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Abstract

In this thesis we analyze the knapsack problem for different group construc-
tions and groups. The knapsack problem, which has become well known in
optimization and economics, is considered here in a group-theoretic context as
a decision problem. More precisely, the question is whether equations of the
form ux1

1 · · ·u
xk
k v = 1, where ui and v are from a group G and the xi are natural

numbers, have a solution.
Of particular interest to us are groups in which the set of solution vectors

(x1, . . . , xk) forms a so-called semilinear set for each input. Such groups are
called knapsack-semilinear. The set of knapsack-semilinear groups satisfies good
closure properties, some of which we discuss in this thesis.

We define the concept of a magnitude and determine in the first part the
magnitude of knapsack-semilinear groups under finite extensions, graph products
and HNN-extensions or amalgamated products with certain restrictions. It turns
out that solvability of knapsack equations of such group constructions is in NP

if this is already the case for the base groups.
We then show that certain HNN-extensions of knapsack-semilinear groups

over infinite associated subgroups are also knapsack-semilinear, if we restrict
ourselves to the case where the isomorphism between the subgroups is the identity.
This means, we analyze groups H = 〈G, t | t−1at = a (a ∈ A)〉. An important
special case here are the so-called extensions of centralizers. The same applies to
central extensions of hyperbolic groups: These are also knapsack-semilinear. As
an application, we then conclude that HNN-extensions (of the mentioned form H)
of hyperbolic groups over quasiconvex subgroups are knapsack-semilinear.

In the last part of the thesis we consider the knapsack problem for two more
cases, but not from the semilinear aspect. For uniformly SENS groups G the
knapsack problem for G o Z is Σp

2-hard. Here the equations are restricted to
the case xi 6= xj , i 6= j. Furthermore, we show that the knapsack problem for
SL3(Z) is already undecidable in the case of a single equation if xi = xj , i 6= j,
is allowed.

The results of this thesis are published in [F3], [F4] and [F6].
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Zusammenfassung

In dieser Arbeit analysieren wir das Knapsack-Problem für verschiedene Grup-
penkonstruktionen und Gruppen. Das Knapsack-Problem, welches in der Opti-
mierung und Wirtschaft bekannt geworden ist, wird hier in einem gruppentheo-
retischen Zusammenhang als Entscheidungsproblem betrachtet. Genauer geht es
um die Frage, ob Gleichungen der Form ux1

1 · · ·u
xk
k v = 1, mit ui und v aus einer

Gruppe G und natürlichen Zahlen xi, eine Lösung haben.
Für uns interessant sind vor allem Gruppen, bei denen die Menge der Lö-

sungsvektoren (x1, . . . , xk) für jeden Input eine sogenannte semilineare Menge
bildet. Solche Gruppen heißen knapsack-semilinear. Die Menge der knapsack-
semilinearen Gruppen erfüllt gute Abschlusseigenschaften, von denen wir in
dieser Arbeit einige diskutieren.

Wir definieren den Begriff der Magnitude und bestimmen im ersten Teil
die Magnitude von knapsack-semilinearen Gruppen unter endlichen Erweiterun-
gen, Graphprodukten und HNN-Erweiterungen bzw. amalgamierten Produkten
mit bestimmten Einschränkungen. Es stellt sich heraus, dass Lösbarkeit von
Knapsack-Gleichungen von solchen Gruppenkonstruktionen in NP ist, wenn dies
bereits für die Basisgruppen der Fall ist.

Anschließend zeigen wir, dass auch bestimmte HNN-Erweiterungen von
knapsack-semilinearen Gruppen über unendlichen assoziierten Untergruppen
knapsack-semilinear sind, wenn wir uns auf den Fall beschränken, dass der
Isomorphismus zwischen den Untergruppen die Identität ist. Dies bedeutet,
wir analysieren die Gruppen H = 〈G, t | t−1at = a (a ∈ A)〉. Als wichtiger
Spezialfall sind hier die sogenannten Erweiterungen von Zentralisatoren zu
nennen. Dasselbe gilt für zentrale Erweiterungen von hyperbolischen Gruppen:
Auch diese sind knapsack-semilinear. Als Anwendung schließen wir dann noch,
dass HNN-Erweiterungen (der genannten Form H) von hyperbolischen Gruppen
über quasikonvexen Untergruppen knapsack-semilinear sind.

Im letzten Teil der Arbeit betrachten wir noch das Knapsack-Problem für
zwei weitere Fälle, aber nicht vom semilinearen Aspekt. Für uniforme SENS
Gruppen G ist das Knapsack-Problem für G o Z bereits Σp

2-schwierig. Hierbei
sind die Gleichungen eingeschränkt auf den Fall xi 6= xj , i 6= j. Außerdem zeigen
wir, dass das Knapsack-Problem für SL3(Z) im Falle einer einzigen Gleichung
schon unentscheidbar ist, wenn xi = xj , i 6= j, erlaubt ist.

Die Ergebnisse dieser Arbeit sind veröffentlicht in [F3], [F4] und [F6].
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Chapter 1

Introduction

Since its very beginning, the area of combinatorial group theory [69] has been
tightly connected to algorithmic questions. The word problem for finitely
generated (f.g. for short) groups lies at the heart of theoretical computer science
itself. Dehn [18] proved its decidability for certain surface groups (before the
notion of decidability was formalized). Magnus [71] extended this result to all
one-relator groups. After the work of Magnus it took more than 20 years before
Novikov [78] and Boone [15] proved the existence of finitely presented groups
with an undecidable word problem (Turing tried to prove the existence of such
groups but could only provide finitely presented cancellative monoids with an
undecidable word problem).

Since the above mentioned pioneering work, the area of algorithmic group
theory has been extended in many different directions. More general algorithmic
problems have been studied and also the computational complexity of group theo-
retic problems has been investigated. Miasnikov, Nikolaev, and Ushakov initiated
in [74] the systematic investigation of a new class of algorithmic problems that
have their origin in discrete optimization problems over the integers. One of these
problems is the knapsack problem. Miasnikov et al. proposed the following defi-
nition for the knapsack problem in a finitely generated group G (Knapsack(G)

for short): The input is a sequence of group elements u1, . . . , uk, v ∈ G (spec-
ified by finite words over the generators of G) and it is asked whether there
exist natural numbers n1, . . . , nk ∈ N such that un1

1 · · ·u
nk
k = v in G. For the

particular case G = Z (where the additive notation n1 · u1 + · · ·+ nk · uk = v is
usually preferred) this problem is NP-complete if the numbers u1, . . . , uk, v ∈ Z
are given in binary notation [53, 39].1 On the other hand, if u1, . . . , uk, v are
given in unary notation, then the knapsack problem for the integers was shown
to be complete for the circuit complexity class TC0 [27]. Note that the unary
notation for integers corresponds to the case where an integer is given by a word
over a generating set {t, t−1}. In one particular case, the knapsack problem was
studied for a non-commutative group before the work of Miasnikov et al.: in [4],

1Karp in his seminal paper [53] defined knapsack in a slightly different way. NP-completeness
of the above version was shown in [39].

1



2 Chapter 1. Introduction

it was shown that the knapsack problem for commutative matrix groups over
algebraic number fields can be solved in polynomial time. Let us emphasize that
we are looking for solutions of knapsack equations in the natural numbers. One
might also consider the variant, where the variables x1, . . . , xk take values in Z.
This latter version can be easily reduced to our knapsack version (with solutions
in N), but we are not aware of a reduction in the opposite direction.2 Let us
also mention that the knapsack problem is a special case of the more general
rational subset membership problem [65].

We also consider a generalization of Knapsack(G): An exponent equation is
an equation of the form ux1

1 · · ·u
xk
k = v as in the specification of Knapsack(G),

except that the variables x1, . . . , xk are not required to be pairwise different.
Solvability of exponent equations for G (ExpEq(G) for short) is the problem
where the input is a conjunction of exponent equations (possibly with shared
variables) and the question is whether there is a joint solution for these equations
in the natural numbers. Equations of this form have received a lot of attention
in recent years, see e.g. [4, 9, 11, 13, 25, 30, 31, 58, 62, 68, 32, 76, 74].

1.1 Overview of previous research

Let us give a brief survey of the results that were obtained for the knapsack
problem in [74] and successive papers:

˛ Knapsack can be solved in polynomial time for every hyperbolic group
[74]. In [30] this result was extended to free products of any finite number
of hyperbolic groups and finitely generated abelian groups. A further
generalization was obtained in [62], where the smallest class of groups
that can be obtained from hyperbolic groups using the operations of free
products and direct products with Z was considered. It was shown that for
every group in this class the knapsack problem belongs to the complexity
class LogCFL (a subclass of P).

˛ There are nilpotent groups of class 2 for which knapsack is undecidable.
Examples are direct products of sufficiently many copies of the discrete
Heisenberg group H3(Z) [58], and free nilpotent groups of class 2 and
sufficiently high rank [76].

˛ Knapsack for H3(Z) is decidable [58]. In particular, together with the
previous point it follows that decidability of knapsack is not preserved under
direct products. Also, solvability of one exponent equation is decidable,
but systems of exponent equations are undecidable for H3(Z).

˛ There is a recent paper, in which decidability of Knapsack(H3(Z)) was
used to show that the rational subset membership problem for H3(Z) is
decidable as well [12].

2Note that the problem whether a given system of linear equations has a solution in N is
NP-complete, whereas the problem can be solved in polynomial time (using the Smith normal
form) if we ask for a solution in Z. In other words, if we consider the knapsack problem for
Zn with n part of the input, then looking for solutions in N seems to be more difficult than
looking for solutions in Z.
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˛ Knapsack is decidable for every co-context-free group [58], i.e., groups
where the set of all words over the generators that do not represent the
identity is a context-free language. Lehnert and Schweitzer [60] have shown
that the Higman-Thompson groups are co-context-free.

˛ Knapsack belongs to NP for all virtually special groups (finite extensions of
subgroups of graph groups) [67]. The class of virtually special groups is very
rich. It contains all Coxeter groups, one-relator groups with torsion, fully
residually free groups, and fundamental groups of hyperbolic 3-manifolds.
For graph groups (also known as right-angled Artin groups) a complete
classification of the complexity of knapsack was obtained in [68]: If the
underlying graph contains an induced path or cycle on 4 nodes, then
knapsack is NP-complete; in all other cases knapsack can be solved in
polynomial time (even in LogCFL).

˛ Knapsack is NP-complete for non-abelian free solvable groups [F3] and
solvable Baumslag-Solitar groups BS(1, q) [32] with q > 1. For Baumslag-
Solitar groups BS(p, q) with p 6= 1 6= q and gcd(p, q) = 1, decidability of
knapsack was shown in [25]. Furthermore, knapsack is NP-complete for
every wreath products G o Z with G 6= 1 f.g. nilpotent [F3].

˛ Decidability of knapsack is preserved under finite extensions, HNN-exten-
sions over finite associated subgroups and amalgamated free products over
finite subgroups [67].

˛ In [9], there is a characterization of those wreath products G oH for which
the knapsack problem is decidable. The characterization is in terms of
(i) decidability properties of the groups G and H and (ii) whether G is
abelian.

1.2 Content of this thesis

In this thesis, we initiate the systematic study of solution sets of equations
ux1

1 · · ·u
xk
k = v in a group G, which we call knapsack equations. For a knapsack

equation we require that the variables xi are pairwise different. The solution
set of this equation is {(n1, . . . , nk) ∈ Nk | un1

1 · · ·u
nk
k = v in G}. In the papers

[62, 58, 68] it turned out that in many groups the solution set of every knapsack
equation is a semilinear set. Recall that a subset S ⊆ Nk is semilinear if it is
a finite union of linear sets, and a subset L ⊆ Nk is linear if there are vectors
v0, v1, . . . , v` ∈ Nk such that L = {v0 + λ1v1 + · · · + λ`v` | λ1, . . . , λ` ∈ N}.
Semilinear sets play a prominent role in many areas of computer science and
mathematics, e.g. in automata theory and logic. It is known that the class of
semilinear sets is closed under Boolean operations and that the semilinear sets
are exactly the sets that are first-order definable in Presburger arithmetic (i.e.,
the structure (N,+)) [35].

We say that a group is knapsack-semilinear if for every knapsack equation the
set of all solutions is semilinear. Note that in any group G the set of solutions on
an equation ux1 = v is periodic and hence semilinear. This result generalizes to
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solution sets of knapsack instances of the form ux1u
y
2 = v (see Lemma 3.4), but

there are examples of knapsack equations with three variables where solution
sets (in certain groups) are not semilinear. Moreover, every finitely generated
abelian group is semilinear (since solution sets of linear equations are Presburger
definable). Nontrivial examples of knapsack-semilinear groups are graph groups
[68] (which include free groups and free abelian groups), hyperbolic groups [62],
and co-context free groups [58].3 Obviously, every finitely generated subgroup of
a finitely generated knapsack-semilinear group is knapsack-semilinear as well.
Furthermore, the class of knapsack-semilinear groups is closed under finite
extensions, graph products, amalgamated free products with finite amalgamated
subgroups, HNN-extensions with finite associated subgroups (see Chapter 5 to
Chapter 7 for these closure properties), certain HNN-extensions over infinite
associated subgroups (Chapter 8) and wreath products [31].

In order to get complexity bounds for the knapsack problem, the sole concept
of knapsack-semilinearity is not useful. For this purpose, we need a quantitative
measure for semilinear sets; see also [17]: For a semilinear set

L =
⋃

1≤i≤n

{vi,0 + λ1vi,1 + · · ·+ λ`ivi,`i | λ1, . . . , λ`i ∈ N}

we call the tuple of all vectors vi,j a semilinear representation for L. The
magnitude of this semilinear representation is the largest number that occurs
in some of the vectors vi,j . Finally, the magnitude of a semilinear set L is the
smallest magnitude among all semilinear representations of L.

In Chapter 5, Chapter 6 and Chapter 7, we prove the closure of the class of
knapsack-semilinear groups under

˛ finite extensions,
˛ graph products,
˛ amalgamated free products with finite amalgamated subgroups, and
˛ HNN-extensions with finite associated subgroups.

The operation of graph product interpolates between direct products and free
products. It is specified by a finite graph (V,E), where every node v ∈ V is
labelled with a group Gv. One takes the free product of the groups Gv (v ∈ V )
modulo the congruence that allows elements from adjacent groups to commute.
Graph products can be seen as a generalization of graph groups (where all Gv
are Z), and hence our results of Chapter 6 are a natural continuation of [68].
Amalgamated free products and HNN-extensions are fundamental operations
in all areas of geometric and combinatorial group theory; see Section 2.4 for
references. A theorem of Seifert and van Kampen links HNN-extensions to
algebraic topology. Moreover, HNN-extensions are used in all modern proofs
for the undecidability of the word problem in finitely presented groups. For a
base group G with two isomorphic subgroups A and B and an isomorphism

3Knapsack-semilinearity of co-context free groups is not stated in [58] but follows immedi-
ately from the proof for the decidability of knapsack.
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ϕ : A→ B, the corresponding HNN-extension is the group

H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉. (1.1)

Intuitively, it is obtained by adjoing to G a new generator t (the stable letter) in
such a way that conjugation of A by t realizes ϕ. The subgroups A and B are
also called the associated subgroups.

Our proofs showing that the above group constructions preserve knapsack-
semilinearity also yield upper bounds for the magnitude of solution sets in terms
of (i) the total length of the knapsack equation (measured in the total number
of generators) and (ii) the number of variables in the knapsack equation. For
this, we introduce a function KG(n,m) that yields the maximal magnitude of a
solution set for a knapsack equation over G of total length at most n and at most
m variables. Roughly speaking, it turns out that finite extensions, amalgamated
free products with finite amalgamated subgroups, and HNN-extensions with
finite associated subgroups only lead to a polynomial blowup for the function
KG(n,m) (actually, this function also depends on the generating set for G),
whereas graph products can lead to an exponential blowup. On the other hand,
if we bound the number of variables by a constant, then also graph products
only lead to a polynomial blowup for the function KG(n,m).

For arbitrary HNN-extensions, knapsack-semilinearity is not preserved. For
instance, the Baumslag-Solitar group BS(1, 2) = 〈a, t | t−1at = a2〉 is not
knapsack-semilinear [32] but it is an HNN-extension of the knapsack-semilinear
group 〈a〉 ∼= Z. This example shows that we have to drastically restrict HNN-
extensions in order to get a transfer result for knapsack-semilinearity beyond
the case of finite associated subgroups. In Chapter 8 we study HNN-extensions
of the form

H = 〈G, t | t−1at = a (a ∈ A)〉, (1.2)

where A ≤ H is a subgroup. In other words, we take in (1.1) for ϕ : A→ B the
identity on A. Intuitively: we add to the group G a free generator t together
with commutation identities at = ta for all a ∈ A. This operation interpolates
between the free product G ∗ 〈t〉 ∼= G ∗Z and the direct product G×〈t〉 ∼= G×Z.

Even HNN-extensions of the form (1.2) with f.g. A are too general for our
purpose: if the subgroup membership problem for A is undecidable then H

has an undecidable word problem. Hence, we also need some restriction on
the subgroup A ≤ G. We say that G is knapsack-semilinear relative to the
subgroup A if for every expression of the form ux1

1 ux2
2 · · ·uxnn v (with ui, vi ∈ G

and pairwise different variables xi) the set of all tuples (c1, . . . , cn) ∈ Nn such
that uc11 u

c2
2 · · ·ucnn v ∈ A is a semilinear set. Our main result states that if the

group G is (i) knapsack-semilinear as well as (ii) knapsack-semilinear relative to
the subgroup A, then the HNN-extension H in (1.2) is knapsack-semilinear. In
some situations we can even avoid the explicit assumption that G is knapsack-
semilinear relative to the subgroup A. HNN-extensions of the form (1.2), where A
is the centralizer of a single element g ∈ G are known as free rank one extensions
of centralizers and were first studied in [75] in the context of so-called exponential
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groups. It is easy to observe that if G is knapsack-semilinear and A ≤ G is the
centralizer of a finite set of elements, then G is also knapsack-semilinear relative
to A. In particular the operation of free rank one extension of centralizers
preserves knapsack-semilinearity. A corollary of this result is that every fully
residually free group is knapsack-semilinear. The class of fully residually free
groups is exactly the class of all groups that can be constructed from Z by the
following operations: taking finitely generated subgroups, free products and free
rank one extensions of centralizers. Knapsack-semilinearity of fully residually
free groups also follows from the fact that every fully residually free group is
virtually special [89].

In Chapter 9 we elaborate knapsack-semilinearity for so called central exten-
sions. A group H is called a central extension of a group G, if we have G = H/K

for a subgroup K ≤ Z(H), where Z(H) is the center of H . We restrict ourselves
to the case, where G is a hyperbolic group. A group is hyperbolic if all geodesic
triangles in the Cayley-graph are δ-slim for a constant δ. The class of hyperbolic
groups has several alternative characterizations (e.g., it is the class of finitely
generated groups with a linear Dehn function), which gives hyperbolic groups a
prominent role in geometric group theory. Moreover, in a certain probabilistic
sense, almost all finitely presented groups are hyperbolic [37, 79]. Also from a
computational viewpoint, hyperbolic groups have nice properties: it is known
that the word problem and the conjugacy problem can be solved in linear time
[29, 45]. In [62] it was shown that hyperbolic groups are knapsack-semilinear.
Central extensions of hyperbolic groups are known to have an asynchronously
biautomatic structure, which allows us to use certain proof techniques for showing
knapsack-semilinearity in case of those central extensions.

In the second part of Chapter 9, we study HNN-extensions of the form (1.2),
where G is a central extension of a hyperbolic group (an important special
case is where G is hyperbolic). Here we extend the main result of part one
of this chapter by showing that (a central extension of) a hyperbolic group is
knapsack-semilinear relative to a quasiconvex subgroup. Quasiconvex subgroups
in hyperbolic groups are known to have nice properties. Many algorithmic
problems are decidable for quasiconvex subgroups, including the membership
problem [57], whereas Rips constructed finitely generated subgroups of hyperbolic
groups with an undecidable membership problem [81].

Finally, in the end of this thesis (Chapter 10) we want to discuss some
computational hardness results. In the first part, we make use so-called uni-
formly strongly efficiently non-solvable groups (uniformly SENS groups) that
were recently defined in [F2]. Roughly speaking, a group G is uniformly SENS
if there exist nontrivial nested commutators of arbitrary depth that moreover,
are efficiently computable in a certain sense (see Section 2.4.8 for the precise
definition). The essence of these groups is that they allow to carry out Bar-
rington’s argument showing the NC1-hardness of the word problem for a finite
solvable group [5]. It turns out that for these groups G, we can prove that
Knapsack(G o Z) is Σp

2-hard. Wreath products are prominent constructions
in group theory and semigroup theory. For groups G and H, their (restricted)
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wreath product G oH can be roughly described as follows: An element of G oH
consists of (i) a labeling, which maps each element of H to an element of G and
(ii) an element of H, called the cursor. Here, the labeling has finite support,
meaning all but finitely many elements of H are mapped to the identity of G.
Moreover, each element of G oH can be written as a product of elements from
G and from H. Multiplying on the right by an element g ∈ G will multiply g to
the label of the current cursor position. Multiplying on the right by an element
h ∈ H will move the cursor by multiplying h. Knapsack for wreath products
has especially been studied in [31] and also [9]. We also state a few corollaries
of this hardness result. For instance, we show that for the famous Thompson’s
group F , Knapsack(F ) is Σp2-hard.

In the second part, we study decidability of an exponent equation for the
group SL3(Z), which is the special linear group consisting of all 3× 3 matrices
with determinant 1 (equipped with matrix multiplication). Similarly to H3(Z),
which is a subgroup of SL3(Z), one can ask if knapsack is decidable. It turns
out that we can show undecidabilty for one exponent equation, in contrast to
H3(Z), which we already mentioned earlier. The group SL3(Z) is of particular
interest in research, since a lot of problems are unsolved, such as the rational
subset membership and the subgroup membership problem. In a certain way,
SL3(Z) is a border case between SL2(Z) and SLn(Z) (n ≥ 4), since the case
n = 2 is algorithmically easy and for n ≥ 4, many algorithmic problems are
indeed undecidable.
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Chapter 2

Preliminaries

2.1 Monoids

Let Σ be a finite alphabet of symbols. As usual, Σ∗ denotes the set of all finite
words over the alphabet Σ. For a word w = a1a2 · · · an with a1, . . . , an ∈ Σ we
denote with |w| = n the length of w and alph(w) = {a1, a2, . . . , an} for the set
of symbols that occur in w. For a ∈ Σ, we write |w|a to denote the number of
occurrences of a in w. The free monoid Σ∗ consists of all finite words over Σ

and the monoid operation is the concatenation of words. The concatenation of
words u, v ∈ Σ∗ is simply denoted with uv. A factor of a word w ∈ Σ∗ is any
word u such that w = suv for word some words s, v. The identity element of the
free monoid Σ∗ is the empty word, which is usually denoted with ε. Here, we
prefer to denote the empty word with 1 according to the following convention:

Convention 2.1. For every monoid M we denote the identity element of M
with the symbol 1; even in cases where we deal with several monoids.

So intuitively, all monoids that we deal with share the same identity element 1.
This convention will simplify our notations.

2.1.1 Trace monoids

In the following we introduce some notions from trace theory, see [20, 21] for
more details. An independence alphabet is an undirected graph (Σ, I) (without
loops). Thus, I is a symmetric and irreflexive relation on Σ. The set Σ may be
infinite. Note that even in the infinite case, Σ∗ consists of all finite words over Σ.
The trace monoid M(Σ, I) is defined as the quotient

M(Σ, I) = Σ∗/{ab = ba | (a, b) ∈ I}

with concatenation as operation and the empty trace 1 as the neutral element.
Its elements are called traces. We denote by [w]I the trace represented by the
word w ∈ Σ∗. Let alph([w]I) = alph(w) and |[w]I | = |w|. Note that [u]I = [v]I
implies that |u| = |v| and alph(u) = alph(v). The dependence alphabet associated

9
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with (Σ, I) is (Σ, D), where D = (Σ×Σ)\I. Note that the relation D is reflexive.
For a ∈ Σ let I(a) = {b ∈ Σ | (a, b) ∈ I} be the letters that commute with a. For
traces u, v ∈ M(Σ, I) we denote with u I v the fact that alph(u)× alph(v) ⊆ I.
The trace u is connected if we cannot write u = vw in M(Σ, I) such that
v 6= 1 6= w and v I w.

An independence clique is a subset ∆ ⊆ Σ such that (a, b) ∈ I for all
a, b ∈ ∆ with a 6= b. A finite independence clique ∆ is identified with the trace
[a1a2 · · · an]I , where a1, a2, . . . , an is an arbitrary enumeration of ∆.

The following lemma, which is known as Levi’s lemma, is one of the most
fundamental facts for trace monoids, see e.g. [21].

Lemma 2.2. Let u1, . . . , um, v1, . . . , vn ∈M(Σ, I). Then

u1u2 · · ·um = v1v2 · · · vn

if and only if there exist wi,j ∈M(Σ, I) (1 ≤ i ≤ m, 1 ≤ j ≤ n) such that

˛ ui = wi,1wi,2 · · ·wi,n for every 1 ≤ i ≤ m,

˛ vj = w1,jw2,j · · ·wm,j for every 1 ≤ j ≤ n, and
˛ (wi,j , wk,`) ∈ I if 1 ≤ i < k ≤ m and n ≥ j > ` ≥ 1.

The situation in the lemma will be visualized by a diagram of the following kind.
The i-th column corresponds to ui, the j-th row corresponds to vj , and the
intersection of the i-th column and the j-th row represents wi,j . Furthermore
wi,j and wk,` are independent if one of them is left-above the other one.

vn w1,n w2,n w3,n . . . wm,n
...

...
...

...
...

...
v3 w1,3 w2,3 w3,3 . . . wm,3
v2 w1,2 w2,2 w3,2 . . . wm,2
v1 w1,1 w2,1 w3,1 . . . wm,1

u1 u2 u3 . . . um

A consequence of Levi’s lemma is that trace monoids are cancellative, i.e.,
usv = utv implies s = t for all traces s, t, u, v ∈M(Σ, I).

A trace rewriting system R over M(Σ, I) is just a subset of M(Σ, I)×M(Σ, I)

[20]. We define the one-step rewrite relation →R ⊆ M(Σ, I) × M(Σ, I) by:
x→R y if and only if there are u, v ∈M(Σ, I) and (`, r) ∈ R such that x = u`v

and y = urv. With ∗−→R we denote the reflexive transitive closure of →R. The
notion of a confluent and terminating trace rewriting system is defined as for
other types of rewriting systems [14]: A trace rewriting system R is called
confluent if for all u, v, v′ ∈ M(Σ, I) with u ∗−→R v and u ∗−→R v′ there exists a
trace w with v ∗−→R w and v′ ∗−→R w. It is called terminating if there does not
exist an infinite chain u0 →R u1 →R u2 · · · . A trace u is R-irreducible if no
trace v with u→R v exists. The set of all R-irreducible traces is denoted with
IRR(R). If R is terminating and confluent, then for every trace u, there exists a
unique normal form NFR(u) ∈ IRR(R) such that u ∗−→R NFR(u) [49].
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2.2 Formal languages

More details on finite automata can be found in the standard textbook [48]. A
finite automaton over the alphabet Σ is a tuple A = (Q, I, δ, F ), where Q is a
finite set of states, I ⊆ Q is the set of initial states, δ ⊆ Q × (Σ ∪ {1}) ×Q is
the set of transitions, and F ⊆ Q is the set of final states. Note that here, 1

denotes the empty word over Σ. If there is a transition (p, w, q) ∈ δ, we also
denote this by p w−→ q. A word w = a1a2 · · · an (here we allow ai = 1) is accepted
by A if there are transitions (qi−1, ai, qi) ∈ δ for 1 ≤ i ≤ n such that q0 ∈ I and
qn ∈ F . With L(A) (the language accepted by A) we denote the set of all words
in Σ∗ accepted by A, which is also called its language. The size of A is |Q|, the
number of its states. A language L is called regular if it is accepted by a finite
automaton.

A finite state transducer T over the alphabet Σ is a tuple T = (Q, I, δ, F )

where I and F have the same meaning as for a finite automaton and

δ ⊆ (Q× Σ× {1} ×Q) ∪ (Q× {1} × Σ×Q).

A pair (u, v) ∈ Σ∗×Σ∗ is accepted by T if there are transitions (qi−1, ai, bi, qi) ∈ δ
for 1 ≤ i ≤ |u| + |v| (where ai, bi ∈ Σ ∪ {1}) such that u = a1 · · · a|u|+|v|,
v = b1 · · · b|u|+|v|, q0 ∈ I and q|u|+|v| ∈ F . With R(T ) we denote the set of
all pairs accepted by T . A relation R ⊆ Σ∗ × Σ∗ is a rational relation if it is
accepted by a finite state transducer.

Let K be a finitely generated abelian group. A finite state transducer with
K-output (over the alphabet Σ) is a tuple T = (Q, I, δ, F ). The only difference
to an ordinary finite state transducer is that δ is a partially defined function of
type

δ :

(
(Q× Σ× {1} ×Q) ∪ (Q× {1} × Σ×Q)

)
→ K.

It defines a mapping
fT : Σ∗ × Σ∗ → 2K

in the natural way: let u, v ∈ Σ∗ as above. Then α ∈ K belongs to
fT (u, v) if there exist (qi−1, ai, bi, qi) ∈ dom(δ) for 1 ≤ i ≤ |u| + |v| such
that u = a1 · · · a|u|+|v|, v = b1 · · · b|u|+|v|, q0 ∈ I, q|u|+|v| ∈ F , and α =∑

1≤i≤|u|+|v| δ(qi−1, ai, bi, qi). In this thesis, T will be always such that fT (u, v)

is either empty or a singleton. In this situation, we can view fT as a partially
defined mapping fT : Σ∗ × Σ∗ → K.

2.3 Complexity theory

We assume some knowledge in complexity theory; in particular the reader should
be familiar with the classes P, NP, and coNP. The class Σp2 (second existential
level of the polynomial time hierarchy) contains all languages L ⊆ Σ∗ for which
there exists a polynomial p and a language K ⊆ Σ∗#{0, 1}∗#{0, 1}∗ in P (for a
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symbol # /∈ Σ ∪ {0, 1}) such that x ∈ L if and only if

∃y ∈ {0, 1}≤p(|x|)∀z ∈ {0, 1}≤p(|x|) : x#y#z ∈ K.

Figure 2.1 gives a good visual overview about many complexity classes, where
all of the ones appearing in this thesis (and more) can be found. A precise
definition is mostly not needed.

A language A is nondeterministically polynomial time reducible to a lan-
guage B if there exists a nondeterministic polynomial time Turing-machine M
that outputs on each computation path after termination a word over the al-
phabet of the language B and such that x ∈ A if and only if on input x, the
machineM has at least one computation path on which it outputs a word from B.
Later we make use of the following lemma:

Lemma 2.3. If A is nondeterministically polynomial time reducible to B and
B ∈ NP, then also A ∈ NP holds.

2.4 Groups

2.4.1 General definitions for groups

For more details on group theory we refer the reader to [69]. Infinite groups
are usually given by presentations. Take an arbitrary non-empty set Ω and let
Ω−1 = {a−1 | a ∈ Ω} be a set of formal inverses such that Ω ∩ Ω−1 = ∅. Let
Σ = Ω ∪ Ω−1. The bijection a 7→ a−1 from Ω to Ω−1 can be extended to a
natural involution w 7→ w−1 on Σ∗. For this we set (a−1)−1 = a for a ∈ Ω and
(a1 · · · an)−1 = a−1

n · · · a−1
1 for a1, . . . , an ∈ Σ. A word w ∈ Σ∗ is called reduced if

it does not contain an occurrence of a word aa−1 or a−1a (a ∈ Σ). Applying the
cancellation rules aa−1 → 1 or a−1a→ 1 as long as possible, every word w ∈ Σ∗

can be mapped to a unique reduced word red(w). The free group F (Ω) consists
of all reduced words together with the group multiplication u · v = red(uv)

for reduced words u and v. The mapping red can be also viewed as a monoid
morphism from Σ∗ to F (Ω). For a subset R ⊆ Σ∗ one defines the group 〈Σ | R〉
as the quotient group F (Ω)/NR, where NR is the smallest normal subgroup
of F (Ω) that contains red(R) ⊆ F (Ω). In other words, NR is the intersection
of all normal subgroups of F (Ω) that contain red(R). Clearly, every group is
(isomorphic to a group) of the form 〈Σ | R〉.

Let G be a group. For g, h ∈ G we write [g, h] := g−1h−1gh for the commu-
tator of g and h and gh for h−1gh. For subgroups A,B of G we write [A,B] for
the subgroup generated by all commutators [a, b] with a ∈ A and b ∈ B. The
order of an element g ∈ G is the smallest number z > 0 with gz = 1 and ∞ if
such a z does not exist. The group G is torsion-free, if every g ∈ G \ {1} has
infinite order.

Let G = 〈Σ | R〉 in the following. If Σ is finite then G is called finitely
generated (f.g. for short) and Σ is called a finite symmetric generating set for G.
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Figure 2.1: Some complexity classes shown in their hierarchy. An edge C − C′,
where C is above C′, means that C contains C′
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If both Σ and R are finite, then G is called finitely presented. The surjective
monoid morphism red : Σ∗ → F (Ω) extends to a surjective monoid morphism
h : Σ∗ → G, called the evaluation morphism. The natural involution on Σ∗ allows
to use the notations [g, h] = g−1h−1gh and gh = h−1gh also in case g, h ∈ Σ∗.
For two words u, v ∈ Σ∗ we write u =G v if h(u) = h(v), in particular if h(w) = 1

we also say that w = 1 in G. For g ∈ G we write ||g|| for the length of a shortest
word w ∈ Σ∗ such that h(w) = g. This notation depends on the generating set Σ.
Then ||g|| is also called the geodesic length of the group element g. For a subset
S ⊆ G and u ∈ Σ∗ we write u ∈G S if h(u) ∈ S. In the following, when we say
that we want to compute a homomorphism h : G1 = 〈Σ1 | R2〉 → G2 = 〈Σ2 | R2〉,
we always mean that we compute the images h(a) for a ∈ Σ1.

2.4.2 Graph products

In this subsection we introduce graph products of groups. Graph products are a
group construction, which somehow interpolate between direct products and free
products. Both, direct products and free products of arbitrarily many groups,
can be represented with this group construction as well and hence we are dealing
with an actual generalization of both concepts. Our definition of graph products
is based on trace monoids (also known as partially commutative monoids), which
we discussed in Subsection 2.1.1.

Let us fix a finite independence alphabet (Γ, E) and finitely generated groups
Gi for i ∈ Γ. Let α be the size of a largest clique of the independence alphabet
(Γ, E). As usual 1 is the identity element for each of the groups Gi. Let Σi be a
finite and symmetric generating set of Gi such that Σi ∩ Σj = ∅ for i 6= j. Also
we have the relatorsets Ri, which means Gi = 〈Σi | Ri〉. We can now define the
graph product of the Gi with graph (Γ, E) to be the following group:

G(Γ, E, (Gi)i∈Γ) =

〈⋃
i∈Γ

Σi

∣∣∣∣ ⋃
i∈Γ

Ri
⋃

(i,j)∈E

{[a, b] | a ∈ Σi, b ∈ Σj}

〉

This group presentation is just for better understanding. Later in Chapter 6 we
will only work with another definition of graph products, which we will introduce
now.

We define a (possibly infinite) independence alphabet as in [23, 59]: Let

Ai = Gi \ {1} and A =
⋃
i∈Γ

Ai.

We assume that Ai ∩Aj = ∅ for i 6= j. We fix the independence relation

I =
⋃

(i,j)∈E

Ai ×Aj

on A. The independence alphabet (A, I) is the only independence alphabet in
this thesis which may be infinite. We will work with traces t ∈ M(A, I). For
such a trace we need two length measures. The ordinary length of t is |t| as
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defined in Section 2.1: If t = [a1 · · · ak]I with aj ∈ A then |t| = k. On the other
hand, if we deal with computational problems, we need a finitary representations
of the elements aj . Assume that aj ∈ Aij . Then, aj can be written as a word
over the alphabet Σij . Let nj = ||aj || be the geodesic length of aj over Σij (as
defined in Subsection 2.4.1). Then ||t|| = n1 + n2 + · · ·+ nk.

A trace a ∈ A (i.e., a generator of M(A, I)) is also called atomic, or an atom.
For an atom a ∈ A that belongs to the group Gi, we write a−1 for the inverse of
a in Gi; it is again an atom. On M(A, I) we define the trace rewriting system

R =
⋃
i∈Γ

(
{([aa−1]I , 1) | a ∈ Ai} ∪ {([ab]I , [c]I) | a, b, c ∈ Ai, ab = c in Gi}

)
.

(2.1)
The following lemma was shown in [59]:

Lemma 2.4. The trace rewriting system R is confluent.

Since R is length-reducing, it is also terminating and hence defines unique
normal forms. We define the graph product G(Γ, E, (Gi)i∈Γ) as the quotient
monoid

G(Γ, E, (Gi)i∈Γ) = M(A, I)/R.

Here we identify R with the smallest congruence relation on M(A, I) that contains
all pairs from R. In the rest of this section, we write G for G(Γ, E, (Gi)i∈Γ). It is
easy to see that G is a group. The inverse of a trace t = [a1a2 · · · ak]I ∈M(A, I)

with ai ∈ A is the trace t−1 = [a−1
k · · · a

−1
2 a−1

1 ]I . Note that t is well defined: If
[a1a2 · · · ak]I = [b1b2 · · · bk]I then [a−1

k · · · a
−1
2 a−1

1 ]I = [b−1
k · · · b

−1
2 b−1

1 ]I . We can
apply this notation also to an independence clique C of (A, I) which yields the
independence clique C−1 = {a−1 | a ∈ C}.

Note that G is finitely generated by Σ =
⋃
i∈Γ Σi. If E = ∅, then G is the

free product4 of the groups Gi (i ∈ Γ) and if (Γ, E) is a complete graph, then G
is the direct product of the groups Gi (i ∈ Γ). In this sense, the graph product
construction generalizes free and direct products.

Recall that for words u, v ∈ Σ∗ we write u =G v if u and v represent the same
element of the group G (Subsection 2.4.1). We use the same notation also for
traces u, v ∈M(A, I). In this case, we also say that u = v in G. The following
lemma is important for solving the word problem in the graph product G:

Lemma 2.5. Let u, v ∈M(A, I). Then u =G v if and only if NFR(u) = NFR(v).
In particular we have u =G 1 if and only if NFR(u) = 1.

Proof. The if-direction is trivial. Let on the other hand u, v ∈ M(A, I) and
suppose that u = v in G. By definition this is the case if and only if u and
v represent the same element from M(A, I)/R and are hence congruent with
respect to R. Since R produces a normal form for elements from the same
congruence class, this implies that NFR(u) = NFR(v).

4As usual, the free product of groups G1 and G2 is denoted by G1 ∗G2.
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Graph products of copies of Z are also known as graph groups or right-angled
Artin groups. Graph products of copies of Z/2Z are known as right-angled
Coxeter groups, see [24] for more details.

2.4.3 HNN-extensions

We now introduce the important operation of HNN-extension. In their general
form, HNN-extensions have been used to construct groups with an undecidable
word problem, which means they may destroy desirable algorithmic properties.
HNN-extensions are closely related to amalgamated products, which we will
introduce in the next subsection. Later in Chapter 7 we consider the special case
of finite associated (resp. identified) subgroups, for which these constructions
already play a prominent role, for example, in Stallings’ decomposition of groups
with infinitely many ends [85] or the construction of virtually free groups [19].
Moreover, these constructions are known to preserve a wide range of important
structural and algorithmic properties [2, 42, 51, 52, 54, 55, 63, 64, 72].

Suppose G = 〈Σ | R〉 is a finitely generated group with the finite symmetric
generating set Σ = Ω∪Ω−1 and R ⊆ Σ∗. Fix two isomorphic subgroups A and B
of G together with an isomorphism ϕ : A→ B. Let t /∈ Σ be a new letter. Then
the corresponding HNN-extension is the group

H = 〈Σ ∪ {t, t−1} | R ∪ {t−1a−1tϕ(a) | a ∈ A}〉

(formally, we identify here every element g ∈ A ∪ B with a word over Σ that
evaluates to g). This group is usually denoted by

H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉. (2.2)

Intuitively, H is obtained from G by adding a new element t such that conjugating
elements of A with t applies the isomorphism ϕ. Here, t is called the stable
letter and the groups A and B are the associated subgroups. A basic fact about
HNN-extensions is that the group G embeds naturally into H [44].

For a subset S ⊆ G of the group G one defines the centralizer

C(S) = {h ∈ G | gh = hg for all g ∈ S}.

The HNN-extension H = 〈G, t | t−1at = a (a ∈ C(S))〉 is an extension of the
centralizer C(S). Extensions of centralizers were first studied in [75] in the
context of exponential groups.

2.4.4 Amalgamated products

The next group construction is strongly related to HNN-extensions. Roughly
speaking, one takes two groups and glues them together by a subgroup of both
groups. For i ∈ {1, 2}, let Gi = 〈Σi | Ri〉 be a finitely generated group with
Σ1 ∩ Σ2 = ∅ and let A be a group that is embedded in each Gi via the injective
morphism ϕi : A → Gi for i ∈ {1, 2}. Then, the amalgamated product with
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Figure 2.2: The shape of a geodesic triangle in a hyperbolic group

identified (amalgamated) subgroup A is the group

〈Σ1 ] Σ2 | R1 ]R2 ∪ {ϕ1(a)−1ϕ2(a) | a ∈ A}〉.

This group is usually written as

〈G1 ∗G2 | ϕ1(a) = ϕ2(a) (a ∈ A)〉

or just G1 ∗A G2. Note that the amalgamated product depends on the mor-
phisms ϕi, although they are omitted in the notation G1 ∗A G2. In this thesis,
we just consider finite amalgamated subgroups A.

It is well-known [69, Theorem 2.6, p. 187] that G1 ∗A G2 can be embedded
into the HNN-extension

H = 〈G1 ∗G2, t | t−1ϕ1(a)t = ϕ2(a) (a ∈ A)〉

by the morphism Φ: G1 ∗A G2 → H with

Φ(g) =

{
t−1gt if g ∈ G1

g if g ∈ G2.

2.4.5 Hyperbolic groups

Hyperbolic groups are groups where the so called Cayley-graph "looks hyperbolic".
An easy example is the free group F2. On the other hand, free abelian groups
such as Z× Z are kind of the opposite.

Let G be a finitely generated group with the finite symmetric generating
set Σ and let h : Σ∗ → G be the evaluation morphism. The Cayley-graph of
G (with respect to Σ) is the graph Γ = Γ(G) with node set G and all edges
(g, ga) for g ∈ G and a ∈ Σ. We view Γ as a geodesic metric space, where
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every edge (g, ga) is identified with a unit-length interval. It is convenient to
label the directed edge from g to ga with the generator a. Note that since Σ

is symmetric, there is also an edge from ga to g labelled with a−1. Therefore
one can view Γ as an undirected graph. The distance between two points p, q
is denoted with dΓ(p, q). For g ∈ G let |g| = dΓ(1, g). For κ ≥ 0 and g ∈ G let
Bκ(g) = {h ∈ G | dΓ(g, h) ≤ κ} be the ball of radius κ around g.

Paths can be defined in a very general way for metric spaces, but we only
need paths that are induced by words over Σ. Given a word w = a1a2 · · · an
(with ai ∈ Σ), one obtains a unique path P [w] : [0, n]→ Γ, which is a continuous
mapping from the real interval [0, n] to Γ. It maps the subinterval [i, i+1] ⊆ [0, n]

isometrically onto the edge (h(a1 · · · ai), h(a1 · · · ai+1)) of Γ. The path P [w] starts
in 1 and ends in h(w) (the group element represented by w). We also say that
P [w] is the unique path that starts in 1 and is labelled with the word w. More
generally, for g ∈ G we denote with g · P [w] the path that starts in g and is
labelled with w. When writing u · P [w] for a word u ∈ Σ∗, we mean the path
h(u) · P [w]. A path P : [0, n]→ Γ of the above form is

˛ geodesic if dΓ(P (0), P (n)) = n;

˛ (λ, ε)-quasigeodesic if for all points p = P (a) and q = P (b) we have
|a− b| ≤ λ · dΓ(p, q) + ε;

˛ ζ-local (λ, ε)-quasigeodesic if for all points p = P (a) and q = P (b) with
|a− b| ≤ ζ we have |a− b| ≤ λ · dΓ(p, q) + ε.

A word w ∈ Σ∗ is geodesic if the path P [w] is geodesic, which means that
there is no shorter word representing the same group element from G. Similarly,
we define the notion of (λ, ε)-quasigeodesic (resp., ζ-local (λ, ε)-quasigeodesic)
words. A set (or language) of words L ⊆ Σ∗ is called geodesic (resp., (λ, ε)-
quasigeodesic), if every w ∈ L is geodesic (resp., (λ, ε)-quasigeodesic).

A geodesic triangle consists of three points p, q, r ∈ G and geodesic paths
P1 = Pp,q, P2 = Pp,r, P3 = Pq,r (the three sides of the triangle), where Px,y is
a geodesic path from x to y. We call a geodesic triangle δ-slim for δ ≥ 0, if
for all i ∈ {1, 2, 3}, every point on Pi has distance at most δ from a point on
Pj ∪ Pk, where {j, k} = {1, 2, 3} \ {i}. Here, we identify a path P : [0, n] → Γ

with its image P ([0, n]) ⊆ Γ. The group G is called δ-hyperbolic, if every geodesic
triangle is δ-slim. Finally, G is hyperbolic, if it is δ-hyperbolic for some δ ≥ 0.
Figure 2.2 shows the shape of a geodesic triangle in a hyperbolic group. Finitely
generated free groups are for instance 0-hyperbolic with respect to a free finite
generating set. The property of being hyperbolic is independent of the chosen
generating set Σ. The word problem for every hyperbolic group can be decided
in real time [45].

Now we are also going to define quasiconvex subgroups: A subset Q ⊆ G is
called quasiconvex if there exists a constant κ ≥ 0 such that every geodesic path
from 1 to some g ∈ Q is contained in

⋃
h∈QBκ(h). Later we are only interested

in the case that G is a group and Q is a subgroup. The following result can be
found in [33] (h : Σ∗ → G denotes the evaluation morphism):
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Lemma 2.6. Let G be hyperbolic. A subset Q ⊆ G is quasiconvex if and only if
the language of all geodesic words in h−1(Q) is regular.

2.4.6 Central extensions

Consider a finitely generated group H and let K ≤ Z(H) be a subgroup of the
center of H. In particular, K is normal in H. Let G = H/K be the quotient
group. In this situation, H is called a central extension of G. Note that K is
abelian. We write K additively.

Lemma 2.7. Let H be a central extension of G = H/K with H finitely generated
and G finitely presented. Then K is finitely generated.

Proof. We can choose a finite symmetric generating set Γ for H such that
G = 〈Γ | R〉 for a finite set of relators R. Let φ : Γ∗ → H be the evaluation
morphism. Consider a word w ∈ Γ∗ that represents an element of K. Since
w =G 1, we can write the word w in the free group F (Γ) as

w =F (Γ)

n∏
i=1

u−1
i rεii ui,

with ui ∈ Γ∗, εi ∈ {−1, 1}, and ri ∈ R. We have φ(R) ⊆ K. In particular, all
elements of φ(R) are central in H. We obtain

w =H

n∏
i=1

u−1
i rεii ui =H

n∏
i=1

rεii .

This shows that the finite set φ(R) generates K.

Assume that as above, H is finitely generated and G is finitely presented.
Let Σ be a finite symmetric generating set for G. We can identify Σ with a left
transversal of K in H. Moreover, let A be a finite generating set for K with
Σ ∩ A = ∅. Then Γ = Σ ∪ A generates H. Given a word w ∈ Σ∗ and α ∈ A∗
we write w · α for the corresponding element of H. Here, α is usually written
additively and identified with its Parikh image.

For the following lemma we need the word search problem for the finitely
presented group G. For this, choose a finite presentation 〈Σ | R〉 for G. The
input to the word search problem is a word w ∈ Σ∗. If w 6=G 1 then the output
is NO. Otherwise the output is a representation w =F (Σ)

∏n
i=1 u

−1
i rεii ui of w

in the free group, where ui ∈ Σ∗, εi ∈ {−1, 1}, and ri ∈ R. Clearly, the word
search problem can be only solved in polynomial time if G has a polynomial
Dehn function. Automatic groups (and hence also hyperbolic groups) have a
polynomial time solvable word search problem [61, p. 40].

Lemma 2.8. Let H be a finitely generated central extension of the finitely
presented group G = H/K. Choose the above generating set Γ = Σ ∪ A for H
and let k = |A|. Assume that the word search problem for G can be solved in
polynomial time. Then given w ∈ Σ∗ with w =G 1 we can compute in polynomial
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time α ∈ K such that w =H α. If α = (z1, . . . , zk) then for every 1 ≤ i ≤ k, |zi|
is bounded polynomially in |w|.

Proof. Let 〈Σ | R〉 be a finite presentation for G. Since w =G 1 and the word
search problem for G can be solved in polynomial time, we can compute in
polynomial time a representation w =F (Σ)

∏n
i=1 u

−1
i rεii ui of w in the free group

F (Σ), where ui ∈ Σ∗, εi ∈ {−1, 1}, and ri ∈ R. Note that n is polynomially
bounded in |w|. For every r ∈ R there is a fixed element α(r) ∈ K such that
r =H α(r). Since all elements of R are central in H, we obtain

w =H

n∏
i=1

u−1
i rεii ui =H

n∑
i=1

εi · α(ri).

The latter sum can be computed in polynomial time. Note that the bit length
of all entries in

∑n
i=1 εi · α(ri) is O(log n) = O(log |w|).

We will mainly use Lemma 2.8 for the following situation: Let u, v ∈ Σ∗ be
given word with u =G v. Then there exists a unique element α ∈ K such that
u · α =H v. Lemma 2.8 allows us to compute this α in polynomial time.

2.4.7 Wreath products

Let G and H be groups. Consider the direct sum K =
⊕

h∈H Gh, where Gh is
a copy of G. We view K as the set G(H) of all mappings f : H → G such that
supp(f) := {h ∈ H | f(h) 6= 1} is finite, together with pointwise multiplication
as the group operation. The set supp(f) ⊆ H is called the support of f . The
group H has a natural left action on G(H) given by hf(a) = f(h−1a), where
f ∈ G(H) and h, a ∈ H. The corresponding semidirect product G(H) oH is the
(restricted) wreath product G oH. In other words:

˛ Elements of G oH are pairs (f, h), where h ∈ H and f ∈ G(H).

˛ The multiplication in GoH is defined as follows: Let (f1, h1), (f2, h2) ∈ GoH .
Then (f1, h1)(f2, h2) = (f, h1h2), where f(a) = f1(a)f2(h−1

1 a).

There are canonical mappings

˛ σ : G oH → H with σ(f, h) = h and

˛ τ : G oH → G(H) with τ(f, h) = f

In other words: g = (τ(g), σ(g)) for g ∈ G oH. Note that σ is a homomorphism
whereas τ is in general not a homomorphism. Throughout this thesis, the letters
σ and τ will have the above meaning, which of course depends on the underlying
wreath product G oH, but the latter will be always clear from the context.

The following intuition might be helpful: An element (f, h) ∈ G o H can
be thought of as a finite multiset of elements of G \ {1G} that are sitting at
certain elements of H (the mapping f) together with the distinguished element
h ∈ H, which can be thought of as a cursor moving in H. If we want to
compute the product (f1, h1)(f2, h2), we do this as follows: First, we shift the
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finite collection of G-elements that corresponds to the mapping f2 by h1: If the
element g ∈ G \ {1G} is sitting at a ∈ H (i.e., f2(a) = g), then we remove g from
a and put it to the new location h1a ∈ H. This new collection corresponds to
the mapping f ′2 : a 7→ f2(h−1

1 a). After this shift, we multiply the two collections
of G-elements pointwise: If in a ∈ H the elements g1 and g2 are sitting (i.e.,
f1(a) = g1 and f ′2(a) = g2), then we put the product g1g2 into the location a.
Finally, the new distinguished H-element (the new cursor position) becomes
h1h2.

Clearly, H is a subgroup of G oH. But also G is a subgroup of G oH. We
can identify G with the set of all mappings f ∈ G(H) such that supp(f) ⊆ {1}.
This copy of G together with H generates G oH. In particular, if G = 〈Σ〉 and
H = 〈Γ〉 with Σ ∩ Γ = ∅ then G oH is generated by Σ ∪ Γ. In this situation, we
will also apply the above mappings σ and τ to words over Σ ∪ Γ. We will need
the following embedding result:

Lemma 2.9. Given a unary encoded number d, one can compute in logspace an
embedding of Gd o Z into G o Z.

Proof. Let G = 〈Γ〉 and let Γi (0 ≤ i ≤ d− 1) be pairwise disjoint copies of Γ,
each of which generates a copy of G. For Gd o Z we take the generating set
{t, t−1} ∪

⋃d−1
i=0 Γi, where t generates the right factor Z. We then obtain an

embedding h : Gd o Z→ G o Z by:

˛ h(t) = td and h(t−1) = t−d,

˛ h(a) = tiat−i for a ∈ Γi.

This proves the lemma.

2.4.8 Strongly efficiently non-solvable groups

Roughly speaking, a group G is uniformly SENS if there exist nontrivial nested
commutators of arbitrary depth that moreover, are efficiently computable in a
certain sense. We now give a formal definition of uniformly SENS groups as in
[F2].

Let us fix a f.g. group G = 〈Σ〉. Following [F2] we need the additional
assumption that the generating set Σ contains the group identity 1. This allows
to pad words over Σ to any larger length without changing the group element
represented by the word. One also says that Σ is a standard generating set for
G. The group G is called strongly efficiently non-solvable (SENS) if there is
a constant µ ∈ N such that for every d ∈ N and v ∈ {0, 1}≤d there is a word
wd,v ∈ Σ∗ with the following properties:

˛ |wd,v| = 2µd for all v ∈ {0, 1}d,
˛ wd,v = [wd,v0, wd,v1] for all v ∈ {0, 1}<d (here we take the commutator of
words),

˛ wd,1 6= 1 in G.

The group G is called uniformly strongly efficiently non-solvable if, moreover,
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˛ given v ∈ {0, 1}d, a binary number i with µd bits, and a ∈ Σ one can
decide in linear time on a random access Turing-machine whether the i-th
letter of wd,v is a.

Here are examples for uniformly SENS groups; see [F2] for details:

˛ finite non-solvable groups (more generally, every f.g. group that has a finite
non-solvable quotient),

˛ f.g. non-abelian free groups,
˛ Thompson’s group F ,
˛ weakly branched self-similar groups with a f.g. branching subgroup (this

includes several famous self-similar groups like the Grigorchuk group, the
Gupta-Sidki groups and the Tower of Hanoi groups).



Chapter 3

Knapsack and exponent
equations

3.1 General definitions

Let G be a finitely generated group with the finite symmetric generating set Σ.
Moreover, let X be a countable infinite set of formal variables that take values
from N. For a subset U ⊆ X, we use NU to denote the set of maps ν : U → N,
which we call valuations for U . For valuations ν ∈ NU and µ ∈ NV such that
U ⊆ V we say that ν extends µ (or µ restricts to ν) if ν(x) = µ(x) for all x ∈ U .

An exponent expression over Σ is a formal expression of the form e =

ux1
1 v1u

x2
2 v2 · · ·uxkk vk with k ≥ 1, words ui, vi ∈ Σ∗ and variables x1, . . . , xk ∈ X.

Here, we allow xi = xj for i 6= j. The words ui are called the periods of e, and
we can assume that ui 6= 1 for all 1 ≤ i ≤ k. If every variable in an exponent
expression occurs at most once, it is called a knapsack expression. Alternatively,
if we have an equation e = 1, we also say knapsack equation or exponent equation
respectively. Let Xe = {x1, . . . , xk} be the set of variables that occur in e. For
a valuation ν : U → N such that Xe ⊆ U (in which case we also say that ν is a
valuation for e), we define ν(e) = u

ν(x1)
1 v1u

ν(x2)
2 v2 · · ·uν(xk)

k vk ∈ Σ∗. We say that
ν is a G-solution of the expression e, if ν(e) evaluates to the identity element 1

of G. With solG(e) we denote the set of all G-solutions ν : Xe → N of e. We can
view solG(e) as a subset of Nk. The length of e is defined as ||e|| =

∑k
i=1 |ui|+ |vi|,

whereas k ≤ ||e|| is its degree, deg(e) for short. We define solvability of exponent
equations over G (denoted by ExpEq(G)) as the following decision problem:

Input A finite list of exponent expressions e1, . . . , en over Σ.

Question Is
⋂n
i=1 solG(ei) non-empty?

The knapsack problem for G (Knapsack(G) for short) is the following decision
problem:

Input A single knapsack expression e over Σ.

23
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Question Is solG(e) non-empty?

It is easy to observe that the concrete choice of the generating set Σ has no
influence on the decidability and complexity status of these problems.

One could also allow exponent expressions of the form
e = v0u

x1
1 v1u

x2
2 v2 · · ·uxkk vk. However, since then

solG(e) = solG(ux1
1 v1u

x2
2 v2 · · ·uxkk vkv0),

this would result in the same class of solution sets. Moreover, we could
also restrict to exponent expressions of the form e = ux1

1 ux2
2 · · ·u

xk
k v: for

e = ux1
1 v1u

x2
2 v2 · · ·uxkk vk and

e′ = ux1
1 (v1u2v

−1
1 )x2(v1v2u3v

−1
2 v−1

1 )x3 · · · (v1 · · · vk−1u3v
−1
k−1 · · · v

−1
1 )xkv1 · · · vk

we have ν(e) =G ν(e′) for every valuation ν and hence solG(e) = solG(e′).

3.2 Semilinear sets

Fix a dimension d ≥ 1. All vectors will be column vectors. For a vector
v = (v1, . . . , vd)

T ∈ Zd we define its norm ||v|| := max{|vi| | 1 ≤ i ≤ d} and for a
matrix M ∈ Zc×d with entries mi,j (1 ≤ i ≤ c, 1 ≤ j ≤ d) we define the norm
||M || = max{|mi,j | | 1 ≤ i ≤ c, 1 ≤ j ≤ d}. Finally, for a finite set of vectors
A ⊆ Nd let ||A|| = max{||a|| | a ∈ A}.

We extend the operations of vector addition and multiplication of a vector
by a matrix to sets of vectors in the obvious way. A linear subset of Nd is a set
of the form

L = L(b, P ) := b + P · Nk

where b ∈ Nd and P ∈ Nd×k. We call a set S ⊆ Nd semilinear, if it is a finite
union of linear sets. The class of semilinear sets is known to be effectively closed
under boolean operations; quantitative results on the descriptional complexity
of boolean operations on semi-linear sets can be found in [6].

If a semilinear set S is given as a union
⋃k
i=1 L(bi, Pi), we call the tuple R =

(b1, P1, . . . , bk, Pk) a semilinear representation of S. For a semilinear represen-
tation R = (b1, P1, . . . , bk, Pk) we define ||R|| = max{||b1||, ||P1|| . . . , ||bk||, ||Pk||}.
The magnitude of a semilinear set S, mag(S) for short, is the smallest possible
value for ||R|| among all semilinear representations R of S.

For a linear set L(b, P ) ⊆ Nd we can assume that all columns of P are
different. Hence, if the magnitude of L(b, P ) is bounded by s then we can bound
the number of columns of P by (s+ 1)d (since there are only (s+ 1)d vectors
in Nd of norm at most s). No better upper bound is known, but if we allow to
split L(b, P ) into several linear sets, we get the following lemma from [26]:

Lemma 3.1 (c.f. [26, Theorem 1]). Let L = L(b, P ) ⊆ Nd be a linear set of
magnitude s = mag(L). Then L =

⋃
i∈I L(b, Pi) such that every Pi consists of

at most 2d log(4ds) columns from P (and hence, mag(L(b, Pi)) ≤ s).
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We also need the following bound on the magnitude for the intersections of
semilinear sets:

Proposition 3.2 (c.f. [6, Theorem 4]). Let K = L(b1, P1) and L = L(b2, P2)

(K,L ⊆ Nd) be linear sets of magnitude at most s ≥ 1. Then the intersection
K ∩ L is semilinear and

mag(K ∩ L) ≤ (12d2 log2(4ds)dd/2sd+1 + 1)s ≤ O(dd/2+3sd+3).

Proof. By Lemma 3.1 we can write K =
⋃
i∈I1 L(b1, P1,i) and

L =
⋃
i∈I2 L(b2, P2,i) where every P1,i (P2,i) consists of at most 2d log(4ds)

columns from P1 (P2). We have K ∩ L =
⋃

(i,j)∈I1×I2 L(b1, P1,i) ∩ L(b2, P2,i).
From [6, Theorem 4] we get the upper bound (12d2 log2(4ds)dd/2sd+1 + 1)s for
the magnitude of each intersection L(b1, P1,i) ∩ L(b2, P2,i).

In the context of knapsack problems (which we will introduce in the next sec-
tion), we will consider semilinear subsets as sets of mappings ν : {x1, . . . , xd} → N
for a finite set of variables U = {x1, . . . , xd}. Such a mapping ν can be identified
with the vector (ν(x1), . . . , ν(xd))

T. This allows to use all vector operations
(e.g. addition and scalar multiplication) on the set NU of all mappings from
U to N. In general, if ∗ is a binary operation on N (we only use addition or
multiplication for ∗) we denote with f ∗ g (for f, g ∈ NU ) the pointwise extension
of the operation ∗ to NU , i.e., (f ∗ g)(x) = f(x) ∗ g(x) for all x ∈ U . Moreover,
for mappings f ∈ NU , g ∈ NV with U ∩ V = ∅ we define f ⊕ g ∈ NU∪V by
(f ⊕ g)(x) = f(x) for x ∈ U and (f ⊕ g)(y) = g(y) for y ∈ V . All operations on
NU will be extended to subsets of NU in the standard pointwise way. Note that
mag(K ⊕ L) ≤ max{mag(K),mag(L)} for semilinear sets K,L. If L ⊆ NU is
semilinear and V ⊆ U then we denote with L�V the semilinear set {f�V | f ∈ L}
obtained by restricting every function f ∈ L to the subset V of its domain.
Clearly, L�V is semilinear too and mag(L�V ) ≤ mag(L).

The semilinear sets are exactly those sets that are definable in first-order logic
over the structure (N,+) (the so-called Presburger definable sets). All the above
mentioned closure properties of semilinear sets follow from this characterization.
A good survey on semilinear results and Presburger arithmetic with references
for the above mentioned results is [41].

We fix an arbitrary enumeration a1, . . . , ak of the alphabet Σ. For w ∈ Σ∗

and 1 ≤ i ≤ k let |w|ai be the number of occurrences of ai in w. The Parikh
image of w is the tuple P (w) = (|w|a1 , . . . , |w|ak) ∈ Nk. For a language L ⊆ Σ∗

its Parikh image is P (L) = {P (w) | w ∈ L}. The following important result was
shown by Parikh [80].

Theorem 3.3. The semilinear sets are exactly the Parikh images of the regular
languages. From a given finite automaton A one can compute a semilinear
representation of P (L(A)).
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3.3 Knapsack-semilinearity

The group G is called knapsack-semilinear if for every knapsack expression
e over Σ, the set solG(e) is a semilinear set of vectors and a semilinear rep-
resentation can be effectively computed from e. This implies that for every
exponent expression e over Σ, the set solG(e) is semilinear as well and a semi-
linear representation can be effectively computed from e. To see this, consider
an exponent expression e = ux1

1 v1u
x2
2 v2 · · ·uxkk vk over Σ. Choose pairwise dif-

ferent variables y1, y2, . . . , yk such that Xe = {x1, . . . , xk} ⊆ {y1, . . . , yk} and
consider the knapsack expression e′ = uy11 v1u

y2
2 v2 · · ·uykk vk. Moreover, define the

equivalence relation R = {(i, j) | 1 ≤ i, j ≤ k, xi = xj}. We get

solG(e) = (solG(e′) ∩ {ν | ν : {y1, . . . , yk} → N, ∀(i, j) ∈ R : ν(yi) = ν(yj)})�Xe .

Since semilinear sets are effectively closed under intersection and restriction, the
effective semilinearity of solG(e′) yields the effective semilinearity of solG(e).

Also notice that solvability of exponent equations is decidable for every
knapsack-semilinear group. As mentioned in the introduction, the class of
knapsack-semilinear groups is very rich. Examples of a groups, where knapsack
is decidable but solvability of systems of exponent equations is undecidable are
the Heisenberg group H3(Z) (the group of all upper triangular (3× 3)-matrices
over the integers, where all diagonal entries are 1) [58] and the Baumslag-Solitar
group BS(1, 2) [32]. These groups are not knapsack-semilinear in a strong sense:
there are knapsack expressions e such that solH3(Z)(e) (resp. solBS(1,2)(e)) is
not semilinear. In order to obtain a non-semilinear solution set, one needs a
knapsack instance over H3(Z) (resp. BS(1, 2)) with three variables. For two
variables, the solutions sets are semilinear for any group. In fact, they have a
particularly simple structure:

Lemma 3.4. Let G be a group and g1, g2, h ∈ G be elements.

(i) The solution set S1 = {(x, y) ∈ Z2 | gx1g
y
2 = 1} is a subgroup of Z2. If G is

torsion-free and {g1, g2} 6= {1} then S1 is cyclic.

(ii) The solution set S = {(x, y) ∈ Z2 | gx1g
y
2 = h} is either empty or a coset

(a, b) + S1 of S1 where (a, b) ∈ S is any solution.

Proof. Clearly (0, 0) ∈ S1, and if gx1g
y
2 = 1 = gx

′

1 g
y′

2 then also gx−x
′

1 gy−y
′

2 = 1.
This shows the first part of statement (i). Now assume that G is torsion-free
and that g1 6= 1 (the case g2 6= 1 is analogous). If (x, y), (x′, y′) ∈ S1 then
y′(x, y) − y(x′, y′) = (xy′ − x′y, 0) ∈ S1 and hence gxy

′−x′y
1 = 1. Since G is

torsion-free this implies that xy′ − x′y = 0, i.e. (x, y) and (x′, y′) are linearly
dependent, since det

(
x x′

y y′
)

= 0. This shows that S1 is cyclic.
For (ii) let us assume that S 6= ∅ and take any solution (a, b) ∈ S, i.e.

ga1g
b
2 = h. We first show that (a, b) +S1 ⊆ S. Take any (x, y) ∈ S1, i.e. gx1g

y
2 = 1.

Then we obtain ga+x
1 gb+y2 = ga1g

x
1g
y
2g
b
2 = ga1g

b
2 = h and thus (a+ x, b+ y) ∈ S.

Finally we claim that S ⊆ (a, b) + S1: Let (x, y) ∈ S, i.e. gx1g
y
2 = h. Since

g−a1 hg−b2 = 1, we get gx−a1 gy−b2 = g−a1 (gx1g
y
2)g−b2 = g−a1 hg−b2 = 1 and therefore
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(x− a, y − b) ∈ S1. Hence S = (a, b) + S1.

Remark 3.5. The requirement that the semilinear representation of the solution
set in a knapsack-semilinear group G can be computed effectively is important:
There are groups where every knapsack equation has a semilinear solution set,
but the semilinear representation cannot be computed. For example, consider
a finitely generated torsion group G with an undecidable word problem [1].
Then every knapsack expression over G has a semilinear solution set. However,
computing a semilinear representation for {n ∈ N | un = 1} for a given word u
would allow us to check whether u = 1 in G.

For a knapsack-semilinear group G and a finite generating set Σ for
G we define two growth functions. For n,m ∈ N with m ≤ n let
Exp(n,m) be the finite set of all exponent expressions e over Σ such
that (i) solG(e) 6= ∅, (ii) ||e|| ≤ n and (iii) deg(e) ≤ m. Moreover,
let Knap(n,m) ⊆ Exp(n,m) be the set of all knapsack expressions in
Exp(n,m). We define the mappings EG,Σ : {(n,m) | m,n ∈ N,m ≤ n} → N and
KG,Σ : {(n,m) | m,n ∈ N,m ≤ n} → N as follows:

˛ EG,Σ(n,m) = max{mag(solG(e)) | e ∈ Exp(n,m)},
˛ KG,Σ(n,m) = max{mag(solG(e)) | e ∈ Knap(n,m)}.

Clearly, if solG(e) 6= ∅ and mag(solG(e)) ≤ N then e has a G-solution ν such
that ν(x) ≤ N for all variables x ∈ Xe. Therefore, if G has a decidable word
problem and we have a computable bound on the function EG,Σ then we obtain a
nondeterministic algorithm for solvability of exponent equations over G: given an
exponent expression e we can guess ν : Xe → N with ν(x) ≤ N for all variables x
and then verify (using an algorithm for the word problem), whether ν is indeed
a solution.

Let Σ and Σ′ be two generating sets for the group G. Then there is a constant
c such that EG,Σ(n,m) ≤ EG,Σ′(cn,m) and KG,Σ(n,m) ≤ KG,Σ′(cn,m). To see
this, note that for every a ∈ Σ there is a word wa ∈ (Σ′)∗ such that a and wa are
representing the same element in G. Then we can choose c = max{|wa| | a ∈ Σ}.
Due to this fact, we do not have to specify the generating set Σ when we say
that KG,Σ (resp., EG,Σ) is polynomially/exponentially bounded. On the other
hand, we might simplify the notation to KG (resp., EG).

In Chapter 10 we do not care about the degree of the knapsack equations
and hence we use the functions K̂G,Σ(n) = KG,Σ(n, n) and ÊG,Σ(n) = EG,Σ(n, n),
where we do not specify the degree. For simplicity, we just write KG,Σ (resp.,
EG,Σ), if it is clear from the context.

Furthermore we will need the following lemma:

Lemma 3.6. Let G be knapsack-semilinear and let

e = v0(uk11 )x1v1(uk22 )x2v2 · · · (ukdd )xdvd

be an exponent expression over G where k1, . . . , kd ≤ k and |v0u1v1 · · ·udvd| = n.
Then the magnitude of solG(e) is (n ·max{K̂G(n), k}+ 1)O(n).



28 Chapter 3. Knapsack and exponent equations

Proof. Let X = {x1, . . . , xd} (some of the variables xi might be equal) and
Y = {y1, . . . , yd} be a set of d distinct variables. Then ν : X → N is a solution
of e = 1 if and only if µ : Y → N is a solution of e′ = v0u

y1
1 v1u

y2
2 v2 · · ·uydd vd = 1

where µ(yi) = kiν(xi). Notice that e′ is a knapsack expression. Hence solG(e)

can be obtained as a projection of the intersection of solG(e′) with a semilinear
set of magnitude ≤ k (it has to ensure that µ(yi) is a multiple of ki and that
µ(yi)/ki = µ(yj)/kj whenever xi = xj). Therefore

mag(solG(e)) = (n ·max{K̂G(n), k}+ 1)O(n).

3.4 Relative knapsack-semilinearity

Let S ⊆ G for a finitely generated group G with the finite generating set Σ. We
say that G is knapsack-semilinear relative to S if for every knapsack expression
e over Σ, the set {ν : Xe → N | ν(e) ∈G S} is a semilinear set of vectors and a
semilinear representation can be effectively computed from e. We are mainly
interested in the case where S is a subgroup of G. For sets S1, . . . , Sk ⊆ G we
say that G is knapsack-semilinear relative to {S1, . . . , Sk} if for every 1 ≤ i ≤ k,
G is knapsack-semilinear relative to Si. Note that G is knapsack-semilinear if
and only if it is knapsack-semilinear relative to 1.



Chapter 4

Main results of the thesis

In this chapter we collect all main theorems of this thesis. There are several
corollaries from these theorems, which we will discuss in the respective chapters.

The following theorem can be found in Chapter 5.

Theorem 4.1 ([F6]). Let G be a finitely generated group with a finite symmetric
generating set Σ and let H be a finite extension of G (hence, it is finitely generated
too) with the finite symmetric generating set Σ′ = Σ ∪ (C \ {1}) ∪ (C \ {1})−1,
where C is a set of coset representatives with 1 ∈ C. Let ` = |C| be the index of
G in H. If G is knapsack-semilinear then H is knapsack-semilinear too and we
have the bounds

EH,Σ′(n,m) ≤ ` · EG,Σ(O(`2n),m) + 2`,

KH,Σ′(n,m) ≤ ` · KG,Σ(O(`2n),m) + 2`.

The next two theorems are discussed in Chapter 6.

Theorem 4.2 ([F6]). We denote with α the size of a largest independence clique
in the finite graph (Γ, E). If each group Gi, i ∈ Γ, is knapsack-semilinear, then
their graph product G = G(Γ, E, (Gi)i∈Γ) is knapsack-semilinear as well. Let
K : N × N → N be the pointwise maximum of the functions KGi,Σi(n,m) for
i ∈ Γ. Then EG,Σ(n,m) ≤ max{K1,K2} with

K1 ≤ O
(
(αm)αm/2+3 · K(6αmn,αm)αm+3

)
,

K2 ≤ (αm)O(α2m) · nO(α2|Γ|m).

Theorem 4.3 ([F6]). If the groups G1 and G2 are knapsack-semilinear, then
G1 ∗ G2 is knapsack-semilinear as well. Let K(n,m) be the pointwise maxi-
mum of the functions KG1,Σ1

and KG2,Σ2
. Then for G = G1 ∗ G2 we have

KG,Σ(n,m) ≤ max{K1,K2} with

K1 = K(6mn,m) and K2 ≤ O(mn4).

In Chapter 7 we deal with these two theorems.
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Theorem 4.4 ([F6]). Let A,B be finite subgroups of G and let ϕ : A → B be
an isomorphism. If G is knapsack-semilinear, then the HNN-extension H of G
(with respect to the isomorphism ϕ) is knapsack-semilinear as well. Moreover,
we have KH,Σ(n,m) ≤ max{K1,K2} with

K1 = KG,Σ(24mn,m) and K2 ≤ O(γ2mn4),

where γ = |A|.

Theorem 4.5 ([F6]). Let G1 and G2 be finitely generated groups with a common
subgroup A. Let K(n,m) be the pointwise maximum of the functions KG1,Σ1

and KG2,Σ2
. Furthermore, let γ = |A| and let G be the amalgamated product

G1 ∗AG2. Then with Σ = Σ1∪Σ2 we have KG,Σ(n,m) ≤ max{K1,K2,K3} where

K1 = KG,Σ(144m2n,m),K2 ≤ O(m5n4) and K3 ≤ O(m · γ2 · n4).

The following two theorems are analyzed in Chapter 8.

Theorem 4.6 ([F4]). Let H = 〈G, t | t−1at = a (a ∈ A)〉 be an HNN-
extension, where G is knapsack-semilinear relative to {1, A}. Then H is knapsack-
semilinear.

Theorem 4.7 ([F4]). If G is knapsack-semilinear and H is an extension of a
centralizer C(S) with S finite, then H is knapsack-semilinear as well.

Chapter 9 contains the next three theorems.

Theorem 4.8. A central extension of a hyperbolic group is knapsack-semilinear.

Theorem 4.9. Let H be a central extension of the hyperbolic group G and let
π : H → G be the canonical projection. Let Q ≤ G be a quasiconvex subgroup
of G. Then the HNN-extension 〈H, t | t−1at = a (a ∈ π−1(Q))〉 is knapsack-
semilinear.

For the special case G = H we obtain:

Theorem 4.10 ([F4]). Let G be hyperbolic and A ≤ G be a quasiconvex subgroup
of G. Then the HNN-extension 〈G, t | t−1at = a (a ∈ A)〉 is knapsack-semilinear.

Finally, in Chapter 10 we prove these two theorems.

Theorem 4.11 ([F3]). Let the f.g. group G = 〈Σ〉 be uniformly SENS. Then,
Knapsack(G o Z) is Σp2-hard.

Theorem 4.12. Let SL3(Z) be the special linear group consisting of all 3× 3

matrices over Z with determinant 1 (equipped with matrix multiplication). It is
undecidable if a single exponent equation over SL3(Z) has a solution.



Chapter 5

Finite extensions

5.1 Introduction

In this short chapter, we show that knapsack-semilinearity is preserved under one
of the most simple group constructions, the finite extensions. We say that H is a
finite extension of G if G is a finite-index subgroup of H . We also prove transfer
result Theorem 5.1, which allows to reduce Knapsack(H) to Knapsack(G)

nondeterministically in polynomial time.

5.2 Finite extensions preserve knapsack-semi-
linearity

First we give a proof of

Theorem 4.1 ([F6]). Let G be a finitely generated group with a finite symmetric
generating set Σ and let H be a finite extension of G (hence, it is finitely generated
too) with the finite symmetric generating set Σ′ = Σ ∪ (C \ {1}) ∪ (C \ {1})−1,
where C is a set of coset representatives with 1 ∈ C. Let ` = |C| be the index of
G in H. If G is knapsack-semilinear then H is knapsack-semilinear too and we
have the bounds

EH,Σ′(n,m) ≤ ` · EG,Σ(O(`2n),m) + 2`, (5.1)

KH,Σ′(n,m) ≤ ` · KG,Σ(O(`2n),m) + 2`. (5.2)

Proof. Suppose we are given an exponent expression

e = ux1
1 v1 · · ·uxmm vm (5.3)

in H where the ui and vi are words over Σ′. Let n be the length of e. We
need to show that the solution set is semilinear and that it can be effectively
computed (using that G is knapsack-semilinear). Our algorithm to compute
such a semilinear representation will make some nondeterministic guesses.
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As a first step, we guess which of the variables xi assume a value smaller
than `. For those that do, we can guess the value and merge the resulting power
with the vi on the right. This increases the size of the instance by at most a
factor of `, which is a constant. At the end we will compensate this by applying
the substitution n 7→ `n. Hence, from now on, we only look for H-solutions ν to
e where ν(xi) ≥ ` for 1 ≤ i ≤ m.

Next we guess the cosets of the prefixes of ux1
1 v1 · · ·uxmm vm, i.e., we guess

coset representatives c1, d1, . . . , cm−1, dm−1, cm ∈ C and restrict to H-solutions
ν to e such that uν(x1)

1 v1 · · ·uν(xi)
i ∈ Gci and u

ν(x1)
1 v1 · · ·uν(xi)

i vi ∈ Gdi for
1 ≤ i ≤ m. Here, we set dm = 1. Equivalently, we only consider H-solutions
ν where di−1u

xi
i c
−1
i and civid

−1
i all belong to G for 1 ≤ i ≤ m. Here, we set

d0 = 1. We can verify in polynomial time that all civid−1
i (1 ≤ i ≤ m) belong

to G. It remains to describe the set of all H-solutions ν for e that fulfill the
following constraints for all 1 ≤ i ≤ m:

di−1u
ν(xi)
i c−1

i ∈ G and ν(xi) ≥ `. (5.4)

For 1 ≤ i ≤ m consider the function fi : C → C, which is defined so that for
each c ∈ C, fi(c) is the unique element d ∈ C with cuid−1 ∈ G. Note that we
can compute fi in polynomial time if G and H are fixed groups (all we need for
this is a table that specifies for each c ∈ C and a ∈ Σ′ the coset representative
of ca; this is a fixed table that does not depend on the input). Then there are
numbers 1 ≤ ki ≤ ` such that f `+kii (di−1) = f `i (di−1). With this notation, we
have di−1u

z
i c
−1
i ∈ G if and only if fzi (di−1) = ci for all z ∈ N.

We may assume that there is a z ≥ ` with fzi (di−1) = ci; otherwise, there
is no H-solution for e fulfilling the above constraints (5.4) and we have a bad
guess. Therefore, there is a 0 ≤ ri < ki such that f `+rii (di−1) = ci. This means
that for all z ≥ `, we have di−1u

z
i c
−1
i ∈ G if and only if fzi (di−1) = ci if and only

if z = ` + ki · y + ri for some y ≥ 0. This allows us to construct an exponent
expression over G.

Let ei = f `i (di−1). Then, the words di−1u
`
ie
−1
i , eiukii e

−1
i , and eiu

ri
i c
−1
i all

represent elements of G. Moreover, for all yi ≥ 0 and zi = ` + ki · yi + ri
(1 ≤ i ≤ m), we have

uz11 v1 · · ·uzmm vm =
m∏
i=1

di−1u
`+ki·yi+ri
i c−1

i civid
−1
i

=
m∏
i=1

(di−1u
`
ie
−1
i )(eiu

ki
i e
−1
i )yi(eiu

ri
i c
−1
i civid

−1
i )

and each word in parentheses represents an element of G. Hence, we can define
the exponent expression

e′ =
m∏
i=1

(di−1u
`
ie
−1
i )(eiu

ki
i e
−1
i )xi(eiu

ri
i vid

−1
i )
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over the group G. From the above consideration we obtain

solH(e) ∩ {ν : Xe → H | ν satisfies the constraints (5.4)} =

{ν | ν(xi) = ki · ν′(xi) + (`+ ri) for some ν′ ∈ solG(e′)}. (5.5)

The set in (5.5) is semilinear by assumption and since all ki and ri are bounded
by `, we can bound its magnitude by ` ·mag(solG(e′)) + 2`. Moreover, we have
deg(e′) = deg(e). It remains to bound ||e′||. For this, we first have to rewrite the
words di−1u

`
ie
−1
i , eiukii e

−1
i , and eiurii vid

−1
i (which represent elements of G) into

words over Σ. This increases the length of the words only by a constant factor:
for every c ∈ C and every generator a ∈ Σ′ there exists a fixed word wc,a ∈ Σ∗

and dc,a ∈ C such that ca = wc,adc,a holds in H. After this rewriting we have
||e′|| ≤ O(`n), which implies mag(solG(e′)) ≤ EG,Σ(O(`n),m). This yields the
bound ` · EG,Σ(O(`n),m) + 2` for the magnitude of the semilinear set in (5.5).
Applying the substitution n 7→ `n from the first step finally yields (5.1). The
corresponding bound (5.2) for knapsack expressions can be shown in the same
way: Note that in the above transformation of e into e′ we do not duplicate
variables.

From the above proof and Lemma 2.3 we also obtain the following complexity
transfer result:

Theorem 5.1. The knapsack problem for a finite extension of a group G is
nondeterministically polynomial time reducible to Knapsack(G).

The consequence of Theorem 5.1 that solvability of the knapsack problem
in NP is passed on from G to finite extensions of G has also appeared in the
extended abstract of [67].

5.3 Open problems

Despite Theorem 5.1, it is not known, if there exists a finitely generated group G
with a finite extension H, such that Knapsack(G) is in P, but Knapsack(H)

is NP-complete.



34 Chapter 5. Finite extensions



Chapter 6

Graph products

6.1 Introduction

We show that every graph product of knapsack-semilinear groups is again
knapsack-semilinear (Section 6.6). Furthermore we will derive bounds for the
magnitude. This leads to Theorem 4.2, from which we conclude Theorem 4.3.
The latter one is a special case, where we have the most simple graph product
G = G1 ∗G2 (where G is just a free product of two groups).

As an application of Theorem 4.2, we obtain Theorem 6.21, which states
that ExpEq(G) belongs to NP, if G is a graph product of hyperbolic groups.
A corollary of the proof of Theorem 4.3 is Theorem 6.24, where we derive that
in case of G = G1 ∗G2, Knapsack(G) is nondeterministically polynomial time
reducible to Knapsack(G1) and Knapsack(G2).

The proof techniques used in this chapter, where we break down knapsack
equations into smaller two-dimensional pieces and deal with 1-reducible refine-
ments of sequences (defined in Section 6.5) are also used in Chapter 7 and
Chapter 8. In Chapter 8 however, we do not obtain bounds on the magnitudes
for the HNN-extensions.

6.2 Further definitions

Recall that for a trace t ∈M(A, I), alph(t) ⊆ A is the set of symbols that occur
in t. We define the Γ-alphabet of t as

alphΓ(t) = {i ∈ Γ | alph(t) ∩Ai 6= ∅}.

Note that whether u I v (for u, v ∈ M(A, I)) only depends on alphΓ(u) and
alphΓ(v).

Every independence clique of (A, I) has size at most α and hence can be
identified with a trace from M(A, I). Let C1 and C2 be independence cliques.
We say that C1 and C2 are compatible, if alphΓ(C1) = alphΓ(C2). In this case we
can write C1 = {a1, . . . , am} and C2 = {b1, . . . , bm} for some m ≤ α such that
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for every 1 ≤ i ≤ m there exists ji ∈ Γ with ai, bi ∈ Aji . Let ci = aibi in the
group Gji . If ci 6= 1 for all 1 ≤ i ≤ m, then C1 and C2 are strongly compatible.
In this case we define the independence clique C1C2 = {c1, . . . , cm}. Note that
alphΓ(C1) = alphΓ(C2) = alphΓ(C1C2).

Also we will write G for the graph product G(Γ, E, (Gi)i∈Γ) in this chapter as
defined in Subsection 2.4.2. Moreover, we use all notations from Subsection 2.4.2.

6.3 Results from [68]

In this section we state a small modification of results from [68], where the
statements are made for finitely generated trace monoids M(Σ, I). We need the
corresponding statements for the non-finitely generated trace monoid M(A, I)

from Subsection 2.4.2. The proofs are exactly the same as in [68], one only has
to argue with the Γ-alphabet alphΓ(t) instead the alphabet alph(t) of traces.

Note that all statements in this section refer to the trace monoid M(A, I)

and not to the corresponding graph product G. In particular, when we write a
product t1t2 · · · tn of traces ti ∈M(A, I) no cancellation occurs between the ti.
We will also consider the case that E = ∅ (and hence I = ∅), in which case
M(A, I) = A∗.

Let s, t ∈M(A, I) be traces. We say that s is a prefix of t if there is a trace
r ∈M(A, I) with sr = t. Moreover, we define ρ(t) as the number of prefixes of t.
We will use the following statement from [10].

Lemma 6.1. Let t ∈ M(A, I) be a trace of length n. Then ρ(t) is bounded by
O(nα) ≤ O(n|Γ|), where α is the size of a largest clique of the independence
alphabet (Γ, E).

Remark 6.2. It is easy to see that ρ(t) = n+ 1 if E = ∅.

Lemma 6.3. Let u ∈ M(A, I) \ {1} be a connected trace and m ∈ N, m ≥ 2.
Then, for all x ∈ N and traces y1, . . . , ym the following two statements are
equivalent:

(i) ux = y1y2 · · · ym.

(ii) There exist traces pi,j (1 ≤ j < i ≤ m), si (1 ≤ i ≤ m) and numbers
xi, cj ∈ N (1 ≤ i ≤ m, 1 ≤ j ≤ m− 1) such that:

˛ yi = (
∏i−1
j=1 pi,j)u

xisi for all 1 ≤ i ≤ m,

˛ pi,j I pk,` if j < ` < k < i and pi,j I (uxksk) if j < k < i,5

˛ sm = 1 and for all 1 ≤ j < m, sj
∏m
i=j+1 pi,j = ucj ,

˛ cj ≤ |Γ| for all 1 ≤ j ≤ m− 1,

˛ x =
∑m
i=1 xi +

∑m−1
i=1 ci.

5Note that since alph(pi,j) ⊆ alph(u), we must have pi,j = 1 or xk = 0 whenever j < k < i.
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Note that this implies alphΓ(pi,j) ∪ alphΓ(si) ⊆ alphΓ(u) for 1 ≤ j < i ≤ m.
The proof of Lemma 6.3 is the same as for [68, Lemma 3.3], where the

statement is shown for the case of a finite independence alphabet (A, I). In our
situation the independency between traces only depends on their Γ-alphabets.
This allows to carry over the proof of [68, Lemma 3.3] to our situation by
replacing the alphabet alph(t) of a trace t ∈M(A, I) by alphΓ(u).

Remark 6.4. In Section 6.6 we will apply Lemma 6.3 in order to replace an
equation ux = y1y2 · · · ym (where x, y1, . . . , ym are variables and u is a concrete
connected trace) by an equivalent disjunction. Note that the length of all factors
pi,j and si in Lemma 6.3 is bounded by |Γ| · |u| and that pi,j and si only contain
symbols from u. Hence, one can guess these traces as well as the numbers cj ≤ |Γ|
(the guess results in a disjunction). We can also guess which of the numbers
xi are zero and which are greater than zero (let K consists of those i such
that xi > 0). After these guesses we can verify the independencies pi,j I pk,`
(j < ` < k < i) and pi,j I (uxksk) (j < k < i), and the identities sm = 1,
sj
∏m
i=j+1 pi,j = ucj (1 ≤ j < m). If one of them does not hold, the specific

guess does not contribute to the disjunction. In this way, we can replace the
equation ux = y1y2 · · · ym by a disjunction of formulas of the form

∃xi > 0 (i ∈ K) : x =
∑
i∈K

xi + c ∧
∧
i∈K

yi = piu
xisi ∧

∧
i∈[1,m]\K

yi = pisi,

where K ⊆ [1,m], c ≤ |Γ| · (m− 1) and the pi, si are concrete traces of length at
most |Γ| · (m− 1) · |u|. The number of disjuncts in the disjunction will not be
important for our purpose.

Lemma 6.5. Let p, q, u, v, s, t ∈ M(A, I) with u 6= 1 and v 6= 1 connected. Let
m = max{ρ(p), ρ(q), ρ(s), ρ(t)} and n = max{ρ(u), ρ(v)}. Then the set

L(p, u, s, q, v, t) = {(x, y) ∈ N× N | puxs = qvyt}

is a union of O(m8 ·n4|Γ|) many linear sets of the form {(a+ bz, c+ dz) | z ∈ N}
with a, b, c, d ≤ O(m8 · n4|Γ|). In particular, L(p, u, s, q, v, t) is semilinear. If |Γ|
is a fixed constant, then a semilinear representation for L(p, u, s, q, v, t) can be
computed in polynomial time.

Again, the proof of Lemma 6.5 is exactly the same as the proof of
[68, Lemma 3.8]. One simply substitutes |A| by |Γ| and alph(x) by alphΓ(x).

We will also use the following simplified version of the previous lemma:

Lemma 6.6. Let p, q, r, s, u, v ∈ Σ∗. Then the set

{(x, y) ∈ N× N | pqxr = suyv}

is semilinear and a semilinear representation can be computed from p, q, r, s, u, v.

Remark 6.7. Let us consider again the case E = I = ∅ in Lemma 6.5. Let
m = max{|p|, |q|, |s|, |t|, |u|, |v|}. We can construct an automaton accepting pu∗s
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of size at most 3m and similarly for qv∗t. Hence, we obtain an automaton of size
O(m2) accepting the language L = pu∗s ∩ qv∗t. We are only interested in the
length of words from L. Let A be the automaton obtained from the automaton for
L by replacing every transition label by the symbol a. The resulting automaton A
is defined over a unary alphabet. Let P = {n | an ∈ L(A)}. By [87, Theorem 1],
the set P can be written as a union

P =
r⋃
i=1

{bi + ci · z | z ∈ N}

with r ∈ O(m4) and bi, ci ∈ O(m4). For every 1 ≤ i ≤ r and z ∈ N there must
exist a pair (x, y) ∈ N× N such that

bi + ci · z = |ps|+ |u| · x = |qt|+ |v| · y.

In particular, bi ≥ |ps|, bi ≥ |qt|, |u| divides bi − |ps| and ci, and |v| divides
bi − |qt| and ci. We get

L(p, u, s, q, v, t) =
r⋃
i=1

{(
bi − |ps|
|u|

+
ci
|u|
· z, bi − |qt|

|v|
+

ci
|v|
· z
) ∣∣∣∣ z ∈ N

}

and all numbers that appear on the right-hand side are bounded by O(m4).

6.4 Irreducible powers in graph products

In this section, we study powers un for an irreducible trace u ∈ IRR(R). We
need the following definitions: A trace u ∈M(A, I) is called cyclically reduced if
u ∈ IRR(R) and there do not exist a ∈ A and v ∈M(A, I) such that u = ava−1.
A trace t ∈M(A, I) is called well-behaved if it is connected and tm ∈ IRR(R) for
every m ≥ 0.

Lemma 6.8. Let u ∈ IRR(R). If u2 ∈ IRR(R) then um ∈ IRR(R) for all m ≥ 0.

Proof. Assume that m ≥ 3 is the smallest number, such that um−1 ∈ IRR(R) and
um 6∈ IRR(R). Hence we can write um = xaby with x, y ∈ IRR(R) and a, b ∈ Ai
for some i ∈ Γ. Applying Levi’s lemma, we get factorizations x = x1x2 · · ·xm
and y = y1y2 · · · ym and the following diagram:

y y1 y2 . . . ym−1 ym
b . . . b

a a . . .
x x1 x2 . . . xm−1 xm

u u . . . u u

This is in fact the only possibility for the positions of the atoms a and b: If
a and b were in the same column then u would contain the factor ab and
hence u /∈ IRR(u). Also a and b are not independent, which means b has to
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be top-right from a. If a is not in the first column or b is not in the last
column, then um−1 is reducible, which contradicts the choice of m. Hence,
we have u = x1ay1 = xmbym with a I xm, y1 I xm and b I y1. We get
u2 = x1ay1xmbym = x1axmy1bym = x1xmay1bym = x1xmaby1ym. Hence
u2 6∈ IRR(R), which is a contradiction.

Lemma 6.9. A trace u ∈ M(A, I) is well-behaved if and only if it has the
following properties:

˛ u is irreducible,
˛ u is not atomic,
˛ u is connected, and
˛ one cannot write u as u = avb such that a, b ∈ Ai for some i ∈ Γ (in
particular, u is cyclically reduced).

Proof. Clearly, if one the four conditions in the lemma is not satisfied, then
u is not well-behaved. Now assume that the four conditions hold for u. By
Lemma 6.8, it suffices to show that u2 ∈ IRR(R). Assume that u2 = xaby with
a, b ∈ Ai. Applying Levi’s lemma, and using u ∈ IRR(R) and (a, b) /∈ I, we
obtain the following diagram:

y y1 y2

b b

a a

x x1 x2

u u

From Levi’s lemma we also get b I y1 and a I x2. But a and b are in the same
group, hence a I y1 and b I x2 also hold. The first property implies u = va with
v = x1y1 and the seconds property gives us u = bw with w = x2y2. Since u is
not atomic, we have v 6= 1 6= w. Now we apply Levi’s lemma to va = bw, which
yields one of the following diagrams:

w v = w

b a = b

v a

w w′ a

b b

v a

From the left diagram we get a I v. Hence u = va is not connected, which is a
contradiction. From the right diagram we get u = va = bw′a for some trace w′,
which is a contradiction to our last assumption. This finally proves u2 ∈ IRR(R),
hence u is well-behaved.

Lemma 6.10. From a trace u ∈M(A, I) one can compute traces s, t, v1, . . . , vk ∈
IRR(R), such that the following hold:

˛ every vi is either atomic or well-behaved,
˛ um =G svm1 · · · vmk t for all m ≥ 0,
˛ ||s||+ ||t||+

∑k
i=1 ||vi|| ≤ 3||u||,

˛ k ≤ α, where α is the size of a largest clique in (Γ, E).
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Proof. Let u ∈ M(A, I). As an initial processing, we can replace every u by
NFR(u) ∈ IRR(R). So we can assume that u is already irreducible. In the next
step, we compute irreducible traces s, w, t, such that um =G swmt for all m ≥ 0

and w cannot be written as w = aw′b with a, b ∈ Aj for some j ∈ Γ. For
this, we will inductively construct irreducible traces si, ui, ti (with 0 ≤ i ≤ ` for
some `) such that um =G siu

m
i ti for all m ≥ 0. Moreover, if 0 ≤ i < ` then

|ui| > |ui+1|. We start with u0 = u and s0 = t0 = 1. Assume that after i steps
we already found irreducible traces si, ui, ti with um =G siu

m
i ti for all m ≥ 0. If

ui cannot be written in the form au′b with a, b ∈ Aj for some j, then we are done.
Otherwise assume that ui = avib for some a, b ∈ Aj . Let c ∈ Aj ∪ {1} such that
c = ba in the group Gj . So we get umi =G a(vic)

ma−1 for all m ≥ 0. This means
um =G (sia)(vic)

m(a−1ti). Hence, we can set ui+1 = vic, si+1 = NFR(sia) and
ti+1 = NFR(a−1ti). Note that |ui+1| = |ui|−1, ||ui+1|| ≤ ||ui||, ||si+1|| ≤ ||si||+ ||a||,
and ||ti+1|| ≤ ||ti||+ ||a||. This process is terminating after at most |u| steps. Note
also that each ui+1 is irreducible. When our algorithm is terminating after step `,
we set v = u`, s = s` and t = t`. We have

||s||, ||t||, ||v|| ≤ ||u||. (6.1)

Finally, we split v into its connected components, i.e., we write v = v1 · · · vk,
where every vj is connected and vi I vj for i 6= j. We obtain for every m ≥ 0

the identity um =G svm1 · · · vmk t as described in the statement of the lemma. If a
vj is not atomic then it cannot be written as vj = bv′jc with b, c ∈ Ai (otherwise
the above reduction process would continue). Thus Lemma 6.9 implies that
the non-atomic vj are well-behaved. Finally, we have

∑k
i=1 ||vi|| = ||v|| ≤ ||u|| by

(6.1).

Remark 6.11. If E = ∅ then we must have k = 1 in Lemma 6.10 since α = 1.
Hence, we obtain s, t, v, where v is either atomic or well-behaved, such that
um = svmt for every m ≥ 0 and ||s||+ ||v||+ ||t|| ≤ 3||u||.

6.5 Reductions to the empty trace

For the normal form of the product of two R-irreducible traces we have the
following lemma, which was shown in [23] (equation (21) in the proof of Lemma 22)
using a slightly different notation.

Lemma 6.12. Let u, v ∈ M(A, I) be R-irreducible. Then there exist strongly
compatible independence cliques C,D and unique factorizations u = pCs,
v = s−1Dt such that NFR(uv) = p(CD)t.

In the following, we consider tuples over IRR(R) of arbitrary length. We
identify tuples that can be obtained from each other by inserting/deleting 1’s at
arbitrary positions. Clearly, every tuple is equivalent to a possibly empty tuple
over IRR(R) \ {1}.
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Definition 6.13. We define a reduction relation on tuples over IRR(R) of
arbitrary length. Take u1, u2, . . . , um ∈ IRR(R). Then we have

˛ (u1, u2, . . . , um) → (u1, . . . , ui−1, ui+1, ui, ui+2, . . . , um) if ui I ui+1 (a
swapping step),

˛ (u1, u2, . . . , um)→ (u1, . . . , ui−1, ui+2, . . . , um) if ui = u−1
i+1 in M(A, I) (a

cancellation step),
˛ (u1, u2, . . . , um)→ (u1, . . . , ui−1, a, ui+2, . . . , um) if there exists j ∈ Γ with
ui, ui+1, a ∈ Aj , and a = uiui+1 in Gj (an atom creation step of type j).

Moreover, these are the only reduction steps. A concrete sequence of these
rewrite steps leading to the empty tuple is a reduction of (u1, u2, . . . , um). If
such a sequence exists, the tuple is called 1-reducible.

A reduction of the tuple (u1, u2, . . . , um) can be seen as a witness for
the fact that u1u2 · · ·um =G 1. On the other hand, u1u2 · · ·um =G 1 does
not necessarily imply that (u1, u2, . . . , um) has a reduction. For instance,
the tuple (a−1, ab, b−1) has no reduction. But we can show that every se-
quence which multiplies to 1 in G can be refined (by factorizing the ele-
ments of the sequence) such that the resulting refined sequence has a re-
duction. We say that the tuple (v1, v2, . . . , vn) is a refinement of the tuple
(u1, u2, . . . , um) if there exists factorization ui = ui,1 · · ·ui,ki in M(A, I) such
that (v1, v2, . . . , vn) = (u1,1, . . . , u1,k1 , u2,1, . . . , u2,k2 , . . . , um,1, . . . , um,km). In
the following, if an independence clique C appears in a tuple over IRR(R), we
identify this clique with the sequence a1, a2, . . . , an which is obtained by enu-
merating the elements of C in an arbitrary way. For instance, ([abcd]I , {a, b, c})
stands for the tuple ([abcd]I , a, b, c). Let us first prove the following lemma:

Lemma 6.14. Assume that the tuple (v1, v2, . . . , vn) is 1-reducible with at most
m atom creations of each type. For all 1 ≤ i ≤ n let vi = piDiti be a factor-
ization in M(A, I) where Di is an independence clique of (A, I). By refining
p1, t1, . . . , pn, tn into a total of at most 4n+

∑n
i=1 |Di| traces, we can obtain a

refinement of (p1, D1, t1, p2, D2, t2, . . . , pn, Dn, tn) which is 1-reducible with at
most m atom creations of each type.

Proof. Basically, we would like to apply to (p1, D1, t1, p2, D2, t2, . . . , pn, Dn, tn)

the same reduction that reduces (v1, v2, . . . , vn) to the empty tuple. If we do a
swapping step vi, vj → vj , vi then we can swap also the order of pi, Di, ti and
pj , Dj , tj in several swapping steps. Also notice that if vi is an atom, then the
subsequence pi, Di, ti is equivalent to the atom vi. The only remaining problem
are cancellation steps. Assume that vi and vj cancel, i.e., vi = v−1

j . The traces
ti and tj do not necessarily cancel out, and similarly for pi and pj and the atoms
in Di and Dj . Hence, we have to further refine pi, ti, pj , tj using Levi’s lemma.
Applied to the identity piDiti = t−1

j D−1
j p−1

j it yields the following diagram:

p−1
j xi,j Ni,j zi,j

D−1
j Wi,j Ci,j Ei,j
t−1
j wi,j Si,j yi,j

pi Di ti

(6.2)
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Hence, we get factorizations

pi = wi,jWi,jxi,j (6.3)

ti = yi,jEi,jzi,j (6.4)

pj = z−1
i,j N

−1
i,j x

−1
i,j (6.5)

tj = y−1
i,j S

−1
i,j w

−1
i,j . (6.6)

where Di = Si,j ] Ci,j ] Ni,j and Dj = E−1
i,j ] C

−1
i,j ]W

−1
i,j . Using these facts

and the independencies obtained from the diagram (6.2) shows that the tuple

(wi,j ,Wi,j , xi,j , Di, yi,j , Ei,j , zi,j , z
−1
i,j , N

−1
i,j , x

−1
i,j , Dj , y

−1
i,j , S

−1
i,j , w

−1
i,j )

is 1-reducible. Hence, by refining pi, ti, pj , and tj according to the factoriza-
tions (6.3), (6.4), (6.5), and (6.6), respectively, we obtain a 1-reducible refine-
ment of (p1, D1, t1, p2, D2, t2, . . . , pn, Dn, tn). Note that |Wi,j ∪Ei,j | ≤ |Dj | and
|Ni,j ∪ Si,j | ≤ |Di|. Hence, the 2n traces p1, t1, . . . , pn, tn are refined into totally
at most 4n+

∑n
i=1 |Di| traces.

As before, α denotes the size of a largest independence clique in (A, I).

Lemma 6.15. Let m ≥ 2 and u1, u2, . . . , um ∈ IRR(R). If u1u2 · · ·um = 1 in
G, then there exists a 1-reducible refinement of (u1, u2, . . . , um) that has length
at most (3α+ 4)m2 ≤ 7αm2 and there is a reduction of that refinement with at
most m− 2 atom creations of each type i ∈ Γ.

Proof. The proof of the lemma will be an induction onm. For this we first assume
that m is a power of 2. To make the induction work, we slightly strengthen
the claim: We will show that there exist factorizations of the ui with totally at
most f(m) = ( 3

4α+ 1)m2 − ( 3
2α+ 1)m factors such that the resulting tuple is

1-reducible and has a reduction with at most (m − 2) atom creations of each
type i ∈ Γ. This implies the lemma for the case that m is a power of two.

The case m = 2 is trivial (we must have u2 = u−1
1 ). Let m = 2n ≥ 4.

Then by Lemma 6.12 we can factorize u2i−1 and u2i for 1 ≤ i ≤ n as u2i−1 =

piC2i−1si and u2i = s−1
i C2iti in M(A, I) such that C2i−1 and C2i are strongly

compatible independence cliques and vi = pi(C2i−1C2i)ti is irreducible. Define
the independence clique Di = C2i−1C2i. We have v1v2 · · · vn = 1 in G. By
induction, we obtain factorizations piDiti = vi = vi,1 · · · vi,ki (1 ≤ i ≤ n) such
that the tuple

(vi,1, . . . , vi,ki)1≤i≤n (6.7)

is 1-reducible. Moreover,

n∑
i=1

ki ≤
(

3

4
α+ 1

)
n2 −

(
3

2
α+ 1

)
n

and there exists a reduction of the tuple (6.7) with at most n − 2 atom
creations of each type. By applying Levi’s lemma to the trace identities
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piDiti = vi,1vi,2 · · · vi,ki , we obtain factorizations vi,j = xi,jDi,jyi,j in M(A, I)

such that Di =
⊎

1≤j≤ki Di,j , pi = xi,1 · · ·xi,ki , ti = yi,1 · · ·ui,ki , and the follow-
ing independencies hold for 1 ≤ j < ` ≤ ki: yi,j I xi,`, yi,j I a for all a ∈ Di,`,
a I xi,` for all a ∈ Di,j . Note that Di,j can be the empty set.

Let us now define for every 1 ≤ i ≤ n the tuples u2i−1 and u2i as follows:

˛ u2i−1 = (xi,1, . . . , xi,ki , C2i−1, si)

˛ u2i = (s−1
i , C2i, yi,1, . . . , yi,ki)

Thus, the tuple ui defines a factorization of the trace ui and the tuple
(u1, u2, . . . , u2n) is a refinement of (u1, . . . , u2n) of length 2f(n) + 2n(α + 1).
This tuple can be transformed using n cancellation steps (cancelling si and s−1

i )
and n atom creations of each type into the sequence

(xi,1, . . . , xi,ki , Di, yi,1, . . . , yi,ki)1≤i≤n.

Using swappings, we finally obtain the sequence

(xi,1, Di,1, yi,1, . . . , xi,k1 , Di,k1 , yi,k1)1≤i≤n. (6.8)

Recall that vi,j = xi,jDi,jyi,j . Hence, the tuple (6.8) is a refinement of the 1-
reducible tuple (6.7). We are therefore in the situation of Lemma 6.14. By further
refining the totally at most 2f(n) factors xi,j and yi,j of the traces u1, . . . , u2n

we obtain a 1-reducible tuple. The resulting refinement of (u1, . . . , u2n) has
length at most

4
n∑
i=1

ki +
n∑
i=1

ki∑
j=1

|Di,j |+ 2n+ 2nα

≤ 4

(
3

4
α+ 1

)
n2 − 4

(
3

2
α+ 1

)
n+

n∑
i=1

|Di|+ 2n+ 2nα

≤ (3α+ 4)n2 − (6α+ 4)n+ (3α+ 2)n

= (3α+ 4)n2 − (3α+ 2)n

=

(
3

4
α+ 1

)
m2 −

(
3

2
α+ 1

)
m

(
∑n
i=1 ki +

∑n
i=1

∑ki
j=1 |Di,j | traces from the refinement of the traces xi,j and

yi,j by Lemma 6.14, 2n traces s±1
i , and 2nα atoms from the independence

cliques Ci). Finally, the total number of atom creations of a certain type is
n+ n− 2 = 2n− 2 = m− 2.

In the general case, where m is not assumed to be a power of two, we can
naturally extend the sequence to u1, u2, . . . , u` by possibly adding ui = 1 for
i > m to the smallest power of 2. Hence ` ≤ 2m. Substituting 2m for m yields
the desired bound. Note that by this process, the number of atom creations will
not increase. This concludes the proof of the lemma.
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Since by this result we also get a 1-reducible tuple with at most O(m2) many
elements for equations u1u2 · · ·um = 1 over a graph group, this improves the
result of [68].

Remark 6.16. The atom creations that appear in a concrete reduction can
be collected into finitely many identities of the form a1a2 · · · ak =Gi b1b2 · · · b`
(or a1a2 · · · akb−1

` · · · b
−1
2 b−1

1 =Gi 1), where a1, a2, . . . , ak, b1, b2, . . . , b` are atoms
from the initial sequence that all belong to the same group Gi. The new atoms
a1a2 · · · ak and b1b2 · · · b` are created by at most m− 2 atom creations. Finally,
the two resulting atoms cancel out. Note that k − 1 + ` − 1 ≤ m − 2, i.e.,
k + ` ≤ m.

In case E = I = ∅ the quadratic dependence on m in Lemma 6.15 can be
avoided:

Lemma 6.17. Let m ≥ 2 and u1, u2, . . . , um ∈ IRR(R). Moreover let E = I = ∅.
If u1u2 · · ·um = 1 in the free product G, then there exists a 1-reducible refinement
of the tuple (u1, u2, . . . , um) that has length at most 7m − 12 and there is a
reduction of this refinement with at most m− 2 atom creations.

Proof. We prove the lemma by induction on m. The case m = 2 is trivial (we
must have u2 = u−1

1 ). If m ≥ 3 then for the normal form of u1u2 there are two
cases: either u1u2 ∈ IRR(R) or u1 = pas and u2 = s−1bt for atoms a, b from the
same group Gi that do not cancel out. We consider only the latter case. Let
c = ab in Gi, i.e., c ∈ Ai. By the induction hypothesis, the tuple (pct, u3, . . . , um)

has a 1-reducible refinement

(v1, . . . , vk, w1, . . . , w`) (6.9)

with k + ` ≤ 7(m− 1)− 12 and pct = v1 · · · vk, where the latter is an identity
between words from A∗. Moreover, there is a reduction of (6.9) with at most
m − 3 atom creations. Since pct = v1 · · · vk, one of the vj (1 ≤ j ≤ k) must
factorize as vj = vj,1cvj,2 such that p = v1 · · · vj−1vj,1 and t = vj,2vj+1 · · · vk,
which implies u1 = v1 · · · vj−1vj,1as and u2 = s−1bvj,2vj+1 · · · vk. Therefore we
have a 1-reducible tuple of the form

(v1, . . . , vj−1, vj,1, a, s, s
−1, b, vj,2, vj+1, . . . , vk, w̃1, . . . , w̃`), (6.10)

where the sequence w̃i is wi unless wi cancels out with vj in our reduction of
(6.9) (there can be only one such i), in which case w̃i is (vj,2)−1, c−1, (vj,1)−1.
It follows that the tuple (6.10) is a refinement of (u1, u2, . . . , um) with at most
7(m− 1)− 12 + 7 = 7m− 12 words, having a reduction with at most m− 2 atom
creations.
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6.6 Graph products preserve knapsack-semi-
linearity

In this section, we assume that every group Gi (i ∈ Γ) is knapsack-semilinear.
Recall that we fixed the symmetric generating set Σi for Gi, which yields the
generating set Σ =

⋃
i∈Γ Σi for the graph product G. In this section, we want

to show that the graph product G is knapsack-semilinear as well. Moroever,
we want to bound the function EG,Σ in terms of the functions KGi,Σi . Let
K : N × N → N be the pointwise maximum of the functions KGi,Σi(n,m). We
will bound EG,Σ in terms of K.

Consider an exponent expression e = ux1
1 v1u

x2
2 v2 · · ·uxmm vm, where ui, vi are

words over the generating set Σ. Let gi (resp., hi) be the element of G represented
by ui (resp., vi). We can assume that all ui and vi are geodesic words in the graph
product G.6 We will make this assumption throughout this section. Moreover,
we can identify each ui (resp., vi) with the unique irreducible trace from IRR(R)

that represents the group element gi (resp., hi). In addition, for each atom a ∈ A
(say a ∈ Ai) that occurs in one of the traces u1, u2, . . . , um, v1, . . . , vm ∈ IRR(R)

a geodesic word wa ∈ Σ∗i that evaluates to a in the group Gi is given. This
yields geodesic words for the group elements g1, . . . , gm, h1, . . . , hm ∈ G. The
lengths of these words are ||u1||, . . . , ||um||, ||v1||, . . . , ||vm|| and we have ||e|| =

||u1||+ · · ·+ ||um||+ ||v1||+ · · ·+ ||vm||.
We start with the following preprocessing step.

Lemma 6.18. Let e be an exponent expression over Σ. From e we can compute
a knapsack expression e′ with the following properties:

˛ Xe ⊆ Xe′ ,
˛ ||e′|| ≤ 3||e||,
˛ deg(e′) ≤ α · deg(e),
˛ every period of e′ is either atomic or well-behaved, and
˛ solG(e) = (K ∩ solG(e′))�Xe for a semilinear set K of magnitude one.

Proof. Let u1, . . . , um ∈ Σ∗ be the periods of e. We can view these words as
traces u1, . . . , um ∈M(A, I) that are moreover irreducible. We apply Lemma 6.10
to each power uxi in e and obtain an equivalent exponent expression ẽ of degree
n ≤ α ·m and ||ẽ|| ≤ 3||e||. We have Xẽ = Xe and solG(e) = solG(ẽ).

We now rename in ẽ the variables by fresh variables in such a way that
we obtain a knapsack expression e′. Moreover, for every x ∈ Xe we keep
exactly one occurrence of x in ẽ and do not rename this occurrence of x. This
implies that there is a semilinear set K ⊆ NXe′ of magnitude one such that
solG(e) = (K ∩ solG(e′))�Xe .

In case E = I = ∅ and that e is a knapsack expression, we can simplify the
statement of Lemma 6.18 as follows:

6Since the word problem for every Gi is decidable, also the word problem for G is decid-
able [36], which implies that one can compute a geodesic word for a given group element
of G.
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Remark 6.19. Assume that E = I = ∅ and that e is a knapsack expression as
in Lemma 6.18. By Remark 6.11 we can compute from e a knapsack expression
e′ over Σ with the following properties:

˛ ||e′|| ≤ 3||e||,
˛ deg(e′) ≤ deg(e),
˛ every period of e′ is either atomic or well-behaved, and
˛ solG(e) = solG(e′).

We now come to the proof of the main technical result of this chapter,
Theorem 4.2. As before, we denote with α the size of a largest independence
clique in the finite graph (Γ, E).

Theorem 4.2 ([F6]). If each group Gi, i ∈ Γ, is knapsack-semilinear, then
their graph product G = G(Γ, E, (Gi)i∈Γ) is knapsack-semilinear as well. Let
K : N × N → N be the pointwise maximum of the functions KGi,Σi(n,m) for
i ∈ Γ. Then EG,Σ(n,m) ≤ max{K1,K2} with

K1 ≤ O
(
(αm)αm/2+3 · K(6αmn,αm)αm+3

)
,

K2 ≤ (αm)O(α2m) · nO(α2|Γ|m).

Proof. Consider an exponent expression e = ux1
1 v1u

x2
2 v2 · · ·uxmm vm. Let us

denote with A(e) = alph(u1v1 · · ·umvm) ⊆ A the set of all atoms that appear
in the traces ui, vi. Finally let µ(e) = max{||a|| | a ∈ A(e)} and let λ(e) be the
maximal length |t| where t is one of the traces u1, u2, . . . , um, v1, . . . , vm. We
clearly have µ(e) ≤ ||e|| and λ(e) ≤ ||e||.

Let us first assume that e is a knapsack expression (i.e., xi 6= xj for i 6= j)
where every period ui is either an atom or a well-behaved trace (see Lemma 6.18).

In the following we describe an algorithm that computes a semilinear repre-
sentation of solG(e) (for e satisfying the conditions from the previous paragraph).
At the same time, we will compute the magnitude of this semilinear repre-
sentation. The algorithm transforms logical statements into equivalent logical
statements (we do not have to define the precise logical language; the meaning of
the statements should be always clear). Every statement contains the variables
x1, . . . , xm from our knapsack expression and equivalence of two statements
means that for every valuation ν : {x1, . . . , xm} → N the two statements yield
the same truth value. We start with the statement e = 1. In each step we
transform the current statement Φ into an equivalent disjunction

∨n
i=1 Φi. We

can therefore view the whole process as a branching tree, where the nodes are
labelled with statements. If a node is labelled with Φ and its children are labelled
with Φ1, . . . ,Φn then Φ is equivalent to

∨n
i=1 Φi. The leaves of the tree are

labelled with semilinear constraints of the form (x1, . . . , xm) ∈ L for semilinear
sets L. Hence, the solution set solG(e) is the union of all semilinear sets that
label the leaves of the tree. A bound on the magnitude of these semilinear
sets yields a bound on the magnitude of solG(e). Therefore, we can restrict our
analysis to a single branch of the tree. We can view this branch as a sequence
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of nondeterministic guesses. Some guesses lead to dead branches because the
corresponding statement is unsatisfiable. We will speak of a bad guess in such a
situation.

Let Na ⊆ [1,m] be the set of indices such that ui is atomic and let Na =

[1,m] \ Na be the set of indices such that ui is not atomic (and hence a well-
behaved trace). For better readability, we write ai for the atom ui in case i ∈ Na.
Define Xa = {xi | i ∈ Na} and Xa = {xi | i ∈ Na}. For i ∈ Na let γ(i) ∈ Γ be
the index with ui ∈ Aγ(i).

Step 1: Eliminating trivial powers. In a first step we guess a set N1 ⊆ Na of
indices with the meaning that for i ∈ N1 the power axii evaluates to the identity
element of the group Gγ(i). To express this we continue with the formula

Φ[N1] = (e[N1] = 1) ∧
∧
i∈N1

axii =Gγ(i) 1, (6.11)

where e[N1] is the knapsack expression obtained from e by deleting all powers
axii with i ∈ N1. Note that the above constraints do not exclude that a power
uxii with i ∈ [1,m] \N1 evaluates to the identity element. This will not cause
any trouble for the following arguments. Clearly, the initial equation e = 1 is
equivalent to the formula

∨
N1⊆Na Φ[N1].

In the following we transform every equation e[N1] = 1 into a formula Ψ[N1]

such that the following hold for every valuation ν : {xi | i ∈ [1,m] \N1} → N:

(1) if Ψ[N1] is true under ν then ν(e[N1]) =G 1,

(2) if aν(xi)
i 6=Gγ(i) 1 for all i ∈ Na \N1 and ν(e[N1]) =G 1 then Ψ[N1] is true

under ν.

This implies that
∨
N1⊆Na Φ[N1] (and hence e = 1) is equivalent to the formula∨

N1⊆Na

(Ψ[N1] ∧
∧
i∈N1

axii =Gγ(i) 1).

Step 2: Applying Lemma 6.15. We construct the formula Ψ[N1] from the
knapsack expression e[N1] using Lemma 6.15. More precisely, we construct
Ψ[N1] by nondeterministically guessing the following data:

(i) factorizations vi = vi,1 · · · vi,`i in M(A, I) of all non-trivial traces vi. Each
factor vi,j must be nontrivial too.

(ii) “symbolic factorizations” uxii = yi,1 · · · yi,ki for all i ∈ Na. The numbers
ki and `i must sum up to at most 28αm2 (this number is obtained by
replacing m by 2m in Lemma 6.15). The yi,j are existentially quantified
variables that take values in IRR(R) and which will be eliminated later.

(iii) non-empty alphabets Ai,j ⊆ alph(ui) for each symbolic factor yi,j (i ∈ Na,
1 ≤ j ≤ ki) with the meaning that Ai,j is the alphabet of atoms that
appear in yi,j .
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(iv) a reduction (according to Definition 6.13) of the resulting refined factoriza-
tion of ux1

1 v1u
x2
2 v2 · · ·uxmm vm with at most 2m− 2 atom creations of each

type i ∈ Γ.

Note that every factor axii with i ∈ Na \ N1 evaluates (for a given valuation)
either to an atom from Aγ(i) or to the identity element. Hence, there is no
need to further factorize such a power axii . In our guessed reduction we treat
axii as a symbolic atom (although it might happen that aν(xi)

i = 1 for a certain
valuation ν; but this will not make the above statements (1) and (2) wrong).

We can also guess ki = 0 in (ii). In this case, we can replace uxii in e[N1] by
the empty trace and add the constraint xi = 0 (note that a well-behaved trace
ui 6= 1 represents an element of the graph product G without torsion). Hence,
in the following we can assume that the ki are not zero. Some of the yi,j must
be atoms since they take part in an atom creation in our guessed reduction. In
this case we have to guess for Ai,j a singleton set (but there can be other yi,j
that do not take part in an atom creation and for which we guess an Ai,j of size
one). Every yi,j with |Ai,j | = 1 is replaced by a nondeterministically guessed
atom ai,j from the atoms in ui.

The guessed alphabetic constraints from (iii) must be consistent with the
independencies from our guessed reduction in (iv). This means that if for instance
yi,j and yk,` are swapped in the reduction then we must have Ai,j × Aj,k ⊆ I.
Here comes a subtle point: Recall that each power axi (i ∈ Na \N1) evaluates
for a given valuation either to an atom from Aγ(i) or to the identity element.
When checking the consistency of the alphabetic constraints with the guessed
reduction we make the (pessimistic) assumption that every axi evaluates to an
atom from Aγ(i). This is justified below.

For every specific guess in (i)–(iv) we write down the existentially quantified
conjunction of the following formulas:

˛ the equation uxii = yi,1 · · · yi,ki from (ii) (every trace-variable yi,j is exis-
tentially quantified),

˛ all trace equations that result from cancellation steps in the guessed
reduction,

˛ all “local” identities that result from the atom creations in the guessed
reduction,

˛ all alphabetic constraints from (iii) and
˛ all constraints xi = 0 in case we guessed ki = 0 in (ii).

The local identities in the third point involve the above atoms ai,j and the powers
axii for i ∈ Na \N1. According to Remark 6.16 they are combined into several
knapsack expressions over the groups Gi.

The formula Ψ[N1] is the disjunction of the above existentially quantified
conjunctions, taken over all possible guesses in (i)–(iv). It is then clear that the
above points (1) and (2) hold. Point (2) follows immediately from Lemma 6.15.
For point (1) note that each of the existentially quantified conjunctions in Ψ[N1]

yields the identity e[N1] = 1, irrespective of whether a power axii is trivial or
not.



6.6. Graph products preserve knapsack-semilinearity 49

So far, we have obtained a disjunction of existentially quantified conjunctions.
Every conjunction involves the equations uxii = yi,1 · · · yi,ki from (ii), trace
equations that result from cancellation steps (we will deal with them in step 4
below), local knapsack expressions over the groups Gi, alphabetic constraints
for the variables yi,j and constraints xi = 0 (if ki = 0). In addition we have
the identities axii =Gγ(i) 1 (i ∈ N1) from (6.11). In the following we deal with a
single existentially quantified conjunction of this form.

Step 3: Isolating the local knapsack instances for the groups Gi. In our exis-
tentially quantified conjunction we have knapsack expressions e1, . . . , eq over
the groups Gj (j ∈ Γ). These knapsack expressions involve the atoms ai,j and
the symbolic expressions axii with i ∈ Na. Note that every identity axii =Gγ(i) 1

(i ∈ N1) yields the knapsack expression axii . Each of the expressions ej is built
from at most 2m atom powers axii and atoms ai,j (since for every j ∈ Γ there are
at most 2m−2 atom creations of type j) and its degree is at most m (since there
are at mostm atom powers axii ). All atoms ai and ai,j belong to A(e). This yields
the bound ||ej || ≤ 2mµ(e) for 1 ≤ j ≤ q. We can assume that each expression ej
contains at least one atom power uxii (identities between the explicit atoms ai,j
can be directly verified; if they do not hold, one gets a bad guess). Moreover,
note that every atom power axii with i ∈ Na occurs in exactly one ej . Assume
that the knapsack expression ej is defined over the group Hj ∈ {Gi | i ∈ Γ}.
The solution sets solj = solHj (ej) of these expressions are semilinear by the
assumption on the groups Gi. Each solj has some dimension dj ≤ m (which is
the number of symbolic atoms in ej), where

∑q
j=1 dj = |Na| and the magnitude

of solj is bounded by K(2mµ(e),m) ≤ K(2m||e||,m). Finally, we can combine
these sets solj into the single semilinear set Sa =

⊕q
j=1 solj ⊆ NXa of dimension

|Na| and magnitude at most K(2m||e||,m). Recall that the sets solj refer to
pairwise disjoint sets of variables. For the variables xi ∈ Xa we now obtain the
semilinear contraint (xi)i∈Na ∈ Sa.

Step 4: Reduction to two-dimensional knapsack instances. Let us now deal with
the cancellation steps from our guessed reduction. From these reduction steps
we will produce two-dimensional knapsack instances on pairwise disjoint variable
sets.

If two explicit factors vi,j and vk,` (from (i) in step 2) cancel out in the
reduction, we must have vk,` = v−1

i,j ; otherwise our previous guess was bad. If a
symbolic factor yi,j and an explicit factor vk,` cancel out, then we can replace
yi,j by v−1

k,` . Before doing this, we check whether alph(v−1
k,`) = Ai,j and if this

condition does not hold, then we obtain again a bad guess. Let S be the set of
pairs (i, j) such that the symbolic factor yi,j still exists after this step. On this
set S there must exist a matching M ⊆ {(i, j, k, `) | (i, j), (k, `) ∈ S} such that
yi,j and yk,` cancel out in our reduction if and only if (i, j, k, `) ∈M . We have
(i, j, k, `) ∈M if and only if (k, `, i, j) ∈M .

Let us write the new symbolic factorization of uxii as uxii = ỹi,1 · · · ỹi,ki ,
where every ỹi,j is either the original symbolic factor yi,j (in case (i, j) ∈ S) or a
concrete trace v−1

k,` (in case yi,j and vk,` cancel out in our reduction) or an atom
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ai,j ∈ alph(ui) (that was guessed in step 2). It remains to describe the set of all
tuples (x1, . . . , xm) that satisfy a statement of the following form: there exist
traces yi,j ((i, j) ∈ S) such that the following hold:

(a) uxii = ỹi,1 · · · ỹi,ki in M(A, I) for all i ∈ Na
(b) alph(yi,j) = Ai,j for all (i, j) ∈ S,
(c) yi,j = y−1

k,` in M(A, I) for all (i, j, k, `) ∈M
(d) (xi)i∈Na ∈ Sa

In the next step, we eliminate the trace equations uxii = ỹi,1 · · · ỹi,ki (i ∈ Na).
We apply to each of these trace equations Lemma 6.3 (or Remark 6.4). For
every i ∈ Na we guess a subset Ki ⊆ [1, ki], an integer 0 ≤ ci ≤ |Γ| · (ki − 1)

and traces pi,j , si,j with alph(pi,j) ⊆ alph(ui) ⊇ alph(si,j) and |pi,j |, |si,j | ≤
|Γ| · (ki − 1) · |ui| ≤ |Γ| · (ki − 1) · λ(e), and replace uxii = ỹi,1 · · · ỹi,ki by the
following statement: there exist integers xi,j > 0 (j ∈ Ki) such that

˛ xi = ci +
∑
j∈Ki xi,j ,

˛ ỹi,j = pi,ju
xi,j
i si,j for all j ∈ Ki,

˛ ỹi,j = pi,jsi,j for all j ∈ [1, ki] \Ki.

At this point we can check whether the alphabetic constraints alph(yi,j) = Ai,j
for (i, j) ∈ S hold (note that an equation yi,j = pi,jsi,j or yi,j = pi,ju

xi,j
i si,j

with xi,j > 0 determines the alphabet of yi,j). Equations ỹi,j = pi,jsi,j , where
ỹi,j is an explicit trace can be checked and possibly lead to a bad guess. From
an equation ỹi,j = pi,ju

xi,j
i si,j , where ỹi,j is an explicit trace, we can determine

a unique solution for xi,j > 0 (if it exists) and substitute this value into the
equation xi = ci+

∑
j∈Ki xi,j . Note that we must have xi,j ≤ |ỹi,j | ≤ λ(e), since

ỹi,j is an atom or a factor of a trace v−1
k . Similarly, an equation yi,j = pi,jsi,j

with (i, j) ∈ S allows us to replace the symbolic factor yi,j by the concrete trace
pi,jsi,j and the unique symbolic factor yk,` with (i, j, k, `) ∈M by the concrete
trace s−1

i,j p
−1
i,j . If we have an equation yk,` = pk,`sk,` then we check whether

s−1
i,j p
−1
i,j = pk,`sk,` holds. Otherwise we have an equation yk,` = pk,`u

xk,`
k sk,`, and

we can compute the unique non-zero solution for xk,` (if it exists). Note that
xk,` ≤ |s−1

i,j p
−1
i,j | ≤ 2|Γ| · (ki − 1) · λ(e) ∈ O(|Γ|2 ·m2 · λ(e)). We then replace xk,`

in the equation xk = ck +
∑
`∈Kk xk,` by this unique solution.

By the above procedure, our statement (a)–(d) (with existentially quantified
traces yi,j) is transformed nondeterministically into a statement of the following
form: there exist integers xi,j > 0 (i ∈ Na, j ∈ K ′i) such that the following hold:

(a) xi = c′i +
∑
j∈K′i

xi,j for i ∈ Na,

(b) pi,ju
xi,j
i si,j = s−1

k,`(u
−1
k )xk,`p−1

k,` in M(A, I) for all (i, j, k, `) ∈M ′,
(c) (xi)i∈Na ∈ Sa.

Here, K ′i ⊆ Ki ⊆ [1, ki] is a set of size at most ki ≤ 28αm2, M ′ ⊆ M is a
new matching relation (with (i, j, k, `) ∈M ′ if and only if (k, `, i, j) ∈M ′), and
c′i ≤ |Γ| · (ki − 1) + ki · O(|Γ|2 ·m2 · λ(e)) ≤ O(|Γ|3 ·m4 · λ(e)).
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Step 5: Elimination of two-dimensional knapsack instances. The remaining
knapsack equations pi,ju

xi,j
i si,j = s−1

k,`(u
−1
k )xk,`p−1

k,` in (b) are two-dimensional
(these equations all have two variables) and can be eliminated with Lemma 6.5.
By this lemma, every trace equation

pi,ju
xi,j
i si,j = s−1

k,`(u
−1
k )xk,`p−1

k,`

(recall that all ui are connected, which is assumed in Lemma 6.5) can be
nondeterministically replaced by a semilinear constraint

(xi,j , xk,`) ∈ {(ai,j,k,` + bi,j,k,` · z, ak,`,i,j + bk,`,i,j · z) | z ∈ N}.

For the numbers ai,j,k,`, bi,j,k,`, ak,`,i,j , bk,`,i,j we obtain the bound

ai,j,k,`, bi,j,k,`, ak,`,i,j , bk,`,i,j ∈ O(µ8 · η4|Γ|),

where, by Lemma 6.1,

µ = max{ρ(pi,j), ρ(pk,`), ρ(si,j), ρ(sk,`)} ≤ O(|Γ|2α · 28α ·m2α · λ(e)α) (6.12)

and
η = max{ρ(ui), ρ(uk)} ≤ O(λ(e)α). (6.13)

Note that ρ(t) = ρ(t−1) for every trace t. Moreover, note that we have the
constraints xi,j , xk,` > 0. Hence, if our nondeterministic guess yields ai,j,k,` = 0

or ak,`,i,j = 0 then we make the replacement ai,j,k,` = ai,j,k,` + bi,j,k,` and
ak,`,i,j = ak,`,i,j + bk,`,i,j . If after this replacement we still have ai,j,k,` = 0 or
ak,`,i,j = 0 then our guess was bad.

At this point, we have obtained a statement of the following form: there exist
zi,j,k,` ∈ N (for (i, j, k, `) ∈M ′) with zi,j,k,` = zk,`,i,j and such that

(a) xi = c′i +
∑

(i,j,k,`)∈M ′(ai,j,k,` + bi,j,k,` · zi,j,k,`) for i ∈ Na, and

(b) (xi)i∈Na ∈ Sa.

Note that the sum in (a) contains |K ′i| ≤ 28m2α many summands (since for
every j ∈ K ′i there is a unique pair (k, `) with (i, j, k, `) ∈M ′). Hence, (a) can
be written as xi = c′′i +

∑
(i,j,k,`)∈M ′ bi,j,k,` · zi,j,k,` with

c′′i = c′i +
∑

(i,j,k,`)∈M ′
ai,j,k,`

≤ O(|Γ|3 ·m4 · λ(e)) +O(α ·m2 · µ8 · η4|Γ|)

≤ O(|Γ|16α+1 · 288α ·m16α+2 · λ(e)8α+4α|Γ|)

≤ O(|Γ|16α+1 · 288α ·m16α+2 · ||e||8α+4α|Γ|)

(since λ(e) ≤ ||e||). The bound in the last line is also an upper bound for the
numbers bi,j,k,`. Hence, we have obtained a semilinear representation for solG(e)



52 Chapter 6. Graph products

whose magnitude is bounded by max{K1,K2}, where

K1 ≤ K(2m||e||,m)

(this is our upper bound for the magnitude of the semilinear set Sa) and

K2 ≤ O
(
|Γ|16α+1 · 288α ·m16α+2 · ||e||8α+4α|Γ|).

Step 6: Integration of the preprocessing step. Recall that so far we only considered
the case where e is a knapsack expression having the form of the e′ in Lemma 6.18.
Let us now consider an arbitrary exponent expression e of degree m. By
Lemma 6.18 we have solG(e) = (K ∩ solG(e′))�Xe where K is semilinear of
magnitude one and e′ has degree at most α ·m and satisfies ||e′|| ≤ 3||e||. We can
apply the upper bound shown so far to e′. Hence, the magnitude of solG(e′) is
bounded by max{K′1,K′2}, where

K′1 ≤ K(6αm||e||, αm)

and
K′2 ≤ O

(
|Γ|16α+1 · 288α · (αm)16α+2 · (3||e||)8α+4α|Γ|).

It remains to analyze the influence of intersecting with K. For this, we can apply
Proposition 3.2, which yields for the magnitude the upper bound max{K1,K2},
where

K1 ≤ O
(
(αm)αm/2+3 · K(6αm||e||, αm)αm+3

)
and

K2 ≤ O
(
(αm)αm/2+3 · O

(
|Γ|32α+3 · 288α · (αm)16α+2 · (3||e||)8α+4α|Γ|)αm+3)

≤ (αm)O(α2m) · ||e||O(α2|Γ|m).

This concludes the proof of the theorem.

Remark 6.20. Assume that G is a fixed graph product (hence, |Γ| is a constant).
Consider again the case that e is a knapsack expression (i.e., xi 6= xj for i 6= j)
where every period ui is either an atom or a well-behaved trace. Let m = deg(e).
In the above proof, we show that the set of solutions solG(e) can be written as a
finite union

solG(e) =

p⋃
i=1

qi⊕
j=1

solHi,j (ei,j)⊕ Li

such that the following hold for every 1 ≤ i ≤ p:

˛ every Hi,j is one of the groups Gk and ei,j is a knapsack expression over
the group Hi,j . The variable sets Xei,j (1 ≤ j ≤ qi) form a partition of the
set Xa (the variables corresponding to atomic periods).

˛ Every ei,j is a knapsack expression of size at most 2m||e|| and degree at
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most m (see step 3 in the above proof).
˛ The set Li is semilinear of magnitudeO

(
|Γ|16α+1288αm16α+2||e||8α+4α|Γ|) =

O
(
m16α+2||e||8α+4α|Γ|) (see step 5 in the above proof).

Here, the indices i ∈ [1, p] correspond to the guessed data in the above prove.
Moreover, given i ∈ [1, p] (i.e., a specific guess), one can compute the knapsack
expressions ei,j (1 ≤ j ≤ qi) and a semilinear representation of Li in polynomial
time. This yields a nondeterministic reduction of the knapsack problem for the
graph product G to the knapsack problems for the groups Gi (i ∈ Γ), assuming
the input expression e satisfies the above restriction. Recall that in general,
direct products do not preserve decidability of the knapsack problem.

There is an interesting special case, which was already discussed in [68]: If
all Gi are Z (or more general, Gi is not a torsion group), then knapsack is in NP.
Since it also has been shown that knapsack is NP-hard if (Γ, E) is not a transitive
forest, we have NP-completeness for knapsack of such graph groups. For the
same case (Gi = Z) there is a more recent paper, in which NP-completeness
has been proven for the uniform version of the knapsack problem, where the
independence alphabet (Γ, E) is part of the input (see [66]).

The reader might wonder, whether we can obtain a bound for the function
KG,Σ in terms of the function KGi,Σi , which is better than the corresponding
bound for EG,Σ from Theorem 4.2. This is actually not the case (at least with
our proof technique): a power of the form ux where u = u1u2 ∈ M(A, I) with
u1 I u2 is equivalent to ux1ux2 . Hence, powers ux with u a non-connected trace
naturally lead to a duplication of the variable x (and hence to an exponent
expression which is no longer a knapsack expression). This is the reason why we
bounded the (in general faster growing) function EG,Σ in terms of the functions
KGi,Σi in Theorem 4.2.

An application of Theorem 4.2 is the following:

Theorem 6.21. Let G be a graph product of hyperbolic groups. Then ExpEq(G)

belongs to NP.

Proof. For a hyperbolic group H (with an arbitrary generating set Σ′) it was
shown in [62] that the function KH,Σ′(n) = KH,Σ′(n, n) is polynomially bounded.
Theorem 4.2 yields an exponential bound for the function EG,Σ(n) = EG,Σ(n, n)

(note that |Γ| and α are constants since we consider a fixed graph product G).
A nondeterministic polynomial time Turing machine can therefore guess the
binary encodings of numbers ν(x) ≤ KG,Σ(||e||) for each variable x of the input
exponent expression e. Checking whether ν is a G-solution of e is an instance of
the compressed word problem for G. By the main result of [46] the compressed
word problem for a hyperbolic group can be solved in polynomial time and by
[43] the compressed word problem for a graph product of groups Gi (i ∈ Γ) can
be solved in polynomial time if for every i ∈ Γ the compressed word problem for
Gi can be solved in polynomial time. Hence, we can check in polynomial time if
ν is a G-solution of e.

For more details about knapsack for hyperbolic groups, see Chapter 9.
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6.7 Special case: Free product of two groups

Let us now consider the special case where the graph product is a free product
of two groups G1 and G2. We give the proof of

Theorem 4.3 ([F6]). If the groups G1 and G2 are knapsack-semilinear, then
G1 ∗ G2 is knapsack-semilinear as well. Let K(n,m) be the pointwise maxi-
mum of the functions KG1,Σ1

and KG2,Σ2
. Then for G = G1 ∗ G2 we have

KG,Σ(n,m) ≤ max{K1,K2} with

K1 = K(6mn,m) and K2 ≤ O(mn4).

Proof. The proof is similar to the one from Theorem 4.2. We first consider
the case where every period ui is either an atom or a well-behaved word (see
Remark 6.19).

Let us go throw the six steps from the proof of Theorem 4.2:

Step 1. This step is carried out in the same way as in the proof of Theorem 4.2.

Step 2. Here we can use Lemma 6.17 instead of Lemma 6.15, which yields
the upper bound of 14m on the number of factors in our refinement of
ux1

1 v1u
x2
2 v2 · · ·uxmm vm (where powers uxii with i ∈ N1 have been deleted). The

number of atom creations (of any type) is at most 2m − 2. We do not have
to guess the atom sets Ai,j ⊆ alph(ui,j) since there are no swapping steps in
Lemma 6.17.

Step 3. This step is copied from the proof of Theorem 4.2. We obtain for the
variables xi with i ∈ Na the semilinear constraint (xi)i∈Na ∈ Sa where Sa is of
magnitude at most K(2m||e||,m).

Step 4. Also this step is analogous to the proof of Theorem 4.2. Recall that
we have the better bound 14m on the number of factors in our refinement of
ux1

1 v1u
x2
2 v2 · · ·uxmm vm. Eliminating the equations uxii = ỹi,1 · · · ỹi,ki (i ∈ Na),

which are interpreted in A∗, is much easier due to the absence of commutation.
For every i ∈ Na we obtain a disjunction of statements of the following form:
there exist integers xi,j ≥ 0 (1 ≤ j ≤ ki) such that

˛ xi = ci +
∑ki
j=1 xi,j ,

˛ ỹi,j = pi,ju
xi,j
i si,j for all 1 ≤ j ≤ ki.

Here, every pi,j is a suffix of ui, every si,j is a prefix of ui and ci ≤ ki ≤ 14m.
Basically, ci is the number of factors ui that are split non-trivially in the
factorization uxii = ỹi,1 · · · ỹi,ki . We can then carry out the same simplifications
that we did in the proof of Theorem 4.2. If ỹi,j is an explicit word v−1

k,` then we
determine the unique solution xi,j (if it exists) of ỹi,j = pi,ju

xi,j
i si,j and replace

xi,j by that number, which is at most λ(e). We arrive at a statement of the
following form: there exist integers xi,j ≥ 0 (i ∈ Na, j ∈ Ki) such that the
following hold:

(a) xi = c′i +
∑
j∈Ki xi,j for i ∈ Na,
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(b) pi,ju
xi,j
i si,j = s−1

k,`(u
−1
k )xk,`p−1

k,` in A
∗ for all (i, j, k, `) ∈M ,

(c) (xi)i∈N ∈ Sa.

Here, Ki ⊆ [1, ki] is a set of size at most ki ≤ 14m,M is a matching relation (with
(i, j, k, `) ∈M if and only if (k, `, i, j) ∈M), and c′i ≤ 14m+ki ·λ(e) ≤ O(m·λ(e)).
The words pi,j and si,j have length at most λ(e).

Step 5. The remaining two-dimensional knapsack equations from point (b) are
eliminated with Remark 6.7. Every equation

pi,ju
xi,j
i si,j = s−1

k,`(u
−1
k )xk,`p−1

k,`

can be nondeterministically replaced by a semilinear constraint

(xi,j , xk,`) ∈ {(ai,j,k,` + bi,j,k,` · z, ak,`,i,j + bk,`,i,j · z) | z ∈ N}.

where the numbers ai,j,k,`, bi,j,k,`, ak,`,i,j , bk,`,i,j are bounded by O(λ(e)4).
At this point, we have obtained a statement of the following form: there exist

zi,j,k,` ∈ N (for (i, j, k, `) ∈M) with zi,j,k,` = zk,`,i,j and such that

(a) xi = c′i +
∑

(i,j,k,`)∈M (ai,j,k,` + bi,j,k,` · zi,j,k,`) for i ∈ Na, and

(b) (xi)i∈Na ∈ Sa.

The sum in (a) contains |Ki| ≤ 14m many summands. Hence, (a) can be written
as xi = c′′i +

∑
(i,j,k,`)∈M ′ bi,j,k,` · zi,j,k,` with

c′′i = c′i +
∑

(i,j,k,`)∈M

ai,j,k,`

≤ O(m · λ(e)) + 14m · O(λ(e)4)

= O(m · λ(e)4).

We therefore obtained a semilinear representation for solG(e) whose magnitude
is bounded by max{K1,K2}, where

K1 = K(2m||e||,m) and K2 ≤ O(m||e||4).

Step 6. For the preprocessing we apply Remark 6.19. Hence, we just have
to replace ||e|| by 3||e|| in the above bounds, which yields the statement of the
theorem.

Remark 6.22. By Theorem 4.3, KG,Σ is polynomially bounded if KG1,Σ and
KG2,Σ are polynomially bounded. This was also shown in [68].

Remark 6.23. Analogously to Remark 6.20, the above proof shows that the
set of solutions solG(e) for G = G1 ∗G2 can be written as a finite union

solG(e) =

p⋃
i=1

qi⊕
j=1

solHi,j (ei,j)⊕ Li
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such that the following hold for every 1 ≤ i ≤ p:

˛ every Hi,j is either G1 or G2 and ei,j is a knapsack expression over the
group Hi,j . The variable sets Xei,j (1 ≤ j ≤ qi) form a partition of the set
Xa (the variables corresponding to atomic periods).

˛ Every ei,j is a knapsack expression of size at most 6m||e|| and degree at
most m.

˛ The set Li is semilinear of magnitude O(mn4).

Here, the indices i ∈ [1, p] correspond to the guessed data in the above prove.
Moreover, given i ∈ [1, p], one can compute the knapsack expressions ei,j
(1 ≤ j ≤ qi) and a semilinear representation of Li in polynomial time.

The above remark and Lemma 2.3 immediately yields the following complexity
transfer result (similarly to Theorem 5.1).

Theorem 6.24. The knapsack problem for G1 ∗ G2 is nondeterministically
polynomial time reducible to Knapsack(G1) and Knapsack(G2).

The consequence of Theorem 6.24 that solvability of the knapsack problem
in NP is passed on from Gi for i = 1, 2 to the free product G1 ∗G2 was shown
using different methods in the extended abstract [67] (see also the comment after
Theorem 7.8).

6.8 Open problems

Despite Theorem 6.24, it is not known, whether there exists a group G = G1 ∗G2,
such that Knapsack(G1) and Knapsack(G2) are in P, but Knapsack(G) is
NP-complete. There is a fact which indicates that Knapsack(G) could indeed
be more difficult than Knapsack(Gi): We know that Knapsack(Z) is in TC0,
whereas Knapsack(Z ∗ Z) is LogCFL-complete [68].



Chapter 7

HNN-extensions and
amalgamated products over
finite subgroups

7.1 Introduction

In this chapter we deal with two constructions that are of fundamental importance
in combinatorial group theory [69], namely HNN-extensions and amalgamated
products. As mentioned in Section 2.4, HNN-extensions have been used to
construct groups with an undecidable word problem, which means they may
destroy desirable algorithmic properties. Here we consider the special case of
finite associated (resp. identified) subgroups, which preserve a wider range of
algorithmic properties. We show that in these cases, knapsack-semilinearity is
preserved as well. We make use of similar techniques as in Chapter 6 and hence
we even obtain bounds for the magnitudes.

As transfer results, we obtain both Theorem 7.7 and Theorem 7.8. They
state that for H = 〈H ′, t | t−1at = ϕ(a) (a ∈ A)〉 and G = G1 ∗A G2 with
A finite, we can conclude that Knapsack(H) reduces to Knapsack(H ′) and
Knapsack(G) reduces to Knapsack(G1) and Knapsack(G2) nondeterminis-
tically in polynomial time.

In the next chapter, we will consider a different case for a subclass of HNN-
extensions with infinite associated subgroups. There we only obtain preservation
of knapsack-semilinearity without bounds for the magnitude.

7.2 Further results on HNN-extensions

In this section, we consider arbitrary subgroups A and B of G. This means,
any of these results holds for every HNN-extension. To exploit the symmetry
of the situation, we use the notation A(+1) = A and A(−1) = B. Then, we
have ϕα : A(α)→ A(−α) for α ∈ {+1,−1}. We will make use of the (possibly
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infinite) alphabet Γ = G\{1}. By h : (Γ ∪ {t, t−1})∗ → H, we denote the
canonical morphism that maps each word to the element of H it represents.

A word u ∈ (Γ ∪ {t, t−1})∗ is called Britton-reduced if it does not contain a
factor of the form cd with c, d ∈ Γ or a factor t−αatα with a ∈ Γ∗, a ∈G A(α)

and α ∈ {−1, 1}. A factor of the form t−αatα with a ∈ Γ∗, a ∈G A(α) and
α ∈ {−1, 1} is also called a pin. In this general definition it is also important
that a is actually a word over Γ. Note that the equation t−αatα = ϕα(a) allows
us to replace a pin t−αatα by ϕα(a) ∈G A(−α). Since this decreases the number
of t’s in the word, we can reduce every word to an equivalent Britton-reduced
word. We denote the set of all Britton-reduced words in the HNN-extension (2.2)
by BR(H).

For u ∈ (Γ∪{t, t−1})∗ we define πt(u) as the projection of the word u onto the
alphabet {t, t−1} and πΓ(u) as the projection of the word u onto the alphabet Γ.
Britton’s lemma states that if u =H 1 (u ∈ (Γ∪ {t, t−1})∗) then u contains a pin
or u ∈ Γ∗ and u =G 1. Note that a consequence of this is that if u ∈H G then u
contains a pin or u ∈ Γ∗. To see this, note that u ∈H G implies that uv =H 1

for a word v ∈ Γ∗. Britton’s lemma implies that uv must contain a pin (i.e., u
must contain a pin) or uv ∈ Γ∗ (i.e., u ∈ Γ∗). In particular, a Britton-reduced
word that contains t±1 cannot represent an element of the base group G.

A word w ∈ BR(H) \ Γ is called well-behaved, if wm is Britton-reduced
for every m ≥ 0. Note that w is well-behaved if and only if w and w2 are
Britton-reduced. Elements of Γ are also called atomic.

The length of a word w ∈ (Γ ∪ {t, t−1})∗ is defined as usual and denoted
by |w|. For a word w = a1a2 · · · ak with ai ∈ Γ ∪ {t, t−1} we define the the
representation length of w as ||w|| =

∑k
i=1 ni, where ni = 1 if ai ∈ {t, t−1} and

ni is the geodesic length of ai in the group G if ai ∈ Γ.7

The following lemma provides a necessary and sufficient condition for equality
of Britton-reduced words in an HNN-extension (cf. Lemma 2.2 of [42]):

Lemma 7.1. Let u = g0t
δ1g1 · · · tδkgk and v = h0t

ε1h1 · · · tε`h` be Britton-
reduced words with g0, . . . , gk, h0, . . . , h` ∈ G and δ1, . . . δk, ε1, . . . , ε` ∈ {1,−1}.
Then u = v in the HNN-extension H of G if and only if the following hold:

˛ k = ` and δi = εi for 1 ≤ i ≤ k

˛ there exist c1, . . . , c2m ∈ A ∪B such that:

– gic2i+1 = c2ihi in G for 0 ≤ i ≤ k (here we set c0 = c2k+1 = 1)
– c2i−1 ∈ A(δi) and c2i = ϕδi(c2i−1) ∈ A(−δi) for 1 ≤ i ≤ k.

The second condition of the lemma can be visualized by the diagram from
Figure 7.1 (also called a van Kampen diagram, see [69] for more details), where
k = ` = 4. Light-shaded (resp. dark-shaded) faces represent relations in G (resp.
relations of the form ctδ = tδϕδ(c) with c ∈ A(δ)). The elements c1, . . . , c2k in
such a diagram are also called connecting elements.

7Recall that G is given as G = 〈Σ | R〉 and that the geodesic length of a ∈ Γ is defined as
the length of the shortest word w ∈ Σ∗, which evaluates to a (see Subsection 2.4.1).
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Figure 7.1: A van Kampen diagram witnessing the equality of two Britton-
reduced words in the HNN-extension H.

For our purposes, we will need the following lemma (cf. Lemma 2.3 of [42]),
which allows us to transform an arbitrary string over the generating set of an
HNN-extension into a reduced one:

Lemma 7.2. Assume that u = g0t
δ1g1 · · · tδkgk and v = h0t

ε1h1 · · · tε`h` are
Britton-reduced words (gi, hj ∈ G). Let m(u, v) be the largest number m ≥ 0

such that

(a) A(δk−m+1) = A(−εm) (we set A(δk+1) = A(−ε0) = 1) and

(b) there is c ∈ A(−εm) such that

tδk−m+1gk−m+1 · · · tδkgkh0t
ε1 · · ·hm−1t

εm =H c

(for m = 0 this condition is satisfied with c = 1).

Moreover, let c(u, v) ∈ A(−εm) be the element c in (b) (for m = m(u, v)). Then

g0t
δ1g1 · · · tδk−m(u,v)γ(u, v)tεm(u,v)+1hm(u,v)+1 · · · tε`h`

is a Britton-reduced word equal to uv in H, where γ(u, v) ∈ G such that
γ(u, v) =G gk−m(u,v)c(u, v)hm(u,v).

The above lemma is visualized in Figure 7.2.

Lemma 7.3. From a given word u ∈ BR(H) we can compute words s, p, v ∈
BR(H) such that um =H svmp for every m ≥ 0 and either v ∈ G or v is
well-behaved and starts with t±1. Moreover, ||s||+ ||p||+ ||v|| ≤ 3||u||.

Proof. Let u ∈ BR(H). Assume that u is not atomic; otherwise we are done.
Let us now consider the word u2. If u2 is not Britton-reduced, we can do the
following: using Britton-reduction we compute a factorization u = xyz such that
zx =H g ∈ G and hence u2 =H xygyz, where moreover x and y are chosen such
that the sum |x|+ |z| is maximal. Note that either y = 1 or y begins and ends
with t or t−1 (otherwise we could make x or z longer). Moreover, ||g|| ≤ ||u||.
We obtain the equality um = (xyz)m =H x(yg)mg−1z for every m ≥ 0. We set
s = x, v = yg, and p = g−1z. If y = 1, we have v = g ∈ G. Now assume that y
begins and ends with t or t−1. Since y as a factor of u must be Britton-reduced,
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Figure 7.2: The situation from Lemma 7.2.

also v = yg is Britton-reduced. Moreover, v2 = ygyg must be Britton-reduced,
otherwise we could extend the length of x and z in the factorization u = xyz.
Finally, we have ||s||+ ||p||+ ||v|| = ||x||+ ||y||+ ||z||+ 2||g|| ≤ 3||u||.

We now define 1-reducible tuples for HNN-extensions similar to the case of
graph products (see chapter 6). Again we identify tuples that can be obtained
from each other by inserting/deleting 1’s at arbitrary positions.

Definition 7.4. We define a reduction relation on tuples over BR(H) of arbitrary
length. Take u1, u2, . . . , um ∈ BR(H). Then we have

˛ (u1, u2, . . . , ui, a, ui+1, . . . , um)→ (u1, . . . , ui−1, b, ui+2, . . . , um) if both ui
and ui+1 contain t or t−1 and uiaui+1 =H b for a, b ∈ A∪B (a generalized
cancellation step),

˛ (u1, u2, . . . , um)→ (u1, . . . , ui−1, g, ui+2, . . . , um) if ui, ui+1 ∈ Γ and g =G

uiui+1 ∈ G.

If g 6= 1 then we call the last rewrite step an atom creation. A concrete sequence
of these rewrite steps leading to the empty tuple is a reduction of (u1, u2, . . . , um).
If such a sequence exists, the tuple is called 1-reducible.

A reduction of a tuple (u1, u2, . . . , um) can be seen as a witness for the fact
that u1u2 · · ·um =H 1. On the other hand, u1u2 · · ·um =H 1 does not necessarily
imply that u1, u2, . . . , um has a reduction (as seen for graph products). But we
can show that every sequence which multiplies to 1 in H can be refined (by
factorizing the elements of the sequence) such that the resulting refined sequence
has a reduction. We say that the tuple (v1, v2, . . . , vn) is a refinement of the tuple
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(u1, u2, . . . , um) if there exist factorizations ui = ui,1 · · ·ui,ki in (Γ ∪ {t, t−1})∗
such that (v1, v2, . . . , vn) = (u1,1, . . . , u1,k1 , . . . , um,1, . . . , um,km).

Lemma 7.5. Let m ≥ 2 and u1, u2, . . . , um ∈ BR(H). If u1u2 · · ·um = 1 in H,
then there exists a 1-reducible refinement of (u1, u2, . . . , um) that has length at
most 7m − 12 ≤ 7m and there is a reduction of this refinement with at most
4m− 8 atom creations.

Proof. We prove the lemma by induction on m. The induction is similar to
the one of Lemma 6.17. The case m = 2 is trivial (we must have u2 = u−1

1 ).
If m ≥ 3 then by Lemma 7.2 we can factorize u1 and u2 in (Γ ∪ {t, t−1})∗
as u1 = u′1g1r and u2 = sg2u

′
2 such that rs =H c ∈ A ∪ B, g1, g2 ∈ G and

u1u2 =H u′1gu
′
2 ∈ BR(H) for g = g1cg2 ∈ G. The words r and s are either both

empty (in which case we have c = 1) or r starts with some tε and s ends with
t−ε.

By induction hypothesis, for the tuple (u′1gu
′
2, u3, . . . , um) there is a 1-

reducible refinement

(v1, . . . , vk, u3,1, . . . , u3,k3 , . . . , um,1, . . . , um,km), (7.1)

with 4(m − 1) − 8 atom creations, where k +
∑m
i=3 ki ≤ 7(m − 1) − 12 and

u′1gu
′
2 = v1 · · · vk in (Γ ∪ {t, t−1})∗. Since g ∈ G, there exists 1 ≤ i ≤ k, such

that vi = vi,1gvi,2, u′1 = v1 · · · vi−1vi,1 and u′2 = vi,2vi+1 · · · vk. Now we replace
vi by vi,1, g, vi,2 in the above refinement (7.1). If there exists uj,` such that
vi and uj,` cancel out in a generalized cancellation step in the 1-reduction of
(7.1) then there exist a, b ∈ A ∪B such that vi,1gvi,2auj,` = viauj,` =H b. The
generalized cancellation replaces vi, a, uj,` by b.

Recall that vi and uj,` are both Britton-reduced. By Lemma 7.1 we can
factorize uj,` in (Γ∪ {t, t−1})∗ as uj,` = w1g

′w2 such that there exist connecting
elements a′, b′ ∈ A ∪B with vi,2aw1 =H a′, vi,1b′w2 =H b, and ga′g′ =G b′; see
Figure 7.3. This yields the refined tuple

(v1, . . . , vi−1, vi,1, g1, r, s, g2, vi,2, vi+1, . . . , vk, ũ3,1, . . . , ũ3,k3 , . . . , ũm,1, . . . , ũm,km),

of (u1, u2, . . . , um), where ũj,` = w1, g
′, w2 and ũp,q = up,q in all other cases.

The length of this tuple is at most k + 7 +
∑m
i=3 ki ≤ 7m− 12. The above tuple

is also 1-reducible: First, r, s is replaced by c in a generalized cancellation step.
Then, after at most two atom creations8 we obtain the tuple

(v1, . . . , vi−1, vi,1, g, vi,2, vi+1, . . . , vk, ũ3,1, . . . , ũ3,k3 , . . . , ũm,1, . . . , ũm,km).

At this point, we can basically apply the fixed reduction of (7.1). The generalized
cancellation vi, a, uj,` → b is replaced by the sequence

vi,1, g, vi,2, a, w1, g
′, w2 → vi,1, g, a

′, g′, w2 → vi,1, ga
′, g′, w2 → vi,1, b

′, w2 → b

8Note that each of c, g1, g2 can be 1, in which case the number of atom creations is smaller
than two.
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a b

w1 g′ w2

v−1
i,2 g−1 v−1

i,1

a′ b′

Figure 7.3: The generalized cancellation step for vi and uj,` = w1g
′w2 in the

proof of Lemma 7.5.

which contains at most two atom creations. Hence, the total number of atom
creations is at most 4 + 4(m− 1)− 8 = 4m− 8. This concludes the proof of the
lemma.

7.3 Specific results for HNN-extensions over fi-
nite associated subgroups

For the rest of this chapter, we only consider the case that A and B are finite
groups, so that we may assume that (A ∪ B) \ {1} is contained in the finite
generating set Σ. Note that in this case ||a|| = 1 for a ∈ (A ∪B) \ {1}. Also, let
γ be the cardinality of A.

Lemma 7.6. Let u, v ∈ BR(H)\G be well-behaved, both starting with t±1,
a, b ∈ A ∪B, u′ (resp., v′) be a proper suffix of u (resp., v) and u′′ (resp., v′′)
be a proper prefix of u (resp., v). Let µ = max{|u|, |v|}. Then the set

L(a, u′, u, u′′, v′, v, v′′, b) = {(x, y) ∈ N× N | au′uxu′′ =H v′vyv′′b}

is semilinear. Moreover, one can compute in polynomial time a semilinear
representation whose magnitude is bounded by O(γ2µ4).

Proof. The proof is inspired by the proof of [62, Lemma 8.3] for hyperbolic
groups. The assumptions in the lemma imply that for all x, y ∈ N the words
au′uxu′′ and v′vyv′′b are Britton-reduced (possibly after multiplying a and b

with neighboring symbols from Γ. For a word w ∈ (Γ ∪ {t, t−1})∗ we define
|w|t±1 = |w|t + |w|t−1 (the t±1-length of w). Clearly, for Britton-reduced words
w,w′ with w =H w′ we have |w|t±1 = |w′|t±1 .

We will first construct an automaton A over the unary alphabet {#}, where
# is a fresh letter, such that

L(A) = {#` | ∃x, y ∈ N : au′uxu′′ =H v′vyv′′b, ` = |au′uxu′′|t±1}.

Moreover, the number of states of A is O(µ2 · γ). Roughly speaking, the
automaton A verifies from left to right the existence of a van Kampen diagram
of the form shown in Figure 7.1. Thereby it stores the current connecting
element (an element from A ∪ B). By the assumptions on u and v we can
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a b

u′ u u u u u′′

v′ v v v v′′

Figure 7.4: In the proof of Lemma 7.6 the automaton stores the connecting
elements, i.e. checks the rectangles.

write both words as u = u0u1 · · ·um−1, v = v0v1 · · · vn−1 where n and m are
even, ui ∈ {t, t−1} for i even and ui ∈ G for i odd, and analogously for v.
Let us write u′ = upup+1 · · ·um−1, u′′ = u0u1 · · ·uq−1, v′ = vrvr+1 · · · vn−1,
v′′ = v0v1 · · · vs−1. We set p = m if u′ is empty and q = 0 if u′′ is empty and
similarly for r and s. We will first consider the case that p ≡ rmod 2 and
q ≡ smod 2; other cases are just briefly sketched at the end of the proof.

The state set of A is

Q = {(c, i, j) | c ∈ A ∪B, 0 ≤ i < m, 0 ≤ j < n, i ≡ j mod 2}.

The initial state is (a, p mod m, r mod n) and the only final state is
(b, qmodm, smodn). Finally, A contains the following transitions for
c1, c2 ∈ A ∪B such that c1ui =H vjc2 (in case i and j are odd, this must be an
identity in G since ui, vj ∈ G):

˛ (c1, i, j)
#−→ (c2, i+ 1 modm, j + 1 modn) if i and j are even,

˛ (c1, i, j)
1−→ (c2, i+ 1 modm, j + 1 modn) if i and j are odd.

The number of states of A is O(γ · µ2). If p ≡ rmod 2 does not hold, then we
have to introduce a fresh initial state q0. Assume that for instance p is odd
and r is even. Thus up belongs to G whereas vr is t or t−1. Then we add all
transitions q0

1−→ (c, p + 1 modm, rmodn) for every c ∈ A ∪ B with aup =G c.
If q ≡ smod 2 does not hold, then we have to add a fresh final state qf .

The rest of the argument is the same as in Remark 6.7, we only have to replace
the length of words by the t±1-length. We obtain a semilinear representation of
L(a, u′, u, u′′, v′, v, v′′, b) of magnitude O(γ2 · µ4).

7.4 HNN-extensions over finite associated sub-
groups preserve knapsack-semilinearity

Now we can prove

Theorem 4.4 ([F6]). Let A,B be finite subgroups of G and let ϕ : A → B be
an isomorphism. If G is knapsack-semilinear, then the HNN-extension H of G
(with respect to the isomorphism ϕ) is knapsack-semilinear as well. Moreover,
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we have KH,Σ(n,m) ≤ max{K1,K2} with

K1 = KG,Σ(24mn,m) and K2 ≤ O(γ2mn4),

where γ = |A|.

Proof. We will follow the idea of the proof of Theorems 4.2 and 4.3, respectively.
We first consider the case where every period ui is either an atom or well-behaved
and starts with t±1. Again we are going through the six steps. For simplicity,
we write K instead of KG,Σ.

Step 1. This step is carried out in the same way as in the proof of Theorem 4.2.

Step 2. Here we can use Lemma 7.5 instead of Lemma 6.15, which yields the upper
bound of 14m on the number of factors in our refinement of ux1

1 v1u
x2
2 v2 · · ·uxmm vm

(where powers uxii with i ∈ N1 have been removed). The number of atom
creations is at most 8m− 8.

Step 3. This step is copied from the proof of Theorem 4.2. We obtain for the
variables xi with i ∈ Na the semilinear constraint (xi)i∈Na ∈ Sa where Sa is of
magnitude at most K(8m||e||,m).

Step 4. This step is analogous to the proof of Theorem 4.3. The only difference
is that the 2-dimensional knapsack instances are produced by the generalized
cancellation steps from Definition 7.4. We arrive at a statement of the following
form: there exist integers xi,j ≥ 0 (i ∈ Na, j ∈ Ki) such that the following hold:

(a) xi = c′i +
∑
j∈Ki xi,j for i ∈ Na,

(b) ai,jpi,ju
xi,j
i si,j =H s−1

k,`(u
−1
k )xk,`p−1

k,`bi,j for all (i, j, k, `) ∈M ,

(c) (xi)i∈Na ∈ Sa.

Here, Ki ⊆ [1, ki] is a set of size at most ki ≤ 14m, M is a matching relation
(with (i, j, k, `) ∈ M if and only if (k, `, i, j) ∈ M), ai,j , bi,j ∈ A ∪ B, and
c′i ≤ O(m · λ(e)). Every word pi,j is a suffix of ui,j and every si,j is a prefix of
ui,j . In particular, pi,j and si,j have length at most λ(e).

Step 5. The remaining two-dimensional knapsack equations from point (b) are
eliminated with Lemma 7.6. Every equation

ai,jpi,ju
xi,j
i si,j =H s−1

k,`(u
−1
k )xk,`p−1

k,`bi,j

can be nondeterministically replaced by a semilinear constraint for xi,j and xk,` of
magnitude O(γ2λ(e)4). By substituting these semilinear constraints in the above
equations (a) for the xi (as we did in the proof of Theorem 4.2), we obtain for
the variables xi (i ∈ Na) a semilinear constraint of magnitude O(m · γ2 · λ(e)4).
This leads to a semilinear representation for solH(e) of magnitude at most
max{K1,K2}, where

K1 = K(8m||e||,m) and K2 ≤ O(m · γ2 · ||e||4).
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Step 6. For the preprocessing we can apply Lemma 7.3 to each period ui.
Hence, we just have to replace ||e|| by 3||e|| in the above bounds, which yields the
statement of the theorem.

The following result is obtained analogously to Theorem 5.1 and Theo-
rem 6.24.

Theorem 7.7. The knapsack problem for 〈G, t | t−1at = ϕ(a) (a ∈ A)〉 (with A
finite) is nondeterministically polynomial time reducible to Knapsack(G).

The consequence of Theorem 7.7 that solvability of the knapsack problem in
NP is passed on from G to H was shown using different methods in the extended
abstract [67].

7.5 Amalgamated products over finite amalga-
mated subgroups preserve knapsack-
semilinearity

Using our results for free products and HNN-extensions, we can easily deal with
amalgamated products. From Theorem 4.4, we can deduce a similar result for
amalgamated products, namely

Theorem 4.5 ([F6]). Let G1 and G2 be finitely generated groups with a common
subgroup A. Let K(n,m) be the pointwise maximum of the functions KG1,Σ1

and KG2,Σ2
. Furthermore, let γ = |A| and let G be the amalgamated product

G1 ∗AG2. Then with Σ = Σ1∪Σ2 we have KG,Σ(n,m) ≤ max{K1,K2,K3} where

K1 = KG,Σ(144m2n,m),K2 ≤ O(m5n4) and K3 ≤ O(m · γ2 · n4).

Proof. For the proof we will make use of Theorem 4.3 for free products and
Theorem 4.4 for HNN-extensions.

We remind the reader that G = G1 ∗A G2 can be embedded into

H = 〈G1 ∗G2, t | t−1ϕ1(a)t = ϕ2(a) (a ∈ A)〉.

Obviously we have KG,Σ(n,m) ≤ KH,Σ(n,m). Hence we can calculate the bound
by first getting the bound for the free product G1 ∗ G2 and then proceeding
with the HNN-extension. Theorem 4.3 tells us that J(n,m) = KG1∗G2,Σ(n,m) ≤
max{K′1,K′2}, where K′1 = K(6mn,m) and K′2 ≤ O(mn4). To obtain KH,Σ(n,m),
we make use of Theorem 4.4. We have KH,Σ(n,m) ≤ max{J1, J2}, where
J1 = J(24mn,m) and J2 ≤ O(γ2mn4). Since the function J(n,m) appears in J1,
we have to substitute by what we calculated before. More precisely we have
to make the substitution n 7→ 24mn for the values K′1 and K′2. This yields
KH,Σ(n,m) ≤ max{K1,K2,K3}, where
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K1 = K(144m2n,m),

K2 ≤ O(m5n4),

K3 = J2 ≤ O(γ2mn4).

This finishes the proof of the theorem.

From Theorems 6.24 and 7.7 and the embedding of G1 ∗A G2 in the HNN-
extension 〈G1 ∗G2, t | t−1ϕ1(a)t = ϕ2(a) (a ∈ A)〉 we obtain:

Theorem 7.8. The knapsack problem for G1 ∗A G2 (with A finite) is nondeter-
ministically polynomial time reducible to Knapsack(G1) and Knapsack(G2).

As before, the consequence of Theorem 7.8 that solvability of the knapsack
problem in NP is passed on from Gi for i = 1, 2 to the amalgamated product
G1 ∗A G2 was shown using different methods in the extended abstract [67].

7.6 Open problems

Despite Theorem 7.7, it is not known, whether there exists an HNN-extension
H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉 with A finite, such that Knapsack(G) is
in P, but Knapsack(H) is NP-complete. The same holds for amalgamated
products: We have Theorem 7.8, but it is not known, whether there exists a
group G = G1 ∗A G2 (A finite), such that Knapsack(G1) and Knapsack(G2)

are in P, but Knapsack(G) is NP-complete.



Chapter 8

HNN-extensions of the form
〈G, t | t−1at = a (a ∈ A)〉

8.1 Introduction

In the last chapter, we studied HNN-extensions over finite associated subgroups
and we obtained preservation of knapsack-semilinearity in this case. The goal of
this chapter is show that an HNN-extension

H = 〈G, t | t−1at = a (a ∈ A)〉

is knapsack-semilinear provided G is knapsack-semilinear relative to {1, A},
where A can be an infinite group (Theorem 4.6). So not only do we have
restrictions on the isomorphism (ϕ is the identity), but we also need another
condition for the associated subgroup A. We already mentioned in the beginning
of the thesis that in general, HNN-extensions over infinite associated subgroups
do not preserve knapsack-semilinearity, as the Baumslag-Solitar group BS(1, 2) =

〈a, t | t−1at = a2〉 is not knapsack-semilinear [32] but it is an HNN-extension of
the knapsack-semilinear group 〈a〉 ∼= Z.

As an application of Theorem 4.6, we prove Theorem 4.7, which states that
the HNN-extension is knapsack-semilinear, if it is an extension of centralizer
and G is knapsack-semilinear. Normally, it is not intuitive to understand the
condition of being knapsack-semilinear relative to S, but in this case, we have a
very explicit example.

8.2 Special results for HNN-extensions of the
form 〈G, t | t−1at = a (a ∈ A)〉

In this chapter, we consider HNN-extensions H = 〈G, t | t−1at = ϕ(a) (a ∈ A)〉,
where A ≤ G is a subgroup of G = 〈Σ | R〉 and ϕ : A → A is the identity

67
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mapping. Thus, H can be written as

H = 〈G, t | t−1at = a (a ∈ A)〉. (8.1)

Let us fix this HNN-extension for the further consideration. As in the last
chapter, let us denote with

h : (Γ ∪ {t, t−1})∗ → H

the evaluation morphism, where Γ = G \ {1}.
Recall that a word u ∈ (Γ ∪ {t, t−1})∗ is called Britton-reduced if it does not

contain a factor of the form t−αwtα with α ∈ {−1, 1}, w ∈ Γ∗ and w ∈G A. Also
recall that a factor of the form t−αwtα with α ∈ {−1, 1}, w ∈ Γ∗ and w ∈G A is
called a pin, which we can replace by w.

In this special case, we have H/N(t) ∼= G, where N(t) is the smallest normal
subgroup of H containing t. By πG : H → G we denote the canonical projection.
We have πG(g0t

δ1g1 · · · tδkgk) = g0g1 · · · gk for g0, . . . , gk ∈ G. Hence, on the
level of words, πG is computed by the projection πΓ : (Γ ∪ {t, t−1})∗ → Γ∗.

Lemma 8.1. Let w ∈ (Γ ∪ {t, t−1})∗. Then w =H 1 if and only if w ∈H G and
πΓ(w) =G 1.

Proof. If w =H 1, i.e., h(w) = 1, then clearly w ∈H G. Moreover, by Britton’s
lemma, w can be reduced to a word from Γ∗ using Britton reduction. But
this word must be πΓ(w). Hence, we have πΓ(w) =G 1. On the other hand, if
w ∈H G and πΓ(w) =G 1, then, again, w can be reduced to πΓ(w) =G 1 using
Britton reduction, which implies w =H 1.

We will also need the simplified version of Lemma 7.2:

Lemma 8.2. Assume that u = u0t
δ1u1 · · · tδkuk and v = v0t

ε1v1 · · · tε`v` are
Britton-reduced words with ui, vj ∈ Γ∗. Let 0 ≤ m ≤ max{k, `} be the largest
number such that

˛ δk−i = −εi+1 for all 0 ≤ i ≤ m− 1 and
˛ uk−i+1 · · ·ukv0 · · · vi−1 ∈G A for all 0 ≤ i ≤ m (for i = 0 this condition is
trivially satisfied).

Then w := u0t
δ1u1 · · · tδk−m(uk−m · · ·ukv0 · · · vm)tεm+1vm+1 · · · tε`v` is a

Britton-reduced word with w =H uv.

For simplicity reasons, in this chapter we call all words w ∈ BR(H) well-
behaved (if wm is Britton-reduced for every m ≥ 0), and hence every word
w ∈ Γ∗ is well-behaved (not "atomic").

In the following we assume that G is knapsack-semilinear relative to {1, A}.
For a knapsack expression e = v0u

x1
1 v1u

x2
2 v2 · · ·uxkk vk over the alphabet

Σ ∪ {t, t−1} we define the knapsack expression

πΣ(e) = πΣ(v0)πΣ(u1)x1πΣ(v1)πΣ(u2)x2πΣ(v2) · · ·πΣ(uk)xkπΣ(vk)
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over the alphabet Σ. Note that for algorithmic purposes we use the finite
symmetric generating set Σ of G instead of Γ for the rest of this chapter. Hence,
each u ∈ Γ is represented as a word over Σ.

For an exponent expression e(x1, . . . , xn) over the alphabet Σ ∪ {t, t−1} we
call

e(x1, . . . , xn) ∈H G

a G-constraint. If e is an exponent expression over the alphabet Σ, then e ∈G A

is called an A-constraint. Since G is knapsack-semilinear relative to A, the set
of solutions of an A-constraint is semilinear.

Lemma 8.3. Let u, v ∈ BR(H) be well-behaved, u′ (resp., v′′) be a proper
prefix of u (resp., v) and u′′ (resp., v′) be a proper suffix of u (resp., v). Let
e = e(z1, . . . , zk) be a knapsack expression over the alphabet Σ. Then the set of
all (x, y, z1, . . . , zk) ∈ Nk+2 such that the G-constraint

u′′uxu′e(z1, . . . , zk) v′vyv′′ ∈H G (8.2)

holds is semilinear and a semilinear representation can be effectively computed
from the words u, v, u′, u′′, v′, v′′, e.

Proof. We first claim that by cyclically rotating u and v we can assume that
u′′ = v′′ = 1. We only prove this for u′′, for v′′ we can argue analogously. We
can write u = ru′′ for some word r. Then for all x ∈ N we have u′′uxu′ =

u′′(ru′′)xu′ = (u′′r)xu′′u′. The word u′′u′ is either a prefix of u′′r or we can
write u′′u′ = (u′′r)ũ for some prefix ũ of u′′r. In the first case, we can simply
replace u′′uxu′ in (8.2) by (u′′r)xu′′u′ (note that u′′r is well-behaved since it
is a cyclic rotation of the well-behaved word u = ru′′). In the second case
(where u′′u′ = (u′′r)ũ for some prefix ũ of u′′r), we replace u′′uxu′ in (8.2) by
(u′′r)xũ. If L ⊆ N{x,y,z1,...,zk} is the set of solutions of the resulting G-constraint,
then the formula (x+ 1, y, z1, . . . , zk) ∈ L describes the set of solution of (8.2).
Clearly, a Presburger formula for L immediately yields a Presburger formula for
(x+ 1, y, z1, . . . , zk) ∈ L.

By the previous paragraph, it suffices to consider the set of solutions of the
G-constraint

uxu′e(z1, . . . , zk) v′vy ∈H G.

This constraint holds (for certain values of x, y, z1, . . . , zk) if and only if
uxu′e(z1, . . . , zk) v′vy can be Britton-reduced to a word from Σ∗ which must
be πΣ(uxu′e(z1, . . . , zk) v′vy). Since ux and vy are Britton-reduced for every
x, y ∈ N we can apply Lemma 8.2.

Let Su be the set of suffixes of u that start with t±1 and let Pv be the set
of prefixes of v that end with t±1. We define Su′ and Pv′ analogously. Then by
Lemma 8.2 the following formula is equivalent to uxu′e(z1, . . . , zn) v′vy ∈H G

(as usual, ∧ denotes logical conjunction and ⇒ denotes logical implication):
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πt(u
xu′) = πt(v

′vy)−1 ∧
∀x′ < x ∀y′ < y :

∧
s∈Su

∧
p∈Pv

πt(s u
x′u′) = πt(v

′vy
′
p)−1

⇒ πΣ(s ux
′
u′ e v′vy

′
p) ∈G A

∧
s∈Su

∧
p∈Pv′

πt(s u
x′u′) = πt(p)

−1 ⇒ πΣ(s ux
′
u′ e p) ∈G A

∧
s∈Su′

∧
p∈Pv

πt(s) = πt(v
′vy
′
p)−1 ⇒ πΣ(s e v′vy

′
p) ∈G A

∧
s∈Su′

∧
p∈Pv′

πt(s) = πt(p)
−1 ⇒ πΣ(s e p) ∈G A.

Let us explain the intuition behind this formula; see also Figure 8.1 which shows
a van Kampen diagram for u8u′e(z1, . . . , zk) v′v5 =H g.

The formula πt(u
xu′) = πt(v

′vy)−1 expresses that every t (resp., t−1)
in uxu′ cancels with a t−1 (resp., t) in v′vy. If this is not the case, then
uxu′e(z1, . . . , zk) v′vy cannot be Britton-reduced to a word over Σ. The other four
lines of the formula ensure that the Britton-reduction of uxu′e(z1, . . . , zk) v′vy

to a word over Σ actually exists. This Britton-reduction proceeds from right
to left in Figure 8.1. In each reduction step, the right-most slice in Figure 8.1
is eliminated. Assume that the Britton-reduction has already eliminated the
part to the right of the shaded slice. The special form of our HNN-extension
(8.1) implies that if a word w ∈ (Σ ∪ {t, t−1})∗ is Britton-reduced to a word
over Σ, then we have w =H πΣ(w) (every Britton-reduction step is of the form
t−1at→ a or tat−1 → a for a ∈ A). Hence, we must have a =G πΣ(s u4u′ e v′v2p)

in Figure 8.1. In order to eliminate the shaded slice, the following must hold:

˛ a must belong to the subgroup A, i.e., πΣ(s u4u′ e v′v2p) ∈G A,

˛ the first letter of s (a suffix of u) must be t (or t−1), and

˛ the last letter of p (a prefix of v) must be t−1 (or t); note that v goes from
right to left.

The second line in the above formula ensures that πΣ(s ux
′
u′ e v′vy

′
p) ∈G A

whenever x′ < x, y′ < y, s is a suffix of u that starts with t±1, p is a prefix of
v that ends with t±1 and πt(s u

x′u′) = πt(v
′vy
′
p)−1 holds. This ensures that

s ux
′
u′ e v′vy

′
p is the group element represented by one of the vertical edges in

Figure 8.1. The other parts of the above formula deal with the cases where the
vertical edge has an endpoint in u′ or v′. Altogether this ensures that all the
vertical edges in Figure 8.1 represent elements of the subgroup A.

By Lemma 6.6 the solution set of the equation πt(uxu′) = πt(v
′vy)−1 (which

is interpreted over the free monoid {t, t−1}∗) is semilinear. To see this let w = v−1

and w′ = (v′)−1. Then πt(uxu′) = πt(v
′vy)−1 is equivalent to πt(u)xπt(u

′) =

πt(w)yπt(w
′). For the same reason, also the equation πt(s ux

′
u′) = πt(v

′vy
′
p)−1

is equivalent to a semilinear constraint. The solution sets of the equations
πt(s) = πt(v

′vy
′
p)−1 and πt(s) = πt(v

′vy
′
p)−1 are finite. Moreover, each of
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p

Figure 8.1: The idea behind the proof of Lemma 8.3. The fact that all vertical
lines represent elements from the subgroup A is expressed by the formula from
the proof.

the A-constraints (πΣ(s ux
′
u′ e v′vy

′
p) ∈G A etc.) is equivalent to a semilinear

constraint because G is knapsack-semilinear relative to A. Hence, the above
formula is equivalent to a Presburger formula and therefore defines a semilinear
set.

Remark 8.4. There are variations of Lemma 8.3, where the G-constraint has
one of the following forms:

u′e(z1, . . . , zk) v′vyv′′ ∈H G,

u′uxu′′e(z1, . . . , zk) v′ ∈H G,

or u′e(z1, . . . , zk) v′ ∈H G

with u, u′, u′′, v, v′, v′′ as in Lemma 8.3. In all cases, the set of solutions of the
G-constraint can be shown to be effectively semilinear using the arguments from
the proof of Lemma 8.3.

Here we want to give a slightly different definition compared to Definition 7.4.
Instead of 1-reducible tuples, we define G-reducible tuples in a different way.

Definition 8.5. We define a reduction relation on tuples over BR(H) of arbitrary
length. Take u1, u2, . . . , um ∈ BR(H) and 1 ≤ i < j ≤ m. Then we have

(u1, u2, . . . , um)→ (u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(uj), uj+1, . . . , um)

if πt(ui) 6= 1 6= πt(uj), ui+1 · · ·uj−1 ∈ Σ∗ and uiui+1 · · ·uj−1uj ∈H G. Note that
this implies that uiui+1 · · ·uj−1uj =H πΣ(ui)ui+1 · · ·uj−1πΣ(uj). A concrete
sequence of such rewrite steps leading to a tuple where all entries belong to Σ∗

is a G-reduction of the initial tuple, and the initial tuple is called G-reducible.
We also say that ui and uj matched in a G-reduction.

A G-reduction of a tuple (u1, u2, . . . , um) can be seen as a witness for the
fact that u1u2 · · ·um ∈H G. On the other hand, u1u2 · · ·um ∈H G does not
necessarily imply that (u1, u2, . . . , um) has a G-reduction. But we can show
that u1u2 · · ·um ∈H G implies that (u1, u2, . . . , um) can refined (by factorizing
the ui) such that the resulting refined tuple has a G-reduction. Moreover, it is
important that we have an upper bound on the length of the refined tuple (4m in
Lemma 8.6 below) that only depends on m and not on the words u1, u2, . . . , um.
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We say that the tuple (v1, v2, . . . , vn) is a refinement of the tuple
(u1, u2, . . . , um) if there exist factorizations ui = ui,1 · · ·ui,ki in (Σ ∪ {t, t−1})∗
such that ki = 1 whenever ui ∈ Σ∗ and

(v1, v2, . . . , vn) = (u1,1, . . . , u1,k1 , . . . , um,1, . . . , um,km).

Lemma 8.6. Let m ≥ 2 and u1, u2, . . . , um ∈ BR(H). If u1u2 · · ·um ∈H G,
then there exists a G-reducible refinement of (u1, u2, . . . , um) that has length at
most 4m.

Proof. Let u = (u1, u2, . . . , um). Let us define γ(u) as the number of pairs
(i, j) with 1 ≤ i < j ≤ m such that uiui+1 · · ·uj is not Britton-reduced and
ui+1 · · ·uj−1 ∈ Σ∗. Note that πt(ui) 6= 1 6= πt(uj) for such a pair (i, j). Moreover,
if we have two pairs (i, j) and (k, `) of this form, then either j ≤ k or ` ≤ i. Let
θ(u) be the number of i such that πt(ui) 6= 1.

We prove by induction over γ(u) + θ(u) that there exists a G-reducible
refinement of u that has length at most 2γ(u) + θ(u) +m ≤ 4m.

The case m = 2 is trivial: either γ(u1, u2) = θ(u1, u2) = 0 and u1, u2 ∈ Σ∗

or γ(u1, u2) = 1, θ(u1, u2) = 2 in which case (u1, u2) must reduce in one step
to (πΣ(u1), πΣ(u2)). If m ≥ 3 then u1u2 · · ·um must contain a pin. Since
every ui is Britton-reduced, there must exist i < j such that uiui+1 · · ·uj is
not Britton-reduced and ui+1 · · ·uj−1 ∈ Σ∗. By Lemma 8.2 we can factorize
ui and uj in (Σ ∪ {t, t−1})∗ as ui = u′ir and uj = su′j such that rs ∈H G and
uiui+1 · · ·uj−1uj =H u′iπΣ(r)ui+1 · · ·uj−1πΣ(s)u′j is Britton-reduced. Note that
r and s must contain t or t−1. Moreover, we can assume that either u′i = 1 or u′i
ends with t±1 (if u′i ends with a non-empty word over Σ, we can remove this
word from u′i and add it to r) and, similarly, either u′j = 1 or u′j begins with t±1.

Case 1. u′i and u′j both contain t±1. Then we have

γ(u1, . . . , ui−1, u
′
i, πΣ(r), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) < γ(u)

since u′iπΣ(r)ui+1 · · ·uj−1πΣ(s)u′j is Britton-reduced and u′i and u′j both contain
t±1. Moreover, we have

θ(u1, . . . , ui−1, u
′
i, πΣ(r), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) = θ(u).

Hence, we can apply the induction hypothesis to the tuple

(u1, . . . , ui−1, u
′
i, πΣ(r), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um). (8.3)

It must have a G-reducible refinement of length at most

2(γ(u)− 1) + θ(u) +m+ 2 = 2γ(u) + θ(u) +m.

In this refinement πΣ(r), πΣ(s) ∈ Σ∗ will not be factorized into more than one
factor. We therefore can take the refinement of (8.3) and replace πΣ(r) and
πΣ(s) by r and s, respectively. This leads to a G-reducible of our original tuple
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u having length at most 2γ(u) + θ(u) +m.

Case 2. u′i = 1 and u′j begins with t±1. Then we have

γ(u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) ≤ γ(u)

and

θ(u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) < θ(u).

We can therefore apply the induction hypothesis to the tuple

(u1, . . . , ui−1, πΣ(ui), ui+1, . . . , uj−1, πΣ(s), u′j , uj+1, . . . , um) (8.4)

and obtain a G-reducible refinement of length at most

2γ(u) + θ(u)− 1 +m+ 1 = 2γ(u) + θ(u) +m.

Replacing πΣ(ui) by ui and πΣ(s) by s in this refinement yields a G-reducible
refinement of u.

The remaining cases where (i) u′j = 1 and u′i ends with t±1 or (ii) u′i = u′j = 1

are analogous to case 2. This concludes the proof of the lemma.

8.3 Knapsack-semilinearity for HNN-extensions
of the form 〈G, t | t−1at = a (a ∈ A)〉

Now we are able to prove

Theorem 4.6 ([F4]). Let H = 〈G, t | t−1at = a (a ∈ A)〉 be an HNN-
extension, where G is knapsack-semilinear relative to {1, A}. Then H is knapsack-
semilinear.

Proof. The proof of the theorem is based on ideas from chapter 7. Consider a
knapsack expression

e(x2, x4, . . . , xm) = u1u
x2
2 u3u

x4
4 u5 · · ·uxmm um+1

with m even (later it will convenient to have only variables with an even index).
We can assume that all ui are Britton reduced. Moreover, by Lemma 7.3, we
can assume that every ui with i even is well-behaved and moreover non-empty
(otherwise we can remove the power uxii ).

In the following we describe an algorithm that computes a semilinear rep-
resentation of solH(e) in three main steps. The algorithm transforms logical
statements into equivalent logical statements (we do not have to define the
precise logical language; the meaning of the statements should be always clear).
Every statement contains the variables x2, x4, . . . , xm from our knapsack ex-
pression and equivalence of two statements means that for every valuation
ν : {x2, x4, . . . , xm} → N the two statements yield the same truth value. We
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start with the statement e(x2, x4, . . . , xm) =H 1 and end with a Presburger
formula. In each of the three steps we transform the current statement Φ into
an equivalent disjunction

∨n
i=1 Φi. We can therefore view the whole process as

a branching tree of depth three, where the nodes are labelled with statements.
If a node is labelled with Φ and its children are labelled with Φ1, . . . ,Φn then
Φ is equivalent to

∨n
i=1 Φi. The leaves of the tree are labelled with Presburger

formulas with free variables x2, x4, . . . , xm. We will concentrate on a single
branch of this tree, which can be viewed as a sequence of nondeterministic
guesses.

Let NΣ ⊆ [1,m + 1] be the set of indices such that ui ∈ Σ∗ and let Nt =

[1,m+ 1] \NΣ be the set of indices such that πt(ui) 6= 1. Moreover, let us define
wi = ui for i odd and wi = uxii for i even.

By Lemma 8.1, e =H 1 is equivalent to e ∈H G ∧ πΣ(e) =G 1. Since G
is knapsack-semilinear, the set solG(πΣ(e)) is semilinear. Hence, it suffices to
show that the set of all (x2, x4, . . . , xm) ∈ Nm/2 with e(x2, x4 . . . , xm) ∈H G

is semilinear. Here, we will use the assumption that G is knapsack-semilinear
relative to A.

Step 1: Applying Lemma 8.6. We construct a disjunction Ψ from the knapsack
expression e using Lemma 8.6. More precisely, we construct Ψ by nondetermin-
istically guessing the following data:

(i) symbolic factorizations wi = yi,1 · · · yi,ki in (Σ ∪ {t, t−1})∗ for all i ∈
[1,m+1]. Here the yi,j are existentially quantified variables that take values
in BR(H). Later, these variables will be eliminated. The guessed ki must
satisfy ki ≥ 1 for all i, ki = 1 for all i ∈ NΣ, and

∑
1≤i≤m+1 ki ≤ 4(m+ 1).

(ii) a G-reduction (according to Definition 8.5) of the tuple

(y1,1 · · · y1,k1 , . . . , ym+1,1 · · · ym+1,km+1
).

For the wi with i odd we can of course guess concrete words for the variables
yi,1, . . . , yi,ki . Later, we will do this, but in order to simplify the notation, we
will still use the names yi,1, . . . , yi,ki for these words.

For every specific guess in (i) and (ii) we write down the conjunction of the
following formulas:

˛ the equation wi = yi,1 · · · yi,ki from (i) (every variable yi,j is existentially
quantified) and

˛ all G-constraints that result from G-reduction steps in the guessed G-
reduction (this will made more precise in Step 2 below).

The formula Ψ is the disjunction of the above existentially quantified conjunctions,
taken over all possible guesses in (i) and (ii). This formula is equivalent to the
G-constraint e ∈H G.

Step 2: Eliminating the equations wi = yi,1 · · · yi,ki . For an odd i (i.e.,
wi = ui) we can eliminate this equation by guessing a concrete factorization
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ui = ui,1 · · ·ui,ki and then replace the equation wi = yi,1 · · · yi,ki by the conjunc-
tion

ki∧
j=1

yi,j = ui,j .

For an even i (i.e., wi = uxii ) we can eliminate the equation wi = yi,1 · · · yi,ki by
guessing a symbolic factorization of uxii into ki factors. A specific guess leads to
a formula

ki∧
j=1

yi,j = u′′i,ju
xi,j
i u′i,j+1 ∧ xi = ci +

ki∑
j=1

xi,j . (8.5)

Here, every u′i,j (2 ≤ j ≤ ki) is a proper prefix of ui and every u′′i,j (2 ≤ j ≤ ki)
is a proper suffix of ui such that either ui = u′i,ju

′′
i,j or u′i,j = u′′i,j = 1 for all

2 ≤ j ≤ ki. We set u′i,ki+1 = u′′i,1 = 1 in the above formula. Moreover, ci is
the number of 2 ≤ j ≤ ki for which u′i,j 6= 1 6= u′′i,j holds. The u′i,j and u′′i,j are
nondeterministically guessed.

We also guess which of the new exponent variables xi,j are zero and which
of the xi,j are non-zero. If we guess xi,j = 0, then we replace xi,j in (8.5) by 0.
This yields the equation yi,j = u′′i,ju

′
i,j+1. If we guess xi,j > 0, then we add this

constraint to (8.5). After this step, it is determined whether a yi,j contains t or
t−1 (for i even as well as for i odd). Those yi,j must be matched by G-reduction
steps in the G-reduction that we guessed in Step 1. In fact, what we guessed in
Step 1 is such a matching.

Step 3: Eliminating G-constraints. Assume that yi,j and yk,` are matched in the
guessed G-reduction. W.l.o.g. assume that i < k or i = k and j < `, i.e., (i, j) is
lexicographically before (k, `). Then our formula contains the G-constraint

yi,j

 ∏
(i,j)≺(p,q)≺(k,`)

πΣ(yp,q)

 yk,` ∈H G,

where ≺ is the strict lexicographic order on pairs of natural numbers. In this
constraint, we can replace every ya,b with a even by u′′i,ju

xi,j
i u′i,j+1 (or u′′a,bu

′
a,b+1

in case xi,j = 0 was guessed), whereas every ya,b with a odd can be replaced
by the concrete word ua,b. If both yi,j and yk,` contain an exponent variable
we obtain a G-constraint of the form (8.2). If yi,j or yk,` is a concrete word
we obtain a G-constraint having one of the three forms listed in Remark 8.4.
Lemma 8.3 and Remark 8.4 imply that in each case, the set of solutions of the
G-constraint is semilinear. This concludes the proof of the theorem.

Remark 8.7. It is straightforward to generalize Theorem 4.6 to a multiple
HNN-extension

H = 〈G, t1, . . . , tn | t−1
i ati = a (a ∈ Ai, 1 ≤ i ≤ n)〉.

If G is knapsack-semilinear relative to {1, A1, . . . , An} then H is knapsack-
semilinear.
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8.4 Application: Extensions of centralizers

Recall the notion of an extension of centralizer from Subsection 2.4.3. We now
give a proof for

Theorem 4.7 ([F4]). If G is knapsack-semilinear and H is an extension of a
centralizer C(S) with S finite, then H is knapsack-semilinear as well.

Proof. We have to show that G is also knapsack-semilinear relative to C(S).
Let e = e(x1, . . . , xn) be a knapsack expression. Then e ∈G C(S) is equivalent
to
∧
a∈S ea =G ae. Note that ea =G ae is equivalent to eae−1a−1 =G 1

and eae−1a−1 is an exponent expression. Since G is knapsack-semilinear and
semilinear sets are closed under finite intersections, the set of solutions of∧
a∈S ea = ae is semilinear.

8.5 Open problems

In Theorems 4.6 and 4.7 we obtained knapsack-semilinearity for two types of
HNN-extensions. It would be desired to compute bounds on the magnitudes as
in Theorem 4.4.



Chapter 9

Central extensions for
hyperbolic groups

9.1 Introduction

In this chapter we consider central extensions H of a group G = H/K with
K central. We do not want to analyze arbitrary central extensions, but only
the ones for hyperbolic groups G. This allows us to deal with asynchronous
biautomatic structures, defined in Section 9.3.

The main technical result of this chapter is Theorem 9.10, where we construct
a semilinear representation of a Parikh image of w1w2 · · ·wn =H α. Here, α is
from the central subgroup K ≤ H and wi ∈ Li, where Li ⊆ Σ∗ (Σ is a finite
generating set of G) is a regular (λ, ε)-quasigeodesic language (see Section 2.4).
With this theorem, we can prove Theorem 4.8, which states that central extensions
for hyperbolic groups are knapsack-semilinear.

In the second part of this chapter, we consider quasiconvex subgroups and
we will prove a few transfer results. We show that an HNN-extension

H = 〈G, t | t−1at = a (a ∈ A)〉

is knapsack-semilinear, if G is hyperbolic and A ≤ G is a quasiconvex subgroup
of G (Theorem 4.10). Theorem 4.9 is a generalization of this theorem, where we
obtain a similar statement for the case where G is already a central extension of
a hyperbolic group. A special case is where G is a finitely generated free group,
since all finitely generated subgroups are quasiconvex.

9.2 Useful lemmas for hyperbolic groups

A word w ∈ Σ∗ is shortlex reduced if it is the length-lexicographically smallest
word that represents the same group element as w. For this, we have to fix an
arbitrary linear order on Σ. Note that if u = xy is shortlex reduced then x and

77
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P1

P2

Figure 9.1: Paths that asynchronously K-fellow travel

y are shortlex reduced too. For a word u ∈ Σ∗ we denote with slex(u) the unique
shortlex reduced word that represents the same group element as u.

For the rest of the section let G be a δ-hyperbolic group and Σ a symmetric
generating set for G.

Lemma 9.1 (c.f. [34, 8.21]). Let g ∈ G be of infinite order and let n ≥ 0. Let
u be a geodesic word representing g. Then the word un is (λ, ε)-quasigeodesic,
where λ = N |g|, ε = 2N2|g|2 + 2N |g| and N = |B2δ(1)|.

Consider two paths P1 : [0, n1] → Γ, P2 : [0, n2] → Γ and let K be a
positive real number. We say that P1 and P2 asynchronously K-fellow travel
if there exist two continuous non-decreasing mappings ϕ1 : [0, 1]→ [0, n1] and
ϕ2 : [0, 1] → [0, n2] such that ϕ1(0) = ϕ2(0) = 0, ϕ1(1) = n1, ϕ2(1) = n2 and
for all 0 ≤ t ≤ 1, dΓ(P1(ϕ1(t)), P2(ϕ2(t))) ≤ K. Intuitively, this means that one
can travel along the paths P1 and P2 asynchronously with variable speeds such
that at any time instant the current points have distance at most K. By slightly
increasing K one obtains a ladder graph of the form shown in Figure 9.1, where
the edges connecting the horizontal P1- and P2-labelled paths represent paths of
length at most K that connect elements from G.

Lemma 9.2 (c.f. [73]). Let P1 and P2 be (λ, ε)-quasigeodesic paths in ΓG and
assume that Pi starts in gi and ends in hi. Assume that dΓ(g1, g2), dΓ(h1, h2) ≤ h.
Then there exists a computable bound µ = µ(δ, λ, ε, h) ≥ h such that P1 and P2

asynchronously µ-fellow travel.

Finally, we make use of the following two results from [29].

Lemma 9.3 (c.f. [29, Lemma 3.1]). Let ζ = 34δ+2 and assume that u = u1u2 is
shortlex reduced, where |u1| ≤ |u2| ≤ |u1|+ 1. Let ũ = slex(u2u1). If |ũ| ≥ 2ζ + 1

then for every n ≥ 0, the word ũn is ζ-local (1, 2δ)-quasigeodesic.

The following lemma is not stated explicitly in [29] but is shown in
[29, Section 3.2] (where the main argument is attributed to Delzant).

Lemma 9.4 (c.f. [29]). Let ζ = 34δ + 2 and assume that u is geodesic such that
|u| ≥ 2ζ + 1 and for every n ≥ 0, the word un is ζ-local (1, 2δ)-quasigeodesic.
Then one can compute c ∈ B4δ(1) and an integer 1 ≤ m ≤ |B4δ(1)|2 such that
(slex(c−1umc))n is geodesic for all n ≥ 0.
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9.3 Asynchronous biautomatic structures

Let G be a f.g. group with the finite symmetric generating set Σ and let
h : Σ∗ → G be the evaluation morphism. An asynchronous biautomatic structure
for G consists of a regular language L ⊆ Σ∗ such that the following holds; see
also [28, 77]:

˛ G = h(L),
˛ the relation {(u, v) ∈ L× L | u =G v} is rational, and
˛ for every generator a ∈ Σ the relations

{(u, v) ∈ L× L | ua =G v} and {(u, v) ∈ L× L | au =G v}

are rational.

If in the last point it is only required that the relation {(u, v) ∈ L×L | ua =G v}
is rational, then L is called an asynchronous automatic structure for G. A
f.g. group G is called asynchronously (bi)automatic if it has an asynchronous
(bi)automatic structure. We need the following lemma.

Lemma 9.5. Let L be an asynchronous biautomatic structure for G, let L1 and
L2 be regular subsets of L and let v1, v2 ∈ Σ∗. Then the relation

{(u1, u2) ∈ L1 × L2 | v1u1 =G u2v2}

is rational. Moreover, a finite state transducer for this relation can be effectively
computed from the words v1, v2 and finite automata for L1 and L2.

Proof. It suffices to show that the relation

R := {(u1, u2) ∈ L× L | v1u1 =G u2v2}

is rational. The corresponding finite state transducer can in addition simulate
the automaton for L1 (resp., L2) on the first (resp., second) tape. Rationality of
the relation R can be shown by induction on |v1|+ |v2|. The case v1 = v2 = 1 is
clear. Assume w.l.o.g. that v1 6= 1 and let v1 = v′1a with a ∈ Σ. By induction,
the relation R1 = {(u′1, u2) ∈ L× L | v′1u′1 =G u2v2} is rational. Moreover, the
relation R2 = {(u1, u

′
1) ∈ L × L | au1 =G u′1} is rational as well. Finally, we

have R = R2 ◦R1, where ◦ is relational composition. The lemma follows since
the class of rational relations is closed under relational composition [84].

We also need the following result from [47]:

Lemma 9.6. Let G be a hyperbolic group and let Σ be a finite symmetric
generating set for G. Let λ and ε be fixed constants. Then the set of all (λ, ε)-
quasigeodesic words over the alphabet Σ is an asynchronous biautomatic structure
for G.

In [47] it is only stated that the set of all (λ, ε)-quasigeodesic words is an
asynchronous automatic structure for G. But since for every (λ, ε)-quasigeodesic
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Figure 9.2: The situation from Lemma 9.8.

word w ∈ Σ∗ also w−1 is (λ, ε)-quasigeodesic, it follows easily that the set of all
(λ, ε)-quasigeodesic words is an asynchronous biautomatic structure for G. With
Lemma 9.5 we obtain the following lemma.

Lemma 9.7. Let G be a hyperbolic group with the finite symmetric generating
set Σ and let λ and ε be fixed constants. Assume that L1, L2 ⊆ Σ∗ are (λ, ε)-
quasigeodesic regular languages and v1, v2 ∈ Σ∗. Then the relation

{(u1, u2) ∈ L1 × L2 | v1u1 =G u2v2}

is rational. Moreover, a finite state transducer for this relation can be effectively
computed from the words v1, v2 and finite automata for L1 and L2.

In the following let G be a δ-hyperbolic group with the finite symmetric
generating set Σ. Let H be a central extension of G with G = H/K and
K ≤ Z(H). Since hyperbolic groups are finitely presented, Lemma 2.7 implies
that K is finitely generated; let A be a finite generating set for K. Let π : H → G

be the projection morphism. We can identify every a ∈ Σ with an element from
the preimage π−1(a) ⊆ H with the constraint that a−1a = 1 should also hold
in H. Then Γ = Σ ∪ A generates H. As before, we write K additively. Let
|Σ| = s and |A| = k. Elements of K will be written as k-tuples of integers. When
we speak of a geodesic (or (ζ-local ) (λ, ε)-quasigeodesic word) w ∈ Σ∗, this is
always understood in the hyperbolic group G. Note that such a word w, when
viewed as a word over Γ ⊇ Σ is not necessarily geodesic in the group H.

For the following statements we fix two constants λ ≥ 1 and ε ≥ 0.

Lemma 9.8. Assume that L1, L2 ⊆ Σ∗ are (λ, ε)-quasigeodesic regular languages
and v1, v2 ∈ Σ∗. Then the function

f : {(w1, w2) ∈ L1 × L2 | v1w1 =G w2v2} → K

with v1w1 =H w2v2 · f(w1, w2) can be computed by a finite state transducer with
K-output.

Proof. We apply Lemma 9.2 to G. Let h = max{|v1|, |v2|} and let µ =

µ(δ, λ, ε, h) ≥ h be the bound from Lemma 9.2. There is a van Kampen diagram
as shown in Figure 9.2. The set of states of our transducer T consists of the set
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Σ≤µ of all words of length at most µ. The initial (resp., final) state of T is v1

(resp., v2). To define the transitions of T and their outputs, we consider two
states u, v ∈ Σ≤µ and let a ∈ Σ such that ua =G v and ua =H v ·α. Then we set

fT (u, a, 1, v) = {α}. (9.1)

Similarly, if u =G av and u =H av · α we set

fT (u, 1, a, v) = {α}. (9.2)

In Figure 9.2 every αi within a triangle is the element of K that is equivalent
to the word obtained by running clockwise around the border of the triangle
(starting at the bottom-left corner). This word (which is uav−1 in transition (9.1)
and uv−1a−1 in transition (9.2)) evaluates to the identity in G and therefore
evaluates to an element of K in the H. The elements αi in Figure 9.2 sum up
to v1w1v

−1
2 w−1

2 ∈ K.

9.4 Parikh images in central extensions of hyper-
bolic groups

We fix an arbitrary enumeration a1, . . . , as of the generating set Σ of the hy-
perbolic group G in order to make Parikh images well-defined. Recall that the
semilinear sets are exactly the Parikh images of regular languages (or equiva-
lently, the sets accepted by finite automata with transitions labelled by elements
from Nk); see Theorem 3.3. Together with Lemma 9.8 we obtain the next result.

Lemma 9.9. Assume that L1, L2 ⊆ Σ∗ are (λ, ε)-quasigeodesic regular languages
and v1, v2 ∈ Σ∗. Then the set

{(P (u1), P (u2), α) ∈ N2s ×K | u1 ∈ L1, u2 ∈ L2, v1u1 =H u2v2 · α} (9.3)

is semilinear. Moreover, a semilinear representation for this set can be effectively
computed from the words v1, v2 and finite automata for L1 and L2.

Proof. By Lemma 9.8 one can construct a finite state transducer T with
K-output such that for all (u1, u2) ∈ L1 × L2 with v1u1 =G u2v2 we have
v1u1 =H u2v2 · f(u1, u2).

From T we obtain a finite automaton A, whose transitions are labelled
with elements from N2s ×K as follows: Assume that δT (p, u, v, q) = α where
u, v ∈ Σ ∪ {1} and p, q are states of T . We add in A a transition from p to q
with label (P (u), P (v), α) ∈ N2s ×K. The initial (resp., final) state of A is the
same as for T . Hence, the lemma follows from Theorem 3.3.

We now come to our main technical result:
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Theorem 9.10. For 1 ≤ i ≤ n let Li ⊆ Σ∗ be a regular (λ, ε)-quasigeodesic
language. Then the set

{(P (w1), . . . , P (wn), α) ∈ Nns ×K | wi ∈ Li for 1 ≤ i ≤ n,w1w2 · · ·wn =H α ∈ K}

is semilinear and a semilinear representation of this set can be computed from
finite automata for L1, . . . , Ln.

We postpone the proof of Theorem 9.10 and first derive some corollaries on
knapsack problems.

9.5 Knapsack for central extensions of hyperbolic
groups

Theorem 9.11. Let S ⊆ Σ∗ be a regular geodesic set and T ⊆ K be a semilinear
subset of K. Then H is knapsack-semilinear relative to h(S) · T ⊆ H, where
h : Σ∗ → H is the evaluation morphism.

The first step for the proof of Theorem 9.11 will be a preprocessing step whose
effect is stated in Proposition 9.12 below. We will use the following notations.

Consider a knapsack expression

e = (v0 · β0)(u1 · α1)x1(v1 · β1)(u2 · α2)x2(v2 · β2) · · · (uk · αk)xk(vk · βk)

over H (v0, u1, v1 . . . , uk, vk ∈ Σ∗ and α1, β1, . . . , αk, βk ∈ K). We can rewrite
it as

v0u
x1
1 v1u

x2
2 v2 · · ·uxkk vk · (x1α1 + x2α2 + · · ·+ xkαk + β).

with β = β0 + · · ·+ βk. We call v0u
x1
1 v1u

x2
2 v2 · · ·uxkk vk (a knapsack expression

over G) the G-part of e, and (x1α1 + x2α2 + · · ·+ xkαk + β) the K-part of e.
Note that we write the K-part additively. We say that the G-part of e is
(λ, ε)-quasigeodesic if all words v0, u1, v1, . . . , uk, vk are geodesics in G and for
all 1 ≤ i ≤ k and all n ≥ 0 the word uni is (λ, ε)-quasigeodesic in G. We say that
the G-part of e has infinite order, if all ui represent group elements of infinite
order in G.

Recall that for a set of variables X and functions f, h : X → N we write f ·h for
the pointwise multiplication of the functions f and h, i.e., (f · h)(x) = f(x)h(x).

Proposition 9.12. There exist fixed constants λ, ε such that from a given
knapsack expression e over H one can compute a finite list of knapsack expressions
e1, . . . , en over H with Xei = Xe and functions h1, d1, . . . , hn, dn : Xe → N such
that

solH(e) =
⋃

1≤i≤n

hi · solH(ei) + di

Moreover, the G-part of every ei is a (λ, ε)-quasigeodesic knapsack expression of
infinite order.
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Proof. We fix the following constants (see Lemma 9.3 and 9.4 for ζ and Lemma 9.1
for N , λ, and ε):

˛ ζ = 34δ + 2,

˛ N = |B2δ(1)|,
˛ λ = N(2ζ + 1), and

˛ ε = 2N2(2ζ + 1)2 + 2N(2ζ + 1).

Consider a knapsack expression

e = v0u
x1
1 v1u

x2
2 v2 · · ·uxkk vk · (x1α1 + x2α2 + · · ·+ xkαk + β) (9.4)

over H. Let ũi = slex(ui). Then there exists γi ∈ K with ui = u′i · γi. Hence, we
can replace every uxii by ũxii ·(xiγi). The term xiγi can be moved into the K-part
of e. In the following, we assume that the expression e from (9.4) has already the
property that every ui and (by the same reasoning) every vi is shortlex reduced.
Let gi ∈ G be the group element represented by the word ui.

Step 1. In this first step we show how to reduce to the case where all gi have
infinite order in G. In a hyperbolic group G the order of torsion elements is
bounded by a fixed constant that only depends on G, see also the proof of
[74, Theorem 6.7]. This allows to check for each gi whether it has finite order,
and to compute the order in the positive case. Let Y ⊆ {x1, . . . , xk} be those
variables xi such that gi has finite order. For xi ∈ Y let oi < ∞ be the order
of gi. Moreover, let γi ∈ K such that uoii = γi in H.

Let F be the set of mappings f : Y → N such that 0 ≤ f(xi) < oi for all
xi ∈ Y . Consider a concrete mapping f ∈ F . For this f , we only want to
consider those ν ∈ solH(e) such that ν(xi) ≡ f(xi) mod oi for every xi ∈ Y . We
therefore replace every uxii (xi ∈ Y ) by

u
oixi+f(xi)
i = u

f(xi)
i · xiγi.

The term xiγi can be merged with the K-part of the expression and the word
u
f(xi)
i can be merged with the word vi. In this way we obtain for every mapping
f ∈ F a knapsack expression ef over H such that for every power uxii that
appears in the G-part of ef , the word ui represents an element of infinite order
in G.

Finally, we extend every mapping f ∈ F to all variables xi by setting
f(xi) = 0 for xi /∈ Y . In addition, define the mapping f0 : {x1, . . . , xk} → N by
f0(xi) = oi for xi ∈ Y and f0(xi) = 1 for xi /∈ Y . With this, we can write the
set solH(e) as

solH(e) =
⋃
f∈F

f0 · solH(ef ) + f. (9.5)

Step 2. We now consider one of the knapsack expression ef from Step 1. Let us
write this expression as

ef = v0u
y1
1 v1u

y2
2 v2 · · ·uyll vl · (x1α1 + x2α2 + · · ·+ xkαk + β),
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where {y1, . . . yl} ⊆ {x1, . . . xk}. For every 1 ≤ i ≤ l, the group element gi
represented by ui has infinite order in G. We factorize ui uniquely as ui = ui,1ui,2
where |ui,1| ≤ |ui,2| ≤ |ui,1|+ 1, and let ũi = slex(ui,2ui,1). Note that |ũi| ≤ |ui|.
Let βi ∈ K such that ui,2ui,1 = ũi · βi in K and let g̃i ∈ G be the element of G
represented by ũi. Since g̃i is conjugated to gi in G, also g̃i has infinite order
in G. By Lemma 9.1, for every n ≥ 0, the word ũni is (λi, εi)-quasigeodesic in G
for λi = N |ũi|, εi = 2N2|ũi|2 + 2N |ũi|. Note that for every n ≥ 0 we have in H :

uni = (ui,1ui,2)n = ui,1(ui,2ui,1)nu−1
i,1 = ui,1(ũi · βi)nu−1

i,1 = ui,1ũ
n
i u
−1
i,1 · nβi.

We can therefore replace uyii by ui,1ũ
yi
i u
−1
i,1 · yiβi, merge yiβi with the K-part

of ef and merge ui,1 and u−1
i,1 with the neighboring vi−1 and vi. Let e′f be the

resulting knapsack expression. We have solH(ef ) = solH(e′f ).
For variables yi with |ũi| < 2ζ + 1, it follows that ũni is (λ, ε)-quasigeodesic

for the constants λ and ε defined at the beginning of the proof and we are done
with the variable yi.

Now assume that |ũi| ≥ 2ζ + 1. By Lemma 9.3, ũni is ζ-local (1, 2δ)-
quasigeodesic for every n ≥ 0. By Lemma 9.4, one can compute ci ∈ B4δ(1) and
an integer 1 ≤ mi ≤ |B4δ(1)|2 such that (slex(c−1

i ũmii ci))
n is geodesic (and hence

(1, 0)-quasigeodesic) for all n ≥ 0. Let γi ∈ K such that

c−1
i ũmii ci =H slex(c−1

i ũmii ci) · γi.

Note that for every n ≥ 0 we obtain

ci(slex(c
−1
i ũmii ci))

nc−1
i · nγi =H ci(slex(c

−1
i ũmii ci) · γi)nc−1

i

=H ci(c
−1
i ũmii ci)

nc−1
i =H ũmini .

To make the description of the resulting knapsack expression more uniform we
set mi = 1, ci = 1, and γi = 0 in case |ũi| < 2ζ + 1. Let H be the set of all
such mappings h : {y1, . . . , yl} → N with 0 ≤ h(yi) ≤ mi − 1 for all i. For
every such h we then produce the knapsack expression e′f,h that is obtained from
e′f by replacing every power ũyii by ũh(yi)

i ci(slex(c
−1
i ũmii ci))

yic−1
i · yiγi (in case

|ũi| < 2ζ + 1 this replacement has no effect). Let h0 : {y1, . . . , yl} → N be the
mapping with h0(yi) = mi. From the above discussion, we obtain

solH(ef ) = solH(e′f ) =
⋃
h∈H

(h0 · solH(e′f,h) + h).

Finally, with (9.5) we obtain

solH(e) =
⋃
f∈F

⋃
h∈H

(f0 · g0 · solH(e′f,h) + f0 · h+ f),

which concludes the preprocessing.
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Proof of Theorem 9.11. Let e be a knapsack expression over the generating set
Σ∪A of H . Let X = Xe. We want to find a semilinear representation for the set

{ν : X → N | ∃w ∈ S ∃α ∈ T : ν(e) =H w · α} =
⋃

w∈S,α∈T
solH(ew−1 · (−α)).

(9.6)
Consider a knapsack expression e. By Proposition 9.12 one can compute a finite
list of knapsack expressions e1, . . . , en over H and functions hi, di : X → N such
that

solH(e) =
⋃

1≤i≤n

(hi · solH(ei) + di). (9.7)

Moreover, every knapsack expression ei has the property that for every power
ux that appears in the G-part of ei, the language u∗ is (λ, ε)-quasigeodesic for
some fixed constants λ, ε that only depends on the group G.

Consider now for arbitrary w ∈ S and α ∈ T the knapsack expression
ew−1 · (−α). From the construction in the proof of Proposition 9.12 it follows
that

solH(ew−1 · (−α)) =
⋃

1≤i≤n

(hi · solH(eiw
−1 · (−α)) + di). (9.8)

The reason is that in the proof of Proposition 9.12 , every ei is computed from e

by replacing the powers ux that appear in the G-part of e by small expressions
(involving only the exponent variable x). The same replacements are also made
for ew−1 · (−α), i.e., the replacements in e do not depend on the concrete choice
of w ∈ S and α ∈ T . Therefore, the set in (9.6) is equal to⋃
w∈S,α∈T

solH(ew−1 · (−α)) =
⋃

w∈S,α∈T

⋃
1≤i≤n

(hi · solH(eiw
−1 · (−α)) + di)

=
⋃

1≤i≤n

hi ·
 ⋃
w∈S,α∈T

solH(eiw
−1 · (−α))

+ di

.
The closure properties of semilinear sets imply that the set (9.6) is semilinear
provided the set⋃
w∈S,α∈T

solH(eiw
−1 · (−α)) = {ν : X → N | ∃w ∈ S, α ∈ T : ν(ei) =H w · α}

is semilinear for all 1 ≤ i ≤ n.
This shows that it suffices to find a semilinear representation of (9.6) for a

knapsack expression

e = v0u
x1
1 v1u

x2
2 v2 · · ·uxnn vn · (x1α1 + x2α2 + · · ·+ xnαn + β),

where all ui ∈ Σ∗ have the property that u∗i is a regular (λ, ε)-quasigeodesic
language. Clearly, we can also assume that every ui is non-empty and every vi
is geodesic. Moreover, since S ⊆ Σ∗ is regular and geodesic, it is easy to see that
also S−1 is regular and geodesic.
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Let (L1, . . . , Lm) be the tuple of languages ({v0}, u∗1, {v1}, . . . , u∗n, {vn}, S−1)

(with m = 2(n + 1)). All these languages are regular and (λ, ε)-quasigeodesic
subsets of Σ∗. By Theorem 9.10, the set

{(P (w1), . . . , P (wm), γ) ∈ Nms ×K | wi ∈ Li for 1 ≤ i ≤ m,w1 · · ·wm =H γ}

is semilinear and a semilinear representation of this set can be computed. Ap-
plying a projection yields a semilinear representation of the set

{(P (w1), . . . , P (wn), γ) ∈ Nns ×K | wi ∈ u∗i for 1 ≤ i ≤ n,
∃w ∈ S : v0w1v1 · · ·wnvn =H w · γ}.

Choose for every ui a symbol aji ∈ Σ such that `i := |ui|aji > 0 (recall that
ui 6= 1). Then we project every P (wi) in the above set to the ji-th coordinate.
The resulting projection is

{(`1 · x1, . . . , `n · xn, γ) ∈ Nn ×K | ∃w ∈ S : v0u
x1
1 v1 · · ·uxnn vn =H w · γ}.

The semilinearity of this set easily implies the semilinearity of the set

{(x1, . . . , xn, γ) ∈ Nn ×K | ∃w ∈ S : v0u
x1
1 v1 · · ·uxnn vn =H w · γ}.

We finally intersect this set with the set

{(x1, . . . , xn, γ) ∈ Nn ×K | ∃α ∈ T : γ = α− (x1α1 + x2α2 + · · ·+ xnαn + β)}

and project onto Nn. This yields a semilinear representation of the set

{(x1, . . . , xn) ∈ Nn | ∃w ∈ S ∃α ∈ T :

v0u
x1
1 v1 · · ·uxnn vn · (x1α1 + x2α2 + · · ·+ xnαn + β) =H w · α}.

This concludes the proof.

With S = {1} and T = {0}, Theorem 9.11 yields Theorem 4.8:

Theorem 4.8. A central extension of a hyperbolic group is knapsack-semilinear.

9.6 Quasiconvex subgroups of hyperbolic groups

In this section we want to consider some applications and show that hyperbolic
groups are knapsack-semilinear relative to quasiconvex subgroups. Also a similar
statement holds for central extensions of hyperbolic groups. We then conclude
Theorems 4.9 and 4.10.

Theorem 9.13. Let H be a central extension of the hyperbolic group G and let
π : H → G be the canonical projection. Let Q ≤ G be a quasiconvex subgroup
of G. Then H is knapsack-semilinear relative to π−1(Q).
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Proof. Fix a finite symmetric generating set Σ for G and let h : Σ∗ → G be the
evaluation morphism. By Lemma 2.6 the set of all geodesic words in h−1(Q) is a
geodesic regular language S. As before, we identify Σ with a subset of H . Let K
be the central subgroup H such that G = H/K. Then, the set S ·K represents
the preimage π−1(Q). By Theorem 9.11, H is knapsack-semilinear relative to
π−1(Q).

By setting K to the trivial group, we obtain the following special case:

Theorem 9.14. Let G be hyperbolic and let A be a quasiconvex subgroup of G.
Then G is knapsack-semilinear relative to A.

It is known that every finitely generated free group F is locally quasiconvex,
which means that every finitely generated subgroup of F is quasiconvex.

Corollary 9.15. Let G be a finitely generated free group and let A be a finitely
generated subgroup of G. Then G is knapsack-semilinear relative to A.

This corollary can actually be generalized. Schupp proved that a group G,
which is virtually an orientable surface group of genus at least two or virtually a
Coxeter group satisfying a certain reduction hypothesis, is locally quasiconvex
[82, Theorem IV]. Since these groups are hyperbolic, it follows that the groups
considered by Schupp are knapsack-semilinear relative to any finitely generated
subgroup.

Finally, Theorems 4.6, 4.8 and 9.13 yield Theorem 4.9:

Theorem 4.9. Let H be a central extension of the hyperbolic group G and let
π : H → G be the canonical projection. Let Q ≤ G be a quasiconvex subgroup
of G. Then the HNN-extension 〈H, t | t−1at = a (a ∈ π−1(Q))〉 is knapsack-
semilinear.

Furthermore, this theorem together with K = 1 implies

Theorem 4.10 ([F4]). Let G be hyperbolic and A ≤ G be a quasiconvex subgroup
of G. Then the HNN-extension 〈G, t | t−1at = a (a ∈ A)〉 is knapsack-semilinear.

It is known that every cyclic subgroup of a hyperbolic group is quasiconvex,
see e.g. [3]. Hence, for every element a ∈ G of a hyperbolic group G, the
HNN-extension 〈G, t | t−1at = a〉 is knapsack-semilinear. It is also known that
if the hyperbolic group G is non-elementary (i.e., it contains a copy of the free
group F2) then the centralizer of an element g ∈ G is cyclic [3, Lemma 2]. Hence,
we obtain Theorem 4.7 for the case of a centralizer of a single element in a
non-elementary hyperbolic group.

9.7 Proof of Theorem 9.10

We now come to the proof of Theorem 9.10. Let G be δ-hyperbolic. For 1 ≤ i ≤ n
let Li ⊆ Σ∗ be a regular (λ, ε)-quasigeodesic language. Let Ai = (Qi, Si, δi, Ti)
be a finite automaton for Li. Without loss of generality, we can assume that
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every q ∈ Qi belongs to a path from some initial state q0 ∈ Si to some final
state q1 ∈ Ti. This ensures that every word that labels a path from a state p
to a state q is a factor of a word from Li. Since factors of (λ, ε)-quasigeodesic
words are (λ, ε)-quasigeodesic as well, it follows that every word that labels a
path between two states of Ai is (λ, ε)-quasigeodesic.

We want to show that the set

{(P (w1), . . . , P (wn), α) ∈ Nns ×K | wi ∈ Li for 1 ≤ i ≤ n,w1w2 · · ·wn =H α}

is semilinear. For this, we prove a slightly more general statement: For words
v1, . . . , vn ∈ Σ∗ we consider the set

{(P (w1), . . . , P (wn), α) ∈ Nns ×K | wi ∈ Li for 1 ≤ i ≤ n,w1v1 · · ·wnvn =H α}.

By induction over n we show that this set is semilinear. For the case n = 2 we
can directly use Lemma 9.9. This also covers the case n = 1 since we can take
L2 = {1}.

Now assume that n ≥ 3. We can assume that the words vi are geodesic.
Define the automaton A as the disjoint union of the automata Ai. Thus, the
state set of A is Q =

⊎
1≤i≤nQi and the transition set of A is δ =

⊎
1≤i≤n δi

(the sets of initial and final states of A are not important). Let us denote for
p, q ∈ Q with Lp,q the set of all finite words that label a path from p to q

in the automaton A. The above properties of the automata Ai ensure that
every language Lp,q ⊆ Σ∗ is (λ, ε)-quasigeodesic. Note that Li =

⋃
p∈Si,q∈Ti Lp,q.

Since the semilinear sets are effectively closed under union, it suffices to show
for states pi, qi ∈ Q (1 ≤ i ≤ n) that the following set is semilinear:

{(P (w1), . . . , P (wn), α) ∈ Nns | wi ∈ Lpi,qi for 1 ≤ i ≤ n,w1v1 · · ·wnvn =H α}.

In the following, we denote this set with P (p1, q1, v1, . . . , pn, qn, vn). We will
construct a Presburger formula with free variables xi,j (1 ≤ i ≤ n, 1 ≤ j ≤ s)
and χ̄ for this set. The variables xi,j with 1 ≤ j ≤ k encode the Parikh image
of the words from Lpi,qi and the tuple of variables χ̄ represents an element of
the finitely generated abelian group K. Let us write x̄i = (xi,j)1≤j≤k in the
following.

Note that w1v1 · · ·wnvn =H α implies w1v1 · · ·wnvn =G 1. Recall from
Section 2.4.5 the definition of the path P [w] in the Cayley-graph Γ(G)

for a word w ∈ Σ∗. Consider a tuple (w1, . . . , wn) ∈
∏n
i=1 Lpi,qi with

w1v1w2v2 · · ·wnvn =G 1 and the corresponding 2n-gon in Γ(G) that is defined by
the (λ, ε)-quasigeodesic paths Pi = (w1v1 · · ·wi−1vi−1) · P [wi] and the geodesic
paths Qi = (w1v1 · · ·wi) · P [vi], see Figure 9.3 for the case n = 3. Since all
paths Pi and Qi are (λ, ε)-quasigeodesic, we can apply [74, Lemma 6.4]: Every
side of the 2n-gon is contained in the κ-neighborhoods of the other sides, where
κ = ξ + ξ log(2n) for a constant ξ that only depends on the constants δ, λ, ε.

Let us now consider the side P2 of the quasigeodesic 2n-gon. It is labelled
with a word from Lp2,q2 . Its neighboring sides are Q1 and Q2, which are labelled
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Lp2,q2v1

Lp1,q1

v3

Lp3,q3

v2

α

Figure 9.3: The 2n-gon for n = 3 from the proof of Theorem 9.10

with v1 and v2, respectively. We distinguish several cases. In each case we cut the
2n-gon into smaller pieces (m-gons for some m ≤ 2n) along paths of length ≤ κ
(length 2κ+ 1 in Case 2). When we speak of a point on the 2n-gon, we mean
a node of the Cayley graph (i.e., an element of the group G) and not a point
in the interior of an edge. Let us emphasize that the cutting process is done in
the Cayley-graph of the hyperbolic group G and not the central extension H.
But every m-gon in G is a closed loop in the Cayley-graph Γ(G) and therefore
yields in the central extension H a unique element from the central subgroup K.
When we cut our 2n-gon into smaller m-gons, the K-values of these m-gons have
to added in order to yield the K-value of the initial 2n-gon.

For each of the following six cases we construct a Presburger formula describ-
ing a semilinear set. The union of these six sets is P (p1, q1, v1, . . . , pn, qn, vn).

Case 1: There is a point a ∈ P2 that has distance at most κ from a point b that
does not belong to P1 ∪Q1 ∪Q2 ∪ P3. Thus b must belong to one of the paths
Q3, P4, . . . , Qn−1, Pn, Qn. Let w be a geodesic word of length at most κ that
labels a path from a to b. There are two subcases:

Case 1.1: b belongs to a path Qi with 3 ≤ i ≤ n. The situation is shown in
Figure 9.4 for n = i = 3. Let T be the set of all tuples (r, vi,1, vi,2, w) such
that r ∈ Q, vi = vi,1vi,2, and w ∈ Σ∗ is of length at most κ. By induction, the
following two sets are semilinear for every tuple t = (r, vi,1, vi,2, w) ∈ T :

St,1 = P (p1, q1, v1, p2, r, wvi,2, pi+1, qi+1, vi+1, . . . , pn, qn, vn),

St,2 = P (r, q2, v2, p3, q3, v3, . . . , pi, qi, vi,1w
−1).

Intuitively, St,1 corresponds to the 2j1-gon (when wvi,2 is viewed as a single
side) on the left of the w-labelled edge in Figure 9.4, whereas St,2 corresponds
to the 2j2-gon on the right of the w-labelled edge (where j1 = n − i + 2 and
j2 = i− 1). Note that j1, j2 ≤ n− 1. We then define the formula
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Lr,q2Lp2,r
v1

Lp1,q1

v3,2 v3,1

Lp3,q3

v2

w

α1 α2

Figure 9.4: Case 1.1 from the proof of Theorem 9.10

A1.1 =
∨
t∈T
∃ȳ2, z̄2, χ̄1, χ̄2 : (x̄1, ȳ2, x̄i+1, . . . , x̄n, χ̄1) ∈ St,1 ∧

(z̄2, x̄3, . . . , x̄i, χ̄2) ∈ St,2 ∧
x̄2 = ȳ2 + z̄2 ∧ χ̄ = χ̄1 + χ̄2.

Here ȳ2, z̄2 are s-tuples of new variables, whereas χ̄1, χ̄2 represent elements of K.
The Presburger formula A1.1 is one of the six formulas whose union is

P (p1, q1, v1, . . . , pn, qn, vn).

Case 1.2: b belongs to the path Pi, where 4 ≤ i ≤ n (this case can only occur
if n ≥ 4). This case is analogous to Case 1.1. Let T be the set of all tuples
(r, r′, w) such that r, r′ ∈ Q and w ∈ Σ∗ is of length at most κ. By induction,
the following two sets are semilinear for every tuple t = (r, r′, w) ∈ T :

St,1 = P (p1, q1, v1, p2, r, w, r
′, qi, vi, pi+1, qi+1, vi+1, . . . , pn, qn, vn),

St,2 = P (r, q2, v2, p3, q3, v3, . . . , pi−1, qi−1, vi−1, pi, r
′, w−1).

Moreover, let A1.2 be the formula

A1.2 =
∨
t∈T
∃ȳ2, z̄2, ȳi, z̄i, χ̄1, χ̄2 : (x̄1, ȳ2, z̄i, x̄i+1, . . . , x̄n, χ̄1) ∈ St,1 ∧

(z̄2, x̄3, . . . , x̄i−1, ȳi, χ̄2) ∈ St,2 ∧
x̄2 = ȳ2 + z̄2 ∧ x̄i = ȳi + z̄i ∧ χ̄ = χ̄1 + χ̄2.

Case 2: Every point on P2 has distance at most κ from a point on P1∪Q1∪Q2∪P3.
Since the starting point of P2 has distance 0 ≤ κ from P1 ∪Q1 and the end point
of P2 has distance 0 ≤ κ from Q2 ∪P3, there must be points b1 on P1 ∪Q1, b on
P2, and b2 on Q2 ∪ P3 such that the distance between b1 and b is at most κ and
the distance between b and b2 is at most κ+ 1. Hence, the distance between b1
and b2 is at most 2κ+ 1. Let w be a word that labels a geodesic path from b1 to
b2 (thus, |w| = ||w|| ≤ 2κ+ 1). This leads to the following four subcases.

Case 2.1: b1 ∈ Q1 and b2 ∈ Q2. This case is shown in Figure 9.5. Let T be the
set of all tuples (v1,1, v1,2, w, v2,1, v2,2) such that v1 = v1,1v1,2, v2 = v2,1v2,2 and
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Lp2,q2
v1,2

v1,1

Lp1,q1

v3

Lp3,q3

v2,2

v2,1

w

α1

α2

Figure 9.5: Case 2.1 from the proof of Theorem 9.10

Lp2,q2v1

Lr,q1

Lp1,r

v3

Lp3,q3

v2,2

v2,1

w
α1

α2

Figure 9.6: Case 2.2 from the proof of Theorem 9.10

w ∈ Σ∗ is of length at most 2κ + 1. By induction, the following two sets are
semilinear for every tuple t = (v1,1, v1,2, w, v2,1, v2,2) ∈ T :

St,1 = P (p2, q2, v2,1w
−1v1,2),

St,2 = P (p1, q1, v1,1wv2,2, p3, q3, v3, . . . , pn, qn, vn).

We define the formula

A2.1 =
∨
t∈T
∃χ̄1, χ̄2 : (x̄2, χ̄1) ∈ St,1 ∧ (x̄1, x̄3 . . . , x̄n, χ̄2) ∈ St,2 ∧ χ̄ = χ̄1 + χ̄2.

Case 2.2: b1 ∈ P1 and b2 ∈ Q2, see Figure 9.6. This case is exactly the same as
Case 1.1 with i = 3, if we replace the side P2 in Case 1.1 by P1; see Figure 9.4.

Case 2.3: b1 ∈ Q1 and b2 ∈ P3. This case is analogous to Case 2.2.

Case 2.4: b1 ∈ P1 and b2 ∈ P3, see Figure 9.7. Let T be the set of all tuples
(w1, w2, w, r1, r2, r3) such that ||w|| ≤ 2κ+1, ||w1|| ≤ κ, ||w2|| ≤ κ+1, w = w−1

1 w2

in G, and r1, r2, r3 ∈ Q. By induction, the following three sets are semilinear for
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Lr2,q2Lp2,r2
v1

Lr1,q1

Lp1,r1

v3

Lr3,q3

Lp3,r3

v2

w1 w2

w

α1 α2

α3

β

Figure 9.7: Case 2.4 from the proof of Theorem 9.10, where β = β(w,w1, w2).

every tuple t = (w1, w2, w, r1, r2, r3) ∈ T :

St,1 = P (r1, q1, v1, p2, r2, w1),

St,2 = P (r2, q2, v2, p3, r3, w
−1
2 ),

St,3 = P (p1, r1, w, r3, q3, v3, p4, q4, v4, . . . , pn, qn, vn).

For w,w1, w2 as above let β(w,w1, w2) ∈ K the unique element such that
w−1w−1

1 w2 =H β(w,w1, w2). We define the formula

A2.4 =
∧
t∈T
∃ȳ1, z̄1, ȳ2, z̄2, ȳ3, z̄3, χ̄1, χ̄2, χ̄3 : (z̄1, ȳ2, χ̄1) ∈ St,1 ∧

(z̄2, ȳ3, χ̄2) ∈ St,2 ∧
(ȳ1, z̄3, x̄4, . . . , x̄n, χ̄3) ∈ St,3 ∧

3∧
i=1

x̄i = ȳi + z̄i ∧

χ̄ = χ̄1 + χ̄2 + χ̄3 + β(w,w1, w2).

This concludes the case distinction.
A tuple (x̄1, . . . , x̄n, χ̄) ∈ Nns × K belongs to the set

P (p1, q1, v1, . . . , pn, qn, vn) if and only if A1.1 ∨ A1.2 ∨ A2.1 ∨ A2.2 ∨ A2.3 ∨ A2.4

holds. This yields a Presburger formula for P (p1, q1, v1, . . . , pn, qn, vn).

9.8 Generalized cases and open problems

9.8.1 Undecidability for central extensions of abelian
groups

Central extensions of abelian groups are the same as 2-step nilpotent groups.
Since there exists a finitely generated 2-step nilpotent group H with an undecid-
able knapsack problem, it follows that knapsack for central extensions of finitely
generated abelian groups is in general undecidable.
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9.8.2 Malnormality and its role for knapsack-semilinearity

There are still a lot of cases for HNN-extensions where we do not know whether
knapsack-semilinearity is preserved. After a very helpful talk with Alexei Mias-
nikov, we could come up with some very promising conjectures. Very roughly
talking, the properties of HNN-extensions of a hyperbolic group are preserved
under our conditions, because the resulting group "looks hyperbolic" in a certain
way. This means that not too many elements commute and our proofs look very
similar to the purely hyperbolic case.

Let us formalize this a bit more. In the paper of Kharlampovich and Miasnikov
[56] the property malnormality plays a key role in understanding behaviour of
HNN-extensions. For a group G, a subgroup U ≤ G is called malnormal if for all
g ∈ G\U the set U∩gUg−1 is only the identity. If U∩gUg−1 contains only finitely
many elements, we call it conjugate separated. Let A,B be subgroups of G and let
ϕ : A→ B be an isomorphism. The HNN-extension 〈G, t | t−1at = ϕ(a)(a ∈ A)〉
is called separated if (i) either A or B is conjugate separated and (ii) A ∩ gBg−1

is finite for all g ∈ G.
If G is hyperbolic and H is a separated HNN-extension, where A and B are

also quasiconvex, then H is hyperbolic. The same holds when G1 and G2 are
hyperbolic and A is a quasiconvex associated subgroup, then the amalgamated
free product G1 ∗AG2 is hyperbolic. This gives us already more cases, where the
HNN-extension preserves knapsack-semilinearity, just by preserving hyberbolism.
But it also raises the question, if we can exchange the property hyperbolic by
knapsack-semilinear.

Conjecture 9.16. If G is knapsack-semilinear and H is a separated HNN-
extension, where A and B are also quasiconvex, then H is knapsack-semilinear.

Maybe we have to use quasiisometrically embedded instead of quasiconvex in
this general case of G being knapsack-semilinear. But this is up to future work
to find this out.

We have already discussed that knapsack-semilinearity is preserved, when
we restrict the subgroups (for the HNN-extension) or the associated subgroup
(for the amalgamation) to be finite. Indeed we can see a similar pattern here:
Kharlampovich and Miasnikov have shown that hyperbolicity is also preserved
in those two cases.

9.8.3 A generalization via Stallings pregroups

Another way of generalizing our results might be investigating Stallings pregroups
(see for example [22, 85, 86]). It is well known that HNN-extensions and
amalgamated free products are only special cases of Stallings pregroups. Together
with the previously discussed property malnormality, one might come up with
some more general theory how knapsack-semilinearity is preserved. Maybe one
can even find conditions, where "if and only if" holds.
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9.8.4 Further future work

In the literature, central extensions are often defined as short exact sequences
of the form 1 → K → H → G → 1, where K ≤ Z(H). With this definition,
one can derive that we can obtain all central extensions of G by K (up to
isomorphism) with the cohomology group H2(G,K) (see e.g. [70]). Hence, by
studying homological algebra, one might be able to generalize our results to
central extensions of other knapsack-semilinear groups or even obtain bounds
for the magnitudes.

In [31] it was shown that the class of knapsack-semilinear groups is also closed
under restricted wreath products. It remains to bound the function KGoH(n,m)

in terms of the functions KG(n,m) and KH(n,m). Looking into the proof in
[31] reveals that the Presburger formula that describes the solution set for a
knapsack equation over G oH involves a quantifier alternation. One therefore
has to investigate to what extent quantifier alternations blow-up the magnitude
of semilinear sets.

More about wreath products in the next chapter.



Chapter 10

Computational hardness
results

10.1 Introduction

In the first part of this chapter, Section 10.2, we are going to prove Theorem 4.11.
For this we make use so-called uniformly strongly efficiently non-solvable groups
(uniformly SENS groups) that were recently defined in [F2]. Roughly speaking,
a group G is uniformly SENS if there exist nontrivial nested commutators of
arbitrary depth that moreover, are efficiently computable in a certain sense (see
Subsection 2.4.8 for the precise definition). The essence of these groups is that
they allow to carry out Barrington’s argument showing the NC1-hardness of the
word problem for a finite solvable group [5].

It has already been shown that for every nontrivial group G, Knapsack(GoZ)

is NP-hard [31]. So our result, showing that Knapsack(G o Z) is Σp2-hard for a
uniformly SENS group G, is an extension of this theorem. We also state several
corollaries. For instance, we show that for the famous Thompson’s group F ,
Knapsack(F ) is Σp2-hard (see Corollary 10.6).

In the second part (Section 10.3) we want to show that the question if one
exponent equation over SL3(Z) has a solution is already undecidable (Theo-
rem 4.12). The proof has not been published before. We want to recall that
the question is actually decidable for H3(Z), but undecidable for systems of
exponent equations over H3(Z) (see [58]). The latter one is shown by a reduction
of Hilbert’s 10th problem to that problem. This is exactly, what we will do now
in case of SL3(Z).

95
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10.2 Wreath products with difficult knapsack
problem

10.2.1 Periodic words over groups

Let G = 〈Σ〉 be a f.g. group. Let Gω be the set of all functions f : N → G,
which forms a group by pointwise multiplication (fg)(t) = f(t) · g(t). A function
f ∈ Gω is periodic if there exists a number d ≥ 1 such that f(t) = f(t + d)

for all t ≥ 0. The smallest such number d is called the period of f . If f ∈ Gω
has period d and g ∈ Gω has period e then fg has period at most lcm(d, e). A
periodic function f ∈ Gω with period d can be specified by its initial d elements
f(0), . . . , f(d− 1) where each element f(t) is given as a word over the generating
set Σ. The periodic words problem Periodic(G) over G is defined as follows:

Input Periodic functions f1, . . . , fm ∈ Gω and a binary encoded number T .

Question Does the product f =
∏m
i=1 fi satisfy f(t) = 1 for all t ≤ T?

10.2.2 Some useful results on knapsack-semilinearity of
wreath products

For the knapsack problem in wreath products the following result has been
shown in [31]:

Theorem 10.1 ([31]). For every nontrivial group G, Knapsack(G o Z) is NP-
hard.

Important for us is also this result from [31]:

Theorem 10.2 ([31]). If G and H are knapsack-semilinear then also G oH is
knapsack-semilinear.

The proof of this result in [31] does not yield a good bound of KGoH(n) in
terms of KG(n) and KH(n) (and similarly for the E-function). In [F3] there is
also a bound for the special case that the left factor G is f.g. abelian. For EG(n)

we then have the following bound, which follows from well-known bounds on
solutions of linear Diophantine equations [88]:

Lemma 10.3. If G is a f.g. abelian group then EG(n) ≤ 2n
O(1)

.

The following proposition is from [31] (see the proof of Proposition 7.2 in [31]).

Proposition 10.4 ([31]). Let G be a f.g. group. There is a non-deterministic
polynomial time Turing machine M that takes as input a knapsack expression e
over G o Z and outputs in each leaf of the computation tree the following data:

˛ an instance of ExpEq(G) and
˛ a finite list of instances of Periodic(G).

Moreover, the input expression e has a (G o Z)-solution if and only if there is a
leaf in the computation tree of M such that all instances that M outputs in this
leaf are positive.
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10.2.3 Applications of Theorem 4.11

Recall Theorem 4.11:

Theorem 4.11 ([F3]). Let the f.g. group G = 〈Σ〉 be uniformly SENS. Then,
Knapsack(G o Z) is Σp2-hard.

Before we prove this result we show some applications.

Corollary 10.5. For the following groups G, Knapsack(G oZ) is Σp2-complete:

˛ finite non-solvable groups,
˛ non-elementary hyperbolic groups.9

Proof. Finite non-solvable groups and f.g. non-abelian free groups are uniformly
SENS [F2]. By Theorem 4.11, Knapsack(G o Z) is Σp2-hard. It remains to show
that Knapsack(G o Z) belongs to Σp2. According to Proposition 10.4, it suffices
to show that Periodic(G) and ExpEq(G) both belong to Σp

2. The problem
Periodic(G) belongs to coNP (since the word problem for G can be solved in
polynomial time) and ExpEq(G) belongs to NP. For a finite group this is clear.
If G is hyperbolic, then one can reduce ExpEq(G) to the existential fragment
of Presburger arithmetic using [62].

Theorem 4.11 can be also applied to Thompson’s group F . This is one
of the most well studied groups in (infinite) group theory due to its unusual
properties, see e.g. [16]. It can be defined in several ways; let us just mention the
following finite presentation: F = 〈x0, x1 | [x0x

−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉.

Thompson’s group F is uniformly SENS [F2] and contains a copy of F o Z [38].
Theorem 4.11 yields

Corollary 10.6. The knapsack problem for Thompson’s group F is Σp2-hard.

We conjecture that the knapsack problem for F is in fact Σp2-complete. Since
F is co-context-free [60], Knapsack(F ) is decidable [58].

10.2.4 Proof of Theorem 4.11

We prove Theorem 4.11 in two steps. The second step works for every f.g. group G.
Fix this group G and let Σ be a standard generating set for G. Let X =

(X1, . . . , Xn) be a tuple of boolean variables. We identify X with the set
{X1, . . . , Xn} when appropriate. A G-program with variables from X is a
sequence

P = (Xi1 , a1, b1)(Xi2 , a2, b2) · · · (Xi` , a`, b`) ∈ (X × Σ× Σ)∗.

The length of P is `. For a mapping α : X → {0, 1} (called an assignment) we
define P (α) ∈ G as the group element c1c2 · · · c`, where cj = aj if Xij = 1 and
cj = bj if Xij = 0 for all 1 ≤ j ≤ `. We define the following computational
problem ∃∀-Sat(G):

9A hyperbolic group is non-elementary if it is not virtually cyclic. Every non-elementary
hyperbolic group contains a non-abelian free group.
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Input A G-program P with variables from X ∪ Y , where X and Y are disjoint.

Question Is there an assignment α : X → {0, 1} such that for every assignment
β : Y → {0, 1} we have P (α ∪ β) = 1 (we write ∃X∀Y : P = 1 for this)?

Lemma 10.7. Let the f.g. group G = 〈Σ〉 be uniformly SENS. Then, ∃∀-Sat(G)

is Σp2-hard.

Proof. We prove the lemma by a reduction from the following Σp
2-complete

problem: given a boolean formula F = F (X,Y ) in disjunctive normal form,
where X and Y are disjoint tuples of boolean variables, does the quantified
boolean formula ∃X∀Y : F hold? Let us fix such a formula F (X,Y ). We can
write F as a fan-in two boolean circuit of depth O(log |F |). By [F2, Remark 6.2]
we can compute in logspace from F a G-program P over the variables X ∪ Y of
length polynomial in |F | such that for every assignment γ : X ∪ Y → {0, 1} the
following two statements are equivalent:

˛ F (γ(X), γ(Y )) holds.
˛ P (γ) = 1 in G.

Hence, ∃X∀Y : F holds if and only if ∃X∀Y : P = 1 holds.

Lemma 10.8. For every f.g. nontrivial group G, ∃∀-Sat(G) is logspace many-
one reducible to Knapsack(G o Z).

Proof. Let us fix a G-program

P = (Z1, a1, b1)(Z2, a2, b2) · · · (Z`, a`, b`) ∈ ((X ∪ Y )× Σ× Σ)∗ (10.1)

where X and Y are disjoint sets of variables. Let m = |X| and n = |Y |. We
want to construct a knapsack expression e over G o Z which has a solution if and
only if there is an assignment α : X → {0, 1} such that P (α ∪ β) = 1 for every
assignment β : Y → {0, 1}. Let us choose a generator t for Z. Then Σ ∪ {t, t−1}
generates the wreath product G oZ. First, we compute in logspace the m+n first
primes p1, . . . , pm+n and fix a bijection p : X ∪ Y → {p1, . . . , pm+n}. Moreover,
let M =

∏m+n
i=1 pi.

Roughly speaking, the idea is as follows. Each assignment α : X → {0, 1}
will correspond to a valuation ν for our expression e. The resulting element
ν(e) ∈ G o Z then encodes the value P (α ∪ β) for each β : Y → {0, 1} in some
position s ∈ [0,M − 1]. To be precise, to each s ∈ [0,M − 1], we associate the
assignment βs : Y → {0, 1} where βs(Y ) = 1 if and only if s ≡ 0 mod p(Y ). Then,
τ(ν(e))(s) will be P (α ∪ βs). This means, ν(e) = 1 implies that P (α ∪ β) = 1

for all assignments β : Y → {0, 1}.
Our expression implements this as follows. For each i = 1, . . . , `, it walks

to the right to some position M ′ ≥ M and then walks back to the origin. On
the way to the right, the behavior depends on whether Zi is an existential or
a universal variable. If Zi is existential, we either place ai at every position (if
α(Zi) = 1) or bi at every position (if α(Zi) = 0). If Zi is universal, we place ai
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in the positions divisible by p(Zi); and we place bi in the others. That way, in
position s ∈ [0,M − 1], the accumulated element will be P (α ∪ βs).

We define I∃ = {i ∈ [1, `] | Zi ∈ X} and I∀ = {i ∈ [1, `] | Zi ∈ Y }. For
an existentially quantified variable X ∈ X let IX = {i ∈ [1, `] | X = Zi} be
the set of those positions in the G-program P , where the variable X is queried.
Moreover, let us write qi for the prime number p(Zi). We compute for every
i ∈ I∃ the words (over the wreath product G o Z)

ui = (ait)
qi and vi = (bit)

qi

and for every i ∈ I∀ the word

wi = ait(bit)
qi−1.

Let us now consider the knapsack expression

e1 =
∏̀
i=1

fit
−1(t−1)zi with fi =

{
uxii v

x′i
i if i ∈ I∃,

wyii if i ∈ I∀.

The idea is that in e1, for each i ∈ [1, `], we go to right with fi and then we go
back to the origin with t−1(t−1)zi . If Zi is existential, we use fi = uxii v

x′i
i to

either place ai at every position or bi at every position. If Zi is universal, we use
wi to place ai at positions divisible by qi = p(Zi) and bi at the others. Note that
the expression itself cannot guarantee that, e.g., (i) (t−1)zi moves exactly onto
the origin or (ii) that we either use only ui or only vi for each i ∈ I∃. Therefore,
we ensure these properties temporarily by imposing additional linear equations
(Claim 1). In a second step, we shall extend e1 to get an expression in which a
solution will automatically satisfy these linear equations (Claim 2).

Claim 1: ∃X∀Y : P = 1 holds if and only if there exists a (G o Z)-solution ν for
e1 with the following properties:

(a) qi · ν(yi) = ν(zi) + 1 for all i ∈ I∀,
(b) qi · (ν(xi) + ν(x′i)) = ν(zi) + 1 for all i ∈ I∃,
(c) ν(zi) = ν(zj) for all i, j ∈ [1, `] with i 6= j,
(d) ν(xi) = 0 or ν(x′i) = 0 for all i ∈ I∃,
(e) for all X ∈ X and all i, j ∈ IX we have: ν(xi) = 0 if and only if ν(xj) = 0.

Proof of Claim 1: Assume first that ∃X∀Y : P = 1 holds. Let α : X → {0, 1}
be an assignment such that for every assignment β : Y → {0, 1}, we have
P (α ∪ β) = 1 in G.

We have to find a (G oZ)-solution for e1 such that the above properties (a)–(d)
hold. For this, we set:

˛ ν(zi) = M − 1 for all i ∈ [1, `],
˛ ν(yi) = M/qi for all i ∈ I∀,
˛ ν(xi) = M/qi and ν(x′i) = 0 for all i ∈ IX , X ∈ X such that α(X) = 1,
˛ ν(x′i) = M/qi and ν(xi) = 0 for all i ∈ IX , X ∈ X such that α(X) = 0.
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Then, clearly, (a)–(e) hold. It remains to verify that ν is a (G oZ)-solution for e1.
Let h = τ(ν(e1)) ∈ G(Z) and k = σ(ν(e1)) ∈ Z. We have k = 0 and h(s) = 1 for
all s ∈ Z\ [0,M−1]. Moreover, for every s ∈ [0,M−1] we have h(s) = c1c2 . . . c`
where

ci =

{
ai if (i ∈ I∀ and s ≡ 0 mod qi) or (i ∈ IX , X ∈ X and α(X) = 1)

bi if (i ∈ I∀ and s 6≡ 0 mod qi) or (i ∈ IX , X ∈ X and α(X) = 0).

Here, the ai and bi are from (10.1). Hence, there is an assignment βs : Y → {0, 1}
such that h(s) = P (α ∪ βs). Thus, h(s) = 1 for all s ∈ [0,M − 1], which implies
that ν(e1) = 1 in G o Z.

For the other direction, assume that ν is a (G oZ)-solution for e1 such that the
properties (a)–(e) hold. Let M ′ = ν(z1) + 1 > 0. We then have M ′ = ν(zi) + 1

for all i ∈ [1, `] by property (c). By properties (a) and (b), M ′ is divisible by the
first m+ n primes. This implies that M ′ is a multiple of M and thus M ′ ≥M .

Let us define an assignment α : X → {0, 1} as follows, where i ∈ I∃:

α(Zi) =

{
0 if ν(xi) = 0

1 if ν(x′i) = 0

By properties (d) and (e) this defines indeed an assignment α : X → {0, 1}. More-
over, for every position s ∈ [0,M ′ − 1] we define the assignment βs : Y → {0, 1}
by βs(Y ) = 1 if s ≡ 0 mod p(Y ) and βs(Y ) = 0 otherwise. By the Chinese
remainder theorem, for every β : Y → {0, 1} there exists s ∈ [0,M ′ − 1] with
β = βs. Moreover, the construction of e1 implies that ν(e1) writes P (α∪βs) into
position s. Since ν(e1) = 1 in G oZ we have P (α∪ βs) = 1 for all s ∈ [0,M ′ − 1],
i.e., P (α ∪ β) = 1 for all assignments β : Y → {0, 1}. We have shown Claim 1.

In the rest of the proof we construct a knapsack expression e2 such that each of
the variables from e1 also occurs in e2. Moreover, the following properties will
hold:

˛ Every (G o Z)-solution of e1 that satisfies the properties (a)–(e) extends to
a (G o Z)-solution of e2.

˛ Every (G oZ)-solution of e2 restricts to a (G oZ)-solution of e1 that satisfies
the properties (a)–(e).

This implies that e2 has a (G oZ)-solution if and only if e1 has a (G oZ)-solution
that satisfies the properties (a)–(e) if and only if ∃X∀Y : P = 1 holds.

Let g ∈ G be any nontrivial element. To construct e2 it is convenient to work
in a wreath product (〈g〉d × G) o Z for some d, whose unary encoding can be
computed (in logspace) from the input formula ∃X∀Y : F . By Lemma 2.9 we
can compute in logspace an embedding of (〈g〉d ×G) oZ into G oZ. Let ζi be the
canonical embedding of 〈g〉 into 〈g〉d that maps g to (1, . . . , 1, g, 1, . . . , 1), where
in the latter, g appears in the i-th coordinate. We assume that the coordinates
are numbered from 0 to d − 1. In the following, we write gi for ζi(g). We set
d = 2`+ 1.
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We then define the following knapsack expression e2 = e2,1e2,2 where z, z′

and X̃, X̃ ′ for all X ∈ X appear as fresh variables:

e2,1 = g0g1 · · · g`

 ∏
X∈X

( ∏
i∈IX

g`+i

)X̃′ ttzg1 · · · g` · ∏
X∈X

( ∏
i∈IX

g`+i

)X̃ t−1(t−1)z
′
g−1

0

e2,2 =
∏̀
i=1

fig
−1
i t−1(t−1)zig−1

i with fi =

{
uxii g

−1
`+iv

x′i
i if i ∈ I∃,

wyii if i ∈ I∀.

The idea of the construction is that the gi implement pebbles that can be put
on different positions in Z. At the end all pebbles have to be recollected. Note
that we only use the pebbles g0, g1, . . . , g` and g`+i for i ∈ I∃; hence we could
reduce the dimension 2` + 1 to ` + 1 + |I∃| but this would make the indexing
slightly more inconvenient.

Claim 2: Every (G oZ)-solution of e1 that satisfies the properties (a)–(e) extends
to a (G o Z)-solution of e2.

Proof of Claim 2: Let ν be a (G o Z)-solution of e1 that satisfies the
properties (a)–(e). Let M ′ = ν(z1) + 1 > 0. Hence, M ′ = ν(zi) + 1 for all
i ∈ [1, `]. We then extend ν to the fresh variables in e2 by:

˛ ν(z) = ν(z′) = M ′ − 1,
˛ for all X ∈ X such that xi = 0 for some (and hence all) i ∈ IX , we set
ν(X̃ ′) = 1 and ν(X̃) = 0,

˛ for all X ∈ X such that x′i = 0 for some (and hence all) i ∈ IX , we set
ν(X̃ ′) = 0 and ν(X̃) = 1.

It is easy to check that this yields indeed a (G o Z)-solution of e2.

Claim 3: Every (G o Z)-solution of e2 restricts to a (G o Z)-solution of e1 that
satisfies the properties (a)–(e).

Proof of Claim 3: Fix a (G o Z)-solution ν of e2. First of all, we must
have ν(z) = ν(z′); otherwise the pebble g0 will not be recollected. Let
M ′ = ν(z) + 1 > 0. The word ν(e2,1) leaves pebbles g1, . . . , g` at positions 0 and
M ′ (it also leaves powers of the pebbles g`+i — we will deal with those later)
and puts the cursor back to position 0. With the word ν(e2,1) the pebbles at
positions 0 and M ′ have to be recollected. This happens only if ν(zi) = M ′ − 1

for all i ∈ [1, `], qi · ν(yi) = M ′ for all i ∈ I∀, and qi · (ν(xi) + ν(x′i)) = M ′ for
all i ∈ I∃. Hence, conditions (a)–(c) hold.

Conditions (d) and (e) are enforced with the pebbles g`+i for i ∈ I∃. Consider
an existentially quantified variable X ∈ X. The word ν(e2,1) leaves for every
i ∈ IX the “pebble powers” gν(X̃′)

`+i and gν(X̃)
`+i at positions 0 and M ′ > 0, respec-

tively. With the word ν(e2,2) exactly one pebble g`+i is recollected. Therefore,
exactly one of the following two cases has to hold:
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˛ gν(X̃′) = 1 and gν(X̃) = g in G,

˛ gν(X̃′) = g and gν(X̃) = 1 in G.

Assume first that gν(X̃′) = 1 and gν(X̃) = g in G. Then ν(e2,1) places the
pebble g`+i at position M ′ (and it places this pebble at no other position)
for all i ∈ IX . In order to recollect this pebble with ν(e2,2) we must have
ν(xi) = M ′/qi = M ′/p(X) and ν(x′i) = 0 for all i ∈ IX . If gν(X̃′) = g and
gν(X̃) = 1 in G then we must have ν(x′i) = M ′/qi = M ′/p(X) and ν(xi) = 0 for
all i ∈ IX . This shows that (d) and (e) holds and concludes the proof of Claim 3
and hence the proof of the lemma.

Theorem 4.11 is now a direct corollary of Lemmas 10.7 and 10.8.

10.3 Undecidability for SL3(Z)
Let us recall Theorem 4.12:

Theorem 4.12. It is undecidable if a single exponent equation over SL3(Z) has
a solution.

Proof. The proof is inspired by a construction of Ben-Or and Cleve (see [8]
and [61, Theorem 4.16]). In order to reduce Hilbert’s 10th problem to ex-
ponent equations over SL3(Z), we need to transform an arbitrary polyno-
mial p(x1, . . . , xk) ∈ Z[x1, . . . , xk] into an expression e = A

xi1
1 · · ·Axi`` B with

Ai, B ∈ SL3(Z) and xi ∈ Z ( 1 ≤ i1, . . . , i` ≤ k ) such that p(x1, . . . , xk) = 0

has a solution in Z if and only if Axi11 · · ·Axi`` B = Id3 has a solution in Z, where
Id3 is the 3× 3 identity matrix.

More precisely, we have to do the following: For i, j ∈ {1, 2, 3} with i 6= j

let Mi,j,a be the 3 × 3 matrix with entry a ∈ Z at position (i, j) and 0 at all
other positions. Furthermore let Ai,j,a = Id3 +Mi,j,a. Then the following simple
identities for Mi,j,a hold:

(a) Mi,j,a +Mi,j,b = Mi,j,a+b

(b) Mi,j,aMj,k,b = Mi,k,ab

(c) Mi,j,aMk,`,b = 0 for j 6= k

With these, we get helpful identities regarding Ai,j,a:

(i) Ai,j,aAi,j,b = Ai,j,a+b

(ii) (Ai,j,ε)
a = Ai,j,ε·a for a ≥ 1, ε ∈ {−1,+1}

(iii) Ak,j,−aAi,k,bAk,j,aAi,k−b = Ai,j,ab, where {i, j, k} = {1, 2, 3}

Identity (i) simulates addition of polynomials, the commutator looking equa-
tion (iii) simulates multiplication of polynomials. Let us first prove (i)− (iii):
With

Ai,j,aAi,j,b = (Id3 +Mi,j,a)(Id3 +Mi,j,b)

= Id3 +Mi,j,a +Mi,j,b +Mi,j,aMi,j,b

= Id3 +Mi,j,a+b
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we obtain (i). The third = is true because of i 6= j. This immediately implies
(ii) (more generally we get (Ai,j,a)k = Ai,j,a·k for a ∈ Z and k ≥ 0). For (iii) we
have

Ak,j,−aAi,k,bAk,j,aAi,k,−b

=(Id3 +Mk,j,−a)(Id3 +Mi,k,b)(Id3 +Mk,j,a)(Id3 +Mi,k,−b)

=(Id3 +Mk,j,−a +Mi,k,b)(Id3 +Mk,j,a +Mi,k,−b)

= Id3 +Mk,j,−a +Mk,j,a +Mi,k,b +Mi,k,−b +Mi,k,bMk,j,a

= Id3 +Mi,j,ab.

The third = holds, since all other products M...M... vanish due to non-matching
indices (see (c)).

Let p(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial. Remark: It is possible to
restrict the xt to take values in N, since every integer z can be written as x− y
with x, y ∈ N. In such a scenario the number of variables would double, but this
is not a problem. For every variable xt one constructs the following exponential
expressions for all i, j ∈ {1, 2, 3} with i 6= j (see (ii)):

˛ ei,j,xt := (Ai,j,1)xt

˛ ei,j,−xt := (Ai,j,−1)xt

In the next step, we focus on monomials in p(x1, . . . , xk). We can write p as a
sum of monomials xd11 x

d2
2 · · ·x

dk
k and their negations (possibly with repetitions).

Let m = xd11 x
d2
2 · · ·x

dk
k be a monomial that occurs in p(x1, . . . , xk) and assume

that all di are positive. Since monomials are purely build by multiplication,
we use (iii) to obtain the expressions ei,j,m and ei,j,−m for all i, j ∈ {1, 2, 3}
with i 6= j. For the constant term c ∈ Z of p(x1, . . . , xk), we can just take
ei,j,c = Ai,j,c and ei,j,−c = Ai,j,−c.

Lastly, we have to consider additions of monomials (the constant c included)
in order to obtain an expression for the whole polynomial. Here we make use
of (i). If we for instance have a polynomial like p(x, y, z) = x3y − y2 + xz2,
then we use (i) twice to add the three monomials together. And with this
example we can also see that we really need ei,j,−m, because otherwise it would
be difficult to deal with the negative monomial −y2. The expressions ei,j,−m
are also needed for multiplications (see (iii)). In the end we obtain the desired
expression e1,2,p for the whole polynomial p (we could take any ei,j,p for i 6= j).
And now it is easy to see that for every valuation ν : {x1, . . . , xk} → N we have
(ν(e1,2,p))1,2 = p(ν(x1), . . . , ν(xk)). Hence, solSL3(Z)(e1,2,p) 6= ∅ if and only if
p(x1, . . . , xk) = 0 has a solution. This yields the desired reduction and thus the
theorem is proven.
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10.4 Open and related problems

Recall we proved that knapsack for Thompson’s group F is Σp2-hard. Decidability
of knapsack for Thompson’s group F follows from [58] and the fact that F is
co-context-free. It is shown in [58] that for every co-context-free group the
knapsack problem reduces to checking non-universality of the Parikh image of
a bounded context-free language. The latter problem belongs to NEXPTIME

[50, Theorem 2.10] (see also [40, Corollary 1]). It would be interesting to find
better complexity bounds for this problem.

Moreover, there are many open group theoretic problems related to the
group SL3(Z) in particular. For instance, the knapsack, the rational subset
membership and the subgroup membership problem seem very difficult to solve.
Even though the first problem looks similar to what we just considered, but
allowing a variable in an exponent expression to appear only once makes the
proof idea of Ben-Or and Cleve already not work.

What can be solved on the other hand are exponent equations for other
related groups. We know that SL2(Z) is knapsack-semilinear10 (hence exponent
equations are decidable) and that some group theoretic problems are undecid-
able for SLn(Z), n ≥ 4, such as the identity problem ([7]) and the subgroup
membership problem (since we can embed F2 × F2 into this group). It is also
unknown whether knapsack is decidable for SLn(Z), n ≥ 4.

For the other Heisenberg groups Hk(Z) (k ≥ 4) we can use the same cal-
culations as in [58] for H3(Z) and see that one exponent equation is decidable,
but systems of exponent equations are undecidable. There is also a very recent
result that rational subset membership problem is decidable for H3(Z), even
though the rational subset membership problem remains unsolved for higher
order Heisenberg groups (see [12]).

We furthermore know that systems of exponent equations are undecidable
for the Baumslag-Solitar groups BS(1, q) = 〈a, t | t−1at = aq〉 (q ≥ 2), but it
is not known whether this is also undecidable for only one exponent equation
(see [32]).

10The group SL2(Z) = 〈S,R | S4 = 1, R6 = 1, S2 = R3〉 is isomorphic to Z/4Z ∗A Z/6Z,
where A = {Id,− Id} (see e.g. [83]). This means, SL2(Z) is an amalgamated free product of
two finite groups. And we proved knapsack-semilinearity in this case (see Chapter 7).
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