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Abstract

In recent years, isogeometric methods, using NURBS (Non-Uniform Rational B-Splines)
as basis functions, have gained increasing attention. These methods offer exceptional flex-
ibility in geometric modelling and the ability to adjust the smoothness of the piecewise-
defined shape functions on a single patch as needed. This feature makes isogeometric anal-
ysis particularly attractive in the context of higher-order differential equations. However,
to maintain this characteristic in the case of multiple patches, it must be appropriately
accounted for in domain coupling.

This work addresses this challenge by presenting a novel method for implementing general
non-conforming weak Cn-continuous domain couplings within the framework of isogeo-
metric analysis. This approach builds upon the established mortar method and extends
it by imposing additional constraints on derivatives up to a specified order. Within this
study, the method is comprehensively elucidated using an abstract variational framework.
This encompasses discretisation within the context of isogeometric analysis, selection of
the dual space, efficient handling of crosspoints and wirebaskets, and the evaluation of
mortar integrals. A significant emphasis is also placed on the construction of isogeo-
metric approximation spaces which a priori fulfil the higher-order coupling conditions.
Furthermore, the performance and applicability of the method are investigated in various
engineering problems, including elasticity, heat conduction, diffusion and Phase-Field-
Crystal modelling. This is achieved through a series of simulations that substantiate the
applicability and efficiency of the approach in various technical domains.

Keywords: mortar, Cn-continuous, multi-patch, higher-order, IGA, crosspoints, wire-
baskets, elasticity, Kirchhoff–Love, Cahn-Hilliard, Phase-Field-Crystal model





Kurzfassung

In den letzten Jahren haben isogeometrische Methoden, in denen NURBS (Non-Uniform
Rational B-Splines) als Basisfunktionen verwendet werden, zunehmend an Aufmerksam-
keit gewonnen. Diese Methoden zeichnen sich nicht nur durch ihre hohe Flexibilität bei
der geometrischen Modellierung aus, sondern bieten auch die Möglichkeit die Differen-
tiationsklasse der stückweise definierten Formfunktionen auf einem einzelnen Patch be-
liebig festzulegen. Das macht die isogeometrische Analyse besonders attraktiv im Zusam-
menhang mit Differentialgleichungen höherer Ordnung. Damit diese Eigenschaft bei der
Verwendung mehrerer Patches nicht verloren geht, muss sie bei einer Gebietskopplung
entsprechend berücksichtigt werden.

In diesem Zusammenhang setzt die vorliegende Arbeit an und stellt eine neue Methode zur
Implementierung von allgemeinen nicht-konformen schwach Cn-stetigen Gebietskopplun-
gen im Kontext der isogeometrischen Analyse vor. Dieser Ansatz baut auf der etablierten
Mortar-Methode auf und erweitert sie durch zusätzliche Bedingungen, die Ableitungen
bis zu einer vordefinierten Ordnung einbeziehen. Im Detail wird das Verfahren innerhalb
eines abstrakten variationellen Frameworks erörtert. Hierbei werden mehrere Schlüsse-
laspekte beleuchtet, darunter die Diskretisierung im Kontext der isogeometrischen Anal-
yse, die Wahl des dualen Raums, der effiziente Umgang mit Crosspoints und Wirebaskets,
sowie die Auswertung von Mortar-Integralen. Besondere Aufmerksamkeit gilt auch der
Konstruktion von isogeometrischen Approximationsräumen, die a priori den Kopplungs-
bedingungen genügen. Die Leistungsfähigkeit der Methode wird abschließend in ver-
schiedenen ingenieurtechnischen Problemstellungen eingehend untersucht, darunter Elas-
tizität, Wärmeleitung, Diffusion und dem Phasen-Feld-Kristall-Modell. Dies geschieht
durch eine Reihe von Simulationen, die die Anwendbarkeit und Effizienz des Ansatzes in
unterschiedlichen technischen Anwendungsgebieten untermauern.

Schlüsselwörter: Mortar, Cn, multi-patch, höhere Ordnung, IGA, Crosspoints, Wire-
baskets, Elastizität, Kirchhoff–Love, Cahn-Hilliard, Phasen-Feld-Kristall-Modell
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Notation and conventions

The following is a summary of the terminology used in this thesis, where the three topics
“Sets and set operations”, “Linear spaces” and “Functions and derivatives” are covered.
Please note that this overview is not complete and only contains the designations whose
knowledge is assumed in the following. Further notations are introduced and discussed
in the passages where they are used for the first time.

Sets and set operations. For the different number spaces, we use the common designa-
tions. Thus Z denotes the integers, Q the rational numbers and R the real numbers. Re-
garding the natural numbers, we distinguish between the set N = {1, 2, 3, . . .} without zero
and the set N0 = N∪{0} including zero. For a subset M of a topological space, ∂M denotes
its boundary, M its closure and M◦ its interior. Moreover, given n sets M1, . . . , Mn, the
corresponding product space M = M1 × . . .×Mn = {(m1, . . . , mn) | mi ∈ Mi, i = 1, . . . n}
is shortly written as M =

∏n
i=1 Mi, whereby in the case Mi = M1, i = 1, . . . , n, we write

M = Mn
1 . Eventually, elements from product spaces are marked by bold symbols. We

point out that general considerations in most cases also include the case n = 1. For
reasons of clarity, no distinction is made regarding the notation in these situations. For
example, we write for m ∈ {1, 2, 3}, x ∈ Rm or f : Rn → Rm, even if there is no product
space in the case m = 1. In other words, symbols written in bold do not automatically
exclude the scalar-valued case.

Linear spaces. For a linear space V over a field K and subsets {vi}m
i=1, W ⊂ V ,

dim(V ) denotes the dimension of V and span(W ) the linear span of W , recalling that
span({vi}m

i=1) = {a1v1 + . . .+amvm | a1, . . . , am ∈ K}. In the case V = Rn, the underlying
field are the real numbers and for v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn we use the
Euclidean scalar product v · w := v1w1 + · · · + vnwn and the induced Euclidean norm
‖v‖ :=

√
v · v.

As with product spaces, we use bold symbols for matrices and round or square brackets
both to represent them and to access the elements. E.g. for a matrix A ∈ Rm×n with
components Ai,j, is, as usual, (Ai,j)1≤i≤m,1≤j≤n = A, while (A)i,j designates the access to
the respective component, i.e. (A)i,j = Ai,j . For the sake of better readability, we further
refrain from stating the index bounds and briefly write (Ai,j)i,j instead of (Ai,j)1≤i≤m,1≤j≤n,
if misunderstandings are excluded. For tensors, we use the same notation as for matrices,
whereby in each case it is clear from the context whether it is a tensor or the associated
coefficient matrix. In addition, we use the usual notations for tensor operations. Thus
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for first-order tensors u, v and second-order tensors A, B, AT is the transposed, u ⊗ v

is the tensor product, Tr(A) is the trace and A : B denotes the double contraction.

Concerning specific function-spaces, we denote by L2(C) the Hilbert space of all square-
integrable functions on a domain C, i.e. L2(C) := {f : C → R |

∫

C
|f(x)|2 dV < ∞},

equipped with the L2 scalar product 〈•, •〉C :=
∫

C
(•) · (•) dV and the induced L2 norm

‖ • ‖L2(C) =
√

〈•, •〉C . Note that in the definition of the L2 scalar product the Euclidean
scalar product is used, and so it is also valid for elements from the product spaces
L2(C)m. Analogously, we extend the definitions by means of the double contraction
to tensor-valued functions A, B : C → Rm×n according to 〈A, B〉C :=

∫

C
A : B dV and

‖A‖L2(C) =
√

〈A, A〉C . Eventually, we denote the associated Sobolev spaces, containing
all L2 functions with weak derivatives up to the kth order, by Hk(C).

Functions and derivatives. For sets X, Y , MX ⊂ X, MY ⊂ Y and a function f : X →
Y , f (MX) := {f(x) | x ∈ X} denotes the image of MX under f , f−1(MY ) := {x ∈
X | f(x) ∈ MY } the pre-image of MY under f , supp(f ) := {x ∈ X | f(x) 6= 0} the
support of f and f |MX

the restriction of f to MX , where, in the context of multi-patch

theory, f (i) is written to denote the restriction to the ith patch Ω(i), i.e. f (i) := f |Ω(i) .

Especially for expressions containing partial derivatives of higher order, the usual multi-
index notation is used. For any multi-index m = (m1, . . . , md) ∈ Nd

0, we define its length
as the sum |m| = m1 + . . . + md and its factorial as the product m! = m1! . . . md!.
Moreover, we write m ≤ n or m < n for m, n ∈ Nd

0 if mj ≤ nj or mj < nj for all
j = 1, . . . , d. With a multi-index m ∈ Nd

0 we define ∂m := ∂m1
1 . . . ∂md

d , where ∂j denotes
the operation of taking the partial derivative with respect to the jth argument and ∂

mj

j

is the mj-times repetition of the operation. Per definition, the components of a multi-
index can take the value zero. In this case we formally set ∂0

j := 1, i.e. no operation is
performed. Furthermore, we use the common designations for differential operators. I.e.,
∇(•) is the gradient, ∇ ⊗ ∇(•) the Hessian, ∆(•) the Laplacian and ∇·(•) the divergence
operator. Applied to scalar-, vector- and tensor-functions, g : U → R, f : U → Rm and
H : U → Rm×n, where U ⊂ Rn, the operations are defined in the case of Cartesian
coordinates by the partial derivatives as follows: ∇g = (∂1g, . . . , ∂ng),

∇f =







∂1f1 · · · ∂nf1

...
. . .

...

∂1fm · · · ∂nfm







, ∇⊗∇g =







∂1∂1g · · · ∂1∂ng
...

. . .
...

∂n∂1g · · · ∂n∂ng







, ∇·H =







∑n
j=1 ∂jH1,j

...
∑n

j=1 ∂jHm,j







,

∇ · f = ∂1f1 + · · · + ∂nfn, and ∆g = ∂2
1g + · · · + ∂2

ng. It should be noted that the
gradient of a vector field results from the gradients of the individual components and
thus corresponds to the Jacobian matrix, while the divergence of a tensor field results
from the divergence of the respective rows, which are interpreted as vector fields. The
operations are therefore natural extensions of the applications to scalar/vector fields to
vector/tensor fields, which justifies the use of the same operator.
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Often space- and time-dependent functions are considered, i.e. functions of the form
f : U × I → Rm, (X, t) 7→ f(X, t), where U ⊂ Rn and I ⊂ R. To distinguish be-
tween spatial and temporal derivatives, the temporal derivative is marked by a super-
script dot, ḟ := ∂f/∂t, while the operators ∂j usually refer to the spatial derivatives, i.e.
∂jf := ∂f/∂Xj . Nevertheless, to avoid misunderstandings, in such cases the variable in
question is written as a subscript to the operator, e.g. ∂Xj

f := ∂f/∂Xj . In general, the
operators as the gradient or the Laplacian refer to all variables, whereby the operations
in connection with space-time-dependent functions are mostly applied only to the spatial
coordinates. In order to take this into account, the operators are labelled with a corre-
sponding index analogous to the partial derivatives. E.g., for a scalar field g : U × I → R,
∇Xg = (∂X1g, . . . , ∂Xn

g) and ∆Xg = ∂2
X1

g + · · ·+ ∂2
Xn

g are the gradient and the Laplacian
with respect to X = (X1, . . . , Xn), whereby the definition for the remaining operators
∇X ⊗ ∇X(•), ∇X ·(•) is to be continued analogously.

Eventually, for U ⊂ Rn, V ⊂ Rm and k ∈ N0 ∪{−1, ∞}, we define the differentiation class
Ck(U, V ) as the set of all functions f = (f1, . . . , fm)T : U → V with k-times continuously
differentiable components, i.e. ∂αfi(x) exists and is continuous for all x ∈ U , i = 1, . . . , m
and |α| ≤ k. Within this notation, f is of class C0(U, V ) if f is continuous and C∞(U, V )
contains the infinitely differentiable functions and it holds Ck−1(U, V ) ) Ck(U, V ), k ∈
N. Furthermore we write “f is Ck-continuous” for short if a function f : U → V is of
class Ck(U, V ) and “f is Ck at x” to emphasise that f is k-times continuously partially
differentiable at the specific point x∗.

∗Occasionally we also use the term C−1 to emphasise that f is discontinuous at a specific point.





1 Introduction 1

1 Introduction

In today’s complex and dynamic world, humanity is faced with an ever-increasing num-
ber of challenges and questions that require a deeper knowledge and understanding of
complex systems. From forecasting the weather to optimising production processes and
researching biological phenomena - the pursuit of knowledge and the ability to predict
future developments drive us forward. Computer simulations are a fascinating and pow-
erful way to virtually map and explore reality. They offer us the opportunity to study the
behaviour of systems that are so complex that they are difficult to capture or analyse in
controlled experiments. By transferring the real world into a virtual environment, simu-
lations allow us to explore scenarios, test hypotheses and develop solutions to real-world
problems without having to conduct time-consuming, costly or potentially dangerous
physical experiments.

The history of computer simulation spans several decades and marks a fascinating journey
through scientific progress technological breakthroughs and the transformation of various
application areas. The first steps towards computer simulation were taken in the 1940s
and 1950s when the first electronic calculators were developed. These early computers
were initially limited to scientific calculations, but soon the potential of these machines
to recreate real processes virtually was recognised.

One of the outstanding pioneers of this era was John von Neumann, a Hungarian-
American mathematician who made significant contributions not only to mathematics,
quantum mechanics, and game theory but also was a visionary in terms of computer
science and simulations. Von Neumann was instrumental in the development of the
“Electronic Numerical Integrator and Computer” (ENIAC), the first computer powered
by electronic tubes. His collaboration with other influential figures such as Alan Tur-
ing and Herman Goldstine contributed significantly to laying the foundations for modern
computer architectures and functionalities.

One of the most revolutionary developments of this time was the introduction of the
Monte Carlo method in the 1940s. This method, named after the famous casino in
Monaco, is based on stochastic processes and statistical analysis. It was developed by
Stanislaw Ulam and Nicholas Metropolis to solve complex mathematical problems that
could not be handled analytically. The Monte Carlo method allows the simulation of ran-
dom events using random numbers to generate statistical results. Originally developed to
simulate neutron distributions in nuclear reactors, the method quickly found application
in various disciplines such as physics, chemistry, engineering and finance. Its introduction
was a turning point in the history of computer simulation, as it facilitated the solution of
complex problems.
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The development and refinement of computer simulation technology continued in the
following decades. In the 1960s and 1970s, engineers and scientists began to use computer
simulations increasingly in the aerospace industry. These simulations were used to test
the behaviour of aircraft, rockets and spacecraft under various conditions.

During this time, the finite element method (FEM) has been established as a powerful
and versatile tool. In the 1920s, Boris Galerkin [79] laid the foundation for the idea of
transforming partial differential equations into a variational problem and approximating
the unknown quantity (e.g. displacement, temperature) by shape functions from a finite-
dimensional function space. With this approach, the search for an approximate solution
for complicated differential equations could be reduced to purely algebraic problems.
Early publications in the engineering literature describing what is now known as FEM
are Turner et al. [161] and Argyris & Kelsey [8], whereby the term “finite elements” was
coined by Clough [40]. However, the first finite element, the linear triangle, can be traced
back to Courant [45]. The basic idea of FEM is to divide the physical domain on which
the problem is formulated into smaller, simple geometric elements. On each element, local
shape functions are defined that vanish outside and approximate the unknown physical
quantity inside the element. Due to the local support of the shape functions, even complex
geometries could be approximated easily, but at the expense of a reduced continuity at
the element boundaries.

Probably one of the most important advancements of the FEM is the isoparametric con-
cept (Irons [101], Zienkiewicz & Cheung [174]), which enables a more efficient and precise
modelling of complex geometries and material distributions. While initially linear ele-
ments were used, representing simple geometric shapes such as triangles or tetrahedrons,
the basic principle of the isoparametric approach is to use the same functions for the ge-
ometry of the element and the approximation. This opened up the possibility of designing
shape functions first on regular elements, such as a rectangle or a cuboid, and then trans-
ferring them to curved elements in physical space. Thus, the design of C0-continuous
finite elements on complex geometries became a simple matter. One limitation of the
isoparametric concept, however, was that it did not work for C1-continuous or higher
approximations. Primarily because of the desire to construct thin plate and shell el-
ements for structural analysis, there was a great interest in developing C1-continuous
interpolation schemes. Many researchers sought solutions to this problem, with note-
worthy successes achieved by Clough & Tocher [41], Argyris et al. [9], de Veubeke [57]
and Bell [18], among others. However, these elements were complicated and expensive to
use, so interest turned to alternative variational formulations to overcome the need for
C1-continuous basis functions.

In the 2000s, another important enhancement of FEM emerged in the form of isogeo-
metric analysis (IGA). It represents an innovative method for the numerical treatment
of differential equations by seamlessly combining geometric modelling and analysis. IGA
uses the same basis functions that are used in computer-aided design (CAD). This enables
closer integration of design and analysis within a common mathematical framework. One
of the pioneers in this field is Thomas J. R. Hughes, whose work and research contri-
butions helped to establish IGA as an independent method, [13, 100]. Since then, IGA
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has been successfully applied in a wide variety of disciplines such as structural mechan-
ics, [19, 20, 66, 67, 107, 137], fracture mechanics, [29, 63, 61, 94, 167], and generalised
continua [77].

Traditionally, FEM uses different functions for geometric modelling than CAD, which
can result in discrepancies between the geometric models. In contrast, IGA uses so-called
Non-Uniform Rational B-Splines (NURBS) or similar basis functions∗, which are also
used in CAD, for both geometry and approximation and thus follows the isoparametric
paradigm. This leads to higher accuracy of the results and more efficient communication
between the engineers performing the design and the analysis.

NURBS are piecewise-defined rational functions with compact support, which are defined
on elements similar to the FEM shape functions. In IGA, however, there are two notions of
elements, the patch and the knot span. The patch may be thought of as a macro-element
or subdomain. Each patch can in turn be subdivided into knot spans, which are compa-
rable to the elements in FEM. As with FEM, the support of NURBS is limited to a small
number of such elements, depending on the polynomial degree. Within an element, the
basis functions are smooth, while the continuity at the element boundaries also depends
on the polynomial degree but can be adjusted as desired without changing the geometry.
This opens up the possibility of creating approximations with arbitrary smoothness on
a single patch. Instead of expensive and complicated elements or alternative variational
formulations, IGA can thus be used to solve higher-order partial differential equations
such as the Cahn-Hilliard equation or Cahn-Hilliard-like problems without any detours
in a unified framework, e.g. [3, 4, 82, 95, 142].

In almost all practical situations it is necessary to describe domains with several NURBS
patches. For example, it may be appropriate to use separate patches if different materials
or physical models are to be used in different parts of the domain, or if different sub-
domains are to be handled in parallel on a multiprocessor machine. The most common
case, however, is that the geometry is too complex to be covered by a single parame-
trisation. While such cases are not a problem from a CAD point of view, the patches
need to be coupled for analysis so that they respond as a coherent domain. In the case
of conforming meshes or, more generally, when the mesh on one side of the interface
results from a refinement of the mesh on the other side, nodes of the two patches can
be identified with each other and treated as a single one, see e.g. Cottrell et al. [43, 44]
and Kleiss et al. [111]. However, the conditions for such strong couplings considerably
limit the possibilities of geometric modelling. To maintain flexibility, weak methods have
therefore been established in which the underlying variational problem is extended by
additional coupling conditions. In [5, 85, 86, 124, 141] a modification of Nitsche’s method
was successfully applied in the IGA framework to achieve a weak C0 coupling in the
general non-conforming case. Another possibility for the realisation of weak C0 couplings
is offered by so-called mortar methods, which, in contrast to Nitsche’s method, can be
formulated independently of the underlying variational problem. Mortar methods have
been studied in the FEM context for almost three decades, [15, 16, 21, 23, 115], and have

∗In this work we will focus on NURBS.
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already been successfully transferred to the IGA framework, [30, 31, 92]. Further applica-
tions include, among others, contact problems [17, 55, 56, 62, 110, 145, 156, 171, 172, 173]
and interface problems, e.g. multi-physics applications [158]. However, since these meth-
ods are designed for C0-continuous couplings, IGA is deprived of an important property
in the multi-patch case, namely the possibility of creating approximations with arbitrary
smoothness.

In the last decade, different approaches have been presented to higher-continuous spline
approximations on multi-patch geometries. Horger et al. [98] developed a hybrid formu-
lation in which a C0-continuous mortar coupling was combined with the penalty method
to introduce coupling conditions on the normal derivatives. A strong implementation is
discussed in Chan et al. [36], where the NURBS bases on the patches are constructed
such that any interpolation is necessarily globally C1. Further approaches based on the
construction of matching spline spaces can be found for surfaces and shell elements in
[26, 26, 103, 102], where in these cases the weaker geometric continuity (G1) is imple-
mented. A strong implementation of G1-couplings on conforming meshes in the frame-
work of Kirchhoff–Love shells can further be found in Kiendl et al. [107, 108] and a penalty
implementation on non-conforming meshes is discussed in Herrema et al. [89].

This work aims to bridge the gap between IGA on single patches and multi-patch geome-
tries. For this purpose, an extended mortar method is presented, which takes into account
the adjustable continuity of NURBS approximations and allows arbitrary Cn couplings.
The main idea is to interpret the original mortar approach as a minimisation problem
represented by a special coupling functional. This functional is extended by additive
components which, besides the coupling of the approximations, also take into account
their derivatives. Like the original mortar method, this approach is independent of the
underlying variational problem, ensuring versatility in a wide range of problems.

Organisation of the work

This thesis is structured as follows†:

In Chapter 2, the basic concepts of isogeometric analysis are discussed. For this purpose,
NURBS shape functions based on B-splines are introduced, their properties are discussed
in the context of isogeometric analysis and NURBS parametrisations of curves, surfaces
and solids are considered. Subsequently, the notion of multi-patch geometry is clarified
and the construction of isogeometric approximation spaces is discussed.

Chapter 3 is the core of this thesis and introduces a Cn-continuous mortar method. For
this purpose, an abstract variational multi-patch problem is formulated, on the basis of
which appropriate conditions for the implementation of weak Cn-continuous couplings
are discussed. Subsequently, the discretisation of the problem in the IGA context is
considered, addressing the treatment of crosspoints/wirebaskets, the evaluation of mor-
tar integrals and the construction of isogeometric approximation spaces that satisfy the

†We point out, that the work summarizes several peer-revied journal articles, [64, 65, 143], which have
been published by the author.
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coupling conditions a priori. The chapter concludes with a series of numerical tests and
convergence studies involving polyharmonic equations.

In the following chapters, the application of the extended mortar method to several en-
gineering problems is studied. After a brief introduction to the respective topic at the
beginning of each chapter, numerical investigations on different aspects of the method
are presented. Chapter 4 starts with problems in elasticity and includes the Kirchhoff–
Love shell theory, in which G1 couplings are essential. Subsequently, problems of heat
conduction and diffusion are considered in Chapter 5. While C0-continuous couplings are
sufficient for the variational formulation of the heat equation, the Cahn-Hilliard equation
used to describe the diffusion processes requires at least a C1-continuous transition be-
tween two patches. Eventually, Chapter 6 deals with Phase-Field-Crystal modelling. The
derivation of such models is based on a functional Taylor expansion, which is truncated
above a certain order. Here, a sixth-order equation whose variational formulation requires
second-order couplings is considered. Finally, conclusions are drawn in Chapter 7.
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2 The isogeometric concept

Isogeometric Analysis (IGA) is a promising concept that closely links the technologies
of Computer-Aided Design (CAD) and numerical simulation via Finite Element Analysis
(FEA). The IGA framework facilitates the use of NURBS (Non-uniform rational B-spline),
which originated in the field of CAD. This allows the construction of finite element (FE)
basis functions with adjustable continuity across the element boundaries, in contrast to
classical Lagrangian shape functions which are globally at most C0-continuous. This
chapter introduces the basics of the isogeometric concept, with Section 2.1 discussing the
use of NURBS in geometric design and Section 2.2 discussing the further use in IGA.

2.1 Geometric design

Figure 2.1: A surface explicitly defined by the function f(x1, x2) = sin(x2
1) + cos(x2

2).

There are different ways for the description of curves, surfaces, solids, or, in general, of
manifolds. An explicit representation is the simplest but also the most limited one. In
this form of representation, a geometry Ω is given as graph of a function f : X → Y , so
that Ω = {(x, f(x)) | x ∈ X}. For example, to describe a curve or a surface explicitly, a
relation of the form x2 = f(x1) (for a curve) or x3 = f(x1, x2) (for a surface) is needed, see
Figure 2.1 for illustration. The advantages and disadvantages of this approach are obvious.
It is easy to evaluate the derivatives and thus obtain geometric properties. However, by
definition, a function cannot take multiple values at the same point. This means that even
basic shapes such as circles or spheres cannot be represented in this way. A more flexible
way of describing the points of a geometry is an implicit representation. Here, the points
are defined as the roots of a function f : X → Y , such that Ω = {f(x) = 0 | x ∈ X},
cf. Figure 2.2. Obviously, any explicit description can be converted into an implicit one,
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but not vice versa. Therefore, the class of implicit geometries offers a greater variety of
objects. However, this type of representation involves a root-finding problem that must
be solved in order to specify the points of the object in question, which can be challenging
depending on the form of f .

Figure 2.2: A surface implicitly defined by the function f(x1, x2, x3) = 2x2(x2
2 −3x2

1)(1−
x2

3) + (x2
1 + x2

2)2 − (9x2
3 − 1)(1 − x2

3).

The most common representation of geometries in CAD is the parametric description.
Here, the coordinates are explicit functions of an independent set of parameters. In engi-
neering design, NURBS functions in particular are used for this purpose. The following
section deals with the description of complex shapes on the basis of such parametrisations.
To this end, we consider in Section 2.1.1 the construction of NURBS bases and discuss
the representation of curves, surfaces and solids in Section 2.1.2. Although the use of
NURBS allows the description of a wide variety of complex shapes, many geometries of
practical interest cannot be represented by a single parametrisation. To overcome this
difficulty, such geometries are represented by using multiple patches, which is the subject
of Section 2.1.4. In the context of IGA, the continuity between different patches plays a
crucial role. Besides the notion of parametric continuity, there exists the notion of geo-
metric continuity. In Section 2.1.5 we discuss this concept in the framework of surfaces
for use in the Kirchhoff–Love shell theory.

2.1.1 Basis functions

NURBS are constructed on the basis of B-splines (short for Basis-splines) and multivari-
ate functions are constructed in this framework from the tensor product of univariate
functions. Therefore, a natural starting point for the investigations of NURBS is the
discussion of univariate B-splines from which multivariate basis functions are constructed
in order to finally define NURBS in general.

Univariate B-splines

A set of n univariate B-spline functions of polynomial degree p can be defined by a non-
decreasing sequence Θ = {ζ1, . . . , ζn+p+1}, where Θ is called knot vector and ζi ∈ R is
called the ith knot. If the knots are equally spaced, Θ is called uniform otherwise it is
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C2 C1 C0 C−1

Figure 2.3: Continuity of a univariate, cubic (p = 3) spline basis on Ω̂ = (3, 6) defined
by the non-uniform knot vector Θ = {0, 1, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6}. The red
curve represents the sum of the functions and the element boundaries are
marked with green crosses.

called non-uniform. Per definition, knot values can be repeated, i.e. more than one knot
can have the same value. Thereby, Θ is said to be open if its first and last knot values
appear exactly p + 1 times. The associated functions are defined recursively according to
the Cox-de Boor formula, cf. [48, 51],

N̂i,p(ξ) =
ξ − ζi

ζi+p − ζi

N̂i,p−1(ξ) +
ζi+p+1 − ξ

ζi+p+1 − ζi+1

N̂i+1,p−1(ξ), (2.1a)

where the stop function for the recursion is given by

N̂i,0(ξ) =

{

1 if ξ ∈ [ζi, ζi+1),

0 otherwise.
(2.1b)

As shown in Curry & Schoenberg [49], {N̂i,p}n
i=1 is a spline basis on the parameter space

Ω̂ = (ζp+1, ζn+1), whose global continuity is determined by the knot vector and the poly-
nomial degree. To be more precise, let Θ̃ = {ζ̃1, . . . , ζ̃ñ} be the knot vector pertaining to
Θ without repetitions, also called breakpoint vector. By definition, each N̂i,p is a polyno-

mial in (ζ̃j, ζ̃j+1), j = 1, . . . , ñ − 1, and thus N̂i,p ∈ C∞(ζ̃j, ζ̃j+1). At a breakpoint ζ̃i ∈ Θ̃,
however, the functions are Cp−ki-continuous, where the multiplicity ki of a breakpoint
ζ̃i is defined as its number of repetitions in Θ∗. Eventually, it should be noted that the
breakpoint vector naturally defines a mesh

M̂ = {êi = (ζ̃p+1−k1+i, ζ̃p+2−k1+i) | 1 ≤ i ≤ ñ + k1 + kñ − 2p − 3}, (2.2)

on the parameter space Ω̂, see Figure 2.3 for illustration.

∗In case of multiplicities ki > 1, the recursion (2.1) has to be augmented with the definition 0
0 := 0.
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Multivariate B-splines

Multivariate B-spline functions are generated from dp knot vectors Θl = {ζ l
1, . . . , ζ l

nl+pl+1},
l = 1, . . . , dp, where dp is the parametric dimension, pl indicates the polynomial degree
along the parametric direction l and nl is the associated number of functions. With the
resulting univariate B-splines in each direction l, written as N̂ l

il,pl
, multivariate functions

are defined by

B̂a,p(ξ) = B̂i,p(ξ) =

dp∏

l=1

N̂ l
il,pl

(ξl). (2.3)

The multi-index (or NURBS coordinates) i ∈ I := {(i1, . . . , idp
) ∈ Ndp | 1 ≤ il ≤ nl}

denotes the position in the tensor product structure, the vector p = (p1, . . . , pdp
) contains

the polynomial degrees, ξ = (ξ1, . . . , ξdp
) are the parametric coordinates and for the global

numbering of the n = n1n2 . . . ndp
multivariate functions we use the natural scheme

a = a(i) = i1 +

dp∑

j=2

(ij − 1)

j−1
∏

k=1

nk. (2.4)

As in the univariate case, the functions form a spline basis on the parametric space
Ω̂ =

∏dp

l=1(ζ
l
pl+1, ζ l

nl+1) and the breakpoint vectors Θ̃l form a mesh in Ω̂ given by

M̂ =

{

êi =

dp∏

l=1

êl
il

| i = (i1, . . . , idp
), 1 ≤ il ≤ ñl + kl

1 + kl
ñl

− 2pl − 3

}

, (2.5)

where êl
il

= (ζ̃ l
pl+1−k1+i, ζ̃ l

pl+2−k1+i) are the elements defined through Θ̃l, cf. Eq. (2.2).

Furthermore, the breakpoint multiplicities kl
i, i = 1, . . . , ñl, related to Θ̃l determine the

smoothness of the B-splines at the element boundaries. I.e. every function B̂i,p is (pl −kl
i)-

times continuously differentiable with respect to its lth argument on any hyperplane
Hl

i =
∏l−1

s=1(ζ
s
ps+1, ζs

ns+1)×{ζ̃ l
i}×∏dp

s=l+1(ζ
s
ps+1, ζs

ns+1), where l = 1, . . . , dp and i = 1, . . . , ñl,
see Figure 2.4 for illustration.

Eventually, in addition to the basis property and the adjustable smoothness, the following
features of B-splines in the context of FEA are of importance [44, 52]:

• Non-negativity: B̂i,p(ξ) ≥ 0 for all ξ ∈ Ω̂.

• Compact support: supp(B̂i,p) =
∏dp

l=1[ζ
l
il
, ζ l

il+pl+1].

• Partition of unity:
∑

i∈I B̂i,p(ξ) = 1 for all ξ ∈ Ω̂.

Convention 2.1.1. When introducing B-splines, it is useful to distinguish in the notation
between univariate and multivariate basis functions. In the following, this will no longer
be necessary and, for the sake of clarity, both cases will be summarized under the terms
B̂a,p and B̂i,p.
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B̂21,p

B̂36,p

B̂89,p

B̂91,p

ξ1
ξ2

Figure 2.4: Bivariate, biquadratic (p = (2, 2)) basis functions defined by the two open
knot vectors Θ1 = Θ2 = {0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8}. The grid lines on
the ξ1-ξ2 plane represent the mesh on Ω̂ = (0, 8) × (0, 8), which consists of
the elements ê(i,j) = (ζ̃i, ζ̃i+1) × (ζ̃j , ζ̃j+1), i, j = 1, . . . , 8, defined by the

breakpoint vectors Θ̃1 = Θ̃2 = {ζ̃1, . . . , ζ̃9} = {0, 1, 2, 3, 4, 5, 6, 7, 8}. The red
line marks the hyperplane H1

3 and the blue ones the hyperplane H2
6.

NURBS

NURBS basis functions associated with a B-spline basis are defined through

R̂a,p(ξ) = R̂i,p(ξ) =
wiB̂i,p(ξ)

W (ξ)
, W (ξ) =

∑

j∈I

wjB̂j,p(ξ), ξ ∈ Ω̂, (2.6)

where W is referred to as weighting function and wj ∈ R are positive weights. As wiB̂i,p

and W are both piecewise polynomials, R̂i,p is a piecewise rational function – within each
element it is a polynomial divided by another polynomial. Per definition, the numerator
and denominator of R̂i,p have the same degree, and so we refer to the “degree of R̂i,p”,

meaning that of B̂i,p. It is important to note that due to wi > 0 for all i ∈ I, the
non-negativity of B-splines and the partition of unity, cf. Section 2.1.1, it holds

W (ξ) =
∑

j∈I

wjB̂j,p(ξ) ≥ min
i∈I

wi

∑

j∈I

B̂j,p(ξ) = min
i∈I

wi > 0 ∀ξ ∈ Ω̂. (2.7)

I.e. the functions R̂i,p : Ω̂ → R are well defined. The continuity of the functions, as well

as their support, follows directly from the knot vectors. I.e., R̂i,p has the same support

and continuity as B̂i,p. Furthermore, the functions R̂i,p are linearly independent on the

parametric space Ω̂, they still constitute a partition of unity and they are non-negative.
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Note that if the weights wi are equal, then R̂i,p(ξ) = B̂i,p(ξ) for all ξ ∈ Ω̂. Thus, B-splines
are a special case of NURBS.

Convention 2.1.2. Since B-splines can be interpreted as a special case of NURBS, the
terms R̂a,p and R̂i,p will be used for both NURBS and B-splines in the following. Ac-
cording to Convention 2.1.1, these designations thus include all kinds of basis functions
considered so far. Furthermore, the index p is omitted in cases where misunderstandings
are excluded.

Derivatives of B-splines and NURBS

The derivatives of univariate B-spline basis functions can be expressed in terms of B-
spline lower-degree bases. For a given order p and a knot vector Θ, the derivative of the
ith basis function is given by

d

dξ
N̂i,p(ξ) =

p

ζi+p − ζi
N̂i,p−1(ξ) − p

ζi+p+1 − ζi+1
N̂i+1,p−1(ξ), (2.8)

which can be generalized to higher order derivatives by simply differentiating each side
m − 1 times

dm

dξm
N̂i,p(ξ) =

p

ζi+p − ζi

dm−1

dξm−1
N̂i,p−1(ξ) − p

ζi+p+1 − ζi+1

dm−1

dξm−1
N̂i+1,p−1(ξ). (2.9)

Expanding Eq. (2.9) by means of Eq. (2.8) also gives an expression of the mth derivative
of N̂i,p purely in terms of lower order functions N̂i,p−m, . . . , N̂i+m,p−m

dm

dξm
N̂i,p(ξ) =

p!

(p − m)!

m∑

j=0

αm,jN̂i+j,p−m(ξ), (2.10a)

where the coefficients αm,j are given by the recursion

αm,0 =
αm−1,0

ζi+p−m+1 − ζi
, αm,j =

αm−1,j − αm−1,j−1

ζi+p+j−m+1 − ζi+j
, αm,m =

−αm−1,m−1

ζi+p+1 − ζi+m
, (2.10b)

with α0,0 = 1. Note that in case of knot multiplicities greater than one, the dominator
of several of these quotients may become zero. Whenever this happens the quotient is
defined to be zero. Due to the tensor product structure of multivariate B-splines, the
formulas can be applied in a straightforward manner since it holds for any m ∈ N

dp

0

∂mB̂i,p(ξ) =

dp∏

l=1

dml

dξml

l

N̂ l
il,pl

(ξl), (2.11)

cf. Eq. (2.3). Eventually, a formula for NURBS basis function is given by

∂mR̂i,p(ξ) =

wi∂
mR̂i,p(ξ) − ∑

n<m

(
m

n

)
∂nR̂i,p(ξ)∂m−nW (ξ)

W (ξ)
, (2.12)
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with m, n ∈ N
dp

0 and the binomial coefficient

(
m

n

)

=
m!

n!(m − n)!
=

(
m1

n1

)

. . .

(
mdp

ndp

)

. (2.13)

Efficient algorithms for these calculations and the proofs of the formulas can be found in
Piegl and Tiller [130].

2.1.2 NURBS geometries

In the following, we present parametric descriptions of curves, surfaces and three di-
mensional solids based on NURBS. The aim is to provide a basic understanding of the
modelling of such geometries. For this purpose, the influence of different parameters such
as the knot vector and the NURBS weights is explained using various examples. In ad-
dition, a summary of the most important properties of NURBS geometries with regard
to IGA is given. We point out that the considerations here include both NURBS and
B-spline parametrisations according to Convention 2.1.2. For a deeper insight into this
topic and efficient geometric algorithms, the reader is referred to the works of Piegl &
Tiller [129, 130, 157] and the references therein.

NURBS Curves

A pth-degree NURBS curve in Rd is defined as a linear combination of the form

G(ξ) =
n∑

a=1

P aR̂a,p(ξ), ξ ∈ Ω̂, (2.14)

where the vector valued coefficients P a ∈ Rd are referred to as control points and the
functions R̂a,p are pth-degree univariate (dp = 1) NURBS basis functions defined by a
knot vector Θ = {ζ1, . . . , ζn+p+1} and a set of weights w. The piecewise interpolation of
the control points gives the so-called control polygon.

The example shown in Figure 2.5 is constructed from an open knot vector with an internal
knot repetition. Note that the curve interpolates the first and last control points and is
tangent to the control polygon at these points, which are general features of a curve built
from an open knot vector, cf. [130]. Moreover, it can be observed, that the curve also
interpolates the sixth control point. This is due to the fact, that the multiplicity of the
breakpoint ζ̃5 = 4 is equal to the polynomial degree. The curve is Cp−1 = C1-continuous
everywhere except at this location, where it is reduced to Cp−2 = C0. In such a case,
all the basis functions vanish at this breakpoint, except one which takes the value 1 as
shown in the lower picture in Figure 2.5. The effect of the NURBS weights on the curve
can be seen in the upper image in Figure 2.5. All weights are 1 except of w4 = 3 and
w7 = 2. Due to the greater weighting, the curve is “pulled” towards the corresponding
control points P 4, P 7. In general, when a weight wi increases (decreases), the curve
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P 1

P 2

P 3

P 4

P 5

P 6P 7

P 8 G(0)

G(1) G(2)

G(3)

G(4)

G(5)

R̂1,2

R̂2,2 R̂3,2

R̂4,2

R̂5,2

R̂6,2

R̂7,2

R̂8,2

Figure 2.5: A quadratic NURBS curve (p = 2) in R2. The upper left picture shows the
curve (blue line) together with the control polygon (black line). The upper
right picture shows the segmentation of the curve into elements by the images
of the breakpoints. The lower picture shows the corresponding NURBS basis
defined by the knot vector Θ = {ζ1, . . . , ζ11} = {0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5} and
the NURBS weights w = (w1, . . . , w8) = (1, 1, 1, 3, 1, 1, 2, 1).

moves closer (further) to P i, which also holds for other NURBS geometries like surfaces
and solids. Note further the difference between the control points P i and the images G(ζ̃i)

of the breakpoints. Just as the breakpoints partition the parameter space Ω̂ into elements,
their images under the parametrisation G divide the curve into elements. Conversely, the
control points are, in general, not located on the curve.

Eventually, in addition to the above discussed properties, the following geometric charac-
teristics of NURBS curves are of importance [44, 130]:

• G is infinitely differentiable between two breakpoints and (p−k)-times continuously
differentiable at a breakpoint of multiplicity k.

• Local approximation: if the control point P a is moved, or the weight wa is changed,
it only affects the portion G([ζa, ζa+p+1)) of the curve. This is a consequence of the
compact support of the NURBS basis functions.

• Affine invariance: an affine transformation is applied by the curve by applying it to
the control points. This is due to the fact, that a NURBS basis provides a partition
of unity.
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NURBS Surfaces

As with curves, a NURBS surface in Rd, d ∈ {2, 3}, is given as a linear combination

G(ξ) =
∑

i∈I

P iR̂i,p(ξ), ξ ∈ Ω̂, (2.15)

where the bivariate (dp = 2) basis functions R̂i,p are defined by the polynomial de-
gree p = (p1, p2), two knot vectors Θl = {ζ l

1, . . . , ζ l
nl+pl+1}, l = 1, 2, and a set of

NURBS weights. The piecewise linear interpolation of the control points P (i1,i2) ∈ Rd

gives here the so-called control net. The upper picture in Figure 2.6 shows an exam-
ple of a p = (4, 3) degree NURBS surface in R3 build from the two open knot vectors
Θ1 = {0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2}, Θ2 = {0, 0, 0, 0, 1, 2, 2, 2, 2} together with the correspond-
ing control net. Due to the use of open knot vectors, the boundary of the surface is solely

P (1,1)

P (4,1)

P (1,2)

P (4,2)

P (4,3)

P (6,3)

P (1,4)

P (3,4)

P (5,5)

P (6,5)

ê(1,1) ê(2,1)

ê(1,2) ê(2,2)

ζ̃1
1 = ζ̃2

1 ζ̃1
2 ζ̃1

3

ζ̃2
2

ζ̃2
3

G
(
ê(1,1)

)
G
(
ê(2,1)

)

G
(
ê(1,2)

)
G
(
ê(2,2)

)

Figure 2.6: A NURBS surface of degree p = (4, 3). The upper picture shows the surface
together with the control net. The lower left picture shows the corresponding
parameter space and the mesh consisting of the four elements ê(i1,i2), i1, i2 ∈
{1, 2}, defined by the breakpoint vectors Θ̃l = {ζ̃l

1, ζ̃l
2, ζ̃l

3} = {0, 1, 2}, l = 1, 2.
The lower right picture shows the surface from a different perspective and
the mesh given by the images of ê(i1,i2) under G.

determined by the control points M1 = {P (i1,i2) | i1 = 1∨ i1 = 6∨ i2 = 1∨ i2 = 5}, forming
the first and last row, respectively, in the underlying tensor product structure, and the cor-
ner points are interpolated, i.e. G(ζ̃1

i1
, ζ̃2

i2
) = P (i1,i2), if (i1, i2) ∈ {(1, 1), (1, 5), (6, 1), (6, 5)}.
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In addition, the slope along the boundary is determined only by the first, second, last and
penultimate rows of control points given by M1∪{P (i1,i2) | i1 = 2∨i1 = 5∨i2 = 2∨i2 = 4},
which is also a direct consequence of the use of open knot vectors.

Analogously to NURBS curves, the images of the elements ê(i1,i2) ∈ M̂ , cf. Eq. (2.5),
under G form in a natural way a mesh on the surface as illustrated by the two lower
pictures in Figure 2.6. Furthermore, G is C∞-continuous in every element ê(i1,i2) and
(pl − kl

i)-times continuously differentiable with respect to its lth argument on every mesh
line Hl

i, l = 1, 2, i = 1, . . . ñl, cf. Section 2.1.1. Eventually, G is affine invariant and local,
in the sense that if the control point P (i1,i2) is moved, or the weight w(i1,i2) is changed, it
only affects the part G([ζ1

i1
, ζ1

i1+p1+1) × [ζ2
i2

, ζ2
i2+p2+1)).

NURBS Solids

In R3, NURBS solids are defined in the same manner as NURBS surfaces and curves by
extending the tensor product structure accordingly. They are given by linear combinations
of the form

G(ξ) =
∑

i∈I

P iR̂i,p(ξ), ξ ∈ Ω̂, (2.16)

where the trivariate (dp = 3) basis functions R̂i,p are defined by the polynomial degree
p = (p1, p2, p3), three knot vectors Θl = {ζ l

1, . . . , ζ l
nl+pl+1}, l = 1, 2, 3, and a set of weights.

The piecewise linear interpolation of the control points P (i1,i2,i3) ∈ R3 gives here the
so-called control lattice.

Ω̂ G(Ω̂)

Figure 2.7: A NURBS solid of degree p = (2, 1, 2) built from the three open knot vectors
Θ1 = Θ3 = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}, Θ2 = {0, 0, 1, 1} and a set of 162
weights the specification of which is omitted here for reasons of clarity. Left:
parameter space Ω̂ decomposed into elements. Right: the image of Ω̂ under
G, a hollow torus, and the mesh on G(Ω̂) given by the images of the element
boundaries in Ω̂ under G.

Figure 2.7 shows a hollow torus and the underlying parameter space with the respective
meshes induced by the corresponding breakpoint vectors. The geometric properties of
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NURBS solids are trivariate generalisations of those of NURBS surfaces. In brief, G is
local, affine invariant, C∞-continuous in the elements and Cm-continuous on the element
boundaries, where m = min{pl − kl

i | l = 1, 2, 3, i = 1, . . . , ñl} and kl
i are the multiplicities

with respect to Θ̃l.

2.1.3 Refinement

The breakpoint vectors naturally provide a mesh in the parameter space, which is mapped
onto the physical space by the respective NURBS parametrisation. Thereby, the mesh as
well as the number of basis functions are initially determined by the shape of the corre-
sponding geometry. For IGA, however, it is necessary to refine the mesh resp. to enrich
the approximation space while leaving the underlying geometry and its parametrisation
intact. Two basic methods used for this purpose, namely knot insertion and degree ele-
vation, are presented below. Both originate from the CAD field and were developed for
application to B-spline geometries. However, the latter is not really a limitation, since the
application to general NURBS geometries can be done via an argument from projective
geometry. The idea is to represent a NURBS entity in Rd with homogeneous coordinates
as a B-spline geometry in Rd+1, apply the appropriate procedure to it and then return to a
NURBS representation in Rd with the new data. To this end, each control point P a ∈ Rd

of the NURBS geometry, together with the corresponding weight wa, are mapped into
the space Rd+1 via

Rd × R ∋ (P a, wa) 7→ P w
a := (waP a, wa) ∈ Rd+1. (2.17)

The corresponding B-spline parametrisation in Rd+1 then results as linear combination
of the points P w

a and the B-spline basis functions underlying the basis of the NURBS
entity. Eventually, after applying the respective procedure, the control points P̄

w

a =
(P̄ w

a,1, . . . , P̄ w
a,d+1)

T ∈ Rd+1 of the modified parametrisation are transformed back via

Rd+1 ∋ P̄
w

a = (P̄ w
a,1, . . . , P̄ w

a,d+1) 7→ (P̄ a, w̄a) ∈ Rd × R, (2.18)

where w̄a := P̄ w
a,d+1 and P̄ a := (P w

a,1/w̄a, . . . , P w
a,d/w̄a)T, to obtain the control points and

weights of the corresponding NURBS geometry in Rd. More details concerning projective
geometry in the context of NURBS can be found in Farin [75].

For the description of the two methods, let for the remainder of this section G : Ω̂ → Rd

be a B-spline parametrisation of order p = (p1, . . . , pdp
), defined through the knot vectors

Θ1, . . . , Θdp, dp ≥ 1, such that the corresponding B-spline basis consists of n = n1n2 . . . ndp

functions, where nl as usual denotes the number of univariate basis functions in the lth
parametric direction.

Knot insertion. As the name suggests, in this method the number of basis functions is
increased by adding knots to the underlying knot vectors. For example, by adding a knot
ζ̄ in Θl, a new univariate basis is obtained based on the resulting knot vector Θ̄l according
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to recursion (2.1). Due to the underlying tensor product structure, this also yields a new
multivariate basis {R̂a,p}r

a=1 consisting of r = n+ n/nl functions. The actual task of knot
insertion is now to find suitable control points {P̄ a}r

a=1 so that the geometry and the
parametrisation remain unchanged, i.e. points that fulfil

∑r

a=1 P̄ aR̂a,p(ξ) = G(ξ), for all

ξ ∈ Ω̂. The latter problem can be solved, for example, by substituting r suitable values
of ξ into the equation and solving the resulting system of linear equations. However,
there are much more efficient methods, which are described in Piegl & Tiller [130]. In
particular, a proof for the existence of the points {P̄ a}r

a=1 can also be found there.

Degree elevation. In this method, the approximation space is enriched by increasing
the polynomial degree in a selected direction l. Since the parametrisation in each element
is a polynomial of order pl, the order elevation is trivial there. From a vector space point
of view, the space of polynomials of order pl is embedded in the space of polynomials of
order pl + 1 via the map s(ξ) 7→ s(ξ) + 0 · ξpl+1, where s denotes a polynomial in ξ of
order pl. The element boundaries, however, require more attention, as the continuity of
G must be maintained. To increase the order in direction l by one, a new knot vector is
formed based on the breakpoint vector Θ̃l = {ζ̃1, . . . , ζ̃ñl

} according to

Θ̄l = {ζ̄1, . . . , ζ̄n̄l+p̄l+1} = {ζ̃1, . . . , ζ̃1
︸ ︷︷ ︸

kl
1+1

, ζ̃2, . . . , ζ̃2
︸ ︷︷ ︸

kl
2+1

, . . . ζ̃ñl
, . . . , ζ̃ñl

︸ ︷︷ ︸

kl
ñl

+1

}, (2.19)

where kl
i is the multiplicity of ζ̃i in Θl and n̄l := nl + ñl − 1 the number of the univariate

basis function corresponding to Θ̄l and the elevated order p̄l := pl +1. In other words, the
knot vector Θ̄l to the elevated order p̄l results from Θl by increasing the multiplicity of each
knot by 1. Eventually, together with the remaining knot vectors, Θi, i = 1, . . . dp, i 6= l,

one obtains a new multivariate basis {R̂a,p̄}r
a=1 of order p̄ = (p1, . . . , pl−1, p̄l, pl+1, . . . pdp

),
consisting of r = n + n(ñl − 1)/nl functions, where the corresponding control points

{P̄ a}r
a=1 are characterized by

∑r

a=1 P̄ aR̂a,p̄(ξ) = G(ξ), ξ ∈ Ω̂. As with knot insertion,
the last equation can be used to construct a linear system of equations to determine the
unknowns {P̄ a}r

a=1. However, more efficient methods are given by [42, 130, 132, 133].

2.1.4 Multiple patches

NURBS offer a wide range of parametric descriptions but are limited to shapes that are
topologically equivalent to lines (dp = 1), rectangles (dp = 2) or cuboids (dp = 3). To
increase the number of possibilities, in practice multi-patch descriptions are used. This
involves the use of multiple parametrisations whose respective geometries, embedded in
a common coordinate system, together yield a more complex shape. For example, as
shown in Figure 2.8, an L-shaped three-dimensional body can be described by placing
two cuboids of different sizes side by side. While from a graphical point of view, nothing
else needs to be considered, such geometries require special treatment in the analysis
because, according to the representation, it is a matter of many individual objects and
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not a coherent entity. Therefore, the concept of multi-patch geometries is explained in
more detail below.

Let Ω ⊂ Rd be an open, bounded and connected domain, given by the union of N open
subdomains Ω(1), . . . , Ω(N) ⊂ Rd such that

Ω̄ =
N⋃

j=1

Ω̄(j), Ω(i) ∩ Ω(j) = ∅, if i 6= j, (2.20)

and for each part Ω(i) there exists a NURBS parametrisation G(i) : Ω̂(i) → Rd with Ω(i) =
G(i)(Ω̂(i))†. Then, Ω is called a multi-patch domain and the subdomains Ω(1), . . . , Ω(N) are
called patches. For 1 ≤ i < j ≤ N , the interface of two patches is defined as the interior
of the intersection of the boundaries, i.e. Γi,j = ∂Ω(i) ∩ ∂Ω(j) where Γi,j is open, and we
define the skeleton Γ as the union of all interfaces,

Γ :=
⋃

1≤i<j≤N

Γi,j. (2.21)

Furthermore, we denote the pre-images of an interface Γi,j 6= ∅ under the parametrisation

G(i) or G(j) with Γ̂i
j or Γ̂j

i , respectively, and specify assignments Pi
j : Γ̂i

j → Γ̂j
i , Pj

i : Γ̂j
i → Γ̂i

j

of the parametric coordinates by a closest point projection through

Pi
j ξ(i) = ξ(j) :⇐⇒ ‖G(i)(ξ(i)) − G(j)(ξ(j))‖ = min

ξ∈Γ̂j
i

‖G(i)(ξ(i)) − G(j)(ξ)‖,

Pj
i ξ(j) = ξ(i) :⇐⇒ ‖G(i)(ξ(i)) − G(j)(ξ(j))‖ = min

ξ∈Γ̂i
j

‖G(i)(ξ) − G(j)(ξ(j))‖.
(2.22)

By means of Pj
i and Pi

j the parametric coordinates of a common point in Γi,j are linked in

such a way that G
(i) = G

(j) ◦Pi
j on Γ̂i

j and G
(i) ◦Pj

i = G
(j) on Γ̂j

i . In particular, for surfaces

in R3, Pj
i and Pi

j are used in the following to formulate coupling conditions in a clear way.
However, it is important to note that the parametric mappings defined by (2.22) are not
well-defined for arbitrary NURBS parametrisations. Especially, if G(i) or G(j) is not an
injection, minima according to (2.22) can be taken at several points in the parameter
spaces. To ensure well-definiteness, a suitable regularity assumption on the NURBS
parametrisations is needed, which will be formulated in Section 2.2 (Assumption 2.2.1)
in connection with the construction of isogeometric approximation spaces. Until then,
we tacitly assume that the parametrisations are sufficiently good-natured so that Pi

j and

Pj
i are well-defined. We also note that the definition through a closest point projection

is closely related to the problem of point inversion. Therefore, algorithms from this field
can be used directly for implementation to a large extent. Further details on this topic
can be found in Section 6.1 in [130]. Finally, an illustration of the multi-patch entities
introduced is given in Figure 2.8, and we conclude with the following agreement in order
to achieve a better representation of the further issues.

†Superscripts in round brackets, e.g. (i), are generally used to refer to the ith patch. Especially for

functions f defined on Ω, the notation corresponds to the restriction of f to Ω(i), i.e. f (i) = f |Ω(i) .
This convention will be maintained throughout the rest of the work.
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Figure 2.8: A two-patch geometry. The pre-images of the interface Γ1,2 under G
(1) and

G
(2), respectively, are marked in yellow.

Assumption 2.1.1. For the remainder of this work, we assume that each parametric
space Ω̂ ⊂ Rdp is given by the unit cube (0, 1)dp. Accordingly, we omit the superscripts (i)
at the parameter spaces in the case of multi-patch geometries.

We point out that Assumption 2.1.1 is not a significant restriction. A suitable NURBS
representation with the unit cube as parameter space can always be obtained by an
appropriate reparametrisation, cf. Section 6.4 in Piegel & Tiller [130].

2.1.5 Geometric Continuity for surfaces

For the purposes of analysis, the continuity between patches plays a crucial role. While
the continuity of each patch is determined by the underlying parametrisation, each non-
empty interface must be considered separately. For parametric geometries, there are two
types of continuity, parametric continuity C and geometric continuity G. Thereby, the
geometric continuity measures the relative smoothness with which two patches meet, while
parametric continuity is defined as usual through the derivatives of the corresponding
parametrisations. For example, two patches with a common boundary are said to meet
with geometric continuity of order zero, which is equivalent to C0-continuity. However,
Cn- and Gn-continuity differ from each other in the case n > 0. Since, in the framework



2 The isogeometric concept 21

of multi-patch Kirchhoff-Love shell theory, we need the notion of first-order geometric
continuity, the difference between G1 and C1 is briefly discussed below. More general
considerations on geometric continuity can be found in [59, 60, 76, 80].

For d ∈ {2, 3} let G(i) : (0, 1)2 → Rd, i = 1, 2, be parametric descriptions of two surfaces
with a common edge Γ1,2, i.e.

G(1)(ξ(1)) = G(2)(P1
2 ξ(1)), ∀ξ(1) ∈ Γ̂1

2. (2.23)

The surfaces meet C1-continuously along this edge if additionally their first derivatives
at the interface are equal, i.e.

∂iG
(1)(ξ(1)) = [∂iG

(2)](P1
2 ξ(1)), ∀ξ(1) ∈ Γ̂1

2, i = 1, 2. (2.24)

Geometrically, this means that the tangent vectors of the two surfaces are parallel and
have the same magnitude at each point of the interface. In contrast, for G1-continuity the
tangent vectors only have to be coplanar at every interface point, which in turn means the
tangent spaces of the two surfaces coincide at every point x ∈ Γ1,2. More formally, the

two surfaces are G1-continuous along the interface, if there are four functions γi
j : Γ̂2

1 → R,
i, j = 1, 2, such that

∂iG
(1)(ξ(1)) =

2∑

j=1

γi
j(P

1
2 ξ(1))[∂jG

(2)](P1
2 ξ(1)), ∀ξ(1) ∈ Γ̂1

2, i = 1, 2. (2.25)

Note that if two surfaces meet C1-continuously they also meet G1-continuously but not
vice versa, i.e. C1-continuity is a special case of G1-continuity.

2.2 Construction of isogeometric approximation spaces

It is common practice in FEA to use the same basis for both geometry representation
and analysis. This is known as the isoparametric concept. In classical FEA, the basis
chosen to approximate the unknown solution fields is then used to approximate the known
geometry. This can lead to an additional error contribution if the geometry cannot be
accurately represented by the basis chosen for analysis. The basic idea behind IGA is
to turn this idea around. In IGA the basis used to accurately model the geometry is
then used to approximate the unknown solution fields. This approach avoids the need
to approximate a CAD model for the purpose of analysis so that the CAD and FEA
packages can use a common data set. Apart from the fact that NURBS are widely used
in CAD, we have seen in the preceding sections that they have a number of properties
that are useful for analytical purposes. Based on the previous results, the construction
of suitable approximation spaces will be discussed in the following. To this end, single-
patch domains are first considered in Section 2.2.1 and these approaches are extended to
multi-patch domains in Section 2.2.2. For the latter, bases of product spaces are needed,
the construction of which is covered within Section 2.2.3.
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2.2.1 Isogeometric spaces in a single-patch domain

Let Ω ⊂ Rd be a computational domain represented by a NURBS parametrisation G : Ω̂ =
(0, 1)dp → Rd, G(ξ) =

∑n

a=1 P aR̂a(ξ), where the basis {R̂a}n
a=1 is specified through the

knot vectors Θ1, . . . , Θdp. As shown in Section 2.1.1, the associated breakpoint vectors
Θ̃1, . . . , Θ̃dp naturally provide a mesh M̂ in the parameter space, which is mapped into
the physical space Ω by G. To be more specific, we define the physical mesh as

M := {e ⊂ Ω | e = G(ê), ê ∈ M̂ } (2.26)

and further introduce the element sizes ĥê = diam(ê) and he = diam(e) for each element

ê ∈ M̂ and e ∈ M , respectively. Before we proceed to the construction of a proper
approximation space, it is important to note that not every NURBS parametrisation is
suitable for IGA. For example, in Section 2.1.4, when introducing the parametric assign-
ments (2.22), we noted that problems arise when the parametrisations are not injective.
In fact, we need even stricter conditions for the construction of suitable approximation
spaces. To this end, we take our cue from Beirão da Veiga et al. [14] and make use of the
following regularity assumption on G.

Assumption 2.2.1. The parametrisation G : Ω̂ → Ω is a bi-Lipschitz homeomorphism‡.
Moreover, G|¯̂e is in C∞(ê) for all ê ∈ M̂ and G−1

|ē is in C∞(e) for all e ∈ M .

Apart from ensuring that the mappings (2.22) are well defined, the assumption prevents
the existence of singularities. In the two-dimensional case, for instance, the most common
singularity occurs when a rectangular element in M̂ is mapped by G to a curvilinear
triangular element, see Figure 2.9 for illustration. We point out that the existence of
singularities is not a problem per se but needs specific attention which is out of the scope
of this work, see, e.g., Takacs and Jüttler [154, 155] for more details on this topic.

Figure 2.9: Two possible singular parametrisations of the circle. One singularity at the
origin (left) and four singularities on the boundary (right).

‡A function is called bi-Lipschitz if it is bijective and both the function itself and its inverse are Lipschitz.
Thereby, a function f : Rm ⊃ X → Y ⊂ R is called Lipschitz (or Lipschitz continuous) if there exists
a real constant L > 0 such that ‖f(x1) − f(x2)‖ ≤ L‖x1 − x2‖ for all x1, x2 ∈ X .
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From these preliminary considerations, the corresponding approximation spaces are ob-
tained on the basis of the parametrisation. In the following, let l ∈ N be the dimension
of the problem at hand, i.e. we assume that an unknown function of the form v : Ω̃ → Rl,
Ω̃ ∈ {Ω̂, Ω}, is to be approximated within the IGA framework. Therefore we introduce
on the parameter space the discrete NURBS space

V̂h,l :=

{
n∑

a=1

vaR̂a | va ∈ Rl

}

= span
{

R̂r,l

}ln

r=1
, (2.27)

where the basis functions R̂r,l : Ω̂ → Rl are defined by R̂r,l(ξ) = eiR̂a(ξ), ei := (δi,j)1≤j≤l,
r = l(a − 1) + i, i = 1, . . . , l, a = 1, . . . , n§. Furthermore, we introduce analogously on the
physical space the corresponding NURBS space

Vh,l :=

{
n∑

a=1

vaRa | va ∈ Rl

}

= span {Rr,l}ln
r=1 , (2.28)

where Ra := R̂a ◦ G−1 and the basis functions Rr,l : Ω → Rl are defined analogue to

R̂r,l. Eventually, we point out that Assumption 2.2.1 ensures ĥê ≃ he for all ê ∈ M̂

and e = G(ê), such that no distinction is required any more, [14]. In the following,
therefore, only the notation he is used for the element size and we introduce the mesh
size h = maxe∈M he. Furthermore, Assumption 2.2.1 ensures, that the functions Rr,l are

linearly independent and have the same continuity as R̂r,l, cf. [14, 155].

2.2.2 Isogeometric spaces in a multi-patch domain

Let Ω ⊂ Rd be a multi-patch domain consisting of the patches Ω(1), . . . , Ω(N), which are
parametrised by G(i) : (0, 1)dp → Ω(i), G(i) =

∑n

a=1 P (i)
a R̂

(i)
a . For each sub-domain Ω(i), we

introduce according to Section 2.2.1 the NURBS spaces on the parametric and physical
domain

V̂
(i)

h,l = span
{

R̂
(i)

r,l

}ln(i)

r=1
, V

(i)
h,l = span

{

R
(i)
r,l

}ln(i)

r=1
, (2.29)

and define the global approximation spaces as the products

V̂h,l =

N∏

i=1

V̂
(i)

h,l , Vh,l =

N∏

i=1

V
(i)

h,l , (2.30)

where we specify the mesh size h as the maximum of the mesh sizes h(i) corresponding
to Ω(i), i.e. h := maxi=1,...N h(i). In this context, each component v

(i)
h of a function

§The Kronecker delta function is defined here as usual as

δi,j =

{

1, if i = j,

0, otherwise.
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vh = (v
(i)
h )1≤i≤N from the space V̂h,l or Vh,l can be interpreted as an approximation of an

unknown field restricted to the ith patch. To be more precise, by means of vh ∈ Vh,l,

a function v on Ω\Γ is initially obtained by v(x) := v
(i)
h (x), if x ∈ Ω(i), where for

an extension of the definition range to the entire domain Ω, v is still to be defined
on the skeleton. For each point x ∈ Γi,j 6= ∅, both components v

(i)
h and v

(j)
h provide

a possible value, so that one of the two sides can be selected for the extension, i.e.
either v(x) := v

(i)
h (x) or v(x) := v

(j)
h (x), if x ∈ Γi,j. Note, however, that according

to the construction of Vh,l, it is not ensured that the values of the components at the
interfaces match, so a function constructed in this way is generally discontinuous at the
skeleton, cf. Remark 2.2.1. The formulation and implementation of suitable coupling
conditions to achieve the desired continuity are addressed in Chapter 3. Note also that a
similar interpretation applies to functions from the approximation space V̂h,l, which is used
when the underlying problem is transformed into the parameter space by an appropriate
coordinate transformation. The concepts needed to see the relationships between the
components v

(i)
h and the connection with the overall solution of the problem are provided

in Chapter 4. Especially in the Kirchhoff–Love shell theory introduced in Section 4.6, the
unknown quantities are defined on the parameter space. Eventually, for the sake of clarity,
the subscript l is omitted below where it is not relevant or clear from the context.

Remark 2.2.1. In multi-patch theory, instead of a product space as introduced in Eq.
(2.30)2, the space

V ′
h,l =

{

f : Ω → Rl | f |Ω(i) ∈ V
(i)

h,l , i = 1, . . . , N
}

, (2.31)

is often used as global approximation space on the physical domain. Here it should be
noted that the spaces Vh,l and V ′

h,l are isomorph, so that the two approaches are essentially
identical, cf. Kleiss et al. [111].

2.2.3 Bases of product spaces

Since the isogeometric multi-patch framework is based on product spaces, we will finally
discuss the construction of suitable bases. The construction itself is not difficult, but
the representation quickly becomes confusing in the general case. Therefore, the concept
is first explained with an introductory example and then the general construction is
outlined.

Let V (1), V (2), V (3) be function spaces and {h
(1)
1 }, {h

(2)
j }2

j=1, {h
(3)
j }3

j=1 be associated bases,

where h
(i)
j : X(i) → Rm, X(i) ⊂ Rn. The aim is to construct a basis of the product space

V =
∏3

i=1 V (i) from the bases of the respective components. To this end, the possibility
that the three domains X(i) may be different is first taken into account by introducing the

common domain X = X(1) ∪ X(2) ∪ X(3) and the trivial extensions h̄
(i)

j : X → Rn of the
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basis functions h
(i)
j onto X¶. With the extensions, a basis {f r : X → Rm ×Rm ×Rm}6

r=1

for V is given by

{f 1, f 2, . . . , f6} =













h̄
(1)

1

0

0







,







0

h̄
(2)

1

0







,







0

h̄
(2)

2

0







,







0

0

h̄
(3)

1







,







0

0

h̄
(3)

2







,







0

0

h̄
(3)

3













, (2.32)

where 0 ∈ Rm is to be interpreted as the zero function on the respective domain. Accord-
ing to the construction, each basis function h

(i)
j receives a counterpart f r in the product

basis, where its extension is appropriately placed in the 3-tuple. Furthermore, for the
numbering of the base, we use a natural scheme in which the functions are assigned to
each other h

(i)
j ↔ f r by numbering the functions consecutively from base {h

(1)
1 } to base

{h
(3)
j }3

j=1 as follows

h
(1)
1 , h

(2)
1 , h

(2)
2 , h

(3)
1 , h

(3)
2 , h

(3)
3

l l l l l l
f1, f2, f3, f4, f5, f6

j = 1 j = 2 j = 3

i = 1 r = 1 − −
i = 2 r = 2 r = 3 −
i = 3 r = 4 r = 5 r = 6

After these considerations, we now come to the general case. Let V (1), . . . , V (N) be func-
tion spaces and {h

(1)
j }n(1)

j=1, . . . , {h
(N)
j }n(N)

j=1 be associated bases, where h
(i)
j : X(i) → Rm,

X(i) ⊂ Rn and h̄
(i)

j : X → Rm denotes the trivial extension onto X =
⋃N

i=1 X(i). As be-

fore, the aim is to construct a suitable basis of the space V =
∏N

i=1 V (i). The numbering
scheme used in the example reads for the actual case

r = r(i, j) =

i−1∑

s=1

n(s) + j, j = 1, . . . , n(i), i = 1, . . . , N, (2.33)

and the components f (k)
r : X → Rm of the basis function f r = (f (1)

r , . . . , f (N)
r ) : X →

∏N
i=1 R

m, r = 1, . . . , n :=
∑N

i=1 n
(i) associated with h

(i)
j are given by

f (k)
r = f

(k)
r(i,j) =

{

0, if k 6= i,

h̄
(i)

j , otherwise.
(2.34)

Remark 2.2.2. We note that according to the definition in Section 2.1.4, the patches
are open and the skeleton is formally not included in the domains of the respective bases.
In order to take this into account in the construction of isogeometric product spaces, the
closure of the corresponding domains should be used in each case. I.e. for a base of V̂h,l

use, according to the notation above, X(i) = [0, 1]dp instead of (0, 1)dp and for a basis of
Vh,l accordingly X(i) = Ω̄(i) instead of Ω(i).

¶The trivial extension of a function h : X → Rm to a larger domain X ′ ⊃ X is given by

h̄ : X ′ → Rm, h̄(x) =

{

h(x), if x ∈ X,

0, otherwise.
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3 Extended mortar method

The mortar method, firstly proposed in [23] for C0-continuous couplings between non-
overlapping domains, can be interpreted as a minimization of a specific coupling func-
tional. In this chapter, we present the results of several studies done on the extension of
this functional to higher continuous coupling problems in the IGA framework, [64, 65, 143].
In Section 3.1, we formulate an abstract variational problem and derive weak higher order
coupling conditions in a continuous setting. Subsequently, we discuss the isogeometric
mortar discretization by means of this framework in Section 3.2 and conclude with several
numerical studies in Section 3.3.

3.1 Abstract framework

3.1.1 Uncoupled problem

We consider an abstract variational setting on an open bounded multi-patch domain
Ω ⊂ Rd consisting of N subdomains Ω(1), . . . , Ω(N). For this purpose, we assume that on
each patch Ω(i) a variational problem is formulated as follows: find v(i) ∈ S(i) such that

V(i)(v(i), δv(i)) = 0 ∀δv(i) ∈ V(i), (3.1)

where the functional V(i) represents the corresponding problem and is assumed to be
linear at least in its second argument. S(i) and V (i) designate suitable spaces of admissible
solutions and test functions, respectively, which comply with possible essential boundary
conditions stated on a subset Γe ⊂ ∂Ω. Thereby, we refer to a boundary condition
as essential if it is not covered by the variational formulation and must be explicitly
demanded by the elements of the space of admissible solutions. Accordingly, the spaces
S(i) and V(i) respect an essential condition if all elements from S(i) satisfy the constraint
and the elements from V(i) vanish on the corresponding boundary part. On the other
hand, we speak of natural boundary conditions when they are included in the variational
formulation in the sense that any solution of the problem satisfies the boundary condition
without further restrictions on the solution space. To obtain a global functional framework
on Ω, we introduce the product spaces

S =
N∏

i=1

S(i), V =
N∏

i=1

V(i) (3.2)
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and specify the global uncoupled problem as follows: find v = (v(1), . . . , v(N)) ∈ S such
that

V(v, δv) :=
N∑

i=1

V(i)(v(i), δv(i)) = 0, (3.3)

for all δv = (δv(1), . . . , δv(N)) ∈ V. Note that a solution of (3.3) is to be understood as
outlined in Section 2.2.2 for the discrete case. Since there are no further conditions on
the transitions at the interfaces within the current framework, a function characterised by
(3.3) is generally discontinuous at the skeleton. In the following, we extend the variational
formulation by suitable conditions in order to control the continuity of the solution.

3.1.2 Coupling conditions

Let us assume that the non-empty interfaces are enumerated by Γk, k = 1, . . . , K, so that
the skeleton is given by Γ =

⋃K
k=1 Γk. For each interface Γk we choose one of the adjacent

subdomains as the master side and one as the slave side, where we denote the index of the
former one by m(k) and the index of the latter one by s(k), i.e. Γk = ∂Ω(m(k)) ∩ ∂Ω(s(k)).
Since the coupling conditions must be satisfied equally at each interface, for the sake of
clarity, we will first consider a two-patch situation and formulate the conditions for a
general multi-patch situation at the end of this section.

Two-patch coupling

The idea to obtain a weak coupling of the patches is based on the minimization of a
functional M: S(1) × S(2) → R, which describes the desired coupling conditions. To be
more precise, we restrict the solution space for the uncoupled problem (3.3) to those func-
tions v = (v1, v2) ∈ S(1) ×S(2) that additionally fulfil M(v(1), v(2)) = infw∈S(1) M(w, v(2)),
where we assume here that s(1) = 1, m(1) = 2. I.e. for a given function v(2) on the
master side, only those functions on the slave side are accepted that optimally satisfy the
conditions given by M. For a weak Cn coupling, we specify

M(v(1), v(2)) =
∑

|α|≤n

h|α|‖∂α(v(1) − v(2))‖2
L2(Γ), (3.4)

where h ∈ R>0 is a weighting parameter which will be related in the discrete framework
to the mesh size h, cf. Section 3.3. Similarly, we specify

M(v(1), v(2)) = ‖v(1) − v(2) ◦ P1
2 ‖2

L2(Γ̂1
2)

+ h

2∑

i=1

‖∂iv
(1) −

2∑

j=1

(γi
j∂jv

(2)) ◦ P1
2 ‖2

L2(Γ̂1
2)

, (3.5)

for a weak G1 coupling, with the conditions for the partial derivatives weakened according
to Section 2.1.5. The parametric assignment P1

2 introduced in Eq. (2.22) is used here to
define the coupling integrals on the parameter space of the slave side. We point out
that this definition is not mandatory. Analogously, the integrals could be defined on
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the parameter space of the master side using P2
1. Introduction of a suitable space M of

Lagrange multipliers at the interface, standard variational calculus provides the coupling
condition

B(v, δλ) =
∑

|α|≤n

h|α|〈∂α(v(1) − v(2)), ∂αδλ〉Γ = 0 ∀δλ ∈ M (3.6)

for a weak Cn-continuous patch coupling and the condition

B(v, δλ) = 〈v(1) − v(2) ◦ P1
2, δλ〉Γ̂1

2

+ h

2∑

i=1

〈∂iv
(1) −

2∑

j=1

(γi
j∂jv

(2)) ◦ P1
2, ∂iδλ〉Γ̂1

2
= 0 ∀δλ ∈ M,

(3.7)

in the case of a weak G1-continuous patch coupling. These considerations now allow us to
formulate two equivalent coupled problems corresponding to (3.3). The first problem is
formulated in the form of a saddle-point system, and reads as follows: find (v, λ) ∈ S×M
such that

V(v, δv) + B(δv, λ) = 0, ∀δv ∈ V,

B(v, δλ) = 0, ∀δλ ∈ M,
(3.8)

where in the second formulation the constrained spaces

Sc := {v ∈ S | B(v, δλ) = 0, ∀δλ ∈ M},

Vc := {δv ∈ V | B(δv, δλ) = 0, ∀δλ ∈ M} (3.9)

are used, such that the problem simply reads: find v ∈ Sc such that

V(v, δv) = 0, ∀δv ∈ Vc. (3.10)

The construction of constrained spaces in a discrete setting is covered in Section 3.2.4.

Multi-patch coupling

In order to consider the general case of multiple interfaces, the bilinear form B and
the multiplier space M in the problems (3.8)-(3.10) have to be extended to the whole
skeleton as follows. For each interface Γk we specify a suitable multiplier space Mk and
a corresponding functional B(k), which takes the form

B(k)(v, δλ(k)) =
∑

|α|≤n

h|α|〈∂α(v(s(k)) − v(m(k))), ∂αδλ(k)〉Γk
(3.11)

in the case of weak Cn conditions and the form

B(k)(v, δλ(k)) = 〈v(s(k)) − v(m(k)) ◦ P
s(k)
m(k), δλ(k)〉

Γ̂
s(k)
m(k)

+ h

2∑

i=1

〈∂iv
(s(k)) −

2∑

j=1

(γi,k
j ∂jv

(m(k))) ◦ P
s(k)
m(k), ∂iδλ(k)〉

Γ̂
s(k)
m(k)

(3.12)
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in the case of weak G1 conditions. Based on the individual contributions of the interfaces,
we eventually define the global multiplier space on Γ as the product M :=

∏K
k=1 Mk and

the associated global coupling functional by

B(v, δλ) =

K∑

k=1

B(k)(v, δλ(k)). (3.13)

3.1.3 Generalised couplings

In multi-patch systems, the coupling conditions arise naturally at the interfaces, i.e. in
the areas where the patches occupy a common space. By the coincidence of the patches,
one obtains through the identity φ(x) = x a simple assignment of the points in which the
components of the field v should satisfy the coupling conditions. However, in some cases,
it is necessary to couple arbitrary boundary parts, i.e. spatially separated areas. Well-
known applications are for instant periodic boundary conditions. To realise such general
couplings within the framework of the extended mortar method, only slight modifications
are required. Thereby, the basic idea is to adjust the assignment φ appropriately. The
procedure is described in the following by means of a weak Cn coupling, where again a
single coupling is considered and the results are used to describe the general case.

As before, let the computational domain Ω consists of∗ N ≥ 1 subdomains Ω(i), i =
1, . . . , N . Moreover, let γ ⊂ ∂Ω(i), γφ ⊂ ∂Ω(j) be two open boundary parts whose
elements are connected through a diffeomorphism φ : γ → γφ. The aim is to couple the
components v(i), v(j) and their derivatives of the unknown field v = (v(1), . . . , v(N)) ∈ S
such that they coincide on γ and γφ according to φ. By analogy with Section 3.1.2, the
derivation of appropriate conditions is based on the minimisation of the functional

M(v) =
∑

|α|≤n

h|α|‖∂αv(i) − (∂αv(j)) ◦ φ‖2
L2(γ), (3.14)

which leads to the generalised coupling condition

B(v, δλ) =
∑

|α|≤n

h|α|〈∂αv(i) − (∂αv(j)) ◦ φ, ∂αδλ〉γ = 0 ∀δλ ∈ M. (3.15)

Note that the slave and master sides are already defined by the assignment φ, where
its domain is slave and its codomain is master. The treatment of multiple generalised
couplings is now straightforward. Starting from K ≥ 1 virtual interfaces defined through
(γ1, φ1), . . . , (γK, φK), we specify for each pair (γk, φk) a multiplier space Mk and a cor-
responding functional

B(k)(v, δλ(k)) =
∑

|α|≤n

h|α|〈∂αv(s(k)) − (∂αv(m(k))) ◦ φk, ∂αδλ(k)〉γk
. (3.16)

∗We point out that the case N = 1 is explicitly taken into account here since generalised couplings can
also be usefully formulated in single-patch domains.
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The global bilinear form B belonging to the product space M :=
∏K

k=1 Mk again results

from the summation of the individual contributions B(k), cf. Eq. (3.13). If there are both
real and virtual interfaces in the system under consideration, B is composed of mixed
summands of the forms (3.11) and (3.16). We point out that the generalized coupling
conditions are a genuine generalisation in the sense that if γ̄k = ∂Ω(s(k)) ∩ ∂Ω(m(k)) 6= ∅
and φk(x) = x, x ∈ γ̄k, (3.16) takes the form of (3.11). I.e. a real interface can be
understood as a special case of a virtual interface. In order to establish a strict separation
between these types of interfaces, we refer to a pair (γk, φk) as a virtual interface only if
γk ∩ φk(γk) = ∅. In particular, with this definition, we avoid that a boundary part can be
assigned to both a real and a virtual interface. Eventually, analogous to (2.21), we define
the virtual skeleton as the union γ′ =

⋃K
k=1(γk ∪ φk(γk)) and introduce the full skeleton

Γγ := Γ ∪ γ′.

Remark 3.1.1. In the case of a single-patch system Ω = Ω(1), it holds γk, φk(γk) ⊂ ∂Ω
and the coupling functional (3.16) becomes

B(k)(v, δλ) =
∑

|α|≤n

h|α|〈∂αv − (∂αv) ◦ φk, ∂αδλ(k)〉γk
, (3.17)

so that the case N = 1 is also covered. Finally, we point out that we have omitted graphics
and examples here, as the topic is taken up again in detail in the application examples in
Sections 5.3.2 and 6.3.1.

3.2 Isogeometric mortar discretization

In this section, we consider several aspects concerning the discretization of the coupling
problem introduced in Section 3.1. Therefore, we first derive the corresponding discrete
framework in Section 3.2.1. Within this framework, the space of the Lagrange multi-
plier is specified as the space of traces from the slave side, where it is known that this
natural choice gives rise to problems in the presence of crosspoints and wirebaskets. In
Section 3.2.2 we discuss this issue and present a modification of the involved IGA base to
avoid these problems. Another particular challenge in the realisation of a mortar method
is the evaluation of the interface integrals, which is addressed in Section 3.2.3. Finally, we
discuss the construction of constrained IGA approximation spaces which a-priori satisfy
the weak coupling conditions.

3.2.1 Discrete abstract framework

According to the definition of multi-patch domains in Section 2.1.4 and Assumption 2.1.1,
each patch Ω(i) in the abstract problem in Section 3.1.1 is described by a NURBS pa-
rametrisation G(i) : Ω̂ → Rd, Ω̂ = (0, 1)dp, which leads, according to Section 2.2.2, to

approximation spaces V̂
(i)

h,l and V
(i)

h,l on the parameter space and the physical domain, cf.
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Eq. (2.29). For the further description, let W
(i)
h ∈ {V̂

(i)
h,l , V

(i)
h,l } be the space to be used for

approximation and {B(i)
r }ln(i)

r=1 be the associated basis, i.e.

{B(i)
r }ln(i)

r=1 =

{

{R̂
(i)

r,l }ln(i)

r=1 , if W
(i)
h = V̂

(i)
h,l ,

{R
(i)
r,l }ln(i)

r=1 , if W
(i)
h = V

(i)
h,l .

(3.18)

Note that we do not consider mixed approaches so in the following it is assumed that
either W

(i)
h = V̂

(i)
h,l or W

(i)
h = V

(i)
h,l is used for all i = 1, . . . , N . For the sake of clarity,

we will further assume that it is possible to impose any essential boundary condition on
Γ

(i)
e := Γe ∩ ∂Ω(i) into the discrete space by using appropriate subsets Bh

(i) := {N
(i)
j }m(i)

j=1,

B̃h
(i) := {Ñ

(i)

j }m(i)

j=1, of {B(i)
r }ln(i)

r=1 so that the spaces S(i)
h := spanB

(i)
h and V(i)

h := span B̃
(i)
h

respect the condition in the sense outlined in Section 3.1.1. We point out that this is not
possible in every case and depends on the respective boundary data. If, for example, an
essential condition is described by a function g(i) : Γ

(i)
e → Rl, an incorporation into the

discrete space is possible if g(i) is contained in W
(i)
h . If this is not the case, one possibility

is to approximate g(i) by a function g
(i)
h ∈ W

(i)
h and to use g

(i)
h instead of g(i) to model

the condition on Γ
(i)
e , cf. Cottrell et al. [44]. Another way of implementing essential

conditions is to use spaces that do not respect the essential condition and extend the
variational framework in such a way that every solution of the problem also satisfies the
boundary conditions. Common methods for this are, for example, the penalty method
or the use of Lagrangian multipliers, where the latter leads to a saddle point system of
the form (3.8). Further details on the implementation of boundary conditions can be
found in the textbook by Zienkiewicz et al. [175]. All of these techniques can easily be
used in combination with the extended mortar method. However, including the different
approaches in the abstract framework would unnecessarily complicate the presentation
and distract from the essentials. Eventually, analogous to the continuous case, we define
the global space of admissible solutions and the global space of test functions as the
products Sh =

∏N
i=1 S(i)

h and Vh =
∏N

i=1 V(i)
h and denote the associated bases by {N r}m

r=1

and {Ñ r}m
r=1, respectively.

Bearing in mind the construction of product bases, see Section 2.2.3, each vh = (v
(i)
h )1≤i≤N

from the discrete space Sh of admissible solutions has a unique representation of the
form

vh =

m∑

r=1

v̄rN r =





m(1)
∑

j=1

v̄
(1)
j N

(1)
j , . . . ,

m(N)
∑

j=1

v̄
(N)
j N

(N)
j



 =
(

v
(1)
h , . . . , v

(N)
h

)

, (3.19)

where the global degrees of freedom (dof) v̄ := (v̄r)1≤r≤m ∈ Rm and the local dof v̄(i) :=

(v̄
(i)
j )1≤j≤m ∈ Rm(i)

, i = 1, . . . , N , are assigned to each other by the numbering scheme

(2.33), such that v̄ = (v̄(1), . . . , v̄(N)). Through these considerations, we first obtain the
discrete uncoupled problem by substituting the discrete quantities into Eq. (3.3): find
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v̄ ∈ Rm such that

V(
m∑

i=1

v̄iN i, Ñ r) = 0, r = 1, . . . ,m ⇐⇒ Ru(v̄) =







Ru
1(v̄(1))

...

R
u
N(v̄(N))







= 0, (3.20)

where we have taken into account the relation V(vh, δvh) = 0 ∀δvh ∈ Vh ⇔ V(vh, Ñ r) =
0 ∀r ∈ {1, . . . ,m}, which directly follows from the assumed linearity of V with respect

to its second argument, and the blocks Ru
k : Rm(k) → Rm(k)

of the uncoupled residual
Ru : Rm → Rm are given by

Ru
k(v̄(k)) =



V(k)(
m(k)
∑

i=1

v̄
(k)
i N

(k)
i , Ñ

(k)

j )





1≤j≤m(k)

. (3.21)

In order to establish a patch coupling in the next step, we first need a suitable discrete
space of Lagrangian multipliers. Different approaches for mortar couplings are presented,
e.g., in [22, 31, 87, 116, 153, 169]. In this work, we use a p/p pairing with boundary
modification as discussed in detail in Brivadis et al. [31] for a weak C0 coupling, where we
extend the modification approach presented there for the general case of a weak Cn/G1

coupling in Section 3.2.2. To be specific, we use the product space Mh =
∏K

k=1 Mk
h,

where the components Mk
h are linear spaces spanned by the basis functions of the slave

side with influence on the interface Γk. In other words, for a Cn coupling we use the
space

Mk
h = span






N

(s(k))
j ∈ B

(s(k))
h |

⋃

|α|≤n

(

supp(∂αN
(s(k))
j )

)◦

∩ Γk 6= ∅






, (3.22)

for each interface, while in the case of a G1 coupling, we work on the parameter space
and the multipliers are given by

Mk
h = span






N

(s(k))
j ∈ B

(s(k))
h |

⋃

|α|≤1

(

supp(∂αN
(s(k))
j )

)◦

∩ Γ̂
s(k)
m(k) 6= ∅






. (3.23)

Let Jk = {jk
1 , . . . , jk

lk
} ⊂ {1, . . . ,m(s(k))}, k = 1, . . . , K, be the index sets containing the in-

dices of the basis functions spanning the discrete spaces Mk
h, i.e. Mk

h = span{N
(s(k))

jk
ν

}lk

ν=1,

and let us introduce the corresponding product space Mh =
∏K

k=1 Mk
h = span{M r}l

r=1,

where l =
∑K

k=1 l
k and the base {M r}l

r=1 results from {N
(s(k))

jk
ν

}lk

ν=1, k = 1, . . . , K, ac-
cording to Section 2.2.3. Then, the weak coupling condition for the discrete solution is
obtained by substituting the discrete quantities into Eq. (3.13) which results in a linear
system,

B(
m∑

i=1

v̄iN i, M r) = 0, r = 1, . . . , l ⇐⇒







A1,1 . . . A1,N

...
. . .

...

AK,1 . . . AK,N







︸ ︷︷ ︸

=:A







v̄(1)

...

v̄(N)







= 0. (3.24)
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Table 3.1: Entries of the coupling matrices for Cn/G1 coupling conditions.

Weak Cn-continuous conditions
[

B
k,m
α

]

µ,ν
= h|α|〈∂αN (m(k))

ν , ∂αN
(s(k))

jk
µ

〉Γk
,

[

B
k,s
α

]

µ,ν
= h|α|〈∂αN (s(k))

ν , ∂αN
(s(k))

jk
µ

〉Γk
,

[

B̃
k,m

α

]

µ,ν
= h|α|〈∂αÑ

(m(k))

ν , ∂αN
(s(k))

jk
µ

〉Γk
,

[

B̃
k,s

α

]

µ,ν
= h|α|〈∂αÑ

(s(k))

ν , ∂αN
(s(k))

jk
µ

〉Γk
.

Weak G1-continuous conditions
[

B
k,m
0

]

µ,ν
= 〈N (m(k))

ν ◦ P
s(k)
m(k), N

(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

,
[

B
k,s
0

]

µ,ν
= 〈N (s(k))

ν , N
(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

,

[

B̃
k,m

0

]

µ,ν
= 〈Ñ (m(k))

ν ◦ P
s(k)
m(k), N

(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

,
[

B
k,s
0

]

µ,ν
= 〈Ñ (s(k))

ν , N
(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

,

[

B
k,m
i

]

µ,ν
= h〈

2∑

l=1

(γi,k
l ∂lN

(m(k))
ν ) ◦ P

s(k)
m(k), ∂iN

(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

, i = 1, 2,

[

B̃
k,m

i

]

µ,ν
= h〈

2∑

l=1

(γi,k
l ∂lÑ

(m(k))

ν ) ◦ P
s(k)
m(k), ∂iN

(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

, i = 1, 2,

[

B
k,s
i

]

µ,ν
= h〈∂iN

(s(k))
ν , ∂iN

(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

,
[

B̃
k,s

i

]

µ,ν
= h〈∂iÑ

(s(k))

ν , ∂iN
(s(k))

jk
µ

〉
Γ̂

s(k)

m(k)

, i = 1, 2.

Generalized weak Cn-continuous conditions
[

B
k,m
α

]

µ,ν
= h|α|〈(∂αN (m(k))

ν ) ◦ φk, ∂αN
(s(k))

jk
µ

〉γk
,

[

B
k,s
α

]

µ,ν
= h|α|〈∂αN (s(k))

ν , ∂αN
(s(k))

jk
µ

〉γk
,

[

B̃
k,m

α

]

µ,ν
= h|α|〈(∂αÑ

(m(k))

ν ) ◦ φk, ∂αN
(s(k))

jk
µ

〉γk
,

[

B̃
k,s

α

]

µ,ν
= h|α|〈∂αÑ

(s(k))

ν , ∂αN
(s(k))

jk
µ

〉γk
.

The blocks Ak,j ∈ Rlk×m(j)
of the coupling matrix A ∈ Rl×m describe the respective role

of the jth patch in the coupling at the kth interface and are defined by

Ak,j =







Ak,s, if s(k) = j,

−Ak,m, if m(k) = j,

0, otherwise,

(3.25)

where in the case of weak Cn coupling conditions or generalised couplings the matrices
Ak,s, Ak,m are of the form Ak,j =

∑

|α|≤n Bk,j
α , and in the case of a weak G1 coupling

they read Ak,j =
∑1

l=0 B
k,j
l , j ∈ {s, m}. For clarity, the entries of the matrices Bk,m

α ,

Bk,s
α , B

k,m
l and B

k,s
l are listed among other quantities in Table 3.1. A block-row of A

thus contains the coupling data for the kth interface, while the block columns are each
assigned to a patch. Thereby, all blocks in a block-row are 0 except of the two blocks
that are assigned to the master or slave side of the corresponding interface. In the case of
a (generalised) Cn coupling, the summands of the non-zero blocks contain the coupling
conditions for the partial derivatives of |α|th order, while in the case of a G1 coupling,
B

k,m
0 , B

k,s
0 and B

k,m
i , B

k,s
i , i = 1, 2, contain the conditions for the function values and the
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tangent spaces, respectively. Due to the compact support of the NURBS basis functions,
it should be noted that Ak,j and thus the matrix A itself are sparse. In order to keep
the computational effort low, it is therefore reasonable to include only those entries in
the implementation that make an effective contribution. These can be easily identified
by considering the tensor product structure of the NURBS basis functions.

Finally, we obtain two equivalent discrete problems corresponding to the continuous prob-
lems discussed in Section 3.1. Introducing the constrained spaces

Sc
h =

{
m∑

i=1

w̄iN i ∈ Sh | A(w̄i)1≤i≤m = 0

}

= span{N c
r}mc

r=1,

Vc
h =

{
m∑

i=1

w̄iÑ i ∈ Vh | A(w̄i)1≤i≤m = 0

}

= span{Ñ
c

r}mc

r=1,

(3.26)

the first reads: find v̄ ∈ Rmc such that Rc(v̄) = 0, where the coupled residual Rc =
(Rc

k)1≤k≤N : Rmc → Rmc is defined through

Rc
k : Rm

(k)
c → Rm

(k)
c , Rc

k(v̄(k)) =



V(k)(

m
(k)
c∑

i=1

v̄
(k)
i N

c,(k)
i , Ñ

c,(k)

j )





1≤j≤m
(k)
c

, (3.27)

c.f. Eqs. (3.20), (3.21). Note that the construction of suitable bases {N c
r}mc

r=1, {Ñ
c

r}mc

r=1

of the spaces (3.26) is dealt with in Section 3.2.4. The second problem is the discrete
analogue to the saddle point system (3.8) and reads: find (v̄, λ̄) ∈ Rm × Rl such that

Rc(v̄, λ̄) =

(

Ru(v̄) + Ã
T

λ̄

Av̄

)

=

(

0

0

)

, (3.28)

where the matrix Ã ∈ Rl×m is defined analogous to the coupling matrix introduced in
Eq. (3.24), i.e. Ã = (Ãk,j)k,j,

Ãi,j =







Ã
k,s

, if s(k) = j,

−Ã
k,m

, if m(k) = j,

0, otherwise,

Ã
k,i

=







∑

|α|≤n

B̃
k,i

α , (weak Cn coupling),

1∑

l=0

B̃
k,i

l , (weak G1 coupling),
(3.29)

where i ∈ {s, m} in the right equation, see also Table 3.1. Note that the blocks Ak,i, Ã
k,i

,
i ∈ {s, m}, of the coupling matrices A and Ã generally differ, as we consider here the
possibility that the bases of the space of admissible solutions and test functions differ. If
the bases coincide, it holds A = Ã.

3.2.2 Crosspoints and wirebaskets

In the finite element context, it is well known that the natural choice of the space of
Lagrange multipliers as the trace space from the slave side leads to problems at the so-
called crosspoints for d = 2 and wirebaskets for d = 3. These are regions where more
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than two patches meet or a boundary of an interface meets Γe, where Γe denotes the
boundary part of ∂Ω on which essential boundary conditions are specified, see Figure 3.1
for illustration. To be more precise, given K ≥ 0 real interfaces Γ1, . . . , ΓK and K ′ ≥ 0

Ω(1) Ω(2)

Ω(3)Ω(4)

Ω(1)

Ω(2)

Figure 3.1: Two typical crosspoint situations. Left: a four-patch geometry where the in-
terior corners of the four patches belong to each interface. Right: a two-patch
geometry where the left and right ends of the interface meet Γe. Crosspoints
are marked with black bullets and the exterior boundary part Γe with pre-
scribed essential conditions is marked in red.

virtual interfaces (γ1, φ1), . . . , (γK ′, φK ′), the set of all crosspoints/wirebaskets is given by
the union

C =

(
⋃

1≤k<j≤K+K ′

∂Γ̃k ∩ ∂Γ̃j

)

∪
(

K+K ′

⋃

k=1

∂Γ̃k ∩ Γe

)

, (3.30)

where Γ̃k := Γk for k = 1, . . . , K and Γ̃k := γk ∪ φk(γk) for k = K + 1, . . . , K + K ′. To
ensure uniform inf-sup stability and an optimal approximation order of the method also in
this case, in the finite element method a modification of the multiplier space is performed,
see [16, 170], which is adapted in Brivadis et al. [31] to isogeometric analysis for C0 mortar
couplings. Each of these modifications aims to reduce the dimension of the dual space.
Roughly speaking, there are two ways to achieve this. On the one hand, the mesh for the
Lagrange multipliers can be locally coarsened in the vicinity of a crosspoint (wirebasket)
and, on the other hand, the order of the multipliers can be reduced there. In this section
we, adopt the second strategy and extend it to higher order couplings. Thereby we focus
our attention on the univariate case, since the construction for the bivariate case can be
done as a tensor product in accordance with the tensor product structure of isogeometric
approximation functions.

Let us consider a weak C l−1-coupling, l = 1, . . . , p, where p is the polynomial degree of
the isogeometric approximation space concerning the affected direction. Our modification
will be carried out on the parametric space and only in a region of the order of magnitude
O(h) in the neighbourhood of the crosspoint on the slave side of each interface separately.
For this reason, it is sufficient to consider one interface and one crosspoint at a time.
Furthermore, we modify the univariate functions used to parametrise the geometry and
then use the modified functions to construct the associated isogeometric approximation
space according to Section 2.2. I.e. the underlying parametrisation G remains unaffected
by the modification. Without loss of generality, we can assume the pre-image Γ̂ of the
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interface Γ to be given as the unit interval, Γ̂ = (0, 1). Furthermore, we assume that the
crosspoint we consider is the left endpoint and that the corresponding knots are ordered
such that 0 = ζ1 = . . . = ζp+1 < . . . < ζp+1+l < . . . < ζn+1 = . . . = ζn+p+1 = 1, i.e.
we assume an open knot vector in the affected direction. The associated univariate basis
functions of maximal regularity are in the following denoted by R̂i, i = 1, . . . , n.

For low-order mortar finite elements, only one basis function has to be removed and one
has to be modified, cf. Maday et al. [119]. It is shown in Brivadis et al. [31] that p basis
functions have to be modified in the IGA context while still only one basis function has
to be removed. This results from the fact that only one basis function interacts with
the crosspoint in case of a weak C0 coupling. However, this is not the case for a higher
continuity coupling. From a best approximation point of view, we want that our reduced
Lagrange multiplier space can still reproduce polynomials of degree p − 1. Additionally,
no coupling across the crosspoint should occur. In case of a weak C l−1 coupling, where
1 ≤ l ≤ p, this means that we have to remove the first l basis functions on the interface
but also functions associated with the interior of the subdomain. While the interior basis
functions are affected by normal derivatives, the functions at the interface are affected by
tangential derivatives. Now we want to modify the following next p such that the new
reduced basis functions are given as

R̂m
i =

l∑

j=1

ci,jR̂j + R̂i+l, i = 1, . . . , p, R̂m
i = R̂i+l, p + 1 ≤ i ≤ n − l. (3.31)

Obviously, the new R̂m
i are linearly independent, and in case of maximal continuity C :=

(ci,j)i,j ∈ Rp×l forms a square matrix. Let Γl;p := (0, ζp+l+1) and qi, 1 ≤ i ≤ p, be a basis

of the polynomial space of degree p − 1 on Γl;p. Then we can represent qi in terms of R̂j,
j = 1, . . . , p + l, i.e. there exist ai,j ∈ R such that on Γl;p we have

qi =

p+l∑

j=1

ai,jR̂j . (3.32)

Let us now introduce the two matrices A1 = (ai,j)i,j ∈ Rp×l and A2 = (ai,j+l)i,j ∈ Rp×p.
This gives us the following relationships.

Lemma 3.2.1. If and only if the matrix C is defined through C = A−1
2 A1 the reduced

basis R̂m
i reproduces polynomials of degree at most p − 1.

Proof. We assume that qi can also be represented by R̂m
j , j = 1, . . . , p. Then for some

coefficients bi,j we have

qi =

p
∑

j=1

bi,jR̂
m
j , i = 1, . . . , p. (3.33)

Inserting the definition (3.31) into (3.33) yields

qi =

p∑

j=1

bi,j

(
l∑

k=1

cj,kR̂k + R̂j+l

)

=
l∑

k=1

p∑

j=1

bi,jcj,kR̂k +

l+p∑

k=l+1

bi,k−lR̂k. (3.34)
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Since the presentation (3.32) is unique a comparison of the coefficients yields B = A2 and
BC = A1, where B denotes the matrix containing the coefficients bi,j . This is obviously
the case if and only if C is defined by C = A−1

2 A1. Here, we have assumed that A2 is
non-singular.

Lemma 3.2.1 shows us that the matrix C can be formally computed from A1 and A2.
These two matrices can in turn be obtained from computing the L2 scalar products
[Q]i,j := 〈qi, R̂j〉Γl;p

, i = 1, . . . , p, j = 1, . . . , p + l, [M ]i,j := 〈R̂i, R̂j〉Γl;p
, i, j = 1, . . . , p + l,

and setting (A1, A2) = QM−1. As an example, the modification matrices C for B-
spline bases of order p = 2, 3 are listed in Table 3.2 and for p = 3 modificated Lagrange
multiplier basis functions are shown in Figure 3.2.

Figure 3.2: Modified cubic B-spline basis (p = (3, 3)) associated to a weak C2 coupling
on the pre-image of the interface. First row: basis functions and their first
derivatives in normal and tangential directions (from left to right). Second
row: second derivatives in normal and tangential direction as well as mixed
derivatives in normal and tangential (from left to right). Modified functions
and their derivatives are coloured in red. The dashed curves denote deriva-
tives associated with the interior of the slave patch.

So far, we have tacitly assumed that the choice of the polynomial basis {qi} has no
influence on C. In fact, the following holds.

Lemma 3.2.2. The matrix C = A−1
2 A1 is invariant with respect to the choice of the poly-

nomial basis {qi}. Moreover, for all combinations of p and possible l, we have
∑p

i=1 ci,j = 1
for all j ∈ {1, . . . , l}.

Proof. Let {qi} and {q̃i} two polynomial bases. Then each basis function qi can be written
in terms of the basis function q̃j , j = 1, . . . , p, i.e., qi =

∑p
j=1 ti,j q̃j . Thus, the matrices
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Table 3.2: Modification matrices for B-spline bases of order p = 2, 3 and coupling orders
l = 1, . . . , p (from left to right) in the case of equidistant inner knots, i.e.
ζi − ζi−1 = h for i = p + 2, . . . , p + 1 + l.

p = 2:

C =

(
3
2

− 1
2

)

, C =

(
5
2 2

− 3
2 −1

)

p = 3:

C =







7
4

− 11
12

1
6







, C =







19
6

7
3

− 10
3 −2
7
6

2
3







, C =







37
6 5 3

− 25
3 − 19

3 −3
19
6

7
3 1







are related by Q = T Q̃, T := (ti,j)i,j, from which follows (A1, A2) = T (Ã1, Ã2). The

choice of the modification matrix C then gives C = Ã
−1

2 T −1T Ã1 = C̃. Now without
loss of generality we assume that q1 = 1 and due to the fact that R̂i form a partition of
unity, we have a1,j = 1, i.e., the first row of A1 and of A2 only contains one as entries.
Let ep ∈ Rp and el ∈ Rl the vectors having ones as entries. Then the second assertion
of the lemma is equivalent to CTep = el. However as the first column of AT

2 is equal
to ep, we get A−T

2 ep = e
p
1, where e

p
1 is the first unit vector in Rp, i.e. e

p
1 = (δ1,j)1≤j≤p.

Additionally AT
1 e

p
1 results in the first column of AT

1 which is the first row of A1 and thus
CTep = AT

1 A−T
2 ep = AT

1 e
p
1 = el.

Until now we have described how the number of Lagrange multiplier basis functions which
are directly associated with the interface is reduced by l per crosspoint and slave side.
However in the case of l > 1, a closer look at the coupling conditions listed in Table 3.1
reveals that basis functions associated with the interior of the slave patch also affect the
interface coupling constraints. To remove l(l + 1)/2 basis functions, we have to apply the
reduction for each row in the tensor product structure sequentially using the matrices
as provided in Table 3.2. Alternatively, we can modify the first l rows of Lagrange
multiplier basis functions in the same way, i.e. in total l2 basis functions are removed
and lp are modified per crosspoint and slave side, see Figure 3.3 for a comparison. This
is motivated by the fact that only then we preserve the tensor product structure which
makes the implementation easier, especially in the three-dimensional case. To distinguish
between the two approaches, we will refer to them as reduced and full modification in the
following.

Example: We consider the four patch situation shown in Figure 3.1, where we focus
on a weak C1 coupling (l = 2) of the two patches Ω(2) and Ω(3). For the slave side we
choose Ω(3) and assume a B-spline basis of order p = (2, 2) defined through the two knot
vectors Θ1 = {0, 0, 0, 1/4, 2/4, 3/4, 1, 1, 1}, Θ2 = {0, 0, 0, 1/3, 2/3, 1, 1, 1} to be used to
parametrise Ω(3). The associated B-spline basis consists of 30 functions, where in the case
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Figure 3.3: First derivatives of modified quadratic B-splines (p = (2, 2)) in normal direc-
tion on the pre-image of the interface associated with a weak C1 coupling.
Left: reduced modification; right: full modification. The dashed curves de-
note again derivatives associated with the interior of the slave patch.

of a weak C1 coupling only the twelve functions R̂(i,j) = R̂1
i R̂2

j , i = 1, . . . , 6, j = 1, 2, have
to be considered. According to Section 3.2.1, the space of the Lagrange multiplier on
the interface is constructed from the functions M̂(i,j) : (0, 1) → R, M̂(i,j)(ξ) = R̂1

i (ξ)R̂2
j(0),

i = 1, . . . , 6, j = 1, 2, such that we have to modify R̂1
i . Using a reduced modification, we

obtain for the first row

M̂m
(1,1) =

(
5

2
R̂1

1 + 2R̂1
2 + R̂1

3

)

R̂2
1(0), M̂m

(2,1) =

(

−3

2
R̂1

1 − R̂1
2 + R̂1

4

)

R̂2
1(0),

M̂m
(i,1) = R̂1

i+2R̂
2
1(0), i = 3, 4, where we get for the second row

M̂m
(1,2) =

(
3

2
R̂1

1 + R̂1
2

)

R̂2
2(0), M̂m

(2,2) =

(

−1

2
R̂1

1 + R̂1
3

)

R̂2
2(0),

M̂m
(i,2) = R̂1

i+1R̂
2
2(0), i = 3, 4, 5. On the other hand, using a full modification, the two rows

are modified analogously such that the modified basis is given by

M̂m
(1,j) =

(
5

2
R̂1

1 + 2R̂1
2 + R̂1

3

)

R̂2
j (0), M̂m

(2,j) =

(

−3

2
R̂1

1 − R̂1
2 + R̂1

4

)

R̂2
j (0), j = 1, 2,

and M̂m
(i,j) = R̂1

i+2R̂2
j (0) for i = 3, 4 and j = 1, 2. Note that in both the reduced and full

modification, the basis functions of the second row are identical to zero on (0, 1) but not
their derivatives, which also appear in the conditions for a weak C1 coupling. Note also
that this example is chosen so that the functions constructed here coincide with those
shown in Figure 3.3.

Remark 3.2.1. Since the modification is performed on the parameter space, it can also
be applied to crosspoint situations that occur in weak G1 couplings. In this case, the basis
functions have to be modified as in a weak C1 coupling.
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3.2.3 Evaluation of mortar integrals

A particular challenge in implementing a mortar method is the evaluation of the interface
integrals, due to the product of functions each of which being defined on a different
mesh, cf. Table 3.1. Any quadrature rule based on the slave mesh does not respect the
mesh lines of the master mesh and vice versa for a quadrature rule based on the master
mesh. To overcome this difficulty, it is common to use a quadrature rule based on a
merged mesh, i.e. a mesh which respects the reduced smoothness of the master and slave
functions at their respective lines leads to an exact evaluation of the integral, see, e.g.,
[62, 74, 90, 92, 135]. Such a segment-based integration scheme can be carried out for
two-dimensional problems with acceptable computational costs but involves a large effort
in the implementation and high computational costs in evaluation.

Another method is discussed in [74, 114, 119] for mortar finite elements and in [32, 55]
for isogeometric mortar elements. In contrast to the segment-based method, it ignores
the reduced smoothness at the mesh lines of one of the two meshes and accepts that
the integration error may therefore increase. Nevertheless, the implementation effort and
especially the associated computational costs are significantly reduced. This is achieved
by an element-wise evaluation of the mortar integrals, which motivates the denomination
as element-based integration used in the following. Here we briefly outline the basic
features of these two approaches and refer to the literature mentioned above for more
details.

Segment-based mortar integration

The segmentation process outlined here is based on the work of Brivadis [30]. It is carried
out iteratively over the number of surface elements belonging to the master surface, so
that we can focus on a single master element to describe the procedure. Let us consider a
parametric master element, where we assume that the element-boundary is tessellated by
a certain amount of points, in the following called tessellation points†. They ensure the
linear interpolation of the boundary which is more or less accurate depending on their
number. In a first step, the images of the tessellation points under the corresponding
geometric mapping are transferred to the physical slave side of the interface by a ray-
tracing operation using the master normal. We point out that if the master and slave
boundary differ only a little or the boundaries match, this operation is close to the identity
or is the identity. Once the corresponding physical slave points are known, each of them
is pulled back into the slave parametric space using the inverse of the geometric mapping
corresponding to the slave side. Since the inverse is in general not known, the pull-
back is realised by solving a non-linear system of equations for each point. The linear
interpolation of the resulting points in the slave parametric space defines the boundary
of the counterpart of the current parametric master element. Note that, due to the linear
interpolation, the counterpart obtained in this way is an approximation of the exact
one, the accuracy of which generally depends on the number of tessellation points, cf.

†Often the element corners are chosen as tessellation points.
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Figure 3.4(a). In the final step, the parametric slave mesh is now split into polygons
according to the counterpart boundary by means of a suitable polygon-clipping process
and the resulting polygons are triangularisated, see [127, 148, 152] for details in polygon-
clipping and [50, 54, 151] for details in triangolarisation. This gives us a local merged
mesh associated with each master element, where the global mesh could be obtained by
overlapping the local ones. All of these steps are illustrated in Figure 3.4.

(a) (b) (c)

Figure 3.4: Illustration of the different steps to build a local merged mesh. For the
sake of simplicity, we assume here that the physical and parametric slave
spaces are equal and thus avoid the illustration of the pull-back into the
slave parametric space. Moreover, we start the illustration with the physical
master element. (a) Ray-tracing operation and linear interpolation. The
four edges of the master element are selected as tessellation points and the
counterpart boundary obtained by the linear interpolation is marked with
blue lines. (b) Polygon clipping operation. The solid lines represent the
remaining polygons. (c) Triangolarization. The solid lines represent the
local merged mesh.

To evaluate the mortar integrals, suitable quadrature rules for triangles can now be applied
to the merged mesh, see, e.g., Cowper [47] for Gaussian quadrature formulas. Therefore,
the integration points of the chosen quadrature rule have to be defined on each triangle of
the mesh and subsequently transferred to the corresponding parametric master element,
again using a ray-tracing operation and a pull-back to the master parametric space.
Finally, we note that these two steps, i.e. the projection of the quadrature points from
the parametric slave space to the parametric master space may result in the projection
of a quadrature point being outside the corresponding parametric master element due to
numerical inaccuracies. Therefore it is necessary for the code to measure the occurrences
of this issue to intervene if required.

Remark 3.2.2. In the 2D case, the effort to create a merged mesh is significantly re-
duced. Since in this case, the interface is simply a curve, only the start and end points
of the parametric master element, defined through the corresponding knot vector, have to
be transferred into the physical space, projected onto the physical slave side and pulled
back into the parametric slave space. The local merged mesh is then defined through the
corresponding slave knot vector and the projected master knots.
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Element-based mortar integration

For an element-based mortar integration, one of the two sides of the interface is chosen
on which the integration rule is defined. Suppose the slave side is selected. Then for
each parametric element, we have a set of points with which we proceed analogously to
the tessellation points in the previous section. I.e. the images of the quadrature points
under the corresponding geometric mapping are transferred to the physical master side
and subsequently pulled back into the master parametric space. The evaluation of the
mortar integrals is now performed by means of the integration points on the slave side
and the corresponding points on the master side, which generally do not respect the mesh
lines of the parametric master mesh.

(a) (b) (c)

Figure 3.5: Illustration of an application of a quadrature rule based on the mesh of
the slave side. For the sake of simplicity, we assume here that the physical
and parametric master spaces are equal and start the illustration from the
physical slave element. (a) Ray-tracing operation (local). The quadrature
points defined on the current slave element are projected to the master side.
(b) Global slave mesh consisting of nine elements. The quadrature points
of adjacent elements are marked with different colours. (c) Global master
mesh consisting of four elements. The quadrature points are the results of
the projection of the points from the slave mesh shown in (b).

3.2.4 Construction of constrained spaces

In this section, we deal with the construction of a suitable basis of the discrete constrained
spaces introduced in Section 3.2.1, Eq. (3.26) without the presence of crosspoints and
wirebaskets, focusing on an element-based integration method. Since the procedure for
the two spaces Sc

h and Vc
h is identical, we describe here only the construction of a base of

Sc
h. The construction is performed separately for each interface and is analogous for weak

Cn and weak G1 coupling conditions. Therefore, we restrict ourselves here to a two-patch
situation with one interface under weak Cn coupling conditions. The interested reader
will find a detailed discussion of the construction for weak G1 coupling conditions in the
framework of Kirchhoff–Love shells in Schuß et al. [143].
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Let us assume that Ω(1) is chosen as the slave side. We denote the common interface by Γ
and assume that, after a possible reordering of the basis B

(1)
h (cf. beginning Section 3.2.1),

the space of the Lagrange multiplier is given by Mh = span{N
(1)
j }l

j=1, i.e. the first l basis
functions on the slave side have an influence on the interface according to the specification
in Eq. (3.22). Then, the corresponding coupling matrix has the form A = (As, −Am),

where As ∈ Rl×m(1)
, Am ∈ Rl×m(2)

,

[As]µ,ν =
∑

|α|≤n

h|α|〈∂αN (1)
ν , ∂αN (1)

µ 〉Γ, [Am]µ,ν =
∑

|α|≤n

h|α|〈∂αN (2)
ν , ∂αN (1)

µ 〉Γ, (3.35)

cf. Eqs. (3.24), (3.25) and Table 3.1. We note that due to the local support of the isoge-
ometric basis functions the two matrices As, Am in general contain many zero columns,
where, according to the assumed order of B

(1)
h , the last m(1)−l columns of As are zero. Let

us denote by As ∈ Rl×l and Am ∈ Rl×r the matrices obtained by deleting these columns
and let us assume the basis B

(2)
h to be ordered analogously to B

(1)
h such that Am is obtained

from Am by deleting the last m(2) − r columns. Using a suitable quadrature rule based on
the slave side to evaluate the L2 scalar products, the reduced coupling matrices become

[As]µ,ν =
∑

|α|≤n

nq∑

k=1

wkh
|α|∂αN (1)

ν (z
(1)
k ) · ∂αN (1)

µ (z
(1)
k ),

[Am]µ,ν =
∑

|α|≤n

nq∑

k=1

wkh
|α|∂αN (2)

ν (z
(2)
k ) · ∂αN (1)

µ (z
(1)
k ),

(3.36)

where z
(1)
k are the quadrature points chosen on the slave side, z

(2)
k are the corresponding

points on the master side obtained during a possible ray-tracing operation, wk > 0 are the
quadrature weights and nq denotes the number of quadrature points. Let us summarize
the contributions of the basis functions in Eq. (3.36) as follows

B(i) =
[

B
(i)
k,µ

]

k,µ
, B

(i)
k,µ = LnN (i)

µ (z
(i)
k ) ∈ Rsd×1, (3.37)

where s denotes the number of multi-indices α ∈ Nd
0 with |α| ≤ n and the linear operator

Ln is introduced to specify an ordering of the partial derivatives to assign them a fixed
place in the matrices B(i). For example, for d = 2 and n = 1, 2 one could define Ln

through

L1N = (NT, ∂1N
T, ∂2NT)T, L2N = (NT, ∂1NT, ∂2NT, ∂2

1NT, ∂2
2NT, ∂1∂2NT)T.

(3.38)
Note that the order determined by the operator can be chosen arbitrarily, but must then
be maintained. In the following, we will tacitly assume that the columns of the matrix
B(1) are linearly independent, i.e. dim(Im(B(1))) = l. Due to the linear independence of
the NURBS approximation functions, this can be achieved by using a sufficient number of
quadrature points. In the case of B-splines, the linear independence is guaranteed, if the
number of quadrature points per element on the interface slave side is greater or equal to
(p

(1)
max + 1)(d−1), where p

(1)
max denotes the maximum degree in the tensor product structure

of the B-spline basis corresponding to Ω(1).
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Let now v̄ = (v̄(1), v̄(2)) ∈ Rm(1)+m(2)
be the vector containing the dof corresponding to

the two patches and let us split the two blocks of v̄ as follows v̄(i) = (v̄
(i)
1 , v̄

(i)
2 ), such that

v̄
(1)
1 ∈ Rl and v̄

(2)
1 ∈ Rr correspond to the columns of As and Am, respectively. I.e. we

divide the dof of the slave and master side into sets where all dof with influence on the
coupling are contained in v̄

(i)
1 and the dof corresponding to the deleted zero columns of

As and Am are contained in v̄
(1)
2 and v̄

(2)
2 , respectively. Doing so, the coupling condition

can be rewritten as follows

(B(1))TDB(1)

︸ ︷︷ ︸

=As

v̄
(1)
1 − (B(1))TDB(2)

︸ ︷︷ ︸

=Am

v̄
(2)
1 = 0, (3.39)

where D ∈ Rnqsd×nqsd is a diagonal matrix containing the products wkh
|α| of the quadra-

ture weights and the |α|th power of the weighting parameter. Note that the position of
wkh

|α| in D depends on the definition of Ln so that the structure of D is not fixed until
the operator has been specified. Representing D as product of its square, D =

√
D

√
D,

Eq. (3.39) can be further written as

(C(1))TC(1)v̄
(1)
1 = (C(1))TC(2)v̄

(2)
1 , (3.40)

where C(i) :=
√

DB(i). Since the columns of B(1) are assumed to be linearly independent
and the entries of

√
D are positive, the columns of C(i) are also linearly independent.

Consequently, the matrix (C(1))TC(1) is positive definite and we can express the degrees
of freedom corresponding to the slave side as a function of the degrees of freedom corre-
sponding to the master side,

v̄
(1)
1 = v̄

(1)
1 (v̄

(2)
1 ) = Mv̄

(2)
1 , M := ((C(1))TC(1))−1(C(1))TC(2) ∈ Rl×r. (3.41)

We note that although the matrix (C(1))TC(1) is sparse, its inverse is dense and thus
the action of ((C(1))TC(1))−1 is global with respect to the interface. Outgoing from the
representations

v
(i)
h =

m(i)
∑

j=1

v̄
(i)
j N

(i)
j ⇐⇒ v

(i)
h =

(

N
(i)
1 , . . . , N

(i)

m(i)

)

v̄(i), i = 1, 2, (3.42)

of the approximations, we can now substitute v̄
(1)
1 according to (3.41) and obtain on the

slave side
v

(1)
h =

(

N
(1)
1 , . . . , N

(1)
l

)

v̄
(1)
1 +

(

N
(1)
l+1, . . . , N

(1)

m(1)

)

v̄
(1)
2

=
(

N
(1)
1 , . . . , N

(1)
l

)

Mv̄
(2)
1 +

(

N
(1)
l+1, . . . , N

(1)

m(1)

)

v̄
(1)
2 .

(3.43)

Introducing the modified functions M
(1)
j := MijN

(1)
i (summation over i = 1, . . . , l), we

finally obtain the following representation of the two approximation functions in terms of
the global product basis

(

v
(1)
h

v
(2)
h

)

=
m(1)
∑

i=l+1

v̄
(1)
i

(

N
(1)
i

0

)

+
r∑

i=1

v̄
(2)
i

(

M
(1)
i

N
(2)
i

)

+
m(2)
∑

i=r+1

v̄
(2)
i

(

0

N
(2)
i

)

. (3.44)
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Consequently, a basis {N c
r}m(1)+m(2)−l

r=1 of the constrained approximation space Sc
h is given

by

{(

N
(1)
l+1

0

)

, . . . ,

(

N
(1)

m(1)

0

)

,

(

M
(1)
1

N
(2)
1

)

, . . . ,

(

M (1)
r

N (2)
r

)

,

(

0

N
(2)
r+1

)

, . . . ,

(

0

N
(2)

m(2)

)}

, (3.45)

where it should be noted that, in contrast to the corresponding saddle point system (3.28),
the number of dof of the overall system is reduced by the dimension l of the multiplier
space.

Remark 3.2.3. Eq. (3.41) determines the solution of the least squares problem: for a

given v̄
(2)
1 ∈ Rr, find v̄

(1)
1 ∈ Rl, such that

‖C(1)v̄
(1)
1 − C(2)v̄

(2)
1 ‖2 = min

w̄∈Rl

‖C(1)w̄ − C(2)v̄(2)‖2. (3.46)

Furthermore, due to the structure of the matrices involved, the solution can be interpreted
as a solution of a weighted least square problem with weighting matrix

√
D. In the case

of unique weights wk = w ∈ R>0 and h = 1, the solution further suffices

‖B(1)v̄
(1)
1 − B(2)v̄

(2)
1 ‖2 = min

w̄∈Rl

‖B(1)w̄ − B(2)v̄(2)‖2. (3.47)

In this case, it could be interpreted as a pointwise least square optimization of the coupling
conditions at the quadrature points.

Example: To illustrate the construction of a constrained basis, we consider a 2-patch
situation where the computational domain Ω = (0, 2)×(0, 1) consists of the patches Ω(1) =
(0, 1)2 and Ω(2) = (1, 2)×(0, 1) on which a C1-continuous scalar field is to be approximated.
The biquadratic, p(i) = (2, 2), i = 1, 2, B-spline basis functions corresponding to the left
and right patch are defined through the knot vectors

Θ1,(1) = (0, 0, 0, 1, 1, 1), Θ2,(1) = (0, 0, 0, 0.5, 1, 1, 1), (3.48)

Θ1,(2) = (1, 1, 1, 2, 2, 2), Θ2,(2) = (0, 0, 0, 1, 1, 1), (3.49)

such that the left patch (Ω(1), slave) consists of two elements and the right patch (Ω(2),
master) of one element. For the sake of clarity, we deviate here from Assumption 2.1.1 and
assume that the parameter spaces and the physical spaces are equal, i.e. the corresponding
NURBS parametrisations G(i) : Ω̂(i) → Ω(i), i = 1, 2, are the identities. For the evaluation
of the coupling integrals, we use an element-based integration scheme with a Monte Carlo
quadrature rule on the slave side with 20 equidistant distributed quadrature points, such
that the coupling conditions correspond to the least square problem (3.47).

Figure 3.6 shows the initial basis functions and the basis functions of the constrained
spaces, both plotted over the parameter space. As can be seen in the left image, the values
as well as the derivatives of the initial bases do not match at the interface Γ = {1}×(0, 1).
The right image, on the other hand, shows a smooth transition of the basis functions of
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Figure 3.6: Initial basis functions (left) and basis functions of the constrained space
(right). Both are plotted over the parameter space.

the corresponding constrained space. Eventually, in Figure 3.7, the six modified functions
whose supports are contained in both patches are shown individually.

Figure 3.7: Modified basis functions of the constrained space plotted over the parameter
space.

3.3 Numerical studies

In this section, we consider two-dimensional settings in order to study the effects of
the weighting parameter h introduced in Section 3.1.2 and crosspoint modifications as
discussed in Section 3.2.2. Therefore we employ polyharmonic equations up to sixth
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order, naturally requiring weak Cn couplings up to second order. Here we limit ourselves
to the description of the respective problems and refer, e.g., to [104, 105, 113, 160] for
more details on this topic. Corresponding convergence studies in case of weak G1 coupling
conditions in the framework of Kirchhoff–Love shells can further be found in Section 4.7.

For s ∈ {1, 2, 3}, we consider the following boundary value problems on the domain
Ω = (0, 2π)2: for given data f : Ω → R, find v : Ω̄ → R such that

∆sv = f, in Ω,







v = 0, if s = 1,

v = 0, ∇v · n = 0, if s = 2,

v = 0, ∇v · n = 0, ∆u = 0, if s = 3







, on ∂Ω, (3.50)

where n denotes the unique outward normal of Ω and ∆s the s-times application of the
Laplace operator. In all cases, the right-hand side f is manufactured so that the solution
is given by

v(x, y) = p(x) cos(x)p(y) cos(y), (3.51)

where p : Ω̄ → R is a sufficiently smooth piecewise polynomial function defined by

p(x) =







x6q1(x), if x ∈ [0, π/2),

1, if x ∈ [π/2, 3π/2),

(x − 2π)6q2(x), if x ∈ [3π/2, 2π],

(3.52)

which ensures that the homogeneous boundary conditions are satisfied, see Figure 3.8 for
illustration and Table 3.3 for the specification of qi.

Figure 3.8: Solution v (left) and piecewise polynomial p (right).

To investigate different coupling situations, we assume a decomposition of the domain
to be given by Ω̄ = Ω̄(1) ∪ Ω̄(2) with Ω(1) = (0, 2π) × (0, π), Ω(2) = (0, 2π) × (π, 2π),
such that we obtain the common interface Γ = (0, 2π) × {π} and two crosspoints C =
{(0, π)T, (2π, π)T}. Furthermore, we specify Ω(1) and Ω(2) as the slave and master side,
respectively, and introduce for s ∈ {1, 2, 3} on each patch suitable spaces of trial and test

functions S(i)
s , V(i)

s , i = 1, 2. Thus, the corresponding (uncoupled) weak problems read:
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Table 3.3: Coefficients of the polynomials qi(x) =
∑6

j=0 qi
jxj introduced in Eq. (3.52).

qi
0 qi

1 qi
2 qi

3 qi
4 qi

5 qi
6

i = 1 11195
182 − 11882

59
12901

46 − 10792
51

4001
44 − 7915

376
907
443

i = 2 284017
15 − 123697

5
256110

19 − 113695
29

19261
30 − 7915

141
907
443

find v = (v(1), v(2)) ∈ Ss = S(1)
s ×S(2)

s such that for all δv = (δv(1), δv(2)) ∈ Vs = V(1)
s ×V(2)

s

it holds Vs(v, δv) =
∑2

i=1 V(i)
s (v(i), δv(i)) = 0, where

V(i)
s (v(i), δv(i)) =







−〈∇v(i), ∇δv(i)〉Ω(i) − 〈f, δv(i)〉Ω(i), if s = 1,

〈∆v(i), ∆δv(i)〉Ω(i) − 〈f, δv(i)〉Ω(i), if s = 2,

−〈∇∆v(i), ∇∆δv(i)〉Ω(i) − 〈f, δv(i)〉Ω(i), if s = 3,

(3.53)

i = 1, 2. According to the respective problem, we demand weak Cs−1 coupling conditions
represented by Bs : Ss × Ms → R, Bs(v, λ) =

∑s−1
i=0 B̃i(v, λ),

B̃0(v, λ) = 〈v(1) − v(2), λ〉Γ, B̃1(v, λ) = h

2∑

i=1

(〈∂i(v
(1) − v(2)), ∂iλ〉Γ,

B̃2(v, λ) = h2
2∑

i=1

i∑

j=1

〈∂i∂j(v
(1) − v(2)), ∂i∂jλ〉Γ,

(3.54)

where the Lagrange multiplier spaces Ms are defined, according to Eq. (3.22), as the
trace space associated with the slave side and the mortar integrals are evaluated using
an element-based integration scheme with a 10-point Gaussian quadrature rule. The
respective coupling conditions are enforced using saddle point formulations. In order to
investigate the influence of the weighting parameter h and the two types of crosspoint
modification, we consider the following six settings:

• fcm: full modification, h = 1. • fcmh: full modification, h = h2.

• rcm: reduced modification, h = 1. • rcmh: reduced modification, h = h2.

• ncm: no modification, h = 1. • ncmh: no modification, h = h2.

I.e., in one part of the settings a weighting of the various coupling conditions is omitted,
while in the other part the weighting parameter is associated with the mesh size h. Note
that in the case of a C0 coupling, the parameter does not matter and the full crosspoint
modification is the same as the reduced one, so that the settings fcm, fcmh, rcm,
rcmh and ncm, ncmh match, respectively. In addition, for each setting we consider a
corresponding 1-patch situation (1patch) for comparison and use B-splines of equal degree
in each parametric direction for the approximation. Regarding the meshes, we start in a
1-patch situation with a resolution of 16 × 16 elements and in a 2-patch situation with a
resolution of 17 × 8 and 16 × 8 elements on the slave and master sides, respectively, and
double the number in each refinement step.
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Figure 3.9: Relative L2 error ‖v − vh‖L2(Ω)/(2π)2 as a function of the inverse mesh size
h−1. First column: s = 1, p = 1, 2, 3 (always from top to bottom); second
column: s = 2, p = 2, 3, 4; third column: s = 3, p = 3, 4, 5.

A numerical error study of the primal solutions of the harmonic (s = 1), biharmonic
(s = 2) and triharmonic (s = 3) equation is provided in Figure 3.9 for different spline
degrees. In the case of the harmonic problem, the results with modified multiplier as well
as the results without crosspoint modification coincide with the 1-patch solution, whereas
the situation is different for the bi- and triharmonic problems. Regarding the biharmonic
problem, especially ncm shows a poor approximation property. Furthermore, an unstable
behaviour of fcm with degree p = 4 and a decrease of the approximation order of rcm with
increasing spline degree can be observed compared to the 1-patch situation at a certain
refinement level. In the case of the triharmonic problem, the convergence behaviour of
the two settings without crosspoint modifications are significantly different from the 1-
patch solution. The triharmonic problem is further characterised by an ill-conditioning
of the associated linear systems, which for any setting for p = 4, 5 leads to an increase
in the errors at a certain refinement level. Moreover, due to the poor conditioning, the
systems of fcm, rcm and ncm could be solved at p = 4 only up to the fifth refinement
level, whereas at p = 5 the system of fcm could be solved only up to the fifth level, the
system of rcm up to the fourth level and the system of ncm up to the third level. In this
context, a solution was considered invalid if the residual in the insertion test exceeded
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Figure 3.10: Condition number as a function of the inverse mesh size h−1. First column:
s = 1, p = 1, 2, 3 (always from top to bottom); second column: s = 2,
p = 2, 3, 4; third column: s = 3, p = 3, 4, 5.

0.005. These observations motivated us to have a closer look at the condition numbers of
the associated linear systems of each settings.

The evolution of the condition number as a function of the inverse mesh size corresponding
to the error plots in Figure 3.9 is shown in Figure 3.10. It can be seen that the condition
numbers of the 2-patch systems are greater than those of the 1-patch system in each case,
whereby of the 2-patch systems fcmh always has the lowest condition number, followed
by rcmh. As the refinement level increases, the increase in the condition numbers of
fcmh and rcmh is comparable to that of 1patch, while the increase of the other 2-
patch systems is mostly significantly larger. It is noteworthy that in some cases, e.g.
(s, p) = (1, 3) or (s, p) = (2, 3), the curve of 1patch even shows a greater slope than
that of fcmh. Moreover, it should be noted that neither the use of a mesh-dependent
weighting parameter nor the application of a crosspoint modification alone leads to a
lower increase in the condition number, but only the use of both procedures. As for the
condition number, we were also interested in the difference between the two methods of
implementing the coupling conditions. Here it has been shown that the condition number
behaves much better when constrained spaces are used. For example, the condition
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Figure 3.11: Condition number as a function of the inverse mesh size h−1 using con-
strained spaces and a saddle point formulation corresponding to (s, p) =
(1, 3), (2, 4), (3, 5) (from left to right).

numbers corresponding to ncmh using constrained spaces (called ncmhBm) and a saddle
point formulation are shown in Figure 3.11.

Figure 3.12: Relative L2 error ‖λ − λh‖L2(Γ)/(2π) as a function of the inverse mesh size
h−1. First row: s = 1, p = 1, 2, 3 (always from left to right); second row:
s = 2, p = 2, 3, 4.

In the case of the harmonic equation, it is well known that the Lagrange multiplier used
to enforce the weak C0 coupling corresponds to the primal fields via λ = ∇v(1) · n(1) =
−∇v(2) · n(2), which can be immediately justified by a comparison with the boundary
integrals representing the natural conditions of the problem. Analogous considerations
lead in the case of the bi- and triharmonic problem to the assumption λ = ∇∆v(1) ·n(1) =
−∇∆v(2) · n(2) and λ = ∇∆2v(1) · n(1) = −∇∆2v(2) · n(2), respectively, which, however,
can be justified by a further comparison of the boundary integrals only under additional
conditions. In the case of the biharmonic equation, the solution of the problem must
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additionally satisfy the condition

∇[∇∆v(1) · n(1)] = −∆v(1)n(1) = ∆v(2)n(2), (3.55)

while in the case of the triharmonic problem even the space of the test functions is subject
to certain restrictions, so that the postulated assumption is hardly justified. However, in
order to investigate at least the convergence behaviour of the dual field concerning the
biharmonic problem, the interface in the example is chosen in such a way that condition
(3.55) is fulfilled. A numerical error study of the dual solutions of the harmonic and
biharmonic problem is provided in Figure 3.12. In contrast to the primal solution, there
are significant differences in the results of the different settings for both problems. In the
case of the harmonic equation, the order of convergence of ncm, compared to the order of
fcm, decreases with increasing spline degree. Here, convergence can only be observed in
the two settings with crosspoint modification and mesh-dependent weighting parameter
h.

Remark 3.3.1. The simulations here and in the following sections have all been carried
out using ESRA. This is a research code for IGA and FEM simulations developed at the
Chair of Computational Mechanics at the University of Siegen under the direction of Prof.
C. Hesch. The code is largely written in MATLAB, with the use of various C++ routines
for performance enhancement at critical points.
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4 Elasticity

As a first example of the application of the extended mortar method, let us consider the
problem of elasticity. In this context, we investigate a standard continuum model requir-
ing weak C0 couplings, as well as a continuum-degenerate model in the framework of the
Kirchhoff-Love shell theory requiring weak G1-continuous couplings. For this purpose,
we first summarize the necessary terminology and the basics of continuum mechanics in
Sections 4.1-4.5. Thereby, Section 4.1 deals with configurations and motions, Section 4.2
with the use of curvilinear coordinates, Section 4.3 with deformations and strain tensors
and Section 4.4 with the notion of hyperelasticity. Eventually, in Section 4.5, the principle
of virtual work for a general three-dimensional continuum in terms of material and curvi-
linear coordinates is formulated and a corresponding multi-patch framework is derived.
Based on these fundamentals, we summarize the basics of the Kirchhoff–Love shell theory
in Section 4.6 and conclude with some numerical studies in Section 4.7. For additional
information on the subject of this chapter, we refer, e.g., to [37, 38, 97, 122, 123]. Re-
garding the notation, in this chapter we make use of the Einstein summation convention,
i.e. whenever an index is repeated in the same term, a summation over the range of this
index is implied unless otherwise indicated.

4.1 Configurations and motions of continuum bodies

4.1.1 Configurations.

We consider a continuum body B which is embedded in the three-dimensional Euclidean
space R3. Therefore, we introduce a right-handed Cartesian coordinate system with fixed
origin O and orthonormal basis vectors ei, i = 1, 2, 3. As B moves in space from one
point in time to another, it occupies a continuous sequence of (open) geometrical regions
Ωt ⊂ R3, t ∈ I = [0, τ ] ⊂ R≥0, called configurations of B at time t. For each configuration,
we assume the existence of a suitable regular bijection κt : B → Ωt, P 7→ κt(P), such that
the position of a particle P ∈ B at time t is determined by its corresponding position vector
x ∈ R3, i.e. κt(P) = x. Following Holzapfel [97], we agree that the initial configuration
Ω0 coincides with the reference configuration∗ and we make use of upper case letters
to mark mathematical objects assigned to Ω0. In the case t > 0, we call Ωt current
configuration at time t (or simply current configuration if confusions are excluded) and
make use of lower case letters to mark mathematical objects assigned to Ωt. For example,

∗I.e., at time t = 0 the body is supposed to be unloaded, undeformed and unstressed.
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κ0 κt

Ω0 = κ0(B)
Ωt = κt(B)

B

O

e1

e2

e3

ϕ

κ0(P) = X x = κt(P) = ϕ(X, t)

G1 G3

G2

g1

g2 g3

P

Figure 4.1: Reference and current configuration of a continuum body B.

the position vector X = κ0(P) of a typical point P ∈ B is denoted in terms of coordinates
by X = Xiei, where we refer to Xi as Lagrangian (or material) coordinates. On the other
hand, we denote the position vector x = κt(P) corresponding to the actual configuration
by x = xiei, where we call xi Euler (or spatial) coordinates. The geometric quantities
introduced here and below are illustrated in Figure 4.1.

4.1.2 Motions.

Starting from a family of configurations {κt}t∈I , the motion ϕ : Ω0 × I → R3 of a body
B is defined as (X, t) 7→ ϕ(X, t) = κt(κ

−1
0 (X)). For all fixed t ∈ I, ϕ(·, t) : Ω0 → Ωt is a

one-to-one mapping from the reference configuration to the current configuration and its
inverse ϕ−1(·, t) : Ωt → Ω0 is given by x 7→ ϕ−1(x, t) = κ0(κ

−1
t (x)). In the following, we

tacitly assume that ϕ is suitable regular, where we make use of the regularity definition
stated in Marsden & Hughes [122]†.

Definition 4.1.1. A motion ϕ : Ω0 × I → R3 is called Cr regular, if ϕ ∈ Cr(Ω0 × I) and
ϕ−1(·, t) ∈ Cr(Ωt) for all t ∈ I.

Moreover, we define the material and spatial gradient ∇X and ∇x of functions H : Ω0 → R3

and h : Ωt → R3 (t > 0), respectively, through

∇XH =
∂H

∂Xj
⊗ ej =

∂Hi

∂Xj
ei ⊗ ej, ∇xh =

∂h

∂xj
⊗ ej =

∂hi

∂xj
ei ⊗ ej, (4.1)

†Since we a priory assume that the configuration mappings κt are invertible, our regularity definition
slightly differs from the definition stated in [122] .
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where Hi, hi are the Cartesian components of H , h and introduce the Jacobian

J(X, t) := det ∇Xϕ(X, t). (4.2)

Due to the assumed regularity of ϕ, ∇Xϕ is invertible for all (X, t) ∈ Ω0 × I and it
holds (∇Xϕ(X, t))−1 = ∇xϕ−1(ϕ(X, t), t), [112]. This particularly yields J(X, t) 6= 0
for all (X, t) ∈ Ω0 × I. In the following we additionally demand J(X, t) > 0 for all
(X, t) ∈ Ω0 × I to exclude a self-penetration of the body during the deformation process
described by ϕ.

4.2 Curvilinear coordinates and metric properties

According to the isomorphic relationship between a vector and its coordinates, we can
identify them with each other and express the motion of B and its inverse ϕ−1 =
(ϕ̄1, ϕ̄2, ϕ̄3)

T at time t in terms of (Lagrangian/Euler) coordinates as follows

xi = ϕi(X1, X2, X3, t), i = 1, 2, 3 → x = ϕ(X1, X2, X3, t),

Xi = ϕ̄i(x1, x2, x3, t), i = 1, 2, 3 → X = ϕ−1(x1, x2, x3, t).
(4.3)

When studying special bodies such as shells (cf. Section 4.6), plates and rods, it is often
preferable to describe the coordinates Xi as functions of three independent parameters
ξ1, ξ2, ξ3 resulting in an, in general, convective curvilinear coordinate system. Therefore
we introduce a suitable smooth diffeomorphism Λ = (Λ1, Λ2, Λ3)

T : Ω̂ → Ω0 defined on an

open and bounded subset Ω̂ of R3, which describes the relation between both coordinate
systems as follows

Xi = Λi(ξ1, ξ2, ξ3), i = 1, 2, 3 → X = Λ(ξ1, ξ2, ξ3),

ξi = Λ̄i(X1, X2, X3), i = 1, 2, 3 → ξ = Λ−1(X1, X2, X3),
(4.4)

where Λ−1 = (Λ̄1, Λ̄2, Λ̄3)
T. According to (4.3) and (4.4), the position of any particle of

the body B is determined in the undeformed state as well as in the deformed state by the
same values of the coordinates ξi,

xi = ϕc,i(ξ1, ξ2, ξ3, t), i = 1, 2, 3 → x = ϕc(ξ1, ξ2, ξ3, t),

ξi = ϕ̄c,i(x1, x2, x3, t), i = 1, 2, 3 → ξ = ϕ−1
c (x1, x2, x3, t),

(4.5)

where ϕc(ξ1, ξ2, ξ3, t) := ϕ(Λ(ξ1, ξ2, ξ3), t) is the motion of the body expressed in terms of
the curvilinear coordinates and ϕ−1

c := (ϕ̄c,1, ϕ̄c,2, ϕ̄c,3)
T, cf. Figure 4.2.

The corresponding covariant basis vectors in the reference and the current configuration
are given by the tangent vectors

Gi =
∂Λ

∂ξi
=

∂Λj

∂ξi
ej, gi =

∂ϕc

∂ξi
=

∂ϕc,j

∂ξi
ej , i = 1, 2, 3, (4.6)
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Ω0 Ωt

Ω̂

Λ

ϕ−1

ϕc

Λ−1 ϕ−1
c

ϕ

Figure 4.2: Commutative diagram showing the relationships between Ω0, Ωt and Ω̂.

and the corresponding contravariant basis vectors Gi, gi are given by

Gi =
∂Λ̄i

∂Xj
ej, gi =

∂ϕ̄c,i

∂xj
ej , i = 1, 2, 3, (4.7)

cf. Figure 4.1. Note that the contravariant basis vectors are characterized by the duality
relations Gi · Gj = δi,j and gi · gj = δi,j, so that the bases {Gi}3

i=1 and {gi}3
i=1 are the

dual bases of {Gi}3
i=1 and {gi}3

i=1, respectively. In addition, we introduce the following
quantities for further use

Gi,j := Gi · Gj, gi,j := gi · gj,

Gi,j := Gi · Gj, gi,j := gi · gj .
(4.8)

The quantities with the same indices represent the squares of the length of the associated
basis vectors, where the quantities with different indices represent the product of the
length of the associated basis vectors and the cosine of the angle θ between the basis
vectors ‡,

‖Gi‖ =
√

Gi,i, cos θ(Gi, Gj) =
Gi,j

√
Gi,iGj,j

, i, j = 1, 2, 3 (no summation), (4.9)

i.e. the quantities determine the geometrical characteristics (the so-called metric) of the
associated basis. Furthermore, they link the co- and contravariant basis vectors to each
other via the relationships

Gi = Gi,jGj, Gi = Gi,jG
j, gi = gi,jgj , gi = gi,jg

j , (4.10)

from which immediately follows that [Gi,j]i,j = [Gi,j]
−1
i,j and [gi,j]i,j = [gi,j]

−1
i,j , respectively.

Hence, the quantities (4.8) are customarily referred to as metric coefficients.

Remark 4.2.1. For simplicity, we will often express the relationships (4.3)-(4.5) between
the different coordinates in a more compact form, which is common in the mechanics

‡The same holds for the contravariant basis associated with the reference configuration as well as for
the covariant and contravariant basis associated with the current configuration.
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literature. For example, we indicate the relation (4.3) between Lagrangian and Euler
coordinates simply as follows

xi = xi(X1, X2, X3, t), i = 1, 2, 3 → x = x(X1, X2, X3, t), (4.11a)

Xi = Xi(x1, x2, x3, t), i = 1, 2, 3 → X = X(x1, x2, x3, t). (4.11b)

Note that in (4.11a) the symbol xi appears twice with different meanings. On the right-
hand side, xi represents the function whose arguments are Xi and t, i.e. xi represents
ϕi, while on the left-hand side it represents as usual the ith coordinate of x with respect
to the Cartesian coordinate system, i.e. the value of the function xi = ϕi. A similar
interpretation holds for x in (4.11a) and Xi, X in (4.11b).

4.3 Deformations and strain measures

The deformation gradient F locally describes the deformation process induced by a motion
ϕ. Using general convective curvilinear coordinates, F is defined through the contravari-
ant and covariant basis vectors Gi, gi by

F = gi ⊗ Gi (4.12)

and the transposed and inverse of F are given by

FT = Gi ⊗ gi, F−1 = Gi ⊗ gi, F−T = gi ⊗ Gi, (4.13)

cf. Başar & Weichert [12]. Thus, we obtain a relation between the basis vectors corre-
sponding to the reference and the current configuration via F as follows:

gi = F Gi, Gi = F−1 gi,

gi = F−T Gi, Gi = FT gi.
(4.14)

So far, we have tacitly assumed that the deformation gradient is invertible. Indeed,
according to (4.1), (4.6), (4.7) and (4.12), it holds

F =
∂xj

∂ξi

∂ξi

∂Xk
ej ⊗ ek =

∂xj

∂Xk
ej ⊗ ek =

∂x

∂X
= ∇Xϕ, (4.15)

ensuring the existence of F−1, cf. Section 4.1. By virtue of (4.15), ∇Xϕ can alternatively
be used to define the deformation gradient if material coordinates Xi are selected for
the description of the deformation process. A similar interpretation holds for the spatial
gradient ∇xϕ−1 which characterizes the use of spatial coordinates xi, since, according to
(4.1), (4.6), (4.7) and (4.13),

F−1 =
∂Xj

∂ξi

∂ξi

∂xk
ej ⊗ ek =

∂Xj

∂xk
ej ⊗ ek =

∂X

∂x
= ∇xϕ−1. (4.16)
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The deformation gradient is a generally non-symmetric second order tensor which uniquely
describes the deformation of the body. However, it takes into account rigid body motions.
Therefore, it can not be used directly as a measure for strains, cf. [25, 150, 168].

Several strain measures are used in continuum mechanics, see, e.g., Ogden [125] for an
overview. In this work, we use the right Cauchy–Green strain tensor C (RCG) and the
Green–Lagrange strain strain tensor E (GL). They are defined through F and the identity
tensor I by

C = FT F, E =
1

2
(FT F − I) =

1

2
(C − I). (4.17)

Thus, in consideration of Eqs. (4.8), (4.12), (4.13)1, (4.15), (4.17) and§

I = δi,j ei ⊗ ej = gi,j gi ⊗ gj = gi,j gi ⊗ gj = Gi,j Gi ⊗ Gj = Gi,j Gi ⊗ Gj, (4.18)

the two strain tensors can be expressed in terms of coordinates with respect to the refer-
ence configuration as follows

C =

(
∂xk

∂Xi

∂xk

∂Xj

)

ei ⊗ ej = Ci,j Gi ⊗ Gj = Ci,j Gi ⊗ Gj, (4.19)

E =
1

2

(
∂xk

∂Xi

∂xk

∂Xj
− δij

)

ei ⊗ ej = Ei,jG
i ⊗ Gj = Ei,j Gi ⊗ Gj, (4.20)

where the co- and contravariant strain components are given by

Ci,j = gi,j, Ei,j =
1

2
(Ci,j − Gi,j) and Ci,j = Gi,kCk,lG

l,j, Ei,j =
1

2
(Ci,j − Gi,j). (4.21)

4.4 Constitutive equations

Constitutive equations describe the relations between strains and stresses via a material
law. In this thesis we consider isotropic hyperelastic materials. According to [12, 159], a
material is called hyperelastic if there exists an elastic potential function W of the Green–
Lagrange strain tensor and the right Cauchy–Green strain tensor, respectively, such that
the second Piola–Kirchhoff stress tensor S (PK2) is determined by

S =
∂ W

∂E
= 2

∂ W

∂C
. (4.22)

Note that the second equation in (4.22) holds due to the one to one correspondence
E(C) = (C − I)/2 ⇔ C(E) = 2 E + I and is not part of the definition of hyperelastic
materials. In the following, we consider compressible material models and then discuss
how such a model can be adapted to describe incompressible materials. Eventually, the
elastic potentials used in the numerical investigations in Section 4.7 are summarized.

§A proof of (4.18) can be found in Holzapfel [97].
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Constitutive laws for compressible isotropic hyperelastic materials. In the case of
an isotropic material, the elastic potential can be expressed as a function of the three
invariants

IC = Tr C = C : I, IIC =
1

2

(
(Tr C)2 − Tr C2

)
, IIIC = det C = J2 (4.23)

of the RCG strain tensor C, Ciarlet [37], and the general constitutive law (4.22) can be
rewritten as follows

S = 2
[
(aI + aIIIC) I −aII C +aIIIIIIC C−1

]
, (4.24)

where aI, aII and aIII are functions of the invariants of C,

aI =
∂ W

∂IC
, aII =

∂ W

∂IIC
, aIII =

∂ W

∂IIIC
, (4.25)

cf. Başar & Weichert [12]. Bearing in mind Eqs. (4.10), (4.18), (4.19) and (4.21), the con-
travariant stress components with respect to the reference configuration are consequently
given by

Si,j = 2
[
(aI + aIIIC)Gi,j − aIIC

i,j + aIIIIIICC̄i,j
]

, (4.26)

where C̄i,j denote the contravariant components of C−1 with respect to the reference
configuration. Note that due to [gi,j]i,j = [gi,j]

−1
i,j and Ci,j = gi,j it holds C̄i,j = gi,j.

Constitutive laws for incompressible isotropic hyperelastic materials. With slight
modifications, the equations in the previous section can be applied to incompressible
isotropic hyperelastic materials. According to (4.2) and (4.15) incompressible deforma-
tions, also called isochoric (volume preserving), are described by one of the following
conditions:

J = det F = 1, IIIC = 1. (4.27)

Consequently, in this case, the elastic potential W is only expressible in terms of the
first two invariants IC and IIC, i.e. W = W(IC, IIC), and the constitutive equation (4.24)
reduces to

S = 2
[
(aI + aIIIC) I −aII C +aIII C−1

]
, (4.28)

where the functions aI and aII are given according to Eq. (4.25). However, the function
aIII cannot be determined from Eq. (4.25), since the value of the derivative ∂ W/∂IIIC at
IIIC = 1 is unknown. Consequently, the incompressibility condition (4.27) renders aIII =:
p an unknown variable which corresponds to the hydrostatic pressure. Its determination
can be carried out through equilibrium and boundary conditions, see, e.g., Holzapfel [97],
Green & Zerna [84], Başar & Ding [10] and Başar & Itskov [11] for more information on
this topic. Note that, by setting J = 1 and IIIC = 1, the component relation (4.26) still
holds in the present case.
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Special constitutive models for isotropic hyperelasticity. In this thesis, we make use
of Neo-Hookean and Mooney-Rivlin material models given by the elastic potentials

W1 =
µ

2
(IC − 3) − µ ln(

√

IIIC) +
λ

2
ln(

√

IIIC)2, (4.29)

W2 =
µ

2
(IC − 3) − p(

√

IIIC − 1), (4.30)

W3 =
µ1

2

(

III
− 1

3
C IC − 3

)

+
µ2

4

(

IIIC − 1 − 2 ln(
√

IIIC)
)

, (4.31)

W4 =
µ1

2
(IC − 3) +

µ2

2
(IIC − 3) − (µ1 + 2µ2) ln(

√

IIIC) +
λ

2
ln(

√

IIIC)2, (4.32)

where µ, µ1, µ2 and λ are material parameters. Thereby, the first three functions describe
Neo-Hookean materials and the last one describes a Mooney-Rivlin material. Thus, the
functions (4.25) of the different material models are given by:

a1
I =

µ

2
, a1

II = 0, a1
III =

1

2IIIC

(

λ ln(
√

IIIC) − µ
)

, (4.33)

a2
I =

µ

2
, a2

II = 0, a2
III = − p

2
√

IIIC

, (4.34)

a3
I =

µ1

2
III

− 1
3

C a3
II = 0, a3

III = −µ1

6
III

− 4
3

C IC +
µ2

4

(
1 − III−1

C

)
, (4.35)

a4
I =

µ1

2
, a4

II =
µ2

2
, a4

III =
1

2IIIC

(

λ ln(
√

IIIC) − (µ1 + 2µ2)
)

. (4.36)

Furthermore, the elastic potential (4.30) describes an incompressible material, where the
incompressibility condition (

√
IIIC −1) = 0 is enforced via a Lagrange multiplier p, which

can be considered as the hydrostatic pressure, [97].

4.5 Equation of motion and multi-patch framework

In this section, we introduce Cauchy’s equation of motion and derive a corresponding un-
coupled multi-patch framework of the form (3.3), which can be treated with the methods
from Chapters 2-3. In the reference configuration, the equation reads

ρ0(X)ϕ̈(X, t) = ∇X · P(X, t) + B(X, t) ∀(X, t) ∈ Ω0 × I, (4.37)

where I = [0, τ ], ρ0 denotes the mass density of the reference configuration, P := FS

the first Piola–Kirchhoff stress tensor (PK1), B a prescribed body force per unit volume
and the term ρ0ϕ̈ describes the inertia force per unit volume. To obtain a complete
characterisation of the motion of the body, (4.37) has to be supplemented by appropriate
initial and boundary conditions. We specify initial conditions as

ϕ = idΩ0 , ϕ̇ = v in Ω0 × {0}, (4.38)
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where idΩ0 is the identity map on Ω0 and the vector field v : Ω0 → R3 a prescribed initial
velocity. With regard to the boundary, we assume essential and natural conditions to be
given by

ϕ = ϕ̄ on Γe × I and PN = T on Γn × I, (4.39)

where ϕ̄ is a prescribed motion, N the outer normal vector on Γn, T a prescribed surface
traction and Γe, Γn are open subsets of ∂Ω0 such that Γ̄e ∪ Γ̄n = ∂Ω0 and Γe ∩ Γn = ∅.

Given a multi-patch geometry consisting of patches Ω
(1)
0 , . . . , Ω

(N)
0 , Eqs. (4.38)-(4.39) char-

acterise the motion ϕ(i) : Ω
(i)
0 → R3 of each patch by replacing Ω0 with Ω

(i)
0 and considering

the restriction of the functions to Ω
(i)
0 , i.e.







ρ
(i)
0 ϕ̈(i) = ∇X · P(i) +B(i), in Ω

(i)
0 × I,

ϕ(i) = id
Ω

(i)
0

, ϕ̇(i) = v(i), in Ω
(i)
0 × {0},

ϕ(i) = ϕ̄(i) on Γ
(i)
e × I, P(i)N (i) = T (i) on Γ

(i)
n × I,







(4.40)

where Γ
(i)
e := Γe∩∂Ω

(i)
0 and Γ

(i)
n := Γn∩∂Ω

(i)
0 . To derive a variational problem, (4.40) could

now be treated within an isogeometric space-time framework by interpreting the initial
boundary value problems as pure boundary value problems on a space-time cylinder, cf.
Schuß et al. [144]. In this work, however, we use a semi-discretisation scheme in which
space and time are treated separately. Therefore, in the first step, we introduce a time grid
0 = t0 < t1 < . . . < tM = τ and express the problems (4.40) as a sequence of boundary

value problems according to Appendix A: for ν = 1, . . . , M find ϕ
(i)
ν : Ω̄

(i)
0 → R3 such

that {

ρ
(i)
0 Hν(ϕ

(i)
ν , ϕ

(i)
ν−1, ϕ̃

(i)
ν−1) − [∇X · P(i) +B(i)]ν−1/2 = 0, in Ω

(i)
0 ,

ϕ
(i)
ν = ϕ̄(i)

ν on Γ
(i)
e , [P(i)N (i)]ν−1/2 = T

(i)
ν−1/2 on Γ

(i)
n ,

}

(4.41)

where the step-size is denoted by hν := tν − tν−1 and the subscripts [•]ν , [•]ν−1, [•]ν−1/2

indicate the evaluation at the grid points tν , tν−1 and tν−1/2 := tν−1 + hν/2. Within

this notation, ϕ
(i)
ν denotes the function ϕ

(i)
ν : Ω

(i)
0 → R3 defined by ϕ

(i)
ν (X) = ϕ(i)(X, tν)

and sums or products of functions inside brackets are to be treated separately, e.g. [∇X ·
P(i) +B(i)]ν−1/2 = ∇X ·P(i)

ν−1/2 +B
(i)
ν−1/2. The start functions of the sequence result from the

initial conditions, i.e. ϕ
(i)
0 = id

Ω
(i)
0

, ϕ̃
(i)
0 = v(i), and the approximation of the acceleration

is captured by the operator

Hν(ϕ(i)
ν , ϕ

(i)
ν−1, ϕ̃

(i)
ν−1) := 2h−1

ν [h−1
ν (ϕ(i)

ν − ϕ
(i)
ν−1) − ϕ̃

(i)
ν−1], (4.42)

where ϕ̃
(i)
ν−1 can be understood as an approximation of the velocity ϕ̇

(i)
ν−1 and is given in

the further course by ϕ̃
(i)
ν−1 := 2h−1

ν−1(ϕ
(i)
ν−1 − ϕ

(i)
ν−2) − ϕ̃

(i)
ν−2, ν = 2, . . . , M . In order to

derive corresponding weak formulations, we now introduce for each time step and patch
suitable spaces of admissible solutions S(i)

ν and test functions V(i), such that

S(i)
ν ⊂

{

ϕ ∈ H1(Ω
(i)
0 )3 | ϕ = ϕ̄(i)(•, tν) on Γ(i)

e

}

, (4.43a)

V(i) ⊂
{

δϕ ∈ H1(Ω
(i)
0 )3 | ϕ = 0 on Γ(i)

e

}

. (4.43b)
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The inclusions ensure that the essential boundary conditions are fulfilled, the deformation
gradient exists and the integral expressions in the following variational problems exist.
How the spaces have to be further specified to ensure the unique solubility of the problems
still depends on the properties of the elastic potential defining the material model. Details
on this topic can be found in Court & Kunisch [46]. Scalar multiplication of the partial
differential equation in (4.41) by an arbitrary test function and subsequent integration
yields, after some standard calculations, the following sequence of variational problems:
for ν = 1, . . . , M find ϕ

(i)
ν ∈ S(i)

ν , where

V(i)
ν (ϕ(i)

ν , δϕ(i)) := 〈ρ(i)
0 Hν(ϕ(i)

ν , ϕ
(i)
ν−1, ϕ̃

(i)
ν−1) − B

(i)

ν− 1
2

, δϕ(i)〉
Ω

(i)
0

+ 〈P(i)

ν− 1
2

, ∇Xδϕ(i)〉
Ω

(i)
0

− 〈T (i)

ν− 1
2

, δϕ(i)〉
Γ

(i)
n

= 0
(4.44)

for all δϕ(i) ∈ V(i), which can be merged into a sequence of global, uncoupled problems
by introducing the product spaces Sν =

∏N
i=1 S(i)

ν , V =
∏N

i=1 V(i) and the functional

Vν : Sν × V → R, Vν(ϕν , δϕ) =
∑N

i=1 V(i)
ν (ϕ

(i)
ν , δϕ(i)), according to Section 3.1.1. It

should be noted that (4.44) is a semi-discretized version of the principle of virtual work
expressed in Lagrangian coordinates. Using arbitrary curvilinear coordinates given by a
diffeomorphism Λ(i) : Ω̂(i) → Ω

(i)
0 , cf. Section 4.2, (4.44) yields a corresponding sequence

of variational problems as follows: for ν = 1, . . . , M find ϕ
(i)
c,ν ∈ Ŝ(i)

ν such that

V̂
(i)

ν (ϕ(i)
c,ν, δϕ(i)

c ) := 〈ρ̂(i)
0 Hν(ϕ(i)

c,ν, ϕ
(i)
c,ν−1, ϕ̃

(i)
c,ν−1) − B̂

(i)

ν− 1
2
, δϕ(i)

c

√
G〉Ω̂(i)

+ 〈P̂(i)

ν− 1
2
, ∇ξδϕ(i)

c

√
G〉Ω̂(i) − 〈T̂ (i)

ν− 1
2
, δϕ(i)

c

√

GQ〉
Γ̂

(i)
n

= 0
(4.45)

for all δϕ
(i)
c ∈ V̂(i), where the spaces of admissible solutions and test functions result from

the underlying diffeomorphism and the spaces (4.43) as follows

Ŝ(i)
ν =

{

ϕ(i)
ν ◦ Λ(i) | ϕ(i)

ν ∈ S(i)
ν

}

, V̂(i) =
{

δϕ(i) ◦ Λ(i) | δϕ(i) ∈ V(i)
}

. (4.46)

Moreover, Γ̂n ⊂ ∂Ω̂ is defined by Γ̂n = Λ−1(Γn), ∇ξ(•) := (∂(•)/∂ξi) ⊗ Gi is the gradient

w.r.t. the curvilinear coordinates, G := det[Gi,j]i,j , Q := N̂
T

[Gi,j]i,jN̂ and the symbol (̂•)
indicates the change of variables, e.g.

N̂ = N̂(ξ) := N(Λ(ξ)), B̂
(i)

ν− 1
2

= B̂
(i)

ν− 1
2
(ξ) := B

(i)

ν− 1
2

(Λ(ξ)), (4.47)

etcetera. More details concerning the derivation of the principle of virtual work in
terms of curvilinear coordinates can be found in the textbooks of Ciarlet [38, 39] and
Washizu [166].

Remark 4.5.1. We have considered here the general case of time-dependent quantities.
However, the previous considerations also apply to the static case, whereby the represen-
tation is considerably simplified. In particular, the application of a time-stepping method
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is omitted. For the static case, we obtain in Lagrangian coordinates for each patch the
problem: find ϕ(i) ∈ S(i), such that

〈P(i), ∇Xδϕ(i)〉
Ω

(i)
0

− 〈B(i), δϕ(i)〉
Ω

(i)
0

− 〈T (i), δϕ(i)〉
Γ

(i)
n

= 0 (4.48)

for all δϕ(i) ∈ V(i), where the space of admissible solutions S(i) coincides with the spaces
S(i)

ν . Thereby, it should be noted that the sequence S(i)
ν is constant in the static case.

Accordingly, in curvilinear coordinates the variational problems arise: find ϕ
(i)
c ∈ Ŝ(i)

such that for all δϕ
(i)
c ∈ V̂(i) holds

〈P̂(i)
, ∇ξδϕ(i)

c

√
G〉Ω̂(i) − 〈B̂(i)

, δϕ(i)
c

√
G〉Ω̂(i) − 〈T̂ (i)

, δϕ(i)
c

√

GQ〉
Γ̂

(i)
n

= 0. (4.49)

4.6 Kirchhoff–Love shell theory

The Kirchhoff–Love shell theory is a direct approach, i.e. the shell is considered ab ini-
tio as a two-dimensional surface and appropriate kinematic assumptions are postulated
to represent the three-dimensional behaviour. A comprehensive review of different ap-
proaches to shell formulations can be found e.g. in Naghdi [123], Palazotto & Dennis [126]
or Ciarlet [38]. The Kirchhoff–Love theory is based on the following hypotheses: (1) the
shell is thin, (2) the cross-sections of the shell continuum normal to the middle surface
in the reference configuration remain normal to the middle surface in the deformed con-
figuration, (3) the model satisfies the plane stress condition¶. The second hypothesis
implies that the strain is linear through the thickness and the transverse shear strains
are zero, which is a reasonable assumption for thin structures. For shell theories based
on the direct approach, normal strains and stresses in through-the-thickness direction
are usually not regarded. However, in the case of large strains, the transverse normal
strain can not be neglected. Therefore, we use in this work an extended shell formula-
tion for general hyperelastic materials introduced by Kiendl et al. [109]. In the following,
the above-stated assumptions are applied to the kinematic, constitutive, and equilibrium
equations introduced in the previous sections.

Regarding the notation, throughout this section, Latin indices always take on values from
{1, 2, 3}, while Greek indices only take on values from {1, 2}. Following this convention,
we write, for example, [gα,β]α,β to address the matrix [gα,β]1≤α,β≤2, while [gi,j]i,j refers
to the matrix [gi,j]1≤i,j≤3. In addition, it should be noted that according to Einstein’s
summation convention, sums indexed with Latin indices run from 1 to 3 and sums indexed
with Greek letters run from 1 to 2.

4.6.1 Shell-kinematics

Let us assume that the motion of the shell’s middle surface is determined via a parametri-
sation s : [0, 1]2 × I → R3, cf. Section 2.1.2. Then, the tangent base vectors aα, α = 1, 2,

¶In this work we adopt the commonly accepted, although incorrect, use of the term “plane stress” for
referring to the state of zero transverse normal stress S33 = 0.
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and the unit normal vector a3 of the surface are obtained by‖

aα = ∂ξα
s, α = 1, 2, a3 =

a1 × a2

‖a1 × a2‖
. (4.50)

Based on the Kirchhoff hypotheses, the position of a material point in the shell continuum
at time t is determined by the motion

ϕc(ξ1, ξ2, ξ3, t) = s(ξ1, ξ2, t) + ξ3a3(ξ1, ξ2, t), (ξ1, ξ2, ξ3, t) ∈ [0, 1]2 × J × I, (4.51)

expressed in curvilinear coordinates defined through Λ : Ω̂ := [0, 1]2 × J → Ω0,

Λ(ξ1, ξ2, ξ3) = S(ξ1, ξ2) + ξ3A3(ξ1, ξ2) = X, (4.52)

where J = [−h/2, h/2] and h is the shell thickness. According to Section 4.2, the base
vectors at an arbitrary point in the actual configuration of the shell continuum are given
by

gα = aα + ξ3[∂ξα
a3], α = 1, 2, g3 = a3 (4.53)

and the corresponding covariant metric coefficients result in

gα,β = aα,β − 2ξ3bα,β + ξ2
3 [∂ξα

a3] · [∂ξβ
a3], α, β = 1, 2, (4.54a)

gα,3 = g3,α = aα · a3 + ξ3[∂ξα
a3] · a3 = 0, α = 1, 2, (4.54b)

g3,3 = a3,3 = 1, (4.54c)

where aα,β and bα,β are the covariant metric coefficients and the curvature coefficients of
the middle surface, respectively, i.e.

aα,β = aα · aβ, bα,β = −aα · [∂ξβ
a3] = −aβ · [∂ξα

a3] = [∂ξβ
aα] · a3. (4.55)

As already mentioned, for thin and moderately thick shells the classical assumption is a
linear strain distribution through the thickness, such that the quadratic term with respect
to ξ3 in Eq. (4.54a) can be neglected,

gα,β = aα,β − 2ξ3bα,β. (4.56)

According to Eqs. (4.19) and (4.21), which are valid for a general 3D continuum, the
covariant coefficients of the RCG strain tensor are identical to the metric coefficients.
Due to the application of the Kirchhoff hypothesis, we have g3,3 ≡ 1, while C3,3 needs
to describe the actual thickness deformation. Following Kiendl et al. [109], we therefore
represent the RCG strain tensor C = Ci,jG

i ⊗Gj and its inverse C−1 = C̄i,jGi ⊗Gj with
respect to the reference configuration as follows

[Ci,j]i,j =







g1,1 g1,2 0

g2,1 g2,2 0

0 0 C3,3







, [C̄i,j]i,j = [Ci,j]
−1
i,j =







g1,1 g1,2 0

g2,1 g2,2 0

0 0 C−1
3,3







, (4.57)

‖Note that the following equations hold analogously for the reference configuration and we make further
on use of capital letters to mark objects assigned to it.
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where C3,3 can be computed from the in-plane metric coefficients in the case of an in-
compressible material or is determined by the plane stress condition in the case of a
compressible material as outlined in the following section. Consequently, the transverse
shear strains of the GL strain tensor vanish, i.e. Eα,3 = E3,α = 0, and we obtain the
relation E3,3 = (C3,3 −1)/2, cf. Eqs. (4.17)2, (4.20), (4.54). Accordingly, only the in-plane
components Eα,β are considered for the shell kinematics. Bearing in mind Eq. (4.56),
these components can be separated into a constant part due to the membrane strains and
a linear part due to bending,

Eα,β = εα,β + ξ3κα,β, (4.58)

where

εα,β =
1

2
(aα,β − Aα,β) and κα,β = (bα,β − Bα,β) (4.59)

are the membrane strains and the changes in curvature obtained from bending, respec-
tively.

4.6.2 Constitutive equations

We consider an arbitrary isotropic hyperelastic model, described by an elastic potential
function W as introduced in Section 4.4. If C3,3 = g3,3 ≡ 1 is used for the shell model,
the plane stress condition is, in general, violated, since in this case, it holds according to
Eq. (4.26)

S3,3 = 2 [(aI + aIIIC) − aII + aIIIIIIC] , (4.60)

where it should be noted that due to G3,α = Gα,3 = 0 and G3,3 = 1 we have C3,3 = C3,3, cf.
Eq. (4.21)3. Accordingly, the transverse normal deformation C3,3 needs to be determined
such that S3,3 = 0. This can be done numerically for compressible materials or analytically
for incompressible materials. In this section we briefly outline the main ideas of these
procedures and present the results. A detailed derivation from the 3D continuum to the
shell model can be found in Kiendl et al. [109].

For compressible materials, we enforce the plane stress condition in the form of a con-
straint at runtime. Since the components Ci,j are determined for (i, j) 6= (3, 3) by the
metric coefficients of the shell continuum, the corresponding problem reads: find C3,3

such that S3,3 = S3,3(C3,3) = 0. The latter is a root-finding problem which can be solved
numerically, for example, with a Newton-Raphson scheme.

For incompressible materials, we make use of the incomprehensibility condition (4.27)2

such that the transverse normal deformation is determined by IIIC = 1 ⇔ C3,3 =
J−2

0
∗∗, where J0 :=

√

det([gα,β]α,β)/ det([Gα,β]α,β) is the in-plane Jacobian, related to
the Jacobian by J = J0

√
C3,3. The plane stress condition is satisfied by solving

S3,3 = 2
[
(aI + aIIIC) − aII J−2

0 + p J2
0

]
= 0, (4.61)

∗∗Here it should be noted, that for a tensor expressed in the contravariant basis of the undeformed con-
figuration, A = Ai,jGi ⊗ Gj , the determinant is obtained by det(A) = det([Ai,j ]i,j)/ det([Gi,j ]i,j) =
det([Ai,j ]i,j)/ det([Gα,β ]α,β), where the latter equation holds due to G3,α = Gα,3 = 0 and G3,3 = 1.
The equivalence then follows directly from det([Ci,j ]i,j) = C3,3 det([gα,β ]α,β), cf. Eq. (4.57)1.
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cf. Eqs. (4.26), (4.28), for the hydrostatic pressure,

S3,3 = 0 ⇐⇒ p = − J−2
0

[
(aI + aIIIC) − aII J−2

0

]
, (4.62)

and substituting Eq. (4.62) into Eq. (4.26). Thus, the components of the PK2 stress
tensor are obtained as follows:

Si,j = 2
[
(aI + aIIIC)(Gi,j − J−2

0 C̄i,j) − aII(C
i,j − J−4

0 C̄i,j)
]

. (4.63)

Finally, we remark, that the plane stress condition has also to be considered during a
linearisation procedure, since S3,3 ≡ 0 ⇒ dS3,3 ≡ 0, where dS3,3 denotes the total
differential of S3,3. Therefore, the elasticity tensor C = ∂S /∂E = Ci,j,k,lGi⊗Gj ⊗Gk⊗Gl

must also be adjusted for the shell model. Once the plane stress condition is enforced,
the contravariant components of the adjusted tensor Ĉ with respect to the reference
configuration are given by

Ĉi,j,k,l = Ci,j,k,l − Ci,j,3,3C3,3,k,l

C3,3,3,3
. (4.64)

4.6.3 Multi-patch framework

Finally, we derive a multi-patch framework in the context of the Kirchhoff-Love theory.
The starting point is the sequence of variational problems (4.45) expressed in curvilinear
coordinates, which we will reformulate according to the Kirchhoff hypotheses. More
specifically, under reasonable assumptions, we will approximate the volume integrals in
(4.45) by surface integrals and thus obtain a semi-discrete version of the principle of virtual
work for shells. To this end, we introduce the stress and bending tensors ε := εα,βGα⊗Gβ,
κ := κα,βGα ⊗ Gβ and find that according to Eq. (4.59), the GL strain tensor has the
representation E = ε + ξ3κ. Using the identity P : ∇Xδϕ = S : δE, see Holzapfel [97] for
a proof, the functionals in Eq. (4.45) become:

V(i)
ν (ϕ(i)

ν , δϕ(i)) = 〈ρ(i)
0 Hν(ϕ(i)

ν , ϕ
(i)
ν−1, ϕ̃

(i)
ν−1) − B

(i)

ν− 1
2

, δϕ(i)
√

G〉Ω̂(i)

+ 〈S(i)

ν− 1
2

, [δε(i) + ξ3δκ(i)]
√

G〉Ω̂(i) − 〈T (i)

ν− 1
2

, δϕ(i)
√

GQ〉
Γ̂

(i)
n

= 0,
(4.65)

whereby we omit the marker (̂•) and the subscript c here, as it is clear that we are working
with curvilinear coordinates. For thin shells, it is reasonable to assume that the mass
density, the body force and the surface traction are constant through the thickness of the
shell. Moreover, according to Başar & Itskov [11], it is also reasonable to assume that
the shifter Z :=

√

G/A, where A := det[Aα,β]α,β = ‖∂ξ1S × ∂ξ2S‖2, can be approximated
by unity, i.e. Z ≈ 1. On the basis of these assumptions, neglecting terms containing
a factor hs with s ≥ 2, and bearing in mind the representations ϕ(i) = s(i) + ξ3a

(i)
3 ,

δϕ(i) = δs(i) + ξ3δa
(i)
3 , the volume integrals in Eq. (4.65) can be approximated by surface

integrals as follows

〈ρ(i)
0 Hν(ϕ(i)

ν , ϕ
(i)
ν−1, ϕ̃

(i)
ν−1), δϕ(i)

√
G〉Ω̂(i) ≈ h〈ρ(i)

0 Hν(s(i)
ν , s

(i)
ν−1, s̃

(i)
ν−1), δs(i)

√
A〉[0,1]2, (4.66)
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〈S(i)

ν− 1
2

, [δε(i) + ξ3δκ(i)]
√

G〉Ω̂(i) ≈ 〈n(i)

ν− 1
2

, δε(i)
√

A〉[0,1]2 + 〈m(i)

ν− 1
2

, δκ(i)
√

A〉[0,1]2, (4.67)

〈B(i)

ν− 1
2

, δϕ(i)
√

G〉Ω̂ ≈ h〈B(i)

ν− 1
2

, δs(i)
√

A〉[0,1]2, (4.68)

where n = nα,βGα ⊗ Gβ and m = mα,βGα ⊗ Gβ are resultant normal forces and bending
moments given by

nα,β =

h/2∫

−h/2

Sα,β dξ3, mα,β =

h/2∫

−h/2

ξ3S
α,β dξ3. (4.69)

The last two approximations (4.67), (4.68) are easily obtained by using the assumptions,
considering of

√
G =

√
AZ ≈

√
A and pre-integration in thickness direction. The first

approximation (4.66), however, is not immediately obvious due to the operator Hν and
requires further consideration, which we postpone to the end of this section. With regard
to the surface integral in Eq. (4.65), representing the natural boundary condition, different

cases are to be distinguished, depending on how Γ̂
(i)
n is specified with regard to the shell

continuum. E.g. in the continuum a load can act on the surface with ξ3 = h/2, which
corresponds to a load on the entire middle surface after omission of the thickness direction.
On the other hand, a load on the surface portion with ξ1 = 0 would correspond to a line
load. In order to take all cases into account, the traction T is reformulated accordingly
and integrated over the entire middle surface. For more details see Başar & Itskov [11].
Altogether, we finally obtain a sequence of variational problems for each patch as follows:
for ν = 1, . . . , M find s

(i)
ν ∈ S(i)

ν such that

V(i)
ν (s(i)

ν , δs(i)) = h〈ρ(i)
0 Hν(s(i)

ν , s
(i)
ν−1, s̃

(i)
ν−1) − B

(i)

ν− 1
2

, δs(i)
√

A〉[0,1]2

+ 〈n(i)

ν− 1
2

, δε(i)
√

A〉[0,1]2 + 〈m(i)

ν− 1
2

, δκ(i)
√

A〉[0,1]2 − 〈T (i)

ν− 1
2

, δs(i)
√

A〉[0,1]2 = 0,
(4.70)

for all δs(i) ∈ V(i), where S(i)
ν and V(i), are suitable spaces of trial and test functions.

Note that here, in contrast to Section 4.5, the space of trial solutions as well as the space
of test functions must be contained in H2([0, 1]2)3 due to the curvature terms introduced
in Eq. (4.55). Concerning the existence and uniqueness of weak solutions, we refer to
Healey [88].

Remark 4.6.1. As in Section 4.5, the problems (4.70) simplify considerably in the static
case: find s(i) ∈ S(i) such that for all δs(i) ∈ V(i) holds

〈n(i), δε(i)
√

A〉[0,1]2 + 〈m(i), δκ(i)
√

A〉[0,1]2

− h〈B(i), δs(i)
√

A〉[0,1]2 − 〈T (i), δs(i)
√

A〉[0,1]2 = 0,
(4.71)

Finally, we look at Approximation (4.66) in more detail. To this end, we first need a closed
form for the iterated ϕ̃(i)

ν . Considering the initial value and the inductive definition, it can

be easily shown by induction on ν that ϕ̃(i)
ν = 2

∑ν
k=1(−1)ν+kh−1

k (ϕ
(i)
k − ϕ

(i)
k−1) + (−1)νv

for all ν ∈ N0, where v is the initial data introduced in Eq. (4.38). Due to the structure
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of the motion of the shell continuum, the prescribed velocity has in the context of the
Kirchhoff–Love theory the form v = vs + ξ3va3

for reasons of consistency, where vs is the
velocity of the mid-surface and va3 is the velocity of the normal field. We first note that
due to

√
G = Z

√
A ≈

√
A, we get an approximation for the first term in Eq. (4.65) as

follows

〈ρ(i)
0 Hν(ϕ(i)

ν , ϕ
(i)
ν−1, ϕ̃

(i)
ν−1), δϕ(i)

√
G〉Ω̂(i) ≈

∫

[0,1]2

C
(i)
1

h/2∫

−h/2

(ϕ(i)
ν − ϕ

(i)
ν−1) · δϕ(i) dξ3 − C

(i)
2

h/2∫

−h/2

ϕ̃
(i)
ν−1 · δϕ(i) dξ3 d(ξ1, ξ2),

(4.72)

where we have further used the definition of the operator Hν , cf. Eq. (4.42), and sum-

marised in C
(i)
1 and C

(i)
2 all quantities that are constant in the thickness direction, i.e.

C
(i)
1 := 2ρ

(i)
0

√
Ah−2

ν , C
(i)
2 := 2ρ

(i)
0

√
Ah−1

ν . Note that the letter h is used here with dif-
ferent meanings. While quantities with subscript (e.g. hν) denote the step-size of the

time-stepping scheme, h refers to the shell thickness. Taking into account ϕ
(i)
k · δϕ(i) =

s
(i)
k · δs(i) + ξ3(s

(i)
k · δa

(i)
3 + a

(i)
3,k · δs(i)) + ξ2

3a
(i)
3,k · δa

(i)
3 , we obtain

h/2∫

−h/2

ϕ
(i)
k · δϕ(i) dξ3 = hs

(i)
k · δs(i) + 12−1h3(a

(i)
3,k · δa

(i)
3 ) ≈ hs

(i)
k · δs(i), (4.73)

where, as agreed above, we have omitted the term with cubic thickness h. According to
Eq. (4.73), we obtain in Eq. (4.72) an approximation for the first integral with respect to

the thickness direction. For the second integral, using the closed representation for ϕ̃
(i)
ν−1

and bearing in mind the shape of v we further obtain with Eq. (4.73)

h/2∫

−h/2

ϕ̃
(i)
ν−1 · δϕ(i) dξ3 = 2

ν−1∑

k=1

(−1)ν−1+kh−1
k

h/2∫

−h/2

(ϕ
(i)
k − ϕ

(i)
k−1) · δϕ(i) dξ3

+ (−1)ν−1

h/2∫

−h/2

v(i) · δϕ(i) dξ3 ≈ 2h
ν−1∑

k=1

(−1)ν−1+kh−1
k (s

(i)
k − s

(i)
k−1) · δs(i)

+ h(−1)ν−1v(i)
s · δs(i) = hs̃

(i)
ν−1 · δs(i),

(4.74)

where s̃(i)
ν := 2

∑ν
k=1(−1)ν+kh−1

k (s
(i)
k − s

(i)
k−1) + (−1)νvs, i.e. like ϕ̃(i)

ν , s̃(i)
ν is inductively

given by s̃
(i)
0 = v

(i)
s and s̃(i)

ν = 2h−1
ν (s

(i)
ν − s

(i)
ν−1) − s̃

(i)
ν−1, ν ∈ N. With these considerations,

we now obtain from Eq. (4.72) the relationship

〈ρ(i)
0 Hν(ϕ(i)

ν , ϕ
(i)
ν−1, ϕ̃

(i)
ν−1), δϕ(i)

√
G〉Ω̂(i) ≈

h

∫

[0,1]2

[C
(i)
1 (s(i)

ν − s
(i)
ν−1) − C

(i)
2 s̃

(i)
ν−1] · δs(i) d(ξ1, ξ2),

(4.75)

which corresponds to (4.66). Finally, note that the Approximations (4.67) and (4.68) also
follow from the above considerations, especially from Eq. (4.73).



4 Elasticity 71

4.7 Numerical studies

In the following section, we consider a number of numerical investigations within the
multi-patch framework. The first two sections deal with solids, where we first investigate
the influence of different quadrature formulas in an element-based integration scheme. To
this end, we compare Gaussian quadrature with a simpler midpoint rule on a sub-mesh,
where we consider coupling orders up to a weak C2 coupling. The second example on
solids deals with the question of the optimal choice of multiplier spaces. In addition to the
multiplier space introduced in Section 3.2, an extended space is considered that results
from the use of basis functions from both the slave and the master side. The remaining
sections then deal with the application of the extended mortar method in the Kirchhoff–
Love theory. In the third example, we investigate the influence of a G1 coupling on the
approximation quality of the IGA framework by comparing the approximation errors in a
1-patch system with those of a 2-patch system. In the following section, we consider a 4-
patch system with crosspoints. Here we study the coupling of shape functions of different
order and the influence of the choice of master and slave with regard to the number of
elements. Finally, the last example deals with different coupling conditions and compares
a C1 with a (real) G1 coupling. In all of the following examples the spatial dimensions
are given in units of [m] and the time in units of [s].

4.7.1 Solid: Patch test

In this section, we investigate the influence of quadrature errors in an element-based
mortar integration using a static patch test, where we compare Gaussian quadrature and
a simple midpoint quadrature formula on a sub-mesh of the parametric domain. Moreover,
we consider a flat as well as a curved interface and coupling conditions up to C2-continuity.
In the example, a block given by Ω0 = (−0.5, 0.5)×(−0.5, 0.5)×(−1.5, 0.5) is represented
through two patches, each parametrized by tricubic shape functions, so that the lower
patch (Ω

(1)
0 ; slave side) consists of 5 × 5 × 5 elements and the upper patch (Ω

(2)
0 ; master

side) consists of 4 × 4 × 4 elements, see Figure 4.3 and Figure 4.5 for illustration.

Concerning the material, we use a Neo-Hook model described by the elastic potential
function

W(IC, IIC, IIIC) =
µ

2
(IC − 3) − µ ln(

√

IIIC) +
λ

2
ln(

√

IIIC)2, (4.76)

with Lamé parameters µ = 11250/13 Pa and λ = 12081/10 Pa. Furthermore, on the

upper surface of Ω
(2)
0 a surface load T = (0, 0, −750)T N/m2 is applied, where the lower

surface of Ω
(1)
0 is clamped in such a way that the body is able to expand in horizontal

direction, resulting in a homogeneous stress distribution such that the Cauchy stress
tensor σ = J−1 P FT is given by [σ]i,j = −750 N/m2 if i = j = 3 and [σ]i,j = 0 N/m2

otherwise.

The influence of quadrature errors on isogeometric mortar elements using element-based
mortar integration is discussed in Brivadis et al. [32] by means of a second order elliptic
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Figure 4.3: Patch test. Upper row: boundary conditions and reference configuration with
flat (left) and curved (right) interface. Lower row: Gauss points (red) and
sample points (blue) on a square element, employing four quadrature points
per direction (left) and eight quadrature points per direction (right). The
dashed lines indicate the sub-mesh of size h corresponding to the midpoint
rule.

boundary value problem. The numerical examples there have shown, that if the quadra-
ture formula is high enough then the error for the primal variable is quantitatively and
qualitatively the same for meshes of practical interest, where for the evaluation of the
mortar integrals Gaussian quadrature rules were employed. In this case, an increase of
the number of quadrature points does enlarge the order but not necessarily the accuracy.
We recall that the IGA basis functions of the master side restricted to an element on
the slave side are in general of at most Cp−1 regularity, where p depends on the order
of the NURBS basis function. Thus higher order Gauss quadrature formula may not be
the best choice. Alternatively, a low-order quadrature formula on a sub-mesh may lead
to a more accurate result if one increases the number of quadrature points. Therefore,
we consider here additionally to Gaussian quadrature a midpoint quadrature formula on
a sub-mesh of the parametric domain with constant quadrature weights wk = 1. To this
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Figure 4.4: Patch test. Upper row: Cauchy stress error errσ as a function of the number
of quadrature points in the case of a flat (left) and curved (right) interface.
Lower row: relative displacement error errd as a function of the number of
quadrature points in the case of a flat (left) and curved (right) interface.

end, we distribute equidistantly spaced sample points ξ
(1)
1 , . . . , ξ(1)

nq
on the pre-image Γ̂1

2

and approximate the weak Cn coupling conditions (3.11) via

B(ϕh, δλh) ≈
∑

|α|≤n

h|α|

nq∑

k=1

∂α[ϕ
(1)
h (Xk) − ϕ

(2)
h (Xk)] · ∂αδλh(Xk), (4.77)

where h = h2, Xk = G(1)(ξ
(1)
k ) and G(1) is the parametrisation of Ω

(1)
0 , see Figure 4.3 for

a comparison of the two types of quadrature rules.

A numerical error study of the Cauchy stress and the displacements at the interface is
provided in Figure 4.4 for the two quadrature schemes where we consider the two relative
errors

errσ = ‖σ‖−1
L2(Γ)‖σ − σh‖L2(Γ), errd = n−1

q

nq∑

i=1

‖ϕ(1)(X i) − ϕ(2)(X i)‖ (4.78)

as functions of the number of quadrature points on a constant mesh. As expected, the
qualitative behaviour of the stress error errσ and the displacement error errd is the same.
In the case of a flat interface, the error decreases with increasing number of quadrature
points for both quadrature formulas, although in part a better error behaviour can be
seen for the Gauss quadrature compared to the midpoint rule. It is noteworthy here
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Figure 4.5: Patch test. Von Mises stress distribution. Left: flat interface, weak C1-
continuous coupling, 64×64-point Gauss integration; right: curved interface,
weak C2-continuous coupling, 256 × 256-point midpoint integration.

that the error of the Gauss quadrature does not change significantly with respect to
the coupling order, whereas the error of the midpoint rule decreases with increasing
coupling order. The situation is quite different for a curved interface. While the error
behaviour of the midpoint rule hardly changes compared to a flat interface, the error of
the Gaussian quadrature cannot be improved by increasing the number of quadrature
points. Furthermore, it can be seen that the error of the Gauss quadrature increases
with increasing coupling order, while the behaviour of the midpoint rule does not change
compared to the flat interface. Eventually, an illustration of the stress distribution with
the best results in terms of errors can be seen in Figure 4.5.

4.7.2 Solid: Twisted block

In domain coupling, the total error at the interface is a combination of the approximation
error and the consistency error (coupling error). To achieve an optimal result, it is
therefore desirable that the ratio of the two errors is close to one, such that the total
error is evenly distributed between them. In Section 3.2.1 we introduced the space Mh

of the discrete Lagrangian multipliers as the trace-space of the basis functions defined on
the slave side, cf. Eqs. (3.22), (3.23). Through this choice, the consistency error depends
immediately on the mesh of the slave side, whereas the approximation error is linked to
the master side. However, under certain conditions, it is possible to increase the dimension
of Mh by adding shape functions from the master side or by choosing a combination of
basis functions from both sides. Thereby it can be expected that the consistency error
is reduced at the price of increasing the approximation error. In this section, a static
example is used to examine this relationship in more detail.

We consider a cuboid given by Ω0 = (−0.5, 0.5)2 × (−2.75, 1.75) subdivided into two

patches Ω
(1)
0 = (−0.5, 0.5)2 × (−2.75, −0.5) (slave side), Ω

(2)
0 = (−0.5, 0.5)2 × (−0.5, 1.75)

(master side), where the material is determined through the elastic potential (4.32) with
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Figure 4.6: Twisted block. Reference configuration and boundary conditions (left) and
computational mesh (right).

the material parameters µ1 = 6750/13 Pa, µ2 = 4500/13 Pa and λ = 12081/10 Pa.
For the parametrisation of the two patches, we use triquadratic as well as tricubic shape
functions, such that in both cases the lower patch consists of 5 × 5 × 10 elements and
the upper one of 4 × 4 × 10 elements. The lower surface of the cuboid is fixed in space,
whereas the upper one is rotated by an angle of α = 720◦, see Figure 4.6 for illustration.
Furthermore, weak C0 coupling conditions are imposed on the common surface of the
two patches, for which we resort to an element-based integration scheme with Gauss
quadrature for implementation. On the master and slave side together, a total of 255
degrees of freedom in the triquadratic case and 339 degrees of freedom in the tricubic
case thus influence the coupling. In one of the two settings considered herein, the space
Mh is spanned by the basis functions of the slave side, so that we obtain dim(Mh) = 147
in the triquadratic case and dim(Mh) = 192 in the tricubic case. For the second setting,
we use as basis of the multiplier space a combination of functions from the trace-spaces
of the slave and master side so that dim(Mh) = 228 holds in the triquadratic case and
dim(Mh) = 291 in the tricubic case††. In the following, we will refer to set1 and set2
for short in order to distinguish between the two settings. To verify the approximation
error due to the coupling conditions, we also include a numerical reference solution ϕr

h

on a 1-patch geometry, where the cuboid is appropriately parametrised with triquadratic
and tricubic functions, respectively, such that Ω0 is subdivided into 4 × 4 × 20 elements.
Based on this, we use the two distances

da(z) = ‖ϕ
(2)
h (X) − ϕr

h(X)‖ and dc(z) = ‖ϕ
(2)
h (X) − ϕ

(1)
h (X)‖ (4.79)

as a measure for the approximation and consistency error, respectively, and quantify the
total approximation and consistency error through

tota =
1

6000

6000∑

i=1

da(X i) and totc =
1

6000

6000∑

i=1

dc(X i), (4.80)

††For reasons of clarity, details regarding the construction of a mixed base are omitted here. The
interested reader can find a comprehensive description in Dittmann et al. [64].
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Table 4.1: Twisted block. Total approximation and consistency error of set1 and set2.

order
set1 set2

tota totc tota totc

(2, 2, 2) 8.41 · 10−3 6.55 · 10−4 1.82 · 10−2 5.23 · 10−13

(3, 3, 3) 5.11 · 10−3 3.04 · 10−4 5.63 · 10−3 6.78 · 10−4

Figure 4.7: Twisted block. Approximation and consistency error of set1 (columns 1 − 2)
and set2 (columns 3 − 4) for p = (2, 2, 2) (first row) and p = (3, 3, 3) (second
row). Columns 1 and 3: distance da plotted over the undeformed interface
Γ, cf. Eq. (4.79)1; columns 2 and 4: distance dc plotted over the undeformed
interface Γ, cf. Eq. (4.79)2.

respectively, where the points X i are uniformly distributed on the reference configuration
of the interface.

A comparison of the results for the displacement on the interface is presented in Table 4.1
and Figure 4.7 for the different dimensions of the Lagrange multiplier space. In Figure 4.7,
the top row shows the results of the triquadratic approach and the bottom row the
results of the tricubic approximation, where the first two columns correspond to set1 and
the last two columns to set2. Furthermore, columns 1 and 3 show the distance da and
columns 2 and 4 show dc, both plotted over the undeformed reference configuration of
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Figure 4.8: Twisted block. Von Mises stress distribution of set1 (pic. 1 and 3) and set2
(pic. 2 and 4) with p = (2, 2, 2) (pic. 1, 2) and p = (3, 3, 3) (pic. 3, 4).

the interface. In the triquadratic case as well as in the tricubic case, the approximation
and consistency error of set1 are nearly of the same order of magnitude, such that with
a ratio of tota/totc ≈ 12.834 for p = (2, 2, 2) and tota/totc ≈ 16.809 for p = (3, 3, 3)
a reasonable distribution of the total error is archived in the sense that neither error
dominates the overall error performance. A different behaviour is shown by set2. With
increasing dimension of Mh, the consistency error reduces in the triquadratic case at
the price of the approximation error up to machine precision, which with a ratio of
tota/totc ≈ 3.48 · 1010 leads to a highly unbalanced distribution of the total error. The
effect on the approximation quality in the region of the interface becomes even more
evident considering the stress distribution in Figure 4.8, where a locking effect is quite
visible. On the other hand, the cubic approach shows a totally different behaviour as the
dimension of the multiplier space is increased. While the consistency error decreases in
the quadratic approach, both the approximation error and the consistency error remain
almost unchanged and the ratio becomes tota/totc ≈ 8.30.

4.7.3 Shell: Bended plate

In our first example concerning the Kirchhoff-Love shell theory, we investigate the in-
fluence of a G1 coupling on the approximation quality by comparing the performance
of a 2-patch system with that of a 1-patch system. For this purpose, we apply a static
setting where we consider a thin plate, the left end of which is fixed, while the right end
is subjected to an external moment. The reference configuration of the plate is given
by Ω0 = (0, 1) × (0, 0.1) × {0}, where in the 2-patch case it is described as the union of

the two parts Ω
(1)
0 = (0, 0.5) × (0, 0.1) × {0} (slave side), Ω(2) = (0.5, 1) × (0, 0.1) × {0}

(master side) so that the interface is given by Γ = {0.5}×(0, 0.1)×{0}. We also assume a
thickness of h = 0.002 m and a compressible material described by the elastic potential

W(IC, IIC, IIIC) =
µ1

2

(

III
− 1

3
C IC − 3

)

+
µ2

4

(

IIIC − 1 − 2 ln(
√

IIIC)
)

, (4.81)
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Figure 4.9: Bended plate. Reference configuration and boundary conditions (left), com-
putational mesh in the first refinement level (right).

with the material parameters µ1 = 5/3 MPa, µ2 = 10/9 MPa, see Figure 4.9 for illustra-
tion. The external moment is chosen so that a tip rotation of 360◦ is expected, bending the
straight plate into a circle. With Young’s modulus E, moment of inertia I and the plate
length l, the corresponding bending moment is thus given by M = 2πEI/l. To illustrate
the scenario, Figure 4.10 shows the simulation results of a 2-patch system with bi-quartic
(p = (4, 4)) shape functions during different load steps. It can be observed that due to

Figure 4.10: Bended plate. Deformation of a bi-quartic 2-patch plate during different
load steps.

the high approximation quality of the bi-quartic shape functions, acceptable results can
be achieved even with a small number of elements. In each of the steps shown, the plate
is deformed by an incremental rotation of 90◦, resulting in a quarter, half, three-quarter
and full circle each with a perimeter of l = 1.

For the convergence studies, we consider a total of six refinement levels, whereby in the
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kth level the 1-patch system (P1) is resolved with respect to the geometric dimensions
of the plate by (2k+1 · 10) × 2k+1 elements and the 2-patch system (P2) is resolved by

(2k+1 ·5)×2k+1 (slave side Ω
(1)
0 ) and ((2k+1 −1)·5)×(2k+1 −1) (master side Ω

(2)
0 ) elements.

Notice that in Figure 4.10 a resolution according to the first refinement level is shown.
Note also that with these resolutions the master side always takes one element less in
the ξ2-direction than the slave side, resulting in each level in non-conforming meshes. In
particular, the element boundaries do not generally coincide. Therefore we use here and
in the following examples concerning shell elements a segment-based integration scheme
for the evaluation of the corresponding mortar integrals, cf. Section 3.2.3.

Figure 4.11: Bended plate. Mean value errd = (d1 + d2)/2 of the two distances d1, d2

introduced in Eq. (4.82) as a function of the inverse mesh size h−1 (left),
interface errors errm, errd introduced in Eq. (4.83) as functions of the
inverse mesh size h−1 (right)

A numerical error study of the motion of the two systems is provided in the left picture
in Figure 4.11 for different spline degrees. Since the current configuration is supposed to
describe a circle, we use the mean value errd = (d1 + d2)/2 of the two distances,

d1 = ‖sh(1, 0)‖, d2 = ‖sh(1, 1) − (0, 0.1)T‖, (4.82)

as error measure, where sh(1, 0) is the lower right and sh(1, 1) the upper right corner of
the plate in the actual configuration‡‡ according to Assumption 2.1.1. Roughly speaking,
we measure how tightly the circle has been closed. For both the biquadratic and bicu-
bic approximation functions, P1 and P2 show the same convergence behaviour, which
indicates that the additional coupling conditions in P2 have no influence on the approxi-
mation quality of the system. In addition, it can be observed that in all the cases above
a magnitude of 10−4, the error does not decrease any further. Due to the high approxi-
mation quality, the error in the tricubic approach is already of this order of magnitude in
the first refinement level, so that no convergence behaviour can be observed. It should be
noted, however, that in the context of IGA, the degrees of freedom consist of the control

‡‡Note that in the case of the 2-patch system, for the definition of the distances in equation (4.82), sh

must be replaced by s
(2)
h .
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points, while the NURBS weights remain unchanged. As we have used different weights
to describe the straight plate in the reference configuration than are needed to represent
a circle, the results in this example cannot describe an exact circle.

Additional, the right image in Figure 4.11 shows the error behaviour regarding the G1

coupling of the 2-patch system as a function of the inverse mesh size, whereby the position
and derivative conditions are considered separately. The following are used here as error
measure

errm = ‖s
(1)
h − s

(2)
h ◦ P1

2 ‖L2(Γ̂1
2), errd =

1

2

2∑

i=1

‖∂is
(1)
h −

2∑

j=1

(γi
j∂js

(2)
h ) ◦ P1

2 ‖L2(Γ̂1
2), (4.83)

where Γ̂1
2 is the pre-image of Γ under the geometric map corresponding to the reference

configuration of the slave side and P1
2 : Γ̂1

2 → Γ̂2
1 the corresponding parametric map as

introduced in Section 2.1.4. In the first refinement level, the errors are in the order of
1.2 · 10−8 to 1.9 · 10−11, such that the coupling conditions are already well fulfilled. In
the further course, the derivative error errd in the biquadratic system reduces according
to a convergence order of 2, the errors errm and errd in the biquadratic and bicubic
system, respectively, according to an order of 3 and errm in the bicubic system according
to an order of 4. Furthermore, it can be seen that errd in the bicubic system does not
decrease further in the last refinement step, whereby an order of magnitude of 2 · 10−13

is already reached there. Eventually, machine precision is reached by errm in the bicubic
case, leading to a flattening of the error curve.

4.7.4 Shell: Inner pressure

X3 [m]

1

0

−1
−5

0

X2 [m] 5 5 X1 [m]

0

−5
B

Ω(3)

Ω(4)Ω(2)

Ω(1)

Figure 4.12: Inner pressure. Reference configuration and boundary conditions at t = 0 s
(left), computational mesh in the first refinement level (right). The five
crosspoints are marked with blue bullets.

In this section, we study the error behaviour of a G1 coupling in a dynamic 4-patch
system with crosspoints. In this context, we also investigate the influence of the choice
of the master and slave side in terms of the number of elements and consider couplings
with different orders of the underlying shape functions. For this purpose, we consider
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Table 4.2: Inner pressure. Numbering of the non-empty interfaces Γi,j ↔ Γk (left) and
assignment of the master- and slave-side at each interface Γk (right).

(i, j) (1, 2) (2, 3) (3, 4) (1, 4) k 1 2 3 4

k 1 2 3 4 (s(k), m(k)) (1, 2) (2, 3) (3, 4) (4, 1)

in the time period I = [0, 10] a square plate with a reference configuration of the form

Ω̄0 =
⋃4

i=1 Ω̄
(i)
0 , where the four patches are given by

Ω
(1)
0 = (−5, 0) × (−5, 0) × {0}, Ω

(2)
0 = (0, 5) × (−5, 0) × {0}, (4.84)

Ω
(3)
0 = (0, 5) × (0, 5) × {0}, Ω

(4)
0 = (−5, 0) × (0, 5) × {0}. (4.85)

The plate has a thickness of h = 0.1 m, a mass density of ρ0 = 100 kg/m3 and consists of
an incompressible material described by the elastic potential

W(IC, IIC, IIIC) =
µ

2
(IC − 3) − p(

√

IIIC − 1), (4.86)

where µ = 1 kPa and the incompressibility condition (
√

IIIC − 1) = 0 is enforced via a
Lagrange multiplier p. It is further assumed that the four patches are subjected to internal
pressure, which for i = 1, . . . , 4, is modelled by the body forces B(i) : Ω̂ × I → Ω

(i)
0

B(i)(ξ1, ξ2, t) =

{

10ta3(ξ1, ξ2, t), if ‖S(i)(ξ1, ξ2)‖ ≤ 5,

0, otherwise,
(4.87)

where S(i) is the parametrisation of Ω
(i)
0 and a3 denotes the corresponding normal as

introduced in Section 4.6.1, see also Figure 4.12 and Figure 4.13 for the illustration of the
setting. In addition, Table 4.2 provides an overview of the numbering of the interfaces
and the assignment of the master- and slave-side at each interface. As initial condition,
we assume for each patch a zero velocity ṡ(i)(ξ1, ξ2, 0) = 0, (ξ1, ξ2) ∈ Ω̂, and with regard
to the boundary condition we assume that the outer edges of the four patches are fixed.
Thus, in addition to the apparent crosspoint in the centre of Ω0, four further crosspoints
result from the coincidence of the boundaries of the interfaces with the boundary parts
Γ

(i)
e . The set of points at which a corresponding modification of the multiplier space is

required is therefore given by

C =













0

0

0


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


,


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0

−5

0
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

,


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5

0

0


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,


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

0

5

0







,







−5

0

0













, (4.88)

whereby we use a reduced modification in this example, cf. Section 3.2.2. In the temporal
discretisation, we perform 10 time steps of length 1 and for the convergence studies we
again consider a total of six refinement levels in the spatial discretisation, where in the kth
level the ith patch is resolved by 2k+1×2k+1 elements if i is odd and by (2k+1−1)×(2k+1−1)
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Figure 4.13: Inner pressure. Deformation of a bi-quartic 4-patch plate (setting cp(4, 4),
6th refinement level) subjected to the body-force B. Left: von Mises stress
distribution and body-force at t = 3 s; right: von Mises stress distribution
at t = 10 s.

elements if i is even, see Figure 4.12 for illustration of the first refinement level. Note
that here the resolutions and slave sides are chosen so that the number of elements on the
two sides of each interface differs by one. Thereby, in the sub-skeleton Γ1 ∪ Γ3, there are
more elements on the slave sides, whereas in the part Γ2 ∪ Γ4, there are more elements
on the master sides. In order to take this into account and to examine the effect on the
couplings, we consider the two skeleton parts separately. Furthermore, as in the previous
example, the position and derivative errors corresponding to the G1 couplings are also
considered separately. Therefore we utilise the three functions

E[0](s
(µ)
h , s

(ν)
h ) = ‖s

(µ)
h − s

(ν)
h ◦ Pµ

ν ‖L2(Γ̂µ
ν ),

E[k](s
(µ)
h , s

(ν)
h ) = ‖∂ks

(µ)
h −

2∑

j=1

(γi
j∂js

(ν)
h ) ◦ Pµ

ν ‖L2(Γ̂µ
ν ), k = 1, 2,

(4.89)

where s
(i)
h denotes the approximation on Ω(i) at time t = 10, E[0](s

(µ)
h , s

(ν)
h ) quantifies the

position error and E[k](s
(µ)
h , s

(ν)
h ), k ∈ {1, 2}, the derivative error with respect to ξk on

the interface Γµ,ν . Using these functions, we eventually define on Γ1 ∪ Γ3 the relative L2

errors

err
[k]
1,3 =

1

2

√
[

E[k](s
(1)
h , s

(2)
h )

]2

+
[

E[k](s
(3)
h , s

(4)
h )

]2

, k = 0, 1, 2, (4.90)

and similarly on Γ2 ∪ Γ4 the error measures

err
[k]
2,4 =

1

2

√
[

E[k](s
(2)
h , s

(3)
h )

]2

+
[

E[k](s
(4)
h , s

(1)
h )

]2

, k = 0, 1, 2, (4.91)

at t = 10. In addition to the L2 errors, the influence of the spline degree on the G1

coupling is also considered in the following. For this purpose, we specify five different
settings as follows
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• cp(p, p): p(i) = (p, p), i = 1, . . . , 4, with p ∈ {2, 3, 4},

• cp(p, q): p(i) = (p, p), i = 1, 3, p(i) = (q, q), i = 2, 4, with q = p − 1 and p ∈ {3, 4},

where p(i) denotes the order of the shape functions corresponding to the ith patch. Note
that in the first three settings, the order on the slave and master sides is the same, whereas
in the last two settings, there is a coupling of different orders, i.e. the spline order on the
master and slave sides of each interface differs by one.

A numerical error study concerning the G1 conditions is provided in Figure 4.14. The
first row shows err

[k]
1,3 and the second row err

[k]
2,4 for k = 0, 1, 2, both as functions of the

inverse mesh size h−1, where the errors are arranged from left to right with increasing
k. Independent of the spline degree, almost all settings show qualitatively the same

Figure 4.14: Inner pressure. First row: err
[k]
1,3 for k = 0, 1, 2 (from left to right) as

functions of the inverse mesh size h−1; second row: err
[k]
2,4 for k = 0, 1, 2

(from left to right) as functions of the inverse mesh size h−1.

convergence behaviour. In the case k = 0, the errors reduce according to a convergence
order of 3.5, whereas in the cases k = 1, 2 the errors reduce according to an order of 2.5.
The choice of the slave side also seems to have a minor influence, so that the errors err

[k]
1,3

(more elements on the slave side) and err
[k]
2,4 (more elements on the master side) also behave

qualitatively the same for each k, except the derivative errors of the different order couples
cp(3, 2) and cp(4, 3). In cp(3, 2), a flattening of the error curve corresponding to err

[1]
2,4 and

err
[2]
2,4 can be observed in the last refinement step, where a similar behaviour is shown by

err
[2]
2,4 of cp(4, 3). However, it should be noted that in these constellations there are both,

fewer elements and a reduced spline order on the slave side, so that the approximation
quality of the shape functions on the master side is significantly higher. Finally, it should
be noted that the coupling errors do not behave completely independently of the choice



84 4.7 Numerical studies

of the spline orders and slave sides. Quantitatively, it can be seen that in all cases the
errors decrease with increasing spline order. In addition, the errors increase when a side
with fewer elements is chosen as the slave side.

4.7.5 Shell: Pinched cylinder

In many practical applications of multi-patch isogeometric Kirchhoff-Love shell elements,
the geometries and computational meshes are such that the patches meet C1-continuously.
For example, this has been the case in the two previous examples. In this section, we
compare the general G1 case with the special case of a C1 coupling, examining the error
behaviour at the interfaces in both cases. In addition, the necessity of working with G1

couplings in the Kirchhoff-Love theory is demonstrated by considering a C0 coupling.

We consider a static system consisting of a cylinder given in its reference configuration
by Ω̄0 = Ω̄

(1)
0 ∪ Ω̄

(2)
0 , where the two patches are defined through

Ω
(1)
0 =

{
X ∈ R3 | X2

1 + X2
3 = 1, X3 < 0, X2 ∈ (−1.5, 1.5)

}
,

Ω
(2)
0 =

{
X ∈ R3 | X2

1 + X2
3 = 1, X3 > 0, X2 ∈ (−1.5, 1.5)

}
,

(4.92)

so that the entire cylinder has a radius of 1 m, a height of 3 m and the interface is located
in the X1−X2 plane, i.e. Γ = {X ∈ R3 | |X1| = 1, X2 ∈ (−1.5, 1.5)}. Note that, according
to the notation introduced in Section 2.1.4, there is only one interface, consisting of two
unconnected parts. The lower part of the cylinder is assumed to be fixed along the line
Γe = {X ∈ R3 | X1 = 0, X3 = −1, X2 ∈ (−1.5, 1.5)}, whereby a line load

T k : R3 → R3, T k(X) =

{

(0, 0, −1)Tlk if X ∈ Γn,

0 otherwise,
(4.93)

is acting on the upper line Γn = {X ∈ R3 | X1 = 0, X3 = 1, X2 ∈ (−1.5, 1.5)}, see
Figure 4.15 for illustration. In the simulations, the total load is applied stepwise through
seven load steps, so that the intensity within the kth step is given by lk = (5k/2) N/m in
the case of a G1 coupling, where a lower intensity of lk = (5k/4) N/m is applied in the C0

case. Eventually, we assume that the walls of the cylinder are 0.02 m thick and consist
of an incompressible material specified by the elastic potential (4.86) and the material
parameter µ = 1 MPa.

For the parametrisation of the two patches, we use bicubic shape functions, such that
the lower patch consists of 20 × 20 elements and the upper one of 18 × 18. Thereby, the
NURBS weights are chosen such that respective parametrisations represent two perfect
half-cylinders. Further, we consider two different settings in which we implemented G1-
continuous coupling conditions and a third one with a C0 coupling. In the first G1-setting
(set1), the control points of the parametrisations are distributed in such a way that
the mesh of the two patches consists of curved, rectangular elements, leading to a C1-
continuous transition at the interface as shown in the upper right and lower left picture in
Figure 4.15. In the second G1-setting (set2), the control points at the interface are shifted
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1

X3 [m]

0

−1
−1

1 −1.5

0 X2 [m]

1.5

X1 [m]

T k

−1.5 0 1.5

Figure 4.15: Pinched cylinder. Upper left: Reference configuration and boundary con-
ditions. Upper right: Detailed view of the computational meshes at the
interface, where the upper picture shows the mesh of set1 and set3 and the
lower one the mesh of set2. Lower left: computational mesh of set1 and
set3. Lower right: computational mesh of set2.

along the X2-direction such that the elements are heavily distorted in this area, resulting
in a more general G1 situation, cf. the upper and lower right picture in Figure 4.15. To
be more specific. In set1 the G1 parameter functions γj

i , cf. Section 2.1.5, are constant
and given by (γ1

1 , γ1
2 , γ2

1 , γ2
2) = (1, 0, 0, 1), such that the patch-parametrisations satisfy Eq.

(2.24) on Γ. In set2, however, the functions γi
j take on different values depending on the

location, such that only the more general condition (2.25) is satisfied on Γ. Eventually,
in the C0-setting (set3) the same mesh as in set1 is used. For further illustration, the
simulation results corresponding to set2 and set3 are shown in Figure 4.16, where the
displacement lengths

d
(i)
l (ξ) := ‖s

(i)
h (ξ) − Sh(ξ)‖, i = 1, 2, ξ ∈ Ω̂, (4.94)

are plotted over the deformed configuration. Thereby, we have refrained from presenting
the results of set1, as they are almost identical to those of set2. Figure 4.16 shows that
a C0 coupling does not allow for a transfer of bending moments across the interface.
Here, even for a reduced load, the simulation yields large deformations with almost self-
contact. The situation is quite different in the case of the G1 coupling. Even for the
highly distorted meshes at the interface the coupling conditions can counterbalance the
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Figure 4.16: Pinched cylinder. Contour plots of the displacement lengths d
(i)
l , i = 1, 2,

from Eq. (4.94) on the deformed configurations corresponding to set2 (left)
and set3 (right).

non-matching meshes and result in an acceptable approximation.

Figure 4.17: Pinched cylinder. Relative displacement error err[0] (left) and relative
derivative error err[1] (right). Both are shown as a function of the load
intensity lk, cf. Eq. (4.93).

A numerical error study concerning the coupling conditions on the interface is provided
in Figure 4.17, where we consider the two relative errors defined through

err[0] =
1

2md

E[0](s
(1)
h , s

(2)
h ), err[1] =

1

4md

2∑

i=1

E[i](s
(1)
h , s

(2)
h ), (4.95)

with the quantities E[i] introduced in Eq. (4.89) and the maximal displacement length

md = max{maxξ∈Ω̂ d
(1)
l (ξ), maxξ∈Ω̂ d

(2)
l (ξ)}. The picture on the left shows err[0] as a

function of the load intensity lk, cf. Eq.(4.93), so that the curves represent the course of the
displacement error during the load pick-up. It can be observed that the errors of set1 and
set2 are of the same order of magnitude, with both errors remaining almost constant as the
load increases. Over the entire course, the error of set2 lies in (3.3 · 10−6, 6.1 · 10−6) and is
even slightly smaller than the error of set1, which lies in (2.6·10−6, 4.4·10−6). Furthermore,
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the error of set3 ranges between 2.6 · 10−8 and 9.4 · 10−8 and is thus significantly smaller
than the errors corresponding to the G1 couplings, which was, however, to be expected.
According to Section 3.1.2, in a C0 coupling the underlying minimisation problem is
specified by a functional M0 : S(1) × S(2) → R of the form (3.4) with n = 0, whereas in
a G1 coupling the corresponding functional M1 : S(1) × S(2) → R is given by (3.5). This
immediately gives rise to the relation

inf
w∈S(1)

M0(w, s(2)) ≤ inf
w∈S(1)

M1(w, s(2)), (4.96)

for all admissible solutions s(2) ∈ S(2), which is reflected here by the results. Moreover,
the right picture in Figure 4.17 shows the derivative error err[1] as a function of the load
intensity lk. Here, the error of set2 lies in (7.3 · 10−4, 1.6 · 10−3) and is thus slightly larger
than the error of set1, which ranges between 2 · 10−4 and 2.6 · 10−4. Eventually, the error
of set3 lies in (0.5, 1.5) reflecting the kink in the transition area shown in the right picture
in Figure 4.16.
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5 Thermal conduction and diffusion

In this chapter, we investigate the application of the extended mortar method to heat
conduction and mass diffusion problems. To this end, we discuss the theoretical founda-
tions in the first two sections, where we introduce the two classical balance principles of
conservation of mass and conservation of energy in Section 5.1. Based on these principles,
in Section 5.2 we formulate evolution equations for the distribution of the absolute tem-
perature in a body and the mass distribution in a binary alloy and derive corresponding
multi-patch frameworks. The first equation is the well-known heat equation, whose vari-
ational statement naturally contains derivatives up to the 1st order and can be treated
in the context of a multi-patch isogeometric analysis with a C0-continuous basis and cor-
responding C0-continuous couplings. The second equation is known as the Cahn-Hilliard
equation and contains derivatives up to order 4. Accordingly, the corresponding varia-
tional statement involves derivatives up to 2nd order, requiring a C1-continuous IGA basis
and, in the multi-patch case, C1-continuous couplings. These relationships are examined,
among others, in more detail in Section 5.3 by means of various examples.

5.1 Conservation laws

5.1.1 Conservation of mass in a multicomponent system

The presentation in this section is based on de Groot & Mazur [53], whereby we express
the relationships in terms of the molar density instead of the mass density. To be specific,
we consider a multi-component system consisting of m components in which no chemical
reactions take place. Let Ω0 ⊂ R3 be an open, bounded domain with a sufficiently smooth
boundary, in which the system is assumed to be embedded. Then, the rate of change in
the mass of component k within an arbitrary open subdomain Ω ⊂ Ω0 can be described
by

d

dt

∫

Ω

Nk dV =

∫

Ω

Ṅk dV, t ∈ I, (5.1)

where Nk = nk/V : Ω̄0 × I → R>0 is the molar density of k, nk : Ω̄0 × I → R>0 the
amount of k (expressed in moles), V the volume of Ω and I = [0, τ ], τ > 0, is a real
interval representing the timespan under consideration∗. Since we have excluded chemical

∗We point out, that the molar density Nk is related to the mass density ρk of component k by means
of ρk = MkNk, where Mk is the molar mass of k. Since Mk is constant, the considerations in this
section can alternatively be expressed in terms of the mass density.
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reactions, the amount of a substance in Ω can only change if the substance leaves or is
added to the domain. In other words, the rate of change (5.1) is equal to the material
flow into or out of the domain Ω through its surface, i.e.

∫

Ω

Ṅk dV = −
∫

∂Ω

Nkvk · N dσ = −
∫

Ω

∇X · (Nkvk) dV, t ∈ I, (5.2)

where vk : Ω̄0 × I → R3 is the velocity of component k and N the unit outward normal
on ∂Ω. Note that the second equation in (5.2) holds due to the Gauss’s theorem. Since
the subset Ω can be chosen arbitrarily, it follows that the integrands must coincide on the
whole domain Ω0 and we obtain the local version of (5.2) as follows

Ṅk = −∇X · (Nkvk), in Ω0 × I. (5.3)

These equations have the form of a so-called balance equation: the local change of the
left side is equal to the negative divergence of the flux of k. Summing Eqs. (5.3) over all
components k gives rise to the continuity mass equation

Ṅ = −∇X · (Nv), in Ω0 × I, (5.4)

where N = N1 + · · · + Nm is the total molar density, v is the mean molar velocity given
by

v =

m∑

k=1

Nk

N
vk =

m∑

k=1

ck vk (5.5)

and ck := Nk/N are the molar fractions of the components. Eq. (5.4) expresses the fact,
that the total mass is conserved, i.e. the total mass of any system in which no chemical
reactions are taking place, can only change if matter flows into or out of the system.

Finally, we derive an alternative expression of mass conservation in terms of molar frac-
tions and diffusion flows, which we will need for the investigation of diffusion phenomena
in Section 5.2. Introducing the substantial time derivative

dt(•) := ∂t(•) + v · ∇X(•) (5.6)

and the diffusion flows Jk := Nk(vk −v) defined with respect to the mean molar velocity,
Eqs. (5.3), (5.4) can be rewritten as follows

dtNk = −Nk∇X · v − ∇X · Jk, in Ω0 × I, (5.7)

dtN = −N∇X · v, in Ω0 × I. (5.8)

Taking into account Eq. (5.8), we now obtain from Eq. (5.7) a balance equation for the
molar fractions as follows

dtck = −Vm∇X · Jk, (5.9)

where Vm denotes the molar volume of the multi-component system. Here it should be
noted that the usual differentiation rules apply to the substantial time derivative and that
the total molar density and the molar volume are related via N = V −1

m .
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5.1.2 Conservation of energy

Let us now consider a system assumed to be embedded in an open, bounded domain
Ω0 ⊂ R3 subjected to a motion ϕ : Ω0 × I → R3, cf. Section 4.1. The first law of
thermodynamics states that the energy of the system remains preserved during an entire
thermodynamic process. The energy can be transformed from one form into another but
it can neither be created nor destroyed. In material description the global form of the
energy balance law reads

d

dt

∫

Ω0

1

2
ρ0ϕ̇ · ϕ̇ + ρ0e dV =

∫

∂Ω0

T · ϕ̇ + QN dσ +

∫

Ω0

B · ϕ̇ + R dV, t ∈ I, (5.10)

where ρ0 and e are the mass density and the internal energy per unit mass. In addition,
T denotes a surface traction, B a body force, QN a normal heat flux and R a heat source
per unit time and per unit reference volume. According to Cauchy’s stress theorem and
Stokes’ heat flux theorem it holds T = P N and QN = −Q · N , respectively, where P

and Q are the first Piola-Kirchhoff stress tensor and the Piola-Kirchhoff heat flux vector
and N denotes the unit outward normal on ∂Ω0. Using these relations, we obtain from
(5.10) after some standard calculations and under consideration of Eq. (4.37)

∫

Ω0

ρ0ė dV =

∫

Ω0

P : Ḟ − ∇X · Q + R dV, t ∈ I. (5.11)

Since Eq. (5.11) holds for an arbitrary subdomain of Ω0, we can further deduce the local
form of the energy balance which reads

ρ0ė = P : Ḟ − ∇X · Q + R, in Ω0 × I. (5.12)

For a rigid motion, i.e. a motion in which no deformation occurs, Eq. (5.12) results in a
special case that describes the distribution of the absolute temperature in the underlying
body. To be more specific, a motion ϕ is called rigid if C = I, where C is the right
Cauchy-Green strain tensor and I the identity tensor. According to Eq. (4.17)2, the Green-
Lagrange strain tensor vanishes in this case, i.e. E = 0, and it follows P : Ḟ = S : Ė = 0,
where S is the second Piola-Kirchhoff stress tensor and we have exploited the identity
P : Ḟ = S : Ė, see Holzapfel [97] for a proof. Consequently, the internal energy of the
body depends only on the absolute temperature T and Eq. (5.12) becomes

ρ0cpṪ = −∇X · Q + R, in Ω0 × I, (5.13)

where cp := ∂e/∂T is the specific heat capacity of the system.

5.2 Phenomenological formulations and the differential

equations

The conservation equations for mass (5.9) and energy (5.13) have essentially the same
structure. They state that the temporal change of the respective quantities corresponds to
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the divergence of a flow, whereby sources and sinks in the system under consideration must
be taken into account if necessary. In order to fully characterise the temperature or the
mole fractions with these equations, the actual task is to provide a suitable model for the
corresponding flow. It is known empirically that for a large class of irreversible phenomena
and under a wide range of experimental conditions, flows are linear functions of the
thermodynamic forces. For a multi-component system with m components subjected to
a temperature gradient it is therefore appropriate to describe the diffusion flows Jk and
the heat flow Q quite generally by linear relations of the form

Jk =

m∑

i=1

Lk,i (F i − (∇Xµi)T ) − Lk,q
∇XT

T
, k = 1, ..., m, (5.14)

Q =

m∑

i=1

Lq,i (F i − (∇Xµi)T ) − Lq,q
∇XT

T
, (5.15)

where µi is the chemical potential of component i, F i is the external force per atom of i,
the quantities Li,j are called phenomenological coefficients and the index T in the expres-
sion (∇Xµi)T indicates that the gradient has to be taken at constant temperature, c.f. de
Groot & Mazur [53], Howard & Lidiard [99]. According to Howard & Lidiard [99], for
heat conduction and diffusion phenomena, it is also reasonable to assume that the system
under consideration is in mechanical equilibrium, i.e. F i = 0, since the adjustments to
unbalanced mechanical forces are rapid compared with the adjustments caused by the
gradient of the chemical potential or temperature gradient. Furthermore, we consider
isotropic systems for which the phenomenological coefficients are scalars in contrast to
anisotropic systems where they are tensor-valued quantities and neglect cross effects indi-
cated by the coupling coefficients Lq,i, Lk,i. To be more precise, with assumption Lk,q = 0
we neglect the phenomenon of thermal diffusion, a mass flow caused by a temperature
gradient, and with assumption Lq,i = 0 we neglect the Dufour effect, which conversely
is a heat flow caused by a gradient of the chemical potential. For a detailed discussion
of models including these effects we refer to Schuß at al. [142]. Eventually, under these
assumptions, the flows have the general form

Jk = −
m∑

i=1

Lk,i(∇Xµi)T , k = 1, ..., m, Q = −Lq,q
∇XT

T
. (5.16)

In the next two sections, we will use these representations, together with the results from
Section 5.1, to establish evolution equations and corresponding multi-patch problems for
the absolute temperature and the mole fractions in a binary alloy.

5.2.1 The heat equation and multi-patch framework

According to Fourier’s law, Q = −λ∇XT , the thermal conductivity λ is related to the
phenomenological coefficient Lq,q in Eq. (5.16) by the relationship λ = Lq,q/T . Together
with the equation of energy conservation (5.13), this gives the evolution equation

ρ0cpṪ = ∇X · (λ∇XT ) + R, in Ω0 × I, (5.17)
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for the absolute temperature, known as the heat equation. Eq. (5.17) characterises for
each time point in I = [0, τ ] ⊂ R≥0 the temperature distribution in the domain Ω0, where
the underlying material is defined by the mass density, the specific heat capacity and
the conductivity. For a complete characterisation, we further assume that initial and
boundary data are given and supplement Eq. (5.17) by the conditions

T = T0, in Ω0 × {0}, T = T̄ , on Γe × I, −Q · N = Q, on Γn × I, (5.18)

where Γe, Γn are parts of the boundary ∂Ω0 such that Γ̄e ∪ Γ̄n = ∂Ω0 and Γe ∩ Γn = ∅. In
addition, T0 : Ω0 → R and T̄ : Γe×I → R are prescribed initial and boundary temperature
distributions, respectively, N denotes the unit outward normal on Γn and Q represents
the normal heat flux in or out of Ω0 through Γn.

To derive a corresponding multi-patch framework, we proceed analogously to Section 4.5.
Assuming a multi-patch geometry consisting of N patches Ω

(1)
0 , . . . , Ω

(N)
0 , we first note

that Eqs. (5.17), (5.18) characterise the temperature distribution on each patch through
the N initial boundary value problems







ρ
(i)
0 c

(i)
p Ṫ (i) = ∇X · (λ(i)∇XT (i)) + R(i), in Ω

(i)
0 × I,

T (i) = T
(i)
0 , in Ω

(i)
0 × {0},

T (i) = T̄ (i), on Γ
(i)
e × I, −Q(i) · N (i) = Q(i), on Γ

(i)
n × I,







(5.19)

where Γ
(i)
e := Γe ∩ ∂Ω

(i)
0 and Γ

(i)
n := Γn ∩ ∂Ω

(i)
0 . By introducing a time grid 0 = t0 < t1 <

. . . < tM = τ , we further obtain, according to Appendix A, for each patch a sequence of
boundary value problems of the form: for ν = 1, . . . , M find T

(i)
ν : Ω̄

(i)
0 → R such that







h−1
ν ρ

(i)
0 c

(i)

p,ν− 1
2

(T
(i)
ν − T

(i)
ν−1) = ∇X · [λ(i)∇XT (i)]ν− 1

2
+ R

(i)

ν− 1
2

, in Ω
(i)
0 ,

T
(i)
ν = T̄

(i)
ν , on Γ

(i)
e , −[Q(i) · N (i)]ν− 1

2
= Q

(i)

ν− 1
2

, on Γ
(i)
n ,






(5.20)

where the start functions are given through the initial condition, hν := tν − tν−1 is the
step-size and the subscripts [•]ν , [•]ν−1, [•]ν−1/2 indicate the evaluation at tν , tν−1 and
tν−1/2 := tν−1 + hν/2. Introducing the spaces

S(i)
ν =

{

T ∈ H1(Ω
(i)
0 ) | T = T̄ (i)(•, tν) on Γ(i)

e

}

, (5.21)

V(i) =
{

δT ∈ H1(Ω
(i)
0 ) | T = 0 on Γ(i)

e

}

(5.22)

of trial solutions and test functions, multiplication of the differential equation in (5.20)
with an arbitrary δT (i) ∈ V(i) and integration over the respective patch yields, after some
standard calculations, a corresponding sequence of weak problems: for ν = 1, . . . , M find
T

(i)
ν ∈ S(i)

ν

V(i)
ν (T (i)

ν , δT (i)) := 〈h−1
ν ρ

(i)
0 c

(i)

p,ν− 1
2

(T (i)
ν − T

(i)
ν−1) − R

(i)

ν− 1
2

, δT (i)〉
Ω

(i)
0

+ 〈[λ(i)∇XT (i)]ν− 1
2
, ∇XδT (i)〉

Ω
(i)
0

+ 〈Q(i)

ν− 1
2

, δT (i)〉
Γ

(i)
n

= 0
(5.23)

for all δT (i) ∈ V(i). According to Section 3.1.1, we finally obtain a sequence of global,
uncoupled problems by introducing the corresponding product spaces and summation of
the sub-problems (5.23).
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5.2.2 The Cahn–Hilliard equation and multi-patch framework

In the following, we provide an evolution equation for the molar fractions of a binary
alloy based on the conservation of mass equation (5.9) and the representation (5.16)
of the atomic fluxes. To this end, we will briefly outline the main ideas and indicate
the most important relationships. For a rigorous derivation, starting from the general
representations (5.14), (5.15) and further information on this topic, we refer to Schuß et
al. [142]. Based on the evolution equation, we eventually derive a corresponding multi-
patch framework.

According to Howard & Lidiard [99], the complete thermodynamic description in the case
of a solid system in which a vacancy mechanism operates can be obtained by explicitly
including vacancies as an additional component of the system. Through reasonable as-
sumptions, the vacancies can subsequently be condensed into the material properties of
the alloy components, resulting in a system with the initial number of species in which
vacancies are implicitly included. Assuming that only a vacancy mechanism operates, the
atomic fluxes within a binary alloy consisting of a and b in an isothermal environment is
then given by

J = −c(1 − c)(cMa + (1 − c)Mb)∇Xµeff
b , Ja = −J , (5.24)

where Ja is the flow of a, J the flow of b and c denotes the mole fraction of b. In addition,
the corresponding effective chemical potentials are defined by µeff

a = −µeff
b = µa − µb and

Ma, Mb are the atomic mobilities of the two components related to the phenomenological
coefficients Li,j in Eq. (5.16) via

Ma =
[cLa,a − (1 − c)La,b]Vm

c(1 − c)
, Mb =

[(1 − c)Lb,b − cLb,a]Vm

c(1 − c)
. (5.25)

Let Ω0 be the region occupied by the alloy and the Helmholtz free energy be given through
a functional relationship of the form

F(c, T ) =

∫

Ω0

Ψcon(c, T ) + Ψint(c, T ) dV, (5.26)

where Ψcon denotes the configurational free energy density and Ψint is the internal interface
energy. We further assume that the internal interface energy is given by Ψint(c, T ) =
κ(T )‖∇Xc‖2/2, where the term ‖∇Xc‖2 reflects molecular iterations and can be seen as
penalising the formation of interfaces between the phases. In addition, the gradient energy
coefficient κ is related to the surface energy density and the length of the transition regions
between each phase. According to Cahn [33] and Cahn & Hilliard [34], the effective
chemical potential µeff

b of b can be determined by the variation of the Helmholtz free
energy functional with respect to c, such that we obtain

µeff
b =

δF
δc

= (∂cΨ
con − κ∆Xc) (5.27)
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and consequently J = −M∇X(∂cΨ
con−κ∆Xc), where M := c(1−c)(cMa+(1−c)Mb) is the

mobility of the alloy. According to these considerations, the atomic fluxes in a binary alloy
can be modelled through the atomic mobilities, the configurational free energy density and
the gradient energy coefficient. As an example, the corresponding material parameters for
a tin-lead alloy are given in Appendix B. If we now assume a constant molar volume, the
mean molar velocity (5.5) vanishes, cf. de Groot & Mazur [53], and from the conservation
of mass (5.9) we obtain the evolution equation

ċ = −Vm∇X · J = Vm∇X · (M∇X [∂cΨ
con − κ∆Xc]), in Ω0 × I, (5.28)

characterising the molar fractions in a binary alloy. It should be noted that due to
ca = 1 − c, the entire mass distribution of the alloy is determined by the equation.
Eventually, to obtain a complete description of the time course of the alloy, we assume
an initial mole fraction c̄ : Ω0 → [0, 1] to be given and supplement Eq. (5.28) with the
following conditions

c = c̄, in Ω0 × {0}, J · N = 0 and ∇Xc · N = 0, on ∂Ω(i) × I. (5.29)

While the first condition specifies the mass distribution at time 0, the second equation
ensures a closed system in which no mass can be added or removed and the third equation
excludes further effects at the external surface with the environment of the system. It
should be noted that the first boundary condition is natural while the second one is
essential and must be treated accordingly in the associated variational formulation.

The derivation of a multi-patch framework is now analogous to Section 5.2.1. With the
evolution equation (5.28) and the initial and boundary conditions (5.29), one obtains an
initial boundary value problem for the molar fractions of the individual patches. These
are discretised in time according to Appendix A and the semi-discrete problems are sub-
sequently converted into a weak form with the usual methods. For the latter, it should be
noted that in Eq. (5.28), derivatives up to the 4th order occur, so that partial integration
must be performed twice. Finally, we obtain a sequence of variational problems: given
c

(i)
0 = c̄(i), for ν = 1, . . . , M find c

(i)
ν ∈ S(i) such that

V(i)
ν (c(i)

ν , δc(i)) := V −1
m 〈h−1

ν (c(i)
ν − c

(i)
ν−1), δc(i)〉

Ω
(i)
0

+ 〈[M (i)∇X∂cΨ
con,(i)]ν− 1

2
, ∇Xδc(i)〉

Ω
(i)
0

+ 〈[κ(i)M (i)∆Xc(i)]ν− 1
2
, ∆Xδc(i)〉

Ω
(i)
0

+ 〈[κ(i)∆Xc(i)]ν− 1
2
, ∇XM

(i)

ν− 1
2

· ∇Xδc(i)〉
Ω

(i)
0

= 0

(5.30)
for all δc(i) ∈ V(i), which can further be treated with the methods from Chapter 3. It
should be noted that derivatives up to the 2nd order occur in the weak formulation, which
must be taken into account when choosing suitable spaces of admissible solution and test
functions. I.e. in order to guarantee the existence of the integrals and the compliance
with the essential boundary conditions, the spaces must fulfil

S(i) = V(i) ⊂
{

c ∈ H2(Ω
(i)
0 ) | ∇Xc · N = 0 on Γ(i)

e

}

, (5.31)

where the time dependence of S(i) is omitted here, since the essential conditions are not
time-dependent and the two spaces coincide because the conditions are homogeneous. In
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addition, Γ
(i)
e results from the intersection of the outer boundaries of the patches and the

main domain, i.e. Γ
(i)
e := ∂Ω

(i)
0 ∩ ∂Ω0. How the spaces must be further specified to ensure

unique solubility also depends on the choice of the material model, i.e. on the properties
of configurational free energy density, the mobility and the gradient energy coefficient.
Further considerations on this can be found in [27, 28, 68, 140, 165].

5.3 Numerical studies

Finally, we present various numerical investigations of thermal conduction and diffusion
problems in the context of an isogeometric multi-patch analysis using the extended mortar
method. In Section 5.3.1, we consider a two-dimensional heat conduction problem and
address the question of whether the approximation quality of the IGA framework changes
by applying the extended mortar method and investigate the influence of the different
coupling conditions on each other. Subsequently, in Section 5.3.2 we consider a two-
dimensional example on diffusion in a tin-lead alloy, formulated as a 4-patch system.
Instead of the boundary conditions given in Eq. (5.29), periodic boundaries are used there.
In the Cahn-Hilliard context, this corresponds to a C1 coupling with spatially separated
interfaces and is treated with generalised coupling conditions according to Section 3.1.3.
The last example in Section 5.3.3 is motivated by a widely used mounting technique in
the chip industry and serves as proof of concept. Therein, we investigate segregation
phenomena in a three-dimensional model of a tin-lead solder bump described by two
patches with a curved interface.

5.3.1 Thermal conduction 2D

In the following, we consider a two-dimensional heat conduction problem and investigate
the influence of Cn couplings up to the 2nd order on the approximation quality of the
IGA framework. For this purpose, we formulate a problem whose analytical solution is
known and compare the global L2 errors of a 1-patch system with the corresponding errors
of three 4-patch systems in which we implement C0-, C1- and C2-continuous couplings,
respectively. Since derivatives up to the first order occur in the variational formulation
(5.23), a C0-continuous IGA basis is required for the approximation and consequently,
in the multi-patch case, C0-continuous couplings are inevitable. I.e. at least it must be
ensured that the temperatures of the patches at the interfaces match. In the case of higher
order couplings, the question arises as to whether and to what extent the realisation of
the temperature coupling is affected by additional coupling conditions. To investigate
this question, the realisation of the temperature couplings in C1- and C2-continuous
implementations is compared with that in a C0-continuous coupling, in addition to the
investigations on the approximation quality.
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In the period I = [0, 1] we consider a square plate Ω0 = (0, 1)2, which, in the case of
multiple patches, is divided into the four parts

Ω
(1)
0 = (0, 0.5) × (0, 0.5), Ω

(2)
0 = (0.5, 1) × (0, 0.5), (5.32)

Ω
(3)
0 = (0, 0.5) × (0.5, 1), Ω

(4)
0 = (0.5, 1) × (0.5, 1), (5.33)

whereby the temporal and spatial dimensions are given in the units [s] and [m] throughout
this section. With regard to the heat conduction problem, the material parameters are
specified by ρ0 = 1 kg/m3, cp = 1 J/(kg·K), λ = 1 W/(m·K), initial- and boundary
conditions are defined through

T (X, 0) = 270, X ∈ Ω0, T (X, t) = 270, (X, t) ∈ Γe × I, Γe := ∂Ω0, (5.34)

and the heat source R : Ω0 × I → R is manufactured such that the analytical solution of
the initial boundary value problem (5.17), (5.18) is given by†

Ta : Ω0 × I → R, Ta(X, t) = sin(2πt) sin(πX1) sin(πX2) + 270, (5.35)

see Figure 5.1 for illustration. It should be noted, that due to the essential boundary

Figure 5.1: Thermal conduction 2D. Solution (5.35) at time t = 0.25 s, 0.5 s, 0.75 s (from
left to right).

conditions, in the multi-patch case four crosspoints occur on the boundary ∂Ω0 in addition
to the centre of Ω0, so that a total of five crosspoints

C =

{(

0

0.5

)

,

(

0.5

0

)

,

(

0.5

1

)

,

(

1

0.5

)

,

(

0.5

0.5

)}

, (5.36)

have to be considered accordingly. Regarding the discretisation, we use a constant step-
size of 0.005 s in the time-stepping scheme and for the spatial discretisation we use globally
C2-continuous bicubic, p = (3, 3), shape functions, so that in the 1-patch system (P 1)
the domain is resolved into 20 × 20 elements and in the 4-patch systems the individual
patches are resolved into 10 × 10 and 9 × 9 elements, respectively. The computational
meshes, the numbering of the patches, the respective resolution and the definition of the
master and slave sides are shown in Figure 5.2. In order to investigate the influence of

†To obtain the solution (5.35), R must take the form:

R(X, t) =
[
2π cos(2πt) + 2π2 sin(2πt)

]
sin(πX1) sin(πX2), (X, t) ∈ Ω0 × I.
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Figure 5.2: Thermal conduction 2D. Left: subdivision of Ω0 into the four patches. The
boundary Γe is marked in red, the five crosspoints are marked with blue
bullets, the resolutions are given in the brackets and the master and slave
sides of the interfaces are indicated by m/s. Middle: computational mesh of
the 1-patch system. Right: computational mesh of the 4-patch systems.

the coupling-continuity, we consider in addition to P 1 three different 4-patch systems in
which we implement Cn-continuous couplings with n = 0, 1, 2. To distinguish between
them, we will refer to them briefly as P 4C0, P 4C1 and P 4C2 in the following.

t [s]
P 4Cn, n = 0, 1, 2, vs. P 1

dgl
0 [K] dgl

1 [K] dgl
2 [K]

0.25 5.353 · 10−11 6.821 · 10−11 7.755 · 10−11

0.5 9.882 · 10−11 1.257 · 10−10 1.431 · 10−10

0.75 1.379 · 10−10 1.754 · 10−10 1.996 · 10−10

1 1.724 · 10−10 2.192 · 10−10 2.496 · 10−10

Figure 5.3: Thermal conduction 2D. Left: global L2 errors errgl
P 1 and errgl

P 4Cn , n =
0, 1, 2, as functions in time. Right: differences dgl

n , n = 0, 1, 2, evaluated at
different points in time.

First, we examine the influence of the multi-patch formulation on the approximation
quality of the IGA framework. To this end, we introduce for each system a global L2

error defined by errgl
P 1(t) = ‖[Th,P 1 − Ta](•, t)‖L2(Ω0) for the 1-patch setting and

errgl
P 4Cn(t) =

(
4∑

k=1

‖[T
(k)
h,P 4Cn − Ta](•, t)‖2

L2(Ω
(k)
0 )

) 1
2

, n = 0, 1, 2, (5.37)

for the three 4-patch settings, where Th,P 1 denotes the numerical solution belonging to

P 1 and T
(k)
h,P 4Cn the numerical solution on the kth patch belonging to P 4Cn. Figure 5.3
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provides the temporal evolution of the four errors. As can be seen in the left picture, the
corresponding error curves are essentially congruent, indicating that the approximation
quality of the 4-patch systems is equal to that of P 1, regardless of the order of the
coupling-continuity. For a more detailed comparison of the 4-patch systems with P 1, the
table on the right hand side of Figure 5.3 contains the differences

dgl
n (t) = errgl

P 4Cn(t) − errgl
P 1(t), n = 0, 1, 2, (5.38)

evaluated at several points in time. Note that by definition the sign of dgl
n indicates

whether the error in the respective 4-patch system has increased or decreased compared
to P 1. Here, also, no reduction in the approximation quality can be observed. Although
an increase in the error can be noted in each case, it ranges between 5.353 · 10−11 and
2.496 · 10−10, corresponding to a maximum increase of 0.0021 % of the global L2 error.

t [s]
P 4Ck, k = 1, 2, vs. P 4C0

dif
1 [K] dif

2 [K]

0.25 −1.677 · 10−9 2.151 · 10−8

0.5 −1.803 · 10−13 9.293 · 10−11

0.75 −1.677 · 10−9 2.151 · 10−8

1 −1.685 · 10−13 9.294 · 10−11

Figure 5.4: Thermal conduction 2D. Left: measures errif
P 4Cn of the temperature jump on

the skeleton as functions in time. Right: differences dif
n , n = 1, 2, evaluated

at different points in time.

Eventually, we consider the realisation of the temperature coupling on the skeleton and
compare the two systems P 4C1, P 4C2 with P 4C0. The left picture in Figure 5.4 shows
the temporal evolution of the errors

errif
P 4Cn(t) =

1

2

(
4∑

k=1

‖[T
(s(k))
h,P 4Cn − T

(m(k))
h,P 4Cn](•, t)‖2

L2(Γk)

) 1
2

, n = 0, 1, 2, (5.39)

measuring the temperature jump on the entire skeleton, whereby the length of the skeleton
is taken into account by the factor 1/2. It can be observed that the corresponding error
curves are almost congruent, with the curve of P 4C2 deviating slightly from the curves of
P 4C0 and P 4C1. Consequently, the temperature coupling is only marginally influenced
by the additional coupling conditions in P 4C1 and P 4C2. For a more detailed comparison,
the differences

dif
n (t) = errif

P 4Cn(t) − errif
P 4Cn(t), n = 1, 2, (5.40)

at several points in time are listed in the table on the right-hand side in Figure 5.4. As
in the case of the global error, the sign of dif

n indicates whether the error of the systems
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P 4C1 and P 4C2 has increased or decreased compared to P 4C0. It can be observed that
the results differ only slightly from each other, with the absolute values of the differences
in the order of 1.685 ·10−13 and 2.151 ·10−8. In addition, it is worth noting that in system
P 4C1 a decrease in the error occurs, while the error in system P 4C2 increases.

5.3.2 Diffusion 2D

In our first diffusion example, we consider a two-dimensional 4-patch system describing
spinodal decomposition in a tin-lead alloy. The mechanism of spinodal decomposition is
observed when mixtures of metals or polymers separate into two co-existing phases, each
rich in one species and poor in the other, cf. Gennes [81]. When the two phases emerge
in approximately equal proportion, characteristic intertwined structures are formed that
gradually coarsen. In the study of such phenomena, it is often useful to consider only a
small section of a larger system, since it can be assumed that the process is essentially the
same in the adjacent areas. For this purpose, it is reasonable to replace the boundary con-
ditions in Eq. (5.29) by periodic ones. Due to the higher continuity requirements resulting
from the Cahn-Hilliard equation (5.28), it must be ensured that besides the mole fraction,
their gradients also match at the affected boundaries. In the single-patch case, this can
be achieved in a strong sense by using a periodic NURBS basis and identifying the cor-
responding degrees of freedom with each other, cf. Gómez at al. [82]. This approach can
be adapted for the multi-patch case but requires the conformity of the meshes. Formulat-
ing suitable generalized coupling conditions as introduced in Section 3.1.3, the periodic
boundaries can be easily realised in the framework of the extended mortar method, as
shown below.
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Figure 5.5: Diffusion 2D. Left: Initial configuration c̄(X), X ∈ Ω0. Right: summary
of the setting including patch numbering, choice of master and slave side,
resolutions of the patches, crosspoints and boundary conditions.

The segregation phenomenon is studied in the time period I = [0, 105] on the computa-
tional domain Ω0 = (0, 4)2 which is subdivided into the four parts

Ω
(1)
0 = (0, 2) × (0, 2), Ω

(2)
0 = (2, 4) × (0, 2), (5.41)
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Ω
(3)
0 = (0, 2) × (2, 4), Ω

(4)
0 = (2, 4) × (2, 4), (5.42)

whereby the temporal and spatial dimensions are given in the units [s] and [µm] through-
out this section. The material data, such as the free energy and the mobilities for the
tin-lead mixture are specified according to Appendix B through a constant temperature
and a nearly homogeneous initial mole fraction given by

T (X, t) = 423.15 K, c̄(X) = 0.63 + r(X), (X, t) ∈ Ω0 × I, (5.43)

where r is a random variable modelling slight inhomogeneities of the material within a
range of ±1%. For simplicity, we omit the fluctuations r in the definition of the molar vol-
ume of the system and assume the volume to be constant Vm = 9905/(582 · 106) m3mol−1,
corresponding to a homogeneous initial state of c̄ = 0.63. Furthermore, a homogeneous
distribution is also assumed at the boundaries of each patch to ensure a consistent initial
configuration, i.e. to achieve that the coupling conditions are fulfilled at time t = 0, see
Figure 5.5 for illustration. We point out that this also serves the purpose of simplification,
since otherwise the random variable would have to be constructed in such a way that the
mole fraction and the corresponding gradients of the individual patches at the interfaces
coincide, which is contrary to the definition of a random variable.

In order to realise the periodic boundaries, we define, in addition to the four real interfaces
within Ω0, four virtual interfaces (γ1, φ1), . . . , (γ4, φ4) through

Ω
(1)
0 /Ω

(2)
0 : γ1 = {0} × (0, 2), φ1(X) = X + (4, 0)T, (5.44)

Ω
(3)
0 /Ω

(4)
0 : γ2 = {4} × (2, 4), φ2(X) = X − (4, 0)T, (5.45)

Ω
(1)
0 /Ω

(3)
0 : γ3 = (0, 2) × {4} , φ3(X) = X − (0, 4)T, (5.46)

Ω
(2)
0 /Ω

(4)
0 : γ4 = (2, 4) × {0} , φ4(X) = X + (0, 4)T, (5.47)

which respectively couple the left/right edges of Ω
(1)
0 /Ω

(2)
0 and Ω

(3)
0 /Ω

(4)
0 as well as the

lower/upper edges of Ω
(1)
0 /Ω

(3)
0 and Ω

(2)
0 /Ω

(4)
0 . Here, the diffeomorphisms φk, k = 1, . . . , 4,

are simple translations that move slave resp. the affected boundary part to the corre-
sponding side adjacent to master. E.g. for Ω(1)/Ω(2) one gets

φ1(Ω
(1)
0 ) = (4, 6) × (0, 2), γφ1

1 = φ1(γ1) = {4} × (0, 2). (5.48)

I.e. Ω
(1)
0 is shifted under φ1 to the right of Ω

(2)
0 so that the left boundary of Ω

(1)
0 and the

right boundary of Ω
(2)
0 are congruent. It should be noted that due to the virtual interfaces,

there are 8 additional crosspoints on the boundary of Ω0, cf. Figure 5.5.

For the simulations, we employ globally C1-continuous shape functions of order p = (2, 2),

such that Ω
(1)
0 , Ω

(4)
0 are resolved by 256×264 elements and Ω

(2)
0 , Ω

(3)
0 by 264×256 elements,

respectively, resulting in non-conforming meshes at each interface. Accordingly, we use
weak C1 couplings and a segment-based integration scheme for the evaluation of the
mortar-integrals. We point out, that the patch numbering, the choice of master and
slave side, the resolutions of the patches, the crosspoints and the boundary conditions are
summarized in the right picture in Figure 5.5.



102 5.3 Numerical studies

Figure 5.6: Diffusion 2D. Mole fraction ch at time t = 250.01 s, 10000.01 s, 100000.01 s
(from left to right). The red areas represent the tin-rich phase and the blue
areas indicate the lead-rich phase.

Figure 5.7: Diffusion 2D. Partial derivatives ∂X1 ch (upper row) and ∂X2 ch (lower row)
at time t = 250.01 s, 10000.01 s, 100000.01 s (from left to right).
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Figure 5.8: Diffusion 2D. Reordered patches Ω(1) ↔ Ω(4) and Ω(2) ↔ Ω(3). From left to
right: ch, ∂X1 ch and ∂X2 ch at time t = 10000.01 s.

With regard to the temporal discretisation, we use a time-dependent step-size hν : I →
R≥0,

hν = hν(tν−1) =







0.005, if tν−1 ∈ [0, 3],

0.1, if tν−1 ∈ (3, 10],

1, if tν−1 ∈ (10, 1000],

10, if tν−1 ∈ (10000, 100000],

(5.49)

whereby the step-size control is designed to take into account the different stages of the
spinodal decomposition.

The simulation results for ch are shown in Figure 5.6 and Figure 5.7 illustrates the cor-
responding results for ∇Xch. As can be seen in Figure 5.6, a rapid phase decomposition
takes place in the first seconds and a branched pattern forms from the two phases. In the
further course, the structure becomes increasingly coarse, with lead-rich islands forming
in a tin-rich environment. In particular, it can be observed that in all cases the patches
merge C1-continuously, so that the interfaces are not visible in the illustrations. The
same holds true for the periodic boundaries. Figure 5.8 shows as an example the results
at time t = 10000.01 s, with the positions of the patches in the images swapped according
to Ω(1) ↔ Ω(4) and Ω(2) ↔ Ω(3). To quantify these observations, we consider in the left
picture in Figure 5.9 the evolution of the two relative coupling errors

errif
0 (t) :=

1

16

(
4∑

k=1

‖c
(s(k))
h − c

(m(k))
h ‖2

L2(Γk) + ‖c
(s(k))
h − c

(m(k))
h ◦ φk‖2

L2(γk)

) 1
2

, (5.50)

errif
1 (t) :=

1

16

(
4∑

k=1

‖∇X(c
(s(k))
h − c

(m(k))
h )‖2

L2(Γk) + ‖∇Xc
(s(k))
h − (∇Xc

(m(k))
h ) ◦ φk‖2

L2(γk)

) 1
2

,

(5.51)

where errif
0 and errif

1 assess the coupling of the function values and derivatives, respec-
tively, while the factor 1/16 takes into account the length of the skeleton. It can be
observed that errif

0 lies between 2.5 · 10−7 and 1.9 · 10−4, while errif
1 is greater at each
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Figure 5.9: Diffusion 2D. Left: interface errors errif
0 , errif

1 and ratio rat as functions in
time. Right: Solution ch on [1.85, 2.15]2 ⊂ Ω0 at time t = 2.8 s using weak
C0 couplings.

point in time and is in the range (1.9 · 10−4, 2.1 · 10−4). Furthermore, it is noticeable
that the two errors behave synchronously in time and differ by an almost constant factor
rat(t) := errif

0 (t)/errif
1 (t), whose evolution is also shown in Figure 5.9. Thereby it can be

seen that rat(I) ⊂ (2.5 · 10−4, 10−3) and the two errors thus differ by a maximum factor
of 0.001 at each time.

Eventually, to demonstrate the necessity of C1 couplings in the Cahn-Hilliard framework,
the right picture in Figure 5.9 shows simulation results corresponding to t = 2.8 s in which
weak C0 coupling conditions are used instead of the C1 conditions, whereby only the small
section [1.85, 2.15] × [1.85, 2.15] around the central crosspoint is shown. As can be seen,
non-physical oscillations occur in the area of the interfaces, whose amplitude increases in
the vicinity of the crosspoint. In particular, the mole fraction becomes greater than 1 and
thus leaves its co-domain [0, 1], leading to an immediate termination of the simulation.

5.3.3 Diffusion 3D

In this last application example on diffusion, we again consider spinodal decomposition in
a tin alloy, this time based on a three-dimensional model consisting of two patches with a
curved interface. The shape of the computational domain is motivated by a widely used
semiconductor mounting technique, the so-called controlled collapse chip connection or
flip chip technique. In this process, solder bumps are applied to the conductive traces
of a chip. To connect the chip to an external circuit (e.g. a printed circuit board or
another chip), it is turned face down and aligned so that the solder bumps match the
corresponding traces of the external circuit. Finally, the solder is reflowed to complete
the joint. Figure 5.10 schematically shows a section of a flip chip module. With the
ongoing quest for increasingly smaller dimensions and higher functionality in a variety
of devices, there is also an increasing interest in ever-finer bump sizes. As a result, the
bumps become more susceptible to segregation phenomena.
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chip

board

bumps

trace

Figure 5.10: Left: single solder bump with a diameter of 25 µm, [1]. Middle: schematic
diagram of a part of a flip chip package. Right: gallium nitrite power
transistor with Sn-Pb solder bumps for flip chip mounting, [2].

Figure 5.11: Diffusion 3D. Initial configuration c̄(X), X ∈ Ω0. Left: illustration of the
two patches. Right: computational domain.

We consider the spinodal decomposition in the period I = [0, 1.64·105] on a computational
domain Ω0 representing a tin-lead solder bump with a height of 0.2 and a maximum
diameter of 0.4 in the plane X3 = 0, see Figure 5.11 for illustration. As before, the
temporal and spatial dimensions are given in the units [s] and [µm] throughout this
example and we continue to use the material data from Section 5.3.2. With respect to
the X1-axes, Ω0 consists of a left part Ω

(1)
0 and a right part Ω

(2)
0 with a curved interface

so that Ω
(1)
0 is convex, while Ω

(2)
0 represents a non-convex set. Moreover, in contrast to

the previous example, we use the boundary conditions (5.29).

For the temporal discretisation, we use the step-size control specified in Eq. (5.49) and
for the spatial discretisation, we employ globally C1-continuous shape functions of order
p = (2, 2, 2), such that Ω

(1)
0 and Ω

(2)
0 are resolved by 24 × 50 × 26 and 24 × 48 × 24

elements, respectively. Accordingly, we use a weak C1 coupling with an element-based
integration scheme involving 64-point Gaussian integration, where Ω

(1)
0 is defined as slave

and Ω
(2)
0 as master. Since this example is primarily a proof of concept, we refrain from

modifying the Lagrangian multipliers at the wirebasket arising from the intersection of
the interface with Γe for simplicity. Motivated by the results in Section 3.2.2, we instead
use a constrained basis for the implementation of the coupling to reduce the condition
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Figure 5.12: Diffusion 3D. Temporal evolution. Molar fraction and partial derivatives
at time t=82003.002 s, 151503.002 s, 164003.002 s (from left to right). First
row: ch, second row: ∂X1 ch, third row: ∂X2 ch, fourth row: ∂X3 ch.

number of the linear system during the simulation.

The results for ch and ∇Xch are shown in Figure 5.12. As in the two-dimensional example,
a branched pattern forms from the two phases which gradually coarsens. We point out
that when comparing with the results of the 2D simulations, it should be noted that the
geometry considered here is much smaller. Furthermore, we note that in the illustrations
the values of c

(1)
h resp. c

(2)
h and ∇Xc

(1)
h resp. ∇Xc

(2)
h appear identical at the interface.

To verify this observation, Figure 5.13 shows the temporal evolution of the two relative
coupling errors

errif
0 (t) := A−1‖c

(1)
h − c

(2)
h ‖L2(Γ), errif

1 (t) := A−1‖∇X(c
(1)
h − c

(2)
h )‖L2(Γ), (5.52)
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Figure 5.13: Diffusion 3D. Interface errors errif
i , i = 0, 1, and ratio rat as functions in

time.

where A = 0.125406642792534 µm2 is the surface area of the interface, together with the
temporal evolution of rat(t) := errif

0 (t)/errif
1 (t). It can be observed that errif

0 ranges in
(5.1·10−6, 1.4·10−3) and errif

1 is located in (3.6·10−3, 6.8·10−1). Moreover, it is noticeable
that the two errors behave synchronously in time and the factor rat is almost constant with
rat(I) ⊂ (1.3 · 10−3, 2 · 10−3). Overall, it can be noted that the coupling in this example
tends to be realised slightly worse than in the 2D example. However, compared to the
previous example, simplifications were made here to reduce the numerical effort. While
we have used a segment-based method to evaluate the mortar integrals in Section 5.3.2,
we have resorted to an element-based method here and have refrained from modifying the
multipliers in the vicinity of the wirebasket.
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6 Phase-Field-Crystal modelling

Pattern formation can be observed in nature from microscopic to cosmological scales.
Non-equilibrium systems in physics, chemistry, biology, mathematics, cosmology and
other fields produce an amazing variety of spatio-temporal behaviour. Therefore, the
formation of patterns and the associated nonlinear dynamics have attracted the attention
of statistical physics in recent decades. In this context, the Phase-Field-Crystal model
(PFC) has emerged as an efficient tool for studying crystalline self-organisation/pattern
formation on an atomistic scale. The method is based on results from the density func-
tional theory (DFT), which postulates that the particle density and thus the behaviour
of the system is characterised by a grand canonical free energy functional. Since this
functional is usually not known, it must be approximated accordingly. This is done by an
incomplete functional Taylor expansion, which means that the functional Taylor series is
truncated above a certain order. The level of the order determines the accuracy of the
model, but also the level of the derivative orders that occur. I.e. the more accurately the
model approximates the grand canonical free energy functional, the higher the derivatives
in the resulting evolution equation. Consequently, isogeometric analysis appears to be a
well-suited tool within the PFC framework.

In the following, we outline the derivation of a PFC model on the basis of DFT and for-
mulate the associated multi-patch framework. For this purpose, we provide the necessary
results of the density functional theory in Section 6.1. Building on this, we construct a
free energy functional in Section 6.2, where we truncate the functional Taylor expansion
at 2nd order. The resulting evolution equation for the particle density of the system
contains spatial derivatives up to 6th order and, in the variational statements, derivatives
up to 3rd order. Consequently, a C2-continuous basis is required in the IGA framework
and correspondingly C2-continuous couplings in the multi-patch case. Finally, these re-
lationships are examined in more detail by means of numerical examples in Section 6.3.
For a detailed overview concerning PFC and its applications, we recommend the work of
Emmerich et al. [71].

6.1 Density Functional Theory

In this section, the most important results of DFT are summarised, which are needed
to derive the PFC model in Section 6.2. For this purpose, the grand canonical free-
energy functional is introduced in the framework of static DFT in Section 6.1.1 and its
approximation by a functional Taylor expansion is discussed. Based on the approximation,
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the dynamic DFT (DDFT) yields an evolution equation for the particle density of the
system, which is subsequently given Section 6.1.2.

6.1.1 Static Density Functional Theory

We consider an N -particle system contained in a domain Ω0, where the centre-of-mass
positions and the momenta of the particles are defined in a Cartesian coordinate system
through the vectors Ri and P i, respectively. At a given temperature T and chemical
potential µ, we assume that the particle interaction is governed by a symmetric pairwise
potential Uint : Ω0 × Ω0 → R and that the system is exposed to an external potential
Uext : Ω0 → R, describing, e.g., gravity or system boundaries. Thus, the Hamiltonian can
be represented in the form

HN =
N∑

i=1

P i · P i

2mi

+
N∑

i=1

Uext(Ri) +
1

2

N∑

i,j=1
i6=j

Uint(Ri, Rj), (6.1)

where mi denotes the mass of particle i and we have taken into account Uint(Ri, Ri) = 0
and the symmetry property Uint(Ri, Rj) = Uint(Rj , Ri). In addition, we define the
equilibrium probability density fN

eq as

fN
eq = Ξ−1

g exp(−β[HN − µN ]), Ξg :=

∞∑

N=0

TrN(exp(−β[HN − µN ])), (6.2)

where Ξg is the grand partition function, β := (kBT )−1, kB denotes the Boltzmann con-

stant and the trace of a suitable function f :
∏2N

i=1 Ω0 → R is, with the Planck constant
h, defined by

TrN(f) =
1

N !h3N

∫

Ω0

. . .

∫

Ω0

f dR1 . . . dRN dP 1 . . . dP N . (6.3)

According to [71, 73] the equilibrium density of the system is given by a one-particle
density ρ̄, which provides the probability to find a particle at position X ∈ Ω0. Its
microscopic definition is

ρ̄(X) =

〈
N∑

i=1

δ (X − Ri)

〉

gc

, (6.4)

where δ denotes the delta Dirac function and the grand canonical ensemble average is
defined as 〈•〉gc =

∑∞
N=0 TrN(fN

eq
•), see Chaikin & Lubensky [35] and Evans [73] for a

detailed review of ensembles and thermodynamic averages used in statistical mechanics.
The density functional theory is based on the following Hohenberg–Kohn theorems, [71,
96, 146]:
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There exists a unique grand canonical free energy functional E = E(T, µ, ρ) of the sys-
tem’s particle density, which becomes minimal for the equilibrium one-particle density
ρ̄:

δE(T, µ, ρ̄)

δρ
= 0. (6.5)

If E is evaluated at ρ̄, it is the real equilibrium grand canonical free energy of the
inhomogeneous system.

The DFT thus provides a basis for determining the equilibrium one-particle density field
(6.4) and the free energy of any many-body system. In practice, however, the exact form
of the grand canonical free energy is not known and one has to rely on approximations.
Via a Legendre transform, E can be expressed by an equivalent Helmholtz free energy
functional F = F(T, ρ),

E(T, µ, ρ) = F(T, ρ) − µ

∫

Ω0

ρ dV, (6.6)

which is conveniently divided into three additive contributions as follows

F(T, ρ) = Fid(T, ρ) + Fext(ρ) + Fexc(T, ρ). (6.7)

In Eq. (6.7), Fid is the ideal gas free energy functional, which, according to Evans [73], is
given by

Fid(T, ρ) = kBT

∫

Ω0

ρ
[
ln(Λ3ρ) − 1

]
dV, (6.8)

where Λ is the thermal de Broglie wavelength. The second contribution Fext is the external
free energy functional, taking into account external influences and is defined as

Fext(ρ) =

∫

Ω0

ρ Uext dV. (6.9)

Eventually, the third term Fexc denotes the excess free energy functional. It includes
all the correlations due to the pair interactions between particles. In general, it is not
known explicitly and must therefore be approximated appropriately. A formally exact
expression for Fexc is gained by a functional Taylor expansion∗ in ∆ρ = ρ̄ − ρref around
a homogeneous reference density ρref . In the simplest nontrivial approach, the Taylor
expansion is truncated at second order, leading to the Ramakrishnan-Yussouff theory
[136],

Fexc(T, ρ) = −kBT

2

∫

Ω0

∫

Ω0

c(X1, X2)∆ρ(X1)∆ρ(X2) dX1 dX2. (6.10)

∗For details concerning higher order functional derivatives and functional Taylor expansions we refer to
the textbook of Engel & Dreizler [72]
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The Ramakrishnan-Yussouff approximation needs the direct pair-correlation function c
as an input. Well known analytic approximations for c are, e.g., the second order virial
expression,

c(X1, X2) = exp

(

−Uint(X1, X2)

kBT

)

− 1, (6.11)

cf. van Roij et al. [163], and the random-phase or mean-field approximation

c(X1, X2) = −Uint(X1, X2)

kBT
, (6.12)

where the latter approach becomes in the case of a bounded potential asymptotically
exact at high densities, cf. [118, 117, 164].

6.1.2 Dynamic Density Functional Theory

Dynamic density functional theory is the time-dependent analogue of static DFT. It can be
derived from the Smoluchowski equation, [139, 149], by postulating that the correlations
between the particles when the system is out of equilibrium are equivalent to those of an
equilibrium system with the same one particle density profile. In the following, we provide
the main results of the theory and refer to Archer & Evans [6] for a detailed discussion.

In its basic form, DDFT describes the slow dissipative non-equilibrium relaxation dy-
namics of a system of N Brownian particles close to thermodynamical equilibrium or the
behaviour in a time-dependent external potential Uext = Uext(X, t). Here we define a
one-particle density field via

ρ̄(X, t) =

〈
N∑

i=1

δ (X − Ri(t))

〉

c

, (6.13)

where t is the time variable and the classical canonical ensemble average is given by
〈•〉c = TrN(fN •) with the probability density and partition function

fN = Ξ−1 exp(−βHN), Ξ = TrN(−βHN). (6.14)

Note that the densities (6.4) and (6.13) differ, apart from the time-dependence, in the
choice of the respective ensemble. A comparison of the canonical and the grand canonical
ensemble can be found in Chaikin & Lubensky [35]. According to Marconi & Tara-
zona [120], a characteristic evolution equation for the density is obtained within the
framework of Brownian motions, using the Langevin equations and the Smoluchowski
picture. Assuming that ρ̄ is conserved and dissipative, the DDFT equation reads

˙̄ρ =
DT

kBT
∇X ·

(

ρ̄ ∇X

δF(T, ρ̄)

δρ

)

, in Ω0 × I, (6.15)

where DT is the translational diffusion coefficient of the system and I is a real interval
representing the timespan under consideration. Note that the functional derivative in
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Eq. (6.15) can be interpreted as an inhomogeneous chemical potential, [6], such that
the DDFT equation corresponds to a generalized Fick’s law of particle diffusion, cf. also
Section 5.

We point out that the use of the particle density (6.13) is one of several options to
describe the dynamics of the system. Since ρ̄ results from taking an ensemble average
over the stochastic noise, it is uniquely valued at time t; consequently, Eq. (6.15) is
deterministic. This is the approach, e.g., in [6, 120, 121]. The time evolution equation
for the instantaneous particle density ρ̂(X, t) =

∑N
i=1 δ(X − Ri(t)) is discussed, e.g.,

in [58, 78, 106], and for Brownian particles this is a stochastic equation. A further
approach is to use a coarse-grained density given by a time integral of the product of the
instantaneous particle density and an experimental resolution function, also resulting in
a stochastic equation for the time evolution, [106, 128]. For a detailed discussion of the
several approaches, we recommend the work of Archer & Rauscher [7].

6.2 Phase-field crystal model

Using appropriate approximations, the phase-field crystal (PFC) model can be justified
from DFT respectively DDFT. The free energy used in the PFC model was first derived
from DFT by Elder et al. [69], while the corresponding dynamics were derived from DDFT
by van Teeffelen et al. [164]. In this section, we outline the basic ideas of these works and
formulate the corresponding variational problem for the dynamical Phase-field Crystal
Equation.

6.2.1 Free energy functional

To derive the free energy functional for the PFC model, we first of all define a dimension-
less density deviation ψ of the one-particle density from a reference density by

ρ̄(X, t) = ρref(1 + ψ(X, t)), (X, t) ∈ Ω0 × I. (6.16)

This relative density deviation is considered to be small, |ψ| ≪ 1, and slowly varying
in space (on the microscale). The basic steps to derive the PFC free energy functional
are threefold: 1) insert (6.16) into the free energy functional (6.7), 2) Taylor-expand
systematically in terms of powers of ψ, 3) perform a gradient expansion of the correlation
functions. Here, in accordance with the assumption that the density deviation is small,
we use the Ramakrishnan-Yussouff approximation (6.10) as a convenient approximation
for the excess free energy functional.

Substituting Eq. (6.16) into Eq. (6.8) and Taylor expansion of the logarithm up to fourth
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order yields the PFC ideal gas free functional†

Fid(T, ψ) = ρrefkBT

∫

Ω0

ψ2

2
− ψ3

6
+

ψ4

12
dV, (6.17)

whereby substituting Eq. (6.16) into Eq. (6.9) simply leads to the PFC external free
energy functional

Fext(ψ) = ρref

∫

Ω0

ψUext dV. (6.18)

For the approximation of the excess free energy functional the direct pair-correlation
function c in the Ramakrishnan-Yussouff approximation (6.10) is gradient expanded‡. up
to fourth order. Therefore, it is important to note that c has the same symmetry as
the particle interaction potential Uint, cf. Eqs. (6.11), (6.12). In the PFC model, radially
symmetric interactions are assumed, i.e.

c(X1, X2) = c(X) (6.19)

with the distance X = ‖X1 − X2‖. Consequently, we obtain the following excess free
energy functional

Fexc(T, ψ) = −ρrefkBT

2

∫

Ω0

A′
1ψ2 + A′

2ψ∆Xψ + A′
3ψ∆2

Xψ dV, (6.20)

where the coefficients are given by

A′
1 = 4πρref

∞∫

0

X2c(X) dX, A′
2 =

2πρref

3

∞∫

0

X4c(X) dX, A′
3 =

πρref

30

∞∫

0

X6c(X) dX.

(6.21)
Following Provatas & Elders [134], we additionally introduce two constant model param-
eters A4, A5 to control the contribution of the cubic and quartic term in Eq. (6.17).
Altogether, we finally obtain the general form of the Helmholtz free energy functional for
the PFC model:

F(T, ψ) = ρrefkBT

∫

Ω0

A1

2
ψ2 +

A2

2
ψ∆Xψ+

A3

2
ψ∆2

Xψ+
A4

3
ψ3 +

A5

4
ψ4 dV +Fext(ψ), (6.22)

where A1, A2, A3 are related to the coefficients in Eq. (6.20) via A1 = 1 − A′
1, A2 = −A′

2,
A3 = −A′

3.

†In the following approximations we omit a priori constant terms which are irrelevant for the model.
Moreover, we neglect integrals of ψ over Ω0 justified by the assumption |ψ| ≪ 1.

‡For details concerning the gradient expansion of correlation functions we refer to Leeuwen [162].
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6.2.2 The Phase-field Crystal Equation and multi-patch framework

The dynamics of the PFC model can now be deduced from DDFT in a straight-forward
manner. Inserting the representation (6.16) for the one-particle density field into the
DDFT equation (6.15), using the PFC Helmholtz free energy functional (6.22) and as-
suming a uniform temperature distribution, we obtain for the temporal evolution of the
density deviation the following relation

ψ̇ = ∇X · (M(ψ)∇Xµ(ψ)) , in Ω0 × I, (6.23)

where M(ψ) := DT(1 + ψ) denotes the diffusivity of the system and the scaled chemical
potential is given by

µ = (ρrefkBT )−1 δF(T, ψ)

δψ
= A1ψ + A2∆Xψ + A3∆2

Xψ + A4ψ2 + A5ψ3 +
Uext

kBT
. (6.24)

As in the case of the Cahn-Hilliard equation introduced in Section 5.2.2, we consider
a closed system and exclude effects at the external boundary which leads here to the
boundary conditions§

M∇Xµ · N = 0, ∇Xψ · N = 0, ∇X∆Xψ · N = 0, on ∂Ω0 × I, (6.25)

with the unit outward normal N on ∂Ω0. The first condition in Eq. (6.25) ensures
conservation of ψ whereas the second and third condition exclude effects at the boundary.
To complete the initial boundary value problem we further specify an initial condition as
ψ = ψ̄ in Ω0 × {0}, where ψ̄ is a prescribed initial density deviation.

The derivation of a multi-patch framework is analogous to Sections 4.5, 5.2.1 and 5.2.2.
After applying the time-stepping procedure from Appendix A and transferring the result-
ing boundary value problems into corresponding weak forms, the result for each patch is
a sequence of variational problems of the form: given ψ

(i)
0 = ψ̄(i), for ν = 1, . . . , M , find

ψ
(i)
ν ∈ S(i) such that

V(i)
ν (ψ(i)

ν , δψ(i)) := h−1
ν 〈ψ(i)

ν − ψ
(i)
ν−1, δψ(i)〉Ω0 + 〈M(kBT )−1∇XUext,ν− 1

2
, ∇Xδψ(i)〉Ω0

+ 〈[(M [A1 + 2A4ψ
(i) + 3A5(ψ

(i))2] − A2DT∆Xψ(i))∇Xψ(i)]ν− 1
2
, ∇Xδψ(i)〉Ω0

+ 〈A3DT(∇X ⊗ ∇Xψ(i))∇X∆Xψ(i)]ν− 1
2
, ∇Xδψ(i)〉Ω0

+ 〈[−A2M∆Xψ(i) + A3DT∇Xψ(i) · ∇X∆Xψ(i)]ν− 1
2
, ∆Xδψ(i)〉Ω0

+ 〈A3DT∇Xψ
(i)

ν− 1
2

, (∇X ⊗ ∇Xδψ(i))∇X∆Xψ
(i)

ν− 1
2

〉Ω0

+ 〈A3M∇X∆Xψ
(i)

ν− 1
2

, ∇X∆Xδψ(i)〉Ω0 = 0

(6.26)

for all δψ(i) ∈ V(i), which can further be treated with the methods from Chapter 3. When
deriving the weak forms, note that in the strong form 6.23 the expression corresponding to
the coefficients A2 and A3 contains derivatives up to the 4th and 6th order, respectively, so

§The first and third condition are natural whereas the second one is essential.
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that in the first case partial integration has to be performed twice and in the second case
three times. The resulting boundary integrals vanish due to the homogeneous boundary
conditions (6.25). Furthermore, it should be noted that in the integrals of the weak
form, derivatives up to the 3rd order occur for both the solution functions and the test
functions. I.e. to ensure that the expressions in (6.26) are defined and the essential
boundary condition is fulfilled, we require spaces so that

S(i) = V(i) ⊂
{

ψ ∈ H3(Ω
(i)
0 ) | ∇Xψ · N = 0 on Γ(i)

e

}

, (6.27)

where Γ
(i)
e := ∂Ω

(i)
0 ∩∂Ω0. As with the Cahn-Hilliard equation in Section 5.2.2, the spaces

of the admissible solution and test functions are identical at each time step since the
essential boundary conditions are homogeneous.

6.3 Numerical studies

Finally, we present the results of PFC simulations in the framework of multi-patch IGA
using the extended mortar method. In the first example, we consider a two-dimensional
system describing the nucleation and growth of crystals, formulated as a 4-patch system.
Instead of the boundary conditions given in Eq. (6.25), periodic boundaries are used
there. In the PFC context, this corresponds to a C2 coupling with spatially separated
interfaces and is treated with generalised coupling conditions according to Section 3.1.3.
The second example serves as proof of concept and is the three-dimensional analogue of
the first example, where we consider a two-patch system with a curved interface.

6.3.1 Crystal growth 2D

In this example, we consider nucleation and growth of crystals from a pure supercooled
liquid in a two-dimensional domain consisting of four patches. In such a process, small
(heterogeneous or homogeneous) crystallites nucleate and grow at different locations and
in different directions. Eventually, the crystallites collide and grain boundaries are formed.
Further growth is then determined by the development of the grain boundaries. In such
scenarios, it is often useful to consider only a part of a larger system, as the process is
similar in the adjacent areas. Therefore we replace the boundary conditions (6.25) by
periodic ones, analogous to the diffusion example in Section 5.3.2. Due to the continuity
requirements of the PFC framework, the values of the derivatives up to the 2nd order
must match for this purpose in addition to the conditions for the value of the density
deviation at the corresponding boundaries. To this end, generalised C2-continuous cou-
pling conditions according to Section 3.1.3 are formulated at the corresponding edges.
For details on the configuration used here (area size, material parameters etc.), we refer
to the work of Elder et al. [70] and Praetorius & Voigt [131], on which the example is
based.
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Figure 6.1: Crystal growth 2D. Left: Initial configuration ψ̄(X), X ∈ Ω0. Right: set-
ting summary including patch numbering, choice of master and slave side,
resolutions of the patches, crosspoints and boundary conditions.

We consider the crystallisation process in the period I = [0, 4994.6] on the domain Ω0 =
(0, 160π/

√
3)2 consisting of the four parts

Ω
(1)
0 =

(

0,
80π√

3

)

×
(

0,
80π√

3

)

, Ω
(2)
0 =

(
80π√

3
,
160π√

3

)

×
(

0,
80π√

3

)

, (6.28)

Ω
(3)
0 =

(

0,
80π√

3

)

×
(

80π√
3

,
160π√

3

)

, Ω
(4)
0 =

(
80π√

3
,
160π√

3

)

×
(

80π√
3

,
160π√

3

)

, (6.29)

whereby, following the examples in [70, 131], both the temporal and spatial dimensions
are unitless. The material is defined through the parameter

DT = 1, A1 = 0.65, A2 = 2, A3 = 1, A4 = 0, A5 = 1 (6.30)

and the initial configuration ψ̄ : Ω0 → R is given by ψ̄(X) = −0.35 + r(X), where r is a
random variable modelling slight inhomogeneities in the system within a range of ±1%
to trigger nucleation. As in the diffusion example 5.3.2, a homogeneous density deviation
of ψ̄ = −0.35 is assumed at the boundaries of the patches to ensure that the coupling
conditions are fulfilled at time t = 0, see Figure 6.1 for illustration.

For the implementation of the periodic boundaries, we define, in addition to the four real
interfaces within Ω0, four virtual interfaces (γ1, φ1), . . . , (γ4, φ4) through

Ω
(1)
0 /Ω

(2)
0 : γ1 = {0} ×

(

0,
80π√

3

)

, φ1(X) = X +

(
160π√

3
, 0

)T

, (6.31)

Ω
(3)
0 /Ω

(4)
0 : γ2 =

{
160π√

3

}

×
(

80π√
3

,
160π√

3

)

, φ2(X) = X −
(

160π√
3

, 0

)T

, (6.32)

Ω
(1)
0 /Ω

(3)
0 : γ3 =

(

0,
80π√

3

)

×
{

160π√
3

}

, φ3(X) = X −
(

0,
160π√

3

)T

, (6.33)

Ω
(2)
0 /Ω

(4)
0 : γ4 =

(
80π√

3
,
160π√

3

)

× {0} , φ4(X) = X +

(

0,
160π√

3

)T

, (6.34)
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Figure 6.2: Crystal growth 2D. Simulation results. Upper row: density deviation ψh at
time t = 49.6, 99.06, 4994.6 (from left to right). Lower row: derivatives
∂X2 ψh, ∂2

X2
ψh, ∂X1 ∂2ψh (from left to right) at time t = 4994.6. The upper

colour bar belongs to the density deviation and the lower one to the partial
derivatives.

which respectively couple the left/right edges of Ω
(1)
0 /Ω

(2)
0 and Ω

(3)
0 /Ω

(4)
0 as well as the

lower/upper edges of Ω
(1)
0 /Ω

(3)
0 and Ω

(2)
0 /Ω

(4)
0 .

Furthermore, for the simulations we employ globally C2-continuous shape functions of
order p = (3, 3), such that Ω

(1)
0 , Ω

(4)
0 are resolved by 205 × 200 elements and Ω

(2)
0 , Ω

(3)
0

by 200 ×205 elements, respectively, resulting in non-conforming meshes at each interface.
Accordingly, we use weak C2 couplings and a segment-based integration scheme for the
evaluation of the mortar-integrals. Note that the patch numbering, the choice of master
and slave side, the resolutions of the patches, the crosspoints and the boundary condi-
tions are summarized in the right picture in Figure 6.1. With regard to the temporal
discretisation, we use a time-dependent step-size hν : I → R≥0,

hν = hν(t) =

{

0.1, if t ∈ [0, 0.5],

1, if t ∈ (0.5, 4994.6].
(6.35)
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The small step-size at the beginning of the simulation takes into account a rapid change
of the system, while the crystallisation process proceeds significantly slower in the further
course. The simulation results for the density deviation ψh and several partial derivatives
are shown in Figure 6.2. It can be observed, that due to the inhomogeneous density
distribution modelled by the random variable r, nucleation occurs throughout the whole
domain. As time progresses, the small crystallites grow from the initial seeds until im-
pingement. Eventually, the entire system is filled with crystallites arranged hexagonally
to each other (each crystallite is surrounded by 6 nearest neighbours), and further evo-
lution continues by motion at grain boundaries. In particular, it should be noted that
in all cases the patches merge seamlessly and the interfaces are not recognisable in the
illustrations. The same holds true for the periodic boundaries. Figure 6.3 shows as an

Figure 6.3: Crystal growth 2D. Reordered patches Ω(1) ↔ Ω(4) and Ω(2) ↔ Ω(3). From
left to right: ψh, ∂1ψh and ∂2

1ψh at time t = 99.6.

example the results at time t = 99.6, with the positions of the patches in the images
swapped according to Ω(1) ↔ Ω(4) and Ω(2) ↔ Ω(3). To quantify these observations, the

Figure 6.4: Crystal growth 2D. Left: interface errors errif
0 , errif

1 , errif
2 and ratios rat0

1,
rat0

1 as functions in time. Right: ψh on Ω0 using weak C1 couplings.
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evolution of the three relative coupling errors

errif
0 (t) =

1

L

(
4∑

k=1

‖ψ
(s(k))
h − ψ

(m(k))
h ‖2

L2(Γk) + ‖ψ
(s(k))
h − ψ

(m(k))
h ◦ φk‖2

L2(γk)

) 1
2

, (6.36)

errif
1 (t) =

1

L

(
4∑

k=1

‖∇X(ψ
(s(k))
h − ψ

(m(k))
h )‖2

L2(Γk) + ‖∇Xψ
(s(k))
h − (∇Xψ

(m(k))
h ) ◦ φk‖2

L2(γk)

) 1
2

,

(6.37)

errif
2 (t) =

1

L

(
4∑

k=1

‖D2(ψ
(s(k))
h − ψ

(m(k))
h )‖2

L2(Γk) + ‖D2ψ
(s(k))
h − (D2ψ

(m(k))
h ) ◦ φk‖2

L2(γk)

) 1
2

,

(6.38)

is provided in Figure 6.4. Here, D2 is a linear operator summarizing the second partial
derivatives according to D2ψh = (∂2

X1
ψh, ∂2

X2
ψh, ∂X1∂X2ψh)T and L = 640π/

√
3 is the sum

of the interface lengths. It can be seen that errif
0 (I) ⊂ (2 · 10−7, 6.6 · 10−5), errif

1 (I) ⊂
(2.1 · 10−7, 4.5 · 10−4) and errif

2 (I) ⊂ (7.4 · 10−6, 1.5 · 10−3), whereby the error increases
with increasing order of the derivatives. Furthermore, it can be observed that the three
errors behave synchronously in time. The dashed lines show the evolution over time of
the two ratios

rat0
1(t) :=

errif
0 (t)

errif
1 (t)

, rat0
2(t) :=

errif
0 (t)

errif
2 (t)

(6.39)

quantifying the difference of the two derivative errors errif
i , i = 1, 2, with respect to the

density deviation error errif
0 . For these two quantities, it holds rat0

1(I) ⊂ (3.1 · 10−2, 1.6 ·
10−1) and err0

2(I) ⊂ (8.9 · 10−3, 4.9 · 10−2), such that errif
1 is at most 32.1 times greater

than errif
0 and errif

2 is at most 111.3 times greater than errif
0 .

Eventually, to demonstrate the necessity of C2 couplings in the PFC framework, the right
picture in Figure 6.4 shows simulation results employing weak C1 coupling conditions
instead of C2 conditions. In this case, non-physical fluctuations of the density deviation
occur in the area of the interfaces, which leads to the termination of the simulation after
a few time steps.

6.3.2 Crystal growth 3D

This final example serves as a proof of concept and is the three-dimensional analogue of
the previous example. Instead of a 4-patch system, however, we study here a 2-patch
system with a curved interface.

We consider the crystallisation process in the period I = [0, 3655] on a cube-shaped area

Ω0 = (0, 20π/
√

3)3 decomposed into two patches Ω
(1)
0 (slave), Ω

(2)
0 (master) with a curved

interface, see the left picture in Figure 6.5 for illustration. As in the two-dimensional
example, the material parameters and initial configuration are given by

DT = 1, A1 = 0.65, A2 = 2, A3 = 1, A4 = 0, A5 = 1 (6.40)
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20π√
3

X3

0
0

X1 20π√
3

0
X2

20π√
3

Ω
(1)
0

Ω
(2)
0

(50 × 50 × 50)

m

s

(52 × 52 × 50)

Figure 6.5: Crystal growth 3D. Left: subdivision of Ω0 into the two patches. The master
and slave sides of the interface are indicated by m/s and the resolutions are
given in the brackets. Right: initial configuration ψ̄(X), X ∈ Ω0.

and ψ̄ : Ω0 → R, ψ̄(X) = −0.35 + r(X), where here the random variable r is constructed
in such a way that inhomogeneities also occur at the interface and the patches still C2-
continuously merge at t = 0, see the right picture in Figure 6.5.

Figure 6.6: Crystal growth 3D. Temporal evolution. ψh at times t=50.5001, 100.5001,
3655.5001.

For the time-stepping scheme, we use the step-size control specified in Eq. (6.35) and
for the spatial discretisation, we employ globally C2-continuous shape functions of order
p = (3, 3, 3), such that Ω

(1)
0 and Ω

(2)
0 are resolved by 52×52×50 and 50×50×50 elements,

respectively. Accordingly, we use a weak C2 coupling with an element-based integration
scheme involving 64-point Gaussian integration. Furthermore, for simplicity, we refrain
from modifying the Lagrangian multipliers at the wirebasket arising from the intersection
of the interface with Γe.

Snapshots of the simulation results for ψh are shown in Figure 6.6 and Figure 6.7 illustrates
the corresponding results for the partial derivatives of ψh up to the 2nd order. As in the
two-dimensional example, nucleation occurs throughout the whole domain until the entire
system is filled with hexagonally arranged crystallites. In particular, it can be noted that
no irregularities at the interface are recognisable in the illustrations.
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Figure 6.7: Crystal growth 3D. Temporal evolution. From left to right and top to
bottom: ∂X1 ψh(•, t1), ∂X2 ψh(•, t2), ∂X3 ψh(•, t3), ∂2

X1
ψh(•, t1), ∂2

X2
ψh(•, t2),

∂2
X3

ψh(•, t3), ∂X1 ∂X2 ψh(•, t1), ∂X1 ∂X3 ψh(•, t2), ∂X2 ∂X3 ψh(•, t3), where t1 =
50.5001, t2 = 100.5001, t3 = 3655.5001.

Figure 6.8: Crystal growth 3D. Interface errors errif
0 , errif

1 , errif
2 and ratios rat0

1, rat0
2

as functions in time.
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To verify this observation, Figure 6.8 shows the temporal evolution of the three relative
coupling errors

errif
0 (t) := A−1‖ψ

(1)
h − ψ

(2)
h ‖L2(Γ), errif

i (t) := A−1‖Di(ψ
(1)
h − ψ

(2)
h )‖L2(Γ), (6.41)

i = 1, 2, where Di summarize the ith partial derivatives according to D1ψh := ∇Xψh,
D2ψh := (∂2

X1
ψh, ∂2

X2
ψh, ∂2

X3
ψh∂X1∂X2ψh, ∂X1∂X3ψh, ∂X2∂X3ψh)T and A = 1375.750066027

is the surface area of the interface. Additional, Figure 6.8 provides the temporal evolution
of the two quantities rat0

1(t) := errif
0 (t)/errif

1 (t), rat0
2(t) := errif

0 (t)/errif
2 (t) showing the

ratio between the two derivative errors errif
i , i = 1, 2, and density deviation error errif

0 . It
can be observed, that errif

0 (I) ⊂ (9.89·10−9, 9.85·10−6), errif
1 (I) ⊂ (8.18·10−8, 5.11·10−5)

and errif
2 (I) ⊂ (6.99·10−7, 2.67·10−4) which shows that the error increases with increasing

derivative order. Furthermore it can be seen rat0
1(I) ⊂ (1.19 · 10−1, 1.93 · 10−1) and

rat0
1(I) ⊂ (1.38 · 10−2, 3.7 · 10−2), so that over time errif

1 is at most 8.37 times as large as
errif

0 and errif
2 is at most 72.1 times as large as errif

0 .
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7 Summary and outlook

In this work, a novel mortar method was introduced that realises weak Cn- and G1-
continuous domain couplings in the context of IGA. The implementation of the coupling
conditions was discussed on the basis of an abstract variational problem without further
restrictions, which allows the method to be easily transferred to a wide range of prob-
lems. Within this framework, couplings of real interfaces as well as generalised couplings
were considered, which can be used, e.g., for the implementation of periodic boundary
conditions in higher-order differential equations.

For the coupled variational framework, two equivalent formulations were provided. One
formulation utilized constrained spaces that satisfy the coupling conditions, while the
other was formulated as a saddle point system in which the couplings were implemented
using Lagrange multipliers. The discretisation of the problem was discussed within the
context of IGA, with the discrete space of Lagrange multipliers defined as the trace space
on the slave side, eliminating the need to evaluate additional shape functions for the
multiplier space. To avoid over-constrained situations in the vicinity of crosspoints or
wirebaskets, a new method for modifying the multiplier space was introduced extending
a known method for C0 couplings to higher-order coupling conditions. This involved re-
moving basis functions to prevent excessive multipliers’ influence on the crosspoints or
wirebaskets, while modifying the remaining basis functions to preserve the partition of
unity and the ability to reproduce polynomials with reduced degrees in that region. Fur-
thermore, a novel method for implementing coupling conditions without explicitly using
Lagrange multipliers was devised. This approach allowed for the construction of isoge-
ometric approximation spaces that inherently respected the coupling conditions. While
the number of unknowns increases with a saddle point formulation, the number is reduced
to the same extent when using these constrained approximation spaces.

The application of the higher-order couplings was explored through a diverse range of
engineering problems, including polyharmonic equations, elasticity, Kirchhoff-Love shells,
heat conduction, diffusion problems, and the phase-field crystal method. During these
investigations, coupling conditions up to the second order were successfully implemented.
Through numerous comparisons with corresponding 1-patch systems, it was demonstrated
that the high approximation quality of the IGA framework is preserved in a multi-patch
environment using the extended mortar method.

Let us now discuss the possible perspectives to this work. One important point of an
isogeometric mortar method is the choice of the Lagrange multipliers. From the classical
mortar theory, two abstract requirements are given. One is the sufficient approximation
order, the other is the requirement of an inf-sup stability. Here we have used the trace
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space of the slave side, which has the consequence that the basis functions of the primary
and the dual space are of the same order. Other pairings are conceivable. For C0 coup-
lings, several constellations have been investigated in the framework of IGA with respect
to inf-sup stability and convergence rate, Brivadis et al. [31]. Analogous investigations
for general Cn couplings are still pending. Another interesting approach in the choice of
the multiplier space is the use of global polynomials, Hansbo et al. [87]. This has the
advantage that in an element-based integration scheme the mortar integrals are evaluated
exactly if the quadrature formula is of sufficient order. A transfer of the approach to Cn

couplings could be an interesting subject. Another worthwhile investigation also concerns
the element-based integration scheme. The patch test in Section 4.7.1 has shown that in
the case of a curved interface, a simple midpoint rule is superior to Gaussian quadrature.
Based on this result, it seems interesting to investigate further alternatives.



A Temporal discretisation

Most of the examples considered in this work are dynamic problems, i.e. the solutions
sought to the problems are functions in space and time. To solve such problems numer-
ically, it is common practice to first discretise them in time, resulting in a sequence of
boundary value problems which can further be treated in the context of isogeometric anal-
ysis. In this section, we briefly present the temporal discretisation schemes used in this
work. For more details concerning this topic, we refer to the textbook of Reinhardt [138]
and the work of Simo & Tarnow [147].

We consider abstract initial value problems stated as follows: find v : Ω0 × I → Rd such
that

∂s
t v − P(x, t, v) = 0, in Ω0 × I, (A.1)

where s ∈ {1, 2}, ∂s
t denotes the s times partial derivative w.r.t. t, Ω0 is a suitable open

and bounded subset of Rdp with dp ≤ d, I = [0, τ ] ⊂ R, τ > 0 and the operator P
represents the problem and incorporates any spatial derivative. Furthermore, we assume
that the solution and, in case s = 2, its partial derivative w.r.t. t at time t = 0 are known
and given by the functions v0 : Ω0 → Rd, v̄0 : Ω0 → Rd.

Let t0, . . . , tN ∈ I be a sequence of points in time such that t0 = 0, tN = τ and tν < tν+1.
In case s = 1, we use for the temporal discretization the midpoint rule, resulting in the
sequence of spatial problems: for ν = 1, . . . , N find vν : Ω0 → Rd such that

(vν − vν−1)h
−1
ν − P(x, tν−1/2, vν−1/2) = 0, in Ω0, (A.2)

where vν denotes the evaluation of v at time tν , vν−1/2 the evaluation at time tν−1/2 :=
(tν + tν−1)/2 and hν := tν − tν−1 the step-size. In case s = 2, the temporal discretization
is performed using a two-step midpoint rule, resulting in the problem sequence: for ν =
1, . . . , N find vν : Ω0 → Rd such that

(v̄ν − v̄ν−1)h
−1
ν −P(x, tν−1/2, vν−1/2) = 0, v̄ν = 2h−1

ν (vν −vν−1)− v̄ν−1, in Ω0. (A.3)

We finally note that the two integration schemes are in O(h2), where h = maxν=1,...,N hν .
The first scheme is used in this work for problems in heat conduction and diffusion (Chap-
ter 5) and for Phase-Field-Crystal modeling (Chapter 6), whereas the second one is applied
to problems in elasticity introduced in Chapter 4.

Remark A.0.1. In particular, problems of elasticity require structure-preserving time
integration schemes such that the linear momentum, angular momentum and total energy
are preserved. Applied to the equation of motion in the form (4.37) the scheme (A.3)
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algorithmically preserves the linear and angular momentum. To additionally ensure the
conservation of total energy, the equation of motion has first to be rewritten in terms of
the second Piola-Kirchhoff stress tensor S, such that (4.37) becomes

ρ0(X)ϕ̈(X, t) = ∇X · [F(X, t) S(X, t)] + B(X, t) ∀(X, t) ∈ Ω0 × I. (A.4)

Using the algorithmically consistent discrete version

Sh,ν−1/2 = 2

[
∂ Wν−1/2

∂ Ch

+
Wν − Wν−1 −∂ Wν−1/2 /∂ Ch : ∆ Ch

∆ Ch : ∆ Ch

∆ Ch

]

(A.5)

of S when applying scheme (A.3), total energy as well as the linear and angular momentum
are conserved. For more details and the proof of the algorithmic conservation properties,
we refer to the works of Gonzalez & Simo [83] and Betsch & Steinmann [24]. For the
application on thermomechanical problems see furthermore Hesch et al. [91] and for the
application on phase-field methods to fracture see Hesch & Weinberg [93].

Examples: As a first example we consider the parabolic initial boundary value problem
stated as follows: find v : Ω̄0 × I → R such that

v̇ − ∆v = 0 in Ω0 × I, v = g on Γe × I, (A.6a)

∇v · N = h on Γn × I, v = v0 on Ω0 × {0}, (A.6b)

where Γe, Γn ⊂ ∂Ω0 with Γe ∩ Γn = ∅ and Γ̄e ∩ Γ̄n = ∂Ω0, g, h : Γe → R, v0 : Ω0 → R are
prescribed functions and N denotes the unit outward normal on ∂Ω0. Application of the
midpoint rule (A.2) yields the following sequence of boundary value problems: for given
v0 find for ν = 1, . . . , N a function vν : Ω̄0 → R such that

(vν − vν−1)h−1
ν − ∆vν−1/2 = 0 in Ω0, (A.7a)

vν = gν on Γe, (A.7b)

∇vν−1/2 · N = hν−1/2 on Γn. (A.7c)

As a second example we apply the following hyperbolic initial boundary value problem:
find v : Ω̄0 × I → R such that

v̈ − ∆v = 0 in Ω0 × I, v = g on Γe × I, (A.8a)

∇v · N = h on Γn × I, v = v0, v̇ = v̄0 on Ω0 × {0}, (A.8b)

where we use the same notation as in the first example and the prescribed function
v̄0 : Ω0 → R determines the first derivative of v w.r.t. t at t = 0. Application of the
two-step midpoint rule (A.4) yields the sequence of boundary value problems: for given
v0, v̄0 find for ν = 1, . . . , N a function vν : Ω̄0 → R such that

2[(vν − vν−1)h
−1
ν − v̄ν−1]h−1

ν − ∆vν−1/2 = 0 in Ω0, (A.9a)

vν = gν on Γe, (A.9b)

∇vν−1/2 · N = hν−1/2 on Γn, (A.9c)

with v̄ν−1 = 2h−1
ν−1(vν−1 − vν−2) − v̄ν−2 for ν = 2, . . . , N .



B Material data for tin-lead alloys

The following is a summary of the material data for tin-lead alloys used in the examples
in Section 5.3. For details on the derivation of the quantities, we refer to Schuß et al.
[142].

Free energy. The configurational part of the free energy of a tin-lead system valid
within the temperature range 250 K < T < 505 K is represented by the mole fraction and
temperature-dependent function

Ψcon(c, T ) = g1c + g2(1 − c) + g3c ln(c) + g4(1 − c) ln(1 − c) + g5c(1 − c), (B.1)

where the field variable c denotes the mole fraction of tin∗. The coefficients gi are
temperature-dependent functions obtained from fits to experimental data as

gk(T ) = Ak + BkT + CkT ln(T ) + DkT 2 + EkT 3 +
Fk

T
, k = 1, ..., 4, (B.2)

g5(T ) = A5 + B5T, in
[
Jm−3

]
, (B.3)

where the numerical values of the fit parameters are listed in Table B.1. Moreover,
the gradient energy coefficient κ is calculated from the lattice structure of the equilibrium
phases and is related to the surface energy density κ̃ and the interfacial thickness l between
the tin- and lead-rich phases via

κ(T ) =
3κ̃l

(cSn(T ) − cPb(T ))2
, in

[
Jm−1

]
, (B.4)

where κ̃ = 1.5 Jm−2, l = 25 nm and cSn/Pb, are the temperature-dependent equilibrium
mole fractions determined by the polynomials

cSn/Pb(T ) = c
Sn/Pb
3 T 3 + c

Sn/Pb
2 T 2 + c

Sn/Pb
1 T 1 + c

Sn/Pb
0 , (B.5)

see also Table B.2. Thus, the interface part of the free energy density reads

Ψint(c, T ) =
75 · 10−9

2(cPb(T ) − cSn(T ))2
‖∇Xc‖2. (B.6)

∗I.e. we specify lead as component a and tin as component b, cf. Section 5.2.2.
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Table B.1: Fit parameter for the functions gi introduced in Eqs. (B.2), (B.3).

Ai

[
MJ
m3

]
Bi

[
MJ

m3K

]
Ci

[
MJ

m3K

]
Di

[
J

m3K2

]
Ei

[
J

m3K3

]
Fi

[
GJK
m3

]

i = 1 −355.77 3.9628 −0.96695 −1146 0.1898 −3.7692

i = 2 −405.42 5.5101 −1.3286 −191.5847 −0.0153 0.027891

i = 3 275.05 1.338 −0.18453 389.8139 −0.1331 1.9559

i = 4 −85.964 1.3153 −0.13691 244.7001 −0.0888 1.274

i = 5 1224.9 −0.49161 - - - -

Table B.2: Coefficients of the equilibrium mole fractions introduced in Eq. (B.5).

ci
0 [ ] ci

1

[
K−1

]
ci

2

[
K−2

]
ci

3

[
K−3

]

i = Sn 1.03418 −3.867 · 10−4 1.4722 · 10−6 −1.8897 · 10−9

i = Pb −1.2076 · 10−2 2.4223 · 10−4 −5.5931 · 10−7 1.1125 · 10−9

Mobilities. The atomic mobilities of tin in lead and lead in tin, respectively, are repre-
sented by the functions

MSn/Pb(T ) =
463

5 · 104Vm

(
∂2Ψcon(cPb/Sn(T ), T )

∂c2

)−1

DSn/Pb(T ), (B.7)

in [m2molJ−1s−1], where the molar volume of the alloy is given by the weighted sum
Vm = c̄V Sn

m + (1 − c̄)V Pb
m , in [m3mol−1]. Thereby, V Sn

m = 16.29 · 10−6 m3mol−1 is the
molar volume of tin, V Pb

m = 18.26 · 10−6 m3mol−1 the molar volume of lead and the scalar
field c̄ : Ω0 → [0, 1] determines the initial state of the system, cf. Section 5.2.2.† The
diffusivities DSn/Pb of tin/lead are obtained from an Arrhenius relationship

DSn/Pb(T ) = D0
Sn/Pb exp

(

−QSn/Pb

RT

)

, (B.8)

where R = 8.31451 Jmol−1K−1 denotes the universal gas constant and the frequency
factors D0

Sn/Pb and the activation energies QSn/Pb are given by

D0
Sn = 4.1 · 10−5 m2s−1, QSn = 94400 Jmol−1, (B.9)

D0
Pb = 3.533 · 10−6 m2s−1, QPb = 61370 Jmol−1. (B.10)

Using the data presented in Eqs. (B.9), (B.10), it turns out that diffusion within the tin-
rich regions is considerably faster than in the lead-rich regions. Consequently, neglecting
the atomic mobility of tin in lead, the mobility of the alloy is approximately given by

M(c, T ) = c(1 − c)MPb(T ), in
[
m2molJ−1s−1

]
. (B.11)

†In our numerical investigations, we always assume a constant initial configuration c̄(X) = 0.63, X ∈
Ω0, so that in this case the molar volume of the system is constant and given by Vm = 9905/(582 ·
106) m3mol−1.
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