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Abstract

We analyze lossless tree compression algorithms under information-theoretic and
combinatorial aspects. One of the most important and widely used compression
methods for rooted trees is to represent a tree by its minimal directed acyclic
graph, shortly referred to as minimal DAG. The size of the minimal DAG of
the tree is the number of distinct fringe subtrees occurring in the tree, where a
fringe subtree of a rooted tree is a subtree induced by one of the nodes and all
its descendants. In the first part of this work, we study the average number of
distinct fringe subtrees (i.e., the average size of the minimal DAG) in random
trees. Specifically, we consider the random tree model of leaf-centric binary
tree sources as introduced by Kieffer et al. and prove upper and lower bounds
for the average number of distinct fringe subtrees that hold for large classes
of leaf-centric binary tree sources. Furthermore, we consider the random tree
models of simply generated trees and families of increasing trees (recursive trees,
d-ary increasing trees and generalized plane-oriented recursive trees), and prove
that the order of magnitude of the average number of distinct fringe subtrees
(under rather mild assumptions on what “distinct” means) in random trees with
n nodes is n/

√
log n for simply generated trees and n/ log n for increasing trees.

Among others, our results generalize a result by Flajolet et al. and Devroye,
according to which the average number of distinct fringe subtrees in a random
binary search tree of size n is in Θ(n/ log n), as well as a result by Flajolet et al.,
according to which the average number of distinct fringe subtrees in a uniformly
random binary tree of size n is in Θ(n/

√
log n), in several ways.

In the second part of this work, we analyze grammar-based tree compression
via tree straight-line programs (TSLPs) from an information-theoretic point of
view. Specifically, we extend the notion of kth-order empirical entropy from
strings to node-labeled binary and plane trees and show that a suitable binary
encoding of TSLPs yields binary tree encodings of size bounded by the kth-order
empirical entropy plus some lower order terms. This generalizes recent results
from grammar-based string compression to grammar-based tree compression.
Additionally, we carry out a systematic comparison of several different notions
of empirical entropy for trees that have been proposed in the past, both from a
theoretical and an experimental point of view.

In the third part of this work, we present a new compressed encoding of
unlabeled binary and plane trees. We analyze this encoding under an information-
theoretic point of view by proving that this encoding is universal and thus
asymptotically optimal for a great variety of tree sources; this covers in particular
the vast majority of tree sources with respect to which previous tree encodings
were shown to be universal. At the same time, and in contrast to previous
universal tree codes, our new compressed tree encoding can be turned into a
tree data structure that supports answering many navigational queries on the
compressed representation in constant time on the word-RAM. This solves in
particular an open problem from Davoodi et al. in the context of optimal data
structures for range-minimum queries.
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Zusammenfassung

Wir analysieren verlustfreie Methoden der Baumkomprimierung unter informati-
onstheoretischen und kombinatorischen Gesichtspunkten. Eine weit verbreitete
Methode der Baumkomprimierung ist die sogenannte DAG-Komprimierung, bei
der ein Baum durch seinen zugehörigen minimalen gerichteten azyklischen Gra-
phen (engl. directed acyclic graph, kurz DAG) dargestellt wird. Die Größe dieses
minimalen DAGs eines Baums ist die Anzahl der verschiedenen fringe subtrees
des Baums. Ein fringe subtree eines gewurzelten Baums ist ein Teilbaum, der
von einem der Knoten inklusive aller seiner Nachkommen induziert wird.

Im ersten Teil der Arbeit untersuchen wir die erwartete Anzahl der verschie-
denen fringe subtrees (d.h., die durchschnittliche Größe des minimalen DAGs)
bzgl. verschiedener Wahrscheinlichkeitsverteilungen auf verschiedenen Baumfa-
milien. Wir betrachten das Modell der leaf-centric tree sources, das auf Kieffer
et al. zurückgeht, und beweisen obere und untere Schranken für die erwartete
Anzahl verschiedener fringe subtrees, die für große Klassen von leaf-centric tree
sources gelten. Weiterhin betrachten wir das Modell der simply generated trees
und drei spezifische Modelle der increasing trees (recursive trees, d-ary increasing
trees und generalized plane-oriented recursive trees). Wir zeigen, dass die er-
wartete Anzahl der verschiedenen fringe subtrees (unter einer verallgemeinerten
Interpretation von “verschieden”) in random simply generated trees asympto-
tisch wie Θ(n/

√
log n) wächst, und in random increasing trees asymptotisch wie

Θ(n/ log n) wächst. Wir verallgemeinern mit unseren Ergebnissen ein Resultat
von Flajolet et al. und Devroye, welches aussagt, dass die erwartete Anzahl von
verschiedenen fringe subtrees in einem zufälligen binären Suchbaum der Größe n
in Θ(n/ log n) ist, und ein Resultat von Flajolet et al., nach dem die erwartete
Anzahl an verschiedenen fringe subtrees in einem bzgl. der Gleichverteilung
zufällig gewählten Binärbaum der Größe n in Θ(n/

√
log n) ist.

Im zweiten Teil der Arbeit analysieren wir grammatik-basierte Baumkom-
pression durch sogenannte tree straight-line programs (TSLPs). Wir erweitern
den Begriff der empirischen Entropie von Wörtern auf Bäume und zeigen, dass
eine geeignete Binärkodierung von TSLPs binäre Baumkodierungen liefert, deren
Größe in der empirischen Entropie (plus lower-order terms) beschränkt ist. Dies
verallgemeinert ein Resultat aus dem Gebiet der grammatikbasierten Wortkom-
pression. Zusätzlich führen wir einen Vergleich verschiedener Notationen der
empirischen Baumentropie durch, die in der Literatur betrachtet wurden.

Im dritten Teil der Arbeit stellen wir eine neue komprimierte Darstellung von
Bäumen vor, die universal und daher optimal bezüglich einer großen Anzahl an
Baumverteilungen ist; insbesondere gilt dies auch für die Mehrzahl der Verteilun-
gen, bezüglich derer für bisherige Baumkodierungen Universalität nachgewiesen
werden konnte. Im Gegensatz zu bisherigen universalen Baumkodierungen kann
unsere neue komprimierte Baumdarstellung zusätzlich zu einer Datenstruktur
erweitert werden, die Navigationsoperationen in konstanter Zeit im word-RAM
Modell ausführt. Dies löst insbesondere ein offenes Problem von Davoodi et
al., im Kontext optimaler Datenstrukturen für Range-Minimum Queries.
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Chapter 1

Introduction

As the amount of digital data around the world increases rapidly, storing data
efficiently has become a fundamental challenge in computer science. A classic
research area in this context is the field of lossless data compression, where
the goal is to devise algorithms that efficiently compress data with no loss of
information, such that the original data can be perfectly retrieved from its
compressed representation.

In this work, we focus on lossless compression of rooted trees as one of the
most fundamental types of structured data in computer science. In many cases,
data features a hierarchical structure, which can be naturally represented as a
tree; a classic example in this context are the document trees corresponding to
XML documents. Moreover, various data structures and algorithms involve trees;
well-known examples include binary search trees, red-black trees and AVL trees,
suffix trees, Wavelet trees, and Cartesian trees, see, e.g., [67] and [84] for details.

Two of the most widely used lossless compression algorithms for trees are DAG
compression and grammar-based tree compression. In this work, we investigate
the compression performance of these tree compressors from a combinatorial,
respectively, information-theoretic point of view. Furthermore, we propose and
analyze a new tree compression technique based on the tree covering algorithm
from [30]. The results of this work can be roughly divided into three main topics.

1.1 DAG compression and fringe subtrees

A fringe subtree of a rooted tree is a subtree which consists of a node and all
its descendants. Fringe subtrees are a natural object of study in the context
of random trees, and there is a great variety of results for various random tree
models, see e.g. [4, 23, 25, 31].

Fringe subtrees are of particular interest in computer science. A widely
used lossless compression method for rooted trees is to represent a tree as a
directed acyclic graph (DAG), which is obtained by merging nodes that are roots
of identical fringe subtrees (see Figure 1.1 for an example). This compressed
representation of the tree is often shortly referred to as minimal DAG of the tree

1



2 Chapter 1. Introduction

Figure 1.1: A binary tree (left) and its corresponding minimal DAG (right).

and its size (number of nodes) is the number of distinct fringe subtrees occurring
in the tree. Compression by minimal DAGs has found applications in many areas
of computer science, as for example in compiler construction [3, Chapter 6.1 and
8.5], unification [93], symbolic model checking (binary decision diagrams) [13],
information theory [S3], [105], and XML compression and querying [14, 39].

The minimal DAG of a tree is unique and can be computed in linear time [26].
The size of a minimal DAG (when measured as its number of nodes) can be
exponentially smaller than the size of the corresponding tree (consider, for
example, a perfect binary tree). However, the size of a minimal DAG of a tree
can also be linear in the size of its corresponding tree: take, for example, a linear
chain tree. Thus, it seems natural to investigate the average size (i.e., average
number of nodes) of the minimal DAG, or, equivalently, the average number of
distinct fringe subtrees in random trees. So far, this problem has mainly been
investigated with respect to the following random tree models.

In [38], Flajolet, Sipala and Steyaert proved that, under very general as-
sumptions, the expected number of distinct fringe subtrees in a tree of size n
drawn uniformly at random from some given family of trees is asymptotically
equal to c · n/

√
log n, where the constant c depends on the particular family of

trees. In particular, their result covers uniformly random plane trees (where the
constant c evaluates to c =

√
2/π) and uniformly random binary trees (with

c = 2
√

2/π). The result of Flajolet et al. was extended to uniformly random
Σ-labeled unranked trees in [12] (where Σ-labeled means that each node of a tree
is assigned a label from a finite alphabet Σ and unranked means that the label
of a node does not depend on its degree or vice versa). Moreover, an alternative
proof to the result of Flajolet et al. was presented in [96] in the context of simply
generated families of trees.

Another probabilistic tree model with respect to which the number of distinct
fringe subtrees has been studied is the binary search tree model. A random
binary search tree of size n is a binary search tree built by inserting the keys
{1, . . . , n} according to a uniformly chosen random permutation on {1, . . . , n}.
Random binary search trees are of particular interest in computer science, as
they naturally arise for example in the analysis of the Quicksort algorithm, see
[27]. In [36], Flajolet, Gourdon and Martinez proved that the expected number
of distinct fringe subtrees in a random binary search tree of size n is O(n/ log n).
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This result was improved in [24] by Devroye, who showed that the asymptotics
Θ(n/ log n) holds. In a recent paper [9], the result of Flajolet, Gourdon and
Martinez was reproved. Moreover, it is shown in [9] for random recursive trees
(defined in Chapter 5), that the average number of distinct fringe subtrees in a
random tree of size n is also in O(n/ log n) and bounded from below by Ω(

√
n)

and it is conjectured that the asymptotics Θ(n/ log n) holds.
In this thesis, we generalize the results from [9, 24, 36, 38, 96] in several ways.

In Chapter 3, we focus on random full binary trees, i.e., rooted ordered trees,
such that each node has either exactly two or zero descendants, and derive upper
and lower bounds on the average number of distinct fringe subtrees that hold
for large classes of distributions. More precisely, we consider the random tree
model of leaf-centric binary tree sources, which was introduced in [66] (see also
[105]), as a very general concept to model probability distributions on the set of
full binary trees with n leaves1. Both the binary search tree model as well as
the uniform probability distribution on the set of full binary trees with n leaves
can be modeled as a leaf-centric binary tree source [66].

In particular, we consider four classes of leaf-centric binary tree sources and
derive asymptotic upper or lower bounds on the average number of distinct
fringe subtrees occurring in a random tree generated by a leaf-centric binary
tree source from the respective class. These upper or lower bounds thus cover
not only a single distribution, but a whole class of distributions. An overview
over the four classes of leaf-centric binary tree sources and the respective results
is given in Section 3.1.

These results generalize the results from [24, 36] on the binary search tree
model in the sense that they imply the upper bound O(n/ log n) (respectively,
the lower bound Ω(n/ log n)) on the expected number of distinct fringe subtrees
in a random binary search tree of size n. Also, from two of the results combined
we obtain that the expected number of distinct fringe subtrees in a uniformly
random full binary tree with n leaves is in Θ(n/

√
log n), as shown in [38, 96].

In Chapter 4 we then consider the random tree model of random simply
generated trees [27, 58, 82] as a general concept to model uniform probability
distributions on various families of trees and in Chapter 5, we focus on specific
families of increasing trees (recursive trees, d-ary increasing trees and generalized
plane oriented recursive trees), which in particular incorporate the binary search
tree model [7, 27].

In all of the results [9, 24, 36, 38, 96] mentioned above, the problem of
deriving asymptotic estimates for the expected number of distinct fringe subtrees
in random trees is studied with respect to the specific notion of distinctness that
two fringe subtrees are considered as distinct if they are distinct as members
of the particular family of trees. In Chapter 4 and Chapter 5, we estimate
the number of “distinct” fringe subtrees in random trees under a generalized
interpretation of “distinctness”, which allows for many different interpretations
of what “distinct” trees are.

1As every full binary tree with n leaves has exactly 2n − 1 nodes in total, it is often
convenient to indicate its size by its number of leaves.
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The main motivation for this generalized notion of distinctness is based on a
problem in the context of XML compression: Here, one distinguishes between
document-centric XML, for which the corresponding XML document trees are
ordered (i.e., an ordering is specified for the children of each node), and data-
centric XML, for which the corresponding XML document trees are unordered
(i.e., there is no ordering on the nodes’ children). Understanding the interplay
between ordered and unordered structures has thus received considerable atten-
tion in the context of XML (see for example [1, 11, 106]). In particular, in [75], it
was investigated whether tree compression can benefit from unorderedness. For
this reason, unordered minimal DAGs were considered. An unordered minimal
DAG of a tree is a directed acyclic graph obtained by merging nodes that are
roots of fringe subtrees which are identical as unordered trees. From such an
unordered minimal DAG, an unordered representation of the original tree can
be uniquely retrieved. The size of this compressed representation is the number
of distinct unordered trees represented by the fringe subtrees in the tree. So far,
only some worst-case estimates comparing the size of a minimal DAG to the size
of its corresponding unordered minimal DAG are known. Among other things,
it was shown in [75] that the size of an unordered minimal DAG of a binary
tree can be exponentially smaller than the size of the corresponding (ordered)
minimal DAG.

However, no average-case estimates comparing the size of the minimal DAG
of a tree to the size of the corresponding unordered minimal DAG are known
so far. In particular, in [75] it is stated as an open problem to estimate the
expected number of distinct unordered trees represented by the fringe subtrees
of a uniformly random binary tree of size n and conjectured that this number
asymptotically grows as Θ(n/

√
log n).

As one of our main theorems of Chapter 4 (following from a more general
main theorem), we settle this open conjecture by proving upper and lower bounds
of order n/

√
log n for the number of distinct unordered trees represented by the

fringe subtrees of a tree of size n drawn randomly from a simply generated family
of trees, which hold both in expectation and with high probability. Furthermore,
we show that the results from [38, 96] on the number of distinct fringe subtrees
(as members of the particular family) in simply generated trees do not only hold
in expectation, but also with high probability.

Similarly, as one of our main theorems of Chapter 5 (also following from a
general main theorem), we prove upper and lower bounds of order n/ log n for
the number of distinct unordered trees represented by the fringe subtrees of a
random binary search tree of size n. Additionally, we improve the results from
[36, 24] on the number of distinct (as binary trees) fringe subtrees in random
binary search trees, by showing that these results do not only hold in expectation,
but also with high probability, and by providing an improved lower bound (in
terms of the leading constant). Finally, also in Chapter 5, we solve the open
problem from [9], by proving that the number of distinct fringe subtrees in
a random recursive tree of size n is Θ(n/ log n) in expectation and with high
probability.
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1.2 Grammar-based tree compression and empir-
ical tree entropy

Tree compression by minimal DAGs has the disadvantageous shortcoming that
it only allows to exploit repeated occurrences of fringe subtrees in the tree,
however, repeated patterns “inside” the tree are not taken advantage of. A tree
compression method that allows to avoid this shortcoming is grammar-based tree
compression, which represents a natural generalization of DAG compression.

The idea of grammar-based compression is based on the fact that in many
cases a string s can be succinctly represented by a context-free grammar that
produces only the string s. Such a grammar is called a straight-line program
(SLP) for s. In the best case, the size of an SLP for a string of length n can be in
Θ(log n), where the size of an SLP is measured as the total length of all right-hand
sides of the rules of the grammar. A grammar-based compressor is an algorithm
that produces for a given string s an SLP Gs, where Gs should be smaller than s.
The first systematic investigations of grammar-based compressors are carried
out in [17, 64]. Grammar-based string compressors can be found at many places
in the literature, probably the best known example is the LZ78-compressor
of Lempel and Ziv [107]. Other well-known grammar-based compressors are
Bisection [63], Sequitur [87], and Repair [72], to mention a few.

Grammar-based compression has been generalized from strings to trees by
means of linear context-free tree grammars generating exactly one tree [15]. Such
grammars are also known as tree straight-line programs, TSLPs for short, see [73]
for a survey. Tree straight-line programs do not only represent a generalization
of (string) SLPs, but also generalize DAGs in the sense that TSLPs allow to
share repeated tree patterns occurring “inside” the tree. Any DAG for a tree t
can be seen as a TSLP for t, but with the restriction that every nonterminal
produces a fringe subtree of t. For general TSLPs, this restriction is loosened,
as nonterminals are also allowed to produce contexts, which are fringe subtrees
of t which may contain one (or several) “holes”. The precise formalism of tree
compression by TSLPs will be introduced in Chapter 6.

TSLPs allow exponential compression in the best case, and due to the ability
to share also internal patterns, there are examples where the minimal DAG is
exponentially larger than the smallest TSLP of a tree [73]. In [42], the authors
present a linear time algorithm that computes for a given ranked (constant
maximal degree) tree t of size n a TSLP Gt of size O(n/ logσ̂ n), where σ is the
size of the underlying set of node labels and σ̂ = max{2, σ}. An alternative
algorithm with the same asymptotic size bound can be found in [44].

TSLPs have been extended to forest straight-line programs (FSLPs), which
allow to decompose trees “horizontally” (splitting the children of one node) and
hence allow to compress node-labeled plane trees (of unbounded degree). They
meet the worst-case size bound O(n/ logσ̂ n) for node-labeled plane trees of
size n [47]. Moreover, we remark that grammar-based tree compression is closely
related to the tree compression formalism of top DAGS, see e.g. [8, 47, 76].

Note that the worst-case bound O(n/ logσ̂ n) cannot be achieved by DAG
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compression: the smallest DAG for an unlabeled full binary tree of leafsize n
may still contain n nodes. Moreover, a simple information-theoretic argument
shows that the worst-case bound of the form O(n/ logσ̂ n) (for labeled plane
or ranked trees of size n) achieved by TSLPs, respectively, FSLPs, cannot be
improved to a smaller asymptotic worst-case bound. However, a more refined
worst-case analysis of grammar-based tree compression is possible using the
concept of empirical entropy.

In the area of string compression, the concept of higher order empirical entropy
yields a well-established measure for the compressibility of a string. Empirical
entropy for strings was introduced by Kosaraju and Manzini in [70]. Intuitively,
the kth-order empirical entropy of a string s is our expected uncertainty about
the symbol at a certain position in the string, given the k preceding symbols,
see e.g. [41]. “Empirical” refers to the fact that the entropy is defined for the
string itself and not for a certain probability distribution on strings. This has
the advantage that empirical entropy is also useful in situations where we do not
know the underlying probability distribution on strings.

Empirical entropy for strings is a well-established tool in order to analyze the
worst-case compression performance of string compressors (for further aspects of
empirical entropy for strings, see [41]). For many string compressors, worst-case
bounds on the length of a compressed string s in terms of the kth-order empirical
entropy (plus lower-order terms) are known, as for example for the Burrows-
Wheeler transform [80], several algorithms from the LZ-family [70], and also for
grammar-based string compressors [45, 86, 89]. These kinds of upper bounds are
often referred to as “entropy bounds”. Intuitively, if a string compressor satisfies
an entropy bound, the string compressor tends to exploit the kind of regularities
in strings that the kth-order empirical entropy is able to capture.

In Chapter 6 of this work, we prove an entropy bound for grammar-based
tree compressors. For this, a reasonable notion of empirical entropy for trees is
needed. In recent years, several attempts were made to generalize the concept
of empirical entropy from strings to trees; specifially, there is the concept of
label entropy from [32], the degree entropy from [60], and their combinations
label-degree entropy and degree-label entropy from [46]. However, all of these
notions of empirical tree entropy have some limitations and only incorporate
partial aspects of trees, as they are tailored towards plane trees. In particular,
label entropy is not suitable for unlabeled trees, degree entropy only incorporates
the structure of the tree, but not the node labels, and all of the entropy notions
from [32, 60, 46] do not work for important special cases as unlabeled full binary
trees.

For these reasons, one of our main contributions of Chapter 6 is the definition
of a new reasonable entropy measure for labeled trees that can be also used
for the unlabeled case. Our notion of empirical tree entropy incorporates both
node labels as well as the shape of the tree and is in particular able to capture
dependencies between node labels and tree shape, hence, we call it label-shape
entropy. As our main result of Chapter 6, we show that the encoding length
of a particular type of grammar-based tree compressor can be bounded from
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above in terms of the kth-order label-shape entropy plus some lower order terms.
In particular, this generalizes a recent result [89] from grammar-based string
compression to grammar-based tree compression.

In Chapter 7 we then carry out a systematic comparison, both from a
theoretical as well as from an experimental point of view, between the entropy
notions from [32, 60, 46] and our new notion of label-shape entropy. In particular,
we show that label-shape entropy lower bounds the existing entropy notions
from [32, 60, 46] for the special case of labeled and unlabeled full binary trees,
and that for the special case of unlabeled plane trees, label-shape entropy is
never greater than twice the entropy notion from [60] plus lower-order terms.
Moreover, we carry out experiments with real XML data, which indicate that an
upper bound on the number of bits needed by a compressed tree representation
in terms of the label-shape entropy is the strongest for real XML data, since the
kth order label-shape entropy (for k > 0) is significantly smaller than all other
entropy bounds for all XML documents that we have examined.

1.3 Tree data structures and universal tree source
coding

For many applications, it is desirable to not only compress the input data, but also
to be able to efficiently answer queries on the compressed representation without
prior decompression. For this reason, various compressed tree representations
have been turned into data structures. Tree data structures based on grammar-
based compression and top DAGs typically achieve logarithmic query times in
the word-RAM model for the navigational queries they support.

On the other hand, a great variety of succinct tree data structures has
been proposed in the literature, notably BP (balanced parenthesis) [56, 83],
DFUDS [6, 60], LOUDS [56], tree covering [48, 52, 30] and their variants and
enhancements (see also [22, 84, 98] for an overview), which usually achieve
constant query times on the word-RAM. However, a typical property of succinct
data structures is that their space usage is determined only by the size of the
input, that is, they use log an(1 + o(1)) bits of space in order to represent one
out of an objects of size n, such that there is no further compression beyond
the worst-case entropy. For example, standard succinct tree data structures use
2n+ o(n) bits of space for any tree with n nodes. Notable exceptions are the
tree data structures from [60, 46], which support navigational queries in constant
time on the word-RAM and at the same time achieve an entropy bound in terms
of the degree entropy [60], respectively, in terms of the entropy notions from [46].

In Chapter 8 and Chapter 9, we propose a new compressed encoding for
unlabeled binary and plane trees, called hypersuccinct trees, which can be turned
into a data structure that answers a large number of navigational queries in
constant time on the word-RAM. It is based on the tree decomposition algorithm
from [30]. Hypersuccint trees achieve entropy bounds in terms of the label-shape
entropy (introduced in Chapter 6 of this work), as well as in terms of the degree
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entropy from [60] (which is identical to the entropy notions from [46] for the
special case of unlabeled trees). What sets the hypersuccinct tree data structure
apart from previous data structures [60, 46], is that it can be shown to be
universal with respect to a great variety of tree sources.

Universal source coding for finite sequences over a finite alphabet Σ is a well-
established topic in information theory. The central object of study in (classical)
information theory is that of a source of random strings. A fundamental result
in information theory states that the minimum possible average code length
for binary prefix-free lossless codes is the Shannon entropy [20] corresponding
to the respective source. In the same way, the minimum possible worst-case
code length is the self-information [20] of the encoded objects with respect to
the respective source. A significant goal in an information-theoretic sense in
compressing such strings is a universal code, which achieves optimal compression
(up to lower order terms) for distributions of strings from a large class of possible
sources without knowing the used source.

In a series of papers, grammar-based string codes that are universal for the
class of finite state sources were developed [63, 64, 65]. Similar results hold for
Lempel-Ziv methods [107] and the Burrows-Wheeler-transform [28]. Over the
last few years, we have seen increasing efforts aiming to extend universal source
coding to structured data like trees [66, 105, 79, 49] and graphs [18, 77]. In
particular, universal source coding for unlabeled binary trees based on DAG-
compression and grammar-based tree compression has been considered in [105]
and [S3] (a detailed overview over their results is given in Section 8.1). However,
compared to the situation for strings, universal source coding and information
theory of structured data is much less developed.

In Chapter 8 and Chapter 9 of this work, we show that the hypersuccinct
tree encodings are universal with respect to a great variety of tree sources. In
the case of binary trees, this includes in particular classes of leaf-centric binary
tree sources, which we also consider in Chapter 3 of this work in the context
of DAG compression. Specifically, hypersuccinct binary trees can be shown
to be universal with respect to the vast majority of tree sources, for which
previous universal tree encodings for unlabeled binary trees have been shown to
be universal [105], [S3]. In contrast to hypersuccinct binary trees, these previous
universal binary tree codes cannot be turned into a data structure with constant
query times for navigational operations, as recent lower bounds [95] imply. In
the case of plane trees, no universal tree source codes specifically focusing on
plane trees have been proposed before.

Hence, the hypersuccinct tree encodings proposed in Chapters 8 and Chapter 9
of this work are the first compressed representation of binary, respectively plane
trees that can be shown to be universal with respect to a large number of classes
of tree sources and at the same time can be turned into a data structure that
supports a wide range of navigational queries in constant time on the word-RAM.



Chapter 2

Preliminaries

2.1 Basic notation

With N we denote the natural numbers without zero, and with N0 we denote
the natural numbers including zero. The logarithm of a positive number x to
the base b is denoted by logb x, and the natural logarithm of a positive number
x is denoted by lnx. Moreover, the binary logarithm of a positive number x is
denoted by log x. We use the standard Landau notations O, o, Ω, ω and Θ.

An alphabet Σ is a nonempty set of characters (also called symbols), which
is usually finite. A word or string over an alphabet Σ is a finite sequence
w = a1a2 · · · al of (not necessarily distinct) characters a1, a2, . . . , al. With
|w| = l we denote the length of w. We write Σ∗ for the set of all words over Σ,
with ε we denote the empty word, and we write Σn for the set of all words of
length n over Σ. If Σ is finite, we denote the size of Σ with σ. For a ∈ Σ we
denote with |w|a = |{i | 1 ≤ i ≤ l, ai = a}| the number of occurrences of a in w.

2.2 Trees

A tree is a connected acyclic undirected graph. A tree is called rooted, if one
specific node of the tree is marked as the root node. This induces an ancestor-
descendant relationship on the nodes of the tree, such that each node (except for
the root node) has a uniquely defined parent node. The direct descendants of
a node are called its children. Throughout this work, all trees we consider will
be rooted. In particular, if not explicitly stated otherwise, the term “tree” will
always denote a rooted tree.

A rooted tree is called ordered, if there is an ordering on the children of each
node of the tree. Likewise, if there is no such ordering, a tree is called unordered.
Most trees we consider in this work will be ordered. If a tree is unordered, it
will be mentioned explicitly.

The size |t| of a tree t is defined as its number of nodes. Sometimes it is
convenient to consider the empty tree, which is a tree of size zero. Let v be a
node of a tree t, then we denote with deg(v) the degree of the node v, that is,

9
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the number of children of the node v. A node that does not have any children is
called a leaf and a node that has at least one child node is called an inner node
or internal node. With V (t) we denote the set of nodes of a tree t and with V0(t)

we denote the set of inner nodes of t.
The depth of a node v of a tree t is the length of the path from the root node

to v. The depth d(t) of a tree t is the maximal depth of a node v of t. We define
the height h(t) of a tree t to be the depth d(t) plus one (thus, the height of a
tree of size one is one). Moreover, we define the height of the empty tree to be
zero.

A subtree of a tree t is a connected acyclic subgraph of t. A fringe subtree
of a tree t is a subtree of t that consists of a node of t together with all its
descendants. For a node v of t, we denote with t[v] the fringe subtree of t that
is rooted in v.

2.2.1 Plane trees and binary trees

There is a great variety of different families of trees. The most important families
of trees that we will consider in this work are the following:

Definition 2.1 (Plane tree). A plane tree is a rooted, ordered tree. With T we
denote the set of all plane trees and with Tn we denote the set of all plane trees
of size n for n ≥ 1.

Plane trees are sometimes called ordinal trees, see e.g. [6]. A plane tree is
shown in Figure 2.1 on the left.

Definition 2.2 (Full binary tree). A full binary tree is a rooted, ordered tree,
such that each node has either exactly two or zero children. With B we denote
the set of all full binary trees and with Bn we denote the set of all full binary
trees with n leaves for n ≥ 1.

A full binary tree is shown in Figure 2.1 (second tree from the left). As every
node in a full binary tree has either exactly two or zero children, we find that
every full binary tree with n− 1 inner nodes has exactly n leaves. The total size
of a full binary tree is thus always an odd number. It is hence often convenient
to measure the size of a full binary tree as its number of leaves (thus, Bn denotes
the set of all full binary trees with n leaves for n ≥ 1). With ‖t‖ we denote the
number of leaves of a tree t. The number of leaves of a tree t is often called its
leafsize. Moreover, if t is a full binary tree, we denote with tl[v], respectively,
tr[v] the fringe subtree rooted in the left, respectively, right child node of an
inner node v of t. If v is the root node, we write tl and tr for tl[v] and tr[v]. We
shortly refer to tl and tr as the left subtree, respectively, right subtree of t.

We remark again that full binary trees always denote ordered trees. Unordered
trees such that each node has exactly two or zero descendants will be called
unordered full binary trees, that is, it will be stated explicitly that the considered
trees are unordered.
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Definition 2.3 (Binary tree). A binary tree is a rooted, ordered tree, such that
each node has either exactly two children, a single left child, a single right child,
or zero children. With B� we denote the set of all binary trees and with B�n we
denote the set of all binary trees of size n for n ≥ 1.

Note that we distinguish between left-unary and right-unary nodes in binary
trees. A binary tree is shown in Figure 2.1 (the third tree from the left). We
transfer the notions tl[v], tr[v] and tl, tr from full binary trees to binary trees
(however, in this case, these fringe subtrees can be the empty tree).

Furthermore, note that whereas Bn denotes the set of full binary trees with
n leaves, B�n denotes the set of binary trees of size n, that is, with n nodes in
total. There is a natural one-to-one correspondence between the set Bn of full
binary trees with n leaves and the set B�n−1 of binary trees of size n− 1 for every
n ≥ 1. The corresponding bijection maps a full binary tree t of leafsize n to
the binary tree of size n− 1 that is obtained by removing all of t’s leaves and
only keeping the inner nodes of t. For example, the full binary tree in Figure 2.1
(the second tree from the left) corresponds to the binary tree in Figure 2.1 (the
third tree from the left). In particular, in view of this one-to-one correspondence,
many results shown for the family of full binary trees also become applicable for
the family of binary trees and vice versa. In this thesis, we will consider both
full binary trees and (not necessarily full) binary trees, as for some results and
applications, it will be more convenient or more natural to consider one or the
other.

Binary trees, full binary trees and plane trees are enumerated by the Catalan
numbers :

Definition 2.4 (Catalan numbers). The Catalan numbers are a sequence
(Cn)n≥0 of natural numbers defined by

Cn =
1

n+ 1

(
2n

n

)
.

The Catalan numbers (see e.g. [37]) satisfy the following recursion

Cn+1 =
n∑
i=0

CiCn−i

for n ≥ 0. Moreover, asymptotically, the Catalan numbers grow as

Cn ∼
4n√
πn3/2

(1 +O(1/n)) . (2.1)

It is a well known fact in combinatorics on trees (see e.g. [27, 37]) that

|Bn| = |B�n−1| = |Tn| = Cn−1.

Binary trees and full binary trees are generalized to d-ary trees and full d-ary
trees:
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Figure 2.1: From left to right: A plane tree, a full binary tree, a binary tree and
a 3-ary tree.

Definition 2.5 (d-ary trees and full d-ary trees). Let d ≥ 2 be an integer. A
d-ary tree is a rooted ordered tree, such that each node has exactly d possible
positions to which children can be attached. Likewise, a full d-ary tree is a
rooted ordered tree such that each node has either exactly d children or zero
children.

Thus, the degree of a node v of a d-ary tree is bounded from above by d and
there are

(
d
k

)
types of nodes of degree k for 0 ≤ k ≤ d. For example, if d = 3, a

node of degree k = 2 can have a left and a middle child, a left and a right child,
or a right and a middle child. A 3-ary tree is shown in Figure 2.1 on the right.

Sometimes d-ary trees are called cardinal trees of degree d [6], in contrast to
ordinal trees, to emphasize that each node has d positions to which nodes can
be attached, whereas for ordinal trees (i.e., plane trees), we do not distinguish
different positions to which child nodes can be attached.

2.2.2 Labeled trees and formal expressions

The term “labeled tree” is not always used consistently in the literature. In this
thesis, a labeled tree denotes the following concept.

Definition 2.6 (Σ-labeled tree). Let Σ be an alphabet. A Σ-labeled tree is a
tree, where every node is assigned a label from the alphabet Σ.

In general, Σ-labeled trees can be ordered or unordered, however, we will
mostly consider ordered Σ-labeled trees in this work. If Σ is clear from the
context or arbitrary, we will often simply use the term “labeled tree” instead
of “Σ-labeled tree”. The label of a node v of a tree will be denoted with λ(v).
Important families of Σ-labeled trees are the following.

Definition 2.7 (Σ-labeled full binary trees). A Σ-labeled full binary tree is a
full binary tree such that each node is assigned a label from the alphabet Σ.
With B(Σ) we denote the set of Σ-labeled full binary trees and with Bn(Σ) we
denote the set of Σ-labeled full binary trees with n leaves.

A Σ-labeled full binary tree is shown in Figure 2.2 on the left. In the same
way, we define the set of Σ-labeled plane trees:

Definition 2.8 (Σ-labeled plane trees). A Σ-labeled plane tree is a plane tree
such that each node is assigned a label from the alphabet Σ. With T (Σ) we
denote the set of Σ-labeled plane trees and with Tn(Σ) we denote the set of
Σ-labeled plane trees of size n.
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Figure 2.2: A Σ-labeled full binary tree with Σ = {a, b, c} (left) and a numbered
tree (right).

In particular, the label of a node of a tree t ∈ B(Σ) or t ∈ T (Σ) does not
determine its degree or vice-versa. To stress the fact that the label of a node does
not define its degree, Σ-labeled plane trees are sometimes referred to as unranked
trees (see, e.g., [12, 47]). In contrast, ranked trees are Σ-labeled trees, such that
each character a from the alphabet Σ is assigned a number rank(a) ∈ N0 (called
the rank of a), and such that a node that is labeled with the character a always
has rank(a) children. If not explicitly stated otherwise, the labeled trees we
consider in this work will not be ranked.

In the context of labeled trees, an unlabeled tree can be considered as a
Σ-labeled tree over a unary alphabet, that is, we identify the sets B, B� and T
with B({a}), B�({a}) and T ({a}) for some character a. The shape of a labeled
tree t is the underlying unlabeled tree, that is, the tree obtained from t by
removing all node labels.

Sometimes it is convenient to identify Σ-labeled trees with formal expressions
over the alphabet Σ. When considered as formal expressions, the set B(Σ) of
Σ-labeled full binary trees is defined as follows.

Definition 2.9 (Σ-labeled full binary trees as formal expressions). The set B(Σ)

of Σ-labeled full binary trees over the alphabet Σ is inductively defined as the
smallest set of terms over Σ such that

˛ Σ ⊆ B(Σ) and

˛ if t1, t2 ∈ B(Σ) and a ∈ Σ, then a(t1, t2) ∈ B(Σ).

For example, if Σ = {a, b}, then the term a corresponds to the tree which
consists of only one single node which is labeled with a. The tree in Figure 2.2
on the left corresponds to the term c(b(b(a, c), b(a, a)), a(c, a)).

Finally, we will consider a specific family of Σ-labeled unordered trees over
the infinite alphabet Σ = N:

Definition 2.10 (Numbered tree). An numbered tree of size n is an unordered
rooted tree, such that each node is assigned a label from the set {1, . . . , n} and
no two nodes are labeled with the same label.

We stress again that numbered trees are always unordered by definition. A
(plane representation of a) numbered tree is shown in Figure 2.2 on the left.
Numbered trees are often called labeled trees (see, e.g., [27, 97]), however, for
the sake of clarity, we use the term “numbered tree” here.
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2.2.3 Forests and the first-child next-sibling encoding

For technical reasons, it will sometimes be convenient to consider forests.

Definition 2.11 (Forests). A forest is a (possibly empty) sequence of plane
trees. The set of all forests is denoted with F .

The size |f | of a forest f is defined as the sum of the sizes of the trees of the
forest and with Fn we denote the set of all forests of size n. A Σ-labeled forest
is a forest such that each node obtains a label from the alphabet Σ. With F(Σ)

(respectively, Fn(Σ)), we denote the set of all Σ-labeled forests (respectively,
Σ-labeled forests of size n). When considered as formal expressions, the sets
F(Σ) and T (Σ) are defined as follows:

Definition 2.12 (Σ-labeled plane trees and forests as formal expressions). The
sets T (Σ) and F(Σ) are inductively defined as the smallest sets of terms over Σ

such that

˛ ε ∈ F (this is the empty forest),

˛ if a ∈ Σ and f ∈ F(Σ), then a(f) ∈ T (Σ),

˛ if t ∈ T (Σ) and f ∈ F(Σ), then tf ∈ F(Σ).

A bijective mapping between the set Fn(Σ) and the set Bn+1(Σ) is established
via the first-child next-sibling encoding. For this, we fix a distinguished character
� ∈ Σ (the choice will be arbitrary for our purposes).

Definition 2.13 (First-child next-sibling encoding). The first-child next-sibling
encoding transforms a forest f ∈ F(Σ) into a full binary tree fcns(f) ∈ B(Σ). It
is inductively defined as

˛ fcns(ε) = � (where ε again denotes the empty forest) and

˛ fcns(a(f)g) = a(fcns(f), fcns(g)) for f, g ∈ F and a ∈ Σ.

Thus, the left (respectively, right) child of a node in fcns(f) is the first child
(respectively, right sibling) of the node in f or a �-labeled leaf if the node in f
does not have a first child (respectively, right sibling). Note that the definition
of the first-child next-sibling encoding is also reasonable for unlabeled trees (by
identifying them with labeled trees over a unary alphabet as mentioned before).

2.2.4 Random trees

A random tree T is a random variable taking values in some set of trees according
to a probability distribution on this set of trees. There is a great variety of
random tree models (see, e.g., [7, 27, 58, 66, 82, 105]).

Very natural random tree models are those based on uniform distributions :

Definition 2.14 (Uniformly random plane/binary/full binary trees). A uni-
formly random plane/binary/full binary tree Tn of (leaf-)size n is a random tree
that takes values in the set Tn, respectively, B�n, respectively Bn according to
the uniform probability distribution on the respective set.



2.2. Trees 15

b

a

a c

c a

a

b

a

a

� c

� �

c

� a

a

� �

�

�

Figure 2.3: A Σ-labeled plane tree with Σ = {a, b, c} (left) and its first-child
next-sibling encoding (right), where � is an arbitrary character in Σ.

Another important and well-known random tree model is the following model,
which is defined for binary trees and full binary trees.

Definition 2.15 (Binary search tree model). The binary search tree model is the
random tree model induced by the probability mass function Pbst : B�n → [0, 1]

(for every n ≥ 1) with

Pbst(t) =
∏

v∈V (t)

1

|t[v]|
.

The binary search tree model for full binary trees corresponds to the probability
mass function Pbst : Bn → [0, 1] (for every n ≥ 1) defined by

Pbst(t) =
∏

v∈V0(t)

1

‖t[v]‖ − 1
.

The binary search tree model for full binary trees is obtained from the binary
search tree model that generates (not necessarily full) binary trees via the one-to-
one correspondence between the sets Bn and B�n−1 and vice-versa. Note that as
the second product ranges over all inner nodes v ∈ V0(t), we find that the leafsize
of the fringe subtrees satisfies ‖t[v]‖ > 1, such that the product is well-defined.

The random binary search tree model arises quite naturally in computer
science (see, e.g., [27]): A random binary search tree of size n is a binary search
tree built by inserting the keys {1, . . . , n} according to a uniformly chosen random
permutation on {1, . . . , n}.

In this work, we consider various random tree models that generalize the
models from Definition 2.14 and Definition 2.15 in several ways. We also consider
further random tree models that take node labels into account. Since most
random tree models will only be considered in one or two chapters of this work,
we defer further definitions of random tree models to the respective chapters.



16 Chapter 2. Preliminaries



Part I

Fringe Subtrees in Random
Trees

17





Chapter 3

Leaf-centric binary tree
sources

3.1 Introduction and preliminary definitions

In this chapter, we are interested in the expected number of distinct fringe
subtrees in random full binary trees. In particular, in this chapter, we focus
exclusively on full binary trees, that is, ordered rooted trees, such that each
node has either exactly two or zero children (see Definition 2.2). However, via
the one-to-one correspondence between the sets B and B� (see Section 2.2.1),
all results and concepts presented in this chapter easily transfer to binary trees
with left-unary and right-unary nodes (Definition 2.3) as well.

Formally, the number of distinct fringe subtrees occurring in a full binary
tree t ∈ B can be defined as follows: We define an equivalence relation ∼ on
the set of nodes of t by v ∼ v′ if and only if the two fringe subtrees t[v] and
t[v′] are identical as ordered full binary trees. Let [v] denote the equivalence
class of node v with respect to this equivalence relation. Then the number of
distinct fringe subtrees occurring in t equals the number of equivalence classes
|{[v] | v ∈ V (t)}|. See Figure 3.1 for an example of a full binary tree and its
distinct fringe subtrees.

So far, the average number of distinct fringe subtrees in random full binary
trees has mainly been studied with respect to two random tree models: uniformly
random full binary trees, and random binary search trees (see Definitions 2.14
and 2.15). In [38], Flajolet, Sipala and Steyaert proved that the expected number
of distinct fringe subtrees in a uniformly random full binary tree of leafsize n
is asymptotically equal to c · n/

√
log n, where c is the constant c = 2

√
2/π.

An alternative proof to the result of Flajolet et al. was presented in [96] in
the context of simply generated families of trees (which will be considered in
Chapter 4 of this thesis).

For random binary search trees, Flajolet, Gourdon and Martinez proved
in [36] that the expected number of distinct fringe subtrees in a random (full)

19
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Figure 3.1: A full binary tree (left) and its six distinct fringe subtrees (right).

binary search tree of leafsize n is bounded from above by (4n/ log n)(1 + o(1)).
This result was improved in [24] by Devroye, who provided an alternative
proof for the upper bound and showed that the asymptotics Θ(n/ log n) holds
by deriving a lower bound of the form (cn/ log n)(1 + o(1)) for the constant
c = log(3)/2 ≈ 0.7924812504. Moreover, in a recent paper, an upper bound of
the form O(n/ log n) was reproved by Bodini et al. [9].

The goal of this chapter is to generalize the results from [24, 36, 38] by proving
upper and lower bounds on the average number of distinct fringe subtrees in
random full binary trees that hold for large classes of distributions. A very
general concept to model probability distributions on the set of full binary trees
of leafsize n was presented by Kieffer et al. in [66] (see also [105]), where the
authors introduce leaf-centric binary tree sources as an extension of the classical
notion of an information source on finite sequences to full binary trees. Formally,
a leaf-centric binary tree source is defined as follows.

Definition 3.1 (Leaf-centric binary tree source [105, 66]). Let L denote the set
of all functions ` : N× N→ [0, 1] that satisfy∑

i,j≥1
i+j=k

`(i, j) = 1 (3.1)

for every integer k ≥ 2. A mapping ` ∈ L induces a probability mass function
P` : Bn → [0, 1] for every n ≥ 1 in the following way: define P` : B → [0, 1]

inductively by

P`(t) =

{
1 if ‖t‖ = 1,

`(‖tl‖, ‖tr‖) · P`(tl) · P`(tr) otherwise.
(3.2)

A tuple (B, (Bn)n∈N, P`) with ` ∈ L is called a leaf-centric tree source.

In other words, ` restricted to the set of ordered pairs {(i, n−i) | 1 ≤ i ≤ n−1}
is a probability mass function for every n ≥ 2. We sometimes refer to the mapping
` itself as a leaf-centric binary tree source. Intuitively, a leaf-centric binary tree
source randomly generates a full binary tree of leafsize n as follows. We start at
the root node and determine the leafsizes of the left and of the right subtree,
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where the probability that the left subtree is of leafsize i for i ∈ {1, . . . , n− 1}
(and consequently, the right subtree is of leafsize n − i) is given by `(i, n − i).
This process then recursively continues in the left and right subtree, that is,
the leaf-centric binary tree source then randomly generates a full binary tree of
leafsize i as the left subtree and a full binary tree of leafsize n− i as the right
subtree. In particular, for t ∈ B, we have

P`(t) =
∏

v∈V0(t)

`(‖tl[v]‖, ‖tr[v]‖).

Both the uniform distribution on Bn (Definition 2.14) and the random binary
search tree model (Definition 2.15) can be modeled as leaf-centric binary tree
sources:

Example 3.2. The binary search tree model corresponds to the leaf-centric
binary tree source defined by

`bst(i, n− i) =
1

n− 1

for every n ≥ 2 and 1 ≤ i ≤ n− 1 (see [66]).

Example 3.3. Recall the definition of the Catalan numbers (Cn)n≥0 from
Definition 2.4. The uniform distribution on the sets Bn corresponds to the
leaf-centric binary tree source with

`uni(i, n− i) =
Ci−1Cn−i−1

Cn−1

for every n ≥ 2 and 1 ≤ i ≤ n− 1 [66]. In particular, we obtain

P`uni(t) =
1

Cn−1

for every t ∈ Bn and n ≥ 0.

Another well-known leaf-centric binary tree source is the binomial random
tree model [66], where the mapping ` corresponds to a binomial distribution:

Example 3.4. Fix a constant p ∈ (0, 1) and define

`bin,p(i, n− i) = pi−1(1− p)n−i−1

(
n− 2

i− 1

)
(3.3)

for every n ≥ 2 and 1 ≤ i ≤ n−1. This leaf-centric binary tree source corresponds
to the binomial random tree model, which was studied in [66] for the case p = 1/2,
and which is a slight variant of the digital search tree model, [27, 81].

Figure 3.2 shows an example of two full binary trees together with the
probabilities assigned to them by the leaf-centric binary tree sources from
Example 3.2, Example 3.3 and Example 3.4.
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P`bst(t1) = 1
6

P`uni(t1) = 1
5

P`bin,1/4(t1) = 1
64

P`bst(t2) = 1
3

P`uni(t2) = 1
5

P`bin,1/4(t2) = 3
8

Figure 3.2: Two full binary trees t1 (left) and t2 (right), with the probabilities
assigned to them by the binary search tree model, the uniform model and the
binomial random tree model with p = 1/4.

In this chapter, we are interested in the expected number of distinct fringe
subtrees in random full binary trees which are generated by leaf-centric binary
tree sources. With Tn,` we denote a random full binary tree of leafsize n drawn
from the set Bn according to the probability mass function P` : Bn → [0, 1] from
(3.2), and with Fn,` we denote the (random) number of distinct fringe subtrees
occurring in the random tree Tn,`. In the following, we investigate Fn,` under
certain conditions on the mapping ` ∈ L. That is, we will assume that the
mapping ` satisfies certain properties and then derive upper and lower bounds on
E(Fn,`) with respect to these properties. In particular, we consider four classes
of leaf-centric binary tree sources, listed below, for which we will be able to
derive asymptotic upper or lower bounds on E(Fn,`). Here and in the rest of the
chapter, increasing/decreasing functions are not necessarily strictly monotone,
that is, if f is increasing, then f(x) ≥ f(y) whenever x > y, but not necessarily
f(x) > f(y) (and analogously for decreasing functions).

(i) A leaf-centric binary tree source with mapping ` is called ψ-upper-bounded
for a decreasing function ψ : R→ (0, 1] if there is a constant N such that
`(i, n − i) ≤ ψ(n) for all 1 ≤ i ≤ n − 1 and n ≥ N (see Definition 3.8 in
Section 3.3).

(ii) A leaf-centric binary tree source with mapping ` is called ϕ-weakly-balanced
for a decreasing function ϕ : N→ (0, 1] if there is a constant γ ∈ (0, 1

2 ) and
an integer N such that ∑

γn≤i≤(1−γ)n

`(i, n− i) ≥ ϕ(n)

for all n ≥ N (see Definition 3.14 in Section 3.4).

(iii) A leaf-centric binary tree source with mapping ` is ς-strongly-balanced for
a decreasing function ς : R → (0, 1] if there is a constant γ ∈ (0, 1

2 ), an
integer N and a constant C such that∑

r≤i≤n−r

`(i, n− i) ≥ ς(r)

for all n ≥ N and C ≤ r ≤ dγne (see Definition 3.19 in Section 3.5).
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(iv) A leaf-centric binary tree source with mapping ` is called %-unbalanced for
a decreasing function % if there is a constant γ ∈ (0, 1

2 ), an integer N and
a constant C such that ∑

r≤i≤n−r

`(i, n− i) ≤ %(r)

for all n ≥ N and C ≤ r ≤ dγne (see Definition 3.32 in Section 3.7).

Property (i) quantifies how “close” ` is to the binary search tree model. The latter
is ψ-upper-bounded for ψ(n) = 1/(n− 1), which is the smallest function ψ for
which property (i) is reasonable (since the sum over all `(i, n− i) for 1 ≤ i ≤ n−1

has to be one). Property (ii) generalizes the concept of balanced binary tree
sources from [S3], [105]: When randomly constructing a binary tree with respect
to a leaf-centric tree source of type (ii), the probability that the current weight is
roughly equally split among the two children is bounded below by the function
ϕ. Therefore, for slowly decreasing functions ϕ, balanced trees are preferred
by this model. Property (iii) is a stronger constraint than property (ii): Every
leaf-centric binary tree source that is ς-strongly-balanced for a function ς is also
ϕ-weakly-balanced for the function ϕ defined by ϕ(n) = ς(dγne).

As our main results of this chapter, we obtain the following asymptotic
bounds on the expected number of distinct fringe subtrees for these classes of
leaf-centric binary tree sources. Let ` be a leaf-centric binary tree source.

(a) If ` is ψ-upper-bounded, then E(Fn,`) ≤ O(nψ(log n)) (Theorem 3.10,
where a slightly more general result is shown).

(b) If ` is ψ-upper-bounded and there are constants N ∈ N, κ < 1 such that
ψ(x) < κ for all x ≥ N , then E(Fn,`) ≥ Ω

(
n

logn

)
(Theorem 3.24).

(c) If ` is ϕ-weakly-balanced, then E(Fn,`) ≤ O
(

n
ϕ(n) log n

)
(Theorem 3.15).

(d) If ` is ς-strongly-balanced, then E(Fn,`) ≤ O
(

n
ς(log n) log n

)
(Theorem 3.20).

(e) If ` is %-unbalanced and some additional technical conditions are satisfied,
then E(Fn,`) ≥ Ω

(
n

%(log n) log n

)
(Theorem 3.33).

The precise statements and asymptotic bounds including leading constants for
the main term are given in the respective theorems. The upper bounds (a), (c)
and (d) will be presented in Section 3.3, Section 3.4 and Section 3.5. The lower
bounds (b) and (e) are then derived in Section 3.6 and Section 3.7.

These results are published in [S8, S9]. A first version [S8] of these results
appeared in the Proceedings of MFCS 2018: The results (a), (b) and (c) already
appeared in this conference version. A journal version [S9] of [S8] is currently
under review. In the journal version, among others, several proofs needed for
the respective results are simplified, leading constants in front of the main terms
in the asymptotic bounds are improved and the results (d) and (e) are added.
Furthermore, a preliminary weaker result of result (c) appeared in [S3].
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These results generalize the results from [24, 36] on the binary search tree
model in the following sense: from each of the results (a), (c) and (d) (respectively,
(b) and (e)), we obtain the upper bound O(n/ log n) (respectively, the lower
bound Ω(n/ log n)) on the expected number of distinct fringe subtrees occurring
in a random binary search tree of leafsize n. Furthermore, results (d) and
(e) combined yield that the expected number of distinct fringe subtrees in a
uniformly random full binary tree of leafsize n is in Θ(n/

√
log n), as shown in

[38, 96].
Finally, results (b) and (c) imply the asymptotic bound Θ(n/ log n) on the

expected number of distinct fringe subtrees in a random full binary tree of
leafsize n generated according to the binomial random tree model presented in
Example 3.4.

3.2 The cut-point argument

In order to obtain upper bounds on the average number of distinct fringe subtrees
E(Fn,`), we make use of a technique called cut-point argument, which was used
before in several works for similar investigations (see for example [24, 36, 96]),
and will also be applied for similar purposes in Chapter 4 and Chapter 5 of this
work. The main idea of this cut-point technique is the following. Fix an integer
k > 0. Let t ∈ B be a full binary tree. The number of distinct fringe subtrees
occurring in t equals

(i) the number of distinct fringe subtrees of leafsize larger than k occurring in
t plus

(ii) the number of distinct fringe subtrees of leafsize at most k occurring in t.

The number (i) of distinct fringe subtrees of leafsize larger than k is then bounded
above by the number of all fringe subtrees in t of leafsize larger than k (for
instance, the tree in Figure 3.1 (left) has 7 fringe subtrees of leafsize larger
than one, but only 5 distinct fringe subtrees of leafsize larger than one). The
number (ii) of distinct fringe subtrees of leafsize at most k is bounded above
by the number of all full binary trees of leafsize at most k (irrespective of their
occurrence in t). Note that this upper bound on number (ii) is a deterministic
quantity; it is a sum of Catalan numbers. Let Yn,k,` denote the (random) number
of (all) fringe subtrees of leafsize larger than k occurring in the random tree Tn,`
(if ` is clear from the context, we shortly write Yn,k for Yn,k,`). In other words,
Yn,k,` is the following random variable:

Yn,k,` = |{v node of Tn,` | ‖Tn,`[v]‖ > k}|. (3.4)

Note that Yn,k,` = 0 for all ` ∈ L if n ≤ k. Also, note that the definition of
Yn,k,` also makes sense if k is not an integer. Using the cut-point argument, we
obtain the following upper bound on E(Fn,`).



3.2. The cut-point argument 25

Lemma 3.5. Let ` ∈ L. The number Fn,` of distinct fringe subtrees occurring
in the random tree Tn,` satisfies

E(Fn,`) ≤ E(Yn,k,`) +
k−1∑
i=0

Ci

with Yn,k,` as defined in (3.4) and where Ci is the ith Catalan number.

Thus, in the following, we will focus on obtaining upper bounds on E(Yn,k,`)

with respect to certain conditions on ` in order to obtain upper bounds on
E(Fn,`). The integer k is called the cut-point ; it has to be chosen in a suitable
way in order to obtain suitable upper bounds on E(Fn,`). The following notation
will be useful: for a function ` ∈ L, we define `∗ : N× N→ [0, 1] as

`∗(i, j) =

{
`(i, j) + `(j, i) if i 6= j,

`(i, j) if i = j.
(3.5)

Note that `∗(i, j) ≤ 1 for all i, j ∈ N and that
∑

1≤i≤n/2 `
∗(i, n− i) = 1 (where

the sum goes over all integers in the interval [1, n/2]).
First, we observe that E(Yn,k,`) satisfies the following recurrence relation.

Lemma 3.6. Let ` ∈ L, and let n > k ≥ 0. Then the number Yn,k of fringe
subtrees of leafsize larger than k in the random tree Tn,` satisfies

E(Yn,k) = 1 +
∑

1≤i≤n/2

`∗(i, n− i) (E(Yi,k) + E(Yn−i,k)) . (3.6)

Moreover, if k + 1 > n/2 we have

E(Yn,k) = 1 +
n−1∑
i=k+1

`∗(i, n− i)E(Yi,k), (3.7)

and if k + 1 ≤ n/2 we have

E(Yn,k) = 1 +
n−k−1∑
i=k+1

`(i, n− i) (E(Yi,k) + E(Yn−i,k)) +
n−1∑
i=n−k

`∗(i, n− i)E(Yi,k).

(3.8)

Proof. Let t ∈ Bn be a full binary tree. Then the number of fringe subtrees
of leafsize larger than k occurring in t equals the number of fringe subtrees of
leafsize larger than k occurring in its left subtree tl plus the number of fringe
subtrees of leafsize larger than k occurring in the right subtree tr plus one (for
the tree itself, i.e., the fringe subtree rooted in the root node of t). As the left
and right subtree of a random tree Tn,` conditioned on their leafsizes i and n− i
for some integer 1 ≤ i ≤ n − 1 are again independent random trees Ti,` and
Tn−i,`, and as the probability that the left and right subtree are of leafsizes i
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and n− i is given by `(i, n− i), we find

E(Yn,k) = 1 +
n−1∑
i=1

`(i, n− i) (E(Yi,k) + E(Yn−i,k)) .

From this and the definition of `∗ (see (3.5)) we obtain (3.6). With E(Yi,k) = 0

for i ≤ k we can write (3.6) as

E(Yn,k) = 1 +
∑

k+1≤i≤n/2

`∗(i, n− i)E(Yi,k) +
∑

1≤i≤min{n−(k+1),n/2}

`∗(i, n− i)E(Yn−i,k).

By considering the case k + 1 > n/2 and k + 1 ≤ n/2, we finally obtain (3.7)
and (3.8).

In this chapter, several times we have to bound expressions of the form∑
1≤i≤n/2 `

∗(i, n − i) · min{αi, β} for constants α, β > 0. It turns out to be
convenient to use the (cumulative) distribution function D`,n : R≥0 → R corre-
sponding to `∗, which is defined as follows.

D`,n(x) =
∑
i≤x

`∗(i, n− i). (3.9)

The sum goes over all integers i with 1 ≤ i ≤ min{n/2, x}. If ` is clear from
the context, we also write Dn for D`,n. In the following lemma we use a
Riemann–Stieltjes integral; see e.g. [99, Chapter 6].

Lemma 3.7. Let ` ∈ L and α, β > 0. Then we have

∑
1≤i≤n/2

`∗(i, n− i) ·min{αi, β} = β −
∫ β/α

0

αDn(x)dx.

Proof. Using integration by parts for Riemann–Stieltjes integrals (see for exam-
ple [99, p. 141]), we obtain

∑
1≤i≤n2

`∗(i, n− i) ·min{αi, β} =

∫ ∞
0

min{αx, β} dDn(x)

=

∫ β/α

0

αx dDn(x) +

∫ ∞
β/α

β dDn(x)

=

[
αxDn(x)

]β/α
0

−
∫ β/α

0

αDn(x) dx+

[
βDn(x)

]∞
β/α

= β −
∫ β/α

0

αDn(x)dx.

This proves the lemma.
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3.3 Upper-bounded sources

The first natural class of leaf-centric tree sources we consider is the following
class, where the mapping ` (resp. `∗) is bounded from above by a function ψ.

Definition 3.8 (ψ-upper-bounded sources). Let ψ : R→ (0, 1] be a decreasing
function. With Lup(ψ) ⊆ L we denote the set of mappings ` ∈ L for which there
is an integer N` such that

`(i, n− i) ≤ ψ(n)

for all n ≥ N` and all integers 1 ≤ i ≤ n− 1. In the same way, let L∗up(ψ) ⊆ L
denote the set of mappings ` ∈ L for which there is an integer N` such that

`∗(i, n− i) ≤ ψ(n)

for all n ≥ N` and all integers 1 ≤ i ≤ n− 1.

Note that by definition of `∗ (see (3.5)), we have L∗up(ψ) ⊆ Lup(ψ) ⊆ L∗up(2ψ).
Also note that without loss of generality, we can assume that ψ(n) ≥ 1/(n−1) for
every integer n ≥ 2, as the values `(i, n− i) have to add up to 1 for 1 ≤ i ≤ n− 1

by condition (3.1). In the same way, if we consider the class L∗up(ψ), we can
assume that ψ(n) ≥ 2/n for every integer n ≥ 2. The class of ψ-upper-bounded
functions can be generalized as follows:

Definition 3.9 (ψ-weakly-upper-bounded sources). For a decreasing function
ψ : R→ (0, 1], let Lwup(ψ) ⊆ L denote the set of mappings ` ∈ L for which there
is an integer N` such that ∑

1≤i≤k

`∗(i, n− i) ≤ kψ(n)

for all n ≥ N` and all integers 1 ≤ k ≤ n/2.

Note that we have L∗up(ψ) ⊆ Lwup(ψ) and hence also Lup(ψ) ⊆ Lwup(2ψ).
For ψ-weakly-upper-bounded sources we can assume again that ψ(n) ≥ 2/n for
every integer n ≥ 2, as the values `∗(i, n− i) have to add up to 1 for 1 ≤ i ≤ n/2
by condition (3.1). As our first main theorem of this chapter, we obtain the
following upper bound on E(Fn,`) for mappings ` ∈ Lwup(ψ):

Theorem 3.10. Let ψ : R→ (0, 1] be a decreasing function, and let ` ∈ Lwup(ψ).
The number Fn,` of distinct fringe subtrees in the random tree Tn,` satisfies

E(Fn,`) ≤ 2nψ(log4 n) +O
(

n

(log n)3/2

)
.

As Lup(ψ) ⊆ L∗up(2ψ) and L∗up(ψ) ⊆ Lwup(ψ), we immediately obtain an
asymptotic upper bound on E(Fn,`) for ` ∈ Lup(ψ) and ` ∈ L∗up(ψ) from
Theorem 3.10 as well. In order to prove Theorem 3.10, we make use of the
cut-point technique as described in Section 3.2. For this, we start with an upper
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bound on the expectation E(Yn,k,`) of fringe subtrees of leafsize larger than k in
a random tree Tn,`, where ` ∈ Lwup(ψ) for some mapping ψ.

Lemma 3.11. Let ψ : R→ (0, 1] be a decreasing function, and let ` ∈ Lwup(ψ)

with integer N`. Then the (random) number Yn,k of fringe subtrees of leafsize
larger than k in the random tree Tn,` satisfies

E(Yn,k) ≤ 2nψ(k)− 2

for all n, k with n > k ≥ N`.

Proof. As ` ∈ Lwup(ψ), we assume that 1 ≥ ψ(n) ≥ 2/n for every integer n ≥ N`.
For the distribution function Dn = D`,n in (3.9), we have

Dn(x) ≤ xψ(n) (3.10)

for all x ≥ 0. We prove the statement by induction on n > k ≥ N`. For the base
case, let n = k + 1. As there is exactly one fringe subtree of leafsize larger than
k in a full binary tree of leafsize k + 1 (the fringe subtree rooted at the root
node), we have

E(Yk+1,k) = 1 ≤ 2(k + 1)ψ(k)− 2,

as ψ(k) ≥ 2/k by assumption. For the induction step, we take an integer
n > k+ 1 > N`, so that E(Yi,k) ≤ 2iψ(k)−2 for every k < i ≤ n−1. Lemma 3.6
yields

E(Yn,k) = 1 +
∑

1≤i≤n/2

`∗(i, n− i) (E(Yi,k) + E(Yn−i,k)) .

Note that E(Yi,k) ≤ max{2iψ(k)−2, 0} for all 1 ≤ i ≤ n/2: if i > k, we find that
E(Yi,k) ≤ 2iψ(k)− 2 holds by the induction hypothesis, and otherwise, if i ≤ k,
we trivially have E(Yi,k) = 0. Furthermore, we have E(Yn−i,k) ≤ 2(n− i)ψ(k)−2

for all 1 ≤ i ≤ n/2: if n− i > k, this holds by the induction hypothesis, and if
n− i ≤ k, we find E(Yn−i,k) = 0 < 2n

k − 2 ≤ nψ(k)− 2 ≤ 2(n− i)ψ(k)− 2. We
can combine these to

E(Yi,k) + E(Yn−i,k) ≤ max{2iψ(k)− 2, 0}+ 2(n− i)ψ(k)− 2

= 2nψ(k)− 2−min{2iψ(k), 2}.

Thus, we obtain

E(Yn,k) ≤ 1 +
∑

1≤i≤n/2

`∗(i, n− i)(2nψ(k)− 2−min{2iψ(k), 2})

= 2nψ(k)− 1−
∑

1≤i≤n/2

`∗(i, n− i) min{2iψ(k), 2}

= 2nψ(k)− 3 +

∫ 1/ψ(k)

0

2ψ(k)Dn(x) dx,
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where the last equation follows from Lemma 3.7. Using (3.10), we obtain

E(Yn,k) ≤ 2nψ(k)− 3 +

∫ 1/ψ(k)

0

2ψ(k)ψ(n)x dx

= 2nψ(k)− 3 +

[
ψ(k)ψ(n)x2

]1/ψ(k)

0

= 2nψ(k)− 3 +
ψ(n)

ψ(k)

≤ 2nψ(k)− 2,

where we use the fact that ψ is decreasing and n > k for the last inequality.

We are now able to prove Theorem 3.10:

Proof of Theorem 3.10. Let ` ∈ Lwup(ψ) with integer N`. Let n > 4N` , and set
k := dlog4 ne > N`. We use the cut-point argument from Lemma 3.5 together
with Lemma 3.11 to obtain

E(Fn,`) ≤ E(Yn,k) +
k−1∑
i=0

Ci ≤ 2nψ(k) +
k−1∑
i=0

Ci.

With the asymptotic growth of the Catalan numbers (2.1), we obtain

E(Fn,`) ≤ 2nψ(k) +O
(

4k

k3/2

)
≤ 2nψ(log4 n) +O

(
n

(log n)3/2

)
,

as k = dlog4 ne. This yields the asymptotic upper bound from Theorem 3.10.

Using Theorem 3.10, we obtain an upper bound on the expected number of
distinct fringe subtrees in random binary search trees:

Example 3.12. For the binary search tree model from Example 3.2, we find
that `bst ∈ L∗up(ψbst), where ψbst : R → (0, 1] is given by ψbst(x) = 2/(x − 1).
Theorem 3.10 gives us the following upper bound on the expected number of
distinct fringe subtrees in a random binary search tree:

E(Fn,`bst) ≤
8n

log n
(1 + o(1)) .

Recall that [36, 24] proved that

E(Fn,`bst) ≤
4n

log n
(1 + o(1)) ,

and that [24] also showed a lower bound

E(Fn,`bst) ≥
log(3)n

2 log n
(1 + o(1)) .
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Thus, except for the leading constant, the upper bound from Theorem 3.10 yields
the correct asymptotic growth of E(Fn,`bst). In Chapter 5 in Corollary 5.6, we
show that

c1n

log n
(1 + o(1)) ≤ E(Fn,`bst) ≤

4n

log n
(1 + o(1)), (3.11)

where c1 ≈ 3.472754274.

For the binomial random tree model, we are also able to obtain a non-trivial
upper bound on E(Fn,`bin,p) from Theorem 3.10:

Example 3.13. For the binomial random tree model from Example 3.4, a short
computation shows that for a fixed integer n, the maximal value of `bin,p(i, n− i)
with 1 ≤ i ≤ n− 1 is attained at imax(n) = bp(n− 1)c+ 1. In particular, we have

`bin,p(imax(n), n− imax(n)) = Θ(1/
√
n).

Thus, we find that `bin,p ∈ L∗up(ψbin,p) for a function ψbin,p which satisfies
ψbin,p(x) = Θ(1/

√
x). By Theorem 3.10, we obtain E(Fn,`bin,p) ≤ O(n/

√
log n).

However, in the following sections, we will be able to prove the stronger upper
bound E(Fn,`bin,p) ≤ O(n/ log n) (see Example 3.18) and also a corresponding
lower bound E(Fn,`bin,p) ≥ Ω(n/ log n) (see Example 3.30).

There are plenty of other ways to choose the mapping ψ in order to obtain
non-trivial upper bounds on E(Fn,`) for ` ∈ L∗up(ψ): For example, ψ(x) = Θ(x−α)

for a constant 0 < α ≤ 1 yields E(Fn,`) ≤ O(n/(log n)α), and ψ(x) = Θ(1/ log x)

yields E(Fn,`) ≤ O(n/ log log n). Note that Theorem 3.10 only makes a non-
trivial statement if ψ(n) < 1/2 for n ≥ N`. For the uniform probability
distribution (see Example 3.3), Theorem 3.10 only yields an upper bound of the
form E(Fn,`uni) ≤ O(n), as we have `uni(1, n− 1) > 1/4 for every n ≥ 2.

3.4 Weakly-balanced sources

In this section, we investigate another class of leaf-centric binary tree sources for
which we will show an upper bound on E(Fn,`). We consider weakly-balanced
binary tree sources, which represent a generalization of balanced binary tree
sources introduced in [105] and further analyzed in [S3].

Definition 3.14 (ϕ-weakly-balanced sources). Let ϕ : N→ (0, 1] be a decreasing
function and let γ ∈ (0, 1

2 ). With Lwbal(ϕ, γ) ⊆ L we denote the set of mappings
` ∈ L for which there is an integer N` such that∑

γn≤i≤(1−γ)n

`(i, n− i) ≥ ϕ(n)

for all n ≥ N`.

For the class of weakly-balanced leaf-centric tree sources, we obtain the
following main result:
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Theorem 3.15. Let ϕ : N→ (0, 1] be a decreasing function, let γ ∈ (0, 1
2 ), and

let ` ∈ Lwbal(ϕ, γ). The number Fn,` of distinct fringe subtrees in the random
tree Tn,` satisfies

E(Fn,`) ≤
n

γϕ(n) log4 n
+O

(
n

(log n)3/2

)
.

In order to get a nontrivial statement from Theorem 3.15, we should have
ϕ(n) ≥ Ω(1/ log n). We start with the following lemma:

Lemma 3.16. Let ϕ : N→ (0, 1] be a decreasing function, let γ ∈ (0, 1
2 ), and let

` ∈ Lwbal(ϕ, γ) with integer N`. Then for k ≥ N` and n ≥ k + 1, the (random)
number Yn,k of fringe subtrees of leafsize larger than k in the random tree Tn,`
satisfies

E(Yn,k) ≤ n

γϕ(n)k
− 1

ϕ(n)
.

Proof. We prove the statement by induction on n ≥ k+ 1. For the base case, let
n = k+ 1. As there is exactly one fringe subtree of leafsize larger than k in a full
binary tree of leafsize k+ 1 (the fringe subtree rooted at the root node), we have

E(Yk+1,k) = 1 ≤
( 1
γ − 1)(k + 1)

ϕ(k + 1)k
≤ k + 1

γϕ(k + 1)k
− 1

ϕ(k + 1)
,

as 1
γ > 2 and ϕ(k + 1) ≤ 1 by assumption. For the induction step, take an

integer n > k + 1, so that

E(Yi,k) ≤ i

γϕ(i)k
− 1

ϕ(i)
(3.12)

for every integer k + 1 ≤ i ≤ n− 1. As γk < γn and ` ∈ Lwbal(ϕ, γ), we have

Dn(x) ≤ 1− ϕ(n) (3.13)

for every 0 ≤ x ≤ γk. Lemma 3.6 yields

E(Yn,k) = 1 +
∑

1≤i≤n/2

`∗(i, n− i) (E(Yi,k) + E(Yn−i,k)) .

First, we observe that for all 1 ≤ i ≤ n/2, we have

E(Yi,k) ≤ max

{
i

γϕ(n)k
− 1

ϕ(n)
, 0

}
.

To see this, note that (i) E(Yi,k) = 0 for i ≤ k, and (ii) (3.12) holds for i > k

and ϕ is decreasing. Furthermore, for all 1 ≤ i ≤ n/2 we have

E(Yn−i,k) ≤ n− i
γϕ(n)k

− 1

ϕ(n)
.
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If n− i > k, this follows from (3.12) and the fact that ϕ is decreasing. On the
other hand, if n− i ≤ k, then we have

E(Yn−i,k) = 0 <
n− 2γk

2γϕ(n)k
=

n

2γϕ(n)k
− 1

ϕ(n)
≤ n− i
γϕ(n)k

− 1

ϕ(n)
,

as γ < 1/2 by assumption. Thus, we obtain

E(Yn,k) ≤ 1 +
∑

1≤i≤n2

`∗(i, n− i)
(

max

{
i

γϕ(n)k
− 1

ϕ(n)
, 0

}
+

n− i
γϕ(n)k

− 1

ϕ(n)

)
= 1 +

∑
1≤i≤n2

`∗(i, n− i)
( n

γϕ(n)k
− 1

ϕ(n)
−min

{
i

γϕ(n)k
,

1

ϕ(n)

})
= 1 +

n

γϕ(n)k
− 1

ϕ(n)
−

∑
1≤i≤n2

`∗(i, n− i) min

{
i

γϕ(n)k
,

1

ϕ(n)

}
Lem. 3.7

= 1 +
n

γϕ(n)k
− 2

ϕ(n)
+

∫ γk

0

Dn(x)

γϕ(n)k
dx

(3.13)
≤ 1 +

n

γϕ(n)k
− 2

ϕ(n)
+

∫ γk

0

1− ϕ(n)

γϕ(n)k
dx

=
n

γϕ(n)k
− 1

ϕ(n)
,

which concludes the proof.

With Lemma 3.16, we are now able to prove Theorem 3.15.

Proof of Theorem 3.15. Let ` ∈ Lwbal(ϕ, γ) with integer N`. Let n > 4N` , and
set k := dlog4 ne > N`. Again, we use Lemma 3.5 to obtain

E(Fn,`) ≤ E(Yn,k) +

k−1∑
i=0

Ci.

With Lemma 3.16, and the asymptotic growth of the Catalan numbers, we find

E(Fn,`) ≤
n

γϕ(n)k
+
k−1∑
i=0

Ci ≤
n

γϕ(n) log4 n
+O

(
n

(log n)3/2

)
.

This finishes the proof.

The application of Theorem 3.15 yields the following upper bound on the
expected number of distinct fringe subtrees in random binary search trees:

Example 3.17. For the binary search tree model from Example 3.2, we find
that `bst ∈ Lwbal(ϕbst, γbst) with ϕbst(n) = 1/2 for every n ≥ 2 and γbst = 1/4.
Hence, by Theorem 3.15, we have

E(Fn,`bst) ≤
16n

log n
+O

(
n

(log n)3/2

)
.
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The asymptotic growth coincides with the upper bound on E(Fn,`bst) from
Example 3.12 obtained by Theorem 3.10, except for the leading constant. Recall
the upper and lower bound (3.11) for the binary search tree model (where
the upper bound was already shown in [36, 24]). Thus, except for the leading
constant, the upper bound from Theorem 3.15 yields the correct asymptotic
growth of E(Fn,`bst) as well. Note that it is possible to choose ϕbst(n) = 1− 2γ

for any γ < 1/2. For γ = 1/4, we obtain the best leading constant in the upper
bound.

Example 3.18. For the binomial random tree model from Example 3.4, we
obtain the following result from Theorem 3.15. Let Snp be the random variable
taking values in the set {1, . . . , n− 1} according to the probability mass function
`bin,p from Example 3.4. Then Snp = Bin(n− 2, p) + 1, where Bin(n− 2, p) is a
binomially distributed random variable with parameters n− 2 and p. For the
expected value µ of Snp , we thus obtain µ = E(Snp ) = p(n− 2) + 1. Chernoff’s
bound implies

P(|µ− Snp | < µ3/4) ≥ 1− 2e−
√
µ

3 .

Moreover, with i1 := µ− µ3/4 and i2 := µ+ µ3/4 we have

P(|µ− Snp | < µ3/4) =
∑

i1<i<i2

`bin,p(i, n− i).

Next, let γ < min{p, 1− p} ≤ 1/2. There is an integer N` (depending on p and
γ) such that

γn ≤ µ− µ3/4 ≤ µ+ µ3/4 ≤ (1− γ)n

for all n ≥ N`. All in all, we thus have∑
γn≤i≤n−γn

`bin,p(i, n− i) ≥
∑

i1<i<i2

`bin,p(i, n− i) ≥ 1− 2e−
√
p(n−2)+1

3

for n ≥ N`. Choose any constant ε with 0 < ε < 1, and let ϕ(n) = 1− ε (i.e., ϕ
is a constant function). Then, if n is large enough, we have∑

γn≤i≤n−γn

`bin,p(i, n− i) ≥ 1− ε,

i.e., `bin,p ∈ Lwbal(ϕ, γ) for N` large enough. From Theorem 3.15, we obtain

E(Fn,`bin,p) ≤ cp ·
n

log n
+O

(
n

(log n)3/2

)
,

where we can choose any constant cp satisfying cp > 2/p, if p ≤ 1/2, respectively,
cp > 2/(1 − p), if p > 1/2, as ε > 0 is arbitrary. In particular, Theorem 3.15
yields a more precise upper bound on E(Fn,`bin,p) than Theorem 3.10 (see
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Example 3.13). In Example 3.30, we will show a corresponding lower bound of
the form E(Fn,`bin,p) ≥ Ω(n/ log n).

It remains to remark that for the uniform probability distribution (from
Example 3.3), Theorem 3.15 only yields a trivial upper bound on E(Fn,`uni). On
the one hand, we would need ϕ(n) ≥ ω(1/ log n) in order to obtain a non-trivial
upper bound from Theorem 3.15, but on the other hand, for every constant
0 < γ < 1/2, we find that if `uni ∈ Lwbal(ϕ, γ), then ϕ(n) ≤ O(1/

√
n). In the

next section, we present a class of leaf-centric binary tree sources which contains
the uniform distribution `uni from Example 3.3, and for which we will be able
to derive a non-trivial asymptotic upper bound on E(Fn,`).

3.5 Strongly-balanced sources

In this section, we focus on another class of leaf-centric binary tree sources,
which represents a refinement of the class of weakly-balanced leaf-centric tree
sources from Definition 3.14 from the previous section.

Definition 3.19 (ς-strongly-balanced sources). Let ς : R→ (0, 1] be a decreasing
function and let γ ∈ (0, 1

2 ). With Lsbal(ς, γ) ⊆ L we denote the set of mappings
` ∈ L for which there is an integer N` and a constant c` ≥ 1 such that for every
n ≥ N` and every integer r with c` ≤ r ≤ dγne, the following inequality holds:∑

r≤i≤n−r

`(i, n− i) ≥ ς(r).

Let ` ∈ Lsbal(ς, γ), and define ϕ : N → (0, 1] by ϕ(n) = ς(dγne). Then we
have ` ∈ Lwbal(ϕ, γ), i.e., every strongly-balanced leaf-centric tree source is also
weakly-balanced. In particular, Theorem 3.15 thus holds for strongly balanced
tree sources as well.

However, we are able to prove a stronger asymptotic upper bound on the
expected number E(Fn,`) of distinct fringe subtrees in a random tree Tn,` if `
corresponds to a strongly-balanced tree source.

Theorem 3.20. Let ς : R→ (0, 1] be a decreasing function, let γ ∈ (0, 1
2 ), and

let ` ∈ Lsbal(ς, γ). The number Fn,` of distinct fringe subtrees in the random
tree Tn,` satisfies

E(Fn,`) ≤
n

γς(γ log4 n) log4 n
(1 + o(1)).

In order to prove Theorem 3.20, we start again with an upper bound on the
expected number E(Yn,k) of fringe subtrees of leafsize larger than k in a random
tree Tn,`, where the leaf-centric tree source ` is contained in the set ouf sources
Lsbal(ς, γ) for some decreasing function ς and some number γ.

The following lemma and its proof are in fact quite similar to Lemma 3.16
and its proof.
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Lemma 3.21. Let ς : R → (0, 1] be a decreasing function, let γ ∈ (0, 1
2 ), and

let ` ∈ Lsbal(ς, γ) with integer N` and constant c`. Then for k ≥ max{N`, c`/γ}
and n ≥ k + 1, the (random) number Yn,k of fringe subtrees of leafsize larger
than k in the random tree Tn,` satisfies

E(Yn,k) ≤ n

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)
.

Proof. We prove the statement by induction on n ≥ k+ 1. For the base case, let
n = k + 1. A full binary tree t of leafsize k + 1 has exactly one fringe subtree of
leafsize larger than k, thus

E(Yk+1,k) = 1 ≤
( 1
γ − 1)(k + 1)

ς(dγ(k + 1)e)k
≤ k + 1

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)
,

as 1
γ > 2 and ς(dγ(k + 1)e) ≤ 1 by assumption. Let us now deal with the

induction step. Take an integer n > k + 1, so that

E(Yi,k) ≤ i

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)
(3.14)

for every integer k + 1 ≤ i ≤ n− 1 by the induction hypothesis. Since we have
c` ≤ γk < dγ(k + 1)e ≤ dγne and ` ∈ Lsbal(ς, γ), we find

Dn(x) ≤ 1− ς(dγ(k + 1)e) (3.15)

for every 0 ≤ x ≤ γk (take r = dγ(k + 1)e in Definition 3.19). By Lemma 3.6,
we have

E(Yn,k) = 1 +
∑

1≤i≤n/2

`∗(i, n− i)(E(Yi,k) + E(Yn−i,k)).

First, note that for all 1 ≤ i ≤ n/2 we have

E(Yi,k) ≤ max

{
i

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)
, 0

}
.

This follows from (3.14) for i > k, and from the fact that E(Yi,k) = 0 for i ≤ k.
Furthermore, for all 1 ≤ i ≤ n/2 we have

E(Yn−i,k) ≤ n− i
γς(dγ(k + 1)e)k

− 1

ς(dγ(k + 1)e)
.

This follows again from (3.14) if n− i > k. For n− i ≤ k note that

E(Yn−i,k) = 0 <
n− 2γk

2γς(dγ(k + 1)e)k
=

n

2γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)

≤ n− i
γς(dγ(k + 1)e)k

− 1

ς(dγ(k + 1)e)
,
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since i ≤ n/2 and γ < 1/2 by assumption. Thus, we obtain

E(Yn,k) ≤ 1 +
∑

1≤i≤n/2

`∗(i, n− i)
(

max

{
i

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)
, 0

}

+
n− i

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)

)
= 1 +

n

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)

−
∑

1≤i≤n/2

`∗(i, n− i) min

{
i

γς(dγ(k + 1)e)k
,

1

ς(dγ(k + 1)e)

}
Lem. 3.7

= 1 +
n

γς(dγ(k + 1)e)k
− 2

ς(dγ(k + 1)e)
+

∫ γk

0

Dn(x)

γς(dγ(k + 1)e)k
dx

(3.15)
≤ 1 +

n

γς(dγ(k + 1)e)k
− 2

ς(dγ(k + 1)e)
+

∫ γk

0

1− ς(dγ(k + 1)e)
γς(dγ(k + 1)e)k

dx

=
n

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)
,

which concludes the proof.

Proof of Theorem 3.20. We are now able to prove Theorem 3.20. First, we set
m = max{N`, c`/γ}. By Lemma 3.21, the expected number E(Yn,k) of fringe
subtrees of leafsize larger than k in Tn,` satisfies

E(Yn,k) ≤ n

γς(dγ(k + 1)e)k
− 1

ς(dγ(k + 1)e)

for all n > k ≥ m. Now we set k := blog4 n − 1/γc − 1 (which implies that
ς(dγ(k + 1)e) ≥ ς(γ log4 n)), and let n be sufficiently large, so that k ≥ m. By
the cut-point argument from Lemma 3.5, we find that

E(Fn,`) ≤ E(Yn,k) +
k−1∑
i=0

Ci.

With the asymptotic growth of the Catalan numbers (2.1), and with Lemma 3.21,
we find

E(Fn,`) ≤
n

γς(dγ(k + 1)e)k
+O

(
4k

k3/2

)
≤ n

γς(γ log4 n) log4 n
(1 + o(1)).

This finishes the proof.

With Theorem 3.20, we obtain a non-trivial asymptotic upper bound on the
expected number of distinct fringe subtrees in uniformly random binary tree.
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Example 3.22. Consider the uniform distribution corresponding to `uni from
Example 3.3. Let 0 < γ < 1/2, and let ε > 0. From the asymptotic bound of
the Catalan numbers (2.1), we find that there is an integer Nε (depending on ε)
such that

(1− ε)4n√
π(n+ 1)3/2

≤ Cn ≤
(1 + ε)4n√
π(n+ 1)3/2

for all n ≥ Nε. Let Nε ≤ r ≤ dγne, then∑
r≤i≤n−r

`uni(i, n− i) =
∑

r≤i≤n−r

Ci−1Cn−i−1

Cn−1

≥ (1− ε)2

4(1 + ε)
√
π

∑
r≤i≤n−r

n3/2

i3/2(n− i)3/2

≥ (1− ε)2n3/2

2(1 + ε)
√
π

∑
r≤i<n

2

i−3/2(n− i)−3/2

≥ (1− ε)2n3/2

2(1 + ε)
√
π

∫ n
2

r

x−3/2(n− x)−3/2dx

=
(1− ε)2

(1 + ε)
√
π

n− 2r√
n(n− r)r

.

If Nε is chosen large enough, then we also have

n− 2r√
n(n− r)

≤ 1− 2γ

for all r, n with n ≥ Nε and r ≤ dnγe. So set δ := (1+ε)
(1−ε)2 , and define

ςuni(r) :=
(1− 2γ)

δ
√
πr

.

Then `uni ∈ Lsbal(ςuni, γ). By Theorem 3.20, we thus obtain

E(Fn,`uni) ≤
δ
√

2π
√
γ(1− 2γ)

· n√
log n

(1 + o(1)).

As 0 < γ < 1/2 is arbitrary, we can choose the optimal value γ = 1/6 to obtain

E(Fn,`uni) ≤ 3δ
√

3π · n√
log n

(1 + o(1)),

where δ > 1, as ε > 0. In [38, 96] it is shown that

E(Fn,`uni) =
2
√

2√
π
· n√

log n
(1 + o(1)).

Thus, except for the leading constant, the upper bound from Theorem 3.20 yields
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the correct asymptotic growth of E(Fn,`uni).

Example 3.23. For the binary search tree model `bst from Example 3.2, we
also obtain an upper bound on E(Fn,`bst) from Theorem 3.20. Let γbst = 1/4,
let n ≥ 2, and let 1 ≤ r ≤ dγne. Then∑

r≤i≤n−r

`bst(i, n− i) =
n− 2r + 1

n− 1
≥ 1

2
.

Set ςbst(r) := 1/2. By Theorem 3.20, we find

E(Fn,`uni) ≤
16n

log n
(1 + o(1)).

This coincides with the asymptotic upper bound on E(Fn,`uni) from Example 3.17
as well as Example 3.12 (except for the leading constant).

3.6 An information-theoretic lower bound

So far, we have only considered upper bounds on the expected number of distinct
fringe subtrees in random trees Tn,`. In this section and the following section,
we focus on lower bounds instead. We present some classes of leaf-centric binary
tree sources for which we will be able to show asymptotic lower bounds on the
number E(Fn,`) of distinct fringe subtrees in the corresponding random trees
Tn,`.

First, we consider a specific subclass of the class of upper-bounded leaf-centric
tree sources from Definition 3.8. Let κ ∈ (0, 1) be a constant. With Lup(κ) ⊆ L,
we denote the set of mappings ` ∈ L that are eventually bounded above by the
constant κ: that is, a mapping ` ∈ L belongs to Lup(κ) if there is an integer N`
such that `(i, n − i) ≤ κ for all n ≥ N` and all integers 1 ≤ i ≤ n − 1. In the
following theorem, we obtain a lower bound on E(Fn,`) for ` ∈ Lup(κ).

Theorem 3.24. Let κ ∈ (0, 1), and let ` ∈ Lup(κ) with integer N`. Then the
number Fn,` of distinct fringe subtrees in the random tree Tn,` satisfies

E(Fn,`) ≥ log

(
1

κ

)
n

2(N` − 1) log n
(1 + o(1)) .

In order to prove Theorem 3.24, we make use of an information-theoretic
argument. We make the convention that 0 · log(1/0) = 0. Let H(Tn,`) denote
the Shannon entropy of the random variable Tn,`, i.e.,

H(Tn,`) =
∑
t∈Bn

P`(t) log (1/P`(t)) .

We obtain the following general result.
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Theorem 3.25. Let ` ∈ L. Then the number Fn,` of distinct fringe subtrees in
the random tree Tn,` satisfies

E(Fn,`) ≥
H(Tn,`)

2 log n
(1 + o(1)) .

Proof. Let f(t) denote the number of distinct fringe subtrees occurring in the
full binary tree t ∈ B. Recall that t ∈ Bn has exactly n leaves and n− 1 internal
nodes. This implies that f(t) ≤ n for t ∈ Bn. We first show that we need at
most 2f(t)(blog nc+ 1) many bits in order to encode t. Recall that f(t) equals
the size of the minimal DAG of t, i.e., the number of nodes in the directed
acyclic graph obtained from t by merging identical fringe subtrees of t. As we
can uniquely retrieve t from its minimal DAG (see e.g. [75]), it suffices to show
that we can encode the minimal DAG of t with at most 2f(t)(blog nc+ 1) many
bits. Without loss of generality, assume that the nodes of the minimal DAG of t
are enumerated as 1, 2, . . . , f(t), where f(t) is the unique leaf node of the minimal
DAG of t. For 1 ≤ i ≤ f(t) − 1, let li (resp. ri) denote the left (resp. right)
child of node k. We encode each number 1, . . . , f(t) by a bit string of length
exactly blog nc+ 1. The minimal DAG of t can be uniquely encoded as the bit
string l1r1 · · · lf(t)−1rf(t)−1, which has length 2(f(t)− 1)(blog nc+ 1). Let ` ∈ L.
Shannon’s coding theorem implies

H(Tn,`) ≤ 2(blog nc+ 1)
∑
t∈Bn

P`(t)f(t) = 2(blog nc+ 1)E(Fn,`).

This finishes the proof.

In order to show Theorem 3.24, we make use of Theorem 3.25 together with a
lower bound on the entropy H(Tn,`) for ` ∈ Lup(κ). We will show the following
lemma.

Lemma 3.26. Let κ ∈ (0, 1), and let ` ∈ Lup(κ) with integer N` ≥ 2. Then

H(Tn,`) ≥ log

(
1

κ

)(
n

N` − 1
− 1

)
for every n ≥ N`.

In order to prove Lemma 3.26, we need the following result.

Lemma 3.27. Let k ≥ 1. Every full binary tree of leafsize n contains at least
n
k − 1 fringe subtrees of leafsize larger than k.

Proof. Let t be a full binary tree of leafsize n, and let s1, s2, . . . , sr be the maximal
fringe subtrees of leafsize at most k (i.e., the fringe subtrees that have at most
k leaves and are not contained in any other fringe subtree with that property).
Every leaf of t is contained in one of these: since a leaf is itself a fringe subtree of
leafsize at most k (namely leafsize 1), it must be contained in a maximal fringe
subtree with that property. Moreover, s1, s2, . . . , sr must be disjoint, since for
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any two fringe subtrees of the same tree, either one is contained in the other,
or they are disjoint. Hence we have n = ‖t‖ = ‖s1‖ + ‖s2‖ + · · · + ‖sr‖ ≤ kr,
which implies r ≥ n

k . Lastly, note that the roots of s1, s2, . . . , sr and all internal
nodes of t that are not contained in these r fringe subtrees form a full binary
tree of leafsize r. This tree has r − 1 internal nodes, and all of them are roots of
fringe subtrees of t whose leafsize is at least k + 1.

In particular, we obtain the following corollary from Lemma 3.27:

Corollary 3.28. Let ` ∈ L, and let n > k. The random number Yn,k of fringe
subtrees of leafsize larger than k in the random tree Tn,` satisfies

E(Yn,k) ≥ n

k
− 1.

We are now able to prove Lemma 3.26:

Proof of Lemma 3.26. Lemma 3.26 follows from identity (4) in [66]: Define

hk(`) =
k−1∑
i=1

`(i, k − i) log

(
1

`(i, k − i)

)
,

and recall that by convention, 0 · log(1/0) = 0, so that this is well-defined.
Thus, hk(`) is the Shannon entropy of the random variable corresponding to the
probability mass function ` : {(i, k− i) | 1 ≤ i ≤ k−1} → [0, 1]. As `(i, k− i) ≤ κ
for k ≥ N`, we find

hk(`) ≥ log (1/κ)
k−1∑
i=1

`(i, k − i) = log (1/κ)

for every k ≥ N`. Identity (4) in [66] states that

H(Tn,`) =
n∑
k=2

(E(Yn,k−1)− E(Yn,k))hk(`),

where Yn,k again denotes the random number of fringe subtrees of leafsize larger
than k in the random tree Tn,`. For every n ≥ N` ≥ 2, we obtain

H(Tn,`) ≥
n∑

k=N`

(E(Yn,k−1)− E(Yn,k))hk(`)

≥ log

(
1

κ

) n∑
k=N`

(E(Yn,k−1)− E(Yn,k))

= log

(
1

κ

)
(E(Yn,N`−1)− E(Yn,n))

= log

(
1

κ

)
E(Yn,N`−1).
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By Corollary 3.28, this implies

H(Tn,`) ≥ log

(
1

κ

)(
n

N` − 1
− 1

)
.

This proves the statement.

Theorem 3.24 now follows immediately from Theorem 3.25 and Lemma 3.26.
From Theorem 3.24, we obtain the following lower bound on the number of
distinct fringe subtrees in a random binary search tree.

Example 3.29. Let us apply Theorem 3.25 to the binary search tree model
from Example 3.2. In [66], it is shown that

H(Tn,`bst) ∼ 1.7363771368n (1 + o(1)).

Hence, we obtain from Theorem 3.25 that

E(Fn,`bst) ≥
0.8681n

log n
(1 + o(1)). (3.16)

In Example 3.12, we have shown the upper bound

E(Fn,`bst) ≤
8n

log n
(1 + o(1))

(see also Examples 3.17 and 3.23). We thus find E(Fn,`bst) = Θ(n/ log n). Recall
again that Devroye already proved in [24], that

log(3)/2 · n

log n
(1 + o(1)) ≤ E(Fn,`bst) ≤

4n

log n
(1 + o(1)),

where the upper bound was also shown in [36]. In particular, the lower bound
(3.16) improves the lower bound from [24]. The upper bounds from Example 3.12,
Example 3.17 and Example 3.23 are weaker in terms of the leading constant
than the upper bounds shown in [36, 24], but however, they are derived from
much more general results that cover whole classes of distributions. We remark
again that in Chapter 5 in Corollary 5.6, we show that

c1 ·
n

log n
(1 + o(1)) ≤ E(Fn,`bst) ≤

4n

log n
(1 + o(1)),

where c1 ≈ 3.472754274.

Similarly, we can apply Theorem 3.24 in order to obtain a lower bound on the
number of distinct fringe subtrees in a random tree generated by the binomial
random tree model. Specifically, the next example shows that the expected
number of distinct fringe subtrees in a random tree of size n generated by the
binomial random tree model is in Ω(n/ log n). Together with the upper bound
(Example 3.18), we hence obtain E(Fn,`bin,p) = Θ(n/ log n).
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Example 3.30. For the binomial random tree model (Example 3.4), a simple
induction over n (using

(
n−2
i−1

)
=
(
n−3
i−1

)
+
(
n−3
i−2

)
for 2 ≤ i ≤ n− 2 in the induction

step) shows that for n ≥ 3, we have

`bin,p(i, n− i) ≤ max{p, 1− p}

for all 1 ≤ i ≤ n− 1. With N` = 3 and κ = max{p, 1− p}, we thus obtain from
Theorem 3.24 that

E(Fn,`bin,p) ≥ log

(
1

κ

)
n

4 log n
(1 + o(1)). (3.17)

If we consider the proof of Lemma 3.26 again, we can slightly improve the leading
constant in the lower bound (3.17). With identity (4) in [66], h2(`) = 0, and
Corollary 3.28, we get

H(Tn,`) =
n∑
k=2

(E(Yn,k−1)− E(Yn,k))hk(`)

≥ min
3≤i≤n

hi(`) ·
n∑
k=3

(E(Yn,k−1)− E(Yn,k))

= min
3≤i≤n

hi(`) · E(Yn,2)

≥ min
3≤i≤n

hi(`) ·
(n

2
− 1
)
.

Together with Theorem 3.25, we thus obtain

E(Fn,`) ≥ min
3≤i≤n

hi(`) ·
n

4 log n
(1 + o(1)).

For the binomial random tree model we have hk(`bin,p) ≤ hk+1(`bin,p): if Ber(p)

is a Bernoulli random variable that takes the value 1 (resp., 0) with probability
p (resp., 1 − p), then the binomial random variable Bin(k, p) is the sum of k
independent copies of Ber(p). Hence, we have

Bin(k + 1, p) = Bin(k, p) + Ber(p).

Moreover, for independent random variables X and Y the Shannon entropy
satisfies H(X + Y ) ≥ H(X); see e.g. [78]. Hence, we get

min
3≤i≤n

hi(`bin,p) = h3(`bin,p) = p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
.

This yields

E(Fn,`bin,p) ≥
(
p log

(
1

p

)
+ (1− p) log

(
1

1− p

))
· n

4 log n
(1 + o(1)).

Together with the upper bound (Example 3.18), we get E(Fn,`bin,p) = Θ(n/ log n).
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Example 3.31. For the uniform distribution from Example 3.3, we have [66]

H(Tn,`uni) ∼ 2n(1 + o(1)).

Theorem 3.25 thus yields a non-trivial lower bound

E(Fn,`uni) ≥
n

log n
(1 + o(1)).

However, recall that in [38], it is shown that

E(Fn,`uni) =
2
√

2√
π
· n√

log n
(1 + o(1)) (3.18)

(see also Corollary 4.18 in Chapter 4, where it is shown that the estimate (3.18)
holds not only in expectation, but also with high probability, that is, with
probability tending to 1 as n→∞). In the next section, we will prove a general
result (for a whole class of leaf-centric tree sources) that implies a lower bound
of the form E(Fn,`uni) ≥ Ω

(
n/
√

log n
)
(see Example 3.37).

3.7 Unbalanced sources

For upper-bounded sources, Theorem 3.24 can only yield lower bounds of the form
Ω(n/ log n) for E(Fn,`). In this section, we present another class of leaf-centric
binary tree sources, for which we will be able to derive stronger lower bounds on
E(Fn,`), such as the lower bound Ω(n/

√
log n) for the uniform distribution.

Definition 3.32 (%-unbalanced sources). Let % : R → (0, 1] be a decreasing
function, and let γ ∈ (0, 1

2 ). With Lunbal(%, γ) ⊆ L, we denote the set of
mappings ` for which there are integers N ′` and c` such that∑

r≤i≤n−r

`(i, n− i) ≤ %(r)

for every n ≥ N ′` and every c` ≤ r ≤ dγne.

Note that every leaf-centric binary tree source is unbalanced with respect to
the constant function % with %(x) = 1 for every x ∈ R. Moreover, let κ ∈ (0, 1)

be a constant. As in the previous section, let again Lup(κ) ⊆ L denote the set
of mappings ` ∈ L that are upper-bounded with respect to the constant κ. Our
main result in this section is the following theorem:

Theorem 3.33. Let % be a decreasing function, let γ ∈ (0, 1
2 ) and κ ∈ (0, 1).

Moreover, let ` ∈ Lup(κ) with integer N`, and let ` ∈ Lunbal(%, γ) with integer
N ′` and constant c`. If

(a) %(x) ≥ ω(1/x),



44 Chapter 3. Leaf-centric binary tree sources

(b) there is a constant c% > 0 such that 1/c% + γ ≤ 1 and

k∑
i=c`

%(i) ≤ c%(k + 1)%(k + 1)

for every k ≥ c`, and

(c) there is an integer j` ≥ 2 such that the number Yn,k of fringe subtrees of
leafsize larger than k in the random tree Tn,` satisfies

E(Yn,(log n)j` ) ≤ o(n/ log n),

then the number Fn,` of distinct fringe subtrees in the random tree Tn,` satisfies

E(Fn,`) ≥
γn log(1/κ)

c%N`%
(
N` logn
log(1/κ)

)
log n

(1 + o(1)) .

As every leaf-centric binary tree source is unbalanced with respect to the
constant function % with %(x) = 1 for every x ∈ R, we obtain the following
corollary of Theorem 3.33, which is a weaker version of Theorem 3.24:

Corollary 3.34. Let κ ∈ (0, 1), and let ` ∈ Lup(κ) with integer N`. If there is
an integer j` ≥ 2 such that the number Yn,k of fringe subtrees of leafsize larger
than k in the random tree Tn,` satisfies

E(Yn,(log n)j` ) ≤ o(n/ log n),

then the number Fn,` of distinct fringe subtrees in the random tree Tn,` satisfies

E(Fn,`) ≥
γn log(1/κ)

2N` log n
(1 + o(1)),

for every γ ∈ (0, 1
2 ).

Proof. Let ` ∈ L satisfy the requirements of Corollary 3.34. We show that `
then satisfies all further requirements of Theorem 3.33 as well. Clearly, ` is
%1-unbalanced for every constant γ ∈ (0, 1/2), where %1 is the constant function
defined by %1(x) = 1 for every x ∈ R. Hence, we have ` ∈ Lunbal(%1, γ) with
N ′` = 1 and c` = 1. We now find that condition (a) of Theorem 3.33 is clearly
satisfied, as is condition (b), where the constant c% can be chosen for example as
c% = 2. Finally, condition (c) of Theorem 3.33 is satisfied by assumption. Thus,
we obtain the lower bound

E(Fn,`) ≥
γn log(1/κ)

2N` log n
(1 + o(1))

from Theorem 3.33, where γ ∈ (0, 1/2) is arbitrary.

Note that Corollary 3.34 resembles Theorem 3.24 in many ways, except that
we have the additional requirement (c) from Theorem 3.33 and the additional
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constant γ ∈ (0, 1/2) in the lower bound. The technique to prove Theorem 3.33
however will be quite different from the technique used for Theorem 3.24.

In order to prove Theorem 3.33, we make use of a refinement of the cut-
point technique from Lemma 3.5, as was applied to a similar problem in [96].
Furthermore, the very same refinement of the cut-point argument will be used
in Chapter 4 and Chapter 5 of this work in order to obtain lower bounds on
the average number of fringe subtrees. More precisely, we refine the cut-point
technique with an inclusion-exclusion-principle-like argument in order to obtain
a lower bound on the expected number of distinct fringe subtrees. We first need
a lower bound on the expected number E(Yn,k) of fringe subtrees of leafsize
larger than k in a random tree Tn,`, where ` ∈ Lunbal(%, γ):

Lemma 3.35. Let % : R→ (0, 1] be a decreasing function, let γ ∈ (0, 1
2 ), and let

` ∈ Lunbal(%, γ) with integers N ′` and c`. If

(a) %(x) ≥ ω(1/x), and

(b) there is a constant c% > 0 such that 1/c% + γ ≤ 1 and for every k ≥ c`

k∑
i=c`

%(i) ≤ c%(k + 1)%(k + 1),

then there is an integer m such that for k ≥ m and n ≥ k + 1, the random
number Yn,k of fringe subtrees of leafsize larger than k in the random tree Tn,`
satisfies

E(Yn,k) ≥ γn

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)
.

In order to prove Lemma 3.35, the following lemma will be helpful.

Lemma 3.36 (Summation by parts, [99, Theorem. 3.41]). Let m be a natural
number and a1, . . . , am, b1, . . . , bm be real numbers. Then

m∑
i=1

aibi =

(
m∑
i=1

ai

)
bm +

m−1∑
i=1

(
i∑

`=1

a`

)
(bi − bi+1) .

We are now able to prove Lemma 3.35.

Proof of Lemma 3.35. As %(x) ≥ ω(1/x) by condition (a), there is an integer
N% such that

c` − 1

%(k + 1)
≤ k (3.19)

for all k ≥ N%. We choose the integer m in such a way that m ≥ max{N%, N ′`, c`}
and dγne ≤ n/2 for n > m. We prove the statement using induction for
n ≥ k+ 1 > m. For the base case, let n = k+ 1. A full binary tree t ∈ Bk+1 has
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exactly one fringe subtree of leafsize larger than k, and we have

E(Yk+1,k) = 1 >
γ

c%%(k + 1)
− 1

c%%(k + 1)
.

For the induction step, take an integer n > k + 1, so that

E(Yi,k) ≥ γi

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)

for every integer k + 1 ≤ i ≤ n− 1 by induction hypothesis. We distinguish two
cases in the induction step.

Case 1: dγne < k + 1 ≤ n− 1. We thus have

γn

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)
<

1

c%%(k + 1)
− 1

c%%(k + 1)
= 0.

Furthermore, as n > k, we find E(Yn,k) ≥ 1. The statement follows in this case.

Case 2: k + 1 ≤ dγne. As dγne ≤ n/2 for n > m, we find by Lemma 3.6:

E(Yn,k) = 1 +

n−k−1∑
i=k+1

`(i, n− i) (E(Yi,k) + E(Yn−i,k)) +

n−1∑
i=n−k

`∗(i, n− i)E(Yi,k).

By the induction hypothesis, we have

E(Yn,k) ≥ 1 +
n−k−1∑
i=k+1

`(i, n− i)
(

γn

c%(k + 1)%(k + 1)
− 2

c%%(k + 1)

)

+
n−1∑
i=n−k

`∗(i, n− i)
(

γi

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)

)
.

We introduce the abbreviation

S(i) =
γi

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)
.

Clearly, S(i) is increasing in i. Moreover, set

n−k−1∑
i=k+1

`(i, n− i) =: α1,

n−c`∑
i=n−k

`∗(i, n− i) =: α2 and
n−1∑

i=n−c`+1

`∗(i, n− i) =: α3.

We obtain

E(Yn,k) ≥ 1 + α1

(
γn

c%(k + 1)%(k + 1)
− 2

c%%(k + 1)

)
+ α3S(n− c` + 1)

+

n−c`∑
i=n−k

`∗(i, n− i)S(i). (3.20)
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As ` ∈ Lunbal(%, γ) and additionally N ′` < n and c` < k + 1 ≤ dγne, we have
0 ≤ α1 ≤ %(k + 1), 1− %(c`) ≤ α3 ≤ 1 and α1 + α2 + α3 = 1. Furthermore, we
have

γn

c%(k + 1)%(k + 1)
− 2

c%%(k + 1)
≤ S(i)

for every integer i with n − k ≤ i ≤ n − c` + 1. Hence, we minimize the
right-hand side of the identity (3.20) subject to the condition α1 + α2 + α3 = 1

if we assign the maximal possible weight α1 = %(k + 1) to the smallest term
γn/(c%(k+ 1)%(k+ 1))−2/(c%%(k+ 1)) and the minimal weight α3 = 1−%(c`) to
the largest term S(n−c`+1). It remains to bound the sum

∑n−c`
i=n−k `

∗(i, n−i)S(i)

subject to the condition α2 = %(c`)− %(k + 1). First note that ` ∈ Lunbal(%, γ),
N ′` < n and α3 = 1− %(c`) imply

i∑
j=c`

`∗(j, n− j) =
i∑

j=1

`∗(j, n− j)− α3 ≥ %(c`)− %(i+ 1), (3.21)

for every c` ≤ i ≤ k (note that c` ≤ i+ 1 ≤ dγne; therefore we can take r = i+ 1

in Definition 3.32). Using summation by parts (Lemma 3.36), we obtain

n−c`∑
i=n−k

`∗(i, n− i)S(i) =
k∑

i=c`

`∗(i, n− i)S(n− i)

= S(n− k)
k∑

i=c`

`∗(i, n− i) +
k−1∑
i=c`

( i∑
j=c`

`∗(j, n− j)
)

(S(n− i)− S(n− i− 1))

≥ (%(c`)− %(k + 1))S(n− k) +

k−1∑
i=c`

(%(c`)− %(i+ 1))(S(n− i)− S(n− i− 1))

= −%(k + 1)S(n− k) + %(c`)S(n− c`)−
k−1∑
i=c`

%(i+ 1) (S(n− i)− S(n− i− 1))

where the inequality follows from (3.21). Note that we have

S(n− i)− S(n− i− 1) =
γ

c%(k + 1)%(k + 1)
.

Altogether, we obtain from (3.20) that

E(Yn,k) ≥ 1 + %(k + 1)

(
γn

c%(k + 1)%(k + 1)
− 2

c%%(k + 1)

)
−

k∑
i=c`

%(i)γ

c%(k + 1)%(k + 1)

+
γn

c%(k + 1)%(k + 1)
− γ(c` − 1)

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)

− %(k + 1)

(
γn

c%(k + 1)%(k + 1)
− γk

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)

)
.
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Simplifying the right-hand side yields

E(Yn,k) ≥ 1− 1

c%
+

γn

c%(k + 1)%(k + 1)
− γ(c` − 1)

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)

+
γk

c%(k + 1)
−

k∑
i=c`

%(i)γ

c%(k + 1)%(k + 1)
.

Since we have

k∑
i=c`

%(i) ≤ c%(k + 1)%(k + 1)

by the assumption from condition (b), we get

E(Yn,k) ≥ 1− 1

c%
+

γn

c%(k + 1)%(k + 1)
− γ(c` − 1)

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)

+
γk

c%(k + 1)
− γ.

Furthermore, from (3.19) we obtain

− γ(c` − 1)

c%(k + 1)%(k + 1)
+

γk

c%(k + 1)
≥ 0

and hence

E(Yn,k) ≥ 1− 1

c%
+

γn

c%(k + 1)%(k + 1)
− 1

c%%(k + 1)
− γ.

Finally, as 1/c% + γ ≤ 1 by condition (b), the statement follows.

We are now able to prove Theorem 3.33. The main idea of the proof is based
on techniques from [96] (see also the proofs of Theorem 4.13 and Theorem 5.3 in
Chapter 4 and Chapter 5).

Proof of Theorem 3.33. Let δn for n ≥ 2 be defined by δn = 2j` log log n/ log n,

where j` ≥ 2 is the constant from condition (c) in Theorem 3.33. Moreover, let

k1 =

⌈
N`

(
1 +

(1 + δn) log n

log(1/κ)

)⌉
.

Furthermore, assume that n is sufficiently large, so that the lower bound on
E(Yn,k) from Lemma 3.35 applies for k ≥ k1 − 1, and that k1 < (log n)j` .
The random number Fn,` of distinct fringe subtrees in the random tree Tn,`
is bounded below by the number of distinct fringe subtrees in Tn,` of leafsizes
k for k1 ≤ k ≤ nδn/2, where nδn/2 = (log n)j` by definition of δn. Let Xn,k

denote the (random) number of fringe subtrees of leafsize exactly k occurring in
Tn,`, and let X(2)

n,k denote the (random) number of unordered pairs of identical
fringe subtrees of leafsize exactly k occurring in a random tree Tn,`. Using the
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inclusion-exclusion principle, we find that E(Fn,`) can be bounded from below
as follows:

E(Fn,`) ≥
∑

k1≤k≤nδn/2
E(Xn,k)−

∑
k1≤k≤nδn/2

E(X
(2)
n,k). (3.22)

We first bound the second sum on the right-hand side of (3.22). By Lemma 3.27,
we find that the number of fringe subtrees of leafsize at least N` + 1 in a full
binary tree t of leafsize k > N` is at least k/N` − 1. As ` ∈ Lup(κ) with integer
N`, we find

P`(t) =
∏

v∈V0(t)

`(‖tl[v]‖, ‖tr[v]‖) ≤
∏

v∈V (t)
‖t[v]‖>N`

`(‖tl[v]‖, ‖tr[v]‖) ≤ κk/N`−1

for every full binary tree t ∈ Bk. Let us condition on the event that Xn,k = N

for some natural number N . These N fringe subtrees are independent random
trees of leafsize k, and the probability that such a fringe subtree equals a given
full binary tree t ∈ Bk is given by P`(t). Thus, we have

E(X
(2)
n,k | Xn,k = N) =

(
N

2

) ∑
t∈Bk

P`(t)
2 ≤ n2κk/N`−1

∑
t∈Bk

P`(t) = n2κk/N`−1.

Since this upper bound on E(X
(2)
n,k | Xn,k = N) holds independently of N , we

obtain with the law of total expectation

E(X
(2)
n,k) =

n∑
N=0

E(X
(2)
n,k | Xn,k = N)P(Xn,k = N) ≤ n2κk/N`−1.

Since k1 ≥ N`
(
1 + (1+δn) log n

log(1/κ)

)
, we obtain for all k ≥ k1:

E(X
(2)
n,k) ≤ n1−δn .

We thus have ∑
k1≤k≤nδn/2

E(X
(2)
n,k) ≤ n1−δn/2 =

n

(log n)j`
≤ o

(
n

log n

)
.

It remains to bound the first sum on the right-hand side of (3.22): If Yn,k again
denotes the random number of fringe subtrees of leafsize larger than k in the
random tree Tn,`, we have∑

k1≤k≤nδn/2
E(Xn,k) = E(Yn,k1−1)− E(Yn,nδn/2).

By condition (c) of Theorem 3.33, we have E(Yn,nδn/2) ≤ o(n/ log n). Moreover,
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by Lemma 3.35, we find that

E(Yn,k1−1) ≥ γn

c%k1%(k1)
− 1

c%%(k1)
≥ Ω

(
n

log n

)
,

since %(x) ≤ 1. By monotonicity of %, we have %(k1) ≤ %
(
N` logn
log(1/κ)

)
, so we obtain

from (3.22) that

E(Fn,`) ≥
γ log(1/κ)n

c%N`%
(
N` logn
log(1/κ)

)
log n

(1 + o(1)) .

This finishes the proof.

For the uniform model from Example 3.3, we obtain the following lower
bound from Theorem 3.33.

Example 3.37. In this example, we use Theorem 3.33 in order to prove a lower
bound on the expected number of distinct fringe subtrees in a random tree
Tn,`uni , i.e., in a random full binary tree of leafsize n drawn from the set Bn
according to the uniform probability distribution `uni from Example 3.3. We
have to show that all requirements of Theorem 3.33 are satisfied. Let us write `
for `uni in the following. Recall from Example 3.3 that

`(i, n− i) =
Ci−1Cn−i−1

Cn−1
.

(i) ` ∈ Lup(κ) for a constant κ ∈ (0, 1). A short computation shows that for a
fixed integer n, the maximal value of `(i, n− i) with 1 ≤ i ≤ n− 1 is attained at
imax(n) = 1 and i′max(n) = n− 1. In particular, we have

`(i, n− i) ≤ `(1, n− 1) ≤ n

4n− 6

for all 1 ≤ i ≤ n− 1. If we fix N`, we thus find that ` ∈ Lup(κ) with integer N`,
where κ = N`/(4N`− 6). For the sake of simplicity, let N` = 3. Then ` ∈ Lup(κ)

with κ = 1/2.

(ii) ` ∈ Lunbal(%, γ) for a decreasing function % and a constant γ. Let 0 < γ < 1/2,
and let ε0 > 0 and δ0 > 1. From the asymptotic formula for the Catalan numbers
(2.1), we find that there is an integer N ′` (depending on ε0 and δ0) such that
both

(1− ε0)4n√
πn3/2

≤ Cn ≤
(1 + ε0)4n√

πn3/2

and

n5/2

(n− 2)2
√

(r − 2)(n− γn− 1)
≤ δ0√

(1− γ)r
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for all n, r ≥ N ′`. Set c` = N ′`, and suppose that c` ≤ r ≤ dγne. Then∑
r≤i≤n−r

`(i, n− i) =
∑

r≤i≤n−r

Ci−1Cn−i−1

Cn−1

≤ (1 + ε0)2(n− 1)3/2

(1− ε0)4
√
π

∑
r≤i≤n−r

(i− 1)−3/2(n− i− 1)−3/2

≤ (1 + ε0)2n3/2

(1− ε0)2
√
π

∫ n/2

r−1

(x− 1)−3/2(n− x− 1)−3/2dx

=
(1 + ε0)2n3/2

(1− ε0)
√
π

n− 2r + 2

(n− 2)2
√

(r − 2)(n− r)

≤ (1 + ε0)2

(1− ε0)
√
π

n5/2

(n− 2)2
√

(r − 2)(n− γn− 1)

≤ (1 + ε0)2

(1− ε0)
√
π

δ0√
(1− γ)r

.

We thus find that ` ∈ Lunbal(%, γ) if we set

δ1 :=
(1 + ε0)2δ0

1− ε0
> 1 and %(r) :=

δ1√
π(1− γ)r

,

where the constant δ1 > 1 can take values arbitrarily close to 1 for suitable
choices of ε0 and δ0.

(iii) Condition (a) of Theorem 3.33 is clearly satisfied, i.e., %(x) ≥ ω(1/x).
Condition (b) is satisfied as well: We have

k∑
i=N ′`

%(i) =
δ1√

π(1− γ)

k∑
i=N ′`

i−1/2 ≤ δ1√
π(1− γ)

∫ k

N ′`−1

x−1/2dx

≤ 2δ1
√
k + 1√

π(1− γ)
= 2(k + 1)%(k + 1).

Thus, condition (b) holds with c% = 2 (as γ < 1/2, we have 1/c%+γ ≤ 1 as well).

(iv) Finally, condition (c) of Theorem 3.33 holds as well: From Example 3.22,
we know that ` ∈ Lsbal(ς, γ) with ς(x) = Θ(x−1/2) for 0 < γ < 1/2. If we set
j` = 4, then Lemma 3.21 yields

E(Yn,(log n)4) ≤ o
(

n

log n

)
.

We can therefore apply Theorem 3.33. The expected number of distinct fringe
subtrees in a random tree of leafsize n drawn according to the uniform probability
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distribution satisfies

E(Fn,`uni) ≥
γn log(1/κ)

c%N`%
(
N` logn
log(1/κ)

)
log n

(1 + o(1))

=
γ
√

(1− γ)π log(1/κ)

δ1c%
√
N`

· n√
log n

(1 + o(1))

=
γ
√

(1− γ)π

2
√

3δ1
· n√

log n
(1 + o(1)).

As 0 < γ < 1/2 is arbitrary, we can choose γ arbitrarily close to the optimal
value 1/2. We then obtain for ` = `uni

E(Fn,`uni) ≥
√
π

4
√

6δ1
· n√

log n
(1 + o(1))

for any constant δ1 > 1. Recall that in Example 3.22, we have already shown
that

E(Fn,`uni) ≤ 3δ
√

3π · n√
log n

(1 + o(1)),

for any constant δ > 1. In particular, we thus have E(Fn,`uni) = Θ(n/
√

log n).
We remark again that in [38] (see also Corollary 4.18), it is shown that in fact

E(Fn,`uni) =
2
√

2√
π
· n√

log(n)
(1 + o(1)).

3.8 Conclusion and open problems

In this chapter, we proposed several classes of leaf-centric binary tree sources
and derived upper and lower bounds on the number of distinct fringe subtrees
occurring in a random full binary tree generated by a leaf-centric binary tree
source from the respective class.

Another type of binary tree sources are depth-centric binary tree sources [S3],
[105], which yield probability distributions on the set of full binary trees of a
fixed depth and resemble leaf-centric tree sources in many ways. Furthermore,
leaf-centric binary tree sources are generalized to random tree models for plane
trees, which are called fixed-size ordinal tree sources in [S7].

An interesting problem would be to estimate the number of distinct fringe
subtrees with respect to classes of depth-centric or fixed-size ordinal tree sources.
Furthermore, another open problem is to consider the question of estimating the
number of distinct fringe subtrees in a leaf-centric binary tree source under a
generalized interpretation of “distinctness”, as will be done in the following two
chapters for simply generated families of trees and families of increasing trees.



Chapter 4

Simply generated families of
trees

4.1 Introduction

As in the previous chapter, we investigate the number of fringe subtrees in
random rooted trees in this chapter. The random tree model we consider in
this chapter are random simply generated trees as a general concept to model
uniform probability distributions, among others, on various families of trees (a
formal definition follows in Section 4.2). For example, the uniform distribution
on the set Tn of plane trees of size n and the uniform distribution on the set of
d-ary trees of size n can be modeled using simply generated families of trees.

The number of distinct fringe subtrees in random simply generated trees has
already been studied in [96] by Ralaivaosaona and Wagner, who showed that the
expected number of distinct fringe subtrees in a random simply generated tree
of size n is asymptotically equal to c · n/

√
log n, where the constant c depends

on the particular family of trees (their result generalizes earlier results from [38]
in the context of simply generated families of trees). In particular, the results in
[38, 96] cover for example uniformly random plane trees (where the constant c
evaluates to c =

√
2/π) and uniformly random binary trees (with c = 2

√
2/π).

In [38, 96] (as well as in [9, 12, 24, 36] and [S8, S9]), the number of distinct
fringe subtrees is counted under the particular interpretation of distinctness
that two trees are considered as distinct if they are distinct as members of the
particular family of trees. In this chapter, we investigate the number of distinct
fringe subtrees with respect to random simply generated trees under a generalized
notion of distinctness, which allows for many different interpretations of what
“distinct” trees are.

To give a concrete example of different notions of distinctness, consider the
family of d-ary trees (Definition 2.5), where each node has d possible positions
to which children can be attached (for instance, if d = 3, a left, a middle and a
right position). The following three possibilities lead to different interpretations

53
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Figure 4.1: Four distinct binary trees (left), and the two distinct plane trees
associated to them (right), which are in turn identical as unordered trees

of when two trees are regarded the same:

(i) the order and the positions of branches matter,

(ii) the order of branches matters, but not the positions to which they are
attached,

(iii) neither the order nor the positions matter.

See Figure 4.1 and Figure 4.2 for an illustration: In Figure 4.2, we consider
a binary tree (on the left) and its distinct fringe subtrees (on the right) under
the three different interpretations (i) – (iii) of distinctness. In case (i) (the order
and the position of branches matter), we count distinct binary fringe subtrees,
in case (ii) (only the order of branches matters) we count distinct plane fringe
subtrees, and in the last case (iii) (neither order nor positions matter), we count
distinct unordered fringe subtrees of the binary tree.

In order to cover all these cases, we only assume that the trees of size k
within the given family of trees are partitioned into a set Ik of isomorphism
classes for every k. The quantity of interest is the total number of isomorphism
classes that occur among the fringe subtrees of a random tree with n nodes.

As a general main theorem of this chapter, we prove that under rather
mild assumptions on the partition into isomorphism classes, the number of
isomorphism classes that occur among the fringe subtrees of a random simply
generated tree with n nodes is in Θ(n/

√
log n), both in expectation and w.h.p.

(with high probability, i.e., with probability tending to 1 as n→∞). The precise
statement is given in Theorem 4.13 in Section 4.3, the conditions we assume on
the isomorphism classes are given in (C1) and (C2) in Section 4.3.

As a main application, we then count the numbers of distinct fringe subtrees
in random simply generated trees under the three different notions of distinctness
(i)-(iii) for several particular families of random trees in Section 4.4, Section 4.5
and Section 4.6.

In particular, we settle an open conjecture from [75], where it is stated as
an open problem to estimate the expected number of distinct unordered trees
represented by the fringe subtrees of a uniformly random binary tree of size n
and conjectured that this number asymptotically grows as Θ(n/

√
log n). Indeed,

we show that the number of distinct unordered fringe subtrees Fn in a uniformly
random binary tree of size n is asymptotically bounded by

c · n√
log n

(1 + o(1)) ≤ Fn ≤ c ·
n√

log n
(1 + o(1))
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(i) Distinct binary fringe subtrees

(ii) Distinct plane fringe subtrees

(iii) Distinct unordered fringe subtrees

Figure 4.2: A binary tree (left) and (i) the six distinct binary trees, (ii) the five
distinct plane trees and (iii) the four distinct unordered trees represented by its
fringe subtrees (right)

for the constants c ≈ 1.2721401445 and c ≈ 1.2925885353, both in expectation
and w.h.p. (Corollary 4.26).

Moreover, we refine the results from [12, 38, 96] by showing that the asymp-
totic estimate c ·n/

√
log n (where the constant c depends on the particular family

of trees) on the number of distinct (as members of the concrete family) fringe
subtrees in a random simply genertated tree does not only hold in expectation,
but also w.h.p.

The results presented in this chapter appeared in [S11] (see also the conference
version [S10]).

4.2 Simply generated families of trees and Galton–
Watson trees

Let nt0, . . . , nt|t| denote the numbers of nodes of degree i for 0 ≤ i ≤ |t| in a tree t.
A general concept to model probability distributions on various families of trees
is the concept of simply generated families of trees. It was introduced by Meir
and Moon in [82] (see also [27, 58]). The main idea is to assign a weight to every
plane tree t ∈ T which depends on the numbers nt0, . . . , nt|t|. Let (φi)i≥0 denote
a sequence of non-negative real numbers (called the weight sequence), and let

Φ(x) =
∑
i≥0

φix
i.
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We define the weight w(t) of a plane tree t ∈ T as

w(t) =
∏

v∈V (t)

φdeg(v) =
∏
i≥0

φ
nti
i .

Moreover, let

wn =
∑
t∈Tn

w(t)

denote the sum of all weights of plane trees of size n. A weight sequence (φi)i≥0

induces a probability mass function PΦ : Tn → [0, 1] on the set of plane trees of
size n by PΦ(t) = w(t)/wn for every n with wn > 0. We will tacitly assume that
wn > 0 holds whenever we consider random trees of size n. Several families of
trees can be modeled as simply generated families of trees.

Example 4.1. The family of plane trees T is the simply generated family of
trees with weight sequence (φi)i≥0 defined by φi = 1 for every i ≥ 0. Thus,
every plane tree t ∈ T is assigned the weight w(t) = 1, the numbers wn count
the number of distinct plane trees of size n, and the probability mass function
PΦ : Tn → [0, 1] specifies the uniform probability distribution on Tn.

Example 4.2. The family of d-ary trees is obtained as the simply generated
family of trees whose weight sequence (φi)i≥0 satisfies φi =

(
d
i

)
for every i ≥ 0.

This takes into account that there are
(
d
i

)
many types of nodes of degree i in

d-ary trees. The weight w(t) of a plane tree t then equals the number of distinct
d-ary trees with plane representation t and the numbers wn count the number of
distinct d-ary trees of size n. For d = 2 we obtain the family of binary trees B�
(Definition 2.3). The family of full binary trees B (Definition 2.2) corresponds to
the weight sequence (φi)i≥0 with φ0 = φ2 = 1 and φi = 0 for i /∈ {0, 2}.

Example 4.3. A Motzkin tree is an ordered rooted tree such that each node has
either zero, one or two children. In particular, we do not distinguish between
left-unary and right-unary nodes as in the case of binary trees, i.e., there is only
one type of unary nodes. The weight sequence (φi)i≥0 with φ0 = φ1 = φ2 = 1

and φi = 0 for i ≥ 3 corresponds to the simply generated family of Motzkin trees
and the probability mass function PΦ : Tn → [0, 1] corresponds to the uniform
probability distribution on the set of Motzkin trees of size n.

Example 4.4. Also, the family of numbered trees (Definition 2.10) can be
modeled as a simply generated family of trees. Given a numbered tree (which
is unorderd by definition), there are

∏
v∈V (t) deg(v)! possibilities to define an

ordering on its nodes, that is,
∏
v∈V (t) deg(v)! ordered trees correspond to the

same numbered tree. Furthermore, there are n! possibilites to label a plane tree
of size n in such a way that every node obtains a label from the set {1, . . . , n}
and such that no two nodes obtain the same label. The family of numbered
trees is obtained as the simply generated family of trees whose weight sequence
(φi)i≥0 satisfies φi = 1/i! for every i ≥ 0 (see [27, 58]). Thus, the weight of a
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plane tree t equals (
∏
v∈V (t) deg(v)!)−1, and the total weight wn of all plane

trees of size n equals 1
n! times the number of numbered trees of size n.

Example 4.5. Let Σ be a finite alphabet of size |Σ| = σ. The family of Σ-labeled
plane trees T (Σ) is obtained via the weight sequence (φi)i≥0 defined by φi = σ

for every i ≥ 0. In the same way, we obtain the family of Σ-labeled binary trees
B�(Σ) by setting φ0 = σ, φ1 = 2σ and φ2 = σ. In particular, if all the weights
of a weight sequence (φi)i≥0 are integers, we get a combinatorial interpretation
of the corresponding simply generated family of trees as follows: trees from this
family are labeled plane trees, such that nodes of degree i are assigned a label
from an alphabet of size φi.

We denote a simply generated family of trees with F . The set of trees of
size k from the simply generated family F will be denoted by Fk. Throughout
this chapter, we denote with R > 0 the radius of convergence of the series
Φ(x) =

∑
i≥0 φix

i. Furthermore, we assume that there is a real number τ ∈ (0, R]

which satisfies τΦ′(τ) = Φ(τ) and Φ′′(τ) <∞. We have the following theorem
on the asymptotic growth of the numbers wn:

Theorem 4.6 ([27], Theorem 3.6 and Remark 3.7). Let gcd(Φ) denote the
greatest common divisor of all indices i with φi > 0 of the weight-generating
series Φ. Then

wn = gcd(Φ) ·

√
Φ(τ)

2πΦ′′(τ)

Φ′(τ)n

n3/2

(
1 +O(n−1)

)
,

if n ≡ 1 mod gcd(Φ), and wn = 0 if n 6≡ 1 mod gcd(Φ).

For the sake of simplicity, we will tacitly assume that gcd(Φ) = 1 holds for
the simply generated families of trees considered in this chapter, though all
results presented below can be easily shown to hold for gcd(Φ) 6= 1 as well.

Galton–Watson processes. Closely related to the concept of simply gener-
ated families of trees is the concept of Galton–Watson processes.

Definition 4.7 (Galton–Watson process.). Let ξ be a non-negative integer-
valued random variable (called an offspring distribution). A Galton–Watson
branching process (see for example [58]) with offspring distribution ξ assigns a
probability ν(t) to a plane tree t ∈ T by

ν(t) =
∏

v∈V (t)

P(ξ = deg(v)) =
∏
i≥0

P(ξ = i)n
t
i .

A Galton–Watson processes generates a random plane tree T as follows. In
a top-down way, starting at the root node, we determine for each node v of T
independently its degree deg(v) according to the distribution ξ. The probability
that deg(v) = i for some integer i is given by P(ξ = i). If deg(v) = i > 0, we
attach i new nodes to v and the process continues at these newly attached nodes.
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If deg(v) = 0, the process stops at this node. It is thus convenient to assume
that P(ξ = 0) > 0. Note that this process might generate infinite trees with
non-zero probability.

A random plane tree Tξ generated by a Galton–Watson process is called an
unconditioned Galton–Watson tree. Conditioning the Galton–Watson tree on the
event that |Tξ| = n, we obtain a probability mass function Pξ on the set Tn of
plane trees of size n defined by

Pξ(t) =
ν(t)∑

t′∈Tn ν(t′)
.

A random variable Tn,ξ which takes values in Tn according to the probability
mass function Pξ is called a conditioned Galton–Watson tree of size n. If ξ is
clear from the context, we often write Tn instead of Tn,ξ for a conditioned Galton–
Watson tree of size n and T instead of Tξ for the corresponding unconditioned
Galton–Watson tree. A Galton–Watson process with offspring distribution ξ

that satisfies E(ξ) = 1 is called critical.

Relation between simply generated families of trees and Galton–
Watson processes. Let F be a simply generated family of trees with weights
(φi)i≥0. In many cases, it is possible to view a random tree of size n drawn from
Tn according to the probability mass function PΦ as a conditioned Galton–Watson
tree (see for example [58]). Define an offspring distribution ξ by

P(ξ = i) = φiτ
iΦ(τ)−1 (4.1)

for every i ≥ 0. This is well-defined, as

∑
i≥0

P(ξ = i) =
∑
i≥0

φiτ
i

Φ(τ)
=

Φ(τ)

Φ(τ)
= 1, (4.2)

and furthermore, we have

E(ξ) =
∑
i≥0

iP(ξ = i) =
∑
i≥0

iφiτ
i

Φ(τ)
=
τΦ′(τ)

Φ(τ)
= 1. (4.3)

Then ξ is an offspring distribution of a critical Galton–Watson process. In
particular, ξ defined as in (4.1) induces the same probability mass function on
Tn as the weight sequence (φi)i≥0, since we have Pξ(t) = PΦ(t). Hence, many
results proved in the context of Galton–Watson trees become applicable in the
setting of simply generated families of trees. Regarding the variance of the
offspring distribution ξ of a Galton–Watson process corresponding to a simply
generated family of trees F with weight sequence (φi)i≥0, we find

V(ξ) =
τ2Φ′′(τ)

Φ(τ)
. (4.4)



4.2. Simply generated families of trees and Galton–Watson trees 59

Note that if τ < R, then V(ξ) <∞, but if τ = R, V(ξ) might be infinite. However,
we will only consider weight sequences (φi)i≥0 for which the corresponding
offspring distribution ξ satisfies V(ξ) <∞.

Example 4.8. For the family of plane trees, we have Φ(x) =
∑
i≥0 x

i. We find
that τ = 1/2 solves the equation τΦ′(τ) = Φ(τ). Thus, the offspring distribution
ξ of the Galton–Watson process corresponding to the family of plane trees is
given by P(ξ = i) = 2−i−1 for every i ≥ 0 (a geometric distribution).

Example 4.9. For the family of d-ary trees, we find that Φ(x) = (1 + x)d

and τ = (d − 1)−1. The offspring distribution of the Galton–Watson process
corresponding to the family of d-ary trees is given by P(ξ = i) =

(
d
i

)
d−d(d−1)d−i

for 0 ≤ i ≤ d (a binomial distribution).

Example 4.10. In the case of Motzkin trees, we have Φ(x) = 1 + x+ x2 and
τ = 1. The Galton–Watson process with offspring distribution ξ defined by
P(ξ = i) = 1/3 if 0 ≤ i ≤ 2 and P(ξ = i) = 0 otherwise corresponds to the family
of Motzkin trees.

Example 4.11. We obtain Φ(x) = ex for the family of numbered trees. The
equation τΦ′(τ) = Φ(τ) is solved by τ = 1 in this case. The Galton–Watson
process corresponding to the family of numbered trees is defined by the offspring
distribution ξ with P(ξ = i) = (ei!)−1 for every i ≥ 0 (a Poisson distribution).

Additive functionals in Galton–Watson trees. Let f : T → R denote a
function mapping a plane tree to a real number (called a toll-function). We
define a mapping F : T → R by

F (t) =
∑

v∈V (t)

f(t[v]).

Such a mapping F is called an additive functional. Equivalently, F can be
defined by a recursion. If t1, t2, . . . , ti are the root branches of t (the components
resulting when the root is removed), then

F (t) = f(t) +
i∑

j=1

F (tj).

The following theorem follows from Theorem 1.3 and Remark 5.3 in [59].

Theorem 4.12 ([59], Theorem 1.3 and Remark 5.3). Let ξ be an offspring
distribution with E(ξ) = 1, and let Tn denote the corresponding conditioned
Galton–Watson tree of size n and T the corresponding unconditioned Galton–
Watson tree. If E(|f(T )|) <∞ and |E(f(Tk))| = o(k1/2), then

lim
n→∞

P
(∣∣∣∣F (Tn)

n
− E(f(T ))

∣∣∣∣ > ε

)
= 0

for every ε > 0.
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4.3 A general main theorem

In this section, we prove our main theorem of this chapter on the number of
distinct fringe subtrees in a random simply generated tree under a generalized
notion of “distinctness”. As mentioned in Section 4.1, we assume that the trees
of size k within the given family F of trees are partitioned into a set Ik of
isomorphism classes for every k. The quantity of interest is the total number of
isomorphism classes that occur among the fringe subtrees of a random tree with
n nodes. The following rather mild assumptions turn out to be sufficient for our
purposes:

(C1) We have lim supk→∞
log |Ik|

k = C1 <∞.

(C2) There exist subsets Jk ⊆ Ik of isomorphism classes and a positive constant
C2 such that

(C2a) a random tree in the family F with k nodes belongs to a class in
Jk with probability 1− o(1) as k →∞, and

(C2b) the probability that a random tree in F with k nodes lies in a fixed
class I ∈Jk is never greater than 2−C2k+o(k).

Note that (C2a) and (C2b) imply that |Ik| ≥ |Jk| ≥ 2C2k−o(k), thus we have
C1 ≥ C2 > 0. Under the conditions (C1) and (C2), we prove the following
general statement.

Theorem 4.13. Let F be a simply generated family of trees with a partition
into isomorphism classes that satisfies (C1) and (C2), and let ξ be the offspring
distribution of the Galton–Watson process corresponding to F , which satisfies
E(ξ) = 1 and V(ξ) <∞. Let Fn denote the total number of different isomorphism
classes represented by the fringe subtrees of a random tree Tn of size n drawn
randomly from the specific family F . We have

(i)
√

2C2√
πV(ξ)

· n√
log n

(1 + o(1)) ≤ E(Fn) ≤
√

2C1√
πV(ξ)

· n√
log n

(1 + o(1)),

(ii)
√

2C2√
πV(ξ)

· n√
log n

(1 + o(1)) ≤ Fn ≤
√

2C1√
πV(ξ)

· n√
log n

(1 + o(1)) w.h.p.

In short, in order to prove Theorem 4.13, we again make use of the cut-point
technique that was already used in the previous chapter in order to obtain results
on the number of distinct fringe subtrees in random trees (see Section 3.2),
together with a refinement that takes our generalized notion of distinctness into
account, and in combination with an inclusion-exclusion-like argument as in the
proof of Theorem 3.33, in order to get the lower bound. Also in a similar way
as in Chapter 3, we start with estimates on the number of all fringe subtrees of
size equal to, respectively, larger than k in a random simply generated tree of
size n. For this, we start with the following lemma.
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Lemma 4.14. Let Zn,k be the number of fringe subtrees of size k in a conditioned
Galton–Watson tree of size n whose offspring distribution ξ satisfies E(ξ) = 1

and V(ξ) <∞. Then we have

E(Zn,k) =
n√

2πV(ξ)k3/2
(1 + o(1)), (4.5)

and V(Zn,k) = O(n/k3/2) uniformly in k for k ≤
√
n as k, n → ∞. Moreover,

for all k ≤ n, we have

E(Zn,k) = O
( n3/2

k3/2(n− k + 1)1/2

)
. (4.6)

Proof. Let Sn be the sum of n independent copies of the offspring distribution:
Sn =

∑n
i=1 ξi. By [59, Lemma 5.1], we have

E(Zn,k) =
P(Sn−k = n− k)

P(Sn = n− 1)
qkn,

where qk is the probability that an unconditioned Galton–Watson tree with
offspring distribution ξ has final size k. Moreover, by [59, Lemma 5.2], we have

P(Sn−k = n− k)

P(Sn = n− 1)
= 1 +O

(k
n

)
+ o(n−1/2)

uniformly for all k with 1 ≤ k ≤ n
2 as n→∞. Furthermore, by [59, Eq. (4.13)]

(see also [69]), we find that

qk ∼
1√

2πV(ξ)
k−3/2 (4.7)

as k → ∞. Combining these results, we obtain the desired asymptotic for-
mula (4.5) for E(Zn,k) if k ≤

√
n and both k and n tend to infinity. For arbitrary

k, [59, Lemma 5.2] states that

P(Sn−k = n− k)

P(Sn = n− 1)
= O

( n1/2

(n− k + 1)1/2

)
.

The estimate (4.6) follows. For the variance, we can similarly employ the result
[59, Lemma 6.1], which gives us

V(Zn,k) =
P(Sn−k = n− k)

P(Sn = n− 1)
qkn−

(P(Sn−k = n− k)

P(Sn = n− 1)

)2

q2
kn(2k − 1)

+
(P(Sn−2k = n− 2k + 1)

P(Sn = n− 1)
−
(P(Sn−k = n− k)

P(Sn = n− 1)

)2)
q2
kn(n− 2k + 1).

Finally, by [59, Lemma 6.2],

P(Sn−2k = n− 2k + 1)

P(Sn = n− 1)
−
(P(Sn−k = n− k)

P(Sn = n− 1)

)2

= O
( 1

n

)
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for k ≤
√
n, uniformly in k. Combining all estimates, we find that the variance

satisfies V(Zn,k) = O(qkn) = O(n/k3/2), which completes the proof.

We remark that identity (4.5) also follows from a result in [16, Lemma 4.6]
combined with the asymptotics (4.7) on the probability that an unconditioned
Galton–Watson tree is of size k. From Lemma 4.14, we can now derive the
following lemma on fringe subtrees of a random tree Tn of size n drawn from a
simply generated family F .

Lemma 4.15. Let Tn be a random tree of size n drawn randomly from a
simply generated family of trees F such that the offspring distribution ξ of the
corresponding critical Galton–Watson process satisfies V(ξ) < ∞. Let c, ε be
positive real numbers with ε < 1

2 . For positive integers k, let Sk ⊆ Fk be a
subset of trees of size k from F , and let pk be the probability that a random tree
of size k from the given family F belongs to Sk. Let Xn,k denote the (random)
number of fringe subtrees of size k in the random tree Tn which belong to Sk.
Moreover, let Yn,ε denote the (random) number of arbitrary fringe subtrees of
size greater than nε in Tn. Then

(a) E(Xn,k) = pkn(2πV(ξ)k3)−1/2(1 + o(1)), for all k with c log n ≤ k ≤ nε.

(b) V(Xn,k) = O(pkn/k
3/2) for all k with c log n ≤ k ≤ nε.

(c) E(Yn,ε) = O(n1−ε/2), and

(d) with high probability, the following statements hold simultaneously:

(i) |Xn,k − E(Xn,k)| ≤ p1/2
k n1/2+εk−3/4 for all k with c log n ≤ k ≤ nε,

(ii) Yn,ε ≤ n1−ε/3.

We emphasize (since it will be important later) that the inequality in part (d),
item (i), does not only hold w.h.p. for each individual k, but that it is satisfied
w.h.p. for all k in the given range simultaneously. Parts (a) and (b) were shown
in the context of Galton–Watson trees in [16, Lemma 4.6 and Lemma 4.8].

Proof. Let Zn,k as in Lemma 4.14 denote the number of fringe subtrees of size
k in the conditioned Galton–Watson tree of size n with offspring distribution
ξ. Then by the correspondence between simply generated families of trees and
conditioned Galton–Watson trees, we find that Zn,k and the random number of
fringe subtrees of size k in a random tree Tn of size n drawn randomly from the
simply generated family F are identically distributed. Furthermore, conditioned
on Zn,k = N for some integer N , the N fringe subtrees of size k in Tn are
independent random trees in Fk with the same distribution. Thus, Xn,k can be
regarded as a sum of Zn,k many Bernoulli random variables with probability pk.
We thus have (see [51, Theorem 15.1, p.84])

E(Xn,k) = pkE(Zn,k) =
npk√

2πV(ξ)k3/2
(1 + o(1)),
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as well as (see again [51, Theorem 15.1, p.84])

V(Xn,k) = p2
kV(Zn,k) + pk(1− pk)E(Zn,k) = O

( npk
k3/2

)
by Lemma 4.14, which proves part (a) and part (b). For part (c), we observe
that

E(Yn,ε) =
∑
k>nε

E(Zn,k) = O
(
n1−ε/2

)
,

again by Lemma 4.14. In order to show part (d), we apply Chebyshev’s inequality
to obtain concentration on Xn,k:

P
(
|Xn,k − E(Xn,k)| ≥ p1/2

k n1/2+εk−3/4
)
≤ V(Xn,k)

pkn1+2εk−3/2
= O(n−2ε).

Hence, by the union bound, the probability that the stated inequality fails for
any k in the given range is only O(n−ε), proving that the first statement holds
w.h.p. Finally, Markov’s inequality implies that

P
(
Yn,ε > n1−ε/3

)
≤ E(Yn,ε)

n1−ε/3 = O(n−ε/6),

showing that the second inequality holds w.h.p. as well.

We are now able to prove Theorem 4.13. The proof consists of two parts.
First, the upper bound is verified; then we prove the lower bound, which has the
same order of magnitude. As mentioned above, we again make use of the cut-point
technique, which was already used for similar purposes in [24, 36, 38, 96] and in
the proofs of Theorem 3.10, Theorem 3.15 and Theorem 3.20 in Chapter 3. For
the lower bound, we use an argument based on the inclusion-exclusion-principle.
A basic variant of this proof technique already appeared in [96] and in the proof
of Theorem 3.33.

Proof of Theorem 4.13. The upper bound. For some integer k0 (to be specified
later), we can clearly bound the total number of isomorphism classes covered by
the fringe subtrees of a random tree Tn of size n from above by the sum of

(i) the total number of isomorphism classes of trees of size smaller than k0,
which is

∑
k<k0

|Ik| (a deterministic quantity that does not depend on
the tree Tn), and

(ii) the total number of fringe subtrees of Tn of size greater than or equal to
k0.

To estimate the number (i) of isomorphism classes of trees of size smaller than
k0, we note that |Ik| ≤ 2C1k+o(k) by condition (C1), thus also∑

k<k0

|Ik| ≤ 2C1k0+o(k0). (4.8)
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Therefore, we can choose k0 = k0(n) in such a way that k0 = logn
C1
− g(n) for a

function g with g(n) = o(log n) and∑
k<k0

|Ik| = o
( n√

log n

)
, (4.9)

thus making this part negligible. The concrete choice of the function g depends
on the lower-order term in the exponent on the right-hand side of (4.8), and
furthermore, g has to be chosen large enough, so that the bound o(n/

√
log n) on

the sum of sizes of isomorphism classes in (4.9) is achieved. For our purposes, it
is enough to note that there exists such a function g.

In order to estimate the number (ii) of fringe subtrees of Tn of size greater
than or equal to k0, we apply Lemma 4.15 with ε = 1/6. We let Sk be the set
of all trees of size k generated by our simply generated family of trees, so that
pk = 1, to obtain the upper bound∑

k0≤k≤nε
Xn,k + Yn,ε =

n√
2πV(ξ)

∑
k0≤k≤nε

1

k3/2
(1 + o(1)) +O

(
n1−ε/3

)
=

2√
2πV(ξ)

n√
k0

+ o

(
n√

log n

)
,

in expectation and w.h.p. as well, as the estimate from Lemma 4.15 (part (d))
holds w.h.p. simultaneously for all k in the given range. Now we combine the
two bounds to obtain the upper bound on Fn stated in Theorem 4.13, both in
expectation and w.h.p.

The lower bound. Let Sk now be the set of trees that belong to isomorphism
classes in Jk (see condition (C2)). Our lower bound is based on counting only
fringe subtrees which belong to Sk for suitable k. By condition (C2a), we know
that the probability pk that a random tree in F conditioned on having size k
belongs to a class in Jk tends to 1 as k →∞. Hence, by Lemma 4.15, we find
that the number of fringe subtrees of size k in Tn that belong to Sk is

Xn,k =
n√

2πV(ξ)k3
(1 + o(1)),

both in expectation and w.h.p. We show that most of these trees are the only
representatives of their isomorphism classes as fringe subtrees. We choose a
cut-point k1 = k1(n); the precise choice will be described later. For k ≥ k1,
let X(2)

n,k denote the (random) number of unordered pairs of isomorphic trees
(trees belonging to the same isomorphism class) among the fringe subtrees of
size k which belong to Sk. We will determine an upper bound for its expected
value. To this end, let ik denote the number of isomorphism classes of trees
in Sk, and let r1, r2, . . . , rik be the probabilities that a random tree of size k
lies in the respective classes. By condition (C2b), we have ri ≤ 2−C2k+o(k) for
every 1 ≤ i ≤ ik. Let us condition on the event that Xn,k = N for some integer
0 ≤ N ≤ n. Those N fringe subtrees are all independent random trees. Thus,
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for each of the
(
N
2

)
pairs of fringe subtrees, the probability that both belong to

the i-th isomorphism class is r2
i . This gives us

E(X
(2)
n,k | Xn,k = N) =

(
N

2

) ik∑
i=1

r2
i ≤

n2

2

ik∑
i=1

ri2
−C2k+o(k) ≤ n2

2
2−C2k+o(k).

Since this holds for all N , the law of total expectation yields

E(X
(2)
n,k) ≤ n2

2
2−C2k+o(k).

Summing over k ≥ k1, we find that

∑
k≥k1

E(X
(2)
n,k) ≤ n2

2

∑
k≥k1

2−C2k+o(k) ≤ n2

2
2−C2k1+o(k1). (4.10)

We can therefore choose k1 in such a way that k1 = logn
C2

+ g(n), again for a
function g with g(n) = o(log n) and such that∑

k≥k1

E(X
(2)
n,k) = o

( n√
log n

)
. (4.11)

Here again the concrete choice of the function g depends on the lower-order
term in the exponent on the right-hand side of (4.10), and furthermore, g has
to be chosen large enough, so that the bound o(n/

√
log n) on the sum of sizes

of isomorphism classes in (4.11) is achieved. If an isomorphism class of trees of
size k occurs i times among the fringe subtrees of a random tree of size n, it
contributes i−

(
i
2

)
to the random variable Xn,k −X(2)

n,k. As i−
(
i
2

)
≤ 1 for all

non-negative integers i, we find that Xn,k −X(2)
n,k is a lower bound on the total

number of isomorphism classes covered by fringe subtrees of Tn. This gives us

Fn ≥
∑

k1≤k≤nε
Xn,k −

∑
k1≤k≤nε

X
(2)
n,k,

where we choose ε as in the proof of the upper bound. The second sum is
negligible since it is o(n/

√
log n) in expectation and thus also w.h.p. by the

Markov inequality. For the first sum, the same calculation as for the upper
bound (using Lemma 4.15) shows that it is

2n√
2πV(ξ)k1

+ o

(
n√

log n

)
both in expectation and w.h.p. This proves Theorem 4.13.
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4.4 Distinct fringe subtrees

In this section, we count distinct fringe subtrees in random trees Tn of size
n drawn from a simply generated family of trees F , where we consider two
subtrees as distinct, if they are distinct as members of the particular family
F of trees. For this, we apply Theorem 4.13 with the following partition into
isomorphism classes I : we consider two trees as isomorphic if they are identical
as members of F , that is, each tree is isomorphic only to itself. The total number
of isomorphism classes |Ik| is thus the total number of trees in F of size k. In
order to ensure that condition (C1) from Theorem 4.13 is satisfied, we need to
make an additional assumption on F . We assume that the weights φi of the
weight sequence (φi)i≥0 are integers, and that each tree t ∈ F corresponds to a
weight of one unit, such that the total weight wn of all plane trees of size n then
equals the number of distinct trees of size n in the simply generated family F of
trees. This assumption is satisfied, e.g., by the simply generated family of plane
trees (Example 4.1 and Example 4.8), the family of d-ary trees (Example 4.2 and
Example 4.9), the family of Motzkin trees (Example 4.3 and Example 4.10) and
the families of Σ-labeled plane trees and Σ-labeled binary trees (Example 4.5).

We obtain the following result from Theorem 4.13.

Theorem 4.16. Let Fn denote the total number of distinct fringe subtrees in
a random tree Tn of size n from a simply generated family F of trees with
weight-generating series Φ whose weights φi are integers. Then we have

(i) E(Fn) =
2

τ

√
Φ(τ) log(Φ′(τ))

2πΦ′′(τ)
· n√

log n
(1 + o(1)),

(ii) Fn =
2

τ

√
Φ(τ) log(Φ′(τ))

2πΦ′′(τ)
· n√

log n
(1 + o(1)) w.h.p.

The first part (i) of Theorem 4.16 was already shown in [38, 96], our new
contribution is part (ii).

Proof. We verify that the conditions of Theorem 4.13 are satisfied if we consider
the partition of F into isomorphism classes of size one. We find that

|Ik| = wk,

i.e., the number |Ik| of isomorphism classes of trees of size k equals the number
wk of distinct trees of size k in the respective simply generated family of trees
F . With Theorem 4.6, we have

|Ik| =

√
Φ(τ)

2πΦ′′(τ)

Φ′(τ)k

k3/2
(1 +O(k−1)),

so condition (C1) is satisfied with C1 = log(Φ′(τ)). In order to show that
condition (C2) holds, define Jk = Ik, so that every random tree of size k in the
family F belongs to a class in Jk, and the probability that a random tree in F
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of size k lies in a fixed isomorphism class I ∈Jk is 1/wk. Thus, condition (C2)
holds as well, and we have C2 = C1 = log(Φ′(τ)). Recall that by (4.4), we find
that the variance of the Galton–Watson process corresponding to F is given by
V(ξ) = τ2Φ′′(τ)/Φ(τ). Theorem 4.16 now follows from Theorem 4.13.

For some concrete simply generated families of trees, we obtain the following
results from Theorem 4.16.

Corollary 4.17. Let Fn denote the total number of distinct fringe subtrees in a
uniformly random plane tree of size n. Then

(i) E(Fn) =

√
2

π

n√
log n

(1 + o(1)),

(ii) Fn =

√
2

π

n√
log n

(1 + o(1)) w.h.p.

Proof. Recall that the family of plane trees is obtained as the simply generated
family of trees with weight sequence (φi)i≥0 with φi = 1 for every i ≥ 0 (see
Examples 4.1 and 4.8). In particular, we find that Φ(x) =

∑
k≥0 x

k and that
τ = 1

2 solves the equation τΦ′(τ) = Φ(τ). Thus, the leading constant in
Theorem 4.16 evaluates to

2

τ

√
Φ(τ) log(Φ′(τ))

2πΦ′′(τ)
=

√
2

π
.

This proves the statement.

Corollary 4.18. Let Fn denote the total number of distinct fringe subtrees in a
uniformly random d-ary tree of size n. Then for the constant

cd =

(
2d

π

( d

d− 1
log d− log(d− 1)

))1/2

we find that

(i) E(Fn) = cd ·
n√

log n
(1 + o(1)),

(ii) Fn = cd ·
n√

log n
(1 + o(1)) w.h.p.

In particular, we get the constant c2 = 2
√

2/π in the case of binary trees.

Proof. For the family of d-ary trees (Examples 4.2 and 4.9) we find that the
function Φ is given by Φ(x) = (1 + x)d and that τ = (d − 1)−1 satisfies the
equation τΦ′(τ) = Φ(τ). Therefore, the leading constant in Theorem 4.16
evaluates to

2

τ

√
Φ(τ) log(Φ′(τ))

2πΦ′′(τ)
=

(
2d

π

( d

d− 1
log d− log(d− 1)

))1/2

.

This proves the statement.
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In the same way, we obtain from Theorem 4.16 results on the number of
distinct fringe subtrees in uniformly random Σ-labeled plane trees and uniformly
random Σ-labeled binary trees (see Example 4.5). The leading constants evaluate
in these cases to

√
log(4σ)/π, respectively, 2

√
log(4σ)/π, where σ = |Σ|. Thus,

Theorem 4.16 in particular also generalizes results shown in [12].
We remark that Theorem 4.16 does not apply to the family of numbered

trees (see Example 4.4), as the weight sequence corresponding to the family
of numbered trees is not a sequence of integers. In particular, the number of
numbered trees of size n is nn−1 (see for example [27]), and thus, a partition of
the set of numbered trees of size n into isomorphism classes of size one does not
satisfy condition (C1) from Theorem 4.13.

The total number Fn of distinct fringe subtrees in a uniformly random
numbered tree of size n was estimated in [96], where it was shown that

E(Fn) =

√
2

π

n
√

log(lnn)√
log n

(
1 +O

(
log log log n

log log n

))
.

Here, two fringe subtrees are considered the same if there is an isomorphism
that preserves the relative order of the labels. Note that numbered trees are
called “labeled trees” in [96].

4.5 Plane fringe subtrees

In this section, we consider simply generated families F of trees which admit a
plane embedding. For instance, for the family of d-ary trees (see Example 4.2),
we find that each d-ary tree can be considered as a plane tree in a natural way by
simply forgetting the positions to which the branches of the nodes are attached,
such that there is no distinction between different types of nodes of the same
degree. Likewise, trees from the simply generated family of numbered trees
(see Example 4.4) admit a unique plane representation if we order the children
of each node according to their labels and then disregard the node labels. If
a family F admits a plane embedding, it is possible to count the number of
fringe subtrees which are distinct as plane trees. For the family of plane trees
(see Example 4.1), the results from this section will be equivalent to the results
presented in the previous section. We start with the following lemma.

Lemma 4.19. Let ξ be the offspring distribution of a critical Galton–Watson
process satisfying V(ξ) <∞, and let Tk be a conditioned Galton–Watson tree of
size k with respect to ξ. Let M = {i ∈ N0 | P(ξ = i) > 0}, and let

µ =
∑
i∈M

P(ξ = i) log(P(ξ = i)).

The probability that ν(Tk) ≤ 2(µ+ε)k tends to 1 for every fixed ε > 0 as k →∞.

Proof. For the proof, we make use of Theorem 4.12 on additive functionals in
Galton–Watson trees (see Section 4.2). Let degr(t) denote the degree of the root
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node of a plane tree t ∈ T , and define the toll function f : T → R by

f(t) =

{
log(P(ξ = degr(t))) if P(ξ = degr(t)) > 0,

0 otherwise.

For every t ∈ T with ν(t) > 0, the associated additive functional is

F (t) =
∑

v∈V (t)

f(t[v]) =
∑

v∈V (t)

log (P(ξ = degr(t[v])))

= log
( ∏
v∈V (t)

P(ξ = deg(v))
)

= log(ν(t)).

If T denotes the unconditioned Galton–Watson tree corresponding to ξ, then

E(|f(T )|) =
∑
i∈M

P(ξ = i)| log(P(ξ = i))|,

as the probability that the root node of an unconditioned Galton–Watson tree
T has degree i for some i ∈M is given by P(ξ = i). Note that if P(ξ = i) > 2−i,
we have | log(P(ξ = i))| ≤ i. Furthermore, if P(ξ = i) ≤ 2−i, we find that
P(ξ = i)| log(P(ξ = i))| ≤ 2−i/2+1. Thus, we are able to bound E(|f(T )|) from
above by

E(|f(T )|) ≤
∑
i≥0

P(ξ = i)i+
∑
i≥0

2−i/2+1 = E(ξ) + 2 + 2
√

2 <∞, (4.12)

as the Galton–Watson process is critical by assumption. Furthermore, we have

|E(f(Tk))| ≤
∑
i≥0

P(degr(Tk) = i)| log(P(ξ = i))|.

By (2.7) in [57], there is a constant c > 0 (independent of k and i) such that

P(degr(Tk) = i) ≤ ciP(ξ = i)

for all i, k ≥ 0. We thus find

|E(f(Tk))| ≤ c
∑
i∈M

iP(ξ = i)| log(P(ξ = i))| (4.13)

≤ c
∑
i≥0

P(ξ = i)i2 + c
∑
i≥0

i2−i/2+1 <∞,

as V(ξ) < ∞ by assumption. As the upper bound holds independently of k,
we thus have |E(f(Tk))| = O(1). Altogether, we find that the requirements of
Theorem 4.12 are satisfied. Let

µ = E(f(T )) =
∑
i∈M

P(ξ = i) log(P(ξ = i)).
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Then by Theorem 4.12, the probability that

F (Tn) = log(ν(Tn)) ≤ (µ+ ε)n

holds tends to 1 for every ε > 0 as n→∞. Thus, the statement follows.

Theorem 4.20. Let Fn denote the number of distinct plane trees represented by
the fringe subtrees of a random tree Tn of size n drawn from a simply generated
family of trees F with weight-generating series Φ and let ξ denote the offspring
distribution of the corresponding Galton–Watson tree. Set

κΦ = 2τ−1(Φ(τ))1/2(2πΦ′′(τ))−1/2.

Furthermore, let M = {i ≥ 0 | φi > 0} and define the sequence (φ̃i)i≥0 by φ̃i = 1

if i ∈ M and φ̃i = 0 otherwise. Let Φ̃(x) =
∑
i≥0 φ̃ix

i, and let τ̃ denote the
solution to the equation τ̃ Φ̃′(τ̃) = Φ̃(τ̃). Set

C1 = log(Φ̃′(τ̃)) and C2 = −µ,

with µ defined as in Lemma 4.19. Then

(i) κΦ

√
C2

n√
log n

(1 + o(1)) ≤ E(Fn) ≤ κΦ

√
C1

n√
log n

(1 + o(1)),

(ii) κΦ

√
C2

n√
log n

(1 + o(1)) ≤ Fn ≤ κΦ

√
C1

n√
log n

(1 + o(1)) w.h.p.

Proof. Here we thus consider two trees as isomorphic if their plane representations
are identical. This yields a partition of Fk into isomorphism classes Ik, for
which we verify that the conditions of Theorem 4.13 are satisfied. The number
|Ik| of isomorphism classes equals the number of all plane trees of size k with
node degrees in M , which can be determined from Theorem 4.6. The weight
sequence (φ̃i)i≥0 characterizes the simply generated family of plane trees with
node degrees in M . We thus find by Theorem 4.6:

log(|Ik|) = log(Φ̃′(τ̃))k(1 + o(1)),

so condition (C1) of Theorem 4.13 is satisfied with

C1 = log(Φ̃′(τ̃)).

Next, we show that condition (C2) is satisfied as well. By Lemma 4.19 (and the
correspondence between simply generated trees and Galton–Watson trees), there
exists a sequence of integers kj such that

P
(
ν(Tk) ≤ 2(µ+1/j)k

)
≥ 1− 1

j

for all k ≥ kj . So if we set εk = min{ 1
j | kj ≤ k}, then

P
(
ν(Tk) ≤ 2(µ+εk)k

)
≥ 1− εk,
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and εk → 0 as k →∞. We define the subset Jk ⊆ Ik as the set of isomorphism
classes of trees whose corresponding plane embedding t satisfies ν(t) ≤ 2(µ+εk)k.
The probability that a random tree of size k in F lies in an isomorphism class in
the set Jk is precisely the probability that a conditioned Galton–Watson tree
Tk corresponding to the offspring distribution ξ satisfies ν(Tk) ≤ 2(µ+εk)k and
hence tends to 1 as k →∞. Furthermore, the probability that a random tree Tk
of size k in F has the shape of t ∈ Tk when regarded as a plane tree, i.e., the
probability that Tk lies in the fixed isomorphism class I ∈ Jk containing all
trees in the family F with plane representation t is never greater than

Pξ(t) =
ν(t)∑

t′∈Tk ν(t′)
.

In particular, the numerator is bounded by 2(µ+εk)k as I ∈ Jk. In order to
estimate the denominator, we apply Theorem 4.6. We find that

∑
t′∈Tn ν(t′) is

the total weight of all plane trees of size n with respect to the weight sequence
(P(ξ = k))k≥0 = (φkτ

kΦ(τ)−1)k≥0. We thus obtain from Theorem 4.6 that

∑
t′∈Tn

ν(t′) =

√
Φ(τ)

2πτ2Φ′′(τ)
n−3/2(1 +O(1/n)). (4.14)

Hence,

Pξ(t) ≤

√
2πτ2Φ′′(τ)

Φ(τ)
k3/22(µ+εk)k(1 +O(k−1)) = 2µk+o(k),

which shows that condition (C2) is satisfied with C2 = −µ. The statement of
Theorem 4.20 now follows from Theorem 4.13 and (4.4).

We remark that for the family of plane trees, the statement of Theorem 4.20
is equivalent to the statement of Theorem 4.16. As φi = 1 for every i ≥ 0 in this
case, the constant C1 in the upper bound of Theorem 4.20 evaluates to log(Φ′(τ)).
Furthermore, for every plane tree t of size n, we have ν(t)/

∑
t′∈Tn ν(t′) = 1/wn,

so that the constant C2 in Theorem 4.20 evaluates to log(Φ′(τ)) as well.
Let us determine the constants appearing in the upper and lower bound

explicitly in some examples.

Corollary 4.21. Let Fn denote the number of distinct plane trees represented
by the fringe subtrees of a uniformly random binary tree of size n. Let

c =

√
6

π
≈ 1.3819766 and c =

2
√

log 3√
π
≈ 1.4205763.

Then

(i) c
n√

log n
(1 + o(1)) ≤ E(Fn) ≤ c n√

log n
(1 + o(1)),

(ii) c
n√

log n
(1 + o(1)) ≤ Fn ≤ c

n√
log n

(1 + o(1)) w.h.p.
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Proof. The family of binary trees B� is obtained from the weight generating
function Φ(x) = 1 + 2x+ x2. A plane representation of a binary tree from B� is
a Motzkin tree (see Example 4.3), so we find that Φ̃(x) = 1 + x+ x2 (with Φ̃

defined as in Theorem 4.20). Thus, τ̃ = 1 solves the equation τ̃ Φ̃′(τ̃) = Φ̃(τ̃) and
Φ̃′(τ̃) = 3. Hence, the constant C1 in Theorem 4.20 evaluates to C1 = log 3. We
remark that the asymptotic growth of the number of Motzkin trees is well known,
see e.g. [37]. To compute the constant for the lower bound, we find that τ = 1

and Φ(τ) = Φ′(τ) = 4. Hence, the offspring distribution ξ of the Galton–Watson
process corresponding to B� is defined by P(ξ = 0) = 1/4, P(ξ = 1) = 1/2 and
P(ξ = 2) = 1/4. We find

µ =
2∑
k=0

P(ξ = k) log(P(ξ = k)) = −3

2
,

and hence C2 = 3/2. With κΦ = 2τ−1(Φ(τ))1/2(2πΦ′′(τ))−1/2 = 2/
√
π, the

statement follows.

Similarly, for the family of numbered trees, we get the following result (recall
that we obtain a unique plane representation of a numbered tree if we order the
children of each node according to their labels and then disregard the labels).

Corollary 4.22. Let Fn denote the number of distinct plane trees represented
by the fringe subtrees of a uniformly random numbered tree of size n. Let

c =

(
2

πe

∑
k≥2

log(e) + log(k!)

k!

)1/2

≈ 1.0947286

and c =
√

4
π ≈ 1.1283792. Then

(i) c
n√

log n
(1 + o(1)) ≤ E(Fn) ≤ c n√

log n
(1 + o(1)),

(ii) c
n√

log n
(1 + o(1)) ≤ Fn ≤ c

n√
log n

(1 + o(1)) w.h.p.

Proof. The family of numbered trees is obtained as the simply generated family
of trees with weight sequence (φk)k≥0 satisfying φk = 1/k! for every k ≥ 0 (see
Examples 4.4 and 4.11). We find that Φ̃(x) =

∑
k≥0 x

k and that τ̃ = 1/2 solves
the equation τ̃ Φ̃′(τ̃) = Φ̃(τ̃), so that the constant C1 in Theorem 4.13 evaluates
to C1 = log 4 = 2. In order to compute the constant for the lower bound,
we first notice that τ = 1 solves the equation τΦ′(τ) = Φ(τ) with Φ(τ) = e.
The offspring distribution ξ of the Galton–Watson process corresponding to the
family of numbered trees is well known to be the Poisson distribution (with
P(ξ = k) = (ek!)−1 for every k ≥ 0). Hence, we have

µ =
∑
k≥0

P(ξ = k) log(P(ξ = k)) = −e−1
∑
k≥0

log(e) + log (k!)

k!
.

With κΦ = 2τ−1(Φ(τ))1/2(2πΦ′′(τ))−1/2 =
√

2/π, the statement follows.
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4.6 Unordered fringe subtrees

In this section, we apply Theorem 4.13 in order to count the number of distinct
unordered trees represented by the fringe subtrees of a random tree of size n
drawn randomly from a simply generated family of trees. Thus we consider two
trees from the family F as isomorphic if their unordered representations are
identical. This is meaningful for all simply generated families, since every rooted
tree has a natural unordered representation. Let t ∈ T be a plane tree. As a
simple application of the orbit-stabilizer theorem [5, Proposition 6.9.2], one
finds that the number of plane trees with the same unordered representation as
t is given by

∏
v∈V (t) deg(v)!/|Aut(t)|, where |Aut(t)| denotes the cardinality of

the automorphism group of t. This is because the permutations of the branches
at the different nodes of t generate a group of order

∏
v∈V (t) deg(v)! acting on

the plane trees with the same unordered representation as t, and |Aut t| is the
subgroup that fixes t. It follows that

ν(t)

∏
v∈V (t) deg(v)!

|Aut(t)|

is the total weight of all plane representations of t within a simply generated
family. This quantity will play the same role that ν(t) played in the proof of
Theorem 4.20. From Theorem 4.12, we obtain the following result.

Lemma 4.23. Let ξ be the offspring distribution of a critical Galton–Watson
process satisfying V(ξ) <∞, and let Tk be a conditioned Galton–Watson tree of
size k with respect to ξ. Then there is a constant µ̂ < 0 such that the probability
that

ν(Tk)

∏
v∈V (Tk) deg(v)!

|Aut(Tk)|
≤ 2(µ̂+ε)k

holds tends to 1 for every ε > 0 as k →∞.

Proof. As in the proof of Lemma 4.19, we aim to define a suitable additive
functional and apply Theorem 4.12. To this end, we need a recursive description
of |Aut t|, the size of the automorphism group. Let degr(t) again denote the
degree of the root node of t, let t1, t2, . . . , tdegr(t) be the root branches of a tree
t, and let m1,m2, . . . ,mkt denote the multiplicities of isomorphic branches of t
(m1 +m2 + · · ·+mkt = degr(t)). Here we call two trees isomorphic if they are
identical as unordered trees. That is, the degr(t) many subtrees rooted at the
children of the root node fall into kt many different isomorphism classes, where
mi of them belong to isomorphism class i, respectively. Then we have

|Aut(t)| =
degr(t)∏
j=1

|Aut(tj)| ·
kt∏
i=1

mi! ,

since an automorphism of t acts as an automorphism within branches and also
possibly permutes branches that are isomorphic. In fact, the whole structure of



74 Chapter 4. Simply generated families of trees

Aut(t) is well understood [61]. It follows from the recursion for |Aut(t)| that

F (t) = log

(
ν(t)

∏
v∈V (t) deg(v)!

|Aut(t)|

)

(well-defined for all t with ν(t) > 0) is the additive functional associated with
the toll function f that is defined by

f(t) = log(P(ξ = degr(t)) degr(t)!)− log(m1! · · ·mkt !), (4.15)

if P(ξ = degr(t)) > 0, and f(t) = 0 otherwise. Let M = {i ≥ 0 | P(ξ = i) > 0},
and let T be the unconditioned Galton–Watson tree corresponding to ξ. Since
0 ≤ log(degr(t)!)− log(m1!m2! · · ·mkt !) ≤ log(degr(t)!), we have

E(|f(T )|) ≤
∑
i∈M

P(ξ = i)| log(P(ξ = i))|+
∑
i∈M

P(ξ = i)| log(i!)|.

The first sum was shown to be finite earlier in (4.12), and the second sum is
finite as log(i!) = O(i2) and V(ξ) <∞ by assumption. Moreover, we find

|E(f(Tk))| ≤
∑
i∈M
i≤k

P(degr(Tk) = i)| log(P(ξ = i)i!)|.

By (2.7) in [57], there is a constant c > 0 (independent of k and i) such that

P(degr(Tk) = i) ≤ ciP(ξ = i)

for all i, k ≥ 0. We thus find

|E(f(Tk))| ≤ c
∑
i∈M
i≤k

iP(ξ = i)| log (P(ξ = i)i!) |

≤ c
∑
i∈M

iP(ξ = i)| log (P(ξ = i)) |+ c
∑
i∈M
i≤k

iP(ξ = i) log (i!) .

The first sum was shown to be finite in (4.13). As log(i!) ≤ i log i, we obtain∑
i∈M
i≤k

iP(ξ = i) log (i!) ≤ log k
∑
i∈M

i2P(ξ = i) = O(log k),

for the second sum, as by assumption, V(ξ) <∞. In particular, we thus have
E|f(Tk)| = O(log k). Altogether, we find that the requirements of Theorem 4.12
are satisfied. Now set µ̂ = E(f(T )). By Theorem 4.12, the probability that

F (Tk) = log

(
ν(Tk)

∏
v∈V (Tk) deg(v)!

|Aut(Tk)|

)
≤ (µ̂+ ε)k

holds tends to 1 for every ε > 0 as k →∞. Thus, the statement follows.
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Additionally, we need the following result on the number of unordered trees
with node degrees from some given set M ⊆ N0:

Theorem 4.24 ([37, pp. 71-72]). Let M ⊆ N0 with 0 ∈M , and let uMk denote
the number of unordered rooted trees t of size k with the property that the degree
of every node in t lies in M . Then

uMk ∼ aM ·
bkM
k3/2

if k ≡ 1 mod gcd(M), where gcd(M) is the greatest common divisor of all
elements of M , and uMk = 0 otherwise, where aM , bM depend on M .

Again for the sake of simplicity, we assume that gcd(M) = 1 holds for all
families of trees considered in the following. We are now able to derive the
following theorem.

Theorem 4.25. Let Fn denote the total number of distinct unordered trees
represented by the fringe subtrees of a random tree Tn of size n drawn from
a simply generated family of trees F . Set κΦ = 2τ−1(Φ(τ))1/2(2πΦ′′(τ))−1/2.
Furthermore, let M = {i ∈ N0 | φi > 0} and set C1 = log(bM ), where bM is the
constant in Theorem 4.24, and C2 = −µ̂, where µ̂ is the constant in Lemma 4.23.
Then

(i) κΦ

√
C2

n√
log n

(1 + o(1)) ≤ E(Fn) ≤ κΦ

√
C1

n√
log n

(1 + o(1)),

(ii) κΦ

√
C2

n√
log n

(1 + o(1)) ≤ Fn ≤ κΦ

√
C1

n√
log n

(1 + o(1)) w.h.p.

Proof. Here we consider two trees as isomorphic if their unordered representations
are identical. This yields a partition of Fk into isomorphism classes Ik, for
which we verify that the conditions of Theorem 4.13 are satisfied. The number
|Ik| of isomorphism classes equals the number of all unordered trees of size k
with node degrees in M , which is given by Theorem 4.24. We have

log(|Ik|) = log(bM )k(1 + o(1)).

Hence, condition (C1) is satisfied with C1 = log(bM ). Note that if two plane
trees t, t′ ∈ T have the same unordered representation, we have ν(t) = ν(t′),∏
v∈V (t) deg(v)! =

∏
v∈V (t′) deg(v)! and |Aut(t)| = |Aut(t′)|. As in the proof of

Theorem 4.20, we can now use Lemma 4.23 to show that there exists a sequence
εk that tends to 0 as k →∞ with the property that

P
(
ν(Tk)

∏
v∈V (Tk) deg(v)!

|Aut(Tk)|
≤ 2(µ̂+εk)k

)
≥ 1− εk.

So let Jk ⊆ Ik denote the subset of isomorphism classes of trees in Fk such
that the trees t that they represent satisfy

ν(t)

∏
v∈V (t) deg(v)!

|Aut(t)|
≤ 2(µ̂+εk)k.
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The probability that a random tree of size k drawn from Fk lies in an isomorphism
class that belongs to the set Jk is precisely the probability that a conditioned
Galton–Watson tree Tk of size k with offspring distribution ξ satisfies

ν(Tk)

∏
v∈V (Tk) deg(v)!

|Aut(Tk)|
≤ 2(µ̂+εk)k,

which is at least 1− εk by construction. Thus condition (C2a) is satisfied. In
order to show that condition (C2b) is satisfied as well, let I ∈Jk be a single
isomorphism class, and let u be the unordered tree that it represents. The
probability that a random tree in F of size k lies in the isomorphism class I is

ν(u)∑
t∈Tk ν(t)

∏
v∈u deg(v)!

|Aut(u)|
,

since
∏
v∈t deg(v)!/|Aut(t)| equals the number of plane representations of the

tree u, each of which has probability ν(u). As in the proof of Theorem 4.20 (see
(4.14)), we have

∑
t∈Tk

ν(t) =

√
Φ(t)

2πτ2Φ′′(τ)
k−3/2(1 +O(k−1)).

Thus, the probability that a random tree in F of size k lies in a single isomorphism
class I ∈Jk is never greater than√

2πτ2Φ′′(τ)

Φ(τ)
k3/22(µ̂+εk)k(1 +O(k−1)) = 2µ̂k+o(k).

So condition (C2b) is satisfied as well, with C2 = −µ̂. Theorem 4.25 now follows
directly from Theorem 4.13.

In order to obtain bounds on the number Fn of distinct unordered trees
represented by the fringe subtrees of a random tree Tn drawn from some concrete
family of trees, we need to determine the values of the constants µ̂ and bM in
Lemma 4.23 and Theorem 4.24 for the particular family of trees. We show this
in two examples.

Corollary 4.26. Let Fn denote the number of distinct unordered trees represented
by the fringe subtrees of a uniformly random binary tree with n nodes. Then for
c ≈ 1.2721401445 and c ≈ 1.2925885353, we have

(i) c
n√

log n
(1 + o(1)) ≤ E(Fn) ≤ c n√

log n
(1 + o(1)),

(ii) c
n√

log n
(1 + o(1)) ≤ Fn ≤ c

n√
log n

(1 + o(1)) w.h.p.

Proof. We prove the statement for the family of full binary trees B. The corollary
then follows from the one-to-one correspondence between the set B�n of binary
trees of size n and the set Bn of full binary trees of leafsize n, and the fact that
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the number of distinct fringe subtrees in a binary tree equals the number of
distinct fringe subtrees in the corresponding full binary tree minus one. For the
family of full binary trees B, the required values can be obtained from known
results. The number of unordered rooted trees of leafsize k with node degrees
in M = {0, 2} is given by the kth Wedderburn-Etherington number Wk. The
asymptotic growth of these numbers is

Wk ∼ aM · k−3/2 · bkM ,

for certain positive constants aM , bM [10, 35], where bM ≈ 2.4832535363. In
order to determine a concrete value for the constant µ̂ in Lemma 4.23 for the
family of full binary trees B, we make use of a theorem by Bóna and Flajolet
[10] on the number of automorphisms of a uniformly random full binary tree.
The following statement is stated for phylogenetic trees in [10], but the two
probabilistic models are equivalent: Consider a uniformly random full binary
tree Tk with k leaves, and let |Aut(Tk)| be the cardinality of its automorphism
group. The logarithm of this random variable satisfies a central limit theorem:
For certain positive constants α and β, we have

P(|Aut(Tk)| ≤ 2αk+β
√
kx)

k→∞→ 1√
2π

∫ x

−∞
e−t

2/2 dt (4.16)

for every real number x, where α ≈ 0.2710416936 [10].
The simply generated family B of full binary trees corresponds to the weight

sequence with φ0 = φ2 = 1 and φj = 0 for j /∈ {0, 2}. The corresponding
offspring distribution ξ satisfies P(ξ = 0) = P(ξ = 2) = 1/2. Let t denote a full
binary tree of size n = 2k − 1, with k leaves and k − 1 internal nodes. Then
ν(t) = 2−2k+1 and

∏
v∈V (t) deg(v)! = 2k−1, and consequently

ν(Tk)

∏
v∈V (Tk) deg(v)!

|Aut(Tk)|
=

1

2k|Aut(Tk)|

for a random full binary tree Tk with k leaves. It follows from (4.16) that for
every ε > 0,

lim
n→∞

P
(∣∣∣ 1

2k − 1
log
(
ν(Tk)

∏
v∈V (Tk) deg(v)!

|Aut(Tk)|

)
+

1 + α

2

∣∣∣ > ε
)

= 0

thus µ̂ = − 1+α
2 ≈ −0.6355208468 in this special case. The statement now follows

from Theorem 4.25.

For the family of numbered trees (Example 4.4), we similarly obtain the
following result from Theorem 4.25.
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Corollary 4.27. Let Fn denote the number of distinct unordered trees represented
by the fringe subtrees of a uniformly random numbered tree of size n. Then for
c ≈ 0.9830940673 and c ≈ 0.9976849212, we have

(i) c
n√

log n
(1 + o(1)) ≤ E(Fn) ≤ c n√

log n
(1 + o(1)),

(ii) c
n√

log n
(1 + o(1)) ≤ Fn ≤ c

n√
log n

(1 + o(1)) w.h.p.

Proof. For the family of numbered trees, we have M = {0, 1, 2, . . .}, and the
number of isomorphism classes is the number of Pólya trees (rooted unordered
trees), which follows the same kind of asymptotic formula as the Wedderburn-
Etherington numbers above, with a growth constant bM ≈ 2.9557652857, see
[91], [37, Section VII.5] or [35, Section 5.6]. This immediately gives us the value
of C1 = log(bM ). The number of automorphisms satisfies a similar central limit
theorem as in (4.16), with a constant α ≈ 0.0754386818 (and k being the number
of nodes rather than the number of leaves), see [90]. Since we have P(ξ = i) = 1

ei!

for numbered trees, the expression log(P(ξ = degr(t)) degr(t)!) in (4.15) simplifies
to log(1/e) for every value of degr(t). So we have µ̂ = log(1/e) − α and thus
C2 = − log(1/e) + α ≈ 1.0754386818. Finally, κΦ =

√
2/π in this example.

Putting everything together, we obtain the following numerical values for the
constants in Theorem 4.25 in the case of numbered trees:

κΦ

√
C2 ≈ 0.9830940673 and κΦ

√
C1 ≈ 0.9976849212.

The statement follows.

4.7 Conclusion and open problems

Our main theorem of this chapter is quite general and covers many different
types of trees as well as different notions of distinctness. As the examples with
explicit constants show, the upper and lower bounds they provide are typically
quite close.

Nevertheless, the following natural question arises from our results: In
Theorem 4.20 and Theorem 4.25 respectively, we have derived upper and lower
bounds on the number Fn of distinct plane, respectively, distinct unordered fringe
subtrees in a random simply-generated tree Tn. Is it possible, instead of lower
and upper bounds, to determine a constant c (depending on the concrete notion
of distinctness) such that Fn asymptotically grows as c · n/ log n in expectation
and with high probability? In order to prove such estimates, it seems essential
to gain a better understanding of the different additive functionals that we
employed in the proofs of these theorems, in particular their distributions further
away from the mean values.

Moreover, we remark that to determine the variance V(Fn) is an open problem,
even under the usual, non-generalized notion of distinctness and even for very
basic probability distributions as the uniform distribution on the family of plane
trees of size n.



Chapter 5

Increasing trees

5.1 Introduction

In this chapter, we again investigate the number of distinct fringe subtrees in
random trees. The random tree model considered in this chapter is the model of
very simple families of increasing trees (a formal definition follows), which in
particular incorporates the binary search tree model (Definition 2.15).

In the same way as in Chapter 4, we estimate the number of distinct fringe
subtrees under a generalized notion of distinctness. We again assume that the
trees of size k within the given family of trees are partitioned into a set Ik of
isomorphism classes for every k. The quantity of interest is then again the total
number of isomorphism classes that occur among the fringe subtrees of a random
tree with n nodes. This in particular incorporates the three particular notions
of distinctness (i)-(iii) presented in Section 4.1.

So far, distinct fringe subtrees in random increasing trees have only been
investigated under the particular notion of distinctness that two trees are consid-
ered as distinct if their shapes are distinct as members of the particular family of
trees. In [9], it is shown for two particular families of increasing trees (recursive
trees and binary search trees) that the average number of distinct fringe subtrees
in a random tree of size n is asymptotically bounded from above by O(n/ log n)

and bounded from below by Ω(
√
n). Furthermore, it is conjectured that the

asymptotics Θ(n/ log n) holds.
For the binary search tree model, it was already shown in [36, 24], that the

expected number of distinct fringe subtrees in a random binary search tree of
size n is upper-bounded by 4n/ log n(1+o(1)). Moreover, Devroye showed in [24]
that an asymptotic lower bound of the form c · n/ log n holds for the constant
c = log(3)/2, and in [S8] an asymptotic lower bound of the form c · n/ log n was
shown for the constant c ≈ 0.8681 (see also Example 3.29). That is, for the
binary search tree model it is already known that the asymptotics Θ(n/ log n)

holds.
Our main contribution of this chapter is a very general theorem which

estimates the number of distinct fringe subtrees in a random increasing tree

79
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(from one of the very simple families of increasing trees, that is, recursive
trees, generalized plane-oriented recursive trees and d-ary increasing trees, see
Section 5.2) under a generalized notion of distinctness. This general main theorem
states that under rather mild assumptions on the partition into isomorphism
classes, the number of isomorphism classes that occur among the fringe subtrees of
such a random increasing tree with n nodes is in Θ(n/ log n), both in expectation
and with high probability. The precise statement is presented in Theorem 5.3,
and the conditions we assume on the isomorphism classes are given in (C1) and
(C2).

The random tree model, the results and proof techniques presented in this
chapter resemble in many ways the concepts, results and techniques from Chap-
ter 4. As an application of our general main theorem, we again count the numbers
of distinct fringe subtrees in random increasing trees under three particular no-
tions of distinctness for the concrete families of increasing trees in Section 5.4,
Section 5.5 and Section 5.6.

In particular, we settle the open conjecture from [9], by showing that the
number of distinct fringe subtrees in a random recursive tree of size n is indeed in
Θ(n/ log n), not only in expectation, but also with high probability. Furthermore,
with respect to the binary search tree model, we strengthen the results from
[36, 24, 9], by showing that the number of distinct (as binary trees) fringe
subtrees Fn in a random binary search tree of size n satisfies

cn

log n
(1 + o(1)) ≤ Fn ≤

4n

log n
(1 + o(1)),

where c ≈ 3.472754274, both in expectation and with high probability (see
Corollary 5.6). That is, we show that the upper bound from [36, 24], does not
only hold in expectation, but also with high probability, and improve the lower
bound from [24], [S8].

The results presented in this chapter are published in [S11] (see also the
conference version [S10]).

5.2 Very simple families of increasing trees

The random model of increasing trees is defined in a quite similar way as the
model of simply generated families of trees from the previous chapter.

We call a rooted tree t increasing, if its nodes are labeled with the numbers
1, 2, . . . , |t| in such a way that no two nodes receive the same label and that the
labels along any path from the root to a leaf are increasing. A plane-oriented
recursive tree is a labeled plane tree which is increasing. We denote the set of
plane-oriented recursive trees with I and the set of plane-oriented recursive trees
of size n with In for every n ≥ 1.

If one assigns a weight function to plane-oriented recursive trees in the
same way as to plane trees in the case of simply generated families of trees in
the previous chapter, one obtains a simple variety of increasing trees [7, 27].
Let nt0, . . . , nt|t| again denote the numbers of nodes of a tree t of degree i for
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0 ≤ i ≤ |t|, let (φi)i≥0 be a weight sequence of non-negative real numbers and
define the weight w(t) of a tree t as

w(t) =
∏

v∈V (t)

φdeg(v) =
∏
i≥0

φ
nti
i .

As in the previous chapter, we obtain a probability mass function PΦ on In for
every n ≥ 1 if we set

wn =
∑
t∈In

w(t)

and PΦ(t) = w(t)/wn. Note that PΦ also induces a probability distribution on
Tn, if we discard the node labels of the increasing trees and identify trees of the
same shape. Furthermore, we define

Φ(x) =
∑
i≥0

φix
i.

A general treatment of simple varieties of increasing trees was given by Bergeron,
Flajolet and Salvy in [7]. In this chapter, we focus on three particular random
models of increasing trees, which are collectively sometimes called very simple
families of increasing trees [92]. The three random models considered in this
chapter are the following.

(i) Random plane-oriented recursive trees (ports) and random generalized
plane-oriented recursive trees (gports). A natural choice for the weight
sequence (φi)i≥0 is to set φi = 1 for every i ≥ 0. This random tree
model yields random plane-oriented recursive trees (ports). In this model,
every tree t ∈ In gets a weight of one unit. The function Φ is given
by Φ(x) = (1 − x)−1 in this case. Generalized plane-oriented recursive
trees (gports) are defined by Φ(x) = (1 − x)−r for some constant r > 0

(respectively, φi =
(
r+i−1
i

)
for every i ≥ 0).

(ii) Random d-ary increasing trees. Random d-ary increasing trees are defined
by Φ(x) = (1 + x)d, that is, φi =

(
d
i

)
for every i ≥ 0.

(iii) Random recursive trees. A recursive tree is an unordered increasing tree.
The uniform distribution on the set of recursive trees of size n for every
n ≥ 1 is obtained by the weight sequence (φi)i≥0 with φi = 1/i! for every
i ≥ 0. This takes into account that for a node of degree i there are i!
possibilities to order its i branches. The generating series Φ is given as
Φ(x) = ex in this case.

These three models (i) - (iii) are the increasing tree analogues of (generalized)
plane trees, d-ary trees and numbered trees from the previous chapter on simply
generated families of trees (see Example 4.1, Example 4.2 and Example 4.4).
Note that we obtain a probability distribution on the set of plane trees/d-ary
trees/unordered trees of size n if we generate a random gport/d-ary increasing
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tree/recursive tree of size n and then omit the node labels and identify trees of
the same shape. Thus, counting distinct fringe subtrees in a random gport/d-
ary increasing tree/recursive tree (under a notion of distinctness that does not
consider node labels) is the same as counting distinct fringe subtrees in a random
plane/d-ary/unordered tree (under the same notion of distinctness) with respect
to the probability distribution induced on these sets by the respective random
model of increasing trees. Let t be a plane tree with n nodes. The number of
increasing labelings of the nodes with labels 1, 2, . . . , n is given by

n!∏
v∈V (t) |t[v]|

, (5.1)

see for example [100, Eq. (5)] or [67, Section 5.1.4, Exercise 20]. In particular,
as for two trees of size n the number of increasing labelings can differ, the
probability distribution obtained on the set of plane trees/d-ary trees/unordered
trees of size n by omitting the node labels of a random gport/d-ary increasing
tree/recursive tree of size n does not coincide with the uniform distribution on
the set of plane/d-ary/unordered trees of size n. In particular, it is well known
that in the case of binary increasing trees, we obtain the binary search tree
model in that way [27], that is, the random tree model of binary increasing trees
and random binary search trees (Definition 2.15) are equivalent.

These three models (i), (ii) and (iii) (defined on the previous page) of
increasing trees furthermore have the property that random elements from these
families can be generated by a simple growth process (see e.g. [27]): We start
with the root, which is labeled 1. The n-th node (labeled n) is attached at
random to one of the previous n−1 nodes, with a probability that is proportional
to a linear function of the degree of the nodes. Specifically, the probability to
attach to a node v with degree i is always proportional to 1 + αi, where α is
defined as follows:

˛ For random recursive trees, we have α = 0. Hence, it is equally likely to
attach to any of the n − 1 existing nodes. This takes into account that
recursive trees are unordered, thus, there is only one possible way to attach
a new node to an existing node. Each recursive tree of size n is generated
with probability of 1/(n− 1)! in this process.

˛ For ports, we have α = 1. Hence, the probability to attach to a node
increases with the number of children the node has. This takes into account
that ports are ordered trees, thus, if a node v already has i children, then
there are i+ 1 possible ways to attach a new node to v.

In the case of gports, we have α = 1/r. As nodes in gports have a higher
probability to become parent of a new node if they already have many
children, they are also called preferential attachment trees.

˛ For d-ary increasing trees, we set α = −1/d. Thus, nodes can only have up
to d children in d-ary increasing trees, as the probability to attach further
nodes becomes 0.
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The number (respectively, total weight) of trees with n nodes is (see e.g. [27])

˛ wn = (n− 1)! for recursive trees,

˛ wn =
∏n−1
k=1(k(r + 1)− 1) for gports,

˛ wn =
∏n−1
k=1(1 + k(d− 1)) for d-ary increasing trees (in particular, n! for

binary increasing trees).

In order to investigate the number of distinct fringe subtrees in random trees,
we again make use of results on the total number of (all) fringe subtrees of a
given size in a random tree from one of the very simple families of increasing
trees (the idea is then again to apply the cut-point technique as explained in
Section 3.2 and as also applied in Chapter 4). The following formulas for the
mean and variance are shown in [40]:

Lemma 5.1 ([40]). Consider a very simple family of increasing trees. For every
k < n, let Zn,k be the random number of fringe subtrees of size k in a random
tree of size n drawn from the very simple family of increasing trees. Then the
expectation of Zn,k satisfies

E(Zn,k) =
(1 + α)n− α

((1 + α)k + 1)((1 + α)k − α)
,

and for the variance of Zn,k, we have V(Zn,k) = O(n/k2) uniformly in n and k.

Additive functionals in increasing trees. Furthermore, as in the previous
chapter, we make use of additive functionals. Let f : I → R again denote a toll
function (for our purposes, it suffices to consider toll functions whose values do
not depend on the node labels). An additive tree functional is again a mapping
F : I → R defined by

F (t) =
∑

v∈V (t)

f(t[v]).

For additive functionals of increasing trees with finite support, i.e., for functionals
for which there exists a constant K such that f(t) = 0 whenever |t| > K, a
central limit theorem was proven in [53] and [97] (the latter even contains a
slightly more general result). Those results do not directly apply to the additive
functionals that we are considering here. However, convergence in probability is
sufficient for our purposes. We have the following lemma:

Lemma 5.2. Let Tn denote a random tree with n nodes from one of the very
simple families of increasing trees (recursive trees, d-ary increasing trees, gports),
and let F be any additive functional with toll function f . As before, set α = 0

for recursive trees, α = − 1
d for d-ary increasing trees and α = 1

r for gports. We
have

E(F (Tn)) = E(f(Tn)) +
n−1∑
k=1

((1 + α)n− α)E(f(Tk))

((1 + α)k + 1)((1 + α)k − α)
.
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Moreover, if E|f(Tn)| = o(n) and
∑∞
k=1

E|f(Tk)|
k2 <∞, then we have

F (Tn)

n

p→ µ =
∞∑
k=1

(1 + α)E(f(Tk))

((1 + α)k + 1)((1 + α)k − α)
.

Proof. The first statement follows directly from Lemma 5.1, since fringe subtrees
are, conditioned on their size, again random trees following the same probabilistic
model as the whole tree. For functionals with finite support, where f(T ) = 0 for
all but finitely many trees T , convergence in probability follows from the central
limit theorems in [53] and [97]. For the more general case, we approximate the
additive functional F with a truncated version Fm based on the toll function

fm(T ) =

{
f(T ) |T | ≤ m,
0 otherwise.

Since we already know that convergence in probability holds for functionals with
finite support, we have

Fm(Tn)

n

p→ µm =

m∑
k=1

(1 + α)E(f(Tk))

((1 + α)k + 1)((1 + α)k − α)
.

Now we use the triangle inequality and Markov’s inequality in order to estimate
P(|F (Tn)/n− µ| > ε). Choose m sufficiently large so that |µm − µ| < ε

3 . Then
we have

P
(∣∣∣F (Tn)

n
− µ

∣∣∣ > ε
)

≤ P
(∣∣∣Fm(Tn)

n
− µm

∣∣∣ > ε

3

)
+ P

(∣∣∣Fm(Tn)− F (Tn)

n

∣∣∣ > ε

3

)
≤ P

(∣∣∣Fm(Tn)

n
− µm

∣∣∣ > ε

3

)
+

3

ε
E
(∣∣∣Fm(Tn)− F (Tn)

n

∣∣∣)
≤ P

(∣∣∣Fm(Tn)

n
− µm

∣∣∣ > ε

3

)
+

3E|f(Tn)|
εn

+
n−1∑

k=m+1

3((1 + α)n− α)E|f(Tk)|
εn((1 + α)k + 1)((1 + α)k − α)

for n > m. Since Fm(Tn)
n

p→ µm, it follows that

lim sup
n→∞

P
(∣∣∣F (Tn)

n
− µ

∣∣∣ > ε
)
≤ 3

ε

∞∑
k=m+1

(1 + α)E|f(Tk)|
((1 + α)k + 1)((1 + α)k − α)

.

As
∑∞
k=1

E|f(Tk)|
k2 <∞ by assumption, we can take m→∞, and finally find that

lim
n→∞

P
(∣∣∣F (Tn)

n
− µ

∣∣∣ > ε
)

= 0,

completing the proof.
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5.3 A general main theorem

As in the case of simply generated families of trees from Chapter 4, we start
with a general main theorem that counts the number of distinct fringe subtrees
in a random increasing tree from one of the very simple families of increasing
trees under a generalized notion of distinctness.

As increasing trees of size n are labeled with the numbers 1, . . . , n in such
a way that no two nodes obtain the same label, no two fringe subtrees of an
increasing tree are identical as labeled trees, or in other words, the number of
distinct labeled fringe subtrees of an increasing tree of size n is always equal to
n. This leads in a natural way again to the consideration of isomorphism classes.
For the sake of simplicity, we assume that the partitioning into isomorphism
classes only depends on the shape of the trees and does not take node labels into
account.

We again assume that the trees of size k within the given family F of trees
are partitioned into a set Ik of isomorphism classes for every k. The quantity of
interest is then the total number of isomorphism classes that occur among the
fringe subtrees of a random tree with n nodes. We assume that the partition
into isomorphism classes satisfies the same properties as in Chapter 4.3.

(C1) We have lim supk→∞
log |Ik|

k = C1 <∞.

(C2) There exist subsets Jk ⊆ Ik of isomorphism classes and a positive constant
C2 such that

(C2a) a random tree in the family F with k nodes belongs to a class in
Jk with probability 1− o(1) as k →∞, and

(C2b) the probability that a random tree in F with k nodes lies in a fixed
isomorphism class I ∈Jk is never greater than 2−C2k+o(k).

Note that (C2a) and (C2b) imply that |Ik| ≥ |Jk| ≥ 2C2k−o(k), thus we have
C1 ≥ C2 > 0. Two increasing trees that have the same shape will lie in the same
isomorphism class for the partitions we consider below. Under the conditions
(C1) and (C2), we prove the following general statement.

Theorem 5.3. Let F be one of the “very simple families” of increasing trees,
namely recursive trees, d-ary increasing trees, or gports. Let a partition into
isomorphism classes be given that satisfies (C1) and (C2), and let Fn denote the
total number of different isomorphism classes represented by the fringe subtrees
of a random tree Tn of size n drawn from F . With α = 0 in the case of recursive
trees, α = 1/r in the case of gports, and α = −1/d for d-ary increasing trees, we
have

(i)
C2n

(1 + α) log n
(1 + o(1)) ≤ E(Fn) ≤ C1n

(1 + α) log n
(1 + o(1)),

(ii)
C2n

(1 + α) log n
(1 + o(1)) ≤ Fn ≤

C1n

(1 + α) log n
(1 + o(1)) w.h.p.
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The proof of Theorem 5.3 follows exactly the same steps as the proof of
the corresponding main theorem (Theorem 4.13) from the previous chapter. In
particular, we again make use of the cut-point technique that was already used
in Chapter 3 and Chapter 4.

We start with the following lemma, which resembles Lemma 4.15 from
Chapter 4.3. The key difference is the asymptotic behaviour of the number of
fringe subtrees with k nodes as k increases: instead of a factor k−3/2, we have
a factor k−2. Recall that the shape of a labeled tree denotes its underlying
unlabeled tree.

Lemma 5.4. Let Tn be a random tree of size n drawn from a very simple family
of increasing trees with α defined as above. Let c, ε be positive real numbers with
ε < 1

2 . For every positive integer k with c log n ≤ k ≤ nε, let Sk be a subset of
the possible shapes of a tree of size k, and let pk be the probability that a random
tree of size k from the given family has a shape that belongs to Sk. Furthermore,
let Xn,k denote the (random) number of fringe subtrees of size k in the random
tree Tn whose shape belongs to Sk. Moreover, let Yn,ε denote the (random)
number of arbitrary fringe subtrees of size greater than nε in Tn. Then

(a) E(Xn,k) = npk
(1+α)k2 (1 +O(1/k)) for all k with c log n ≤ k ≤ nε,

(b) V(Xn,k) = O(pkn/k
2) for all k with c log n ≤ k ≤ nε,

(c) E(Yn,ε) = O(n1−ε), and

(d) with high probability, the following statements hold simultaneously:

(i) |Xn,k − E(Xn,k)| ≤ p1/2
k k−1n1/2+ε for all k with c log n ≤ k ≤ nε,

(ii) Yn,ε ≤ n1−ε/2.

Proof. The proof is quite similar to the proof of Lemma 4.15. Let again Zn,k
denote the number of fringe subtrees of size k in the random tree Tn. Again
we find that Xn,k can be regarded as a sum of Zn,k Bernoulli random variables
with probability pk. By [51, Theorem 15.1], we have

E(Xn,k) = pkE(Zn,k)

as well as

V(Xn,k) = p2
kV(Zn,k) + pk(1− pk)E(Zn,k).

Now (a) and (b) both follow from Lemma 5.1. In order to estimate E(Yn,ε),
observe that

E(Yn,ε) =
∑
k>nε

E(Zn,k).
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Now (c) also follows from Lemma 5.1. In order to show (d), we again apply
Chebyshev’s inequality:

P
(
|Xn,k − E(Xn,k)| ≤ p1/2

k n1/2+εk−1
)
≤ V(Xn,k)

pkk−2n1+2ε
= O(n−2ε).

Thus, by the union bound, the probability that the stated inequality fails for any
k in the given range is only O(n−ε), such that the first statement holds w.h.p.
Finally, by Markov’s inequality, we find that

P
(
Yn,ε > n1−ε/2

)
≤ E(Yn,ε)

n1−ε/2 = O(n−ε/2),

such that the second inequality holds w.h.p. as well.

We are now able to prove Theorem 5.3. With Lemma 5.4 in mind, it is easy
to see that the proof is completely analogous to the proof of Theorem 4.13. The
only difference is that sums of the form

∑
a≤k≤b k

−3/2 become sums of the form∑
a≤k≤b k

−2. Since the proof of Theorem 5.3 is line by line analogous to the
proof of Theorem 4.13, we omit the details here in order to avoid repetitions.

5.4 d-ary fringe subtrees

Our first application of Theorem 5.3 is to count the number of distinct (shapes of)
d-ary trees in a random d-ary increasing tree. We obtain the following theorem:

Theorem 5.5. Let Fn be the number of distinct d-ary trees occurring among the
fringe subtrees of a random d-ary increasing tree of size n. For the two constants

c(d) =
d

d− 1
log(d− 1) + d2

∞∑
k=1

log k

((d− 1)k + d)((d− 1)k + 1)
,

c(d) =
d

d− 1

(
d log d− (d− 1) log(d− 1)

)
the following holds:

(i)
c(d)n

log n
(1 + o(1)) ≤ E(Fn) ≤ c(d)n

log n
(1 + o(1)),

(ii)
c(d)n

log n
(1 + o(1)) ≤ Fn ≤

c(d)n

log n
(1 + o(1)) w.h.p.

Proof. We verify that the conditions of Theorem 5.3 are satisfied. For this,
we consider a partition into isomorphism classes, where we consider two trees
as isomorphic, if their underlying unlabeled d-ary trees (i.e., their shapes) are
identical. Note that (C1) holds in this case for the same reasons as before in the
case of simply-generated families of trees: The family of (unlabeled) d-ary trees
(see Example 4.2) can be modeled as a simply generated family of trees with weight
generating series Φ(x) = (1 + x)d. Using Theorem 4.6, we find that the constant
C1 from Theorem 5.3 evaluates in this case to C1 = d log(d)− (d− 1) log(d− 1).
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We now verify (C2). For this, we have to take the number of increasing
labelings into account. Recall from (5.1) that this number is given as

n!∏
v∈V (t) |t[v]|

.

Let f(t) = log |t| denote a toll function, then the corresponding additive func-
tional is given as

F (t) =
∑

v∈V (t)

log |t[v]|.

This quantity, i.e., the sum of the logarithms of all fringe subtree sizes, is also
known as the shape functional, see [34]. We find that the additive functional F
clearly satisfies the conditions of Lemma 5.2, with

µ =
∞∑
k=1

(1− 1/d) log k

((1− 1/d)k + 1)((1− 1/d)k + 1/d)

= d(d− 1)
∞∑
k=1

log k

((d− 1)k + d)((d− 1)k + 1)
.

In particular (as in the proofs of Theorem 4.20 and Theorem 4.25) we can now
use Lemma 5.2 to show that there exists a sequence (εk)k≥0 that tends to 0 as
k →∞ with the property that

P
( ∏
v∈V (Tk)

|Tk[v]| ≥ 2(µ−εk)k
)
≥ 1− εk,

for every k ≥ 0, where Tk denotes a random d-ary increasing tree of size k.
We hence define the subset of isomorphism classes Jk ⊆ Ik as the set of
isomorphism classes, whose corresponding shape t satisfies∏

v∈V (t)

|t[v]| ≥ 2(µ−εk)k.

In particular, the probability that a random tree of size k belongs to a class in
Jk is thus 1− o(1) as k →∞, such that condition (C2a) is satisfied.

In order to show that condition (C2b) holds as well, recall that the number
of d-ary increasing trees with n nodes is precisely

∏n−1
k=1(1 + k(d − 1)) (see

Section 5.2), which can be written as (see e.g. [27, Lemma 6.5])

n−1∏
k=1

(1 + k(d− 1)) ∼ n!(d− 1)n
n(2−d)/(d−1)

Γ( 1
d−1 )

,

where Γ denotes the gamma function. We find that for a given d-ary tree t with
n nodes, the probability that a random increasing d-ary tree with n nodes has
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the shape of t is

n!∏n−1
k=1(1 + k(d− 1))

∏
v∈V (t)

1

|t[v]|
.

Note next that

n!∏n−1
k=1(1 + k(d− 1))

∼
Γ( 1

d−1 )n(d−2)/(d−1)

(d− 1)n
= 2− log(d−1)n+o(log n). (5.2)

Thus, the probability that a random tree of size k lies in an isomorphism class
in Jk is never greater than 2−(log(d−1)+µ)k+o(k), such that condition (C2b)
is satisfied, too. All in all, we find that condition (C2) holds as well with
corresponding constant

C2 = log(d− 1) + d(d− 1)
∞∑
k=1

log k

((d− 1)k + d)((d− 1)k + 1)
.

The statement now follows.

In particular, for the special case d = 2, which corresponds to binary search
trees, we obtain the following corollary:

Corollary 5.6. Let Fn be the total number of distinct fringe subtrees in a
random binary search tree of size n. For two constants c(2) ≈ 3.472754274 and
c(2) = 4, the following holds:

(i) c(2)
n

log n
(1 + o(1)) ≤ E(Fn) ≤ c(2)

n

log n
(1 + o(1)),

(ii) c(2)
n

log n
(1 + o(1)) ≤ Fn ≤ c(2)

n

log n
(1 + o(1)) w.h.p.

The upper bound in part (i) can already be found in [36] and [24]. Moreover,
a lower bound of the form E(Fn) ≥ cn/ log(n)(1+o(1)) was already shown in [24]
for the constant c = (log 3)/2 ≈ 0.7924812503 and in [S8, S9] for the constant
c = 0.8681 (see also Example 3.29).

5.5 Plane fringe subtrees

As another application, we use Theorem 5.3 in this section in order to count
the number of distinct plane fringe subtrees in random ports and random d-ary
increasing trees. For random ports, we obtain the following result:

Theorem 5.7. Let Fn be the number of distinct plane fringe subtrees in a
random plane-oriented recursive tree of size n. For the constant

c =
1

2
+
∞∑
k=1

log k

(2k + 1)(2k − 1)
≈ 0.8446697909

the following holds:
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(i)
cn

log n
(1 + o(1)) ≤ E(Fn) ≤ n

log n
(1 + o(1)),

(ii)
cn

log n
(1 + o(1)) ≤ Fn ≤

n

log n
(1 + o(1)) w.h.p.

Proof. The procedure is analogous as in the proof of the previous theorem, i.e.,
we verify that the conditions of Theorem 5.3 are satisfied. We consider two
trees as isomorphic, if their underlying unlabeled plane trees are identical. The
isomorphism classes are precisely the plane trees, and we have

|Ik| = Ck−1 =
1

k

(
2k − 2

k − 1

)
,

where Ck−1 again denotes the (k − 1)st Catalan number, thus C1 = log 4 = 2.
In order to verify (C2), we argue in exactly the same way as before in the proof
of Theorem 5.5. We again set f(t) = log |t| and find that the corresponding
additive functional F satisfies the conditions of Lemma 5.2 with

µ =
∞∑
k=1

2 log k

(2k + 1)(2k − 1)
.

Hence, by Lemma 5.2, there is a sequence (εk)k≥0 that tends to 0 as k → ∞
with the property that

P

 ∏
v∈V (Tk)

|Tk[v]| ≥ 2(µ−εk)k

 ≥ 1− εk,

for every k ≥ 0, where Tk is a random port of size k. Thus, let Jk ⊆ Ik be
the set of isomorphism classes of increasing trees of size k, whose corresponding
shape t satisfies ∏

v∈V (t)

|t[v]| ≥ 2(µ−εk)k.

By Lemma 5.2, we find that condition (C2a) is satisfied. In order to show that
condition (C2b) holds as well, we find that the number of ports of size n is
precisely (see [27, Chapter 1.3.2])

n−1∏
k=1

(2k − 1) =
1

2n−1

(2(n− 1))!

(n− 1)!
.

We find that for a given plane tree t with n nodes, the probability that a random
port with n nodes has the shape of t is

2n−1n!(n− 1)!

(2(n− 1))!

∏
v∈V (t)

1

|t[v]|
∼ 2−n+o(n)

∏
v∈V (t)

1

|t[v]|
.

Thus, the probability that a random tree of size k lies in an isomorphism class
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in Jk is never greater than 2−(1+µ)k+o(k) and thus, condition (C2b) holds as
well with

C2 = 1 +
∞∑
k≥1

2 log k

(2k + 1)(2k − 1)
.

This proves the statement.

Counting distinct plane fringe subtrees is also reasonable for the family of
d-ary increasing trees. Let degr(t) denote the root degree of a tree t. We obtain
the following result:

Theorem 5.8. Let Fn be the number of distinct plane trees occurring among the
fringe subtrees of a random d-ary increasing tree of size n. Let τd be the unique
positive solution of the equation 1 = x2 + 2x3 + · · ·+ (d− 1)xd, and let

c(d) =
d

d− 1
log
(
1 + 2τd + 3τ2

d + · · ·+ dτd−1
d

)
.

Furthermore, let

c(d) =
d

d− 1
log(d− 1) + d2

∞∑
k=1

log k + E(log
(

d
degr(Tk)

)
)

((d− 1)k + d)((d− 1)k + 1)
,

where Tk is a random d-ary increasing tree of size k. Then

(i)
c(d)n

log n
(1 + o(1)) ≤ E(Fn) ≤ c(d)n

log n
(1 + o(1)),

(ii)
c(d)n

log n
(1 + o(1)) ≤ Fn ≤

c(d)n

log n
(1 + o(1)) w.h.p.

Proof. In this case, we consider fringe subtrees as distinct only if they are
distinct as plane trees. Thus the isomorphism classes are plane trees with
maximum degree at most d, which form a simply generated family of trees. The
corresponding weight-sequence (φi)i≥0 satisfies φi = 1 for 0 ≤ i ≤ d and φi = 0

for i > d. The exponential growth constant of this simply generating family
is 1 + 2τd + 3τ2

d + · · · + dτd−1
d , see Theorem 4.6. Thus (C1) is satisfied with

C1 = log(1+2τd+3τ2
d + · · ·+dτd−1

d ). We also note that 2C1 ∈ [3, 4]. Specifically,
in the special case d = 2 we obtain the Motzkin numbers with C1 = log 3, see
Example 4.3.

In order to verify (C2) and determine a suitable constant, we proceed anal-
ogously as in the proofs of the previous two theorems, except that we have to
take the weight of a d-ary increasing tree into accout as well: The probability
that a random increasing d-ary tree with n nodes has the shape of t, regarded
as a plane tree, is

n!∏n−1
k=1(1 + k(d− 1))

∏
v∈V (t)

(
d

deg(v)

)
|t[v]|

.
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Note here that the product
∏
v∈V (t)

(
d

deg(v)

)
gives the number of d-ary realizations

of the plane tree t, see the proof of Theorem 4.20 for comparison. So we consider
the additive functional with toll function

f(t) = log |t| − log

(
d

degr(t)

)
,

where degr(t) is the degree of the root of t. Since
(

d
degr(t)

)
is clearly bounded,

the conditions of Lemma 5.2 are still satisfied. Let

µ =
∞∑
k=1

d(d− 1)E(f(Tk))

((d− 1)k + d)((d− 1)k + 1)
,

where Tk is a random d-ary increasing tree of size k. Together with the estimate
(5.2), we obtain a constant C2 such that (C2) is satisfied as before, where

C2 = log(d− 1) + µ.

This proves the statement.

In order to obtain the concrete value of the leading constant c(d) of the lower
bound in Theorem 5.8, we have to determine the expectation E(log

(
d

degr(Tk)

)
).

For this, we need the probability that the root of a random d-ary increasing
tree Tk of size k has degree i for 1 ≤ i ≤ d. This is given in [7, Theorem 7].
For the case of binary trees, we obtain for example the following corollary from
Theorem 5.8.

Corollary 5.9. Let Fn be the number of distinct plane trees occurring among
the fringe subtrees of a random binary increasing tree of size n. For the two
constants c(2) = 2 log 3 ≈ 3.1699250014 and

c(2) = 4
∞∑
k=2

log k − 2 log 2
k

(k + 1)(k + 2)
= 4

∞∑
k=2

log k

(k + 1)(k + 2)
− 2

3
≈ 2.8060876067

the following holds:

(i)
c(2)n

log n
(1 + o(1)) ≤ E(Fn) ≤ c(2)n

log n
(1 + o(1)),

(ii)
c(2)n

log n
(1 + o(1)) ≤ Fn ≤

c(2)n

log n
(1 + o(1)) w.h.p.

5.6 Unordered fringe subtrees

In this section, two fringe subtrees are regarded as isomorphic, if they are
identical as unordered unlabeled trees, that is, we partition the increasing trees
of size k into isomorphism classes Ik, where two trees are isomorphic if their
corresponding unlabeled unordered representations are identical. This notion of
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distinctness is reasonable for all three families of increasing trees considered in
this chapter.

We again show that for this partition into isomorphism classes, the conditions
of Theorem 5.3 are satisfied. Note that condition (C1) of Theorem 5.3 again
holds in this case for the same reasons as in Section 4.6 on simply-generated
families of trees, since we can apply Theorem 4.24. For the lower bound, in the
same way as in the previous sections, we define a suitable additive functional.
Here we also have to take the number of automorphisms into account, so there
are now three factors that determine the probability that a random increasing
tree in one of our very simple families is isomorphic to a fixed rooted unordered
unlabeled tree t:

˛ the number of plane representations of t, which is given by (see Section 4.6)∏
v∈V (t) deg(v)!

|Aut t|
,

˛ the weight
∏
v∈V (t) φdeg(v), where φk =

(
d
k

)
for d-ary increasing trees,

φk =
(
r+k−1
k

)
for gports, and φk = 1

k! for recursive trees,

˛ the number of increasing labelings of any plane representation, which is

|t|!∏
v∈V (t) |t[v]|

.

If we divide the product of all these three quantities by the number (more
precisely: total weight) of n-node increasing trees in the specific family, we
obtain the probability that a random increasing tree with n = |t| nodes is
isomorphic to t. So once again we consider a suitable additive functional that
takes all these into account. For a tree t whose root degree is degr(t) and whose
branches belong to kt isomorphism classes with multiplicities m1, m2, . . . , mkt ,
we define the toll function

˛ for d-ary increasing trees by

f(t) = log |t|+ log
(
m1!m2! · · ·mkt !

)
− log

(
d(d− 1) · · · (d− degr(t) + 1)

)
,

˛ for gports by

f(t) = log |t|+ log
(
m1!m2! · · ·mkt !

)
− log

(
r(r + 1) · · · (r + degr(t)− 1)

)
,

˛ and for recursive trees by

f(t) = log |t|+ log
(
m1!m2! · · ·mkt !

)
.

We then obtain the following result.
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Theorem 5.10. Let Fn be the number of distinct unordered trees represented
by the fringe subtrees of a random increasing tree Tn of size n from one of the
very simple families of increasing trees. Let M = {i ∈ N0 | φi > 0} and let
C1 = log(bM ), where bM is the constant in Theorem 4.24. Set

µ̂ =
∞∑
k=1

(1 + α)E(f(Tk))

((1 + α)k + 1)((1 + α)k − α)
, (5.3)

(where f is the toll function defined above) and

C2 =


log(d− 1) + log µ̂ for d-ary increasing trees,

log(r + 1) + log µ̂ for gports,

log µ̂ for recursive trees.

Then

(i)
C2n

(1 + α) log n
(1 + o(1)) ≤ E(Fn) ≤ C1n

(1 + α) log n
(1 + o(1)),

(ii)
C2n

(1 + α) log n
(1 + o(1)) ≤ Fn ≤

C1n

(1 + α) log n
(1 + o(1)) w.h.p.

Proof. It remains to show that conditions (C2a) and (C2b) are satisfied. Let
F be the additive functional associated with f . Then the probability that a
random tree with k nodes belongs to the same isomorphism class as a fixed
k-node tree t is

2−F (t) ·


k!∏k−1

j=1 (1+(d−1)j)
for d-ary increasing trees,

k!∏k−1
j=1 ((r+1)j−1)

for gports,

k for recursive trees.

We show that F satisfies the conditions of Lemma 5.2. The toll function f(t)

is O(log |t|+ degr(t) log(degr(t))) = O(degr(t) log |t|). So in order to show that
the conditions of Lemma 5.2 are satisfied, one needs to bound the average root
degree in a suitable way. For d-ary increasing trees, this is trivial. In the other
two cases, this was done in [27]: In [27, p.243], it is shown that

E(degr(Tn)) = log(n− 1) +O(1)

for a random recursive tree Tn of size n, and from [27, Theorem 6.11], we find
that

E(degr(Tn)) ∼ rΓ
(

r

r + 1

)
n1/(r+1)

for a random gport Tn of size n. Hence, we have E|f(Tn)| = O(log2 n) and
E|f(Tn)| = O(n1/(r+1) log n) respectively in Lemma 5.2, which means that the
conditions of that lemma are satisfied. We can conclude now as before that the
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conditions of Theorem 5.3 hold. In particular, we have

k!∏k−1
j=1 (1 + (d− 1)j)

∼ 2− log(d−1)n+o(log n)

and

k!∏k−1
j=1 ((r + 1)j − 1)

∼ 2− log(r+1)n+o(log n)

(see e.g. [27, Lemma 6.5 and p.252]), such that the constant C2 attains the
values as stated above. This proves the theorem.

For recursive trees, the upper bound of O(n/ log n) was determined recently in
[9]. The authors of that paper conjectured that this upper bound is asymptotically
sharp and proved a lower bound of order

√
n. Indeed, our general theorem

(Theorem 5.3) applies and confirms their conjecture.
In the case of recursive trees and ports, the constant C1 is the logarithm of

the growth constant for the number of unordered rooted trees (Pólya trees), see
the proof of Corollary 4.27. In the case of binary increasing trees, the constant
C1 is given as the logarithm of the growth factor of the Wedderburn-Etherington
numbers, see the proof of Corollary 4.26.

To determine the constant C2 is more complicated: For this, we have to
determine E(f(Tk)), where Tk stands for a random increasing tree with k nodes.
It seems difficult to determine the expected value E(f(Tk)) exactly, and even
numerical approximation is somewhat tricky (however, it is easy to compute
simple lower bounds, as it is clear that E(f(Tk)) ≥ log k).

For the cases of random recursive trees and random binary increasing trees,
the leading constants in the lower bound were determined in [S11]. This leads
to the following theorems:

Theorem 5.11. Let Fn be the total number of distinct unordered trees represented
by the fringe subtrees of a random recursive tree of size n. For two constants
c ≈ 1.3181041035 and c ≈ 1.5635317110, the following holds:

(i)
cn

log n
(1 + o(1)) ≤ E(Fn) ≤ cn

log n
(1 + o(1)),

(ii)
cn

log n
(1 + o(1)) ≤ Fn ≤

cn

log n
(1 + o(1)) w.h.p.

Theorem 5.12. Let Fn be the total number of distinct unordered trees represented
by the fringe subtrees of a random binary search tree of size n. For two constants
c ≈ 2.2318529681 and c ≈ 2.6244631318, the following holds:

(i)
cn

log n
(1 + o(1)) ≤ E(Fn) ≤ cn

log n
(1 + o(1)),

(ii)
cn

log n
(1 + o(1)) ≤ Fn ≤

cn

log n
(1 + o(1)) w.h.p.

For the proves of Theorem 5.11 and Theorem 5.12, we refer to the journal
version [S11], respectively, the conference version [S10].
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5.7 Conclusion and open problems

As in Chapter 4, we have obtained a quite general main theorem in this chapter,
which covers many different notions of distinctness with respect to the question
of estimating the number of distinct fringe subtrees in the random tree model of
increasing trees. As the examples with explicit constants show, the upper and
lower bounds they provide are again quite close.

A natural open question is again if it is possible to determine a concrete
leading constant c (depending on the concrete notion of distinctness and the
family of trees), instead of lower and upper bounds, such that the number Fn
of distinct fringe subtrees in a random tree of size n asymptotically grows as
c · n/ log n in expectation and with high probability.

In particular, for the binary seach tree model, the three independent ap-
proaches [36], [24] and [S10, S11] (see Corollary 5.6) with their different proof
techniques all yield the asymptotic upper bound E(Fn) ≤ 4n/ log n(1 + o(1))

(with the same leading constant), so a very interesting question is whether this
upper bound can be improved or whether it is possible to find a matching lower
bound.

As in the case of simply generated families of trees, it is an open problem
to determine the variance V(Fn), even for the well-studied binary search tree
model and under the usual, non-generalized notion of distinctness.
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Chapter 6

Entropy bounds for
grammar-based tree
compressors

6.1 Introduction

In this chapter, we focus on another aspect of tree compression: empirical entropy
for trees. In particular, we propose a new notion of empirical entropy for trees,
which we call label-shape entropy, as it incorporates both labels and shape of the
tree and is able to capture possible dependencies between node labels and tree
shape. Additionally, label-shape entropy works as a reasonable compressibility
measure for unlabeled trees as well.

The families of trees we consider in this chapter are Σ-labeled full binary trees
(Definition 2.7) and Σ-labeled (unranked) plane trees (Definition 2.8). Unlabeled
trees will be identified with labeled trees over a unary alphabet, see Section 2.2.2.
With σ we denote the size of Σ. The results presented in this chapter will be
valid both for labeled and unlabeled trees. For technical reasons, in order to
incorporate the unlabeled case, we set σ̂ = max{σ, 2}.

As a main result of this chapter, we use our new notion of empirical entropy
for trees in order to show an entropy bound for grammar-based tree compres-
sors. This is motivated by recent results in the field of grammar-based string
compression, where several upper bounds on the compression perfomance of
grammar-based compressors in terms of higher order empirical entropy have been
shown. Recall that a grammar-based compressor is an algorithm that produces
for a given string s an SLP Gs.

In order to upper-bound the compression performance of a grammar-based
string compressor, the choice of a concrete binary encoding B(G) of an SLP G is
crucial. Kieffer and Yang [64] came up with such a binary encoding B and proved
that under certain assumptions on the grammar-based compressor s 7→ Gs, the
combined compressor s 7→ B(Gs) yields a universal code with respect to the
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family of finite-state information sources over finite alphabets. More precisely,
it is needed that the size of the SLP Gs is bounded by O(|s|/ logσ̂ |s|) where σ
is the size of the underlying alphabet and σ̂ = max{2, σ}. This upper bound is
met by all grammar-based compressors that produce so-called irreducible SLPs
[64], which is the case for e.g. LZ78 [107], Bisection [63], and Repair [72]
after a small modification of the latter.

In their paper [89], Navarro and Ochoa used the binary encoding B(Gs) from
[64] in order to prove for every word s over an alphabet of size σ the upper
bound

|B(Gs)| ≤ |s|Hk(s) + o(|s| log σ̂) (6.1)

for every k ≤ o(logσ̂ |s|). Here, Hk(s) is the kth-order empirical entropy of
s, and the grammar-based compressor s 7→ Gs must satisfy the upper bound
|Gs| ≤ O(|s|/ logσ̂ |s|). Similar but weaker upper bounds for more practical
binary SLP-encodings have been shown in [45, 86].

The main goal of this chapter is to generalize the result (6.1) from strings to
trees. This will be done in two steps: first, we show a corresponding result for
the family of labeled full binary trees, which we then transfer to the family of
labeled plane trees in a second step. In order to generalize the result (6.1) to
trees, a generalization of grammar-based compression from strings to trees is
needed, as well as a suitable notion of empirical entropy for trees.

In Section 6.3, we formally introduce tree-straight line programs, or shortly
TSLPs. TSLPs are linear context-free tree grammars generating exactly one
tree [15, 73]. They do not only generalize SLPs from strings to trees, but also,
in terms of tree compression, represent a generalization of DAG compression (as
considered in the first part of this work). Whereas DAGs only have the ability
to share repeated fringe subtrees of a tree, TSLPs can also share repeated tree
patterns with a “hole” (called contexts).

As in the case of string compression, in order to analyze the compression
performance of grammar-based tree compressors, the choice of a concrete binary
encoding B(G) of an TSLP G is essential. For unlabeled full binary trees the
results of Kieffer and Yang on universal grammar-based string compressors have
been extended to trees in [105], [S3]. Whereas the universal tree encoder from
[105] is based on DAGs (and needs a certain assumption on the average DAG size
with respect to the input distribution), the encoder from [S3] uses TSLPs of size
O(n/ log n). For this, a binary encoding of TSLPs similar to the one for SLPs
from [64] is proposed. For our purposes, we extend the binary TSLP-encoding
from [S3] to node-labeled full binary trees (which is straightforward).

In Section 6.4, we present our new notion of empirical entropy for trees
called label-shape entropy, which we first define for labeled full binary trees (and
generalize to labeled plane trees later in Section 6.6). Let us remark that in
recent years, several notions of empirical tree entropy have been proposed with
the aim of quantifying the compressibility of a given tree, notably label entropy
[32, 33], degree entropy [60] and label-degree entropy and degree-label entropy,
[46]. An overview over the notions of empirical entropy for trees, together with a
systematic (theoretical and experimental) comparison of these entropy measures
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will be presented in Chapter 7.
In Section 6.5, we prove our main result of this chapter (Theorem 6.21),

which states that

|B(Gt)| ≤ H`s
k (t) +O

(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ, (6.2)

where t is a full binary tree with n leaves, the grammar-based compressor t 7→ Gt
produces TSLPs of size O(n/ logσ̂ n) for full binary trees of leafsize n with
σ many node labels and σ̂ = max(2, σ). Moreover, H`s

k (t) is the kth-order
label-shape entropy of t and B is the extension of the binary TSLP-encoding
described in [S3] from unlabeled full binary trees to labeled full binary trees. If
k ≤ o(logσ̂ n) then this bound can be simplified to |B(Gt)| ≤ H`s

k (t) + o(n log σ̂).
The assumption k ≤ o(logσ̂ n) can also be found in the corresponding result for
strings [89]. In fact, Gagie argued in [41] that the kth-order empirical entropy
for strings stops being a reasonable complexity measure for almost all strings of
length n over alphabets of size σ when k ≥ logσ̂ n. Our bound (6.2) can be seen
as an extension of the bound (6.1) [89] from strings to trees.

In Section 6.6 we present a simple extension of our entropy notion and the
entropy bound to labeled plane trees (Theorem 6.23). Moreover, we consider
experimental results with real XML document trees showing that for these
trees, the kth-order label-shape entropy is indeed very small compared to the
worst-case bit size. A labeled plane tree with n nodes and σ node labels can
be encoded with 2n+ log(σ)n bits [48]. Up to low order terms, this is optimal.
Table 6.1 shows the values of the kth-order label-shape entropy (for k = 1, 2, 4, 8)
divided by 2n+ log(σ)n for several real XML trees (that were also used in other
experiments for XML compression, [74, 75]). For k = 4, these quotients never
exceed 20% and for k = 8 all quotients are bounded by 13.5%.

The results of this chapter are published in [S6] (see also the conference
version [S4]).

6.2 Shannon entropy and empirical distributions

We start off with some preliminary definitions and results related to Shannon
entropy and empirical distributions, which will be needed later in the chapter.

Throughout the chapter, we make the convention that 0 · log(0) = 0 and
0 · log(x/0) = 0 for x ≥ 0. Let A be a finite set and let p : A → [0, 1] be a
probability mass function. We define the Shannon entropy of p as

H(p) =
∑
a∈A
−p(a) log p(a) =

∑
a∈A

p(a) log(1/p(a)).

(see also Section 3.6, where we considered the Shannon entropy in the context
of random trees). We have 0 ≤ H(p) ≤ log |A|. A well-known generalization of
Shannon’s inequality states that for every probability mass function p on A and
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any mapping q : A→ [0, 1] such that
∑
a∈A q(a) ≤ 1 we have

H(p) =
∑
a∈A
−p(a) log p(a) ≤

∑
a∈A
−p(a) log q(a); (6.3)

see [2] for a proof. Shannon’s inequality is the special case where q is a probability
mass function as well. The Kullback-Leibler divergence between two probability
mass functions p, q on A (see [20, Section 2.3]) is defined as

D(p || q) =
∑
a∈A

p(a) · log(p(a)/q(a)). (6.4)

It is known that D(p || q) ≥ 0 for all p, q (this follows from Shannon’s inequality)
and D(p || q) = 0 if and only if p = q.

Let a = (a1, a2, . . . , al) be a tuple of elements that are from some (not
necessarily finite) set S. The empirical distribution pa : {a1, a2, . . . , al} → [0, 1]

of a is defined by

pa(a) =
|{i | 1 ≤ i ≤ l, ai = a}|

l
.

We use this (and the following) definition also for words over some alphabet by
identifying a word w = a1a2 · · · al with the tuple (a1, a2, . . . , al). The unnormal-
ized empirical entropy of a is

H(a) = l ·H(pa) = −
l∑
i=1

log pa(ai). (6.5)

From (6.3) it follows that for a tuple a = (a1, a2, . . . , al) with a1, . . . , al ∈ S and
real numbers q(a) ≥ 0 (a ∈ S) with

∑
a∈{a1,...,al} q(a) ≤ 1 we have

l∑
i=1

− log pa(ai) ≤
l∑
i=1

− log q(ai). (6.6)

6.3 Tree straight-line programs

In this section, we introduce tree straight-line programs (TSLPs) and use them
for the compression of labeled full binary trees t ∈ B(Σ). Recall that full
binary trees t ∈ B(Σ) can be considered as a terms over the alphabet Σ, see
Definition 2.9. TSLPs can be viewed as a generalization of DAGs, as considered
in the first part of this work. Recall that a tree t can be compressed into a
(minimal) DAG by merging all occurrences of identical fringe subtrees into one
copy of the respective fringe subtree. Formally, by identifying trees as terms,
such a DAG can be represented by a set of rules of the form A → a(B,C)

(respectively, A → a). Here a ∈ Σ is a node label of the full binary tree and
A,B,C correspond to nodes of the DAG. The rule A → a(B,C) tells us that
node A in the DAG corresponds to a fringe subtree of the full binary tree whose



6.3. Tree straight-line programs 103

root is labeled with a, and its left (respectively, right) outgoing edge leads to
the fringe subtree corresponding to node B (respectively, C) in the DAG. The
rule A→ a says that node A represents a leaf labeled with a.

These rules formally define a regular tree grammar from which t (and only t)
can be derived. The DAG nodes A,B,C etc. then become nonterminals of the
regular tree grammar. There is a unique start nonterminal from which the whole
tree t can be derived. For example, the minimal DAG of the full binary tree
t = a(b, a(b, a(b, a(b, b)))) can be represented as a regular tree grammar with start
nonterminal A1 and with rules A1 → a(b, A2), A2 → a(b, A3), A3 → a(b, A4),
A4 → a(b, A5), A5 → b.

The main limitation of DAGs for tree compression is that they only allow to
exploit repetitions of fringe subtrees. Better compression results can be obtained
by also exploiting repetitions of non-fringe subtrees. For this, the notion of a
context is introduced in grammar-based tree compression: A context is a labeled
full binary tree, where exactly one leaf is labeled with a special symbol ◦ /∈ Σ,
which we call the parameter. Intuitively, this parameter node is a “hole”, such
that we can insert other trees and contexts into a context by replacing its special
symbol ◦ with the tree or context that we want to insert (a formal definition
follows). We denote the insertion of a full binary tree or context s into a context
c as c[s]. Consider again the tree t = a(b, a(b, a(b, a(b, b)))). Let c = a(b, ◦)
denote a context, then t can be written as t = c[c[c[c[b]]]], that is, the context c
occurs four times in the full binary tree t. These four occurences of c cannot be
shared by DAG-compression. However, they can be shared if we extend regular
tree grammars by a second type of nonterminals that derive into contexts instead
of trees. Then t can be derived using the rules S → C1(C1(b)), C1 → C2(C2),
C2 → a(b, ◦). Here, C1 and C2 are nonterminals of the second type, which
derive into contexts, whereas the start nonterminal S is a nonterminal of the first
type, which derives into a tree. These rules define a context-free tree grammar.
If this grammar is acyclic, i.e., from a nonterminal we cannot reach the same
nonterminal in an arbitrary number of derivation steps, and if every nonterminal
A has exactly one rule with A on the left-hand side, then such a context-free
grammar is called a TSLP (a formal definition follows).

In this thesis, as this is sufficient for our purposes, we will consider only a
particular type of TSLPs which can be used for the compression of labeled full
binary trees and which allows one parameter node per context. However, more
general definitions of TSLPs exist which allow for example to compress ranked
trees or which allow more than one parameter node per context. For a survey,
see [73].

Formally, contexts and TSLPs are defined as follows in this work.

Contexts. A context c over the alphabet Σ is a Σ-labeled full binary tree,
such that exactly one leaf is labeled with the special symbol ◦ /∈ Σ (called the
parameter), all other nodes are labeled with symbols from Σ. In the same way
as Σ-labeled full binary trees can be identified with terms over the alphabet Σ

(see Definition 2.9), we obtain a corresponding definition for the set of contexts:
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Figure 6.1: A context c (left), a tree t (middle), and the tree c[t] (right).

Definition 6.1 (Contexts). The set C(Σ) of contexts over the alphabet Σ is the
smallest set of terms such that

˛ ◦ ∈ C(Σ), and

˛ if a ∈ Σ, c ∈ C(Σ) and t ∈ B(Σ), then also a(c, t), a(t, c) ∈ C(Σ).

For a tree or context t ∈ B(Σ) ∪ C(Σ) and a context c ∈ C(Σ), we denote by
c[t] the tree or context which results from c by replacing the unique occurrence
of the parameter ◦ by t. Furthermore, for a context c ∈ C(Σ), we define its
leafsize ‖c‖ inductively by ‖ ◦ ‖ = 0 and ‖a(c, t)‖ = ‖a(t, c)‖ = ‖t‖ + ‖c‖ for
a ∈ Σ, c ∈ C(Σ) and t ∈ B(Σ). In other words, ‖c‖ is the number of leaves of
c, where the unique occurrence of the parameter ◦ is not counted. Note that
‖c‖ = ‖c[a]‖ − 1 for every a ∈ Σ. We define Cn(Σ) = {c ∈ C(Σ) | ‖c‖ = n} for
n ∈ N. Occasionally, we will consider a context as a graph with nodes and edges
in the usual way, where each node is labeled with a symbol from Σ ∪ {◦}. Note
that c ∈ Cn(Σ) has 2n+ 1 nodes in total: n+ 1 leaves (including the parameter
node) and n internal nodes.

Example 6.2. Let Σ = {a, b}. Then c = a(b(b(a, b), ◦), a(b, a)) ∈ C(Σ) is
the context depicted on the left in Figure 6.1 and t = b(a, a) ∈ B(Σ) is the
full binary tree depicted in the middle of Figure 6.1. The full binary tree
c[t] = a(b(b(a, b), b(a, a)), a(b, a)) ∈ B(Σ) is shown on the right of Figure 6.1.
The leafsize ‖c‖ of the context c is ‖c‖ = 4.

Tree straight-line programs. Let V be a finite alphabet of symbols, where
each symbol A ∈ V has an associated rank 0 or 1 (also called a ranked alphabet).
The elemens of V are called nonterminals. We assume that V contains at least
one nonterminal of rank 0 and that V is disjoint from the set Σ ∪ {◦} (the
labels used for trees and contexts). We use V0 (respectively, V1) for the set of
nonterminals of rank 0 (respectively, of rank 1). The idea is that nonterminals
from V0 (respectively, V1) derive to trees from B(Σ) (respectively, contexts from
C(Σ)). We denote by BV (Σ) the following set of ordered rooted trees over Σ∪ V :
Each node of a tree t ∈ BV (Σ) has zero, one or two children (and we do not
distinguish between left-unary and right-unary nodes). Furthermore, each node
is labeled with a symbol from Σ ∪ V , such that nodes labeled by symbols from
Σ have zero or two children and if a node is labeled with a symbol from V , then
the number of children of this node corresponds to the rank of its label (a formal
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Figure 6.2: A tree from BV (Σ) (left) and a context from CV (Σ) (right), where
a, b ∈ Σ, A ∈ V0 and B ∈ V1.

definition follows). With CV (Σ) we denote the corresponding set of all contexts,
i.e., the set of all trees from BV (Σ ∪ {◦}), such that the parameter symbol ◦
occurs exactly once and at a leaf position. Formally, we define BV (Σ) and CV (Σ)

as the smallest sets of formal expressions which satisfy the following conditions:

˛ Σ ∪ V0 ⊆ BV (Σ) and ◦ ∈ CV (Σ),

˛ if a ∈ Σ, A ∈ V1 and t1, t2 ∈ BV (Σ), then a(t1, t2), A(t1) ∈ BV (Σ), and

˛ if a ∈ Σ, A ∈ V1, s ∈ CV (Σ) and t ∈ BV (Σ), then A(s) ∈ CV (Σ) and
a(s, t), a(t, s) ∈ CV (Σ).

Note that B(Σ) ⊆ BV (Σ) and C(Σ) ⊆ CV (Σ). A tree t ∈ BV (Σ) and a context
c ∈ CV (Σ) with Σ = {a, b} and V0 = {A} and V1 = {B} are shown in Figure 6.2.

Definition 6.3. A tree straight-line program G, or TSLP for short, is a tuple
(V,A0, r), where r : V → (BV (Σ) ∪ CV (Σ)) is a function which assigns to each
nontermial its unique right-hand side and A0 ∈ V0 is the start nonterminal.
Futhermore, if A ∈ V0 (respectively, A ∈ V1), then r(A) ∈ BV (Σ) (respectively,
r(A) ∈ CV (Σ)), and the binary relation {(A,B) ∈ V × V | B occurs in r(A)}
has to be acyclic.

These conditions ensure that exactly one tree is derived from the start
nonterminal A0 by using the rewrite rules A → r(A) for A ∈ V . To define
this formally, we define valG(t) ∈ B(Σ) for t ∈ BV (Σ) and valG(c) ∈ C(Σ) for
c ∈ CV (Σ) inductively by the following rules:

˛ valG(a) = a for a ∈ Σ and valG(◦) = ◦,

˛ valG(a(s1, s2)) = a(valG(s1), valG(s2)) for a ∈ Σ and s1, s2 ∈ BV (Σ)∪CV (Σ)

(and s1 ∈ BV (Σ) or s2 ∈ BV (Σ), since there is at most one parameter ◦ in
a(s1, s2)),

˛ valG(A) = valG(r(A)) for A ∈ V0,

˛ valG(A(s)) = valG(r(A))[valG(s)] for A ∈ V1 and s ∈ BV (Σ) ∪ CV (Σ) (note
that valG(r(A)) is a context c, so c[valG(s)] is well-defined).

The tree defined by G is val(G) = valG(A0) ∈ B(Σ).
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Example 6.4. Let Σ = {a, b} and G = ({A0, A1, A2}, A0, r) be a TSLP such
that A0, A1 ∈ V0, A2 ∈ V1 and r(A0) = a(A1, A2(b)), r(A1) = A2(A2(b)),
r(A2) = b(◦, a). We have valG(A2) = b(◦, a), valG(A1) = b(b(b, a), a) and
val(G) = valG(A0) = a(b(b(b, a), a), b(b, a)).

Tree straight-line programs in normal form. For our purposes, it will be
convenient to introduce TSLPs in a certain normal form: A TSLP G = (V,A0, r)

is in normal form, if the following conditions hold:

˛ V = {A0, A1 . . . , Am−1} for some m ∈ N, m ≥ 1.

˛ For every Ai ∈ V0, the right-hand side r(Ai) is an expression of the form
Aj(α), where Aj ∈ V1 and α ∈ V0 ∪ Σ.

˛ For every Ai ∈ V1, the right-hand side r(Ai) is an expression of the form
Aj(Ak(◦)), a(α, ◦), or a(◦, α), where Aj , Ak ∈ V1, a ∈ Σ and α ∈ V0 ∪ Σ.

˛ For every Ai ∈ V , define the word ρ(Ai) ∈ (V ∪ Σ)∗ as follows:

ρ(Ai) =


Ajα if r(Ai) = Aj(α)

AjAk if r(Ai) = Aj(Ak(◦))
aα if r(Ai) = a(α, ◦) or a(◦, α).

Let ρG = ρ(A0)ρ(A1) · · · ρ(Am−1) ∈ (Σ ∪ {A1, A2, . . . , Am−1})∗. Then
we require that ρG is of the form ρG = A1u1A2u2 · · ·Am−1um−1 with
ui ∈ (Σ ∪ {A1, A2, . . . , Ai})∗.

˛ valG(Ai) 6= valG(Aj) for i 6= j.

We also allow the TSLP Ga = ({A0}, A0, A0 → a) for every a ∈ Σ in order to
obtain the singleton tree a. In this case, we set ρGa = ρ(A0) = a.

Let G = (V,A0, r) be a TSLP in normal form with V = {A0, A1, . . . , Am−1}
for the further definitions. We define the size of G as |G| = |V | = m. Thus,
2|G| is the length of ρG . Let ωG be the word obtained from ρG by removing
the first (i.e., left-most) occurrence of Ai from ρG for every 1 ≤ i ≤ m − 1.
Thus, if ρG = A1u1A2u2 · · ·Am−1um−1 with ui ∈ (Σ ∪ {A1, A2, . . . , Ai})∗, then
ωG = u1u2 · · ·um−1. Note that |ωG | = |ρG | −m+ 1 = m+ 1. The entropy H(G)

of the normal form TSLP G is defined as the empirical unnormalized entropy of
the word ωG (see 6.5): H(G) = H(ωG).

Example 6.5. Let Σ = {a, b} and G = ({A0, A1, A2, A3, A4}, A0, r) be the
normal form TSLP with A0, A2, A3 ∈ V0, A1, A4 ∈ V1 and

r(A0) = A1(A2), r(A1) = a(◦, A3), r(A2) = A4(A3),

r(A3) = A4(b), r(A4) = b(◦, a).

We have val(G) = a(b(b(b, a), a), b(b, a)), ρG = A1A2aA3A4A3A4bba (u1 = ε,
u3 = ε, u2 = a, u4 = A3A4bba), |G| = 5 and ωG = aA3A4bba.
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Figure 6.3: The derivation tree TG of the TSLP from Example 6.6 (left) and an
initial subtree T′G of TG (right).

The derivation tree TG of the normal form TSLP G is a full binary tree with
node labels from V ∪ Σ. The root is labeled with A0. Nodes labeled with a
symbol from Σ are the leaves of TG . A node v that is labeled with a nonterminal
Ai has |ρ(Ai)| = 2 many children. If ρ(Ai) = αβ with α, β ∈ V ∪ Σ, then the
left child of v is labeled with α and the right child is labeled with β. For every
node u of TG we define the tree or context su = valG(α), where α ∈ V ∪ Σ is
the label of u. If α ∈ V0 ∪ Σ, then su ∈ B(Σ) and if α ∈ V1 then su ∈ C(Σ). An
initial subtree of the derivation tree TG is a tree that can be obtained from TG
as follows: Take a subset U of the nodes of TG and remove from TG all proper
descendants of nodes from U , i.e., all nodes that are located strictly below a
node from U .

Example 6.6. Let G be the normal form TSLP from Example 6.5. The
derivation tree TG is shown in Figure 6.3 on the left; an initial subtree T′G of TG
is shown on the right.

We obtain the following lemma with respect to initial subtrees of a derivation
tree TG , which will be needed in order to prove our technical main lemma in this
chapter (Lemma 6.19).

Lemma 6.7. Let G be a TSLP in normal form with t = val(G). Let T′ be an
initial subtree of the derivation tree TG, and let v1, . . . , vj be the sequence of all
leaves of T′ (in left-to-right order). Then 2‖t‖ ≥

∑j
i=1 ‖svi‖.

Proof. Let u be a node of TG and let Tu be the (fringe) subtree of TG rooted
in u. Then the nodes of su are in a one-to-one correspondence with the leaves
of Tu, that is, if su ∈ B(Σ), we have 2‖su‖ − 1 = ‖Tu‖, and if su ∈ C(Σ), we
have 2‖su‖ = ‖Tu‖ (recall that ‖Tu‖ is the number of leaves of Tu). Thus,
2‖su‖ − 1 ≤ ‖Tu‖. Since T′ is an initial subtree of TG , we obtain in particular
2‖t‖ − 1 = 2‖val(G)‖ − 1 = ‖TG‖ =

∑j
i=1 ‖Tvi‖ ≥

∑j
i=1(2‖svi‖ − 1). As

‖svi‖ ≥ 1, we have 2‖t‖ ≥
∑j
i=1 2‖svi‖ − j + 1 ≥

∑j
i=1 2‖svi‖ + 1 and the

statement follows.

A grammar-based tree compressor is an algorithm Ψ that produces for a given
tree t ∈ B(Σ) a TSLP Gt in normal form such that t = val(Gt). It is not hard
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to show that every TSLP can be transformed with a linear size increase into a
normal form TSLP that derives the same tree. For example, the TSLP from
Example 6.4 is transformed into the normal form TSLP described in Example 6.5.
We will not use this fact, since all we need is the following theorem from [42]
(where σ̂ = max{2, σ}):

Theorem 6.8 ([42]). There exists a grammar-based compressor Ψ (working in
linear time) with maxt∈Bn(Σ) |Gt| ≤ O (n/ logσ̂ n).

Binary encoding for TSLPs in normal form. Next, we specify a binary
encoding for normal form TSLPs, which is a straightforward extension of the
one for TSLPs producing unlabeled full binary trees from [S3] (which in turn
is based on the encoding for SLPs from [64] and the encoding of DAGs from
[105]). We only have to incorporate node labels into the encoding from [S3]. Let
G = (V,A0, r) be a TSLP in normal form with m = |V | = |G| nonterminals. We
define the type type(Ai) ∈ {0, 1, 2, 3} of a nonterminal Ai ∈ V as follows:

type(Ai) =


0 if r(Ai) = Aj(α) for some Aj ∈ V1, α ∈ V0 ∪ Σ,

1 if r(Ai) = Aj(Ak(◦)) for some Aj , Ak ∈ V1,

2 if r(Ai) = a(α, ◦) for some α ∈ V0 ∪ Σ, a ∈ Σ,

3 if r(Ai) = a(◦, α) for some α ∈ V0 ∪ Σ, a ∈ Σ.

We define the binary word B(G) = w0w1w2w3w4, where the words wi ∈ {0, 1}+
for 0 ≤ i ≤ 4 are defined as follows:

˛ w0 = 0m−11

˛ w1 = a0b0a1b1 · · · am−1bm−1, where ajbj is the 2-bit binary encoding of
type(Aj). Note that |w1| = 2m.

˛ Let ρG = A1u1A2u2 · · ·Am−1um−1 with ui ∈ (Σ ∪ {A1, A2, . . . , Ai})∗.
Then w2 = 10|u1|10|u2| · · · 10|um−1|. Note that |w2| = 2m.

˛ For 1 ≤ i ≤ m− 1 let ki = |ρG |Ai ≥ 1 be the number of occurrences of the
nonterminal Ai in the word ρG . Moreover, fix a total ordering on Σ. For
1 ≤ i ≤ σ, let ai denote the ith symbol in Σ according to this ordering and
let li = |ρG |ai ≥ 0 be the number of occurences of the symbol ai in the
word ρG . Then w3 = 0k1−110k2−11 · · · 0km−1−110l110l21 · · · 0lσ1. Note that
|w3| = 2m+ σ.

˛ The word w4 encodes the word ωG using enumerative encoding [19]. Every
nonterminal Ai, 1 ≤ i ≤ m − 1, has η(Ai) := ki − 1 occurrences in ωG .
Every symbol ai ∈ Σ, 1 ≤ i ≤ σ, has η(ai) = li occurences in ωG . Let
S denote the set of words over the alphabet Σ ∪ {A1, . . . , Am−1} with
η(ai) occurrences of ai ∈ Σ (1 ≤ i ≤ σ) and η(Ai) occurrences of Ai
(1 ≤ i ≤ m− 1). Hence,

|S| = (m+ 1)!∏σ
i=1 η(ai)!

∏m−1
i=1 η(Ai)!

. (6.7)
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Let v0, v1, . . . , v|S|−1 be the lexicographic enumeration of the words from
S with respect to the alphabet order a1, . . . , aσ, A1, . . . , Am−1. Then w4

is the binary encoding of the unique index i such that ωG = vi, where
|w4| = dlog2 |S|e (leading zeros are added to the binary encoding of i to
obtain the length dlog2 |S|e).

Example 6.9. Consider the normal form TSLP G from Example 6.5. We have
w0 = 00001, w1 = 0011000011, w2 = 1101100000 and w3 = 110101001001. To
compute w4, note first that there are |S| = 180 words with two occurrences of a
and b and one occurrence of A3 and A4. It follows that |w4| = dlog(180)e = 8.
Furthermore, with the canonical ordering on Σ = {a, b}, the order of the alphabet
is a, b, A3, A4. The word ωG = aA3A4bba is the lexicographically largest word
in S starting with aA3. There are 132 words in S that are lexicographically
larger than aA3A4bba, namely all words in S that start with b (60 words), A3

(30 words), A4 (30 words), or aA4 (12 words). Hence ωG = aA3A4bba is the 48th

word in S in lexicographic order, i.e., ωG = v47 and thus w4 = 00101111.

The following lemma generalizes a result from [S3].

Lemma 6.10. The set of code words B(G), where G ranges over all TSLPs in
a normal form, is a prefix code.

Proof. Let B(G) = w0w1w2w3w4 with wi defined as above. We show how to
recover the TSLP G, given the alphabet Σ and the ordering on Σ. From w0

we can determine m = |V | and the factors w1, w2 and w3 of B(G). Hence,
we can determine the type of every nonterminal from w1. The types allow
to compute G from the word ρG . Hence, it remains to determine ρG . To
compute ρG from w2, one only needs ωG . For this, one determines the frequencies
η(A1), . . . , η(Am−1), η(a1), . . . , η(aσ) of the symbols in ωG from w3. Using these
frequencies one computes the size |S| from (6.7) and the length dlog |S|e of w4.
From w4, one can finally compute ωG .

Note that |B(G)| ≤ 7|G|+ σ + |w4|. By using the well-known bound on the
code length of enumerative encoding [20, Theorem 11.1.3], we get the following
bound, which extends [S3, Lemma 11] to node-labeled full binary trees:

Lemma 6.11. For the length of the binary coding B(G), we have

|B(G)| ≤ O(|G|) + σ +H(G).

Intuitively, by Lemma 6.10, we can uniquely recover a full binary tree t from
B(Gt), where Gt is a TSLP for t. By Lemma 6.11, we find that in order to
upper-bound |B(Gt)| in terms of the kth-order empirical tree entropy of t (plus
lower-order terms), we can focus on the entropy H(Gt) of the grammar Gt: Our
main technical result in this chapter (Lemma 6.19) will provide a suitable upper
bound on H(Gt). We also remark that a corresponding result (corresponding to
Lemma 6.11) exists for strings ([64, Lemma 8] and [89, Lemma 2]).
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6.4 Label-shape entropy for binary trees

In this section, we introduce our notion of empirical entropy of trees, which we
call label-shape entropy, in order to distinguish it from other notions of empirical
entropy for trees (see Chapter 7).

For the rest of this chapter, it will be convenient to identify a node v of a
tree or context s ∈ C(Σ) ∪ B(Σ) with a bit string that describes the path from
the root to the node (0 means left, 1 means right). More in detail, we define the
set of nodes V (s) ⊆ {0, 1}∗ of s ∈ C(Σ) ∪ B(Σ) as follows:

˛ V (a) = {ε} for a ∈ Σ,

˛ V (◦) = ∅, and

˛ V (a(s0, s1)) = {0w | w ∈ V (s0)} ∪ {1w | w ∈ V (s1)} ∪ {ε} for every a ∈ Σ,
s0, s1 ∈ C(Σ) ∪ B(Σ).

Throughout this chapter, a node v of a tree or context will be identified with
the corresponding bit string.

Note that for a context c ∈ C(Σ), the set V (c) does not contain the unique
node in c labeled with the parameter ◦: This is an ad-hoc decision in order to
increase the readability of this chapter, since for contexts, we mostly deal with
the set of nodes without the parameter node. Also, it is possible to uniquely
retrieve the path to the parameter ◦ in the context c from V (c): For a labeled
full binary tree t ∈ B(Σ), we have w0 ∈ V (t) if and only if w1 ∈ V (t) for all
w ∈ {0, 1}∗, as each node of t has zero or two children. The only context c
which fulfills this property is c = ◦, as the parameter node is the only node
of c and V (c) = ∅. For all other contexts c ∈ C(Σ), there exists a unique
w ∈ {0, 1}∗, such that w0 ∈ V (c) (respectively, w1 ∈ V (c)) and w1 /∈ V (c)

(respectively, w0 /∈ V (c)). In this case, the parameter node is w1 (respectively,
w0). Alternatively, the parameter node of a context c is the single node in the
set V (c[a]) \ V (c) for a symbol a ∈ Σ. We denote this node with ω(c) ∈ {0, 1}∗.
In other words: V (c[a]) \ V (c) = {ω(c)}. Consider a tree or context s and let
v ∈ V (s). The leaves of s are the strings in V (s) that are maximal with respect
to the prefix relation.

Example 6.12. Consider the tree t = a(b(b(a, b), a), a(b, a)) with Σ = {a, b}
depicted on the left of Figure 6.4. We have V (t) = {ε, 0, 1, 00, 01, 10, 11, 000, 001}.
For the context c = a(b(b(a, b), ◦), a(b, a)) depicted on the right of Figure 6.4, we
have t = c[a] and ω(c) = 01.

In the following, let λ̂s : V (s)→ Σ×{0, 2} denote the function which maps a
node v to the pair (λ(v), deg(v)), that is, to the pair consisting of v’s label λ(v)

and v′s degree deg(v). The mapping λ̂s can be inductively defined as follows:

˛ λ̂a(ε) = (a, 0) for a ∈ Σ,

˛ λ̂s(ε) = (a, 2) for s = a(s0, s1) with a ∈ Σ and s0, s1 ∈ B(Σ) ∪ C(Σ), and
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Figure 6.4: A tree (left) and a context (right).

˛ λ̂s(iw) = λ̂si(w) for s = a(s0, s1) with a ∈ Σ, s0, s1 ∈ B(Σ) ∪ C(Σ) and
iw ∈ V (s).

Note that in the last case, if s is a context, we cannot have si = ◦, because we
must have w ∈ V (si). In the following, we will omit the subscript s in λ̂s(v), if
s is clear from the context.

Label-shape histories. In this paragraph, we introduce the crucial notion
of the label-shape history of a node v in a tree or a context. Intuitively, the
label-shape history of v records all the information that can be obtained by
walking from the root of the tree/context straight down to the node v. This
information consists of the directions (0 or 1) along the path from the root to
v and the node labels along this path. First, we define the set of label-shape
histories as

H = (Σ{0, 1})∗ = {a1i1 · · · anin | n ≥ 0, ak ∈ Σ, ik ∈ {0, 1} for all 1 ≤ k ≤ n}.

For an integer k ≥ 0, let

Hk = {w ∈ H | |w| = 2k}

be the set of k-label-shape histories and let suffixk : H → Hk denote the partial
function mapping a label-shape history z ∈ H with |z| ≥ 2k to the suffix of
z of length 2k, i.e., suffixk(a1i1 · · · anin) = an−k+1in−k+1 · · · anin (the function
suffix0 maps a string to the empty string). For a tree t and a node v ∈ V (t)

(respectively, a context c and a node v ∈ V (c) ∪ {ω(c)}), we inductively define
its label-shape history h`s(v) ∈ H by

˛ h`s(ε) = ε,

˛ h`s(wi) = h`s(w)λ(w)i for i ∈ {0, 1}, wi ∈ V (t) (resp., wi ∈ V (c)∪{ω(c)}),

where λ(w) again denotes the label of the node w. That is, in order to obtain
h`s(v), while walking downwards in the tree from the root node to the node v, we
alternately concatenate symbols from Σ with binary numbers in {0, 1} such that
the symbol from Σ corresponds to the label of the current node and the binary
number 0 (respectively, 1) states that we move on the the left (respectively, right)
child node. Note that the label of v is not part of the label-shape history of v.
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The k-label-shape history of a tree node v ∈ V (t) is

h`sk (v) = suffixk((�0)kh`s(v))

i.e., the suffix of length 2k of the string (�0)kh`s(v), where � is a fixed dummy
symbol in Σ (the choice is arbitrary). This means that if |v| ≥ k, then h`sk (v)

describes the last k directions and node labels along the path from the root
to node v. If |v| < k, we pad the label-shape history of v with �’s and zeros
such that h`sk (v) ∈ Hk. In general, there are several possible ways to define the
k-label-shape history of a node whose label-shape history is shorter than 2k.
Reasonable approaches of how to deal with these nodes are

(i) to pad these label-shape histories with a fixed dummy symbol � ∈ Σ and
direction i ∈ {0, 1},

(ii) to allow label-shape histories of length smaller than 2k, or, equivalently,
pad these label-shape histories with a fixed dummy symbol � /∈ Σ and
direction i ∈ {0, 1}, or

(iii) to ignore nodes whose label-shape history is of length smaller than 2k.

In our definition, we use the variant (i) with i = 0. In [S6], it is shown that
these choices only have a minor influence on our main results. The k-label-shape
history is a natural extension of the k preceding symbols of a string position.
For z ∈ Hk, we denote with

Vz(t) = {v ∈ V (t) | h`sk (v) = z} (6.8)

the set of nodes of t with k-label-shape history z.

Example 6.13. Consider the tree t = a(b(b(a, b), a), a(b, a)) from Figure 6.4 and
let � = a ∈ Σ. Then, h`s(001) = h`s3 (001) = a0b0b1 and h`s4 (10) = a0a0a1a0.

Label-shape entropy. We now come to the definition of our kth-order empir-
ical entropy for trees, which we call label-shape entropy, in order to distinguish
it from existing concepts of empirical entropy for trees (see Chapter 7). As for
strings, the term “empirical” refers to the fact that we assign an information
content to a single tree instead of a probability distribution on trees. This has
the advantage that empirical entropy is also useful in situations where we do not
know the underlying probability distribution on trees. Let us fix k ≥ 0 and let
t ∈ B(Σ). For z ∈ Hk, let

mt
z = |Vz(t)| = |{v ∈ V (t) | h`sk (v) = z}| (6.9)

be the number of nodes of t with k-label-shape history z and for ã ∈ Σ× {0, 2}
and z ∈ Hk, let

mt
z,ã = |{v ∈ V (t) | h`sk (v) = z and λ̂(v) = ã}|. (6.10)
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We define the kth-order label-shape entropy as follows.

Definition 6.14 (Label-shape entropy for full binary trees). Let k ≥ 0. The
kth-order (unnormalized) label-shape entropy H`s

k (t) of a full binary tree t ∈ B(Σ)

is defined as

H`s
k (t) =

∑
z∈Hk

∑
ã∈Σ×{0,2}

mt
z,ã log

(
mt
z

mt
z,ã

)
.

This definition extends the notion of kth-order empirical entropy for strings
to full binary trees. The k-label-shape history of a tree node takes the role of
the k preceding characters of a string position. Note that

0 ≤ H`s
k (t) ≤ (2n− 1) log(2σ) = (2n− 1)(1 + log σ)

for every t ∈ Bn(Σ). This upper bound on the label-shape entropy matches the
information theoretic bound for the worst-case output length of any tree encoder
on Bn(Σ). Using the asymptotic bound (2.1) for the Catalan numbers, one sees
that for any tree encoder there must exist a tree t ∈ Bn(Σ) which is encoded with
2 log(2σ)n− o(n) = 2(log σ + 1)n− o(n) many bits. The kth-order label-shape
entropy H`s

k (t) is a lower bound on the coding length of a tree encoder that
encodes for each node the relevant information (the label of the node and the
binary information whether the node is a leaf or internal) depending on the
k-label-shape history of the node: Thus, the kth-order label-shape entropy is
the expected uncertainty about the label and degree (0 or 2) of a node, given
the last k directions and labels on the path from the root node to the node.
Furthermore, note that the definition of label-shape entropy is also reasonable
for unlabeled trees (i.e., trees over a unary alphabet): The kth-order label-shape
entropy of an unlabeled full binary tree tells us the expected uncertainty about
the degree (0 or 2) of a node, given the last k directions on the path from the
root node to the node.

Example 6.15. Let t denote the full binary tree t = a(b(b(a, b), a), a(b, a)) as
depicted on the left of Figure 6.4. In order to compute the first-order label-shape
entropy H`s

1 (t) of t, we have to consider k-label-shape histories of t with k = 1:
Let � = a. We find Va0(t) = {ε, 0, 10}, Vb0(t) = {00, 000}, Va1(t) = {1, 11}
and Vb1(t) = {01, 001}. Thus, we have mt

a0 = 3 and mt
a1 = mt

b0 = mt
b1 = 2.

Next, for each k-label-shape history z, we consider λ̂(v) for v ∈ Vz(t): For the
label-shape history z = a0, we have λ̂(ε) = (a, 2), λ̂(0) = (b, 2) and λ̂(10) = (b, 0).
Hence, we have mt

a0,(a,2) = mt
a0,(b,0) = mt

a0,(b,2) = 1. Analogously, we obtain
the values mt

a1,(a,2) = mt
a1,(a,0) = 1 as well as mt

b0,(b,2) = mt
b0,(a,0) = 1 and

mt
b1,(b,0) = mt

b1,(a,0) = 1. Altogether, this yields H`s
1 (t) = 3 · log(3) + 6 · log(2)

which is roughly 10.75.

Label-shape processes. In the same way as kth-order empirical entropy for
strings corresponds to kth-order Markov processes for strings [41], the label-
shape entropy defined above corresponds to a particular kind of tree processes,
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which we call label-shape processes. A label-shape process is an infinite tuple
P = (Pz)z∈H, where every Pz is a probability mass function on Σ× {0, 2}. A
pair (a, i) ∈ Σ× {0, 2} represents the information that a certain tree node v is
labeled with a and has i children. The probability Pz(a, i) is the probability that
the tree node with label-shape history z is labeled with a and has i children. A
label-shape process randomly generates a full binary tree t ∈ B(Σ) as follows:
In a top-down way we determine for every tree node its label (from Σ) and
its number of children, where this decision depends on the label-shape history
of the tree node. We start at the root node, whose label-shape history is the
empty word ε. If we reach a tree node v with label-shape history z ∈ H, then
we randomly choose a pair (a, i) ∈ Σ× {0, 2} according to the probability mass
function Pz. We assign the label a ∈ Σ to v. If i = 0, then v becomes a leaf,
otherwise the process continues at the two children v0 and v1 (whose label-shape
history is well-defined). Note that in this way, we may produce infinite trees
with non-zero probability. For finite trees s ∈ B(Σ), we obtain the probability

ProbP(s) =
∏

v∈V (s)

Ph`s(v)(λ̂s(v)). (6.11)

For technical reasons, we will use this definition also for the case that s is a context.
In other words: We associate with P the function ProbP : B(Σ) ∪ C(Σ)→ [0, 1]

using (6.11). Note that if s is a context, then the parameter node of s is not
contained in V (s) and therefore does not contribute to ProbP(s).

We first prove the following two lemmas, which will be needed in the proof of
the main technical result from this chapter (Lemma 6.19). The reason that we
obtain only an inequality in the following lemma is that the above tree generating
process may also produce infinite trees with non-zero probability.

Lemma 6.16. Let P be a label-shape process. Then
∑
t∈B(Σ) ProbP(t) ≤ 1.

Proof. First, note that as ProbP(t) is non-negative for every tree t ∈ B(Σ), the
order of summation in the given sum does not matter: If

∑
t∈B(Σ) ProbP(t) <∞,

then this sum converges absolutely, and thus any rearrangement of the order of
summation does not change its value. Define the set of trees B≤n inductively by
B≤1 = B1(Σ) and

B≤n+1 = B1(Σ) ∪ {a(t0, t1) | a ∈ Σ, t0, t1 ∈ B≤n}.

Thus, B≤n is the set of all Σ-labeled full binary trees from B(Σ) of depth at
most n− 1. We find that B≤n ( B≤n+1 and B(Σ) =

⋃
n≥1 B≤n. It then suffices

to show that
∑
t∈B≤n ProbP(t) ≤ 1 for every n ≥ 1. We prove the statement

by induction on n. For this, it turns out to be useful to define for every z ∈ H
the shifted label-shape process Pz = (Pzz′)z′∈H. We then prove by induction on
n that

∑
t∈B≤n ProbPz (t) ≤ 1 for every n ≥ 1 and all z ∈ H (in particular, for

z = ε as well, which then yields the original statement). For n = 1, we have∑
t∈B≤1

ProbPz (t) =
∑

t∈B1(Σ)

ProbPz (t) =
∑
a∈Σ

Pz(a, 0) ≤ 1.
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Now assume that n ≥ 1. We obtain∑
t∈B≤n+1

ProbPz (t)

=
∑
t∈B≤1

ProbPz (t) +
∑
a∈Σ

∑
t0∈B≤n

∑
t1∈B≤n

ProbPz (a(t0, t1))

=
∑
a∈Σ

Pz(a, 0) +
∑
a∈Σ

(
Pz(a, 2) ·

∑
t0∈B≤n

ProbPza0(t0) ·
∑

t1∈B≤n
ProbPza1(t1)

)
≤
∑
a∈Σ

Pz(a, 0) +
∑
a∈Σ

Pz(a, 2) = 1.

This proves the lemma.

Lemma 6.16 cannot be extended to contexts, but the following bound will
suffice for our purpose:

Lemma 6.17. Let P be a label-shape process. Then
∑
c∈Cn(Σ) ProbP(c) ≤ n+ 1

for every n ≥ 1.

Proof. In order to bound
∑
c∈Cn(Σ) ProbP(c), we first represent the probability

of each context c ∈ Cn(Σ) as a sum of probabilities of trees. Let c ∈ Cn(Σ)

be a context. In order to bound ProbP(c), the idea is to consider the set
c[B(Σ)] = {c[t] | t ∈ B(Σ)} of all trees that arise from c by replacing the parameter
by an arbitrary tree t ∈ B(Σ). As there might be infinite trees with positive
probability with respect to P, the sum of probabilities

∑
t∈c[B(Σ)] ProbP(t) can

be strictly smaller than ProbP(c). Thus, we fix an element a ∈ Σ and modify P
to a label-shape process P ′ = (P ′z)z∈H, such that (i) P ′z = Pz for |z| ≤ 2n and (ii)
P ′z(a, 0) = 1 and P ′z(a′, i) = 0 for every (a′, i) ∈ Σ×{0, 2} \ {(a, 0)} and |z| > 2n.
The label-shape process P ′ is created in such a way that all nodes v with |v| ≤ n
contribute the probability Ph`s(v)(λ̂(v)) as before, and all other nodes are a-
labeled leaves with probability 1. First, note that for each context c ∈ Cn(Σ)

and each node v ∈ V (c), we have |v| ≤ n and thus P ′h`s(v)(λ̂(v)) = Ph`s(v)(λ̂(v)).
Secondly, all trees of depth larger than n+ 1 have probability 0 with respect to
P ′ (including infinite trees). Hence, we get

∑
t∈B(Σ) ProbP′(t) = 1. We obtain∑

t∈c[B(Σ)]

ProbP′(t) =
∑

t∈c[B(Σ)]

∏
v∈V (t)

P ′h`s(v)(λ̂(v))

=
∑

t∈c[B(Σ)]

∏
v∈V (c)

P ′h`s(v)(λ̂(v)) ·
∏

v∈V (t)\V (c)

P ′h`s(v)(λ̂(v))

= ProbP(c) ·
∑

t∈c[B(Σ)]

∏
v∈V (t)\V (c)

P ′h`s(v)(λ̂(v))

︸ ︷︷ ︸
(a)

.

We claim that (a) equals 1. To see this, consider the label-shape process
P ′′ = (P ′′z )z∈H with P ′′z = P ′h`s(ω(c))z. For P ′′, we find again that only finite
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trees have non-zero probability and thus
∑
t∈B(Σ) ProbP′′(t) = 1. We have

(a) =
∑

t∈B(Σ)

∏
v∈V (t)

P ′h`s(ω(c))h`s(v)(λ̂(v))

=
∑

t∈B(Σ)

∏
v∈V (t)

P ′′h`s(v)(λ̂(v))

=
∑

t∈B(Σ)

ProbP′′(t) = 1.

It follows that ProbP(c) =
∑
t∈c[B(Σ)] ProbP′(t). In the second part of the proof

it remains to bound∑
c∈Cn(Σ)

ProbP(c) =
∑

c∈Cn(Σ)

∑
t∈c[B(Σ)]

ProbP′(t).

The key point here is that for each tree t ∈ B(Σ) there are at most n+ 1 different
contexts c ∈ Cn(Σ), such that t ∈ c[B(Σ)]. Note that for a tree t, the number
of different contexts c ∈ Cn(Σ), such that t ∈ c[B(Σ)] is exactly the number
of nodes v ∈ V (t), such that replacing the fringe subtree rooted at v by the
parameter ◦ yields a context c with leafsize ‖c‖ = n. This is the same as the
number of fringe subtrees of t with ‖t‖− n leaves. Since different fringe subtrees
in t of equal leafsize do not share nodes, we can bound the number of fringe
subtrees with ‖t‖ − n leaves by ‖t‖/(‖t‖ − n). We can assume that ‖t‖ = n+ k

for some k > 0 and the number of subtrees of t with ‖t‖ − n leaves is at most
(n+ k)/k = n/k + 1 ≤ n+ 1. We obtain∑

c∈Cn(Σ)

∑
t∈c[B(Σ)]

ProbP′(t) ≤ (n+ 1)
∑

t∈B(Σ)

ProbP′(t) = 1.

This concludes the proof of the lemma.

Label-shape processes of order k. A kth-order label-shape process is a
label-shape process P = (Pz)z∈H which satisfies the property that Pz = Pz′ if
suffixk((�0)kz) = suffixk((�0)kz′). Thus, the probability mass function that is
chosen for a certain tree node v depends only on the k-label-shape history of
v. The set of kth-order label-shape processes can be seen as a tree extension of
kth-order Markov processes for strings. We will identify the kth-order label-shape
process P = (Pz)z∈H with the finite tuple (Pz)z∈Hk (recall that Hk is the set
of k-label-shape histories); it contains all information about P. Note that for a
kth-order label-shape process P , we compute ProbP(s) for a tree or context s as

ProbP(s) =
∏
z∈Hk

∏
v∈Vz(s)

Pz(λ̂(v)), (6.12)

where Vz(s) is defined in (6.8) and the empty product is 1.
Let t ∈ Bn(Σ) be a Σ-labeled full binary tree. We define the empirical

kth-order label-shape process Pt = (P tz)z∈Hk corresponding to the full binary
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tree t by

P tz(ã) =
mt
z,ã

mt
z

(6.13)

for every ã ∈ Σ× {0, 2} and z ∈ Hk with mt
z > 0, where mt

z is defined in (6.9)
and mt

z,ã is defined in (6.10). Let ã = (a, i) ∈ Σ × {0, 2}, then P tz(ã) is the
probability that a node of t that is randomly chosen among the nodes with
label-shape history z is labeled with a and has i many children. If mt

z = 0,
then the choice for the probability mass function P tz is arbitrary. Note that the
kth-order label-shape entropy (as defined in Definition 6.14) of a Σ-labeled full
binary tree t can be written as

H`s
k (t) =

∑
z∈Hk

mt
z ·H(P tz), (6.14)

where H(P tz) is the Shannon entropy of the probability mass function P tz (see
Section 6.2).

The following theorem and its proof are very similar to a corresponding
statement for strings shown by Gagie [41]. One obtains Gagie’s result by replacing
in the following theorem (i) kth-order label-shape processes by kth-order Markov
processes and (ii) kth-order label-shape entropy of trees by kth-order empirical
entropy of strings.

Theorem 6.18. Let t ∈ B(Σ) be a Σ-labeled full binary tree. For every kth-order
label-shape process P = (Pz)z∈Hk with ProbP(t) > 0, we have

H`s
k (t) ≤ − log ProbP(t)

with equality if and only if P tz = Pz for all z ∈ Hk with mt
z > 0.

Proof. We have

− log ProbP(t)
(6.12)

=
∑
z∈Hk

∑
v∈Vz(t)

log(1/Pz(λ̂(v)))

(6.10)
=

∑
z∈Hk

∑
ã∈Σ×{0,2}

mt
z,ã log(1/Pz(ã))

(6.13)
=

∑
z∈Hk

mt
z

∑
ã∈Σ×{0,2}

P tz(ã) · (log(P tz(ã)/Pz(ã)) + log(1/P tz(ã)))

(6.4)
=

∑
z∈Hk

mt
z · (D(P tz ||Pz) +H(P tz))

(6.14)
≥ H`s

k (t)

with equality in the last line if and only if P tz = Pz for all z ∈ Hk withmt
z > 0.

Theorem 6.18 will be a main ingredient in the proof of our main result
(Theorem 6.21 in Section 6.5) in the same way as the above mentioned result from
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[41] is used by Ochoa and Navarro [89] in order to bound the compression ratio
of grammar-based string compressors in terms of the kth-order empirical entropy
of strings. In our main technical result (Theorem 6.20 in the following section),
we show that for every kth-order label-shape process P with ProbP(t) > 0, we
have that |B(Gt)| is upper-bounded by − log ProbP(t) plus certain lower-order
terms, where B is a binary TSLP-encoding and t→ Gt is a grammar-based tree
compressor (as defined in Section 6.3). Our main result (Theorem 6.21), i.e., that
|B(Gt)| is upper-bounded in terms of the kth order label-shape entropy H`s

k (t)

plus lower-order terms, will then easily follow as a corollary from Theorem 6.20
by applying Theorem 6.18.

6.5 Entropy bounds for binary encoded TSLPs

For this section we fix a grammar-based tree compressor Ψ: t→ Gt, such that
maxt∈Bn(Σ) |Gt| ≤ O (n/ logσ̂ n) (where again σ̂ = max{2, σ}); see Theorem 6.8.
Let κ > 0 be a concrete constant such that

|Gt| ≤
κn

logσ̂ n
(6.15)

for every tree t ∈ Bn(Σ) and n large enough. We allow that the alphabet
size σ grows with n, i.e., σ = σ(n) is a function in the tree size such that
1 ≤ σ(n) ≤ 2n − 1 (as a full binary tree t ∈ Bn(Σ) has 2n − 1 nodes). Our
technical main result of this chapter is the following bound on the entropy H(Gt)
(defined in Section 6.3). A similar bound (but for a different class of probability
distributions on trees, which include, in particular, a class of leaf-centric binary
tree sources as considered in Chapter 3) is stated in [S3, Lemma 13].

Lemma 6.19. Let k ≥ 0, t ∈ Bn(Σ) with n ≥ 2 and let P = (Pw)w∈Hk be a
kth-order label-shape process with ProbP(t) > 0. We have

H(Gt) ≤ − log ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
.

Proof. Let m = |Gt| = |V | be the size of Gt. Let T = TGt be the derivation tree
of Gt. We define an initial subtree T′ as follows: If v1 and v2 are non-leaf nodes of
T that are labeled with the same nonterminal and v1 comes before v2 in preorder
(depth-first left-to-right), then we remove from T all proper descendants of v2.
Thus, for every Ai ∈ V , there is exactly one non-leaf node in T′ that is labeled
with Ai. For the TSLP from Example 6.5, the tree T′ is shown in Figure 6.3 on
the right. We now use the tree T′ in order to define a factorization of the tree
t into several subtrees, subcontexts and inner nodes. A similar factorization is
also used in [S3, proof of Lemma 7].

Recall the definition of the words ρGt and ωGt from Section 6.3. A permutation
of the word ρGt is obtained by writing down for every node v of T′ the labels of v′s
children (if they exist in T′) and then concatenating these labels. Moreover, the
word ωGt is obtained by writing down (in a suitable order) the labels of the leaves
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a

b

b

b a

a

b

b a

Figure 6.5: The tree val(G) of the TSLP from Example 6.5. The canonical
occurrences of the trees/contexts or inner nodes used in the proof of Lemma 6.19
in (a, b, a, b, valG(A4), valG(A3)) = (a, b, a, b, b(◦, a), b(b, a)) are highlighted.

of T′. Note that T′ has m non-leaf nodes and m+ 1 leaves. Let v1, v2, . . . , vm+1

be the sequence of all leaves of T′ (without loss of generality, in perorder) and
let αi ∈ Σ ∪ {A1, . . . , Am−1} be the label of vi. Let ᾱ = (α1, α2, . . . , αm+1).
Then ᾱ is a permutation of ωGt . We therefore have |ωGt |α = |ᾱ|α for every
α ∈ Σ∪{A1, . . . , Am−1}. Hence, pᾱ and pωGt are the same empirical distributions.
For example for the TSLP from Example 6.5, we find that ᾱ = (a, b, a, b, A4, A3).
Let si = valGt(αi) ∈ B(Σ) ∪ (C(Σ) \ {◦}). Since valGt(Ai) 6= valGt(Aj) for
all i 6= j (as Gt is in normal form) and valGt(Ai) /∈ Σ (this holds for every
normal form TSLP that produces a tree of leafsize at least two), the tuple
s̄ = (s1, s2, . . . , sm+1) satisfies for all 1 ≤ i ≤ m+ 1:

pωGt (αi) = ps(si). (6.16)

We define from P for every z ∈ Hk a label-shape process Pz = (Pz,w)w∈H by
setting

Pz,w(ã) = Psuffixk(zw)(ã) (6.17)

for all ã ∈ Σ× {0, 2}. Note that the kth-order label-shape process P is obtained
for z = (�0)k for the fixed padding symbol � ∈ Σ. We define a mapping
ϑ : B(Σ) ∪ C(Σ)→ [0, 1] by

ϑ(s) =

{
1 if s ∈ B1(Σ) = Σ

maxz∈Hk ProbPz (s) if s ∈ (B(Σ) ∪ C(Σ)) \ B1(Σ).
(6.18)

Thus, for every s ∈ (B(Σ) ∪ C(Σ)) \ B1(Σ), the function ϑ maximizes the
values of the function ProbPz associated with the kth-order label-shape process
Pz = (Pz,w)w∈Hk by choosing an optimal prefix for the k-label-shape history of
the nodes of s whose label-shape history is of length smaller than 2k. We show
that the mapping ϑ satisfies

ϑ(t) ≤
m+1∏
i=1

ϑ(si). (6.19)
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In order to prove (6.19), first note that by definition of the tree/context su,
for each node u of the derivation tree T, the tree/context su corresponds to a
subtree/subcontext or a single inner node of the tree t. We define a function χ
which maps a node u of the derivation tree T to a node χ(u) ∈ V (t) ⊆ {0, 1}∗.
Intuitively, χ(u) is the root of the subtree/subcontext, respectively, the inner
node of t which corresponds to su. Formally, χ is defined inductively as follows.
For the root node u of T, we set χ(u) = ε. Furthermore, let u be a non-leaf node
of T which is labeled with the non-terminal Ai and for which χ(u) has been
defined. Let u1 be the left child and u2 be the right child of u in T. We define
χ(u1) = χ(u). The node χ(u2) is defined as follows:

˛ If r(Ai) = Aj(α) with Aj ∈ V1 and α ∈ V ∪ Σ, then χ(u2) = χ(u)ω(su1
)

(recall that ω(su1
) 6= ε is the position of the parameter ◦ in the context

su1
= valG(Aj)).

˛ If r(Ai) = a(α, ◦) (respectively, r(Ai) = a(◦, α)) for a ∈ Σ and α ∈ Σ ∪ V0,
then we define χ(u2) = χ(u)0 (respectively, χ(u2) = χ(u)1).

This yields a well-defined function χ mapping a node u of T to a node
χ(u) ∈ V (t). Let us define

Vu(t) = {χ(u)v | v ∈ V (su)} ⊆ V (t).

Then, the mapping
V (su) 3 v 7→ χ(u)v ∈ Vu(t) (6.20)

is bijective. The definition of the sets Vu(t) implies that if two nodes u and v of
T are not in an ancestor-descendant relationship, then Vu(t) ∩ Vv(t) = ∅. Since
the nodes v1, . . . , vm+1 are the leaves of the initial subtree T′ and hence not in
an ancestor-descendant relationship, the sets Vvi(t) are disjoint subsets of V (t).
For the TSLP from Example 6.5, the node sets Vv1(t), Vv2(t), Vv3(t), Vv4(t), Vv5(t)

and Vv6(t) corresponding to the six leaves of the initial subtree depicted in
Figure 6.3 (right) are shown in Figure 6.5. Note that if si /∈ B1(Σ), then the
bijection from (6.20) also preserves the λ̂-mapping in the following sense:

λ̂t(χ(vi)w) = λ̂si(w) (6.21)

for every w ∈ V (si). However, if si ∈ B1(Σ) then this statement does not
necessarily hold, as the number of children is not preserved in general: If
si ∈ B1(Σ), then si might correspond to a single inner node of t. In this case, we
have Vvi(t) = {χ(vi)}, V (si) = {ε} and λ̂t(χ(vi)) = (a, 2) for some a ∈ Σ, but
λ̂si(ε) = (a, 0). For example, in the TSLP from Example 6.5, the left-most leaf
node of its initial subtree depicted in Figure 6.3 corresponds to the root node of
the tree val(G) (see Figure 6.5). We define

I := {i ∈ {1, . . . ,m+ 1} | si /∈ B1(Σ)}.

In our running example, we have (s1, s2, s3, s4, s5, s6) = (a, b, a, b, b(◦, a), b(b, a))
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and hence I = {5, 6}. The label-shape history h`s(χ(vi)w) of χ(vi)w ∈ Vvi(t)
with w ∈ V (si) in the tree t is the concatenation of the label-shape history
h`s(χ(vi)) of χ(vi) in t and the label-shape history h`s(w) of w in the tree/context
si. Thus, if i ∈ I, we have

max
z∈Hk

∏
v∈Vvi (t)

Psuffixk(zh`s(v))(λ̂t(v))

= max
z∈Hk

∏
w∈V (si)

Psuffixk(zh`s(χ(vi))h`s(w))(λ̂t(χ(vi)w))

(6.21)
= max

z∈Hk

∏
w∈V (si)

Psuffixk(zh`s(χ(vi))h`s(w))(λ̂si(w))

≤ max
z∈Hk

∏
w∈V (si)

Psuffixk(zh`s(w))(λ̂si(w)). (6.22)

The inequality in the last line follows from the fact that every k-label-shape
history suffixk(zh`s(χ(vi))h

`s(w)) for z ∈ Hk is also of the form suffixk(z′h`s(w))

for some z′ ∈ Hk. We can now show (6.19). Since t ∈ Bn(Σ) with n ≥ 2 we have

ϑ(t)
(6.18)

= max
z∈Hk

ProbPz (t)

(6.17)
= max

z∈Hk

∏
v∈V (t)

Psuffixk(zh`s(v))(λ̂t(v))

(∗)
≤ max

z∈Hk

∏
i∈I

∏
v∈Vvi (t)

Psuffixk(zh`s(v))(λ̂t(v))

≤
∏
i∈I

max
z∈Hk

∏
v∈Vvi (t)

Psuffixk(zh`s(v))(λ̂t(v))

(6.22)
≤

∏
i∈I

max
z∈Hk

∏
w∈V (si)

Psuffixk(zh`s(w))(λ̂si(w))

=
m+1∏
i=1

ϑ(si) (since ϑ(si) = 1 for i /∈ I),

where the inequality (∗) follows since Psuffixk(zh`s(v))(λ̂(v)) ≤ 1 for v ∈ V (t).
Next, we define the function ζ : B(Σ) ∪ C(Σ) \ {◦} → [0, 1] as follows:

ζ(s) =


2−k−2σ−k−1ϑ(s) if s ∈ B(Σ)

6

π2
· 2−k−1σ−k · ϑ(s)

‖s‖2(‖s‖+ 1)
if s ∈ C(Σ) \ {◦}.

The next step in our proof will be to find an upper bound for the sum
∑
s ζ(s)

for s ∈ B(Σ) ∪ C(Σ) \ {◦}. For this, we first find that∑
s∈B(Σ)

ϑ(s) =
∑

s∈B(Σ)\B1(Σ)

max
z∈Hk

ProbPz (s) +
∑

s∈B1(Σ)

1
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≤
∑
z∈Hk

∑
s∈B(Σ)\B1(Σ)

ProbPz (s) + σ ≤ 2kσk + σ, (6.23)

where the last inequality follows from Lemma 6.16 and |Hk| = 2kσk. Similarly,
we have ∑

s∈C(Σ)\{◦}

ϑ(s)

‖s‖2(‖s‖+ 1)
=
∑
r≥1

1

r2(r + 1)

∑
s∈Cr(Σ)

max
z∈Hk

ProbPz (s)

≤
∑
z∈Hk

∑
r≥1

1

r2(r + 1)

∑
s∈Cr(Σ)

ProbPz (s)

≤ 2kσk
∑
r≥1

1

r2
≤ π2

6
· 2kσk, (6.24)

where the last but one inequality follows from Lemma 6.17 and |Hk| = 2kσk,
and the last inequality follows from the well-known fact that

∑
r≥1 r

−2 = π2/6.
With (6.23) and (6.24), we obtain

∑
s∈B(Σ)∪C(Σ)\{◦}

ζ(s) = 2−k−2σ−k−1
∑

s∈B(Σ)

ϑ(s) +
6

π2
· 2−k−1σ−k

∑
s∈C(Σ)\{◦}

ϑ(s)

‖s‖2(‖s‖+ 1)

≤ 2−k−2σ−k−1
(
2kσk + σ

)
+

6

π2
· 2−k−1σ−k · π

2

6
· 2kσk

= 2−2σ−1 + 2−k−2σ−k +
1

2

≤ 1.

In particular, we have
∑m
i=1 ζ(si) ≤ 1. Thus, with Shannon’s inequality (6.6),

we obtain:

H(Gt) = H(ωGt) =
m+1∑
i=1

− log pωGt (αi)
(6.16)

=
m+1∑
i=1

− log ps(si) ≤
m+1∑
i=1

− log ζ(si).

With I0 = {i | 1 ≤ i ≤ m+1, si ∈ B(Σ)} and I1 = {i | 1 ≤ i ≤ m+1, si ∈ C(Σ)}
we obtain

H(Gt) ≤ −
∑
i∈I0

log ζ(si)−
∑
i∈I1

log ζ(si)

= −
∑
i∈I0

log
(
2−k−2σ−k−1ϑ(si)

)
−
∑
i∈I1

log

(
6

π2
· 2−k−1σ−kϑ(si)

‖si‖2(‖si‖+ 1)

)

by definition of ζ. Using logarithmic identities, we obtain

H(Gt) ≤ |I0| (k + 2 + (k + 1) log σ)− log

(
m∏
i=1

ϑ(si)

)
+ log

(
π2

6

)
|I1|

+ |I1| (k + 1 + k log σ) +
∑
i∈I1

log
(
‖si‖2(‖si‖+ 1)

)
.
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Using |I0|+|I1| = m+1 ≤ 2m = 2|Gt|, log(π2/6)|I1| ≤ |I1| and ‖si‖+1 ≤ 2‖si‖,
we obtain

H(Gt) ≤ 2(k + 2)|Gt|+ 2(k + 1)|Gt| log σ − log
(m+1∏
i=1

ϑ(si)
)

+
m+1∑
i=1

log
(
2‖si‖3

)
.

Equation (6.19) and ϑ(t) ≥ ProbP(t) yield

H(Gt) ≤ 2(k + 3)|Gt|+ 2(k + 1)|Gt| log σ − log ϑ(t) + 3
m+1∑
i=1

log ‖si‖

≤ − log ProbP(t) +O
(
k|Gt| log σ̂ +

m+1∑
i=1

log ‖si‖
)
.

Let us bound the sum
∑m+1
i=1 log ‖si‖: Using Jensen’s inequality and Lemma 6.7

(which yields
∑m+1
i=1 ‖si‖ ≤ 2n), we obtain

m+1∑
i=1

log ‖si‖ ≤ (m+ 1) log

(
m+1∑
i=1

‖si‖
m+ 1

)
≤ (m+ 1) log

(
2n

m+ 1

)
≤ 2|Gt| log

(
2n

|Gt|

)
,

and thus

H(Gt) ≤ − log ProbP(t) +O
(
k|Gt| log σ̂ + |Gt| log

(
n

|Gt|

))
. (6.25)

In order to bound the term |Gt| log(n/|Gt|), recall that for n large enough we
have |Gt| ≤ κ · n/ logσ̂ n = κ · n · log σ̂/ log n by (6.15), where κ is a constant.
Since σ ≤ 2n− 1 there is a constant κ′ ≥ 1 with κ · n/ logσ̂ n ≤ κ′n. Since for
every fixed z ≥ 1, the function f(x) = x log

(
z
x

)
is monotonically increasing for

0 < x ≤ z
e (where e is Euler’s number), we get

|Gt| log

(
n

|Gt|

)
≤ |Gt| log

(
eκ′n

|Gt|

)
≤
κn log

(
eκ′

κ logσ̂ n
)

logσ̂ n
≤ O

(
n log logσ̂ n

logσ̂ n

)
.

With (6.25) we get

H(Gt) ≤ − log ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
,

which proves the lemma.

We consider the tree encoder EΨ : B(Σ)→ {0, 1}∗ defined by EΨ(t) = B(Gt)
now, where as before the grammar-based tree compressor Ψ: t 7→ Gt has to satisfy
(6.15) for every t ∈ Bn(Σ) and n large enough. The following theorem says that
the encoder EΨ is universal with respect to the class of all kth-order label-shape
processes. Universality means that the maximal pointwise redundancy [94]
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converges to zero for n→∞.

Theorem 6.20. For every t ∈ Bn(Σ), every k ≥ 0 and every kth-order label-
shape process P = (Pz)z∈Hk with ProbP(t) > 0, we have

|EΨ(t)| ≤ − log ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

Proof. Let P = (Pz)z∈Hk be a kth-order label-shape process with ProbP(t) > 0.
Lemma 6.11 and Lemma 6.19 yield

|EΨ(t)| ≤ O (|Gt|) +H(Gt) + σ

≤ O (|Gt|)− log ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ

= − log ProbP(t) +O
(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ,

where the last equality uses the bound |Gt| ≤ O (n/ logσ̂ n).

By taking in Theorem 6.20 for P the empirical kth-order label-shape process
Pt and using Theorem 6.18, we obtain our main result of this chapter:

Theorem 6.21. For every t ∈ Bn(Σ) and every k ≥ 0, we have

|EΨ(t)| ≤ H`s
k (t) +O

(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

6.6 Extension to labeled plane trees

So far, we have only introduced label-shape entropy for node-labeled full binary
trees t ∈ B(Σ) (Definition 6.14). In this section, we consider an extension of
label-shape entropy to Σ-labeled plane trees t ∈ T (Σ), that is, the number of
children of a node can be any natural number and the children of every node
are totally ordered, and each node is labeled by an element of a finite alphabet
Σ. In particular, we show that the entropy bound for grammar-based tree
compressors (Theorem 6.21) can be easily generalized to Σ-labeled plane trees.
Recall the definition of the first-child next-sibling encoding (Definition 2.13),
which transforms a Σ-labeled plane tree into a full binary tree. Using the
first-child next-sibling encoding, we make the following definition.

Definition 6.22. We define the kth-order label-shape entropy of a Σ-labeled
plane tree t ∈ T (Σ) as H`s

k (t) = H`s
k (fcns(t)).

Note that this definition is independent of the choice of � ∈ Σ, which labels
the newly added dummy-nodes in the first-child next-sibling encoding. From
Theorem 6.21, we immediately obtain:
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Theorem 6.23. For every tree t ∈ T (Σ) with |t| = n and every k ≥ 0 we have

|EΨ(fcns(t))| ≤ H`s
k (t) +O

(
kn log σ̂

logσ̂ n

)
+O

(
n log logσ̂ n

logσ̂ n

)
+ σ.

Our definition of the kth-order label-shape entropy of a Σ-labeled plane tree
via the fcns-encoding has a practical motivation. Labeled plane trees occur for
instance in the context of XML, where the hierarchical structure of a document
is represented as a labeled plane tree. In this setting, the label of a node quite
often depends on (i) the labels of the ancestor nodes and (ii) the labels of the
(left) siblings. This dependence is captured by our definition of the kth-order
label-shape entropy. We also confirmed this intuition by experimental data
(shown in Table 6.1) with real XML document trees (ignoring textual data at the
leaves) showing that for these document trees, the kth-order label-shape entropy
is indeed very small compared to the worst-case bit size. More precisely, we
computed for 21 XML document trees1 the kth-order label-shape entropy (for
k = 1, 2, 4, 8) and divided the value by the worst-case bit length 2n+ o(log(σ)n),
where n is the number of nodes and σ is the number of node labels [48].

Our experimental results combined with our entropy bound (Theorem 6.21)
for grammar-based compression are in accordance with the fact that grammar-
based tree compressors yield impressive compression ratios for XML document
trees, see e.g. [74]. Some of the XML documents from our experiments were
also used in [74], where the performance of the grammar-based tree compressor
TreeRePair was tested. An interesting observation is that those XML trees, for
which our kth-order label-shape entropy is largest are indeed those XML trees
with the worst compression ratio from TreeRePair [74]. This is in particular true
for the Treebank document, see Table 6.1. TreeRePair obtained for Treebank a
compression ratio of around 20%, whereas for all other documents tested in [74],
TreeRePair achieved a compression ratio below 8%.

For the remainder of this section, it remains to remark the following. The
above definition (Definition 6.22) of the kth-order label-shape entropy of an
Σ-labeled plane tree can be also applied to Σ-labeled full binary trees t ∈ B(Σ),
as a labeled full binary tree can be considered as a labeled plane tree. This
yields the question how the value H`s

k (t) (the label-shape entropy of t as defined
in Definition 6.14 for full binary trees) relates to H`s

k (fcns(t)) (the label-shape
entropy of t as defined in Definition 6.22 for labeled plane trees). For this, the
following results are shown in [S6].

Lemma 6.24 ([S6], Lemma 8). Let t ∈ B(Σ) denote a full binary tree with
first-child next-sibling encoding fcns(t) ∈ B(Σ). Then H`s

2k(fcns(t)) ≤ H`s
k−1(t)

for 1 ≤ k ≤ ‖t‖.

Lemma 6.25 ([S6]). There is a sequence of full binary trees (tn)n∈N, where
H`s
k (fcns(tn)) is exponentially smaller than H`s

k′ (tn) for every n ≥ 1 and k, k′ ≥ 2

with k, k′ ≤ o(n).

1All data available from http://xmlcompbench.sourceforge.net/Dataset.html

http://xmlcompbench.sourceforge.net/Dataset.html
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Table 6.1: Experimental results for XML tree structures, where n denotes the
number of nodes and σ denotes the number of node labels.
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6.7 Conclusion and open problems

We have proposed a new notion of empirical entropy for trees which incorporates
node-labels as well as the shape of the tree and which is also suitable for the
special case of unlabeled trees. Furthermore, we have shown an entropy bound
for grammar-based tree compressors in terms of our new notion of empirical tree
entropy, which generalizes a recent result [89] from string compression to tree
compression.

Our definition of kth-order label-shape entropy does not capture all regularities
that can be exploited in grammar-based tree compression. Take for instance
a complete unlabeled full binary tree tn of leafsize 2n (all paths from the root
to a leaf have length n). This tree is well compressible: its minimal DAG has
only n+ 1 nodes, hence there also exists a TSLP of size n+ 1 for tn. But for
every fixed k the kth-order label-shape entropy of tn divided by n converges to
2 (the trivial upper bound) for n→∞. If n� k then for every k-label-shape
history z the number of leaves with k-label-shape history z is roughly the same
as the number of internal nodes with k-label-shape history z. Hence, although tn
is highly compressible with TSLPs (and even DAGs), its kth-order label-shape
entropy is close to the maximal value. However, the same situation also occurs
for the other measures of empirical tree entropy proposed in [32, 46, 60] (as we
will investigate in the next chapter).

Moreover, this phenomenon is also known for strings: in contrast to grammar-
based compression, kth-order empirical string entropy does not capture a partic-
ular kind of repetitiveness in strings. In [71, Lemma 2.6] it is shown that the
unnormalized kth-order empirical entropy of a string ww is at least twice the
unnormalized kth-order empirical entropy of w (as long as k ≤ |w|). Further-
more, in [S6] it is shown that the gap between grammar-based compression and
kth-order empirical string entropy can be extreme in the following sense: there
exists a sequence of strings Sn of length Θ(2n) such that Sn has an SLP of size
O(n) whereas the kth-order empirial string entropy of Sn is of size Ω(2n−k) for
k ≤ o(n).

For these reasons, several further compressibility measures for strings have
been introduced throughout the years with the aim of capturing all kinds of
regularities and types of repetitiveness in strings (see e.g. [62, 68], and see [85]
for a survey). A basis for future research is to generalize these recent results on
compressibility measures from strings to trees.

Another basis for future research is the following. Our tree representation
based on tree straight-line programs can be queried in logarithmic time (if we
assume logarithmic height of the grammar, which can be enforced by [43]).
Currently open is to find a data structure for Σ-labeled trees which supports
constant query time and which achieves an entropy bound in terms of the kth-
order label-shape entropy. For the special case of unlabeled plane trees, we will
present such a compressed tree representation in Chapter 9.
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Chapter 7

A comparison of empirical tree
entropies

7.1 Introduction

Whereas in the area of string compression, there is basically only one notion
of higher order empirical entropy (except for some minor modifications, as the
kth-order modified empirical entropy from [80]), the situation in the area of
tree compression is different, as several notions of empirical tree entropy have
been proposed in recent years. The main goal of this chapter is to give an
overview and carry out a systematical comparison of these notions of empirical
tree entropy. The notions of empirical entropy to be compared are the following
(formal definitions will be given in Section 7.2).

Ferragina et al. [32, 33] introduced the kth-order label entropy H`
k(t) of a

labeled plane tree t. Its normalized version is the expected uncertainty about the
label of a node v, given the k-label history of v which consists of the k first labels
on the unique path from v’s parent node to the root. Note that the kth-order
label entropy is not useful for unlabeled trees since it is mostly independent of
the tree shape.

In [60], Jansson et al. introduce the degree entropy Hdeg(t), which is the
(unnormalized) 0th-order empirical entropy of the node degrees occurring in the
plane tree t. The degree entropy is mainly made for unlabeled trees since it
ignores node labels. But in combination with label entropy it yields a reasonable
measure for the compressibility of a tree: every node-labeled plane tree of size n
in which σ different node labels occur can be stored in H`

k(t)+Hdeg(t)+o(n log σ̂)

bits, assuming that k and σ are not too big, where σ̂ = max{2, σ}, see [46, 60].
Recently, Ganczorz [46] defined relativized versions of kth-order label entropy

and degree entropy: the kth-order degree-label entropy Hdeg,`
k (t) and the kth-

order label-degree entropy H`,deg
k (t). The normalized version of Hdeg,`

k (t) is
the expected uncertainty about the label of a node v of t, given (i) the k-
label-history of v and (ii) the degree of v, whereas the normalized version of

129
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Figure 7.1: Theoretical comparison of the entropy bounds for Σ-labeled plane
trees

H`,deg
k (t) is the expected uncertainty about the degree of a node v, given (i)

the k-label-history of v and (ii) the label of v. Ganczorz [46] proved that every
Σ-labeled plane tree of size n can be stored in H`

k(t) + H`,deg
k (t) + o(n log σ̂)

bits as well as in Hdeg(t) + Hdeg,`
k (t) + o(n log σ̂) bits (again assuming that k

and σ are not too big). Note that in the case of unlabeled trees t, we find that
H`
k(t) +H`,deg

k (t) = Hdeg(t) +Hdeg,`
k (t) = Hdeg(t).

Moreover, in the previous chapter, we have introduced another notion of
empirical entropy for trees, the label-shape entropy [S4, S6] (see Definition 6.14
and Definition 6.22). From Theorem 6.23, we know that a Σ-labeled plane tree t
can be represented using at most H`s

k (t) + o(n log σ̂) bits, under the assumption
that k is not too big.

The goal of this chapter is to compare the entropy bounds H`
k(t) +Hdeg(t),

H`
k(t) +H`,deg

k (t), Hdeg(t) +Hdeg,`
k (t), and H`s

k (t). In Section 7.3, we start with
a theoretical comparison of the entropy bounds. Our results for Σ-labeled plane
trees (respectively, Σ-labeled full binary trees) are summarized in Figure 7.1
(respectively, Figure 7.2). Let us explain the meaning of the arrows in Figure 7.1
and Figure 7.2: For two entropy notions H and H ′, a dashed line from H to H ′

means that there is a sequence of Σ-labeled plane trees tn (n ≥ 1) such that (i)
the function n 7→ |tn| is strictly increasing and (ii) H(tn) ≤ o(H ′(tn)) (in most
cases we prove an exponential separation). The meaning of a solid line from
H to H ′ is that H(t) ≤ H ′(t) for every Σ-labeled plane tree t. In particular,
Hdeg(t) +Hdeg,`

k (t) and Hdeg(t) +H`
k(t) are equivalent up to fixed multiplicative

constants (which are 1 and 2). For the special case of Σ-labeled full binary trees,
we find that the label-shape entropy H`s

k lower-bounds the other three entropy
bounds.

We also investigate the relationship between the entropy bounds for unlabeled
plane trees and unlabeled full binary trees. An unlabeled plane tree t of size
n can be represented with Hdeg(t) + o(n) bits [60]. We show the result that
H`s
k (t) ≤ 2Hdeg(t) + 2 log(n) + 4 for every unlabeled plane tree t.
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Figure 7.2: Theoretical comparison of the entropy bounds for Σ-labeled full
binary trees

In Section 7.4, we underpin our theoretical investigations by experimental
results with real XML data. For each XML document we consider the corre-
sponding tree structure t (obtained by removing all text values and attributes)
and compute H`

k(t)+Hdeg(t), H`
k(t)+H`,deg

k (t), Hdeg(t)+Hdeg,`
k (t), and H`s

k (t).
The results are summarized in Table 7.1, Table 7.2 and Table 7.3. Our experi-
ments indicate that an entropy bound in terms of the label-shape entropy is the
strongest for real XML data since the kth-order label-shape entropy (for k > 0)
is significantly smaller than all other values for all XML documents that we have
examined. The results of this chapter are published in [S5].

7.2 Notions of empirical entropy for trees

In this chapter, we consider Σ-labeled full binary trees (Definition 2.7) and
Σ-labeled plane trees (Definition 2.8). With σ we again denote the size of Σ

and we set σ̂ = max{σ, 2}. Unlabeled trees are identified with Σ-labeled trees
over the unary alphabet Σ = {a}. For the entropy notions, we again make the
convention that 0 · log 0 = 0 and 0 · log(x/0) = 0 for x ≥ 0.

Recall the definition of the label-shape entropy H`s
k from the previous chapter

(Definition 6.14 and Definition 6.22) and recall the definition of label-shape
histories, see Section 6.4. We again make use of the notations

mt
z = |{v ∈ V (t) | h`sk (v) = z}|

mt
z,ã = |{v ∈ V (t) | h`sk (v) = z and λ̂(v) = ã}|,

as defined in (6.9) and (6.10), where t ∈ B(Σ) is a full binary tree, z ∈ Hk is a
k-label-shape history, ã ∈ Σ × {0, 2} and λ̂(v) = (λ(v), deg(v)) for nodes v of
t. The concept of label histories is quite similar to the notion of label-shape
histories.
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Label histories. For a node v ∈ V (t) of a tree t ∈ T (Σ), we define its label
history h`(v) ∈ Σ∗ as follows. For the root node v of t, we set h`(v) = ε (i.e., the
empty string), and for a child node w of a node v of t, we set h`(w) = h`(v)λ(v).
In other words, h`(v) is obtained by concatenating the node labels along the
unique path from the root to v. Note that the label of v is not part of the label
history of v. The k-label history h`k(v) of a tree node v ∈ V (t) is defined as the
length-k-suffix of �kh`(v), where � is again a fixed dummy symbol in Σ. This
means that if v has at least k ancestors in t, then h`k(v) describes the last k
node labels along the path from the root node to node v. Otherwise, we pad its
label history h`(v) with the symbol � ∈ Σ, such that h`k(v) ∈ Σk. In general,
there are again several ways how to treat nodes of depth smaller than k + 1 in
the definition of k-label histories. Here, the same alternatives are possible as
for label-shape histories, see Section 6.4, and with the same arguments, it can
be shown that these choices only have a minor influence on the entropy notions
and the corresponding results (see [S6, Theorem 7]).

For t ∈ T (Σ), z ∈ Σk, a ∈ Σ and i ∈ N0, we set

ntz = |{v ∈ V (t) | h`k(v) = z}|, (7.1)

ntz,a = |{v ∈ V (t) | h`k(v) = z and λ(v) = a}|, (7.2)

nti = |{v ∈ V (t) | deg(v) = i}|, (7.3)

ntz,i = |{v ∈ V (t) | h`k(v) = z and deg(v) = i}|, (7.4)

ntz,i,a = |{v ∈ V (t) | h`k(v) = z, λ(v) = a and deg(v) = i}|. (7.5)

In order to avoid ambiguities in these notations we should assume that Σ∩N0 = ∅.
Moreover, when writing ntz,i (resp., ntz,a) then, implicitly, i (resp., a) always
belongs to N0 (resp., Σ). Note that whereas label-shape histories are only defined
for the special case of labeled full binary trees t ∈ B(Σ), label-histories are defined
for labeled plane trees t ∈ T (Σ). We now formally define the various entropy
measures that were mentioned in the introductory section of this chapter. In all
cases we define unnormalized entropies, which has the advantage that we do not
have to multiply with the size of the tree in bounds for the encoding size of a
tree. In [32, 46, 60], the authors define normalized entropies, which are obtained
by dividing the unnormalized entropy by the tree size.

Label entropy. The first notion of empirical entropy for trees was introduced
in [32]. In order to distinguish the notions, we call the empirical entropy from
[32] label entropy. It is defined for Σ-labeled plane trees t ∈ T (Σ).

Definition 7.1 (Label entropy, [32]). The kth-order label entropy H`
k(t) of

t ∈ T (Σ) is defined as

H`
k(t) =

∑
z∈Σk

∑
a∈Σ

ntz,a log

(
ntz
ntz,a

)
,

where ntz and ntz,a are from (7.1) and (7.2), respectively.
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Intuitively, (normalized) kth-order label entropy of a tree t ∈ T (Σ) tells us
the expected uncertainty about the label of a node of t, given the labels of its k
closest ancestors. We remark that in [32], it is not explicitly specified how to
deal with nodes whose label history is shorter than k. The three natural variants
(as in the case of the label-shape entropy, see Section 6.4) are

(i) padding the label histories with a symbol � ∈ Σ (this is our choice),

(ii) padding label histories with a symbol � /∈ Σ, or equivalently, allowing label
histories of length smaller than k, and

(iii) ignoring nodes whose label history is shorter than k.

However, similar considerations as presented in [S6, Theorem 7] for the label-
shape entropy show that these approaches yield the same kth-order label entropy
up to an additional additive term of at most m<(1 + 1/ ln(2) + log(σ|t|/m<)),
where m< is the number of nodes at depth less than k in t.

Moreover, we remark that in the original paper on label entropy [32], the
authors quite often assume disjoint label alphabets for inner nodes and leaves,
i.e., inner nodes are labeled with symbols from an alphabet Σ1 while leaves are
labeled with symbols from an alphabet Σ2 with Σ1 ∩ Σ2 = ∅. As it seems more
natural not to assume disjoint alphabets for inner nodes and leaves, we will not
make this assumption in the following and remark that several other papers on
label entropy also do not make this assumption [46, 60].

Degree entropy. Another notion of empirical entropy for trees is the entropy
measure from [60], which we call degree entropy. Degree entropy is primarily
defined for unlabeled plane trees, as it ignores node labels. Nevertheless the
definition works for trees t ∈ T (Σ) over any alphabet Σ.

Definition 7.2 (Degree entropy, [60]). For a tree t ∈ T (Σ), the degree entropy
Hdeg(t) is the 0th-order entropy of the node degrees, where nti is from (7.3):

Hdeg(t) =

|t|∑
i=0

nti log

(
|t|
nti

)
.

Note that this definition does not take node labels into account. For the
special case of unlabeled trees the following result was shown in [60]:

Theorem 7.3 ([60, Theorem 1]). Let t ∈ T ({a}) be an unlabeled plane tree.
Then t can be represented in Hdeg(t) +O(|t| log log |t|/ log |t|) many bits.

Label-degree entropy and degree-label entropy. Recently, two combi-
nations of the label entropy from [32] and the degree entropy from [60] were
proposed in [46]. We call these two entropy measures label-degree entropy and
degree-label entropy. Both notions are defined for Σ-labeled plane trees.
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Definition 7.4 (Label-degree entropy, [46]). Let t ∈ T (Σ). The kth-order
label-degree entropy H`,deg

k (t) of t is defined as

H`,deg
k (t) =

∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz,a
ntz,i,a

)
,

where ntz,a and ntz,i,a are from (7.2) and (7.5), respectively.

Definition 7.5 (Degree-label entropy, [46]). Let t ∈ T (Σ). The kth-order
degree-label entropy Hdeg,`

k (t) of t is defined as

Hdeg,`
k (t) =

∑
z∈Σk

|t|∑
i=0

∑
a∈Σ

ntz,i,a log

(
ntz,i
ntz,i,a

)
,

where ntz,i and ntz,i,a are from (7.4) and (7.5), respectively.

(Normalized) label-degree entropy of order k of a tree t ∈ T (Σ) yields the
expected uncertainty about the degree of a node of t, given its k-label history
and its label. In the same way, (normalized) degree-label entropy of order k
of a tree t yields the expected uncertainty about the label of a node, given its
k-label history and its degree. In order to deal with nodes whose label history
is shorter than k one can again choose one of the three alternatives (i)–(iii)
mentioned above. In [46], variant (ii) is chosen, while the above definitions
correspond to choice (i). However, similar considerations as presented in [S6,
Theorem 7] show again that these approaches are basically equivalent, except
for an additional additive term of at most m<(1/ ln(2) + log(σ|t|/m<)) in the
case of the degree-label entropy, respectively, m<(1/ ln(2) + log |t|) in the case of
the label-degree entropy, where m< is the number of nodes at depth less than k.
In [46], the following lemma is shown, which relates the degree-label entropy to
the label entropy from Definition 7.1 and the label-degree entropy to the degree
entropy from Definition 7.2:

Lemma 7.6 ([46, Lemma 1]). For every t ∈ T (Σ), we have H`,deg
k (t) ≤ Hdeg(t)

and Hdeg,`
k (t) ≤ H`

k(t).

Moreover, one of the main results of [46] states the following bounds (an
upper bound of the form Hdeg(t) + H`

k(t) + o(n log σ̂) on the number of bits
needed to represent a tree t ∈ Tn(Σ) is also shown in [60, Theorem 5]).

Theorem 7.7 ([46, Theorem 12]). Let t ∈ T (Σ), with σ ≤ |t|1−α for some
α > 0. Then t can be represented within the following bounds (in bits):

Hdeg(t) +H`
k(t) +O

(
|t|k log σ̂ + |t| log logσ̂ |t|

logσ̂ |t|

)
,

H`,deg
k (t) +H`

k(t) +O
(
|t|k log σ̂ + |t| log logσ̂ |t|

logσ̂ |t|

)
,

Hdeg,`
k (t) +Hdeg(t) +O

(
|t|k log σ̂ + |t| log logσ̂ |t|

logσ̂ |t|

)
.
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7.3 Theoretical comparison of the entropy bounds

As we have seen in Theorems 6.23 and Theorem 7.7 (see also Theorem 6.21),
known entropy bounds for the number of bits needed to represent a Σ-labeled
plane tree t ∈ T (Σ) are achievable in terms of

˛ H`s
k (t),

˛ H`
k(t) +H`,deg

k (t),

˛ Hdeg(t) +Hdeg,`
k (t), and

˛ Hdeg(t) +H`
k(t),

where in all cases we have to add a lower-order term. The term Hdeg(t)+H`
k(t) is

lower-bounded by H`
k(t) +H`,deg

k (t) and Hdeg(t) +Hdeg,`
k (t) by Lemma 7.6. For

the special case of unlabeled plane trees t ∈ T ({a}), Hdeg(t) (plus lower-order
terms) is an upper bound on the encoding length (see Theorem 7.3). Thus, for
the special case of unlabeled trees, we will also compare the entropy bounds to
Hdeg(t).

One of the main tools in order to obtain our results is the well-known log-sum
inequality (recall our conventions 0 · log(0) = 0 and 0 · log(x/0) = 0 for x ≥ 0).

Lemma 7.8 ([20], Theorem 2.7.1). Let a1, a2, . . . , aj , b1, b2, . . . , bj ≥ 0 be non-
negative real numbers. Moreover, let a =

∑j
i=1 ai and b =

∑j
i=1 bi. Then

a log

(
b

a

)
≥

j∑
i=1

ai log

(
bi
ai

)
.

7.3.1 Unlabeled full binary trees

In this subsection, we consider unlabeled full binary trees, i.e., t ∈ B({a}) over
the unary alphabet Σ = {a}. As Σ = {a}, the fixed dummy symbol used to pad
k-label-shape histories and k-label histories is � = a. We start with a simple
lemma.

Lemma 7.9. Let t ∈ B({a}) be an unlabeled full binary tree with n leaves (that
is, ‖t‖ = n, respectively, |t| = 2n− 1). Then Hdeg(t) = H`,deg

k (t) = (2− o(1))n.

Proof. Every full binary tree of size 2n− 1 consists of n nodes of degree 0 and
n − 1 nodes of degree 2 (independently of the shape of the full binary tree).
Thus, we obtain

Hdeg(t) =

|t|∑
i=0

nti log

(
|t|
nti

)
= n log

(2n− 1

n

)
+ (n− 1) log

(2n− 1

n− 1

)
≥ 2n(1− o(1)).

Moreover, as t is unlabeled, every node has the same label and the same label
history. Thus, H`,deg

k (t) = Hdeg(t).



136 Chapter 7. A comparison of empirical tree entropies
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Figure 7.3: The tree t4 from Lemma 7.10.

On the other hand, for the label-shape entropy we have:

Lemma 7.10. There exists a sequence of unlabeled full binary trees (tn)n≥1

such that |tn| = 2n− 1 and H`s
k (tn) ≤ log(en) for all n ≥ 1 and 1 ≤ k ≤ n.

Proof. We define t1 = a and tn = a(tn−1, a) for n ≥ 2. Hence, tn is a left-
degenerate full binary tree with n leaves such that every node is labeled with
the symbol a. Figure 7.3 shows t4. The statement of the lemma follows by
computing the label-shape entropy for tn.

Lemmas 7.9 and 7.10 already indicate that all empirical tree entropies consid-
ered in this chapter except for the label-shape entropy are not suitable entropy
concepts for unlabeled full binary trees. For every unlabeled full binary tree
t ∈ B({a}) with n leaves (and 2n− 1 nodes) we have:

˛ H`
k(t) = Hdeg,`

k (t) = 0, as every node of t has the same label.

˛ H`
k(t) +H`,deg

k (t) = Hdeg(t) +Hdeg,`
k (t) = H`

k(t) +Hdeg(t) = Hdeg(t) and
these values are lower bounded by 2n(1− o(1)) (Lemma 7.9).

The only notion of empirical tree entropy that is able to capture regularities in
unlabeled full binary trees (and that attains different values for different full
binary trees of the same size) is the label-shape entropy (Definition 6.14).

In fact, the definition of label-shape entropy is particularly motivated by
the inability of the other entropy notions for measuring the compressibility of
unlabeled full binary trees.

7.3.2 Labeled full binary trees

Next, we consider labeled full binary trees t ∈ B(Σ), where Σ is arbitrary. We
start with a lemma that shows that the label-shape entropy lower-bounds all of
the other entropy bounds in the case of labeled full binary trees.

Lemma 7.11. Let t ∈ B(Σ) be a full binary tree. Then

(i) H`s
k (t) ≤ H`

k(t) +H`,deg
k (t) and

(ii) H`s
k (t) ≤ Hdeg(t) +Hdeg,`

k (t).
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Proof. We start with proving statement (i): We have

H`s
k (t) =

∑
z∈Hk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log

(
mt
z

mt
z,(a,i)

)

=
∑
z∈Hk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log

(
mt
z

mt
z,(a,0) +mt

z,(a,2)

·
mt
z,(a,0) +mt

z,(a,2)

mt
z,(a,i)

)

=
∑
z∈Hk

∑
a∈Σ

(
mt
z,(a,0) +mt

z,(a,2)

)
log

(
mt
z

mt
z,(a,0) +mt

z,(a,2)

)

+
∑
z∈Hk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log

(
mt
z,(a,0) +mt

z,(a,2)

mt
z,(a,i)

)

≤
∑
z∈Σk

∑
a∈Σ

ntz,a log

(
ntz
ntz,a

)
+
∑
z∈Σk

∑
a∈Σ

∑
i∈{0,2}

ntz,i,a log

(
ntz,a
ntz,i,a

)
= H`

k(t) +H`,deg
k (t),

where the inequality in the second last line follows from the log-sum inequality
(Lemma 7.8) and the last equality follows from the fact that in a full binary tree,
every node is either of degree 0 or 2. Statement (ii) can be shown similarly:

H`s
k (t) =

∑
z∈Hk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log

(
mt
z

mt
z,(a,i)

)

=
∑
z∈Hk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log

(
mt
z∑

a∈Σm
t
z,(a,i)

·
∑
a∈Σm

t
z,(a,i)

mt
z,(a,i)

)

=
∑
z∈Hk

∑
i∈{0,2}

(∑
a∈Σ

mt
z,(a,i)

)
log

(
mt
z∑

a∈Σm
t
z,(a,i)

)

+
∑
z∈Hk

∑
a∈Σ

∑
i∈{0,2}

mt
z,(a,i) log

(∑
a∈Σm

t
z,(a,i)

mt
z,(a,i)

)

≤
∑

i∈{0,2}

nti log

(
|t|
nti

)
+
∑
z∈Σk

∑
a∈Σ

∑
i∈{0,2}

ntz,i,a log

(
ntz,i
ntz,i,a

)
= Hdeg(t) +Hdeg,`

k (t),

where the inequality follows again from the log-sum inequality.

The inequality H`s
k (t) ≤ H`

k(t) + Hdeg(t) for t ∈ B(Σ) now follows from
Lemma 7.11 and Lemma 7.6. Moreover, by Lemma 7.9 and Lemma 7.10, we
already know that there exist sequences (tn)n≥1 of full binary trees, for which tn
has n leaves and H`s

k (tn) is exponentially smaller than the other three entropy
bounds. Moreover, Hdeg(t) = 2n(1− o(1)) for every t ∈ Bn(Σ), which implies
H`
k(t) +Hdeg(t) ≥ Hdeg(t) +Hdeg,`

k (t) ≥ 2n(1− o(1)).
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7.3.3 Unlabeled plane trees

In this subsection, we consider plane trees t ∈ T (Σ) over the unary alphabet
Σ = {a}. As Σ = {a}, the fixed dummy symbol used to pad k-label-shape
histories and k-label histories is � = a. Moreover, note that in order to compute
H`s
k (t) for a plane tree t ∈ T (Σ), we have to consider fcns(t). Note that fcns(t)

is then an unlabeled full binary tree: we take � = a by our conventions for the
dummy symbol; hence the �-labeled leaves in fcns(t) are labeled with a, too.

As in the case of unlabeled full binary trees, we observe that some entropy
measures, in particular those that involve labels, only attain trivial values for
plane unlabeled trees. More precisely, for every tree t ∈ T ({a}) we have

˛ H`
k(t) = Hdeg,`

k (t) = 0, as every node has the same label a, and

˛ Hdeg(t) = H`,deg
k (t), as every node has the same k-label history and the

same label.

˛ We get H`
k(t) + H`,deg

k (t) = Hdeg(t), Hdeg(t) + Hdeg,`
k (t) = Hdeg(t) and

Hdeg(t) +H`
k(t) = Hdeg(t).

By this observation, we only compare H`s
k (t) with Hdeg(t) for t ∈ T ({a}) in this

subsection. By Lemma 7.9 and Lemma 7.10, there exists a sequence of unlabeled
trees (tn)n≥1 such that |tn| = Θ(n) and for whichH`s

k (tn) is exponentially smaller
than Hdeg(tn).

In general, we find the following for unlabeled plane trees.

Theorem 7.12. For every unlabeled plane tree t ∈ T ({a}) with |t| ≥ 2 and
every integer k ≥ 1, we have H`s

k (t) ≤ 2Hdeg(t) + 2 log |t|+ 4.

Proof. We start the proof with some simple counting facts with respect to the
first-child next-sibling encoding. Consider a plane tree t ∈ T ({a}) with |t| ≥ 2.
We claim that

(i) the number of inner nodes of fcns(t) which are left children equals the
number of nodes of t of degree at least 1, and

(ii) the number of leaves of fcns(t) which are left children equals the number
of nodes of t which are leaves.

To show this, recall that by definition of the first-child next-sibling encoding
(Definition 2.13), every inner node of fcns(t) corresponds in a bijective way
to a node of t. For an inner node v of fcns(t), we denote with fcns−1(v) the
corresponding node of t. In the same way, for a node v of t, we denote with
fcns(v) the inner node of fcns(t) that corresponds to v.

The inner nodes of fcns(t) are moreover in bijective correspondence with the
nodes of fcns(t) that are left children; the corresponding bijection is the function
parent(·) that maps a left child to its parent node. Hence, the composition of
the mappings parent(·) and fcns−1(·) can be viewed as a bijection from the left
children in fcns(t) to the nodes of t.
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Consider a left child v in fcns(t) and let v′ = fcns−1(parent(v)) be the
corresponding node in t. If v is an inner node of fcns(t) then v′ has a first child
in t, i.e., its degree is at least one. On the other hand, if v is a leaf of fcns(t) then
v′ has no first child in t, i.e., its degree is zero. This yields the above statements
(i) and (ii). Let us now fix k ≥ 1 and let

H0
k = {ai1 · · · aik−1a0 | i1, . . . , ik−1 ∈ {0, 1}} ⊆ Hk and

H1
k = {ai1 · · · aik−1a1 | i1, . . . , ik−1 ∈ {0, 1}} ⊆ Hk

denote the sets of k-label-shape histories that end with 0, respectively 1. Let
nt≥1 denote the number of nodes of t of degree at least 1 and for z ∈ Hk and
i ∈ {0, 2} let mfcns(t)

z,i denote the number of nodes in fcns(t) having k-label-shape
history z and degree i. From (i) and (ii) we get

nt0 =
∑
z∈H0

k

m
fcns(t)
z,0 and nt≥1 + 1 =

∑
z∈H0

k

m
fcns(t)
z,2 . (7.6)

The +1 in the second identity comes from the fact that on the right-hand side
we also count the root node (which is not a left child of a node in fcns(t)). Thus,
we have

Hdeg(t) =

|t|∑
i=0

nti log

(
|t|
nti

)
≥ nt≥1 log

(
|t|
nt≥1

)
+ nt0 log

(
|t|
nt0

)
≥ (nt≥1 + 1) log

( |t|+ 1

nt≥1 + 1

)
− log |t|+ nt0 log

( |t|+ 1

nt0

)
− nt0

ln(2)|t|
,

where for the last inequality, we used y/x ≥ (y + 1)/(x+ 1) if y ≥ x and

log(|t|+ 1)− log |t| ≤ |t|+ 1− |t|
ln(2)|t|

=
1

ln(2)|t|
,

which follows from the mean value theorem. Hence, by the above equations
(7.6) and the fact that |t| + 1 equals the number of nodes v of fcns(t) with
k-label-shape history h`sk (v) ∈ H0

k, we obtain

Hdeg(t) ≥
( ∑
z∈H0

k

m
fcns(t)
z,2

)
log

∑z∈H0
k
m

fcns(t)
z∑

z∈H0
k
m

fcns(t)
z,2


+
( ∑
z∈H0

k

m
fcns(t)
z,0

)
log

∑z∈H0
k
m

fcns(t)
z∑

z∈H0
k
m

fcns(t)
z,0

− log |t| − 2

≥
∑
z∈H0

k

∑
i∈{0,2}

m
fcns(t)
z,i log

(
m

fcns(t)
z

m
fcns(t)
z,i

)
− log |t| − 2,

where the last inequality follows from the log-sum inequality (Lemma 7.8). In
the next part of the proof, we establish a similar estimate by considering nodes
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of fcns(t) with h`sk (v) ∈ H1
k. These nodes are exactly the right children in

fcns(t) and there are |t| such nodes. The composition of the parent-mapping
and the mapping fcns−1 yields a bijection from the right children in fcns(t) to
the nodes of t. Consider a node v in fcns(t) and assume that v is the right child
of v′ = parent(v). If v is a leaf of fcns(t) then fcns−1(v′) does not have a right
sibling in t and if v is an inner node of fcns(t) then fcns−1(v′) has a right sibling
in t. Hence, the number of leaves v of fcns(t) with h`sk (v) ∈ H1

k is equal to the
number of nodes in t that do not have a right sibling. There are exactly nt≥1 + 1

such nodes (there are nt≥1 nodes that are the right-most child of their parent
node; in addition the root has no right sibling, too). Hence, we find

(iii) The number of leaves v of fcns(t) with h`sk (v) ∈ H1
k equals one plus the

number of nodes of t of degree at least 1:∑
z∈H1

k

m
fcns(t)
z,0 = nt≥1 + 1.

(iv) For the number of leaves of |t|, we thus obtain:

nt0 = |t| −
∑
z∈H1

k

m
fcns(t)
z,0 + 1 =

∑
z∈H1

k

m
fcns(t)
z,2 + 1.

Let H(x) = x log
(
|t|
x

)
+ (|t| − x) log

(
|t|
|t|−x

)
denote the binary entropy function

(and recall that by convention, we have 0 · log(|t|/0) = 0). Then the mapping
x 7→ H(x)−H(x+ 1) with (x ∈ [0, |t|− 1]) is minimal for x = 0 and we find that
H(0)−H(1) = − log |t| − (|t| − 1) log

(
|t|
|t|−1

)
≥ − log |t| − log(e). We thus find

Hdeg(t) =
n∑
i=0

nti log

(
|t|
nti

)
≥ nt≥1 log

(
|t|
nt≥1

)
+ nt0 log

(
|t|
nt0

)

≥ (nt≥1 + 1) log

(
|t|

nt≥1 + 1

)
+ (nt0 − 1) log

(
|t|

nt0 − 1

)
− log |t| − 2.

By the above equations in (iii) and (iv), we thus get

Hdeg(t) ≥
( ∑
z∈H1

k

m
fcns(t)
z,0

)
log

∑z∈H1
k
m

fcns(t)
z∑

z∈H1
k
m

fcns(t)
z,0


+
( ∑
z∈H1

k

m
fcns(t)
z,2

)
log

∑z∈H1
k
m

fcns(t)
z∑

z∈H1
k
m

fcns(t)
z,2

− log |t| − 2

≥
∑
z∈H1

k

∑
i∈{0,2}

m
fcns(t)
z,i log

(
m

fcns(t)
z

m
fcns(t)
z,i

)
− log |t| − 2,

where the last inequality follows from the log-sum inequality. Altogether, since
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Hk is the disjoint union of H0
k and H1

k, we obtain:

H`s
k (t) =

∑
z∈Hk

∑
i∈{0,2}

m
fcns(t)
z,i log

(
m

fcns(t)
z

m
fcns(t)
z,i

)
≤ 2Hdeg(t) + 2 log |t|+ 4.

This proves the theorem.

It remains to remark that if we consider labeled trees over an alphabet Σ

of size σ > 1, then there are families of trees, for which the degree entropy is
asymptotically exponentially smaller than the kth-order label-shape tree entropy.
This is not very surprising, as the label-shape entropy incorporates the node
labels, while the degree entropy does not.

7.3.4 Labeled plane trees

In this subsection, we consider Σ-labeled plane trees t ∈ T (Σ) over alphabets
Σ of arbitrary size. The entropies to be compared in this general case are
H`s
k (t), Hdeg(t) +Hdeg,`

k (t), H`
k(t) +H`,deg

k (t) and Hdeg(t) +H`
k(t). Somewhat

surprisingly it turns out that H`
k(t) + H`,deg

k (t) is at most Hdeg(t) + Hdeg,`
k (t)

for every tree t.

Theorem 7.13. Let t ∈ T (Σ). Then H`
k(t) +H`,deg

k (t) ≤ Hdeg(t) +Hdeg,`
k (t).

Proof. We have

H`
k(t) +H`,deg

k (t)

=
∑
z∈Σk

∑
a∈Σ

ntz,a log

(
ntz
ntz,a

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz,a
ntz,i,a

)

=
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz
ntz,a

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz,a
ntz,i,a

)

=
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz
ntz,i,a

)

=
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz
ntz,i

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz,i
ntz,i,a

)

=
∑
z∈Σk

|t|∑
i=0

ntz,i log

(
ntz
ntz,i

)
+
∑
z∈Σk

∑
a∈Σ

|t|∑
i=0

ntz,i,a log

(
ntz,i
ntz,i,a

)
≤ Hdeg(t) +Hdeg,`

k (t),

where the inequality follows from the log-sum inequality (Lemma 7.8). This
proves the theorem.

As a corollary of Theorem 7.13 it turns out that Hdeg(t) + Hdeg,`
k (t) and

H`
k(t) +Hdeg(t) are equivalent up to a constant factor.
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Figure 7.4: The labeled plane tree t3 from Lemma 7.15 (left) and its first-child
next-sibling encoding fcns(t3) (right).

Corollary 7.14. Let t ∈ T (Σ). Then

Hdeg(t) +Hdeg,`
k (t) ≤ Hdeg(t) +H`

k(t) ≤ 2Hdeg(t) +Hdeg,`
k (t).

Proof. The first inequality follows from Lemma 7.6. By Theorem 7.13, we have
H`
k(t) ≤ Hdeg(t) +Hdeg,`

k (t) from which the statement follows.

In the rest of the section we present three examples showing that in all cases
that are not covered by Theorem 7.13 we can achieve a non-constant (in most
cases even exponential) separation between the corresponding entropy bounds.

Lemma 7.15. There exists a sequence of labeled plane trees (tn)n≥1 such that
for all n ≥ 1 and 1 ≤ k ≤ 2n:

(i) |tn| = 2n+ 1,

(ii) H`s
k (tn) ≤ log e+ log

(
n−

⌊
k−1

2

⌋)
+ 2,

(iii) Hdeg,`
k (tn) = 2n and hence Hdeg(tn) +Hdeg,`

k (tn) ≥ 2n, and

(iv) H`
k(tn) ≥ 2n and hence H`

k(tn) +H`,deg
k (tn) ≥ 2n.

Proof. Define the labeled plane tree tn as tn = a((bc)n), that is, tn is a tree
consisting of a root node of degree 2n labeled with a and 2n leaves, of which
n leaves are labeled b and n leaves are labeled c. The tree t3 is depicted in
Figure 7.4 on the left. Computing the entropy bounds for tn proves the lemma
(for more details, see [S5]).

Lemma 7.15 shows that there are not only families of full binary trees, but also
families of labeled plane (non-binary) trees (tn)n≥1 (for which we have to compute
H`s
k (tn) via the fcns-encoding) such that |tn| = Θ(n) and H`s

k (tn) is exponentially
smaller than Hdeg(tn) +Hdeg,`

k (tn) and H`
k(tn) +H`,deg

k (tn). The next lemma
shows that there are also families of trees (tn)n≥1 such that H`,deg

k (tn) +H`
k(tn)

is (even more than) exponentially smaller than Hdeg(tn) +Hdeg,`
k (tn) (and thus,

than Hdeg(tn) +H`
k(tn)) and H`s

k (tn)).



7.3. Theoretical comparison of the entropy bounds 143

a

c

d

e

d

e

b

d d

a

c

d

e

a a

d

e

a a

a

b

d

a d

a a

a

a

Figure 7.5: The labeled plane tree t2 from Lemma 7.16 (left) and its first-child
next-sibling encoding fcns(t2) (right)

Lemma 7.16. There exists a sequence of labeled plane trees (tn)n≥1 such that
for all n ≥ 1 and 1 ≤ k ≤ n:

(i) |tn| = 3n+ 3,

(ii) H`s
k (tn) ≥ 2(n− k + 1),

(iii) Hdeg(tn) +Hdeg,`
k (tn) ≥ 2n and

(iv) H`
1(tn) +H`,deg

1 (tn) = 3 log(3).

Proof. Let Σ = {a, b, c, d, e}. We define the tree tn as tn = a(c(d(e)n)b(dn)). The
tree t2 is depicted in Figure 7.5 on the left. We have |tn| = 3n+ 3. Computing
the entropy bounds for the tree tn yields the statement of the lemma (for more
details, see [S5]).

Note that we clearly need Ω(log n) bits to represent the tree tn from the above
proof (since we have to represent its size). This does not contradict Theorem 7.7
and the O(1)-bound for H`

1(tn) +H`,deg
1 (tn) in Lemma 7.16, since we have the

additional additive term of order o(|t|) in Theorem 7.7. In the following lemma,
nk = n(n− 1) · · · (n− k + 1) denotes the falling factorial.

Lemma 7.17. There exists a sequence of labeled plane trees (tn,k)n≥1 (where
k(n) ≤ n may depend on n) such that for all n ≥ 1:

(i) |tn,k| = 1 + nk + k · n · nk,

(ii) Hdeg(tn,k) +H`
1(tn,k) ≤ O(n · nk · k · log k) and

(iii) H`s
k−1(tn,k) ≥ Ω(n · nk · k · log(n− k + 1)).

Proof. Let [n]k = {(i1, i2 . . . , ik) | 1 ≤ i1, . . . , ik ≤ n, ij 6= il for j 6= l}. The tree
tn,k is defined over the label alphabet

Σn,k = {a} ∪ {bu | u ∈ [n]k} ∪ {ci | 1 ≤ i ≤ n}
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Figure 7.6: The tree t3,2 from Lemma 7.17.

For u = (i1, i2, . . . , ik) ∈ [n]k let us define tu = bu((ci1ci2 · · · cik)n) and let

tn,k = a(tu1
tu2
· · · tum),

where u1, u2, . . . , um is an arbitrary enumeration of the set [n]k (hence, m = nk).
The tree t3,2 is shown in Figure 7.6. Computing the entropy bounds for tn,k
yields the statement of the lemma. The details of the computation of the entroy
bounds are given in [S5].

If k ∈ (log n)O(1) then the trees tn,k from Lemma 7.17 satisfy

Hdeg(tn,k) +H`
1(tn,k)

H`s
k−1(tn,k)

≤ O
(

log k

log(n− k + 1)

)
= o(1). (7.7)

7.4 Experimental comparison

In this section, we complement our theoretical results with experimental data. We
computed the entropies Hdeg, H`s

k , H`
k, H

`,deg
k and Hdeg,`

k (for k ∈ {0, 1, 2, 4}) for
13 XML files from http://xmlcompbench.sourceforge.net. Table 7.1 shows
the values for the entropy bounds H`s

k , Hdeg +H`
k, H

`
k+H`,deg

k and Hdeg +Hdeg,`
k

(which can be achieved up to lower order terms by compressors, see [46] and
Theorem 6.23). It turns out that for all XML trees considered in this comparison
the kth-order label-shape entropy (for k > 0) is significantly smaller than the
entropy bounds from [46]. In Tables 7.2 and 7.3 we give the values for H`

k, H
`,deg
k

and Hdeg,`
k (divided by the tree size) for each XML file.

Additionally, we computed the label-shape entropy H`s
k for a modified version

of each XML tree where all labels are replaced by a single dummy symbol, i.e.,
we considered the underlying, unlabeled tree as well (in Tables 7.2 and 7.3 this
value is denoted by Hs

k, as only the shape of the tree is considered). Note
again that the label-shape entropy H`s

k is the only measure for which this
modification is interesting, because (i) the degree entropy Hdeg is not affected
since it does not take labels into account and (ii) we have H`,deg

k (t) = Hdeg(t)

and H`
k(t) = Hdeg,`

k (t) = 0 for all unlabeled trees t and for all k. In the setting
of unlabeled trees, our experimental data indicates that neither the label-shape
entropy nor the degree entropy (which is the upper bound on the number of bits
needed by the data structure in [60] ignoring lower order terms; see Theorem 7.3)
is favorable.

http://xmlcompbench.sourceforge.net
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XML k H`sk Hdeg +H`k H`k +H`,degk Hdeg +Hdeg,`
k

BaseBall 0 202 568.08 153 814.94 146 066.64 146 066.64
1 6 348.08 145 705.73 137 957.42 145 323.26
2 2 671.95 145 705.73 137 957.42 145 323.26
4 1 435.11 145 705.73 137 957.42 145 323.26

DBLP 0 18 727 523.44 14 576 781.00 12 967 501.16 12 967 501.16
1 2 607 784.68 12 137 042.56 10 527 690.38 12 076 935.39
2 2 076 410.50 12 136 974.71 10 527 595.96 12 076 845.69
4 1 951 141.63 12 136 966.29 10 527 586.31 12 076 836.82

EXI-Array 0 1 098 274.54 962 858.05 649 410.59 649 410.59
1 4 286.39 387 329.51 73 882.05 387 304.76
2 4 270.18 387 329.51 73 882.05 387 304.76
4 4 263.82 387 329.51 73 882.05 387 304.76

EXI-factbook 0 530 170.92 481 410.05 423 012.12 423 012.12
1 11 772.65 239 499.01 181 101.08 204 649.84
2 5 049.98 239 499.01 181 101.08 204 649.84
4 4 345.42 239 499.01 181 101.08 204 649.84

EnWikiNew 0 2 118 359.59 1 877 639.22 1 384 034.65 1 384 034.65
1 243 835.84 1 326 743.94 833 139.36 1 095 837.20
2 78 689.86 1 326 743.94 833 139.36 1 095 837.20
4 78 687.51 1 326 743.94 833 139.36 1 095 837.20

EnWikiQuote 0 1 372 201.38 1 229 530.04 894 768.55 894 768.55
1 156 710.30 871 127.39 536 365.91 717 721.09
2 51 557.50 871 127.39 536 365.91 717 721.09
4 51 557.31 871 127.39 536 365.91 717 721.09

EnWikiVersity 0 2 568 158.43 2 264 856.93 1 644 997.36 1 644 997.36
1 278 832.56 1 594 969.93 975 110.35 1 311 929.24
2 74 456.55 1 594 969.93 975 110.35 1 311 929.24
4 74 456.41 1 594 969.93 975 110.35 1 311 929.24

Nasa 0 3 022 100.11 2 872 172.41 2 214 641.55 2 214 641.55
1 292 671.36 1 368 899.76 701 433.91 1 226 592.72
2 168 551.10 1 363 699.16 696 194.53 1 221 474.16
4 147 041.08 1 363 699.16 696 194.53 1 221 474.16

Shakespeare 0 655 517.90 521 889.47 395 890.85 395 890.85
1 138 283.88 370 231.89 244 047.64 347 212.36
2 125 837.77 370 061.20 243 843.87 347 041.31
4 123 460.80 370 057.77 243 838.09 347 037.86

SwissProt 0 18 845 126.39 16 063 648.44 13 755 427.39 13 755 427.39
1 3 051 570.48 11 065 924.67 8 757 703.61 10 238 734.83
2 2 634 911.88 11 065 924.67 8 757 703.61 10 238 734.83
4 2 314 609.48 11 065 924.67 8 757 703.61 10 238 734.83

Treebank 0 16 127 202.92 15 669 672.80 12 938 625.09 12 938 625.09
1 7 504 481.18 12 301 414.61 9 482 695.67 9 925 567.44
2 5 607 499.40 11 909 330.06 9 051 186.33 9 559 968.40
4 4 675 093.61 11 626 935.89 8 736 301.14 9 285 544.85

USHouse 0 36 266.08 34 369.06 28 381.43 28 381.43
1 10 490.44 24 249.78 17 968.41 19 438.19
2 9 079.97 24 037.34 17 569.59 19 216.99
4 6 308.98 23 634.87 16 830.00 18 783.36

XMark1 0 1 250 525.41 1 186 214.34 988 678.93 988 678.93
1 167 586.81 592 634.17 394 639.43 523 996.29
2 131 057.35 592 625.76 394 565.79 523 969.97
4 127 157.34 592 037.39 393 770.73 523 432.87

Table 7.1: A comparison of the upper bounds on the number of bits used by the
tree representation from Theorem 6.23 (third column) and the data structure
from [46] (columns 4, 5 and 6), where lower order terms are ignored.
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Table 7.2: Experimental results for XML tree structures, where n is the number
of nodes and Hs

k is the label-shape entropy for the underlying, unlabeled tree.
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Table 7.3: Experimental results for the second part of the XML tree structures,
where n denotes the number of nodes and Hs

k is the label-shape entropy for the
underlying, unlabeled tree.
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7.5 Conclusion and open problems

We have carried out a systematic comparison of several existing notions of empir-
ical tree entropy and underpinned our theoretical investigations by experimental
results.

The separation between H`s
k and H`

1 +Hdeg achieved in Lemma 7.17 is quite
weak: for a constant k, H`s

k is only by a logarithmic factor larger than H`
1 +Hdeg;

see (7.7). In contrast, in Lemma 7.15 and Lemma 7.16 we achieved an exponential
separation. It remains open, whether such an exponential separation is also
possible for H`s

k and H`
1 +Hdeg. In other words, does there exist a sequence of

trees (tn)n≥1 such that H`s
k (tn) ≥ Ω(n) and H`

1(tn) +Hdeg(tn) ≤ O(log n)?
Let us remark that Ganczorz’s succinct tree representations [46] that achieve

(up to lower-order terms) the entropy bounds H`
k + H`,deg

k and Hdeg + Hdeg,`
k

allow constant query times for a large number of tree queries. For the label-shape
entropy H`s

k , such a result is not known for labeled trees (over an alphabet of
arbitrary size). Our tree representation based on tree straight-line programs
from Chapter 6 that achieves an entropy bound in terms of the label-shape
entropy can be queried in logarithmic time (under the assumption that the height
of the grammar is logarithmic, which can be enforced by [43]). For unlabeled
plane trees, we present a tree representation that achieves an entropy bound in
terms of the label-shape entropy and which can be queried in constant time in
Chapter 9.

Finally, it remains to remark that in general, various other notions of empirical
tree entropy that have not been introduced and considered in the literature yet
are possible. Future research might be to investigate and compare these various
possibilities for entropy notions of empirical tree entropy, in particular, with
respect to how well they capture regularities and compressibility of real-world
tree data sets.
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Chapter 8

Hypersuccinct binary trees

8.1 Introduction

In this chapter, we focus on universal source coding aspects of tree compression.
So far, we have covered two tree compression formalisms in this work, compression
by minimal DAGs (Chapters 3 to 5) and its generalization, grammar-based tree
compression by TSLPs (Chapter 6). For the tree encoder based on TSLPs from
Chapter 6, we have already obtained a universality result in Section 6.5. Our
technical main result of Chapter 6, Theorem 6.20, states that for all labeled full
binary trees t ∈ B(Σ) and kth-order label-shape processes P with ProbP(t) > 0,
the encoding length |EΨ(t)| of the tree encoder EΨ (consisting of a suitable
grammar-based compressor t→ Gt together with the binary encoding B of the
grammar from Section 6.3) is upper-bounded in terms of the self-information
log(1/ProbP(t)) of t plus lower-order terms (if k is small enough). In other words,
EΨ is worst-case universal with respect to the class of all kth-order label-shape
processes.

In previous works [105], [S3], universal tree source coding has been considered
with respect to the family of unlabeled full binary trees, and mainly with respect
to two types of tree sources, which are leaf-centric binary tree sources (as defined
in Definition 3.1 in Chapter 3) and depth-centric binary tree sources, which
closely resemble leaf-centric binary tree sources, except that they induce a
probability distribution on the set of full binary trees of fixed depth (a formal
definition follows in Section 8.4).

In [105], a compressed tree representation based on DAG-compression is
considered. For this, the minimal DAG of the input tree is encoded by a binary
string; this encoding step is similar to the binary coding of SLPs from [64]. This
yields a tree encoder Edag : B → {0, 1}∗. In order to show universality results for
the tree encoder Edag, the maximal pointwise redundancy (also called worst-case
redundancy) and the average-case redundancy of Edag are investigated in [105]
and [S3]. The worst-case redundancy (respectively, average-case redundancy) of
an encoding with respect to a given source measures the maximal (respectively,
average) additive deviation of the code length from the self information with
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respect to the source, normalized by the size of the encoded objects. That is, the
worst-case redundancy of Edag with respect to the leaf-centric or depth-centric
binary tree source ` is defined as

max
t∈Sn,P`(t)>0

1

‖t‖
(|Edag(t)|+ log(P`(t))) , (8.1)

where P`(t) denotes the probability assigned to a tree t ∈ B by the source `,
and Sn is the set of full binary trees of leafsize n, respectively depth n, if `
is a leaf-centric, respectively, depth-centric binary tree source. Similarly, the
average-case redundancy of Edag with respect to the leaf-centric or depth-centric
binary tree source ` is defined as

∑
t∈Sn,P`(t)>0

P`(t)

‖t‖
(|Edag(t)|+ log(P`(t))) . (8.2)

Let |D(t)| denote the size of the minimal DAG of a tree t. Specifically, it is
shown in [105], [S3] that for all for all leaf-centric (respectively, depth-centric)
binary tree sources `, for which the average compression ratio achieved by the
minimal DAG (i.e., the sum

∑
P`(t)|D(t)|/‖t‖, where the summation ranges

over all t ∈ Bn, respectively, all full binary trees t of depth n) converges to zero
for n→∞, the average-case redundancy of Edag converges to zero as n→∞.
Note that this yields an immediate application of the results shown in Chapter 3
of this work, where we have presented several classes of leaf-centric binary tree
sources that satisfy this property.

Moreover, for all leaf-centric (respectively, depth-centric) binary tree sources
`, for which the worst-case compression ratio achieved by the minimal DAG
(i.e., the maximum of |D(t)|/‖t‖ taken over all trees t ∈ Bn, respectively, over
all full binary trees t of depth n) converges to zero as n → ∞, the worst-case
redundancy of Edag converges to zero as n→∞.

Furthermore, in [S3], universal tree source coding based on TSLPs is consid-
ered. For this, the binary encoding of SLPs and DAGs from [64, 105] is extended
to TSLPs, which yields a tree encoder Etslp : B → {0, 1}∗. In fact, the tree
encoder Etslp investigated in [S3] is almost the same as the tree encoder EΨ from
Chapter 6 of this work, except for the fact that Etslp only deals with unlabeled
full binary trees. The tree encoder Etslp is then shown to be universal with
respect to a particular class of leaf-centric, respectively, depth-centric binary
tree sources, which we call monotonic in this work (see Definition 8.22), in the
sense that its worst-case redundancy converges to zero. Specifically, the classes
of leaf-centric, respectively, depth-centric tree sources, with respect to which the
tree encoder Edag and Etslp are shown to be universal, are orthogonal [S3].

In this chapter, we present a new compressed tree encoding for unlabeled
binary trees t ∈ B�, which can be shown to be universal with respect to a large
number of tree sources, and which in particular achieves optimal compression
to within lower order terms for most binary tree sources covered by existing
universal codes. We call this compressed tree representation hypersuccinct trees
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(as an escalation of the name “ultrasuccinct trees”, which is used for the tree
representation presented in [60]). It is based on the tree decomposition technique
introduced by Farzan and Munro in [30].

In particular, hypersuccinct trees are (worst-case or average-case) universal
with respect to almost all classes of leaf-centric and depth-centric binary tree
sources, for which the tree encoder Edag and Etslp from [105], [S3] are shown to
be universal. Additionally, universality results can be shown with respect to two
further types of tree sources, which are node-type sources (defined in Section 8.3)
and tame uniform-subclass sources (which are covered in [S7]). From these
universality results it follows that hypersuccinct trees simultaneously achieve the
optimal (worst-case or average-case) space usage to within lower order terms for
a wide range of distributions over tree shapes, including random binary search
trees (Definition 2.15), random fringe-balanced binary search trees [103], binary
trees with a given number of binary/unary/leaf nodes, (uniformly random) full
binary trees, unary paths, uniformly chosen weight-balanced binary search trees
(in the sense of BB[α]-trees, [88]), AVL trees and left-leaning red-black trees.

What is more, in contrast to the universal tree encodings considered in [105]
and [S3], the hypersuccinct tree encoding can be turned into a compressed data
structure that supports answering many navigational queries on the compressed
representation in constant time on the word-RAM; recent lower bounds [95]
imply that constant query times are not achievable for tree data structures
based on grammar-based tree compression. Compared to prior work on succinct
data structures [30, 60], we do not have to tailor our data structure to specific
applications; from our universality results it follows that hypersuccinct trees
automatically adapt to the trees at hand.

Specifically, with the hypersuccinct tree data structure, we solve an open
problem for succinct range-minimum queries (RMQ). Here the task is to build a
data structure from an array A[1..n] of comparable items at preprocessing time
that can answer subsequent queries without inspecting A again. The answer
to the query RMQ(i, j), for 1 ≤ i ≤ j ≤ n, is the index (in A) of the (leftmost)
minimum in A[i..j]. The hypersuccinct tree data structure answers RMQ in
constant time using the optimal expected space of 1.736n+ o(n) bits when the
array is a random permutation (and 2n+ o(n) in the worst case); previous work
either had suboptimal space [22] or Ω(n) query time [50].

In this work, we focus on the universality aspects of hypersuccinct trees.
For data structure aspects of hypersuccinct trees and a detailed comparison of
hypersuccinct trees with the state of the art in the field of tree data structures, we
refer to [S7]. Tree data structures have been extensively studied in the literature,
see, e.g. [84, 98] for an overview. In Section 8.2, we introduce our hypersuccinct
tree encoding for binary trees. In Section 8.3 and Section 8.4, we present a
selection of the universality results that hold for hypersuccinct trees. Further
universality results, which are closer related to data structure aspects of tree
compression (as the optimal compression of AVL-trees and red-black trees), are
shown in [S7].

The results of this chapter are published in [S7].
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8.2 Hypersuccinct encoding of binary trees

In this chapter, we focus on the family of unlabeled binary trees B� (as defined
in Definition 2.3). In particular, this includes the family of unlabeled full binary
trees B (defined in Definition 2.2) as a special case, respectively, most concepts
considered in this chapter can be naturally transferred to the family of full binary
trees via the natural one-to-one correspondence between the sets B and B�.

Sometimes it will be convenient to consider the empty tree, which is a tree
of size zero. Let t ∈ B� and let v be a node of t. Recall that tl[v] (respectively,
tr[v]) denotes the fringe subtree rooted in v’s left (respectively, right) child. If v
does not have a left (respectively, right) child, then tl[v] (respectively, tr[v]) is
the empty tree. If v is the root of t, we again write tl and tr for tl[v] and tr[v].

A binary tree t ∈ B� of size n can be encoded using 2n bits via the balanced
parenthesis encoding:

Definition 8.1 (Balanced parenthesis encoding). We define the balanced paren-
thesis encoding for binary trees BP : B� → {(, )}∗ inductively by

BP(t) =

{
ε if t is the empty tree,

(BP(tl))BP(tr) otherwise.

Here, ε again denotes the empty string.

In this chapter, we make use of some well-known concepts of information
theory, such as Huffman coding [20, 55], arithmetic coding [20, 104] and the
Elias gamma code [29], which encodes a number n ∈ N as a binary string using
2blog nc+ 1 bits. With γ(n) we denote the Elias gamma encoding of n ∈ N.

Tree decomposition algorithm. Our compressed tree code is based on the
Farzan-Munro algorithm [30] to decompose a tree into connected subtrees, which
we call micro trees. This algorithm was originally designed for plane trees; we
state its properties here when applied on binary trees. The results follow directly
from the result proven in [30] and the fact that node degrees are at most two.

Lemma 8.2 (Binary tree decomposition, [30, Theorem 1]). For any parameter
κ ≥ 1, a binary tree t ∈ B� with n nodes can be decomposed, in linear time, into
Θ(n/κ) pairwise disjoint subtrees (called micro trees) of ≤ 2κ nodes each. Each
of these micro trees has at most three connections to other micro trees:

˛ an edge from a parent micro tree to the root of the micro tree,

˛ an edge to another micro tree in the left subtree of the micro tree root,

˛ an edge to another micro tree in the right subtree of the micro tree root.

˛ At least one of the edges to a child micro tree (if both of them exist)
emanates from the root itself.

In particular, contracting micro trees into single nodes yields again a binary tree.
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Figure 8.1: A binary tree with n = 31 nodes, decomposed into micro trees by
the tree decomposition algorithm from [30] with κ = 6.

A binary tree decomposed into micro trees according to the decomposition
algorithm from [30] can be found in Figure 8.1. If a node v’s parent u belongs to
a different micro tree, u will have a “null pointer” within its micro tree, that is, it
loses its child there. To recover these connections between micro trees, we do not
only need the information which micro tree is a child of which other micro tree,
but also which null pointer inside a micro tree leads to the lost child. We refer
to this null pointer as the portal of the (parent) micro tree (to the child micro
tree). An additional property that we need is stated in the following lemma; it
follows directly from the construction of micro trees in the tree decomposition
algorithm [30].

Lemma 8.3. Let v be the root of a micro tree constructed using the tree parameter
κ, respectively, any ancestor of a micro tree root. Then |t[v]| ≥ κ.

Hypersuccinct code for binary trees. Based on the above properties of the
tree partitioning algorithm from [30], we design an encoding H : B� → {0, 1}∗
for binary trees. Given a binary tree t of size n, we apply the Farzan-Munro
algorithm with parameter κ = d 1

8 log(n)e to decompose the tree into micro trees
t1, . . . , tm, where m = Θ(n/ log n). The size of the micro trees t1, . . . , tm is thus
upper-bounded by smax = d 1

4 log(n)e. With Υ we denote the top tier of the tree
t, which is obtained from t by contracting each micro tree ti into a single node.
In particular, as each micro tree ti has at most 3 connections to other micro
trees (a parent micro tree and (up to) two child micro trees, see Lemma 8.2),
Υ is again a binary tree, and the size of Υ equals the number m of micro trees.
With Σsmax

⊆
⋃
k≤smax

B�k we denote the set of shapes of micro trees that occur
in the tree t. We observe that because of the limited size of micro trees, there
are fewer different possible shapes of binary trees than we have micro trees.

The crucial idea of the hypersuccinct encoding is to treat each shape of a
micro tree as a letter in the alphabet Σsmax

and to compute a Huffman code
Ψ: Σsmax → {0, 1}∗ based on the frequency of occurrences of micro tree shapes
in the sequence (t1, . . . , tm) ∈ Σm

smax
. For our hypersuccinct code, we then use

a length-restricted version Ψ̄ : Σsmax
→ {0, 1}∗ obtained from Ψ using a simple

cutoff technique:
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Definition 8.4 (Worst-case bounding trick). Let Ψ: B� → {0, 1}∗ denote a
uniquely decodable encoding of binary trees. We define a simple length-restricted
version Ψ̄ : B� → {0, 1}∗ of the binary-tree code Ψ as follows:

Ψ̄(t) =

{
0 · γ(|t|+ 1) · BP(t), if |Ψ(t)| > 2|t|+ 2blog(|t|+ 1)c;
1 ·Ψ(t), otherwise.

Here, BP(t) again denotes the balanced parenthesis encoding of t (as defined
in Definition 8.1). The length-restricted code Ψ̄ : B� → {0, 1}∗ then uses

|Ψ̄(t)| ≤ min{|Ψ(t)|, 2|t|+ 2blog(|t|+ 1)c+ 1}+ 1 (8.3)

many bits in order to encode a binary tree t ∈ B� of size |t|.
Finally, for each micro tree, we have to encode which null pointers are

portals to left and right child components (if they exist). For that, we store the
portals’ rank in the micro-tree-local left-to-right order of the null pointers using
dlog(smax + 1)e bits each. We can thus encode t as follows:

(i) Store n and m in Elias gamma code,

(ii) followed by the balanced parenthesis bitstring for Υ.

(iii) Next comes an encoding for the length-restricted Huffman code Ψ̄; for
simplicity, we simply list all possible codewords and their corresponding
binary trees by storing the size (in Elias gamma code) followed by their
balanced parenthesis sequence.

(iv) Then, we list the length-restricted Huffman codes Ψ̄(ti) of all micro trees
in depth-first order (of Υ).

(v) Finally, we store 2 dlog(smax + 1)e-bit integers to encode the portal nulls
for each micro tree, again in depth-first order (of Υ).

Altogether, this yields our hypersuccinct encoding H : B� → {0, 1}∗ for binary
trees. Decoding is obviously possible by first recovering the integers n, m, and
the top tier Υ from its balanced parenthesis string, then reading the Huffman
code and finally replacing each node in Υ by its micro tree in a depth-first
traversal, using the information about portals to identify nodes from components
that are adjacent in Υ. With respect to the length of the hypersuccinct code,
we obtain the following lemma.

Lemma 8.5. Let t ∈ B�n be a binary tree of n nodes, decomposed into micro
trees t1, . . . , tm by the Farzan-Munro algorithm. Let Ψ be an ordinary Huffman
code for the string t1 . . . tm. Then the hypersuccinct code encodes t with a binary
codeword of length

|H(t)| ≤
m∑
i=1

|Ψ(ti)|+O
(
n log log n

log n

)
.
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parent(v) the parent of v, same as ancestor(v, 1)

deg(v) the number of children of v
leftchild(v) the left child of node v

rightchild(v) the right child of node v

depth(v) the depth of v (the number of edges between the root and v)
ancestor(v, i) the ancestor of node v at depth depth(v)− i

descendants(v) the number of descendants of v
height(v) the height of the subtree rooted at node v

LCA(v, u) the lowest common ancestor of nodes u and v

leftmostleaf(v) the leftmost leaf descendant of v
rightmostleaf(v) the rightmost leaf descendant of v
levelleftmost(i) the leftmost node on level i
levelrightmost(i) the rightmost node on level i
levelpred(v) the node immediately to the left of v on the same level
levelsucc(v) the node immediately to the right of v on the same level
noderankX(v) the position of v in the X-order, X ∈ {pre, post, in}
selectX(i) the ith node in the X-order, X ∈ {pre, post, in}
leafrank(v) the number of leaves before and including v in preorder
leafselect(i) the ith leaf in preorder

Table 8.1: Navigational operations on succinct binary trees (v denotes a node
and i an integer).

Proof. We first show that, among the five parts of the hypersuccinct binary-tree
code for t ∈ B�n, all but the second to last one contribute O(n log log n/ log n)

bits. Part (i) clearly needs O(log n) bits and Part (ii) requires 2m = Θ(n/ log n)

bits. For Part (iii), observe that

|Σsmax | ≤
∑

k≤dlogn/4e

4k <
4

3
· 4logn/4+1 =

16

3

√
n.

Together with the worst-case cutoff technique from Definition 8.4, we find that
|Ψ̄(ti)| ≤ 2+2 log(smax+1)+2smax ≤ O(smax), so we need asymptotically O(

√
n)

entries / codewords in the table, each of size O(smax) = O(log n), for an overall
table size of O(

√
n log n). Part (v) usesm·2dlog(smax+1)e = Θ(n log log n/ log n)

bits of space. It remains to analyze Part (iv). We note that by applying the
worst-case pruning scheme of Definition 8.4, we waste 1 bit per micro tree
compared to a pure, non-restricted Huffman code. But these wasted bits amount
to m = O(n/ log n) bits in total, and so are again a lower-order term:

m∑
i=1

|Ψ̄(ti)| =
m∑
i=1

min{|Ψ(ti)|+ 1, 2|ti|+ 2blog |ti|+ 1c+ 2}

≤
m∑
i=1

(|Ψ(ti)|+ 1) =
m∑
i=1

|Ψ(ti)|+O(n/ log n),

where the first equality comes from Definition 8.4. This finishes the proof.

What sets hypersuccinct code apart from other known universal codes is
that it can be turned into a compressed tree data structure with constant-time
queries. For the data structure details of hypersuccinct trees, we refer to [S7].
Specifically, Table 8.1 shows which queries can be supported by hypersuccinct
trees in constant time on the word-RAM.
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8.3 Node-type sources

The first class of sources we consider for universality results of our hypersuccinct
encoding are node-type sources. Node-type sources and the related definitions
presented below closely resemble label-shape processes and the corresponding
related concepts defined Section 6.4. Shortly speaking, node-type sources generate
a binary tree t ∈ B� in a top-down way by determining the node type (binary,
left-unary, right-unary or leaf) of each node depending on its ancestors’ node
types.

8.3.1 Higher-order node-type sources

Formally, we make the following definitions. Let t ∈ B� be a binary tree. We
define the type of a node v as

type(v) =


0 if v is a leaf,

1 if v has a single left child (and no right child),

2 if v is a binary node,

3 if v has a single right child (and no left child).

For a node v of a binary tree t, we inductively define the type history of v,
htype(v) ∈ {1, 2, 3}∗, as follows: If v is the root node, we set htype(v) = ε, (that
is, the empty string). If a node v is the child node of a node w of t, we set
htype(v) = htype(w)type(w), that is, in order to obtain htype(v), we concatenate
the types of v’s ancestors. Note that type(v) is not part of the type history of
v. Moreover, we define the k-type history of v, htype

k (v), as the length-k-suffix
of 1khtype(v), that is, if |htype(v)| ≥ k, htype

k (v) equals the last k characters of
htype(v), and if |htype(v)| < k, we pad this too short history with 1’s in order
to obtain a string htype

k (v) of length k.1 Let k ≥ 0, let z ∈ {1, 2, 3}k and let
i ∈ {0, 1, 2, 3}. With n̂tz we denote the number of nodes of t with k-type history
z and with n̂tz,i we denote the number of nodes of type i and k-type history z.

A kth-order node-type process P = (Pz)z∈{1,2,3}k is a tuple of probability
mass functions Pz : {0, 1, 2, 3} → [0, 1]. A kth order node-type process assigns a
probability ProbP(t) to a binary tree t ∈ B� by

ProbP(t) =
∏

v∈V (t)

Phtype
k (v)(type(v)) =

∏
z∈{1,2,3}k

3∏
i=0

(Pz(i))
n̂tz,i . (8.4)

We also use the term node-type source for a kth-order node-type process. A
kth-order node-type source randomly generates a binary tree t ∈ B� as follows:
In a top-down way, starting at the root node, we determine for each node v
its type, where this decision depends on the k-type history htype

k (v) of the node.
The probability that a node v is of type i is given by Phtype

k (v)(i). If i = 0, then

1As in the case of label-shape histories (Section 6.4) and label-histories (Section 7.2), several
alternatives of treating nodes with shorter type history are possible.
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this node becomes a leaf and the process stops at this node. If i = 1, we attach
a single left child to the node, if i = 2, we attach a left and a right child to the
node, and if i = 3, we attach a single right child to the node. The process then
continues at these child nodes. Note that this process might produce infinite
trees with non-zero probability.

In the same way as label-shape processes (defined in Section 6.4) correspond
to label-shape entropy, node-type sources naturally induce a notion of empirical
entropy for binary trees. We define the following higher-order empirical entropy
for binary trees:

Definition 8.6 (Node-type entropy). Let k ≥ 0 be an integer, and let t ∈ B�
be a binary tree. The (unnormalized) kth-order node type entropy H type

k (t) of t
is defined as

H type
k (t) =

∑
z∈{1,2,3}k

3∑
i=0

n̂tz,i log

(
n̂tz
n̂tz,i

)
.

Again, we make the convention that 0 log(0) = 0 and 0 log(x/0) = 0 for x ≥ 0.
The corresponding normalized entropy measure is obtained by dividing by the
tree size. The zeroth order empirical type entropy is a slight variant of the degree
entropy defined for plane trees in [60] (see Definition 7.2) and occurs implicitly
in [21]. Note that node-type entropy is only reasonable in the particular setting
of binary trees t ∈ B�, thus, it is not included in the entropy comparison of
Chapter 7. The kth-order node-type entropy is a lower bound on the coding
length of a tree encoder that encodes the type of each node, depending on the
k-type history of the node. Normalized node-type entropy measures the expected
uncertainty about the type of a node, given the types of the node’s k closest
ancestors.

We say that the kth-order node-type process (Pz)z∈{1,2,3}k is the empirical

kth-order node-type process of a tree t, if Pz(i) =
n̂tz,i
n̂tz

for all z ∈ {1, 2, 3}k with
n̂tz > 0 and i ∈ {0, 1, 2, 3}. In particular, if P = (Pz)z∈{1,2,3}k is the empirical
kth-order node-type process of a binary tree t ∈ B�, we have

log

(
1

ProbP(t)

)
=

∑
z∈{1,2,3}k

3∑
i=0

n̂tz,i log

(
1

Pz(i)

)
=

∑
z∈{1,2,3}k

3∑
i=0

n̂tz,i log

(
n̂tz
n̂tz,i

)
= H type

k (t).

This shows that the node-type entropy is precisely the number of bits an optimal
code can achieve for this source. In particular, we obtain the following theorem.

Theorem 8.7. Let t ∈ B� be a binary tree. For every kth-order node-type
process P with ProbP(t) > 0, we have

H type
k (t) ≤ − log ProbP(t),

with equality if and only if P is the empirical node-type process of t.
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Theorem 8.7 is the analogue of Theorem 6.18 transferred from the setting
of label-shape processes to the setting of node-type processes (and hence, also
an analogue of a result shown by Gagie in [41] in the setting of empirical string
entropy and kth-order Markov sources). The proof of Theorem 8.7 follows
precisely the same steps as the proof of Theorem 6.18.

Example 8.8. (Binary trees.) In order to encode a (uniformly random) binary
tree t ∈ B�n of size n, 2n bits are necessary [30]. Let P denote the zeroth-
order node-type process defined by P (0) = P (1) = P (2) = P (3) = 1

4 , then for
every binary tree t ∈ B� of size n we have ProbP(t) = 4−n and in particular,
log(1/ProbP(t)) = 2n.

Example 8.9 (Full binary trees). Node-type processes P = (Pz)z∈{1,2,3}k with
Pz(1) = Pz(3) = 0 for all z ∈ {1, 2, 3}k generate full binary trees. Recall that
every full binary tree consists of an odd number n = 2j + 1 of nodes, j binary
nodes and j + 1 leaves for some integer j. If P is a zeroth-order node-type
process, we thus have ProbP(t) = P (0)j+1P (2)j for every t ∈ Bn. Setting
P (0) = P (2) = 1

2 yields

log

(
1

ProbP(t)

)
= (j + 1) log (2) + j log (2) = n,

and n = 2j + 1 is the minimum number of bits needed to represent a (uniformly
chosen) full binary tree t ∈ Bn.

Example 8.10 (Unary paths). Node-type processes (Pz)z∈{1,2,3}k which satisfy
Pz(2) = 0 generate unary-path trees, that is, trees only consisting of unary
nodes and one leaf. In order to encode a unary-path tree of size n+ 1, we need
n bits (to encode the n “directions” left/right). For a fixed integer n, let Pn
denote the zeroth-order node-type process with Pn(1) = Pn(3) = 1/(2 + εn) and
Pn(0) = εn/(2 + εn), for εn = 2/n. We have

log

(
1

ProbPn(t)

)
= n log(2 + εn) + log

(
1 +

2

εn

)
= n log

(
2 +

2

n

)
+ log(n+ 1)

≤ n+ log(n+ 1) +
1

ln(2)
,

for every unary-path tree t ∈ B�n+1.

Example 8.11 (Motzkin trees). Motzkin trees are binary trees with only one
type of unary nodes, see Example 4.3 in Chapter 4. Motzkin trees are generated
by node-type processes (Pz)z∈{1,2,3}k with Pz(3) = 0 for every z ∈ {1, 2, 3}k (and
then left-unary nodes are simply treated as unary nodes). For encoding (uniformly
random) Motzkin trees of size n, asymptotically log(3)n ≈ 1.58496n bits are
necessary [101, Theorem 6.16] (note that this also follows from Theorem 4.6
applied to the simply generated family of Motzkin trees). Let P denote the zeroth-
order node-type process with P (0) = P (1) = P (2) = 1

3 , then ProbP(t) = 3−n for
every Motzkin tree of size n. In particular, we have log(1/ProbP(t)) = log(3)n.
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Example 8.12. In [50], it was shown that the average numbers of node types
in a random binary search tree (i.e., a random tree generated according to the
binary search tree model, see Definition 2.15) of size n satisfy∑

t∈B�n

Pbst(t) · n̂t0 ∼
∑
t∈B�n

Pbst(t) · n̂t2 ∼
1

3
n

and ∑
t∈B�n

Pbst(t) · n̂t1 =
∑
t∈B�n

Pbst(t) · nt3 ∼
1

6
n.

Thus, it seems natural to consider the zeroth-order node-type process P given
by P (0) = P (2) = 1

3 and P (1) = P (3) = 1
6 . In [21], a data structure supporting

RMQ in constant time using

∑
t∈B�n

Pbst(t) log

(
1

ProbP(t)

)
+ o(n) ≈ 1.919n+ o(n)

many bits in expectation is introduced. However, to achieve the asymptotically
optimal ≈ 1.736n+o(n) bits on average (see [50], respectively, [66] for the entropy
rate of the binary search tree model), it is necessary to consider a different kind
of binary-tree sources.

8.3.2 Universality with respect to node-type sources

In order to show a universality result of the hypersuccinct code from Section 8.2
with respect to the class of node-type sources, we first derive a source-specific
encoding (called a depth-first arithmetic code) with respect to the node-type
source, against which we will then compare our hypersuccinct code.

The formula for ProbP(t), Equation (8.4), suggests a route for an (essentially)
optimal source-specific encoding of any binary tree t ∈ B� that, given a kth-order
node-type process P = (Pz)z∈{1,2,3}k , spends log(1/ProbP(t)) (plus lower-order
terms) many bits in order to encode a binary tree t ∈ B� with ProbP(t) > 0.
Such an encoding may spend log(1/Pz(i)) many bits per node v of type i and
of k-type history z of t. (Note that if ProbP(t) > 0 by assumption, we have
Phtype

k (v)(type(v)) > 0 for every node v of t).

Assuming that we “know” the kth-order type process P – i.e., that it need
not be stored as part of the encoding – we can use arithmetic coding in order
to encode the type of node v in that many bits. A simple (source-dependent)
encoding DP , dependent on a given kth-order type process P , thus stores a tree
t as follows.

While traversing the tree in depth-first order, we always know the k-type
history of each node v we pass, and encode type(v) of each node v, using
arithmetic coding. To encode type(v), we feed the arithmetic coder with the
model that the next symbol is a number i ∈ {0, 1, 2, 3} with probability Pz(i),
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where z is the k-type history of v. We refer to this (source-dependent) code DP
as the depth-first arithmetic code for the node-type source P.

We can reconstruct the tree t recursively from its code DP(t), as we always
know the node types of nodes we have already visited in the depth-first order
traversal of the tree, and the k-type history of the node which we will visit next.
As arithmetic coding needs log

(
1/Phtype

k (v)(type(v))
)
many bits per node v, plus

at most 2 bits of overhead, the total number of bits needed to store a binary
tree t ∈ B� is thus

|DP(t)| ≤
∑

v∈V (t)

log

(
1

Phtype
k (v)(type(v))

)
+ 2 = log

(
1

ProbP(t)

)
+ 2. (8.5)

Note that DP is a single prefix-free code for the set of all binary trees t which
satisfy ProbP(t) > 0 with respect to the kth-order type process P = (Pz)z∈{1,2,3}k .
We start with the following lemma:

Lemma 8.13. Let P = (Pz)z∈{1,2,3}k be a kth-order type process and let t ∈ B�n
be a binary tree of size n with ProbP(t) > 0. Then

m∑
i=1

|Ψ(ti)| ≤ log

(
1

ProbP(t)

)
+O

(
nk + n log log n

log n

)
,

where Ψ is a Huffman code for the sequence of the micro trees t1, . . . , tm obtained
from the tree covering scheme (see Section 8.2).

Proof. Let v be a node of t and let ti denote the micro tree of t that contains v.
For the sake of clarity, let typet(v) denote the type of v viewed as a node of t,
and let typeti(v) denote the type of v in ti. We find that typeti(v) = typet(v),
unless v is a parent of a portal. In this case, the degree of v in ti is strictly
smaller than the degree of v in t.

By definition of the tree covering scheme (Lemma 8.2), there are at most
two parents of portal nulls per micro tree ti. If a tree ti contains two parents
of portal nulls, one of those two nodes is the root node by Lemma 8.2. Let πi,1
denote the root node of ti and let πi,2 denote the parent node of the portal null
in ti which is not the root node, if it exists. Moreover, let pos(πi,2) denote the
preorder index of node πi,2 in ti.

Again for the sake of clarity, let htype,t
k (v) denote the k-type history of v in

t, and let htype,ti
k (v) denote the k-type history of v in micro tree ti. If v does

not have k ancestors within ti, then its k-type history htype,ti
k (v) in ti might not

coincide with its k-type history htype,t
k (v) in t, and if v is a descendant of order

smaller than k of node πi,2, then its k-type history in ti does not coincide with
its k-type history in t, as πi,2 changes its node type.

However, if we know the k-type history htype,t
k (πi,1) of the root node πi,1 of ti,

the type typet(πi,1), and the preorder position (in ti) and type (in t) of the node
πi,2, we are able to recover the k-type history htype,t

k (v) of every node v ∈ ti. We
define the following modification of DP (the depth-first arithmetic code defined
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at the beginning of this section), under the assumption that we know htype,t
k (πi,1),

typet(πi,1), typet(πi,2) and pos(πi,2).

While traversing the micro-tree ti in depth-first order, we encode typeti(v)

(that is, typet(v)) for every node v of ti except for nodes πi,1 and πi,2 (if it exists),
for which we encode typet(πi,1) and typet(πi,2) (which we know, by assumption,
as well as the preorder position of πi,2); as we know htype,t

k (πi,1) by assumption,
as well as the node types of πi,1 and πi,2, we know htype,t

k (v) at every node v
we pass. We therefore encode typet(v) using arithmetic coding by feeding the
arithmetic coder with the model that the next symbol is a number i ∈ {0, 1, 2, 3}
with probability Phtype,t

k (v)(i).

Let z̃ = htype,t
k (v). We denote this modification of DP(ti) with DP,z̃(ti) and

find that it spends at most

|DP,z̃(ti)| ≤
∑

v∈V (ti)

log
( 1

Phtype,t
k (v)(typet(v))

)
+ 2 (8.6)

many bits in order to encode a micro tree ti.

Furthermore, let ∆: {0, 1, 2, 3}? → {0, 1}∗ denote any uniquely decodable
binary encoding which spends 2|z| bits in order to encode z ∈ {0, 1, 2, 3}∗. Let
I0 denote the set of indices i ∈ {1, . . . ,m} for which ti is a fringe subtree of t
(that is, ti does not contain any portal nulls), let I1 denote the set of indices
i ∈ {1, . . . ,m} for which the root node of ti is a parent of a portal null, but no
other portal null exists, let I3 denote the set of indices i ∈ {1, . . . ,m}, for which
the root node of ti is not a parent of a portal null, but node πi,2 is a parent of
a portal null, and let I3 = {1, . . . ,m} \ (I0 ∪ I1 ∪ I2). We define a modified
encoding of ti as follows.

D̃P(ti) =



00 ·∆(htype,t
k (πi,1)) ·DP,z̃(ti), if i ∈ I0;

01 ·∆(htype,t
k (πi,1)) · γ(typet(πi,1) + 1) ·DP,z̃(ti), if i ∈ I1;

10 ·∆(htype,t
k (πi,1)) · γ(pos(πi,2)) · γ(typet(πi,2 + 1))

·DP,z̃(ti),
if i ∈ I2;

11 ·∆(htype,t
k (πi,1)) · γ(typet(πi,1 + 1)) · γ(pos(πi,2))

· γ(typet(πi,2) + 1) ·DP,z̃(ti)
if i ∈ I3.

Here, γ again denotes the Elias gamma encoding of positive integers.

Note that formally, D̃P is not a prefix-free code over Σsmax , as there can
be micro tree shapes that are assigned several codewords by D̃P , depending
on which and how many nodes are portals to other micro trees. Nevertheless,
D̃P is uniquely decodable to local shapes of micro trees, and can thus be seen
as a generalized prefix-free code, where more than one codeword per symbol is
allowed.

In terms of encoding length, assigning more than one codeword is not helpful –
removing all but the shortest one never makes the code worse – so a Huffman
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code minimizes the encoding length over the larger class of generalized prefix-free
codes. We find

m∑
i=1

|Ψ(ti)| ≤
m∑
i=1

|D̃P(ti)| =
3∑
j=0

∑
i∈Ij

|D̃P(ti)|

≤
m∑
i=1

|∆(htype,t
k (πi,1))|+

3∑
j=0

∑
i∈Ij

|DP,z̃(ti)|+O(m log smax),

as pos(πi,2) ≤ smax. With the estimate (8.6), we find

3∑
j=0

∑
i∈Ij

|DP,z̃(ti)| ≤
3∑
j=0

∑
i∈Ij

∑
v∈V (ti)

log
( 1

Phtype,t
k (v)(typet(v))

)
+ 2m

= log

(
1

ProbP(t)

)
+ 2m.

Hence, as |∆(htype,t
k (πi,1))| = 2k, we have

m∑
i=1

|Ψ(ti)| ≤ log

(
1

ProbP(t)

)
+O(m log smax) +O(km)

= log

(
1

ProbP(t)

)
+O

(
nk + n log log n

log n

)
,

as m = Θ(n/ log n) and smax = Θ(log n) (see Section 8.2). This finishes the
proof of the lemma.

From Lemma 8.13 and Lemma 8.5, we obtain the following result.

Theorem 8.14. Let P be a kth-order node-type process. The hypersuccinct
encoding H : B� → {0, 1}∗ satisfies

|H(t)| ≤ log

(
1

ProbP(t)

)
+O

(
nk + n log log n

log n

)
for every t ∈ B�n with ProbP(t) > 0. In particular, if P is the empirical kth-order
node-type process of the binary tree t, we obtain the entropy bound

|H(t)| ≤ H type
k (t) +O

(
nk + n log log n

log n

)
.

By Theorem 8.7, we find that the kth-order node-type entropy H type
k (t) lower-

bounds the self-information − log ProbP(t) over all kth-order node-type sources
P with ProbP(t) > 0. Note that the redundancy terms in Theorem 8.14 are
identical to the redundancy terms in the universality result from Theorem 6.20
and the entropy bound from Theorem 6.21 from Chapter 6 (for the special case
of unlabeled full binary trees). Moreover, note that the redundancy term only
becomes a lower-order term if k ≤ o(log n); the same assumption on k can be
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found in Theorem 6.21 for the label-shape entropy, respectively, the entropy
bounds from [89, 46].

From Theorem 8.14 and Example 8.8, Example 8.9, Example 8.10 and
Example 8.11 we obtain the following corollary.

Corollary 8.15. The hypersuccinct code H : B� → {0, 1}∗ compresses

˛ binary trees t of size n, drawn uniformly at random from the set B�n of
all binary trees of size n, using |H(t)| ≤ 2n + O(n log log n/ log n) many
bits,

˛ full binary trees t of size n, drawn uniformly at random from the set
Bnof all full binary trees of size n, using |H(t)| ≤ n+O(n log log n/ log n)

many bits,

˛ unary-path trees t of size n+ 1, drawn uniformly at random from the set
of all unary-path trees of size n+ 1, using |H(t)| ≤ n+O(n log log n/ log n)

many bits, and

˛ Motzkin trees t of size n, drawn uniformly at random from the set of all
Motzkin trees of size n, using |H(t)| ≤ log(3)n+O(n log log n/ log n) many
bits.

8.4 Fixed-size and fixed-height binary tree sources

In this section, we show that our hypersuccinct encoding satisfies universality
results with respect to many classes of leaf-centric and depth-centric binary tree
sources, with respect to which the encodings Edag and Etslp from [105], [S3] are
shown to be universal (see Section 8.1).

However, in [105], [S3], the family of full binary trees B is considered, whereas
our hypersuccinct encoding is defined for the more general case of the family
of binary trees B�. Recall from Chapter 2, that the families B and B� are in a
natural one-to-one correspondence; thus, every leaf-centric binary tree source
and every depth-centric binary tree source naturally induces a corresponding
tree source for the family of trees B�. Thus, we consider these analogues of
leaf-centric and depth-centric binary tree sources in this chapter, which are called
fixed-size binary tree sources and fixed-height binary tree sources.

A fixed-size binary tree source induces a probability mass function on the
family of binary trees B�n for every n ∈ N; this corresponds to the concept of
leaf-centric binary tree sources (as considered in Chapter 3 of this work). A
fixed-height binary tree source induces a probability mass function on the family
of binary trees of height n for every n ∈ N; this is the analogue of depth-centric
binary tree sources.
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8.4.1 Fixed-size binary tree sources

A fixed-size binary tree source is defined by a function ` : N2
0 → [0, 1], such that

n∑
i=0

`(i, n− i) = 1 for all n ∈ N0.

A fixed-size binary tree source ` induces a probability mass function over the set
of all binary trees B�n of size n for every n ≥ 1 by

P`(t) =
∏

v∈V (t)

`(|tl[v]|, |tr[v]|). (8.7)

Note that tl[v] or tr[v] can be the empty tree of size zero. If t is the empty tree,
we set P`(t) = 1.

Intuitively, this corresponds to generating a binary tree by a (recursive)
depth-first traversal as follows. Given a target tree size n, ask the source for
a left subtree size i ∈ {0, ..., n − 1}. The probability of a left subtree size i is
`(i, n− 1− i). Create a node and recursively generate its left subtree of size i
and its right subtree of size n− 1− i. The random choices in the left and right
subtree are independent conditional on their sizes. An inductive proof over n
verifies that

∑
t∈B�n

P`(t) = 1 for every n ∈ N0.
Note that every fixed-size binary-tree source naturally corresponds to a

leaf-centric binary-tree source (as defined in Definition 3.1) and vice-versa.
In particular, the leaf-centric binary tree sources considered in Example 3.2,
Example 3.3 and Example 3.4 have their analogues as fixed-size binary tree
sources.

Example 8.16 (Random binary search tree model). Naturally, the binary search
tree model (defined in Definition 2.15) corresponds to a fixed-size binary tree
source `bst with `bst(i, n − i) = 1

n+1 for all i ∈ {0, . . . , n} and n ∈ N0. The
corresponding leaf-centric binary tree source is given in Example 3.2.

Example 8.17 (Uniform distribution). Also the uniform probability distribution
(Definition 2.14) corresponds to a fixed-size tree source, which is defined by

`uni(i, n− i) =
|B�i ||B�n−i|
|B�n+1|

for every i ∈ {0, . . . , n− 1} and n ∈ N0.

This corresponds to the leaf-centric binary tree source from Example 3.3.

Example 8.18 (Binomial random tree model). Fix a constant 0 < p < 1 and
recall the binomial random tree model from Example 3.4. The corresponding
fixed-size binary tree source is defined by

`bin,p(i, n− i) = pi(1− p)n−i
(
n

i

)
for every i ∈ {0, . . . , n} and n ∈ N0.
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Example 8.19 (Almost paths). Setting `(0, n) = `(n, 0) = 1
2 for n ≥ 2 yields

a fixed-size binary tree source which produces unary paths; (this is a special
case of [105, Ex. 6 ]). One can generalize the example so that `(i, j) > 0 implies
min{i, j} ≤ K for some constant K by setting

`path(i, j) =

min

{
1

j + i+ 1
,

1

2(K + 1)

}
if i ≤ K or j ≤ K,

0 otherwise.

A fixed-size source `path only generates binary trees for which at each node, the
left or right subtree has at most K nodes. Unary paths correspond to K = 0.

Example 8.20 (Random fringe-balanced binary search tree model). Let α ∈ N0

be a parameter, and define

`bal(k, n− k − 1) =


(
k

α

)
·
(
n− k − 1

α

)
·
(

n

2α+ 1

)−1

if n ≥ 2α+ 1,

1

n
otherwise.

This yields random (2α+ 1)-fringe-balanced binary search trees; (see [103, §4.3]
and the references therein for background on these trees).

8.4.2 Fixed-height binary-tree sources

Recall that h(t) denotes the height of a tree (which is the depth of the tree plus
one), and that we defined the height of the empty tree to be zero. A fixed-height
binary tree source is defined by a function ` : N2

0 → [0, 1], such that∑
i,j∈N0

max(i,j)=n

`(i, j) = 1 for all n ∈ N0.

A fixed-height tree source induces a probability mass function over the set of all
binary trees t ∈ B� of height n by

P`(t) =
∏

v∈V (t)

`(h(tl[v]),h(tr[v])). (8.8)

Note again that tl[v] or tr[v] can be the empty tree of height zero. If t is the
empty tree, we set P`(t) = 1.

Intuitively, this corresponds to generating a binary tree by a (recursive)
depth-first traversal as follows: Given a target height n of the tree, ask the
source for the height i of the left subtree and the height j of the right subtree
conditional on max(i, j) = n− 1. The probability of a pair of heights (i, j) with
max(i, j) = n−1 is `(i, j). Create a node and recursively generate its left subtree
of height i and its right subtree of height j. The random choices in the left and
right subtree are again independent conditional on their heights.
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An inductive proof over n verifies that
∑
t P`(t) = 1 for every n ∈ N0, where

the sum is taken over all binary trees t ∈ B� of height n. The concept of
fixed-height binary-tree sources corresponds to the concept of depth-centric
binary-tree sources considered in [105], [S3].

Example 8.21 (AVL trees by height). An AVL tree is a binary tree t ∈ B�,
such that for every node v of t, we have |h(tl[v])− h(tr[v])| ≤ 1. Let An ⊆ B�
denote the set of AVL trees of height n. The number of AVL trees of height n
satisfies the following recurrence relation:

|An| = 2|An−1||An−2|+ |An−1||An−1|.

Set

`avl(i, j) =


|Ai||Aj |
|An|

for (i, j) ∈ {(n−2, n−1), (n−1, n−1), (n−1, n−2)}

0 otherwise,

for every n ≥ 2. Then `avl corresponds to a uniform probability distribution on
the set An of AVL trees of height n for every n ∈ N.

8.4.3 Monotonic fixed-size and fixed-height sources

In the following, we present several classes of fixed-size and fixed-height binary-
tree sources, for which we will be able to show that our hypersuccinct encoding is
universal. The first property (respectively, the analogous property for leaf-centric
and depth-centric binary tree sources) was introduced in [S3].

Definition 8.22 (Monotonic source). A fixed-size or fixed-height binary tree
source is monotonic if `(i, j) ≥ `(i+ 1, j) and `(i, j) ≥ `(i, j + 1) for all i, j ∈ N0.

Specifically, it is shown in [S3], that the tree encoder Etslp based on TSLP
compression is universal with respect to the classes of monotonic leaf-centric and
monotonic depth-centric tree sources in the sense that the worst-case redundancy
(8.1) of Etslp converges to zero for every monotonic leaf- or depth-centric source.2

Clearly, the binary search tree model `bst from Example 8.16 is a monotonic
fixed-size tree source, and one can easily show that the uniform model `uni
from Example 8.17 is another one. Furthermore, the fixed-size source `path
from Example 8.19 is monotonic. In contrast, the binomial random tree model
`bin,p from Example 8.18 and the fringe-balanced binary search tree model
(Example 8.20) are not monotonic.

For monotonic tree sources, we find the following:

2To be more precise, in [S3] it is shown that Etslp is worst-case universal with respect to
all leaf- and depth-centric binary tree sources that satisfy a property called strong domination
property. Monotonic leaf- and depth-centric binary tree sources are shown to satisfy the
strong-domination property. It is an open problem whether there are leaf- or depth-centric
tree sources which satisfy the strong-domination property and which are not monotonic.
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Lemma 8.23. Let t ∈ B�, and let t1, . . . , tm be a partition of t into disjoint
subtrees, in the sense that every node of t belongs to exactly one subtree ti. If `
is a monotonic fixed-size or monotonic fixed-height binary tree source, then

P`(t) ≤
m∏
i=1

P`(ti).

Proof. Let v be a node of t and let ti denote the subtree that v belongs to. As ti
is a (not necessarily fringe) subtree of t, we find |til[v]| ≤ |tl[v]|, |tir[v]| ≤ |tr[v]|
as well as h(til[v]) ≤ h(tl[v]) and h(tir[v]) ≤ h(tr[v]). From the definition of
monotonicity, we thus have `(|til[v]|, |tir[v]|) ≥ `(|tl[v]|, |tr[v]|), if ` corresponds
to a fixed-size source, respectively, `(h(til[v]),h(tir[v])) ≥ `(h(tl[v]),h(tr[v])),
if ` corresponds to a fixed-height source. As every node of t belongs to exactly
one subtree ti, we find for monotonic fixed-size sources `:

P`(t) =
∏

v∈V (t)

`
(
|tl[v]|, |tr[v]|

)
≤

m∏
i=1

∏
v∈V (ti)

`
(
|til[v]|, |tir[v]|

)
=

m∏
i=1

P`(ti).

For monotonic fixed-height sources, we similarly find

P`(t) =
∏

v∈V (t)

`
(
h(tl[v]),h(tr[v])

)
≤

m∏
i=1

∏
v∈V (ti)

`
(
h(ti`[v]),h(tir[v])

)
=

m∏
i=1

P`(ti).

This lemma depicts the crucial property of monotonic sources, based on
which we will be able prove universality of our hypersuccinct encoding from
Section 8.2 with respect to these classes of fixed-size and fixed-height binary tree
sources. The corresponding result and proof will be presented in Section 8.4.5.

8.4.4 Fringe-dominated tree sources

Further classes of fixed-size and fixed-height tree sources for which we will be
able to show universality of our encoding are the following. These classes widely
overlap with the classes of leaf- and depth-centric binary tree sources, with
respect to which the tree encoder Edag from [105] is shown to be (worst-case or
average-case) universal. Let Tn,` again denote a random tree of size n generated
by a fixed-size binary tree source ` and let Yn,k again denote the (random)
number of nodes v in Tn,`, which satisfy |Tn,`[v]| > k. Moreover, let yk(t) denote
the number of nodes v in a tree t ∈ B� which satisfy |t[v]| > k. We make the
following definitions.

Definition 8.24 (Average-case fringe-dominated). We call a fixed-size binary
tree source average-case κ-fringe dominated for an increasing function κ with
κ(n) = Θ(log(n)), if

E(Yn,κ(n)) = o

(
n

log(κ(n))

)
.
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Definition 8.25 (Worst-case fringe-dominated). We call a fixed-size or fixed-
height binary tree source worst-case κ-fringe dominated for an increasing function
κ with κ(n) = Θ(log(n)), if

yκ(n)(t) = o

(
n

log(κ(n))

)
.

for every tree t ∈ B�n with P`(t) > 0.

Note that Definition 8.25 treats fixed-size and fixed-height binary tree sources,
but Definition 8.24 only covers fixed-size binary tree sources (to avoid averaging
over trees of different sizes). Moreover, a fixed-size tree source that is worst-case
κ-fringe-dominated is clearly average-case κ-fringe-dominated as well.

Furthermore, note that the properties of average-case and worst-case fringe-
domination are closely related to DAG-compression via the cut-point argument
from Section 3.2 (see in particular Lemma 3.5). Recall that the tree encoder Edag

from [105], [S3] is shown to be average-case (respectively, worst-case) universal
with respect to the classes of leaf-centric and depth-centric tree sources, for
which the average (respectively, worst-case) compression ratio achieved by the
minimal DAG converges to zero (i.e., universal in the sense that the average-case
redundancy (8.2), respectively, worst-case redundancy (8.1) converges to zero).
We will show that the classes of leaf-centric and depth-centric tree sources,
with respect to which Edag is universal, are widely covered by universality
results for our hypersuccinct encoding (see Theorem 8.42 and Theorem 8.43 in
Section 8.4.5).

Sufficient conditions for fixed-size sources to be average-case fringe-dominated
are given in Chapter 3 in the context of DAG-compression. As every leaf-centric
binary tree source induces a fixed-size binary tree source, the results from
Chapter 3 apply in a natural way in the setting of binary trees from B� as well.
The classes of leaf-centric binary tree sources from Chapter 3 correspond the
following classes of fixed-size binary tree sources:

Definition 8.26 (ψ-upper-bounded sources, Definition 3.8). Let ψ : R→ [0, 1]

be a decreasing function. We call a fixed-size source ` ψ-upper-bounded, if there
is an integer N` such that

`(i, n− i) ≤ ψ(n)

for all n ≥ N` and 0 ≤ i ≤ n.

Definition 8.27 (ϕ-weakly-balanced sources, Definition 3.14). Let ϕ : N→ (0, 1]

be a decreasing function and let γ ∈ (0, 1
2 ). We call a fixed-size source ` ϕ-

weakly-balanced, if there is an integer N` such that∑
γn≤i≤(1−γ)n

`(i− 1, n− i− 1) ≥ ϕ(n)

for all n ≥ N`.
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Definition 8.28 (ς-strongly-balanced sources, Definition 3.19). Let ς : R→ (0, 1]

be a decreasing function and let γ ∈ (0, 1
2 ). We call a fixed-size source ` ς-strongly-

balanced, if there is an integer N` and a constant c` ≥ 1 such that for every
n ≥ N` and every integer r with c` ≤ r ≤ dγne, the following inequality holds:∑

r≤i≤n−r

`(i− 1, n− i− 1) ≥ ς(r).

In Chapter 3, we have already investigated the expectation E(Yn,k) with
respect to leaf-centric binary tree sources from the three classes of sources pre-
sented above. We thus obtain the following three lemmas from the corresponding
results proven in Chapter 3.

Lemma 8.29 (see Lemma 3.11). Let ` be a ψ-upper-bounded fixed-size binary
tree source, then

E(Yn,κ(n)) ≤ O(nψ(κ(n)))

for every increasing function κ with κ(n) = Θ(log n).

Lemma 8.30 (see Lemma 3.16). Let ` be a ϕ-weakly-balanced fixed-size binary
tree source, then

E(Yn,κ(n)) ≤ O
(

n

γϕ(n)κ(n)

)
for every increasing function κ with κ(n) = Θ(log n).

Lemma 8.31 (see Lemma 3.21). Let ` be a ς-strongly-balanced fixed-size binary
tree source, then

E(Yn,κ(n)) ≤ O
(

n

γς(κ(n))κ(n)

)
for every increasing function κ with κ(n) = Θ(log n).

Thus, if a fixed-size tree source ` is ψ-upper-bounded for a function ψ with
ψ(n) ≤ o(1/ log(n)), or ϕ-weakly-balanced for a decreasing function ϕ with
ϕ(n) ≥ ω(log log n/ log n), or ς-strongly-balanced for a decreasing function ς

with ς(n) ≥ ω(log n/n), then it is average-case fringe dominated.
The binary search tree model `bst from Example 8.16, is average-case fringe

dominated (as we can choose ψ(n) = Θ(1/n) in Lemma 8.29 and ϕ(n) = Θ(1)

in Lemma 8.30, see also Examples 3.12 and 3.17). Moreover, the binomial
random tree model `bin,p from Example 8.18, and the uniform model `uni from
Example 8.17 are average-case fringe dominated (see Examples 3.18 and 3.22).
Additionally, for the random fringe-balanced binary search tree model from
Example 8.20, it is easy to show that it is average-case fringe dominated by
choosing ψ(n) = Θ(1/n) in Lemma 8.29 (see also [102, Lemma 2.38]).

Intuitively, ϕ-weakly-balanced fixed-size tree sources lower-bound the prob-
ability of balanced binary trees in terms of the function ϕ. They generalize a
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class of tree sources considered in [S3, Lemma 4 and Theorem 2], as well as
leaf-balanced (called weight-balanced below) tree sources introduced in [105] and
further analyzed in [S3].

Definition 8.32 (weight-balanced sources, [105], [S3]). A weight-balanced fixed-
size binary tree source ` is a ϕ-weakly-balanced fixed-size binary tree source
with ϕ = 1, that is, there is a constant γ ∈ (0, 1

2 ), such that∑
γn≤i≤(1−γ)n

`(i− 1, n− i− 1) = 1

for every n ∈ N.

Weight-balanced fixed-size binary tree sources constitute an example of
fixed-size tree sources which are worst-case fringe-dominated:

Lemma 8.33. Let ` be a weight-balanced fixed-size binary tree source. Then

yκ(n)(t) = O
(

n

κ(n)

)
for every tree t ∈ B�n with P`(t) > 0 and function κ, that is, ` is worst-case
κ-fringe dominated.

Proof. The statement of the lemma follows from known results shown in [42]
(see also [S3, Lemma 3]). Let 0 < β ≤ 1. In [42], β-balanced binary trees are
introduced: A node v of a binary tree t ∈ B� is called β-balanced, if it satisfies
|tl[v]|+ 1 ≥ β(|tr[v]|+ 1) and |tr[v]|+ 1 ≥ β(|t`[v]|+ 1) (note that in [42], the
authors count leaves of full binary trees, such that there is an off-by-one in the
definition of β-balanced nodes). A binary tree is called β-balanced, if for all
internal nodes u, v of t such that u is the parent node of v, we have that u is
β-balanced or v is β-balanced. In the proof of [42, Lemma 10], it is shown in the
context of DAG-compression of trees that for every β-balanced tree t ∈ B�n, we
have yk(t) ≤ 4αn/k for every constant k ∈ N, where α = 1 + log1+β(β−1). Now
let ` be a weight-balanced fixed-size tree source and let t ∈ B� be a binary tree
with P`(t) > 0. It remains to show that t is β-balanced for some constant β. Let
v be a node of t. As P`(t) > 0, we find that `(|tl[v]|, |tr[v]|) > 0, and thus, there
is a constant γ, such that γn ≤ |t`[v]|+ 1, |tr[v]|+ 1 ≤ (1− γ)n. In particular,
we find that |tl[v]|+ 1 ≥ γ(|tr[v]|+ 1) and |tr[v]|+ 1 ≥ γ(|t`[v]|+ 1). Thus, t is
β-balanced with β = γ.

Finally, we will present a class of fixed-height binary tree sources that
generalizes AVL-trees and is worst-case κ-fringe dominated (and thus amenable
to compression using our techniques).

Definition 8.34 (ζ-height-balanced fixed-height sources). A fixed-height tree
source ` is called ζ-height-balanced, if there is an increasing function ζ : N→ N0,
such that for all (i, j) ∈ N0 × N0 with `(i, j) > 0 and max(i, j) = k − 1 we have
|i− j| ≤ ζ(k).
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For ζ-height-balanced tree sources, we obtain the following lemma.

Lemma 8.35. Let ` be a ζ-height-balanced fixed-height tree source, then

yκ(n)(t) ≤ O
(
ζ(n)n log κ(n)

κ(n)

)
for every tree t ∈ B�n with P`(t) > 0 and function κ.

In particular, under the assumption that κ(n) = Θ(log n), ` is worst-case
fringe-dominated if ζ(k) ≤ o(log k/(log log k)2). The class of ζ-height-balanced
fixed-height tree sources generalizes depth-balanced tree sources introduced in
[S3]. The fixed-height binary tree source from Example 8.21 is an example of a
1-height-balanced fixed-height tree source.

Lemma 8.35 follows from combining, respectively, generalizing results from
[S3, Lemma 7] and [54, Lemma 2], the latter presented in the context of top-tree
compression; a self-contained proof in our notation can be found in [S7]. The
lemma from [54, Lemma 2] reads as follows in our notation:

Lemma 8.36 ([54, Lemma 2], [S7, Lemma E.19]). Let t ∈ B� be a binary tree
and let k ∈ N. If there is a constant c > 1, such that h(t[v]) ≤ logc(|t[v]|+ 1) for
every node v of t, then the number yk(t) of nodes v with |t[v]| ≥ k in t satisfies

yk(t) ≤ 4|t|(log k + 2)

k log c
+

2|t|
k
.

With Lemma 8.36, we are able to prove Lemma 8.35.

Proof of Lemma 8.35. Let β ∈ N. We call a binary tree t β-height-balanced, if
for every node v of t, we have |h(tl[v])− h(tr[v])| ≤ β. This property of trees
is called β-depth-balanced trees in [S3]. Note that every subtree of a β-height-
balanced tree is β-height-balanced as well. In [S3, Lemma 7], it is shown that
for every β-height-balanced tree t, we have |t|+ 1 ≥ ch(t) with c = 1 + 1/(1 + β)

(note that in [S3], the authors consider full binary trees and measure size as the
number of leaves, such that there is an off-by-one in the meaning of |t|). Thus,
Lemma 8.36 applies to β-height-balanced trees. Now let ` be a fixed-height
tree source, and let ζ : N → N0 be a monotonically increasing function, such
that for all (i, j) ∈ N0 × N0 with `(i, j) > 0 and max(i, j) = k − 1, we have
|i − j| ≤ ζ(k). Moreover, let t ∈ B�n be a binary tree of size n with P`(t) > 0.
Then |h(tl[v]) − h(tr[v])| ≤ ζ(h(t[v])) for every node v of t. In particular, as
ζ is increasing, we find that t is β-height balanced with β = ζ(h(t)) and as
h(t) ≤ |t| = n, t is ζ(n)-height-balanced. By Lemma 8.36, we thus find that

yκ(n)(t) ≤
4n(log κ(n) + 2)

κ(n) log c
+

2n

κ(n)
,

with c = 1 + 1/(1 + ζ(n)). By the mean-value theorem, we find

log

(
1 +

1

1 + ζ(n)

)
= log(2 + ζ(n))− log(1 + ζ(n)) ≥ 1

(2 + ζ(n)) ln(2)
.
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Thus

yκ(n)(t) ≤
4 ln(2)(2 + ζ(n))n(log κ(n) + 2)

κ(n)
+

2n

κ(n)
= O

(
ζ(n)n log κ(n)

κ(n)

)
.

This proves the lemma.

8.4.5 Universality with respect to fixed-size binary tree
sources and fixed-height binary tree sources

In order to show universality of the hypersuccinct code from Section 8.2 with
respect to fixed-size and fixed-height binary tree sources, we proceed in a similar
way as in the case of node-type sources. First, we derive a source-specific
encoding (called depth-first order arithmetic code) with respect to the fixed-size
or fixed-height source, against which we will then compare our hypersuccinct
code.

As in the case of node-type sources, we find that the formulas for P`(t), (8.7)
and (8.8), immediately suggest a route for an (essentially) optimal source-specific
encoding of any binary tree t that, given a fixed-size or fixed-height source `,
spends log(1/P`(t)) (plus lower-order terms) many bits in order to encode a
binary tree t ∈ B� with P`(t) > 0. For a given fixed-size source, such an encoding
may spend − log

(
`(|tl[v]|, |tr[v]|)

)
many bits per node v, while for a fixed-height

source, it may spend − log
(
`(h(tl[v]),h(tr[v]))

)
many bits per node v.

Assuming that ` need not be stored as part of the encoding, and assuming that
we have already stored |t[v]|, if ` corresponds to a fixed-size source, respectively,
h(t[v]), if ` corresponds to a fixed-height source, we can use again arithmetic
coding to store |tl[v]| (from which we will then be able to determine |tr[v]|),
if ` corresponds to a fixed-size source, respectively, h(tl[v]) and h(tr[v]), if `
corresponds to a fixed-height source. First, let us assume that ` corresponds
to a fixed-size binary tree source. A simple (source-dependent) encoding D`

thus stores a tree t ∈ B�n as follows. We initially encode the size of the tree in
Elias gamma code. If the tree consists of n nodes, we store the Elias gamma
code of n + 1, γ(n + 1), in order to take the case into account that t is the
empty binary tree. Additionally, while traversing the tree in depth-first order,
we encode |tl[v]| for each node v, using arithmetic coding. To encode |tl[v]|, we
feed the arithmetic coder with the model that the next symbol is a number
i ∈ {0, . . . , |t[v]| − 1} with respective probabilities `(i, |t[v]| − 1− i).

If ` corresponds to a fixed-height binary tree source, we proceed similarly. A
(source-dependent) encoding D` with respect to a fixed-height source ` stores a
tree t ∈ B� of height n by initially encoding n+ 1, in Elias gamma code, followed
by an encoding of (h(tl[v]),h(tr[v])) for every node v in depth-first order, stored
using arithmetic encoding. Note that there are 2h(t[v])− 1 many different pos-
sibilities for (h(tl[v]),h(tr[v])), thus, we can represent a pair (h(tl[v]),h(tr[v]))

by a number i ∈ {0, 2h(t[v])− 2}.
We refer to this (source-dependent) code D` as the depth-first arithmetic

code for the binary tree source `. We can reconstruct the tree t recursively from
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its code D`(t): Since we always know the subtree size, respectively, subtree
height, we know how many and what size the bins for the next left subtree size,
respectively, pair of subtree heights, use in the arithmetic code.

In total, D` needs at most log(1/P`(t)) + 2 bits to store t when we know |t|,
respectively h(t) (depending on the type of tree source). With h(t) ≤ |t|, and
as the Elias-gamma code satisfies |γ(n)| ≤ 2blog(n)c+ 1, we find that the total
encoding length is upper-bounded by

|D`(t)| ≤ log(1/P`(t)) + 2blog(|t|+ 1)c+ 3. (8.9)

Universality for monotonic fixed-size and fixed-height sources. We
first show universality of our hypersuccinct code with respect to monotonic
fixed-size and fixed-height sources, as defined in Definition 8.22. We start with
the following lemma.

Lemma 8.37. Let ` be a fixed-size or fixed-height tree source and let t ∈ B�n
with P`(t) > 0. If ` is monotonic, then

m∑
i=1

|Ψ(ti)| ≤ log

(
1

P`(t)

)
+O

(
n log log n

log n

)
,

where Ψ is a Huffman code for the sequence of micro trees t1, . . . , tm obtained
from the tree covering scheme.

Proof. Let us denote by D` : B� → {0, 1}∗ the depth-first arithmetic code as
introduced in the beginning of this section. In particular, by Lemma 8.23, we
find that P`(ti) ≥ P`(t) for all micro trees ti of t, and thus, D`(ti) is well-defined
for every micro tree ti. Restricting D` to Σsmax

yields a prefix-free code for
Σsmax

, so we know by the optimality of Huffman codes that

m∑
i=1

|Ψ(ti)| ≤
m∑
i=1

|D`(ti)|.

By our estimate (8.9) for |D`|, we find that

m∑
i=1

|D`(ti)| ≤
m∑
i=1

(
log

(
1

P`(ti)

)
+ 3 + 2blog(|ti|+ 1)c

)

≤
m∑
i=1

log

(
1

P`(ti)

)
+O(m log smax).

Note that the subtrees t1, . . . , tm form a partition of t in the sense that every
node of t belongs to exactly one subtree ti. Thus, and as ` corresponds to a
monotonic fixed-size or fixed-height source, we find by Lemma 8.23

m∑
i=1

log

(
1

P`(ti)

)
+O(m log smax) ≤ log

(
1

P`(t)

)
+O(m log smax).
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Altogether, with m = Θ(n/ log n) and smax = Θ(log n) (see Section 8.2), the
statement follows.

From Lemma 8.37 and Lemma 8.5, we obtain the following result for mono-
tonic tree sources.

Theorem 8.38. Let ` be a monotonic fixed-size or fixed-height tree source. Then
the hypersuccinct code H : B� → {0, 1}∗ satisfies

|H(t)| ≤ log

(
1

P`(t)

)
+O

(
n log log n

log n

)
for every t ∈ B�n with P`(t) > 0.

Using the terminology from [105], [S3], Theorem 8.38 states that for every
monotonic fixed-size or fixed-height binary tree source, the worst-case redundancy
(8.1) of the hypersuccinct code H converges to zero (as n→∞); an analogous
result holds with respect to the tree encoder Etslp based on TSLPs from [S3]. The
tree sources from Example 8.16, Example 8.17, and Example 8.19 are monotonic
fixed-size binary tree sources. Thus, together with Theorem 8.38, we obtain the
following corollary.

Corollary 8.39. The hypersuccinct code H : B� → {0, 1}∗ satisfies the following
bounds.

(i) With respect to the binary search tree model (see Example 8.16), we find
that a tree t ∈ B� of size n is encoded using

|H(t)| ≤ log(1/P`bst(t)) +O(n log log n/ log n)

many bits. In particular, we need on average∑
t∈B�n

P`bst(t)|H(t)| ≈ 1.736n+O(n log log n/ log n)

many bits (see [66]) in order to encode a binary search tree of size n.

(ii) Almost-path binary trees (for arbitrary K ≥ 0) from Example 8.19 are
encoded using |H(t)| ≤ log

(
1/P`path(t)

)
+O(n log log n/ log n) many bits.

As the uniform probability distribution on the set B�n of binary trees of size n
can be modeled as a monotonic fixed-size binary tree source (see Example 8.17),
we find moreover that Corollary 8.15, part (i) follows from Theorem 8.38.

Universality for fringe-dominated fixed-size and fixed-height sources.
Recall that the hypersuccinct encoding from Section 8.2 decomposes t into micro
trees t1, . . . , tm using Lemma 8.2 and uses a Huffman code Ψ for t1, . . . , tm. Some
of these micro trees might be “fringe”, that is, correspond to fringe subtrees of t
and leaves in the top tier tree Υ, but many will be internal micro trees, that
is, have child micro trees in the top tier tree Υ. That means, micro-tree-local
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subtree sizes, resp. heights, and global subtree sizes, resp., heights, differ for
nodes that are ancestors of the portal to the child micro tree – and only for those
nodes do they differ. This will be the crucial observation in order to show that
our hypersuccinct code is universal with respect to fringe-dominated sources.

Formally, let v be a node of t. If v is contained in a fringe micro tree
ti, respectively, in a non-fringe micro tree ti but not an ancestor of a portal
node, then ti[v] = t[v], and thus `(|til[v]|, |tir[v]|) = `(|tl[v]|, |tr[v]|), respectively,
`(h(til[v]),h(tir[v])) = `(h(tl[v]),h(tr[v])).

On the other hand, if v is an ancestor of a portal node in a non-fringe subtree
ti, then ti[v] 6= t[v]. In order to take this observation into consideration, we make
the following definitions. Let ti be an internal (non-fringe) micro tree. By b(ti),
we denote the subtree of ti induced by the set of nodes that are ancestors of ti’s
child micro trees (ancestors of the portals); we refer to b(ti) as the bough of ti.
The boughs of a micro tree are the paths from the portals to the micro tree root.

In particular, if v denotes a node of t contained in a subtree ti, then t[v] 6= ti[v]

if and only if ti is not fringe and v is contained in b(ti). Hanging off the boughs
of ti are (fringe) subtrees fi,1, . . . , fi,|b(ti)|+1, listed in depth-first order of the
bough nulls these subtrees are attached to. In particular, some of these subtrees
might be the empty tree. Recall that the portal nodes themselves are not part
of ti and hence not part of b(ti). We obtain the following lemma.

Lemma 8.40. Let ` be a fixed-size, respectively, fixed-height binary tree source.
Furthermore, let I0 = {i ∈ {1, . . . ,m} | ti is a fringe micro tree in t} and let
I1 = {1, . . . ,m} \ I0. Then

∑
i∈I0

log
( 1

P`(ti)

)
+
∑
i∈I1

|b(ti)|+1∑
j=1

log
( 1

P`(fi,j)

)
≤ log

( 1

P`(t)

)
.

Proof. The statement follows immediately from the facts that (i) all the subtrees
ti for i ∈ I0 and fi,j for i ∈ I1 and j ∈ {1, . . . , |b(ti)| + 1} are fringe subtrees
of t, and (ii) every node v of t occurs in at most one of these fringe subtrees.
Assume that ` corresponds to a fixed-size tree source, then we find

∑
i∈I0

log
( 1

P`(ti)

)
+
∑
i∈I1

|b(ti)|+1∑
j=1

log
( 1

P`(fi,j)

)

= −
∑
i∈I0

∑
v∈V (ti)

log(`(|til[v]|, |tir[v]|))−
∑
i∈I1

|b(ti)|+1∑
j=1

∑
v∈V (fi,j)

log(`(|fi,j l[v]|, |fi,jr[v]|))

(i)
= −

∑
i∈I0

∑
v∈V (ti)

log(`(|tl[v]|, |tr[v]|))−
∑
i∈I1

|b(ti)|+1∑
j=1

∑
v∈V (fi,j)

log(`(|tl[v]|, |tr[v]|))

(ii)

≤ −
∑

v∈V (t)

log(`(|tl[v]|, |tr[v]|)) = log
( 1

P`(t)

)
.

The proof for fixed-height sources is similar.
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With these considerations, we are now able to derive the following lemma.

Lemma 8.41. Let ` be a fixed-size, respectively, fixed-height binary tree source
and let t ∈ B�n with P`(t) > 0. Then

m∑
i=1

|Ψ(ti)| ≤ log

(
1

P`(t)

)
+O (yκ(t) log log n) ,

where Ψ is a Huffman code for the sequence of micro trees t1, . . . , tm from our tree
covering scheme and κ = κ(n) = Θ(log n) is the parameter of the tree covering
scheme.

Proof. We construct a new encoding for micro trees D̄`, against which we can
compare the hypersuccinct code, as follows.

D̄`(ti) =

{
0 ·D`(ti), if ti is fringe;

1 · γ(|b(ti)|) · BP(b(ti)) ·D`(fi,1) · · ·D`(fi,|b(ti)|+1), otherwise,

where D` : B� → {0, 1}∗ is the depth-first order arithmetic code as introduced
in the beginning of Section 8.4.5. Note that D̄` is well-defined, as the encoding
D` is only applied to fringe subtrees ti and fi,j of t, for which P`(ti), P`(fi,j) > 0

follows from P`(t) > 0.
Moreover, note that formally, D̄` is not a prefix-free code over Σsmax , as there

can be micro tree shapes that are assigned several codewords by D̄`, depending
on which nodes are portals to other micro trees (if any). But D̄` is uniquely
decodable to local shapes of micro trees, and can thus be seen as a generalized
prefix-free code, and a Huffman code minimizes the encoding length over the
larger class of generalized prefix-free codes. In particular, the Huffman code Ψ

for micro trees used in the hypersuccinct code achieves no worse encoding length
than D̄`. We thus have

m∑
i=1

|Ψ(ti)| ≤
m∑
i=1

|D̄`(ti)|.

We again set I0 = {i ∈ {1, . . . ,m} | ti is a fringe micro tree in t}, and define
I1 = {1, . . . ,m} \ I0. We have

m∑
i=1

|D̄`(ti)| =
∑
i∈I0

|D̄`(ti)|+
∑
i∈I1

|D̄`(ti)|

≤
∑
i∈I0

(1 + |D`(ti)|) +
∑
i∈I1

(
2 + 2 log(|b(ti)|) + 2|b(ti)|+

|b(ti)|+1∑
j=1

|D`(fi,j)|
)
.

With the estimate (8.9), we obtain for the first sum∑
i∈I0

(1 + |D`(ti)|) ≤
∑
i∈I0

log
( 1

P`(ti)

)
+O(m log smax).
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Moreover, also with the estimate (8.9), we find for the second sum

∑
i∈I1

(
2 + 2 log(|b(ti)|) + 2|b(ti)|+

|b(ti)|+1∑
j=1

|D`(fi,j)|
)

≤
∑
i∈I1

|b(ti)|+1∑
j=1

(
3 + log

( 1

P`(fi,j)

)
+ 2 log(|fi,j |+ 1)

)
+O

(∑
i∈I1

|b(ti)|
)

≤
∑
i∈I1

|b(ti)|+1∑
j=1

log
( 1

P`(fi,j)

)
+O

(∑
i∈I1

|b(ti)| log smax

)
.

By Lemma 8.40, we have

∑
i∈I0

log
( 1

P`(ti)

)
+
∑
i∈I1

|b(ti)|+1∑
j=1

log
( 1

P`(fi,j)

)
≤ log

( 1

P`

)
.

It remains to upper-bound the error terms: Lemma 8.3 implies that any node
v in the bough of a micro tree satisfies |t[v]| ≥ κ. Thus, the total number of
nodes of t which belong to a bough of t is therefore upper-bounded by yκ(t).
Altogether, we thus obtain

m∑
i=1

|Ψ(ti)| ≤ log

(
1

P`(t)

)
+O (m log smax) +O

(
yκ(t) log smax

)
.

By a pigeon-hole argument, we find yκ(t) = Ω(n/κ). As smax = Θ(log n) and
m = Θ(n/ log n), the statement follows.

For average-case fringe-dominated fixed-size binary tree sources (defined in
Definition 8.24), we obtain the following result from Lemma 8.41 and Lemma 8.5.

Theorem 8.42. Let ` be an average-case κ-fringe-dominated fixed-size binary
tree source, where κ(n) = d 1

8 log(n)e. Then the hypersuccinct code H satisfies

∑
t∈B�n

P`(t)|H(t)| ≤
∑
t∈B�n

P`(t) log

(
1

P`(t)

)
+ o(n).

For worst-case fringe-dominated fixed-size, respectively, fixed-height binary
tree sources (defined in Definition 8.25), we get the following result from
Lemma 8.41 and Lemma 8.5.

Theorem 8.43. Let ` be a worst-case κ-fringe-dominated fixed-size or fixed-
height binary tree source, where κ(n) = d 1

8 log(n)e. Then the hypersuccinct code
H : B� → {0, 1}∗ satisfies

|H(t)| ≤ log

(
1

P`(t)

)
+ o(n)

for every binary tree t ∈ B�n with P`(t) > 0.
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That is, in the terminology from [105] and [S3], Theorem 8.42 (respectively,
Theorem 8.43) states that for every κ-average-case fringe-dominated fixed-size
source (respectively, every κ-worst-case fringe-dominated fixed-size or fixed-height
source), the average-case redundancy (8.2) (respectively, worst-case redundancy
(8.1)) of H converges to zero. Similar results were shown for the tree encoder
Edag based on DAGs in [105] and [S3].

In Section 8.4.4, we have presented several general classes of fixed-size and
fixed-height tree sources, which are average-case or worst-case fringe-dominated.
For these classes, we now obtain the following universality results of our hyper-
succinct encoding. First, we obtain the following corollary for ψ-upper-bounded
fixed-size sources (Definition 8.26), ϕ-weakly-balanced fixed-size sources (Defi-
nition 8.27), and ς-strongly-balanced fixed-size sources (Definition 8.28) using
Lemma 8.29, Lemma 8.30 and Lemma 8.31.

Corollary 8.44. Let ` be a fixed-size binary tree source. If ` is ψ-upper-
bounded, or ϕ-weakly-balanced, or ς-strongly-balanced, then the hypersuccinct
code H : B� → {0, 1}∗ satisfies

∑
t∈B�n

P`(t)|H(t)| ≤
∑
t∈B�n

P`(t) log

(
1

P`(t)

)
+ o(n).

More precisely, the redundancy term o(n) evalutates to O(nψ(log n) log log n),
if ` is ψ-upper-bounded, or O(n log log n/(ϕ(n) log n)), if ` is ϕ-weakly-balanced,
or O(n log log n/(ς(log n) log n)), if ` is ς-strongly-balanced. Moreover, with
Lemma 8.33, we find for weight-balanced fixed-size binary tree sources (defined
in Definition 8.32):

Corollary 8.45. Let ` be a weight-balanced fixed-size binary tree source. Then
the hypersuccinct code H : B� → {0, 1}∗ satisfies

|H(t)| ≤ log

(
1

P`(t)

)
+O

(
n log log n

log n

)
for every binary tree t ∈ B�n with P`(t) > 0.

Finally, with Lemma 8.35, we obtain for ζ-height-balanced fixed-height binary
tree sources (defined in Definition 8.34):

Corollary 8.46. Let ` be a ζ-height-balanced fixed-height binary tree source.
Then the hypersuccinct code H : B� → {0, 1}∗ satisfies

|H(t)| ≤ log

(
1

P`(t)

)
+O

(
ζ(n)n log log n

log n

)
for every binary tree t ∈ B�n with P`(t) > 0.

Additionally, as the fixed-size and fixed-height tree sources from Example 8.18,
Example 8.20 and Example 8.21 are (average-case or worst-case) fringe dominated,
we moreover obtain the following corollary from Theorem 8.42 and Theorem 8.43
for these particular sources.
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Corollary 8.47. The hypersuccinct code H satisfies the following upper bounds.

(i) A binary tree of size n randomly generated by the binomial random tree
model `bin,p from Example 8.18 or the random fringe-balanced binary
search tree model `bal from Example 8.20 is average-case optimally
encoded. That is, for ` ∈ {`bin,p, `bal}, we have

∑
t∈B�n

P`(t)|H(t)| ≤
∑
t∈B�n

P`(t) log

(
1

P`(t)

)
+ o(n).

(iii) An AVL tree t of size n and height h, drawn uniformly at random from
the set Ah of all AVL trees of height h, is optimally compressed using
|H(t)| ≤ log(|Ah|) + o(n) many bits (see Example 8.21).

We remark that the average-case result from Corollary 8.39, part (i), also
follows from Theorem 8.42.

8.5 Conclusion and open problems

Further universality results with respect to hypersuccinct trees as well as the
data structure aspects can be found in [S7]. In particular, in [S7], it is shown
that the hypersuccinct tree encoding is (worst-case) universal with respect to
a class of sources called tame uniform-subclass sources, which allow to model
uniform distributions on families of binary trees. For example, the uniform
distribution on the set of AVL trees of size n (see Example 8.21) and the uniform
distribution on the set of (left-leaning) red-black trees of size n can be modeled
using uniform subclass-sources. The proof of universality of the hypersuccinct
encoding H with respect to these sources is conceptionally quite similar to the
proofs of Theorem 8.42 and Theorem 8.43.

In contrast to the universality results for label-shape processes (Theorem 6.20)
and for node-type sources (Theorem 8.14), the universality results for fixed-
size binary tree sources and fixed-height binary tree sources (Theorem 8.38,
Theorem 8.42 and Theorem 8.43) do not seem to imply an entropy bound. For
this one would first have to come up with a suitable entropy notion that is
related to these tree sources. Moreover, in [105], it is shown that leaf-centric and
depth-centric binary tree sources as general classes of sources do not admit a
universal code; thus, making suitable restrictions is necessary.

In Chapter 6, we have introduced the notion of label-shape entropy for the
family of full binary trees (Definition 6.14). Recall that label-shape entropy is
also reasonable for unlabeled binary trees. It seems quite natural to transfer
the concept of label-shape entropy and label-shape processes from B to B�; this
would be conceptionally quite similar to node-type sources from Section 8.3, such
that an entropy bound for H in terms of label-shape entropy should be provable.

Another natural topic for future research is to generalize the results of this
chapter from unlabeled binary trees to labeled binary trees. A generalization of
hypersuccinct trees to the family of plane trees is presented in the next chapter.
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Chapter 9

Hypersuccinct plane trees

9.1 Introduction

The goal of this chapter is to present a variant of the hypersuccinct encoding
introduced in the last chapter for the family of unlabeled plane trees T , which
we call hypersuccinct plane trees. As in the case of hypersuccinct binary trees,
this tree encoding is again based on the tree decomposition algorithm by Farzan
and Munro from [30] and can be turned into a compressed data structure for
unlabeled plane trees that supports answering many navigational queries on the
compressed representation in constant time on the word-RAM.

What is more, hypersuccinct plane trees can be shown to be universal with
respect to several classes of sources for plane trees. As discussed in Section 8.1,
universal tree source coding has so far only been considered with respect to
the family of full binary trees in [105] and [S3] (see also [66]); we are not
aware of similar works specifically focusing on plane trees. However, entropy
bounds for compressed representations of unlabeled plane trees are known, as
the entropy bound in terms of the degree entropy (Definition 7.2) from [60] and
the entropy bound in terms of the label-shape entropy (Definition 6.22) presented
in Theorem 6.23.

Hypersuccinct plane trees achieve an entropy bound both in terms of the
degree entropy as well as in terms of the label-shape entropy. In order to derive
an entropy bound in terms of the degree entropy, we show that hypersuccinct
plane trees are (worst-case) universal with respect to the class of Galton–Watson
processes, which were considered in Chapter 4 (see Definition 4.7) of this work.
In fact, it will turn out that Galton–Watson processes are related to the degree
entropy in the same way as label-shape processes relate to label-shape entropy
and node-type sources relate to node-type entropy (see Theorem 6.18 and
Theorem 8.7). Furthermore, hypersuccinct plane trees can be shown to be
universal with respect to another class of sources: In [S7], fixed-size binary tree
sources (resp., leaf-centric binary tree sources) were generalized to fixed-size
ordinal tree sources, which generate (unlabeled) plane trees. Hypersuccinct plane
trees are shown to be universal with respect to particular subclasses of fixed-size
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ordinal tree sources in [S7], similar to the classes of monotonic and fringe-
dominated fixed-size binary tree sources from Section 8.4.3 and Section 8.4.4.

As in the previous chapter, we focus on a selection of universality results and
entropy bounds with respect to hypersuccinct plane trees here; for data structure
aspects and a detailed overview over various compressed tree data structures
presented in the literature, as well as further universality results, we refer again
to [S7]. In Section 9.2, we introduce our hypersuccinct encoding of plane trees. In
Section 9.3 and Section 9.4, we show that hypersuccinct plane trees are universal
with respect to the class of Galton–Watson processes and achieve entropy bounds
in terms of the degree entropy and the label-shape entropy. The concepts and
techniques considered in this chapter are conceptionally quite similar to the
concepts and techniques from the previous chapter. The results of this chapter
are published in [S7].

9.2 Hypersuccinct encoding of plane trees

As in the previous chapter, we make use of Huffman coding [20, 55], arithmetic
coding [20, 104] and the Elias gamma code [29], where we denote the Elias
gamma encoding of n ∈ N with γ(n). In this chapter, we focus on the family of
(unlabeled) plane trees T . A tree t ∈ T of size n can be encoded using 2n bits
via a variant of the balanced parenthesis encoding for plane trees:

Definition 9.1 (Balanced parenthesis encoding for plane trees). We define the
balanced parenthesis encoding for plane trees BP : T → {(, )}∗ inductively by

BP(t) =

{
ε if t is the empty tree,

(BP(t1)BP(t2) · · ·BP(tr)) otherwise.

Here, ε again denotes the empty string and t1, . . . , tr denote the root branches
of the tree t.

The Farzan-Munro tree decomposition algorithm [30] that we have already
used in our hypersuccinct encoding for binary trees is originally defined for plane
trees. It satisfies the following properties in the setting of plane trees.

Lemma 9.2 (Tree covering, [30, Thm. 1]). For any parameter κ ≥ 1, a plane
tree with n nodes can be decomposed, in linear time, into connected subtrees
(called micro trees) with the following properties:

˛ Micro trees are pairwise disjoint except for (potentially) sharing a common
micro tree root.

˛ Each micro tree contains at most 2κ nodes.

˛ The overall number of micro trees is Θ(n/κ).

˛ Apart from edges leaving the micro tree root, at most one other edge leads
to a node outside of this micro tree. This edge is called the “external edge”
of the micro tree.
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Figure 9.1: A plane tree with n = 39 nodes, decomposed into six micro trees
(highlighted in different colours) by the tree decomposition algorithm from [30]
with κ = 9.

By inspection of the proof in [30], we can say a bit more. If v is a node in
the tree and is also the root of several micro trees of the decomposition, then
the way that v’s children (in the entire tree) are divided among the micro trees
is into consecutive blocks (of micro trees). Each micro tree contains at most two
of these blocks. In binary trees, a micro tree is always an entire fringe subtree
except for at most two entire fringe subtrees, which are removed from it. In
plane trees, the possibility of large node degrees makes such a decomposition
impossible. Here an arbitrary number of children (and their subtrees) can be
missing in a micro tree root, and a single node in the original tree can be the
(shared) root of many micro trees.

Hypersuccinct code. We next describe the hypersuccinct encoding for plane
trees based on the Farzan-Munro algorithm. We fix the parameter κ, so that the
maximal micro tree size is smax = d 1

4 log ne, that is, we set κ = d 1
8 log ne. The

encoding of the plane tree t ∈ Tn is then obtained as follows. Decompose the
tree into micro trees t1, . . . , tm where m = Θ(n/κ) = Θ(n/ log n). Recall that
each micro tree ti can have the following connections to other micro trees:

˛ an edge to one parent micro tree,

˛ an external edge to one child micro tree, leaving from some node of the
micro tree (and inserted at some child rank),

˛ an arbitrary number of other subtrees of the shared root; these micro trees
can contain the shared root or not.

The top-tier Υ of the tree is a plane tree, which we obtain by contracting
each micro tree into a single node; shared roots are copied to each micro tree.
These contracted micro trees are then connected by edges to form a plane tree Υ.
We connect contracted micro trees only if there is an edge between some nodes
in these micro trees in t. If the parent node of the root node of a micro tree
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(iii) (iv)

(i)

(iii)

Figure 9.2: The top-tier Υ corresponding to the decomposed tree from Figure 9.1
and the types of edges (i)-(v) connecting parent and child micro trees.

ti is a shared root node (and hence copied into two or more micro trees), the
contracted micro tree ti’s ancestor in Υ is the parent micro tree immediately to
the left (if it exists, otherwise, the parent micro tree immediately to the right)
in the left-to-right order of the nodes. Since several micro trees can contain the
root of the tree t, we add a dummy root to Υ to turn it into a single tree. The
top-tier Υ of the tree from Figure 9.1 is shown in Figure 9.2.

To be able to distinguish the different forms of interactions between the
micro trees, additional information for parent-child edges in Υ is stored. By
construction, edges between micro trees always lead to the root of the child micro
tree, but the other endpoint will have to be encoded. In particular, the following
types of edges between a parent micro tree p and its child c are possible.

(i) new leftmost root child
The root of c is a child of the root of p and comes before all children of p’s
root that lie inside p in the left-to-right order of the children. Moreover,
there is no other child component c′ of p that shares the root with c and
comes before c in the child order.

(ii) continued leftmost root child
The root of c is a child of the root of p and comes before all children of p’s
root that lie inside p in the left-to-right order of the children, but it shares
its root with the child component immediately before c in the child order.

(iii) new rightmost root child
The root of c is a child of the root of p and c’s root comes after all root
children included in p. Moreover, there is no other child component c′ of p
that shares the root with c and comes before c in the child order.

(iv) continued rightmost root child
The root of c is a child of the root of p and c’s root comes after all root
children included in p, but it shares its root with the child component
immediately before c in the child order.
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(v) external-edge child
Any other edge. By construction, all external-edge child components of p
share a common root, so there is no need to distinguish new and continued
external edges.

See Figure 9.2 for an example. The top tier is again an plane tree, Υ ∈ Tm+1.
For the micro trees, we observe that because of their limited size, there are fewer
different possible shapes of plane trees than we have micro trees. The crucial
idea of our hypersuccinct encoding is again to treat each shape of a micro tree as
a letter in the alphabet Σsmax

⊆
⋃
s≤smax

Ts of micro tree shapes and to compute
a Huffman code Ψ: Σsmax

→ {0, 1}∗ based on the frequency of occurrences of
micro tree shapes in the sequence t1, . . . , tm ∈ Σmsmax

.
For our hypersuccinct code, as in the case of binary trees, we then use a

length-restricted version Ψ̄ : Σsmax
→ {0, 1}∗ obtained from Ψ using a variant

of the simple cutoff technique from Definition 8.4 for plane trees (using the
balanced parenthesis encoding for plane trees). Furthermore, for each micro tree,
we have to encode the portal for the external edges (if they exist) and the type
of its parent edge (i)–(v). For that, we store the micro-tree-local preorder rank
of the node and the child rank at which the external edges have to be inserted
using dlog(smax + 1)e bits each. We can thus encode an plane tree t ∈ Tn as
follows.

(a) Store n and m in Elias gamma code,

(b) followed by the balanced-parenthesis bitstring for Υ.

(c) Next comes an encoding for Ψ̄; for simplicity, we simply list all possible
codewords and their corresponding plane trees by storing the size (in
Elias-gamma code) followed by their balanced parenthesis sequence.

(d) Next, we list the Huffman codes Ψ̄(ti) of all micro trees in depth-first order
(of the top tier Υ).

(e) Then, we store 2 dlog(smax + 1)e-bit integers to encode the portal of each
micro tree in depth-first order (of Υ).

(f) Finally, we encode the type of the parent edge using 3 bits of each micro
tree, again in depth-first order.

Altogether, this yields our hypersuccinct code H : T → {0, 1}∗ for plane
trees. Decoding is possible by first recovering n, m, and Υ from the balanced
parenthesis encoding, then reading the Huffman code. We then replace each node
in Υ by its micro tree in a depth-first traversal. Herein, we use the information
about edge types in Υ to correctly connect the micro trees. Partitioning children
into leftmost and rightmost root children places them in the appropriate order
into the list of children of the parent component’s root. For type (ii) and (iv)
children, we delete the component root and instead add its children to the next
type (i) resp. (iii) siblings component’s root. Finally, for type (v) children, we
use the information about portals to find their place in a node’s child list, and
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for all but the leftmost of them, also merge their roots with the left sibling
component. With respect to the length of the hypersuccinct code, we obtain the
following lemma.

Lemma 9.3. Let t ∈ Tn be an plane tree of n nodes, decomposed into micro
trees t1, . . . , tm by the Farzan-Munro algorithm. Let Ψ be an ordinary Huffman
code for the string t1 . . . tm (the local shapes of the micro trees). Then, the
hypersuccinct code encodes t with a binary codeword of length

|H(t)| ≤
m∑
i=1

|Ψ(ti)|+O
(
n log log n

log n

)
.

Proof. It is easy to check that all parts of the hypersuccinct plane tree code
except part (d) require O(n log log n/ log n) bits of space. The analysis of the
number of bits needed to store parts (a)–(e) is identical to the binary-tree case:
Part (a) needs O(log n) bits and Part (b) requires 2m + 2 = Θ(n/ log n) bits.
For Part (c), observe that

|Σsmax | ≤
∑

s≤dlogn/4e

4s <
4

3
· 4logn/4+1 =

16

3

√
n.

With the worst-case cutoff technique (adapted to plane trees) from Definition 8.4,
we find that |Ψ̄(ti)| ≤ 1 + 2smax ∼ 1

2 log n, so we need asymptotically O(
√
n)

entries / codewords in the table, each of size O(smax) = O(log n), for an overall
look-up table size of O(

√
n log n). Furthermore, we find that part (e) uses

m ·2dlog(smax +1)e = Θ(nκ log κ) = Θ(n log log n
logn ) bits of space. Moreover, part (f)

uses 3m = Θ(n/ log n) bits. It remains to analyze part (d), which is again similar
to the binary-tree case. We note that by applying the worst-case pruning scheme
of Definition 8.4, we waste 1 bit per micro tree compared to a pure, non-restricted
Huffman code. But the wasted bits amount to m = O(n/ log n) bits in total:

m∑
i=1

|Ψ̄(ti)| =
m∑
i=1

min{|Ψ(ti)|+ 1, 2|ti|+ 2dlog |ti|+ 1e+ 2}

≤
m∑
i=1

(|Ψ(ti)|+ 1) =
m∑
i=1

|Ψ(ti)|+O(n/ log n).

This finishes the proof.

As in the case of hypersuccinct binary trees, the representation of plane
trees based on the hypersuccinct code can be turned into a data structure with
constant-time queries in the word-RAM model. For the data structure details
of hypersuccinct trees, we again refer to [S7]. Specifically, Table 9.1 shows
which queries can be supported by hypersuccinct trees in constant time on the
word-RAM.
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parent(v) the parent of v, same as ancestor(v, 1)

deg(v) the number of children of v
child(v, i) the ith child of node v (i ∈ {1, . . . , deg(v)})
childrank(v) the number of siblings to the left of node v plus 1

depth(v) the depth of v (the number of edges between the root and v)
ancestor(v, i) the ancestor of node v at depth depth(v)− i

descendants(v) the number of descendants of v
height(v) the height of the subtree rooted at node v

LCA(v, u) the lowest common ancestor of nodes u and v

leftmostleaf(v) the leftmost leaf descendant of v
rightmostleaf(v) the rightmost leaf descendant of v
levelleftmost(i) the leftmost node on level i
levelrightmost(i) the rightmost node on level i
levelpred(v) the node immediately to the left of v on the same level
levelsucc(v) the node immediately to the right of v on the same level
noderankX(v) the position of v in the X-order, X ∈ {pre, post, in, DFUDS}
nodeselectX(i) the ith node in the X-order, X ∈ {pre, post, in, DFUDS}
leafrank(v) the number of leaves before and including v in preorder
leafselect(i) the ith leaf in preorder

Table 9.1: Navigational operations on succinct plane trees (v denotes a node
and i an integer).

9.3 Degree entropy and Galton–Watson processes

We first show that hypersuccinct plane trees achieve an entropy bound in terms
of the degree entropy from [60] (see Definition 7.2). In order to prove this entropy
bound, we show that hypersuccinct plane trees are universal with respect to the
class of Galton–Watson processes (see Definition 4.7).

Recall that for a plane tree t ∈ T and a node v of t, we denote with degt(v)

the degree of v in t and leave out the subscript t, if the tree t is clear from the
context. Moreover, with nti we again denote the number of nodes of degree i of t.

Furthermore, recall the definition of Galton–Watson processes from Defini-
tion 4.7 in Chapter 4. Let ξ again denote a non-negative integer-valued random
variable (the offspring distribution) and recall that a Galton–Watson process
with offspring distribution ξ assigns a probability ν(t) to a tree t ∈ T by

ν(t) =
∏

v∈V (t)

P(ξ = deg(v)) =
∏
i≥0

P(ξ = i)n
t
i . (9.1)

In order to obtain finite trees with non-zero probability, we should assume that
P(ξ = 0) > 0. Moreover, we sometimes use the abbreviation

ξi = P(ξ = i).

Furthermore, recall the definition of (unnormalized) degree entropy from Defini-
tion 7.2, which is defined as

Hdeg(t) =

|t|∑
i=0

nti log

(
|t|
nti

)
.
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In the same way as label-shape entropy corresponds to label-shape processes
(see Theorem 6.18) and node-type entropy corresponds to node-type processes
(see Theorem 8.7), we find that the notion of degree entropy corresponds to
Galton–Watson processes. We say that an offspring distribution ξ is the empirical
degree distribution of a plane tree t ∈ T , if P(ξ = i) = nti/|t| for every index
0 ≤ i ≤ |t|. In particular, if ξ is the empirical degree distribution of a plane tree
t ∈ T , we have

log

(
1

ν(t)

)
=

|t|∑
i=0

nti log

(
1

P(ξ = i)

)
=

|t|∑
i=0

nti log

(
|t|
nti

)
= Hdeg(t).

Example 9.4 (Full d-ary trees). Full d-ary trees, that is, trees where each node
has either exactly d or 0 children, are obtained from offspring distributions ξ
with P(ξ = 0) > 0 and P(ξ = d) > 0 and P(ξ = i) = 0 for i 6= d, 0. It is easy
to see that a full d-ary tree t with ntd many inner nodes (of degree d) always
consists of nt0 = (d− 1)ntd + 1 many leaves, and is thus always of size d · ntd + 1.
The number of full d-ary trees of size n = dk + 1, for k ∈ N, is given by

1

dk + 1

(
dk + 1

k

)
, (9.2)

see, e.g., [27]. Let ξ be the offspring distribution with P(ξ = 0) = 1/d and
P(ξ = d) = (d− 1)/d. We have

log

(
1

ν(t)

)
= k log (d) +

(
(d− 1)k + 1

)
log

(
d

d− 1

)
for every full d-ary tree t of size dk + 1, which is asymptotically, by (9.2), the
minimum number of bits needed to represent a full d-ary tree of size dk + 1.

Universality with respect to Galton–Watson processes. To prove uni-
versality results for hypersuccinct plane trees is conceptually quite similar to
the proof techniques used in the previous chapter in order to show universality
results for hypersuccinct binary trees.

Given an offspring distribution ξ, Equation (9.1) suggests a way to encode
a plane tree t ∈ T with ν(t) > 0 in log(1/ν(t)) (plus lower-order terms) many
bits. Such an encoding may spend log(1/P(ξ = i)) many bits per node v of t of
degree deg(v) = i. We use again arithmetic coding to encode the degree of node
v in that many bits. However, ξ can possibly consist of countably many positive
coefficients, thus, we have to adapt the process of arithmetic coding slightly. In
order to encode the degree deg(v) ∈ N0 of a node v, we consider deg(v) as a
unary string s = 0deg(v)1, which we encode using arithmetic coding as follows.
In order to encode the kth symbol of s, we feed the arithmetic coder with the
model that the next symbol is a number s[k] ∈ {0, 1}, the probability for s[k] = 1

being ξk−1/(ξk−1 + ξk + ξk+1 + . . . ) (recall that ξi = P(ξ = i)). Thus, arithmetic
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coding uses

deg(v)−1∑
k=0

log

((
1− ξk∑

i≥k ξi

)−1)
+ log

(∑
i≥deg(v) ξi

ξdeg(v)

)

=

deg(v)−1∑
k=0

(
log

(∑
i≥k

ξi

)
− log

( ∑
i≥k+1

ξi

))
+ log

( ∑
i≥deg(v)

ξi

)
+ log

(
1

ξdeg(v)

)

= log

(
1

ξdeg(v)

)
many bits to encode s = 0deg(v)1. An encoding Dξ, dependent on a given
offspring distribution ξ, stores a tree t as follows. While traversing the tree in
depth-first order, we encode the degree deg(v) of each node v, using arithmetic
encoding as described above. We can reconstruct the tree t recursively from
its code Dξ(t), as we always know the degrees of the nodes we have already
visited in the depth-first order traversal of the tree. As arithmetic encoding
needs log(1/ξdeg(v)) bits per node v, plus at most 2 bits of overhead, the total
number of bits needed in order to store a plane tree t ∈ T with ν(t) > 0 is thus

|Dξ(t)| ≤
∑

v∈V (t)

log

(
1

ξdeg(v)

)
+ 2.

If an offspring distribution ξ is the empirical degree distribution of a plane tree
t, that is, P(ξ = i) = nti/|t| for every i ∈ {0, . . . , t}, we find in particular:

|Dξ(t)| ≤
|t|∑
i=0

nti log

(
|t|
nti

)
+ 2 = Hdeg(t) + 2.

The encoding Dξ yields a prefix-free code for the set of plane trees which satisfy
ν(t) > 0 with respect to the degree distribution ξ. In order to show that our
hypersuccinct code is universal with respect to Galton–Watson processes, we
start with the following lemma:

Lemma 9.5. Let ξ be a degree distribution and let t ∈ Tn be a plane tree of size
n with ν(t) > 0. Then

m∑
i=1

|Ψ(ti)| ≤ log

(
1

ν(t)

)
+O

(
n log log n

log n

)
where Ψ is a Huffman code for the sequence of micro trees t1, . . . , tm from our
tree covering scheme.

Proof. Recall that the micro trees t1, . . . , tm from our tree partitioning scheme
for plane trees are pairwise disjoint except for (potentially) sharing a common
subtree root and that apart from edges leaving the subtree root, at most one
other edge leads to a node outside of the subtree (Lemma 9.2). Thus, there are at
most two nodes in each micro tree ti, whose degree in ti might not coincide with
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their degree in t: The root of ti, which we denote with πi,1, and at most one node
πi,2 which is not the root node. In particular, for every node v 6= πi,1, πi,2 of ti,
we have degti(v) = degt(v). Let pos(πi,2) denote the depth-first order position
of πi,2 in ti. With Dξ(ti \ πi,1) (respectively, Dξ(ti \ πi,1, πi,2)), we denote the
following modification of Dξ. While traversing the tree ti in depth-first order,
we encode the degree degti(v) of each node v of ti, using arithmetic coding as in
the encoding Dξ, except that we skip the root πi,1 of ti (respectively, we skip
the nodes πi,1 and πi,2).

This is well-defined: We have ξdeg(v) > 0 for every node v 6= πi,1, πi,2 of
ti whose degree we encode, as ν(t) > 0. If we know degti(πi,1), respectively,
degti(πi,1), degti(πi,2) and pos(πi,2), we are able to recover ti from Dξ(ti \ πi,1),
respectively, Dξ(ti \ πi,1, πi,2). Let I0 denote the set of indexes i ∈ {1, . . . ,m}
for which ti does not contain a node other than (possibly) the root node from
which an edge to a node outside of ti emerges, and let I1 = {1, . . . ,m} \ I0. We
define the following modified encoding:

D̃ξ(ti) =


0 · γ(degti(πi,1)) ·Dξ(ti \ πi,1) if i ∈ I0,

1 · γ(degti(πi,1)) · γ(degti(πi,2) + 1)

· γ(pos(πi,2)) ·Dξ(ti \ πi,1, πi,2)
otherwise.

Note that formally, D̃ξ is again not a prefix-free code over Σsmax , as there can
be micro tree shapes that are assigned several codewords by D̃ξ. But D̃ξ can
again be seen as a generalized prefix-free code, where more than one codeword
per symbol is allowed, as D̃ξ is uniquely decodable to local shapes of micro
trees. Thus, as a Huffman code minimizes the encoding length over the class of
generalized prefix-free codes, we find:

m∑
i=1

|Ψ(ti)| ≤
m∑
i=1

|D̃ξ(ti)| =
∑
i∈I0

|D̃ξ(ti)|+
∑
i∈I1

|D̃ξ(ti)|.

We obtain∑
i∈I0

|D̃ξ(ti)| ≤
∑
i∈I0

(|Dξ(ti \ πi,1)|+ 2 log smax + 2)

≤
∑
i∈I0

( ∑
v∈V (ti)
v 6=πi,1

log

(
1

ξdegti
(v)

)
+ 2 log smax + 4

)

as degti(πi,1) ≤ smax. In the same way, we have∑
i∈I1

|D̃ξ(ti)| ≤
∑
i∈I1

(|Dξ(ti \ πi,1, πi,2)|+ 6 log smax + 4)

≤
∑
i∈I1

( ∑
v∈V (ti)

v 6=πi,1,πi,2

log

(
1

ξdegti
(v)

)
+ 6 log smax + 6

)
,
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as degti(πi,2) + 1, pos(πi,2) ≤ smax. Since |I0|+ |I1| = m, and as every node v
of t which is not the root node of a micro tree ti is contained in at most one
subtree ti and as degti(v) = degt(v) for every node v 6= πi,1, πi,2, we have

m∑
i=1

|Ψ(ti)| ≤
∑

v∈V (t)

log

(
1

ξdegt(v)

)
+ 6m log smax + 6m

= log

(
1

ν(t)

)
+O

(
n log log n

log n

)
,

as m = Θ(n/ log n) and smax = Θ(log n). This finishes the proof.

The following result now follows from Lemma 9.5 and Lemma 9.3:

Theorem 9.6. Let ξ be an offspring distribution of a Galton–Watson process.
The hypersuccinct code H : T → {0, 1}∗ satisfies

|H(t)| ≤ log

(
1

ν(t)

)
+O

(
n log log n

log n

)
for every t ∈ Tn with ν(t) > 0. In particular, if ξ coincides with the empirical
degree distribution of t, we have

|H(t)| ≤ Hdeg(t) +O
(
n log log n

log n

)
.

In particular, we obtain the following corollary from Theorem 9.6:

Corollary 9.7. The hypersuccinct code H : T → {0, 1}∗ optimally encodes full
d-ary trees t of size n = dk + 1, drawn uniformly at random from the set of all
full d-ary trees of size n, using

|H(t)| ≤ k log(d) + (d− 1)k log(d/(d− 1)) +O(n log log n/ log n)

many bits.

9.4 Label-shape entropy bound for hypersuccinct
trees

Finally, in this section, we show that hypersuccinct plane trees achieve an
entropy bound in terms of the label-shape entropy. Recall the definition of
the label-shape entropy H`s

k from the previous chapter (Definition 6.14 and
Definition 6.22) and recall the definition of label-shape histories and label-shape
processes, see Section 6.4. Moreover, recall that all these concepts are suitable for
unlabeled trees as well (that is, to be precise, even though we talk of “label-shape”
entropy/histories/processes in the following, no node-labels will be involved). In
particular, we thus identify k-label-shape histories with strings z ∈ {0, 1}k and



194 Chapter 9. Hypersuccinct plane trees

label-shape processes with tuples P = (Pz)z∈{0,1}k , such that Pz : {0, 2} → [0, 1]

is a probability mass function for every z ∈ {0, 1}k in this chapter.
In the following, we show that the length of our hypersuccinct code H

for binary trees can be upper-bounded in terms of the kth-order label-shape
entropy H`s

k of a plane tree (for suitable k), plus lower-order terms. We need
some additional notation. We introduce an additional type of tree processes
to apply our proof template for universality, which we call childtype-processes.
The childtype-processes will allow us to write H`s

k (t) as log (1/ProbP(t)), where
ProbP(t) is the probability that a childtype process P generates t, which then
can be written as a product of contributions of the nodes of the tree.

For an inner node v of a full binary tree t ∈ B, we define its childtype as:

childtype(v) =


0 if v’s children are both leaves,

1 if only v’s left child is a leaf,

2 if only v’s right child is a leaf,

3 if v’s children are both inner nodes.

Moreover, recall the definition of the first-child next-sibling encoding from Defi-
nition 2.13: the left child (resp. right child) of a node in fcns(f) is its first child
(resp. next sibling) in f or a newly-added leaf, if it does not exist. In particular,
we find that fcns(f) is always a full binary tree, and that fcns : F → B is a
bijection. Furthermore, we find that each node v of a forest f ∈ F uniquely
corresponds to an inner node of fcns(f), which we denote with fcns(v). For a
node v of a forest f ∈ F , we set childtype(v) = childtype(fcns(v)). In particular,
we find:

Lemma 9.8. Let v be a node of a forest f ∈ F , then

childtype(v) =


0 if v is a leaf and does not have a next sibling,

1 if v is a leaf and has a next sibling,

2 if v is not a leaf and does not have a next sibling,

3 if v is not a leaf and has a next sibling.

Here, the next sibling of the root node of a tree of the forest f is the root
node of the next tree in the sequence, if it exists. The proof of Lemma 9.8 follows
immediately from the definitions of the first-child next-sibling encoding and the
childtype-mapping. Furthermore, for a node v of a forest f ∈ F , we define the
label-shape history h`s(v) as h`s(fcns(v)), i.e., as the label-shape history of its
corresponding node in fcns(f).

We find that if v is the root node of the first tree in (the sequence of trees)
f , then h`s(v) = ε (the empty string). Otherwise, if v is the first child of a
node w of f , then h`s(v) = h`s(w)0 and if v is the next sibling of a node w of
f , then h`s(v) = h`s(w)1. Note that basically, for a node v of a forest f , h`s(v)

represents the numbers of v’s left siblings and of v’s ancestors’ left siblings in
unary. Similarly, we define h`sk (v) as h`sk (fcns(v)).
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A kth-order childtype process P = (nP , (Pz)z∈{0,1}k) is a tuple of probability
mass functions Pz : {0, 1, 2, 3} → [0, 1] together with a number nP ∈ [0, 1]. A
kth-order childtype process P assigns a probability ProbP to a tree t ∈ B by

ProbP(t) =


1− nP if |t| = 1,

nP ·
∏

v∈V0(t)

Ph`sk (v)(childtype(v)) otherwise. (9.3)

A kth-order childtype process randomly generates a full binary tree t ∈ B as
follows. With probability 1− nP , t consists of just one node. Otherwise, in a
top-down way, we determine for each node v its childtype(v) ∈ {0, 1, 2, 3}, where
this decision depends on the k-label-shape history h`sk (v). The probability that
a node v is of childtype i is given by Ph`sk (v)(i). We add a left child and a right
child to the node and if i = 0, we (implicitly) mark both of them as leaves, if
i = 1, we mark the left child as a leaf, if i = 2, we mark the right child as a leaf
and if i = 3, we do not mark the children as leaves. The process then continues
at child nodes which are not marked as leaves. For a forest f ∈ F , we set

ProbP(f) = ProbP(fcns(f)). (9.4)

Thus, via the fcns-encoding, a kth-order childtype process can be seen as a
process randomly generating a forest f as follows: With probability 1− nP , the
forest is empty. Otherwise, in a top-down left-to-right way, we determine for
each node v its childtype(v) ∈ {0, 1, 2, 3} (i.e., whether this node has a first child
and whether this node has a next sibling), where this decision depends on the
k-shape-history h`sk (v). If childtype(v) = 0, the process stops at this node. If
childtype(v) = 1, then we add a new child node to v’s parent (respectively, if v is
a root node itself, we add a new tree of size one to the forest), if childtype(v) = 2,
we add a new child to v, and if childtype(v) = 3, we add a new child to v and a
new child to v’s parent node. The process then continues at newly added nodes.

Lemma 9.9. Let t ∈ T be a non-empty plane tree, then

ProbP(t) = nP ·
∏

v∈V (t)

Ph`sk (v)(childtype(v)).

Proof. We have

ProbP(t) = ProbP(fcns(t)) = nP ·
∏

v∈V0(fcns(t))

Ph`sk (v)(childtype(v))

= nP ·
∏

v∈V (t)

Ph`sk (fcns(v))(childtype(fcns(v)))

= nP ·
∏

v∈V (t)

Ph`sk (v)(childtype(v)),

by definition of ProbP (see (9.3)), the definition of the k-label-shape history and
the definition of the mapping childtype.
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Finally, we make the following definition.

Definition 9.10. Let P = (Pz)z∈{0,1}k be a kth-order label-shape process.
The corresponding (k − 1)st-order childtype process P̂ = (nP , (P̂z)z∈{0,1}k−1) is
defined by nP = P0k(2) and

P̂z(0) = Pz0(0) · Pz1(0), P̂z(1) = Pz0(0) · Pz1(2),

P̂z(2) = Pz0(2) · Pz1(0), P̂z(3) = Pz0(2) · Pz1(2),

for every z ∈ {0, 1}k−1.

It is easy to see that P̂ is well-defined. In particular, we find

Lemma 9.11. Let t ∈ B be a full binary tree. Then

ProbP(t) = ProbP̂(t).

Proof. First, let |t| = 1. Then t consists of only one leaf node v of k-label-shape
history 0k, and thus, we have

ProbP(t) = P0k(0) = 1− nP = ProbP̂(t).

In the next part of the proof, assume that |t| > 1. Let m̃t
z,i denote the number

of inner nodes of t with k-label-shape history z ∈ {0, 1}∗ and of childtype
i ∈ {0, 1, 2, 3}, and recall that mt

z,i denotes the number of nodes of t with
k-label-shape-history z and with type(v) = i ∈ {0, 2}. Let v be a node of t. First,
we assume that h`sk (v) = z0 for some z ∈ {0, 1}k−1 with z 6= 0k−1 (thus, v is not
the root node of t), and that v is a leaf. Then v’s parent w is of k−1-label-shape
history z, and w’s childtype is either 0 or 1. In particular, the correspondence
between leaves v of t with k-label-shape history z0 and inner nodes w = parent(v)

of t with k − 1-label-shape-history z and childtype 0 or 1 is bijective, as every
node v with k-label-shape history z0 is a left child of its parent node. We thus
have

mt
z0,0 = m̃t

z,0 + m̃t
z,1.

In a similar way, we find that inner nodes v of t with k-label-shape history z0 for
z 6= 0k−1 correspond to inner nodes w = parent(v) of t with k − 1-label-shape-
history z and childtype i ∈ {2, 3}. We find

mt
z0,2 = m̃t

z,2 + m̃t
z,3.

Furthermore, we obtain the following relations in the same way:

mt
z1,0 = m̃t

z,0 + m̃t
z,2,

mt
z1,2 = m̃t

z,1 + m̃t
z,3,

for every z ∈ {0, 1}k. It remains to deal with nodes of k-label-shape history
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z = 0k. We find that every inner node v of t of k-label-shape-history 0k uniquely
corresponds to an inner node w = parent(v) of t of (k − 1)-label-shape history
0k−1 and childtype i ∈ {2, 3}, except for the root node. We thus have

mt
0k,2 − 1 = m̃t

0k−1,2 + m̃t
0k−1,3.

Finally, every leaf v of t of k-label-shape history 0k uniquely corresponds to an
inner node w = parent(v) of t of k − 1-label-shape history 0k−1 and childtype
i ∈ {1, 2}, as the root node is an inner node by assumption:

mt
0k,0 = m̃t

0k−1,0 + m̃t
0k−1,1.

Altogether, we thus have for trees t with |t| > 1:

ProbP(t) =
∏

z∈{0,1}k

∏
i∈{0,2}

Pz(i)
mtz,i

= P0k(0)
m̃t

0k−1,0
+m̃t

0k−1,1 · P0k(2)
m̃t

0k−1,2
+m̃t

0k−1,3
+1

·
∏

z∈{0,1}k−1

z 6=0k−1

Pz0(0)m̃
t
z,0+m̃tz,1 · Pz0(2)m̃

t
z,2+m̃tz,3

·
∏

z∈{0,1}k−1

Pz1(0)m̃
t
z,0+m̃tz,2 · Pz1(2)m̃

t
z,1+m̃tz,3

= P0k(2) ·
∏

z∈{0,1}k−1

(Pz0(0) · Pz1(0))
m̃tz,0 ·

∏
z∈{0,1}k−1

(Pz0(0) · Pz1(2))
m̃tz,1

·
∏

z∈{0,1}k−1

(Pz0(2) · Pz1(0))
m̃tz,2 ·

∏
z∈{0,1}k−1

(Pz0(2) · Pz1(2))
m̃tz,3

= nP ·
∏

z∈{0,1}k−1

P̂z(0)m̃
t
z,0 ·

∏
z∈{0,1}k−1

P̂z(1)m̃
t
z,1

·
∏

z∈{0,1}k−1

P̂z(2)m̃
t
z,2 ·

∏
z∈{0,1}k−1

P̂z(3)m̃
t
z,3 = ProbP̂(t).

This finishes the proof.

Corollary 9.12. Let t ∈ T be a plane tree, and let Pt := P fcns(t) denote the
empirical label-shape process of its corresponding first-child next-sibling encoding.
Then

H`s
k (t) = log

(
1

ProbP̂t(t)

)
.

Proof. We have

H`s
k (t) = H`s

k (fcns(t)) = log

(
1

ProbPt(fcns(t))

)
= log

(
1

ProbP̂t(fcns(t))

)
= log

(
1

ProbP̂t(t)

)
,
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where the first equality follows from Definition 6.22, the second equality follows
from the fact that Pt is the empirical kth order label-shape-process of fcns(t)

and Theorem 6.18, the third equality follows from Lemma 9.11 and the last
equality follows from (9.4).

Universality with respect to child-type processes. We apply the same
proof template that we have already used for the other universality results of
hypersuccinct (plane or binary) trees. In order to show that our hypersuccinct
encoding achieves an entropy bound in terms of the label-shape entropy for plane
(unlabeled) trees, we start with defining a source-specific encoding (again called
depth-first order arithmetic code) with respect to a given kth-order childtype
process P, against which we will compare the hypersuccinct code.

The formula for ProbP(t) from Lemma 9.9 suggests a route for an (essentially)
optimal source-specific encoding of any plane tree t ∈ T , that, given a kth order
childtype process P , spends log(1/ProbP(t)) (plus lower-order terms) many bits
in order to encode a plane tree t ∈ T with ProbP(t) > 0. Such an encoding may
spend log

(
1/Ph`sk (v)(childtype(v))

)
many bits per node v of t, plus log (1/nP)

many bits, if t is non-empty, respectively, log (1/(1− nP)) many bits, if t is the
empty tree. Assuming that we know the childtype process P = (Pz)z∈{0,1}k ,
i.e., that we need not store it as part of the encoding, we can make use of
arithmetic coding again in order to devise a simple (source-dependent) encoding
DP , dependent on P, that stores an plane tree t as follows.

First, we store a number i ∈ {1, 2} which tells us whether t is empty (i = 1)
or non-empty (i = 2) using arithmetic encoding, i.e., we feed the arithmetic coder
with the model that the first symbol is a number i ∈ {1, 2} with probability
1− nP , respectively, nP .

Next, while traversing the tree in depth-first order, we encode for each node v
of t its childtype(v) ∈ {0, 1, 2, 3}, using arithmetic coding. To encode childtype(v)

(i.e., whether v is a leaf or not and whether v has a next sibling or not, see
Lemma 9.8), we feed the arithmetic coder with the model that the next symbol
is a number i ∈ {0, 1, 2, 3} with probability Ph`sk (v)(i). Note that we always know
h`sk (v) at each node v we traverse. Altogether, this yields a source dependent
code DP(t), which we refer to as the depth-first arithmetic code with respect to
the childtype-process P. Note that a plane tree t is always uniquely decodable
from DP(t). As arithmetic coding uses at most log

(
1/Ph`sk (v)(childtype(v))

)
many

bits per node v, plus log (1/nP) many bits if t is non-empty, plus at most 2 bits
of overhead, we find

|DP(t)| ≤


∑

v∈V (t)

log

(
1

Ph`sk (v)

(childtype(v))

)
+ log

(
1

nP

)
+ 2 if |t| > 0,

log

(
1

1− nP

)
+ 2 otherwise.

We obtain the following lemma.
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Lemma 9.13. Let P = (Pz)z∈{0,1}k be a kth order childtype process and let
t ∈ T be a plane tree of size n with ProbP(t) > 0. Then

m∑
i=1

|Ψ(ti)| ≤ log

(
1

ProbP(t)

)
+O

(
n log log n+ kn

log n

)
,

where Ψ is a Huffman code for the sequence of micro trees t1, . . . , tm obtained
from the tree-covering scheme.

Proof. Recall that the micro trees t1, . . . , tm from our tree partitioning scheme
for plane trees are pairwise disjoint except for (potentially) sharing a common
subtree root and that apart from edges leaving the subtree root, at most one other
edge leads to a node outside of the subtree (see Lemma 9.2). The probability
ProbP(t) consists of the contributions Ph`sk (v)(childtype(v)) for every node v of
t. However, Ph`sk (v)(childtype(v)) depends on the childtype and k-label-shape
history of each node v, and there might be nodes, for which childtype and
k-label-shape history differ in t and ti.

For the sake of clarity, let h`sk (v, t) denote the k-label-shape history of a
node v in t (and likewise h`sk (v, ti) the k-label-shape history of a node v in a
micro tree ti), and let childtype(v, t) (resp. childtype(v, ti)) denote the childtype
of a node v in t (resp. ti). First, we investigate under which conditions it
might occur that a node v of micro tree ti satisfies h`sk (v, t) 6= h`sk (v, ti) or
childtype(v, t) 6= childtype(v, ti). We find:

(i) If v is the root node of a micro tree ti, then it might have left, respectively,
right siblings in t, which it does not have in ti. Thus, its childtype and its
k-label-shape history might change.

(ii) If v is the first child of the root of ti, then it might have left siblings in
t, which it does not have in ti. Thus, its k-label-shape history changes.
Furthermore, the k-label-shape history of its close descendants and right
siblings thus changes as well, i.e., the k-label-shape history of the descen-
dants of order less than k of fcns(v). However, if we know h`sk (v, t), we
are able to recover h`sk (w, t) for all nodes w which are descendants, right
siblings, or right siblings of descendants of v.

(iii) If v is the last child of the root of ti, then it might have right siblings in t,
which it does not have in ti. Thus, its childtype might change.

(iv) The root node’s children in ti are consecutive children of this node in t,
except for possibly one child node x, which might be missing in ti (see
Lemma 9.2). Thus, if v is the right sibling of x in t, its k-label-shape
history in ti might differ from its k-label-shape history in t. Furthermore,
the k-label-shape histories of nodes corresponding to the descendants of
order at most k of fcns(v) in fcns(t) might change as well. Again, if we
know h`sk (v, t), we are able to recover h`sk (w, t) of nodes w which correspond
to descendants of fcns(v) in fcns(t).
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(v) There is at most one other edge which leads to a node outside of the micro
tree ti, besides edges emanating from the root of ti (by Lemma 9.2). Let v
be the node in ti, from which this other edge emanates. If v has only one
child in t, then it does not have a child node in ti, and thus, its childtypes
in t and ti do not coincide. Otherwise, the degree of v in t is greater than
one and in particular, there might be a child node w of v, whose left sibling
in t does not belong to ti. Thus, w’s k-label-shape history might change,
as well as the k-label-shape history of the nodes corresponding to the
descendants of order less than k of fcns(w). Again, if we know h`sk (v, t), we
are able to recover h`sk (w, t) of nodes w which correspond to descendants
of fcns(v) in fcns(t). Finally, there might be a child node u of v, which has
a right sibling in t and which does not have a right sibling in ti; thus, its
childtype changes.

By the above considerations, there can be several nodes v in ti for which
h`sk (v, t) 6= h`sk (v, ti), however, we only need to know h`sk (v, t) for at most four of
these nodes (see items (i), (ii), (iv) and (v)) in order to be able to determine
the k-label-shape history in t of all nodes of ti. Let ni denote the number of
k-label-shape histories we need to know in order to be able to determine h`sk (v, t)

for all nodes v of ti. Furthermore, let ji denote the number of nodes v of ti, for
which childtype(v, t) 6= childtype(v, t), where we always include the root node πi
of ti in this ji many nodes (even if its childtypes in t and ti are identical). By
the above considerations, we find that ji is upper-bounded by four (see items
(i), (iii) and (v)). Let Si ∈ {0, 1}∗ denote the following binary string, obtained
as the concatenation of

˛ an encoding of the number ji using two bits,

˛ the preorder positions in ti of the ji many nodes for which it holds that
childtype(v, t) 6= childtype(v, ti) (plus the root node πi of ti), encoded in
Elias gamma code and listed in preorder,

˛ the encodings of the childtypes in t of these ji nodes using two bits each,
listed in preorder,

˛ the encodings of the childtypes in ti of these ji nodes using two bits each,
listed in preorder,

˛ an encoding of the number ni using two bits,

˛ the Elias gamma encodings of the preorder positions in ti of the ni many
nodes from whose k-label-shape histories in t we are able to determine the
k-label-shape history in t of all nodes of ti, listed in preorder,

˛ the k-label-shape histories of these ni nodes, listed in preorder, using k
bits each.

We find that |Si| ≤ O(log(smax)+k). We define the following modification of the
depth-first order arithmetic code DP , which we denote with D̄P . The encoding
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D̄P(ti) consists of the string Si followed by an encoding of childtype(v, t) for
every node v of ti in depth-first order (preorder) of ti except for the root node
πi of ti, using arithmetic coding. The childtype of the root node πi is already
stored in Si. We traverse the tree ti in depth-first order; to encode childtype(v, t),
we feed the arithmetic coder with the model that the next symbol is a number
i ∈ {0, 1, 2, 3} with probability Ph`sk (v,t)(i). Note that at each node v that we pass,
we know h`sk (v, t) (either from Si or as we are able to determine h`sk (v, t) from
the k-label-shape history of the node v’s left sibling or parent) and we know both
childtype(v, t) and childtype(v, ti) (either because childtype(v, t) = childtype(v, ti)

or because we have stored both childtype(v, t) and childtype(v, ti) explicitly in Si).
Altogether, this yields the encoding D̄(ti). Note that we leave out the log (1/nP)

many bits (used in the encoding D(ti)) which encode the number i ∈ {1, 2}
which tells us whether ti is empty or not (by definition, every micro tree ti of
a non-empty tree t is non-empty). As we have Ph`sk (v,t)(childtype(v, t)) > 0 for
every node v the encoding D̄P(ti) is well-defined. We find that

|D̄P(ti)| ≤ |Si|+
∑
v∈ti
v 6=πi

log(1/Ph`sk (v,t)(childtype(v, t))) + 2.

Furthermore, note that we can uniquely recover a micro tree shape ti from the
encoding D̄P(ti) and that formally, D̄P is not a prefix-free code over Σsmax

, as
there can be micro tree shapes that are assigned several codewords by D̄P . But
D̄P can again be seen as a generalized prefix-free code, where more than one
codeword per symbol is allowed, as D̄P is uniquely decodable to local shapes of
micro trees. Thus, as a Huffman code minimizes the encoding length over the
class of generalized prefix-free codes, we find:

m∑
i=1

|Ψ(ti)| ≤
m∑
i=1

|D̄P(ti)|

≤
m∑
i=1

(
|Si|+

∑
v∈V (ti)
v 6=πi

log(1/Ph`sk (v,t)(childtype(v, t))) + 2

)
.

Recall that the micro trees ti are disjoint except for possibly sharing a common
root node and that |Si| ≤ O(log smax + k). Thus, we have

m∑
i=1

|Ψ(ti)| ≤
∑

v∈V (t)

log(1/Ph`sk (v,t)(childtype(v, t))) +O(m log smax +mk).

With m = Θ(n/ log n) and smax = Θ(log n) (see Section 9.2), we have

m∑
i=1

|Ψ(ti)| ≤ log

(
1

ProbP(t)

)
+O

(
n log log n+ kn

log n

)
.

This finishes the proof.
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From Lemma 9.3, Lemma 9.13 and Corollary 9.12, we obtain the following
theorem:

Theorem 9.14. The hypersuccinct encoding H : T → {0, 1}∗ satisfies

|H(t)| ≤ H`s
k (t) +O

(
n log log n+ kn

log n

)
for every plane tree t ∈ T of size n.

It remains to remark that the above result requires k ≤ o(log n) in order to
be non-trivial. This bound on k also occurs in Theorem 8.14 for the node-type
entropy, Theorem 6.21 for the label-shape entropy, respectively, the entropy
bounds from [89, 46]. Moreover, note that the redundancy term in Theorem 9.14
is identical to the redundancy terms in Theorem 8.14 from Chapter 8 and
Theorem 6.21 and Theorem 6.23 from Chapter 6.

9.5 Conclusion and open problems

Hypersuccinct plane trees achieve an entropy bound both in terms of the label-
shape entropy, as well as in terms of the degree entropy. A comparison of label-
shape entropy and degree entropy as empirical entropy measures for unlabeled
plane trees was shown in Section 7.3, see in particular Theorem 7.12.

Further universality results with respect to hypersuccinct plane trees are
presented in [S7]. Specifically, it is shown that the hypersuccinct tree encoding
is (worst-case) universal with respect to a subclasses of fixed-size ordinal tree
sources, which represent a plane-tree-analogue of fixed-size binary tree sources.

A natural open problem is to generalize the hypersuccinct tree encoding from
unlabeled plane trees to labeled plane trees. In particular, there is no compressed
data structure for labeled plane trees (over a non-unary alphabet) known to
achieve an entropy bound in terms of the label-shape entropy and at the same
time, to achieve constant query times in the word-RAM model. Moreover, for
labeled plane trees the entropy notions from Ganczorz [46] become suitable, such
that an interesting task would be to show that hypersuccinct labeled plane trees
achieve entropy bounds both in terms of label-shape entropy and in terms of
Ganczorz’s entropy notions.

Over the last few years, we have seen increasing efforts aiming to generalize
aspects of information theory as entropy notions and universal source coding
from strings to structured data as trees and graphs; further results include e.g.
[79, 49, 18, 77]. However, compared with the situation for strings (see, e.g., [20]),
the information theory of structured data is much less developed, leaving many
open problems for future research.
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