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Abstract

Manufacturing companies are faced with the challenge of managing increasing
process complexity, while at the same time having to meet ever higher demands
in terms of on-time delivery and product costs. Especially at points in the value
chain such as assembly, where different material flows converge, it is often not
possible to provide the components required for an order in a timely and synchro-
nized manner. Early identification of missing parts at the beginning of assembly
can help to take countermeasures to meet the required delivery dates. To achieve
this, this thesis develops machine learning based prediction models that can pre-
dict potential missing parts at the start of assembly at an early stage in the value
chain. The development of the models was carried out as case studies at manu-
facturing companies in the machine industry. As a basis for the development, an
extensive systematic literature search was conducted on existing approaches for
the prediction of lead times of production orders. The result was that no approach
exists that takes into account the full complexity of manufacturing companies. In
particular, with regard to the data used, it became clear that information about the
product to be manufactured—so-called material data—has not been used up to
now. Based on the systemic review, a model for predicting missing parts from in-
house production was implemented. It was shown that classification approaches
achieve the best possible model quality for components from in-house produc-
tion. With the defined modeling approach—classification—it was then verified
that material data has a significant influence on the model quality and is there-
fore relevant for the prediction of missing parts at the start of assembly. Finally, a
model for predicting delivery delays in the purchasing process was implemented,
which makes it possible to predict potential missing parts from suppliers at the
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viii Abstract

time of ordering. The case studies show that the use of machine learning for the
prediction of missing parts in both in-house production and the purchasing pro-
cess can identify delays in the start of assembly at an early stage. The developed
models are therefore suitable as a support system for production planners and
controllers as well as purchasing departments to improve material availability at
the start of assembly.



Zusammenfassung

Produzierende Unternehmen stehen vor der Herausforderung, eine stetig wach-
sende Prozesskomplexität bei gleichzeitig steigenden Anforderungen an Ter-
mintreue und Produktkosten zu beherrschen. Insbesondere an Stellen der
Wertschöpfungskette wie der Montage, an denen verschiedene Materialflüsse
zusammenlaufen, gelingt es häufig nicht, die für einen Auftrag benötigten Kom-
ponenten rechtzeitig und synchron bereitzustellen. Das frühzeitige Erkennen
von Verzögerungen bis zum Montagebeginn kann helfen, Gegenmaßnahmen
einzuleiten, um die geforderten Liefertermine einzuhalten. Um dies zu erreichen,
wurden im Rahmen dieser Arbeit maschinelle lernbasierte Prognosemodelle
entwickelt, die potentielle Fehlteile zum Montagestart frühzeitig vorhersagen kön-
nen. Die Entwicklung der Modelle wurde jeweils im Rahmen von Fallstudien bei
produzierenden Unternehmen aus dem Maschinen- und Anlagenbau betrachtet.
Als Grundlage für die Entwicklung wurde zunächst eine umfassende systematis-
che Literaturrecherche zu bestehenden Ansätzen zur Vorhersage der Durchlaufzeit
von Fertigungsaufträgen durchgeführt. Das Ergebnis war, dass bislang kein
Ansatz existiert, der die gesamte Komplexität produzierender Unternehmen
berücksichtigt. Insbesondere bei den verwendeten Daten zeigte sich, dass Infor-
mationen über das zu fertigende Produkt—so genannte Materialdaten—bisher
nicht genutzt werden. Auf Basis dieser Untersuchungen wurde zunächst ein
Modell zur Vorhersage von Fehlteilen aus der eigenen Produktion implemen-
tiert. Dabei zeigte sich, dass in diesem Bereich Klassifikationsansätze die
bestmögliche Modellgüte erreichen. Mit der gewählten Modellierungsart—Klas-
sifikation—wurde anschließend ermittelt, dass Materialdaten einen signifikanten
Einfluss auf die Modellgüte haben und somit für die Vorhersage von Fehlteilen
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x Zusammenfassung

am Montagestart relevant sind. Schließlich wurde ein Modell zur Vorhersage
von Lieferterminverzögerungen im Einkaufsprozess implementiert, mit dessen
Hilfe potentielle Fehlteile von Lieferanten bereits zum Zeitpunkt der Bestel-
lung vorhergesagt werden können. Die betrachteten Fallbeispiele zeigen, dass
durch den Einsatz von maschinellem Lernen zur Vorhersage von Fehlteilen in
der eigenen Fertigung sowie im Einkaufsprozess Ursachen für Verzögerungen
des Montagestarts frühzeitig identifiziert werden können. Die entwickelten Mod-
elle eignen sich somit als Assistenzsystem für Produktionsplaner und -steuerer
sowie Einkaufsabteilungen, um die Materialverfügbarkeit zum Montagestart zu
verbessern.
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1Introduction

Industrially manufactured products often consist of a large number of components
sourced or produced using different manufacturing processes. This characteris-
tic is particularly noticeable in the products of machinery manufacturers, whose
products typically consist of a large number of components designed to meet spe-
cific customer requirements to provide a customized solution for each customer
[1, 2]. In the globalized and internationalized procurement and sales markets,
logistics performance, such as high adherence to delivery dates or short delivery
and throughput times, is becoming increasingly important as a competitive fac-
tor. Particularly in Germany, a high-wage country, it is crucial for the success of
companies to demonstrate excellent logistics performance to set themselves apart
from international competitors, most of whom have more favorable cost struc-
tures [3–5]. Reliable logistics performance results in meeting promised delivery
dates. If delivery dates are not met, the relationship with the customer suffers. In
the worst case, a late delivery may cause a customer to choose a more reliable
supplier for his next order. Conversely, high delivery reliability fosters high cus-
tomer loyalty. As a result, on-time delivery has a positive impact on a company’s
profits and growth.

Studies in the engineering sector identify the main causes of poor logistics
performance as high number of interfaces, complex order processing, long wait-
ing times, poor planning and control, and unclear and inconsistent priorities [6,
7]. Particularly at points in the value chain such as assembly—where a large
number of different components converge—the effects of disruptions along the
entire process are noticeable [8].
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2 1 Introduction

1.1 In-time Supply of Goods for Assembly
as a Success Factor

Swift delivery and reduced delivery times hinge on the punctual assembly of
products. For an assembly process to stay on schedule, it is essential that all req-
uisite parts are available when needed. Generally, the parts needed for assembly
at machine manufacturing companies can be categorized into three types: com-
ponents made within the company’s production facilities; components procured
on an order-related basis; and components procured generally and dispersed via
a warehouse, such as typical C-parts [4, 9].

To ensure prompt delivery and prevent the delay of assembly initiation, it’s
crucial to schedule the delivery times and manufacturing processes. Within the
production environment, calculating order completion dates using systems like
Enterprise Resource Planning (ERP), Manufacturing Execution Systems (MES),
and Advanced Planning and Scheduling (APS) is a commonly adopted approach
for planning and control [10, 11]. These systems create the production schedule
by taking into account available manufacturing equipment, technical constraints,
due dates, and system status [12–14]. Nonetheless, even with these systems
in place, disruptions like machine malfunctions, material shortages, personnel
deficits, or inadequate employee skills can trigger production delays. To mitigate
such disruptions, transparency of the assembly system’s behavior is pivotal, and
the use of data-based assembly models is advised.

Models like the assembly flow diagram or the material supply diagram [9, 10],
well-established for the task of modeling the material supply process for assem-
bly, have proven effective in pin-pointing general issues, such as a poor assembly
supply situation in specific assembly areas. Although these general issues offer
insights, they typically lead to the implementation of broad measures, like adjust-
ing to more realistic lead times. However, in a machinery manufacturer’s daily
operations, it is beneficial to derive case-specific measures in addition to gen-
eral ones. These case-specific measures are designed to accelerate production or
procurement orders individually, ensuring parts are supplied in a timely manner
for assembly. This underlines the need for more sophisticated prediction methods
that can support the identification and execution of such case-specific measures.
Machine learning (ML), as a promising Artificial Intelligence (AI) technology,
could potentially provide the advanced predictive capabilities needed.

ML-based predictive models have seen increased use in two research areas of
production management: production planning and control, and procurement. In
the realm of production planning and control, existing models can predict lead
times of individual production orders based on historical data (see, for example,
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[15–18]). However, there’s a notable gap concerning ML models that can predict
potential individual missing parts for assembly. Furthermore, current lead time
prediction models primarily rely on order and machine data and lack the use
of feedback data from production data acquisition such as the a complete work
status and material data such as dimensions of the produced part, indicating a
potential area for improvement [19].

In procurement processes ML-based predictive models are already currently
employed to forecast delivery delays of externally sourced products (see, for
example, [20, 21]). However, these approaches face limitations, especially in
low-volume, high-variety production environments, common in machinery man-
ufacturing. Also, the existing models predict delivery delays only after the order
is made and not at earlier times in the process such as the creation of an order
request, hindering proactive responses. Further, they only use classification algo-
rithms capable to predict if a purchasing order might be late or not, but they lack
the capability to predict the severity a potential lateness, as regression algorithms
could. Hence, there is a clear demand for more adaptable and proactive prediction
models in this domain.

In conclusion, there is a distinct need for advanced prediction methods to
ensure the on-time availability of assembly components. By addressing the limi-
tations in current prediction methods and leveraging the potential of material data,
we can enhance the accuracy and efficacy of models predicting missing parts for
assembly. Further, these limitations lead to the main research question of this
thesis: ‘How should prediction models be designed and what data should be used
within these models to sufficiently predict missing parts for the assembly?’ The
purpose of this dissertation is to show my findings on ML models that can predict
the delay in assembly initiation due to the absence of components from inter-
nal production and external procurement. My research will evaluate which ML
algorithm has the best predictive capability for missing in-house components.
Furthermore, we’ll measure the impact of material data on prediction quality.
For the missing components acquired through procurement, we will examine if
regression algorithms can accurately predict assembly initiation delays, thereby
improving prediction quality.

The thesis is structured as follows: After defining the scope and objectives of
the thesis as well as deriving the guiding research questions, section two sum-
marizes the basics of the manufacturing process of a machinery manufacturer.
Sections three to six cover four peer reviewed publications and thus represent the
cumulative part of this thesis. The four publications are reproduced with stan-
dardized formatting and citation style. Finally, a critical reflection and summary
is given in the last two section.
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1.2 Research Methodology

According to Carnap Sciences can be classified into formal and real sciences
[22]. The formal sciences, such as logic and mathematics, are concerned with
constructing sign systems governed by well-defined rules for their application.
On the other hand, the real sciences focus on empirically describing, explaining,
and designing observable aspects of reality. Within the real sciences, there are the
two categories: basic sciences and applied sciences [23]. Basic sciences, partic-
ularly the natural sciences, seek to explain theoretical relationships and enhance
our comprehension of the natural world. In contrast, applied sciences deal with
human decision-making processes. This includes decisions in production plan-
ning and control, as well as procurement, where humans determine factors like
task scheduling, machine allocation, and supplier and material choices. As such,
this study falls under the realm of applied sciences, necessitating a research
methodology appropriate for this scientific domain. In addition to the research
methodological classification, it is crucial to consider the underlying research
domain. This work addresses issues within the field of production sciences—
specifically, the minimization of missing parts before assembly commences—by
combining solution methods from the domain of computer science—employing
ML-based predictive models. As a result, this study lies at the intersection of pro-
duction and computer science. Consequently, the applied research methodology
must encompass both research domains.

The research methodology of this work is following the Design Science
Research (DSR) methodology, which traces its roots to engineering and the
science of artificial intelligence [24]. DSR aims to expand human knowledge by
creating innovative artifacts to address real-world problems [25, 26]. Hevner’s
DSR Framework [26] is an established approach for understanding, conduct-
ing, and evaluating DSR (see Fig. 1.1). The framework comprises three central
elements: Environment, Knowledge Base, and Design: The Environment encom-
passes the problem space where phenomena of interest reside, comprising people,
organizations, and existing or planned technologies. It involves defining goals,
tasks, problems, and opportunities perceived by stakeholders within the organiza-
tion. The comprehensive understanding of the environment allows researchers
to identify specific research needs that demand resolution, forming the basis
of the research problem. This research problem is consequently dependent on
the respective real use case. Within this cumulative dissertation, three different
use cases in manufacturing companies are considered. Thus, the examination
of the environment is done individually for each use case in Chap. 4–6. The
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Knowledge Base plays a pivotal role in addressing the research problem. It con-
sists of two essential components: Foundations and Methodologies. Foundations
draw from prior research and reference disciplines, offering theories, frameworks,
instruments, constructs, models, methods, and instantiations. Methodologies, on
the other hand, provide guidelines for the evaluation phase, ensuring rigor in
the research process by appropriately applying existing knowledge. Analyzing
the academic knowledge base determines the extent of readily available design
knowledge to solve the problem of interest. The knowledge base for our use cases
is defined in Chap. 2 and 3; case specific knowledge is further added within the
Chap. 4–6. The core of DSR revolves around design activities, where innovative
solutions are sought to address the research problem. Here, innovative solutions
are created building upon and extending existing design knowledge. This itera-
tive design process involves building and evaluating activities, refining solutions
to achieve optimal outcomes. The design of the solutions is also use-case specific
and is performed in Chap. 4–6.
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Frameworks
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Models

Methods

Instantiations
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Data Analysis 
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Formalisms
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Case Study
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Fig. 1.1 Design science research framework [25, 26]
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1.3 Objectives and Contribution of the Four
Publication within this Cumulative Dissertation

Four research publications have been drawn upon to accomplish objectives of this
thesis. The details of the publications are visually summarized in Fig. 1.2.

Interdisciplinary focus

Insights into approaches for lead 
time prediction using ML and OR

Publication 1: Review of available 
approaches to predict lead limes

Assessment of the relevance of 
data from product design as the 
earliest process in the 
manufacturing process

Comparison of different ML algorithms in a regression model to 
predict delivery delays of components ordered at suppliers

Prediction at the start of the purchasing process - the creation of a 
purchase order

Comparison of different levels of 
detail of prediction models and 
different ML algorithms

Int J Adv Manuf Technol

Publication 4: Development of a model to predict missing 
components delivered by suppliers

Publication 2: Assessment of the 
relevance of material data

Publication 3: Definition of a 
suitable model complexity

Development of a model to predict missing components from in inhouse 
production

Fig. 1.2 Overview of the four publication within this cummulative dissertation

The first research paper (discussed in Chap. 3) is a comprehensive literature
review that examines current methodologies in Operational Research (OR) and
ML for predicting lead time, particularly in engineer-to-order production. As data
and the applied algorithm significantly influence the model’s effectiveness, this
review aims to identify key data categories and OR/ML algorithms utilized for
lead time prediction. Our research questions include: ‘What is the state-of-the-
art in direct lead time prediction for manufacturing companies, and what data,
methods, or algorithms are being used?’ and ‘How does existing literature guide
future research in direct lead time prediction?’ Our systematic analysis reveals
that ML is a growing research area. Mainly, order data and system status are the
two data classes used for prediction. The use of material data (e.g., from PLM or
ERP sources) and feedback data (e.g. from PDA) in complex models is notably
minimal. Artificial Neural Networks and tree-based regression models show great
promise in complex models considering material data and feedback data.

Considering that product design is a key process in machine manufacturing
and components are often customized, it seems logical to assume that material
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data influences model quality. To verify this assumption, we conducted a case
study at a machine manufacturing company and asked the following research
questions: ‘What effect does the use of material data have on the model quality
of a model predicting assembly start delayers?’ Within the case study, approach
was to systematically compare the model quality of models with material data
against those without. In detail, twelve different prediction models were devel-
oped to classify components as either assembly start delayers or no assembly start
delayers. These models varied in their usage of material data and in the ML algo-
rithm applied. The aim was to determine how the use of material data impacts the
quality of a model predicting assembly start delay, while comparing various ML
algorithms. The comparison verified that incorporating material data in models
predicting assembly start delays enhances the model quality.

The third publication investigated the detail level of a model used for predict-
ing assembly initiation delays in a company’s own production. The level of detail
can significantly influence model quality. Typically, increasing the detail level
leads to improved model accuracy, though with a diminishing effect. Hence, the
third paper’s research question is: ‘How does the detail level of a model affect
its quality in predicting assembly start delays?’ A total of 24 ML models were
created to answer this question, each differing in their level of detail and applied
ML algorithm but sharing the common objective of predicting assembly initi-
ation delays. The comparison revealed that a binary classification model with
surprisingly the least detail level was the best approach.

The fourth publication focuses on the procurement process. Based on our
findings on internal production and our knowledge on the limitations of previous
approaches predicting procurement delays, we formed three research questions.
First, ‘Can regression algorithms predict delivery delays of orders placed with
low-volume, high-variety manufacturers?’ Second, ‘How does the prediction
time1, impact model quality?’ And third, ‘Is dimensionality a problem when
developing a regression model predicting delivery delays of orders placed with
low-volume, high-variety manufacturers?’ A case study was carried out at a
machine manufacturing company to answer these questions. We compared differ-
ent ML models using various algorithms and successfully developed an ML-based
regression model for predicting delivery delays of orders placed with suppliers
in the engineering industry. Interestingly, we discovered that predicting delays at
the early stages of the purchasing process can be effectively done using infor-
mation available right after the internal order request is created and thus, even

1 The prediction time referrers to the specific moment in a process the prediction model is
executed and thus, the prediction is generated.
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before the purchasing process starts. Also, there was no necessity to reduce the
dimensionality of high-dimensional input features, debunking the notion of the
‘curse of dimensionality’ in this context.

To conclude, this research offers insights into the prediction of assembly start
delays caused by missing parts, both in-house and from procurement. It brings
into focus the importance of machine learning algorithms, the use of relevant
data, and the level of model detail in enhancing prediction accuracy. Further, it
emphasizes the potential of regression models in predicting delivery delays in
the procurement process, setting the groundwork for future research in this area.
Our findings underscore the applicability of ML models in improving operational
efficiency in engineering and manufacturing industries.



2Theoretical Background
for the Prediction of Missing Parts
for Assembly

To facilitate a comprehensive evaluation of the novelty and relevance of the
four publications in this cumulative dissertation, the following sections present a
detailed overview of the manufacturing processes involved. These processes are
essential for ensuring the on-time supply of components required for assembly
commencement (cf. sect. 2.1). Furthermore, the dissertation explores the planning
and control processes associated with manufacturing, which significantly impact
the punctual delivery of components for assembly initiation (cf. sect. 2.2).

2.1 Fundamentals and Challenges
of a Manufacturing Process

The value chain of manufacturing companies can be differentiated into four
ideal-typical types: Engineer-to-order production, make-to-order production,
assemble-to-order production, and make-to-stock production [5, 27]: For an
engineer-to-order manufacturer, a single customer order initiates the value chain
and creates an individual demand. This demand is characterized by products to
be produced according to individual customer specifications. Thus, the design of
a product is based on the individual requirements of customers. Each customer
order, therefore, represents a new, customized or variant design [28]. Due to the
considerable complexity of the products, engineer-to-order manufacturers focus
on their core competencies in development, design and assembly. This circum-
stance entails a high degree of outsourcing of various production steps to other
companies and a large proportion of externally sourced components.
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For the remaining internal components the underlying manufacturing pro-
cess r consists of the process steps design, production planning, procurement
of raw material, production of components and assembly (see Fig. 2.1) [5, 29,
30]. To obtain a basic understanding of the respective process steps along the
manufacturing process, the steps are specified in Sects. 2.1.1 to 2.1.5.

Assembly

Design

Sourcing of
raw materials Manufacturing

Sourcing of purchase-to-order parts

Sourcing of c-parts

Production
planning

Process start / endStock

Fig. 2.1 Manufacturing process of an engineer-to-order manufacturer (according to [30–
32])

2.1.1 Design

Within the manufacturing process, the design process encompasses all activities
from the product idea to the generation of production documents (drawings, bill
of materials, etc.), whereby the product characteristics must meet the customer’s
requirements [33, 34]. According to [34, 35], the design process can be divided
into four steps (cf. Fig. 2.2):

1. The design process starts with the clarification of the task, e.g., in the form of
a specification sheet. For this purpose, the designer obtains information about
the concrete product requirements and framework conditions. The result is an
informative specification in a list of requirements differentiated according to
the mandatory requirements and wishes of the customer.

2. In the second step, a solution is defined in principle based on the requirements
list. For this purpose, the designer sets up the functional structures with main
and sub-functions and formulates the physical operating principles for imple-
menting the individual sub-functions. The definition of a specific combination
of the various operating principles results in a functional structure for fulfilling
the main functions.

3. Based on the functional structure, the clear and complete design structure
is created in the design phase according to technical and economic aspects.



2.1 Fundamentals and Challenges of a Manufacturing Process 11

For this purpose, the designer first prepares preliminary designs and estimates
their respective advantages and disadvantages. Finally, he determines the final
overall design by combining the best partial solutions of the designs.

4. In the final phase of design, the designer supplements the previously defined
design structure with specifications for the shape, dimensioning and surface
quality of all individual parts. In addition, he determines all materials, checks
the manufacturing and assembly possibilities and fixes his decisions in binding
documents such as parts lists and drawings. The result is thus the technical
manufacturing specification of the solution.

Plan and clarify the task Conceptualize Drafting Detailling

Fig. 2.2 Design process (according to [10])

As a result, the specifications of the component, and thus the requirements
for the manufacturing process, are determined in the design process, where the
defined components are either manufactured in-house or purchased from suppli-
ers. It is obvious that information from the design process, such as the dimensions
or materials of the components is a valuable source for models predicting missing
parts at the start of assembly (cf. Chap. 4).

2.1.2 Production Planning

Based on the bill of materials and drawings created in the design process, all
planning tasks are carried out in the production planning process to ensure that
a product is manufactured according to the product requirements [10, 30, 36].
These tasks include material planning, work plan creation and NC programming:

• Material planning: Material planning determines the type and dimensions of
the required raw parts. Technological criteria such as machining properties,
shape and surface as well as procurement times must be considered. The time
criteria pose major challenges, especially for casting and forging components,
which are frequently subject to tight deadlines.

• Work plan creation: A work plan differentiates a production order into indi-
vidual operations and assigns for example the required materials, machines,
and standard times.
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• NC programming: NC programming then adds the appropriate programs for
the machines to enable the production process.

Production planning serves as a crucial bridge between the conceptualization
stages—design and procurement of raw materials—and the actual fabrication
of components. This planning phase generates vital documents and information
that guide the internal manufacturing process. The work plan assumes significant
importance. It outlines the machines to be used and sequences the processing of
components, complete with estimates of the time required for each operation. This
data is indispensable for order scheduling and determining the requisite produc-
tion capacity. Therefore, it is vital to incorporate the insights garnered from the
production planning process into a predictive model. This model will help fore-
cast any potential shortages of parts at the onset of assembly, thereby minimizing
disruptions and enhancing efficiency in the production process (cf. Chaps. 4 and
5).

2.1.3 Procurement

Procurement includes all necessary activities that ensure the availability of all
materials required but not produced in-house. It is important to ensure that the
materials are available in the right quantity and quality, at the right time and at
the lowest possible cost.

According to Arnold [37] the procurement process can be divided into seven
typical subprocesses (cf. Fig. 2.3):

1. After receiving a demand notification, the procurement process starts with an
inquiry to the supplier. This inquiry should contain all technical specifications
and business conditions. These include, for example, type of material, quanti-
ties, drawings, descriptions, method of payment and delivery date. The number
of offers to be received by suppliers depends on the procurement volume.

2. As soon as the suppliers return offers, a selection process starts to determine
the optimum offer. To do this, it is first checked whether the content of the
offer matches the inquiry. Then the offers are compared according to criteria
such as price, delivery time, quality, supplier location or trust in the supplier.

3. If only one offer turns out to be optimal, an order is placed at the corre-
sponding supplier directly. However, if several comparable offers exist, further
procurement negotiations will be conducted with the suppliers before placing
the order.
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4. As soon as all negotiations are finished, one supplier is selected.
5. With placing the order at the supplier legally binding contract is created.

This contract contains the final specifications from the offer, inquiry and
procurement negotiation.

6. The supplier sends an order confirmation after receipt of the order and, if
necessary, further confirmations (e.g., delivery notifications).

7. As soon as the supplier completes the order, he delivers the material to the
incoming goods area of the ordering company. There, the procurement process
ends with a delivery note check, quantity and quality check, and the storage
as well as payment of the goods.

Inquire Offer
processing Nogotiation Supplier

decision Ordering Order
conformation

Delivery/
control

Direct selection

Offer
check

Offer
analysis

Offer
comparision

Fig. 2.3 Typical sub-processes of procurement (according to [37])

In practice, different procurement models are established depending upon the
procurement release, the kind and the place of warehousing, and the property
transition between supplier and customer [10, 38–40]. In the following, the pro-
curement models typical for an engineer-to-order manufacturer (cf. Fig. 2.4) are
explained according to definitions in [10, 38–40]:

• In stock procurement, material inventories are held in a targeted manner, thus
ensuring the security of supply for the subsequent process steps. Orders are
typically placed at suppliers based on the available stock in the warehouse.

• In the case of individual procurement, procurement always takes place in rela-
tion to a specific (customer) order. The required material is delivered directly
to the place of further processing without intermediate storage.

Thus, the procurement process includes all activities to procure raw materials for
in-house production and to procure engineer-to-order parts for assembly. As a
result, the procurement process directly influences the availability of materials at
the start of assembly. On the one hand, the procurement process can be respon-
sible for the fact that the raw materials required for the in-house processes are
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Model Supplier Customer

Stock 
procurement

Individual 
procurement

Supplier Receipt 
of goods Stock Production 

Stock
Supply 
area

Delivery to order

Supplier Receipt 
of goods

Production and delivery 
to order

Production 
Stock

Supply 
area

Transfer of ownershipWarehousing

Fig. 2.4 Selected procurement models (according to [39])

not available in time. As a result, components from in-house production may not
be available in time for assembly. On the other hand, the procurement process
has a direct impact on the timely delivery of externally purchased components.
Consequently, information from the procurement process should be considered
when developing a model for predicting missing parts at the start of assembly
(cf. Chap. 6).

2.1.4 Component manufacturing

In component manufacturing, the individual components for assembly are man-
ufactured in a single- or multi-stage process [41]. According to [5], this process
can be divided into five subprocesses (see Fig. 2.5):

1. After a production order has been created, it is scheduled with time buffers
and adjusted to the available capacity. Subsequently, a workshop program is
created in which it is described at which times, and on which machines the
order is to be executed.

2. Based on the workshop program, a precise check of the availability of material
and capacities is carried out again before the start of production.

3. If the check is positive, the order is released. The release also includes the
handover of production documents (design drawing, work plan, parts list, etc.)
to the production personnel.

4. As soon as the production order is released and the production documents
have been handed over, the order is executed and controlled. This sub-step
represents the physical manufacturing process of the product.

5. After the completion of the execution of the order, the execution is confirmed
to close it.
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Fig. 2.5 Component manufacturing (according to [5])

The execution of an order can be divided into individual operations, which in
turn are subdivided into the sub steps waiting after processing (of the predeces-
sor), transport, waiting before processing, setup, and processing [11]. Accord-
ingly, an operation begins with the completion of the respective predecessor
operation (see Fig. 2.6)

OP1 OP2 OP3 OP4

Waiting after 
processing Transport Processing 

OP 3

TT PT

LT

TPEP Time

Waiting before 
processing Setup

TSS TPE

TPEP : Time of processing end of predecessor [TU]
TSS : Time of start of setup [TU]

TT : Transition time [TU]
PT : Processing time [TU]
OPi : Operation

TPE : Time of processing end [TU]
LT : Lead time [TU]
TU : Time units [-]

Fig. 2.6 Manufacturing throughput element [11]

According to [11], the period from the end of processing of the predecessor
to the end of processing of the operation under consideration is the lead time of
the operation. The execution time is made up of the time portions of the sub-
processes setup and processing. The difference between lead time and execution
time constitutes the transition time.

Considering information from this process is obviously valuable when setting
up prediction models to predict missing parts for assembly. Within this cumulative
dissertation, publication I (cf. Chap. 3) is giving an overview of the state of the
art in lead time prediction and publications II and III (cf. Chaps. 4 and 4) are
focusing on ML models predicting missing parts from in-house manufacturing
process.
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2.1.5 Assembly

In addition to the processes upstream of assembly, which determine the avail-
ability of parts at the start of assembly, it is also important to understand the
assembly process for a comprehensive understanding of the process. In contrast
to Fig. 2.1, the assembly process is preceded by a supply process, which func-
tions as an interface between assembly and the processes upstream of assembly
[32, 42]. Material supply can be understood as a central process in which many
upstream processes converge before they enter the assembly. Consequently, the
supply of materials to the assembly represents a convergence point. A conver-
gence point in the manufacturing process offers a high potential for delays since
assembly can only be executed if all the required components are supplied with-
out defects and on time. According to REFA, material supply has the task of
"providing the material available in the company for use in the execution of the
task in the required type and quantity on time " [43]. Assembly follows the sup-
ply of materials and, according to VDI Guideline 2860, includes the totality of all
processes involved in the assembly of geometrically defined bodies [44]. In the
assembly, several individual parts are joined so that a marketable product with
a higher level of complexity is created [45]. Since assembly is the last step in
the production value chain, it is also referred to as the collection point for errors
and faults in the previous production processes [42, 46]. According to [10], the
assembly process can be single or multi-stage depending on the product structure
(see Fig. 2.7):

• In a single-stage process, all components manufactured by the upstream
processes are assembled in one assembly operation.

• In a multi-stage process, individual components are first assembled into mod-
ules. These modules are then combined with other components or modules at
a higher level, also in modules or the final assembly. With the help of modules,
the assembly process can be parallelized and thus accelerated.

With the assembly flow element of Schmidt [9] (see Fig. 2.8), a model for
logistics within assembly exists: In this model, the consideration of an assembly
process starts with the completion of the respective predecessor process. It con-
siders the convergence of several material flows and deducts the time portions
of the sub-processes of an assembly operation on the time axis. In detail, these
time elements are waiting after the predecessor process, transport, waiting before
assembly, setup and assembly. For example, in Fig. 2.8, three predecessor pro-
cesses are considered. After finishing the last predecessor process (TLBVi), the
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Fig. 2.7 Product structure in a multi-stage assembly [47]

assembly process is considered as completed. According to the assembly flow
element, the assembly lead time consists of two-time components, the execution
time and the transition time: The execution time includes the assembly activ-
ity and the setup process. The transition time includes the activities ‘lying after
predecessor process’, ‘transporting’ as well as ‘lying before assembly’, and is
made up of the time components supply time and waiting time. The supply time
describes the time in which the predecessor processes of an assembly operation
are completed, and the respective components arrive at the assembly system. It,
therefore, represents the difference between the processing end date of the last
predecessor process and the processing end date of the first predecessor process.
The completion of the predecessor process thus represents the end of the supply
time and the start of the waiting time, which extends to the assembly start.

In contrast to the assembly flow element, which describes a single assembly
process on an assembly system, the assembly flow diagram depicts several assem-
bly processes on an assembly system [9]. To create the assembly flow diagram,
all assembly flow elements under consideration at the respective assembly system
are first sorted according to their respective outflow date and plotted across the
time axis (see Fig. 2.9a). The individual assembly flow diagrams are then sepa-
rated into their supply processes as well as the assembly process, and four curves
are then created from the temporal variables (inflow, completion, start of assem-
bly and outflow). The outflow dates of the assembly flow elements, weighted
with their respective values, are plotted cumulatively over time forming the out-
flow curve. The same applies to the inflow, completion and assembly start curves.
The procedure is visualized exemplarily for the assembly pass element marked
with M (see Fig. 2.9b). With the assembly flow diagram, in addition to the usual
indicators in a flow chart (e.g., stock or capacity), the disturbed and completed
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Fig. 2.8 Characteristics in the assembly throughput element [9]

stock can be seen. The disturbed stock results from the deviation between the
inbound and the completion curve (see Fig. 2.9c: ID). The completed stock, on
the other hand, results from the deviation between the completion and outflow
curve (see Fig. 2.9c: IC).

With the assembly flow chart, it is possible to evaluate the logistic state of
an assembly system based on four curves—inflow curve, outflow curve, comple-
tion curve and assembly start curve—as well as various key figures such as the
stock or capacity. As a further development of the assembly flow diagram and
taking into account the completion curves of Kettner [48], Schmidt [9] devel-
oped the assembly supply diagram, which serves as a model for the analysis of
material supply for assembly. The starting point for the creation of the assem-
bly supply diagram is a target/actual comparison in the assembly flow chart (see
Fig. 2.10a). Subsequently, the assembly flow elements are normalized to their
due or target dates (see Fig. 2.10b). The third step is to sort all supply orders
according to their respective inflow date deviation and to plot them cumulatively
in a curve, the so-called normalized inflow curve. The dashed lines indicate this
as an example for three of the incoming supply orders. Afterwards, the completed
assembly orders are sorted according to the schedule deviation of their respec-
tive last finished supply order and plotted in the so-called completion curve (see
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Fig. 2.9 Derivation and performance indications of the assembly flow diagram [9]

Fig. 2.10c). The discrete representation determined in this way can be transferred
to an idealized representation in which key figures such as the value of assembly
operations completed at the demand date, or the value of supply orders not yet
provided at the demand date can be seen (see Fig. 2.10d). The idealized form
of the assembly supply diagram is based on the approximations for the inflow
and completion curve developed by Beck [32]. The inflow curve is determined
utilizing distribution functions and the total inflow values of the supply orders.

Overall, the assembly supply diagram thus enables a past-related evaluation
of material availability at the start of the assembly. It represents the actual state
of the supply orders of various assembly orders after their completion. In the
assembly supply diagram shown as an example, there are supply orders with
both positive and negative schedule deviations in relation to the due date (see
Fig. 2.10d). There are two basic approaches to improving schedule variance,
which can be combined (see Fig. 2.11) [28]:

• Timeliness (see Fig. 2.11 top) aims at reducing the proportion of those sup-
ply orders with positive schedule deviation (delay). Measures to achieve this
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Fig. 2.10 Derivation of the assembly supply diagram based on the assembly flow diagram
[9, 32]
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include realistic planned lead times, realistic procurement times, deadline-
oriented sequencing and the scheduling of buffer times before assembly.
However, in the case of a buffer, care must be taken to avoid triggering the
so-called error circuit of production control [49, 50]. Successful application of
these measures results in steeper curves in the readiness diagram.

• Simultaneity (see. Fig. 2.11 middle) aims to synchronize the supply orders of
an assembly operation with each other so that the assembly order is completed
in as narrow a time window as possible. This is enabled by a deadline-oriented
order release and procurement as well as sequencing and procurement accord-
ing to order structure and deadline situation. These measures result in a closer
alignment of the two curves in the assembly supply diagram.

• A combination of both approaches results in a punctual supply of materials
for assembly (see Fig. 2.11 bottom). Further measures include increasing the
capacity flexibility of production and shortening procurement times. The result
of punctual supply is a reduction in incomplete stocks as well as an increase
in adherence to delivery dates.
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Fig. 2.11 Measures to improve the supply of materials for assembly [51]

However, the assembly supply diagram is primarily designed to analyze his-
torical data and general issues such as an overall poor assembly supply situation
in individual assembly areas. Furthermore, the measures that can be derived from
the assembly supply diagram to improve material supply to the assembly are only
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general measures such as defining realistic lead times or adjusting lead times. In
the daily business of a machine manufacturer, however, it can be helpful to derive
not only general measures, but also individual case-related measures to accelerate
individual production or procurement orders in order to ensure the on-time sup-
ply of components for assembly. For these case-related measures, it is especially
helpful if they can be taken as early as possible in order to have enough time
to implement the measure. Therefore, this dissertation examines how to predict
potential missing parts at the beginning of assembly in order to derive individual
case-related measures.

Overall, the process steps described in this section serve to provide a basic
understanding of the respective processes within a machine builder’s value chain.
They also illustrate the complexity of the manufacturing process and the resulting
challenges that a machine builder must overcome to complete its final products
on time and to customer specifications. Each process has a specific role to play
and can cause delays in the overall manufacturing process. Therefore, all of the
processes described in this section must be considered when predicting missing
parts for the start of assembly.

2.2 Fundamentals and Challenges in Planning
and Controlling a Manufacturing Process

In addition to the manufacturing processes (cf. sect. 2.1), there are processes
for planning and controlling the manufacturing process. The planning and con-
trol of the manufacturing process aim to manufacture the products derived from
customer requirements at the appropriate quality, competitive prices, and agreed
deadlines [10]. To achieve this goal, appropriate monitoring and control are
required, which can be described with the help of a control loop (see Fig. 2.12).

Within the control loop, the production system (execution) forms a controlled
system that can deviate from its planned behaviour due to external influences. To
avoid deviations, production planning and control (PPC) is used as a controller.
The PPC plans the production program considering a target, the needs of cus-
tomers or sales and the current state of the controlled system. In addition, within
the control loop, three types of status values—target, plan, and actual—exist,
which serve as logistical planning variables for the controller. H-H. Wiendahl
[4] defines them as follows:
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Fig. 2.12 Production management control loop [10]

• The target variable describes the desired logistical behaviour. In the sense
of control loop-based action, it serves as a reference. Changes to the target
variable can only be made in agreement with the customer.

• The actual variable represents the actual logistical behaviour determined by
production data acquisition and is, therefore, a past-related variable.

• The plan variable describes the expected logistic behaviour under considera-
tion of the existing boundary conditions and thus represents a forecasted actual
variable. Occurring disruptions can cause deviations from the plan from the
target.

In a production environment, the plan variables are determined by the production
schedule considering the available production capacity, technical restrictions, due
dates (target variable) and the system status (actual variable) [13, 14, 52]. The job
sequence is determined according to certain rules to calculate the start and end
dates of the jobs at the workstations [53]. Of course, disruptions can occur that
lead to a deviation from the schedule. In this case, a rescheduling is performed
to update the schedule according to the new situation [14].

Based on the logistical planning variables, a start and finished date deviation,
as well as a lead time deviation, can be calculated for each production order
and operation [4, 28]. In the following, the individual deviations are described
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at the level of an operation. The definitions apply analogously to a production
order. The finished date deviation is defined as the deviation between the actual
and the target finished date (due date) of the operation under consideration. A
positive date deviation, therefore, indicates a too late completion, a negative date
deviation, on the other hand, indicates a too early completion.

DDfinished = DOFactual − DOFtarget (2.1)

DDfinished = Finished date deviation [TU]
DOFactual = Actual finished date of an order or operation [TU]
DOFtarget = Target finished date of an order or operation [TU]

The start date deviation, on the other hand, is defined as the deviation between
the actual and target start dates of the operation under consideration. Accordingly,
a positive start date deviation indicates a too late process start, while a negative
start date deviation indicates a too early process start.

DDstart = DOSactual − DOStarget (2.2)

DDstart = Start date deviation [TU]
DOSactuals = Actual start date of an order or operation [TU]
DOStarget = Target start date of an order or operation [TU]

The lead time deviation—also called relative date deviation—is defined as the
deviation between the actual lead time and the target lead time of the operation
under consideration. The lead time is calculated equally for target and actual
variables as the difference between the start and end of a process step. A positive
value corresponds to a longer lead time than the target lead time and a negative
value to a shorter lead time.

DDrel = LTactual − LTtarget

= (DOFactual − DOSactual)−
(
DOFtarget − DOStarget

)
(2.3)

DDrel = Relative date deviation [TU]
LTactuals = Actual lead time of an order or operation [TU]
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LTtarget = Target lead time of an order or operation [TU]

In summary, the aspects described serve as a basic understanding and show the
complexity of planning and controlling the manufacturing process. All informa-
tion from the manufacturing processes of the individual components converges in
the planning and control process. Here, orders are scheduled in such a way that
there are as less as possible delays compared to the target date, delays result-
ing from the schedule are indicated and actual deviations from the schedule
are calculated based on feedback data from the execution of the orders. One
of the fundamental rules to schedule orders is to determine the job´s waiting time
depending on the machine´s utilization [54]. Here, performance curves play a key
role [55]. The performance curves, also called operating curve [56] or character-
istic curve [57], can be generally understood as a tool to model performance
indicators of a workstation´s productivity considering functional relationships
between logistic parameters such as lead times, throughput and stock [54]. Conse-
quently, the derivation of the schedule and thus of the potential deviations within
the schedule is based on defined parameters within the manufacturing process.
Information about past behaviour of the manufacturing system as well as infor-
mation from processes upstream of production, such as information about the
design of a product, are not considered in the performance curves and thus, are
typically not considered when identifying potential deviation within the sched-
ule. The focus of this dissertation is to use this additional information from
other processes and from the past to improve the prediction of missing parts
for assembly.
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3.1 Abstract

The interest of manufacturing companies in a sufficient prediction of lead times
is continuously increasing—especially in engineer to order environments with
typically a large number of individual parts and complex production processes.
A multitude of approaches have been proposed in the literature for predicting
lead times considering different data and methods or algorithms from operations
research (OR) and machine learning (ML). In order to provide guidance at set-
ting up prediction models and developing new approaches, a systematic review
of the available approaches for predicting lead times is presented in this paper.
Forty-two publications were analyzed and synthetized: Based on a developed
framework considering the used data class (e.g., product data or system status),
the data origin (master data or real data) and the used method and algorithm
from OR and ML, the publications are classified. Based on the classification, a
descriptive analysis is performed to identify common approaches in the existing
literature as well as implications for further research. One result is, that mostly
order data and the status of the production system are used for predicting lead
times whereas material data are used seldom. Additionally, ML approaches pri-
marily use artificial neural networks and regression models for predicting lead
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times, while OR approaches use mainly combinatorial optimization or heuristics.
Furthermore, with increasing model complexity the use of real data decreased.
Thus, we identified as an implication for further research to set up a complex
data model considering material data, which uses real data as data origin.

3.2 Section I: Introduction

Production companies are in a constant state of change. They are challenged to
assert themselves in international markets. Growing demands for individualized
products with increasing quality and decreasing prices bring logistics perfor-
mance, such as high adherence to deadlines or short delivery and lead times, to
the fore as a competitive factor [29, 58]. As a result, lead time is one of the key
factors for meeting customer requirements [59]. By means of a valid prediction
of the lead times, delivery dates can be determined at an early stage and devia-
tions from schedule can be identified [60]. In contrast, an imprecise prediction of
lead times can lead to delivery dates not being met, resulting in loss of customer
confidence and consequential costs for late deliveries [12]. Particularly relevant
is the prediction of lead times for mechanical and plant engineering, a typical
example of an engineer to order process. In addition to production and assembly,
here the lead time includes all upstream processes such as design, order planning
or the purchasing process for raw materials and finished parts [5]. Furthermore,
the products of a machine and plant manufacturer often consist of a large number
of components that are designed individually to achieve a tailor-made solution for
the respective customer [1, 2]. Consequently, the product characteristics defined
in the design process represent a unique selling point for the companies.

A primary cause of not meeting due dates and extended lead times are the
negative effects of disruptions [61, 62]. The occurring disruptions are manifold
and include, for example, machine breakdowns, missing material, lack of person-
nel or insufficient employee qualification [63, 64]. However, a recent study found
that the majority of disruptions in the assembly process occur repeatedly and
are theoretically predictable [65]. If the occurrence of a disruption is known or
predictable, this information should also be considered to predict lead times. Con-
sequently, data containing that information about disruption and thus the causes
of delays should be used for the prediction of lead times. The number of potential
data classes, however, varies due to the large number of possible disturbances. In
addition to the considered data, the methods and algorithms used for the predic-
tion are relevant for the quality of the prediction [66, 67]. For the prediction of
lead times, methods and algorithms from the field of operations research (OR)
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such as heuristics or combinatorics and from the field of machine learning (ML)
such as neural networks or random forest can be applied [15–18]. Consequently,
the question arises which data should be considered in the context of the forecast
and which method or algorithm can be utilized. Due to the multitude of possibil-
ities, the choice is not easy. A systematic review can help to achieve an overview
of the existing methods and thus facilitate the selection for the user.

In their often cited survey Cheng and Gupta [68] investigated relation-
ships between due dates, dispatching rules and completion times in static and
dynamic job shops. Öztürk, Kayaligil et al. [69] comprehensively summa-
rized the development of prediction models with a focus on dispatching rules and
scheduling. Lingitz, Gallina et al. [70] focused on approaches with regres-
sion models to predict lead times. Karaoglan und Karademir [71] provided
a comprehensive overview of the mathematical approaches used in the field of
machine learning as well as the data classes considered. In all publications, how-
ever, only parts of the current state of the art are considered. In addition, it is not
always possible to identify whether a systematic procedure was used to review
the literature. Even after a comprehensive search, no review was found that sys-
tematically summarized both the state of the art of the methods and algorithms
used and the data considered.

The aim of this paper is therefore to conduct a systematic literature review
to answer the following research question: ‘Which is the current state of the
art in predicting lead times in engineer to order environments and which data
and methods or algorithms are used?’. Additionally, we ask as second research
question ‘How does the existing literature contribute to future research on the
prediction of lead times?’ to identify implications for further research. In our
study we follow the structure of vom Brocke et al. [72] supplemented by
dedicated review concepts from other authors like a procedure model of Moher,
Liberati et al. [73] and a clustering approach of Weißer, Saßmannshausen
et. al. [74]. Since we assume that the authors use different classes of data and
methods or algorithms, we will develop a framework for the classification of the
publications. Based on the classification, we will perform a descriptive analysis,
which will then be used to identify focus topics in the existing literature as well
as implications for further research.

Our paper is structured as follows. Section II first introduces the terms lead
time and prediction. Section III elaborates the systematic literature review and
details the applied methodological approach. In section IV a framework is derived
as a result of the systemic review and a detailed analysis of the current state of
the art in the body of literature is conducted. Based on this, the implications for
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further research are derived in section V. Finally, a summary is given in the last
section.

3.3 Section II: Lead Time and Lead Time Prediction

According to the Business Dictionary [75] lead time is defined as the ‘number
of minutes, hours, or days that must be allowed for an operation or process, or
must elapse before a desired action takes place’. A definition for the term lead
time with focus on manufacturing processes is given by the Cambridge Business
English Dictionary [76] and Gunasekaran, Patel et al. [77] with the time
that elapses between receiving a customer’s order and the delivery of the goods
or service to the customer. A more detailed definition for the manufacturing lead
time is given by the Business Dictionary with the ‘total time required to man-
ufacture an item, including order preparation time, queue time, setup time, run
time, move time, inspection time, and put-away time. For make-to-order products,
it is the time taken from release of an order to production and shipment’ [75].
Wiendahl [28] and Nyhuis [11] divide an order into individual operations and
differentiate accordingly between order lead time and operation lead time: The
order lead time elapses between the start of the first operation and the end of the
last operation. Each operation lead time is further divided into the interoperation
and operation time. The interoperation time consists of the three components wait
time after processing of the previous operation, time for transportation between
previous and current workstations and another waiting time before processing on
the current workstation. The operation time is divided into the setup time and the
actual processing time. As it is well known, waiting times have a higher share in
the lead time than the processing times [28, 78, 79].

In a production environment the job’s lead times are determined by the produc-
tion schedule considering the available production capacity, technical restrictions,
due dates and the system status [12–14]. The job sequence is defined according
to certain rules to calculate the start and end dates of the jobs at the work stations
[53]. One of the fundamental rules is to determine the job’s waiting time depend-
ing on the machine’s utilization [54]. Here, performance curves play a key role
[55]. The performance curves, also called operating curve [56] or characteristic
curve [57], can be generally understood as a tool to model performance indica-
tors of a workstation’s productivity considering functional relationships between
logistic parameters such as lead times, throughput and stock [54]. To determine
the performance curves, several different methods are known, which are sub-
divided mainly into the two areas approximation function and queuing theory
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[54, 55]. Within the area of approximation functions the main representative is a
description of elementary relationships of flow processes based on the so-called
“funnel model” and the flow diagram [11, 28, 80]. The funnel-model focuses
on the representation of the performance-stock ratio and determines the capacity
of a workstation as the upper performance limit. Here, the performance curve
is defined as a so called CNorm-function [11]. The area of queuing theory con-
denses approaches which are mainly based on the so-called Kingman equation
[81], as well as their extensions to multi-operator systems and adaptations for
practical use (see [55] and [82], and the references herein for further details).
One exemplary extension of the Kingman’s equation is given by the authors in
[83], who approximated the curve by using a constant factor to replace the vari-
ability term in the Kingman’s equation. The authors in [84], [85], [86] and [87]
used this extension to quantify the productivity improvement of a semiconductor
fabrication plant. Furthermore, historical data can be used in the determination of
performance curves. Wu and McGinnis [88] for example used historical lead
times in the determination of the performance curves and based on that calculated
queueing times and subsequently lead times.

After determining the production schedule, of course, disruptions can occur
that lead to a deviation from the schedule. In this case a rescheduling is per-
formed to update the scheduled according to the new situation [14]. There are also
approaches that consider potential disruptions during scheduling to get a more
robust schedule [14]. Leon, Wu Et Al. [89] for example analyze the effect
of single disruptions for delaying a job and use a genetic algorithm that mini-
mizes expected delays and lead times to find a robust schedule. Tadayonirad,
Seidgar et Al. [90] take unplanned machine breakdowns into account. Sum-
marized in both scheduling and rescheduling the expected lead time is calculated
based on the determined job sequence and available capacities.

Besides calculating the lead time based on a previous sequencing the lead time
can also be predicted directly. In the past, a large number of approaches have
been established for predicting lead times. Cheng and Gupta [68] performed
an early literature review and investigated relationships between due dates, dis-
patching rules and lead times in static and dynamic job shops. Their focus was
on a particular segment of scheduling research in which the due date assignment
is of primary interest. They reviewed methods for calculating a job’s due date
based on a given job starting time and a predicted flow allowance, which is equal
to a lead time. They differentiated between exogenous and endogenous meth-
ods [68]. In exogeneous methods, a job’s lead time is set as a fixed and given
attribute of a job before entering the production system. Examples are Constant
(CON), where all jobs are given exactly the same lead time, and Random (RAN),
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where the lead time for a job is randomly assigned. In endogenous methods the
job’s lead time is predicted as the job is entering the production system consider-
ing job characteristics and shop status information. Examples for considering job
characteristics are Total Work (TWK), where the lead time is predicted based on
a jobs processing time and Number of Operations (NOP), where lead times are
predicted based on the number of operations to be performed on the job. Exam-
ples for considering shop information are Jobs in Queue (JIQ), where the lead
times are predicted based on the number auf jobs in a queue of the production
system or Work in Queue (WIQ), which is similar to JIQ but utilizes the pro-
cessing times instead of the number of jobs. Comparing the predicted lead times
of exogenous and endogenous methods, the endogenous methods are generally
superior [91]. Combining job and shop status has proven to be more effective
[92, 93]. Further details on the methods and its performance are given by [92,
94, 95]. All approaches reviewed by Cheng and Gupta have in common that
they use analytical techniques for the prediction of lead times that are typically
found in in the field of OR. One of the most fundamental analytical approaches
is Little’s Law, which determines the average number of items in a queue of a
stationary system based on the average arrival rate of items to that system and
the average waiting time [96]. With the increasing development of ML, new data
analytics methods for directly predicting lead times have emerged. In their study,
Burggräf, Wagner et al. [97] have highlighted that scheduling and the pre-
diction of lead times was traditionally one of the key research topics for ML
in production. Öztürk, Kayaligil et al. [69] for example used a regression
tree to predict lead times considering several attributes from shop status and job
characteristics which outperforms the traditional TWK, Alenezi, Moses et al.
[98] utilize a support vector machine and Wang and Jiang [99] develop a deep
neural network.

Concluding, there are two possible approaches to determine lead times: Firstly,
indirect based on scheduling and approximating waiting times considering perfor-
mance curves and secondly, by performing a direct prediction of lead times based
on specific rules or historical data. To the best of our knowledge, no review arti-
cle analyses the current status of available approaches for the direct prediction of
lead times coming from both areas ML and OR. In the recent works the relevant
state of the art is summarized. However, no systematic procedure is apparent.
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3.4 Section III: Conducting the Review

A systematic review is a type of literature review based on systematic methods
to reproducibly answer a specific research question by identifying all relevant
studies and synthesizing findings qualitatively or quantitatively [100, 101]. It is
designed to provide a complete, exhaustive, transparent and replicable summary
of current stare of the art [102].

The methodology used in this review is following the procedure model of
Vom Brocke et al. which consists of five steps: (I) definition of review scope,
(II) conceptualization of topic, (III) literature search, (IV) literature analysis and
synthesis as well as (V) deduction of research agenda [72]. It is widely accepted
within review theory [103] and not least it grants freedom of action for domain
and process specific examinations.

3.4.1 Definition of Review Scope

The review scope was characterized according to the taxonomy of literature
reviews by Cooper [104] (cf. Fig. 3.1). The research focus is on research out-
comes and applications with the goal of knowledge integration using a conceptual
structure. From a neutral perspective the review addresses specialized schol-
ars considering all the relevant sources, but describing only a sample. So, the
coverage is classified as exhaustive and selective.

The organization of prior research identifies a relationship between the con-
sidered data, algorithms and predicted lead times and serves to highlight the high
multitude of possibilities to predict lead times (cf. Section II). The aim of this
systematic literature review is consequently first to aggregate the latest state of
the art for the prediction of lead times including used data and algorithms and
second to develop an integrative framework for the further analysis and synthesis
of the relevant publication. Here, we want to focus on the direct prediction of lead
times only and leave out approaches focusing on scheduling, queueing theory or
performance curves since these approaches rely on the determination of waiting
or interoperation times and do not fully consider potential disruptions occurring
during production process itself leading to an extension of the processing time.
A direct prediction of lead times can include these disruptions as it considers
always the complete lead time consisting of waiting and processing time instead
of only a part of it. Furthermore, a direct prediction of lead times based on his-
torical data is gaining new potentials with the enormous improvements in data
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Characteristic Categories

1 Focus Research 
outcomes

Research 
methods Theories Applications

2 Goal Integration Criticism Central issue

3 Organization Historical Conceptual Methodological

4 Perspective Neutral representation Espousal of position

5 Audience Specialized 
scholars

General 
scholars

Practitioners / 
politicians General public

6 Coverage Exhaustive Exhaustive and 
selective Representative Central / pivotal

Fig. 3.1 Taxonomy of literature reviews following Cooper [104]

acquisition combined with the upcoming research area of ML providing new data
analytics methods. Accordingly, this leads to the following research questions:

• RQ1: Which is the current state of the art in directly predicting lead times
for manufacturing companies and which data and methods or algorithms are
used?

• RQ2: How does the existing literature contribute to future research on direct
lead time prediction?

3.4.2 Conceptualization of the Topic

Before conducting a review to synthesize knowledge from literature, according
to the authors in [105] it is strongly recommended to acquire a priori knowledge
about the topic, to identify potential areas where synthetized knowledge may be
needed and to properly conduct the review. Based on the explanations and defi-
nitions provided in Section I and II and reviewing over 40 publications with an
explorative approach we identified concepts most relevant to our field of obser-
vation and mapped them to the topic. So, it is ensured to use a wide range of key
terms that are locatable within literature. As a result, we generated a concept map
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[106] for lead time prediction (cf. Fig. 3.2). The concept map lists all relevant
synonyms for the further literature search.

Estimation Prediction

Forecast

Anticipation

Finish timeLead time

Flow time

Throughput 
time

Remaining 
time

Makespan

Fig. 3.2 Conceptualization map for lead time prediction according to the procedure of
Rowley and Slack [106]

3.4.3 Literature Search

Based on the concept map the search terms were transferred into the follow-
ing search string including Boolean operators and wildcards: (“predict*” OR
“forecast*” OR “estimat*” OR “anticipat*”) AND (“throughput time*” OR
“flow time*” OR “remaining time*” OR “finish time*“ OR “makespan*”). We
used AND operators to exclude publications focusing on a single area of the
search field only in order to increase the thematic relevance. The search strategy
was enhanced by the elements of the STARLITE mnemonic framework [107]:
We focus on journal articles and conference proceedings published in English
between 1960 and 2019 in the electronic databases IEEE Xplore, Web of Science,
EBSCO, ScienceDirect, and SpringerLink.

The application of the search string to the metadata title, abstract and key
words, considering the additional criteria from the STARLITE mnemonic, iden-
tified a total of 18,697 publications in all databases. Afterwards, we followed the
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procedure given in the PRISMA flow diagram according to Moher et al. [73]
to consider relevant publications only. The procedure recommends to remove
duplicates followed by a literature screening and detailed assessment of rele-
vance based on the full text. The following quality criteria were defined for the
screening and the detailed assessment:

• QC1: Addresses the domain of manufacturing.
• QC2: Publications are focusing on the prediction, estimation or forecast of

lead times or parts of lead times.
• QC3: Publications focusing on algorithm development rather than method-

ological / domain specific applications are excluded.
• QC4: Publications focusing on job shop sequencing, queueing theory or

performance curves rather than on a direct prediction of lead times are
excluded.

The total number of publications included 3,786 duplicates. In the remaining
14,911 publications we identified various publications that do not comply with
the applied search criteria. It turned out that some databases apply the search
string to the full text in addition to title, abstract and key words. To comply with
the search criteria, we additionally applied the search string to title, abstract and
key words manually. After removing duplicates and the manual application of
the search string a total number of 4,004 publications remain for the screening
phase.

For screening the publications, we utilized a clustering approach by Weißer
and Saßmannshausen et al. [74] based on Natural Language Processing
(NLP). Starting with a tokenization (word separation), the removal of stop words
(stop words do not contain relevant information) and a TFIDF vectorization, a k-
Means clustering is performed and the most relevant words (topwords) per cluster
are identified. The topwords characterize each cluster and indicate its thematical
relevance. We used title, abstract and key words without the search string as
base for the clustering. Due to the resulting big text corpus we performed a
dimensionality reduction by latent semantic analysis (LSA), as proposed by [108]
and [109], to achieve better clustering results. Furthermore, to fully comply with
the defined quality criteria, we did not solely rely on the topwords for excluding
irrelevant clusters as proposed by Weißer and Saßmannshausen et al. [74].
Based on the assumption of homogenous clusters, we have additionally taken a
representative but random sample of publications of each cluster and read their
full texts. Only if all of the publications in the sample do not match the quality
criteria QC1-4, the whole cluster is assessed as irrelevant.
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For the 4,004 remaining publications a clustering with ten clusters was per-
formed and the topwords were extracted (cf. Table 3.1). The number of clusters
was identified by applying the elbow method. Based on the analyzed samples and
the topwords the clusters three, five and nine are assessed as relevant with a total
number of 857 publications. Following the clustering, we analyzed the abstracts
of all publications with respect to QC1-4. The remaining 367 publications were
then further analyzed by reading the full text resulting in 39 relevant publications.
With the relevant 39 publications we performed a forward and backward search,
to identify models, theories and constructs that may not have been covered by
the database search terms [110]. Thus, additional three relevant publications were
identified, leading to the final data set of 42 publications for further analysis and
synthesis in phase IV of the approach of vom Brocke et al. [72].

Table 3.1 Clusters with topwords, cluster size and assessed relevance

Cluster No. Top Words Cluster Size Relevance

1 Model, data, based, system, using 1,349 Not relevant

2 Model, series, river, neural, network 463 Not relevant

3 Manufacturing, production, process, product 376 Relevant

4 Ensemble, precipitation, skill, model, weather 448 Not relevant

5 Abstract, copyright, may, users, abridged 193 Relevant

6 Flood, rainfall, model, river, warning 180 Not relevant

7 Traffic, series, network, model, term 68 Not relevant

8 Skill, enso, ocean, climate, sst 457 Not relevant

9 Inventory, demand, supply, chain, bullwhip 288 Relevant

10 Cancer, screening, patient, breast, survival 182 Not relevant

3.5 Section IV: Results

The intention of this theoretical overview is to bring relevant concepts into a
superordinate structure, to map the contribution of literature to our problem
statements, and to provide starting points for future research [103]. Therefore,
publications with different concepts are analyzed and synthesized considering
how they contribute to our research questions (cf. Sect. 3.4.1). Before perform-
ing the analysis and synthesis in Sect. 3.5.1 we define a framework as a base in
Sect. 3.5.2.
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3.5.1 Definition of the Framework

Setting up a framework is a common approach to structure literature as recom-
mended by [111] and [112]. Our framework is separated in the following three
dimensions (cf. Fig. 3.3):

3.5.1.1 Data Class
As a core differentiation we already mentioned the data class (cf. Section I and
II). Cronjäger [113] divides the recorded data of manufacturing companies into
order data, machine data, employee data and material data. Order data define
all specific dates, times and quantities of individual orders. In our framework we
will further include operation specific dates, times and quantities in the order data
since an operation is part of an order. Machine data define all characteristics of
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Fig. 3.3 Dimensions of developed framework
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the machines that are used to process orders such as the machine ID, informa-
tion about the tools or fault messages. Employee data contain information about
the operators of the machines. This information is for example, the presence
of employees or specific data such as the age or performance of an employee.
Material data define all product characteristics of the product to be manufactured
such as geometric specification, weights or the material itself. In addition, we
identified publications that utilize information about the system status to directly
predict lead times such as the stock level in intermediate storage or the capacity
utilization of the machines (compare [17][114][115]). We have therefore added
the system status as a fifth data class.

3.5.1.2 Data Origin
The analysis of the relevant publications showed that data used to directly pre-
dict lead times have various origins such as a planning data, a simulation or
feedback data from a real production. For example, Govind and Roeder
[116] generate input data for a direct prediction of lead times from a simula-
tion. Grabenstetter and Usher [117] consider historical data from a real
production environment to directly predict lead times. Based on that we divided
the second dimension of the framework data origin into the categories feedback
data and master data. Feedback data describes data that was recorded in a real
production environment during the production process. Master data are data used
for planning without real feedback from a production environment. We included
data that was generated from a simulation or whose origin is not further described
within a publication in the category master data.

3.5.1.3 Method and Algorithm
Lead times can be predicted directly based on methods or algorithms from both
research areas OR and ML (cf. section II). Since OR and ML are already estab-
lished since many years, several overviews of these methods and algorithms
are available in literature. For our framework we consider the basic works by
Zimmermann and Stache [118] and Feichtinger und Hartl [119] to subdi-
vide OR. They differentiate between Precedence Diagram Method (PDM), Linear
Programming (LP), Nonlinear Programming (NLP), Combinatorial Optimization
(CO), Control Theory (CT), Queuing Theory (QT), Decision Theory (DecT)
and Heuristics (H). To subdivide ML we utilize the often-cited overview about
supervised learning algorithms by Caruana and Niculescu-Mizil [120] to
subdivide ML. They differentiate between Artificial Neural Networks (ANN),
Logistic Regression (LOGREG), K-Nearest-Neighbor (KNN), Support Vector
Machines (SVM), Random Forest (RF), Decision Trees (DT) and Bagged Trees
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(BAG-DT). In addition to that we extended the field of Logistic Regression by
Linear Regression (LINREG).

3.5.2 Analysis and Synthesis

Based on these defined dimensions we classified all publications accordingly and
performed a descriptive analysis to identify the current state of the art in directly
predicting lead times in manufacturing companies and in the used data classes
and methods or algorithms (cf. RQ1). Additionally, we further deducted how
the literature contributes to further research (cf. RQ2). A good overview of the
development of a research area is given by the chronological development of the
publications (cf. Fig. 3.4). Given the 42 identified publications, Fig. 3.4 shows
an increasing number of publications focusing the direct prediction of lead times
over time. Before the year 2000, we identified only three publications focusing
the direct prediction of lead times, while the remaining 39 publications appeared
after that date. Thus, a trend can be seen towards an increasing interest in the
research area of directly predicting lead times.
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Fig. 3.4 Chronological development of publications

Next, we analyzed the dimensions of the framework (cf. Fig. 3.3) individ-
ually and subsequently combined two or more dimensions to identify common
approaches and implications for further research. The following paragraphs are
structured according to the considered dimensions.
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3.5.2.1 Data Class
Looking at the data classes, it was noticeable that with a share of 95% of all
publications, almost every author takes order data into account to directly predict
lead times (cf. Fig. 3.5). Jia, Zhang et al. [121], Berlec and Govekar
[122] or Gramdi [123] for example use order data such as start and end dates of
orders or order-specific processing times for the prediction of lead times. There-
fore, order data are relevant for the direct prediction of lead times. Furthermore,
the system status with a share of 62% of all publications is often used for direct
predicting lead times. In contrast, machine and material data with a share of 21%
and 5% respectively are used relatively rarely and employee data with a share
of 0% have not been used for directly predicting lead times at all. One possible
explanation for not using employee data could be, that due to data privacy restric-
tions employee data is not available for analysis. Furthermore, material data is
commonly stored in the CAD-system, drawings or in the material master data
in the ERP system, which might not be directly linked to the order data or sys-
tem status. Gyulai, Pfeiffer et al. [124] and Karagolan and Karademir
[71] are the only authors who use material data such as dimensions or specifi-
cations of the product for directly predicting lead times. Machine data are used
by Weng and Fujimura [125], for example, in the form of the machine ID.
Lingitz, Gallina et al. [70] use so-called ‘equipment data’ containing infor-
mation about machines and tools to predict lead times without describing these
data in more detail. The small proportion of machine, material and employee
data suggests that either there is no or only a small relation between lead times
and these data classes, or the connection has a low research interest in previ-
ous research. Since products in an engineer to order environment are designed
individually and therefore the materials differ greatly in their characteristics, we
see a high potential for further research considering material data as an input for
directly predicting lead times.

Analyzing the number of used data classes in more detail reveals that 86% of
all publications use two or less different data classes for directly predicting lead
times (cf. Fig. 3.6). In case of using one data class only the majority of pub-
lications are considering order data like [126] or rarely system data like [114].
Machine and material data are not used solely. In case of using two or more data
classes, order data is always included. With 40% the majority combines order
data and the system status like [69]. Only a minority of 14% of all publications
is using three data classes for directly predicting lead times combining order and
system status with either machine data like [127] or with material data like [124].
Furthermore, it can be seen that in none of the publications more than three data
classes are used. Since different combinations of three data classes have already
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Fig. 3.5 Overview of used data classes

been successfully demonstrated, namely order data + system status + machine
data and order data + system status + material data, it is also conceivable that a
combination of all four data classes order data, system status, material data and
machine data can provide good results in directly predicting lead times. There-
fore, we see a high potential for further research in using three and more data
classes for the direct prediction of lead times. Future researchers could, for exam-
ple, develop a model using ML or OR in which, in addition to the system status
and order data, they also use the material data to directly predict lead times.
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3.5.2.2 Method / Algorithm
Over time, the number of publications with ML increases continuously, whereas
the number of publications with OR remains almost constant. In the case of ML
18 of the 23 publications were published after 2010. Therefore, the emerging
trend of ML can also be seen in the research field of directly predicting lead
times. In total the comparison of the research areas ML and OR shows with
55% only a slight majority in the area of ML compared to OR with 45% (cf.
Fig. 3.7a). Looking at the ML methods and algorithms used in detail reveals that
ANN (43% of all ML-publications), LINREG/LOGREG (30%), DT (26%) and
RF (22%) were primarily used (cf. Fig. 3.7b). Furthermore, we identified authors
using more than one approach within a publication to directly predict lead times.
For example, Asadzadeh, Azadeh et al. [18] combine two approaches (ANN
and LINREG) in one model, the authors in [128, 129] compare two approaches
(ANN and DT) and the authors in [130] use a linear regressor (LINREG) to
predict lead times. Schuh, Prote et al. [79] present a three-step procedure
with a DT regressor for predicting order-specific interoperation times. Gyulai,
Pfeiffer et al. [124] compare OR (e.g. Little’s Law) and ML approaches and
conclude that ML provides more precise results than OR. In their proposed model,
a random forest approach is finally chosen because of a higher model accuracy for
the available input data. Furthermore, a digital twin of the production environment
is created to provide the ML model with quasi real production data for predicting
lead times. Looking on the used OR methods and algorithms in detail reveals
that Combinatorial Optimization (26% of all OR publications), Heuristics and
Queuing Theory (both 21%) were primarily used (cf. Fig. 3.7c). For example,
Berlec and Starbek [16] use Combinatorial Optimization by setting up the
lead times per operation of different orders in one vector per workstation and then
randomly select and combine individual elements of the vectors to determine the
total lead time of the order following a given processing sequence. In conclusion,
in both research areas ML and OR specific methods and algorithms are used more
frequently for directly predicting lead times while others like SVM or Control
Theory are used rarely.

3.5.2.3 Data Class and Method / Algorithm
Combining the data class with the used method and algorithms reveals that order
data is used in combination with all methods and algorithms (cf. Fig. 3.8). This
deducts a general relevance of order data for directly predicting lead times,
regardless of the method or algorithm used. The system status is used in 12
of 13 methods and algorithms for directly predicting lead times and can therefore
be classified as generally relevant as well. Only decision trees are not used in
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combination with the system status. Looking at the method of decision tree, we
do not see any methodological reason for not using decision trees in combination
with the system status. Considering machine data, it is noticeable that in more
than 50% of cases combinatorial optimization (e.g., [131]) and ANN (e.g., [128])
are used. One possible explanation for this could be, that the information about
several machines within the machine data need to be combined according to the
corresponding processing sequence which is a typical application for combinato-
rial optimization and ANN. When using product data, it is noticeable again that
only ANN in [71] and Random Forest in [124] are used to predict lead times.
This either indicates that material data are not analyzable with other methods and
algorithms, material data do not correlate with the directly predicted lead times
or that material data has received less attention in prior research. Since there are
already approaches with good results using material data for directly predicting
lead times, we consider the second option, that material data do not correlate
with lead times, as negligible.
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3.5.2.4 Data Origin and Method / Algorithm
Looking at the data origin only, we recognized an equal distribution of pub-
lications between feedback data and master data (cf. Fig. 3.9). Combining the
used methods and algorithms with the data origin enables a more detailed view:
Publications considering feedback data as base for directly predicting lead times
utilize ML approaches with a share of 63% more frequently than OR. Here,
most authors use ANN or LINREG/LOGREG. On the other side, OR approaches
based on feedback data are dominated by CO. This leads to the insight that,
from the field of ML, ANN and LINREG/LOGREG and, from the field of OR,
CO are solid approaches for directly predicting lead times based on feedback
data. Karagolan and Karademir [71] for example perform a prediction of
lead times using ANN and reach an accuracy up to 98.54% comparing the pre-
dicted lead times with the real lead times. In publications considering master data
instead of feedback data with a share of 55% OR is used more frequently than
ML. In detail ANN, RF, and QT are utilized almost equally. In conclusion, ML
dominates the direct prediction of lead times based on feedback data whereas OR
dominates the direct prediction of lead times based on master data. One possi-
ble explanation for this could be, that feedback data contain a larger amount of
data sets which are predestined for ML, whereas the creation of master data is a
manual and thus, expensive process which is suitable for OR.
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Fig. 3.9 Overview of data origin combined with used methods and algorithms

3.5.2.5 Data Class and Data Origin
Analyzing the combination of data class and data origin reveals a trend in the con-
sidered data origin depending on the used number of data classes (cf. Fig. 3.10).
If only one data class is used for the direct prediction of lead times, almost 70%
of the corresponding publications consider feedback data. If three data groups
are used, the proportion of publications considering feedback data reduces to
only 33%. This shows that the proportion of publications using feedback data
decreases as the number of considered data groups increases. Since the num-
ber of data classes is an indicator for the model complexity, the identified trend
implicates a decreasing use of feedback data for a direct prediction of the lead
times with an increasing model complexity. Therefore, we see a high potential
for further research focusing on higher model complexity with a larger number
of data classes combined with feedback data.

The performed analysis and synthesis of the existing publications differen-
tiated by the dimensions of our framework provided an extensive and detailed
answer on RQ1. We identified data classes, data origins as well as methods and
algorithms that are mainly used in the body of literature. We also identified impli-
cations for further research which we will summarize in the following section in
detail.
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3.6 Section V: Implications for Further Research

As already stated, all of the publications found in literature focusing the direct
prediction of lead times could be classified with our developed framework (cf.
section IV). By performing a descriptive analysis, we were able to identify com-
mon approaches that were used by the majority of researchers. Furthermore, we
identified white spots and noticeable trends that indicate the need for further
research (RQ2). Looking at the considered data classes we identified material
data as an almost complete white spot in the research area of directly predict-
ing lead times. Only few researchers present results in directly predicting lead
times considering material data. With our review focus on the engineer to order
production, where products often consist of a large number of components that
are designed individually to achieve a tailor-made solution for the respective cus-
tomer [1, 2], we see a high potential for further research considering material
data in the direct prediction of lead times. Furthermore, we identified only few
publications considering three or more data classes. Since disruptions in produc-
tion systems are widely spread over various root causes [65], each of the different
data classes might contain relevant information that correlate with the lead time.
Additionally, we identified a decreasing number of publications using feedback
data, if the number of used data classes increases. Feedback data contain the real
information about the production system. Consequently, we see a high potential
for further research considering three or more data classes for directly predicting
lead times based on feedback data from a real production environment. Those
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few researchers focusing material data as input for directly predicting lead times
only used ANN and RF so far. Thus, analyzing the performance of other meth-
ods and algorithms for directly predicting lead times based on material data is
another research potential.

3.7 Section VI: Conclusion

In this article an SLR was conducted to determine the state of the art of directly
predicting lead times with focus on engineer to order production. The lead time
is one of the key factors for meeting customer requirements and predicting lead
times can help to identify potential deviations from agreed delivery dates at an
early production stage. Based on the identified deviations, the responsible person
for production can then set counter measures to meet the due dates. The aim
of this study was therefore to identify relevant data classes as well as methods
and algorithms from the field of OR and ML used for directly predicting lead
times within the body of literature. We conducted our research according to the
SLR procedure model according to Vom Brocke et al. [72] and integrated
dedicated SLR concepts from other authors. Within the phase of literature search
we identified a total of 18,697 publications, of which 42 publications were fur-
ther considered in the core of our analysis. For the purpose of the selection of
publications we utilized a clustering approach by Weißer, Saßmannshausen
et al. [74] to allow a more efficient and target oriented scanning and filtering.
In the subsequent analysis phase, a framework was developed to structure the
considered publications followed by a descriptive analysis as the base to identify
common approaches within the body of literature and to derive implications for
further research.

A direct lead time prediction based on ML is a research field with increasing
relevance. Concerning the considered data classes for the direct prediction, two
data classes, namely order data and system status, are mainly used. Noticeable
was the low usage of material data and feedback data in more complex models.
From the field of ML, ANN and Regression models show high potential for
further research in complex models considering material data and feedback data.
With the performed detailed analysis all research questions stated in Section III
were eventually answered.

We believe this study has both theoretical and practical implications. It pro-
vides academics with an overview of the state of the art of approaches for the
direct prediction of lead times and indicates potential for further research. Further-
more, it can offer practical guidance to practitioners in selecting data classes as
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well as methods and algorithms to implement an approach for directly predicting
lead times in their production environment.

3.8 Presentation of Own Contribution

All the work presented for the systematic research was carried out by me accord-
ing to the procedure model of vom Brocke et al. This includes the definition
of the review scope, the definition of the search string and the databases, the
definition of quality criteria and research questions, the search of the literature
corresponding to the search string, the evaluation of the literature according to the
quality criteria, the development of the framework and the classification of the
literature into this framework, the analysis of the literature by means of descrip-
tive statistics as well as the subsequent synthesis and critical reflection of the
literature. In addition, the transformation of the results of the systematic research
into text and writing of the publication were entirely in my hands. All three co-
authors Prof. Dr. Burggräf, Dr. Wagner and Mr. Koke contributed with ideas to
the research concept and in the internal review process.
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4.1 Abstract

Designing customized products for customer needs is a key characteristic of
machine and plant manufacturers. Their manufacturing process typically consists
of a design phase followed by planning and executing a production process of
components required in the subsequent assembly. Production delays can lead to
a delayed start of the assembly. Predicting potentially delayed components—we
call those components assembly start delayers—in early phases of the manufac-
turing process can support an on-time assembly. In recent research, prediction
models typically include information about the orders, workstations, and the
status of the manufacturing system, but information about the design of the com-
ponent is not used. Since the components of machine and plant manufacturers
are designed specifically for the customer needs, we assumed that material data
influence the quality of a model predicting assembly start delayers. To analyze
our hypothesis, we followed the established CRISP-DM method to set up 12 pre-
diction models at an exemplary chosen machine and plant manufacturer utilizing
a binary classification approach. These 12 models differentiated in the utiliza-
tion of material data—including or excluding material data—and in the utilized
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machine learning algorithm—six algorithms per data case. Evaluating the differ-
ent models revealed a positive impact of the material data on the model quality.
With the achieved results, our study validates the benefit of using material data
in models predicting assembly start delayers. Thus, we identified that consider-
ing data sources, which are commonly not used in prediction models, such as
material data, increases the model quality.

4.2 Section I: Introduction

Manufacturing companies are challenged to succeed in dynamic international
markets requesting high-quality products, flexibility, on-time delivery, and a rea-
sonable cost structure [64, 133, 134]. Here, short delivery times and adherence to
delivery dates is a key factor to differentiate from competitors. A typical exam-
ple of this is the machine and plant manufacturing industry producing complex
products consisting of numerous components [1, 2]. Many of these components
are customized enabling tailor-made solutions for the customers’ requirements.
In general, the manufacturing process of machine and plant manufacturers starts
with the design of the product and components, followed by the production plan-
ning, the purchasing of raw materials, and the production process to manufacture
the individual components needed in the subsequent assembly process. In parallel
to the production process, the components required in the assembly are also pur-
chased from suppliers. The task of the assembly is to assemble a product of higher
complexity with predefined functions with a certain quantity of components in
a partly multi-stage process in a given time [135]. Furthermore, in the assembly
many material flows converge, leading to a high potential of delays [42]. Thus, an
essential factor for meeting the delivery date is the start of the assembly on time
and a prior timely supply of the components needed for assembly. Subsequently,
components produced in the processes upstream of the assembly have a direct
influence on the performance of the assembly process. Assuming that all compo-
nents are required to start the assembly process, even a single component supplied
behind schedule will lead to a delayed start of assembly [52]. To meet delivery
dates, it would be helpful to predict these delayed individual components (we call
them assembly start delayers) in the early stages of the manufacturing process.
Based on an early prediction, measures such as close communication with the
supplier, extra shifts to temporarily increase production capacity, or utilizing a
different workstation can be derived to speed up the manufacturing process and
thus, prevent assembly start delays.
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With the increasing development of machine learning (ML) and the avail-
ability of big data, ML-based prediction models are becoming more and more
established in the field of production planning and control. ML models have
already been successfully applied to predict lead times of manufacturing pro-
cesses [19] and to predict assembly start delayers [136]. Our previous research
already showed that predicting assembly start delayers utilizing a binary classi-
fication is the recommended approach and outperforming approaches utilizing a
lead time prediction to identify assembly start delayers [19]. Furthermore, when
setting up and training a prediction model, the used data model has a central
influence on the model quality of the prediction model [137, 138]. For example,
Burggraef et al. [19] have already discovered that material data defining all
characteristics of the product to be manufactured such as geometric specification,
weights, or the material itself are rarely used in ML-models to predict lead times.

Looking at the business process of a machine and plant manufacturer in con-
trast to the usage of material data in prediction models, it is noticeable, that the
products of machine and plant manufacturers are typically tailor-made for each
customer need [5, 139]. As the product’s characteristics strongly influence the
needed processes for its manufacturing [140], the design phase of machine and
plant manufacturers including the material data specified within the design phase
also has a non-negligible influence on the manufacturing process. Consequently,
we assume that the usage of material data in a model predicting assembly start
delayers has an impact on its model quality. Nevertheless, material data are cur-
rently only rarely used in prediction models. But, so far, a validation that the
material data influence the respective model quality has not yet been performed.

Thus, our manuscript aims to set up an ML-based model for the prediction of
assembly start delayers and to analyze and systematize the influence of material
master data on the model quality. As a research method, we apply a case study at
a machine and plant manufacturer. With the achieved results, our paper provides
two main contributions:

• We developed a model to predict assembly start delayers utilizing a machine
learning classification approach.

• We identified that material data influence the model quality of a model
predicting assembly start delayers. However, there was only a slight influence.

Our paper is structured as follows. Section II first introduces the product struc-
ture and manufacturing processes in an engineer-to-order environment as well
as available approaches to identify and predict assembly start delayers. Section
III elaborates on our approach to quantify the impact of material data on the
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model quality predicting assembly start delayers utilizing ML. In Sect. IV, the
results are presented and discussed. Section V critically reviews the limitations
of our approach and the results obtained. Furthermore, the implications for further
research are derived. Finally, a summary is given in the last section.

4.3 Section II: State of the art

The products of machine and plant manufacturers typically consist of several
hundred to several thousand components. These are procured from suppliers or
manufactured in the company’s production facilities. Purchased components can
be procured on an order-anonymous basis, such as for standard components, and
an order-specific basis, such as for special and drawing components. The procure-
ment of components from suppliers as well as the manufacturing of components
in the in-house production belong to processes upstream of the assembly [32].
Since the assembly is a convergence point where several material flows converge,
the risk of delays due to missing components is increased [46].

One established model to analyze converging material flows is the assembly
flow element developed by Schmidt [9] with further developments and applica-
tions in the assembly flow diagram and supply diagram [9, 32]. In all models,
the so-called completer is the last inflow to an assembly order and is therefore
the component that was supplied last by the processes upstream of the assem-
bly. A completer can be completed on time—before the planned start date of the
assembly, or late—after the planned start of the assembly. A late finalization of a
completer, therefore, leads to a delay in the start of assembly. In this manuscript,
we define such components as “assembly start delayers” (see also section I).
Assuming that all components are necessary to start the assembly, the schedule
variance of the assembly start delayer determines the earliest possible start date
of the assembly. Accordingly, a temporal acceleration of the manufacturing and/
or procurement process of an assembly start delayer has the biggest potential
to push a delayed assembly start back to the target date. However, the supply
diagram is primarily designed to analyze data relating to the past and to iden-
tify general issues such as an overall bad assembly supply situation in individual
assembly areas. To derive case-specific countermeasures to accelerate individual
production orders, further analysis is needed.

In production, typically scheduling techniques are used to derive order
sequences and to calculate lead times of work orders used to determine the start
dates and end dates of the respective orders and subsequently to determine the
assembly start delayers [141]. The order sequence is defined according to certain
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rules considering for example the available production capacities, the technical
requirements, the demand dates, and the system status [13, 14, 52]. Further, espe-
cially for remanufacturing systems, also environmental objectives are considered
[142, 143]. To optimize the lead time of an order, the determination of its waiting
time depending on the machine’s utilization is essential [54]. Here, performance
curves considering functional relationships between logistic parameters such as
lead times, throughput, and stock play a key role [54, 55]. Nevertheless, devia-
tions from the schedule may occur leading to an inaccurate determination of the
assembly start delayers. Besides determining the assembly start delayers based
on calculated lead times utilizing scheduling techniques, it is also possible to
predict lead time directly. By predicting the lead times, completion dates can be
determined early and deviations from the schedule can be detected [60]. In the
past, many approaches for the prediction of lead times have been established. For
example, Cheng and Gupta [68] investigated methods from the field of oper-
ations research (OR) such as Constant (CON), Random (RAN), or Total-Work
(TWK). With the increasing development of ML, new methods for predicting
lead times have emerged (see, for example, [69, 98, 99, 144]).

A systematic literature review conducted by Burggraef et al. [19] has
analyzed existing approaches focusing on the prediction of lead times in the
research fields of ML and OR and classified them according to the three criteria
data class, data origin, and used method/algorithm. Looking at the data class, the
authors identified that the majority of publications examined use order data and
information about the system status of the production system. In detail, 95% of
their 42 publications examined use order data, and 62% use information about the
system status. Jain and Raj [121], Berlec and Govekar [122] or Gramdi
[123] for example use order data such as start and end dates of orders or order-
specific processing times for the prediction of lead times, whereas the authors
in [69] and [114], for instance, use a combination of order data and information
about the system status such as the machine utilization, processing times or the
queue length. In contrast to the order data and information about the system, with
24% of the 42 publications examined, machine data are slightly less used. For
example, the authors in [125] include the machine ID and the authors in [70]
include the so-called ‘equipment data’ containing information about machines
and tools in their prediction models. Further, Burggraef et al. [19] identified
Gyulai, Pfeiffer et al. [124] and Karaoglan and Karademir [71] with
a portion of only 5% of the 42 publications examined as the only authors who
include material data such as dimensions or specifications of the product in their
prediction models. These findings highlight that material data were rarely used
compared to order data, information about the system status, and machine data.
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That being said, the business process of a machine and plant manufacturer typ-
ically hinges on tailor-made products for each customer need [5, 139]. Thus, the
design phase in the business process and the associated documents herein can be
said to have a non-negligible influence on the desired product. Furthermore, the
product design is also the basis for the production planning determining the pro-
cess to manufacture the respective components [140]. Accordingly, the material
data specified in the design phase are also influencing the manufacturing process.
Consequently, we assume that the usage of material data in a model predicting
assembly start delayers has an impact on its model quality. Nevertheless, material
data are currently only rarely used in prediction models.

Utilizing the findings of the systemic literature review in [19], the authors in
[136] applied different ML algorithms on a total of 24 different prediction mod-
els on four different levels of detail to identify the modeling approach with the
highest model quality in predicting assembly start delayers. Their models on the
coarsest level of detail predicted assembly start delayers utilizing a binary classi-
fication. Their models on the three finer levels of detail predicted assembly start
delayers via a prediction of different lead times (component lead times, order lead
times, and operation lead times) utilizing a regression approach and subsequent
postprocessing operations to identify the assembly start delayers. After training
the 24 prediction models based on a real data set of a machine and plant man-
ufacturer and evaluating their model quality, they identified the coarsest level of
detail utilizing the binary classification as the best modeling approach. Thus, one
of their findings was, that performing a binary classification to predict assembly
start delayers outperformed the prediction of assembly start delayers based on a
prior prediction of lead times utilizing a regression model. Accordingly, for our
approach, applying a binary classification is recommended to predict assembly
start delayers. Furthermore, the authors in [136] already used material data in
all of their 24 prediction models leading to good results. Nevertheless, as they
did not systematically analyze the impact of material on the model quality, there
is still no analysis available proofing that material data have an impact on the
quality of models predicting lead times.

In summary, there are models available for the prediction of lead times, but
they are not explicitly used for the prediction of assembly start delayers. Cur-
rently, there is only one approach available focusing on the prediction of assembly
start delayers in the field of machine and plant manufacturers comparing a direct
prediction of assembly start delayers with an indirect prediction based on a pre-
vious lead-time prediction. But still, there is no analysis performed on the impact
of material data on the quality of models predicting lead times.
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Consequently, in this work, we will focus on investigating the influence of
material data on the quality of models predicting assembly start delayers. This
systemic analysis is completely novel compared to recent research. For this
purpose, the following research question is posed, considering the previous expla-
nations: “What effect does the use of material data have on the model quality of a
model predicting assembly start delayers?” Following our argumentation that the
products of machine and plant manufacturers are typically designed tailor-made to
meet the specific customer needs and that the material data, therefore, characterize
a product, we formulate the following working hypothesis: “The model quality
for the prediction of assembly start delayers increases when utilizing material
data.”

4.4 Section III: Modelling approach

Examining an exemplary use case is an established approach in the field of
machine learning, especially in lead-time prediction (see, for example, [70, 71,
126, 128]) and assembly start delayer prediction (see, for example, [136]). One
motivation for examining an exemplary use case is to gain insights for real needs,
such as the need of a manufacturing company, rather than to develop theories
without practical relevance [145]. Accordingly, investigating an exemplary use
case to answer our research question and to study our working hypothesis is
an appropriate and established approach and thus, was our approach of choice.
Furthermore, as this work extends our previous research in the prediction of
assembly start delayers [136], we investigated the same case at the previously
chosen representative machine and plant manufacturer.

The methodology used in this manuscript is following the established Cross
Industry Standard Process for Data Mining (CRISP-DM) [146, 147] consisting
of the six phases Business Understanding, Data Understanding, Data Preparation,
Modeling, Evaluation, and Deployment.

4.4.1 Business understanding

In the Business Understanding phase, we derived objectives and requirements
from a business perspective and converted them into a data mining problem. The
objective from a business perspective was to prevent delays due to missing com-
ponents in the final assembly so that the predefined due date of a customer order
can be met. Early detection of components that have a higher tendency of late
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finishing in their preprocessing stages would be helpful to prevent a subsequent
delay in the final assembly, as the production planer can accelerate the order
in the preprocessing stages. The company under observation develops machines
for steel production, which are made up of several hundred components. These
components are both procured from suppliers and are manufactured in-house.
An analysis carried out in the company beforehand showed that approx. 95% of
the assembly start delayers are components produced in the company’s produc-
tion. Thus, the scope of our prediction model was constrained to the components
manufactured in-house. In the process upstream of the assembly, these in-house
components are processed by various machines for mechanical and welding
operations.

In the prediction model, the components were classified as “assembly start
delayer” (ASD) or “no-assembly start delayer” (NASD) which was identified as
a suitable modeling approach in our previous research [136]. For this classifica-
tion, a slightly modified version of the definition of the assembly start delayers
given in chapt. 2 is applied: Instead of considering only one single assembly start
delayer as a date determining factor for the assembly start according to the defi-
nition of Beck and Schmidt [9, 32] and thus, assigning the highest potential for
improvement to this component, several assembly start delayers were considered
for each assembly order. This extension is recommended, since considering only
one assembly start delayer is not revealing whether this single one is an outlier
or whether a large portion of the components is completed at a similar time.
The modified assembly start delayer classification was defined as follows: If the
schedule variance of a component is larger than or equal to 80% of the maximum
schedule variance of all components of an assembly order, which is the schedule
variance of the actual assembly start delayer, then this component is considered
as an assembly start delayer. In detail, we utilized the formula

Class =
{

ASD; SVi,j ≥ 0, 8 ∗ SVj,max ∧ SVi,j > 0
NASD; SVi,j < 0, 8 ∗ SVj,max ∨ SVi,j < 0

(4.1)

to assign one of the two classes “assembly start delayer” (ASD) and “no assembly
start delayer” (NASD) to every component i, where SVi,j is the schedule variance
of component i of assembly order j, calculated by

SVi,j = CDi,j − TSDj (4.2)
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where CDi,j is the calculated completion date of component i of assembly order
j based on the predicted lead time of the prediction model and TSDj the target
start date of assembly order j, and SVj,max the maximum schedule variance of
all components of assembly order j, calculated by

SVj,max = CDj,max − TSDj (4.3)

where CDj,max is the latest completion date of all components of assembly order
j (the completion date of the respective completer).

The time of application of the prediction models (prediction time) and thus,
the time of gaining knowledge about potential assembly start delayers should
be as early as possible within the production process, as the production planer
can accelerate the order in the manufacturing processes upstream of assembly
stages. For the prediction models within this study, we set the date of order
creation and thus, the completion of order planning as prediction time. At this
point, all necessary information, such as bill of materials, operations, and machine
assignments, are available.

Summarized, we converted the business objective to a binary classification
problem. Subsequently, to answer the research question, and with our hypothe-
sis that the model quality for the prediction of assembly start delayers increases
when utilizing material data, we derived our data mining approach: We com-
pared ML-based binary classification models using a data set including material
data with ML-based binary classification models using the same data set but
excluding the material data (cf. Fig. 4.1). For both cases, “including material
data” and “excluding material data,” we applied several ML-algorithms such as
tree-based classifiers, support vector machines, or neural networks utilizing the
Scikit-learn library or Keras library in Python (further details about the ML-
algorithms used are explained in sect. 4.4.1). In total, 12 models were created,
six per case utilizing different ML algorithms. Thus, with our approach we com-
pared the performance of the different ML algorithms in both cases to identify
the impact of material data on the model quality and the best performing ML
algorithm by evaluating the achieved model qualities. Such a systemic analysis
of the impact of material data on the model quality is completely new in recent
research (see section II).

To evaluate the different achieved model qualities, we applied a confusion
matrix, since the output of all ML models is the binary classification “assembly
start delayer / no assembly start delayer.” The evaluation of the model quality
with a confusion matrix is an established method and has already been demon-
strated in other studies (see, for example, [148, 149]). Based on the confusion
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Fig. 4.1 Modeling architecture to quantify the impact of material data on the model quality

matrix, we calculated Matthew’s correlation coefficient (MCC) and the F-score
as established evaluation metrics to compare the performance of the different ML
algorithms on both data sets. As recommended by the authors in [136, 150], the
MCC considers the balanced ratios of all four confusion matrix categories and
thus, is the most informative metric to evaluate a confusion matrix. Considering
the MCC also ensured that our model was not just predicting the majority class in
our data set, which is “no assembly start delayer.” Furthermore, as recommended
by the authors in [136] we considered the F-score as an evaluation metric since
it is focusing on the prediction of positives (assembly start delayers) only, which
is the most important category in our case of interest. For the F-score, we used
the F2-score in detail considering the recall two times as important as precision.
This weighting is based on the assumption that it seems more important to iden-
tify as many of the actual assembly start delayers as possible, in case of doubt
even more than exist, and to define acceleration measures for them, than not to
identify individual assembly start delayers at all. By evaluating each ML model
with these metrics, the impact of material data on the quality of a model pre-
dicting assembly start delayers can be determined. Furthermore, with the MCC
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and F2-score, we use the same metrics as in our previous research [136] and thus
ensure comparability.

4.4.2 Data understanding

In the data understanding phase, according to the authors in [147], we col-
lected and analyzed the data to identify data quality problems and to develop
a solid understanding of the dataset. The data were collected from the Enterprise
Resource Planning (ERP) and Advanced Planning and Scheduling System (APS)
of the plant and machine manufacturer under observation with a period under
review of one year. In detail, we collected data from the four data classes order

• Order-ID
• Material-ID
• Subsequent Order-ID
• Project-ID

Order

• Order Name
• Order Type
• Target Start Date
• Target End Date
• Actual Start Date
• Actual End Date
• Actual Order Creation Date
• Customer

• Order-ID
• Operation-ID
• Subsequent Operation-ID
• Machine-ID

Operation

• Operation Name
• Operation Type
• Target Start Date
• Target End Date
• Actual Start Date
• Actual End Date
• Target Processing Time
• Target Setup Time

• Material-ID

Material

• Material Name
• Material Type
• Gross Weight
• Density
• Length
• Width
• Height

• Machine-ID

Machine

• Machine Name
• Machine Type
• Machine Group
• Location
• Size
• Performance
• Energy Consumption

Fig. 4.2 Entity-relationship diagram with an excerpt of available features per data table
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a) Gross weight b) Number of operations

No assembly start delayer Assembly start delayer

Fig. 4.3 Excerpt of the exploratory data analysis: Impact of gross weight and number of
operations on assembly start delayers

data, machine data, material data, and system status, and thus follow the recom-
mendation of the authors in [19]. The data export consisted of several separate
CSV files containing assembly orders, the corresponding production orders and
operation as well as information on the material and the systems status. To better
join the different files, we set up an entity-relationship diagram (see Figure 4.2)
enabling us to identify the primary keys, which are the prerequisite for their
connection.

The complete dataset consisted of 356 assembly orders comprising 1,506 com-
ponents supplied by the in-house production and thus, is equal to our previous
research [136]. These 1,506 in-house components are manufactured by a total of
3,187 production orders comprising 15,772 operations. With our modified defini-
tion of an assembly start delayer, we had a total of 24% “assembly start delayers”
and 76% “non-assembly start delayers” of all in-house components.

Further, as recommended by the authors in [147] we focused on gaining a
better understanding of the data and developing first ideas of relevant data fields
for the prediction of assembly start delayers by performing an exploratory data
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analysis. In detail, we utilized several graphical techniques such as boxplots, scat-
ter plots, or Pareto charts. For example, we analyzed the distribution of the total
number of operations needed to manufacture ASDs and NASDs (see Fig. 4.3a)
showing a slight deviation between both classes. Components manufactured in
more operations have a slightly higher tendency of becoming an ASD. As another
example, we plotted the distribution of the gross weight of ASDs and NASDs as
an initial study of the impact of material data (see Fig. 4.3b). ASDs have a
slightly higher mean and median gross weight than NASDs. Heavier components
may need extra handling effort and transport time and therefore have a higher
tendency of becoming an ASD.

4.4.3 Data preparation

With the gathered understanding of the data, we continued with preparing the final
dataset for training the models by transforming and cleaning the initial raw data.
In detail, we continued to identify the relevant data field for the prediction models
by performing a correlation analysis as recommended by the authors in [151].
Subsequently, after further data preprocessing operations such as discretization,
decomposition, normalization, and aggregation (see, for details, [152, 153]), we
defined the features for our data model resulting in 17 features, although not all
features are applied in all models (see Table 4.1).

Since tree-based classifiers from the Scikit-learn library and neural networks
from Keras library can only be trained on numerical variables in Python [154],
the categorical variables such as “component name”, “dispatcher” and “priority”
were converted to Boolean values by performing One-Hot-Encoding. The number
of features increases to a total of 375 features. Due to the One-Hot-Encoding, our
data set was transformed into a sparse matrix containing equal information but in
a higher dimensional room. This sparse matrix could for example hinder the opti-
mization of a neural network, due to a not neglectable number of zeros as input of
the model. Furthermore, the encoded features could have a dependency on each
other. To investigate the correlations between the features, we created a 375×
375 correlation matrix in form of a lower triangular leading to 71,631 individual
correlation coefficients which were assigned to five bins of different correlation
strengths (see Table 4.2) according to the established rules recommended by the
authors in [155, 156]. Initially, 1.4% of all feature-pairs showed at least a mod-
erate correlation a correlation coefficient higher than 0.5 and 1.5% of features
pairs have low correlation. This indicates an existing dependency between our
features. Thus, a Principal Component Analysis (PCA) was performed to avoid
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Table 4.1 Features used in the prediction model

Data class Feature Including
material data

Excluding
material data

Order Data Target lead time X X

Total number of orders X X

Total number of operations X X

Target processing time X X

Target setup time X X

Order creation-delay X X

Priority X X

Operation type X X

Dispatcher X X

Number of production areas a
component/order passes through

X X

System status Number of orders in system X X

Material data Gross weight X

Component name X

Machine data Production area X X

Workstation type X X

Workstation number X X

Workstation capacity X X

a sparse matrix and to reduce the dependencies between the features to ensure a
good model quality. The improvement of the model quality by using a PCA has
already been demonstrated in other studies (see, for example, [157]). By perform-
ing PCA, the 379 features were transformed into 46 principal components, which
explain most of the variance of the original features. After performing PCA, we
again performed a correlation analysis and assigned all correlation coefficients to
the equal five bins (see Table 4.2), showing that all principal component pairs
have a negligible correlation.

For training and evaluating the models, the dataset was divided into training
and test sets with a ratio of 80% training data to 20% test data. In selecting the
ratio, we followed established ratios. These are approx. 75%–80% training data
to 25%–20% test data [158].
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Table 4.2 Correlation between features before and after PCA following bin sizes of [155,
156]

Bin Correleation coefficient Before PCA After PCA

Very high correlation 1.0 to 0.9 (–1.0 to –0.9) 0.3% 0.0%

High correlation 0.9 to 0.7 (–0.9 to –0.7) 0.6% 0.0%

Moderate correlation 0.7 to 0.5 (–0.7 to –0.5) 1.5% 0.0%

Low correlation 0.5 to 0.3 (–0.5 to –0.3) 6.5% 0.0%

Negligible correlation 0.3 to 0.0 (–0.3 to –0.0) 91.1% 100.0%

4.4.4 Modeling

The subsequent modeling phase covered the development of ML models and the
calibration of the hyperparameters to optimal values [147]. All ML models pre-
dict assembly start delayers using a binary classification, which was identified as
the best modeling approach in our previous research [136]. Thus, components are
classified as “assembly start delayer” or as “no assembly start delayer.” To ensure
the comparability of all ML models, we chose the same set of ML algorithms on
both data sets. In detail, we compared the performance of a Support Vector clas-
sifier (SVC), a Decision Tree (DT) classifier, a Random Forest (RF) classifier, an
Adaptive Boosting (AdaBoost) classifier utilizing a DT-classifier as a base esti-
mator, a Gradient Boosting (GB) classifier and a Multilayer Perceptron (MLP),
since they are established approaches for binary classifications [159–161]. For the
MLP, specifically, a double hidden layer feedforward net with stochastic gradient
descent (SGD) optimizer was applied. The number of nodes was 46 nodes on the
input layer to cover all input features after performing One-Hot-Encoding and
PCA, 50 nodes on each hidden layer, and one node on the output layer for the
binary classification. The number of hidden layers, the number of nodes on the
hidden layers, and the activation function on the hidden layers were defined by
continuous optimization of the model quality. In detail, we compared different
network architectures ranging from one to ten hidden layers with 1 to 100 nodes
per hidden layer. The best network structure was the above-mentioned double
hidden layer net. As activation function for the output layer, a sigmoid function
was chosen, which is particularly suitable for binary classifications [162]. For
the hidden layers, we applied a ReLU function as activation function after com-
paring it with the sigmoid function, tanh function and He function regarding the
reached model qualities. All classification models were implemented in Python
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3.7 utilizing the Scikit-learn library and Keras library. An overview of the opti-
mized hyperparameters used in each of the classification models is given in the
appendix in Table 4.4 and Table 4.5.

In summary, we created 12 different prediction models to classify components
as ASD or NASD. These 12 models differentiated in the utilization of material
data—including or excluding material data—and in the utilized ML algorithm—
six algorithms per material data case. The target was to quantify the effect of
utilizing material data on the quality of a model predicting assembly start delayers
while comparing different ML algorithms, which is a novel approach compared
to recent literature. As metrics to evaluate the model quality, we used the MCC
and F-Score based on a confusion matrix.

4.5 Section IV: Evaluation of model application

In the evaluation phase, the applied models were thoroughly evaluated to check
whether they meet the targets of our data mining approach [147]: Quantifying the
impact of material data on the quality of a model predicting assembly start delay-
ers. Thus, we split the two data sets—including and excluding material data—into
two separate train and test data sets. Subsequently, we trained and tuned all ML
algorithms based on the train data sets and then evaluated the achieved model
qualities based on the two test data sets. The results are documented in Table 4.3.

Upon evaluating the metrics, it is particularly noticeable that the models
trained on the data set including material data achieved the best results. Fur-
thermore, the best results per data set were both achieved by the GB classifier.
With an MCC of 0.67 and an F2-score of 77%, the GB classifier utilizing mate-
rial data outperformed the GB classifier not utilizing material data with an MCC
of 0.62 and an F2-score of 71%. Thus, comparing the best ML model per data
set already indicates a dependence of the model quality on the material data.

Additionally, we created boxplots showing the spread in the F2-score and
MCC of all ML models utilizing the two different data sets (see Fig. 4.4). With
the boxplots, the overall dependency of the model quality on the material data
independent of the considered ML algorithm was visualized. The distribution of
the F2-score and MCCs of the ML models trained on the dataset including mate-
rial data differed from the respective distribution of the ML models trained on
the dataset excluding material data. This indicated that, overall, the ML models
trained on the dataset including material data performed better than those exclud-
ing material data. Thus, the comparison of the overall spread of the ML models
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Table 4.3 Reached model qualities of all prediction models

Model Including material data Excluding material data Deviation

MCC F2-Score MCC F2-Score MCC F2-Score

SVC 0.55 72% 0.47 67% 0.08 5%

DT 0.56 68% 0.52 66% 0.04 2%

RF 0.56 70% 0.50 68% 0.02 2%

GB 0.67 77% 0.62 71% 0.05 6%

AB 0.60 72% 0.56 68% 0.04 3%

MLP 0.59 73% 0.56 71% 0.02 2%

emphasizes the indication that material data have an impact on the quality of
models predicting assembly start delayers.

0.8

0.7

0.3

0.4

0.5

0.6

Fig. 4.4 Boxplot of MCC and F-Score for all prediction models on each of the four levels
of details

Finally, we performed a statistical test to validate our working hypothesis. In
detail, we performed two paired-samples t-tests, also referred to as dependent
sample t-tests, both for MCC and F2-score. This paired-samples t-test is used to
assess whether the population means of two related samples differ. Thus, with
the two paired-samples t-tests, we compared the means of the two samples ‘ML
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models including material data’ and ‘ML-models excluding material data’ indi-
vidual for MCC and F2-score. Additionally, we considered that the applied ML
algorithms in each of the two samples were equal. Applying both tests revealed a
p-value for MCC of approx. 0.003 and for the F2-score of approx. 0.005. Conse-
quently, since both p-values were less than 0.05, the difference between the two
samples in both the MCC and F2-score was statically significant. Accordingly,
the impact of our considered material data on the model quality was statistically
significant as well.

Consequently, the working hypothesis could be confirmed. The model qual-
ity significantly increased when material data were considered. However, in our
case, there was only a slight increase in the MCC with an average of 0.04 and
the F-score with an average of 3%. Thus, we further analyzed possible explana-
tions for this small impact only and hypothesized prospects to further increase
the benefit of utilizing material data. The reason for the small impact of mate-
rial data observed could be that the considered material data—gross weight and
component name—contain too little information to describe the characteristics of
the components. Other information of the component such as dimensions, vol-
ume or number, and specification of features in the component’s CAD model like
drill holes, shaft shoulders, radii, or surface roughness could further increase the
impact of material data. For example, the transportation, stocking, and handling
effort of a component do not solely depend on its weight, but also other character-
istics like dimensions and volume. For instance, the dimensions of a component
determine whether the component can be easily transported by a forklift or crane,
and thus, indicates an impact on an increase in transport times. Furthermore,
the number and specification of a component’s features indicate its complexity
and need for special processing operation influencing the processing time. Thus,
considering additional material data could increase the model quality.

In summary, we could answer our research question with our main contri-
bution that the model quality of an ML-based model predicting assembly start
delayers is significantly increasing when using material data. Thus, our study
proved that models predicting assembly start delayers benefit from utilizing mate-
rial data. In our exemplary case, we included the material data gross weight
and component name in our prediction model significantly increasing the model
quality. With these results, our approach is the first to systematically analyze the
influence of material data on model quality in predicting assembly start delayers.
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4.6 Section V: Limitations and implications
for further research

In this work, we only considered one single machine and plant manufacturer as
an exemplary case. Although a case-based approach is common in the field of
machine learning (see, for example, [70, 71, 126, 128, 136]), the findings might
remain case-specific and might not be generalizable. Accordingly, future research
should validate the achieved findings considering additional machine and plant
manufacturers in further case studies.

Nevertheless, in our work, we were able to show that material data have a pos-
itive influence on model quality for predicting assembly start delayers. However,
the verifiable influence of the material data on the model quality was only small.
We suspected the small range of data fields from the material data as a possible
reason for this. Further material data could improve the model quality and thus
strengthen the influence of the material data. Accordingly, future research should
set up a model to predict assembly start delayers with additional material data.

The addition of further material data could also improve the generally low
model quality. With a maximum MCC of 0.67 and a maximum F2-score of 77%,
the model quality is still too low for a successful practical application of the
model, as there are still many false positive and false negative predictions. In
general, the model quality depends on the input data, the utilized ML algorithm,
and the complexity of the modeling approach [137, 163–165]. Together with
our previous study [136], we already analyzed several different ML algorithms
and modeling approaches. Thus, we infer that neither further optimization of the
ML algorithm nor the modeling approach used is likely to lead to a significant
improvement of the model quality. Instead, we infer that an enhancement of
the input data could further improve the overall model quality, as the database
also has an essential influence on the model quality [137, 138]. In our study,
we already proved that material data influence the model quality. Consequently,
we encourage further studies to consider additional data fields from the area
of material data when setting up a model predicting assembly start delayers to
further optimize the model.

Together with our previous work in the same research field [136], our findings
observed are a good starting point in the prediction of assembly start delayers and
the influence of material data on the model quality. As we could easily access
the considered material data and integrate it into our data set, we added value
to our model without much additional effort for data acquisition. Consequently,
we have shown that it is worth also considering data, which might not have any
influence on the model quality at first glance, and consequently is not commonly



70 4 Publication II: Impact of Material Data in Assembly Delay …

used. For future research in the field of applied machine learning, the elaboration
of the database should be extended to other easily accessible data sources, even
if they are not typically considered for the respective use case.

4.7 Section VI: Conclusion

At machine and plant manufacturers, the manufacturing process typically begins
with the design of the product and its components before planning and exe-
cuting the production process to manufacture the individual components needed
in the subsequent assembly process. An essential factor for meeting a deliv-
ery date is the start of the assembly on time and a prior timely supply of the
components needed for assembly. Subsequently, components produced in the pro-
cesses upstream of the assembly have a direct influence on the performance of
the assembly process. To meet delivery dates, we set up a supervised learning
model to predict potentially delayed individual components (we call them assem-
bly start delayers) in the early stages of the manufacturing process. Currently,
machine learning models in the related area of lead time prediction typically
include information about the system status, the machines, and the orders in
their prediction model and do not consider material data [19]. As the design
of a product is a central process for machine and plant manufacturers and the
components are typically tailor-made to meet the customer’s needs, we assumed
that material data influence the model quality. Thus, we formulated the follow-
ing working hypothesis: “The model quality for the prediction of assembly start
delayers increases when utilizing material data.” To verify the working hypoth-
esis, we applied the established CRISP-DM procedure at an exemplary chosen
machine and plant manufacturer. Here, we created 12 different prediction models
to classify components as “assembly start delayer” or “no assembly start delayer.”
These 12 models differentiated in the utilization of material data—including or
excluding material data—and in the utilized ML algorithm—six algorithms per
material data case. The target was to quantify the effect of utilizing material data
on the quality of a model predicting assembly start delayers while comparing
different ML algorithms. As metrics to evaluate the model quality, we used the
MCC and F-Score based on a confusion matrix.
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Evaluating the different quality metrics of the 12 prediction models revealed
a positive impact of the material data on the model quality. Thus, the working
hypothesis could be confirmed. However, in our case, there was only a slight
increase in the MCC and F-score. As a possible explanation for the small impact
on the model quality, we suspect the limited information about the material
considered in our model—gross weight and component’s name only. Adding fur-
ther information about the material such as dimensions, volume, or number and
specification of features in the component’s CAD model like drill holes, shaft
shoulders, radii or surface roughness could further increase the impact of mate-
rial data. Nevertheless, even with our limited consideration of material data. We
verified, that utilizing data, which is commonly not used in prediction models
increases the model quality.

In total, we successfully analyzed the impact of material data on the quality of
models predicting assembly start delayers and gave insights into the performance
of different modeling approaches. With our results, we achieved our two main
contributions: First, we developed a model to predict assembly start delayers
utilizing a machine learning classification approach. Second, we identified that
material data influence the model quality of a model predicting assembly start
delayers. However, there was only a slight influence. With our findings, for future
machine learning approaches in the area of production planning and control, we
recommend considering data sources apart from typically used data sources as
well. We were able to show that even atypical data sources can contribute to an
improvement of the model.

4.8 Appendix

The hyperparameters used in the prediction models were optimized utilizing a
grid search and cross-validation algorithms (GridSearchCV) from scikit learn.
Table 4.4 and Table 4.5 summarize the utilized hyperparameters in the different
models on the four levels of detail.
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4.9 Presentation of own contribution

All the work presented within this publication was carried out by me. This
includes the definition of research questions and hypotheses, the definition of
the research approach including the set up to compare the performance of ML-
models with different data sets—with or without material data—and different
ML-algorithms, the collection, cleaning and aggregation of data from the man-
ufacturing company under consideration, the feature engineering and setting up
of the data model, the training and tuning of all ML-models including writing
of the respective code in Python as well as the evaluation and critical reflection
of the results. Further, transforming the work into text and writing of the pub-
lication were entirely in my hands. All three co-authors Prof. Dr. Burggräf, Dr.
Wagner and Mr. Heinbach contributed with ideas to the research concept and in
the internal review process.
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5.1 Abstract

For manufacturing companies, especially for machine and plant manufacturers,
the assembly of products in time has an essential impact on meeting delivery
dates. Often missing individual components lead to a delayed assembly start,
hereinafter referred to as assembly start delayers. Identifying the assembly start
delayers early in the production process can help to set countermeasures to meet
the required delivery dates. In order to achieve this, we set up 24 prediction
models on four different levels of detail utilizing different machine learning-
algorithms—six prediction models on every level of detail—and applying a case-
based research approach in order to identify the model with the highest model
quality. The modeling approach on the four levels of detail is different. The
models on the coarsest level of detail predict assembly start delayers utilizing
a classification approach. The models on the three finer levels of detail predict
assembly start delayers via a regression of different lead times and subsequent
postprocessing operations to identify the assembly start delayers. After training
of the 24 prediction models based on a real data set of a machine and plant
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manufacturer and evaluating their model quality, the classification model utilizing
a Gradient Boosting classifier showed best results. Thus, performing a binary
classification to identify assembly start delayers was the best modelling approach.
With the achieved results, our study is a first approach to predict assembly start
delayers and gives insights in the performance of different modeling approaches
in the area of a production planning and control.

5.2 Section I: Introduction

Production companies are facing an ongoing change. They are challenged to
assert themselves in international markets and to differentiate their products from
other products available on the market in in terms of functionality, quality and
price. Furthermore, the logistics performance, such as high adherence to delivery
dates or short delivery and lead times, is becoming a key competitive factor [64,
133, 166]. A typical example for this are machine and plant manufacturers, whose
products often consist of a large number of customized components to enable a
tailor-made solution for the respective customer [1, 2]. To ensure high adherence
to delivery dates and short lead times, the punctual assembly of a product is a
central factor, as the product can only be delivered to the customer on time if it
has been manufactured and assembled on time. The task of the assembly is to
assemble a product of higher complexity with predefined functions with a certain
quantity of components in a partly multi-stage process in a given time [135].
The manufacturing processes upstream of the assembly therefore have a direct
influence on the performance of the assembly process, since a large number of
material flows from different supply chains converge in the assembly process
[42]. Often it is not possible to provide the required components on time and
simultaneously. Under the assumption that all components required for assembly
must be available at the start of assembly, the assembly process is subsequently
delayed, if only one component is provided too late [52].

In order to avoid delays of the assembly start and thus to meet delivery dates,
it would be helpful to predict potential missing components, we define those
components as ‘assembly start delayers’, in early phases of the manufacturing
process. By subsequently taking appropriate countermeasures, such as adding
extra shifts in production or outsourcing of individual components, the assembly
start delayers could be prevented. A central factor for the prediction of assembly
start delayers is the lead time of the manufacturing processes upstream of the
assembly. The aim of these manufacturing processes is the production of indi-
vidual components. This is usually done in one or more sequentially executed
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orders, which in turn consist of one or more operations [167]. The lead time can
therefore be considered at three different levels of detail: The component lead
time, the order lead time and the operation lead time.

Due to the influence of the lead time on meeting the start of assembly, it
seems obvious to predict assembly start delayers based on a lead time prediction.
In addition, the lead time prediction can vary in the three levels of detail—
component, order and operation lead time. It is also conceivable to predict the
assembly start delayers directly via a classification, without a prior lead time
prediction. This results in four different options with different level of detail to
predict assembly start delayers. Thus, the aim of our paper is to set up a model
for the prediction of assembly start delayers and to analyze and systematize the
influence of the level of detail of the model on the model quality. As a research
method we applied a case study at a machine and plant manufacturer. With the
achieved results our paper provides two main contributions:

• We implemented machine learning models based on different algorithms to
predict assembly start delayers.

• We identified the coarsest level of detail utilizing a binary classification as the
best modeling approach.

Our paper is structured as follows. Section II first introduces the product struc-
ture and manufacturing processes in an engineer-to-order environment as well as
available approaches for lead time prediction. Section III elaborates the predic-
tion model to identify assembly start delayers utilizing different levels of detail.
In section IV the results are presented and discussed. Section V critically reviews
the limitations of the applied research method and the results obtained. Further-
more, the implications for further research are derived. Finally, a summary is
given in the last section.

5.3 Section II: State of the art

The products of machine and plant manufacturers usually consist of several com-
ponents. These are procured from suppliers or manufactured in the company’s
own production facilities [42]. Purchased components can be procured on an
order-anonymous basis, such as for standard components, and on an order-specific
basis, such as for special and drawing components. The procurement of compo-
nents from suppliers as well as the manufacturing of components in the in-house
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production belong to processes upstream of the assembly [32]. Since the assem-
bly is a convergence point where several material flows converge, the risk of
delays due to missing components is increased.

One established model to analyze converging material flows is the assembly
flow element developed by Schmidt [9] with further developments and applica-
tions in the assembly flow diagram and supply diagram [9, 32]. In all models,
the so-called completer is the last inflow to an assembly order and is therefore
the component that was supplied last by the processes upstream of the assem-
bly. A completer can be completed on time—before the planned start date of the
assembly, or late—after the planned start of the assembly. A late finalization of
a completer therefore leads to a delay in the start of assembly. In this article we
define such components as “assembly start delayer” (see also Chap. 1). Assum-
ing that all components are necessary to start the assembly, the schedule variance
of the assembly start delayer determines the earliest possible start date of the
assembly. Accordingly, a temporal acceleration of the manufacturing and/or pro-
curement process of an assembly start delayer has the biggest potential to push
a delayed assembly start back to the target date. However, the supply diagram
is primarily designed to analyze data relating to the past and to identify general
issues such as an overall bad assembly supply situation in individual assembly
areas. To derive case-specific countermeasures to accelerate individual production
orders further analysis is needed.

The lead time of the processes upstream of the assembly has a central influ-
ence on meeting the target start date of the assembly and thus on meeting
customer requirements. A single component is typically manufactured in one or
more sequentially executed orders [167]. Consequently, we distinguish between
a component lead time and an order lead time. Further, an order is typically sub-
divided into individual operations [11, 28]. Thus, we can differentiate between
order lead times and operation lead times. The operation lead time is further
subdivided into the operation time and interoperation time. As is well known,
the interoperation time tends to have a higher share in the lead time than the
operation time [28, 79].

In production, lead times are determined by setting up a production schedule
taking into account the available production capacities, the technical require-
ments, the demand dates and the system status [13, 14, 52]. The order sequence
is defined according to certain rules in order to calculate start and end dates
of the orders at the workstations [53] and is one of the main applications for
machine learning (ML) [97]. In addition to the calculation of the lead time based
on scheduling, it is also possible to predict lead time directly. By predicting the
lead times, completion dates can be determined early and deviations from the
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schedule can be detected [60]. In the past, many approaches for the prediction
of lead times have been established. For example, Cheng and Gupta [68]
investigated methods from the field of operations research (OR) such as Constant
(CON), Random (RAN) or Total-Work (TWK). With the increasing development
of ML, new methods for predicting lead times have emerged (see, for example,
[69, 98, 99]).

A systematic literature review conducted by Burggräf et al. [19] has ana-
lyzed existing approaches focusing on the prediction of lead times in the research
fields of ML and OR and classified them according to the three criteria data class,
data origin and used method/algorithm. Looking at the data class, the authors
identified that the majority of publications examined use order data and informa-
tion about the system status of the production system (see, for example, [122,
123]). In contrast, material data is rarely used, and employee data is never used
to predict lead times. Given the fact that the products of machine and plant man-
ufacturers are typically designed tailor-made to meet the specific customer needs,
and that the material data therefore characterize a product, this information should
be considered when predicting lead times. The authors in [71, 124] have already
used material data utilizing artificial neural networks (ANN) and random for-
est (RF) for the prediction of lead times, but without using the primarily used
information about the system status and machine data and furthermore not in the
case of machine and plant manufacturers. According to Burggräf et al. [19],
there is a lack of prediction models for machine and plant manufacturers that
use the primarily used data classes and material data for the prediction of lead
times. ANN and RF have already proven successful in including material data in
the prediction model. When looking at the data origin, the authors of [19] also
identified that the use of real data strongly decreases with an increasing number
of considered data classes. Thus, with increasing complexity of the prediction
model they identified a lack of models using real data.

In addition to the selection of suitable data and a suitable approach, the level
of detail of the model is crucial for a successful model application. According to
the authors in [168], the level of detail refers to the system that the model repre-
sents (e.g. in the case of a model of a production line, the number of machines,
components, etc. contained in the model), and not to the exact way in which
the model is implemented (e.g. number of data fields used). Consequently, with
respect to a model focusing on assembly start delayers, considering the lead time
at the level of components, orders or operations would be possible levels of detail.
An increase in the level of detail usually leads to a higher model accuracy, but
with a degressive characteristic [165]. A 100% accurate model is only possible if
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the real system is fully mapped, which is typically not achieved [169]. Further-
more, an increase in the level of detail beyond a certain point can also lead to
a less accurate model [165]. Therefore, in this work the impact of the degree of
detail on the model quality will be investigated.

In summary, currently there is no model available for the prediction of assem-
bly start delayers in the field of machine and plant manufacturers that considers
the necessary complexity of the respective industry sector. There are models
available for the prediction of lead time, but they are not explicitly used for
the prediction of assembly start delayers. In addition, decisive data classes for
machine and plant manufacturers such as material data are not used and there
are also deficits in considering real data as the base for training the models. Fur-
thermore, the level of detail of the model is not considered in any of the existing
approaches.

In this work we will focus on investigating the influence of the level of detail
of the modelling on the model quality. For this purpose, the following research
question is posed, considering the previous explanations: “How does the level of
detail of the modelling affect the model quality to predict assembly start delay-
ers?” Considering the argumentation of the authors in [165], we formulate the
following working hypothesis: “The model quality for the prediction of assembly
start delayers increases with a finer level of detail.”

5.4 Section III: Modelling approach

A case-based research approach is used to answer the research question and to
investigate the working hypothesis. A case-based research approach is an objec-
tive, detailed investigation of a current phenomenon where the researcher has
little control over real events [170]. One motivation for a case-based research
approach is to gain insights for real needs, for example the needs of manu-
facturing companies, rather than to develop theories without practical relevance
[145]. Furthermore, a case-based research approach has already been success-
fully applied in the area of lead time prediction (see, for example, [70, 71, 126,
128]. Although the research question focuses on the prediction of assembly start
delayers and not on a lead time prediction, the lead time is one of the central
factors for an assembly in time and thus a related research area. Accordingly,
a case-based research approach is an appropriate method to answer the research
question and to investigate the working hypothesis.

As representative case for the case-based research approach, a machine and
plant manufacturer was chosen. A product of this company usually consists of
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several hundred components and is then used in steel production. An analysis
carried out in the company beforehand showed that approx. 95% of the assem-
bly start delayers are components produced in the company’s own production.
Accordingly, components procured from suppliers were not considered in the
developed prediction model. Thus, the scope of this article is limited to the
production of components in in-house manufacturing.

5.4.1 The prediction model

To answer the research question, 24 ML-models were created in total, which
differ in their level of detail (see Fig. 5.1) and the utilized ML-algorithm. The
models at the different levels of detail are independent of each other, but all
pursue the same goal: the prediction of assembly start delays. To achieve this
goal, each model comprises various operations. Further, we compared the perfor-
mance of the different ML-algorithms on each level of detail to identify the best
performing ML-algorithm by evaluating the achieved model qualities.

The first and coarsest level of detail (1) is the prediction of assembly start
delayers using a binary classification. On this level of detail, components are
classified directly as “assembly start delayer” or as “no assembly start delayer”.
On the levels of detail (2)-(4) the assembly start delayers are indirectly predicted
based on a lead time prediction. With increasing level of detail, a finer granular
consideration of the lead time, according to the definition of lead times by the
authors in [28] (see Chap. 2), is used for the prediction. Consequently, the com-
ponent lead time is used on the second level of detail (2), the order lead time
at the third level of detail (3) and the operation lead time at the fourth and thus
finest level of detail (4).

The detailed explanation of the operation principals including the ML-
algorithms used on the four levels of detail (see Table 5.1) is first given for
the coarsest level of detail (1). Afterwards the operation principal of the levels
of detail (2)-(4) is explained. In the explanation the levels of detail (2)-(4) are
considered together since their operation principal and the ML-algorithms used
are analogous and differs only in the considered lead time. The prediction models
on all levels of detail were implemented in Python 3.7 utilizing the scikit-learn
library.

In the models on the coarsest level of detail (1) (see Fig. 5.2), we compared the
performance of a Support Vector classifier (SVC), a Decision Tree (DT) classifier,
a Random Forest (RF) classifier, an Adaptive Boosting (AdaBoost) classifier uti-
lizing a DT-classifier as base estimator, a Gradient Boosting (GB) classifier and an
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Table 5.1 ML-algorithms utilized in the considered four levels of detail

ML-algorithm Level of detail 1
Classification

Levels of detail 2–4
Regression

Support Vector Machine (SVM) X

Linear Regression (LR) X

Decision Tree (DT) X X

Random Forest (RF) X X

Adaptive Boosting (AdaBoost) X X

Gradient Boosting (GB) X X

Artificial Neural Network (ANN) X X

ANN, since they are established approaches for binary classifications [159–161].
For the ANN, specifically, a single hidden layer feedforward net with a sigmoid
function as activation function and a stochastic gradient descent (SGD) optimizer
was applied. The sigmoid function as activation function is particularly suitable
for binary classifications [162]. The number of nodes was 46 nodes on the input
layer to cover all input features after performing One-Hot-Encoding, 16 nodes on
the hidden layer and two nodes on the output layer to ensure the binary classi-
fication ‘assembly start delayer’ and ‘no assembly start delayer’. The number of
hidden layers, the number of nodes on the hidden layers and the activation func-
tion on the hidden layers were defined by a continuous optimization of the model
quality. In detail, we compared different network architectures ranging from one
to ten hidden layers with 1 to 100 nodes per hidden layer and different activation
functions on the hidden layers such as ReLu function, sigmoid function, tanh
function and He function. The best network structure was the above mentioned
single hidden layer net. An overview of the optimized hyperparameters used in
each of the classification models is given in the appendix in Table 5.5.

For the classification a slightly modified version of the definition of the assem-
bly start delayers given in section II is applied: Instead of considering only one
single assembly start delayer as a date determining factor for the assembly start
according to the definition of Beck and Schmidt [9, 32] and thus assigning
the highest potential for improvement to this component, several assembly start
delayers were considered for each assembly order. We recommend this extension,
since considering only one assembly start delayer is not revealing whether this
single one is an outlier or whether a large portion of the components are com-
pleted at a similar time. The modified assembly start delayer classification was
defined as follows: If the schedule variance of a component is larger or equal
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to 80% of the maximum schedule variance of all components of an assembly
order, which is the schedule variance of the actual assembly start delayer, then
this component is considered as an assembly start delayer.
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Fig. 5.2 Modelling architecture for the classification and the regression approaches

The models on the levels of detail (2)-(4) (see. Fig. 5.2) are based on
a lead time prediction using a regression approach. Here we compared the
performance of a linear regression (LR), a DT-regressor, a RF-regressor, an
AdaBoost-regressor utilizing an DT-regressor as base estimator, a GB-regressor
and an ANN, since they are established approaches for regression which have
already been successfully applied in lead times prediction [19]. For the ANN,
specifically, a single-hidden-layer feedforward net with a rectified linear unit as
activation function utilizing a Keras regressor was applied. This activation func-
tion is particularly suitable for the prediction of lead times, since its output is
limited to positive values only (negative lead times are not plausible), and it is an
established activation function for regression models in ML [171]. The number
of nodes was 46 nodes on the input layer on the level of detail (2) and 45 nodes
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on the levels of detail (3) and (4) to cover all input features after performing One-
Hot-Encoding, 12 nodes on the hidden layer and one node on the output layer
to enable the lead time as output of the regression model. The network architec-
ture was also continuously optimized by comparing different numbers of hidden
layers, number of hidden nodes on the hidden layers and activation functions on
the hidden layers. In detail, we followed the same procedure as for the classifica-
tion models and compared network architectures ranging from one to ten hidden
layers with 1 to 100 nodes per hidden layer and different activation functions on
the hidden layers such as ReLu function, sigmoid function, tanh function and He
function. The best network structure was the above mentioned single hidden layer
net. An overview of the optimized hyperparameters used in each of the regression
models is also given in the appendix in Table 5.6—Table 5.8.

However, based on the predicted lead time only, it is not yet possible to make
a statement about a potential assembly start delayer. In order to be able to identify
the assembly start delayers at the levels of detail (2)-(4), additional subsequent
operations were implemented (cf. “postprocessing” in Fig. 5.2): A completion
date was calculated individually for each component, starting from a fictitious
start date and using their respective predicted lead times. The fictitious start date
was assumed to be either the target start date of the component or, if the target
start date was already in the past at the time of creation of the corresponding
production order and thus could not be realized, the date of the order creation
and thus the completion of order planning. Typical examples of components for
which the target start date at the time of order creation is in the past are sup-
plement orders. At the levels of detail (3) and (4), an intermediate step was
performed before calculating the completion date based on a fictitious start date:
All predicted lead times (order lead times or operation lead times) of the respec-
tive component were summed up to a component lead time. Subsequently, at all
three finer levels of detail (2)-(4), the assembly start delayers were determined
according to the modified assembly start delayer logic based on the prior cal-
culated completion dates of all components of an assembly order. In detail we
utilized the formula

Class =
{

ASD; SVi,j ≥ 0, 8∗SVj,max ∧ SVi,j > 0
NASD; SVi,j < 0, 8∗SVj,max ∨ SVi,j < 0

(5.1)

to assign one of the two classes “assembly start delayer” (ASD) and “no assembly
start delayer” (NASD) to every component i, where SVi,j is the schedule variance
of component i of assembly order j, calculated by
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SVi,j = CDi,j − TSDj (5.2)

where CDi,j is the calculated completion date of component i of assembly order
j based on the predicted lead time of the prediction model and TSDj the target
start date of assembly order j, and SVj,max the maximum schedule variance of all
components of assembly order j, calculated by

SVj,max = CDj,max − TSDj (5.3)

where CDj,max is the latest completion date of all components of assembly order
j.

After performing the subsequent operations, the output of the models on the
three finer levels of detail (2)-(4) is also “assembly start delayer” or “no assembly
start delayer”.

The applied procedure in the regression models, first to predict a lead time
and, based on this, to calculate the completion dates of the components based on
a fictitious start date, seems to be a cumbersome process. One could also think
of directly predicting the completion dates without the workaround of predicting
lead times. However, a direct prediction of the completion dates of the compo-
nents is not possible with a supervised learning approach: Supervised learning
is based on historical training data. If completion dates were directly predicted
based on this historical training data, all completion dates would be in the past
and not in the future. Therefore, predicting lead time is used as a workaround, as
lead times depend on technical and organizational factors such as the available
capacity or the required processing order, whereas they are usually independent
of the considered date.

5.4.2 The data model

The data model on all four levels of detail consists of the four data classes
order data, machine data, material data and system status and thus follows the
recommendation of the authors in [19]. For the data acquisition, we followed the
procedure of Fayyad et al. [172] and Han et. al. [152] consisting of the four
steps selection, pre-processing, reduction and transformation. In the selection, the
data for predicting the assembly start delayers was selected from the Enterprise
Resource Planning System (ERP) and Advanced Planning and Scheduling System
(APS) of the machine and plant manufacturer under consideration. According
to the recommendation of the authors in [173] we included experts from the
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Fig. 5.3 Entity-relationship diagram with an excerpt of available features per data table

machine and plant manufacturer in this process. We considered all data fields
that, based on the experience of the experts, have an impact on production orders
meeting the target start date of the assembly and thus should be included in the
prediction model. In addition, further data fields were selected which the experts
classified as only potentially relevant. The data export included assembly orders,
the corresponding production orders and operation as well as information on the
material and the systems status. The period under review was set to one year.
In the preprocessing which followed the selection, the data set was corrected
by formatting individual data fields and cleaning up data gaps. Here, we also
included the company´s experts to avoid deleting data e.g. with data gaps. In the
preprocessing we also analyzed the data structure and combined the different raw
data tables, which were basically separate csv-files, to one data model. For this,
we set up an entity-relationship diagram (see Fig. 5.3) enabling us to identify the
primary keys, which are the prerequisite for the connection.
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After completing the data preprocessing, in the reduction, from the large num-
ber of data fields selected by expert knowledge, those that have an influence on
the start of assembly were selected. For this purpose, a correlation analysis was
performed according to the recommendation of the authors in [151]. In the final
step, the transformation, the data fields were modified in order to define suitable
features for the four prediction models. Here we applied typical methods such
as discretization, decomposition, normalization, and aggregation (see, for details,
[152, 153]). In the following, the transformation of the data fields ‘workstation
type’ from the data class machine data and the data field ‘order creation-delay’
from the data class order data are explained as examples. Initially, the data field
‘workstation type’ was a free text field with many different characteristics. For the
definition of the feature, the workstations were grouped according to their pro-
cessing type. For example, all machines that perform a turning operation were
grouped into ‘turning machine’. The data field ‘order creation-delay’ has been
calculated based on the deviation between the target start date of an order and
the actual date of the order creation and thus indicates a delay in the order cre-
ation. In total, the application of the methodology of Fayyad et al. [172] and
Han et. al. [152] results in 17 features, although not all features are applied at
all levels of detail (see Table 5.2).

After performing One-Hot-Encoding for each level of detail we increased the
number of features to a total of 375 features on the levels of detail (1) and (2)
and 374 features on the levels of detail (3) and (4) due to many values in the
categorical features. We further evaluated the dependence between the features by
creating a 375×375 correlation matrix in form of a lower triangular matrix for the
coarsest level of detail leading to 71.631 individual correlation coefficients. To get
an overview of the overall correlation in our dataset we assigned all correlation
coefficients to bins of different correlation strengths following the established
rules for interpreting correlation coefficients [155, 156] leading to a total of five
bins. Finally, we calculated the share of the individual bins in the number of
all correlation coefficients (cf. Table 5.3). Based on the overview, we identified
that 1.4 % of all correlation coefficient show at least a moderate correlation.
This indicates an existing dependency between our features. Thus, a Principal
Component Analysis (PCA) was performed to reduce the dependencies between
the features and to ensure a good model quality. The improvement of the model
quality by using a PCA has already been demonstrated in other studies (see, for
example, [157]). By applying a PCA, we identified 46 principal components (PC)
on the levels of detail (1) and (2) and 47 PC on the levels of detail (3) and (4)
as an appropriate number of PC. After performing the PCA, we again performed
a correlation analysis and assigned all correlation coefficients to the equal five
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bins (cf. Table 5.3) showing that the PCA eliminates the dependency between the
features.

Table 5.2 Features used in the prediction model

Data class Feature Level of detail

1 2 3 4

Order Data Target lead time X X X X

Total number of orders X X

Total number of operations X X X

Target processing time X

Target setup time X

Order creation-delay X X X X

Priority X X X X

Operation type X X X X

Dispatcher X X X X

Number of production areas a
component/order passes through

X X X

System status Number of orders in system X X X X

Material data Gross weight X X X X

Component name X X X X

Machine data Production area X X X X

Workstation type X X X X

Workstation number X X X X

Workstation capacity X X X X

Our final dataset consisted of 356 assembly orders comprising 1,506 compo-
nents supplied by the in-house production. Of course, the in-house-components
were only a subset of all components needed for assembly. Components pur-
chased from suppliers were excluded based on an analysis previously performed
by the machine and plant manufacturer showing that the in-house-components
are predominantly responsible for a delayed start of the assembly. These 1,506
in-house-components are manufactured by a total of 3,187 production orders
comprising 15,772 operations. With our modified definition of an assembly start
delayer we had a total of 24 % “assembly start delayers” and 76 % “non-assembly
start delayers” of all in-house-components.
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Table 5.3 Correlation between features before and after PCA following bin sizes of [155,
156]

Bin Correleation coefficient Before PCA After PCA

Very high correlation 1.0 to 0.9 (−1.0 to −0.9) 0.3 % 0.0 %

High correlation 0.9 to 0.7 (−0.9 to −0.7) 0.6 % 0.0 %

Moderate correlation 0.7 to 0.5 (−0.7 to −0.5) 1.5% 0.0 %

Low correlation 0.5 to 0.3 (−0.5 to −0.3) 6.5% 0.0 %

Negligible correlation 0.3 to 0.0 (−0.3 to −0.0) 91.1% 100.0%

5.4.3 Training/test split and prediction time

After defining the data model and before training the prediction models, the data
set was divided into training and test data with a ratio of 80% training to 20%
test data. In selecting the ratio, we followed established ratios. These are approx.
75%-80% training data to 25%-20% test data [158]. When splitting the data, we
ensured that the components of one assembly order are not separated. Thus, the
data-subsets (training and testing) always contain the complete bill of materials of
an assembly order produced in in-house production including all corresponding
production orders and operations. By this, we ensured that the prediction model
is subsequently able to predict the actual assembly start delayers.

The time of application of the prediction models (prediction time) and thus
the time of gaining knowledge about potential assembly start delayers should be
as early as possible within the production process, so that companies have as
much time as possible to implement acceleration measures. For the four models
within this study, we set the date of order creation and thus the completion of
order planning as prediction time. At this point, all necessary information, such
as bill of materials, operations and machine assignments are available.

5.4.4 Evaluation of the model quality

To evaluate the model quality of all models we applied a confusion matrix, since
the output on all four levels of detail is the binary output “assembly start delay-
er” or “no assembly start delayer”. The evaluation of the model quality with a
confusion matrix is an established method and has already been demonstrated in
other studies (see, for example, [148, 149]). Following the authors in [150] we
used the Matthew’s correlation coefficient (MCC) [174] as an evaluation metric,
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since it considers the balance ratios of all four confusion matrix categories and
thus is the most informative metric to evaluate a confusion matrix. Considering
the MCC also ensured that our model was not just predicting the majority class in
our data set, which is “no assembly start delayer”. Furthermore, we considered
the F-score, precision and recall [149] as evaluation metrics, since they focus
on the prediction of positives (assembly start delayer) only, which is the most
important category in our case of interest. In the F-score we weighted the recall
twice as high than the precision, deviating from a regular harmonic mean. This
weighting is based on the assumption that it seems more important to identify
as many of the actual assembly start delayers as possible, in case of doubt even
more than exist, and to define acceleration measures for them, than not to iden-
tify individual assembly start delayers at all. By evaluating each prediction of the
four different levels of detail using these metrics, the dependence of the model
quality on the level of detail of the modeling can be determined.

Besides considering the metrics MCC and F-score only, one could think to
consider the model accuracy, which is the portion of correctly predicted assem-
bly start delayers and non-assembly start delayers to all predictions, as well.
Nevertheless, the model accuracy is not a suitable metric for our study, as there
is an imbalance between assembly start delayers and non-assembly start delayers
(in our dataset 24 % to 76 %). This is due to the definition of assembly start
delayers, according to which the assembly start delayers are only a small portion
of all components of an assembly order. A typical example would be an assembly
order consisting of 100 components, 5 of which are assembly start delayers. If
the model would predict “non-assembly start delayers” for all components, the
accuracy would be 95 %. Nevertheless, none of the assembly start delayers, thus
none of the critical components, would have been identified and consequently
the goal of the prediction model would not have been reached. With the original
definition of the completer given by the authors in [9, 32], according to which
there is only one assembly start delay per assembly order, this imbalance would
have been even stronger. Therefore, we only considered the MCC and F-score as
suitable metrics to evaluate the model quality for the prediction of assembly start
delayers.

In summary, we implemented and compared 24 prediction models on four
different levels of detail (six models per level). The target was first, to identify the
ML-algorithm reaching the highest model quality per level of detail and based on
that, to identify the dependence of the model quality on the level of detail of the
modeling. The models on the coarsest level of detail (1) utilizing a classification
to directly predict assembly start delayers differ strongly from the models on the
finer levels of detail (2)-(4) utilizing a lead time prediction based on a regression
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to predict assembly start delayers. The models on the three finer levels of detail
(2)-(4) only differ in the utilized ML-algorithms and the considered lead time,
which becomes increasingly finer with the level of detail: from the component
lead time to the order lead time to the operation lead time. In all 24 models
the output was the binary classification “assembly start delayer” or “no assembly
start delayer”. To enable the binary classification for the regression models on
the levels of detail (2)-(4) the model output was postprocessed. As metrics to
evaluate the model quality we used the MCC, F-Score, precision and recall based
on a confusion matrix.

5.5 Section IV: Results

After the definition of the concept, the data model and the model evaluation,
we trained the prediction models on our data set. Hyperparameter tuning was
performed to optimize the model quality in the best possible way (cf. Table 5.5—
Table 5.8). Subsequently, the confusion matrices were created for each model
on the different levels of detail to determine the model quality. Based on the
respective confusion matrix, the metrics MCC, F-score, precision and recall were
calculated for each model (cf. Table 5.4). These metrics enabled us to determine
the best performing ML-algorithm on each level of detail and the dependence of
the model quality on the different level of detail.

Evaluating the metrics on the various levels of detail, it is particularly notice-
able that the best result was achieved at the coarsest level of detail (1): The direct
prediction of assembly start delayers utilizing a GB-classifier achieves the high-
est model quality with an MCC of 0.65 and an F-score of 75 %. With MCCs of
approx. 0.3 to 0.4 and F-scores of approx. 50 % to 60 %, the best models on the
finest three levels of detail (2)-(4) do not reach the result of the best model on the
coarsest level of detail (1). Considering the levels of detail (2)-(4) the MCC, F-
Score, precision and recall of the best performing model on each level increases
with a finer level of detail. Thus, the model quality of the best regression models
increases with a finer level of detail but still lower than the model quality of the
best classification model, which was on the coarsest level of detail (1).

Furthermore, we created boxplots for the four levels of detail to visualize
the spread of all models in the MCC and F-Score within the respective levels
of details and the dependence of the model quality on the level of detail (cf.
Fig. 5.4). It is particularly noticeable, that the models on the level of detail (1)
strongly differ from the models on the levels of detail (2)—(4) emphasizing that
the classification approach outperforms the regression approaches. In addition, the
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Table 5.4 Reached model qualitites of all prediction models

Level of detail 1 Level of detail 2

Model MCC F-Score
Preci-
sion

Recall Model MCC F-Score
Preci-
sion

Recall

SVM 0.55 72 % 56 % 78 % LR 0.22 38 % 33 % 40 %

DT 0.56 68 % 60 % 71 % DT 0.30 43 % 40 % 44 %

RF 0.52 60 % 64 % 59 % RF 0.10 26 % 24 % 27 %

GB 0.65 75 % 67 % 75 % GB 0.22 35 % 35 % 35 %

AdaBoost 0.58 71 % 61 % 74 % AdaBoost 0.13 35 % 24 % 40 %

ANN 0.45 65 % 43 % 76 % ANN 0.29 48 % 36 % 53 %

Level of detail 3 Level of detail 4

Model MCC F-Score
Preci-
sion

Recall Model MCC F-Score
Preci-
sion

Recall

LR 0.27 41 % 38 % 42 % LR 0.35 53 % 39 % 58 %

DT 0.32 42 % 43 % 42 % DT 0.41 58 % 42 % 65 %

RF 0.22 35 % 34 % 35 % RF 0.38 54 % 42 % 58 %

GB 0.21 33 % 34 % 33 % GB 0.34 49 % 40 % 52 %

AdaBoost 0.13 44 % 26 % 44 % AdaBoost 0.36 57 % 38 % 65 %

ANN 0.32 51 % 40 % 51 % ANN 0.34 50 % 41 % 53 %

models on the level of detail (2) differ only slightly from the models on the level
on detail (3), whereas the models on the level of detail (4) differ more strongly
from the levels of detail (2) and (3). That emphasizes again an increasing model
quality for the regression model with a finer level of detail. Furthermore, there are
no outliers in any of the boxplots. Consequently, none of the prediction models
within the four levels of detail differs significantly from the other models on the
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respective level of detail. Nevertheless, the decreasing spread from the level of
details (2) to level of detail (4) indicates that with a finer level of detail the model
quality of the regression models converges. One possible explanation for the
decreasing spread in the regression models is the increasing amount of training
data with a finer level of detail—from components to orders to operations—
leading to a more solid data base for training the models.

1 2 3 4

Level of detail:

0.8

0.0

0.7

0.4

0.6

0.5

0.3

0.2

0.1

Fig. 5.4 Boxplot of MCC and F-Score for all prediction models on each of the four levels
of details

Considering all achieved model qualities, the working hypothesis cannot be
confirmed, since—contrary to the working hypothesis—the best result is achieved
at the coarsest level of detail (1). Considering the three finer levels of detail only,
the model quality is increasing with a finer level of detail, but still, the model
quality is below the results on the coarsest level of detail (1).

Consequently, we analyzed possible explanations for the different behavior of
the models in our approach regarding their achieved model quality. One possible
explanation for the lower model quality on the finer levels of detail (2)-(4) could
be, that errors occurring during the prediction of the lead times are cumulated
in the postprocessing operations: For each assembly order, n completion dates
are predicted according to the number of components. Subsequently, the final
output “assembly start delayer” or “no assembly start delayer” is calculated for
each component. This calculation of the assembly start delayers is based on the
calculated completion dates of all n components and thus includes the errors of
all individual calculations of the completion dates. Furthermore, each calculated
completion date is composed of a fictitious start date and a predicted lead time.
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Both the fictitious start date and the predicted lead time can be subject to errors.
In reality, an order can also start on a start date other than the fictitious start
date, which can result in a deviation between the predicted completion date and
the actual completion date. In summary, the cumulation of errors is one potential
explanation for the lower model quality at the finer levels of detail (2)-(4). This
explanation is supported, for example, by the authors of [175], who compare
simpler with more complex prediction models in their study. Contrary to their
initial assumption that under certain conditions more complex prediction models
are more accurate, they conclude that simpler models achieve better results. Thus,
we recommend for future models for the prediction of assembly start delayers to
follow the structure at the coarsest level of detail.

5.6 Section V: Critical reflection of results, limitations,
and implications for further research

Missing individual components leading to a delayed assembly start is often an
issue for engineer-to-order manufacturers. Thus, the object of consideration in
our study tends to be of general nature. Consequently, the case-based research
approach as applied research methodology induces legitimate questionability of
its comprehensiveness and representativeness for engineer-to-order manufacturers
in general. Our results obtained rely on one single exemplary case which might
not be representative for all engineer-to-order manufactures. Thus, it might not be
generalizable to all cases. Furthermore, due to the defined scope of this study, the
considered input features of the prediction models rely on the interviewed experts
of the observed company. When transferring the approach to other cases, a new
identification of the considered input features might be necessary. Although we
tried to overcome these limitations by considering established input features for
prediction of lead times in previous studies, further relevant input features might
have remained undetected or the considered input features might not be relevant
in other cases. Consequently, in future works, the results should be verified with
other cases or from a generic point of view. Nevertheless, in the research areas of
machine learning and lead time prediction case-based-research is an established
research method as it provides necessary training data (see, for example, [70, 71,
126, 128]).

In our case study, the F-scores of all models with a maximum of 75 % and
MCC with a maximum of 0.65 were still low and not fully reliable for a practi-
cal application. Reasons for not reaching fully reliable ML-models with F-scores
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close to 100 % and MCCs close to 1.00 are typically a combination of the con-
sidered modeling approach, the ML-algorithm, and the data base [137, 163–165].
To reach the current values of our best F-score and MCC we applied four differ-
ent modeling approaches and several different ML-algorithms including different
structures of the ANN and tuning of the hyperparameters. Thus, we infer, that
neither a further optimization of the modeling approach nor the ML-algorithm
used leads to a significant improvement of the model quality. One possibility
to further improve the model quality could be to enhance the data basis used
for training the models, as the data base also has an essential influence on the
model quality [137, 138]. In manufacturing processes, especially at machine and
plant manufacturers, there are typically many reasons for a delay such as miss-
ing raw material, problems when setting up the machine, machine downtimes,
issues during the execution of an operation, rework, quality problems with a cer-
tain material, or also nonproduction related reasons such as issues in a global
supply chain or even the weather (see, for example, [64, 176, 177]). Thus, to
ensure a fully reliable model, all the potential disruptions would need to be con-
sidered in the machine learning model, and consequently, the data base needs to
cover all that information about the respective disruptions as well. In our case
study, with a selection of all available order data, machine data, material data
and system information, we cover a subset of all information about potential
disruptions only. Accordingly, we assume that considering further information
about typical disruptions occurring at the exemplary chosen machine and plant
manufacturer such as detailed information about the production process at the
raw material supplier or maintenance data, could significantly improve the model
quality. Consequently, we encourage further studies to consider additional data
fields about potential disruptions when setting up a model predicting assembly
start delayers to further optimize the model. Without an improvement of further
approx. 15–20 % in F-score, the model will not be suitably usable for manufac-
turing companies. Nevertheless, our study is a good starting point in the research
area of predicting assembly start delayers analyzing essential basics regarding the
modeling approach for future studies.

A further area for future work could be the provision of background infor-
mation on the identified assembly start delayers. The current models are only
able to identify the assembly start delayers. However, there is no information
on the reasons for the occurrence of an identified assembly start delayer given
that would explain why the component was supplied late. In order to be able to
prevent a potential assembly start delayer by defining suitable counter measures,
information about the causes of the delay is of immense importance. Thus, the
investigation of how methods from the area of explainable AI can support the
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provision of background information in the prediction of assembly start delayers
could be a potential further research field.

Besides the considered limitations and implications for further research, we
could satisfactorily answer our initially stated research question “how does the
level of detail of the modelling affect the model quality to predict assembly
start delayers”. In our case study, we could show, that the level of detail of the
modelling significantly affects the model quality. The best modelling approach
in our case study was to apply a classification model to predict assembly start
delayers. Thus, the target of our study was achieved.

5.7 Section VI: Conclusion

Adherence to delivery dates is a decisive factor for manufacturing companies to
assert themselves in globalized markets. A central aspect to meet delivery dates
is an assembly of a product on time. Delays in the processes upstream of the
assembly such as the in-house production of individual components can have a
negative effect on the adherence to delivery dates. In order to prevent delays
in the processes upstream of the assembly, in this work a supervised learning
model to predict missing components for the assembly start, so-called assembly
start delayers, in early phases of the production process was developed. Here we
analyzed the level of detail of the prediction model since it can have a significant
impact on the model quality. An increase in the level of detail usually leads
to a higher model accuracy, but with a degressive characteristic [165]. Thus,
we formulated the following working hypothesis: “The model quality for the
prediction of assembly start delayers increases with a finer level of detail.” In
order to verify the working hypothesis, in total 24 ML-models were created,
which differ in their level of detail and the utilized ML-algorithm, but with the
prediction of assembly start delayers as their common target. Here a case-based
research approach was applied. As an exemplary case for this research approach,
a machine and plant manufacturer was chosen and real-world data was applied.

The model architectures of the models on the four levels of detail are different.
The models on the coarsest level of detail predict assembly start delayers utilizing
a classification approach. The models on the three finer levels of detail predict
assembly start delayers based on a prior lead time prediction via a regression
and subsequent postprocessing operations. The regression models differ in the
lead times considered. A finer level of detail corresponds to a finer consideration
of the lead time. Specifically, the component, order and operation lead times
were considered. In the subsequent postprocessing operations, the assembly start



98 5 Publication III: Machine Learning-based Prediction …

delayers were identified based on the predicted lead times. Finally, the output of
all 24 prediction models on the four levels of detail was the binary classification
“assembly start delayer” or “no assembly start delayer” for every component. To
evaluate the model quality of all 24 models a confusion matrix was created and
the metrics MCC, F-score, precision and recall were calculated.

The comparison of the model qualities at the four levels of detail showed
that, contrary to the working hypothesis, the model on coarsest level of detail—
the classification approach—had the best model quality. In contrast, an increase
in model quality with a finer level of detail was evident within the regression
models. In our study, in total, a finer level of detail did not lead to the best
result obtained. Consequently, the working hypothesis could not be confirmed.
As a possible explanation for the lower model quality on the three finer levels of
detail we identified a cumulation of errors occurring during the prediction of the
lead times in the postprocessing operations.

In total, we successfully implemented 24 ML-models to predict assembly start
delayers and gave insights in the performance of different modeling approaches.
Such prediction models can be useful to identify assembly start delayers in early
phases of the manufacturing process and to enhance the delivery performance
machine and plant manufactures if a sufficiently high model quality is achieved.

5.8 Appendix

The hyperparameter used in the prediction models were optimized utilizing a
grid search and cross validation algorithms (GridSearchCV) from scikit learn.
Table 5.5 to Table 5.8 summarize the utilized hyperparameters in the different
models on the four levels of detail.
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5.9 Presentation of own contribution

All the work presented within this publication was carried out by me. This
includes the definition of research questions and hypotheses, the definition of
the research approach including the set up to compare the performance of ML-
models on different levels of details and different ML-algorithms on each level,
the collection, cleaning and aggregation of data from the manufacturing company
under consideration, the feature engineering and setting up of the data model, the
training and tuning of all ML-models including writing of the respective code
in Python as well as the evaluation and critical reflection of the results. Further,
transforming the work into text and writing of the publication were entirely in
my hands. All three co-authors Prof. Dr. Burggräf, Dr. Wagner and Mr. Heinbach
contributed with ideas to the research concept and in the internal review process.
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6.1 Abstract

Although Machine Learning (ML) in supply chain management (SCM) has
become a popular topic, predictive uses of ML in SCM remain an understudied
area. A specific area that needs further attention is the prediction of late deliveries
by suppliers. Recent approaches showed promising results but remained limited in
their use of classification algorithms and struggled with the curse of dimensional-
ity, making them less applicable to low-volume-high-variety production settings.
In this paper, we show that a prediction model using a regression algorithm is
capable to predict the severity of late deliveries of suppliers in a representa-
tive case study of a low-volume-high-variety machinery manufacturer. Here, a
detailed understanding of the manufacturer’s procurement process is built, rele-
vant features are identified, and different ML algorithms are compared. In detail,
our approach provides three key contributions: First, we develop an ML-based
regression model predicting the severity of late deliveries by suppliers. Second,
we demonstrate that prediction within the earlier phases of the purchasing process

© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden
GmbH, part of Springer Nature 2024
F. Steinberg, Machine Learning-based Prediction of Missing Parts for Assembly,
Findings from Production Management Research ,
https://doi.org/10.1007/978-3-658-45033-5_6

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-45033-5_6&domain=pdf
https://doi.org/10.1016/j.sca.2023.100003
https://doi.org/10.1007/978-3-658-45033-5_6


106 6 Publication IV: Predicting Supplier Delays Utilizing Machine …

is possible. Third, we show that there is no need to reduce the dimensional-
ity of high-dimensional input features. Nevertheless, our approach has scope for
improvement. The inclusion of information such as component identifiers may
improve the prediction quality.

6.2 Section I: Introduction

Today, companies source their goods from all over the world, with multi-modal
transport chains delivering everything from simple components to highly com-
plex products. Efficient procurement of goods is largely dependent on supplier
performance. Goods that are delivered with insufficient quality, quantity, or with
a time delay, lead to disruptions in manufacturing companies that need these
goods in their production. Those disruptions are especially serious for manufac-
turers whose value stream is critically dependent on the assembly process, where
several material flows from different suppliers and the in-house manufacturing
converge [46]. Here, only a single missing component can impede the timely
start of the entire assembly process involving up to several thousand components
[52]. Thus, to ensure a timely start of the assembly process, and consequently,
to meet their delivery dates, for manufacturing companies it would be helpful to
predict potential delays in their upstream supply chain.

With the advances in data analytics utilizing machine learning (ML) and the
availability of large-scale, unstructured data sets, ML-based prediction models
are becoming more and more established. Despite these advances, in supply
chain management (SCM) recent review articles have identified a predominance
of descriptive analytics rather than predictive analytics, except for demand fore-
casting [179–181]. As the complexity of supply chains is continuously increasing,
predicting supply chain disruptions before they occur is becoming increasingly
important as well [182]. Recent developments in digitalization technologies, such
as the internet of things or artificial intelligence, present novel opportunities for
predicting disruptions in SCM [183, 184]. However, contributions presenting such
prediction models are limited in SCM literature [179–181].

In the body of literature of the specific area of identifying and quantifying late
deliveries of suppliers, currently, there are only two approaches available: First,
the research of Brintrup et al. [20], and second, the research of Baryannis et al.
[21]. Both approaches are limited in their use of classification algorithms and
struggle with the curse of dimensionality, making them less applicable to low
volume high variety manufacturing settings. In addition, the prediction models
are based on information that is available after the order has been placed. In both
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approaches, we see the following three shortcomings, which we want to address
in our manuscript: First, unlike a classification model, a regression model can
make predictions of delivery delays in calendar days, thus assessing the severity
of a delay and providing a more valuable prediction. In real-world manufacturing
applications, the evaluation of the severity of a delay is essential to select and pri-
oritize appropriate countermeasures. Nevertheless, a regression model predicting
delivery delays of orders placed at suppliers of low volume high variety manu-
facturers is currently not available in the body of literature. Second, the time of
a prediction is essential for the implementation of potential countermeasures—in
our work, we define the time of prediction as the point of time in the purchasing
process when the prediction model is applied, and the prediction is made; this
could be, for example, the time of creating an order request, the time of placing
an order, or time of receiving a delivery confirmation. An earlier prediction than
at the time of placing an order as used by Brintrup et al. [20] and Baryannis et al.
[21], such as after the creation of an internal purchasing request, would provide
more opportunities for countermeasures in case of a predicted delay. However,
typically, less information is available at earlier time points, which can cause
prediction models to have lower quality. But, in the specific area of predicting
late deliveries of suppliers, there has been no study of the influence of the time
of the prediction on the model quality. Third, both available approaches limit
the scope—e.g., they exclude components that are ordered less than five times—
because they struggle with the curse of dimensionality. Especially in low volume
high variety environments, however, it is typical that a large proportion of the
components are designed individually for each customer need and are therefore
procured only once. Such a restriction in the scope would then lead to a large pro-
portion of the required components no longer being considered in the prediction
model, which in turn limits the practical applicability of the model.

Reflecting on the shortcomings of the above-mentioned approaches, in this
work we focus on the following three research questions (RQ):

• RQ1: Are regression algorithms capable to predict delivery delays of orders
placed at suppliers of a low volume high variety manufacturer?

• RQ2: What is the impact of the time of the prediction on the model quality?
• RQ3: Is the curse of dimensionality an issue when setting up a regression

model predicting delivery delays of orders placed at suppliers of a low volume
high variety manufacturer?
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To answer these research questions, we conduct a case study at a machinery
manufacturer focusing on the prediction of potential delays of components deliv-
ery dates ordered at suppliers. A case-based research approach is an objective,
detailed investigation of a current phenomenon where the researcher has lit-
tle control over real events [170]. One motivation for the case-based research
approach is to gain insights for real needs of manufacturing companies, rather
than to develop theories without practical relevance [145]. Furthermore, a case-
based research approach has already been successfully applied in the area of
predicting delivery delays [20, 21, 181]. Accordingly, a case-based research
approach is an appropriate method to answer the research question and to
investigate the working hypothesis.

In detail, we set up a two-stage experimental plan for this purpose. In the first
stage, the quality of ML-based regression models predicting delivery delays is
compared at different times of the prediction and thus the influence of the time
of the prediction on the regression model quality is quantified. At each time of the
prediction, a range of standard ML algorithms is applied to an identical data set
to allow comparability between prediction time points and algorithms. With this
comparison, we can also evaluate if regressions algorithms are capable to predict
delivery delays. Thus, in the first stage of the experimental plan, we will answer
RQ1 and RQ2. In the second stage, we then investigate the impact of reduc-
ing the dimensionality of high dimensional input features on the model quality
by comparing different exclusion criteria and thus answering RQ3. The setup
of all ML models within the experimental plan follows the established proce-
dure model Cross Industry Standard Process for Data Mining (CRISP-DM) [146,
147] consisting of the six phases business understanding, data understanding,
data preparation, modelling, evaluation, and deployment. To ensure comparability
across our experimental plan, the datasets, features, and ML algorithms utilized
remain equal in both stages of the experimental plan.

The evaluation of the case study provides the following three main contribu-
tions:

• We show that an ML-based regression model can predict delivery delays of
orders placed at suppliers of machinery manufacturing in calendar days.

• We demonstrate that an early prediction within the purchasing process based
on information available after creating the internal order request is possible
and only slightly worse than a later prediction.

• We show that there is no need to reduce the dimensionality of high
dimensional input features.
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This paper is structured as follows. First, section 2 introduces the state of the
art in predictive data analytics in SCM with a focus on available approaches
predicting delays of orders. Section 3 is structured according to the CRISP-DM
framework giving a description of the case study dataset and details about the
feature selection and engineering as well as the setup of the experimental plan,
the ML models and the results. Further, a comparison of our model performance
with recent approaches is conducted. Subsequently, Section 4 critically reviews
the limitations of our approach and the results obtained. Furthermore, the impli-
cations for further research are derived. Finally, a summary is given in the last
section.

6.3 Section II: State of the art: Predictive Analytics
in Supply Chain Management

To reduce the impact of a disruption, there are typically two options. First, to
minimize its risk of occurrence, and second to strive for a resilient supply chain
that quickly returns to its original state after a disruption [185–187]. These two
options are covered by two individual domains in SCM, namely, supply chain risk
management (SCRM) and supply chain resilience. In both and the superordinate
field SCM as well, data analytics is one of the core tools used. Waller and Fawcett
[188] define the term data analytics in SCM as ‘the application of quantitative and
qualitative methods from a variety of disciplines in combination with SCM theory to
solve relevant SCM problems and predict outcomes, taking into account data quality
and availability issues’. They further classify predictive analytics as a subset of
data analytics to improve supply chains and mitigate risks by forecasting what
could probably happen in the future. In contrast, Wang et al. [179] and Nguyen
et al. [180] give a wider differentiation of data analytics in SCM. They clas-
sify the available approaches in descriptive, predictive, and prescriptive analytics.
Descriptive analytics in SCM focuses on what happened in the past (see, for
example, [189–191]). Predictive analytics attempts to predict and explain events
that will occur in the future (see, for example, [192–194]). Prescriptive analytics
is using data and algorithms to find alternative decision options (see, for exam-
ple, [195–197]). Out of these three categories, current research focuses mainly
on prescriptive analytics rather than descriptive and predictive analytics [180].
Nevertheless, as typical for data analytics in general and not just in the area of
SCM, the performance of prescriptive models relies on descriptive and predictive
models [179, 180]. Thus, the aforementioned review papers call for new research
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in descriptive and predictive analytics in SCM. Hence, we contribute to the body
of literature with a case study focusing on predictive analytics in SCM.

Bienhaus and Haddud [198], Ivanov et al. [199], and Queiroz et al. [200]
highlight the premise and use of big data and Artificial Intelligence in the digital
transformation of the procurement process as one of the key factors to enhance the
competitiveness, efficiency and profitability of companies’ supply chains. With
the continuously increasing availability of a wider volume, velocity, and variety
of data, new opportunities arise to revolutionize the impact of data analytics
approaches [188, 201, 202].

In SCM as a whole, ML and other data mining techniques are frequently con-
sidered for demand forecasting (see for example, [203–205]), determining retail
prices in supply chains including the handling of financial flows (see, for example,
[206–208]), or dealing with the effects of low-frequency high-impact disruptions
on supply chains such as the COVID-19 pandemic (see, for example, [209–212]).
In the specific subdomains of procurement and logistics current research mainly
supports the selection of potential suppliers for specific products (see, for exam-
ple, [213–215]) or deals with problems of vehicle routing [180, 216], but missing
material due to late deliveries is a neglected area of research [177]. Models pre-
dicting late deliveries of suppliers are still rare. To the best of our knowledge,
we identified only two articles focusing on predicting late deliveries of suppliers
based on real data sets using machine learning.

Baryannis et al. [21] proposed an ML-based approach predicting late deliv-
eries of suppliers with a focus on their interpretability to be able to support
decision-making following the prediction. Given a real data set of a multi-tier
aerospace manufacturing supply chain consisting of product data such as the part
number and price, order data such as due dates, quantities ordered and origi-
nal delivery requests, and delivery data such as receipt date and quantity receipt
they compare the performance and interpretability of support vector machines
(SVM) with decision trees (DT). Prioritizing interpretability over performance
they recommended DT as the ML algorithm of choice resulting in slightly worse
performance metrics. While we agree with the need for more interpretable ML in
SCM, we postulate that other algorithms such as ensemble algorithms or ANN
which suffer from interpretability also need to be studied to be able to present
the full range of options to the decision-maker.

Brintrup et al. [20] presented a case study at an original equipment man-
ufacturer (OEM) predicting delivery delays of Tier 1 suppliers also based on
historical product data such as product description and product type, order data
such as order date and supplier ID, and delivery records such as the received date.
Comparing five ML algorithms they identified a random forest algorithm (RF)
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outperforming SVM, logistic regression, linear regression, and k-nearest neigh-
bour algorithm. Similar to Baryannis et al. [21], more complex ML algorithms
such as ANN might have performed better but remained uncovered.

Further, one of their biggest challenges was the curse of dimensionality due to
high variability in their categorical features leading to a high number of variables
in their feature space. To reduce the dimensionality, they excluded data with less
than five samples for each categorical attribute. Thus, they excluded for instance
suppliers who delivered less than five times or components that were ordered
less than five times. This restriction in the variability of the input data might be a
limitation when transferring the approach to industries that focus on low volume
high variety customized production, where components ordered at suppliers may
vary strongly. Thus, we postulate that the impact of such a limitation on models
predicting delivery delays in low volume high variety production needs to be
investigated.

In summary, there are several approaches available focusing on data analytics
in supply chain management. However predictive analytics in SCM remains an
understudied topic. A specific area that needs further attention is the identification
and quantification of late deliveries. Extant approaches are limited in their use of
classification algorithms and struggle with the curse of dimensionality, making
them less applicable to low volume high variety settings.

Hence, we contribute to the body of literature with a novel case study
in predictive analytics in supply chain management using machine learning—
specifically in predicting delivery delays of suppliers with a supervised learning
approach using a real data set from a machinery manufacturer. Here, we com-
pare simple ML algorithms such as DT, RF, or SVM with more sophisticated
approaches such as ANN. Furthermore, we analyse the impact of reducing the
dimensionality of high dimensional input features on the model quality and the
practical usability of the model by comparing different exclusion criteria.

6.4 Section III: Case Study

For our case study, we choose an OEM in the German machinery manufacturing
industry that builds complex products made up of several thousand individual
components and several hundred sub-systems. The products are typically indi-
vidually designed for customers’ needs. The upstream supply chain consists of
Tier 1 suppliers for finished components that are used directly in assembly, as
well as Tier 1 suppliers for raw materials that are then mechanically processed
in the company’s production facilities. Approximately 80 % of the total number
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Fig. 6.1 Procedure of the CRISP-DM framework applied in the case study [146, 147, 217]

of components are purchased as finished components and 20 % are processed
within the company. Most of the raw material supply for in-house production is
decoupled via storage with suitable safety stocks. Further, in-house production
is set-up to be flexible so that potential delays in raw material supply can be
partially compensated. In contrast, most of the finished components are ordered
individually for each customer project, so delays directly influence the timely
start of the assembly. Thus, in our case study, we focus on the late deliveries of
finished components.

To answer the research questions, we set up a two-stage experimental plan.
In stage one we quantify the impact of the time of the prediction on the qual-
ity of ML-based regression models predicting late deliveries and simultaneously
analyse if an ML-based regression model is capable to predict delivery delays in
calendar days. In stage two we evaluate if there is a need to limit the scope to
overcome the curse of dimensionality when predicting late deliveries with ML-
based regression models within our exemplary case. To develop the different ML
models we applied the established CRISP-DM procedure model (see Fig. 6.1)
[146, 147]. Further, to ensure comparability across our experimental plan, the
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datasets, features, and ML algorithms utilized remain equal in both stages of the
experimental plan. Thus, the general process to develop the different ML mod-
els remain equal as well. Consequently, the next subsections are following the
phases of CRISP-DM business understanding, data understanding, data prepa-
ration, modelling, evaluation, and deployment. As we mainly focused on the
development of the model, we excluded the last phase Deployment.

6.4.1 Business Understanding

The Business understanding phase typically includes a description of the business
problem and a transfer of the business problem into concrete requirements and
objectives for further data analysis. Thus, the first phase of the CRISP-DM pro-
vides a central basis for all the following steps and decisions in the data mining
process.

As the business problem is delays in the assembly process due to delayed
deliveries of finished components, the objective from a business perspective was
to prevent these delays. Predicting potentially delayed deliveries of finished com-
ponents ordered at the suppliers can support the OEM’s purchasing department
to take countermeasures such as speeding up the supplier’s manufacturing pro-
cess, choosing a different means of transport for the delivery, or even choosing a
different supplier. The OEM’s business process itself is typical for a machinery
manufacturer. The relevant components for assembly are first defined in a design
and material planning process. Then, after a make-or-buy decision, either a pro-
duction order for in-house production or a purchasing request is created in the
company’s Enterprise Resource Planning (ERP) system for each required compo-
nent. The purchasing request then initiates the purchasing process following the
established standards. Here, we wanted to support the purchasing process with a
prediction of potentially delayed deliveries as early as possible. Together with the
domain experts at the OEM, we identified three potential times of the prediction,
which is defined as the point in time within a procurement process a prediction
model is applied:

1. Purchasing request: A prediction based on all information available after
creating the purchasing request in the ERP System.

2. Order placement: A prediction immediately after placing an order at a selected
supplier.

3. Delivery confirmation: A prediction immediately after receiving a delivery
confirmation of the supplier including the confirmed delivery date.
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Although it may seem trivial that a prediction at a later point in time might be of
higher quality due to more available information about the purchasing process, an
early prediction would be more helpful to take effective countermeasures. Here,
one objective of our case study is to identify a good trade-off between the time
of the prediction and the prediction quality.

Further, the type of prediction is interesting as well. Binary classification of
the deliveries in late and in time as applied by Brintrup et al. [20] and Baryannis
et al. [21] is less valuable than a regression model predicting potential delays in
working days. A prediction in working days would give additional information
about the severity of a delay. Thus, a regression was our modelling approach of
choice. Here, we applied several ML algorithms such as tree-based algorithms,
support vector machines, or neural networks utilizing the Scikit-learn library in
Python.

Hence, we transformed the business problem—missing components at the start
of assembly—into a machine learning problem—predicting delivery delays in
the supply of externally purchased finished components utilizing a supervised
learning approach. To compare the prediction quality of the different ML models
to be set up in the modelling phase first defined metrics for each prediction model.
More specifically, we selected the following established metrics for regression
models as our metrics of choice: mean absolute error (MAE), root mean squared
error (RMSE), and coefficient of determination (R2). Here MAE and RMSE are
defined as

MAE = 1

n

n∑

i=1

∣∣yi,true − yi,predicted
∣∣ (6.1)

RSME =
√√√√1

n

n∑

i=1

(
yi,true − yi,predicted

)2 (6.2)

where n is the number of samples considered, yi,true is the actual value, and
yi,predicted is the predicted value. R2 is defined as

R2 = 1−
∑n

i=1

(
yi,true − yi,predicted

)2
∑n

i=1

(
yi,true − ytrue

)2 (6.3)

where ytrue is the empirical mean of all ytrue. Further details about the equations
can be looked up in [218, 219].
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6.4.2 Data Understanding

In the second phase, data understanding, following Wirth and Hipp [147], we
collected and analysed the data to develop a solid understanding of the dataset.
For our prediction model, we included data from two business processes of the
company under consideration. First, the material planning process was collected,
which included information about the bill of material (BOM) and demand dates
of components for processing in assembly based on backward scheduling. Sec-
ond, the purchasing process containing information about the orders including
the respective deliveries was collected. As both processes are executed and doc-
umented in the company’s ERP system, this was also our data source of choice.
The data export with a period under review of three years consisted of two sepa-
rate CSV-files containing purchasing orders and BOM items. With one ID field,
we were able to merge the two separate files. When merging the data, since pre-
dicting delivery delays of the purchasing orders was our target, we kept the orders
as our object under consideration and expanded them with information from the
BOM. The total data set comprised 119,610 purchasing orders with information
from 17 different data fields (see Table 6.1). As the dataset is confidential, we
are not allowed to make it available to third parties and cannot publish it.

As target variable for our prediction model and thus, to predict potential deliv-
ery delays we calculated a delivery date lateness (DDL) considering the actual
delivery date and the demand date. In detail, we utilized the formula

DDL = Delivery date − Demand date (6.4)

to calculate the DDL. Here, a negative DDL indicates a delivery before the
demand date and a positive DDL indicates a delayed delivery. Thus, on the one
hand, companies can predict the severity of delivery delays in calendar days for
late deliveries. On the other hand, with the prediction of the duration components
are delivered before the demand date, companies can allocate space for inventory
and calculate days of inventory turnover predictably.

Next, we performed an exploratory data analysis to understand the main char-
acteristics of our dataset using statistical graphics such as boxplots, scatter plots,
and histograms. Here, we first analysed the distribution of the DDL as our tar-
get variable for our prediction model (see Fig. 6.2). It is noticeable that with a
portion of approx. 86 % of most of the orders were delivered before or in time
to the demand date, and with a portion of approx. 14 % only a few orders were
delivered delayed. Thus, only a slight portion of all orders is the main reason
for missing material in the assembly. Further, it is noticeable that few orders
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are delivered several months or even up approx. 0.75 years before the demand
date. Potential reasons for these high DDLs are shifts of the assembly after the
actual delivery date due to shifts in the customer’s order or an assignment of
material from a previous purchasing order, that has been placed in stock, to a
different assembly order. Nevertheless, we included these purchasing orders in
our prediction model, as these were real and not data errors.

Table 6.1 Overview of data fields

Data field Data format Description

Product description Text Short description of the component

Drawing number Alphanumeric Unique drawing identification

Order quantity Integer Number of components ordered

BOM item created Date When the material planning process is
completed

Demand date Date When the component is required in the
assembly

Order created Date When purchasing process was initiated

Order date Date When the order was placed

Requested delivery date Date Requested delivery date of the purchasing
department

Confirmed date Date Confirmed delivery date of the supplier

Confirmation received Date When the supplier confirmed the delivery

Delivery date Date When did the supplier deliver

Order-ID Integer Purchase order number

Order method Alphanumeric Category indicating how the order was
placed

Supplier-ID Integer Unique supplier identification

Supplier Text Legal name of the supplier

Material Text Short description of the material (e.g.,
S235)

Gross weight Integer Gross weight of the component

Moreover, we analysed the product portfolio based on CAD drawing numbers
(see Fig. 6.3) and supplier structure based on supplier-IDs (see Fig. 6.4) to get a
better understanding of the variety of categorical data fields in our data set. This
analysis was also an indicator of the curse of dimensionality [220] that might
affect our prediction model. Looking at the product structure, a portion of 61 %



6.4 Section III: Case Study 117

Fig. 6.2 Distribution of the delivery date lateness (DDL)

of all components were ordered twice or less, whereas with a portion of 4 % some
components were ordered 20 or more times. Additionally, the components ordered
twice or less comprised 17 % of all orders placed and the components ordered
20 or more times comprised 30 % of all orders placed. Therefore, limiting the
scope of consideration to overcome the curse of dimensionality to, for example,
components that have been ordered at least twice would mean that 61 % of
all components and thus 17 % of all orders would not be considered in the
prediction model. Other authors such as the authors in [20] limit their scope even
stricter to components that have been ordered at least five times. Nevertheless,
excluding 61 % of all components, when limiting the scope to components that
have been ordered at least twice was a non-negligible limitation in our case study.
Consequently, within our modelling phase, we additionally analysed the trade-off
between the scope limitation in the variety of components and the achievable
model quality. In detail, we quantified the impact of such a limitation on the
model quality by comparing prediction models with different exclusion criteria.

Looking at the supplier structure, in addition to the product portfolio, it was
noticeable that 22 % of all suppliers received a maximum of three orders, which,
however, only accounted for 0.2 % of all orders. On the other hand, 0.3 % of
all suppliers received 10,000 each or more orders and accounted for 22 % of all
orders. Here, limiting the scope to suppliers who received more than three orders
seemed reasonable, since only 0.2 % of all orders would have been excluded.
Thus, a limitation within the supplier structure could help to overcome the curse
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of dimensionality excluding only a tiny portion of all orders. Nevertheless, fur-
ther analysis showed, that 60 % of the respective orders placed at suppliers that
received three or fewer orders were delivered too late. Comparing this portion of
late deliveries with the overall portion of too late deliveries, which was 14 %,
revealed an outstanding potential of late deliveries of suppliers who received three
or fewer orders. Thus, even this seemingly negligible limitation in the supplier
structure would have meant that suppliers with outstanding potential for disrup-
tion would have been excluded from the scope, which was another non-negligible
limitation in our case study. Consequently, also in the supplier structure, we
analysed the trade-off between the scope limitation in the variety of suppliers
and the achievable model quality by comparing prediction models with different
exclusion criteria.
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6.4.3 Data Preparation

With the understanding gained about the dataset, we then started to prepare the
final dataset for our prediction models. First, we looked at the features in date-
format. Using a date as an input feature for a supervised learning approach means
the prediction model is trained on those historical dates as well. In our case,
whenever the model will be used in the future, the input dates would be in a
different year and not comparable to the dates the model was trained on. Thus,
we transformed the features into a date-format. Instead of the actual date as one
feature, we used four features: The first three were the year, month, and day of
the date in integer-format, and the fourth was the deviation of the respective date
to the demand date also in integer-format.

Next, following Kuhn and Johnson [151], we performed a correlation anal-
ysis to identify the relevant features for our prediction model. For correlation
between categorical features, we calculated Cramér’s V, and for correlation
between continuous variables, we calculated the Pearson correlation coefficient.
The interpretation of the correlation coefficient followed the definitions given
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by Akoglu [221]. First, we analysed the correlation between the target variable
DDL and our input features revealing only weak correlations of the date fields
in the first three transformations year, month, and day. Instead, the fourth trans-
formation of all date fields, which was the deviation of the respective date to the
demand date, showed strong correlations. Thus, we excluded the transformations
year, month, and day and only kept the transformation into the deviation to the
demand date. Further, we analysed the correlation within our input features to
identify feature dependencies. This analysis showed a strong correlation between
the drawing number and the product description, and a strong correlation between
the supplier-ID and the supplier in text format. Consequently, we excluded the
product description and the supplier in text format, and only kept the drawing
number and supplier-ID to reduce dependencies within our input features. Thus,
in summary, we selected the following twelve independent variables to be the
input features for our ML models:

1. Drawing Number: The drawing number is a unique identifier of a component
allowing one to determine if a component is ordered multiple times. Thus,
based on the drawing number, delays of a component ordered in the past
can be used as a base for predicting a potential delivery delay in future.
Consequently, this variable is important for predicting delivery delays.

2. Order quantity: The lead time of a production lot typically scales with the
number of components to be manufactured. Consequently, the number of
ordered components influences the delivery times of suppliers and is thus
important for the prediction of delivery date delays.

3. Material: The idea behind using the material as an independent variable
is that certain materials from which a component is made could be deliv-
ered more quickly than rare materials. Therefore, the use of the material
could reveal patterns that have an influence on the prediction of delivery
date delays.

4. Gross weight: The effort required to handle and transport components
depends on the weight of a component. Further, the weight of a compo-
nent could be an indicator of the effort required to manufacture it. Thus, the
usage of the gross weight of a component is a relevant variable for predicting
delivery delays.

5. BOM-item created: The creation of the BOM item is the first event at which
the need for a component is systemically recorded and thus known. At the
company under consideration, the creation of demand is the responsibility of
the design department. Without that demand, the purchasing process is not
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initiated. Thus, the duration between the date of creating the BOM item and
the demand date is relevant for predicting delivery delays.

6. Order created: After the BOM item is created and after the decision has been
made to procure the component, a purchasing order is created and thus, the
purchasing process is initiated. Consequently, delivery delays depend on the
available duration between order creation and the demand date.

7. Order date: The next step in the purchasing process is ordering the compo-
nent from a supplier. The duration between the order date and the demand
date represents the maximum delivery time for a supplier to deliver on time.
Thus, the order date has an influence on potential delivery delays.

8. Request delivery date: With the order of a component, a requested delivery
date is submitted to the supplier. Here, the respective purchaser can make
manual adjustments to the demand date—the purchaser can request a deliv-
ery date before, contemporary or after the demand date. Consequently, the
requested delivery date is essential when predicting delivery delays.

9. Order method: When placing orders, the company has different levels of
atomization and different communication protocols to their supplier—e.g.,
Electronic Data Interchange (EDI), E-Mail, or phone calls. This might have
an influence on the delivery times and thus on predicting delivery delays.

10. Supplier-ID: The supplier ID is a unique identifier of the supplier allowing
us to determine if several components are ordered from the same supplier.
Thus, based on the supplier ID, delays of deliveries of the respective supplier
in the past can be used as a base for predicting a potential delivery delay in
future. Consequently, this variable is important for predicting delivery delays.

11. Confirmed date: With the confirmation of the order, the supplier provides an
estimated delivery date. This information is important for predicting delivery
delays.

12. Confirmation received: The duration between ordering and receiving a confir-
mation from a supplier might be an indicator of suppliers’ available capacities
and delivery performance. Thus, this information might also indicate delivery
delays.

Next, since tree-based classifiers and neural networks from the Scikit-learn library
can only be trained on numerical variables in Python [154], we needed to convert
our categorical variables into numerical variables. One common and established
method for this conversion is One-Hot-Encoding. But, without any limitation
in the components and suppliers considered One-Hot-Encoding of only these
categorical features would have increased the number of dimensions by 26,997
resulting in a high dimensional sparse matrix. To avoid potential memory and
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Table 6.2 Overview of the transformed data set for the prediction models

Data field Time of the prediction

1. Purchasing Request 2. Order Placement 3. Delivery
Confirmation

Drawing number
(Binary-Encoded
to 15 features)

X X X

Order quantity X X X

Material
(Binary Encoded
to 9 features)

X X X

Gross weight X X X

BOM-item
created
(Delta to
demand date)

X X X

Order created
(Delta to
demand date)

X X X

Order date
(Delta to
demand date)

X X

Requested
delivery date
(Delta to
demand date)

X X

Order method
(Binary Encoded
to 3 features)

X X

Supplier-ID
(Binary Encoded
to 10 features)

X X

Confirmed date
(Delta to
demand date)

X

Confirmation
received
(Delta to
demand date)

X
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computability concerns for our prediction models, and as we wanted to avoid
a limitation of our scope, we followed the recommendation of Seger [222] and
performed Binary-Encoding instead of One-Hot-Encoding resulting in an increase
in the number of dimensions by only 25 without limiting the scope. Nevertheless,
we still analysed the impact of a limitation in the scope on the model quality
within our modelling phase (see section III.4).

Finally, after further data pre-processing operations such as discretization and
normalization (see, for details, [152, 153]), we finalized the data set for our pre-
diction models. In total, we transformed the initial 17 data fields into 45 features
through data pre-processing (see Table 6.2). As one of our data mining targets
was to analyse the trade-off between the prediction quality and the time of the
prediction in terms of the three times ‘purchasing request’, ‘order placement’ and
‘delivery confirmation’ we assigned the 45 features to the different times of the
prediction. After defining the input features for the different prediction models
the Data Preparation was completed.

6.4.4 Modelling

After understanding the available data and defining the features of our ML mod-
els, we set up an experimental plan (see Table 6.3) to give a quantified response
to the objectives of our study—answering the research questions. In this phase
of the CRISP-DM procedure, we only define the experimental plan to answer
the research question. The execution of the experimental plan—the training and
evaluation of the ML models—is considered in the results phase.

The experimental plan consisted of two stages. The first stage focused on
the trade-off between the time of the prediction and the model quality utilizing
different ML algorithms. Simultaneously, as we set up regression models in this
first stage, we can also evaluate if regressions algorithms are capable to predict
delivery delays. Thus, in the first stage of the experimental plan, we can answer
RQ1 and RQ2. The second stage is about analysing the impact of a limitation in
the scope in terms of a limitation in the product portfolio and supplier structure
on the model quality and thus, is designed to answer RQ3.

In detail, in the first stage, we plan to compare different regression models
for each of the three times of the prediction ‘purchasing request’, ‘order place-
ment’, and ‘delivery confirmation’ in the experimental plan. The models in each
of the different times of the prediction differentiate in the ML algorithm used.
In detail, we compared the performance of a Linear regressor (LR), a Support
Vector regressor (SVR), a Decision Tree (DT) regressor, a Random Forest (RF)
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Table 6.3 Overview of the experimental plan

ML
algorithm

Stage 1—Time of the prediction Stage 2—Limitation in the
scope

Purchasing
Request

Order
Placement

Delivery
Confirmation

Five or
more
orders

Two or
more
order

No
limitation

LR X X X Selection of the
best three
performing ML
algorithms in
stage 1

Already
covered
with stage
1

SVR X X X

DT X X X

RF X X X

AB X X X

GB X X X

MLP X X X

Total No.
of models

21 6

regressor, an Adaptive Boosting (AB) regressor, a Gradient Boosting (GB) regres-
sor and a Multilayer Perceptron (MLP). All of them are standard ML algorithms
typically used in ML applications, but with a widespread across different learning
techniques. RQ1 is primarily concerned with evaluating the feasibility in general
of whether regression algorithms are suitable for predicting delivery delays. RQ2
focuses on the comparison of the performance of prediction models at different
times of the prediction. To answer both RQs, it is therefore not necessary to max-
imize the performance of the ML model by sophisticated ML algorithms; simple
and established ML algorithms are sufficient. Instead, it is necessary to ensure
comparability across the three times the prediction. Thus, in all three considered
times of prediction, the same set of ML algorithms is to be applied. Thus, in the
first stage, to analyse the trade-off between the time of the prediction and the
model quality, in total 21 prediction models were included in the experimental
plan. Depending on the time of the prediction, the set of input features to be used
for training and evaluation of the prediction model varied as defined in Table 6.2.

Further, the focus of the second stage of the experimental plan was to anal-
yse the impact of a limitation in the scope of the prediction model in terms of
a limitation in the product portfolio and supplier structure on the model quality.
Here, we planned to compare the model quality of prediction models with dif-
ferent levels of limitations. In detail, we planned to compare the following three
limitations:
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• Limitation to five or more orders per component and supplier, following
Brintrup et al. [20].

• Limitation to two or more orders per component and supplier.
• No limitation, which was applied in the 21 prediction models of the first step.

When limiting the product portfolio and supplier structure the number of samples
varies, but the data structure itself remains equal. Further, in the second step,
we were interested in the impact of the limitation and not in the impact of the
ML algorithms nor the time of the prediction. Thus, we only planned to apply
the limitations in scope to three selected prediction models of the first step of
the experiment—the three best-performing models considering the time of the
prediction and the model quality. Thus, in the second step, we included six more
prediction models with different levels of limitation in the experimental plan—
only six more models instead of nine since the level No limitation was already
covered in the first step.

Consequently, in total, considering both stages of our experiment 27 prediction
models were included in the experimental plan to quantify the impact of the time
of the prediction, the impact of the ML algorithm, and the impact of a limitation
in the product portfolio and supplier structure on the model quality. All prediction
models were implemented in Python 3.7 utilizing the Scikit-learn library.

6.4.5 Evaluation and Results

In the evaluation phase, we trained and compared the performance of all predic-
tion models following the two steps of our experimental plan. In both steps, we
evaluated the reached model qualities utilizing MAE, RMSE, and R2 as defined
in the business understanding phase. Further, we split the data sets of all predic-
tion models of the two steps into two separate train and test data sets with a ratio
of 80 % for training and 20 % for testing the models utilizing the train_test_
split-function in sklearn with a fixed random_state. The train and test data sets
were identical for each model to ensure comparability.

Subsequently, we trained the models of the first step based on the train data
set and optimized the hyperparameters. For tuning the hyperparameters we used
a grid search algorithm. An overview of the optimized hyperparameters used
in each of the prediction models is given in the appendix in Table 6.6. After
the training, we evaluated the achieved model qualities based on the test data
set. The results of the first step are documented in Table 6.4. For the follow-
ing, we defined a model as a trained ML algorithm at a specific time of the
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prediction. Additionally, for ease of reading, we used the simplified notation
modelML algorithm, time of the prediction. As an example, the model with the AB regres-
sor as ML algorithm at the time of the prediction ‘order placement’ is notated as
modelAB, 1.

Comparing the metrics revealed that with an R2 of 92 % at the time of the
prediction ‘1. purchasing request’, and 98 % at the times of the prediction ‘2.
order placement’ and ‘3. delivery confirmation’ the AB regressor performed best
compared to other ML algorithms, closely followed by the RF regressor and GB
regressor. Further, the performance of all ML algorithms increased from the time
of the prediction ‘1. purchasing request’ to ‘2. order placement’ and remained
almost equal from ‘2. order placement’ to ‘3. delivery confirmation’. Thus, the
information available after placing the order have an impact on the performance
of the prediction model, whereas the information on the delivery confirmation
has almost no impact. Consequently, the best performing model was modelAB,2
with information available after order placement. However, with an MAE of 8.2
days, an RSME of 19.9 days, and an R2 of 92 % the modelAB,1 with information
available after the purchasing request performed only slightly worse. Considering
the trade-off between the time of the prediction and model quality, the possibility
of taking actions earlier with a slightly lower model quality was preferable over
a higher model quality in our case study. Thus, the modelAB,1 was our model
of choice. Further, the reach model qualities already showed, that a prediction of
delivery delays in calendar days using a regression approach is possible. Thus,
with these results we can already answer the research questions RQ1 and RQ2:

• Answer to RQ1: Regression algorithms are capable to predict delivery delays of
orders placed at suppliers of a low volume high variety manufacturer. Specifi-
cally, the prediction has an MAE of 8.2 to 3.2 days depending on the selected
time of the prediction.

• Answer to RQ2: With a later time of the prediction and thus the available
one of more information about the procurement process the prediction quality
increases—which is trivial. Related to the MAE the prediction model improves
by approx. 60 % (an improvement from 3.2 to 8.2 days) when comparing the
creation of a purchasing request and the date of delivery confirmation by the
supplier. Nevertheless, the model at the early time of prediction shows good
prediction results.

For a practical application of the prediction model in the company under consid-
eration, we suggest applying two models: First, a prediction after the purchasing
request with a slightly lower model quality, followed by a second prediction after
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placing the order with a higher model quality. With this combination, the per-
sonnel in the purchasing department are supported with an early but less reliable
risk assessment of potentially delayed deliveries which is updated after placing
the order. Thus, we ensured both, a possibility to predict early and high model
quality.

Table 6.4 Reached model qualities in the first step of the experiment

ML
algorithm

Purchasing Request Order Placement Delivery Confirmation

MAE RSME R² MAE RSME R² MAE RSME R²

LR 29.5 43.7 59 % 19.0 27.8 83 % 19.3 28.2 83 %

SVR 29.7 43.9 58 % 19.1 27.8 83 % 19.3 28.3 82 %

DT 16.2 43.8 81 % 7.1 14.3 96 % 6.9 14.6 95 %

RF 10.2 20.6 91 % 4.6 10.7 98 % 4.2 11.0 98 %

AB 8.2 19.9 92 % 3.2 9.9 98 % 3.2 10.7 98 %

GB 10.9 20.1 91 % 4.8 9.9 98 % 4.6 10.6 98 %

MLP 25.2 35.9 72 % 9.4 14.8 95 % 9.2 15.0 95 %

Further, we analysed the feature importance of our model of choice (see
Fig. 6.5) revealing those input features that significantly influence the model’s
output. The results showed that the features ‘Order created’ and ‘BOM item cre-
ated’ are most important in the modelAB,1. At the time of the prediction—in this
case, at the time of the creation of an internal purchasing request—the time of
the demand creation of a component and the time of the transformation of the
demand into a purchasing request are therefore decisive for the prediction of the
delivery delay. Consequently, it can also be deduced that current delivery delays
are largely determined by delays in demand creation and the transformation of
the demand into a purchase order. For the practical application of our model at
the machinery manufacturer, this indicated that the processes upstream of the
purchasing process needed to be accelerated. Thus, based on the feature impor-
tance plot, we were able to identify the most relevant features for the prediction
of delivery delays and to deduct general optimization potential at the machinery
manufacturer in the processes upstream of the purchasing process.



128 6 Publication IV: Predicting Supplier Delays Utilizing Machine …

Fig. 6.5 Feature importance of the modelAB,1

After identifying modelAB, 1 as the model of choice followed by modelRF, 1
and modelGB, 1, we continued with the second step of our experimental plan.
Here, we applied the same training and evaluation procedure as in the first step—
training and tuning the model based on the train data set and evaluating the model
performance based on the test data set. Results are documented in Table 6.5. It
was particularly noticeable that there is no increase nor decrease in the model
quality when limiting the product portfolio or suppliers. Thus, in our case study,
contrary to Brintrup et al. [20], a limitation was not necessary. Consequently,
with these results we can answer RQ3 as follows:

• Answer to RQ3: In our exemplary case at the low volume high variety machin-
ery manufacturer the curse of dimensionality was not an issue when setting
up a regression model predicting delivery delays of orders placed at suppliers.

Subsequently, we further analysed our model of choice, modelAB,1, to gain a bet-
ter understanding of its functionality. Here we conducted a sensitivity analysis of
the dataset size (see Fig. 6.6) quantifying the relationship between dataset size and
model performance. In detail, we varied the dataset size from 25 % to 100 % in 25
% steps of the 119,610 orders and evaluated the R2-value. The results showed that
the model quality was only slightly improving with a larger dataset size within the
analysed range. Thus, a further increase in the dataset size might improve the model
quality. Contrary, a reduction of the dataset size would also be acceptable since the
model quality is reduced only minimally with a smaller dataset size. In our case
study, the 119,610 orders were placed in three years. Thus, the manufacturer under
consideration is placing approx. 40,000 orders per year. Since a dataset size of 25 %
has provided almost equally good results, our model would also be applicable for a
volume of 10,000 orders per year. Consequently, our model might also be applicable
to manufacturers that place smaller numbers of orders.
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Table 6.5 Reached model qualities in the second step of the experiment

ML
algorithm

No limitation
Number of orders 

per component and 
supplier ≥ 2

Number of orders 
per component and 

supplier ≥ 5

MAE RSME R² MAE RSME R² MAE RSME R²

RF 10.2 20.6 91 % 10.1 21.1 90 % 10.1 21.1 90 %

AB 8.2 19.9 92 % 8.1 19.4 92 % 8.3 20.0 92 %

GB 10.9 20.1 91 % 10.9 20.4 91 % 10.2 19.8 91 %

89,5% 90,5% 91,5% 92,0%

60%

70%

80%

90%

100%

25% 50% 75% 100%

R
²

Dataset size [%]

89.5 % 90.5 % 91.5 % 92.0 %

Fig. 6.6 Impact of the dataset size on the model quality

Overall, we were able to fulfil the objectives of our case study. In the first
step, we confirmed that a regression model is capable to predict delivery delays
and confirmed the influence of time of the prediction on the model performance.
Further, we were able to select an AB regressor at the earliest time of the pre-
diction ‘purchasing request’ as the model of choice, and thus, made a trade-off
between the model quality and the time of the prediction. Thus, we could answer
RQ1 with our first contribution that an ML-based regression model can predict
delivery delays of orders placed at suppliers of machinery manufacturing in cal-
endar days with an R2 of 92 % in our model of choice. In addition, we could
answer RQ2 with our second contribution that an early prediction within the pur-
chasing process based on information available after creating the internal order
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request is possible and only slightly worse than a later prediction. Subsequently,
we analysed the impact of a limitation of our data set on the model quality. Here,
we could answer RQ3 with our third contribution that in our case study, there is
no need to limit the dimensionality of our prediction model.

With our regression model, the company under consideration now can predict
delivery delays immediately after creating a purchasing request and getting infor-
mation about its severity. This helps to select adequate reactive measures in terms
of costs for the measures and the predicted severities. In addition, companies can
also predict the period a component will be delivered early. Thus, companies can
allocate space for inventory and calculate days of inventory turnover predictably.
Furthermore, since no restriction in dimensionality was necessary, the model is
applicable to all components and suppliers considered.

6.5 Section IV: Discussion

In our research, we have considered one machinery manufacturer as an exemplary
case study. Although a case-based approach is common in the field of machine
learning (see, for example, [70, 71, 126, 128, 136]) the findings might remain
case-specific and might not be generalizable to other sectors. Nevertheless, our
study confirmed the findings of previous case studies of Brintrup et al. [20] and
Baryannis et al. [21]—a prediction of potentially delayed deliveries of suppli-
ers is possible. However, it should be noted that all three available case studies
including ours focus on similar industries in terms of product complexity and
quantity. In other industries, such as automotive, the product complexity and the
number of components ordered may be different, potentially affecting the achiev-
able model quality. Thus, further research should validate the achieved findings
in other case studies and focus on different industries as well.

Further, we were able to prove that a limitation in the product portfolio and
the supplier structure is not necessary. In our case, a limitation did not affect the
model quality—neither positively nor negatively. Thus, further researchers can
limit their scope if they want to reduce complexity but are not forced to do so by
the curse of dimensionality if they use appropriate encoders for high-dimensional
categorical features such as a binary encoder.
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Moreover, our model quality with an R2 of 92 % at the time of the prediction
‘order request’ and 98 % at the time ‘order placement’ is still afflicted with inac-
curacy. Here, we identified the ML algorithm to be an important factor for model
performance. Accordingly, the use of other regression ML algorithms could be a
way to further improve the model quality. Future research should therefore inves-
tigate other regression ML algorithms for the prediction of potential delivery
delays. Moreover, including additional information about the purchasing process
in the ML model could further increase the model quality. For example, we con-
sidered so far only a little information about the required components—product
number, weight, and material. Further information about the purchased compo-
nents, such as their complexity or details from the drawing or CAD data, could
improve the model performance. The trade-off between the effort in gathering
additional data and improvements in the prediction model should also be further
investigated by future research. In addition to data about the purchased compo-
nent, information about the supplier’s manufacturing process, such as the planned
work schedule or available capacity, could add value to the prediction model as
well. Future research could therefore try to set up an interface to the suppliers
and thus include direct information from the supplier’s manufacturing process in
the prediction model to further increase its quality.

Further, the dataset of the case study originates from the ERP system of the
considered machinery manufacturer. Here, the data fields of a purchasing order
are overwritten with every update and there is no history of the recorded data. For
example, a supplier can report an update of his expected delivery date, but the
dataset in the system always contains only the last one reported. Consequently, it
is possible that the dataset considered at the time of the prediction would not have
been identical to the dataset that is available retrospectively. Therefore, future
research should investigate whether overwriting the data set in ERP systems has
an impact on the predictive performance of delivery delay prediction models. For
this purpose, it is conceivable to record a data set with historical changes.

Moreover, a critical limitation for the practical applicability of the model is
that the model in its current form only uses knowledge from the past to predict
the future. However, if previously unknown events occur that have a significant
impact on the supply chains (e.g., Covid, Ukraine war), the model will not take
these influences into account and will make incorrect predictions. Therefore, with
the current setting of the model, manual control is still necessary as a supple-
ment to the model. Here, the integration of additional data sources such as the
evaluation of the daily worldwide news would be beneficial.
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6.6 Section V: Conclusion

Complex manufacturing industries that rely on externally sourced components
need to ensure the on-time start of assembly processes, as delayed deliveries
can cause costly assembly disruptions. To streamline operations that depend on
external supply, the use of Machine Learning for the prediction of supply delays
has been proposed in recent research with promising results. However, extant
research considered classification approaches that depict whether a delay will
occur but omitted its timing and duration. Furthermore, data-intensive approaches
limit their application to high-volume settings whereas low volume high variety
industries could also benefit from delay prediction. Finally, we posit that for a
delay prediction to be meaningful, it needs to be early enough in the procurement
cycle, such that mitigative actions can be taken.

In this work, we address these gaps through a systemic procedure setting up
defined research questions and answering these with a two stages experimental
plan containing a set of different ML regression models. Here, we show that
regression algorithms are capable to predict delivery delays of suppliers of low
volume high variety manufacturers. Additionally, we show that the severity of a
delay can be predicted, early enough for facilitating action. Our approach also
has the advantage of mitigating the curse of dimensionality, thereby making it
applicable to low volume high variety settings.

For the development of the ML-based regression models, we followed the
established Cross Industry Standard Process for Data Mining (CRISP-DM). Here,
first, a detailed understanding of the company’s procurement process was built
and relevant features for our model were identified by performing a correlation
analysis. Subsequently, we set up an extensive experimental plan to identify the
best ML model. Our experimental plan consisted of two steps. The first step
focused on the performance of different ML algorithms such as AB, RF and
GB regressors at different times of the prediction to analyse whether a predic-
tion in the early phases of the procurement process is possible. The second step
included comparing different approaches to handle high-dimensional input fea-
tures within a regression model. Executing the experimental plan revealed that an
AB-regressor with an R2 of 92 % trained on information available after the cre-
ation of an internal order request performed best, meaning that delay prediction
can indeed be performed at the point of an order request.
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Nevertheless, our model has scope for improvement. For example, the
inclusion of further information such as component identifiers or supplier’s man-
ufacturing processes may further improve the prediction quality. The models have
been tested on a single use case from the manufacturing industry. Further tests in
low-volume-high-variety settings would increase confidence in the validity of our
approach. Further, the model in its current form only uses knowledge from the
past to predict the future. However, if previously unknown events occur that have
a significant impact on the supply chains (e.g., Covid, Ukraine war), the model
will not take these influences into account and will make incorrect predictions.

From a managerial standpoint, we recommend the use of regression models
in the purchasing process, as it enables an early reaction to delivery delays even
before an order is placed. Thus, companies can select adequate reactive mea-
sures in terms of cost and predicted severity. This can have a positive effect on
the adherence to the start of assembly and ultimately on the adherence to the
delivery date to the customer. In addition, companies can also predict the time
a component will be delivered early. Thus, companies can allocate space for
inventory and calculate days of inventory turnover predictably. Consequently, the
regression model also can be used to reduce inventory costs.

6.7 Appendix

The hyperparameters used in the prediction models were optimized utilizing a
grid search and cross-validation algorithms (GridSearchCV) from Scikit learn.
Table 6.6 summarizes the utilized hyperparameters in the different prediction
models.
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6.8 Presentation of Own Contribution

All the work presented within this publication was carried out by me. This
includes the definition of research questions and hypotheses, the definition of the
research approach including the set up to compare the performance of ML-models
at different times of the prediction and different ML-algorithms, the collection,
cleaning and aggregation of data from the manufacturing company under con-
sideration, the feature engineering and setting up of the data model, the training
and tuning of all ML-models including writing of the respective code in Python
as well as the evaluation and critical reflection of the results. Further, trans-
forming the work into text and writing of the publication were entirely in my
hands. All co-authors Prof. Dr. Burggräf, Dr. Wagner, Mr. Heinbach, Mr. Saß-
mannshausen and Mrs. Brintrup contributed with ideas to the research concept
and in the internal review process.



7Critical Refection and Future
Perspective

The four publications within the cumulative part of this thesis focus on the
prediction of missing parts at the start of assembly. After the first systematic
literature review in thesis I (cf. Chapter 3) to get a comprehensive overview of
ML and OR approaches for lead time prediction, ML models for the prediction
of missing parts at the start of assembly from in-house production and compo-
nent procurement are presented in theses II—IV (cf. Chapters 4—6). However,
the results within publications II-IV are based exclusively on case studies at two
German machine manufacturers. In order to establish the validity of the findings
on a broader basis, future work should include case studies of other machine
manufacturers. In addition, it should be investigated whether the prediction of
missing parts at the beginning of assembly is functional only for engineer-to-
order manufacturers such as machine manufacturers or also for different types of
manufacturing. Thus, an extension of the scope to other types of manufacturing,
such as make-to-order, would be useful. It would be interesting to compare the
necessary data fields, the model structures and the resulting model qualities for
different types of manufacturers. Especially for serial manufacturers, the comple-
tion date of an individual component or the assembled product is not the primary
focus. Instead, the quantity of products manufactured and the quality of the indi-
vidual products play a central role. Therefore, in addition to models that predict
schedule deviations, models that predict quantity and quality deviations would be
helpful to ensure that customers are supplied on time, in the right quantity, and
with the right quality.

In addition to the restriction on engineer-to-order manufacturers, only little
information from the processes upstream of assembly are used within the three
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case studies. This is particularly noticeable for information from the design pro-
cess. Here, only information about the product name, the material or the weight
was used within this cumulative promotion, which is information that is usually
available in ERP or MES-systems. Since this little information already had a sig-
nificant impact on the quality of the prediction models, it makes sense to add
more information from the design process, such as dimensions, volumes, or the
number and specification of features in the CAD model of the component, such
as holes, shoulders, radii, or surface roughness.

Furthermore, this cumulative thesis has observed that classification approaches
outperform regression approaches in predicting missing parts for in-house assem-
bly. However, in addition to indicating whether a part is late, regression can also
provide information about the severity of a delay. Therefore, it would be useful
to develop approaches for predicting missing parts for in-house assembly that
also use regression models to achieve better results. A starting point could be a
detailed analysis of the reasons for the observed poorer performance of regression
models compared to classification models in predicting missing parts for in-house
assembly.



8Summary

In this thesis, AI-based models were developed to predict missing parts from both
the manufacturing and procurement processes. During the development of these
models, the following scientific results were achieved in a total of four research
papers:

First, a systematic literature review showed that the use of ML in lead time
prediction is an area of research with increasing relevance. Order data and infor-
mation about the status of the manufacturing system are mainly used. Information
about the items to be produced—so-called material data—as well as feedback
data from production are rarely used. Especially in complex forecasting models,
which include several data sources as a broad spectrum of information, these data
are not used yet.

Based on this, the influence of material data on the quality of models pre-
dicting missing parts at assembly start and the necessary level of detail of these
models were investigated. Specifically, two case studies were conducted focusing
on the material supply for the assembly of the in-house manufacturing process of
a machine manufacturer. It was shown that a model with a low level of detail—
i.e. less detailed models—using a classification approach leads to better results
than more detailed models. It was also shown that material data has a significant
impact on the quality of the model for predicting missing parts at the start of
assembly.

Finally, a model for the prediction of defective parts in the procurement pro-
cess was developed through a case study at a machine manufacturer. In contrast to
existing approaches, an ML-based regression model for the prediction of delivery
delays of orders placed with suppliers of the machine manufacturer in calendar
days showed a satisfactory model quality. Furthermore, it was shown that an early
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prediction within the purchasing process based on information available after the
creation of the internal order request is possible and only slightly worse than a
later prediction.

Overall, this work developed the first machine learning model to predict miss-
ing parts at the start of assembly for in-house products. This model enables
production controllers to identify delays in production orders at an early stage
and to take measures to accelerate them. In addition, the first model predicting
delivery delays using a regression approach was implemented as part of this work.
By moving from a classification approach to a regression approach, it is now pos-
sible to predict the severity of a potential delay in addition to an indication that
an order will be delivered late.
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