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Abstract: Robust scene understanding algo-
rithms are crucial for the success of autonomous
navigation. The supervised learning of semantic
segmentation unfortunately requires large and di-
verse datasets. For some self-driving tasks, such
as navigating a robot within an industrial facil-
ity, freely available datasets are not available, and
manual annotation of large datasets is impractical
for smaller development teams. While there are
approaches to automatically generate synthetic
data, they can be computationally expensive, re-
quire significant preparation effort, or miss a wide
variety of features. This paper presents a new
framework for generating synthetic datasets with
high variance for low computing demands that can
be easily adapted to different self-driving tasks
The details of the framework can be found at
https://github.com/cITIcar/SAD-Generator. As
a demonstration, this approach was applied to a
semantic segmentation task on a miniature road
with random obstacles, lane markings, and dis-
turbing artifacts. A U-Net was trained using syn-
thesized data and later fine-tuned with a small
amount of manually annotated data. This re-
sulted in an improvement of 2.5 percentage points
in pixel accuracy (PA) and 11.19 percentage points
in mean intersection over union (mIoU).

1 Introduction

We put forward the hypothesis that the overall ac-
ceptance of autonomous navigation is closely tied
to the performance of scene understanding in ex-

treme and unforeseen circumstances. Understand-
ing the surroundings helps the system to avoid
obstacles, locate the drive path and react to other
entities. This task can be accomplished through
semantic segmentation, which assigns each pixel of
an image to a specific semantic category. Semantic
segmentation has already demonstrated impres-
sive results in the past [1, 2, 3, 4]. Pixel-wise pre-
dictions can be achieved using a Neural Network
architecture called Fully Convolutional Network
(FCN) firstly mentioned by Long et al. [5].
A robust algorithm keeps a high accuracy even

in situations with bad lighting, disturbing arte-
facts or obstacles. The training of supervised Neu-
ral Networks requires huge datasets, representing
the variety of situations in inference. Annotating
such a large quantity of data is time consuming
and expensive, representing a bottleneck for small
development projects with tight time and finan-
cial resources. Too small datasets result in de-
teriorated performance due to overfitting of the
Neural Network [7].
To match the need for data to train semantic

segmentation algorithms many large automotive
datasets have been published like the Cityscapes
[8], the KITTI [11] or the Toronto dataset [12].
For navigation tasks that do not occur in urban
streets, but for instance in industrial environments,
these available datasets are not applicable.
Another approach is generating synthetic data

[9]. The idea is to create artificial images that
resemble the real world. The program generates
the images for a given ground-truth, so annotation
is simple, the computational complexity is domi-
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nated by producing a realistic image. Using syn-
thetic data, even rare and thus under-represented
situations may occur arbitrary often.

In the past many automotive synthetic datasets
based on game engines and graphic simulators have
been created, such as the Synthia [9], the Virtual
KITTI 2 [13] and the GTA [10] dataset. Unfortu-
nately they are computational expensive to gen-
erate and mostly demand artistic modelling of a
detailed environment [7]. The high expense nec-
essary to generate one photo-realistic annotated
sample contradicts the primary selling point of
synthetic data, that labelled data is available for
nearly free.
To counter the high expense of synthetic data

Tobin et al. [14] introduced the method of domain
randomization (DR). This approach creates a non
photo-realistic environment with many randomly
generated features to force the network to learn
the relevant features of an image.
Tremblay et al. [7] extended DR to object de-

tection and generated low cost synthetic samples
with great variance. Figure 1 shows an example
of a generated image by DR. Their images have
been created in the following work flow:

� A random number of objects of interest are
placed in a random orientation inside a 3D
scene.

� A random number of distracting objects are
placed in a random orientation inside a 3D
scene.

� Random colors and textures are applied to
the objects.

� A random background is added to the scene.

� Random light is projected on to the scene.

� A random perspective of the scene is chosen.

They compared the effectiveness of their dataset
with the photo-realistic, synthetic dataset virtual
KITTI [13]. The original KITTI dataset [11] was
used as test dataset. Deep learning networks per-
formed better when trained on their dataset than
when trained on virtual KITTI. Furthermore, they
demonstrated that training their dataset plus fine
tuning the network with real world data outper-
formed networks only training with real world data.
Their approach is highly scalable and efficient

when the objects of interest are in the foreground
of the image rather than the background. In their

Figure 1: A generated image with Domain Randomiza-
tion [7]. In their work they trained object de-
tection for a real world urban environment

work the ground plane is not annotated with a rel-
evant object class. The images inserted on their
ground plane were collected manually. But for the
task of semantic segmentation in autonomous nav-
igation the ground plane plays a major role. The
relevant visual information are not only the ob-
jects in the foreground (such as obstacles) but also
features on the ground plane (for instance lane
markings).
Our work enhances the approach of DR to au-

tomate the creation of random ground planes that
are accurately labelled. We present a framework
that demands less design effort adapting it to dif-
ferent self-driving tasks on flat surfaces with vis-
ible lane markings. Our approach is highly scal-
able, runs cost effective on a standard CPU and
creates a great variance of random features. It is
an ideal solution for small teams developing au-
tonomous robots. The ground plane is automati-
cally generated by placing pre-annotated tiles in a
useful manner. After the scene is built the plane
gets post processed by adding disturbing artefacts
like reflections, dust and textures.
Our framework is not meant to challenge syn-

thetic datasets for urban streets like virtual KITTI
[11] or SYNTHIA [9] that take place in complex
and non flat environments. It is especially de-
signed for simpler navigation tasks on flat surfaces,
such as transport robots in a industrial facility.
Our work lowers the hurdle for small development
teams to tackle the need for large datasets.

2 Framework for Synthetic Data

The essential idea of this framework is, that many
navigation tasks happen in closed and and con-
trolled environments on a flat ground. In these
scenarios, the crucial information for the self-driving
entity lies in lane markings and the location of
obstacles, such as other robots. The framework
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generates annotated data with great variety for
low computational cost. However, manual image
annotation is still required for fine-tuning Neural
Networks.

The framework simplifies the environment of
the vehicle to following five basic elements (also
called chunks): straight lines, 90° left turns, 90°
right turns, intersections and an empty chunk.
The user of the framework adds as many images
to a chunk as appropriate. A chunk can have mul-
tiple images, but only has one annotation. Each
image must be in bird’s eye view and have a consis-
tent scale. Figure 2 shows an example of a chunk
image with its annotation. Adding different im-
ages to a chunk increases the variety of the data.

Figure 2: An image with its annotation representing a in-
tersection chunk. The pixels of the image are
assigned to a semantic class by their color (class
’left lane’: yellow, class ’right lane’: green, class
’obstacle’: red, class ’intersection’: orange).

The program picks random chunks and assem-
bles them successively to create a continuous road
with a defined length. Every chunk is put in an
orientation and location that is compatible with
its predecessor. All the space not covered by the
road is filled with empty chunks to gain a result-
ing image in rectangular shape. This process is
done simultaneously for the image and annotation.
Figure 3 shows a possible placement of chunks.
The result of this operation is an artificial im-
age of the ground plane and its exact annotation.
Such a ground plane is depicted in figure 4. The
course of the road is highly flexible. For every new
chunk the program can chose one of four differ-
ent chunks. The amount of possible combinations
that can be achieved in the best case by a road
with a length of n chunks is pn = 4n. The pro-
gram prohibits the chunks to overlap (the snake
biting in its own tail), so the actual number is
slightly lower than 4n. Consider following exam-
ples: p5 = 1024, p7 = 16384

Figure 3: The framework arranges the chunks to a road
like in a board game. The mn- coordinate sys-
tem defines the position and orientation of a
virtual car (red). The hv- coordinate system
represents the image (black)

Figure 4: Example of an image and its annotation show-
ing the synthetic generated ground plane in
bird’s-eye-view.

In the following step the artificial image gets
post-processed to randomly alter its appearance.
Following post-processing steps are made:

� Random particles are added to the image to
represent dust or dirt on the road.

� Random images are placed on the ground
plane to simulate larger interfering artifacts
such as reflections. The program picks the
artifacts from a source folder to which the
user can add arbitrary images.

� Random contrast and brightness is applied
to the image.

� Random areas of the lane markings are cov-
ered by black patches to hide visual infor-
mation.

� Random objects of other classes are randomly
inserted on the image and annotation.
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In the next step the program transforms the im-
ages from bird’s-eye-view into camera perspective.
Figure 5 shows an image in camera perspective
with its corresponding label. The data generator
moves a fictitious car along the road and takes pic-
tures from its position and orientation in camera
perspective.
The chunks representing the road are structured

in a FIFO list. As soon as the car leaves its initial
chunk so that it is no longer visible to the camera,
it is removed from the ground plane. Simultane-
ously a new chunk gets randomly added to the the
end of the road. The program adds optical arti-
facts such as Gaussian blur to the camera images.
The application runs with around 25 FPS on our
Notebook CPU (Intel Core i7-8750H @ 2.2GHz).

Figure 5: A synthetic image with its annotation in camera

perspective

3 Evaluation

The benefit of this framework for computer vi-
sion performance was tested on a racetrack sim-
ilar to the one used in a miniature self-driving
car competition (www.tu-braunschweig.de/carolo-
cup). The car has to segment the drive lane,
obstacles and intersections even when artefacts
are disturbing their visibility. A training, valida-
tion and test dataset consisting of 350, 75 and
75 samples, respectively, were manually collected
and annotated. A synthetic training and valida-
tion dataset consisting of 30000 and 1000 sam-
ples, respectively, were generated. The network
chosen for evaluating the datasets is the U-Net
introduced by Ronneberger et al. [6]. During pre-
training a larger learning rate (lr = 0.001) was
chosen. For the fine tuning the learning rate was
reduced (lr = 0.0001). The Neural Network was
trained on different subsets of the training and
validation datasets and later evaluated on the test
dataset with the metrics mean intersection over
union (mIoU) and pixel accuracy (PA). The fol-
lowing tables show the resulting performance of
those training configurations.
Pretraining the network with a synthetic train-

ing dataset and a mixed validation dataset yielded

the best performance. A mixed dataset contains
real and synthetic data. Figures 7 and 9 com-
pare predictions for training only on real data and
training on mixed data.

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU
[%]

Pre-
Training:

real real 0.9660 0.7113

Fine Tun-
ing:

none none

Table 1: Results of training configuration real-real-none-

none

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU
[%]

Pre-
Training:

synthetic synthetic 0.6425 0.3845

Fine Tun-
ing:

real real 0.9526 0.6051

Table 2: Results of training configuration synthetic-

synthetic-real-real

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU
[%]

Pre-
Training:

mixed mixed 0.9644 0.7015

Fine Tun-
ing:

mixed real 0.9670 0.7141

Table 3: Results of training configuration mixed-mixed-

mixed-real

Data Con-
figuration

Training
Data

Validation
Data

PA [%] mIoU
[%]

Pre-
Training:

synthetic mixed 0.9389 0.5369

Fine Tun-
ing:

synthetic real 0.9915 0.8232

Table 4: Results of training configuration synthetic-

mixed-synthetic-real

Figure 6: Example of a real world image (left) with its
manually annotated label (right) from the test
dataset.
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Figure 7: Two different predictions from the image in fig-
ure 6: The image on the left is a segmented
output of a network trained only on real world
data. On the right is the output of a net-
work trained with synthetic and real data. This
example demonstrated how synthetic data im-
prove the classification of the under-represented
class ’intersection’.

Figure 8: Example of a real world image (left) with its
manually annotated label (right) from the test
dataset.

Figure 9: Two different predictions from the image in fig-
ure 8: The image on the left is a segmented
output of a network trained only on real world
data. On the right is the output of a net-
work trained with synthetic and real data. This
example demonstrated how synthetic data im-
prove the classification of the under-represented
class ’obstacle’.

4 Conclusion

Our framework proves to be an effective tool for
small teams that develop self-driving robots in flat
environments with visible lane markings. It is
computational efficient and executes well on a reg-
ular notebook CPU. With minor effort, the frame-
work can be adapted to a new self-driving task.
When training a network on real world and syn-
thetic data from our framework it outperforms
networks being trained on real world data only. In
particular the network improved the classification
of under-represented classes when learning with
synthetic data. Thus, our framework is a pow-
erful tool especially in the early stages of small
development projects. A further direction that
should be examined is the training of recurrent
FCNs. The program already generates temporally

coherent road images, which can be used to learn
temporal features in self-driving tasks.
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