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Abstract

In this thesis we develop CompilerForCAP, a compiler for optimizing and verify-
ing categorical towers in algorithmic category theory. To see the need for
a compiler, we start with some setup: First, we show how algorithmic category
theory can be interpreted as a high-level programming language, and intro-
duce the software framework CAP: Categories, Algorithms, and Programming.
Moreover, we introduce programming conventions which allow us to prove that
categorical algorithms written in CAP are faithful to the mathematics done on
paper. Next, we introduce the concept of categorical towers, which has been
used before to make constructions in categories algorithmic. We will see that
computations in categorical towers naturally come with a sizeable performance
overhead. This shows the need for a compiler like CompilerForCAP.

Afterwards, we present various applications of categorical towers exhibiting
the advantages of the approach. The two main applications are the computation
of lifts in categories of finitely presented modules over certain rings and algorithms
for the closed monoidal structure of the category of ZX-diagrams, a category
appearing in quantum computing. As an application, we use the category of
ZX-diagrams to model a foundational functional programming language for
quantum computers.

Afterwards, we see in detail how CompilerForCAP can optimize the categor-
ical towers in the presented applications and provide benchmarks showing the
performance gains in concrete computations. As we will see, CompilerForCAP
can make the difference between “finishes in seconds” and “will never finish”.
The central mechanism that makes these optimizations possible are reinter-
pretations of categorical towers, which allow to simplify the data structures of
categorical towers. Finally, we show that CompilerForCAP can also be used as
a proof assistant for verifying categorical implementations.

In summary, CompilerForCAP can generate efficient and verified implemen-
tations, allowing us to make full use of the advantages of building categorical
towers on a computer.





Zusammenfassung

In dieser Arbeit entwickeln wir CompilerForCAP, einen Compiler zur Opti-
mierung und Verifikation von kategoriellen Türmen in der algorithmis-
chen Kategorientheorie. Um die Notwendigkeit eines Compilers zu erkennen,
benötigen wir einige Vorbereitungen: Zuerst zeigen wir, wie algorithmische
Kategorientheorie als höhere Programmiersprache aufgefasst werden kann, und
stellen das Software-Framework CAP vor: Categories, Algorithms and Program-
ming. Außerdem führen wir Programmierkonventionen ein, mit deren Hilfe wir
beweisen können, dass kategorielle Algorithmen in CAP der Mathematik auf dem
Papier treu sind. Als Nächstes führen wir das Konzept der kategoriellen Türme
ein, das bereits früher verwendet wurde, um Konstruktionen in Kategorien
zugänglich für Algorithmen zu machen. Wir werden sehen, dass Berechnungen
in kategoriellen Türmen natürlicherweise mit einem beträchtlichen Performance-
Overhead verbunden sind. Dies zeigt die Notwendigkeit eines Compilers wie
CompilerForCAP.

Anschließend stellen wir verschiedene Anwendungen von kategoriellen Türmen
vor, die die Vorteile des Ansatzes zeigen. Die zwei Hauptanwendungen sind
zum einen die Berechnung von Lifts in Kategorien endlich präsentierter Moduln
über bestimmten Ringen, und zum anderen Algorithmen für die geschlossene
monoidale Struktur der Kategorie der ZX-Diagramme, einer Kategorie aus dem
Bereich des Quantencomputing. Als Anwendung verwenden wir die Kategorie
der ZX-Diagramme, um eine elementare funktionale Programmiersprache für
Quantencomputer zu modellieren.

Anschließend sehen wir im Detail, wie CompilerForCAP die kategoriellen
Türme in den vorgestellten Anwendungen optimieren kann, und führen Bench-
marks durch, die die Performancezuwächse bei konkreten Berechnungen zeigen.
Wie wir sehen werden, kann CompilerForCAP den Unterschied zwischen “ter-
miniert in Sekunden” und “wird nie terminieren” ausmachen. Der zentrale
Mechanismus, der diese Optimierungen ermöglicht, sind Reinterpretationen
von kategoriellen Türmen, die es erlauben, die Datenstrukturen von kategoriellen
Türmen zu vereinfachen. Zum Schluss zeigen wir, dass CompilerForCAP auch
als Beweisassistent zur Verifikation kategorieller Implementierungen verwendet
werden kann.

Zusammenfassend sehen wir, dass CompilerForCAP effiziente und verifizierte
Implementierungen erzeugen kann, was es uns ermöglicht, die Vorteile kate-
gorieller Türme auf dem Computer voll auszuschöpfen.
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Introduction

Category theory has many rich applications in numerous different areas not only
in mathematics but also in science and technology. Thanks to algorithmic
category theory, these applications are not limited to theoretical aspects but can
involve practical computations. We will see various examples of such applications
throughout this thesis. For doing actual computations in algorithmic category
theory on a computer, we need a computer framework for category theory. Such a
framework is given by CAP: Categories, Algorithms, and Programming [GPSZ24].

Making constructions in categories algorithmic can be a challenging task.
Here, categorical towers can be of great help. An example of a categorical tower
of height 2 appears in [Pos21a], where categories of finitely presented modules
over a ring are modeled as Freyd categories of categories of matrices.
Modeling categories of finitely presented modules in two steps simplifies the
search for an algorithm for computing lifts in these categories. Another example
of a categorical tower appears in [Cic18], where the category of ZX-diagrams,
a category appearing in quantum computing, is modeled as a category of
cospans of a certain slice category of the category of quivers. Again,
modeling the category of ZX-diagrams in three steps simplifies the search for
algorithms for the closed monoidal structure of this category. We will see those
and other examples of categorical towers in great detail in this thesis.

As we have seen, categorical towers are built by composing category con-
structors, like constructors for categories of matrices, for Freyd categories,
for the category of quivers, for slice categories, and for categories of cospans.
Modeling categories as categorical towers has many advantages:

• Reusability: The category constructors used to build one categorical
tower can be reused for building categorical towers in other contexts.

• Separation of concerns: Every category constructor in a categorical
tower can focus on a single concept, simplifying the definitions.

• Verifiability: The category constructors used to build a categorical tower
can be verified independently of each other. Each category constructor has
a limited scope and is hence relatively simple to comprehend and verify.

• Emergence: Simple and natural constructions at each level of the tower
can lead to convoluted structures of the tower as a whole.

We will see several instances of these advantages through this thesis.
However, we will also see that computations in categorical towers on a

computer naturally come with a sizeable performance overhead. For example, the
organization as a tower requires additional communication between the different
layers of the tower, and categorical towers often have more generic and hence
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2 Contents

complex data structures than actually required in a concrete application. Due to
the resulting performance overhead, formerly in many cases large computations
in categorical towers were not feasible on a computer. To make computations
in categorical towers feasible, we need a compiler. Such a compiler, called
CompilerForCAP [Zic24a], is developed in this thesis. CompilerForCAP can
merge the algorithms in the different layers of the categorical towers into a single
algorithm which avoids the additional communication between the layers.

Furthermore, to introduce more efficient data structures, we have to “re-
structure” the tower. We model this by an isomorphism of categories in a
process which we call a reinterpretation of the categorical tower. The con-
cept of reinterpretations of categorical towers was developed in the context of
CompilerForCAP as the central mechanism for generating efficient primitive
implementations from categorical towers in CAP. Using a reinterpretation, we
can convert the data structure of the tower to a desired, more efficient data
structure, which allows CompilerForCAP to fully optimize the algorithms. We
will see examples of implementations where CompilerForCAP makes the dif-
ference between “finishes in seconds” and “will never finish”. With this, large
computations in categorical towers are finally feasible, often even beating the
performance of implementations which have formerly been optimized by hand.
Summing up, by using CompilerForCAP we can avoid the performance overhead
naturally appearing in computations in categorical towers completely, which
allows us to make full use of the advantages of building categorical towers on a
computer.

Moreover, CompilerForCAP can also be used for code verification. In our
context, this automatically means that CompilerForCAP also acts as a proof
assistant, that is, as a tool for formalizing and verifying proofs on a computer.
In fact, we will see that the steps used for verifying an implementation correspond
to the steps in a proof of a corresponding mathematical statement on paper.
Summing up, CompilerForCAP can not only generate efficient implementations,
but can do so starting from a verified input. Assuming the compilation steps
are correct, this guarantees that the compiled implementation is correct.

Outline This thesis is structured as follows: In Chapter 1, we first lay the
mathematical foundations for this thesis. Afterwards, we introduce algorith-
mic category theory interpreted as a high-level programming language,
together with CAP as a software implementation of algorithmic category theory.
In the last section of the chapter, we discuss the faithfulness of computer
implementations, that is, the question whether the computations on the com-
puter actually model the mathematics done on paper. Answering this question
is crucial if we want to interpret the results of computations on a computer
mathematically.

In Chapter 2, we introduce various categorical constructions which we need
in later chapters. In Chapter 3, we introduce the central concepts of categorical
towers and reinterpretations, and also see the overhead of a computation in
a categorical tower. In Chapter 4, we present various mathematical applications
of categorical towers. Moreover, in Chapter 5, we present an application of
categorical towers in quantum computing: We use a categorical tower to model
a foundational functional programming language for quantum computers. This
can be achieved via a connection between functional programming languages,
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so-called lambda calculi, and closed monoidal categories.
In Chapter 6, we finally introduce CompilerForCAP. We show how the com-

pilation process is carried out by CompilerForCAP and look at some benchmarks
showing the performance gains for the two main towers in Chapter 4 and Chap-
ter 5. Moreover, we describe various situations in which CompilerForCAP can
optimize code during compilation, and also explain the corresponding compiler
techniques. In Chapter 7, we show how CompilerForCAP can be used for code
verification and as a proof assistant. Finally, we summarize the results and
conclude in Chapter 8.

Funding The author was supported by “Deutsche Forschungsgemeinschaft
(DFG) grant SFB-TRR 195: Symbolic Tools in Mathematics and their Appli-
cation” for 9 months in 2020. Since January 2022, the author is supported by
the Federal Ministry for Economic Affairs and Climate Action on the basis of a
decision by the German Bundestag.

Conventions We make the following global conventions:

• All rings and algebras are unital and associative.
• The natural numbers start at 0.





Chapter 1

Algorithmic category theory

The main goal of this chapter is to introduce algorithmic category theory
seen as a high-level programming language, together with CAP, a software
implementation of algorithmic category theory [GPSZ24]. In Section 1.1, we
lay the mathematical foundations for this: We define the notion category and
discuss various subtleties in how one can state the definition. Moreover, in
Section 1.1.4, we introduce an important notation used throughout this thesis:
To easily distinguish objects and morphisms of different categories in contexts
with multiple categories, we write objects and morphisms inside a box to which
we attach the category as an index. This notation will also form the basis for
the software implementation of categories in CAP.

In Section 1.2, we explain in which sense algorithmic category theory can
be seen as a high-level programming language. Subsequently, in Section 1.3 we
introduce CAP as a software implementation of algorithmic category theory. In
particular, we see how one can implement categories and categorical algorithms
in CAP.

In Section 1.4, we discuss the faithfulness of computer implementations,
that is, the question whether the computations on the computer actually model
the mathematics done on paper. Answering this question is crucial if we want
to interpret the results of computations on a computer mathematically. To this
end, we introduce the concept of pure functions in computer programs in
Section 1.4.2: This notion is, for example, used in the context of functional
programming languages and makes it possible to identify functions in a computer
program which essentially behave like mathematical functions. Consequently, we
require all implementations in CAP to be given by pure functions, which allows
us to conclude that algorithms in CAP are faithful to the mathematics.

1.1 Mathematical foundations
In this section, we introduce the mathematical foundations for this thesis.

1.1.1 The definition of category
We first define the term category and give examples of categories. We deliber-
ately try to keep the definition flexible with regard to the chosen foundation of
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6 Chapter 1. Algorithmic category theory

mathematics to emphasize that CAP is not biased towards a certain foundation
as long as the ideas can be implemented on a computer.

Remark 1.1.1 (Collections of objects and sets of morphisms). We will define
categories with a collection of objects. The term collection means that we
do not require any structure on objects at all in the definition.

Moreover, we will define categories with sets of morphisms. In this context,
a set is a collection endowed with an equality such that two things cannot be
equal in more than one way.

In Section 1.1.2, we discuss reasons for these choices and various consequences.

Definition 1.1.2 (Categories). A category C consists of the following data:

• a collection1 ObjC of objects,
• for each two objects A and B a set2 HomC(A,B) of morphisms with

source A and target B, which are denoted by f : A→ B,
• for each three objects A, B and C and each two morphisms f : A → B

and g : B → C a morphism

f · g : A→ C

called the composite of f and g,
• for each object A a morphism

idA : A→ A

called the identity morphism of A,

fulfilling the following conditions:

• composition is compatible with the equality on the sets of morphisms, that
is, for f1, f2 : A → B with f1 = f2 and g1, g2 : B → C with g1 = g2 we
have

f1 · g1 = f2 · g2,

• composition is associative, that is, for f : A → B, g : B → C, and
h : C → D we have

(f · g) · h = f · (g · h),

• identity morphisms are neutral elements of the composition, that is, for
each object A, each morphism f with source A and each morphism g with
target A we have

idA · f = f and g · idA = g.

We call two morphisms f : A→ B and g : B → C with a common object B as
target and source composable. Note that we use the diagrammatic notation
f · g instead of the set-theoretic notation g ◦ f for the composite.

Moreover, we call two morphisms f, g : A→ B having a common source and
a common target parallel.

1Here, the term “collection” should be read in the sense of Remark 1.1.1.
2Here, the term “set” should be read in the sense of Remark 1.1.1.
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For an alternative definition of the notion of category, which only uses a
single set of morphisms, see Section A.1. For the applications in this thesis, the
definition given above is more useful.

Example 1.1.3 (The category of matrices over Z). We define the category
MatZ of matrices over Z as follows:

• ObjMatZ := N,
• HomMatZ(m,n) := Zm×n with entrywise equality of integers,
• composition of two morphisms is given by matrix multiplication,
• identity morphisms are given by identity matrices.

One can easily check that this indeed defines a category. We can generalize this
to an arbitrary (unital) ring R and obtain a category MatR of matrices over R
in exactly the same fashion.

Example 1.1.4 (The category of sets). We define the category of sets Sets
as follows:

• its objects are sets,
• the morphisms with source M and target N are functions from M to N

with the usual pointwise equality of functions,
• composition of morphisms is given by composing functions,
• the identity morphism of M is given by the identity function on M .

One can easily check that this indeed defines a category.
If we restrict the construction to finite sets, that is, sets which admit a

bijection with {1, . . . , n} for some natural number n, we obtain the category
of finite sets FinSets.

Example 1.1.5 (The opposite category of a category). Given a category C we
define its opposite category Cop as follows:

• ObjCop := ObjC,
• HomCop(A,B) := HomC(B,A), keeping the equality,
• composition of two morphisms is given by composing in C with the order

swapped,
• identity morphisms are given by the identity morphisms of C.

One can easily check that this indeed defines a category.

1.1.2 Elaboration of the definition
The definition of the notion of category has many subtleties which we now
elaborate on.

Remark 1.1.6 (Collections of objects). We talk about a collection of objects
instead of a class, set, or type to not restrict our setup to a certain mathematical
foundation like a kind of set theory or type theory. For the same reason, we
avoid using the membership symbol “∈”.
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Actually, in our computational context many peculiarities of the different
foundations are irrelevant. For example, it is not relevant if we talk about about
sets or proper classes because a computer can only represent finitely many things
at a given time anyway due to its memory being finite, and even the collection
of things theoretically representable on the infinite tape of a Turing machine is
by definition a countably infinite set.

We will nevertheless specialize the definition to various contexts in Sec-
tion 1.1.3.

Remark 1.1.7 (Equalities on objects). We were able to state the definition
without explicitly referencing a notion of equality on objects. This is in line with
the principle of equivalence: Categorical reasoning should be invariant under
equivalence of categories (Definition 2.1.4), which in general does not preserve
notions of equality which we might impose on objects. Equivalences of categories
do preserve isomorphisms though, so a natural mathematical notion of equality
on objects would be “being isomorphic”. However, deciding if two objects are
isomorphic can be computationally expensive or even undecidable, so in general
this is not useful for algorithmic applications.

Nevertheless, there is a notion of equality on objects hidden in the definition: If
we want to check soundness of constructions, for example whether two morphisms
are actually composable, we need a meta-theoretical equality on objects,
which we denote by the symbol “≡”. On paper, there usually is an obvious ad-
hoc notion of equality, for example symbolic equality like A ≡ A or definitional
equality like Id(A) ≡ A where Id is the identity functor. On the computer, we
will derive a suitable technical equality from the data structure of objects and
require this technical equality to coincide with the meta-theoretical equality in
Convention 1.4.24.

Note that if two objects A and B are equal with regard to the meta-theoretical
equality, they should be basically indistinguishable for the mathematics, that is,
replacing all occurrences of B by A should not change anything mathematically.

Remark 1.1.8 (Sets of morphisms). We now explain why we specifically talk
about sets of morphisms. Recall that we defined a set as a collection with
an equality such that two things cannot be equal in more than one way.
Without the latter restriction, in an intensional type theory morphisms could be
equal in more than one way. In this case we would have to consider the pentagon
in Figure 1.1 when composing four morphisms f , g, h, and i. The requirement
that the composition is compatible with the equality would make all morphisms
in the pentagon equal, but the equality

((f · g) · h) · i = f · (g · (h · i))

obtained via the left path in the pentagon would not necessarily coincide with
the equality obtained via the right path in the pentagon. A category with this
kind of ambiguity has been called a wild category in homotopy type theory
[KvR21, Definition 5]. To avoid this situation, we restrict the definition to sets
of morphisms.

Remark 1.1.9 (Equalities on morphisms). The sets of morphisms could, for
example, consist of equivalence classes, that is, the equality could be given
by a non-trivial equivalence relation. This is why the equality on the sets of
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((f · g) · h) · i

(f · (g · h)) · i

(f · g) · (h · i)

f · ((g · h) · i)

f · (g · (h · i))

=

=

=

=

=

Figure 1.1: A pentagon including all possibilities of putting parentheses in the
composition of four morphisms

morphisms is an important and explicit datum and why the requirement that
composition is compatible with the equality is in general a non-trivial property.

We will also introduce a technical equality on morphisms in Remark 1.4.21.
If we want to distinguish this technical equality from the equality coming with
the notion “set of morphisms”, we call the latter equality the mathematical
equality.

1.1.3 Specializing the definition to various contexts
We now specialize Definition 1.1.2 to various contexts.

Remark 1.1.10 (Specializing the definition of category to set theory). If
we replace the word collection (of objects) by class and interpret the terms
class (of objects) and set (of morphisms) in Zermelo–Fraenkel set theory with
the axiom of choice (ZFC), we obtain the classical notion of a (locally small)
category. In this context, we automatically have an equality on objects, which
we can use as the meta-theoretical equality introduced in Remark 1.1.7.

Remark 1.1.11 (Specializing the definition of category to (homotopy) type
theory). If we replace the word collection (of objects) by type and interpret
the terms type (of objects) and set (of morphisms) in homotopy type theory
(HoTT), we obtain the notion of a precategory as in [Uni13, Definition 9.1.1].
When adding the univalence axiom for categories, that is, if we require the
identity type of objects to be equivalent to the type of isomorphisms of objects,
we obtain the notion of a category as in [Uni13, Definition 9.1.6]. In this
context, we have a judgemental and a propositional equality on objects, and the
judgemental equality plays the role of the meta-theoretical equality introduced
in Remark 1.1.7.

If the propositional equality on the sets of morphisms does not coincide with
the desired mathematical equality on morphisms, one can also use the notion of
E-categories [Pal19, Section 3], where the mathematical equality on morphisms
is explicitly given as an equivalence relation.
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Remark 1.1.12 (Specializing the definition of category to programming
languages). If we replace the word collection (of objects) by data type and
the word set (of morphisms) by data type together with a function for
deciding equality, and interpret all the terms in some programming language,
we obtain a notion of a category which can be implemented on a computer.
Note that a data type in a programming language might come with multiple
notions of equality (for instance, see Example 1.1.13). Thus, we must be careful
when deciding which equality we use for the meta-theoretical equality on objects
introduced in Remark 1.1.7 and the mathematical equality on morphisms: We
have to make sure that we stay faithful to the mathematics, that is, that we
actually model the mathematics done on paper. We will discuss this in much
more detail in Section 1.4.

Example 1.1.13 (Multiple notions of equality on the same data type). Data
types in programming languages often come with multiple notions of equality.
For example, integers in GAP [GAP22] come with two different notions of equality:
The equality denoted by the symbol “=” matches the mathematical equality of
integers. Additionally, one can compare any two values in GAP by the operation
IsIdenticalObj, which compares the representations of the values in memory.
On 64-bit systems, integers from −260 to 260 − 1 are represented directly as
binary numbers in memory, so for those integers the operation IsIdenticalObj
coincides with “=”. Integers outside of this range, however, are stored in more
complex data structures involving pointers to memory locations. When comput-
ing an integer outside of this range twice, the pointers in general do not match.
This is the reason why

IsIdenticalObj( 2^60, 2^60 )

returns false in GAP.

Remark 1.1.14 (Differences between the contexts). Although one can often
translate concepts between the different contexts in obvious ways, one must be
aware of subtle differences. For one, we have to be careful with the different
notions of equalities, as seen in the preceding remarks. Additionally, the transla-
tion might not preserve the complete information. As an example, consider a
morphism f : {0, 1} → {0, 1, 2} in the category FinSets defined pointwise via

f(0) := 0,
f(1) := 0.

We compare representations of f in different contexts:
In a set-theoretic foundation of mathematics, one might define functions from

M to N as left-total and univalent relations3 between M and N . This means
that f would be identified with its graph

{(0, 0), (1, 0)}.

Note that we can read off the source {0, 1} of f from the graph but not the
target {0, 1, 2}.

3A binary relation R ⊆ M ×N is called left-total (resp. univalent) if each m ∈ M appears
at least (resp. at most) once as a first entry of elements of R.
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In a type theory with function types, f would usually be an element of the
type of functions from {0, 1} to {0, 1, 2}. In particular, both the source and the
target of f would typically be encoded in the type of f .

In GAP, we could represent f as
1 function ( x )
2 return 0;
3 end

From this representation, neither the source nor the target of f can be read off.
Hence, when translating between different contexts, we have to be careful

to not lose any information. We will therefore introduce Notation 1.1.16 in the
next section to solve this problem for categorical information in a generic way,
both on paper and when used as a model for a computer implementation.

1.1.4 Boxing of objects and morphisms
In this section, we introduce a notation which helps us to keep track of sources
and targets of morphisms and to distinguish objects and morphisms of different
categories in contexts with multiple categories. We first give an illustrative
example and afterwards introduce the notation in a formal way. The notation
will also be the basis for how we model objects and morphisms in CAP, for
example in Section 1.3.2.

Example 1.1.15 (Boxing). Consider the category MatZ of matrices over the
integers. Its objects are given by natural numbers and its morphisms are given
by matrices over the integers of suitable dimensions. To visually distinguish
between a “plain” natural number n and the natural number n interpreted as
an object in MatZ, we denote the latter by

n MatZ .

Similarly, to visually distinguish between a “plain” matrix over the integers
M ∈ Zm×n and the matrix M interpreted as a morphism from m MatZ to
n MatZ in MatZ, we denote the latter by

M MatZ : m MatZ → n MatZ .

Now consider the category MatZop. Its objects and morphisms are given by
objects and morphisms of MatZ. To view M MatZ as a morphism in MatZop,
we would add additional boxes as follows:

M MatZ MatZop : n MatZ MatZop → m MatZ MatZop .

This allows us to visually distinguish between objects and morphisms of MatZ
and objects and morphisms of MatZop, despite there being no mathematical
difference.

We formalize the previous example:

Notation 1.1.16 (Boxing). To visually distinguish between “plain” values x
and the value x interpreted as an object in a category C, we denote the latter by

x C.
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Similarly, to visually distinguish between a “plain” value x and a value x
interpreted as a morphism from A to B in a category C, we denote the latter by

x C : A→ B.

If the category is clear from the context but we still want to distinguish plain
values from their interpretations as objects or morphism, we will usually omit
the category in the notation. Additionally, if source and target of a morphism
are given in the context or are uniquely determined, we sometimes also omit
those.

Given a morphism x C : A→ B, it now makes sense to talk about the source
s( x C) := A and the target t( x C) := B of x , even if x itself does not uniquely
determine A and B.4 Here, s and t should not be seen as mathematical functions
but as a meta-theoretical notation which retrieves the correct objects from the
context.5

Note that the boxes are only meant for visual distinction. Mathematically
we do not want to distinguish between x and x C, that is, by specifying more
information in the context, we should always be able to drop the boxes.

While the concept of boxing values has its origins in computer science, the
notation will also prove itself extremely useful in the mathematical context of
categorical towers in Chapter 3. We can already give some examples showing
the advantages of the notation here.

Example 1.1.17 (Advantages of the notation). Using the notation, we can
make the following statement: If M : m → n and N : n → ℓ are two
morphisms in MatZ, then by definition we have

M · N = M ·N .

Note that “·” on the left-hand side denotes the composition of morphisms while
“·” on the right-hand side denotes matrix multiplication. We could of course
also write this statement without boxes but then we would have to specify more
information in the context, for example by renaming the left “·” to “·MatZ”.

More examples arise in contexts with multiple categories. For example,
consider a category C and its opposite category Cop. For two objects

A,B ∈ ObjC = ObjCop ,

the expression
f : A→ B (1.1)

is ambiguous because it can either be interpreted as

f ∈ HomC(A,B)
4The situation that x might not uniquely determine A and B is discussed in more detail in

Section A.1.
5We can link this to the definition of categories with a single set of morphisms in

Section A.1: In many cases, the meta-theoretical notation s and t behaves like the mathematical
functions s and t in the definition of categories with a single set of morphisms. Hence, this
notation blurs the lines between the definition of categories with a family of sets of
morphisms and the definition of categories with a single set of morphisms in Section A.1.
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or as
f ∈ HomCop(A,B) = HomC(B,A).

Similarly, for two morphisms f, g ∈ HomCop(A,A) = HomC(A,A), the expres-
sion

f · g (1.2)
is ambiguous because it could refer to the composite of f and g in C or the
composite of f and g in Cop.

Using the notation with boxes, a possible unambiguous version of the first
ambiguous expression (1.1) would be

f Cop : A Cop → B Cop .

Let us decode this expression:

• The expressions A Cop and B Cop are objects in Cop.
• Objects in Cop are given by objects in C, so A and B should be objects in

C.
• The expression f Cop is a morphism in HomCop( A Cop , B Cop).
• Morphisms in Cop are given by morphisms in C, so f should be a morphism

in C.
• Finally, f must have source B and target A if f Cop has source A Cop and

target B Cop .

Thus, the intended meaning f ∈ HomC(B,A) is clear. Similarly, we can rephrase
the second ambiguous expression (1.2) as

f Cop · g Cop

if the intended interpretation is that “·” refers to the composition in Cop.

1.2 Algorithmic category theory as a high-level
programming language

In this section, we explain in which sense algorithmic category theory can be
seen as a high-level programming language. For this we first need the insight
that a categorical operation is not defined by a concrete construction but by
how its result behaves with respect to other objects and morphisms. We explain
this concept by comparing the definition of disjoint unions of two finite sets and
the definition of binary coproducts in a category.

Definition 1.2.1 (Disjoint union of two finite sets). Given two sets N and M ,
we define their disjoint union N ⊔M to be the following set:{

(1, n) | n ∈ N
}
∪
{

(2,m) | m ∈M
}
⊆ {1, 2} × (N ∪M)

Definition 1.2.2 (Binary coproducts). Let N and M be two objects in a
category C. Their (binary) coproduct is an object N ⊔M in C together with
two morphisms

ι⊔N : N → N ⊔M and ι⊔M : M → N ⊔M
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with the following universal property: For every two morphisms τN : N → T
and τM : M → T , there exists a unique morphism u : N ⊔M → T such that the
triangles in the following diagram commute:

N M

N ⊔M

T

ι⊔N

τN

ι⊔M

τM∃1u

Remark 1.2.3 (Category theory as a high-level language for mathematics).
One can easily show that the disjoint union of two sets N and M together with
the obvious embeddings forms a coproduct in the category of sets (which justifies
that we use the same symbol for both concepts). However, the two definitions
have different semantics: The definition of the disjoint union of two sets N and
M specifies how the set N ⊔M is constructed using symbols and constructions
from set theory. On the contrary, the definition of binary coproducts does not
specify how the object N ⊔M is constructed but only how it behaves with
respect to other objects and morphisms of the category.

In the context of programming languages, the definition of the disjoint union
of two sets would be called a definition for a data structure, that is, a definition
for a concrete representation of data. On the contrary, the definition of binary
coproducts would be called an abstract data type which is purely defined
by its behavior. While low-level programming languages commonly allow and
sometimes require to manipulate data structures directly, high-level languages
usually provide interfaces which hide many implementation details. For example,
the low-level programming language6 C represents integers as bit strings and
allows the programmer to access and manipulate single bits of such bit strings.
On the contrary, the high-level programming language GAP has an implementation
for (big) integers whose internal data structure is hidden from the user but which
mirrors the mathematical behavior which one would expect, for example having
an associative addition.

This mirrors the situation of our two definitions above. In this sense we view
category theory as a high-level language for mathematics.

Remark 1.2.4 (Algorithmic category theory as a high-level programming
language). It remains to explain in which sense algorithmic category theory
can be seen as a high-level programming language. The definition of binary
coproducts above can be read as a specification for the inputs and outputs of
an algorithm: Given two objects N and M in a category C, compute an object
N ⊔M in C together with two morphisms

ι⊔N : N → N ⊔M and ι⊔M : M → N ⊔M

with the following universal property: For every two morphisms τN : N → T
and τM : M → T we can compute a unique morphism u : N ⊔M → T such that
the triangles in the following diagram commute:

6Of course, what constitutes a low-level or high-level programming language depends on
the context.
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N M

N ⊔M

T

ι⊔N

τN

ι⊔M

τM∃1u

In a similar way, we can also interpret other categorical constructions like
the composite of morphisms as specifications of algorithms. In this sense,
algorithmic category theory is a high-level programming language
which we call ALCT:

• the primitive data types of ALCT are categories, objects, and morphisms,
• the operations of ALCT are exactly the algorithms appearing in categor-

ical definitions, for example computing the composite of morphisms or
computing coproducts.

In ALCT, we can express categorical algorithms. We do not fully formalize
in a strict mathematical sense what a categorical algorithm is, since this would
require a much more elaborate formal setup of the theory of programming
languages going far beyond the scope of this thesis. A suitable formal setup
could, for example, be provided by [Hag87], which introduces a programming
language based on category theory. Instead, we now state an informal definition:
Definition 1.2.5 (Categorical algorithms). A categorical algorithm is an
algorithm on objects and morphisms which only interacts with objects and
morphisms by applying categorical operations, for example by computing a
composition or a coproduct, but not by applying operations specific to concrete
data types like multiplication of matrices or addition of integers.
Example 1.2.6 (Computing binary pushouts from coproducts and coequalizers).
As an example of a categorical algorithm, we show how to compute binary
pushouts (Definition 2.7.8) from coproducts (Definition 2.7.1) and equalizers
(Definition 2.7.3).

Let C be a category and let f : C → A and g : C → B be two morphisms
in C with a common source. We can compute a pushout P of f and g from
coproducts and coequalizers as follows:

• compute A ⊔B together with ι⊔A : A→ A ⊔B and ι⊔B : B → A ⊔B,
• define two auxiliary morphisms d := f · ι⊔A and e := g · ι⊔B ,
• define P := coeq(d, e) with morphisms ιA := ι⊔A · πcoeq and ιB := ι⊔B · πcoeq.

We can visualize this construction as follows:

C A

B A ⊔B

coeq(d, e)

f

g
d

e
ι⊔A

ιA

ι⊔B

ιB

πcoeq
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Using the commutativity of the triangles in the diagram and the definition of
the coequalizer, one can check that

f · ιA = g · ιB .

Given two morphisms τA : A → T and τB : B → T such that f · τA = g · τB,
we can compute u : P → T with the required properties by first applying the
universal property of the coproduct and then the universal property of the
coequalizer. Hence, the above construction actually constructs a pushout of f
and g.

The computations of P , ιA, ιB, and u only interact with objects and mor-
phisms by categorical operations, for example by taking coproducts and coequal-
izers. Hence, they form categorical algorithms.

Note that the above construction can be generalized to pushouts of arbitrary
finite families of morphisms in C with a common source.

1.3 Introduction to CAP

In this section, we introduce CAP, a software implementation of ALCT.

1.3.1 CAP as a dialect of ALCT
CAP [GPSZ24] is a dialect of ALCT in that it

• defines a concrete vocabulary for constructing categories, objects, and
morphisms, which we will see in Section 1.3.2, and

• defines concrete interfaces for various categorical operations.

For example, CAP defines two interfaces for the categorical operation “composition
of morphisms”: Given two morphisms f : A→ B and g : B → C, their composite
f · g can be computed by

PreCompose( f, g ) or PostCompose( g, f ).

CAP’s interpreter7 for the categorical operations includes many automatic consis-
tency checks. For example, before executing PreCompose( f, g ), the inter-
preter checks if f and g are actually composable.

Moreover, CAP includes a standard library providing many derivations of
categorical operations from other categorical operations. For example, if the
user provides an implementation of PreCompose, CAP will automatically derive
an implementation for PostCompose (and vice versa) by simply swapping the
arguments. A more sophisticated example would be deriving an algorithm
for computing pushouts from algorithms for coproducts and coequalizers (see
Example 1.3.2).

Finally, CAP also includes some fundamental constructions like the terminal
category and a constructor for opposite categories.

Most aspects of CAP can easily be extended by other packages: Packages
can introduce interfaces for further categorical operations, add new derivations,
and can provide implementations for more categories. For example, the package

7This interpreter is built on GAP’s method dispatch mechanism.
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MonoidalCategories [BGK+24] introduces support for the categorical opera-
tions of monoidal categories (see Section 2.8) together with many derivations.
The package FinSetsForCAP [BMZ24] provides an implementation of the cate-
gory of finite sets. More packages building on and extending CAP can be found
in [Pac24].

CAP is currently implemented in GAP [GAP22] but does not rely on any special
features of GAP and hence could be implemented in many other programming
languages. A project which demonstrates this by automatically translating the
implementation of CAP to Julia8 is in development and currently in a proof-
of-concept state. Hence, while most of the code in this thesis is GAP code, the
presented concepts are actually programming language agnostic.

1.3.2 Implementation of categories in CAP

As a guiding example for implementations of categories in CAP, we show in a very
detailed way how one can implement the category MatZ from Example 1.1.3 in
CAP. The code in this section can be executed in GAP 4.12.2 with CAP 2024.01-03.

First, we have to load CAP:
1 gap> LoadPackage( "CAP", false );
2 true

Then, we start the implementation of MatZ by creating a new category with a
suitable name:

1 gap> Mat_ZZ := CreateCapCategory( "Mat_ZZ" );
2 Mat_ZZ

This category does neither have definitions for the data types of objects and
morphisms nor any operations yet. Nevertheless, we can already technically
consider objects in this category. For example, to view the integer 1 as an object
1 in MatZ = Mat_ZZ, we use the function AsCapCategoryObject:

1 gap> 1_boxed := AsCapCategoryObject( Mat_ZZ, 1 );
2 <An object in Mat_ZZ>

To view the object 1_boxed = 1 as the integer 1 again, we can use the function
AsPrimitiveValue:

1 gap> AsPrimitiveValue( 1_boxed );
2 1

The morphisms are given by matrices over the integers. Note that we need
support for m × 0 and 0 × n matrices, which is not provided natively by GAP.
However, support for such matrices is conveniently provided by the package
MatricesForHomalg:

1 gap> LoadPackage( "MatricesForHomalg", false );
2 true

The package MatricesForHomalg also also provides a constructor for the ring
of integers:

1 gap> ZZ := HomalgRingOfIntegers( );
2 Z

8Julia combines the advantages of high-level programming languages with a compiler
typical for low-level programming languages [BEKS17]. In Section 6.4, we will see that Julia’s
compiler would nevertheless not be able to replace CompilerForCAP.
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Now, as an example, we can create the 1 × 1 identity matrix I1 over Z = ZZ
and view it as a morphism I1 : 1 → 1 in Mat_ZZ by using the function
AsCapCategoryMorphism:

1 gap> I_1 := HomalgIdentityMatrix( 1, ZZ );;
2 gap> I_1_boxed := AsCapCategoryMorphism( Mat_ZZ, 1_boxed, I_1, 1_boxed );
3 <A morphism in Mat_ZZ>

Just as for objects, we can use the function AsPrimitiveValue to view the
morphism I_1_boxed = I1 as a matrix again:

1 gap> AsPrimitiveValue( I_1_boxed );
2 <An unevaluated 1 x 1 identity matrix over an internal ring>

Note that technically we can view any value as an object (or morphism) in
Mat_ZZ, for example also rational numbers:

1 gap> one_half_boxed := AsCapCategoryObject( Mat_ZZ, 1/2 );
2 <An object in Mat_ZZ>

So while one_half_boxed claims to technically be an object in Mat_ZZ, mathe-
matically it is not. Thus, we have to distinguish between technical objects which
are also mathematical objects and technical objects which are not. We call the
former objects well-defined technical objects. Of course we use an analogous
terminology for morphisms.

To make CAP aware of this distinction, we should add information about
the data types of objects and morphisms to Mat_ZZ. There are two ways of
doing this: If the data types of objects and morphisms correspond to GAP data
types9, we can provide those to CAP in the call of CreateCapCategory. Here,
this is not the case because GAP’s type system has no data types for natural
numbers and “matrices over ZZ”. Thus, we use the alternative method: We
provide implementations of two CAP operations IsWellDefinedForObjects
and IsWellDefinedForMorphisms for Mat_ZZ, which check if technical objects
and morphisms are well-defined. We model natural numbers as non-negative
integers in GAP, so n is a well-defined technical object of Mat_ZZ if and only if
n is a non-negative integer:

1 gap> AddIsWellDefinedForObjects( Mat_ZZ, function ( Mat_ZZ, n_boxed )
2 > local n;
3 > n := AsPrimitiveValue( n_boxed );
4 > return IsInt( n ) and n >= 0;
5 > end );

The operation IsWellDefinedForObjects is our first example of a CAP oper-
ation. One can provide an implementation of a CAP operation for a specific
category by calling the corresponding Add function, for example the function
AddIsWellDefinedForObjects, with the category and an implementation as
above.10

Now that Mat_ZZ has an implementation of IsWellDefinedForObjects, we
can check if the technical objects in Mat_ZZ created above are well-defined:

9In GAP, data types are called filters.
10Note that the implementation always gets the category explicitly as its first argument.

This has the advantage that implementations do not have to rely on information from the
function’s context, which is particularly useful for operations like ZeroObject which get no
argument except the category. Note that this does not mean that all CAP operations have to
be called with the category as the first argument: As long as the category can be determined
from the remaining arguments, CAP provides convenience methods which automatically do so.
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1 gap> IsWellDefinedForObjects( 1_boxed );
2 true
3 gap> IsWellDefinedForObjects( one_half_boxed );
4 false

As expected, 1_boxed is well-defined while one_half_boxed is not.
We continue with the well-definedness of technical morphisms. Given two

well-defined technical objects m and n in Mat_ZZ, a technical morphism
M : m → n is well-defined if and only if M is an m×n (homalg) matrix over
ZZ:

1 gap> AddIsWellDefinedForMorphisms( Mat_ZZ, function ( Mat_ZZ, M_boxed )
2 > local M, m, n;
3 > M := AsPrimitiveValue( M_boxed );
4 > m := AsPrimitiveValue( Source( M_boxed ) );
5 > n := AsPrimitiveValue( Target( M_boxed ) );
6 > return IsHomalgMatrix( M ) and HomalgRing( M ) = ZZ and
7 > NrRows( M ) = m and NrCols( M ) = n;
8 > end );

Of course, this check relies on the assumption that the matrix M is internally
consistent. For example, M could claim to be a matrix over ZZ but accessing an
entry explicitly could still return an element of a different ring. Hence, as always
in computer algebra, we have to decide case by case which things we explicitly
check and which things we take as given.11 Since we will not explicitly access
entries of the matrices in the following algorithms, it makes sense to simply
assume internal consistency of the given matrices.

We quickly check that the technical morphism constructed above is well-
defined:

1 gap> IsWellDefinedForMorphisms( I_1_boxed );
2 true

Next, we should provide the set structure for the sets of morphisms, that is,
provide the mathematical equality on morphisms. This mathematical equality
is called congruence in CAP to indicate that this in general is an important
and explicit datum and not simply some trivial equality given by the system.12

In MatZ, the mathematical equality is defined as the entrywise equality of
integers, which is just the usual equality for matrices over the integers in
MatricesForHomalg:

1 gap> AddIsCongruentForMorphisms( Mat_ZZ, function ( Mat_ZZ, M_boxed, N_boxed )
2 > local M, N;
3 > M := AsPrimitiveValue( M_boxed );
4 > N := AsPrimitiveValue( N_boxed );
5 > return M = N;
6 > end );

IsCongruentForMorphisms assumes that the two morphisms in the input are
parallel. As explained in Remark 1.1.7, checking such soundness conditions
requires a meta-theoretical equality on objects, which we should provide next.

11If one takes memory corruption into account, even input checks and verified stacks of
software and firmware are not sufficient for guaranteeing correct outputs.

12There also exists a CAP operation for a meta-theoretical equality on morphisms, called
IsEqualForMorphisms. Since this operation is rarely used, we will avoid it in this thesis
as not to cause any confusion with the mathematical equality. Note that we use “=” for
the mathematical equality as usual, while the documentation of CAP uses “=” for the meta-
theoretical equality and “∼” for the mathematical equality.
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Here, the obvious choice is to view two objects as equal if and only if they are
equal as natural numbers:

1 gap> AddIsEqualForObjects( Mat_ZZ, function ( Mat_ZZ, m_boxed, n_boxed )
2 > local m, n;
3 > m := AsPrimitiveValue( m_boxed );
4 > n := AsPrimitiveValue( n_boxed );
5 > return m = n;
6 > end );

It remains to add implementations for composing morphisms via the CAP oper-
ation PreCompose and for constructing identity morphisms via the CAP operation
IdentityMorphism. Recall that composition of two morphisms M : A → B
and N : B → C in MatZ is just given by M ·N : A→ C, where “·” denotes
matrix multiplication:

1 gap> AddPreCompose( Mat_ZZ, function ( Mat_ZZ, M_boxed, N_boxed )
2 > local A, C, M, N, M_times_N;
3 > A := Source( M_boxed );
4 > C := Target( N_boxed );
5 > M := AsPrimitiveValue( M_boxed );
6 > N := AsPrimitiveValue( N_boxed );
7 > M_times_N := M * N; # matrix multiplication
8 > return AsCapCategoryMorphism( Mat_ZZ, A, M_times_N, C );
9 > end );

PreCompose assumes that the two morphisms are composable. Since we have
provided IsEqualForObjects, CAP will automatically check this condition every
time PreCompose is called with a concrete input.

Finally, we provide an implementation for the construction of identity mor-
phisms, which are given by identity matrices:

1 gap> AddIdentityMorphism( Mat_ZZ, function ( Mat_ZZ, m_boxed )
2 > local m, I_m;
3 > m := AsPrimitiveValue( m_boxed );
4 > I_m := HomalgIdentityMatrix( m, ZZ );
5 > return AsCapCategoryMorphism( Mat_ZZ, m_boxed, I_m, m_boxed );
6 > end );

The final step of the implementation should always be to finalize the category:
1 gap> Finalize( Mat_ZZ );;

This tells CAP that we will not add more operations to Mat_ZZ and triggers the
installation of derivations.

For a very quick check of the implementations above, we test if the identity
morphism on 1 is idempotent with regard to composition:

1 gap> IsCongruentForMorphisms(
2 > PreCompose( IdentityMorphism( 1_boxed ), IdentityMorphism( 1_boxed ) ),
3 > IdentityMorphism( 1_boxed )
4 > );
5 true

Finally, we look at an example of a derivation of a categorical operation which
CAP has automatically derived for us: IsIdempotent. Instead of the above, we
can simply write

1 gap> IsIdempotent( IdentityMorphism( 1_boxed ) );
2 true

and again obtain true as expected.
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Remark 1.3.1 (Boxed and unboxed values). On a technical level, the integer
1 and the object 1_boxed are not the same thing. For example, trying to
compute IdentityMorphism( 1 ) will signal an error. This is why we have to
make the boxing and unboxing explicit. Yet, if we consistently use boxes in our
mathematical notation, everything translates exactly into code.

Of course, one could extend the categorical operations to also accept unboxed
values. However, just as in our mathematical notation this would mean that
more information has to be specified in the context, namely the category and
sources and targets of morphisms. Explicitly specifying the category is possible
since every CAP operation can be called with the category as the first argument.
However, sources and targets of morphisms are usually inferred from the boxed
morphisms where possible. For example, PreCompose accepts two morphisms
but would in addition have to accept three objects if the two morphisms should be
given by unboxed values. This would lead to a very verbose and thus cumbersome
interface.

This argument does not apply to objects, but there is an additional drawback
of using unboxed values in our context: Debugging would be much more difficult.
Once we start building so-called categorical towers in Chapter 3, our contexts
will always contain multiple categories and often some of those categories will
mathematically have the same objects (or morphisms), for example natural
numbers. In such a context, if we would not distinguish between interpretations
of the same natural number as objects (or morphisms) in different categories on
a technical level, programming errors could occur much more easily and finding
such errors would be difficult.

Finally, we look at an example of a categorical algorithm in CAP.

Example 1.3.2 (Computing binary pushouts from coproducts and coequalizers
in CAP). A categorical algorithm as defined in Definition 1.2.5 only interacts
with objects and morphisms by applying categorical operations, for example by
computing a composition or a coproduct, but not by applying operations specific
to concrete data types like multiplication of matrices or addition of integers. In
CAP, this means that the algorithm only interacts with objects and morphisms
by applying CAP operations. Since CAP operations cannot be applied to unboxed
values, this also means that it never makes sense to unbox objects or morphisms
in such an algorithm.

As an example of a categorical algorithm in CAP, we consider the algorithm
computing binary pushouts from coproducts and coequalizers in Example 1.2.6.
The algorithm for computing the pushout object P could be written in CAP as
follows:

1 function ( cat, f, g )
2 local C, A, B, iA, iB, d, e, P;
3
4 if not IsEqualForObjects( cat, Source( f ), Source( g ) ) then
5 Error( "f and g must have a common source" );
6 fi;
7
8 C := Source( f );
9 A := Target( f );

10 B := Target( g );
11
12 A_u_B := Coproduct( cat, [ A, B ] );
13 iA := InjectionOfCofactorOfCoproduct( cat, [ A, B ], 1 );
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14 iB := InjectionOfCofactorOfCoproduct( cat, [ A, B ], 2 );
15
16 d := PreCompose( cat, f, iA );
17 e := PreCompose( cat, g, iB );
18
19 P := Coequalizer( cat, A_u_B, [ d, e ] );
20
21 return P;
22 end

Note that no boxes appeared in Example 1.2.6, and consequently no boxing or
unboxing appears in the CAP algorithm as expected. In fact, since the category
is not fixed, we cannot know what data type the unboxed values of f and g
would have, so we could not sensibly interact with the unboxed values anyway.

1.4 Faithfulness of computer implementations
In this section, we discuss various foundational issues arising when connecting
mathematics to computer implementations. To this end, we introduce the
concept of pure functions in computer programs, consider equalities of data
structures in computer implementations, and discuss subtleties arising from the
explicit boxing and unboxing in CAP. Readers who are mainly interested in
applications might prefer to skip this section.

1.4.1 Introduction
Many programming languages, including GAP and therefore also CAP, provide
more flexibility than we typically have in mathematics. For example, in many
programming languages we can compare values by their representations in
memory (for instance, see Example 1.1.13), or modify values in-place. This
cannot be done in mathematics because there is no notion of memory.

This observation raises the question in which sense an implementation is
faithful to mathematics, that is, actually models the mathematics done on
paper. Specifically, we would like to prove the following meta-theorem:

Meta-Theorem 1.4.1. Algorithms in CAP which box values, apply a categorical
algorithm, and unbox the result are faithful to the mathematics.

To prove this meta-theorem, we have to introduce some terminology and
make a few programming conventions: In Section 1.4.2, we introduce the notion
of pure functions and show how pure functions can rule out unfaithfulness in
Remark 1.4.7. The definition of purity of functions requires a technical notion
of equality, which we introduce for non-categorical data types in Section 1.4.3.
In Section 1.4.4, we look at the technical equalities of objects and morphisms
in CAP categories and make some programming conventions linking the purity
of CAP operations and the technical equalities of objects and morphisms to the
mathematical definitions. Assuming all implementations follow these conventions,
this allows us to finally prove the meta-theorem near the end of Section 1.4.4.

Before we continue, we first look at two instructive examples showing how
unfaithfulness in implementation could arise in the first place.

Example 1.4.2 (Unfaithfulness of implementations). Consider the following
part of a naive algorithm computing a saturation of some set S:
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1 repeat
2 let old_S be equal to S;
3 compute some new elements from the elements of S;
4 add those newly computed elements to S;
5 until S = old_S;

If one naively translates this algorithm to GAP, one obtains the following
implementation:

1 repeat
2 old_S := S;
3 X := ComputeSomeNewElements( S );
4 for x in X do
5 AddSet( S, x );
6 od;
7 until S = old_S;

This implementation would always terminate after the first execution because
the assignment old_S := S; makes old_S point to the same memory location
as S, so adding elements to S would also affect the value of old_S. Hence, this
implementation has not captured the intention of the algorithm and is not
faithful to mathematics.

Example 1.4.3 (Faithfulness of boxing and unboxing). Recall that in Nota-
tion 1.1.16 the boxes were only meant for visual distinction, that is, we should
always be able to drop the boxes by specifying more information in the context.
In Remark 1.3.1, however, we specifically distinguish between boxed and unboxed
values on the computer. This also raises some questions regarding faithfulness:
If a value and its boxed version are not the same thing on a technical level, how
can we ensure that boxing does not introduce any additional information? For
example, how can we ensure that two values are equal if and only if their boxed
versions are equal? And what actually is the proper notion of equality here in
the first place? We will answer these questions in Corollary 1.4.22, but first have
to introduce the notion of pure functions for this.

1.4.2 Purity of functions
One possible bridge between mathematics and computer implementations is given
in [Gut17, Section II.1], which introduces a translation between mathematical
objects and integers on a computer. Here, we want to take a higher-level approach
by using the notion of a pure function in a computer program, a notion for
example used in the context of functional programming languages. We do not
formalize this notion in a strict mathematical sense because this would require
a much more elaborate formal setup of the theory of programming languages
going far beyond the scope of this thesis. Nevertheless, in practice there will be
little doubt as to whether we want to regard a function as pure or impure.

There are many different definitions of pure functions (see, for example
[Pł22, Chapter 2] and [Lon15, Chapter 03]), but they all share the same spirit.
We use the following definition:

Definition 1.4.4 (Pure functions). A function in a computer program is called
pure if

• its output is fully determined by its inputs, and
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• the function has no side effects, that is, evaluating the function has no
observable effects on its environment.

Example 1.4.5 ((Im-)pure functions). We consider some examples of pure and
impure functions. For this, we assume a programming language with arbitrary-
precision integers to avoid having to consider possible issues arising from integer
overflow.

• We consider a function which takes two integers and simply returns their
sum. This function is pure because the sum of two integers if fully deter-
mined by the summands and there are no side effects.

• We consider a function which
1. takes an integer n,
2. obtains a pseudorandom integer r between 0 and 100 from a global

pseudorandom number generator (PRNG), and
3. returns the sum of n and r.

This function is not pure: The output is not fully determined by the input
n because it also depends on the state of the global PRNG. Additionally,
obtaining a pseudorandom integer from a PRNG changes the state of
the PRNG. If the state of the global PRNG can be queried from the
environment, changing this state is a side effect.

• We consider a function which
1. takes an integer n,
2. creates a PRNG seeded with the current Unix time at the time of

execution,
3. obtains a pseudorandom integer r between 0 and 100 from this PRNG,

and
4. returns the sum of n, r, and −r.

This function is pure: As in the previous example, r is not fully determined
by the input. Nevertheless, the final output n+r−r = n is fully determined
by the input because the nondeterministic effect cancels out.

Also as in the previous example, obtaining a pseudorandom integer from
a pseudorandom number generator changes the state of the pseudorandom
number generator. However, in this example this effect cannot be observed
from outside the function and hence does not qualify as a side effect.

Remark 1.4.6 (Subtleties in the definition of pure functions). The definition
of purity has some subtleties. First, it hides a notion of equality which we will
discuss in great detail in Section 1.4.3. Moreover, the term “observable” leaves
room for interpretation what qualifies as a side effect. For example, GAP has a
concept called attributes. An example of an attribute is the CAP operation
IdentityMorphism: If we compute

IdentityMorphism( some_object ),

GAP attaches the result of the computation to some_object. If we compute the
same expression a second time, the stored result is returned instead of running
the computation again, which in more complex examples can potentially give a
significant speedup. By computing
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HasIdentityMorphism( some_object )

we can check if IdentityMorphism has already been computed for some_object.
Hence, the first execution of IdentityMorphism( some_object ) has an ob-
servable effect on some_object. Additionally, we can also observe this effect by
timing the execution of IdentityMorphism( some_object ). However, if we
make sure to not use HasIdentityMorphism in our code, we can safely ignore
all of this as an implementation detail which is only relevant for the performance,
and hence we can still consider IdentityMorphism as possibly pure.

Remark 1.4.7 (Ruling out unfaithfulness). Requiring functions to be pure is
useful because it can rule out unfaithfulness.

For example, the unfaithfulness in Example 1.4.2 could only appear due to
the side effect of AddSet, which modifies its first argument. We could rewrite
the implementation as follows:

1 repeat
2 old_S := S;
3 X := ComputeSomeNewElements( S );
4 for x in X do
5 S := Concatenation( S, [ x ] );
6 od;
7 until S = old_S;

This replaces AddSet by Concatenation, which has no side effect and simply
returns the new result instead of modifying its arguments.

Additionally, we can now properly capture the problems which arise when
comparing values by their representations in memory. As an example, consider
the exponentiation of integers in Example 1.1.13: Strictly speaking, the inputs 2
and 60 do not fully determine the output 2^60 because the output is stored in
memory using pointers which can point to different locations. This problem is
part of the data structure of integers and affects all computations with integers
outside of the range from −260 to 260 − 1. Of course we do not want to rule out
all computations with integers outside of this range, so instead we specify that
we want the output to be fully determined up to the equality given by “=”.
Since “=” does not take the different representations in memory into account,
the impurity disappears. We will discuss such equalities in much more detail in
Section 1.4.3.

We end this section with a proof showing that composing pure functions
again gives a pure function, a property which will later be essential when proving
the purity of functions.

Proposition 1.4.8. A function f which is constructed by the nested application
of pure functions is itself pure.

Proof. We proceed by induction on the nesting depth.
If the nesting depth is zero, no function is applied at all in the construction

of f , so f simply returns one of the inputs. In this case, the output is certainly
fully determined by the input and there are no side effects.

Assume that the claim holds for any nesting depth smaller or equal to n and
consider a function f of nesting depth n+ 1. The return value of f must arise
from a function application of a pure function g to some input terms t1, . . . , tm.
These terms can be interpreted as functions with the same inputs as f (possibly
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ignoring some inputs). By assumption, these functions have a nesting depth at
most n and we can apply the induction assumption: The value of each of the
terms ti is fully determined by the inputs of f and evaluation of the terms does
not cause side effects. The absence of side effects guarantees that the evaluation
of a term does not mutate the inputs, so the tuple of values of the terms ti is fully
determined by the inputs of f independent of the order in which we evaluate the
terms.13 Since g is a pure function, the output of g is fully determined by the
values of the input terms ti and thus transitively by the inputs of f . Additionally,
the evaluation of g does not cause side effects.

Summing up, the output of f is fully determined by its inputs and evaluating
f does not cause any side effects, so f is pure. ■

1.4.3 Technical equalities in CAP

The statement

“The output of a function is fully determined by its inputs.”

in Definition 1.4.4 hides a notion of equality because it basically translates to

“Applying the function twice to equal inputs gives equal outputs.”

Thus, we have to define technical notions of equality for all things appearing
in our algorithms. We will do this in the following definition and afterwards
discuss various aspects in more detail. The most complex equality is the one for
functions. Since this equality does not appear in the applications in this thesis,
we omit discussing it at this point and refer to Section A.2 for the full picture.

Definition 1.4.9 (Technical equalities in CAP). We use the following technical
equalities in CAP:

• For integers, booleans, and characters we use the default equality given by
the comparison operator “=” in GAP.

• When creating a new composite data type, one must specify a technical
equality subject to the following conditions: The constructor must be pure,
which imposes a limit on how fine the equality can be, and all interfaces
interacting with elements of the data type must be pure, which imposes a
limit on how coarse the equality can be. Typically, the coarsest equality
fulfilling these conditions is used.

Any two things which are not equal by the above are considered as unequal. In
particular, no integer is equal to a boolean, as is sometimes the case in other
programming languages.

Remark 1.4.10 (Technical equality of integers, booleans, and characters). For
integers, booleans and characters, the equality in Definition 1.4.9 which is given
by the comparison operator “=” in GAP is just the expected mathematical equality.
Note that in Example 1.1.13 we saw that GAP actually also has another equality
for integers, so choosing a technical equality for integers is indeed a proper
choice.

13Of course we could also simply fix an order in which we evaluate function arguments, for
example “left to right”. However, such an order would not have a mathematical meaning, so
we avoid it.
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Now, we explain the ideas behind the technical equalities of composite data
types using two examples.

Example 1.4.11 (Technical equality of finite lists). For composite data types,
we have imposed the following requirement in Definition 1.4.9: The constructors
for elements of the data type and all interfaces interacting with elements of the
data type must be pure.

For the constructors this means that if two elements of a composite data
type are constructed from equal things, they must also be equal. For example,
two finite lists of the same length which are constructed from entrywise equal
elements must be equal. This imposes a limit on how fine the equality of finite
lists can be.

Conversely, the purity of the interfaces interacting with elements of the data
type imposes a limit on how coarse the equality can be. For example, an interface
for finite lists should certainly include a function for obtaining the length of a
list and a function for obtaining the entry of a list at a given position. Now if
we would consider two finite lists as equal even if they are of different length or
are not entrywise equal, then this interface would not be pure.

Summing up, the equality of finite lists is uniquely determined: Two finite
lists are equal if and only if they are of the same length and are entrywise equal.

We also look at an example similar to the case of finite lists but with a
different equality:

Example 1.4.12 (Technical equality of finite sets). Let us consider a possible
composite data type modeling finite sets and let us compare the situation to the
situation for finite lists. Possibly, we would like to be able to construct a finite
set by specifying its elements, similar to how we have constructed finite lists
in the previous example. Moreover, an interface for finite sets should certainly
include a function for obtaining the cardinality. However, the interface cannot
include a function for accessing an “entry at a given position” because this notion
is meaningless for sets. Instead, the interface would contain common operations
on sets like taking subsets, unions, intersections, et cetera. This allows for a
coarser equality than in the case of lists, that is, we are free to consider two
finite sets as equal if and only if they are constructed from equal elements up
to permutation and removal of duplicates.

Note that we could in principle use the same equality as for finite lists, but
would then simply get finite lists with an overly constrained interface which
does not even provide access to the typical semantics of lists. This shows why
typically the coarsest possible equality is chosen.

The technical equality of finite lists in Example 1.4.11 was uniquely deter-
mined because we could recover all the entries of a list in the correct order from
the list itself. This will often be the case, so we want to give this situation a
special name:

Definition 1.4.13 (Fully deconstructible composite data types). Let us consider
a composite data type together with a constructor C and interfaces for interacting
with elements of the data type. We call this data type fully deconstructible
if the inputs x1, . . . , xn for the constructor can be recovered (up to technical



28 Chapter 1. Algorithmic category theory

equality) in the original order from the constructed object C(x1, . . . , xn) via the
interfaces.14

Example 1.4.14. We consider finite lists and sets as in Example 1.4.11 and
Example 1.4.12.

Finite lists are fully deconstructible: If a list is constructed from elements
x1, . . . , xn, then we can access the length n and each entry xi for 1 ≤ i ≤ n via
the interface.

Finite sets are not a fully deconstructible: When constructing a set from the
elements 2, 1, and 1, then the interfaces for sets allow neither to recover that
1 appeared two times in the input nor to recover the order in which elements
appeared in the input, because this would contradict the purity of the interfaces
with regard to the technical equality for sets defined in Example 1.4.12.

Remark 1.4.15 (Technical equality on fully deconstructible data types). The
technical equality on fully deconstructible data types is uniquely determined:

As always, the purity of the constructor gives that two elements of the
data type constructed from equal things are equal. If the data type is fully
deconstructible, the purity of the interfaces also gives the converse: Equal
elements of the data type are constructed from equal things. So in this case two
elements of the data type are equal if and only if they are constructed from
equal things.

Remark 1.4.16 (Relation between mathematical and technical equalities of non–
categorical data types). We look at the relation between equalities constructed
in mathematical contexts and the technical equalities in Definition 1.4.9.

• For primitive mathematical objects like integers or booleans, the chosen
technical equality coincides with the usual mathematical equality.

• Mathematical constructions usually respect mathematical equalities on the
input. For example, when constructing tuples from pointwise mathemati-
cally equal elements, we get mathematically equal tuples. This matches the
rule that constructors of composite data types must respect the technical
equality. By careful design of the interfaces for non-categorical composite
data types15, we can choose the technical equality to match the mathemat-
ical equality, for instance as in Example 1.4.12.

Consequently, we make the following programming convention:

Convention 1.4.17 (Equalities of non-categorical data types). The mathemati-
cal and technical equalities of non-categorical data types coincide.

We will look at the situation for categorical composite data types, that is,
objects and morphisms of CAP categories, in the next section. For this, we will
need the following lemma:

Lemma 1.4.18 (Purity of equalities). Let “=” be some equality in CAP. Then
“=” is pure if and only if “=” has no side effects and is coarser than the technical
equality.

14This is similar to how inductive types in type theory [Uni13, Chapter 5] are freely
generated by their constructors. However, composite data types in GAP are not formalized in a
way which allows us to make this similarity fully precise.

15This technique does not work for categorical composite data types, that is, CAP objects
and morphisms, because the interfaces for those are fixed by CAP.
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Proof. Let us denote the technical equality by “≡” in this proof.
First, assume that “=” is pure. By definition, “=” has no side effects and

the output is fully determined by its inputs, that is:

If x ≡ x′ and y ≡ y′, then (x = y) ≡ (x′ = y′).

Since the technical equality on booleans coincides with the mathematical equality,
we can rephrase this statement as:

If x ≡ x′ and y ≡ y′, then x = y if and only if x′ = y′.

In the special case that x and x′ both coincide with y, we obtain the following
statement:

If y ≡ y and y ≡ y′, then y = y if and only if y = y′.

Due to reflexivity of “≡” and “=”, this can be simplified to

If y ≡ y′, then y = y′.

This just means that “=” is coarser than “≡”.
Conversely, assume that “=” has no side effects and is coarser than “≡”.

Moreover, assume that we have values x, x′, y, and y′ with x ≡ x′ and y ≡ y′.
Since “=” is coarser than “≡”, we have x = x′ and y = y′. Using the symmetry
and the transitivity of “=”, we can conclude:

x = y if and only if x′ = y′.

Hence, we have

If x ≡ x′ and y ≡ y′, then (x = y) ≡ (x′ = y′).

This means that the output of “=” is fully determined by its inputs, and since it
has no side effects, “=” is pure. ■

1.4.4 Faithfulness of categorical algorithms in CAP

In this section, we want to finally prove Meta-Theorem 1.4.1. In Remark 1.4.7,
we have seen that requiring functions to be pure can rule out unfaithfulness.
Hence, we make the following programming convention:

Convention 1.4.19 (Purity of boxing, unboxing, and CAP operations). Boxing,
unboxing, and all implementations of CAP operations are pure functions.

To understand the implications of this convention, we first have to look at
the technical equalities of categories, objects and morphisms.

Remark 1.4.20 (Categories as fixed parameters instead of variable inputs).
As we have seen in Section 1.3.2, CAP categories are constructed by a sequence
of functions: the function CreateCapCategory, followed by the Add functions,
and ultimately a call of Finalize. In particular, there is not a unique function
which we could call the “constructor” for CAP categories, so the requirement
that for composite data types the constructor must be pure does not apply. In
particular, we have no proper notion of a technical equality of categories.

However, this is not a problem in most of our applications: Usually all
categories appearing in the implementation are fixed after the creation of the cat-
egory. For example, the local variable Mat_ZZ appearing in the implementations
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of PreCompose and IdentityMorphism in Section 1.3.2 will always reference
the same category as the global variable Mat_ZZ. Hence, we do not have to view
Mat_ZZ as a variable input for the function AsCapCategoryMorphism. Instead
we can view AsCapCategoryMorphism as a family of functions and Mat_ZZ as
a fixed parameter selecting the function

AsCapCategoryMorphism( Mat_ZZ, ... )

from the family. With this point of view, we can mostly avoid the need for a
proper notion of a technical equality of categories.16

Remark 1.4.21 (Technical equalities of objects and morphisms). The function
used for boxing, that is, AsCapCategoryObject applied to a category and a
value, is actually a constructor of a composite data type with the interface
given by the function AsPrimitiveValue used for unboxing. As explained in
Remark 1.4.20, we consider the category as a fixed parameter. Unboxing allows
us to recover the value which was boxed, so we deal with a fully deconstructible
data type. Hence, as explained in Remark 1.4.15 the technical equality on objects
is uniquely determined by the technical equality of the unboxed values.

Similarly, the constructor AsCapCategoryMorphism together with the inter-
face given by the functions Source and Target as well as AsPrimitiveValue
used for unboxing fully determines a technical equality on morphisms: Two
morphisms can only be equal if they are parallel with regard to the technical
equality on objects. If they are parallel in this sense, the technical equality is
given by the technical equality of the unboxed values.

With this, we can finally give an answer to the questions raised in Exam-
ple 1.4.3:

Corollary 1.4.22 (Boxes on the computer do not introduce additional infor-
mation). Two boxed values are equal with regard to the technical equality if and
only if their unboxed versions are equal with regard to the technical equality. In
particular, the result of any pure function acting on boxed objects and morphisms
is fully determined by the unboxed values and the additional context introduced
by boxing, like source and targets of morphism. This formalizes that we really
could drop the boxes as long as we would provide the needed context like source
and target of morphisms in a more verbose way.

Convention 1.4.19 also requires that implementations of IsEqualForObjects
are pure functions. This has some implications:

Remark 1.4.23 (Purity and the meta-theoretical equality on objects). We look
at the implications of Convention 1.4.19 for implementations of the CAP operation
IsEqualForObjects, the meta-theoretical equality on objects. Lemma 1.4.18
states that IsEqualForObjects is pure if and only if the meta-theoretical
equality on objects is coarser than the technical equality on objects, which in
turn is given by the technical equality on unboxed objects, see Remark 1.4.21.
Actually, for the proof of Meta-Theorem 1.4.1, we want the technical equality

16This does not work when categories are variable, for example when they form objects in
the category of categories. In the future, the existing function CategoryConstructor could
be enhanced to allow creating arbitrary categories in a pure way. This would define a proper
technical equality on categories, although this equality would in general not be decidable due
to involving the equality of the functions implementing the various CAP operations.
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on objects to coincide with the meta-theoretical equality on objects. If this is
not the case a priori, there are two possible solutions:

• We can create a new composite data type as suggested in Remark 1.4.16:
By careful design of a new composite data type for unboxed objects with a
suitable interface, we can choose the technical equality of unboxed objects
in such a way that it gives rise to the desired technical equality on objects
coinciding with the meta-theoretical equality.

• We can simply use the technical equality as the meta-theoretical equality.
This does not affect the category theory because the meta-theoretical
equality on objects was not a part of the definition of category anyway.

We emphasize the central idea of the previous remark:

Convention 1.4.24. The technical equality and the meta-theoretical equality
on objects of a CAP category coincide.

Now, we can finally prove the meta-theorem.

Meta-Theorem (Recapitulation of Meta-Theorem 1.4.1). Algorithms in CAP
which box values, apply a categorical algorithm, and unbox the result are faithful
to the mathematics.

Proof. We assume that all programming conventions we have made above are
fulfilled:

• Convention 1.4.17: The mathematical and technical equalities of non-
categorical data types coincide.

• Convention 1.4.19: Boxing, unboxing, and all implementations of CAP
operations are pure functions.

• Convention 1.4.24: The technical equality and the meta-theoretical equality
on objects of a CAP category coincide.

We consider an algorithm as in the statement of the meta-theorem, that is, an
algorithm in CAP which boxes values, applies a categorical algorithm, and unboxes
the result. Due to Convention 1.4.19 and Proposition 1.4.8, the algorithm is pure.
In particular, the unboxed result is fully determined by the unboxed values of
the input with regard to the technical equality, which matches the mathematical
equality due to Convention 1.4.17. The specifications of CAP operations are just
given by the categorical definitions. Hence, the algorithm is faithful to category
theory.

The only remaining aspect external to category theory is the meta-theoretical
equality on objects. By Convention 1.4.24, the meta-theoretical equality on
objects coincides with the technical equality on objects, which in turn is respected
due to the purity of the algorithm.

Summing up, the algorithm is faithful to the mathematics. ■

Example 1.4.25 (Purity of the implementation of MatZ). We revisit our
implementation of MatZ in CAP in Section 1.3.2 and check if all implementations
of CAP operations are pure. First, we check that the technical equalities of
unboxed objects and morphisms coincide with the mathematical equalities of
unboxed objects and morphisms as expected by Convention 1.4.17. Objects
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are given by integers, for which the technical equality and the mathematical
equality coincide. Morphisms are given by matrices over ZZ in the package
MatricesForHomalg. The constructor for matrices in MatricesForHomalg is
called HomalgMatrix and accepts a ring, the number of rows and columns, and
the entries of the matrix. Since the only ring we construct is ZZ, for simplicity
we view the ring as a fixed parameter, just as we view categories as fixed
parameters since Remark 1.4.20. The interface for a matrix M in the package
MatricesForHomalg consists of the following functions:

• NrRows( M ) gives the number of rows of M,
• NrCols( M ) gives the number of columns of M,
• M[i,j] gets the entry of M at position (i, j).

Hence, we deal with a fully deconstructible data type. Therefore, the technical
equality of matrices over ZZ is uniquely determined by the number of rows and
columns and entrywise equality of integers. This technical equality of matrices
matches the usual mathematical equality of matrices over the integers.

Now, we go through the implementations of all CAP operations. The imple-
mentation of IsEqualForObjects simply unboxes objects as integers and checks
if those are equal. Similarly, the implementation of IsCongruentForMorphisms
simply unboxes morphisms as matrices and checks if those are equal. Unboxing
is pure by Convention 1.4.19. Checking the technical equality of two things is
always compatible with the technical equality (by transitivity) and has no side
effects. Hence, by Proposition 1.4.8 we conclude that the implementations of
IsEqualForObjects and IsCongruentForMorphisms are pure.

Next, matrix multiplication certainly respects the technical equality of matri-
ces and has no side effects. Since boxing and unboxing is pure, we can conclude
that the implementation of PreCompose is pure.

Furthermore, an identity matrix over a given ring is fully determined by
the integer defining its dimension, and creating an identity matrix has no side
effects17, so the implementation of IdentityMorphism is pure.

For the implementation of IsWellDefinedForObjects, things get more intri-
cate: The specifications of IsEqualForObjects, IsCongruentForMorphisms,
PreCompose and IdentityMorphism only consider well-defined technical ob-
jects and morphisms. However, when checking well-definedness, of course we
have to consider any technical object or morphism. Hence, the variable n in the
implementation in IsWellDefinedForObjects does not necessarily have to be
an integer. However, our definition of the technical equalities strictly separates
between integers and non-integers, that is, if two things are equal than either
both are integers or neither of the two is an integer. Additionally, checking
if something is an integer has no side effect. Thus, IsInt is pure. Checking
if an integer is non-negative also certainly is pure. Hence, we conclude that
IsWellDefinedForObjects is pure.

Similar to IsInt, the function IsHomalgMatrix is pure. Since the only ring
we construct is ZZ, for simplicity we exclude HomalgRing from consideration
in this example. Next, NrRows and NrCols are pure functions by construction
of the technical equality on matrices. Finally, checking the technical equality
of integers is pure. Hence, we conclude that IsWellDefinedForMorphisms is
pure.

17This holds up to implementation details, see Remark 1.4.6.
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To sum up, all implementations of CAP operations in Section 1.3.2 are pure.





Chapter 2

Categorical constructions

In this chapter, we introduce various categorical constructions which we will
need in the upcoming chapters. The constructions are not novel, but by using
CompilerForCAP [Zic24a] as a proof assistant, we can now formalize many of
the proofs, which we will demonstrate in Chapter 7. We mostly follow the
usual definitions but explicitly require some constructions to be compatible with
the (mathematical) equality on morphisms, owing to the fact that equality on
morphisms is an explicit part of our definition of category in Definition 1.1.2.
The definitions can be read both in a non-constructive and in a constructive
sense. In the context of implementations in CAP, we always read definitions in a
constructive sense, that is, we require algorithms for computing the objects and
morphisms specified in the definitions. Readers who are mainly interested in the
applications might prefer to skip this chapter and use the back references in the
upcoming chapters to fill in the details later.

The chapter is structured as follows: In Section 2.1, we introduce functors and
natural transformations as well as equivalences and isomorphisms of categories,
which will appear in all applications in the upcoming chapters.

We continue by introducing the constructions which we need for our appli-
cations in Section 4.1 and Section 4.2, where we show how one can compute
lifts in categories of finitely presented modules. We introduce lifts and colifts of
morphisms in Section 2.2, preadditive and linear categories in Section 2.3, and
additive categories and additive closures in Section 2.4. In Section 2.5, we define
homomorphism structures, a concept originally introduced in [Pos21a] to
compute lifts in so-called Freyd categories. Consequently, we introduce Freyd
categories, which can be used to model categories of finitely presented modules,
in Section 2.6.

Afterwards, we introduce the constructions which we need for the quantum
computing application in Chapter 5, where we use a categorical tower to model
a foundational functional programming language for quantum computers. We
introduce examples of limits and colimits in Section 2.7, and monoidal categories,
including closed and rigid structures, in Section 2.8. In Section 2.9, we introduce
slice categories and use them to model decorations of set-like structures like
directed multigraphs. In Section 2.10, we introduce categories of cospans,
which we use to model graphs with inputs and outputs in Chapter 5 and which
can in general be used to model networks, circuits, processes, or systems with
inputs and outputs [Cic18, FS19]. Finally, in Section 2.11, we view closed

35
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monoidal categories as so-called typed generalized lambda calculi, which in
turn can be interpreted as foundational functional programming languages.

In the course of the chapter, we will see various category constructors,
that is, functions constructing a category from some input. We will see cate-
gory constructors for functor categories (Definition 2.1.6), rings interpreted as
categories (Construction 2.3.7), additive closures (Construction 2.4.6), Freyd
categories (Definition 2.6.1), slice categories (Definition 2.9.1), and categories of
cospans (Definition 2.10.1). We will formally introduce category constructors in
Section 3.1.

2.1 Functors and natural transformations
Definition 2.1.1 (Functors). Let C and D be categories. A (covariant)
functor F from C to D is given by the following data:

• for every object A of C, an object F (A) of D,
• for every morphism f : A→ B of C, a morphism F (f) : F (A)→ F (B) of

D,
such that

• F is compatible with the equalities on morphisms, that is, for f, g : A→ B
in C with f = g we have

F (f) = F (g),
• F is compatible with the composition, that is, for two composable mor-

phisms f : A→ B and g : B → C in C we have

F (f · g) = F (f) · F (g),

• F preserves identity morphisms, that is, for every object A of C we have

F (idA) = idF (A).

If F is not compatible with the composition in the above sense but in the sense
that it swaps the arguments of the composition, that is,

F (f · g) = F (g) · F (f),

we call F a contravariant functor. In this case, F can be identified with a
covariant functor from Cop to D.

We write F : C→ D for a functor from C to D. Two functors F : C→ D
and G : D → E can be composed by forming a functor F · G : C → E which
maps every object A of C to G(F (A)) and every morphism f of C to G(F (f)).
The identity functor IdC on C maps every object A of C to A itself and every
morphism f of C to f itself.

A functor F : C→ D is called full (respectively faithful) if for every two
objects A and B of C the map

HomC(A,B)→ HomD(F (A), F (B))
f 7→ F (f)

is surjective (respectively injective). Moreover, a functor is called an embedding
of categories if it is injective on objects (with regard to the meta-theoretical
equality) and faithful.
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Example 2.1.2 (Hom-functors). Let C be a category and let A be an object of
C. We define the (covariant) hom-functor HomC(A,−) as follows:

HomC(A,−) : C→ Sets
B 7→ HomC(A,B)
f 7→ f∗

where for f : B → C we set

f∗ : HomC(A,B)→ HomC(A,C)
g 7→ g · f

Moreover, for an object B of C we define the contravariant hom-functor
HomC(−, B) as follows:

HomC(−, B) : C→ Sets
A 7→ HomC(A,B)
f 7→ f∗

where for f : A→ C we set

f∗ : HomC(C,B)→ HomC(A,B)
g 7→ f · g

Definition 2.1.3 (Natural transformations). Let C and D be categories and
let F,G be two functors from C to D. A natural transformation η from F
to G is given by the following data: for each object A of C we have a morphism

ηA : F (A)→ G(A)

of D such that for every morphism f : A → B of C the following diagram
commutes:

F (A) G(A)

F (B) G(B)

F (f)

ηA

G(f)

ηB

If for every object A of C the component ηA is an isomorphism, that is, an
invertible morphism, then η is called a natural isomorphism.

We write η : F ⇒ G for a natural transformation from F to G. Two natural
transformations η : F ⇒ G and ε : G ⇒ H can be composed componentwise,
forming a natural transformation η · ε : F → H. The identity natural
transformation on F is defined by having identity morphisms as components.

Definition 2.1.4 (Equivalences of categories). Let C and D be categories. An
equivalence of C and D is given by the following data:

• a functor F : C→ D,
• a functor G : D→ C,
• a natural isomorphism G · F ⇒ IdD,
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• a natural isomorphism IdC ⇒ F ·G.

Definition 2.1.5 (Isomorphisms of categories). Let C and D be categories. An
equivalence of C and D is called an isomorphism of categories if the natural
isomorphisms G · F ⇒ IdD and IdC ⇒ F · G can be chosen as the identity
natural transformations. In particular, for an object A of C and an object B of
D, we must have

F (G(B)) ≡ B and G(F (A)) ≡ A,

where “≡” denotes the meta-theoretical equalities on objects.

Definition 2.1.6 (Functor categories). Given two categories C and D, we
construct the functor category DC from C to D as follows:

• its objects are the functors C→ D,
• the morphisms from F to G are the natural transformations F ⇒ G with

componentwise equality,1

• composition of morphisms is given by componentwise composition of
natural transformations,

• identity morphisms are given by identity natural transformations.

One can easily check that this indeed defines a category.

2.2 Decidable lifts and colifts
Definition 2.2.1 (Lifts and colifts). Let C be a category and let α : A → B
and τ : T → B be two morphisms. A lift of τ along α is a morphism ξ : T → A
making the following diagram commute:

A B

T

α

τ
ξ

By dualizing the definition, we obtain the definition of colifts.

Definition 2.2.2 (Categories with decidable lifts or colifts). Let C be a category.
We say that C has decidable lifts if

• given two morphisms α : A → B and τ : T → B we can decide if there
exists a lift of τ along α, and

• we can construct a lift ξ of τ along α if such a lift exists.

If an analogous property for colifts holds, we say that C has decidable
colifts.

1In a set-theoretic foundation, one restricts to the case of C being a small category to make
sure the natural transformations F ⇒ G form a small set.
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2.3 Preadditive and linear categories
Definition 2.3.1 (Preadditive categories). Let C be a category. We call C
preadditive if

• every set of morphisms HomC(A,B) is equipped with an addition operation
“+” which turns HomC(A,B) into an abelian group,

• composition distributes over the addition, that is, for morphisms α : A→ B,
β1, β2 : B → C, and γ : C → D we have

α · (β1 + β2) = α · β1 + α · β2 and (β1 + β2) · γ = β1 · γ + β2 · γ.

In particular, the addition and taking additive inverses must be compatible with
the equality on morphisms, that is, for morphisms α1, α2, β1, β2 : A→ B with
α1 = α2 and β1 = β2 we have

α1 + β1 = α2 + β2 and − α1 = −α2.

Example 2.3.2 (Categories of matrices are preadditive categories). Let R
be a commutative ring. The usual addition of matrices endows MatR with a
preadditive structure.

Definition 2.3.3 (Linear categories). Let C be a preadditive category and let
k be a commutative ring. We call C k-linear if

• every set of morphisms HomC(A,B) is equipped with a scalar multiplica-
tion “·” which turns HomC(A,B) together with the addition “+” given by
the preadditive structure into a k-module,

• composition is k-bilinear, that is, for morphisms α : A→ B and β : B → C
and λ ∈ k we have

(λ · α) · β = λ · (α · β) = α · (λ · β).

In particular, the scalar multiplication must be compatible with the equality on
morphisms, that is, for morphisms α1, α2 : A→ B with α1 = α2 and λ ∈ k we
have

λ · α1 = λ · α2.
Moreover, if all sets of morphisms are finitely generated free k-modules,

we say that C has finitely generated free external homs.

Example 2.3.4 (Categories of matrices over commutative rings are linear
categories). Let k be a commutative ring. We have already seen that the usual
addition of matrices endows Matk with a preadditive structure. The usual
scalar multiplication of matrices with elements of k endows Matk with a k-
linear structure. Moreover, the m× n matrices with entries in k form a finitely
generated free k-module of rank m · n. Hence, Matk has finitely generated free
external homs.

Remark 2.3.5 (Preadditive categories as linear categories). Just as Z-modules
are just abelian groups, Z-linear categories are just preadditive categories.

Remark 2.3.6 (Preadditivity and linearity of opposite cateogories). The sets of
morphisms of an opposite category Cop are just given by the sets of morphisms
of C. Hence, if C is preadditive or linear, then so is Cop.
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Prototypical examples of preadditive and linear categories appear when
viewing rings or algebras over commutative rings as categories:

Construction 2.3.7 (Monoids and rings as categories with a single object).
Let M be a monoid, that is, a set with a multiplication and a neutral element.
We can regard M as a category C(M) as follows:

• It only has a single object, which we call ⋆C(M),
• the morphisms are the elements of M with the equality of the set underlying
M ,

• composition is given by the multiplication of M ,
• the identity morphism is given by the neutral element of M .

Moreover, if M is the underlying multiplicative monoid of a ring R, the addition
of R provides an abelian group structure on HomC(M)(⋆C(M), ⋆C(M)), which
turns C(M) into a preadditive category.

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction in Section 7.1 and Section 7.4.1. ■

Construction 2.3.8 (Algebras over commutative rings define linear categories).
Let k be a commutative ring and let R be a (unital associative) k-algebra. That
is, R is a ring with a k-module structure such that ring multiplication is k-bilinear.
This turns C(R) into a k-linear category. Moreover, if R is finitely generated
free as a k-module, then C(R) is a k-linear category with finitely generated free
external homs.

As a special case, consider R = k. Since k is a free k-module of rank 1, C(k)
is a k-linear category with finitely generated free external homs.

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction in Section 7.4.1. ■

2.4 Additive categories and additive closures
Definition 2.4.1 (Direct sums). Let C be a preadditive category and let
A1, . . . , Aa for a ∈ N be a (finite) family of objects of C. The direct sum of
A1, . . . , Aa is an object

⊕a
i=1 Ai together with

• morphisms πi :
⊕a

i=1 Ai → Ai for all i ∈ {1, . . . , a} called projections,
• morphisms ιi : Ai →

⊕a
i=1 Ai for all i ∈ {1, . . . , a} called injections,

• for every family of morphisms τi : T → Ai with i ∈ {1, . . . , a} a morphism

(τ1, . . . , τa)⊕ : T →
a⊕
i=1

Ai

such that
(τ1, . . . , τa)⊕ · πi = τi for all i ∈ {1, . . . , a},
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• for every family of morphisms σi : Ai → T with i ∈ {1, . . . , a} a morphism

⟨σ1, . . . , σa⟩⊕ :
a⊕
i=1

Ai → T

such that
ιi · ⟨σ1, . . . , σa⟩⊕ = σi for all i ∈ {1, . . . , a},

such that
a∑
i=1

πi · ιi = id⊕a

i=1
Ai

and

ιi · πj =
{

idAi if i = j,

0Ai,Aj else,
for all i, j ∈ {1, . . . , a}.

One can show that the morphisms (τ1, . . . , τa)⊕ and ⟨σ1, . . . , σa⟩⊕ as above are
uniquely determined.

We say that a category has direct sums if a direct sum of every finite
family of objects A1, . . . , Aa exists. In the degenerate case a = 0, the direct sum
is called a zero object.

Definition 2.4.2 (Additive categories). Let C be a preadditive category. C is
called additive if it has direct sums.

Remark 2.4.3 (Direct sums in opposite categories). The definition of direct
sums is self-dual. Hence, the opposite category of an additive category is additive.

Remark 2.4.4 (Morphisms between direct sums). Let C be an additive category
and let A1, . . . , Aa and B1, . . . , Bb be two families of objects of C. To every
morphism

α :
a⊕
i=1

Ai →
b⊕
j=1

Bj

we can associate an a× b matrix M(α) of morphisms of C with components(
M(α)

)
ij

:= ιi · α · πj : Ai → Aj .

Conversely, to every a× b matrix M of morphisms of C with components

Mij : Ai → Bj

we can associate a morphism

M⊕ :=
〈
(Mij)⊕j

〉⊕
i

:
a⊕
i=1

Ai →
b⊕
j=1

Bj .

One can check that the two constructions are mutually inverse. That is, mor-
phisms between direct sums exactly correspond to matrices of morphisms between
the factors. Moreover, one can check that the composition of morphisms between
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direct sums corresponds to a generalized version of matrix multiplication, that
is, for

α :
a⊕
i=1

Ai →
b⊕

k=1
Bj and β :

b⊕
k=1

Bi →
c⊕
j=1

Cj

we have

M(α · β) = M(α) ·M(β) with
(
M(α) ·M(β)

)
ij

:=
b∑

k=1
αik · βkj : Ai → Cj .

Remark 2.4.5 (Systems of linear equations). Let C be a preadditive category.
A system of n linear equations with m unknowns in C is given by

• morphisms αij : Bi → Cj for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n} (called
coefficients),

• morphisms βj : A→ Cj for j ∈ {1, . . . , n} (called constants),
• indeterminate morphisms ξi : A → Bi for i ∈ {1, . . . ,m} (the m un-

knowns),

where we want to determine the unknowns such that the following equations are
fulfilled:

ξ1 · α11 + · · ·+ ξm · αm1 = β1,
...

ξ1 · α1n + · · ·+ ξm · αmn = βn.

If C is an additive category, we can use Remark 2.4.4 to rewrite this system of
equations as a single equation of morphisms between direct sums:

(
ξ1 . . . ξm

)⊕ ·
α11 . . . α1n

... . . . ...
αm1 . . . αmn


⊕

=
(
β1 . . . βn

)⊕ .

In particular, this equation is just a lift equation in C.

We now construct the additive closure of a preadditive category C, which
can be interpreted as adding formal direct sums to C. Afterwards, we make this
interpretation precise by showing that C can be embedded in its additive closure
and that the additive closure indeed has a preadditive structure and direct sums.

Construction 2.4.6 (Additive closure of a preadditive category). Let C be a
preadditive category. We define the additive closure C⊕ of C as the following
category:

• Its objects are tuples of objects of C, where we write A for an object
given by an a-tuple (A1, . . . , Aa),

• a morphism from A to B in C⊕ is an a× b matrix α of morphisms of C
such that

αij : Ai → Bj ,
where equality of morphisms in C⊕ is checked entrywise,
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• composition is given by generalized matrix multiplication, that is, the
composite of two morphisms α : A → B and β : B → C is given by
the morphism γ : A → C with components

γij =
b∑

k=1
αik · βkj : Ai → Cj ,

• identity morphisms are given by generalized identity matrices, that is the
identity on an object A is given by the morphism α : A → A with
components

αij =
{

idAi
if i = j,

0Ai,Aj
else.

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction in Section 7.2. ■

Construction 2.4.7 (A preadditive structure on an additive closure). Let C
be a preadditive category. We can define the sum of two morphisms

α , β : A → B

in the additive closure C⊕ entrywise, that is, as the morphism γ : A → B
with components

γij = αij + βij : Ai → Bj .

This gives a preadditive structure for C⊕.

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction in Section 7.4.3. ■

Remark 2.4.8 (Embedding a preadditive category in its additive closure). Let
C be a preadditive category. We can embed C into its additive closure C⊕ by
mapping

• an object A of C to (A) in C⊕ and

• a morphism α : A→ B of C to
(
α
)

: (A) → (B) in C⊕.

Morphisms (A) → (B) in C⊕ are matrices with a single entry and thus
correspond exactly to morphisms A → B in C, so this embedding is full.
Moreover, since addition of morphisms in C⊕ is defined entrywise, this embedding
is compatible with the addition.

Construction 2.4.9 (Direct sums in an additive closure). Let C be a preadditive
category. We construct direct sums in the additive closure C⊕, starting with
binary direct sums. Let A and B be two objects in C⊕. We construct a direct
sum A ⊕ B together with the projections and injections as follows:

• We set A ⊕ B :≡ (A1, . . . , Aa, B1, . . . , Bb) .
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• The projections π1 : A ⊕ B → A and π2 : A ⊕ B → B are given
by “stacking identity morphisms and zero morphisms”, that is,

(π1)ij :=
(

idA
0B,A

)
ij

:=


idAi if 1 ≤ i ≤ a and i = j,
0Ai,Aj if 1 ≤ i ≤ a and i ̸= j,
0Bi,Aj

if a+ 1 ≤ i ≤ a+ b,

and

(π2)ij :=
(

0A,B
idB

)
ij

:=


0Ai,Bj

if 1 ≤ i ≤ a,
idBi

if a+ 1 ≤ i ≤ a+ b and i = j,
0Bi,Bj

if a+ 1 ≤ i ≤ a+ b and i ̸= j.

• Similarly, the injections ι1 : A → A ⊕ B and ι2 : B → A ⊕ B are
given by

(ι1)ij :=
(
idA 0A,B

)
ij

:=


idAi

if 1 ≤ j ≤ a and i = j,
0Ai,Aj

if 1 ≤ j ≤ a and i ̸= j,
0Ai,Bj if a+ 1 ≤ j ≤ a+ b,

and

(ι2)ij :=
(
0B,A idB

)
ij

:=


0Bi,Aj if 1 ≤ j ≤ a,
idBi if a+ 1 ≤ j ≤ a+ b and i = j,
0Bi,Bj

if a+ 1 ≤ j ≤ a+ b and i ̸= j.

Now, if we have an object T with morphisms

τ1 : T → A and τ2 : T → B ,

we can choose u = ( τ1 , τ2 )⊕ : T → A ⊕ B as “the union of columns of the
matrices τ1 and τ2”, that is,

uij :=
(
τ1 τ2

)
ij

:=
{

(τ1)ij if 1 ≤ j ≤ a,
(τ2)ij if a+ 1 ≤ j ≤ a+ b.

Similarly, for two morphisms

τ1 : A → T and τ2 : B → T

we can choose u = ⟨ σ1 , σ2 ⟩⊕ : A ⊕ B → T as

uij :=
(
τ1
τ2

)
ij

:=
{

(σ1)ij if 1 ≤ i ≤ a,
(σ2)ij if a+ 1 ≤ i ≤ a+ b.

This construction can be generalized to arbitrary finite direct sums. This
also includes the degenerate case of an empty direct sum, which constructs a
zero object represented by an empty tuple.

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction in Section 7.4.3. ■
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2.5 Homomorphism structures
In this section, we define homomorphism structures. The concept was
introduced in [Pos21a] to compute lifts in so-called Freyd categories. We will
see this application in Proposition 2.6.2. For a motivation for the definition, see
Remark 4.1.2 and Remark 2.5.2. For a connection to enriched category theory,
see Remark 2.5.3.

Definition 2.5.1 (Homomorphism structures, [Pos21a, Definition 6.4]). Let C
and D be categories. A D-homomorphism structure on C consists of the
following data:

• An object 1 ∈ D called the distinguished object,
• a functor in two variables H : Cop ×C→ D which is contravariant in the

first component,2

• a natural isomorphism ν with components

νA,B : HomC(A,B)→ HomD(1, H(A,B)).

Moreover, if we are in the context of preadditive categories, we require H to be
additive in both components.

Remark 2.5.2 (The naturality of ν made explicit). Let C be a category with a
D-homomorphism structure. The naturality of ν is given by the commutativity
of the following diagram:

HomC(A,B) HomD(1, H(A,B))

HomC(C,D) HomD(1, H(C,D)

νA,B

HomC(α,β) HomD(id1,H(α,β))
νC,D

If we spell out the definitions of the hom-functors, we get for ξ ∈ HomC(A,B)
that

νC,D(α · ξ · β) = id1 · νA,B(ξ) ·H(α, β) = νA,B(ξ) ·H(α, β).

For readers familiar with enriched category theory, we can relate homomor-
phism structures to enriched categories as follows:

Remark 2.5.3 (Connection to enriched categories, [Pos21a, Remark 6.5]). Let
C be a category enriched over a locally small symmetric closed monoidal category
D. For two objects A and B of C, let us write H(A,B) for the hom object in
D. Moreover, let C0 be the underlying category of C, that is, the category with
the same objects as C and with the sets of morphisms defined by

HomC0(A,B) := HomD(1, H(A,B)),

where 1 denotes the tensor unit of D. As stated in [Pos21a, Remark 6.5], we
can extend H on objects to a functor H : Cop

0 × C0 → D giving rise to a
D-homomorphism structure of C0.

Lemma 2.5.4. If H is additive, then so is ν.
2We write Cop for the first component of H to signify the contravariance, but still apply H

to objects and morphisms of C without an additional box in the first component.
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Proof. Let C be a category with a D-homomorphism structure. Moreover, let
α1, α2 : A→ B be two morphisms in C. Using Remark 2.5.2, we compute:

ν(α1 + α2) = ν((α1 + α2) · idB · idB)
= ν(idB) ·H(α1 + α2, idB)
= ν(idB) ·

(
H(α1, idB) +H(α2, idB)

)
=
(
ν(idB) ·H(α1, idB)

)
+
(
ν(idB) ·H(α2, idB)

)
= ν(α1) + ν(α2). ■

Note that we could have used CompilerForCAP to prove this lemma, just
as we use CompilerForCAP for many proofs in this section. However, since the
proof is just a single sequence of equations, it is easier to simply give a manual
proof.

Remark 2.5.5 (Extending homomorphism structures by full embeddings). Let
C be a category with a D-homomorphism structure. Assume that we can embed
D into a category D′ by a full embedding E : D ↪→ D′. Then E(1), H · E and
ν · E define a D′-homomorphism structure for C.

We now give various examples of homomorphism structures of categories.

Construction 2.5.6 (Homomorphism structures on commutative rings). Let
k be a commutative ring. We can endow C(k) with a C(k)-homomorphism
structure as follows:

• The distinguished object 1 is the unique object ⋆ of C(k),

• we define

H : C(k)op × C(k)→ C(k),
(⋆, ⋆) 7→ ⋆,

( r , s ) 7→ r · s ,

• we define the only component ν⋆,⋆ of ν as the identity on

HomC(k)(⋆, ⋆) ≡ HomC(k)(1, H(⋆, ⋆)).

We provide a proof after the next construction, which is a generalization of
the above.

Construction 2.5.7 (Homomorphism structures for linear categories, [Sal22,
Lemma 4.11]). Let k be a commutative ring and let C be a k-linear category with
finitely generated free external homs. For every set of morphisms HomC(A,B),
we fix a k-basis BA,B . Moreover, given a morphism φ : A→ B, we write λφ for
the row vector of coefficients of φ with regard to the k-basis BA,B .

We can endow C with a Matk-homomorphism structure as follows:

• The distinguished object is 1 .
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• We define

H : Cop ×C→Matk
(A,B) 7→ |BA,B |

(
with |BA,B | ∈ N

)
(α, β) 7→

λα·φ1·β
...

λα·φn·β

 for (φ1, . . . , φn) = Bt(α),s(β)(
with λα·φi·β ∈ k1×|Bs(α),t(β)|

)
• We define

νA,B : HomC(A,B)→ HomMatk
( 1 , H(A,B)),

φ 7→ λφ
(
with λφ ∈ k1×|BA,B |

)
Proof of correctness. A proof can be found in [Sal22, Lemma 4.11]. We will also
use CompilerForCAP to prove the correctness of the construction in Section 7.4.2.

■

Proof of correctness of Construction 2.5.6. Let k be a commutative ring. As we
have seen in Construction 2.3.8, C(k) is a k-linear category with finitely generated
free external homs. Using Construction 2.5.7, we get a Matk-homomorphism
structure for C(k). However, we can do better: The only set of morphisms of C(k)
is simply given by k, that is, is a free k-module of rank 1. Hence, in this case
all matrices appearing in Construction 2.5.7 are 1× 1 matrices. The subcategory
of Matk given by the 1× 1 matrices can be identified with C(k). Hence, C(k)
has a C(k)-homomorphism structure. This is just the homomorphism structure
in Construction 2.5.6. ■

Construction 2.5.8 (Homomorphism structures of additive closures, [Pos21b,
Construction 1.27]). Let C be a preadditive category with a D-homomorphism
structure, where D is an additive category. We construct a D-homomorphism
structure for C⊕ as follows:

• We keep the distinguished object,
• we define

H : (C⊕)op ×C⊕ → D

( A , B ) 7→
a⊕
i=1

(
b⊕
j=1

H(Ai, Bj)
)

( α , β ) 7→
〈(〈(

H(αij , βst)
)⊕
t

〉⊕
s

)⊕
i

〉⊕
j

• we define

ν A , B : HomC⊕( A , B )→ HomD(1, H( A , B ))

α 7→
((
ν(αij)

)⊕
j

)⊕
i

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction in Section 7.4.3. ■
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Construction 2.5.9 (Homomorphism structures of opposite categories). Let
C be a category with a D-homomorphism structure. We can construct a
D-homomorphism structure for the opposite category O := Cop as follows:

• We keep the distinguished object,
• we swap the arguments of H, that is, we define

H : Oop ×O→ D,
( A , B ) 7→ H(B,A),
( α , β ) 7→ H(β, α),

• we “swap the components” of ν, that is, we define

ν A , B : HomO
(
A , B

)
→ HomD

(
1, H( A , B )

)
≡ HomD

(
1, H(B,A)

)
,

α 7→ νB,A(α).

Proof of correctness. We will use CompilerForCAP to prove the correctness of
the construction at the end of Section 7.4. ■

2.6 Freyd categories
In this section, we introduce Freyd categories, a concept conceived by Peter
Freyd in [Fre66]. We will use Freyd categories to model categories of finitely
presented modules in Construction 4.2.5. As a motivation for the definition of
Freyd categories, see Construction 4.2.4.

Definition 2.6.1 (Freyd categories). Let C be a preadditive3 category. We
define the Freyd category Freyd(C) of C as follows:

• Its objects are the morphisms of C.
• Let α : A → B and β : C → D be morphisms in C. A morphism

from α Freyd(C) to β Freyd(C) is a morphism φ : B → D in C such that
there exists a morphism φ′ : A→ C which makes the following diagram
commute:

A C

B D

α

φ′

β

φ

We consider two morphisms φ Freyd(C) and ψ Freyd(C) as equal if and
only if there exists a morphism κ : B → C in C which makes the triangle
in the following diagram commute:

A C

B D

α β

φ−ψ

κ

3One usually defines Freyd categories over additive categories. With this, the Freyd
category has more structure, for example cokernels. However, we do not need the additional
structure in this thesis, so we try to stay as general as possible.
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• Composition is given by composition in C.
• Identity morphisms are given by identities in C.

One can easily check that this indeed defines a category.

Proposition 2.6.2 (Decidable lifts in Freyd categories via homomorphism
structures, [Pos21a, Corollary 6.11]). Let D be an additive category with decidable
lifts and let C be a preadditive category with a D-homomorphism structure. Then
Freyd(C) has decidable lifts.

Proof. Let φ : α → β and ψ : γ → β be two morphisms in Freyd(C).
Assume that we want to compute a lift ξ : γ → α such that the following
diagram commutes:

α β

γ

φ

ψ
ξ

In order for the morphism ξ in C to define a morphism γ → α , there has to
exist a suitable morphism ξ′ in C such that

γ · ξ = ξ′ · α. (2.1)

Moreover, to make the diagram commute there has to exist a suitable morphism
κ in C such that

ξ · φ− ψ = κ · β. (2.2)

We would like to combine both equations (2.1) and (2.2) into a system of linear
equations as defined in Remark 2.4.5. Unfortunately, in the first equation (2.1),
the unknowns ξ and ξ′ appear on different sides of the composition. This
situation is not covered by Remark 2.4.5. However, we can use the naturality
of ν of the homomorphism structure to rewrite the first equation (2.1) as the
following equation in D:

ν(ξ) ·H(γ, id1) = ν(ξ′) ·H(id2, α), (2.3)

where id1 and id2 are suitable identity morphisms. Now, both indeterminates
ν(ξ) and ν(ξ′) appear on the left-hand side of a composition, and we can further
rewrite equation (2.3) as

ν(ξ) ·H(γ, id1) + ν(ξ′) ·
(
−H(id2, α)

)
= 0, (2.4)

where 0 is a suitable zero morphism.
Consequently, we also apply ν to (2.2) and obtain, using the naturality and

additivity of ν:

ν(ξ) ·H(id3, φ)− ν(ψ) = ν(κ) ·H(id4, β),

where id3 and id4 are suitable identity morphisms. We can rewrite this equation
further as

ν(ξ) ·H(id3, φ) + ν(κ) ·
(
−H(id4, β)

)
= ν(ψ). (2.5)
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Now, we can combine (2.4) and (2.5) into a system of linear equations in D:

ν(ξ) ·H(γ, id1) + ν(ξ′) ·
(
−H(id2, α)

)
+ ν(κ) · 0 = 0,

ν(ξ) ·H(id3, φ) + ν(ξ′) · 0 + ν(κ) ·
(
−H(id4, β)

)
= ν(ψ),

where the new zeros are again suitable zero morphisms. Since D is additive,
we can use Remark 2.4.5 to rewrite this system of linear equations as a single
equation of morphisms between direct sums:

(
ν(ξ) ν(ξ′) ν(κ)

)⊕ ·
 H(γ, id1) H(id3, φ)
−H(id2, α) 0

0 −H(id4, β)

⊕ =
(
0 ν(ψ)

)⊕ .

Since D has decidable lifts and ν is bijective, we can solve this equation for(
ν(ξ) ν(ξ′) ν(κ)

)⊕, extract the components ν(ξ), ν(ξ′), and ν(κ), and apply
the inverse of ν to obtain ξ, ξ′, and κ. ■

2.7 Limits and colimits
In this section, we introduce some limits and colimits. Limits and colimits
are defined by universal properties and are hence essentially unique, that is,
unique up to a unique isomorphism.

Definition 2.7.1 (Coproducts). Let C be a category and let A and B be two
objects of C. The (binary) coproduct of A and B is an object A ⊔ B in C
together with two morphisms

ι⊔A : A→ A ⊔B and ι⊔B : B → A ⊔B

with the following universal property: For every two morphisms τA : A→ T and
τB : B → T , there exists a unique morphism

u : A ⊔B → T

such that the triangles in the following diagram commute:

A B

A ⊔B

T

ι⊔A

τA

ι⊔B

τB∃1u

The definition can be generalized to coproducts of arbitrary finite families of
objects of C. In the degenerate case of an empty family of objects, we obtain
the definition of an initial object.

The definition can be extended to morphisms in a functorial way: Let
f : A→ B and g : C → D be two morphisms. We define f ⊔ g : A⊔C → B ⊔D
as the unique morphism making the following diagram commute:
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A C

B A ⊔ C D

B ⊔D

f
ι⊔A

g
ι⊔C

ι⊔B
f⊔g

ι⊔D

One can check that this defines a functor in two arguments ⊔ : C⊗C→ C.
By dualizing the definition, we obtain the definition of products, with the

degenerate case of an empty family of objects giving the definition of a terminal
object.

Construction 2.7.2 (Coproducts in functor categories). Let C be a category
and let D be a category with coproducts. Then the functor category from C to
D has coproducts:

Let F , G be two objects of DC, that is, F,G : C → D are two functors.
We define a coproduct C := F ⊔ G of F and G as follows:

C : C→ D
A 7→ F (A) ⊔G(A)
f 7→ F (f) ⊔G(f)

The injections ι⊔
F

: F → C and ι⊔
G

: G → C are given by the natural
transformation whose components are the injections

ι⊔F (A) : F (A)→ F (A) ⊔G(A) and ι⊔G(A) : G(A)→ F (A) ⊔G(A),

respectively. Given two morphisms τ1 : F → T and τ2 : G → T , the
universal morphism u : C → T can be defined by taking the universal morphism
in every component.

The construction can be generalized to coproducts of arbitrary finite families
of objects of DC.

Proof of correctness. The functoriality of ⊔ : C ⊗ C → C ensures that C is
indeed a functor. Moreover, the construction of ⊔ on morphisms ensures that
the injections and the universal morphism are actually natural transformations.
Finally, since the equality of morphisms in functor categories is given componen-
twise and all constructions are defined componentwise, the required properties
follow immediately from the properties of coproducts in D. ■

Definition 2.7.3 (Coequalizers). Let C be a category and let f, g : A→ B be
two parallel morphisms of C. The (binary) coequalizer of f and g is an object
coeq(f, g) in C together with a morphism

πcoeq : B → coeq(f, g) such that f · πcoeq = g · πcoeq

with the following universal property: For every morphism τ : B → T such that
f · τ = g · τ , there exists a unique morphism

u : coeq(f, g)→ T

such that the triangle in the following diagram commutes:



52 Chapter 2. Categorical constructions

A B coeq(f, g)

T

f

g

πcoeq

τ ∃1u

The definition can be generalized to coequalizers of arbitrary finite families of
parallel morphisms of C.

Similar to the situation for coproducts, the definition can be extended in
a functorial way: Let f, g : A → B and h, i : C → D be two pairs of parallel
morphisms and let k : B → D and ℓ : A→ C be two morphisms such that

f · k = ℓ · h and g · k = ℓ · i.

Moreover, consider the coequalizers coeq(f, g) with πcoeq
1 : B → coeq(f, g) and

coeq(h, i) with πcoeq
2 : B → coeq(h, i). By a diagram chase, we get that

f · (k · πcoeq
2 ) = g · (k · πcoeq

2 ).

Hence, there exists a unique morphism ucoeq
k : coeq(f, g)→ coeq(h, i) such that

πcoeq
1 · ucoeq

k = k · πcoeq
2 .

The situation can be visualized as follows:

A B coeq(f, g)

C D coeq(h, i)

f

g

ℓ

πcoeq
1

k ∃1u
coeq
k

h

i πcoeq
2

One can check that the construction is functorial in k, that is,

ucoeq
idB

= idcoeq(f,g) and ucoeq
k1·k2

= ucoeq
k1
· ucoeq

k2

for suitable coequalizer diagrams and morphisms k1 and k2.
By dualizing the definition, we obtain the definition of equalizers.

Example 2.7.4 (Coequalizers in the category of sets). Let f , g : M → N

be two parallel morphisms in Sets. Let ∼cl be the smallest equivalence relation
on N such that f(m) ∼cl g(m) for all m ∈ M , that is, ∼cl is the reflexive,
symmetric, and transitive closure of the relation f(m) ∼ g(m) for all m ∈ M .
Then the object B/∼cl given by the quotient set together with the morphism
B → B/∼cl given by the canonical projection B → B/∼cl forms a coequalizer
of f and g . The universal property follows from the homomorphism theorem
for sets. The construction can be generalized to coequalizers of arbitrary finite
families of parallel morphisms of Sets.

Constructing the set of cosets C := B/∼cl can be made algorithmic as follows:
We start with the finest possible choice of cosets C := {{n} | n ∈ N}. Then, we
loop over the relation ∼: For a ∼ b, if the cosets containing a and b are different,
we merge them. By construction, the resulting cosets respect the relation ∼,
and give indeed rise to the smallest equivalence relation respecting ∼.
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On a computer, this process is relatively intricate and expensive: For every
a ∼ b, we have to loop over C and every coset of C to find the cosets Ca and Cb
containing a and b. Afterwards, we possibly have to merge them, that is, remove
Ca and Cb from C and add Ca ∪ Cb instead. The creation and manipulation of
sets is usually a relatively expensive operation on a computer because it typically
involves large memory allocations for large sets. Moreover, the situation gets
even more complicated if we generalize to arbitrary finite families of parallel
morphisms of Sets.
Construction 2.7.5 (Coequalizers in functor categories). Let C be a category
and let D be a category with coequalizers. Then the functor category from C to
D has coequalizers:

Let η , ν : F → G be two parallel morphisms of DC. We define a
coequalizer C := coeq( η , ν ) of η and ν as follows:

C : C→ D
A 7→ coeq(ηA, νA)
f 7→ ucoeq

f

The morphism πcoeq : G → C is given by the natural transformation whose
components are the morphisms

πcoeq : G(A)→ coeq(ηA, νA).

Given a morphism τ : G → T such that

η · τ = ν · τ ,

the universal morphism u : C → T can be defined by taking the universal
morphism in every component.

The construction can be generalized to coequalizers of arbitrary finite families
of parallel morphisms of DC.
Proof of correctness. The functoriality of ucoeq ensures that C is indeed a functor.
Moreover, the construction of ucoeq ensures that πcoeq and the universal morphism
are actually natural transformations. Finally, since the equality of morphisms
in functor categories is given componentwise and all constructions are defined
componentwise, the required properties follow immediately from the properties
of coequalizers in D. ■

In a preadditive category, a coequalizer of a morphism with the zero morphism
is called a cokernel. We explicitly spell out the definition:
Definition 2.7.6 (Cokernels). Let C be a preadditive category and let f : A→ B
be a morphism of C. The cokernel of f is an object coker(f) in C together
with a morphism

πcoker : B → coker(f) such that f · πcoker is zero

with the following universal property: For every morphism τ : B → T such that
f · τ is zero, there exists a unique morphism

u : coker(f)→ T

such that the triangle in the following diagram commutes:
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A B coker(f)

T

f πcoker

τ ∃1u

By dualizing the definition, we obtain the definition of kernels.

Remark 2.7.7 (Deriving binary coequalizers from cokernels and vice versa).
Let C be a preadditive category. Then all binary coequalizers exist in C if and
only if all cokernels exists in C: To compute a cokernel of a morphism f , we can
simply compute the coequalizer of f and 0. Conversely, to compute a coequalizer
of two morphisms f and g, we can compute a cokernel of f − g and use that

f − g is zero

is equivalent to
f = g.

Definition 2.7.8 (Pushouts). Let C be a category and let f : C → A and
g : C → B be two morphisms in C with a common source. The (binary)
pushout of f and g is an object P in C together with two morphisms

ιA : A→ P and ιB : B → P such that f · ιA = g · ιB

with the following universal property: For every two morphisms τA : A→ T and
τB : B → T such that f · τA = g · τB , there exists a unique morphism

u : P → T

such that the two triangles in the following diagram commute:

C A

B P

T

f

g ιA
τA

ιB

τB

∃1u

The definition can be generalized to pushouts of arbitrary finite families of
morphisms in C with a common source. By dualizing the definition, we obtain
the definition of pullbacks.

2.8 Monoidal categories
Definition 2.8.1 (Monoidal categories). A monoidal category is a category
C together with the following data:

• a functor ⊗ : C×C→ C called the tensor product,
• an object 1 in C called the tensor unit,4

4Note that we also use “1” to denote the distinguished object of a homomorphism structure.
However, in this thesis we will not consider homomorphism structures and monoidal structures
at the same time, so it is safe to reuse “1” for the tensor unit.
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• a natural isomorphism α with components

αA,B,C : (A⊗B)⊗ C ∼= A⊗ (B ⊗ C) (associators),

• a natural isomorphism λ with components

λA : 1⊗A ∼= A (left unitors),

• a natural isomorphism ρ with components

ρA : A⊗ 1 ∼= A (right unitors),

such that for every two objects A and B the following triangle identity holds:

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B
ρA⊗idB

αA,B,C

idA⊗λB

and for every four objects A, B, C, and D the following pentagon identity
holds:

((A⊗B)⊗ C)⊗D

(A⊗ (B ⊗ C))⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ ((B ⊗ C)⊗D)

A⊗ (B ⊗ (C ⊗D))

αA,B,C⊗idD

αA⊗B,C,D

αA,B⊗C,D

αA,B,C⊗D

idA⊗αB,C,D

If the associators and unitors are given by identity natural transformations, we
call C a strict monoidal category.

Note that the pentagon identity can be seen in the same spirit as Figure 1.1:
Both relate all possible ways of putting parentheses in a expression joining four
things by a binary operator.

There are many equivalent definitions of closed monoidal categories. For
our application in Chapter 5, the following definition is the most useful:

Definition 2.8.2 (Closed monoidal categories). A closed monoidal category
is a monoidal category C such that for every two objects B and C we have

• an object hom(B,C), called the internal hom object of B and C, and
• a morphism evB,C : hom(B,C)⊗B → C called the evaluation morphism

on B and C

such that for every morphism f : A⊗B → C there exists a unique morphism
g : A→ hom(B,C) which makes the following diagram commute:
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A⊗B C

hom(B,C)⊗B

f

g⊗idB
evB,C

Note that the uniqueness of g ensures that mapping f to g as above is compatible
with the equality on morphisms.
Definition 2.8.3 (Braided monoidal categories). A braided monoidal cat-
egory is a monoidal category together with a natural isomorphism γ with
components

γA,B : A⊗B ∼= B ⊗A (braidings)
such that for every three objects A, B, and C the following two diagrams
commute:

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

γA,B⊗C

αB,C,AαA,B,C

γA,B⊗idC

αB,A,C

idB⊗γA,C

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B

γA⊗B,C

α−1
C,A,B

α−1
A,B,C

idA⊗γB,C

α−1
A,C,B

γA,C⊗idB

Definition 2.8.4 (Symmetric monoidal categories). A symmetric monoidal
category is a braided monoidal category in which for each two objects A and
B the inverse law

γA,B · γB,A = idA⊗B
holds.
Definition 2.8.5 (Cartesian and cocartesian monoidal categories). Let C be a
category with finite coproducts. We can define a symmetric monoidal structure
on C as follows:

• the tensor product is the binary coproduct,
• the tensor unit is the initial object,
• the associators, unitors, and braidings can be constructed by the universal

property of the coproduct.
It is easy to check that this indeed defines a symmetric monoidal structure on C.
We call C with this symmetric monoidal structure a cocartesian monoidal
category.

The analogous construction for products gives rise to the notion of a cartesian
monoidal category.
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Definition 2.8.6 (Rigid symmetric monoidal categories). A rigid symmetric
monoidal category is a symmetric monoidal category C in which every object
A has a dual A∗, that is, there exist two morphisms

εA : A∗ ⊗A→ 1 and ηA : 1→ A⊗A∗

called the evaluation and the coevaluation, respectively, such that the following
two diagrams commute:

(A⊗A∗)⊗A 1⊗A

A

A⊗ (A∗ ⊗A) A⊗ 1

αA,A∗,A

ηA⊗idA

λA

idA⊗εA

ρA

and

A∗ ⊗ (A⊗A∗) A∗ ⊗ 1

A∗

(A∗ ⊗A)⊗A∗ 1⊗A∗

α−1
A∗,A,A∗

idA∗⊗ηA

ρA∗

εA⊗idA∗

λA∗

The following construction can, for example, be found in [KL80].

Construction 2.8.7 (Rigid symmetric monoidal categories are closed). Let C
be a rigid symmetric monoidal category. We can define a closed structure on C
as follows: We set hom(B,C) :≡ C ⊗ B∗. Let f : A ⊗ B → C be a morphism.
We define the corresponding morphism

g : A→ hom(B,C) ≡ C ⊗B∗

as the composite of the following morphisms:

A A⊗ 1 A⊗ (B ⊗B∗) (A⊗B)⊗B∗ C ⊗B∗.
ρ−1

A idA⊗ηB αA,B,B∗ f⊗idB∗

Furthermore, we define the evaluation morphism

evB,C : (C ⊗B∗)⊗B ≡ hom(B,C)⊗B → C

as the composite of the following morphisms:

(C ⊗B∗)⊗B C ⊗ (B∗ ⊗B) C ⊗ 1 C.
αC,B∗,B idC⊗εB ρC

Remark 2.8.8 (The closed structure of strict rigid symmetric monoidal cate-
gories). If C is a strict rigid symmetric monoidal category, then the definitions
in Construction 2.8.7 can be simplified by dropping associators and unitors:

• We set hom(B,C) :≡ C ⊗B∗ as before.
• Let f : A⊗B → C be a morphism. We define the corresponding morphism
g : A→ C ⊗B∗ as the composite of the following morphisms:

A A⊗B ⊗B∗ C ⊗B∗.idA⊗ηB f⊗idB∗

• We define the evaluation morphism evB,C as the morphism

idC ⊗ εB : C ⊗B∗ ⊗B → C.
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2.9 Slice categories and decorations
Definition 2.9.1 (Slice categories). Given a base object B in a category C,
the slice category C/B is defined as follows:

• its objects are morphisms in C with target B,
• a morphism from X → B to Y → B in C/B is a morphism X → Y in

C such that

X Y

B

commutes, with the equality of morphisms inherited from C,
• composition of morphisms in C/B is given by composition of morphisms

in C,
• identity morphisms in C/B are given by identity morphisms in C.

One can easily check that this indeed defines a category.

Remark 2.9.2 (Decorations). If a category C has a notion of “elements” of
objects and a notion of “fibers” of such elements under morphisms, we can
visualize the construction of slice categories as follows:

A morphism f : X → B in C into the base object B can be interpreted as a
decoration of X by the elements of B. That is, for b ∈ B we think of the fiber
f−1(b) as being decorated by b. By construction, morphisms in C/B preserve
the decoration: The commutativity of

X Y

B

ensures that if an element in X is decorated by b ∈ B, then also its image in Y
under a morphism is decorated by b.

Examples of categories with the required properties include the category of
sets and the category of directed multigraphs (see Construction 5.3.1).

Construction 2.9.3 (Coproducts in slice categories). Let C be a category
with coproducts and let B be an object of C. Then the slice category C/B has
coproducts:

Let f and g be two objects in C/B with f : X → B and g : Y → B in C.
Their coproduct f ⊔ g is given by the universal morphism u in the following
diagram:

X Y

X ⊔ Y

B

f

ι⊔X

g

ι⊔Y

u



2.10. Categories of cospans 59

The injections of f and g into f ⊔ g are simply given by the injections of X
and Y into X⊔Y . Given an object t in C/B with t : T → B and two morphisms
τ1 : f → t and τ2 : g → t , the universal morphism u : f ⊔ g → t is
simply given by the universal morphism X ⊔ Y → T .

The construction can be generalized to coproducts of arbitrary finite families
of objects of C/B.

Proof of correctness. With a diagram chase one can check that the injections and
the universal morphism actually define morphisms in C/B. Since the equality of
morphisms in C/B is given by the equality of morphisms in C and all morphisms
are defined by constructions in C, the required properties follow immediately
from the properties of coproducts in C. ■

Construction 2.9.4 (Coequalizers in slice categories). Let C be a category
with coequalizers and let B be an object of C. Then the slice category C/B has
coequalizers:

Let p , q : f → g be two parallel morphisms in C/B with f : X → B and
g : Y → B in C. In particular, we have

p · g = f = q · g.

The coequalizer coeq( p , q ) is given by the universal morphism u in the following
diagram:

X Y coeq(p, q)

B

p

q

f

πcoeq

g
∃1u

The morphism g → coeq( p , q ) is simply given by πcoeq : Y → coeq(p, q).
Given an object t in C/B with t : T → B and a morphism τ : g → t such
that

p · t = q · t ,

the universal morphism u : coeq( p , q ) → t is simply given by the universal
morphism coeq(p, q)→ T .

The construction can be generalized to coequalizers of arbitrary finite families
of parallel morphisms of C/B.

Proof of correctness. With a diagram chase one can check that all constructed
morphisms actually define morphisms in C/B. Since the equality of morphisms
in C/B is given by the equality of morphisms in C and all morphisms are
defined by constructions in C, the required properties follow immediately from
the properties of coequalizers in C. ■

2.10 Categories of cospans
Definition 2.10.1 (Categories of cospans). Given a category C with binary
pushouts, the category of cospans Csp(C) of C is defined as follows:

• its objects are objects of C,
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• a morphism between objects X and Y in the category of cospans is a
cospan X → A ← Y in C, that is, a pair of morphisms X → A and
Y → A in C for some object A in C, where two morphisms X → A← Y
and X → B ← Y are considered equal if and only if there exists an
isomorphism A → B in C which makes the triangles in the following
diagram commute:

A

X Y

B

• the composition of two morphisms X → A← Y and Y → B ← Z is given
by the pushout P together with the two dashed arrows in the following
commutative diagram:

X Y Z

A B

P

• the identity morphism on an object X is given by the cospan

X
idX−−→ X

idX←−− X.

Note that the choice of the pushout in the composition does not matter: Any
two pushouts are isomorphic and the isomorphism between two pushouts makes
the corresponding morphisms equal.

One can check that this indeed defines a category by showing that various
diagrams are pushout diagrams.
Construction 2.10.2 (Monoidal structures of categories of cospans). Let C be
a monoidal category with binary pushouts. Then the category of cospans of C
inherits a monoidal structure as follows:

The tensor product on objects and the tensor unit are simply the tensor prod-
uct on objects and the tensor unit in C. The tensor product of two morphisms
X → A← Y and Z → B ←W uses the tensor product on morphisms in C
twice to construct

X ⊗ Z −→ A⊗B ←− Y ⊗W .

The associators and unitors are obtained by taking the associators and unitors
in C together with an identity:

α X , Y , Z
:= (X ⊗ Y )⊗ Z αX,Y,Z−−−−→ X ⊗ (Y ⊗ Z)

idX⊗(Y ⊗Z)←−−−−−−− X ⊗ (Y ⊗ Z) ,

λ X := 1⊗X λX−−→ X
idX←−− X ,

ρ X := X ⊗ 1 ρX−−→ X
idX←−− X .
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Furthermore, if C is a braided or symmetric category, then the category of
cospans of C is a braided or symmetric category, too, with braidings given by

γ X , Y
:= X ⊗ Y γX,Y−−−→ Y ⊗X idY ⊗X←−−−− Y ⊗X .

Finally, if C is a cocartesian monoidal category, then the category of cospans
of C is a rigid symmetric monoidal category with self-dual objects and evaluation
and coevaluation given as

ε X := X ⊗X ∇−→ X ← 1 ,

η X := 1→ X
∇←− X ⊗X ,

where ∇ : X ⊗X ≡ X ⊔X → X is the codiagonal morphism and 1→ X is the
unique morphism from the initial object.

Proof of correctness. A proof of the correctness can be found in [Cic18, Theorem
A.6, Theorem A.8]. ■

2.11 Closed monoidal categories as typed gener-
alized lambda calculi

There are many tight and rich connections between categories with certain
structures, type theories, lambda calculi, and programming languages (see, for
example, [Tur37], [See89], and [LS88]). For example, one can associate to cate-
gories an internal logic, a type theory which forms a formal syntactic language
for the category. Conversely, one can endow type theories with semantics in
categories.

In this section, we will see a concrete instance of such a connection: We
will define a type of lambda calculus which, as we will see, corresponds to
closed monoidal categories. This is similar to how certain typed lambda calculi
correspond to cartesian closed categories in [LS88], and we make no claim of
originality. In our case, closed monoidal categories in turn correspond to flavors
of so called linear type theories [See89], which can be used to describe the
logic of systems in quantum physics [Pra92]. Indeed, in Section 5.4 we will see a
closed monoidal category arising in a quantum context. This category defines a
lambda calculus which we can use as the foundation for a quantum programming
language in Section 5.5.

We first clarify some terminology regarding the term “programming lan-
guage”:

Remark 2.11.1 (Terminology). Generally speaking, a programming lan-
guage is a language for describing computations for execution on a computer.
In a strict sense, such a language is a formal language given by a specification
for the terms of the language. In this thesis, we use the term “programming
language” in a more colloquial sense, namely for any notation which allows
humans to specify computations for execution on a computer. Nevertheless, we
still introduce a formal foundation by the notion of typed generalized lambda
calculi in the next definition.
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We now introduce typed generalized lambda calculi and show their
connection to programming languages. We start with a definition without types
and later add types in Definition 2.11.7. The following definition will contain
some informal parts. We will give a proper formal categorical definition in
Definition 2.11.11.

Definition 2.11.2 (Generalized lambda calculi). A generalized lambda
calculus is a formalism of so-called lambda terms built from a collection C
of constants. Every lambda term is built in a context. A context is just a
tuple (x1, . . . , xn) of symbols xi which we call free variables. We introduce the
following formation rules for building lambda terms in contexts:

1. in the empty context (), we have the lambda term c for every constant c,
2. in a context (x) with a single variable x, we have the lambda term x,
3. if we have a lambda term M in a context (x1, . . . , xn, x), we have the

lambda term λx.M (an abstraction) in the context (x1, . . . , xn),
4. if we have a lambda term F in a context (x1, . . . , xn) and a lambda term N

in a context (y1, . . . , ym), we have the lambda term FN (an application)
in the context (x1, . . . , xn, y1, . . . , ym).

Furthermore, we introduce the substitution of free variables: Let M and N
be lambda terms in contexts (x1, . . . , xn) and (y1, . . . , ym), respectively. For
i ∈ {1, . . . , n}, we informally define the lambda term

M [xi := N ] in the context (x1, . . . , xi−1, y1, . . . , ym, xi+1, . . . , xn)

as follows: To form M [xi := N ], we repeat the construction of M , but use
N instead of xi. Of course, we require substitution to be compatible with all
constructions. For example, for a lambda term F in a context (x1, . . . , xn) and
two lambda terms N and M , we require that

(FN)[xi := M ] = (F [xi := M ])N.

We will properly formalize substitution in Definition 2.11.11.
Moreover, we introduce the following reduction operations:

1. β-reduction defines function evaluation: If M is a lambda term in the
context (x1, . . . , xn, x), the term (λx.M)N can be reduced to M [x := N ],

2. η-reduction introduces function extensionality: the term λx.Fx reduces
to F , that is, functions are fully determined by their values.

We require an equality on lambda terms which is compatible with these reduction
operations.

Remark 2.11.3 (Functions, values, and constants). Note that a generalized
lambda calculus does not distinguish between “functions” and “values”. We have
used the suggestive letter F when defining the application, but in fact every
lambda term can be applied to every other lambda term. This flexibility is not
always desired. To distinguish between functions and non-functions, we will
later introduce types, and only elements of a function type will be applicable
to other values. Nevertheless, we will still be able to use functions as input or
output values of other functions.
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Additionally, the term “constant” should neither be interpreted as “not being
a function” nor as “being a constant function”. Instead, the term “constant”
refers to the fact that constants cannot be used as parameters in function
abstraction.
Remark 2.11.4 (Functional programming languages). In a strict sense, a func-
tional programming language is a programming language in which programs
can be written solely by defining and applying pure functions. Moreover, in such
a language there is no distinction between functions and values, that is, functions
can be inputs and outputs of other functions, which are then called higher-order
functions. Of course, a practical functional programming language usually
provides syntactic sugar5 to express some things more conveniently in a way
which is not immediately recognizable as a function definition or application.
Example 2.11.5 (Connection between generalized lambda calculi and functional
programming languages). The central piece of any functional programming
language is the construction and application of functions, and evaluating a
program typically follows rules similar to β-reduction and η-reduction. Hence, a
functional programming language typically embeds into a generalized lambda
calculus. For example, in a functional subset of GAP we can do the following:

• We can take the integers together with the successor function + 1 as
constants.

• We can form the expression x, where x is a free variable.
• We can apply the successor function to x to form x + 1.
• We can form the abstraction x -> x + 1, which is now a valid standalone

GAP expression.
• We can form the application (x -> x + 1)(1).
To evaluate an expression like (x -> x + 1)(1), GAP replaces all occurrences

of the function variable x in the function body x + 1 by the argument 1 and
evaluates the resulting expression. This corresponds to β-reduction. Moreover,
in a functional subset of GAP, we can freely replace a function F by x -> F(x)
and vice versa without changing the results of computations. This corresponds
to η-reduction. Hence, if we view two expressions as equal if they evaluate to
the same result, this functional subset of GAP embeds into a generalized lambda
calculus.

Conversely, we can view β-reduction and η-reduction as computational rules
for “evaluating” lambda terms. Hence, a generalized lambda calculus can be
seen as a programming language.

In fact, the original lambda calculus (see Remark 2.11.6) is Turing complete
as shown by Alan Turing in [Tur37]. That is, its computational power is
equivalent to the computational power of a Turing machine, which, according
to the Church-Turing thesis, in turn matches what humans intuitively regard
as “computable” and which is typically computable in a programming language.
Remark 2.11.6. Lambda calculi are usually defined with less restrictions than
the ones imposed above and hence typically include additional formation rules.
For example, usually

5The term “syntactic sugar” describes syntactic constructs which do not introduce new
functionality to a programming language but allow to express existing functionality in a more
convenient way.
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• one can form the lambda term x not only in the context (x) but in any
context (x1, . . . , xn) with x = xi for some i, and

• the contexts of F and N in the fourth rule may coincide.

The original lambda calculus as introduced by Alonzo Church in [Chu32] is a
free instance of a lambda calculus allowing these additional formation rules. We
will see in Remark 5.5.2 why the additional formation rules do not appear in
our application in Chapter 5. This is why we do not include these formation
rules here and why we call a calculus as defined above a generalized lambda
calculus.

We now introduce types.

Definition 2.11.7 (Typed generalized lambda calculi). The basic idea of a
typed generalized lambda calculus is to assign types to (some) lambda terms
of a generalized lambda calculus.

To make this precise, we start with a generalized lambda calculus and a
collection of types such that for each two types T1 and T2 there is a type
T1 ⇒ T2 called the function type from T1 to T2.6

To assign types to lambda terms, first every constant in the collection
C and every variable in a context (x1, . . . , xn) are given a type. We write
(x1 : T1, . . . , xn : Tn) for a context where the variable xi is of type Ti. Then, for
each formation rule of lambda terms we introduce a corresponding typing rule:

1. if a constant c is of type T , then so is the lambda term c,
2. in a context (x : T ) with a single variable x of type T , the lambda term x

is of type T ,
3. if a lambda term M if of type T2 in a context (. . . , x : T1), then the lambda

term λx.M is of type T1 ⇒ T2,
4. if a lambda term F is of type T1 ⇒ T2 and a lambda term N is of type T1,

then the lambda term FN is of type T2.

Furthermore, substitution does not change the type.
If we can derive a type of a lambda term M in a given context using these

typing rules, we call M typeable. Similar to the situation of objects of categories,
we need a meta-theoretical equality of types if we want to decide whether the
fourth rule is applicable, that is, whether the type of F can be written as a
function type from the type of N to some other type.

In a typed generalized lambda calculus, we

• only consider typeable lambda terms,
• only allow the substitution M [xi := N ] of a free variable xi by a lambda

term N in case that xi and N are of the same type,
• require the equality on lambda terms to preserve types.
6Usually, the function type is denoted by T1 → T2. Here, we use the alternative notation

T1 ⇒ T2 to avoid confusion with morphisms. Additionally, the internal hom of two objects A
and B is sometimes denoted by A ⇒ B and we will later indeed use internal homs as function
types.
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Note that β-reduction and η-reduction preserve the type. Hence, the equality
on lambda terms can actually be compatible with β-reduction and η-reduction
and the types.

Finally, we introduce the following notation: Given some lambda term M in
a context, we write M : T to express that M is of type T .

Example 2.11.8 (Connection to typed functional programming languages). In
Example 2.11.5, we have seen how generalized lambda calculi are connected
to functional programming languages. This connection also extends to types:
The types in a typed generalized lambda calculus correspond to data types in
a functional programming language, which restrict to which values a function
can be applied. To see this, we repeat Example 2.11.5 in a functional subset of
Julia:

• Integers in Julia are of type Integer, and we would like to view the
successor function + 1 as a function on integers.

• We can form the expression x, and view it as a free variable of type
Integer.

• We can apply the successor function to x to form x + 1, which according
to our typing rules must be of type Integer.

• When forming the abstraction, we can now include a type annotation:
x::Integer -> x + 1. This type annotation tells Julia that we want
to restrict to the case where the argument is of type Integer.

• When forming the application, we can again include a type annotation:
(x::Integer -> x + 1)(1)::Integer. With this, Julia will check
that the computed value indeed is an integer as expected by the typing
rules. We have built this expression using the typing rules, so it is typeable
and the type check will succeed.

• We could instead apply the function to the floating point number 1.0 and
would get (x::Integer -> x + 1)(1.0)::Integer. This expression is
not typeable according to our rules, and indeed we get an error when
executing this expression in Julia.

Remark 2.11.9 (Termination of typed programs). In this remark, we would like
to explain why in type systems of typical programming languages all fully typed
programs terminate. This means that a Turing complete programming language,
in which non-terminating programs must exist, must permit some untyped
expressions. This might be a surprising claim, given that many programming
languages seem to require every expression to be typed. To explain how untyped
expressions can hide in plain sight, consider the following typed Julia function
f:

1 function f(x::Integer)::Integer
2 if x == 0
3 return 0
4 else
5 return f(x - 1)
6 end
7 end

For non-negative integers, the function indeed returns an integer as the type
annotation suggests. For negative integers, however, the function does not
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terminate.7 We have specified types for all variables and return types, so Julia
is certainly able to automatically type every subexpression. However, this
does not mean that this function is fully typed, contrary to what one might
expect. Instead, we are relying on a subtle feature built into many programming
languages, which hides a missing type: The function f is not defined before we
have constructed its body, yet we can already reference f in the body. So during
construction of the body, f is just a placeholder. We can make this explicit by
using the following function definition:

1 function f(g, x::Integer)::Integer
2 if x == 0
3 return 0
4 else
5 return g(g, x - 1)
6 end
7 end

Now, the placeholder in the body is a proper variable g which we have to provide
manually when calling f. We do this by passing f to itself, for example as in

f(f, -1).

Now we see that there was an untyped variable g hidden in the original definition,
and this variable is a function which is applied to itself (and to an integer) in
line 5. Typing a function which should be applied to itself requires a function
type T1 ⇒ T2 which is equal to the source type T1. A typical type system does
not include such a type because it would usually make type checking undecidable
due to the infinite expansion

T1 ⇒ T2 ⇝ (T1 ⇒ T2)⇒ T2 ⇝ ((T1 ⇒ T2)⇒ T2)⇒ T2 ⇝ . . .

Of course we can easily find examples where type checking is still decidable,
for example in a type system with only a single type T , which is equal to all
function types on itself. However, in a type system with only a single type, every
term is typeable, so practically this is the same as having no type system at all,
which makes this type system not particularly useful.

Summing up, in typical type systems all fully typed programs terminate,
though the fact that a program is not fully typed is often hidden by the pro-
gramming language.

In particular, if we view a typed generalized lambda calculus as a foundational
functional programming language, all terms in this programming language will be
fully typed, so this programming language will typically not be Turing complete.

We can now endow typed generalized lambda calculi with categorical seman-
tics:

Remark 2.11.10 (Translation to category theory). We would like to categorify
the definition of typed generalized lambda calculi using strict monoidal categories.
We do this using the following dictionary:

7More precisely, it throws a StackOverflowError because the recursion depth in Julia is
limited.
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non-categorical definition categorical definition
types objects
lambda terms of type T in a context
(x1 : T1, . . . , xn : Tn)

morphisms T1 ⊗ · · · ⊗ Tn → T

constants of type T in the empty
context

morphisms 1 → T from the tensor
unit

the free variable x in the context
(x : T )

the identity morphism idT : T → T

substitution of a free variable of type
T

composition with a morphism into T

meta-theoretical equality on types meta-theoretical equality on objects
equality on lambda terms mathematical equality on morphisms

Using this translation, we now define categories of lambda terms:

Definition 2.11.11 (Categories of lambda terms). A category of lambda
terms is a strict monoidal category with the following additional structure:

• for every two objects T1 and T2 another object T1 ⇒ T2,
• for every morphism M : C ⊗ T1 → T2 a morphism

λT1M : C → (T1 ⇒ T2) (abstraction)

• for every morphism F : C1 → (T1 ⇒ T2) and every morphism N : C2 → T1
a morphism

FN : C1 ⊗ C2 → T2 (application)

We require abstraction and application to be compatible with the equality on
morphisms, and formalize substitution of free variables as follows: Given two
morphisms

M : T1 ⊗ · · · ⊗ Tn → T and N : C → Ti,

we define

M [xTi
:= N ] : T1 ⊗ · · · ⊗ Ti−1 ⊗ C ⊗ Ti+1 ⊗ · · · ⊗ Tn → T

by
M [xTi

:= N ] := (idT1⊗···⊗Ti−1 ⊗N ⊗ idTi+1⊗···⊗Tn
) ·M.

For a morphism F : T1 ⊗ · · · ⊗ Tn → (S ⇒ T ), a morphism N : C1 → S, and a
morphism M : C2 → Ti, we require the compatibility condition

(FN)[xTi
:= M ] = (F [xTi

:= M ])N.

Finally, for M : C1 ⊗ T1 → T2 and N : C2 → T1 we require

(λT1M)N = M [xT1 := N ] (β-reduction)

and for F : C → (T1 ⇒ T2) and x := idT1 we require

λT1(Fx) = F (η-reduction)

We now show that the additional structure of categories of lambda terms
beyond the strict monoidal structure is nothing else but a closed structure. This
is similar to how certain typed lambda calculi correspond to cartesian closed
categories in [LS88].
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Construction 2.11.12. Categories of lambda terms coincide with strict closed
monoidal categories:

If C is a category of lambda terms, then by definition it is a strict monoidal
category, and we construct a closed structure as follows: For two objects B and
C define

• hom(B,C) := (B ⇒ C) and
• evB,C := FN for F := idhom(B,C) and N := idB .

For a morphism f : A⊗B → C, define the corresponding morphism

g : A→ hom(B,C)

via
g := λBf : A→ hom(B,C).

Conversely, if C is a strict closed monoidal category, we turn it into a category
of lambda terms as follows: For objects T1 and T2, we set

T1 ⇒ T2 := hom(T1, T2).

Let M : C ⊗ T1 → T2 be a morphism. We define λT1M : C → (T1 ⇒ T2) to be
the morphism associated to M by the closed structure. Let F : C1 → (T1 ⇒ T2)
and N : C2 → T1 be two morphisms. We define

FN := (F ⊗N) · evT1,T2 : C1 ⊗ C2 → T2.

Proof of correctness. This is similar to how certain typed lambda calculi corre-
spond to cartesian closed categories in [LS88], and we make no claim of originality.
The proof is elementary but long-winded.

Let C be a category of lambda terms. By definition, it is a strict monoidal
category. For verifying the closed structure, let f : A⊗B → C be a morphism
of C. We have to show that g := λBf makes the diagram

A⊗B C

hom(B,C)⊗B

f

g⊗idB
evB,C

commute and is unique with this property. We first simplify the diagram for
an arbitrary g using that substitution can be expressed as composition and is
compatible with application:

(g ⊗ idB) · evB,C = (FN)[xhomB,C
:= g]

= (F [xhomB,C
:= g])N

= (g · F )N
= (g · idB,C)N
= gN
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For g = λBf , we can simplify this further using β-reduction:

gN = (λBf)N
= f [xB := N ]
= (idA ⊗N) · f
= (idA ⊗ idB) · f
= f

Hence, the diagram above commutes.
To prove the uniqueness, let h : A→ hom(B,C) be a morphism such that

(g ⊗ idB) · evB,C = (h⊗ idB) · evB,C .

From the general simplification above we get

gN = hN .

Now, we can apply abstraction with regard to B to both sides of the equation
and use η-reduction with N = idB to conclude

g = λB(gN) = λB(hN) = h.

Summing up, C is a strict closed monoidal category.
For the converse, let C be a strict closed monoidal category. In particular, it

is a strict monoidal category. We have to show that

• abstraction and application (as defined in the construction) are compatible
with the equality on morphisms,

• application is compatible with substitution, and
• the β- and η-reduction rules hold.

Abstraction and application are compatible with the equality on morphisms
because they are defined via categorical constructions which are compatible with
the equality on morphisms.

To show compatibility with the substitution, let F : T1⊗· · ·⊗Tn → (S ⇒ T ),
N : C1 → S, and M : C2 → Ti be morphisms. Then, using the definitions of the
application and the substitution, we have

(FN)[xTi:=M ] = ((F ⊗N) · evS,T )[xTi:=M ]
= (idT1⊗···⊗Ti−1 ⊗M ⊗ idTi+1⊗···⊗Tn⊗C1) · (F ⊗N) · evS,T
= (idT1⊗···⊗Ti−1 ⊗M ⊗ idTi+1⊗···⊗Tn

⊗ idC1) · (F ⊗N) · evS,T
= (((idT1⊗···⊗Ti−1 ⊗M ⊗ idTi+1⊗···⊗Tn

) · F )⊗ (idC1 ·N)) · evS,T
= (((idT1⊗···⊗Ti−1 ⊗M ⊗ idTi+1⊗···⊗Tn

) · F )⊗N) · evS,T
= (F [xTi:=M ]⊗N) · evS,T
= (F [xTi:=M ])N .

To show that the β-reduction rule holds, let M : C1 ⊗ T1 → T2 and
N : C2 → T1 be morphisms. Using the definition of the application, the
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functoriality of the tensor product, and the defining property of λT1M , we get

(λT1M)N = ((λT1M)⊗N) · evT1,T2

= (idC1 ⊗N) · ((λT1M)⊗ idT1) · evT1,T2

= (idC1 ⊗N) ·M
= M [xT1 := N ].

To show that the η-reduction rule holds, let F : C → (T1 ⇒ T2) be a
morphism and set x := idT1 . By definition of the application, we have

Fx = (F ⊗ x) · evT1,T2 = (F ⊗ idT1) · evT1,T2 .

By uniqueness, F must be the morphism associated to Fx by the closed structure,
so we get

λT1(Fx) = F

as desired. ■

Example 2.11.13 (Semantics of typed generalized lambda calculi). We have
seen that every strict closed monoidal category C defines a category of lambda
terms, which corresponds to a typed generalized lambda calculus, which in turn
can be interpreted as a foundational functional programming language. Of course
the semantics of this programming language depends on C.

As a degenerate example, consider the terminal category with a single ob-
ject and morphism, which trivially is a strict closed monoidal category. The
corresponding generalized lambda calculus only has a single type and all lambda
terms are equal, so any semantics would be very limited.

As a non-degenerate example, consider the category of sets with a strict
version of its cartesian closed structure. In this case, the internal hom can be
chosen to coincide with the external hom, which in turn is given by functions on
sets. Moreover, the evaluation morphism hom(B,C)⊗B → C actually evaluates
functions from B to C at elements of B to get elements of C. Hence, in this case
we actually obtain a generalized lambda calculus with the semantics of function
definition and application as we know it from sets.

Remark 2.11.14 (Generalized lambda calculi of cartesian closed categories,
[LS88]). Let C be a strict cartesian closed category. In particular, C is a
strict closed monoidal category and hence defines a typed generalized lambda
calculus. The cartesian monoidal structure allows for additional formation rules
for lambda terms: The projection T1 × · · · × Tn → Ti can be used to define a
lambda term xi of type Ti in the context (x1 : T1, . . . , xn : Tn). Furthermore,
if F : C → hom(T1, T2) and N : C → T1 are two lambda terms defined in the
same context, then the universal morphism into the product

(F,N) : C → hom(T1, T2)× T1

can be composed with the evaluation morphism

evT1,T2 : hom(T1, T2)× T1 → T2

to obtain a lambda term FN : C → T2 in the same context as F and N . These
additional formation rules can be used for defining the original lambda calculus
in Remark 2.11.6.



Chapter 3

The concept of categorical
towers

The goal of this chapter is to show how one can model categories as categorical
towers. We will see diverse examples of categorical towers in Chapter 4 and
Chapter 5. Our main example in this chapter is the categorical tower R 7→ C(R)⊕
of height 2 obtained by composing the category constructor R 7→ C(R) for a
ring R and the category constructor C 7→ C⊕ for a preadditive category C.
In Construction 3.3.2, we will see that we can model categories of matrices
MatR over a ring R via the categorical tower R 7→ C(R)⊕ by constructing an
isomorphism between MatR and C(R)⊕.

Modeling categories as categorical towers has many advantages: We can
reuse concepts, have a separation of concerns between the different layers
of the tower, can break down the verification of the tower into smaller pieces,
and have a natural emergence of structures of the tower from the single layers.
We examine those advantages in detail in Remark 3.2.1.

Categorical towers have been used before, for example in [Bar09], [BLH14],
[Pos21a], and [Cic18]. However, in those applications the isomorphism relating
a category to the categorical tower modeling it did not explicitly appear in
algorithms. In this thesis, we introduce the notion of reinterpretations of
categorical towers along isomorphisms, which makes the isomorphisms an
explicit part of algorithms. We will make this precise in Section 3.3. The concept
of reinterpretations was developed in the context of CompilerForCAP [Zic24a]
as the central mechanism for generating efficient primitive implementations from
categorical towers in CAP. We will see this application in Section 6.5.1. By using
the concept of reinterpretations in conjunction with CompilerForCAP, we can
get all of the advantages of categorical towers not only on a theoretical level but
actually for implementations on a computer.

Categorical towers are our own interpretation of the term compositionality,
which, for example, is used in [FS19] in the context of applied category theory.

The chapter is structured as follows: In Section 3.1, we introduce category
constructors, which are the building blocks from which we build categorical
towers in Section 3.2. In Section 3.3, we introduce reinterpretations of
categorical towers. Finally, in Section 3.4, we look at an example of a
computation in the categorical tower C(R)⊕. As we will see, computations in
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categorical towers naturally come with an overhead, which is the reason why
we need a compiler like CompilerForCAP to actually get the advantages of
categorical towers on a computer.

3.1 Category constructors
CAP allows users to implement category constructors. As the name suggests,
a category constructor is a function which constructs a category from some
input (or sometimes no input at all). There is no restriction on what this input
can be. Often it is an algebraic or combinatorial data structure or another
category. We have already seen many examples, including the following:

• Example 1.1.4: A function constructing FinSets is a category constructor
without an input.

• Example 1.1.3: A function constructing MatR of a ring R is a category
constructor R 7→MatR getting a ring as an input.

• Construction 2.3.7: A function constructing C(R) of a ring R is a category
constructor C getting a ring as an input.

• Example 1.1.5: A function constructing the opposite category Cop of
a category C is a category constructor C 7→ Cop getting an arbitrary
category as an input.

• Construction 2.4.6: A function constructing the additive closure C⊕ of
a preadditive category C is a category constructor C 7→ C⊕ getting a
preadditive category as an input.

• Definition 2.1.6: A function constructing the functor category from C to
D is a category constructor (C,D) 7→ DC getting two categories as an
input.

Moreover, we have seen category constructors for Freyd categories (Defini-
tion 2.6.1), slice categories (Definition 2.9.1), and categories of cospans (Defini-
tion 2.10.1).

3.2 Categorical towers
If a category constructor gets one or more categories as an input, we can apply
it to the output of other category constructors, that is, we can compose category
constructors. For example, we can compose R 7→ C(R) and C 7→ C⊕ and obtain
a category constructor R 7→ C(R)⊕ constructing the additive closure of the
category defined by the ring R. We call such a category constructor a tower
of category constructors or categorical tower. To simplify the notation,
we will also call the categories constructed by towers of category constructors
categorical towers. For example, we would also call the category C(Z)⊕ a
categorical tower.

We sometimes say that a categorical tower has a certain height and talk
about its levels or layers. For example, we could say that R 7→ C(R)⊕ is a
tower of height 2 with first level R 7→ C(R) and second level C 7→ C⊕. We
might also view the argument R as level 0 of the tower. However, those numbers
do not have an intrinsic mathematical meaning. For example, we will see that
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C(R)⊕ is isomorphic to MatR, and we would typically view R 7→MatR as a
(degenerate) tower of height 1. Still, the height will always be clear from the
context in our applications. To single out degenerate towers of height 1, we call
them primitive category constructors and reserve the word tower for proper
towers of height at least 2.

Remark 3.2.1 (Advantages of building categorical towers). Each category
constructor used for building a categorical tower is self-contained. Hence, the
organization of categorical towers introduces a high degree of modularity. This
has the following advantages:

• Reusability: The category constructors used to build one categorical
tower can be reused for building categorical towers in other contexts.

• Separation of concerns: Every category constructor in a categorical
tower can focus on a single concept, simplifying the definitions.

• Verifiability: The category constructors used to build a categorical tower
can be verified independently of each other. Each category constructor has
a limited scope and is hence relatively simple to comprehend and verify.

• Emergence: Simple and natural constructions at each level of the tower
can lead to convoluted structures of the tower as a whole.

We will see a concrete example of these advantages in Remark 3.3.3 and many
more examples in Chapter 4 and Chapter 5. On a computer, all these advantages
lead to higher quality code:

• reusability of code leads to less code overall and better code coverage,
• the separation of concerns makes it possible to focus on one aspect at a

time when implementing the various category constructors,
• better verifiability makes it easier to check code for correctness, and
• convoluted algorithms for the tower as a whole emerge from simple and

natural algorithms at each level of the tower.

3.3 Reinterpretations of categorical towers
Reinterpretations of categorical towers allow to formally view categorical
towers as primitive category constructors with possibly simplified data structures
for objects and morphisms. The concept was developed in the context of
CompilerForCAP as the central mechanism for generating efficient primitive
implementations from categorical towers in CAP. We will see this application in
Section 6.5.1.

Definition 3.3.1 (Reinterpretations of categorical towers). Let T and C be
category constructors with the same input specification, where T is a categorical
tower and C is a primitive category constructor. If there exists an isomorphism1

RI : T (I)→ C(I) for all inputs I, we call

• C a reinterpretation of the categorical tower T via the functor R, and
• T a model of C.
1We will see in Remark 3.3.6 why a mere equivalence does not suffice for our applications.
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We usually write MI : C(I) → T (I) for the inverse of RI . In contexts with
additional structures like preadditive or monoidal structures, we assume that R
and M are compatible with the additional structures.

As an example, we show how categories of matrices can be modeled as a
reinterpretation of a categorical tower:

Construction 3.3.2 (Categories of matrices as categorical towers, [Pos21b,
Example 1.17]). Let R be a ring and let ⋆ be the unique object of C(R). We
can model MatR as a reinterpretation of the categorical tower C(R)⊕ via the
functor R defined as

R : C(R)⊕ →MatR
(⋆, . . . , ⋆)︸ ︷︷ ︸

m

C(R)⊕ 7→ m MatR

(
mij C(R)

)
ij C(R)⊕

7→
(
mij

)
ij MatR

together with its inverse M defined as

M : MatR → C(R)⊕

m MatR
7→ (⋆, . . . , ⋆)︸ ︷︷ ︸

m

C(R)⊕

(
mij

)
ij MatR

7→
(
mij C(R)

)
ij C(R)⊕

Note that R simplifies the data structure of objects: Objects in C(R)⊕ are given
by tuples of objects of C(R), that is, tuples containing ⋆, while the objects in
MatR are just given by integers. Moreover, R eliminates the inner boxes of
morphisms. On paper, where we only view boxes as a notation, this just simplifies
the notation. However, on the computer, where boxes are an explicit part of the
data structures, this actually simplifies the data structure of morphisms.

A primitive implementation of MatR generated from C(R)⊕ and optimized
by CompilerForCAP is available via the category constructor CategoryOfRows2

in the package FreydCategoriesForCAP [BPZ24].

Proof of correctness. The equalities on morphisms in C(R)⊕ and MatR are both
given entrywise by the equality of ring elements, so R andM respect the equality
on morphisms. Moreover, R and M are mutually inverse both on objects and
morphisms. Composition and identities in the additive closure are just given
by generalized matrix multiplication and identity matrices, which in C(R)⊕
specialize to the usual matrix multiplication and identity matrices over rings,
which in turn defines composition and identities in MatR.

Summing up, R indeed defines an isomorphism of categories with inverse M,
as required for a reinterpretation. ■

Remark 3.3.3 (Advantages of modeling categories of matrices as categorical
towers). Modeling MatR as the categorical tower C(R)⊕ exhibits all advantages
mentioned in Remark 3.2.1:

2The term category of rows is a synonym of category of matrices.
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• Reusability: The constructor for additive closures can be reused in other
contexts, for example for constructing free abelian categories in [Pos22].

• Separation of concerns: The ring algorithms (for example, multiplication
of ring elements) are strictly separate from the high-level rules of matrix
calculus.

• Verifiability: Verifying the construction of C(R) and the construction of
the additive closure is straightforward. We will use CompilerForCAP to
prove the correctness of both constructions in Section 7.1 and Section 7.2.

• Emergence: In Section 4.1, we will see how the natural constructions of
homomorphism structures of C(R) and additive closures give a convoluted
homomorphism structure of MatR.

To take full advantage of categorical towers, we would actually like to define
primitive category constructors as reinterpretations of categorical towers. For
this, we note that in the context of a reinterpretation, the categorical structure
of the primitive category is already uniquely determined by the categorical
structure of the categorical tower:

Remark 3.3.4. Let T and C be category constructors as in Definition 3.3.1 and
let I be some input. Set T := T (I), C := C(I), R := RI , and M :=MI . For
morphisms f and g in C, we have

f · g = R(M(f · g)) = R(M(f) · M(g)). (3.1)

Moreover, for an object A in C, we have

idA = R(M(idA)) = R(idM(A)). (3.2)

This shows that the composition and the identity morphisms of C are uniquely
determined by the composition and the identity morphisms of T together with
the values of R and M on objects and morphisms.

In contexts with additional structures like preadditive or monoidal structures,
we have assumed that R and M are compatible with the additional structures.
Hence, also the additional structures are uniquely determined by the structures
of T together with the values of R and M on objects and morphisms.

This motivates the following construction:

Construction 3.3.5 (Defining categories via reinterpretations). Let T and C
be category constructors as in Definition 3.3.1 and let I be some input. Set
T := T (I), C := C(I), R := RI , and M := MI . We ignore the existing
categorical structure of C, that is, composition and identity morphisms, as well
as the fact that R andM are compatible with the composition and the identities.
Instead, we define a categorical structure on C via

f · g := R(M(f) · M(g)) and idA := R(idM(A)).

With this definition, R andM are automatically compatible with the composition
and the identities, and thus isomorphisms of categories again. Hence, C is again
a reinterpretation of T via R and M.

Additional structures like preadditive or monoidal structures are defined
in a similar way via R, M, and the structure of T. Again, R and M are
automatically compatible with the additional structures.
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Proof of correctness. First note that for f : A → B and g : B → C, the
composite R(M(f)·M(g)) is a morphism from R(M(A)) ≡ A toR(M(C)) ≡ C
as required. Similarly, idA is a morphism from A to A as required. Equations
(3.1) and (3.2) allow to check the axioms required for the newly defined categorical
structure on C by the corresponding axioms of T. Moreover, the two equations
are equivalent to R andM being compatible with the composition and preserving
identities. Additional structures like preadditive or monoidal structures are
handled analogously. ■

This constructions allows us to define primitive category constructors as rein-
terpretations of categorical towers. Remark 3.3.4 ensures that this construction
is compatible with any existing categorical structure.

Remark 3.3.6. Construction 3.3.5 would not work if R and M would not be
isomorphisms but merely equivalences of categories: In this case, setting

f · g := R(M(f) · M(g)) and idA := R(idM(A))

would not define morphisms with the required source and targets because in
general

R(M(A)) ̸≡ A

if R and M are mere equivalences.
Let us try to properly account for the natural isomorphisms coming with

equivalences: Let η : M · R ⇒ IdC be the natural isomorphism in C. We
consider an equation analogous to equation (3.1): For morphisms f : A → B
and g : B → C in C, we have

f · g = η−1
A · R(M(f · g)) · ηC = η−1

A · R(M(f) · M(g)) · ηC .

Note that the right-hand side of this equations still uses the composition in C.
Hence, this equation cannot be used for defining a composition in C. Thus, we
cannot proceed if R and M are mere equivalences.

As an example for Construction 3.3.5, we show how to construct direct sums
in MatR from the direct sums in C(R)⊕.

Construction 3.3.7 (Direct sums in categories of matrices). Let R be a ring
and let m and n be two objects of MatR. We construct a direct sum m ⊕ n
together with the projections and injections as follows:

• We set m ⊕ n :≡ m+ n .
• The projections P1 : m ⊕ n → m and P2 : m ⊕ n → n are given

by stacking identity matrices and zero matrices as follows:

P1 :=
(
Im

0n,m

)
and P2 :=

(
0m,n
In

)
.

• Similarly, the injections J1 : m → m ⊕ n and J2 : n → m ⊕ n are
given by

J1 :=
(
Im 0m,n

)
and J2 :=

(
0n,m
In

)
.
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Now, if we have an object t with morphisms

T1 : t → m and T2 : t → n ,

we can choose U = ( T1 , T2 )⊕ : t → m ⊕ n as the union of columns of the
matrices T1 and T2, that is,

U :=
(
T1 T2

)
.

Similarly, for two morphisms

S1 : m → t and S2 : n → t

we can choose U = ⟨ S1 , S2 ⟩⊕ : m ⊕ n → t as

U :=
(
T1
T2

)
.

Proof of correctness. Let R be a ring. The tower C(R)⊕ has direct sums by
Construction 2.4.9. Using Construction 3.3.2 and Construction 3.3.5, we get
direct sums for MatR as follows:

Let m and n be two objects of MatR. By Construction 3.3.5, we have

m ⊕ n :≡ R(M( m )⊕M( n )).

Let us expand the definitions of M and of the direct sum in the additive closure:

R
(
M( m )⊕M( n )

)
≡ R

(
(⋆, . . . , ⋆)︸ ︷︷ ︸

m

⊕ (⋆, . . . , ⋆)︸ ︷︷ ︸
n

)
≡ R

(
(⋆, . . . , ⋆, ⋆, . . . , ⋆)︸ ︷︷ ︸

m
︸ ︷︷ ︸

n

)
.

We can now turn an algorithm on tuples (the concatenation of two tuples) into
an algorithm on integers (the sum of two integers):

R
(

(⋆, . . . , ⋆, ⋆, . . . , ⋆)︸ ︷︷ ︸
m

︸ ︷︷ ︸
n

)
≡ R

(
(⋆, . . . , ⋆)︸ ︷︷ ︸

m+n

)
.

Now the last term is simply equal to m+ n . Summing up, we do indeed get

m ⊕ n ≡ m+ n .

Note that the steps above can be seen as a manual compilation of the expression

R(M( m )⊕M( n )).

In Chapter 6 and in particular in Section 6.3.3, we will see how this compilation
can be automated using CompilerForCAP.

The constructions of the projections, injections, and universal morphisms
can be obtained from C(R)⊕ in a similar way. ■
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3.4 Computations in categorical towers
In this section, we look at an example of a computation in a categorical tower.
We will see that such computations come with an overhead, which is the reason
why we need a compiler like CompilerForCAP to actually get the advantages of
categorical towers on a computer.

Let us compare a computation in the primitive category MatZ to a corre-
sponding computation in the categorical tower C(Z)⊕. For this, consider three
parallel morphisms in MatZ:

(xij)ij , (yij)ij , (zij)ij : m → n .

The sum of the three morphisms can be computed as follows:(
(xij)ij + (yij)ij

)
+ (zij)ij = (xij + yij)ij + (zij)ij

=
(
(xij + yij) + zij

)
ij

.

Analogously, consider three parallel morphisms in C(Z)⊕:(
xij
)
ij
,
(
yij
)
ij

),
(
zij
)
ij

: (⋆, . . . , ⋆)︸ ︷︷ ︸
m

→ (⋆, . . . , ⋆)︸ ︷︷ ︸
n

.

The sum of the three morphisms can be computed as follows:( (
xij
)
ij

+
(
yij
)
ij

)
+
(
zij
)
ij

=
(
xij + yij

)
ij

+
(
zij
)
ij

=
(
xij + yij

)
ij

+
(
zij
)
ij

=
(
xij + yij + zij

)
ij

=
(

(xij + yij) + zij
)
ij

.

We see that we need twice as many steps for the computation in C(Z)⊕ than
for the computation in MatZ. This is due to the fact that MatZ is a primitive
category while C(Z)⊕ is a tower of height 2. In general, a computation in a
tower of height n requires n times as many steps as an analogous computation
in a primitive category. Consequently, on a computer, this results in a major
performance hit for computations in higher towers. Moreover, on a computer,
boxing is not a free operation. If m and n in the above example are large,
many inner boxes have to be created for the computation in C(Z)⊕, resulting in
an additional major performance hit. We will see more detailed analyses and
benchmarks in Section 6.2 and Section 6.3.

Due to this performance overhead, formerly in many cases large computations
in categorical towers were not feasible on a computer. In particular, the advan-
tages of building categorical towers given in Remark 3.2.1 could not be fully
exploited on a computer. This was particularly unfortunate because concepts
like reusability are even more useful on the computer, where all constructions
have to be fully executed, than they are on paper, where constructions can more
easily be abbreviated.

CompilerForCAP [Zic24a] was started to avoid the performance overhead
of categorical towers, hence allowing us to make full use of the advantages
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of building categorical towers on a computer. CompilerForCAP can avoid
redundant computations inside categorical towers and categorical computations
in general, and can even generate primitive implementations of reinterpretations
of categorical towers. With this, large computations in categorical towers are
finally feasible, often even beating the performance of implementations which
have formerly been optimized by hand. We will see all of this in great detail in
Chapter 6.





Chapter 4

Mathematical applications
of categorical towers

In this chapter, we will see diverse mathematical applications of categorical
towers. All categorical towers appearing in this chapter are implemented in
various packages in the CAP ecosystem and available as primitive implementations
completely or partially generated and optimized by CompilerForCAP [Zic24a].

In Section 4.1, we endow categories of matrices over certain rings with
homomorphism structures using the categorical tower C(R)⊕ seen in the previous
chapter. In Section 4.2, we show how one can use these homomorphism structures
to compute lifts in categories of finitely presented modules by modeling such
categories as Freyd categories. In Section 4.3, we see an application of categorical
towers which is more technical than the previous examples but will become very
useful in the context of automatic code generation in Section 6.5.2: We use the
categorical tower C 7→ (Cop)op to formally dualize algorithms, that is, replace
all concepts in an algorithm by the dual concept in the opposite category. On
paper, the construction is straightforward, but when implemented on a computer,
some subtle issues arise, which we solve in the course of the section. Finally, in
Section 4.4, we introduce the category of quivers Quiv. We model Quiv as a
functor category to show the existence of coproducts, coequalizers, and pushouts,
which we need for the quantum computing application in the next chapter.

4.1 Homomorphism structures of categories of
matrices

Let R be a ring. In Construction 3.3.2, we have seen that MatR can be modeled
as a reinterpretation of the categorical tower C(R)⊕. We will use this to endow
MatR with a homomorphism structure with little effort if R is

• a commutative ring or, more generally,
• a k-algebra which is finitely generated free as a k-module, for some com-

mutative ring k.

Homomorphism structures of MatR can be used to compute lifts in categories
of finitely presented modules, as we will see in Section 4.2.

81
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We start with the situation for commutative rings. In Construction 2.5.6, we
have seen that for a commutative ring k, the category C(k) has a homomorphism
structure. This homomorphism structure can be lifted to a homomorphism
structure for C(k)⊕. With the help of Construction 3.3.5, this homomorphism
structure defines a homomorphism structure for Matk. As we will see in
Remark 4.1.2, this homomorphism structure is a formalization of a computational
trick for solving two-sided matrix equations which is known as the “vec trick”.

Construction 4.1.1 (Homomorphism structures on categories of matrices over
commutative rings, [Pos21b, Example 1.29]). Let k be a commutative ring. We
can endow Matk with a Matk-homomorphism structure as follows:

• The distinguished object is the object 1 .
• We define

H : Matkop ×Matk →Matk
( m , n ) 7→ m · n ,

( M , N ) 7→ MT ⊗N ,

where “⊗” denotes the Kronecker product of matrices.
• The components

ν m , n : HomMatk
( m , n )→ HomMatk

(1, m · n )

of the natural isomorphism ν unfold a given matrix row-wise into a matrix
with a single row, that is,

ν m , n

(
(aij)ij

)
= (a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn).

A primitive implementation of this homomorphism structure of Matk generated
and optimized by CompilerForCAP is available via the category constructor
CategoryOfRows in the package FreydCategoriesForCAP [BPZ24].

Proof of correctness. We can endow C(k)⊕ with a C(k)⊕-homomorphism struc-
ture obtained as follows:

• C(k) has a C(k)-homomorphism structure by Construction 2.5.6,
• using the full embedding C(k) ↪→ C(k)⊕ in Remark 2.4.8 together with

Remark 2.5.5, we obtain a C(k)⊕-homomorphism structure for C(k),
• using that C(k)⊕ is an additive category, we can apply Construction 2.5.8

and obtain a C(k)⊕-homomorphism structure for C(k)⊕.

Using Construction 3.3.2 and Construction 3.3.5, we can turn this homomor-
phism structure into a Matk-homomorphism structure for Matk. Unfolding the
definitions of the tower can be automated using CompilerForCAP, as we will
see in Chapter 6. ■

This homomorphism structure formalizes a computational trick for solving
two-sided matrix equations, which is known as the “vec trick”:
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Remark 4.1.2. Let k be a commutative ring for which we can solve a system
of linear equations x · A = b with A ∈ km×n and b ∈ k1×n. Examples for such
rings include fields with a Gaussian elimination algorithm or polynomial rings
over a field with a Gröbner basis algorithm. Now assume that we want so solve
an equation of the form

A ·X ·B = C

for X with given matrices A, B, and C of suitable sizes. There exists a computa-
tional trick known as the “vec trick” (see, for example, [Neu69], [Bre78], [ZL02],
[BLH11]) which makes it possible to rewrite such an equation as a usual system
of linear equations again: The key idea of this trick is to introduce an operation
ν, also known as “vec”, which vectorizes a given matrix by unfolding it row-wise
into a matrix with a single row.1 That is, for A = (aij)ij ∈ km×n we have

ν
(
(aij)ij

)
:= vec

(
(aij)ij

)
:= (a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn).

By spelling out all the definitions and using the commutativity of k, one can
check that

ν(A ·X ·B) = ν(X) · (AT ⊗B),

where “⊗” denotes the Kronecker product of matrices. This construction exactly
matches the homomorphism structure in Construction 4.1.1 and the representa-
tion of the naturality in Remark 2.5.2, and was the motivation for the definition
of homomorphism structures in [Pos21a].

Since ν is bijective, solving the equation

A ·X ·B = C

for X is equivalent to solving the equation

ν(X) · (AT ⊗B) = ν(C)

for ν(X), which is a usual system of linear equations. This matches the way in
which we have used homomorphism structures in Proposition 2.6.2 for converting
two-sided equations to usual lifts.

We can generalize the result for commutative rings to k-algebras which are
finitely generated free as k-modules:

Construction 4.1.3 (Homomorphism structures on categories of matrices over
finite-free k-algebras). Let k be a commutative ring and let R be a finite-free
k-algebra, that is, a k-algebra which is finitely generated free as a k-module.
We first introduce some notation: Let b be the k-rank of R and fix a k-basis
B of R, which we write as a column vector in Rb×1. We define an operation
λ : R → k1×b which maps an element r ∈ R to the row vector of coefficients
of r with regard to the k-basis B. We extend this operation to an operation
Λ : Rm×n → km×(b·n) on matrices which applies λ entrywise.

Furthermore, we introduce a dual version of the Kronecker product for
matrices: The normal Kronecker product of two matrices A = (aij)ij ∈ Rm×n

1Dually, the vectorization could also be performed by unfolding a given matrix column-wise
into a matrix with a single column.
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and B = (bij)ij ∈ Rr×s is defined as follows:

A⊗B :=

a11 ·B . . . a1n ·B
... . . . ...

am1 ·B . . . amn ·B

 .

Now, we define the dual version as follows:

A⊘B :=

A · b11 . . . A · b1s
... . . . ...

A · br1 . . . A · brs

 .

For consistency of the notation, we define A ⊘B := A⊗B.
With this, we can endow MatR with a Matk-homomorphism structure as

follows:

• The distinguished object is the object 1 .
• We define

H : MatRop ×MatR →Matk
( m , n ) 7→ m · b · n

( M , N ) 7→ Λ
(
MT ⊘(B ⊘N)

)
• The components

ν m , n : HomMatk
( m , n )→ HomMatk

(1, m · b · n )

of the natural isomorphism ν unfold a given matrix row-wise into a matrix
with a single row and apply Λ, that is,

ν m , n

(
(aij)ij

)
= Λ

(
(a11, . . . , a1n, a21, . . . , a2n, . . . , am1, . . . , amn)

)
.

Proof of correctness. We can endow C(R)⊕ with a Matk-homomorphism struc-
ture as follows:

• C(R) is a k-linear category with finitely generated free external homs by
Construction 2.3.8,

• hence, C(R) has a Matk-homomorphism structure by Construction 2.5.7,
• using that Matk is an additive category, we can apply Construction 2.5.8

and obtain a Matk-homomorphism structure for C(R)⊕.

Using Construction 3.3.2 and Construction 3.3.5, we can turn this homomorphism
structure into a Matk-homomorphism structure for MatR. Unfolding the
definitions of the tower can be automated using CompilerForCAP, as we will
see in Chapter 6. ■

A common example of algebras which are finitely generated free as modules
are exterior algebras over a field K:
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Example 4.1.4 (Exterior algebras). Let K be a field and let V be a K-
vectorspace with basis e1, . . . , en. The exterior algebra

∧
V as defined in

Definition B.1.1 is a finite dimensional K-algebra with dimension

dimK(
∧
V ) =

n∑
k=0

(
n

k

)
= 2n.

Hence, we can apply Construction 4.1.3 to obtain a MatK-homomorphism
structure of Mat∧V . A primitive implementation of this homomorphism struc-
ture generated and optimized by CompilerForCAP is available via the category
constructor CategoryOfRows in the package FreydCategoriesForCAP.

As an example, consider K = Q and V = Q2 with standard basis e1, e2.
Then

∧
V has Q-dimension b = 4 with a possible basis given by the entries of

B :=


1
e1
e2

e1 ∧ e2

 .

Consider two 1× 2 matrices

M :=
(
2 3e1

)
and N :=

(
5e2 7(e1 ∧ e2)

)
.

By construction of the MatQ-homomorphism structure of Mat∧Q2 , we have

H( M , N ) = Λ
(
MT ⊘(B ⊘N)

)
.

We compute

MT ⊘(B ⊘N) =
(

2
3e1

)
⊘


5e2 7(e1 ∧ e2)

5(e1 ∧ e2) 0
0 0
0 0



=



10e2 14(e1 ∧ e2)
10(e1 ∧ e2) 0

0 0
0 0

15(e1 ∧ e2) 0
0 0
0 0
0 0


.

If we apply Λ to the result, we obtain

0 0 10 0 0 0 0 14
0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 15 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


,
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where the left half (respectively the right half) of the matrix comes from the first
(respectively the second column) of the original matrix. As we see, the matrices
quickly become large, especially if the dimension n of V grows, because

∧
V

has exponential dimension 2n. In Remark B.1.3, we discuss possible solutions
for this problem by viewing the exterior algebra as an algebra over its center
instead of as an algebra over K. This discussion involves additional terminology
not introduced in this thesis.

4.2 Decidable lifts in categories of finitely pre-
sented modules

Decidable lifts are an important tool in category theory, for example for deciding
whether monomorphisms and epimorphisms are split and for computing inverses
of isomorphisms or more generally retractions and sections of split monomor-
phisms and split epimorphisms. In this section, we look at categories of finitely
presented modules and see how we can decide and compute lifts there. We will
again use categorical towers to tackle the problem.

Convention 4.2.1. Let R be a ring and n ∈ N. In this section, we think of the
elements of Rn as row vectors.

Definition 4.2.2 (Categories of finitely presented left modules). Let R be a
ring. We define the category RFPres of finitely presented left modules
over R as follows:

• Its objects are finitely presented left modules given by the quotient of some
Rn by finitely many relations between the elements of the standard basis,

• its morphisms are linear maps with pointwise equality,
• composition is given by the usual composition of linear maps,
• identity morphisms are given by the identity maps.

One can easily check that this indeed defines a category.
For now, we only consider left modules and hence omit the word left in the

following. Once we have modeled RFPres as a categorical tower, we can easily
switch to right modules by simply inserting an opposite category in the tower,
see Construction 4.2.7.

Remark 4.2.3. Let R be a ring. Defining a meta-theoretical equality on the
objects of RFPres is difficult. For example, consider the following finitely
presented modules:

R2/⟨e1 = e2⟩, R2/⟨e2 = e1⟩, R2/⟨−e1 = −e2⟩, R2/⟨e1 − e2 = 0⟩.

On paper, we would probably view all these finitely presented modules as equal.
Moreover, consider the following finitely presented modules:

R3/⟨e1 = e2, e2 = e3⟩, R3/⟨e2 = e3, e1 = e2⟩, R3/⟨e1 = e3, e2 = e3⟩,
R3/⟨e1 = e2, e1 = e3, e2 = e3⟩.

Again, one paper we would possibly view all these finitely presented modules
as equal. We might even view them as equal to the finitely presented modules
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above, as all are isomorphic to R1. However, doing so possibly requires us to
manually insert appropriate isomorphism in computations.

In the following, we will define a data structure for relations and simply use
the technical equality coming with this data structure as the meta-theoretical
equality on objects to avoid any ambiguity. As explained in Remark 1.4.23, this
does not change the category theory.

Construction 4.2.4 (Data structures for categories of finitely presented modules,
[BLH11, Section 3]). Let R be a ring. We want to provide data structures for
objects and morphisms in RFPres. We start with a data structure for objects:
Every relation between standard basis vectors of Rn can be expressed as an
equation

∑n
i=1 λiei = 0 with λi ∈ R by bringing all summands of the relation to

one side and by explicitly multiplying standard basis vectors not appearing in
the relation by 0. Hence, we can encode relations as row vectors (λ1, . . . , λn).
To encode multiple relations, we simply stack the corresponding row vectors to
form a matrix M with n columns. Hence, an object in RFPres can be encoded
as a matrix.

Determining whether this encoding is one-to-one depends on the meta-
theoretical equality on objects in RFPres, which is difficult to define, as explained
in Remark 4.2.3. To avoid ambiguity, we simply use the usual equality of matrices
as the meta-theoretical equality on objects in RFPres.

We continue with a data structure for morphisms. Let M and N be
two objects, that is, let M ∈ Rk,m and N ∈ Rℓ,n be two matrices to which
we associate two finitely presented modules by viewing the rows of M and
N as relations. We write Rm/⟨M⟩ and Rn/⟨N⟩ for these finitely presented
modules. Let (e1, . . . , em) and (f1, . . . , fn) be the standard bases of Rm and Rn,
respectively. A morphism M → N is a linear map

φ : Rm/⟨M⟩ → Rn/⟨N⟩.

Such a map can be encoded as a matrix P ∈ Rm×n by choosing P such that

φ(ei) =
n∑
j=1

Pijfj .

Hence, matrices in Rm×n provide a suitable data structure for morphisms.
However, not every matrix in Rm×n defines a linear map Rm/⟨M⟩ → Rn/⟨N⟩
because the relations of the source might not be respected, so we have to restrict
to a subset of matrices in Rm×n. To make this precise, let (λ1, . . . , λm) be a row
of M , that is, a relation of the source. Then

0 = φ(0) = φ
( m∑
i=1

λiei

)
=

m∑
i=1

λi

n∑
j=1

Pijfj ,

that is,
m∑
i=1

λi

n∑
j=1

Pijfj = 0 modulo the relations of the target

or equivalently

(λ1, . . . , λm) · P =
( m∑
i=1

λiPij

)
j=1,...,n

= 0 modulo the rows of N .
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The last line in turn is equivalent to the existence of a row vector (µ1, . . . , µℓ)
such that

(λ1, . . . , λm) · P = (µ1, . . . , µℓ) ·N .
This can be repeated for every row of M , so we get a matrix P ′ ∈ Rk×ℓ such
that

M · P = P ′ ·N .
Hence, we get the existence of P ′ as a necessary condition for P to define a linear
map Rm/⟨M⟩ → Rn/⟨N⟩. Using the same arguments and the homomorphism
theorem one can show that the existence of P ′ is also a sufficient condition for
P to define a linear map Rm/⟨M⟩ → Rn/⟨N⟩.

Finally, we would like to examine when two matrices in Rm×n define the
same linear map Rm/⟨M⟩ → Rn/⟨N⟩. For this, let P,Q ∈ Rm×n be matrices
and let φ and ψ be the corresponding linear maps Rm/⟨M⟩ → Rn/⟨N⟩. We
can check equality on generators, so φ and ψ are equal if and only if for all
i ∈ {1, . . . ,m} we have

φ(ei) = ψ(ei),
that is,

n∑
j=1

Pijfj =
n∑
j=1

Qijfj

or equivalently
n∑
j=1

(Pij −Qij)fj = 0 modulo the relations of the target.

As above this is equivalent to the existence of a matrix K ∈ Rm×ℓ such that

P −Q = K ·N .

Summing up, a morphism M → N is exactly given by a matrix P ∈ Rm×n
such that there exists a matrix P ′ ∈ Rk×ℓ with

M · P = P ′ ·N ,

and we view two morphisms P , Q : M → N as equal if and only if there
exists a matrix K ∈ Rm×ℓ such that

P −Q = K ·N .

Composition of morphisms can then simply be given by matrix multiplication
and identity morphisms can be given by identity matrices.

We have seen that both objects and morphisms of RFPres can be encoded
as matrices over R, where the matrices defining morphisms have to fulfill cer-
tain conditions. These matrices can be seen as morphisms in MatR, and the
conditions on morphisms of RFPres can be expressed as equations in MatR.
Hence, Construction 4.2.4 can be interpreted as a construction on MatR. This
construction is a special case of the construction of Freyd categories in Defi-
nition 2.6.1, which allows us to model RFPres as a categorical tower in the
following proposition.
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Construction 4.2.5 (Categories of finitely presented modules as categorical
towers, [Pos21a, Example 4.2]). Let R be a ring. We can model RFPres as a
reinterpretation of the categorical tower Freyd(MatR) via the functor R defined
as

R : Freyd(MatR)→ RFPres

M MatR Freyd(MatR) 7→ M
RFPres

P MatR Freyd(MatR) 7→ P
RFPres

together with its inverse M defined as

M : RFPres→ Freyd(MatR)

M
RFPres 7→ M MatR Freyd(MatR)

P
RFPres 7→ P MatR Freyd(MatR)

A primitive implementation of RFPres partially generated from Freyd(MatR)
and optimized by CompilerForCAP is available via the category constructor
LeftPresentations in the package ModulePresentationsForCAP [GPZ24b].

Proof of correctness. The technical equality on objects and the mathematical
equality on morphisms in Freyd(MatR) exactly correspond to the equalities
in RFPres given in Construction 4.2.4, so in particular R and M respect the
equality on morphisms. Moreover, R and M are mutually inverse both on
objects and morphisms. Finally, composition and identity morphisms are given
by matrix multiplication and identity matrices on both sides.

Summing up, R indeed defines an isomorphism of categories with inverse M,
as required for a reinterpretation. ■

We can immediately make use of the description of RFPres as a categorical
tower:

Corollary 4.2.6 (Decidable lifts in categories of finitely presented modules via
homomorphism structures). Let R be a ring. Assume that we can endow MatR
with a D-homomorphism structure for an additive category D with decidable
lifts. Then RFPres has decidable lifts.

Proof. This follows from Construction 4.2.5 and Proposition 2.6.2. ■

We can now define categories of finitely presented right modules by dualizing
the category of matrices over R in the following construction.

Construction 4.2.7 (Categories of finitely presented right modules, [Pos21a,
Example 4.2]). Let R be a ring. We define the category FPresR of finitely
presented right modules over R as follows:

• Its objects are matrices over R,
• a morphism from M ∈ Rm×k to N ∈ Rn×ℓ is a matrix P ∈ Rn×m such

that there exists a matrix P ′ ∈ ℓ× k with

P ·M = N · P ′,
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where we view two morphisms P , Q : M → N as equal if and only if
there exists a matrix K ∈ Rℓ×m such that

P −Q = N ·K.

The categorical structure is defined using Construction 3.3.5 via a reinterpretation
of the categorical tower Freyd(MatRop) such that we get an isomorphism of
categories R defined as

R : Freyd(MatRop)→ FPresR

M MatR MatR
op Freyd(MatR

op) 7→ M FPresR

P MatR MatR
op Freyd(MatR

op) 7→ P FPresR

together with its inverse M defined as

M : FPresR → Freyd(MatRop)

M FPresR
7→ M MatR MatR

op Freyd(MatR
op)

P FPresR
7→ P MatR MatR

op Freyd(MatR
op)

A primitive implementation of FPresR partially generated from Freyd(MatRop)
and optimized by CompilerForCAP is available via the category constructor
RightPresentations in the package ModulePresentationsForCAP.

Corollary 4.2.8 (Decidable lifts in categories of finitely presented right mod-
ules via homomorphism structures). Let R be a ring. Assume that we can
endow MatR with a D-homomorphism structure for an additive category D with
decidable lifts. Then FPresR has decidable lifts.

Proof. The opposite category MatRop is a preadditive category (Remark 2.3.6)
with a D-homomorphism structure due to Construction 2.5.9. Hence, the claim
follows from Construction 4.2.7 and Proposition 2.6.2. ■

Example 4.2.9 (Categories of finitely presented modules over exterior algebras
have decidable lifts). Let K be a field and let V be a finite dimensional K-
vectorspace. We consider the exterior algebra E :=

∧
V . In Example 4.1.4, we

have seen that MatE has a MatK-homomorphism structure. The category of
matrices MatK is an additive category. Moreover, using Gaussian elimination,
we can solve systems of linear equations X ·A = B over K, that is, MatK has
decidable lifts. Hence, EFPres and FPresE have decidable lifts.

We again see some of the advantages mentioned in Remark 3.2.1:

• Reusability: The constructor for categories of matrices and the construc-
tor for Freyd categories can be reused for both left and right modules.
Moreover, the constructor for Freyd categories can, for instance, be reused
for modeling finitely presented functors in [Pos21a] and for constructing
free abelian categories in [Pos22].

• Separation of concerns: The intricate equality of morphisms in Freyd
categories, dualization as a generic concept, and the matrix algorithms are
strictly separated from each other.
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4.3 Dualizing algorithms
We now consider an application of categorical towers which is more technical than
the previous examples but will become very useful in the context of automatic
code generation in Section 6.5.2: The automatic dualization of algorithms. Many
of the concepts defined in Chapter 2 have dual versions in the opposite category,
either by definition, for example products and coproducts, or implicitly because
they are self-dual, for example direct sums. For every algorithm involving such
concepts, there also exists a dual algorithm using the dual concepts. For instance,
the algorithm computing binary pushouts from coproducts and coequalizers
in Example 1.2.6 has a dual version which computes binary pullbacks from
products and equalizers. On paper, we often do not spell out the dual version of
an algorithm. On a computer, however, we would like to have implementations
of the dual versions of algorithms and would like to avoid having to dualize
implementations by hand. Hence, in this section, we formalize the dualization of
algorithms with the help of categorical towers. In Section 6.5.2, we will use this
formalization to automatically generate dual versions of implementations with
the help of CompilerForCAP.

Remark 4.3.1 (The categorical tower (Cop)op). The central idea for computing
the dual version of an algorithm is to pass from a category C to its opposite Cop,
apply the algorithm there, and then pass to (Cop)op. On paper, one usually
views (Cop)op and C as the same category, so we get the intended result in C.
On the computer, however, (Cop)op and C are different categories because they
are endowed with different algorithms: The algorithms of (Cop)op are all built on
algorithms of Cop, while the algorithms of C can never be built on algorithms of
Cop because this would introduce infinite recursions. Hence, formally we should
distinguish between (Cop)op and C.

To formalize that (Cop)op is mathematically just C but has different algo-
rithms, we create a “copy” C′ of C which has the same objects and morphisms as
C but is endowed with a categorical structure via a reinterpretation of (Cop)op.

Construction 4.3.2 (“Copies” of categories). Let C be a category. We create
a “copy” C′ of C as follows: C′ has the same objects and morphisms as C. This
allows us to introduce two mappings on objects and morphisms of C and C′:

N : C→ C′

X C 7→ X C′

x C 7→ x C′

and its inverse

O : C′ → C
X C′ 7→ X C

x C′ 7→ x C

where “N ” stands for “new” and “O” for “original”. Now, we can use Construc-
tion 3.3.5 to define a categorical structure on C′ as a reinterpretation of the
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categorical tower (Cop)op via

R : (Cop)op → C′

A Cop (Cop)op 7→ N (A)

f Cop (Cop)op 7→ N (f)

with inverse

M : C′ → (Cop)op

A 7→ O(A) Cop (Cop)op

f 7→ O(f) Cop (Cop)op

This categorical structure on C′ ultimately comes from the categorical structure
of C. Hence, N and O are functors, and since they are mutually inverse, they
are even isomorphisms.

Note that on paper, we only view boxes as a notation, and if we drop the
boxes all the functors are just given by identity maps. On the computer, however,
the functors properly translate between the various boxed data structures and
concepts.

Using this construction, we can hide the subtleties of the categorical tower
(Cop)op:

Remark 4.3.3. Let C be a category in which we want to compute a dual
version of an algorithm. As seen before, by applying the algorithm in Cop, the
categorical tower (Cop)op can compute the dual version of the algorithm. We
can hide this tower by creating a copy C′ of C as above. Now, we can compute
the dual version of the algorithm in C by passing to C′ via N , computing the
dual version of the algorithm there, and returning to C via O.

This shows another kind of separation of concerns: We get access to the
dual version of an algorithm without actually seeing opposite categories because
those are hidden by the reinterpretation.

The construction of the copy C′ of C as above depends on the data structures
of objects and morphisms of C. However, we can still make the dualization of
algorithms independent of the concrete category C. To see how this can be done,
we first consider a concrete example.

Example 4.3.4. Consider an algorithm which computes binary coequalizers of
two morphisms by computing the cokernel of the difference of the two morphisms
as in Remark 2.7.7. Moreover, consider a preadditive category C endowed
with an algorithm for computing kernels but a priori without an algorithm for
computing binary equalizers. Naturally, we would like to endow C with an
algorithm for computing binary equalizers by dualizing the algorithm for binary
coequalizers in Remark 2.7.7. According to the above, we proceed as follows:

• The opposite category Cop is a preadditive category which is naturally
endowed with an algorithm for computing cokernels by computing kernels
in C.
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• Hence, by Remark 2.7.7, Cop can be endowed with an algorithm for
computing binary coequalizers.

• Therefore, the double opposite category (Cop)op is naturally endowed
with an algorithm for computing binary equalizers by computing binary
coequalizers in Cop.

• Now, we reinterpret the categorical tower (Cop)op as a copy C′ of C as
above.

• With this, we can computing binary equalizers in C by passing to C′ via
N , computing binary equalizers there, and returning to C via O.

Now, let us consider a computation of the equalizer of two parallel morphisms
f, g : A→ B in C:

eq(f, g) :≡ O
(

eq
(
N (f),N (g)

))
≡ O

(
R
(

eq
(
M(N (f)),M(N (g))

)))
≡ O

(
R
(

eq
(
O(N (f)) Cop (Cop)op , O(N (g)) Cop (Cop)op

)))
≡ O

(
R
(

eq
(
f Cop (Cop)op , g Cop (Cop)op

)))
≡ O

(
R
(

coeq
(
f Cop , g Cop

)
(Cop)op

))
≡ O

(
R
(

coker
(
f Cop − g Cop

)
(Cop)op

))
≡ O

(
R
(

coker
(
f − g Cop

)
(Cop)op

))
≡ O

(
R
(

ker
(
f − g

)
Cop (Cop)op

))
≡ O

(
N
(

ker
(
f − g

))
≡ ker

(
f − g

)
Note that we have not applied the definitions of N and O at all, but have simply
used that they are mutually inverse. In particular, we have not seen a value
being boxed as an object or morphism in C or C′. Hence, the computation can
be performed symbolically independent of the data structures of objects and
morphisms of C. Summing up the computation, we get the categorical algorithm

eq(f, g) :≡ ker
(
f − g

)
for two parallel morphisms f, g : A → B in an arbitrary preadditive category
C with kernels. This is exactly the expected dualization of computing binary
coequalizers via cokernels.

The previous example shows that we can perform the required computations
symbolically and independent of the category, which allows us to extract the
desired dual algorithm. In Section 6.5.2, we will use this to automatically
generate dual versions of implementations of categorical algorithms with the
help of CompilerForCAP.

We give an example of the dual version of a more complex algorithm:
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Example 4.3.5. The dual version of the algorithm in Example 1.2.6 computes
binary pullbacks from products and equalizers as follows:

Let C be a category and let f : A → C and g : B → C be two morphisms
in C with a common source. We can compute a pullback P of f and g from
products and equalizers as follows:

• compute the product A×B together with the projections π×A : A×B → A
and π×B : A ⊔B → B,

• define two auxiliary morphisms d := π×A · f and e := π×B · g,
• define P := eq(d, e) with morphisms πA := ιeq · π×A and πB := ιeq · π×B .

Given two morphisms τA : T → A and τB : T → B such that τA · f = τB · g,
we can compute u : T → P with the required properties by first applying
the universal property of the product and then the universal property of the
equalizer.

Of course, on paper we do not actually obtain this dual algorithm by symbolic
computations in the categorical tower (Cop)op. On the computer, however, an
implementation for the dual algorithm will indeed be generated via (Cop)op.
Remark 4.3.6 (Advantages of using a categorical tower). We again see some
of the advantages of categorical towers mentioned in Remark 3.2.1:

• Reusability: We can reuse the constructor for opposite categories, which
we have already used in Construction 4.2.7.

• Verifiability: Verifying computations involving dualization is notoriously
difficult. Here, even two layers of dualization are involved. Thanks to the
categorical tower, we only have to verify the construction of the opposite
category once.

• Emergence: The dual version of the algorithm emerges naturally from
the original algorithm and the use of the opposite categories.

4.4 Pushouts in the category of quivers
In this section, we introduce the category of quivers and model it as a
functor category into Sets. Since limits and colimits in functor categories can
be computed pointwise in the target category, the category of quivers inherits
limits and colimits from Sets. We specifically look at coproducts, coequalizers,
and pushouts, which we will need for the quantum computing application in
Chapter 5.
Definition 4.4.1 (Quivers). A quiver (or directed multigraph) consists of
the following data:

• a set of vertices V ,
• a set of arrows A,
• two maps s, t : A→ V .

We call a ∈ A an arrow from s(a) to t(a). Moreover, we call a tuple of arrows
(a1, . . . , an) a path from s(a1) to t(an) if t(ai) = s(ai+1) for all i ∈ 1, . . . , n− 1.

A morphism η between quivers (V1, A1, s1, t1) and (V2, A2, s2, t2) is given by
two maps of sets ηV : V1 → V2 and ηA : A1 → A2 compatible with s1, s2, t1,
and t2 in the sense that the following two diagrams commute:
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A1 A2

V1 V2

s1

ηA

s2

ηV

A1 A2

V1 V2

t1

ηA

t2

ηV

To a quiver Q, we can associate a category:

Definition 4.4.2 (Free categories). Given a quiver Q, we construct the free
category C(Q) generated by Q as follows:

• its objects are the vertices of the quiver,
• a morphism from v to w is a path from v to w, where two paths are

equal if they have the same length and are given by the same arrows in
the same order,

• composition of morphisms is given by the concatenation of paths,
• identity morphisms are given by empty paths.

One can easily check that this indeed defines a category.

Moreover, we see that quivers and their morphisms themselves form a category
Quiv:

Definition 4.4.3 (The category of quivers). The category of quivers Quiv is
defined as follows:

• its objects are quivers,
• its morphisms are morphisms of quivers with equality given by the pointwise

equality of the maps on vertices and arrows,
• composition of two morphisms η and ε is given by composing the maps on

vertices and arrows separately,
• identity morphisms are given by the identity maps on vertices and arrows.

One can easily check that this indeed defines a category.
If we restrict to quivers with finite sets of vertices and arrows, we obtain the

category of finite quivers FinQuiv.

For the application in Section 5.4, we want to show that the category of
quivers Quiv has binary pushouts. To do so, we again build a categorical tower.

Construction 4.4.4 (The category of quivers as a categorical tower). We start
with the following quiver2 Q:

A V
s

t

That is, the quiver Q has vertex set V := {V,A} and arrow set A := {s, t} with
s(s) = s(t) = A and t(s) = t(t) = V. The reason for the initially confusing
notation will become clear soon.

2We use a quiver to model the category of quivers, so this looks like a cyclic definition at
first. We will explain why this is not the case in Remark 4.4.5.
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We can model Quiv as a reinterpretation of the categorical tower SetsC(Q),
the functor category from C(Q) to Sets, via the functor R defined as

R : SetsC(Q) → Quiv
F 7→

(
F ( V ), F ( A ), F ( s ), F ( t )

)
η 7→

(
η

V
, η

A

)
together with its inverse M defined as

M : Quiv→ SetsC(Q)

(V,A, s, t) 7→ F with F ( V ) := V , F ( A ) := A, F ( s ) := s, and F ( t ) := t

(ηV , ηA) 7→ η with η
V

:= ηV and η
A

:= ηA

Analogously, we can model FinQuiv as a reinterpretation of the categorical
tower FinSetsC(Q). A primitive implementation of FinQuiv generated from
FinSetsC(Q) and partially optimized by CompilerForCAP is available via the
category FinQuivers in the package FunctorCategories [BS24].

Proof of correctness. The category C(Q) has only two objects V and A and
four morphisms: the two identity morphisms given by the empty paths on V

and A and two morphisms (s) and (t) each given by a path containing a
single arrow. This shows that M actually specifies all the data required for
uniquely defining a functor from C(Q) to Sets and a natural transformation
between such functors.

One can easily check that R actually defines quivers and morphisms of quivers
and that M actually defines functors and natural transformations. For example,
the naturality of the natural transformations exactly corresponds to the diagrams
in Definition 4.4.1.

The equalities of morphisms in SetsC(Q) and Quiv are both given by the
componentwise equality of maps of sets, so R and M respect the equality on
morphisms. Moreover, with the canonical meta-theoretical equalities on functors
and quivers, R and M are mutually inverse on objects and morphisms.

Finally, composition and identity morphisms are given by componentwise
composition of maps of sets and identity maps of sets on both sides.

Summing up, R indeed defines an isomorphism of categories with inverse M,
as required for a reinterpretation. ■

Remark 4.4.5. Note that for constructing the functor category from C(Q) to
Sets, we need a data structure for quivers to encode Q. However, we neither
need a data structure for morphisms of quivers nor any algorithm on Q. Still, the
categorical tower has data structures for objects and morphisms and algorithms
on objects and morphisms. Those are obtained from the data structures and
algorithms for functors, natural transformations, and (maps of) sets. Hence, the
construction of the tower is not cyclic at all.

We can use the categorical tower to see that the category of quivers has
coproducts and coequalizers:

Remark 4.4.6 (The category of quivers has coproducts and coequalizers).
As noted in Remark 1.2.3, the category of sets has coproducts. Moreover, in
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Example 2.7.4 we have constructed coequalizers in the category of sets. Hence,
by Construction 2.7.2 and Construction 2.7.5, the functor category from C(Q) to
Sets has coproducts and coequalizers. Thus, also the category of quivers Quiv
has coproducts and coequalizers. If we unfold all the definitions, the coproduct
of two quivers is given by the disjoint union of the quivers and the coequalizer
of two morphisms of quivers is given by a quotient of quivers.

We could have constructed coproducts and coequalizers of quivers on paper
without using a categorical tower. However, implementing disjoint unions and
quotients of quivers together with functions on such structures on a computer
would be tedious and error-prone: We would have to develop suitable data
structures, and since quivers are given by two sets, we basically would have
to implement all algorithms for sets twice, while ensuring consistency between
the two parts. Hence, being able to reuse implementations of sets while the
consistency is ensured by the functor category is a huge advantage.

By Example 1.2.6, we get:

Corollary 4.4.7. Quiv/SZX has pushouts.

Remark 4.4.8 (Advantages of constructing the category of quivers as a tower).
In the preceding remarks, we have see all advantages of categorical towers
mentioned in Remark 3.2.1:

• Reusability: We have seen that reusing algorithms for sets on a computer
is a huge advantage.

• Separation of concerns: We have seen that separating the algorithms
for sets from ensuring the consistency allows us to focus on one aspect at
a time.

• Verifiability: We can verify the concrete algorithms for sets and the
abstract algorithms for functor categories independently.

• Emergence: We have seen that we only need a data structure for quivers
to encode Q, but thanks to the categorical tower automatically obtain
data structures for morphisms and algorithms on objects and morphisms.





Chapter 5

A quantum computing
application of a categorical
tower

In this chapter, we have a look at an application of categorical towers in the field
of quantum computing: Using a categorical tower, we can model a foundational
functional programming language1 for quantum computers. To this end, we
proceed as follows: In Section 2.11, specifically in Example 2.11.5, Example 2.11.8,
Remark 2.11.10, and Construction 2.11.12, we have seen correspondences between
typed functional programming languages, typed generalized lambda calculi,
categories of lambda terms, and closed monoidal categories. Hence, to define a
functional quantum programming language, we introduce a closed monoidal
category whose morphisms are generalized versions of quantum circuits, which
in turn model computations on a quantum computer. This category is called
the category of ZX-diagrams. The closed monoidal structure of the category
of ZX-diagrams emerges naturally when modeling it as a categorical tower as
described in [Cic18]. We follow the construction in [Cic18] but refine some
details which are needed for making the tower fully algorithmic, as we will see
in Remark 5.3.4.

For a short introduction to classical and quantum computations and circuits
representing such computations see Section B.2. More details can, for example,
be found in [JAA+22] and [NC10].

The chapter is structured as follows: In Section 5.1, we introduce the ZX-
calculus, a graphical language for describing quantum computations using
ZX-diagrams. In Section 5.2, we show that ZX-diagrams form a category,
which we model as a categorical tower in Section 5.3. In Section 5.4, we see how
a rigid symmetric closed monoidal structures of the category of ZX-diagrams
naturally emerges from the categorical tower. Finally, in Section 5.5, we use
the correspondence between closed monoidal categories, categories of lambda
terms, typed generalized lambda calculi, and functional programming languages
to introduce a foundational functional programming language for quantum
computers.

1See Remark 2.11.1 for some notes regarding the term “programming language”.
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π
4

π

Figure 5.1: A ZX-diagram

5.1 The ZX-calculus
The ZX-calculus is a graphical language for describing quantum computations.
It is visualized using ZX-diagrams like the one in Figure 5.1. As we will see,
ZX-diagrams form a closed monoidal category. Using the connections indicated
at the beginning of Section 2.11, the ZX-calculus can also be seen as a graphical
interpretation of a so-called linear type theory describing quantum logic
[See89, Pra92].

As a concrete application, quantum circuits can be turned into ZX-diagrams,
which then can be simplified using the rules of the ZX-calculus. Afterwards,
one can extract a quantum circuit from the resulting ZX-diagram which is often
simpler than the original quantum circuit.

Definition 5.1.1 (ZX-diagrams). ZX-diagrams are finite vertex-labeled multi-
graphs with five main types of nodes: inputs nodes, output nodes, Z-spiders,
X-spiders, and Hadamard nodes. For an example of a ZX-diagram see Figure 5.1.
Input and outputs nodes are drawn as dangling edges from the left and to the
right, respectively. The order of input nodes matters, that is, the input nodes are
formally labeled consecutively starting from 1, which is visualized by the order
in which the dangling edges are drawn. The same holds for the output nodes.
Z-spiders and X-spiders are represented by green (or light) and red (or dark)
circles, respectively. Spiders are additionally labeled with a phase α ∈ [0, 2π),
which is omitted for α = 0 when drawing the graph. Hadamard nodes are
represented by a (yellow) rectangle.

Input and output nodes are called boundary nodes, while all other nodes
are called inner nodes.

There are some restrictions on the degree of nodes, that is, on the number of
edges connected to a node: Boundary nodes must have degree 1 and Hadamard
nodes must have degree 2. Spiders can have arbitrary degree.

Example 5.1.2. A quantum circuit can be translated to a ZX-diagram as
follows:

• a Hadamard gate is converted to a Hadamard node,
• a phase shift gate Zα is converted to a Z-spider with phase α,
• a NOT gate is converted to an X-spider with phase π,
• a CNOT gate is written as a Z-spider on the controlling qubit connected

to an X-spider on the target qubit, with both spiders having phase 0.

Since Hadamard gates, phase shift gates, and CNOT gates form a universal
set of quantum gates, these rules allow to convert every quantum circuit to a
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ZX-diagram. For example, the quantum circuit

Zπ
4

H •

can be written as a ZX-diagram as follows:
π
4

π

While we have retained the structure of the quantum circuit, most of this
structure is not a formal part of the ZX-diagram. In particular, the “flow” from
left to right and the mapping of gates to qubits is not encoded in the ZX-diagram
and we could, for example, also draw the diagram as follows:

π
4

π

Of course drawing inputs and outputs as dangling edges from the left and to the
right, respectively, still defines a general “direction” in the diagram, but this is
only a convention and not part of the theory.

The process of translating a ZX-diagram to a quantum circuit is known as
circuit extraction. Not every ZX-diagram can be translated to a quantum
circuit, and even if one restricts to the cases where a translation exists in principle,
it is speculated that there is no efficient general algorithm for circuit extraction,
see [DKPvdW20, Section 8].

For more details about the ZX-calculus in general and in particular the
extraction of quantum circuits from ZX-diagrams, see [DKPvdW20].

Remark 5.1.3 (Simplification rules for ZX-diagrams). ZX-diagrams can be
simplified using certain rules. If the ZX-diagram corresponds to a quantum
circuit, then also the simplified ZX-diagram corresponds to a quantum circuit,
and the simplification does not change the corresponding quantum function
[DKPvdW20].

We list some of the simplifications rules for ZX-diagrams. For a complete
list, see [DKPvdW20, Figure 1, Remark 2.5]. In the presentation of the rules,
dangling edges do not necessarily have to correspond to boundary nodes but
symbolize edges connected to arbitrary nodes. In particular, the diagrams in
the rules do not have to be read from left to right but can appear in arbitrary
orientation in larger diagrams. Moreover, while we call the rules “simplification
rules”, they can actually be applied in both directions.

• Two adjacent Hadamard nodes can be canceled:

↭

• A Hadamard node can be expanded to three spiders:
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↭ π
2

π
2

π
2

• A spider of degree 2 with phase 0 can be removed:

↭

and

↭

• Adjacent spiders of the same color can be fused, adding up their phases:

n ... α β
...m

... ↭ n ... α+β
...m

and

n ... α β
...m

... ↭ n ... α+β
...m

Phases are always reduced modulo 2π.
• An even number of edges between spiders of different colors cancels:

α
... 2n+1 β ↭ α β

and

α
... 2n β ↭ α β

• A spider surrounded by Hadamard nodes can change its color by consuming
the Hadamard nodes:

... α
... ↭

... α
...

and

... α
... ↭

... α
...

• A spider of degree 2 with phase π copies through an adjacent spider of a
different color, flipping the phase of that spider:

π α
... ↭

π

−α
...
π

and

π α
... ↭

π

−α
...
π
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While this does not look like a simplification at first, it can be used together
with other rules to actually simplify diagrams.

We first give a simple, detailed example showing how one can simplify
quantum circuits using the ZX-calculus. Afterwards, we use the ZX-calculus
to prove that the quantum circuit describing quantum teleportation can be
simplified to an identity.

Example 5.1.4 (Simplification of a quantum circuit via the ZX-calculus). We
give an example of a simplification of a quantum circuit using ZX-diagrams. For
this, we consider the circuit

•
This circuit computes the following quantum function:

(C2)⊗2 → (C2)⊗2

|00⟩ 7→ |01⟩
|01⟩ 7→ |10⟩
|10⟩ 7→ |11⟩
|11⟩ 7→ |00⟩

As we see, the function just maps the first basis vector to the second, the second
basis vector to the third, and so on. Hence, we expect that repeating the quantum
circuit 4 times gives a quantum circuit which just computes the identity:

• • • •

We check this using the ZX-calculus. First, we translate the quantum circuit to
a ZX-diagram:

π π π π

Then, we simplify the ZX-diagram according to the rules above:
First, we copy the second and the fourth of the lower red spiders through

the green spiders on their left:

π π

π π π π

Next, we fuse some of the red spiders, reducing the phases modulo 2π:
π π

Spiders of degree 2 with phase 0 can be removed:
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π π

Now, we can fuse all the red spiders and the green spiders, respectively, again
reducing the phases modulo 2π:

We can cancel the even number of edges between the red and the green spider:

Finally, we can remove the spiders of degree 2 with phase 0 and obtain an
ZX-diagram without nodes:

This ZX-diagram cannot be simplified anymore, so we extract a quantum circuit.
Since the ZX-diagram has no inner nodes, the corresponding quantum circuit
has no gates. Such a circuit does not modify the inputs at all and thus represents
the identity, as expected. Hence, the simplification rules for ZX-diagrams indeed
allowed us to simplify the circuit we started with.
Example 5.1.5 (Quantum teleportation in the ZX-calculus). We consider the
circuit describing quantum teleportation in Example B.2.11:

ψ • H •

|0⟩ H • •

|0⟩ Zπ ψ

Alice

Bob

We can also encode the initialization of qubits and measurements in ZX-diagrams,
which gives the following ZX-diagram:

aπ

bπ

bπ aπ

The parameters a, b ∈ {0, 1} link the outcomes of the measurements to the
application of the NOT gate and/or the phase shift gate. To simplify this
ZX-diagram, we first change the colors of the dangling spiders connected to
Hadamard nodes:

aπ

bπ

bπ aπ
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Afterwards, we fuse adjacent spiders of the same color:
aπ

bπ

bπ aπ

We can remove the Z-spider with phase 0:
aπ

bπ

bπ aπ

Now, for all possible values of a, b ∈ {0, 1}, the remaining spiders successively
fuse do identities. Summing up, we get

which corresponds to an identity. This shows that the input quantum state is
indeed teleported without modification from Alice to Bob.

Remark 5.1.6 (Inverting ZX-diagrams). Quantum circuits given by Hadamard
gates, phase shift gates, and CNOT gates can be inverted by reversing the circuit
and negating the phases of the phase shift gates. This property carries over to
ZX-diagrams: ZX-diagrams coming from quantum circuits can be inverted by
reversing the diagram, that is, turning inputs into outputs and vice versa, and
negating all phases of spiders. In particular, if all spiders have phase α = 0 or
α = π, reversing the diagram coincides with inverting it.

For example, composing the ZX-diagram

π

with the reversed ZX-diagram

π

can easily be simplified to a ZX-diagram without nodes. Hence, as expected,
the reversed diagram indeed describes the inverse because all spiders have phase
α = 0 or α = π.

5.2 The category of ZX-diagrams
We now see how ZX-diagrams form a category. We give a direct definition of
the category of ZX-diagrams in this section and model it as a categorical tower
in the next section.
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Definition 5.2.1 (The category of ZX-diagrams). The category ZX of ZX-
diagrams is defined as follows:

• its objects are natural numbers,
• a morphism from m to n is a ZX-diagrams with m inputs and n outputs,

where we consider two ZX-diagrams as equal if they are isomorphic as
multigraphs via an isomorphism preserving the labels,

• composition is given by glueing the outputs of the first diagram to the
inputs of the second diagram,2

• the identity morphism on m is given by the ZX-diagram with m input
nodes and m output nodes, connected by m parallel edges:

... m

One can easily check that this indeed defines a category.

Definition 5.2.2 (The category of ZX-diagrams with relations). The category
ZX/∼ of ZX-diagrams with relations is defined as the quotient of ZX by
the simplification rules of the ZX-calculus, that is, we construct ZX/∼ in the
same way as ZX but view two morphisms as equal if they are equal up to the
simplification rules of the ZX-calculus. The equality up to the simplification
rules is compatible with the composition, so this indeed defines a category.

Remark 5.2.3. We will see that the category of ZX-diagrams without relations
is sufficient for our aim of modeling a foundational functional quantum program-
ming language. Hence, we only define ZX/∼ for the sake of completeness.

5.3 The category of ZX-diagrams as a categorical
tower

In this section, we show how the category of ZX-diagrams can be constructed
as a categorical tower. We follow the construction in [Cic18] but refine some
details, which we will see in Remark 5.3.4. The category constructors used in
the construction of the tower are implemented in various packages in the CAP
ecosystem and combined in the package ZXCalculusForCAP [Zic24j].

For building the categorical tower, we proceed in two steps: First, we consider
a slice category of Quiv, which we can view as a category of decorated quivers.
Afterwards, we pass to a category of cospans, which allows us to formalize the
glueing of outputs and inputs in the composition of morphisms of ZX.

Construction 5.3.1 (Decorated quivers). Quivers are given by two sets and
morphisms of quivers are given by two maps on these sets, so we naturally have
notions of “elements”, “fibers”, and “images” (of elements) in Quiv compatible
with the interpretations in Remark 2.9.2. Hence, we can think of a morphism
X → B in Quiv as a quiver X whose vertices and arrows are decorated by
the vertices and arrows of B, respectively.

2Formally, we glue the output nodes of the first diagram to the input nodes of the second
diagram, which gives a node of degree 2. We then remove this node and merge the two edges
connected to it into a single edge.
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α β

where α and β run through [0, 2π)

Figure 5.2: The quiver SZX

π
⇝

π

Figure 5.3: Encoding of a ZX-diagram as a quiver decorated over SZX

As a preparation for modeling the category of ZX-diagrams as a categorical
tower, we show how to encode ZX-diagrams as decorated quivers:
Construction 5.3.2 (Encoding ZX-diagrams as decorated quivers). Let SZX
be the quiver in Figure 5.2, that is, the quiver with vertices

α for α ∈ [0, 2π),
β for β ∈ [0, 2π),

where the so-called neutral vertex connects to all other vertices by an arrow.
We choose SZX as the base quiver for forming the slice category Quiv/SZX,
that is, the category of quivers decorated by SZX. Now, we want to encode a
ZX-diagram D as a quiver QD decorated by SZX. An example showing how we
do this can be seen in Figure 5.3. Specifically, we use following rules:

• Boundary nodes of D are encoded as neutrally decorated vertices of QD.
• Inner nodes of D are encoded as vertices of QD decorated in the obvious

way.
• An edge connecting a boundary node and an inner node of D is encoded as

an arrow of QD pointing away from the corresponding neutrally decorated
vertex.

• An edge connecting two inner nodes of D is encoded as two arrows of QD
pointing away from a neutrally decorated vertex which is newly added.

• An edge connecting two boundary nodes of D is handled in a special way:
The edge together with the two boundary nodes is encoded as a single
neutrally decorated vertex of QD.

Finally, we also associate a decorated quiver Qn to natural numbers n, whose
role will become clear in the next construction: We define Qn as a quiver with n
neutrally decorated vertices, which can be visualized as follows:
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... n

With this, we can model the category of ZX-diagrams as a category of
cospans:

Construction 5.3.3 (The category of ZX-diagrams as a categorical tower). We
use the notation of Construction 5.3.2. We define an embedding R of ZX into
Csp(Quiv/SZX) as follows:

R : ZX→ Csp(Quiv/SZX),
n 7→ Qn ,

m
D−−→ n 7→ Qm → QD ← Qn ,

where the morphisms of the cospan map the i-th vertex of Qm (respectively
Qn) to the vertex of QD coming from the i-th input (respectively output) of
D. With this, R defines an isomorphism to a subcategory of Csp(Quiv/SZX).
Hence, we can model ZX as a reinterpretation of a subcategory of the categorical
tower Csp(Quiv/SZX) via R. The subcategory can be characterized as follows:
Its only objects are Qn for natural numbers n. Its morphisms are only those
cospans where the central object is given by a decorated quiver whose vertices
fulfill the degree restrictions in the definition of ZX-diagrams, that is:

• a vertex decorated as “Hadamard” must have degree 2,
• the vertices representing inputs or outputs must have degree 1, with the

degenerate case that a vertex might respresent two boundary nodes at the
same time and has degree 0.

Proof of correctness. First, we show that R is compatible with the equalities
on morphisms and injective on morphisms. We spell out the equalities in ZX
and Csp(Quiv/SZX): Two morphisms D , E : m → n in ZX are equal if
and only if the ZX-diagrams D and E are isomorphic as multigraphs via an
isomorphism preserving the labels. Moreover, the two morphisms

Qm → QD ← Qn and Qm → QE ← Qn

in Csp(Quiv/SZX) are equal if and only if there exists an isomorphism of
decorated quivers which makes the triangles in the following diagram commute:

QD

Qm Qn

QE

f

Since Qm and Qn are mapped to the inputs and outputs of QD and QE , the
triangles in the diagram commute if and only if f preserves inputs and outputs,
including their order. Moreover, an isomorphism of decorated quivers is just an
isomorphism of quivers preserving decorations, in particular Hadamard nodes



5.3. The category of ZX-diagrams as a categorical tower 109

and spiders including their colors and phases. Furthermore, we have normalized
the directions of the arrows to always point away from neutrally decorated
vertices. Hence, there is no difference between isomorphisms of quivers, that is,
directed multigraphs, and isomorphisms of undirected multigraphs in this
context. Summing up, D and E are equal in ZX if and only if

Qm → QD ← Qn and Qm → QE ← Qn

are equal in Csp(Quiv/SZX). Hence, R is compatible with the equality on
morphisms and injective on morphisms. Moreover, we can recover the number
m from Qm by counting the vertices, so R is also injective on objects.

Next, we consider the composition. Let D : m → n and E : n → ℓ be
two morphisms in ZX. To compose

Qm → D ← Qn and Qn → E ← Qℓ

in Csp(Quiv/SZX), we form the pushout

Qn

D E

P

This is a formalization of glueing the images of Qn in D and E, that is, the
outputs of D and the inputs of E. Hence, the composition in Csp(Quiv/SZX)
and the composition in ZX coincide.

Finally, it is easy to see that the identities in ZX map to the identities in
Csp(Quiv/SZX).

Summing up, we have shown that R is an embedding. ■

Remark 5.3.4 (Deviations from [Cic18]). We deviate in various points from
[Cic18], which can be seen by comparing the decorating quiver used there to our
decorating quiver:

α β

compared to

α β

We look at the differences:

• In the decorating quiver on the left, we see an additional kind of node: the
so-called diamond node. This is due to [Cic18] using a presentation of
the ZX-calculus accounting for so-called scalar factors, see [DKPvdW20,
Remark 2.2]. We could easily include additional kinds of nodes if needed
by simply adding them to our decorating quiver.
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• For every arrow in the decorating quiver on the left there also exists a
reversed arrow. Probably the intention in [Cic18] is to model undirected
graphs as directed graphs by encoding every undirected edge by two
directed arrows covering both possible directions. However, this is not
actually done in the paper and it seems like the problem is not properly
addressed. We avoid this problem by simply normalizing the direction of
arrows to always point away from neutrally decorated vertices.

• In the decorating quiver on the left, the neutral vertex has a self-loop. To
see the significance of this loop, recall the following special case in the
construction of the directed quiver QD correponding to a ZX-diagram D
in Construction 5.3.2: An edge connecting two boundary nodes of D is
handled in a special way: The edge together with the two boundary nodes
is encoded as a single neutrally decorated vertex of QD.

If we would endow the neutral vertex with a self-loop, we could avoid
this special case and instead encode an edge connecting two boundary
nodes in D by an actual arrow in QD. For example, we could encode the
ZX-diagram D given as

as a decorated quiver Q′D as follows:

However, with this, R would not map identities of ZX to identities of
Csp(Quiv/SZX) anymore: The diagram D above is just the diagram
defining id 2 in ZX. However, Q′D is not isomorphic to

which is the central object of the cospan defining the identity on R( 2 ) in
Csp(Quiv/SZX):

Q2
idQ2−−−→ Q2

idQ2←−−− Q2.
To solve this problem, [Cic18] passes to a quotient of Csp(Quiv/SZX)
where the images of the identity morphisms of ZX are identified with the
corresponding identity morphisms of the tower. However, working with
such a quotient in a computer implementation is cumbersome. Hence, we
prefer to solve the problem right in the encoding process.

Remark 5.3.5 (Advantages of constructing the category of ZX-diagrams as a
categorical tower). We again see some of the advantages of categorical towers
mentioned in Remark 3.2.1: At first, modeling the category of ZX-diagrams
as a categorical tower seems to be much more cumbersome than just working
with the category of ZX-diagrams as in the original definition. This is true
as long as one stays on a purely visual level. However, as soon as one wants
to implement the category on a computer, one quickly notices that defining a
suitable data structure for morphisms and formalizing the notion of “glueing” is
difficult. When working with the categorical tower, though, the data structures
and formalizations arise quite naturally. This is a perfect example of emergence.
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Moreover, the theory of functor categories, which we use to model quivers,
and slice categories is well developed, so we can actually build on existing theory
for the mathematics and on existing implementations on the computer. We will
see this in the next section, where we construct a closed monoidal structure
on the category of ZX-diagrams via the tower Csp(Quiv/SZX). This is a nice
example of reusability.

Remark 5.3.6 (Implementation of the tower Csp(Quiv/SZX)). The decorating
quiver SZX has infinitely many vertices which complicates the implementation
on a computer. However, since ZX-diagrams are finite, only finitely many
decorations appear in a given computation. Hence, a possible solution for a
computer implementation is to initialize SZX with only the neutral vertex at the
beginning and afterwards extend it by new vertices (and corresponding arrows)
on demand.

5.4 A closed monoidal structure on the category
of ZX-diagrams

In this section, we see how a rigid symmetric closed monoidal structure of the
category of ZX-diagrams naturally emerges from the categorical tower by lifting
the cocartesian monoidal structure of the category of quivers to a rigid symmetric
monoidal structure of the tower Csp(Quiv/SZX).

Construction 5.4.1 (A strict rigid symmetric monoidal structure on the
category of ZX-diagrams, [Cic18]). We can define a strict rigid symmetric
monoidal structure on the category of ZX-diagrams ZX as follows:

• the tensor product of two objects is just their sum,

• the tensor product of two morphisms stacks the diagrams,

• the tensor unit is the object 0 .

• The braiding from n ⊗ m to m ⊗ n connects the first n inputs to the
last n outputs and the last m inputs to the first m outputs:

...
...

...
...

n m

m n

• For an object n , we set n ∗ := n , that is, objects are self-dual.

• For an object n , we define the evaluation

ε n : n+ n ≡ n ∗ ⊗ n → 1 ≡ 0

by connecting the i-th input to the n+ i-th input for all i ∈ {1, . . . , n}:
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...

...

n

n

• For an object n , we define the coevaluation

η n : 0 ≡ 1→ n ⊗ n ∗ ≡ n+ n

by connecting the i-th output to the n+ i-th output for all i ∈ {1, . . . , n}:

...

...

n

n

Proof of correctness. We obtain a rigid symmetric monoidal structure of the
categorical tower Csp(Quiv/SZX) as follows:

• the category of quivers Quiv has coproducts and coequalizers, see Re-
mark 4.4.6,

• hence, the slice category Quiv/SZX has coproducts and coequalizers by
Construction 2.9.3 and Construction 2.9.4,

• by Example 1.2.6, Quiv/SZX has binary pushouts,
• the coproducts turn Quiv/SZX into a cocartesian monoidal category, see

Definition 2.8.5,
• hence, Csp(Quiv/SZX) has a rigid symmetric monoidal structure by

Construction 2.10.2.

Using Construction 5.3.3 and Construction 3.3.5, we can turn this rigid symmetric
monoidal structure into a rigid symmetric monoidal structure of the category of
ZX-diagrams ZX. When modeling Quiv as a functor category into a version of
the category of sets with strict coproducts, the strictness is preserved throughout
the tower. In particular, stacking diagrams will be associative and stacking a
morphism with the identity on the tensor unit 0 will do nothing, just as on
paper.

Unfolding the definitions of the tower can be automated with the help of
CompilerForCAP [Zic24a], as we will see in Chapter 6. ■

We highlight a situation which is implicit in the previous construction:

Remark 5.4.2 (Yanking). Recall that the definition of the rigid structure
contains two commutativity conditions: For every object A, the following two
diagrams have to commute:



5.4. A closed monoidal structure on the category of ZX-diagrams 113

(A⊗A∗)⊗A 1⊗A

A

A⊗ (A∗ ⊗A) A⊗ 1

αA,A∗,A

ηA⊗idA

λA

idA⊗εA

ρA

and

A∗ ⊗ (A⊗A∗) A∗ ⊗ 1

A∗

(A∗ ⊗A)⊗A∗ 1⊗A∗

α−1
A∗,A,A∗

idA∗⊗ηA

ρA∗

εA⊗idA∗

λA∗

In a strict setup, these two diagrams can be simplified to the following two
equations:

(ηA ⊗ idA) · (idA ⊗ εA) = idA and (idA∗ ⊗ ηA) · (εA ⊗ idA∗) = idA∗ .

If we express these equations for A := n in ZX, we get that the following two
ZX-diagrams must be equal to identity diagrams:

...

...

n

n

and

...

...

n

n

In ZX, this statement is trivial: Just as the identities, both diagrams connect the
i-th input to the i-th output and have no additional nodes, so they must be equal
to the identities. However, when transporting the constituents of the diagrams
to the categorical tower Csp(Quiv/SZX), a non-trivial proof is required for
showing that the cospans actually glue to an identity cospan.3 In this sense,
the ZX-calculus can also be seen as a language for doing visual proofs. This
particular case of a proof which “pulls bent edges tight” is called yanking.

Using Construction 2.8.7, we can construct a closed structure from the rigid
structure:

Construction 5.4.3 (A strict closed monoidal structure on the category of
ZX-diagrams). We obtain a closed structure of the strict monoidal category ZX
as follows:

We define the internal hom of two objects T1 and T2 in ZX as

hom( T1 , T2 ) :≡ T2 + T1 .

Then, let M : C ⊗ T1 → T2 be a morphism, which we visualize as follows:

C

M T2

T1

.

3This proof was an implicit part of Construction 5.4.1, arising from the proof of Construc-
tion 2.10.2 applied to the concrete situation of decorated quivers.
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We use dashed lines to illustrate that a line represents multiple inputs and
outputs of a given ZX-diagram like M at once. Now, we define the corresponding
morphism C → hom( T1 , T2 ) ≡ T2 + T1 via the following diagram:

C

M T2

T1

Finally, the evaluation morphism

ev T1 , T2
: T2 + T1 + T1 → T2

is defined via the following diagram:

T2

T1

T1

Proof of correctness. By Construction 5.4.1, the category of ZX-diagrams is a
strict rigid symmetric monoidal category. Hence, we can apply Construction 2.8.7
and obtain the above closed structure. ■

5.5 A foundational functional quantum program-
ming language

The category of ZX-diagrams is a strict closed monoidal category and thus defines
a typed generalized lambda calculus by Construction 2.11.12 and Remark 2.11.10.
For understanding the semantics of the corresponding foundational functional
programming language4, we now take a closer look at this typed generalized
lambda calculus.

Construction 5.5.1 (The typed generalized lambda calculus ZX). We interpret
ZX as a typed generalized lambda calculus as in Construction 2.11.12 and
Remark 2.11.10.

The types are objects of ZX, that is, natural numbers. These numbers
correspond to the number of inputs and outputs of ZX-diagrams. If the ZX-
diagram corresponds to a quantum circuit and in particular has the same number
of inputs and outputs, this number is the number of qubits on which the quantum
circuit acts. Hence, in this case the types correspond to a number of qubits,
just like, for example, the default type of integers on a classical 64-bit computer
usually corresponds to 64 classical bits.

Function types are given by the internal hom. Using Construction 5.4.3, we
see that

hom( T1 , T2 ) ≡ T1 + T2 .

Using the above interpretation of types as numbers of qubits, this means that a
function on T qubits can be encoded using 2T qubits.

4See Remark 2.11.1 for some notes regarding the term “programming language”.
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The lambda terms of type T in a context (x1 : T1 , . . . , xn : Tn ) are
morphisms T1 ⊗· · ·⊗ Tn → T , that is, ZX-diagrams with

∑
i Ti inputs and T

outputs. In particular, a lambda term of type T in a context (x : T ) potentially
corresponds to a quantum functions on T qubits.

For the abstraction, consider a lambda term M of type T2 in a context
(. . . , x : T1 ), that is, a morphism C ⊗ T1 → T2 given by a ZX-diagram M
with C + T1 inputs and T2 outputs, which we visualize as follows:

C

M T2

T1

.

As seen in Construction 5.4.3, the abstraction λT1 M : C → T2 + T1 can be
visualized as follows:

C

M T2

T1

That is, the last T1 inputs are “bent” to the right to form outputs.
For the application, consider a lambda term F of type T1 ⇒ T2 and a

lambda term N of type T1, that is, two morphisms

F : C1 → T2 + T1 and N : C2 → T1 .

We can visualize this setup as follows:
T2

C1 F

T1

and C2 N T1.

The application F N : C1 + C2 → T2 is formed by tensoring the two mor-
phisms and composing with the evaluation morphism

ev T1 , T2
: T2 + T1 + T1 → T2

given by
T2

T1

T1

Hence, we can visualize F N as follows:
T2

C1 F

C2 N

Now, if F is an abstraction λT1 M as above,5 we get:
5Note that this is exactly the situation where β-reduction can be applied.
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C

M T2

C2 N

that is,6

C

M T2

C2 N

.

If the ZX-diagrams M and N correspond to quantum circuits CM and CN
which compute quantum functions FM and FN , this diagram corresponds to
a quantum circuit which applies FM to the outputs of FN (and possible some
other arguments). Hence, our notion of “application” actually corresponds the
application of quantum functions.

Summing up, we have seen that if the ZX-diagrams correspond to quantum
circuits, we indeed get the semantics expected for a quantum programming
language:

the typed generalized lambda
calculus defined by ZX

interpretation as a quantum pro-
gramming language

a type T T qubits
a lambda term of type T in a con-
text (x : T )

a quantum function on T qubits

application of lambda terms application of quantum functions

Remark 5.5.2. The monoidal structure of ZX is not cartesian monoidal, so
we do not get the additional formation rules in Remark 2.11.14. In fact, in the
quantum setup this situation is expected (see [BS11, end of Section 2.2.3]): A
projection T1×· · ·×Tn → Ti could be interpreted as forgetting information about
Tj for j ̸= i, which would contradict the no-deletion theorem of quantum
information theory. Similarly, the diagonal morphism T → T × T obtained via
the universal morphism could be interpreted as duplicating information, which
would contradict the no-cloning theorem of quantum information theory.

We show how programs in the functional programming language modeled by
ZX could look like.

Example 5.5.3 (Functional quantum programs). We start by introducing
some constants, called library functions, into our programming language. For
example, we consider the ZX-diagram

π

6See Remark 5.4.2 for why the two ZX-diagrams are trivially equal but why the corresponding
transformation in the tower Csp(Quiv/SZX) requires a non-trivial proof.
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This ZX-diagram corresponds to the quantum circuit

•

which encodes the quantum function

|00⟩ 7→ |01⟩
|01⟩ 7→ |10⟩
|10⟩ 7→ |11⟩
|11⟩ 7→ |00⟩

We interpret the basis vectors as the binary representations of the numbers 0, 1,
2, and 3, just as we would with classical bit strings. Then the above function
encodes the successor function on Z/4Z given by two qubits, corresponding to
the type 2 . The corresponding ZX-diagram is a morphism D : 2 → 2 in ZX
and hence a lambda term in the context (x : 2 ) with one variable. We define
succ := λ 2 D : 0 → 2 ⇒ 2 , which is given by the following diagram:

π

That is, succ is a constant of the function type 2 ⇒ 2 .
Furthermore, we consider the following ZX-diagram:

This encodes a higher-order function: If we compose a constant of type 2 ⇒ 2 ,
for example succ above, with this ZX-diagram, we effectively swap the inputs
and the outputs, thus reversing the diagram. We have seen in Remark 5.1.6
that reversing a diagram gives the inverse if all phases appearing in the diagram
are integral multiples of π. Again, we interpret this ZX-diagram as a constant
reverse : 0 → ( 2 ⇒ 2 )⇒ ( 2 ⇒ 2 ).

We call constants as the ones defined above library functions, from which
we now build programs in an ad-hoc syntax. We start with the following program:

1 main : 2 -> 2
2 main x = succ (succ x)

We go through this program step by step and show how it can be realized in the
typed generalized lambda calculus given by the category of ZX-diagrams. The
first line simply declares that the main program is a lambda term of type 2 in
a context corresponding to 2 . The second line explicitly constructs this lambda
term in the context (x : 2 ):

We start with the innermost expression x on the right-hand side of the
equality sign. This is just the free variable x of type 2 in the context (x : 2 ).
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The next expression succ x is the application of succ to x, which is a lambda
term of type 2 in the context (x : 2 ). The final expression succ (succ x) is
the application of succ to succ x, which again is a lambda term of type 2 in
the context (x : 2 ). The program is given by this final expression.

Regarding the semantics, we expect the program to apply the successor
function on Z/4Z twice, that is, we expect the program to add 2.

All constructions of lambda terms above correspond to constructions in the
category of ZX-diagrams. If we perform those constructions, we see that the
program is given by the following ZX-diagram:

π π

Using the simplification rules for ZX-diagrams, we can simplify this to

π

which corresponds to a NOT gate on the first qubit, which indeed corresponds
to adding 2.

Next, we consider the following program:
1 main : 2 -> 2
2 main x = pred (pred x)
3 where pred = reverse succ

Again, the main program is a lambda term of type 2 in the context (x : 2 ). Here,
we use a named variable pred, which is just a syntactic construct: Equivalently,
we could have written

1 main : 2 -> 2
2 main x = (reverse succ) ((reverse succ) x)

We first create the lambda term pred := reverse succ as the application of
reverse to succ, which is a constant of type 2 ⇒ 2 . Afterwards, we apply
pred to the free variable x twice, similar to the applications in the first program.
The resulting lambda term forms the program.

All phases of spiders in the ZX-diagram representing succ are integral
multiples of π, so we expect pred to actually be the inverse of succ, that is, to
compute the predecessor. Moreover, we expect the whole program to subtract
2 (which modulo 4 is equivalent to adding 2). Indeed, pred x is given by the
ZX-diagram

π

which computes the predecessor. Moreover, the whole program is given by the
ZX-diagram

π π
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which again can easily be simplified to

π

which in turn corresponds to subtracting (or adding) 2 as expected.
In the last program, we have first reversed succ and then applied it twice.

Now, we first form a function which applies succ twice, and then revert this
function:

1 main : 2 -> 2
2 main x = (reverse ((y : 2) -> succ (succ y))) x

Again, the main program is a lambda term of type 2 in the context (x : 2 ).
We first look at the expression

(y : 2) -> succ (succ y).

This is an anonymous function in one variable y of type 2 . To create the body
of this anonymous function, we consider a context (y : 2 ) having y as a free
variable. In this context, we can build the lambda term succ (succ y) of type
2 . Then, we can form (y : 2) -> succ (succ y) as the abstraction of succ
(succ y) with regard to y, giving us a constant of type 2 ⇒ 2 . Finally, we
can apply reverse to this abstraction and then apply the result to x. The
resulting lambda term forms the program.

Taking the inverse commutes with composition, so we expect this program
to ultimately perform the same computation as the previous program. Indeed,
performing all the constructions in the category of ZX-diagrams, we get the
ZX-diagram

π π

which is the same diagram as we got for the previous program.

Construction 5.5.4 (A universal functional quantum programming language).
Summing up, we have actually created a functional quantum programming
language:

We can import existing quantum circuits as ZX-diagrams and view them as
constants, which we call library functions. We can then write typed programs
using these library functions, (free) variables, and abstraction and application of
(higher-order) functions.

Such a program is represented by a ZX-diagram. If we can extract a quantum
circuit from the diagram, we can hence execute the program on a quantum
computer. Moreover, the semantics of lambda terms and application of lambda
terms in our programs actually corresponds to quantum functions and application
of quantum functions. Hence, the quantum circuit extracted from the ZX-diagram
representing our program will actually compute what we formulated abstractly in
our program. In particular, we actually get a semantics of higher-order quantum
functions, as one would expect in a functional quantum programming language.

Assuming that we include the ZX-diagrams corresponding to a universal set
of quantum gates, we can create every quantum circuit in the programming
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language. Hence, every quantum function can be modeled in the programming
language, that is, the programming language is a universal functional quantum
programming language.



Chapter 6

Using CompilerForCAP for
code optimization

In this chapter, we introduce CompilerForCAP [Zic24a] and see how it can be
used for optimizing algorithms in categorical towers. We have already seen the
need for a compiler in Section 3.4: Computations in categorical towers naturally
come with a significant performance overhead, which is why formerly in many
cases large computations in categorical towers were not feasible on a computer.
As we will see in this chapter, by using CompilerForCAP we can avoid this
performance overhead, which allows us to make full use of the advantages of
building categorical towers on a computer.

This chapter is structured as follows: In Section 6.1, we see an example
showing how the compilation process is carried out by CompilerForCAP. In
Section 6.2, we look at benchmarks showing the performance gains for the two
main towers in Chapter 5 and Chapter 4: For an implementation of the category
of ZX-diagrams, which at the time of writing has not been optimized for use with
CompilerForCAP yet, we already get an improvement by more than a factor of 5.
For an implementation of the category of finitely presented right modules over an
exterior algebra, which uses CompilerForCAP to its full potential, we can get an
arbitrarily large improvement for large examples and see that CompilerForCAP
can make the difference between “finishes in seconds” and “will never finish”.
In Section 6.3, we describe various situations in which CompilerForCAP can
optimize code during compilation, and also explain the corresponding compiler
techniques. In Section 6.4, we compare CompilerForCAP to other compilers to
see why developing a special compiler was necessary. In Section 6.5, we see two
examples of how CompilerForCAP can be used for generating categorical code.
The examples show that reusability is not merely a theoretical advantage of
categorical towers but actually allows us to write less code overall. Finally, in
Section 6.6 we conclude by summarizing the advantages of building categorical
towers on a computer which are now accessible thanks to CompilerForCAP.

6.1 Introduction to CompilerForCAP

We first clarify some terminology regarding compilers. For more general back-
ground on compilers, see, for example, [ALSU06].

121



122 Chapter 6. Using CompilerForCAP for code optimization

Remark 6.1.1 (Terminology). Generally speaking, a compiler is a computer
program which translates a computer program written in one language (the
source language) into an equivalent1 program in another (or the same) language
(the target language). More specifically, the term is often used when translating
from higher-level languages like C to lower-level languages like assembly languages.
A program which translates between languages of similar level is then called a
source-to-source translator.

In our context, we distinguish between CAP code and GAP code:2 CAP code
extensively uses the categorical interfaces but only uses some very basic GAP
functionality, for example for the manipulation of lists. GAP code uses no
categorical interfaces but uses advanced functionality of GAP itself and other
GAP packages, for example the operation RREF which computes a reduced row
echelon form of a matrix. The categorical interfaces are usually more abstract
than the GAP interfaces, so we view CAP code as a higher-level code than GAP
code.

CompilerForCAP typically acts on CAP code and, depending on the applica-
tion, outputs CAP code or GAP code. Hence, CompilerForCAP can act either as
a compiler or as a source-to-source translator, though the distinction between
the two cases is purely semantic: The underlying compiler techniques are exactly
the same in both cases.

To see how CompilerForCAP simplifies implementations, we look at a simple
but instructive example:

Example 6.1.2. We look at an algorithm computing the fourth power of a
morphism in MatZ by squaring twice:

Given a morphism M : m → m in MatZ,
compute N · N with N := M · M .

(6.1)

We can use the implementation Mat_ZZ of MatZ in Section 1.3.2 and express
the algorithm in CAP as follows:

1 function ( M_boxed )
2 local N_boxed;
3
4 N_boxed := PreCompose( Mat_ZZ, M_boxed, M_boxed );
5
6 return PreCompose( Mat_ZZ, N_boxed, N_boxed );
7 end

If we apply CompilerForCAP to such an algorithm, it proceeds in three phases,
which we now illustrate:

In the first phase, CompilerForCAP expands the implementations of cate-
gorical operations. Here, the categorical operation PreCompose expands to the
implementation of PreCompose in Section 1.3.2:

1 function ( M_boxed )
2 local M1, M2, M_times_M, N_boxed, N1, N2, N_times_N;
3

1Here, the meaning of term “equivalence” depends on the context and may be difficult to
define or may not be formally defined at all.

2Since CAP is written in GAP, of course technically speaking CAP code is just GAP code, so
the distinction is purely semantic.
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4 M1 := AsPrimitiveValue( M_boxed );
5 M2 := AsPrimitiveValue( M_boxed );
6 M_times_M := M1 * M2; # matrix multiplication
7 N_boxed := AsCapCategoryMorphism( Mat_ZZ, . . . , M_times_M, . . . );
8
9 N1 := AsPrimitiveValue( N_boxed );

10 N2 := AsPrimitiveValue( N_boxed );
11 N_times_N := N1 * N2; # matrix multiplication
12 return AsCapCategoryMorphism( Mat_ZZ, . . . , N_times_N, . . . );
13 end

Here, for reasons of brevity, we omit sources and targets of morphisms.
In the second phase, CompilerForCAP applies rules. It comes with an

included set of general rules which can be extended by the user for more specific
cases, as we will see in Section 6.3.3. To simplify finding matches of the rules,
CompilerForCAP inlines all variable assignments in this phase, that is, it
replaces references to variables by their assignments. This produces a far less
readable version of the implementation:

1 function ( M_boxed )
2 return AsCapCategoryMorphism( Mat_ZZ,
3 . . . ,
4 AsPrimitiveValue( AsCapCategoryMorphism( Mat_ZZ,
5 . . . ,
6 AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed ),
7 . . .
8 ) ) * AsPrimitiveValue( AsCapCategoryMorphism( Mat_ZZ,
9 . . . ,

10 AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed ),
11 . . .
12 ) ),
13 . . .
14 );;
15 end

Note that whenever a variable is referenced more than once, the inlining intro-
duces some duplication. This will be dealt with later on. The advantage of this
inlined representation is that we now see that

AsPrimitiveValue( AsCapCategoryMorphism( . . . , matrix, . . . ) ),

where matrix is given by

AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed ),

occurs in the computation, that is, matrix is boxed and immediately unboxed
again. Unboxing a boxed value just gives the value again, so we can simplify
the above expression to just matrix. As we will see in Section 6.3.1, this is a
situation which occurs regularly, and CompilerForCAP has a built-in rule which
performs the desired simplification. Hence, at the end of the second phase, the
code looks much simpler:

1 function ( M_boxed )
2 return AsCapCategoryMorphism( Mat_ZZ,
3 . . . ,
4 (AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed ))
5 * (AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed )),
6 . . .
7 );;
8 end
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In the third and last phase, CompilerForCAP does some postprocessing. For
example, it deduplicates expressions which appear multiple times, as we will see
in detail in Section 6.3.4. Here, we see that the expression

AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed )

occurs twice.3 CompilerForCAP will detect this and deduplicate the expression
as follows:

1 function ( M_boxed )
2 local deduped_1;
3
4 deduped_1 := AsPrimitiveValue( M_boxed ) * AsPrimitiveValue( M_boxed );
5
6 return AsCapCategoryMorphism( Mat_ZZ,
7 . . . ,
8 deduped_1 * deduped_1,
9 . . .

10 );;
11 end

With this, the compilation is finished. If we translate the result back to mathe-
matical notation, we get the algorithm:

Given a morphism M : m → m in MatZ,
compute N ·N with N := M ·M .

This algorithm is equivalent to the algorithm (6.1) but has fewer boxes. On
paper, where we view boxes only as a notation, this is only a minor simplification.
On the computer, though, where objects and morphisms have to be boxed and
unboxed explicitly, this simplification can have a significant impact, especially
when building high categorical towers. We will see this in detail in Section 6.3.1.
Moreover, we will see many more situations in which CompilerForCAP can
optimize code during compilation in Section 6.3.

Remark 6.1.3. In Convention 1.4.19, we have required that all implementations
of CAP operations must be pure functions. In the context of CompilerForCAP,
this requirement is tightened further: CompilerForCAP requires all functions
appearing inside the implementations of CAP operations to be pure.4 This ensures
that all of the above code transformations are valid, that is, they do not change
the result of the function up to the technical equality. For example, the purity
ensures that applying a function twice to equal inputs gives equal outputs, which
allows us to deduplicate expressions appearing multiple times.

Remark 6.1.4 (Termination, confluence, and correctness). We discuss some
questions which arise naturally:

• Termination: Does the compilation process always terminate?
• Confluence: Does the compilation process always produce the same code

independent of the order in which rules are applied?
3Here, the duplication only appears due to the previous inlining of variables, but in

Section 6.3.4 we will see an example where duplicate computations actually appear independent
of the inlining.

4Since composing pure functions gives a pure function by Proposition 1.4.8, this implies
the original requirement in Convention 1.4.19. The converse implication does not hold because
a pure function can be constructed from impure functions, see Example 1.4.5.
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• Correctness: Does the compiled code actually produce the same results
as the uncompiled code?

In general, neither termination nor confluence are guaranteed:

• One can trivially create an infinite loop in the compilation process by
adding a rule together with its inverse. For example, we can add both the
rule rewriting the expression 1 + 1 to 2 and the inverse rule rewriting 2
to 1 + 1. If the expression 1 + 1 or the expression 2 occurs in the code,
the compilation process will apply these two rules alternately ad infinitum.

• One can trivially break confluence by adding two rules rewriting the same
expression to different results. For example, we can add a rule rewriting
the expression 1 + 1 to 2 and a rule rewriting 1 + 1 to 3 - 1. Which
rule will be applied first is an undefined implementation detail.

Despite these theoretical limitations, in concrete applications these points have
not caused problems until now.

Regarding correctness, the purity of the code ensures that the code trans-
formation done by CompilerForCAP are valid, as explained in Remark 6.1.3.
However, this does not rule out implementation flaws in CompilerForCAP or
wrong rules added by the user. As a countermeasure, some package run their tests
both with and without compiled code to allow to spot possible differences. With
this, there have only been few flaws in the implementation of CompilerForCAP
which have not been immediately discovered: Due to the transformations done
by CompilerForCAP being very generic and due to the large existing codebase
to which CompilerForCAP is applied, any issues show up very quickly.

In the outlook in Chapter 8 we sketch an idea of how CompilerForCAP could
be implemented as a rewriting system modeled by a categorical tower itself. This
would allow CompilerForCAP to optimize and verify itself, and could make it
possible to find assumptions guaranteeing termination and confluence of the
compilation process.

Remark 6.1.5 (Infrastructure for handling compiled code). We describe some
of the infrastructure handling compiled code: CompilerForCAP can output all
compiled CAP operations of a category to a file, which can automatically be
read in later sessions. That is, compilation can be done ahead of time.5 In
particular, the cost of compilation is irrelevant at runtime. We nevertheless
provide some rough numbers: The categories in this thesis can be compiled
in minutes. For higher categorical towers and more complex operations, the
compilation can sometimes also take hours or days.

For categories where compilation finishes in minutes, the compilation is run
as part of the package tests. This ensures that the stored compilation results
are always up-to-date.

6.2 Benchmarking the towers in this thesis
Before we go into more details regarding the optimization strategies used by
CompilerForCAP, we look at some benchmarks showing the performance gains

5CompilerForCAP was started as a just-in-time compiler, which compiles expressions
upon the first execution. This is still reflected in the name of some functions in CompilerForCAP
which start with CapJit....
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for the two main towers in Chapter 4 and Chapter 5:

• the category of ZX-diagrams ZX modeled as a reinterpretation of the
categorical tower Csp(Quiv/SZX), where the category of quivers Quiv is
itself modeled via the categorical tower SetsC(Q), and

• the category of finitely presented right modules FPresR modeled via the
categorical tower Freyd(MatRop), where the category of matrices MatR
is itself modeled via the categorical tower C(R)⊕.

For some background regarding benchmarks in GAP, see Remark 6.3.2. First,
we show a modest example to get a baseline what can be expected from us-
ing CompilerForCAP by default. Afterwards, we show an example in which
CompilerForCAP is used to its full potential and where using CompilerForCAP
makes the difference between “finishes in seconds” and “will never finish”.

Example 6.2.1 (Benchmark of a computation in ZX). A primitive imple-
mentation of ZX generated from Csp(Quiv/SZX) by CompilerForCAP is
available via the category constructor CategoryOfZXDiagrams in the pack-
age ZXCalculusForCAP [Zic24j]. At the time of writing, this package has not
been optimized by the author yet, that is, the package only contains a few very
basic rules for CompilerForCAP. Hence, it can serve as a baseline what can
be expected from using CompilerForCAP by default, that is, without writing
additional complex rules.

Let m be an object in ZX. As an example of a simple computation in ZX,
we compute

(η m ⊗ id m ) · (id m ⊗ ε m )
for various values of m to check that this indeed yields the identity as expected
in Remark 5.4.2. We get the following timings in milliseconds averaged over
three runs:6

m without compiled code with compiled code
1 2269 1

125 2680 65
250 4619 240
500 11283 992

1000 36899 3939
2000 139106 15769

The computation without compiled code has a constant overhead coming from
some static checks inside the tower which are dropped during compilation.
Hence, we normalize the timings of the computation without compiled code by
subtracting the time for m = 1 from all values and ignoring the case m = 1:

m
without compiled code

(normalized) with compiled code factor

125 411 65 6.3
250 2350 240 9.8
500 9014 992 9.1

1000 34630 3939 8.8
2000 136837 15769 8.7

6The source code of the benchmark can be found in the file ZX.g in [Zic24b].
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We see that the improvement varies with the value of m but is significantly
above a factor of 5 in all cases. As mentioned above, at the time of writing the
implementation of ZX has not been optimized by the author yet, but we still
get a welcome improvement simply by applying CompilerForCAP as is. In the
next example, we will see the case of a highly optimized computation.

Example 6.2.2 (Benchmark of a computation in FPresR). A primitive im-
plementation of FPresR which is partially generated from Freyd(MatRop)
and optimized by CompilerForCAP is available via the category constructor
RightPresentations in the package ModulePresentationsForCAP [GPZ24b].
As an example of a computation in FPresR, we consider the exterior algebra
R =

∧
Q2 and compute a simple lift: Let Im be the identity matrix with m

rows and let idm be the identity morphism on the object Im in FPresR. We
compute the lift of idm along idm, which of course is just idm again. However, in
the timings we see the categorical tower struggles with this simple computation:7

m without compiled code with compiled code factor
1 221 45 5
2 2369 58 41
3 19107 72 265
4 118893 93 1278
5 584488 119 4912

10 N/A 345 N/A
20 N/A 1344 N/A
30 N/A 3529 N/A

We see that the runtime of the computation without compiled code increases
so fast that we cannot even do sensible timings for two-digit numbers anymore.
Moreover, we start out with a improvement by a factor of 5 for m = 1 which
increases if m gets larger, reaching already a factor of nearly 5000 for m = 5.
As we can see, we get significant speedups which for larger examples make the
difference between “finishes in seconds” and “will never finish”. In the next
section we see which optimization strategies lead to this speedup.

6.3 Optimization strategies
In this section, we describe various situations in which CompilerForCAP can
optimize code during compilation, and also explain the corresponding com-
piler techniques. To assess the potential performance gains, we analyze the
optimizations theoretically and also look at benchmarks showing the gains in
practice.

Remark 6.3.1 (Optimizations spanning multiple layers of categorical towers).
We will see that during the compilation of categorical towers there is a huge
potential for optimizations spanning multiple layers of the tower. To manu-
ally implement such an optimization, we would have to mix up those layers,
losing the advantages of organizing code as categorical towers as explained in
Remark 3.2.1. Additionally, we would have to interweave the categorical code
and the optimizations, producing code which would be increasingly difficult to

7The source code of the benchmark can be found in the file FPres.g in [Zic24b].
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maintain if more and more optimizations were added. Using CompilerForCAP,
we never have to mix up categorical layers by hand and can keep the optimiza-
tions strictly separate from the categorical code. This way, we have another
kind of separation of concerns, which keeps both the categorical code and
the rules easy to comprehend and check.

Of course, CompilerForCAP itself has to break this separation of concerns
during the compilation. However, since compilation can be automated, this
does not hamper maintainability: If there is a change in one of the layers of
the categorical tower or if new optimization are added, we can simply trigger a
recompilation of the code.

Before we start, we make some technical remarks regarding benchmarks in
GAP:

Remark 6.3.2 (Benchmarks in GAP). GAP is single-threaded and thus rarely
reaches thermal limits or power limits of a system even if other light tasks
are running on the system in parallel. This makes benchmarks in CPU-bound
scenarios quite repeatable. However, GAP has automated memory management
with a garbage collector. The dynamic nature of garbage collection introduces
variance in benchmarks bound by memory access. Additionally, some of our
benchmarks will access Singular [DGPS23] as an external computer algebra
system. In this scenario, computations can be bound by the I/O between GAP and
Singular, introducing further variance. Hence, the benchmarks in this section
should not be seen as scientific experiments on their own, but as complements to
the theoretical analysis, showing that the trends found theoretically can indeed
also be found in practice.

The specifications of the system used for the benchmarks can be found in
Appendix C. All benchmarks are obtained by averaging over three runs.

6.3.1 Reducing the overhead of boxing
As we have already seen in Example 6.1.2, the most obvious place for optimiza-
tions of computations in CAP is to avoid superfluous boxing and unboxing.

The problem

In Example 6.1.2, we have seen that when composing categorical operations, the
computation produces boxes which are immediately unboxed again. That is,
using boxes introduces overhead in computations. This overhead gets larger for
higher categorical towers, especially if the objects or morphisms of a category are
formed by multiple objects or morphisms in another category. A prime example
for such a category is an additive closure: Let us consider the additive closure
C(Z)⊕. Its objects are given by tuples of the unique object ⋆ of C(Z), and its
morphisms are given by matrices of morphisms of C(Z):(

xij C(Z)

)
ij

C(Z)⊕ : (⋆, . . . , ⋆)︸ ︷︷ ︸
m

C(Z)⊕ → (⋆, . . . , ⋆)︸ ︷︷ ︸
n

C(Z)⊕ .

Creating such a morphism in CAP creates m · n inner boxes and one outer box.
This happens for every intermediate result of a computation in C(Z)⊕. We have
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C(Z)⊕

C(Z)

Z

(
xij

)
ij(

yij

)
ij(

zij

)
ij

xij + yij

(
xij +yij

)
ij(

zij

)
ij

(xij + yij) + zij

(
(xij + yij) + zij

)
ij

first addition second addition

Figure 6.1: Visualization of boxing and unboxing in a computation

already seen an example for this in Section 3.4, where we have computed the
sum of three parallel morphisms in C(Z)⊕(

xij
)
ij
,
(
yij
)
ij

),
(
zij
)
ij

: (⋆, . . . , ⋆)︸ ︷︷ ︸
m

→ (⋆, . . . , ⋆)︸ ︷︷ ︸
n

as follows:( (
xij
)
ij

+
(
yij
)
ij

)
+
(
zij
)
ij

=
(
xij + yij

)
ij

+
(
zij
)
ij

=
(
xij + yij

)
ij

+
(
zij
)
ij

=
(
xij + yij + zij

)
ij

=
(

(xij + yij) + zij
)
ij

.

The first two steps compute the first addition and introduce the boxes in the
intermediate result (

xij + yij
)
ij

while the last two steps compute the second addition and introduce the boxes in
the final result (

(xij + yij) + zij
)
ij
.

Figure 6.1 visualizes the corresponding computation in CAP.
Boxing of the final expression is unavoidable because the boxes are part

of the expected data structure of the result. However, boxing the integers
xij + yij to obtain the intermediate result and immediately unboxing them again
is unnecessary. If we cancel the intermediate boxing and unboxing, we obtain a
simplified algorithm, which is visualized in Figure 6.2. Only the required boxes
are kept: The inputs are unboxed in two steps, the integers xij , yij , and zij are
summed up, and the results are boxed in two steps to form the final result.

Necessity of an automated solution

The boxing happens in the implementation of the categories, in this case in the
implementation of the category constructor C for rings and in the implementation
of the additive closure. Hence, a categorical algorithm computing the sum of
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C(Z)⊕

C(Z)

Z

(
xij

)
ij(

yij

)
ij(

zij

)
ij

(xij + yij) + zij

(
(xij + yij) + zij

)
ij

Figure 6.2: Visualization of the simplified version of the computation in Figure 6.1

three morphisms in an arbitrary category cannot avoid the superfluous boxing
and immediate unboxing of the intermediate result. That is, the possibility
of canceling boxing and unboxing only arises once we compose categorical
operations in a concrete categorical tower. As explained in Remark 6.3.1, we
cannot perform such optimizations by hand without severe downsides. Instead,
we rely on CompilerForCAP for this.

The compiler technique

CompilerForCAP includes a rule which simplifies expressions of the form

AsPrimitiveValue( AsCapCategoryObject( cat, value ) )

to the expression

value

and a similar rule for morphisms. Hence, when applying CompilerForCAP to
the algorithm visualized in Figure 6.1, it will cancel the unboxing and boxing
and output the simplified algorithm visualized in Figure 6.2.

This is an important special case of a compiler technique called peephole
optimization, which we will discuss in more generality in Section 6.3.3.

Performance analysis

We analyze the theoretical performance gain from this optimization.8 In general,
if we chain n categorical operations, we can cancel n− 1 cases of boxing and only
have to retain the final one. Hence, the optimization can reduce the overhead
of boxing by a factor of n−1

n . In particular, the overhead is not linear in the
number of categorical operations n anymore but constant.

Benchmarks

As a benchmark, we add three identity morphisms on

(⋆, . . . , ⋆)︸ ︷︷ ︸
m

C(Z)⊕

8For simplicity, we ignore the case of having lists of objects or morphisms as inputs or
outputs of categorical operations. In such a case, the improvement would be further amplified
by the length of the lists. For the degenerate case of empty lists, we would not get an
improvement at all. However, in this case there simply is no overhead, even without the
optimization.
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for various sizes of m, once compiled without the rule which cancels boxing and
once compiled including the rule. Since we chain two additions, that is, two
categorical operations, we expect the overhead of boxing to be halved by the
optimization. In CAP, integer addition is cheap compared to boxing, so when
looking at the overall runtime, we actually expect a speedup by a factor of almost
2. We get the following timings in milliseconds:9

m without canceling boxing with canceling boxing factor
1 0 0 -

125 103 53 1.94
250 412 209 1.97
500 1817 926 1.96

1000 7722 3846 2.01
2000 31072 15750 1.97

We perfectly see that we get the expected speedup by a factor of almost 2.
In a complex categorical algorithm, where we might chain tens or hundreds of

categorical operations, we get a two-digit or three-digit reduction of the overhead
of boxing and unboxing. If this overhead is one of the bottlenecks of an algorithm,
as was the case in our benchmark above, we can consequently get a significant
improvement of the overall runtime.

6.3.2 Simplification of data structures
In the previous section, we have successfully removed intermediate boxing, but
have not touched the boxing of the final result, which still causes some overhead.
To also reduce the amount of boxing in the final result, we have to manually
introduce data structures with less boxing.

The problem

We have already seen how we can simplify data structures of categorical towers
using reinterpretations. For example, in Construction 3.3.2 we have modeled the
category of matrices MatR as a reinterpretation of the categorical tower C(R)⊕
via the functor R defined as

R : C(R)⊕ →MatR
(⋆, . . . , ⋆)︸ ︷︷ ︸

m

C(R)⊕ 7→ m MatR

(
mij C(R)

)
ij C(R)⊕

7→
(
mij

)
ij MatR

together with its inverse M defined as

M : MatR → C(R)⊕

m MatR
7→ (⋆, . . . , ⋆)︸ ︷︷ ︸

m

C(R)⊕

(
mij

)
ij MatR

7→
(
mij C(R)

)
ij C(R)⊕

9The source code of the benchmark can be found in the file boxing.g in [Zic24b].
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MatR
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ij(
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ij
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ij(
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ij(
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Figure 6.3: Visualization of boxing and unboxing in a computation involving a
reinterpretation

MatR
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ij(

yij

)
ij

xij + yij

(
xij + yij

)
ij

Figure 6.4: Visualization of the simplified version of the computation in Figure 6.3

Clearly, R simplifies the data structures of objects and morphisms. In particular,
R eliminates the inner boxes of morphisms.

Recall that by Construction 3.3.5, we can obtain categorical operations of
MatR as follows: We map the inputs to the categorical tower C(R)⊕ via M,
apply the categorical operation there, and map the result back to MatR. A
visualization of an example of this can be found in Figure 6.3. We see that to
add two morphisms (

xij
)
ij

and
(
yij
)
ij

in MatR, we first applyM, which unboxes and re-boxes the inputs as morphisms
in C(R)⊕. Next, we perform the addition of the two morphisms in C(R)⊕. Finally,
we apply R, which unboxes the result and re-boxes it as(

xij + yij
)
ij

in MatR.
We see that by using the reinterpretation, a priori we introduce even more

boxing and unboxing. However, we can now cancel the boxing at the end of M
with the unboxing at the beginning of the addition in the tower. Similarly, we
can cancel the boxing at the end of the addition in the tower with the unboxing
at the beginning of R. With this, we obtain the simplified algorithm visualized
in Figure 6.4. Note that the simplified algorithm has no reference to the tower
anymore and hence indeed avoids all inner boxes of morphisms in C(R)⊕. In
particular, we have generated a primitive implementation of the addition in
the category of matrices from the categorical tower, which we previously would
have had to write by hand. We will stress this point more in Section 6.5.1,
where we will see an example of a package which does not contain any manual
implementations of CAP operations anymore but only implementations generated
by CompilerForCAP.
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Necessity of an automated solution

Clearly, this optimization affects the categorical tower as a whole. As explained
in Remark 6.3.1, we cannot perform such optimizations by hand without severe
downsides. Instead, we rely on CompilerForCAP for this.

The compiler technique

From a technical perspective, there is no difference to the cancellation of boxing
and unboxing in Section 6.3.1, so CompilerForCAP will again use the rules which
cancel boxing immediately followed by unboxing.

Performance analysis

We analyze the theoretical performance gains. Recall that in the previous section
we got a speedup which was linear in the length of the chain of categorical
operations. Here, we add exactly two additional simplifications to such a chain,
one at the beginning and one at the end of the computation, so the additional
speedup will be constant. Furthermore, the speedup will heavily depend on the
original data structure of the tower and the new simplified data structure. For
this reason, we will now only analyze the concrete tower in this example for
R = Z and simply compare the cost of creating a morphism in MatZ and the
cost of creating a morphism in C(Z)⊕.

Creating a morphism in MatZ creates three boxes: one for the source, one
for the target, and one for the morphism itself. Creating a morphism in C(Z)⊕
also creates three boxes for the source, the target, and the morphism itself, but
additionally creates a box for every matrix entry. For large matrices, creating
three boxes is negligible. Hence, we expect that the overhead of creating a
morphism in C(Z)⊕ compared to creating a morphism in MatZ can become
arbitrarily large. More specifically, we expect the overhead to be linear in the
number of matrix entries.

Benchmarks

A good example for benchmarks of the creation of morphisms is the creation of
zero morphisms, as for those typically no additional computation is needed at
all. We create the zero morphism 1000 → m in MatZ for various values of m
as well as the corresponding zero morphism in C(Z)⊕. To get a baseline, we also
create 1000×m zero matrices without any boxing at all.10

Following the above analysis, we expect that the creation of a zero morphism
in MatZ has a negligible overhead compared to creating a zero matrix without
any boxing at all. Indeed, get the following timings in milliseconds:

m MatZ zero matrix difference
1 1 0 1

500 38 37 1
1000 74 72 2
2000 146 144 2
4000 360 357 3
8000 803 797 6

10The source code of the benchmark can be found in the file data_structures.g in [Zic24b].
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As expected, the overhead of creating a zero morphism in MatZ compared to
creating a zero matrix without any boxing at all is only a few milliseconds.

Now, for C(Z)⊕, we get the following timings in milliseconds:

m C(Z)⊕ MatZ difference difference per 1k entries
1 4 1 3 3.0

500 1701 38 1663 3.3
1000 3594 74 3520 3.5
2000 7164 146 7018 3.5
4000 14398 360 14038 3.5
8000 29986 803 29183 3.6

We find the expected overhead of the creation of a morphism in C(Z)⊕ compared
to the creation of a morphism in MatZ: The benchmarks show that the overhead
is linear in the number of matrix entries, amounting to about 3.5 milliseconds
per thousand entries.

Summing up, we see that by using a reinterpretation, we can avoid the
overhead of boxing almost completely. If this overhead is one of the bottlenecks
of an algorithm, as was the case in our benchmark above, we can consequently
get a significant improvement of the overall runtime.

6.3.3 Simplification of algorithms
In the previous section, we have seen how we can simplify data structures to
reduce the overhead of boxing. Using simplified data structures often also allows
us to simplify algorithms. In this section, we will see various examples for such
situations.

The problem

If we model the category of matrices MatR via the categorical tower C(R)⊕, the
reinterpretation simplifies the data structure of objects: Objects in C(R)⊕ are
given by tuples (containing the unique object of C(R)), while objects of MatR
are given by (non-negative) integers. Now, let us consider the computation of
direct sums in MatR via the categorical tower as in Construction 3.3.7. For two
objects m and n of MatR, we have:

m ⊕ n ≡ R
(
M( m )⊕M( n )

)
≡ R

(
(⋆, . . . , ⋆)︸ ︷︷ ︸

m

⊕ (⋆, . . . , ⋆)︸ ︷︷ ︸
n

)
≡ R

(
(⋆, . . . , ⋆, ⋆, . . . , ⋆)︸ ︷︷ ︸

m
︸ ︷︷ ︸

n

)

≡ R
(

(⋆, . . . , ⋆)︸ ︷︷ ︸
m+n

)
≡ m+ n

Here, we see an example of a simplification of an algorithm induced by the
simplification of the data structure of objects: The second to last equality turns
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an algorithm on tuples (the concatenation of two tuples) into an algorithm on
integers (the sum of two integers).

Let us see how we can perform this simplification with CompilerForCAP. An
implementation of MatR via the categorical tower C(R)⊕ is available via the cat-
egory constructor CategoryOfRowsAsAdditiveClosureOfRingAsCategory11

in the package FreydCategoriesForCAP [BPZ24]. We can use this constructor
to create the category of matrices Mat_ZZ over the integers. Then, computing
the direct sum of two objects in Mat_ZZ is straightforward:

1 function ( m_boxed, n_boxed )
2 return DirectSum( Mat_ZZ, m_boxed, n_boxed );
3 end

If we apply CompilerForCAP to this function, a priori it will generate the
following implementation:

1 function ( m_boxed, n_boxed )
2 local m, n;
3
4 m := AsPrimitiveValue( m_boxed );
5 n := AsPrimitiveValue( n_boxed );
6
7 return AsCapCategoryObject( Mat_ZZ,
8 Length( Concatenation(
9 ListWithIdenticalEntries( m, star ),

10 ListWithIdenticalEntries( n, star )
11 ) )
12 );
13 end

where star is a global variable pointing to the unique object of C(Z). This
implementation is the algorithm on tuples: It creates two lists12 of length m
and n containing the unique object of C(Z), concatenates them, and boxes the
length of the resulting list as an object in MatZ. To turn this algorithm into
an algorithm on integers, we can add logic templates to CompilerForCAP as
follows:

1 CapJitAddLogicTemplate(
2 rec(
3 variable_names := [ "list1", "list2" ],
4 variable_filters := [ IsList, IsList ],
5 src_template := "Length( Concatenation( list1, list2 ) )",
6 dst_template := "Length( list1 ) + Length( list2 )",
7 )
8 );

and
1 CapJitAddLogicTemplate(
2 rec(
3 variable_names := [ "n", "obj" ],
4 variable_filters := [ IsInt, IsObject ],
5 src_template := "Length( ListWithIdenticalEntries( n, obj ) )",
6 dst_template := "n",
7 )
8 );

11The term category of rows is a synonym of category of matrices.
12We use lists to model tuples in GAP.
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The first logic template teaches CompilerForCAP that it may replace any occur-
rence of an expression of the form

Length( Concatenation( list1, list2 ) )

in the code by
Length( list1 ) + Length( list2 )

where list1 and list2 can be arbitrary expressions computing lists. After
application of this logic template, the implementation looks as follows:

1 function ( m_boxed, n_boxed )
2 local m, n;
3
4 m := AsPrimitiveValue( m_boxed );
5 n := AsPrimitiveValue( n_boxed );
6
7 return AsCapCategoryObject( Mat_ZZ,
8 Length( ListWithIdenticalEntries( m, star ) ) +
9 Length( ListWithIdenticalEntries( n, star ) )

10 );
11 end

Applying the second logic template will simplify this implementation to
1 function ( m_boxed, n_boxed )
2 local m, n;
3
4 m := AsPrimitiveValue( m_boxed );
5 n := AsPrimitiveValue( n_boxed );
6
7 return AsCapCategoryObject( Mat_ZZ, m + n );
8 end

This is the expected simplified algorithm on integers.
A special case of this situation is that we can reuse existing optimized

algorithms. For example, if we compile the composition of Mat_ZZ as above, we
get a naive algorithm for matrix multiplication:

1 function ( M_boxed, N_boxed )
2 . . .
3 product :=
4 List( [ 1 .. nr_rows ], i ->
5 List( [ 1 .. nr_cols ], j ->
6 Sum( List( [ 1 .. inner_dim ], k -> M[i][k] * N[k][j] ) )
7 )
8 );
9 . . .

10 end

This algorithm simply implements the mathematical definition of matrix multipli-
cation by looping over the number of rows and columns of the result and taking
the corresponding sum. There exist many strategies for improving this naive
algorithm, see, for example, [ALSU06, Section 11.2]. Using a logic template, we
can simplify the implementation to

1 function ( M_boxed, N_boxed )
2 . . .
3 product := M * N;
4 . . .
5 end
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where “*” calls the matrix multiplication in GAP or other computer algebra sys-
tems like Singular, where highly optimized algorithms for matrix multiplication
are already implemented.

A similar example is the use of the Kronecker product of matrices and its dual
version in Construction 4.1.3, which can certainly be computed more efficiently
than by naively looping over the entries of the matrices. This is one for the
reasons for the large improvement of the computation of lifts in FPresR in
Example 6.2.2.

Summing up, using logic templates we can provide rules to CompilerForCAP
which allow to simplify algorithms. Possibilities for such simplifications arise, for
example, after simplification of data structures by reinterpretations of categorical
towers.

Necessity of an automated solution

Many simplifications of algorithms span multiple layers of the categorical tower or
are only applicable after the simplification of data structures by a reinterpretation,
which affects the categorical tower as a whole. As explained in Remark 6.3.1, we
cannot perform such optimizations by hand without severe downsides. Moreover,
even if an optimization can be implemented in a single layer of the categorical
tower, we would still like to have a separation of concerns between the
categorical implementation and the optimizations, as explained in Remark 6.3.1.
Hence, we rely on CompilerForCAP to perform the optimizations.

The compiler technique

Locally replacing algorithms by more efficient ones is called peephole opti-
mization [ALSU06, Section 8.7]. CompilerForCAP comes with a set of built-in
peephole optimization rules, which can be extended by the user by logic tem-
plates as we have seen above. Note that when applying such a rule, we often
trigger a cascading effect, that is, applying one rule makes it possible to apply
another rule, which again makes it possible to apply a third rule, and so on. We
have seen this above: the second logic template only triggers after the first logic
template is applied. Hence, CompilerForCAP repeats peephole optimization
until no further rules can be applied anymore.

Performance analysis

The speedup obtained by replacing an algorithm on a suboptimal data structure
by an optimized algorithm can be arbitrarily large. Hence, we cannot perform a
generic analysis and instead analyze and benchmark the concrete example above,
where we have simplified

1 function ( m_boxed, n_boxed )
2 local m, n;
3
4 m := AsPrimitiveValue( m_boxed );
5 n := AsPrimitiveValue( n_boxed );
6
7 return AsCapCategoryObject( Mat_ZZ,
8 Length( Concatenation(
9 ListWithIdenticalEntries( m, star ),

10 ListWithIdenticalEntries( n, star )
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11 ) )
12 );
13 end

to

1 function ( m_boxed, n_boxed )
2 local m, n;
3
4 m := AsPrimitiveValue( m_boxed );
5 n := AsPrimitiveValue( n_boxed );
6
7 return AsCapCategoryObject( Mat_ZZ, m + n );
8 end

Creating long lists is a relatively expensive operation due to the required memory
allocation. Compared to this, the runtime of a single addition of integers is
completely minuscule. Hence, we expect to run into limitations of the algorithm
on tuples long before we can even measure the runtime of the algorithm on
integers.

Benchmarks

We benchmark the implementations given in the performance analysis above,
excluding the boxing, for m = n of various sizes and get the following timings in
milliseconds:13

m (in million) algorithm on tuples algorithm on integers
1 69 0

25 892 0
50 1525 0

100 2801 0
200 5556 0
400 out of memory 0

10109 N/Aa 152
aOn 64-bit systems, ListWithIdenticalEntries only accepts integers up to 260 − 1.

We see that the algorithm on tuples has a significant runtime and runs out of
memory long before we even get measurable results for the algorithm on integers.
This is a typical situation where applying a simple optimization makes the
difference between an algorithm finishing in no time and not finishing at all. In
practice, the performance gains of course depend on the concrete optimization.

6.3.4 Avoiding irrelevant or redundant computations
Another common source of overhead appearing in categorical towers are re-
dundant computations. In this section, we look at three instances of this:
Computations which are not needed at all, computations which appear in the
algorithm multiple times, and computations inside loops which are actually
independent of the loop variable but are still recomputed for every iteration.

13The source code of the benchmark can be found in the file algorithms.g in [Zic24b].
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The problem

Example 6.3.3 (Duplicate computations). An example of a duplicate com-
putation can be seen in the algorithm in Example 1.3.2: The implementation
contains the following two lines:

1 . . .
2 iA := InjectionOfCofactorOfCoproduct( cat, [ A, B ], 1 );
3 iB := InjectionOfCofactorOfCoproduct( cat, [ A, B ], 2 );
4 . . .

Computing InjectionOfCofactorOfCoproduct automatically computes the
target of the injection, that is, the coproduct

Coproduct( cat, [ A, B ] )

on both cases. Hence, when compiling the above algorithm in a concrete category,
the expression computing Coproduct( cat, [ A, B ] ) would appear twice.
To avoid this, we can store the result of the expression computing Coproduct(
cat, [ A, B ] ) in a variable, and replace all occurrences of the expression
by references to this variable. We have already seen a concrete example of such
a deduplication in Example 6.1.2.

Example 6.3.4 (Irrelevant computations). We look at an example of an ir-
relevant computation, that is, a computation which is not needed at all: By
Remark 2.4.4, we can compute the sum of morphisms α1, . . . , αn : A→ B in an
additive category by composing two morphisms between direct sums, expressed
as a row vector and a column vector:

n∑
i=1

αi =
(
α1 . . . αn

)⊕ ·
idB

...
idB


⊕

.

The target of the morphism between direct sums given by the row vector and
the source of the morphism between direct sums given by the column vector
both are the n-fold direct sum of the object B. Hence, when computing the
right-hand side of the equation, the direct sum

⊕n
i=1 B will be computed as the

central object of the composition. However, most categories forget the central
object during composition. For example, the composition of two morphisms
φ : α → β and ψ : β → γ in a Freyd category simply composes φ and ψ

and does not use the central object β at all. In such a case, the central object⊕n
i=1 B will not actually be used at all, so we would like to avoid computing it.

Example 6.3.5 (Redundant computations in loops). Another important ex-
ample of redundant computations appears in the context of loops: Often, parts
of the body of a loop are actually independent of the loop variable but are still
recomputed for every iteration.

As an example, let k be a commutative ring, let R be a k-algebra which is
finitely generated free as a k-module and consider the Matk-homomorphism
structure of MatR in Construction 4.1.3. This homomorphism structure is
constructed via the categorical tower C(R)⊕ and maps a pair of morphisms M
and N in MatR to

Λ
((

Mij ·
(
(B ·Nst)st

))
ji

)
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in Matk, where we have expanded the Kronecker product of matrices and
its dual version. In an implementation, this corresponds to four nested loops
coming from the homomorphism structure on morphisms of additive closures
in Construction 2.5.8: First, we loop over j and i to get the element Mij , and
inside these two loops we loop over s and t to build the inner matrix

(B ·Nst)st.

Now, note that this inner matrix is actually independent of j and i, but still
recomputed in every iteration of the two outer loops. To avoid this, we can
compute the inner matrix before the two outer loops, store the result in a variable,
and reference this variable inside the two outer loops, analogous to the following
mathematical expression:

Λ
((

Mij · L
)
ji

)
for L := (B ·Nst)st.

Necessity of an automated solution

In all examples above, the redundancy only shows up once we expand definitions
of a concrete categorical tower:

• The computation of the coproduct object is a part of the implementation
of InjectionOfCofactorOfCoproduct.

• Whether the central object of the composition is used in the implementation
of the composition depends on the concrete category.

• The four nested loops come from the homomorphism structure on mor-
phisms of an additive closure C⊕ as in Construction 2.5.8, which maps a
pair of morphisms α and β to〈(〈(

H(αij , βst)
)⊕
t

〉⊕
s

)⊕
i

〉⊕
j

This implementation cannot know whether some parts of the implementa-
tion of H in C are independent of the first argument and hence independent
of i and j.

Hence, the optimizations are specific to a concrete category or span multiple
layers of a categorical tower. As explained in Remark 6.3.1, we cannot perform
such optimizations by hand without severe downsides. Instead, we rely on
CompilerForCAP for this.

The compiler technique

A piece of code which computes a value which is never used is called dead
code. CompilerForCAP will detect and remove dead code, which is a compiler
technique known as dead code elimination [ALSU06, Section 9.1.6]. The
purity of the code guarantees that the result of a computation cannot be affected
by whether dead code is executed or not.

During compilation, CompilerForCAP searches for subexpressions appearing
multiple times and replaces them by a single variable. This compiler technique
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is called common subexpression elimination (CSE) [ALSU06, Section 9.1.4].
The purity of the code ensures that CSE does not change the result with regard
to the technical equality. For example, the value of the subexpression

⊕n
i=1 B

above only depends on B and computing it does not have side effects, so the
result of the whole expression does not change with when and how often we
compute this subexpression.

Parts of a loop body which are both independent of the loop variable and
independent of any variables introduced in the loop body are called loop-
invariant. Similar to the situation for CSE, the purity of the code ensures
that we can move loop-invariant code in front of the loop, store the result in
a variable, and simply reference the variable inside the loop. This compiler
technique is called loop-invariant code motion (LICM) or, less formally,
hoisting [ALSU06, Section 9.1.7].

Performance analysis

Eliminating dead code always gives a speedup, though the performance gain of
course depends on the dead code which is removed. For CSE and LICM, the
situation is more complicated: We have to consider the additional cost of storing
the value of an expression in a new variable and referencing this variable later.
In GAP, this cost is negligible compared to the cost of more complex tasks like
calling functions.

Hence, eliminating non-trivial common subexpressions always gives a speedup.
Trivial subexpressions like integer literals can easily be excluded from the opti-
mization. Of course, the performance gain ultimately depends on the cost of the
subexpression and scales with the number of occurrences of the subexpression.

For LICM, if the hoisted subexpression dominates the runtime of the loop
body, we expect a speedup by a factor of almost the number of iterations of the
loop. For loops over large ranges or nested loops, where the sizes of the ranges
multiply, this is a significant win. For loops with a single iteration, we have the
negligible overhead of populating and referencing the additional variable. For
empty loops, we actually lose performance because the hoisted expressions is now
computed but would not have been computed without hoisting. However, empty
loops usually occur as simple edge cases where performance is not relevant.

Summing up, in general all the optimizations give a speedup. The performance
gain of course depends on the runtime of the expression which is eliminated,
deduplicated, or hoisted. Significant gains can especially be expected for LICM
in the case of deeply nested loops over large ranges.

Benchmarks

Here, we cannot provide sensible benchmarks because dead code elimination, com-
mon subexpression elimination, and loop-invariant code motion are essential parts
of the compilation process: As we have seen in Example 6.1.2, CompilerForCAP
inlines all assignment to variables. This automatically drops unused variables,
so we cannot simply turn off dead code elimination for benchmarking purposes.
Moreover, inlining might duplicate expressions if a variable is referenced more
than once and might move computations inside loops. Hence, a compilation
without common subexpression elimination or loop-invariant code motion might
actually produce code which is worse than the original code. Hence, we cannot
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provide sensible benchmarks with common subexpression elimination or loop-
invariant code motion turned off. Instead, we refer to the theoretical performance
analysis above.

6.4 Comparison to other compilers
We now compare CompilerForCAP to other compilers to see why developing
a special compiler was necessary. Experiments in Julia, Rust, and Haskell
indicate that their compilers do not optimize as aggressively as CompilerForCAP
does. We look at two examples in Julia.

Example 6.4.1 (Peephole optimization in Julia). Consider the following
function in Julia:

1 function (m)
2 return length(fill(0, m))
3 end

The Julia function fill is the equivalent of GAP’s ListWithIdenticalEntries
with swapped arguments: Here, we create a list of length m filled with zeros.
Afterwards, we compute the length of this list, which of course is just m.
Julia uses a just-in-time compiler, which compiles expressions upon the
first execution. We hope that the Julia compiler is able to simplify the above
function to

1 function (m)
2 return m
3 end

just as we did using CompilerForCAP in Section 6.3.3. When benchmarking the
two functions in Julia, we get the following timings in milliseconds:

m (in million) return length(fill(0, m)) return m
1 1 0

125 129 0
250 250 0
500 869 0

1000 out of memory 0

Clearly, the Julia compiler did not perform the optimization we hoped for.

Example 6.4.2 (Hoisting and dead code elimination in Julia). We consider
the following function in Julia:

1 function ()
2 for x in 1:10
3 y = factorial(big(2^22))
4 end
5 end

The code loops over the computation of a large factorial, while the factorial is
independent of the loop variable x. We hope that the Julia compiler is able to
hoist the computation of the factorial to produce
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1 function ()
2 val = factorial(big(2^22))
3 for x in 1:10
4 y = val
5 end
6 end

or that it even notes that the function does neither return a value nor have a
side effect and hence can actually be simplified to the empty function

1 function ()
2 end

However, executing the first function takes about 10.8 seconds, executing the
second function takes about 1 second, and executing the empty function takes
less than a millisecond. Again, clearly the Julia compiler did not perform the
optimizations we hoped for.

The previous examples show that the Julia compiler is less aggressive than
CompilerForCAP, and similar experiments show the same for the compilers of
Rust and Haskell. One explanation for this might be that organizing code via
categorical towers is particularly inefficient and thus requires more aggressive
optimizations than typical code in Julia, Rust, or Haskell. For example, one
would typically not model non-negative integers via tuples, as we did for MatR
and the categorical tower C(R)⊕. Similarly, one would typically refrain from
separating a loop header from its body in performance critical places, so one
would be able to hoist expressions manually. In implementations of categorical
towers, however, we have seen in Section 6.3.4 that this would require to mix
up different layers of the tower, which would come with severe downsides, as
explained in Remark 6.3.1. This can explain why we need a compiler which is
more aggressive than the compilers of other programming languages.

6.5 Generating categorical code
CompilerForCAP can be used for generating categorical code. In this section,
we present two examples of this. The examples show that reusability is not
a merely theoretical advantage of categorical towers but actually allows us to
write less code overall.

6.5.1 Generating primitive implementations from categor-
ical towers

In the previous section we have seen how we can generate primitive implementa-
tions of categories as reinterpretations of categorical towers: In Section 6.3.2,
we have seen how applying CompilerForCAP to a reinterpretation cancels all
boxes of the categorical tower, so no references to the tower remain in the data
structures, as can for example be seen in Figure 6.4. Afterwards, we can also
adapt algorithms to the new data structures as explained in Section 6.3.3. For
example, we have generated the following algorithm for computing direct sums
in MatR from the categorical tower C(R)⊕:

m ⊕ n :≡ m+ n .
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This algorithm has no reference to the categorical tower anymore, and matches
the implementation of direct sums in MatR which we would previously have
written by hand. CompilerForCAP can output all compiled CAP operations of a
category to a file. Hence, with all of the above, we can actually generate a stan-
dalone implementation of MatR from C(R)⊕ which is completely independent
of C(R)⊕. This can be seen in the package LinearAlgebraForCAP [GPZ24a],
which provides an implementation of MatK for a field K: The package does
not contain any manual implementations of CAP operations anymore but only
implementations generated by CompilerForCAP.

Primitive implementations of categories generated from categorical towers
exist for all categorical towers in Chapter 4 and Chapter 5, and if a newly con-
sidered category can be modeled as a categorical tower using existing category
constructors, we only have to provide the functors defining a reinterpretation to
generate the complete implementation. Often, the generated implementation
can even beat the performance of previous manually optimized implementa-
tions, because CompilerForCAP performs optimizations more consistently and
thoroughly.

6.5.2 Generating dual algorithms
We can also apply the above ideas to contexts where the category is not yet
fixed. In Example 4.3.4, we have seen how by using a categorical tower we can
dualize the algorithm

coeq(f, g) :≡ coker(f − g)
for arbitrary preadditive categories with cokernels to

eq(f, g) :≡ ker(f − g)

for arbitrary preadditive categories with kernels. To get the dual algorithm,
we performed a symbolic computation which essentially just expanded defi-
nitions of categorical operations and canceled two mutually inverse functors.
CompilerForCAP automatically expands definitions during compilation, and
the cancellation rule for the two concrete functors can be provided as a logic
template. Hence, CompilerForCAP can automatically generate dual versions of
categorical algorithms. This is actually used in CAP to automatically generate
dual versions of derivations, which drastically reduces the implementation time
for new derivations and avoids errors due to wrong dualization by hand.

Note that here the output of the compilation is again high-level CAP code.
Hence, following the terminology introduced in Remark 6.1.1, this is an example
of a situation where CompilerForCAP acts as a source-to-source translator.

6.6 Conclusion
In this chapter, we have seen that by using CompilerForCAP we can avoid the
performance overhead naturally appearing in computations in categorical towers,
which allows us to make full use of the advantages of building categorical towers
on a computer. Specifically, we have seen the following advantages:

• Reusability: We can reuse category constructors to build different cate-
gorical towers and can actually use this to generate optimized primitive
implementations.
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• Separation of concerns: Different concepts inside the tower are strictly
separate from each other and the optimizations given by logic templates
are strictly separate from the implementation.

• Emergence: Implementations for complex algorithms like homomorphism
structures of categories of matrices emerge from implementations of rela-
tively simple algorithms in every layer of the categorical tower, together
with a series of small logic template.

In the next chapter, we will also look at the aspect of verifiability. Specifically,
we will show how to use CompilerForCAP as a proof assistant to prove the
correctness of implementations of categories in CAP. Summing up, thanks to
CompilerForCAP, we get all of the advantages of categorical towers given in
Remark 3.2.1 not only on a theoretical level but actually for implementations on
a computer.





Chapter 7

Using CompilerForCAP for
verification

In this chapter, we show how CompilerForCAP [Zic24a] can be used for code
verification. As an application, we prove the correctness of the constructions of the
categorical tower used for endowing categories of matrices with a homomorphism
structure in Construction 4.1.3. For example, given a ring R in GAP, we can
use CompilerForCAP to verify that an implementation of the composition in
C(R)⊕ is associative. In our constructive context, this automatically means that
CompilerForCAP also acts as a proof assistant, that is, as a tool for formalizing
and verifying proofs on a computer: Verifying that the implementation of the
composition is associative also proves the mathematical statement that the
composition in C(R)⊕ is associative, assuming that the implementation of
C(R)⊕ is faithful to the mathematics. In fact, we will see that the steps used
for verifying the implementation correspond to the steps in a proof of the
mathematical statement on paper.

Note that while CompilerForCAP has some built-in rules, it has no engine
for finding general proof tactics and is not verified itself. Moreover, compared
to purpose built proof assistants like Coq, Agda, or Lean, CompilerForCAP
is far less rigorous and requires more manual checks. The reason for this
is that the primary goal of CompilerForCAP is to optimize computations in
categorical towers, as we have seen in Chapter 6, while the proof assistant mode
is an additional feature added on top. The advantage of this approach is that
CompilerForCAP can not only verify categorical towers, but can also generate
efficient primitive implementations from the verified categorical towers, as we
have seen in Chapter 6. In this sense, Coq, Agda, or Lean are proof-centric,
while CAP and CompilerForCAP are algorithm-centric.

This chapter is structured as follows: In Section 7.1, we introduce the
basic techniques for using CompilerForCAP as a proof assistant using a simple
guiding example. In Section 7.2, we see a more advanced example of a proof
using CompilerForCAP. In Section 7.3, we see that CompilerForCAP can verify
degenerate cases without manual input at all. This is of interest because issues in
computer implementations disproportionately often appear in degenerate cases.
In the last section Section 7.4, we prove the correctness of the constructions of the
categorical tower used for endowing categories of matrices with a homomorphism

147
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structure in Construction 4.1.3. We conclude with Example 7.4.1, an example of
an actual flaw in an implementation discovered by using CompilerForCAP as a
proof assistant. This example is of interest because the flaw is typical for the
kind of issues we expect to find by formally verifying code.

7.1 Every monoid defines a category with a sin-
gle object

In this section, we give a simple example demonstrating in detail how one can
use CompilerForCAP as a proof assistant. Our aim is to prove the following
proposition:

Proposition 7.1.1. Let M be a monoid. Then C(M) is a category.

The manual proof, which we will give in Section 7.1.2, will be at a first
semester level. This allows us to first focus on the technical subtleties of using
CompilerForCAP as a proof assistant before we use the same techniques for a
mathematically more advanced proof in Section 7.2.

7.1.1 An implementation of C(Z)
For proving Proposition 7.1.1 in CAP, we first need an implementation of C(M)
for a monoid M in CAP. To make things as concrete as possible, we first start
with M = (Z, ·, 1) and generalize to arbitrary monoids in Section 7.1.6. In GAP,
the ring of integers is available in the global variable Integers.

For the implementation, we first load CAP and create a CAP category us-
ing the operations explained in Section 1.3.2. Here, we use a more elaborate
version of CreateCapCategory than in Section 1.3.2. This version is called
CreateCapCategoryWithDataTypes and allows us to specify additional filters
for the category, objects, morphisms, and 2-cells1, as well as for the unboxed
values. Here, the only relevant information for this example are the filters
IsUnicodeCharacter and IsInt: We want to define the unique object of C(Z)
via the unicode character “⋆”, and want unboxed morphisms to be given by
integers.

→ D.1.1
1 gap> LoadPackage( "CAP", false );
2 true
3 gap> monoid_as_category_ZZ := CreateCapCategoryWithDataTypes(
4 > "MonoidAsCategory( ZZ )", IsCapCategory,
5 > IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryTwoCell,
6 > IsUnicodeCharacter, IsInt, fail
7 > );
8 MonoidAsCategory( ZZ )

Note that the listing is marked by gray lines on the left and right and has a
reference attached at the top right corner. This reference links to a listing in the
appendix which contains a copyable version of the code.

Next, we create the unique object using the unicode character “⋆”:

12-cells are “morphisms of morphisms” in higher category theory and do not appear in this
thesis.
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→ D.1.2
1 gap> star := UChar( 8902 ); # ’⋆’ has code point 8902 in decimal notation
2 ’⋆’
3 gap> unique_object := AsCapCategoryObject( monoid_as_category_ZZ, star );
4 <An object in MonoidAsCategory( ZZ )>

Then, we add the required operations as in Section 1.3.2. Note that we can use
the operation AsInteger instead of the generic AsPrimitiveValue for unboxing
morphisms since we have provided the information that morphisms are given by
integers to CAP.

→ D.1.3
1 gap> AddIsWellDefinedForMorphisms( monoid_as_category_ZZ,
2 > { cat, mor } -> AsInteger( mor ) in Integers
3 > );
4 gap> AddIsCongruentForMorphisms( monoid_as_category_ZZ,
5 > { cat, mor1, mor2 } -> AsInteger( mor1 ) = AsInteger( mor2 )
6 > );
7 gap> AddIsEqualForObjects( monoid_as_category_ZZ,
8 > { cat, obj1, obj2 } -> true
9 > );

10 gap> AddPreCompose( monoid_as_category_ZZ,
11 > { cat, mor1, mor2 } -> AsCapCategoryMorphism( cat,
12 > Source( mor1 ), AsInteger( mor1 ) * AsInteger( mor2 ), Target( mor2 )
13 > )
14 > );
15 gap> AddIdentityMorphism( monoid_as_category_ZZ,
16 > { cat, obj } -> AsCapCategoryMorphism( cat,
17 > obj, One( Integers ), obj
18 > )
19 > );

Now, we can finalize the category and introduce some LATEX symbols which will
be used later when producing LATEX output:

→ D.1.4
1 gap> Finalize( monoid_as_category_ZZ );;
2 gap> Integers!.LaTeXSymbol := "\\mathbb{Z}";;
3 gap> monoid_as_category_ZZ!.LaTeXSymbol
4 > := "\\boldsymbol{\\mathcal{C}}(\\mathbb{Z})";;
5 gap> monoid_as_category_ZZ!.VariableLaTeXSymbols := rec(
6 > alpha := "m",
7 > beta := "n",
8 > gamma := "l"
9 > );;

Since we want to apply CompilerForCAP to this implementation, we have
to make sure that all functions appearing in the implementation are pure. By
Convention 1.4.19, the technical equalities are chosen in such a way that box-
ing and unboxing, that is, AsCapCategory and AsInteger, are pure functions.
Moreover, checking membership in the integers with “in” and the integer mul-
tiplication “*” are pure functions. The result of One( Integers ) is just the
integer 1, which we can view as a constant, so we do not have to consider the
purity of One. Finally, the mathematical equality and the technical equality
on integers coincide, so testing the mathematical equality on integers is a pure
function. Summing up, all functions appearing in the implementation are pure.

Furthermore, note that the mathematical equality and the technical equal-
ity on morphisms coincide. Thus, the purity of the composition implies that
composition is compatible with the technical equality and hence also with the
mathematical equality on morphisms. This will be important later: CAP has no
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generic mechanism for specifying certificates for the mathematical equality of
two morphisms, so we cannot formalize the compatibility of the composition
with the mathematical equality.
Remark 7.1.2 (The importance of trivialities). Above, checking the purity
of the code and the compatibility of the composition with the mathematical
equality on morphisms was easy and might seem trivial. This is one of the
advantages of building categorical towers: The goal is to split the construction of
a category into many simple or even trivial steps. However, to properly support
the resulting categorical tower, each level of the tower must be checked with the
same diligence as one would check the tower as a whole.

7.1.2 A manual proof
We first give a manual proof for Proposition 7.1.1 and later repeat the proof with
assistance of CompilerForCAP. The manual proof will be at a first semester level
because all the details which one would dismiss as trivial at a more advanced
level will actually show up in the formalized proof. In particular, the only proper
mathematical rules we will encounter are the axioms of M . The simplicity
of the example allows us to first focus on the technical subtleties of using
CompilerForCAP as a proof assistant before we use the same techniques for a
mathematically more advanced proof in Section 7.2.

Manual proof of Proposition 7.1.1. We construct C(M) as in Construction 2.3.7
with a unique object ⋆.

First, we check that composition actually constructs a morphism from ⋆ to ⋆.
For this, let m , n : ⋆ → ⋆ be two composable morphisms. The composite is
constructed as m · n : ⋆→ ⋆. We note that

• we can actually apply the multiplication of M to m and n,
• the result of this multiplication is an element of M again,

so the composition actually constructs a morphism from ⋆ to ⋆. Here, the fact
that we can apply the multiplication of M to m and n might seem trivial, but
in more complex examples this point is important: For example, in the context
of matrix multiplication we would have to check that the number of columns of
the first matrix coincides with the number of rows of the second matrix, which
might involve a non-trivial proof. For this reason, we already stress this point
here.

Next, we check that composition is compatible with the equality on the
sets of morphisms. For this, let m1 , m2 , n1 , n2 : ⋆→ ⋆ be four morphisms
with m1 = m2 and n1 = n2 . We unfold the definition of the equality on
morphisms and see that m1 = m2 and n1 = n2 as elements of M . Hence, we
have m1 · n1 = m2 · n2 and thus m1 · n1 = m2 · n2 as desired.

Next, we check that composition is associative. For this, let m , n , ℓ : ⋆→ ⋆
be three morphisms. We have to show that

( m · n ) · ℓ = m · ( n · ℓ ).

Unfolding the definitions of the composition and the equality on morphisms, we
see that this is equivalent to

(m · n) · ℓ = m · (n · ℓ).
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This equality of elements of M is just the associativity axiom of M .
Next, note that the neutral element of M is indeed an element of M , so the

identity morphism actually is a morphism from ⋆ to ⋆.
Finally, we check that the identity morphisms are neutral elements of the

composition. For this, let m : ⋆→ ⋆ be a morphism. We have to show that

id⋆ · m = m and m · id⋆ = m .

Unfolding the definitions of the composition, the identity morphisms, and the
equality on morphisms, we see that this is equivalent to

1M ·m = m and m · 1M = m.

These equalities of elements of M are just the identity axiom of M . ■

7.1.3 Formalizing proofs in CAP

We would like to formalize the manual proof of Proposition 7.1.1 in CAP with the
help of CompilerForCAP. As the first example of a formalization, we consider the
check that composition in C(Z) is associative. For three morphisms m : ⋆→ ⋆,
n : ⋆ → ⋆, and ℓ : ⋆ → ⋆, this check can be formalized in a straightforward
way as the following function:

Listing 7.1.1: Formalization of the associativity of the composition
1 function ( m, n, l )
2 local m_n, left, n_l, right;
3
4 m_n := PreCompose( m, n );
5 left := PreCompose( m_n, l );
6
7 n_l := PreCompose( n, l );
8 right := PreCompose( m, n_l );
9

10 return IsCongruentForMorphisms( left, right );
11 end

This function

• gets three morphisms m, n, and l as inputs,
• composes the inputs once with the parentheses on the left and once with

the parenthesis on the right, and
• returns whether both compositions give equal results.

That is, this function can be used to check if the composition of three given
morphisms in C(Z) is associative. More generally, composition in C(Z) is
associative if and only if this function returns true for every three morphisms
in C(Z).

To show this general statement, we first expand the definitions of the categor-
ical operations PreCompose and IsCongruentForMorphisms, where for reasons
of readability, we omit sources and targets:

1 function ( m, n, l )
2 local m_n, left, n_l, right;
3
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4 m_n := AsCapCategoryMorphism(. . . , AsInteger( m ) * AsInteger( n ), . . . );
5 left := AsCapCategoryMorphism(. . . , AsInteger( m_n ) * AsInteger( l ), . . . );
6
7 n_l := AsCapCategoryMorphism(. . . , AsInteger( n ) * AsInteger( l ), . . . );
8 right := AsCapCategoryMorphism(. . . , AsInteger( m ) * AsInteger( n_l ), . . . );
9

10 return AsInteger( left ) = AsInteger( right );
11 end

We note that m_n is a boxed morphism which is immediately unboxed as an
integer again in the computation of left. The same happens for left itself and
n_l and right as well. Purity of boxing and unboxing ensures that we can
cancel boxing immediately followed by unboxing without changing the result:

1 function ( m, n, l )
2 local m_n_unboxed, left, n_l, right;
3
4 m_n_unboxed := AsInteger( m ) * AsInteger( n );
5 left_unboxed := m_n_unboxed * AsInteger( l );
6
7 n_l_unboxed := AsInteger( n ) * AsInteger( l );
8 right_unboxed := AsInteger( m ) * n_l_unboxed;
9

10 return left_unboxed = right_unboxed;
11 end

Now, purity ensures that the order of evaluation is irrelevant, so we can avoid
storing intermediate results and simplify the function further to

1 function ( m, n, l )
2 return (AsInteger( m ) * AsInteger( n )) * AsInteger( l ) =
3 AsInteger( m ) * (AsInteger( n ) * AsInteger( l ));
4 end

Now, we can use associativity of the multiplication of integers to move the
parentheses on the right-hand side of the equation from the right to the left
without changing the result and obtain:

1 function ( m, n, l )
2 return (AsInteger( m ) * AsInteger( n )) * AsInteger( l ) =
3 (AsInteger( m ) * AsInteger( n )) * AsInteger( l );
4 end

Here, we treat the associativity of the multiplication of integers in GAP as an
axiom for the following reasons: We certainly cannot verify a program down
to the level of processor instructions, so we have to stop at some level. Since
we want to generalize to arbitrary monoids later, where associativity of the
multiplication is an axiom anyway, it makes sense to stop at the level of this
axiom.

Finally, both sides of the equation are now given by the same expression.
Purity of the code ensures that evaluation of both sides will return the same
value, so the equality will always evaluate to true and we can simplify the
function to

1 function ( m, n, l )
2 return true;
3 end
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This function certainly returns true for every input. Since no transformation
step has changed the result, also the original function must return true for every
input. This proves the statement.

The transformation steps above can be automated using CompilerForCAP:
CompilerForCAP automatically

• expands the implementations of CAP operations,
• cancels boxing immediately followed by unboxing,
• avoids storing intermediate results, and
• simplifies equalities with the same expression on both sides.

Moreover, mathematical equalities like the associativity of the integer multipli-
cation, which typically come from axioms or previously proven lemmata, can be
taught to CompilerForCAP. We will see how this works in the next section.

7.1.4 Automating proofs using CompilerForCAP

We now show how the steps in the previous section can be automated using
CompilerForCAP. Using the implementation monoid_as_category_ZZ of C(Z)
in Section 7.1.1, we proceed as follows:

First, we start CompilerForCAP in its proof assistant mode:
→ D.1.5

1 gap> LoadPackage( "CompilerForCAP", false );
2 true
3 gap> CapJitEnableProofAssistantMode( );

Next, we modify the formalization of the associativity of the composition in
Listing 7.1.1 to also include variables for the sources and targets of the three
morphisms:

→ D.1.6
1 gap> statement := function ( cat, A, B, C, D, m, n, l )
2 > local m_n, left, n_l, right;
3 >
4 > m_n := PreCompose( m, n );
5 > left := PreCompose( m_n, l );
6 >
7 > n_l := PreCompose( n, l );
8 > right := PreCompose( m, n_l );
9 >

10 > return IsCongruentForMorphisms( left, right );
11 > end;;

We do not actually need the variables for source and targets in C(Z) because
there only is a single object, but for demonstration purposes we already provide
the general case. Then we can turn this formalization into a lemma using the
function StateLemma:

→ D.1.7
1 gap> StateLemma(
2 > "composition is associative",
3 > statement,
4 > monoid_as_category_ZZ,
5 > [ "category", "object", "object", "object", "object",
6 > "morphism", "morphism", "morphism" ],
7 > [
8 > rec( src_template := "Source( m )", dst_template := "A" ),
9 > rec( src_template := "Target( m )", dst_template := "B" ),
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→ D.1.710 > rec( src_template := "Source( n )", dst_template := "B" ),
11 > rec( src_template := "Target( n )", dst_template := "C" ),
12 > rec( src_template := "Source( l )", dst_template := "C" ),
13 > rec( src_template := "Target( l )", dst_template := "D" ),
14 > ]
15 > );

The following arguments are given to StateLemma:

1. a human readable description of the statement,
2. the formalized statement,
3. the category for which we want to prove the statement,
4. a list of strings describing the data types of the arguments of the statement,
5. a list of preconditions.

Here, the preconditions assign source and targets of morphisms to encode the
condition that the morphisms are composable. Again, in C(Z) this would not be
necessary because there only is a single object, but for demonstration purposes
we already provide the general case.

In an interactive GAP session, StateLemma displays the stated lemma as a
plain text output. In this thesis, for demonstration purposes we use a modified
version of StateLemma which outputs LATEX code.2 The LATEX code generated
by the above call of StateLemma produces the following paragraph marked by
lines on the left and right:

→ D.1.8Lemma 7.1.3. In C(Z), composition is associative: For four objects A , B , C ,
and D and three morphisms m : A → B , n : B → C , and ℓ : C → D
we have

( m · n ) · ℓ = m ·
(
n · ℓ

)
.

Note that CompilerForCAP has already eliminated storing the intermediate
results explicitly and instead generates a single formula.

Proof. CompilerForCAP automatically

• expands the definitions of the composition and the mathematical equality
on morphisms and

• cancels boxing immediately followed by unboxing

in the background. We can now simply use the command
→ D.1.9

1 gap> PrintLemma( );

to get the current state of the lemma as LATEX code. We see that, just as in the
manual proof of Proposition 7.1.1 in Section 7.1.2, CompilerForCAP requires us
to show that

→ D.1.10
(m · n) · ℓ = m · (n · ℓ).

To show this, we want to use the associativity of the integer multiplication as an
axiom, which we can teach to CompilerForCAP as follows:

2This version of StateLemma is not an official part of CompilerForCAP because it is difficult
to generate a readable LATEX output in more complex examples.
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→ D.1.11
1 gap> ApplyLogicTemplate( rec(
2 > variable_names := [ "a", "b", "c" ],
3 > variable_filters := [ IsInt, IsInt, IsInt ],
4 > src_template := "a * (b * c)",
5 > dst_template := "(a * b) * c",
6 > ) );

This introduces a logic template which teaches CompilerForCAP that it may
replace any occurrence of an expression of the form

a * (b * c)

in the code by

(a * b) * c,

where a, b, and c can be arbitrary expressions computing an integer. The
command ApplyLogicTemplate applies this logic template a single time, that
is, it looks for some expression matching a * (b * c) in the current state of the
proof and replaces it by (a * b) * c. If no occurrence can be found, an error
is raised. If multiple occurrences appear, only a single occurrence is replaced.3
Again, for demonstration purposes we use a version of ApplyLogicTemplate
which translates the logic template to more readable LATEX code, which looks as
follows:

For integers a, b, and c we have:
→ D.1.12

(rule) a · (b · c) = (a · b) · c.

CompilerForCAP detects that now both sides of the equation we had to show
are given by the same expression and automatically simplifies the statement. We
again use the command

→ D.1.13
1 gap> PrintLemma( );

and see that CompilerForCAP has simplified the statement to
→ D.1.14

■.
We use ■ to denote the boolean value True. Hence, the claim is proven and we
end the proof using the command

→ D.1.15
1 gap> AssertLemma( );

which produces:
→ D.1.16With this, CompilerForCAP has verified the lemma. ■

In the next section we will not explicitly list all commands used to generate
the paragraphs marked by lines on the left and right anymore. The commands
can still be found by following the references in the top right corners of the
paragraphs.

3For an example why ApplyLogicTemplate only replaces a single occurrence, consider an
expression of the form a + b = b + a which we want to simplify using commutativity: If we
apply commutativity only a single time, for example on the left-hand side of the equation, we
obtain b + a = b + a, which trivially holds true. If we would use commutativity on both sides
of the equation, we would obtain b + a = a + b, which is just an alternative form of the original
equation.
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7.1.5 C(Z) is a category
In the last section, we have seen how we can state and prove a single lemma
using CompilerForCAP. In this section, we want to use CompilerForCAP to
prove a larger proposition: We want to prove that C(Z) is a category. For
convenience, CompilerForCAP includes a library of lemmata corresponding to
such propositions. We can state the proposition that C(Z) is a category as
follows:

→ D.1.17
1 gap> StateProposition( monoid_as_category_ZZ, "is_category" );

This produces the following output:
→ D.1.18Proposition 7.1.4. C(Z) is a category.

Now, we can use
→ D.1.19

1 gap> StateNextLemma( );

to state the next lemma needed for the current proposition. Here, the lemmata
correspond to the substatements of the manual proof of Proposition 7.1.1 in
Section 7.1.2. The first lemma reads:

→ D.1.20Lemma 7.1.5. In C(Z), the composite of two morphisms is a morphism:
For three objects A , B , and C and two morphisms m : A → B and
n : B → C we have

m · n defines a morphism in C(Z) from A to C .

Note that CAP does not know that C(Z) only has a single object, so the lemma
is stated with generic sources and targets.

Proof. We have to show that
→ D.1.21

m · n ∈ Z.

Just as in the manual proof of Proposition 7.1.1 in Section 7.1.2, this statement
can be broken down into two parts:

• m and n form valid inputs for the function “·”, and
• the result of the function application is an integer.

For deciding the first part automatically, CompilerForCAP would need a formal-
ization of which inputs are valid for the function “·”. While such a library of
preconditions could be implemented in the future, currently we have to manually
check such conditions and notify CompilerForCAP once we have done so. Here,
the multiplication of integers is certainly applicable to the integers m and n, so
m and n indeed form valid inputs for the function “·”. We tell CompilerForCAP
that we have checked all inputs via

→ D.1.22
1 gap> AttestValidInputs( );

which produces:
→ D.1.23We let CompilerForCAP assume that all inputs are valid.
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Now, CompilerForCAP has a built-in typing rule saying that the product of
integers is an integer, which covers the second part of the statement.

→ D.1.24With this, CompilerForCAP has verified the lemma. ■

We continue with the next lemma:
→ D.1.25Lemma 7.1.6. In C(Z), composition is associative: For four objects A , B , C ,

and D and three morphisms m : A → B , n : B → C , and ℓ : C → D
we have

( m · n ) · ℓ = m ·
(
n · ℓ

)
.

Proof. We have to show that
→ D.1.26

(m · n) · ℓ = m · (n · ℓ).

We have done this before in Section 7.1.4, so we can reuse the following rule:
For integers a, b, and c we have:

→ D.1.27
(rule) a · (b · c) = (a · b) · c.

→ D.1.28With this, CompilerForCAP has verified the lemma. ■

→ D.1.29Lemma 7.1.7. In C(Z), the identity on an object defines a morphism: For an
object A we have

id A defines a morphism in C(Z) from A to A .

Proof. We have to show that
→ D.1.30

1Z ∈ Z.

The integers have a multiplicative identity, so:
→ D.1.31We let CompilerForCAP assume that all inputs are valid.
→ D.1.32With this, CompilerForCAP has verified the lemma. ■

→ D.1.33Lemma 7.1.8. In C(Z), identity morphisms are left neutral: For two objects
A and B and a morphism m : A → B we have

id A · m = m .

Proof. We have to show that
→ D.1.34

1Z ·m = m.

We use the first part of the identity axiom of Z, that is, for every integer a ∈ Z
we have:

→ D.1.35
(rule) 1Z · a = a.

→ D.1.36With this, CompilerForCAP has verified the lemma. ■

→ D.1.37Lemma 7.1.9. In C(Z), identity morphisms are right neutral: For two objects
A and B and a morphism m : A → B we have

m · id B = m .
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Proof. We have to show that
→ D.1.38

m · 1Z = m.

We use the second part of the identity axiom of Z, that is, for every integer
a ∈ Z we have:

→ D.1.39
(rule) a · 1Z = a.

→ D.1.40With this, CompilerForCAP has verified the lemma. ■

This completes the proof of the proposition. We can use the command
AssertProposition to see that CompilerForCAP has indeed verified the propo-
sition:

→ D.1.41Summing up, we have shown: C(Z) is a category. ■

Remark 7.1.10 (Compatibility of the composition with the mathematical
equality on morphisms). Almost all substatements of the manual proof of Propo-
sition 7.1.1 in Section 7.1.2 are fully algorithmic and appear in the formalization
above. The only exception is checking that the composition is compatible with
the mathematical equality on morphisms: We cannot properly formalize this
statement because CAP has no generic mechanism for specifying certificates for
the mathematical equality of two morphisms. Hence, we have to prove that
the composition is compatible with the mathematical equality on morphisms by
hand. We have already done this for our implementation of C(Z) in Section 7.1.1
right after the implementation.

7.1.6 Generalization to arbitrary monoids with the help
of dummy implementations

For technical reasons, CompilerForCAP currently needs a concrete category
when expanding categorical operations, for example the category C(Z) above.
Hence, when using CompilerForCAP, a priori we can only prove Proposition 7.1.1
for a concrete monoid, for example for M = Z as above. This is a technical
limitation of CAP: CAP currently has no mechanism for specifying algorithms
for a “family” of categories C(M) for an arbitrary monoid M in a declarative
way. However, we can at least easily generalize the implementation of C(Z) in
Section 7.1.1 to any monoid in GAP whose elements can be multiplied by the
operation “*” and which supports the operation One: To do so, we simply replace
Integers by the monoid and IsInt by a filter for the elements of the monoids.
We can also generalize the rules used in the proofs in a similar way because we
have only used the monoid axioms and no implementation details of the integers
in GAP. Hence, all of the above would work for an arbitrary monoid in GAP.
In fact, we never actually use the implementation of the monoid in the proof
and neither execute any code, so the monoid does not even have to be properly
implemented in GAP. Therefore, we can manually conclude that our proof for
C(Z) generalizes to a proof of Proposition 7.1.1.

To formalize this, we can use a dummy implementation of a monoid. A
dummy implementation of a concept seems to provide an interface for the
concept, but calling any operation in this interface will simply signal an error.
Hence, when using a dummy implementation in a proof, we can be sure that we
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only rely on the abstract interface but not on any implementation details, for
the simple reason that there is no actual implementation.

We could implement a dummy monoid in GAP as follows: We first declare
new filters IsDummyMonoid and IsDummyMonoidElement for our dummy monoid
and its elements, inheriting from the generic filters for monoids:

1 DeclareFilter( "IsDummyMonoid", IsMonoid );
2 DeclareFilter( "IsDummyMonoidElement", IsMultiplicativeElementWithOne );

Afterwards, we provide dummy implementations for the equality and multiplica-
tion of monoid elements as well as for the neutral element of the monoid. These
dummy implementations simply signal errors.

1 # implementation of the equality of elements of the dummy monoid
2 InstallMethod( \=, [ IsDummyMonoidElement, IsDummyMonoidElement ],
3 function ( m, n )
4 Error( "not implemented" );
5 end
6 );
7
8 # implementation of the multiplication of elements of the dummy monoid
9 InstallMethod( \*, [ IsDummyMonoidElement, IsDummyMonoidElement ],

10 function ( m, n )
11 Error( "not implemented" );
12 end
13 );
14
15 # implementation of the neutral element of the monoid
16 InstallMethod( One, [ IsDummyMonoid ],
17 function ( M )
18 Error( "not implemented" );
19 end
20 );

Finally, we create a dummy monoid lying in the filter IsDummyMonoid. Creating
a value in a concrete filter in GAP is a bit involved and can be done as follows:

1 dummy_monoid := Objectify( NewType( NewFamily( "" ), IsDummyMonoid ), rec( ) );

If we now repeat the proof in Section 7.1.5 using dummy_monoid instead of the
integers, we can be sure that we do not rely on any details of the implementation
simply because dummy_monoid has no actual implementation. Hence, we can be
sure that we have actually proven Proposition 7.1.1 in full generality.

For dummy implementations of categories, CAP provides the constructor
DummyCategory. Like any dummy implementation, such dummy categories have
no actual implementation but can still be used as inputs for category constructors.
We will see proofs using a dummy category in the next section.

7.2 The additive closure of a preadditive cate-
gory is a category

Let C be a preadditive category. In this section, we want to use CompilerForCAP
for a proof in a more complex setting: We want to prove the correctness of
Construction 2.4.6, that is, we want to show that the additive closure C⊕ of C
is a category. This example exhibits some concepts and subtleties which we have
not encountered until now:
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• The setup is more complex: We use a dummy category and introduce two
global logic templates.

• When showing that the composite of two morphisms is a morphism, we
actually have to do some work to show that the inputs for the categorical
operations in the construction are valid.

• The rules we use in the proofs are much more complex. For example, in
lemmata dealing with identity morphisms, we will see rules handling case
distinctions.

For the setup, we use an implementation of AdditiveClosure available
in the package FreydCategoriesForCAP [BPZ24]. This implementation en-
codes matrices in row-major order, that is, a morphism α : A → B in
C⊕ is encoded as an a-tuple of b-tuples of morphisms in C with components
(αi)j : Ai → Bj . As always, the implementation only uses pure functions. For
C, we use a preadditive dummy category with the required operations.

→ D.1.42
1 gap> LoadPackage( "FreydCategoriesForCAP", false );
2 true
3 gap> dummy := DummyCategory( rec(
4 > name := "a preadditive category",
5 > list_of_operations_to_install := [
6 > "IsEqualForObjects",
7 > "IsWellDefinedForObjects",
8 > "IsWellDefinedForMorphismsWithGivenSourceAndRange",
9 > "IsCongruentForMorphisms",

10 > "PreCompose",
11 > "IdentityMorphism",
12 > "SumOfMorphisms",
13 > "ZeroMorphism",
14 > "AdditiveInverseForMorphisms",
15 > ],
16 > properties := [
17 > "IsAbCategory", # another name for a preadditive category
18 > ],
19 > ) );;
20 gap> dummy!.LaTeXSymbol := "\\mathbf{C}";;
21 gap> additive_closure := AdditiveClosure( dummy );
22 AdditiveClosure( a preadditive category )
23 gap> additive_closure!.LaTeXSymbol := "\\mathbf{C}^\\oplus";;
24 gap> LoadPackage( "CompilerForCAP", false );
25 true
26 gap> CapJitEnableProofAssistantMode( );

The dummy category has no actual implementation, so we have to prevent
CompilerForCAP from trying to expand the dummy implementations of the CAP
operations:

→ D.1.43
1 gap> StopCompilationAtPrimitivelyInstalledOperationsOfCategory( dummy );

Next, we introduce two global logic templates, which tell CompilerForCAP
that for a morphism α : A → B , the component (αi)j is a morphism from Ai
to Bj :

→ D.1.44
1 gap> CapJitAddLogicTemplate( rec(
2 > variable_names := [ "alpha", "i", "j" ],
3 > variable_filters := [ IsAdditiveClosureMorphism, IsInt, IsInt ],
4 > src_template := "Source( MorphismMatrix( alpha )[i][j] )",
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→ D.1.445 > dst_template := "ObjectList( Source( alpha ) )[i]",
6 > ) );
7 gap> CapJitAddLogicTemplate( rec(
8 > variable_names := [ "alpha", "i", "j" ],
9 > variable_filters := [ IsAdditiveClosureMorphism, IsInt, IsInt ],

10 > src_template := "Target( MorphismMatrix( alpha )[i][j] )",
11 > dst_template := "ObjectList( Target( alpha ) )[j]",
12 > ) );

Here, ObjectList and MorphismMatrix unbox objects and morphisms in
AdditiveClosure.

Finally, note that the mathematical equality on morphisms in C⊕ is given
by the entrywise mathematical equality on morphisms in C. All morphisms in
C⊕ are constructed by applying operations in C which respect the mathemat-
ical equality on morphisms in C. Hence, all constructions in C⊕ respect the
mathematical equality on morphisms in C⊕.

Now we can use CompilerForCAP to state:
→ D.1.45Proposition 7.2.1. C⊕ is a category.
→ D.1.46Lemma 7.2.2. In C⊕, the composite of two morphisms is a morphism: For three

objects A , B , and C and two morphisms α : A → B and β : B → C
we have

α · β defines a morphism in C⊕ from A to C .

Proof. We have to show that
→ D.1.47

 b∑
k=1

(αi)k · (βk)j︸ ︷︷ ︸
Ai→Cj


c

j=1


a

i=1

is a tuple

and
a∧
i=1

 b∑
k=1

(αi)k · (βk)j︸ ︷︷ ︸
Ai→Cj


c

j=1

is a tuple

and
a∧
i=1

c∧
j=1

b∑
k=1

(αi)k · (βk)j︸ ︷︷ ︸
Ai→Cj

defines a morphism in C from Ai to Cj .

Note that to save horizontal space in automatically generated formulas, we write

ℓ∧
x=1

P (x) instead of ∀x ∈ {1, . . . , ℓ} : P (x).

This is the first time we actually have to check some conditions to show that
all inputs are valid: We have to show that

• (αi)k and (βk)j are composable and are hence valid inputs for the compo-
sition, and

• the composites (ai)k · (βk)j are morphisms from Ai to Cj as indicated by
the brace, and are hence valid inputs for the sum.



162 Chapter 7. Using CompilerForCAP for verification

By assumption, α has source A and target B , so (αi)k has source Ai and
target Bk. Similarly, β has source B and target C , so (βk)j has source Bk and
target Cj . Hence, (αi)k and (βk)j are composable and the composite (ai)k · (βk)j
has source Ai and target Cj . The construction of tuples has no preconditions.
Hence:

→ D.1.48We let CompilerForCAP assume that all inputs are valid.
→ D.1.49With this, CompilerForCAP has verified the lemma. ■

→ D.1.50Lemma 7.2.3. In C⊕, composition is associative: For four objects A , B , C ,
and D and three morphisms α : A → B , β : B → C , and γ : C → D
we have (

α · β
)
· γ = α ·

(
β · γ

)
.

Proof. We have to show that
→ D.1.51

a∧
i=1

d∧
j=1

c∑
k1=1

b∑
k2=1

(αi)k2
· (βk2)k1︸ ︷︷ ︸

Ai→Ck1

· (γk1)j

︸ ︷︷ ︸
Ai→Dj

=
b∑

k1=1
(αi)k1

·
c∑

k2=1
(βk1)k2

· (γk2)j︸ ︷︷ ︸
Bk1→Dj︸ ︷︷ ︸

Ai→Dj

.

First, we use that composition in C is additive in both components, that is, for
a morphism φ : X → Y in C and two families of morphisms ψk : W → X and
χk : Y → Z in C we have

→ D.1.52

(rule)
ℓ∑

k=1
ψk︸︷︷︸

W→X

· φ =
ℓ∑

k=1
ψk · φ︸ ︷︷ ︸
W→Y

and
→ D.1.53

(rule) φ ·
ℓ∑

k=1
χk︸︷︷︸
Y→Z

=
ℓ∑

k=1
φ · χk︸ ︷︷ ︸
X→Z

.

With this, it remains to show that
→ D.1.54

a∧
i=1

d∧
j=1

c∑
k1=1

b∑
k2=1

(
(αi)k2

· (βk2)k1

)
· (γk1)j︸ ︷︷ ︸

Ai→Dj︸ ︷︷ ︸
Ai→Dj

=
b∑

k1=1

c∑
k2=1

(αi)k1
·
(

(βk1)k2
· (γk2)j

)
︸ ︷︷ ︸

Ai→Dj︸ ︷︷ ︸
Ai→Dj

.

Note that the parentheses on the left-hand side and on the right-hand side differ
and that the ranges of the sums are swapped.

To continue, we use that composition in C is associative, that is, for three
composable morphisms φ, ψ and χ in C we have

→ D.1.55
(rule) φ · (ψ · χ) = (φ · ψ) · χ.

With this, the parentheses on the left-hand side and on the right-hand side agree:
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→ D.1.56

a∧
i=1

d∧
j=1

c∑
k1=1

b∑
k2=1

(
(αi)k2

· (βk2)k1

)
· (γk1)j︸ ︷︷ ︸

Ai→Dj︸ ︷︷ ︸
Ai→Dj

=
b∑

k1=1

c∑
k2=1

(
(αi)k1

· (βk1)k2

)
· (γk2)j︸ ︷︷ ︸

Ai→Dj︸ ︷︷ ︸
Ai→Dj

.

Finally, we use that finite sums of morphisms φij : X → Y in C can be
interchanged:

→ D.1.57

(rule)
m∑
i=1

n∑
j=1

φij︸︷︷︸
X→Y︸ ︷︷ ︸

X→Y

=
n∑
j=1

m∑
i=1

φij︸︷︷︸
X→Y︸ ︷︷ ︸

X→Y

.

→ D.1.58With this, CompilerForCAP has verified the lemma. ■

→ D.1.59Lemma 7.2.4. In C⊕, the identity on an object defines a morphism: For an
object A we have

id A defines a morphism in C⊕ from A to A .

Proof. We have to show that
→ D.1.60({idAi if i = j,

0Ai,Aj
else.

})a
j=1

a

i=1

is a tuple

and
a∧
i=1

({
idAi if i = j,
0Ai,Aj else.

})a
j=1

is a tuple

and
a∧
i=1

a∧
j=1

{
idAi

if i = j,
0Ai,Aj

else.

}
defines a morphism in C from Ai to Aj .

Every object of C has an identity morphism and there is a zero morphism
between every two objects of C. Hence, no preconditions have to be checked, so:

→ D.1.61We let CompilerForCAP assume that all inputs are valid.

→ D.1.62With this, CompilerForCAP has verified the lemma. ■

→ D.1.63Lemma 7.2.5. In C⊕, identity morphisms are left neutral: For two objects A
and B and a morphism α : A → B we have

id A · α = α .

Proof. We have to show that
→ D.1.64a∧

i=1

b∧
j=1

a∑
k=1

({
idAi

if i = k,
0Ai,Ak

else.

})
· (αk)j︸ ︷︷ ︸

Ai→Bj

= (αi)j .
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First, we use that we can pull the right factor of the composition into the case
distinction, that is, for morphisms φ1, φ2 : X → Y and ψ : Y → Z in C and a
predicate P we have:

→ D.1.65

(rule)
({

φ1 if P ,
φ2 else.

})
· ψ =

{
φ1 · ψ if P ,
φ2 · ψ else.

}
.

With this, we still have to show:
→ D.1.66a∧

i=1

b∧
j=1

a∑
k=1

{
idAi

· (αk)j if i = k,
0Ai,Ak

· (αk)j else.

}
︸ ︷︷ ︸

Ai→Bj

= (αi)j .

Now, we can use that for the underlying category the identity is a neutral element
and the zeros are absorbing elements with regard to composition, that is, for a
morphisms φ : X → Y and an object W in C, we have:

→ D.1.67
(rule) idX · φ = φ

and
→ D.1.68

(rule) 0W,X · φ = 0W,Y .

With this, we still have to show
→ D.1.69a∧

i=1

b∧
j=1

a∑
k=1

{
(αk)j if i = k,
0Ai,Bj

else.

}
︸ ︷︷ ︸

Ai→Bj

= (αi)j .

Now, we use that we can drop zeros from sums, that is, for a family of morphisms
φk : X → Y in C we have

→ D.1.70

(rule)
ℓ∑

k=1

{
φk if i = k,
0X,Y else.

}
︸ ︷︷ ︸

X→Y

= φi

if the case i = k actually occurs. Above, this is the case because i and k run over
the same range. We usually try to avoid rules with unformalized preconditions
like i = k occurring here, but sometimes the required information simply is not
available locally at the point where the rule should be applied.

→ D.1.71With this, CompilerForCAP has verified the lemma. ■

→ D.1.72Lemma 7.2.6. In C⊕, identity morphisms are right neutral: For two objects
A and B and a morphism α : A → B we have

α · id B = α .

Proof. This is completely analogous to the previous lemma.
→ D.1.73With this, CompilerForCAP has verified the lemma. ■

→ D.1.74Summing up, we have shown: C⊕ is a category. ■
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7.3 The additive closure of a preadditive cate-
gory has a zero object

Let C be a preadditive category. In Construction 2.4.9, we have seen that the
additive closure C⊕ of C has a zero object. We now show the correctness of this
construction. This is just a special case of showing that C⊕ has finite direct sums,
but the proof is interesting nevertheless: The zero object is given by the empty
tuple, so the constructions do not involve any objects or morphisms in C and are
purely symbolic. We will see that, as a result, we do not have to provide any rules
to CompilerForCAP at all in the proof. Nevertheless, verifying degenerate cases
is important because issues in computer implementations disproportionately
often appear in such cases.

We reuse the setup at the beginning of Section 7.2 and state:
→ D.1.75Proposition 7.3.1. C⊕ has a zero object.
→ D.1.76Lemma 7.3.2. In C⊕, the zero object is an object: We have

0C⊕ defines an object in C⊕.

Proof. We have to show that
→ D.1.77

() is a tuple.

There are no preconditions to check, so:
→ D.1.78We let CompilerForCAP assume that all inputs are valid.
→ D.1.79With this, CompilerForCAP has verified the lemma. ■

→ D.1.80Lemma 7.3.3. In C⊕, the universal morphism into the zero objects defines a
morphism: For an object A we have

u→0C⊕ ( A ) defines a morphism in C⊕ from A to 0C⊕ .

Proof. We have to show that
→ D.1.81(())ai=1 is a tuple

and
a∧
i=1

() is a tuple.

There are no preconditions to check, so:
→ D.1.82We let CompilerForCAP assume that all inputs are valid.
→ D.1.83With this, CompilerForCAP has verified the lemma. ■

→ D.1.84Lemma 7.3.4. In C⊕, the universal morphism into the zero object is unique:
For an object A and a morphism u : A → 0C⊕ we have

u→0C⊕ ( A ) = u .

Proof. This is immediate from the construction. ■
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Remark 7.3.5. The reason why this is immediate from the construction is that
all morphisms into the zero object have a zero number of columns. Hence, the
entrywise comparison ranges over empty tuples and thus trivially holds true.

→ D.1.85Lemma 7.3.6. In C⊕, the universal morphism from the zero objects defines a
morphism: For an object B we have

u←0C⊕ ( B ) defines a morphism in C⊕ from 0C⊕ to B .

Proof. We have to show that
→ D.1.86

() is a tuple.

There are no preconditions to check, so:
→ D.1.87We let CompilerForCAP assume that all inputs are valid.
→ D.1.88With this, CompilerForCAP has verified the lemma. ■
→ D.1.89Lemma 7.3.7. In C⊕, the universal morphism from the zero object is unique:

For an object B and a morphism u : 0C⊕ → B we have

u←0C⊕ ( B ) = u .

Proof. This is immediate from the construction. ■

Remark 7.3.8. The reason why this is immediate from the construction is that
all morphisms from the zero object have a zero number of rows. Hence, the
entrywise comparison ranges over an empty tuple and thus trivially holds true.

→ D.1.90Summing up, we have shown: C⊕ has a zero object. ■

7.4 Homomorphism structures of categories of
matrices

In this section, we use CompilerForCAP to prove the correctness of the construc-
tions of the categorical tower used for endowing categories of matrices with a
homomorphism structure in Construction 4.1.3. We will not provide the proofs
with the same level of detail as in the previous section for two reasons:

• Some of the proofs mainly apply the obvious axioms of the underlying data
structures. These proofs follow exactly the same pattern as the proof that
C(M) is a category in Section 7.1.5, which quickly becomes repetitive.

• The more complicated proofs contain complex statements and logic tem-
plates which are difficult to visualize as comprehensible LATEX code. For
example, when proving that additive closures have direct sums in Con-
struction 2.4.9, we have only made the construction explicit for binary
direct sums to keep the notation relatively simple. The proof using
CompilerForCAP will, however, involve arbitrary direct sums, which means
we would have to add even more layers of indices into the notation.

Hence, instead of giving the details in the thesis, we provide links to the code of
the proofs, which are part of the test suite of CompilerForCAP.

The proof of Construction 4.1.3 constructs a Matk-homomorphism structure
of C(R)⊕ in three steps, which we follow in the next sections.
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7.4.1 Algebras over commutative rings define linear cate-
gories

The first step in the proof of Construction 4.1.3 notices that C(R) is a k-linear
category with finitely generated free external homs. We have already proven in
Section 7.1 that the underlying multiplicative monoid of R defines a category
C(R) with a single object. Now, we use CompilerForCAP to show that the
addition of R turns C(R) into a preadditive category (Construction 2.3.7). For
this, we can use an implementation of RingAsCategory available in the package
FreydCategoriesForCAP. The basic parts of this implementation match our
implementation of C(Z) in Section 7.1.1. Again, the implementation only uses
pure functions, and the mathematical equality and the technical equality on
morphisms coincide, so purity also ensures that all operations on morphisms
are compatible with the mathematical equality. The proof simply uses the ring
axioms and can be found in [Zic24h].

Next, we have to show that C(R) has a k-linear structure (Construction 2.3.8).
The proof uses the k-algebra axioms and can be found in [Zic24i].

Lastly, the fact that R has finitely generated free external homs is just a
reformulation of the fact that R is finitely generated free as a k-module.

7.4.2 Homomorphism structures for linear categories
The second step in the proof of Construction 4.1.3 notices that C(R) has a
Matk-homomorphism structure (Construction 2.5.7). The proof uses the same
techniques but much more complicated rules than the previous proofs and can
be found in [Zic24e].

7.4.3 Additive closures
The third step in the proof of Construction 4.1.3 applies Construction 2.5.8 to
obtain a Matk-homomorphism structure for C(R)⊕. Beforehand, we should show
that additive closures actually have preadditive structures (Construction 2.4.7)
and direct sums (Construction 2.4.9).

The proof for the preadditive structures uses ideas which are similar to the
ones we have seen in Section 7.2. It can be found in [Zic24d]. The proof showing
the existence of direct sums uses the same techniques but much more complicated
rules and can be found in [Zic24c].

Finally, we can prove the correctness of the construction of homomorphism
structures of additive closures in Construction 2.5.8. The proof again uses
complex rules and can be found in [Zic24f].

Summing up, we have used CompilerForCAP to prove the correctness of all
constructions of the categorical tower used for endowing categories of matrices
with a homomorphism structure in Construction 4.1.3.

Finally, to also cover opposite categories of categories of matrices, we use
CompilerForCAP for proving the correctness of Construction 2.5.9. The proof
simply reduces all statements in the opposite category to the axioms in the
original category and can be found in [Zic24g].

Example 7.4.1 (Implementation flaws discovered by formal verification). Using
CompilerForCAP for proving the correctness of Construction 2.5.8 actually
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turned up some flaws in the implementation of AdditiveClosure in the package
FreydCategoriesForCAP. These flaws are typical for the kind of issues we
expect to find by formally verifying code, so we give some details here:

In Construction 2.5.8, the functor H of the homomorphism structure for
additive closures was defined as follows:

H : (C⊕)op ×C⊕ → D

( A , B ) 7→
a⊕
i=1

(
b⊕
j=1

H(Ai, Bj)
)

( α , β ) 7→
〈(〈(

H(αij , βst)
)⊕
t

〉⊕
s

)⊕
i

〉⊕
j

In particular, two objects A and B in C⊕ are mapped to a direct sum of a
direct sums of b objects each:(

H(A1, B1)⊕ · · · ⊕H(A1, Bb)
)
⊕ · · · ⊕

(
H(Aa, B1)⊕ · · · ⊕H(Aa, Bb)

)
. (7.1)

Previously however, the implementation omitted the parentheses and simply
computed a single direct sum of a · b objects:

H(A1, B1)⊕ · · · ⊕H(A1, Bb)⊕ · · · ⊕H(Aa, B1)⊕ · · · ⊕H(Aa, Bb). (7.2)

With this wrong implementation, H is not a functor, which can be seen as
follows: Let α : C → A and β : B → D be two morphisms in C⊕. Then
for H to be a functor, H( α , β ) has to define a morphism from H( A , B ) to
H( C , D ). By construction, we have〈(〈(

H(αij , βst)
)⊕
t

〉⊕
s

)⊕
i

〉⊕
j

:
a⊕
i=1

(
b⊕
j=1

H(Ai, Bj)
)
→

c⊕
i=1

(
d⊕
j=1

H(Ci, Dj)
)

.

In particular, source and target of H( α , β ) are of the form (7.1). Hence, with
the wrong implementation of H on objects, CompilerForCAP would require us
to show that the object in (7.1) is equal to the object in (7.2) with regard to the
meta-theoretical equality. However, in general, direct sums are only associative
up to a natural isomorphism, which means in general, the objects in (7.1) and
(7.2) are different with regard to the meta-theoretical equality.

Spotting such an issue is difficult because we are used to identifying objects
on paper even if computations require to insert a natural isomorphism. Moreover,
this issue was not discovered by software tests because in all current applications
of this implementation, direct sums are actually strictly associative. This shows
that a form of formal verification is required for systematically catching such
issues.

The changes to the code required to fix these inconsistencies can be found in
[Zic23a] and [Zic23b].
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Conclusion and outlook

In this thesis, we have seen the advantages of modeling categories as categorical
towers, both on paper and on a computer: We can reuse concepts, have a
separation of concerns between the different layers of the tower, can break
down the verification of the tower into smaller pieces, and have a natural
emergence of structures of the tower from the single layers.

However, we have seen that a performance overhead appears naturally in
computations in categorical towers and that due to this performance overhead,
formerly in many cases large computations in categorical towers were not feasible
on a computer. Sources of such overhead include:

• superfluous boxing and unboxing,
• suboptimal data structures of the categorical towers, and
• structural barriers, like the separation of loop headers from their bodies.

To rewrite the data structures of a categorical tower to desired and more
efficient data structures, we have introduced the concept of reinterpretations
of categorical towers along isomorphisms. With this, CompilerForCAP is able
to avoid the overhead completely, which makes large computations in categorical
towers finally feasible. As we have seen, CompilerForCAP can make the difference
between “finishes in seconds” and “will never finish”. Moreover, CompilerForCAP
can also be used as a proof assistant for the verification of categorical algorithms
and implementations.

In summary, CompilerForCAP can generate efficient and verified implemen-
tations, allowing us to make full use of the advantages of building categorical
towers on a computer.

A future direction of the development of CompilerForCAP could be to im-
plement CompilerForCAP (or parts of it) as a rewriting system modeled by
a categorical tower itself. Computer programs can be represented as syntax
trees [ALSU06], that is, as graphs. Moreover, categories of cospans of decorated
quivers, which we have seen in Chapter 5, are closely related to double pushout
graph rewriting (DPO) [BHK23, Cic18, EEGT06]. This shows a possible
path how (parts of) CompilerForCAP could be modeled as a categorical tower.
With this, CompilerForCAP could optimize and verify itself. Creating such a
self-compiling compiler is a technique known as bootstrapping. With this,
CompilerForCAP could profit from the advantages of categorical towers itself,
completely closing the loop.
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Appendix A

Additional background for
mathematical foundations

A.1 Categories with a single set of morphisms
One can also define the notion category in a different way than in Definition 1.1.2
in the special case of a set of objects. We state this definition and discuss its
advantages and disadvantages because this opens up an additional perspective
on Notation 1.1.16.

Definition A.1.1 (Categories with a single set of morphisms). A category
with a single set of morphisms C consists of the following data:

• a set ObjC of objects,
• a (single) set MorC of morphisms,
• for each morphism f two objects s(f) and t(f) called source and target,

respectively,
• for each two morphisms f and g with t(f) = s(g) a morphism f · g (called

the composite of f and g) with s(f · g) = s(f) and t(f · g) = t(g),
• for each object A a morphism idA (called identity morphism of A) with
s(idA) = A and t(idA) = A

fulfilling the following conditions:

• taking source and target is compatible with the equalities on objects and
morphisms, that is, for morphisms f and g such that f = g we have
s(f) = s(g) and t(f) = t(g),

• composition is compatible with the equality on the set of morphisms,
that is, for morphisms f1, f2, g1 and g2 with f1 = f2, g1 = g2 and
t(f1) = t(f2) = s(g1) = s(g2) we have f1 · g1 = f2 · g2,

• composition is associative, that is, for morphisms f , g, and h with
t(f) = s(g) and t(g) = s(h) we have (f · g) · h = f · (g · h),

• identity morphisms are neutral elements of the composition, that is, for
each object A, each morphism f with s(f) = A and each morphism g with
t(g) = A we have idA · f = f and g · idA = g.
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178 Appendix A. Additional background for mathematical foundations

If we want to explicitly distinguish between this definition and the definition of
category in Definition 1.1.2, we call the latter a category with a family of
sets of morphisms.

Example A.1.2 (The category of matrices over Z with a single set of morphisms).
We define the category of matrices over Z with a single set of morphisms as
follows:

• its objects are natural numbers with the usual equality,
• its morphisms are matrices over Z with the equality given by checking

if the dimensions match and if they do, checking entrywise equality of
integers,

• source and target of a matrix are given by its number of rows and columns,
respectively,

• composition of two matrices is given by matrix multiplication,
• identity morphisms are given by identity matrices.

One can easily check that this indeed defines a category with a single set of
morphisms.

Remark A.1.3. The major advantage of defining categories with single sets
of morphisms is that one does not always have to explicitly specify source and
target of morphisms in the context. This simplifies the notation on paper and
the interface of an implementation on the computer. For example, we can write

For two morphisms f and g with t(f) = s(g), we consider f · g.

without giving explicit names to objects, or compose two composable morphisms
f and g in CAP by

PreCompose( f, g )

without passing sources and targets explicitly. However, the translation between
the two definitions, which we will explain in a moment, is a non-trivial process
in some cases. Hence, we instead use Notation 1.1.16 which provides this
convenience also for categories with families of sets of morphisms.

Let us now see how a category with a single set of morphisms can be translated
into a category with a family of morphisms and vice versa:

• Let C be a category with a single set of morphisms. For each two objects
A and B we can define

HomC(A,B) := {f ∈ MorC | s(f) = A and t(f) = B}

with the equality inherited from MorC. One can easily check that with
this we obtain a category with a family of sets of morphisms.

• Now let C be a category with a family of sets of morphisms. To turn C
into a category D with a single set of morphisms we have to proceed as
follows: First, we have to construct a suitable notion of equality on objects,
which beforehand was implicit in the segmentation of morphisms into a
family of sets. Second, we have to construct the set MorD from the sets
HomC(A,B). In general, the sets HomC(A,B) are not disjoint, so taking
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their union would not be sufficient. Instead, we have to construct MorD
as a coproduct, that is, a disjoint union, of the sets HomC(A,B):

MorD :=
⊔

A,B∈ObjC

HomC(A,B)

Then, we can simply define s and t on the components HomC(A,B) in the
obvious way. This means that in general a morphism of C is not literally
a morphism of D anymore because we have to take the embedding into
the disjoint union into account. See Example A.1.5 for such a situation.

We now construct an example where using categories with single sets of
morphisms does not provide an advantage.
Example A.1.4 (Preorders as categories with a family of sets of morphisms).
Given a set P with a preorder ≤ and a singleton set S, we can define a category
C with a family of sets of morphisms as follows:

• ObjC := P ,
• HomC(a, b) := S if a ≤ b, HomC(a, b) := ∅ else, both with the trivial

equalities,
• composition of two morphisms is given by the transitivity of ≤,
• identity morphisms are given by the reflexivity of ≤.

One can easily check that this indeed defines a category with a family of sets of
morphisms.
Example A.1.5 (The preorder (Z,≤) as a category with a single set of mor-
phisms). Consider the category C defined by the integers Z with the usual
preorder ≤ and a singleton set S = {⋆} as in Example A.1.4. We want to turn
this category into a category D with a single set of morphisms. Note that, for
example, we have HomC(1, 2) = HomC(2, 3). Hence, when constructing

MorD :=
⊔
a,b∈Z

HomC(a, b),

we have to make the sets of morphisms disjoint by attaching source and target ex-
plicitly, for example by considering triples (a, ⋆, b) instead of just ⋆ in HomC(a, b).
However, having to specify source and target of morphisms explicitly is what we
wanted to avoid in the first place when modeling categories with single sets of
morphisms.

This example shows that considering a category with a single sets of mor-
phisms instead of a category with a family of sets of morphisms only gives an
advantage if f ∈ Hom(A,B) already determines A and B uniquely and the
disjoint union can therefore be modeled by a regular union.

A.2 The technical equality of functions in CAP

In Section 1.4.3, we have omitted discussing the technical equality of functions
in CAP because this equality does not appear in the thesis. We now add this
missing piece.

For functions we use extensional equality, that is, pointwise equality in the
codomain. To see why we choose to do so, consider the following functions:
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• the identity idZ on the integers,
• the function f which takes an integer n and simply returns n, and
• the function g which takes an integer m and simply returns m.

In general, we can ask: Should idZ, f and g be pairwise equal functions?
Moreover, consider the function h which takes an integer n and returns n+ 0.
Should f and h be equal?

All possible answers have different consequences. Viewing all of the above
functions as equal would be a kind of extensional equality ([Uni13, Section 2.9]).
This means we would only consider the external properties of a function, that
is, the values at all points. Conversely, viewing two of the above functions
as unequal would be a kind of intensional equality, that is, we would not
only consider the external properties of the functions but also their internal
definitions.

In the context of CompilerForCAP, the most natural choice is to use an
extensional equality, that is, to view all of the above functions as equal. For
example, rewriting n + 0 as in the definition of h to n as in the definition
of f would be a typical simplification rule applied by CompilerForCAP for
performance reasons. CompilerForCAP also renames local variables, that is,
it could transform f to g. Finally, CompilerForCAP can sometimes replace
functions by library functions. For example, f and g could be replaced by the
library function IdFunc, which is implemented in the GAP kernel written in C
and hence faster than calling f or g. If we want those simplifications to be
compatible with our notion of equality, we have to view two functions as equal if
and only if they are pointwise equal.

This of course requires that functions have a domain. GAP has no native mech-
anism for specifying domains of functions, so the domains have to be specified
in the documentation instead. For example, the domain of an implementation of
PreCompose in a category C is given by pairs of composable morphisms in C,
as specified in the documentation of PreCompose.

Moreover, we lose decidability of the equality for functions with infinite
domains. However, if we can prove on paper that two functions are equal, we
can at least use CompilerForCAP as a proof assistant (see Chapter 7) to verify
this proof.



Appendix B

Additional background of
applications

B.1 Exterior algebras
Definition B.1.1 (Exterior algebras). Let K be a field and let V be a K-
vectorspace with basis e1, . . . , en. We define the exterior algebra

∧
V as the

vector space with formal basis

{ei1 ∧ · · · ∧ eia | 1 ≤ i1 < i2 < · · · < ia ≤ n}

with a multiplication ∧ defined on the basis as follows:

(ei1 ∧ · · · ∧ eia) ∧ (ej1 ∧ · · · ∧ ejb
) :={

0, if {i1, . . . , ia} ∩ {j1, . . . , jb} ̸= ∅
±ek1 ∧ · · · ∧ eka+b

, else

where the indices kℓ run through i1, . . . , ia, j1, . . . , jb in increasing order and
the sign is obtained by flipping the sign each time two adjacent elements of
i1, . . . , ia, j1, . . . , jb have to be swapped to obtain an increasing order. The
multiplicative identity 1 is given by the empty product. The multiplication ∧ is
anticommutative, that is, for v, w ∈ V we have

v ∧ w = −(w ∧ v),

as can be seen by computing

0 = (v + w) ∧ (v + w) = v ∧ v + v ∧ w + w ∧ v + w ∧ w = v ∧ w + w ∧ v.

Remark B.1.2 (The center of an exterior algebra). Let K be a field and let V
be a K-vectorspace with basis e1, . . . , en. The center of

∧
V is

C := ⟨ei1 ∧ · · · ∧ eia | 1 ≤ i1 < i2 < · · · < ia ≤ n with a even⟩K .∧
V is a C-algebra which as a C-module is generated by

1, e1, . . . , en.
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However, in general
∧
V is not a free C-module. For example, we have

(e1 ∧ e2) · e1 = (e1 ∧ e2) ∧ e1 = 0

and
(e1 ∧ e2) · e3 = e1 ∧ e2 ∧ e3 = (e2 ∧ e3) · e1.

Remark B.1.3. Let K be a field and let V be a K-vectorspace with basis
e1, . . . , en. We consider the exterior algebra E :=

∧
V . In Example 4.1.4, we

have seen that MatE has a MatK-homomorphism structure. We have also
seen that the matrices quickly become large, especially if the dimension n of
V grows, because E has exponential dimension 2n. One possible solution for
this problem is to view E as a C-algebra instead of a K-algebra, where C is the
center of E as in Remark B.1.2. Since E is not a free C-algebra, we have to
take the relations into account and consequently get a CFPres-homomorphism
structure1 for MatE . With this, the matrices indeed get much smaller because
the generating system of E over C only has size n + 1 (instead of 2n when
working over K). However, this approach comes with some additional challenges
when doing computations on a computer:

• If we simply model C as a K-algebra again, we have not improved the
overall situation. Instead, we need a special implementation of the center
C including a fast Gröbner basis algorithm.

• Every computation on morphisms in CFPres coming from MatE will
involve the relations of E over C both in the source and in the target.
These relations have to be taken into account in the computation as early
as possible. For example, if a computation in CFPres is implemented by
performing a computation in MatC and only reducing by the relations
afterwards, the performance will suffer greatly. Specifically, if the relations
are not known to the Gröbner basis algorithm, intermediate results get
unnecessarily huge. This is particularly bad if the Gröbner basis implemen-
tation fully computes syzygies even in cases where they are not needed,
for example in the context of computing lifts.2

• The performance of Gröbner basis algorithms highly depends on the chosen
monomial order, especially if the matrices are not generic but come with
some structure preferring one order over the other. An example for a
situation involving highly structured matrices appear when using the
homomorphism structure of MatE for computing lifts in EFPres. In this
case, the matrices will have the structure seen at the end of the proof of
Proposition 2.6.2, where H is of the form as in Construction 4.1.3. That
is, the matrices will contain many zeros and many Kronecker products
with identity matrices, which essentially introduce many copies of the same
matrix. In this context, using a different monomial order (for example, a
position-over-term order instead of a term-over-position order, or preferring
the first over the last position, or the other way round) can make a huge
difference in performance. However, choosing an order for this specific
application is a very fragile optimization.

1See Definition 4.2.2 for the definition of CFPres.
2For an example, see https://github.com/Singular/Singular/pull/1038 (retrieved: Jan-

uary 17, 2024).

https://github.com/Singular/Singular/pull/1038
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This is why viewing E as a C-algebra instead of a K-algebra has not turned out
to be useful.

B.2 Introduction to quantum computing
We give a short introduction to classical and quantum computations and circuits
representing such computations. More details can, for example, be found in
[JAA+22] and [NC10].

B.2.1 Introduction to classical and quantum computations
We first introduce a possible model of classical computation. Its properties might
seem trivial at first, but will become important when compared to the model of
quantum computation below.

Definition B.2.1 (A model of classical computation). A computation on a
classical computer can be represented by operations on binary digits, or bits for
short, with the following properties:

1. The state of a classical bit is an element of the set {0, 1}.
2. The state of a system of n classical bits is an element of {0, 1}n, the n-fold

product of {0, 1}, that is, every such state is of the form (x1, . . . , xn) with
xi ∈ {0, 1}.

3. For given n and m, every function {0, 1}n → {0, 1}m is realizable on a
classical computer.

4. The result of a computation on a classical computer is a state (x1, . . . , xm)
of m classical bits, which we can read out bit by bit.

5. A classical computer can repeat a computation conditionally based on the
outcome of a previous computation.

For an example for the last point, consider a computation of the factorial of n:
A classical computer can multiply n with the factorial of n− 1 and conditionally
stop when it reaches the terminating condition n = 1.

We now describe a corresponding model of quantum computation, adapted
from [NC10, Section 4.6]. This model is quite restrictive compared to the general
theory of quantum physics. In Remark B.2.3 discuss some of these restrictions.

Definition B.2.2 (A model of quantum computation). A computation on a
quantum computer can be represented by operations on quantum binary digits,
or qubits for short, with the following properties:

1. The state of a qubit is an element of C2 of the form

α · e0 + β · e1 for α, β ∈ C with |α|2 + |β|2 = 1,

where e0 and e1 are the standard basis vectors of C2. If both coefficients
α and β are non-zero, we say that the qubit is in superposition. The
standard basis vectors e0 and e1 are usually written |0⟩ and |1⟩. Warning:
One must not confuse |0⟩ with the zero vector 0C2 , and in particular 0 · |0⟩
is not equal to |0⟩!
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2. The state of a system of n qubits is a normalized element of (C2)⊗n, the
n-fold tensor product of C2. A pure tensor3 of standard basis vectors
|x1⟩ ⊗ · · · ⊗ |xn⟩ with xi ∈ {0, 1} is abbreviated |x1 . . . xn⟩. With this, a
state can be written as∑

(x1,...,xn)∈{0,1}n

λ(x1,...,xn) · |x1 . . . xn⟩ with
∑

x∈{0,1}n

|λx|2 = 1.

If two (or more) coefficients in this representation are non-zero, the state is
said to be in superposition. If a state cannot be written as a pure tensor,
it is called entangled. A typical example of an entangled state is the
Greenberger–Horne–Zeilinger (GHZ) state 1√

2 (|0 . . . 0⟩ + |1 . . . 1⟩)
on n qubits.

3. For given n, every unitary linear map (C2)⊗n → (C2)⊗n is realizable on
a quantum computer. In particular, such maps are invertible.

4. Reading out the result of a computation on a quantum computer is called a
measurement. Measurements output classical bits and are probabilistic:
When measuring a single qubit in state α · |0⟩ + β · |1⟩, one obtains the
classical outcome 0 with probability |α|2 and the classical outcome 1 with
probability |β|2. More generally, when measuring a system of n qubits in
state ∑

(x1,...,xn)∈{0,1}n

λ(x1,...,xn) · |x1 . . . xn⟩

one obtains the classical outcome (x1, . . . , xn) with probability |λ(x1,...,xn)|
2.

A measurement destroys the superposition and the entanglement, that
is, after measuring (x1, . . . , xn) the system will always be in the state
|x1 . . . xn⟩ and any repeated measurement will return (x1, . . . , xn) again.

5. Just like a classical computer, a quantum computer can repeat a computa-
tion conditionally based on the measurement of a previous computation.
Since the measurement produces a classical result, repetitions are typically
controlled by a classical control unit.

Remark B.2.3. Definition B.2.2 is quite restrictive compared to the general
theory of quantum physics. For example, it restricts to the bases consisting
of tensor products of |0⟩ and |1⟩, which are called computational bases. In
general, one can also use other bases, for example the bases given by tensor
products of |+⟩ := |0⟩+ |1⟩ and |−⟩ := |0⟩ − |1⟩. Moreover, one can in principle
perform measurements with regard to any orthonormal basis.

Another restriction is that we only describe pure states, that is, states
representable by a vector. More generally, quantum systems can be described
by mixed states which are represented using density matrices, see [NC10,
Section 2.4].

Despite these restrictions, the model of quantum computation introduced in
Definition B.2.2 is equivalent to many other models of quantum computation.
See [NC10, Section 4.6] for a more detailed discussion concerning the restrictions
and possible extensions.

3Here, the term pure tensor is used as in algebra. In quantum physics, this is called a
separable state. There is also the notion of a pure state in quantum physics, but this
notion is not related to pure tensors and not relevant at this point.
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Example B.2.4 (A simple quantum computation). We give a simple toy example
of a quantum computation on 2 qubits. The vectors |00⟩, |01⟩, |10⟩, and |11⟩
form a basis of the state space (C2)⊗2 ∼= C4. We can interpret those vectors as
the binary representations of the numbers 0, 1, 2, and 3, just as we would with
classical bit strings. Now, we consider the function s computing the successor in
Z/4Z on canonical representatives:

n s(n)
0 1
1 2
2 3
3 0

This corresponds to a permutation of the basis vectors:

n s(n)
|00⟩ |01⟩
|01⟩ |10⟩
|10⟩ |11⟩
|11⟩ |00⟩

This permutation extends to a linear map S : (C2)⊗2 → (C2)⊗2 given by a
permutation matrix. Permutation matrices are unitary matrices, so S is a valid
quantum function.

Now we can look at the state

ψ := 1√
2
(
|00⟩+ |01⟩

)
,

which is in superposition. A possible interpretation of this state would be that
the system is either 0 or 1, each with probability 1

2 . Now we can apply U and
compute

U(ψ) = 1√
2
(
U(|00⟩) + U(|01⟩)

)
= 1√

2
(
|01⟩+ |10⟩

)
.

So the result is either 1 or 2, each with probability 1
2 . Hence, we have computed

the successors of 0 and 1 “at the same time”.

Remark B.2.5 (Computational power). Classical computers and quantum com-
puters have the same computational power, that is, one can simulate quantum
computations on a classical computer and vice versa. However, quantum com-
puters might be able to solve certain tasks much more efficiently than classical
computers, for example using Shor’s algorithm for factoring integers. For a
detailed discussion of this topic, see [NC10, Section 1.4.5].

B.2.2 Boolean circuits and quantum circuits
Finite computations on a (classical or quantum) computer can be visualized
using circuits, that is, finite graphs whose vertices are labeled with functions
applied during a computation.
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Boolean circuits

Finite computations on classical bits can be described by boolean circuits having
boolean functions like AND (“∧”), OR (“∨”), and NOT (“¬”) as vertices. These
vertices or functions are called gates and are, for example, drawn as follows:

AND gate: OR gate: NOT gate:

Here, the edges on the left represent the inputs and the edges on the right
represent the outputs of the boolean functions.

Example B.2.6. As an example, we construct a boolean circuit computing the
addition in Z/2Z on canonical representatives:

+ 0 1
0 0 1
1 1 0

We usually identify 0 and 1 with the boolean values False and True, respectively.
Hence, we can view + on Z/2Z as a boolean function:

x y x+ y
False False False
False True True
True False True
True True False

This boolean function is called XOR (“∨̇”) and can be expressed using AND,
OR, and NOT as follows:

x ∨̇ y = (x ∨ y) ∧ (¬(x ∧ y))
= (x ∨ y) ∧ (¬x ∨ ¬y)

where the second equality uses one of De Morgan’s laws. We can represent this
as a boolean circuit as follows:

x
y

x ∨̇ y

The inputs on the top left are called x and y, corresponding to the variables
in the formula x ∨̇ y. Both inputs are copied at the junctions marked by the
black dots to form inputs for both the upper OR gate and the two NOT gates.
The results of the two NOT gates are combined using another OR gate. Finally,
the outputs of the two OR gates are combined using an AND gate to form the
output x ∨̇ y.
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Remark B.2.7 (Universal boolean gate sets). We have introduced three gates
above: the NOT gate, the AND gate, and the OR gate. One can show4 that this
set of gates is universal, that is, that any boolean function {0, 1}n → {0, 1}m
for n > 0 can be expressed using only those gates. Here, we exclude the case
n = 0 without inputs, because we cannot express maps {} = {0, 1}0 → {0, 1}m
by gates which require inputs. This degenerate case could be included by adding
a constant 0 : {} → {0, 1} to the gate set.

A question which naturally arises in this context is whether such a set is
minimal. The set {∨,∧,¬} is not minimal because we can use De Morgan’s
laws to represent AND using OR, or vice versa, together with NOT:

x ∧ y = ¬
(
(¬x) ∨ (¬y)

)
and x ∨ y = ¬

(
(¬x) ∧ (¬y)

)
.

One can show that the sets {¬,∧} and {¬,∨} are minimal with regard to
inclusion. However, they are not minimal with regard to cardinality, as there
exist universal sets with only a single element:

One can combine an AND gate followed by a NOT gate into a single gate
called NAND. Given a NAND gate, we can recover NOT and AND as follows: A
value can be negated by using it for both inputs of the NAND gate simultaneously.
Then AND can be represented by NAND followed by negation. Hence, the NAND
gate forms a single element universal set.

Quantum circuits

Computations on a quantum computer can be described by quantum circuits
having quantum gates as vertices. Examples for quantum gates include:

• the Hadamard gate H representing the following map on a single qubit:

H : C2 → C2,

|0⟩ 7→ 1√
2
(
|0⟩+ |1⟩

)
,

|1⟩ 7→ 1√
2
(
|0⟩ − |1⟩

)
.

• the phase shift gates Zα with a phase α ∈ [0, 2π) representing the
following map on a single qubit:

Zα : C2 → C2,
|0⟩ 7→ |0⟩ ,
|1⟩ 7→ eiα |1⟩ .

• the NOT gate, also known as an X gate, which flips a single qubit as
follows:

X : C2 → C2,
|0⟩ 7→ |1⟩ ,
|1⟩ 7→ |0⟩ .

4See, for example, [NC10, Section 3.1.2].
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• the CNOT gate (“controlled not”), also known as an CX gate, which
flips a target qubit t if and only if a controlling qubit c is |1⟩:

|ct⟩ |c′t′⟩ := CNOT(|ct⟩)
|00⟩ |00⟩
|01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

Here, the Hadamard gate and phase shift gates actually introduce quantum
effects, while the NOT gate and the CNOT gate are generalizations of classical
gates:

As in the classical case, we associate |0⟩ and |1⟩ with the boolean values False
and True, respectively. Hence, a NOT gate maps True to False and vice versa as
expected.

When considering the output of the CNOT gate, we see that the first qubit
c′ of the result is just given by c and the second qubit t′ actually arises as c ∨̇ t.
Hence, CNOT can be interpreted as the quantum version of XOR, making XOR
invertible by passing through one of the bits.

Example B.2.8. We can visualize the computation in Example B.2.4 as a
quantum circuit on 2 qubits. We initialize the qubits with |0⟩, that is, we
consider the initial state |00⟩. To prepare the state

ψ := 1√
2
(
|00⟩+ |01⟩

)
,

we can apply the map idC2 ⊗ H to |00⟩. We can visualize this as a quantum
circuit as follows:

|0⟩
|0⟩ H

The upper horizontal line represents the first qubit, the lower horizontal line
represents the second qubit. The reading direction is from left to right. Both
qubits are initialized in the state |0⟩, and we apply a Hadamard gate to the
second qubit.

Furthermore, in Example B.2.4 we represented the successor function on
Z/4Z using the following permutation of basis vectors:

n s(n)
|00⟩ |01⟩
|01⟩ |10⟩
|10⟩ |11⟩
|11⟩ |00⟩

Note that the first qubit of the result arises by flipping the first qubit of the
input if and only if the second qubit is |1⟩. Hence, we can compute the first
qubit of the result by applying a CNOT gate to the input with the second qubit
being the controlling qubit. The second qubit of the result arises by negation
of the second qubit of the input. The corresponding quantum circuit looks as
follows:

•
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The symbol “⊕” stands for NOT. If a NOT gate is controlled by another qubit,
forming a CNOT gate, the controlling qubit is marked by a “•” connected to the
NOT gate. So this circuit exactly describes what we did above: Flip the first
qubit depending on the second qubit, then flip the second qubit.

Applying the successor function to the state ψ defined above corresponds
to concatenating the two quantum circuits. Hence, the computation in Exam-
ple B.2.4 can in total be represented by the following quantum circuit:

|0⟩

|0⟩ H •

Remark B.2.9 (Universal quantum gate sets). Just as in the classical case in
Remark B.2.7, we can ask whether there exist universal sets of quantum gates.
Indeed, one can show that the Hadamard gate, the phase shift gates, and the
CNOT gate are sufficient for representing all unitary maps (C2)⊗n → (C2)⊗n
for arbitrary n. However, recall that the phase shift gates are parametrized by
a phase α ∈ [0, 2π), so this set is not finite. In fact, we cannot achieve true
universality with a finite set of gates: The set of unitary maps (C2)⊗n → (C2)⊗n
is uncountable, but starting with a finite set of gates we can only create a count-
able number of finite sequences. Nevertheless, one can show that the Hadamard
gate, the phase shift gate Zπ

4
, and the CNOT gate form an approximatively

universal set, that is, all unitary maps (C2)⊗n → (C2)⊗n for arbitrary n can
be approximated to arbitrary accuracy using gates from this set. For more
details, see [NC10, Section 4.5] and [DKPvdW20, following Remark 2.5].

Remark B.2.10 (Inverting quantum circuits). Every quantum function is
invertible, so a natural question is: Given a quantum circuit corresponding to
some quantum function, how can we construct a circuit corresponding to the
inverse function? The answer is simple: To invert a quantum circuit built from
Hadamard gates, phase shift gates, and CNOT gates, we simply reverse the
circuit and invert all gates: The inverse of a phase shift gate Zα is Z−α, and
Hadamard gates and CNOT gates are self-inverse. For example, the inverse of
the quantum circuit

Zπ
4

H •
is given by

Zπ
4

• H

Indeed, if we compose the two circuits and form

Zπ
4

Z−π
4

H • • H

the gates cancel successively until we obtain the empty circuit
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which represents the identity.
As a special case, note that for α = 0 or α = π, the phase shift gate Zα is

self-inverse. Hence, if only the phases α = 0 and α = π appear in a quantum
circuit, simply reversing the circuit already gives its inverse.

As a final, more intricate example of a quantum circuit, we consider the
phenomenon of quantum teleportation.

Example B.2.11 (Quantum teleportation, [NC10, Section 1.3.7]). The phe-
nomenon of quantum teleportation can be explained by the following quantum
circuit:

ψ • H •

|0⟩ H • •

|0⟩ Zπ ψ

Alice

Bob

This circuit introduces some new notation which we explain in context below.
Quantum teleportation teleports a quantum state ψ from one party, called

Alice, to another party, called Bob. There are two phases, as indicated by the
vertical dashed line.

First, Alice and Bob prepare an entangled state on two qubits as stated left
of the vertical dashed line. The two qubits can then be physically separated over
an arbitrary distance, one taken by Alice and one taken by Bob.

In the second phase, Alice wants to send Bob an unknown quantum state ψ
without the two physically meeting. Alice cannot simply measure ψ to determine
the state because she would only get a classical bit as an output and the state
would be destroyed afterwards. Instead, she entangles the quantum state ψ
with her part of the state shared in the first phase. She does this by applying
a CNOT gate. Afterwards, she applies a Hadamard gate and measures both
qubits, as indicated by the meter symbol. The results are classical bits, as
indicated by the double-struck wires. She transmits the results to Bob via a
classical communication channel. Depending on the results, Bob now applies a
NOT gate and/or a Zπ gate to his part of the state shared in the first phase.
Now, one can show that Bob’s qubit is in state ψ. We will give a proof for this
using ZX-diagrams in Example 5.1.5.

Summing up, thanks to the entangled quantum state shared in the first phase,
Alice was able to teleport a quantum state to Bob without the two physically
meeting.
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Additional background for
benchmarks

All benchmarks in this thesis were performed on a system with the following
specifications:

System type consumer notebook, on AC power
CPU Intel(R) Core(TM) i5-7500T CPU

4 cores, 4 threads
processor base frequency: 2.70GHz
max turbo frequency: 3.30GHz
locked to 2.70GHz

CPU scaling driver intel_pstate
CPU scaling governor performance
Memory 2 × 8GB DDR4-2400, dual channel mode
Operation system Arch Linux (rolling release)
Linux kernel version 6.6.11
GAP [GAP22] version 4.12.2
Julia [BEKS17] version 1.10.0
Singular [DGPS23] version 4.3.2.p10
CAP_project [CAP24] git commit 7bb28f599094
CategoricalTowers [Cat24] git commit e937a781a6ed
FinSetsForCAP [BMZ24] git commit daeb79bcc982
ZXCalculusForCAP [Zic24j] git commit 7909f045a812
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Listings

D.1 Code used in Chapter 7

Listing D.1.1:
1 LoadPackage( "CAP", false );
2 monoid_as_category_ZZ := CreateCapCategoryWithDataTypes(
3 "MonoidAsCategory( ZZ )", IsCapCategory,
4 IsCapCategoryObject, IsCapCategoryMorphism, IsCapCategoryTwoCell,
5 IsUnicodeCharacter, IsInt, fail
6 );

Back to the generated paragraph on page 148

Listing D.1.2:
1 star := UChar( 8902 ); # ’⋆’ has code point 8902 in decimal notation
2 unique_object := AsCapCategoryObject( monoid_as_category_ZZ, star );

Back to the generated paragraph on page 149

Listing D.1.3:
1 AddIsWellDefinedForMorphisms( monoid_as_category_ZZ,
2 { cat, mor } -> AsInteger( mor ) in Integers
3 );
4 AddIsCongruentForMorphisms( monoid_as_category_ZZ,
5 { cat, mor1, mor2 } -> AsInteger( mor1 ) = AsInteger( mor2 )
6 );
7 AddIsEqualForObjects( monoid_as_category_ZZ,
8 { cat, obj1, obj2 } -> true
9 );

10 AddPreCompose( monoid_as_category_ZZ,
11 { cat, mor1, mor2 } -> AsCapCategoryMorphism( cat,
12 Source( mor1 ), AsInteger( mor1 ) * AsInteger( mor2 ), Target( mor2 )
13 )
14 );
15 AddIdentityMorphism( monoid_as_category_ZZ,
16 { cat, obj } -> AsCapCategoryMorphism( cat,
17 obj, One( Integers ), obj
18 )
19 );

Back to the generated paragraph on page 149

193
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Listing D.1.4:
1 Finalize( monoid_as_category_ZZ );;
2 Integers!.LaTeXSymbol := "\\mathbb{Z}";;
3 monoid_as_category_ZZ!.LaTeXSymbol
4 := "\\boldsymbol{\\mathcal{C}}(\\mathbb{Z})";;
5 monoid_as_category_ZZ!.VariableLaTeXSymbols := rec(
6 alpha := "m",
7 beta := "n",
8 gamma := "l"
9 );;

Back to the generated paragraph on page 149

Listing D.1.5:
1 LoadPackage( "CompilerForCAP", false );
2 CapJitEnableProofAssistantMode( );

Back to the generated paragraph on page 153

Listing D.1.6:
1 statement := function ( cat, A, B, C, D, m, n, l )
2 local m_n, left, n_l, right;
3
4 m_n := PreCompose( m, n );
5 left := PreCompose( m_n, l );
6
7 n_l := PreCompose( n, l );
8 right := PreCompose( m, n_l );
9

10 return IsCongruentForMorphisms( left, right );
11 end;;

Back to the generated paragraph on page 153

Listing D.1.7:
1 StateLemma(
2 "composition is associative",
3 statement,
4 monoid_as_category_ZZ,
5 [ "category", "object", "object", "object", "object",
6 "morphism", "morphism", "morphism" ],
7 [
8 rec( src_template := "Source( m )", dst_template := "A" ),
9 rec( src_template := "Target( m )", dst_template := "B" ),

10 rec( src_template := "Source( n )", dst_template := "B" ),
11 rec( src_template := "Target( n )", dst_template := "C" ),
12 rec( src_template := "Source( l )", dst_template := "C" ),
13 rec( src_template := "Target( l )", dst_template := "D" ),
14 ]
15 );

Back to the generated paragraph on page 153

Listing D.1.8:
1 # see previous listing

Back to the generated paragraph on page 154
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Listing D.1.9:
1 PrintLemma( );

Back to the generated paragraph on page 154

Listing D.1.10:
1 # see previous listing

Back to the generated paragraph on page 154

Listing D.1.11:
1 ApplyLogicTemplate( rec(
2 variable_names := [ "a", "b", "c" ],
3 variable_filters := [ IsInt, IsInt, IsInt ],
4 src_template := "a * (b * c)",
5 dst_template := "(a * b) * c",
6 ) );

Back to the generated paragraph on page 155

Listing D.1.12:
1 # see previous listing

Back to the generated paragraph on page 155

Listing D.1.13:
1 PrintLemma( );

Back to the generated paragraph on page 155

Listing D.1.14:
1 # see previous listing

Back to the generated paragraph on page 155

Listing D.1.15:
1 AssertLemma( );

Back to the generated paragraph on page 155

Listing D.1.16:
1 # see previous listing

Back to the generated paragraph on page 155

Listing D.1.17:
1 StateProposition( monoid_as_category_ZZ, "is_category" );

Back to the generated paragraph on page 156

Listing D.1.18:
1 # see previous listing

Back to the generated paragraph on page 156
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Listing D.1.19:
1 StateNextLemma( );

Back to the generated paragraph on page 156

Listing D.1.20:
1 # see previous listing

Back to the generated paragraph on page 156

Listing D.1.21:
1 PrintLemma( );

Back to the generated paragraph on page 156

Listing D.1.22:
1 AttestValidInputs( );

Back to the generated paragraph on page 156

Listing D.1.23:
1 # see previous listing

Back to the generated paragraph on page 156

Listing D.1.24:
1 AssertLemma( );

Back to the generated paragraph on page 157

Listing D.1.25:
1 StateNextLemma( );

Back to the generated paragraph on page 157

Listing D.1.26:
1 PrintLemma( );

Back to the generated paragraph on page 157

Listing D.1.27:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "a", "b", "c" ],
4 variable_filters := [ IsInt, IsInt, IsInt ],
5 src_template := "a * (b * c)",
6 dst_template := "(a * b) * c",
7 )
8 );

Back to the generated paragraph on page 157

Listing D.1.28:
1 AssertLemma( );
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Back to the generated paragraph on page 157

Listing D.1.29:
1 StateNextLemma( );

Back to the generated paragraph on page 157

Listing D.1.30:
1 PrintLemma( );

Back to the generated paragraph on page 157

Listing D.1.31:
1 AttestValidInputs( );

Back to the generated paragraph on page 157

Listing D.1.32:
1 AssertLemma( );

Back to the generated paragraph on page 157

Listing D.1.33:
1 StateNextLemma( );

Back to the generated paragraph on page 157

Listing D.1.34:
1 PrintLemma( );

Back to the generated paragraph on page 157

Listing D.1.35:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "a" ],
4 variable_filters := [ IsInt ],
5 src_template := "One( Integers ) * a",
6 dst_template := "a",
7 )
8 );

Back to the generated paragraph on page 157

Listing D.1.36:
1 AssertLemma( );

Back to the generated paragraph on page 157

Listing D.1.37:
1 StateNextLemma( );

Back to the generated paragraph on page 157
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Listing D.1.38:
1 PrintLemma( );

Back to the generated paragraph on page 158

Listing D.1.39:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "a" ],
4 variable_filters := [ IsInt ],
5 src_template := "a * One( Integers )",
6 dst_template := "a",
7 )
8 );

Back to the generated paragraph on page 158

Listing D.1.40:
1 AssertLemma( );

Back to the generated paragraph on page 158

Listing D.1.41:
1 AssertProposition( );

Back to the generated paragraph on page 158

Listing D.1.42:
1 LoadPackage( "FreydCategoriesForCAP", false );
2 dummy := DummyCategory( rec(
3 name := "a preadditive category",
4 list_of_operations_to_install := [
5 "IsEqualForObjects",
6 "IsWellDefinedForObjects",
7 "IsWellDefinedForMorphismsWithGivenSourceAndRange",
8 "IsCongruentForMorphisms",
9 "PreCompose",

10 "IdentityMorphism",
11 "SumOfMorphisms",
12 "ZeroMorphism",
13 "AdditiveInverseForMorphisms",
14 ],
15 properties := [
16 "IsAbCategory", # another name for a preadditive category
17 ],
18 ) );;
19 dummy!.LaTeXSymbol := "\\mathbf{C}";;
20 additive_closure := AdditiveClosure( dummy );
21 additive_closure!.LaTeXSymbol := "\\mathbf{C}^\\oplus";;
22 LoadPackage( "CompilerForCAP", false );
23 CapJitEnableProofAssistantMode( );

Back to the generated paragraph on page 160

Listing D.1.43:
1 StopCompilationAtPrimitivelyInstalledOperationsOfCategory( dummy );

Back to the generated paragraph on page 160
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Listing D.1.44:
1 CapJitAddLogicTemplate( rec(
2 variable_names := [ "alpha", "i", "j" ],
3 variable_filters := [ IsAdditiveClosureMorphism, IsInt, IsInt ],
4 src_template := "Source( MorphismMatrix( alpha )[i][j] )",
5 dst_template := "ObjectList( Source( alpha ) )[i]",
6 ) );
7 CapJitAddLogicTemplate( rec(
8 variable_names := [ "alpha", "i", "j" ],
9 variable_filters := [ IsAdditiveClosureMorphism, IsInt, IsInt ],

10 src_template := "Target( MorphismMatrix( alpha )[i][j] )",
11 dst_template := "ObjectList( Target( alpha ) )[j]",
12 ) );

Back to the generated paragraph on page 160

Listing D.1.45:
1 StateProposition( additive_closure, "is_category" );

Back to the generated paragraph on page 161

Listing D.1.46:
1 StateNextLemma( );

Back to the generated paragraph on page 161

Listing D.1.47:
1 PrintLemma( );

Back to the generated paragraph on page 161

Listing D.1.48:
1 AttestValidInputs( );

Back to the generated paragraph on page 162

Listing D.1.49:
1 AssertLemma( );

Back to the generated paragraph on page 162

Listing D.1.50:
1 StateNextLemma( );

Back to the generated paragraph on page 162

Listing D.1.51:
1 PrintLemma( );

Back to the generated paragraph on page 162

Listing D.1.52:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "phi__X__Y", "W", "X", "l", "psi_k" ],
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4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "
category", "morphism", "object", "object", "integer", "morphism" ],
dummy ),

5 src_template := "PreCompose( cat, SumOfMorphisms( cat, W, List( [ 1 ..
l ], k -> psi_k ), X ), phi__X__Y )",

6 dst_template := "SumOfMorphisms( cat, W, List( [ 1 .. l ], k ->
PreCompose( cat, psi_k, phi__X__Y ) ), Target( phi__X__Y ) )",

7 )
8 );

Back to the generated paragraph on page 162

Listing D.1.53:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "phi__X__Y", "Y", "Z", "l", "chi_k" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "object", "object", "integer", "morphism" ],
dummy ),

5 src_template := "PreCompose( cat, phi__X__Y, SumOfMorphisms( cat, Y,
List( [ 1 .. l ], k -> chi_k ), Z ) )",

6 dst_template := "SumOfMorphisms( cat, Source( phi__X__Y ), List( [ 1 ..
l ], k -> PreCompose( cat, phi__X__Y, chi_k ) ), Z )",

7 )
8 );

Back to the generated paragraph on page 162

Listing D.1.54:
1 PrintLemma( );

Back to the generated paragraph on page 162

Listing D.1.55:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "phi", "psi", "chi" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "morphism", "morphism" ], dummy ),
5 src_template := "PreCompose( cat, phi, PreCompose( cat, psi, chi ) )",
6 dst_template := "PreCompose( cat, PreCompose( cat, phi, psi ), chi )",
7 )
8 );

Back to the generated paragraph on page 162

Listing D.1.56:
1 PrintLemma( );

Back to the generated paragraph on page 163

Listing D.1.57:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "m", "n", "phi_ij", "X", "Y" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "integer", "integer", "morphism", "object", "object" ],
dummy ),
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5 src_template := "SumOfMorphisms( cat, X, List( [ 1 .. m ], i ->
SumOfMorphisms( cat, X, List( [ 1 .. n ], j -> phi_ij ), Y ) ), Y )
",

6 dst_template := "SumOfMorphisms( cat, X, List( [ 1 .. n ], j ->
SumOfMorphisms( cat, X, List( [ 1 .. m ], i -> phi_ij ), Y ) ), Y )
",

7 )
8 );

Back to the generated paragraph on page 163

Listing D.1.58:
1 AssertLemma( );

Back to the generated paragraph on page 163

Listing D.1.59:
1 StateNextLemma( );

Back to the generated paragraph on page 163

Listing D.1.60:
1 PrintLemma( );

Back to the generated paragraph on page 163

Listing D.1.61:
1 AttestValidInputs( );

Back to the generated paragraph on page 163

Listing D.1.62:
1 AssertLemma( );

Back to the generated paragraph on page 163

Listing D.1.63:
1 StateNextLemma( );

Back to the generated paragraph on page 163

Listing D.1.64:
1 PrintLemma( );

Back to the generated paragraph on page 163

Listing D.1.65:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "psi", "P", "phi_1", "phi_2" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "bool", "morphism", "morphism" ], dummy ),
5 src_template := "PreCompose( cat, CAP_JIT_INTERNAL_EXPR_CASE( P, phi_1,

true, phi_2 ), psi )",
6 dst_template := "CAP_JIT_INTERNAL_EXPR_CASE( P, PreCompose( cat, phi_1,

psi ), true, PreCompose( cat, phi_2, psi ) )",
7 )
8 );
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Back to the generated paragraph on page 164

Listing D.1.66:
1 PrintLemma( );

Back to the generated paragraph on page 164

Listing D.1.67:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "phi__X__Y", "X" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "object" ], dummy ),
5 src_template := "PreCompose( cat, IdentityMorphism( cat, X ), phi__X__Y

)",
6 dst_template := "phi__X__Y",
7 )
8 );

Back to the generated paragraph on page 164

Listing D.1.68:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "phi__X__Y", "W", "X" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "object", "object" ], dummy ),
5 src_template := "PreCompose( cat, ZeroMorphism( cat, W, X ), phi__X__Y

)",
6 dst_template := "ZeroMorphism( cat, W, Target( phi__X__Y ) )",
7 )
8 );

Back to the generated paragraph on page 164

Listing D.1.69:
1 PrintLemma( );

Back to the generated paragraph on page 164

Listing D.1.70:
1 # CONDITION: the case ‘i = k‘ actually occurs
2 ApplyLogicTemplate(
3 rec(
4 variable_names := [ "cat", "l", "i", "phi_k", "X", "Y" ],
5 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "integer", "integer", "morphism", "object", "object" ],
dummy ),

6 src_template := "SumOfMorphisms( cat, X, List( [ 1 .. l ], k ->
CAP_JIT_INTERNAL_EXPR_CASE( i = k, phi_k, true, ZeroMorphism( cat,
X, Y ) ) ), Y )",

7 dst_template := "(k -> phi_k)(i)",
8 )
9 );

Back to the generated paragraph on page 164

Listing D.1.71:
1 AssertLemma( );
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Back to the generated paragraph on page 164

Listing D.1.72:
1 StateNextLemma( );

Back to the generated paragraph on page 164

Listing D.1.73:
1 ApplyLogicTemplate(
2 rec(
3 variable_names := [ "cat", "psi", "P", "phi_1", "phi_2" ],
4 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "bool", "morphism", "morphism" ], dummy ),
5 src_template := "PreCompose( cat, psi, CAP_JIT_INTERNAL_EXPR_CASE( P,

phi_1, true, phi_2 ) )",
6 dst_template := "CAP_JIT_INTERNAL_EXPR_CASE( P, PreCompose( cat, psi,

phi_1 ), true, PreCompose( cat, psi, phi_2 ) )",
7 )
8 );
9

10 ApplyLogicTemplate(
11 rec(
12 variable_names := [ "cat", "phi__X__Y", "Y" ],
13 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "object" ], dummy ),
14 src_template := "PreCompose( cat, phi__X__Y, IdentityMorphism( cat, Y )

)",
15 dst_template := "phi__X__Y",
16 )
17 );
18
19 ApplyLogicTemplate(
20 rec(
21 variable_names := [ "cat", "phi__X__Y", "Y", "Z" ],
22 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "morphism", "object", "object" ], dummy ),
23 src_template := "PreCompose( cat, phi__X__Y, ZeroMorphism( cat, Y, Z )

)",
24 dst_template := "ZeroMorphism( cat, Source( phi__X__Y ), Z )",
25 )
26 );
27
28 # CONDITION: the case ‘k = i‘ actually occurs
29 ApplyLogicTemplate(
30 rec(
31 variable_names := [ "cat", "l", "i", "phi_k", "X", "Y" ],
32 variable_filters := CAP_INTERNAL_GET_DATA_TYPES_FROM_STRINGS( [ "

category", "integer", "integer", "morphism", "object", "object" ],
dummy ),

33 src_template := "SumOfMorphisms( cat, X, List( [ 1 .. l ], k ->
CAP_JIT_INTERNAL_EXPR_CASE( k = i, phi_k, true, ZeroMorphism( cat,
X, Y ) ) ), Y )",

34 dst_template := "(k -> phi_k)(i)",
35 )
36 );
37
38 AssertLemma( );

Back to the generated paragraph on page 164

Listing D.1.74:
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1 AssertProposition( );

Back to the generated paragraph on page 164

Listing D.1.75:
1 StateProposition( additive_closure, "has_zero_object" );

Back to the generated paragraph on page 165

Listing D.1.76:
1 StateNextLemma( );

Back to the generated paragraph on page 165

Listing D.1.77:
1 PrintLemma( );

Back to the generated paragraph on page 165

Listing D.1.78:
1 AttestValidInputs( );

Back to the generated paragraph on page 165

Listing D.1.79:
1 AssertLemma( );

Back to the generated paragraph on page 165

Listing D.1.80:
1 StateNextLemma( );

Back to the generated paragraph on page 165

Listing D.1.81:
1 PrintLemma( );

Back to the generated paragraph on page 165

Listing D.1.82:
1 AttestValidInputs( );

Back to the generated paragraph on page 165

Listing D.1.83:
1 AssertLemma( );

Back to the generated paragraph on page 165

Listing D.1.84:
1 StateNextLemma( );

Back to the generated paragraph on page 165
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Listing D.1.85:
1 StateNextLemma( );

Back to the generated paragraph on page 166

Listing D.1.86:
1 PrintLemma( );

Back to the generated paragraph on page 166

Listing D.1.87:
1 AttestValidInputs( );

Back to the generated paragraph on page 166

Listing D.1.88:
1 AssertLemma( );

Back to the generated paragraph on page 166

Listing D.1.89:
1 StateNextLemma( );

Back to the generated paragraph on page 166

Listing D.1.90:
1 AssertProposition( );

Back to the generated paragraph on page 166
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