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A B S T R A C T

As deep learning models begin to be deployed in real-world applications, characterizing their
vulnerabilities, and improving their robustness is critical to ensure reliable performance. This
thesis deals with a few aspects of robustness and generalizability of deep learning models for
image classification and reconstruction.
We first address the problem of robustness and invariance of neural networks to spatial
transformations that can be represented as group actions. We propose a simple strategy to
achieve provable invariance with respect to group actions by choosing a unique element
from the orbit of transformation group. Such a simple orbit mapping can be used with
any standard network architecture and still achieve desired invariance. We investigate the
robustness with respect to image rotations, provable orientation and scaling invariance of
3D point cloud classification. We demonstrate the advantages of our method in comparison
with different approaches which incorporate invariance via training or architecture in terms
of robustness and computational efficiency.
Next, we investigate the robustness of classical and deep learning approaches to ill-posed
image recovery problems, with a focus on image deblurring and computer tomography
reconstruction. We demonstrate the susceptibility of reconstruction networks to untargeted,
targeted and localized adversarial attacks using norm-constrained additive perturbations
and study the transferability of attacks. We find that incorporating the model knowledge can,
but does not always result in improved robustness. Further, localized attacks which modify
semantic meaning can still maintain a high consistency with the original measurement,
which could be used to deal with the ill-posedness of image recovery.
While deep neural networks are successful in many image recovery tasks, these networks are
typically trained for specific forward measurement processes, and therefore do not typically
generalize to even small changes in the forward model. To deal with this, we explore the use
of generative model priors for flexible image reconstruction tasks. We develop a generative
autoencoder for light fields conditioned on the central view, and utilize this model as a
prior for light field recovery. We adopt the approach of optimizing in the latent space of the
conditional generator to minimize data discrepency with the measurement, and perform
simultaneous optimization of both the latent code and the central view when the latter is
unavailable. We demonstrate the applicability of this approach for generic light field recovery.
Finally, we demonstrate the use of recently proposed text conditioned image diffusion models
for generic image restoration and manipulation. We demonstrate flexible image manipulation
by using a simple deterministic forward and reverse processes, with reverse diffusion being
conditioned on target text. For consistent image restoration, we modify the reverse diffusion
process of text-to-image diffusion model to analytically enforce data consistency of the
solution, and explore diverse contents of null-space using text guidance. This results in
diverse solutions which are simultaneously consistent with input text and the degraded
inputs.
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Z U S A M M E N F A S S U N G

Da Deep-Learning-Modelle zunehmend in praxisnahen Anwendungen eingesetzt werden, ist
die Charakterisierung ihrer Schwachstellen und Verbesserung ihrer Robustheit unerlässlich,
um eine zuverlässige Leistung zu gewährleisten. Diese Arbeit beschäftigt sich mit einigen
Aspekten der Robustheit und Generalisierbarkeit von Deep-Learning-Modellen für Klassi-
fikation und Rekonstruktion von Bildern.
Wir befassen uns zunächst mit dem Problem der Robustheit und Invarianz neuronaler Netze
gegenüber räumlichen Transformationen, die als Gruppenaktionen dargestellt werden kön-
nen. Wir schlagen eine einfache Strategie vor, um eine nachweisbare Invarianz in Bezug
auf Gruppenaktionen zu erreichen, indem wir ein eindeutiges Element aus dem Orbit der
Transformationsgruppe auswählen. Eine solche einfache Orbit-Mapping kann mit jeder
Standardnetzwerkarchitektur verwendet werden und erreicht dennoch die gewünschte In-
varianz. Wir untersuchen die Robustheit gegenüber Bildrotationen, sowie nachweisbare
Orientierungs- und Skalierungsinvarianz bei 3D-Punktwolken-Klassifikation. Wir zeigen die
Vorteile unserer Methode im Vergleich zu verschiedenen Ansätzen, die die Invarianz über
das Training oder die Architektur einbeziehen, in Bezug auf Robustheit und Berechnungsef-
fizienz.
Als Nächstes untersuchen wir die Robustheit von klassischen und Deep-Learning-Ansätzen
bei schlecht gestellten Bildwiederherstellungsproblemen, wobei der Schwerpunkt auf Bild-
schärfung und Computertomographie-Rekonstruktion liegt. Wir zeigen die Anfälligkeit von
Rekonstruktionsnetzwerken gegenüber ungezielten, gezielten und lokalisierten Angriffen
mit additiven Störungen, deren Norm beschränkt ist, und untersuchen die Übertragbarkeit
der Angriffe. Wir stellen fest, dass die Einbeziehung des Modellwissens in manchen Fällen
zu einer verbesserten Robustheit führt. Außerdem können lokalisierte Angriffe, die die se-
mantische Bedeutung verändern, immer noch eine hohe Konsistenz mit der ursprünglichen
Messung aufrechterhalten. Dies könnte genutzt werden, um damit umzugehen, dass Bild-
wiederherstellung ein schlecht gestelltes Problem ist.
Tiefe neuronale Netze sind zwar bei vielen Bildwiederherstellungsaufgaben erfolgreich, aber
diese Netze werden in der Regel für bestimmte Vorwärtsmessprozesse trainiert und lassen
sich daher in der Regel nicht einmal auf kleine Änderungen im Vorwärtsmodell verallge-
meinern. Um dies zu ändern, untersuchen wir die Verwendung generativer Model-Priors
für flexible Bildrekonstruktionsaufgaben. Wir entwickeln einen generativen Autoencoder
für Lichtfelder, der sich auf die zentrale Ansicht bezieht, und verwenden dieses Modell als
Prior für die Lichtfeldwiederherstellung. Wir verfolgen den Ansatz, im Latent Space des
conditional Generators zu optimieren, um die Diskrepanz zwischen den Daten und der
Messung zu minimieren, und führen eine gleichzeitige Optimierung sowohl des Latent Codes
als auch der zentralen Ansicht durch, wenn letztere nicht verfügbar ist. Wir demonstrieren
die Anwendbarkeit dieses Ansatzes für eine generische Lichtfeldwiederherstellung.
Schließlich demonstrieren wir die Verwendung von kürzlich vorgeschlagenen, textgesteuerten
Bilddiffusionsmodellen für die allgemeine Wiederherstellung und Manipulation von Bildern.
Wir demonstrieren eine flexible Bildmanipulation durch Verwendung eines einfachen de-
terministischen Vorwärts- und Rückwärtsprozesses, wobei die Rückwärtsdiffusion durch
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den Zieltext gesteuert wird. Für eine konsistente Bildwiederherstellung modifizieren wir den
umgekehrten Diffusionsprozess des Text-Bild-Diffusionsmodells, um die Datenkonsistenz
der Lösung analytisch zu erzwingen, und untersuchen verschiedene Inhalte des Nullraums
unter Verwendung von Textsteuerung. Dies führt zu verschiedenen Lösungen, die sowohl
mit dem Eingabetext als auch mit den verschlechterten Eingabebildern konsistent sind.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N

In the last decade, deep learning models have achieved remarkable breakthroughs in several
domains such as computer vision, natural language processing, time series analysis, audio
processing, reinforcement learning to name a few. With increasingly available massive
training datasets, and the development of advanced network architectures and training
methods, deep neural networks continue to improve performance on several benchmarks
across domains. To give an example of the progress achieved, the performance of image
recognition on the ImageNet benchmark (Russakovsky et al., 2015) has reached a state-of-the-
art accuracy of over 91% in 2023 (Chen et al., 2023a) in comparison to 63% accuracy provided
by Alexnet (Krizhevsky et al., 2012) which marked the beginning of the deep learning era in
computer vision. Similar strong empirical performance is demonstrated by deep networks on
other computer vision tasks such as segmentation (Wang et al., 2023a), object detection (Li
et al., 2023), image generation (Sauer et al., 2022; Dhariwal and Nichol, 2021) and restoration
(Sun et al., 2022) on benchmark datasets.

While performance on benchmark datasets is certainly important, machine learning
models deployed in the real-world could encounter inputs which are from a significantly
different distribution than those seen in training. Consider the example of image recognition,
a model deployed in the real world could encounter data from different weather conditions,
occlusions, image corruptions, or changes in imaging hardware. Unfortunately, even the state-
of-the-art models can fail on such test data when such variations are not encountered during
training (Hendrycks and Dietterich, 2019). In the case of image reconstruction, where the
task is to recover an image from a measurement obtained through some forward process, one
may encounter variations in noise statistics, or there may be errors in calibrating the forward
model. As many supervised learning methods for image reconstruction are trained for a
specific forward process, variations such as these would significantly affect their performance.
This lack of desired robustness of learned models, despite their excellent performance on
different benchmarks, is concerning. As deep networks are starting to be deployed in the
real world, it becomes increasingly important to characterize the vulnerabilities of these
models, and improve their robustness and generalizability. In this thesis, we study and
address different aspects of robustness and generalizability for deep learning methods for
image classification and reconstruction. We now briefly introduce each of these issues.

A D V E R S A R I A L R O B U S T N E S S Deep networks are susceptible to adversarial examples
where visually imperceptible perturbations to inputs result in catastrophic failures of the state
of the art neural networks (Szegedy et al., 2014; Goodfellow et al., 2015). While most works
focus on the robustness of image recognition networks to additive adversarial perturbations,
some works also analyze adversarial robustness for other computer vision tasks such as object
detection (Xie et al., 2017), semantic segmentation (Gu et al., 2022b; Agnihotri and Keuper,
2023), image reconstruction (Antun et al., 2020; Genzel et al., 2022). Investigating the stability
of deep learning based image reconstruction is particularly interesting due to the following
reasons: when the inverse image reconstruction is ill-posed, multiple valid solutions can exist.
This ill-posedness also implies a trade-off between the stability of the recovery algorithm and
the accuracy it can achieve in terms of proximity to ground truth. Further, there exist classical
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1.1 O R G A N I Z AT I O N O F T H E S I S 3

approaches for image reconstruction with convergence guarantees. In this thesis, we take
a closer look at these issues and study the stability and adversarial robustness of different
classical and deep learning approaches to image recovery, and propose approaches to handle
ill-posedness.

R O B U S T N E S S T O S PAT I A L T R A N S F O R M AT I O N S Beyond robustness to tiny additive per-
turbations, certain properties such as rotational, scale, and shift invariance are often highly
desirable in applications like image recognition. Yet, even after training deep networks with
millions of realistic images, these properties are not guaranteed, and networks are still sus-
ceptible to adversarial attacks with respect to these transformations (see e.g. (Engstrom
et al., 2017; Finlayson et al., 2019; Zhao et al., 2020b; Lang et al., 2021)). To counteract the
lack of robustness, one solution is to modify the training procedure, either by augmentation
using transformed examples or training with transformed examples which change the model
prediction, i.e. adversarial training. In fact, such a strategy could be applied to any general set
of transformations, for instance, additive perturbations within a norm ball of a certain radius,
or deformations via translations, rotations, and other spatial transformations within a prede-
fined deformation measure. While these training strategies do provide gains in robustness,
they do not guarantee invariance. In contrast, for more structured transformations which
can be characterized as a group, network architectures which guarantee provable invariance
have been proposed (Cohen and Welling, 2016; Weiler et al., 2018a), yet, many works focus
only on finite groups. In this thesis, we propose an approach for provable invariance to
continuous group transformations, a more challenging setting which is rather less addressed
in the literature.

R O B U S T N E S S T O M E A S U R E M E N T M O D E L C H A N G E S Many supervised learning methods
for image reconstruction are trained for a specific forward process and noise model and
any changes in these can adversely affect their performance. In contrast, classical energy
minimization approaches allow such modifications by appropriate changes to the energy
function, yet their performance is inferior to fully learned methods. One can ask if it is possible
to retain the flexibility of energy minimization methods while improving their reconstruction
performance by learning. In this thesis, we address this problem by using learned generative
priors, which are trained in an unsupervised fashion independent of a specific measurement
model in an energy minimization framework.

1.1 O R G A N I Z AT I O N O F T H E S I S

In this thesis, we study different aspects of robustness of deep neural networks with applica-
tion to image classification and reconstruction, and propose methods to improve robustness
and generalizability. This thesis assumes that the reader already has a basic understanding of
machine learning and deep learning. Part II has three chapters discussing the background
on adversarial robustness, image reconstruction, and generative models. In Chapter 2, we
provide the reader with an overview of different adversarial attack and defense techniques.
As a significant part of this thesis deals with different issues related to stability and generaliza-
tion in image reconstruction, we give a broad overview of image reconstruction in Chapter
3, which walks the reader through different approaches to image recovery, both classical
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and deep learning based techniques, and a variety of methods using a combination of both.
In Chapter 4, we provide a general overview of generative models, and discuss generative
adversarial networks (GANs), generative autoencoders, and diffusion models. We further
discuss about the use of generative priors in image recovery. The major contributions of the
thesis are laid out in Chapters 5-9 included in the Methodology part III. These methodology
chapters have their own related work sections with a survey of publications directly related
to the chapter, and also include some preliminaries specific to the chapter when necessary.
This thesis concludes with some discussions and future directions in Chapter 10.

1.2 C O N T R I B U T I O N S

This section outlines the research contributions made in this thesis, and lists the publications
based on these contributions.

C H A P T E R 5 looks at the problem of obtaining provable robustness or invariance to trans-
formations which can be modeled as continuous group actions. Examples of such trans-
formations include rotations in 2D and 3D, translations, and scaling. In contrast to most
existing approaches which address this issue either by modifying the training procedure or
designing specific network architectures, we propose a simpler alternative by transforming
the input itself before feeding it into the network. We derive a principled approach based on
group theory to perform this input transformation which guarantees provable invariance
to the desired group action, with any network architecture. Further, we empirically analyze
the properties of different approaches which incorporate invariance, and demonstrate the
advantages of our method in terms of robustness and computational efficiency. In particular,
we investigate the robustness of classification with respect to image rotations (which can
hold up to discretization artifacts) as well as the provable orientation and scaling invariance
of 3D point cloud classification.

C H A P T E R 6 studies the stability and adversarial robustness of different classical and deep
learning approaches to image recovery, with a focus on image deblurring and computer
tomography reconstruction. In contrast to prior works which mainly focus on untargeted at-
tacks on image reconstruction, we also demonstrate susceptibility of image recovery networks
to targeted and localized attacks. We show that localized attacks can be used beneficially to
handle the ill-posedness of image recovery by allowing exploration of solution space with
high data consistency.

C H A P T E R 7 addresses the problem of generalizing deep learning based image reconstruc-
tion for different measurement models. In this chapter, we use deep generative models,
specifically generative auto-encoders as priors in model based image reconstruction. As
these models are trained without the supervision of specific measurement models, they
can be incorporated as a prior into model-based optimization, and therefore extend to di-
verse reconstruction tasks. In contrast, the applicability of end-to-end networks trained in
a supervised way is limited to the specific measurement model they have been trained on.
We demonstrate the utility of generative autoencoder priors for light field recovery from
diverse measurement models. We propose and train the first generative model, a conditional
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Wassertein auto-encoder (CWAE) for 4D light field patches conditioned on the central view
of the light field, and utilize this model as a prior in light field reconstruction. We take the
approach of optimizing in the latent space of the CWAE generator to minimize data discrep-
ancy with the measurement, and perform simultaneous optimization of both the latent code
and the central view when the latter is unavailable. We perform diverse light field recovery
tasks including light field view synthesis, spatial-angular super resolution, and reconstruction
from coded projections. We demonstrate the advantages of our approach in comparison
with end-to-end trained networks in terms of flexibility and robustness to corruptions and
improved performance with respect to traditional model-based approaches on both synthetic
and real scenes.

C H A P T E R 8 addresses the problem of generalized open domain image manipulation
through simple and intuitive text prompts. This chapter continues on the theme of the
preceding chapter in using generative model priors, but the focus is on leveraging text-to-
image diffusion based generative models for diverse image manipulation tasks, without
explicit training or fine-tuning. We leverage a pretrained text-to-image generative model
known as latent diffusion model, where text guided diffusion is performed in the latent
space of a variational auto-encoder. We employ a deterministic forward diffusion in a lower
dimensional latent space, and the desired manipulation is achieved by simply providing
the target text to condition the reverse diffusion process. This ensures consistency with the
input image while modifying the desired attributes. We demonstrate that this method can
accomplish diverse image manipulation tasks, with advantages in terms of flexibility and
computation times over competing baselines.

C H A P T E R 9 introduces the problem of exploring open domain image restoration through
text prompts. This chapter continues on the theme of the preceding chapters 7 and 8 in using
generative model priors. This time, the focus is on exploring solutions to image restoration
problems using text, in a zero-shot fashion without explicit training for this task. There
are no existing works which attempt this problem. We develop an approach to utilize a
pretrained text-to-image diffusion model where text conditioned diffusion is performed in a
down-sampled pixel space, and modify its reverse diffusion process to analytically enforce
data consistency of the solutions. This approach can recover diverse solutions that match
the semantic meaning provided by the text prompt, while preserving data consistency with
the degraded inputs. In contrast, most prior works for image recovery, even those utilizing
generative model priors do not provide a mechanism to control the solutions, and tend to
exhibit limited diversity in their solutions.

1.2.1 Publications in the Thesis

The research presented in this thesis is based on the following jointly authored papers. In the
following * indicates equal contribution. At the beginning of each chapter, my contributions
and the contributions of my collaborators are clearly specified.
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1. Chapter 5: K. V. Gandikota, J. Geiping, Z. Lähner, A. Czapliński, Michael Moeller “ A
Simple Strategy to Provable Invariance via Orbit Mapping,” Proc. Asian Conference on
Computer Vision (ACCV), 2022

2. Chapter 6:

(a) K. V. Gandikota, P. Chandramouli, M. Moeller “On Adversarial Robustness of
Deep Image Deblurring,” Proc. IEEE International Conference on Image Processing
(ICIP), 2022.

(b) K. V. Gandikota, P. Chandramouli, H. Droege, M. Moeller “Evaluating Adversarial
Robustness of Low dose CT Recovery,” Proc. Medical Imaging with Deep Learning
(MIDL), 2023

3. Chapter 7: P. Chandramouli*, K. V. Gandikota*, A. Goerlitz, A. Kolb, M. Moeller “Gen-
erative models for generic light field reconstruction,” IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI) April 2022.

4. Chapter 8: P. Chandramouli, K. V. Gandikota “LDEdit: Towards Generalized Text Guided
Image Manipulation via Latent Diffusion Models,” Proc. British Machine Vision Confer-
ence (BMVC), 2022.

5. Chapter 9: K. V. Gandikota*, P. Chandramouli*, “Exploring Open Domain Image Super-
Resolution through Text”, in ICML Workshop on Artificial Intelligence & Human-Computer
Interaction, 2023.

1.2.2 Other Publications

In addition, I also jointly co-authored the following publications which are not part of this
thesis, during the course of my PhD. In these publications, I partially contributed to the ideas,
design of experiments, and technical presentation. However, I was not involved in the actual
implementation of experiments and generating results presented therein.

• P. Chandramouli, K. V. Gandikota “Blind single image reflection suppression for face
images using deep generative priors,” Proc. IEEE International Conference on Computer
Vision Workshops (ICCVW), 2019.

• G. Hegde*, A. N. Ramesh*, K. V. Gandikota*, R. Obermaisser, M. Moeller “A Simple
Domain Shifting Network for Generating Low Quality Images” Proc. 25th International
Conference on Pattern Recognition (ICPR), 2020

• S. Agnihotri, K. V. Gandikota, J. Grabinski, P. Chandramouli, M. Keuper “On the unrea-
sonable vulnerability of transformers for image restoration and an easy fix”. Proc. IEEE
International Conference on Computer Vision Workshops (ICCVW), 2023.

Chandramouli & Gandikota [2020] deals with reflection removal for facial photographs taken
through transparent surfaces. This is a challenging and ill-posed problem due to the inherent
ambiguity in separating the averaged colors and textures and assigning them to one of the
two layers. To reduce ambiguity in single image reflection suppression, we utilize a deep
generative autoencoder prior trained on facial images for the background layer, and develop
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an optimization scheme to recover reflection-free facial images using both the encoder and
the decoder in model based optimization. Such an optimization would alleviate the problem
of representation error between the actual image and its nearest neighbor in the range space
of the generator. In contrast, using a latent space optimization would result in a higher
representation error, which is exacerbated when the face image to be recovered is out of
distribution to the training set. The proposed approach compares favorably to recent deep
network based reflection separation approaches when evaluated on synthetic and real world
facial images containing reflections.

Hegde et al. [2020], deals with the problem of classifying low quality images captured by robot
camera without any low quality labeled training data specific to the classification task. To
deal with this problem, we propose to train a regression network to translate high quality
images to mimic images captured by a specific low quality camera, using unlabeled image
pairs. This domain-shifting network can then be used to generate low quality images for
novel classes. We train a classifier to learn an invariant representation across the source
domain (high quality images) and the target domain (low quality images), by training on
data from both the domains. We demonstrate the utility of this approach for zero-shot and
unsupervised domain adaptation for low quality image recognition.

Agnihotri et al. [2023] also deals with adversarial robustness of deep learning based image
deblurring similar to Chapter 4, yet the focus is on Transformer based architectures. In this
work, we analyze adversarial robustness of a recent transformer based network (Zamir et al.,
2022) and network architectures derived in (Chen et al., 2022a) by reducing the complexity of
the network proposed by (Zamir et al., 2022), with modifications to attention mechanism,
and activation functions. This study is particularly interesting in the light of recent works (Xie
et al., 2020; Bai et al., 2021) which demonstrate the importance of the choice of activation
function in boosting adversarial robustness. In tune with our observations in Chapter 4, we
find that restoration networks, even Transformer based ones, are not inherently robust when
trained using standard training protocols. We show that simple adversarial training using
single-step attacks can significantly improve robustness, and uncover interesting effects due
to the interplay of different attention mechanisms and nonlinearities on adversarially robust
generalization.



Part II

B A C K G R O U N D



2
A D V E R S A R I A L R O B U S T N E S S

We consider a neural network G to be a function G : X ×Rp →Y that maps data x ∈X from
some suitable input space X to some prediction G (x;θ) ∈Y in an output space Y , where
the way this mapping is performed depends on parameters θ. Assuming that the training and
test data are identically distributed, the standard training of networks is based on principles
of empirical risk minimization (ERM)

min
θ

∑
examples i

L
(
G

(
xi ;θ

)
; y i

)
. (2.1)

The parameters θ of network G are typically updated via gradient descent based steps using
back-propagation (Rumelhart et al., 1986) to minimize the empirical risk (average loss) L

on all the data samples (xi , y i ) across the entire training set. Neural networks trained in this
manner have achieved impressive performance across several computer vision benchmarks.
However, when the assumption that the train and test data belong to the same underlying
distribution is violated, the trained models fail. This is a very concerning issue that needs to
be solved to deploy machine learning systems in safety critical applications.

2.1 A D V E R S A R I A L AT TA C K S

An extreme version of fragility of the deep neural networks is demonstrated through ad-
versarial examples. Adversarial examples are a result of imperceptible changes to inputs
that are almost indistinguishable to human eye. Yet, these changes result in catastrophic
failures of the state of the art neural networks (Szegedy et al., 2014; Goodfellow et al., 2015). A
popular illustration of adversarial attacks is depicted in Fig. 2.1, where the addition of a tiny
perturbation results in a trained classifier network misclassifying a panda as a gibbon. To a
human observer, both the original image and the adversarial image look identical. Adversarial
attacks are further categorized into “white box”, “black box” and “gray box” attacks. White
box attacks are the strongest as the adversary has complete access to model parameters and
thus can optimize for the adversarial examples accordingly.

max
x̃∈Sδ(x)

L
(
G (x̃;θ) ; y

)
, (2.2)

where Sδ(x) represents the set of allowable examples that are similar to the original example
x according to some measure of distortion. In contrast, in a black box attack, the adversary
can only query the model on inputs, and update the adversarial perturbation based on the
output labels or confidence scores. In the case of gray box attacks, the adversary has some
access to the network setup, for instance, the architecture and the training procedure of the
model may be known, but not the exact model parameters.

9
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Figure 2.1: Illustration of adversarial attack from Goodfellow et al. (2015) which causes a state of the art deep network
classifier to predict an adversarially perturbed image of a panda as a gibbon with high confidence.

2.1.1 Additive Adversarial Perturbations

As image classification is the most extensively studied task in the context of adversarial
robustness, in the following, we describe adversarial attacks for image classification. Similar
attacks have also been extended to networks trained for other computer vision tasks such as
semantic segmentation (Arnab et al., 2018; Agnihotri and Keuper, 2023; Rony et al., 2023),
object detection (Fischer et al., 2017; Xie et al., 2017), image reconstruction (Antun et al.,
2020; Choi et al., 2019). Among the different types of adversarial attacks, white box attacks
with norm-constrained additive perturbations (Goodfellow et al., 2015; Madry et al., 2018)
are the most widely considered attacks in the adversarial robustness literature. Here, the
objective is to change the network prediction subject to some ℓp norm constraint on the
additive perturbation. The attacks can further be categorized as targeted and untargeted
attacks. When the objective is to only misclassify the input image, regardless of which wrong
label is predicted, it becomes an untargeted attack:

δad v = argmax
δ

L
(
G (x +δ;θ) , y

)
s.t. ∥δ∥p ≤ ϵ. (2.3)

When the goal is to find an additive image perturbation that makes the network under attack
predict a specific target label ỹ , it becomes a targeted attack:

δad v = argmin
δ

L
(
G (x +δ;θ) , ỹ

)
s.t. ∥δ∥p ≤ ϵ. (2.4)

where L is usually the cross entropy loss for attacks on image classification networks. Due to
the non-convexity of neural network loss landscape, exactly solving the optimization prob-
lems eq. (2.3),eq. (2.4) is hard. For small neural networks, these can be solved exactly using
mixed integer linear programming, which allows multiple additional constraints to be exactly
imposed (Fischetti and Jo, 2018). However, this approach is computationally intractable for
large deep neural networks used in practice. Common practical implementation of adversar-
ial attacks employs approximate solutions using a limited number of gradient ascent based
steps. Different attack algorithms have been proposed by varying the optimization algorithm
used. The simplest of such attacks is the fast gradient sign method (FGSM) (Goodfellow et al.,
2015) which uses a single projected gradient ascent step to obtain ℓ∞ norm constrained
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adversarial examples. Untargeted adversarial perturbations with a perturbation budget of ϵ
are generated using the FGSM attack as:

δad v = ϵ · sign
(∇δL

(
G (x +δ;θ) , y

))
(2.5)

Instead of a single step, basic iterative method (BIM) (Kurakin et al., 2018), iteratively applies
FGSM multiple times with step size α, and clipping the resulting adversarial noise according
to the perturbation budget at each iteration:

δt+1 = clip
(
δt +α · sign

(∇δt L
(
G (x +δt ;θ), y

))
, [−ϵ,ϵ]

)
(2.6)

This results in a stronger attack than single-step FGSM. Due to the highly non-convex na-
ture of neural network loss-landscape, such signed gradient ascent based methods have
demonstrated more success in finding adversarial perturbations (Bernstein et al., 2018) in
comparison to the classical gradient ascent methods which were shown to be less effective
(Athalye et al., 2018). The signed gradient step, in fact, corresponds to the normalized steepest
ascent steps of the form

δt+1 = δt +argmax
∥v∥∞≤α

vT∇δt f (δt ), (2.7)

whose solution is given as

δt+1 = δt +α · sign
(∇δt f

(
δt )) , (2.8)

where we denoted L
(
G (x +δt ;θ), y

)
) as f (δt ) for convenience. Clipping δ to lie in the

range [−ϵ,ϵ] corresponds to projection onto an ℓ∞ norm ball of radius ϵ. This attack can
be generalized to any ℓp norm constraint on the perturbation by projection P onto the
corresponding norm ball of radius ϵ. For ℓ2 norm constraints, this becomes:

δt+1 = P
∥·∥2≤ϵ

(
δt +α · sign

(∇δt f
(
δt ))) , with P

∥·∥2≤ϵ
(z) = ϵ

z

max{ϵ,∥z∥2}
. (2.9)

The adversarial examples (x +δad v ) are subsequently clipped to lie in the range of valid
intensities, which for image data corresponds to [0,1]. To take into account the non-convexity
of the neural network loss landscape, the authors in Madry et al. (2018) propose to run
the attack with multiple random restarts within the ℓp ball of choice to effectively explore
the input space. With a slight abuse of nomenclature, the attack is referred to as projected
gradient descent (PGD) attack. Due to the easy analytical solution for the projection, ℓp norm-
constrained additive adversarial perturbations are the most commonly used attacks. Chapter
6 of this thesis is concerned with evaluating the robustness of deep neural networks for image
reconstruction, where we consider ℓp norm-constrained additive perturbations. Apart from
constraining the norm of perturbation, a few works (Carlini and Wagner, 2017b; Brendel
et al., 2019; Rony et al., 2019) have also considered additive perturbations with the minimum
norm. Carlini and Wagner (2017b) employ an augmented Lagrangian formulation resulting
in a trade-off between misclassification loss and perturbation norm. Brendel et al. (2019)
attack stays close to the decision boundary using the gradient for local linear approximation
while minimizing the norm. Rony et al. (2019) iteratively reduce the perturbation budget of
projected-gradient attacks at each step. We do not discuss these attacks (Carlini and Wagner,
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Figure 2.2: Illustration of localized adversarial attacks. Shown on the left is a patch attack taken from Yakura et al. (2020) due
to an adversarial ‘bug’ on the stop sign. Shown on the right is an adversarial attack caused by modifying a single pixel, image
taken from Su et al. (2017).

2017b; Brendel et al., 2019; Rony et al., 2019) in more detail, as these are beyond the scope of
attacks used in this thesis.

2.1.2 Beyond Additive Perturbations

While additive perturbations with ℓp norm constraints are the most popular type of adver-
sarial attacks, these attacks tend to modify every pixel in the image. However, the ℓp norm
metric is not the only way to measure image similarity. A small translation or rotation of
an image results in a transformed image with a high similarity with the original. Yet, such
a transformation can induce a large change in the ℓp norm metric, which only measures
pixel-wise similarity. A number of adversarial attacks have been proposed which impose
constraints on alternate distortion measures between the original and perturbed images
to obtain realistic adversarial samples. For instance, Wong et al. (2019); Wu et al. (2020a)
propose to constrain the perturbation budget in terms of Wasserstein distance between the
clean and adversarial samples. A few approaches have considered localized perturbations
such as adversarial patches (Brown et al., 2017) or even modifying a single pixel in an image
to change network prediction (Su et al., 2017). Some of these localized adversarial attacks are
also physically realizable (Kurakin et al., 2018), for example, glasses to fool facial recognition
(Sharif et al., 2016), stickers based on adversarial patches to attack traffic sign recognition
systems (Eykholt et al., 2018), adversarial prints to fool object recognition systems (Wu et al.,
2020b). Fig. 2.2 illustrates such localized attacks on deep learning based image recognition
systems. In this thesis, we also develop localized adversarial attacks in the context of image
reconstruction where an additive adversarial perturbation leads to a desired localized change
in the reconstructed image.

Another highly concerning phenomenon is the susceptibility of neural networks to sim-
ple geometric transformations of images, which can occur due to natural factors such as
viewpoint changes. Examples include vulnerabilities to small translations and rotations (En-
gstrom et al., 2017; Finlayson et al., 2019) or spatial deformations (Xiao et al., 2018), viewpoint
changes (Dong et al., 2022). Fig. 2.3 depicts instances of such spatial adversarial examples.
We can observe that trained classifiers can be misled by an adversarially optimized flow
field, or even by translations and rotations. While transformations such as large rotations are
rarely observed in natural images (such as an upside down tree), full rotational invariance is
desirable in certain critical applications such as medical image classification, where images
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Figure 2.3: Illustration of geometric adversarial attacks constructed by i) adversarial spatial deformation field (left), taken
from Xiao et al. (2018), ii) adversarial translation and rotation (middle), taken from Engstrom et al. (2019) and iii) adversarial
rotation (right), taken from Finlayson et al. (2019). Adversarial predictions are denoted in red.

do not have an inherent orientation. For instance, a change in viewing angle must not change
the classification of a lesion from that of benign to malignant or vice-versa. In this thesis, we
develop approaches to obtain robustness and invariance against transformations such as
rotations and translations which can be modeled as group actions.

2.2 A D V E R S A R I A L D E F E N S E

For safe deployment of machine learning models in the real world, they need to be robust to
small variations in test inputs. Several approaches have been proposed to improve the ro-
bustness of models to adversarial attacks. On the other hand, stronger adversarial attacks are
proposed which with the knowledge of the defense mechanism, can bypass many defenses.
In the following, we attempt to provide an overview of adversarial defense techniques.

2.2.1 Preprocessing Techniques

Simple preprocessing techniques have been used to defend models against adversarial attacks.
These include the use of JPEG compression (Das et al., 2018), random resizing and padding
(Xie et al., 2018), total variation minimization, bit depth reduction, image quilting (Guo et al.,
2018). However, transformation based defenses against additive adversarial perturbations
can be easily overcome by an adversary with the knowledge of the transformation being used.
Even defenses employing non-differentiable transformations could be bypassed by using
differentiable approximations (Athalye et al., 2018). While earlier works suggested that the
use of randomized transformations is difficult to circumvent for an adversary (Raff et al.,
2019), more recent work (Gao et al., 2022) shows that even the effectiveness of stochastic
defenses can be reduced. Some defense mechanisms also use multiple transformed versions
of input, for instance, randomized smoothing (Cohen et al., 2019) which makes predictions
by feeding multiple copies of the input with additive Gaussian corruptions to the classifier
being defended. Transformation based defenses have also been proposed for attacks other
than additive perturbations, for example, using multiple randomized crops to defend against
patch attacks (Lin et al., 2021) or pooling the features of multiple rotated versions of an image
to improve robustness to rotations (Manay et al., 2006; Laptev et al., 2016). Some defense
approaches propose to purify inputs by removing adversarial perturbations to reconstruct the
clean samples. These include methods that reconstruct images using sparse representation
techniques (Sun et al., 2019; Lu et al., 2022), or by projecting inputs onto the data manifold of
trained generative models such as generative adversarial networks (GANs) (Samangouei et al.,
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2018), or more recently using diffusion-based generative models (Nie et al., 2022) by adding
randomly sampled noise, followed by iterative denoising using a trained diffusion model.
In chapter 5 of this thesis, we develop a technique that theoretically guarantees invariance
of models to transformations such as rotations which form a group. This technique can be
considered as a preprocessing step that undoes the transformation by consistently orienting
an input before feeding the data into the actual network.

2.2.2 Robustness by Architecture

An alternate approach to improve robustness is through the use of robust network archi-
tectures. Different works study the influence of architecture on adversarial robustness at
different levels of granularity ranging from choice of basic architecture itself, for instance,
CNNs versus vision transformers (Shao et al., 2022; Bai et al., 2021), to specific blocks within a
class of architectures, for example, residual blocks in (Huang et al., 2023), down to modifying
specific components such as pooling (Grabinski et al., 2022) or skip connections (Li et al.,
2020c) to improve adversarial robustness. While Shao et al. (2022) suggest relatively higher
robustness of vision transformers in comparison to CNNs, Bai et al. (2021) demonstrates
a similar degree of adversarial robustness for both under identical training protocols. A
closer investigation by Croce and Hein (2022) on the effect of components such as patches,
convolution, and attention revealed small architectural modifications can significantly im-
prove robustness. Further, some recent works also propose to search for neural architectures
(Huang et al., 2021; Guo et al., 2020) to obtain adversarially robust architectures. While all
these methods mainly focus on additive adversarial perturbations, provable robustness to
certain transformations is easier achieved via network architectures which include invari-
ances to these transformations by design. Examples include equivariant/invariant networks
for rotations (Oyallon and Mallat, 2015; Cohen and Welling, 2016; Worrall et al., 2017), and
shifts (Sifre and Mallat, 2013; Rojas-Gomez et al., 2022).

2.2.3 Adversarial Training

Perhaps one of the most effective defenses to counteract the threat of adversarial examples
is adversarial training. Instead of the standard ERM training, adversarial training employs
the principles of robust optimization (Wald, 1945; Ben-Tal et al., 2009) to optimize for the
maximum risk (loss) to confer better robustness properties. Instead of training directly on
data samples, training is performed on corresponding adversarially generated samples (Gu
and Rigazio, 2014; Goodfellow et al., 2015; Madry et al., 2018), which yields models robust to
adversarial perturbations. For norm-bounded additive adversarial perturbations, adversarial
training involves the following:

min
θ

∑
examples i

max
δi :∥δi ∥≤ϵ

L
(
G (xi +δi ;θ); y i

)
(2.10)

In principle, any of the methods introduced in section 2.1.1 may be used for obtaining
solutions to the inner maximization, and these adversarial examples are in turn used for
training the network (the outer minimization problem). While adversarial training using
single-step attacks such as FGSM is less expensive (Goodfellow et al., 2015), models trained
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using FGSM adversarial training are still susceptible to iterative attacks (Kurakin et al., 2018;
Tramèr et al., 2018). Further, adversarial training using FGSM examples could be affected
by catastrophic over-fitting (Wong et al., 2020; Kim et al., 2021). Several recent works (Wong
et al., 2020; Andriushchenko and Flammarion, 2020; Zhang et al., 2022; de Jorge Aranda et al.,
2022) attempt to improve the effectiveness of single-step adversarial training, which remains
an active area of research. In contrast, adversarial training using PGD generated adversarial
examples results in a model that is robust to norm-bounded attacks (Madry et al., 2018).
Further, models trained against PGD attacks have also been shown to be robust against other
attacks (Zheng et al., 2019). However, adversarial training using PGD (with random restarts)
is very expensive.

On the other hand, robustness gains through adversarial training are accrued at the cost
of reduced accuracy on clean samples (Tsipras et al., 2019), which is undesirable. This can
be partially mitigated by using both natural and adversarial examples during training. Al-
ternately, Miyato et al. (2018); Zhang et al. (2019a) proposed a modified training scheme to
minimize the difference in network output on clean and adversarial data, which mitigates
this trade-off to some extent. Schmidt et al. (2018) suggested that adversarially robust general-
ization requires more data than for standard learning. Several follow-up works demonstrated
improvements in robust generalization using additional data in adversarial training and
regularization. Examples include the use of unlabeled examples (Carmon et al., 2019; Alayrac
et al., 2019), data samples synthesized via data augmentation (Rebuffi et al., 2021; Gowal
et al., 2021) or using generative models (Wang et al., 2023c). Yet, the achieved adversarial
robustness is far from satisfactory. Even after all the advancements, the current state of
the art1 robust classification accuracy with perturbation budget of 8/255 in ℓ∞ norm for
CIFAR-100 is only 42.67%, even after using an additional 50 million synthetic images during
training.

While we mainly discussed adversarial training against norm-constrained additive per-
turbations, similar defense mechanisms were also explored for alternate attack paradigms,
including adversarial training against patch attacks (Rao et al., 2020) and spatial transfor-
mations (Engstrom et al., 2019; Yang et al., 2019). In the case of the latter, architectures
that include a provable invariance to specific spatial transformations by design outperform
adversarial training.

2.2.4 Further Defense Mechanisms

In the following, we briefly discuss defense mechanisms not encountered in this thesis, for
the sake of providing an overall overview:

A D V E R S A R I A L E X A M P L E D E T E C T I O N Adversarial defense via detection works by re-
jecting inputs that are classified as adversarial by a detector (Metzen et al., 2017; Xu et al.,
2017). The detection techniques can further be categorized as supervised and unsupervised
detection methods, based on the knowledge of the attack mechanism or the lack thereof.
Supervised methods train a detector to distinguish adversarial examples by training on both
natural and adversarial examples, for instance, using features extracted from the defended
network (Metzen et al., 2017; Carrara et al., 2018; Lu et al., 2017), or their statistics (Feinman

1 https://robustbench.github.io accessed on April 21, 2023.

https://robustbench.github.io
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et al., 2017; Grosse et al., 2017; Roth et al., 2019). Unsupervised methods rely only on natural
samples, for example, by utilizing the inconsistencies between transformed versions of inputs
(Meng and Chen, 2017; Xu et al., 2017). Recent works (Carlini and Wagner, 2017a; Bryniarski
et al., 2022), however, show that most state-of-the-art detection-based defenses could be
bypassed by detection-aware attacks which can simultaneously fool the original classifier
and the detector.

C E R T I F I E D R O B U S T N E S S In contrast to the empirical defense mechanisms discussed so
far, certified defense mechanisms attempt to produce a certificate that no attack can induce
the network to produce outputs with error beyond a certain value. Training networks to
have a verifiably low robust error would require computing worst-case error exactly at each
training step, which is intractable beyond small networks. To deal with this intractability,
(Wong and Kolter, 2018; Raghunathan et al., 2018) employ an alternate approach, which
involves computing an upper bound for the worst-case loss to certify a network’s robustness
against all attacks for a given input. While this provides a certifiable bound, robust training
networks using the upper bounds are still outperformed by adversarial training in empirical
robustness evaluations.



3
I M A G E R E C O N S T R U C T I O N : F R O M M O D E L B A S E D A P P R O A C H E S T O
N E U R A L N E T W O R K S

The goal of image reconstruction is to recover an unknown image from indirect or distorted
measurements. Let f , A, u and n represent the measurement, forward operator, ground truth
image and measurement noise respectively, the measurement process can be described as,

f = A(u)+n. (3.1)

When the forward measurement process is linear, eq. (3.1) can be expressed as

f = Au +n, (3.2)

and recovering u becomes a linear inverse problem, which is what we focus on in this
thesis. Depending on the operator A, we have different reconstruction problems, some
examples are uniform deblurring, where A corresponds to a convolution with a blur kernel,
super-resolution, where A is modeled as blur followed by downsampling, for computed
tomography reconstruction, where A is given by the 2D Radon transform (Radon, 1986),
compressive sensing, where A corresponds to an acquisition mask. In many image recovery
problems encountered in practice, the measurements are incomplete, which causes the
recovery problem to be ill-posed. Sometimes, the measurement operator is also unknown, in
which case, it becomes a blind reconstruction problem. In the following, we discuss different
approaches to recover the image û from the measurement f .

3.1 C L A S S I C A L A P P R O A C H E S

Classical approaches explicitly take into account the known forward model in the solution
criteria. One of the earliest approaches to eq. (3.2) is the solution to the least squares problem
argmin

u

∥∥Au − f
∥∥2, given by û = A† f , where A† is the pseudo-inverse. This is the minimum

norm solution to eq. (3.2) with no components in the null space of A, and satisfies perfect data
consistency when there is no measurement noise. This however can overfit to measurement
noise, and become very unstable in case of an ill-conditioned pseudo-inverse. Pseudo-inverse
solutions can be stabilized by regularization or inexact computation of the pseudo-inverse,
for example using reduced iterations of conjugate gradient (Hestenes et al., 1952). Further,
even in the noise-less case, any solution of form (A† f +u∆) is also valid as long as u∆ lies in the
non-trivial null space of A. The following questions then arise: How to model the properties
of meaningful/physically plausible solutions (prior knowledge)? How to recover solutions
that are meaningful from the set of all solutions that are consistent with the measurements?
There are two different classical paradigms to image recovery that address these questions
- the variational approach and the Bayesian approach. Variational approach selects an
optimization criterion, and incorporates prior knowledge through regularization. In the
Bayesian approach, all unknowns are treated as stochastic quantities, and prior knowledge is
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incorporated into the problem formulation through the probabilistic models used to model
the unknown quantities.

3.1.1 Variational Methods for Image Recovery

Variational approaches (Benning and Burger, 2018) find a minimizer of the energy function,
with a term penalizing data discrepency and a regularization term to model prior knowledge
about the latent image

û = argmin
u

E(A,u, f )+R(u). (3.3)

Commonly used forms of the data discrepency term E (A,u, f ) include squared error 1
2∥Au −

f ∥2
2 or absolute error ∥Au − f ∥1. The term R(u) corresponds to regularization which encour-

ages certain desired properties in a solution.

R E G U L A R I Z AT I O N One of the earliest methods for regularizing ill-conditioned problems
is Tikhonov regularization (Tikhonov, 1963), with R(u) of the form ∥Λu∥2

2. When Λ is a scaled
identity matrix, this becomes ℓ2 regularization on the latent image. The most commonly
encountered priors in the literature are however sparsity and low-rank promoting priors
in some transform domain (Mairal et al., 2014; Donoho and Elad, 2003), which encode the
prior knowledge that clean noiseless images typically admit sparse representations. One
example is the widely studied total-variation seminorm (TV) regularization ∥∇u∥2,1 (Rudin
et al., 1992) which encourages sparsity in gradient domain, and was successfully applied in
several image recovery tasks including non-blind deconvolution (Getreuer, 2012; Bioucas-
Dias et al., 2006), CT reconstruction (Sidky et al., 2006; Chen et al., 2013), blind deconvolution
(Perrone and Favaro, 2014). Further, sparsity based regularization have been proposed using
ℓ1 and nuclear norms based functions in transform domains such as wavelets (Figueiredo
et al., 2007), curvelets (Starck et al., 2002), gradients (Xu et al., 2013), higher order gradients
(Lefkimmiatis et al., 2013), or coefficients of over complete dictionary (Bruckstein et al.,
2009; Elad and Aharon, 2006). These regularizers are grounded in theory (Donoho, 2006;
Elad, 2010; Chambolle et al., 2010) and could achieve competitive results in many image
recovery tasks. Apart from sparsity priors, other types of priors have also been proposed,
for example, priors relying on local self-similarity (Freedman and Fattal, 2011), internal
patch recurrence in images (Zontak and Irani, 2011; Michaeli and Irani, 2014). The choice
of prior determines the structural properties of the solution (Rott Shaham and Michaeli,
2016), for instance, TV regularization encourages piece-wise constant solutions, whereas self-
similarity prior promotes images with similar-looking structures at different scales. Further,
the choice of regularizing prior also determines whether certain convergence guarantees can
be provided for the variational approach, depending on the theoretical constraints satisfied
by the regularizer.

S O LV I N G T H E VA R I AT I O N A L M I N I M I Z AT I O N P R O B L E M One simple way to solve the
minimization problem eq. (3.3) would be using gradient descent with a suitably selected step
size. When either the data consistency term E(A,u, f ) or the regularizer R(u) is non-convex
w.r.t u, using gradient descent can not guarantee convergence to the global optimum. On
the other hand, when both E (A,u, f ) and R(u) are convex, suitable methods from the convex
optimization literature such as (Nikolova and Ng, 2005; Beck and Teboulle, 2009; Chambolle
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and Pock, 2011; Boyd et al., 2011) can be selected depending on the structure of R(u) to
accelerate convergence to the global optimum. Further, some of these methods can also be
extended to non-convex energies (Bolte et al., 2018; Valkonen, 2021), however, they can only
be guaranteed to converge to some stationary point and not the global optimum.

3.1.2 Bayesian Approach for Image Recovery

The Bayesian approach to inverse problems involves modeling the unknown image u and
the measurement f as realizations of random variables (Kaipio and Somersalo, 2006) with
respective distributions P (u) and P ( f ). The prior distribution P (u) encodes the desired
properties of the solution, with a suitably selected prior giving a high likelihood for ’good’
images and a low likelihood otherwise. Some examples of Bayesian priors include generalized
Gaussian priors (Bouman and Sauer, 1993), Markov random field models (Li, 1994), edge-
preserving priors (Chantas et al., 2006), Bayesian priors based on wavelets (Bioucas-Dias,
2006), Gaussian mixture models on patches (Zoran and Weiss, 2011), and priors combining
multiple probabilistic models such as field of experts (Roth and Black, 2009).

Given a measurement f , the inverse image to be recovered is characterized by its condi-
tional distribution P (u| f ) known as the posterior, which is derived from the likelihood P ( f |u)
and the prior P (u) using Bayes theorem. The solutions to the Bayesian inversion problem
may be obtained by sampling the posterior or through estimators such as the minimum
mean square error (MMSE) estimate which is the conditional mean of the posterior, or the
maximum-a-posteriori (MAP) estimate. Further, the MAP estimate can be related to the
variational methods, with the data discrepency term corresponding to the likelihood, and the
regularizer corresponding to the prior.

3.2 D E E P L E A R N I N G F O R I M A G E R E C O N S T R U C T I O N

Following the success of deep neural networks in higher level vision tasks, deep learning
approaches are increasingly being adopted in image reconstruction and restoration. These
encompass a wide array of methods. In the following, we review the different deep learning
approaches for such ill-posed image recovery problems.

3.2.1 Fully Learned Methods

These methods learn to directly invert the forward imaging model as

û =G ( f ;θ). (3.4)

Most commonly, the deep networks using direct inversion are trained in a supervised manner
by minimizing some distortion measure between the network output with respect to the
ground truth as

min
θ

∑
examples i

L (G ( fi ;θ),ui ). (3.5)

Earlier works (Xie et al., 2012; Burger et al., 2012; Kim et al., 2016; Zhang et al., 2017b) used
simple pixel-wise ℓ2 or ℓ1 reconstruction losses with respect to the ground truth. Further
improvements were observed by more advanced loss functions, for instance, losses based on
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structural similarity metric (Zhao et al., 2016), perceptual losses (Johnson et al., 2016) which
employ deep features extracted from pretrained image classification networks, adversarial
losses by discriminating between the network output and the clean data distribution (Wang
et al., 2018a; Kupyn et al., 2019) in addition to pixel-wise losses, or even using task-specific
learned loss functions (Mustafa et al., 2022). Along with improved loss functions, recent deep
networks for image recovery (Zamir et al., 2022; Chen et al., 2022b; Mansour et al., 2022; Pang
et al., 2022; Tu et al., 2022) adopted recent innovations in deep learning architectures such
as transformers (Vaswani et al., 2017), MLP mixers (Tolstikhin et al., 2021) leading to further
performance improvements. As the direct inversion approaches do not typically take into
account the forward imaging model in the reconstruction process, they can also be used
when the forward model is not known or cannot be modeled accurately, for example, in blind
image restoration tasks (Noroozi et al., 2017; Zamir et al., 2022).

3.2.2 Deep Neural Network Post-processors

This involves a two-step approach where an initial reconstruction is obtained by an an-
alytical reconstruction operator B †(·), which maps measurements to image space, and a
post-processing network is trained to remove artefacts from this initial reconstruction:

û =G
(
B †( f )

)
. (3.6)

Examples of this approach include using a learned network G to remove artefacts from the
initial solution obtained by pseudo-inverse operation or adjoint operation for compressive
sensing (Mousavi et al., 2015) or under-sampled magnetic resonance imaging (Lee et al.,
2017) or a filtered-back-projection operator for CT recovery (Chen et al., 2017). A common
approach for such post-processing networks is to use residual learning (He et al., 2016) to
recover the difference between initial reconstruction and ground truth. While this approach
provides good reconstruction performance, this may not guarantee data consistent solutions.
To address this, (Schwab et al., 2019) explicitly constrain the learned residual to be in the null
space of the forward operator and provide convergence guarantees for their approach.

3.2.3 Unrolled Optimization Networks

While post-processing networks use the model knowledge once to obtain an initial estimate
using a known operator to go from measurement space to image space, unrolled optimiza-
tion (Gregor and LeCun, 2010) uses this knowledge to alternate between measurement and
image spaces in an iterative algorithm with a fixed number of iterations, where some of the
intermediate operations are learned using parameterized deep network modules. Starting
with (Gregor and LeCun, 2010), several works explored unfolding different model-based
algorithms, for instance, learned ISTA (Gregor and LeCun, 2010; Zhang and Ghanem, 2018),
learned ADMM (Sun et al., 2016) learned gradient descent (Adler and Öktem, 2017; Gong
et al., 2020), learned primal-dual (Adler and Öktem, 2018), proximal gradient algorithms
(Mardani et al., 2018; Putzky and Welling, 2017). The learning can be performed at different
levels of abstraction, from learning the same hyperparameters for all iterations which is run
till convergence (Gong et al., 2020), to using different hyperparameters for each iteration, or
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learning neural network modules to approximate proximal steps for each iteration (Adler and
Öktem, 2018). Instead of learning a different set of network parameters for the proximal step
in each iteration, a few works (He et al., 2018; Gupta et al., 2018; Aggarwal et al., 2018) share
the same network for the proximal steps across iterations.

In comparison with the fully learned approaches, unrolled networks tend to require less
training data, and allow for more interpretable, and parameter-efficient learning (Monga
et al., 2021). Further, learning on specific datasets allows them to capture data-dependent
context resulting in better performance than classical approaches. As the unrolled networks
are trained typically using a small number of unrolled steps, the inference is also faster in
comparison to classical optimization-based approaches, which may need more iterations to
converge. On the other hand, testing unrolled networks using more inference steps than used
in training typically results in severe artifacts. Recent work (Gilton et al., 2021a) addresses
this shortcoming through deep equilibrium models (Bai et al., 2019) which incorporate fixed-
point convergence by construction, and sharing the same set of parameters across iterations.
This allows the learned optimization scheme to be unrolled for arbitrary iterations without
any degradation in reconstruction quality.

3.2.4 Neural Network Priors for Variational Inference

While unrolled optimization networks do learn modules that substitute proximal operation
or gradient with respect to a regularizer at each step, these are not necessarily shared across
unrolled steps. Further, task-specific supervised training means that these modules suffer
from performance drop when there are modifications to the forward operator. An alternate
approach is to use neural networks as priors in variational inference. In contrast to the dedi-
catedly trained networks, this approach endows the algorithm with the flexibility to handle
different measurement models, while improving up on the performance of handcrafted
priors. This class of methods includes learning regularizers, using trained networks such as
denoisers, generative models, and even untrained neural networks as priors in variational
image recovery. We now discuss each of these approaches.

Learned Regularizers

In this approach, one learns a regularizer or some parameters of a regularizer for subsequent
use in an iterative optimization scheme. Some example non-deep learning methods to data-
driven regularizers include learning linear sparsity promoting dictionaries (Bruckstein et al.,
2009), Gaussian mixture models learned on image patches (Zoran and Weiss, 2011), field of
experts (Roth and Black, 2009) which learn the distribution of filter responses on images,
and learning task-specific regularizers (Gilboa, 2013). We now briefly discuss some deep
learning approaches to learning regularizers. One approach is to explicitly parameterize
the regularization functional using a neural network R(u;θ), (Li et al., 2020b; Lunz et al.,
2018; Mukherjee et al., 2021; Kobler et al., 2020; Goujon et al., 2023) which may be trained
based on different objectives. While Li et al. (2020b) use a neural network trained to penalize
artifacts in the recovered solution, Kobler et al. (2020) train a neural network regularizer
motivated by sparsity penalties. Lunz et al. (2018); Prost et al. (2021); Mukherjee et al. (2021)
learn regularizers which are trained adversarially to distinguish between samples from the
training data distribution and degraded samples. Instead of directly parameterizing the



3.2 D E E P L E A R N I N G F O R I M A G E R E C O N S T R U C T I O N 22

regularizers, Chang et al. (2017) learn a proximal operator with respect to regularizer, Heaton
et al. (2022) learn projection operators onto clean data manifolds, and Moeller et al. (2019)
learn a descent direction using parameterized deep networks. While learned regularizers
improve reconstruction performance over handcrafted priors, they may not always guarantee
convergence. Guaranteeing stability or convergence requires imposing additional constraints
on the regularizer. Moeller et al. (2019) train networks to output descent direction with a
provable convergence to a minimizer of the energy. Some works constrain the regularizer
to ensure a convergent iterative scheme. Lunz et al. (2018); Mukherjee et al. (2021) impose
Lipschitz-continuity on the regularizer via a soft-penalty, and Mukherjee et al. (2020) enforce
convexity of regularizer using input convex networks (Amos et al., 2017) for stability and
convergence.

Denoiser Priors

There are two main approaches to using denoiser priors for image recovery- as proximal
operators, or in a functional representing the gradient of regularizer. Plug-and-Play (PnP)
methods (Venkatakrishnan et al., 2013; Chan et al., 2016) replace proximal operators with
respect to regularizer by generic denoisers such as non-local means (Buades et al., 2005) or
BM3D (Dabov et al., 2007) in proximal splitting algorithms. Subsequently Zhang et al. (2017c);
Meinhardt et al. (2017) proposed the use of pretrained neural network denoisers as proximal
operators with good empirical results. In a follow-up work, Zhang et al. (2021b) proposed a
more powerful denoiser for PnP image recovery. An alternate approach is regularization by
denoising (RED) using denoisers Dθ in a regularization functional of the form 〈u,u −Dθ(u)〉
(Bigdeli et al., 2017; Romano et al., 2017) in a gradient descent based scheme. While both
PnP and RED approaches empirically provide very good reconstructions, they require strong
conditions on the denoiser to have convergence guarantees. The denoiser replacing the
proximal operator should be non-expansive, or in the RED framework, the denoiser should
additionally have a symmetric Jacobian. These restrictive conditions are not satisfied by
arbitrary denoising networks (Reehorst and Schniter, 2018). A few approaches constrain the
denoiser to satisfy properties required for convergence, for instance, Ryu et al. (2019); Terris
et al. (2021) train denoisers with constrained Lipschitz constants, and Cohen et al. (2021)
derive image denoisers with symmetric Jacobians, Hasannasab et al. (2020) parameterize
1-Lipschitz operators for denoising. On the other hand, Sommerhoff et al. (2019) observed
that enforcing non-expansiveness drastically decreased the denoising performance. Instead
of constraining the denoisers, Sommerhoff et al. (2019) project the outputs of arbitrary
denoisers onto the cone of descent directions to a given energy in a (proximal) gradient
descent algorithm for provable convergence.

Generative Priors

This approach involves the use of trained generative models as priors for image recovery.
Generative models such as generative adversarial networks (GANs) (Goodfellow et al., 2014),
variational autoencoders (VAEs) (Kingma and Welling, 2013), diffusion based models (Ho
et al., 2020) are trained to produce new samples from the underlying distribution of the
training data. When the image to be recovered belongs to the distribution of images that a
generative model is trained on, then this unknown image can be modeled by this generative
model. Bora et al. (2017) first proposed the use of deep generative model priors for image
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recovery by optimizing for a vector in the smaller dimensional latent space of a trained GAN
to minimize the reconstruction error:

û =G (ẑ;θ) s.t. ẑ = argmin
z

∥ f − AG (z;θ)∥2, (3.7)

and demonstrated significant improvements over the classical priors for compressive sensing
with very low measurements. Subsequently, several works developed different algorithms for
image recovery using a variety of generative priors. We discuss these approaches in detail in
Chapter 4.

Untrained Neural Network priors

Ulyanov et al. (2018) proposed that the structure of a randomly initialized convolutional
generator can be a good prior to capture natural image statistics, which they referred to as
‘Deep Image Prior (DIP)’. Ulyanov et al. (2018) use DIP to solve inverse problems such as
denoising, inpainting, and super-resolution by optimizing the untrained network weights to
minimize reconstruction error:

û =G (z0; θ̂) s.t. θ̂ = argmin
θ

∥ f − AG (z0;θ)∥2. (3.8)

Subsequent works (Veen et al., 2020; Bostan et al., 2020; Baguer et al., 2020) extend the use of
DIP to solve inverse problems such as compressed sensing, phase microscopy, and low dose
CT recovery, with additional regularization. Ulyanov et al. (2018) used an over-parameterized
UNet (Ronneberger et al., 2015) for G and suggested early stopping of the optimization in
eq. (3.8) to prevent overfitting. Heckel et al. (2019) instead use an under-parameterized
non-convolutional generator which prevents overfitting. More recent works (Chen et al.,
2020b; Ho et al., 2021; Liu et al., 2023b) even search for neural architectures to be used as
deep image priors.

3.3 W H AT M A K E S A G O O D R E C O V E R Y A L G O R I T H M ?

Till now we have discussed approaches to inverse image reconstruction, ranging from classi-
cal approaches to deep learning methods, and a variety of methods using the combination of
both. We now ask what are the desirable properties of a reconstruction algorithm G .

Consistency The most common approach used to evaluate a reconstruction algorithm is by
measuring discrepency of the solution provided by the method with respect to the ground
truth, in terms of the reconstruction error. For a good reconstruction algorithm, it is also
desirable that reconstruction error vanishes as measurement noise tends to zero. Yet, recent
work (Blau and Michaeli, 2018) reported that deep networks trained to minimize such re-
construction error may suffer from a limited perceptual quality. Further, in case of ill-posed
problems, the ground truth would be only one instance among many solutions that explain
the measurement equally well. Therefore, a reconstruction algorithm that guarantees a high
data consistency with the measurement, while satisfying certain desired image properties
is more reasonable. For variational regularization methods, such guarantees are provided
through fixed point convergence to the minimizer of energy (Benning and Burger, 2018). As
discussed in the previous sections, many deep learning approaches do not come with such
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guarantees, and some guarantees may be obtained by explicitly constraining the network or
network-based iterative schemes.

Reconstruction Quality It is desirable that a reconstruction algorithm produces natural-
looking images with high perceptual quality, free from artifacts. This perceptual quality
may be quantified using the deviation of the reconstructions from natural image statistics
(Blau and Michaeli, 2018), through divergence between distributions of reconstructions and
natural images (in the training data). Another popular approach to measuring perceptual
quality is by measuring deviation between the deep features of reconstruction and ground
truth extracted from pretrained networks (Zhang et al., 2018b).

Stability Another important desirable property for reconstruction algorithm is stability, in
the sense that an algorithm’s output varies smoothly with respect to changes in the input, i.e.,∥∥G ( f +δ)−G ( f )

∥∥→ 0 as ∥δ∥→ 0. (3.9)

It is desirable that the maximum deviation in reconstruction with respect to change in mea-
surement δ is controlled, this notion can be formalized by Lipschitz continuity. While stability
is desirable, it can be in conflict with the objective of achieving high accuracy in terms of
proximity to the ground truth, especially for ill-posed problems. Another approach to an-
alyze worst-case stability is by analyzing the behaviour of the reconstruction method with
worst-case inputs in the form of adversarial examples. We discuss in more detail the issues
pertaining to the stability of reconstruction methods in Chapter 6, which deals with the
adversarial robustness of image recovery methods.

Diversity Another desirable property for a reconstruction algorithm is the ability to sample
diverse solutions, especially for ill-posed problems, where different solutions satisfy con-
sistency equally well. Yet, most end-to-end trained networks produce a single solution out
of several valid solutions. Among classical methods, Bayesian image recovery approaches
allow sampling the solution space (by sampling the posterior). Among deep learning ap-
proaches, reconstruction methods utilizing conditional Bahat and Michaeli (2020); Lugmayr
et al. (2020); Buhler et al. (2020) or unconditional generative models Menon et al. (2020);
Montanaro et al. (2022) models permit sampling diverse solutions. A few prior works also
propose to explore solution space using graphical inputs Bahat and Michaeli (2020) or se-
mantic maps Buhler et al. (2020).

Robustness to Measurement Model Changes Another desirable property for an image recon-
struction algorithm is robustness to changes in the measurement model. Classical variational
approaches allow such modifications, for example, changes in the noise model, or modifica-
tions to the forward operator A, or any other change that can be modeled can be incorporated
into the energy minimization by appropriate changes to the energy function. However, end-
to-end trained neural network reconstructors, including the model-based unrolled networks
suffer from a lack of adaptivity. This means that a network trained for a specific forward
operator A, and noise model suffers from a significant performance drop if these are mod-
ified, and therefore have to be retrained for the new measurement model. To address this,
Gilton et al. (2021b) propose fine-tuning based as well as training-free approaches to adapt
trained models to variations in forward operator, whereas Gossard and Weiss (2022) propose
training with different forward operators. Hu et al. (2023) show that unrolled networks based
on deep equilibrium models Gilton et al. (2021a) are robust to changes in measurement
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model. In contrast, learned image priors such as learned regularizers, denoiser priors and
generative priors are trained independent of a specific measurement model, and can be used
in an energy minimization framework with an energy function tailored to any measurement
model.

A significant part of this thesis deals with these issues of consistency, stability, and general-
ization in image reconstruction. We find that adversarial attacks lead to inaccurate results in
terms of proximity to ground truth or clean reconstruction, but the resulting reconstructions
may still maintain a good degree of data consistency. We exploit this observation to design
adversarial attacks on CT recovery to produce diagnostically different solutions with high data
consistency, using deterministic image recovery networks that otherwise produce a single
arbitrary solution. We attempt to obtain consistent solutions to different image recovery
problems using generative priors, by minimizing data discrepancy or by explicitly imposing
data consistency. Thanks to generative priors which are trained independent of the specific
measurement model, these approaches are also conferred with adaptivity and robustness to
changes in the measurement model.



4
D E E P G E N E R A T I V E M O D E L S A N D A P P L I C A T I O N T O I M A G E
R E C O V E R Y

4.1 O V E R V I E W O F D E E P G E N E R AT I V E M O D E L S

Deep generative models have emerged as an important tool for learning data representations
in an unsupervised manner. Given a set of training samples, the goal of generative models
is to learn an approximation of the distribution of the training data according to a chosen
statistical criterion, and produce new samples from the underlying distribution. Generative
models often consider a latent space with a known distribution, such as Gaussian, from which
the latent variables are drawn, these are mapped to the data space by a generator. Different
classes of generative models exist, depending on how the distance between the generated
and actual distributions is measured and approximated during optimization. Popular deep
generative models include generative adversarial networks GANs (Goodfellow et al., 2014),
variational autoencoders (VAEs) (Kingma and Welling, 2013), normalizing flow-based models
(Dinh et al., 2017) and diffusion-based models (Ho et al., 2020). As these models learn to
model the distribution of training data, they can also serve as useful priors for inverse imaging
tasks, when the image to be recovered belongs to the same distribution they are trained on.

Deep generative models can be broadly classified into likelihood-based generative models
and implicit generative models, depending on how they represent probability distributions.
Given a dataset of examples drawn from a distribution, likelihood-based models optimize for
model parameters that maximize the log-likelihood of the training data or an approximation
of the likelihood. Examples of likelihood-based generative models include variational autoen-
coders (Kingma and Welling, 2013), auto-regressive models (Salimans et al., 2017), energy
based models (Grathwohl et al., 2020), normalizing flow based models (Dinh et al., 2017),
and diffusion based or score based generative models (Song et al., 2021b; Ho et al., 2020).
Among these, autoregressive and normalizing flow based models provide exact likelihoods,
whereas VAEs optimize for a lower bound of the likelihood. Diffusion-based models learn the
gradients of the log probability density function of the data distribution (also referred to as
score). Generative adversarial networks (GANs) (Goodfellow et al., 2014) in contrast, do not
compute the likelihoods of training samples, and are examples of implicit generative models.
GAN training involves optimization through a zero-sum game between the generator and the
discriminator. These different generative models have specific limitations. Autoregressive
models have very high sampling costs due to sequential sampling of pixels, normalizing
flows are limited to using specific invertible architectures, and the images produced by VAEs
are often blurry. While GANs can achieve impressive image quality, they suffer from mode
collapse, and the generated samples lack high diversity. Diffusion models, on the other hand,
achieve high fidelity and diversity in the generated images (Nichol and Dhariwal, 2021; Ho
et al., 2020). Yet, the generation process is slower due to iterative sampling, as opposed
to VAEs and GANs which need only a single forward pass of a network to generate image
samples. In the following, we provide an overview of three classes of generative models
which we encounter in this thesis, including generative autoencoders, generative adversarial
networks (GANs), and diffusion based generative models.

26
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4.1.1 Variational Autoencoders

Autoencoders (Vincent et al., 2010) are networks trained to reconstruct the input data. An
autoencoder learns two components: an encoder that transforms the input data into a latent
code, and a decoder that reconstructs the input data from the latent code. Different tech-
niques have been proposed to encourage autoencoders to learn useful representations, such
as denoising, contractive and sparse autoencoders (Bengio et al., 2013). Typically, the latent
codes are of much smaller dimension than the input data, and such an encoding is useful for
dimensionality reduction, and the learned representations are useful for downstream tasks
such as classification or anomaly detection. While the compressed representations are useful,
these autoencoders cannot generate samples similar to training data. To turn an autoencoder
into a model which is capable of generating new samples similar to training data, the latent
space is regularized to approximate a known distribution called prior distribution, for exam-
ple, a Gaussian distribution. Training is performed using a combination of reconstruction
loss and a term penalizing the deviation between the distribution of encoder output, and the
prior distribution used to model the latent space. New samples can then be generated by the
decoder (also referred to as the generator) which maps the randomly drawn samples from
the prior distribution to the data space.

We now briefly recall the variational autoencoders (VAE) which are the first generative
autoencoders introduced in (Kingma and Welling, 2013). We assume that the data samples x
come from an unknown distribution p(x), and each data sample has a lower dimensional
latent representation z, which follows a prior distribution pz(z). The objective is to find a
distribution pθ(x) that is the best fit to the underlying data distribution. This is achieved by
maximizing the marginal likelihood or evidence given by

pθ(x) =
∫
Z

pθ(x|z)pz(z)d z , (4.1)

where, pθ(x|z) is referred to as likelihood and is approximated by a generative model, a
neural network parameterized by θ (also referred to as the decoder in VAE). The pθ(z|x) is the
posterior whose approximation qφ(z|x) is given by a probabilistic encoder parameterized by
φ, which outputs the parameters of this conditional distribution. When the prior is assumed
to be a multivariate standard Gaussian pz =N (0, Id ), then the approximate posterior is given
as qφ(z|x) = N

(
z
∣∣µ(x),Σ(x)

)
, where

(
µ(x),Σ(x)

)
are outputs of the encoder network. This

is in contrast with the encoder in deterministic autoencoders which output a latent code z.
As maximizing the true likelihood is intractable, Kingma and Welling (2013) train the two
networks (the encoder parameterized by φ and the decoder parameterized by θ) together to
minimize a lower bound of the logarithm of likelihood in eq. (4.1)

logEz∼qφ

[
p̂θ(x)

]︸ ︷︷ ︸
pθ(x)

≥ Ez∼qφ

[
log p̂θ(x)

]= Ez∼qφ[log pθ(x|z)]︸ ︷︷ ︸
reconstruction

−DK L
[
qφ(z|x)||pz(z)

]︸ ︷︷ ︸
regularisation

,
(4.2)

This bound is referred to as known as evidence lower bound (ELBO). The first term in the
loss Ez∼qφ[log pθ(x|z)] corresponds to a reconstruction loss (mean squared error loss when
z is Gaussian) between the output of the decoder and the original input x. DK L(p||q) is the
Kullback-Leibler divergence between prior distribution pz and the approximate posterior
distribution given by encoder output qφ(z|x). Following the seminal work of VAEs by Kingma
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and Welling (2013), several works have proposed improvements, for example by modifying
prior, tightening the gap between true likelihood and the lower bound, or changing the statis-
tical criterion used to measure the distance between distributions. We refer to (Chadebec
et al., 2022) for an overview and comparison between different generative autoencoders.

In chapter 7 of this thesis, we consider a class of generative autoencoders known as
Wasserstein autoencoders (WAEs) introduced in (Tolstikhin et al., 2018) which utilize optimal
transport (Villani, 2021) to measure the distance between the distributions pz and qz . In
theory, WAEs can use any cost function including squared error to minimize discrepency
between the input and the decoder output, and any statistical distance measure in the latent
space. We consider WAEs optimized using a combination of mean squared error loss between
input and decoder output, and a maximum mean discrepency penalty between encoder
distribution and prior latent distribution, and use this model as prior for light field recovery.

4.1.2 Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al., 2014) do not explicitly define
the likelihood of training data. Instead, GAN training involves optimizing a generator and a
discriminator in parallel, such that the generator implicitly learns the distribution of training
data. The generator G draws samples z from a lower dimensional latent space, for example,
Gaussian noise, to map to images from the desired distribution, whereas the discriminator D
learns to maximize the probability of correctly distinguishing between the training examples
and the samples generated by G . Both the models G and D are trained together using
back-propagation in an attempt to realize the Nash equilibrium of the following two-player
mini-max game:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1−D(G(z)))]. (4.3)

While GANs produce impressive results on realistic image generation, they have two major
drawbacks, in terms of difficulty in convergence, and mode collapse which leads to limited
diversity of generated images. The adversarial training of the generator and the discriminator
in a zero-sum game can become unstable. During training, a poorly trained generator may
produce samples away from the original distribution, which can easily be distinguished by
the discriminator. This further affects the trainability of the generator due to high confidence
predictions made by the discriminator. On the other hand, the generator could learn to gen-
erate a limited number of realistic samples to fool the discriminator and repeat these across
iterations. This affects the trainability of the discriminator, resulting in it being confined to a
local minimum, as the discriminator does not see diverse generated samples. It is therefore
crucial to realize a good equilibrium between the discriminator and generator.

Several strategies have been developed to stabilize and improve GAN training and con-
vergence, including modifying training objective function, for example, using Wasserstein
distance and gradient penalty (Arjovsky et al., 2017), regularization through noise (Jenni
and Favaro, 2019), use of extrapolation based methods (Yadav et al., 2018; Daskalakis et al.,
2018; Gidel et al., 2019) which take an additional step along a predicted gradient using look
ahead step. Significant improvements in GAN generation quality were possible due to novel
architectures and training schemes. We refer the reader to (Razavi-Far et al., 2022) for a
recent overview of different training methods, architectures developed for GANs, and their
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applications. In the following, we briefly touch upon popular GAN variants. Karras et al.
(2018a) proposed progressive training to stabilize GAN training for higher resolution images,
which was improved upon by Big GAN (Brock et al., 2019) that remained the state-of-the-art
GAN model for image synthesis on ImageNet (Russakovsky et al., 2015) till recently. Style-
based GANs (Karras et al., 2019, 2021) achieved high photorealism on restricted datasets
such as human faces, and have recently been scaled to ImageNet dataset in (Sauer et al.,
2022) by incorporating additional class-information. StyleGANs include a mapping network
that maps a lower dimensional latent code to a higher dimensional style space, which is
subsequently mapped to image space by a synthesis network. This allows the disentangling
of factors of variation into style and content, and therefore StyleGANs have been very popu-
lar in image manipulation (Collins et al., 2020; Shen et al., 2020; Zhu et al., 2020; Wu et al.,
2021), and also in image reconstruction (Menon et al., 2020), for specific class of images like
faces. Vector-quantized GAN (VQGAN) (Esser et al., 2021b) is another popular generative
model, that has recently become popular for image manipulation (Crowson et al., 2022). In
contrast to the usual GAN training, VQGAN employs a two-stage training approach where a
vector quantized autoencoder is first trained adversarially to learn a codebook representation.
This allows images to be represented as a sequence of codebook indices of corresponding
image embeddings. Image generation is performed by a Transformer (Vaswani et al., 2017)
trained on top of the codebook for codeword sequence prediction. In chapters 8 and 9 of
this thesis, we compare with StyleGAN and VQGAN based approaches for text guided image
manipulation and reconstruction.

4.1.3 Diffusion based generative models

Diffusion based generative models are a class of likelihood-based models built from a hierar-
chy of denoising auto-encoders (Vincent et al., 2008). These models have recently demon-
strated high quality generative capabilities surpassing GANs (Ramesh et al., 2022; Dhariwal
and Nichol, 2021; Nichol and Dhariwal, 2021), and have better training stability and mode
coverage than GANs. Two main works in this field are Denoising Diffusion Probabilistic
Models (DDPM) (Ho et al., 2020) and score-based Stochastic Differential Equation (SDE)
(Song and Ermon, 2019; Song et al., 2021b). We now look into DDPM formulation.

Denoising Diffusion Probabilistic Models

The core idea of the generation process in diffusion models is iterative denoising via denois-
ing autoencoders (Vincent et al., 2008). Denoising diffusion probabilistic models (DDPM)
(Ho et al., 2020) define a forward diffusion process that gradually perturbs the input data
into pure Gaussian noise. Image generation is achieved via a reverse process by gradually
removing Gaussian noise, inspired by non-equilibrium thermodynamics (Sohl-Dickstein
et al., 2015).
i)Forward process: Given a data sample x0 sampled from data distribution q(x), the forward
diffusion process slowly adds Gaussian noise to data sample in T steps under Markov assump-
tion, resulting in a series of noisy samples x1,x2, · · · ,xT . The evolution of a noised sample xt

at time-step t is expressed as:
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Figure 4.1: Depiction of forward and reverse diffusion process, image from (Ho et al., 2020)

q(xt |xt−1) :=N
(
xt ;

√
1−βt xt−1,βt I

)
,

i .e., xt =
√

1−βt xt−1 +
√

βt ϵ, ϵ ∼N (0,I),
(4.4)

where, {βt }T
t=0 is the noise variance schedule, usually with β1 < β2 · · · < βT ,and N repre-

sents the Gaussian distribution. For a large T , xT becomes isotropic Gaussian noise. Using
reparameterization trick, eq. (4.4) can be modified to sample at any time step t :

q(xt |x0) :=N
(
xt ;

√
ᾱt x0, (1− ᾱt )I

)
,

with αt = 1−βt , ᾱt =
t∏

i=0
αi .

(4.5)

ii) Learned reverse process: The reverse process pθ(x0) :=∫
pθ (x0:T dx1:T ) learns to reverse the

dynamics of the forward process by iterative denoising in T steps resulting in a sample from
the distribution of training data. This is also a Markov chain with learned Gaussian denoising
steps starting from p(xT ) =N (xT ;0,I) with transitions expressed as:

pθ(xt−1|xt ,x0) :=N (xt−1;µt (xt ,x0),σ2
t I), where

µt (xt ,x0) = 1p
αt

(
xt −ϵθ(xt , t )

1−αtp
1− ᾱt

)
and

σ2
t = 1− ᾱt−1

1− ᾱt
βt ,

i .e., xt−1 = µt (xt ,x0)+σt z with z ∼N (0,I).

(4.6)

Clean images are generated by iterative sampling eq. (4.6) in the reverse diffusion process
exploiting the learned neural network noise approximator ϵθ. Given an arbitrary noised
version of data sample xt at step t , DDPM training involves training a network ϵθ to predict
noise at this step, i.e. to minimize the objective ∥ϵt − ϵθ(xt , t)∥2. Score based generative
models (Song et al., 2021b) have an alternate formulation, which results in similar forward
and reverse processes. The training involves training a network to predict the score of the
sample at an arbitrary noise level ∇xt log p(xt ). We refer the reader to (Luo, 2022) for a more
detailed understanding of the different formulations.

While diffusion models have demonstrated impressive generative capabilities, high qual-
ity diffusion models are computationally expensive to train and have slower inference times
than GANs. This is due to expensive Markovian sampling and iterative network evaluations
required for generation. These problems can be alleviated by accelerated stochastic sampling
techniques, or by performing diffusion in a smaller latent space (Rombach et al., 2022; Vahdat
et al., 2021). Employing deterministic diffusion process (Song et al., 2021a) can also speed up
inference, in addition to enabling high fidelity sample reconstruction.
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4.2 G E N E R AT I V E P R I O R S F O R I M A G E R E C O V E R Y

We now discuss the use of trained generative models as priors for image recovery. When an
image to be recovered belongs to the distribution of images that a generative model is trained
on, then this unknown image can be modeled as being in the range or closer to the range of
the generative model, which is the key idea of using generative priors for image recovery. In
the following, we deal with only zero-shot approaches utilizing pretrained generative models
for image recovery. It is also possible to train conditional generative models for a specific
recovery task, we do not discuss such methods here.

GAN Priors: The pioneering work in using deep generative model priors for image recovery is
by Bora et al. (2017), which optimizes for a vector in the smaller dimensional latent space of a
trained GAN to minimize the reconstruction error:

û =G (ẑ;θ) s.t. ẑ = argmin
z

∥ f − AG (z;θ)∥2. (4.7)

Bora et al. (2017) investigate incorporating an ℓ2 regularization on z in eq. (4.7), which corre-
sponds to a MAP estimate with respect to z, assuming a Gaussian prior on z. This approach
was shown to significantly outperform the classical sparsity based priors for compressive
sensing with very low measurements, and was later extended to non-linear inverse problems
in (Bohra et al., 2022). While Bora et al. (2017) used simple gradient descent based algorithms
to solve eq. (4.7), later works such as (Latorre et al., 2019a; Raj et al., 2019) also investigated
the use of algorithms such as ADMM and projected gradient descent for image recovery
using GAN priors. An advantage of latent space exploration is the ability to obtain diverse
solutions by using different starting latent codes (Menon et al., 2020; Marinescu et al., 2021;
Pan et al., 2021). Montanaro et al. (2022) show that this can be accelerated by finding latent
space directions in the null space of the forward operator.

A major limitation of the latent space optimization eq. (4.7) is that samples outside the
range manifold of the generator can not be reconstructed accurately resulting in a non-trivial
representation error. Subsequent works attempt to reduce this representation error using
different approaches. Dhar et al. (2018) allow a small deviation of the recovered image from
the range of a generator with sparsity prior on the difference, which is extended to optimizing
intermediate layer representations in (Daras et al., 2021). Pan et al. (2021) adopt a two-step
approach of latent space optimization followed by fine-tuning both the latent vector and
generator parameters.

VAE Priors: In addition to using GAN priors, Bora et al. (2017) also explore the approach of la-
tent space optimization using VAEs, using the trained decoder (generator). This approach has
similar limitations as GAN priors, it cannot recover images outside the range of the generator,
leading to representation error. In chapter 7 of this thesis (also published in (Chandramouli
et al., 2022)), we explore the use of generative autoencoders for variational image recovery.
Our approach involves latent space optimization of a conditional generative autoencoder for
generic light field recovery. More recently, Prost et al. (2023) utilize more powerful hierarchical
VAEs and design an efficient Plug-and-Play algorithm for inverse problems. González et al.
(2022) propose a framework for inverse problems using VAEs by considering a joint posterior
distribution of latent and image space, with guaranteed convergence to a stationary point.
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Flow Priors: Normalizing flow based models are a class of invertible generative models
that learn to transform complex distribution such as images into a simpler distribution like
Gaussian through a series of invertible transformations. By drawing random samples from
the Gaussian distribution, image samples are generated by traversing through the model
backward during testing. A few recent works have investigated the use of flow-based gen-
erative models for image recovery. Asim et al. (2020a) replace GAN prior in eq. (4.7) with a
flow-based generator, with additional ℓ2 regularization on z. Whang et al. (2021); Kothari et al.
(2021) generalize this to arbitrary differentiable measurement operators and measurement
noises using a maximum aposteriori framework, with Kothari et al. (2021) using a generalized
version of flow models which progressively increase dimension from a low-dimensional latent
space. Cai et al. (2023) instead use Langevin-based sampling using normalizing flow models
for Bayesian inference. Runkel et al. (2023) jointly train two normalizing flows learning the
distributions of measurement and unpaired ground truth images connected by a common
latent space, and propose a point estimator optimizing data discrepancy term.

Diffusion Priors One could utilize diffusion models for image recovery either by training
a conditional diffusion model for specific recovery tasks or by leveraging diffusion based
image generative models for zero-shot image recovery. We are concerned with the latter
variety, which exploits the knowledge of the degradation operator in a guidance mechanism
to modify the sampling process. Earlier works (Jalal et al., 2021a; Kadkhodaie and Simoncelli,
2021) adopt Langevin dynamics for linear inverse problems and incorporate measurement
guidance through the gradient of the least-squares data fidelity term. Choi et al. (2021); Chung
et al. (2022c) propose to alternate between a standard reverse diffusion step and a projection
step promoting measurement consistency on the intermediate noisy estimate. Subsequent
works Chung et al. (2023, 2022b); Wang et al. (2023b); Lugmayr et al. (2022a); Kawar et al.
(2022a); Song et al. (2023) predict clean sample at each reverse diffusion step, and use this
estimate to promote measurement consistency. This can be achieved via a guidance function
to guide the previous step through the gradient of the least-squares data fidelity term (Chung
et al., 2023), or gradient based guidance from measurements through pseudo-inverse opera-
tion (Song et al., 2023) at each reverse step. Wang et al. (2023b); Lugmayr et al. (2022a); Kawar
et al. (2022a) alternately employ the clean estimate in a consistency enforcing projection
operation. While projection-based approaches are faster and do not need to backpropagate
through network weights, they are restricted to inverse problems where a pseudo-inverse
or its approximation can be computed. In contrast, gradient based measurement guidance
can be applied to inverse problems, or even arbitrary guidance (Bansal et al., 2023), yet, it is
more expensive as it requires back-propagation through the diffusion model weights at each
iteration. In chapter 9 of this thesis, we adapt a projection based approach using range-null
space decomposition (Wang et al., 2023b) to explore solutions of linear inverse problems
through text.
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Declaration for Chapter 5 - Robustness to Group Transformations

This chapter is based on the paper Gandikota et al. (2022b) titled “A Simple Strategy to
Provable Invariance via Orbit Mapping” co-authored by Kanchana Vaishnavi Gandikota, Jonas
Geiping, Zorah Lähner, Adam Czapliński and Prof. Michael Moeller, published at the Asian
Conference on Computer Vision (ACCV) 2022. Prof. Michael Moeller proposed the idea of
developing a provably invariant method to image classification under group transformations.
All the collaborators contributed to discussing ideas on achieving invariance. The idea of
consistently orienting input prior to passing it to neural network classifiers was proposed by
Zorah Lähner. Prof. Michael Moeller proposed the gradient based solution to achieve such
consistent orientation, and proved invariance using this approach in section 5.4.1. Kanchana
Vaishnavi Gandikota contributed to the discussions, reviewed the literature, performed all
the experiments and comparisons for image classification, part of experiments with point
clouds without spatial transformers, and contributed to writing major portions of the first
draft of the paper. Jonas Geiping contributed to remaining experiments with point clouds
and contributed to writing parts of experimental results with point clouds. Zorah Lähner
contributed to writing isometry invariance. Adam Czapliński is a domain expert in group
theory. Prof. Michael Moeller and Adam Czapliński contributed to mathematical formalism
in the paper. The research was supervised by Prof. Michael Moeller. The paper benefited
from several rounds of reviews where the reviewers provided several constructive suggestions.
This feedback helped us to simplify and clarify our writing, and motivated us to provide a
more comprehensive literature survey to place our work in the context of existing work, and
resulted in thorough experiments which illustrate the benefit of our approach.



5
R O B U S T N E S S T O G R O U P T R A N S F O R M A T I O N S

Many applications require robustness, or ideally invariance, of neural networks to certain
transformations of input data. In image classification, for instance, rotational, scale, and shift
invariance are often highly desirable properties. While training deep networks with millions
of realistic images in datasets like ImageNet (Russakovsky et al., 2015) confers some degree of
in/equi-variance (Tensmeyer and Martinez, 2016; Olah et al., 2020; Lenc and Vedaldi, 2018),
these properties however, cannot be guaranteed. On the contrary, networks are susceptible
to adversarial attacks with respect to these transformations (see e.g. (Engstrom et al., 2017;
Finlayson et al., 2019; Zhao et al., 2020b; Lang et al., 2021)), and small perturbations can
significantly affect their predictions, as also discussed in the chapter 2. To counteract this
behavior, the two major directions of research are to either modify the training procedure
or the network architecture. Modifications of the training procedure replace the common
training of a network G with parameters θ on training examples (xi , y i ) via a loss function L ,

min
θ

∑
examples i

L (G (xi ;θ); y i ), (5.1)

with a loss function that considers all perturbations in a given set S of transformations to
be invariant towards. The most common choices are taking the mean loss of all predictions
{G (g (xi );θ) | g ∈ S} (training with data augmentation), or the maximum loss among all pre-
dictions (adversarial training). However, such training schemes cannot guarantee provable
invariance. In particular, training with data augmentation is far from being robust to transfor-
mations as illustrated in Fig. 5.1. The plot shows the softmax probabilities of the true label
when feeding the exemplary image at rotations ranging from 0 to 2π into a network trained
with rotational augmentation (green), adversarial training (red), and undoing rotations using
a learned network (black). As we can see, rotational data augmentation is not sufficient to
truly make a classification network robust towards rotations, and even the significantly more
expensive adversarial training shows instabilities.

While modifications of the training scheme remain the best option for complex or hard-
to-characterize transformations, more structured transformations, e.g., those arising from a
group action, allow modifications to the network architecture to yield provable invariance.
As opposed to previous works that largely rely on the ability to enlist all transformations of an
input x (i.e., assume a finite orbit), we propose to make neural networks invariant by selecting
a specific element from a (possibly infinite) orbit generated by a group action, through an
application-specific orbit mapping. Simply put, we undo and fix the transformation or pose.
Our proposed approach is significantly easier to train than adversarial training methods, and
simultaneously results in better performance, robustness, and computational costs than
adversarial training. We illustrate these findings on the rotation invariant classification of
images (on which discretization artifacts from the interpolation after any rotation play a
crucial role) as well as on the scale, rotation, and translation invariant classification of 3D
point clouds. Our contributions in this chapter can be summarized as follows:

35
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a) Samples of the orbit b) Orbit mapping element

Figure 5.1: (Left) Picture of a cat in 4 different rotation samples from the continuous orbit of rotations. Our orbit mapping
selects the element with mean gradient direction (marked in red) along a circle pointing upwards. (Right) Softmax probabili-
ties of the true label when rotating an image by 0◦−360◦. Our method (in blue) is robust for any angle, which cannot be
guaranteed through data augmentations (green) or adv. training (red).

• We present orbit mapping, a simple way to adapt neural networks to be in-(or equi)variant
to transformations from sets S associated with a group action.

• We propose a gradient based orbit mapping strategy for image rotations, which can
provably select a unique orientation for continuous image models.

• Our proposed orbit mapping consistently improves the robustness of standard net-
works to transformations even without additional changes in training or architecture.

• Existing invariant approaches also demonstrate a gain in robustness to discrete image
rotations when combined with orbit mapping.

• We demonstrate orbit mappings to provable scale and orientation invariant 3D point
cloud classification using well-known scale normalization and PCA.

5.1 R E L AT E D W O R K

Several approaches have been developed in the literature to encourage models to exhibit
invariance or robustness to desired transformations of data. These include: i) data augmen-
tation using desired transformations, ii) regularization to encourage network output to be
robust to transformations on the input (Simard et al., 1991), iii) adversarial training (Engstrom
et al., 2019; Wang et al., 2022a) and regularization (Yang et al., 2019), iv) unsupervised or
self-supervised pretraining to learn transformation robust representations (Anselmi et al.,
2016; Noroozi and Favaro, 2016; Komodakis and Gidaris, 2018; Zhang et al., 2019b; Gu and
Yeung, 2021), v) parameterized learning of augmentations to learn invariances from training
data(Wilk et al., 2018; Benton et al., 2020), vi) use of hand-crafted invariant shallow (Sheng
and Shen, 1994; Yap et al., 2010; Tan, 1998; Lazebnik et al., 2005; Manthalkar et al., 2003) or
deep (Bruna and Mallat, 2013; Sifre and Mallat, 2013; Oyallon and Mallat, 2015) features
for downstream classification tasks vii) incorporating desired invariance properties into the
network design (Cohen and Welling, 2016; Worrall et al., 2017; Weiler and Cesa, 2019; Zhang
et al., 2020; Yu et al., 2020), and viii) train time/test time data transformation. Recent works
Balunovic et al. (2019); Fischer et al. (2020) have also explored certifying the geometric robust-
ness of networks. The approaches i)-v) can improve robustness but cannot yield provable
invariance to transformations. Hand-crafting features can yield the desired invariance, but is
difficult and often sacrifices accuracy. Provable invariance to a finite number of transforma-
tions is achievable by applying all such transformations to each input data point and pooling
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the corresponding features (Manay et al., 2006; Laptev et al., 2016). While this strategy can
even be applied only during test time, it can not be extended to sets with infinitely many
transformations. Recent approaches (Cohen and Welling, 2016; Ravanbakhsh et al., 2017;
Weiler and Cesa, 2019) incorporate in-/equivariances when the desired transformations of the
data can be formulated as a group action, e.g. enforcing equivariance in each layer separately.
Layer-wise approaches for equivariance to finite groups such as (Cohen and Welling, 2016)
typically use all possible transformations at each layer.

C A N O N I C A L I Z AT I O N Closely related to our approach are methods which align input to
a normalized or canonical pose. The use of PCA or scale renormalization are well-known
approaches to normalizing point clouds. However, PCA-based pose canonicalization is
known to suffer from ambiguities, and learning based approaches (Xiao et al., 2020; Yu et al.,
2020; Li et al., 2021) have been proposed for disambiguation. Several recent works directly
leverage deep learning for 3d pose canonicalization, for example, training with ground truth
poses (Rempe et al., 2020; Wang et al., 2019) or self-supervised learning (Sun et al., 2021;
Spezialetti et al., 2020; Sajnani et al., 2022). For 2D images, PCA-based canonicalization is
possible only with binary images (Rehman and Lee, 2018); the use of Radon transformations
(Jafari-Khouzani and Soltanian-Zadeh, 2005) requires an expensive, fine discretization of
continuous rotations. The use of spatial transformer networks (Jaderberg et al., 2015) is
an alternate learning based approach to 2D/3D pose normalization which can be used
along with an application-dependent coordinate transformation (Tai et al., 2019; Esteves
et al., 2018b). Such learning-based approaches, however, require additional training with
data augmentation and cannot guarantee invariance. Since our orbit mappings essentially
select a canonical group orbit element, our work can be interpreted as a formalization
of canonicalization for group transformations. In contrast to learning based approaches,
we select a canonical element from the orbit using simple analytical solutions, which can
improve robustness even without data augmentations.

P R O VA B L E R O TAT I O N A L I N - / E Q U I VA R I A N C E I N 2 D Several works (Sifre and Mallat,
2013; Oyallon and Mallat, 2015; Cohen and Welling, 2016; Marcos et al., 2017; Veeling et al.,
2018; Marcos et al., 2016) have considered layer wise equivariance to discrete rotations
using multiple rotated versions of filters at each layer, which was formalized using group
convolutions in (Cohen and Welling, 2016). While Cohen and Welling (2016); Marcos et al.
(2017); Veeling et al. (2018); Marcos et al. (2016) learn these filters by training, Sifre and Mallat
(2013); Oyallon and Mallat (2015) make use of rotated and scaled copies of fixed wavelet
filters at each layer. For equivariance to continuous rotations, Worrall et al. (2017) utilize
circular harmonic filters at each layer. All these layer wise approaches for group equivariance
in images were unified in a single framework in (Weiler and Cesa, 2019). Instead of layer-wise
approaches, Fasel and Gatica-Perez (2006); Laptev et al. (2016); Henriques and Vedaldi (2017)
pool the features of multiple rotated copies of images input to the network.

R O TAT I O N I N VA R I A N C E I N 3 D Due to the different representations of 3D data (e.g. voxels,
point clouds, meshes), many strategies exist. Some techniques for image invariances can
be adapted to voxel representations, e.g. probing several rotations at test time (Wu et al.,
2015; Wang et al., 2017), use of rotationally equivariant convolution kernels (Weiler et al.,
2018b; Thomas et al., 2018; Fuchs et al., 2020). Spatial transformers have also been used
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to learn 3D pose normalization, e.g. in the classical PointNet architecture (Qi et al., 2017a),
and its extension PointNet++ (Qi et al., 2017b) which additionally considers hierarchical and
neighborhood information. While point clouds do not suffer from discretization artifacts
after rotations, they struggle with less clear neighborhood information due to unordered
coordinate lists. Zhang and Rabbat (2018) solve this by adding hierarchical graph connections
to point clouds and using graph convolutions. However, the features learned using graph
convolutions still depend on the rotation of the input data. Horie et al. (2020); Satorras et al.
(2021) propose graph convolution networks equivariant to isometric transformations. Esteves
et al. (2018a); Rao et al. (2019) project point clouds onto 2D sphere and employ spherical
convolutions to achieve rotational equivariance. Deng et al. (2018) and Zhao et al. (2019)
achieve rotation invariance on point clouds by considering pairs of features in the tangent
plane of each point. While local operations and convolutions on the surface of triangular
meshes are invariant to global rotations by definition (Monti et al., 2016), they however do not
capture global information. MeshCNN (Hanocka et al., 2019) addresses this by adding pooling
operations through edge collapse. Sharp et al. (2020) defines a representation independent
network structure based on heat diffusion which can balance between local and global
information.

5.2 P R E L I M I N A R I E S

We consider G to be a neural network parameterized by θ ∈Rp that maps data x ∈X from
some suitable input space X to some prediction G (x;θ) ∈ Y in an output space Y . The
question we attempt to tackle is how, for a given set S ⊂ {g : X →X } of transformations of the
input data, we can achieve robustness or ideally invariance of G to S. We consider invariance
of a network G with respect to transformations in S, where S induces a group action on
X , which is what we will assume about S for the remainder of this chapter. We begin by
introducing the basic terminology used in the theory of groups. The reader is referred to
(Rotman, 2012) for a detailed introduction to group theory.

Definition 1. Group: A group is defined as a set S with a notion of product on its elements,
which satisfies the following axioms

(i) closure: a,b ∈ S =⇒ the product ab ∈ S,

(ii) associativity: (ab)c = a(bc), and

(iii) inverse element: for each g ∈ S,∃g−1 ∈ S such that g g−1 = g−1g = e ∈ S, where e is the
identity element satisfying g e = eg = g ,∀g ∈ S.

A group is abelian if the group product is commutative (g h = hg ,∀g ,h ∈ S). Each element
g ∈ S can be viewed as a transformation acting on an input space X , g : X 7→X . The set of
all rotations in a 2-D plane is an example of an infinite group, whereas a set of rotations by
multiples of π/2 in the 2D plane is an example of a finite group. In this case of the rotation
group, the consecutive application of two rotations becomes the group product.

Definition 2. Group Action: A (left) group action of a group S with the identity element e, on
a set X is a map σ : S ×X → X , that satisfies

(i) σ(e, x) = x and



5.3 P R O P O S E D A P P R O A C H 39

(ii) σ(g ,σ(h, x)) =σ(g h, x), ∀g ,h ∈ S and ∀x ∈ X .

When the action being considered is clear from the context, we write g (x) instead of σ(g , x).

Definition 3. Orbit: The orbit of x ∈X under the action of a group S is defined as the set of all
possible transformations of x,

S · x = {g (x) | g ∈ S}, (5.2)

The closure property of the group implies that the orbit of a point x is invariant under a group
action on x, i.e., the orbit of g (x) is the same as the orbit of x, for all g ∈ S. Continuing with
our earlier example of a group of rotations on the 2-D plane, the orbit of an image under
this group is the infinite set consisting of all rotated versions of the image. We now proceed
to clarify the concepts of invariance and equivariance of functions with respect to group
actions.

Definition 4. Invariant functions with respect to group actions: A function G is said to be
invariant to the action of a group S of transformations if

G (g (x)) =G (x) ∀x ∈X , g ∈ S. (5.3)

Definition 5. Equivariant functions with respect to group actions: A function G is said to be
equivariant to the action of a group S of transformations if

G (g (x)) = g (G (x)) ∀x ∈X , g ∈ S. (5.4)

The equivariance of G preserves the structure of transformations g ∈ S of input data in the
elements y ∈Y (including, but not limited to, the case where X ≡Y ). In the case of functions
represented as parameterized neural networks, the notion of invariance and equivariance
can be expressed as:

Invariant network: G (g (x);θ) =G (x;θ) ∀x ∈X , g ∈ S, θ ∈Rp . (5.5)

Equivariant network: G (g (x);θ) = g (G (x;θ)) ∀x ∈X , g ∈ S, θ ∈Rp . (5.6)

An example of desired invariance could be rotation invariant classification of images or
pointclouds, i.e. the neural network produces the same classification label, irrespective of
the orientation of input. An instance of desired equivariance could be rotation equivariant
segmentation, i.e. the predicted segmentation map should be rotated exactly in the same
way as the rotated input.

5.3 P R O P O S E D A P P R O A C H

Our idea is straightforward. We make neural networks invariant by consistently selecting a
fixed element from the orbit of group transformations, i.e., we modify the input pose such
that every element from the orbit of transformations maps to the same canonical element.
For example, different rotated versions of an image are mapped to have the same orientation
as visualized in Fig. 5.2. In conjunction with such orbit mapping, any standard network
architecture can achieve provable invariance. In the following, we formalize our approach to
achieve invariance.
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5.3.1 Invariant Networks w.r.t. Group Actions

A basic observation for constructing invariant networks is that any network acting on the
orbit of the input is automatically invariant to transformations in S:

Fact 1. Characterization of Invariant Functions via the Orbit: Let S define a group action
on X . A network G : X ×Rp →Y is invariant under the group action of S if and only if it can
be written as G (x;θ) =G1(S ·x;θ) for some other network G1 : 2X ×Rp →Y .

The above observation is based on the fact that S ·x = S ·g (x) holds for any g ∈ S, provided
that S is a group. Although not taking the general perspective of Fact 1, approaches, like
(Laptev et al., 2016), which integrate (or sum over finite elements of) the mappings of G

over a (discrete) group can be interpreted as instances of Fact 1 where G1 corresponds to
the summation. Similar strategies of applying all transformations in S to the input x can be
pursued for the design of equivariant networks. We now show that equivariant networks can
be designed by applying all transformations in S to the input x.

Proposition 1. Characterization of Equivariant Functions via the Orbit: Let S define a
group action on X . A network G is equivariant under the group action of S if it can be written
as

G (x;θ) =G1({g (G2(g−1(x);θ2)) | g ∈ S};θ1) (5.7)

for some other arbitrary network G2 : X×Rp2 →X , and a network G1 : 2X ×Rp1 →X that com-
mutes with any element h ∈ S, i.e., for h ∈ S, and Z ⊂X , it satisfies G1(h(Z );θ2) = h(G1(Z ;θ2)),
where h(Z ) denotes the set obtained by the applying h to every element of Z .

Proof. We want to show that a network satisfying the condition (5) is equivariant. Let h ∈ S
be arbitrary. Note that

{g | g ∈ S} = {h−1g | g ∈ S} (5.8)

such that a substitution of variables from g ∈ S to z = h−1g ∈ S (i.e., g = hz and z−1 = g−1h)
yields

{g (G2(g−1(h(x));θ2)) | g ∈ S}

={h(z(G2(z−1(x);θ2))) | z ∈ S}.

This means that we can also write

G (h(x);θ) =G1({h(z(G2(z−1(x);θ2))) | z ∈ S};θ1)

=G1(h({z(G2(z−1(x);θ2)) | z ∈ S});θ1)

= h(G1({z(G2(z−1(x);θ2)) | z ∈ S});θ1)

= h(G (x;θ))

which yields the desired equivariance under the assumed commutative property.

The work Cohen and Welling (2016) can be interpreted as an instance of the construction in
proposition 1, where equivariant linear layers w.r.t. rotations by 90 degrees are obtained by
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choosing G2 to be a simple convolution and G1 to be the summation over all (finitely many)
elements of the set. Subsequently, they nest these layers with component-wise (and therefore
inherently equivariant) non-linearities.

5.3.2 Orbit Mappings

While Fact 1 and proposition 1 are stated for general (even infinite) groups, realizations
of such constructions from the literature often assume a finite orbit. In this chapter, we
develop an efficient solution even for cases in which the orbit is not finite, and utilize Fact 1
in the most straightforward way: We propose to construct provably invariant networks
G (x;θ) =G1(S · x;θ) by simply using an

orbit mapping h : {S · x | x ∈X } →X ,

which uniquely selects a particular element from an orbit as a first layer in G1. Subsequently,
we can proceed with any standard network architecture and Fact 1 still guarantees the desired
invariance. A key in designing instances of orbit mappings is that they should not require
enlisting all elements of S · x in order to evaluate h(S · x). Let us provide more concrete
examples of orbit mappings.

Example 1 (Mean-subtraction). A common approach in data classification tasks is to first
normalize the input by subtracting its mean. Considering X =Rn and S = {g : Rn →Rn | g (x) =
x +a1, for some a ∈R}, with 1 ∈Rn being a vector of all ones, input-mean-subtraction is an
orbit mapping that selects the unique element from any S · x which has zero mean.

Example 2 (Permutation invariance via sorting). Consider X =Rn , and S to be all permuta-
tions of vectors in Rn , i.e., S = {s ∈ {0,1}n×n | ∑

i si , j = 1 ∀ j ,
∑

j si , j = 1 ∀i }. We could define an
orbit mapping that selects the element from an orbit whose entries are sorted by magnitude in
an ascending order.

With the very natural condition that orbit mappings really select an element from the
orbit, i.e., h(S ·x) ∈ S ·x, we can readily construct equivariant networks by applying the inverse
mapping, see Appendix A. In our Example 2, undoing the sort operation at the end of the
network allows to transfer from an invariant to an equivariant network.

As a final note, our concept of orbit mappings can further be generalized by h not mapping
to the input space X , but to a different representation, which can be beneficial for particular,
complex groups. In geometry processing, for instance, an important group action is isometric
deformations of shapes. A common strategy to handle these (c.f. (Ovsjanikov et al., 2012))
is to identify any shape with the eigenfunctions of its Laplace-Beltrami operator (Pinkall
and Polthier, 1993), which represents a natural (generalized) orbit mapping. We refer to
(Litany et al., 2017; Eisenberger et al., 2020; Huang et al., 2019) for exemplary deep learning
applications.

5.4 A P P L I C AT I O N S

We will now present two specific instances of orbit mappings for handling continuous rota-
tions of images as well as for invariances in 3D point cloud classification.
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Figure 5.2: Images of different orientations (top) are consistently aligned with the proposed gradient-based orbit mapping
(bottom).

5.4.1 Invariance to continous image rotations

Images as functions Let us consider the important example of invariance to continuous
rotations of images. To do so, consider X ⊂ {u : Ω⊂R2 →R} to represent images as functions.
For the sake of simplicity, we consider grayscale images only, but this extends to color images
in a straightforward way. In our notation z ∈R2 represents spatial coordinates of an image (to
avoid an overlap with our previous x ∈X , which we used for the input of a network). We set

S = {g : X →X | g ◦u(z) = u(r (α)z), for α ∈R},

and r (α) =
(
cos(α) −sin(α)
sin(α) cos(α)

)
.

(5.9)

As S has infinitely many elements, approaches that worked well for rotations by 90 degrees
like (Cohen and Welling, 2016) are not applicable anymore. We instead propose to uniquely
select an element from the continuous orbit of rotation g ∈ S by choosing a rotation that
makes the average gradient of the image

∫
Z ∇(g ◦u)(z) d z over a suitable set Z , e.g. a circle

around the image center point upwards. It holds that

∇(g ◦u)(z) = r T (α)∇u (r (α)z) such that∫
Z
∇(g ◦u)(z)d z =

∫
Z

r T (α)∇u (r (α)z)d z.

Substituting ϕ= r (α)z, we obtain∫
Z

r T (α)∇u (r (α)z)d z =
∫

r T (α)Z
r T (α)∇u

(
ϕ

)
dϕ= r T (α)

∫
Z
∇u

(
ϕ

)
dϕ (5.10)

where we used that Z is rotationally invariant. Thus, choosing a rotation that makes
∫

Z ∇(g ◦
u)(z) d z point upwards is equivalent to solving

r (α̂) = argmaxr (α)

〈(
1
0

)
,r T (α)

∫
Z
∇u(ϕ) dϕ

〉
(5.11)

whose solution is given by α̂ such that(
cos α̂
sin α̂

)
=

( ∫
Z ∇u(z) d z

∥∫
Z ∇u(z) d z∥

)
. (5.12)
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Note that eq. (5.12) yields a unique solution to the maximization problem. Since a consistent
pose is always selected1, it is an invariant mapping. When

∫
Z ∇u(z) d z = 0, any g ∈ S max-

imizes eq. (5.11). However, numerically
∫

Z ∇u(z) d z rarely evaluates to exact zero, and its
magnitude determines the stability of orbit mapping.

D I S C R E T I Z AT I O N For a discrete (grayscale) image given a matrix ũ ∈ Rny×nx , we first
apply Gaussian blur with a standard deviation of σ= 1.5 (to reduce the effect of noise and
create a smooth image), and subsequently construct an underlying continuous function
u : Ω ⊂ R2 → R by bilinear interpolation. For the set Z we choose two circles of radii 0.05
and 0.4 (for Ω being normalized to [0,1]2). We approximate the integral by a sum over finite
evaluations of the derivative along each circle, using exact differentiation of the continuous
image model. This strategy can stabilize arbitrary rotations successfully as illustrated in
Fig. 5.2. However, in practice, the magnitude of

∫
Z ∇u(z) d z and interpolation artifacts affect

the stability of the orbit mapping. We analyze the stability of the proposed gradient based
orbit-mapping for discrete images in Appendix C, where we observe that the use of forward
or central differences to approximate gradients further deteriorates the stability of orbit
mapping. Since the orbit mapping for discrete images has instabilities, exact invariance to
rotations cannot be guaranteed. Even when the integral values are large leading to a stable
orbit mapping, our approach does not need to give the same rotation angle for semantically
similar content, for example, different cars are not necessarily rotated to have the same
orientation. Due to these reasons, our approach can further benefit from augmentation.

Stability of gradient based orbit mapping

We now analyze the stability of our gradient based orbit mapping strategy for discrete images.
While the proposed gradient based orbit mapping our approach leads to unique orientation as
long as

∫
Z ∇u(z) d z is non-zero, practically, the magnitude of

∫
Z ∇u(z) d z and interpolation

artifacts affect the stability of the orbit mapping. While one could possibly use forward or
central differences to calculate gradients at pixels along approximate circles, this further
deteriorates the stability of orbit mapping. This is seen in Tab. 5.1 a) which shows the mean
standard deviation orientation of orbit-mapped images when input images rotated in steps of
1 degree using bilinear interpolation. We find that using forward differences to approximate
the gradient has the most instability. In the section 5.C of the appendix, we derive a necessary
condition for provable invariance using general convolution kernels (instead of gradients in x
and y direction), where we show that forward differences do not satisfy these conditions for
any rotation.

Tab. 5.1 b) shows the histogram of standard deviations in orientation for CIFAR10 images
when calculating exact gradients along the circle. The standard deviation of predicted orien-
tations of over 78% of the images is less than 10 degrees, and over 44% of images is less than 4
degrees, indicating a relatively stable orbit mapping for these images. However, a fraction of
images also have a higher variance, in predicted orientation possibly due to small values of
the integral. Tab. 5.1 c) shows that our gradient based orbit mapping is fairly robust to small
additive Gaussian noise.

1 Note that r T (α) = r (−α), therefore if the predicted rotation for u(z) is β, then for u(r (γ)z), it is β−γ, i.e the
same element is consistently selected.
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a)
Dataset Exact Central Diff. Forward Diff
CIFAR10 10.46 12.47 23.89
CUB200 9.05 14.56 24.75

c)
Dataset clean σ2=0.01 σ2=0.05 σ2=0.1
CIFAR10 10.46 11.36 14.08 16.69
CUB200 9.05 10.55 15.99 20.610

b)

Table 5.1: Stability and robustness of proposed gradient based Orbit Mapping strategy. a) The mean standard deviation
values of angles in degrees over the images in the dataset are reported when rotating images based on exact gradients
computed along the circle using bilinear interpolation, and approximate gradients using finite differences along pixels
closest to the circle. b) The histogram of standard deviations of the predicted orientation in degrees for CIFAR10. c) The
mean standard deviation values of angles in degrees over the images in the CIFAR10 dataset are reported, for different levels
of additive Gaussian noise.

Experiments

To evaluate our approach, we use orbit mapping in conjunction with image classification
networks on three datasets: On CIFAR10, we train a Resnet-18 (He et al., 2016) from scratch.
On the HAM10000 skin image dataset (Tschandl et al., 2018), we finetune an NFNet-F0
network (Brock et al., 2021), and on CUB-200 (Wah et al., 2011) we finetune a Resnet-50 (He
et al., 2016), both pretrained on ImageNet. While the datasets CIFAR10 and CUB-200 have an
inherent variance in orientation, for the HAM10000 skin lesion classification, exact rotation
invariance is desirable. Finally, we also perform experiments with RotMNIST using state-of-
the-art E2CNN network (Weiler and Cesa, 2019). The details of the protocol used for training
all our networks as well as some additional experiments are provided in the Appendix E. We
compare with following approaches on CIFAR10, HAM10000, and CUB-200:

(i) Adversarial training: min
θ

∑
examples i

L (G (x̂i ;θ); y i ), for x̂i = argmax
z∈S·xi

L (G (z); y i ). This is

approximated by selecting the worst out of 10 different random rotations for each
image in every iteration, following (Engstrom et al., 2019). It is referred to as Adv. in
Tab. 5.2.

(ii) Mixed mode training: min
θ

L
examples i

(G (x̂i ;θ); y i )+L (G (xi ;θ); y i ) which uses both natu-

ral and adversarial examples x̂i (Yang et al., 2019).

(iii) Adversarial training with regularization: Use of adversarial logit pairing and KL-divergence
regularizers (Yang et al., 2019) along with adversarial training (indicated as Adv.-ALP
and Adv.-KL in Tab. 5.2):

(a) Adversarial logit pairing (ALP): RALP (G , xi , y i ) = ∥G (xi ;θ)−G (x̂i ;θ)∥2
2

(b) KL-divergence:RK L(G , xi , y i ) = DK L(G (xi ;θ)||G (x̂i ;θ))

(iv) Transformation invariant pooling (TIpool): which is a provably invariant approach for
discrete rotations (Laptev et al., 2016), where the features of multiple rotated copies
of an input image are pooled before the final classification. We use 4 rotated copies of
images rotated in multiples of 90 degrees.



5.4 A P P L I C AT I O N S 45

Method OM
(Ours) CIFAR10 HAM10000 CUB200

Clean Avg. Worst Clean Avg. Worst Clean Avg. Worst

Std.
✗ 93.98 40.06 1.31 93.82 91.73 82.52 77.41 53.45 8.07
✓ Train+Test 87.99 84.12 68.60 93.31 91.38 87.96 71.19 71.56 58.80

RA
✗ 85.54 75.99 44.71 93.30 90.81 82.30 69.89 70.12 41.01
✓ Train+Test 85.40 81.82 71.09 93.41 92.13 88.55 70.35 70.72 57.54

STN ✗ 83.74 78.86 54.03 – – – – – –
ETN ✗ 84.39 80.30 64.08 92.47 90.85 84.32 64.14 66.95 52.85
Adv. ✗ 69.32 68.54 50.21 92.28 91.87 85.04 64.54 64.07 42.82
Mixed ✗ 91.15 68.37 17.15 93.71 92.13 84.53 68.56 65.91 42.87
Adv.-KL ✗ 72.28 70.29 51.05 92.54 91.79 85.42 64.47 64.65 43.04
Adv.-ALP ✗ 71.25 70.30 52.29 92.89 91.84 85.98 64.63 64.34 43.63

TIpool
✗ 93.56 66.46 20.22 93.19 91.87 88.16 76.80 74.90 59.04
✓ Train+Test 91.94 88.77 76.26 93.83 92.05 89.81 76.82 77.18 69.19

TIpool-RA
✗ 91.40 84.65 67.28 93.39 91.87 88.12 73.47 74.71 62.82
✓ Train+Test 90.47 87.92 80.07 93.68 92.78 89.30 74.78 75.89 67.78

Table 5.2: Comparison of orbit mapping (OM) with training and architecture based methods. Robustness to rotations is
compared using the average and worst case accuracies over 5 runs with test images rotated in steps of 1◦ using bilinear
interpolation.

(v) Spatial transformer networks (STN): which learns to undo the transformation by train-
ing using appropriate data augmentation (Jaderberg et al., 2015).

(vi) Equivariant transformer networks (ETN): which additionally uses appropriate coordi-
nate transformation along with a learned spatial transformer to undo the transforma-
tion (Tai et al., 2019).

We also compare with the simple baseline of augmenting with random rotations, referred
to as RA in Tab. 5.2. Additionally, we also compare with (Benton et al., 2020), an approach
which learns the distribution of augmentations on the task of rotated CIFAR10 classification,
referred to as Augerino in Tab. 5.3. We use 4 samples from the learned distribution of aug-
mentations during both training and test. We would also like to point out that adversarial
training using the worst of 10 samples roughly increases the training effort of the underlying
model by a factor of 5.

Results

We measure the accuracy on the original testset(Clean), as well as the average (Avg.) and
worst-case (Worst) accuracies in the orbit of rotations discretized in steps of 1 degree, where
‘Worst’ counts an image as misclassified as soon as there exists a rotation at which the network
makes a wrong prediction.

As we can see in Tab. 5.2, networks trained without rotation augmentation perform poorly
in terms of both, the average and worst-case accuracy if the data set contains an inherent
orientation. While augmenting with rotations during training results in improvements,
there is still a huge gap (∼ 30% for CIFAR10 and CUB200) between the average and worst-
case accuracies. While adversarial training approaches (Engstrom et al., 2019; Yang et al.,
2019) improve the performance in the worst case, there is a clear drop in the clean and
average accuracies when compared to data augmentation. Learned approaches to correct
orientation i.e. STN (Jaderberg et al., 2015), ETN (Tai et al., 2019) show an improvement
over adversarial training schemes in terms of average and worst case accuracies, when
training from scratch, with ETN demonstrating even higher robustness than plain STNs.
While pooling over features of rotated versions of image provides provable invariance to
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Train OM Clean
Average Worst-case

Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Std.
✗ 93.98±0.32 35.12±0.81 40.06±0.44 42.81±0.50 0.79±0.38 1.31±0.13 2.22±0.17
✓ Train+Test 87.99±0.43 72.40±0.33 84.12±0.55 86.61±0.49 34.57±0.94 68.60±0.81 74.49±0.84

RA
✗ 85.54±0.72 80.47±0.74 75.99±0.72 79.47±0.65 45.50±0.83 44.71±0.74 50.50±0.78
✓ Test 79.26±0.42 74.93±0.51 69.31±0.65 73.94±0.63 48.93±0.75 52.18±0.91 58.69±0.78
✓ Train+Test 85.40±0.57 84.37±0.58 81.82±0.59 84.82±0.52 66.22±0.75 71.09±1.01 76.44±0.89

RA-
combined

✗ 92.42±0.21 80.90±0.64 82.23±0.74 82.71±0.69 36.98±1.27 48.07±1.66 49.51±1.47
✓ Test 82.55±0.86 76.33±0.95 77.93±0.68 78.42±0.64 45.44±1.32 60.23 ±1.24 62.18±1.33
✓ Train+Test 86.69±0.12 84.06±0.21 85.27±0.23 86.06±0.20 61.75±0.76 75.29±0.42 77.25±0.27

Adv. ✗ 69.32±1.61 61.73±1.12 68.54±0.68 68.00±0.31 36.95±0.97 50.21±0.55 49.73±0.98
Mixed ✗ 91.15±0.15 54.55±0.40 68.37±0.66 68.48±0.37 3.86±0.13 17.15±1.25 16.85±0.93
Adv.-KL ✗ 72.28±2.05 62.60±1.72 70.29±1.42 69.84±1.29 32.60±0.74 51.05±2.47 51.11±1.03
Adv.-ALP ✗ 71.25±0.97 62.36±2.19 70.30±1.50 69.71±1.22 33.98±1.44 52.29±1.76 52.57±1.57
STN ✗ 83.74±0.50 81.94±0.51 78.86±0.73 82.21±0.55 51.23±1.01 54.03±1.36 59.65±1.31
ETN ✗ 84.39±0.09 82.98±0.28 80.30±0.55 83.31±0.31 59.40±0.76 64.08±0.78 68.75±0.83
Augerino ✗ 83.68±0.76 80.17±0.70 82.27±0.69 81.69±0.72 52.44±0.66 60.36±1.00 60.63±0.94
TIpool ✗ 93.56±0.25 55.96±0.39 66.46±1.36 70.70±0.77 3.14±1.09 20.22±1.51 27.88±1.09
TIpool-RA ✗ 91.40±0.17 87.50±0.24 84.65±0.51 87.31±0.29 66.52±1.31 67.28±1.03 72.35±0.83
TIpool ✓Train+Test 91.94±0.38 78.66±0.83 88.77±0.51 90.76±0.40 42.01±1.07 76.26±1.12 81.46±1.02
TIpool-RA ✓Train+Test 90.47±0.36 89.37±0.36 87.92±0.36 89.91±0.34 74.51±0.79 80.07±0.69 83.76±0.60
TIpool-RA

✓Train+Test 91.09±0.40 89.02±0.30 90.13±0.34 90.64±0.30 70.18±1.12 82.71±0.62 84.26±0.41
combined

Table 5.3: Effect of augmentation on robustness to rotations with different interpolations. Shown are clean accuracy on
standard CIFAR10 test set, average and worst-case accuracies on rotated test set with mean and standard deviations over 5
runs.

discrete rotations, this approach is still susceptible to continuous image rotations. The
robustness of this approach to continuous rotations is boosted by rotation augmentation,
with improvements over even learned transformers. Note that using TI-pooling with 4 rotated
copies increases the computation by 4 times. In contrast, our orbit mapping effortlessly leads
to significant improvements in robustness even without augmenting with rotations, with
performance better than adversarial training, learned transformers, and discrete invariance
based approaches. Since our orbit mapping for discrete images has some instabilities, our
approach also benefits from augmentation with image rotations. Further, when combined
with the discrete invariant approach (Laptev et al., 2016), we obtain the best accuracies for
average and worst case rotations.

Even when finetuning networks, we observe that orbit mapping readily improves robust-
ness to rotations over standard training, even without the use of augmentations. Furthermore,
the combination of orbit mapping with the discrete invariant approach of pooling over rotated
features yields the best performance. For the birds dataset with inherent orientation, undoing
rotations using ETN significantly improves robustness when compared to adversarial training
schemes, which only marginally improve robustness over rotation augmentation. We found
it difficult to train STN with higher accuracies (Clean/Avg./Worst) than plain augmentation
with rotated images for CUB200 and HAM10000, despite extensive hyperparameter optimiza-
tion, therefore we do not report the numbers here2. When the data itself does not contain
a prominent orientation as in the HAM10000 data set, the general trend in accuracies still
holds (Clean>Avg.>Worst), but the drops in accuracies are not drastic, and adversarial train-
ing schemes provide improvements over undoing transormations using ETN. Further, orbit
mapping and pooling over rotated images provide comparable improvements in robustness,
with their combination achieving the best results.

2 We use a single spatial transformer as opposed to multiple STNs used in (Jaderberg et al., 2015) and train on randomly rotated images.
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Train. OM
D4/C4 D16/C16

Clean Avg. Worst Clean Avg. Worst
Std. ✗ 98.73±0.04 98.61±0.04 96.84±0.08 99.16±0.03 99.02±0.04 98.19±0.08
Std. ✓(Train+Test) 98.86±0.02 98.74±0.03 98.31±0.05 99.21±0.01 99.11±0.03 98.82±0.06
RA. ✗ 99.19±0.02 99.11±0.01 98.39±0.05 99.31±0.02 99.27±0.02 98.89±0.03
RA. ✓(Train+Test) 98.99±0.03 98.90±0.01 98.60±0.02 99.28±0.02 99.23±0.01 99.04±0.02

Table 5.4: Effect of orbit mapping and rotation augmentation on RotMNIST classification using regular D4/C4 and D16/C16
E2CNN models. Shown are clean accuracy on standard test set and average and worst-case accuracies on test set rotated in
steps of 1 degree, with mean and standard deviations over 5 runs.

D I S C R E T I Z AT I O N A R T I F A C T S : It is interesting to see that while consistently selecting a
single element from the continuous orbit of rotations leads to provable rotational invariance
when considering images as continuous functions, discretization artifacts, and boundary
effects still play a crucial role in practice, and rotations cannot be fully stabilized. As a result,
there is still a discrepancy between the average and worst case accuracies, and the perfor-
mance is further improved when our approach also uses rotation augmentation. Motivated
by the strong effect the discretization seems to have, we investigate different interpolation
schemes used to rotate the image in more detail: Tab. 5.3 shows the results of different training
schemes with and without our orbit mapping (OM) obtained with a ResNet-18 architecture
on CIFAR-10 when using different types of interpolation. Besides standard training (Std.), we
use rotation augmentation (RA) using the Pytorch-default of nearest-neighbor interpolation,
a combined augmentation scheme (RA-combined) that applies random rotation only to a
fraction of images in a batch using at least one nearest neighbor, one bilinear and one bicubic
interpolation. The adversarial training and regularization from (Engstrom et al., 2019; Yang
et al., 2019) are trained using bilinear interpolation (following the authors’ implementation).

Results show that interpolation used in image rotation impacts accuracies in all the
baselines. Most notably, the worst-case accuracies between different types of interpolation
may differ by more than 20%, indicating a huge influence of the interpolation scheme.
Adversarial training with bi-linear interpolation still leaves a large vulnerability to image
rotations with nearest neighbor interpolation. Further, applying an orbit mapping at test time
to a network trained with rotated images readily improves its worst case accuracy, however,
there is a clear drop in clean and average case accuracies, possibly due to the network
not having seen doubly interpolated images during training. While our approach without
rotation augmentation is also vulnerable to interpolation effects, it is ameliorated when
using orbit mapping along with rotation augmentation. We observe that including different
augmentations (RA-combined) improves the robustness significantly. Combining the orbit
mapping with the discrete invariant approach (Laptev et al., 2016) boosts the robustness,
with different augmentations further reducing the gap between clean, average case, and
worst case performance.

E X P E R I M E N T S W I T H R O T M N I S T We investigate the effect of orbit mapping on RotMNIST
classification. This dataset has 12000 training and 50000 test samples of randomly rotated
MNIST digits. We use the state of the art network from (Weiler and Cesa, 2019) employing
regular steerable equivariant models (Weiler et al., 2018a). This model uses 16 rotations and
flips of the learned filters (with flips being restricted till layer3). We also compare with a
variation of the same architecture with 4 rotations. We refer to these models as D16/C16 and
D4/C4 respectively. We train and evaluate these models using their publicly available code3.

3 code url https://github.com/QUVA-Lab/e2cnn_experiments

https://github.com/QUVA-Lab/e2cnn_experiments
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Augment. Unscaling
with STN without STN

Clean Avg. Worst Clean Avg. Worst
[0.8,1.25] ✗ 86.15± 0.52 24.40±1.56 0.01±0.02 85.31±0.39 33.57±2.00 2.37±0.06
[0.8,1.25] ✓(Train+Test) 86.15± 0.28 86.15± 0.28 86.15± 0.28 85.25±0.43 85.25±0.43 85.25±0.43
[0.8,1.25] ✓(Test) 86.15± 0.52 85.59±0.79 85.59±0.79 85.31±0.39 83.76±0.35 83.76±0.35
[0.1,10] ✗ 85.40±0.46 47.25±1.36 0.04±0.05 75.34±0.84 47.58±1.69 1.06±0.87
[0.1,10] ✓(Test) 85.40±0.46 85.85±0.73 85.85±0.73 75.34±0.84 81.45±0.56 81.45±0.56

[0.001,1000] ✗ 33.33± 7.58 42.38± 1.54 2.25±0.22 5.07±2.37 25.42±0.73 2.24±0.11
[0.001,1000] ✓(Train+Test) 85.66± 0.39 85.66± 0.39 85.66± 0.39 85.05±0.43 85.05±0.43 85.05±0.43

Table 5.5: Scaling invariance in 3D pointcloud classification with PointNet trained on modelnet40, with and without data
augmentation, with and without STNs or scale normalization. Mean and standard deviations over 10 runs are reported.

RA STN PCA Clean
Rotation Translation

Avg. Worst Avg. Worst
✗ ✓ ✗ 86.15±0.52 10.37±0.18 0.09±0.07 10.96±1.22 0.00±0.00
✗ ✗ ✗ 85.31±0.39 10.59±0.25 0.26±0.10 6.53±0.12 0.00±0.00
✗ ✓ ✓(Train+Test) 74.12± 1.80 74.12± 1.80 74.12± 1.80 74.12± 1.80 74.12± 1.80
✗ ✗ ✓(Train+Test) 75.36±0.70 75.36±0.70 75.36±0.70 75.36±0.70 75.36±0.70
✓ ✓ ✗ 72.13± 5.84 72.39± 5.60 35.91± 4.87 5.35±0.98 0.00±0.00
✓ ✗ ✗ 63.93±0.65 64.75±0.57 45.53±0.29 3.90±0.71 0.00±0.00
✓ ✓ ✓(Test) 72.13± 5.84 72.96± 5.85 72.96± 5.85 72.96± 5.85 72.96± 5.85
✓ ✗ ✓(Test) 64.56±0.91 64.56±0.91 64.56±0.91 64.56±0.91 64.56±0.91
✓ ✓ ✓(Train+Test) 72.84±0.77 72.84±0.77 72.84±0.77 72.84±0.77 72.84±0.77
✓ ✗ ✓(Train+Test) 74.84±0.86 74.84±0.86 74.84±0.86 74.84±0.86 74.84±0.86

Table 5.6: Rotation and translation invariances in 3D pointcloud classification with PointNet trained on modelnet40, with
and without rotation augmentation, with and without STNs or PCA. Mean and standard deviations over 10 runs are reported.

Results in Tab. 5.4 indicate that even for these state-of-the-art models, there is a discrepancy
between the accuracy on the standard test set and the worst case accuracies, and their
robustness can be further improved by orbit mapping. Notably, orbit mapping significantly
improves worst case accuracy (by around 1.5%) for D4/C4 steerable model trained without
augmenting using rotations, showing gains in robustness even over naively trained D16/C16
model of much higher complexity. Training with augmentation leads to improvement in
robustness, with orbit mapping providing gains further in robustness. However, artifacts due
to double interpolation affect the performance of orbit mapping.

5.4.2 Invariances in 3D Point Cloud Classification

Invariance to orientation and scale is often desired in networks classifying objects given as
3D point clouds. Popular architectures, such as PointNet (Qi et al., 2017a) and its extensions
(Qi et al., 2017b), rely on the ability of spatial transformer networks to learn such invariances
by training on large datasets and extensive data augmentations. We analyze the robustness of
these networks to transformations with experiments using Pointnet on modelnet40 dataset
(Wu et al., 2015). We compare the class accuracy of the final iterate for the clean validation
set (Clean), and transformed validation sets in the average (Avg.) and worst-case (Worst). We
show that PointNet performs better with our orbit mappings than with augmentation alone.

In this setting, X = Rd×N are N many d-dimensional coordinates (usually with d = 3).
The desired group actions for invariance are left-multiplication with a rotation matrix, and
multiplication with any number c ∈ R+ to account for different scaling. We also consider
translation by adding a fixed coordinate ct ∈R3 to each entry in X . Desired invariances in
point cloud classification range from class-dependent variances to geometric properties.
For example, the classification of airplanes should be invariant to the specific wing shape,
as well as the scale or translation of the model. While networks can learn some invariance
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Augmentation STN OM Clean Scaling Rotation Translation
Scale RA Translation All Avg. Worst Avg. Worst Avg. Worst

[0.8,1.25] ✓ [−0.1,0.1] ✓ ✗ 72.13± 5.84 19.74± 4.01 0.16± 0.42 72.39± 5.60 35.91± 4.87 5.35±0.98 0.00±0.00
[0.8,1.25] ✓ [−0.1,0.1] ✓ ✓ Test 67.38± 7.96 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16 64.88± 12.16
[0.8,1.25] ✓ [−0.1,0.1] ✓ ✓ Train+Test 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03 77.52±1.03
[0.8,1.25] ✓ [−0.1,0.1] ✗ ✗ 63.93±0.65 12.85±0.29 0.27±0.55 64.75±0.57 45.53±0.29 3.90±0.71 0.00±0.00
[0.8,1.25] ✓ [−0.1,0.1] ✗ ✓Test 64.71±0.92 57.10±1.14 57.10±1.14 57.10±1.14 57.10±1.14 57.10±1.14 57.10±1.14
[0.8,1.25] ✓ [−0.1,0.1] ✗ ✓Train+Test 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58 74.41±0.58

Table 5.7: Combined Scale, rotation and translation invariances in 3D pointcloud classification with PointNet trained on
modelnet40, with data augmentation and analytical inclusion of each invariance. Mean and standard deviations over 10
runs are reported.

from training data, our experiments show that even simple transformations like scaling and
translation are not learned robustly outside the scope of what was provided in the training
data, see Tabs. 5.5, 5.6, 5.7. This is surprising, considering that both can be undone by
centering around the origin and re-scaling.

S C A L I N G : Invariance to scaling can be achieved in the sense of Sec. 5.3 by scaling input
point-clouds by the average distance of all points to the origin. Our experiments show that
this leads to robustness against much more extreme transformation values without the need
for expensive training, both for average as well as worst-case accuracy. We tested the worst-
case accuracy on the following scales: {0.001,0.01,0.1,0.5,1.0,5.0,10,100,1000}. While our
approach performs well on all cases, training PointNet on random data augmentation in the
range of possible values actually reduces the accuracy on clean, not scaled test data. This
indicates that the added complexity of the task cannot be well represented within the network
although it includes spatial transformers. Even when restricting the training to a subset of the
interval of scales, the spatial transformers cannot fully learn to undo the scaling, resulting in a
significant drop in average and worst-case robustness, see Tab. 5.5. While training the original
Pointnet including the desired invariance in the network achieves the best performance,
dropping the spatial transformers from the architecture results in only a tiny drop in accuracy
with significant gains in training and computation time4. This either indicates that in the
absence of rigid deformation, the spatial transformers do not add much knowledge and are
strictly inferior to modeling invariance, at least on this dataset.

R O TAT I O N A N D T R A N S L AT I O N In this section, we show that 3D rotations and translations
exhibit similar behavior and can be more robustly treated via orbit mapping than through
data augmentation. This is even more meaningful than scaling as both have three degrees of
freedom and sampling their respective spaces requires a lot more examples. For rotations, we
choose the unique element of the orbit to be the rotation of X that aligns its principle compo-
nents with the coordinate axes. The optimal transformation involves subtracting the center of
mass from all coordinates and then applying the singular value decomposition X =UΣV of
the point cloud X up to the arbitrary orientation of the principle axes, a process also known as
PCA. Rotation and translation can be treated together, as undoing the translation is a substep
of PCA, but Tab. 5.6 also shows separate results for both. To remove the sign ambiguity in the
principle axes, we choose signs of the first row of U and encode them into a diagonal matrix
D , such that the final transform is given by X̂ = X V ⊤D . We apply this rotational alignment to
PointNet with and without spatial transformers and evaluate its robustness to rotations in
average-case and worst-case when rotating the validation dataset in 16×16 increments (i.e.

4 Model size of PointNet with STNs is 41.8 MB, and without STNs 9.8 MB
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with 16 discrete angles along each of the two angular degrees of freedom of a 3D rotation). We
test robustness to translations in average-case and worst-case for the following shifts in each
of x, y and z directions: {−10.0,−1.0,−0.5,−0.1,0.1,0.5,1.0,10.0}. Tab. 5.6 shows that PointNet
trained without augmentation is susceptible in worst-case and average-case rotations and
even translations. The vulnerability to rotations can be ameliorated in the average-case by
training with random rotations, but the worst-case accuracy is still significantly lower, even
when spatial transformers are employed. Also notable is the high variance in performance
of Pointnets with STNs trained using augmentations. On the other hand, explicitly training
and testing with stabilized rotations using PCA does provide effortless invariance to rotations
and translations, even without augmentation. Interestingly, the best accuracy here is reached
when training PointNet entirely without spatial transformers, which offer no additional
benefits when the rotations are stabilized. The process for invariance against translation is
well-known and well-used due to its simplicity and robustness. We show that this approach
arises naturally from our framework, and that its extension to rotational invariance inherits
the same numerical behavior, i.e., provable invariance outperforms learning to undo the
transformation via data augmentation.

C O M B I N E D I N VA R I A N C E T O S C A L I N G , R O TAT I O N , T R A N S L AT I O N . Our approach can
be extended to make a model simultaneously invariant to scaling, rotations and translations.
In this setup, we apply a PCA alignment before normalizing the scale of input point cloud.
Tab. 5.7 shows that PointNet trained with such combined orbit mapping does achieve the
desired invariances.

5.5 D I S C U S S I O N A N D C O N C L U S I O N S

We proposed a simple and general way of incorporating invariances to group actions in
neural networks by uniquely selecting a specific element from the orbit of group transfor-
mations. This guarantees provable invariance to group transformations for 3D point clouds,
and demonstrates significant improvements in robustness to continuous rotations of images
with a limited computational overhead. However, for images, a large discrepancy between
the theoretical provable invariance (in the perspective of images as continuous functions)
and the practical discrete setting remains. We conjecture that this is related to discretiza-
tion artifacts when applying rotations that change the gradient directions, especially at low
resolutions. Notably, such artifacts appear more frequently in artificial settings, e.g. during
data augmentation or when testing for worst-case accuracy, than in photographs of rotating
objects that only get discretized once. While we found a consistent advantage of enforcing
the desired invariance via orbit mapping rather than training alone, a combination of data
augmentation and orbit mappings yields additional advantages (in cases where discretization
artifacts prevent a provable invariance of the latter). Moreover, our orbit mapping can be
combined with existing invariant approaches for improved robustness.
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A P P E N D I X

5.A E X T E N S I O N O F O R B I T M A P P I N G T O E Q U I VA R I A N T N E T W O R K S

Proposition 2 (Orbit mapping for equivariant networks). Let h be an orbit mapping that
satisfies h(S · x) ∈ S · x for all x. Any network G : X ×Rp →X that can be written as

G (x;θ) = ĝ−1(G2(ĝ (x);θ)) (5.13)

for an arbitrary network G2 : X ×Rp → X and ĝ ∈ S denoting the element that satisfies
ĝ (x) = h(S ·x) is equivariant.

Proof. We want to show that a network satisfying the condition (5.13) is equivariant. Consider
an input a = r (x) to the network, where r denotes an arbitrary element of S. We first need
to determine the element g̃ ∈ S such that g̃ (a) = h(S · a). From the definition of the orbit,
it follows that S · x = S · r (x), such that our orbit mapping satisfies remains the same, i.e.,
h(S ·x) = h(S ·a) = ĝ (x). Solving the equation g̃ (a) = ĝ (x) with a = r (x), i.e., x = r−1(a) for g̃
yields g̃ = ĝ r−1. Now it follows that

G (r (x);θ) =G (a;θ) = g̃−1(G2(g̃ (a);θ))

= r (ĝ−1(G2(g̃ (a);θ)))

= r (ĝ−1(G2(ĝ (x);θ)))

= r (G (x;θ)),

which concludes the proof.

5.B A D I S C U S S I O N O N I S O M E T R Y I N VA R I A N C E

Here, we will elaborate on how the functional map framework (Ovsjanikov et al., 2012) can
be seen as an application of our orbit mapping for isometry invariance. Functional maps
are a widely used method to find correspondences between isometric shapes, and we will
show here that the framework fits within our proposed theory. Non-rigid correspondence is a
notoriously hard problem, and joint optimization within a larger framework makes it even
more complex. To resolve this the idea of functional maps is to change the representation of
the correspondence from point-wise to function-wise. By choosing the eigenfunctions of the
Laplace-Beltrami operator [31] as the basis for functions on the shapes, the problem becomes
a least squares problem aligning suitable descriptor functions in the space of functions.

Here, F ∈ F (X ) and G ∈ F (Y ) are descriptor functions on the shapes X and Y re-
spectively. They are assumed to take similar values on corresponding points on X ,Y , and
generate the designated orbit element within our framework. These descriptors are projected
onto the eigenfunctions of X ,Y , named Φ,Ψ respectively. These projections are the chosen
elements of the orbit we will align, and, for isometries and sufficiently comparable descrip-
tors, the projections can be aligned by an orthogonal transformation generating the group
action which is exactly the functional map C . The vanilla functional map optimization looks
like this:
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argmin
C∈O(k)

∥CΦ−1F −Ψ−1G∥2
2 (5.14)

Functional maps are often used when shape correspondence is required within another
framework, and has been used in many deep learning applications [7],[16],[22]. Due to its
wide application, we will not provide extra experiments to show its efficacy but want to
emphasize that this is a possible implementation of our theory.

5.C I N VA R I A N C E T O I M A G E R O TAT I O N S U S I N G C O N V O L U T I O N K E R N E L S

Let u(z) denote the continuous image function with z ∈R2 representing the spatial coordi-
nates of an image. The invariance set for the orbit of continuous image rotations is

S = {g : X →X | g (u)(z) = (u ◦ r (α))(z), for α ∈R},

and r (α) =
(
cos(α) −sin(α)
sin(α) cos(α)

)
is the rotation matrix.

Let us consider two kernels ki : R2 → R, i = {1,2}. We now investigate the convolution of a
kernel with a rotated image (u ◦ r (α))(z)

(ki ∗u ◦ r (α)) (z) =
∫
R2

ki (x)(u ◦ r (α))(z −x)d x

=
∫
R2

ki (x)u(r (α)z − r (α)x)d x

=
∫
R2

ki (r T ϕ)u(r (α)z −ϕ)dϕ

with ϕ= r (α)x

Now assume (
k1(r T (α)ϕ)
k2(r T (α)ϕ)

)
= r T (α)

(
k1(ϕ)
k2(ϕ)

)
. (5.15)

Then (
(k1 ∗ (u ◦ r (α))) (z)
(k2 ∗ (u ◦ r (α))) (z)

)
=

∫
R2

r T (α)

(
k1(ϕ)
k2(ϕ)

)
u(r (α)z −ϕ)dϕ.

= r T (α)

(
(k1 ∗u)(r (α)z)
(k2 ∗u)(r (α)z)

)
Then for a suitable set Z which makes the integral rotationally invariant, (e.g. circles around
image center) ∫

Z

(
(k1 ∗ (u ◦ r (α))) (z)
(k2 ∗ (u ◦ r (α))) (z)

)
d z = r T (α)

∫
Z

(
(k1 ∗u)(ϕ)
(k2 ∗u)(ϕ)

)
dϕ (5.16)
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And we can determine the optimal rotation as solution to

ĝ = argmaxg∈S

〈(
1
0

)
,
∫

Z

(
k1 ∗u
k2 ∗u

)
(z) d z

〉
(5.17)

whose solution is given by α̂ such that

(
cos α̂
sin α̂

)
=

∫
Z

(
k1 ∗u
k2 ∗u

)
(z) d z∥∥∥∥∫

Z

(
k1 ∗u
k2 ∗u

)
(z) d z

∥∥∥∥ (5.18)

We can see that (5.15) is a necessary condition to ensure invariance to image rotations using
orbit mapping with (5.18) employing convolution kernels k1 and k2. For discrete convolution
kernels, eq. (5.15) is not exactly satisfied for arbitrary rotations due to discretization problem.
We can deduce necessary conditions on discrete kernels k1 and k2 to satisfy eq. (5.15) for
rotations in multiples of 90o . For square kernels k1 and k2 of size N ×N , we find that

k1[i , j ] = k1[N − i +1, N − j +1] and (5.19)

k2 = k1 ◦ r (−90o) (5.20)

are necessary to satisfy the condition (5.15) for α= 90o .
For N = 2, this gives kernels of the form

k1 =
(

a b
−b −a

)
and k2 =

(−b a
−a b

)
For N = 3,

k1 =

 a b c
d 0 −d
−c −b −a

 and k2 =

−c d a
−b 0 b
−a −d c


Note that computing gradients using central differences satisfies (5.19) and (5.20), whereas
using forward differences does not satisfy these conditions. Therefore, we observe more
instabilities in orbit mapping when forward differences are used for gradient computation,
see Tab. 5.1.

5.D D E TA I L S A B O U T T H E E X P E R I M E N TA L S E T T I N G

R O TAT I O N I N VA R I A N C E F O R I M A G E S For our experiments with image rotational in-
variance, we used Pytorch(v.1.8.1), python(v.3.8.8), torchvision(v.0.9.1). The exact training
protocol is provided below.

CIFAR10 We trained a Resnet18 (He et al., 2016) on the CIFAR 10 dataset, using stochastic
gradient descent with initial learning rate 0.1, momentum 0.9, and weight decay 5e-4. Addi-
tionally, we trained a small Convnet and a linear model which used an initial learning rate of
0.01. For all the models, the learning rate is decayed by a factor of 0.5 whenever the validation
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loss does not decrease for 5 epochs. Training data is augmented using random horizontal
flips, random crops of size 32 after zero-padding by 4 pixels. We divide the training data
into train (80%) and validation (20%) sets. Networks are trained for 150 epochs with a batch
size of 128 and we report the results on the test set using the model with best validation
accuracy. The experiments with CIFAR10 were performed partially on a machine with one
Nvidia TITAN RTX, and partially on a machine with 4 NVIDIA GeForce RTX 2080 GPUs.

HAM10000 We fine-tuned an ImageNet pretrained5 NFNet-F0 (Brock et al., 2021) on HAM10000
dataset (Tschandl et al., 2018). The dataset is split into 8912 train and 1103 validation images
using stratified split, ensuring there are no duplicates with the same lesion ids in the train
and validation sets. Training data is augmented using random horizontal and vertical flips
and color jitter, and randomly oversample the minority classes to mitigate class imbalance.
The network is finetuned for 5 epochs, with a batch size of 128 and learning rate of 1e-4,
weight decay of 5e-4 using Adam optimizer (Kingma and Ba, 2014) with exponential learning
rate decay, with factor 0.2. For training using TI-pool which uses 4 rotated copies of images,
we reduce the batch size to 32 to fit the GPU memory. For experiments with STN, we use a
3-layered CNN with convolution filers of size 3×3 followed by 2 fully connected layers for
pose prediction. For experiment with ETN, we use a CNN with 4 conv layers with 64 channels
and 2 fully connected layers for pose prediction. We report results using final iterate on
the validation set. The experiments with HAM10000 dataset were partially performed on a
machine with one NVIDIA TITAN RTX card, and partially on machine with 4 NVIDIA GeForce
RTX 2080 GPUs.

CUB200 This is a small dataset containing 11,788 images of birds, split into 5994 images for
training and 5794 test images. Since training a network from scratch gives low accuracies
(around 35% clean accuracy with Resnet-50), we instead perform finetuning using an Im-
ageNet pretrained Resnet-50 from pytorch torchvision (v.0.9.1) on CUB-200 dataset (Wah
et al., 2011). The training data is augmented using random horizontal flips, and random
resized crops of size 224. The network is finetuned for 60 epochs with a batch size of 128 and
initial learning rate of 1e-4, using Adam optimizer (Kingma and Ba, 2014), weight decay of
5e-4, with exponential learning rate decay, with factor 0.9. For training using TI-pool which
uses 4 rotated copies of images, we reduce the batch size to 64 to fit in the GPU memory.
For experiment with ETN, we use a CNN with 4 conv layers with 64 channels and 2 fully
connected layers for pose prediction. We report the accuracies using the final iterate on
the test set. The experiments on the CUB-200 dataset were performed on a machine with 4
NVIDIA GeForce RTX 2080 GPUs.
The three image datasets including HAM10000 dataset (Tschandl et al., 2018) used in this
chapter are publicly available and widely used in machine learning literature. To the best of
our knowledge, they do not contain offensive content or personally identifiable information.

R O TAT I O N A N D S C A L E I N VA R I A N C E F O R 3 D P O I N T C L O U D S We investigate invariance
to rotations and scale for 3D point clouds with the task of point cloud classification on the
modelnet40 dataset (Wu et al., 2015). For this dataset note the asset descriptions at https://
modelnet.cs.princeton.edu/.We use the resampled version of shapenet.cs.stanford.
edu/media/modelnet40_normal_resampled.zip. We follow the hyperparameters of (Qi
et al., 2017a,b) with improvements from the implementation of (Yan, 2019) on which we

5 pretrained model from https://github.com/rwightman/pytorch-image-models licensed Apache 2.0

https://modelnet.cs.princeton.edu/
https://modelnet.cs.princeton.edu/
shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
shapenet.cs.stanford.edu/media/modelnet40_normal_resampled.zip
https://github.com/rwightman/pytorch-image-models
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base our experiments. We train a standard PointNet for 200 epochs with a batch size of 24
with Adam (Kingma and Ba, 2014) with a base learning rate of 0.001, weight decay of 0.0001.
During training, we sample 1024 3D points from every example in Modelnet40, randomly
scale with a scale from the interval [0.8,1.25], and randomly translate by an offset of up to 0.1
- if not otherwise mentioned in our experiments. This is the training procedure proposed in
(Yan, 2019). However, we always train the model for the full 200 epochs and report final class
accuracy based on the final result - we do not report instance accuracy. We further report
invariance tests based on the final model. We evaluate rotational invariance by testing on
16×16 regularly spaced angles from [0,2π], rotating along x y and y z axes. We evaluate scaling
invariance by testing the scales {0.001,0.01,0.1,0.5,1.0,5.0,10,100,1000}. All experiments for
this dataset were run on three single GPU office machines, containing an NVIDIA TITAN Xp,
and two GTX 2080ti, respectively.

5.E A D D I T I O N A L N U M E R I C A L R E S U LT S

Discretization effects in CUB200 We further investigate the effect of discretization using
different interpolation schemes for rotation on higher resolution on the CUB-200 dataset
(trained at 224x224 resolution) fine-tuned using Resnet-50. Tab. 5.8 shows the results of
different training schemes with and without our orbit mapping (OM) obtained when using
different interpolation schemes for rotation. Besides standard training (Std.), we use rotation
augmentation (RA), and the adversarial training and regularization from (Engstrom et al.,
2019; Yang et al., 2019). Even for this higher resolution dataset, the worst-case accuracies
between different types of interpolation may differ by more than 15%.

Train OM Clean. Average Worst-case
Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Std.
✗ 77.41±0.33 37.67±0.35 52.45±0.29 51.87±0.31 3.19±0.49 8.07±0.35 8.16±0.33
✓Train+Test 71.19±0.34 63.35±0.30 71.56±0.34 70.93±0.35 40.63±0.48 58.80±0.39 59.02±0.41

RA.
✗ 69.89±0.28 67.61±0.33 70.12±0.34 68.83±0.37 34.88±0.47 41.01±0.41 40.50±0.43
✓Test 69.41±0.31 69.19±0.32 69.27±0.29 68.53±0.38 48.63±0.43 56.28±0.39 55.86±0.40
✓Train+Test 70.35±0.46 69.41±0.23 70.72±0.18 70.37±0.34 47.92±0.26 57.54±0.39 57.62±0.14

Advers. ✗ 64.54±0.17 53.74±0.65 64.07±0.25 63.22±0.54 26.63±0.79 42.82±0.60 42.44±0.55
Mixed ✗ 68.56±0.46 57.17±0.60 65.91±0.42 65.76±0.51 28.06±0.58 42.87±0.32 42.92±0.38
Advers.-KL ✗ 64.47±0.35 53.93±0.35 64.65±0.26 64.02±0.34 26.94±0.46 43.04±0.63 42.61±0.37
Advers.-ALP ✗ 64.63±0.31 55.56±0.67 64.34±0.17 63.21±0.24 29.55±0.69 43.63±0.21 43.48±0.32
ETN ✗ 64.14±0.24 64.26±0.65 66.95±0.42 64.32±0.62 43.33±1.01 52.85±1.12 49.72±1.31
TIpool ✗ 76.80±0.25 60.67±0.79 74.90±0.15 74.82±0.24 36.06±1.12 59.04±0.37 59.50±0.41
TIpool-RA ✗ 73.47±0.48 72.30±0.51 74.71±0.29 73.65±0.36 57.22±0.64 62.82±0.56 62.31±0.42
TIpool ✓Train+Test 76.82±0.15 68.50±0.58 77.18±0.18 77.04±0.16 49.85±0.65 69.19±0.36 69.64±0.33
TIpool-RA ✓Train+Test 74.78±0.20 73.79±0.48 75.89±0.17 75.07±0.16 59.57±0.57 67.78±0.20 67.64±0.18

Table 5.8: Effect of augmentation and including gradient based orbit mapping (OM) on robustness to rotations with different
interpolations for CUB200 classification using Resnet50. Shown are clean accuracy on standard test set and average and
worst-case accuracies on rotated test set. Mean and standard deviations over 5 runs are reported.

In particular, adversarial training with bi-linear interpolation is still vulnerable to image rota-
tions with nearest-neighbor interpolation. The learned ETN also exhibits a similar behavior.
While our approach is also affected by the interpolation effects, the vulnerability to nearest
neighbor interpolation is ameliorated when using rotation augmentation. We obtain the best
results by combining orbit mapping with the discrete invariant approach (Laptev et al., 2016)

Effect of Network architecture for CIFAR10 To investigate the effectiveness of our approach,
we experiment with three different network architectures: i) a linear network, ii) a 5-layer
convnet ii) a Resnet18. We compare the performance of our orbit mapping approach with
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Network Train OM Std. Average Worst-case
Nearest Bilinear Bicubic Nearest Bilinear Bicubic

Linear

Std.
✗ 38.89±0.17 25.31±0.21 25.57±0.22 25.48±0.24 2.50±0.11 3.56±0.17 3.26±0.11
✓Train+Test 31.87±0.10 31.25±0.04 31.58±0.05 31.33±0.04 13.08±0.23 18.85±0.21 18.21±0.21

RA
✗ 29.73±0.18 30.66±0.03 30.77±0.03 30.72±0.03 14.30±0.42 18.31±0.29 16.94±0.37
✓Test 30.60±0.13 30.52±0.07 30.65±0.08 30.54±0.09 16.83±0.47 21.17±0.28 20.37±0.26
✓Train+Test 31.06±0.26 31.07±0.11 31.27±0.10 31.13±0.09 19.19±0.28 24.25±0.31 23.68±0.31

Advers. ✗ 28.82±0.77 29.46±0.60 29.62±0.56 29.36±0.56 11.45±0.81 14.20±0.93 13.65±0.55

Convnet

Std.
✗ 86.12±0.33 32.01±0.32 35.97±0.26 38.15±0.36 0.85±0.09 0.57±0.06 0.89±0.14
✓Train+Test 76.13±0.96 64.34±0.35 71.21±0.96 74.61±0.84 25.78±0.49 49.60±0.79 55.57±0.81

RA
✗ 75.03±0.99 71.77±0.84 65.45±0.66 70.22±0.66 27.96±0.50 27.06±0.61 32.51±0.53
✓Test 70.12±0.64 67.64±0.55 61.03±0.67 66.09±0.71 39.01±0.57 42.88±0.90 49.39±0.68
✓Train+Test 74.30±0.77 73.24±0.58 69.52±0.53 73.38±0.59 46.25±0.54 53.36±0.57 59.04±0.53

Advers. ✗ 72.96±0.95 62.08±0.59 74.29±0.88 73.86±0.76 26.24±0.43 50.99±0.54 52.46±0.51

Resnet18

Std.
✗ 93.98±0.32 35.12±0.81 40.06±0.44 42.81±0.50 0.79±0.38 1.31±0.13 2.22±0.17
✓ Train+Test 87.99±0.43 72.40±0.33 84.12±0.55 86.61±0.49 34.57±0.94 68.60±0.81 74.49±0.84

RA
✗ 85.54±0.72 80.47±0.74 75.99±0.72 79.47±0.65 45.50±0.83 44.71±0.74 50.50±0.78
✓ Test 79.26±0.42 74.93±0.51 69.31±0.65 73.94±0.63 48.93±0.75 52.18±0.91 58.69±0.78
✓ Train+Test 85.40±0.57 84.37±0.58 81.82±0.59 84.82±0.52 66.22±0.75 71.09±1.01 76.44±0.89

Advers. ✗ 69.32±1.61 61.73±1.12 68.54±0.68 68.00±0.31 36.95±0.97 50.21±0.55 49.73±0.98

Table 5.9: Comparing rotational invariance using training schemes vs. orbit mapping for CIFAR10 classification using
i) Linear network ii) 5-layer Convnet iii) Resnet18. Shown are the mean clean accuracy and the average and worst case
accuracies when test images are rotated in steps of 1 degree. The mean and standard deviation values over 5 runs are
reported.

Method Std. STN ETN Adv. OM
Train-time/epoch 18.05±0.05 18.90±0.05 18.89±0.07 72.09±0.18 18.59±0.04

Table 5.10: Average training time per epoch in seconds for different approaches to incorporate rotation invariance, with
Resnet18 as base architecture for CIFAR10 classification. Training time corresponds to runs on a machine with a single
Titan-RTX GPU.

training schemes, i.e. augmentation and adversarial training for rotational invariance in
Tab. 5.9. For all the three architectures considered, our orbit mapping together with rotation
augmentation consistently results in the most accurate predictions in the worst case.

Comparing Computation Complexity for CIFAR10 In Tab. 5.10, the training times using
different approaches are compared for rotation-invariant CIFAR10 classification. It can be
noted that the proposed gradient based orbit mapping is significantly easier and computa-
tionally cheaper to train in comparison with other approaches for incorporating invariance.
In contrast, adversarial training is the most computationally expensive approach.

Comparing Computational Complexity of ROTMNIST Tab. 5.11 compares the computa-
tional complexity of the D4/C4 and D16/C16 models. The D16/C16 model has significantly
higher computational complexity than the D4/C4 model, though the number of learnable
parameters is nearly the same. The network size of the D16/C16 network is higher due to
more rotated copies of the filters, resulting in larger training and inference times. Orbit
mapping adds no learnable parameters and increases training time very marginally (∼0.3
seconds/epoch). Training times correspond to runs on a machine with a single Titan-RTX
GPU.

OM
D4/C4 D16/C16

Train-time/epoch Train-time/epoch
✗ 4.47 s 41.89 s
✓ 4.78 s 42.08 s

Table 5.11: Comparing computational complexity of D4/C4 and D16/C16 models. Orbit mapping adds no learnable
parameters and increases training time very marginally (∼0.3 seconds/epoch). Training times correspond to runs on a
machine with single Titan-RTX GPU.



Declaration for Chapter 6 - Adversarial Robustness of Deep Image Recovery

This chapter is based on two papers- Gandikota et al. (2022a) titled “On adversarial robust-
ness of deep image deblurring” co-authored by Kanchana Vaishnavi Gandikota, Paramanand
Chandramouli and Prof. Michael Moeller, published at IEEE International Conference on
Image Processing (ICIP) 2022, and, Gandikota et al. (2023) titled “Evaluating Adversarial
Robustness of Low dose CT Recovery” co-authored by Kanchana Vaishnavi Gandikota, Para-
manand Chandramouli, Hannah Dröge and Prof. Michael Moeller, published at Medical
Imaging with Deep Learning (MIDL) 2023.

Kanchana Vaishnavi Gandikota and Paramanand Chandramouli jointly proposed this
project idea on analyzing robustness of image recovery networks, focusing on robustness
to targeted attacks. In Gandikota et al. (2022a) which analyzed robustness of image deblur-
ring methods, Paramanand Chandramouli contributed to experiments with DeblurGAN,
Kanchana Vaishnavi Gandikota reviewed the literature, contributed to the experimental
evaluation and writing the first draft of the paper. Kanchana Vaishnavi Gandikota proposed
to extend these ideas to CT reconstruction in Gandikota et al. (2023). Kanchana Vaishnavi
Gandikota came up with the idea of robustness evaluation in terms of both error in im-
age reconstruction and measurement consistency. Prof. Michael Moeller proposed the
idea of localizing perturbations in the sinogram space, proposed evaluating Bregmann dis-
tances, provided code for implementing the same, and wrote the parts of the paper related
to Bregman distances. Kanchana Vaishnavi Gandikota reviewed the literature, conducted
experiments evaluating robustness to untargeted, localized and universal attacks, and con-
tributed to writing the first draft of the paper. Hannah Droege trained iRadonmap network
for CT recovery, and provided code for locating clinically relevant regions in CT images. Para-
manand Chandramouli and Prof. Michael Moeller were involved in discussing the ideas and
contributed to improving the writing. The research was supervised by Prof. Michael Moeller.

Additional follow-up experiments evaluating robustness of more recent restoration net-
works are provided in the appendix.
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a) Deblurring without noise c) Target image

b) Deblurring with adversarial input d) Adversarial noise

Figure 6.1: Example targeted attack on DeblurGANv2 Kupyn et al. (2019), with adversarial noise level set to 8/255.

Following the success of deep neural networks for higher level computer vision applications,
deep learning approaches are increasingly adopted in image recovery and restoration tasks
(Zamir et al., 2022; Eboli et al., 2020; Ge et al., 2020; Pelt et al., 2018; Kuanar et al., 2019). While
the vulnerabilities and instabilities of neural networks to adversarial examples are widely
studied for image classification, they are less studied in the context of image recovery. This
chapter attempts to fill this gap by taking a closer look at the adversarial robustness of image
recovery.

The notion of robustness itself is very different for classification and reconstruction
problems. For a classifier, robustness can be characterized by the minimal perturbation
which can cause a sample to cross the decision boundary, leading to a change in classification
outcome. In contrast, for reconstruction tasks, the outputs are not discrete labels, and there
is no notion of a decision boundary. Robustness can instead be characterized by measuring
the maximum change in the reconstruction with respect to change in the input. Furthermore,
the ill-posedness of inverse imaging tasks means multiple valid solutions exist for the same
measurement, in contrast to classification, where typically there is one salient object in an
input image that belongs to a single class. This ill-posedness also implies a trade-off between
the stability of the recovery algorithm, and the accuracy it can achieve in terms of proximity
to ground truth. Moreover, there exist classical approaches for image reconstruction with
convergence guarantees. To take these into account, in this chapter, we investigate the
adversarial robustness of a variety of model-based methods, and deep neural networks for
image recovery including model-inspired architectures.

We consider two example image recovery problems, image deblurring and low-dose
computed tomography. While existing works focus on untargeted attacks on image recon-
struction, we investigate the susceptibility of networks to targeted attacks, untargeted attacks,
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and also attacks aiming to modify a localized region in the reconstruction. Fig. 6.1 shows an
example targeted attack on DeblurGANv2 (Kupyn et al., 2019), a popular image deblurring
network. A tiny additive perturbation to the input is sufficient to change the network output
from the image of a man to that of a baby. We can see that this adversarial reconstruction
is clearly inconsistent with the measurement. While methods that take into account the
forward measurement model (here, the blur operator) are relatively stable to such extreme
targeted changes, they can still be susceptible to localized changes and untargeted attacks,
indicating the necessity for robust networks for image recovery.

Let us now introduce the specific reconstruction problems of image deblurring and
computed tomography reconstruction. We consider the forward measurement model from
the chapter 3,

f = A (u)+n. (6.1)

In the case of image deblurring, A corresponds to the blur operator. Blur occurs due to
relative motion between cameras and objects in the scene during the exposure time, or due to
sub-optimal focal settings. Recovering sharp images û from blurred inputs is a well-studied
research problem. When the blur is uniform, the blur operation can be characterized using
a convolution with blur kernel, and recovering û becomes a linear inverse problem. Even
for non-blind deblurring, i.e. deblurring with a known blur operator, sharp image recovery
is an ill-posed problem. When the blur operator is also unknown, it is referred to as blind
deblurring, which is even more severely ill-posed, as multiple pairs of A and u can produce
the same blurred observation f .
Computed tomography (CT) involves recording attenuated X-ray radiation projected at differ-
ent angles by a scanner rotating around a target. The recorded measurements are arranged
into a sinogram, from which a CT image is reconstructed. In this case, the forward operator A
is a linear operator given by the 2D Radon transform (Radon, 1986), which models the attenu-
ation of the radiation passing through the target by calculating line integral along the path of
an X-ray beam. The measurement f is the sinogram, which consists of the recorded integrals
for different distances and measurement angles. The degree of attenuation varies depending
on the density of the tissue, and recording this attenuation at different angles aids in creating
a detailed image of the internal structures of the target. This non-invasive imaging technique
is widely used in medical diagnosis. While the accuracy and resolution of CT images improve
with the number of X-ray beams used, exposure of patients to X-rays poses serious health
risks. To reduce this risk, different solutions to low-dose CT acquisition have been proposed
under the ALARA (as low as reasonably achievable) principle (Slovis, 2002; Newman and
Callahan, 2011). These protocols can be broadly classified into two categories- i) adjusting
the settings on the CT scanner tube to reduce the total number of X-ray photons and ii)
recording measurements from fewer projection angles. Either or both of these approaches
may be adopted to reduce radiation dosage. However, there exists a trade-off between dose
reduction during CT acquisition and diagnostic quality. A lower number of X-ray photons
degrades reconstruction quality due to increased image noise level. On the other hand, CT
recovery from fewer projection angles can suffer from severe artefacts. Further, sparse-view
CT is an ill-posed problem, and there can be many valid solutions for the same measurement.

While one could solve such inverse problems using the linear pseudo-inverse, it is highly
sensitive to noise. Linearly filtering in Fourier space, commonly referred to as filtered back
projection (FBP) (Feldkamp et al., 1984), is one standard classical approach to CT recovery.
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For image deblurring, Wiener filtering, which involves linear filtering in Fourier space to
achieve an optimal trade-off between inverse filtering and noise suppression is a standard
classical approach. Variational approaches to such ill-posed reconstruction problems employ
energy minimization with suitable priors using iterative algorithms. Examples include (Sidky
et al., 2006; Chen et al., 2013) for CT reconstruction, (Getreuer, 2012; Bioucas-Dias et al., 2006;
Krishnan and Fergus, 2009) for non-bind deblurring. Blind deblurring methods (Perrone and
Favaro, 2014; Pan et al., 2016; Chen et al., 2019) employ alternate minimization with suitable
priors to obtain both the image and the blur operator. In Chapter 3, we have discussed in
detail different approaches to image recovery. In the following, we briefly discuss related
work for deep learning methods specific to image deblurring and CT recovery and discuss
prior works on adversarial attacks on image recovery.

6.1 R E L AT E D W O R K

6.1.1 Deep learning for Image Deblurring and CT Recovery

I M A G E D E B L U R R I N G : Recently image restoration has witnessed a paradigm shift from
classical approaches to using deep neural networks. We refer to (Koh et al., 2021; Su et al.,
2022) for a detailed survey and comparison of deep learning based image deblurring methods.
Neural network approaches to blind deblurring typically learn to invert the blur operation di-
rectly using a trained neural network (Kupyn et al., 2019; Zamir et al., 2021) from large datasets
of sharp and blurry image pairs to recover clean images. However, there are also methods
that explicitly include the estimation of a blur operator (Schuler et al., 2015; Chakrabarti,
2016). For non-blind deblurring, the knowledge of a blur operator has been successfully
integrated into neural networks, by unrolling fixed steps of optimization algorithms with
learned operators (Gong et al., 2020; Eboli et al., 2020; Bertocchi et al., 2020), or by using
known deconvolution techniques in feature space (Dong et al., 2020) within the network. A
few works (Vasu et al., 2018; Nan and Ji, 2020) also take into account kernel uncertainty in
non-blind deblurring. In addition to end-to-end trained networks for image deblurring, neu-
ral networks are also used in iterative recovering sharp images from blurred observations, for
example, by using trained denoisers as proximal operators for plug and play reconstruction
(Meinhardt et al., 2017), or using trained generative priors (Asim et al., 2020b).

C T R E C O V E R Y : Deep learning approaches to CT reconstruction tasks encompass a wide
array of methods. These include deep neural network post-processors which denoise an
initial reconstruction from the filtered-back-projection operator (Chen et al., 2017; Jin et al.,
2017; Yang et al., 2018; Zhang et al., 2018c; Pelt et al., 2018; Kuanar et al., 2019), fully learned
methods such as iRadonmap (He et al., 2020) and ADAPTIVE-Net (Ge et al., 2020), which
also learn the filtered back projection operation in addition to learning the post-processor,
unrolled optimization networks which unroll fixed iterations of algorithms such as gradient
descent, primal-dual hybrid gradient, projected gradient descent with learned parameters
(Adler and Öktem, 2017; Aggarwal et al., 2018; Adler and Öktem, 2018). In addition to end-
to-end trained networks, the works (He et al., 2018; Gupta et al., 2018) learn projection or
proximal step, Baguer et al. (2020) use untrained neural network prior (Ulyanov et al., 2018),
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and Song et al. (2022) use generative models trained on CT images in an iterative energy
minimization.

In this chapter, we analyze the adversarial robustness of end-to-end trained deep net-
works, including, fully learned approaches, networks taking into account the forward operator
and model-based architectures, which can recover solutions in a single forward pass. In addi-
tion, we consider the classical approaches for CT recovery, including filtered back projection
and energy minimization with TV prior. We exclude iterative approaches involving deep
network priors in our experiments due to high computational complexity.

6.1.2 Adversarial Attacks on Image Reconstruction:

While adversarial attacks on neural networks have been first introduced and extensively
studied in the context of image classification (Szegedy et al., 2014; Goodfellow et al., 2015;
Madry et al., 2018), analysis of adversarial robustness for reconstruction has received less
attention. In the context of image restoration, Choi et al. (2019) shows that several state-of-the-
art trained networks for image super-resolution are susceptible to adversarial perturbations,
however, they consider only direct inversion models, with a focus on untargeted attacks. To
the best of our knowledge, such attacks have not been shown for deblurring prior to our work.
Recent works starting from (Antun et al., 2020; Raj et al., 2020) demonstrated the susceptibility
of image reconstruction networks to adversarial attacks. While Antun et al. (2020) study
instabilities of MRI reconstruction networks by adding perturbations in the image domain,
Raj et al. (2020) consider adversarial perturbations in measurement domain and perform
adversarial training using auxiliary network to generate adversarial examples. However,
these works consider mainly untargeted attacks for networks performing direct inversion
or post-processing. Cheng et al. (2020) perform adversarial attacks to generate tiny features
that cannot be recovered well by MRI reconstruction networks and propose adversarial
training to improve the network’s sensitivity to such features. Darestani et al. (2021); Morshuis
et al. (2022) show that adversarial perturbations can alter diagnostically relevant regions in
recovered MRI images. In the context of CT recovery, Huang et al. (2018) perform preliminary
investigations whether additive adversarial perturbations lead to incorrect reconstruction
of an existing lesion. Closely related to our work, Genzel et al. (2022); Wu et al. (2022) also
investigate the adversarial robustness of different approaches for CT recovery. They mainly
considered untargeted attacks, with some preliminary experiments in (Genzel et al., 2022)
on targeted changes indicating that reconstruction networks are largely robust to targeted
changes. In contrast, we conduct an in-depth study on the effect of adversarial attacks on
the recovery algorithm by measuring reconstruction quality in terms of similarity with the
ground truth in the image domain, as well as consistency of the reconstruction with the input
sinogram in the measurement domain. We investigate the susceptibility of image recovery
methods to untargeted attacks, targeted attacks, universal attacks, and localized adversarial
attacks targeting diagnostically relevant or semantically meaningful regions.

6.2 S TA B I L I T Y O F I M A G E R E C O N S T R U C T I O N

Consider the problem of reconstructing u from the measurement model eq. (6.1). For simplic-
ity, we assume A to be a linear operator. A desirable property for the reconstruction algorithm
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is stability, in the sense that the algorithm’s output varies smoothly with respect to changes
in the input. The notion of stability may be characterized using Lipschitz continuity. If a
reconstruction algorithm G satisfies

∥G (
f +δ

)−G
(

f
)∥ ≤ L∥δ∥, (6.2)

then G is a Lipschitz continuous mapping with Lipschitz constant L. From the point of
view of stability, a small value of L is desirable to ensure that the maximal change in the
reconstruction with respect to a small change in measurement remains small and bounded.
Yet, this stability comes at the cost of reconstruction performance. For instance, Sommerhoff
et al. (2019) observed that enforcing non-expansiveness (L ≤ 1) drastically decreased the
denoising performance of neural network denoisers. This trade-off becomes clearer as we go
beyond denoising towards more ill-posed recovery problems (Gottschling et al., 2020). A large
change in image space ∆u can still result in only a tiny change δ= A∆u in the measurement
space when a large component of ∆u is in the null-space of A. In such cases, a small value
of L implies the inability of G to accurately reconstruct the ground truth. Conversely, a
deterministic recovery algorithm G which can recover both u and u +∆u accurately will
have a much larger L, and is therefore less stable. Despite these trade-offs, the Lipschitz
constant remains an important tool to evaluate the stability of reconstruction methods.
However, analyzing the stability of neural networks in terms of the Lipschitz constant is
difficult, owing to the high complexity involved in its exact computation, even for moderately
sized neural networks (Jordan and Dimakis, 2020). As a result most works (Anil et al., 2019;
Weng et al., 2018; Virmaux and Scaman, 2018; Combettes and Pesquet, 2020) only compute
approximations and upper bounds for the Lipschitz constant.

In contrast, it is easier to analyze the stability of classical approaches. The stability of
the standard linear techniques can be analyzed via the singular values of the reconstruction
operator, see, e.g. (Bauermeister et al., 2020) for learning linear reconstructions in such
a context. In the case of variational energy minimization approaches for linear inverse
problems, a stability estimate shown in (Burger et al., 2007) is

∥ f1 − f2∥2 ≥ ∥Au1 − Au2∥2 +2〈p1 −p2,u1 −u2〉, p1 ∈ ∂R (u1) , p2 ∈ ∂R (u2) , (6.3)

where the term 〈p1 −p2,u1 −u2〉 is the ’symmetric Bregman distance’ with respect to the
convex regularizer R. While it is difficult to estimate exact error bounds for neural network
based reconstruction, empirical analysis of stability can be done using adversarial attacks for
both model based approaches and neural networks. In this chapter, we empirically analyze
robustness of image deblurring and CT reconstruction for different model based approaches
and deep learning approaches.

6.3 A D V E R S A R I A L AT TA C K S O N I M A G E R E C O V E R Y

Adversarial attacks on image recovery methods make small changes to the inputs causing
unpredictable large changes in the output. In this work, we consider robustness to tiny L∞
norm bounded additive perturbations in the measurement domain. We assume that the
parameters of the neural network G or the recovery algorithm is fully known to the attacker,
i.e. the white box setting.
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Untargeted Attacks: Here the aim is to find an additive L∞ norm constrained perturbation
in the measurement domain that maximizes the reconstruction error:

δad v = argmax
δ

∥∥G
(

f +δ
)−G

(
f
)∥∥

2 s.t. ∥δ∥∞ ≤ ϵ. (6.4)

Targeted Attacks: Here the goal is to find an additive perturbation in the measurement
domain that produces a reconstruction close to a target image ũ subject to L∞ constraints on
the perturbation,

δad v = argmin
δ

∥∥G
(

f +δ
)− ũ

∥∥
2 s.t. ∥δ∥∞ ≤ ϵ. (6.5)

In the case of CT recovery, attempting to reconstruct a target image totally different from the
original solution does not produce meaningful results. We instead perform a localized attack
which attempts to modify only clinically relevant regions in the reconstruction.

Localized Attacks: Here the goal is to find an additive L∞ norm constrained perturbation
that produces a change the visual appearance and alters predicted malignancy in a localized
clinically relevant region. We utilize an adversarially trained classifier Gθ trained to classify
chest CT nodules to guide the attack towards a plausible change in visual appearance locally.
Note that using a non-robust classifier in the attack would cause misclassification even
without perceptible changes in reconstruction. Our localized attack can be formulated as:

δad v = argmax
δ

E
(
Gθ

(
gc

(
G ( f +δ)

))
, y

)
s.t. ∥δ∥∞ ≤ ϵ. (6.6)

where gc (·) crops the region of interest, and y =Gθ

(
gc

(
G

(
f
)))

is the predicted label for the
region of interest in the clean reconstruction. E(·) refers to the energy function (loss) to be
maximized for binary classification of nodules, which is the binary cross entropy loss. To
ensure that the degradation remains localized, and to avoid artifacts at the boundary of the
local region, we apply a smoothed mask to the adversarial noise setting at every step. The
mask is calculated as the sinogram of the Gaussian-smoothed spatial mask corresponding to
the region of interest, normalized to have a maximum value of 1.

Universal Attacks: Here we aim to find an input-agnostic L∞ norm constrained adversarial
perturbation that maximizes the reconstruction error of a recovery method G for any input.
This input-agnostic perturbation is optimized over a set of examples:

δuni ad v = argmax
δ

∑
examples i

∥∥G
(

fi +δ
)−G

(
fi

)∥∥
2 s.t. ∥δ∥∞ ≤ ϵ. (6.7)

We solve the constrained optimization problems eq. (6.4), eq. (6.5), eq. (6.6), eq. (6.7) using the
projected gradient descent (PGD) algorithm (Madry et al., 2018). The adversarial examples(

f +δad v
)

are finally clipped to lie in the range of valid intensities of f .

6.4 E X P E R I M E N T S A N D R E S U LT S

6.4.1 Deblurring

We use the following networks in our experiments: i) DeblurGANv2 (Kupyn et al., 2019) and
ii) MPRNet (Zamir et al., 2021), which are end-to-end trained networks for dynamic image
(blind) deblurring, as well as iii) (Gong et al., 2020), a learned recurrent gradient descent net-
work, and iv) (Dong et al., 2020), which performs Wiener deconvolution in the feature space of
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MPRNet ϵ=4/255 DeblurGANv2 ϵ=4/255 Deep Wiener ϵ=8/255 RGDN ϵ=12/255.

Figure 6.2: Example targeted adversarial attacks on deblurring networks MPRNet Zamir et al. (2021), DeblurGANv2 Kupyn
et al. (2019),RGDN Dong et al. (2020), deep Wiener network Gong et al. (2020) on Face images. Blurred images in rows 1 and
2 are generated using blur kernels ‘1’ and ‘2’ of size 19×19 and 17×17 in the dataset of Sun et al. (2013) respectively.

neural networks. The non-blind deblurring networks (Gong et al., 2020; Dong et al., 2020) use
the knowledge of blur operator during reconstruction. We use publicly available trained mod-
els of all these networks made available by the authors. For attacks on DeblurGANv2 (Kupyn
et al., 2019), we choose the version using the inception backbone since it achieves the best
results. In their experiments, Gong et al. (2020) can unroll the recurrent gradient descent
network for an arbitrary number of steps till a stopping criterion is satisfied. However, it
becomes prohibitively complex to perform adversarial attacks for a high number of unrolled
steps. In our experiments, we limit the number of unrolled steps to 10 for crafting adversarial
inputs, but evaluate robustness to the same inputs using a network with 50 unrolled steps.
We create a synthetic dataset of 80 blurred images generated by convolving uniform blur
kernels of the dataset in (Sun et al., 2013) with sharp images, a subset of images from CelebA-
HQ dataset resized to 256×256, and a subset of images from the Berkeley segmentation
dataset (BSDS300). For the targeted attacks, we use the image ’baby’ from Set5, and the
image ‘108005’ from BSDS300 as the targets for face images and BSDS images respectively. In
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Blurred MPRNet clean MPRNet ϵ=4. DeblurGANv2 clean DeblurGANv2 ϵ=4.

Figure 6.3: Targeted attack with dynamically blurred input on DeblurGANv2 Kupyn et al. (2019) and MPRNet Zamir et al.
(2021).
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Figure 6.4: Illustration of localized targeted attack. For each approach, the first column is the adversarial input and the
second column is the network prediction.

the appendix, we additionally evaluate more recent dynamic deblurring networks including
MIMO-UNet (Cho et al., 2021), and transformer based methods, Uformer (Wang et al., 2022c),
Stripformer (Tsai et al., 2022), Restormer (Zamir et al., 2022), NAFNet (Chen et al., 2022a) only
on the set of blurred face images. We do not evaluate these methods on blurred BSDS images
due to GPU memory constraints in processing these images in their full resolution. We use a
step size of 1e −2 and use 25 PGD steps and 50 PGD steps to craft untargeted and targeted
adversarial perturbations. We measure the effect of attack on reconstruction by measuring
peak-signal-to-noise-ratio (PSNR) and normalized-cross-correlation (NCC), with respect to
ground truth for untargeted attacks, and PSNR and NCC with respect to both the ground
truth and the target image for the targeted attacks.

Targeted Attacks

We evaluate the robustness of deblurring networks to targeted attacks that try to make the
networks generate an image that is close to a target image. Fig. 6.2 illustrates example targeted
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Method Clean
Targeted attacks Untargeted attacks

Similarity to source PSNR/NCC Similarity to target PSNR/NCC Similarity to source PSNR/NCC
ϵ= 4 ϵ= 8 ϵ= 12 ϵ= 4 ϵ= 8 ϵ= 12 ϵ= 4 ϵ= 8 ϵ= 12

Fa
ce

s

MPRNet 26.81/0.976 9.77/0.409 9.75/ 0.408 9.75/0.408 26.80/ 0.986 26.94/0.987 26.94/0.987 11.29/ 0.645 8.88/0.498 8.582/0.465
DeblurGANv2 27.13/0.982 10.26/0.419 10.09/0.413 10.081/0.412 20.57/0.950 21.66/0.963 21.76/0.963 5.65/-0.063 5.36/-0.137 5.23/-0.175
DeepWiener 22.91/0.951 19.28/0.906 17.07/0.858 15.58/0.810 11.31/0.565 12.55/0.659 13.69/0.728 11.65/0.593 10.12/0.511 9.10/0.456

RGDN 26.98/0.981 24.55/0.961 23.32/0.954 22.06/0.934 10.19/0.452 10.57/0.496 10.95/0.537 24.13/0.966 22.67/0.953 21.43/0.939

B
SD

MPRNet 24.41/ 0.944 12.52/0.155 12.30/0.130 12.27/0.126 23.15/0.899 24.14/0.919 24.22/0.921 10.59/0.487 9.04/0.398 8.12/0.319
DeblurGANv2 24.04/0.941 12.43/0.174 12.35/0.164 12.27/0.153 19.94/0.805 20.92/0.841 21.27/0.854 5.90/0.173 5.64/0.147 5.57/0.085
DeepWiener 21.44/0.443 21.08/0.882 19.43/0.844 18.08/0.792 13.11/0.139 14.10/0.223 15.00/0.311 14.15/0.607 11.43/0.478 10.15/0.416

RGDN 24.23/0.943 22.61/0.921 21.78/0.907 20.89/0.887 12.83/ 0.106 13.29/0.166 13.75/0.226 22.08/0.907 21.11/0.884 20.22/0.859

Table 6.1: Comparison of PSNR and normalized cross correlation (NCC) values with respect to source image for untargeted
attacks, PSNR and NCC with respect to source and target images for targeted attacks. Evaluation of robustness of MPRNet
Zamir et al. (2021), DeblurGANv2Kupyn et al. (2019), Deep Wiener network Dong et al. (2020), RGDN Gong et al. (2020) on
blurred face images (top) and blurred images from BSD dataset (bottom).

attacks on the deblurring methods (Zamir et al., 2021; Kupyn et al., 2019; Dong et al., 2020;
Gong et al., 2020). Even though the blind deblurring methods (Zamir et al., 2021; Kupyn et al.,
2019) are not trained using uniform blur models, they generate sharper images with less
visible artifacts when the inputs are clean, and the blur kernels are not too large. However,
they are also most susceptible to targeted attacks, shockingly turning a woman into a baby
or an elephant into a tiger with adversarial noise strength as low as 4/255. In contrast, the
non-blind methods are more robust and do not produce such extreme changes in the output,
even for higher strengths of adversarial noise. Adversarial perturbation for the non-blind
networks also shows a clear pattern of target images, in contrast to the blind deblurring
methods. However, the visual quality of the non-blind network outputs (Dong et al., 2020;
Gong et al., 2020) is lower even without adversarial noise. On our test data, the deep Wiener
network (Dong et al., 2020) produces sharper results, but with visible ringing artifacts, and
the recurrent gradient decent network (Gong et al., 2020) outputs still have a residual blur.

The quantitative evaluation provided in Tab. 6.1 confirms the trend of higher susceptibility
of the blind deblurring approaches to targeted attacks, showing higher similarity with the
target image in terms of PSNR and normalized cross-correlation (NCC) than with respect to
the actual ground truth. While the blind dynamic deblurring approaches (Zamir et al., 2021;
Kupyn et al., 2019) are not trained using uniform blur models, we find that similar adversarial
vulnerabilities occur even with dynamically blurred images from the test sets of (Zamir et al.,
2021; Kupyn et al., 2019), see Fig. 6.3.

Blurred MPRNet ϵ= 4/255 DeblurGANv2 ϵ= 4/255 Deep Wiener ϵ= 4/255 RGDN ϵ= 8/255

Figure 6.5: Untargeted adversarial attack on deblurring networks MPRNet Zamir et al. (2021), DeblurGANv2 Kupyn et al.
(2019), Deep Wiener Dong et al. (2020), RGDN Gong et al. (2020). Blur kernel ‘6’ of size 21×21 in the dataset of Sun et al.
(2013) is used.
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Figure 6.6: Effect of kernel size on ease of targeted attack
on non-blind deblurring networks Deep Wiener Dong et al.
(2020), RGDN Gong et al. (2020) with ϵ= 4/255.

We now investigate the susceptibility of
networks to targeted attacks where the target
image is modified at a small localized region.
Fig. 6.4 shows such a targeted attack on the
deblurring networks, where the target image
has the speed limit sign modified from ‘30’
to ‘90’. The attack on blind deblurring net-
works is successful even at ϵ= 4/255. Among
the non-blind networks, an attack on deep
Wiener network (Dong et al., 2020) is clearly
successful at ϵ= 12/255, while the target fea-
tures begin to manifest at even lower values
of ϵ. The learned gradient descent approach
(Gong et al., 2020) is the most difficult to at-
tack, barely producing target features even
for ϵ= 12/255. As the size of the blur kernel
becomes larger, deblurring becomes more ill-posed, which can affect the stability of the re-
construction. We investigate this effect by evaluating the adversarial robustness of non-blind
networks to targeted attacks by fixing the adversarial noise level to 4/255, and varying the blur
kernel size {25,17,11}. Here the target has a change in the speed limit sign from ‘50’ to ‘90’.
As the blur effect in the input reduces, we expect the networks to be more robust to attacks,
which is confirmed by the results in Fig. 6.6. The robustness of deep Wiener deblurring (Dong
et al., 2020) improves as the inputs are less and less blurred, and the learned gradient method
(Gong et al., 2020) is least susceptible to attack. This robustness however comes at the cost of
reduced deblurring performance on clean inputs.

Untargeted Attacks

In Tab. 6.1 and Fig. 6.5 we provide of effect of untargetted attacks on deblurring networks
which increase the reconstruction loss. While the blind deblurring networks are highly
susceptible to untargeted attacks, we find even the non-blind method of deep Wiener filtering
also being unstable, even at low adversarial noise strengths.

In all our experiments, we find that the blind deblurring methods (Kupyn et al., 2019;
Zamir et al., 2021) are most susceptible to adversarial perturbations. One reason is that
blind deconvolution is inherently more ill-posed, making the reconstruction problem more
unstable. Moreover, both the methods (Kupyn et al., 2019; Zamir et al., 2021) use only clean
data during training, whereas the methods (Gong et al., 2020; Dong et al., 2020) also add
noise to blurry inputs during training. Recent work (Genzel et al., 2022) shows the addition
of noise during training as an effective way to improve the adversarial robustness of deep
CT reconstruction. However, training with noise is not sufficient to guarantee adversarial
robustness, as seen from the results of deep Wiener deconvolution (Dong et al., 2020), which
is more prone to attacks than the learned gradient descent approach (Gong et al., 2020),
despite being trained with additive noise as augmentation.
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6.4.2 CT Reconstruction

D ATA S E T We conduct experiments with low-dose parallel beam (LoDoPaB) CT dataset
(Leuschner et al., 2021), consisting of data pairs of simulated low-intensity measurements
for sampling 513 out of 1000 parallel beams and corresponding ground truth human chest
CT images from the LIDC/IDRI dataset (Armato III et al., 2011). In the appendix, we include
experiments with LoDoPaB_200 obtained by sampling 200 projection beams from 1000
parallel projection beams for the same dataset of ground truth chest images.

B A S E L I N E S We evaluate the robustness of the following approaches: i) Filtered back pro-
jection (FBP) ii) FBP-Unet (Chen et al., 2017) post-processing FBP outputs, iii) iRadonmap (He
et al., 2020), which also learns back projection in addition to pre-processing, iv) LearnedGD,
learned gradient descent (Adler and Öktem, 2017) v) Learned Primal-Dual (Adler and Öktem,
2018) vi) Total Variation regularization. For the learned methods ii)-v), we use the pretrained
models1 from (Baguer et al., 2020) trained on the full training set excluding iRadonmap
(which we trained ourselves to full convergence). For FBP, we employ the Hann filter with
a low-pass cut-off of 0.6410, the best setting for this dataset in (Baguer et al., 2020). When
attacking FBP-Unet, we also backpropagate through the FBP operation. For TV minimization,
we used 500 gradient descent steps, with a TV weight of 1e-3, and the attack backpropagates
through all the gradient descent steps.

AT TA C K S E T T I N G S We perform untargeted attacks eq. (6.4) using step size of 1e −3 and
20 PGD steps and choose the best adversarial noise from 5 random restarts. We perform
universal attack eq. (6.7) on each method by optimizing a single L∞ norm constrained
untargeted adversarial perturbation for hundred examples using step size of 1e − 3 with
PGD steps using Adam optimizer for 50 epochs. We perform adversarial attacks effecting
localized changes eq. (6.6) using the step size of 1e − 3 and iterate for a maximum of 50
PGD steps till the local patch is misclassified. We choose the best adversarial noise from
5 random restarts. For the localized attacks, we obtain the locations of regions of interest
corresponding to ground truth from the LIDC-IDRI dataset. For malignancy classification,
we use a Basic ResNet model (Al-Shabi et al., 2019) adversarially trained on nodule patches
from the LIDC-IDRI dataset (Armato III et al., 2011). We exclude the images where the patch
surrounding the nodule does not lie fully within the central cropped region of the LoDoPAB
dataset. For malignancy classification, we consider a ‘Basic ResNet’ model from (Al-Shabi
et al., 2019) for nodule classification, and utilize the adversarially trained model from (Dröge
et al., 2022). We consider additive perturbations are L∞ norm bounded by 1%, 2.5%, and
5% of the intensity range of the clean observation. The code for our experiments is publicly
available at https://github.com/KVGandikota/robustness-low-dose-ct.

P E R F O R M A N C E M E T R I C S : In the following f , fδ, û and ûδ denote the clean and adversar-
ial sinogram measurements and the corresponding recovered CT images respectively. We
measure the PSNR, SSIM, and the TV Bregman distance of the reconstructions with clean and
adversarial inputs with respect to the ground truth (setting the corresponding subgradient
to zero if the norm of the gradient is below a threshold of 10−5, which we consider to be

1 https://github.com/oterobaguer/dip-ct-benchmark

https://github.com/KVGandikota/robustness-low-dose-ct
https://github.com/oterobaguer/dip-ct-benchmark
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Figure 6.7: Untargeted attack on CT reconstruction methods for ϵ values 0.01 and 0.025.

’numerically zero’). We also measure the data consistency of the reconstructions with respect
to the clean and adversarial sinograms in terms of PSNR. Further, we empirically compute a
lower bound for Lipschitz constant of each method as

Lb(G ) =
(∥G (

fδ
)−G

(
f
)∥

∥δ∥
)

max

which is the maximum value obtained across the test set of 100 CT images for the three
adversarial noise levels with 5 random restarts (a total of 1500 examples). For localized
attacks, we additionally compare the PSNR values in the local region, and the region exterior
to it, for reconstructions with clean and adversarial inputs.

Untargeted Attacks:

Tab. 6.2 and Fig. 6.7 illustrate the results of untargeted attacks eq. (6.4). The results demon-
strate that in the absence of adversarial noise, the neural network approaches provide qualita-
tively better reconstructions than FBP and TV minimization. However, their reconstructions
are also more susceptible to adversarial perturbations despite training with inputs corrupted
by Poisson noise. Among the deep learning approaches, the learned primal-dual network
which provides the best reconstructions from clean inputs is also the most unstable to per-
turbations, whereas the learned gradient descent is more stable. This is also reflected in the
empirical Lipschitz lower bound which is the highest for LearnedPD. This high sensitivity
to adversarial attacks is surprising as LearnedPD also encourages data consistency in its
(fixed number of) iterations. Among the classical methods, FBP and TV minimization have
similar stability in terms of PSNR and Lb , while TV is better in terms of SSIM and Bregman
distance as one would have hoped considering the provable stability eq. (6.3). Interestingly,
the adversarial perturbations do not heavily affect the data consistency of the recovered CT
images for all the methods. The adversarially affected CT reconstructions from LearnedPD
with an extremely low average PSNR (0.36 dB) still have a good data consistency (28.7 dB)
with the input measurement, showing instabilities typical to unregularized solutions to the
recovery problem. Results of similar untargeted attack on the LoDoPAB_200 dataset are
provided in Tab. 6.8 of the appendix.
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Method
û (Aû, f )

ϵ
ûδ (Aûδ, f ) (Aûδ, fδ) ( f , fδ) Lb

PSNR/SSIM/dBreg PSNR PSNR/SSIM/dBreg PSNR PSNR PSNR Empir

FBP 30.37/0.738/0.018 33.82
0.01 25.18/0.448/0.029 33.36 33.37 40.20

15.030.025 18.68/0.194/0.049 31.47 31.43 32.51
0.05 13.02/0.074/0.081 28.46 28.34 26.91

TV 31.62/0.763/0.018 36.52
0.01 25.20/0.615/0.026 35.62 35.72 40.36

16.520.025 18.32/0.365/0.044 32.51 33.24 32.71
0.05 12.99/0.150/0.077 28.66 30.01 27.22

FBP-Unet 35.47/0.837/0.013 36.47
0.01 18.39/0.287/0.081 35.06 35.71 40.28

46.710.025 12.18/0.095/0.152 29.82 30.95 32.77
0.05 7.38/0.034/0.227 24.86 25.93 27.39

iRadonMap 33.94/0.810/0.014 36.03
0.01 17.98/0.326/0.062 29.62 29.90 40.22

43.800.025 10.85/0.084/0.140 24.07 24.51 32.60
0.05 6.24/0.026/0.215 21.50 21.98 27.16

LearnedPD 35.73/0.842/0.012 36.46
0.01 9.47/0.164/0.230 25.27 25.50 40.48

143.390.025 3.38/0.030/0.467 23.05 23.38 32.95
0.05 0.36/ 0.008/0.623 28.28 28.72 27.17

LearnedGD 34.55/0.815/0.014 36.43
0.01 21.14/0.504/0.036 35.18 35.62 40.39

30.480.025 13.90/0.291/0.069 31.62 32.82 32.80
0.05 8.64/0.180/0.099 28.11 29.64 27.50

Table 6.2: Comparison of robustness to untargeted attacks on different CT reconstruction methods using 20 attack iterations
on first 100 samples LoDoPAB testset.

Source Noise FBP FBP-Unet iRadonMap LearnedGD LearnedPD TV

Clean 30.37/0.738 35.47/0.837 33.94/0.810 34.55/0.815 35.73/0.842 31.62/0.763
FBP 18.68/0.194 16.19/0.139 15.41/0.131 16.04/0.138 16.19/0.151 18.32/0.191

FBP-Unet 22.03/0.325 12.19/0.095 16.33/0.173 17.98/0.279 14.10/0.125 21.38/0.318
iRadonMap 20.72/0.284 15.18/0.152 10.86/0.084 15.45/0.197 16.01/0.171 19.88/0.273
LearnedGD 21.17/0.375 15.42/0.275 15.96/0.271 13.90/0.290 15.28/0.241 20.08/0.383
LearnedPD 26.39/0.553 25.33/0.604 26.19/0.590 26.23/0.603 3.38/0.030 26.52/0.563

TV 19.19/0.365 16.94/0.289 16.78/0.305 16.66/0.280 16.75/0.333 18.32/0.365

Table 6.3: Evaluating transferability of adversarial noises for ϵ=0.025. Bold indicates performance of a model when attacked
using noise optimized for the same model.

Transferability of Adversarial Examples:

Transferability of adversarial examples is studied in the context of image classification net-
works, to examine the possibility of black-box attacks. We investigate the transferability of
adversarial examples across different CT recovery methods, i.e. we test whether an adversarial
example crafted for a “source” CT recovery method also reduces the quality of reconstruction
of a different “target” method for CT recovery. Tab. 6.3 summarizes the results of transferabil-
ity for CT recovery methods, for ϵ value of 0.025. The results demonstrate that the adversarial
examples are indeed transferable across different methods to some extent. The adversarial
examples for classical methods FBP and TV are highly transferable across methods signif-
icantly reducing the reconstruction quality. The adversarial examples of neural network
methods FBP-Unet, iRadonMap, and LearnedGD are also transferable to other network based
approaches. While LearnedPD is significantly affected by the adversarial examples generated
for other methods, the adversarial examples optimized for LearnedPD are the least effective
in reducing the performance of other methods.
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Universal Attacks & Transferability:

We perform input-agnostic attack universal attack eq. (6.7) by optimizing over a set of 100
samples, by optimizing over 50 epochs. Tab. 6.4 shows the effect of this adversarial per-
turbation on the optimized examples and its generalizability on a different 100 examples
not seen during optimization. The results indicate that CT recovery methods can also be
affected by universal attacks. Further, these input-agnostic perturbations are more effective
than the input-specific perturbations in reducing the performance of the reconstruction
algorithm, even though the perturbation is not optimized for the specific example. This trend
is seen across the reconstruction methods, with universal perturbation resulting in a further
reduction of around 2 dB PSNR compared to the input-specific perturbations. This effect is
possibly due to the significantly increased number of total attack iterations.

In addition to input-specific adversarial examples, we also study the transferability of
input-agnostic universal perturbations across different CT recovery methods. Tab. 6.5 sum-
marizes the results of such transferability test for ϵ value of 0.05. The results indicate that even
universal adversarial perturbations are transferable across different methods. This indicates
the possibility of crafting fully black box attacks on CT recovery. The universal perturba-
tions optimized for FBP and TV are the most transferable to other methods, indicating the
vulnerabilities of the classical approaches are also shared by the end-to-end trained deep
networks. Among the end-to-end trained networks, the universal perturbations optimized
for iRadonMap are the most transferable to other networks and even the classical methods,
despite being a fully learned approach. In contrast, universal perturbation optimized for
LearnedPD is least transferable to other methods.

FBP FBP-Unet iRadonMap LearnedGD LearnedPD TV

O
p

ti
m

iz
ed Clean 30.37/0.738 35.47/0.837 33.95/0.810 34.55/0.815 35.73/0.843 31.62/0.763

ϵ= 0.01 22.87/0.340 17.96/0.223 15.58/0.263 18.41/0.542 7.19/0.139 22.86/0.408
ϵ= 0.025 15.73/0.116 9.93/0.055 8.24/0.031 10.07/0.308 0.401/0.013 15.03/0.120
ϵ= 0.05 9.87/0.036 4.49/0.023 3.303/0.011 3.80/0.179 -3.71/0.003 8.76/0.032

U
n

se
en

Clean 30.53/0.714 35.67/0.824 34.19/0.799 34.74/ 0.802 35.92/0.829 31.87/0.750
ϵ= 0.01 23.27/ 0.337 18.59/0.225 16.29/ 0.262 19.04/0.538 7.93/0.161 23.27/0.404
ϵ= 0.025 16.19/0.115 10.43/0.0525 8.80/0.030 10.64/0.309 1.24/0.016 15.47/0.119
ϵ= 0.05 10.34/ 0.036 4.95/0.022 3.82/0.0108 4.32/0.183 -2.95/0.003 9.24/0.031

Table 6.4: Universal adversarial attack on CT recovery. PSNR/SSIM values for clean samples and samples affected by additive
universal perturbation are shown.

Source Noise FBP FBP-Unet iRadonMap LearnedGD LearnedPD TV

Clean 30.53/0.714 35.67/0.824 34.19/0.799 34.74/ 0.802 35.92/0.829 31.87/0.750
FBP 10.34/0.036 9.90/0.031 8.74/0.025 7.68/0.021 10.62/0.041 9.28/0.031

FBP-Unet 14.42/0.098 4.95/0.022 9.06/0.035 9.26/ 0.095 7.77/0.042 12.21/0.077
iRadonMap 13.02/0.0706 9.61/0.049 3.82/0.0108 7.38/0.042 10.99/0.057 10.95/0.052
LearnedGD 15.60/0.188 13.52/0.220 10.38/0.112 4.32/0.183 9.69/0.109 12.68/0.170
LearnedPD 23.07/0.358 21.42/0.444 19.45/0.232 23.54/0.453 -2.95/0.003 20.76/0.261

TV 10.38/0.037 9.76/0.032 8.62/0.025 7.61/0.022 10.54/0.042 9.24/0.031

Table 6.5: Evaluating transferability of universal adversarial noises for ϵ=0.05.

Localized Attacks:

Tab. 6.6 and Fig. 6.8 provide the results of our experiments with localized attacks eq. (6.6)
on different CT recovery methods. Sample reconstructions from different methods with
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Figure 6.8: Localized attack on CT reconstruction methods. for ϵ= 0.01. First and second row illustrate clean and adversarial
reconstructions for each method. The third row shows the cropped patches from the clean (left) and adversarial (right)
reconstructions. Adversarial noise in the fourth row is multiplied by ×25 for visibility.

clean and adversarial inputs are compared in Fig. 6.8. The adversarial noise that produces
the localized changes is also depicted. The results clearly demonstrate visible alteration in
the region of interest ûi indicated by the inner square marked in the ground truth image.
Our attack successfully achieves this modification, barely affecting the reconstruction in the
exterior region ûe using an extremely low noise level.

Tab. 6.6 summarizes our results for localized attacks for three levels of adversarial noise.
The subscripts i and e denote the restriction to the interior and exterior of the local region
to be attacked. Due to masking, the magnitudes of additive perturbation are extremely
small, with high PSNR values between the clean and adversarial inputs for all noise levels.
Still, our attack is almost always successful in producing local degradations that change the
malignancy prediction (100% success rate on our test set for all the methods). This is also
reflected in the steep PSNR drop in the local region ûi , while the PSNR in the exterior region
is mostly unaffected. While the classical approaches are more robust to untargeted attacks,
they are also sensitive to local changes. This is a direct consequence of the ill-posedness of
the recovery problem, as we observe nearly similar data consistency of the recovered ûδ with
both clean and adversarial inputs. In a recent work Dröge et al. (2022) demonstrate that the
CT images of varying malignancy levels can be solutions to the same measurement with a
high data consistency, but by modifying the reconstruction loss. Our localized attacks also
show that the adversarial noise necessary to change the malignancy is extremely small for a
variety of methods and the resulting solutions demonstrate high data consistency with both
clean and adversarial inputs. While one way to use adversarial attacks beneficially is to use
them in training, i.e. adversarial training to make models robust, our work shows another
beneficial application of attacks. One could utilize localized attacks to efficiently explore
diagnostically different reconstructions with a very high degree of data consistency with
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Method
û ûi |ûe (Aû, f )

ϵ
ûδ ûδi |ûδe (Aûδ, f ) (Aûδ, fδ) ( f , fδ)

PSNR/SSIM PSNR PSNR PSNR/SSIM PSNR PSNR PSNR PSNR

FBP 30.86/0.787 31.45|30.86 33.81
0.01 30.60/0.782 22.29|30.83 33.79 33.77 55.09

0.025 30.35/0.772 20.93|30.67 33.75 33.42 47.55
0.05 29.97/0.751 19.89|30.34 33.70 32.63 41.08

TV 32.36/0.829 31.84|32.37 36.52
0.01 32.00/0.825 22.70|32.32 36.48 36.42 54.77

0.025 31.62/0.812 21.26|32.07 36.46 35.66 46.97
0.05 30.65/0.767 20.28|31.15 36.35 33.59 40.11

FBP-Unet 36.94/0.909 35.67|36.95 36.50
0.01 34.85/0.902 19.43|36.61 36.46 36.43 55.11

0.025 33.79/0.889 17.82|35.87 36.37 35.84 47.83
0.05 33.15/0.877 17.27|35.11 36.11 34.42 41.90

iRadonMap 35.25/0.888 34.07|35.27 36.09
0.01 33.70/0.883 18.85|35.12 36.03 36.03 55.32

0.025 32.68/0.875 16.53|34.76 35.95 35.52 48.08
0.05 30.60/0.808 15.32|32.73 35.55 33.39 40.81

LearnedPD 37.22/0.913 35.97|37.23 36.49
0.01 33.15/0.854 18.34|35.08 36.28 36.10 53.74

0.025 29.90/0.753 16.15|31.57 35.33 34.57 45.41
0.05 25.05/0.559 14.52|25.72 33.29 31.74 38.41

LearnedGD 35.80/0.891 34.86|35.82 36.49
0.01 34.86/0.886 22.02|35.71 36.46 36.42 55.29

0.025 34.49/0.883 20.98|35.53 36.42 35.99 48.41
0.05 34.12/0.875 21.11|35.04 36.28 34.72 42.44

Table 6.6: Comparison of robustness to localized attacks on different CT reconstruction method evaluated on 100 samples
LoDoPAB testset.

sinogram. This can be used by a medical doctor to choose the most plausible reconstruction
in making a diagnosis.

6.5 D I S C U S S I O N A N D C O N C L U S I O N S

In this chapter, we evaluated the adversarial robustness of image recovery for two example
tasks, image deblurring and low dose CT reconstruction. We showed that state-of-the-art
deep networks for deblurring can be highly susceptible to adversarial attacks, even drastically
changing the reconstruction to a different target image, which is clearly inconsistent with the
measurement. In contrast, non-blind networks are less susceptible to such drastic changes,
yet, they are affected be local changes and untargeted attacks.

Our analysis of the adversarial robustness of CT recovery shows that deep learning meth-
ods are more sensitive to untargeted adversarial examples than classical approaches. Even
model-inspired unrolled networks are susceptible to adversarial examples, even though
they encourage data consistency within the network. While the quality of the recovered CT
images degrades, we find that the recovered images still exhibit a good degree of consistency
with the measurements. In contrast, restoration networks can produce images which are
highly inconsistent with the measurements. This difference in robustness with respect to
measurement consistency could be due to the fact that restoration networks have to cope
with varying degradation operators across examples. Even if we consider non-blind deblur-
ring networks, the blur operator is different for different examples. The problem becomes
more severe for blind dynamic deblurring networks. In contrast, CT recovery networks are
trained for the same forward operator for the entire training data, and use the same forward
operator during testing with natural and adversarial inputs. This could possibly explain why
the reconstructions have a reasonably high measurement consistency under attack, even for
methods that do not take into account the forward operator (for instance, iRadonMap). It is
therefore interesting to study the worst-case performance when there are uncertainties in
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the knowledge of the forward operator, or when there is a drift in the forward operator in the
test phase when compared to training.

In addition to measurement consistency, it is also desirable that the reconstruction meth-
ods produce realistic results, even when inputs are perturbed by a tiny amount. We find
that image recovery networks fail at this, even though they are augmented with noise during
training. This underlines the importance of improving the adversarial robustness of image re-
covery methods through better regularization, robust training, or by developing more robust
architectures. We demonstrated that adversarial perturbations can be transferable across CT
recovery methods. Further, we showed the feasibility of universal attacks, and showed that
perturbations can transfer across different CT recovery methods, indicating the possibility of
fully black box attacks on image recovery. Interestingly the universal perturbations crafted
for the classical approaches, FBP and TV minimization are the most transferable to network
based methods, even to the methods not utilizing the forward operator, indicating that these
methods share some common directions of vulnerability.

We also find that the classical methods and deep learning methods for CT recovery are
similarly affected by adversarial examples targeting small localized regions. Moreover, such
attacks are successful for extremely small perturbations already, such that the resulting
reconstructions have high data consistency with original measurements. Therefore, the
proposed localized attacks could can aid in dealing with uncertainties in ill-posed image
recovery, by allowing exploration of the solution space of the reconstruction problem.

A P P E N D I X

6.A A D D I T I O N A L R E S U LT S F O R I M A G E D E B L U R R I N G

Method Clean
Targeted attacks Untargeted attacks

Similarity to source PSNR/NCC Similarity to target PSNR/NCC Similarity to source PSNR/NCC
ϵ= 4 ϵ= 8 ϵ= 12 ϵ= 4 ϵ= 8 ϵ= 12 ϵ= 4 ϵ= 8 ϵ= 12

MIMO-UNet 24.84/0.967 9.78/0.412 9.71/0.404 9.70/0.403 25.55/0.983 26.85/0.988 27.00/0.989 5.45/0.046 5.26/0.006 5.26/0.006
Uformer 24.32/0.963 10.44/0.470 10.05/0.438 10.00/0.433 22.38/0.961 24.36/0.979 24.86/0.982 6.74/0.092 5.97/-0.053 5.56/-0.163

Restormer 24.37/0.963 9.84/0.413 9.76/0.406 9.75/0.406 27.38/0.988 28.88/0.992 28.94/0.993 5.54/0.016 5.39/0.004 5.39/0.004
Stripformer 23.38/0.967 13.01/0.597 12.33/0.554 12.08/0.534 13.34/0.725 14.66/0.726 15.17/0.800 10.36/0.546 9.44/0.493 8.97/0.441

NAFNet 24.62/0.965 11.75/0.543 11.11/0.511 10.98/0.503 18.19/0.887 18.99/0.915 19.17/0.919 11.76/0.382 5.12/0.045 5.09/0.045

Table 6.7: Comparison of PSNR and normalized cross correlation (NCC) values with respect to source image for untargeted
attacks, PSNR and NCC with respect to source and target images for targeted attacks, for MIMO-UNet Cho et al. (2021),
Uformer Wang et al. (2022c), Restormer Zamir et al. (2022), Stripformer Tsai et al. (2022), NAFNet Chen et al. (2022a) on
blurred face images.

Tab. 6.7 summarizes the results of our experiments evaluating the adversarial robustness
of more recent dynamic deblurring networks MIMO-UNet (Cho et al., 2021), Uformer (Wang
et al., 2022c), Restormer (Zamir et al., 2022), Stripformer (Tsai et al., 2022) and NAFNet (Chen
et al., 2022a) on a set of blurred face images. The results in Tab. 6.7 indicate that these dynamic
deblurring networks are highly susceptible to adversarial examples. Further, the networks
are also susceptible to targeted attacks, showing a higher similarity with the target image
than the actual ground truth both in terms of PSNR and NCC. Yet, the degree of susceptibility
varies across the different networks. Among the evaluated networks, Stripformer (Tsai et al.,
2022) demonstrates better robustness to both targeted and untargeted attacks, yet it has a
poorer performance on clean inputs. In terms of robustness to targeted attacks, the networks
MIMO-UNet (Cho et al., 2021), and Restormer (Zamir et al., 2022) are the least robust, produc-
ing images highly similar to the target, followed by Uformer (Wang et al., 2022c) and NAFNet
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Method
û (Aû, f )

ϵ
ûδ (Aûδ, f ) (Aûδ, fδ) ( f , fδ) ∥δ∥2 Lb

PSNR/SSIM PSNR PSNR/SSIM PSNR PSNR PSNR Empir

FBP 28.38/0.649 34.14
0.01 25.26/0.465 33.69 33.69 40.03 0.093

29.690.025 19.77/0.233 31.84 31.75 32.09 0.581
0.05 14.36/0.096 28.78 28.52 26.12 2.292

TV 28.94/0.652 37.47
0.01 24.88/0.520 36.58 36.54 40.10 0.092

33.980.025 18.91/0.302 33.32 33.74 32.20 0.565
0.05 13.72/0.126 29.13 30.16 26.33 2.177

FBP-Unet 33.55/0.799 36.50
0.01 19.37/0.384 34.52 35.244 40.14 0.091

97.560.025 12.82/0.115 28.33 29.23 32.31 0.551
0.05 8.38/0.036 23.26 23.97 26.52 2.074

iRadonMap 32.39/0.778 36.3
0.01 18.46/0.546 30.22 30.58 40.08 0.092

125.210.025 9.40/0.231 19.55 19.88 32.27 0.554
0.05 5.39/0.051 14.92 15.12 26.65 2.01

LearnedPD 33.64/0.802 36.50
0.01 17.75/0.412 34.23 34.92 40.11 0.092

108.480.025 10.56/0.153 31.26 33.08 32.34 0.548
0.05 5.94/0.053 31.91 33.66 26.57 2.047

LearnedGD 32.49/0.776 36.46
0.01 22.44/0.583 35.41 35.67 40.35 0.086

61.950.025 15.66/0.418 32.09 33.01 32.72 0.499
0.05 10.89/0.301 29.10 30.02 27.19 1.773

Table 6.8: Comparison of robustness to untargeted attacks on different CT reconstruction methods using 20 attack iterations
on 100 samples LoDoPAB200 testset.

(Chen et al., 2022a) with decreasing similarity with respect to the target, as evidenced by the
lower PSNR and NCC values with respect to the target. NAFNet demonstrates better robust-
ness to untargeted attacks at lower adversarial noise strength of 4/255, yet becomes more
susceptible to adversarial noises of higher strength. This wide variability in the robustness of
dynamic deblurring networks calls for a more thorough investigation into the architectures
and training protocols to understand their effects on robustness. We leave this to future work.

6.B A D D I T I O N A L R E S U LT S F O R C T R E C O V E R Y

Untargeted Attacks on LoDoPAB_200 Tab. 6.8 summarizes the results of our untargeted
attacks on the LoDoPAB_200 dataset, where the measurements are generated using 200
projection beams. Similar to our results on the LoDoPAB dataset, we find that classical
approaches are more robust to untargeted attacks. However, on this dataset, the fully learned
approach of iRadon Map is the most unstable method, followed by LearnedPD. LearnedGD is
stable among the network based methods. Further, the methods show a general trend of a
higher value of Lb on LoDoPAB_200 dataset in comparison with LoDoPAB dataset indicating
higher instabilities as the reconstruction from 200 projection beams is more severely ill-posed
than from 513 projections.

Qualitative Results Fig. 6.9 shows the results of localized attacks on 20 example CT images in
the LoDoPAB test set. For each method, the local patches extracted from clean and adversarial
reconstructions are shown.
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GT FBP TV FBP-Unet iRadonMap Learned PD LearnedGD

Figure 6.9: Result of localized attacks on 20 images. For each method left patch is from clean reconstruction and right is the
result of attack.



Declaration for Chapter 7 - Light Field Reconstruction with Generative
Priors

This chapter is based on the paper Chandramouli et al. (2022) titled “A generative model for
generic light field reconstruction” co-authored by Paramanand Chandramouli, Kanchana
Vaishnavi Gandikota, Andreas Goerlitz, Prof. Andreas Kolb, and Prof. Michael Moeller,
published in IEEE Transactions on Pattern Analysis and Machine Intelligence, (TPAMI) April
2022. Paramanand Chandramouli and Kanchana Vaishnavi Gandikota are joint first authors
of this paper.

Paramanand Chandramouli proposed this project idea of building a generative model
for light fields, and using it as a prior in light field recovery. Paramanand Chandramouli
contributed to training the generative models- an unconditional Wasserstein autoencoder,
and subsequently a conditional Wasserstein autoencoder for light field patches. He proposed
and implemented an encoder-decoder based optimization scheme for light field recovery,
and evaluated the baseline methods. Kanchana Vaishnavi Gandikota implemented the
optimization using the conditional generator which showed improvement over the former
approach. Paramanand Chandramouli contributed to writing related work on generative
models, description of model architecture and training. Kanchana Vaishnavi Gandikota
contributed to writing introduction, related work on light field recovery, describing light field
recovery algorithm, experimental setup, conducting experiments for light field recovery from
different forward measurement processes, and writing up the results. Prof. Andreas Kolb and
Prof. Michael Moeller provided several suggestions, and improved the structure and clarity of
the writing. The research was supervised by Prof. Michael Moeller.
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L I G H T F I E L D R E C O N S T R U C T I O N W I T H G E N E R A T I V E P R I O R S

In the previous chapter, we analyzed the stability of image recovery methods through worst-
case additive perturbations. In this chapter, we utilize generative priors for image recovery to
deal with lack of generalizability in end-to-end trained networks. As discussed in Chapter 3,
end-to-end trained networks for inverse problems suffer from a lack of generalizability, and
cannot handle changes in noise or measurement process. On the other hand, variational
approaches, including those using neural network based priors can adapt to such changes
by suitable modifications to energy function in model based optimization. Among these
approaches, we adopt the approach of using generative model priors to address the prob-
lem of generalizing deep learning based image reconstruction for different measurement
models. Specifically, we investigate the use of generative auto-encoders as priors in model
based image reconstruction. As these models are trained without the supervision of specific
measurement models, they can be incorporated as a prior into model-based optimization
and therefore extend to diverse reconstruction tasks. In this chapter, we demonstrate the
utility of generative auto-encoder priors, for light field recovery from diverse measurement
models.

We consider 4D light fields which capture a scene from different viewpoints along a plane.
Acquiring the high dimensional light fields is an involved process, and as we will see in
section 7.1.1, there are different ways to acquire measurements from which light fields can be
computationally reconstructed. As discussed in Chapter 3, classical variational approaches
to such inverse imaging problems determine the solution as the minimizer of an energy
function composed of a data discrepency term and a suitable regularizer which characterizes
the desirable properties of light fields, such as a learned dictionary on light fields (Marwah
et al., 2013). Several recent works (Kalantari et al., 2016; Gupta et al., 2017; Inagaki et al., 2018;
Yeung et al., 2018; Vadathya et al., 2019) instead learn a deep neural network to map from
the measurements to light fields by training on paired datasets of measurement and ground
truth light fields, and achieved significant improvements in reconstruction performance
compared to classical approaches for the specific trained task. Yet, these lack the flexibility of
classical methods, and have to be retrained as soon as the measurement process or the noise
statistics change. While there exist several hybrid approaches which exploit the expressive
power of neural networks without losing the flexibility of energy minimization methods, by
using neural networks as priors in energy minimization. Interestingly, such approaches have
not yet been exploited for light field recovery, most likely due to the high complexity of light
field data.

In this chapter, we attempt to fill in this gap by introducing the first generative model for
light field data and using it as a prior for generic light field reconstruction tasks. The key idea
is to model the distribution of light fields using a class of generative autoencoders (Tolstikhin
et al., 2018). Once the training is complete, we use our generative model as a prior in different
light field reconstruction problems in an energy minimization framework. Due to the high
complexity and variability of the light field data, generating light fields in a consistent fashion
is highly challenging. In this chapter, we consider only small baseline light fields, and we
address this challenge by training a conditional Wasserstein autoencoder (CWAE) for light
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field patches, with the decoder conditioned on the central patch. The advantage of our
approach is that the conditional generative model learned on patches can readily generalize
to a variety of scene content, while being small enough to be amenable for training.

(a) (b) (c)

(d)

Figure 7.1: (a) A full 5×5 LF, with central view marked in red. (b) Central view (CV) extracted from (a), with a small patch
of this central view marked in blue. (c) This patch passes through a convolutional feature extractor to output central view
features (CVF). (d) The encoder E1 of the CWAE maps an LF patch to a latent variable z, while the generator G1 of the CWAE
maps z back to the LF patch using CVF as an additional input.

Fig. 7.1(d) shows the schematic of the CWAE. The CWAE, consists of an encoder E1 that
takes an LF patch as input and returns a low-dimensional latent code z. The generator G1

maps this latent code back to the LF patch. A convolutional feature extractor Fig. 7.1(c)
provides features of the central view of the light field patch as an additional input to both
the encoder and generator of the CWAE. Consequently, both the encoder and the generator
utilize the information from the central patch. In the reconstruction of the light field patch
shown in Fig. 7.1 (d), we observe that the generator can map the encoded latent variable
along with the features of the central view to a light field patch which looks similar to the
input light field patch. This indicates that the encoder has learned to encode properties such
as disparity and occlusion in the latent space, such that the generator can reconstruct the LF
patch just from this latent code and the central view features.

We utilize this model as a prior in light field reconstruction. We take the approach of
optimizing in the latent space of CWAE generator to minimize data discrepency with respect
to the measurement, and perform simultaneous optimization of both the latent code and
the central view when the latter is unavailable. We perform diverse light field recovery tasks
including light field view synthesis, spatial-angular super resolution, and reconstruction from
coded projections. We demonstrate the advantages of the proposed approach in comparison
with end-to-end trained networks in terms of flexibility and robustness to corruptions, and
improved performance with respect to traditional model-based approaches on both synthetic
and real scenes.
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7.1 P R E L I M I N A R I E S

We begin with an introduction to light fields and the associated inverse imaging problems.

7.1.1 Light Fields

Figure 7.2: Illustration of a discrete 4D light field using a two-plane parameterization. On the right, epipolar plane image(EPI)
obtained by slicing all the images in a light field along a scanline is shown. Image from light field archive of Heidelberg
collaboratory for image processing.

A light field (LF) is a vector function that models light rays in a scene as a function of position,
orientation, time, and frequency. The space of all possible light rays is given by the seven-
dimensional plenoptic function (three spatial coordinates (x, y , z), two angles indicating
direction (θ,φ), time and frequency), and the magnitude of each ray is given by its radiance. In
this chapter, we restrict ourselves to four-dimensional static light fields (Levoy and Hanrahan,
1996), which can be represented using a two-plane parameterization by constraining each ray
to have the same value at every point along its direction of propagation. The 4D light fields
are represented using the continuous plenoptic function L(x,v) that denotes the radiance
of the scene emitted at the spatial position x and in the angular direction v. Instead of
frequency, we have three colour channels typical of digital colour representation, yet, the
three colour channels are excluded when counting the dimensionality of the light field, as
these are generally treated independently as three 4D signals. Light fields can accurately
model geometrically complex scenes, and have a wide range of applications such as the
precise free viewpoint rendering of a 3D scene or the estimation of geometries or materials of
objects in a scene.

In practice, it is not possible to acquire a continuous light field, rather it is common to
acquire a discrete version of the light field, where a scene is captured from a discrete set of
viewpoints on a plane. Discrete 4D light field can be captured using exhaustive and expensive
hardware setups comprising dozens of cameras in a camera-rig (Wilburn et al., 2005), or
by using plenoptic cameras that utilize microlens arrays placed in front of the imager of a
standard 2D camera (Ng et al., 2005), or by using coded mask based cameras (Liang et al.,
2008a). While camera-rigs allow for larger baselines with full spatial resolutions as that of
image sensor, they have a rather sparse angular resolution. In contrast, plenoptic cameras
allow recording dense light fields with a single exposure, yet they are restricted to capturing a
rather small baseline, and they have a trade-off between the spatial resolution of each sub-
aperture image (view obtained from a specific angular coordinate) and the angular resolution
of the light field. On the other hand, coded aperture or mask based cameras can capture a
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light field with the same spatial resolution as that of an image sensor, but there is a trade-off
between quality of the light field and the number of acquired images.

One could address the different trade-offs in each of these acquisition setups, and compu-
tationally improve the quality and resolution of the captured light fields. This could involve
improving the angular resolution using view synthesis methods, or improving both the spatial
and the angular resolution of the captured light fields, or improving the quality of recovered
light fields from coded measurements. Let us consider a discretized version of light field
L(x,v), where the angular resolution for each axis is Nv , and the spatial resolution of each view
is Nx ×Ny . In this chapter, we consider 3 different LF reconstruction problems: (i) Light field
view synthesis/ view upsampling, (ii) Spatial-angular super-resolution, and (iii) Light field
recovery from coded aperture images. We now consider the specific forward measurement
process for each of these reconstruction tasks.

(i) View synthesis / Angular super-resolution: The task of view synthesis is to recover
a dense set of sub-aperture images (SAIs) from a sparse subset of input views. The
forward model can be considered to be a point-wise multiplication of the light field
with a binary mask M , whose value is 1 at the known views, and 0 at all other locations,
leading to

f (x,v) = L(x,v)⊙M(x,v). (7.1)

where ⊙ is the point-wise multiplication operator.

(ii) Spatial and angular super-resolution using central view: Here the task is to recover all
SAIs from a sparse subset of spatially down-sampled input views. The corresponding
forward measurement model can be written as

f (x,v) = (L(x,v)⊙M(x,v))↓s(v) . (7.2)

where M is a binary mask which is non-zero only at known views, and ↓s(v) is the spatial
down-sampling operation of the known views. We assume that the central view is
available in full resolution which aids in spatial upsampling of novel views, i.e. the
downsampling factor is 1, for the central view.

(iii) Coded aperture: Coded aperture images are the result of optical multiplexing only along
angular dimension. In a continuous setting, the coded aperture image formation model
can be written as

f (x) =
∫

L(x,v)M(v)dv (7.3)

where M represents the coded mask, which depends on the angles v, but not on the
spatial position. In the discrete setting, the measurement is a weighted sum of the view
images, with weights provided by the coded mask.

Recovering good quality light field with high spatial and angular resolution from the measure-
ments in each of these settings eq. (7.1), eq. (7.2), eq. (7.3) can be posed as a linear inverse
problem of the form

f = A(u)+n, (7.4)

where u represents the discrete light field to be recovered, A is the problem-dependent linear
operator and n is the additive noise. In this chapter, we attempt to solve these problems using
deep generative models trained on light field data in an energy minimization framework.
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As discussed in Chapters 3 and 4, generative models can be used as priors in various
image reconstruction and manipulation tasks (Bora et al., 2017; Li et al., 2017; Bau et al.,
2019a). We briefly recall the approaches relevant to this chapter. Bora et al. (2017) propose to
model the solution to inverse problem as belonging to the range manifold of the generative
model, and optimize in the latent space of the generative model (GAN or VAE generator)
for a latent code which maps to an image that minimizes data discrepency using gradient
descent based updates. More sophisticated optimization schemes such as projected gradient
descent, ADMM have also been used in conjunction with GAN priors for optimization in the
latent space (Shah and Hegde, 2018; Hegde, 2018; Latorre et al., 2019b). The problem with
restricting the solution to the range of the generator is that it leads to non-trivial represen-
tation error, even when the measurement operator is an identity, as the generator cannot
accurately represent any image. In this chapter, we propose the approaches of latent space
optimization using a conditional generator with application to light field recoverywhich can
alleviate the issue of representation error. We consider a class of generative autoencoders
known as Wasserstein autoencoders (WAEs) introduced in (Tolstikhin et al., 2018) which are
trained using a combination of mean squared error loss between input and decoder output,
and a maximum mean discrepency penalty between encoder distribution and prior latent
distribution. We now review specific related work on light field recovery.

7.2 R E L AT E D W O R K

7.2.1 Light Field Reconstruction

Light field reconstruction has been performed from different measurement models, such
as coded aperture (Liang et al., 2008b; Veeraraghavan et al., 2007; Babacan et al., 2012),
compressed sensing (Ashok and Neifeld, 2010; Marwah et al., 2013), novel view synthesis and
angular super-resolution (Wanner and Goldluecke, 2013; Shi et al., 2014; Schedl et al., 2015;
Vagharshakyan et al., 2018; Jin et al., 2020), spatial angular super-resolution aided by high
resolution central view (Wang et al., 2016) and also light-field image in-painting and focal
stack reconstruction in (Blocker and Fessler, 2019). Since virtually all such measurement
models make the problem of recovering light fields eq. (7.4) an ill-posed problem, a natural
strategy is to consider regularized energy minimization methods, for example (Marwah et al.,
2013; Vagharshakyan et al., 2018). Alternately, one could estimate depth maps (Jeon et al.,
2015; Sajjadi et al., 2016) or disparity maps which could be subsequently used to synthesize
light fields, see (Chaurasia et al., 2013; Wanner and Goldluecke, 2013) for examples. Recently
learning-based approaches have also been applied in light field recovery for coded aperture
in (Inagaki et al., 2018; Vadathya et al., 2019), compressed sensing in (Gupta et al., 2017),
view synthesis and angular super-resolution in (Yeung et al., 2018; Kalantari et al., 2016; Wu
et al., 2019a,b; Wang et al., 2018b; Navarro and Sabater, 2021), spatial and angular super-
resolution in (Gul and Gunturk, 2018; Meng et al., 2021) as well as view extrapolation for
wide baseline light fields in (Srinivasan et al., 2019; Mildenhall et al., 2019). While neural
network-based reconstruction schemes (Inagaki et al., 2018; Vadathya et al., 2019; Gupta
et al., 2017; Yeung et al., 2018; Meng et al., 2021, 2019; Kalantari et al., 2016; Navarro and
Sabater, 2021) outperform traditional approaches to LF reconstruction by a large margin,
they are applicable to specific measurement models only, i.e., they are not flexible in adapting
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to modifications of the measurement process. We note that (Nabati et al., 2018) is a deep
network-based approach for compressive LF recovery, which also takes a mask as an input
to the deep network, achieving flexibility with respect to different masks for compressive
sensing.

Learning light field representations has been addressed previously since the data is high
dimensional and contains redundant information. Representations based on sparse coding
have been utilized to perform inference tasks such as disparity estimation (Heber and Pock,
2014; Johannsen et al., 2016) and light field reconstruction (Marwah et al., 2013). Alperovich
et al. (2018) have shown that an autoencoder trained on stacks of epipolar-plane images (EPI)
can learn useful LF representations which can be used for supervised training for disparity
estimation and intrinsic decomposition. Recently, there have been efforts to synthesize a
light field from a single image in (Srinivasan et al., 2017; Ivan et al., 2019; Chen et al., 2020a).
Srinivasan et al. (2017) train an end-to-end network which is based on depth estimation
from a single image and subsequent warping to render light field. CNN-based appearance
flow estimation is used in (Ivan et al., 2019), to accomplish LF synthesis from a single image.
Chen et al. (2020a) synthesize a light field from a single image without estimating any depth
map using a deep neural network employing GAN loss. Generating a light field from a single
view can have several possible solutions. The approaches (Srinivasan et al., 2017; Ivan et al.,
2019; Chen et al., 2020a) output a fixed light field for a given input image. In contrast, our
CWAE can generate different LF patches for the same input patch, by sampling in the latent
distribution.

7.3 G E N E R AT I V E M O D E L F O R G E N E R I C L I G H T F I E L D R E C O V E R Y

7.3.1 Conditional Generative Model for Light Fields

Though light field data has high dimensionality, patches of light fields lie in a manifold of
much lower dimension owing to their redundant structure (Alperovich et al., 2018). Therefore,
training generative models for LF patches instead of full light fields is a promising alternative.
Moreover, the representation learned on the small LF patches can generalize to a wide variety
of different light fields independent of any specific class of objects. We introduce generative
models for 4D light field patches based on a class of generative autoencoders known as
Wasserstein autoencoders (Tolstikhin et al., 2018). In addition to the autoencoder MSE loss
between input and output, these models have a maximum mean discrepency (MMD) penalty
between the encoder distribution, and the prior latent distribution, instead of the Kullback-
Leibler (KL) divergence penalty found in the traditional variational autoencoders. The loss
function is given as

Total loss = MSE loss + λ · MMD loss (7.5)

We propose a generative model for LF patches, a conditional Wasserstein autoencoder
(CWAE), conditioned on the central view. We trained the model for LF patches of spatial
resolution 25×25. The angular resolution of the LF patch is chosen to be the same as the
angular resolution of the light field to be reconstructed (5×5 and 7×7 in our experiments).
Although we restrict the spatial extent of an LF patch to 25×25 pixels, due to diverse pos-
sibilities of texture content, parallax effects, and occlusion effects, representing any patch
with a generative model would still be a difficult task. Therefore, we develop a model which is
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conditioned on the patch corresponding to the central view. With the central patch being fed
into the network as an additional input, the encoder only needs to encode the additional in-
formation to represent the parallax and occlusion effects in the light field. The decoder learns
to utilize the information from the central view to map the latent variable to the light field.
The schematic of the CWAE with its main components is illustrated in Fig. 7.3. Features of

(a) (b) (c)

(d) (e)

Figure 7.3: (a) Schematic of CWAE. (b) Central view feature (CVF) extraction. (c) Architecture of feature extractor,
CVF={CVF1,CVF2}. (d) Schematic of encoder E1 of CWAE. (e) Schematic of generator G1 of CWAE

the central view are extracted from a convolutional feature extractor at different layers (CVF1

and CVF2), which are together referred to here as the central view features (CVF). These are
simultaneously fed to both the encoder and the generator. The feature extractor is jointly
trained along with the encoder and generator. We employ 3D and 2D convolutions in our
architecture as an alternative to computationally expensive 4D convolutions. To realize this,
the encoder blocks Enc1 and Enc2 in E1 (Fig. 7.3 (d)) take the input 4D LF patch as a set of 3D
LF patches by splitting them along the horizontal and vertical view dimensions, respectively.
The outputs of these encoder blocks are together fed into a common encoder Enc3, along with
a set of central view features CVF1. The output of Enc3 together with central view features
CVF2 are further encoded by fully connected layers to output latent code z. The generator
G1, takes in the latent code and central view features CVF2 which first pass through linear
fully connected layers, followed by a common partial decoder Dec1. This decoder’s output
together with central view features CVF1, simultaneously pass through the row and column
decoders Dec2 and Dec3. These features are together input to a final 4D convolutional layer.
Further details of CWAE network architecture are provided in Appendix 7.A.

7.3.2 Reconstruction from Generative Model

To illustrate the performance of the CWAE, Fig. 7.4 depicts sample reconstructions (encoding
and decoding) from our CWAE for 4 LF patches. We handle colored light field inputs by
reconstructing each color channel separately. In the second row of Fig. 7.4, we observe that
our CWAE can reconstruct the input LF patches quite accurately. It captures the disparity
across different views, and is able to realistically estimate pixel values that are not present
in the central view due to the parallax. To demonstrate the efficacy of the CWAE latent code
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Figure 7.4: Sample reconstruction from CWAE. The first two rows are input LF patches and corresponding reconstructions
from CWAE. The third row shows the CWAE mapping of an arbitrary central patch to an LF patch with disparity similar to
input LF patch, using the latent code corresponding to the second row. Reported numbers are normalized RMSE (NMSE)
values of the reconstructions with respect to the corresponding input patches.

in encapsulating different properties of the input LF patch, we show the generation of a
light field from an arbitrarily chosen central patch in the third row of Fig. 7.4. The latent
representation of the LF patch shown in the first row is used for generating this output. As we
can see, the result is a new LF patch with disparity values similar to the input LF patch in the
first row of Fig. 7.4. This indicates that the latent vector indeed encodes an understanding of
the geometry of the scene. In the following, we develop LF recovery techniques which exploit
the strength of our CWAE.

7.3.3 Generic Light Field Recovery

Light field recovery from measurements as seen in Sec. 7.1.1 is an inherently ill-posed prob-
lem, and needs strong priors to obtain acceptable solutions. We consider two scenarios: i) the
central view is available, and ii) the central view is not available. We now proceed to solve the
LF reconstruction problems in both the cases using our CWAE from Sec. 7.3.1.
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Central view available

In some LF recovery applications such as view synthesis, or spatial angular super-resolution,
one can assume that the central view is known. For such scenarios, we utilize our CWAE
model for reconstruction. Given the central view, the generator of CWAE is trained to always
map a latent code to a light field patch. Therefore, we optimize over the latent space similar to
(Bora et al., 2017; Li et al., 2017) to obtain a latent code that best captures the scene geometry
corresponding to the observations. However, unlike (Bora et al., 2017; Li et al., 2017), we use
a conditioned generative model, which additionally takes the central view as input. More
specifically, we solve

min
z

∥ f − A(G1(z))∥2
2, (7.6)

where G1 is the generator of CWAE, and A is the operator corresponding to the measurement
from angular subsampled views or from spatial and angular subsampled views, assuming the
central view is present. We minimize eq. (7.6) locally using Adam (Kingma and Ba, 2014), a
gradient-based optimization algorithm. After finding a local minimum ẑ of eq. (7.6), G1(ẑ) is
considered to be our final light field estimate.

Central view not available

In LF recovery applications such as recovery from coded aperture, the central view is not
available. Even in this case, we can utilize the generator of CWAE for reconstruction. The only
difference is that we now optimize both for the latent code z and the central view c. We solve
the following optimization problem

min
z,c

∥ f − A(G1(z,c))∥2
2, (7.7)

where A is the forward measurement operator. We solve this problem using Adam optimizer
to obtain local minimizers ẑ and ĉ. We find our final LF estimate as G1(ẑ, ĉ).

7.3.4 Experiments

To be able to compare with recent network-based approaches on small baseline light fields,
we evaluate view synthesis from sparsely sampled views for LFs with angular resolution
7×7. We evaluate LF recovery for view synthesis, spatial-angular super-resolution and coded
aperture for LFs with angular resolution 5×5. The code and trained models are publicly
available at https://github.com/KVGandikota/Generative-Light-Field-Models/.

Baselines:

We obtain the performance references for the reconstruction tasks using both, model- and
network-based approaches for comparisons. For 7× 7 view synthesis, we compare with
the recent neural network-based technique of (Wu et al., 2019b). For comparison with a
traditional approach, we report the performance of the depth-based approach of (Jeon et al.,
2015) as reported in (Wu et al., 2019b). The dictionary-based approach of Marwah et al.
(2013), developed for compressed sensing, is a flexible technique, which can be used with

https://github.com/KVGandikota/Generative-Light-Field-Models/
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any observation model. We use their open sourced code1 which is available for LFs of angular
resolution 5×5. We use this as a reference for model-based approaches on all the 3 recovery
tasks for 5×5 LFs. For the best performance of (Marwah et al., 2013), we always compute
their result obtained by averaging over overlapping patches with stride 1. Additionally, for
comparison with a recent neural network baseline, we compare with (Jin et al., 2020) for 5×5
view synthesis. We use their publicly available code to retrain their model for this task. For
reconstruction from coded aperture, we compare to the neural network based approach of
Inagaki et al. (2018).

Datasets:

For training the generative models, we used the following datasets: i) The training set used by
Kalantari et al. (2016), ii) the training set used in CNN-based depth estimation for light fields
by Heber and Pock (2016), and iii) the training set used in encoder-decoder-based light field
intrinsic (Alperovich et al., 2018). These datasets contain a significant number of samples
with effects such as occlusions and specular reflections. We create a training set by randomly
cropping 250K LF patches of resolution 5×5×25×25 in gray scale from these datasets and use
them for training the CWAE with angular resolution 5×5. Similarly, a training set of 250K LF
patches of resolution 7×7×25×25 was created to train the CWAE with angular resolution 7×7.
The datasets from (Alperovich et al., 2018) and (Heber and Pock, 2016) have high disparity,
therefore we down-scale those light fields spatially by a factor of 1.4 before extracting patches
from this data. We investigate the effect of training with these datasets by training a separate
CWAE on each of them. The comparison of sample reconstructions using these models with
our model trained on all the three datasets is provided in the appendix. Furthermore, we also
study the performance of our generative model for LF patches of different spatial extents,
which is provided in the appendix.

We evaluate the light field recovery on synthetic and real datasets. Specifically, for LFs
of angular resolution 5×5, we evaluate the recovery from all the tasks on the light fields
“Dino”, “Kitchen”, “Medieval 2” and “Tower” from the synthetic New HCI dataset (HCI, 2018).
Furthermore, we evaluate coded aperture reconstruction on the real light field from (Inagaki
et al., 2018). We evaluate view synthesis for LFs of angular resolution 7×7 on the test set of
Kalantari et al. (2016) which contains 30 real light fields captured by a Lytro Illum. Further,
we also evaluate 7× 7 view synthesis on the LFs ‘Reflective 9’, ‘Reflective 13’, ‘Reflective
22’, ‘Reflective 27’, ‘Reflective 29’, ‘Occlusions 16’, and ‘Bikes12’ from Stanford Lytro light
field archive (Sunder Raj et al., 2016), which contain significant reflections, transparencies,
specularities and occlusions.

Generative model training:

We used Pytorch 1.1.0 for all our experiments. For training the CWAEs, we used mini-batches
of size 128 and trained the models for 5×5 and 7×7 views with spatial extent of 25×25 pixels
for 150 epochs. We used Adam optimizer (Kingma and Ba, 2014), with β1 = 0.5 and β2 = 0.999.
We set the initial learning rate to 10−3, which is decreased by a factor of 2 after 30 epochs,
further by a factor of 5 after first 50 epochs and finally by a factor of 10 after 100 epochs. For
both the models, we choose the factor λ in eq. (7.5) to be 100.

1 http://web.media.mit.edu/~gordonw/CompressiveLightFieldPhotography/

http://web.media.mit.edu/~gordonw/CompressiveLightFieldPhotography/
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Dataset
3×3 → 7×7 5 views→ 7×7

EPICNN Ours OursOL depth-based† Ours OursOL

30 scenes 41.16 38.53 39.77 34.42 38.29 39.57
7 scenes 41.24 39.62 40.48 - 39.07 40.00

Table 7.1: Average PSNR of novel views in dB for 7×7 view synthesis on test test of 30 scenes from (Kalantari et al., 2016), and
7 scenes from (Sunder Raj et al., 2016) containing reflections, refractions and occlusions. Comparisons with EPICNN (Wu
et al., 2019b), and depth based method (Jeon et al., 2015) are shown. † indicates PSNR values of (Jeon et al., 2015) are as
reported in (Wu et al., 2019b).

LF recovery:

Since our generative models are trained on gray scale patches, we divide the input into
patches of suitable dimensions and use our generative models on all color channels sepa-
rately. We initialize the latent code z with a random sample drawn from the same posterior
distribution that was used for the latent space during the training of the generative model (i.e.
isotropic Gaussian with variance of 2). We observed that different random initializations of z
lead to similar quality of reconstruction. For recovery from coded aperture, the central view
is not available. In this case, we initialize the central view with the coded image itself scaled
between 0 and 1. We solve the LF reconstruction tasks using Adam optimizer as discussed in
Sec. 7.3.3, until convergence.

7.3.5 Results

We now evaluate the efficacy of our approach on different LF recovery tasks. We perform
quantitative evaluation in terms of PSNR and also qualitative evaluation by comparing
light field views of our approach with ground truth and baseline methods and show the
corresponding error maps. Additional visual comparisons of the reconstructed LFs are
provided in the appendix.

View synthesis 7×7:

We compare our approach with the recent CNN-based technique of Wu et al. (2019b) for LF
reconstruction from sparsely sampled input views using epi-polar images (EPI). We consider
upsampling the angular resolution from 3×3 to 7×7. Since central view is available for
this task, our approach uses CWAE for reconstruction. We use the publicly available trained
model of Wu et al. (2019b)2 for evaluating their approach. We also report the performance of
a traditional depth estimation-based approach from (Wu et al., 2019b) for this task, where
the depth is estimated using the approach of Jeon et al. (2015), followed by a novel view
synthesis by warping the input views following (Chaurasia et al., 2013). Apart from the
specific case of 3×3 input views, our method can still be applicable if any arbitrary set of
views are given as input along with the central view. To demonstrate this flexibility, we also
show 7×7 LF reconstruction from 5 randomly chosen input views including the central view.
The mask used for selecting the 5 input views is provided in the inset of Fig. 7.5 a). Since view
extrapolations cannot be handled by EPICNN (Wu et al., 2019b), we show visual comparison
only with the ground truth for this task.

Results of our quantitative evaluation on 30 real LFs of Kalantari et al. (2016) test set
and 7 scenes selected from Stanford Lytro dataset (Sunder Raj et al., 2016) are provided

2 https://github.com/GaochangWu/lfepicnn

https://github.com/GaochangWu/lfepicnn
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Figure 7.5: Result of 7×7 view synthesis for the LF ‘Cars’. Shown is the novel view at angular location (6,6), depicted as
gray location in the inset. The mask for selecting 5 input views is shown in the inset of ground truth view. Figures in the
first row a)−c) depict ground truth view, and the results of our approach using 5 input views with and without overlapping
patches in that order. Figures d)−f) in the second row provide visual comparison of novel views generated using approach
of EPICNN Wu et al. (2019b), and our approach using 3×3 angular views. Error maps and zoomed in patches are depicted
along with corresponding novel views, with error magnified by a factor of 10. Results best viewed when zoomed in.

in Tab. 7.1. ‘OursOL’ indicates our reconstruction using overlapping patches with stride 5.
Following Wu et al. (2019b), we show the result of average PSNR of the luminance component
of novel synthesized views. For brevity, we report only average PSNRs of the LFs in each
test set. Quantitative comparisons for individual LFs are provided in the appendix. For the
task of view upsampling from 3×3 to 7×7, we compute the average PSNRs of the 40 novel
views. For this task, we find that our performance is approaching the CNN-based method
of Wu et al. (2019b), with a PSNR reduction of only 1.4 dB when we use overlapping patches,
and 2.6 dB when non-overlapping patches are used on (Kalantari et al., 2016) test set. Our
approach also outperforms the depth-based approach using the method of Jeon et al. (2015)
by a large margin. Further, our performance is close to the method of Wu et al. (2019b) on the
scenes selected from (Sunder Raj et al., 2016) as well, with PSNR reduction of only 0.8 dB and
1.6 dB respectively, when overlapping and non-overlapping patches are used. Even when the
number of known views is reduced to 5, our average PSNR of 44 novel views is 39.57 dB on the
30 scenes (Kalantari et al., 2016) with a reduction of only 0.2 dB, and average PSNR of 40.00 dB
with a reduction of 0.48 dB on the 7 scenes from (Sunder Raj et al., 2016), demonstrating the
strength of our approach.

A qualitative comparison of the synthesized views for the task of 7×7 view synthesis is
provided in Fig. 7.5 for the LF ‘Cars’ from the 30 scenes test set. The newly synthesized view
at angular location (6,6) (depicted by gray location in the inset) are shown. The first row of
Fig. 7.5 (a)−(c) gives a visual comparison of the results of our approach with the ground truth
when 5 input views are used. Visually, it can be seen that our approach provides a reasonable
reconstruction quality even when using a limited number of input views. The second row
of Fig. 7.5 (d)−(f) compares our method with the approach of EPICNN (Wu et al., 2019b),
for the task of 3×3 → 7×7 angular super resolution. In terms of reconstruction quality, our
approach performs slightly worse than (Wu et al., 2019b). However, this is to be expected
as Wu et al. (2019b) uses network specifically trained for this task. In contrast, we obtain a
comparable reconstruction quality with flexible input views. It can be noticed from the error
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a) Ground truth b) EPICNN 35.76 dB c) OursOL35.06 dB a) b) c) b) EPICNN c) OursOL

Figure 7.6: Visual comparison of our synthesized views (depicted by gray locations in the inset) for the task of 3×3 → 7×7
view synthesis for the LF ‘Reflective13’. Columns 1−3 depict a) the ground truth views, the result using b) EPICNN Wu et al.
(2019b) and c) our approach using overlapping patches respectively. Columns 4−6, the patches of columns 1−3. Columns
7−8 depict the error maps corresponding to columns 2−3 with error magnified by a factor of 10. The brightness of the
zoomed in patches is increased for better illustration. Average PSNR in dB of 40 novel views is shown.

maps and zoomed in patches that our approach preserves the details fairly well. Further, we
can observe that there are errors at the patch boundaries when non-overlapping patches are
used. These errors are reduced due to averaging effect when overlapping patches are used.

In Fig. 7.6, we illustrate our reconstruction of the LF ‘Reflective13’ from the Stanford Lytro
dataset and compare it with the approach of Wu et al. (2019b) for the task of 3×3 → 7×7 view
synthesis. The novel synthesized views at angular locations (1,2) and (7,2) (depicted by gray
location in the inset of ground truth) are shown. This is a challenging scene which contains a
highly reflective ball in the foreground, and high disparities (4 pixels between adjacent views)
in the background. We can observe from the synthesized views and corresponding error
maps that our approach provides reconstructions which are slightly worse than (Wu et al.,
2019b). On closer inspection of the zoomed in patches, we can observe that our method can
reconstruct well the reflections which are slowly varying across views (patches on the top
in each row). We observe reasonable reconstruction even when there is a high variability in
the reflections across views (patches on the bottom). However, our approach cannot handle
high disparities in the background causing ghosting artifacts, as seen in the corresponding
regions in the reconstructions, which are indicated by red arrows in the ground truth views.
We observe that the approach (Wu et al., 2019b) also cannot handle such large disparities,
which are also evident in the error maps.

View synthesis with corrupted inputs:

Clean σ= 0.05 σ= 0.1 S&P 50% pixels
EPICNN 36.02 33.34 29.95 25.02 13.60

Ours 31.74 31.75 31.67 31.66 31.68
OursOL 33.45 33.47 33.41 33.35 33.39

Table 7.2: 3×3 → 7×7 view synthesis result on the LF ‘Cars’,
when input views other than central view are corrupted. PSNR
values in dB in comparison with EPICNN Wu et al. (2019b) are
shown

C L E A N C E N T R A L V I E W AVA I L A B L E To
further demonstrate our flexibility vis-a-vis
end to end trained networks, we consider
the task of 3×3 → 7×7 angular super reso-
lution and compare our reconstruction with
EPICNN (Wu et al., 2019b), when inputs are
corrupted. We assume that the central view
is clean and the remaining 8 views are cor-
rupted by different distortions. The qualita-
tive and quantitative comparison of our reconstructions with the approach of EPICNN (Wu
et al., 2019b), with corrupted input views is provided in Fig. 7.7 and in Tab. 7.2 for the LF
‘Cars’. The reconstructed view at angular location (6,6) is depicted.
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With additive Gaussian noise of standard deviation σ= 0.05 in 8 input views, the PSNR of
the reconstructed views using (Wu et al., 2019b) drops from 36.02 dB to 33.34 dB. When we
increase the noise level to σ= 0.1 this value further drops to 29.95 dB. This degradation in
the quality of reconstruction is also evident from the error maps in Fig. 7.7. In contrast, our
reconstruction quality is robust to addition of noise.
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Wu et al. (2019b) Ours OursOL

Figure 7.7: Novel view at angular location (6,6) for the task
3×3 → 7×7 view synthesis. Columns 1−3 depict the result
using EPICNN Wu et al. (2019b) and our approach using non-
overlapping patches and overlapping patches respectively.
Shown are the zoomed in patches of the reconstructed views
and error maps with error magnified by a factor of 10. Among
the 3×3 input views, central view is clean. For the the remain-
ing 8 views, we consider the following corruptions (rows i−iv)
i) additive Gaussian noise σ= 0.05. ii) additive Gaussian noise
σ= 0.1 iii) salt and pepper noise with a probability of occur-
rence of 0.05. iv) 50% pixels randomly dropped from views.
Results best viewed by zooming in.

We also consider corruption of input
views with salt-and-pepper noise with a
probability of 0.05. Even in this case, the
performance of Wu et al. (2019b) is severely
affected, with PSNR reduction of 11 dB com-
pared to the clean case, where as our per-
formance only shows a marginal decrease of
0.1 dB. We note that we employ an L1 loss, as
it is more suited to handle salt and pepper
noise when compared to the traditional L2

loss in eq. (7.6). This demonstrates the flex-
ibility of our energy minimization-based ap-
proach in adapting to different noise statis-
tics. When we use an L2 loss instead, our
PSNR dropped by about 2 dB compared to
the clean case. Finally, when 50% pixels are
randomly dropped from the 8 known views,
the neural network-based approach of Wu
et al. (2019b), completely fails in reconstruc-
tion. In contrast, we can incorporate an ad-
ditional mask corresponding to the missing
pixel locations in our optimization, and con-
sequently our reconstructions remain robust
to this distortion.

V I E W S Y N T H E S I S W I T H C O R R U P T C E N -
T R A L V I E W We consider the task of 3×3 →
7×7 angular super resolution and compare
our reconstruction with (Wu et al., 2019b),
when input views including the central view
are corrupted are corrupted by different dis-
tortions. Since our approach is crucially de-
pendent on the central view, we investigate the effect of considering an additional total
variation (TV) penalty on the central view to deal with noise. We initialize the central view
to be the observed corrupted central view and optimize jointly for the central view and the
latent code. The qualitative and quantitative comparison of our reconstructions with the
approach of Wu et al. (2019b), with corrupted input views is provided in Fig. 7.8 and in
Tab. 7.3 for the LF ‘Cars’. We show the reconstructed view at angular location (6,6). We
consider 4 different scenarios, where the input views are corrupted by additive Gaussian
noise of variance 0.05 and 0.1, salt and pepper noise with a probability of occurrence of 0.05,
and 50% of pixels randomly dropped from the input views. We can observe reconstructions



7.3 G E N E R AT I V E M O D E L F O R G E N E R I C L I G H T F I E L D R E C O V E R Y 92

i)
σ
=

0.
05

ii
)
σ
=

0.
1

ii
i)

Sa
lt

&
Pe

p
p

er
iv

)
50

%
p

ix
el

s
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Figure 7.8: Visual comparison of our approach with Wu et al. (2019b) (first column) on the novel view at angular location (6,6)
for the task 3×3 → 7×7. Columns 2−3 depict our result with TV regularization, and columns 4−5 depict our reconstruction
without TV regularization. Shown are the zoomed in patches of the reconstructed views and error maps with error magnified
by a factor of 10. We consider the following corruptions to all the input views i) additive Gaussian noise σ= 0.05. ii) additive
Gaussian noise σ= 0.1 iii) salt and pepper noise with a probability of occurrence of 0.05. iv) 50% pixels randomly dropped
from views. Results best viewed by zooming in.

using (Wu et al., 2019b) are highly sensitive to corruptions in the input views, with the sharp
drop of 12.3 dB in average PSNR, when compared to reconstruction using clean inputs. In
contrast, our approach results in PSNR drop of only 0.63 dB and 1.2 dB when compared to
our reconstruction with clean input views, when overlapping and non-overlapping patches
are used. Additional TV regularization further improves our reconstruction under noise. In
this case, the drop in average PSNR when compared to reconstructions with clean inputs is
only 0.43 dB and 0.59 dB when overlapping and non-overlapping patches are used.

With additive Gaussian noise of standard deviation σ= 0.05 and σ= 0.1, reconstructions
using (Wu et al., 2019b) show PSNR drops of 3.37 dB and 7.42 dB with respect to reconstruc-
tions when inputs are clean. This drop in reconstruction quality is also visible in the error
maps in Fig. 7.8. Since the central view is also corrupted, our method also shows a perfor-
mance drop, albeit much lower than (Wu et al., 2019b). For the same noise levels, we observe
a PSNR drop of 0.35 dB and 2.52 dB with our approach using overlapping patches, when
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Corruption EPICNN
with TV without TV

Ours OursOL Ours OursOL

None 36.02 31.80 33.48 31.74 33.45
Gaussian noise σ= 0.05 32.65 31.62 33.32 30.98 33.10
Gaussian noise σ= 0.1 28.60 30.81 32.52 28.71 30.93

Salt&Pepper noise 23.21 31.00 33.27 30.83 33.23
50% Pixel drop 10.43 31.40 33.08 31.51 34.01

Table 7.3: 3×3 → 7×7 view synthesis result on the LF ‘Cars’, when input views including the central view are corrupted.
Shown are PSNR values in dB for our approach and EPICNN Wu et al. (2019b).

compared to our reconstructions with clean input views. With additional TV regularization on
the central view, this PSNR drop further reduces to around 0.16 dB and 0.96 dB with additive
Gaussian of standard deviation σ= 0.05 and σ= 0.1 respectively. When the input views are
corrupted by salt-and-pepper noise with a probability of 0.05, the reconstructions using (Wu
et al., 2019b) are strongly affected, with PSNR drop of 12.8 dB compared to the clean case. In
contrast, our PSNR drops by only 0.2 dB, since we use an L1 reconstruction loss to tackle salt
and pepper noise. When we use an L2 loss, our PSNR drops by 4.9 dB and 6 dB in comparison
to using L1 loss, for overlapping and non-overlapping patches respectively. This is because
L2 loss is poorly suited to handle salt and pepper noise. When 50% pixels are randomly
dropped from the input views, reasonable recovery is not provided by (Wu et al., 2019b). In
our approach, we also incorporate the mask corresponding to the missing pixel locations
in our optimization, and therefore our approach can effectively handle this distortion. This
flexibility to handle different distortions is possible in the framework of energy minimization.

View synthesis 5×5:

We compare our approach for view synthesis with dictionary based approach of Marwah et al.
(2013) and geometric warping based light field angular super-resolution network (LFASRNet)
(Jin et al., 2020) for two different input views using masks M1 and M2. For evaluating the per-
formance of (Jin et al., 2020) we use separate networks trained end-to-end for view synthesis
with each of the masks.

Method Dino Kitchen Medieval2 Tower

M
as

k
M

1 Ours 39.57 33.59 34.86 31.24
OursOL 41.53 34.95 35.94 32.30

Dictionary 34.61 30.30 32.19 28.45
LFASRNet 43.68 37.01 36.75 34.00

M
as

k
M

2 Ours 38.18 33.06 34.55 30.28
OursOL 39.83 34.41 35.66 31.31

Dictionary 32.99 29.83 31.51 27.67
LFASRNet 42.46 36.29 36.25 32.97

Table 7.4: Quantitative comparison of 5×5 view synthesis with
dictionary based approach Marwah et al. (2013) and LFASRNet
Jin et al. (2020). PSNR values in dB are shown.

The results of our quantitative evalua-
tion on synthetic HCI data are summa-
rized in Tab. 7.4, where the PSNR of the re-
constructed light fields is presented. Our
approach without considering overlapping
patches is superior by 2.63 dB and 3.13 dB to
the dictionary-based approach of Marwah
et al. (2013) with overlapping patches with
stride 1, for masks M1 and M2, respectively
in terms of average PSNR. Our performance
further improves when we consider overlap-
ping patches with stride 5, where our ap-
proach is better by 4 dB and 4.4 dB, respectively for M1 and M2. Further, the end-to-end
trained LFASRNet (Jin et al., 2020) performs the best, with an improvement in average PSNR
of 1.69 dB compared to our approach with overlapping patches for both M1 and M2.
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1

Ground truth LFASRNet 43.68 dB OursOL 41.53 dB Ours 39.57 dB Dictionary 34.61 dB

M
as

k
M

2

Ground truth LFASRNet 42.46 dB OursOL 39.83 dB Ours 38.18 dB Dictionary 32.99 dB

Figure 7.9: Result of view synthesis of the LF ‘Dino’. Masks M1 and M2 are provided as inset of the ground truth views. The
columns 1−5 show the views depicted by gray location in the inset corresponding to i) the ground truth, and synthesized
novel views using ii) LFASRNet Jin et al. (2020) iii)−iv) our approach with overlapping patches and without overlapping
patches and v) the dictionary based method of Marwah et al. (2013), respectively. Columns 6−9 illustrate the error maps
corresponding to the reconstructed views in columns 2−5, with errors magnified by a factor of 10. Shown are the PSNR
values in dB of the reconstructed LFs. (Results best viewed zoomed in).

A qualitative comparison of the synthesized views is provided for the LF ‘Dino’ for mask
M1 and M2 in Fig. 7.9. The locations of known views are depicted in white in the inset of
Fig. 7.9, and gray represents the location of the reconstructed view. Extrapolating novel views
away from known views is difficult. Even for this challenging case, we observe the quality
of our reconstruction with both, overlapping and non-overlapping patches, is better and
sharper compared to the reconstruction from the dictionary-based approach of Marwah et al.
(2013). The neural network approach of Jin et al. (2020) provides even better reconstruction,
which is expected with end-to-end networks specifically trained for each of the masks. This
is also evident from the error maps shown in Fig. 7.9. We can observe that averaging effect
of overlapping patches mitigates the errors at the patch boundaries in comparison to our
approach without overlapping patches.

Spatial and angular super-resolution 5×5:

Fig. 7.10 provides a visual comparison of our LF reconstruction with the approach of Marwah
et al. (2013) for the task of spatial-angular super-resolution on the LF ‘Kitchen’. The masks
used for the measurements are provided in the inset of ground truth view of the LF ‘Kitchen’ in
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M
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1

Ground truth OursOL 33.30 dB Ours 31.60 dB Dictionary 28.98 dB OursOL Ours Dictionary

M
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k
M

2

Ground truth OursOL 32.67 dB Ours 30.95 dB Dictionary 28.10 dB OursOL Ours Dictionary

Figure 7.10: Result of spatial angular super-resolution of the LF ‘Kitchen’. Masks M1 and M2 are provided as inset of the
ground truth views. Central view in full resolution is depicted in white. Measurements at the locations in red are spatially
down-sampled by a factor of 3. The columns 1−4 from left to right show the views depicted by gray location in the inset
corresponding to the i) ground truth, and synthesized views using ii)−iii) our approach with overlapping patches and
without overlapping patches, and iv) dictionary based approach of Marwah et al. (2013). Columns 5−7 illustrate the error
maps corresponding to the reconstructed views in columns 2−4, with error magnified by a factor of 10.(Results best viewed
zoomed in)

Method Dino Kitchen Medieval2 Tower
M

as
k1 Ours 37.18 31.60 33.27 29.95

OursOL 39.71 33.30 34.87 31.15
Dictionary 33.07 28.98 31.26 27.93

M
as

k2 Ours 35.84 30.95 32.78 28.99
OursOL 38.11 32.67 34.50 30.23

Dictionary 31.70 28.10 30.26 26.93

Table 7.5: Spatial-angular super-resolution: PSNR values in
dB shown for our reconstructions and those recovered by dic-
tionary based method of Marwah et al. (2013).

Fig. 7.10. The central view is available in full
resolution and is depicted in white. Views in
red are spatially down-sampled by a factor
of 3. It can be observed that our reconstruc-
tion of the novel view (depicted in gray in
the inset) with both overlapping patches and
non-overlapping patches is of superior qual-
ity compared to the reconstruction from the
approach of Marwah et al. (2013). This is fur-
ther substantiated by the error maps shown
in the Fig. 7.10, which depict a much lower error in our reconstruction. Tab. 7.5 provides a
quantitative comparison of our method with the dictionary-based approach of Marwah et al.
(2013). Again, on average our approach outperforms the approach of Marwah et al. (2013) by
more than 2 dB without, and by more than 4 dB with overlapping patches.

Coded aperture 5×5:

Method Dino Kitchen Medieval2 Tower

M
as

k1 Ours 34.97 31.07 32.90 29.02
OursOL 38.46 33.29 35.19 30.43

CNN 38.7 33.78 34.74 31.63
Dictionary 33.28 29.00 31.37 27.81

M
as

k2 Ours 34.34 31.03 32.49 28.47
OursOL 38.00 33.14 34.84 29.86

CNN 37.50† 33.00† 34.00† 31.00†
Dictionary 32.86 29.40 31.42 27.33

Table 7.6: Comparing recovery from coded aperture with CNN
based approach Inagaki et al. (2018) and dictionary based
approach Marwah et al. (2013). PSNR values in dB are shown.
† indicates approximate PSNR values for the mask M2 are
taken from Inagaki et al. (2018).

We evaluate the LF recovery from 2 coded
aperture observations for our approach,
CNN based coded aperture recovery method
of Inagaki et al. (2018) and the dictionary
based method of Marwah et al. (2013), us-
ing two different coded mask sets ‘Normal’
and ‘Rotated’ (available from (Inagaki et al.,
2018)), and denote them by M1 and M2, re-
spectively. The quantitative evaluation on
synthetic data is summarized in Tab. 7.6. To
evaluate the approach of Inagaki et al. (2018),
we use the publicly available trained recon-
struction network corresponding to M1. For
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Ground truth CNN 38.7 dB OursOL 38.46 dB Dictionary 33.28 dB CNN OursOL Dictionary

Ground truth CNN 34.74 dB OursOL 35.19 dB Dictionary 31.37 dB CNN OursOL Dictionary

Figure 7.11: Coded aperture reconstruction using the coded mask M1 of Inagaki et al. (2018). The column 1 depicts the the
bottom right ground truth LF view. Columns 2−4 depict the reconstructed views using the CNN based approach for coded
aperture recovery Inagaki et al. (2018), our approach and the dictionary based approach of Marwah et al. (2013) respectively.
The error maps corresponding to the views in columns 2−4 are illustrated in the columns 5−7, with errors magnified by a
factor of 10. PSNR values of recovered LFs are shown. (Results best viewed zoomed in).

M2, we reproduce the values reported in Inagaki et al. (2018), since a trained network is not
publicly available. Even without overlapping patches, our method gives superior PSNR values
when compared to the model-based approach of Marwah et al. (2013), with improvement of
1.6 dB for both M1 and M2. However, our method is worse by 2.7 dB and 2.3 dB for M1 and M2

when compared to Inagaki et al. (2018). When we use overlapping patches with stride 5, the
average PSNR on the test set for our method is comparable to the end-to-end trained model
of Inagaki et al. (2018) and is better by 3.97 dB and 3.71 dB for M1 and M2 when compared to
Marwah et al. (2013). For qualitative evaluation, we show sample LF reconstructions using
coded masks M1 on the LFs ‘Dino’ and ‘Medieval’ in Fig. 7.11. We can observe that our ap-
proach provides a reasonably good recovery, with performance comparable to an end-to-end
trained network. Our recovery is also more accurate when compared to Marwah et al. (2013).

To demonstrate the vulnerability of the end-to-end trained reconstruction pipeline, we
altered the coded aperture mask from the set of M1 and then perform LF recovery using the
method of Inagaki et al. (2018). Minor changes were applied to only one of the two masks
in the set M1. First, we swap the values of the mask at locations with coordinates (0,0) and
(0,2). With this tiny change, the performance of (Inagaki et al., 2018) dropped from 38.7 db to
24.3 db on the ‘Dino’ LF. When we swap the values at three sets of locations, the method of
Inagaki et al. (2018) completely failed to reconstruct a meaningful light field (yielding a PSNR
of 12.2 dB).

(a) Ours 38.19dB (b) CNN 24.4dB (c) CNN 12.2dB

Figure 7.12: Effect of minor alterations to the coded mask on
reconstruction. Shown are reconstructions of the top left view:
(a) Our reconstruction with 3 swaps in the mask. (b) Recon-
struction using Inagaki et al. (2018) with 1 swap. (c] Recon-
struction using Inagaki et al. (2018) with 3 swaps.

In contrast, the effect of these changes on
our approach is marginal, since our opti-
mization scheme explicitly takes the mask
as an input. With the first swap in the mask,
our PSNR changed to 38.52 dB, compared to
38.46 dB of the original mask, when we use
overlapping patches. With three swaps, the
PSNR value for our reconstruction is 38.19
dB, demonstrating our flexibility. Views from
the reconstructed LFs are shown in Fig. 7.12.

We apply our reconstruction method on
the real observations obtained in the work of Inagaki et al. (2018). In Fig. 7.13, we show a
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specific view obtained from our reconstruction along with the corresponding result obtained
by Inagaki et al. (2018). Close-ups near the occlusion boundaries for two different views
(with appropriate vertical alignment) in Fig. 7.13 (c) and (d) show a comparable quality of our
approach (left columns) to the results obtains by Inagaki et al. (2018) (right columns).

(a) (b) (c) (d)

Figure 7.13: Real result using the observation of Inagaki et al. (2018). (a) Central view from our reconstructed light field. (b)
Corresponding view from the result of Inagaki et al. (2018). (c) and (d) left half shows patches from two different views of our
reconstruction and right half similarly shows patches from the result of Inagaki et al. (2018).

We also attempted comparisons with other model-based approaches (Blocker and Fessler,
2019; Vagharshakyan et al., 2018). We note that these works have not considered view synthe-
sis with arbitrary masks or coded aperture reconstruction. As Vagharshakyan et al. (2018) uses
an iterative approach that regularizes the epipolar plane images, it works well with a regular
pattern of input views. We found it not to be directly applicable for view extrapolations,
while our model remains flexible with respect to the pattern of input views. Moreover, we
found that (Blocker and Fessler, 2019) crucially depends on a good initial estimate for view
extrapolation. Finally, we found that the performance of (Blocker and Fessler, 2019) on coded
aperture reconstruction was worse than that of (Marwah et al., 2013). Therefore, we have not
included these comparisons in our results.

Due to patch based processing, and optimization steps required to reconstruct light fields,
our reconstruction times are longer. For 7×7 view synthesis, our approach takes nearly 12
minutes on a Nvidia GeForce RTX 2080 Ti machine to reconstruct a full Lytro image (of size
376×541×3×7×7), which requires 150 update steps per patch. For 5×5 view synthesis and
spatial-angular super-resolution, our approach requires 12 minutes to reconstruct LF of size
512×512×3×5×5, when 250 update steps per patch are used. Another limitation of our
approach is that our reconstructions are not satisfactory when the disparity between adjacent
views is greater than two pixels. Since the spatial extent of our generative models is only
25×25, it is difficult for our model to capture large disparities in a low-dimensional latent
representation, as the views tend to be significantly different. To overcome this limitation,
one needs to train a generative model with higher capacity by using LF patches of a larger
spatial extent. Since our work is the first attempt to develop generative light field models, we
consider this to be beyond the scope of this work.

7.4 C O N C L U S I O N

We developed the first autoencoder-based generative model conditioned on the central
view for 4D light field patches for generic reconstruction. We developed algorithms for
generic light field reconstruction by exploiting the strengths of our generative model and
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evaluated our approach on three different LF reconstruction tasks. Experimental results
indicate that our approach leads to high quality reconstructions with a performance superior
to other optimization-based approaches, while being only slightly worse, but significantly
more flexible and robust than end-to-end trained networks. We believe that our experimental
results are very promising and can serve as a starting point for further research on generative
light field models.

A P P E N D I X

7.A N E T W O R K A R C H I T E C T U R E F O R L F G E N E R AT I V E M O D E L

As described in the Section. 7.3.1, our conditional generative model consists of three main
components- i) central view feature extractor, ii) encoder and iii) generator. Consider a
light field (LF) patch of angular dimension 5×5 and spatial extent of size 25×25. The central
view feature extractor takes the middle 25×25 2-D patch as input to extract the features
that are denoted as CVF1 and CVF2 in the paper. For the encoder Enc1, the input 4D LF
patch is rearranged by considering it to be 5 channels of 3D tensors of size 5×25×25. Each
channel is composed of a set of horizontal views and corresponds to only a specific location
along the vertical view direction. Similarly, for Enc2, the 4D LF patch is rearranged wherein
each channel corresponds to a specific horizontal view location. Consequently, the angular
information along the horizontal and vertical view directions is first encoded separately
by the encoder blocks Enc1 and Enc2. The outputs of these are combined in a common
encoder Enc3, along with a set of central view features. Output of Enc3 together with another
set of central view features are further encoded by fully connected layers to output latent
code. The generator mirrors the encoder architecture, with a common decoder Dec1 whose
output together with the central view features are further decoded by the decoders Dec2 and
Dec3 to reconstruct angular information in horizontal and vertical view directions, which is
combined in a final 4D convolutional layer.

In the following, we provide the architectural details of the components of CWAE. We use
the following notation to describe convolutional mappings. C F

a→b ↓S represents convolution
filter mapping from channel dimension of a to b with filter size of F and stride S. C F

a→b ↑S rep-
resents fractional strided convolution (transpose convolution) filter mapping from channel
dimension of a to b with filter size of F and stride S.
Feature extractor:

C (3,3)
1→6 ↓(1,1)→C (3,3)

6→10 ↓(2,2)→C (3,3)
10→20 ↓(1,1)→C (3,3)

20→40 ↓(1,1)→C (3,3)
40→50 ↓(2,2)→C (3,3)

50→60 ↓(1,1)

Partial row/column encoders Enc1, Enc2: C (3,3,3)
5→20 ↓(1,1,1)→C (3,3,3)

20→40 ↓(1,2,2)→C (3,3,3)
40→60 ↓(1,1,1)

Partial common encoder Enc3: C (3,3)
140→200 ↓(1,1)→C (3,3)

200→250 ↓(2,2)→C (3,3)
250→300 ↓(1,1)

Partial common decoder of Dec1: C (3,3)
300→250 ↑(1,1)→C (3,3)

250→200 ↑(2,2)→C (3,3)
200→120 ↑(1,1)

Partial row/column decoder Dec2, Dec3: C (3,3,3)
140→80 ↑(1,1,1)→C (3,3,3)

80→40 ↑(1,2,2)→C (3,3,3)
40→20 ↑(1,1,1)

All the convolutional layers except the last layer of the generator are followed by batch norm
and ReLU non-linearity. We fix the latent dimension of CWAE to be 160. We used isotropic
Gaussian prior, with variance of 2 for the latent space. The architecture is same for both the
angular resolutions 5×5 and 7×7, except for padding in the first convolutional layer.
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7.B A D D I T I O N A L R E S U LT S

7×7 View Synthesis

5
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s→

7
×7

a) Ground truth b) OursOL 35.40 dB c) Ours 33.96 dB

3
×3

→
7
×7

d) Wu et al. (2019b) 38.11 dB e) OursOL 35.63 dB f) Ours 34.20 dB

i) Novel view at angular location (5,7) of the LF ‘Seahorse’.

5
vi

ew
s→

7
×7

a) Ground truth b) OursOL 34.60 dB c) Ours 32.78 dB

3
×3

→
7
×7

d) Wu et al. (2019b) 37.47 dB e) OursOL 34.81 dB f) Ours 33.04 dB

ii) Novel view at angular location (3,3) of the LF ‘Flower2’.

Figure 7.14: Result of 7×7 view synthesis for the LFs i) ‘Seahorse’ ii) ‘Flower2’. Shown are the novel view
at angular locations, depicted as gray location in the inset. The mask for selecting 5 input views is
shown in the inset of ground truth view. Figures in the first row a)−c) depict ground truth view, and
the results of our approach using 5 input views with and without overlapping patches in that order.
Figures d)−f) in the second row provide visual comparison of novel views generated using approach
of Wu et al. Wu et al. (2019b), and our approach using 3×3 angular views. Error maps and zoomed
in patches are depicted along with corresponding novel views, with error magnified by a factor of 10.
Results best viewed when zoomed in.
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LF
3×3 → 7×7 5 views→ 7×7

EPICNN Ours OursOL Ours OursOL

Seahorse 38.11 34.20 35.63 33.96 35.40
Rock 38.24 32.86 34.93 32.55 34.71
Flower1 37.73 33.37 34.96 33.14 34.77
Flower2 37.47 33.04 34.81 32.78 34.60
Cars 36.02 31.74 33.45 31.55 33.30
1085 43.03 41.72 42.31 41.27 41.85
1086 43.75 42.80 43.70 42.40 43.27
1184 43.75 43.23 43.65 43.10 43.53
1187 43.20 42.11 42.80 42.00 42.72
1306 42.74 39.47 40.86 39.29 40.69
1312 45.66 44.33 45.55 44.14 45.39
1316 42.78 40.23 41.11 40.09 41.00
1317 41.67 39.39 40.20 39.24 40.07
1320 39.97 35.62 37.02 35.35 36.80
1321 46.07 44.62 45.72 44.43 45.55
1324 46.06 47.39 48.04 47.24 47.94
1325 44.16 43.00 43.92 42.85 43.78
1327 40.76 37.18 38.32 37.03 38.22
1328 44.19 41.35 42.82 41.05 42.55
1340 45.38 46.12 47.01 45.99 46.92
1389 45.63 44.76 46.35 44.60 46.23
1390 45.95 46.29 47.06 46.17 46.94
1411 36.13 32.84 33.84 32.68 33.69
1419 39.30 36.08 36.95 35.82 36.70
1528 36.28 30.91 32.68 30.50 32.36
1541 36.84 31.77 33.76 31.39 33.49
1554 33.54 28.78 30.21 28.46 29.93
1555 35.89 31.28 32.88 31.00 32.65
1586 42.44 38.98 40.88 38.75 40.74
1743 42.12 40.52 41.77 39.94 41.25
Avg. 30 scenes 41.16 38.53 39.77 38.29 39.57
Reflective9 45.82 46.47 47.01 46.10 46.69
Reflective13 35.76 34.03 35.06 33.73 34.87
Reflective22 43.17 41.78 42.45 41.20 41.93
Reflective27 43.75 43.92 44.36 43.47 44.06
Reflective29 43.40 41.67 42.65 41.19 42.25
Occlusions16 36.23 32.53 33.56 31.56 32.64
Bikes12 40.58 36.97 38.32 36.15 37.58
Avg. 7 scenes 41.24 39.62 40.48 39.07 40.00

Table 7.7: PSNR values in dB for 7×7 view synthesis for indi-
vidual scenes in the test sets- 30 scenes from Kalantari et al.
(2016), and 7 scenes containing reflections, refractions and
occlusions from Sunder Raj et al. (2016). Comparison with
EPICNN Wu et al. (2019b) is shown.

Results of our quantitative evaluation on 30
real LFs from the test set of Kalantari et al.
(2016) and 7 real LFs selected from Stanford
Lytro archive (Sunder Raj et al., 2016) are pro-
vided in Tab. 7.7. ‘OursOL’ indicates our re-
construction using overlapping patches with
stride 5. For each LF, we report the result of
average PSNR of the luminance component
of novel synthesized views.

We show additional qualitative results of
7×7 LF reconstruction from 5 input views,
and 3 × 3 input views from Kalantari test-
set in Fig. 7.14. The selected 5 input views
are depicted in white and the novel view
displayed is depicted in gray in the inset
of the ground truth views. Shown here are
ground truth and reconstructed views for
the LFs ‘Seahorse’ and ‘Flower2’ from 30 real
scenes set using our approach and network
based approach of Wu et al. (2019b). Re-
constructed views along with correspond-
ing error maps and zoomed-in patches are
provided for visual comparison. Zoomed-in
patches show good reconstruction quality at
occlusion boundaries.

Fig. 7.15 shows visual comparison for
7×7 LF reconstruction from 3×3 input views
for the LF ‘Reflective22’, which contains spec-
ularities and transparencies. Novel views at
locations depicted in gray in the inset of the
ground truth views are shown, along with
error maps and zoomed-in patches. We ob-
serve reasonably good quality of reconstruc-
tion with our approach. Closer inspection of
zoomed-in patches reveals that specularities
and transparencies are also handled reason-
ably well by our approach, however, the reconstruction is slightly blurred when compared to
the end-to-end trained network (Wu et al., 2019b).

5×5 View Synthesis

We provide additional qualitative results for 5×5 LF recovery from a sparse subset of input
views in Fig. 7.16 for the LFs ‘Kitchen’ and ‘Medieval2’ from the synthetic HCI dataset. We
include a comparison of novel reconstructed views with ground truth and the reconstructions
using approaches of Marwah et al. (2013); Jin et al. (2020). The superior quality of our
reconstructions can be inferred from our reconstructions and the error maps in Fig. 7.16.
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a) Ground truth b) EPICNN 43.17 dB c) OursOL41.93 dB a) b) c) b) EPICNN c) OursOL

Figure 7.15: Visual comparison of our synthesized views (depicted by gray locations in the inset) for the task of 3×3 → 7×7
view synthesis for the LF ‘Reflective22’. Columns 1−3 depict a) the ground truth views, the result using b) EPICNN Wu et al.
(2019b) and c) our approach using overlapping patches respectively. Columns 4−6, the patches of columns 1−3. Columns
7−8 depict the error maps corresponding to columns 2−3 with error magnified by a factor of 10. The brightness of the
zoomed in patches is increased for better illustration. Average PSNR in dB of 40 novel views is shown.

5×5 Spatial angular super-resolution

Additional visual comparisons for 5× 5 LF recovery for the task of spatial angular super
resolution are provided in Fig. 7.17 for the LFs ‘Dino’ and ‘Medieval2’ from the synthetic HCI
dataset. Error maps show lower error in our reconstructions when compared to dictionary
based approach of Marwah et al. (2013).

Effect of TV regularization on coded aperture reconstruction:

LF without TV with TV
Ours OursOL Ours OursOL

Dino 34.97 38.46 35.26 38.49
Kitchen 31.07 33.29 31.20 33.32
Medieval2 32.90 35.19 32.92 35.20
Tower 29.02 30.43 29.06 30.42

Table 7.8: Effect of additional TV regularization on coded aper-
ture reconstruction. Shown are PSNR values in dB.

As discussed in Sec. 5 of the paper, we opti-
mize for both the central view and the latent
code, when the central view is unavailable.
We also experimented with an additional to-
tal variation (TV) penalty on the central view
for recovery from coded aperture. Tab. 7.8
shows the PSNR comparison, illustrating the
effect of this additional regularization on
coded aperture reconstruction. We can ob-
serve that using additional TV regularization on the central view results in a very marginal
improvement when we do not use overlapping patches. When overlapping patches are used
we obtain similar PSNR values, with and without this additional regularization. Visual com-
parisons for this task is provided in Fig. 7.18 for the LFs ‘Dino’ and ‘Kitchen’. Visually, the
reconstructions with and without TV regularization appear similar.

7.B.1 Effect of training with different datasets

We trained our generative model using patches from light fields in the datasets provided by
Kalantari et al. (2016), Heber and Pock (2016) and HCI (2018). From a total of 250K patches,
86K patches were from (Kalantari et al., 2016) consisting of real LFs captured through Lytro
Illum, 117K patches were from (Heber and Pock, 2016) (synthetic LF data), and 47K patches
were from (HCI, 2018) (synthetic LF data). To investigate the effect of training data, we trained
separate generative models on LF patches extracted from each of the three datasets. We
compare sample LF reconstructions from sparse input views using the following models:
i) Model1 trained on all the three datasets, ii) Model2 trained on data from set of Kalantari
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View synthesis result for the LF ‘Kitchen’.
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Ground truth LFASRNet OursOL Ours Dictionary LFASRNet OursOL Ours Dictionary
View synthesis result for the LF ‘Medieval 2’.

Figure 7.16: Result of 5×5 view synthesis. Masks M1 and M2 are provided as inset of the ground truth views. The columns
1−5 show the views depicted by gray location in the inset corresponding to the ground truth and synthesized novel views
using LFASRNet Jin et al. (2020), our approach with and without overlapping patches, and the dictionary based approach
of Marwah et al. (2013), respectively in order. Columns 6−9 illustrate the error maps corresponding to the reconstructed
views in columns 2−4, with error magnified by a factor of 10. (Results best viewed zoomed in)

et al. (2016), iii) Model3 trained on data from (Heber and Pock, 2016), and iv) Model4 trained
on data in (HCI, 2018). We note that because of high disparities present in the datasets
from (Heber and Pock, 2016) and (HCI, 2018), they are spatially down-scaled by a factor of 1.4
before LF patch extraction. Comparison for sample 5×5 view reconstruction on the synthetic
LF ‘Kitchen’ and a real LF ‘Cars’ using each of these models is provided in Fig. 7.19. We
can observe that the Model1 trained on all the 3 datasets performs the best on both the LFs,
whereas the Model4 trained with data from (HCI, 2018) performs poorest. This is because
Model1 is trained with the largest and diverse training set among all the four models and
therefore can generalize better, whereas the training set of Model4 has the least number of
training samples, resulting in poorer quality reconstructions. Further, Model2 trained on real
dataset of Kalantari et al. (2016) gives better reconstruction on the real LF ‘Cars’ compared to
the models trained on synthetic datasets. However, on the synthetic LF ‘Kitchen’, which has
higher disparities than typically found in Lytro LFs, Model3 is better than Model2.

7.B.2 Effect of size of generative model

To investigate the variation in performance with respect to the size of the generative model,
we trained 7×7 generative models with different spatial extents 16×16 and 32×32 having
1.78M and 4.25M trainable parameters respectively, in addition to our original model with
spatial extent 25x25 having 3.85 M parameters. We conduct 3×3 → 7×7 view interpolation
experiment on 30 scenes of Kalantari test set using each of these models using our approach
without overlapping patches. We found that reconstructions using both the models were only
slightly worse compared to our original model, with an average PSNR of 38.25 dB using the
model with spatial extent 16×16 and 38.31 dB using the model with spatial extent 32×32,
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Figure 7.17: 5×5 Spatial angular super-resolution results. Masks M1 and M2 are provided as inset of the ground truth views.
Central view in white is available in full resolution. Views in red are down-sampled by a factor of 3. The columns 1−4 show
the views depicted by gray location in the inset corresponding to the ground truth and synthesized novel views using our
approach with and without overlapping patches, and the dictionary based approach of Marwah et al. (2013) respectively,
in order. Columns 5−7 illustrate the error maps corresponding to the reconstructed views in columns 2−4, with error
magnified by a factor of 10. PSNR values in dB of the reconstructed LF are provided.

Ours 34.97 dB OursOL 38.46 dB Ours-TV 35.26 dB OursOL-TV 38.49 dB Ours OursOL Ours-TV OursOL-TV

Ours 31.07 dB OursOL 33.29 dB Ours-TV 31.20 dB OursOL-TV 33.32 dB Ours OursOL Ours-TV OursOL-TV

Figure 7.18: Effect of additional TV regularization on 5×5 coded aperture reconstruction. The columns 1−2 show our
reconstruction without and with overlapping patches when TV regularization is not employed. The columns 3−4 show our
reconstruction without and with overlapping patches when additional TV regularization is used. Columns 5−8 illustrate the
error maps corresponding to the reconstructed views in columns 1−4, with error magnified by a factor of 10.(Results best
viewed zoomed in)

whereas our original model leads to an average PSNR of 38.54 dB. However, these models
also resulted in higher inference times, with the smaller model requiring 28 minutes for
reconstructing full real Lytro LF due to a larger number of patches, and the larger model
requiring 12.6 minutes, due to a slightly larger model size, compared to 11.8 minutes required
by our approach.
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Figure 7.19: Comparison of 5×5 view reconstructions using models trained from each of the datasets (Kalantari et al., 2016;
Heber and Pock, 2016; HCI, 2018). Shown is 5×5 view synthesis result using the mast M1 for the LFs ‘Kitchen’ and ‘Cars’,
shown is novel view at location (5,5). The rows 1−2 show our reconstruction without and with overlapping patches. The
columns 1−4 depict our reconstruction using all the models trained on i) all the 3 datasets, ii) dataset of (Kalantari et al.,
2016), iii) dataset of (Heber and Pock, 2016), iv) dataset of (HCI, 2018). Columns 5−8 illustrate the error maps corresponding
to the reconstructed views in columns 1−4, with error magnified by a factor of 10. PSNR values in dB of the reconstructed
LF are shown. (Results best viewed zoomed in)



Declaration for Chapter 8 - Generalized Text Guided Image Manipulation

This chapter is based on the paper Chandramouli et al. (2022) titled “LDEdit: Towards
generalized text guided image manipulation via latent diffusion models” co-authored by
Paramanand Chandramouli and Kanchana Vaishnavi Gandikota, published at the British
Machine Vision Conference (BMVC) 2022.

Paramanand Chandramouli proposed this project idea of text guided image editing using
latent diffusion models, and using denoising diffusion implicit models (DDIM) sampling
process to achieve manipulations with near cycle consistency with input image. Kanchana
Vaishnavi Gandikota proposed to use DDIM with controlled stochasticity to deal with ma-
nipulations that are difficult to achieve through deterministic sampling. Paramanand Chan-
dramouli proposed and developed mask based editing to avoid undesired changes in images.
Both the authors designed the experiments, and contributed to generating the results pro-
vided in the paper. Kanchana Vaishnavi Gandikota reviewed literature, designed and set up
the user study, and contributed to writing all the sections in the first draft of the paper.

Most of the test images and text prompts used in evaluation are taken from the works
VQGAN+CLIP Crowson et al. (2022) and DiffusionCLIP Kim et al. (2022), and GLIDE Nichol
et al. (2022). All other images are taken from pixabay.com from the selection of free images
available with contents license that allows users to use, modify and adapt content for free in
non-commercial works without having to attribute the authors.

pixabay.com
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G E N E R A L I Z E D T E X T G U I D E D I M A G E M A N I P U L A T I O N

Using natural language descriptions is an intuitive and easy way for humans to communicate
visual concepts. Hence, a tool that can automatically manipulate images using textual de-
scriptions can greatly ease editing. This requires a careful control to modify only the relevant
semantic attributes and styles, while preserving the desired content representations. How-
ever, accomplishing this is highly challenging, especially when manipulating open-domain
images using arbitrary text prompts. As a result, many existing works allow manipulations
that are restricted to specific image classes (Patashnik et al., 2021; Xia et al., 2021; Gal et al.,
2022; Kim et al., 2022) or a specific manipulation task (Avrahami et al., 2022; Nichol et al.,
2022; Kwon and Ye, 2022). Further, some of these methods require fine-tuned models (Kim
et al., 2022; Gal et al., 2022) for specific text prompts, further limiting their utility for flexible
open domain image manipulation. Only a few prior works (Liu et al., 2020; Crowson et al.,
2022) handle open domain image manipulation from text prompts. While Liu et al. (2020)
focuses on semantically simple transformations, Crowson et al. (2022) allows a more general
image generation as well as manipulation. Yet, Crowson et al. (2022) employs an expensive
and time-consuming optimization to achieve these manipulations.

In this chapter, we attempt to develop a fast and flexible approach to open domain im-
age manipulation using arbitrary text prompts. Our goal is to accomplish a wide range of
manipulations from text prompts ranging from a simple change in colour of an object, to
modification of multiple semantic attributes of an image, and artistic styles, all with a single
model. Our work is inspired by the recent developments in realistic image generation with
language guidance (Ramesh et al., 2021; Ding et al., 2021; Rombach et al., 2022; Ramesh
et al., 2022). In particular, we leverage the recently proposed Latent Diffusion Model (LDM)
(Rombach et al., 2022) which performs diffusion in a smaller dimensional latent space of
trained convolutional auto-encoders, to provide higher inference speed and computational
efficiency. Further, we utilize the idea of deterministic diffusion proposed in Denoising Diffu-
sion Implicit Models (DDIM) (Song et al., 2021a) which can enable faster inference and high
fidelity sample reconstruction. Our key idea is the use of a shared latent representation as a
link between the source image and the desired target. To this end, we employ a deterministic
DDIM sampling in the forward diffusion in the latent space of LDM. We use the same latent
code along with the target text prompt to condition the reverse diffusion process, effectively
achieving the desired transformation in the input image, while automatically maintaining
consistency with the original content representation. Using this technique, we can accom-
plish a variety of image manipulation tasks using the pretrained LDM, in a zero-shot fashion
without further optimization or fine-tuning. Further, by introducing controlled stochasticity,
we can trade-off diversity for fidelity with the original image. This is especially useful when
the desired target is very different from the original input. We refer to our approach as LDEdit.

Fig 8.1 illustrates the diverse image manipulation tasks that can be accomplished by our
LDEdit using only text prompts. We can modify objects in the image while largely preserving
the original pose or structure, see Fig. 8.1 b). LDEdit can accomplish simultaneous global
style manipulation as well as fine-grained (multiple) attribute changes such as changes in
expression, wrinkles, and makeup while preserving identity in human faces, see Fig. 8.1 a).
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Input photo red lipcolor +rose on hat cartoon +rose on hat

Input portrait wrinkled skin +smiling pixar+glasses van Gogh

a) Editing local semantic attributes and global style
Input stroke old man woman pixar woman van Gogh

c) Stroke to image translation from text

Input red brick wooden Asian temple +snow

Input an eagle a kingfisher crow+tree crow+sketch

b) Editing global semantic attributes
Input Photograph van Gogh Picasso Munch

d) Artistic style transfer from text prompts

Figure 8.1: LDEdit can edit local and global semantic attributes and also perform artistic style transfer on real-world images
using a single model.

Further, without requiring an input mask, simple local edits such as adding a flower on a
woman’s hat, or eyeglasses are achieved through text alone. Our approach can operate on
diverse types of input images such as natural photographs, paintings, sketches, and strokes.
By providing an intuitive target text prompt " a photograph of a woman" or a "pixar animation
of a woman", our method can translate from stroke to a semantically consistent image in
the corresponding domain, see Fig. 8.1 c). We can observe realistic details are hallucinated
while transferring to the domain of natural photos, for example, wrinkles in the picture of an
old man, in Fig. 8.1 c), or details in the clock Fig. 8.1 d). Further, artistic style transfer is also
achieved via simple text prompts, such as "a Picasso style painting". It can be seen that our
approach can accomplish manipulations that are semantically and stylistically consistent
with the given target text prompt, while remaining faithful to original content.

By offering significant advantages in flexibility, faster run-times, and the capability to
generate diverse samples in parallel, LDEdit can facilitate efficient user-guided editing. Our
experimental results demonstrate that LDEdit can accomplish diverse manipulation tasks, in
addition to achieving performance close to recent state-of-the-art baselines.

8.1 R E L AT E D W O R K

I M A G E G E N E R AT I V E M O D E L S Ever since the seminal works of VAEs (Kingma and Welling,
2013) and GANs (Goodfellow et al., 2014), image generative models have achieved significant
improvements, and modern generative models can generate highly photo-realistic images
(Brock et al., 2019; Razavi et al., 2019; Karras et al., 2020, 2021; Esser et al., 2021b; Dhariwal
and Nichol, 2021; Song et al., 2021a). While GANs (Goodfellow et al., 2014) achieve high
quality generation, they are difficult to train and are prone to mode collapse. Likelihood-
based models, (Kingma and Welling, 2013; Razavi et al., 2019) on the other hand, have a
stable training and capture more diversity. Score based (Song and Ermon, 2019; Song et al.,
2021b) or denoising diffusion (Ho et al., 2020; Sohl-Dickstein et al., 2015) models are a new
class of likelihood-based models built from a hierarchy of denoising auto-encoders (Vincent
et al., 2008). These models have recently demonstrated generative capabilities surpassing
GANs (Dhariwal and Nichol, 2021; Nichol and Dhariwal, 2021). Yet, high quality diffusion
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models are computationally expensive to train, and have slower inference times than GANs,
due to the expensive Markovian sampling and iterative network evaluations required for
diffusion. These problems can be alleviated by accelerated stochastic sampling techniques or
by performing diffusion in a smaller latent space (Rombach et al., 2022; Vahdat et al., 2021).
Employing deterministic diffusion process (Song et al., 2021a) can also speed up inference, in
addition to enabling high fidelity sample reconstruction, which can be exploited for image
recovery and manipulation.

I M A G E M A N I P U L AT I O N As images can be manipulated in various ways, (for example,
artistic style, image translation, semantic manipulation, local edits), a variety of methods
exist. Approaches for image translation include CNN based optimization using style and
content images (Gatys et al., 2016), conditional GANs trained on pair of domains (Isola et al.,
2017; Zhu et al., 2017; Almahairi et al., 2018; Zhao et al., 2020a), GANs for multi-domain
translation (Choi et al., 2018, 2020) and more recently, conditional diffusion models (Sasaki
et al., 2021; Saharia et al., 2022a). An alternate approach (Zhu et al., 2016; Brock et al., 2017)
is to manipulate images in the latent space of pretrained GANs. StyleGANs (Karras et al.,
2020, 2021) are a popular choice for such latent space editing due to their disentanglement
properties in the latent space (Collins et al., 2020; Shen et al., 2020; Zhu et al., 2020; Abdal
et al., 2020; Gu et al., 2020; Wu et al., 2021). This is achieved through optimization or by
using encoders for GAN inversion (Tov et al., 2021; Richardson et al., 2021; Alaluf et al., 2021).
However, GAN inversion may not yield faithful reconstruction (Bau et al., 2019b). Improving
StyleGAN inversion for editing is an active area of research (Tov et al., 2021; Alaluf et al.,
2021; Dinh et al., 2022; Wang et al., 2022b; Alaluf et al., 2022). In contrast to GANs, diffusion
models can readily be leveraged for inpainting (Lugmayr et al., 2022a) and stroke guided
image editing (Meng et al., 2022) and even unpaired image translation (Su et al., 2023).

T E X T G U I D E D G E N E R AT I O N A N D M A N I P U L AT I O N : Starting from (Mansimov et al.,
2016) many works proposed different methods to generate images from text prompts. Earlier
works employed RNNs (Mansimov et al., 2016) and GANs (Reed et al., 2016; Zhang et al.,
2017a; Xu et al., 2018; Zhang et al., 2017a, 2018a; Zhu et al., 2019; Li et al., 2019; Zhang et al.,
2021a; Zhu et al., 2022) for text guided image synthesis, and manipulation (Dong et al., 2017;
Li et al., 2020a; Nam et al., 2018). Nevertheless, these works are often restricted to class-
specific image generation, and are trained on smaller datasets. In the recent past, there
has been a rapid surge in vision-language models, with the developments in cross-modal
contrastive learning (Radford et al., 2021; Jia et al., 2021) and powerful text-to-image gen-
erative models (Ramesh et al., 2021; Nichol et al., 2022; Ramesh et al., 2022; Saharia et al.,
2022c). These models are trained on massive datasets to learn joint image-text distributions.
Some of these models (Ramesh et al., 2021; Ding et al., 2021; Gafni et al., 2022) use autore-
gressive(AR) transformers for generation, while some others (Nichol et al., 2022; Ramesh
et al., 2022; Saharia et al., 2022c) employ diffusion based models for the generation task.
However, training these models for high quality generation requires massive computational
resources. To address this, some recent works (Gu et al., 2022c; Tang et al., 2022; Rombach
et al., 2022; Bond-Taylor et al., 2022; Esser et al., 2021a; Hu et al., 2022) instead perform the
diffusion in a lower dimensional latent space resulting in faster training and inference. In our
work, we exploit Latent Diffusion Models (LDM) (Rombach et al., 2022) as they offer good
reconstruction quality, and latency, and perform diffusion in a continuous latent space.
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Method Image input Text input Semantic Artistic Style local edits Comments
(Global)

DiffusionCLIPKim et al. (2022) Class-Specific Predefined ✓ ✓ ✗ Separately fine-tuned models for each task
StyleCLIPPatashnik et al. (2021) Class-specific Arbitrary ✓ ✗ ✗ Includes versions with and without optimization

GLIDENichol et al. (2022) Open domain Arbitrary ✗ ✗ ✓ Trained model for inpainting with mask input
CLIPStylerKwon and Ye (2022) Open domain Arbitrary ✗ ✓ ✗ Test-time optimization w/o pretrained generator

VQGAN+CLIPCrowson et al. (2022) Open domain Arbitrary ✓ ✓ Limited Optimization with pretrained generator
LDEdit(Ours) Open-domain Arbitrary ✓ ✓ ✓ A pretrained LDM is used

Table 8.1: Comparison of recent state of the methods for text guided image manipulation.

Contrastive Language-Image Pretraining (CLIP) model (Radford et al., 2021) is a cross-
modal encoder that provides a similarity score between an image and a caption. Several
recent approaches to text guided image synthesis (Galatolo et al., 2021; Crowson et al., 2022;
Liu et al., 2021, 2023a; Couairon et al., 2022; Paiss et al., 2022) steer pretrained generative
models (Brock et al., 2019; Esser et al., 2021b; Dhariwal and Nichol, 2021) towards a user
provided text prompts using the similarity score provided by the CLIP model. This approach of
CLIP guided latent space navigation is directly applicable for image manipulation (Crowson
et al., 2022), mask guided local editing (Bau et al., 2021; Avrahami et al., 2022), semantic
manipulation of class-specific images (Patashnik et al., 2021; Yu et al., 2022; Abdal et al.,
2022) via StyleGAN inversion (Alaluf et al., 2021). CLIP has also been applied to fine-tune the
output domain and style (Gal et al., 2022; Kim et al., 2022) of class-specific image generators.
While these approaches are promising, optimization in latent space for each text-prompt
is expensive and time-consuming. On the other hand, the fine-tuned models are fast, but
are restricted to the specific fine-tuned tasks. Further, class-specific generators are not
suited for the manipulation of open domain images. Instead of using pretrained generative
models, some recent works employ test-time optimization for each image and target text,
using CLIP, for tasks such as local object appearance (Bar-Tal et al., 2022), global texture-style
manipulation (Kwon and Ye, 2022), rendering drawings (Frans et al., 2021; Chen et al., 2021),
however such optimization is task specific, and is expensive requiring many augmentations.
Tab. 8.1 provides an overview comparing the pros and cons of recent methods for text guided
manipulation. As we can see, our approach and VQGAN+CLIP (Crowson et al., 2022) can
accomplish flexible manipulation tasks. Additionally, our approach allows fast manipulations.

8.2 P R E L I M I N A R I E S

8.2.1 Denoising Diffusion Implicit Models

Recall from Chapter 4 that denoising diffusion probabilistic models (DDPM) have a Marko-
vian forward process where random Gaussian noise is gradually added to a sample, following a
fixed noise variance schedule, and a learned reverse process that reverses the dynamics of this
forward process via iterative denoising. Denoising Diffusion Implicit Models(DDIM) (Song
et al., 2021a) construct a deterministic diffusion process which can utilize a trained DDPM
model, to allow a much faster sampling in the reverse process. We recall DDPM forward
process eq. (4.5):

xt =
√

ᾱt x0 +
√

(1− ᾱt )ϵ, ϵ ∼N (0,I), (8.1)
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where ᾱt = ∏t
i=0 1−βi , with {βt }T

t=0 being the noise variance schedule. The trained noise
approximator ϵθ can predict ϵ at t from xt , without the knowledge of x0. Rewriting eq. (8.1),
Song et al. (2021a) obtain an estimate of clean sample x0|t from xt as follows:

x0|t =
(

xt −
p

1− ᾱt ϵθ(xt , t )p
ᾱt

)
. (8.2)

Song et al. (2021a) utilize this to construct fully deterministic forward and reverse sampling
processes, enabling fast transformation into latent space xT , and fast inversion to x0 from the
latent space. The deterministic DDIM forward process can be expressed as:

xt+1 =
√

ᾱt+1x0|t +
√

1− ᾱt+1ϵθ(xt , t ), (8.3)

and the deterministic reverse DDIM process is expressed as:

xt−1 =
√

ᾱt−1x0|t +
√

1− ᾱt−1ϵθ(xt , t ), (8.4)

where, ᾱ0 := 1 by definition. Further, Song et al. (2021a) introduce stochasticity into the
sampling process, resulting in a reverse DDIM process that can be expressed as

xt−1 =
√

ᾱt−1x0|t +
√

1− ᾱt−1 −σ2
t ϵθ(xt , t )+σ2

t ξ, (8.5)

where ξ∼N (0,I). Varying σ leads to different generative processes with the same model ϵθ.
When σt is set to 0, the DDIM sampling becomes fully deterministic, enabling fast inversion
of the noised latent variable to the original images (x0 in our case). For different subsequences
τ in [1, . . . ,T ] Song et al. (2021a) consider σ of the form:

στi (η) = η
√

(1− ᾱτi−1 )/(1− ᾱτi )
√

1− ᾱτi /ᾱτi−1 , (8.6)

where the hyperparameter η ∈R≥0 controls the degree of stochasticity, with η= 1 leading to
the original DDPM generative process and η= 0 leading to DDIM.

8.2.2 Latent Diffusion Models

The main idea of latent diffusion models (LDM) (Rombach et al., 2022) is to perform diffusion
in the latent space of an autoencoder to improve speed and computational efficiency. Given
an image xsrc ∈ RH×W ×C , the encoder E maps xsrc into a down-sampled latent code z0 =
E (xsrc), and the decoder D is trained to recover the image from this latent. This encoding
results in a lossy compression, i.e. ∥D(E (xsrc)) − xsrc∥ is non-zero, which is a trade-off
for computational efficiency. Following encoding into latent space, diffusion steps can be
performed via DDPM or DDIM, but in zt for t ∈ [1,T ] instead of xt . The diffusion process
can additionally be conditioned on user inputs such as text prompts ϵθ(zt , t ,τθ̃(y)). Here, the
text-prompts y are tokenized using transformers τθ̃ (Vaswani et al., 2017) for conditioning
the diffusion process.
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8.3 T E X T D R I V E N M A N I P U L AT I O N W I T H L D E D I T

In this section, we show how LDMs trained for text-to-image generation can be adapted for
image manipulation. Our main idea is to use a common shared latent representation between
the source image and the desired target, which is made possible by a deterministic diffusion
process. The source image xsrc is mapped to a latent code z0 by the encoder E , and forward
diffusion is performed until the time step tstop < T using DDIM sampling, conditioned on
the source text prompt ysr c as:

zt+1 =
√

ᾱt+1z0|t ,ysr c +
√

1− ᾱt+1ϵθ(zt , t ,τθ̃(ysr c ))),

where, z0|t ,ysr c =
(

zt −
p

1− ᾱt ϵθ(zt , t ,τθ̃(ysr c ))p
ᾱt

)
.

(8.7)

The reverse diffusion conditioned on the target text prompt yt ar starts from the same noised
latent code ztstop to arrive at ẑ0:

zt−1 =
√

ᾱt−1z0|t ,yt ar +
√

1− ᾱt−1ϵθ(yt , t ,τθ̃(yt ar )),

where, z0|t ,yt ar =
(

zt −
p

1− ᾱt ϵθ(zt , t ,τθ̃(yt ar ))p
ᾱt

)
.

(8.8)

a) Overview of image manipulation using LDM.

tstop = 540 tstop = 600 tstop = 640

b) Effect of varying tstop (η= 0)

η
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η
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6

c) Effect of varying η, with tstop = 540

Figure 8.2: a) Overview of LDEdit, illustrating forward and reverse diffusion in latent space of autoencoder. b) and c) illustrate
the effects of varying time steps tstop and stochasticity hyperparameter η respectively

Due to deterministic sampling, a near cycle-consistency is automatically maintained between
source and target images (Su et al., 2023). Fig. 8.2 a) provides an overview of our approach,
with an example where a source image with ysr c ’a yellow bus’, is transformed according to
the yt ar ’a red bus’ in a straightforward way. The visualized results obtained by decoding
latents sampled in [1, tstop ] during the forward and reverse diffusion process demonstrate the
gradual transformation in the reverse process. Additionally, we can also introduce controlled
stochasticity by varying η eq. (8.6), which can produce diverse outputs as seen in Fig. 8.2
c), with magnitude of η controlling consistency with the original image. Further, Fig. 8.2 b)
shows that changing the number of DDIM steps can also lead to some variance in our results.
In the following section, we demonstrate that this technique can accomplish a variety of
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Input: Yellow bus −> Target: Tram

Input: Yellow bus −> Target: Truck

Input: Yellow bus −> Target: Red steam engine

Input VQGAN+CLIP Ours η= 0 ←−−−−−−−−−− Ours η= 0.3 −−−−−−−−−−→ ←−−−−−−−−−− Ours η= 0.6 −−−−−−−−−−→

Figure 8.3: Comparison with VQGAN+CLIP Crowson et al. (2022): Manipulation results of a yellow bus according to target
texts ‘a tram’, ‘a truck’, and ‘a red steam engine’.

image manipulation tasks using the pretrained LDM, in a zero-shot fashion without further
optimization or fine-tuning.

8.4 E X P E R I M E N T S

We perform all our experiments with different image manipulation tasks using the text-to-
image LDM (Rombach et al., 2022) with a downsampling factor of 8, pretrained using the
openly available LAION dataset (Schuhmann et al., 2021) containing open-domain image-
text pairs. We do not fine-tune this model for any task. We set tstop ∈ [300,640] out of the total
1000 steps and use fewer (20-80) steps between [1, tstop ] in the deterministic forward and
reverse diffusion. We perform experiments on both class-specific and open-domain images
and compare with VQGAN+CLIP (Crowson et al., 2022) which is versatile to handle general
manipulation tasks. In addition, we also compare with class-specific approaches (Patashnik
et al., 2021; Xia et al., 2021) and fine-tuned models (Gal et al., 2022; Kim et al., 2022) on the
domain-specific tasks. Comparisons with the baseline methods and run-time comparisons
are performed with images of dimension 256×256.

We first demonstrate our method on the task of manipulating an image of a yellow bus
according to the target prompts: ‘a tram’, ‘a truck’ and ‘a red steam engine’. Fig. 8.3 illustrates
the results of this manipulation. The results indicate that LDEdit is able to manipulate the
input according to the target texts even with a simple DDIM forward and reverse process
with η= 0. Further, by increasing η, our method is able to generate an assortment of di-
verse samples that are consistent with the pose of the yellow bus in the input image. The
diversity increases as the parameter η is increased. We also illustrate the results obtained
by VQGAN+CLIP (Crowson et al., 2022) on this task using two sets of hyper-parameters for
comparison. While Crowson et al. (2022) can successfully transform the input image to that of
‘a tram’, we were unable to obtain satisfactory results for the other two tasks, despite manual
hyper-parameter tuning.

We further test our approach on manipulating images from diverse classes using test
images from (Kim et al., 2022). We compare our performance with the generic approach of
VQGAN+CLIP (Crowson et al., 2022) and DiffusionCLIP (Kim et al., 2022), a state of the art
method using class-specific models fine-tuned for the specific target texts. Fig. 8.4 illustrates
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Face Tanned Zuckerberg Pixar Tanned Zuckerberg Pixar Tanned Zuckerberg Pixar

Dog Bear Fox NicolasCage Bear Fox NicolasCage Bear Fox NicolasCage

Tennisball Baseball Orange Tomato Baseball Orange Tomato Baseball Orange Tomato

Stroke van Gogh Pixar Neanderthal van Gogh Pixar Neanderthal van Gogh Pixar Neanderthal

Input ←−−−−−−−−−− LDEdit(Ours) −−−−−−−−−−−−→ ←−− DiffusionCLIP Kim et al. (2022) −−→←− VQGAN+CLIP Crowson et al. (2022) −→

Figure 8.4: Visual comparison of image manipulation task with DiffusionCLIP Kim et al. (2022) and VQGAN+CLIP Crowson
et al. (2022). Our LDEdit can successfully transform input image into target classes while retaining the original pose. Test
images and target prompts from Kim et al. (2022).

the results of this experiment. As DiffusionCLIP uses specific fine-tuned models on these
tasks, it can effortlessly accomplish the desired manipulations. Yet, the manipulation results
provided by DiffusionCLIP, occasionally do not preserve the content in the source image,
for example, the color of the dog in the row 2, moustache and color of clothing in the
stroke painting in the row 4 are not preserved. On the other hand, VQGAN+CLIP preserves
source content better, yet, struggles to achieve desired changes when the target is highly
different from the input. Despite not being fine-tuned for the specific tasks, our LDEdit can
accomplish the manipulations quite well. The task of manipulating a stroke image according
to the target prompts is particularly challenging, as the input image lacks details. Handling
such manipulation requires introducing stochasticity in the forward process, without which
it is not possible to produce the desired edits.

We further perform multiple manipulation tasks on face images, including semantic
(multi)-attribute manipulation, style transfer, domain manipulation and compare with the
recent state-of-the-art methods which are trained for face manipulation (Kim et al., 2022;
Patashnik et al., 2021; Gal et al., 2022; Xia et al., 2021). The StyleGAN based methods (Patashnik
et al., 2021; Gal et al., 2022; Xia et al., 2021) employ the same encoders for GAN inversion as per
the original setting in their work. Further, we include a comparison with CLIP-Styler (Kwon
and Ye, 2022) a CLIP guided texture manipulation approach, and VQGAN+CLIP (Crowson
et al., 2022) which can perform flexible image manipulation. Fig. 8.5 illustrates our results.
While StyleGAN inversion based approaches (Patashnik et al., 2021; Gal et al., 2022; Xia et al.,
2021) can manipulate semantic attributes see Fig.8.5 c), they struggle to reconstruct face
images in atypical poses, see Fig.8.5 a). Unexpected details present in the original image such
as the hand on the face are completely removed or distorted in the reconstructions. Since
such atypical faces are hardly encountered during training, StyleGAN inversion results in a
high representation error. Similarly, it is hard to transfer to a different style for example, a wa-
tercolour painting, or domain, for example, zombie using StyleGAN latent space search alone
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a) Reconstruction and style transfer b) Domain transfer c) Multi-attribute semantic changes

Figure 8.5: Comparison with recent baselines: DiffusionCLIP Kim et al. (2022) StyleCLIP Patashnik et al. (2021), StyleGAN-
NADA Gal et al. (2022), TEDIGAN Xia et al. (2021), CLIPStyler Kwon and Ye (2022), VQGAN+CLIP Crowson et al. (2022). Test
images and target prompts from Kim et al. (2022)

Fig.8.5 a) and b). StyleGAN-NADA instead enable these manipulations using domain-specific
fine-tuning. On the other hand, ClipStyler (Kwon and Ye, 2022) can only accomplish global
texture manipulations, and the result may drift away from the original colour palette. Among
the compared methods, LDEdit, DiffusionCLIP (Kim et al., 2022) and VQGAN+CLIP(Crowson
et al., 2022) accomplish the different manipulation tasks in addition to achieving good recon-
structions, preserving identity better than StyleGAN inversion based methods. Interestingly,
though VQGAN+CLIP and LDEdit are trained on generic images, these methods are still able
to perform on par with state-of-the-art fine-tuned DiffusionCLIP (Kim et al., 2022) on these
tasks.

Figure 8.6: Simultaneous editing of multiple attributes and objects of an image. Shown from left to right are (i) input (ii)
girl+watermelon (iii) woman+corgi (iv) paint+cat+old woman (v) paint + boy+ big egg (vi) paint + man + rabbit (vii) paint +
man + dog (viii) man+cat
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Input: girl+ball girl+dog teen-girl+dog woman+dog old woman+dog

Input: girl+ball boy+basketball teen-boy+basketball man+basketball old man+basketball

Input: 2 girls+hats Picasso style 2 women+hats 2 old women+hats Photo+2 babies+hats

Input: a horse a zebra a donkey a bear a wolf

Figure 8.7: More results of image manipulation using LDEdit

It is also possible to achieve further challenging manipulations involving simultaneous
changes in multiple attributes, local manipulations, and artistic style changes as seen in Fig.
8.6. While the LDM model is trained on generation of images of dimension 256×256, due
to fully convolutional nature of the autoencoder, our method can be applied to images of
higher resolution using the same model. Fig. 8.7 shows further example results of image
manipulation using LDEdit, with image resolution 512×512. It is seen that our method can
achieve varied transformations in a straightforward way. The first two rows show simultane-
ous manipulation of the girl and the ball. The third row shows style transfer to a painting or
a photo and semantic manipulation of the age of two girls. Interestingly, LDEdit can effect
such transformations with little or no stochasticity, η= 0 or 0.1, such that the background
remains largely unaffected. The final row shows manipulating a horse to other species, for
example, a zebra, a donkey, a bear, and a wolf. These transformations required a higher η of
0.3 for zebra and donkey, and η of 0.8 for bear and wolf. However, higher values of η result in
more changes in the background.
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Effect of Stochasticity

a) Deterministic diffusion b) DDIM with η

c) Different samples η= 0.7 d) Different samples η= 0.9

Figure 8.8: Effect of η in diffusion process. Purely deterministic DDIM process cannot achieve desired target when the
original input lacks details.

horse→zebra η= 0.2 η= 0.3 η= 0.6

horse→wolf η= 0.3 η= 0.5 η= 0.8

dog→fox η= 0.1 η= 0.4 η= 0.8

Figure 8.9: Sample results for different η using LDEdit. As the value of η increases, the diversity of samples increases.

In our approach, we proposed to perform a deterministic DDIM sampling, to ensure that
consistency is maintained with the original image. However, when the input image lacks
details, such as a stroke image, doing a deterministic forward produces a latent code which
lacks any details, see Fig. 8.8 a). On the other hand, the introduction of stochasticity through
η can aid in hallucinating details not present in the original image, Fig. 8.8 b). With η = 1,
DDIM becomes equivalent to DDPM sampling, which results in more diverse samples. Note
that our method may sometimes result in images with text like artifacts, as seen in Fig. 8.8 c).
More examples of image manipulation of LDEdit by varying η are shown in Fig. 8.9. As the
value of η increases, the diversity of samples improves. However, there are more perceptible
changes in the background, see rows 1 and 2 of Fig. 8.9.

Failure Cases

In some cases, our method may fail to produce desired manipulations as seen in Fig. 8.10.
With an input text prompt of ‘a deer with antlers’, we obtain manipulated images where the
antlers are misplaced. In other cases, we obtain features of target objects additionally in



8.4 E X P E R I M E N T S 117

Input: a deer Target: a deer with antlers Input: a dog Target: a lion

Input:girl+dog Target: girl+baby Input: girl+dog Target: girl+cat

Figure 8.10: Failure cases of image manipulation using LDEdit

undesired locations, such as a baby face on the girl’s hand, or a cat face in the hair and in the
background picture frame. These undesired effects can be avoided by using a mask, which
can aid in the localization of edits.

Editing with Masks

Our method can be modified to include a user-specified mask which specifies the regions
where significant changes are needed. Similar mask-guided editing has also been shown in
(Avrahami et al., 2022; Nichol et al., 2022). The user-specified mask is also down-sampled
such that it has the same spatial extent as the latent code. Let ztstop be the latent code
after forward diffusion, the desired localized edit can be obtained by performing the reverse
diffusion process on multiple copies of ztstop , by changing the target text for the respective
masked regions. For seamless blending of the masked and unmasked regions, the latent
codes corresponding to the different copies are combined at each diffusion step. This even
allows us to specify different levels of stochasticity for the different masked regions. Fig. 8.11
shows the result of such masked editing. We can see that our approach successfully results in
a seamless local editing, without requiring expensive optimization.

Input: girl+dog Mask girl+cat girl+flowers girl+monkey girl+baby

Figure 8.11: Masked image manipulation using LDEdit

User Study

We conduct user studies to compare user preference of image manipulation results of our
method with VQGAN+CLIP (Crowson et al., 2022) and DiffusionCLIP (Kim et al., 2022).
Users participated in two surveys, where they were provided with a source image, target
text description, and the results obtained with LDEdit and base-line method (VQGAN+CLIP



8.5 D I S C U S S I O N A N D C O N C L U S I O N S 118

or DiffusionCLIP) in a random order, and voted their preferred image manipulation using
a survey platform. We obtained a total of 1120 votes from 32 participants for comparing
LDEdit with VQGAN+CLIP and 950 votes from 38 participants for comparing LDEdit with
DiffusionCLIP. For comparison with both the baselines, we included a combination of face
images and general images (on manipulations demonstrated in DiffusionCLIP (Kim et al.,
2022) paper). On faces, the manipulated attributes include makeup, tanned, curly hair,
changing gender, domain change to zombie, and Neanderthal. We also include an example
of translating a stroke image to pixar, neanderthal, and van Gogh painting styles. In general
image manipulation, we include manipulating an input building, bus, dog, and a tennis
ball. Additionally, for comparison with VQGAN+CLIP, we include examples of manipulating
an image of a bird and multiple local object manipulations. In human evaluation, the
results of LDEdit were preferred 83.87% of the time in the survey comparing LDEdit with
VQGAN+CLIP, whereas user preference for LDEdit is 49.15% in the survey comparing LDEdit
with DiffusionCLIP.

Run-time

Tab. 8.2 provides a comparison of GPU memory requirements and run-times of different
text based image manipulation methods. The experiments were conducted on a computer
with AMD Ryzen 9 3950X 16-Core Processor and NVIDIA GeForce RTX 3090 with 24GB GPU
memory. The run-times are highest for VQGAN+CLIP (Crowson et al., 2022) (in the order
of minutes), which requires an expensive optimization. Further, VQGAN+CLIP requires a
different number of iterations to achieve the desired edit depending on the target prompt,
leading to variable run-times. The run-times of both DiffusionCLIP (Kim et al., 2022) and
our proposed LDEdit are significantly lower, with LDEdit having smaller run-times due to
diffusion in smaller dimensional latent space. It is to be noted that DiffusionCLIP (Kim
et al., 2022) needs to be fine-tuned for specific text prompts using a set of images (∼ 30-50
images for each prompt), which takes 2−6 minutes. Our method also scales well in terms of
performing manipulations on multiple images in parallel, in contrast to VQGAN+CLIP, where
manipulation on only 2 images could be performed in parallel.

Method #images GPU Memory run-time (n f or ,nr ev )
LDEdit 1 8831MB 2.02s± 5.58 ms (25,25)
LDEdit 24 16947MB 22.6±169ms (25,25)
LDEdit 1 8831MB 6.05s±35.6 ms (75,75)
LDEdit 24 16947MB 67.2s±704ms (75,75)

VQGAN+CLIP Crowson et al. (2022) 1 10413 MB 4-6 mins –
VQGAN+CLIP Crowson et al. (2022) 2 18933 MB 5-8 minutes –

DiffusionCLIP Kim et al. (2022) 1 5385MB 11.54s±66.3ms (200,40)
DiffusionCLIP Kim et al. (2022) 1 5385MB 4.01s±10.5ms (40,40)
DiffusionCLIP Kim et al. (2022) 24 15257MB 156.94s±470ms (200,40)

Table 8.2: Comparing inference times and GPU memory usage of LDEdit with VQGAN+CLIP (Crowson et al., 2022) and
DiffusionCLIP (Kim et al., 2022). Images are of dimension 256×256. n f or and nr ev refer to the number of forward and
reverse diffusion steps. Mean and standard deviation of run-times over 10 runs are reported for LDEdit and DiffusionCLIP.

8.5 D I S C U S S I O N A N D C O N C L U S I O N S

We proposed LDEdit, a fast and flexible approach to open domain image manipulation using
arbitrary text prompts. Our approach utilizes a recent text-to-image latent diffusion model to
achieve zero-shot manipulation. Experiments demonstrate that the proposed method can
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accomplish fast and diverse manipulation making our approach a versatile tool to facilitate
efficient user-guided editing. As with other image generation and manipulation methods,
there is a potential for LDEdit to be misused by bad actors for generating deep-fakes and
doctored pictures for propaganda. Further, since LDEdit leverages a pre-trained text to image
latent diffusion model, our approach inherits the inherent biases of its training dataset,
including, but not limited to gender, age, and ethnicity of people and cultural biases.

Our work is among the first methods to employ latent diffusion models for general text
guided image manipulation. Concurrent works such as (Avrahami et al., 2023) have also
proposed to use latent diffusion models for specific editing tasks such as mask guided editing.
Following the release of latent diffusion models trained on much larger vision-language
datasets, popularly referred to as Stable Diffusion, a flurry of text guided image manipulation
methods have been proposed. Some of these methods such as (Couairon et al., 2023) obviate
the requirement of user-specified mask by automatically estimating the region of edits.
A few more recent works (Mokady et al., 2023; Wallace et al., 2023) also perform image
manipulation without unwanted changes by improving upon DDIM to affect more precise
inversion. Research in text guided generation and vision language models is progressing at
a very rapid pace, and we expect more powerful generation and manipulation tools to be
available in future.



Declaration for Chapter 9 - Text Guided Explorable Image Restoration

This chapter is based on the rejected submission to ICCV 2023 titled “Text Guided Explorable
Image Restoration” co-authored by Kanchana Vaishnavi Gandikota and Paramanand Chan-
dramouli, and subsequent improvements to this submission. A shorter version of this work
Gandikota and Chandramouli (2023) was accepted and presented at ICML 2023 Workshop
on Artificial Intelligence & Human-Computer Interaction (non-archival). Paramanand Chan-
dramouli and Kanchana Vaishnavi Gandikota are joint first authors of this work.

Kanchana Vaishnavi Gandikota and Paramanand Chandramouli jointly proposed this
project idea of text guided image restoration using pretrained text-to-image diffusion mod-
els. Paramanand Chandramouli conducted initial experiments for super-resolution from
average down-sampling through null-space consistency in a single stage of unCLIP model.
Kanchana Vaishnavi Gandikota proposed to impose consistency in both the stages, which
allowed restoration tasks in full-resolution, and implemented super-resolution for bicubic
downsampling. Paramanand Chandramouli proposed embeddings averaging trick to deal
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the experiments, and contributed equally to generating the results provided in the paper.
Kanchana Vaishnavi Gandikota reviewed literature, designed and set up the user study, and
contributed to writing all the sections in the first draft of the paper.
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T E X T G U I D E D E X P L O R A B L E I M A G E R E S T O R A T I O N

In this chapter, we revisit the problem of image recovery and attempt to provide a solution
to deal with the ill-posedness of inverse image reconstruction. Consider the example of
recovering a high resolution image from a very low resolution input. This is a highly ill-posed
linear inverse problem, and there can be many high resolution images which map to the same
low resolution input exactly. As discussed in Chapter 3, solutions to such inverse problems
could be obtained both by classical approaches, end-to-end trained deep networks, and a
variety of approaches combining deep learning with classical methods. While end-to-end
trained deep networks (Fuoli et al., 2021; Chen et al., 2023b; Fang et al., 2022) achieve state-
of-the-art performance, most of the prior works still recover only a single arbitrary image
out of many possible solutions. On the other hand, stochastic estimators can recover a
range of possible solutions that correspond to the degraded input. Such approaches were
explored recently in the context of super-resolution (Menon et al., 2020; Bahat and Michaeli,
2020; Lugmayr et al., 2020; Li et al., 2022a), image deblurring (Whang et al., 2022), and jpeg
decompression (Bahat and Michaeli, 2021). A few works also propose to explore the solution
space, for instance, using graphical user inputs (Bahat and Michaeli, 2020, 2021) or semantic
maps (Buhler et al., 2020) for exploring solutions to image restoration, or using a trained
classifier for exploring solutions of CT recovery (Dröge et al., 2022). While this is interesting,
natural language offers a simpler and more intuitive way to communicate semantic concepts
such as age, emotion, color, and other attributes. Therefore, a method which guides image
restoration through text can greatly ease the exploration of semantically meaningful solutions.

In this chapter, we propose a zero-shot approach to image restoration using simple and
intuitive text prompts. Our goal is to generate reconstructions semantically similar to input
text, while preserving data consistency with the degraded input, without explicitly training
for specific degradations. Towards this goal, we utilize a recently proposed diffusion based
text-to-image (T2I) generative model DALL-E2 (Ramesh et al., 2022) trained for text guided
image generation, and adapt it for restoration by modifying the reverse diffusion process. We
incorporate the range-null space decomposition (Schwab et al., 2018; Bahat and Michaeli,
2020; Chen and Davies, 2020; Wang et al., 2023b) into the reverse diffusion to analytically
enforce data consistency of the solutions, while exploring diverse contents of null-space using
text guidance. Due to faster diffusion in the down-sampled space of DALL-E2 and analytic
consistency enforcement without expensive back-propagation through network weights,
the proposed approach allows efficient exploration of data consistent solutions to image
restoration tasks via text prompts, using a few network evaluations. As illustrated in Fig 9.1,
this approach can greatly improve the diversity of outputs, while providing semantically
meaningful content.

We focus on extreme image super-resolution with large upscale factors, as this problem is
severely ill-posed, and allows exploration of a larger solution space. We also demonstrate the
applicability of our method on image colorization and inpainting. Further, we extend the
text guided image manipulation techniques encountered in chapter 8 using image generative
models (Karras et al., 2019; Esser et al., 2021b) with CLIP guidance (Radford et al., 2021) to
the task of text guided image restoration, by additionally encouraging data consistency in
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LR input Lemons Chillies

Grass Leaves Grapes

Capsicums Dandelions Ball on grass

(a) 32× SR (average↓)

×3
2

SR

Input LR Woman-glasses Indian man

×1
6

SR

Input LR African man Boy

×8
SR

Input LR Asian man Obama

(b) Face SR (bicubic↓)

Input+mask Smiling Moustache

Input Pink rose Yellow rose

Input+mask Cat Dog

(c) Inpainting and Colorization

Figure 9.1: Text guided image restoration. We explore multiple perfectly consistent reconstructions to image restoration
problems through text prompts, while achieving perfect data consistency with the given inputs for all solutions. Shown
from left to right are a) extreme super-resolution of natural images, b) face super-resolution c) inpainting and colorization.
Prompts of the form ‘A photograph of {key word}’ are used. Reconstructions with the corresponding keyword are depicted.

the optimization process. Extensive experimental evaluations demonstrate the benefit of
the proposed approach in terms of flexibility, speed, and diversity in generated solutions
which enables efficient text guided exploration. Our work opens up a promising direction of
developing efficient tools for text guided exploration of solutions to image recovery problems.

9.1 R E L AT E D W O R K

We now discuss specific related work on approaches that allow sampling diverse solutions to
image recovery, diffusion models in image recovery, and text based image recovery. We refer
the reader to Chapters 3 and 4, for a more detailed background on different approaches to
image recovery, and the use of generative model priors in inverse reconstruction problems.
Further, we refer to Chapter 8 for a background on text-to-image generative models.

D I V E R S E S O L U T I O N S T O I M A G E R E S T O R AT I O N Stochastic restoration algorithms can
produce variable outputs, which is desirable for ill-posed problems. Recent work (Ohayon
et al., 2023) shows that such stochastic algorithms can generate images with high perceptual
quality while being more robust than deterministic approaches. Existing deep learning
approaches to stochastic image restoration utilize conditional (Bahat and Michaeli, 2020;
Lugmayr et al., 2020; Buhler et al., 2020) or unconditional generative models (Menon et al.,
2020; Montanaro et al., 2022) such as GANs (Menon et al., 2020; Bahat and Michaeli, 2020;
Buhler et al., 2020), normalizing flow based models (Lugmayr et al., 2020; Jo et al., 2021b)
and more recently diffusion based models (Kawar et al., 2022a; Chung et al., 2022c; Wang
et al., 2023b; Song et al., 2023). Conditional generative model based approaches (Bahat and
Michaeli, 2020; Lugmayr et al., 2020; Saharia et al., 2023; Li et al., 2022a; Peng and Li, 2020;
Jo et al., 2021a; Saharia et al., 2022b; Whang et al., 2022) are typically trained for the specific
restoration task, while allowing stochastic sampling to generate diverse reconstructions. A
few of these methods also guarantee consistency of the reconstruction with input either by
an explicit projection operation (Bahat and Michaeli, 2020), or by exploiting the inherent
invertibility of the (flow-based) generative models (Lugmayr et al., 2020; Jo et al., 2021b).
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Methods proposed in recent challenge benchmarks (Lugmayr et al., 2021, 2022b) also make
use of conditional generative models to learn the solution space of super-resolution.

Among these, a few prior works attempt to explore the solution space using graphical
inputs (Bahat and Michaeli, 2020) or semantic maps (Buhler et al., 2020). However, they are
still restricted to specific classes e.g. faces, or trained for specific degradation, e.g. specific
super-resolution factors. To the best of our knowledge, there is no existing method which
allows exploration of solutions space for different restoration tasks on open domain images
through text or any other guidance.

D I F F U S I O N P R I O R S F O R I M A G E R E S T O R AT I O N There are two approaches to using
diffusion based models for image recovery tasks. One approach is to train a conditional
diffusion model for specific restoration tasks (Saharia et al., 2023; Li et al., 2022a; Saharia
et al., 2022b; Whang et al., 2022). Alternatively, one could utilize diffusion based image
generative models for the task of image restoration in a zero-shot fashion. Most of such
zero-shot approaches assume that the forward degradation operator is known, and exploit
this knowledge in a guidance mechanism to modify the sampling process. A few works Chung
et al. (2022a); Murata et al. (2023) address blind inverse problems. In the following, we discuss
different zero-shot approaches with known degradation models, which is what we consider
in this chapter. Jalal et al. (2021a) adopt Langevin dynamics for linear inverse problems and
incorporate guidance through the gradient of the least-squares data fidelity term. Kadkhodaie
and Simoncelli (2021) propose a score based method to solve linear inverse problems using
stochastic gradient ascent to sample from the implicit prior of a trained blind denoiser. Choi
et al. (2021) propose an iterative refinement of latent variables for super-resolution which
substitutes the low-frequency component in each sampling step with the corresponding
information from the measurement. To deal with noise in the intermediate latents, Choi et al.
(2021) utilize a low-pass filter to obtain the low frequency components, this, however, does
not guarantee exact consistency. Lugmayr et al. (2022a) propose a diffusion based approach
for inpainting which replaces unmasked regions in the intermediate steps by corresponding
regions in the measurement corrupted by suitable noise strength, to impose data consistency
during the sampling process. Chung et al. (2022c) utilize an initial estimate provided by
a super-resolution network to reduce the number of reverse diffusion steps, and alternate
between a standard reverse diffusion step and a non-expansive mapping to impose data
consistency on the intermediate noisy estimate for consistent super-resolution. While this
improved performance in comparison with earlier methods, such iterations accumulate
errors due to noise in the intermediate steps. This is solved in (Chung et al., 2022b) which
guides the reverse process through the gradient of the least-squares data fidelity term using
clean prediction at each reverse diffusion step, followed by a non-expansive mapping to
impose data consistency. While this provides impressive performance on linear noise-less
inverse problems, imposing strict measurement consistency through a projection step is not
ideal when measurements are noisy, and imposing data consistency constraints is difficult
for non-linear measurements. Therefore, Chung et al. (2023) discard the projection step
in (Chung et al., 2022b) to solve general noisy inverse problems. Song et al. (2023) modify
the guidance function in (Chung et al., 2023) to incorporate gradient-based guidance from
measurements by applying pseudo-inverse operation. While the approaches (Chung et al.,
2022b, 2023; Song et al., 2023) result in improved reconstruction quality and consistency,
these methods require higher computation times as they require back-propagation through
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the diffusion model weights at each iteration. Kawar et al. (2021) also consider noisy inverse
reconstruction problems whose forward operator can be decomposed by singular value
decomposition to perform reverse diffusion in spectral space, which is improved upon in
(Kawar et al., 2022a) in terms of speed and performance. This was further extended in
(Kawar et al., 2022b) to the task of the noise-less non-linear inverse problem of JPEG artifact
correction. Wang et al. (2023b) predict a clean sample at each reverse diffusion step, and
perform a projection operation that rectifies the clean prediction at each step to explicitly
satisfy data consistency. This method is equivalent to (Kawar et al., 2022a) in the noise-
less case. These approaches (Kawar et al., 2022a; Wang et al., 2023b) also achieve high
measurement consistency, and reconstruction quality while being fast, as they do not require
expensive back-propagation through the weights of a diffusion model. More recently, Mardani
et al. (2023) adopt diffusion models in a regularization by denoising (RED) framework, and
Zhu et al. (2023) demonstrate their utility for plug-and-play image restoration as an effective
alternative to the standard Gaussian denoisers. In this chapter, we modify the approach of
Wang et al. (2023b) to perform linear restoration tasks using text-to-image diffusion models
performing text conditioned diffusion in down-sampled pixel space. Our choice is motivated
by the performance and computational efficiency of (Wang et al., 2023b) which does not
require expensive back-propagation through the weights of a diffusion model, in contrast to
the competing baselines (Chung et al., 2022b, 2023; Song et al., 2023).

T E X T G U I D E D I M A G E R E S T O R AT I O N A recent work (Ma et al., 2022) also combines
text features into super-resolution network architectures using attention and train separate
models for text guided image super-resolution in an end-to-end manner for each dataset
and super-resolution factor. Further, some recent approaches (Chen et al., 2018; Bahng et al.,
2018; Kim et al., 2019) also trained deep networks for colorizing gray-scale images, using
text inputs. These methods, however, are trained for specific tasks and datasets and are not
generalizable.

9.2 P R E L I M I N A R I E S

9.2.1 Range-Null Space Decomposition:

Let us consider ill-posed image restoration tasks where the measurement process is modeled
as a linear operator. In a noiseless case, this can be represented as

f = Au. (9.1)

When A AT is invertible, applying the pseudoinverse A† = AT (A AT )−1 produces the minimum
norm solution A† f to the ill-posed problem eq. (9.1), with perfect data consistency. Any other
sample of form (A† f +uδ) also satisfies perfect data consistency, as long as uδ lies in the null
space of A. Note that u can be decomposed as:

u ≡ A† Au + (I − A† A)u. (9.2)
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We can note that A† Au satisfies exact consistency with A A† Au ≡ f , and the component
(I − A† A)u is in the null space of A, with A(I − A† A)u ≡ 0. Given an approximate solution ū,
this decomposition can be used to construct a solution,

û = A† f + (I − A† A)ū, (9.3)

such that û satisfies perfect data consistency (Bahat and Michaeli, 2020; Wang et al., 2023b).

9.2.2 Denoising Diffusion Null Space Models

Denoising Diffusion Null Space Models (DDNM) (Wang et al., 2023b) is a recently proposed
technique for zero-shot image restoration using pretrained diffusion based image gener-
ative models (Ho et al., 2020). The core idea of DDNM is to utilize the range-null space
decomposition in the reverse diffusion process.

To maintain consistency in notation with eq. (9.1), we assume the distribution of desired
images is q(u). The reverse diffusion process involves Gaussian transitions pθ(ut−1|ut ,u0)
utilizing a learned noise approximator ϵθ. We have seen in section 8.2.1, that a clean estimate
of a sample can be obtained at any iteration in the reverse diffusion process:

u0|t = 1p
ᾱt

(
ut −ϵθ(ut , t )

√
1− ᾱt

)
. (9.4)

Wang et al. (2023b) rectify this estimate to impose consistency with the measurement at each
step in the reverse process by refining its null-space component using range space null-space
decomposition eq. (9.3). The rectified estimate û0|t satisfying data consistency is obtained as:

û0|t = A† f + (I − A† A)u0|t . (9.5)

This rectified estimate is used in subsequent sampling from p(ut−1|ut , û0|t ). The advantage
of the DDNM approach is that it can reconstruct consistent solutions, without expensive
backpropagation through the generator weights. The limitation of this method is that it can
only be used in reconstruction tasks where the pseudo-inverse operator A† can be computed
efficiently.

9.2.3 DALL-E2 unCLIP

We now describe DALL-E2 (Ramesh et al., 2022) the text-to-image generative model, we
employ for text guided restoration. DALL-E2 consists of: i) a diffusion based prior to produce
CLIP image embeddings (Radford et al., 2021) zi from encodings of the input prompt c, ii)
a conditional diffusion based decoder ϵθ to generate images conditioned on CLIP image
embeddings and text prompts, and iii) a diffusion based super-resolution module ζθ to obtain
a high resolution output. The prior is trained to produce CLIP image embedding given a text
caption, and the diffusion decoder is trained to invert the CLIP image encoder. The whole
framework is referred to as unCLIP, as it generates images by inverting the embeddings of
the CLIP image encoder. The text conditioned diffusion is performed in a down-sampled
pixel space for improved computational efficiency, yielding a lower resolution image, which
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is super-resolved in a subsequent diffusion based super-resolution module to obtain a higher
resolution output.

9.3 M E T H O D

Given a degraded image f with a known degradation operator A, our goal is to generate data
consistent solutions û whose attributes can be varied using input text prompts c:

Data Consistency : Aû ≡ f ,

Semantic Consistency : û ∼ q(u|c),
(9.6)

where, q(u|c) denotes the distribution of images u with semantic meaning provided by
the text prompt c. To obtain data consistent reconstructions satisfying semantic mean-
ing provided by text prompt, we employ null space consistency enforcement proposed in
DDNM (Wang et al., 2023b) in the conditional reverse diffusion process of the unCLIP model
(Ramesh et al., 2022). We call this approach DDNM-unCLIP. As the text conditioned diffu-
sion is performed in a low resolution pixel space (64×64), followed by a diffusion based
super-resolution at a higher resolution (256×256), we adapt DDNM to deal with a two-stage
diffusion process to recover images u of high resolution. We first recover a lower resolution
version uLR by using a modified measurement ALR which takes into account the downsam-
pling (↓ 4) operation for text conditioned diffusion in low resolution. Let z denote the CLIP
image embeddings produced by the prior model for input text prompt, and ϵθ denotes diffu-
sion based text conditioned decoder, the current estimate of the low resolution clean image
at each step is given by:

uLR0|t =
1p
ᾱt

(
uLRt −ϵθ(uLRt , t |z)

√
1− ᾱt

)
, (9.7)

and the consistency rectified estimate following DDNM is given as

ûLR0|t = A†
LR f + (I − A†

LR ALR )uLR0|t . (9.8)

For the subsequent diffusion for super-resolution using the model ζθ, we consider the actual
measurement operator A, with null space consistency rectification using DDNM. This two
step process is summarized in Algorithm 1. In practice, we accelerate the reconstruction
by starting at an earlier time step t0 < T , instead of starting from random noise for both
of the reverse diffusion processes and use a fewer number of steps between [1, t0] in the
reverse diffusion. Due to this acceleration, and text conditioned diffusion in the smaller
dimensional pixel space, DDNM-unCLIP can produce fast reconstructions. Furthermore,
DDNM consistency enforcement in the decoder and super-resolution modules ensures
perfect data consistency of the resulting solutions. Fig. 9.2 shows that this approach can
generate data consistent reconstructions with the desired semantic attributes.
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Algorithm 1 DDNM unCLIP sampling.
uLRT ∼N (0, I )
for t = T , ...,1 do

uLR0|t = 1p
ᾱt

(
uLRt −ϵθ(uLRt , t |z)

p
1− ᾱt

)
ûLR0|t = A†

LR f + (I − A†
LR ALR )uLR0|t

uLR t−1 ∼ p1(uLR t−1 |uLR t , ûLR0|t )
end for
uLR ← uLR0

uT ∼N (0, I )
for t = T , ...,1 do

u0|t = 1p
ᾱt

(
ut −ζθ(ut , t |uLR )

p
1− ᾱt

)
û0|t = A† f + (I − A† A)u0|t
ut−1 ∼ p(ut−1|ut , û0|t )

end for
return u0

×3
2

SR

‘A well-lit portrait face photograph of an African man’, ‘A portrait face photograph of {*}’
for ∗ ∈ {a man with a beard, a girl with curly hair, a grinning boy, a woman with glasses}

×1
6

SR

‘A portrait face photograph of {*}’ for ∗ ∈ {a man, a woman, a smiling girl, a chubby child, a sad boy}

×8
SR

‘A portrait face photograph of {*}’ for ∗ ∈ {a woman, a woman with make up, an Asian woman, a woman with curly hair, an elderly woman}

LR DDNM ←−−−−−−−−−−−−−−−−−−−−−− DDNM-Unclip(Ours) −−−−−−−−−−−−−−−−−−−−−−→
Figure 9.2: Visual comparison of face super-resolution with respect to DDNM Wang et al. (2023b) for scales ×8, ×16 and ×32.

Embeddings Averaging Trick

While DDNM-unCLIP sampling generates reconstructions consistent with both text and
measurements, it can still result in unrealistic images when the image embedding zi as
imagined by the prior does not structurally align with the observation. To alleviate this, we
propose to modify zi for better structural consistency with the degraded input:

zi = (1−λ)zipr i or +λE (A† f ), (9.9)



9.4 E X P E R I M E N T S A N D R E S U LT S 128

λ
=

0
λ
=

0.
4

×16 SR, text prompt ‘a high-res photo of a cat’.

λ
=

0
λ
=

0.
5

Colorization, text input ‘a man wearing a blue shirt’

Figure 9.3: Reconstructions with and without the proposed em-
beddings averaging trick for image super-resolution and coloriza-
tion with text input.

where, E is the CLIP image encoder used in
training the DALL-E2 unCLIP model. This
embedding averaging trick improves the
structural consistency of the image em-
bedding with the input observation. We
found reasonable outputs with λ ∈ [0,0.6]
with lower values of λ for higher super-
resolution factors. We also find this embed-
ding averaging trick useful for zero-shot
colorization with text inputs, for improv-
ing the structural consistency of the results.
For all the image colorization results using
DDNM-unCLIP, we use the averaging trick
with λ = 0.5. We can observe in Fig. 9.3
that embedding averaging leads to more
realistic looking reconstructions.

Implementing A and A†

For the tasks of inpainting and coloriza-
tion, we consider forward operators of a
simple form :

C O L O R I Z AT I O N : A is the operator
[1

3
1
3

1
3

]
that averages the intensities in the red,

green and blue channels at each pixel
[
r g b

]⊤
into a grayscale value

[ r
3 +

g
3 + b

3

]
. The

corresponding pseudo-inverse is A† = [
1 1 1

]⊤
.

I N PA I N T I N G : A is the binary mask operator, whose pseudo-inverse A† ≡ A.

S U P E R - R E S O L U T I O N : In case of down-sampling by averaging with scale n, A becomes
the average pooling operator, and corresponding A† would replicate the pixels n2 many times.
When the low resolution images are generated through bicubic down-sampling, we construct
the pseudo-inverse using the singular value decomposition (SVD) following (Kawar et al.,
2022a)

A =UΣV T , A† =V Σ†U T .

When the forward operator is a composition of multiple simple operators, A = A1...An , the
corresponding pseudo-inverse can be obtained as A† = A†

n ...A†
1. We use such a composition

in our experiments where we perform both inpainting and colorization.

9.4 E X P E R I M E N T S A N D R E S U LT S

We perform our experiments using the publicly available implementation of the unCLIP
model (Lee et al., 2022). This model is trained on 115M image-text pairs including COYO-
100M, CC3M, and CC12M (Lee et al., 2022) to generate images of resolution 256×256. The
unCLIP decoder of this model is trained at the resolution 64×64, i.e., uLR is of resolution
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64×64, and the subsequent super-resolution model at resolution 256×256. We use this model
directly for restoration tasks without further fine-tuning. We set tstop as 800 out of the total
1000 steps and use fewer steps between [1, tstop ] in both the reverse diffusion process (40 for
text conditioned decoding and 10 for super-resolution). For obtaining the image embeddings
we perform 25 reverse diffusion steps using the prior model.

We focus on extreme super-resolution of images with large super-resolution factors
×8, ×16, ×32, as this problem is severely under-determined and allows exploration of a
larger solution space, and is, therefore, an ideal setting to test our method on exploring
diverse solutions. In contrast, input imposes stronger constraints on the solutions for super-
resolution at smaller scale factors, limiting their diversity and explorability.

D ATA S E T S A N D E VA L U AT I O N M E T R I C S : To evaluate consistency between the generated
result and the input text prompt, we use CLIP score (Radford et al., 2021) using the ViT-B/16
CLIP model. For super resolutions with large factors, PSNR/SSIM which measure consis-
tency with ground truth are not effective metrics to measure reconstruction performance,
as multiple solutions can lead to the same low resolution image. Measuring low resolution
consistency by calculating PSNR between the input LR image and the downsampled version
of the solution is a better alternative to measure reconstruction performance and has been
used in recent challenges for learning super-resolution space (Gu et al., 2022a; Lugmayr et al.,
2021). Owing to the use of DDNM based approach, all our solutions satisfy exact consistency,
achieving LR PSNR values > 50 dB. We evaluate the reconstruction quality in terms of NIQE
score (Mittal et al., 2012), a no-reference image quality estimator to have a quantitative
measurement of realism. For the task of super-resolution, we also conduct a user study to
evaluate how the users rate the plausibility of reconstruction and semantic consistency with
the text prompt.

SR Caption

8 a portrait face photograph

16
a portrait face photograph of {a man, a woman,

a smiling girl, a chubby child, a sad boy}

32
well-lit portrait face photograph of an African man
a portrait face photograph of {a man with a beard,

a girl with curly hair, a grinning boy, a woman with glasses}

Table 9.1: Text prompts used for quantitative evaluation
CelebA-HQ.

We perform a comparison of DDNM-unCLIP
with vanilla DDNM1 using a diffusion model
trained on CelebA-HQ faces (Karras et al.,
2018b), on a subset of 100 images from the
CelebA-HQ dataset. We provide different
captions for different super-resolution fac-
tors, as described in Tab. 9.1. We further
quantitatively evaluate the super-resolution
performance of DDNM-unCLIP on images
from the Set5 (Bevilacqua et al., 2012) (5 images), Oxford Pets (Parkhi et al., 2012) (a subset of
200 images). For Set5, we provide captions- a photograph of {a baby face with knitted cap, a
side view of a child’s face, a black bird perched on a tree has a big colorful beak, a butterfly, a
woman face with head band}. For Oxford Pets, we use the captions from the dataset2 which
are automatically generated using BLIP (Li et al., 2022b) and GPT-3(Brown et al., 2020). We
show qualitative results for open-domain image super-resolution using images and captions
from the SBU Captions (Ordonez et al., 2011) dataset and the nocaps dataset (Agrawal et al.,
2019). All our experiments are performed for an output resolution of 256×256. The LR images
are obtained via bicubic interpolation.

1 https://github.com/wyhuai/DDNM
2 https://huggingface.co/datasets/Multimodal-Fatima/OxfordPets_test

https://github.com/wyhuai/DDNM
https://huggingface.co/datasets/Multimodal-Fatima/OxfordPets_test
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×8
SR

‘A portrait face photograph of {*} wearing a pirate hat’ for ∗ ∈ {a man, an Asian man, Harry Potter, Johnny Depp, Nicholas Cage}

×8
SR

‘A portrait face photograph of {*}’ for ∗ ∈ {a man, a boy, an Asian man, an elderly man, a man with curly hair}

×8
SR

‘A portrait face photograph of {*}’ for ∗ ∈ {a man, an elderly man, an Asian man, a man wearing a checkered shirt, a man wearing a striped
shirt}

×1
6

SR
×1

6
SR

‘A portrait face photograph of {*}’ for ∗ ∈ {a man, a woman, a smiling girl, a chubby child, a sad boy}

×3
2

SR
×3

2
SR

‘A portrait face photograph of {*}’ for ∗ ∈ {a man of African descent, a man with a beard, a grinning boy, a girl with a curly hair, a woman with
glasses}

Figure 9.4: Qualitative results for face super-resolution using DDNM-unCLIP.

F A C E I M A G E S U P E R - R E S O L U T I O N : Tab. 9.2 provides the results of our quantitative eval-
uation of images from the CelebA-HQ data set. We compare our model with DDNM using
a diffusion model trained on CelebA-HQ faces. Both DDNM and DDNM-unCLIP achieve
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‘A professional portrait face photograph of a man.’
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M

Figure 9.5: Exploring multiple consistent solutions for the same text prompt. Using DDNM with T2I models generates data
consistent images of high diversity in content, pose, background and lighting, with semantics meaning matching the input
prompt. In contrast, DDNM without any text inputs shows limited variations in the recovered solutions. Results for ×16 SR
(left) and ×32 SR (right).

perfect LR PSNR (>50 dB) due to analytic consistency enforcement.

×8 ×16 ×32
CLIP NIQE CLIP NIQE CLIP NIQE

DDNM 0.3330 8.01 0.1979 8.79 0.1989 9.20
DDNM-unCLIP 0.3252 5.41 0.2972 6.43 0.3165 5.97

Table 9.2: Comparing DDNM-unCLIP with DDNM (Wang
et al., 2023b) in terms of CLIP score and NIQE score on face
image super-resolution.

However, the vanilla DDNM offers no scope
of controlling the output using text and
therefore, the DDNM generated images do
not have high similarity with the captions
in terms of CLIP score, except for the neu-
tral caption ‘a portrait face photograph of
a person’ used for ×8 super-resolution task,
which is true for all the images in the CelebA-HQ dataset. On the other hand, using text
guidance with DDNM-unCLIP results in solutions that are semantically consistent with the
input text prompt. This is reflected in the improved CLIP scores using DDNM-unCLIP. Tab. 9.2
also shows a better image quality index for reconstructions obtained using DDNM-unCLIP
in terms of NIQE score. While DDNM using the CelebA-HQ diffusion model produces more
photo-realistic face images, the poorer performance of vanilla DDNM could be because of
blurrier reconstructions.

Figs. 9.2 and 9.4 depict sample qualitative results of our experiments with CelebA-HQ
dataset. While the vanilla DDNM achieves perfectly data consistent solutions within the
training distributions, it offers little scope for exploration through text. On the other hand,
DDNM-unCLIP can recover images with great diversity. As the ill-posedness of the recovery
problem becomes more severe at high super-resolution factors (×32), it is possible to recover
a wide variety of outputs with challenging attributes in age, race, gender, appearance, and
accessories. It is especially hard for generative models trained on datasets with limited
attribute variability to overcome their training bias to recover such images. For lower super-
resolution factors, the input has stronger constraints on the solutions, and therefore, it is
not meaningful to explore drastic variations in semantic attributes. We therefore provide
different text prompts with attributes that seem plausible for the given low resolution input.
The results in Figs. 9.2 and 9.4 demonstrate that our approach can successfully produce
reconstructions with the desired attributes. More qualitative results for face super-resolution
are provided in the appendix.

Fig 9.5 compares the reconstructions of DDNM-unCLIP with DDNM using a diffusion
model trained on CelebA-HQ faces. Multiple recovered solutions using DDNM-unCLIP are
shown for a single text prompt. The results show a wide variety in pose, backgrounds, lighting,
and content while being semantically consistent with the input text. In contrast, the DDNM
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×8
×1

6
×3

2

LR ←−−−−− DDNM-unCLIP:‘a baby face with knitted cap’ −−−−−→←−−−−−−−−−−−−−−−−−−−− DDNM −−−−−−−−−−−−−−−−−−−→

×8
×1

6
×3

2

LR ←−− DDNM-unCLIP: ‘a woman face with head band’ −−−→←−−−−−−−−−−−−−−−−−−− DDNM −−−−−−−−−−−−−−−−−−−→

×8
×1

6
×3

2

LR ←− DDNM-unCLIP: ‘a man’, ‘an Asian man’, ‘an African man’ −→←−−−−−−−−−−−−−−−−−− DDNM −−−−−−−−−−−−−−−−−→

Figure 9.6: Comparing DDNM-unCLIP with DDNM Wang et al. (2023b) on images out of distribution to CelebA
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reconstructions show only a small diversity in the recovered solutions, even when starting the
algorithm from different noisy latents. This could be due to the inherent bias in the training
set, which has limited variations in lighting and pose.

On Bias and Generalization in Reconstruction using Class-Specific Diffusion Models

Intrigued by the limited diversity in the outputs of DDNM using the diffusion model trained
on CelebA-HQ dataset, we test DDNM on images which are slightly out of distribution to the
CelebA-HQ dataset. We perform super-resolution on downsampled versions of the following
test images: two face images from Set5, and an image of Obama with upscaling factors of 8,
16, and 32. The results are illustrated in Fig. 9.6. For the test image of a baby face from Set5,
the solutions recovered by vanilla DDNM using diffusion model trained on CelebA-HQ are
quite blurred for scales 8 and 16, with results of 16× super-resolution having more artifacts.
For 32× super-resolution, DDNM produces blurred faces of adults. As a baby face is out of
distribution of CelebA-faces, the recovered solutions are not satisfactory. Even for the face
of a woman from Set5, the results using the diffusion model trained on CelebA-HQ are not
satisfactory, as this face is not aligned (aligning the face images is a common pre-processing
step used in the training generative models on the CelebA-HQ dataset). As a result, the
diffusion model tries to hallucinate eyes as though the image is aligned, and the resulting
artifacts from the null-space component are visible in the results of 16× super-resolution.
The results of ×32 super-resolution are sharper, still, there are artifacts on the head. This
shows that a diffusion model trained on a specific domain does not generalize well to images
that are slightly out of distribution. We note that these effects are due to the limitations
and biases of the trained generative model and its training data, and not the reconstruction
algorithm of DDNM. Adapting the same algorithm with unCLIP with reasonable text prompts
produces visually better results, and fewer artifacts, as seen in Fig. 9.6.

We further test DDNM and DDNM-unCLIP on super-resolution from the downsampled
version of the Obama image. This test image of the downsampled version of Obama resulted
in an image of a distinctly white man when upsampled using StyleGAN based reconstruction
(Menon et al., 2020), creating a controversy on biases in machine learning algorithms. In
this context, Salminen et al. (2020) analyzed the biases in StyleGAN where it is observed
that StyleGAN generates predominantly pictures of white people (72.6%), this racial bias is
inherited by algorithms using StyleGAN for reconstruction (Menon et al., 2020). Jalal et al.
(2021b) proposed an alternate sampling approach to deal with such biases. We test both
DDNM and DDNM-unCLIP on this down-sampled test image. The results of the DDNM
algorithm contain severe artifacts for scales 8 and 16. Despite running the DDNM algorithm
multiple times starting with different noisy latent codes, and with different number of infer-
ence steps, we did not obtain results free from such artifacts. The results of DDNM using
the CelebA-HQ pretrained diffusion model show improvement at scale 32. However, the
results showed only a limited diversity in terms of pose, expression, and perceived race of
the reconstructed face. In contrast to the diffusion model trained on CelebA-HQ faces, the
results of DDNM-unCLIP demonstrate greater diversity in pose, expression, age, lighting, and
background, and the use of text effortlessly enables the reconstruction of faces with varying
personal attributes. While this improves demographic diversity through text inputs, one must
note that text-to-image models are also not free from biases. For instance, with a race-neutral
prompt such as ‘photograph of a face of a man’, DDNM-unCLIP provides images with limited
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‘A cat sitting on a table. It has reddish-orange fur distinctive chestnut-colored collar bright orange-red head and chest bright orange chest
and underparts orange-brown fur with white fur around the muzzle’

‘A dog standing on a tiled floor. It has white markings on the chest, face, paws, and belly muscular, medium-sized, athletic-looking dog
white, brown, or brindle markings large white dog white fur around the nose, mouth, and eyes’

‘not a cloud in the sky (marin trail)’

Figure 9.7: Exploring multiple consistent solutions for the same text prompt for open domain image super-resolution.
Results for ×16 SR (left) and ×32 SR (right) using DDNM-unCLIP.

demographic diversity.

Dataset ×8 ×16 ×32

Oxford-Pets 0.3180 0.3293 0.3297
Set5 0.3219 0.3349 0.3322

Table 9.3: Evaluating alignment of DDNM-
unCLIP reconstructions with text using CLIP
score for test images from Oxford-Pets and Set5.

O P E N D O M A I N I M A G E S U P E R - R E S O L U T I O N

Tab. 9.3 shows the CLIP scores for reconstructions
using DDNM-unCLIP for the test images from Set5
and Oxford Pets datasets. The obtained CLIP scores
on the reconstructions are close to the CLIP scores
achieved by unCLIP on text conditioned generation3

(0.3081 on conceptual captions and 0.3192 on MS-COCO datasets).
Fig. 9.7 illustrates sample qualitative results of our experiments for test images from

Oxford Pets (Parkhi et al., 2012), and SBU Captions (Ordonez et al., 2011) datasets. The text
prompts used for recovery are provided along with the images. We observe that even for
general open domain images, DDNM-unCLIP is able to recover diverse solutions consistent
with the text prompt. More qualitative results on open domain image super-resolution using
images and text prompts from Oxford Pets (Parkhi et al., 2012) and nocaps dataset (Agrawal
et al., 2019) are provided in the appendix.

User Study

We perform a user study to evaluate the realism and semantic matching with text prompts
on our results. The users participated in a survey where they voted on whether or not each
super-resolved output looks plausible, and has semantic meaning corresponding to the input
text prompt, using a survey platform. This survey included results from the super-resolution
of faces, and natural images using DDNM-unCLIP4.

3 https://huggingface.co/kakaobrain/karlo-v1-alpha
4 All the reconstructed images used in the user study were obtained without the embeddings average trick, (i.e.

λ= 0.0), as this idea was developed after conducting the user study.

https://huggingface.co/kakaobrain/karlo-v1-alpha
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‘A man wearing a {*} colored shirt, for ∗ ∈{blue,pink}’

‘{*} apples for∗ ∈{Green,Red}’

‘A blue colored bird’, ‘a kingfisher’

‘A sparrow’

‘a cat on a sofa’

‘A cheetah’

‘An Elephant’

Figure 9.8: Qualitative results for colorization.

F A C E S U P E R - R E S O L U T I O N : This included
a user evaluation by 35 participants on the
results of ×8, ×16, ×32 super-resolution
on 10 different low-resolution images for
5 text prompts, a total of 150 face super-
resolution results generated using DDNM-
unCLIP. Low resolution images are gener-
ated using images from CelebA-HQ (Karras
et al., 2018b) downsampled to a resolution
256×256. For ×8 face super-resolution, we
provide 5 different text prompts suitable for
each of the 10 inputs. Some of the exam-
ples included in the survey with text prompts
and the corresponding super-resolution out-
puts obtained using DDNM-unCLIP for dif-
ferent super-resolution factors are provided
in Figs. 9.2, 9.4, 9.12 and in the Figs. 9.14a
and 9.14b of the appendix. Among the differ-
ent text prompts, we found that the partici-
pants had the least preference for the results
of ‘an elderly man/woman’ as the results had
unnaturally high wrinkles and contained
higher ringing artifacts. User rating for plau-
sibility and semantic consistency with text
for 8×, 16× and 32× super-resolution was
65.4%, 63.5%, and 74.1% respectively.

O P E N D O M A I N S U P E R - R E S O L U T I O N :
This included evaluation of DDNM-unCLIP
on ×16 super-resolution using low resolu-
tion images generated from Oxford Pets
(Parkhi et al., 2012), SBU Captions (Ordonez
et al., 2011) and nocaps (Agrawal et al., 2019)
datasets on 100 reconstructions by 35 partic-
ipants. Some of the examples used in this
evaluation are visualized in Figs. 9.15, 9.17
and 9.10. Participants rated 57.2% of the im-
ages as realistic and semantically consistent.
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Figure 9.9: Qualitative results on composition of colorization
and inpainting for prompts ‘a photograph of a woman’ for the
first two images, ‘a mountaineer climbing a snow mountain’ for
the third image

SR factor DDNM-unCLIP DDNM

8× 4.56s±21.4ms 4.77s±21.7ms
16× 4.56s±24.1ms 4.73s±21.1ms
32× 4.55s±18.5 ms 4.74s±21.5 ms

Table 9.4: Timing comparison of DDNM Wang et al.
(2023b) with DDNM-unCLIP(Ours)

I M A G E C O L O R I Z AT I O N : Fig. 9.8 demonstrates qualitative examples of colorization using
DDNM-unCLIP. The results show consistent colorization according to the text prompts.

C O M P O S I T E D E G R A D AT I O N S : Fig. 9.9 provides sample reconstructions for the composi-
tion of colorization and inpainting for two face images and an open domain natural image
along with the input text prompts. The results show recovered images consistent with the
text prompt.

Timing

Tab. 9.4 provides a comparison of run-times between DDNM and DDNM-unCLIP. The ex-
periments were conducted on a computer with AMD Ryzen 93950X 16-Core processor and
NVIDIA GeForce RTX 3090 with 24GB GPU memory. DDNM uses 100 reverse diffusion
steps, whereas DDNM-unCLIP requires a total of 75 reverse diffusion steps (25 steps with the
prior, 40 steps of text guided diffusion, and 10 steps of the super-resolution model). Both
approaches have nearly similar run times, as seen in Tab. 9.4.

Failure Cases

Fig. 9.10 demonstrates some failure cases of DDNM-unCLIP, where it failed to generate sat-
isfactory results for each of the 5 random samples generated. We observe that the model
struggles with accurately representing holding objects in hands, and produces incorrect
human anatomies. These images were also rated uniformly as unrealistic in our user study.
These undesired effects are ameliorated to an extent in ×8 super-resolution as it imposes
stronger constraints on generated images, see row 3 in Fig. 9.16, which shows better re-
construction of a hand holding an object. Sometimes, the resulting images have weird
backgrounds and lighting effects, especially when it is hard to match the input prompt with
the degraded image. We can see in Figs. 9.12, 9.11 that our embeddings averaging trick can
reduce failure cases and artifacts, and improve photo-realism in difficult scenarios. Further,
we observe that the recovered images for certain prompts such as ’an elderly man/woman’
contain exaggerated features such as highly wrinkled skin to the point that they no longer
look realistic.
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‘a man holding a puppy. It has white, brown, or brindle markings white markings on the chest, face, paws, and belly medium-sized sporting
breed medium-sized, stocky dog white or cream-colored coat’ ×16 SR

‘A hand holds a can of Red Bull on a city street.’ ×16 SR

‘Mommy, daddy and kid in a paddle boat on the lake’ ×16 SR

Figure 9.10: Some failure cases of DDNM-unCLIP.

Alternative Methods to Text Guided Restoration

While we proposed to provide a solution to the problem of text guided image restoration
using a text-to-image diffusion model, one may also leverage pretrained image generative
models for this task. Recall from Chapter 8 the text guided image editing methods of VQGAN+

‘A hand holds a can of Red Bull on a city street.’ ×16 SR

Figure 9.11: Improved results with embeddings averaging for
general image SR.

CLIP (Crowson et al., 2022) and StyleCLIP
(Patashnik et al., 2021), which optimize in
the latent space of a trained GANs (VQ-
GAN (Esser et al., 2021b) and StyleGAN (Kar-
ras et al., 2019) respectively) using similarity
score provided by CLIP (Radford et al., 2021).
We adapt these approaches to text guided
restoration using a combined objective of
reducing reconstruction loss and increasing CLIP similarity score with the input text. For
optimization with VQGAN+CLIP, we follow the approach of Crowson et al. (2022) employing
quantized latents with ℓ2 regularization on the latent vector, and additionally incorporate
reconstruction loss. For optimization with StyleGAN+CLIP, we experimented with both latent
space optimization and style-space optimization using reconstruction loss and CLIP loss.
We found that optimizing in the style-space yields better results. Since these approaches
have a trade-off between reconstruction error and alignment with text, the results do not
satisfy perfect measurement consistency. We perform preliminary experiments with these
two methods, the qualitative results of this experiment are provided in Fig. 9.13. For optimiza-
tion with VQGAN+CLIP, we obtained an LR PSNR 26-29 dB, for the four examples shown in
Fig. 9.13. Further, different examples need varying numbers of steps to converge to a plausible
result. The results in the bottom row of Fig. 9.13 for the text prompts ‘a man’ and ‘an elderly
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‘A portrait face photograph of {*}’ for ∗ ∈ {a man, a woman, a smiling girl, a chubby child, a sad boy}

Figure 9.12: Embeddings averaging trick improves photorealism in difficult examples ×16 face super-resolution.

man’ were obtained in 1600 iterations requiring less than 4 minutes. The reconstructions
in the top row corresponding to ‘a woman’ and ‘a young girl’ took 5200 and 4600 iterations
requiring about 13 minutes and 11 minutes respectively. For style space optimization with
StyleGAN, we obtain LR PSNR of around 27-30 dB for plausible reconstructions. The results
were obtained using 250 steps, requiring around 2 minutes per image.

Apart from DALL-E2 unCLIP, we also studied the applicability of DDNM to Stable Diffu-
sion (Rombach et al., 2022), another popular text-to-image diffusion model for the task of
super-resolution. However since the diffusion process happens in the latent space, it is not
straightforward to impose null-space consistency on the intermediate estimates in the Stable
Diffusion model. We show in the appendix that this does not lead to desirable solutions.

9.5 D I S C U S S I O N A N D C O N C L U S I O N S

In this chapter, we introduced text guided exploration of solutions to image restoration prob-
lems. We proposed a zero-shot approach that utilizes a pretrained text-to-image diffusion
based generative model to yield solutions that are simultaneously consistent with the input
text as well as the degraded observation. Our approach can achieve a significantly higher
diversity in recovered solutions in comparison with a method using class-specific generative
models. The performance of this method depends on and is limited by the generative capa-
bilities of the pretrained generative model, in our case, DALL-E2 unCLIP. The method inherits
the biases of the data used to train the unCLIP model. This is also reflected in the results
which sometimes lack photorealism, and have an oil painting like effect. This is likely an
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> 50 dB > 50 dB 28.7dB 28.1 dB 27.9 dB 30.3 dB
A portrait face photograph of {*} ’, for ∗ ∈ {a woman, a young girl}

> 50 dB > 50 dB 26.3dB 26.1 dB 28.9 dB 30.1 dB
A portrait face photograph of {*} ’, for ∗ ∈ {a man, an elderly man}

LR ←−−−−−−−− DDNM-unCLIP −−−−−−−−→←−−−−−−−−−− VQGAN+CLIP −−−−−−−−−−→←−−−−−−−−−−− StyleCLIP −−−−−−−−−−−→

Figure 9.13: Comparing DDNM-unCLIP with with VQGAN+CLIP and StyleGAN+CLIP adapted to the task of restoration.

artefact of training data which included paintings and other art in addition to photographs
in the dataset. In contrast, a model trained only on photographs of faces can produce more
photo-realistic faces, yet it can severely lack generalization to out-of-distribution data.

We observed that DDNM-unCLIP sometimes produces perceptually implausible solu-
tions, with large artifacts. When this is caused by a mismatch of the image embedding and
the measurement, it can be fixed to an extent by our proposed embedding averaging. On the
other hand, not every text prompt is meaningful for every observation. When certain patterns
or objects indicated by the input text cannot be present in the image, the corresponding
objects or patterns cannot be recovered without severe artifacts or unrealistic images. In this
case, it is not the failure of the approach or the model, rather it can help the users determine
the plausibility of a solution. In view of this, evaluation of text guided restoration is highly
subjective, and any quantitative evaluation in terms of image quality metrics is only mean-
ingful only when the input text prompts are well aligned and plausible for a given degraded
measurement. A separate subjective human ranking on alignment with text and plausibility
would better evaluate the performance.

While we utilized unCLIP for text guided restoration, it is also interesting to explore text
guided restoration with other pixel-space text-to-image diffusion models such as Imagen
(Saharia et al., 2022c), when the open source versions of these models become available. It is
also interesting to devise algorithms which can be applied for text guided reconstruction using
latent diffusion models (Rombach et al., 2022), for example, by backpropagating through
the weights of the generator. Alternately, one could also attempt to utilize CLIP to guide
pretrained image diffusion models towards target text similar to (Bansal et al., 2023), and
additionally impose measurement consistency at each diffusion step. Since we make use of
range-null space decomposition, our proposed method requires the degradation operator
and its pseudo-inverse in its inference, which may not be available in general restoration tasks.
It is interesting to extend text guided disambiguation to non-linear and blind restoration
tasks in the future.
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A P P E N D I X

9.A A D D I T I O N A L Q U A L I TAT I V E R E S U LT S

S U P E R - R E S O L U T I O N For face super-resolution, we provide additional qualitative results
for scales ×8,×32 in Figs. 9.14a and 9.14b respectively. For natural image super-resolution, we
provide additional qualitative results using images from Oxford Pets in Fig. 9.15 and images
and captions from nocaps dataset Agrawal et al. (2019) for the task of ×8 and ×16 super
resolution in Figs. 9.16, 9.17.

‘A portrait face photograph of {*}’ for ∗ ∈ {a man, an Asian man, a man with curly hair, a woman, a woman with glasses}

‘A portrait face photograph of a smiling {*}’ for ∗ ∈ {Asian woman, African woman, woman with curly hair, young girl, elderly woman}

‘A portrait face photograph of {*}’ for ∗ ∈ {a man, an elderly man, an Asian man, a man of African descent, Obama}

(a) Qualitative results for ×8 face super-resolution using DDNM-unCLIP.

‘A portrait face photograph of {*}’ for ∗ ∈ {a man of African descent, a man with a beard, a grinning boy, a girl with a curly hair, a woman with
glasses}

(b) Qualitative results for ×32 face super-resolution using DDNM-unCLIP.

Figure 9.14: Qualitative results for face super-resolution using DDNM-unCLIP.
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‘A cat sitting on a table. It has muscular body and distinctive black-and-tan coat distinctive chestnut-colored collar yellowish to
reddish-gray fur reddish-brown to grey fur a round, greyish-brown body’

‘a cat sleeping on a couch. It has white fur around the nose, mouth, and eyes, black-tipped paws, medium-sized breed of domestic cat, in a
sleeping area for the pet. long eyelashes and tufts of fur on its forehead’

‘a small dog in a box. It has white, brown, or brindle markings black facial markings Black facial markings black, white, gray, fawn, or brindle
color dark facial markings’

Figure 9.15: Exploring multiple consistent solutions for the same text prompt ×16 SR on samples from Oxford Pets dataset.
The text prompt used for guidance is provided.

9.B C H O I C E O F T 2 I M O D E L

While we used DALL-E2 unCLIP in our experiments, we also studied the applicability of Stable
diffusion Rombach et al. (2022) for text-guided image super-resolution using DDNM. In the
case of Stable diffusion, the diffusion process happens in the latent space of a variational
auto-encoder, and it is not straightforward to adapt DDNM to this model.

LR 40 DDNM steps 15 DDNM steps

LR SD output After projection

Figure 9.18: (Top) Stable Diffusion with DDNM using VAE
decoder & encoder. (Bottom) Stable Diffusion result without
DDNM in reverse diffusion. Results for the text prompt ‘a
portrait face photograph of an elderly woman’

We attempted to enforce DDNM consis-
tency in the text conditioned Stable diffusion
model. At each step in the reverse diffusion
process, we estimate the clean latent vari-
able z0 and decode it to image space and
enforce data consistency. This data consis-
tent image is then encoded again to latent
space to resume reverse diffusion. While this
approach achieves data consistency, we find
that it is highly unstable due to the lossy na-
ture of the variational autoencoder. As the
number of inference steps increases, it re-
sults in unrealistic images with heavy arti-
facts. When the number of inference steps
is low, the artifacts reduce, however, the re-
sulting images are blurry, see the top row of
Fig. 9.18. On the other hand, we observed
that using the interpolated low resolution image as an initial estimate in the diffusion process
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‘A hand holds a can of Red Bull on a city street.’

A small brown and grey otter sitting in a small puddle.’

‘A white wedding cake decorated with light blue roses and light green leaves made of icing.’

‘A striped caterpillar on a green plant.’

Figure 9.16: Exploring multiple consistent solutions for the same text prompt ×8 SR on samples from nocaps dataset. The
text prompt used for guidance is provided. 5 randomly generated samples are shown

can lead to a totally different image without any guidance or consistency enforcement in
the intermediate steps. While the output of the Stable Diffusion model in this case is well-
aligned with the text prompt, it is not consistent with the measurement. As a result, the
corresponding null-space contents are not aligned with the pseudo-inverse solution. An
example is illustrated in the bottom row of Fig. 9.18, where the null space projection adds high
frequency details of the elderly woman onto the pseudo inverse reconstruction. Adapting the
Stable diffusion model for restoration may require a different guidance mechanism which
back-propagates the reconstruction loss through the decoder. In contrast, using the unCLIP
model allows us to perform DDNM for text guided reverse diffusion in the (down-sampled)
pixel space, which easily generates data-consistent images that are aligned with text.
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‘The orange lilies are surrounded by green leaves.’

‘A bowl of ice cream with syrup, raspberries, blueberries, blackberries and a wafer stick.’

‘A crown with blue jewels and diamonds.’

‘A fat blue jay sitting on a broken limb of a leafless tree.’

Figure 9.17: Exploring multiple consistent solutions for the same text prompt ×16 SR on samples from nocaps dataset. The
text prompt used for guidance is provided. 5 randomly generated samples are shown
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C O N C L U S I O N S
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C O N C L U S I O N S A N D F U T U R E W O R K

10.1 S U M M A R Y

The topic of robustness and generalization in deep learning has recently received a lot of
attention from the research community, focusing on different aspects including robustness
to adversarial examples, distribution shifts, and spurious correlations among others. This
dissertation analyzed and addressed some specific aspects of robustness and generalization
for deep learning methods in computer vision:

• We studied the robustness and invariance of deep learning based classifiers to geo-
metric transformations in Chapter 5. This was motivated by the real world necessity
of machine learning models to be robust to label-preserving spatial transformations.
We developed a simple solution to integrate invariance into arbitrary networks under
any infinite group actions by selecting a provably unique element from the orbit. This
task-independent strategy can be extended to obtain equivariance by applying the
corresponding inverse transformation to the network output. We demonstrated the
practical application of this approach for achieving rotation invariant image classifica-
tion and scale and orientation invariance in point cloud classification.

• We showed in Chapter 6 that deep models trained for image recovery are susceptible
to adversarial examples, even producing drastically different target images. We found
that such extreme vulnerabilities are more common in blind restoration networks
which have to cope with varying degradation operators across examples. On the other
hand, we found that reconstruction networks trained for a specific forward operator are
relatively more robust in terms of measurement consistency, even under adversarial
attacks. We devised a localized attack to modify the visual appearance of clinically
relevant regions while maintaining high consistency with the original measurement.
Such attacks can be used to explore semantically or diagnostically different solutions in
the solution space and can aid in dealing with uncertainties in ill-posed image recovery.
We also demonstrated the feasibility and transferability of universal attacks across
image recovery methods.

• We developed a flexible solution to light field recovery from measurements obtained
through different forward operators using conditional generative priors in Chapter
7. Although end-to-end trained deep network solutions exist for each of these set-
tings, they are affected by even small changes to the forward model. While the use
of generative priors offers the desired flexibility, extending such an approach to light
field recovery is challenging, due to the inherent difficulty in training a generative
model for high dimensional light fields for varying scene content. We handled these
challenges by training a generative model on light field patches conditioned on the
central view and devised a recovery method to perform optimization of both the latent
code and the central view. We demonstrated the advantages of this approach in com-
parison with end-to-end trained networks for light field recovery in terms of flexibility

145



10.2 D I S C U S S I O N A N D F U T U R E D I R E C T I O N S 146

and robustness to corruptions, and improved performance with respect to traditional
model-based approaches.

• We developed a simple method for generalized image manipulation through text
prompts leveraging a text-to-image latent diffusion model in Chapter 8. Our method
utilized deterministic forward and reverse processes with target text conditioning the
reverse process, which automatically resulted in a near cycle-consistency between the
source image and the manipulation result, while modifying the desired attributes. We
showed that introducing controlled stochasticity into this sampling process aids the
manipulation process when the target text is highly different from input, and showed
that this method is also amenable to editing with additional mask inputs. We demon-
strated advantages in terms of speed and flexibility, in comparison with previous image
manipulation methods using text inputs.

• We introduced the problem of exploring solutions to open domain image restoration
through text prompts in Chapter 9. We developed a zero-shot approach that utilized a
pretrained text-to-image diffusion model by modifying its reverse diffusion process to
analytically enforce consistency of the solutions with measurements. We introduced an
embeddings average trick which can improve the plausibility of solutions. We showed
that this approach can recover diverse reconstructions which preserve data consistency
with the degraded inputs while being semantically consistent with input text. In con-
trast, class-specific generative priors do not yield satisfactory reconstructions, when
the image is even slightly out of distribution to the training set.

10.2 D I S C U S S I O N A N D F U T U R E D I R E C T I O N S

In summary, this thesis makes some contributions towards improving the robustness and
generalization of deep learning methods for image recovery and classification. We provide a
few suggestions for future work below.

While we proposed a solution to integrate invariances into arbitrary deep networks under
infinite group actions in Chapter 5 through analytic canonicalization of orientation, more
recent work Kaba et al. (2023) proposes to learn the canonicalization. In the future, it would
also be interesting to extend learned canonicalization to achieve local invariances of objects
in an image, as it is difficult to obtain analytical solutions to the same.

Our analysis of the adversarial robustness of image recovery methods in Chapter 6 re-
vealed that different image recovery methods have different degrees of robustness. This
motivates us to build more stable approaches to image recovery. Our follow-up work Agni-
hotri et al. (2023) shows that image recovery networks achieving similar performance for
clean inputs can have widely different degrees of robustness with adversarial training, de-
pending on the architectural components used. One interesting direction is to explore in
more detail how the architecture design choices affect the performance and robustness of im-
age recovery networks, and design recovery networks that are robust and highly performant
through architecture search. As we have observed in Chapter 6, reconstruction networks
trained for a specific forward operator are relatively more robust in terms of measurement
consistency. Yet, these reconstructions are affected by severe artifacts under perturbations.
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In this context, it is important to develop suitable regularization to restrict deep network
solutions to satisfy certain desired properties while maintaining measurement consistency.

We have also seen in Chapters 6 and 9 that reconstructions with different semantic or
diagnostic meanings can satisfy measurement consistency equally well. In this context, it is
important to develop methods that can produce reconstructions with a measure of uncer-
tainty quantification which can be useful in safety critical applications, instead of providing
single point estimates. While we devised localized attacks in Chapter 6, which can serve to
explore diagnostically different solutions, we focused only on the reconstruction of 2D slices.
We look forward to extending the solution space exploration to 3D CT volume reconstruc-
tion where the adjacent slices can impose stronger constraints on reconstruction. While
this may be achieved through similar localized attacks, it can also be achieved by guiding
reconstructions through pre-trained generative models which naturally allow sampling the
solution space using a suitable guiding function. While such methods have been explored
in the context of image restoration Buhler et al. (2020) and in Chapter 9, we look forward to
extending these to other recovery tasks.

We have seen that image recovery using generative priors offers advantages over end-
to-end trained approaches in terms of flexible image recovery from a variety of forward
measurement processes, as well as the ability to sample a multitude of solutions. Yet, even
such methods have difficulty dealing with samples that are less represented in training
distribution, and the samples that are even slightly out of distribution to the training data.
While we observe improved recovery with text-to-image models trained on much larger
datasets, these models are also not free from the biases of their datasets. While balancing the
training data is one way to fix this problem, it is also necessary to devise improved training
and sampling mechanisms to obtain high fidelity samples even for attributes that are less
represented in training data.



B I B L I O G R A P H Y

(2018). Heidelberg collaboratory for image processing: 4d light field dataset. http://hci-
lightfield.iwr.uni-heidelberg.de/.

Abdal, R., Qin, Y., and Wonka, P. (2020). Image2stylegan++: How to edit the embedded images? In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8296–8305.

Abdal, R., Zhu, P., Femiani, J., Mitra, N. J., and Wonka, P. (2022). Clip2stylegan: Unsupervised extraction
of stylegan edit directions. In ACM SIGGRAPH.

Adler, J. and Öktem, O. (2017). Solving ill-posed inverse problems using iterative deep neural networks.
Inverse Problems, 33(12):124007.

Adler, J. and Öktem, O. (2018). Learned primal-dual reconstruction. IEEE Transactions on Medical
Imaging, 37(6):1322–1332.

Aggarwal, H. K., Mani, M. P., and Jacob, M. (2018). Modl: Model-based deep learning architecture for
inverse problems. IEEE Transactions on Medical Imaging, 38(2):394–405.

Agnihotri, S., Gandikota, K. V., Grabinski, J., Chandramouli, P., and Keuper, M. (2023). On the unreason-
able vulnerability of transformers for image restoration - and an easy fix. In IEEE/CVF International
Conference on Computer Vision Workshops, pages 3707–3717.

Agnihotri, S. and Keuper, M. (2023). Cospgd: a unified white-box adversarial attack for pixel-wise
prediction tasks. ArXiv, abs/2302.02213.

Agrawal, H., Desai, K., Wang, Y., Chen, X., Jain, R., Johnson, M., Batra, D., Parikh, D., Lee, S., and
Anderson, P. (2019). Nocaps: Novel object captioning at scale. In IEEE/CVF International Conference
on Computer Vision, pages 8948–8957.

Al-Shabi, M., Lan, B. L., Chan, W. Y., Ng, K.-H., and Tan, M. (2019). Lung nodule classification using
deep local–global networks. International journal of computer assisted radiology and surgery,
14(10):1815–1819.

Alaluf, Y., Patashnik, O., and Cohen-Or, D. (2021). Restyle: A residual-based stylegan encoder via
iterative refinement. In IEEE/CVF International Conference on Computer Vision, pages 6711–6720.

Alaluf, Y., Tov, O., Mokady, R., Gal, R., and Bermano, A. (2022). Hyperstyle: Stylegan inversion with
hypernetworks for real image editing. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 18511–18521.

Alayrac, J.-B., Uesato, J., Huang, P.-S., Fawzi, A., Stanforth, R., and Kohli, P. (2019). Are labels required
for improving adversarial robustness? Advances in Neural Information Processing Systems, 32.

Almahairi, A., Rajeshwar, S., Sordoni, A., Bachman, P., and Courville, A. (2018). Augmented cyclegan:
Learning many-to-many mappings from unpaired data. In International Conference on Machine
Learning, pages 195–204. PMLR.

Alperovich, A., Johannsen, O., Strecke, M., and Goldluecke, B. (2018). Light field intrinsics with a deep
encoder-decoder network. In IEEE Conference on Computer Vision and Pattern Recognition, pages
9145–9154.

Amos, B., Xu, L., and Kolter, J. Z. (2017). Input convex neural networks. In International Conference on
Machine Learning, pages 146–155. PMLR.

Andriushchenko, M. and Flammarion, N. (2020). Understanding and improving fast adversarial
training. Advances in Neural Information Processing Systems, 33:16048–16059.

148



BIBLIOGRAPHY 149

Anil, C., Lucas, J., and Grosse, R. (2019). Sorting out Lipschitz function approximation. In 36th
International Conference on Machine Learning, volume 97, pages 291–301. PMLR.

Anselmi, F., Leibo, J. Z., Rosasco, L., Mutch, J., Tacchetti, A., and Poggio, T. (2016). Unsupervised
learning of invariant representations. Theoretical Computer Science, 633:112–121.

Antun, V., Renna, F., Poon, C., Adcock, B., and Hansen, A. C. (2020). On instabilities of deep learning in
image reconstruction and the potential costs of ai. National Academy of Sciences, 117(48):30088–
30095.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In
International conference on machine learning, pages 214–223. PMLR.

Armato III, S. G., McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B.,
Aberle, D. R., Henschke, C. I., Hoffman, E. A., et al. (2011). The lung image database consortium
(lidc) and image database resource initiative (idri): a completed reference database of lung nodules
on ct scans. Medical physics, 38(2):915–931.

Arnab, A., Miksik, O., and Torr, P. H. S. (2018). On the robustness of semantic segmentation models to
adversarial attacks. In IEEE Conference on Computer Vision and Pattern Recognition.

Ashok, A. and Neifeld, M. A. (2010). Compressive light field imaging. In Three-Dimensional Imaging,
Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security,
and Avionics IV, volume 7690, page 76900Q. International Society for Optics and Photonics.

Asim, M., Daniels, M., Leong, O., Ahmed, A., and Hand, P. (2020a). Invertible generative models for
inverse problems: mitigating representation error and dataset bias. In International Conference on
Machine Learning, pages 399–409. PMLR.

Asim, M., Shamshad, F., and Ahmed, A. (2020b). Blind image deconvolution using deep generative
priors. IEEE Transactions on Computational Imaging, 6.

Athalye, A., Carlini, N., and Wagner, D. (2018). Obfuscated gradients give a false sense of security:
Circumventing defenses to adversarial examples. In 35th International Conference on Machine
Learning, volume 80, pages 274–283. PMLR.

Avrahami, O., Fried, O., and Lischinski, D. (2023). Blended latent diffusion. ACM Transactions on
Graphics (TOG), 42(4):1–11.

Avrahami, O., Lischinski, D., and Fried, O. (2022). Blended diffusion for text-driven editing of natural
images. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18208–18218.

Babacan, S. D., Ansorge, R., Luessi, M., Mataran, P. R., Molina, R., and Katsaggelos, A. K. (2012).
Compressive light field sensing. IEEE Transactions on Image Processing, 21(12):4746–4757.

Baguer, D. O., Leuschner, J., and Schmidt, M. (2020). Computed tomography reconstruction using
deep image prior and learned reconstruction methods. Inverse Problems, 36(9):094004.

Bahat, Y. and Michaeli, T. (2020). Explorable super resolution. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2716–2725.

Bahat, Y. and Michaeli, T. (2021). What’s in the image? explorable decoding of compressed images. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2908–2917.

Bahng, H., Yoo, S., Cho, W., Park, D. K., Wu, Z., Ma, X., and Choo, J. (2018). Coloring with words:
Guiding image colorization through text-based palette generation. In European Conference on
Computer Vision.

Bai, S., Kolter, J. Z., and Koltun, V. (2019). Deep equilibrium models. Advances in Neural Information
Processing Systems, 32.

Bai, Y., Mei, J., Yuille, A. L., and Xie, C. (2021). Are transformers more robust than cnns? Advances in
Neural Information Processing Systems, 34:26831–26843.



BIBLIOGRAPHY 150

Balunovic, M., Baader, M., Singh, G., Gehr, T., and Vechev, M. (2019). Certifying geometric robustness
of neural networks. Advances in Neural information processing systems, 32.

Bansal, A., Chu, H.-M., Schwarzschild, A., Sengupta, S., Goldblum, M., Geiping, J., and Goldstein, T.
(2023). Universal guidance for diffusion models. arXiv preprint arXiv:2302.07121.

Bar-Tal, O., Ofri-Amar, D., Fridman, R., Katen, Y., and Dekel, T. (2022). Text2live: Text-driven layered
image and video editing. In European Conference on Computer Vision.

Bau, D., Andonian, A., Cui, A., Park, Y., Jahanian, A., Oliva, A., and Torralba, A. (2021). Paint by word.
arXiv preprint arXiv:2103.10951.

Bau, D., Strobelt, H., Peebles, W., Wulff, J., Zhou, B., Zhu, J.-Y., and Torralba, A. (2019a). Semantic
photo manipulation with a generative image prior. ACM Trans. Graph., 38(4):59:1–59:11.

Bau, D., Zhu, J.-Y., Wulff, J., Peebles, W., Strobelt, H., Zhou, B., and Torralba, A. (2019b). Seeing what a
gan cannot generate. In IEEE/CVF International Conference on Computer Vision, pages 4502–4511.

Bauermeister, H., Burger, M., and Moeller, M. (2020). Learning spectral regularizations for linear
inverse problems. In NeurIPS 2020 Workshop on Deep Learning and Inverse Problems.

Beck, A. and Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal of Imaging Sciences, 2:183–202.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization, volume 28. Princeton
university press.

Bengio, Y., Courville, A., and Vincent, P. (2013). Representation learning: A review and new perspectives.
IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828.

Benning, M. and Burger, M. (2018). Modern regularization methods for inverse problems. Acta
Numerica, 27:1–111.

Benton, G. W., Finzi, M., Izmailov, P., and Wilson, A. G. (2020). Learning invariances in neural networks
from training data. In Advances in Neural information processing systems.

Bernstein, J., Wang, Y.-X., Azizzadenesheli, K., and Anandkumar, A. (2018). signsgd: Compressed
optimisation for non-convex problems. arXiv preprint arXiv:1802.04434.

Bertocchi, C., Chouzenoux, E., Corbineau, M.-C., Pesquet, J.-C., and Prato, M. (2020). Deep unfolding
of a proximal interior point method for image restoration. Inverse Problems, 36(3):034005.

Bevilacqua, M., Roumy, A., Guillemot, C., and Alberi-Morel, M. L. (2012). Low-complexity single-image
super-resolution based on nonnegative neighbor embedding. In British Machine Vision Conference
(BMVC). BMVA press.

Bigdeli, S. A., Zwicker, M., Favaro, P., and Jin, M. (2017). Deep mean-shift priors for image restoration.
Advances in Neural Information Processing Systems, 30.

Bioucas-Dias, J. M. (2006). Bayesian wavelet-based image deconvolution: A gem algorithm exploiting
a class of heavy-tailed priors. IEEE Transactions on Image Processing, 15(4):937–951.

Bioucas-Dias, J. M., Figueiredo, M. A., and Oliveira, J. P. (2006). Total variation-based image deconvo-
lution: a majorization-minimization approach. In 2006IEEEInternational Conference on Acoustics
Speech and Signal Processing Proceedings, volume 2, pages II–II. IEEE.

Blau, Y. and Michaeli, T. (2018). The perception-distortion tradeoff. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 6228–6237.

Blocker, C. J. and Fessler, J. A. (2019). Blind unitary transform learning for inverse problems in
light-field imaging. In IEEE International Conference on Computer Vision Workshops, pages 0–0.

Bohra, P., Pham, T.-a., Dong, J., and Unser, M. (2022). Bayesian inversion for nonlinear imaging models
using deep generative priors. IEEE Transactions on Computational Imaging, 8:1237–1249.



BIBLIOGRAPHY 151

Bolte, J., Sabach, S., Teboulle, M., and Vaisbourd, Y. (2018). First order methods beyond convexity
and lipschitz gradient continuity with applications to quadratic inverse problems. SIAM Journal on
Optimization, 28(3):2131–2151.

Bond-Taylor, S., Hessey, P., Sasaki, H., Breckon, T. P., and Willcocks, C. G. (2022). Unleashing trans-
formers: parallel token prediction with discrete absorbing diffusion for fast high-resolution image
generation from vector-quantized codes. In European Conference on Computer Vision, pages
170–188. Springer.

Bora, A., Jalal, A., Price, E., and Dimakis, A. G. (2017). Compressed sensing using generative models. In
34th International Conference on Machine Learning-Volume 70, pages 537–546. JMLR. org.

Bostan, E., Heckel, R., Chen, M., Kellman, M., and Waller, L. (2020). Deep phase decoder: self-
calibrating phase microscopy with an untrained deep neural network. Optica, 7(6):559–562.

Bouman, C. and Sauer, K. (1993). A generalized gaussian image model for edge-preserving map
estimation. IEEE Transactions on Image Processing, 2(3):296–310.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Now Publishers.

Brendel, W., Rauber, J., Kümmerer, M., Ustyuzhaninov, I., and Bethge, M. (2019). Accurate, reliable
and fast robustness evaluation. Advances in neural information processing systems, 32.

Brock, A., De, S., Smith, S. L., and Simonyan, K. (2021). High-performance large-scale image recogni-
tion without normalization. arXiv preprint arXiv:2102.06171.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale GAN training for high fidelity natural
image synthesis. In International Conference on Learning Representations.

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2017). Neural photo editing with introspective adversarial
networks. In International Conference on Learning Representations.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., et al. (2020). Language models
are few-shot learners. Advances in neural information processing systems, 33:1877–1901.

Brown, T. B., Mané, D., Roy, A., Abadi, M., and Gilmer, J. (2017). Adversarial patch. In Machine Learning
and Computer Security Workshop, Neural Information Processing Systems.

Bruckstein, A. M., Donoho, D. L., and Elad, M. (2009). From sparse solutions of systems of equations
to sparse modeling of signals and images. SIAM review, 51(1):34–81.

Bruna, J. and Mallat, S. (2013). Invariant scattering convolution networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 35(8):1872–1886.

Bryniarski, O., Hingun, N., Pachuca, P., Wang, V., and Carlini, N. (2022). Evading adversarial example
detection defenses with orthogonal projected gradient descent. In International Conference on
Learning Representations.

Buades, A., Coll, B., and Morel, J.-M. (2005). A non-local algorithm for image denoising. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 60–65
vol. 2.

Buhler, M. C., Romero, A., and Timofte, R. (2020). Deepsee: Deep disentangled semantic explorative
extreme super-resolution. In Asian Conference on Computer Vision.

Burger, H. C., Schuler, C. J., and Harmeling, S. (2012). Image denoising: Can plain neural networks
compete with BM3D? In IEEE Int. Conf. Computer Vision and Pattern Recognition, pages 2392–2399.

Burger, M., Resmerita, E., and He, L. (2007). Error estimation for bregman iterations and inverse scale
space methods in image restoration. Computing, 81(2):109–135.

Cai, Z., Tang, J., Mukherjee, S., Li, J., Schönlieb, C. B., and Zhang, X. (2023). Nf-ula: Langevin monte
carlo with normalizing flow prior for imaging inverse problems. arXiv preprint arXiv:2304.08342.



BIBLIOGRAPHY 152

Carlini, N. and Wagner, D. (2017a). Adversarial examples are not easily detected: Bypassing ten
detection methods. In 10th ACM workshop on artificial intelligence and security, pages 3–14.

Carlini, N. and Wagner, D. (2017b). Towards evaluating the robustness of neural networks. In
2017IEEEsymposium on security and privacy (sp), pages 39–57. IEEE.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., and Liang, P. S. (2019). Unlabeled data improves
adversarial robustness. Advances in neural information processing systems, 32.

Carrara, F., Becarelli, R., Caldelli, R., Falchi, F., and Amato, G. (2018). Adversarial examples detection in
features distance spaces. In European Conference on Computer Vision Workshops, pages 0–0.

Chadebec, C., Vincent, L., and Allassonnière, S. (2022). Pythae: Unifying generative autoencoders in
python-a benchmarking use case. Advances in Neural Information Processing Systems, 35:21575–
21589.

Chakrabarti, A. (2016). A neural approach to blind motion deblurring. In European Conference on
Computer Vision, pages 221–235.

Chambolle, A., Caselles, V., Cremers, D., Novaga, M., and Pock, T. (2010). An introduction to total
variation for image analysis. Theoretical foundations and numerical methods for sparse recovery,
9(263-340):227.

Chambolle, A. and Pock, T. (2011). A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40:120–145.

Chan, S. H., Wang, X., and Elgendy, O. A. (2016). Plug-and-play admm for image restoration: Fixed-
point convergence and applications. IEEE Transactions on Computational Imaging, 3(1):84–98.

Chandramouli, P., Gandikota, K. V., Goerlitz, A., Kolb, A., and Moeller, M. (2022). A generative model
for generic light field reconstruction. IEEE Transactions on Pattern Analysis & Machine Intelligence,
44(04):1712–1724.

Chang, R. J., Li, C.-L., Poczos, B., Vijaya Kumar, B., and Sankaranarayanan, A. C. (2017). One network to
solve them all–solving linear inverse problems using deep projection models. In IEEE International
Conference on Computer Vision, pages 5888–5897.

Chantas, G. K., Galatsanos, N. P., and Likas, A. C. (2006). Bayesian restoration using a new nonstationary
edge-preserving image prior. IEEE Transactions on Image Processing, 15(10):2987–2997.

Chaurasia, G., Duchene, S., Sorkine-Hornung, O., and Drettakis, G. (2013). Depth synthesis and local
warps for plausible image-based navigation. ACM Transactions on Graphics, 32(3).

Chen, B., Ruan, L., and Lam, M.-L. (2020a). Lfgan: 4d light field synthesis from a single rgb image.
ACM Trans. Multimedia Comput. Commun. Appl., 16(1).

Chen, D. and Davies, M. E. (2020). Deep decomposition learning for inverse imaging problems. In
European Conference on Computer Vision, pages 510–526. Springer.

Chen, G., Dumay, A., and Tang, M. (2021). diffvg+CLIP: Generating painting trajectories from text.
preprint.

Chen, H., Zhang, Y., Kalra, M. K., Lin, F., Chen, Y., Liao, P., Zhou, J., and Wang, G. (2017). Low-dose
ct with a residual encoder-decoder convolutional neural network. IEEE Transactions on Medical
Imaging, 36(12):2524–2535.

Chen, J., Shen, Y., Gao, J., Liu, J., and Liu, X. (2018). Language-based image editing with recurrent
attentive models. In IEEE Conference on Computer Vision and Pattern Recognition, pages 8721–8729.

Chen, L., Chu, X., Zhang, X., and Sun, J. (2022a). Simple baselines for image restoration. In European
Conference on Computer Vision.

Chen, L., Fang, F., Wang, T., and Zhang, G. (2019). Blind image deblurring with local maximum gradient
prior. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.



BIBLIOGRAPHY 153

Chen, X., Liang, C., Huang, D., Real, E., Wang, K., Liu, Y., Pham, H., Dong, X., Luong, T., Hsieh, C.-J., Lu,
Y., and Le, Q. V. (2023a). Symbolic discovery of optimization algorithms.

Chen, X., Wang, X., Zhou, J., Qiao, Y., and Dong, C. (2023b). Activating more pixels in image super-
resolution transformer. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22367–22377.

Chen, Y.-C., Gao, C., Robb, E., and Huang, J.-B. (2020b). Nas-dip: Learning deep image prior with
neural architecture search. In 16th European Conference on Computer Vision, pages 442–459.
Springer.

Chen, Z., Jin, X., Li, L., and Wang, G. (2013). A limited-angle ct reconstruction method based on
anisotropic tv minimization. Physics in Medicine & Biology, 58(7):2119.

Chen, Z., Zhang, Y., Gu, J., Kong, L., Yuan, X., et al. (2022b). Cross aggregation transformer for image
restoration. Advances in Neural Information Processing Systems, 35:25478–25490.

Cheng, K., Calivá, F., Shah, R., Han, M., Majumdar, S., and Pedoia, V. (2020). Addressing the false
negative problem of deep learning mri reconstruction models by adversarial attacks and robust
training. In 3rd Conference on Medical Imaging with Deep Learning. PMLR.

Cho, S.-J., Ji, S.-W., Hong, J.-P., Jung, S.-W., and Ko, S.-J. (2021). Rethinking coarse-to-fine approach in
single image deblurring. In IEEE/CVF international conference on computer vision, pages 4641–4650.

Choi, J., Kim, S., Jeong, Y., Gwon, Y., and Yoon, S. (2021). Ilvr: Conditioning method for denoising
diffusion probabilistic models. arXiv preprint arXiv:2108.02938.

Choi, J.-H., Zhang, H., Kim, J.-H., Hsieh, C.-J., and Lee, J.-S. (2019). Evaluating robustness of deep im-
age super-resolution against adversarial attacks. In IEEE/CVF International Conference on Computer
Vision.

Choi, Y., Choi, M., Kim, M., Ha, J.-W., Kim, S., and Choo, J. (2018). Stargan: Unified generative
adversarial networks for multi-domain image-to-image translation. In IEEE conference on computer
vision and pattern recognition, pages 8789–8797.

Choi, Y., Uh, Y., Yoo, J., and Ha, J.-W. (2020). Stargan v2: Diverse image synthesis for multiple domains.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8188–8197.

Chung, H., Kim, J., Kim, S., and Ye, J. C. (2022a). Parallel diffusion models of operator and image for
blind inverse problems.

Chung, H., Kim, J., Mccann, M. T., Klasky, M. L., and Ye, J. C. (2023). Diffusion posterior sampling for
general noisy inverse problems. In International Conference on Learning Representations.

Chung, H., Sim, B., Ryu, D., and Ye, J. C. (2022b). Improving diffusion models for inverse problems
using manifold constraints. In Advances in Neural Information Processing Systems.

Chung, H., Sim, B., and Ye, J. C. (2022c). Come-closer-diffuse-faster: Accelerating conditional diffusion
models for inverse problems through stochastic contraction. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12413–12422.

Cohen, J., Rosenfeld, E., and Kolter, Z. (2019). Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pages 1310–1320. PMLR.

Cohen, R., Blau, Y., Freedman, D., and Rivlin, E. (2021). It has potential: Gradient-driven denoisers
for convergent solutions to inverse problems. Advances in Neural Information Processing Systems,
34:18152–18164.

Cohen, T. and Welling, M. (2016). Group equivariant convolutional networks. In International
Conference on Machine Learning, pages 2990–2999.

Collins, E., Bala, R., Price, B., and Susstrunk, S. (2020). Editing in style: Uncovering the local semantics
of gans. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5771–5780.



BIBLIOGRAPHY 154

Combettes, P. L. and Pesquet, J.-C. (2020). Lipschitz certificates for layered network structures driven
by averaged activation operators. SIAM Journal on Mathematics of Data Science, 2(2):529–557.

Couairon, G., Grechka, A., Verbeek, J., Schwenk, H., and Cord, M. (2022). Flexit: Towards flexible
semantic image translation. In IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 18270–18279.

Couairon, G., Verbeek, J., Schwenk, H., and Cord, M. (2023). Diffedit: Diffusion-based semantic image
editing with mask guidance. In The Eleventh International Conference on Learning Representations.

Croce, F. and Hein, M. (2022). On the interplay of adversarial robustness and architecture components:
patches, convolution and attention. In ICML Workshop on New Frontiers in Adversarial Machine
Learning.

Crowson, K., Biderman, S., Kornis, D., Stander, D., Hallahan, E., Castricato, L., and Raff, E. (2022).
Vqgan-clip: Open domain image generation and editing with natural language guidance. In Euro-
pean Conference on Computer Vision.

Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by sparse 3-d transform-
domain collaborative filtering. IEEE Transactions on image processing, 16(8):2080–2095.

Daras, G., Dean, J., Jalal, A., and Dimakis, A. (2021). Intermediate layer optimization for inverse
problems using deep generative models. In International Conference on Machine Learning (ICML).

Darestani, M. Z., Chaudhari, A. S., and Heckel, R. (2021). Measuring robustness in deep learning based
compressive sensing. In International Conference on Machine Learning, pages 2433–2444. PMLR.

Das, N., Shanbhogue, M., Chen, S.-T., Hohman, F., Li, S., Chen, L., Kounavis, M. E., and Chau, D. H.
(2018). Shield: Fast, practical defense and vaccination for deep learning using jpeg compression. In
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 196–204.

Daskalakis, C., Ilyas, A., Syrgkanis, V., and Zeng, H. (2018). Training GANs with optimism. In Interna-
tional Conference on Learning Representations.

de Jorge Aranda, P., Bibi, A., Volpi, R., Sanyal, A., Torr, P., Rogez, G., and Dokania, P. (2022). Make
some noise: Reliable and efficient single-step adversarial training. Advances in Neural Information
Processing Systems, 35:12881–12893.

Deng, H., Birdal, T., , and Ilic, S. (2018). Ppf-foldnet: Unsupervised learning of rotation invariant 3d
local descriptors. In European Conference on Computer Vision.

Dhar, M., Grover, A., and Ermon, S. (2018). Modeling sparse deviations for compressed sensing using
generative models. In International Conference on Machine Learning, pages 1214–1223. PMLR.

Dhariwal, P. and Nichol, A. (2021). Diffusion models beat GANs on image synthesis. In Advances in
Neural Information Processing Systems, volume 34.

Ding, M., Yang, Z., Hong, W., Zheng, W., Zhou, C., Yin, D., Lin, J., Zou, X., Shao, Z., Yang, H., and
Tang, J. (2021). CogView: Mastering text-to-image generation via transformers. Advances in Neural
Information Processing Systems, 34.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real NVP. In International
Conference on Learning Representations.

Dinh, T. M., Tran, A. T., Nguyen, R., and Hua, B.-S. (2022). Hyperinverter: Improving stylegan inversion
via hypernetwork. In IEEE/CVF Conference on Computer Vision and Pattern Recognition.

Dong, H., Yu, S., Wu, C., and Guo, Y. (2017). Semantic image synthesis via adversarial learning. In IEEE
International Conference on Computer Vision, pages 5706–5714.

Dong, J., Roth, S., and Schiele, B. (2020). Deep wiener deconvolution: Wiener meets deep learning for
image deblurring. Advances in Neural Information Processing Systems, 33.



BIBLIOGRAPHY 155

Dong, Y., Ruan, S., Su, H., Kang, C., Wei, X., and Zhu, J. (2022). Viewfool: Evaluating the robustness of
visual recognition to adversarial viewpoints. Advances in Neural Information Processing Systems,
35:36789–36803.

Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on information theory, 52(4):1289–1306.

Donoho, D. L. and Elad, M. (2003). Maximal sparsity representation via l1 minimization. Proceedings
National Academy of Sciences, 100(5):2197–2202.

Dröge, H., Bahat, Y., Heide, F., and Möller, M. (2022). Explorable data consistent ct reconstruction. In
British Machine Vision Conference.

Eboli, T., Sun, J., and Ponce, J. (2020). End-to-end interpretable learning of non-blind image deblurring.
In European Conference on Computer Vision, pages 314–331. Springer.

Eisenberger, M., Toker, A., Leal-Taixé, L., and Cremers, D. (2020). Deep shells: Unsupervised shape
correspondence with optimal transport. In Advances in Neural information processing systems.

Elad, M. (2010). Sparse and redundant representations: from theory to applications in signal and image
processing, volume 2. Springer.

Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over
learned dictionaries. IEEE Transactions on Image processing, 15(12):3736–3745.

Engstrom, L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A. (2019). Exploring the landscape of spatial
robustness. In International Conference on Machine Learning, pages 1802–1811.

Engstrom, L., Tsipras, D., Schmidt, L., and Madry, A. (2017). A rotation and a translation suffice:
Fooling cnns with simple transformations. arXiv preprint arXiv:1712.02779, 1(2):3.

Esser, P., Rombach, R., Blattmann, A., and Ommer, B. (2021a). Imagebart: Bidirectional context
with multinomial diffusion for autoregressive image synthesis. Advances in Neural Information
Processing Systems, 34:3518–3532.

Esser, P., Rombach, R., and Ommer, B. (2021b). Taming transformers for high-resolution image
synthesis. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12873–12883.

Esteves, C., Allen-Blanchette, C., Makadia, A., and Daniilidis, K. (2018a). Learning so (3) equivariant
representations with spherical cnns. In European Conference on Computer Vision, pages 52–68.

Esteves, C., Allen-Blanchette, C., Zhou, X., and Daniilidis, K. (2018b). Polar transformer networks. In
International Conference on Learning Representations.

Eykholt, K., Evtimov, I., Fernandes, E., Li, B., Rahmati, A., Xiao, C., Prakash, A., Kohno, T., and Song, D.
(2018). Robust physical-world attacks on deep learning visual classification. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1625–1634.

Fang, J., Lin, H., Chen, X., and Zeng, K. (2022). A hybrid network of cnn and transformer for lightweight
image super-resolution. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1103–1112.

Fasel, B. and Gatica-Perez, D. (2006). Rotation-invariant neoperceptron. In International Conference
on Pattern Recognition, volume 3, pages 336–339. IEEE.

Feinman, R., Curtin, R. R., Shintre, S., and Gardner, A. B. (2017). Detecting adversarial samples from
artifacts. arXiv preprint arXiv:1703.00410.

Feldkamp, L. A., Davis, L. C., and Kress, J. W. (1984). Practical cone-beam algorithm. Journal of the
Optical Society of America A, Optics and image science, 1(6):612–619.

Figueiredo, M. A., Bioucas-Dias, J. M., and Nowak, R. D. (2007). Majorization–minimization algorithms
for wavelet-based image restoration. IEEE Trans. Image Process., 16:2980–2991.

Finlayson, S. G., Bowers, J. D., Ito, J., Zittrain, J. L., Beam, A. L., and Kohane, I. S. (2019). Adversarial
attacks on medical machine learning. Science, 363(6433):1287–1289.



BIBLIOGRAPHY 156

Fischer, M., Baader, M., and Vechev, M. (2020). Certified defense to image transformations via
randomized smoothing. In Advances in Neural information processing systems, volume 33.

Fischer, V., Mummadi, C. K., Metzen, J. H., and Brox, T. (2017). Adversarial examples for semantic
segmentation and object detection. In International Conference on Learning Representations
Workshops.

Fischetti, M. and Jo, J. (2018). Deep neural networks and mixed integer linear optimization. Constraints,
23(3):296–309.

Frans, K., Soros, L. B., and Witkowski, O. (2021). Clipdraw: Exploring text-to-drawing synthesis through
language-image encoders. arXiv preprint arXiv:2106.14843.

Freedman, G. and Fattal, R. (2011). Image and video upscaling from local self-examples. ACM
Transactions on Graphics (TOG), 30(2):1–11.

Fuchs, F., Worrall, D., Fischer, V., and Welling, M. (2020). Se (3)-transformers: 3d roto-translation
equivariant attention networks. Advances in Neural information processing systems, 33.

Fuoli, D., Van Gool, L., and Timofte, R. (2021). Fourier space losses for efficient perceptual image
super-resolution. In IEEE/CVF International Conference on Computer Vision, pages 2360–2369.

Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., and Taigman, Y. (2022). Make-a-scene: Scene-
based text-to-image generation with human priors. In European Conference on Computer Vision,
pages 89–106. Springer.

Gal, R., Patashnik, O., Maron, H., Bermano, A. H., Chechik, G., and Cohen-Or, D. (2022). Stylegan-
nada: Clip-guided domain adaptation of image generators. ACM Transactions on Graphics (TOG),
41(4):1–13.

Galatolo, F. A., Cimino, M. G., and Vaglini, G. (2021). Generating images from caption and vice versa
via clip-guided generative latent space search. arXiv preprint arXiv:2102.01645.

Gandikota, K. V. and Chandramouli, P. (2023). Exploring open domain image super-resolution through
text. In ICML 2023 Workshop on Artificial Intelligence & Human-Computer Interaction.

Gandikota, K. V., Chandramouli, P., Dröge, H., and Moeller, M. (2023). Evaluating adversarial robustness
of low dose CT recovery. In Medical Imaging with Deep Learning.

Gandikota, K. V., Chandramouli, P., and Moeller, M. (2022a). On adversarial robustness of deep image
deblurring. In IEEE International Conference on Image Processing, pages 3161–3165.

Gandikota, K. V., Geiping, J., Laehner, Z., Czapliński, A., and Moeller, M. (2022b). A simple strategy
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