state ϱABC
can be quantified:

τ3(ϱABC) = C2(A : BC)− C2(A : B)− C2(A : C), (1.2.112)

where τ3(ϱABC) is called the three-tangle. It is common to call C2(A : BC) the
one-tangle and C2(A : B) + C2(A : C) the two-tangle. For instance, the GHZ
state has a nonzero three-tangle but a zero two-tangle, while the W state has a
zero three-tangle but a nonzero two-tangle.

Lockable entanglement: For a multipartite state in system S1S2 · · · SN, let us
consider a bipartite entanglement between S and S2 · · · SN. A nontrivial question
arises: How much does the entanglement decrease with the loss of one particle?
An entanglement measure E(S1|S2 · · · SN) is called lockable if the entanglement
change can be arbitrarily large after one particle is discarded, that is,

E(S1|S2 · · · SN)≫ E(S1|S2 · · · SN−1). (1.2.113)

This may happen when a particle SN plays a key role in controlling the whole
entanglement. For instance, the entanglement of formation and the squashed
entanglement is known as lockable. Also, all measures based on the so-called
convex-roof method are known as lockable. For details, see [282].
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1.3 Quantum metrology

In this section, we will give a brief introduction to quantum metrology. In quan-
tum metrology, the two main topics of interest are spin squeezing and quantum
Fisher information. This section describes each of the basic concepts which are
necessary to understand this thesis. For more general introductions to quantum
metrology, see [92, 161, 170, 171, 283–289].

1.3.1 General schemes

A general scheme of quantum metrology consists of three stages: preparation of
an initial probe state, state transformation to encode a parameter θ, and readout
measurement to extract information about θ, as illustrated in Fig. 1.1. Each stage
can be designed to be either quantum or classical, offering various possibilities,
such as entangled or separable initial states, entangling or non-entangling state
transformations, and measurement observables in the form of real multipartite
operators or direct products of single-particle operators. The achievable preci-
sion (∆θ)2 in parameter estimation tasks depends on the chosen design.

The central task is to improve the metrological scheme so that it reaches
an optimal precision beyond the classical regime. When all stages are classi-
cal, the best achievable precision in a probe system of N particles is called the
shot-noise limit, (∆θ)2 ∝ N−1. However, the presence of initial entanglement in
the preparation stage can allow scaling beyond the shot-noise limit, ultimately
reaching the so-called Heisenberg limit, (∆θ)2 ∝ N−2. Furthermore, even with-
out initial entanglement, entangling transformations can lead to quantum scal-
ings much better than the Heisenberg limit. Examples include the so-called
super-Heisenberg limit, (∆θ)2 ∝ N−2k+1 for integers k [290–294], and the expo-
nential enhancement proposed by Roy and Braunstein, (∆θ)2 ∝ 4−N [295], also
see [296, 297].

In general, there are two well-known methods to characterize the precision
of the estimation. One is to use the so-called error propagation formula [288,
298, 299]:

(∆θ)2 =
(∆M)2

|∂θ⟨M⟩|2
, (1.3.1)

where ⟨M⟩ is the expectation of the measurement observable M, and (∆M)2 =
⟨M2⟩ − ⟨M⟩2 is its variance. This formula allows us to estimate θ from measure-
ment results of M, for details see Eq. (1.3.3). This approach is practically useful
since the precision can be directly calculated from measurements, while finding
the optimal measurement scheme would be challenging.

A more general approach is to employ the quantum Cramér–Rao bound [91,
300]:

(∆θ)2 ≥ 1
FQ(ϱ, A)

, (1.3.2)

where we suppose that an initial state ϱ can be transformed by a unitary oper-
ator Uθ = exp (−iθA) with a Hermitian operator A, and FQ(ϱ, A) denotes the
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Figure 1.1: Sketch of quantum metrology, consisting of three stages: the prepara-
tion stage of a state ϱ, the parameter encoding stage by a parameter-dependent
channel Λθ, and the readout measurement stage with an observable M.

quantum Fisher information in Eq. (1.1.201). This method allows for a discussion
of the fundamental limit on the precision in quantum mechanics, but it may lead
to overestimation since the inequality saturates only for optimal measurements.

In this section, we will describe these two methods more precisely and ex-
plain the concepts of spin squeezing or quantum Fisher information and their
relations with entanglement. Finally, it should be noted that other areas of in-
terest in quantum metrology include Bayesian estimation [301], multiparameter
scenarios [94, 302–306], quantum networks [307–309], and temperature estima-
tion in quantum thermodynamics [310].

1.3.2 Spin squeezing

Error propagation formula: Consider a scenario where we aim to determine
the value of a parameter θ encoded in a physical system. Information about
the value can be extracted from measurements on the system, allowing us to
estimate the parameter’s value. The estimation is performed indirectly via a
function ⟨M⟩ = f (θ) directly obtained from measurements. For instance, the
area of a square can be estimated by measuring the length of one side, or the
time on an unscaled clock can be determined by looking at the length of the
clock hand projected horizontally.

In practice, due to intrinsic noise, which includes measurement errors or
quantum fluctuations, the experimentally observed values can deviate from the
true values as follows:

⟨M⟩Exp = ⟨M⟩True ± (∆M), θExp = θTrue ± (∆θ), (1.3.3)

where (∆M) and (∆θ) represent the standard deviations.
The error propagation formula in Eq. (1.3.1) indicates how the error in M

propagates to θ. Higher precision can be achieved by having a larger slope
|∂θ⟨M⟩| and a smaller variance (∆M)2.

Collective Bloch sphere: Any N-qubit collective local unitary can be written
as

U⊗N = eiu·J, u = (ux, uy, uz), J = (Jx, Jy, Jz), (1.3.4)
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<Jz>

<Jy>

<Jx>

Figure 1.2: Sketch of the collective Bloch sphere with the coordinates (Jx, Jy, Jz),
where many-body spin singlet states are at the Red center and the Dicke state is
|DN,N/2⟩ shown as the Blue circle.

where u is a three-dimensional unit vector and J is a vector of collective an-
gular momenta in Eq. (1.1.109). A three-dimensional sphere in the coordinates
(Jx, Jy, Jz) is known as the collective Bloch sphere [123, 161, 171] in analogy with
Bloch sphere in a single-qubit system, illustrated in Fig. 1.2. As we will dis-
cuss later, several quantum states are visualized in this sphere, for example, the
many-body singlet states are at the Red center and the Dicke state with m = N/2
is shown as the Blue circle.

Shot-noise limit: Consider a metrological scenario where an N-qubit state
|0N⟩ = |0⟩⊗N is transformed by the dynamics Uθ = e−iθ Jy for the collective
angular momentum Jy. Here we want to estimate the rotation angle θ, which
may be given by, for example, θ = γBt with the gyromagnetic ratio or a mag-
netic moment γ, the strength of a magnetic field B pointing to y-direction, and
the evolution time t.

By measuring the observable M = Jx on this state, one can obtain the preci-
sion in the proximity of θ = 0:

(∆θ)2 → 1
N

, for θ → 0. (1.3.5)

This result is known as the shot-noise limit, which is achieved by the so-called
fully polarized state (pure product state) |0N⟩. This result coincides with the
scaling of the central limit theorem in Eq. (1.1.168).

Proof. Here we explain this derivation, following the description of Ref. [170].
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We begin by writing

e+iθ Jy Jxe−iθ Jy = Jx + (iθ)[Jy, Jx] +
(iθ)2

2!
[Jy, [Jy, Jx]] +

(iθ)3

3!
[Jy[Jy, [Jy, Jx]]] + · · ·

=

(
1− θ2

2!
+ · · ·

)
Jx +

(
θ − θ3

3!
+ · · ·

)
Jz

= cos(θ)Jx + sin(θ)Jz, (1.3.6)

where we used the Baker–Campbell–Hausdorff formula in Eq. (1.1.226) and the
well-known commutation relation [Ja, Jb] = i ∑c=x,y,z εabc Jc for a, b = x, y, z. Also
one has

e+iθ Jy J2
xe−iθ Jy = J2

x + (iθ)[Jy, J2
x ] +

(iθ)2

2!
[Jy, [Jy, J2

x ]] +
(iθ)3

3!
[Jy[Jy, [Jy, J2

x ]]] + · · ·

= J2
x + θ(Jz Jx + Jx Jz)−

2θ2

2!
(J2

x − J2
z )−

4θ3

3!
(Jz Jx + Jx Jz) + · · ·

=

(
1− 2θ2

2!
+

8θ4

4!
+ · · ·

)
J2
x +

(
θ2 − 8θ4

4!
+ · · ·

)
J2
z

+

(
θ − 4θ3

3!
+ · · ·

)
(Jz Jx + Jx Jz)

= cos2(θ)J2
x + sin2(θ)J2

z +
1
2

sin(2θ)(Jz Jx + Jx Jz), (1.3.7)

where we used

[Jy, J2
x ] = [Jy, Jx]Jx + Jx[Jy, Jx] = (−i)(Jz Jx + Jx Jz), (1.3.8)

[Jy, [Jy, J2
x ]] = (−i)[Jy, Jz Jx + Jx Jz] = · · · = 2(J2

x − J2
z ),

[Jy, [Jy, [Jy, J2
x ]]] = 2[Jy, J2

x − J2
z ] = · · · = 4[Jy, J2

x ],

based on the formulas: [A, BC] = [A, B]C + B[A, C] and [A, B + C] = [A, B] +
[A, C]. These results lead to

⟨M⟩ = cos(θ)⟨Jx⟩|0N⟩ + sin(θ)⟨Jz⟩|0N⟩, (1.3.9)

⟨M2⟩ = cos2(θ)⟨J2
x⟩|0N⟩ + sin2(θ)⟨J2

z ⟩|0N⟩ +
1
2

sin(2θ)⟨Jz Jx + Jx Jz⟩|0N⟩, (1.3.10)

where ⟨X⟩|0N⟩ ≡ ⟨0N |X|0N⟩ . Now a straightforward calculation yields

⟨Jx⟩|0N⟩ = 0, ⟨Jz⟩|0N⟩ =
N
2

, (1.3.11)

⟨J2
x⟩|0N⟩ =

N
4

, ⟨J2
z ⟩|0N⟩ =

N2

4
, ⟨Jz Jx + Jx Jz⟩|0N⟩ = 0. (1.3.12)

Substituting these into the error propagation formula in Eq. (1.3.1), we can arrive
the shot-noise limit:

lim
θ→0

(∆θ)2 =
(∆Jx)2

|0N⟩
⟨Jz⟩2|0N⟩

=
1
N

. (1.3.13)
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Spin-squeezed states: Roughly speaking, a state can be called spin-squeezed
if it can go beyond the shot-noise limit in collective measurements. Recall the
previous metrological setting with the unitary dynamics Uθ = e−iθ Jy and the
measurement observable M = Jx. A higher precision (∆θ)2 can be achieved by
a N-qubit spin-squeezed state, which has a smaller variance (∆Jx)2 compared
with the fully polarized state |0N⟩.

For the uncertainty relation in Eq. (1.1.203), taking A = Jx and B = Jy leads
to

(∆Jx)
2 (∆Jy)

2 ≥ 1
4
|⟨Jz⟩|2. (1.3.14)

Notice that the fully polarized state saturates this inequality and obeys (∆Jx)2 =
(∆Jy)2 = (1/2)|⟨Jz⟩| = N/4. On the other hand, spin-squeezed states can have
a smaller variance

(∆Jx)
2 <

1
2
|⟨Jz⟩|. (1.3.15)

More generally, the notion of such spin-squeezed states can be defined as

2(∆Jm)2

|⟨Jn⟩|
< 1, (1.3.16)

for mutually orthogonal unit vectors m and n [311, 312]. To avoid confusion, we
should stress that this condition cannot be a unique definition of spin-squeezed
states. As discussed below, there are several works that extend the concept of
spin squeezing.

The relation between spin squeezing and entanglement can be seen by intro-
ducing a parameter

ξ =
N(∆Jl)2

|⟨Jm⟩|2 + |⟨Jn⟩|2
, (1.3.17)

where l, m, and n are orthogonal. In Ref. [159], it has been shown that any
N-qubit fully separable state obeys

ξ ≥ 1. (1.3.18)

Conversely, if ξ < 1, the state is spin-squeezed and entangled. This allows us
to detect metrologically useful multipartite entanglement, beating the shot-noise
limit. Other spin-squeezing parameters were also considered, for details see
[161, 170, 313, 314].

Generalized spin-squeezing inequalities: Motivated by the above criterion,
one can ask: Can we find the most powerful entanglement criteria using the first
and second moments of collective angular momenta? Here the first and second
moments mean ⟨Jl⟩ and ⟨J2

l ⟩ for l = x, y, z. In Refs. [160, 276], such generalized
spin-squeezing inequalities were proposed. Any N-qubit fully separable state

74



obeys

⟨J2
x⟩+ ⟨J2

y⟩+ ⟨J2
z ⟩ ≤

N(N + 2)
4

, (1.3.19)

(∆Jx)
2 + (∆Jy)

2 + (∆Jz)
2 ≥ N

2
, (1.3.20)

⟨J2
l ⟩+ ⟨J2

m⟩ −
N
2
≤ (N − 1)(∆Jn)

2, (1.3.21)

(N − 1)
[
(∆Jl)

2 + (∆Jm)
2
]
≥ ⟨J2

n⟩+
N(N − 2)

4
, (1.3.22)

for l, m, n take all the possible permutations of x, y, z. These were shown to be
optimal inequalities for detecting spin-squeezing entanglement in the sense that
if the inequality holds for ⟨J2

x⟩, ⟨J2
y⟩, and ⟨J2

z ⟩, then there is a fully separable state
compatible with these values [160, 276].

Eq. (1.3.19) is valid for all quantum states. For instance, the fully polar-
ized state can saturate the bound. On the other hand, violation of any of the
inequalities in Eqs. (1.3.20, 1.3.21, 1.3.22) implies the presence of multipartite
entanglement. In fact, combining all the optimal inequalities can characterize
spin-squeezing entanglement very efficiently. In the following, we will discuss
what types of entanglement can be detected by these criteria.

Singlet states: The inequalities in Eqs. (1.3.20, 1.3.22) can be maximally vio-
lated by the so-called many-body spin singlet states ϱsinglet [160, 275, 276, 315–
317]. A pure singlet state is defined as a state invariant under any collective
unitary:

U⊗N |Ψsinglet⟩ = eiθ |Ψsinglet⟩ . (1.3.23)

That is, it has simultaneous eigenstates of Jl for l = x, y, z with zero eigenvalues.
Many-body spin singlet states ϱsinglet are mixtures of pure singlet states and are
also invariant under any collective local unitary: U⊗Nϱsinglet(U†)⊗N = ϱsinglet.
Since the state ϱsinglet has ⟨Jk

l ⟩ = 0 for and any integer k, it is at the center of the
collective Bloch sphere (Red in Fig. 1.2). Note that other quantum states can also
be at the center. Such states can be changed under U⊗N, but their expectations
of Jl cannot be changed. Examples are the thermal states of several spin-chain
models.

Moreover, their violations are known to detect entanglement very strongly.
In fact, it can verify the so-called multiparticle bound entangled states, which
cannot be distilled into pure entangled states and can be PPT for all biparti-
tions [160, 276]. Also, Refs. [318, 319] showed that the inequality in Eq. (1.3.20)
can detect many-body Bell nonlocality. Also, Refs. [170, 176, 320] discussed the
improvement of the average sensitivity of phase estimation in quantum metrol-
ogy. In Refs. [321, 322], the high-dimensional generalizations were considered,
which can characterize bound entanglement and k-particle entanglement in spin-
squeezed states.

75



Dicke states: The inequality in Eq. (1.3.21) is maximally violated by the sym-
metric Dicke state |DN,m⟩ with m = N/2 in Eq. (1.2.32). Note that the Dicke
states are simultaneous eigenstates of the collective angular momentum Jz and
the so-called Casimir invariant J2 = J2

x + J2
y + J2

z with [Jl, J2] = 0 for l = x, y, z.
For the Dicke state |DN,m⟩, the first and second moments are given by

⟨Jx⟩ = ⟨Jy⟩ = 0, ⟨Jz⟩ = m− N
2

, (1.3.24)

⟨J2
x⟩ = ⟨J2

y⟩ =
N
4
+

m(N −m)

2
, ⟨J2

z ⟩ =
(

m− N
2

)2

. (1.3.25)

In the case of m = N/2, since ⟨J2
x⟩, ⟨J2

y⟩ become large at the order ofO(N2), it can
be shown as the Blue circle in Fig. 1.2. This state corresponds to the eigenstate
with maximal eigenvalue of J2, leading to that ⟨J2⟩ = N(N + 2)/4. For details,
see [323–326].

Heisenberg limit: Consider a metrological scheme where one considers the
Dicke state |DN,N/2⟩ as an initial state and measures the observable M = J2

z
after the unitary dynamics Uθ = e−iθ Jy . In a similar manner to the calculation in
the shot-noise limit in Eq. (1.3.5), the precision in the limit of θ → 0 can be given
by

(∆θ)2 → 1
N(N + 2)

, for θ → 0. (1.3.26)

where we used the results in Ref. [170]. This result is known as the Heisenberg
limit, which shows the usefulness of the Dicke state in quantum metrology.

It is important to notice that we used the quadratic collective observable,
which contains two-body correlations unlike collective angular momenta Jl. Fur-
ther extensions to higher-order cases were considered in Ref. [327]. When we
measure observables with N-body correlations such as M = σ⊗N

x , the GHZ state
can also reach the Heisenberg limit.

Symmetric states: A N-particle state ϱ is called permutationally (bosonic) sym-
metric if it satisfies

Pabϱ = ϱPab = ϱ, (1.3.27)

for all a, b ∈ {1, 2, . . . , N}. Here Pab is an orthogonal projector onto the so-
called symmetric subspace that remains invariant under all the permutations.
Note that Pab can be written as Pab = (1+ Sab)/2 with the SWAP (flip) operator
Sab = ∑i,j |ij⟩⟨ji| that can exchange particles a, b. By definition, it holds that

Sabϱ = ϱSab = ϱ. (1.3.28)

The entanglement of permutationally symmetric states has been studied in [89,
187, 198, 323, 328–330]. A permutationally symmetric state ϱ is said to possess
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bipartite entanglement or often called spin-squeezed if a two-particle reduced
state ϱab = tr(a,b)c(ϱ) is entangled for all pairs (a, b) with the complement (a, b)c.
In previous works [135, 331, 332], such spin-squeezing entanglement has been
completely characterized in a necessary and sufficient manner.

We remark that any N-qubit permutationally symmetric state can be written
by mixing Dicke states. Then mixed states of Dicke, W, and GHZ states are
permutationally symmetric. Also, it is worthwhile to note that any N-particle
permutationally symmetric state can be either fully separable or genuinely mul-
tipartite entangled (GME) [328, 330].

As a more general concept, a state is called permutationally invariant if

SabϱSab = ϱ, (1.3.29)

which implies the invariance under the exchange of the particles [198]. The
method of state tomography of permutationally invariant states has been dis-
cussed [333–335].

Importantly, all permutationally symmetric states are permutationally invari-
ant, but there exist permutationally invariant states that are not permutationally
symmetric. Examples of such states are called antisymmetric states that live in
an antisymmetric subspace. It was shown that any N-partite antisymmetric state
is genuine N-partite entangled, see Lemma 9 in Ref. [187]. An example is the
N-particle d-dimensional totally antisymmetric quantum state given by

|AN⟩ =
1

N! ∑
π∈SymN

(−1)sgn(π) |π1⟩ ⊗ · · · ⊗ |πN⟩ , (1.3.30)

where π is a permutation in SymN and sgn(π) = 1 for even permutation and
sgn(π) = −1 for odd permutation. Note that this state is a singlet state, that is,
U⊗ |AN⟩⟨AN | (U†)⊗ = |AN⟩⟨AN |. For details, see [336–342].

1.3.3 Quantum Fisher information

Classical Cramér–Rao bound: In Sec. 1.1, we discussed classical statistics and
explained the estimation of a parameter θ from measurement data. For this
purpose, we can create the estimator θ̃ = θ̃(x) using the measurement outcome
x = {x1, x2, . . . , xn}. Here the estimator is a function that maps from the data to
the parameter. This is a random variable with fluctuating errors: θ̃ = θ± (error).
It is common to require that the estimator is unbiased, that is,

E[θ̃] = ∑
x

px(θ) θ̃(x) = θ, (1.3.31)

where the outcome x occurs with probability px(θ) with ∑x px(θ) = 1. In the
estimation theory, the main concern is to reduce the variance denoted as

Var[θ̃] = ∑
x

px(θ) [θ̃(x)− θ]2. (1.3.32)
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The classical Cramér–Rao bound tells us that the lower bound of the variance
is associated with the classical Fisher information:

Var[θ̃] ≥ 1
FC[px(θ)]

, FC[px(θ)] = ∑
x

1
px(θ)

(
∂px(θ)

∂θ

)2

. (1.3.33)

This means that large Fisher information leads to higher precision. The clas-
sical Cramér–Rao bound can be shown as follows: We begin by noting that
∂E[θ̃]/∂θ = 1. This leads to

12 =

{
∑
x

∂px(θ)
∂θ

[θ̃(x)− θ]

}2

=

{
∑
x

∂ log px(θ)
∂θ

√
px(θ)

√
px(θ)[θ̃(x)− θ]

}2

≤ FC[px(θ)] ·Var[θ̃], (1.3.34)

where we used the Cauchy–Schwarz inequality: (∑x fxgx)2 ≤ (∑x f 2
x ) · (∑x g2

x),
for fx = [∂ log px(θ)/∂θ]

√
px(θ) and gx =

√
px(θ)[θ̃(x)− θ].

Finally, we note that the Fisher information has an additive property for n
independent single observations: FC[px(θ)] = nFC[px(θ)]. Letting Var[θ̃] =
(1/n)(∆θ)2, this implies that

(∆θ)2 ≥ 1
FC[px(θ)]

. (1.3.35)

Often this form is also referred as to the classical Cramér–Rao bound.

Quantum Cramér–Rao bound: In quantum mechanics, the probability px(θ)
can be obtained from measurements on the state:

px(θ) = tr[ϱ(θ)Mx], (1.3.36)

for POVM measurements {Mx} with Mx ≥ 0 and ∑x Mx = 1. In quantum
metrology, it is common to consider that an initial state ϱ is transformed by a
unitary transformation Uθ to encode a parameter θ: ϱ → ϱ(θ) = UθϱU†

θ with
Uθ = e−iθA with a Hermitian A as the generator of the dynamics.

The quantum Fisher information (QFI) FQ(ϱ, A) in Eq. (1.1.201) can be rec-
ognized as the maximal quantity of FC[px(θ)] over measurements Mx:

max
Mx
FC[px(θ)] = FQ(ϱ, A). (1.3.37)

This immediately results in the quantum Cramér–Rao bound in Eq. (1.3.2).

Proof. Here we explain this derivation, following the description of Ref. [92]. We
begin by rewriting the classical Fisher information as FC[px(θ)] = ∑x px(θ)L2

c
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with Lc = [1/px(θ)][dpx(θ)/dθ]. This expression leads to dpx(θ)/dθ = px(θ)Lc.
As the derivative of the quantum state, consider the symmetric form:

∂ϱ(θ)

∂θ
=

1
2

L(θ)ϱ(θ) +
1
2

ϱ(θ)L(θ), (1.3.38)

with a Hermitian L(θ) = L(θ)†. According to Eq. (1.3.36), we can thus immedi-
ately obtain

dpx(θ)

dθ
=

1
2

tr [L(θ)ϱ(θ)Mx] +
1
2

tr [ϱ(θ)L(θ)Mx]

= Re {tr [L(θ)ϱ(θ)Mx]}

≤ |tr [L(θ)ϱ(θ)Mx]| =
∣∣∣∣tr [√ϱ(θ)

√
Mx
√

MxL(θ)
√

ϱ(θ)

]∣∣∣∣ ,

where we used tr(A†) = [tr(A⊤)]∗ = [tr(A)]∗ for an operator A and Re[z] =
(z + z∗)/2 ≤

√
zz∗ = |z| for a complex z. Let us apply the Cauchy–Schwarz

inequality: |tr(X†Y)|2 ≤ tr(X†X) · tr(Y†Y). Taking X† =
√

ϱ(θ)
√

Mx and Y =√
MxL(θ)

√
ϱ(θ) leads to(

dpx(θ)

dθ

)2

≤ px(θ) · tr [L(θ)MxL(θ)ϱ(θ)] . (1.3.39)

Substituting this result to the classical Fisher information FC[px(θ)], we have

FC[px(θ)] ≤ tr[ϱ(θ)L2(θ)] ≡ FQ(ϱ, A), (1.3.40)

where we used that ∑x Mx = 1. By definition, the element of L(θ) can be ex-
pressed using the eigenvalue decomposition ϱ(θ) = ∑i pi |ψi⟩⟨ψi|: Lij = [2/(pi +
pj)][∂θϱ(θ)]ij. A similar calculation with the paragraph of “Quantum Fisher met-
ric" in Sec. 1.1.6 yields the same form with Eq. (1.1.201):

FQ(ϱ, A) = ∑
i,j

piLijLji = 2 ∑
i,j

(pi − pj)
2

pi + pj
| ⟨ψi|A|ψj⟩ |2. (1.3.41)

Optimality: Let us discuss the optimal measurements, which can achieve the
equality FC[px(θ)] = FQ(ϱ, A). This equality holds if and only if (i) the term
tr [L(θ)ϱ(θ)Mx] is real and (ii) the Cauchy–Schwarz inequality is saturated, that
is, Y = cX, equivalently,

√
MxL(θ)

√
ϱ(θ) = c

√
Mx
√

ϱ(θ). Thus, the measure-
ments {Mx} must be a set of projectors onto the eigenvectors of L(θ), which
depends on an unknown parameter. This is the main reason why finding op-
timal measurement schemes in quantum metrology is challenging. For details,
see [343].
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Properties of quantum Fisher information: Here we summarize several prop-
erties of the QFI.

• Convexity: The QFI is convex for a quantum state:

FQ

(
∑

i
pi |ψi⟩⟨ψi| , A

)
≤∑

i
piFQ (|ψi⟩⟨ψi| , A) . (1.3.42)

This implies that the QFI is always maximized by pure states.

• Commutativity: If ϱ and A commute each other, that is, [ϱ, A] = 0, then one
has that FQ (ϱ, A) = 0 (Also, FQ = 0 leads to [ϱ, A] = 0). That is, the state
with the same eigenvectors as the generator A in the unitary parameter
encoding is not sensitive and therefore not useful. For details, see [170].

• Variance: For any quantum state ϱ the upper bound of the QFI is given by
the variance:

FQ (ϱ, A) ≤ 4(∆A)2
ϱ, (1.3.43)

where equality can be saturated by pure states. This allows us to know
the best achievable precision by calculating the variance. For details, see
[344–346].

• Variance’s upper bound: For any state ϱ and Hermitian operator A, the
upper bound of the variance (∆A)2 is given by

(∆A)2 ≤ 1
4
(amax − amin)

2 , (1.3.44)

where amax, amin are respectively the maximal and minimal eigenvalues of
A.

Proof. This can be shown as follows: Since amin1 ≤ A ≤ amax1, we have

0 ≤ ⟨(amax1− A)(A− amin1)⟩. (1.3.45)

This leads to ⟨A2⟩ ≤ ⟨A⟩(amax + amin) − amaxamin. Substituting this in-
equality to the variance (∆A)2 = ⟨A2⟩ − ⟨A⟩2 yields

(∆A)2 ≤ (amax − ⟨A⟩)(⟨A⟩ − amin). (1.3.46)

Applying the inequality of arithmetic and geometric means xy ≤ [(x +
y)/2]2 can complete the proof. Note that this proof is similar to the deriva-
tion of the so-called Popoviciu inequality [347], as well as the Bhatia–Davis
inequality [348, 349].

• Optimal state: The inequality in Eq. (1.3.44) can be achieved by the state

|ψ⟩ = 1√
2
(|amax⟩+ |amin⟩) , (1.3.47)

where |amax⟩ and |amin⟩ are the normalized eigenvectors with the eigenval-
ues amax and amin.

80



Heisenberg limit: Consider a metrological scenario where a parameter encod-
ing is given by a local unitary

UL = e−iθAL , AL =
N

∑
i=1

Ai ⊗ 1ī, (1.3.48)

where Ai are the generator acting on i-th subsystem and assumed to be the same
for any i. Note that the eigenvalues amax and amin of the operator AL and the
corresponding eigenvectors are given by

amax = Nλmax, |amax⟩ = |λmax⟩⊗N , (1.3.49)

amin = Nλmin, |amin⟩ = |λmin⟩⊗N , (1.3.50)

where λmax and λmin are the eigenvalues of the operator Ai with the eigenvalues
|λmax⟩ and |λmin⟩. With the help of the above properties of the QFI, it holds that

FQ (ϱ, A) ≤ max
|ϕ⟩
FQ (|ϕ⟩ , A) (1.3.51)

= max
|ϕ⟩

4(∆A)2
ϕ (1.3.52)

≤ (amax − amin)
2 = N2 (λmax − λmin)

2 , (1.3.53)

which can be achieved by the state

|ψ⟩ = 1√
2

(
|λmax⟩⊗N + |λmin⟩⊗N

)
. (1.3.54)

As an example, take the collective angular momentum A = Jl for l = x, y, z,
where λmax = 1/2 and λmin = −1/2. Then the minimal precision in this case
coincides with the Heisenberg limit:

(∆θ)2 ≥ 1
N2 . (1.3.55)

This is the fundamental ultimate bound in quantum mechanics in the case of the
local Hamiltonian dynamics with Jl. For the case with Jz, since |λmax⟩ = |0⟩ and
|λmin⟩ = |1⟩, the Heisenberg limit is achieved by the GHZ state.

Separability criteria: A large value of the QFI signals the presence of multipar-
ticle entanglement. Now one may ask: Can we find the separability bound on
the QFI? This question has been addressed in Ref. [169] (also see [286]) and later
extended to more general concepts of separability, known as k-producibility [176,
320].

Let us recall the form of a fully separable state: ϱfs = ∑i piϱ
(1)
i ⊗ ϱ

(2)
i ⊗ · · · ⊗

ϱ
(N)
i in Eq. (1.2.22). Any N-qubit fully separable state obeys

FQ (ϱfs, Jl) ≤ N. (1.3.56)
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Violation of this inequality implies that the state is multiparticle entangled. Sim-
ilarly to Eq. (1.3.53), this criterion can be shown as follows:

FQ (ϱfs, Jl) ≤ max
|ψfs⟩
FQ (|ψfs⟩ , Jl) = 4(∆Jl)

2
ψfs

=
N

∑
i=1

(∆σ
(i)
l )2

ψi
≤ N, (1.3.57)

which is based on the description of Ref. [169, 288].

Super-Heisenberg limit: In order to reach the Heisenberg limit in the case of
a local unitary parameter encoding, initial entanglement is necessary. On the
other hand, if a parameter encoding is given by a unitary for a nonlinear k-body
interaction coupling, even initial product states can achieve and go beyond the
quadratic scaling. In general, it is possible to achieve the following scaling:

(∆θ)2 ∼ 1
N2k . (1.3.58)

This is known as the super-Heisenberg limit, which can suggest that entangling
transformations are also metrologically relevant. Roughly speaking, this scaling
can be proportional to the number of terms in the corresponding generator in
the dynamics.

Let us explain the super-Heisenberg limit in more detail, following the de-
scription of Refs. [290, 292]. For other references, see [291, 293, 294]. Consider
an unitary Uk = exp[−iθA(k)] with

A(k) =

(
N

∑
i=1

Ai

)k

= ∑
wt=k

Ai1 Ai2 · · · Aik +O(Nk−1), (1.3.59)

where the summation is taken over all subsets of k systems, weight, wt is the
number of non-zero indices. With the help of Eq. (1.3.44, it is sufficient to show
that the upper bound of the variance scales with order O(N2k). To proceed, let
us denote the operator semi-norm of a Hermitian X as

∥X∥sn = xmax − xmin, (1.3.60)

where xmax, xmin are the maximal and minimal eigenvalues of X. This norm has
the triangle inequality, that is, ∥X + Y∥sn ≤ ∥X∥sn + ∥Y∥sn. This may lead to∥∥∥A(k)

∥∥∥
sn
∼∥ ∑

wt=k
Ai1 Ai2 · · · Aik∥sn∼

(
N
k

)∥∥Ai1 Ai2 · · · Aik

∥∥
sn∼

Nkak
k!
∼O(Nk),

(1.3.61)
where we used the well-known Stirling approximation for large N and small
k/N and denoted ak = λk

max− λk
min for λmax and λmin the maximal and minimal

eigenvalues of the operator Ai. Finally, we note that the terminology of the
super-Heisenberg limit has been discussed in Refs. [296, 297].
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1.4 Randomized measurements

In this section, we will give a brief introduction to randomized measurements.
Roughly and informally speaking, randomized measurements are methods to
implement SWAP operators indirectly in an experimentally-friendly manner.
More precisely, the scheme of randomized measurements allows us to generate
the SWAP operator S, or more generally the permutation operator Wπ in Sec 1.1,
via Haar random unitary integrals, and the resulting quantities are invariants
under local unitaries, which can give advantages for the analysis of quantum
systems. This section is based on the description of Ref. [7].

1.4.1 General schemes

Motivations: Quantum technology has advanced rapidly, enabling the manip-
ulation of complex quantum systems. However, as the number of particles in-
creases, the analysis of quantum states becomes increasingly challenging, due to
the exponentially increasing dimension of Hilbert space. To address this chal-
lenge, methods using random unitary rotations in the measurement direction
have been discussed. By studying the moments of the resulting probability dis-
tribution, valuable information about the state can be obtained for the analysis of
quantum systems. This method, called randomized measurement, offers several
advantages:

• Unnecessity of state tomography: Randomized measurements do not re-
quire precise knowledge of the elements of the density matrix as a com-
plete mathematical description of the system. This eliminates the need for
tomographic reconstruction of the quantum state and significantly reduces
the required measurement resources. This point is crucial for the efficient
and reliable characterization of multipartite systems.

• Valuable in the absence of prior information: Random measurements are
useful in situations where prior information about the state is not avail-
able. This is advantageous when one does not know the type of entangled
state produced or when dealing with larger and noisier quantum systems.
Random measurements can overcome situations where standard methods
of entanglement witnesses or Bell inequalities are inadequate.

• Independence of common reference frame: Randomized measurements are
effective when control over quantum systems is limited. They do not re-
quire careful calibration and alignment of measurement directions or the
sharing of a common frame of reference between spatially separated par-
ties. This feature can save operational resources, as establishing a common
frame of reference can be resource-intensive in practice [100] and Sec. 1.1.

• Adaptability to noisy environments: Randomized measurements are insen-
sitive to unknown local unitary noise, such as magnetic field fluctuations
or rotational polarizations of optical fibers along communication channels
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for the transmission of states. This insensitivity can even be achieved by
deliberately applying uniformly random rotations, which can wash away
unexpected, distorted noise effects that occur in actual experiments.

General formalism: Here we explain the general formalism of randomized
measurements in terms of t-th moments in N-particle d-dimensional quantum
systems. Let us begin by considering a situation where N parties share a N-
qudit quantum state ϱ ∈ H⊗N

d but no common reference frame. To analyze
the state in this situation, they first perform a measurement with an observable
M and rotate each party’s measurement direction in an arbitrary manner. The
expectation can be expressed in the form

E(M, U1 ⊗ · · · ⊗UN) = tr
[
ϱ(U1 ⊗ · · · ⊗UN)

†M(U1 ⊗ · · · ⊗UN)
]

. (1.4.1)

This expectation function depends not only on ϱ and M but also on the choice
of local unitaries U1 ⊗ · · · ⊗ UN. Here the unitary matrix Ui is defined in the
d-dimensional unitary group acting on the i-th subsystem for i = 1, . . . , N. The
key idea to proceed is to take a sample over random unitaries and consider the
resulting probability distribution of E(M, U1 ⊗ · · · ⊗UN). This probability dis-
tribution can contain valuable information about the state and be characterized
by its moments

R(t)
M(ϱ) = NN,d,t

∫
dU1 · · ·

∫
dUN [E(M, U1 ⊗ · · · ⊗UN)]

t, (1.4.2)

where the integral is taken according to the Haar measure dU, for details see the
paragraph of “Twirling operations" in Sec. 1.1.4. Here, we denoteNN,d,t as a suit-
able normalization constant, which is defined differently across the literature. In
the following, we will summarize several remarks.

• Local unitary invariance: By definition, the moments are invariant under
any local unitary transformation. More precisely, since the Haar measure
is invariant under left and right translation, it holds that

R(t)
M(ϱ) = R(t)

M(V1 ⊗ · · · ⊗VN ϱ V†
1 ⊗ · · · ⊗V†

N), (1.4.3)

for any local unitary V1 ⊗ · · · ⊗ VN. Thus, we can characterize the state
ϱ with the moments R(t)(ϱ) in a local-basis-independent manner, that is,
independent of reference frames between parties or unknown local uni-
tary noise. This invariance is one of the most important properties of ran-
domized measurements and suggests that the moments of the measured
distributions contain essential information about the entanglement of the
corresponding quantum states.

• Choice of observables: In general, there are two ways to choose the observ-
ableM: One is to take a product observable of the form

MP = M1 ⊗M2 ⊗ · · · ⊗MN, (1.4.4)
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where this is a simple choice and has been used in many works. On the
other hand, the observable can be of the more general (non-product) form

MNP = ∑
i

mi M
(i)
1 ⊗M(i)

2 ⊗ · · · ⊗M(i)
N , (1.4.5)

with real coefficients mi [6, 80]. In several cases, the measurement of non-
product observables can be advantageous to extract further information
about the state.

• Marginal moments: By discarding the measurements of some parties, one
can obtain the marginal moments of the reduced states of ϱ. To illustrate
this, let us consider a three-particle state ϱABC and discard the measure-
ments of the parties B and C, that is, MB = MC = 1. This yields the
corresponding one-body marginal moments R(t)

A (ϱA) of the party A. On
the other hand, the case of MC = 1 yields the two-body marginal moments
R(t)

AB(ϱAB) of the parties A and B. Here, ϱA, ϱAB are the one and two-body
reduced states of ϱABC, respectively. Clearly, in the case with MX ̸= 1 for
X = A, B, C, the full three-body moments R(t)

ABC(ϱABC) are available. Sim-
ilarly, all the k-body moments for k ∈ [1, N] can be accessed by discarding
the corresponding measurements of (N − k) parties. In particular, the av-
eraging over all second-order k-body moments with product observables
yields the k-body sector length Sk, which will be explained later.

• Challenging issues: If higher-order moments are further taken into ac-
count, detailed information can be extracted allowing for more powerful
entanglement detection methods. However, on a more technical level, this
requires at least two additional steps. First, since the moments generally
depend on the choice of observables, the definition of the moments relies
on finding suitable families of observables with the same spectra, i.e., lo-
cal unitary equivalent observables. In the case of t = 2, the moments are
indeed independent of the choice of measurement observables, as long as
the observables are traceless [1, 350], while this is not the case in general [1,
258].

The next step is to search for entanglement criteria using the evaluated
higher-order moments. Intuitively, one can power up entanglement detec-
tion by combining, for example, R(2) and R(4) instead of using only R(2).
To this end, one should systematically search for the most effective com-
bination of such nonlinear functions. Addressing the above issues is not
trivial and will be considered in more detail later.

• Qubits: For the qubit case, d = 2, the Haar unitary integrals can be replaced
by integrals with respect to the uniform measure on the Bloch sphere:∫

dU → 1
4π

∫
du (1.4.6)
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with du = sin(θ)dθdϕ. With the help of quantum designs, one may sim-
plify the integrals as sums over certain directions on the Bloch sphere.

1.4.2 Sector lengths

Definition: Recall the generalized Bloch decomposition of a N-qudit state in
Eqs. (1.1.101, 1.1.103), where αi1···iN is defined as the k-fold tensor, that is, the
entries for which k indices are non-zero, for 1 ≤ k ≤ N. Sector lengths are
defined as follows [351]:

Sk(ϱ) = ∑
k non-zero indices

α2
i1···iN

=
1

dN tr(P2
k ), (1.4.7)

where S0 = 1 due to the normalization condition tr(ϱ) = 1. The sector lengths
Sk quantify the amount of k-body quantum correlations in the state ϱ.

In the simplest case, if we consider a single-qudit state, then we know that
S1 = |a|2, see Eq. (1.1.24). As mentioned, this length quantifies the degree
of mixing of the state, which encodes information about the state obtained in a
basis-independent way. The sector lengths are its direct extension to multipartite
quantum systems.

For example, consider the two-qubit Bell state |Bell⟩ = (|00⟩+ |11⟩)/
√

2 and
the three-qubit GHZ state |GHZ3⟩ = (|000⟩+ |111⟩)/

√
2. Since their Bloch de-

compositions are given by

ϱBell=
1
4
(1+X1X2−Y1Y2+Z1Z2) , (1.4.8)

ϱGHZ3 =
1
8
(1+Z1Z2+Z1Z3+Z2Z3+X1X2X3−X1Y2Y3−Y1X2Y3−Y1Y2X3) ,

(1.4.9)

where we abbreviate the notation of the tensor product and denote Xi, Yi, Zi as
Pauli matrices acting on i-th subsystem. Then the Bell state has (S1, S2) = (0, 2)
and the GHZ state has (S1, S2, S3) = (0, 3, 4).

Properties of sector lengths: Here we summarize several useful properties of
sector lengths.

• Local unitary invariance: The sector lengths are invariant under any local
unitary transformation. That is, for a local unitary V1 ⊗ · · · ⊗ VN, it holds
that

Sk(ϱ) = Sk
(
V1 ⊗ · · · ⊗VNϱV†

1 ⊗ · · · ⊗V†
N
)
. (1.4.10)

• Convexity: The sector lengths are convex on quantum states. That is, for
the mixed quantum state ϱ = ∑i pi |ψi⟩⟨ψi|, it holds that

Sk

(
∑

i
pi |ψi⟩⟨ψi|

)
≤∑

i
piSk(|ψi⟩). (1.4.11)
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• Convolution: The sector lengths have a convolution property [352]: For
a N-particle product state ϱP ⊗ ϱQ, where ϱP and ϱQ are, respectively, j-
particle and (N − j)-particle states, we have

Sk(ϱP ⊗ ϱQ) =
k

∑
i=0

Si(ϱP)Sk−i(ϱQ). (1.4.12)

• Purity: The sector lengths are directly associated with the purity of ϱ,
namely

tr(ϱ2) =
1

dN

N

∑
k=0

Sk(ϱ). (1.4.13)

That is, the purity can be decomposed into the sector lengths of different
orders. Using this relation, the sector lengths can be always represented as
the purities of reduced states of ϱ, and vice versa.

• Maximal value: The N-body (often called full-body) sector length SN for
all N-qubit states has been shown to be always maximized by the N-qubit
GHZ state, denoted by |GHZN⟩ = (|0⟩⊗N + |1⟩⊗N)/

√
2. Its maximal value

is given by
Sn(GHZN) = 2N−1 + δN, even, (1.4.14)

see [350, 353, 354]. However, this is not always true in higher dimensions,
that is, quantum states that are not of the GHZ form can attain the maximal
SN value [353]. Even more interestingly, it has been demonstrated that
there exist multipartite entangled states with zero SN for an odd number
of qubits [355–359].

• Randomized measurements: The sector lengths can be directly obtained
from the randomized measurement scheme. In fact, the k-body sector
lengths Sk can be represented as averages over all second-order moments
of random correlations in k-particle subsystems. The entanglement criteria
using the sector lengths are therefore accessible with randomized measure-
ments.

• Demonstration: Consider the scheme of randomized measurements on N-
qubit systems with the product observable MP = σz ⊗ · · · ⊗ σz. Let u ·
σ = UσzU† be the randomized Pauli matrix with a unit real vector u =
(ux, uy, uz) for |u|2 = 1 and the vector of Pauli matrices σ = (σx, σy, σz).
Then the second moment in Eq. (1.4.2) can be written as

R(2) =

(
3

4π

)N ∫
du1· · ·

∫
duN E2(u1, . . . ,uN), (1.4.15)

where we chose the normalization constant NN,2,2 = 3N and

E(u1, . . . ,uN) = tr(ϱu1 · σ ⊗ · · · ⊗ uN · σ). (1.4.16)
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This integral can be simply evaluated as

R(2) = ∑
i1,...,iN=x,y,z

tr[ϱ(σi1 ⊗ · · · ⊗ σiN)]
2 = SN, (1.4.17)

which coincides with the full-body sector length SN.

Positivity constraints: In Refs. [352, 353, 360], it has been discussed that there
are several relations that can limit the allowable ranges of sector lengths in N-
qubit systems. Here we explain several positivity constraints, following the de-
scription of Ref. [352]:

• Purity identities: For pure states, it holds that

Mm ≡ 2m
N−m

∑
j=0

(
N − j

m

)
Sj − 2N−m

m

∑
j=0

(
N − j
N −m

)
Sj = 0, (1.4.18)

with integer m = 0, . . . , ⌊(N − 1)/2⌋. These identities can be derived using
the Schmidt decomposition and taking summations over all subsets. In
particular, the case Mm = 0.

• Upper bounds: For some N-qubit states, it holds that

S1 ≤ N, for N ≥ 1, (1.4.19)

S2 ≤
(

N
2

)
, for N ≥ 3, (1.4.20)

S3 ≤
(

N
3

)
, for N ≥ 5. (1.4.21)

These inequalities can be saturated by any N-qubit pure product state since
(|0⟩⟨0|)⊗N = (1+ σz/2) leads to respectively N, (N

2 ), and (N
3 ) terms.

• Universal state inversion: For N-qubit states, it holds that

B0 ≡
1

2N

N

∑
r=0

(−1)rSr ≥ 0. (1.4.22)

This can be derived using the generalized universal state inversion dis-
cussed in Eq. (1.1.134), ϱB0 ≡

⊗N
i=1 S

(i)
d (ϱ), and by calculating tr[ϱϱB0 ] ≥ 0

due to ϱB0 ≥ 0.

• Shadow inequalities: For k = 0, . . . , N, it holds that

Bk ≡
1

2N

N

∑
r=0

(−1)rKk(r; N)Sr ≥ 0, (1.4.23)
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where Kk(r; N) are called the Kravchuk polynomials given by

Kk(r; N) =
k

∑
j=0

(−1)j3k−j
(

r
j

)(
N − r
k− j

)
. (1.4.24)

These inequalities can be derived using the so-called shadow inequalities,
which allow us to create positive maps in a symmetric manner as exten-
sions of universal state inversions. For details, see [361–365].

• Wyderka and Gühne bound [352]: for N ≥ 3, it holds that(
N
3

)
− 1

3

(
N − 1

2

)
S1 −

1
3

(
N − 2

1

)
S2 + S3 ≥ 0. (1.4.25)

• Tight bounds: For three-qubit states, it holds that

0 ≤ S1 ≤ 3, 0 ≤ S2 ≤ 3, 0 ≤ S3 ≤ 4, (1.4.26)
S1 + S2 + S3 ≤ 7, S1 − S2 + S3 ≤ 1, (1.4.27)
S1 + S2 ≤ 3 + 3S3. (1.4.28)

The most of inequalities can come from the above inequalities, while the
last inequality S1 +S2 ≤ 3+ 3S3 was nontrivially founded by a semidefinite
program [352]. These inequalities enable us to consider the geometry of the
three-qubit state space in terms of the sector lengths (S1, S2, S3). In the total
polytope, the set of all states can be characterized by tight bounds.

1.4.3 Local unitary invariants

Definition: Let f (ϱ) be a function of a N-qudit state ϱ. The state’s function
f (ϱ) is called local unitary (LU) invariant if

f
(
V1 ⊗ · · · ⊗VNϱV†

1 ⊗ · · · ⊗V†
N
)
= f (ϱ), (1.4.29)

for any local unitary V1 ⊗ · · · ⊗ VN. For instance, the sector lengths are special
examples of LU invariants. Since the purity of the global state tr(ϱ2) is invari-
ant under any global unitary, one can interpret the relation in Eq. (1.4.13) as a
decomposition of a global unitary invariant into LU invariants.

The second-order Rényi entropy in Eq. (1.2.54) is another example of LU
invariants. More generally, the Rényi entropy of order α is defined as (see [206]):

Hα(ϱ) =
1

1− α
log [tr(ϱα)] . (1.4.30)
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Makhlin invariants: Let us begin by recalling that two quantum states ϱ and
σ are called LU equivalent if and only if there exists local unitary operation
UA ⊗UB such that

ϱ = (UA ⊗UB)σ(U†
A ⊗U†

B). (1.4.31)

Clearly, two LU equivalent states have the same values of LU invariants. Con-
versely, one may ask whether there is a (finite) set of LU invariants, such that
two states are LU equivalent if they have the same values for these invariants.
In two-qubit systems, this question was answered by Makhlin [366].

It has been shown that two two-qubit states ϱ and σ are LU equivalent if and
only if they have equal values of all LU invariants I1, . . . , I18, nowadays called
the Makhlin invariants. To express them, we recall the Bloch decomposition of a
two-qubit state in Eq. (1.1.100) with d = 2:

ϱAB =
1
4

(
1⊗2

2 +
3

∑
i=1

aiλi ⊗ 12 +
3

∑
i=1

bi12 ⊗ λi +
3

∑
i,j=1

tijλi ⊗ λj

)
, (1.4.32)

where we denote the local Bloch vectors as a, b and the correlation matrix as T.
The Makhlin invariants are written as

I4 = a2, I7 = b2, I2 = tr(TT⊤), (1.4.33)

I12 = a⊤Tb, I1 = det(T), (1.4.34)

I5 = [aT]2, I8 = [Tb]2, I3 = tr(TT⊤TT⊤), (1.4.35)

I14 = tr(HaTH⊤b T⊤), (1.4.36)

I13 = a⊤TT⊤Tb, I6 = [aTT⊤]2, I9 = [T⊤Tb]2, (1.4.37)

where a2 = |a|2, b2 = |b|2, and (Hx)ij = ∑k=x,y,z εijkxk with the Levi-Civita
symbol εijk for x = a, b. Here, the first row includes all LU invariants of degree
two, the second row includes those of degree three, the third and fourth rows
include those of degree four, and the last row contains those of degrees five and
six.

Quantification of negativity: A typical entanglement measure in two-qubit
systems is the negativity [279], which is defined as

N(ϱ) = −2 min{0, µ(ϱ⊤B)}, (1.4.38)

where µ(ϱ⊤B) is the minimal eigenvalue of the partial transpose state ϱ⊤B . With
the help of Newton’s identities, this eigenvalue can be calculated by the k-th
moments given by pk = tr[(ϱ⊤B)k].

It has been shown that the negativity can be obtained by solving the following
fourth-degree polynomial for N [367]:

48 det(ϱ⊤B) + 3N4 + 6N3 − 6N2(p2 − 1)− 4N(3p2 − 2p3 − 1) = 0. (1.4.39)
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We remark that the determinant det(ϱ⊤B) can be rewritten in terms of the mo-
ments pk via [197]

det(ϱ⊤B) =
1
24

(1− 6p4 + 8p3 + 3p2
2 − 6p2). (1.4.40)

Note that det(ϱ⊤B) < 0 is a necessary and sufficient condition for two-qubit
entangled states, see Eq. (1.2.46). Therefore, to quantify the negativity, it is suffi-
cient to use known relations between the pk and the Makhlin invariants [368]:

p2 =
1
4
(1 + x1), (1.4.41)

p3 =
1

16
(1 + 3x1 + 6x2), (1.4.42)

p4 =
1

64
(1 + 6x1 + 24x2 + x2

1 + 2x3 + 4x4), (1.4.43)

where

x1 = I2 + I4 + I7, x2 = I1 + I12, (1.4.44)

x3 = I2
2 − I3, x4 = I5 + I8 + I14 + I4 I7. (1.4.45)

Kampe invariant: An interesting LU invariant in three-qubit systems is the so-
called Kempe invariant. It was originally introduced to distinguish three-qubit
pure states [369]. Its intention to mix states was discussed in Ref. [370] and
reads:

IKempe = tr[(ϱAB ⊗ 1C)(ϱAC ⊗ 1B)(ϱBC ⊗ 1A)], (1.4.46)

where ϱXY = trZ(ϱABC) are the two-qubit reduced state for X, Y, Z = A, B, C.

1.4.4 Previously known entanglement criteria

N-qubit entanglement with second moments: In Refs. [350, 371–373], it has
been shown that any N-qubit fully separable state obeys

SN ≤ 1. (1.4.47)

The violation of this inequality implies the presence of multipartite entangle-
ment. This proof is straightforwardly obtained as follows:

SN(ϱfs) ≤ SN(|ψfs⟩) = SN(|0⟩⊗N) = [S1(|0⟩)]N = 1, (1.4.48)

where we denote ϱfs as a fully separable state defined in Eq. (1.2.22), used the
properties of convexity, convolution, and LU invariance.

91



N-qudit entanglement with second moments: High-dimensional multipartite
entanglement can be detected by the k-body sector length Sk. In Refs. [351, 373–
376], it has been shown that any N-qudit fully separable state obeys

Sk ≤
(

N
k

)
(d− 1)k, (1.4.49)

where Sk is the k-body sector length. Violation of this bound implies that the
state is entangled as can be easily demonstrated, for instance, in graph states.
Note that this criterion can be seen as a generalization of Eq. (1.4.47) to sector
lengths between a number of observers smaller than N and any dimension.

In Ref. [377], it was shown that linear combinations of various sector lengths
can be useful to detect entanglement. In fact, any N-qudit fully separable state
obeys

N

∑
k=0

[(d− 1)N − dk]Sk ≥ 0. (1.4.50)

This criterion is strictly stronger (detects more entangled states) than the crite-
rion in Eq. (1.4.49).

Two-qubit entanglement with higher moments: Recall the Bell-diagonal state
ϱBD in Eq. (1.1.137), which is parameterized by the three parameters (τ1, τ2, τ3).
This allows for a much simpler analytical treatment than general states. As
mentioned in Eq. (1.2.47), the positive partial transpose (PPT) criterion can be
rewritten as ∑3

i=1 |τi| ≤ 1.
For a Bell-diagonal state ϱBD, the second and fourth moments of the product

observableMP = σz ⊗ σz are given by [378]:

R(2) =
1
9 ∑

i=x,y,z
τ2

i , R(4) =
2
75 ∑

i=x,y,z
τ4

i +
27
25

[R(2)]2. (1.4.51)

Bsed on the separability constraint ∑3
i=1 |τi| ≤ 1, for a given value ofR(2), one

can analytically maximize and minimize the value of R(4) for separable states.
This leads to a separability region in the parameter space spanned by R(2) and
R(4). This approach allows us to detect entanglement that cannot be detected
by the second moment itself. Moreover, by additionally using the sixth moment,
a necessary and sufficient condition for entanglement of two-qubit Bell diagonal
states can be found, see the Appendix in Ref. [378].

W-class entanglement with higher moments: In addition to entanglement de-
tection, another interesting and important issue is to determine the class to
which a given multipartite state belongs. The discrimination of W-class en-
tanglement has been studied with two criteria based on the second and fourth
moments of randomized measurements [379].
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The first criterion provides an analytical upper bound for the second moment
of an N-qubit W-class state:

SN ≤ 5− 4
N

, (1.4.52)

where SN is denoted as the second moment R(2), and the inequality is saturated
by a pure W state: |W⟩ = (|10 · · · 0⟩+ |01 · · · 0⟩+ · · ·+ |0 · · · 01⟩)/

√
N. If this

condition is violated, it implies that a multiqubit state is detected to be outside
of the W class, i.e., it cannot be obtained from the W state by stochastic local
operations and classical communication (SLOCC).

The second criterion involves a linear combination of the second and fourth
moments, with weights optimized based on the N-qubit W state |WN⟩ and the
biseparable state |WN−1⟩ |ψ⟩. Furthermore, Ref. [379] has provided the char-
acterization of three-qubit and four-qubit states using the second and fourth
moments through an extensive numerical approach.
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1.5 Quantum designs

In this section, we will give a brief introduction to quantum designs. Histori-
cally, quantum t-designs were discussed by analogy with classical t-designs in
combinatorial mathematics. The idea of designs is helpful to evaluate the Haar
integral in Eq. (1.4.2). This section is based on the description of Ref. [7].

1.5.1 Classical designs

Simpson’s rule: Let us consider a real quadratic function f (x) for a variable x
and take an integral in the interval from a to b. According to the rule found by
Thomas Simpson in the 18th century, it holds that the integral for the quadratic
function can be exactly evaluated as a simple expression using only three points,
namely ∫ b

a
dx f (x) =

b− a
6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
. (1.5.1)

An extension of Simpson’s rule to a greater number of points is possible, which
is called the Gauss-Christoffel quadrature rule.

Spherical designs: A spherical t-design can be seen as a generalization of
Simpson’s rule for the efficient computation of integrals of certain polynomi-
als over some spheres [380, 381]. Let Sn−1 be the n-dimensional real unit sphere
and let X = {xi ∈ Sn−1}i=1,...,K be a finite set of points on it with the number of
elements K = |X|. We call this set a spherical t-design if

1
K ∑

xi∈X
ft(xi) =

∫
dx ft(x), (1.5.2)

for any homogeneous polynomial function ft(x) in n variables with degree t,
where dx is the spherical measure on the n-dimensional unit sphere with

∫
dx =

1 [380, 382]. The spherical design property ensures that the integral for any
polynomial of at most degree t over the entire sphere can be efficiently computed
by taking the average over the spherical t-design set of only K discrete different
points. In the following, we summarize several remarks:

• Hierarchical structure: Clearly, any spherical t-design is also a spherical
(t− 1)-design.

• Construction: It can be shown spherical t-designs exist for any positive
integer t and n [383], although they may be difficult to construct explic-
itly [384]. Furthermore, as expected, if the allowed degree t or the dimen-
sion n increases, then a larger set X is required.

• Invariance: By definition, the integral at the right-hand side in Eq. (1.5.2)
is invariant under any rotation on the sphere, so the evaluated expression
on the left-hand side is also invariant.
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Application to randomized measurements: To give a concrete example, let
us evaluate the second moment R(2) in Eq. (1.4.17) using the idea of spherical
designs. For the sake of simplicity, let us consider the case N = 2.

It is well known that a set of K = 6 unit vectors on orthogonal antipodals,
{xi = ±ei : i = x, y, z}, where ei are the Cartesian axes, is a spherical two-
design (and also three-design) [360, 378, 383]. Using this spherical design, we
rewrite each of the two integrals in R(2) over a two-dimensional unit sphere as
the average over the set of six points on the sphere:

R(2)(ϱ) = 32 1
62

6

∑
i,j=1

[E(ei, ej)]
2 = ∑

i,j=x,y,z
[tr(ϱ σi ⊗ σj)]

2, (1.5.3)

where we choose the normalisation N = (3/4π)2 and use the fact that the even
function [E(u1,u2)]

2 does not change under the sign flip. As a result, the integral
over the entire spheres u1,u2 is replaced by a sum of nine (squared) correlation
functions computed along orthogonal directions on local Bloch spheres. Note
that the second moment in N-qubit systems can be found in a similar manner.

1.5.2 Complex projective designs

Complex projective t-designs (or quantum spherical t-designs) are a general-
ization of spherical designs to a complex vector space [385, 386]. They allow
for example to evaluate expressions based on a random sampling of quantum
states. A finite set of unit vectors D = {|ψi⟩ : |ψi⟩ ∈ CSd−1}K

i=1 defined on
a d-dimensional sphere CSd−1 in the complex vector space, forms a complex
projective t-design if

1
K ∑
|ψi⟩∈D

Pt(ψi) =
∫

dψ Pt(ψ), (1.5.4)

for any homogeneous polynomial function Pt in 2d variables with degree t (that
is, d variables with degree t and their complex conjugates with degree t), where
dψ is the spherical measure on the complex unit sphere CSd−1. In the following,
we will summarize several remarks:

• Projective Hilbert space: It is here important to note that CSd−1 is isomor-
phic to the d-dimensional projective Hilbert space denoted as P(Hd), where
complex unit vectors |x⟩ , |y⟩ ∈ P(Hd) are identified iff |x⟩ = eiϕ |y⟩ with a
real ϕ [23]. For example, the Bloch sphere is known as P(H2), in which a
point on the surface of the sphere corresponds to a pure single-qubit state,
up to a phase. In this state space, any two states can be distinguished by
the so-called Fubini-Study measure, which is invariant under the action of
U(1), for details see Refs. [23, 387].

• Quantum state designs: Since polynomials of degree t can be written as
linear functions on t copies of a state, the definition of complex projective
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t-designs is equivalent to requiring

1
K ∑
|ψi⟩∈D

(|ψi⟩⟨ψi|)⊗t =
∫

dψ (|ψ⟩⟨ψ|)⊗t . (1.5.5)

In this form, this is also called the quantum state t-design and can be con-
sidered as an ensemble of states that is indistinguishable from a uniform
random ensemble over all states, if one considers t-fold copies of states
selected from that ensemble.

• Projector onto the symmetric subspace: Since the integral on the right-
hand side of Eq. (1.5.5) is proportional to the projector onto the symmetric
subspace [388–390] (or see Lemma 2.2.2. in Ref. [391]), one can simplify
this to ∫

dψ (|ψ⟩⟨ψ|)⊗t =
P(t)

sym

d(t)sym

, (1.5.6)

where P(t)
sym is the projector onto the permutation symmetric subspace and

d(t)sym = (d+t−1
t ) is its dimension.

• Qubits: For multi-qubit systems (d = 2), the symmetric subspace is spanned
by the Dicke states {|Dt,m⟩}t

m=0 given in Eq. (1.2.32). Since the dimension
of this subspace is t + 1, the projector can be written as

P(t)
sym =

1
t + 1

t

∑
m=0
|Dt,m⟩⟨Dt,m|. (1.5.7)

• Qudits: In general, one can write

P(t)
sym =

1
t! ∑

π∈Sym(t)
Wπ, (1.5.8)

where the permutation operator Wπ defined in Eq. (1.1.123) for a permu-
tation π = π(1) . . . π(t) ∈ Sym(t). Examples for t = 1 and t = 2 are∫

dψ |ψ⟩⟨ψ| = 1d
d

, (1.5.9)∫
dψ (|ψ⟩⟨ψ|)⊗2 =

1
d(d + 1)

(1⊗2
d + S), (1.5.10)

where S denotes the SWAP operator defined in Eq. (1.1.119).

• State moments: Note that Eq. (1.5.6) implies relations between the mo-
ments tr(ϱm) for any single-qudit state ϱ [392].
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• Frame potentials: Another equivalent definition of complex projective t-
designs is given by the condition

1
K2 ∑
|ψi⟩,|ψj⟩∈D

|⟨ψi|ψj⟩|2t =
1

d(t)sym

. (1.5.11)

The left-hand side is called t-th frame potential. According to the so-called
Welch bound [393, 394], it is always greater than or equal to the right-hand
side, where the equality is saturated if and only if the set D forms the
complex projective t-designs.

• Examples: A trivial example of a complex projective 1-design is a set of
orthonormal basis vectors {|i⟩}d

i=1, which leads to (1/d)∑d
i=1 |i⟩⟨i| = 1d/d.

A typical example of complex projective 2-designs are so-called mutually
unbiased bases (MUBs).

• MUBs: A collection {Mk} of orthonormal bases Mk = {|ik⟩}d
i=1 for a d-

dimensional Hilbert space is called mutually unbiased if |⟨ik|jl⟩|2 = 1/d,
for any i, j with k ̸= l, i.e. the overlap of any pair of vectors from different
bases is equal [395]. For the case of d = 2, a set of MUBs is given by
{M1, M2, M3} with

M1 = {|0⟩ , |1⟩}, M2 = {|+⟩ , |−⟩}, M3 = {|+i⟩ , |−i⟩}. (1.5.12)

Here, the computational bases {|0⟩ , |1⟩}, {|±⟩ = (|0⟩ ± |1⟩)/
√

2}, and
{|±i⟩ = (|0⟩ ± i |1⟩)/

√
2} are the normalized eigenvectors of σz, σx, and

σxσz.

• Details about MUBs: The size of maximal sets of MUBs for a given dimen-
sion d is an open problem and only partial answers are known. In fact,
this has been recognized as one of the five most important open problems
in quantum information theory [224]. It is known that in any dimension
d the maximum number of MUBs cannot be more than d + 1 [396]. In
fact, for prime-power dimensions d = pr, sets of d + 1 MUBs can be con-
structed [397, 398]. Furthermore, for the dimensions d = p2 or d = 2r, an
experimental implementation of MUBs is possible [399, 400]. The small-
est dimension which is not a power of a prime and where the maximal
number of MUBs is unknown is d = 6 [401]. Finally and importantly, any
collection of (d + 1) MUBs saturates the Welch bound and therefore forms
a complex projective 2-design [394].

1.5.3 Unitary designs

In the case of qubits, spherical designs are suited to evaluate integrals over ran-
dom unitaries of measurement settings as those can be mapped to rotations on
the Bloch sphere. For higher dimensional systems, however, such a mapping no
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longer exists and the randomized scenario can be addressed by general unitary
designs. A set of unitaries G = {Ui : Ui ∈ U (d)}K

i=1 forms a unitary t-design if

1
K ∑

Ui∈G
Pt(Ui) =

∫
dU Pt(U), (1.5.13)

for any homogeneous polynomial function Pt in 2d2 variables with degree t (that
is, on the elements of unitary matrices in U (d) with degree t and on their com-
plex conjugates with degree t), where dU is the Haar unitary measure on U (d).
For details about unitary t-design, see Refs. [391, 402–404]. In the following, we
will summarize several remarks:

• Difference from state designs: Similarly to complex projective designs,
there are several equivalent definitions of unitary t-designs. One is given
by

1
K ∑

Ui∈G
U⊗t

i X(U†
i )
⊗t =

∫
dU U⊗tX(U†)⊗t, (1.5.14)

for any operator X ∈ H⊗t
d . An important observation here is that if we set

{|ψi⟩} = {Ui |0⟩}, then Eq. (1.5.14) leads to Eq. (1.5.5), i.e. any unitary t-
design gives rise to a quantum state t-design. The converse is not necessar-
ily true, even if a set of unitaries creates a state design via {|ψi⟩} = {Ui |0⟩},
it does not constitute a unitary design. This simply follows from the fact
that a relation like {|ψi⟩} = {Ui |0⟩} does not determine the Ui in a unique
way.

• Simplifications: In order to determine the evaluated expression in an anal-
ogy with Eq. (1.5.6), note that the right-hand side in Eq. (1.5.14) commutes
with all unitaries V⊗t for V ∈ U (d), due to the left and right invariance of
the Haar measure. Then, according to the Schur-Weyl duality, if an opera-
tor A ∈ H⊗t

d obeys
[
A, V⊗t] = 0 for any V ∈ U (d), then A can be written

in a linear combination of subsystem permutation operators Wπ (while the
converse statement is also true) [109]. Thus, one has

Φt(X) ≡
∫

dU U⊗tX(U†)⊗t = ∑
π∈Sym(t)

xπWπ, (1.5.15)

where each of xπ can be found with the help of the so-called Weingarten
calculus [69, 405]. As an example, we have

Φ1(X)=
tr(X)

d
1d, (1.5.16)

Φ2(X)=
1

d2 − 1

{[
tr(X)− tr(XS)

d

]
1⊗2

d −
[

tr(X)

d
−tr(XS)

]
S

}
, (1.5.17)

where S is the SWAP operator. Cases with t = 3, 4 are explicitly described
in Example 3.27, and Example 3.28 in Ref. [68]. For more details, see [406,
407] and Sec. 1.1.4.
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• Frame potentials: Moreover, yet another equivalent definition of unitary
t-designs is given in Ref. [402]

1
K2 ∑

Ui,Uj∈G

∣∣∣tr(UiU†
j )
∣∣∣2t

=

{
t! for d ≥ t,
(2t)!

t!(t+1)! for d = 2,
(1.5.18)

where the left-hand side is called t-th frame potential and the right-hand
side gives its minimal value similar to the Welch bound in complex spher-
ical designs. The frame potential is often employed as a useful measure
to quantify the randomness of an ensemble of unitaries in terms of out-of-
time-order correlation functions in quantum chaos [109, 408].

• Constructions: For the scenario of N-qubit systems, an example of a uni-
tary 1-design is the Pauli group PN, the group of all N-fold tensor products
of single-qubit Pauli matrices {12, σx, σy, σz}. This group does not form a
unitary 2-design [409], but note that we used Pauli measurements as a form
of a spherical design. In contrast, the Clifford group CN, a group of uni-
taries with the property C ∈ CN if CPC† ∈ PN for any P ∈ PN, is known
to be a unitary 2-design in this scenario. Furthermore, it has been shown
that the Clifford group also forms a unitary 3-design, but not a unitary
4-design [410, 411].

Applications to randomized measurements: Finally, we show the usefulness
of unitary designs in the scheme of randomized measurements. For the sake
of simplicity, we focus on a three-qudit state ϱABC and consider how to obtain
its full-body sector length S3 from the unitary two-design. Note that one can
straightforwardly generalize this approach to the sector lengths Sk of a N-qudit
state for any 1 ≤ k ≤ N.

Let us consider the product observable M = λa ⊗ λb ⊗ λc in the second-
order moment in Eq. (1.4.2), for any choice of Gell-Mann matrices with a, b, c =
1, . . . , d2 − 1. Substituting the generalized Bloch decomposition of ϱABC dis-
cussed in Eq. (1.1.101) into the second-order moment, one can find

R(2)
M (ϱABC)=

N3,d,2

d6

d2−1

∑
i,j=1

αiAiBiC αjA jB jCtr
[
ΦA

2 ⊗ΦB
2⊗ΦC

2 (λa⊗λb⊗λc)
⊗2
]

, (1.5.19)

where we employed that [tr(M)]2 = tr(M⊗2) for any matrix M and we denoted
that i = iA, iB, iC and j = jA, jB, jC. Also, we define the twirling result as

ΦX
2 =

∫
dUX U⊗2

X (λiX ⊗ λjX)(U
†
X)
⊗2, (1.5.20)

for X = A, B, C. Now ΦX
2 can be simply evaluated using the formula in Eq. (1.5.17)

and be expressed as:

ΦX
2 =

1
d2 − 1

δiX jX(dS− 1⊗2
d ), (1.5.21)
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where we employed the SWAP trick mentioned in Sec. 1.1.7 and the properties
of the Gell-Mann matrices tr(λi) = 0 and tr(λiλj) = dδij. As the last step, by
inserting this form into the second moment in Eq. (1.5.19) and choosing the
normalization constant as N3,d,2 = (d2 − 1)3, one can have that R(2)

M = S3.
An important lesson from this result is that randomized measurements of

second order are an indirect implication of the SWAP operator. In higher-order
cases, the permutation operators Wπ will emerge according to the Schur-Weyl
duality in Eq. (1.5.15). This will play an important role in estimating the purity
of a state, the overlap between two states, and the moments of partially trans-
poses states and extensions, for details see [105, 112, 255, 412–416] and Review
paper [417].
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Part I

Abstract theory of randomized
measurements
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Chapter 2

Tripartite entanglement and bound
entanglement

As mentioned in Sec. 1.4, several works in randomized measurements have ad-
vanced entanglement detection. This Chapter addresses the question of whether
one can find optimal or powerful criteria to detect entanglement. In particu-
lar, this Chapter deals with tripartite systems with second moments and high-
dimensional bipartite systems with fourth moments. This Chapter is based on
Refs. [1, 8].

2.1 Introduction

Let us begin by recalling the moments in Eq. (1.4.2) in the scheme of randomized
measurements in Sec. 1.4. In the case of a bipartite state ϱAB and a product
observableM = MA ⊗MB, the moment is given by

R(t)
AB(ϱAB) =

∫
dUA

∫
dUB

[
tr(ϱABU†

A ⊗U†
BMA ⊗MBUA ⊗UB)

]t
. (2.1.1)

Clearly, similar moments can be defined for multiparticle systems.
In the scheme of randomized measurements, there are at least two research

lines on entanglement detection. One line has been started from the estimation
of the state’s purity [418], and then protocols for measuring entanglement via
Rényi entropies have been presented [412] and experimentally implemented [413].
Also, ideas to estimate the PPT criterion in Eq. (1.2.44) have been introduced
[105, 112].

Another research line characterized the relation of the second moments [350,
373] defined as R(2)

AB in Eq. (2.1.1) and those of the marginals [419] to entangle-
ment. Higher moments have been used to characterize multiparticle entangle-
ment [378, 379], and quantum designs have been shown to allow for a simplified
implementation, as the integral in Eq. (2.1.1) can be replaced by finite sums [2,
378].
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Still, the previous results of the above research directions are incomplete
in several respects. First, although many entanglement criteria have been pre-
sented, their optimality is not clear. It would be desirable to use the informa-
tion obtained from random measurements as efficiently as possible. Second,
the known results from random measurements can only detect highly entangled
states, e.g., states that are close to pure states. However, it is crucial for the long-
term impact of the research program that weakly entangled states, e.g., states
that cannot be detected with the PPT criterion, can also be analyzed.

The goal of this Chapter is to generalize the existing approaches in two di-
rections: First, we will systematically consider the moments of the measurement
results when only some of the parties measure. That is, we evaluate the expres-
sions of the moment R(r)

AB for the special case MA = 1 or MB = 1 and call these

quantities the reduced moments R(r)
B and R(r)

A . As we will show, these reduced
moments can be used to design improved entanglement criteria that are optimal
in the sense that if a quantum state is not detected by them, then there is also a
separable state compatible with the data.

Second, we present a systematic approach to characterize high-dimensional
systems with higher moments R(r)

AB. We show how previously known entangle-
ment criteria [241, 242, 244] can be formulated in terms of moments. Thus we
show that bound entanglement, a weak form of entanglement that cannot be
used for entanglement distillation and is not detectable by the PPT criterion, can
also be characterized in a reference-frame-independent way. This shows that the
randomized measurement approach is powerful enough to characterize the rich
plethora of entanglement phenomena.

Finally, we explain the experimental demonstration of our results in a pho-
tonic setup. Then we conclude with a discussion.

2.2 Detection of tripartite entanglement

2.2.1 Second moments

Consider a three-qubit state ϱABC and take the product observable M = MA ⊗
MB ⊗ MC in the second moment R(2)

ABC in Eq. (1.4.2), where, with out loss of
generality, MA, MB, MC can be taken as the Pauli-z matrix σz. As mentioned in
Sec. 1.5, the full and reduced second moment can be simplified by the fact that
each unitary integral can be replaced by sums over the Pauli matrices σ0, σ1, σ2,
and σ3.

Recall the Bloch decomposition of a three-qubit state in Eq. (1.1.101):

ϱABC =
1
8

3

∑
i,j,k=0

αijkσi ⊗ σj ⊗ σk. (2.2.1)

Then the full and reduced second moments can simply be expressed in terms of
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Figure 2.1: Geometry of the three-qubit state space in terms of the second mo-
ments of random measurements or sector lengths. The total polytope is the set
of all states, characterized by the inequalities Sk ≥ 0, S1 − S2 + S3 ≤ 1, S2 ≤ 3,
and S1 + S2 ≤ 3(1 + S3) [352]. The fully separable states are contained in the
blue polytope, obeying the additional constraint in Eq. (2.2.5). States that are
biseparable for some partitions are contained in the union of the green and blue
polytopes, characterized by the additional constraint in Eq. (2.2.11). In fact, for
any point in the green and blue areas, there is a biseparable state with the corre-
sponding second moments. The yellow area corresponds to the states violating
the best previously known criterion for biseparable states, S3 ≤ 3 [351–353, 420].
Thus, the red area marks the improvement of the criterion in Eq. (2.2.11) com-
pared with previous results. This figure is a modified version of a figure from
Ref. [1].

the coefficients αijk:

R(2)
ABC =

1
27

3

∑
i,j,k=1

α2
ijk, R(2)

AB =
1
9

3

∑
i,j=1

α2
ij0, R(2)

A =
1
3

3

∑
i=1

α2
i00, (2.2.2)

where we take N3,3,2 = 1 in Eq. (1.4.2). Similarly for the reduced moments on
other parts of the three-particle system.

Sums of this form have already been considered under the concept of sector
lengths in Eq. (1.4.7):

S1 = 3(R(2)
A +R(2)

B +R(2)
C ), S2 = 9(R(2)

AB+R
(2)
AC+R

(2)
BC), S3 = 27R(2)

ABC. (2.2.3)

As mentioned in Sec. 1.4, the set of all three-qubit states forms a polytope in the
space of the sector lengths, which has been fully characterized [352], see also
Fig. 2.1.

105



2.2.2 Fully separability

To proceed, recall that a state is fully separable if it can be written as

ϱfs = ∑
k

pkϱA
k ⊗ ϱB

k ⊗ ϱC
k , (2.2.4)

where the pk form a probability distribution. Now, we can formulate the first
main result of this Chapter:

Result 1. Any fully separable three-qubit state obeys

S2 + 3S3 ≤ 3 + S1. (2.2.5)

This is the optimal linear criterion in the sense that any other linear criterion for the Si
detects strictly fewer states.

Remark 1. The proof of this result, including generalizations to higher-dimensional
systems, is given below. The geometrical interpretation is displayed in Fig. 2.1.
Since one can easily construct fully separable states on two of the three sides
of the resulting triangle (i.e., the surface where equality holds), this criterion
is optimal in the sense that any other linear criterion for the Sk detects strictly
fewer states. However, there may be points on the plane of the triangle surface
that cannot originate from a separable state. This may indicate that there exist
stronger, non-linear criteria for full separability using sector lengths.

Also, we present the three-qudit generalization of Eq. (2.2.5):

Result 2. Any fully separable three-qudit state obeys

S3 ≤ d− 1 +
2d− 3

3
S1 +

d− 3
3

S2. (2.2.6)

Proof. Let us consider the reduced density matrix of the fully separable state on
the subsystem AB: ϱAB = trC(ϱfs) = ∑k pkϱA

k ⊗ ϱB
k . Then we have

tr(ϱ2
fs) = ∑

k,l
pk pl tr(ϱA

k ϱA
l ) tr(ϱB

k ϱB
l ) tr(ϱC

k ϱC
l )

≤∑
k,l

pk pl tr(ϱA
k ϱA

l ) tr(ϱB
k ϱB

l ) = tr(ϱ2
AB), (2.2.7)

where the Cauchy-Schwarz inequality leads to

tr(ϱC
k ϱC

l ) ≤
√

tr[(ϱC
k )

2]
√

tr[(ϱC
l )

2] ≤ 1. (2.2.8)

Similarly, we obtain that tr(ϱ2
fs) ≤ tr(ϱ2

AC) and tr(ϱ2
fs) ≤ tr(ϱ2

BC). Summarizing
these three purity inequalities gives

3tr(ϱ2
fs) ≤ tr(ϱ2

AB) + tr(ϱ2
AC) + tr(ϱ2

BC). (2.2.9)

Then, with the help of the relation (1.4.13), translating this inequality to the form
with sector lengths yields Eq. (2.2.6).
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2.2.3 Biseparability

Violation of Eq. (2.2.5) implies that the state contains some entanglement, but it
does not mean that all three particles are entangled. Indeed, an entangled state
may still be separable with respect to some bipartition, for details see Sec. 1.2.
For instance, if we consider the bipartition A|BC, a state separable with respect
to this bipartition can be written as

ϱA|BC = ∑
k

qA
k ϱA

k ⊗ ϱBC
k , (2.2.10)

where the qA
k form a probability distribution and ϱBC

k may be entangled. Simi-
larly, one can define biseparable states with respect to the two other bipartitions
as ϱB|AC and ϱC|AB. For these states, we can formulate:

Result 3. Any three-qubit state which is separable with respect to some bipartition obeys

S2 + S3 ≤ 3(1 + S1). (2.2.11)

This is the optimal criterion in the sense that if the three Si obey the inequality, then for
any bipartition there is a separable state compatible with them.

Remark 2. The proof of this result, including generalizations to higher-dimensional
systems, is given below. The geometrical interpretation is displayed in Fig. 2.1.
We add that we have strong numerical evidence that Eq. (2.2.11) also holds for
mixtures of biseparable states with respect to different partitions, i.e., states of
the form ϱbs = pAϱA|BC + pBϱB|AC + pCϱC|AB, where the pA, pB, and pC form
convex weights. Nevertheless, we leave this as a conjecture for further study.

Now we propose the three-qudit generalization of Eq. (2.2.11):

Result 4. Any three-qudit state which is separable with respect to some bipartition obeys

S2 + S3 ≤
d3 − 2

2
(1 + S1). (2.2.12)

Proof. Let ϱbs be a separable three-qudit state with respect to a bipartition, and
let ϱX be its reduced density matrices on the subsystems X for X ∈ {A, B, C}.
With the help of the relation (1.4.13), we notice that Eq. (2.2.12) is equivalent to

1 + tr(ϱ2
bs) ≤

d
2

[
tr(ϱ2

A) + tr(ϱ2
B) + tr(ϱ2

C)
]

. (2.2.13)

In the following, without loss of generality, we consider a separable state with
respect to a fixed bipartition A|BC: ϱA|BC = ∑k qkϱA

k ⊗ ϱBC
k . Since its reduced

density matrix on the subsystem A is given by ϱA = ∑k qkϱA
k , we have

tr(ϱ2
A|BC) = ∑

k,l
qkql tr(ϱA

k ϱA
l ) tr(ϱBC

k ϱBC
l ) ≤∑

k,l
qkql tr(ϱA

k ϱA
l ) = tr(ϱ2

A), (2.2.14)
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where tr(ϱBC
k ϱBC

l ) ≤ 1. In addition, it follows from the relation (1.4.13) for single
particles

tr(ϱ2
B) + tr(ϱ2

C) =
1
d
(2 + SB

1 + SC
1 ), (2.2.15)

where we split S1 = SA
1 + SB

1 + SC
1 corresponding to the contributions from the

three particles. Then we have

1 + tr(ϱ2
A|BC)−

d
2

[
tr(ϱ2

A) + tr(ϱ2
B) + tr(ϱ2

C)
]

≤ 1 + tr(ϱ2
A)−

d
2

[
tr(ϱ2

A) + tr(ϱ2
B) + tr(ϱ2

C)
]

= 1 +
(

1− d
2

)
tr(ϱ2

A)−
1
2
(2 + SB

1 + SC
1 )

=

(
1− d

2

)
tr(ϱ2

A)−
1
2
(SB

1 + SC
1 ) ≤ 0. (2.2.16)

2.2.4 Detailed discussions about Result 3

Here we discuss Eq. (2.2.11) in Result 3 in more details. First, we have a discus-
sion about its optimality: It is the optimal criterion in the sense that if the three
Sk obey the inequality, then for any bipartition there is a separable state compat-
ible with them. This can be seen as follows: Consider the family of biseparable
three-qubit states

σ = p |0⟩⟨0| ⊗ |ψ⟩⟨ψ|+ (1− p) |1⟩⟨1| ⊗ |ϕ⟩⟨ϕ| , (2.2.17)

where

|ψ⟩ = a |00⟩+ b |11⟩ , |ϕ⟩ = c |00⟩+ d |11⟩ , (2.2.18)

a2 + b2 = c2 + d2 = 1,
1
2
≤ p ≤ 1, (2.2.19)√

1− 1
2p
≤ a ≤

√
1

2p
, a2 ≤ b2, c =

√
2pa2 − 1
2(p− 1)

, d = ±
√

1− c2. (2.2.20)

We notice the state σ has the sector lengths

S1 = (2p− 1)2, (2.2.21)

S2 = 1 + 2[2pab + 2(1− p)cd]2 + 2[p(a2 − b2)− (1− p)(c2 − d2)]2, (2.2.22)

S3 = (2p− 1)2 + 2[2pab− 2(1− p)cd]2. (2.2.23)

Thus this state satisfies the equality S2 + S3 = 3(1 + S1) and lies on the plane
displayed as the boundary between the red and green areas in the polytope in
Fig. 2.1.

Next, we discuss evidence for the validity of Eq. (2.2.11) for mixtures of dif-
ferent bipartitions. Here we give the analytical evidence:
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Result 5. For three-qubit systems, a rank-2 mixture of two pure biseparable states with
respect to different partitions obeys the biseparability criterion in Eq. (2.2.11).

Proof. Let ϱ be a rank-2 mixture of two pure biseparable states with respect to
different partitions, without loss of generality, A|BC and AB|C:

ϱ = p |Ψ⟩⟨Ψ|+ (1− p) |Φ⟩⟨Φ| , (2.2.24)

where 0 ≤ p ≤ 1, and without loss of generality, we can write

|Ψ⟩= |0⟩ ⊗ (λ0 |00⟩+λ1 |11⟩) , 0 ≤ λ0, λ1 ≤ 1, λ2
0 + λ2

1=1,

|Φ⟩=
1

∑
i,j=0

κij |ij⟩ ⊗ (c0 |0⟩+c1 |1⟩) , κij, c1, c2 ∈ C,
1

∑
i,j=0
|κij|2= |c0|2+|c1|2=1.

Now, we define a function

f (ϱ1, ϱ2) ≡ 1 + tr(ϱ1ϱ2)− tr(ϱA1ϱA2)− tr(ϱB1ϱB2)− tr(ϱC1ϱC2), (2.2.25)

where ϱi (i = 1, 2) are three-particle quantum states and ϱXi for X ∈ {A, B, C}
are their reduced density matrices on the subsystems X. Our aim is to prove
that the biseparable state ϱ obeys

1 + tr(ϱ2) ≤ tr(ϱ2
A) + tr(ϱ2

B) + tr(ϱ2
C). (2.2.26)

This is equivalent to proving that the following function F(ϱ) is non-positive:

F(ϱ) ≡ 1 + tr(ϱ2)− tr(ϱ2
A)− tr(ϱ2

B)− tr(ϱ2
C)

= p2 f (Ψ, Ψ) + (1− p)2 f (Φ, Φ) + 2p(1− p) f (Ψ, Φ). (2.2.27)

Direct calculations yield

f (Ψ, Ψ) = 1− 2(λ4
0 + λ4

1), (2.2.28)

f (Φ, Φ) = 1− 2tr(κκ†κκ†), (2.2.29)

f (Ψ, Φ) = 1 + |λ0κ00c0 + λ1κ01c1|2 − (κ2
00 + κ2

01)

−
[
λ2

0(κ
2
00 + κ2

10) + λ2
1(κ

2
01 + κ2

11)
]
−
(

λ2
0|c0|2 + λ2

1|c1|2
)

, (2.2.30)

where κ = (κij). Here, since κij and ci can be taken as real, we obtain that

|λ0κ00c0 + λ1κ01c1|2 ≤ 2
(

λ2
0κ2

00c2
0 + λ2

1κ2
01c2

1

)
. (2.2.31)

Also, for the 2× 2 matrix κ, we know that 1− 2tr(κκ†κκ†) = 4(det κ)2 − 1. Thus
we have

F(ϱ) ≤ p2
[
1− 2(λ4

0 + λ4
1)
]
+ (1− p)2

[
4(det κ)2 − 1

]
+ 2p(1− p)

{
1 + λ2

0c2
0(2κ2

00 − 1) + λ2
1c2

1(2κ2
01 − 1)− (κ2

00 + κ2
01)

− λ2
0(κ

2
00 + κ2

10)− λ2
1(κ

2
01 + κ2

11)
}

. (2.2.32)
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Now, it is sufficient to show that the maximization of the right-hand side is
non-positive. In fact, the best choice is to set

c2
0 = 1, c2

1 = 0, if (2κ2
01 − 1)λ2

1 ≤ (2κ2
00 − 1)λ2

0, (2.2.33)

c2
1 = 1, c2

0 = 0, if (2κ2
00 − 1)λ2

0 ≤ (2κ2
01 − 1)λ2

1. (2.2.34)

Let us consider the former case: c2
0 = 1 and c2

1 = 0. Due to that ∑i,j κ2
ij =

λ2
0 + λ2

1 = 1, we find

F(ϱ) ≤ p2
{

1− 2
[
λ4

0 + (1− λ2
0)

2
]}

+ (1− p)2
[
4(det κ)2 − 1

]
+ 2p(1− p)

(
κ2

10 − κ2
01 − 2λ2

0κ2
10

)
. (2.2.35)

Maximization of the right-hand side with respect to λ2
0 can be achieved by three

cases: (1) λ2
0 = 0, (2) λ2

0 = 1, (3) λ2
0 = [1− (1− p)κ2

10/2p]/2 if κ10 < p/(1− p).
In all cases, we can immediately show that F(ϱ) ≤ 0.

2.2.5 Comparison with existing criteria

Our results show that not only the three-body second moment R(2)
ABC, but also

the one- and two-body reduced moments such as R(2)
AB and R(2)

A can be useful
for entanglement detection. In fact, their linear combinations allow detecting
entangled states more efficiently than existing criteria [257, 351, 352, 375].

Here, we focus on the case of qubit systems. The existing criteria are as
follows. (i) any fully separable three-qubit state obeys S3 ≤ 1 [257, 350]. If this
inequality is violated, the state is entangled but it may be still separable for some
bipartition. (ii) any biseparable three-qubit state obeys S3 ≤ 3 [257, 352]. If this
is violated, the state is genuinely tripartite entangled. Note that these existing
criteria can straightforwardly be derived from the convexity and convolution of
sector lengths. In the following, we will show that our criteria in Eqs. (2.2.5,
2.2.11) significantly improve the existing criteria, introducing some examples.

A good example of three-qubit states is the noisy GHZ-W mixed states [421,
422]:

ϱ = g |GHZ⟩⟨GHZ|+ w |W⟩⟨W|+ 1− g− w
8

1⊗3, (2.2.36)

where 0 ≤ g, w ≤ 1, and the GHZ state and the W state are given by |GHZ⟩ =
1√
2
(|000⟩+ |111⟩) and |W⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩). The noisy GHZ-W

mixed state has

(S1, S2, S3) =
(

w2/3, 3g2 + 3w2 − 2gw, 4g2 + 11w2/3
)

. (2.2.37)

To analyze this state, we will consider three cases: (i) the noisy GHZ state,
i.e., w = 0 (ii) the noisy W state, i.e., g = 0 (iii) the GHZ-W mixed state, i.e.,
g + w = 1. Now we summarize our result as follows:
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Criteria for full separability
Three-qubit states S3 ≤ 1 Eq. (2.2.5) Optimal values
w = 0 g ≤ 0.5 g ≤ 0.447 g ≤ 0.2 [172]
g = 0 w ≤ 0.522 w ≤ 0.469 w ≤ 0.177 [423]
g + w = 1 Detect all states Detect all states

Table 2.1: Results for the fully separable criterion in Eq. (2.2.5), compared with
the existing criterion S3 ≤ 1 and the optimal values. For w = 0 or g = 0, the
noisy mixed GHZ and W state are known to be fully separable iff g ≤ 0.2 [172]
and w ≤ 0.177 [423]. Clearly, the bound in Eq. (2.2.5) improves the existing
bound S3 ≤ 1. This table is a modified version of a table from Ref. [1].

Result 6. Tables 2.1 and 2.2 list the results of our criteria, comparing them to the
existing criteria and the optimal values. Also, the criteria for the state in Eq. (2.2.36) are
illustrated on the g− w plane in Fig. 2.2.

2.3 Detection of high-dimensional entanglement

2.3.1 Optimal entanglement criterion

In many realistic scenarios, it is sufficient to detect entanglement across some
fixed bipartition I| Ī of the multiparticle system. For this task, second moments
of randomized measurements can be used as well: Performing random mea-
surements at each qubit and considering the second moments allows one to
generalize the moments in Eq. (2.2.2) for the given number of qubits. In turn,
these moments allow one to determine the quantities tr(ϱ2

I ), tr(ϱ2
Ī ), and tr(ϱ2) for

the reduced states of the bipartition and the global state. This approach has been
used in an experiment [413], where entanglement criteria with the second-order
Rényi entropy H2(ϱX) = − log

[
tr(ϱ2

X)
]

were employed. The entropic criteria for
separable states read H2(ϱX) ≤ H2(ϱ) for X = I, Ī; if this is violated, then ϱ is
entangled [64, 209, 412] and also see Eq. (1.2.54).

Using our methods, we can show that this approach is optimal. To formulate
the result, we assume that both sides of the bipartition have the same number of
qubits. Then, recall that any bipartite state can be written as

ϱAB =
1
d2

d2−1

∑
i,j=0

tijλi ⊗ λj, (2.3.1)

where λ0 = 1 denotes the identity matrix and λi are the Gell-Mann matrices [25,
26]. This is the decomposition of ϱAB using the basis of Hermitian, orthogonal,
and traceless matrices, i.e., λi = λ†

i , tr
[
λiλj

]
= dδij, and tr [λi] = 0 for i > 0. The
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Criteria for biseparability
Three-qubit states S3 ≤ 3 Eq. (2.2.11) Optimal values
w = 0 g ≤ 0.866 g ≤ 0.655 g ≤ 0.429 [274]
g = 0 w ≤ 0.905 w ≤ 0.728 w ≤ 0.479 [424]
g + w = 1 g∈ [0.102, 0.855] g∈ [0.297, 0.612]

Table 2.2: Results for the biseparable criterion in Eq. (2.2.11), compared with
the existing criterion S3 ≤ 3 and the optimal values. For w = 0 or g = 0, the
noisy mixed GHZ and W state are known to be biseparable iff g ≤ 0.429 [274]
and w ≤ 0.479 [424]. For g + w = 1 (w = 1− g), the existing criterion and our
criterion in Eq. (2.2.11), respectively, imply that the GHZ-W mixed state can be
biseparable only in some interval for g. Interestingly, Ref. [421] has analyzed the
GHZ-W mixed states using the three-tangle τ and the squared concurrences C2

XY
measuring bipartite entanglement in the reduced states (note that all reduced
states are equivalent), for details see Sec. 1.2. It has been shown that in a region
0.292 ≤ g ≤ 0.627, the state has zero three-tangle and zero concurrence in the
reduced states. This region is larger than the region which is not detected by
Eq. (2.2.11). Thus, it can detect multiparticle entanglement even when the three-
tangle, as well as tripartite entanglement in reduced states, vanishes. This table
is a modified version of a table from Ref. [1].

quantities of interest are

S2 =
d2−1

∑
i,j=1

t2
ij, SA

1 =
d2−1

∑
i=1

t2
i0, SB

1 =
d2−1

∑
i=1

t2
0i. (2.3.2)

We also define S1 = SA
1 + SB

1 , which allows to recover the purities via

tr(ϱ2
AB) =

1
d2 (1 + S1 + S2), tr(ϱ2

A) =
1
d
(1 + SA

1 ). (2.3.3)

It is interesting that, although the λi are not directly linked to a quantum
design, the quantities SA

1 , SB
1 , and S2 are also second moments of measurement

of the observables λi in random bases. The proof follows from a slight exten-
sion of the arguments given in Ref. [350], which will be discussed later. This
opens another possibility for an experimental implementation besides making
randomized Pauli measurements on all the qubits individually. Now, we can
formulate:

Result 7. Any two-qudit separable state obeys the relation

S2 ≤ d− 1 + min{(d− 1)SA
1 − SB

1 , (d− 1)SB
1 − SA

1 }. (2.3.4)

For SA
1 ≤ SB

1 , this relation becomes

S2 ≤ d− 1 + (d− 1)SA
1 − SB

1 , (2.3.5)
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Figure 2.2: Entanglement criteria for the noisy GHZ-W state in Eq. (2.2.36) in the
g− w plane. Previously, several works [422, 425] have discussed entanglement
criteria in this two-parameter space. The fully separable states are contained in
the green area, obeying our criterion (2.2.5). The outside of the green and yellow
areas corresponds to the biseparable or genuine entangled states that violate a
previously known criterion for fully separable states, S3 ≤ 1. Thus, the yellow
area marks the improvement of our criterion (2.2.5) compared with previous re-
sults. Also, states that are biseparable for some partitions are contained in the
union of the green, yellow, and red areas, characterized by our criterion (2.2.11).
The brown area corresponds to the genuine entangled states violating a previ-
ously known criterion for biseparable states, S3 ≤ 3. Thus, the blue area marks
the improvement of our criterion (2.2.11) compared with previous results. This
figure is taken from Ref. [1].

as well as the analogous one with parties A and B exchanged. This is equivalent to
the criterion H2(ϱX) ≤ H2(ϱAB) for X ∈ {A, B}, where H2 denotes the second-order
Rényi entropy and ϱX denote the reduced density matrices. This criterion is optimal, in
the sense that if the inequality holds for SA

1 , SB
1 and S2, then there is a separable state

compatible with these values.

Proof. The criterion itself was established before, so we only have to prove the
optimality statement. Let ϱsep be a two-qudit separable state. Here, the entropic
criterion [64, 412] states that any bipartite separable state obeys that H2(ϱA) ≤
H2(ϱsep) and H2(ϱB) ≤ H2(ϱsep), where ϱX denote the reduced density matrices
of ϱsep. The entropic inequalities can be written as

tr(ϱ2
sep) ≤ tr(ϱ2

A), tr(ϱ2
sep) ≤ tr(ϱ2

B). (2.3.6)

Using the relation in Eq. (1.4.13), we can respectively translate these inequalities
to

S2 ≤ d− 1 + (d− 1)SA
1 − SB

1 , S2 ≤ d− 1 + (d− 1)SB
1 − SA

1 . (2.3.7)
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Thus we have Eq. (2.3.4).
The novel point is proving the optimality. In the following, we show that for

SA
1 ≤ SB

1 , Eq. (2.3.5) is saturated by a family of separable states

ϱ(p, θ) = p |00⟩⟨00|+ q
d−1

∑
j=1
|j⟩⟨j| ⊗ |θ0j⟩⟨θ0j| , (2.3.8)

|θij⟩ = cos θ |i⟩+ sin θ |j⟩ , q =
1− p
d− 1

, p ∈ [1/d, 1], θ ∈ [0, π/2]. (2.3.9)

Note that a family for the other case (SB
1 ≤ SA

1 ) can be found if the two parties of
ϱ(p, θ) are interchanged. In fact, from Eqs. (2.3.6, 2.3.7), we immediately notice
that Eq. (2.3.5) is saturated iff tr(ϱ2

sep) = tr(ϱ2
A). For the state (2.3.8), we find

tr(ϱ2
A) = p2 + (d− 1)q2 = tr

(
ϱ(p, θ)2

)
, (2.3.10)

tr(ϱ2
B) = tr(ϱ2

A) + 2(d− 1)pq cos2(θ) + 2
(

d− 1
2

)
q2 cos4(θ), (2.3.11)

which results in

SA
1 = dp2 + d(d− 1)q2 − 1, (2.3.12)

SB
1 = SA

1 + 2d(d− 1)pq cos2(θ) + 2d
(

d− 1
2

)
q2 cos4(θ). (2.3.13)

We notice that for p ∈ [1/d, 1], SA
1 varies between 0 and d− 1. In fact, for fixed

p and θ ∈ [0, π/2], SB
1 ranges from d− 1 to SA

1 . This covers the whole region of
allowed values with SA

1 ≤ SB
1 . For the other half, one can swap the parties of

ϱ(p, θ).

Remark 3. The geometrical expression of Eq. (2.3.4) is displayed by Fig. 2.3. Also,
for θ = π/2, i.e., SA

1 = SB
1 , one obtains the relation

S2 ≤ d− 1 +
d− 2

2
S1, (2.3.14)

which is also expressed geometrically in Fig. 2.4. In the next subsection, we will
discuss how to construct the polytope of all admissible values of SA

1 , SB
1 , and S2.

Remark 4. The unfortunate consequence of the optimality statement is that any
PPT entanglement cannot be detected by the quantities SA

1 , SB
1 and S2 as the

entropic criterion is strictly weaker than the PPT criterion [210]. In Sec. 2.4, we
will overcome this obstacle by developing a general criterion for entanglement
using higher moments of randomized measurements.

2.3.2 Characterization of two-qudit states

Here we discuss the characterization of two-qudit states based on Result 7. First,
we consider the geometrical interpretation using the two-dimensional plane of
(S1, S2). Second, we demonstrate our entanglement criterion by comparing it
with existing criteria.
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Figure 2.3: Geometry of the state space of d⊗ d-dimensional systems in terms
of the quantities SA

1 , SB
1 , and S2, where d = 8. The total polytope is the set of

all states, characterized by the inequalities 0 ≤ SA
1 , SB

1 ≤ d− 1, 0 ≤ S2 ≤ d2 − 1,
SA

1 + SB
1 + S2 ≤ d2 − 1, and 0 ≤ (d− 1)2 − (d− 1)(SA

1 + SB
1 ) + S2. The separable

states are contained in the blue polytope, obeying the additional constraint in
Eq. (2.3.4). The red area corresponds to the states violating a previously known
criterion for separable states, S2 ≤ (d − 1)2 [350]. Thus, the green area marks
the improvement coming from our criterion (2.3.4) compared with the previous
result. These figures are modified versions of figures from Ref. [1].

Geometrical interpretation

First, let us characterize two-qudit states using sector lengths. This characteri-
zation can be useful for understanding the two-qudit separability criterion geo-
metrically. The previous work [352] has illustrated the set of admissible (S1, S2)
pairs in two-qubit systems, we will generalize it to two-qudit systems. We begin
by recalling that any two-qudit state can be written as

ϱAB =
1
d2

d2−1

∑
i,j=0

tijλi ⊗ λj =
1
d2

(
1⊗2 + P1 + P2

)
, (2.3.15)

where the Hermitian operators Pk for k = 1, 2 denote the sum of all terms in
the basis element weight k. The relation in Eq. (1.4.13) allows us to translate the
purity bound tr(ϱ2

AB) ≤ 1 to

1 + S1 + S2 ≤ d2. (2.3.16)

Remember that S1 = SA
1 + SB

1 .
As examples of pure states, consider product states |prodj⟩ = |jj⟩ with the

computational basis for j = 0, 1, . . . , (d− 1). The pure product states have SA
1 =

SB
1 = d − 1, S1 = 2(d − 1), and S2 = (d − 1)2. Also, the maximally entangled

state |Φ+
d ⟩ = (1/

√
d)∑d−1

i=0 |ii⟩ has SA
1 = SB

1 = S1 = 0 and S2 = d2 − 1.
It is important to note that the pure product states and the maximally en-

tangled state can, respectively, maximize the admissible values of S1 and S2 for
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all two-qudit states (see Ref. [353]). That is, both values of sector lengths give
tight upper bounds for all two-qudit states: S1 ≤ 2(d − 1) and S2 ≤ d2 − 1.
Due to the purity condition in Eq. (2.3.16), any pure two-qudit state must satisfy
S1 ∈ [0, 2(d− 1)] and S2 = d2 − 1− S1.

To see another constraint on sector lengths, let us recall the state inversion in
Sec. 1.1, expressed as

ϱ̃AB =
1
d2

{
(d− 1)21⊗2 − (d− 1)P1 + P2

}
. (2.3.17)

Since ϱ̃AB is positive, we have

0 ≤ tr(ϱABϱ̃AB). (2.3.18)

From the relation (1.4.13) and the expression (2.3.15), the condition (2.3.18) leads
to the state inversion bound:

0 ≤ (d− 1)2 − (d− 1)S1 + S2. (2.3.19)

Here, if S2 = 0, then S1 ≤ d− 1, where equality holds if a state is given by, for
example, |0⟩⟨0| ⊗ 1/d.

In conclusion, we obtained the tight four bounds: S1 ≤ 2(d− 1), S2 ≤ d2− 1,
and Eqs. (2.3.16, 2.3.19). These linear constraints on S1 and S2 allow us to ensure
the positivity of two-qudit states and to find the total set of their admissible
values. The geometrical expressions are displayed in Fig. 2.4.

Entanglement detection

Next, let us consider the entanglement detection of two-qudit states. One exist-
ing criterion states that any two-qudit separable state obeys S2 ≤ (d− 1)2 [350],
where an example of states obeying S2 = (d− 1)2 is |prodj⟩. In particular, the
maximally entangled state |Φ+

d ⟩ maximally violates this inequality.
Now, we look at the gap between the maximally entangled state and the pure

product state
S2(Φ+

d )

S2(prodj)
=

d2 − 1
(d− 1)2 → 1, d≫ 2. (2.3.20)

This scaling tells us that the simple criterion cannot be useful in very high-
dimensional systems. On the other hand, the criteria (2.3.4, 2.3.14) allow us to
detect entanglement much more powerfully than the existing criterion since they
are expressed as the tilted bounds geometrically, see Figs. 2.3 and 2.4.

To see that, we consider the two-qudit isotropic state:

ϱiso = p |Φ+
d ⟩⟨Φ

+
d |+

1− p
d2 1⊗2, (2.3.21)

which has (S1, S2) = (0, p2(d2 − 1)). The existing criterion S2 ≤ (d− 1)2 detects
this state as entangled for p >

√
d− 1/

√
d + 1, while Eq. (2.3.14) detects it al-

ready for p > 1/
√

d + 1, and the state is known to be entangled iff p > 1/(d+ 1).
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Figure 2.4: Geometry of the state space of d⊗ d-dimensional systems in terms
of the second moments S1 and S2, where d = 20. The total figure is the set
of all states, characterized by the same inequalities with Fig. 2.3 in the case
SA

1 = SB
1 . The separable states are contained in the blue area, obeying the ad-

ditional bound in Eq. (2.3.14). The red area corresponds to the state violating a
previously known criterion for separable states, S2 ≤ (d− 1)2 [350]. Thus, the
green area marks the improvement of our criterion in Eq. (2.3.4) compared with
the previous result. This figure is a modified version of a figure from Ref. [1].

2.4 Detection of bound entanglement

2.4.1 Integrals over pseudo-Bloch spheres

In higher-dimensional systems, different forms of entanglement exist e.g., en-
tanglement of different dimensionality [124, 184] or bound entanglement [166,
227, 230, 232]. The previously known criteria for randomized measurements
face serious problems in this scenario. First, criteria using purities, such as the
criterion in Eq. (2.3.4), can only characterize states that violate the PPT criterion
and hence miss the bound entanglement.

Second, while the notion of randomized measurements is independent of the
dimension, many results for qubits employ the concept of a Bloch sphere, which
is not available for higher dimensions, where not all observables are equivalent
under randomized unitaries. Ref. [350] showed that some results for qubits are
also valid for higher dimensions as long as only second moments are considered,
but these connections are definitely not valid for higher moments. More detailed
explanations will be given in the next subsection.

To overcome these problems, we first note that a general observable is char-
acterized by its eigenvectors, determining the probabilities of the outcomes, and
the eigenvalues, corresponding to the observed values. For computing the mo-
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ments R(r)
AB in Eq. (2.1.1), the eigenvectors do not matter due to the averaging

over all unitaries. The eigenvalues are relevant, but they may be altered in classi-
cal postprocessing: Once the frequencies of the outcomes are recorded, one can
calculate the moments R(r)

AB in Eq. (2.1.1) for different assignments of values to
the outcomes.

So the question arises, whether one can choose the eigenvalues of an observ-
able in a way, such that the moments R(r)

AB in Eq. (2.1.1) are easily tractable. For
instance, it would be desirable to write them as averages over a high-dimensional
sphere (the so-called pseudo-Bloch sphere). The reason is that several entangle-
ment criteria, such as the computable cross norm or realignment criterion [241,
242] and the de Vicente (dV) criterion [244], make also use of a pseudo-Bloch
sphere. Surprisingly, the desired eigenvalues can always be found:

Result 8. Consider an arbitrary observable in a higher-dimensional system. Then, one
can change its eigenvalues such that for the resulting observable Md, the second and
fourth moments R(r)

AB in Eq. (2.1.1) equal, up to a factor, a moment S (r)AB which is taken
by an integral over a generalized pseudo-Bloch sphere. That is, S (r)AB is given by

S (r)AB = N(r, d)
∫

dα1

∫
dα2[tr(ϱABα1 · λ⊗α2 · λ)]r, (2.4.1)

where αi denote (d2 − 1)-dimensional unit real vectors uniformly distributed from the
pseudo-Bloch sphere, and λ = (λ1, λ2, . . . , λd2−1) is the vector of Gell-Mann matrices.
Furthermore, N(r, d) is a normalization factor.

Remark 5. A more detailed explanation is given in the next subsection, where
the detailed form of Md is given. To give a simple example, for d = 3 one
may measure the standard spin measurement Jz and assign the values α+/γ,
α−/γ and 2β/γ instead of the standard values ±1 and 0 to the three possible
outcomes, where α± = ±3− β, β = −

√
7 + 2

√
15, and γ = 2

√
5 +
√

15. Note
that the resulting observable is also traceless.

2.4.2 Detailed explanations about Result 8

Let us elaborate on the relation between the moments R(r)
AB and S (r)AB more ex-

plicitly. In order to explain the difficulties for higher dimensions, let us focus
on qubits first. Suppose that Alice and Bob locally perform the measurements
MA and MB in random bases parameterized by the unitary transformations
UA, UB ∈ U (d), such that

{|u0⟩A = UA |0⟩A , |u1⟩A = UA |1⟩A , . . . , |ud−1⟩A = UA |d− 1⟩A} , (2.4.2)
{|u0⟩B = UB |0⟩B , |u1⟩B = UB |1⟩B , . . . , |ud−1⟩B = UB |d− 1⟩B} . (2.4.3)

In the case of qubits (d = 2), Alice’s (Bob’s) measurement direction corresponds
to a random three-dimensional unit vector uA (uB) chosen uniformly on the
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Bloch sphere S2. Then, the expectation value is given by tr [ϱABσuA ⊗ σuB ], where
σu = u ·σ is the rotated Pauli matrix with the vector of the usual Pauli matrices
σ = (σx, σy, σz)⊤. Without loss of generality, one can take the Pauli-Z matrix σz
as the observables MA and MB.

Then we can characterize the obtained distribution via its moments R(r)
AB

R(r)
AB =

∫
dUA

∫
dUB

{
tr[ϱAB(UAσzU†

A)⊗ (UBσzU†
B)]
}r

(2.4.4)

=
1

(4π)2

∫
S2

duA

∫
S2

duB [tr (ϱABσuA ⊗ σuB)]
r , (2.4.5)

where the unitaries are typically chosen according to the Haar distribution. For
all odd r, the moments R(r)

AB vanish, so the quantities of interest are the moments

of even r. Indeed, the second moment R(2)
AB can be evaluated by a unitary two-

design, see Sec. 1.5:

R(2)
AB =

1
9 ∑

eA,eB=e1,e2,e3

tr [ϱABσeA ⊗ σeB ]
2 =

1
9

3

∑
i,j=1

t2
ij, (2.4.6)

where {±ek | k = 1, 2, 3} are the orthogonal local directions and the tij are two-
body correlation coefficients with 1 ≤ i, j ≤ 3 in the Bloch decomposition of ϱAB,
where we call this submatix Ts. It is important that the moments R(r)

AB are by
definition invariant under local unitary transformations UA⊗UB. This property
allows us to find a local unitary such that the matrix Ts can be diagonalized
by an orthogonal transformation, due to the isomorphism between SO(3) and
SU(2).

On the other hand, in the case of higher dimensions (d > 2), there are several
problems. First, the notion of a Bloch sphere is not available. Due to this fact,
not all possible observables are equivalent under randomized unitaries. Second,
for a odd r, the moments R(r)

AB in Eq. (2.1.1) do not vanish, see Ref. [426]. Third,
for r = 2, the second moments are independent of the choice of observables as
long as the observables are traceless (see Theorem 9 in Ref. [350]), while higher
moments depend on the choice. To approach these problems, we make use of
the quantities from the previous subsection, i.e., the moments S (r)AB in Eq. (2.4.1).

Here, N(r, d) is a normalization factor such that S (r)AB = 1 at pure product states:

N(r, d) =
[(d2 + r− 3)!!]2

(d− 1)r[(r− 1)!!]2[(d2 − 3)!!]2

(
Γ( d2−1

2 )

2
√

π
d2−1

)2

, (2.4.7)

where, for a positive number n, n!! is the double factorial and Γ(n) is the gamma
function. The moments S (r)AB are analytically calculable, so we take S (r)AB as the
starting point for our discussion. Now we can find the following result:
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Result 9. The moments defined in Eq. (2.4.1) are given by

S (2)AB =V ∑
i,j

t2
ij, (2.4.8)

S (4)AB =W

{
3 ∑

i,j
t4
ij+3 ∑

i,j,k,i ̸=j
t2
ikt2

jk+3 ∑
i,j,k,i ̸=j

t2
kit

2
kj+ ∑

i,j,k,l,i ̸=k,j ̸=l
(t2

ijt
2
kl+2tijtiltkjtkl)

}
, (2.4.9)

where the tij are the coefficients from Eq. (2.3.1) and

V =
1

(d− 1)2 , W =
1

3 (d− 1)4 . (2.4.10)

Remark 6. The proof of this derivation is given in Sec. 9.1. It is essential that
the moments S (r)AB are invariant not only overall local unitaries but also overall
changes of local operator basis λ, meaning the independence of the specific
choice of observable. That is, the moments S (r)AB are invariant under orthogonal
transformations of the submatrix Ts, where Ts = (tij) with 1 ≤ i, j ≤ d2 − 1 in
Eq. (2.3.1). This orthogonal invariance allows us to consider the diagonalization
of the submatrix Ts

T′s = OATsO⊤B = diag(τ1, τ2, . . . , τd2−1), (2.4.11)

where OA, OB ∈ SO(d2− 1) are non-physical orthogonal matrices and τi ≥ 0 are
singular values of Ts. With this, we are able to reduce the number of parameters
for the moments S (r)AB. In fact, the evaluated second and fourth moments (2.4.8,
2.4.9) can be simply expressed as

S (2)AB = V
d2−1

∑
i=1

τ2
i , (2.4.12)

S (4)AB = W

2
d2−1

∑
i=1

τ4
i +

(
d2−1

∑
i=1

τ2
i

)2 = W

[
2

d2−1

∑
i=1

τ4
i +

1
V2

(
S (2)AB

)2
]

, (2.4.13)

where V = 1/(d− 1)2 and W = 1/3(d− 1)4.

The question here is whether it is possible to find observables such that R(r)
AB

coincides with S (r)AB, up to a constant. While the observables MA and MB do not
have to be diagonal, they can be assumed to be diagonal in the unitary group
averaging. Now let us consider a diagonal observable such that MA = MB =
Md. Then, we are in a position to present the suitable choice of Md for the
coincidence between S (r)AB and R(r)

AB:

Result 10. In d-dimensional quantum systems where d is odd, let the diagonal observ-
able Md be given by

Md = diag(α+, . . . , α+︸ ︷︷ ︸
(d−1)/2

, βy, α−, . . . , α−︸ ︷︷ ︸
(d−1)/2

), (2.4.14)

120



where

α± =
±d− 2y + 1√

(d− 1)[(2y− 1)2 + d)]
, (2.4.15)

βy = −

√
(d− 1)(2y− 1)2

(2y− 1)2 + d
, (2.4.16)

y =
1
2

1−

√
1 +

d + 3 +
√

d3 + 3d2 + d + 3
d− 2

 , (2.4.17)

and tr(Md) = 0 and tr(M2
d) = d. Then, measuring the observable Md yields

S (2)AB = (d + 1)2R(2)
AB, S (4)AB =

(d + 1)2(d2 + 1)2

9(d− 1)2 R(4)
AB. (2.4.18)

Remark 7. The proof of this derivation is given in Sec. 9.2. A similar result can
be obtained for even dimensions. However, the solution for y is in this case less
aesthetic. For details, see Ref. [1].

2.4.3 Entanglement criterion using fourth moments

At last, let us formulate separability criteria in terms of the second and fourth
moments S (r)AB. For that, we first recall the dV criterion [244]: Any two-qudit
separable state obeys

∥Ts∥tr = ∥T′s∥tr =
d2−1

∑
i=1

τi ≤ d− 1, (2.4.19)

where T′s is defined in Eq. (2.4.11). From our results, it also follows that the dV
criterion can be evaluated via randomized measurements for all dimensions.

First, it turns out that S (2)AB and S (4)AB can, for any dimension, be simply ex-

pressed as polynomial functions of the submatrix Ts. Second, the moments S (r)AB
are by definition invariant under orthogonal transformations of the matrix Ts.
Also, the dV criterion is also invariant under the named orthogonal transforma-
tions. Third, for a fixed value of the second moment S (2)AB, we can maximize and

minimize the fourth moment S (4)AB under the constraint ∥Ts∥tr ≤ d− 1. This task
is greatly simplified by orthogonal invariance; in fact, we can assume Ts to be
diagonal. This leads to simple, piece-wise algebraic separability conditions for
arbitrary dimensions d. Let us make a summary in the following:

Result 11. The set of admissible values (S (2)AB, S (4)AB) for separable states can be charac-
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terized by maximizing and minimizing the fourth moment as follows:

max
τi

/ min
τi

S (4)AB = W

[
2

d2−1

∑
i=1

τ4
i +

1
V2

(
S (2)AB

)2
]

, (2.4.20)

s.t. S (2)AB = V
d2−1

∑
i=1

τ2
i , (2.4.21)

d2−1

∑
i=1

τi ≤ d− 1, (2.4.22)

0 ≤ τi ≤ d− 1, (2.4.23)

where τi is maximal and equal to d− 1 for a pure product state, due to the positivity of
states. If a state lies outside this set, then it must be entangled.

Remark 8. The results for d = 3 are shown in Fig. 2.5. The outlined procedure
gives an area that contains all values of S (2)AB and S (4)AB for separable states. Most
importantly, various bound entangled states can be detected [265–268], discussed
in Sec. 1.2. Also, the 4⊗ 4 bound entangled Piani state from the Ref. [271] can
be detected, details are given in Ref. [1].

Remark 9. Let us discuss which states are good candidates for violating our crite-
rion. It is known that in d⊗ d-dimensional systems, if the states have maximally
mixed subsystems, then the dV criterion is equivalent to the CCNR criterion. If
not, the dV criterion is weaker than the CCNR criterion (see Ref. [60]). On the
other hand, if an entangled state is very close to a state with maximally mixed
subsystems and largely violates the CCNR criterion, then we may detect the en-
tangled state based on the dV criterion. For instance, the so-called cross-hatch
3 × 3 grid state, one of the bound entangled states detected by our methods,
does not have maximally mixed subsystems. Nevertheless, its reduced states are
close to maximally mixed, ϱA = ϱB = diag(0.375, 0.25, 0.375), and moreover, it
violates the CCNR criterion by a large amount.

2.5 Experimental demonstration of theoretical results

In Ref. [8], theoretical results presented in this Chapter have been experimentally
demonstrated. Here we explain the experimental implementation of GHZ-W
mixed states based on Ref. [8]. For more details and the detection of bound
entangled checkerboard states, see Ref. [8]. Concerning details of experimental
settings, also see Refs. [427, 428].

In Fig. 2.6, the experimental setup for GHZ-W mixed states is illustrated.
The setup is mainly divided into two stages: state preparation and randomized
measurements. Let us begin by explaining the state preparation stage:

• State preparation: First, the entangled photon source (EPS) generates two-
qubit polarization-entangled photon pairs. Examples are |ψg⟩ or |ψw⟩,
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Figure 2.5: Entanglement criterion based on second and fourth moments of ran-
domized measurements for 3 ⊗ 3 systems. Separable states are contained in
the light-blue area, according to Result 11. Several bound entangled states (de-
noted by colored symbols) are outside, meaning that their entanglement can be
detected with the methods developed in this Chapter. For comparison, we also
indicate a lower bound on the fourth moment for PPT states, obtained by numer-
ical optimization, as well as a bound for general states. Also, the lower bound
for general states can be obtained by imposing the constraint ∑d2−1

i=1 τi ≤ d2 − 1,
and the isotropic state ϱiso in Eq. (2.3.21) satisfies the bound, which proves it is
optimal. This figure is taken from Ref. [1].

given by

|ψg⟩ = α |0⟩ ⊗ |0⟩+ β |1⟩ ⊗ |1⟩ , (2.5.1)
|ψw⟩ = α |0⟩ ⊗ |1⟩+ β |1⟩ ⊗ |0⟩ . (2.5.2)

Here |0⟩ (or |1⟩) denotes the horizontal (or vertical) polarization of the
photon, that is, |0⟩ = |H⟩ (or |1⟩ = |V⟩). The coefficients α and β can be
controlled by preparation operation in the EPS.

• Details about the EPS: Here let us explain the inside of the EPS (this is not
shown in Fig. 2.6). There are three steps to create the two-qubit entangled
state, e.g., |ψg⟩ or |ψw⟩:

1. A pump beam state, |ψbeam⟩, passes through a polarizing beamsplitter
(PBS). This projects the pump state |ψbeam⟩ onto the basis |0⟩ as an
initialization.

2. The new state |0⟩ is rotated by a Half-Wave Plate (HWP) and then
becomes |ψs⟩ = α |0⟩+ β |1⟩. That is, the HWP can act as a Hadamard
gate.
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Figure 2.6: Experimental setup for GHZ-W mixed states. This figure is taken
from Ref. [8].

3. The rotated state |ψs⟩ is directed to the so-called spontaneous para-
metric down-conversion process through crystals. This is a nonlin-
ear optical process, in which there is a reasonable probability that a
higher-energy pump photon will split into a pair of lower-energy pho-
tons while conserving energy and momentum. In this experiment,
the beam state pumps two crossed-axis type-I β-Barium Borate (BBO)
crystals, which create the states |ψg⟩ or |ψw⟩.

• New registration: After the EPS, a new system |l⟩ is additionally registered
and the global state becomes

|ψg⟩ → |ψg,l⟩ = |ψg⟩ ⊗ |l⟩ , (2.5.3)

|ψw⟩ → |ψw,l⟩ = |ψw⟩ ⊗ |l⟩ . (2.5.4)

This process is not explicitly illustrated in Fig. 2.6.

• Beam Displacer: After the registration, the state is directed to the Beam
Displacer (BD) BD1. This is a unitary process UBD1 such that UBD1 |1⟩ ⊗
|l⟩ → |1⟩⊗ |l⟩ and UBD1 |0⟩⊗ |l⟩ → |0⟩⊗ |u⟩, where the vertically polarized
part passes directly into path l, while the horizontal part passes through
while being shifted into path u. This means that the BD1 can act as a CNOT
gate. By taking |l⟩ = |1⟩ and |u⟩ = |0⟩ and controlling the four HWPs (H4,
H5, H6, H7) and the BD2, each of the three-qubit states becomes

|ψg,l⟩ → |GHZ⟩ , (2.5.5)

|ψw,l⟩ → |W⟩ . (2.5.6)

• Mixing: The GHZ-W mixed state, ϱ(g)= g |GHZ⟩⟨GHZ|+ (1− g) |W⟩⟨W|,
in Eq.(2.2.36) can be generated by randomly switching the setup settings
to produce both states with probability g.

Next, let us explain the stage of randomized measurements. In the measure-
ment stage, the combination of a Quarter-Wave Plate (QWP), an HWP, and a
Polarization Beam Splitter (PBS) enables the polarization state measurement on
an arbitrary basis:
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• In each of the boxed parts (a), (b), and (c) in Fig. 2.6, the created state is then
directed to the measurement stages. The measurement stages perform pro-
jective measurements on polarization and path degrees of freedom of the
down-converted photons. The QWPs (Q1, Q2, Q3) and HWPs (H1, H2, H3)
are mounted on Motorized Rotation Mounts (Newport, CONEX-PR50CC).
For each randomly drawn local measurement setup, a classical computer
inputs the corresponding QWP and HWP settings, and the waveplate is
automatically rotated to the target angle for measurement. Note that the
BD3 together with Q2 and H2 can act as making projective measurements.

• In this experiment, for each prepared GHZ-W mixed state, ϱ(g), 4000 ran-
domized measurements are taken, with about 5300 copies of the state de-
tected in each measurement.

The quality of the state ϱ(g) can be quantified by the fidelities of the experi-
mentally prepared state and the ideal state. For the GHZ state and W state, their
fidelities are 0.9919 and 0.9890, leading to 0.9836 for all fidelities of the GHZ-W
mixed states.

The entanglement of the state ϱ(g) can be detected in the second moments
from randomized measurements (sector lengths). In fact, the genuinely multi-
partite entanglement of ϱ(g) can be verified since the previously known S3 ≤ 3
is violated. Also, the criterion in Result 3 can be applied to detect the state of
g ≤ 0.24 with no three-tangle and g ≥ 0.67 with no squared concurrence. For
more details, see Ref. [8].

2.6 Discussions

This Chapter developed methods for characterizing quantum correlations using
randomized measurements. On the one hand, our approach led to optimal cri-
teria for different forms of entanglement using the second moments of the ran-
domized measurements. On the other hand, we have shown that using fourth
moments of randomized measurement detection of bound entanglement as a
weak form of entanglement is possible. This opens a new perspective for de-
veloping the approach further, as all previous entanglement criteria were only
suited for highly entangled states.

There are several directions for further research. First, it would be desir-
able to prove a conjecture that Result 3 is also true for biseparable states for
all bipartitions. In addition, it would be interesting to advance systematic ap-
proaches to finding entanglement criteria using non-trivial linear combinations
of sector lengths. Moreover, it would be important to formulate entanglement
criteria in high-dimensional multipartite systems by utilizing higher-order mo-
ments. Finally, we note that our results were extended in terms of the detection
of Schmidt number [258, 429] and the systematic discussions about Result 8 in
[258].
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Chapter 3

Multi-qubit entanglement and
statistical significance

This Chapter develops the scheme of randomized measurements in two direc-
tions. First, this Chapter presents hierarchical criteria for multiqubit entangle-
ment with second moments. Next, this Chapter analyzes the statistical signifi-
cance of characterizing quantum correlations using large deviation bounds. This
Chapter is based on Ref. [2].

3.1 Introduction

Let us begin by recalling the moments in Eq. (1.4.2) from the randomized mea-
surements discussed in Sec. 1.4. Consider a quantum state ϱ composed of N
qubits and a product observable M = σz ⊗ · · · ⊗ σz. The correlation function is
given by

E(u1, . . . ,uN) = ⟨σu1 ⊗ . . .⊗ σuN⟩ϱ, (3.1.1)

and the corresponding moments are expressed as

R(t) =
1

(4π)N

∫
du1 . . .

∫
duN [E(u1, . . . ,uN)]

t . (3.1.2)

This Chapter focuses on the analysis of quantum states and the verification of
entanglement using the above moments.

In the context of verifying multipartite quantum systems, different approaches
have been discussed. On one hand, there are efficient protocols that require
fewer measurement resources when the experiment aims to determine specific
states, such as entanglement witnessing [17], self-testing [430], or direct fidelity
estimation [79, 431]. On the other hand, approaches that rely on few or no as-
sumptions about the underlying quantum state are often resource-intensive and
do not scale well with increasing system sizes, such as quantum state tomogra-
phy [432, 433].
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Figure 3.1: Characterization of a Noisy Intermediate-Scale Quantum (NISQ) de-
vice using locally randomized measurements. (a) Measurement of N qubits
in random local bases defined through the set of local unitary transformations
{Ui}N

i=1 resulting in a correlation sample X. (b) Repetition of the measurement
protocol presented in (a) for M sets of randomly sampled measurement bases
and K individual projective measurements per fixed measurement bases yields
estimates of the moments (3.1.2). For details, see Sec. 3.3.1. This figure is taken
from Ref. [2].

Additionally, there are intermediate strategies that focus on specific statistical
properties rather than aiming for a complete mathematical description of the sys-
tem. These strategies significantly reduce the required measurement resources
and do not assume any prior information about the state of the system [434–
438]. In the scheme of randomized measurements discussed in Sec. 1.4, scaling
properties have been derived for the case of bipartite entanglement [105, 439]
concerning the resources required for statistically significant tests.

This Chapter presents detailed statistical methods of randomized measure-
ments to certify multiparticle entanglement structures in systems consisting of
many qubits. First, we derive criteria based on the second moments for differ-
ent forms of multiparticle entanglement, enabling us to infer the entanglement
depth. Second, we present rigorous approaches for analyzing the underlying
statistical errors, based on large deviation bounds. As we will demonstrate, our
results are directly applicable in current experiments using Rydberg atom arrays
or superconducting qubits [440–442].
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3.2 Detection of multiqubit entanglement

3.2.1 Bounds of the second and fourth moments

In general, we can evaluate the integral in Eq. (3.1.2) using spherical designs, as
discussed in Sec. 1.5 (also see Ref. [384] and Fig. 2 of Ref. [392]). These spherical
designs lead to the expression of the second moment as

R(2) =
1

3N ∑
i1,...,iN=x,y,z

E(ei1 , . . . , eiN)
2, (3.2.1)

by summing over the three Pauli observables only. Higher-order moments re-
quire higher-order designs. For instance, the fourth moment becomes

R(4) =
1

6N

6

∑
i1,...,iN=1

E(vi1 , . . . ,viN)
4, (3.2.2)

where {vi} denotes the icosahedron 5-design discussed in Ref. [392]. In the
following, we will discuss several bounds of the moments.

First, determining tight upper bounds for the moments is difficult. However,
the maximum value of the second moment R(2) has been found. In Refs. [350,
353], it was shown that the maximum value of the second moment is reached
for the N-qubit GHZ state |GHZN⟩ = (|0⟩⊗N + |1⟩⊗N)/

√
2:

R(2)
|GHZN⟩

=
1

3N ×
{

2N−1, N odd,
2N−1 + 1, N even.

(3.2.3)

This was derived through the relation of the second moment to the full-body
sector lengths, as mentioned in Sec. 1.4.

However, the upper bounds of higher moments are unfortunately not known
in general. Numerical evidence from Ref. [443] suggests that the upper bound
of the fourth moment R(4) is also reached for the GHZ state with N ̸= 4:

R(4)
|GHZN⟩

=
1

15N ×
{

3× 8N−1, N odd,
3× 8N−1 + 3N + 3× 2N, N even.

(3.2.4)

Note that in the exceptional case N = 4, the bi-separable state |Bell⟩ ⊗ |Bell⟩
reaches a larger value than the GHZ state. For an (N/2)-fold product of Bell
states |Bell⟩⊗(N/2) with N even, the fourth moment reads

R(4)

|Bell⟩⊗
N
2
=

1
5(N/2)

. (3.2.5)

Also, the product state |GHZ N
2
⟩ ⊗ |GHZ N

2
⟩ has a smaller fourth moment than

Eq. (3.2.4).
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Finally, any N-qubit fully separable state, ϱsep = ∑α pαϱ
(1)
α ⊗ . . .⊗ ϱ

(N)
α (also

see Sec 1.2), obeys

R(2) ≤ 1
3N , R(4) ≤ 1

5N , (3.2.6)

for details, see [378]. This follows from the convexity of the monomials xt for
even t and the fact that for all single-qubit pure states R(2)

N=1 = 1/3 and R(4)
N=1 =

1/5.

3.2.2 Hierarchical entanglement criteria

To proceed, let us recall the notion of a k-separable state as defined in Eq. (1.2.26),
see Sec 1.2. A state is k-separable if it can be written as

|ψk-sep⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕk⟩ . (3.2.7)

A mixed k-separable state can also be defined as the convex mixture of them.
In particular, if a state is not 2-separable (biseparable), it is called genuinely
multipartite entangled.

Here we formulate the following:

Result 12. Any N-qubit biseparable state obeys

R(2) ≤ 1
3N−1 ×

{
2N−3, N odd,
2N−3 + 1, N even.

(3.2.8)

Remark 10. The proof is given below. The violation of this criterion allows us to
detect genuinely multipartite entanglement.

Proof. Since the second moment is convex, it suffices to consider a pure N-qubit
biseparable state:

ϱbisep = ϱN−k ⊗ ϱk, (3.2.9)

with k ∈ {1, . . . , N/2}. The maximum of its second moment can be calculated
as follows:

max
ϱbisep
R(2)

ϱbisep = max
k
R(2)

ϱN−k ×max
k
R(2)

ϱk

=
1

3N

{
2N−k−1, N − k odd
2N−k−1 + 1, N − k even

}
×
{

2k−1, k odd
2k−1 + 1, k even

}
,

(3.2.10)

where we used that the maximum of an m-qubit second moment is attained for
the respective m-qubit GHZ state, see Eq. (3.2.3). Next, we consider the cases of
even and odd N:
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• Case of even N: We find that

max
ϱbisep
R(2)

ϱbisep =
1

3N max
k

{
2N−k−1 × 2k−1, k odd
(2N−k−1 + 1)× (2k−1 + 1), k even

}

=
1

3N max
k

{
2N−2, k odd
2N−2 + 2N−k−1 + 2k−1 + 1, k even

}

=
1

3N

[
2N−2 + 1 + max

k
(2N−k−1 + 2k−1)

]
=

2N−3 + 1
3N−1 , (3.2.11)

where we used that the function f (k) = 2N−k−1 + 2k−1 is positive on the
interval [2, N/2] and thus takes its maximum at the boundary, i.e., for k = 2
or k = N − 2.

• Case of odd N: We find that

max
ϱbisep
R(2)

ϱbisep =
1

3N max
k

{
(2N−k−1 + 1)× 2k−1, k odd
2N−k−1 × (2k−1 + 1), k even

}

=
1

3N max
k

{
2N−2 + 2k−1, k odd
2N−2 + 2N−k−1, k even

}
(3.2.12)

=
1

3N

[
2N−2 + max

k

{
2k−1, k odd
2N−k−1, k even

}]
(3.2.13)

=
1

3N

[
2N−2 + max

k
(2N−k−1)

]
=

2N−3

3N−1 , (3.2.14)

where we used that g(k) = 2N−k−1 is positive in the interval [2, N/2] and
its maximum is reached for k = 2.

In summary, we obtained the following bound for all biseparable states ϱbisep:

R(2) ≤ 1
3N−1 ×

{
2N−3, N odd,
2N−3 + 1, N even,

(3.2.15)

Comparing the bound (3.2.15) with the maximum value of the second moment
(3.2.3), we find:

• For an odd number of qubits, it holds that

2N−1

3N >
2N−3

3N−1 , (3.2.16)

for all N.
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• For an even number of qubits, it holds that

2N−1 + 1
3N ≥ 2N−3 + 1

3N−1 , (3.2.17)

for all N, with equality if and only if N = 4.

Hence, the inequality in Eq. (3.2.15) allows us to detect N-qubit genuine multi-
partite entanglement for N > 4. Note that the bounds in Eq. (3.2.15) are satu-
rated for the states |Bell⟩ ⊗ |GHZ(N−2)⟩.

Now we advance the previous Result and present the following:

Result 13. Any N-qubit k-separable state obeys

R(2) ≤ 1
3N−k+1 ×

{
2N−(2k−1), N odd,
2N−(2k−1) + 1, N even,

(3.2.18)

with k = 2, . . . , ⌊(N − 1)/2⌋.

Remark 11. This Result provides a hierarchy of entanglement criteria. If this
inequality is violated for fixed k, then the state is at most (k− 1)-separable. This
implies that it has an entanglement depth [174, 177] of at least ⌈N/(k− 1)⌉.

Proof. The proof of this Result can be carried out through the method of induc-
tion. Since we have proven the case k = 2, it remains the induction step, i.e.,
that the case k + 1 follows from k. First, let us consider the case of even N. Let
us assume that for a k-separable state of N − m qubits denoted as ϱN−m, the
following holds

R(2)
ϱN−m ≤

1
3N−m−k+1 ×

{
2N−m−(2k−1), N −m odd,
2N−m−(2k−1) + 1, N −m even.

(3.2.19)

Now, we consider the maximum of the second moment of an N-qubit (k+ 1)-
separable state

max
ϱ(k+1)-sep

R(2)
ϱ(k+1)-sep

= max
m
R(2)

ϱk-sep,N−m ×max
m
R(2)

ϱm , (3.2.20)

where ϱk-sep,x denotes a k-separable state of x qubits. The assumption is refor-
mulated as

R(2)
ϱk-sep,N−m ≤

1
3N−m−k+1 (2

N−m−(2k−1) + δ(N−m),even). (3.2.21)

Also, according to Eq. (3.2.3), we have

R(2)
ϱm ≤

1
3m (2m−1 + δm,even). (3.2.22)
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Consequently, Eq. (3.2.20) becomes

max
ϱ(k+1)-sep

R(2)
ϱ(k+1)-sep

= max
m

{ 1
3N−m−k+1 × (2N−m−(2k−1) + δ(N−m),even)

× 1
3m (2m−1 + δm,even)

}
. (3.2.23)

Since N is now even, this is maximized by the case of even m, which thus leads
to

max
ϱ(k+1)-sep

R(2)
ϱ(k+1)-sep

=
1

3N−k+1 ×max
m
{(2N−m−(2k−1) + 1)× (2m−1 + 1)}

=
1

3N−k+1 ×max
m
{2N−2k + 2N−m−(2k−1) + 2m−1 + 1}. (3.2.24)

It thus remains to maximize Eq. (3.2.24) with respect to m. The m-dependent
terms of Eq. (3.2.24) can be written as

g(M) =
2N+1−2k

M
+

M
2

, (3.2.25)

with M := 2m. This is a convex function and thus attains its maximum at the
boundary m = 2. Hence this leads to

R(2) ≤ 2N−(2k−1)

3N−k+1 , (3.2.26)

for even N.
Similarly, one can prove the case with odd N. Note that Eq. (3.2.18) is attained

by the pure k-separable states |Bell⟩⊗(k−1) ⊗ |GHZN−2(k−1)⟩.

Remark 12. Similarly, the k-separable bounds of the fourth moment R(4) can
be formulated. This can play an important role in the determination of the
measurement resources required in order to violate Eq. (3.2.18) with a given
confidence. Based on the conjecture that for N > 4 the N-qubit GHZ state
maximizes the fourth moment R(4) we can show that

R(4) ≤ 1
5k−1R

(4)
|GHZN−2(k−1)⟩

, (3.2.27)

using similar methods as in the proof of Eq. (3.2.18). As for the second moment
R(2), Eq. (3.2.27) is saturated for the pure states |Bell⟩⊗(k−1) ⊗ |GHZN−2(k−1)⟩,
with k = 2, . . . , ⌊(N − 1)/2⌋.

3.2.3 Example: noisy GHZ state

Let us test our result by considering the following noisy N-qubit GHZ states:

ϱ
(N)
GHZ(p) =

p
2n1+ (1− p) |GHZN⟩⟨GHZN | . (3.2.28)
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Figure 3.2: Left: Threshold value p∗ up to which the noisy GHZ state ϱ
(N)
GHZ(p)

is detected to be not 2- (violet, bottom), 4- (blue), 6- (green), 10- (yellow), and
20-separable (red, top) as a function of the number of qubits N. Solid lines
connecting dots represent values of p∗ for even N, and dashed lines correspond
to the case of odd N, which also represent the asymptotic values in the limit
N → ∞. Right: Plot of the asymptotic values of p∗ in the aforementioned limit
as a function of the parameter k. The exemplary values of the left plot are
highlighted by colored markers, respectively. This figure is taken from Ref. [2].

This yields the second moment of the noisy GHZ state as

R(2)
GHZ(p, N) = (1− p)2R(2)

|GHZN⟩
. (3.2.29)

For each N, we can now calculate the threshold value of p up to which the
criteria (3.2.18) are violated as a function of the parameter k, yielding

p∗=1− f (N, k)
(

3
4

) k−1
2

, f (N, k)=

{
1, N odd,√
(4k + 2N+1)/(4 + 2N+1), N even.

(3.2.30)

In Fig. 3.2, the behavior of p∗ in Eq. (3.2.30) is illustrated. In the case of odd
N, the threshold p∗ is independent of the number of qubits N and coincides
with the asymptotic threshold in the limit N → ∞, where f (N, k) → 1. Hence,
the asymptotic thresholds of p∗ are strictly smaller than 1.

3.3 Estimation of moments with finite statistics

The purpose of this section is to present methods for estimating the statistical
error of moments R(t) when the number of measurements is limited. In general,
when dealing with finite statistics, one uses (unbiased) estimators to estimate
the desired quantities. However, these estimators may not match the moments
R(t), unlike for infinite statistics, as mentioned in Sec. 1.1.
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Therefore, our goal is to quantify how much the values of our estimator
deviate from the actual moment R(t). In the following, we will derive deviation
bounds that provide upper bounds on the probability of the estimator deviating
from the mean value by a certain margin.

3.3.1 Unbiased estimators for moments

To be more precise, we aim to provide methods for estimating the statistical er-
ror of moments R(t) when we have a finite sample of M random measurement
bases, each undergoing K individual projective measurements. In this context,
individual outcomes of a single random measurement on N qubits are repre-
sented as r1, . . . , rN, with ri = ±1. The corresponding correlation sample is
denoted as X = ∏N

i=1 ri, as shown in Fig. 3.1(a).
Then one can write

E ≡ E(u1, . . . ,uN) = Peven − Podd, (3.3.1)

where Peven is the probability for obtaining the result X = +1, which corre-
sponds to an even number of individual measurement outcomes ri resulting in
−1. Since Peven + Podd = 1, we have

E = 2P− 1, P ≡ Peven. (3.3.2)

The probability P can be estimated by an unbiased estimator:

P̃1 =
Ỹ
K

. (3.3.3)

Here, Ỹ is a random variable distributed following the binomial distribution
with probability P and K trials. We find that

Ebi(P̃1) = P, (3.3.4)

where Ebi(. . .) represents the average with respect to the binomial distribution
with Ebi(Ỹ) = KP. It is worth mentioning that similar methods have been em-
ployed in the context of globally randomized measurement protocols, as dis-
cussed in Ref. [439].

Based on that, we summarize our formulation as follows:

Result 14. The unbiased estimators for the moments R(t) in Eq. (3.1.2) are given by

R̃(t) =
1
M

M

∑
i=1

[Ẽt]i, EUEbi

[
R̃(t)

]
= R(t), (3.3.5)

where the subscript i in [Ẽt]i refers to estimations of Ẽt for different randomly sampled
local bases, making the [Ẽt]i random variables and EU[...] represents the average over
local random unitaries. Here Ẽt are the unbiased estimators of Et given by

Ẽt = (−1)t
t

∑
k=0

(−2)k
(

t
k

)
P̃k, Ebi[Ẽt] = Et, (3.3.6)
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where P̃k is the estimator for Pk:

P̃k = P̃k−1 ×
KP̃1 − (k− 1)
K− (k− 1)

=
P̃1(KP̃1 − 1)(KP̃1 − 2) . . . (KP̃1 − (k− 1))

(K− 1)(K− 2) . . . (K− (k− 1))
. (3.3.7)

Proof. Let us begin by defining P̃k using the ansatz P̃k = ∑k
r=0 αr(Ỹ/K)r and

ensuring that the relation E(P̃k) = Pk holds. This way, we can construct unbiased
estimators for arbitrary powers of P using only the properties of the binomial
distribution. For example, we find:

P̃2 =
P̃1(KP̃1 − 1)

K− 1
= P̃1 ×

KP̃1 − 1
K− 1

, (3.3.8)

P̃3 =
P̃1(KP̃1 − 1)(KP̃1 − 2)

(K− 1)(K− 2)
= P̃2 ×

KP̃1 − 2
K− 2

, (3.3.9)

P̃4 =
P̃1(KP̃1 − 1)(KP̃1 − 2)(KP̃1 − 3)

(K− 1)(K− 2)(K− 3)
= P̃3 ×

KP̃1 − 3
K− 3

. (3.3.10)

which can be recursively used to define the estimator for the t-th moment in
Eq. (3.3.7). This can be verified as the unbiased estimator of Pk by considering
the factorial moment of the binomial distribution, which reads

Ebi[Y(Y− 1) . . . (Y− (k− 1))] =
K!Pt

(k− t)!
, (3.3.11)

for details, see [444].

3.3.2 General considerations

Now, our goal is to determine the statistical error of estimating R̃(t) as a function
of the number of qubits N. Specifically, we want lower bounds on the total
number of required measurement samples Mtot = M× K to estimate R(t) with
precision δ and confidence γ, ensuring that

Prob(|R̃(t) −R(t)| ≤ δ) ≥ γ, (3.3.12)

for Mtot ≥ M(γ, t).
To achieve this, we can utilize concentration inequalities that provide devia-

tion bounds on the probability 1− Prob(|R̃(t) −R(t)| ≤ δ), that is,

Prob(|R̃(t) −R(t)| ≥ δ) ≤ α. (3.3.13)

This represents the probability of the estimator deviating from the mean value
by a certain margin and α = 1− γ is the statistical significance level, see Sec. 1.1.

In the following subsection 3.3.3, we will treat the entire experiment as a
single random variable, that is, [Ẽt]i cannot be assumed to be i.i.d. random vari-
ables. Then we can find deviation bounds in Eq. (3.3.13) based on the variance
of the entire random variable such as the Chebyshev-Cantelli inequality.
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Remark 13. There are several ways of deriving deviation bounds: (i) One can con-
sider each unitary as a distinct external parameter, resulting in M repetitions of
a random variable with independent, but differently distributed, outcomes due
to the different unitary U. For this scenario, we can employ tools like the Bern-
stein inequality to obtain deviation bounds without additional assumptions. (ii)
One can regard the M different terms as independent and identically distributed
variables. In each case, we draw a random unitary according to the Haar mea-
sure and determine the correlation based on the rules of quantum mechanics.
To derive estimation bounds in this scenario, we can use techniques involving
Chernoff bounds in a manner similar to the Hoeffding bound. This method typ-
ically provides the best bounds, but it relies again on certain assumptions about
the maximal values of R(4). Each method has its advantages and disadvantages,
so the choice of which one to use depends on the specifics of the experiment and
its data. For more details, see Ref. [2].

3.3.3 Estimating the deviation of the second moment

To proceed, we use the two-sided Chebyshev-Cantelli inequality for the random
variable R̃(t):

Prob[|R̃(t) −R(t)| ≥ δ] ≤
2Var

(
R̃(t)

)
Var

(
R̃(t)

)
+ δ2

, (3.3.14)

where Var(R̃(t)) is the variance of the estimator (3.3.5), and its evaluation in-
volves properties of the binomial distribution. This requires that the confidence
1− Prob[|R̃(t) −R(t)| ≥ δ] of this estimation is at least γ. For the case of the
second moment R(2) with t = 2, we present our results in the following:

Result 15. The total number of measurements Mtot = M × K required to estimate
the second moment R(2) in a worst-case scenario, considering a fixed relative error and
confidence, is illustrated in Fig. 3.3, where M = M(K) is a function of K.

Proof. We begin by considering the Chebyshev-Cantelli inequality, which pro-
vides a minimal two-sided error bar (δerr) of R̃(2), ensuring the confidence γ:

δerr ≡

√
1 + γ

1− γ
Var
(
R̃(t)

)
, Var

(
R̃(t)

)
=

1
M2

M

∑
i=1

Var
(
[Ẽt]i

)
, (3.3.15)

where we used Eq. (3.3.5). Now, to evaluate the variance, we have:

Var
(
[Ẽt]i

)
= EUEbi

[
Ẽ2

t

]
−
(
EU
[
Et])2

= EUEbi

[
Ẽ2

t

]
−
(
R(t)

)2
. (3.3.16)

Here, EUEbi
[
Ẽ2

t
]

generally depends on the moments R(t).
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Figure 3.3: Total number of measurements Mtot = M× K as a function of K for
N = 10, 30, 50, 70 and 100 qubits (from bottom to top) in order to estimate the
second moment with a relative error of 10% and with confidence 90%. Each of
the minimal points (valleys) indicates the position of the optimal value M(opt)

tot .
This figure is a modified version of a figure from Ref. [2].

For the specific case of the second moment R(2), we find:

Var
(
[Ẽ2]i

)
= A(K)R(4) + B(K)R(2) + C(K)−

(
R(2)

)2
, (3.3.17)

with

A(K)=
K−5
K−1

+
6

(K−1)K
, B(K)=

4
K−1

− 8
(K−1)K

, C(K)=
2

(K−1)K
. (3.3.18)

Thus, the variance of R̃(2) can be expressed as:

Var(R̃(2)) =
1
M

[
A(K)R(4) + B(K)R(2) + C(K)−

(
R(2)

)2
]

. (3.3.19)

To obtain an upper bound on Var(R̃(2)), we can omit the last term (R(2))2 in
Eq. (3.3.19) and use Eqs. (3.2.3) and (3.2.4):

Var(R̃(2)) ≤ 1
M

[
A(K)R(4)

|GHZN⟩
+ B(K)R(2)

|GHZN⟩
+ C(K)

]
. (3.3.20)

As a result, the worst-case error in the estimator R̃(2) is given by:

δerr ≤

√
1 + γ

1− γ

1
M

[
A(K)R(4)

|GHZN⟩
+ B(K)R(2)

|GHZN⟩
+ C(K)

]
. (3.3.21)

This upper bound on the error is independent of the state and depends on the
number of qubits, denoted by N. Using Eq. (3.3.21), we can derive the necessary
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numbers of measurements M and K to achieve a given error δerr and confidence
level γ. As the interval size [0,R(2)

|GHZN⟩
] relies on the number of qubits N, we

consider a minimum relative error, i.e., a fraction of the entire interval length.
By minimizing M(K)× K with respect to K and keeping the number of parties
N fixed, we can determine the optimal number of projective measurements per
random measurement setting.

3.4 Finite statistics entanglement characterization

Here our aim is to determine the measurement resources required for the de-
tection of multiparticle entanglement with a confidence level γ. To enhance our
procedure, we utilize the upper bound on the variance in Eq. (3.3.19) specifically
tailored for k-separable states, rather than using the general overall upper bound
presented in Fig. 3.3. Now, we present the following result:

Result 16. The optimal total number of measurements M(opt)
tot required to certify the

violation of k-separability for different values of the noise parameter p and the number
of qubits N in the state ϱ

(N)
GHZ(p) is illustrated in Fig. 3.4.

Proof. For the remainder of this discussion, we will utilize the method based on
the one-sided Chebyshev-Cantelli inequality, similarly with in Sec. 3.3.3.

Prob[R̃(2) −R(2) ≥ δ] ≤
Var

(
R̃(2)

)
Var

(
R̃(2)

)
+ δ2

. (3.4.1)

The one-sided version is sufficient for the scenario of entanglement detec-
tion since we only need to demonstrate that R(2) exceeds the bounds of the
criteria (3.2.18). To rule out the hypothesis that the state belongs to a specific
class of separable states, we invoke the respective upper bounds on the second
and fourth moments to obtain an upper bound on the variance Var

(
R̃(2)

)
. For

detecting non-k-separability, we use Eqs. (3.2.18) and (3.2.27) to derive an up-
per bound on the variance in Eq. (3.4.1). Additionally, we set the confidence
γ = 90% and the accuracy as follows:

δ = R(2)
GHZ(p, N)−maxR(2)

ϱk-sep = (1− p)2R(2)
|GHZN⟩

−maxR(2)
ϱk-sep , (3.4.2)

where maxR(2)
ϱk-sep denotes the RHS of Eq. (3.2.18), ensuring that the state ϱ

(N)
GHZ(p)

violates the respective k-separability bound.

3.5 Discussions

This Chapter explored statistical methods for characterizing multiparticle quan-
tum systems using randomized measurements. First, we introduced novel cri-
teria to detect various types of multiparticle correlations in N-qubit systems,
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Figure 3.4: Measurement budget M(opt)
tot obtained from Chebyshev-Cantelli in-

equality required to certify the violation of the k-separability criteria (3.2.18) of
ϱ
(N)
GHZ(p), with k = 2 (blue, left), 4 (yellow), 6 (green), 10 (red) and 14 (purple,

right), for N = 30 and confidence γ = 90%. This figure is a modified version of
a figure from Ref. [2].

including genuine multiparticle entanglement, utilizing only the lowest non-
vanishing moment. Moreover, we conducted a detailed analysis of the associ-
ated statistical errors, enabling us to estimate the statistical significance of our
methods. Finally, we applied the developed framework to certify diverse forms
of multiparticle entanglement based on finite statistics.

There are several directions for further research. First, Results 12, 13 corre-
spond to the entanglement criteria described by the full-body sector length SN.
It would be interesting to consider whether one can find similar bounds using
the marginal sector lengths such as SN−1 or SN−2. Second, it would be impor-
tant to analytically prove the conjecture of whether the upper bounds of higher
moments R(t) with t > 2 can be achieved by the GHZ states, except for special
cases, such as Eq. (3.2.4). Moreover, in Refs. [445, 446], similar approaches have
been discussed in terms of the quantification of multipartite entanglement, also
see Refs. [447–449].
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Chapter 4

Complete characterization of
two-qubit entanglement

This Chapter deepens the understanding of randomized measurement schemes
based on non-product observables. This Chapter mainly deals with two-qubit
systems and provides the complete characterization of quantum correlations
based on non-product observables. This Chapter is based on Ref. [6].

4.1 Introduction

Let us begin by recalling the moments in Eq. (1.4.2) in the scheme of randomized
measurements in Sec. 1.4. In the case of a two-qubit state ϱAB and a general
observableM, the moment is given by

R(t)
M(ϱAB) =

∫
dUA

∫
dUB

[
tr(ϱABU†

A ⊗U†
BMUA ⊗UB)

]t
. (4.1.1)

In the previous Chapters, we have considered the product observable such as
M = σz ⊗ σz. This Chapter addresses the question of whether the choice of
non-product observables is useful and advantageous for extracting additional
information about ϱAB.

In this Chapter, we develop a general framework linking the moments of ran-
domized measurements and the set of local unitary invariants. First, we show
that the Makhlin invariants in Eq. (1.4) can be accessed by the randomized mea-
surement scheme. They are known to form the complete set of 18 polynomial
invariants. Next, we discuss the applications of Makhlin invariants in quantum
information processing tasks. In fact, we provide the perfect detection of two-
qubit entanglement, the certification of Bell nonlocality, and the usefulness of
the prepared states for teleportation schemes.
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4.2 Makhlin invariants

Let us begin by recalling the Bloch decomposition of a two-qubit state:

ϱAB =
1
4

(
1⊗2 +

3

∑
i=1

αiλi ⊗ 1+
3

∑
i=1

βi1⊗ λi +
3

∑
i,j=1

Tijλi ⊗ λj

)
. (4.2.1)

with the local Bloch vectors α,β and the correlation matrix T. As mentioned
Sec. 1.3, the Makhlin invariants [366] are written as

I4 = α2, I7 = β2, I2 = tr(TT⊤), (4.2.2)

I12 = α⊤Tβ, I1 = det(T), (4.2.3)

I5 = [αT]2, I8 = [Tβ]2, I3 = tr(TT⊤TT⊤), (4.2.4)

I14 = tr(HαTH⊤β T⊤), (4.2.5)

I13 = α⊤TT⊤Tβ, I6 = [αTT⊤]2, I9 = [T⊤Tβ]2, (4.2.6)

where α2 = |α|2, β2 = |β|2, and (Hx)ij = ∑k=x,y,z εijkxk with the Levi-Civita
symbol εijk for x = α, β.

It has been proven that two two-qubit states are LU equivalent if and only
if they have equal values of all LU invariants. Now the question arises of how
randomized measurements can be used to completely characterize the Makhlin
invariants. Here we present our results in the following:

Result 17. All the above Makhlin invariants are accessible from randomized measure-
ments. That is, for the moments R(t)

M in Eq. (4.1.1) with several observablesM, it holds
that

R(2)
σz⊗1 =

1
3

I4, R(2)
1⊗σz

=
1
3

I7, R(2)
σz⊗σz

=
1
9

I2, (4.2.7)

R(3)
(1+σz)⊗2 =

1
3
(I2 + 2I12) + · · · , R(3)

Mdet
= I1, (4.2.8)

R(4)
(1+σz)⊗2 =

2
15

[(I4 + I7)I2 + 2(I5 + I8)] + · · · , R(4)
σz⊗σz

=
1

75
(2I3 + I2

2), (4.2.9)

R(4)
M∓H

= ±1
6

I14 + · · · , (4.2.10)

R(5)
(1+σz)⊗2 =

1
15

[2I3 + I2(I2 + 4I12) + 8I13] + · · · , (4.2.11)

R(6)
(1+σz)⊗2 =

8
35

(I6 + I9) + · · · , (4.2.12)

where we denote

Mdet = ∑
i=x,y,z

σi ⊗ σi, (4.2.13)

M∓
H = 1⊗ σx + σx ⊗ 1+ σy ⊗ σz ∓ σz ⊗ σy. (4.2.14)
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Remark 14. The proof of this derivation is given in Sec. 9.3. It is worthwhile to
note that I1 and I14 flip the sign under the partial transposition of the state, while
the others are invariant. This is why I1 and I14 can be obtained using the non-
product observablesMdet andM∓

H, whereas the others come from the product
observables. The LU invariants I1 and I14 are sensitive to partial transposition
and then allow us to extract vital information about nonlocal properties.

4.3 Applications to quantum information processings

Here we discuss the applications of Result 17 to the analysis of quantum states.
The simplest example is to use the second momentR(2)

σz⊗σz
, i.e., I2. This coincides

with the sector length S2 up to a factor, so the separability bound can be derived
as mentioned in Sec. 1.4: S2 ≤ 1 for any two-qubit separable states. Then this
violation implies that the state is entangled. Also, as presented in Chapter 2 and
Ref. [378, 379], the fourth momentR(4)

σz⊗σz
allows us to enhance the entanglement

detection. This results from linear combinations between the second and fourth
moments.

Another interesting approach to utilizing the Makhlin invariants is to con-
sider their nonlinear combinations. In the following let us elaborate on this in
more detail. Now, we can formulate the application to Bell nonlocality:

Result 18. The presence of Bell nonlocality can be observed from randomized measure-
ments. More precisely, the CHSH quantity maxa,b,c,d ⟨B⟩ in Eq. (1.2.43) can be com-
pletely computed from the moments R(t)

M.

Proof. As mentioned in Eq. (1.2.43) in Sec. 1.2, it holds that maxa,b,c,d ⟨B⟩ =

2
√

λ2
1 + λ2

2, where λ1 and λ2 are the two largest singular values of the correla-

tion matrix T = (tij). Since the squares of the singular values of T (that is, λ2
i )

coincide with the eigenvalues of TT⊤, the three invariants I1, I2, I3 are sufficient
to calculate a potential violation of the CHSH quantity following its characteris-
tic polynomial:

pT(x) = x3 − tr(TT⊤)x2 −−1
2
[tr(TT⊤TT⊤)− tr(TT⊤)2]x− det(T)2. (4.3.1)

According to Result 17, these LU invariants are accessible to the moments R(t)
M

for t = 2, 3, 4. Hence, the scheme of randomized measurements enables us to
compute its roots and therefore verify the violation of the CHSH inequality.

In a similar manner, we can further proceed with the analysis of entangled
states. In the following we can give two results:

Result 19. The usefulness of quantum teleportation can be observed from randomized
measurements. More precisely, the lower bound on the teleportation fidelity FU(ϱAB)

in Eq. (1.2.64) can be completely computed from the moments R(t)
M.
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Result 20. The necessary and sufficient condition for two-qubit entanglement can be
observed from randomized measurements. More precisely, the negativity of det(ϱ⊤B

AB) in
Eq. (1.4.40) can be completely computed from the moments R(t)

M.

Proof. As mentioned in Eq. (1.2.64), FU(ϱAB) = f (τ1, τ2, τ3) is a function of the
eigenvalues τi of the correlation matrix T. This quantity can be accessible from
the invariants I1, I2, I3, that is, from randomized measurements. Concerning
det(ϱ⊤B

AB), as we can see from Eq. (1.4.40), it is a function of several invariants
that can be obtained from randomized measurements.

4.4 Discussions

This Chapter showed that local unitary invariants in two-qubit systems, i.e., the
Makhlin invariants, can be accessed from the moments of randomized measure-
ments. We demonstrated that additional quantum information can be extracted
by developing the scheme with non-product observables. Then we provided the
complete characterization of two-qubit states via the associated quantities with
Bell nonlocality, quantum teleportation, and the PPT criterion.

There are several directions for further research. First, it would be interest-
ing to extend our results into multipartite higher-dimensional quantum systems.
This may allow us to develop the characterization of nonlocal quantum channels
or multiparticle quantum correlations in a reference-frame-independent way.
Next, it would be desirable to deepen the understanding of cases with non-
product observables in multipartite systems. Finally, we note that Ref. [6] pro-
vides the experimental demonstration of our results and discussed the statistical
analysis of the generation of random unitaries in terms of frame potentials.
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Part II

Applications of randomized
measurements
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Chapter 5

Work fluctuations and entanglement
in quantum batteries

The previous Chapters have developed several methods of randomized mea-
surements for detecting quantum entanglement. This Chapter focuses on their
applications to the analysis of thermodynamic work cost in local random unitary
processes. This Chapter characterizes quantum entanglement by monitoring the
work fluctuations and develops its estimation in energy measurement protocols
with noisy detectors. This Chapter is based on Ref. [4].

5.1 Introduction

At the heart of quantum thermodynamics [450] lies the fundamental question
about the emergence of thermodynamic properties in small quantum systems.
Quantum thermodynamics has not only established a common playground for
statistical mechanics and quantum information theorists, it is now driving ex-
perimental efforts to seek and exploit genuine quantum signatures in thermo-
dynamic processes.

In particular, quantum correlations have been investigated in terms of their
fundamental energetic footprint [451, 452] and work cost [453–458], and as a
resource in quantum thermal machines [459, 460]. Research on quantum bat-
teries [461] highlights the role of correlations for work extraction [462–464] and
storage [465–473] in composite quantum systems. Experimental investigations
of quantum batteries are already underway [474, 475].

In practice, if work is consumed or generated on the quantum scale, strong
fluctuations are often inevitable. Whether they are caused by a lack of experi-
mental control, environmental decoherence, or other unknown sources of noise,
the fluctuations are not only detrimental to the performance of thermodynamic
tasks, but their precise statistics are often inaccessible. It is a common approach
in quantum information theory to circumvent this problem by considering—or
even deliberately applying—uniformly random unitary operations on the quan-
tum system [1, 2, 350, 373, 378, 379, 412–415, 418]. This operational “worst-
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Figure 5.1: Sketch of the interacting quantum battery as a composite working
medium that can be entangled in a d × d system. The quantum battery is de-
scribed by a state ϱAB and a Hamiltonian HAB = HA + HB + gV with coupling
strength g. It is transformed by a local random unitary operation UA ⊗ UB:
ϱAB → ϱ′AB = (UA ⊗UB)ϱAB(U†

A ⊗U†
B). Then the average extractable work in

this process W(UA, UB) = E − E′ becomes random. The essential thermody-
namic quantity to characterize high-dimensional entanglement in this Chapter
is the work variance (∆W)2 over the random unitaries. This figure is taken from
Ref. [4].

case” procedure will override other noise effects by rotating around an arbitrary
Hilbert space direction, which results in a maximally mixed system state on av-
erage. Nevertheless, measurement data from a large sample of random unitaries
can reveal genuine quantum features of the system state.

In the context of quantum thermodynamics, random unitaries and random
Hamiltonians that generate them have been used to characterize the work dis-
tribution in chaotic quantum systems [476–480]. Other studies analyzed the
thermodynamics of quantum batteries under random unitary rotations [481,
482], randomly repeated collisions [483–485], or random interaction Hamilto-
nians [486–488].

Here, we show that one can detect bipartite entanglement in a composite in-
teracting working medium through work fluctuations under local random uni-
taries. We derive a hierarchy of bounds on high-dimensional entanglement in
terms of the so-called Schmidt number, and we show that stronger work fluctua-
tions can verify the presence of stronger entanglement. Furthermore, we develop
noisy two-point energy measurement protocols based on inefficient detectors
that can estimate work fluctuations and thereby probe the Schmidt number.
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5.2 Work fluctuations under local unitary processes

5.2.1 Quantum battery

Consider an interacting bipartite quantum system with dimension d × d and
Hamiltonian HAB = HA ⊗ 1B + 1A ⊗ HB + gV, prepared in a (possibly entan-
gled) quantum state ϱAB. Its energy content E = tr[ϱABHAB] has contributions
from the local Hamiltonians HA, HB and from the interaction term V at coupling
strength g. The system shall act as a quantum battery that receives or deliv-
ers energy through a local (non-entangling) unitary control operation, which we
describe by ϱ′AB = (UA ⊗UB)ϱAB(U†

A ⊗U†
B), see also Fig. 5.1.

We assume a pulsed (or cyclic) operation that leaves the system Hamiltonian
unchanged, i.e., H′AB = HAB. Indeed, this is based on an operational descrip-
tion of quantum thermodynamics, where the battery is characterized by a bare,
time-independent Hamiltonian and unitaries represent pulsed (or cyclic) control
operations that always take the system back to this bare Hamiltonian. No further
assumptions are made here about how random control operations are realized,
whether by controlled cyclic time evolution or by rapid quench (switching on
and off the Hamiltonian that generates the operation).

The associated locally extracted work is quantified by the energy difference

W(UA, UB) = E− E′ = tr[(ϱAB − ϱ′AB)HAB]. (5.2.1)

Most studies on quantum battery (dis-)charging focus on the maximum amount
of the extractable work, called ergotropy [489], which has recently been linked to
quantum correlations [452, 490–492]. In this Chapter, we will not be concerned
with the maximization, but rather with the work statistics over a sample of uni-
formly random local operations and relate it to the entanglement between the
parts of the battery. We consider the average work and its variance over a sample
of unitaries UA, UB drawn from the unitary groups U (d):

W =
∫

dUA

∫
dUB W(UA, UB), (5.2.2)

(∆W)2 = W2 −W2
, (5.2.3)

where the integrals are taken over the Haar measure, see Sec. 1.1 for details. We
immediately find that W = E− tr[HAB]/d2, since the averaged final battery state
is always maximally mixed. On the other hand, we will see that the variance
(∆W)2 of work fluctuations can reveal initial quantum correlations in the battery.

5.2.2 Work fluctuations

By virtue of the Schur-Weyl duality [109, 493, 494], we can carry out the unitary
integrals in Eq. (5.2.3) and link the work fluctuations to the generalized Bloch
decomposition of ϱAB and HAB. Recall that any d× d state ϱAB can be written as

ϱAB =
1
d2

(
1AB +

d2−1

∑
i=1

rA
i λi ⊗ 1B +

d2−1

∑
i=1

rB
i 1A ⊗ λi +

d2−1

∑
i,j=1

tijλi ⊗ λj

)
, (5.2.4)
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with λ0 = 1d and λi the so-called Gell-Mann matrices for i = 1, . . . , d2− 1 [25, 26,
495]. These matrices generalize the Pauli matrices to SU(d), satisfying λ†

i = λi,
tr[λi] = 0, and tr[λiλj] = dδij. The coefficient vectors r⃗A and r⃗B characterize
the two reduced battery states, while the matrix (tij) represents all correlations.
Similarly, we can expand the terms of the Hamiltonian as

HX =
d2−1

∑
i=0

hX
i λi, V =

d2−1

∑
i,j=1

vijλi ⊗ λj. (5.2.5)

This leads to an explicit form for the work fluctuations:

Result 21. The work variance over local random unitary operations in a d× d quantum
battery described by ϱAB and HAB can be written in terms of the Bloch representation as

(∆W)2 =
1

d2 − 1

(
r2

Ah2
A + r2

Bh2
B +

t2g2v2

d2 − 1

)
, (5.2.6)

where
r2

X = |⃗rX|2, t2 = ∑
i,j

t2
ij, h2

X = |⃗hX|2, v2 = ∑
i,j

v2
ij, (5.2.7)

for X = A, B.

Proof. First, we can immediately find

(∆W)2 = (E′)2 − E′
2
. (5.2.8)

The first term on this right-hand side can be written as

(E′)2 =
∫

dUA

∫
dUB

{
tr[ϱ′ABHAB]

}2

=
∫

dUA

∫
dUB tr

[
ϱ′
⊗2

ABH⊗2
AB

]
= tr

[(∫
dUA

∫
dUB ϱ′

⊗2

AB

)
H⊗2

AB

]
= tr

[
Φ(ϱAB)H⊗2

AB

]
, (5.2.9)

where the map Φ(ϱAB) is given below, see Eq. (5.2.11). For a two-qudit state
ϱAB, let us consider

Φ(ϱAB) =
∫

dUAdUB (U⊗2
A ⊗U⊗2

B )ϱ⊗2
AB(U

†
A)
⊗2 ⊗ (U†

B)
⊗2. (5.2.10)

Using the generalized Bloch representation of ϱAB and the formulas in Sec. 1.5,
we can obtain

Φ(ϱAB) =
1
d4

{
1⊗2

AB +
1

d2 − 1

[
r2

A Ã⊗ 1⊗2
B + r2

B1
⊗2
A ⊗ B̃ +

t2Ã⊗ B̃
d2 − 1

]}
, (5.2.11)
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where X̃ = dSX − 1⊗2
X for X = A, B and SA and SB respectively are the SWAP

operators acting on the two-copy system of ϱ⊗2
AB. Using the expansion of the

Hamiltonian terms in Eq. (5.2.5), with the help of the properties of Gell-Mann
matrices, a long but straightforward calculation leads to the expression (5.2.6).

Remark 15. Similar quantities have appeared in the notion of sector lengths in
quantum information theory, see Sec. 1.4. Here, the bipartite correlations of the
battery state ϱAB contribute to (∆W)2 via the term t2, provided there is a finite
coupling g ̸= 0 between the battery parts.

5.2.3 Schmidt number detection

Here we characterize the entanglement in ϱAB based on Eq. (5.2.6). Let us recall
the concept of the Schmidt number in Eq. (1.2.6)

SN(ϱAB) = inf
D(ϱAB)

max
{ψi}

r(ψi). (5.2.12)

A higher Schmidt number thus indicates stronger entanglement, augmenting the
separability problem [17, 123]. Several methods to witness the Schmidt number
are already known [259, 496–499]. We now formulate a criterion based on work
fluctuations, which elucidates the role of entanglement in work exchange pro-
cesses:

Result 22. Any d × d composite quantum battery described by ϱAB and HAB with
SN(ϱAB) = k obeys

(∆W)2 ≤ 1
d2 − 1

(
r2

Ah2
A + r2

Bh2
B +

g2v2sk
d2 − 1

)
, (5.2.13)

with the function

sk = s
(

k, d, r2
A, r2

B

)
= kd− 1 +

kd− 2
2

(
r2

A + r2
B

)
− kd

2

∣∣∣r2
A − r2

B

∣∣∣ . (5.2.14)

Proof. Let us begin by considering a map given by

Mk(X) = tr[X]1− X
k

, (5.2.15)

for an operator X ∈ Hd and an integer k. Ref. [124] showed that, if a two-qudit
state ϱAB has Schmidt number SN(ϱAB) = k, then (Mk ⊗ 1B)(ϱAB) is positive,

(Mk ⊗ 1B)(ϱAB) = ϱA ⊗ 1B −
1
k

ϱAB ≥ 0, (5.2.16)

where ϱA = trB[ϱAB]. Noting that tr[ϱABO] ≥ 0 for any positive operator O, and
taking O = (Mk ⊗ 1B)(ϱAB), we have

tr[ϱ2
AB] ≤ k tr[ϱ2

A]. (5.2.17)
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Similarly, we can show that tr[ϱ2
AB] ≤ k tr[ϱ2

B]. In summary, any d× d quantum
state ϱAB with Schmidt number k obeys

tr[ϱ2
AB] ≤ k min

{
tr[ϱ2

A], tr[ϱ2
B]
}

. (5.2.18)

For k = 1, this inequality becomes equivalent to the well-known entropic sepa-
rability criterion [64, 412].

Here we note that

tr[ϱ2
AB] =

1
d2

(
1 + r2

A + r2
B + t2

)
. (5.2.19)

Using Eq. (5.2.19) and min(a, b) = (a + b− |a− b|)/2, we can rewrite the above
condition as

t2 ≤ kd− 1 +
kd− 2

2

(
r2

A + r2
B

)
− kd

2

∣∣∣r2
A − r2

B

∣∣∣ . (5.2.20)

In the above Result, the right-hand side is subsumed as sk ≡ s
(
k, d, r2

A, r2
B
)
. A

violation of this inequality implies that the state has a Schmidt number of at least
(k + 1). Result 22 follows by applying the inequality to the work fluctuations
(∆W)2 in Eq. (5.2.6). We remark that a similar proof technique was employed in
Ref. [1].

A violation of Eq. (5.2.13) implies that the battery state ϱAB has a Schmidt
number of at least (k + 1). Hence, observing stronger work fluctuations from
local random unitaries on a composite quantum battery allows us to detect high-
dimensional entanglement.

Remark 16. Note that the converse argument can be also true in the case of pure
states. To see this, we begin by noting that the purity constraint tr[ϱ2

AB] = 1 is
equivalent to r2

A + r2
B = d2 − 1− t2. For the sake of simplicity, assuming h2

A =

h2
B = h2, we can then express (∆W)2 as

(∆W)2 = h2 +
Gt2

d2 − 1
, (5.2.21)

where G = (g2v2)/(d2 − 1)− h2. Also, we can rewrite the Schmidt number cri-
terion as t2 ≤ d2 + 1− 2d

k . If the interaction is sufficiently strong, that is, G > 0,
then we get an upper bound on (∆W)2 from the Schmidt number criterion and
arrive at the same conclusion as Result 22. On the other hand, if the interaction
is weak, G < 0, then a lower bound on (∆W)2 is obtained, and hence weaker work
fluctuations would certify higher entanglement.

Remark 17. We remark that our approach to detecting high-dimensional entan-
glement by observing random fluctuations can be applied not only to energy,
but also to other observables measuring bipartite correlations.
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5.2.4 Example: entangled thermal state

We shall test our criterion with the family of states

ϱα = α |ϕ⟩⟨ϕ|+ (1− α)τA ⊗ τB. (5.2.22)

They are mixtures between the product of local Gibbs states at temperature T,
τX = exp(−HX/T)/ZX, and the pure entangled state |ϕ⟩ that is locally indistin-
guishable from the Gibbs states, trA(|ϕ⟩⟨ϕ|) = τB and trB(|ϕ⟩⟨ϕ|) = τA. Note
that, in the limit T → ∞, the Gibbs states are maximally mixed, and hence the
ϱα are isotropic states.

As a simple example, consider an interacting four-qubit battery based on the
Ising-type Hamiltonian

HI = ∑
i=1,2,3

JiZi ⊗ Zi+1 + b
4

∑
i=1

Zi, (5.2.23)

with Zi being the Pauli-Z matrix acting on the i-th qubit, b the homogeneous
field strength, and Ji the nearest-neighbour couplings. Assuming the bipartition
(A|B) = (1, 2|3, 4), we can identify h2

A = J2
1 + 2b2, h2

B = J2
3 + 2b2, and g2v2 = J2

2 .
We illustrate the work fluctuations for an exemplary choice of strong coupling
parameters in Fig. 5.2. Panel (a) shows the work variance as a function of (b, α)
and the Schmidt-number thresholds for k = 1, 2, 3, while (b) shows two selected
histograms of suitably binned work values Eq. (5.2.1) associated with the Haar-
random local unitaries.

In practice, these values could be inferred from joint local measurements in
the Z-basis on sufficiently many identical copies of each unitary sample, and the
statistical significance can be evaluated according to Ref. [2]. In the following,
however, we will proceed to introduce two different measurement schemes to
estimate the work fluctuations.

5.3 Energy measurement protocols

5.3.1 Noisy two-point measurements

The projective two-point measurement (TPM) protocol [500–502] defines a quan-
tum notion of fluctuating work in analogy to classical stochastic thermodynam-
ics, for trajectories of an arbitrary system state subject to a given isentropic pro-
cess U. In this protocol, one first performs a projective measurement in the sys-
tem’s energy eigenbasis, lets the post-measurement state evolve under U, and
then performs a second projective energy measurement. The difference between
both outcomes can be seen as a random realization of work under U, and the so
defined work statistics obey the Jarzynski equality [500–502].

However, the protocol has two major downsides. First, it is highly invasive
since the first measurement voids all the coherence between energy levels that
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Figure 5.2: Schmidt number detection through local work fluctuations in an
Ising-type battery of 2 + 2 qubits. (a) Variance of average work extracted by
local random unitaries acting on each battery half as a function of the field
strength b and the mixing ratio α between a maximally entangled and a product
Gibbs state. All energies are in units of the interaction strength J2, and we fix
J1,3 = 0.5J2 and T = 1.5J2. Quantum states with SN = 1, 2, 3 are contained in the
areas below the respective dashed lines, according to Eq. (5.2.13), so above a line
allows us to detect SN. For comparison, we also indicate a bottom blue threshold
given by the PPT criterion. (b) Exemplary histograms of negative work values
from a sample of 106 unitaries for the two marked cases (i) and (ii) at b = 0.45,
corresponding to an entangled state of SN = 4 at α = 0.96 and a state at α = 0.08,
compatible with separable states, respectively. Work values are divided into bins
of size 0.1J2. This figure is taken from Ref. [4].
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the initial system state might have. Genuine quantum signatures such as entan-
glement between different system parts may thus be destroyed. Second, ideal
projective measurements may not be achievable due to limited accuracy and
unavoidable noise in experiments. These two problems have motivated recent
efforts to generalize the TPM protocol [47, 503–512].

We alleviate both problems by employing a TPM protocol with noisy de-
tectors, first introduced in Ref. [47]. We adapt it to our setting of composite
quantum batteries and have A, B each apply the protocol for a local energy mea-
surement. To this end, we expand

HX =
d

∑
i=1

EX
i ΠX

i , (5.3.1)

with the energy eigenvalues Ei and the projectors ΠX
i to the corresponding

eigenspaces. Moreover, we write the interaction term as

V =
d

∑
i,j=1

DijΠA
i ⊗ΠB

j + Vod, (5.3.2)

with tr[VodΠA
i ⊗ΠB

j ] = 0 for all i, j. This separates mere level shifts of the joint
diagonal energy spectrum, Eij = EA

i + EB
j + gDij, from the actual change of the

energy eigenbasis via the off-diagonal part Vod. The following results are based
on estimating the Eij-spectrum from noisy measurements in the basis of the
ΠA

i ⊗ΠB
j . We stress that, for Vod ̸= 0, the Eij-values are not the battery energies

and the measurement does not constitute an actual energy measurement (though
it approximates one for small Vod).

The population of the diagonal spectrum (Eij) can be probed straightfor-
wardly by combining the outcomes of local energy measurements. Suppose
these measurements are erroneous in that they detect the correct local energy
state only with probability ε, while producing a completely random outcome
with probability 1− ε. Assuming the same ε for both sides, the corresponding
POVMs are

PX
i = εΠX

i +
1− ε

d
1X,

d

∑
i=1

PX
i = 1X. (5.3.3)

Here we assume that the ΠX
i are rank-1 projectors, so that the entire POVM

has d outcomes. On average, we can obtain an unbiased estimator for (Eij)
from them by assigning to each joint outcome (ij) occuring with probability
mij = tr[PA

i ⊗ PB
j ϱAB] the rescaled and shifted energy value [47]

eij =
EA

i + EB
j

ε
+

gDij

ε2 −
1− ε

dε
(tr[HA] + tr[HB]) . (5.3.4)

For ε = 1, we have noiseless projective measurements and eij = Eij, whereas
small values ε ≪ 1 correspond to a weak measurement dominated by errors.
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Note that the case of different errors εA, εB is also discussed in the next subsec-
tion.

We subject the post-measurement state to local random unitaries UA ⊗UB,

σij =
UA

√
PA

i ⊗UB

√
PB

j ϱAB

√
PA

i U†
A ⊗

√
PB

j U†
B

mij
, (5.3.5)

before applying the same local measurement again. The probability to obtain
e′kl if the first outcome was eij is mkl|ij = tr[PA

k ⊗ PB
l σij], to which we associate a

presumed work value wijkl = eij − e′kl. (It may only approximate the extracted
work if Vod ̸= 0, but small.) Averaged over many repetitions at fixed UA ⊗UB,
we define

WTPM(ε) ≡WTPM(ε, UA, UB) = ∑
i,j,k,l

mijmkl|ijwijkl, (5.3.6)

which in turn can be averaged over a large sample of unitaries to yield

WTPM(ε) =
∫

dUA

∫
dUB WTPM(ε), (5.3.7)

(∆WTPM(ε))2 = WTPM(ε)2 −WTPM(ε)
2
. (5.3.8)

In general, these TPM cumulants do not coincide with the previously defined
ones in Eqs. (5.2.2) and (5.2.3). However, we can still obtain an explicit relation
between the variances:

Result 23. For any d× d composite quantum battery described by ϱAB and HAB, the
local noisy TPM protocol results in the presumed work variance

(∆WTPM(ε))2=n0(ε)(∆W)2
D+n1(ε)(∆WProj)

2+[1−n0(ε)−n1(ε)](∆WNoisy)
2,

(5.3.9)
where the functions n0,1(ε) ∈ [0, 1] for any ε ∈ [0, 1] are explicitly given. The term
(∆W)2

D is the theoretical work variance in Eq. (5.2.6) evaluated for Vod = 0. The
(∆WProj)

2 and (∆WNoisy)
2 represent the variance for a noiseless projective TPM and an

additional contribution at finite noise ε ∈ (0, 1), respectively, both also at Vod = 0.

Remark 18. For detailed descriptions, see Result 25, where the lengthy explicit
expressions for (∆WProj)

2, (∆WNoisy)
2, and n0,1(ε) are given. There we also show

that the noisy TPM variance obeys

(∆WTPM(ε))2 ≤ (∆W)2
D, (5.3.10)

which saturates in the limit ε → 0, where n0 → 1 and n1 → 0. In the opposite
limit ε → 1 where n1 → 1 and n0 → 0, we have a local projective TPM which
does not detect any entanglement. We compare the measured work variance at
various noise levels to the theoretical values for our example states Eq. (5.2.22)
in Fig. 5.3, demonstrating that the noisy local TPM can detect entanglement.
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Figure 5.3: (a) Comparison between the theoretical work variance (∆W)2
D (black

solid) and the variance (∆WTPM(ε))2 resulting from a local TPM protocol at var-
ious noise levels ε = 0.2, 0.5, and 1.0 (respectively, dashed blue, dotted red,
and dash-dotted green), for the Ising battery of Fig. 5.2 at fixed b = 0.45J2 and
varying mixing ratio α. The dashed horizontal lines show the bounds compati-
ble with Schmidt numbers 1, 2, 3. (b) Weight functions n0(ε) (blue solid), n1(ε)
(dashed red), and 1− n0(ε)− n1(ε) (dotted green) versus noise level ε. This fig-
ure is taken from Ref. [4].

5.3.2 Detailed discussions about Result 23

More generally, let us begin by considering noisy local energy measurements on
A and B with errors εA, εB,

PA
i = εAΠA

i +
1− εA

d
1A, PB

i = εBΠB
i +

1− εB

d
1B. (5.3.11)

In the previous subsection, we assumed εA = εB. The probability to obtain the
local measurement outcomes i, j on ϱAB is given by mij = tr[PA

i ⊗ PB
j ϱAB]. Fol-

lowing the notion of quantum instruments [20], the normalized post-measurement
state can be described by

σij =
1

tr[Jij(ϱAB)]
Jij(ϱAB), (5.3.12)

where Jij is a linear completely positive and trace-preserving (CPTP) map satis-
fying

mij = tr[Jij(ϱAB)]. (5.3.13)

Like most studies on two-point measurement protocols, we employ the so-called
von Neumann-Lüders instrument in the previous subsection,

J vN-L
ij (ϱAB) =

√
PA

i ⊗
√

PB
j ϱAB

√
PA

i ⊗
√

PB
j . (5.3.14)
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For the sake of simplicity, let us now define the diagonal Hamiltonian HD as
an effective description:

HD = HAB − gVod, (5.3.15)

where

V =
d

∑
i,j=1

DijΠA
i ⊗ΠB

j + Vod (5.3.16)

and Vod is the off-diagonal part of the interaction Hamiltonian (with vanishing
diagonal elements) in the eigen-energy basis of the local Hamiltonian. On the
one hand, the Hamiltonian HD can be decomposed using the corresponding
projectors ΠA

i ⊗ΠB
j ,

HD = ∑
i,j

EijΠA
i ⊗ΠB

j , (5.3.17)

with the joint diagonal energy spectrum Eij = EA
i + EB

j + gDij, given in the previ-
ous subsection. On the other hand, the Hamiltonian HD can also be decomposed
into the measurement operators PA

i , PB
j ,

HD = ∑
i,j

eijPA
i ⊗ PB

j , (5.3.18)

with appropriate energy values eij assigned to each pair of measurement out-
comes (i, j),

eij = eA
i + eB

j + gdij, (5.3.19)

eA
i =

1
εA

EA
i −

1− εA

dεA
tr[HA], eB

j =
1
εB

EB
j −

1− εB

dεB
tr[HB], (5.3.20)

dij =
1

εAεB
Dij. (5.3.21)

The POVM decomposition of the Hamiltonian is motivated by the research in
Ref. [47]. For εA, εB = 1, we have noiseless projective measurements and eij = Eij,
whereas small values εA, εB ≪ 1 correspond to a weak measurement dominated
by errors.

Similarly to the previous subsection, we define the average work over the
noisy TPM protocol for independent errors as

WTPM(εA, εB) ≡WTPM(εA, εB, UA, UB) = ∑
i,j,k,l

mijmkl|ijwijkl. (5.3.22)

Here we recall that mkl|ij = tr[PA
k ⊗ PB

l σ′ij] is the conditional probability to obtain
the outcomes k, l associated to the energy value e′kl in the second measurement,
given that we obtained (i, j) and eij in the first measurement. The second mea-
surement receives the state σ′ij = (UA ⊗ UB)σij(UA ⊗ UB)

†, which is the state
transformed by a local random unitary operation after the first noisy energy
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measurement. We associate the presumed work value wijkl = eij − e′kl to the
outcomes. Taking an average over a large sample of local unitaries yields

WTPM(εA, εB) =
∫

dUA

∫
dUB WTPM(εA, εB), (5.3.23)

(∆WTPM(εA, εB))
2 = WTPM(εA, εB)2 −WTPM(εA, εB)

2
. (5.3.24)

In the following, we evaluate and simplify the unitary integrals:

Result 24. For any d× d composite quantum battery described by ϱAB and HD, the local
noisy TPM protocol with εA and εB for the von Neumann-Lüders instrument results in
the average which can be expressed as

WTPM(εA, εB) = tr[ϱABHD]−
tr[HD]

d2 . (5.3.25)

Result 25. For any d× d composite quantum battery described by ϱAB and HD with
tr[HD] = 0, the local noisy TPM protocol with εA and εB for the von Neumann-Lüders
instrument results in the presumed work variance which can be expressed as

(∆WTPM(εA, εB))
2 = ΥIdeal + ΥProj + ΥNoisy, (5.3.26)

where ΥIdeal, ΥProj, and ΥNoisy, respectively, represent the effects of the ideal theoretical
work variance, the variance from a noiseless projective TPM, and the noisy additional
measurements at finite noise. They are given by

ΥIdeal ≡ κ2
AB(∆W)2

D, (5.3.27)

ΥProj ≡
1

d2 − 1

{[
( f 4

εA
f 4
εB
+ κ2

A)
(

dp2
A − 1

)
+ κ2

Br2
A

]
h2

A

+
[
( f 4

εA
f 4
εB
+ κ2

B)
(

dp2
B − 1

)
+ κ2

Ar2
B

]
h2

B

+
g2v2

d2 − 1

[
f 4
εA

f 4
εB

(
d2p2

AB − dp2
A − dp2

B + 1
)

+ κ2
A ∑

a,b,c
tabtcbζA

ac + κ2
B ∑

a,b,c
tabtacζB

bc

]}
, (5.3.28)

ΥNoisy ≡
2

d2 − 1

{[
γA

(
dp2

A − 1
)
+ κBκABr2

A

]
h2

A +
[
γB

(
dp2

B − 1
)
+ κAκABr2

B

]
h2

B

+
g2v2

d2 − 1

[
γAB

(
d2p2

AB − dp2
A − dp2

B + 1
) ]

+ κAκAB ∑
a,b,c

tabtcbζ A
ac + κBκAB ∑

a,b,c
tabtacζB

bc

}
. (5.3.29)

Here, (∆W)2
D is the ideal theoretical work variance, Eq. (5.2.6) in the previous sub-

section, evaluated for the diagonal Hamiltonian HD, that is, for Vod = 0 and v2 =
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(1/d2)∑i,j D2
ij. In the above expressions, we introduce the short-hand notations

γA ≡ f 2
εA

f 2
εB
(κA + κB + κAB) + κA(κB + κAB), (5.3.30)

γB ≡ f 2
εA

f 2
εB
(κA + κB + κAB) + κB(κA + κAB), (5.3.31)

γAB ≡ f 2
εA

f 2
εB
(κA + κB + κAB) + κAκB, (5.3.32)

κAB ≡ κAκB/( f 2
εA

f 2
εB
), (5.3.33)

κA ≡ f 2
εA

gεB (2 fεB + dgεB) , (5.3.34)

κB ≡ f 2
εB

gεA (2 fεA + dgεA) , (5.3.35)

fεX ≡
√

εX +
1− εX

d
−
√

1− εX

d
, (5.3.36)

gεX ≡
√

1− εX

d
, (5.3.37)

p2
AB ≡∑

i,j
(pAB

ij )2, p2
A ≡∑

i
(pA

i )
2, p2

B ≡∑
j
(pB

j )
2, (5.3.38)

pAB
ij ≡ tr[ΠA

i ⊗ΠB
j ϱAB], pA

i ≡∑
j

pAB
ij , pB

j ≡∑
i

pAB
ij , (5.3.39)

ζ A
ab ≡∑

i

tr(ΠA
i λaΠA

i λb)

d
, ζB

ab ≡∑
i

tr(ΠB
i λaΠB

i λb)

d
, (5.3.40)

with the normalization condition

f 2
εX

+ 2 fεX gεX + dg2
εX

= 1, (5.3.41)

for X = A, B. Let us define

n0(εA, εB) ≡ κ2
AB, (5.3.42)

n1(εA, εB) ≡ f 4
εA

f 4
εB
+ κ2

A + κ2
B, (5.3.43)

nNoisy(εA, εB) ≡ 2
[

f 2
εA

f 2
εB
(κA + κB + κAB) + κAκB + κAκAB + κBκAB

]
, (5.3.44)

where n0(εA, εB), n1(εA, εB), and nNoisy(εA, εB) are explicitly known functions obeying

0 ≤ n0(εA, εB), n1(εA, εB), nNoisy(εA, εB) ≤ 1, (5.3.45)

n0(εA, εB) + n1(εA, εB) + nNoisy(εA, εB) = 1. (5.3.46)

Then we also have

(∆WTPM(εA, εB))
2 ≡ n0(εA, εB)(∆W)2

D + n1(εA, εB)(∆WProj)
2

+ [1− n0(εA, εB)− n1(εA, εB)](∆WNoisy)
2, (5.3.47)

where

(∆WProj)
2 ≡ 1

n0(εA, εB)
ΥProj, (5.3.48)

(∆WNoisy)
2 ≡ 1

1− n0(εA, εB)− n1(εA, εB)
ΥNoisy. (5.3.49)
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Remark 19. In the case of symmetric errors, εA = εB = ε, we arrive at Result 23
in the previous subsection.
Remark 20. The proofs of Results 24 and 25 are given in Sec. 9.4.
Remark 21. For any εA, εB and any dimension d, we find the inequality

(∆WTPM(εA, εB))
2 ≤ (∆W)2

D, (5.3.50)

which is saturated by the limit εA, εB → 0. To see this, we first show that

p2
A=∑

i
(pA

i )
2=∑

i
tr[ΠA

i ϱA]
2=∑

i
tr[ΠA

i ϱAΠA
i ϱA]≤∑

i
tr[ΠA

i ϱ2
A]= tr[ϱ2

A],

(5.3.51)

where we employ that tr[ABAB] ≤ tr[A2B2], for any Hermitian operators A, B.
This result directly yields dp2

A− 1 ≤ r2
A. Similarly we can have that dp2

B− 1 ≤ r2
B

and d2p2
AB − dp2

A − dp2
B + 1 ≤ t2. Also, we find

∑
a,b,c

tabtcbζ A
ac =

1
d2 ∑

a,b,c,d
∑

i
tabtcdtr(ΠA

i λaΠA
i λc)tr(λbλd)

=
1
d2 ∑

a,b,c,d
∑

i
tabtcdtr

[
(ΠA

i ⊗ 1B)(λa ⊗ λb)(Π
A
i ⊗ 1B)(λc ⊗ λd)

]
=

1
d2 ∑

i
tr
[
(ΠA

i ⊗ 1B)T2(ΠA
i ⊗ 1B)T2

]
≤ 1

d2 ∑
i

tr
[
(ΠA

i ⊗ 1B)T2
2

]
=

1
d2 tr[T2

2 ] = t2, (5.3.52)

where we employ that tr[ABAB] ≤ tr[A2B2], for any Hermitian operators A, B.
Similarly, we have that ∑a,b,c tabtacζB

bc ≤ t2. Substituting these results into the
expression (∆WTPM(εA, εB))

2 given in Result 25 and using the condition f 2
εX

+

2 fεX gεX + dg2
εX

= 1 for X = A, B, we can straightforwardly complete the proof.

5.3.3 Noisy coincidence measurements

In order to estimate the work variance in Eq. (5.3.8), the noisy TPM scheme still
relies on subjecting many copies of the battery state to the same randomly drawn
local unitary. We can reduce this overhead by performing local coincidence
measurements on merely two state copies ϱAB ⊗ ϱA′B′ subjected to the same
local unitary UA ⊗UB.

Ideally, a joint dichotomic projective measurement ΠAA′ ⊗ ΠBB′ would act
locally on both A-copies and on both B-copies, with

ΠXX′ = ∑
i

ΠX
i ⊗ΠX′

i , (5.3.53)

which projects onto the subspace spanned by energy product states with the
same eigenvalues EX

i = EX′
i . By repeating this measurement with a large sample
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of Haar-random unitaries, we could estimate the average probability C that the
two copies’ local energies on the A- and on the B-side both coincide.

More generally, we can define a dichotomic energy coincidence POVM based
on noisy local energy measurements according to Eq. (5.3.3),

PXX′ = ∑
i

PX
i ⊗ PX′

i = ε2ΠXX′ +
1− ε2

d
1XX′ (5.3.54)

The probability for local energy coincidence between the copies on both sides is
then C(ε) = tr[PAA′ ⊗ PBB′ϱ

′
AB ⊗ ϱ′A′B′ ]. Averaged over the unitaries,

C(ε) = 1
d2

[
1 +

(r2
A + r2

B)ε
2

d + 1
+

t2ε4

(d + 1)2

]
, (5.3.55)

which we can directly relate to the entanglement-sensitive work variance (∆W)2

from Eq. (5.2.3). Eq. (5.3.55) can be derived more generally, using different errors
εA, εB for measurements on the A, B sides:

Proof. First, we can immediately find

C(εA, εB) = tr [Φ(ϱAB)PAA′ ⊗ PBB′ ] ,

where Φ(ϱAB) is defined in Eq. (5.2.11). Since

tr[PXX′ ] = ε2
Xtr[ΠXX′ ] +

1− ε2
X

d
tr[1XX′ ] = d, (5.3.56)

tr[SXPXX′ ] = ε2
Xtr[SXΠXX′ ] +

1− ε2
X

d
tr[SX1XX′ ]

= (d− 1)ε2
X + 1, (5.3.57)

we find

C(εA, εB) =
1
d2

[
1 +

r2
Aε2

A
d + 1

+
r2

Bε2
B

d + 1
+

t2ε2
Aε2

B
(d + 1)2

]
.

For εA = εB = ε, we arrive at Eq. (5.3.55).

Expressing the battery interaction strength as g2v2 = (d− 1)(h2ε2 + c), with
h2 = min (h2

A, h2
B) and a new term c, we find:

Result 26. In the noisy energy coincidence measurement protocol, we have

C(ε) ≤ 1
d2

[
1 +

(d− 1)ε2

h2 (∆W)2 +
t2ε2(|c| − c)
2(d + 1)2h2

]
. (5.3.58)

Hence, the energy coincidence measurement protocol on two identical copies
gives access to nonlinear functions of the battery state such as the work variance,
which allows us to detect the Schmidt number by virtue of Result 22.
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The proven influence of the Schmidt number on work fluctuations exempli-
fies the observable thermodynamic implications of high-dimensional bipartite
entanglement. Our assessment in terms of the work variance with respect to
Haar-random samples of unitaries extends previous studies on the direct es-
timation of nonlinear functions [107, 113, 513–516], experimental lower bounds
on the concurrence [517–520], and protocols for randomized measurements [414,
415, 418].

5.4 Discussions

This Chapter investigated the role of entanglement in local work exchange with
a composite quantum battery, as described by an interacting bipartite quantum
system. In particular, we found that the variance of the average extracted work
over a Haar-random sample of local unitary processes obeys a hierarchy of in-
equalities that detects the Schmidt number of the battery state. While we have
seen that these bounds cannot be probed directly in a standard projective two-
point measurement scheme, we have shown that the Schmidt number can be
detected in a two-point measurement with noisy detectors as well as in an en-
ergy coincidence measurement.

There are several directions for further research. First, it would be interest-
ing to verify our results on experimental platforms for quantum thermal ma-
chines and batteries. Second, the randomized two-point measurement approach
could be extended to non-unitary, dissipative processes, facilitating the detec-
tion of heat leaks and non-unital dynamics in complex open quantum systems
[521, 522]. Finally, our approach may encourage the development of tempera-
ture estimation [310] and thermodynamic uncertainty relation [523, 524] from
randomized measurement schemes.
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Chapter 6

Reference-frame-independent
quantum metrology

This Chapter addresses the application of random measurements for reference-
frame-independent quantum metrology. This Chapter provides systematic ap-
proaches using multiple copies of states based on randomized measurement
observables. This Chapter shows that our formulation remains invariant under
local unitaries and allows us to achieve several scalings in nonlinear Hamiltonian
dynamics.

6.1 Introduction

As discussed in Sec. 1.3, the major task in quantum metrology is to enhance the
metrological scheme so that it reaches an optimal precision beyond the classical
regime. To reach a higher accuracy, precise control of state preparation and opti-
mal measurement strategies should be required. In practice, however, unavoid-
able noise effects, such as magnetic field fluctuations or rotational polarizations
of optical fibers may result in losing calibration of measurement directions or
lacking common reference coordinate frames between different particles. This
may lead to a loss of the quantum advantage and improved precision may not
be achieved. Also, establishing a common frame of reference is known as an
expensive process in resource theory [100].

In this Chapter, we address this issue and develop a metrological scheme
under such limited quantum control. The key idea is to consider several copies
of a quantum state and arbitrarily rotate the measurement direction after an
entangling transformation. This procedure can be implemented by applying
uniform Haar random local unitary operations on the quantum system, spirited
by previous works of randomized measurements [1, 2, 4, 6, 7, 378, 379] and see
Sec. 1.4.

Based on this idea, we will first present the estimation precision for the state’s
copies using the error-propagation formula with the randomized measurements,
illustrated in Fig. 6.1. Our formulation can be described by local unitary in-
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M1 M2 M3 MN+ + + ···

···

···

+M

2nd

1st

=

Λθ

Λθ

Figure 6.1: Sketch of the quantum metrology scheme from randomized measure-
ments for two copies of N particles, proposed in this Chapter. In this scheme, the
parameter θ is first encoded onto the 1st and 2nd copies by Λθ ⊗Λθ in parallel
in different colors. Then the randomized measurement M = ∑i Mi is performed
with each local observable Mi acting on the 1st and 2nd copy, vertically in Gray
color. This Chapter shows that the precision (∆θ)2 can be smaller beyond the
single-copy regime.

variants and then can allow us to save the overall consumption of operational
resources experimentally friendly. Then we will give several examples and
demonstrate that quadratic scaling can also be achieved in a reference-frame-
independent way. Finally, we will discuss how our scalings can be worsened
by the effects of decoherence. Note that our approach differs from the previous
parameter estimation tasks with limited control over reference frames [525–530].

6.2 Quantum metrology

Let ϱ be a N-particle d-dimensional quantum (N-qudit) state defined in H⊗N
d .

Suppose that the initial state ϱ can be transformed by a quantum transformation
Λθ to encode a parameter θ: ϱ → ϱθ = Λθ(ϱ). A typical example is given by
a unitary operator Vθ = e−iθH with a Hamiltonian H as the generator of the
dynamics.

In general, the parameter θ can be estimated from a measurement observable
M. The precision of this estimation can be characterized by the well-known
error-propagation formula [170, 171, 289, 298, 299]

(∆θ)2 =
(∆M)2

|∂θ⟨M⟩|2
, (6.2.1)

where (∆M)2 ≡ ⟨M2⟩ − ⟨M⟩2 and ⟨M⟩ is the expectation of M.
In many studies of quantum metrology, there are often discussions about the

fundamental limit on precision with the help of the Cramer-Rao bound [300],
where the notions of quantum Fisher information and Hamiltonian variance
are used. There, the optimal measurement scheme is assumed to find the best
accuracy and reach the known scalings. In the following, we will start with the
error-propagation formula and show that the same scalings are achievable even
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in scenarios where quantum control is limited in the sense of lacking a common
reference frame.

6.3 Randomized observables

6.3.1 Two copies

We begin by considering k copies of the quantum state and performing a mea-
surement on the system

⟨Mk⟩ = tr(ϱ⊗k
θ Mk), (6.3.1)

where Mk acts on the k copies of the state defined in (H⊗N
d )⊗k. Here we suppose

that the measurement observable Mk is written in the local form

Mk =
N

∑
i=1

M(k)
i , (6.3.2)

where M(k)
i acts on the k copies of the i-th system.

Let us introduce a randomized (twirled) measurement observable

Φk(O) =
∫

dU (U†OU)⊗k, (6.3.3)

where O is an observable operator defined in Hd and the integral is taken as
the Haar random unitaries. By definition, this does not change under any local
unitary V⊗k for V ∈ U (d): Φk(V†OV) = Φk(O). For the sake of simplicity,
by default, we hereafter assume that tr(O) = 0 and tr(O2) = d. Now, we can
formulate the first main result of this Chapter:

Result 27. Consider the case with k = 2 and M(2)
i = Φ2(Oi). Then we have

⟨M2⟩ =
1

d2 − 1
S1(θ), (6.3.4)

where S1(θ) = ∑N
i=1[dtr(ϱ2

i ) − 1] for the single-particle reduced state ϱi = trī(ϱθ).
Thus the error-propagation formula leads to that

(∆θ)2
2 =

(d2 − 1)N − 2S1(θ) + 2S2(θ)− S2
1(θ)

|∂θS1(θ)|2
, (6.3.5)

where S2(θ) = ∑i<j[d2tr(ϱ2
ij) − 1 − S1(θ)] for the two-particle reduced state ϱij =

trij(ϱθ).
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Proof. To prove this result, we need to evaluate the Haar integral. In fact, one
can have

Φ2(Oi) =
1

d2 − 1

(
dSi − 1⊗2

d

)
, (6.3.6)

where Si is the SWAP operator acting on both the first and second copies of the
i-th system: S |x⟩ |y⟩ = |y⟩ |x⟩, for details, see Refs. [68, 109, 531]. Using the
property S2

i = 1d and the SWAP trick tr [(X⊗Y)S] = tr[XY] for operators X and
Y, we can straightforwardly arrive at the Eqs. (6.3.4) and (6.3.5).

Remark 22. The metrological scheme of this result is illustrated in Fig. 6.1, which
includes the three stages of preparation, encoding, and measurement.
Remark 23. The Sl(θ) is the so-called l-body sector length, which can capture
l-body quantum correlations for the integer l ∈ [1, N] in general, see Eq. (1.4.7).
The l-body sector length can be associated with the purity of the l-particle re-
duced states, and moreover it holds that ∑N

l=1 Sl(ϱ) = dNtr(ϱ2)− 1 for any N-
qudit state ϱ. An important property is that it is invariant under any local uni-
tary: Sl(V1 ⊗ · · · ⊗ VNϱV†

1 ⊗ · · · ⊗ V†
N) = Sl(ϱ) for an unitary Vi ∈ U (d) for

i = 1, . . . , N.
Remark 24. The precision obtained in Eq. (6.3.5) may remind us of the standard
spin-squeezing parameter [159–161, 313, 314]. This is because the denominator
depends on the reduced single-particle state, while the numerator depends not
only on the reduced single-particle state but also on the reduced two-particle
state. Note that the denominator and numerator in our result do not change
under any local unitary, unlike spin squeezing.
Remark 25. The precision (∆θ)2

2 in Eq. (6.3.5) does not change under any pa-
rameter encoding by local unitary VL = e−iθHL for a local Hamiltonian HL =

∑N
i=1 Hi ⊗ 1ī. On the other hand, some parameter encoding VG = e−iθHG for a

nonlinear interaction Hamiltonian HG can change the precision (∆θ)2
2.

Remark 26. One can generalize this method to further multicopy scenarios or
nonlocal measurement observables. This may lead to other types of local uni-
tary invariants with high degrees. However, evaluating the Haar integrals and
finding the simplified precision would be demanding, and moreover, they can-
not necessarily enable us to reach higher precision.

6.3.2 Four copies

In the following, we will consider four copies and derive the precision with
higher-order quantities. For the sake of simplicity of computation, let us con-
sider the case with qubits. Without loss of generality, we take O = σz. Now we
can formulate the result:

Result 28. Consider the case with k = 4, d = 2, and M(4)
i = Φ4(σ

(i)
z ) for i = 1, . . . , N.

Then we have

⟨M4⟩ =
1
5

F1(θ), (6.3.7)
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where F1(θ) = ∑N
i=1 r4

i and r2
i = 2tr[ϱ2

i ]− 1 for the single-particle reduced state ϱi =
trī(ϱθ). Thus the error-propagation formula leads to that

(∆θ)2
4 =

1
3

Z(θ)
|∂θ F1(θ)|2

, (6.3.8)

where
Z(θ) = 15N − 20S1(θ) + 8F1(θ) + 2F2(θ)− 3F2

1 (θ) (6.3.9)

and the sector length S1. Here we define that

F2(θ) = ∑
i<j

{
[tr(TijT⊤ij )]

2 + 2tr(TijT⊤ij TijT⊤ij )
}

, (6.3.10)

with the matrix Tij with the element [Tij]ab = tr(ϱijσa⊗ σb) for the two-particle reduced
state ϱij = trij(ϱθ).

Remark 27. The proof of Result 28 is given in Sec. 9.5. As the proof’s main idea,
we will first evaluate the expectation and then the variance, with the help of
results given in formulas in Ref. [6]. Here we would like to especially mention
that naively computing ⟨M2

4⟩ directly requires almost ten thousand terms, ex-
actly (24 + 16 + 12 + 16 + 24)2 = 922 = 8464 terms, according to Example 3.28.
in Ref. [68]. Instead, we apply the SWAP trick to obtain tr[XY2] = tr[(XY⊗Y)S]
mentioned the proof of Result 27, and use the fact that the SWAP in many qubits
can be decomposed into the SWAP in individual qubits, see Ref. [107].

6.4 Nonlinear Hamiltonian dynamics

Here it should be essential to notice that (∆θ)2
2 in Eq. (6.3.5) results from the two

copies of N particles, while (∆θ)2
4 in Eq. (6.3.8) results from the four copies of N

particles. To compare both correctly in terms of metrological usefulness, let us
introduce the gain relative to the shot-noise limit

Gk =
1

kN(∆θ)2
k

. (6.4.1)

Note that Gk > 1 implies the signature of quantum advantage for higher preci-
sion.

Here we show several scalings in the proximity of θ = 0 based on our results.
For that, we will consider the estimation precision in the limit of θ → 0. Now,
we present the following result:

Result 29. Consider that

|ψθ⟩ = e−iθH |1⟩⊗N , H = J2
x , Jx =

1
2

N

∑
i=1

σ
(i)
x . (6.4.2)
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Figure 6.2: Sensitivity of the metrological gain defined in Eq. (6.4.1) to parameter
shifts based on Result 29 in N = 100, where p denotes the noise parameter in
the local depolarizing channel in Eq. (6.5.1).

Then, the gain in Eq. (6.4.1) is obtained as

lim
θ→0

G2 =
N − 1

4
, (6.4.3a)

lim
θ→0

G4 =
3(N − 1)

8
, (6.4.3b)

for k = 2 and k = 4, respectively.

Proof. To prove them, we have to compute all the terms S1(θ), S2(θ), F1(θ), and
F2(θ). Let us begin by noting that the state |ψθ⟩ is symmetric under exchange
for any two qubits. This property enables us to calculate them efficiently. In
fact, it is sufficient to focus on one of the marginal reduced two-qubit states and
multiply its results by N or N(N − 1)/2 in the end. With the help of the result
in Ref. [532], we can have that

S1(θ) = N cos2N−2(θ), (6.4.4a)

S2(θ) =
N(N − 1)

4

[
cos2(N−2)(2θ) + 4 sin2(θ) cos2N−4(θ) + 1

]
. (6.4.4b)

In a similar manner, F1(θ) and F2(θ) can be calculated.

Remark 28. The nonlinear Hamiltonian dynamics with H = J2
x is called the one-

axis twisting Hamiltonian. This nonlinear dynamics is known to produce spin
squeezing which is metrologically useful entanglement [161, 313] and also many-
body Bell correlations [533].
Remark 29. Although the best precision for product states with separable mea-
surements has been shown as (∆θ)2 ∝ 1/N3 [293, 534], our results still have an
operational advantage since they are independent of the reference frame inde-
pendence between separated particles.
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Figure 6.3: Growth in the metrological gains defined in Eq. (6.4.1) for an in-
creasing number of particles based on Result 29 with a fixed θ = 1/N, where p
denotes the noise parameter in the local depolarizing channel in Eq. (6.5.1).

Remark 30. Fig. 6.2 compares the sensitivity of both gains to the parameter shift
in N = 100. Also, Fig. 6.3 illustrates the growth in both gains for increasing
particles for fixed θ = 1/N.

6.5 Decoherence

Here we discuss how decoherence can influence metrological gain. As a typical
decoherence model, we consider the so-called depolarizing noise channel for a
quantum state σ ∈ Hd, see Ref. [19]

Ep(σ) = pσ +
1− p

d
1d, (6.5.1)

where 0 ≤ p ≤ 1. In the following, let us discuss a scenario that a pure initial
state is transformed by nonlinear unitary dynamics, and then each particle is
locally affected by the depolarizing channel with the same local error parameter

Λθ(ϱ) = E⊗N
p (VθϱV†

θ ). (6.5.2)

In this scenario, compared to the noiseless case, the Sl and Fl for l = 1, 2 in the
precision in Eqs. (6.3.5) and (6.3.8) can be changed as

Sl(θ)→ p2lSl(θ), (6.5.3a)

Fl(θ)→ p4l Fl(θ). (6.5.3b)

In Figs. 6.2 and 6.3, we plot the gains Gk(p) for a noise parameter p of Re-
sult 29 and compare the noiseless and a noisy case with p = 0.95. In Fig. 6.2,
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we can find that the maximal gain in the noisy case cannot be achieved by the
limit of θ → 0 unlike the noiseless case, and the optimal value of θ can be shifted
depending on p and N [317, 535].

6.6 Exponential scaling

Here we consider another Hamiltonian dynamics and show that the gain Gk in
Eq.(6.4.1) for k = 2, 4 scales exponentially, similarly to the example of Roy and
Braunstein in Ref. [295]. Here we formulate the exponential scaling:

Result 30. Consider that |ψn
θ ⟩ = e−iθH |0⟩⊗N and H = Qn for n = 1, 2 such that

Q1 + iQ2 = (σx + iσy)⊗N. Then both the gains in Eq. (6.4.1) are given by

lim
θ→0

G2 =
4N

N + 1
, (6.6.1a)

lim
θ→0

G4 =
3× 22N+1

3N + 1
. (6.6.1b)

We remark that the Hamiltonian Q1 is the same as the Hermitian operator
used in Mermin-type inequalities [116, 536–538]. Our exponential scaling can
coincide with the limit proposed by Roy and Braunstein in Ref. [295].

Proof. According to Ref. [295], we have that

|ψ1
θ⟩ = cos(θ′) |0⟩⊗N − i sin(θ′) |1⟩⊗N , (6.6.2a)

|ψ2
θ⟩ = cos(θ′) |0⟩⊗N + sin(θ′) |1⟩⊗N , (6.6.2b)

where θ′ = 2N−1θ. To proceed, we should evaluate all the terms S1(θ), S2(θ), F1(θ),
and F2(θ). In more general, let us consider the N-qubit asymmetric GHZ state:
|GHZα, β⟩ = α |0⟩⊗N + β |1⟩⊗N for complex coefficients α, β with |α|2 + |β|2 = 1.
Since the marginal reduced two-qubit state in any systems x, y = 1, . . . , N is
given by

ϱ
(2)
xy = trxy

(
|GHZα, β⟩⟨GHZα, β|

)
=

1
4

{
1⊗4

2 + ∆[σ(x)
z + σ

(y)
z ] + σ

(x)
z ⊗ σ

(y)
z

}
, (6.6.3)

with ∆ = |α|2 − |β|2, we can immediately find

S1(GHZα, β) = N∆2, (6.6.4a)

S2(GHZα, β) =
N(N − 1)

2
, (6.6.4b)

F1(GHZα, β) = N∆4, (6.6.4c)

F2(GHZα, β) =
3N(N − 1)

2
. (6.6.4d)

Substituting these into the form in Eq. (6.4.1) and taking the limit θ → 0, we can
complete the proof.
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6.7 Discussions

This Chapter proposed metrological schemes with two and four copies of a
quantum state from randomized measurements.We have shown that the quadratic
scaling of the estimation precision can be also achieved in our method.

There are several research directions in which our work can be generalized.
First, it would be interesting to analytically show several scaling with the nonlin-
ear Hamiltonian H = Jk

x [290, 291, 294]. Second, by the spirit of spin squeezing,
finding metrologically-worthwhile uncertainty relations from randomized mea-
surements may give fundamental limitations on precision. Finally, our method
may encourage the further development of parameter estimation tasks in terms
of multicopy metrology [539, 540], multiparameter scenarios [94, 302–305], or
temperature estimation in quantum thermodynamics [310].
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Chapter 7

Collective randomized
measurements in quantum
information processing

This Chapter develops the scheme of randomized measurements in ensembles
of particles in the collective rotations. This Chapter presents several criteria for
characterizing spin-squeezing entanglement from collective randomized mea-
surements. Also, this Chapter shows that an antisymmetric observable which
is invariant under collective rotations is useful to detect the entanglement of
phased Dicke states. This Chapter is based on Ref. [10].

7.1 Introduction

The current findings from randomized measurements are not fully compre-
hensive in several respects. One limitation of the results presented so far is
the assumption that local subsystems can be controlled individually. However,
this may not be available in an ensemble of quantum particles such as cold
atoms [541], trapped ions [542], or Bose-Einstein condensates with spin squeez-
ing [159, 312, 313]. Such quantum systems can be characterized by measuring
global quantities such as collective angular momenta [160, 161, 171, 276, 289].

Another practical challenge is that powerful entanglement detection requires
many operational resources. For instance, Refs. [1, 255] suggested that at least
fourth-order moments are needed to characterize a very weak form of entangle-
ment, known as bound entanglement. Bound entanglement cannot be distilled
into pure maximally entangled states [166] and may not be verified by the PPT
criterion [194, 195], while it has been shown to be useful for cryptography [232,
233] and metrology [234, 235]. On the other hand, from a practical side, the im-
plementation of higher-order moments may be challenging, because it requires
more measurements by Haar random unitaries, which may not be feasible due
to the limitations of unitary designs [7, 378, 402, 543].

In this Chapter, we will overcome these issues and propose systematic meth-
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<Jz>

<Jy>

<Jx>

Figure 7.1: Sketch of the collective Bloch sphere with the coordinates
(⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩). Many-body spin singlet states are represented by a dot at the
center (Red), which does not change under any multilateral unitary transfor-
mations U⊗N (Green arrows). Spin measurement in the z-direction is rotated
randomly (Blue arrow). This paper proposes systematic methods to characterize
spin-squeezing entanglement in an ensemble of particles by rotating a collec-
tive measurement direction randomly in this sphere. This figure is taken from
Ref. [10].

ods to characterize entanglement in quantum ensembles with limited control
over individual systems. The main idea is to perform collective random mea-
surements on the quantum system and consider the moments of the resulting
distribution. We will apply this idea to different scenarios and present several
entanglement criteria.

We first show that spin-squeezing entanglement in permutationally sym-
metric N-particle systems can be detected in a necessary and sufficient man-
ner. Second, even in non-permutationally symmetric cases, we demonstrate that
the second-order moment can characterize multiparticle bound entanglement.
Third, we further introduce a criterion to certify multiparticle bound entan-
glement with antisymmetric correlations via third-order moments. Finally, we
generalize the method to verify entanglement between spatially-separated two
quantum ensembles.
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7.2 Collective randomized measurements

Consider a quantum ensemble that consists of N spin-1
2 particles, denoted by

ϱ ∈ H⊗N
2 .Suppose that each particle in this ensemble cannot be controlled indi-

vidually, and one can instead measure the collective angular momentum

Jl =
1
2

N

∑
i=1

σ
(i)
l , (7.2.1)

with Pauli-l spin matrices σ
(i)
l for l = x, y, z acting on i-th subsystem.

Let us perform measurements with Jz and rotate the collective direction in an
arbitrary manner. We introduce an expectation value and its variance according
to a random unitary:

⟨Jz⟩U = tr
[
ϱU⊗N Jz(U†)⊗N

]
, (7.2.2a)

(∆Jz)
2
U = ⟨J2

z ⟩U − ⟨Jz⟩2U. (7.2.2b)

These depend on the choice of collective simultaneous multilateral unitary op-
erations U⊗N. Now we define a linear function as

fU(ϱ) = α(∆Jz)
2
U + β⟨Jz⟩2U + γ, (7.2.3)

where α, β, γ are real constant parameters. The function fU(ϱ) can be mea-
sured experimentally and each parameter can be made artificially in the post-
processing.

Now the key idea to detect entanglement in ϱ is to take a sample over collec-
tive local unitaries and consider the r-th moments of the resulting distribution

J (r)(ϱ) =
∫

dU [ fU(ϱ)]
r, (7.2.4)

where the integral is taken according to the Haar measure. This collective uni-
tary transformation can be written as U⊗N = eiu·J, where u = (ux, uy, uz) is
a three-dimensional unit vector and J = (Jx, Jy, Jz) is a vector of collective an-
gular momenta. The randomization of Haar collective unitaries corresponds to
the uniform randomization over the three-dimensional sphere in the coordinates
(⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩). This sphere is known as the collective Bloch sphere [123, 161, 171]
in an analogy of the standard Bloch sphere in a single-qubit system, illustrated
in Fig. (7.1). Similar randomization strategies have already been discussed in
Refs. [325, 326], but the detectable states are limited only to Dicke states.

It is essential that by definition, the moments are invariant under any collec-
tive local unitary transformation

J (r)
[
V⊗Nϱ(V†)⊗N

]
= J (r)(ϱ), (7.2.5)

for a collective local unitary V⊗N for 2× 2 unitaries V. In the following, we will
discuss entanglement detection based on the moments J (r).
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7.3 Permutationally symmetric state

To proceed, let us recall that a N-qubit state ϱ is called permutationally symmetric
(bosonic) if it satisfies

Pabϱ = ϱPab = ϱ, (7.3.1)

for all a, b ∈ {1, 2, . . . , N}with a ̸= b. Here Pab is an orthogonal projector onto the
so-called symmetric subspace that remains invariant under all the permutations.
Note that Pab can be written as Pab = (1+ Sab)/2 with the SWAP (flip) operator
Sab = ∑i,j |ij⟩⟨ji| that can exchange qubits a, b: S |a⟩ ⊗ |b⟩ = |b⟩ ⊗ |a⟩.

There are many studies on the entanglement of permutationally symmetric
states in Refs. [89, 187, 198, 323, 328–330]. In general, a state ϱ is said to contain
entanglement if it cannot be written as the fully separable state

ϱfs = ∑
k

pkϱ
(1)
k ⊗ · · · ⊗ ϱ

(N)
k , (7.3.2)

where the pk form a probability distribution. In particular, a permutationally
symmetric state ϱ is said to possess bipartite entanglement or often called spin-
squeezed if a two-particle reduced state ϱab = tr(a,b)c(ϱ) is entangled for all pairs
(a, b) with the complement (a, b)c. In previous works [135, 331, 332], such spin-
squeezing entanglement has been completely characterized in a necessary and
sufficient manner. On the other hand, they should require optimizations over
measurement directions for a given state.

In the following, we will show that the collective randomized measurement
scheme can reach the same conclusion without such an optimization. Now we
can formulate the first main result of this Chapter:

Result 31. For a N-qubit permutationally symmetric state ϱ, the first, second, and third
moments J (r)(ϱ) for r = 1, 2, 3 allows us to achieve the necessary and sufficient crite-
rion for spin-squeezing entanglement, where α = 2/N2, β = −2(N− 2)/(NN2), γ =
−1/[2(N − 1)] and N2 = N(N − 1).

Remark 31. The proof of this Result is given below, and the technical calculation
is shown in Sec. 9.6. As the proof’s main idea, we will first explain that the
necessary and sufficient condition is equivalent to the violation of C ≥ 0 for the
covariance matrix Cij = ⟨σi ⊗ σj⟩ϱab − ⟨σi⟩ϱa⟨σj⟩ϱb , with the reduced state ϱab for
any choice a, b, for details, see Refs. [198, 199, 544]. Then we will analytically
show that the violation can be accessible from the moments J (r)(ϱ) for r =
1, 2, 3.
Remark 32. We remark that any N-qubit permutationally symmetric state can be
given by a density matrix in the Dicke basis. Then mixed states of Dicke, W, and
GHZ states are permutationally symmetric. Also, it is worthwhile to note that
any N-particle permutationally symmetric state can be either fully separable or
genuinely multipartite entangled (GME) [328, 330], where GME states cannot be
written in any separable form for all bipartitions. Accordingly, Result 31 allows
for the GME detection in a collective-reference-frame-independent manner.
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Proof. In the following, we will first describe the logic of how to prove Result 31
and explain each line step-by-step

ϱPS ∈ H⊗N
2 is spin squeezed ⇐⇒ ϱab ∈ H⊗2

2 is entangled (7.3.3a)
⇐⇒ ϱab ̸∈ PPT (7.3.3b)
⇐⇒ M ≱ 0 (7.3.3c)
⇐⇒ C ≱ 0 (7.3.3d)
⇐⇒ obtained from tr(Cr) for r = 1, 2, 3 (7.3.3e)

⇐⇒ obtained from C(r)(ϱ) for r = 1, 2, 3 (7.3.3f)

⇐⇒ obtained from J (r)(ϱ) for r = 1, 2, 3.
(7.3.3g)

In the first line, we denote a N-qubit permutationally symmetric state as ϱPS
and recall again that it possesses bipartite entanglement or often spin squeezing
if and only if any two-qubit reduced state ϱab = tr(a,b)c(ϱPS) is entangled for
a, b = 1, 2, . . . , N, where Xc is the complement of a set X. This has been already
discussed in Refs. [135, 331, 332]. In the second line, we also recall that any two-
qubit state is entangled if and only if it has a negative eigenvalue under partial
transposition, that is, it violates the so-called PPT criterion [194, 195].

In the third line, we first recall that any two-qubit state ϱab can be written as

ϱab =
1
4

3

∑
i,j=0

mijσi ⊗ σj. (7.3.4)

Here we note that a two-qubit state ϱab is permutationally symmetric and sepa-
rable if and only if it holds that M ≥ 0, where M = (mij) for i, j = 0, 1, 2, 3. In
the fourth line, this separability condition is equivalent to C ≥ 0 for a permuta-
tionally symmetric ϱab. Here the 3× 3 matrix C = (Cij) is the Schur complement
of the 4× 4 matrix M, which is given by Cij = mij −mi0m0j for i, j = 1, 2, 3 since
m00 = 1. For details, see Refs. [198, 199, 544].

In the fifth line, we first discuss the explicit form of the covariance matrix C

Cij = tr[ϱabσi ⊗ σj]− tr[ϱaσi]tr[ϱbσj] = tij − aiaj, (7.3.5)

where mij = tij = tji and mi0 = m0i = ai since ϱab is permutationally symmetric.
Then, the covariance matrix C = T − aa⊤ is symmetric C = C⊤, where T =
(tij) = T⊤ with the constraint tr[T] = ∑i tii = 1 and a = (ax, ay, az). To proceed,
let us remark that the matrix C can be diagonalized by a collective local unitary
transformation V ⊗V, leads to that

OCO⊤ = diag(c1, c2, c3), (7.3.6)

with a rotation matrix O ∈ SO(3). In fact, the eigenvalues c1, c2, c3 can be found
by computing the roots of the characteristic polynomial

pC(λ) = λ3 − tr(C)λ2 +
1
2

[
tr(C)2 − tr(C2)

]
λ− det (C), (7.3.7)

176



where tr(Cr) = ∑i=1,2,3 cr
i and the det (C) can be written as

det (C) =
1
6

[
tr(C)3 − 3tr(C)tr(C2) + 2tr(C3)

]
. (7.3.8)

That is, knowing the tr[Cr] for r = 1, 2, 3 can enable us to access its eigenvalues
and therefore decide whether the matrix C is positive or negative.

In the sixth and seventh lines, it is sufficient to show that tr[Cr] for r = 1, 2, 3
can be obtained from the moments J (r)(ϱ) in the collective randomized mea-
surements. For the choice α = 2/N2, β = −2(N − 2)/(NN2), γ = −1/[2(N −
1)], and N2 = N(N − 1), we immediately find that the moments J (r)(ϱ) can be
equal to the moments C(r)(ϱab) of the random covariance matrix

J (r)(ϱ) = C(r)(ϱab) ≡
∫

dU [CovU]
r, (7.3.9a)

CovU = tr[ϱabU⊗2σz ⊗ σz(U†)⊗2]− tr[ϱaUσzU†]tr[ϱbUσzU†]. (7.3.9b)

This results from the fact that

⟨Jz⟩U =
N
2

tr[ϱaUσzU†], (7.3.10)

⟨J2
z ⟩U =

N
4
+

N(N − 1)
2

tr[ϱabU⊗2σz ⊗ σz(U†)⊗2]. (7.3.11)

In Sec. 9.6, we will evaluate the moments C(r)(ϱab) and show that they are asso-
ciated with tr[Cr].

7.4 Multiparticle bound entanglement

Next, let us consider the more general case where ϱ is not permutationally sym-
metric. Even in this case, we will show that our approach with collective ran-
domized measurements is still effective for detecting spin-squeezing entangle-
ment. Now we can make the second result in this Chapter:

Result 32. For a N-qubit state ϱ, the first moment J (1) with (α, β, γ) = (3, 0, 0) can
be given by

J (1)(ϱ) = ∑
l=x,y,z

(∆Jl)
2. (7.4.1)

Any N-qubit fully separable state obeys

J (1)(ϱ) ≥ N
2

. (7.4.2)

This violation implies the presence of multipartite entanglement.

Remark 33. The proof of this Result is given in Sec. 9.7. The criterion in Eq. (7.4.2)
itself was already established [315], so we only have to show the derivation of
Eq. (7.4.1) in the proof.
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Remark 34. The criterion in Eq. (7.4.2) can be maximally violated by the so-called
many-body spin singlet states ϱsinglet [160, 275, 276, 315–317, 545, 546] and see
Sec. 1.3.
Remark 35. Note that other quantum states can also be at the centre. Such states
can be changed under U⊗N, but their expectations of Jl cannot be changed.
Examples are the thermal states of several spin-chain models. These can be
characterized by Result 32, see [160, 276].
Remark 36. Moreover, the violation of Eq. (7.4.2) is known to detect entanglement
very strongly. In fact, it can verify the so-called multiparticle bound entangled
states, which cannot be distilled into pure entangled states and can be PPT for
all bipartitions [160, 276]. In the previous results in randomized measurements,
bipartite bound entanglement has been detected using at least fourth-order mo-
ments [1, 255], while Result 32 only requires evaluating second-order Haar in-
tegrals in the collective Bloch sphere. This fact can reduce a large amount of
measurement resources in practice.
Remark 37. As a further utility of Result 32, Refs. [318, 319] showed that it can
detect many-body Bell nonlocality. Also, Refs. [170, 176, 320] discussed the im-
provement of the average sensitivity of phase estimation in quantum metrology.
Below, we will generalize Result 32 to high-dimensional spin systems. This
allows us to characterize bound entanglement and k-particle entanglement in
spin-squeezed states [321, 322].
Remark 38. Finally, we remark that the criterion in Eq. (7.4.2) is known as one of
the optimal inequalities to detect spin-squeezing entanglement [160, 276]. This
optimality means a state that is not detected by the inequalities cannot be dis-
tinguished from a fully separable state by knowing the values of ⟨Jl⟩ and (∆Jl)

2

only for the three orthogonal directions l = x, y, z for the case of large N. In
fact, combining all the optimal inequalities can characterize spin-squeezing en-
tanglement very efficiently, while some entangled states cannot be detected in
this way.

Here we consider the generalization of Result 32 to high-dimensional spin
systems. For that, let us denote the N-qudit collective operators

Λl =
1
d

N

∑
i=1

λ
(i)
l , (7.4.3)

with the so-called Gell-Mann matrices λ
(i)
l for l = 1, 2, . . . , d2 − 1 acting on i-th

system. The Gell-Mann matrices are d-dimensional extensions of Pauli matrices
satisfying the properties: λ†

l = λl, tr(λl) = 0, tr(λkλl) = dδkl. For details, see [25–
28]. Let us define the random expectation and its variance

⟨Λl⟩U = tr[ϱU⊗NΛl(U†)⊗N ], (∆Λl)
2
U = ⟨Λ2

l ⟩U − ⟨Λl⟩2U, (7.4.4)

which depends on the choice of collective unitaries U⊗N with U ∈ U (d). Now
we introduce the average of (∆Λl)

2
U for any l over Haar random unitaries

D(ϱ) = (d2 − 1)
∫

dU (∆Λl)
2
U. (7.4.5)
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Now we can make the following:

Result 33. For a N-qudit state ϱ, the average can be given by

D(ϱ) =
d2−1

∑
l=1

(∆Λl)
2. (7.4.6)

Any N-qudit fully separable state obeys

d2−1

∑
l=1

(∆Λl)
2 ≥ N(d− 1)

d
. (7.4.7)

This violation implies the presence of multipartite entanglement.

Remark 39. This proof is given in Sec. 9.7 and this result is the generalization of
Result 32. The fully separable bound was already discussed in Refs. [321, 322].

7.5 Antisymmetric entanglement

We have considered the collective randomized measurements based on the func-
tion fU(ϱ) in Eq. (7.2.3) including ⟨J2

z ⟩U, so the detectable spin-squeezing entan-
glement may have large two-body correlations. Now a natural question arises:
Can we extend this framework to incorporate k-body correlations for k ≥ 3?

On the side of standard randomized measurements, the so-called sector length
can be accessible as a tool to detect entanglement, which can quantify the amount
of k-body quantum correlations for 1 ≤ k ≤ N discussed in Eq. (1.4.7). Apart
from randomized measurements, similar questions have already been addressed
to characterize such higher-order spin-squeezing entanglement on permutation-
ally symmetric systems [135, 160, 276, 332, 420].

To proceed, let us begin by considering the three-qubit observable

S(σx ⊗ σy ⊗ σz) ≡ σx ⊗ σy ⊗ σz + σy ⊗ σz ⊗ σx + · · · , (7.5.1)

where S denotes the average over all permutations of indices x, y, z. This ob-
servable is invariant under any particle exchange: Pab S(σx ⊗ σy ⊗ σz) Pab =
S(σx ⊗ σy ⊗ σz), with Pab being the projector onto the symmetric subspace for
any a, b. The N-qubit extension of this observable can be represented by the
product of collective angular momenta

OS ≡ ∑
i<j<k

S
(

σ
(i)
x ⊗ σ

(j)
y ⊗ σ

(k)
z

)
=

8
3!
S(Jx Jy Jz), (7.5.2)

where S(Jx Jy Jz) = Jx Jy Jz + Jy Jz Jx + Jz Jx Jy + · · · and PabOSPab = OS . In general,
any combination of products of collective angular momenta remains permuta-
tionally invariant under particle exchange [547].

179



An associated operator with OS from Eq. (7.5.2) is the antisymmetric observ-
able

OA ≡ ∑
i<j<k

A
(

σ
(i)
x ⊗ σ

(j)
y ⊗ σ

(k)
z

)
, (7.5.3)

where A(σx ⊗ σy ⊗ σz) denotes the antisymmetrization of σx ⊗ σy ⊗ σz by taking
the sum over even permutations and subtracting the sum over odd permutations
of indices x, y, z. Importantly, the observable OA lives in the antisymmetric
subspace of the operator space, which does not overlap with the symmetric
subspace. That is, OA cannot be constructed from collective angular momenta.

We have seen that symmetric observables based on collective angular mo-
menta can detect symmetric entanglement in the collective randomized mea-
surement. Then, one may wonder if antisymmetric observables such as OA can
characterize antisymmetric entanglement. Similarly to Eq. (7.2.4), we define the
average over random collective local unitary

T (ϱ) =
∫

dU tr
[
ϱU⊗NOA(U†)⊗N

]
. (7.5.4)

Here we can formulate the third result in this Chapter:

Result 34. The average T (ϱ) can be given by

T (ϱ) = tr[ϱOA] = ∑
i<j<k

∑
a,b,c

εabc⟨σ
(i)
a ⊗ σ

(j)
b ⊗ σ

(k)
c ⟩ϱ, (7.5.5)

where we denote εabc as the Levi-Civita symbol for a, b, c = x, y, z. Any N-qubit fully
separable state may obey a certain bound

|T (ϱ)| ≤ p(N)
fs . (7.5.6)

This violation implies the presence of multipartite entanglement.

Remark 40. The derivation of Eq. (7.5.5) is given in Sec. 9.8. Here we explain
how to derive the bound p(N)

fs . First, we note that the average |T (ϱ)| is a convex
function of a quantum state. Then it is enough to maximize the average for all
N-qubit pure fully separable states:

|Φfs⟩ =
N⊗

i=1

|χi⟩ . (7.5.7)

Each of single-qubit states |χi⟩ can be mapped into points on the surface in the
single-qubit Bloch sphere, which can be parameterized as

⟨σx⟩χi = cos(θi), ⟨σy⟩χi = sin(θi) cos(ϕi), ⟨σz⟩χi = sin(θi) sin(ϕi), (7.5.8)
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Figure 7.2: Entanglement criteria for the mixed state in Eq. (7.5.11) for N = 3 in
the x − y plane. The fully separable states are contained in Green area, which
obeys all the optimal spin-squeezing inequalities (OSSIs) previously known [160,
276] and also our criterion in Result 34. Blue area corresponds to the spin-
squeezed entangled states that can be detected by all OSSIs and Result 34. Yellow
and Purple areas correspond to the entangled states that cannot be detected by
all OSSIs but can be detected by Result 34, thus marking the improvement of this
Chapter compared with previous results. In particular, Purple area corresponds
to the multiparticle bound entangled states that are not detected by the PPT
criterion for all bipartitions but detected by Result 34. This figure is taken from
Ref. [10].

for χi = |χi⟩⟨χi| . Substituting these expressions into |T (ϱ)| and performing its
maximization over parameters, we can find the bound p(N)

fs . From numerical
research, we collect much evidence that there may exist the tight bound

p(N)
fs

!
=

N2 cot
(

π
N
)

3
√

3
, (7.5.9)

which may be obtained by

θi = 2 tan−1
(√

2−
√

3
)

, ϕi =
2πi
N

, for i = 1, 2, . . . , N. (7.5.10)

We illustrate the geometrical expressions of these points |χi⟩ in the single-qubit
Bloch sphere.

Let us test our criterion with the two-parameter family of states

ϱx,y = x |ζN⟩⟨ζN |+ y |ζ̃N⟩⟨ζ̃N |+
1− x− y

2N 1⊗N
2 , (7.5.11)
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Figure 7.3: Geometry of N single-qubit states |χi⟩ represented as (Blue) points on
the surface in the single-qubit Bloch sphere, for i = 1, 2, . . . N and N = 6, 20, 100.
This figure is taken from Ref. [10].

where 0 ≤ x, y ≤ 1. Here |ζN⟩ is the so-called phased Dicke state [147–152], up
to normalization,

|ζN⟩ ∝
N

∑
k=1

e2πik/N |0⟩1 |0⟩2 · · · |1⟩k · · · |0⟩N−1 |0⟩N , (7.5.12)

and the state
|ζ̃N⟩ = σ⊗N

x |ζN⟩ , ⟨ζN |ζ̃N⟩ = 0. (7.5.13)

Note that the phased Dicke state is not equivalent to the Dicke state under col-
lective unitary transformations. In Fig. 7.2, we illustrate the criterion of Result 34
for the state ϱx,y for N = 3 on the x− y plane. Our result allows us to detect en-
tanglement undetected not only for Eq. (7.4.2) but also for all the other optimal
spin-squeezing inequalities previously known [160, 276]. Moreover, multipartite
bound entanglement of ϱx,y can be also detected.
Remark 41. The inequality (7.5.6) can be maximally violated by several GME
states. For small N, we have numerically confirmed that the states |ζN⟩ or |ζ̃N⟩
can reach the maximal violation, since they can be the eigenstates with maxi-
mal/minimal eigenvalues of the antisymmetric observable OA. For cases with
N = 3, 4, 5, 6, the matrix rank of OA is respectively given by 4, 6, 24, 38.
Remark 42. Also, we can show that there exist three-qubit GME states that cannot
be detected by all the optimal spin-squeezing inequalities. Such GME states
violate the biseparable bound |T | ≤ 2, analytically shown in Result 36.
Remark 43. In Fig. 7.3, we illustrate the geometrical expressions of the points |χi⟩
on the surface in the single-qubit Bloch sphere for N = 6, 20, 100.

Remark 44. In Fig. 7.4, we illustrate the criterion of Result 34 for the state ϱx,y in
Eq. (7.5.11) for N = 4, 5, 6 on the x− y plane.

Let us generalize Result 34 by focusing only on three-particle systems. We
begin by denoting three-particle d-dimensional (three-qudit) operator as

WS = ∑
i,j,k

wijksi ⊗ sj ⊗ sk, (7.5.14)
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Figure 7.4: Entanglement criteria for the mixed state in Eq. (7.5.11) for N = 4, 5, 6
in the x− y plane. The fully separable states are contained in Green area, which
obeys all the optimal spin-squeezing inequalities (OSSIs) previously known [160,
276] and also our criterion in Result 34. Blue area corresponds to the spin-
squeezed entangled states that can be detected by all OSSIs and Result 34. Yellow
area corresponds to the entangled states that cannot be detected by all OSSIs but
can be detected by Result 34, thus marking the improvement of this Chapter
compared with previous results. This figure is taken from Ref. [10].

for some given three-fold tensor wijk and matrices si ∈ Hd with si ̸= 1d. If d = 2,
wijk = εijk, and si = σi, then it holds that |⟨WS⟩| = |T |. To proceed, we recall
that a three-particle state is called biseparable if

ϱbs = ∑
k

pA
k ϱA

k ⊗ ϱBC
k + ∑

k
pB

k ϱB
k ⊗ ϱCA

k + ∑
k

pC
k ϱC

k ⊗ ϱAB
k , (7.5.15)

where and pX
k for X = A, B, C are probability distributions. The state is called

genuinely multiparticle entangled if it cannot be written in the form of ϱbs. Now
we will make the following:

Result 35. For a three-qudit state ϱABC, we denote the vector sX = (sX
i ) and the matrix

SXY = (sXY
ij ) with sX

i = tr[ϱXsi] and sXY
ij = tr[ϱXYsi⊗ sj], where ϱX, ϱXY are marginal

reduced states of ϱABC for X, Y, Z = A, B, C. Any three-qudit fully separable state obeys

|⟨WS⟩| ≤ max
X,Y,Z=A,B,C

∥sX∥ ∥vYZ∥ , (7.5.16)

where ∥v∥2 = ∑i v2
i is the Euclidean vector norm of a vector v with elements vi and the

vector vYZ = (vYZ
i ) with vYZ

i = ∑j,k sY
j sZ

k wijk. Also, any three-qudit biseparable state
obeys

|⟨WS⟩| ≤ max
X,Y,Z=A,B,C

∑
i

σi(SXY)σi(Z∗), (7.5.17)

where σi(O) are singular values of a matrix O in decreasing order and the matrix Z∗ =
(z∗ij) with z∗ij = ∑k sZ

k wijk.
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Proof. Since |⟨WS⟩| is a convex function for a state, it is sufficient to prove the
cases of pure states. First, let us consider a pure fully separable state ϱA ⊗ ϱB ⊗
ϱC. Then we have

⟨WS⟩ = ∑
i,j,k

wijktr[ϱA ⊗ ϱB ⊗ ϱCsi ⊗ sj ⊗ sk]

= ∑
i

sA
i ∑

j,k
sB

j sC
k wijk

= ∑
i

sA
i vBC

i

≤ ∥sA∥ ∥vBC∥ , (7.5.18)

where we used the Cauchy–Schwarz inequality to derive the inequality. Simi-
larly, we can have cases that correspond to sB and sC.

Second, let us consider a pure biseparable state for a fixed bipartition XY|Z.
For a case AB|C, we have

⟨WS⟩ = ∑
i,j

sAB
ij ∑

k
sC

k wijk

= ∑
i,j

sAB
ij c∗ij

= tr[SAB(C∗)⊤]

≤∑
i

σi(SAB)σi(C∗), (7.5.19)

where we used von Neumann’s trace inequality [548]. Similarly, we can obtain
the bounds for the other bipartitions B|CA and C|AB. Hence we can complete
the proof.

As a corollary, we obtain the following:

Result 36. Consider the case where d = 2, wijk = εijk, and si = σi. Any three-qubit
fully separable state obeys |⟨WS⟩| ≤ 1. Also, any three-qubit biseparable state obeys
|⟨WS⟩| ≤ 2.

Proof. To show these, without loss of generality, we can take ϱC = |0⟩⟨0|. This
can lead to that vBC = (sB

2 ,−sB
1 , 0). For single-qubit pure states, we have that

∥sA∥ = 1 and ∥vBC∥ ≤ 1. Thus we can show the the fully separable bound.
For the biseparable bound, since σ1(C∗) = σ2(C∗) = 1 and σ3(C∗) = 0, we can
immediately find that σ1(SAB) + σ2(SAB) ≤ 2 for all pure ϱAB.

7.6 Entanglement between two ensembles

Finally, let us apply the strategy of collective randomized measurements to an-
other scenario where two ensembles are spatially separated [549–554]. We de-
note ϱAB as a 2N-qubit state that contains the two ensembles of N spin-1

2 parti-
cles, where

ϱAB ∈ HA ⊗HB, with HX = H⊗N
2 , (7.6.1)
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for X = A, B. Supposing that each ensemble can be controlled individually, we
can perform the collective randomized measurements to obtain the moments
J (r)

X with a fixed choice (α, β, γ).
The total collective observables are given by

J±l = Jl,A ± Jl,B, (7.6.2)

where

Jl,X =
1
2

N

∑
i=1

σ
(Xi)
l ∈ HX, for l = x, y, z, (7.6.3)

with Pauli matrices σ
(Xi)
l acting on Xi-th subsystem in the ensemble X = A, B.

In a similar manner to Eq. (7.2.2b), we can introduce the random variances
(∆J±z )2

UAB
with UAB = UA ⊗UB. Denoting the gap as

ηUAB ≡ (∆J+z )2
UAB
− (∆J−z )2

UAB
, (7.6.4)

let us consider its moment

G(r)AB = g
∫

dUAB [ηUAB ]
r, (7.6.5)

where g is a real constant parameter.
Now we can present the following criterion:

Result 37. For a 2N-qubit state ϱAB consisting of the two ensembles of N spin-1
2 par-

ticles, if each ensemble is permutationally symmetric, then any separable ϱAB obeys

G(2)AB + J (1)
A + J (1)

B −J (1)
A J

(1)
B ≤ 1, (7.6.6)

where g = (3/N2)2 and (α, β, γ) = (0, 12/N2, 0).

Remark 45. The proof is given in Sec. 9.9. As the proof’s main idea, we will
first simply evaluate the integrals on the left-hand side in Eq. (7.6.6). Then we
will adopt the so-called T2 separability criterion presented in Ref. [416] (see,
Proposition 5) in order to find the entanglement criterion in Eq. (7.6.6).

Remark 46. The violation of this inequality allows us to detect entanglement be-
tween the spatially separated two ensembles. In the following, we will demon-
strate how the criterion in Eq. (7.6.6) can characterize entanglement between two
ensembles. Also, we will show that Result 37 can be extended to the case of m
ensembles for m ≥ 3.

Remark 47. The right-hand-side in Eq. (7.6.6) in Result 37, can be rewritten as

G(2)AB + J (1)
A + J (1)

B −J (1)
A J

(1)
B

=
1

N4

{
∑
p,q

η2
pq + 4N2 ∑

p

[
⟨Jp,A⟩2 + ⟨Jp,B⟩2

]
− 16 ∑

p,q
⟨Jp,A⟩2⟨Jq,B⟩2

}
, (7.6.7)
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where

∑
p=x,y,z

a2
p =

(
2
N

)2

∑
p=x,y,z

⟨Jp,A⟩2, (7.6.8a)

∑
p=x,y,z

b2
p =

(
2
N

)2

∑
p=x,y,z

⟨Jp,B⟩2, (7.6.8b)

∑
p,q=x,y,z

C2
pq =

(
1

N2

)2

∑
p,q=x,y,z

[
(∆J+p )

2 − (∆J−q )2
]2
≡
(

1
N2

)2

∑
p,q=x,y,z

η2
pq,

(7.6.8c)

and ηpq ≡ (∆J+p )2 − (∆J−q )2.

Let us test our criterion in Result 37 in the main text with the Dicke state as
a bipartite state. The NAB-qubit Dicke state with mAB excitations is defined as

|NAB, mAB⟩ =
(

NAB

mAB

)− 1
2

∑
mAB

PmAB(|11, . . . , 1mAB , 0mAB+1, . . . , 0NAB⟩), (7.6.9)

where {PmAB} is the set of all distinct permutations in the qubits. Applying the
Schmidt decomposition to the Dicke state, one can have

|NAB, mAB⟩ =
NAB

∑
m=0

λm |NA, mA⟩ ⊗ |NB, mB⟩ , (7.6.10)

where NA + NB = NAB, mA + mB = mAB, and m = mA. Here, the Schmidt
coefficients λm are given by

λm =

(
NAB

mAB

)− 1
2
(

NA

mA

) 1
2
(

NB

mB

) 1
2

. (7.6.11)

The states |NA, mA⟩ and |NB, mB⟩ are permutationally symmetric states, for de-
tails, see [323, 324].

Let us consider the case where NA = NB = NAB/2, and mAB = NAB/2. Then
we have

⟨Jp,A⟩ = ⟨Jp,B⟩ = 0, for p = x, y, z, (7.6.12a)

⟨J2
z ⟩ = (∆J+z )2 = 0, (7.6.12b)

(∆J−z )2 = −4⟨Jz,A ⊗ Jz,B⟩ =
N2

AB
4(NAB − 1)

, (7.6.12c)

(∆J+x )2 = (∆J+y )2 =
NAB

4

(
NAB

2
+ 1
)

, (7.6.12d)

(∆J−x )2 = (∆J−y )2 =
NAB

8
NAB − 2
NAB − 1

, (7.6.12e)
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where we used the results in Ref. [554]. Then we have the values of (∆J±p )2. In
this paper, we set NAB = 2N. This results in

G(2)AB + J (1)
A + J (1)

B −J (1)
A J

(1)
B =

1
N4 ∑

p,q=x,y,z

[
(∆J+p )

2 − (∆J−q )2
]2

=
6N4 − 2N3 + 1
(1− 2N)2N2 . (7.6.13)

The right-hand side monotonically decreases as N increases, and it becomes 3/2
when N → ∞. Therefore the pure 2N-qubit Dicke states can be detected in any
N.

Finally, let us consider the case where the global depolarizing channel with
noise p influences the state as follows: ϱD → ϱ′D = pϱD + (1− p)ϱmm for ϱD =
|NAB, mAB⟩⟨NAB, mAB| and the maximally mixed state ϱmm. This noise effects
can change (∆J±l )2 as follows:

(∆J+x/y)
2
ϱD
→ (∆J+x/y)

2
ϱ′D

=
NAB

4
+ p

[
(∆J+x/y)

2
ϱD
− NAB

4

]
=

N(1 + Np)
2

,

(7.6.14a)

(∆J−x/y)
2
ϱD
→ (∆J−x/y)

2
ϱ′D

=
NAB

4
+ p

[
(∆J−x/y)

2
ϱD
− NAB

4

]
=

N[N(2− p)− 1]
2(2N − 1)

,

(7.6.14b)

(∆J+z )2
ϱD
→ (∆J+z )2

ϱ′D
=

NAB(1− p)
4

=
N(1− p)

2
, (7.6.14c)

(∆J−z )2
ϱD
→ (∆J−z )2

ϱ′D
=

NAB

4
+ p

[
(∆J−z )2

ϱD
− NAB

4

]
=

N(2N + p− 1)
2(2N − 1)

.

(7.6.14d)

This leads to

G(2)AB + J (1)
A + J (1)

B −J (1)
A J

(1)
B =

(
6N4 − 2N3 + 1

)
p2

(1− 2N)2N2 . (7.6.15)

Then we can find that the separability bound in Result 37 is violated when
p > p∗(N) for the critical point

p∗(N) =
N(2N − 1)√

6N4 − 2N3 + 1
. (7.6.16)

In Fig. 7.5, we illustrate the behavior of the critical point depending on N. In the
limit N → ∞, this point becomes p∗ →

√
2/3.

Remark 48. Here we consider the generalization of Result 37 to m ensembles
for m ≥ 3. For that, let us define a quantum state ϱ ∈ H1 ⊗ · · · ⊗ Hm, where
HX = H⊗N

2 for X = 1, . . . , m. Now it is essential to notice that the left-hand-side
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Figure 7.5: Linear-Log plot of the critical point p∗(N). This figure is taken from
Ref. [10].

in Result 37 can be available for any two-pair in m ensembles. Then, let us define
the average over all pairs

P(ϱ) = 2
m(m− 1) ∑

X<Y
G(2)XY + J (1)

X + J (1)
Y −J (1)

X J
(1)

Y , (7.6.17)

for X, Y = 1, 2, . . . , m. Now we can formulate the following.

Result 38. For this mN-qubit state ϱ consisting of the m ensembles of N spin-1
2 parti-

cles, if each N-qubit ensemble is permutationally symmetric, then any fully separable ϱ
obeys

P(ϱ) ≤ 1, (7.6.18)

where g = (3/N2)2 and (α, β, γ) = (0, 12/N2, 0).

Proof. In general, if a multipartite state ϱ is fully separable, then all the bipartite
reduced states are clearly separable. For such separable reduced states, Result 37
holds. Thus we can complete the proof.

7.7 Discussions

This Chapter proposed systematic methods to characterize entanglement in en-
sembles of particles in the collective randomized measurement scheme. We have
shown that various types of spin-squeezing entanglement can be detected in this
framework.
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There are several research directions in which our work can be extended.
First, it would be interesting to find criteria for higher-order spin-squeezing
based on k-body correlations such as Jk

l . Next, the inequality (7.5.6) may re-
mind us of entanglement witnesses [17]. On a more technical level, our re-
sults may trigger other extensions of witnesses for multipartite entanglement
with antisymmetric correlations. Finally, our method may encourage the further
development of genuine multipartite entanglement between spatially-separated
ensembles [553], reference-frame-independent quantum metrology, higher-order
nonlinear spin squeezing [327], or the characterization of invariants under col-
lective unitaries.
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Chapter 8

Entanglement detection with
moments of the partial transpose

This Chapter focuses on the moments of the partially transposed quantum state.
The moments are invariant under local unitaries and can be accessed from ran-
domized measurements. This Chapter proposes systematic methods to advance
entanglement criteria with the moments in an optimal and systematic manner.
This Chapter is based on Ref. [3].

8.1 Introduction

We begin by recalling the positive partial transpose (PPT) criterion in Eq. (1.2.44):
If a bipartite quantum state is separable, then its partial transpose is positive.
That is,

ϱAB ∈ SEP ⇒ ϱ⊤B
AB ≥ 0. (8.1.1)

The violation of the PPT criterion implies the presence of NPT entanglement.
Although the PPT criterion can powerfully and straightforwardly detect entan-
glement, the implementation may require quantum state tomography in actual
experiments.

A practical way to detect NPT entanglement is to consider the so-called PT
(or negativity) moments

pk = tr
[(

ϱ⊤B
AB
)k
]
. (8.1.2)

These quantities are local unitary (LU) invariant for any order k, since the eigen-
values of ϱ⊤B

AB are LU invariant. Similarly to the moments in Eq. (1.4.2) in Sec. 1.4,
these moments can be determined by randomized measurements [105, 438] and
also see [7].

In Ref. [105], the following entanglement criterion based on the PT moments
was introduced:

ϱAB ∈ SEP ⇒ p3 ≥ p2
2. (8.1.3)

This is called the p3-PPT criterion, which gives a necessary (not sufficient) con-
dition for PPT states and therefore separable states. For a special case, it is

190



worthwhile to note that the PT-moment approach can detect entanglement of
the Werner state in a necessary and sufficient way for any dimension even at
lower orders, for more details see Appendix in Ref. [105].

The collection of the moments pk for any k, that is, p = (p0, p1, p2, . . . , pd)
with d = dAdB (p0 = d and p1 = 1), enables us to evaluate the PPT criterion,
since all the eigenvalues of ϱ⊤B

AB can be directly calculated [107]. However, it is
demanding to measure all the PT moments in practice. Then the question arises
as to whether entanglement can be detected from the moments of limited order.
For the case of PT moments, we formulate this problem as follows:

PT-Moment Problem. Given the numbers p(n) = (p0, p1, p2, . . . , pn) with order
n, is there a separable state ϱAB such that pk = tr[(ϱ⊤B

AB)
k] for k = 0, 1, . . . , n?

The aim of this Chapter is to develop the PT moment approach in two direc-
tions. First, we establish a connection between the PT-moment problem and the
well-known moment problems in the mathematical literature. This results in a
relaxation of the PT-moment problem, leading to a family of entanglement cri-
teria, where the p3-PPT criterion represents the lowest order. Second, we show
that the p3-PPT criterion is not sufficient for the PT-moment problem of order
three. To address this, we reformulate the PT-moment problem as an optimiza-
tion problem and derive an explicit necessary and sufficient criterion for n = 3.
Furthermore, we extend and generalize it for the case where n > 3.

8.2 Relaxation to the classical moment problems

We start with a relaxation of the PT moment problem and establish a connection
to the classical moment problems. Instead of defining the classical moment
problems with respect to the Borel measure on the real line [555–557], we rewrite
them with quantum states and observables.

Given a quantum state σ and an observable (Hermitian operator) X, the k-th
moment is defined as

mk = tr
(
σXk). (8.2.1)

The moment problems ask the converse: given a sequence of moments, does
there exist a quantum state σ and an observable X (with some restrictions) giv-
ing the desired moments? Although formulated in a quantum language, this
scenario is essentially classical, since σ can be taken diagonally in the eigenbasis
of X. In particular, the (truncated) Hamburger and Stieltjes moment problems
are defined as follows:

Hamburger Moment Problem. Given the numbers m(n) = (m0, m1, . . . , mn)
with order n, is there a quantum state σ and an observable X such that mk =
tr(σXk) for k = 0, 1, . . . , n?
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Stieltjes Moment Problem. Given the numbers m(n) = (m0, m1, . . . , mn) with
order n, is there a quantum state σ and a positive semidefinite observable X such
that mk = tr(σXk) for k = 0, 1, . . . , n?

We define the corresponding two sets of moments as

Mn =
{
m(n) | tr(σXk) = mk, σ ≥ 0, X† = X

}
, (8.2.2)

M+
n =

{
m(n) | tr(σXk) = mk, σ ≥ 0, X ≥ 0

}
. (8.2.3)

Note that in the above definitions, there is no restriction on the dimension of σ
and X. Also, since there is no bound on the eigenvalues of X, the sets Mn and
M+

n are not closed.
For σ = 1 and X = ϱ⊤B

AB, the PT-moments p(n) always satisfy that p(n) ∈ Mn,
and furthermore the PT-moments given by the PPT states satisfy that p(n) ∈ M+

n .
Then, the set M+

n can be characterized by a family of necessary conditions for
the PT-moment problem. This is a relaxation, since more general σ are allowed
in the definition ofMn andM+

n .
To proceed, we introduce the notion of Hankel matrices. The Hankel matrices

Hk(m) and Bk(m) are (k + 1)× (k + 1) matrices defined by

[Hk(m)]ij = mi+j, [Bk(m)]ij = mi+j+1, (8.2.4)

for i, j = 0, 1, . . . , k. Hereafter, we will often suppress the argument (m or p) in
the notation when there is no risk of confusion. Examples are given by

H1 =

[
m0 m1
m1 m2

]
, B1 =

[
m1 m2
m2 m3

]
, (8.2.5)

H2 =

m0 m1 m2
m1 m2 m3
m2 m3 m4

 , B2 =

m1 m2 m3
m2 m3 m4
m3 m4 m5

 . (8.2.6)

From the definition of the Hankel matrices, one can prove the following result
on the relations betweenMn,M+

n and Hk, Bk.

Result 39. Given m(n) = (m0, m1, . . . , mn) with order n, it holds that

(a) m(n) ∈ Mn ⇒ H⌊ n
2 ⌋ ≥ 0, (8.2.7)

(b) m(n) ∈ M+
n ⇒ H⌊ n

2 ⌋ ≥ 0 and B⌊ n−1
2 ⌋
≥ 0. (8.2.8)

Remark 49. The proof is given below. These results follow from well-known
results in the classical moment problems expressed in the language of measure
theory; see, for example, Refs. [556, Chapter 3] and [557, Chapter 9]. In the
following, we give an elementary proof in terms of quantum theory.

Remark 50. The conditions are almost sufficient. Considering the moments m(n)

in the closure of Mn or M+
n leads to the sufficient conditions of the positivity

of Hankel matrices. For details, see Appendix in Ref. [3].
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Proof. We take advantage of the Hilbert-Schmidt inner product in the operator
space

⟨X, Y⟩ := tr(X†Y). (8.2.9)

Now, consider the sequence of operators v = (ϱ
1
2 , ϱ

1
2 X, . . . , ϱ

1
2 X⌊

n
2 ⌋), and simi-

larly the sequence of operators u = (ϱ
1
2 X

1
2 , ϱ

1
2 X

3
2 , . . . , ϱ

1
2 X⌊

n−1
2 ⌋+

1
2 ) when X ≥ 0.

Then, the Gram matrices for v and u are given by

⟨vi, vj⟩ = tr(Xiϱ
1
2 ϱ

1
2 X j) = tr(ϱXi+j) = mi+j, (8.2.10)

⟨ui, uj⟩ = tr(Xi+ 1
2 ϱ

1
2 ϱ

1
2 X j+ 1

2 ) = tr(ϱXi+j+1) = mi+j+1, (8.2.11)

which are just the Hankel matrices H⌊ n
2 ⌋ and B⌊ n−1

2 ⌋
. Note that Gram matrices

are always positive semidefinite [104], since for [G]ij = ⟨vi, vj⟩, it holds that

∑
i,j

Gijx∗i xj = ∑
i,j
⟨xivi, xjvj⟩ =

〈
∑

i
xivi, ∑

j
xjvj

〉
=

∥∥∥∥∥∑i
xivi

∥∥∥∥∥
2

≥ 0. (8.2.12)

Thus we get the results: (a) H⌊ n
2 ⌋ ≥ 0 when ϱ ≥ 0; (b) H⌊ n

2 ⌋ ≥ 0 and B⌊ n−1
2 ⌋
≥ 0

when ϱ ≥ 0 and X ≥ 0.

By applying Result 39 to the PT-moment problem, we obtain a family of
criteria for entanglement detection.

Result 40. Given p(n) = (p0, p1, p2, . . . , pn) with order n, it holds that

ϱAB ∈ SEP ⇒ B⌊ n−1
2 ⌋

(p) ≥ 0. (8.2.13)

Remark 51. In Result 39(a), the condition H⌊ n
2 ⌋ ≥ 0 does not give an entangle-

ment criterion. This is because this condition is satisfied by any (separable or
entangled) state.
Remark 52. In Result 40, the lowest-order criterion, B1 ≥ 0, gives that p3 ≥ p2

2,
which is exactly the p3-PPT condition in Eq. (8.1.3) from Ref. [105]. When k > 1,
Bk gives stronger criteria for entanglement detection. Accordingly, we call the
condition in Result 40 pn-PPT criterion for n = 3, 5, 7, . . . .
Remark 53. The pn-PPT criteria are strictly stronger than the higher-order criteria
proposed in Ref. [105]:

pn−2
n ≥ pn−1

n−1, for n = 3, 4, . . . (8.2.14)

This criterion only contains very limited information on the positive semidefi-
nite property of the Hankel matrices, and for n is even, this holds for all states
including the NPT states. The proof is given as follows. First, recall the positive
semidefinite property of the Hankel matrices Hk and Bk. Then their principal
submatrices are also positive semidefinite, leading to[

pn−2 pn−1
pn−1 pn

]
≥ 0, for n = 3, 4, . . . . (8.2.15)
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This implies that
pn ≥ 0, pn pn−2 ≥ p2

n−1. (8.2.16)

Note that Eq. (8.2.16) gives the criterion in Eq. (8.2.14) for n = 3, i.e., the p3-
PPT criterion. The result in Eq. (8.2.14) follows from induction: Assuming that
Eq. (8.2.14) of order n− 1 is true, i.e., pn−3

n−1 ≥ pn−2
n−2 implies that

pn−2
n pn−3

n−1 ≥ pn−2
n pn−2

n−2 ≥ p2n−4
n−1 , (8.2.17)

which gives Eq. (8.2.14) of order n. For more details about this analysis, see
Ref. [3].

8.3 Optimal solution to the PT-moment problem

Result 40 already provides a family of strong entanglement criteria, but they are
not optimal. This is because σ in Eqs. (8.2.2, 8.2.3) can be arbitrary, but in the
PT-moment problem σ is always 1. In the following, we give an optimal solution
to the PT-moment problem.

By writing the spectrum of ϱ⊤B
AB as (x1, x2, . . . , xd), one can easily see that the

PT-moment problem is equivalent to characterizing the set

T +
n =

{
p(n)

∣∣ d

∑
i=1

xk
i = pk, xi ≥ 0

}
. (8.3.1)

Indeed, for any p(n) ∈ T +
n a compatible separable state can be constructed as fol-

lows: Relabel xi for i = 1, 2, . . . , d as xαβ for α = 1, 2, . . . , dA and β = 1, 2, . . . , dB;
then construct a separable state ϱAB = ∑α,β xαβ |α⟩ ⟨α| ⊗ |β⟩ ⟨β|, where |α⟩ , |β⟩
are states in the computational basis. This state has pk = tr[(ϱ⊤B

AB)
k] for k =

0, 1, . . . , n. For convenience, we also define the more general set

Tn =
{
p(n)

∣∣ d

∑
i=1

xk
i = pk, xi ∈ R

}
. (8.3.2)

Hereafter, the eigenvalues (x1, x2, . . . , xd) are always assumed to be sorted in
descending order, unless otherwise stated. In Eqs. (8.3.1, 8.3.2), the dimension
d = dim(HA⊗HB) is considered as fixed, but actually the optimal entanglement
criteria in the following, e.g., Eq. (8.3.10), do not depend on d anymore.

The key idea of the optimal criteria is to consider the following optimization,

min
xi

/ max
xi

p̂n :=
d

∑
i=1

xn
i

subject to
d

∑
i=1

xk
i = pk for k = 1, 2, . . . , n− 1,

xi ≥ 0 for i = 1, 2, . . . , d.

(8.3.3)
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Note that this may also be viewed as a minimization or maximization of the
Rényi or Tsallis entropy of order n under the constraint that the entropies for
lower integer orders are fixed.

Suppose that the solutions are given by p̂min
n and p̂max

n , respectively, then
pn ∈ [ p̂min

n , p̂max
n ] provides a necessary condition for ϱAB being separable. If one

can further show that all pn ∈ [ p̂min
n , p̂max

n ] are attainable by some (x1, x2, . . . , xd)
from a separable state, this will imply the sufficiency of the condition. As
Eq. (8.3.3) is a polynomial optimization, the sum-of-squares hierarchy can, in
principle, be used for approximating the bounds [558, 559]. Remarkably, an
alternative sum-of-squares method was used in Ref. [560] for bounding the neg-
ative eigenvalues from moments. Here, instead of using these approximation
methods, we propose an exact method for solving Eq. (8.3.3) analytically.

We start from the simplest case n = 3. As shown below, the maximum and
minimization are achieved by

xmax
3 = (x1, x2, x2, . . . , x2), (8.3.4)

xmin
3 = (x1, x1, · · · , x1, xα+1, 0, 0, . . . , 0), (8.3.5)

respectively, where x1 appears α = ⌊1/p2⌋ times in Eq. (8.3.5). Thus, we obtain
the following necessary and sufficient condition for the PT-moment problem of
order three.

Result 41. (a) There exists a d-dimensional separable state ϱAB satisfying that pk =

tr[(ϱ⊤B
AB)

k] for k = 1, 2, 3, if and only if

p1 = 1,
1
d
≤ p2 ≤ 1, (8.3.6)

p3 ≤ [1− (d− 1)y]3 + (d− 1)y3, (8.3.7)

p3 ≥ αx3 + (1− αx)3, (8.3.8)

where

α =

⌊
1
p2

⌋
, x =

α +
√

α[p2(α + 1)− 1]
α(α + 1)

, y =
d− 1−

√
(d− 1)(p2d− 1)

d(d− 1)
.

(8.3.9)

(b) More importantly, suppose that the pk for k = 1, 2, 3 are PT-moments from a quan-
tum state. Then, they are compatible with a separable state if and only if

p3 ≥ αx3 + (1− αx)3, (8.3.10)

where α and x are as above.

Remark 54. The proof is given below. Result 41(a) fully characterizes the set T +
3 ,

while Result 41(b) characterizes the difference between T +
3 and T3 \ T +

3 . In other
words, Eqs. (8.3.6, 8.3.7) are satisfied by any (separable or entangled) state, and
Eq. (8.3.10) should be used for entanglement detection in practice. Thus, we will
refer to Eq. (8.3.10) as the p3-OPPT (optimal PPT) criterion. We emphasize that
the p3-OPPT criterion is dimension-independent.
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Proof. It is well-known that p1 = tr[ϱ⊤B
AB] = tr[ϱAB] = 1, and further the optimiza-

tion problems in Eq. (8.3.3) for n = 3 are feasible if and only if 1/d ≤ p2 ≤ 1.
To solve the optimization problems in Eq. (8.3.3) for n = 3, we start from the
simplest nontrivial case that d = 3. Then, the optimization reads

min
xi

/ max
xi

p̂3 := x3
1 + x3

2 + x3
3

subject to x1 + x2 + x3 = p1,

x2
1 + x2

2 + x2
3 = p2,

x1 ≥ x2 ≥ x3 ≥ 0,

(8.3.11)

where p1 and p2 are constants and p̂3 is the objective function that we want to
optimize. From Eq. (8.3.11) we can get how p̂3 varies with xi, i.e., the relations
between the differentials dp̂3 and dxi,

dx1 + dx2 + dx3 = 0,
x1dx1 + x2dx2 + x3dx3 = 0,

x2
1dx1 + x2

2dx2 + x2
3dx3 =

1
3

dp̂3.

(8.3.12)

Equivalently, we have

V

dx1
dx2
dx3

 =

 0
0

1
3dp̂3

 , V =

 1 1 1
x1 x2 x3
x2

1 x2
2 x2

3

 . (8.3.13)

This can be viewed as a system of linear equations on dxi and can be directly
solved by taking advantage of Cramer’s rule and the Vandermonde determinant
[104], whenever xi are all different. In fact, according to Cramer’s rule, we find

dx1 =
det D1

det V
, dx2 =

det D2

det V
, dx3 =

det D3

det V
, (8.3.14)

where

D1 =

 0 1 1
0 x2 x3

1
3dp̂3 x2

2 x2
3

 , D2 =

 1 0 1
x1 0 x3
x2

1
1
3dp̂3 x2

3

 , D3 =

 1 1 0
x1 x2 0
x2

1 x2
2

1
3dp̂3

 .

(8.3.15)
The determinant of the Vandermonde determinant V can be written in the sim-
ple form:

det V = Πi>j(xi − xj) = (x3 − x2)(x3 − x1)(x2 − x1). (8.3.16)

Since det D1 = − 1
3dp̂3(x3 − x2), the relation dx1 = det D1

det V leads to that dp̂3 =
3(x1 − x2)(x1 − x3)dx1. In summary, we have the following relations between
dp̂3 and dxi

dp̂3 =3(x1 − x2)(x1 − x3)dx1

=3(x2 − x3)(x2 − x1)dx2

=3(x3 − x1)(x3 − x2)dx3.
(8.3.17)
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Recalling that x1 ≥ x2 ≥ x3 by assumption, Eq. (8.3.17) implies that dxi are
not independent and an alternating relation exists between them. In fact, we
have

dx1 > 0, dx2 < 0, dx3 > 0 ⇒ dp̂3 > 0, (8.3.18)
dx1 < 0, dx2 > 0, dx3 < 0 ⇒ dp̂3 < 0. (8.3.19)

Then, without the boundary condition xi ≥ 0, the maximum of p̂3 will be
achieved when x1 ≥ x2 = x3, while the minimum will be achieved when
x1 = x2 ≥ x3. When the boundary condition x3 ≥ 0 is taken into considera-
tion, the minimum may also be achieved when x3 decreases to zero. That is,

xmax
3 = (x1, x2, x2), (8.3.20)

xmin
3 = (x1, x1, 0). (8.3.21)

Note that the above analysis does not depend on the actual values of p1 and
p2 (even if p1 ̸= 1). This implies that if the optimization problems in Eq. (8.3.3)
for p̂3 (n = 3) are feasible, the (local) maximum and minimum will be achieved
only if

xmax
3 = (x1, x2, x2, . . . , x2︸ ︷︷ ︸

d−1 times

), (8.3.22)

xmin
3 = (x1, x1, · · · , x1︸ ︷︷ ︸

α times

, xα+1, 0, 0, . . . , 0︸ ︷︷ ︸
d−α−1 times

). (8.3.23)

This is because for the maximization any tuple (xi1 , xi2 , xi3) with i1 < i2 < i3
needs to satisfy that xi2 = xi3 , and for the minimization it needs to satisfy that
xi1 = xi2 or xi3 = 0. Without loss of generality, we assume that xα+1 ̸= x1 in
Eq. (8.3.23), then the integer α is uniquely determined by

α =

⌊
1
p2

⌋
. (8.3.24)

This is because the majorization relation( 1
α + 1

,
1

α + 1
, . . . ,

1
α + 1︸ ︷︷ ︸

α+1 times

, 0, 0, . . . , 0︸ ︷︷ ︸
d−α−1 times

)
(8.3.25)

≺ (x1, x1, · · · , x1︸ ︷︷ ︸
α times

, xα+1, 0, 0, . . . , 0︸ ︷︷ ︸
d−α−1 times

) (8.3.26)

≺
( 1

α
,

1
α

, . . . ,
1
α︸ ︷︷ ︸

α times

, 0, 0, . . . , 0︸ ︷︷ ︸
d−α times

)
. (8.3.27)

and the strict Schur-convexity of p2 = ∑d
i=1 x2

i [561] imply that

1
α + 1

< p2 ≤
1
α

. (8.3.28)
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Now, from Eq. (8.3.22), we can get that

x1 + (d− 1)x2 = 1,

x2
1 + (d− 1)x2

2 = p2,
x1 ≥ x2 ≥ 0.

(8.3.29)

Given the feasibility condition 1/d ≤ p2 ≤ 1, Eq. (8.3.29) has a unique solution

x1 =

√
(d− 1)(p2d− 1) + 1

d
, x2 =

d− 1−
√
(d− 1)(p2d− 1)

d(d− 1)
. (8.3.30)

From Eq. (8.3.23), we can get that

αx1 + xα+1 = 1,

αx1 + x2
α+1 = p2,

x1 ≥ xα+1 ≥ 0,
(8.3.31)

which also has a unique solution

x1 =
α +

√
α[p2(α + 1)− 1]
α(α + 1)

, xα+1 =
1−

√
α[p2(α + 1)− 1]

α + 1
. (8.3.32)

So far, we only considered the conditions for local extrema and found that
the minimum and maximum are unique as in Eqs. (8.3.30, 8.3.32). This implies
that these are the global extrema. Further, the uniqueness of the extrema and the
continuity of p̂3 also imply that the closed feasible region is connected. Thus,
all values between the minimum and the maximum are achievable. All these
arguments lead to the optimal result in Result 41(a).

For Result 41(b), as p1 = tr[ϱ⊤B
AB] = tr[ϱAB] and p2 = tr[(ϱ⊤B

AB)
2] = tr[ϱ2

AB], the
conditions that p1 = 1 and 1/d ≤ p2 ≤ 1 are always satisfied by all (separable
or entangled) states. To show the redundancy of p3 ≤ p̂max

3 , we need to consider
the optimization problems in Eq. (8.3.3) without the positivity constraints xi ≥ 0.
From Eq. (8.3.17), we can see that the maximization is still achieved when x is
of the form in Eq. (8.3.22). Given the above conditions p1 = 1 and 1/d ≤ p2 ≤ 1,
the solution is always positive from Eq. (8.3.30). Thus, we prove the optimal
result in Result 41(b).

Remark 55. We note that for the case n = 3 the bounds in Result 41(a) can
also be derived from the optimization of Rényi/Tsallis entropy [562], but our
method has the advantages that the refined result in Result 41(b) is given, and
more importantly, it can be directly generalized to higher-order optimizations in
Eq. (8.3.3). However, an important difference to the case n = 3 is that although
solving the problem analytically is still possible, writing down the optimal val-
ues is no longer straightforward. This is because the roots of higher-order poly-
nomials are much more complicated [563]. For details see Ref. [3].
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D NPT NPT3 ONPT3 ONPT4 NPT5 ONPT5
2 75.68% 25.53% 39.97% 75.68% 64.78% 75.68%
3 99.99% 25.32% 39.46% 91.63% 97.51% 98.97%
4 100% 23.29% 33.69% 98.68% 100.00% 100.00%
5 100% 21.80% 34.54% 99.95% 100% 100%
6 100% 20.93% 31.20% 100.00% 100% 100%

Table 8.1: Fraction of (small) D × D states in the Hilbert-Schmidt distribution
(1,000,000 samples) that can be detected with various criteria. Here, NPT denotes
the states violating the PPT criterion, NPTn (NPT3, NPT5) denotes the states
violating the pn-PPT criterion in Eq. (40), and ONPTn (ONPT3, ONPT4, ONPT5)
denotes the states violating the pn-OPPT criterion.

8.4 Example

In Table 8.1, we investigate the entanglement of randomly generated states.
Here, we sample the random D × D states (dim(HA) = dim(HB) = D) with
the Hilbert-Schmidt distribution [565]. From the sampling, one can see a few
remarkable advantages of our criteria. First, most of the entangled states can
already be detected by the p5-PPT or the p4-OPPT criterion, discussed in more
details in Ref.[3]. Second, although the p3-PPT and p3-OPPT criteria are both
based on the PT-moments p2 and p3, the optimal criterion p3-OPPT is signifi-
cantly stronger than the p3-PPT criterion in Ref. [105]. Third, compared with the
usual entanglement witness method, our criteria have the advantage that neither
common reference frames nor prior information are needed for the entanglement
detection, see Sec. 1.4. Also, compared with the widely-used fidelity-based en-
tanglement witness, many more entangled states can be detected by comparing
Table 8.1 with the results in Refs. [216, 220].

In Fig. 8.1, we plot Result 41 for two-qutrit systems based on the PT moments.
There we consider the following thermal state with spin Hamiltonian Hspin:

ϱ(T, hy, hz) =
e−

Hspin
T

Z
, Hspin = S2

x + hyS2
y + hzS2

z , Sl = sA
l + sB

l , (8.4.1)

sx =
1√
2

0 1 0
1 0 1
0 1 0

 , sy =
1√
2

0 −i 0
i 0 −i
0 i 0

 , sz =

1 0 0
0 0 0
0 0 −1

 . (8.4.2)

In the plot, the area inside of Blue but outside of Orange marks our improve-
ment, meaning entangled states that can be detected. Finally, we note that a
similar plot has been already discussed in Ref. [564].

8.5 Discussions

This Chapter developed two systematic methods for detecting entanglement
from PT-moments. The first method is based on the classical moment prob-
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Magic simplex state ϱMS(α)

Grid/Chessboard/UPB states

Figure 8.1: Entanglement criteria based on the PT moments for two-qutrit sys-
tems with D = 3. Blue area contains states that obey the p3-PPT criterion,
while Orange area contains states that obey the p3-OPPT criterion presented in
Result 41. Thus the area inside of Blue but outside of Orange marks our im-
provement, meaning entangled states that can be detected. (Right) Black and
Gray dots, respectively, represent the thermal state ϱ(T, hy, hz) in Eq. (8.4.1) with
temperature ranges TBlack ∈ (0, 3] and TBlack ∈ (0, 0.8]. In fact, since PPT en-
tangled states cannot be detected in the PT-moment approach, we demonstrate
several examples introduced in Sec. 1.2. Note that a similar plot has been al-
ready discussed in Ref. [564].

lems, whose lowest order yields the p3-PPT criterion in Ref. [105] and higher
orders provide strictly stronger criteria. The second method is the optimal
method, which gives necessary and sufficient conditions for entanglement detec-
tion based on PT-moments. We demonstrated that our criteria are significantly
better than existing criteria for physically relevant states.

For future research, it would be highly desirable to extend the presented
theory to the characterization of multiparticle entanglement. Indeed, potential
generalizations of the PPT criterion for the multiparticle case exist [424], but
how to evaluate this using randomized measurements remains an open ques-
tion. We note that our approach has been extended in terms of permutation
criteria [255], moments of realignment [566, 567], and positive maps [568]. Also,
detailed analyses of quantum systems have been contacted in terms of two-
qubit states Refs. [569–572] and entanglement phase diagram of Haar random
states [573]. Finally, while finishing this project, we became aware of a related
work by Ref. [564].
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Chapter 9

Technical calculations associated
with Haar integrals

This Chapter involves several technical calculations associated with Haar inte-
grals. In particular, this Chapter includes the derivations or proofs of Results in
Chapters 2, 4, 5, 6, 7. Thus, this Chapter contains the descriptions of Refs. [1, 4,
6, 10].

9.1 Proof of Result 9 in Chapter 2

Proof. Ley us begin by recalling the moments S (r)AB:

S (r)AB = N(r, d)
∫

dα1

∫
dα2[tr(ϱABα1 · λ⊗α2 · λ)]r, (9.1.1)

where αi denote (d2 − 1)-dimensional unit real vectors uniformly distributed
from the pseudo-Bloch sphere, and λ = (λ1, λ2, . . . , λd2−1) is the vector of Gell-
Mann matrices. Furthermore, N(r, d) is a normalization factor. We substitute
the two-qudit state (2.3.1) into the moments S (r)AB. In the following, we always

add a normalization N = N(r, d), which is later chosen such that S (r)AB = 1 for
pure product states, see also Eq. (2.4.7) below. Then we have

S (r)AB = N
∫

dα1

∫
dα2

{
tr

[(
1
d2

d2−1

∑
i,j=0

tijλi ⊗ λj

)
α1 · λ⊗α2 · λ

]}r

=
N
d2r

∫
dα1

∫
dα2

{
d2−1

∑
i,j=1

tijtr [λiα1 · λ] · tr
[
λjα2 · λ

]}r

= N
∫

dα1

∫
dα2

[
d2−1

∑
i,j=1

tijα
(i)
1 α

(j)
2

]r

,
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where we use tr(αi · λ) = 0. Using the multinomial theorem(
n

∑
i=1

xi

)r

= ∑
r1+r2+···+rn=r

r!
r1!r2! · · · rn!

n

∏
i=1

xri
i , (9.1.2)

we have

S (r)AB = N
∫

dα1

∫
dα2 ∑

ri,j

r!
r1,1! · · · rd2−1, d2−1!

d2−1

∏
i,j=1

[
tijα

(i)
1 α

(j)
2

]ri,j

= N ∑
ri,j

r!
r1,1! · · · rd2−1, d2−1!

d2−1

∏
i,j=1

t
ri,j
ij

∫
dα1

d2−1

∏
i=1

[
α
(i)
1

]ai
∫

dα2

d2−1

∏
j=1

[
α
(j)
2

]a′j

= 4N ∑
ri,j

r!
r1,1! · · · rd2−1, d2−1!

d2−1

∏
i,j=1

t
ri,j
ij B(b1, b2, . . . , bd2−1)B(b′1, b′2, . . . , b′d2−1),

(9.1.3)

where the sum ∑ri,j
means ∑r1,1+···+r1, d2−1+r2,1+···+rd2−1, d2−1=r. We define that

ai =
d2−1

∑
j=1

ri,j, a′j =
d2−1

∑
i=1

ri,j, bi = (ai + 1)/2, b′j = (a′j + 1)/2. (9.1.4)

Note that in general, the integral over the n-dimensional unit sphere is written
as 2B(β1, β2, . . . , βn) (see Ref. [574]), where B(β1, β2, . . . , βn) denotes the multi-
variable beta function, for βi = (αi + 1)/2 and the gamma function Γ(βi), given
by

B(β1, β2, . . . , βn) =
Γ(β1)Γ(β2) · · · Γ(βn)

Γ(β1 + β2 + . . . + βn)
. (9.1.5)

This integral vanishes if any of αi is odd.

Case of r = 2

Let us evaluate the moment at r = 2. The condition r = 2 means r1,1 + · · · +
rd2−1, d2−1 = 2. To make this more explicit, we introduce the square matrix R

R =


r1,1 r1,2 · · · r1, d2−1
r2,1 r2,2 · · · r2, d2−1

...
... . . . ...

rd2−1,1 rd2−1,2 · · · rd2−1, d2−1

 . (9.1.6)

Recall here that ai = ∑d2−1
j=1 ri,j and a′j = ∑d2−1

i=1 ri,j. Thus, ai and a′j respectively
correspond to the i-th row vector and the j-th column vector of the matrix R.

There are two candidates that satisfy the condition r1,1 + · · ·+ rd2−1, d2−1 = 2:
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(1) one of elements is equal to 2 and all other elements are zero, that is, fixed
rα,β = 2 and rk,l ̸=α,β = 0. An example is given by

R =


2 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 . (9.1.7)

(2) two of elements are equal to 1 and all other elements are zero, that is, fixed
rα,β = rγ,δ = 1 and all other rk,l = 0. Examples are

R =


0 1 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 0

 ,


1 1 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 0

 . (9.1.8)

In any case of the candidate (2), either or both of ai and a′j are always 1, that
is, odd. This results in the vanishing of the integral over the sphere. Accordingly,
it is sufficient to focus only on the candidate (1) in Eq. (9.1.7). Concerning the
expression of moments (9.1.3), we have

2!
0! · · · 2! · · · 0!

= 1,
d2−1

∏
i,j=1

t
ri,j
ij = t2

αβ,

aα = ∑
j

rα,j = 2, ai ̸=α = 0, a′β = ∑
i

ri,β = 2, a′i ̸=β = 0,

bα =
3
2

, bi ̸=α =
1
2

, b′β =
3
2

, b′i ̸=β =
1
2

,

B(b1, . . . , bα, . . . , bd2−1) = B(b′1, . . . , b′β, . . . , b′d2−1)

= B
(

1
2

, . . . ,
3
2

, . . . ,
1
2

)
=

(
√

π)d2−1

2Γ
(

d2+1
2

) . (9.1.9)

Then we have

S (2)AB = V ∑
i,j

t2
ij, V = 4N

πd2−1

4
[
Γ
(

d2+1
2

)]2 =
1

(d− 1)2 . (9.1.10)

Case of r = 4

Let us evaluate the moment at r = 4. The condition r = 4 means r1,1 + · · · +
rd2−1, d2−1 = 4. There are several candidates that satisfy the condition r1,1 + · · ·+
rd2−1, d2−1 = 4. In the following, we will only describe the three candidates with
nonzero values of the integral over the sphere.
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(1) one of the elements is equal to 4 and all other elements are zero, that is,
fixed rα,β = 4 and rk,l ̸=α,β = 0. An example is

R =


4 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 . (9.1.11)

(2) two of elements are equal to 2 and all other elements are zero, that is, fixed
rα,β = rγ,δ = 2 and others rk,l = 0. Examples are divided into three types.

R =


0 2 · · · 0
0 2 · · · 0
...

... . . . ...
0 0 · · · 0

 ,


2 2 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 ,


2 0 · · · 0
0 2 · · · 0
...

... . . . ...
0 0 · · · 0

 . (9.1.12)

We call these (a), (b), and (c) cases, respectively.

(3) four of elements are equal to 1 and all other elements are zero, that is, fixed
rα,β = rγ,δ = rϵ,ζ = rη,θ = 1 and others are zero. An example is

R =


1 1 · · · 0
1 1 · · · 0
...

... . . . ...
0 0 · · · 0

 . (9.1.13)

• Candidate (1). Let us consider the candidate (1). For fixed rα,β = 4 and
rk,l ̸=α,β = 0, we have

aα = 4, a′β = 4, bα =
5
2

, b′β =
5
2

,

B(b1, . . . , bα, . . . , bd2−1) = B(b′1, . . . , b′β, . . . , b′d2−1)

= B
(

1
2

, . . . ,
5
2

, . . . ,
1
2

)
=

3(
√

π)d2−1

4Γ
(

d2+3
2

) . (9.1.14)

Therefore, the corresponding term is given by

4N
9πd2−1

16
[
Γ
(

d2+3
2

)]2 ∑
i,j

t4
ij. (9.1.15)

• Candidate (2). Let us consider the candidate (2). For fixed rα,β = rγ,δ = 2,
we have the three types (a), (b), and (c), as the three examples described in
(9.1.12):
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(a) α ̸= γ and β = δ.

(b) α = γ and β ̸= δ.

(c) α ̸= γ and β ̸= δ.

For the type (a), we have

an = 2, for n = α, γ, a′β = 4, bn =
3
2

, b′β =
5
2

,

B(b1, . . . , bα, . . . , bγ, . . . , bd2−1) = B
(

1
2

, . . . ,
3
2

, . . . ,
3
2

, . . . ,
1
2

)
=

(
√

π)d2−1

4Γ
(

d2+3
2

) ,

B(b′1, . . . , b′β, . . . , b′d2−1) = B
(

1
2

, . . . ,
5
2

, . . . ,
1
2

)
=

3(
√

π)d2−1

4Γ
(

d2+3
2

) . (9.1.16)

Moreover, to avoid the over-counting of summation, we multiply it by 1/2
in order to be able to write the contribution as the following sum:

4N × 6× 1
2
× 3πd2−1

16
[
Γ
(

d2+3
2

)]2 ∑
i,j,k,i ̸=j

t2
ikt2

jk. (9.1.17)

For the type (b), we have the similar result with (a):

4N × 6× 1
2
× 3πd2−1

16
[
Γ
(

d2+3
2

)]2 ∑
i,j,k,i ̸=j

t2
kit

2
kj. (9.1.18)

For the type (c), we have

an = 2, a′m = 2, for n = α, γ, m = β, δ, bn =
3
2

, b′m =
3
2

,

B(b1, . . . , bα, . . . , bγ, . . . , bd2−1) = B(b′1, . . . , b′β, . . . , b′δ, . . . , b′d2−1)

= B
(

1
2

, . . . ,
3
2

, . . . ,
3
2

, . . . ,
1
2

)
=

(
√

π)d2−1

4Γ
(

d2+3
2

) . (9.1.19)

Therefore, the corresponding term is given by

4N × 6× 1
2
× πd2−1

16
[
Γ
(

d2+3
2

)]2 ∑
i,j,k,l,i ̸=k,j ̸=l

t2
ijt

2
kl. (9.1.20)

• Candidate (3). Let us consider the candidate (3). For fixed rα,β = rγ,δ =
rϵ,ζ = rη,θ = 1, only one case yields finite values of the integral: α = γ,
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β = ζ, ϵ = η, and δ = θ. Here, rewriting the condition as rα,β = rα,δ =
rϵ,β = rϵ,δ = 1, we have

an = 2, a′m = 2, for n = α, ϵ, m = β, δ, bn =
3
2

, b′m =
3
2

,

B(b1, . . . , bα, . . . , bϵ, . . . , bd2−1) = B(b′1, . . . , b′β, . . . , b′δ, . . . , b′d2−1)

= B
(

1
2

, . . . ,
3
2

, . . . ,
3
2

, . . . ,
1
2

)
=

(
√

π)d2−1

4Γ
(

d2+3
2

) . (9.1.21)

Moreover, to avoid the over-counting of summation, we multiply it by 1/4.
Therefore, the corresponding term is given by

4N × 24× 1
4
× πd2−1

16
[
Γ
(

d2+3
2

)]2 ∑
i,j,k,l,i ̸=k,j ̸=l

tijtiltkjtkl. (9.1.22)

According to the candidates (1), (2), and (3), we finally arrive at

S (4)AB =W
{

3 ∑
i,j

t4
ij+3 ∑

i,j,k,i ̸=j
t2
ikt2

jk+3 ∑
i,j,k,i ̸=j

t2
kit

2
kj+ ∑
i,j,k,l,i ̸=k,j ̸=l

(
t2
ijt

2
kl+2tijtiltkjtkl

)}
, (9.1.23)

where

W = 4N
3πd2−1

16
[
Γ
(

d2+3
2

)]2 =
1

3 (d− 1)4 . (9.1.24)

9.2 Proof of Result 10 in Chapter 2

Proof. Analogous to the calculation in the case of S (r)AB shown in Eq. (9.1.3), after
some lengthy calculations and using the fact that Md is traceless, we obtain

R(r)
AB = ∑

ri,j

r!
r1,1! · · · rd2−1, d2−1!

d2−1

∏
i,j=1

t
ri,j
ij

×
∫

dUA

d2−1

∏
i=1

tr[UAMdU†
Aλi]

ai

∫
dUB

d2−1

∏
j=1

tr[UBMdU†
Bλj]

a′j , (9.2.1)

where the sum spans over all non-negative integer assignments to the ri,j such

that ∑d2−1
i,j=1 ri,j = r, and ai = ∑d2−1

j=1 ri,j, a′j = ∑d2−1
i=1 ri,j.

We start with the discussion of the case r = 4, where we focus on one of the
integrals and evaluate it for all possible exponent vectors a = (a1, . . . , ad2−1). As
all the entries are positive integers that sum to 4, there are five families of vectors
to be considered:
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(a) ak = 4, al ̸=k = 0,

(b) ak = 3, al = 1, am ̸=k,l = 0,

(c) ak = 2, al = 2, am ̸=k,l = 0,

(d) ak = 2, al = 1, am = 1, an ̸=k,l,m = 0,

(e) ak = 1, al = 1, am = 1, an = 1, ao ̸=k,l,m,n = 0.

We aim to prove that the whole integral coincides with the one obtained from
integration over the orthogonal group. To that end, we compare the integrals
occurring in Eq. (9.2.1) with those in Eq. (9.1.3). In particular, we try to tweak
the observable such that for all vectors a with ∑ ai = 4,∫

dUA

d2−1

∏
i=1

tr[UAMdU†
Aλi]

ai = MB(b1, b2, . . . , bd2−1), (9.2.2)

where B is defined in Eq. (9.1.5) and bi = (ai + 1)/2. The prefactor M can be
absorbed into the observable, as long as it is independent from a. To certify
equality, we will show

1. that the cases (b), (d), and (e) vanish for all choices of k, l, m, n, as they
contain odd numbers,

2. that the results of all integrals in the family (a) coincide, as well as those in
the family (c), as the function B is symmetric w.r.t. its parameters,

3. that the relative factor between the results in family (a) and those in family
(c) is given by 3. This comes from that B(5

2 , 1
2 , . . . , 1

2) = 3B(3
2 , 3

2 , 1
2 , . . . , 1

2).

With the help of Eq. (3) in Ref. [66], we can represent the integrals in terms of
Weingarten functions and evaluate the five families case by case. Let us recall
that we fixed the form of Md in Eq. (2.4.14) as an ansatz. The conditions tr(Md) =
0, tr(M2

d) = d allow us to treat the eigenvalue of y as a free variable with one
degree of freedom.

• Case (a). Depending on the value of k, s.t. ak = 4, we obtain as a result of
the integral either one of the polynomials

P1 = C
(
(d + 1)2(d + 3)

32
− (d + 1)(d + 3)

4
y +

d2 + 8d + 3
4

y2 − 2dy3 + dy4
)

,

(9.2.3)

P2 = C
(
(d + 1)2(d + 2)

32
− (d + 1)(d + 2)

4
y +

d2 + 9d− 6
4

y2 − (3d− 4)y3
)

+ C
(

3d− 4
2

y4 +
1

d− 1

(
d + 1

4
− 2y + 3y2 − 2y3 + y4

))
, (9.2.4)

or linear combinations of them with prefactors added to one. Setting P1 =
P2, we obtain the two real solutions for y given by Eq. (2.4.17).
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• Case (b). Depending on k and l, there are two types of integrals: One
vanishes directly, the other yields a multiple of P1− P2, which vanishes for
our choice of y.

• Case (c). This case yields a couple of different results, all of them given by
linear combinations of P1 and P2 with prefactors adding to 1/3. Substitut-
ing the solution for y, we obtain in every case the same result, given by 1/3
of the result obtained in case (a).

• Cases (d) and (e). These cases are analogous to case (b), yielding zero in
each case for the obtained solution of y.

Altogether, we have shown that for the observable Md in odd dimensions
with y given by Eq. (2.4.17), the fourth moment of random unitary measurements
coincides with that of random orthogonal ones.

Finally, we consider the second moment. First, it has been shown in Ref. [350]
that the second moments do not depend on the eigenvalues, as long as the
observable is traceless. Then, note that the result given in Theorem 2 of Ref. [350]
also holds for mixed states, the proof given there directly applies to the mixed
state case. This theorem states that the second moments R(2) have the same
expression as the one we derived for the second moments S (2) in Eq. (2.4.8). So
the claim follows.

9.3 Proof of Result 17 in Chapter 4

Useful formulas:

Before we show the proof, let us summarize several useful formulas for Haar
unitary integrals, following the description in Ref. [6]. Let us begin by consider-
ing the operator

O(i)
U = tr[σiUσzU†], (9.3.1)

with σi Pauli matrices for i = x, y, z. We introduce the following quantities

I (1)(i, j) =
∫

dUO(i)
U O

(j)
U , (9.3.2a)

I (2)(i, j, k, l) =
∫

dUO(i)
U O

(j)
U O

(k)
U O

(l)
U , (9.3.2b)

I (3)(i, j, k, l, m, n) =
∫

dUO(i)
U O

(j)
U O

(k)
U O

(l)
U O

(m)
U O

(n)
U . (9.3.2c)
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In Ref. [6], these integrals can be simplified as follows

I (1)(i, j) =
4
3

δij, (9.3.3a)

I (2)(i, j, k, l) =
16
15
(
δijδkl + δikδjl + δilδjk

)
, (9.3.3b)

I (3)(i, j, k, l, m, n) =
64

105

{
δij[δklδmn+δkmδln+δknδlm]+δik[δjlδmn+δjmδln+δjnδlm]

+δil[δjkδmn+δjmδkn+δjnδkm]+δim[δjkδln+δjlδkn+δjnδkl]

+δin[δjkδlm+δjlδkm+δjmδkl]
}

. (9.3.3c)

Also, Ref. [6] presents the following formula∫
dU tr[σaUσxU†]tr[σbUσyU†]tr[σcUσzU†] =

4
3

εabc. (9.3.4)

Proof. To proceed, we recall the moments

R(t)
M(ϱ) =

∫
dUA

∫
dUB{tr[(UA ⊗UB)ϱ(U†

A ⊗U†
B)M]}t. (9.3.5)

First, we consider the general form of product observables:

M = (kA1+ lAZ)⊗ (kB1+ lBZ). (9.3.6)

Hereafter for the sake of simplicity, we represent the Pauli matrix σz as Z.

• For t = 2: ForM = Z⊗ 1, Eq. (9.3.3a) yields

R(2)
Z⊗1(ϱ) =

∫
dUA{tr[ϱAUAZU†

A]}2

=
1
4

3

∑
i,j=1

αiαj

∫
dUtr[σiUZU†]tr[σjUZU†]

=
1
4

3

∑
i,j=1

αiαjI (1)(i, j) =
1
3

α2. (9.3.7)

In a similar manner, β2 can be obtained by measuring R(2)
1⊗Z. For the case

M = Z⊗ Z, we obtain

R(2)
Z⊗Z =

1
16

3

∑
ijkl=1

TijTklI (1)(i, k)I (1)(j, l) =
1
9

tr(TT⊤). (9.3.8)

• For t = 3: For kA = kB ≡ k, lA = lB ≡ l, that is, M = (k1+ lZ)⊗2, we
obtain

R(3)
(k1+lZ)⊗2 = k6 + k4l2[α2 + β2] +

1
3

k2l4[tr(TT⊤) + 2α⊤Tβ]. (9.3.9)
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• For t = 4: ForM = Z⊗ Z, Eq. (9.3.3b) yields

R(4)
Z⊗Z =

1
75

[2tr(TT⊤TT⊤) + tr(TT⊤)2]. (9.3.10)

ForM =M = (k1+ lZ)⊗2, we obtain

R(4)
(k1+lZ)⊗2

= k8 + 2k6l2[α2 + β2]

+
2
3

k4l4[
3

10
(α4 + β4) + α2β2 + tr(TT⊤) + 4α⊤Tβ]

+
2

15
k2l6[(α2 + β2)tr(TT⊤) + 2([αT]2 + [Tβ]2)]

+
1

75
l8[2tr(TT⊤TT⊤) + tr(TT⊤)2]. (9.3.11)

The combination [αT]2 + [Tβ]2 can be obtained from this symmetric mea-
surement. Choosing kA ̸= kB, lA ̸= lB leads to the individual terms.

• For t = 5: ForM = Z⊗ Z, we find

R(5)
(k1+lZ)⊗2

= k10 +
10
3

k8l2[α2 + β2]

+
10
3

k6l4[
3

10
(α4 + β4) + α2β2 +

1
3

tr(TT⊤) + 2α⊤Tβ]

+
2
3

k4l6[(α2 + β2)(tr(TT⊤) + 2α⊤Tβ) + 2([αT]2 + [Tβ]2)]

+
1

15
k2l8[2tr(TT⊤TT⊤) + tr(TT⊤)(tr(TT⊤) + 4α⊤Tβ) + 8α⊤TT⊤Tβ].

(9.3.12)
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• For t = 6: ForM = (k1+ lZ)⊗2, Eq. (9.3.3c) yields

R(6)
(k1+lZ)⊗2

= k12 + 5k10l2[α2 + β2]

+
1
3

k8l4[9(α4 + β4) + 30α2β2 + 5tr(TT⊤) + 40α⊤Tβ]

+ k6l6[(α2+β2)(α2β2+2tr(TT⊤)+8α⊤Tβ)+4([αT]2+[Tβ]2)+
1
7
(α6+β6)]

+
1
5

k4l8[2tr(TT⊤TT⊤)+tr(TT⊤)(tr(TT⊤) + 8α⊤Tβ+
5
7
(α4 + β4) + 2α2β2)]

+
1
5

k4l8[16α⊤TT⊤Tβ+(
20
7

α2 + 4β2)[αT]2+(
20
7

β2 + 4α2)[Tβ]2+8[α⊤Tβ]2]

+
1

35
k2l10[(α2 + β2)(2tr(TT⊤TT⊤) + tr(TT⊤)2) + 4([αT]2 + [Tβ]2)tr(TT⊤)]

+
8

35
k2l10[[αTT⊤]2 + [T⊤Tβ]2]

+
1

735
l12[8tr(TT⊤TT⊤TT⊤) + tr(TT⊤)(6tr(TT⊤TT⊤) + tr(TT⊤)3)].

(9.3.13)

Next, we consider nonproduct observables to obtain two invariants; I1 =
det(T) and I14 = tr(HαTH⊤β T⊤).

• For t = 3: ForMdet = ∑3
i=1 σi ⊗ σi, we obtain

R(3)
Mdet

(ϱ) =
∫

dUA

∫
dUB

[
∑

i
tr(ϱUσi ⊗ σi)

3

+ 3 ∑
i ̸=j

tr(ϱUσi ⊗ σi)
2tr(ϱUσj ⊗ σj)

+ 6tr(ϱUX⊗ X)tr(ϱUY⊗Y)tr(ϱUZ⊗ Z)
]

, (9.3.14)

where we denote ϱU = (UA ⊗UB)ϱ(U†
A ⊗U†

B). Now Eq. (9.3.4) leads to

R(3)
Mdet

(ϱ) = 6
∫

dUA

∫
dUBtr(ϱUX⊗ X)tr(ϱUY⊗Y)tr(ϱUZ⊗ Z)

=
6 · 4 · 4
43 · 3 · 3 ∑

i1i2i3 j1 j2 j3

Ti1 j1 Ti2 j2 Ti3 j3ϵi1i2i3ϵj1 j2 j3

= det(T) = I1. (9.3.15)

• For t = 4: ForM+
H = 1⊗ X + X⊗ 1+ Y⊗ Z + Z⊗Y, we have

R(4)
M+

H
= tr

[
ϱ⊗4

∫
dUA

∫
dUB(UA ⊗UBM+

HU†
A ⊗U†

B)
⊗4
]

, (9.3.16)
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where ∫
dUA

∫
dUB(UA ⊗UBM+

HU†
A ⊗U†

B)
⊗4

=
∫

dUA

∫
dUB(UA ⊗UB)

⊗4(1⊗4 ⊗ X⊗4 + X⊗4 ⊗ 1⊗4

+ 11XX⊗ XX11+ perms.
+ 11YY⊗ XXZZ + perms. + 11ZZ⊗ XXYY + perms.+
+ XXZZ⊗ 11YY + perms. + XXYY⊗ 11ZZ + perms.+

+ YYZZ⊗ ZZYY + perms. + Y⊗4 ⊗ Z⊗4 + Z⊗4 ⊗Y⊗4+

+ 1XYZ⊗ X1ZY + perms. + . . .)(U†
A ⊗U†

B)
⊗4, (9.3.17)

where perms. denotes all permutations among the A and B parties of the
preceding term. A long but straightforward calculation yields

R(4)
M+

H
(ϱ)

= . . . + 24
∫

dUA

∫
dUBtr(ϱU1⊗ X)tr(ϱUX⊗ 1)tr(ϱUY⊗ Z)tr(ϱUZ⊗Y)

= . . . +
24
44 ∑

i2i3i4 j1 j3 j4

β j1αi2 Ti3 j3 Ti4 j4×

×
∫

dUAtr(σi2UAXU†
A)tr(σi3UAYU†

A)tr(σi4UAZU†
A)×

×
∫

dUBtr(σj1UBXU†
B)tr(σj3UBZU†

B)tr(σj4UBYU†
B)

= . . .− 24 · 4 · 4
44 · 3 · 3 ∑

i2i3i4 j1 j3 j4

β j1αi2 Ti3 j3 Ti4 j4ϵi2i3i4ϵj1 j3 j4

= . . .− 1
6 ∑

ijklmn
ϵijkϵlmnαiβlTjmTkn = . . .− 1

6
tr(HαTH⊤β T⊤). (9.3.18)

Similarly, for the case withM−
H, we can obtain the term 1

6 tr(HαTH⊤β T⊤).

9.4 Proof of Results 24 and 25 in Chapter 5

Before we show the proof, let us summarize two formulas for Haar unitary
integrals, mentioned already in Sec. 1.5:∫

dU UXU†=
tr(X)

d
1d, (9.4.1)∫

dU U⊗2X(U†)⊗2=
1

d2 − 1

{[
tr(X)− tr(XS)

d

]
1⊗2

d −
[

tr(X)

d
−tr(XS)

]
S

}
,

(9.4.2)

where S is the SWAP operator.
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Proof. Let us show Result 24. We begin by writing the TPM work average for a
fixed unitary as

WTPM(εA, εB)

= ∑
i,j,k,l

mijmkl|ijwijkl (9.4.3)

= ∑
i,j

mijeij − ∑
i,j,k,l

mijmkl|ije
′
kl

= ∑
i,j

tr[PA
i ⊗ PB

j ϱAB]eij − ∑
i,j,k,l

mijtr[PA
k ⊗ PB

l σ′ij]e
′
kl

= tr[ϱABHD]−∑
i,j

tr
[
(UA ⊗UB)

√
PA

i ⊗
√

PB
j ϱAB

√
PA

i ⊗
√

PB
j (UA ⊗UB)

†HD

]
,

(9.4.4)

by virtue of Eq. (5.3.13). In order to derive the unitary average WTPM(εA, εB), we
first note that √

PA
i = fεA ΠA

i + gεA1A,
√

PB
i = fεB ΠB

i + gεB1B, (9.4.5)

with 1X = ΠX
i + ∑j ̸=i ΠX

j . We then define

fεX ≡
√

εX +
1− εX

d
−
√

1− εX

d
, gεX ≡

√
1− εX

d
, (9.4.6)

with the normalization condition

f 2
εX

+ 2 fεX gεX + dg2
εX

= 1. (9.4.7)

Abbreviating ΠAB
ij ≡ ΠA

i ⊗ΠB
j , a straightforward calculation leads to

∑
i,j

√
PA

i ⊗
√

PB
j ϱAB

√
PA

i ⊗
√

PB
j = f 2

εA
f 2
εB

ξAB + κAξA + κBξB + κABϱAB, (9.4.8)

where we define

ξAB ≡∑
i,j

ΠAB
ij ϱABΠAB

ij , (9.4.9)

ξA ≡∑
i

ΠA
i ⊗ 1BϱABΠA

i ⊗ 1B, (9.4.10)

ξB ≡∑
j
1A ⊗ΠB

j ϱAB1A ⊗ΠB
j , (9.4.11)

κAB ≡ κAκB/( f 2
εA

f 2
εB
), (9.4.12)

κA ≡ f 2
εA

gεB (2 fεB + dgεB) , (9.4.13)

κB ≡ f 2
εB

gεA (2 fεA + dgεA) . (9.4.14)
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From this follows

WTPM(εA, εB) = tr[ϱABHD]

−
∫

dUA

∫
dUB tr

[(
f 2
εA

f 2
εB

ξ ′AB + κAξ ′A + κBξ ′B + κABϱ′AB

)
HD

]
,

(9.4.15)

where χ′ = (UA ⊗UB)χ(U†
A ⊗U†

B) for any χ = ξAB, ξA, ξB, ϱAB. With the help
of the formula in Eq. (9.4.1) we straightforwardly arrive at

∫
dUA

∫
dUB tr

[
χ′HD

]
=

tr[HD]

d2 , (9.4.16)

provided that tr[χ′] = 1. Finally, by applying the normalization condition in
Eq. (9.4.7), the proof of Result 24 is completed.

Proof. Next, let us show Result 25. We begin by recalling that (∆WTPM(εA, εB))
2 =

WTPM(εA, εB)2−WTPM(εA, εB)
2
. Based on the assumption tr[HD] = 0 and the re-

sult of Result 24, the second term simplifies to

WTPM(εA, εB)
2
= tr [ϱABHD]

2 . (9.4.17)

For the first term WTPM(εA, εB)2, let us consider the expansion

WTPM(εA, εB)2

=
∫

dUA

∫
dUB

{
tr[ϱABHD]− tr

[(
f 2
εA

f 2
εB

ξ ′AB + κAξ ′A + κBξ ′B + κABϱ′AB

)
HD

]}2

= tr[ϱABHD]
2 +

∫
dUA

∫
dUB

{
tr
[(

f 2
εA

f 2
εB

ξ ′AB + κAξ ′A + κBξ ′B + κABϱ′AB

)
HD

]}2

− 2tr[ϱABHD]
∫

dUA

∫
dUB

{
tr
[(

f 2
εA

f 2
εB

ξ ′AB + κAξ ′A + κBξ ′B + κABϱ′AB

)
HD

]}
.

(9.4.18)

By virtue of Eq. (9.4.16) and the assumption tr[HD] = 0, the third line vanishes.
Expanding the second term in the second line, we identify ten types of unitary
integrals,

ΞξAB = f 4
εA

f 4
εB

∫
dUA

∫
dUB tr

[
ξ ′ABHD

]2 , (9.4.19)

ΞξA = κ2
A

∫
dUA

∫
dUB tr

[
ξ ′AHD

]2 , (9.4.20)

ΞξB = κ2
B

∫
dUA

∫
dUB tr

[
ξ ′BHD

]2 , (9.4.21)

ΞϱAB = κ2
AB

∫
dUA

∫
dUB tr

[
ϱ′ABHD

]2 , (9.4.22)
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and

Ξc1 = f 2
εA

f 2
εB

κA

∫
dUA

∫
dUB tr

[
ξ ′ABHD

]
· tr
[
ξ ′AHD

]
, (9.4.23)

Ξc2 = f 2
εA

f 2
εB

κB

∫
dUA

∫
dUB tr

[
ξ ′ABHD

]
· tr
[
ξ ′BHD

]
, (9.4.24)

Ξc3 = κAκB

∫
dUA

∫
dUB tr

[
ξ ′AHD

]
· tr
[
ξ ′BHD

]
, (9.4.25)

Ξc4 = f 2
εA

f 2
εB

κAB

∫
dUA

∫
dUB tr

[
ξ ′ABHD

]
· tr
[
ϱ′ABHD

]
, (9.4.26)

Ξc5 = κAκAB

∫
dUA

∫
dUB tr

[
ξ ′AHD

]
· tr
[
ϱ′ABHD

]
, (9.4.27)

Ξc6 = κBκAB

∫
dUA

∫
dUB tr

[
ξ ′BHD

]
· tr
[
ϱ′ABHD

]
. (9.4.28)

Hence we have

(∆WTPM(εA, εB))
2 = WTPM(εA, εB)2 −WTPM(εA, εB)

2

= ΞξAB + ΞξA + ΞξB + ΞϱAB + 2
6

∑
i=1

Ξci . (9.4.29)

We notice that the fourth term ΞϱAB /κ2
AB is equal to the theoretical work vari-

ance (∆W)2
D for the diagonal Hamiltonian HD in Result 21. The first three terms,

ΞξAB , ΞξA , ΞξB , can be attributed to the noiseless local TPM, and their sum cor-
responds to the variance (∆WProj)

2 in Result 23. Finally, all the cross terms Ξci
for i = 1, 6 vanish in the limits εA, εB → 0, 1; they constitute the additional noise
contribution (∆WNoisy)

2 in Result 23.
In order to find the explicit form of (∆WTPM(εA, εB))

2, we must evaluate all
these terms. We begin by recalling the generalized Bloch representation of ϱAB:

ϱAB =
1
d2

(
1AB + RA

1 ⊗ 1B + 1A ⊗ RB
1 + T2

)
, (9.4.30)

introducing the traceless Hermitian operators

RA
1 =

d2−1

∑
i=1

rA
i λi, RB

1 =
d2−1

∑
i=1

rB
i λi, T2 =

d2−1

∑
i,j=1

tijλi ⊗ λj. (9.4.31)

For these expressions, we define the quantities

r2
A =

1
d

tr
[
(RA

1 )
2
]
=

d2−1

∑
i=1

(rA
i )

2, (9.4.32)

r2
B =

1
d

tr
[
(RB

1 )
2
]
=

d2−1

∑
i=1

(rB
i )

2, (9.4.33)

t2 =
1
d2 tr

[
T2

2

]
=

d2−1

∑
i,j=1

t2
ij, (9.4.34)
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which capture the magnitude of the one- and two-body quantum correlations of
ϱAB. With these expressions, we rewrite the state ξAB in Eq. (9.4.9) as

ξAB = ∑
i,j

ΠAB
ij ϱABΠAB

ij = ∑
i,j

pAB
ij ΠAB

ij , (9.4.35)

where

pAB
ij ≡ tr[ΠAB

ij ϱAB] = (1/d2)
{

1 + tr[ΠA
i RA

1 ] + tr[ΠB
j RB

1 ] + tr[ΠAB
ij T2]

}
. (9.4.36)

Also, we define pA
i ≡ ∑j pAB

ij and pB
j ≡ ∑i pAB

ij . Let us introduce that

p2
A = ∑

i
(pA

i )
2, p2

B = ∑
j
(pB

j )
2, p2

AB = ∑
i,j
(pAB

ij )2. (9.4.37)

By using the formulas in Eq. (9.4.2), a long calculation leaves us with

ΞξAB =
f 4
εA

f 4
εB

d2 − 1

[
QAB +

(
d2p2

AB − dp2
A − dp2

B + 1
)

g2v2

d2 − 1

]
, (9.4.38)

ΞξA =
κ2

A
d2 − 1

[(
dp2

A − 1
)

h2
A + r2

Bh2
B +

g2v2

d2 − 1 ∑
a,b,c

tabtcbζA
ac

]
, (9.4.39)

ΞξB =
κ2

B
d2 − 1

[
r2

Ah2
A +

(
dp2

B − 1
)

h2
B +

g2v2

d2 − 1 ∑
a,b,c

tabtacζB
bc

]
, (9.4.40)

and

Ξc1 =
f 2
εA

f 2
εB

κA

d2 − 1

[
QAB +

(
d2p2

AB − dp2
A − dp2

B + 1
)

g2v2

d2 − 1

]
, (9.4.41)

Ξc2 =
f 2
εA

f 2
εB

κB

d2 − 1

[
QAB +

(
d2p2

AB − dp2
A − dp2

B + 1
)

g2v2

d2 − 1

]
, (9.4.42)

Ξc3 =
κAκB

d2 − 1

[
QAB +

(d2p2
AB − dp2

A − dp2
B + 1)g2v2

d2 − 1

]
, (9.4.43)

Ξc4 =
f 2
εA

f 2
εB

κAB

d2 − 1

[
QAB +

(
d2p2

AB − dp2
A − dp2

B + 1
)

g2v2

d2 − 1

]
, (9.4.44)

Ξc5 =
κAκAB

d2 − 1

[(
dp2

A − 1
)

h2
A + r2

Bh2
B +

g2v2

d2 − 1 ∑
a,b,c

tabtcbζ A
ac

]
, (9.4.45)

Ξc6 =
κBκAB

d2 − 1

[
r2

Ah2
A +

(
dp2

B − 1
)

h2
B +

g2v2

d2 − 1 ∑
a,b,c

tabtacζB
bc

]
. (9.4.46)

where for the sake of simplicity we denote that

QAB ≡
(

dp2
A − 1

)
h2

A +
(

dp2
B − 1

)
h2

B. (9.4.47)
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Here we introduced

ζ A
ab ≡∑

i

tr(ΠA
i λaΠA

i λb)

d
, ζB

ab ≡∑
i

tr(ΠB
i λaΠB

i λb)

d
. (9.4.48)

Summarizing these terms, we can complete the proof of Result 25. Here, it might
be useful for some readers to note that

∑
a,b,c,d

tabtcdζ A
acζB

bd =
1
d2 ∑

i,j
tr[ΠAB

ij T2ΠAB
ij T2]

=
1
d2 ∑

i,j
{tr[ΠAB

ij T2]}2

=
1
d2 ∑

i,j

(
d2pAB

ij − dpA
i − dpB

j + 1
)2

= d2p2
AB − dp2

A − dp2
B + 1, (9.4.49)

where we use that tr[ΠAB
ij T2] = d2pAB

ij − dpA
i − dpB

j + 1.

9.5 Proof of Result 28 in Chapter 6

Proof. We begin by evaluating the form of ⟨M4⟩ as follows

⟨M4⟩ =
N

∑
i=1

tr
[
ϱ⊗4

i Φ4(σ
(i)
z )
]

=
1
24

N

∑
i=1

∑
a,b,c,d

r(i)a r(i)b r(i)c r(i)d I(a, b, c, d)

=
1
5

F1(θ). (9.5.1)

Here in the first line, we use that Φ(σ
(i)
z ) only acts on the copies of the i-th

system. In the second line, we denote that for r(i)p = tr[ϱiσ
(i)
p ] for p = a, b, c, d =

x, y, z and

I(a, b, c, d) =
∫

dU Z(i)
U,aZ(i)

U,bZ(i)
U,cZ(i)

U,d, (9.5.2)

where Z(i)
U,a = tr[σ(i)

a U†σ
(i)
z U]. In the third line, we apply the following formula

I(a, b, c, d) =
16
15

(δa,bδc,d + δa,cδb,d + δa,dδb,c) , (9.5.3)

given in Eq. (9.3.3b) and introduce the fourth-order quantity

F1(θ) =
N

∑
i=1

r4
i , (9.5.4)
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where r2
i = ∑p=x,y,z[r

(i)
p ]2 = 2tr[ϱ2

i ]− 1.
Next, we will evaluate the expression of the variance: (∆M4)

2 = ⟨M2
4⟩ −

⟨M4⟩2, where

⟨M2
4⟩ = ∑

i
⟨Φ4(σ

(i)
z )2⟩+ ∑

i ̸=j
⟨Φ4(σ

(i)
z )Φ4(σ

(j)
z )⟩. (9.5.5)

The first term in ⟨M2
4⟩ can be given by

∑
i
⟨Φ4(σ

(i)
z )2⟩ = ∑

i
tr
{[

ϱ⊗4
i Φ4(σ

(i)
z )
]

X
⊗ [Φ4(σ

(i)
z )]Y SX,Y

}
=

1
24 ∑

i

∫
dUX

∫
dUY

[
tr
(

χ
(i)
x ⊗ υ

(i)
y Sx,y

)]4

=
1

24 · 24 ∑
i

∫
dUX

∫
dUY

[
∑
α

Z (i)
UX ,αZ(i)

UY ,α

]4

=
1

24 · 24 ∑
i

∑
α,β,γ,δ

I(α, β, γ, δ)
4

∑
j=0
C(i)j

=
1

5 · 15
[15N − 20S1(θ) + 8F1(θ)] . (9.5.6)

Here in the first equality, we divide the squared term into two different spaces
X, Y using the SWAP trick mentioned in the proof of Result 27. The SWAP
SX,Y acts on the eight-qubit system, where each system X = {x1, x2, x3, x4} and
Y = {y1, y2, y3, y4} is the four-copy of a single-qubit system.

In the second equality, we use that the SWAP operator in many qubits can be
realized by the SWAP operators in individual qubits [107], that is,

SX,Y = Sx1,y1 ⊗ Sx2,y2 ⊗ Sx3,y3 ⊗ Sx4,y4 . (9.5.7)

Also we denote that

χ
(i)
x = U†

Xσ
(i)
z UX + ∑

a=x,y,z
r(i)a σ

(i)
a U†

Xσ
(i)
z UX,

υ
(i)
y = U†

Yσ
(i)
z UY, (9.5.8)

where r(i)a = tr[ϱiσ
(i)
a ].

In the third equality, we apply the formulas

S =
1
2

(
1⊗2

2 + ∑
α=x,y,z

σα ⊗ σα

)
,

σpσq = δp,q12 + i ∑
r=x,y,z

εp,q,rσr, (9.5.9)
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with the Kronecker-delta symbol δp,q and the Levi-Civita symbol εp,q,r, and de-
note that

Z (i)
UX ,α = Z(i)

UX ,α + i ∑
a,k=x,y,z

εα,a,kr(i)a Z(i)
UX ,k, (9.5.10)

where Z(i)
UX ,α = tr[σ(i)

α U†
Xσ

(i)
z UX].

In the fourth equality, we denote that∫
dUX Z

(i)
UX ,αZ

(i)
UX ,βZ

(i)
UX ,γZ

(i)
UX ,δ =

4

∑
j=0
C(i)j , (9.5.11)

where α, β, γ, δ = x, y, z and the label j in C(i)j represents the number of times the
imaginary unit i is multiplied.

In the final equality, we indeed evaluate all the terms in C(i)j and simplify

the expression. Note that C(i)1 = C(i)3 = 0 for any i due to the properties of the
Kronecker delta and Levi-Civita symbol.

Let us continue the computation of the variance. The second term in ⟨M2
4⟩

can be given by

∑
i ̸=j
⟨Φ4(σ

(i)
z )Φ4(σ

(j)
z )⟩ = ∑

i ̸=j
tr[ϱ⊗4

ij Φ4(σ
(i)
z )Φ4(σ

(j)
z )]

=
1
44 ∑

i ̸=j
∑
a,b

t(ij)a1b1
t(ij)a2b2

t(ij)a3b3
t(ij)a4b4
I(a)I(b)

=
2

5 · 15
F2(θ). (9.5.12)

In the second equality, we denote that a = (a1, a2, a3, a4), b = (b1, b2, b3, b4), and
t(ij)apbp

= tr(ϱijσap ⊗ σbp) for ap, bp = x, y, z. In the third equality, we use that the

sector length can be given by S2(θ) = ∑i<j tr(TijT⊤ij ) = ∑i<j[4tr(ϱ2
ij)− 1− S1(θ)]

with the matrix [Tij]ab = t(ij)ab and introduce the fourth-order two-body quantity

F2(θ) = ∑
i<j

{
[tr(TijT⊤ij )]

2 + 2tr(TijT⊤ij TijT⊤ij )
}

. (9.5.13)

Hence we can complete the proof.

9.6 Proof of Result 31 in Chapter 7

Proof. Let us begin by rewriting the moments C(r)(ϱab) as

C(r)(ϱab) =
1
4r

∫
dU

[
∑

i,j=x,y,z
CijO

(i)
U O

(j)
U

]r

, (9.6.1)
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where we define that O(i)
U = tr[σiUσzU†]. Using the formulas in Eqs. (9.3.3a,

9.3.3b, 9.3.3b), we can straightforwardly obtain the following expressions

C(1)(ϱab) =
1
3

tr(C), (9.6.2a)

C(2)(ϱab) =
1
15

[
tr(C)2 + tr(CC⊤) + tr(C2)

]
, (9.6.2b)

C(3)(ϱab) =
1

105

{
tr(C)

[
tr(C)2 + 3tr(C2) + 3tr(CC⊤)

]
+ 4tr(C2C⊤) + 2tr(CC⊤C⊤) + 2tr(C3)

}
. (9.6.2c)

Furthermore, using the symmetric condition C = C⊤, we can finally arrive at

C(1)(ϱab) =
1
3

tr(C), (9.6.3a)

C(2)(ϱab) =
1

15

[
tr(C)2 + 2tr(C2)

]
, (9.6.3b)

C(3)(ϱab) =
1

105

{
tr(C)

[
tr(C)2 + 6tr(C2)

]
+ 8tr(C3)

}
. (9.6.3c)

The moments C(r)(ϱab), equivalently J (r)(ϱ), are directly connected to tr[Cr].
Hence we complete the proof.

9.7 Proof of Results 32 and 33 in Chapter 7

Proof. Here we give the derivation of Eq. (7.4.1). Let us begin by writing that

J (1)(ϱ) = 3
∫

dU (∆Jz)
2
U, (9.7.1)

and

(∆Jz)
2
U

= ⟨U⊗N J2
z (U

†)⊗N⟩ϱ − ⟨U⊗N Jz(U†)⊗N⟩2ϱ

=
1
4

N

∑
i,j=1
⟨U⊗Nσ

(i)
z ⊗ σ

(j)
z (U†)⊗N⟩ϱ −

1
4

N

∑
i,j=1
⟨U⊗Nσ

(i)
z (U†)⊗N⟩ϱ⟨U⊗Nσ

(j)
z (U†)⊗N⟩ϱ

=
1
4

{
N +

N

∑
i ̸=j

tr
[
U⊗2σ

(i)
z ⊗ σ

(j)
z (U†)⊗2ϱij

]
−

N

∑
i,j=1

tr
[
Uσ

(i)
z U†ϱi

]
tr
[
Uσ

(j)
z U†ϱj

]}
,

(9.7.2)
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where ϱij and ϱi are the two-qubit and single-qubit reduced states of ϱ. Let us
focus on the second term in Eq. (9.7.2) and take the Haar unitary average

N

∑
i ̸=j

∫
dU tr

[
U⊗2σ

(i)
z ⊗ σ

(j)
z (U†)⊗2ϱij

]
=

1
4

N

∑
i ̸=j

∫
dU tr

[
U⊗2σ

(i)
z ⊗ σ

(j)
z (U†)⊗2 ∑

k,l=x,y,z
t(i,j)kl σ

(i)
k ⊗ σ

(j)
l

]

=
1
4

N

∑
i ̸=j

∑
k,l=x,y,z

t(i,j)kl

∫
dU tr

[
Uσ

(i)
z U†σ

(i)
k

]
tr
[
Uσ

(j)
z U†σ

(j)
l

]
=

1
3

N

∑
i ̸=j

∑
l=x,y,z

t(i,j)ll =
4
3 ∑

l=x,y,z
⟨J2

l ⟩ − N, (9.7.3)

where t(i,j)kl = ⟨σ(i)
k ⊗ σ

(j)
l ⟩ϱij . Similarly, the third term in Eq. (9.7.2) can be given

by

N

∑
i,j=1

∫
dU tr

[
Uσ

(i)
z U†ϱi

]
tr
[
Uσ

(j)
z U†ϱj

]
=

4
3 ∑

l=x,y,z
⟨Jl⟩2. (9.7.4)

Summarizing these results, we can thus arrive at

J (1)(ϱ) =
3
4

{
N +

4
3 ∑

l=x,y,z
⟨J2

l ⟩ − N +
4
3 ∑

l=x,y,z
⟨Jl⟩2

}
= ∑

l=x,y,z
(∆Jl)

2. (9.7.5)

Proof. Next, let us show Result 33. Similarly to Eq. (9.7.2), the random variance
(∆Λl)

2
U can be written as

(∆Λl)
2
U =

1
d2

{ N

∑
i=1

tr[U(λ
(i)
l )2U†ϱi]+

N

∑
i ̸=j

tr
[
U⊗2λ

(i)
l ⊗ λ

(j)
l (U†)⊗2ϱij

]
(9.7.6)

−
N

∑
i,j=1

tr
[
Uλ

(i)
l U†ϱi

]
tr
[
Uλ

(j)
l U†ϱj

] }
, (9.7.7)

where ϱij and ϱi are the two-qudit and single-qudit reduced states of ϱ. To
evaluate the Haar unitary integral, let us recall the formulas in Eqs. (9.4.1,9.4.2).
Thus we first obtain

N

∑
i=1

∫
dU tr[U(λ

(i)
l )2U†ϱi] =

N

∑
i=1

tr[(λ(i)
l )2]

d
tr[ϱi] = N. (9.7.8)
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Next, we have

N

∑
i ̸=j

∫
dU tr

[
U⊗2λ

(i)
l ⊗ λ

(j)
l (U†)⊗2ϱij

]

=
1
d2

N

∑
i ̸=j

∫
dU tr

[
U⊗2λ

(i)
l ⊗ λ

(j)
l (U†)⊗2

d2−1

∑
m,n=1

t(i,j)mn λ
(i)
m ⊗ λ

(j)
n

]

=
1
d2

1
d2 − 1

N

∑
i ̸=j

d2−1

∑
m,n=1

t(i,j)mn tr
[
(dS− 1⊗2

d )λ
(i)
m ⊗ λ

(j)
n

]

=
1

d2 − 1

N

∑
i ̸=j

d2−1

∑
l=1

t(i,j)ll

=
d2

d2 − 1

d2−1

∑
l=1
⟨Λ2

l ⟩ − N. (9.7.9)

In the first line, we denote that t(i,j)mn = ⟨λ(i)
m ⊗ λ

(j)
n ⟩ϱij . In the second line, we

used the formula in Eq. (9.4.2) and the so-called SWAP trick: tr[SX] = tr[S(XA⊗
XB)] = tr[XAXB] for an operator X = XA ⊗ XB. In the final line, we used that
∑d2−1

l=1 λ2
l = (d2− 1)1d, which can be derived from the facts that S = 1

d ∑d2−1
l=0 λl ⊗

λl and S2 = 1⊗2
d . Similarly, we obtain

N

∑
i,j=1

∫
dU tr

[
Uλ

(i)
l U†ϱi

]
tr
[
Uλ

(j)
l U†ϱj

]
=

1
d2 − 1

N

∑
i,j=1

[
dtr(ϱiϱj)− 1

]
=

d2

d2 − 1

d2−1

∑
l=1
⟨Λl⟩2. (9.7.10)

Summarizing these results, we can complete the proof.

9.8 Proof of Result 34 in Chapter 7

Proof. Here we give the derivation of Eq. (7.5.5). Let us begin by recalling

T (ϱ) =
∫

dU tr
[
ϱU⊗NOA(U†)⊗N

]
, OA = ∑

i<j<k
A
(

σ
(i)
x ⊗ σ

(j)
y ⊗ σ

(k)
z

)
, (9.8.1)

where A represents a linear mapping that can make the antisymmetrization (or
alternatization) by summing over even permutations and subtracting the sum
over odd permutations. More precisely, the observable can be rewritten as

OA = ∑
i<j<k

∑
l,m,n=x,y,z

ε lmnσ
(i)
l ⊗ σ

(j)
m ⊗ σ

(k)
n . (9.8.2)
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For instance, in the three-qubit system ABC, it is given by

OA = σ
(A)
x ⊗ σ

(B)
y ⊗ σ

(C)
z + σ

(A)
y ⊗ σ

(B)
z ⊗ σ

(C)
x + σ

(A)
z ⊗ σ

(B)
x ⊗ σ

(C)
y

− σ
(A)
x ⊗ σ

(B)
z ⊗ σ

(C)
y − σ

(A)
y ⊗ σ

(B)
x ⊗ σ

(C)
z − σ

(A)
z ⊗ σ

(B)
y ⊗ σ

(C)
x . (9.8.3)

Then we have

T (ϱ) = ∑
i<j<k

∑
l,m,n=x,y,z

ε lmn

{∫
dU tr

[
ϱijkU⊗3σ

(i)
l ⊗ σ

(j)
m ⊗ σ

(k)
n (U†)⊗3

]}
=

1
23 ∑

i<j<k
∑

l,m,n=x,y,z
∑

a,b,c=x,y,z
ε lmnξ

(i,j,k)
abc

×
∫

dU tr[σ(i)
a Uσ

(i)
l U†]tr[σ(j)

b Uσ
(j)
m U†]tr[σ(k)

c Uσ
(k)
n U†], (9.8.4)

where ϱijk is the three-qubit reduced state of ϱ for i, j, k = 1, 2, . . . , N with the

three-body correlation ξ
(i,j,k)
abc = tr[ϱijkσ

(i)
a σ

(j)
b σ

(k)
c ] for a, b, c = x, y, z.

To evaluate the Haar unitary integral, we use the formula in Eq. (9.3.4), which
leads to

T (ϱ) = 1
23

4
3 ∑

i<j<k
∑

l,m,n=x,y,z
∑

a,b,c=x,y,z
ε lmnξ

(i,j,k)
abc εabc

= ∑
i<j<k

∑
a,b,c=x,y,z

ξ
(i,j,k)
abc εabc. (9.8.5)

Hence we can complete the proof.

9.9 Proof of Result 37 in Chapter 7

Proof. We begin by writing

G(r)AB = g
∫

dUA

∫
dUB [ηUAB ]

r, ηUAB = (∆J+z )2
UAB
− (∆J−z )2

UAB
, (9.9.1a)

J (r)
X (ϱX) =

∫
dUX [ fU(ϱX)]

r, fU(ϱX) = α(∆Jz,X)
2
UX

+ β⟨Jz,X⟩2UX
+ γ, (9.9.1b)

where

⟨J±z ⟩UAB = tr
[
ϱABU⊗N

AB J±z (U†
AB)
⊗N
]

, (∆J±z )2
UAB

= ⟨(J±z )2⟩UAB−⟨J
±
z ⟩2UAB

, (9.9.2a)

J±z = Jz,A ± Jz,B, Jz,X =
1
2

N

∑
i=1

σ
(Xi)
z , UAB = UA ⊗UB. (9.9.2b)

Then we can have

⟨J±z ⟩2UAB
= ⟨Jz,A⟩2UA

+ ⟨Jz,B⟩2UB
± 2⟨Jz,A⟩UA⟨Jz,B⟩UB , (9.9.3a)

(∆J±z )2
UAB

= (∆Jz,A)
2
UA

+ (∆Jz,B)
2
UB

± 2
[
⟨Jz,A ⊗ Jz,B⟩UAB − ⟨Jz,A⟩UA⟨Jz,B⟩UB

]
, (9.9.3b)

ηUAB = 4
[
⟨Jz,A ⊗ Jz,B⟩UAB − ⟨Jz,A⟩UA⟨Jz,B⟩UB

]
. (9.9.3c)
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Let us evaluate the form of G(2)AB(ϱAB). Applying the assumption that ϱA and ϱB
are permutational symmetric, we can further simplify the form of ηUAB

ηUAB = 4
1
2

1
2

{ N

∑
i,j=1

tr[ϱAiBjUAσ
(Ai)
z U†

A ⊗UBσ
(Bj)
z U†

B]

−
N

∑
i,j=1

tr[ϱAiUAσ
(Ai)
z U†

A]tr[ϱBiUBσ
(Bi)
z U†

B]

}

=
N2

4 ∑
p,q=x,y,z

CpqO(p)
UA
O(q)

UB
, (9.9.4)

where the covariance matrix C = (Cpq) is given by

Cpq = tr[ϱAiBj σ
(Ai)
p ⊗ σ

(Bj)
q ]− tr[ϱAi σ

(Ai)
p ]tr[ϱBj σ

(Bj)
q ] = tpq − apbq, (9.9.5)

for the two-qubit reduced state ϱAiBj = trij(ϱAB) such that both particles are still
spatially separated, defined in HAi ⊗HBj . Here we denote that

O(p)
UX

= tr
[
σ
(Xi)
p UXσ

(Xi)
z U†

X

]
, (9.9.6)

for Xi = Ai, Bi. Notice that Cpq and O(p)
UX

are independent of indices i, j due to
the permutational symmetry.

To avoid confusion, we have to stress that the above covariance matrix C =
(Cpq) is different from Eq. (7.3.5) in general. If the spatially-separated reduced
state ϱAiBj is also permutationally symmetric, both are the same, but here we do
not require the assumption.

Using the formula in Eq. (9.3.3a), we have that

G(2)AB(ϱAB) = g
N4

42 ∑
p,q,r,s=x,y,z

CpqCrs

∫
dUAO

(p)
UA
O(r)

UA

∫
dUBO

(q)
UB
O(s)

UB

= ∑
p,q=x,y,z

C2
pq, (9.9.7)

where we set that g = (3/N2)2. Also, since ⟨Jz,A⟩UA = (N/4)∑p=x,y,z apO(p)
UA

and β = 12/N2, we can find

J (1)
A (ϱA) = β

N2

42 ∑
p,q=x,y,z

apaq

∫
dUAO

(p)
UA
O(q)

UA
= ∑

p=x,y,z
a2

p, (9.9.8)

as well as J (1)
B (ϱB) = ∑p=x,y,z b2

p. In summary, for the choice g = (3/N2)2 and
(α, β, γ) = (0, 12/N2, 0), we have that

G(2)AB + J (1)
A + J (1)

B −J (1)
A J

(1)
B = ∑

p,q=x,y,z
C2

pq + ∑
p=x,y,z

(a2
p + b2

p)− ∑
p,q=x,y,z

a2
pb2

q .

(9.9.9)
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To derive the entanglement criterion, we rewrite the above right-hand side as

G(2)AB + J (1)
A + J (1)

B −J (1)
A J

(1)
B = ∑

p,q=x,y,z
(t2

pq − 2apbqtpq) + ∑
p=x,y,z

(a2
p + b2

p),

(9.9.10)

where we use that C2
pq = t2

pq + a2
pb2

q − 2apbqtpq. To proceed furthermore, we recall
the so-called T2 separability criterion presented in Ref. [416] (see, Proposition 5):
if a bipartite quantum state ϱXY is separable, then it obeys that

tr(ϱ2
XY) + tr(ϱ2

X) + tr(ϱ2
Y)− 2tr[ϱXY(ϱX ⊗ ϱY)] ≤ 1. (9.9.11)

If ϱXY is a two-qubit state, we can rewrite this inequality as

∑
i,j=x,y,z

(z2
ij − 2xiyjzij) + ∑

i=x,y,z
(x2

i + y2
i ) ≤ 1, (9.9.12)

where xi = tr(ϱXσi), yi = tr(ϱYσi), and zij = tr(ϱXYσi ⊗ σj). Let us apply this
criterion to Eq. (9.9.10). Exchanging the symbols

xi ←→ ap, yi ←→ bp zij ←→ tpq, (9.9.13)

we can connect this criterion to Eq. (9.9.10) and arrive at the inequality in Re-
sult 37. Hence we can complete the proof.
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Geometry of quantum states
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Chapter 10

Geometry of two-body correlations
in three-qubit states

This thesis has developed several methods to detect and analyze quantum entan-
glement in terms of local unitary invariants. This Chapter addresses the question
of whether one can characterize three-qubit states only using two-body marginal
quantities which are invariant under local unitaries. This Chapter provides sev-
eral bounds on quantum states from geometrical perspectives. This Chapter is
based on Ref. [11].

10.1 Introduction

The characterization of quantum states from a restricted and accessible set of
parameters is of interest in quantum theory [23]. A famous example is the so-
called Bloch sphere, where the state space of a single-qubit is represented by
a three-dimensional unit ball, each quantum state corresponding uniquely to a
point of the ball [19, 575]. A surface (or interior) point of this sphere corresponds
to a pure (or mixed state), and the length of its radius describes the state’s pu-
rity, a quantity that remains invariant under unitary rotations. The state space
of higher-dimensional and multipartite quantum systems, however, is a compli-
cated high-dimensional object. Describing relevant properties of this object from
a reduced set of parameters is interesting for several reasons.

First, it allows us to see regularities and structures and describe them in a
compact way. Second, a full description of a high-dimensional quantum state is
often not available for computational limitations. Third, a reduced set of param-
eters allows to visualize relevant properties of the quantum state space in lower
dimensions. Many efforts have been devoted to the geometrical characterization
of quantum features in terms of separable balls [576], single qutrits [30, 31], two
qubits [64, 577], three qubits [352], many qubits [160, 320, 578], and Majorana
representation [579].

In this Chapter, we study the problem of characterizing multipartite quantum
states from limited information on their two-body marginal correlations. This
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is connected to the quantum marginal problem, where properties of a global
multipartite state can be inferred from the local properties of the parties and
correlations between a reduced number of parties [203, 580–588]. We study
restrictions on the allowed two-body correlations of a three-qubit system and
derive several properties of the global state from its two-body correlations.

Let ϱABC be a three-qubit state and let ϱAB = trC(ϱABC) be its two-qubit
reduced state between the systems A and B, as well as ϱBC and ϱCA. Consider
the two-body correlations of the reduced states based on the Pauli matrices σi
for i = 1, 2, 3:

SAB
2 =

3

∑
i,j=1
⟨σi ⊗ σj⟩2ϱAB

, (10.1.1)

SBC
2 =

3

∑
i,j=1
⟨σi ⊗ σj⟩2ϱBC

, (10.1.2)

SCA
2 =

3

∑
i,j=1
⟨σi ⊗ σj⟩2ϱCA

. (10.1.3)

The quantities SXY
2 for X, Y = A, B, C are invariant under local unitaries, and

they can be understood as the generalization of the length in the Bloch sphere.
We aim to characterize a three-qubit ϱABC in the three-dimensional state space
with three coordinates (x, y, z) = (SAB

2 , SBC
2 , SCA

2 ).
Several works have analyzed quantum states in similar directions. One re-

search line is to extend it to k-body correlations for a N-particle quantum state,
and their average overall subsystems are called k-body sector length in Eq. (1.4.7),
e.g., S2 = SAB

2 + SBC
2 + SCA

2 . For two-qubits there exists a full restriction of one-
and two-body sectors [352, 589, 590]. It was shown that any three-qubit pure
state obeys S2 = 3, which can be proven based on the Schmidt decomposition
(see [19]).

Another research line is to develop practical methods for accessing SXY
2 or

more generally sector lengths without state tomography. Recently, randomized
measurement schemes with Haar random local unitaries have been used to ob-
tain them in Sec. 1.4. In this scheme, spatially-separated parties do not need to
align the same coordinate measurement settings.

The goal of this Chapter is to address the following issues. First, we find
bounds on three-qubit pure states, which are tighter than the existing condition
S2 = 3 in the state space. Our bounds can be expressed in non-linear combi-
nations of each coordinate. Second, we present systematic methods to obtain
linear polytopes for mixed separable states. These results allow us to detect
multipartite entanglement from marginal correlations that are invariant under
local unitaries. Finally, we discuss the necessary conditions for the two-body
correlations based on the rank of the states.
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Figure 10.1: The nonlinear allowed set of the pure three-qubit states in the coor-
dinate space (SAB

2 , SBC
2 , SCA

2 ) based on Result 42. The Blue, Red, and Green lines,
respectively represent the states that are biseparable in the AB|C, BC|A, and
CA|B partitions. The black dot contains the fully separable states. This figure is
a modified version of a figure from Ref. [11].

10.2 Pure states

In this section, we consider a three-qubit pure state ϱABC. We begin by noting
that for any three-qubit pure state, the condition S2 = 3 holds. At the same time,
this is not the strongest restriction on the set of points (SAB

2 , SBC
2 , SCA

2 ) compatible
with a pure three-qubit state. Here, we can present the first main result of this
Chapter:

Result 42. For any three-qubit pure state the linear condition SAB
2 + SBC

2 + SCA
2 = 3

holds. It further holds that √
SAB

2 +
√

SBC
2 −

√
SCA

2 ≤
√

3, (10.2.1a)√
SAB

2 −
√

SBC
2 +

√
SCA

2 ≤
√

3, (10.2.1b)

−
√

SAB
2 +

√
SBC

2 +
√

SCA
2 ≤

√
3, (10.2.1c)

Remark 56. The proof of this Result will be given after Result 43. The set of points
attainable by pure three-qubit states is displayed in Fig. 10.1.

There are several noteworthy facts on Result 42. The non-linear inequali-
ties in Eqs. (10.2.1a)-(10.2.1c) describe a two-dimensional region that is strictly
smaller than the previously known region described by S2 = 3, see Fig. 10.1. In
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fact, the inequalities are tight, for every point in this region there exists a pure
state that is mapped to this point. Each inequality is saturated by one of the
following state families belonging to the W class:

|ξ1(p)⟩ = p |001⟩+ f+p |010⟩+ f−p |100⟩ , (10.2.2a)

|ξ2(p)⟩ = p |010⟩+ f+p |100⟩+ f−p |001⟩ , (10.2.2b)

|ξ3(p)⟩ = p |100⟩+ f+p |001⟩+ f−p |010⟩ , (10.2.2c)

where 0 ≤ p ≤ 1/
√

2 and f±p = (
√

2− 3p2 ± p)/2.
If a state is product with respect to a bipartition A|BC written as |ψA|BC⟩ =

|ψA⟩ ⊗ |ψBC⟩, then it follows that SAB
2 = SCA

2 ≤ 1. This can be shown using
the condition SAB

2 + SBC
2 + SCA

2 = 3 and the product formula SXY
2 (ϱX ⊗ ϱY) =

SX
1 (ϱX)SY

1 (ϱY) (see Sec. 1.4) for single-particle states ϱX and ϱY. Similarly, one
can find the cases for the other two bipartitions B|CA and C|AB. These separa-
bility conditions for A|BC, B|CA, and C|AB are respectively represented by the
Red, Green, and Blue lines in Fig. 10.1, where a state on each line corresponds,
up to local unitaries, to one of the following biseparable states

|ϕ(θ)⟩X|YZ = |0⟩X ⊗ (cos (θ) |00⟩YZ + sin (θ) |11⟩YZ) (10.2.3)

for θ ∈ [0, π/2] and X, Y = A, B, C. Since it has to obey all three conditions, any
full-product state |ψfs⟩ = |a⟩ ⊗ |b⟩ ⊗ |c⟩ is mapped to the center point (1, 1, 1).
Any pure state mapped outside of these lines is genuinely three-qubit entangled.

However, the converse is not true, there exist pure entangled states that
are mapped to the biseparable lines. If a three-qubit state ϱABC is permuta-
tionally invariant under the exchange of two qubits X, Y = A, B, C, that is,
SXYϱABCSXY = ϱABC with the swap operator between X, Y qubits, then it holds
that SXZ

2 = SYZ
2 , which can be immediately shown using S(A ⊗ B)S = B ⊗ A

for any operators A, B. States that are invariant under the exchange of all
three qubits such as the symmetric Greenberger–Horne–Zeilinger (GHZ) state
|GHZ⟩ = (|000⟩+ |111⟩)/

√
2 and the W state |W⟩ = (|001⟩+ |010⟩+ |100⟩)/

√
3

are mapped to the point (1, 1, 1). This means that any pure state with some sym-
metry cannot be distinguished from a biseparable or fully separable state from
its two-body correlations alone. In the following, we will overcome this issue by
adding the three-body correlations as another parameter.

To proceed, let us first define the three-body sector length as

SABC
3 =

3

∑
i,j,k=1

⟨σi ⊗ σj ⊗ σk⟩2ϱABC
. (10.2.4)

Again, this is invariant under local unitaries. Here we can make the following
result:

Result 43. For any three-qubit pure state, it holds that

SABC
3 ≤ 3 + min(SAB

2 , SBC
2 , SCA

2 ), (10.2.5)
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and √
SAB

2 + ∆ +
√

SBC
2 + ∆−

√
SCA

2 + ∆ ≤
√

3, (10.2.6a)√
SAB

2 + ∆−
√

SBC
2 + ∆ +

√
SCA

2 + ∆ ≤
√

3, (10.2.6b)

−
√

SAB
2 + ∆ +

√
SBC

2 + ∆ +
√

SCA
2 + ∆ ≤

√
3, (10.2.6c)

where ∆ ≡ 3− SABC
3 ∈ [−1, 2].

Proof. First, we note that Result 42 follows from Result 43 for ∆ = 0. According
to Ref. [352], any three-qubit pure state obeys

SAB
2 + SBC

2 + SCA
2 = 3, (10.2.7)

SA
1 + SB

1 + SC
1 + SABC

3 = 4. (10.2.8)

The purity of any two marginals is equal, which we reformulate to

SX
1 + SY

1 + SXY
2 = 1 + 2SZ

1 , (10.2.9)

where X, Y, Z = A, B, C. From this, it follows

SX
1 = 1 + 1

3 SYZ
2 − 1

3 SXYZ
3 . (10.2.10)

Eq. (10.2.5) follows immediately by noting that SX
1 ≥ 0. In Ref. [590], it was

shown that for any three-qubit pure states, it holds that√
SX

1 +
√

SY
1 −

√
SZ

1 ≤ 1, (10.2.11)

where X, Y, Z = A, B, C and SX
1 = ∑3

i=1⟨σi⟩2ϱX
for X = A, B, C and the single-

qubit reduced state ϱX. Substituting Eq. (10.2.10) into all three permutations of
Eq. (10.2.11) and multiplying with

√
3, we immediately arrive at the inequality

in Result 43√
3 + SAB

2 − SABC
3 +

√
3 + SBC

2 − SABC
3 −

√
3 + SCA

2 − SABC
3 ≤

√
3 (10.2.12)

and permutations thereof. Noting that this holds for all values 1 ≤ SABC
3 ≤ 4

and that the condition is the least restrictive for SABC
3 = 3, we complete the proof

of Result 42.

We have several remarks on Result 43. First, similarly to the Result 42, these
non-linear inequalities are tight, they exactly describe the set of all points corre-
sponding to pure states. The boundary can be attained by states of the form

|Ξ(x, y)⟩ =
√

x− y
2
|001⟩+

√
1 + y

2
|010⟩+

√
1− x

2
|100⟩, (10.2.13)
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where −1 < y ≤ x < 1.
Second, any pure separable state with respect to the bipartition A|BC satisfies

SABC
3 ≤ 3, while any pure fully separable state also satisfies SABC

3 ≤ 1. Thus,
we are able to identify GME for permutationally invariant states, as long as
SABC

3 > 3 and bipartite entanglement as long as SABC
3 > 1. More specifically, by

including the SABC
3 coordinate we are able to distinguish GHZ and W states as

being GME states.

10.3 Mixed states

10.3.1 Global constraints

In this section, we extend our previous analysis to mixed states and characterize
the set of two-body correlations (SAB

2 , SBC
2 , SCA

2 ) attainable by various classes of
mixed three-qubit states ϱABC. Let us begin by noting the convex property of the
two-body sector lengths:

S2(ϱABC) ≤∑
i

piS2(ϱi), (10.3.1)

for ϱABC = ∑i piϱi (this holds for all k-body sector lengths). Thus, any three-
qubit state obeys that S2(ϱABC) ≤ 3. This means that no three-qubit mixed state
can go outside the boundaries of pure states in the state space.

For any three-qubit state the inequality S2 = SAB
2 + SBC

2 + SCA
2 ≤ 3 holds. We

further conjecture that the same three non-linear inequalities as for pure states
given in Result 42 hold:
Conjecture. For any three-qubit state, it holds that√

SAB
2 +

√
SAC

2 −
√

SBC
2 ≤

√
3, (10.3.2a)√

SAB
2 −

√
SAC

2 +
√

SBC
2 ≤

√
3, (10.3.2b)

−
√

SAB
2 +

√
SAC

2 +
√

SBC
2 ≤

√
3. (10.3.2c)

Remark 57. The corresponding set (SAB
2 , SBC

2 , SCA
2 ) is displayed in Fig. 10.2. There

is some evidence indicating the validity of this conjecture. One expects states
that form the boundary of the state space in (SAB

2 , SBC
2 , SCA

2 ) to be of low rank,
whereas states increase in rank when coming closer to the origin (0, 0, 0), see
Sec. 10.4.

In case the inequalities (10.3.2a, 10.3.2c, 10.3.2c) hold, they would be tight, as
they are saturated by the states

κ1(p, q) = q |ξ1(p)⟩⟨ξ1(p)|+ q̄ |ξ1( p̄)⟩⟨ξ1( p̄)| , (10.3.3a)

κ2(p, q) = q |ξ2(p)⟩⟨ξ2(p)|+ q̄ |ξ2( p̄)⟩⟨ξ2( p̄)| , (10.3.3b)

κ3(p, q) = q |ξ3(p)⟩⟨ξ3(p)|+ q̄ |ξ3( p̄)⟩⟨ξ3( p̄)| , (10.3.3c)
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Figure 10.2: The state space in (SAB
2 , SBC

2 , SCA
2 ) of three qubits under two-body

sector lengths. This is a conjecture in Eq. (10.3.2). This figure is taken from
Ref. [11].

where q̄ = 1− q, p̄ = 1− p and |ξ1(p)⟩ , |ξ2(p)⟩ , |ξ3(p)⟩ are respectively defined
in Eqs. (10.2.2a, 10.2.2b, 10.2.2c). That is, together with S2 ≤ 3 they would com-
pletely characterize the set of points (SAB

2 , SBC
2 , SCA

2 ) attainable by three-qubit
states.

10.3.2 Full separability

A mixed state is called fully separable if it can be written in the form

ϱfs = ∑
k

pkϱA
k ⊗ ϱB

k ⊗ ϱC
k , (10.3.4)

with pk ∈ [0, 1] and ∑k pk = 1. For example, the maximally mixed state 18/8 sits
at the origin (0, 0, 0). Intuitively, a fully separable state should have small two-
body correlations, and thus the set (SAB

2 , SBC
2 , SCA

2 ) attainable by fully separable
states may be expected to sit close to the origin. Indeed, we present the following
inequalities:

Result 44. Any fully separable three-qubit state obeys

SAB
2 + SBC

2 − SCA
2 ≤ 1, (10.3.5a)

SAB
2 − SBC

2 + SCA
2 ≤ 1, (10.3.5b)

−SAB
2 + SBC

2 + SCA
2 ≤ 1. (10.3.5c)

These criteria are optimal, the fully separable states fill the whole set defined by those
inequalities.

Remark 58. The proof is given below. The set defined formed by the fully sepa-
rable states is displayed in Fig. 10.3, the inequalities in Eqs. (10.3.5a)-(10.3.5c) are
respectively represented by the Blue, Green, and Pink facets.
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Figure 10.3: The space of the fully separable three-qubit states in the coordinates
given by Result 44 is presented in this Chapter, along with the pure state in
the background. The transparent yellow region specifies the pure state space
while the blue is the fully separable region. The green, pink, and blue surface
areas correspond to Eqs. (10.3.12a, 10.3.12b, 10.3.12c). This figure is taken from
Ref. [11].

Proof. Let us recall the fully separable state:

ϱfs = ∑
k

pkϱA
k ⊗ ϱB

k ⊗ ϱC
k , (10.3.6)

with pk ∈ [0, 1] and ∑k pk = 1. Here we note that any separable state has
positive eigenvalues under partial transposition [194]: ϱXY ∈ SEP → ϱ⊤X

XY ≥ 0,
where (·)⊤X denotes the partial transposition on subsystem X.

In the case where X = A and Y = BC, we consider the following ϱ1 for the
fully separable state

ϱ1 ≡ σ
(A)
y ϱ⊤A

fs σ
(A)
y ≥ 0, (10.3.7)

where σ
(A)
y denotes a Pauli-Y matrix, which is unitary, acting on the subsystem

A. This corresponds to the local spin flip in Eq. (1.1.56) in Sec 1.1. Now, ϱ1 is a
quantum state since it is a positive density matrix. Similarly, in the case where
X = BC and Y = A, we have that

ϱ2 ≡ σ
(B)
y σ

(C)
y ϱ

⊤BC
fs σ

(B)
y σ

(C)
y ≥ 0. (10.3.8)

Using the inequality tr(AB) ≥ 0 for positive matrices A, B, we can arrive at

tr(ϱfsϱ1) ≥ 0 =⇒ 1− SA
1 + SB

1 + SC
1 − SAB

2 − SCA
2 + SBC

2 − SABC
3 ≥ 0, (10.3.9)

tr(ϱfsϱ2) ≥ 0 =⇒ 1 + SA
1 − SB

1 − SC
1 − SAB

2 − SCA
2 + SBC

2 + SABC
3 ≥ 0. (10.3.10)

Adding the above two equations, we obtain

SAB
2 − SBC

2 + SCA
2 ≤ 1, (10.3.11)
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which leads us to Eq. (10.3.5b). Similarly, choosing the appropriate bipartitions
can derive Eqs. (10.3.5a),(10.3.5c).

Concerning the optimality, we find that these inequalities are saturated by
the states

ϱ++−(p, θ) = p |000⟩⟨000|+ (1− p) |01θ⟩⟨01θ| , (10.3.12a)

ϱ+−+(p, θ) = p |000⟩⟨000|+ (1− p) |0θ1⟩⟨0θ1| , (10.3.12b)

ϱ−++(p, θ) = p |000⟩⟨000|+ (1− p) |θ01⟩⟨θ01| , (10.3.12c)

where |θ⟩ = cos (θ) |0⟩+ sin (θ) |1⟩. Thus we can complete the proof of Result 44.

We can indeed find stronger criteria from Eqs. (10.3.9, 10.3.10). For that, we
note that

min(a, b) =
a + b

2
− |a− b|

2
. (10.3.13)

Then, taking the minimization over both sides leads to the stronger criteria for
full separability:

SAB
2 + SCA

2 − SBC
2 + |SABC

3 + SA
1 − SB

1 − SC
1 | ≤ 1, (10.3.14a)

SAB
2 − SCA

2 + SBC
2 + |SABC

3 − SA
1 + SB

1 − SC
1 | ≤ 1, (10.3.14b)

−SAB
2 + SCA

2 + SBC
2 + |SABC

3 − SA
1 − SB

1 + SC
1 | ≤ 1. (10.3.14c)

10.3.3 Biseparability

A state is called biseparable for the bipartition A|BC if it can be written as

ϱA|BC = ∑
k

qkϱA
k ⊗ ϱBC

k , (10.3.15)

with qk ∈ [0, 1] and ∑k qk = 1. Let us propose the following criteria:

Result 45. Any three-qubit state which is separable for a bipartition X|YZ obeys

SXY
2 + SZX

2 − SYZ
2 ≤ 1, (10.3.16a)

SXY
2 , SZX

2 ≤ 1, (10.3.16b)

3SXY
2 − SZX

2 + SYZ
2 ≤ 3, (10.3.16c)

−SXY
2 + 3SZX

2 + SYZ
2 ≤ 3. (10.3.16d)

Remark 59. The proof is given below and the sets defined by these inequalities
are displayed in Fig. 10.4.

Proof. Without loss of generality, it is sufficient to prove the one of the biparti-
tions. In this proof, we take the case where a state is separable with respect to
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partition A|BC, which obeys

SAB
2 + SCA

2 − SBC
2 ≤ 1, (10.3.17a)

SAB
2 , SCA

2 ≤ 1, (10.3.17b)

3SAB
2 − SCA

2 + SBC
2 ≤ 3, (10.3.17c)

−SAB
2 + 3SCA

2 + SBC
2 ≤ 3. (10.3.17d)

Note that the inequality (10.3.17a) was already proven in Result 44. Also the
inequality (10.3.17b) is a trivial extension of the pure state criterion, due to the
convexity of our coordinates. In the following, we will then show the inequalities
(10.3.17c, 10.3.17d).

We begin by observing the case for pure states. The biseparability condition
for A|BC then leads to the condition SAB

2 = SCA
2 , which we already discussed.

This implies that the left-hand sides in both Eqs. (10.3.17c, 10.3.17d) become,

3SAB
2 − SCA

2 + SBC
2 = 2SAB

2 + SBC
2 = SAB

2 + SCA
2 + SBC

2 = 3. (10.3.18)

That is, the inequalities (10.3.17c, 10.3.17d) are clearly saturated by all rank-one
three-qubit states that are biseparable for A|BC. Based on this fact, we will
proceed with our proof.

Let us note that any biseparable state for A|BC can be written as

ϱA|BC = ∑
i

pi |ψi
A|BC⟩⟨ψ

i
A|BC| . (10.3.19)

The squared coefficient of a two-body Bloch component σ
(m)
a ⊗ σ

(n)
b for the qubit

indices m, n = A, B, C and Pauli indices a, b = 1, 2, 3 are given by

⟨σ(m)
a ⊗ σ

(n)
b ⟩

2
ϱA|BC

= ∑
i

p2
i

(
αm,n

i:a,b

)2
+ 2 ∑

i<j
pi pjα

m,n
i:a,bαm,n

j:a,b, (10.3.20)

where αm,n
i:a,b = ⟨ψi

A|BC|σ
(m)
a ⊗ σ

(n)
b |ψ

i
A|BC⟩. Note this also holds for any general

state. With this expression and the condition in Eq. (10.3.18), we can rewrite the
left-hand side in Eq. (10.3.17c) as

3SAB
2 − SCA

2 + SBC
2 = 3 ∑

i
p2

i + ∑
i<j

pi pjgij, (10.3.21)

where the function gij contains the cross-terms given by

gij =
3

∑
a,b=1

3αA,B
i:a,bαA,B

j:a,b − αC,A
i:a,bαC,A

j:a,b + αB,C
i:a,bαB,C

j:a,b. (10.3.22)

Using numerical optimization (explained below), one can observe that for
any two pure states that are separable in the A|BC bipartition, it holds that

gij ≤ 3, ∀ |ψi
A|BC⟩ , |ψj

A|BC⟩ ∈ SEP (A|BC) , (10.3.23)
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Figure 10.4: The state space of states that are biseparable along some fixed bi-
partition, according to Result 45 presented in this Chapter. The Green, Orange,
and Red regions correspond to states biseparable in the AC|B,AB|C, and BC|A
bipartitions. This figure is taken from Ref. [11].

which results in that Eq. (10.3.21) can be bounded by 3. To be more precise,
we consider the most general pure quantum state that is separable in the A|BC
bipartition:

|ψ(θ,ϕ)⟩=
[
cos(θ1)|0⟩+eiϕ1sin(θ1)|1⟩

]
⊗
[

cos(θ2)|00⟩+eiϕ2sin(θ2) cos(θ3)|01⟩
+eiϕ3sin(θ2) sin(θ3) cos(θ4)|10⟩+eiϕ4sin(θ2) sin(θ3) sin(θ4)|11⟩

]
.

(10.3.24)

Thus, by plugging Eq (10.3.24) into Eq. (10.3.22), we convert the problem of
maximizing g into an unconstrained maximization problem over parameters.
Implementing the optimization over these parameters, we thus can complete the
proof of Result 45.

The biseparability inequalities can also be written in terms of the purity of
total and reduced density matrices of the three-qubit state. More precisely, the
purity of two-qubit and single-qubit reduced density matrix takes the following
forms:

tr(ϱ2
X) =

1
2

[
1 + SX

1

]
, (10.3.25)

tr(ϱ2
XY) =

1
4

[
1 + SX

1 + SY
1 + SXY

2

]
. (10.3.26)

Using the Eqs.(10.3.25) and (10.3.26), and with a bit of algebra, one can re-write
the Eqs. (10.3.17c) and (10.3.17d) as

3tr(ϱ2
AB) + tr(ϱ2

BC) ≤ tr(ϱ2
AC) + tr(ϱ2

A) + 2tr(ϱ2
B), (10.3.27a)

3tr(ϱ2
AC) + tr(ϱ2

BC) ≤ tr(ϱ2
AB) + tr(ϱ2

A) + 2tr(ϱ2
C). (10.3.27b)
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A state violating inequality (10.3.16c) cannot be written in the form (10.3.15)
and therefore is entangled across the bipartition A|BC. Similarly, we can detect
entanglement for the partitions B|CA and C|AB. Combining this, any state map-
ping outside of the union of the three sets defined by Eqs. (10.3.16c)-(10.3.16d)
can not be separable with respect to a given partition. However, this does not
imply that the state is genuinely multipartite entangled (for details, see Sec. 1.2).
There is the possibility that our inequalities are violated by a mixture of bisepa-
rable states. Such states have the form

ϱbisep = pAϱA|BC + pBϱB|CA + pCϱC|AB, (10.3.28)

where pA, pB, pC are probability distributions.
Let us explicitly provide a biseparable state that does not lie in the union of

the three different partition biseparability. The general biseparable states that
are biseparable along different bipartitions, do not satisfy the bounds given in
Result 45. A non-trivial example is given by

ϱ12 = 0.65 |ψ1⟩⟨ψ1|+ 0.35 |ψ2⟩⟨ψ2| , (10.3.29)

|ψ1⟩ =
√

0.97 |000⟩+
√

0.03 |011⟩ , (10.3.30)
|ψ2⟩ = −0.97 |000⟩ − 0.127 |100⟩+ 0.2 |110⟩ . (10.3.31)

The above state is a mixture of states biseparable in the A|BC and C|AB biparti-
tion. However, this can violate our criteria:

min
X ̸=Y ̸=Z∈{A,B,C}

2|SXY
2 − SYZ

2 |+ SXY
2 + SYZ

2 + SXZ
2 = 3.02684. (10.3.32)

Remark 60. For pure biseparable states we recover the previous results, thus
states of the form of Eq. (10.3.28) saturate the inequalities (10.3.16c)-(10.3.16d).
However, it is not clear if the inequalities are also tight for mixed states. If Con-
jecture 10.3.2 holds, parts of the biseparable sets would lie outside of the region
attainable by quantum states. Therefore the global tightness of the inequali-
ties (10.3.16c)-(10.3.16d) stands in conflict with Conjecture 10.3.2.

10.4 Rank bounds

In this section, we look at restrictions of the two-body correlations (SAB
2 , SBC

2 , SCA
2 )

depending on the matrix rank of a quantum state, that is, the number of eigen-
values. Here we formulate the following:

Result 46. Any rank-two three-qubit state obeys S2 ≥ 1 and any rank-three three-qubit
state obeys S2 ≥ 1/3. There is no non-trivial necessary condition for rank-k for k ≥ 4
three-qubit states in terms of the coordinates (SAB

2 , SBC
2 , SCA

2 ).

Remark 61. The proof is given below. For both rank two and three there exists
states that saturate the inequality. For rank wto, one family of states that saturate
the bound are the ones in Eq. (10.3.12) with p = 1

2 . However, we do not expect
these bounds to be optimal, i.e. the tightest bounds in terms of (SAB

2 , SBC
2 , SCA

2 ),
and believe that there exists better non-linear bounds.
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Proof. Consider a rank-l density matrix. Suppose its purity is lower bounded by
l. Then, using tr

(
ϱ2) = 1

8 (1 + S1 + S2 + S3),

S1 + S2 + S3 ≥ 8l − 1. (10.4.1)

Furthermore, any three-qubit state obeys the following inequality in Ref [352]:

1− S1 + S2 − S3 ≥ 0. (10.4.2)

Using Eqs. (10.4.1 and 10.4.2), we arrive at

S2 ≥ 4l − 1. (10.4.3)

The proof is completed by noting that for rank-two states, l = 1
2 and for rank-

three states, l = 1
3 .

Concerning the nonexistence of non-trivial necessary conditions for states
of rank-four and higher, we note that the trivial one is S2 ≥ 0. That is, rank-
four states have just a high enough rank to cover the whole set of two-body
correlations. For instance, the separable state

η =
1
4
(|000⟩⟨000|+ |100⟩⟨100|+ |101⟩⟨101|+ |110⟩⟨110|) (10.4.4)

has rank four but S2 = 0. That is, this state is indistinguishable from the max-
imally mixed state in our coordinates. The same can even hold for entangled
states. The three-qubit state ϱθ discussed in Eq. (F1) in Ref. [256], has no two-
body correlation, that is S2 = 0. This state is separable for all bipartitions but
not fully separable, which contains a very weak form of entanglement in three
qubits, called bound entanglement [166].

10.5 Discussions

This Chapter developed methods to characterize three-qubit quantum states
with two-body marginal correlations that are invariant under local unitaries.
For pure states, we have found tight nonlinear bounds and given their analytical
proofs. For mixed states, we have proposed criteria for different forms of multi-
partite entanglement, which are expressed as nontrivial linear combinations.

There are several directions for further research. First, it would be interesting
to extend this approach to many particles or higher dimensions. To advance our
understanding of the geometry of quantum systems, it is interesting to develop
a systematic approach to finding the set of admissible states. Second, different
types of marginal local unitary invariants may be employed as other coordinates.
This may lead to new criteria to detect multipartite entanglement from marginals
information. Finally, since our entanglement criteria can detect entanglement in
which the two-body correlations are not equally distributed, our results may
encourage the characterization of multipartite entanglement without symmetric
properties.
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Chapter 11

Quantum speed limit for perturbed
open systems

This Chapter deals with the analysis of open quantum dynamics in terms of
perturbation. This Chapter presents quantum speed limits describing the diver-
gence of a perturbed open system from its unperturbed trajectory in state space.
This Chapter is based on Ref. [9].

11.1 Introduction

The concept of time-energy uncertainty in quantum mechanics was formally
established in 1945 by Mandelstam and Tamm [591]. They demonstrated the
limitation on the time required for a quantum state to evolve to an orthogonal
state based on its energy uncertainty. Subsequently, this idea has been extended
and generalized, notably by Margolus and Levitin [97], who introduced a bound
involving mean energy, leading to what is now known as the quantum speed
limit. Over time, numerous extensions to mixed states and driven and open
quantum systems have been derived [592–596], along with an understanding of
the connection to the geometry of quantum state spaces [91, 597, 598].

Quantum speed limits have found applications in various fields, including
information processing rates [599, 600] and maximum physically allowable rates
of communication [601]. Additionally, they have been utilized in quantum ther-
modynamics to bound entropy production rates [602], analyze heat engine effi-
ciency and power [603, 604], and study battery charging rates [465, 466]. Fur-
thermore, speed limits are closely related to metrology, where the precision of
parameter estimation encoded in a quantum state depends on the rate of state
change with respect to the parameter [605, 606].

The quantum Fisher information (QFI) [91, 92] plays a crucial role in metrol-
ogy, as it not only represents a (squared) speed in state space but also quantifies
various important properties of quantum states. For example, a sufficiently large
QFI indicates many-body entanglement [176, 320, 607, 608]. Additionally, the
QFI can be used as a measure of coherence in a given basis [609, 610], macro-
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scopic quantumness of a system [611], and Glauber-Sudarshan nonclassicality
in optics [612, 613]. Moreover, the QFI serves as a witness of general quantum
resources [614]. Due to these applications, it is often desirable to experimentally
measure lower bounds on the QFI. One common approach is to adopt speed
limits to estimate the QFI from the distance between an initial state and a state
evolved for a short time [615, 616].

In this Chapter, we introduce a novel type of speed limit that characterizes the
response of a Markovian open quantum system to a perturbation in its dynam-
ics. The derived inequality upper bounds the distance between the perturbed
and unperturbed trajectories in state space in terms of the QFI of the system
with respect to the perturbation. Importantly, this result holds under minimal
assumptions and without detailed knowledge of the dynamics. For a system
weakly coupled to its environment, we demonstrate that the speed limit can be
expressed in terms of the QFI with respect to a perturbing Hamiltonian, up to
an error bounded in terms of the relevant physical timescales. We then show
how this speed limit can be used to experimentally determine a lower bound
on the QFI. Finally, we apply this formalism to the thermodynamics of systems
perturbed out of equilibrium, revealing that quantum fluctuations in the work
performed during a sudden quench are necessary for rapid departure from the
initial state.

11.2 Quantum speed limits

We begin by recalling the original Mandelstam-Tamm quantum speed limit [591]:

τ ≥ π

2
√

Var(ψ, H)
, Var(ψ, H) = ⟨ψ|H2|ψ⟩ − ⟨ψ|H|ψ⟩2 , (11.2.1)

where Var(ψ, H) is the energy variance of a pure state |ψ⟩ at time τ, and we
take h̄ = 1. This bound implies that a large energy variance is necessary for a
quantum state to evolve quickly to an orthogonal state under the influence of
the Hamiltonian H.

The quantum speed limit has been extended to mixed states by considering
the nonzero overlap between the initial and final states. In Ref. [597], Uhlmann
introduced a speed limit involving the fidelity between the initial state ϱ0 and
the final state ϱt = e−itHϱ0eitH as follows:

F(ϱ0, ϱt) = tr
√√

ϱ0ϱt
√

ϱ0, (11.2.2)

where ϱ0 and ϱt represent the initial and final states, respectively. Instead of the
energy variance, we employ the Quantum Fisher Information (QFI) to character-
ize the system’s sensitivity to changes in time.

The QFI measures the sensitivity of a continuously parameterized family
of states to small changes in a parameter [92]. In this chapter, we focus on
the sensitivity to time evolution, so the QFI becomes a function of the state ϱt
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and its instantaneous time derivative dϱt
dt . We consider evolutions generated by

Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) superoperators [40, 41]:

dϱt

dt
= Lt(ϱt), (11.2.3)

where the QFI F (ϱt,Lt) can be defined as a function of ϱt and Lt. One def-
inition of the QFI is expressed in terms of the spectral decomposition ϱt =
∑i λi(t) |ψi(t)⟩⟨ψi(t)|:

F (ϱt,Lt) = 2 ∑
i,j: λi(t)+λj(t)>0

| ⟨ψi(t)|Lt(ϱt)|ψj(t)⟩ |2

λi(t) + λj(t)
. (11.2.4)

With these concepts in place, the Uhlmann speed limit can be written as

θB(ϱ0, ϱt) ≤
1
2

∫ t

0
ds
√
F (ϱs,Hs), ∀ t ≥ 0, (11.2.5)

where Ht is the generator of time evolution under the time-dependent Hamilto-
nian Ht:

Ht(·) = −i[Ht, ·]. (11.2.6)

This bound is derived from the infinitesimal expansion of the Bures angle as a
metric on state space:

θB(ϱt, ϱt+dt)
2 =

1
4
F (ϱt,Lt)dt2, (11.2.7)

where the finite Bures angle represents the length of a geodesic between two
points [91].

To understand how Eq. (11.2.1) can be derived from Eq. (11.2.5), we first note
that the QFI under a Hamiltonian is bounded by four times the energy variance:

F (ϱ,H) ≤ 4Var(ϱ, H), (11.2.8)

with equality holding when ϱ is a pure state [170]. Furthermore, in the case of
a time-independent Hamiltonian H, the QFI remains constant over time. From
these observations, the Mandelstam-Tamm inequality follows, considering that
θB(ϱ0, ϱt) = π/2 for orthogonal initial and final states. Hence, the square root of
the QFI can be interpreted as a "statistical speed" [92, 605].

In the case of a Hamiltonian, the QFI has an alternative interpretation as
a quantum contribution to the variance (notably, F (ϱ,H) = 0 if and only if
[ϱ, H] = 0) [170]. Moreover, it can be rigorously justified as a measure of coher-
ence in the eigenbasis of H [609, 617].
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11.3 Perturbation speed limit

In this section, we present the main result, which applies to a system undergo-
ing arbitrary Markovian dynamics with a perturbation. We adopt the common
definition that equates Markovianity with divisibility. According to this defini-
tion, the mapping Nt1,t0 of states between any times t0 and t1 ≥ t0 is completely
positive and trace-preserving, and it satisfies the composition property:

Nt2,t0 = Nt2,t1Nt1,t0 , ∀ t0 ≤ t1 ≤ t2. (11.3.1)

This condition is equivalent to the dynamics being governed by the GKSL gen-
erator Lt [618].

Next, we present one of the main results in this chapter:

Result 47. Consider a system starting in state ϱ0 that can evolve along one of two
trajectories:

(i) Free evolution, given by
dϱt

dt
= Lt(ϱt), (11.3.2)

where Lt is a GKSL generator.

(ii) Perturbed evolution, given by

dσt

dt
= L′t(σt) = Lt(σt) + Pt(σt), (11.3.3)

which satisfies the same initial condition σ0 = ϱ0.

The Bures angle measuring the divergence between the trajectories is bounded by

θB(ϱt, σt) ≤
1
2

∫ t

0
ds
√
F (σs,Ps), ∀ t ≥ 0. (11.3.4)

Remark 62. The proof is given below. In the case of Lt = 0, the system remains
stationary, and the bound reduces to a previously known result [619]. For the
closed-system case, we consider Hamiltonian dynamics:

Lt = Ht, Pt(·) = vVt(·) = −iv[Vt, ·]. (11.3.5)

Notably, in this case, our bound (11.3.4) is equivalent to Uhlmann’s speed limit
in Eq. (11.2.5), and it can be derived from the latter by moving to the interaction
picture. Therefore, our bound (11.3.4) generalizes previous speed limits. The
relevant statistical speed measures the sensitivity of the system to the perturba-
tion.

Proof. We make use of three main facts about the Bures angle:

(A) It obeys the triangle inequality.
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(B) It is contractive under quantum channels [19].

(C) Its infinitesimal expansion is related to the QFI, as stated above.

At time t, consider the states ϱt and σt, as well as their corresponding time-
evolved states ϱt+δt and σt+δt, a short time δt later. Additionally, we consider the
evolution of σt under the unperturbed dynamics for time δt, resulting in the state
σ′t+δt. The situation is illustrated in Fig. 11.1.

For the lowest order, we have:

ϱt+δt = ϱt + δtLt(ϱt) +O(δt2), (11.3.6)

σt+δt = σt + δtLt(σt) + δtPt(σt) +O(δt2), (11.3.7)

σ′t+δt = σt + δtLt(σt) +O(δt2). (11.3.8)

The triangle inequality (A) first gives us:

θB(ϱt+δt, σt+δt) ≤ θB(ϱt+δt, σ′t+δt) + θB(σ
′
t+δt, σt+δt). (11.3.9)

For the first term on the right-hand side of Eq. (11.3.9), we use the fact that
ϱt+δt and σ′t+δt have both been evolved for time δt under the same dynamics
resulting in the same channel Nt+δt,t. The contractivity of the Bures angle (B)
then implies:

θB(ϱt+δt, σ′t+δt) = θB(Nt+δt,t(ϱt),Nt+δt,t(σt)) ≤ θB(ϱt, σt). (11.3.10)

For the second term in Eq. (11.3.9), we use the infinitesimal form of the Bures
angle (C) and the fact that σt+δt − σ′t+δt = δtPt(σt) +O(δt2), to write:

θB(σ
′
t+δt, σt+δt) =

δt
2

√
F (σt+δt,Pt) +O(δt2). (11.3.11)

Putting these into Eq. (11.3.9), we have:

θB(ϱt+δt, σt+δt) ≤ θB(ϱt, σt) +
δt
2

√
F (σt+δt,Pt) +O(δt2). (11.3.12)

Subtracting the first term on the right and dividing by δt gives:

θB(ϱt+δt, σt+δt)− θB(ϱt, σt)

δt
≤ 1

2

√
F (σt+δt,Pt) +O(δt). (11.3.13)

Taking the limit as δt→ 0, we get:

dθB(ϱt, σt)

dt
≤ 1

2

√
F (σt,Pt). (11.3.14)

The limit on the right-hand side makes use of the continuity of the QFI [620].
Integrating therefore gives the claimed result.
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Figure 11.1: Illustration of the trajectories used in the proof of the main speed
limit result (11.3.4). This figure is taken from Ref. [9].

The power of this bound comes from its minimal requirement of detailed
information about the unperturbed dynamics Lt – only that they are Markovian.
For the remainder of this chapter, we assume (as is typically true in quantum
control) that the perturbation arises from a controlled change to the system’s
Hamiltonian. The free Hamiltonian is denoted as Ht, and the perturbed one
is Ht + vVt, where we include the constant v to later study variations in the
size of the perturbation. While for many applications (see later sections), one is
interested in the QFI with respect to Vt, the resulting perturbation to the master
equation Pt could contain additional terms.

The identification of Pt with vVt may be justified in the singular coupling
limit [43] and in collision models of open system dynamics [621]. However, in
the weak coupling regime, a change to the system’s Hamiltonian will generally
introduce an additional change to the generator of the dynamics. Therefore, we
now investigate the error incurred by the approximation Pt ≈ vVt and, corre-
spondingly, the use of QFI with respect to Vt in the right-hand side of Eq. (11.3.4).
From now on, we also consider time-independent dynamics for simplicity.

11.4 Weak coupling

To address the above issue, in this section, we consider a system weakly coupled
to a Markovian environment and derive the error incurred by approximating the
true perturbed trajectory with one in which the dissipative part of the dynamics
is approximated as unchanged. Such situations are ubiquitous in experiments
and encompass discrete [622] and continuous-variable [623] systems.

We assume the standard form of a weak coupling master equation with sec-
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ular approximation [44]:

dϱt

dt
= L(ϱt) = −i[H + HLS, ϱt] +D(ϱt), (11.4.1)

HLS = λ2 ∑
ω,α,β

Sαβ(ω)A†
α(ω)Aβ(ω),

D(ϱ) = λ2 ∑
ω,α,β

γαβ(ω)

[
Aβ(ω)ϱA†

α(ω)−
{

A†
α(ω)Aβ(ω), ϱ

}
2

]
, (11.4.2)

where HLS is the Lamb shift Hamiltonian and D is the dissipator. In this
context, the interaction Hamiltonian with the bath HI = λ ∑α Aα ⊗ Bα (where
each appearing operator is Hermitian) has been decomposed into components
Aα = ∑ω Aα(ω) with Bohr frequencies ω (i.e., gaps in the spectrum of the system
Hamiltonian H), such that [H, Aα(ω)] = ωAα(ω). The coefficients are real and
imaginary parts of the Fourier-transformed (stationary) bath correlation func-
tions:

Γαβ(ω) =
∫ ∞

0
ds eiωs⟨B†

α(s)Bβ(0)⟩ =
1
2

γαβ(ω) + iSαβ(ω), (11.4.3)

Bα(s) = eisHB Bαe−isHB , (11.4.4)

where the bath Hamiltonian HB is used, and angled brackets denote expectation
value. We factor out the coupling strength λ such that Aα, Bα = O(1) (meaning
independent of λ).

We denote the size of the free system Hamiltonian H by h (measuring the size
of the smallest energy gap and not to be confused with the Planck constant) and
the size of the perturbing Hamiltonian by v (taking V = O(1)). The important
timescales are given by:

• The intrinsic system dynamics: τS ∼ h−1,

• The perturbation: τV ∼ v−1,

• The system relaxation: τR ∼ λ−2γ−1,

• The bath correlation decay: τB.

We make the following assumptions:

(i) Born-Markov approximation: τB ≪ τR,

(ii) Rotating wave approximation [43, 44]: τS ≪ τR,

(iii) Small perturbation relative to the bath: τB ≪ τV ,

(iv) Small perturbation relative to the system: τS ≪ τV .

The need for assumption (iii) is not obvious but will become apparent later;
it is essentially required so we can approximate the bath correlation function as
flat in the frequency domain.

Now we find the following:
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Result 48. Consider a perturbation: H → H′ = H + vV. Then we can replace HLS →
H′LS = HLS + vH(1)

LS and D → D′ = D + vD(1) to first order in v. This has the
effect of changing the Bohr frequencies ω and the components Aα(ω). The size of the
perturbation terms H(1)

LS , D(1) is given by:

ϵ = max
ψ
∥H(1)

LS (ψ) +D
(1)(ψ)∥ = O

(
τS

τR

)
+O

(
τB

τR

)
, (11.4.5)

where ∥X∥ denotes the largest singular value of X. It follows from assumptions (i)-(iv)
that these terms are small compared to other terms in the master equation.

Proof. First, we expand the perturbed dissipator D′ and Lamb shift H′LS to first
order in v using standard perturbation theory [18]. Note that we assume both
are non-degenerate:

H = ∑
n

En |n⟩⟨n| , H′ = ∑
n

E′n |n′⟩⟨n′| . (11.4.6)

To the lowest order, the perturbed energy eigenvalues and eigenvectors are

E′n = En + vE(1)
n +O(v2), |n′⟩ = |n⟩+ v |n(1)⟩+O(v2), (11.4.7)

with

E(1)
n = ⟨n|V|n⟩ , |n(1)⟩ = ∑

m ̸=n

⟨m|V|n⟩
En − Em

|m⟩ = ∑
m ̸=n

Cnm |m⟩ . (11.4.8)

The perturbed Bohr frequencies are of the form ω′ ≈ ω + δω with δω = O(v).
It is possible for some ω to be degenerate, meaning that several transitions may
have the same gap (for example, with the energies {−1, 0, 1}). We initially as-
sume that the pattern of Bohr frequency degeneracies is unchanged under the
perturbation, showing below how to handle a breaking of degeneracy. Recall
that the RWA neglects terms in the master equation where Aα(ω1) and A†

β(ω2)

occur with |ω1 − ω2| ≫ τ−1
R [44]. On the other hand, if |ω1 − ω2| ≪ τ−1

R , then
we should treat these frequencies as effectively degenerate so that the RWA does
not remove such off-diagonal terms, and we can include Aα(ω1) and Aα(ω2) in
the same frequency component of Aα.

Supposing that the perturbed frequencies ω′ have the same pattern of degen-
eracies as the ω, the perturbed jump operators are

A′α(ω
′) = ∑

m,n: E′m−E′n≈ω′
Π′m AαΠ′n

= ∑
m,n: Em−En≈ω

Π′m AαΠ′n

= ∑
m,n: Em−En≈ω

Πm AαΠn + v (Qm AαΠn + Πm AαQn) +O(v2)

= Aα(ω) + vA(1)
α (ω) +O(v2), (11.4.9)
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where the ≈ sign is shorthand for equality up to an error much less than τ−1
R ,

i.e., |Em − En −ω| ≪ τ−1
R , and

Π′n = Πn + vQn +O(v2), Qn = ∑
m ̸=n

Cnm |m⟩⟨n|+ C∗nm |n⟩⟨m| . (11.4.10)

For the bath correlation coefficients, we write

γαβ(ω
′) = γαβ(ω) + δω∂ωγαβ(ω) +O(v2), (11.4.11)

and similarly for Sαβ(ω
′). Inserting these into the expressions Eq. (11.4.1) to de-

termine the perturbed Lamb shift and dissipator, we have the first-order terms:

vH(1)
LS = λ2 ∑

ω
∑
α,β

vSαβ(ω)

[
A(1)

α

†
Aβ(ω) + A†

α(ω)A(1)
β (ω)

]
+ δω∂ωSαβ(ω)A†

α(ω)Aβ(ω),

vD(1)(ϱ) = λ2 ∑
ω

∑
α,β

vγαβ(ω)

[
A(1)

β (ω)ϱA†
α(ω) + Aβ(ω)ϱA(1)

α

†
(ω)

− 1
2

{
A(1)

α

†
(ω)Aβ(ω) + A†

α(ω)A(1)
β (ω), ϱ

}]

+ δω∂ωγαβ(ω)

[
Aβ(ω)ϱA†

α(ω)− 1
2

{
A†

α(ω)Aβ(ω), ϱ
}]

. (11.4.12)

To analyze the size of these terms, we first estimate λ2|γαβ(ω)| ∼ τ−1
R for all

ω of interest. The first derivative can be found by observing that

Γαβ(ω) =
∫ ∞

0
ds eiωs⟨B†

α(s)Bβ(0)⟩ (11.4.13)

implies

|∂ωΓαβ(ω)| =
∣∣∣∣ ∫ ∞

0
ds seiωs⟨B†

α(s)Bβ(0)⟩
∣∣∣∣ ∼ τB|Γαβ(ω)|, (11.4.14)

given that τB is the characteristic decay timescale of the correlation function.
Therefore, we can estimate λ2|∂ωγαβ(ω)| ∼ τBτ−1

R , and similarly for Sαβ(ω).
From the perturbation theory expressions above and the fact that Aα(ω) = O(1),
we further have A(1)

α (ω) ∼ h−1 ∼ τS. Hence, we see that

vH(1)
LS (ϱ) + vD(1)(ϱ) = O

(
τS

τVτR

)
+O

(
τB

τVτR

)
, (11.4.15)

We want to ensure that this term is negligible compared with the other terms
in the master equation. It is small compared with v as long as τS ≪ τR and
τB ≪ τR – exactly the RWA and Born-Markov conditions, assumptions (ii) and
(i) above. Furthermore, it is small compared with D and HLS when τS ≪ τV and
τB ≪ τV , corresponding to the small perturbation assumptions (iv) and (iii).
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Remark 63. We comment on what happens when a degeneracy in the Bohr fre-
quencies is broken by the perturbation. (The simplest example is a three-level
system with energies E0 = 0, E1 = ∆, and E2 = 2∆, with a perturbation shifting
the middle level E1.) Suppose that |ω1 −ω2| ≪ τ−1

R but |ω′1 −ω′2| ≫ τ−1
R . This

means the RWA now gets applied to remove the relevant off-diagonal term in
the perturbed master equation. Then the error term contains a part of order τ−1

R
– of the same magnitude as D and thus non-negligible. In order to prevent this
from happening, in such a situation we, therefore, need the additional condition
τR ≪ τV – i.e., the perturbation must be weaker than the decoherence term. This
is stricter than the small perturbation conditions (iii) and (iv) assumed above.

Now applying our bound (11.3.4) to this setting, we identify

• The true perturbed trajectory:

dηt

dt
= L′(ηt), (11.4.16)

• The approximate perturbed trajectory:

dσt

dt
= L(σt) + vV(σt). (11.4.17)

In the latter, we only perturb the Hamiltonian term and ignore the additional
terms of size ϵ. All trajectories have the same initial state ϱ0. Now we have the
error estimation:

Result 49. For an open system in the weak coupling regime perturbed by the Hamilto-
nian vV, we have the speed limit

θB(ϱt, ηt) ≤
1
2

∫ t

0
ds v

√
F (ηs,V) + ∆(t), (11.4.18)

where the error term is bounded by the estimate

|∆(t)| ≲ ∆est(t) =
4
√

2
3
∥V∥ϵ 1

2 (vt)
3
2 + ϵvt. (11.4.19)

Remark 64. The proof is given below. For short times, the QFI term in Eq. (11.4.18)
is roughly vt

√
F (ϱ0,V) – hence, we expect the error term to be negligible when√

F (ϱ0,V)≫ max{
√

ϵvt, ϵ}.

Proof. The triangle inequality for θB and an application of Result 47 implies

θB(ϱt, ηt) ≤ θB(ϱt, σt) + θB(σt, ηt)

≤ 1
2

∫ t

0
ds v

√
F (σs,V) + θB(σt, ηt)

≤ 1
2

∫ t

0
ds v

√
F (ηs,V) + ∆1(t) + ∆2(t), (11.4.20)
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where the error terms are

∆1(t) =
1
2

∣∣∣∣∫ t

0
ds v

√
F (σs,V)−

∫ t

0
ds v

√
F (ηs,V)

∣∣∣∣,
∆2(t) = θB(σt, ηt). (11.4.21)

In order to bound these errors, we start by showing that ∆1 can be related to ∆2.
Firstly, using the fact that

(
√

x−√y)2 = x + y− 2
√

xy ≤ x + y− 2 min{x, y} = |x− y|, (11.4.22)

we have

∆1(t)≤
v
2

∫ t

0
ds
∣∣∣∣√F (σs,V)−

√
F (ηs,V)

∣∣∣∣≤ v
2

∫ t

0
ds
√
|F (σs,V)−F (ηs,V)|.

(11.4.23)

Now we use the QFI continuity result Eq. (A6) from Ref. [620]:

|F (σ,V)−F (η,V)| ≤ 32DB(σ, η)∥V∥2, (11.4.24)

in terms of the Bures distance DB =
√

2(1− F) which satisfies DB ≤ θB (where
F is the Uhlmann). Inserting this into Eq. (11.4.23) gives

∆1(t) ≤ 2
√

2v∥V∥
∫ t

0
ds
√

∆2(s). (11.4.25)

Now we bound ∆2 using another application of the speed limit in Result 47, now
comparing σs and ηs under the error term H(1)

LS +D(1). To lowest order in v,

∆2(t) ≤
v
2

∫ t

0
ds
√
F (ηs,H(1)

LS +D(1)). (11.4.26)

To proceed, let us use Lemma in Ref. [9]: It states that for any state ϱ and
generator L, we have

F (ϱ,L) ≤ 4 max
ψ
∥L(ψ)∥2, (11.4.27)

with the maximization being over pure states ψ. Then we find that the size of
the integrand is bounded as

∆2(t) ≤ vt max
ψ
∥H(1)

LS (ψ) +D
(1)(ψ)∥ = vtϵ. (11.4.28)

The right-hand side of Eq. (11.4.28) measures the size of the generator H(1)
LS +

D(1) in terms of its greatest effect on any pure state. In specific examples (see
Sec. 11.6) this norm can be calculated explicitly; from Eq. (11.4.15), we can gen-
erally estimate

ϵ = O
(

τS

τR

)
+O

(
τB

τR

)
. (11.4.29)

Inserting into Eq. (11.4.25), we have

∆1(t) ≤ 2
√

2v∥V∥
∫ t

0
ds
√

vϵs =
4
√

2
3
∥V∥ϵ 1

2 (vt)
3
2 . (11.4.30)
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11.5 Quantum resource witnessing

There are numerous applications in which one aims to experimentally demon-
strate a large QFI of a system with respect to some Hamiltonian V. Apart from
establishing the system’s usefulness for probing the strength of V, a suitable
choice of Hamiltonian allows the observation of various quantum resources,
such as many-body entanglement [169, 176, 320, 624], optical nonclassicality [612,
613], and quantum steering [625]. In all of these scenarios, the resource is wit-
nessed when the QFI F (ϱ,V) exceeds a certain threshold value F∗. Uhlmann’s
bound can be used in the absence of decoherence. However, in the presence
of decoherence, an experimental lower bound for θB(ϱ0, ϱt) can be obtained by
performing measurements on the system either at time zero or time t in each ex-
perimental run. These measurements yield probability distributions of outcomes
pi(0), pi(t).

The closeness between these distributions as measured by the Bhattacharyya
coefficient [626] B(p(0),p(t)) = ∑i

√
pi(0)pi(t) is an upper bound to the quan-

tum fidelity: B(p(0),p(t)) ≥ F(ϱ0, ϱt), hence arccos B(p(0),p(t)) ≤ θB(ϱ0, ϱt).
This bound holds for any chosen measurement and can be saturated with an
optimal measurement. The presence of the resource is therefore witnessed when
2
tv arccos B(p(0),p(t)) >

√
F∗.

In practice, decoherence cannot always be neglected, which calls for a dif-
ferent protocol. We propose a new approach, exploiting the bound given in
Eq. (11.3.4). The experiment is carried out in two ways: one allows the system
to evolve under the dynamics generated by L, while the other involves adding
the perturbation vV . In both cases, the same measurement is performed at time
t, yielding the statistics pi(t) and qi(t) respectively. Assuming that the pertur-
bation is exactly P = vV , the right-hand side of Eq. (11.3.4) equals tv

2 times the
time-averaged value of

√
F (σs,V). Consequently, the presence of the resource

at some time s ∈ [0, t] within the perturbed trajectory is established whenever

2 arccos B(p(t), q(t))
tv

>
√
F∗. (11.5.1)

This criterion can be easily generalized to cases when the coefficient vt varies
with time (e.g., following a known pulse shape). The Cauchy-Schwarz inequality
applied to the right-hand side of Eq. (11.3.4) gives∫ t

0
ds
√
F (σs, vsV) =

∫ t

0
ds |vs|

√
F (σs,V)

≤
(∫ t

0
ds v2

s

) 1
2
(∫ t

0
ds F (σs,V)

) 1
2

= t⟨v2
s ⟩

1
2
t ⟨F (σs,V)⟩

1
2
t , (11.5.2)

where angled brackets ⟨·⟩t denote a time average over s ∈ [0, t]. Thus, the
witness criterion in Eq. (11.5.1) is modified by replacing v with the root-mean-

square ⟨v2
s ⟩

1
2
t .
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In a weak coupling setting, one can employ the error ∆est(t) from Eq. (11.4.18)
to tighten the threshold value in Eq. (11.5.1) to

√
F∗+ 2∆est(t)

vt . The change in this
threshold is roughly

2∆est(t)
vt

= O(
√

ϵvt) +O(ϵ). (11.5.3)

11.6 Example: dephasing model

11.6.1 Single-qubit system

First, let us consider a single-qubit system in which it dephases by interacting
independently with a bath of harmonic oscillators – see, for example, Ref. [43].
We take:

• System Hamiltonian: H = h
2 σz,

• Pertubation Hamiltonian: V = 1
2 σx,

• Bath Hamiltonian: HB = ∑k ωkb†
k bk, with bk being the bosonic annihilation

operator for mode k, satisfying [bk, b†
k ] = 1,

• Interaction Hamiltonian: HI = λσz ⊗∑k gk(bk + b†
k), with gk being dimen-

sionless coupling coefficients,

• Continuum limit with an Ohmic bath, replacing g2
k by a spectral density

function: J(ω) = ηωe−ω/ωc , with η being a constant with dimensions of
time squared and ωc being a cut-off frequency that we take to be large
compared with all other relevant frequency scales.

Given that the bath is in a thermal state at inverse temperature β, one can de-
rive [43]

γ(ω) =
2πηe−|ω|/ωc

1− e−βω
. (11.6.1)

In this case, we find the following:

Result 50. The single-qubit error parameter ϵ1 is therefore bounded by

ϵ1 ≤
2λ2γ(0)

h
. (11.6.2)

Proof. Since there is a single jump operator in the master equation, A = A(0) =
σz, from the proof in Result 48, we find A(1)(0) = σx and thus

H(1)
LS = 0, D(1)(ϱ) =

λ2γ(0)
h

(σzϱσx + σxϱσz) . (11.6.3)
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Then γ(0) = 2πη/β and τB ∼ β. In this case, note that the derivative ∂ωγ(ω)
does not appear. However, for large ωc one finds

lim
ω→0+

∂ωγ(ω) ≈ lim
ω→0−

∂ωγ(ω) ≈ πη ∼ γ(0)τB, (11.6.4)

which is consistent with the claim in Eq. (11.4.14). The error terms are easily
bounded using

∥σzψσx + σxψσz∥ ≤ 2∥σzψσx∥ ≤ 2∥σz∥∥ψ∥∥σx∥ = 2. (11.6.5)

11.6.2 Two-qubit system

For a two-qubit system , consider H = h
2 (σz ⊗ 1+ 1⊗ σz), V = 1

2(σx ⊗ 1+ 1⊗
σx), and an independent coupling of each qubit to a bath of the form λσz ⊗
∑k gk(bk + b†

k), with gk being dimensionless coupling coefficients. This gives
local dephasing dynamics

D(ϱ) = λ2γ [(σz ⊗ 1)ϱ(σz ⊗ 1) + (1⊗ σz)ϱ(1⊗ σz)− 2ϱ] , (11.6.6)

writing γ = γ(0). Then we find

ϵ ≤ 2ϵ1 ≤ 4λ2 γ

h
. (11.6.7)

Note that an extension of this model to N qubits would have an error term
scaling with N; a similar analysis could also be performed for a collective deco-
herence model where all qubits couple to the same bath [627].

Remark 65. The validity and tightness of the estimates in Result 49 are shown in
Fig. 11.2.

Remark 66. A simulation of this protocol is shown in Fig. 11.3 for the two-qubit
dephasing model described above. A measurement in the Bell basis

{ |00⟩ ± |11⟩√
2

,
|01⟩ ± |10⟩√

2
} (11.6.8)

is used for the Bhattacharrya coefficient. For any separable state ϱsep of two
qubits, we have the inequality F (ϱsep,V) ≤ F∗ = 2 [169, 176, 320]. Using the
parameters h = 1 and λ = γ = v = 0.1, this threshold is broken by the exact
QFI for t ⪅ 1.41, while entanglement is witnessed taking into account the error
estimate for t ⪅ 1.26.

254



Figure 11.2: Demonstration of error bound for the two-qubit example, taking the
same parameters as in Fig. 11.3. The error being shown is that on the right-hand
side of the weak coupling speed limit Eq. (11.4.18): both the sum of the terms
∆1(t) + ∆2(t) from Eq. (11.4.21) (which in this case is dominated by ∆2) and the
upper bound estimate ∆est(t) from Eqs. (11.4.25), (11.4.28). This figure is taken
from Ref. [9].

11.7 Quantum work fluctuations

Finally, we show the implications of our speed limit for fluctuations in work
performed during a sudden quench driving a system out of equilibrium. Con-
sider a system with Hamiltonian H which is initially in thermal equilibrium at
inverse temperature β, in the Gibbs state ϱth = e−βH

tre−βH . At time 0, the Hamiltonian
is quickly changed to H′, involving fluctuating work w done on the system. The
mean and variance of the work are computed from the change in the Hamilto-
nian ∆H:

∆H = H′ − H, ⟨w⟩ = tr[ϱth∆H], Varw = Var(ϱth, ∆H). (11.7.1)

If the system is subsequently left to thermalise to the new Gibbs state ϱ′th =
e−βH′

tre−βH′ , then its Helmholtz free energy FH,β will decrease. This is defined by

FH,β = tr[ϱthH]− β−1S(ϱth), (11.7.2)

where S(ϱth) = −tr[ϱth ln ϱth] is the von Neumann entropy [450]. The second
law of thermodynamics implies that the change

∆F = FH′,β − FH,β ≤ ⟨w⟩, (11.7.3)

which is equivalent to saying that the dissipated work [450]:

Wdiss = ⟨w⟩ − ∆F ≥ 0. (11.7.4)

This is thus associated with nonequilibrium entropy production.
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Figure 11.3: Two-qubit example with local dephasing noise, showing how the
time-averaged value of

√
F (ηs,V) from s = 0 to t can be lower-bounded using

the speed limit Eq. (11.4.18). The initial state |00⟩+|11⟩√
2

is maximally entangled. In

units of h = 1, we take λ = γ = v = 0.1 and ϵ ≤ 4λ2γ/h = 0.004. The measured
statistical speed is the left-hand side of Eq. (11.5.1), taking a measurement in
the Bell basis { |00⟩±|11⟩√

2
, |01⟩±|10⟩√

2
}. The estimated error 2∆est(t)

vt (indicated by the
shaded area) iś subtracted to give the lower bound. This figure is taken from
Ref. [9].

In order to study small deviations from equilibrium, we follow the paradigm
of, for instance, Refs. [628, 629], in which ∆H is taken as small. One then finds a
fluctuation-dissipation relation [629]

β

2
Varw = Wdiss + Qw. (11.7.5)

Here, Qw ≥ 0 is a quantum correction to the usual relation for classical sys-
tems [630, 631], thus Eq. (11.7.5) represents a modification of a classical statis-
tical law near equilibrium that takes into account coherent quantum effects. It
also implies a barrier to finding coherent protocols that simultaneously minimise
work fluctuations and dissipation [629].

The relation Eq. (11.7.5) holds for a range of slow driving settings; in our case
with a single small quench, Qw is determined by a quantity closely related to
the QFI:

Qw =
β

2
Ī(ϱth, ∆H),

Ī(ϱ, A) :=
∫ 1

0
dk

1
2

tr
(
[ϱk, A][A, ϱ1−k]

)
. (11.7.6)

The details of this result from Ref. [629] are recalled in Sec. 11.8. Here, Ī be-
longs to a family of generalized quantum Fisher information quantities [632].
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Figure 11.4: Driving out of equilibrium: work is performed during a sudden
quench H → H′. The system moves away from its initial Gibbs state ϱth to the
new one ϱ′th. The speed limit Eq. (11.7.7) bounds the distance between ϱth and
the state ϱt after time t in terms of quantum fluctuations in the work. This figure
is taken from Ref. [9].

Members of this family are interpreted as measures of quantum coherence (also
known as asymmetry in this context): Ī(ϱ, H) and F (ϱ,H), among others, quan-
tify the coherence of a state ϱ with respect to a Hamiltonian H [606, 609, 617,
633]. Moreover, they can be regarded as quantum contributions to the variance
of H [634–636]. Applied to Ī, some of the key properties justifying this interpre-
tation are that Ī(ϱ, H) ≤ Var(ϱ, H), with equality for pure states, and Ī(ϱ, H) = 0
when ϱ commutes with H. Therefore, as required of a measure of quantum work
fluctuations, 2Qw/β = Ī(ϱth, ∆H) vanishes exactly when [H, ∆H] = 0.

We now use our speed limit to derive the following bound on how fast the
state ϱt can evolve away from the initial Gibbs state (illustrated in Fig. 11.4).

Result 51. Quantum work fluctuations are necessary for fast departure from equilib-
rium. For a system weakly coupled to a thermal environment, at all times t > 0 fol-
lowing the quench H → H′, the distance between the initial Gibbs state ϱth and the
system’s state ϱt is limited by

θB(ϱth, ϱt) ≤ t
√

3 Ī(ϱth, ∆H) + ∆(t), (11.7.7)

where ∆(t) is the weak coupling error term from Eq. (11.4.19).

Proof. This can be proven by using Result 49 with initial state ϱth, but instead
reversing the roles of the perturbed and unperturbed trajectories. So now the
unperturbed trajectory involves the Hamiltonian H′ and its dynamics are gener-
ated by L′, while the perturbation is vV = −∆H. Doing it this way around, the
QFI appearing on the right-hand side of the speed limit is F (ϱth, ∆H), which is
constant in time since the perturbed state ϱt = ϱth ∀ t ≥ 0 is a steady state under
L. The relevant Bures angle is then θB(ϱ

′
t, ϱt) = θB(ϱ

′
t, ϱth). We show in Sec. 11.8
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that the QFI and Ī never differ by more than a constant factor: 4 Ī ≤ F ≤ 12 Ī.
Finally using the the latter inequality, we have F (ϱth, ∆H) ≤ 12 Ī(ϱth, ∆H).

A fast departure from ϱth thus requires a large value of quantum work fluc-
tuations as measured by Ī(ϱth, ∆H) – equivalently, ϱth must have a high degree
of quantum coherence with respect to ∆H.

The physical importance of the correction ∆(t) is seen in the “classical" case
where [H, ∆H] = 0 (i.e., the energy levels are changed but not the energy eigen-
states). Then Ī = 0 but the system must deviate from ϱth in order to reach the
new steady state ϱ′th. From our earlier discussion of the weak coupling error
and Eq. (11.4.19), by identifying v with ∥∆H∥, we therefore see that the quantum
driving regime – i.e., when the term with Ī dominates on the right-hand side of
Eq. (11.7.7) – corresponds to√

Ī(ϱth, ∆H)

∥∆H∥ ≫ max{
√

ϵ∥∆H∥t, ϵ}. (11.7.8)

The left-hand side of this inequality measures the quantum work fluctuations
relative to the size of ∆H. In the quantum driving regime, coherent evolution
resulting from the change in Hamiltonian happens faster than thermalisation.

11.8 Detailed discussions about Result 51

Here, we first recall the derivation in Ref. [629] of Eq. (11.7.5). It starts from
writing the dissipated work in terms of relative entropy as βWdiss = S(ϱth||ϱ′th) =
tr[(ϱth − ϱ′th) ln ϱ′th]. For small ∆H, this can be approximated to lowest order as

Wdiss ≈
β

2
VarK(ϱth, ∆H), (11.8.1)

where VarK is the so-called Kubo-Mori generalised variance [632]. This can be
expressed using a superoperator Jϱ which depends on a given state ϱ:

Jϱ(A) = ∑
i,j

λi − λj

ln λi − ln λj
⟨ψi|A|ψj⟩ |ψi⟩⟨ψj| , (11.8.2)

where λi and |ψi⟩ are the eigenvalues and eigenvectors of ϱ. Then we have

VarK(ϱ, A) = tr
[
ĀJϱ(Ā)

]
, Ā = A− tr[ϱA]1. (11.8.3)

The crucial property is the splitting of the variance of ∆H into two terms:

Var(ϱth, ∆H) = VarK(ϱth, ∆H) + Ī(ϱth, ∆H), (11.8.4)

interpreted as classical and quantum components respectively (see also Ref. [636]).
We also require the connection between Ī and the QFI proved in Lemma 52

below. This makes use of the theory of generalised QFI quantities – see Ref. [632]
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for details. Every generalised “skew information" I f corresponds to a function
f : R+ → R+ fulfilling the conditions f (1) = 1, x f (x−1) = f (x), and being
a matrix monotone. If f (0) ̸= 0, it is possible to normalise I f to be “metric-
adjusted" [637], such that I f (|ψ⟩⟨ψ| , H) = Var(|ψ⟩⟨ψ| , H) for all pure states.
Explicitly, we have

I f (ϱ, H) =
f (0)

2 ∑
i,j

(λi − λj)
2

λj f (λi/λj)
|⟨i|H|j⟩|2. (11.8.5)

The case f (x) = x+1
2 is often denoted by ISLD (standing for “symmetric logarith-

mic derivative") and recovers the standard QFI under evolution generated by H:
4ISLD(ϱ, H) = F (ϱ,H).

Result 52. For all states ϱ and observables H,

4 Ī(ϱ, H) ≤ F (ϱ,H) ≤ 12 Ī(ϱ, H). (11.8.6)

Proof. We start from the definition I(k)(ϱ, H) = 1
2 tr
(
[ϱk, H][H, ϱ1−k]

)
, such that

Ī =
∫ 1

0 dk I(k). We can rewrite I(k) in terms of the matrix elements Hij =
⟨ψi|H|ψj⟩ in the eigenbasis of ϱ = ∑i λi |ψi⟩⟨ψi|:

I(k)(ϱ, H) = tr
(

ϱH2 − ϱkHϱ1−kH
)

= ∑
i,j
(λi − λk

i λ1−k
j )HijHji

= ∑
i,j

1
2
(λi + λj − λk

i λ1−k
j − λ1−k

i λk
j )|Hij|2

= ∑
i,j

1
2
(λk

i − λk
j )(λ

1−k
i − λ1−k

j )|Hij|2

=
f (k)(0)

2 ∑
i,j

(λi − λj)
2

λj f (k)(λi/λj)
|Hij|2, (11.8.7)

where f (k) is the matrix monotone function corresponding to I(k). We must
therefore have

f (k)(x) ∝
(x− 1)2

(xk − 1)(x1−k − 1)
. (11.8.8)

In order to be normalized in the standard way, we require f (k)(1) = 1; taking
the limit x → 1 in the above shows that

f (k)(x) =
k(1− k)(x− 1)2

(xk − 1)(x1−k − 1)
(11.8.9)

and f (k)(0) = k(1− k). For all metric-adjusted skew informations we have the
inequality I f ≤ ISLD ≤ I f

2 f (0) [635]. It is immediate from its definition that I(k)
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is metric-adjusted. Thus, the lower bound on F = 4ISLD is immediate, and we
also have

I(k)(ϱ, H) ≥ 2 f (k)(0)ISLD(ϱ, H) =
f (k)(0)

2
F (ϱ,H) =

k(1− k)
2

F (ϱ,H). (11.8.10)

Finally,

Ī(ϱ, H) ≥
∫ 1

0
dk

k(1− k)
2

F (ϱ,H) =
1

12
F (ϱ,H). (11.8.11)

11.9 Discussions

This Chapter demonstrated the extension of the well-known Mandelstam-Tamm
quantum speed limit to describe the rate of divergence of a perturbed open
quantum system from its unperturbed trajectory. We have found that this speed
limit holds to a high degree of approximation when a system is weakly cou-
pled to an environment, assuming only a small perturbing Hamiltonian and the
standard Born-Markov and secular approximations and that the error may be
bounded with knowledge of the relevant timescales. This results in a practically
useful method for experimentally lower-bounding quantum Fisher information,
where the error need not be neglected but can be estimated and taken into ac-
count. Finally, we used the speed limit to prove that quantum work fluctuations
are necessary to have a fast departure from equilibrium in a perturbed system
weakly coupled to a thermal environment.

It is worth noting that we can derive a similar speed limit by replacing the Bu-
res angle with the quantity θ̃(ϱ, σ) = arccos tr(

√
ϱ
√

σ) and the Quantum Fisher
Information (QFI) with four times the Wigner-Yanase skew information [638],
given by IWY(ϱ,V) = − 1

2 tr([
√

ϱ, V]2) in the Hamiltonian case. Future work
may explore the extension of the speed limit to different distance measures or
generalized QFI quantities [632].

In the weak coupling regime, an interesting direction for further investigation
is to determine the error term for slow continuous changes in the perturbation,
using the theory of adiabatic master equations [639]. This could lead to a gener-
alization of Result 51 to account for continuous driving. Additionally, it would
be valuable to explore whether this has implications for thermodynamic uncer-
tainty relations, which connect current fluctuations to entropy production [640].

Finally, since our speed limit holds under the assumption of Markovian
dynamics, a violation of the inequality could be used as a witness of non-
Markovianity. For this purpose, one would need an independent method to
estimate (upper-bound) the QFI, for example via the variance of the perturbing
Hamiltonian. This would contribute to a library of witnesses of non-Markovianity,
including those based on the contractivity of QFI over time [618, 628].
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Chapter 12

Multipartite entanglement under
partial classicalization

This thesis has discussed several approaches to analyzing quantum systems un-
der limited control over them. This Chapter addresses the question of the extent
to which multipartite entanglement changes when one particle is destructed by
a measurement but the information obtained is still available. This Chapter is
based on Ref. [5].

12.1 Introduction

Different types of quantum resources [101] are essential for quantum informa-
tion tasks, like quantum computation [641], quantum key distribution [642], and
quantum metrology [286], where they can provide a decisive advantage over the
classical regime. One main problem for many quantum resources is their sensi-
tivity to the disturbance from the environment. Their protection with tools like
quantum error correction [643] is usually expensive, especially if larger systems
are considered. In practice, some fraction of the particles of a larger quantum
system can inevitably become classical, e.g., caused by a measurement or deco-
herence process. In fact, the particles may even be completely lost.

It is a natural question to ask how multiparticle entanglement [17, 120] is
affected by such processes. Many works have considered the influence of deco-
herence on multiparticle entanglement [644–649].

Other works considered the robustness of multiparticle entanglement under
particle loss [142, 650–652]. Moreover, the sharp change of bipartite entangle-
ment caused by the complete loss of one particle in one party has been studied
as the concept of lockable entanglement [281, 282, 653, 654]. There can, however,
still be information left in the environment after the loss of particles. For exam-
ple, in the case of the Stern-Gerlach experiment, the left information is given by
the location of the spots on the screen.

As another example, one can consider the decay of particles due to decoher-
ence. Then it may be reasonable to gather some information from the particles
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Figure 12.1: The change of multiparticle entanglement if the particle C becomes
classical. In this process of classicalization the particle C is first destroyed by
the measurement and then the measurement information is encoded in a new
register. This Chapter asks for which classicalization procedure the change of
entanglement is minimal. This figure is taken from Ref. [5].

before their complete decay. The usefulness of this classical information has
been extensively explored in the form of the entanglement of assistance [655].
There a third party (Charly) optimizes the measurement and the resulting in-
formation to assist the two original parties (Alice and Bob) to reveal as much
quantum entanglement as possible. Most research on the entanglement of as-
sistance has focused on the case where the global state is pure [656–658]. As
it turns out [655], the entanglement of assistance depends only on the reduced
state for Alice and Bob, and the exact three-partite initial state is not important.

In this Chapter, we consider a different scenario: One or more particles in
a multiparticle system are destructed by a measurement. The gained classical
information is then encoded in a quantum state. Our question is how much the
multiparticle entanglement is affected in this process of classicalization, see also
Fig. 12.1. This scenario is practically relevant, as one may not have the perfect
‘assistance’ when the size and performance of the register system are limited.
Consequently, our approach can provide guidance for the storage of quantum
entanglement robust to particle loss. It also gives suggestions for finding the
optimal strategy of entanglement recovery with the gained classical information
and a small register system. In comparison with the concept of quantum assis-
tance, we consider mixed quantum states where the entanglement is stored and
it is not the aim of the measured party to increase the bipartite entanglement
between the remaining ones.

Most importantly, the initial quantum state plays a major role in the change
of entanglement due to classicalization. We stress that there are further related
concepts. The so-called hidden entanglement [659] has been introduced as the
difference between the entanglement without the decomposition information of
a mixed state and the one with the decomposition information. Besides, the
role of one particle in the change of entanglement has also been considered in
distributed entanglement [660, 661]. There, the particle is transferred from one
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party to another one rather than it is destroyed.

12.2 Notations and definitions

We focus on tripartite systems in this Chapter, other multipartite systems can
be analyzed similarly. We denote the initial state as ϱABC. First, suppose that
one party of this state is measured in a process that completely destroys the
measured party, such as the detection of the photon polarization.

Without loss of generality, we here assume that the destructive measurement
M = {mi} acts on the party C. After the measurement, the particles belonging
to party C vanish, but the post-measurement information from the associated
outcome is available. That is, each classical outcome i can be encoded into a new
register system E as associated post-measurement states τi. We say that this en-
coding is perfect, if τi = |i⟩⟨i| for an orthogonal basis {|i⟩}. In practice, of course,
the encoding may not be perfect due to the interaction with the environment.

We can write the above process as the operation

ΦC(ϱABC) = ∑
i

piσi ⊗ τi, pi = tr(ϱABCmi), σi = trC(ϱABCmi)/pi, (12.2.1)

where τi is the register state related to the outcome i. We say that this encoding
is perfect, if τi = |i⟩⟨i| for an orthogonal basis {|i⟩}. In practice, of course, the
encoding may not be perfect due to the interaction with the environment or the
limited memory of the register.

We denote by NC the set of all possible operations in the form in Eq. (12.2.1)
on the party C. We stress that the set NC is equivalent to the set of entanglement
breaking channels [662] acting on the party C. So far, we have not imposed any
assumption on the destructive measurements and the encoding, but in practice,
there can be extra limitations on them.

Our central question is how much the global entanglement in ϱABC is changed
by the operation ΦC. The maximal change happens usually when there is no
classical information left or it has not been employed, that is, the τi are the same
for all outcomes i’s, a similar question has been explored already under the con-
cept of lockable entanglement [282], see more details in Sec. 12.5. Here we are
particularly interested in the minimal amount of entanglement change with re-
maining classical information, which corresponds to the optimal operation ΦC
to keep as much entanglement as possible.

For this purpose, we define the quantity ∆E (ϱABC) as

∆E (ϱABC) = min
ΦC∈NC

{E [ϱABC]− E [ΦC(ϱABC)]} , (12.2.2)

where E is a tripartite entanglement measure. The practical choice of E may
depend on the quantum information task under consideration. For the choice of
entanglement measures, it is necessary to require that E does not increase under
local operations and classical communication (LOCC) [55], called monotonicity
under LOCC. In this case, ∆E (ϱABC) is always non-negative.
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Remark 67. Two further remarks are in order. First, if E is a measure of genuine
multipartite entanglement, then ∆E (ϱABC) = E [ϱABC], since ΦC(ϱABC) is always
separable with respect to the bipatition AB|C for any ΦC and ϱABC. Second, if
we restrict the set NC with limitations on measurements and register states, the
amount of ∆E (ϱABC) can be affected. One example is to consider the operations
which keep the dimension of the system.

12.3 Simplification

In general, it is difficult to calculate ∆E (ϱABC), due to the complexity of char-
acterizing the set NC. Here we provide a method to simplify the calculation.
By default, we assume the entanglement measure E is monotonic under LOCC.
Then we have:

Result 53. If the entanglement measure E is convex, we only need to consider M =
{mi} as an extremal point in the considered measurement setM. More precisely:

∆E (ϱABC)= min
M∈∂M

{
E [ϱABC]−∑

i
piE [σi⊗|0⟩⟨0|]

}
, (12.3.1)

where pi = tr(ϱABCmi), σi = trC(ϱABCmi)/pi, and ∂M is the set of extremal points
inM.

Proof. For any entanglement-breaking channel ΦC, we have the decomposition:

ΦC(ϱABC) = ∑
i

piσi ⊗ τi, pi = tr(ϱABCmi), σi = trC(ϱABCmi)/pi (12.3.2)

where M = {mi} is a measurement acting on C and τi is the state encoding the
measurement outcome i. Since the set M of all POVMs acting on C is convex,
any POVM M = {mi} can be decomposed into the convex combinations of
extreme points ofM. That is, we have

mi = ∑
k

ckm(k)
i , ∀i, (12.3.3)

where M(k) = {m(k)
i } is an extreme point in the set M and 0 < ck ≤ 1 with

∑k ck = 1. Consequently, the operation ΦC can be rewritten as

ΦC(ϱABC) = ∑
k

ckΦ(k)
C (ϱABC), Φ(k)

C (ϱABC) = ∑
i

trC

(
ϱABCm(k)

i

)
⊗ τi. (12.3.4)

In the case that the entanglement measure E is convex, we have

E [ΦC(ϱABC)] ≤∑
k

ckE
[
Φ(k)

C (ϱABC)
]
≤ max

k
E
[
Φ(k)

C (ϱABC)
]

. (12.3.5)
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This implies that the maximal value of E [ΦC(ϱABC)], or equivalently, the value
of ∆E (ϱABC), can always be achieved by extreme POVMs. That is,

max
ΦC∈NC

E [ΦC(ϱABC)] = max
M∈∂M,{τi}

E
(

∑
i

piσi ⊗ τi

)
, (12.3.6)

where ∂M is the set of all extreme POVMs.
Note that, any imperfect encoding can be generated from the perfect one by

local operations. Since the entanglement measure E is LOCC monotonic, we
have E (∑i piσi ⊗ τi) ≤ E (∑i piσi ⊗ |i⟩⟨i|C). This implies that,

max
M∈∂M,{τi}

E
(

∑
i

piσi ⊗ τi

)
≤ max

M∈∂M
E
(

∑
i

piσi ⊗ |i⟩⟨i|C

)
. (12.3.7)

Since {τi = |i⟩⟨i|} is just a special encoding, we have

max
M∈∂M,{τi}

E
(

∑
i

piσi ⊗ τi

)
≥ max

M∈∂M
E
(

∑
i

piσi ⊗ |i⟩⟨i|C

)
. (12.3.8)

In total, we know that

max
M∈∂M,{τi}

E
(

∑
i

piσi ⊗ τi

)
= max

M∈∂M
E
(

∑
i

piσi ⊗ |i⟩⟨i|C

)
. (12.3.9)

Besides, we have

E
(

∑
i

piσi ⊗ |i⟩⟨i|C

)
= E

(
∑

i
piσi ⊗ (|0⟩⟨0| ⊗ |i⟩⟨i|)C

)
= ∑

i
piE [σi ⊗ |0⟩⟨0|C], (12.3.10)

where the equalities in the first line holds since {|i⟩⟨i|} and {|0⟩⟨0| ⊗ |i⟩⟨i|} can
be converted to each other by LOCC, the equality in the second line is from
the flag condition satisfied by any entanglement measure which is monotonic
under LOCC, see Theorem 2 in Ref. [277]. By putting Eq. (12.3.6), Eq. (12.3.9)
and Eq. (12.3.10) together, we complete the proof.

This Result shows that the actual calculation of ∆E (ϱABC) can be reduced to
the set of extremal points inM, which has been well characterized in Ref. [663].
In the following, we will address this problem in two special cases.

The first case is that the party C is a qubit and the measurement information
from the outcomes is also registered in a qubit system E [664]. For convenience,
we denote by N1 the set of those operations, which is equivalent to the set of all
entanglement breaking channels mapping qubit to qubit. The second case is that
the measurement M is a dichotomic POVM [663], where C is not necessarily a
qubit. We denote this set as N2.

Now we can present the following observation:
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Result 54. For a convex entanglement measure E , if we replace NC by N1 or N2
in the definition of ∆E , then the value of ∆E (ϱABC) can be achieved with projective
measurements.

Remark 68. Result 53 and Result 54 make the numerical calculation possible with
only a few parameters as in the following examples.

Proof. From Result 53, we know that for a convex entanglement measure E that
satisfies the monotonicity condition, the optimal value of ∆E (ϱABC) can always
be obtained by the extreme points of destructive measurements in the sets N1
and N2. Then it is sufficient to show that these extreme points are given by
projective measurements.

First, we consider the case of N1. As proven in Ref. [664], any entanglement
breaking channel from qubit to qubit, i.e., any channel in N1, can be decom-
posed as a convex combination of classical-quantum channels. Here recall that
a channel ΦC is called a classical-quantum channel if

ΦC(ϱ) = ∑
i
⟨xi|ϱ|xi⟩ ⊗ τi, (12.3.11)

where {|xi⟩} is an orthonormal basis. By definition, the classical-quantum chan-
nel is written in the composition of projective measurements and local state
preparation. That is, the extreme point in N1 is obtained by projective measure-
ments.

Next, we consider the case of N2. It is known that a POVM {m1, . . . , mk} is
extreme if mi, mj have disjoint supports for any i ̸= j [663]. In the dichotomic
case, m1 = 1−m2, thus, m1, m2 can be diagonalized simultaneously. Then, there
is no overlap between the supports of m1, m2 if and only if they are orthogonal
projectors. Hence, the extremal points in N2 are also obtained by projective
measurements.

12.3.1 Example: three-qubit systems

Here we look at three-qubit systems and analyze ∆E (ϱABC) with N1 and N2. Im-
portant examples of multipartite entanglement measures that satisfy convexity
and monotonicity under LOCC are the multipartite negativity [665] and multi-
partite squashed entanglement [280, 281]:

NABC(ϱABC) = NAB|C + NBC|A + NAC|B, (12.3.12)

Esq(ϱABC) = min
γABCX

1
2

I(A : B : C|X). (12.3.13)

Here, NX|Y =
∣∣∑λi<0 λi

∣∣ is the negativity for a bipatition X|Y with eigenvalues
λi of the partial transposed state ϱTY with respect to the subsystem Y, where Y =
A, B, C. Also, I(A : B : C|X) = S(AX) + S(BX) + S(CX)− S(ABCX)− 2S(X) is
the quantum conditional mutual information, where γABCX is any extension of
ϱABC, i.e., ϱABC = trX[γABCX], and S(M) is the von Neumann entropy of system
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Figure 12.2: ∆E with NABC and Esq for |ψ(p)⟩ = √p |GHZ⟩+
√

1− p |W⟩. This
figure is taken from Ref. [5].

M. For a pure state ϱABC, the quantum conditional mutual information can be
simplified as I(A : B : C|X) = S(A) + S(B) + S(C), which is independent of the
system X.

As the first example, we consider the superposition of Greenberger-Horne-
Zeilinger (GHZ) states and W states:

|ψ(p)⟩ = √p |GHZ⟩+
√

1− p |W⟩ , (12.3.14)

where 0 ≤ p ≤ 1, |GHZ⟩ = (|000⟩ + |111⟩)/
√

2, and |W⟩ = (|001⟩ + |010⟩ +
|100⟩)/

√
3. The numerical relation between ∆E and p is presented in Fig. 12.2

for E = NABC, Esq, details about the optimization method are given below. Inter-
estingly, we find that the maximal value of ∆E (|ψ⟩) is given by the W state, while
the minimal value is not achieved by the GHZ state but the state at p = 0.4. We
remark that both of NABC(|ψ(p)⟩) and Esq(|ψ(p)⟩) are minimized when p = 0.4.
However, it is an open problem to understand why this state should also have
minimal entanglement change.

Moreover, let us consider a three-qutrit case and compute the tuple of ∆E for
E = (NABC, Esq). The GHZ state ∑2

i=0 |iii⟩ /
√

3 has (1.667, 0.792489), while the
state (|012⟩+ |120⟩+ |201⟩+ |021⟩+ |210⟩+ |102⟩)/

√
6 has (1.86747, 0.971332).

More details are given below.

12.3.2 Details of computation in figures

Since we consider the set of entanglement breaking channels from qubit to qubit
in the examples, we only need to focus on dichromatic projective measurements
M = {m0, m1} and perfect encoding of the outcomes according to Result 53 and
Result 54. In this case, we have

∆E (ϱABC) = E [ϱABC]−max
M∈P ∑

i=0,1
piE [σi⊗|0⟩⟨0|], (12.3.15)
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where P is the set of all dichotomatic projective measurements on qubit C, pi =
tr(ϱABCmi), and σi = trC(ϱABCmi)/pi. Here, the entanglement measure E is
taken to be either the multipartite negativity NABC or the multipartite squashed
entanglement Esq.

First, let us consider the case of the multipartite negativity NABC. Then we
have

NABC(σi⊗|0⟩⟨0|) = NAB|C(σi⊗|0⟩⟨0|) + NBC|A(σi⊗|0⟩⟨0|) + NAC|B(σi⊗|0⟩⟨0|)
= NB|A(σi) + NA|B(σi)

= 2NA|B(σi), (12.3.16)

where the second equality is from the fact that σTA
i ⊗ |0⟩⟨0| has same non-zero

eigenvalues as σTA
i as well as for the case B.

Second, let us consider the case of the multipartite squashed entanglement
Esq. Note that, for any 4-partite state ηABCX such that trX(ηABCX) = σi⊗|0⟩⟨0|, it
can only be in the form γABX⊗|0⟩⟨0|, where trX(γABX) = σi. Thus,

Esq(σi⊗|0⟩⟨0|) = min
γABX⊗|0⟩⟨0|

1
2

I(A : B : C|X)

= min
γABX⊗|0⟩⟨0|

1
2
[S(AX) + S(BX) + S(CX)− S(ABCX)− 2S(X)]

= min
γABX⊗|0⟩⟨0|

1
2
[S(AX) + S(BX) + S(X)− S(ABX)− 2S(X)]

= min
γABX

1
2
[S(AX) + S(BX)− S(ABX)− S(X)]

= E(2)
sq (σi), (12.3.17)

where in the third line we employ the additivity of the von Neumann entropy,
and we denote E(2)

sq the bipartite squashed entanglement [280]. In the case that
ϱABC is a pure state, each σi is also a pure state. From the result of Ref. [280], we
have

E(2)
sq (σi) = S(A) + S(B). (12.3.18)

Therefore, once we have parameterized the 2-dimensional projective mea-
surement M, the numerical calculation of ∆E (ϱABC) can be easily performed
by brute force optimization in each example. To be more explicitly, each 2-
dimensional rank-1 projective measurement M corresponds to a vector which
can be parameterized as ⟨v| = (cos x, eit sin x) such that M = {|v⟩⟨v|,1− |v⟩⟨v|}.
In the calculation, we have taken x in the discrete set {πk/300}300

k=0 and t in the
set {π j/50}50

j=0. For each measurement direction defined by the pair (x, t), the
poset-selected bipartite states and their entanglement can be computed directly
by the definition of the entanglement measure. By choosing the maximal en-
tanglement of the post-measurement state over all pairs (x, t), we obtain the
numerical approximation of ∆E (ϱABC) for E either to be NABC or Esq.
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We remark that the three-dimensional non-trivial projective measurements
can also be parameterized by M = {|v⟩⟨v|,1 − |v⟩⟨v|}, where |v⟩ is a three-
dimensional complex vector (cos x1, eit1 sin x1 cos x2, eit2 sin x1 sin x2). Note that
for the sake of simplicity, we considered the case of only real parameters to
obtain the result of three-qutrit states.

12.4 General bounds

12.4.1 Lower bound

In general, it may be hard to obtain the exact value of ∆E (ϱABC) for some entan-
glement measure E . To address this situation, we now derive upper and lower
bounds that can be useful for the estimation. First, we present a general lower
bound.

Result 55. For a convex entanglement measure E , and for the set NC, we have

∆E (ϱABC) ≥ min
|x⟩

{
E [ϱABC]− E [σ|x⟩ ⊗ |0⟩⟨0|]

}
, (12.4.1)

where |x⟩ is a measurement direction on the party C and σ|x⟩ ∝ ⟨x|ϱABC|x⟩ is a nor-
malized state.

Remark 69. This lower bound can be used to characterize the complete entangle-
ment loss, as we will see later in Sec. 12.6.

Proof. For a given entanglement breaking channel ΦC, it can be equivalently
characterized [662] by a POVM with M = {qi|xi⟩⟨xi|} and a preparation {|ψi⟩⟨ψi|}.
That is,

ΦC(ϱABC) = ∑
i

qi⟨xi|ϱABC|xi⟩ ⊗ |ψi⟩⟨ψi| = ∑
i

qi piσ|xi⟩ ⊗ |ψi⟩⟨ψi|, (12.4.2)

where pi = tr(⟨xi|ϱABC|xi⟩), σ|xi⟩ is the normalized state of ⟨xi|ϱABC|xi⟩, and
∑i qi pi = 1.

For any convex entanglement measure E , we then have

E [ΦC(ϱABC)] ≤∑
i

qi piE [σ|xi⟩ ⊗ |ψi⟩⟨ψi|]

≤ max
i
E [σ|xi⟩ ⊗ |ψi⟩⟨ψi|]

≤ max
|x⟩
E [σ|x⟩ ⊗ |0⟩⟨0|], (12.4.3)

where in the last line we apply local unitary operations on the party C to ro-
tate the states to |0⟩ and maximize over a more general range of measurement
directions.
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Δℰ with NABC
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Upper bound
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Figure 12.3: Comparison between ∆E with NABC and its lower and upper bounds
for the state |ψ(p)⟩ = √p |GHZ⟩+

√
1− p |W⟩. This figure is taken from Ref. [5].

Remark 70. In principle, the optimization can be done similarly as in Sec. 12.3.2.
As for the application of Result 55 in Result 59, we only need to show that σ|x⟩
is separable for each |x⟩, which can be checked by the PPT condition in the case
that A and B are two-dimensional subsystems with symbolic calculations. For
this purpose, we do not need to specify the values of parameters in |x⟩.

Furthermore, suppose that we remove all the classical information of the
measurement outcomes, that is, we encode all the measurement outcomes into
the same state |0⟩. Then we find an upper bound:

∆E (ϱABC) ≤ ∆̃E (ϱABC), (12.4.4)

for any convex entanglement measure E , where

∆̃E (ϱABC) = E [ϱABC]− E [ϱAB ⊗ |0⟩⟨0|], (12.4.5)

with ϱAB = trC(ϱABC). We remark that ∆̃E (ϱABC) is the maximal entanglement
change, since we can always map any encoding into the state |0⟩⟨0| with a local
operation on the system C.

Let us compare ∆E with its lower and upper bounds using the tripartite
negativity NABC. Figs. 12.3 and 12.4 illustrate the cases of the pure three-qubit
state |ψ(p)⟩ in Eq. (12.3.14) and the mixed three-qubit state ϱ(q) = qϱGHZ + (1−
q)ϱW, where ϱGHZ = |GHZ⟩⟨GHZ| and ϱW = |W⟩⟨W|. We find that the lower
bound is relatively close to ∆E , especially if the state approximates the GHZ
state. The gap between ∆E and ∆̃E shows that the post-measurement information
is more relevant for the GHZ state than for the W state.

12.4.2 Quantum discord

Next, let us connect entanglement change to quantum discord. For that, we
consider the multipartite relative entropy of entanglement, which is the sum of
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Figure 12.4: Comparison between ∆E with NABC and its lower and upper bounds
presented for the state ϱ(q) = qϱGHZ + (1 − q)ϱW. This figure is taken from
Ref. [5].

the relative entropies of entanglement [666] for all bipartitions, i.e.,

RABC(ϱABC) = RAB|C + RBC|A + RAC|B, (12.4.6)

where RX|Y = minσ∈SEP S(ϱXY||σ) is the relative entropy of entanglement for
a bipatition X|Y, S(ϱ||σ) = tr[ϱ (log ϱ − log σ)] is the von Neumann relative
entropy and SEP is the set of bipartite separable states.

Similarly, the amount of quantum discord [667] can be also measured by
the relative entropy: DXY(ϱXY) = minϱ′∈Λ S(ϱXY||ϱ′), where Λ is the set of
quantum-classical states ϱ′ = ∑i piσi ⊗ |i⟩⟨i| with orthonormal basis {|i⟩}. Now
we can formulate the following two Results:

Result 56. For the entanglement measure E being the tripartite relative entropy of
entanglement RABC, we have

RAB|C(ϱABC) ≤ ∆E (ϱABC) ≤ 3DAB|C(ϱABC). (12.4.7)

Proof. We begin by noting that Lemma 1 in Ref. [660]: for a given tripartite state
ϱABC, it holds that

RBC|A(ϱABC)≤DAB|C(ϱABC)+RBC|A[ΦC(ϱABC)], (12.4.8)

where ΦC(ϱABC) = ∑i piσ
AB
i ⊗ |i⟩⟨i|C where τi = |i⟩⟨i|C. Exchanging A and B,

we similarly have

RAC|B(ϱABC)≤DAB|C(ϱABC)+RAC|B[ΦC(ϱABC)]. (12.4.9)

Summarizing both inequalities leads to

RBC|A(ϱABC) + RAC|B(ϱABC) ≤ 2DAB|C(ϱABC) + RABC[ΦC(ϱABC)], (12.4.10)
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where we use the fact that RAB|C[ΦC(ϱABC)] = 0 since ΦC(ϱABC) is separable
with respect to AB|C. Rewriting this left hand side as RABC(ϱABC)−RAB|C(ϱABC),
we have

RABC(ϱABC)− RABC[ΦC(ϱABC)] ≤ 2DAB|C(ϱABC) + RAB|C(ϱABC). (12.4.11)

By definition, ∆E (ϱABC) is always no more than this left hand side, since ΦC is
just a special entanglement-breaking channel. Then we obtain

∆E (ϱABC) ≤ 2DAB|C(ϱABC) + RAB|C(ϱABC). (12.4.12)

Finally, since RAB|C(ϱABC) ≤ DAB|C(ϱABC), we find the upper bound.
Concerning the lower bound, we have

∆E (ϱABC) = min
ΦC∈NC

{RABC(ϱABC)− RABC[ΦC(ϱABC)]}

≥ RAB|C(ϱABC) + min
ΦC∈NC

{
RBC|A(ϱABC)− RBC|A[ΦC(ϱABC)]

}
+ min

ΦC∈NC

{
RAC|B(ϱABC)− RAC|B[ΦC(ϱABC)]

}
, (12.4.13)

where we again use that RAB|C[ΦC(ϱABC)] = 0. Since the relative entropy of
entanglement satisfies the monotonicity condition, we have that RBC|A(ϱABC)−
RBC|A[ΦC(ϱABC)] ≥ 0 and RAC|B(ϱABC)− RAC|B[ΦC(ϱABC)] ≥ 0. Then we arrive
at the lower bound.

Result 57. More generally, if DAB|C(ϱABC) = 0, then we have ∆E (ϱABC) = 0 for any
entanglement measure E .

Proof. We note that DAB|C(ϱABC) = 0 if and only if there exists an entanglement-
breaking channel ΦC such that ΦC(ϱABC) = ϱABC (see Proposition 21 in Ref. [668]
for more details). By definition,

∆E (ϱABC) = min
Φ′C∈NC

{
E [ϱABC]− E [Φ′C(ϱABC)]

}
,

≤ E [ϱABC]− E [ΦC(ϱABC)]

= E [ϱABC]− E [ϱABC]

= 0. (12.4.14)

Since ∆E (ϱABC) is nonnegative for any entanglement measure E which is mono-
tonic under LOCC, this eventually implies that ∆E (ϱABC) = 0 for any entangle-
ment measure E which is assumed to be monotonic under LOCC.

From Result 57, the condition DAB|C(ϱABC) = 0 is a sufficient condition
for ∆E (ϱABC) = 0 for any measure E . On the other hand, this is not a neces-
sary condition. For instance, if the initial state ϱABC is fully separable, clearly
∆E (ϱABC) = 0, but this does not mean DAB|C(ϱABC) = 0. From the conceptional
perspective, quantum discord is the difference of quantum correlation before
and after a projective measurement, whereas ∆E (ϱABC) quantifies the difference
of entanglement, which is only one sort of quantum correlations.
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12.5 Lockability

Previous works [282, 653, 654] have studied a similar issue under the name
of lockability of entanglement measures. There, one asks for the quantitative
change of entanglement by the loss of one particle, (e.g., one qubit) within one
party. For example, in the bipartite scenario, one considers the situation where
Alice and Bob have both five qubits and then one asks how the entanglement
changes if Alice loses one of her qubits. If the entanglement change can be ar-
bitrarily large, the entanglement measure is called lockable. For instance, all
convex entanglement measures are known to be lockable, while the relative en-
tropy of entanglement is not lockable, see Ref. [282].

The lockable entanglement is related to our consideration in the following
sense. For a given tripartite state ϱABC, if we choose the convex entanglement
measure E to only measure the entanglement between the bipartition A|BC (or
AC|B), then ∆̃E defined in Eq. (12.4.5) is the quantity considered in lockable
entanglement. More precisely, for any convex entanglement measure E for the
bipartition A|BC, we have

∆̃E (ϱABC) = E [ϱABC]− E [ϱAB], (12.5.1)

where we used that E [ϱAB ⊗ |0⟩⟨0|] = E [ϱAB], see Theorem 2 in Ref. [277].
In order to understand the difference between the behavior of entanglement

under classicalization and the lockability problem, one has to analyze the role
of the information coming from the measurement results. We know already
from Fig. 12.3 and 12.4 that this information makes some difference for the en-
tanglement change. In the following, we will show that this difference can be
arbitrarily large.

12.5.1 Flower state

First, let us consider the so-called flower state on d ⊗ d ⊗ 2-dimensional sys-
tems [653]:

ωABC =
2

d(d + 1)
P(+)

AB ⊗
d + 1

2d
|0⟩⟨0|C +

2
d(d− 1)

P(−)
AB ⊗

d− 1
2d
|1⟩⟨1|C, (12.5.2)

where P(±)
AB are the projections onto the symmetric and anti-symmetric sub-

spaces, that is P(±)
AB = (1AB ± SAB)/2 with the SWAP operator SAB, acting as

SAB |vA⟩ ⊗ |vB⟩ = |vB⟩ ⊗ |vA⟩.
Notice that, the quantum discord of ωABC for the bipartition AB|C is 0, i.e.,

DAB|C(ωABC) = 0. From Result 57, we conclude that ∆E (ωABC) = 0 for any en-
tanglement measure E . However, we have ∆̃E (ωABC) = E(ωABC) > 0 , because
trC(ωABC)⊗ |0⟩⟨0| is fully separable. In fact, if the entanglement measure E is
taken as the squashed entanglement, then E(ωABC) can be arbitrarily large [653].
This directly implies that the difference ∆̃E −∆E can be arbitrarily large by choos-
ing d properly. Hence, although the information from the measurement at the
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flower state is only one bit, a large amount of entanglement can be saved by
collecting it.

12.5.2 Many pairs of Bell states

On the other hand, we will see that the entanglement change ∆E can also be
arbitrarily large even if only one qubit has become classical. As example, let
us consider a pure state made of n pairs of Bell state |Ψ+⟩ = (|00⟩+ |11⟩)/

√
2.

We label the i-th pair of particles with ai, bi. Suppose that the party A owns
the particles {ai}n

i=1, the party B owns the particles {bi}n−1
i=1 , and the party C

owns the particle bn. We denote this state as βABC = |Ψ+⟩⟨Ψ+|⊗n. Now we can
present the following observation:

Result 58. For the entanglement measure E to be the tripartite negativity NABC, we
have

∆E (βABC) = 2n−2 + 1/2. (12.5.3)

Thus, ∆E (βABC) can be arbitrary large by choosing n properly.

Proof. To prove this, we first show that for a d× d-dimensional bipartite state, its
negativity is no more than (d− 1)/2. Since the negativity is a convex function,
we only need to prove it for pure states. Let us write a pure state |ψ⟩ as

|ψ⟩ =
d

∑
i=1

λi |aibi⟩ , ∑
i

λ2
i = 1, λi ≥ 0. (12.5.4)

Then direct calculation yields that

N(|ψ⟩) = ∑
1≤i<j≤n

λiλj ≤
d− 1

2

d

∑
i=1

λ2
i =

d− 1
2

. (12.5.5)

Here the maximal value (d− 1)/2 can be saturated by the maximally entangled
state |Ψ+

d ⟩ =
1√
d ∑d−1

i=0 |ii⟩.
Next, let us recall the n-copy of Bell state βABC = |Ψ+⟩⟨Ψ+|⊗n. We remark

that this n-copy state can be represented by the maximally entangled state in
(2n × 2n)-dimensional systems |Ψ+

2n⟩. This leads to

NBC|A(βABC) = (2n − 1)/2. (12.5.6)

Suppose that an entanglement breaking channel ΦC acts on the n-th particle
of the last party bn, equivalently, on the party C. Since all entanglement breaking
channels can be decomposed into measure and prepare operations, we again
write the measure process for ΦC as the form of the POVM with M = {qi|xi⟩⟨xi|}
and the preparation process as {|ψi⟩⟨ψi|}, i.e.,

ΦC(βABC) = ∑
i

qi piσ|xi⟩ ⊗ |ψi⟩⟨ψi|, (12.5.7)
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where pi = tr(⟨xi|βABC|xi⟩), σ|xi⟩ is the normalized pure state of ⟨xi|βABC|xi⟩,
and ∑i qi pi = 1. Then we have

NBC|A[ΦC(βABC)] = NBC|A

(
∑

i
qi piσ|xi⟩ ⊗ |ψi⟩⟨ψi|

)
≤∑

i
qi piNBC|A

(
σ|xi⟩ ⊗ |ψi⟩⟨ψi|

)
= ∑

i
qi piNBC|A

(
σ|xi⟩ ⊗ |0⟩⟨0|

)
= ∑

i
qi piNAB(σ|xi⟩)

≤∑
i

qi pi(2n−1 − 1)/2

= (2n−1 − 1)/2, (12.5.8)

where in the second line we employ the convexity of negativity. In the third line
we apply local untary operations on the party C to rotate the states |ψi⟩’s to |0⟩.
In the fourth line, we use fact that negativity is invariant under local unitaries
and adding local ancillas, see [277]. In the fifth line, we apply the upper bound
given in Eq. (12.5.5).

On the other hand, we obtain

NBC|A[ΦC(βABC)] ≥ NBC|A[trC(ΦC(βABC))⊗ |0⟩⟨0|C]
= NB|A[trC(βABC)]

= NB|A[(|Ψ+⟩⟨Ψ+|AB)
⊗(n−1) ⊗ trC(|Ψ+⟩⟨Ψ+|AC)]

= NB|A[(|Ψ+⟩⟨Ψ+|AB)
⊗(n−1)]

= (2n−1 − 1)/2. (12.5.9)

In the first line we use the LOCC monotonicity, and in the second line we make
use of the fact that trC ◦ ΦC = trC. In the fourth line, we use fact that negativity
is invariant under adding local ancillas, see [277].

Thus, independently of the entanglement breaking channel ΦC, we show

NBC|A[ΦC(βABC)] = (2n−1 − 1)/2. (12.5.10)

This result directly leads to

NBC|A(βABC)− NBC|A [ΦC(βABC)] = 2n−2. (12.5.11)

Also, since negativity is invariant under adding local ancillas, we have

NB|CA(βABC) = NB|CA [ΦC(βABC)] = NB|A

[
(|Ψ+⟩⟨Ψ+|AB)

⊗(n−1)
]
= (2n−1− 1)/2,

(12.5.12)

275



which implies
NB|CA(βABC)− NB|CA [ΦC(βABC)] = 0. (12.5.13)

Similarly, we have

NAB|C(βABC) = NA|C
[
|Ψ+⟩⟨Ψ+|AC

]
= 1/2. (12.5.14)

The fact that ΦC is an entanglement-breaking channel implies that

NAB|C [ΦC(βABC)] = 0. (12.5.15)

Consequently, we have

NAB|C(βABC)− NAB|C [ΦC(βABC)] = 1/2. (12.5.16)

By definition of ∆E (βABC) with NABC using Eqs. (12.5.11, 12.5.13, 12.5.16), we
complete the proof:

∆E (βABC) = 2n−2 + 1/2. (12.5.17)

We have one remark. From Eq. (12.5.6), Eq. (12.5.12) and Eq. (12.5.14), we know
that the original tripartite negativity is

NABC(βABC) = 2n−1 + 2n−2 − 1/2, (12.5.18)

which is strictly larger than ∆E (βABC) whenever n ≥ 2. Furthermore,

NABC(βABC)

∆E (βABC)
→ 2, n≫ 2. (12.5.19)

Inspired by those two examples, an interesting question arises whether there
exist entanglement measures E and states ϱABC such that both ∆E (ϱABC) and
∆̃E (ϱABC)− ∆E (ϱABC) can be arbitrarily large in the sense that they are not lim-
ited by the size of C, even if C is only a qubit. We leave this question for further
research.

12.6 Complete entanglement loss under classicaliza-
tion

By definition, ∆E (ϱABC) ≤ E [ϱABC] always holds. We are now concerned about
the case where this inequality is saturated, i.e., ∆E (ϱABC) = E [ϱABC], or equiva-
lently, maxΦC∈NC E [ΦC(ϱABC)] = 0.

First of all, Result 55 implies a sufficient condition for complete entanglement
loss under classicalization, which can be formulated as follows.

Result 59. If, after a projective measurement in any direction |x⟩ on C, the post-
measurement state σ|x⟩ ∝ ⟨x|ϱABC|x⟩ is always separable, then the entanglement is
completely lost under classicalization.
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Clearly, Result 59 is stronger than the condition that the reduced state ϱAB
is separable. For instance, let us consider the GHZ state. Its reduced state
trC[ϱGHZ] is separable, but its post-measurement state σ|x⟩ can be entangled if
measurement bases are {|+⟩ , |−⟩}.

The existence of genuine multipartite entangled states which satisfy Result 59,
however, has already been reported in Ref. [587]. We will propose observations
using Result 59 and provide more examples.

12.6.1 Results on complete entanglement loss under classical-
ization

In this section, we propose two results for the entangled states satisfying Re-
sult 59. A similar observation has been made for pure states in Ref. [651].

Result 60. Suppose that a tripartite state ϱABC satisfies Result 59. If ϱABC is entangled
for the bipartitions A|BC and B|AC, then the reduced state ϱAB = trC(ϱABC) should
have rank more than 2.

Proof. First we denote that px = tr[⟨x|ϱABC|x⟩] and σ|x⟩ = ⟨x|ϱABC|x⟩/px. Let us
begin by recalling that any tripartite quantum state can be written as

ϱABC = ∑
i,j

Mij ⊗ |i⟩⟨j| , (12.6.1)

where Mij = trC[ϱABC(1AB ⊗ |j⟩⟨i|)]. For i = j, we have that Mii = piσ|i⟩. For
i ̸= j, Mij can be written as linear combinations of pxσ|x⟩ for some |x⟩, since any
|j⟩⟨i| can be decomposed using some projectors |x⟩⟨x|. The more explicit form
will be given below.

In the following, we will show the contraposition of the observation, that is,
if ϱABC satisfies Result 59 and ϱAB has rank no more than 2, then ϱABC is either
separable for the bipartition A|BC or separable for the bipartition B|AC. Since
ϱAB = ∑i piσ|i⟩ where {|i⟩} is the computational orthonormal basis, and σ|i⟩ is
separable for any |i⟩ according to Result 59, then ϱAB is also separable. If ϱAB
has rank 1, it is easy to see that ϱABC is a pure product state. Further, let us
consider the case that the separable state ϱAB has exactly rank 2. Up to local
unitary, we can assume the following decomposition:

ϱAB = α(λ |00⟩⟨00|+ (1− λ) |ab⟩⟨ab|) + (1− α)∑
i

λi|aibi⟩⟨aibi|, (12.6.2)

where |ab⟩ ̸= |00⟩, α, λ, λi ∈ [0, 1].
Denote |ψ1⟩, |ψ2⟩ the eigenstates of ϱAB with non-zero eigenvalues. Then |00⟩,

|ab⟩, |aibi⟩ should be superpositions of |ψ1⟩, |ψ2⟩. Since |ab⟩ ̸= |00⟩, |ψ1⟩, |ψ2⟩ can
also be written as superpositions of |00⟩ , |ab⟩. Consequently, any |aibi⟩ can be
written as superpositions of |00⟩ , |ab⟩.

In the case that |a⟩ = |0⟩, we have |ai⟩ = |0⟩, which implies that

ϱA = trBC(ϱABC) = trB(ϱAB) = |0⟩⟨0|. (12.6.3)
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Hence, ϱABC = |0⟩⟨0| ⊗ ϱBC, which contradicts the assumption that ϱABC is en-
tangled for the bipartition A|BC. Thus, |a⟩ ̸= |0⟩ should hold. Similarly, we have
|b⟩ ̸= |0⟩.

Since |a⟩ ̸= |0⟩, |b⟩ ̸= |0⟩, then any non-trivial superposition of them is
entangled. This leads to that |aibi⟩ should either be |00⟩ or |ab⟩ up to a phase.

Since the range of σ|x⟩ belongs to the range of ϱAB and σ|x⟩ is separable, we
have

σ|x⟩ = λx |00⟩⟨00|+ (1− λx) |ab⟩⟨ab| , (12.6.4)

where ∑x pxλx = λ. Since Mij is a combination of σ|x⟩, Mij can be written as

Mij = Xij |00⟩⟨00|+ Yij |ab⟩⟨ab| , (12.6.5)

where the coefficients Xij and Yij are given by combinations of pxλx for some x.
Accordingly, we can write

ϱABC = |00⟩⟨00| ⊗ τx + |ab⟩⟨ab| ⊗ τy, (12.6.6)

where τx = ∑i,j Xij |i⟩⟨j| and τy = ∑i,j Yij |i⟩⟨j|.
To show that ϱABC is fully separable, it is sufficient to prove that the matrices

τx and τy are positive semidefinite. For that, we note that since |ab⟩ ̸= |00⟩, there
exists a bipartite pure state |αβ⟩ such that ⟨ab|αβ⟩ = 0 and ⟨00|αβ⟩ ̸= 0. Then it
holds that

⟨αβγ|ϱABC|αβγ⟩ = | ⟨αβ|00⟩ |2 ⟨γ|τx|γ⟩ ≥ 0, (12.6.7)

for any |γ⟩. This implies that ⟨γ|τx|γ⟩ ≥ 0, that is, τx is positive semidefinite.
Similarly, we can show that τy is positive semidefinite. Hence, we conclude that
ϱABC is fully separable, which contradicts the assumption.

In the case that the party C is not entangled with A and B, we have a similar
requirement of the global state as in the following observation.

Result 61. Suppose that a tripartite state ϱABC satisfies Result 59. If ϱABC is entangled
for the bipartitions A|BC and B|AC separable for AB|C, then it should have rank more
than 2.

Proof. Here we prove the statement by contradiction. Let us assume ϱABC sat-
isfies Result 59 and has rank no more than 2. Since ϱABC is separable for the
bipartition AB|C, we have the decomposition

ϱABC = ∑
i

pi |ψiϕi⟩ ⟨ψiϕi| , (12.6.8)

where |ψi⟩ , |ϕi⟩ are states for parties A, B and party C, respectively.
By assumption, the dimension of the space spanned by {|ψiϕi⟩} is no more

than 2, this leads to that the dimension of the space spanned by {|ψi⟩} is no
more than 2. Thus, ϱAB = trC(ϱABC) = ∑i pi |ψi⟩⟨ψi| has rank no more than 2.
By applying Result 60, we finish the proof.
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We have two remarks. First, one can indeed find tripartite entangled states
satisfying Result 59 and separable for the bipartition AB|C. Especially, there
exist tripartite entangled states which are separable for any bipartition [137,
267], which satisfy Result 59 automatically. We collect more such examples in
Sec. 12.6.2. Second, Results 60, 61 may provide insight into a type of quantum
marginal problem: whether a global state can be separable or entangled if its
marginal systems are subjected to separability conditions and rank constraints.

12.6.2 Examples for three-qubit states

Here, we discuss three-qubit entangled states that satisfy Result 59 for the com-
plete entanglement change. In this Section, we will first propose a nontrivial
three-qubit state that is entangled A|BC and AC|B but separable for AB|C. Next,
we will connect the complete entanglement change with bound entanglement.

Complete entanglement change with separability for AB|C

To find a nontrivial three-qubit entangled state that satisfies Result 59, we em-
ploy the method of entanglement witnesses: For a Hermitian operator W, it is
called an entanglement witness if tr(Wϱs) ≥ 0 for all separable states ϱs, and
tr(Wϱe) < 0 for some entangled states ϱe. The latter allows us to detect entan-
glement. In particular, we adopt the entanglement witness that can have the
negative eigenvalues of its partial transpose (NPT) state. This witness is de-
scribed as follows: Suppose that a state ϱe is NPT. Then one can find a negative
eigenvalue λ < 0 of ϱTA

e and the corresponding eigenvector |ϕC⟩. Hence the
operator |ϕC⟩⟨ϕC|TA can be an witness to detect the entangled state ϱe.

In practice, entanglement witnesses can be implemented by semi-definite
programming (SDP). For our purpose, we use the following conditions that
are compatible with the SDP method. First, to impose the separability condi-
tion for the bipartition AB|C, we apply the fact that if a 2⊗ N state ϱXY obeys
ϱXY = ϱTX

XY, then it is separable, see Theorem 2 in Ref. [669]. That is, we re-
quire that ϱABC = ϱ

TC
ABC. Second, for the separability condition of the two-qubit

post-measurement state σ|x⟩, we employ the positive partial transpose (PPT) cri-
terion, which is necessary and sufficient for two-qubit separability. Third, for the
sake of simplicity, we suppose that the state ϱABC is invariant under exchange
between A and B using SWAP S operator S |a⟩ |b⟩ = |b⟩ |a⟩.

Since the set of NPT states is not convex, we use the see-saw method with
entanglement witnesses. This is a numerical iteration technique for non-convex
optimization, which allows us to find states with the (local) minimal value as
a solution. From the numerical solution, we can find an analytical form of the
state and verify that it satisfies Result 59 for any measurement direction. Our
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finding is the following entangled state:

ϱ̃ =
1
8



0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0


. (12.6.9)

This state has the following properties. First, the matrix rank of ϱ̃ is 4. Second,
one can show that the state σ|x⟩ with |x⟩ = (cos t, eia sin t) is PPT and therefore
separable for any t, a. Third, the minimum eigenvalue of ϱ̃TA is equal to −1/8.
Fourth, the party C is not entangled with the other two parties. Nevertheless,
the discord DAB|C(ϱ̃) > 0, which is necessary for complete entanglement change
according to Result 57.

Complete entanglement change and bound entanglement

We have found the existence of state ϱ̃ that is entangled states for A|BC and AC|B
but separable for AB|C that can achieve the complete entanglement change.
Now we are also interested in the case where the separability for AB|C is re-
placed by bound entanglement. Such a state is already known as the 4 ⊗ 2
bound entangled state [239], denoted by ϱHDK in Eq. (1.2.96). Here the parties
AB are in 4-dimensional systems and the party C is 2-dimensional systems. We
remark that this state satisfies Result 59. Since this state is NPT entangled for
A|BC and AC|B but PPT entangled for AB|C, we cannot apply Result 61. On
the other hand, its reduced state ϱAB has rank 4, and therefore, it complies with
Result 60.

To proceed further, we now present the following:

Result 62. If a tripartite state ϱABC is separable either for the bipartition A|BC or the
bipartition B|AC, then ϱABC satisfies Result 59.

Proof. If ϱABC is separable either for A|BC or B|AC, then the normalized state of
⟨x| ϱABC |x⟩ is separable for any measurement direction |x⟩ on C. Thus, Result 55
implies that the entanglement change must be complete.

In the following, we collect entangled states for complete entanglement change
which are even separable for any bipartition: ϱUPB, ϱADMA, ϱAK, ϱPH given in
Sec. 1.2. Since their matrix ranks are, respectively, given by Rank(ϱUPB) =
4, Rank(ϱADMA) = 7, Rank(ϱAK) = 8, Rank(ϱPH) = 5, this follows Result 61.

12.7 Discussions

This Chapter studied the change of multiparticle entanglement under the classi-
calization of one particle. Clearly, the results usually depend on the choice of the
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entanglement quantifier, and the change of entanglement is difficult to compute.
We provided simplifications for important special scenarios and upper and lower
bounds for the general case. One crucial question is whether one small part like
one qubit can change a lot of quantum resources like quantum entanglement or
not. Our results show that the entanglement change can be still arbitrarily large
even with complete measurement information left. Besides, the measurement
information can also make an arbitrarily large difference. Finally, we provide
conditions under which quantum entanglement is always completely lost under
classicalization.

While we focused on the difference between the original quantum resource
and the remaining resource if one party becomes classical, the behavior of quan-
tum resources during the quantum to classical transition is also interesting, and
it may have a richer theoretical structure. We believe that our work paves the
way for the design of concepts for quantum resource storage and may help to
develop a novel direction in the field of quantum resource theories.
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K for N = 10, 30, 50, 70 and 100 qubits (from bottom to top) in
order to estimate the second moment with a relative error of 10%
and with confidence 90%. Each of the minimal points (valleys)
indicates the position of the optimal value M(opt)

tot . This figure is a
modified version of a figure from Ref. [2]. . . . . . . . . . . . . . . . 137
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3.4 Measurement budget M(opt)
tot obtained from Chebyshev-Cantelli

inequality required to certify the violation of the k-separability
criteria (3.2.18) of ϱ

(N)
GHZ(p), with k = 2 (blue, left), 4 (yellow), 6

(green), 10 (red) and 14 (purple, right), for N = 30 and confidence
γ = 90%. This figure is a modified version of a figure from Ref. [2]. 139

5.1 Sketch of the interacting quantum battery as a composite working
medium that can be entangled in a d × d system. The quantum
battery is described by a state ϱAB and a Hamiltonian HAB =
HA + HB + gV with coupling strength g. It is transformed by a
local random unitary operation UA ⊗UB: ϱAB → ϱ′AB = (UA ⊗
UB)ϱAB(U†

A ⊗U†
B). Then the average extractable work in this pro-

cess W(UA, UB) = E− E′ becomes random. The essential thermo-
dynamic quantity to characterize high-dimensional entanglement
in this Chapter is the work variance (∆W)2 over the random uni-
taries. This figure is taken from Ref. [4]. . . . . . . . . . . . . . . . 147

5.2 Schmidt number detection through local work fluctuations in an
Ising-type battery of 2 + 2 qubits. (a) Variance of average work
extracted by local random unitaries acting on each battery half as
a function of the field strength b and the mixing ratio α between a
maximally entangled and a product Gibbs state. All energies are
in units of the interaction strength J2, and we fix J1,3 = 0.5J2 and
T = 1.5J2. Quantum states with SN = 1, 2, 3 are contained in the
areas below the respective dashed lines, according to Eq. (5.2.13),
so above a line allows us to detect SN. For comparison, we also
indicate a bottom blue threshold given by the PPT criterion. (b)
Exemplary histograms of negative work values from a sample of
106 unitaries for the two marked cases (i) and (ii) at b = 0.45,
corresponding to an entangled state of SN = 4 at α = 0.96 and
a state at α = 0.08, compatible with separable states, respectively.
Work values are divided into bins of size 0.1J2. This figure is taken
from Ref. [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.3 (a) Comparison between the theoretical work variance (∆W)2
D (black

solid) and the variance (∆WTPM(ε))2 resulting from a local TPM
protocol at various noise levels ε = 0.2, 0.5, and 1.0 (respectively,
dashed blue, dotted red, and dash-dotted green), for the Ising
battery of Fig. 5.2 at fixed b = 0.45J2 and varying mixing ratio
α. The dashed horizontal lines show the bounds compatible with
Schmidt numbers 1, 2, 3. (b) Weight functions n0(ε) (blue solid),
n1(ε) (dashed red), and 1 − n0(ε) − n1(ε) (dotted green) versus
noise level ε. This figure is taken from Ref. [4]. . . . . . . . . . . . 156
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6.1 Sketch of the quantum metrology scheme from randomized mea-
surements for two copies of N particles, proposed in this Chapter.
In this scheme, the parameter θ is first encoded onto the 1st and
2nd copies by Λθ ⊗Λθ in parallel in different colors. Then the ran-
domized measurement M = ∑i Mi is performed with each local
observable Mi acting on the 1st and 2nd copy, vertically in Gray
color. This Chapter shows that the precision (∆θ)2 can be smaller
beyond the single-copy regime. . . . . . . . . . . . . . . . . . . . . 164

6.2 Sensitivity of the metrological gain defined in Eq. (6.4.1) to pa-
rameter shifts based on Result 29 in N = 100, where p denotes the
noise parameter in the local depolarizing channel in Eq. (6.5.1). . 168

6.3 Growth in the metrological gains defined in Eq. (6.4.1) for an
increasing number of particles based on Result 29 with a fixed
θ = 1/N, where p denotes the noise parameter in the local depo-
larizing channel in Eq. (6.5.1). . . . . . . . . . . . . . . . . . . . . . 169

7.1 Sketch of the collective Bloch sphere with the coordinates (⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩).
Many-body spin singlet states are represented by a dot at the cen-
ter (Red), which does not change under any multilateral unitary
transformations U⊗N (Green arrows). Spin measurement in the
z-direction is rotated randomly (Blue arrow). This paper pro-
poses systematic methods to characterize spin-squeezing entan-
glement in an ensemble of particles by rotating a collective mea-
surement direction randomly in this sphere. This figure is taken
from Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.2 Entanglement criteria for the mixed state in Eq. (7.5.11) for N = 3
in the x − y plane. The fully separable states are contained in
Green area, which obeys all the optimal spin-squeezing inequali-
ties (OSSIs) previously known [160, 276] and also our criterion in
Result 34. Blue area corresponds to the spin-squeezed entangled
states that can be detected by all OSSIs and Result 34. Yellow and
Purple areas correspond to the entangled states that cannot be de-
tected by all OSSIs but can be detected by Result 34, thus marking
the improvement of this Chapter compared with previous results.
In particular, Purple area corresponds to the multiparticle bound
entangled states that are not detected by the PPT criterion for all
bipartitions but detected by Result 34. This figure is taken from
Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3 Geometry of N single-qubit states |χi⟩ represented as (Blue) points
on the surface in the single-qubit Bloch sphere, for i = 1, 2, . . . N
and N = 6, 20, 100. This figure is taken from Ref. [10]. . . . . . . . 182
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7.4 Entanglement criteria for the mixed state in Eq. (7.5.11) for N =
4, 5, 6 in the x− y plane. The fully separable states are contained in
Green area, which obeys all the optimal spin-squeezing inequali-
ties (OSSIs) previously known [160, 276] and also our criterion in
Result 34. Blue area corresponds to the spin-squeezed entangled
states that can be detected by all OSSIs and Result 34. Yellow area
corresponds to the entangled states that cannot be detected by all
OSSIs but can be detected by Result 34, thus marking the improve-
ment of this Chapter compared with previous results. This figure
is taken from Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7.5 Linear-Log plot of the critical point p∗(N). This figure is taken
from Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.1 Entanglement criteria based on the PT moments for two-qutrit
systems with D = 3. Blue area contains states that obey the p3-
PPT criterion, while Orange area contains states that obey the p3-
OPPT criterion presented in Result 41. Thus the area inside of
Blue but outside of Orange marks our improvement, meaning en-
tangled states that can be detected. (Right) Black and Gray dots,
respectively, represent the thermal state ϱ(T, hy, hz) in Eq. (8.4.1)
with temperature ranges TBlack ∈ (0, 3] and TBlack ∈ (0, 0.8]. In
fact, since PPT entangled states cannot be detected in the PT-
moment approach, we demonstrate several examples introduced
in Sec. 1.2. Note that a similar plot has been already discussed in
Ref. [564]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10.1 The nonlinear allowed set of the pure three-qubit states in the
coordinate space (SAB

2 , SBC
2 , SCA

2 ) based on Result 42. The Blue,
Red, and Green lines, respectively represent the states that are
biseparable in the AB|C, BC|A, and CA|B partitions. The black
dot contains the fully separable states. This figure is a modified
version of a figure from Ref. [11]. . . . . . . . . . . . . . . . . . . . 230

10.2 The state space in (SAB
2 , SBC

2 , SCA
2 ) of three qubits under two-body

sector lengths. This is a conjecture in Eq. (10.3.2). This figure is
taken from Ref. [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

10.3 The space of the fully separable three-qubit states in the coordi-
nates given by Result 44 is presented in this Chapter, along with
the pure state in the background. The transparent yellow region
specifies the pure state space while the blue is the fully separa-
ble region. The green, pink, and blue surface areas correspond to
Eqs. (10.3.12a, 10.3.12b, 10.3.12c). This figure is taken from Ref. [11].235

10.4 The state space of states that are biseparable along some fixed
bipartition, according to Result 45 presented in this Chapter. The
Green, Orange, and Red regions correspond to states biseparable
in the AC|B,AB|C, and BC|A bipartitions. This figure is taken
from Ref. [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
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11.1 Illustration of the trajectories used in the proof of the main speed
limit result (11.3.4). This figure is taken from Ref. [9]. . . . . . . . . 246

11.2 Demonstration of error bound for the two-qubit example, tak-
ing the same parameters as in Fig. 11.3. The error being shown
is that on the right-hand side of the weak coupling speed limit
Eq. (11.4.18): both the sum of the terms ∆1(t)+∆2(t) from Eq. (11.4.21)
(which in this case is dominated by ∆2) and the upper bound es-
timate ∆est(t) from Eqs. (11.4.25), (11.4.28). This figure is taken
from Ref. [9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

11.3 Two-qubit example with local dephasing noise, showing how the
time-averaged value of

√
F (ηs,V) from s = 0 to t can be lower-

bounded using the speed limit Eq. (11.4.18). The initial state
|00⟩+|11⟩√

2
is maximally entangled. In units of h = 1, we take

λ = γ = v = 0.1 and ϵ ≤ 4λ2γ/h = 0.004. The measured sta-
tistical speed is the left-hand side of Eq. (11.5.1), taking a mea-
surement in the Bell basis { |00⟩±|11⟩√

2
, |01⟩±|10⟩√

2
}. The estimated er-

ror 2∆est(t)
vt (indicated by the shaded area) iś subtracted to give the

lower bound. This figure is taken from Ref. [9]. . . . . . . . . . . . 256
11.4 Driving out of equilibrium: work is performed during a sudden

quench H → H′. The system moves away from its initial Gibbs
state ϱth to the new one ϱ′th. The speed limit Eq. (11.7.7) bounds
the distance between ϱth and the state ϱt after time t in terms of
quantum fluctuations in the work. This figure is taken from Ref. [9].257

12.1 The change of multiparticle entanglement if the particle C be-
comes classical. In this process of classicalization the particle C
is first destroyed by the measurement and then the measurement
information is encoded in a new register. This Chapter asks for
which classicalization procedure the change of entanglement is
minimal. This figure is taken from Ref. [5]. . . . . . . . . . . . . . . 262

12.2 ∆E with NABC and Esq for |ψ(p)⟩ = √p |GHZ⟩+
√

1− p |W⟩. This
figure is taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . 267

12.3 Comparison between ∆E with NABC and its lower and upper bounds
for the state |ψ(p)⟩ =

√
p |GHZ⟩ +

√
1− p |W⟩. This figure is

taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
12.4 Comparison between ∆E with NABC and its lower and upper bounds

presented for the state ϱ(q) = qϱGHZ + (1− q)ϱW. This figure is
taken from Ref. [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
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