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Abstract

The workflow in modern hospitals entails that the medical treatment of a patient
is distributed between several physicians and nurses. This leads to an intensive co-
operation, which takes place under particular time pressure and requires an efficient
conveyance of the relevant patient-related medical data to colleagues. This require-
ment is difficult to achieve with traditional data representation approaches, which
usually do not consider the specifics of the cooperative work. This thesis introduces
a concept of Visually Integrated Clinical Cooperation (VICC) to support the infor-
mation transfer in cooperative tasks in a hospital. Developed in the context of an
interdisciplinary research project, it exploits findings of a sociological field study
in a hospital and feedback from the discussions with physicians. Accordingly, the
VICC concept aims at an multivariate visualization on a mobile device that provides
a synopsis of the relevant data and is intuitively comprehensible for medical person-
nel. The core components of the proposed concept are anatomically integrated in-place
visualization and iconic glyphs.

The anatomically integrated visualization uses a 3D human avatar as spatial rep-
resentation of visually encoded medical data with an (inherent) anatomical reference.
This component comprises a set of formal requirements and procedures for this kind
of visual encoding as well as a prototypical implementation for the diagnosis of
spinal disc herniation, evaluated by neurosurgeons.

The VICC concept also includes a personalization option of the generic 3D hu-
man avatar, using a 3D reconstruction of a patient’s body from range data. To al-
low it, a method for robust camera pose tracking for the spatially and temporally
low-resolution range data, given in mobile applications, is proposed. It combines a
geometry-based pose estimation by means of the iterative closest point (ICP) algo-
rithm with inertial tracking, using an extended Kalman filter (EKF). In particular, it
uses the extrapolated ICP pose estimates as virtual measurements and the output of
the EKF as initial guess for the next ICP-based pose estimation.

The iconic glyph approach allows for representation of a patient’s data without
anatomical reference. It aims to combine visual metaphors, inherent for icons, and the
glyph capability for multivariate visualization. Technically, it is based on a paramet-
ric representation that utilizes diffusion curves, enriched with new degrees of free-
dom in arc-length parametrization, which allows for automated, controllable manip-
ulation of the icon contours’ geometry and the related colour attributes. Besides the
generic concept, an implementation for a specific design, based on periodic, wave-
like contour modifications along with a perception and quantization model for these
kinds of visual variables are proposed. The practicality of the approach is demon-
strated by examples for visualization of weather forecast uncertainty, COVID-19
statistic trends and intracranial pressure.
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Zusammenfassung

Die Arbeitsabläufe im modernen Krankenhaus sehen vor, dass die Patientenbe-
handlung zwischen mehreren Ärzten und Pflegekräften verteilt ist. Dies hat eine
intensive Kooperation zur Folge, die unter einem besonderen Zeitdruck stattfindet
und eine effiziente Übermittlung der relevanten medizinischen Patientendaten an
Kollegen erfordert. Diese Anforderung kann mit den traditionellen Datendarstel-
lungsansätzen, bei denen die Besonderheiten der kooperativen Arbeit in der Regel
nicht berücksichtigt werden, kaum erfüllt werden. Die vorliegende Arbeit stellt ein
Konzept der Visuell Integrierten Klinischen Kooperation (VIKK) zur Unterstützung
vom Informationstransfer im Kontext der kooperativen Aufgaben im Krankenhaus
vor. Es wurde im Rahmen eines interdisziplinären Forschungsprojekts entwick-
elt und basiert auf den Erkenntnissen einer sozialwissenschaftlichen Feldstudie im
Krankenhaus sowie auf dem Feedback aus den Diskussionen mit den Ärzten. Da-
raus resultierend bezweckt das VIKK Konzept eine multivariate Visualisierung auf
einem mobilen Endgerät, die eine Synopsis der relevanten Daten zur Verfügung
stellt und für medizinisches Personal intuitiv verständlich ist. Die Kernkompo-
nenten des vorgeschlagenen Konzepts sind anatomisch integrierte Visualisierung und
ikonische Glyphen.

Die anatomisch integrierte Visualisierung nutzt einen 3D Menschenavatar als
räumliche Darstellung von visuell kodierten medizinischen Daten mit einem (in-
härenten) anatomischen Bezug. Diese Komponente schließt eine Reihe von formalen
Anforderungen und Verfahren für diese Art von visuellen Kodierungen ein, sowie
eine prototypische Implementierung für die Diagnose Bandscheibenvorfall, die von
Neurochirurgen evaluiert wurde.

Das VIKK Konzept sieht auch eine Option der Personalisierung des 3D Avatars
vor, wofür eine 3D Rekonstruktion des Patientenkörpers aus Tiefendaten benutzt
wird. Um dies zu ermöglichen, wurde eine Methode zur robusten Verfolgung der
Kameraposen anhand von Tiefendaten mit geringer räumlicher und zeitlicher Au-
flösung, typisch für mobile Anwendungen, vorgeschlagen. Sie kombiniert eine ge-
ometriebasierte Posenschätzung durch den Iterative Closest Point (ICP) Algorith-
mus mit inertialem Tracking, indem sie ein Erweitertes Kalman-Filter (EKF) anwen-
det. Insbesondere nutzt sie die Extrapolation der mit ICP geschätzten Posen als
virtuelle Messungen und die Ausgabe von EKF als Initialwert für die nächste ICP-
Posenschätzung.

Die ikonischen Glyphen ermöglichen Darstellung der Patientendaten ohne
anatomischen Bezug. Das Ziel dieses Ansatzes ist eine Vereinigung der visuellen
Metaphorik von Icons mit dem Potential der Glyphen für multivariate Visual-
isierung. Technisch gesehen, nutzt er eine parametrische Darstellung, die auf
den mit zusätzlichen Freiheitsgraden und Bogenlängenparametrisierung erweit-
erten Diffusionskurven basiert und eine automatisierte, kontrollierte Manipula-
tion der Geometrie der Iconkonturen sowie der dazugehörenden Farbattribute er-
möglicht. Außer dem generischen Konzept wurde eine Implementierung für ein
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spezifisches, auf den wellenartigen, periodischen Konturmodifikationen basieren-
des Design sowie ein Wahrnehmungs- und Quantisierungsmodell für diese Art
von visuellen Variablen entwickelt. Die Praktikabilität des Ansatzes wurde durch
Beispiele für Visualisierung von Wettervorhersageunsicherheit, Trends in COVID-
19-Statistiken und intrakraniellem Druck gezeigt.
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Chapter 1

Introduction

1.1 Problem Statement

The diagnostic and treatment processes in a modern hospital are distributed be-
tween several specialists. Such a distribution happens on different levels and is
caused, for instance, by the expanding interdisciplinary collaboration, allocation of
responsibilities between professional groups such as physicians and nurses, or task
sharing within the same professional group due to shift rotations. To ensure the
patient care under these conditions, an intensive cooperation for transferring of the
collected data from colleague to colleague is required. In particular, in each spe-
cific cooperative workflow scenario a subset of the patient’s data that describe his
medical status is crucial for decision making and initiation of the corresponding
procedures by physicians. Some of this information to be transferred is stored in a
systematised digital form as electronic health record (EHR) and thus can be shared
hospital-wide. However, the interface of a typical EHR system reflects an adminis-
trative logic rather than the requirements of collaborative work, which makes it less
suitable for supporting this kind of process. The consequences are a time-consuming
access to relevant data and a low EHR acceptance by physicians [Ema+17]. An-
other part of such diagnostic-cooperative data is not even digitized but is recorded
in several paper-based forms or hand-written scratches and often conveyed to the
colleagues orally.

In summary, the cooperative tasks in a hospital are characterised by a low data
availability due to 1) heterogeneous and scattered data sources, 2) not coopera-
tion-oriented representation, 3) time-consuming data access, 4) reliance on the par-
tially volatile (i.e., oral) communication. This in turn often leads to a deficient infor-
mation transfer, impairing the efficiency of the clinical workflow.

1.2 Contributions

This thesis addresses the aforementioned problem with a concept of Visually Inte-
grated Clinical Cooperation (VICC). At its core is a visual integration of the contex-
tually relevant patient data on a mobile device. Particularly, the concept aims at an
increased data availability by bringing all required information together in one place
and by providing a concise, context-specific overview. It takes advantage of the abil-
ity of human visual perception to quickly recognise decisive features [Wij05], in this
way facilitating the information assessment “at a glance”, which is particularly im-
portant by working under time pressure.

Effectiveness and efficiency of visualization as well as its acceptance by users
strongly depends on its intuitiveness. Taking into account this issue, the proposed
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concept builds novel visualization methods upon already familiar visual forms,
achieving the target visual integration in two ways:

• as anatomically integrated in-place visualization, which exploits the existing visual
tradition in the medicine, and

• as iconic glyphs, which use the generally comprehensible and intuitive symbolic
visual objects.

In the following, this two concepts are discussed in more detail.

Anatomically integrated in-place visualization The visual tradition in medicine is
highly related to the human anatomy. Learning with anatomical atlases, evaluation
of the medical imaging results or use of human body sketches for collecting the
results of a clinical investigation are only few examples of daily dealings with visual
representation of anatomy by physicians. At the same time, many medical data
that are usually represented by means of an abstract visualization or as text, are still
inherently related to anatomical structures. For instance, a clinical symptom refers
to the affected organ or body part. Building upon these observations, the VICC
concept uses an anatomical body model as spatial representation of such data. More
precisely, the data in question are encoded by visual variables such as colour or
texture, which are applied by rendering of the corresponding anatomical structures,
changing their default appearance. This enables a synoptical reading of information
directly ‘from the body’ – i.e., based on a principle that is familiar for physicians,
e.g., from assessment of radiological images, – avoiding abstract and potentially less
intuitive forms of representation.

The benefits of such a linking of data to specific anatomical structures can be
even enhanced by relating them visually to a specific patient. This relation can be
achieved, e.g., through personalisation of a generic anatomical model, that is mak-
ing the virtual human body look similar to the respective real person. The VICC
concept comprises a solution approach towards a model personalisation using a 3D
reconstruction from patient’s scans, which are provided by a range camera, inte-
grated in the same mobile device that serves for the visualization. The quality and
robustness of a 3D reconstruction relies on the precision of camera tracking, which
highly depends on the sensor resolution and computing capacity of CPU and GPU.
On a mobile platform, the tracking issue becomes particularly challenging, as the
respective hardware resources are rather limited. The proposed concept addresses
this problem with a sensor fusion algorithm, integrating in the visual reconstruction
pipeline pose-related data from inertial sensors.

Iconic glyphs One of the main challenges in the context of synoptic visualization
of patient’s data is their commonly multivariate nature. The anatomical approach
partially solves this problem by embedding the data in 3D space, that is using loca-
tion as an additional visual variable. However, it does not cover all potentially prob-
lematic cases, e.g. if multiple data refer to the same human body location or for data
that do not have any anatomical reference and, thus, the anatomical integration is
not applicable. The standard solution for multivariate data in scientific visualization
(SciVis) as well as in information visualization (InfoVis) are glyphs, i.e. visual objects
that “represent different data variables by a set of visual channels” [Bor+13]. Most of
the glyphs are abstract, e.g. build of geometric primitives, which potentially impede
an intuitive information reading, making their direct application in the cooperative
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clinical settings rather problematic. The glyph’s intuitiveness can be enhanced us-
ing metaphoric associations, e.g. creating them from symbolic visual objects such
as icons, which are related with the problem domain. However, the design of such
icon-based glyphs is for the most part a manual process due to not existing control
parameters. The VICC concept tackles this problem, proposing a parametric icon
representation, based on the diffusion curve (DC) [Orz+08] vector primitives, along
with the functionalities for controllable, quantifiable contour-based modifications of
the base shape and colour in a (semi-)automated fashion.

In summary, this thesis proposes the following main contributions:

• the concept and a prototypical implementation of an anatomically integrated
in-place visualization for clinical cooperation support [Pre+23b], comprising

• a robust camera tracking algorithm for 3D scene reconstruction on a mobile
device [PLK18], as a component of the model personalization option;

• an approach for (semi-)automated generation of iconic glyphs, including de-
sign examples based on the glyph’s periodic contour modifications [PBK23]
and

• a respective perception and quantization model [PK22],

• as well as a prototype for visualization of intracranial pressure, developed to-
gether with neurosurgeons and social scientists applying the iconic glyphs ap-
proach [Pre+23a].

The VICC concept, presented in this thesis, was developed in the context of an
interdisciplinary project A06, which was a part of the Special Collaborative Research
Center (CRC) 1187 “Media of Cooperation” at the University of Siegen. Besides com-
puter scientists, the project involved several neurosurgeons and sociologists. This
joined expertise in different fields allowed to identify the communicational short-
comings in the hospital daily routines, to deduce the corresponding requirements,
and to ensure the acceptance of the proposed solutions as well as their adequacy
from the medical perspective. A high-frequency interaction between the respective
groups of experts resulted in a gradual refinement of the initial visualization con-
cept, followed by a prototypical implementation of some of its parts. Finally, the
usability of these prototypes has been evaluated by means of user studies

1.3 Overview

Chapter 2 introduces the theoretical foundations, necessary for understanding of the
specific approaches discussed in later chapters. Besides an exposition of the generic
visualization principles, essential for the entire thesis, it comprises some fundamen-
tals, necessary for the understanding of specific components of the VICC concept.
In particular, the principles of scene reconstruction, inertial navigation and Kalman
filter as a sensor fusion algorithm are related to the mobile camera pose tracking for
the anatomically integrated visualization, whereby such topics as freeform curves
and Diffusion Curve Images are relevant for the iconic glyph approach.

Chapter 3 provides an overview of the overall VICC concept, comprising a defi-
nition of requirements for the concept development and short description of its sin-
gle components.
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The subsequent chapters discuss specific VICC components in detail. Namely,
chapter 4 describes the concept of an anatomically integrated visualization, its pro-
totypical implementation and evaluation. Chapter 5 addresses the personalization
option of the aforementioned visualization component, with a particular focus on a
novel camera tracking approach for mobile 3D scene reconstruction. In chapter 6, the
visualization by iconic glyphs is discussed, comprising a study of their perceptional
aspects (6.1) and an approach for their (semi-)automated generation (6.2).

Finally, chapter 7 summarizes and concludes the thesis, delineating also the pos-
sible directions of future work.
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Chapter 2

Foundations

2.1 Data visualization

2.1.1 Encoding by visual variables

The core of a visualization is the encoding of data that need to be represented by
visual variables, i.e. graphic dimensions of a visible mark. The original concept,
introduced by Bertin[Ber83], comprised seven visual variables: size, shape, value,
colour, orientation, texture and position. Subsequently, some additional variables,
e.g. motion [Car03], have been proposed.
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FIGURE 2.1: Bertin’s (retinal) visual variables.

Depending on the nature of the visual variable “position”, two main families
of visualization approaches can be distinguished. Scientific Visualization (SciVis)
deals with physically based data, which have a spatial reference, therefore, the re-
spective mark position results from the mapped data variable, e.g. as measurement
location. Information Visualization (InfoVis), on the contrary, represents abstract
entities, which have no inherent spatial reference and their mapping into the visual-
ization space is a design decision [Car12]. Nevertheless, the above distinction is not
rigid, and there are several attempts to combine advantages of both perspectives,
proposing hybrid approaches. These can be implemented as a juxtaposition, e.g.
InfoVis methods such as scatterplots linked with 3D views of scientific data in the
form of multiple coordinated views [Wei+06], or as a more in-deep integration, e.g.
a graph, representing metabolic processes, embedded in 3D cell views [KS14].
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The visual variables have properties, which determine their suitability to repre-
sent certain kinds of data. Following Bertin’s definition, a visual variable can be

a) selective, i.e. it allows the observer to identify a group of visual signs with cor-
respondences in this visual variables, e.g. a group of blue signs;

b) associative, i.e. it facilitates to identify groups of signs that differ in this vari-
able and have correspondences in the others, e.g. different shapes of the same
colour;

c) ordered, i.e. changes in this variable are perceived as a natural order, e.g. signs
of increasing sizes;

d) quantitative, i.e. difference in this variable is perceived as a numeric ratio, e.g.
different length or areas.

However, there is some controversy in the academic literature regarding the attri-
bution of these properties to specific visual variables. For instance, while Bertin
considers shape as not ordered, Chung et al. [Chu+16] demonstrate the orderability
at least for star-like shapes.

2.1.2 Multidimensional visualization and glyphs

A challenge that a visualization method has to face is representation of multidimen-
sional or multivariate data sets (the distinction between the both terms in the related
literature is rather vague and they are often used as synonyms [Cha06]). A widely
used technique to tackle this problem are glyphs, i.e. small visual objects, which vi-
sual variables encode the variables of the data set. Glyphs are particularly suitable
for assessment of interdimensional and inter-record relations; on the other hand,
they have their limitations regarding the number of representable data variables and
values of each variable, due to their small size [War08].

The main aspects that have to be taken into account for an effective glyph design
are described in the following. For an overview of the glyph design guidelines see,
e.g., Borgo et al. [Bor+13].

Trade-off between complexity and accuracy An increase of the number of visual-
ized data variables potentially facilitates the recognition of dependences, patterns or
trends but, at the same time, affects the representation accuracy of each single vari-
able. The best compromise between complexity and accuracy depends on the goals
of the specific visualization tasks.

Perceptual uniformity Especially for a quantitative visualization it is important
to guarantee that equal distances in data space lead to equal distances in perceptual
space. Thus, it has to be taken into account that the relation between physical stimuli
and perceived magnitudes of visual variables is in general not linear. In particular,
Stevens [Ste57] showed that it follows the power law, i.e. a stimulus-to-perception
transformation e is described by a power function

e(x) = a · xb, (2.1)

where x is a stimulus.
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Perceptual interrelations of visual variables The visual variables can be classified
as separable (or analysable), that is changes in one variable are perceived indepen-
dently from others, e.g. hue and shape [HI72], and integral (or unanalysable), that is
multiple variables are perceived as whole, e.g. value and chroma [Bur+78]. For sep-
arable visual variables, the dissimilarity is represented by city-block metric da + db

and for the integral ones by Euclidean metric
√

d2
a + d2

b [HI72]. Thus, the separable
visual variables are preferable for mapping, in order to enhance the dissimilarity
perception. At the same time, there are augmentation (reduction) effects in pairs of
integral variables, i.e. an increase (decrease) in one variable augments (reduces) the
perceived distance in the second one. For instance, a dissimilarity between hues in-
creases by an increasing saturation [KT75]. Such an augmentation can be exploited
to enhance the visualization distinguishability, applying a one-to-many mapping,
i.e. a redundant encoding of one data variable by several visual variables [War08].
At the same time, if similar mutual effects arise in a case of a one-to-one mapping, i.e.
where each visual variable represents a different data variable, a normalization of the
visual variables against each other is needed. For example, changes in the shape of
a glyph can influence the perception of its size and therefore require an appropriate
adjustment of the latter [Bor+13].

Importance-based mapping Visual variables differ in their pop-out effect, which de-
scribes how fast the respective visual sign can be identified. In the following list,
the visual variables are arranged by this property in descending order: colour, size,
shape, orientation [Mag+12]. As a consequence for glyph design, more important
or informative data variables should be mapped to visual variables with a higher
pop-out effect.

Metaphoric associations The use of metaphoric associations between data and vi-
sual variables in encoding design facilitates learning, understanding and memoriza-
tion of the resulting visualization [Mag+12].

2.2 3D Reconstruction

2.2.1 Range imaging

The term “Range imaging” comprises a number of approaches to capture distances
to objects in a real-world environment, relative to the respective sensor pose (posi-
tion and orientation). Such sensors are often arranged in a 2D matrix form, which
results in 2.5D depth maps, i.e. 2D images containing per-pixel distance data.

The optical distance acquisition approaches can be classified in two main cate-
gories that use time-of-flight (ToF) or triangulation technique, respectively (for more
details see, e.g., [Zan+16; KP15]). The latter makes use of the disparity effect and
can be applied with a passive device, like a RGB camera, as well as with an active
optical system. By a passive triangulation, the disparity is produced, for instance, by
taking successive images with a single camera from varying poses (structure-from-
motion) or capturing two simultaneous images by a pair of cameras with a known,
fixed baseline (stereo-vision). The active triangulation uses a pair of a sensor and a
light projector (illuminator); for instance, in structured light depth cameras the illu-
minator projects to the scene a light pattern that encodes the spatial directions. In
this case, the disparity results form the displacement between the projector and the
observing camera.
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The ToF distance acquisition is based on the measurement of the time t, which
elapses between the emission of a radiance (light/optical signal), its reflection by a
point of the scene and its capturing in the sensor, co-positioned with the illuminator.
With the speed of light in the air c ≈ 3 × 108m/s, the resulting distance can be
calculated as d = ct

2 . An example of devices that apply this principle are LIDAR
(Light Detection and Ranging) scanners, which provide point-by-point ranges. The
ToF cameras, on the contrary, utilize arrays of illuminator-sensor pairs, allowing this
way a simultaneous capturing of distances to multiple points in the scene (in a single
frame) as depth maps.

There are different approaches for implementation of a ToF camera; from a prac-
tical point of view, however, the most relevant is the continuous wave (CW) am-
plitude modulation, which is realized in the most commercial devices, e.g. in PMD
depth cameras [Zan+16]. The approach uses an active scene illumination with a pe-
riodic near infrared (NIR) signal , whereby the distance calculation is based on the
fact that the time delay t leads to a measurable phase shift ∆φ between the outgoing
and incoming signal. In particular,

d =
c∆φ

4π fm
,

where fm is the modulation frequency.

2.2.2 Principles of scene reconstruction from range data

Having a 2.5D output of a range camera and its intrinsic parameters, the 3D geomet-
ric representation of the imaged scene part can be computed. Accordingly, moving
the camera and merging depth information captured from different poses allows for
3D reconstruction of a complex scene. The entire process of scene reconstruction
from range data can be considered as a pipeline [RHHL02], whose main structure is
represented in Fig. 2.2. In the depth map preprocessing step, the incoming range data
are filtered for smoothing and outlier removal as well as 3D information is extracted.
Next, a camera pose estimation is performed to allow the transformation between the
current and the common model coordinate system. Finally, the depth map fusion up-
dates the so-far accumulated model with the current data.

From the perspective of internal data representation, there are two main families
of scene reconstruction approaches. On the one hand, it is the volumetric approach.
Introduced by Curless und Levoy [CL96], it has been for the first time adapted for a
real-time application by Rusinkiewicz et al. [RHHL02] and serves as a basis for sev-
eral further adaptation, e.g. as KinectFusion method [New+11; Iza+11]. In the vol-
umetric approach, the reconstructed 3D surface is implicitly stored in a voxel grid,
e.g. as level set of the Truncated Signed Distance Function (TSDF). The truncation al-
lows to limit the stored data to a narrow region with reliable measurements around
the surface. Facilitating high-quality reconstruction results, the approach, however,
implies a certain computational overhead due to the necessity to convert between
different representation forms, i.e. implicit volumetric representation and explicit
3D points, which is achieved by rendering using per-pixel raycasting. Furthermore,
a grid with fixed resolution and sparse data leads to an inefficient memory usage, i.e.
a memory overhead problem, whose solution requires special memory management
strategies such as voxel hierarchies (e.g., [SSC14]) or hashing (e.g., [Nie+13]).

The point-based approach [Kel+13], on the other hand, allows for a direct storing
of the explicit model as 3D points. This avoids representation conversions and also
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provides more flexibility in the memory usage, since only the reconstructed surface
and no free space is stored. Besides 3D positions, further point attributes, such as
normal, radius, colour or curvature [Lef+17], can be stored. The rendering of the
reconstructed surface is done by a splatting technique, similar to [Zwi+01], whereby
the point radius is used by splat generation.

In the following, the single pipeline steps are described in more detail, with a
special focus on the point-based approach of Keller et al. [Kel+13].

Input
Depth Image

Preprocessing Camera Pose
Estimation

Depth Map
Fusion

Scene
Model

Surface Reconstruction

FIGURE 2.2: 3D reconstruction pipeline.

Depth Map Preprocessing: Considering a range camera that takes consecutive
frames, the i-th input of the reconstruction pipeline is the depth mapDi. After outlier
removal and denoising with bilateral filter (for camera pose estimation), the depth
map is further processed for extraction of the 3D point-related information. The
scanning of a 3D scene point (x, y, z)T can be described, using the pinhole camera
model, as projection into the image plane

z(u, 1)T = K(x, y, z)T (2.2)

where K is the intrinsic camera matrix and u = (ux, uy)T are pixel coordinates, so
that the respective depth value, i.e. camera-to-point distance, is stored as z = D(u).
The parameters of the matrix

K =


fx

pixw
0 x′c 0

0 fy
pixh

y′c 0
0 0 1 0

 (2.3)

are the focal length in x and y direction fx, fy, the pixel width and height pixw, pixh,
and the coordinates of the sensor’s centre x′c, y′c. The standard approach for the
calculation of 3D positions from depth maps is the inverse projection [New+11]

Vi(u) = Di(u)K−1(uT, 1)T (2.4)

where Vi is the vertex map, which associates the resulting 3D data with the source
pixel. In addition to the positions, other vertex attributes such as normals and radii
are calculated and stored in the normal and radius map Ni andRi, respectively.

Camera Pose Estimation: The vertex map Vi created in the first pipeline step con-
tains 3D positions in camera coordinates. However, the fusion of the incoming
points with the already reconstructed part of the scene requires a common coor-
dinate system, i.e. the current camera pose in a reference coordinate frame must be
known. Such a pose is defined by the transformation matrix

T =

{
R t
0 0 0 1

}
, (2.5)
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with the rotational part R ∈ R3×3 and translational part t ∈ R3.

A widely used solution for camera pose estimation is the Iterative Closest Point (ICP)
algorithm [BM92], which performs a featureless alignment of two (partially) over-
lapping 3D geometries, iteratively refining the rigid transformation between them.
More precisely, it contains the following steps:

1. transform the input geometry to the target coordinate system using the cur-
rently estimated transformation,

2. for each transformed input point seek for a corresponding (closest) point in the
target geometry, and

3. for the set of corresponding points minimize the determined alignment error
function by adjusting the transformation.

The above procedure is iterated until the alignment error is small enough.

In the context of 3D scene reconstruction, ICP is commonly used to align the in-
coming depth map Di to the so-far accumulated scene model, i.e. in a frame-to-
model approach, estimating the relative transformation from the current to the pre-
vious view Ti→(i−1) [New+11]. Assuming a relatively small camera motion between
two consecutive frames, the initialization of this estimate with the identity ma-
trix [New+11] is sufficient. Then, in each iteration k it is updated with an increment
as T̃i→(i−1), k = T̃inc

k T̃i→(i−1), k−1. Finally, after the convergence of the algorithm, the
current camera pose can be computed from the previous pose and the ICP output as
Ti = Ti−1Ti→(i−1).

The pairs of corresponding points can be efficiently found by means of projective
data association [BL95; RHHL02]. For this purpose, the accumulated model is rep-
resented as a vertex map in the camera coordinates of the last frame VMi−1. Thus, for
a point in the input vertex map at the pixel u, p = V(u), the transformation into
the previous camera coordinates and projection into the image plain provides the
estimated pixel coordinates of its corresponding model point, i.e.

û = KT̃i→(i−1),lVi(u) (2.6)

with the resulting correspondences (Vi(u), VM
i−1(û)).

Commonly, the point-to-plane alignment error function [CM92] is used in order to
estimate Ti→(i−1):

E(Ti→(i−1)) = (2.7)

∑
u∈S
〈(Ti→(i−1)Vi(u)− VMi−1(û)) , NMi−1(û)〉2,

where NMi−1 is the model normal map in the camera coordinates of the frame i − 1
and S a pixel subset of the incoming vertex map, so that Vi(u |u∈S) has a valid
corresponding model point. This error function measures the distance between the
incoming point and the tangential plane of the model at the corresponding model
point. In this way, it only constrains one direction, which leads to a faster conver-
gence comparing with the point-to-point metric.

Using a linearised version of Eq. 2.7, which is based on the assumption of a small
angle between iterative steps, the minimization problem results in solving a 6× 6
linear system.
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The successful convergence heavily depends on a good initial guess for the cam-
era pose T̃i→(i−1), 0: if the algorithm does not start close enough to the actual pose,
it can be trapped in a local minimum, which yields significant geometric artefacts
(e.g., ghost geometries). In order to cope with faster camera motions still main-
taining a simple initialization, the ICP is commonly applied in a hierarchical man-
ner [New+11]. By setting up an image pyramid, coarser version of the underlying
matching problem are deduced. Solving this hierarchical optimization in a coarse-
to-fine approach leads to a refinement of the camera pose which can overcome local
minima to some extend.

Model Update: After camera pose estimation, the currently incoming range data
are fused with the so-far accumulated model. The appropriate correspondence
search is performed in image space, based on the high-resolution index map, which
is created by projection of the model points with a 4× 4 supersampling relative to
the resolution of Di. For the established correspondences, the geometric attributes,
i.e. position, normal and point radius, are merged into the model as their weighted
average. In particular, in order to cope with outliers and isolated points, the model
points are weighted on the basis of their confidence attributes, which count the num-
ber of merges, i.e. observations. Points are tagged as “unstable” or “stable”, if their
confidence counter is below or above a given threshold, respectively, and the un-
stable points are deleted after a specified number of the model update cycles. The
incoming points are weighted in accordance to the respective measurement accu-
racy, assuming that it decreases with increasing distance to the sensor centre.

2.3 Inertial Navigation

The inertial navigation describes tracking of orientation and position relative to a
reference coordinate system, based on the measurements of inertial sensors, such as
gyroscopes and accelerometers [TW04; GWA07]. For this purpose, multiple inertial
sensors are often used as a cluster with a common base, building an Inertial Mea-
surement Unit (IMU). In particular, the modern mobile devices, like smartphones or
tablets, are equipped with IMUs, containing a 3-axes gyroscope and accelerometer
in the form of a micro-electromechanical system (MEMS) [GP16], allowing this way
for a 3D navigation. The section below describes the basic principles concerning a
strapdown system, that is an Inertial Navigation System (INS), whose sensors are
fixed with respect to device and, thus, provide measurements in the local coordinate
system. For further details and regarding different sensor types and other systems
see, e.g., [GWA07; Jek12; TW04].

Let be q the INS orientation in the global coordinate system, i.e. the rotational
part of the local-to-global transformation, expressed in quaternion form. In par-
ticular, the rotation around a unit vector û by an angle θ yields the corresponding
quaternion expression

q =


cos( θ

2 )
ux sin( θ

2 )
uy sin( θ

2 )
uz sin( θ

2 ).


Furthermore, let be s = (x, y, z)T the INS position and v = (vx, vy, vz)T its velocity.
Then, the following measurements and computational steps allows for a straightfor-
ward tracking implementation.
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Orientation The gyroscope senses the rotational motion around the local axes as
angular velocity ω = (ωx, ωy, ωz)T, in radian/s, which relates to the change of ori-
entation in the time, i.e. its time derivatives, namely:

q̇ =
1
2

q⊗ (0 ωT)T, (2.8)

where the operator ⊗ describes quaternion multiplication. Thus, having a known
initial orientation, the current orientation can be computed by integration of q̇.

Position The accelerometer provides acceleration measurements am =
(am

x , am
y , am

z )
T in the local coordinates, which also contains the acceleration due

to gravitational attraction. The actual device acceleration with respect to the global
coordinate system can be derived by transformation of am using the current orien-
tation and subtraction of the gravitational part g, defined in the global coordinates
according to the gravitational field model, i.e.

ag = q⊗ (0 amT)T ⊗ q− g, (2.9)

where q is the conjugate of q. This implies that the tilt of the reference coordinate
system has to be determined during the initialization, i.e. the y-axis has to be aligned
with the gravity vector, which can be accomplished without external sources as gy-
rocompass alignment, that is by sensing acceleration with the device in a stationary
position [GWA07]. Then, taking into account the following dependencies:

v̇ = a,
ṡ = v,

and having a known initial velocity and position, the current position can be calcu-
lated by double integration of a.

Integration and error treatment A widely used solution for integration of pose
changes are Runge-Kutta methods. Depending on the tracking range and precision
requirements, a low order integration scheme can be sufficient [TW04]; for instance,
using the first-order integration (forward Euler) results in the following equation for
motion propagation:

qk+1 = qk +
1
2

∆tqk ⊗ (0 ωT
k )

T, (2.10)

vk+1 = vk + (ag
k − g)∆t, (2.11)

sk+1 = sk + vk∆t, (2.12)

Furthermore, under certain assumptions regarding the behaviour of ω, the in-
tegration of rotational changes has a close form solution. This can be shown by
expressing Eq. 2.8 in matrix form:

q̇ =
1
2

Ω(ω)q, (2.13)
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with

Ω(ω) =


0 −ωx −ωy −ωz

ωx 0 ωz −ωy
ωy −ωz 0 ωx
ωz ωy −ωx 0


Thus, an assumption that, e.g., ω is constant over the time interval ∆t = tk+1− tk,

i.e. ω̇ = 0, yields the solution of Eq. 2.13 as

qk+1 = exp(
1
2

∆tΩ(ωk))qk (2.14)

(see, e.g., [TW04; TR05]). Using the Taylor expansion, this can be re-written in
quaternion form as

qk+1 = qk ⊗ (cos(
|ωk|∆t

2
) sin(

|ωk|∆t
2

)(
ωk

|ωk|
)T)T. (2.15)

Still, the sensors do not provide exact real values, since their measurements are
affected by errors, which have to be taken into account by tracking. The main IMU
error sources are bias as well as errors due to scaling and axes misalignment. The
bias can be further subdivided into the fixed term, the bias stability and the bias drift,
usually modelled as a random walk [GWA07]. For a more detailed error model see
also [TW04]. In general, the fixed errors can be measured and compensated accord-
ingly. However, not for all kinds of errors a deterministic solution is possible [TW04].
Some approaches dynamically estimate the respective biases as a part of a filtering
method, e.g. an Extended Kalman Filter (EKF) [Sab11].

The accumulation of errors due to noisy sensor measurements leads to a time-
dependent drift in INS’s [TW04]. Especially the positional tracking is affected by this
effect because of the double integration. Thus, for a reliable tracking over a longer
time period, it is common to fuse an INS with other navigation sources, e.g. Global
Positioning System (GPS) or magnetic sensors. A conventional practice is to combine
sources with complementary features, i.e. a high update rate and a sufficient short-
term precision, on the one side, and a high long-term stability (by a potentially lower
availability), on the other [TW04]. The aim of an integrated navigation system is a
mutual error compensation. A well-established solution for such a sensor fusion is,
e.g., Kalman filter (see also Sec. 2.4).

2.4 Kalman filter

The Kalman filter is an iterative algorithm for state estimation of a system, described
by its dynamics with a known model and unknown perturbations (process noise),
and state measurements with unknown errors (measurement noise), whereby both,
the process and measurement noise, are assumed to be Gaussian and white. It com-
putes the mean of the state probability distribution, conditioned by measurements,
i.e. provides the optimal estimate, minimizing the estimation error in the least-
square or maximum likelihood sense. (For more details see, e.g., [May79; May82;
GA14].)

The algorithm comprises two main steps (see Fig. 2.3). First, in the prediction
step, the estimates of the state and uncertainty (the latter given as error covariance
matrix) from the last time step are projected to the next one, using the system model
and (optional) input parameters. This yields a priori estimates (commonly marked
with ·− superscript). Then, in the update step, they are corrected by incorporation of
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the measurement-based information, resulting in a posteriori estimates (the common
notation is a ·+ superscript).

Prediction Correction

Current a-priori estimates

Previous a-posteriori estimates

MeasurementsControl parameters

Initial estimates

out:  a-posteriori

state estimate

FIGURE 2.3: Kalman filter diagram.

The original Kalman filter addresses the linear system models. To tackle non-
linear processes, some algorithm adaptations that use a local linearisation, have been
proposed. A well-established non-linear variation, widely used, e.g., in the inertial
navigation [GWA07] is Extended Kalman Filter (EKF). The equations that define the
corresponding steps of a time-discrete EKF are described in the following.

General definitions Let xi be the vector of the system state variables at the i − th
sampling step, ui the respective vector of control parameters and zi the measure-
ments. Furthermore, let wi and vi be the process and measurement Gaussian zero-
mean noise, respectively. Then, the system process model is a function

xi+1 = f(xi, ui, wi), (2.16)

which describes the transition to the next state, and the measurement model is a func-
tion

zi = h(xi, vi), (2.17)

which describes the relation between the system state and the measurements. More-
over, let us define the estimation error covariance matrix as

Pi = E[(xi − x̂i)(xi − x̂i)
T], (2.18)

where x̂ is the respective state estimate.

Prediction Having the a-posteriori estimates x̂+k , P+
k at the last time step k, their

propagation to the next step can be estimated as
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x̂−k+1 = f(x̂+k , uk) and (2.19)

P−k+1 = J f (x̂+k )P+
k J f (x̂+k )

T + Qk, (2.20)

respectively, where

J f (x̂+k ) =
∂f

∂x̂+k

∣∣∣∣∣
uk

(2.21)

is the Jacobian of f(x̂+k ) and Qk the process noise covariance matrix.

Update For the estimation update, first, the Kalman gain is computed as

Kk+1 = P−k+1 Jh(x̂−k+1)
T(Jh(x̂−k+1)P−k+1 Jh(x̂−k+1)

T + Rk+1)
−1, (2.22)

where
Jh(x̂−k+1) =

∂h
∂x̂−k+1

(2.23)

is the Jacobian of h(x̂−k+1) and Rk+1 the measurement noise covariance matrix.
Then, the respective a-posteriori estimates are calculated, using the following

update equations:

x̂+k+1 = x̂−k+1 + Kk+1(zk+1 − h(x̂−k+1)) (2.24)

P+
k+1 = (I − Kk+1 Jh(x̂−k+1))P−k+1. (2.25)

2.5 Curves

2.5.1 Bézier curves

A Bézier curve b(u) of degree n with parameter u ∈ [0, 1] is represented as

b(u) =
n

∑
i=0

biBn
i (u), (2.26)

where bi is a Bézier control point and

Bn
i (u) =

(
n
i

)
(1− u)n−iui (2.27)

is a Bernstein polynomial of degree n.

Bernstein polynomials have the following important properties [BFK84; PBP02]:

a) partition of unity:

n

∑
i=0

Bn
i (u) ≡ 1 (2.28)
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b) positivity:

Bn
i (u) ≥ 0 for u ∈ [0, 1] (2.29)

c) recursion:

Bk
i (u) = (1− u)Bk−1

i (u) + uBk−1
i−1 (u) (2.30)

d) endpoint interpolation, since

Bn
i (0) = δi,0 (2.31)

Bn
i (1) = δi,n

Moreover, 2.28-2.30 ensure some further characteristics. In particular, from 2.28
results that the Bézier representation is invariant under affine transformations. Also,
2.29 guarantees that every curve b(u) lies in the convex hull of its Bézier polygon,
formed by bi. Due to 2.30, a Bézier curve can be constructed recursively, applying
the de Casteljau algorithm:

bk+1
i = (1− u)bk

i + ubk
i+1, (2.32)

with initialization b0
i = bi and the evaluated curve point b(u) = bn

0 .

FIGURE 2.4: C2 joint by A-frame construction.

To increase the degrees of freedom, single Bézier curves can be connected to form
a composite curve. Such a composite curve of p segments has a domain, subdivided
by p + 1 knots t0 < t1 < . . . < tp, where the l − th curve bl(u) is defined on the
respective interval, i.e. with its local parameter u ∈ [0, 1] and the corresponding
global parameter tl(1 − u) + tl+1u = t ∈ [tl , tl+1]. The resulting curve is Cr con-
tinuous at the joint points, if the left and right curves have the same derivatives
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(bl)
p
(tl) = (bl+1)

p
(tl), p = 0, . . . , r. To meet this condition, the respective next con-

trol polygon can be constructed from the previous one, using, e.g., Stärk’s construc-
tion [PBP02]. In particular, the C2 continuity condition is ensured by the so called
A-frame construction (see Fig. 2.4).

The p-th derivative of a Bézier curve bl(t) of degree n can be computed as

(bl)
p
(t) =

n!
(n− p)!(tl+1 − tl)p

n−p

∑
i=0

∆pbiB
n−p
i (u), (2.33)

where ∆pbi = ∆p−1bi+1 − ∆p−1bi is the p-th forward difference bi.

2.5.2 B-spline curves

B-spline curves are piecewise polynomial curves with “built-in” continuity con-
straints. A B-spline curve of degree n

s(u) =
m

∑
i=0

diNn
i (u), (2.34)

where di are de Boor or control points and Nn
i (u) are basis functions, is defined over

a knot vector t0, . . . , tn+m+1, with ti ≤ ti+1 and u ∈ [tn, tm+1].
B-splines have the following properties [BFK84; PBP02]:

Similarly to Bézier curves:

a) partition of unity:

m

∑
i

Nn
i (u) ≡ 1 (2.35)

b) positivity:

Nn
i (u) ≥ 0 (2.36)

c) recursion:

Nk
i (u) = (u− ti)

Nk−1
i (u)

ti+k − ti
+ (ti+k+1 − u)

Nk−1
i+1 (u)

tk+i+1 − ti+1
(2.37)

N0
i (u) =

{
1, u ∈ [ti, ti+1[

0, else
(2.38)

Additionally:

e) local support:

Nn
i (u) = 0 if u /∈ [ti, ti+n+1], i.e. supp Nn

i = ]ti, ti+n+1[ (2.39)
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Thus, analogously to Bézier curves, it can be deduced that a B-spline curve is
affine invariant and its de Boor points form its convex hull, more precisely, any curve
point s(u) lies in the hull of those de Boor points whose corresponding basis function
Nn

i (u) 6= 0 [BFK84].
Based on 2.38, the de Boor algorithm describes the recursive construction of a

B-spline as follows: a curve point s(u) with u ∈ [tl , tl+1[, i.e. Nn
i (u) 6= 0 only for i ∈

{l − n, . . . , l}, can be evaluated, recursively applying

dk
i = (1− αk

i )d
k−1
i−1 + αk

i dk−1
i , αk

i =
u− ti

ti+n+1−k − ti
, (2.40)

with d0
i = di and dn

n = s(u). This is a generalization of the de Casteljau algo-
rithm [PBP02].

The degree of freedom of a B-spline curve can be increased by knot insertion,
without changing its shape. For instance, according to Böhm’s algorithm [Boe80],
the insertion of a r-fold knot t∗ ∈ [tl , tl+1[ leads to the replacement of n− 1 old con-
trol points by n− 1 + r new ones, which result from the recursive de Boor scheme.
The extended control point sequence is

. . . , d0
l−n, d1

l−n+1, . . . , dr
l , . . . , d1

l , d0
l , . . . (2.41)

with d0
l−n = dl−n and d0

l = dl . For other insertion approaches, such as the Oslo
algorithm, see, e.g., [PBP02]. Multiple knots reduce the curve continuity, i.e. it is n−
r times continuous at any r-fold knot, with r ≤ n + 1 to guarantee a non-vanished
support (see also Fig. 2.5). Increasing the multiplicity of all knots to n produces the
Bézier representation of the curve, i.e. the de Boor points form the Bézier polygon
and the only not vanished B-Spline bases are Bernstein polynomial. Thus, B-splines
are a generalization of the Bézier representation.

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

T= [0,1,2,3,4]

T= [0,1,2,3,3]

FIGURE 2.5: Cubic B-spline N3
0 : reduced support by a 2-fold knot
(red).

The derivative of a B-Spline curve s of degree n is a B-Spline curve of degree
n− 1

s′(u) =
m

∑
i=1

n∇di

ti+n − ti
Nn−1

i (u), (2.42)
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where ∇di = di − di−1 is the first backward difference. To compute higher deriva-
tives this formula has to be applied recursively.

2.5.3 B-spline interpolation and approximation

Let s be the interpolating curve, p0, . . . , pk the points that have to be interpolated by
this curve, and u0, . . . , uk the corresponding parameters, i.e. interpolation nodes, so
that pi = s(ui). Then, the curve de Boor points can be calculated as solution of the
following linear system:Nn

0 (u0) . . . Nn
m(u0)

...
. . .

...
Nn

0 (uk) . . . Nn
m(uk)


d0

...
dm

 =

p0
...

pk

 (2.43)

or, in an abbreviated form, ND = P. The matrix N is invertible if k = m and ∀i :
Nn

i (ui) 6= 0 [PBP02], i.e. no more than n + 1 conditions per a knot vector segment
can be specified.

The interpolation conditions can also include derivatives for a better shape con-
trol, e.g. tangents as end conditions. That is, more generally, the element of N is
ni,j = Nn

j (ui)
(r), where r = 0, . . . , n− 1 describes the derivative order.

The interpolation results, especially the curve smoothness, are determined to
a large extent by the choice of the interpolation nodes. There are different choice
strategies, depending, e.g., on the curve degree or order. In particular, for a B-spline
curve with an even order h = n + 1 and the parameter q = h/2, the interpolation
at knots provides smooth results [Boo78], i.e. the nodes {ui}k

i=0 ∈ [a, b] are placed to
satisfy the following conditions:

th−1 = a ≤ u0 < . . . < uq−1 < th,
uq+j = th+j for j = 0, . . . , k− h,

tk < uk−q+1 < . . . < uk ≤ b = tk+1

Moreover, it is good practice to take into account the geometry of {pi}k
i=0, using

the arc-length parametrization [Boo78; BFK84]. The arc length of a curve segment
corresponding to the interval [0, u] is given by the equation

l(u) =
∫ u

0
‖s′‖dt. (2.44)

Thus, a B-spline curve s can be parametrized with respect to its arc length as s(u(l)),
where u(l) is the inverse of l(u). Such a parametrization has a useful property that
the curve’s first derivative with respect to l has unit Euclidean length, i.e.

‖s′‖ = 1, (2.45)

s′ =
d
dl

s(u(l)).

For applications, a chord-length approximation

L = ∑
i
‖∆pi‖, (2.46)
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where pi = s(ui) and ∆pi = pi+1 − pi, is commonly used instead [Far02]. It suffi-
ciently precise approximates the arc length by choosing a small parameter step, as
L→ l if ∆u→ 0.

In some cases, for more shape control, in specific, to minimize the curve oscilla-
tion, it may be necessary to set more constraints than available degrees of freedom,
i.e. k > m, which results in an overdetermined linear system 2.43. The solution can
be approximated by the least-square method as

NT ND = NTP. (2.47)

Besides curve construction, the same approach can also be applied to produce
local changes to an existing curve. In particular, Fowler and Bartels [FB93] use the
least-square approximation to solve a constrained-based direct curve manipulation
problem. The constraints ∆P result from positional or derivative changes, applied
to some selected curve points, and the curve is accordingly modified, computing
offsets ∆D̃ for those de Boor points that contribute to the evaluation of the affected
points, i.e.

∆D̃T = NT(NNT)−1∆PT, (2.48)

Alternatively to the direct solution, an iterative least-square approximation is
used to avoid a possible numerical instability [He+15]. In case specific shape prop-
erties are required, the respective loss function L is extended by an energy term,
i.e.

L(D) =
k

∑
i=0

(s(ui)− pi)
2 + ωE,

where ω is a constant weight. The curve energy can comprise several components,
e.g. stretching and bending energy Es and Eb [VW95]:

Es(s) =
∫
‖s′(u)‖ du

Eb(s) =
∫

κ2(u)‖s′(u)‖ du,

where κ is the curve curvature. In practice, the following approximations are used
to reduce computational cost:

Ês(s) =
∫
‖s′(u)‖2 du

Êb(s) =
∫
‖s′′(u)‖2 du,

whereby
∫

κ2(u)‖s′(u)‖ du =
∫
‖s′′(u)‖2 du for an arc-length curve parametrization

(see also Seq. 2.5.4). For instance, He et al. [He+15] proposed an Iterative Approxi-
mation for Least Squares, incorporating the stretching Energy (ELSPIA), which min-
imizes the loss function with the steepest descent method.

2.5.4 Local curve properties and Frenet frame

Local properties of a curve s in a point p = s(u) can be described by means
of the Frenet frame, which is an orthonormal coordinate system with origin at p.
The Frenet frame can be constructed from the derivatives of s(u), using the Gram-
Schmidt orthonormalization and assuming for Rd that the first d derivatives are lin-
early independent. In particular, for R3 the axes of the Frenet frame are tangent
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vector t, normal vector n and binormal vector b, which are calculated as

t =
s′

‖s′‖ , b =
s′ × s′′

‖s′ × s′′‖ , n = b× t, (2.49)

respectively (the parameter u is omitted for simplicity).
The variation of the Frenet frame by moving along a curve is related to the

curve’s behaviour regarding its smoothness. This relation is described by the Frenet-
Serret formulae:

t′ = κn (2.50)
n′ =−κt +τb
b′ = − τn ,

where κ is curvature and τ is torsion. The use of arc-length parametrization yields
some simplifications in the corresponding calculations, namely

t = s′,

with the resulting property that the curve tracing speed is always 1 (see also
Eq. 2.45),

κ = ‖s′′‖

and

τ =
1
κ2 det

[
s′ s′′ s′′′

]
.

More details can be found in [Far02; PBP02].

2.6 Diffusion Curves

In raster graphics a 2D picture is represented as a rectangular grid, whose cells are
denominated as pixels. This essentially corresponds to the graphic representation in
the image acquisition hardware (e.g., sensor of a RGB camera) as well as in the im-
age processing (e.g., a graphic card) and display (e.g., a computer monitor) devices,
which facilitates a wide usage of raster graphics. A further important graphic rep-
resentation are vector graphics. Compared to raster graphics, this form offers such
benefits as resolution independency, compact representation and a straightforward
geometry manipulation. These properties make it especially suitable for design and
artistic work. However, its most significant drawback is the limitation in represent-
ing arbitrary colour gradients.

To combine the benefits of both of these graphic representations,
Orzan et al. [Orz+08] introduced Diffusion Curves (DC). A DC stores the ge-
ometry, the colour and the blur of a picture region in parametric form, and a set
of DCs describes the respective entire picture as a Diffusion Curve Image (DCI).
Mathematically, a DC is a spline of K consecutive cubic Bézier curves, defined
via Bézier control points {pi}4·K

i=0 ⊂ R2, in conjunction with colour parameters,
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i.e. colour values and blur attributes located at parametric position u along the
respective Bézier curves and defined separately for their left and right side:{

cl
i(u)

}M
i=0 ,

{
cr

i (u)
}N

i=0 ,
{

bl
i(u)

}O
i=0 ,

{
br

i (u)
}P

i=0 , u ∈ [0, K]. This allows for a
controlled and independent manipulation of the image geometry and colour.

For rendering, the colour and blur values are linearly interpolated along the re-
spective curve. Furthermore, a gradient field w to control the colour diffusion is
calculated as wx,y = (cl− cr)nx,y, where cl , cr and nx,y are, respectively, the left and
right colour and the curve normal at the given position. Then, the colour parameters
and the gradient filed are rasterized. In the original approach, the colour is diffused
by solving the Poisson equation

∆I = div w,

where I(x, y) = C(x, y) if (x, y) stores a colour. Subsequently, several adaptations
have been proposed in order to enhance the rendering precision and performance
(e.g., [JCW09; Jes16]).
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Chapter 3

The Concept of Visually Integrated
Clinical Cooperation

This chapter provides an overview of the concept of Visually Integrated Clinical
Cooperation (VICC), comprising a definition of goals and a description of its main
components.

3.1 Definition of Goals

The goal definition builds upon interdisciplinary collaboration in the context of the
project A06, in the Special Collaborative Research Center 1187 at the University of
Siegen. Having the Neurosurgery Department of the Jung-Stilling Hospital in Siegen
as a cooperation partner, allowed for the routine work observations on the ward and
the subsequent interviews with neurosurgeons. This field study and the first eval-
uation of its results were mainly performed by the social science project members:
Julia Kurz, Judith Willkomm and Cornelius Schubert. Then, the respective findings
served as basis for the goals to achieve designing the VICC concept, specified and
discussed during recurrent interdisciplinary meetings.

First of all, the field study identified the main settings, in which a visual sup-
port would have the most potential to enhance the cooperation between healthcare
workers. In particular, it is the transfer of the most relevant patient’s diagnostic data
to colleagues, e.g. during a shift handover. Currently, this information is passed on
mostly in verbal form and is documented in scattered, heterogeneous sources, which
makes it hard to retrieve. The main findings regarding this cooperation settings are
summarized below.

• Conservatism of the medical personnel. Due to a high responsibility and
potentially severe consequences of errors in their profession, the physicians
adhere to the proven traditions in medicine and have a rather conservative
attitude to innovations.

• Time pressure. All routines on the ward are subject to strict timing constraints,
which implies that the information transfer takes place in very restricted time
slots.

• Focus on abnormality. The physicians are primarily interested in the data that
indicate pathological changes and thus are decisive for diagnosis and treat-
ment.
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• Crucial role of assessment of the patient’s status. Getting the patient-related
information from colleagues, the neurosurgeons are mainly interested in a spe-
cific subset of diagnostic data that, considered as whole, define the current neu-
rological patient’s status and are relevant for determination of further diagnos-
tic or therapeutic measures.

• Temporal changes and trends as deciding factors. In particular, the main at-
tention is paid to potential changes and trends in the patient’s status as criteria
for decision-making.

An interdisciplinary analysis and discussion of these findings allowed to deduce
the design goals for the VICC concept, which are listed in the following.

G1 Intuitive comprehensibility. Due to a particular time pressure mentioned
above, a substantial requirement to facilitate the acceptance of a visual support
is a notable speed-up in information transfer in comparison with the current
situation. Furthermore, the physicians have no possibility to invest a lot of
time in the learning of new tools. Therefore, the goal is an intuitively compre-
hensible visualization, relying on the existing tradition.

G2 Multivariate visualization. Most of the patient’s data are multivariate, which
requires an appropriate visual representation.

G3 Integrated visualization. The crucial role of the patient’s status, i.e. a synopsis
of multiple parameters, in the information flow implies the necessity of an
integrated visualization.

G4 Relevance-dependent filtering. Since the patient’s status comprises a subset
of all patient-related data that is relevant in the given context, an appropriate
pre-filtering is required.

G5 Visualization of chronological changes. Because assessment of the disease
progression is decisive for determination of an appropriate treatment, the visu-
alization has to provide an option for representation of chronological changes
in a patient’s status.

3.2 Main Components

The following section describes the concept components as well as their interrela-
tion. An overview is provided in Fig. 3.1.

3.2.1 Visualization

The concept aims at providing a visual support for information transfer in the con-
text of clinical cooperation, in consideration of the design goals defined above. Ac-
cordingly, it focuses on an intuitive synoptical visualization of the patient’s status.
The major challenges, arising within this scope, i.e. visual integration (G3) and repre-
sentation of multivariate data (G2), are addressed by the concept’s core components:
anatomically integrated visualization and iconic glyphs.

The anatomically integrated visualization uses a 3D model of a human body for a
spacial integration (G3) of medical data with an (inherent) anatomical reference. In
particular, the 3D object that represents the anatomical structure the data relate to,
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FIGURE 3.1: The main components of the VICC concept.

serves as 3D location for visualization. The latter is created by encoding of data vari-
ables by visual variables of the object, such as colour or texture, which are applied
during the model rendering. This direct visualization in the anatomical space facili-
tates a “CT-like reading” of the represented information, familiar to the physicians,
and, therefore, a more intuitive visualization (G1) of abstract data like symptoms.

Besides, this approach supports multivariate visualization (G2), allowing simulta-
neous representation of multiple data records that refer to distinct anatomical struc-
tures and a moderate number of data variables relating to same anatomical structure,
encoding them with different visual variables, i.e. hue, saturation, value and texture.

The representation of temporal changes inside an anatomically integrated visualiza-
tion is realised as scrolling in a time sequence of patient’s statuses (G5).

The realization of this VICC component is described in Chapter 4, based
on [Pre+23b], and comprises the following main contributions:

• definition of the corresponding visualization concept including requirements
and visual encoding procedures;

• prototypical concept implementation for the diagnosis spinal disc herniation;

• prototype evaluation by physicians.

The iconic glyph visualization approach allows for a (semi-)automated creation of
glyphs from icons, providing a parametric control over appearance and combining
this way the intuitiveness of an icon, related to data topic (G1), and the glyph’s
capability of the multivariate data visualization (G2). Moreover, it augments the
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standard glyph’s visual variables such as size or colour with the contour-based vi-
sual channels, which are particularly suitable for encoding of gradient-like data, e.g.
temporal changes in the respective variable (G5).

The implementation of this VICC component is described in Chapter 6 and is based
on [PK22; PBK23; Pre+23a]. It can be subdivided in two main parts. First, a percep-
tion and quantization model for periodic contour modifications, including

• an online user study about perception of these kinds of modifications, whose
results served as a basis for

• modelling of a corresponding stimulus-to-perception transformation function
and

• definition of distinguishable quantization levels.

Second, an approach for controllable geometric and colour modifications of an icon,
comprising

• a diffusion-curve based concept of parametric, contour-based modifications;

• the implementation of this concept with a focus on the automated, wave-like
modifications;

• application examples along with an online user study to evaluate the usability
of the approach.

Conceptually, the anatomical approach and the iconic glyphs can be used com-
plementary as well as in an combined form. In the former case, the glyphs can be
utilized to augment the visualization with patient’s data without anatomical refer-
ence, which are not covered by the anatomical approach. For a combined use, an
iconic glyph can serve as quantifiable texture, mapped to the respective anatomi-
cal structure, increasing the capability and controllability of the texture-based data
encoding. The implementation of such a combined visualization is not part of this
thesis.

3.2.2 Data

The VICC concept comprises two kinds of data. On the one hand, there are medical
data to be visualized and in this way conveyed to the physicians. For this purpose,
the individual data variables need to be visually encoded. On the other hand, there
are visual objects that serve as a basis for visualization and whose visual variables
are used for encoding of medical data.

Patients’ data are the input of visual encoding. In the first line, these are diagnos-
tic data, which play a key role in the information transfer on the ward and can be
available in digital, paper-based or even oral form.

Anatomical model is a hierarchical collection of 3D objects that represent organs
and other structures of human body. It serves as a basis for the anatomically inte-
grated visualization.

Icons, i.e. rather minimalistic, symbolic images, function as source for glyph cre-
ation.
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3.2.3 Data processing

The visualization of patient’s data according to the principles described above, re-
quires some preprocessing steps.

An application-specific view of a patient’s record (see Secs. 4.3.2.1 and 4.4.2.1) is
aimed at pre-selecting of data that are relevant in the given context, avoiding an in-
formation overload, accordingly to G4. It serves as an intermediate data structure,
optimized for a visual representation without altering the underlying information,
which implies an interdisciplinary categorization and hierarchization work, involv-
ing the domain experts.

This component has been implemented in the context of the anatomically integrated
visualization (see Chapters 4.3.2.1, 4.4.2.1). The implementation comprises

• formal definitions for organization of medical data that have to be visualized
as well as

• data categories for clinical neurological symptoms related to the diagnosis
spinal disc herniation, determined in collaboration with neurosurgeons.

Personalization of the 3D body model, i.e. adaption of the generic anatomical
model to the appearance of a specific person can be optionally performed to
strengthen the mental linking between the visualized data and the respective pa-
tient. This aims to support a more intuitive and faster data reading and understand-
ing (G1).

The main steps of the personalization process are a) reconstruction of a 3D model
from (partial) patient’s scans, registered with a mobile range camera, and b) fitting
of the generic model to this (potentially incomplete) reconstruction, to achieve a
complete and personalized anatomical model. The latter step is not implemented in
the presented thesis. The implementation of the 3D reconstruction step is described
in Chapter 5, based on [PLK18], and comprises the following contributions:

• an adaptation of the point-based framework, as proposed by Keller et al.
[Kel+13], for mobile platforms;

• a robust, multi-sensor tracking approach for initialization of the ICP-based reg-
istration, which combines inertial tracking and extrapolated ICP pose estima-
tions using an EKF;

• demonstration of the approach suitability due to an enhanced tracking robust-
ness.
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Chapter 4

Anatomically Integrated In-Place
Visualization

This chapter describes the components of the VICC concept that are related to the
anatomically integrated visualization (see Sec. 3.2). Having the main focus on the
respective visualization concept and its implementation, it also addresses the cre-
ation of an application-specific view for patient’s data with anatomical reference (see
Secs. 4.3.2.1 and 4.4.2.1). The presented approach has been published in [Pre+23b].

4.1 Introduction and Prior Work

Patient-related medical data are stored and maintained in order to support different
diagnostic and treatment processes in a hospital and are shared within and between
professional groups, such as physicians, nurses and sometimes technicians. Here,
the increasing complexity of these processes due to, for instance, new diagnostic
methods and the expanding interdisciplinary as well as inter-hospital collaboration,
is amplified by the challenges in organizing clinical work due to shift rotations and
understaffing. Therefore, the timely access of the medical personnel to the currently
relevant patient data is crucial for treatment quality. This chapter presents a visual-
ization approach to support clinical cooperation by building on the visual tradition
in medicine. Compared to prior work, the proposed approach focuses on the specific
requirements of such cooperative tasks, that is the need of a synoptic-like represen-
tation of the patient’s current status for a fast information transfer. In particular, it
allows to visualize multiple clinical parameters in an intuitive, anatomically integrated
fashion. In the following, the main contributions and the delimitation to other meth-
ods are described in more detail.

Various visualization approaches have been proposed for intuitively access-
ing patient’s medical data in order to improve clinical support and quality assur-
ance [WBH14]. In general, one can distinguish two main categories, depending on
the aim of such visualizations. The first category is characterized by the exploratory
nature of the approaches and commonly refers to electronic health records (EHRs),
that is, the visualization provides an overview of a patient’s complete set of medical
and potentially administrative data and offers functionality for data selection includ-
ing refinement, reconfiguration of layout and visual data encoding, and detection of
data correlations or outliers [Rin+13]. The second category comprises task-oriented
visualization approaches that address medical tasks with specific requirements and
with a focus on efficient information access and transfer. Examples are, for instance,
communication to patient of the prostate cancer health risk [Hak+17] or reading
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of imaging diagnostic records [Shi+18]. For the purpose of such visualization sys-
tems, a relatively small subset of patient data, in some cases not documented in the
EHR [Jaa+19], is relevant.

Visualization tools for patient data predominantly utilize concepts from infor-
mation visualization, for example, encoding time-related medical data as colour-
ized geometric primitives that are placed at a timeline [Pla+98; BAK07; Cra11].
Some newer works intend to enhance the comprehensibility and navigability of the
timeline-based EHR visualization, using it in combination with a data abstraction
layer [Mar+20] or a generic data model such as the Observational Medical Outcomes
Partnership Common Data Model [Gli+19]. Still, the physicians are in general not
very familiar with abstract visual representations, which can impair their under-
standing [MS13]. Therefore, some visualization approaches additionally utilize a
virtual human body in order to provide a more intuitive data access. For instance,
Kirby and Rector [KR96] presented one of the first systems that uses a visualiza-
tion of the human body as the central entry point for an efficient access of medical
data items that are presented as text. Sundvall et al. [Sun+07] presented a prototype
of a 2D visualization framework for patient’s medical data based on Google Earth.
It supports so-called placemarks, the standard Google Earth approach, to position
body-referenced information as icons and text. An et al. [An+10] developed a 3D
navigation and visualization method for medical data that uses different levels of
detail (LOD) in combination with different visualization strategies applied to data
at different levels. Particularly, on the two topmost levels a virtual human body is
used to refer to affected organ systems or organs, which serve as access points to
respective disease descriptions. Shi et al. [Shi+18] proposed a visualization tool that
uses a 3D anatomical human model in combination with a three state colour encod-
ing of pathological severity in order to facilitate for radiologists the access to the cur-
rent and historical medical status of a patient. The user can access the original data,
such as DICOM images or imaging diagnostic reports, by selecting the highlighted
organs. Jaatun et al. [Jaa+19] developed a tablet-based digital pain body map that
allowed patients with cancer to visually express their pain by drawing its location
on a 2D virtual body and applying a colour encoded scale for its intensity. The tool
is aimed at an improvement of the communication between patients and medical
personnel and supports the information exchange between different physicians and
nurses during a patient handover. The existing anatomy-based approaches have in
common the focus on the on-body visualization of few, mainly a single parameter,
while further data are presented using abstract visualization methods or text.

The overall goal of the interdisciplinary research project this thesis is based on,
is the analysis of cooperative clinical work practices on a neurosurgical ward and
the development, implementation and evaluation of appropriate visualization con-
cepts to improve these practices by providing efficient and task-oriented access to
the health status, i.e. the relevant medical data, of a patient. The focus is on pre- and
post-operative medical tasks that are distributed among several doctors and nurses
due to shift rotations and occasional understaffing and therefore rely on their co-
operation in the form of circulation of patient’s status. As this cooperation takes
place in the strict time slots of the main medical tasks, e.g. ward rounds, it is char-
acterized by the particular time pressure under which the patient’s status must be
conveyed from one physician or nurse to the next. In the initial analysis, the field
studies, mainly conducted by the social scientists (see also Sec. 3.1), revealed ma-
jor findings that are relevant for the target visualization concept (further details are
given in Sec. 4.2.1). (1) Only a specific and relatively small subset of data in a concise
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and objectified form has to be conveyed, depending on the usage context. (2) A sig-
nificant part of such subsets are diagnostic data related to the anatomy, e.g. clinical
symptoms. (3) Neurosurgical personnel strongly rely on their visual tradition and
can therefore easily get used to anatomical visualization metaphors.

These findings about the cooperative clinical work practices on a neurosurgical
ward served as a basis for developing of a new visualization approach, presented in
this chapter, which focuses on transferring diagnostic medical data with anatomical
reference. Inspired by the prior work that partially utilizes a virtual human body
for visualizing medical data [KR96; Sun+07; An+10; Shi+18; Jaa+19] and rested on
the positive feedback from the neurosurgical personnel regarding anatomy related
visualization techniques, it exploits the visual tradition in medicine as much as pos-
sible in order to achieve an anatomically integrated in-place visualization. This means
that several, task specific data are encoded with appropriate visual variables, which
are then applied by displaying the respective anatomical structures of a 3D avatar.

Following the basic visualization principle of the previous body-based solutions,
the present anatomically integrated visualization approach, however, especially fo-
cuses on providing a visual synopsis of a patient’s task-specific status, i.e. a consis-
tent, simultaneous representation of multiple key data. As observed during the
aforementioned field studies and stressed in the interviews by the project’s medical
partners, in the considered cooperative constellations only relatively small subsets
of patient diagnostic data are relevant for the physicians (see the major finding 1
above): this fact is exploited here to minimize the necessity of manual online data
selection and filtering. Still, the challenging task of mapping multiple quantified
medical data to visual variables in a way that they can be effectively perceived in a
simultaneous visualization has to be addressed appropriately. A further challenge
in this context is that the visual variable “spatial location” cannot be freely selected,
being pre-defined by the anatomy.

The main contributions of the proposed visualization approach are as follows:

1. The concept of an anatomically integrated in-place visualization of medical data
with anatomical reference including the definition of requirements and visual en-
coding procedures for this kind of visualization.

2. The design goals and data categories for clinical neurological symptoms related to
the differential diagnosis for patients with spinal disc herniation. This serves as
case study for applying the visualization concept and the formal requirements.

3. A prototypical implementation of the visualization concept and its evaluation by
ten neurosurgeons.

The evaluation shows a strong consensus among the assessing physicians about the
usefulness of applying the proposed visualization concept to the diagnostic data of
patients with spinal disc herniation.

It should be emphasized that this concept is designed for visualization of a spe-
cific kind of medical data that refer to anatomical structures. Therefore, for a more
advanced use it may need to be combined with iconic glyphs (see Sec. 6) or other in-
formation visualization techniques to incorporate medical data without anatomical
reference.

4.2 Design Method and Goals

The interdisciplinary long-term project on a neurosurgical ward that this thesis is a
part of, investigated fundamental questions of analysing and in part reconfiguring
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cooperative medical work practices. From a sociological perspective, articulation
work [Str+85], i.e. the ongoing work of integrating distributed tasks and maintain-
ing a coherent treatment trajectory by collection, processing and organizing patient
data, is at the core of clinical cooperation. However, this information flow is ham-
pered by gaps and distortions due to the limited availability or time-consuming ac-
cess to patient-related medical data, which in turn is at least partly related to their
inadequate visual presentation.

One of the project’s objectives was the design and development of an integrated
in-place visualization of patient-related medical data in order to support and po-
tentially even modify specific cooperative workflows. By the development of the
anatomically integrated visualization, the fundamental problem of the acceptance,
effectiveness and efficiency of new technologies in working practices has been ad-
dressed using a participatory design approach, similar to Belden et al. [Bel+18] and
Sedlmair et al. [SMM12]. This requires the set-up of a design and implementation
process (see Fig. 4.1) that involves visualization researchers, sociologists and neuro-
surgeons in order to analyse specific cooperative real-world situations on the neu-
rosurgical ward. Its substantial part is a high-frequency interaction between these
groups of experts, in particular during the initial definition of the overall goals of the
intended visualization tool and the field study that comprises observations of coop-
erative workflow situations and interviews. This interaction is based on the mutual
engagement in the design process following a symmetrical approach (Schubert and
Kolb [SK21]). Chapter 3 provides a summarized overview of the field study find-
ings and resulting goals, related to the overall VICC concept. In the following, this
information is taken up and re-focused according to the perspective of a specific
VICC component, described in this chapter. In particular, the insights of the field
study are depicted in Sec. 4.2.1, whereas the deduced design goals are presented in
Sec. 4.2.2.

Moreover, the last phase represents a participatory refinement of design & imple-
mentation, similar to the principle of agile software development (see, e.g., Mar-
tin [Mar03]), in which visualization researchers, sociologists and neurosurgeons
jointly advanced and refined the visualization design on the basis of the formu-
lated design goals (see Sec. 4.2.2) by utilizing prototypical implementations of a vi-
sualization tool. For reasons of efficiency and in order to not bias the evaluation,
three physicians (expert group) were involved in this stage, whereas the evaluation
involved a distinct set of ten physicians (test group; see Sec. 4.5).

Prototype DevelopmentVisualization Concept

- Spacial reference

- Visual attribute mapping

- Visual limitations

Field Study

 - Observations

- Interviews

I m p l e m
 e n t

R
 e
 f i

 n e

E

v a l u a t e

FIGURE 4.1: The design and development process for the visualiza-
tion prototype. The rectangles represent the three main stages. The
last stage is an iterative prototype development, which leads to a

gradual concept refinement on the basis of experts’ feedback.
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4.2.1 Field Study

In this first phase of data collection and processing, field observations and inter-
views were conducted on the neurosurgical ward of a local, 480 bed hospital. Here,
the sociologists, and partially visualization researchers, observed a total of 14 neu-
rosurgeons for 22 days during their routine ward work to become acquainted with
the workflows and relevance structures of their daily work. An important finding
was the fact that the physicians rely on the patient’s anatomy as spatial reference of
the diagnostic results not only using medical imaging for instance, but also hand-
writing information, e.g., on anatomical sketches in examination forms. Further-
more, during these observations, specific cooperative work constellations have been
identified. Due to the distributed character of the clinical work, the patient-related
medical data collected by one physician, has to be conveyed to the colleague who
continues with the patient’s treatment. In this context, the task-related subset of
medical data that describes the patient’s current status and its change over time is of
particular importance. A significant part of this subset constitute diagnostic data re-
lated to the anatomy, e.g. clinical symptoms. Moreover, the timely efficient assessment
of the relevant medical data and its temporal change plays a crucial role for decision
making and treatment quality. An effective conveyance of the patient’s status under
these particular conditions requires a data representation in an objectified and concise
form.

The cooperative work constellations can occur in synchronous or asynchronous
mode. An example of synchronous cooperation is the shift handover or, more pre-
cisely, the presentation of patients during the morning ward meetings. In these
cooperative constellations the information is passed on personally, mostly in ver-
bal, i.e. volatile, form. However, a personal shift handover is not always possible
due to the inherent irregularity of the clinical workflow that results from possible
emergencies. In these cases, the required information has to be passed on to col-
leagues asynchronously. This kind of asynchronous cooperation frequently occurs
when dealing with unfamiliar patients, e.g. during ward rounds or when writing of
discharge reports. Currently, the physicians have to recover the patient’s status from
different data sources. Furthermore, even when treating a patient they are famil-
iar with, the physicians often need to recollect the patient-related medical data they
acquired themselves.

4.2.2 Design Goals

Following the project motivation and the findings of the field studies, the overar-
ching goal of the intended visualization system is to facilitate efficient transfer of the
patient’s status in the context of distributed medical tasks. The resulting design goals
listed below have been jointly deduced by the visualization researchers, sociologists
and neurosurgeons from findings of the field studies, using a symmetrical approach
(see above Sec. 4.2), and represent a specific implementation of the overall VICC
goals (see Sec. 3.1), related to the anatomical visualization component:

DG1 Familiarity in novelty. The goal is to exploit the existing visual tradition, i.e.
the usage of the anatomy as spatial reference, as far as possible and to prevent
abstract visualizations in order to achieve a high degree of intuitiveness.

DG2 Visual discriminability. A data mapping that allows the user to clearly dis-
criminate between corresponding visual variables in a given clinical usage con-
text is crucial for the correct understanding of a visualization, and thus for
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an effective information transfer. The preference for anatomical visualization
concepts defines the spatial location as a visual variable a-priori, which makes
such a mapping even more challenging to achieve.

DG3 Context-related synopsis. In cooperative settings, it is important to provide a
simultaneous visual access to all the data that are relevant in the given clinical
usage context for conveying the patient’s current status at a glance.

DG4 Intuitive comprehensibility. The visualization design has to focus on an in-
tuitive and comprehensive interpretability in order to address the overall goal
of efficient and effective transfer of the patient’s status.

DG5 Concise visualization. In order to avoid clutter and distraction by secondary
details, the aim is to provide only the data that are relevant in the current clini-
cal usage context and to focus on medically relevant, i.e. abnormal, value con-
stellations.

DG6 Visualization of chronological changes. The visualization should provide
access to the evolution of the patient’s data.

DG7 Mobility. The goal is to make the visualization available in all places using a
mobile device.

4.3 The Visualization Concept

4.3.1 General Considerations

This section describes the proposed visualization concept, which aims at the achieve-
ment of the design goals (see Sec. 4.2.2) under consideration of practical insights into
the hospital workflow gathered during the field studies (see Sec. 4.2.1).

At the core of the concept is an anatomically integrated in-place visualization of med-
ical data relevant to specific cooperative tasks. According to this visualization prin-
ciple, an anatomical model serves as spatial representation of medical data that in-
herently refer to its structures, e.g. the clinical symptom paresis referring the affected
muscle. Particularly, the visual variables that appropriately encode the medical data
to be visualized are applied by rendering of the corresponding anatomical struc-
tures, changing their default or “natural” appearance.

The use of the human body as spatial reference directly addresses the design goal
DG1 of exploiting the existing visual tradition, which is tightly bound to the human
anatomy. On the one hand, this approach reduces the freedom in assigning medi-
cal data to visual variables compared to Information Visualization (InfoVis) (see the
respective explanation in Sec. 2.1.1), since the attributes ’spatial position’ and ’form’
are defined by the model and are no longer free parameters. On the other hand, the
focusing on a specific cooperative context and on data relevant therein (cf. DG5), sig-
nificantly reduces the amount of data that have to be visualized and, consequently,
the number of required visual variables. This data preselection in combination with
in-place visualization provides a context-related synopsis at a glance (cf. DG3).
Moreover, it is to be expected that the spatial embedding of medical data in the
anatomical context makes its relation to the underlying real phenomena more evi-
dent and facilitates its interpretability (cf. DG4).

However, the anatomically integrated in-place visualization poses a very fun-
damental challenge: How to design the mapping from abstract medical data to vi-
sual variables under the restriction of a preset location/geometry, such that visual
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discriminability (DG2), context-related synopsis (DG3) and intuitive comprehensi-
bility (DG4) can be achieved in practice? To cope with this challenge, the current
section provides the formal requirements that any specific realization of the anatom-
ically integrated in-place visualization has to fulfil and the corresponding procedure
of visual encoding (Sec. 4.3.2) as well as a discussion regarding further visualization
concepts (Sec. 4.3.3).

4.3.2 Formal Definition and Requirements

4.3.2.1 Medical Data

The developing of an anatomically integrated in-place approach to visualize a syn-
opsis of task-specific patient data requires a formal definition of the medical data
and visual encoding attributes. The data organization proposed here links the for-
malism of the Unified Medical Language Service (UMLS)1 to the data required in the
visualization process. As UMLS itself is organized as ontology, it covers all notions
and terms, as well as spatial and diagnostic relations. During the implementation
process, UMLS serves as knowledge background in the discussion with the physi-
cians to extract task-specific medical data (see Sec. 4.4.2.1). This information has to
be augmented with data types and domains, as they play a central role in the visual
encoding of the patient data. The resulting medical data to be visualized are orga-
nized in categories, each of them can have one or several properties; the categories
are grouped into usage-dependent views. A precise definition of these concepts and
their relations is given below.

• Property. A property p is defined as triple

p = (propType, dataType, domain),

where p.propType refers to the underlying medical concept, p.dataType is a
nominal, ordinal or numerical data type and p.domain is the domain set of
elements of the corresponding p.dataType.

• Category. A category c is a pair

c = (spatialRef, props),

where c.spatialRef is the reference to the corresponding anatomical structure
and c.props = {x|x is a Property} are all properties of c. The set of all categories
is denoted as C.

• View. A view V ⊆ C is defined as the categories relevant to the given usage
context. V is the set of all views.

Note: Views automatically reduce the amount of information to be visualized,
and thus the necessity of user navigation, by preselecting the context relevant
data.

The following examples illustrate the structural concept introduced above.
The category ‘muscle strength’ refers to the anatomical structure ‘muscle’, com-

prising a single property with the type ‘intensity’ that documents the strength a

1https://www.nlm.nih.gov/research/umls/index.html

https://www.nlm.nih.gov/research/umls/index.html
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patient can create in a specific muscle, quantified in 6 numerical values.

muscleStrength =(muscle,
{(intensity, numerical, [0, . . . , 5])}).

The second example describes the category ‘radicular pain’, i.e. pain caused by
irritation of a nerve root and related to the skin region that is associated with the
latter, i.e. dermatome. This category comprises one numerical and one nominal prop-
erty.

radicularPain = (dermatome,
{(intensity, numerical, [0, . . . , 10]),
(trigger, nominal, {constant, stress)}}).

There are several fundamental relationships between views, categories and proper-
ties:

• A property type is unique within a category. Property types obtain their med-
ical meaning only in combination with the category they are used in.

• A property type can be shared between properties of several categories. This
expresses similarity of medical concepts, such as ‘intensity’ of clinical symp-
toms in the prior examples, even if the respective property domains can be
distinct.

• A category is unique within a view.

• A category can be shared between several views, as it can be relevant in differ-
ent usage contexts.

Moreover, in order to properly specify the mapping of medical data to visual
variables, let be

T = {p.propType | p ∈ c.props, c ∈ C}.

the set of all property types.

4.3.2.2 Visual Variables

Shape and position are mainly predefined as the anatomical structures that are used
for visualization in our concept, i.e. the geometric visual variables cannot be used
for data encoding.2 The remaining visual variables are colour components, namely
hue, brightness and saturation, textures and transparency, as well as time using, e.g.,
animations.

Let a denote a visual variable, A the set of all visual variables, and a.range the dis-
crete and finite set of distinctively perceivable values of a ∈ A. Note, that |a.range|
is commonly smaller than the number of displayable visual variables. For example,
the visual variable ‘hue’ is a floating point value, however, the human vision is able
to distinguish only up to eight hue values w/o external reference (see, e.g., Kuehni
and Schwarz [KS08]).

2In principle, specific transformations or deformations that do not degenerate the anatomical struc-
ture could be used.
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4.3.2.3 Visual Encoding / Mapping

The mapping of medical data to visual variables is represented in Fig. 4.2 and com-
prises three levels, i.e. (a) encoding of categories (step 1-2), (b) encoding of property
types (step 3), (c) encoding of property values for all properties of each category
(step 4).
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FIGURE 4.2: The three level visual encoding of medical data.

4.3.2.4 Injectivity Requirement

In general, injectivity is a pre-requisite for any visual encoding / mapping in order
to lead to an unambiguously comprehensible representation (see, e.g., Ziemkiewicz
and Kosara [ZK10]). The proposed visualization concept distinguishes the following
situations where either the mapping injectivity is strongly required or its violation
has to be recognized and appropriately tackled.

Local Injectivity. In the case the mapping Mc : C → aC.range or Mt : T → A \ {aC}
(see Fig. 4.2) is not injective within a given view V or category c, respectively, it is
impossible to trace back the categories or property types from their visual represen-
tation. Local injectivity can be guaranteed if (1) all categories of a view are mapped
to distinct values of aC, and (2) all property types of a category are mapped to dis-
tinct visual variables.

Global Injectivity. While local injectivity guarantees the visual distinctiveness of
categories and properties inside each single view and category, respectively, the
global injectivity ensures the uniqueness of visual encoding across respective con-
texts, i.e. categories and views for property types and views for categories. Due to
the restricted distinctiveness of visual variables, global injectivity is hardly achiev-
able, still it should be pursued as far as possible.

Spatial Injectivity. Obviously, several categories of a view can refer to the same
anatomical structure. The violation of spatial injectivity rules out simultaneous vi-
sualization of the respective medical data and needs to be handled explicitly (see
Sec. 4.3.3).
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Property Domain Injectivity A non-injective mapping of a property domain to the
respective visual variable range causes quantization and, consequently, leads to a
loss of information. In some cases a quantized visualization can be acceptable, in
particular in the context related synopsis (cf. DG3), in which a qualitative overview
is sufficient. In any case, quantization needs to be detected and reported. In general,
quantization cannot be prevented and needs to be handled explicitly (see Sec. 4.3.3).

4.3.2.5 Visibility Restrictions

A 3D visualization with free camera motion may intrinsically affect the visibility of
geometric objects representing anatomical structures. In the context of the presented
approach, there are two causes for restricted visibility. (1) An anatomical structure
that relates to relevant medical data (target) may be occluded by another anatomical
structure. For example, a muscle affected by paresis is hidden under the skin. (2) The
spatial extension of an anatomical structure is too small in relation to the entire human
body, so that the visualization cannot be clearly recognized. An example would be
a tendon. Both aspects are handled in Sec. 4.3.3.

4.3.3 Further Visualization Concepts

Independently of the specific mapping, introduced in Sec. 4.4, the anatomically in-
tegrated in-place visualization concept handles some further aspects, necessary to
achieve the design goals postulated in Sec. 4.2.2.

Data selection. Besides two already described data selection mechanisms, which
apply automatically, i.e. focusing on the abnormal and usage-dependent views, the
user has the possibility to additionally filter the data by their categories. Note that
the usage-dependent preselection reduces the available categories to a manageable
amount. This filter allows to tackle, inter alia, the visualization of multiple medical
data for the same anatomical structure, i.e. spatial non-injectivity (see Sec. 4.3.2.4).

Alternating visualization. In the constellations where a simultaneous visualization
of multiple medical data on the same anatomical structure is not possible, i.e. the
spatial injectivity is not fulfilled (see Sec. 4.3.2.4), an alternating visualization with
additional user control to select one of the alternatives, e.g. through the data category
filter, can be applied (see Fig. 4.6A-4.6B).

Textual overlays. In some situations, the physician may want to access the under-
lying information explicitly, i.e. in textual form. This option is enabled by textual
overlays on top of the corresponding anatomical structure in order to, for example,
resolve the quantization problem (see Sec. 4.3.2.4) that results in a simplified visual
representation or to support the physicians in the getting acquainted with the visu-
alization tool.

Proxies. The small object extension problem (see Sec. 4.3.2.5) can be tackled by
means of an appropriately scaled proxy that is displayed on the body surface over
the location of the target anatomical structure and rendered with the corresponding
visual variables.

Transparencies. View dependent transparency is used to handle depth occlusions
of anatomical structures carrying relevant information by other anatomical struc-
tures (see Sec. 4.3.2.5). In particular, the occluder, in case itself is not carrying rele-
vant information, is rendered as (semi-)transparent, while the surrounding anatom-
ical context is preserved.
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The specific technical approaches taken to implement textual overlays, proxies
and transparencies are described in Sec. 4.4.2.2.

4.4 Prototype Implementation

Based on the design goals stated in Sec. 4.2.2 and the visualization concept intro-
duced in Sec. 4.3, the following section presents a prototype implementation on a
mobile device. As a proof of concept, the focus has been set on patients with spinal
disc herniation and the relevant medical data for assessing a patient’s neurological
status.

4.4.1 Development Environment

As geometric model for the anatomically integrated visualization is used plasticboy’s
3D human avatar3, which fulfils the substantial requirement of an exact and faithful
representation of the human anatomy. Even though the model already includes the
main organ systems subdivided into the corresponding anatomical structures, this
subdivision is not sufficiently detailed for the use with the proposed visualization
approach. Thus, the initial plasticboy anatomical human model was mapped to the
hierarchy of the Foundational Model of Anatomy Ontology (FMA)4. Furthermore,
dermatomes, which constitute very important anatomical structures in the context
of neurosurgery, are not reflected in the model. Hence, an anatomy refinement pro-
cedure, based on indexed texture maps, is applied, allowing to define substructures
on the existing geometries.

The prototype was developed in C++, using Qt 5.12 for Android for the platform
integration and a rendering framework, which is based on the Vulkan 1.1 API. The
latter allows an efficient resource management, which is important especially on
mobile devices.

4.4.2 Prototype Features

4.4.2.1 Mapping of Spinal Disc Herniation Data

Raw Data Categories. In collaboration with the expert group of neurosurgeons (see
Sec. 4.2), seven data categories and their properties (see Tab. 4.1) that are of high rel-
evance for cooperative tasks with respect to the representation of neurological status
of a patient with spinal disc herniation, i.e. in the respective view (cf. Sec. 4.3.2.1),
have been determined. The type of the main property to be visualized, common for
all these categories, is the intensity with which the respective symptom manifests,
whereas its domain is individual for each symptom, i.e. category.

The category radicular pain has a further property with the type trigger, which states
if the pain is constant or only occurs under stress, e.g. during movements, whereby
the former is assumed to be the normal, i.e. default situation for pain that does not
need any visual indication.

Data Category Refinement. The above raw categories mainly reflect concepts from
the Unified Medical Language System (UMLS) vocabularies, related to neurological

3www.plasticboy.co.uk/store/Human_Male_Female_Anatomy_Complete_V05.html
4http://sig.biostr.washington.edu/projects/fm/AboutFM.html

www.plasticboy.co.uk/store/Human_Male_Female_Anatomy_Complete_V05.html
http://sig.biostr.washington.edu/projects/fm/AboutFM.html
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findings, which then have been partially refined with the participation of domain ex-
perts, in order to better map the application logic to the given context of cooperative
tasks.

During the first trials with the prototype and discussions with neurosurgeons, two
changes to the initial raw data categories have been applied. First, the three cate-
gories related to sensory disorder, i.e. paresthesia, hypoesthesia and anaesthesia have
rather complex interrelations. For example, hypoesthesia and anaesthesia can be
considered as different stages of sense decrease, whereas paresthesia is in a certain
sense orthogonal because it does not describe a decrease of sensation but rather its
abnormality, e.g. tingling, and, thus, it can occur in combination with hypoesthesia.
Therefore, the new category sensory disorder represents anaesthesia and hypoesthe-
sia as a joint property with the type ‘intensity’ and has an additional property with
the type ‘paresthesia’. Second, insufficient muscle strength, measured in the Medical
Research Council scale 0, . . . , 5, is used in daily clinical practice as indication for pare-
sis that triggers for potential urgent actions such as emergency surgery. Therefore,
this practice has been adopted in the data model by using the category paresis with
the ordinal data type comprising the values ‘mild’, ‘moderate’, ‘severe’.

Mapping of Data to Visual Attributes. The final medical data categories in Tab. 4.1
are visually encoded in consideration of the rules deduced in Secs. 4.3.2.3 and 4.3.2.4,
that is, the mapping functions Mc and Mt are at least locally injective. Hue has been
selected as the visual variable aC to encode category (cf. step 1 in Fig. 4.2). The cat-
egory mapping Mc (cf. step 2 in Fig. 4.2) takes into account the distinctiveness of
the resulting five hues with regard to each other as well as to their context in the
anatomical model, e.g. a red colour is not suitable for visualization on muscles be-
cause it highly coincides with their natural, i.e. healthy, appearance. The shared
property type intensity is mapped in all categories to a composite visual variable
saturation-brightness in the HSV colour space, i.e. Mt (cf. step 3 in Fig. 4.2) is also
globally injective. The decision to combine two respective visual variables in a sin-
gle one aims to increase the visual discriminability (DG2) by means of an augmen-
tation effect (see Sec. 2.1.1). Additional properties are encoded by means of textures,
which have been selected such that they are visually as complementary to the visual
variable colour as possible in order to allow for a simultaneous visualization. In case
the additional property is non-binary, e.g. the property with the paresthesia type in
sensory disorder (cf. Tab. 4.1), the required range of visual values corresponds to the
texture’s frequency and amplitude (cf. step 4 in Fig. 4.2); see also Fig. 4.8.

There are two additional features of the mapping to visual variables that need to
be mentioned (cf. Table 4.1): (1) The 10 intensities of the pain category result in
a visual quantization, i.e. the corresponding property domain mapping is not in-
jective (see Sec. 4.3.2.4). In this case, the technical reason for the quantization co-
incides with the physician’s suggestion for a reduction of the number of intensity
levels for this symptom to account for the subjectivity of the patient’s sensation (cf.
Jaatun et al. [Jaa+19], who encoded pain intensity using three colours instead of the
1-to-10 scale, which was evaluated as suitable by most users; cf. also the 0-to-3 Dig-
ital Palpation pain scale in Masulo et al. [Mas+19]). (2) the anatomical reference for
the categories T-reflex and excretion disorder are too small and require a proxy geom-
etry (see also Sec. 4.4.2.2 and, e.g., Fig. 4.6).
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TABLE 4.1: Data categories: The raw data categories (left block), the
final categories after discussion with the physicians (centre block),
and the visual variables incl. anatomical reference (right block). Only
the abnormal states are listed. Specific aspects are indicated as 1:

quantization, 2: usage of proxy geometry.

Raw Data Categories Final Data Categories Visual Attribute Anatom.
Reference

Category Prop.
Type

Domain Category Prop.
Type

Domain ( range )

Radicular Pain Radicular Pain Red
Intensity {1, . . . , 10} Intensity {1, . . . , 10} Saturat.-Brightn. (3)1 Dermatome
Trigger binary Trigger binary Texture Normal Pert.(1)

Muscle Strength Paresis Purple
Intensity {1, . . . , 5} Intensity {mild,

moderate,
severe}

Saturat.-Brightn. (3) Muscle

T-Reflex T-Reflex Green
Intensity {1, . . . , 5} Intensity {1, . . . , 5} Saturat.-Brightn. (5) Tendon2

Excretion Disorder Excretion Disorder Orange
Intensity binary Intensity binary Saturat.-Brightn. (1) Urethra or

anus2

Paresthesia Sensory Disorder Cyan
Intensity {1, . . . , 3} Intensity {1, . . . , 4} Saturat.-Brightn. (4) Dermatome

Hypoesthesia Paresthesia {1, . . . , 3} Texture Noise (3)
Intensity {1, . . . , 3}

Anaesthesia
Intensity binary

4.4.2.2 Rendering Implementation Details

This section briefly describes some implementation details related to the realization
of specific visualization features, partially mentioned in Sec. 4.3.3.

Anatomical Proxies. The main idea in generating anatomical proxies is to uti-
lize projective textures [Seg+92], e.g. appropriately scaled circles, on the skin sur-
face above the anatomical structure that is too small for a direct visualization (cf.
Sec 4.3.2.5 and the patellar reflex, e.g., in Fig. 4.6).

Occlusion Handling In order to visualize hidden anatomical structures in an in-
tegrated overview of the most relevant information without requiring specific se-
lection, navigation or zooming efforts, the opacity of areas above the occluded tar-
get structure is dynamically decreased, depending on the current camera transfor-
mation (cf. Sec. 4.3.2.5). Similar to Viola et al. [VKG04] and Burns and Finkel-
stein [BF08], an image space approach that allows an efficient detection of occluding
fragments in real time on mobile hardware is used (see Fig. 4.3).

Context Menu The prototype includes a context menu for accessing the advanced
features such as the data category filter (see Fig. 4.7A) and the overlays with textual
data (see Fig. 4.7C). The filter provides for the user the possibility to hide/show
data visualizations by their category as described in Sec. 4.3.3, e.g. for handling of
the spatially non-injective cases (see Sec. 4.3.2.4). The overlays display textual data
corresponding to the visualization on a anatomical structure selected by the user.

Visualization of Temporal Changes For assessment of the healing progress a slider
with dates of available clinical examinations is integrated below the main 3D view
(see Fig. 4.6). Moving the slider, the user can navigate to the date of interest or scroll
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FIGURE 4.3: Dynamic transparency area with hierarchical informa-
tion: the right gastrocnemius muscle with paresis data (purple) is vis-
ible through the skin of the same body region and partially occluded

by the left leg.

through consecutive examination results. By selecting a date, the entries with the
corresponding timestamp are retrieved from the database and the virtual body is
rendered with updated visual variables.

4.5 Prototype Evaluation

4.5.1 Objectives

With the goal to evaluate the potential of the visualization concept and its limita-
tions, a user study was conducted, addressing the following objectives.

EO1 Perceived usefulness of the anatomically integrated in-place visualization
concept in comparison with the conventional data representation, i.e. hospi-
tal information system, examination forms etc. The following core concepts
was evaluated separately:

(a) Use of anatomy for spatial data representation (cf. DG2);

(b) Synopsis-like visualization of multiple data (cf. DG3);

(c) Narrowing the amount of data to be visualized according to the given
usage-dependent view (cf. DG5);

(d) Use of a mobile platform (cf. DG7).

EO2 Effectiveness of the information transfer. In particular, the evaluation ad-
dressed the visual encoding of the medical data, i.e. that the medical data can
be read from the visualization unambiguously regarding the following aspects:

(a) Reading of a neurological patient status;

(b) Reading of the healing progress by comparison of different status snap-
shots (cf. DG6);
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(c) Usage of interactive mechanisms, for instance data category filter or
zooming (see Sec. 4.4.2.2), where the direct reading is impeded.

EO3 Perceived efficiency in comparison with the conventional data representa-
tion. Since currently the relevant data are scattered in different sources, a di-
rect quantitative comparison is impossible. Instead, users should estimate the
expected speed-up due to the proposed visualization approach on the back-
ground of their long-term experience in using the traditional data sources.

EO4 Completeness / meaningfulness of the implemented data selection for the
view of neurological status (see Tab. 4.1). In particular, the aim is to assess the
convergence between the usage-dependent view defined in collaboration with
the expert group (see Sec. 4.2) and the data considered relevant in the given
context by the test group.

4.5.2 Setup

  

Interpretation without prior knowledge of the prototype EO4

Assigning the visualization to a textual description of symptoms EO2a, EO2c

Reading the healing progress EO2b, EO2c

Assessment of relevance of the data selected for the diagnosis to be visualized EO4

Introduction of the visual encoding legend

Assessment of usefulness EO1

Task 1

Task 2

Task 3

QNR 1

Learning

QNR 2

QNR 3 Assessment of effectiveness and efficiency EO2, EO3

Description Objectives

FIGURE 4.4: The evaluation process of the visualization prototype.
The left and middle column show the numbers of practical tasks or
questionnaires and their short descriptions, respectively. The right
column displays the evaluation objectives, as described in EO1-EO4,

targeted by the corresponding task or questionnaire.

The evaluation comprises three practical tasks and a questionnaire. Fig. 4.4 gives
an overview of the evaluation process, including the objectives to achieve in each
specific stage.

The practical tasks are designed as follows.

Task 1. In the first task, the physicians need to give their intuitive interpretation of
two visualizations (see Fig. 4.5) without previous knowledge about the meaning of
the visual variables. The assumption to be tested is that embedding in the anatomy
(see EO1a) and usage-dependent preselection of medical data (see EO1c) increase
the intuitiveness of the visualization.

Task 2. The visualization of a neurological patient status (see Fig. 4.6A-4.6B) has
to be assigned to the corresponding textual description of clinical symptoms. The
participants need to choose the correct status out of seven real-life descriptions. The
task can be seen as succession of two sub-tasks, in which different evaluation objec-
tives are addressed. (a) The direct reading of visual variables (see EO2a) narrows
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(A) (B)

FIGURE 4.5: Two visualization samples used for spontaneous inter-
pretation in Task 1. (A) shows the right C6 dermatome with radicular
pain. (B) shows several symptoms visualized in parallel: radicular
pain in the left L4 dermatome, paresis of the left quadriceps muscle,

asymmetric patellar reflex by means of the proxies.

down the possible choices to the subset of two very similar descriptions5. (b) Sep-
arating the remaining two similar cases requires some user interaction (see EO2c),
namely applying data category filter in order to uncover the muscles, and, poten-
tially, zooming and textual overlays (see Fig. 4.7A-4.7C).

Task 3. The last task is to read the healing progress (see EO2b) from two visual-
izations (see Fig. 4.6A-4.6B and Fig. 4.6C) that show successive patient states. The
first one equals Task 2 and corresponds to the preoperative status of a patient. The
second one represents the postoperative neurological status of the same patient.
Switching between both visualizations by means of the timeline, the physicians
have to recognize (cf. DG2) and to describe the respective changes. Analogously
to Task 2, there is an additional level of difficulty due to the partially remaining
paresis that is still occluded in the postoperative status (see Fig. 4.6C), which again
requires the use of the data category filter (see EO2c).

The questionnaire comprises three main sections:

5The correct and the similar status differ only in location of the paresis. The corresponding muscles
are relatively small and anatomically adjacent, and they are partially occluded by the L5 dermatome.
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(A) (B) (C)

FIGURE 4.6: Visualization of temporal changes. (A)-(B) show the vi-
sualization of the preoperative neurological status of a patient with
an asymmetric patellar reflex, a moderate paresis in the right extensor
hallucis longus muscle, a mild paresis in the tibialis anterior muscle,
a severe pain and a hypoesthesia in the left L5 dermatome, whereby
the pain (see Fig. (A)) and the hypoesthesia (see Fig. (B)) are visual-
ized alternately; this visualization is used in Task 2. (C) shows the
postoperative status of the same patient with symmetry in patellar
reflex, a decreased hypoesthesia in combination with paresthesia and
a remaining mild paresis in the right extensor hallucis longus muscle

(see Task 3)

QNR 1. The first section is dedicated to the evaluation of data in the usage-
dependent view related to patients with spinal disc herniations (see EO4). Par-
ticularly, the physicians assess the relevance of the pre-selected data categories in
different cooperative constellations as described in Sec. 4.2.1 as well as their com-
pleteness (see Fig. 4.9A). The considered cooperative constellations are 1) shift han-
dover; 2) visiting a familiar patient during ward rounds, i.e. a patient who already
has been examined by the same physician; 3) visiting an unfamiliar patient during
ward rounds, i.e. a patient who has been admitted and examined by a colleague;
4) writing a discharge report, especially for patients who were treated by another,
currently absent colleague.

QNR 2. In the second section the physicians assess the usefulness of the anatom-
ically integrated in-place visualization concept, including the simultaneous visual-
ization of multiple data and the availability on a mobile device (see EO1).

QNR 3. The third section includes questions regarding the effectiveness (cf. EO2)
and efficiency (cf. EO3) of the prototype that implements the anatomically inte-
grated in-place visualization concept (see Fig. 4.9C).

4.5.3 Procedure

The exact evaluation procedure is structured as follows.

(1) After a brief introduction to the overall context, the participants are directly
confronted with Task 1.
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(A) (B) (C)

FIGURE 4.7: Usage of further prototype features in Task 2. (A) illus-
trates the use of the data category filter. (B) shows a close-up of pare-
sis after filtering, i.e. without the occluding dermatome. (C) exempli-
fies the textual overlay for one of the affected muscles comprising its

anatomical name and associated raw muscle strength data.

(2) Afterwards, during a learning phase of approx. 15 minutes, the visual encod-
ing legend (see Fig. 4.8) is introduced and the participants are familiarized with
the most important interaction features of the prototype.

(3) Next, the physicians have to perform Task 2 and Task 3, explaining their
choices.

(4) Finally, the participants have to reflect on the practical experience answering
the questionnaire, i.e. QNR 1, QNR 2 and QNR 3.

Ten neurosurgeons from the same department took part in the evaluation, none
of which was involved in the participatory refinement process described in Sec. 4.2,
i.e. this test group had only a very basic understanding of the overall aim of the
visualization prototype. The group covers very different professional experiences
and hierarchical positions, namely it consists of three assistant physicians, one spe-
cialist, five senior physicians and one chief physician (for more details see Tab. 4.2).
The evaluation study was conducted in the hospital, in groups of two persons or,
partially, individually, and has been filmed for documentation and analysis. The
complete procedure for a single group took about an hour. A total of nine (out of
ten) completed questionnaires was submitted, because one of the interviews was in-
terrupted due to a medical emergency. The total number of answers varies, since a
few participants skipped some questions.

TABLE 4.2: Professional experiences as well as age and gender struc-
ture of the test group.

Prof. experience Age Gender
years # persons years # persons # persons
<10 3 30-40 4

female 4
11-20 3 41-50 2
21-30 2 51-60 2

male 6
>30 2 >60 2
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(A) (B)

FIGURE 4.8: The legend of the prototype visual encoding. (A) depicts
the active tab of the sensory disorder category: the right L2-L5 der-
matomes visualize four intensity levels, the left L3-L5 dermatomes
show three levels of the paresthesia, i.e. Noise texture; (B) shows the
active radicular pain tab: the right L3-L5 dermatomes visualize three
intensity levels, the left L3-L5 dermatomes show same levels in com-
bination with the stress trigger, i.e. Normal Pert. texture (cf. Tab. 4.1);
the exact property values can be looked up by means of overlays sim-

ilarly to Fig. 4.7C.

4.5.4 Quantitative Results

In the following, the reader finds an overview of the quantitative evaluation results,
structured according to the aforementioned tasks and questions. The qualitative
results and lessons learned are discussed in Sec. 4.6.

In Task 1 (i.e., before the learning phase), reading the visualization without any
specific pre-knowledge, most physicians (8/10) correctly interpreted the red der-
matome (see Fig. 4.5A and 4.5B) as pain and the rest of the participants (2/10) as
sensory disorder. The purple colour in the muscle (see Fig. 4.5B) was consistently as-
sociated with paresis (10/10), which is the correct meaning of this visual variable.
The green proxy geometries at the knees (see Fig. 4.5B) have often been misinterpreted
(6/10), e.g. as “problems with knee joints” or “hematoma”. Nevertheless, four par-
ticipants (4/10) recognized them as visualization of patellar reflex.

In Task 2 (i.e., after the learning phase), assigning the visualization to a textual
description, all physicians (10/10) could easily solve step 1, i.e. they narrowed down
the conceivable variants to two similar cases. By step 2, three of the participants
(3/10) independently found the correct case and the other seven of them could solve
the task after a suggestion of the test supervisors to use data category filter and
zooming function.

The healing progress in Task 3 was interpreted correctly by all participants
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FIGURE 4.9: Quantitative results of the questionnaire. (A): the x-axis
represents the symptom categories. (B): the x-axis shows the proto-
type features to be assessed. (C): the x-axis shows possible answers
to the question: Would the proposed visualization concept yield the follow-

ing benefits in your work routine?

(10/10). Several of them (6/10) also could independently find the occluded re-
maining paresis in the postoperative status (see Fig. 4.6C), hiding the occluding
dermatome by means of the category filter without external suggestions.

The quantitative results regarding the questionnaires QNR 1-QNR 3 are summa-
rized in Figs. 4.9A-4.9C, and are discussed in Sec. 4.6.

4.6 Discussions

4.6.1 Evaluation findings

In the following, the evaluation results are discussed according to the objectives de-
termined in Sec. 4.5.1

Usefulness The results of QNR 2 (see Fig. 4.9B) and the physicians’ comments
during the evaluation study show that the proposed visualization concept was per-
ceived as very beneficial. In particular, the use of anatomy (cf. EO1a) was well
received. Several physicians pointed out that, as a positive collateral effect, the 3D
body model also serves as anatomical quick reference guide. The results of Task 1
underline the increased intuitivity of the used visualization, due to the anatomically
integrated visual variables in combination with a usage-dependent view (cf. EO1c).



4.6. Discussions 49

Both allow for the comprehension of the visualized symptom even without legend
(cf. interpreting muscle colour as paresis) or significantly reduce the possible inter-
pretations (cf. colour in a dermatome as pain or sensory disorder). However, the
interpretation of visual variables corresponding to the patellar reflex in the same
task was perceived as less intuitive. According to the above claim, this can be ex-
plained by a lower importance of the data category “T-reflex” (see Fig. 4.9A and the
discussion regarding EO4 below), and the use of a proxy geometry, i.e. a weaker
anatomical integration.

The physicians appreciated the availability of “a lot of information at a glance”
thanks to the synopsis-like visualization (cf. EO1b). At the same time, some of
them expressed concern about a potentially too complex appearance due to such
an approach and the required user interaction, e.g. to hide an occluding anatomi-
cal structure. Also Task 2 revealed difficulties of the users to utilize the prototype’s
interaction functionalities. However, this can be at least partially explained by an
extremely short learning phase of about twenty minutes and the lack of experience
with the corresponding prototype features, e.g. the data category filter. This con-
jecture is confirmed by the observation that in the next task (Task 3) the physicians
used the interaction mechanisms for reading (partially) occluded information much
more reliably.

Most physicians see a clear benefit in the mobility of the prototype (cf. EO1d),
since it allows to save time in making the information available immediately in any
location. However, it was mentioned that the current device is still too large and
heavy to be carried in a coat pocket, and one participant also commented that a
medical doctor with a mobile may be perceived by patients as “less professional”.

Effectiveness The evaluation tasks demonstrate that the proposed visualization
allows to effectively convey the neurological status of the patient (cf. EO2a) and its
development over time (cf. EO2b). The observed limitations refer to complex situa-
tion with impaired visibility, which require user interaction (cf. EO2c), as discussed
above.

The prototype’s capability to reduce the loss of information in the hospital work-
flow (see Fig. 4.9C) has been rated controversially. The participants who remain
rather sceptical, explained their attitude by the fact that the information still can be
lost before reaching the prototype, due to a deficient collection and input of raw
data by the examining physician. Surprisingly, only few physicians assessed the
prototype as advantageous for communication with patients (see Fig. 4.9C). This,
however, is due to the characteristics of the workflow itself, i.e. all physicians admit-
ted that the proposed visualization would allow to explain diagnosis to the patient
more easily, but this would stimulate further discussions with the patients, which is
in conflict with the strongly limited time budgets.

Efficiency Comparing with the currently used textual representation of the respec-
tive medical data, the physicians attest to the prototype’s potential for accelerating
the transfer and evaluation of the patient’s status (see EO3), which is due to the vi-
sualization of “all symptoms at a glance”, i.e. synopsis, and to the fact that the infor-
mation is “always available”, i.e. mobility (see also Fig. 4.9C). Only one participant
claimed that simple lists are as good as visualizations.

Data selection As follows from the rating in Fig. 4.9A, all defined data categories
are of high importance for assessment of neurological status of a patient with spinal
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disc herniation (cf. EO4), i.e. there is a high coincidence in the selection of relevant
data within the test group as well as between the test group and the expert one.

Considerable variations occur in the category T-reflex only. The latter is caused
by differences in the individual diagnostic methods: several participants actively ap-
ply reflex test during a clinical examination, whereas other physicians consider this
test less relevant (cf. also the above discussion about effectiveness). In relation to the
completeness of the view, six (6/9) physicians proposed further data categories to be
added. While some of these proposals reflect individual variations in the diagnostic
practices, referring to, for instance, additional pathological reflexes or pain qualities,
other suggestions address the extended use of the prototype by integrating, for ex-
ample, prior diseases or instability signs, required for decision making or surgery
planning.

4.6.2 Limitations

Primarily, the prototype supports the evaluation of the proposed core concept, i.e.
anatomically integrated in-place visualization, and, thus, focuses on the visualiza-
tion of usage-dependent medical data with anatomical reference, more precisely,
neurological symptoms of spinal disc herniation, in the form of a synopsis, i.e. a
consistent, simultaneous representation of multiple key data. The preference for
using anatomy as a spatial reference and for the synoptic form of data visualiza-
tion are major findings from the field studies, and their effectiveness, efficiency and
acceptance by the physicians have been verified in the aforementioned evaluation.
Nevertheless, these visualization principles are potentially less useful in other med-
ical application scopes, such as trend analysis of extensive medical data records,
visualization of a single data category with a high domain cardinality, or the han-
dling of medical data without anatomical reference. These kinds of data are handled
by another component of the VICC concept, i.e. iconic glyphs (see Sec. 6). Further-
more, there is the option to integrate other visualization approaches such as abstract
timeline-based techniques into the presented concept.

The use of human anatomy as spatial representation of abstract medical data,
facilitating a more intuitive visualization semantic, at the same time implies some
additional challenges with regard to visualization design. The general problem of
mapping of a large amount of data to the limited number of visual variables be-
comes in this case even more significant, because the spatial position and the form
of anatomical structures are fixed. As discussed in Sec. 4.3, this problem is addressed
with such concepts as data selection at different levels and alternating visualization.
Nevertheless, by further increasing the number of patient data associated with same
anatomical structure, these solutions are not sufficient. To address this challenge,
the overall VICC concept (see Sec. 3.2) includes the possibility to integrate iconic
glyphs in the anatomically-based visualization, using them as quantifiable, multidi-
mensional textures mapped to the respective anatomical structures. This technique,
however, is not implemented yet.

Moreover, the on-body visualization can lead to configurations that are chal-
lenging in terms of visibility (cf. 4.3.2.2). The proposed solutions are described in
Sec. 4.3.3 and 4.4.2.2. However, they potentially require additional user interaction,
which can impair the information reading, as demonstrated in the practical tasks
during the evaluation. In this respect, the evaluation results should be deemed in-
termediate. A more substantial evaluation of the efficiency of user interaction mech-
anisms requires a greater familiarity of physicians with the prototype.
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Finally, the current prototype does not allow for a personal adaptation to individ-
ual variations in diagnostic practices (see Sec. 4.6.1). This suggests to introduce some
personalization options by the view definition, on top of the core data categories.

4.7 Conclusion

In this chapter, a novel concept for anatomically integrated in-place visualization of
medical data has been presented. The concept is designed in accordance with the re-
quirements arising from specific tasks in cooperative clinical workflow, namely con-
veying of cooperation relevant patient data between colleagues, and it aims at clos-
ing the existing gap in current visualization approaches. The presented approach al-
lows for a spatially integrated comprehensive visualization of medical data, such as
clinical symptoms, on a 3D human avatar using their inherent references to affected
anatomical structures and an appropriate visual encoding. Preselecting patient data
as a function of their relevance in the given clinical usage context, i.e. view, provides
an at-a-glance synopsis of relevant information to physicians.

The evaluation of the prototypical implementation of the visualization concept
by a group of neurosurgeons revealed positive feedback, in particular concerning the
use of anatomy as spatial representation of data and the potential speed-up of infor-
mation assessment. The current prototype covers the application scenarios in the
context of distributed clinical cooperation related to the diagnosis of spinal disc her-
niation. Still, having a sufficient level of abstraction, the visualization concept is also
transferable to other cooperative tasks and diagnoses, where a) data with anatomical
reference are used, and b) a quick patient status overview is beneficial. For a better
integration in the existing workflow, each specific implementation would require
field studies and participation of medical experts in the design process, particularly
in regard to selection of task-specific medical data and intuitive visual encoding.
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Chapter 5

Personalization of Anatomical
Model

This chapter describes a personalization option of the anatomically integrated visu-
alization, presented in Sec. 4. As outlined in Sec. 3.2, the generic anatomical model
can be adapted in order to look similar to the respective real person and thus to make
the relation of a data record to the associated patient more intuitive. The personaliza-
tion process comprises 3D reconstruction of a patient body model and model fitting,
as described in Sec. 3.2.3.

One of the main overall requirements to the VICC concept is the capability of
being smoothly integrated in the current hospital workflow without the necessity of
an additional time investment on the physicians’ side, which implies two specific
requirements to the model personalization:

R1 Range data acquisition using mobile device, in order to allow the patient scan-
ning during an usual workflow step, e.g., on the ward (cf. DG7 in Sec. 4.2.1);

R2 Online scene reconstruction, in order to provide real-time feedback to the
medical personnel, who executes the scanning.

The combination of R1 and R2 results in a challenging task of performing compu-
tationally expensive scene reconstruction steps with limited mobile hardware re-
sources. This chapter presents an approach to mobile scene reconstruction, pub-
lished in [PLK18], which addresses the aforementioned problem, particularly focus-
ing on camera tracking enhancement. The second component of the personaliza-
tion procedure can be performed, using a state-of-the-art human body model fitting
method (e.g., [KYW14], an overview can be found, e.g., in [Bar+21]). However, its
implementation is not a part of this thesis.

5.1 Introduction

Real-time 3D scene reconstruction from depth data is a well-established research
area where several approaches have been proposed [RHHL02; New+11; Kel+13].
However, because of high computational requirements and due to the absence of
highly integrated range cameras, their implementation was limited for a long time
to high-end platforms, including robots, that involve PCs or laptops and rather en-
ergy intensive and bulky range cameras such as the Microsoft Kinect. Alternative
approaches utilize the standard colour camera of a mobile device, i.e. smartphone
or tablet, in order to extract 3D information from RGB image streams [Tan+13;
OKI15; Sch+15; Mur+16]. In the last decade, however, the availability of highly
integrated Time-of-Flight (ToF) depth cameras such as the Real3™ area sensor
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from infineon [Inf15] integrated in ToF cameras such as the picoflex from pmd-
technologies [pmd15] or in mobile devices such as Lenovo’s PHAB2 Pro, makes
mobile 3D reconstruction from depth data possible.

As discussed in Sec. 2.2.2, the 3D scene reconstruction problem requires the es-
timation of the camera’s pose (position and orientation) and the reconstruction of
the scene in parallel. Thus, it is structurally very similar to simultaneous local-
ization and mapping (SLAM), which also can involve ToF cameras [May+08]. 3D
reconstruction and SLAM, however, have different foci: while 3D scene reconstruc-
tion aims for high geometric quality of the reconstructed scene, in SLAM trajectory
and pose estimation have the highest priority. This section mainly addresses 3D
scene reconstruction, a survey of visual SLAM approaches can be found, e.g., in
[FPRARM15].

Commonly, in 3D scene reconstruction the camera pose estimation is formulated
as a registration problem. Given a sequence of overlapping depth maps delivered
by the range camera, the camera pose is estimated by finding the best alignment
between two successive depth maps (frame-to-frame registration) or between the
current frame with the reconstructed model of all preceding frames (frame-to-model
alignment). There are various registration approaches, e.g. ICP, RANSAC, PCA, or
cross-correlation [BH95; LCD12]; see Salvi et al. [Sal+07] for an overview. In online
scene reconstruction, the ICP algorithm is commonly applied.

Camera tracking based on, e.g., ICP, is a task that is computationally demanding
and data intensive even in the standard, desktop 3D scene reconstruction pipelines.
Since the accuracy of 3D map registration heavily depends on the size of overlap-
ping areas and on the magnitude of relative transformation that has to be estimated,
it requires both, significant CPU and GPU capabilities and high spatial and tempo-
ral resolution of the depth data. However, mobile devices with highly integrated
ToF cameras comprise restricted computational resources and significantly lower
temporal and spatial resolution (see Tab. 5.1), making high quality online 3D scene
reconstruction hard to achieve.

On the other hand, online scene reconstruction can benefit from additional sen-
sory information, e.g. from an IMU (see Sec. 2.3). A common approach to embed
these motion data is to provide them as initial guess for geometric registration, i.e.
to ICP. Corresponding pose estimates can be either obtained by mere integration of
the IMU data [NDF14], or by sensor fusion, e.g. with an EKF (see Sec. 2.4), that deliv-
ers more robust predictions. However, to get a complementary data source, fusion
algorithms require either a third sensory input from, e.g., a camera-based feature
tracker [Dry+17], or they are restricted to the rotational component only, combining
gyroscope and accelerometer measurements [Käh+15]. Some approaches apply a fi-
nal fusion of the ICP results with other sensory information, which, however, is only
beneficial, if the ICP pose is less reliable, leading otherwise to unwanted geometric
reconstruction errors.

This chapter describes a lightweight solution for real-time 3D reconstruction on
mobile devices. In order to address the challenges arising from a low temporal and
spatial depth resolution and the limited computational resolution, a novel multi-
sensor tracking, solely using IMU as additional sensory input, is proposed. In par-
ticular, the proposed approach comprises the following contributions:

• An adaptation of the point-based framework, as proposed by Keller et al.
[Kel+13], for mobile online scene reconstruction.

• A novel EKF-based fusion approach for initialization of the ICP-based regis-
tration, which robustly estimates rotational and positional pose information,
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using the IMU sensor in combination with extrapolated ICP pose estimations
as virtual measurements.

• Demonstration of the approach suitability due to risk minimization of an ICP
failure, particularly in case of a fast camera motion.

5.2 Related Work

The integration of the inertial tracking and 2D imagery for 3D reconstruction on
mobile devices has been investigated in several prior works. In the context of scene
reconstruction based on motion stereo, inertial tracking has been used for scene scale
estimation and bridging the temporal gap between the two camera frames which
are asynchronously acquired [Tan+13] or as initial guess of the current pose within
the scope of a photo-consistency-based tracking [OKI15]. In [Mur+16] an online
estimation of the relative rotation between two camera frames by integration of only
gyroscope data, combined with the information from a 2D feature point tracker, is
used for an offline structure-from-motion algorithm. Other approaches use visual
inertial odometry (VIO) as filter-based fusion of inertial and feature point tracking
data, e.g. VIO from the Tango library [Sch+15].

In the context of scene reconstruction from depth data, several approaches use
additional sensory information, such as inertial tracking and visual tracking, in or-
der to improve camera pose estimation.

Kähler et al. [Käh+15] estimate rotational and translational components of the
camera pose separately from different tracking sources. The IMU data in connection
with a fusion algorithm are used for orientation estimation whereby ICP and the
colour-based tracker only optimize position. This way the rotational drift is reduced.

Klingensmith et al. [Kli+15] incorporate VIO from a Tango mobile device, which
fuses inertial data with visual odometry, based on feature tracking using a fish-eye
camera. The low depth frame rate of the range camera of ≈ 3 − 6 Hz does not
allow for standard dense ICP-based pose estimation. Thus, the ICP is initialized
with the pose from Tango VIO and refined incrementally. The approach is designed
for large scale scene reconstructions with low to moderate reconstruction resolution
of 2− 3 cm and yields camera drift of≈ 5m in the case of long trajectories (≈ 175 m).
In [Dry+17] the authors further improved their approach by applying a corrective
transformation to the Tango-based pose estimation for ICP initialization in order to
compensate the VIO drift. The correction term is updated with each depth frame
using the difference between the initial guess and the final ICP pose.

Huai et al. [HZY15] combine inertial data with ICP and SIFT odometry on a
heavy-weight mobile platform consisting of a notebook and a Microsoft Kinect range
camera. The integration of IMU readings provides a predicted camera orientation,
which is used for initialization and validity check of the ICP. In case ICP fails, SIFT
odometry is used. If both ICP and SIFT odometry fail, the incremental motion from
the inertial tracking is used as final pose estimation. An EKF is used to correct the
IMU-based predictions, where ICP or SIFT odometry serve as measurements for
position correction, whereas the states with a small acceleration are utilized for roll
and pitch correction by means of the gravity direction from the accelerometer.

In the context of SLAM, Chow et al. [Cho+14] describe a 3D terrestrial LiDAR
system that integrates a MEMS IMU and two Microsoft Kinect sensors to map indoor
urban environments in a stop-and-go fashion. The pose estimation is achieved by an
implicit iterative extended Kalman filter (IEKF) that predicts poses integrating IMU
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data and gets measurements from visual tracking. The latter uses alternatively ICP-
based point cloud matching initialized by sparse 3D feature point matching (during
the “going” state), LiDAR data (during the “stopped” state) or 5-point monocular
visual odometry (VO) in highly textured areas or regions with few depth features.
The IMU-based pose predictions are also used for initialization of visual tracking.

At the time of the conception and implementation of this VICC component, the
approaches solely relying on IMU data as additional sensory input were restricted
to non-lightweight platforms and non-integrated range cameras such as the Mi-
crosoft Kinect. Niessner et al. [NDF14] combine the IMU of a mobile device with
a Kinect depth sensor on a laptop platform. The inertial tracking integrates IMU
data without sensor fusion and provides an estimate of the transformation between
last and current camera pose that is used for ICP initialization. The authors demon-
strate that their method reduces the number of ICP iterations and makes the tracking
more robust in scenarios such as fast camera motion or scanning of planar surfaces.
Hervier et al. [HBG12] propose a general framework for the fusion of ICP-based pose
tracking with data from motion sensors by means of an invariant EKF. The approach
uses ICP noise covariances estimates on the basis of the Fisher matrix which allows
detection of unobservable directions and prevents that information along these di-
rections flows from ICP “measurements” in a-posteriori pose estimates. The pose
prediction from motion data is used to initialize the ICP. Based on this framework,
an implementation with a Kinect camera and a tri-axial gyroscope is described and
experimentally tested. Camurri et al. [Cam+15] combine ICP-based camera track-
ing and inertial tracking in order to solve the SLAM problem for legged robots in
a three-folded manner: the pose predicted by means of IMU data is used for ICP
initialization, for validity check of the ICP result and, finally, for correction of ICP
pose estimates by replacing roll and pitch.

Refocusing on online 3D scene reconstruction, i.e. using additional sensory infor-
mation for the initialization of the geometric registration, it can be concluded that the
then actual approaches either use integrated IMU data as ICP initialization (which
requires high temporal depth resolution) or use Kalman filtered IMU for orientation
estimation only. More sophisticated approaches use a second sensory input, e.g. a
fisheye-based feature tracker, in order to obtain robust position and orientation es-
timates via Kalman filtering. In contrast to this prior work, the present approach
requires only IMU as additional sensor information in conjunction with a mobile
ToF camera with low spatial and temporal resolution and applies a fusion algorithm
including extrapolated ICP poses as virtual EKF measurements in order to obtain a
robust ICP initialization.

5.3 Implementation of Online Scene Reconstruction on a
Mobile Device

The 3D scene reconstruction, implemented in the VICC personalization component,
follows the generic reconstruction pipeline, as described in Sec. 2.2.2. The use of mo-
bile devices, however, implies an additional challenge regarding the camera track-
ing. In particular, since the ICP algorithm solves a highly non-linear optimization,
its successful convergence heavily depends on a good initial guess for the camera
pose. In the case of high temporal and spatial resolution range cameras such as the
Microsoft Kinect, a simple initialization, such as the identity matrix [New+11], is
fully sufficient. In the context of the VICC implementation, i.e. for a low temporal
and spatial range camera resolution (cf. Tab. 5.1), this leads to misalignments, i.e. the
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optimization results in a local minimum, which yields significant geometric artefacts
(e.g. ghost geometries). A solution for the tracking problem is presented in the next
section.

The implementation basically uses the point-based online scene reconstruction
framework proposed by [Kel+13; Lef+17]. Due to its memory efficiency, this ap-
proach does not impose specific modifications with respect to memory or algorith-
mic layout when porting to a mobile platform. Still, there are some adaptions re-
quired in order to use it in the case of range cameras with low temporal and spatial
resolution, such as the picoflexx [pmd15]. Highly integrated ToF cameras are de-
signed for near-range and wide-field-of-view types of applications. The wide field
of view leads to severe camera distortions which need to be accounted for by cam-
era calibration and in the pre-processing of the range maps. Furthermore, wide field
of view in combination with low spatial resolution leads to points with larger sizes
and higher noise even at moderate camera-to-object distances and, in average, to
fewer model point observations. This effect needs to be taken care of by adapting
the system thresholds for, e.g., the confidence counter and the ICP convergence.

5.4 Multi-sensor Camera Tracking with EKF

ICP is known to produce accurate estimations on the condition that transformations
between successive camera poses are relatively small. However, larger transforma-
tions can lead to false results due to convergence in a local minimum, or even to a
failure due to false correspondences. On a mobile system the probability of such crit-
ically large frame-to-frame transformations increases because of a lower range cam-
era frame rate and longer processing times due to limited computational resources.
The latter may lead to the situation that not all camera frames can be processed in
real time, which results in frame dropping and, consequently, reduces the effective
frame rate even more. The proposed camera tracking approach improves robust-
ness by incorporating inertial sensor data in order to predict the camera pose that is
used as ICP initialization. As a consequence, it speeds up convergence as it allows
reducing the amount of image pyramid levels.

Since integrating noisy IMU data quickly leads to error accumulation, the results
of inertial tracking are commonly fused with data from another tracking source, e.g.
from a feature point-based visual odometry. An often used sensor fusion algorithm
is EKF. The present approach, however, deliberately does not incorporate any addi-
tional tracking device in order to keep hardware efforts as low as possible. Alter-
natively, it takes advantage of the available ICP camera pose estimations under the
assumption of moderate change rates in human motion. In particular, future cam-
era poses are predicted by extrapolating ICP pose estimates from previous frames
and then are taken as “virtual measurements”, which are fused with the IMU inte-
gration results using an EKF with the objective to compensate the errors due to the
high-frequency IMU noise.

Consequently, the proposed EKF approach aims at estimating ICP results, which
are considered as true states. Since the true states corresponding to the camera frame
i are known, it is preferable to reset the filter to these values and estimate the next
frame-to-frame transformation T(i+1)→i only, thus keeping the error accumulation as
small as possible. However, due to a processing delay in the reconstruction pipeline
(see Fig. 2.2) the last ICP result TICP

i is not available at ti, i.e. at the beginning of
the next inter-frame interval i → (i + 1). This issue is addressed by splitting the
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rotational part of the camera pose Ri+1 in the prior frame orientation Ri (base ori-
entation) and the current frame-to-frame rotation R(i+1)→i, i.e. Ri+1 = Ri · R(i+1)→i.
The EKF starts for each interval i → (i + 1) with zero frame-to-frame rotation and
translation and with an estimate R̃i without waiting for the ICP result. These states
are propagated by integration of incoming IMU data within the interval. At ti+1, i.e.
at the end of the interval, the true previous orientation RICP

i is always available and
can be used in the measurement vector that is passed to the EKF for correction of the
predicted states. Due to the split representation of the orientation, it is possible to
weight each of its components separately by setting appropriate values in the noise
covariance matrices and, thus, to control their influence on the corrector. A generic
scheme of the tracking workflow is shown in Fig. 5.1.

FIGURE 5.1: Scheme of camera tracking. The components of the ini-
tial guess estimation module are highlighted in blue, the ICP-based

pose estimation module is highlighted in green.

The (partial) filter reset after each inter-frame interval and the weighting of
the orientation components according to their confidences reduces errors in the a-
posteriori estimates despite multiple prediction steps without corrections. Further-
more, executing the more computationally expensive correction step only once per
frame supports a high tracking performance. In the following, the EKF design is
described in more detail.

5.4.1 System State and Prediction

In the following orientations are represented as unit quaternions q = (s, vT)T, where
s is the scalar and v the imagery vectorial component. Below, all quaternions are
assumed to be normalized although the normalization step is omitted for simplicity.
Regarding the time step indexing, k corresponds to the IMU steps whereas the i
refers to ICP frame index.

The state vector is defined as

x = [q v p qb] (5.1)
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where q is the current frame-to-frame rotation, v is the velocity, p is the translation
relating to the last camera position (both in global coordinates) and qb is the esti-
mated last orientation (base orientation).

Let
xk+1 = f(xk, uk, wk) (5.2)

be the discrete-time non-linear process function where uk is the control parameter
vector and wk is the process white noise with normal distribution. uk consists of
angular velocity ωk, acceleration ak, gyroscope bias b̂g and accelerometer bias b̂a, all
expressed in local coordinates. The prediction, i.e. state propagation

x̂−k+1 = f(x̂+k , uk, 0) (5.3)

is specified with the following difference equations:

q̂−k+1 = q̂+
k +

1
2

∆tkq̂+
k ⊗ (0, (ωk − b̂g)

T)T1 (5.4)

v̂−k+1 = v̂+
k + ∆tk(qrot(q̂+

b,k ⊗ q̂+
k , ak − b̂a)− g) (5.5)

p̂−k+1 = p̂+
k + ∆tkv̂+

k (5.6)

q̂−b,k+1 = q̂+
b,k, (5.7)

where ·− refers to the a-priori and ·+ to the a-posteriori estimate, ∆tk is the current
sample step, g is the acceleration due to gravity, ⊗ represents quaternion multiplica-
tion, and qrot(r, s) describes rotation of vector s by unit quaternion r (cf. also Sec. 2.3,
Eq. 2.10-2.12).

In order to reduce the filter complexity and to increase performance, it is as-
sumed that the gyroscope and accelerometer biases are constant over time and thus
are not included in the state vector. Periodical filter resets allow avoiding large er-
ror accumulation despite this simplifying assumption. During a short steady phase
at the beginning of each experiment, b̂g is estimated by averaging angular velocity
measurements over this time interval. Analogously, the averaging across accelerom-
eter readings produces an estimate of the acceleration due to gravity affected by the
accelerometer bias in the reference (start) frame g̃ = g + b̂ref

a . Thus, the object ac-
celeration in global coordinates can be approximated rotating the measured local
acceleration ak by means of the current estimated device orientation q̂+

b,k ⊗ q̂+
k and

subtracting g̃. Thus, the right part of the Eq. 5.5 can be rewritten as:

qrot(q̂+
b,k ⊗ q̂+

k ,ak − b̂a)− g =

= qrot(q̂+
b,k ⊗ q̂+

k , ak)− b̂re f
a − g

= qrot(q̂+
b,k ⊗ q̂+

k , ak)− g̃.

The propagation of the error covariance matrix Pk is done according to the stan-
dard EKF formulation, as described in Sec. 2.4, Eq. 2.20-2.21.

At t0 (the beginning of scene reconstruction) the filter is initialized with zero
velocity, translation and orientations. In the performed experiments, the error co-
variance matrix has been set to

P0 = 10−4 · Id14. (5.8)

1Note that this equation had an error in [PLK18], missing the first term on the right-hand side, i.e.
q̂+

k +.
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As soon as new IMU values are available, the system state vector (Eq. 5.4-5.7) and
the error covariance matrix (Eq. 2.20) are propagated. Since the filter correction is
executed only for the last sample of each estimated interval, the intermediate steps
are given as:

x̂+k = x̂−k and P+
k = P−k .

5.4.2 Measurement model

The measurement vector is defined as:

z = [qe ve pe qICP
b ], (5.9)

where ·e represents extrapolated equivalents of the state vector components, while
qICP

b is the previous ICP camera orientation.
In order to calculate zi, first the velocity ṽi, the acceleration ãi and the angular

velocity ω̃i (all in global coordinates) are estimated with a backward Euler method.

ṽi =

{
(pICP

i − pICP
i−1)/∆ti−1, if i > 0

0, else
(5.10)

ãi =

{
(ṽi − ṽi−1)/∆ti−1, if i > 1
0, else

(5.11)

q̃ω,i =

{
2

∆ti−1
(qICP

i − qICP
i−1)⊗ q∗ICP

i−1 , if i > 0

(1, 0T), else
, (5.12)

where pICP, qICP are the translational and rotational part of the respective ICP camera
pose estimates, ∆ti is the time between ICP frames i and i + 1, and q̃ω = (0, ω̃)
contains the angular velocity ω̃ as its imagery vector component.

After that, the measurements are calculated with an explicit Euler method:

qe
i+1 = q∗ICP

i ⊗ (qICP
i +

1
2

∆tiq̃ω,i ⊗ qICP
i )2 (5.13)

ve
i+1 = ṽi + ∆tiãi (5.14)

pe
i+1 = ∆tiṽi. (5.15)

The measurement function h(·) is linear and only copies the a-priori estimates:

h(x̂−k+1) = x̂−k+1. (5.16)

5.4.3 Noise Modelling

Besides bias, whose treatment is explained in 5.4.1, the IMU measurements are per-
turbed by white noise w, which is commonly modelled as Gaussian [TW04]. w is
considered in the process noise covariance matrix Q.

The noise in the virtual measurements arises from uncertainties in the estimation
of the motion parameters (Eq. 5.10-5.12) used by the extrapolation. More precisely,
the linear and angular velocities, estimated over an interval (i − 1) → i, and the
acceleration over (i − 2) → i, are assumed to be constant over the next interval

2Note that this equation had an error in [PLK18], missing the second term on the right-hand side,
i.e. qICP

i +.
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i → (i + 1), which generally is an approximation and not the true state. Having
the camera pose TICP

i+1 , the true values vi, ai and ωi can be calculated retrospectively,
substituting the left parts of the Eq. 5.13-5.15 with ICP results and solving them for
the respective motion parameters. Then, the current deviations from the true values,
normalized by the time intervals, can be obtained as

∆vi = (ṽi − vi)/∆ti (5.17)
∆ai = (ãi − ai)/∆ti (5.18)

∆ωi = (ω̃i −ωi)/∆ti. (5.19)

The above calculations have been applied to the outcomes of the three scene re-
construction experiments in order to estimate the distributions of ∆v, ∆a and ∆ω (see
Fig. 5.2A-5.2B for two examples). The results demonstrate that they follow a Gaus-
sian distribution with zero mean, which justifies modelling them as white Gaussian
noise.
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FIGURE 5.2: Examples of estimated pdf of virtual noise.

Even though both noise covariance matrices are conceptually related to real-
world physical noise measures, in the present approach they are treated as filter
tuning parameters by setting them as constant, diagonal matrices. The matrix val-
ues are determined experimentally by manual optimization with respect to filter
response and noise rejection as described hereafter. This kind of simplification is
repeatedly applied in the context of inertial navigation, e.g. [Cav+14], and it yields
satisfactory precision at minimal computational costs, i.e. minimal time delays for
the overall system (see Sec. 5.5.2).

The values of the noise covariance matrix Q are determined taking the following
considerations into account. The integration of angular velocity (after bias subtrac-
tion) delivers rather precise orientation estimations. The velocity estimation, and,
even worse, the position estimates, are less precise due to the high-frequency noise
in the acceleration values and the double integration. After manual optimization,
the Q’s diagonal matrix elements that correspond to q, v, p and qb are set to 10−5,
10−2, 10−1 and 10−5, respectively. The measurement noise covariance matrix R is set
in an analogous manner. Initially, some simulation experiments were conducted in
order to get more insight into the precision of the ICP extrapolation values. They
showed a higher precision for positional and a lower precision for rotational values.
The base orientation from ICP, interpreted as true state, gets the highest confidence,
i.e. the smallest noise value. After manual optimization, the R’s values that corre-
spond to qe, ve, pe and qICP

b are set to 10−3, 10−6, 10−5 and 10−13, respectively.
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From the perspective of accuracy and precision, more sophisticated approaches
to calculate Q and R incorporating, e.g., measured IMU noise values and dynamic
adaptation, are promising. However, besides the additional work load and resulting
loss in temporal performance, the asymmetrical design of the proposed EKF, i.e. the
unequal number of prediction and correction steps, is a major challenge for concep-
tual design and implementation of these kinds of filters. For instance, a commonly
used adaptive approach applies noise covariance matching by means of innovation
or residual covariances during each correction step [Meh70; Wan99]. These covari-
ances are estimated within a sliding window of the n latest measurement updates,
and it is assumed that the error covariance matrix P (Eq. 2.18) is constant within this
temporal window [AS16]. This assumption, however, is unjustifiable in the present
case, as ≈ 10 system propagations that update P (see Eq. 2.20) occur between two
consecutive measurement updates.

5.4.4 Correction and Filter Reset

Once a new camera frame i + 1 initiates a new cycle of the reconstruction pipeline
(see Fig. 2.2), the estimation of the pose transformation for the interval i → (i + 1)
is terminated and the result T̂EKF

(i+1)→i is available for the ICP pipeline module. At
ti+1, i.e. at the end of the interval, the virtual measurements are computed via ICP
extrapolation (Eq. 5.13-5.15) and the EKF correction is executed. Due to the linearity
of h(·) the Kalman gain equation (cf. Eq. 2.22) can be written in a simplified form:

Kk+1 = P−k+1(P−k+1 + R)−1. (5.20)

Knowing the Kalman gain, the a-posteriori estimates of the system states and of
the error covariance matrix (see also Sec. 2.4, Eq. 2.24-2.25) are computed as

x̂+mi
= x̂−mi

+ Kmi(zmi − x̂−mi
) (5.21)

P+
mi

= (I − Kmi)P−mi
, (5.22)

where mi is the last IMU sample index in the current inter-frame interval i→ (i + 1).
Than the current camera pose estimate is determined as

p̂Init
i+1 = pICP

i + p̂+
mi

(5.23)

q̂Init
i+1 = qICP

i ⊗ q̂+
mi

. (5.24)

After the submission of the pose frame-to-frame component to the ICP module,
the EKF is reset for the next inter-frame interval (i + 1)→ (i + 2) as

x̂0i+1 = g(x̂+mi
qICP

i ), (5.25)

where g is the reset function that re-initializes the state vector as follows:

q̂0i+1 = (1, 0T) (5.26)
v̂0i+1 = v̂+

mi
(5.27)

p̂0i+1 = 0 (5.28)

q̂b,0i+1 = qICP
i ⊗ q̂+

mi
. (5.29)

Consequently, the errors in the frame-to-frame translation and rotation are not prop-
agated to the next interval and the base orientation includes only an error from the
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last frame-to-frame rotation estimate. Finally, the error covariance matrix P is re-
initialized:

P0 = Jg(x̂+mi
)P+

mi
Jg(x̂+mi

)T, (5.30)

where

Jg(x̂+mi
) =

∂g
∂x̂+mi

∣∣∣∣
qICP

i

(5.31)

is the Jacobian of g(x̂+mi
). Since the part that relates to the frame-to-frame translation

and rotation is cleared to zero, the corresponding diagonal values are reinitialized
like in Eq. 5.8.

5.4.5 Synchronization

Although incoming depth images and IMU data are provided with timestamps, the
respective clocks are unsynchronized. In the present implementation a simple syn-
chronization approach considering relative times between samples is used. The EKF
is initialized with the first incoming depth image. The arrivals of subsequent depth
images serve as synchronization events. At each such synchronization event, the
time ∆tD between two last depth image timestamps (camera inter-frame time) and
the integration time ∆tEKF of the EKF, accumulated between the events provoked by
the corresponding images, are compared.

If ∆tEKF > ∆tD, the number of integration steps is cut off to match ∆tD. If ∆tEKF <
∆tD, we cut off the corresponding IMU raw data at the beginning of the next interval.

5.5 Results

5.5.1 Experimental setup and evaluation criteria

The system described above is implemented on a Tango Yellowstone Tablet with a
NVIDIA Tegra K1 processor. The range data are provided by an external CamBoard
picoflexx fixed on the tablet and connected via USB. The picoflexx provides≈ 15 FPS
at a resolution of 224× 171 px. For a comparison of principle characteristics of the
equipments used in the handheld system in this project and in a recent desktop
solution [Lef+17], they are summarized in the Tab. 5.1.

TABLE 5.1: Key measures of a typical desktop platform used in recent
publications, e.g. [Lef+17], and mobile devices (Tegra K1). Note that
the performance and fill-rate figures are imperfect, as there are no

standardized acquisition processes.

Desktop Platform Mobile Platform
CPU Capacity: • CPU/#cores
GPU Capacity: • GPU

• # Cores / RAM
• Perform./Fillrate

Intel i7-4790 / 4
NV GeForce GTX 980 Ti
2816 cores / 6 GB
5.6 TFLOPS / 176 GTex-
el/s

A15 ARM / 4
NV Kepler
192 cores / 4 GB
0.365 TFLOPS / 7.6 GTex-
el/s

3D Camera: • Type
• Spatial@temp.
• Point Diameter@1.2 m dist.
• Noise/Variance@1.2m dist.

Kinect One (ToF)
512x424 px @ 30 Hz
2.7 mm
1.2 mm

picoflexx
224x171 px @ 15Hz
6.2 mm
2.8mm

In order to evaluate the achievable accuracy with the given system, a geometric
resolution target consisting of bars and spaces of different widths was designed (see
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Fig. 5.3). The width decreases from left to right: 22 mm, 14.5 mm, 9 mm, 6 mm,
4 mm, 2.5 mm and 1.5 mm. The target was captured from a distance of 0.5 m, which
corresponds to a theoretical point diameter of≈ 2.5 mm (see Tab. 5.1). Fig. 5.3 shows
the result of the target reconstruction. The two largest spaces are clearly recognis-
able, the next two are partially closed and the space of 4 mm is only distinguishable
as a groove without holes. The space smaller than 4 mm cannot be recognized. This
result is expected, as the imaging system’s optics, e.g. its point-spread function, lim-
its the system resolution.

FIGURE 5.3: Reconstruction of the geometric resolution target. Space
widths left to right: 22 mm, 14.5 mm, 9 mm, 6 mm, 4 mm, 2.5 mm and

1.5 mm.

The depth camera is calibrated against the integrated RGB camera of the tablet
using standard calibration methods [Zha00]. In order to calculate the complete cal-
ibration matrix, the transformation between RGB camera and IMU from the Tango
library is used.

(A) Hen scene and Tango tablet
with mounted picoflexx cam-

board in start position

(B) Hen Duplo scene. (C) Office scene.

FIGURE 5.4: The test scenes used for evaluation.

To demonstrate an improvement of tracking robustness by the proposed method,
extreme scenarios with fast handheld camera motions and abrupt directional
changes were applied. In the experiments, a data set consisting of range and IMU
data was acquired for each of three different scenes used for this purpose (see
Figs. 5.4A-5.4C). The first scene, with relatively sparse geometric details, is com-
posed of a gypsum hen figure and two cubes with gypsum eggs thereon (Hen). For
the second data set Hen was extended with some Lego Duplo figures (Hen_Duplo).
The third scene shows an office desk (Office). The data was acquired by moving
the camera around the respective scene with loop closure. In addition, the (Hen)
scene was recorded with slower, smoother camera movements (Hen_Slow) in order
to evaluate the system under moderate motion conditions.

The result of the proposed tracking method (ICP+IMU) is compared with the
ICP initialized with identity matrix (ICP) in consideration of the following aspects.
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Levels of Image Pyramid: Executing the ICP on several levels of the input image
stabilizes the camera pose estimation (see Sec. 2.2.2). However, this hierar-
chical approach requires additional computations and memory. The results
demonstrate that due to the enhanced initial guess by ICP+IMU, good cor-
respondence pairs already are obtained at the full image resolution, thus de-
creasing the overall computation and memory requirements. In the described
experiments, l=3, l=2 and l=1 pyramid levels are used.

Frame Dropping: The throughput of the reconstruction pipeline on the given mo-
bile hardware is ≈ 8 FPS while the picoflexx delivers ≈ 15 depth frames per
second. Thus, in real time the pipeline is unable to process all data and has
to drop some frames. Such an online frame dropping depends on different
internal factors of the operating system and is therefore unpredictable. In or-
der to achieve reproducible results, a controlled frame dropping approach was
used in the respective experiments. This approach processes a predefined set
of depth images, independently of the processing time of the mobile device,
leading to test sequences All, 1/2 and 1/4 that contain all, each second and
each forth depth frame, respectively. The frame dropping enlarges pose trans-
formation between consecutive processed frames and leads to similar inputs
as capturing the same motion at a higher speed.

In order to evaluate the overall tracking precision and global drift errors, the
camera path is set up as loop-closures, i.e. with the same start and end pose. Thus,
the positional and rotational drift for each test sequence and pose estimation method
can be calculated as absolute differences between the first and final estimated posi-
tion and orientation, respectively (see Tab. 5.2-5.5). Large drift errors indicate unre-
liable pose estimations: in cases where they exceed the specified thresholds ( 0.15 m
for positional and 10◦ for rotational error), the respective results are placed in paren-
theses, even though ICP itself did not fail, i.e. no matrix singularity occurred.

A reduction of the image pyramid does not automatically lead to a smaller total
number of ICP iterations since a bad initial guess can slow down the convergence on
lower pyramid levels. In order to demonstrate the impact of pyramid reduction on
the computational effort, the mean and the standard deviation of the total iteration
number are considered for each experiment.

Finally, the enhancement of the initial guess by the proposed method is evalu-
ated, considering the difference in position and orientation between the EKF esti-
mate, i.e. the ICP’s initial pose, and the final pose after ICP (Init_EKF) and compar-
ing it with the respective difference between the last and current ICP pose (Init_Id),
which corresponds to the common ICP initialization with the identity matrix.

Besides the demonstration of an improvement over the standard ICP initializa-
tion, the present method is also compared with the Tango VIO-based initialization
approach proposed in [Dry+17]. For this purpose, the respective pose from Tango
tracking for each incoming depth image was saved during the Office scene cap-
turing. After the scene is reconstructed, the pose predictions are calculated offline,
using the stored Tango data and the ICP results. Again, differences between Tango-
based predictions and ICP poses (Init_Tango) are obtained.

5.5.2 Evaluation

The experimental results in Tab. 5.2-5.4 show a considerable improvement of track-
ing robustness by ICP+IMU. Considering fast motion scenarios, ICP delivers reli-
able results only for one configuration, i.e. the Hen_Duplo scenario (Tab. 5.3) with
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(A) Office scene reconstruction results (B) Office Scene with ghosting

FIGURE 5.5: The Office scene reconstruction results. (A) recon-
structed with ICP+IMU method, 1/2 frames, l=1. (B) shows ghost

artefacts by the reconstruction with ICP method, All frames, l=3.

all pyramid levels and all frames (which is de-facto not achievable in online mode),
whereas ICP+IMU yields valid reconstruction in almost all scenarios and configu-
rations. Fig. 5.5B shows visual artefacts due to a large drift error in the Office scene
reconstructed by ICP using All frames and l=3. The comparison Fig. 5.5A shows
the more precise reconstruction results achieved with ICP+IMU using fewer frames
(1/2) and pyramid level (l=1). Note that the artefacts on the computer screen are
attributable to the general weakness of ToF cameras in capturing strongly light ab-
sorbing, i.e. dark, surfaces.

For the frame dropping rate 1/2 that is close to the online frame dropping due
to the hardware limitations, ICP+IMU works successfully in all experiments, which
demonstrate real-time capability of the proposed method. Furthermore, ICP+IMU
preserves tracking stability with fewer pyramid levels in most cases. In particular, in
all tests with the “online-like” frame dropping 1/2 the pose estimation on the basis
of original image resolution (l=1) was possible.

On the other hand, in the experiment with a slow camera motion (Tab. 5.5), suit-
able for scene reconstruction with ICP, the application of ICP+IMU does not de-
teriorate tracking results and exhibits higher robustness under the highest frame
dropping (1/4) with a reduced image pyramid (l=2, l=1).

As can be seen in Tab. 5.3 and 5.5, in those experiments where both methods have
delivered reliable results, the mean iteration number in ICP+IMU is only marginally
below the one of ICP. In general, however, ICP+IMU achieves a robust result with
considerable fewer overall iterations when fewer pyramid levels are used. As ex-
pected, the drift errors are comparable in cases where ICP and ICP+IMU deliver
reliable results.
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TABLE 5.2: Hen scenario: The rotational and positional drift errors,
as well as the total number of iterations for the ICP and the ICP+IMU
method for different frame dropping (All, 1/2, 1/4) and different pyra-

mid level (l=3, l=2, l=1). ∅ indicates ICP failure.

Fr
am

es ICP ICP ICP ICP+IMU ICP+IMU ICP+IMU

Pyr. lvl. l=3 l=2 l=1 l=3 l=2 l=1

A
ll

Rot. drift, ◦ (176.389) (37.729) ∅ 2.689 2.724 ∅
Pos. drift, m (1.3352) (0.6740) ∅ 0.0122 0.0126 ∅
Iterations (9.14±2.76) (6.56±2.21) ∅ 8.34±1.74 5.79±1.52 ∅

1/
2

Rot. drift, ◦ ∅ ∅ ∅ 2.847 2.836 2.826

Pos. drift, m ∅ ∅ ∅ 0.0129 0.0127 0.0126

Iterations ∅ ∅ ∅ 8.59±1.75 6.13±1.68 3.72±1.10

1/
4

Rot. drift, ◦ ∅ ∅ ∅ 2.719 ∅ ∅
Pos. drift, m ∅ ∅ ∅ 0.0127 ∅ ∅
Iterations ∅ ∅ ∅ 9.24±2.16 ∅ ∅

TABLE 5.3: Hen_Duplo scenario: The rotational and positional drift
errors, as well as the total number of iterations for the ICP and the
ICP+IMU method for different frame dropping (All, 1/2) and differ-

ent pyramid level (l=3, l=2, l=1). ∅ indicates ICP failure.

Fr
am

es ICP ICP ICP ICP+IMU ICP+IMU ICP+IMU

Pyr. lvl. l=3 l=2 l=1 l=3 l=2 l=1

A
ll

Rot. drift, ◦ 8.948 ∅ ∅ 8.944 8.954 8.963

Pos. drift, m 0.1106 ∅ ∅ 0.1106 0.1107 0.1107

Iterations 8.61±1.74 ∅ ∅ 8.46±1.74 5.74±1.39 3.34±1.01

1/
2

Rot. drift, ◦ ∅ ∅ ∅ 8.744 8.742 8.737

Pos. drift, m ∅ ∅ ∅ 0.1088 0.1088 0.1087

Iterations ∅ ∅ ∅ 8.96±2.00 6.10±1.69 3.62±1.70

TABLE 5.4: Office scenario: The rotational and positional drift errors,
as well as the total number of iterations for the ICP and the ICP+IMU
method for different frame dropping (All, 1/2) and different pyramid

level (l=3, l=2, l=1). ∅ indicates ICP failure.

Fr
am

es ICP ICP ICP ICP+IMU ICP+IMU ICP+IMU

Pyr. lvl. l=3 l=2 l=1 l=3 l=2 l=1

A
ll

Rot. drift, ◦ (44.835) (36.385) (38.623) 1.089 1.097 0.814

Pos. drift, m (0.6259) (0.4438) (0.4921) 0.0179 0.0178 0.0114

Iterations (9.63±2.33) (6.85±2.13) (4.13±1.6) 8.93±1.61 5.95±1.55 3.31±1.05

1/
2

Rot. drift, ◦ ∅ ∅ ∅ 1.268 1.270 1.260

Pos. drift, m ∅ ∅ ∅ 0.0185 0.0186 0.0185

Iterations ∅ ∅ ∅ 8.97±1.50 6±1.35 3.44±0.89
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TABLE 5.5: Hen_Slow scenario: The rotational and positional drift
errors, as well as the total number of iterations for the ICP and the
ICP+IMU method for different frame dropping (All, 1/2, 1/4) and dif-

ferent pyramid level (l=3, l=2, l=1). ∅ indicates ICP failure.
Fr

am
es ICP ICP ICP ICP+IMU ICP+IMU ICP+IMU

Pyr. lvl. l=3 l=2 l=1 l=3 l=2 l=1

A
ll

Rot. drift, ◦ 2.286 2.408 2.301 2.348 2.361 2.309

Pos. drift, m 0.0162 0.0178 0.0166 0.0169 0.0173 0.0167

Iterations 8.44±1.60 5.82±1.38 3.44±0.99 8.35±1.70 5.55±1.30 3.23±1.47

1/
2

Rot. drift, ◦ 2.255 2.289 2.275 2.262 2.254 2.268

Pos. drift, m 0.0146 0.0150 0.0151 0.0147 0.0147 0.0148

Iterations 8.63±1.62 6.19±1.52 3.87±1.15 8.58±1.80 5.71±1.24 3.42±1.00

1/
4

Rot. drift, ◦ 2.323 (37.044) (36.609) 2.262 2.254 2.313

Pos. drift, m 0.0165 (0.4694) (0.4721) 0.0147 0.0147 0.0160

Iterations 9.47±2.49 (7.51±2.38) (5.12±2.06) 8.57±1.80 5.71±1.24 4.13±1.76

Concerning the difference between the initial guess and final pose, Fig. 5.6 and
5.7 show the absolute errors for a sequence of ≈ 130 frames of the Office scenario
with l=1 for frame dropping All and 1/2. In the vast majority of the frames there is a
significant improvement by the EKF prediction. The overall relative error Init_EKF
/ Init_Id for the range image sequence of All frames is 0.5392± 0.6965 for the mean
relative positional and 0.4556 ± 0.3697 for the mean relative rotational error. The
dropping of one half of the frames (1/2) results in a mean relative position error of
0.4348 ± 0.4546 and a mean relative rotational error of 0.3283 ± 0.2876. Thus, for
faster motion relatively better initializations could be obtained using the present
method.

280 290 300 310 320 330 340 350 360 370

Frames

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
is

ta
n

ce
, 

m

Init_Id (All)
Init_EKF (All)
Init_Id (1/2)
Init_EKF (1/2)

FIGURE 5.6: Distance quality of EKF estimate Init_EKF comparing
with the standard initialization approach Init_Id for the Office sce-

nario with frame dropping All, 1/2.

As a comparison, the Tango-based initialization according to [Dry+17] produces
with the frame sequence 1/2 a mean relative error Init_Tango / Init_Id of 0.2926±
0.3147 in position and 0.4349± 0.4659 in orientation. The results demonstrate that
the method proposed here is only slightly less precise in position prediction, and at
the same time has a slightly higher precision in orientation prediction. In summary,
it allows to obtain an initial guess precision comparable with the above VIO method
without requiring a fisheye camera with large opening angle and high temporal and
spatial resolution.
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FIGURE 5.7: Angular quality of EKF estimate Init_EKF comparing
with the standard initialization approach Init_Id for the Office sce-

nario with frame dropping All, 1/2.

The processing of an individual input depth frame according to Fig. 2.2 requires
≈ 23 ms for the preprocessing stage, 20− 25 ms and≈ 11 ms for the pose estimation
stage in the l=3 and the l=1 case, respectively, 41− 51 ms for the depth map fusion,
and 35− 57 ms for the surface reconstruction.

5.5.3 Limitations

Gap in sensor sampling rate A higher sampling frequency of IMU allows to bridge
longer intervals between depth images. However, the integration of raw IMU data
leads to a considerable sensor drift due to error accumulation (see discussion in
Sec. 5.4). Although the proposed method partially corrects the integration errors
by the EKF at the end of each inter-frame interval, the error increases for longer
temporal gaps between successive processed depth images, causing the a-posteriori
estimates of the EKF to be less precise. Furthermore, larger inter-frame intervals lead
to a decreased reliability of the ICP pose extrapolations, particularly in the case of
abrupt changes of motion direction. Thus, the difference between initial guess and
final pose in the present method increases by higher frame dropping rates albeit, as
a general tendency, remaining below this parameter in the standard approach. For
example, only one “fast” data set (Hen) can be processed with the dropping rate 1/4
(see Tab. 5.2).

The only way to counteract this problem is to reduce the inter-frame gap by faster
depth frame processing, which, in turn, requires novel reconstruction approaches.

Noise estimation A further aspect that can limit the prediction precision is low ac-
curacy of the noise estimation. As described in Sec. 5.4, the process noise covariance
matrix was tuned experimentally, however, a measurement-based noise estimation,
for instance using Allan variance [ESHN08], might provide more accurate results.
Concerning the noise of ICP extrapolations, an online calculation depending on the
length of the inter-frame interval may lead to a more appropriate noise estimation
model.

ICP failure handling A good initial guess of the current camera pose can prevent
ICP errors, such as convergence in local minima or false correspondence associa-
tion, related to large frame-to-frame transformations. However, a lack of geomet-
ric features, e.g. when sliding along planar geometries, also results in ICP stability
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problems. In these cases the ICP and EKF estimations diverge. If this constellation
appears in several successive frames, tracking failure may occur. The experiment
Hen, All, 1/2, l=1 (Tab. 5.2) shows that in this particular case even discarding frame
prevents tracking failure.

A possible solution for the problem above is to discard ICP results for such
frames, continuing inertial-based estimation until new reliable ICP estimates are
available. This requires sophisticated ICP error detection [NDF14; HBG12]. This
improvement is orthogonal to the proposed method and can be integrated in the
system.

5.6 Conclusion

TABLE 5.6: Overview of the fundamental characteristics of mobile
approaches for scene reconstruction from range data: required sen-
sors, application of sensor fusion, internal model representation and

system performance (value is n/a if no data are available).

Ours Dryanovski et al. [Dry+17] Kähler et al. [Käh+15]

Sensors:
• Range camera resolution
• FPS
• IMU
• Additional sensors

224x171
15
+
-

n/a
5
+
RGB Cam

320x240
60
+
-

Sensor fusion:
• Estimated parameter
• Input sources
• Target

Position+orientation
IMU+ICP
ICP initial guess

Position+orientation
IMU+RGB Cam
ICP initial guess

Orientation
IMU
Rotational part of end pose

Scene representation / performance:
• Type of representation
• Object space resolution
• Model extent
• FPS

Sparse points
2.5 mm
Unlimited
9

Spatially hashed grid
2 cm
Unlimited
≥ 5

Spatially hashed grid
n/a
Unlimited
47

In this chapter, a novel method for real-time 3D reconstruction on mobile de-
vices, which is a part of the VICC personalization component, was presented. This
lightweight solution uses IMU data as the only additional sensory input. Its pose es-
timation incorporates a novel EKF-based fusion of inertial tracking data with extrap-
olated ICP camera poses in order to initialize the ICP pose estimation. The experi-
mental results demonstrate considerable enhancement of the tracking robustness in
comparison with the common initialization approach. On the one hand, this method
shows a higher stability in the case of a fast camera motion. On the other hand, it
reliably deals with the low temporal resolution of highly integrated depth cameras
such as the picoflexx. In addition, the robust ICP initialization allows to reduce the
number of ICP image pyramid levels and, consequently, to achieve a higher depth
frame throughput. All in all, the proposed approach minimizes the negative im-
pact of hardware limitations existing on a mobile system and allows 3D point-based
scene reconstruction for fast camera motion. Tab. 5.6 summarizes some distinctive
characteristics of the approaches for scene reconstruction from range data on mobile
devices, illustrating the most important conceptual differences between the present
method and existing solutions.3 Having demonstrated the feasibility of a sufficiently

3The parameter “Model extent” in this table refers to the extent limitations due to the system design.
Note that the real model size is also limited by available memory.
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precise 3D reconstruction using mobile devices only, this approach can be comple-
mented with a model fitting method to produce personalized patient body models
for anatomically integrated visualization.





73

Chapter 6

Iconic Glyphs

This chapter describes the iconic glyph approach as a visualization component of
the VICC concept (see Sec. 3.2.1). This approach combines the principles of the icon-
based and glyph-based visualization, at the same time, augmenting the traditional
design space of glyphs with periodic contour-based visual variables. To allow the
use of these kinds of visual variables for quantitative visualization, first, a suitable
perception and quantization model is required. Sec. 6.1 addresses this problem, bas-
ing on the study published in [PK22]. Then, Sec. 6.2 describes the technical aspects
of the approach for glyph generation from icons, published in [PBK23], comprising
some application examples and their evaluation.

6.1 Perception and Quantization Model for Periodic Contour
Modifications

6.1.1 Introduction

In visualization, the visual augmentation of contours is often used to extend the
amount of available visual channels to represent further attributes of multidimen-
sional data in parallel. This can be implemented, for instance, by variation of a
contour’s colour, width and/or fuzziness, i.e. degree of blurring, or by means of a pe-
riodic, wave-like contour modification, which results in additional visual variables
such as frequency, amplitude, and waveform (see Fig. 6.1).

In Scientific Visualization, this kind of contour augmentation is applied, for ex-
ample, to enhance the encoding capacity of isolines [AOB08; ZMG21]. In Infor-
mation Visualization, there are a number of approaches, which create glyphs or
their parts from circular shapes, modulating their contours by a (mostly sinusoidal)
wave. Such applications include the visualization of uncertainty (encoded by fre-
quency [Hol+19; Gör+17] or amplitude [Gör+17]) and sport event data (encoded by
frequency [Chu+13]) as well as the generation of more complex glyphs such as Rose-
Shapes [Cai+15]. Besides circles, the contour waves have been also applied to iconic
shapes such as leaf icons, to represent environmental data by means of frequency
and amplitude [Fuc+15].

Even if such contour waves prove to be a promising design solution, the per-
ceptual aspects of the respective visual variables have not been thoroughly inves-
tigated. While there are several studies that address the problem of perception
and discrimination of more “classical” visual variables, e.g. colour [Wij+08; SSG14],
size [LMW10], or the interdependencies of both [SSS14], the work related to peri-
odic contour modifications, to the best of my knowledge, is limited to the demon-
stration of the shapes’ orderability by frequency [Hol+19; Chu+16], based on user
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experiments, and to a rather abstract discussion about dependencies between wave
amplitude and frequency without user studies [Gör+17].

(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

FIGURE 6.1: Examples of periodic contour modifications. (A)–(C):
visual encoding by varying wave amplitude; (D)–(F): visual encod-
ing by varying wave frequency; (G)–(I): visual encoding by varying

waveform.

Motivated by this fact, in this section, a perception and quantization model for peri-
odic contour modifications is proposed, which provides a basis of glyph design for
visualization of multivariate quantitative data in general and for the iconic glyph de-
sign, described in Sec. 6.2.4, in particular. The proposed model addresses the essen-
tial properties of a quantitative visualization such as perceptual uniformity [Bor+13]
and accurate legibility [War09], performing a purposefully created user study and
evaluating its results. Perceptual uniformity signifies that the representation of equally
sampled data values have to be perceived in visual space as equidistant. However,
mapping data to equally distributed discrete stimulus levels does not guarantee per-
ceptual uniformity, since the relation between stimuli and sensation is generally not
linear [Ste57]. Therefore, the present model comprises an estimation of an appro-
priate transformation function between stimulus magnitudes and perceived magni-
tudes. Accurate legibility corresponds to the distinguishability of the levels of a visual
variable that encode quantitative data [War09], which, in turn, implies a quantiza-
tion, where the distances between single levels are equal or greater than the just no-
ticeable difference (JND). To satisfy this requirement, a quantization scheme, which
aims to an optimal balance between the legibility and the visual capacity of the re-
spective visual variable, i.e., the number of values it can encode [Chu+13], has been
derived.

Since the goal is a generic approach that covers a large number of potential visu-
alization tasks in the context of VICC, different waveforms and iconic shapes instead
of a single, fixed geometric primitive such as a circle are considered by derivation
of the respective model. Moreover, it is taken into account that the visual effect of
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contours modulated by a geometric wave can also be achieved by periodic modifica-
tions of the contours’ colour components (cf., e.g., the “null-case glyph” in [Hol+19]).
In particular, this study focuses on the colour modifications, created by alternation
of the contours’ segments with different intensity levels (see Figure 6.2). Consid-
ering both, geometric modifications and colour modifications by varying intensity,
allows to obtain a more generic model of periodic contour modifications, which is
evaluated in an appropriate user study.

(A) Colour amplitude estimation. (B) Colour frequency estimation.

FIGURE 6.2: Design of different colour experiment types. (A),(B)
show examples for direct estimation of colour amplitude magnitude
(with fixed colour frequency) and colour frequency magnitude (with
fixed colour amplitude), respectively; the participants need to assess
the corresponding magnitude in the “Test sample” (right) on the basis

of the reference shapes (left and middle).

To sum it up, this section comprises the following contributions:

• An online user study about perception of periodic geometric and colour con-
tour modifications.

• Modelling of a stimulus-to-perception transformation function for sinusoidal
and colour contour modifications.

• Analysis of perceptual dependencies between amplitude and frequency for ge-
ometry and colour, respectively.

• Evaluation of the waveform influence on the amplitude and frequency percep-
tion, including a calibration model for sinusoidal, rectangular, and sawtooth
waves.

• Definition of distinguishable quantization levels for geometric and colour con-
tour modifications.

• A method for transferring the quantization model to shapes with different
sizes.

6.1.2 Related Work

6.1.2.1 Periodical Contour Modifications in Visualization

There are several recent glyph visualization approaches that use periodic contour
modifications, with application in different fields. For instance, Holliman et al.
[Hol+19] used modified contours of a circular glyph, with wave frequency serving as
a measure of visual entropy to encode uncertainty, while the inner colour of the cir-
cle visualizes the respective mean value. Similarly, Görtler et al. [Gör+17] proposed
a contour-based design space for hierarchical uncertainty visualization by means of
Bubble Treemaps, which includes, among possible alternative visual variables, sine
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wave frequency and amplitude as well as dashed frequency, whereby the latter can
be considered as a kind of discontinuous rectangular wave. Here, mean values are
encoded by circle size. Chung et al. [Chu+13] used contour wave frequency and ra-
dius of a circular silhouette as visual variables in a composite glyph for visualization
of sport event analysis data.

Cai et al. in [Cai+15] followed a different approach, in which frequency, ampli-
tude, and form of contour modifications do not serve as separable visual variables
but as control parameters for construction of unique shapes, so-called RoseShapes,
resulting from periodic functions plotted in polar coordinates.

On the contrary, in the glyph design for visualization of environmental data,
developed by Fuchs et al. [Fuc+15], the original leaf shapes maintain their recogniz-
ability and meaning after contour modifications, while frequency and amplitude of
the resulting serrated boundaries can be used as additional visual channels.

6.1.2.2 Studies of Perception of the Contour Modifications

Early research on visual perception stresses the role of contours as regions of a high
information concentration, especially in the peaks of curvature [Att54], i.e. wave’s
peaks. Nevertheless, since the visualization based on periodic contour modifica-
tions is a relatively new approach, its perception and discriminative capacity have
not yet been investigated in detail and existing research is limited to contours of
circular shapes. Besides psychophysical work that demonstrates the ability of the
human visual system to discriminate shapes on the basis of radial frequencies (e.g.,
[WWH98]), there are two recent visualization studies dedicated to the orderabilty
issue. In particular, Chung et al. [Chu+16] investigated the suitability of specific vi-
sual channels to represent an ordinal scale. The results of their user study show that
star shapes, which can be considered as circles modulated by a triangle wave with
different frequencies, have an ordering. Furthermore, Holliman et al. [Hol+19] per-
formed a user experiment to evaluate their uncertainty visualization approach and
could demonstrate the orderability of circular glyphs with sinusoidal contours. Both
studies used predefined frequency levels.

6.1.3 Materials and Methods

6.1.3.1 Components of the Perceptually Uniform Quantization Model

To develop a perceptually uniform quantization model of wave-like contour modi-
fications, the following aspects are evaluated:

Stimulus-to-perception transformation function, i.e. transformation between
stimulus magnitudes and perceived magnitudes. Assuming that this function
follows Stevens’s power law [Ste57], the corresponding parameters are
estimated statistically.

Perceptual dependencies between amplitude and frequency. Considering a pair
of arbitrary geometric or colour amplitude and frequency values, the goal is
to investigate how changes in one parameter influence the perception of the
other.

Perceptual influence of waveform for geometric amplitude and frequency. It is as-
sumed that the waveform of a geometric contour modification influences the
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perception of the respective amplitude and frequency. Thus, taken the sinu-
soidal shape as reference, the stimulus magnitudes for other shapes that pro-
duce the same sensation need to be acquired.

Quantization of visual variables, i.e. definition of clearly distinguishable and per-
ceptually equidistant magnitude levels. The aim is to achieve a balance be-
tween the number of available levels and their distinguishability.

Size-dependent adaptation. Some rules for transferring the corresponding quanti-
zation to shapes with different sizes are proposed.

The expected model’s outcome are perceptually equidistant levels of each visual
variable for data encoding, and their transformations to stimuli magnitudes and,
where appropriate, to other geometric waveforms for glyph generation. The model
is mainly derived from the results of an online user survey. However, it must be
mentioned that not all aspects could be addressed equally in a single user study.
Firstly, the number of possible dependencies is in exponential relationship to the
number of visual variables, and thus testing all of them in one study leads to an
excessive experiment complexity and time exposure. Secondly, various advanced
experiments imply a previous academic validation of primary test results, which are
provided in this work.

Therefore, several investigations that are undoubtedly of high scientific interest
could not be addressed in-depth in this study. This mainly applies to the following:
(1) The interferences between amplitude and frequency in geometry as well as in
colour for which, however, an initial insight is provided in Section 6.1.4.5. (2) The ex-
perimental validation of the proposed rules to transfer the derived model to shapes
of different sizes (Sec. 6.1.5). (3) The dependencies resulting from a combination of
geometric and colour modifications. All these aspects have to be addressed in future
work.

6.1.3.2 Design of the Experiment

The test samples used in the survey are created from four monochrome base shapes
with white background and black foreground (see Fig. 6.3). The geometric modifi-
cations are produced by modulation of the shape contours according to the given
geometric frequency, amplitude, and waveform, namely sinusoidal, rectangular, and
sawtooth-like (see Figs. 6.1 and 6.4). The amplitude and frequency range, used in
the experiments, is accordingly narrowed as strong perceptual interferences are to
be expected for extremely low and extremely high magnitudes (see [Gör+17]).

FIGURE 6.3: The four base shapes used for generation of modified
contours in the experiments.

The intensity modifications result from alternating intervals of given length (i.e.,
inverse colour frequency) along the contour (see Fig. 6.2). The intensity inside each
next interval changes between the current modified value (i.e., colour amplitude) and
the original black foreground (i.e., colour amplitude = 0). Since all images used in
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the experiments have white background, the maximal colour amplitude is limited to
a value resulting in a light grey colour, in order to maintain contrast.

(A) Amplitude estimation.

(B) Frequency estimation. (C) Amplitude estimation across waveforms.

FIGURE 6.4: Screenshots of different geometric experiment types.
(A),(B) are examples for direct estimation of amplitude (with fixed
frequency) and frequency (with fixed amplitude) magnitude, respec-
tively; the participants need to assess the corresponding magnitude
in the “Test sample” (right) on the basis of the reference shapes (left
and middle). (C) shows an example of a sawtooth amplitude calibra-
tion against a sinusoidal reference; the task is to select the test shape
(a–e) whose amplitude is perceived as the closest to the “Reference”

shape (left).

All shape images have size 512× 512 px and are displayed at size 50× 50 mm.
Table 6.1 summarizes the metric values used to generate the stimuli and gives the
mapping to the stimulus parameter values used for communication in the experi-
ment (see also Fig. 6.4A,B). In each question, the base shape was selected randomly.
The survey comprises two main categories of experiments.

TABLE 6.1: Metric values for the experiment with the glyph size
50 mm. The number in {}-brackets are the corresponding visual vari-
able values (arbitrary digital unit, adu) used for communication in the
experiment. Note that the frequency is proportional to the inverse pe-
riod length. The colour amplitude values are given as value/bright-

ness V in [0, 1], in HSV colour space.

Visual Variable min [mm] max [mm] step [mm]
Geom. amplitude 0.1 {1} 1.2 {12} 0.1

Geom. period length 0.8 {12} 5.1 {1} 0.4
Colour period length 5.9 {5} 12.1 {1} 1.6

min [V] max [V] step [V]
Colour amplitude 0.425 {1} 0.85 {5} 0.10625

Magnitude estimation. Several magnitude estimation experiments [Ste57] were
performed to determine a proper quantization of the visual variables as well as the
transformation function between the stimuli and perception parameter space.

For each visual variable to estimate, the participants got displayed the available
magnitude range by presenting a minimum and maximum reference shape with
the corresponding stimulus parameter values in arbitrary digital unit (adu; for
mapping of the metric or intensity values to the respective adu, see Table 6.1).
Fig. 6.4A,B shows the design of the magnitude estimation experiments for geom-
etry, and Fig. 6.2A,B for colour. The test shape with randomly selected magnitude
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was hidden by default and was uncovered for eight seconds by clicking the corre-
sponding button, and the participants had to assign the perceived magnitude from
a drop-down list (the respective magnitude ranges available for selection are dis-
played in Table 6.2). The stepsize for generating the visual stimuli for the test shapes
(see Table 6.1) was selected to be below a conservatively estimated JND, i.e. signifi-
cantly smaller than the distance distinguishable for the experiment designers, to be
able to derive a suitable quantization from a statistical evaluation.

There are two subtypes of the magnitude estimation experiments in the conducted
survey (see Table 6.2):

1. Fixed second stimulus, e.g. geometric amplitude estimation with a fixed geo-
metric frequency.

2. Randomly selected second stimulus.

TABLE 6.2: Overview of survey experiments. Each row is one ex-
periment type, where the visual variables, i.e. the perceptional pa-
rameters to be assessed, are plotted bold-faced. Other parameters
might be fixed values, indicated by F, or randomly selected, indi-
cated as R. The numbers given in []-brackets are the stimuli values
defined in Table 6.1. The individual experiments are of two kinds:
[2 . . 10]→ [0 . . 12], for example, generates stimuli in the value range
[2 . . 10] and asks for assessing the perceptional values in [0 . . 12],
while x|∈[2. .10] → [x− 2 . . x + 2] generates stimuli values x in the
range [2 . . 10] and asks for assessing the perceptional values in the

dependent range [x− 2 . . x + 2].

Experim. Waveform Geometric Amplitude Geometric Frequency Colour Amplitude Colour Frequency # exp.
Ampl1 sin. [2 . . 10]→ [0 . . 12] F [6] n.a. n.a. 6
Ampl2 sin. [2 . . 10]→ [0 . . 12] R [2 . . 10] n.a. n.a. 20
Freq1 sin. F [6] [2 . . 10]→ [0 . . 12] n.a. n.a. 6
Freq2 sin. R [2 . . 10] [2 . . 10]→ [0 . . 12] n.a. n.a. 20

SawtAmpl sin.→sawt. x|∈[2. .10] → [x− 2 . . x + 2] F [6] n.a. n.a. 5
RectAmpl sin.→rect. x|∈[2. .10] → [x− 2 . . x + 2] F [6] n.a. n.a. 5
SawtFreq sin.→sawt. F [6] x|∈[2. .10] → [x− 2 . . x + 2] n.a. n.a. 5
RectFreq sin.→rect. F [6] x|∈[2. .10] → [x− 2 . . x + 2] n.a. n.a. 5

ColAmpl1 n.a. n.a. n.a. [1 . . 5]→ [0 . . 5] F [3] 3
ColAmpl2 n.a. n.a. n.a. [1 . . 5]→ [0 . . 5] R [1 . . 5] 6
ColFreq1 n.a. n.a. n.a. F [3] [1 . . 5]→ [0 . . 5] 3
ColFreq2 n.a. n.a. n.a. R [1 . . 5] [1 . . 5]→ [0 . . 5] 6

The experiments with fixed second stimulus had been placed at the beginning of
the specific experiment section to make the participants acquainted with the experi-
mental setting, as the experiments with randomly selected second stimulus are more
challenging.

Waveform-dependent calibration has been performed by selecting the modified
shapes with the closest magnitude. To reduce the number of questions, all mag-
nitude estimation experiments for geometric visual variables are done with the si-
nusoidal waveform. To estimate a waveform calibration function, the participants
had to select one out of five glyphs with the perceptually most similar magnitude
to a presented sinusoidal reference (see Fig. 6.4C). The modified shapes offered for
selection were created with the magnitude levels l ∈ [lref − 2 . . lref + 2], where lref

denotes the visual variable values (adu) used for the reference shape, and have been
arranged randomly. These experiments were done separately for each waveform,
i.e. rectangular or sawtooth-like, and for each visual variable (see Table 6.2).
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Additionally, one experiment, not listed in Table 6.2, was performed to verify the vi-
sual distinguishability between the three waveform types—sinusoidal, rectangular
and sawtooth-like—for combinations of low frequencies/low amplitudes and high
frequencies/high amplitudes. The recognition rates were approximately 92%, 99%,
and 99% for sinusoidal, rectangular, and sawtooth-like, respectively.

The design of the experiment assumes to have “cooperative” participants, i.e.
participants that will not “cheat their way through” the experiment, and that the
time limit for the ability to concentrate is at most 20–25 min. Table 6.2 states the
number of experiments taken per experiment type. Each participant was asked to
go through 90 experiments in total.

6.1.3.3 Survey Evaluation

The persons, invited to participate in the online survey, were students and re-
searchers mainly from the University of Siegen, from the fields of computer science
and sociology, and an anonymous group of 73 persons participated. The average
time to take the survey was ≈26 min. Given the raw results from the survey ex-
periments conducted by the participants, the required stimulus-to-perception trans-
formation, quantization, and calibration parameters were determined after having
applied an outlier removal.

Outlier Removal First, the “senseless” answers are filtered out, i.e. answers which
deviate from the expected value to an extend not explainable by the subjective char-
acter of perception alone. These outliers are caused, e.g., by a misunderstanding
of the respective experimental setting or by an external distraction of the partici-
pant while conducting the experiment. Such cases are handled with the two-step
Chebyshev outlier detection method of Amidan et al. [AFC05], applying the filter-
ing parameters p1 = 0.375 and p2 = 0.175 for all visual variables.

Modelling the Stimulus-to-Perception Transformation Function Following
Stevens [Ste57], it is assumed that the stimulus-to-perception transformation has
the form of a power function (Eq. 2.1). Furthermore, to compensate the lack of a
proper zero-origin due to the use of a adu-scale, the power function was extended
with an additive constant, i.e. e(x) = a · xb + c. Thus, having the perceived magni-
tudes, stated by the participants, as data points e(x) and the stimulus magnitudes x
as the independent parameter, a, b, and c are estimated using non-linear least-square
fitting.

Quantization The aim is to find a quantization step ∆v in perceptual space such
that all resulting magnitude levels do not overlap with neighbouring confidence
intervals for a given confidence level. This is analogous to the principle applied by
estimation of just noticeable difference (JND), which is also defined regarding the
probability of correct assignments, usually 50%: the same threshold also is applied
in the experiment, described here. Table 6.3 gives an overview of the quantization
steps and the resulting number of discrete levels for each visual variable.

More precisely, the quantization step is calculated as follows:

1. For each discrete stimulus magnitude level, observe and model the distribu-
tion of perceived magnitudes.
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TABLE 6.3: Quantization results derived from the user experiment
with the image size 50× 50 mm.

Visual Variable Geom. Ampl. Geom. Freq. Col. Ampl. Col Freq.
Quant. step ∆v (adu) ≈2.91 ≈2.01 ≈1.23 ≈1.14

# levels 4 5 4 4

2. Compute the 50% confidence interval, symmetrically placed about the respec-
tive mean.

3. Use the largest confidence interval as ∆v.

Waveform-Dependent Calibration The aim is to define a function that calibrates
the stimulus amplitude and frequency of a rectangular or sawtooth-like waveform
against the respective parameters of a sinusoidal shape. This calibration is modelled
as a linear function h(x) = k · x+ l, with x being the reference sinusoidal magnitudes
from the calibration experiments (see Sec. 6.1.3.2) and the perceived magnitudes re-
garding the rectangular or sawtooth-like waveform as data points. The fitting of h is
done with a least-square method.

Evaluation of Perceptual Dependencies between Amplitude and Frequency To
evaluate the perceptual dependencies between geometric amplitude and frequency,
stimulus-to-perception transformation functions of the investigated visual variable
v1 in dependence on the magnitude of the respective second visual variable v2 are
additionally estimated. To get a sufficient number of samples and taking advantage
of the fact that the differences between neighbouring magnitudes are sufficiently
small, v2 is pooled in intervals. The resulting extended transformation functions for
amplitude and frequency, respectively, are

·ap = e(·as, {· fs}),
· fp = e(· fs, {·as}),

where · is a placeholder for g (geometry) and c (colour), and the second function pa-
rameter is a set of adu levels of v2, which serves as a mask, i.e. only samples where v2
has a corresponding value are considered. For instance, e(gas; {2, 3, 4}) gives percep-
tion of stimulus geometric amplitude gas with geometric frequency g fs ∈ {2, 3, 4}.
The function fitting is performed in the same way as described in Sec. 6.1.3.3, “Mod-
elling the Stimulus-to-Perception Transformation Function”.

For geometry, v2 is pooled in three intervals of three levels each. Since colour
visual variables have been tested with five adu levels in the user study, the following
weighted pooling scheme is applied to get three intervals again. Exemplarily, the
colour frequencies are pooled as

e(cas, {1, 1, 2}), e(cas, {2, 3, 3, 4}), e(cas, {4, 5, 5}),

where a double occurrence of a level in a set signifies that it is considered twice, i.e.
weighted with factor 2. Colour amplitudes are pooled analogously.
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(D) Colour frequency

FIGURE 6.5: Results of the two-step Chebyshev outlier detection: out-
liers are marked in red; the point size encodes the number of occur-

rences.

6.1.4 Results

6.1.4.1 Outlier Removal

Table 6.4 gives an overview for all visual variables. The overall amount of removed
outliers is 4.8%. The detailed statistics of the outlier removal are represented in
Fig. 6.5.

TABLE 6.4: Outlier removal results.

Visual Variable Geom. Ampl. Geom. Freq. Col. Ampl. Col Freq.
# data 1796 1787 648 646

# outliers 102 111 9 11

6.1.4.2 Stimulus-to-Perception Transformation Function

The modelled functions for transformation of stimuli into perceived magnitudes are
presented in Fig. 6.6 (for the estimation method, see Sec. 6.1.3.3, “Modelling the
Stimulus-to-Perception Transformation Function”). For both, geometry and colour
amplitude, a mainly linear and positive power dependency of the perceived magni-
tudes on the stimulus magnitudes can be observed, with the exponent b = 1.0604
and b = 0.928, respectively. The corresponding relationship for frequency is in both
cases close to quadratic, b = 1.7918 and b = 1.9463.
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FIGURE 6.6: Modelling stimulus-to-perception transformation: blue:
fitted transformation functions; orange: lines connecting perceptual

means.

6.1.4.3 Quantization

The distributions of the perceived magnitudes reveal a mono-modal Gaussian na-
ture for most magnitude levels and a bi-modal Gaussian behaviour for medium
values of the geometric amplitude and frequency. The latter can be explained by
a larger distance to the min. and max. references, which can be seen as a design-
related phenomenon. Fig. 6.7 shows the distribution of the perceived magnitudes
with the respective 50% confidence intervals for each visual variable. The 50% confi-
dence for a bi-modal Gaussian distribution is computed by identifying the 25% and
75% limits of the cumulative distribution of the superposition of both Gaussians. For
the calculation methods, see also Sec. 6.1.3.3, “Quantization”.
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FIGURE 6.7: Perceived magnitudes as normal distributions. Red:
simple Gaussian; green: two-component Gaussian mixture; cyan:

borders of 50% confidence intervals.

Table 6.3 gives an overview of the quantization steps and the resulting number of
discrete levels for each visual variable. It can be observed that the distinguishability
of both geometric and colour frequency is slightly better, i.e. their quantization steps
are smaller than in the case of the respective amplitudes.
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6.1.4.4 Waveform Calibration

Fig. 6.8 shows the modelled linear calibration functions (for the estimation method,
see Sec. 6.1.3.3, “Waveform-Dependent Calibration). The data demonstrate that the
influence of a specific waveform on the perception of amplitude and frequency mag-
nitudes is rather marginal, i.e. k ≈ 1 for all four parameters.
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FIGURE 6.8: Calibration of rectangular and sawtooth-like waveforms
against sinusoidal waveform: red: fitted calibration functions; blue:

lines connecting perceptual means.

6.1.4.5 Evaluation of Perceptual Dependencies between Geometric Amplitude
and Frequency

The modelled functions for transformation of stimuli to perceived magnitudes in
dependence on the second visual variable are presented in Fig. 6.9 (see Sec. 6.1.3.3,
“Evaluation of Perceptual Dependencies between Amplitude and Frequency” for
the evaluation method). For the geometric amplitude (Fig. 6.9A), slightly higher
perceived magnitudes for medium frequencies can be observed, which corresponds
to an approximately linear stimulus–perception relationship with the exponent
bmedium = 0.903 (see Section 6.1.4.2), while for low and high frequencies, the trans-
formation function is close to the square root form with blow = 1.2257 and bhigh =
1.3093, respectively. For the geometric frequency (Fig. 6.9B), the perceived magni-
tudes increase with increasing amplitudes, i.e. the transformation function varies
from a weaker to a more pronounced exponential function with blow = 1.4345 <
bmedium = 1.8575 < bhigh = 2.0297. A similar trend can be observed for the colour
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frequency (Fig. 6.9D). However, in this case, it can be explained by the contrast
at the colour interval borders: while high colour amplitudes lead to hard transi-
tions, making the interval alternation more salient, low amplitudes produce a kind
of blurry border, making the intervals appear larger. Finally, colour amplitude per-
ception does not show any apparent pattern in its dependency on colour frequency
(Fig. 6.9C). In general, for all four visual variables, the respective deviations are
rather marginal.
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FIGURE 6.9: Modelling stimulus-to-perception transformation in de-
pendence on the magnitude of the second visual variable.

6.1.5 Transfer to Different Shape Sizes

The quantization levels of visual variables derived in Sec. 6.1.4 are based on the
experiments with a fixed image size 50× 50 mm. To allow a flexible application in
different visualization contexts, a scheme of how to apply the quantization results to
glyphs with different sizes is proposed in the following, even though the evaluation
of this scheme must be deferred for future research. Note that the proposed scheme
does not generate visual variables that are comparable across different scales.
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Before starting with the definition of the transfer rules, first, it is necessary to sum
up the quantization process for the fixed size, introducing some necessary notation.
More precisely, for a perceived visual variable v, initially, the minimum and the
maximum stimulus values smin, smax (in mm) are fixed and the quantization size ∆v
(in adu) is deduced, whereby ∆v is applied to the range vmin, vmax (in adu), which
corresponds to the perception of smin and smax, according to the user experiment
(see Sec. 6.1.3.3). Note that ∆v corresponds to ∆s(v) (in mm), which is in general not
constant (see Fig. 6.6).

To transfer the aforementioned quantization parameters to shapes with a scale
ω > 0 relative to the original shape of 50× 50 mm, the following rules are proposed,
where it is assumed that 0 < ω < 1, since glyphs are rather used at smaller scales:

• Colour amplitude should not be scaled, as intensity perception is independent
of size.

• The “perceptual” stepsize ∆v (and the corresponding stimulus stepsizes ∆s(v))
should not be reduced to preserve the absolute variation (in mm), and thus, the
visual distinguishability.

• The minimum and the maximum stimulus and visual variable values smin, smax
and vmin, vmax, respectively, are scaled according to the following rules:

– The minimum values smin and vmin can only be scaled moderately, i.e.
reduced using ωmin > ω, potentially even ωmin = 1, to prevent, for ex-
ample, visually vanishing amplitudes.

– The maximum values smax and vmax should be scaled by ωmax = ω, to
prevent, for example, extreme distortions for small shapes.

Consequently, the number of levels gets potentially reduced for ω < 1 as the
“usable” range [ωmin · smin, ωmax · smax] gets smaller while the stepsize ∆s(v)
remains unchanged. This problem can be counteracted by reduction of the
scaling effect for the maximum values ωmax = ω + ε ≤ 1 with a user-defined
parameter ε that also depends on the shape’s complexity.

Fig. 6.10 shows some exemplary results of the quantization transfer to shapes
with ω = 0.4.

6.1.6 Conclusion

6.1.6.1 Summary

In this section, based on the results of a user study, the definition of a perceptually
uniform quantization model of periodic contour modifications for a glyph-based
visualization design, comprising the visual variables such as geometric amplitude
and frequency, waveform as well as colour amplitude and frequency, was presented.
The main model components are stimulus-to-perception transformation, waveform-
dependent calibration, and definition of the quantified levels for the corresponding
visual channels. Moreover, an evaluation of the potential impact of the perceptual
dependencies between specific visual variables was provided.

Below, the core findings are summed up:

1. Following [Ste57], the relation between stimuli and their perception for all four
quantitative visual variables, considered in the model, can be modelled as a
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FIGURE 6.10: Transfer of quantization results to different shape’s
sizes: geometric amplitude levels l1, . . . , l3. Top row: original size.
Bottom row: scaled with ω = 0.4. This figure needs to be displayed
according to the given scale. Note that the quantization levels are not

intended to be comparable across scales.

power function (see Sec. 6.1.4.2). Since the adu-scale used in the experiments
does not have a proper zero-origin, the power function was extended with an
additive term to compensate this fact.

2. The influence of waveform on the perception of geometric amplitude and fre-
quency is marginal (see Sec. 6.1.4.4). As a consequence, the corresponding
calibration step in a visualization design can be skipped.

3. The user study shows that the geometric as well as the colour frequency have
a better discriminative capacity than the respective amplitudes (see Sec. 6.1.4.3).
Overall, the geometric frequency has the highest number of quantified levels
in the tested range.

6.1.6.2 Limitations

Additionally to these results, the presented study also allows the following assump-
tions regarding further perceptual aspects of the contour modifications, which still
require an in-depth investigation or validation in future work:

1. A first insight into amplitude–frequency dependencies, provided in this work,
shows certain perceptual trends as a function of the respective second param-
eter, but the resulting deviations are rather marginal and thus can be likely
neglected by a visualization design (see Sec. 6.1.4.5).

2. A method to transfer the model, estimated for shapes with a fixed size
50 × 50 mm, to arbitrary sizes was proposed (see Sec. 6.1.5). The respective
rules were derived heuristically. Also, first exemplary results created with this
method were shown in this section. However, the evaluation of this method
requires a separate user study.

6.1.6.3 Future Work

Finally, the presented results can serve as inspiration for some related topics, which,
however, are beyond the scope of this work:
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1. The current quantization has been statistically estimated on the basis of per-
ceptual data. It may be of interest to compare the presented results with other
estimation methods, for instance, direct JND tests.

2. The corresponding ranges of the geometric visual variables were consciously
narrowed in this user study to avoid the expected strong interferences for low
and high magnitudes [Gör+17], as mentioned in Sec. 6.1.3.2. At the same time,
it can be assumed that the current maximum is still relatively far away from
critical magnitudes. Consequently, the current limits needs further investiga-
tion in a separate experiment. Furthermore, it is to assume that the amplitudes
and frequency limits depend to some degree on the respective base shape, espe-
cially on its local curvature.

3. Colour contour modifications, limited in the current user study to black-white
images, can be transferred to shapes with other foreground colours, but a poten-
tial reduction of the number of colour amplitude levels, depending on the base
shape intensity and the resulting shift of zero amplitude, has to be taken into
account.

4. A combination of two main modification types—geometry and colour—is also
conceivable. According to a specific visualization design, it can be imple-
mented as four independent quantitative visual variables as well as in a cou-
pled form, e.g. with colour frequency equal to geometric frequency and colour
amplitude linked to geometric amplitude. Such combinations potentially en-
tail dependencies between colour and geometry perception.
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6.2 PACEMOD: Parametric Contour-based Modifications for
Glyph Generation

6.2.1 Introduction

Icon-based or iconographic techniques, according to the taxonomy of Keim and
Kriegel [KK96], form one fundamental class of methods for visual exploration of
multivariate, multidimensional data. Their characteristic property is the mapping
of data dimensions to varying visual features [DOL03], i.e. visual variables or chan-
nels, such as size, colour hue, luminance (or colour value), grain, orientation and
shape [Ber83]. In literature, there is no clear consensus on differences between icons
and glyphs. For the sake of consistency, this thesis follows the definition that icons
“represent a sign that itself resembles the qualities of the object it stands for”, while
glyphs “represent different data variables by a set of visual channels” [Bor+13]. In
other words, icons are considered to be static visual objects that transfer to glyphs
by controllable variations of their visual variables.

Glyph design involves two main tasks that affect the intuitive mapping of data
variables to application-related visual variables, namely (1) the selection of an ap-
propriate initial visual object, or icon, including shape and colour, and (2) the modi-
fication of the visual variables of the initial icon, i.e. its geometry and related colour
attributes. To enhance the intuitivity, metaphoric glyphs make heavy use of familiar
and well-understood visuo-spatial phenomena related to the underlying problem
domain [Ris08] in both tasks. The main advantages of metaphoric glyphs relate to
their potential of increased readability in case of realistic glyphs [FR81], and im-
proved data understanding [Fuc+16], e.g., by mapping data to corresponding glyph
parts [Sur05].

On the technical level, the design of metaphoric glyphs is empowered and, at the
same time, limited by the given means of manipulating the glyph’s base icon and its
visual variables, which often involves a large amount of manual graphics design.
Examples are glyphs to visualize the health state of corn cobs [NSS05], environmen-
tal data related to forest fires using leaf-like glyphs [Fuc+15], or car glyphs that map
car-related data to corresponding parts of the base icon [Sur05]. More automated ap-
proaches include procedural and data-driven methods. Procedural methods, such as
RoseShape glyphs [Cai+15; LLZ15], which are sinusoids plotted in polar coordinates
applied to circles, have a very restrict set of base icons. Data driven methods, such
as the automatic generation of emoji-like metaphoric glyphs [Cun+18], are hardly
controllable regarding the variation of their visual variables.

This section introduces the PArametric Contour-basEd MODification (PACEMOD)
concept, a novel approach that allows for controllable geometric and colour mod-
ifications of an icon provided by the user. The proposed approach enhances the
automated generation of metaphoric glyphs, providing two main technical features,
particularly it (1) allows almost any base icon as input and (2) supports the design of
various techniques for modification of the icon contour’s geometry and the related
colour attributes. Technically, it utilizes diffusion curves [Orz+08] (see also Sec. 2.6)
as parametric representation of a user given icon, which are re-parametrized to add
new degrees of freedom (DOF) in an arc-length encoded manner. Using these DOFs
allows to modify the geometry and colour of icon’s contours in a consistent way, cre-
ating visual variables for data encoding but also retaining the icon’s overall shape,
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and thus its recognizability. The PACEMOD concept is exemplified by implement-
ing periodic, wave-like geometry and colour modifications and size variations, op-
tionally applied to selected icon parts. This implementation is far from being ex-
haustive, i.e. the present concept is open to allow other modification approaches for
the visual variables.

In summary, this section comprises the following contributions.

• PACEMOD, a new, diffusion-curve based concept of parametric, contour-
based modification of icons, comprising

– the parametrization of the icon contours as diffusion curves using B-
splines,

– the methodology to insert the DOFs in an arc-length encoded manner,
required to control the visual variables, and

– the utilization of distance transforms (DT) to allow further, geometry re-
lated contour manipulations and the prevention of self-intersection.

• The implementation of the PACEMOD concept with a focus on the automated,
wave-like modification of the icon contour’s geometry and colour.

• Two application examples, namely uncertainty visualization for rain forecast
and gradient glyphs applied to COVID 19 data.

6.2.2 Prior Work

Prior work, conceptually related to the PACEMOD concept, is briefly discussed be-
low.

Metaphoric Glyphs. Metaphoric glyphs form a specific sub-group of glyphs that
try to enhance the underlying communication process by additionally utilizing vi-
sual analogies from the related application domain and ultimately strive for “the
picture becomes the thing it represents” [Ris08]. Several works underline their po-
tential to improve readability [Fuc+16]. For a general overview of glyph design and
application, the reader is referred to the surveys from Ward [War08], Borgo et al.
[Bor+13] and Fuchs et al. [Fuc+16].

Technically, approaches to generate metaphoric glyphs are largely dominated
by manual design processes or rely on structured databases. Nocke et al. [NSS05],
for example, propose a mosaic paradigm that decomposes the icon into tiles, alters
the tiles in size, shape or colour according to the data values, and recombines them
to achieve the final corn glyph. Fuchs et al. [Fuc+15] propose a manual design of
leave-shaped glyphs to utilize the humans ability to visually discriminate natural
shapes by modifying, e.g., the leaf’s morphology, venation and boundary for visu-
alizing multidimensional data related to environmental events such as forest fires.
Often, icons are combined with abstract glyph components. Legg et al. [Leg+12]
and Chung et al. [Chu+13], for example, propose wave-like shape deformations and
colour modifications of a circle to encode a sportsman’s performance, which sur-
rounds the icon describing the specific sports event to be assessed. Li et al. [Liu+16]
propose a dashboard-like glyph to summarize the key features of locations for bill-
board selection, which combines abstract glyphs and feature-related icons.

Besides glyphs based on parametric shape representations, such as RoseShape,
i.e. polar sinusoidal plots resulting in a flower-like glyph [Cai+15], different data
driven approaches have been developed. Cunha et al. [Cun+18], for example,
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present a data-driven strategy for the automatic generation of emoji-like metaphoric
glyphs utilizing a structured emojinating database [CMM18]. Ying et al. [Yin+21]
presented GlyphCreator, a tool for deep learning based decomposition of circle-like
abstract glyphs into several visual elements, which are then manually bound to the
input data attributes.

Contour-based Methods. Contour-based uncertainty visualization meth-
ods [Bon+14] relate to the general question of how to modify shape contours,
also addressed by the present approach. Some of them have already been men-
tioned in Sec. 6.1.2 in relation to the perception of their visual variables. In this
section, instead, the focus is on the generative technical aspects.

Contour-based approaches to encode uncertainty in the underlying data include
the variation of the contour lines’ width [AOB08], the usage of sets of contours
in regions with high uncertainty in segmentation [PRH10], and the modification
of graph nodes and radial colour gradients to encode the relation uncertainties in
graphs. Görtler et al. [Gör+17] propose Bubble Treemaps as an extension of circular
treemaps that encode uncertainty using wave-like modifications and blur-effects ap-
plied to the circular-arc spline contours during the treemap generation process. Hol-
liman et al. [Hol+19] use abstract circle-shaped glyphs for uncertainty visualization
with wave-like modified contours, manually modelled in Blender. Both techniques
are intrinsically linked to a specific primitive as the glyph’s base shape, i.e. a circle.

Diffusion Curves. Diffusion curves images (DCIs), proposed by Orzan et al.
[Orz+08], are a widely used vector graphics form that combines benefits of raster
and vector-based representations, as described in Sec. 2.6. Various functional-
ities and improvements have been developed over the years. The main focus
lies on the conversion of raster images to DCI [Lu+19], enhanced DCI represen-
tation [Xie+14], DCI editing [JCW11; Jes16; Lu+20], and efficient rendering of
DCIs [JCW09; STZ14]. The editing and manipulation approaches proposed so-far
for DCIs are all based on manual intervention. Examples include the methods of
Jeschke and colleagues [Jes16; JCW11], who propose a click-and-drag metaphor for
manipulating diffusion curve properties, and Lu et al. [Lu+20], who present a com-
bination of global and local deformations for manipulating coarse and fine image
content, respectively. In summary, there exists a rich tool set for utilizing DCIs, but
there is no adequate approach to control an icon’s visual variables as required for
automated glyph generation.

PACEMOD in the context of prior work. The PACEMOD approach is conceptu-
ally related to the aforementioned contour-based techniques, especially to [Gör+17;
Hol+19] in using wave-like contour modifications. However, the prior approaches
focus on a specific visualization tasks, e.g. uncertainty visualization, and use a spe-
cific base shape, yielding an appropriate, but relatively limited design space. More-
over, automated glyph generation is mainly realized for simple base geometries like
circles [Gör+17; Hol+19], while glyphs with more complex base shapes are com-
monly designed manually [Fuc+15]. In contrast, PACEMOD aims at a generic glyph
generation concept comprising technical functionalities for a flexible and automated ap-
pearance modification of an arbitrary iconic visual object, used as base shape. To
achieve these goals, the present approach uses a parametric glyph representation,
based on DCIs.
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6.2.3 PACEMOD Concept

This section describes the technical foundations of the proposed approach for PAra-
metric Contour-basEd MODifications (PACEMOD) of an icon. The discussion of the
basic principles comprises the representation of the initial icon (Sec. 6.2.3.1) and the
pre-processing (Sec. 6.2.3.2), the general approach to contour-based modifications
(Sec. 6.2.3.3), and the final post-processing (Sec. 6.2.3.4). A specific approach im-
plementation for periodic, wave-like modifications of the contour’s geometry and
colour is explained in Sec. 6.2.4. An overview of the PACEMOD generation process
is represented in Fig. 6.11. The main notations, used for the PACEMOD description,
are provided in Tab. 6.5.

Map to
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FIGURE 6.11: The PACEMOD concept applied to glyph design.

TABLE 6.5: Table of symbols (cp = control point).

pi Orig. Bezier cp K # Bezier curves
cl/r

i Orig. le./ri. col. cp c̃l/r
i Modif. le./ri. col. cp

di Orig. B-spline cp d̃i Modif. B-spline cp
t, T Orig. knot (vector) t̃, T̃ Modif. knot (vector)
u Orig. colour param. ũ Modif. colour param.

6.2.3.1 Icon Representation

To achieve controllable and automatable contour modifications, the present ap-
proach uses the parametric diffusion curve image (DCI) representation [Orz+08] of
the given base icon. A DCI represents an image as a set of K cubic Bézier curves in
conjunction with colour parameters. For more details and mathematical definitions
see Sec. 2.6 and also Fig. 6.12:2a-b. Note that the current PACEMOD concept omits
the blur parameter due to its visual dependency on colour attributes.

It is assumed that a given base icon is composed of one or several closed, non-
overlapping contours and that the regions defined by these contours have a homo-
geneous inner colour, since a colour gradient strongly restricts the options of an
automated colour modification.

6.2.3.2 Pre-Processing

For conversion of the given raster icon into a DCI, the diffusion curves drawing
tool from Orzan et al. [Orz+08] is used. As modifications of the individual Bézier
segments would easily lead to unwanted cracks, the DCI Bézier representation is
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PACEMOD param. variationPACEMOD param.

Geometry

Color

DCI param.
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6b)

3b) 5b)4b)

FIGURE 6.12: The PACEMOD modifications: The input raster im-
age (1) is converted into a DCI, comprising Bézier control points for
geometry (2a) and colour control points (2b). Afterwards, the geom-
etry is converted into B-splines and a C1 approximation is applied
(3a) w/o changing the colour control points (3b). In the next step,
DOFs are added according to the target knot point and colour bor-
der positions, resulting in an arc-length re-parametrization (4a) and
new colour points at the virtual borders of colour intervals (4b: red
crosses), respectively. The final shape modification transforms sub-
groups of knot points (5a: orange points are moved to green points).
The colour modification changes the colour points of each second in-
terval (5b: darker circles) at the icon’s inside, while the outer colour
is masked out and remains; a diffusion barrier (light green) is added
to limit the diffusion and maintain the inner colour unchanged. The
final glyph is obtained by re-conversion into standard DCI and ren-

dering (6a, b; 7).

converted into cubic B-spline curves. To increase the curve continuity wherever pos-
sible, C1-transitions are constructed if consecutive Bézier segments have first deriva-
tives with (approximately) the same direction. Deviations in the length of the curves’
end tangents are corrected by an appropriate interval scaling, while slight directional
deviations below a threshold α (α = 3.5◦ is used) are ignored.

More precisely, given the K (consecutive) Bézier curves bi(u), i = 0, . . . , K − 1
with control points Pi = {p3i, · · · , p3i+3}, the i-th Bézier segment is converted by
adapting the parameter interval to fit the tangent length of the end point of the prior
segment. In case the directional deviation is below the threshold α, the transition is
assumed to be C1, thus and a double knot is appended to the initial B-spline knot
vector T and the last de Boor point is dropped from the control point list D. In case
of a C0 transition, a 3-folded knot is appended (see Fig. 6.12:3a).

Subsequently, the parametric positions of colour attributes are transformed by
mapping them into interval defined by T.

The resulting PACEMOD icon representation comprises de Boor points {di}L
i=0

with the corresponding knot vector T = {ti}L+4
i=0 , and colour control points{

cl
i(u
′)
}M

i=0 and
{

cr
i (u
′)
}N

i=0, where u′ refers to the colour parameter after the con-
version to B-splines (see also Fig. 6.12:3a-b).
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6.2.3.3 General Contour-Based Modification

According to the two different types of the PACEMOD control parameters, the icon’s
geometry and colour can be modified separately.

Geometry Geometric modifications are accomplished by a direct manipulation, i.e.
translation, of the contour points Q belonging to the corresponding B-Spline curve
and the subsequent interpolation. They are controlled by source position on the
curve and the translation vectors. In the following, the prerequisites and basic func-
tionalities, allowing such modifications, are considered.

Arc-length parametrization and knot vector adjustment. In general, defining
the source position in terms of arc length l(u) instead of using the original parametric
space provides a more intuitive control (cf. Sec. 2.5.3). An arc-length parametrization
of a B-Spline curve s(u(l)) is realized by means of a numerically calculated lookup
table, i.e. it is approximated by the chord length.

Moreover, based on u(l), the knot vector T is converted to T̃ by shifting the orig-
inal knots or inserting new ones, according to the following requirements. For a
better modification control, the curve points Q to be translated are converted to knot
points [Boo78], i.e. q = s(t̃) with q ∈ Q, t̃ ∈ T̃. The B-spline curves created in the
pre-processing step (see Sec. 6.2.3.2) do not always have enough DOFs to interpolate
the translated curve points. In such cases, additional DOFs are created inserting fur-
ther knots by means of Boehm’s algorithm [Boe80]. Furthermore, additional knots
can be required to control the shape of a curve modification. For instance, insert-
ing knots before and after the parametric position of a point to be translated limits
the influence of the corresponding de-Boor points [FB93], and thus the width of the
modified segment (more details in Sec. 6.2.4). After T̃ has been defined, the respec-
tive de Boor points D are adjusted by means of the least-squares progressive iterative
approximation algorithm with energy term (ELSPIA) [He+15], which minimizes the
least-square distance to the original curve taking into account a stretching term (see
also Sec. 2.5.3). The result is a cubic B-spline with single inner knots and de Boor
points D̃, which approximates the original curve sufficiently accurate. Depending
on the target shape, the multiplicity of some knots may be increased to three, to
produce sharp corners (for specific examples see also Sec. 6.2.4).

Local reference frame. To achieve visually appealing and consistent modifica-
tions, it is helpful to apply the translation of knot points in relation to the intrinsic
properties of the respective curve, especially in the context of an automated process.
In particular, the curve normal vectors provide information about inward/outward
direction: by conversion into DC (see Sec. 6.2.3.2) all curves are defined in the way
that the normals point inward into the region defined by the respective closed con-
tour, i.e. there is a consistent Frenet–Serret frame in which the translation of the knot
points is applied. In the specific implementation, presented see Sec. 6.2.4, only trans-
lations in normal directions are applied, but other approaches are possible.

Prevention of intersections and Distance Transform. Depending on the
geometry of the base icon, the translation can lead to self-intersections that have
to be prevented, e.g., by locally reducing the length of the translation vector. The
present approach uses a conservative intersection prevention scheme, based on
Distance Transform (DT) [MQR03] of the base icon. A subpixel precision DT allows
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to construct a (virtual) skeleton between icon’s curves, which, in turn, is used to
constrain the modified curves. More specifically, the transformed knot points are
restricted to move inside the skeleton’s half-space of the initial curve point. An
implementation for a specific translation along normals is given in Sec. 6.2.4.

After curve point translation, applied on an adjusted curve (D̃, T̃), and exploiting
the aforementioned functionalities, the resulting new B-Spline curve is constructed
by adjusting the de Boor point positions. Particularly, the corresponding offset
vector ∆D̃ is computed according to Fowler and Bartels [FB93] (see Sec. 2.5.3,
Eq. 2.48).

Colour Controllable colour modifications are realized by setting colour control
points C̃l , C̃r, i.e. defining respective locations and colour values. Analogously to
geometric modifications, the arc-length parametrization is used to facilitate a more
intuitive control over colour point positions.

Changing the colour of the original colour control points Cl , Cr modifies the en-
tire icon subregion, influenced by the respective curve. Inserting new colour control
points, in turn, creates areas with different colouration. The distance between c̃∗j
and c̃∗j+1 that serve as areas boundaries, controls the smoothness of the transition
between neighbour colours.

Moreover, the diffusion range of colours on each curve side, that is the area
affected by emitted colour values, can be limited by insertion of a diffusion barrier
(see [Bez+10]), i.e. a DC that has no own colour at least on one side. In the present
approach, diffusion barriers are created as DT isolines, where the iso-value limits the
impact of the colour diffusion (see Sec. 6.2.3.3, “Geometry”).

Shrinking and Inflating of Icon Parts The PACEMOD approach allows to modify
the size of a specific icon part by shrinking or inflating the respective contour. This
type of modification is controlled by offsets to the original curve. Instead of using
curve point translations, the new curve is defined as isolines with a given offset,
analogously to diffusion barriers described above, as this approach is more robust
against local curve distortions.

6.2.3.4 Post-Processing

After a glyph has been constructed by applying the corresponding modifications, the
PACEMOD representation is back-converted into a DCI. The de Boor points D̃ of the
modified B-Splines are transformed to Bézier control points using a basis transfor-
mation matrix [CR04]. Accordingly, the parametric positions of the colour attributes
are remapped onto the intervals of the resulting Bézier splines. For rendering the
DCIs as raster images, an extended rendering tool of Jeschke [JCW09] is used.

6.2.4 Periodic Modifications

The PACEMOD concept, presented in Sec. 6.2.3, performs morphological modifica-
tions, i.e. it is basically agnostic to the semantic structure of the input icon. Conceptu-
ally, it allows for arbitrary modifications, but providing automated means to achieve
meaningful visual effects, e.g. visual variables having metaphoric associations, is not
trivial. Here, an implementation that comprises a generic set of automated contour
modifications, namely the generation of periodic, wave-like patterns, is proposed.
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The suitability of the periodic contour modifications for visual encoding is moti-
vated by the findings of the existing psychophysical studies, described in Sec. 6.1.1–
6.1.2, and specially by the results of the user study, presented in Sec. 6.1. The PACE-
MOD concept builds on this study, in particular, utilizing the proposed quantization
model (see also Sec. 6.2.5).

6.2.4.1 Periodic Geometric Modifications

The wave-like modification of the curve geometry is performed by a periodic trans-
lation of the knot points along the curve’s normals in alternating directions and is
defined by frequency, amplitude and waveform (see Fig. 6.13). In this case, T̃ is
composed of knots that are equidistant in terms of arc length, placed at a distance
controlled by the given frequency.

(A) (B) (C)

(D) (E) (F)

FIGURE 6.13: Examples of periodic geometric modifications. 1st row:
varying wave amplitude and frequency; (B): middle frequency and
amplitude, (A): a higher frequency, (C): a higher amplitude. 2nd row:
different waveforms; (D): rectangular, (E): triangular, (F): sawtooth-

like.

The implementation of the intersections prevention mechanism (see Sec. 6.2.3.3,
“Geometry”) checks whether a translated knot point k + a · n̂k is closer to another
curve point p than to original knot point k itself, i.e. whether it is located outside its
skeleton half-space. In this case, a skeleton point s = k + a′ · n̂k that is equidistant to
k and p is locally reconstructed along the translation vector, whose amplitude a′ is
given as the length of a leg in the isosceles triangle with base p−k, i.e. a′ = 0.5‖p−k‖2

〈n̂k ,(p−k)〉
(see Fig. 6.14A). The final amplitude is a′ − ε, to preserve a free space between the
curves. This procedure is applied recursively, as several intersections may occur.

This intersection test is applied to the translated knot points, i.e. the wave peaks,
which represent the most protruding parts of the modified curves. While the pro-
posed strategy successfully prevents intersections in almost all cases observed dur-
ing the experiments, extreme cases, e.g. highly curved contours build by multiple
curves, which are less suited for PACEMOD, may require an increased skeleton pixel
offset ε.
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k + a · n̂k

p

k

s

(A)

k(ti) k(t'i)
k(ti)

k(ti+1)

(B)

FIGURE 6.14: (A): Prevention of curve intersection. Dashed lines
show the original curves and solid lines their sinusoidal
modification. The skeleton point s at the translation vector is
equidistant to both curves. The sin peak (green square) has a pixel
offset ε = 3 from s.
(B): Construction of rectangular and sawtooth shapes of a B-Spline
k(u); arrows represent the respective translation vectors.
Rectangular: additional knot points with a small offset (red) are
added to the initial knot point for the given frequency (green), and
are translated in the opposite direction. Sawtooth: the target position
for each second knot point is shifted.

Different waveforms can be created by means of additional knots and by shifting
the translated positions along the curve (see Figs. 6.14B and 6.13). For instance, in
the case of a sinusoidal wave one intermediate knot is inserted between each two
‘peak knot points’. These additional knots do not function as curve modification
constraints, but restrict the influence of the control points to one period and guaran-
tee a smooth shape (see also Sec. 6.2.3.3, “Geometry”). For the triangular, sawtooth-
like and rectangular waveform, the knot multiplicity is increased to 3 to achieve the
C0-continuity and thus to produce sharp corners. After a curve modification, each
third control point, starting with the first one, is located in a corner, while the inner
two control points are placed on the lines between the corners to get straight line
strips.

6.2.4.2 Periodic Colour Modifications

A periodic colour modification along the corresponding contour is created by al-
ternating equidistant intervals of two different colours. It is controlled by frequency,
i.e. inverse interval arc length, and respective RGB values. To construct the intervals,
initially their virtual boundaries are computed as positions along the curve that are
equidistant in arc length, according to the target frequency. This is done analogously
to the knot vector calculation for periodic geometric modifications, described above
(see Sec. 6.2.4.1). Afterwards, two new colour point locations are placed before and
after each interval boundary with a small arc length offset to get a hard transition
between the both colours (see Fig. 6.12:4b and Sec. 6.2.3.3, “Colour”). For instance,
alternating the original curve colour with a new one and limiting the colour point in-
fluence with a diffusion barrier at a small offset, creates the appearance of a dashed
line, as shown in Fig. 6.15.
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(A) (B) (C)

FIGURE 6.15: Periodic colour modifications. (B): low frequency and
dark grey dashes; (A): a higher frequency; (C): a lighter dash colour.

6.2.5 Application Examples

In the following, the usefulness of the PACEMOD concept and its implementation
using periodic, wave-like contour modifications is demonstrated by giving two ap-
plication examples. The first application shows how the PACEMOD framework al-
lows to apply existing contour-based uncertainty visualization approaches [Gör+17;
Hol+19] to iconic glyphs, facilitating a more intuitive relation to the application do-
main. The corresponding examples show visualization of the rain forecast uncer-
tainty (Sec. 6.2.5.1). In the second application, a design of gradient glyph is proposed,
i.e. a glyph that besides main parameters also encodes their changes, e.g., with re-
spect to time. The visualization of COVID-19 related statistics has been chosen as
specific gradient glyph example.

To guarantee the readability and perceptual linearity of the visual encoding,
the stimulus-to-perception transformation and the quantization levels, estimated in
Sec. 6.1, are applied for contour-based visual variables. The size levels have been
generated according to Stevens and Guirao [SG63]. The maps in all examples are
created with the Maputnik open source tool1.

6.2.5.1 Uncertainty Visualization with Iconic Glyphs: Rain Forecast

Two commonly used rain forecast parameters are visualized here: amount of pre-
cipitation and forecast uncertainty or rain probability. The visualized data represent
a weather forecast for Europe, September 8th, 2022, collected from WetterOnline2 on
September 6th, 2022. A cloud with drops, which is an image often used in forecast
websites and apps, serves as the glyph’s base icon. To demonstrate the flexibility of
the presented framework, two different design variants were created.

In the first one (see Fig. 6.16), the uncertainty is encoded by frequency of a sinu-
soidal wave, as proposed in [Gör+17] and [Hol+19]. To generate the corresponding
glyphs from the base icon, a periodic geometric modification with fixed amplitude,
varying frequency and sinusoidal waveform is applied to DCs that represent drop
contours (see Sec. 6.2.4.1). Since the drops in the image symbolize the rainfall, the
amount of precipitation can be intuitively encoded with their size. However, the
fact that the drops are relatively small glyph’s details can impair the size discrimi-
nation. Hence, to enhance the distinguishability using the augmentation effect (cf.
Sec. 2.1.1), drop size is coupled with saturation and luminance of their colour. Tech-
nically, the curves representing drops of different sizes are generated from DT iso-
lines (see Sec. 6.2.3.3, “Shrinking and Inflating of Icon Parts”) and new colours are

1https://maputnik.github.io/
2www.wetteronline.de

https://maputnik.github.io/
https://www.wetteronline.de
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created by setting colour control points for the inner part of the respective DCs.
The mapping of the forecast data to the respective visual variables is represented in
Tabs. 6.6 and 6.7.

FIGURE 6.16: Rain forecast visualization: the uncertainty encoded
with sine wave frequency.
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FIGURE 6.17: Rain forecast visualization: the uncertainty encoded
with dashed line frequency.

TABLE 6.6: Visual encoding of amount of rain: by size and colour (1st
row) and by number (2nd row) of drops.

Data Mapping

Amount of
rain

light moderate heavy

TABLE 6.7: Visual encoding of rain forecast uncertainty: by sine wave
frequency (1st row) and dashed line frequency (2nd row).

Data Mapping

Rain
probability,

% ≥ 90 [80, 90[ [70, 80[ [60, 70[ < 60
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In the second variant (see Fig. 6.17), the uncertainty is encoded by dash frequency
like in [Gör+17]. To create dashed contours of the drops, a periodic colour transfor-
mation is applied as described in Sec. 6.2.4.2, alternating intervals of the original
drop colour and a lighter colour. The dash frequency is controlled by interval arc
length. To avoid a possible perceptual interference due to the multiple use of colour-
based encoding, in this example the amount of precipitation is encoded by number
of drops: depending on the parameter value, some drops are hidden by cancelling
the respective DCs. For the data mapping details see Tabs. 6.6 and 6.7.

Since one of the goals is to enhance the visualization intuitivity by facilitation of
metaphoric associations with the related real world phenomenon, the natural water
colour, i.e. blue, is used as drop colour, appropriately selecting the background. In
particular, it is a greyish green map, which allows for a sufficient contrast with the
original dark blue drop colour as well as with the light shades of the scaled drops or
dash line strokes in the first and second variant, respectively.

6.2.5.2 Gradient Glyphs

Multivariate data are often given as time series, while a glyph-based visualization
usually captures steady data values. Accordingly, for a better understanding of the
underlying dynamics in the multivariate data, it is also desirable to additionally vi-
sualize the temporal changes or trends. There are several visualization approaches,
based on abstract glyphs, which visually mimic a function’s slope to represent the
data changes over time [GRT17; Wic+12; Car+99]. However, finding an intuitive
gradient representation for an icon-based visualization, e.g. exploiting a metaphoric
association between a visual variable and the data (see Sec. 2.1.1), is a challenging
problem, as the main shape is already predefined by the base image.

The below section describes a glyph design proposal, based on the PACEMOD
framework, that allows for visualization of up to two data parameters with the re-
spective derivatives, using periodic contour modifications as additional visual vari-
ables. In particular, it exploits the fact that geometric contour modifications are
closely related with other geometric visual variables of the glyph, such as size, while
colour contour modifications are intuitively linked to the glyph’s inner colour. Fur-
thermore, it has to be assumed that the contour-based visual variables have a weaker
pop-up effect. Due to the use of these perceptual features, the primary data become
visually linked to the derived data, i.e. their gradient. In the following, the rules
and considerations applied for design of a target glyph from an appropriate icon are
explained in detail.

For the sake of brevity, in the following the two dimensional data parameter and
the corresponding gradient components are described as pi, p′i, i = 1, 2, respectively.

1. p1 is mapped to the glyph’s size and p2 to its inner colour, as the visual vari-
ables with the highest pop-up effect (cf. Sec. 2.1.1).

2. The goal is to reflect the relation between pi and p′i on the visual level, that is
the visual variables that encode p′i need to be intuitively interpretable as change
of size or change of colour, respectively.

3. To visualize p′1, a periodic, wave-like geometric modification of the glyph’s
contours with triangular waveform (see Sec. 6.2.4.1) is applied. The trian-
gles symbolically represent arrowheads, which indicate the “movement” of the
contour, i.e. the glyph’s growing or shrinking. The wave amplitude encodes
the amount of changes, i.e. the gradient magnitude. The gradient direction, i.e.
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positive or negative, is visualized by varying the contrast between the trian-
gular contour and the inner part of the glyph, which influences the perception
of the “arrow” direction. Particularly, a narrow band along the contour is sep-
arated from the rest of the glyph by insertion of a new diffusion curve, which
is created from a distance field isoline (see Fig. 6.18A). In the case of a positive
change, the luminance inside of the band decreases, while the saturation in-
creases, leading to a higher contrast in outward direction (see Figs. 6.18B and
6.19). In the same way, for negative gradients the band becomes brighter and
more desaturated, creating a blur effect and a higher contrast in the outward
and inward direction, respectively (see Fig. 6.19).

4. Analogously, p′2 is visualized by means of a periodic colour modification (see
Sec. 6.2.4.2). For this purpose, a new region in the central part of the glyph
is created. It is separated by an outer diffusion curve, where a corresponding
colour modification is applied, and an inner diffusion barrier (see Fig. 6.18A).
Both are created automatically from the distance field. The diffusion curve
is subdivided in alternating segments of the glyph’s inner colour and a “sign
colour”, which represents the change direction. The length of the sign colour
segments encodes the gradient magnitude, while its direction is encoded by
setting the sign colour as one of the both extremes of the colour map in use.

Original contour modified by a triangular wave.

Border of the arrow sign band.

Outer border of the colour gradient region.

Inner border of the colour gradient region.

Main colour points.

Colour gradient sign colour points.

(A) (B)

FIGURE 6.18: Gradient glyph. (A): the glyph structure; (B): the result-
ing glyph after rendering.

Based on these rules, a visualization of two of the most conclusive and widely
used COVID-19 parameters, 7-days cases incidence and 7-days hospitalization in-
cidence, were created (see Fig. 6.19). The data set is taken by the RKI [Rob92] and
refers to the status on June 7, 2022. As the glyph’s base icon serves a corona virus
icon with the typical spikes. The 7-days cases incidence can be interpreted as a kind
of “amount of virus”, and thus intuitively encoded by size of glyph. The hospital-
ization incidence is mapped to glyph colour using parula colourmap, whereby the
yellowish hues in the right part, which, correspondingly, represent higher incidence
values, are intuitively interpretable as more dangerous. Since in this example the
glyph colour is used as visual variable, a neutral grey was selected as background
to minimize a possible interference of the colour perception. The visual encoding
of theses data is shown in Tabs. 6.8 and 6.9, respectively. The definition of data in-
tervals is similar to the RKI COVID-19 visualization [Rob22]. Besides the current
incidence values, the difference to the previous week is an important parameter,



104 Chapter 6. Iconic Glyphs

FIGURE 6.19: COVID-19 data visualization: 7-days cases incidence
and hospitalization incidence along with the respective changes to
previous week. Accordingly to the epidemiological situation as of
June 7, 2022, the visualization only uses levels 1, 2 and 3 from Tab. 6.8.

which captures the dynamics of the disease. However, such differences are usually
represented as a graph in a separate view, impairing a comprehensive overview of
the status and the dynamics of the pandemic. The proposed glyph design allows for
visualization of these differences simultaneously with the current values, by means
of contour-based modifications. The corresponding visual encoding is summarized
in Tab. 6.10. Note that to achieve an uniform mapping, the visual “zero gradient”, i.e.
no geometric modifications, includes low levels of data change. In total, the present
approach aggregates in one single visualization the data that are usually spread in
four separated views.
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TABLE 6.8: Visual encoding of COVID-19 7-day cases incidence.

Data Mapping
7

d.
ca

se
s

in
ci

d,
n.

/1
00

K
po

pu
l.

< 50 [50, 100[ [100, 250] ]250, 500] ]500, 1000] > 1000

TABLE 6.9: Visual encoding colour bar of COVID-19 7-day hospital-
ization incidence.

Data Mapping

7 d. hosp. incid,
n./100K popul. ≤ 1 ]1, 2] ]2, 3] ]3, 4] ]4, 5] > 5

TABLE 6.10: Visual encoding of COVID-19 data gradient.

Data Mapping

7 d. cases incid,
last week diff., % < −9 [−9,−3[ [−3, 3] ]3, 9] > 9

7 d. hosp. incid,
last week diff., % < −24 [−24,−8[ [−8, 8] ]8, 24] > 24

To evaluate the usability of the gradient glyph design, an online study with 22
participants, whose task was to assess the COVID-19 data visualization, given in
Fig. 6.19, was performed. This test was mostly distributed among students and uni-
versity employees. The study was anonymous and no personal data, such as age and
gender, have been collected. After a brief explanation of the visual encoding, the par-
ticipants were confronted with three main blocks of questions. Tab. 6.11 provides an
overview of the applied questions (in an abbreviated form) and the respective test
statistics.

The first block consists of five question (see Tab. 6.11, Q1-Q5), whose primary
goal is to evaluate the visualization readability and comprehensibility. Each ques-
tion presents a state characteristic regarding one or two COVID-19 parameters and
a list of five states, for each of them the attendees needed to indicate whether the
characteristic applies or not. In the second block (see Tab. 6.11, “Trend assessment
block”), the goal is to assess the potential of the proposed visualization to facilitate
the recognition of trends. In particular, it comprises five statements about statistical
trends of the COVID-19 in Germany, and the task is to specify whether they are true
or false. While in the first two blocks the map with glyphs was presented along with
a legend (analogous to Tabs. 6.8-6.10), the legend was dropped in the third block
(see Tab. 6.11, Q6-Q8) with the aim to evaluate the learnability, i.e. whether the par-
ticipants were able to read the visualization without aid after a very short learning
phase. The questions here are of the same type as in first block. Besides the afore-
mentioned task classification, it has to be taken into account that the question diffi-
culty level varies depending on the number of parameters to assess. In particular,
questions Q1-Q3 and Q5-Q6 as well as statements 2 and 5 in the trend assessment
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TABLE 6.11: Evaluation of the COVID-19 data visualization using
gradient glyphs. The results represent percentage of the correct an-
swers; bold numbers indicate the answer options where the respec-
tive statement does apply. We use the following abbreviations of
the German state names: NRW: North Rhine-Westphalia, BR: Bre-
men, ST: Saxony-Anhalt, TH: Thuringia, SN: Saxony, BE: Berlin,
RP: Rhineland-Palatinate, BW: Baden-Württemberg, BV: Bavaria, BB:

Brandenburg, SL: Saarland, HE: Hesse, LS: Lower Saxony.

Ans. a) Ans. b) Ans. c) Ans. d) Ans. e)
Min. 7-d. cases incid. NRW: 82% BR: 95% ST: 100% TH: 95% SN: 59%
Max. 7-d. hosp. incid. NRW: 100% BE: 86% RP: 100% BW: 100% BV: 91%
Incr. 7-d. cases incid. NRW: 86% TH: 86% BB: 95% SL: 73% BV: 100%
Decr. 7-d. cases AND hosp. incid. ST: 95% BB: 86% RP: 91% HE: 100% BW: 82%
Max. decr. 7-d. hosp. incid. BR: 91% ST: 100% BB: 95% RP: 95% SN: 95%
Max. incr. 7-d. cases. incid. BR: 100% BE: 91% NRW: 91% RP: 91% SL: 91%
Decr. 7-d. cases BUT incr. hosp. incid. LS: 95% BE: 91% TH: 77% SN: 91% BV: 95%
Incr. 7-d. cases BUT decr. hosp. incid. ST: 91% BE: 100% RP: 86% HE: 100% BV: 95%
The states with the highest 7-d. cases incid. also have the highest 7-d. hosp. incid. False: 82%
The 7-d. cases incid. tends to increase in the western regions faster than in the eastern ones. True: 86%
A decreasing 7-d. cases incid. always correlates with a decrease in 7-d. hosp. incid. False: 91%
A higher 7-d. hosp. incid. always implies a more rapid increase in this parameter. False: 95%
In South Germany, the 7-d. hosp. incid. is stable or decreasing. True: 91%

block require assessment of one single data parameter, while the remaining ques-
tions are two-dimensional.

Tab. 6.11 shows the test results as percentage of correct answers per question.
In summary, this percentage lies in 42 of 45 cases between 82% and 100%, which
demonstrates the suitability of the visualization to convey the encoded information
and to serve as basis for trend recognition, despite a very short learning time. In the
following, two cases that are below 75% are discussed.

In Q1, answer option e), the percentage of correct answers is only 59%. In this
question, the task is to identify the listed states with the lowest 7-day cases incidence,
and the correct answers are options d) Thuringia (the glyph close to “Thüringen” in
Fig. 6.19) and e) Saxony (the glyph close to “Sachsen” in Fig. 6.19). Both glyphs
have the same size, encoding the 7-day cases incidence interval [50, 100[. However,
the Thuringia-glyph also has a brighter band along its contour, which encodes a
negative last week difference for this COVID-19 parameter, which results in a vi-
sual “shrinkage”. Due to this visual effect, Thuringia-glyph appears smaller than
the Saxony-glyph for 41% participants. In general, the “visual shrinkage” is an in-
tentional effect, aiming at an intuitive encoding of a negative gradient of the main
parameter, visualized by size. The critical aspect here is the superposition of the
“explicit” geometric scaling and “implicit” visual shrinking that may lead to the
misinterpretation as the next smallest size. An option to compensate this effect of
implicit visual shrinking, which has to be investigated in future work, is application
of a slight glyph scaling. Moreover, it has to be taken into account that, in this study,
the respective problem appears in the very first question when the participants are
still not acquainted with the visualization concept.

The second case of low performance corresponds to Q3, option d), where 73% of
the participants gave the correct answer. Here, the task is to select all listed states
where the 7-day cases incidence is increasing, which are a) North Rhine-Westphalia
(the glyph above “Nordrhein-Westfalen” in Fig. 6.19) and d) Saarland (the glyph
above “Strasbourg” in Fig. 6.19). The North Rhine-Westphalia-glyph (correctly iden-
tified by 86%) has a higher contour wave amplitude, and thus is more salient than
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(A) (B) (C)

FIGURE 6.20: Prototype for visualization of intracranial pressure
(ICP). (A): Normal pressure.
(B): A pressure value inside the pathological range. The increased
value is visualized by a higher brain volume and shallower sulci; the
discrete “pathological” category is represented by dark red colour.
The head contour remains unchanged.
(C): A still higher pathological value. The category and, therefore,
the brain colour remain same but the volume keeps growing with
the continues pressure value.

the Saarland-glyph, which might have diverted the attention of the participants
away from the latter.

6.2.6 Conclusion

In this section, a novel approach for automated contour-based icon modifications
was introduced. This approach provides the PArametric Contour-basEd MODifica-
tion (PACEMOD) concept for automated, parametric manipulations of the geometry
and colour of a given base icon and, thus, contributes to the efficient creation of
metaphoric glyphs. In particular, the automation potentially supports user-centred
design, allowing a fast or even real-time feedback integration, and thus short itera-
tions in the collaborative visualization developing, e.g., with domain experts. Fur-
thermore, a specific implementation of the PACEMOD concept for periodic contour
modifications was provided and the suitability of the PACEMOD functionalities for
transferring existing abstract glyph-based approaches, e.g. in uncertainty visualiza-
tion, to metaphoric glyphs as well as for developing of new glyph designs, such as
gradient glyphs, was demonstrated. In both application examples, the generated
glyphs allow for a visually integrated assessment of the multivariate data, which is
commonly only achievable using several views.

Moreover, the proposed generic approach can be combined with further modi-
fication strategies such as segment-related variation. In particular, to demonstrate
the feasibility of this concept application, besides the rain drop example, discussed
above, a prototype for visualization of intracranial pressure was developed in col-
laboration with neurosurgeons and social scientists [Pre+23a]. It uses a base icon
that schematically shows a human head with brain inside (see Fig. 6.20). The scalar
pressure value is mapped to volume/folding of the brain, i.e. an icon’s segment, us-
ing the “inflation under pressure” metaphor, that is the higher the value, the larger
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the volume and the shallower the grooves. Additionally, the discrete pressure cat-
egories, i.e. normal, elevated, pathological, are mapped to the brain’s inner colour,
exploiting the traffic light metaphor.
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Chapter 7

Conclusion

This thesis introduced a novel concept of Visually Integrated Clinical Cooperation
(VICC), aimed to enhance the information transfer between medical personnel, es-
pecially the conveyance of the patient’s current status. The concept was designed
basing on a interdisciplinary collaboration in the context of the project A06 in CRC
1187 “Media of Cooperation” at the University of Siegen, i.e. exploiting the findings
of a field study on the neurosurgical ward, conducted by social scientists, as well as
ideas and feedback collected during the frequent discussions with physicians and
social scientists.

The thesis addressed the problem of a visual support for information transfer in
a hospital on different levels of abstraction. First, describing an overall visualization
concept (see Chapter 3). Second, providing specific implementations of some of its
components, comprising the creation of prototypical systems and their evaluation.
In particular, these components are:

• Anatomically integrated visualization, which allows for a synoptical in-place rep-
resentation of the patient’s data with anatomical reference, such as clinical
symptoms, on a 3D human body model (see Chapter 4).

• A method for robust range camera pose estimation in the context of mobile on-
line scene reconstruction, using inertial data and an EKF-based sensor fu-
sion algorithm (see Chapter 5). This is a preliminary step of the anatomical
body model personalization, which can be optionally applied for the afore-
mentioned anatomically integrated visualization.

• An approach for (semi-)automated generation of iconic glyphs with an aug-
mented design space due to contour-based visual variables (see Chapter 6).
Besides, a perception and quantization model for this type of visual variables, de-
rived from the results of a user study, was proposed (see Sec. 6.1). The iconic
glyphs can represent, inter alias, patients’ multivariate data without anatomi-
cal reference as well as their temporal trends.

A prototype for the anatomically integrated in-place visualization of patient’s
symptoms by a spinal disc herniation was evaluated by a group of neurosurgeons,
obtaining a positive feedback. Some gradient glyphs, created with the proposed
iconic glyph approach, were subject of an online user study, whose results demon-
strated their suitability for trend visualization.

At the same time, since the VICC concept handles a complex real-life problem,
operating heterogeneous technical approaches, it should not be considered as a com-
pleted solution but rather as basis and inspiration for further research. Again, dif-
ferent directions for future work open at the concept level as well as at the level of
its single components.
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First, some concept components have not been implemented yet or, at least, are
incomplete. In particular, in the personalization option for the anatomical body
model, the 3D reconstruction step needs to be completed with an appropriate model
fitting approach, as briefly discussed in Chapter 5.

Furthermore, a combined application of the anatomically integrated visualiza-
tion and iconic glyphs appears to be a promising research direction. In this case,
the automatically created glyphs can serve as quantifiable textures for respective
anatomical structures, providing a more intuitive and precise appearance control
than the hitherto used procedural textures. However, such an application also im-
plies new challenges to face, for instance, the need of a suitable texture mapping
method. Also, the use of glyphs for texturing of 3D objects would influence the
perception of visual variables, e.g. due to a potentially limited glyph size, requiring
appropriate compensatory mechanisms.

Second, the already implemented components still have a potential of improve-
ment. Regarding the anatomically integrated visualization (Chapter 4), for example,
the in-place symptom representation can be augmented with common spatial med-
ical data such as CT imaging, or with 3D wound models for healing monitoring,
which can be also created on a mobile device as described in [SPK19]. This augmen-
tation requires a registration procedure between the anatomical body model and
these external 3D data.

Several enhancement possibilities can be outlined for the proposed range camera
pose estimation method (Chapter 5). The filter accuracy, e.g., can be potentially
increased by more sophisticated, adaptive noise estimation methods (cf. Sec. 5.4.3).
Moreover, the tracking robustness in scenarios with sparse geometric features can
be improved by integrating a corresponding ICP failure detection logic.

The perception and quantization model for glyph contour modifications, pre-
sented in Sec. 6.1, is based on a simplifying assumption of no or negligible weak
dependencies between single visual variables. Even if this work provides first in-
sights, which verify this assumption, it still requires specific user studies for a more
in-depth investigation. Besides, the proposed scale-dependent adaptation rules (see
Sec. 6.1.5) also need an experimental verification.

The parametric iconic glyph generation (Sec. 6.2) is conceptualized as a general-
izable approach, i.e. its application is not limited to the design examples proposed
in this thesis. Conceivable further implementations are more sophisticated schemes
for locally adaptive applications of shape and colour modifications, e.g. changing
appearance of specific semantic segments of the base icon, which, however, implies
an automated segmentation method or more user interaction.
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