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Abstract

Searching for new physics not described by the Standard Model (SM) is of great im-

portance to enhance our understanding the universe. One possibility to discover new

physics is to perform precision tests of the SM by comparing experimental measurements

with theoretical predictions. Taking advantage of the vast set of experimental results,

we first perform global fits to test and constrain a class of extensions to the SM referred

to as Two-Higgs-Doublet models (2HDMs). In addition, we discuss a motivation for

collider searches for the rare process Bs → e+e− which can be greatly enhanced in a

2HDM without conflicting with other data. Large uncertainties from non-perturbative

hadronic observables limit the ability to constrain the parameter space of 2HDMs or

other new physics scenarios.

Next we focus at improving predictions for hadronic observables by non-perturbatively

calculating matrix elements of four-quark operators for neutral meson mixing and heavy

meson lifetimes using lattice quantum chromodynamics (QCD). In particular, we per-

form a pilot study establishing a non-perturbative renormalisation procedure via the

gradient flow and its short-flow-time expansion allowing us to quote final results in the

MS scheme. Considering for simplicity a neutral charm-strange (Ds) meson on the lat-

tice, we determine the O1 operator for neutral meson mixing as well as the O1 and T1

operators describing heavy meson lifetimes. Our short-distance contribution to mixing

for a neutral Ds meson is BMS
s (3GeV) = 0.787(5) where the quoted error accounts for

statistical and perturbative truncation uncertainties only. This value is in good agree-

ment with literature results for short-distance D0 mixing where only the spectator quark

differs. In addition we pioneer the calculation of the four-quark operators O1 and T1 for

heavy meson lifetimes in lattice QCD. Essential for this determination is that our gra-

dient flow procedure suppresses the mixing with operators of lower mass dimension on

the lattice. Although our lattice calculation does not include all diagrams and also the

perturbative matching to the MS scheme is still incomplete, we observe that our values

BMS
1 = 1.110(2) and ϵMS

1 = 0.119(1) have the same order of magnitude as corresponding

determinations based on HQET sum rules.



Zusammenfassung

Die Suche nach neuer Physik, die nicht durch das Standardmodell (SM) beschrieben

wird, ist von großer Bedeutung, um unser Verständnis des Universums zu verbessern.

Eine Möglichkeit, neue Physik zu entdecken, besteht darin, Präzisionstests des SM

durchzuführen, bei denen experimentelle Messungen mit theoretischen Vorhersagen ver-

glichen werden. Unter Ausnutzung der großen Menge an experimentellen Resultaten

führen wir zunächst globale Fits durch, um eine Klasse von Erweiterungen des SM

zu testen und einzuschränken, die als Two-Higgs-Doublet-Modelle (2HDMs) bezeichnet

werden. Darüber hinaus diskutieren wir die Motivation für Kollidersuchen nach dem sel-

tenen Prozess Bs → e+e−, der in einem 2HDM deutlich verstärkt sein kann, ohne Kon-

flikte mit anderen Daten zu erzeugen. Große Unsicherheiten durch nicht-perturbative

hadronische Observablen schränken die Möglichkeit ein, den Parameterraum von 2HDMs

oder anderen Szenarien der neuen Physik einzugrenzen.

Als nächstes konzentrieren wir uns auf die Verbesserung der Vorhersagen für hadronische

Observablen, indem wir nicht-perturbative Matrixelemente von Vier-Quark-Operatoren

für neutrale Mesonenmischung und Lebensdauern schwerer Mesonen mit Hilfe der Gitter-

Quantenchromodynamik (QCD) berechnen. Insbesondere führen wir eine Pilotstudie

durch, um ein nicht-perturbatives Renormierungsverfahren mittles Gradient-Flow und

dessen Short-Flow-Time-Entwicklung zu etablieren und Endergebnisse im MS-Schema

anzugeben. Zur Vereinfachung des Problems, betrachten wir ein auf dem Gitter neutrales

Charm-Strange-Meson (Ds) und bestimmen den O1-Operator für neutrale Mesonenmis-

chung, sowie die O1- und T1-Operatoren für die Lebensdauer schwerer Mesonen. Unser

Nahdistanzbeitrag zur Mischung für ein neutrales Ds-Meson beträgt BMS
s (3GeV) =

0.787(5), wobei der angegebene Fehler nur statistische Unsicherheiten und perturbative

Abbruchfehler berücksichtigt. Dieser Wert ist in guter Übereinstimmung mit Liter-

aturwerten für Nahdistanz-D0-Mischung, bei der sich nur das “Zuschauer-Quark” un-

terscheidet. Desweiteren haben wir Pionierarbeit bei der Berechnung der Vier-Quark-

Operatoren O1 und T1 für Lebensdauern schwerer Mesonen in der Gitter-QCD geleis-

tet. Wesentlich für diese Bestimmung ist, dass unsere Gradient-Flow-Methode das

Mischen mit Operatoren niedrigerer Massendimensionen auf dem Gitter unterdrückt.

Obwohl unsere Gitterrechnung nicht alle Diagramme umfasst und auch die pertur-

bative Konvertierung ins MS-Schema noch unvollständig ist, haben unsere Werte für

BMS
1 = 1.110(2) und ϵMS

1 = 0.119(1) die gleiche Größenordnung, wie entsprechende

Bestimmungen, die auf HQET-Summenregeln basieren.
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Chapter 1

Introduction – Colour Meets

Flavour

The Standard Model of particle physics (SM) [1–3] is the most successful theory devel-

oped so far to describe elementary particles and their interactions via the strong, weak,

and electromagnetic forces – gravity is not included in the SM. With the discovery of the

Higgs boson in 2012 at the Large Hadron Collider (LHC) by the ATLAS [4] and CMS [5]

experiments, all expected elementary particles of the SM have been discovered. To date,

no observed phenomena at particle colliders have a confirmed deviation from the SM’s

predicted behaviour, with the exception of the existence of neutrino masses [6, 7]. While

the success of the Standard Model is remarkable and to be celebrated, it is clear from

further phenomenological and cosmological arguments that there is more to add to our

theory than just neutrino masses:

➤ insufficient CP violation in the SM to account for the observed matter-antimatter

asymmetry of the universe [8];

➤ the existence of dark matter (see e.g. [9]);

➤ the SM is not an ultraviolet (UV) complete theory and must only be a low-energy

limit of a more complete model (see for instance [10–12]) – this includes a unifica-

tion with gravity in a renormalisable theory.

In addition, there are currently a number of known tensions between the SM and exper-

iment, however none of these are yet interpreted as accepted signatures of new physics;

improved precision in experimental measurements and theoretical predictions is the focus

for many researchers in order to either confirm the deviations or reaffirm the SM.

Some examples of these tensions are:

1
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➤ The ‘Cabibbo angle anomaly’ which observes a ∼ 3σ deficit from expected uni-

tarity in the first row of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing

matrix [13–17]. This observation also comes with disagreement between measure-

ments using the highly-precise super-allowed beta decays [18]. This tension is in

spite of a theoretically very clean calculation since it is a pure vector transition

free from uncertainties due to the nuclear structure.

➤ The so-called ‘golden modes’ of non-leptonic tree-level B meson decays, e.g. B̄0
(s) →

D
(∗)+
(s) L− (for a light pseudoscalar meson L = K,π), where all final-state flavours

are distinct [19]. In this scenario, many usual contributions to two-body non-

leptonic decays are absent and therefore these are expected to be the most the-

oretically clean of the non-leptonic decays. However, when comparing to experi-

mental measurements, one finds a theoretical excess of 2 − 5σ depending on the

specific channel, and in fact, a combined analysis can result in a tension as much

as 7σ [20–24]. The theoretical predictions stem from the leading power estimates

of QCD factorisation and the big question remains of how large these power cor-

rections really are. There is also recent work suggesting that these tensions can be

resolved by improved treatment of the hadronic effects [25].

➤ The flavour anomalies in semileptonic B meson decays are a group of processes

all showing some tension with the Standard Model. Many processes in this group

stem from the b → sℓ+ℓ− transition, such as those in the differential branching

ratios and angular observables of B → K(∗)µ+µ− and Bs → ϕµ+µ−. The tensions

here vary and can reach as much as 5σ; see, e.g. [26–30]. These are loop-level

processes in the SM and therefore rather suppressed; it is simple to introduce

some model of new physics where these processes would occur at tree-level and

therefore have sizeable contributions compared to the SM, such as Z ′ models [31]

or type-III Two-Higgs-Doublet models (see chapter 4).

➤ Lepton flavour universality (LFU) ratios compare processes differing only by lepton

flavour. These channels are extremely clean theoretically with much of the ‘dirty’

hadronic physics cancelling out, and so they are expected to be useful tests of the

Standard Model, with these ratios in semileptonic B meson decays receiving a lot

of attention. For a long time however, there was as much as ∼ 4σ tension in the

B → K(∗)ℓ+ℓ− channels which have since been resolved back to agreement with

the SM with new updates to the experimental measurements [32, 33]. The LFU

ratios in B → D(∗)ℓν, RD(∗) , remain with a ∼ 3σ tension to the SM [26]. Unlike

the B anomalies discussed above, B → D(∗)ℓν is a tree-level decay in the SM

and therefore most new physics scenarios do not immediately come with enhanced

contributions versus the SM for these processes.
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From this list, it should be clear that the area of quark flavour physics is well-suited

to looking for tensions with the Standard Model and testing models of new physics to

resolve these tensions. Many experiments over the past 20 years have provided a huge

array of high-precision data for flavour observables, see e.g. the summary of the Heavy

Flavour Averaging Group (HFLAV) which collects all these measurements [26]. To

complement these experiments, the theoretical understanding of quark flavour processes

has developed over many years and is by now well-advanced, with the perturbative

calculations reaching next-to-next-to-next-to-leading order (N3LO) in QCD for the case

of the free quark semileptonic decay [34–36]. The large scale introduced by a heavy

charm or bottom quark mass (in contrast to the hadronic confinement scale ΛQCD)

provides many interesting simplifications and one can implement the frameworks of the

Heavy Quark Effective Theory and the Heavy Quark Expansion to great success. Using

these frameworks allows for high-precision comparisons between theory and experiment

which are necessary to better resolve the afore-mentioned tensions or find new physics

explanations for these.

In many of the heavy flavour processes with exciting prospects towards constraining the

SM and finding new physics, typically the non-perturbative hadronic contributions to

their predictions also contribute the largest uncertainties and so it is of great importance

to better constrain these matrix elements to increase the precision of our analysis. Non-

perturbative physics can be studied with various theoretical tools such as QCD sum

rules [37–39] and the systematically-improvable lattice QCD [40], which presents the

most promising prospects for increasing the theoretical precision over time in line with

the steady advancement of the experimental precision.

In this thesis, we will discuss the power of the ‘colour’ physics of non-perturbative

QCD and how it complements the use of flavour physics in studying and constraining

the Standard Model and beyond. In chapter 4, we will give details on the study of

new physics through indirect searches in the flavour sector (amongst others) and in

particular study the Two-Higgs-Doublet Model in multiple scenarios, with emphasis on

the hadronic matrix elements contributing to the studied observables and how increased

precision for these can in turn increase our sensitivity to new physics. The research of

chapter 4 is the result of four publications which were carried out in the first half my

PhD:

➤ O. Atkinson, M. Black, A. Lenz, A. Rusov and J. Wynne, Cornering the Two

Higgs Doublet Model Type II, JHEP 04 (2022) 172 [arXiv:2107.05650], [41].

➤ O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov and J. Wynne, The flavourful

present and future of 2HDMs at the collider energy frontier, JHEP 11 (2022) 139

[arXiv:2202.08807], [42].

https://doi.org/10.1007/JHEP04(2022)172
https://arxiv.org/abs/2107.05650
https://doi.org/10.1007/JHEP11(2022)139
https://arxiv.org/abs/2202.08807
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➤ O. Atkinson, M. Black, C. Englert, A. Lenz and A. Rusov, MUonE, muon g-2 and

electroweak precision constraints within 2HDMs, Phys. Rev. D 106 (2022) 115031

[arXiv:2207.02789], [43].

➤ M. Black, A. D. Plascencia and G. Tetlalmatzi-Xolocotzi, Enhancing Bs → e+e−

to an observable level in the two-Higgs-doublet model, Phys. Rev. D 107 (2023)

035013 [arXiv:2208.08995], [44].

I was integral to the efforts of writing the code for the many fits and scans need for

these papers, which I also subsequently ran on OMNI (a CPU cluster at the University

of Siegen). Furthermore, I worked on understanding and interpreting their results and

phenomenological impacts.

With the theoretical and phenomenological prospects laid out, we will turn our focus to

non-perturbative methods to predict hadronic observables, with a particular focus on

lattice QCD. Chapter 6 will outline a pilot study towards the calculation for the first

time in full lattice QCD of the dimension-six four-quark ∆B = 0 operators contributing

to the lifetime predictions of heavy B mesons. This research is ongoing and will con-

tinue beyond the scope of this thesis, however early work was already presented in the

proceedings

➤ M. Black, R. Harlander, F. Lange, A. Rago, A. Shindler and O. Witzel, Using

Gradient Flow to Renormalise Matrix Elements for Meson Mixing and Lifetimes,

PoS LATTICE2023 (2024) 263 [arXiv:2310.18059], [45],

and we plan to publish the findings of these pilot studies later this year. A significant

portion of my PhD program has consisted of personally driving this pilot study to

success, starting from early work implementing the fermionic gradient flow in Hadrons, a

C++ library utilising Grid to perform valence sector measurements in QCD-like theories.

Later I performed the large-scale simulations on OMNI, HAWK (a CPU cluster at

the High-Performance Computing Center Stuttgart), and LUMI-G (a GPU-accelerated

cluster at the CSC data center in Finland), as well as all the steps of the current data

analysis.

https://doi.org/10.1103/PhysRevD.106.115031
https://arxiv.org/abs/2207.02789
https://doi.org/10.1103/PhysRevD.107.035013
https://doi.org/10.1103/PhysRevD.107.035013
https://arxiv.org/abs/2208.08995
https://doi.org/10.22323/1.453.0263
https://arxiv.org/abs/2310.18059


Chapter 2

The Standard Model of Particle

Physics

The Standard Model is a quantum gauge theory, being described by its local gauge

symmetry

SU(3)C ⊗ SU(2)L ⊗U(1)Y, (2.1)

with C representing colour, L the left-handed weak isospin, and Y the weak hypercharge.

SU(2)L ⊗ U(1)Y forms the electroweak interaction. The elementary particle content of

the SM will be discussed in section 2.1 before considering the electroweak interaction

in section 2.2 and how its symmetry is spontaneously broken, giving rise to interesting

and important phenomena of the Standard Model, including the U(1)Q symmetry of

the electric charge Q more familiar to us from electromagnetism. Then discussed in

section 2.3 is SU(3)C as the symmetry of the strong interaction and its formulation

as quantum chromodynamics (QCD). Throughout this chapter, we follow closely the

textbooks [10, 46], to which we refer for a more comprehensive overview of the Standard

Model and further references within.

There are three discrete symmetries important to the SM:

➤ charge conjugation (C): a particle is interchanged with its antiparticle, e.g.

e− C→ ē = e+; (2.2)

➤ parity (P): a reversal of the spatial coordinates

xµ = (x0, x⃗)
P→ (x0,−x⃗); (2.3)

5
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➤ time reversal (T): a reversal of the temporal coordinate:

xµ = (x0, x⃗)
T→ (−x0, x⃗). (2.4)

Both electromagnetism and the strong interaction are found experimentally to obey P

symmetry, however the weak interaction was found experimentally to violate parity [47,

48]. The combined CP symmetry was then proposed as the fundamental symmetry,

however the weak interaction was also found to violate CP, famously discovered in 1964

in kaon decays [49]. The Lagrangian of the strong interaction in principle allows for a

CP-violating term, however there is currently no experimental evidence to support this.

All three forces of the Standard Model obey the combined CPT symmetry.

Elementary particles are described by dynamical quantum fields permeating across

spacetime, and their interactions stem from the gauge fields of the constituent gauge

symmetries of the theory. The resulting Standard Model Lagrangian can be written as

L = −1

4
FµνFµν + iΨ̄ /DΨ

+(DµΦ)
†(DµΦ)− V (Φ)− YijΨ̄iΦΨj + h.c.

(2.5)

In this chapter, we will first introduce the particle content of the Standard Model in

section 2.1, before outlining the theories of electroweak (EW) and strong interactions

in sections 2.2 and 2.3 respectively. Finally, quark mixing and the Cabibbo-Kobayashi-

Maskawa (CKM) matrix will be discussed in section 2.4.

2.1 Elementary Particles

Here we give a brief summary of the known elementary particles of the universe as

described by the SM; by elementary we refer to particles which are currently considered

to be fundamental and not composed of other particles. The elementary particles can be

categorised into those with spin- 12 (fermions) and those with integer spin-0, 1 (bosons).

After accounting for electric and colour charges, there are in total thirteen bosons.

From the EW interaction, after spontaneous symmetry breaking, comes five: of the

weak sector, there are Z0 and W± (spin-1); of electromagnetism, there is the photon γ

(spin-1); and finally as a result of the spontaneous symmetry breaking, there is the Higgs

boson h0 (spin-0). From QCD, there is the gluon g which has eight independent colour

combinations. After showing how the bosons of the spontaneously-broken Lagrangian

are formed, the properties of these bosons are summarised in table 2.1.
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The fermions come in three generations, broadly following a mass hierarchy from first to

third1, and are further split into two categories: quarks, which have colour charge and

interact with the strong force, and leptons, which do not. The leptons are separated into

the charged leptons (electron e, muon µ, tau τ) and the neutral leptons called neutrinos

(νe, νµ, ντ ) where each gets its label from the charged lepton of the same generation.

After discussing how these arise from the EW theory, the properties of the leptons in

the SM are summarised in table 2.2.

The quarks are separated into up-type quarks (up u, charm c, top t) with electric

charge +2
3 and down-type quarks (down d, strange s, bottom b) with electric charge

−1
3 . Due to a property of QCD called confinement, quarks (i.e. particles with colour

charge) cannot exist as free particles but are instead observed as constituent particles

of (colour-neutral) bound states called hadrons. Excluding more exotic types which are

less well-studied, hadrons appear in two forms: mesons, formed of one quark and an

anti-quark, and baryons, formed of three quarks. After covering how the quarks interact

with the electroweak and strong theories, the properties of quarks are summarised in

table 2.3.

2.2 Electroweak Interaction and Spontaneous Symmetry

Breaking

The electroweak interaction [1, 2, 50] of the Standard Model is the unification of quantum

electrodynamics (QED, i.e. the theory of electromagnetism) and the weak interaction.

This forms the SU(2)L⊗U(1)Y part of the SM gauge group. In this section we will show

how this gauge group is broken into U(1)Q through spontaneous symmetry breaking

(SSB) of the Higgs potential, which will also yield the massive gauge bosons of the weak

force – W±, Z0 – and the photon of the electromagnetic force – γ [51–53].

2.2.1 Electroweak Gauge Fields

We first consider the gauge sector of the EW Lagrangian, which reads2

LEW
gauge(x) = −1

4
Bµν(x)B

µν(x)− 1

4
W i
µν(x)W

iµν(x), (2.6)

where Bµν is the field strength tensor of the U(1)Y symmetry and W i
µν of the SU(2)L

symmetry, with i = 1, 2, 3 the indices for the generators of SU(2)L. In general, a field

1It is not known if massive neutrinos will follow this same hierarchy.
2Unless otherwise stated, from now we assume the Einstein summation convention.
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strength tensor Fµν is defined

Fµν(x) = [Dµ, Dν ], (2.7)

where the covariant derivative Dµ is dependent on the gauge symmetry. The EW co-

variant derivative of SU(2)L ⊗U(1)Y is defined as

Dµ = ∂µ + igW i
µ(x)τ

i + i
g′

2
Bµ(x)Y, (2.8)

where g, g′ are the gauge couplings of SU(2)L, U(1)Y respectively, Y is the generator of

U(1)Y , and τ
i = 1

2σ
i are the SU(2)L generators defined using the Pauli matrices σi.

For the Abelian symmetry group U(1), the covariant derivative is defined

Dµ = ∂µ + i
g′

2
Bµ(x)Y. (2.9)

There are therefore no self-interactions of the B-field, i.e.

Bµν(x) = ∂µBν(x)− ∂νBµ(x). (2.10)

For the non-Abelian SU(2)L, the covariant derivative is defined

Dµ = ∂µ + igW i
µ(x)τ

i. (2.11)

Now one does find self-interactions between the gauge bosons W i, i.e.

W i
µν(x) = ∂µW

i
ν(x)− ∂νW

i
µ(x) + ig[W b(x),W c(x)]

= ∂µW
i
ν(x)− ∂νW

i
µ(x)− gϵabcW b(x)W c(x).

(2.12)

One should note that the mass term for a gauge boson m2AµAµ cannot appear in our

Lagrangian since it would violate gauge symmetry, and therefore the gauge bosons B, W i

are so far massless.

2.2.2 Chiral Fermions

For fermion interactions in the EW sector, we can start by considering the Dirac La-

grangian term,

LDirac(x) =
∑
ℓ

ψ̄ℓ(x)(i /D −mℓ)ψℓ(x), (2.13)

where ℓ sums over the 6 leptons and /D = γµDµ. γµ are the Dirac gamma matrices

as described in appendix A.2 and Dµ is the appropriate covariant derivative for each

fermion, e.g. equation (2.8) for leptons. However, simply adding this term to the EW
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Lagrangian does not work because the mass term will not be gauge invariant due to the

chiral nature of the EW interaction which must be introduced to describe the parity

violation seen in nature. This chiral nature leads to the decomposition of fermion fields

ψ into left- and right-handed chiral components:

ψ = ψL + ψR,

ψL = PLψ =
1

2
(1− γ5)ψ,

ψR = PRψ =
1

2
(1 + γ5)ψ,

(2.14)

where γ5 = iγ0γ1γ2γ3. Under the SU(2)L symmetry, these components interact differ-

ently: left-handed fermions are contained within SU(2) doublets and transform under

this interaction, while right-handed fermions are SU(2) singlets and do not. Each gen-

eration of lepton or quark forms its own doublet pair and singlet, i.e.

Li =

(
νei

ei

)
L

, R = eiR QiaL =

(
uia

dia

)
L

, UiaR = uiaR, DiaR = diaR, (2.15)

with i the fermion generation and a the colour index of the quarks (to be discussed in

section 2.3). This leads to parity violation of the EW sector as required by nature.

The separation of chiralities in equation (2.14) rewrites equation (2.13) (neglecting the

sum over ℓ), leading to

LDirac,χ(x) = ψ̄Li /DψL + ψ̄Ri /DψR −m
(
ψ̄LψR + ψ̄RψL

)
, (2.16)

where one can see a mixing of left-handed and right-handed fields in the mass term,

such that the Lagrangian is not gauge invariant for m ̸= 0. Therefore at this stage of

constructing the EW Lagrangian, only massless gauge bosons and fermions appear; this

is in disagreement with nature where we observe massive fermions and massive gauge

bosons, W±, Z0.

2.2.3 The Higgs Mechanism

In order to solve the problem of massive gauge bosons, a complex scalar field ϕ trans-

forming as a SU(2) doublet can be introduced:

Φ =
1√
2

(
ϕ1 + iϕ2

ϕ0 + iϕ3

)
=

1√
2

(
ϕ+

ϕ0

)
, ϕ+, ϕ0 ∈ C. (2.17)
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The Higgs Lagrangian is given by

LHiggs(x) = (DµΦ)†(DµΦ)− V (Φ), (2.18)

where the covariant derivative is that of equation (2.8) and the scalar potential V (Φ) is

defined

V (Φ) = −µ2Φ†Φ+ λ(Φ†Φ)2. (2.19)

We can choose the unitary gauge such that

Φ =
1√
2

(
ϕ+

ϕ0

)
→ Φ =

1√
2

(
0

ϕ0

)
. (2.20)

If µ2 > 0, then the scalar field acquires a non-zero vacuum expectation value (VEV),

⟨Φ⟩ = 1√
2

(
0

v

)
(2.21)

resulting in the spontaneous symmetry breaking of the EW sector [51–53]. In nature,

we observe the U(1)Q symmetry of electromagnetism and so this must be a remaining

symmetry after SSB. Therefore the scalar field ϕ0 is taken to have charge Q = 0 such

that electromagnetism is left intact. Under this scheme, both the hypercharge Y and the

weak isospin T3 are not conserved. However the combination Q = T3+
1
2Y , defined as the

electric charge, is conserved. Thus the EW symmetry SU(2)L⊗U(1)Y is spontaneously

broken into a U(1) symmetry of electric charge.

In the unitary gauge, the scalar doublet is rewritten as

Φ =
1√
2

(
0

v + h

)
, h ∈ R, (2.22)

where one can compare to equation (2.17) and see that where before we had four degrees

of freedom in the Higgs doublet through each of the component fields ϕi, now we have

one degree of freedom forming the Higgs field h with a mass mh =
√

2µ2 =
√
2λv.

EW boson mass spin T3 Y Q

W± 80.377(12)GeV 1 ±1 0 ±1
Z0 91.1876(21)GeV 1 0 0 0

photon, γ 0 1 0 0 0
Higgs, h0 125.25(0.17)GeV 0 −1

2 1 0

Table 2.1: Properties of the bosons of the EW sector of the Standard Model after
SSB by the Higgs mechanism. T3 is the weak isospin, Y the weak hypercharge, and Q
the electric charge. Masses are taken from [54].
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By expanding the Higgs Lagrangian in equation (2.18) in the broken phase, we can

redefine the EW fields as linear transformations and collect quadratic terms which yield

gauge-invariant mass terms:

W±
µ ≡ 1√

2
(W 1

µ ∓ iW 2
µ), mW =

gv

2
, (2.23)

Zµ ≡ 1√
g2 + g′2

(gW 3
µ − g′Bµ), mZ =

v

2

√
g2 + g′2, (2.24)

Aµ ≡ 1√
g2 + g′2

(g′W 3
µ + gBµ), mA = 0, (2.25)

whereW±
µ are the fields associated with the physical W± bosons, Zµ with the Z0 boson,

and Aµ with the photon. If not coupled to the EW gauge fields, the other three degrees of

freedom of the Higgs doublet would form massless Nambu-Goldstone bosons as described

by the Nambu-Goldstone theorem [50, 55, 56]. However, with the redefinitions above

to yield the gauge fields of the broken EW generators, it is said that these Nambu-

Goldstone bosons have been “eaten” by the W±
µ , Zµ fields in order to generate these as

massive bosons. The properties of the EW bosons after SSB are summarised in table 2.1.

2.2.4 The Yukawa Interaction

Finally, to solve the problem of fermion masses, we introduce the Yukawa Lagrangian:

LYukawa = −Y (ℓ)
ij L̄iΦRj + h.c., (2.26)

which after SSB for the leptons reads

LSSB
Yukawa,ℓ = −Y (ℓ)

ij

(
ν̄iL ēiL

)( 0
v√
2

)
ejR + h.c. = −Y (ℓ)

ij

v√
2
ēiLejR + h.c., (2.27)

where ei = (e, µ, τ) and Y (ℓ) is the 3× 3 Yukawa coupling matrix of the leptons. The

mass terms of the leptons then read

mi =
Yiv√
2
. (2.28)

The Yukawa matrix Y (ℓ) is chosen to be diagonal such that the weak eigenstates and mass

eigenstates of the leptons are equivalent and there is no mixing between generations. We

will see in section 2.4 that this is not the case for quarks and what the implications of

that are.

In the SM, in order to generate masses from the Yukawa interaction for both components

of the SU(2) doublet, the hermitian conjugate term is used where a second Higgs doublet
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(not independent of the first, but its charge conjugate) is introduced as

∼
Φ = iσ2Φ

∗ =

(
ϕ0∗

−ϕ+∗

)
=

1√
2

(
v + h

0

)
. (2.29)

We will see in chapter 4 how the Standard Model can be extended to include an indepen-

dent second Higgs doublet instead of using the charge conjugate, and what consequences

this brings. This could be used to give mass to the other component of the lepton SU(2)

doublet, i.e. the neutrino, however in the Standard Model there are no right-handed

neutrinos and therefore this term does not arise. We now know however that experi-

mentally neutrinos do have mass [6, 7], although the mechanism for this is yet to be

determined. The properties of the leptons in the SM are summarised in table 2.2. For

quarks, the conjugate Higgs field in equation (2.29) generates the mass terms for the

up-type quarks, to be discussed in section 2.4.

lepton mass T3L T3R YL YR Q

electron, e 511 keV −1
2 0 −1 −2 −1

muon, µ 106MeV −1
2 0 −1 −2 −1

tau, τ 1.78GeV −1
2 0 −1 −2 −1

electron neutrino, νe - +1
2 - −1 - 0

muon neutrino, νµ - +1
2 - −1 - 0

tau neutrino, ντ - +1
2 - −1 - 0

Table 2.2: Properties of the leptons in the Standard Model. T3 is the weak isospin,
Y the weak hypercharge, with L(R) standing for the left(right)-handed projection of
each lepton; Q is the electric charge. Despite the experimental proof, neutrino masses
are not considered in the Standard Model and therefore are not shown here. Masses
are taken from [54].

2.3 Quantum Chromodynamics

We now consider Quantum Chromodynamics, the theory of the interactions between

quarks and gluons, also known as the strong force [57, 58]. QCD describes the SU(3)C

part of the Standard Model gauge group, and its Lagrangian is given by

LQCD(x) = −1

4
Gaµν(x)G

aµν(x) +
∑
f

ψ̄f,α(x)(i /Dαβ −mfδαβ)ψf,β(x), (2.30)

where f runs over the Nf = 6 flavours of quark, a = 1, . . . , N2
c − 1 runs over the

generators of SU(3), and α, β are the colour indices running 1, . . . , Nc for the gauge
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group SU(Nc), i.e. Nc = 3 for QCD. We can define the covariant derivative of QCD as

Dµ = ∂µ + igsA
a
µ(x)T

a, (2.31)

where gs is the strong coupling constant, Aaµ are the 8 gluon fields, and T a = 1
2λ

a are

the 8 generators of SU(3). λa are the 8 traceless anti-hermitian 3× 3 matrices known as

Gell-Mann matrices and are the SU(3) equivalent to the Pauli matrices for SU(2); these

are shown in appendix A. The field strength tensor is defined

Gaµν = ∂µA
a
ν − ∂νA

a
µ + igs[A

b
µ, A

c
ν ]

= ∂µA
a
ν − ∂νA

a
µ − gsf

abcAbµA
c
ν ,

(2.32)

where fabc are the structure constants of SU(3), or the generators in the adjoint rep-

resentation. Similarly to SU(2), for the non-Abelian SU(3) self-interaction terms arise

between the gluon fields Aaµ(x). From expanding the covariant derivative, one will find

three-gluon (coupling proportional to gs) and four-gluon (coupling proportional to g2s)

self-interaction vertices, as well as interaction vertices between two quarks and a gluon.

The quarks will acquire mass terms through the Yukawa interaction discussed above in

section 2.2 and will be expanded upon in section 2.4. However, gluons are found to be

massless in nature and therefore there is no need to find a mechanism to introduce a

mass term for these gauge fields.

2.3.1 Colour Charge

Colour charge is the term given to the property of quarks and gluons defining their

place in the SU(3) multiplets and how they interact via the strong force. Where the

electric charge has either a positive or negative charge for a fermion and its anti-fermion

partner, colour charge has three charges and three ‘anti-charges’. Using the analogy of

primary colours in the RGB colour picture, the colour charges are referred to as red, blue,

and green; the ‘anti-charges’ are then anti-red (cyan), anti-blue (yellow), and anti-green

(magenta). Again in analogy to RGB colours, the combination of the three (anti-)charges

is colourless or colour-neutral; alternatively one charge and its anti-charge (e.g. red +

anti-red) is also colour-neutral. Due to confinement (to be discussed in section 2.3.2),

only colour-neutral states may exist as free particles.

Quarks exist as components of SU(3) triplets in the fundamental representation and

therefore each has a single colour charge (or anti-charge for antiquarks). Quarks then

form colour-neutral bound states known as hadrons. Three quarks of different colour

charge together form a baryon, while one quark and an antiquark with opposite colour

charges form a meson. These two are the most common types of hadrons, however more
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exotic states do exist: a tetraquark state composed of two quarks and two antiquarks

was first observed in 2013 [59], and a pentaquark state composed of four quarks and one

antiquark was observed in 2015 [60].

Gluons are vectors in the adjoint representation of SU(3), forming an octet. Therefore

there are eight independent colour states of gluon, which can be represented in many

ways as the independent linear combinations of colour-anticolour pairs, such as

1√
2
(red blue + blue red), −i 1√

2
(red blue− blue red),

1√
2
(red green + green red), −i 1√

2
(red green− green red),

1√
2
(blue green + green blue), −i 1√

2
(blue green− green blue),

1√
2
(red red− blue blue),

1√
6
(red red + blue blue− 2 green green).

(2.33)

The Standard Model does also predict colour-neutral bound states of gluons, known

as glueballs. The discovery of one such state was claimed by the TOTEM [61] and

D/0 [62, 63] experiments, namely a three-gluon vector state.

2.3.2 Colour Confinement and Asymptotic Freedom

In classical gauge theory, the coupling constant g is a constant. In a quantum gauge

theory, g depends on the energy scale at which observations are made, e.g. in a scattering

experiment at energy scale E =
√
s, s = (p1 + p2)

2 (for particle momenta p1, p2), such

that we extract from any measurement g2(E). More generally, we can write g2(µ) where

µ is the appropriate energy scale (or renormalisation scale) of the process considered.

Consider the coupling strength defined

α(µ) ≡ g2(µ)

4π
. (2.34)

In QED, we have αEM = e2/4π; in QCD, we have a SU(3) gauge theory with Nf active

flavours of quarks3, leading to (at 1-loop order)

α1-loop
s (µ) =

g2s(µ)

4π
=

2π

β0 log
µ

ΛQCD

, (2.35)

3An “active” quark flavour is one satisfying mf ≪ µ.
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where ΛQCD ≈ 300MeV is the confinement scale of QCD [54]. β0 is the first coefficient

of the β function, defining the renormalisation group equation (RGE):

β(αs) = µ2
dαs
dµ2

, (2.36)

β1-loop(αs) = −β0
α2
s

2π
, (2.37)

β0 =
11

3
Nc −

2

3
Nf . (2.38)

The sign of the β function and therefore its first coefficient β0 determines how the

coupling strength will run with energy; for the SM case of Nf = 6, β0 is positive and

thus β is negative, which dictates that the coupling strength decreases with increasing

energy scales. This effect is known as asymptotic freedom – with increasing energies,

the interactions of colour-charged particles (quarks and gluons) become asymptotically

weak and their predictions are highly perturbative [64, 65].

Conversely, the QCD coupling strength becomes increasingly large for lower energies,

such that at energies close to or below ΛQCD it becomes impossible for quarks and gluons

to overcome the coupling strength of the strong force. In this limit, they become bound

in colour-neutral hadron states. This is the phenomenon of confinement – only colour-

neutral states can exist as free particles at low energies [40]. As αs grows for small

energies and can no longer be considered a small parameter, the confined phase of QCD

cannot be reasonably treated by expanding powers of αs progressively in perturbation

theory and is highly non-perturbative in nature. The non-perturbative nature of the

confined phase implies that virtual processes normally suppressed in perturbation theory

become highly relevant, such as the emission of gluon fields inside hadrons and their

splitting into quark-antiquark pairs which then subsequently annihilate again into a

gluon. This process can happen constantly within bound states and as such there is a

constant flux of virtual particles in the background of hadrons. This is known as the

sea and its quark content the sea quarks. The effect of the sea is highly important in

describing the properties and behaviours of hadrons; neglecting this and only considering

the valence quarks which contribute to the quantum numbers of the system will lead to

inaccurate descriptions.

The running of αs from confinement at low energy scales to asymptotic freedom at

high energy scales is shown in figure 2.1, taken from [54]. When low energy regimes are

relevant, such as when considering hadronic bound states, making reasonable predictions

in QCD requires some different framework to the quantum field theory standard of

perturbation theory in order to capture the hadronic physics embedded at low energies;

some non-perturbative methods for hadronic physics will be introduced in chapter 5.
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41 9. Quantum Chromodynamics

Table 9.1: Unweighted and weighted pre-averages of αs(m2
Z) for each sub-

field in columns two and three. The bottom line corresponds to the com-
bined result (without lattice gauge theory) using the χ2 averaging method.
The same χ2 averaging is used for column four combining all unweighted
averages except for the sub-field of column one. See text for more details.

averages per sub-field unweighted weighted unweighted without subfield
τ decays & low Q2 0.1173± 0.0017 0.1174± 0.0009 0.1177± 0.0013
QQ̄ bound states 0.1181± 0.0037 0.1177± 0.0011 0.1175± 0.0011
PDF fits 0.1161± 0.0022 0.1168± 0.0014 0.1179± 0.0011
e+e− jets & shapes 0.1189± 0.0037 0.1187± 0.0017 0.1174± 0.0011
hadron colliders 0.1168± 0.0027 0.1169± 0.0014 0.1177± 0.0011
electroweak 0.1203± 0.0028 0.1203± 0.0016 0.1171± 0.0011
PDG 2023 (without lattice) 0.1175± 0.0010 0.1178± 0.0005 n/a

αs(mZ
2) = 0.1180 ± 0.0009

August 2023

α
s(

Q
2
)

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

Heavy Quarkonia (NNLO)
HERA jets (NNLO)
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pp/p-p jets (NLO)
pp top (NNLO)

pp TEEC (NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 9.5: Summary of determinations of αs as a function of the energy scale Q compared to
the running of the coupling computed at five loops taking as an input the current PDG average,
αs(m2

Z) = 0.1180± 0.0009. Compared to the previous edition, numerous points have been updated
or added.

weighted fits with our standard procedure in columns two and three of Table 9.1. We observe
that the weighted averages are rather close to the unweighted ones. However, the uncertainties
become significantly smaller. This approach may be too aggressive as it ignores the correlations
among the data, methods, and theory ingredients of the various determinations. We feel that the
uncertainty of ±0.0005 is an underestimation of the true error. We also note that in the unweighted
combination the estimated uncertainty for each sub-field is larger than the spread of the results as
given by the standard deviation. In the weighted fit this crosscheck fails in four out of six cases.

The last several years have seen clarification of some persistent concerns and a wealth of new
results at NNLO, providing not only a rather precise and reasonably stable world average value

1st December, 2023

Figure 2.1: Experimental observations of the running coupling strength αs of QCD.
This figure is taken from [54].

2.3.3 Chiral Symmetry Breaking in QCD

In the massless limit, fermions exhibit a symmetry where chirality is conserved. The

left- and right-handed components of the fermion can be independently transformed and

one can form a symmetry group GL × GR. This symmetry will however be explicitly

broken by the presence of a Dirac mass term in the Lagrangian. In QCD, the light

quarks u, d, and s are nearly massless (see table 2.3), having masses much smaller

than the confinement scale ΛQCD ≈ 300MeV [54]. Since the coupling strength at the

energy scales where these quarks are present (but not the heavy quarks c, b, and t) is

large and the light quarks are bound in hadrons with strongly-coupled gluon fields, it is

more appropriate to use bound states as degrees of freedom rather than the individual

quarks. In this limit, there still exists an approximate chiral symmetry. In the case of a

chiral symmetry, the left- and right-handed quarks can be interchanged in hadrons and

therefore parity pair mesons, such as (in JP notation) the pseudoscalar 0− and scalar

0+, should have the same mass. However experiment observes much lighter masses for

the pseudoscalar 0− states than scalar 0+ states [54], implying that this approximate

chiral symmetry must be broken.

First, we take the chiral limit mu,d → 0. The Lagrangian describing only the up and

down quarks has the global symmetry U(2)L×U(2)R = SU(2)L×SU(2)R×U(1)V×U(1)A.
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Firstly the U(1)V vector symmetry results in the conservation of baryon number,

B =
1

3

∑
f

(nf − n̄f ), (2.39)

where nf is the number of valence quarks of flavour f and n̄f the corresponding number

of anti-quarks. Next, the U(1)A symmetry first appears to exist only in the massless

limit, since the divergence of the axial current gives imψ̄γ5ψ, however in quantisation,

another term proportional to ϵµναβG
µνGαβ appears [66, 67]. Therefore U(1)A is in

fact not a symmetry even in the massless limit; this is known as the axial anomaly.

Generated by interactions of quarks and gluons, a VEV can arise composed of non-zero

quark condensates which spontaneously breaks the SU(2)L × SU(2)R chiral symmetry

into a SU(2)V flavour symmetry referred to as isospin, under which the massless u

and d quarks form an isospin doublet. This SSB also generates three massless Nambu-

Goldstone bosons from the generators of the SU(2)L × SU(2)R chiral symmetry. In

nature, the u and d quarks are not exactly massless however, which in addition to

the SSB causes explicit breaking of the symmetry, giving mass to the Nambu-Goldstone

bosons, now referred to as pseudo-Nambu-Goldstone bosons. The three bosons resulting

from the SSB of SU(2)L × SU(2)R chiral symmetry are the pions:

π0 = 1√
2
(ūu− d̄d), Mπ0 ≈ 135MeV,

π+ = ud̄,
Mπ± ≈ 140MeV,

π− = dū,

(2.40)

where we take the mass values from [54]. In fact, the chiral symmetry is further explicitly

broken by the u and d having different electromagnetic charges, but at the energy scales

being considered, the relative coupling strengths of EM and QCD are such that this

effect is ≲ 1% and can mostly be neglected.

Note that the pion masses are much larger than simply the sum of the valence quark

content (mu ≈ 2MeV,md ≈ 5MeV). As mentioned previously, the valence content alone

is not sufficient to describe QCD bound states; the content of the sea, i.e. the QCD

binding energy, and the effects of chiral symmetry breaking are necessary to explain the

much larger masses of hadrons compared to the sum of valence quark masses. One can

refer to a dressed mass of a quark as the effective mass of a valence quark in a hadron,

e.g. for pions, mdressed
u,d ∼ 70MeV.

Similarly to the above, the strange quark can also be considered in the chiral limit. Tak-

ing mu,d,s → 0, we find the Lagrangian for u, d, and s quarks has the global symmetry

U(3)L×U(3)R = SU(3)L×SU(3)R×U(1)V ×U(1)A. The U(1)V and U(1)A symmetries

are interpreted exactly as above in the SU(2) case. Now the SU(3)L × SU(3)R chiral
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symmetry is spontaneously broken into a SU(3)V flavour symmetry. In SU(3)V repre-

sentation, there are eight generators to be broken. Including the explicit breaking of the

symmetry from quark mass and charge, as well as the pions described in equation (2.40),

the K±, K0, K̄0, η mesons are generated with quark content and masses (taken from

[54]) given by

K+ = us̄, K− = sū, MK± ≈ 494MeV,

K0 = ds̄, K̄0 = sd̄, MK0 ≈ 498MeV,

η =
1√
6
(uū+ dd̄− 2ss̄), Mη ≈ 548MeV.

(2.41)

One can write the octet field of SU(3)V as

Π =


1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K̄− K̄0 −
√

2
3η

 . (2.42)

We have seen two versions of chiral symmetry breaking for QCD: one based on SU(2)

and one on SU(3). Since ms ≫ mu,md, the approximation to chiral symmetry in SU(2)

should be a more accurate picture than that of SU(3) where the effects of the strange

quark mass cannot be as easily neglected as for the up and down quarks. However,

the SU(2) picture only results in three pion states, and therefore cannot be applied in

scenarios where kaon or η states also enter.

One can further consider mesons with one heavy quark and one light quark (heavy-light

mesons) as systems where a dynamic light quark is connected to a static heavy quark

via the strong interaction. Chiral symmetry breaking can in this case be considered for

the single light quark. In this picture, chiral symmetry breaking causes a universal mass

gap ∆M between the ground states 0−, 1− and their excited parity pairs 0+, 1+.

2.3.4 Quark Properties

We have already seen that the concept of quark mass is not so well-defined as for e.g.

leptons. In chiral symmetry breaking, the dressed, or effective, mass of a light quark

in a hadron can have significant contributions from the QCD sea and chiral symmetry

breaking whereas the implicit mass of the quark contributes minimally. This effect can

be generalised to all quark flavours and all energies, where the running of the QCD

coupling strength has an important impact on the quark mass; the dressed mass of a

quark will vary from the implicit mass depending on how large the effects of the QCD

coupling are. For example, we already saw that light up/down quarks inside a pion are

at energies below the confinement scale and have a dressed mass ∼ 15 times as large



Chapter 2 The Standard Model of Particle Physics 19

as their implicit mass, whereas if one considers a heavy b quark inside a heavy-light B

meson, the implicit b quark mass mb ≈ mB constitutes almost all of the mass of the

B meson since the energy scale O(5GeV) is much larger than the confinement scale.

The mass m of a quark therefore runs with the energy (or renormalisation) scale µ, i.e.

m(µ). At short distances, or high energies, this is defined through the RGE (in the MS

renormalisation scheme)

µ2
dm(µ)

dµ2
= −γ(αs(µ))m(µ), (2.43)

where γ(αs(µ)) is the anomalous dimension defining the scaling behaviour of the RGE.

This is only valid in the perturbative regime and other, non-perturbative methods, such

as lattice QCD, must be used to see the running of quark masses at other energy scales.

It is then clear that the quark mass is explicitly associated with its energy scale (and

renormalisation scheme) and reference values require the associated energy scale.

Next, we consider the quantum numbers of the quarks. In addition to baryon number

(each quark has B = +1
3) and the EW quantum numbers T3, Y , and Q, there are

quantum numbers associated with the flavour of quark. Note that the convention for

these quantum numbers is that a charged meson carries the same sign on its flavour

quantum number as its electric charge. The flavour quantum numbers are as follows:

➤ Isospin, I3: originating from nuclear theory where only the first generation of

quarks was considered, the up quark is given I3 =
1
2 and the down quark I3 = −1

2 ;

➤ Strangeness, S: to give a K+ (us̄) a strangeness of S = 1, a strange quark has

S = −1;

➤ Charm, C: giving a D+ (d̄c) a charm of C = 1 defines a charm quark having C = 1;

➤ Bottomness, B: giving a B+ (ub̄) a bottomness of B = 1, a bottom quark has

B = −1;

➤ Topness, T : since the sign on the flavour charge clearly follows the pattern of

positive for up-type quarks and negative for down-type quarks, a top quark will

have T = 1, however this does not come from the definition of a charged meson

since the top quark lifetime (τt ∼ 5 × 10−25s) is so short that it decays before it

can interact strongly and form a QCD bound state.

The masses and quantum numbers of the quarks in the SM are summarised in table 2.3.
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quark mass scale T3L T3R YL YR Q I3 S C B T
up, u 2.16+0.49

−0.26MeV 2GeV +1
2 0 1

3
4
3 +2

3 +1
2 0 0 0 0

down, d 4.67+0.48
−0.17MeV 2GeV −1

2 0 1
3

2
3 −1

3 −1
2 0 0 0 0

strange, s 93.4+8.6
−3.4MeV 2GeV −1

2 0 1
3

2
3 −1

3 0 −1 0 0 0

charm, c 1.27± 0.02GeV mc +1
2 0 1

3
4
3 +2

3 0 0 +1 0 0

bottom, b 4.18+0.03
−0.02 GeV mb −1

2 0 1
3

2
3 −1

3 0 0 0 −1 0

top, t 172.69± 0.30GeV mt +1
2 0 1

3
4
3 +2

3 0 0 0 0 +1

Table 2.3: Properties of quarks in the Standard Model. All quarks also carry baryon
number B = + 1

3 . Masses are taken from [54], using the MS renormalisation scheme.

2.3.5 The Strong CP Problem

As discussed above, the U(1)A symmetry found in the QCD Lagrangian described in

equation (2.30) turns out to not be a symmetry after including another term in the

Lagrangian, namely the theta term [68]:

Lθ ∝ θϵµναβG
µν
a Gaαβ . (2.44)

This theta term would introduce CP violation into QCD, however experiment strongly

imposes deviations of θ from 0 to be tiny: |θ| ≲ 10−10 [54]. The question of why QCD

seemingly preserves CP symmetry when it is not required is known as the strong CP

problem. There are multiple models of new physics beyond the SM which describe a

solution to the strong CP problem, such as the Peccei-Quinn theory which introduces

new particles called axions [69–71].

2.4 Quark Mixing: The Cabibbo-Kobayashi-Maskawa

Matrix

In section 2.2.4, we discussed the Yukawa interaction as the way in which a gauge-

invariant mass term can be restored to the Lagrangian for the charged leptons. This

same interaction exists for the quark sector, however whereas with leptons only one type

of right-handed lepton exists (the charged leptons), now both types of quark (up and

down type) have right-handed components. The quark-Yukawa Lagrangian (after SSB)
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reads

LYukawa,q = −Y (d)
ij Q̄iLΦDjR − Y

(u)
ij Q̄iL

∼
Φ UjR + h.c.

= −Y (d)
ij

(
ūiL d̄iL

)( 0
v√
2

)
djR − Y

(u)
ij

(
ūiL d̄iL

)( v√
2

0

)
ujR + h.c.

= −Y (d)
ij

v√
2
d̄iLdjR − Y

(u)
ij

v√
2
ūiLujR + h.c.,

(2.45)

where QiL, DjR, UjR are defined in equation (2.15) (suppressing colour index) and the

Higgs conjugate field
∼
Φ is defined in equation (2.29). Previously when discussing the

leptons, the Yukawa matrix Y (ℓ) was chosen to be a diagonal matrix and no mixing

between generations occurs. Now when considering the quarks, the Yukawa matri-

ces Y (u), Y (d) are not necessarily diagonal and the different quark generations may be

connected through them. However, these matrices can be diagonalised using unitary

matrices such that we consider the mass eigenstates, i.e.

v√
2
V (u)†Y (u)U (u) =


mu

mc

mt

 ,
v√
2
V (d)†Y (d)U (d) =


md

ms

mb

 . (2.46)

Introducing these into the Yukawa term, we find the transformations between weak

(flavour) eigenstates, denoted as Q′, and the mass eigenstates Q, to be

U ′
iL → V

(u)
ij UiL, U ′

iR → U
(u)
ij UjR, (2.47)

D′
iL → V

(d)
ij DiL, D′

iR → U
(d)
ij DjR. (2.48)

When performing such transformations to diagonalise the Yukawa Lagrangian, it is then

necessary to implement this throughout the whole Lagrangian. However, it is found that

the mass matrices Y (u), Y (d) cannot be diagonalised simultaneously. This has significant

implications for charged interaction terms involving both up-type and down-type quarks,

i.e. the flavour-changing charged currents of the weak sector also involving a W± boson.

The weak current JµW transforms as

JµW = Ū ′
iLγ

µD′
iL → ŪjLV

(u)†
ji γµV

(d)†
ik DkL = ŪjLγ

µVCKM,jkDkL, (2.49)
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where we choose to diagonalise the up-type quarks and rotate the down-type quarks

between their flavour and mass eigenstates with V
(u)†
ji V

(d)
ik = VCKM,jk the Cabibbo-

Kobayashi-Maskawa matrix [72, 73]. We can write the rotation between flavour eigen-

states d′, s′, b′ and mass eigenstates d, s, b as
d′

s′

b′

 = VCKM


d

s

b

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 . (2.50)

Now for every weak charged current, an element of the CKM matrix enters as a measure

of the interaction strength between the up-type quarks (diagonalised in their mass eigen-

states) and the down-type quarks. These CKM matrix elements are in every weak decay

process involving quark currents in experiment and can therefore be strongly constrained

based on a collection of processes with the same quark content.

To better understand the CKM matrix, forming a parameterisation can give useful

insights. One such is the standard parameterisation [74] which follows from extending the

Cabibbo angle of mixing between the first two generations [72] to all three generations.

This requires three Cabibbo-like matrices (each with its own angle) and also the inclusion

of a phase by the requirements of a general 3 × 3 mixing matrix:

VCKM =


1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23




cos θ13 0 sin θ13e
iδ

0 1 0

− sin θ13e
iδ 0 cos θ13




cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12c23 − c12c23s13e
iδ −c12s23 − s12c23s12e

iδ s23c13

 ,

(2.51)

where we introduce the shorthands cij = cos θij , sij = sin θij . The complex phase δ

introduces CP violation into the weak quark currents and is the only source of CP

violation in the Standard Model. In fact one of the main motivations to extend the SM

beyond two fermion generations was the observed CP violation in kaon decays, hinting

at the quark mixing matrix being at least 3 × 3 in order to have at least one complex

CP phase.

The magnitudes of the CKM matrix elements follow a strong hierarchy, with the diago-

nal elements being closest to unity and the rest getting smaller as they get further from

the diagonal. This fact is not immediately clear from considering the standard param-

eterisation, however an approximation known as the Wolfenstein parameterisation [75],

while only accurate to a certain order, strongly features this hierarchy. We introduce
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2 12. CKM Quark-Mixing Matrix

Figure 12.1: Sketch of the unitarity triangle.

The CKMmatrix elements are fundamental parameters of the SM, so their precise determination
is important. The unitarity of the CKM matrix imposes ∑i VijV

∗
ik = δjk and ∑j VijV

∗
kj = δik. The

six vanishing combinations can be represented as triangles in a complex plane, of which those
obtained by taking scalar products of neighboring rows or columns are nearly degenerate. The
areas of all triangles are the same, half of the Jarlskog invariant, J [7], which is a phase-convention-
independent measure of CP violation, defined by Im

[
VijVklV

∗
ilV
∗
kj

]
= J

∑
m,n εikmεjln.

The most commonly used unitarity triangle arises from

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0 , (12.6)

by dividing each side by VcdV ∗cb (see Fig. 12.1). Its vertices are exactly (0, 0), (1, 0), and, due to
the definition in Eq. (12.4), (ρ̄, η̄). An important goal of flavor physics is to overconstrain the
CKM elements, and many measurements can be conveniently displayed and compared in the ρ̄, η̄
plane. While the Lagrangian in Eq. (12.1) is renormalized, and the CKM matrix has a well-known
scale dependence above the weak scale [8], below µ = mW the CKM elements can be treated as
constants, with all µ-dependence contained in the running of quark masses and higher-dimension
operators.

Unless explicitly stated otherwise, we describe all measurements assuming the SM, to extract
magnitudes and phases of CKM elements in Sec. 12.2 and 12.3. Processes dominated by loop-level
contributions in the SM are particularly sensitive to new physics beyond the SM (BSM). We give
the global fit results for the CKM elements in Sec. 12.4, and discuss some implications for beyond
standard model physics in Sec. 12.5.
12.2 Magnitudes of CKM elements
12.2.1 |Vud|

The most precise determination of |Vud| comes from the study of superallowed 0+ → 0+ nuclear
beta decays, which are pure vector transitions. Taking the average of the fifteen most precise
determinations [9] yields [10]

|Vud| = 0.97373± 0.00031 . (12.7)

1st December, 2023

Figure 2.2: The unitarity triangle defined by equation (2.57), taken from [54].

the small parameter [76]

λ = s12 ≈ 0.22498 (2.52)

and can then perform a Taylor expansion of the standard parameterisation. In addition

to λ, the parameters A, ρ, η also enter via

Aλ2 = s23, Aλ3(ρ− iη) = s13e
−iδ. (2.53)

Traditionally, the Wolfenstein parameterisation is taken to order λ3 where the CKM

matrix then reads

VCKM =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (2.54)

Furthermore in the SM the CKM matrix is constructed to be unitary, i.e.

V †
CKMVCKM = VCKMV

†
CKM = 1. (2.55)

This leads to the unitarity constraints on the elements of the CKM matrix:∑
k

|Vjk|2 = 1,
∑
k

|Vkj |2 = 1,

∑
k

VikV
∗
jk = 0,

∑
k

VkiV
∗
kj = 0.

(2.56)

The six vanishing constraints can be drawn as triangles in the complex plane of ρ, η,

e.g. from the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (2.57)
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Figure 2.3: CKM unitarity constraints in the (ρ̄, η̄) plane from the CKMfitter collab-
oration [76] as of May 2024.

a unitarity triangle can be defined through dividing by VcdV
∗
cb. This defines a vector

path forming a triangle in the complex plane, drawn as shown in figure 2.2 taken from

[54]. The sides and angles of the unitarity triangle can be constrained by comparing ex-

perimental measurements to theoretical predictions. If unitarity holds, then the triangle

will be closed. The unitarity of the CKM matrix further maintains that no tree-level

flavour-changing neutral currents (FCNCs) exist within the SM. The current status of

CKM element constraints and the unitarity triangle is analysed by e.g. the CKMfitter

collaboration, where their latest results are shown in figure 2.3 [76]; alternative analysis

and results are given by the UTfit collaboration [77–79].



Chapter 3

Theoretical and

Phenomenological Foundations

In this chapter, we discuss the theoretical and phenomenological foundations and mo-

tivations of the calculations and discussions presented in later chapters. In section 3.1,

we discuss the use of effective field theories where one can separate high- and low-energy

effects in a general language useful for both high precision calculations within the Stan-

dard Model and generalising to models including new physics. Then in section 3.2 an

overview of heavy flavour physics is given, touching on its important theoretical aspects

and phenomenological outlook with specific interest towards B mesons. This will mark

the starting point from which the calculations of this thesis begin.

3.1 Effective Field Theories

It is evident in the universe around us that phenomena occur at vastly different scales

and through different interactions. Understanding physics at all these different scales

would in principle require a complete theory of nature. However, an understanding

of the dominant effects at an energy scale E can still be reached by seeing that the

large separation of scales in the universe means that physics much larger or smaller

than the energy scale E becomes irrelevant at leading approximation. This is largely

how physics has progressed in its different disciplines for many years, although not

explicitly formulated as such until more recent history. An effective field theory (EFT)

is the formal method of acknowledging the separation of scales present in a chosen

problem for a more complete physical theory and creating a quantitative framework

using appropriate degrees of freedom at the given energy scale to simplify calculations

for the chosen problem. Oftentimes using an EFT can also lead to new insights into the

sorts of interaction in question.

25
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In the following we will introduce EFTs as they are used in particle physics (with a

focus on heavy quark physics) although it is important to note that EFTs are essential

tools explicitly used in all area of physics to appropriately focus on whichever problem

one considers. In understanding that the complete theory of nature is at a much higher

energy scale than physics currently probes, unifying all fundamental interactions (in-

cluding gravity), one can see that in fact all physical theories used today are simply

effective theories of this ultimate theory taken in different limits.

In section 3.1.1, we introduce the common starting point for EFTs as used in modern

particle physics, the weak effective theory (WET), and in section 3.1.2 it is discussed how

the WET can be used to consider the effects of physics beyond the Standard Model.

Then, in section 3.1.3, we consider the heavy quark effective theory (HQET) which sep-

arates a heavy quark from the light degrees of freedom of QCD. Finally in section 3.1.4,

we review the heavy quark expansion (HQE) as a method to calculate the decay rates

of hadrons containing a heavy quark. This section serves as a brief introduction to the

very broad and deep subject of EFTs. The content on the WET is inspired by and

follows [80–83], and the content on HQET and HQE is derived from [84–90]. These

references also serve as broader reviews of effective field theories in particle physics and

more in-depth descriptions of the effective theories discussed here.

3.1.1 Weak Effective Theory

Studying the weak sector of the Standard Model often leads to multi-scale problems

due to the mediating bosons having much larger masses than all other energy scales

in many scenarios. For example, if one studies weak charged currents mediated by

W± bosons, there exists three scales of interest: the mass scale of the mediator mW ,

the mass scale of the decaying fermion mf , and, in the case of heavy quark decays,

the hadronic scale of non-perturbative QCD effects ΛQCD. This results in a problem

with the hierarchy mW ≫ mf ≫ ΛQCD. To deal with this kind of problem in the full

Standard Model formulation is to struggle against the large separation of scales and it is

therefore advantageous to introduce an effective theory to reduce this to a much simpler

combination of single-scale problems.

Consider the non-leptonic decay b→ cūd as an example, shown at tree level in figure 3.1.

In the SM, its amplitude is given by

M =
g2

8
V ∗
cbVud

(
c̄α(x)(1− γ5)γ

µbα(x)
)
Dµν(x, y)

(
d̄β(y)(1− γ5)γ

νuβ(y)
)
,

Dµν(x, y) = −
∫

d4q

(2π)4
1

q2 −m2
W

(
gµν −

qµqν
m2
W

)
e−iq·(x−y),

(3.1)
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where g is the SU(2) gauge coupling. Our amplitude is described by the product of

two bilinear quark operators at positions x and y with a W boson exchanging between

the two. Due to momentum conservation, the momentum q entering the W -boson

propagator Dµν saturates at the order of the mass of the decaying quark, i.e. k ≲

mb ≪ mW . The strong coupling is rather large at the scale mb, i.e. αs(mb) ∼ 0.2, and

b

c

W−

ū

d

á
b

c

ū

d

Figure 3.1: The non-local tree-level diagram for the non-leptonic b → cūd decay
in the full Standard Model theory (left) and the local effective diagram in the weak
effective theory (right).

thus QCD corrections in perturbation theory will be significant. Calculating the QCD

corrections at 1-loop order (shown in figure 3.2), one finds terms O(αs) but also terms

with large logarithms O(αs ln(m
2
b/m

2
W )). Thus we do not have an expansion in αs but

b

c

W−

ū

d

b

c

W−

ū

d

b

c

W−

ū

d

Figure 3.2: Diagrams contributing to the b → cūd decay in the full theory at NLO
in QCD. Further symmetric diagrams are not shown.

in αs ln(m
2
b/m

2
W ) ∼ 6αs, which is clearly an invalid expansion parameter for αs(mb) and

thus our perturbative approach in the full theory breaks down.

Expanding the propagator in 1/m2
W , we find at leading order

Dµν(x, y) ≈
gµν
m2
W

δ(4)(x− y) +O

(
q2

m4
W

)
. (3.2)
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Inserting this into the amplitude, one finds

M =
g2

8m2
W

V ∗
cbVud

(
c̄α(x)(1− γ5)γ

µbα(x)
)(
d̄β(x)(1− γ5)γ

νuβ(x)
)
. (3.3)

We have integrated out the heavy mediator boson and in place of a non-local product of

two operators, we now have a single local, effective operator. This reduction is shown in

figure 3.1. Reducing the charged weak interaction to a point-like operator between four

fermions is actually returning to the Fermi interaction [91, 92] which described β decays

before the full theory of the weak interaction was developed. As such, it is common

to still express this effective theory with an effective coupling equivalent to the Fermi

constant GF , defined as
GF√
2
=

g2

8m2
W

. (3.4)

At tree level, the amplitude is given by equation (3.3), however at NLO one also includes

the QCD corrections shown in figure 3.2. In fact, one now finds that the gluon exchange

at NLO allows for a second colour structure in the four-quark operator, leading to the

two local effective four-quark operators defined as

Q1 =
(
c̄α(x)(1− γ5)γ

µbβ(x)
)(
d̄β(x)(1− γ5)γ

νuα(x)
)
,

Q2 =
(
c̄α(x)(1− γ5)γ

µbα(x)
)(
d̄β(x)(1− γ5)γ

νuβ(x)
)
.

(3.5)

Note that we have simplified things by explicitly choosing the tree-level decay b→ cūd.

In the complete effective Hamiltonian, there are additional four-quark operators from

QCD and electroweak penguin diagrams, as well as magnetic penguin diagrams with an

on-shell gluon or photon and semileptonic penguin and box diagrams; the corresponding

Feynman diagrams are shown in figure 3.3.

Following Wilson’s operator product expansion (OPE) [93, 94], we can place the pertur-

bative QCD corrections in Wilson coefficients (WCs) and write the effective Hamiltonian

as a sum of local operators multiplied by Wilson coefficients. This reads

Heff(x) =
GF√
2
V ∗
cbVud

[
C1Q1(x) + C2Q2(x)

]
. (3.6)

Clearly at leading order, C1 = 0, C2 = 1. So the perturbative short-distance QCD effects

at the scale mW are contained within the Wilson coefficients Ci and the long-distance

QCD effects at the scale ΛQCD are contained in the matrix elements of the operators

Qi. QCD effects at the scale ΛQCD are of course non-perturbative and therefore require

methods beyond perturbation theory to be calculated (see chapter 5).

To derive the Wilson coefficients at the scale mW , we can compare the amplitude in the

full theory to that of the effective theory.
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b W−
s

q q

t

(a) QCD penguin

b W−
s

Z, γ

q q

t

(b) Electroweak penguin

b W−
s

g, γ

t

(c) Magnetic penguin

b W−
s

Z, γ

µ µ

t

(d) Semileptonic penguin

b t s

µ+ ν̄µ µ+

W− W+

(e) Semileptonic box

Figure 3.3: Feynman diagrams contributing to the operators of the weak effective
Hamiltonian.

The amplitude in the full theory (at 1 loop in QCD) reads

Afull =
GF√
2
V ∗
cbVud

[(
1 + 2CF

αs
4π

+ ln

(
µ2

−p2
))

⟨Q2⟩tree +
3

Nc

αs
4π

ln

(
m2
W

−p2
)

⟨Q2⟩tree

− 3
αs
4π

ln

(
m2
W

−p2
)

⟨Q1⟩tree
]
,

(3.7)

where ⟨Qi⟩tree indicate the tree-level matrix elements of operators Qi. For a derivation

of this expression, see [81]. Here we work in the leading logarithm approximation which

equates to keeping terms O(αs ln(·)) while neglecting terms O(αs).

In the effective theory, we find the unrenormalised matrix elements of Qi at NLO in

QCD as

⟨Q1⟩(0) =
[
1 + 2CF

αs
4π

(
1

ϵ
+ ln

(
µ2

−p2
))]

⟨Q1⟩tree +
3

Nc

αs
4π

(
1

ϵ
+ ln

(
µ2

−p2
))

⟨Q1⟩tree

− 3
αs
4π

(
1

ϵ
+ ln

(
µ2

−p2
))

⟨Q2⟩tree, (3.8)

⟨Q2⟩(0) =
[
1 + 2CF

αs
4π

(
1

ϵ
+ ln

(
µ2

−p2
))]

⟨Q2⟩tree +
3

Nc

αs
4π

(
1

ϵ
+ ln

(
µ2

−p2
))

⟨Q2⟩tree

− 3
αs
4π

(
1

ϵ
+ ln

(
µ2

−p2
))

⟨Q1⟩tree. (3.9)

These results are clearly divergent with 1/ϵ poles appearing in each term. The first poles
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inside the square brackets are removed with the quark field renormalisation, however the

remaining poles require normalisation of the operators. For some 2 × 2 renormalisation

matrix Ẑ, the renormalisation condition is

Q
(0)
i = ẐijQj . (3.10)

For the matrix elements of the operators, one must also include the quark field renor-

malisation Zq, which translates to

⟨Qi⟩(0) = Z−2
q Ẑij⟨Qj⟩. (3.11)

The renormalisation in the MS scheme [95] to O(αs) reads

Zq = 1− 1

ϵ

CFαs
4π

, Ẑ = 1+
αs
4π

1

ϵ

(
3
Nc

−3

−3 3
Nc

)
. (3.12)

The renormalised operators are then given by

⟨Q1⟩ =
[
1 + 2CF

αs
4π

ln

(
µ2

−p2
)]

⟨Q1⟩tree +
3

Nc

αs
4π

ln

(
µ2

−p2
)

⟨Q1⟩tree

− 3
αs
4π

ln

(
µ2

−p2
)

⟨Q2⟩tree, (3.13)

⟨Q2⟩ =
[
1 + 2CF

αs
4π

ln

(
µ2

−p2
)]

⟨Q2⟩tree +
3

Nc

αs
4π

ln

(
µ2

−p2
)

⟨Q2⟩tree

− 3
αs
4π

ln

(
µ2

−p2
)

⟨Q1⟩tree. (3.14)

Finally, matching the amplitude of the full theory in equation (3.7) with the effective

amplitude using these renormalised operators, i.e.

Afull = Aeff =
GF√
2
V ∗
cbVud [C1⟨Q1⟩+ C2⟨Q2⟩] , (3.15)

we obtain the expressions for the WCs (as long as the same renormalisation prescription

has been used for the full and effective theories), reading

C1(µ) = 0− 3
αs(µ)

4π
ln

(
m2
W

µ2

)
, (3.16)

C2(µ) = 1 +
3

Nc

αs(µ)

4π
ln

(
m2
W

µ2

)
. (3.17)

Here we can see the expected behaviour that neglecting QCD, i.e. αs → 0, returns us to

the tree-level description with C1 = 0, C2 = 1. Equivalently, setting µ = mW , i.e. the

matching scale between the full and effective theories, also returns this result.
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We are seeing one of the powers of the OPE description: in the full theory, large loga-

rithms arise from the ratio of the different scales, while in the effective theory, the short-

and long-distance effects can be factorised into the WCs and operators respectively.

Explicitly, at O(αs), we find

Afull︷ ︸︸ ︷(
1 +

3

Nc

αs
4π

ln

(
m2
W

−p2
))

=

Ci(µ)︷ ︸︸ ︷(
1 +

3

Nc

αs
4π

ln

(
m2
W

µ2

)) ⟨Qi⟩︷ ︸︸ ︷(
1 +

3

Nc

αs
4π

ln

(
µ2

−p2
))

. (3.18)

So one sees a splitting of the logarithm as

ln

(
m2
W

−p2
)

= ln

(
m2
W

µ2

)
ln

(
µ2

−p2
)
, (3.19)

which originates from a splitting in the integration over loop momentum, i.e.

∫ m2
W

−p2
dk2

k2
=

∫ m2
W

µ2

dk2

k2
+

∫ µ2

−p2
dk2

k2
. (3.20)

So the high-energy perturbative physics [µ2,m2
W ] is contained in the Wilson coefficients,

and the low-energy non-perturbative physics [−p2, µ2], bounded by the off-shell momen-

tum p, is described by the matrix elements of the local operators. The renormalisation

scale µ ∼ O(GeV) acts as a separation scale between short- and long-distance effects.

However, one finds that the calculation of the WCs will become quickly unreliable as

the renormalisation scale µ is decreased from mW , since

αs ln

(
m2
W

µ2

)
∼ O(1), for µ2 ≪ m2

W , (3.21)

which means that a series expansion in these logarithms does not converge at these scales.

To combat this, recall the renormalisation group equations discussed in section 2.3.2.

For the running coupling αs(µ), using αs(mZ) as an input value from experiment [54],

this can be written as

αs(µ) =
αs(mZ)

1− β0
αs(mZ)

2π ln
(
mZ
µ

) , (3.22)

with β0 =
11
3 Nc − 2

3Nf . Expanding this, we find

αs(µ) = αs(mZ)

[
1−

∞∑
n=1

(
β0
αs(mZ)

2π
ln

(
mZ

µ

))n]
. (3.23)

From this result, it is clear that the renormalisation group automatically sums the large

logs to all orders in perturbation theory. Now we turn to apply the same principles

to the effective Hamiltonian. We first introduce the renormalisation condition for the
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Wilson coefficients as

Ci = ẐTijC
(0)
j , (3.24)

where the use of the same renormalisation matrix as for the local operators is enforced

by requiring that the effective Hamiltonian is scale independent. It follows that

dCi(µ)

d lnµ
=
dẐTij(µ)

d lnµ
C

(0)
j

= ẐT,−1
ij

d

d lnµ
ẐTij(µ)C

(0)
j

≡ γ̂TijCj(µ),

(3.25)

with the anomalous dimension matrix defined

γ̂ = Ẑ−1 d

d lnµ
Ẑ(µ). (3.26)

Explicitly, (at leading order) this yields

γ̂(0)(αs) =
αs
4π

(
− 6
Nc

6

6 − 6
Nc

)
. (3.27)

It is common to present equation (3.25) in terms of an evolution matrix Û(µ, µ0) which

contains the information from the RGE to ‘run’ the Wilson coefficients from scale µ0 to

µ, i.e.

Ci(µ) = Ûij(µ, µ0)Cj(µ0), (3.28)

where the evolution matrix is defined as

Û(µ, µ0) =

[
αs(µ)

αs(µ0)

]− γ̂(0)

2β0

. (3.29)

To utilise the full strength of the RGE, we set µ0 = mW , which results in C1(µ0) =

0, C2(µ0) = 1, i.e. their tree-level expressions, and all the large logarithms ln
(
m2
W /µ

2
)

are then summed up within the RGE.

Finally, it is important to note that the renormalisation scale µ will affect the number

of effective quark flavours present in the calculation. The number of effective flavours f

is defined as

f =



6, µ ≳ mt,

5, mb ≲ µ ≲ mt,

4, mc ≲ µ ≲ mb,

3, µ ≲ mc.

(3.30)
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As µ decreases below different quark mass thresholds, these quarks can no longer be

dynamically produced and thus can similarly be integrated out of the effective theory

as the W± boson. It turns out there is some freedom at which point a heavy quark

is integrated out, e.g. a five-flavour theory can typically be extended to µ = mb/2
1.

This effect is important in the matching procedure as threshold effects between e.g. five-

flavour theory running from the mW scale tomb and the four-flavour theory for a process

with renormalisation scale µ ∼ mc must be taken into account.

3.1.2 Weak Effective Vertices from New Physics

We have seen the basic implementation of the weak effective theory as a method of sep-

arating short- and long-distance effects in the calculation of a Standard Model process

such that we avoid large expansion parameters in our perturbation theory. In fact, the

power of the OPE can go further than simply aiding in Standard Model calculations

– it can also be used to study new physics effects beyond the SM. Typically (although

not always), extensions to the Standard Model consider theories defined at or above the

electroweak scale, introducing new mediator particles with masses on the order of this

new scale. By analogy to the heavy W± boson, these mediators can be integrated out

of the new physics amplitudes and a low-energy effective theory can be prescribed. This

low-energy effective theory can easily be matched to one used in SM calculations, such

as SMEFT (see e.g. [96]) or WET. Extending the effective Hamiltonian to allow for all

possible Dirac structures, not just those present in the SM, one has local operators for

any heavy mediators from new physics. With the additional Feynman diagrams intro-

duced by the new physics theory, the Wilson coefficients of these new operators can be

calculated in perturbation theory, while the matrix elements of the long-distance QCD

physics are still calculated non-perturbatively as before2. Since the Wilson coefficients

simply come from summing all contributing diagrams, if the new physics model con-

tributes to operators also affected by the SM, then the resulting Wilson coefficient is the

sum of the two, i.e.

Ci(µ) = Ci(µ)
SM + Ci(µ)

NP . (3.31)

One can see that this is actually true for all Dirac structures, with CSMi = 0 for those not

present in the Standard Model. The inclusion of new physics effects in our effective the-

ory is then clearly defined and rather straightforward to implement using equation (3.31);

we will make use of this when we consider a specific new physics scenario in chapter 4.

1It is also the convention to estimate the error from higher-order corrections by using the range
mb
2

< µ < 2mb which is always done within the same effective theory.
2One can also propose some low-energy new physics models which would interfere with the low-energy

matrix elements, but typically this is much more constrained and will not be discussed further here.
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3.1.3 Heavy Quark Effective Theory

We have already discussed how the phenomena of confinement in QCD leads to a large

coupling αs at scale O(ΛQCD) such that the description of hadronic states is in general

highly non-perturbative. However, hadronic states containing a heavy quark Q with

mQ ≫ ΛQCD can have significant simplifications in their description since the larger scale

of the heavy quark results in some physics approaching the perturbative regime with

a smaller coupling αs(mQ). The most significant examples of this are heavy quarkonia

systems, i.e. QQ̄meson states, which can be modelled very similarly to a hydrogen atom.

The description of heavy-light hadrons, i.e. a hadronic state with one heavy quark Q, is

not as simple as heavy quarkonia, however still simplifications can be found compared

to the completely non-perturbative picture of lighter hadrons. These systems can be

described as a heavy quark surrounded by a “brown muck” of strongly-interacting gluons

and light quarks. Here the heavy quark interacts through the exchange of soft gluons

and is mostly on-shell, with fluctuations of the order ΛQCD. Thus in the
ΛQCD

mQ
→ 0

limit, these fluctuations vanish and the four-velocity vµ of the heavy quark becomes

a conserved quantity. One will find that in this limit, the heavy quark behaves as a

static colour source interacting with the “brown muck”, which is unable to resolve other

quantum numbers such as flavour and spin at leading order. In quark-mass power-

suppressed terms, these relativistic effects will come into play and can be accounted

for perturbatively as part of an OPE. This is know as the heavy quark effective theory

(HQET). In this section, we provide a brief introduction to HQET [97–100].

For a hadron containing a heavy quark Q, the foundation of HQET is the assumption

that the heavy quark moves with the same velocity as the hadron, vµ, and is almost

on-shell itself. Georgi [97] wrote the momentum of the heavy quark pµQ as

pµQ = mQv
µ + kµ, (3.32)

for the heavy quark mass mQ. v
µ is the hadron/heavy quark four-velocity which satisfies

v2 = 1 and kµ ∼ O(ΛQCD) is the residual momentum describing how off-shell the heavy

quark is due to QCD interactions with the light degrees of freedom, i.e. the “brown

muck” of gluons and light quarks surrounding the heavy quark. To describe a heavy

quark in the limit mQ → ∞ with fixed vµ, kµ, one can consider the simplification of the

heavy quark propagator:

i
/pQ +mQ

p2Q −m2
Q + iϵ

=
i

v · k + iϵ

(
1 + /v

2

)
+O

(
k

mQ

)
=⇒ i

v · k + iϵ
P+, (3.33)
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where P+ is the projection operator for the positive energy modes of the Dirac field.

Also including the conjugate, these operators satisfy

P± =
1± /v

2
, P 2

± = P±, P±P∓ = 0. (3.34)

Considering the heavy quark’s rest frame, vµ = (1, 0⃗),

P± =
1± γ0

2
=⇒ P+ =

(
12 0

0 0

)
, P− =

(
0 0

0 12

)
. (3.35)

So the projectors P± project to the upper (lower) two components of the quark spinor.

Using the relation

P+γ
µP+ = P+v

µP+, (3.36)

the heavy quark-gluon coupling can also be simplified as

igTaγ
µ =⇒ igTav

µ +O

(
1

mQ

)
. (3.37)

The Feynman rules for the heavy quark propagator and heavy quark-gluon coupling are

given in figure 3.4. The heavy quark field itself can be parameterised as

Q(x) = e−imQv·xhv(x) +O

(
k

mQ

)
(3.38)

for the effective heavy quark field hv(x) which satisfies

hv(x) = eimQv·x 1 + /v

2
Q(x) =⇒ P+hv(x) = hv(x). (3.39)

The exponential factor in equation (3.38) removes the large ‘kinetic’ piece (mQv) from

i j
v, k

= i
v·k+iε

1+/v
2 δij

i j
v

µ, a

= igs(Ta)jiv
µ

Figure 3.4: Feynman rules in the heavy quark effective theory.

the heavy quark momentum, such that hv(x) only returns the residual momentum k in

momentum space. We can now express the effective Lagrangian for HQET as

LHQET(x) = h̄v(x)i(v ·D)hv(x) = h̄v(x)
(
ivµ∂µ + gsTav

µAaµ
)
hv(x). (3.40)
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This Lagrangian is only an approximation to the QCD Lagrangian for a heavy quark

since, in the rest frame, hv is a two-component field containing only upper components

of the spinor. hv will annihilate a heavy quark with velocity vµ but will not create an

antiquark, and similarly h̄v will create a heavy quark with velocity vµ but will not anni-

hilate an antiquark, i.e. the number of heavy quarks in the effective theory is conserved

– heavy pair production is not present. Furthermore, the Lagrangian is independent

of the mass of the heavy quark, such that the description is unchanged if the heavy

quark Q is replaced by another heavy quark Q′, assuming the same velocity vµ and

m′
Q ≫ ΛQCD; the theory is invariant in flavour space. Finally, one sees that there are no

Dirac matrices in the effective Lagrangian, so the spin of the heavy quark is unaffected

by interactions with gluons. Combining this with the flavour invariance, one sees there

is a heavy quark SU(2Nh) spin-flavour symmetry in the strong HQET limit, which will

clearly be broken by mass correction terms.

The heavy quark field Q actually contains another component, Hv, defined by

Hv(x) = eimQv·x 1− /v

2
Q(x), P−Hv(x) = Hv(x). (3.41)

So in the rest frame Hv(x) is a two-component field for the lower components of the

spinor, and corresponds to the “small” components of Q; it creates a heavy antiquark

with velocity vµ. Now taking Hv into account, the heavy quark field is defined

Q(x) = e−imQv·x [hv(x) +Hv(x)] . (3.42)

Then, re-expressing the QCD Lagrangian for heavy quarks with these fields, we find

LQCD = Q̄(x) (i /D −mQ)Q(x)

=
[
h̄v(x) +Hv(x)

] (
mQ/v + i /D −mQ

)
[hv(x) +Hv(x)]

= h̄v(x)i(v ·D)hv(x)−Hv(x) (iv ·D + 2mQ)Hv(x)

+ h̄v(x)i /D⊥Hv(x) + H̄v(x)i /D⊥hv(x),

(3.43)

where we have introduced the covariant derivative orthogonal to the velocity as

Dµ
⊥ = Dµ − vµ(v ·D). (3.44)

We have now arrived at the Lagrangian for a heavy quark which is still finite, i.e.

mQ /→∞. The large component field hv describes the massless degrees of freedom, while

the small component field Hv describes massive fluctuations with mass 2mQ. The two

fields mix in the terms written on the last line of equation (3.43), which describe pair

creation and annihilation of heavy quarks and antiquarks. This also results in virtual
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corrections to the heavy quark propagator. Drawing this vertex in figure 3.5, one sees

that this corresponds to a heavy quark propagating forwards in time then turning into a

heavy antiquark propagating backwards in time before turning back into a heavy quark.

The intermediate quantum state formed by this virtual correction has an energy at least

Figure 3.5: Virtual fluctuation in the HQET heavy quark propagator via the creation
and annihilation of a heavy antiquark, with time flowing from left to right.

2mQ larger than the initial heavy quark and can only propagate over a distance ∼ 1/mQ.

At energy scales O(ΛQCD), this process looks like a local interaction, reading

h̄v(x)i /D⊥
1

2mQ
i /D⊥hv(x), (3.45)

where the heavy antiquark propagator is replaced by i/2mQ. More systematically, we

can look to integrate out the heavy degrees of freedom described by Hv and derive a

non-local effective Lagrangian only for the large component field hv. To eliminate Hv,

one can derive the equations of motion (EoMs) for hv and Hv, finding

−i(v ·D)hv(x) = i /D⊥Hv(x), (3.46)

(iv ·D + 2mQ)Hv(x) = i /D⊥hv(x). (3.47)

If the second EoM is inverted, one obtains

Hv(x) =
1

iv ·D + 2mQ − iϵ
i /D⊥hv(x), (3.48)

which confirms the description that Hv is the small component field since it is O(1/mQ).

Inserting this into equation (3.46), we can find the effective Lagrangian

Leff = h̄v(x)i(v ·D)hv(x) + h̄v(x)i /D⊥
1

iv ·D + 2mQ − iϵ
i /D⊥hv. (3.49)

This is the generalisation of LHQET (see equation (3.40)) for large, but not infinite,

heavy quark mass. We now have a description of the QCD interactions of a heavy quark

at energy scale O(ΛQCD), where the heavy degrees of freedom described by Hv are no

longer relevant and we can express the theory only in hv.
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Since the Fourier transform of hv only returns the small residual momentum k ≪ mQ,

we can express equation (3.49) as an expansion in iD/mQ to produce an OPE. Using

the identity

P+i /D⊥i /D⊥P+ = P+

[
(iD⊥)

2 +
gs
2
σαβG

αβ
]
P+ ∵ [iDα, iDβ ] = igsG

αβ , (3.50)

we can now write the effective Lagrangian as

Leff = h̄v(x)i(v·D)hv(x)+
1

2mQ
h̄v(x)(iD⊥)

2hv(x)+
gs

4mQ
h̄v(x)σαβG

αβhv(x)+O

(
1

m2
Q

)
.

(3.51)

This coincides with the HQET Lagrangian written in equation (3.40) at leading order,

with two new operators introduced at O(1/mQ). In the rest frame, one can easily identify

these new operators as:

Okin = h̄v(x)(iD⊥)
2hv(x) → −h̄v(x)(iD⃗)2hv(x), (3.52)

Omag =
gs
2
h̄v(x)σαβG

αβhv(x) → −2gsh̄v(x) S⃗ · B⃗chv(x), (3.53)

where S⃗ = 1
2γ5γ

0γ⃗ is the spin operator and Bi
c = −1

2ϵ
ijkGjk are the colour-magnetic

gluon field components, and we have neglected the prefactor 1
2mQ

for simpler use later

on. The first operator, Okin, is the covariant extension of the kinetic energy due to

the heavy quark’s residual off-shell momentum inside the hadron. The second operator,

Omag, is the non-Abelian equivalent to the Pauli term – the chromomagnetic interaction

of the heavy quark spin with the gluon field.

Using the expression for Hv found in equation (3.48), we can find a similar expansion

in 1/mQ for the heavy quark field Q(x):

Q(x) = e−imQv·x
[
1 +

1

iv ·D + 2mQ − iϵ
i /D⊥

]
hv(x)

= e−imQv·x
[
1 +

1

2mQ
i /D⊥ +

(−iv ·D)

4m2
Q

i /D⊥ + . . .

]
hv(x).

(3.54)

This allows us to construct in HQET any operator containing a heavy quark field.

Consider, for example, the heavy-light vector current Vµ = q̄(x)γµQ(x) for a light quark

q with mass mq ≪ mQ. At order
1
mQ

, this reads

Vµ(x) = e−imQv·xq̄(x)γµ
(
1 +

1

2mQ
i /D⊥ + . . .

)
hv(x). (3.55)
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A matrix element of the vector current, e.g. between a heavy meson M(v) and the

vacuum then has the following form:

⟨0|Vµ|M(v)⟩ = ⟨0|q̄γµhv|M(v)⟩+ 1

2mQ
⟨0|q̄γµi /D⊥hv|M(v)⟩+ · · · . (3.56)

We would like the matrix elements on the right-hand-side of this relation to be indepen-

dent of mQ such that they can be described universally [100, 101], and the higher-order

terms give power corrections to the leading term. However, by deriving the EoMs from

the Lagrangian in equation (3.51), one finds that hv itself has an expansion in 1
mQ

, so the

eigenstates of the Lagrangian depend themselves on the heavy quark mass. By choosing

to work with the eigenstates of equation (3.40) and treating the higher-dimension oper-

ators such as Okin,mag as perturbations of this Lagrangian, we can rewrite the effective

Lagrangian in equation (3.51) as

Leff = LHQET + Lpower, (3.57)

Lpower =
1

2mQ
L1 +

1

4m2
Q

L2 + . . . . (3.58)

From this, the EoM for hv is given by

i(v ·D)hv(x) = 0, (3.59)

such that the eigenstates of our effective theory are now independent of the heavy quark

mass. These states are however different from the states found in the full theory. For

example, consider again the matrix element of the vector current between a heavy meson

and the vacuum:

⟨0|V µ|M(v)⟩QCD = ⟨0|q̄γµhv|M(v)⟩HQET

+
1

2mQ
⟨0|q̄γµi /D⊥hv|M(v)⟩HQET

+
1

2mQ
⟨0|i

∫
d4y T {q̄γµhv(0),L1(y)} |M(v)⟩HQET

+O

(
1

m2
Q

)
.

(3.60)

Expressed this way, the HQET matrix elements are now independent of mQ, however

the QCD matrix element still has mass dependence which is seen in the third line with

the appearance of L1. This time-ordered product can be thought of as a correction to

the heavy meson wavefunction. The HQET and QCD matrix elements are therefore

evaluated between different eigenstates |M(v)⟩HQET and |M(v)⟩QCD.
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Finally, one can use the EoMs again to extract the operators of the power-correction

Lagrangian Lpower. To order 1
m2

Q
, one finds

L1 = h̄v(x)(iD)2hv(x) +
gs
2
h̄vσαβG

αβhv(x) = Okin +Omag, (3.61)

L2 = gh̄v(x)σαβvγiD
αGβγhv(x) + gh̄v(x)vαDβG

αβhv(x). (3.62)

3.1.4 The Heavy Quark Expansion

The lifetime τ , given by the inverse of the decay width τ = Γ−1, is one of the most funda-

mental properties of an elementary or composite particle. Of particular interest are the

lifetimes of hadrons containing heavy quarks, which decay via the weak interaction. We

already described in section 3.1.3 how, for instance, heavy-light mesons can be thought

of as a static heavy quark Q surrounded by the “brown muck” of non-perturbative light

quarks and gluons. In the infinite mass limit, this description is at its simplest, where

the heavy quark decouples from the non-perturbative cloud of QCD interactions and the

hadron can be described fully by the dynamics of the heavy quark [102]. In this limit, it

is clear that all mesons/baryons with any flavour of heavy quark should behave the same,

however in reality we find this is not the case. For the heavier bottom quark, hadrons

mostly follow this prescription with only small deviations (see e.g. [26]), while for the

lighter charm quark, hadrons exhibit larger variation (see e.g. [103]). So the infinite mass

limit requires correction terms in order to properly describe hadrons with heavy quarks

of physical, finite mass. The heavy quark expansion (HQE) is the theoretical framework

developed to describe the inclusive decays of heavy hadrons by systematically correcting

the infinite mass limit in an OPE through the hierarchy ΛQCD ≪ mQ. Below we lay out

the construction of the HQE and the theoretical status of its constituents. For a more

comprehensive review, we refer to e.g. [89, 104].

First, we recall that in scattering theory, a process is described by the unitary scattering

matrix S which connects two asymptotically-free states |i⟩, |f⟩ for some theory describing

the interactions of these states. The scattering matrix can be written as

Sfi ≡ ⟨f |S|i⟩ = δfi + iTfi, (3.63)

where Tfi is the transition amplitude describing the non-trivial dynamics of the system.

This in turn can be expressed in terms of Mfi the invariant scattering amplitude as

Tfi = (2π)2δ(4)(pf − pi)Mfi, (3.64)

where pµi , p
µ
f are the momenta of the initial and final states respectively.
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The decay rate of a single-body initial state (from here referring to a meson HQ with

heavy valence quark Q) is described as the sum of the transition from the initial state

to all possible final states X, given by

Γ(HQ → X) =
1

2mHQ

∑
X

∫
PS

(2π)4δ(4)(pHQ
− pX)|⟨X|Heff |HQ⟩|2, (3.65)

where Heff is the effective weak Hamiltonian, and for an N -body final state, the phase

space integral is given by ∫
PS

=

∫ N∏
n=1

d3pn
(2π)32En

. (3.66)

To simplify calculations, equation (3.65) can be equivalently expressed using the optical

theorem, which we will briefly outline. Following unitarity of the scattering matrix,

S†S = SS† = 1, (3.67)

one can insert a complete tower of states which we both sum over and integrate over

their momenta, written as

∑
n

∫
PS

⟨f |S†|n⟩⟨n|S|i⟩ = δfi. (3.68)

For forward scattering (|i⟩ = |f⟩), from the definition of the scattering matrix (equa-

tion (3.63)), we find that

∑
n

∫
PS

[δni − iT ∗
ni] [δni + iTni] = δii, (3.69)

=⇒ 2 ImTii =
∑
n

∫
PS

|Tni|2. (3.70)

The optical theorem connects the imaginary part of the forward scattering amplitude

to the total cross-section for the production of all final states. One can then insert this

into equation (3.64) and find

2 ImMii =
∑
n

∫
PS

(2π)4δ(4)

(
N∑
n=1

pn − pi

)
|Mni|2. (3.71)

A schematic of the optical theorem is shown in figure 3.6. One can use this relation to

simplify the expression for the decay rate of a meson HQ, such that we calculate the

imaginary part of the forward scattering amplitude of HQ → HQ.
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= ΣX2

2

X

Figure 3.6: A schematic of the optical theorem. The imaginary part of a forward
scattering amplitude is related to the sum over the squared amplitudes for the produc-
tion of all final states X.

First, we can express the scattering matrix via the effective Hamiltonian describing the

decay of a heavy quark Q into all possible configurations of lighter particles, reading

S = T

{
exp

[
−i
∫
d4Heff(x)

]}
, (3.72)

for the time-ordering operator T. Then one finds that for the transition operator

T = i

∫
d4xT

{
Heff(x),Heff(0)

}
(3.73)

the total decay rate is

Γ(HQ → X) =
1

2mHQ

Im⟨HQ|T |HQ⟩. (3.74)

So what we see is that the total decay rate of a meson HQ decaying into all possible final

states X is related to the amplitude of the forward scattering of the meson HQ via the

process HQ → X → HQ, i.e. the creation and annihilation of all intermediate states X.

One may notice that in this description we have neglected to mention the light valence

quark of the HQ meson system; technically this decay is complicated by the presence

of this light quark with the non-perturbative QCD interactions of this and the other

light degrees of freedom, however Shifman and Voloshin [105] noted that in the limit of

an infinitely massive heavy quark, the decay of a heavy-light meson is equivalent to the

decay of the heavy quark. Of course, this is only strictly true in the limit mQ → ∞,

and therefore for large but finite masses of the quark Q, corrections to this limit must

be included to more appropriately describe the dynamics of a heavy meson HQ.

The HQE is the framework through which corrections to the infinite mass limit are

systematically included for hadrons with a massive but finite heavy quark constituent.

Here we assume that the heavy quark Q inside a heavy hadron interacts with the light
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degrees of freedom via momentum exchanges O(ΛQCD) ≪ mQ. It follows that a sig-

nificant portion of the heavy quark’s momentum is proportional to its mass, which can

then be separated by rewriting the heavy quark field as

Q(x) = e−imQv·xQv(x), (3.75)

where vµ is the velocity of the heavy hadron3. From here, a second OPE is performed

for the parameter
ΛQCD

mQ
≪ 1, resulting in the total decay rate being written as

Γ(HQ) = Γ3⟨O3⟩+ Γ5
⟨O5⟩
m2
Q

+ Γ6
⟨O6⟩
m3
Q

+ . . .+ 16π2

[
∼
Γ6

⟨
∼
O6⟩
m3
Q

+
∼
Γ7

⟨
∼
O7⟩
m4
Q

+ . . .

]
, (3.76)

where
(∼)

Γ d are the perturbative Wilson coefficients and ⟨
(∼)

O d⟩ are the non-perturbatively

calculated operator matrix elements at mass dimension d. The operators appearing

inside 16π2[. . . ] which start at dimension 6 are denoted with a ∼ to distinguish these

as four-quark operators as opposed to the two-quark operators without tildes outside

the square brackets; these operators may be suppressed by additional powers of mQ

compared to the leading two-quark terms, however they are comparatively enhanced

by the 16π2 phase space factor. While the Γi are already two-loop calculations at

leading order in QCD, the
∼
Γi also have one-loop contributions. Below we now cover the

theoretical status of the components of the HQE from dimensions three to six.

Q Q

q1

q̄2

q3

+
Q Q

q1

q̄2

q3

+ . . .+

Q Q

q̄q̄

q1

q̄2

+ . . .

á

b b

O3

á

b b

O5

á

b b

O6

á

b b

q̄q̄

∼
O6

á

b b

q̄q̄

∼
O7

Figure 3.7: Diagrams describing the leading operators of the HQE as written in equa-
tion (3.76). The imaginary part of the double insertion of the effective weak Hamiltonian
is shown in the top line where ⊗ represents the ∆B = 1 operators Qi; this is matched
to the local ∆B = 0 operators of the HQE in the bottom line which are denoted with

■ for the two-quark operators Oi and four-quark operators
∼

Oi.

3Note that while this redefinition rings similar to what is done in HQET, here the quark field is simply
a rescaling of the four-component QCD spinor whereas two-component non-relativistic projections are
used in HQET.
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Dimension Three

The leading term in the HQE is at mass dimension 3,

O3 = (Q̄vQv). (3.77)

It describes the decay of a free b quark and to only consider this term is to take the

infinite heavy quark mass limit.

Γ3 has been calculated fully at NLO-QCD in [106] for semileptonic decays and in [106–

115] for non-leptonic decays. NNLO-QCD corrections have been calculated for semilep-

tonic channels [116–126], while for non-leptonic decays, these were only known for mass-

less final-state quarks without the use of the effective Hamiltonian [127] until recent

work which includes the effects of massive quarks [128]. N3LO-QCD corrections for

semileptonic channels are also now calculated in [34–36].

By following a HQET expansion, the matrix element of O3 is given by [129, 130]

⟨HQ|Q̄vQv|HQ⟩
2mHQ

= 1− µ2π(HQ)− µ2G(HQ)

2m2
Q

+O

(
1

m5
Q

)
, (3.78)

where the non-perturbative parameters µ2π, µ
2
G parameterise the matrix elements of

the dimension-five kinetic and chromomagnetic operators defined in equations (3.82)

and (3.83).

Dimension Four

There are no independent dimension-four operators since these are related to (Q̄vQv)

through the EoMs. The absence of these terms in the HQE is known as the CGG/BUV

theorem [131].

Dimension Five

At dimension five, two-quark operators appear which correct for the effect of soft gluon

emissions and the 1
mQ

expansion of lower-dimension operators. The kinetic and chro-

momagnetic operators respectively appear as

Oπ = Q̄v(iDµ)(iD
µ)Qv, (3.79)

OG = Q̄v(iDµ)(iDν)(−iσµν)Qv, (3.80)

where the full dimension-five contribution appearing in equation (3.76) can be expressed

as

Γ5
⟨O5⟩
m2
b

= Γ0

[
cπ

⟨Oπ⟩
m2
b

+ cG
⟨OG⟩
m2
b

]
. (3.81)
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Γ5 has been calculated at LO-QCD for both semileptonic and non-leptonic decays [129,

132–134]. NLO-QCD corrections have also been calculated for semileptonic decays [135–

137] and non-leptonic decays [138].

The matrix elements of the dimension-five operators are defined

⟨HQ|Q̄v(iDµ)(iD
µ)Qv|HQ⟩ = −2mHQ

µ2π(HQ), (3.82)

⟨HQ|Q̄v(iDµ)(iDν)(−iσµν)Qv|HQ⟩ = 2mHQ
µ2G(HQ), (3.83)

where µ2π, µ
2
G have been calculated by QCD sum rules [139, 140] and lattice QCD [141,

142] or are alternatively extracted from fits to experimental data of inclusive semileptonic

B → Xcℓν̄ℓ decays [143–148]. One can also use spectroscopy relations to estimate these

quantities for B mesons with different light quarks [149].

Dimension Six – Two-Quark Operators

Two two-quark operators arise at dimension six, generated with three covariant deriva-

tives, respectively called the spin-orbit and Darwin operators,

OLS = Q̄v(iDµ)(iv ·D)(iDν)(−iσµν)Qv, (3.84)

OρD = Q̄v(iDµ)(iv ·D)(iDν)Qv. (3.85)

Γ6 has been computed for semileptonic decays at LO-QCD in [150–152] and NLO-QCD

in [153–155], while for non-leptonic decays, the LO-QCD calculation has been performed

for b quarks in [156–158] and for c quarks in [103]. It is worth noting that the coefficient of

the Darwin operator is an order of magnitude larger than the corresponding dimension-

five operators, such that, although it is suppressed by an additional power of mQ, it has

significant impact on the final results for heavy hadron lifetimes.

The matrix elements of the dimension-six two-quark operators are defined

⟨HQ|Q̄v(iDµ)(iv ·D)(iDν)(−iσµν)Qv|HQ⟩ = −2mHQ
ρ3LS(HQ), (3.86)

⟨HQ|Q̄v(iDµ)(iv ·D)(iDν)Qv|HQ⟩ = 2mHQ
ρ3D(HQ), (3.87)

where the non-perturbative parameters ρLS , ρD can similarly be extracted from experi-

mental data as with µ2π, µ
2
G [143–148]. Relations from the equations of motion [159, 160]

can also be used, and there even exists a sum rule calculation [149].

Dimension Six – Four-Quark Operators

Four-quark operators also now enter at dimension-six which depend not only on the

heavy quark Q but the light ‘spectator’ quark q. The four dimension-six four-quark
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operators are
∼
O1 =

(
Q̄vγµ(1− γ5)q

)
⊗
(
q̄γµ(1− γ5)Qv

)
,

∼
O2 =

(
Q̄v (1− γ5)q

)
⊗
(
q̄ (1 + γ5)Qv

)
,

∼
T 1 =

(
Q̄vγµ(1− γ5)T

aq
)
⊗
(
q̄γµ(1− γ5)T

aQv
)
,

∼
T 2 =

(
Q̄v (1− γ5)T

aq
)
⊗
(
q̄ (1 + γ5)T

aQv
)
.

(3.88)

∼
Γ6 is known at LO [161–164] and NLO in QCD [165–167]. These operators are referred

to as ∆B = 0 operators since they change the Bottom quantum number by 0.

The matrix elements of the dimension-six four-quark operators are defined

⟨HQ|
∼
O1 |HQ⟩ = f2HQ

m2
HQ
B1, (3.89)

⟨HQ|
∼
O2 |HQ⟩ =

m2
HQ

(mQ +mq)2
f2HQ

m2
HQ
B2, (3.90)

⟨HQ|
∼
T 1 |HQ⟩ = f2HQ

m2
HQ
ϵ1, (3.91)

⟨HQ|
∼
T 2 |HQ⟩ =

m2
HQ

(mQ +mq)2
f2HQ

m2
HQ
ϵ2, (3.92)

where fHQ
is the decay constant of the meson HQ,

⟨0|Q̄γµγ5q|HQ(p)⟩ = ifHQ
pµ. (3.93)

The bag parameters B1,2, ϵ1,2 describe the deviation of these matrix elements from

the vacuum insertion approximation (VIA). For a four-quark operator Q̄Γ1qq̄Γ2Q with

generic Dirac-colour structures Γ1,2, the VIA assumes that the matrix elements are sat-

urated by the intermediary vacuum state between two quark bilinear currents, i.e.

⟨HQ|Q̄Γ1qq̄Γ2Q|HQ⟩ VIA
= ⟨HQ|Q̄Γ1q|0⟩⟨0|q̄Γ2Q|HQ⟩. (3.94)

In the VIA, B1,2 = 1 and ϵ1,2 = 0. It is expected that the deviation from the VIA

of the full matrix elements is not large, however confirming this is an important mo-

tivation for calculating these quantities. These matrix elements have been calculated

in HQET sum rules for the Bd [168] and Bs [169] mesons and in QCD sum rules for

the Λb baryon [170]. Apart from early quenched studies [171, 172] and one preliminary

unquenched study [173], these matrix elements have received little attention from lattice

QCD and to date there is no complete lattice calculation of their values. The calculation

of these matrix elements in lattice QCD will be the focus of chapter 6.

Further higher-dimensional two-quark and four-quark operators can be generated by

adding more derivatives.
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Quark-Hadron Duality

The HQE is built upon the assumption of quark-hadron duality (QHD) – this is the

statement that the description of a hadronic system by using quarks as the degrees of

freedom is equivalent to that using hadronic bound states as the degrees of freedom.

This duality manifests here in the expectation that the inclusive rate of a hadron with

a heavy quark calculated using the HQE is equivalent to the total sum of all exclusive

decay channels. Violations of quark-hadron duality must be considered as a systematic

uncertainty to the HQE, since treating the decay rate as a series expansion in ΛQCD/mQ

can result in some terms being neglected. There is a large collection of literature study-

ing quark-hadron duality and its possible violations. However these rely on strong model

assumptions, see e.g. [174–177]. While the discussion in theory of quark-hadron duality

is still ongoing, there is no evidence of its violation from experiment. One channel that

is well-suited to testing quark-hadron duality is the decay b → cc̄s since the expan-

sion parameter of the HQE for this case is actually modified slightly such that duality

violations would be more pronounced. The decay rate difference ∆Γs in neutral Bs

mesons (see section 3.2.3) is governed by b → cc̄s and thus a suitable candidate to test

for duality violations. However the current status of experimental measurements show

good agreement with the prediction from the HQE and thus exclude large violations of

quark-hadron duality [26, 54].

3.2 Heavy Flavour Physics

Processes involving heavy quark flavours embody all of the physics of the Standard

Model: all three generations of both quarks and leptons can be involved and therefore

also the CKM matrix elements can be probed; both QED and weak interactions are

present; QCD interactions also play an important role in both the perturbative and

non-perturbative regimes. Therefore studying these serves as a way to study the whole

SM in a subset of similar processes where the entire range of our theory can be assessed

and experiments can be designed in favour of these such that we have high-precision

measurements. In addition, the theoretical framework of effective field theories already

discussed in this chapter, in particular HQET and the HQE, provides a powerful method

to simplify theoretical predictions and separate out the different contributions. So we

arrive at reliable, high precision results, with a clear understanding of how the different

regimes of the Standard Model work both separately from and together with one another

to create the dynamics of the universe. Heavy flavour physics therefore provides an

exciting and important laboratory for the ever-ongoing quest to better understand the

Standard Model and also search for new physics. In this thesis, we take particular

interest in the physics of b quarks and the processes involving B mesons. Below, we will
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cover some of the history of B physics phenomenology and its importance in the current

landscape of particle physics.

e−

e+

γ, Z

b̄

b

b

b̄

q̄

q

Υ(XS)

B̄q

Bq

Figure 3.8: B − B̄ production mechanism in e+–e− colliders via the bottomonium
resonance Υ(XS) for some integer X; Υ(4S) is used to produce predominantly B±,0

mesons and Υ(5S) to produce Bs mesons.

3.2.1 Heavy Flavour in Particle Colliders

To study the exciting plethora of processes involving heavy b quarks to high precision

and accuracy, particle colliders must be able to create a large number of B mesons (or

more generally, b-hadrons) and subsequently measure their properties and dynamics.

Below we summarise the various particle collider experiments with successful B physics

programs.

The b quark was first discovered in 1977 by Fermilab’s E288 experiment [178, 179] via the

bottomonium (b̄b) resonance Υ, which from its 4S state and above, can decay into B-B̄

meson pairs as shown in figure 3.8. B mesons were first identified using this process at

the e+-e− colliders CESR (Cornell) and PEP (SLAC) [180–183]. From here, it became

clear that there were exciting prospects in experiment to study B mesons and similarly

the tools were being developed in theory to provide clear predictions of these processes;

the harmony of experiment and theory for heavy flavour physics is clearly present.

B Factories

To specifically study B meson phenomenology, the collider experiments known as the B

factories were commissioned through the 1990s: operating from 1999 were the BaBar

experiment using the PEP-II collider at SLAC in the USA [184] and the Belle experiment

at KEK in Japan [185]. The BaBar experiment collected data until 2008, and Belle until

2010. Three ‘next generation’ B factories were proposed through the 2010s, however only

one of these was actually built: the Belle II experiment as a successor to Belle [186].

Belle II began data collection in 2018 and continues to date.



Chapter 3 Theoretical and Phenomenological Foundations 49

These experiments are e+–e− colliders which produce B mesons via the mechanism

e+ + e− → Υ(bb̄) → Bq + B̄q. (3.95)

The Feynman diagram of this process is shown in figure 3.8. The bottomonium state Υ

has to be produced at a specific resonance such that the production of two B mesons

is kinematically allowed. The Υ(4S) resonance produces predominantly B±,0 mesons,

while the Υ(5S) resonance also allows the production of Bs mesons. The BaBar experi-

ment used the Υ(4S) resonance and as such only produced B±,0 mesons, however Belle

and Belle II both also collected data at the Υ(5S) resonance.

Hadron Colliders

Hadron colliders such as the p–p̄ collider TeVatron at FNAL (see e.g. [187]) or the p–

p collider LHC at CERN (see e.g. [188]) are not primarily focused on heavy flavour

physics, however they still have very large bottom and charm production cross sections.

Consequently, the LHC produces many more b̄b pairs than was done at either BaBar or

Belle. While not typically referred to as a B factory since the LHC itself is not designed

in the same way as the e+–e− colliders discussed above, LHCb is a detector experiment

dedicated to studying b physics produced at the LHC and has a very successful program.

Furthermore, Bs mesons are fully accessible to LHCb in addition to B±,0 mesons and

also in fact the heavier Bc meson and Λb baryon. It is worth noting that while LHCb

is the dedicated b physics experiment at the LHC, the other experiments ATLAS and

CMS have also contributed to B physics measurements, notably the rare leptonic decay

Bs → µ+µ− [189–194] (to be discussed further in chapter 4).

3.2.2 B Meson Lifetimes

We already discussed the construction of the HQE in section 3.1.4 as the theoretical

framework for systematically addressing corrections to the free heavy quark decay for

the prediction of a heavy meson decay rate. We shall now discuss below the phenomeno-

logical history of B meson lifetimes and their current experimental status.

In experiment, the great success of the B factories and other particle colliders capable

of studying B mesons, such as the LHC, have resulted in the lifetimes of B mesons now

being determined to a high precision; see e.g. [26, 54]. In table 3.1, we show the latest

averages of the lifetimes of B mesons. In addition to the individual lifetimes, it can be

seen that their ratios are extremely close to 1 such that spectator quark effects must

be small. The exception to this is τ(Bc)/τ(Bd), which is expected since the spectator

quark of the Bc meson is a charm quark, clearly much heavier than the other spectator

quarks such that the Bc meson is no longer the simple picture of the single heavy b quark
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surrounded by the non-perturbative “brown muck” we used for heavy-light mesons. It

Bd B+ Bs Bc

τ [ps] 1.517± 0.004 1.638± 0.004 1.520± 0.005 0.510± 0.009

τ(Bq)/τ(Bd) 1 1.076± 0.004 1.003± 0.003 0.336± 0.006

Table 3.1: The lifetimes and lifetime ratios of B mesons [26, 54].

is impressive to note that the relative precision of these lifetime ratios has increased

over the last 20 years from ∼ 4% to ∼ 0.5% (see e.g. [195]). However, it is also of

note that recent measurements of Γ(Bs) find a 2 − 4σ tension between ATLAS [196],

LHCb [197, 198] and CMS [199].

At leading order in the HQE, the decay of a B meson is equal to that of a free b quark,

Γ(B) = Γb +O

(
Λ2
QCD

m2
b

)
, Γb ∝

G2
Fm

5
b

192π3
|Vcb|2. (3.96)

With the large mass of the b quark, it is expected that the higher-order correction terms

are negligible and the relation Γ(B) ≈ Γb should be mostly accurate. This implies that

the lifetimes of B mesons are shorter than those of e.g. D mesons containing the next

heaviest quark, the charm. However, it then came as a surprise that the lifetime of the B

meson was measured to be ∼ 1.8 ps, first by the MAC experiment [200] at PEP and then

later confirmed by the MarkII [201] and DELCO [202] experiments also at PEP and the

TASSO experiment [203] at PETRA, DESY. Therefore experiment implies that higher-

order corrections to the free b quark decay, expressed via the HQE in equation (3.76),

are indeed necessary to describe the decay of a B meson.

Throughout section 3.1.4, we detailed the many calculations contributing to both the

perturbative and non-perturbative factors of the HQE from dimension three to six. It is

through all this effort of the community that B meson lifetimes are now known to a high

precision with many details of the HQE addressed and understood. However, the preci-

sion of experiment is still greater than that of theory and to better compare the two, an

increased theoretical precision is strongly desired. Particularly for the lifetime ratios, it is

found that the four-quark dimension six matrix elements (recall equations (3.88)-(3.92))

compose a significant proportion of the overall theoretical uncertainty, and as such im-

proved calculations of these can greatly improve the overall precision. Calculations of

these quantities from lattice QCD are strongly desired and once these become standard

practice, their uncertainties can be systematically improved as the lattice simulations

progress.
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3.2.3 Neutral B Meson Mixing

Bq BqB̄q B̄q

q

u, c, t

b̄

W−

W+ q̄

u, c, t

b q

W−

b̄

u, c, t

u, c, t q̄

W+

b

Figure 3.9: Standard Model box diagrams resulting in neutral B meson mixing.

Loop-level box diagrams as shown in figure 3.9 introduce the possibility for a neutral B0
q

meson (with quark content b̄q, q = d, s) to transition back and forth with its antipar-

ticle B̄0
q (with quark content bq̄). The time evolution of this oscillatory system can be

described by

i
d

dt

(
|B0

q (t)⟩
|B̄0

q (t)⟩

)
=

(
M̂ q − i

2
Γ̂q

)(
|B0

q (t)⟩
|B̄0

q (t)⟩

)
, (3.97)

where M̂ q, Γ̂q are 2× 2 matrices describing the contributions to the time evolution from

the masses and decay rates of the system respectively. If there were no mixing between

the meson and antimeson, non-diagonal entries of these matrices would vanish. However,

since there does exist a mixing between the flavour eigenstates, the off-diagonal elements

M q
12 in M̂ q and Γq12 in Γ̂q are introduced. Box diagrams with virtual internal lines (all

permutations of figure 3.9) contribute to M q
12 and diagrams with on-shell internal lines

(right of figure 3.9 for u, c only) contribute to Γq12.

One can diagonalise the matrices M̂ q and Γ̂q in order to describe the physical eigenstates

of the system with definite mass and decay rate. This results in

|Bq,L⟩ = p|B0
q ⟩+ q|B̄0

q ⟩,
|Bq,H⟩ = p|B0

q ⟩ − q|B̄0
q ⟩,

(3.98)

where the physical eigenstates are named heavy (H) and light (L) and the complex

coefficients in this linear transformation fulfil |p|2 + |q|2 = 1. It is clear Bq,L and Bq,H

will now have a clear difference in their masses and decay rates:

∆mq = 2|M q
12|, (3.99)

|∆Γq| = 2|Γq12|. (3.100)

In this thesis, we will only be interested in ∆mq; for a review on ∆mq and further details

on ∆Γq and other mixing phenomenology, see e.g. [104]. A brief history of neutral meson

mixing follows:
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➤ Neutral meson mixing was first considered in theory by Gell-Mann and Pais [204]

in the context of kaons and a significant lifetime difference between the two neutral

kaons was measured in 1956 [205].

➤ Mixing of Bd mesons was then discovered in 1986 by the UA1 experiment at

CERN4 [206] and in 1987 by the ARGUS experiment at DESY [207]. The large

mass difference ∆md measured was already a strong hint towards the surprisingly

heavy mass of the top quark [208], still to be measured.

➤ The Bs system was also established to exhibit mixing effects in 2006 by the CDF

collaboration at TeVatron [209] with a large mass difference observed.

➤ There were many experiments (e.g. BaBar, Belle, CLEO, CDF, E791, E831 FO-

CUS, LHCb) finding evidence towardsD0 mixing, with the first confirmation above

the 5σ discovery threshold announced in 2012 from LHCb [210].

Unlike other neutral meson systems, the masses of B mesons are such that hadronic

resonances as intermediate states are not a concern and long-distance interactions can

be neglected for B0
q mixing. Furthermore, after summing over all contributing diagrams,

Bq B̄q

q

b̄ q̄

b

Oq(′)
i

Figure 3.10: Local four-quark operator describing neutral B meson mixing in the
∆B = 2 effective Hamiltonian.

one finds a clear simplification via the GIM mechanism [211] such that the dominant

contributions by far are those of the diagrams with top quarks. Since all virtual lines

in the box diagrams are of very heavy particles, mW ,mt ≫ mb, these can both be

integrated out and the calculation of M q
12 can be performed via an operator product

expansion. This OPE contracts the ‘box’ to a point and one is left with local four-quark

operators in the ∆B = 2 effective Hamiltonian, as shown in figure 3.10, where ∆B = 2

indicates the operators change the Bottom quantum number of the system by 2. In this

limit, we express M q
12 as

M q
12 =

⟨Bq|H∆B=2
eff |B̄q⟩
2mBq

, (3.101)

where the ∆B = 2 effective Hamiltonian can generically be written as

H∆B=2
eff =

5∑
i=1

CiOq
i +

3∑
i=1

C ′Oq′
i , (3.102)

4UA1 initially interpreted the result as Bs mixing.
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for the effective local four-quark operators Oq(′)
i . The full basis of dimension-six ∆B = 2

operators, covering the Standard Model and all new physics scenarios, is given by

Oq
1 = (q̄αγµ(1− γ5)b

α)(q̄βγµ(1− γ5)b
β), Oq′

1 = (q̄αγµ(1 + γ5)b
α)(q̄βγµ(1 + γ5)b

β),

Oq
2 = (q̄α(1− γ5)b

α)(q̄β(1− γ5)b
β), Oq′

2 = (q̄α(1 + γ5)b
α)(q̄β(1 + γ5)b

β),

Oq
3 = (q̄α(1− γ5)b

β)(q̄β(1− γ5)b
α), Oq′

3 = (q̄α(1 + γ5)b
β)(q̄β(1 + γ5)b

α),

Oq
4 = (q̄α(1− γ5)b

α)(q̄β(1 + γ5)b
β),

Oq
5 = (q̄α(1− γ5)b

β)(q̄β(1 + γ5)b
α).

(3.103)

The operators Oq′
i are the parity transforms of Oq

i (i = 1, 2, 3), and as such the matrix el-

ements in QCD satisfy ⟨Oqi ⟩ = ⟨Oq′i ⟩. The matrix elements of these four-quark operators

are typically parameterised in terms of the decay constant fBq and Bag parameters Bi
Bq

which describe the deviation of the matrix element from the VIA (recall the discussion

in section 3.1.4), reading

⟨Oq1⟩(µ) = ξ1f
2
Bq
m2
Bq
B1
Bq

(µ), (3.104)

⟨Oqi ⟩(µ) = ξi

(
mBq

mb(µ) +mq(µ)

)2

f2Bq
m2
Bq
Bi
Bq

(µ), i = 2, 3, (3.105)

⟨Oqi ⟩(µ) = ξi

[(
mBq

mb(µ) +mq(µ)

)2

+ bi

]
f2Bq

m2
Bq
Bi
Bq

(µ), i = 4, 5, (3.106)

where ξi = {8/3,−5/3, 1/3, 2, 2/3}, b4 = 1/6, and b5 = 3/2. In the Standard Model,

only O1 contributes to M q
12, which can be expressed as

M q
12 =

G2
F

12π2
|V ∗
tsVtb|2m2

WS0

(
m2
t

m2
W

)
η̂B f

2
Bq
mBqB

1
Bq
, (3.107)

where the Inami-Lim function [212] is

S0(x) =
4x− 11x2 + x3

4(1− x)2
− 3x lnx

2(1− x)2
, (3.108)

and η̂B is the correction factor from the perturbative 2-loop QCD corrections [213]. From

the theory side, it is clear now that the limiting factor in precise predictions for ∆mq is

the non-perturbative input of the QCD matrix elements [195]. The QCD matrix element

of the Standard Model four-quark operator Oq
1 can be determined from non-perturbative

methods such as lattice QCD [214–219] and HQET sum rules [168, 220, 221]. It is

expected as time progresses that these calculations are superseded by higher precision

results, and importantly also that calculations by different groups and methods can

converge more closely than is currently seen; see e.g. [195]. One finds that the best

results of theory have uncertainties far larger than those of experiment. The precision
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of theory predictions for ∆ms and ∆md are 3.4% and 3.9% respectively.

The experimental averages quoted by HFLAV [26],

∆md = 0.5069± 0.0019 ps−1,

∆ms = 17.765± 0.006 ps−1,
(3.109)

have reached impressive precisions of 0.38% and 0.03% respectively. This is dominated

by the latest result from B0
s → D−

s π
+ decays in Run 2 of the LHCb experiment [222],

as shown in figure 3.11. This remarkable level of precision from experiment as well as
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Figure 2: Decay-time distribution of the signal decays. Distribution of the (left) decay
time of the B0

s→ D−
s π

+ signal decays and (right) decay-time asymmetry between mixed and
unmixed signal decays. The vertical bars correspond to the statistical uncertainty on the number
of observed candidates in each bin. The horizontal bars represent the bin width. In the left plot,
the horizontal bin width is indicated on the vertical axis legend. The three components, unmixed,
mixed and untagged, are shown in blue, red and gray, respectively. The insert corresponds to a
zoom of the region delineated in grey. The fit described in the text is overlaid.

momentum scale of the detector, obtained by comparing the reconstructed masses of known
particles with the most accurate available values [37]; residual detector misalignment and
length scale uncertainties; and uncertainties due to the choice of mass and decay-time
fit models, determined using alternate parametrisations and pseudoexperiments. To
verify the robustness of the measurement to variations in ∆ms as a function of the decay
kinematics, the data sample is split into mutually disjoint subsamples, each having the
same statistical significance, in relevant kinematic quantities, such as the B0

s momentum,
and the ∆ms values obtained from each subsample are compared. The largest observed
variation is included as a systematic uncertainty. The total systematic uncertainty is
0.0032 ps−1, with the leading contribution due to residual detector misalignment and
detector length scale uncertainties.

The value of the B0
s–B

0
s oscillation frequency determined in this article:

∆ms = 17.7683± 0.0051 (stat)± 0.0032 (syst) ps−1

is the most precise measurement to date. The precision is further enhanced by combining
this result with the values determined in Refs. [9, 12]. Reference [9] uses B0

s → D−
s π

+

decays collected in 2011. Reference [12] uses a sample of B0
s → D−

s π
+π+π− decays selected

from the combined 2011–2018 data set, corresponding to 9 fb−1. The measurements are
statistically independent. The systematic uncertainties related to the momentum scale,
length scale and residual detector misalignment are assumed to be fully correlated. Due
to aging of the detector and different alignment procedures used in Run 1 and Run 2,
the effect of residual detector misalignment is larger in measurements using Run 2 data.
Given the precision of the measurement described in this paper, a detailed study of the
detector misalignment effects is performed and the related uncertainty due to the decay
time bias has been reduced significantly compared to previous measurements using the
Run 2 data. The values of the fixed parameters ∆Γs and Γs used as inputs to the previous
analyses have evolved over time as additional measurements have been made. However as

5

Figure 3.11: Decay distributions of B0
s → D−

s π
+ decays tagged as the unmixed decay

(blue), the mixed decay (red), or untagged (grey) from Run 2 of the LHCb experiment,
showcasing the clear observation of neutral B0

s meson mixing [222].

the inherent loop-level nature of the theory calculation makes neutral B0
q meson mixing

an important test subject for either the validity of the Standard Model or searches for

new physics. However, it is clear that for either of these goals, the precision of theory

predictions must greatly improve to be comparable with experiment.
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Indirect Searches for New Physics

We know that the Standard Model is incomplete and there must be further physics

beyond the Standard Model (BSM) to be discovered describing these missing pieces

such as neutrino masses. A significant cosmological problem to solve is also that of

baryogenesis – the observed matter-antimatter asymmetry in the universe. In order for

sufficient baryogenesis during the evolution of the universe, Sakharov [223] found three

criteria necessary:

1. Baryon number violation – this is theorised e.g. in sphalerons, although not yet

confirmed experimentally [224];

2. C and CP violation – these are present in the SM, but not to a sufficient level;

3. A first-order electroweak phase transition (FOEWPT) in the early universe – while

this could have been possible in the SM for mh ≲ 70GeV [225], the measured value

of mh = 125.25± 0.17GeV [54] rules this out.

Based on our knowledge of what is missing in the SM, we can write down theories to

extend the Standard Model and resolve these problems. Many different theories can

be proposed but this does not mean they are observed in nature; any candidate theory

must be tested against experiment and verified for it to be the BSM theory of nature.

To search for new physics, there are two approaches. First, one can consider direct

searches, where experiments such as particle colliders attempt to produce and directly

observe the new particles described by a BSM theory; this is the same strategy by which

SM particles such as the Higgs boson were discovered. Experiments such as those at the

LHC continue to search for new particles in this way. Alternatively, new physics may be

discovered through indirect searches where a large group of high-precision observables

have their theory predictions modified by BSM physics (most commonly introduced

55
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as loop effects) and compared to experiment; the BSM theory of nature should be

observed in the experimental measurements and therefore calculating the prediction of

the BSM theory should form better agreement with experiment than the Standard Model

predictions.

The ever-present caveat with this method is that the chosen observables for such an

analysis should be both measured and calculated in the SM to as high precision and

accuracy as possible. This ensures we have solid understanding and control over the

theoretical calculation and experimental measurement such that the ambiguity that any

tension between these comes from new physics is minimised.

Ultimately, the new theory must be confirmed experimentally and its particles observed

directly, but understanding the restrictions on a theory by all possible processes affected

provides clearer understanding on which types of particles experiment should focus its

searches and what values the properties of these particles are likely to have, e.g. for

mass, charge, etc. Furthermore, these two methods can be combined in global fits where

the experimental bounds on the properties of new particles from direct searches are

combined with the analytical power of indirect searches to provide the strongest bounds

on the parameter space of the BSM theory.

Effective field theories (discussed in section 3.1) provide a powerful language for the

search for new physics. Using EFTs, many observables can be connected to a set of

operators which can then have BSM physics contributing to their Wilson coefficients.

For the method of indirect searches, using effective operators becomes a powerful way to

learn what free space is still allowed by a collection of observables, and more importantly,

what sort of particles and interactions are suitable to accommodate this free space. These

effective operators can be analysed as they are to simply present the kind of new physics

to be accommodated, or can be married into specific BSM theories to show how well a

new model fits our current data.

When considering extensions to the Standard Model, this ultimately points to some

grand unified theory (GUT) which is the UV-complete theory of the universe containing

all of physics, from which the SM is derived as a low-energy limit. However, when

building up towards the energy scale of this GUT from a low-energy limit like the SM, it

can be simpler to first consider smaller extensions of the SM to resolve specific problems

and work towards the final UV theory step by step. Typically as these theories are

extended to higher and higher energies, the masses of new particles introduced by the

model are constrained to be larger also, such that experimentally it is more favourable

to extend the Standard Model progressively where the next sought-after particle can be

one within or near to the current energies probed by particle colliders.
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In this chapter, we focus on one of the simplest extensions of the Standard Model: the

Two-Higgs-Doublet Model (2HDM) [226] (for reviews see e.g. [227, 228]). In section 4.1,

the motivations for and the construction of the model itself will be discussed and then

in section 4.2, results are presented for constraining the parameter space of the 2HDM

based on phenomenology, particularly dominated by flavour physics observables. The

strength of indirect searches for constraining new physics models will be demonstrated.

Insight into the current status of flavour physics phenomenology in the Standard Model

is presented, addressing questions like where to find powerful processes for constrain-

ing new physics and where will we find ourselves limited by the precision of the SM

predictions themselves. The work presented throughout this chapter is based on the

publications [41–44].

4.1 The Two-Higgs-Doublet Model

Being among the simplest BSM physics scenarios, Two-Higgs-Doublet Models are some

of the most well-studied extensions of the SM. After spontaneous symmetry breaking,

the 2HDM introduces four new scalar particles alongside the SM zoo: two charged H±,

a CP-odd pseudoscalar A, and a CP-even scalar H0 – a (typically) heavier counterpart

to the SM Higgs h0. This extension can be motivated as a way to solve one of the

problems with the Standard Model, namely baryogenesis [229]. 2HDMs can provide

additional CP violation, fulfilling the Sakharov criterion insufficiently answered by the

SM, and in addition a FOEWPT in the early universe is also possible in 2HDMs. While

not answering all open questions in particle physics itself, 2HDMs commonly appear

embedded in more intricate BSM theories, such as the minimal supersymmetric SM

(MSSM) or Pati-Salam-like models of quark-lepton unification.

In order to generate mass for both up-type and down-type quarks in the SM, a conjugate

of the Higgs doublet is used (recall section 2.2.4). However, there is no particular reason

why this must be so, and in fact a Higgs Lagrangian can alternatively be introduced

which uses two independent doublets Φi with i = 1, 2,

L2HDM
H+Y =

∑
i

|DµΦi|2 − V (Φ1,Φ2) + L2HDM
Yukawa, Φi =

(
ϕ+i

(vi + ϕ0i + iG0
i )/

√
2

)
. (4.1)

After spontaneous symmetry breaking, each doublet will acquire its own VEV vi, with

the current experimentally-observed VEV the quadrature addition of the two [226–228]:

Φ1 =
1√
2

(
0

v1

)
, Φ2 =

1√
2

(
0

v2

)
, v2SM = v21 + v22. (4.2)
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In this model, the masses of the W±, Z0 bosons are still generated by each ‘eating’ one

of the scalar fields. However now instead of the four degrees of freedom in the SM, the

2HDM has eight degrees of freedom such that after SSB there are five residual scalar

fields, and thus five Higgs particles instead of only one: two charged Higgs H± and

three neutral – two scalar H0 and h0 and one pseudoscalar A0. Typically, and in this

work, h0 is taken to be the lighter of the two CP-even scalars and also identified as the

experimentally-observed ‘SM’ Higgs. The physical Higgs fields are given by the rotations(
H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
ϕ01

ϕ02

)
, (4.3)

(
G0

A0

)
=

(
cosβ sinβ

− sinβ cosβ

)(
G0

1

G0
2

)
, (4.4)

(
G±

H±

)
=

(
cosβ sinβ

− sinβ cosβ

)(
ϕ±1
ϕ±2

)
, (4.5)

where G0, G± are the would-be Goldstone bosons.

The general potential for a 2HDM is given by

V (Φ1,Φ2) = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

[
Φ†
1Φ2 + h.c.

]
+
λ1
2
(Φ†

1Φ1)
2 +

λ2
2
(Φ†

2Φ2)
2 + λ3(Φ

†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[
λ5
2
(Φ†

1Φ2)
2 + λ6(Φ

†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]
,

(4.6)

where m2
11,m

2
22, λ1,2,3,4 are real and in general m2

12, λ5,6,7 may be complex [228]. Fur-

thermore, one can define two angles describing the mixing into physical states of the

model,

tan 2α =
−2Re(m2

12) + 3[Re(λ6)v
2
1 +Re(λ7)v

2
2] + 2λ345v1v2

m2
11 −m2

22 +
3
2(λ1v

2
1 − λ2v22) +

1
2λ345(v

2
2 − v21) + 3[Re(λ6)− Re(λ7)]v1v2

,

(4.7)

tanβ =
v2
v1
, (4.8)

where λ345 = λ3 + λ4 +Re(λ5) [228]. Use of the λ parameters is known as the ‘lambda

basis’ and is more useful e.g. for considering what theoretical constraints can be placed

on the model (as will be discussed in section 4.1.1). However for phenomenology it is

more convenient to work in the mass basis where the parameters are the masses of the

new Higgses, the mixing angles α, β (commonly represented by cos(β − α) and tan β),

andm2
12. Expressions for the masses from the lambda basis parameters are dependent on

the type of 2HDM, and are shown e.g. in [41, 230]. The 2HDM with the general potential

in equation (4.6) is commonly referred to as the type III 2HDM. This model actually
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allows tree-level FCNCs, which typically leads to much more sizeable contributions to

FCNC processes than can be accommodated in the data, although in some cases this

can still be favourable. In order to avoid tree-level FCNCs, it is common to impose a

discrete Z2 symmetry,

Z2 : Φ1 → Φ1, Φ2 → −Φ2, (4.9)

which enforces λ6 = λ7 = 0 and m2
12 = 0. However keeping m2

12 ̸= 0 is still allowed

resulting in the symmetry being softly broken, i.e. that the Z2 symmetry is still kept

at small distances such that the soft breaking is only relevant for Higgs masses much

below the EW scale. When applied to the Yukawa sector, this Z2 symmetry leads to

four possible types of 2HDM without tree-level FCNCs, where the right-handed fermions

interact with the extended Higgs sector under these different types as shown in table 4.1,

while the left-handed doublets transform trivially.

Model I II X Y

uiR Φ2 Φ2 Φ2 Φ2

diR Φ2 Φ1 Φ2 Φ1

eiR Φ2 Φ1 Φ1 Φ2

Table 4.1: Types of 2HDM forbidding tree-level FCNCs through a Z2 symmetry
requiring that fermions couple to specific doublets.

The Yukawa sector of the 2HDM Lagrangian is written as

L2HDM
Yukawa = −

∑
f=u,d,ℓ

mf

v

(
ξfh f̄fh+ ξfH f̄fH + iηfξ

f
Af̄γ5fA

)

−
[√

2Vud
v

ū(mdξ
d
APR −muξ

u
APL)dH

+ +

√
2

v
mℓξ

ℓ
A(ν̄PRℓ)H

+ + h.c.

]
,

(4.10)

where ηf = 1 for f = d, ℓ and −1 for f = u [228, 231]. With the fermions coupling

to the Higgs doublets as described in table 4.1, the coupling strengths ξ of the Yukawa

Lagrangian are given for the different types as shown in table 4.2. Of particular interest

in collider studies of Higgs physics are the Higgs signal strengths, which compare the

strength of the (SM-like) Higgs h0 couplings found experimentally to theory. To this

end, one can write the h0 couplings of the Lagrangian as

L ⊂ κV
m2
Z

v
hZµZ

µ + κV
2m2

W

v
hW+

µ W
µ− −

∑
f=u,d,ℓ

κf
mf

v
hf̄f, (4.11)
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where, for example in the type II 2HDM,

κV = sin(β − α), (4.12)

κu = sin(β − α) + cot β cos(β − α), (4.13)

κd,ℓ = sin(β − α)− tanβ cos(β − α). (4.14)

Clearly in the SM, κi = 1 which is consistent with LHC data. To recover this in the

2HDM and match the phenomenology of h0 exactly with the SM Higgs, one can set

cos(β − α) = 0, known as the alignment limit. However, measurements of the signal

Model I II X Y

ξuh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ

ξdh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ

ξℓh cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ

ξuH sinα/ sinβ sinα/ sinβ sinα/ sinβ sinα/ sinβ

ξdH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cosβ

ξℓH sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ

ξuA cotβ cotβ cotβ cotβ

ξdA cotβ − tanβ cotβ − tanβ

ξℓA cotβ − tanβ − tanβ cotβ

Table 4.2: Coupling strengths ξ in each flavour-conserving 2HDM between the Higgs
particles and fermions.

strengths at the LHC can only determine their magnitude and not the phase of the

coupling. Therefore a scenario can be proposed in which

κW,Z = 1, κu = 1, κd,ℓ = −1, (4.15)

where again the phenomenology of the observed h0 is indistinguishable from the SM, but

there is actually a phase difference present. This is known as the wrong sign limit [232].

4.1.1 Theoretical Constraints

Before moving on to indirect searches for 2HDMs from phenomenology, constraints can

be placed on the model from purely theoretical arguments, namely perturbativity, vac-

uum stability, and unitarity. Here we consider the theoretical constraints in the flavour-

conserving case of the 2HDM, however the results for the more general case are not so

different.

Firstly, let us consider perturbativity – the requirement that the parameters of our

theory are valued such that the use of a perturbative expansion is valid. We can express
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perturbativity of the scalar sector of the 2HDM as [233, 234]

|λi| ≤ 4π, (4.16)

where we have i = 1 → 5 and assume all λi to be real. Since this is an argument based

on the convergence of perturbation theory, there is clearly some ambiguity in choosing

the value of the upper bound for these parameters. We will see that different choices for

the upper bound do not change the picture of the theoretical constraints significantly,

but it is still informative to compare different values and see this effect.

By considering the Yukawa Lagrangian of the 2HDM, one can also derive two more

perturbativity constraints, dependent on the type of 2HDM being considered, e.g.

√
2Vtbmtξ

u
A

2v
≤

√
4π

Type II
=⇒ tanβ > 0.14, (4.17)

√
2Vtbmbξ

d
A

2v
≤

√
4π

Type II
=⇒ tanβ < 300, (4.18)

where again the upper bound of the Yukawa coupling has some freedom to be chosen

differently.

Next we can consider the conditions required for a stable vacuum, i.e. that our universe

lies in a minimum of the EW potential and either this is the global minimum or the

time for quantum tunnelling effects from our local minimum to a deeper one is longer

than the age of the universe. In the 2HDM, the conditions for this are written as [235]:

λ1,2 > 0, (4.19)

λ3 > −
√
λ1λ2, (4.20)

λ3 + λ4 − |λ5| > −
√
λ1λ2. (4.21)

Demanding that the vacuum is the global minimum of the potential, one also re-

quires [236]

m2
12

(
m2

11 −m2
22

(
λ1
λ2

) 1
2

)(
tanβ −

(
λ1
λ2

) 1
4

)
> 0. (4.22)

Finally, we consider unitarity – the constraint that the scattering matrix S is unitary

in our theory (recall equation (3.67)). We account for conditions from both tree-level

unitarity (see e.g. [234, 237, 238]) and NLO unitarity are considered, alongside the

requirement that NLO corrections to partial wave amplitudes are suppressed relative to

LO (see e.g. [239, 240]).

These three types of theoretical constraints can be combined in Monte Carlo scans of

the allowed parameter space in the lambda basis and converted to give allowed ranges
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for the parameters of the mass basis, specifically mH+ ,mH0 ,mA0 , tanβ, and cos(β−α).
Two-dimensional projections of these constraints are shown in figure 4.1, where in green

the perturbativity bound is taken to be 4π and in amber it is 4 – inspired by [239, 240];

the latter leads to more constrained regions, particularly for lower mass values. The

Figure 4.1: Bounds on the heavy Higgs masses mH0 , mA0 and mH+ , tanβ and
cos(β−α) stemming from theoretical constraints (perturbativity, vacuum stability and
unitarity conditions). For the plots 108 points were generated and only values of |β −
α − π

2 | < 0.5 were considered. The starting values |λi| < 4π are given in green, while
|λi| < 4 is shown in amber.

implications of these theoretical constraints are clear: the mass differences of the new

Higgs particles may not be too large and this is more constrained as masses increase

past the TeV scale, where also the alignment limit, i.e. cos(β−α) = 0, is more favoured.

Numerical values for the mass separations in bins of 500GeV are given in table 1 of [41].
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4.2 Constraining New Physics from Phenomenology

Extending the SM into the Two-Higgs-Doublet Model introduces new Feynman diagrams

for many processes, modifying the theory predictions for these (recall section 3.1.2 and

how Wilson coefficients of our effective operators are modified by new physics). Now

indirect searches for the 2HDM can be performed where a collection of the new theory

predictions can be compared to experimental measurements in order to constrain the

parameters of the model. In the ‘SM’ Higgs sector, the primary effect is the modification

of the ‘SM-like’ Higgs h0 coupling, which leads to constraints in the (tan β, cos(β − α))

plane. Meanwhile in the flavour sector, a whole zoo of decay processes are topical since

any diagrams mediated by the charged weak current are duplicated replacing W± with

H±; see e.g. figure 4.3. FCNC penguin diagrams can also be modified by replacing

W± with H± and/or Z0, γ with h0, H0, A0; see e.g. figure 4.9. This primarily leads

to constraints in the (tan β, mH+) plane from flavour-changing charged processes, with

additional FCNC constraints on cos(β − α), mA0 , mH0 . Furthermore, in the type III

2HDM without an imposed Z2 symmetry, FCNCs are induced at tree-level and mediated

by H0 and A0; see e.g. figure 4.14.

In this section, we give an overview of the constraints found for the parameters of the

2HDM via indirect searches using different groups of observables. We will find that dif-

ferent observables lead to constraints on the parameters of our model – tan β,mH+ ,mH0 ,

mA0 , cos(β − α). Each group of observables will provide different implications into the

current state of our theoretical predictions and where theory must improve to better

utilise these processes in the search for new physics. In section 4.2.1 we consider 2HDMs

with an imposed Z2 symmetry and present select results from the publications [41–43],

then in section 4.2.2 we consider the more general type III 2HDM as embedded in a

Pati-Salam-like UV theory, presenting results from [44].

4.2.1 Models with Z2 symmetry

Higgs Signal Strengths

Before moving on to flavour observables which make up the main body of processes used

in these analyses, we first consider the Higgs signal strengths. For a particular cross

section σi and particular branching fraction Bf , the signal strength µfi is defined

µfi =
(σi · Bf )Exp.
(σi · Bf )SM

. (4.23)
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It is clear that a deviation from µfi = 1 is a sign of BSM physics. Currently using data

from the ATLAS and CMS collaborations [241–248], there are 31 channels for which

the signal strength can be evaluated, including combinations of the main h0 production

modes at the LHC (gluon-gluon fusion, vector boson fusion, weak-boson associated pro-

duction, top-antitop pair production) and the decay channels γγ, ZZ∗,WW ∗, Zγ, τ+τ−,

bb̄, cc̄. As mentioned above, in the 2HDM the couplings to h0 are modified by the fac-

tors κi (see equation 4.11) compared to the SM, where the κi are e.g. for fermions the

ξih given in table 4.2 expressed in terms of cos(β − α) and tan β. Of the four flavour-

conserving 2HDMs described above, three types (II,X,Y) have couplings which make it

possible to consider a wrong sign limit. The possibility of allowing the wrong sign limit

may be favourable with the state of experiment where almost all signal strength data

agrees with the SM within 2σ, strongly constraining the magnitudes of the couplings,

but importantly not the phases.

The results of the global fits in the (tan β, cos(β − α)) plane, which in this plane are

dominated by the Higgs signal strengths (also receiving marginal contributions from

FCNC b → qℓℓ processes), are shown in figure 4.2. One finds the largest freedom in

the type I 2HDM, where for tan β ≳ 1, | cos(β − α)| ≲ 0.15 at 2σ. This constraint

is much more free than for the other three types, where | cos(β − α)| ≲ 0.05 at 2σ

when considering deviation from the alignment limit. This will be a common pattern

throughout this section where the type I 2HDM is less constrained than the other types.

One can see from the definition of the models in tables 4.1 and 4.2 that this is due to

the nature of the couplings where type I has all fermions coupling to only one doublet

rather than coupling different fermions to different doublets like the other types. The

most obvious impact of this is seen when considering the couplings ξfA, most important

for charged current processes. Here type I is only sensitive to cot β and therefore cannot

as easily constrain both the upper and lower limits of tan β like the other types can with

sensitivity to both cot β and tan β.

In types X and Y, another, strongly constrained solution, is the second contour shape

curving away from the centre of the figures. This is the wrong sign limit, which is found

to be allowed within 2σ for type X and within 4σ for type Y. In all four types, one finds

the constraint tan β ≳ 1, with the additional bound in type II of tan β ≲ 30. So there

is most freedom to deviate from the alignment limit in type I, however in all types the

alignment limit is strongly favoured, promoting the idea that h0 is indeed the ‘SM-like’

Higgs particle. In types X and Y, the possibility of realising the wrong sign limit is also

present, however this is in more tension with data than the alignment limit.

Tree-level Leptonic and Semileptonic Decays

Next we begin to consider flavour observables, starting with flavour-changing charged

currents. Integrating out the heavy charged Higgs H±, one finds 2HDM contributions
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Figure 4.2: Contour plots of allowed parameter space in the (tan β, cos(β−α)) plane
for each flavour-conserving type of 2HDM. The additional parameters are fixed to their
best fit point of the global fits performed in [41–43]. The contours indicate allowed
parameter space at 1, 2, 3, 4, 5σ confidence level going from darker to lighter.

to two operators in the weak effective Lagrangian:

OS−P = (ūPLd)(ℓ̄PLνℓ), OS+P = (ūPRd)(ℓ̄PLνℓ), (4.24)

CS−P = −mumℓξ
u
Aξ

ℓ
A

m2
H+

, CS+P =
mdmℓξ

d
Aξ

ℓ
A

m2
H+

, (4.25)

for a generic up-type quark u and a generic down-type quark d. These operators then

contribute to charged current processes such as ūd → ℓ+νℓ or d → uℓ−νℓ as shown in

figure 4.3.

Tree-level leptonic decays are some of the theoretically cleanest processes to calculate

and are typically now determined to a high precision. From QCD, all hadronic physics

affecting these decays is contained within a single parameter, the decay constant fM for

some meson M . By now, these are well-determined by lattice QCD and typically have

uncertainties ∼ 1% [249]. Regarding tree-level semileptonic decays, these are not quite

as theoretically clean as leptonic, however their calculations are mostly well-controlled
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q̄ q̄

Figure 4.3: Diagrams in the 2HDM contributing to leptonic (left) and semileptonic
(right) decays [41].

nowadays. The largest source of uncertainty typically stems from the hadronic physics,

parameterised in a form factor fM1→M2(q
2) as a function of the dilepton momentum

transfer q2. Many studies using both lattice QCD and QCD sum rules have been used to

understand the form factors for many semileptonic processes across the full q2 range and

precision is once again increasing. Otherwise the most significant uncertainties in both

tree-level leptonic and semileptonic decays stem from the CKM matrix element associ-

ated with the quark content of the meson and the radiative electromagnetic corrections

to the decay. The full list of flavour-changing charged current leptonic and semileptonic

modes included in the analyses is given in table 6 of [41]; the SM predictions are based

on [250–259] and the experimental measurements are listed from [26, 54, 260, 261].

Also included are the tree-level LFU ratios RD(∗) ≡ B(B → D(∗)τ ν̄τ )/B(B → D(∗)ℓν̄ℓ)

for ℓ = e, µ. The experimental measurements of RD(∗) have been in tension with the SM

predictions now for some time, currently with a ∼ 3.2σ excess [26], hinting at possible

BSM physics creating LFU violation. LFU violation in the 2HDM is possible since the

charged Higgs boson couples proportional to the lepton mass mℓ and is thus different

for the different modes in the ratio. However, the semileptonic b → cℓν̄ℓ transition

receives a negative 2HDM contribution compared to the SM in most parameter regions,

therefore decreasing RD(∗) and moving them even further away from experiment. Within

the physical domain of the model, the 2HDM can only worsen the tension of RD(∗) with

experiment. It was therefore chosen in the later studies [42, 43] to consider a global fit

having removed RD(∗) as it was clear that even in a realised 2HDM, these LFU ratios

would still point to further new physics. Examples of the constraints on RD(∗) for the

type II 2HDM are shown in figure 4.4.

Neutral Meson Mixing

Neutral meson mixing is commonly an important process in new physics studies. The

high precision of measurements and the nature of the loop-level box diagrams mediating

these in the SM and flavour-conserving BSM theories means that the parameters of a
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Figure 4.4: Contour plots of the allowed parameter space of the type II 2HDM in the
(tanβ,mH+) plane from the LFU ratios RD (left) and RD∗ (right). The lighter contour
indicates allowed parameter space within 2σ confidence, while the darker within 1σ.

new physics model can be strongly constrained by considering the new contributions to

e.g. the mass difference of neutral Bq mixing, ∆mq for q = d, s. The operators of the

∆B = 2 effective Hamiltonian gaining contributions from the 2HDM are

O(′)
1 = (q̄αγµPL(R)b

α)(q̄βγµPL(R)b
β), O4 = (q̄αPLb

α)(q̄βPRb
β),

O(′)
2 = (q̄αPL(R)b

α)(q̄βPL(R)b
β), O5 = (q̄αPLb

β)(q̄βPRb
α).

(4.26)

The 2HDM contributions to theWilson coefficients of these operators are taken from [231].

Typically the main limitation when considering ∆mq is the non-perturbative matrix el-

ements of the four-quark operators shown above. While a lot of work has been put

in using both sum rules and lattice QCD simulations to study these matrix elements,

they still remain the primary source of uncertainty in the calculation and further pre-

cision would be welcome for both SM and BSM analyses (see e.g. [195, 262] for recent

overviews). In this work, we use the averages presented in [262], based on the HQET

sum rules evaluations [168, 220, 221] and lattice simulations [217–219]. The perturba-

tive SM corrections are known and implemented to NLO-QCD accuracy [213], and the

experimental measurements are listed from [26]. In particular, neutral meson mixing is

sensitive to the inclusion of new heavy mediator particles such as the charged Higgs,

see figure 4.5. In the flavour-conserving 2HDMs, neutral meson mixing requires that
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q
B̄0
q B0

q
q̄

Figure 4.5: Examples of box diagrams in the 2HDM contributing to Bd and Bd

meson mixing [41].
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the charged Higgs mass is not too small and also imposes upper and lower bounds on

the value of tan β. However, the larger theory uncertainties here mean that the bounds

from neutral meson mixing on the flavour-conserving 2HDMs (where the contributions

are by default already suppressed to loop level) are not as constraining as those from

other observables. The constraints found for types I/X and II/Y are shown in figure 4.6.

One can see that types I/X and II/Y result in identical constraints from ∆mq; this is

explained by considering the ξA couplings in table 4.2, where types I/X and II/Y differ

only in the lepton coupling which does not enter into this process. A further reduction of

the theory uncertainties in the future could however make neutral meson mixing crucial

in constraining new physics such as flavour-conserving 2HDMs.

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

log10[tan β]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
[m

H
+
/G

eV
]

∆md,s

Type I/X
−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

log10[tan β]

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

lo
g

1
0
[m

H
+
/G

eV
]

∆md,s

Type II/Y

Figure 4.6: Contour plots of allowed 2HDM parameter space in the (tan β,mH+)
plane from the mass differences ∆mq in neutral B meson mixing for the types I/X
(left) and II/Y (right). The lighter contour indicates the allowed parameter space at
2σ confidence level while the darker corresponds to 1σ.

Flavour-Changing Neutral Currents: b→ sγ and b→ qℓ+ℓ−

Next we turn to FCNC processes which are induced beyond tree level. Specifically, we

consider b→ qℓ+ℓ− and b→ sγ decays which gain contributions via the operators

O(′)
7 =

emb

16π2
(q̄σµνPR(L)b)Fµν , O(′)

8 =
gsmb

16π2
(q̄σµνPR(L)T

ab)Gaµν ,

O(′)
9 =

e2

16π2
(q̄γµPL(R)b)(ℓ̄γ

µℓ), O(′)
10 =

e2

16π2
(q̄γµPL(R)b)(ℓ̄γ

µγ5ℓ),

O(′)
S =

e2

16π2
(q̄PL(R)b)(ℓ̄ℓ), O(′)

P =
e2

16π2
(q̄PL(R)b)(ℓ̄γ5ℓ).

(4.27)

The 2HDM contributions to theWilson coefficients of these operators are taken from [231].

The radiative decay B̄ → Xsγ has historically always been an important observable in

the 2HDM, see e.g. [263]. The SM prediction is based on [263–265], and the experimen-

tal average from [26] is based on [266–268]. Affected by the operators O7 and O8, the

2HDM contributions lead to a clear lower bound on the mass of the charged Higgs in
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Figure 4.7: One-loop 2HDM contribution to the b→ sγ radiative decay [41].

types II/Y:

mH+ ≳ 790GeV at 2σ. (4.28)

The strong lower bound found for types II/Y, and the lack of this bound in types I/X is

shown in figure 4.8. Similarly to the case of ∆mq, the lepton couplings do not enter the
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Figure 4.8: Contour plots of allowed 2HDM parameter space in the (tan β,mH+)
plane from the radiative decay B → Xsγ for the types I/X (left) and II/Y (right). The
lighter contour indicates the allowed parameter space at 2σ confidence level while the
darker corresponds to 1σ.

2HDM contributions to B → Xsγ and so types I/X and II/Y have identical constraints.

Next we consider the FCNC-mediated leptonic decays Bd,s → µ+µ−. These are par-

ticularly sensitive to new scalar contributions from BSM theories, and are therefore

well-suited to testing the 2HDM. Further motivation to use these processes is the sig-

nificant progress made in the last few years to improve the experimental measurements

for these challenging and rare decays, having some of the smallest branching ratios ever

extracted by experiment:

BSM(Bs → µ+µ−) = (3.55± 0.10)× 10−9, BSM(Bd → µ+µ−) = (0.98± 0.04)× 10−10,

BExp.(Bs → µ+µ−) = (2.93± 0.35)× 10−9, BExp(Bd → µ+µ−) = (0.56± 0.70)× 10−10.

(4.29)
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We use the experimental combinations [269] and recent ATLAS, CMS, and LHCb re-

sults [189–194]. The SM prediction is based on a perturbative element [270–272] and a

non-perturbative determination of the decay constants, see e.g. [273–275]. When con-
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Figure 4.9: Examples of penguin and box diagrams in the 2HDM contributing to
b→ qℓ+ℓ− transitions [41].

sidering these decays, the operators O(′)
10 ,O

(′)
S ,O

(′)
P gain contributions from the 2HDM,

however instead of only tan β and mH+ which have affected the flavour decays consid-

ered so far, the Wilson coefficients of these operators also now introduce dependence

on the rest of the 2HDM parameters: cos(β − α), mH0 , mA0 . To consider a 2D fit to

Bd,s → µ+µ− in the (tan β,mH+) plane, we therefore choose to fix the additional 2HDM

parameters as cos(β − α) = 0 since the alignment limit is favoured in global fits (see

e.g. figure 4.2) and mH0 = mA0 = mH+ which is justified by the theoretical constraints

(see e.g. figure 4.1). Similarly to B → Xsγ, types II and Y share similar constraints

from Bd,s → µ+µ− as do types I and X; this is explained in this case by the fact that

the lepton pair couples to the neutral scalars of the 2HDM, which in the alignment limit

is the same for all types. Although not as strong as from B → Xsγ, types II and Y

again find a clear lower bound for mH+ from Bd,s → µ+µ− as well as a clear correlation

between mH+ and the allowed range for tan β. The lower bound in types II and Y from

Bd,s → µ+µ− is

mH+ ≳ 300GeV at 2σ. (4.30)

Within the physical domain of 2HDM parameters, no clearly defined constraints are

found for types I and X.

We also include semileptonic b → sℓ+ℓ− processes, such as binned branching ratios,

angular distributions, asymmetries, etc. For a full list of observables included, see table

7 of [41]; the experimental measurements are listed from [269, 276–290]. Note that
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Figure 4.10: Contour plots of allowed 2HDM parameter space in the (tan β,mH+)
plane from Bd,s → µ+µ− for the types I/X (left) and II/Y (right). The lighter contour
indicates the allowed parameter space at 2σ confidence level while the darker corre-
sponds to 1σ.

some of these observables exhibit tension with the Standard Model; in fact, these are

collectively known as the flavour anomalies and are commonly the topic of detailed

analyses, see e.g. [253, 269, 291–305]. Like the tree-level semileptonic decays, these

can suffer from large uncertainties in their hadronic form factors, which, in particular

for vector final states, are typically less well-determined than the tree-level equivalents.

These are also more challenging in q2 ranges resonant with cc̄ states where long-distance

hadronic effects coming from ‘charm loops’ coupling to the lepton pair appear [291].

For all FCNC b → qℓℓ processes, we can combine these in their own global fit, yielding

the results presented in table 4.3. All operators listed in equation (4.27) enter these pro-

cesses with 2HDM contributions, and thus all five 2HDM parameters again enter. When

considering the standard (tan β,mH+) plane therefore, the additional 2HDM parameters

mH0 , mA0 , cos(β − α) are set to the b → qℓℓ best fit point, as seen in figure 4.11. The

exact lower bound on mH+ is not as strict as in the single plot for each type, since vary-

ing the additional parameters introduces more freedom. What is of note here however

is that one can see an upper bound on the charged Higgs mass appear. This is intro-

duced by the observables deviating from the SM predictions such that the decoupling

mH+ → ∞ limit (which would recover the SM predictions) is no longer favoured, as has

been the case for most processes considered so far.

At the time of analysis, there still existed a significant tension in the SM for the LFU

ratios RK(∗) ≡ B(B → K(∗)µ+µ−)/B(B → K(∗)e+e−) [306], which are calculated in bins

of squared dilepton invariant mass q2. These ratios are theoretically very clean, since

almost all hadronic physics cancels out in the ratios and also the electromagnetic correc-

tions are found to be tiny [307]. These ratios therefore serve well in BSM analyses since

the theoretical calculation does not suffer from complications that can interfere with
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Figure 4.11: Contour plots of allowed 2HDM parameter space in the (tan β,mH+)
plane from all b → sℓ+ℓ− transitions for each flavour-conserving type. The additional
2HDM parameters are fixed to their best fit point of the global fits performed in [41–43]
and shown in table 4.3. The darker contour indicates allowed parameter space at 1σ
confidence level and the lighter at 2σ.

possible new physics. It was found however that the 2HDM struggled to accommodate

the 10 bins of RK(∗) considered at the time [282, 308–311], always finding best fit scenar-

ios poorer than in the SM. Therefore the approach was taken to consider global fits both

with and without RK(∗) since (as with the tree-level RD(∗) LFU ratios) even in a realised

2HDM, the data suggests further new physics would be required to accommodate these

observables. The situation is actually much improved now since the measurements of

RK(∗) were updated and now agree nicely with the SM predictions [32, 33]. For the

analysis here, this essentially equates to the global fit scenarios neglecting RK(∗) since in

most of the parameter region considered these ratios gained only tiny corrections from

the 2HDM and remained close to their Standard Model predictions, meaning now close

to the measurements as well.
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Global Fits

Next we consider the global fits to all observables in each flavour-conserving type of

2HDM. As well as the Higgs signal strengths and flavour observables mentioned so far,

we also include the electroweak precision observables S, T, and U in the global fits; the

observables considered are summarised in tables 4, 5, 6, 7, and 8 of [41]. For each type,

a global fit to all observables (excluding the LFU ratios as discussed in the text) is

performed in the frequentist picture, the best fit point for the five 2HDM parameters

tanβ, mH+ , mH0 , mA0 , cos(β−α) is found, and the quality of its fit assessed. The best

fit points of the global fits for each type to all observables and also to only the b→ sℓℓ

observables are shown in table 4.3.

Scenario # Best-fit point χ2
min p-value

Observables {tanβ,mH+ ,mH0 ,mA0 , cos(β − α)}
Type I global 263 {80, 1720GeV, 1770GeV, 1770GeV,−0.003} 281 15.5%

Type I b→ sℓℓ 192 {35, 1020GeV, 960GeV, 970GeV,−0.002} 234 1.1%

Type II global 265 {4.3, 2340GeV, 2380GeV, 2390GeV, 0.009} 295 6.6%

Type II b→ sℓℓ 192 {4.0, 820GeV, 690GeV, 690GeV, 0.0003} 238 0.7%

Type X global 263 {320, 1540GeV, 1480GeV, 1490GeV, 8× 10−5} 279 17.6%

Type X b→ sℓℓ 192 {320, 1240GeV, 1290GeV, 1190GeV, 0.0007} 233 1.3%

Type Y global 263 {320, 1270GeV, 1240GeV, 1150GeV, 1× 10−4} 284 12.8%

Type Y b→ sℓℓ 192 {15, 460GeV, 760GeV, 230GeV, 5× 10−5} 237 0.8%

Table 4.3: Best fit points of 2HDM parameter fits using the constraints from theory
to inform the physical parameter values.

The results of the fits in the (tan β,mH+) plane, fixing the additional parameters to their

best fit points, are shown in figure 4.12. By further varying the fixed parameters within

their allowed phenomenological and theoretical bounds, we find the allowed regions for

the 2HDM parameters; these regions are presented in table 4.4 at 2σ confidence level.

mH+ [TeV] cos(β − α) tanβ

Type I [0.1, 10] [−0.14, 0.14] [0.55∗, 320)

Type II [0.86, 10] [−0.04, 0.04] [0.32∗, 50∗)

Type X [0.13, 10] [−0.05, 0.10] [0.38∗, 320)

Type Y [0.74, 3.61] [−0.01, 0.04] [110, 320)

Table 4.4: Regions of allowed 2HDM parameters [43]. We consider the 2σ regions
from the global fit (excluding LFU observables R(K(∗)), R(D(∗))) for each type, and
also do not exceed the region of mH+ ∈ [0.1, 10] TeV in order to not conflict with
direct search limits [312] or approach the decoupling limit. The additional neutral
Higgs masses are constrained from the charged Higgs mass as found in [41] (Table 1).
* indicates quantities which are not general, but depend on mH+ ; we show values for
mH+ = 10TeV where the allowed regions are at their maximum.
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Figure 4.12: Contour plots of allowed parameter space in the (tan β,mH+) plane for
each flavour-conserving type of 2HDM. The additional parameters are fixed to their best
fit point of the global fits performed in [41–43] and shown in table 4.3. The contours
indicate allowed parameter space at 1, 2, 3, 4, 5σ confidence level going from darker to
lighter.

Anomalous Magnetic Moment of the Muon

Another observable typically of interest in BSM analyses is the anomalous magnetic

moment of the muon, aµ. This has had a long-standing tension between experiment

and the SM since the original BNL experiment [313] which was recently confirmed by

FNAL [314]. This has been a strong motivation to consider new physics signals since

the quantum loop nature of aµ means it can be sensitive to new heavy mediators in

these loops and many new physics models have been tested over the years in attempts

to resolve the tension with experiment, see e.g. [315]. Examples of the contributions in

the 2HDM are shown in figure 4.13.

While a great deal of machinery has been implemented over many years to calculate

the perturbative contributions to aµ at five-loop order in QED, the dominant source of

uncertainty in the calculation lies in the hadronic contributions, namely the hadronic

vacuum polarisation (HVP) and hadronic light-by-light scattering (HLbL). Two separate

methods are typically used to calculate these hadronic contributions: the data-driven
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Figure 4.13: Examples of LO and NLO diagrams in the 2HDM contributing to
aµ [41, 316, 317].

R-ratio method taking experimental input of σ(e+e− → hadrons), and lattice QCD sim-

ulations. At the time of analysis, the SM prediction from the Theory Initiative White

Paper using the data-driven approach yielded a 4.2σ discrepancy with experiment [318].

Although lattice QCD simulations had estimated the hadronic contributions to aµ previ-

ously [319–328], the spread between the results was large and the uncertainties of these

calculations were also larger than the data-driven alternative such that any deviations

they may have suggested from the data-driven approach were not taken to be signifi-

cant. However, the BMW collaboration in 2020 released a new lattice calculation with

uncertainties competitive with the data-driven approach for the first time [329]. Of note

in this calculation was a significant shift from the data-driven approach, reporting only

a 1.6σ tension with experiment. While this is the only complete lattice calculation to

date with this increased precision, other lattice collaborations are now reporting similar

results in the ‘intermediate window’ for HVP [327], suggesting that these could align

more closely with the BMW result when they complete the full calculation as well [330–

333]. Very recently, the BMW collaboration released an update to their 2020 result with

even higher precision, reducing the difference from experiment to only 0.9σ [334].

In the original analysis it was chosen to comment on both the White Paper and BMW

predictions as separate scenarios. Neither aµ scenario however was considered in the

global fits, anticipating further clarification in the future. It was found that within

the perturbative regime of the 2HDM, the contributions to aµ were tiny and there-

fore strongly disfavoured using the White Paper SM prediction which expected large

BSM contributions, whereas using the BMW prediction which anticipated only small

deviations from the SM allowed the relevant parameter space within 2σ. For future
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BSM analyses, the community eagerly awaits further high-precision lattice calculations

to hopefully settle the tension between the SM predictions.

4.2.2 Models without Z2 symmetry

While 2HDMs with a Z2 symmetry can be found appealing because they forbid FCNCs

at tree-level, the features of a general 2HDM without this additional symmetry can also

be interesting to study. In particular, by allowing both Higgs doublets to couple to all

fermions, the Yukawa structure of the type III 2HDM no longer replicates that of the

SM, and can lead to enhanced couplings between the fermions and the neutral Higgses

of the model.

In section 4.2.1 above, we discussed the FCNC leptonic decays Bd,s → µ+µ− as some

of the smallest branching ratios measured by experiment. The small size of these de-

cays’ branching ratios stems from helicity suppression by being proportional to m2
µ.

This suppression is therefore even stronger for the electron channels Bs → e+e−; while

BSM(Bs → µ+µ−) = (3.55 ± 0.10) × 10−9, the equivalent channel with electrons has

BSM(Bs → e+e−) = (8.30 ± 0.36) × 10−14. This tiny branching ratio, if accurate, is

still orders of magnitude below the experimental upper bounds set by the LHCb exper-

iment [335] of

B(Bs → e+e−) < 9.4× 10−9. (4.31)

With such a large separation between the experimental limit and the SM prediction,

any clear observation of this channel by experiment in the near-future would be a clear

indication of new physics. In [336], it was shown model-independently how the branching

ratio of Bs → e+e− could be enhanced from the SM value to an observable level by

the presence of new pseudoscalar interactions. To achieve this effect however requires

that the new pseudoscalar coupling is not proportional to the electron mass me. This

therefore excludes models such as the flavour-conserving 2HDMs where the Yukawa

coupling is directly proportional to the fermion mass. However, it was shown in [44]

for the first time how a general type III 2HDM allows the possibility of enhancing

Bs → e+e− in a specific new physics model.

In the type III 2HDM, one has some freedom to choose the structure of the Yukawa

sector, and a scenario can be arranged where the Yukawa coupling to the electron is

suitably enhanced in order to make Bs → e+e− experimentally accessible. The Yukawa

matrix for charged leptons in this type III 2HDM is close to flavour diagonal and can



Chapter 4 Indirect Searches for New Physics 77

be expressed as

Ỹ ℓ =


yee ϵ ϵ

ϵ yµµ ϵ

ϵ ϵ yττ

 , (4.32)

where ϵ ≪ yjj . Suppressing the off-diagonal elements ϵ is favourable in order to avoid

lepton flavour violating processes, such as µ→ eγ [337]. Since we are mostly interested

in enhancing the electron coupling, we assume yµµ ≪ yee and ϵ≪ yττ . We can similarly

express the Yukawa matrix for the down-type quarks as

Ỹ d =


ydd ϵ ϵ

ϵ yss ybs/2

ϵ ybs/2 ybb

 , (4.33)

where again ϵ≪ yij . Here we suppress some off-diagonal elements in order to e.g. avoid

the strong bounds on FCNCs from neutral kaon mixing [54], however we keep the entry

ybs such that the quark current of Bs → e+e− can be coupled to the scalar H0 and

pseudoscalar A0, thus giving a tree-level contribution to this process, seen in figure 4.14.

Similar Yukawa structures, without keeping the off-diagonal elements symmetric, have

been studied in [338, 339]. The 2HDM Wilson coefficients of the operators O(′)
S,P impact-

Bq Bq B̄q

q

b̄

H0, A0
`+

`−

q

b̄

H0, A0

q̄

b

Figure 4.14: Tree-level FCNC diagrams for Bq → ℓ+ℓ− and neutral Bq meson mixing
induced in the general type III 2HDM [44].

ing Bs → e+e− are

CS =
ybsyee
m2
H0

( √
2π

mbGFVtbV
∗
tsα

)
, C ′

S = CS ,

CP = −ybsyee
m2
A0

( √
2π

mbGFVtbV
∗
tsα

)
, C ′

P = −CP .
(4.34)

Since B(Bs → e+e−) actually depends on differences ∆CS = CS − C ′
S and ∆CP =

CP −C ′
P , one can see that the CP-even scalar H0 does not contribute to the branching

ratio, however the CP-odd scalar A0 does.

The type III 2HDM with such couplings can even be embedded in a UV theory of quark-

lepton unification as further motivation and validation for testing such a scenario. The

idea of quark-lepton unification was first proposed by Pati and Salam [340] where SM

quarks and leptons belong to the same multiplet and this remains a well-motivated and
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popular scenario on which to base BSM theories. However, the original theory relates the

top-quark Yukawa coupling to the neutrino coupling, which then requires the associated

energy scale to be very high (∼ 1014GeV) via the seesaw mechanism [341–344]. Instead,

here and in [44], a low energy limit of the original Pati-Salam theory, proposed in [345],

is considered in which the neutrino mass arises from the inverse seesaw mechanism and

the required energy scale of the theory can be much lower.

As seen in figure 4.14, allowing the off-diagonal Yukawa coupling ybs introduces tree-level

FCNCs between b and s quarks. This not only allows the decay Bs → e+e− to proceed

at tree level, but also induces 2HDM contributions to the mass difference ∆Ms in neutral

Bs − B̄s mixing at tree level. This will impose strict bounds on the size of the coupling

ybs since these 2HDM contributions are not loop-suppressed and can in principle be very

sizeable compared to the SM contributions while the difference between experiment and

the SM prediction is not so large. These bounds will also be correlated with the Higgs

masses mH0 , mA0 ; larger Higgs masses will further suppress the Wilson coefficients such

that the coupling ybs can be larger.

Similarly, this allows semileptonic b→ se+e− decays to proceed at tree level also. These

processes have the same new contributions to operators O(′)
S,P as Bs → e+e− from equa-

tion (4.34), and thus depend on the combined coupling ybsyee and the Higgs masses

mH0 , mA0 . The b → se+e− observables considered are listed in table 1 of [44], us-

ing [286, 346–348]. Note that the LFU ratios RK(∗) would also be modified in this model

and could have been included in our fits, however these do not change the conclusions of

the study significantly and it was decided that a new physics treatment of RK(∗) without

properly developing also the muon sector of the model would be inaccurate.

Furthermore, since Bs → e+e− depends on the combined coupling ybsyee, the bounds on

ybs found from neutral Bs−B̄s mixing can be correlated with bounds on the yee coupling

from the measurement of the cross-section of e+e− → e+e− by the LEP collaboration.

The constraints on the four-electron axial-vector interaction [349] can be translated into

bounds on the scalar and pseudoscalar interactions, finding

y2ee
m2
H0

+
y2ee
m2
A0

<
1

(4TeV)2
mA0=mH0

=⇒ yee
mH0

<
1

5.7TeV
. (4.35)

The allowed parameter space in the (ybsyee,mA0) plane from all phenomenological

constraints is shown in figure 4.15, where we consider two scenarios: first the limit

mA0 = mH0 and second allowing the maximum freedom between mA0 and mH0 from

the theoretical constraints of the model. The blue shaded regions indicated the space

allowed by the semileptonic b → se+e− decays at 1σ and 2σ confidence levels, while

the green region is the combined LEP and ∆Ms constraints at 2σ confidence level.

The black lines correspond to contours of constant enhancement factor B2HDM(Bs →
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Figure 4.15: Allowed parameter space for the combined coupling ybsyee and the
mass of the pseudoscalar Higgs mA0 ; in the limit of mA0 = mH0 (left) and allowing
mA0 and mH0 to differ within the theoretical constraints of the model (right). The
contours in dark and light blue represent allowed space within 1σ and 2σ confidence
levels respectively. The black lines represent contours of enhancement for the ratio
B2HDM(Bs → e+e−)/BSM(Bs → e+e−). The red dashed line indicates the enhancement
(105) needed to saturate current experiment bounds [44].

e+e−)/BSM(Bs → e+e−); one can see that an enhancement factor as large as ∼ 105 is

allowed by all constraints. In fact, the current experimental bounds corresponds to an

enhancement of 105 above the SM (marked on the figures with a red dashed line) which

can therefore even be saturated by the allowed enhancements of the type III 2HDM

considered here.

4.2.3 Improvements Needed for Future Analysis

A recurring factor in this section has been that while many observables are calculated

to a high precision in the SM, further control of their uncertainties is to be welcomed

for making statements both about the compatibility of the SM with experiment and the

suitability of new physics models. While the hadronic physics in the simplest processes

such as leptonic decays is well-controlled these days, increased precision in these non-

perturbative contributions to more complex decays, such as semileptonic decays and

neutral meson mixing, is required in order to have full control over their uncertainties

and increase their power in the search for new physics. In the following chapters, we

will turn our focus to the calculation of these non-perturbative hadronic contributions

with increased precision in order to improve future SM and BSM analyses using these

processes.



Chapter 5

Non-Perturbative Methods for

Hadronic Physics

In this chapter we will introduce some common methods used for calculating the effects

of hadronic physics in QCD. As discussed in section 2.3.2, the QCD coupling αs is

large at low energies. This leads to the phenomenon of confinement where strongly-

interacting particles cannot overcome the strong coupling and the degrees of freedom

in QCD are better described by the hadronic bound states formed by the individual

quarks and gluons. In this regime, the ‘standard’ method of perturbation theory (where

one calculates diagrams progressively as a Taylor expansion in the coupling constant)

breaks down and we require new, non-perturbative methods in order to make meaningful

predictions.

In section 5.1 we will introduce lattice QCD, a framework of calculating hadronic observ-

ables numerically by discretising spacetime on a finite 4-dimensional grid and simulating

on large computer systems. The alternative method of QCD sum rules is then discussed

in section 5.2, which allows for an analytical evaluation of hadronic observables combin-

ing perturbative QCD and vacuum condensate contributions (or light-cone distribution

amplitudes). Other non-perturbative methods also exist, although not covered here in

any further detail. These include AdS/CFT approaches [350] and effective field theories

such as HQET and chiral perturbation theory.

We will find that all methods are powerful tools for calculating hadronic observables and

are oftentimes complimentary to one another where, for example, regions of phase space

difficult to access for one method are simpler in another. In the case where a hadronic

observable is accessible to multiple methods, this provides a useful, independent cross-

check to validate that two separate methods converge and agree when expected.

80



Chapter 5 Non-Perturbative Methods for Hadronic Physics 81

5.1 Lattice Quantum Chromodynamics

We now present a basic introduction to the important features of lattice QCD, first

outlined by Wilson in 1974 [40]. Starting with a basic outline, we then discuss how

to discretise the QCD Lagrangian (the gauge fields in particular) in section 5.1.1. We

will take a moment to describe how the path integral formulation of QFT can be solved

stochastically on Euclidean lattices using Monte Carlo methods in section 5.1.2 before

returning to the problems encountered when discretising fermions in section 5.1.3 and

how these are circumvented. We briefly outline how a real physical scale can be asso-

ciated with lattice simulations in section 5.1.4. We will then discuss how correlation

functions of fermion currents are formed and what information can be extracted from

these in section 5.1.5. Finally, we stress the challenges of simulating heavy charm and

bottom quarks on the lattice in section 5.1.6 and conclude with a summary of the sta-

tistical and systematic errors associated with a lattice calculation in section 5.1.7. This

section stands as an introduction to the topic of lattice QCD, where the knowledge pre-

sented here has been collected from [351–353] (and references within), discussions with

colleagues, and further lectures and schools attended.

Typically, other methods for non-perturbative predictions such as effective field theories

are based on model-dependent assumptions and/or are only valid in certain ranges of

e.g. phase space. Lattice QCD is an ab initio framework providing predictions directly

from the QCD Lagrangian, where all uncertainties are systematically improvable through

improved computer algorithms, understanding of the discrete field theory, and increased

computer power and resources. This is a first-principles method which has a well-defined

trajectory to continuum QCD starting from the path integral formulation of quantum

field theory, without additional assumptions and approximations which are required by

other methods.

In the path integral formalism in Minkowski space, the n-point correlation function is

given by

⟨O1 . . .On⟩ =
1

Z

∫
D[A,ψ, ψ̄]O1 . . .On exp

(
iS[A,ψ, ψ̄]

)
, (5.1)

for gauge fields A and fermion fields ψ, and the action S. The partition function Z is

given by

Z =

∫
D[A,ψ, ψ̄] exp

(
iS[A,ψ, ψ̄]

)
, (5.2)
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and the path integral measure D[A,ψ, ψ̄] by

D[A,ψ, ψ̄] =
∏
t,x⃗

dA(x⃗, t) dψ(x⃗, t) dψ̄(x⃗, t). (5.3)

The integrand in equation (5.1) depends on exp
(
iS[A,ψ, ψ̄]

)
where the action S is

real1. However, integrands of the form eix are numerically unstable since this exhibits

oscillatory behaviour and there are many cancellations between the ‘peaks’ and ‘troughs’

of these oscillations in the contributions to the sum. One can avoid this problem by

performing a Wick rotation [354] from Minkowski spacetime to Euclidean spacetime [40,

94], which is done by simultaneously rotating all time arguments t→ −iτ ; this rotation
is shown in figure 5.1. The Euclidean n-point correlation function is then given by

Imag

Real

τ1 τ2 τ3

t1

t2

t3

Figure 5.1: Wick rotation from imaginary (Minkowski) to real (Euclidean) time.

⟨O1 . . .On⟩E =
1

ZE

∫
D[A,ψ, ψ̄]O1 . . .On exp

(
−SE [A,ψ, ψ̄]

)
, (5.4)

where the subscript E indicates quantities in Euclidean spacetime, and importantly SE

is both real and positive. Formally, equation (5.4) is infinite-dimensional and thus per-

forming this integral in continuous and infinite spacetime is ill-defined. We will overcome

this by placing the theory on a finite lattice, where the number of degrees of freedom

is still large, but now finite and the path integral can be numerically estimated. Fur-

thermore, now in Euclidean spacetime, the factor exp
(
−SE [A,ψ, ψ̄]

)
can be interpreted

as a Boltzmann weight. Now for any Euclidean n-point function ⟨O1 . . .On⟩E , one can

numerically estimate this in a statistical framework based on the Boltzmann weight.

This will allow for Markov Chain Monte Carlo (MCMC) simulations of QCD to sample

1Strong CP violation is not typically included in lattice simulations.
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the phase space and estimate the integral numerically, i.e.

⟨O1 . . .On⟩E ≈ 1

N

∑
i

O1[Ui] . . .On[Ui] +O

(
1√
N

)
, (5.5)

for N ‘gauge field configurations’ Ui[A,ψ, ψ̄] which have probability proportional to

the Boltzmann weight exp (−SE [Ui]). A collection of N gauge field configurations Ui

prepared for the estimation of expectation values is called a lattice ensemble.

We define the finite lattice used to reduce the dimensionality of the integral by its lattice

spacing a2 and the 4-dimensional length Lµ/a. It is common for the spatial volume to

be cubical, Lx = Ly = Lz = L, such that the 3D spatial volume V3 = L3 and to make

the time extent T larger (commonly T = 2L); the 4D volume is then V4 = L3 × T .

Note that the lattice spacing a is a dimensional quantity and not a parameter of the

discretised theory. Its value in physical units is derived from the dynamics of the lattice.

The lattice can be described by a set of coordinates defining the sites of the lattice,

Λ = {xµ = anµ, for nµ = 0, 1, . . . , Lµ − 1 and µ = x, y, z, t}. (5.6)

A sketch of a 2-dimensional lattice is given in figure 5.2. In the discrete theory, partial

L/a

T/a

a

a ψ̄(x)

ψ(x+ aµ̂)

Uµ(x)

Figure 5.2: Sketch of a 2D lattice with L/a× T/a lattice sites and lattice spacing a.
Fermion fields ψ(x), ψ̄(x) live on the lattice sites and the gauge links Uµ(x) describe
the paths between nearest-neighbour sites.

2In principle the lattice spacing can be defined separately in the spatial and temporal directions, i.e.
ax,y,z ̸= at.
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derivates are replaced by finite differences, i.e.

∂µψ → 1

a
(ψ(x+ aµ̂)− ψ(x)) ,

∂∗µψ → 1

a
(ψ(x)− ψ(x− aµ̂)) ,

1

2
(∂µ + ∂∗µ)ψ → 1

2a
(ψ(x+ aµ̂)− ψ(x− aµ̂)) ≡ ∆µψ(x),

(5.7)

where µ̂ is the unit vector in the µ direction on the lattice and from here on we will

assume use of the symmetric derivative ∆µ unless otherwise stated. Spacetime integrals

are also replaced by sums, i.e. ∫
d4x f(x) → a4

∑
x∈Λ

f(x), (5.8)

and the measure D is taken over the lattice sites. Now only a discrete set of variables is

to be integrated over a finite volume and the path integral is finite dimensional. Note

that going from infinite spacetime to a finite volume requires that we choose boundary

conditions (BCs) for our box; most commonly used are periodic BCs.

Discretising spacetime with a non-zero lattice spacing a introduces a cut-off in momentum-

space. For periodic BCs, we can perform the Fourier transform

ψ̃(p) =
∑
x∈Λ

a4e−ipxψ(x) (5.9)

such that the ψ̃(p) are also periodic in momentum-space, i.e.

pµ ≃ pµ +
2π

a
, (5.10)

and are discretised as

pµ =
2π

a

lµ
Lµ

, for lµ = 0, 1, . . . , Lµ − 1. (5.11)

Now one sees that the momenta are restricted to the first Brillouin zone:

−π
a
< pµ ≤ π

a
. (5.12)

Applying the inverse Fourier transform

ψ(x) =
1

a4L3T

∑
lµ

eipxψ̃(p), (5.13)

we find the UV cut-off

|pµ| ≤
π

a
. (5.14)
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Thus, QCD on the lattice is automatically regularised since the inverse of the lattice

spacing acts as a cut-off and a UV regulator. Furthermore, the finite volume restricts

momentum modes to be quantised and therefore introduces an infrared (IR) regulator.

All functional integrals are now both regularised and finite. Real, continuous physics

in infinite spacetime is then recovered in the limit of infinite volume (L, T → ∞) and

where the cut-off is taken to infinity a−1 → ∞, i.e. a → 0. Typically the continuum

limit a → 0 is non-trivial and understanding how to safely and appropriately take this

limit is a critical component of extracting hadronic observables correctly.

5.1.1 Discretising the QCD Lagrangian

Starting with the QCD Lagrangian written in equation (2.30), we can write the regular

QCD action (S =
∫
d4xL) as

SQCD =

∫
d4x

−1

4
Gaµν(x)G

aµν(x) +
∑
f

ψ̄f,α(x)(i /Dαβ −mfδαβ)ψf,β(x)


= SG[A] + SF [A,ψf , ψ̄f ],

(5.15)

where we separate the action into the pure gauge action SG and the fermion action SF .

Next, we must require that the gauge transformations ensuring gauge invariance in the

continuum theory also hold in the discretised theory. We start by choosing an element

of the SU(3) group Ω(x) at each lattice site x. The fermion fields will then transform as

ψ(x) → ψ′(x) = Ω(x)ψ(x)

ψ̄(x) → ψ̄′(x) = ψ̄(x)Ω†(x).
(5.16)

This will not however remain gauge invariant due to the discretised kinetic term ψ̄γµDµψ,

which will introduce terms with fields at different sites, e.g.

ψ̄(x)ψ(x+ aµ̂) → ψ̄(x)Ω†(x)Ω(x+ aµ̂)ψ(x+ µ̂). (5.17)

To maintain gauge invariance, we introduce a new quantity Uµ(x) which transforms as

Uµ(x) → U ′
µ(x) = Ω(x)Uµ(x)Ω

†(x+ aµ̂). (5.18)

This is the link variable which describes the path connecting the lattice site x to x+ aµ̂

where µ̂ is the unit vector in the µ ∈ {x, y, z, t} direction; see figure 5.2. Now the terms

which would previously break gauge invariance such as ψ̄(x)Uµ(x)ψ(x + aµ̂) are gauge

invariant. We can relate the link variables Uµ(x) to the discretised Lie algebra-valued
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gauge fields Aaµ(x) as

Uµ(x) ≡ exp
{
igsaA

a
µ(x)Ta

}
, (5.19)

for T a the gauge group generators and gs the bare coupling constant. In the discretised

theory, we treat these Lie algebra-valued fields Aaµ(x) as the fundamental degrees of

freedom. From here, we can properly define the discretised fermion action SF , replacing

the integral in equation (5.15) with a sum over all lattice sites. Assuming only one

fermion flavour to remove the additional sum for now,

SF [U,ψ, ψ̄] = a4
∑
x,y∈Λ

ψ̄α(x)Dαβ(x, y)ψβ(y)

= a4
∑
x∈Λ

ψ̄α(x)

(∑
µ

γµ,αβ
Uµ(x)ψβ(x+ aµ̂)− U †

µ(x− aµ̂)ψβ(x− aµ̂)

2a
+mψβ(x)

)
,

(5.20)

where Einstein summation convention is not used, the Euclidean gamma matrices are

used (see appendix A.2), and note that in Euclidean space upper and lower indices are

equivalent. In equation (5.20), we used the Dirac operator connecting lattice sites x and

y defined as

D(x, y)αβ =
∑
µ

γµ,αβ
Uµ(x)δx+aµ̂,y − U−µ(x)δx−aµ̂,y

2a
+mδαβδxy, (5.21)

where we suppress colour indices, and define

U−µ(x) = U †
µ(x− aµ̂). (5.22)

This is defined such that each lattice site only stores the link variables in the positive

µ directions; other conventions are possible, but less common. We will find that the

above Dirac operator is not unique and only the naive choice – it it thus called the

naive Dirac operator. We will see in section 5.1.3 that the naive Dirac operator actually

leads to 16 doublers instead of a single fermion, and so we look to other formulations

of the Dirac operator without these unwanted doublers. As long as our choice correctly

reduces to equation (5.15) in the continuum limit a→ 0, we are free to choose different

formulations in the discretised theory, and in fact, different formulations can approach

the continuum differently with different advantages in the discrete setup.

We now turn to the pure gauge sector of the QCD action, SG. After defining the link

variables Uµ(x), it is clear that the discretised version of SG should be constructed from

these link variables; as mentioned above for the fermion action, we are also free to choose

how we define QCD on the lattice so long as it reduces to the correct continuum action

and is gauge invariant. Recall that the link variables Uµ(x) define the path from lattice

site x to x + aµ̂ for the unit vector µ̂ in direction µ ∈ {x, y, z, t}. To define a gauge
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invariant gauge action, we can make use of the gauge transformation rules for Uµ(x).

Extending equation (5.18) along multiple links, e.g. for two link variables

Uµ(x)Uν(x+ aµ̂) → Ω(x)Uµ(x)Ω
†(x+ aµ̂)Ω(x+ aµ̂)Uν(x+ aµ̂)Ω†(x+ aµ̂+ aν̂)

→ Ω(x)Uµ(x)Uν(x+ aµ̂)Ω†(x+ aµ̂+ aν̂),

(5.23)

one can see that the intermediate Ω all cancel and only the first Ω on the left and last

Ω† on the right remain. From this, it can be seen that if one draws out a closed path on

the lattice, e.g.

Ω(x)Uµ(x)Uν(x+ aµ̂) . . . U−ν(x+ aν̂)Uµ(x− aµ̂)Ω†(x), (5.24)

that the trace of this closed loop will be gauge invariant due to cyclicity. These are

known as Wilson loops [40]. It is then possible to construct a gauge-invariant action for

the gauge sector of lattice QCD using traces of these Wilson loops.

The smallest Wilson loop on the lattice is the plaquette (shown in figure 5.3(a)), defined

Pµν(x) = Uµ(x)Uν(x+ aµ̂)U †
µ(x+ aν̂)U †

ν (x). (5.25)

From this, the Wilson (plaquette) gauge action [40] can be defined as

SW =
2

g2s

∑
x∈Λ

∑
µ<ν

Re[Tr(1− Pµν(x))]. (5.26)

By replacing the link variables with the gauge fields Aµ and performing a Taylor expan-

sion, one can see how this replicates the continuum action, i.e.

SW =
a4

2g2s

∑
x

∑
µ,ν

Tr(Gµν(x)Gµν(x)) +O(a2), (5.27)

so the continuum action is replicated by the lattice Wilson action, up to order a2 dis-

cretisation effects. This is therefore a perfectly valid lattice description of the gauge

action, although the understanding of the additional discretisation effects at non-zero

lattice spacing is important to understand how to appropriately take the continuum

limit and recover the QCD gauge action.

Other choices of lattice gauge action may be preferred to obtain e.g. improved discreti-

sation effects. Other lattice gauge actions are typically derived from modifying the

Wilson action and adding additional terms based on more complex Wilson loops than

the plaquette. There exists a procedure to systematically improve the discretisation

errors from a lattice action by cancelling the error terms for lower powers of a – the

Symanzik improvement program [355–357]. Examples of gauge observables added to
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actions in the Symanzik improvement program are shown in figure 5.3. An example

of a commonly-used improved gauge action is the tree-level improved Symanzik ac-

tion [358, 359]. Another improved gauge action which is used in the lattice ensembles

considered in this thesis is the Iwasaki gauge action [360, 361], which is based on the

idea of renormalisation group transformations, and reads

SI = −β
3

[
(1− 8c1)

∑
Tr(plaquette loop) + c1

∑
Tr(rectangle loop)

]
, (5.28)

with c1 = −0.331 from perturbation theory [362]. The Iwasaki gauge action is cho-

sen because it has an O(a2)-improved discretisation error, and allows for a small mres

parameter in the Domain-Wall fermion action (to be discussed below) favoured by the

RBC/UKQCD collaboration who generated the ensembles considered here [363–366].

ν

µ

x
Uµ(x)

Uν(x+ aµ̂)

U†
µ(x+ aν̂)

U†
ν (x)

(a) ‘plaquette’ Wilson loop

ν

µ

x
Uµ(x)

Uν(x+ aµ̂)

Uν(x+ aµ̂+ aν̂)

U†
µ(x+ 2aν̂)

U†
ν (x+ aν̂)

U†
ν (x)

(b) ‘rectangle’ Wilson loop

ν

µ

ρ

x
Uµ(x)

Uν(x+ aµ̂)

U†
µ(x+ aν̂)

U†
ρ(x− aρ̂+ aν̂)

U †
ν (x− aρ̂)

Uρ(x− aρ̂)

(c) ‘chair’ Wilson loop

ν

µ

ρ x
Uµ(x)

Uρ(x+ aµ̂)

Uν(x+ aµ̂+ aρ̂)

U†
µ(x+ aν̂ + aρ̂)

U†
ρ(x+ aν̂)

U†
ν (x)

(d) ‘3D’ Wilson loop

Figure 5.3: Examples of four different Wilson loops used in the definition of various
gauge actions, defined starting from lattice site x and directions µ, ν, ρ ∈ {x, y, z, t}.

5.1.2 Monte Carlo Integration

We have already mentioned that discretising our path integral and Wick rotating to

Euclidean space will allow for numerical evaluations of the integral via Monte Carlo

methods. Here we give a brief introduction to Monte Carlo integration with Markov
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Chains. In equation (5.5), we replaced the exact definition of the Euclidean n-point

correlation function ⟨O1 . . .On⟩E with its sample mean. We see that the uncertainty

that the sample mean approaches the exact mean scales as O(1/
√
N). Naively one might

think this sounds like poor scaling, however this turns out to be a very good scaling

behaviour for the integrals considered in lattice QCD. For low-dimensional integrals,

O(1/
√
N) can be argued to be a poor scaling, however the fact is that Monte Carlo

integration always scales O(1/
√
N) and this is excellent for lattice QCD; for the very

high-dimensional integrals needing evaluated, other common methods scale with some

exponent proportional to the dimensionality of the problem, e.g. O(N−2/d), and therefore

the uncertainties involved for lattice integrals would be huge.

Recall that the Euclidean path integral has a Boltzmann factor exp (−SE) multiplying

the observable O1 . . .On. This gives a weight to every sampled point in the Monte

Carlo sum such that different gauge field configurations in the Monte Carlo chain have

a different importance to the overall sample mean. While selecting from a uniform

probability distribution will converge on an accurate estimation for the sample mean

given this weighted importance of the different contributions, we can in fact use this

Boltzmann factor to reshape the random-number generator into sampling from a non-

uniform probability such that it is more biased towards the higher-weighted contributions

to the sample mean and we will converge more quickly on a suitable estimate; this is

known as importance sampling.

Importance Sampling

The expectation value of a function f(x) for a probability distribution ρ(x) is given by

⟨f⟩ρ =
∫ b
a dx ρ(x) f(x)∫ b

a dx ρ(x)
. (5.29)

Monte Carlo integration approximates this relation using the sample mean, i.e.

⟨f⟩ρ = lim
N→∞

1

N

N∑
n=1

f(xn), (5.30)

where we can re-parameterise the integral measure as a normalised probability density,

dP (x) =
dx ρ(x)∫ b
a dx ρ(x)

, (5.31)

and randomly sample the xn ∈ (a, b) from this distribution. Equating this language to

the definition of the sample mean for some n-point function in equation (5.5), we can

find the probability distribution from which the gauge field configurations Ui must be
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sampled as

dP (U) =
e−SG[U ]D[U ]∫
D[U ]e−SG[U ]

. (5.32)

This is known as the Gibbs measure. Thus in our Monte Carlo integration of the lattice

QCD path integral, the gauge configurations Un are generated such that they take the

place of the random numbers drawn from the distribution defined by the Gibbs measure

and we sample N configurations in order to get an uncertainty O(1/
√
N) in our sample

mean.

Markov Chains

The idea of a Markov chain in the Monte Carlo integration is to start with some arbitrary

gauge field configuration and stochastically move through a sequence of configurations

which should progressively approach the target distribution,

U0 → U1 → U2 → U3 → · · · (5.33)

Here, the index n of this sequence of configurations represents the position of the Un

along the chain and can be referred to as the Monte Carlo time τ (entirely indepen-

dent of and not to be confused with the Euclidean time). Markov chain progression is

‘memory-less’, i.e. the probability of choosing any particular field configuration as the

next step in the chain only depends on the current configuration and the proposed next

configuration3. We can then construct the transition probability between successive

steps such that the Markov chain will be guided from any arbitrary initial configura-

tion towards the configurations with the highest weight in the Boltzmann factor – the

equilibrium state.

Markov chains are therefore characterised by the conditional probability to transition

to configuration U ′ from configuration U ,

P (Un = U ′|Un−1 = U) = T (U ′|U). (5.34)

One can see that indeed this depends on the specific states U and U ′ but not the position

n along the Monte Carlo time. The transition probability obeys

0 ≤ T (U ′|U) ≤ 1
∑
U ′

T (U ′|U) = 1, (5.35)

i.e. the probability of any transition probability lies between 0 and 1, and the sum of

transition amplitudes from state U to all states U ′ (including U ′ = U) is 1. It is also

required that in the equilibrium state, there is no preference of direction for the Markov

chain progression, so the probability of taking any particular transition step must be

3There will however be autocorrelations between configurations over multiple MC time steps.
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equal to reversing that same step. This requirement gives us the balance equation:

∑
U

T (U ′|U)P (U) =
∑
U ′

T (U |U ′)P (U ′), (5.36)

where the left-hand side is the total probability to transition into state U ′ and the right-

hand side is the total probability to leave state U ′. Using the normalisation condition

in equation (5.35), we find

∑
U

T (U ′|U)P (U) = P (U ′). (5.37)

This shows that the equilibrium state is a fixed point of the system, and the Markov

chain will gradually evolve towards it as more transition steps are applied. Once it

reaches this equilibrium state, it will stay near to this state even when the transition

probability is applied, with small, random fluctuations around this point.

In order to correctly reach the equilibrium state, all points in the allowed configuration

space need to be accessible by the Markov chain, i.e. the transition probability T (U ′|U)

must be positive for all U, U ′. This is know as strong ergodicity and it is always an

important check for simulations to obey this. From this, we can formulate our Markov

chain such that the balance equation holds term-by-term, i.e.

T (U ′|U)P (U) = T (U |U ′)P (U ′), (5.38)

which is known as the detailed balance condition. Most lattice calculations make use of

the detailed balance condition, which implies that an initial thermalisation period must

be allowed in the Monte Carlo procedure where early configurations in the Markov Chain

are not used to calculate the sample mean of observables. This ensures that the Markov

Chain has had suitable time to converge on the equilibrium state and fluctuations are

only small, thus increasing the reliability of our estimate.

The Metropolis Algorithm

For the above use of Markov chains, some rule is required in order to generate the

transition probabilities T (U ′|U). One such algorithm used in almost all exact Monte

Carlo algorithms is the ‘Metropolis’ or ‘Metropolis-Hastings’ algorithm [367, 368]. The

steps of this algorithm are:

1. Choose a candidate U ′ for the next configuration Un according to a selection

probability T0(U
′|U) where U = Un−1 is the current gauge configuration;
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2. Calculate the acceptance probability

TA(U
′|U) = min

{
1 ,

T0(U |U ′) exp (−S[U ])

T0(U ′|U) exp (−S[U ′])

}
. (5.39)

Generate a random number η uniformly distributed in [0, 1); if η < TA(U
′|U),

accept U ′ as Un. If the suggested update to U ′ is not accepted, keep U , i.e.

Un = Un−1 such that U is used to sample the observable again.

3. Repeat the steps.

By choosing symmetric selection probabilities T0(U |U ′) = T0(U
′|U), we can simplify the

acceptance probability to

TA(U
′|U) = min { 1 , exp (−∆S)} for ∆S = S[U ′]− S[U ], (5.40)

such that only the change in the action ∆S is needed to accept or reject the candidate

configuration.

Hybrid Monte Carlo

Recall the Gibbs measure as defined in equation (5.32). This is highly local, i.e. simply

a few gauge links can be independently updated in the Monte Carlo step to create the

new Wilson loop. However, as we will see with the Haar measure in equation (5.50),

introducing dynamical fermions into the sea introduces the Dirac operator into the mea-

sure. Due to the nature of the Dirac operator, this will become highly non-local and

performing an update step will affect all gauge links. Naively, this will lead to very

large differences in the gauge configuration between update steps, which will signifi-

cantly decrease the acceptance probability of the candidate configurations. Having low

acceptance probabilities results in very poor efficiency of the algorithm since very many

update configurations will be generated before one is accepted into the Markov chain.

The Hybrid Monte Carlo (HMC) algorithm [369] (also mislabelled as Hamiltonian Monte

Carlo) is one algorithm used to overcome this issue in ensemble generation, belonging

to a family of algorithms using Molecular Dynamics (MD) methods. The gauge field

configuration at a given update step is a field of coordinates. Following from Hamilto-

nian mechanics, we can define a conjugate field of momenta generated from a Gaussian

distribution. For coordinates Q and conjugate momenta P , we can write a Hamiltonian

of our gauge configuration as

H[Q,P ] =
1

2
P 2 + S[Q]. (5.41)
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From a Hamiltonian description, we can of course write down the equations of motion

for our system, where we define the time evolution through the Monte Carlo time τ :

Ṗ = −∂H
∂Q

=
∂S

∂Q
, Q̇ =

∂H

∂P
= P. (5.42)

These equations can be solved numerically by evolving over n time steps ϵ = ∆τ , such

that we have a deterministic evolution of the system – the evolution is referred to as

a ‘trajectory’. Due to the finite step size, we do introduce numerical errors into this

evolution, which would divert the update steps from the correct ‘continuous’ trajectory.

We correct for this by introducing a Metropolis check for the transition probability of

an evolution step, i.e.

T (Q′, P ′|Q,P ) = min

{
1,

exp(−H[Q′, P ′])
exp(−H[Q,P ])

}
. (5.43)

As long as we require that Q obeys SU(3) symmetry, then the HMC equations of motion

can be expressed in terms of the gauge and fermion fields, and thus the algorithm will

generate gauge field configurations in a more efficient way than before.

5.1.3 Fermions on the Lattice

We will now discuss in further details adding fermion fields to our lattice theory and

how these can be discretised. First, we will remind ourselves of the full lattice QCD

path integral for an observable O. In equation (5.15), we separated the action into a

pure gauge part and a fermionic part. Propagating this separation into the path integral

yields

⟨O⟩ = 1

Z

∫
D[ψ, ψ̄]D[U ]e−SF [U,ψ,ψ̄]e−SG[U ]O[U,ψ, ψ̄], (5.44)

with the partition function

Z =

∫
D[U,ψ, ψ̄]D[U ]e−SF [U,ψ,ψ̄]e−SG[U ] (5.45)

and the fermion action

SF [U,ψ, ψ̄] = a4
∑
x,y∈Λ

ψ̄α(x)Dαβ(x, y)ψβ(y) (5.46)

for the Dirac operator Dαβ(x, y). Factorising this further, the fermionic path integral is

given by

⟨O⟩F =
1

ZF [U,ψ, ψ̄]

∫
D[ψ, ψ̄]e−SF [U,ψ,ψ̄]O[U,ψ, ψ̄], (5.47)
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with the fermionic partition function

ZF [U,ψ, ψ̄] =

∫
D[ψ, ψ̄]e−SF [U,ψ,ψ̄]. (5.48)

The defining behaviour of fermions is that they obey Fermi statistics, i.e. they anticom-

mute:

ψaf1,α(x)ψ
b
f2,β(y) = −ψbf2,β(y)ψaf1,α(x), (5.49)

for flavour indices f1, f2, colour indices a, b, and Dirac indices α, β. Antifermions also

anticommute with one another and fermions and antifermions also anticommute. There-

fore to evaluate the fermionic path integral, we will find that the integral measure D[ψ, ψ̄]

is a function of anticommuting numbers, known as Grassmann variables. Through ex-

pressing the measure via these Grassmann variables, we can then make use of Wick’s

theorem [370] to integrate out the fermion fields, rewriting the path integral such that

the fermions only enter through the determinant of the Dirac operator Df , i.e.

⟨O⟩ =
∫
D[U ]e−SG[U ]

∏
f det[Df ]O[U,D−1

f ]∫
D[U ]e−SG[U ]

∏
f det[Df ]

. (5.50)

The integration measure D[U ] left is the Haar measure, which defines the path integral

over the gauge links and allows us integrate while maintaining gauge invariance. A

summary of Grassmann variables and Wick’s theorem is given in appendix A.3, or see

e.g. [351].

Naive Fermions

In equation (5.21), we defined what we called the naive Dirac operator. For a free

fermion (Uµ(x) = 1), we can compute the Fourier transform of the naive Dirac operator

and find

D̃(p, q) =
1

|Λ|
∑
n,m∈Λ

e−ip·anD(an, am)eiq·am

=
1

|Λ|
∑
n,m∈Λ

e−i(p−q)·an
(∑

µ

γµ
eiqµa − e−iqµa

2a
+m1

)
= δ(p− q)D̃(p),

(5.51)

where |Λ| = L3 × T is the number of lattice sites and

D̃(p) = m1+
i

a

∑
µ

γµ sin apµ. (5.52)

In the momentum basis (p, q), the Dirac operator is diagonal in the momenta. Thus, in

order to compute the inverse Dirac operator in position space D−1(an, am), it should be

easier to compute D̃−1(p) and then perform the inverse Fourier transform. The inverse
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Dirac operator in momentum space is given by

D̃−1(p) =
m1− ia−1

∑
µ γµ sin(apµ)

m2 + a−2
∑

µ sin
2(apµ)

, (5.53)

and the inverse Fourier transform then reads

D−1(an, am) =
1

|Λ|
∑
p∈Λ̃

D̃−1(p)eipa(n−m), (5.54)

where one of the momentum sums from equation (5.51) is absorbed by the Dirac delta

δ(p − q). The inverse of the Dirac operator D−1(an, am) is referred to as the quark

propagator, which will be necessary for computing n-point correlation functions following

Wick’s theorem. To investigate the properties of the quark propagator, we can consider

the case of a massless free fermion (m = 0) in momentum space:

D̃−1(p)

∣∣∣∣
m=0

=
−ia−1

∑
µ γµ sin(apµ)

a−2
∑

µ sin
2(apµ)

a→0
=⇒

−i∑µ γµpµ

p2
. (5.55)

Taking the naive continuum limit a → 0, we see that the propagator has a pole at

p = (0, 0, 0, 0), corresponding to a single fermion, as expected from the continuum

theory. However, on the lattice, this expectation is not the only case. We find poles

in the lattice theory whenever sin2(apµ) = 0, which due to periodicity occurs whenever

pµ = 0, πa . Therefore, we find 2D=4 = 16 poles when

p = (0, 0, 0, 0),
(π
a
, 0, 0, 0

)
,
(
0,
π

a
, 0, 0

)
, . . . ,

(π
a
,
π

a
,
π

a
,
π

a

)
, (5.56)

and thus the naive Dirac operator gives rise to 15 unwanted additional fermions – these

are known as doublers. We need some different formulation of the lattice Dirac operator

in order to remove these unwanted doublers.

Wilson Fermions

Since we only require that the lattice description matches the continuum theory in the

limit a → 0, we are free to add additional terms to our discrete theory which vanish

in the continuum limit, but can have an important impact at non-zero lattice spacing.

Wilson was the first to propose a method of removing these unwanted fermion doublers

by adding an additional term to the Dirac operator [40]. The Wilson Dirac operator in

momentum space reads

D̃W (p) = m1− i

a

∑
µ

γµ sin(apµ) +
1

a

∑
µ

(1− cos(apµ)). (5.57)
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For the pole at pµ = 0, this additional term does not change the propagator, leaving the

physical fermion intact. However, for the additional poles with pµ = π
a , an extra contri-

bution ∝ 2
a is added which acts like an additional mass. It is clear that in the continuum

limit a → 0, this term will cause these unwanted doublers to become infinitely heavy

and will thus decouple from the physical spectrum. Performing a Fourier transform back

to position space, the Wilson Dirac operator reads

DW (x, y)αβ =
∑
µ

γµ,αβ
Uµ(x)δx+aµ̂,y − U−µ(x)δx−aµ̂,y

2a
+mδαβδxy

−
∑
µ

Uµ(x)δx+aµ̂,y − 2δxyδαβ + U−µ(x)δx−aµ̂,y
2a

=

(
m+

4

a

)
δxyδαβ −

1

2a

±4∑
µ=±1

(1− γµ)αβUµ(x)δx+aµ̂,y.

(5.58)

We now have a lattice description of the Dirac operator without unwanted additional

fermion propagators arising from the finite volume. However, the Wilson fermion de-

scription comes at the expense of chiral symmetry. Spontaneous chiral symmetry break-

ing is an important feature in the phenomenology of QCD, generating the low masses

of pseudoscalar mesons as pseudo-Nambu-Goldstone bosons, and so replicating this in

the discrete theory is clearly sought after as well. This is not actually a problem in

principle though, since the chiral symmetry of QCD and its spontaneous breaking can

be recovered in the continuum limit. However it does result in other problems on the

lattice, such as unwanted additional operator mixing in renormalisation procedures. So,

Wilson fermions are a possible choice to solve the doubler problem, however they come

with their own disadvantages which may be improved upon using another formulation

of the Dirac operator.

Clover Actions

One of the caveats of using Wilson fermions was the O(a) discretisation errors. The

Symanzik improvement program was applied to the Wilson action by Sheikholeslami

and Wohlert [371], from which they found the discretisaton error can be improved to

O(a2) by adding a single term:

SClover = SW + a4
∑
x∈Λ

ψ̄(x) csw
∑
µ<ν

i

4
σµνĜµνψ(x), (5.59)

where csw is a coefficient which must be non-perturbatively tuned to appropriately im-

prove the discretisation error, σµν is the commutator of two Dirac matrices (see ap-

pendix A.2) and Ĝµν is the discretised field strength tensor. The field strength can be

expressed on the lattice through the clover operator (shown in figure 5.4) which is the
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sum of the 4 plaquettes in a 2D plane of the lattice around lattice site x, i.e.

Ĝµν =
i

8a2
(Cµν(x)− Cνµ(x)), (5.60)

Cµν(x) = Pµν(x) + Pν,−µ(x) + P−µ,−ν(x) + P−ν,µ(x), (5.61)

where the plaquette is defined in equation (5.25) and negative indices on gauge links

are expressed through equation (5.22). Heavy quarks such as charm and in particular

ν

µ

x

Pµν(x)Pν,−µ(x)

P−µ,−ν(x) P−ν,µ(x)

Figure 5.4: The clover operator used in the definition of the discretised field strength
tensor Ĝµν . It is the sum of the 4 plaquettes in a 2D plane (µ, ν) around lattice site x.

bottom present additional challenges to simulate on the lattice compared to light quarks.

A common method for tackling the challenge of simulating heavy quarks involves an

effective action based on an anisotropic version of the Sheikholeslami-Wohlert (or clover)

action. The inclusion of the clover term, as well as other Symanzik-type improvements,

helps reduce some of the otherwise uncontrolled errors. The Relativistic Heavy Quark

(RHQ) action is based on the Fermilab action [372] using the same principles, and has

been parameterised both in the Tsukuba [373] and Columbia [374] formulations. The

RHQ action reads

SRHQ = a4
∑
x,y∈Λ

ψ̄(x)

[
m0 + γ0D0 + ζγ⃗ · D⃗ − a

2
(D0)2 − a

2
ζD⃗2 +

ia

4
cP
∑
µ<ν

σµνĜµν

]
ψ(y),

(5.62)
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where ζ, cP , and am0 are the three parameters which must be non-perturbatively tuned.

We will discuss heavy quarks on the lattice, the benefits and drawbacks of the RHQ

action, and our strategy for simulating heavy quarks in more detail in section 5.1.6.

The Nielson-Ninomiya Theorem

The Nielson-Ninomiya theorem [375] is a no-go theorem which states that it is im-

possible to construct a local action for fermions on the lattice that is free of doublers

while preserving chiral symmetry in an even number of Euclidean spacetime dimensions.

Explicitly, the following conditions cannot all be satisfied simultaneously:

➤ Locality: D(x − y) ≲ exp{−γ|x − y|}. This implies that the momentum space

Dirac operator D̃ is an analytic and periodic function of the momentum pµ with

period 2π/a.

➤ Continuum limit: lima→0 D̃(p) =
∑

µ γ
µpµ. The Dirac operator must be of a form

such that it recovers the correct continuum behaviour in the continuum limit.

➤ No doublers: D̃(p) is invertible if pµ ̸= 0. A single propagator with pole at pµ = 0

is recovered from the Dirac operator, and no additional doublers appear.

➤ Chiral symmetry: {D, γ5} = 0. The (continuum) condition for chirality is that

the position space Dirac operator D anticommutes with γ5.

We have already seen some lattice descriptions of fermions which clearly sacrifice one

of these conditions. Naive fermions have doublers present in the theory, while Wilson

(and Wilson-clover) fermions remove the doublers but give up chiral symmetry. Stag-

gered (Kogut-Susskind) fermions [376] have one staggered fermion field describing four

degenerate tastes of Dirac fermion. Twisted mass fermions [377] form an isospin doublet

of Wilson fermions and therefore also give up chiral symmetry.

There exists however a modification to the continuum description of chiral symmetry

{D, γ5} = 0 in the discrete theory. The Ginsparg-Wilson relation [378] reads

D(x|y)γ5 + γ5D(x|y) = aD(x|z)γ5D(z|y), (5.63)

which can be written equivalently as

γ5D
−1(x|y) +D−1(x|y)γ5 = aγ5δ(x− y). (5.64)

This tells us that for x ̸= y we recover the continuum condition for chiral fermions, but

for x = y we will find a contact term.
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In the continuum, chiral symmetry corresponds to the field rotations

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 . (5.65)

Now we can introduce modified chiral rotations for the lattice description which recover

equation (5.65) in the continuum limit:

ψ → eiαγ5(1−
a
2
D)ψ, ψ̄ → ψ̄eiα(1−

a
2
D)γ5 . (5.66)

This allows us to introduce generalised chiral projectors through the definitions

γ̂5 = γ5(1− aD), P̂R =
1 + γ̂5

2
, P̂L =

1− γ̂5
2

. (5.67)

Then, like in the continuum, we can separate the fermion spinor into left-handed and

right-handed components, i.e.

ψL,R = P̂L,Rψ, ψ̄L,R = ψ̄P̂R,L. (5.68)

Now just like in the continuum, the massless part of the action does not mix chiralities

while the mass term does:

ψ̄Dψ = ψ̄LDψL + ψ̄RDψR,

m(ψ̄RψL + ψ̄LψR) = mψ̄(PLP̂L + PRP̂R)ψ = mψ̄
(
1− a

2
D
)
ψ.

(5.69)

Note that the concept of chiral symmetry is clearly different between the continuum and

the lattice. In the continuum, chiral symmetry is a strictly local concept, only concerned

with the fermion spinor at a given spacetime coordinate and completely independent of

the gauge field. However, on the lattice, chiral rotations involve the Dirac operator,

which in the discrete formulation involves neighbouring lattice sites and is therefore

dependent on the gauge field (links) to connect the sites.

There are two common fermion descriptions which make use of the Ginsparg-Wilson

relation. There are the domain wall fermions (DWF) [379–383] which live in 5 dimensions

(with a fifth dimension of coordinate s and extent Ls) and approximate the Ginsparg-

Wilson relation (it is recovered exactly in the limit Ls → ∞). Secondly, there are

overlap fermions [384, 385]. Overlap fermions and DWF are shown to be equivalent in

the Ls → ∞ limit [386, 387].

Domain Wall Fermions

We consider a five-dimensional fermion field Ψ(xµ, s) where xµ is the standard 4D co-

ordinate vector and s is the coordinate of the fifth dimension. The Dirac equation for
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this fermion is

[ /D + γ5∂s +m(s)]Ψ(xµ, s) = 0, (5.70)

where we assume that the gauge field interacting via the 4D Dirac operator exists only

in the standard 4 dimensions, and we have introduced a mass term dependent on the

position in the fifth dimension, i.e.

m(s) =

+m, s > 0,

−m, s < 0.
(5.71)

We can separate this fermion spinor into its chiral components, with additional functional

dependence on the fifth dimension, and decompose this into an eigenvalue problem:

Ψ(xµ, s) =
∑
n

[an(s)PR + bn(s)PL] ψn(x). (5.72)

The 5D Dirac equation then reads

[∂s +m(s)] an(s) = αnbn(s), (5.73)

[−∂s +m(s)] bn(s) = αnan(s), (5.74)[
/D + αn

]
ψn(x) = 0, (5.75)

for eigenvalues αn. Note that for αn = 0, equation (5.75) is the Dirac equation for a

massless fermion. Equations (5.73) and (5.74) decouple in this limit and can be solved

exactly:

an(s) = A exp

{
−
∫ s

0
m(s′) ds′

}
= A exp {−m|s|} , (5.76)

bn(s) = B exp

{
+

∫ s

0
m(s′) ds′

}
= B exp {+m|s|} . (5.77)

One can see however that equation (5.77) is not normalisable and thus cannot be a

physical solution. This excludes normalisable left-handed zero mode fermions from the

spectrum, while equation (5.76) gives rise to a single right-handed massless fermion

bound to the defect at |s| = 0 and prevents further doublers appearing at other parts

of the Brillouin zone. Applying this to the lattice changes the results however, since

we cannot work in an infinite 5th dimension and instead are limited to some size Ls =

2s0. We assume Dirichlet boundaries in the 5th dimension and also that there are

two defects at s = 0, s0. Now, both equations (5.76) and (5.77) are normalisable and

there are two chiral modes: the original right-handed fermion bound at s = 0 and

now also a left-handed fermion bound at s = ±s0. Assuming Ls is suitably large (but

still computationally viable), the overlap of the left- and right-handed fermion fields is
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expected to be small since they are defined to be exponentially localised at their defects.

Thus, in the discrete theory, there will exist some residual chiral symmetry breaking

from this overlap, which contributes to the mass of the fermions – this is parametrised

as the residual mass. For an input mass m and residual mass mres, the simulated DWF

mass mq will then be

mq = m+mres. (5.78)

Now we have a picture of how the 5th dimension can result in (mostly) chiral fermions,

we need to formally define the 5-dimensional theory. We extend the set of coordinates

Λ defined in equation (5.6) to the 5th dimension (with extent Ls) as

Λ5 = Λ× Ls = {(xµ, s) , for xµ ∈ Λ; s ∈ 0, 1, . . . , Ls − 1} . (5.79)

We write the 5D DWF action for a single flavour of fermion Ψ with mass m as

SDWF =
∑

(x,s),(y,t)∈Λ5

Ψ̄(x, s)DDWF(x, s; y, t;m;M5)Ψ(y, t), (5.80)

where we recall that the gauge fields entering the Dirac operator DDWF live in the

standard 4D spacetime, and M5 is the domain wall height. In order to remove the bulk

infinity appearing for Ls → ∞ (recall equation (5.77)), another term including bosonic

Pauli-Villars type fields is included [388], reading

SPV = Φ̄(x, s)DDWF(x, s; y, t; 1)Φ(y, t). (5.81)

Notice that the same Dirac operator DDWF is used, but with input mass m = 1. The

DWF Dirac operator reads

DDWF(x, s; y, t;m;M5) = δstDDWF,4(x, y,M5) + δxyDDWF,5(s, t,m), (5.82)

where DDWF,4 is a 4-dimensional Dirac operator, defined

DDWF,4(x, y,M5) = (4−M5)δxy −
1

2

±4∑
µ=±1

(1− γµ)Uµ(x)δx+µ̂,y. (5.83)

We introduced the parameter M5 above as the domain wall height, which removes dou-

blers from the action and maintains positivity of the transfer matrix. The second term in

the DWF Dirac operator is orthogonal to the usual spacetime dimensions and connects

the sites of the fifth dimension, reading

DDWF,5(s, t,m) = δst − (1− δs,Ls−1)PLδs+1,t − (1− δs0)PRδs−1,t

+m(PLδs,Ls−1δ0t + PRδs0δLs−1,t).
(5.84)
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Here, surface terms of the fifth dimension have been forbidden. The only term which

connects the boundaries at s = 0, Ls − 1 is proportional to the fermion mass m, and in

fact, one can see this term resembles a mass term of the usual 4D theory.

We can now construct the physical fermion fields living in 4 dimensions from the 5D

boundary as

ψ(x) = PLΨ(x, 0) + PRΨ(x, Ls − 1),

ψ̄(x) = Ψ̄(x, Ls − 1)PL + Ψ̄(x, 0)PR,
(5.85)

i.e. the physical 4D fields are constructed from a left-handed fermion mode at s = 0 and

right-handed mode at s = Ls − 1.

The traditional DWF formulation is referred to as using the Shamir kernel [380–383],

while a generalisation of this action known as the Möbius kernel [365, 389–391] was

found to have the same level of residual chiral symmetry breaking, i.e. mres, for a

smaller extent of the fifth dimension for a particular choice of the action parameters.

This reduces the cost of computation for the same mres (or allows for the calculation of

a smaller mres). In chapter 6, lattice ensembles with Shamir DWFs in the sea are used,

where the light/strange valence quarks are also simulated with the Shamir kernel while

the heavy quarks used the Möbius kernel.

5.1.4 Scale Setting

Here we briefly comment on an important aspect of lattice QCD in the generation and

understanding of lattice ensembles: scale setting. The full theory of QCD requires the

fixing of 7 parameters to be fully defined – the masses of the 6 quarks and the coupling

constant. Lattice formulations have fewer parameters to fix since we restrict simulations

to include only a subset of the quarks in the sea, which is favoured computationally and

the heavy quark effects on the sea may not be resolvable within the uncertainties of the

simulation anyway. In particular, the huge mass of the top quark (see table 2.3) rules it

out from being considered in the low energy regimes considered in lattice simulations. We

label lattice ensembles e.g. Nf = 2, Nf = 2+1, Nf = 2+1+1 to indicate the number of

quark flavours included in the sea, where the 2 indicates that the lightest quarks, up and

down, are treated as degenerate. Next included is the strange quark and then even the

charm quark is more commonly included these days as part of Nf = 2+1+1 ensembles.

The inclusion of the bottom quark in the sea was demonstrated in [392], however it is

not clear what practical improvement will be gained from simulating Nf = 2+1+1+1

ensembles over Nf = 2 + 1 + 1.

For whichever number of flavours in our ensemble, it is clear how many parameters must

be fixed, Nf . We require Nf − 1 parameters to fix the quark masses since the up and
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down are simulated as one degenerate light quark. In addition the coupling constant

needs to be fixed, which is expressed through the determination of the lattice spacing

a. Typically, meson or baryon state masses such as mπ, mK , mΩ are used, where the

comparison of lattice values with experimental measurements allows for fixing e.g. ml

and ms alongside the lattice spacing a (since lattice values for the mass are given in

units of the lattice spacing, i.e. aM). Setting the scale a can also be related to pure

gauge field quantities such as the Sommer scale [393] or the Wilson flow [394, 395].

For further details on scale setting and its importance to lattice simulations, we refer

to, for instance, the FLAG review [249].

5.1.5 Hadronic Observables

Finally, most of the formalism behind lattice QCD has now been set, and we can move

towards the practical goal of this field: performing a measurement of some observable

O on each gauge field configuration in a lattice ensemble, and from that determine a

stochastic estimate of the expectation value ⟨O⟩. We have already seen some observables

of the gauge field sector like the plaquette and clover operators (see figures 5.3 and 5.4),

but now we take the steps needed to construct operators involving fermion fields such

that we can connect these to expectation values to be measured.

Quark Bilinears and Interpolating Operators

From Grassmann algebra and Wick’s theorem, we can see that Grassmann variables

representing fermion fields in correlation functions will come in pairs – these pairs are

known as quark bilinears. The quark bilinear then describes a meson state at lattice

position x with quark content f1, f2. Furthermore, mesons carry quantum numbers of

spin J , parity P , and charge conjugation C, typically written as JPC . These quantum

numbers can be derived from the Dirac structure of the interpolating quark bilinear.

The creation and annihilation operators of this meson state are then

OM (x) = ψ̄f1(x)Γψf2(x), O†
M (x) = ±ψ̄f2(x)Γψf1(x), (5.86)

where Γ is the Dirac structure of the bilinear and the sign of the creation operator is

determined by the particular choice of Γ. Referring to the PDG [54], the types of meson

state are:

➤ Scalar, JPC = 0++: created by Γ = 1; examples are a0, f0.

➤ Pseudoscalar, JPC = 0−+: created by Γ = γ5; examples are π, K, Ds, Bs.

➤ Axial vector, JPC = 1++: created by Γ = γiγ5; examples are a1, f1.
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➤ Vector, JPC = 1−−: created by Γ = γi; examples are ρ,K∗, D∗
s .

➤ Tensor, JPC = 1+−: created by Γ = γiγj ; examples are b1, h1.

The above formula will only result in the creation of mesons with zero momentum,

however inducing momentum in these states is also required for studying momentum-

dependent processes such as, for instance, semileptonic meson decays. The interpolating

operator is projected to a discrete momentum using a Fourier Transform, i.e.

O(p⃗, t) =
1√
L3

∑
x⃗∈Λ3

O(x⃗, t)e−ix⃗·p⃗, (5.87)

where Λ3 is the set of lattice sites in the 3-dimensional spatial volume of the lattice,

i.e. at fixed time t.

Interpolating operators are used to induce definite meson states at the boundaries of

correlation functions, i.e. at the ‘start’ and ‘end’ of their time extent. After covering the

other building blocks required, we will see how these interpolating operators are ‘mar-

ried’ in different ways to describe different correlation functions which in turn describe

different hadronic processes.

Quark Propagators

By Wick’s theorem, we can contract two quark fields of the same flavour at positions x

and y into a propagator which describes a quark of flavour f propagating from y to x,

i.e.

Sf (x, y) = ψf (x)ψ̄f (y). (5.88)

Furthermore, since the Dirac operator of many fermion actions (including any relevant

here) has the property of γ5 hermiticity, defined

(γ5Dµ(x))
† = γ5Dµ(x) =⇒ D†

µ(x) = γ5Dµ(x)γ5, (5.89)

then propagators, originating from the inverse Dirac operator, also inherit this property:

Sf (x, y)
† = γ5Sf (y, x)γ5. (5.90)

This is an important relation for minimising computing time – a propagator calculated

in the direction x → y also gives the anti-propagator in direction y → x. For exam-

ple, for two point correlation functions of a qq̄ state, γ5 hermiticity means that only

one propagator needs to be calculated and then the anti-propagator is taken from this

relation.

So already we have hinted that reducing the number of propagators to be calculated

is key to saving computing time, i.e. calculating these propagators is a large portion of
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the cost involved in extracting hadronic matrix elements. To calculate a propagator, we

must solve

D(x, y)αβij S(y, z)
βγ
jk = δikδαγδxz. (5.91)

The Dirac operator is a very large (but sparse) matrix, so to invert it requires use of

numerical solvers. However, the propagator S(y, z) is also very large and not sparse; it

is a square matrix in lattice volume × spin × colour space, i.e. a (|Λ| × 4× 3)2 matrix.

Even for lattices considered small by today’s standard (e.g. L3 × T = 243 × 64), the

propagator is of a size O(1012); inverting this matrix even numerically quickly loses any

feasibility.

The solution is to calculate one column of the inverse matrix ψ(x⃗, t) through a linear

equation ∑
y⃗,t

= D(x⃗, t; y⃗, t′)ψ(y⃗, t′) = η(x⃗, t), (5.92)

where we suppress spin and colour indices. We call η the source vector describing the

position on the lattice from which the propagator originates (discussed in more detail

below), and ψ is a vector describing the propagator from the source position to all other

points. This equation is solved for each spin-colour combination (a total of 4× 3 = 12).

We thus find our vector ψ as

ψ(x⃗, t) =
∑
y⃗,t′

S(x⃗, t; y⃗, t′)η(y⃗, t′). (5.93)

Many inversion algorithms converge polynomially, e.g. in O(n3) time; for the very large

size of the matrices on these lattices, these algorithms would be prohibitively expensive,

and thus alternative algorithms must be sought after. There is a large amount of ma-

chinery and human effort put in by lattice practitioners to find efficient algorithms to

solve equation (5.92), which is typically very dependent on the type of fermion action

used since this determines the definition of the Dirac operator. The solving algorithm

used for calculating the propagators in this work was the Conjugate Gradient (CG) al-

gorithm [396], which converges ∝ √
κ (with κ the condition number of the matrix) for

large size n. Note that the condition number of the Dirac matrix scales inversely with

the quark mass – smaller quark masses can largely increase the condition number of

the Dirac matrix, in turn increasing the convergence time of the numerical solve. When

addressed with this problem, the earlier strategy was typically to simulate with unphys-

ically massive up/down quarks and then extrapolate to the physical values in the later

stages of analysis. However algorithmic improvements, such as the Hierarchically De-

flated Conjugate Gradient (HDCG) [397], have been found in order to make simulations

of the light up/down quarks at physical masses feasible. In chapter 6, no light quarks

are considered in the valence sector, and the effects of light quarks from the sea are
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expected to be minimal for the heavier states being considered, thus the issue of reliably

inverting physical light quarks is not relevant to this work. An entire thesis can easily

be written on the subject of these algorithms, however this is not the focus of this work

and we will simply make use of the great efforts gone in to designing and improving

these algorithms without discussing further.

Quark Sources

The full quark propagator matrix describes the quark propagating from every lattice

site to every other lattice site (always as well for each spin-colour combination). This

full matrix is referred to as an ‘all-to-all’ propagator for obvious reasons, however this is

the most expensive possible way to compute a propagator. Also note that the elements

of the ‘all-to-all’ propagator are highly correlated due to translation invariance, so not

only does calculating the full matrix cost a large amount of computing time, but it also

requires a lot of memory. As mentioned above, we can reduce the computational cost

(and the memory footprint) of calculating propagators by choosing to instead select just

a single column vector ψ(x⃗, t) of the full propagator matrix. This corresponds to a source

vector η(x⃗, t), i.e. we calculate the propagator only originating from a single point on

the lattice to all other points – this is called a point source and can be defined using a

delta function:

S0(x) = δ(x− x0), (5.94)

where x is again the 4-coordinate and x0 is the position of the source.

Point sources may be the simplest definition of a source for a propagator, however they

are not the only choice away from the massive ‘all-to-all’ limit, and there are effects of a

point source one may wish to improve upon. Using a completely localised source results

in large sensitivity to local fluctuations in the gauge field and can e.g. lead to largely

deviating results when placed by a near-zero mode of the Dirac operator; using some

volume-averaged source on each gauge field configuration is expected to smoothen out

the larger deviations caused from local fluctuations and yield more reliable estimates

of observables [398]. Replacing a point source with Nhit stochastic sources drawn from

some distribution D which is symmetric about 0 is expected to increase the precision of

calculations given the property

⟨η(n)aα (x)η
†(n)
bβ (y)⟩n ≡ 1

N

Nhit∑
n=1

η(n)aα (x)η
†(n)
bβ (y)

Nhit→∞→ δabδαβδxy. (5.95)

Placing a stochastic source on a fixed timeslice tsrc of the lattice but over the entire

spatial volume then allows for full L3 volume averaging, clearly avoiding the issue of

local gauge fluctuations to a much better degree. Furthermore, using γ5 hermiticity, we

can see that the same noise vector can be used for all propagators either originating from
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or propagating to tsrc, so these sources do not have increased multiplicity required in the

calculation and with one propagator inversion (per colour-spin combination) we have an

average over the entire spatial volume – this is referred to as the one-end trick [398, 399].

It is important to note as well that while sampling over the whole spatial volume, these

sources are still by definition localised since they simply amount to the average over L3

point sources with stochastic noise, so we still have clearly-defined local sources for our

propagators but benefit from the spatial averaging such that significant fluctuations in

the local gauge field for any single lattice site are suppressed.

The distribution these stochastic sources are drawn from (having first been suggested

in [400, 401]) is here given by complex Z2 × Z2 numbers:

D =

{
1√
2
(±1± i)

}
. (5.96)

As such, we will commonly refer to these sources as ‘Z2 wall sources’ throughout this

thesis. Other noise reduction techniques exist (which may be used independently of or

in addition to Z2 wall sources), such as all-mode-averaging [402–404], deflation [405],

and distillation [406], but these are not relevant for this thesis and are not discussed

further here.

A caveat of the Z2 wall source however is the loss of momentum projection “for free”. In

the case of point sources, it is possible to define the momentum of a correlation function

entirely at the sink (or contraction point) such that a single point-sourced propagator

can be calculated and then contracted with all necessary momentum projections at no

additional cost. For Z2 wall sources, this is not the case since these explicitly project to

the zero momentum mode. It is still possible with an additional momentum projection

to calculate correlation functions for non-zero momentum, but since this requires a

projection at the source, i.e. before the propagator inversion, each momentum requires

an additional propagator calculation.

We have so far focused on local sources. These are necessary in order to correctly

extract all matrix elements from a correlation function, however one must keep in mind

that they include the entire tower of states with the quantum numbers induced by the

interpolating operator used. For some systems, it is possible that these excited states do

not decay fast enough and contaminate the signal of the desired ground state. Instead,

one can apply some smearing operator H to the local point/Z2 wall source such that

it is now an extended source in some volume around the local position. This smeared

source can be beneficial in that its extended volume can absorb some of the higher

states of the system which do not travel as far from the source such that the signal of

the correlation function resolves the lower-lying states (the ground state in particular)
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more cleanly. By itself, these smeared sources can assist in extracting the energy/mass

of the ground state of the system, or combined in an analysis with also locally-sourced

correlation functions, they can help in resolving the ground state of the system such

that the matrix elements can be appropriately extracted from the local signal. Jacobi

(or Gaussian) smearing [407] is one such method of creating a smeared source. This is

an iterative procedure which applies the smearing operator N times, where the smearing

operator H takes a Gaussian shape (since this is common to many simple wavefunctions)

with some smearing radius σ. It is defined

Ma(x)ηa(x) =
∑
b

∑
y

(
δxyδab +

σ2

4N
∆N
ab(x, y)

)
ηb(y), (5.97)

where ∆ is the gauge-covariant Laplace operator (acting in the spatial directions only):

∆(x, y) =
3∑
i=1

2δxy − Ui(x)δx+î,y − U †
i (x− î)δx−î,y. (5.98)

Note that above we discussed smearing to suppress excited state contamination from the

interpolating operator at the source position. The same holds true for the sink position,

i.e. we can apply the smearing kernel to the propagator after its inversion such that its

effect is for the interpolating operator at the sink. More information can typically be

found from a combination for smeared and local sources/sinks, for example, 3 source-sink

combinations are commonly considered for extracting information about matrix elements

and the ground state energy from 2-point correlation functions – local-local (LL, also

referred to as point-point PP), smeared-local (SL, or SP), and smeared-smeared (SS).

2-Point Correlation Functions

Now with the foundation of interpolating operators, quark propagators, and spin-colour

sources, we can begin to construct correlation functions from which we can extract

physical observables such as meson masses/energies and hadronic matrix elements. We

start with the 2-point correlation function as the product of two interpolating operators.

One operator is placed at some source position and creates a mesonic state (O†
src) and

another is placed at the sink position and annihilates the state (Osnk). For simplicity,

we set the source position as xsrc = (x⃗, 0) (which is always valid due to translational

invariance), and the sink at x = (x⃗, t). A 2-point correlation function with fixed 3-

momentum p⃗ is then written as

C2pt(p⃗, t) =
∑
x⃗

e−ip⃗·x⃗⟨0|Osnk(x⃗, t)O†
src(⃗0, 0)|0⟩. (5.99)
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Following the Heisenberg picture, we can insert a complete set of states

∞∑
n=0

|n⟩⟨n|
2En

, (5.100)

with E0 ≤ E1 ≤ E2 . . . , into the correlation function. This reads

C2pt(p⃗, t) =
∑
x⃗

e−ip⃗·x⃗
∑
n

1

2En(p⃗n)
⟨0|Osnk(x⃗, t)|n⟩⟨n|O†

src(⃗0, 0)|0⟩

=
∑
n

∑
x⃗

e−ip⃗·x⃗

2En(p⃗n)
⟨0|eHt−ik⃗·x⃗Osnk(⃗0, 0)e

−Ht+ik⃗·x⃗|n⟩⟨n|O†
src(⃗0, 0)|0⟩

=
∑
n

∑
x⃗

ei(p⃗n−p⃗)·x⃗

2En(p⃗n)
⟨0|Osnk(⃗0, 0)|n⟩⟨n|O†

src(⃗0, 0)|0⟩e−En(p⃗n)t

=
∑
n

⟨0|Osnk(⃗0, 0)|n⟩⟨n|O†
src(⃗0, 0)|0⟩

2En(p⃗n)
e−En(pn)t|pn=p

=
∑
n

Z
(n)
snkZ

(n)∗
src

2En(p⃗)
e−En(p⃗)t,

(5.101)

where we define Z
(n)
i = ⟨0|Oi|n⟩ as the meson-to-vacuum matrix element of the nth

energy state of the interpolating operator Oi. So far in this derivation, we ignored the

fact that the signal of a correlation function will propagate in all directions from the

source position, i.e. there will be both a forwards- and backwards-propagating signal in

Euclidean time. Accounting for this, the 2-point function is

C2pt(p⃗, t) =
∑
n

Z
(n)
snkZ

(n)∗
src

2En(p⃗)

(
e−En(p⃗)t ± e−En(p⃗)(T−t)

)
, (5.102)

where T is the time extent of the lattice. There is the possibility of a relative sign between

the forwards and backwards signals depending on the choice of operators Osrc, Osnk; for

Osrc = Osnk this is positive, while for, e.g. Osrc = γ5, Osnk = γtγ5 it is negative.4

This comes from the anti-periodic boundary conditions given to fermions and how these

interact with the different gamma structures as the signal crosses the boundary. In

Euclidean time, we have a real exponent for increasing energies En such that higher-

energy states have a faster exponential decay in the time signature and therefore in the

limit of large Euclidean time separation from the source 0 ≪ t ≪ T , only the lowest-

lying state, i.e. the ground state, will remain and we can then extract its energy/mass

from the exponent and its matrix element(s) from the prefactor.

4This particular combination of operators is commonly used as, although they have different ma-
trix elements Z(n), the axial-vector current γtγ5 replicates the same energy/mass eigenvalues as the
pseudoscalar γ5.
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From equation (5.102), we can see that, when neglecting excited states, the 2-point

function actually has either a cosh or sinh form depending on the relative sign between

the forwards and backwards signals. Furthermore, we see that the only quantity in the

exponent of this correlator is the energy of the state (or mass for p⃗ = 0). Starting with

this functional form of only the ground state, we can then define an effective energy of

the 2-point function, i.e. (for the cosh form)

Eeff(p⃗, t) = cosh−1

(
C2pt(p⃗, t) + C2pt(p⃗, t+ 2)

2C2pt(p⃗, t+ 2)

)
, (5.103)

where this can inform us how quickly we converge on the ground state as for large enough

time, the effective energy will converge on a plateau at the ground state value. Note

that by neglecting the backwards-propagating state (typically suitable for 0 < t < T/2

and T sufficiently large), the effective energy can be defined using a log form instead.

One can also average over the forwards and backwards signals (known as folding) and

which will effectively double the statistics of your data in 0 ≤ t ≤ T/2. An example

of the effective mass Meff of a 2-point pseudoscalar-pseudoscalar correlator is shown in

figure 5.5. Note that in the initial definition of the 2-point function in equation (5.99),

0 5 10 15 20 25 30

time slice
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eff

(t
)

Mcorr = 1.10143(51), χ2
ν [11] = 0.43, p = 0.945

Meff = 1.10155(50), χ2
ν [12] = 0.77, p = 0.683

Figure 5.5: The effective mass of a zero-momentum 2-point correlation function for a
pseudoscalar state, i.e. Osrc = Osnk = γ5. A fit to a plateau is performed at sufficiently
large timeslices that only the ground state of the system remains.

it is assumed that all Wick contractions of the quark fields composing the interpolating

operators are summed over to obtain the expectation value. For two distinct flavours

f1 ̸= f2, this is clear that we only have a single Wick contraction, corresponding to the
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connected correlation function:

⟨0|Osnk(x)O†
src(0)|0⟩conn. = −⟨ψ̄f1,a(x)(Γsnk)abψf2,b(x) ψ̄f2,c(0)(Γ

†
src)cdψf1,d(0)⟩

= ⟨ψf1,d(0)ψ̄f1,a(x)(Γsnk)abψf2,b(x) ψ̄f2,c(0)(Γ
†
src)cd⟩

= ⟨Tr
[
Sf1,da(0, x)(Γsnk)ab Sf2,bc(x, 0)(Γ

†
src)cd

]
⟩.

(5.104)

However, if f1 = f2, it turns out that there is a second disconnected contribution, where

the two quark propagators are not joined together in a single trace:

⟨0|Osnk(x)O†
src(0)|0⟩disc. = −⟨ψ̄f1,a(x)(Γsnk)abψf1,b(x) ψ̄f1,c(0)(Γ

†
src)cdψf1,d(0)⟩

= −⟨ψf1,b(x)ψ̄f1,a(x)(Γsnk)ab ψf1,d(0)ψ̄f1,c(0)(Γ
†
src)cd⟩

= −⟨Tr [Sf1,ba(x, x)(Γsnk)ab] Tr
[
Sf1,dc(0, 0)(Γ

†
src)cd

]
⟩.

(5.105)

By disconnected contribution, we refer to diagrams where the fermion lines form two

separate traces such that they are only connected in the expectation value through the

gauge field. Disconnected diagrams therefore suffer from much more statistical noise in

their signal than the connected contributions, and are typically neglected when their

contribution has been estimated to be within the final precision of the result. Noise-

reduction techniques come in to play here to improve the signal of these disconnected

pieces when aiming for higher-precision results where these small contributions become

important to quantify. The quark-line diagrams for the different Wick contractions are

shown in figure 5.6.

O†
src Osnk O†

src Osnk

Sf2(x, 0)

Sf1(0, x)

Sf1(x, x)

Sf1(0, 0)

tsrc tsnk tsrc tsnk

Figure 5.6: Quark line diagrams of the connected (left) and disconnected (right) con-
tributions to the expectation value ⟨Osnk(x)O†

src(0)⟩ of a 2-point correlation function.
The connected piece is present for all combinations of quark flavour f1, f2, while the
disconnected piece is only present for f1 = f2.

3-Point Correlation Functions

Next we increase the level of complexity from 2-point correlation functions to 3-point

functions. As suggested by the name, we now consider the use of 3 operator insertions
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instead of 2. We place interpolating operators O†
f and Oi at two source positions tsrc

and tsrc + ∆T which describe the final and initial state mesons of the process being

considered, and some other operator Oop which acts on the propagators for each time

tsnk between the two interpolating currents. 3-point functions can be used to study

different processes depending on the exact setup of initial and final states and inter-

mediary operator. Two common examples are: semileptonic meson decays where the

interpolating currents define the initial and final state mesons and the intermediary op-

erator describes the flavour-changing weak current transforming one quark of the initial

state into one quark of the final state; four-quark operator transitions such as ∆Q = 2

operators describing neutral meson mixing, i.e. a neutral meson M0 with quark content

q1q̄2 oscillates with its anti-meson partner M
0
with quark content q̄1q2

5. The quark

line diagrams of these processes are shown in figure 5.7.6 The general form of a 3-point

function is given by (assuming tsrc = 0 w.l.o.g.)

C3pt(p⃗, t,∆T ) =
∑
x

e−ip⃗·x⃗⟨Oi(x⃗,∆T )Oop(y⃗, tsnk)O†
f (⃗0, 0)⟩

=
∑
n,m

⟨0|Oi|n⟩⟨n|Oop|m⟩⟨m|O†
f |0⟩

e−E
(f)
m te−E

(i)
n (∆T−t)

4E
(f)
m E

(i)
n

,

(5.106)

where n,m are summed over the towers of states of the initial and final interpolating

operators respectively. In chapter 6, our main analysis will involve 3-point functions to

extract the matrix elements of dimension-six four-quark operators of type ∆Q = 2 and

∆Q = 0, i.e. for neutral meson mixing and meson lifetimes respectively.

5.1.6 Heavy Quarks on the Lattice

Putting heavy charm or bottom quarks on the lattice is not as simple as for light or

strange quarks. In order to properly resolve a quark field on the lattice and keep dis-

cretisation effects under control, we require that the quark mass is sufficiently smaller

than the ultraviolet cut-off a−1 [355, 356], i.e.

mq ≪ a−1 =⇒ amq ≪ 1. (5.107)

Discretisation errors from a fermion field enter as O((amq)
n), O((ap)n), O((ap)(amq)

n),

which clearly become uncontrolled if the condition of equation (5.107) is not satisfied.

Lattices relevant to this thesis have inverse lattice spacings 2GeV ≲ a−1 ≲ 4GeV,

and it is clear when compared to the physical mass of the b quark (see table 2.3) that

5These four-quark operators can be alternatively evaluated by keeping the operator position fixed in
the middle and varying the source positions at either side.

6Note that only the connected contribution to the semileptonic process is shown, while a disconnected
contribution also exists if either the initial or final state propagators are the same flavour as the spectator.



Chapter 5 Non-Perturbative Methods for Hadronic Physics 113

O†
f Oi

Oop

O†
f OiOop

Ssp(x, 0)

Si(y, x)
Sf (0, y)

Sq1(0, x)

Sq1(x, y)Sq2(x, 0)

Sq2(y, x)

tsrc tsrc +∆Ttsnk

tsrc tsrc +∆Ttsnk

(a) Semileptonic meson decay.

(b) Neutral meson mixing via ∆Q = 2 four-quark operator.

Figure 5.7: Quark line diagrams of the 3-point correlation functions for (a) a semilep-
tonic meson decay and (b) neutral meson mixing. In (a), the ‘initial’ quark propagator
Si interacts with a flavour-changing weak current through Oop to become the ‘final’
quark propagator Sf , while the spectator quark Ssp simply propagates between the
final and initial states. In (b), the initial meson state M induced by Oi has its quark
content q̄1q2 transformed through the four-quark operator Oop into quark content q1q̄2
which induces the final meson state M̄ from interpolating operator O†

f .

simulating a b quark on these lattices will introduce uncontrollable discretisation errors.

Considering the mass of the charm quark (see table 2.3), the finer of the lattices available

today, i.e. larger a−1, should be suitable to simulate physical c quarks although without

additional techniques, some of the coarser lattices still used may be questionable even

for charm. With increased computational power and improved algorithms for ensemble

generation, finer lattices where physical b quarks are feasible are expected to become

common in the near future.

The historic solution to circumvent the issue of uncontrolled discretisation effects has

been to use effective actions to describe the heavy quarks by using an OPE to detach the

heavy degrees of freedom from the simulated fields. We previously discussed the RHQ

action as one such effective action, which combines the Symanzik improvement proce-

dure with HQET. Quark currents constructed with an RHQ quark carry a discretisation
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error of O(a); in order to reduce this and have O(a)-improved RHQ currents, we must

introduce additional operators with a derivative insertion which along with coefficients

from lattice perturbation theory are added to the leading order current to remove the

leading discretisation effects. Furthermore, the parameters of the RHQ action m0, ζ, cP

(recall equation (5.62)) can be tuned (non-)perturbatively. Another effective action com-

monly used is Non-Relativistic QCD (NRQCD) – see [408] for the original formulation

and [409, 410] for the lattice construction.

So we can see that the effective action procedure practically has limits in how well the

systematic effects of the effective action can be controlled. For calculations with lower

precision, this is not necessarily the limiting factor and the effective action is still the

better (and cheaper) approach for simulating the heavy quarks, however if aiming for

high precision results (e.g. O(1%) or lower) these inherent systematic effects can become

a limiting factor in the calculation.

An alternative approach which has begun to be explored recently is the fully relativistic

approach where the heavy quarks are simulated using the same action as the light

quarks. This is possible with the finer lattice spacings now accommodating charm-

like quark masses with controlled discretisation effects as well as the use of improved

actions where the discretisation effects in the heavy quark mass enter at higher powers,

e.g. O((amq)
2). While physical b quark masses are still mostly out of reach, a range of

heavy quark masses from charm to near-to-bottom are becoming feasible and then the

additional extrapolation to physical b can be controlled using HQET.

It was shown in [218, 411, 412] that the region of charm and heavier-than-charm masses

with controlled discretisation errors using the DWF action can be extended by using the

Möbius kernel with a stout-smearing of the gauge field [413]. The approach for handling

heavy quarks chosen for the research presented in chapter 6 follows that of [218, 414],

where we will consider charm quarks at physical mass using the stout-smeared Möbius

DWF kernel.

5.1.7 Statistics and Systematics

Statistics

We have described that we evaluate the path integral in lattice simulations by stochasti-

cally through Monte Carlo methods. The expectation value of some observable is given

by the average of the value on a number of gauge field configurations. We must asso-

ciate a statistical error with this estimate of the expectation value, for which we use

resampling techniques. Resampling techniques estimate statistical observables by build-

ing a ‘resampled data set’ from averages of subsets of the original data. In particular

this method allows for reliably propagating statistics into secondary observables derived

from the raw simulation data.
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In this thesis, we will make use of single elimination jackknife resampling to estimate sta-

tistical observables and propagate these through fitting procedures. At the later stages

of analysis when it is required to combine results for an observable from multiple lattice

ensembles, i.e. for the continuum extrapolation, the super jackknife method is used. The

jackknife and super jackknife methods are discussed in more detail in appendix B.1.

Observables are extracted from correlation function data using a frequentist χ2 approach

to perform fits to the data. The basics of frequentist fitting are covered in appendix B.2.

Systematics

Of course, the nature of the stochastic estimate of expectation values means there is

always an associated statistical error, however there also exist important systematic

effects in the formulation of our lattice simulations which must be addressed and the

associated uncertainties estimated. Here we list (not exhaustively) some of the important

systematic effects commonly considered in lattice analyses.

➤ Finite volume: signals permeate across the boundary of the lattice and create

‘around-the-world’ effects which affect the light degrees of freedom. These effects

are proportional to e−mπL, where using the constraintmπL ≳ 4 for lattice ensemble

generation is commonly used to keep these effects under control [415, 416].

➤ Heavy quarks: As discussed in section 5.1.6, heavy quarks can introduce large

discretisation effects proportional to the heavy quark mass and momentum. Use

of effective actions or finer lattice ensembles can help manage these effects.

➤ Continuum extrapolation: after extracting some physical observable on multiple

lattice ensembles with different lattice spacings, this information is used to ex-

trapolate the value to the continuum a = 0. This extrapolation can be dependent

on details such as the renormalisation procedure or the lattice discretisations used

for the gauge and fermion fields. Typically one discusses O(a) improvement such

that the leading lattice artefacts to be modelled in the extrapolation are O(a2),

however for some quantities in some setups, it may be necessary to also consider

higher powers in a such as O(a4), in particular for higher precision calculations.

➤ For higher precision calculations when the uncertainties reach ∼ 1%, it can also

be necessary to estimate e.g. QED effects which can otherwise become the leading

source of uncertainty at this precision. To properly estimate QED effects requires

a discretisation scheme for QED which is itself a very broad topic to discuss. For

further reading, see e.g. [417].
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5.2 QCD Sum Rules

This section provides a brief overview to the method of QCD sum rules, where per-

turbative QCD calculations can be related to hadronic observables. This has been an

important tool for many years in predicting hadronic observables, and is typically com-

plementary to lattice QCD discussed above, since these methods often work better in

e.g. different q2 ranges for form factor calculations. The bag parameter calculations to

be discussed in chapter 6 have been performed in both lattice QCD and HQET sum

rules for the ∆B = 2 case and provide comparable results, while the case of ∆B = 0,

HQET sum rules have provided the only predictions of these parameters to date. In

relevance to the calculations of bag parameters for heavy mesons (an important topic of

this thesis), we will introduce sum rules in HQET for a heavy-light meson HQ.

The information presented here is based off [418–420].

5.2.1 A Basic Example: The Two-Point Correlation Function

Consider the 2-point correlation function between two currents j̃q = q̄γ5hv,

Π(ω) = i

∫
dDx eik·x⟨0|T{j̃†q(0)j̃q(x)}|0⟩, (5.108)

where k is the residual momentum of the heavy quark (recall equation 3.32) and ω =

k · v is the residual energy. The integral is defined in dimensional regularisation where

D = 4 − 2ϵ dimensions are used. The correlation function has a dual nature: at large

negative ω, the quarks in the currents are highly virtual and can be described clearly

in perturbation theory for QCD; at positive ω, they can form bound states which are

observed as resonances of single meson states and a continuous spectrum of multiparticle

states along the real axis of ω. To describe the hadronic content of the correlation

function along the positive real axis, one can insert a complete set of hadronic states

and derive the unitarity relation,

2 ImΠ(ω) =
∑
n

⟨0|j̃†q |n⟩⟨n|j̃q|0⟩ dτn (2π)4δ(4)(k − pn), (5.109)

where the sum over n represents the infinite tower of hadronic states (starting at the

ground state, the pseudoscalar meson HQ) and dτn the integration over phase space.

So relating the two regimes of the correlator (analytic, perturbative quark content vs

non-perturbative hadronic states), we can use the Cauchy formula to derive a dispersion

relation between an arbitrary point with ω < 0 and the hadronic sum along the positive
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ω

R

δ

Figure 5.8: Contour integral for the correlation function isolating a pole at ω (blue
circle) and avoiding the positive real axis where analyticity breaks down. The red circle
represents the lowest single-meson hadronic resonance and the red line represents the
continuous spectrum of multiparticle states.

real axis, as shown in figure 5.8:

Π(ω) =
1

2πi

∮
C
ds

Π(s)

s− ω

=
1

2πi
lim
δ→0

∫ ∞

0
ds

Π(s+ iδ)−Π(s− iδ)

s− ω
+

1

2πi

∫
R
ds

Π(s)

s− ω

=

∫ ∞

0
ds

ρ(s)

s− ω
,

(5.110)

where ρ(s) is the discontinuity in Π(s) along the positive real axis,

ρ(s) = lim
δ→0

1

2πi
[Π(s+ iδ)−Π(s− iδ)] , (5.111)

and we assume that the integral over the circle vanishes as R→ ∞. However, this may

not always be the case, and the correlation function can be further modified to account

for this, e.g.

Πn(ω) = ωn
∫ ∞

0
ds

ρ(s)

sn(s− ω)
+
n−1∑
i=0

aiω
i, (5.112)

where n can be chosen such that the integration over the circle will vanish. Notice

that now we have gained a polynomial contribution with coefficients ai; since this is a

polynomial to finite order n − 1, these can be removed by taking sufficient derivatives

of Πn(ω).

For ω along the positive real axis, we can express ρ for the 2-point correlator as a

combination of some hadronic parameter for the lowest-lying meson state and also the
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spectral density of the continuum of multi-particle and excited states:

ρhad(ω) = F 2δ(ω − (mHQ
−mQ)) + ρcont(ω), (5.113)

where F 2 is the HQET decay constant of the ground state meson HQ. Finally, our

correlation function can be written as

Π(ω) =
F 2

mHQ
−mQ − ω

+

∫ ∞

ω0

ds
ρcont(s)

s− ω
, (5.114)

where the threshold energy ω0 indicates the point from which the continuous spectrum

begins.

5.2.2 Operator Product Expansion

We stress again that the description of the correlation function through perturbation

theory is valid for large, negative ω, however if one takes some moderate (and negative)

value for ω, we can still be sensitive to long-distance non-perturbative QCD effects, which

also must be accounted for. These non-perturbative vacuum effects can be separated

from the perturbation theory calculations in an OPE, i.e.

Π(ω) = i

∫
dDx eik·x⟨0|T{j̃†q(0)j̃q(x)}|0⟩ =

∑
d

Cd(ω)⟨0|Od|0⟩, (5.115)

where we order the OPE as usual by the dimension of the operators d. Note that the

lowest-dimension contribution is at d = 0 where C0(ω) = Πpert(ω) and ⟨0|O0|0⟩ = 1.

Beyond d = 0, we have a sum of vacuum condensates of quark and gluon fields, however

we are able to safely truncate this sum after typically only a few terms since high-

dimensional condensates are proportional to ω−d and are thus suppressed so long as

the magnitude of ω is not too small. The prediction of the condensates themselves is

beyond perturbation theory and must be determined by other means, such as lattice

QCD. Another method is treating them as phenomenological parameters which can

be extracted from fitting to experimental data; an example proving the viability of

this method is the prediction of the gluon condensate in one of the original sum rule

works [38], which is a value still used to date.

Note that there is some critical dimension dcrit from which it is said the validity of the

OPE picture breaks down since the vacuum condensates become sensitive also to short-

distance fluctuations and the idea of separation of scales which is a foundation of the

OPE is no longer sound. Due to this breakdown, the OPE must be truncated at some

point, however finding the optimal truncation to both describe the correlator accurately

and avoid the OPE breakdown is difficult and clearly separates our prediction from
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the exact solution to the physics. Neglecting these terms from the correlation function

predicted for large negative ω may actually have a more significant impact after the

analytical continuation to the positive real axis is taken. The impact of this truncation

is clearly a violation of quark-hadron duality; for further details on dcrit and QHD, see

e.g. [37, 421, 422].

While below the critical dimension, the OPE picture remains valid, and the correlation

function can be extracted from a combination of the vacuum condensates and perturba-

tion. The ‘sum rule’ of QCD sum rules is then given by equating the OPE and hadronic

pictures of the correlator:

F 2

mHQ
−mQ − ω

+

∫ ∞

ω0

ds
ρcont(s)

s− ω
=

∫ ∞

0
ds
ρOPE(s)

s− ω
. (5.116)

5.2.3 Borel Transformations

The current form of the correlation function is not actually very useful for estimating the

hadronic parameters of the lowest-lying state, since we still have to define the continuum

spectral density ρcont(s). To improve this situation, the Borel transformation can be

applied [37]:

Π(t) = BtΠ(ω) = lim
−ω,n→∞
−ω/n→t

(−ω)n+1

n!

(
d

dω

)n
Π(ω). (5.117)

There are important consequences of the Borel transformation:

➤ Applying infinite derivatives will remove any polynomial terms, i.e.

Bt[ωi] = 0. (5.118)

As discussed above, this will remove the subtraction terms in equation (5.112).

➤ The relation

Bt
[

1

(s− ω)i

]
= lim

−ω,n→∞
−ω/n→t

(−ω)n+1

n!

(
d

dω

)n 1

(s− w)i

=
exp{−s/t}
(i− 1)!ti−1

,

(5.119)

where i > 0. This introduces an exponential weight to the hadronic side of the sum

rule and reduces sensitivity to ρcont, while on the OPE side, the convergence will

be improved since higher-order terms are factorially suppressed. However, it turns

out that optimising t for this set-up is tricky since the two sides of our sum rule

prefer opposite scenarios: small t better isolates the ground state in the hadronic



Chapter 5 Non-Perturbative Methods for Hadronic Physics 120

picture but this means the higher-order terms in the OPE are not as suppressed

(and vice versa). One must find some Borel window [418] for t where both sides of

the sum rule are stable, however it is not guaranteed for all sum rules that such a

window exists.

Now using QHD and some cut-off energy ωc, we can approximate∫ ∞

ω0

ds
ρcont(s)

s− ω
=

∫ ∞

ωc

ds
ρOPE(s)

s− ω
. (5.120)

Using the Borel transformation, we suppress contributions from ρcont(s) and as such

violations to QHD are also suppressed. Finally, this allows us to write down the Borel

sum rule in HQET for the decay constant (as written by [423–425])

F 2(µ) =

∫ ωc

0
dω exp

{
mHQ

−mQ − ω

t

}
ρOPE(ω). (5.121)

In this form, we now have a clear method to calculate the non-perturbative decay con-

stant F using standard perturbation theory techniques (and the addition of vacuum

condensates). The HQET decay constant can then be related to the full QCD equiva-

lent through standard matching procedures.

5.2.4 Sum Rules for Bag Parameters

The sum rule for a bag parameter of a four-quark operator Oi can be defined by a simple

extension to the case for the decay constant above. The leading-order diagram and one

diagram at NLO for the four-quark operators are shown in figure 5.9. We start with the

3-point correlator

KOi(ω1, ω2) =

∫
dDx1d

Dx2e
ik1·x1−ik2·x2⟨0|T

{
j̃+(x2)Oi(0)j̃−(x1)

}
|0⟩, (5.122)

where ω1,2 are the residual energies from k1,2 and the pseudoscalar interpolating currents

for the HQET fields h(+), h(−) are defined

j̃+ = q̄γ5h(+), j̃− = q̄γ5h(−). (5.123)

We continue as before to now write the dispersion relation for this correlator as

KOi(ω1, ω2) =

∫ ∞

0
ds1 ds2

ρOi(s1, s2)

(s1 − ω1)(s2 − ω2)
+ · · · , (5.124)
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where we do not write any subtraction terms which will be removed by the Borel trans-

form later. This is the equivalent to equation 5.110, except now since we have two

variables ω1 and ω2, ρOi(s1, s2) is the double discontinuity in both ω1 and ω2.

Through the standard algebra, one finds the finite-energy sum rule

F 2(µ)⟨Oi(µ)⟩ exp
{
−mHQ

−mQ

t1
− mHQ

−mQ

t2

}
=

∫ ωc

0
dω1 dω2 exp

{
−ω1

t1
− ω2

t2

}
ρOi(ω1, ω2).

(5.125)

By making use of the sum rule for the HQET decay constant, we can obtain a sum rule

for ∆B = B − 1 – the deviation of the bag parameter B from the VIA – which reads

∆Bpert
Oi

(µ) =
CF

NcAOi

αs(µ)

4π
rOi

(
1, log

µ2

4Λ̄2

)
, (5.126)

where rOi(x, Lω) is related to the spectral density of the non-factorisable7 contributions

to the 3-point correlator which appear at NLO,

∆ρOi(ω1, ω2) =
NcCF

4

ω2
1ω

2
2

π4
αs
4π

rOi(x, Lω), (5.127)

where x = ω2/ω1 and Lω = log
(

µ2

4ω1ω2

)
. For further details, and advancements including

strange-quark mass effects, we refer to the calculations of [168, 169, 221].

γ5 γ5

q

h(−)

h(+)

q̄

γ5 γ5

q

h(−)

h(+)

q̄

Figure 5.9: Leading-order diagram (left) and example of NLO non-factorisable di-
agram (right) contributing to the 3-point HQET correlator for the calculation of the
∆B = 2 bag parameter.

7By non-factorisable, we refer to the diagrams with a gluon exchange across the point of operator
insertion such that the diagram cannot be decomposed into the product of two simpler diagrams (see
figure 5.9).



Chapter 6

Four-Quark Matrix Elements and

Gradient Flow Renormalisation

Throughout the discussions in chapter 3, we stress that further determinations of the

dimension-six four-quark ∆B = 0 matrix elements contributing to the lifetimes of B

mesons are wanted, in particular from lattice QCD in order to compare to the existing

sum rule calculations. In addition, in chapter 4, we show that further understanding and

higher precision in the dimension-six four-quark ∆B = 2 matrix elements contributing

to neutral B meson mixing will be very useful in constraining new physics beyond the

Standard Model.

Calculating four-quark matrix elements in lattice QCD is a well-established task in

processes such as neutral B meson mixing [214–217, 219, 414, 426] and rare kaon de-

cays [427–430]. While the calculation of bare four-quark matrix elements is similar for B

mixing and B lifetimes, a distinct difference comes from the renormalisation procedure,

where the dimension-six ∆B = 0 operators mix with operators of lower mass dimension,

making physical predictions of these quantities very challenging. In sum rule calcula-

tions, this is circumvented by calculating the matrix elements in HQET and matching

to QCD [168, 169]. In lattice QCD, as the name suggests, matrix elements are calcu-

lated in Nf -flavour QCD, so the simplifications of HQET do not apply. As such, the

history of the dimension-six four-quark ∆B = 0 matrix elements on the lattice is short:

after early quenched studies [171, 172], preliminary unquenched results were presented

in 2001 [173] however a subsequent publication was never released. The difficulty of

dealing with operator mixing has left this challenge unpursued in the following years

and to date no lattice calculations of four-quark matrix elements for lifetime operators

has been completed. Just recently however, similar interest in the matrix elements for

lifetime ratios and baryonic decays was revived [431]. A further challenge for lattice

122
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calculations is the contributions from disconnected diagrams where the signal-to-noise

ratio worsens.

In this chapter, we introduce a new non-perturbative renormalisation scheme for ma-

trix elements calculated using lattice QCD utilising the gradient flow [394, 432, 433]

and specifically its short-flow-time expansion [434–437] in order to match to a phe-

nomenologically relevant renormalisation scheme, in this case MS. The gradient flow is

introduced in section 6.1 and its short-flow-time expansion in section 6.1.1. The goal

of this renormalisation procedure is to tackle the challenge of renormalising operators

which mix with operators of lower mass dimension, such that a full calculation of the

dimension-six four-quark ∆B = 0 matrix elements from lattice QCD can be performed

for the first time. Through section 6.2, we describe the early research developing this

procedure. We use a simplified setup simulating a neutral charm-strange meson at phys-

ical mass values and consider both the ∆Q = 2 operators for neutral meson mixing and

the ∆Q = 0 operators for lifetimes, where the ∆B = 0, 2 notation is replaced with

∆Q = 0, 2 for generic heavy quark Q. As a test case to validate this new method, we

consider the ∆Q = 2 matrix elements and renormalise these in the gradient flow scheme,

before matching to MS and comparing to existing results for short-distance D0 mixing.

We expect the spectator effects of using a strange quark instead of a light quark to

be small. Our analysis can also be extended to the ∆Q = 0 matrix elements to yield

results in QCD for the first time. These can be compared to the existing HQET results,

and eventually the resulting prediction of the lifetime can be compared to experiment.

The short-flow-time expansion has similarly been used in the study of other quantities

such as neutral kaon mixing [438, 439], the energy-momentum tensor [440, 441], and the

electric dipole moment of the neutron [442]. The results presented in this chapter are

based on the proceedings [45].

Finally, in section 6.4, we will outline future prospects to extend this work to the large-

scale lattice simulations needed to consider physical B mesons and other improvements

anticipated.

6.1 Gradient Flow

The gradient flow (GF) [394, 432–434, 443–447] is a versatile tool in lattice simulations,

with applications such as scale setting [249, 394], studying the β function [448, 449], and

renormalisation. Inspired by the heat equation, gauge and fermion fields are evolved

along an auxiliary dimension, the flow time τ [GeV−2], by means of the first-order
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differential equations

∂τBµ(τ, x) = Dν(τ)Gνµ(τ, x), Bµ(0, x) = Aµ(x), (6.1)

∂τχ(τ, x) = D2(τ)χ(τ, x), χ(0, x) = q(x), (6.2)

where Gνµ(τ) = ∂νBµ(τ)−∂(µ)Bν(τ)+ [Bν(τ), Bµ(τ)] is the flowed gluon field strength

tensor, Dν = ∂ν + [Bν(τ), ·] is the flowed covariant derivative, Aµ and q are the regular

gauge and fermion fields respectively whereas Bµ(τ) and χ(τ) are those extended in the

flow time. Practically, GF applies an infinitesimal smearing procedure of the gauge and

fermion fields; formally, this suppresses and removes UV fluctuations such that operators

evolved along the gradient flow are renormalised. The effect of the gradient flow can be

seen by sampling the plaquette (recall figure 5.3) throughout a 2D slice of a lattice and

comparing this along the flow time, as shown in figure 6.1. One can see that without GF,

there exists large local ultraviolet fluctuations in the plaquette, while once the gauge

field has been evolved along the flow time, these fluctuations are ‘smoothened over’ such

that the variation of the plaquette across the lattice is now significantly smaller. The

central value of the plaquette clearly shifts significantly and also is resolved to a precision

from ∼ 0.6 to ∼ 0.99995.

(a) τ/a2 = 0.00 (b) τ/a2 = 16.00

Figure 6.1: Variation of the plaquette over a 2D slice of a lattice without the gradient
flow (a) and after suitable evolution in the flow time (b) [450].

In this thesis, we will focus on the use of GF for renormalisation. With respect to

renormalisation, there are two concepts:

➤ The gradient flow as a renormalisation group transformation [451, 452].

➤ The short-flow-time expansion can be considered in order to relate the gradient

flow renormalisation to another scheme, such as the MS [434, 436, 437]. This

concept is discussed further below and used in the analysis of this chapter.
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6.1.1 The Short-Flow-Time Expansion

To begin, we consider an effective Hamiltonian which is typically expressed as a sum

of the products of operators Om and Wilson coefficients Cm. With the gradient flow,

this can be alternatively expressed in terms of ‘flowed’ operators Õn(τ) and ‘flowed’

Wilson coefficients C̃n(τ). As long as the sum is over a full operator basis, the described

Hamiltonian is the same:

Heff =
∑
m

CmOm =
∑
n

C̃n(τ)Õn(τ), (6.3)

where the flow-time dependence of the flowed operators and Wilson coefficients cancel

each other [437, 440, 453, 454]. In the short-flow-time expansion, one relates the flowed

operators to the regular ones as

On(τ) =
∑
m

ζnm(τ)Om +O(τ) =⇒
∑
n

ζ−1
nm(µ, τ)⟨ÕGF

n ⟩(τ) = ⟨OMS
m ⟩(µ), (6.4)

where higher-dimensional operators accompany higher powers of τ such that they are

expected to be negligible for small τ [434–437]. The perturbatively-calculated matrix

ζ−1(µ, τ) matches the GF-renormalised matrix elements to the MS scheme1. Note that

from here on, when discussing the dimension-six four-quark ∆Q = 0 operators defined

in equation (3.88), we will drop the ‘∼’ written over the regular operators such that Õ
always refers to the flowed operators.

The perturbative matching matrices ζ−1(µ, τ) used in this study for both the ∆Q = 0, 2

operator bases are calculated in [454, 455]. In the case of ∆Q = 2, the matching matrix

is block diagonal with only a single element for the operator O1. Since the quantities of

interest are ultimately the bag parameters Bi of the operators Oi, the matching matrix

is calculated for the same ratio of currents. At NNLO, the perturbative matching from

GF to MS schemes for the bag parameter B1 with number of flavours Nf
2 is given by

ζ−1
B1

(µ, τ) = 1 +
as
4

(
−11

3
− 2Lµτ

)
+

a2s
43200

[
− 2376− 79650Lµτ − 24300L2

µτ + 8250Nf + 6000Nf Lµτ

+ 1800Nf L
2
µτ − 2775π2 + 300Nf π

2 − 241800 log 2

+ 202500 log 3− 110700Li2

(
1

4

)]
,

(6.5)

1Evanescent operators are considered in the matching calculation, however it is ensured via a finite
renormalisation that the physical operators do not mix into them [454].

2Note that this is not the number of dynamical flavours in the lattice simulations, but the number
of effective flavours in the continuum picture at the renormalisation scale µ (recall equation (3.30)).
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where Lµτ = log(2µ2τ) + γE and as = αs/π. The expressions for the other bag param-

eters for both ∆Q = 0, 2 are similar, but lie in 2 × 2 matrices such that two GF bag

parameters mix to yield each MS result. In regards to the ∆Q = 0 operators, while it

is anticipated that the calculation is more straightforward than the original challenge

without gradient flow, the lower-dimension operator mixing avoided so far in the non-

perturbative gradient flow arises again in the matching procedure. The work to tackle

this in full is ongoing. Meanwhile to give first estimates for these quantities, we con-

sider the matching matrices calculated for the difference of the ∆Q = 0 operators with

different spectator quarks, which contain the same diagrams as the full operators but

with the troublesome terms removed.

The final result for a bag parameter Bi in the MS scheme is given by the zero-flow-time

limit of the product of the perturbative matching matrix and the flowed bag parameters

in the GF scheme, i.e.

BMS
i (µ) = lim

τ→0
ζ−1
ji (µ, τ)BGF

j (τ). (6.6)

Strictly speaking, taking this limit presents a window problem, i.e. we must balance two

opposing effects:

➤ For GF-renormalised operators to be cleanly resolved, we must have evolved them

far enough in the flow time such that the gradient flow has also taken care of

regulating the UV and cut-off effects.

➤ The flow time region to be considered must be small enough that the short-flow-

time expansion is still valid and higher-dimensional operators are suppressed.

We will see below when the short-flow-time expansion is applied to real lattice data how

this “window problem” is practically seen and addressed.

6.2 Lattice Calculation of Four-Quark Matrix Elements

6.2.1 Lattice Setup

In this lattice calculation, we make use of six 2+1-flavour gauge field ensembles generated

by the RBC/UKQCD collaboration with the DWF and Iwasaki gauge actions, at three

lattice spacings a ∼ 0.11, 0.08, 0.07 fm and pion masses ∈ [267, 433)MeV [218, 365, 366].

Light and strange quarks are simulated with the Shamir DWF kernel [379, 380, 383, 456]

with M5 = 1.8. These ensembles are listed in table 6.1.
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L T a−1/GeV amsea
l amsea

s amval
c mπ/MeV srcs×Nconf σ Nσ

C1 24 64 1.7848 0.005 0.040 0.64 340 32× 101 4.5 400

C2 24 64 1.7848 0.010 0.040 0.64 433 32× 101 4.5 400

M1 32 64 2.3833 0.004 0.030 0.45 302 32× 79 6.5 400

M2 32 64 2.3833 0.006 0.030 0.45 362 32× 89 6.5 100

M3 32 64 2.3833 0.008 0.030 0.45 411 32× 68 6.5 100

F1S 48 96 2.785 0.002144 0.02144 0.37 267 24× 98

Table 6.1: RBC/UKQCD ensembles used in the discussed simulations [363–366].
amsea

l and amsea
s are the light and strange sea quark masses and mπ is the unitary pion

mass. amval
s are the valence strange quark masses, set to the physical mass.

Heavy quarks are simulated using stout-smeared gauge fields [413] and the Möbius DWF

action [391], where the mass has been tuned to the physical charm on each ensemble

through the Ds pseudoscalar meson [54]. Using a similar setup as [218], all propaga-

tors are generated with Z2 wall sources where the number of sources (separated evenly

across the time dimension) and smearing parameters are listed in table 6.1. Gaussian

smearing [407] is also applied for the strange quarks. Using chiral DWFs for this pilot

study has the advantage that additional mixing of different chiralities does not occur.

The parameters used in the gradient flow evolution of the quark fields in the lattice sim-

ulation are listed in table 6.2. For all ensembles, the third-order Runge-Kutta procedure

is taken in steps of ϵ/a2 = 0.01, with measurements of the flowed correlation functions

taken every 10 steps for earlier flow times which is extended to every 40 steps as the

flow time increases. The maximum flow time for each lattice spacing is chosen such that

all ensembles approximately cover the same physical range of flow time. The number

of measurements along the flow time for each lattice spacing is also listed. Note that

the M1 ensemble was first run at an early stage of the project alongside the C1 and C2

ensembles and as such was given the same flow time parameters as these. This results

in a smaller physical reach in the flow time, however the variation between different en-

sembles at the same lattice spacing due to the sea quark effects is expected to be small

and so the M2 and M3 ensembles will cover the range missed.

Recall the ∆Q = 2 operator basis defined in equation (3.103) and their matrix elements

in equations (3.104)-(3.106). We will refer to this as the “BSM” basis. We saw that

the parity invariance of QCD reduces the number of required matrix elements from 8

to 5. Furthermore practically for lattice calculations, it is convenient to define a basis

containing only colour-singlet operators, referred to as the “lattice” or “NPR” basis:
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a−1 = 1.785GeV (C) a−1 = 2.383GeV (M)* a−1 = 2.785GeV (F)

step size, ϵ/a2 0.01 0.01 0.01

measurement interval
τ/a2 < 5 0.10 τ/a2 < 8 0.10 τ/a2 < 12 0.10

τ/a2 > 5 0.40 τ/a2 > 8 0.40 τ/a2 > 12 0.40

max τ/a2 8.00 12.00 20.00

# measurements 58 58 141

Table 6.2: Features of the gradient flow evolution. The evolution is performed in
Runge-Kutta steps of ϵ and measurements of the flowed correlation functions are stored
at even intervals which increase at larger flow times. * indicates that the parameters of
the ‘M’ lattice spacing are only used for the M2 and M3 ensembles; the M1 ensemble
uses the same parameters as the ‘C’ lattice spacing.

Q1 = (q̄γµ(1− γ5)Q)(q̄γµ(1− γ5)Q),

Q2 = (q̄γµ(1− γ5)Q)(q̄γµ(1 + γ5)Q),

Q3 = (q̄(1− γ5)Q)(q̄(1 + γ5)Q),

Q4 = (q̄(1− γ5)Q)(q̄(1− γ5)Q),

Q5 =
1

4
(q̄σµν(1− γ5)Q)(q̄σµν(1 + γ5)Q).

(6.7)

We further reduce these to their parity-even components in the lattice simulation and

follow the linear transformation O+ = TQ+ to relate these back to the operators of the

“BSM” basis:

Q+
1 = (q̄γµQ)(q̄γµQ) + (q̄γµγ5Q)(q̄γµγ5Q),

Q+
2 = (q̄γµQ)(q̄γµQ)− (q̄γµγ5Q)(q̄γµγ5Q),

Q+
3 = (q̄Q)(q̄Q)− (q̄γ5Q)(q̄γ5Q),

Q+
4 = (q̄Q)(q̄Q) + (q̄γ5Q)(q̄γ5Q),

Q+
5 =

∑
ν>µ

(q̄γµγνQ)(q̄γµγνQ),

T =



1 0 0 0 0

0 0 0 1 0

0 0 0 −1
2

1
2

0 0 1 0 0

0 −1
2 0 0 0


. (6.8)

For further details on the use of the “NPR” basis and its relation to the “BSM” basis,

see [218, 414, 457–459]. The quark line diagrams contributing to the simulation of these

operators are shown in figure 6.2.

Next recall the ∆Q = 0 operator basis defined in equation (3.88). For convenience in the

lattice calculation, we look to remove the generator ta from the direct definition of the

operators used in the simulation. Using the definition taαβt
a
γδ = − 1

2Nc
δαβδγδ +

1
2δαδδγβ
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γ5 γ5

q

b̄

b

q̄

t0 t0 +∆Tt

Figure 6.2: Quark line diagram to calculate the three-point correlation function with
a ∆Q = 2 four-quark operator insertion at time t between two sources at t0 and t0+∆T .

and Fierz operations, we can rewrite our operator basis as

Q1 = (Q̄γµ(1− γ5)q)(q̄γµ(1− γ5)Q),

Q2 = (Q̄(1− γ5)q)(q̄(1 + γ5)Q),

τ1 = (Q̄γµ(1− γ5)Q)(q̄γµ(1− γ5)q),

τ2 = (Q̄γµ(1 + γ5)Q)(q̄γµ(1− γ5)q).

(6.9)

Similarly to the process for ∆Q = 2, we can reduce these to the parity-even components

for the lattice simulation and relate back to the original basis later:

Q+
1 = (Q̄γµq)(q̄γµQ) + (Q̄γµγ5q)(q̄γµγ5Q),

Q+
2 = (Q̄q)(q̄Q)− (Q̄γ5q)(q̄γ5Q),

τ+1 = (Q̄γµQ)(q̄γµq) + (Q̄γµγ5Q)(q̄γµγ5q),

τ+2 = (Q̄γµQ)(q̄γµq)− (Q̄γµγ5Q)(q̄γµγ5q),

(6.10)


O+

1

O+
2

T+
1

T+
2

 =


1 0 0 0

0 1 0 0

− 1
2Nc

0 −1
2 0

0 − 1
2Nc

0 1
4




Q+

1

Q+
2

τ+1

τ+2

 . (6.11)

For the operators Q+
1 , Q+

2 , these are calculated through the quark line diagram in fig-

ure 6.3, which is the expected ∆Q = 0 operator insertion between two heavy mesons

HQ. With the rearrangement to the operators in equation (6.9), this resembles a QQ̄

pseudoscalar state decaying to a qq̄ pseudoscalar state via the four-quark operators

τ1, τ2. This rearranged operator insertion is constructed via the quark line diagram in

figure (6.4).

Finally, the ∆Q = 0 operators also have contributions from the so-called ‘eye’ diagrams.

These diagrams have been calculated in HQET sum rules where their contributions

were found to be small [168, 169]. On the lattice, these diagrams are more expensive
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γ5 γ5

q̄

Q

q̄

Q

t0 t0 +∆Tt

Figure 6.3: Quark line diagram to calculate the three-point correlation function with
a ∆Q = 0 four-quark operator Q1, Q2 insertion at time t between two sources at t0
and t0 +∆T .

γ5 γ5

q̄

q

Q̄

Q

t0 t0 +∆Tt

Figure 6.4: Quark line diagram to calculate the three-point correlation function with
a ∆Q = 0 four-quark operator τ1, τ2 insertion at time t between two sources at t0 and
t0 +∆T .

to calculate to a statistically-viable level due to the internal quark loop. One method

to generate the propagators for this uses sparse sources and is discussed in [430] in the

context of rare kaon decays where these diagrams also appear. Due to the additional

γ5 γ5

q̄

Q

q̄′

Q

t0 t0 +∆Tt

Figure 6.5: Quark line ‘eye’ diagram contributing to the matrix elements of ∆Q = 0
four-quark operators inserted at time t between two sources at t0 and t0 +∆T .

cost of calculating these diagrams and the expectation that their contribution is small,

we chose to not calculate these in this pilot study where the focus is on first results and

validation of the gradient flow renormalisation. We plan to include the eye diagrams in

future advances of this research (see section 6.4). The quark line eye diagram is shown

in figure 6.5.
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Due to their definition as ratios of the operator matrix element to some meson-to-

vacuum matrix elements, the bag parameters Bi, ϵi of the operators discussed above

can be conveniently defined on the lattice. First, recall equation (5.106) which for the

case of the same meson HQ induced at both source positions, can be written as (for

∆Q = 2)

C3pt

O∆Q=2
i

(t,∆T, τ) =
∑
n,m

⟨0|Qγ5q̄|H(n)
Q ⟩⟨H(n)

Q |Oi|H̄(m)
Q ⟩⟨H̄(m)

Q |qγ5Q̄|0⟩e
−M(m)

H̄Q
t
e
−M(n)

HQ
(∆T−t)

4M
(m)

H̄Q
M

(n)
HQ

=
⟨0|Qγ5q̄|HQ⟩2

4M2
HQ

⟨HQ|Oi|H̄Q⟩−MHQ
∆T

+
∑

n≥0,m>0

[
. . .
]
+

∑
n>0,m≥0

[
. . .
]
.

(6.12)

The ∆Q = 0 case follows similarly by swapping the anti-HQ mesons above with HQ

mesons. One can see from comparing to equation (5.102) that the product of two 2-

point functions (with one being reversed in time from ∆T ) of the meson HQ will have

the same time behaviour as the 3-point function. In the limit of large Euclidean time

signature and large source separation, this ratio will approach the bag parameter. The

Bi are isolated by taking the appropriate ratios of the 3-point correlation functions

shown above in figures 6.2 and 6.3 to some 2-point correlation functions:

R∆Q=0,2
1 (t,∆T, τ) =

C3pt

O∆Q=0,2
1

(t,∆T, τ)

η1C
2pt
AP (t, τ)C

2pt
AP (∆T − t, τ)

→ BGF
1 (τ), (6.13)

R∆Q=0,2
i (t,∆T, τ) =

C3pt

O∆Q=0,2
i

(t,∆T, τ)

ηiC
2pt
PP (t, τ)C

2pt
PP (∆T − t, τ)

→ BGF
i (τ), (6.14)

where i = 2 → 5 for ∆Q = 2 and i = 2 for ∆Q = 0. In the original operator bases

(i.e. one must transform the lattice operators first), ηi = {8
3 ,−5

3 ,
1
3 , 2,

2
3} for ∆Q = 2

and ηi = {1, 1, 1, 1} for ∆Q = 0. Note that the O1 operators for both ∆Q = 0, 2 use

the CAP 2-point function, that is, the axial-pseudoscalar correlation function which has

Z
(0)
src = ⟨0|Qγ5q̄|HQ⟩ = P (pseudoscalar matrix element) and Z

(0)
snk = ⟨0|Qγtγ5q̄|HQ⟩ = A

(axial matrix element). Readers familiar with these definitions for ∆Q = 2 operators

will recall that the source and sink operators can be switched for the ‘time-reversed’

C(∆T − t) correlator and that this is equivalent. For the gradient flow renormalisation

procedure, it is important that the axial matrix element is at the sink position for both

2-point correlators since the gradient flow evolution is applied on the sink and only the

local sink matrix elements are evolved along the gradient flow. The axial matrix elements

must always be the ones ‘flowed’ to properly define the ‘flowed’ bag parameters for O1.

For other operators, the CPP 2-point functions are used which have the pseudoscalar

matrix element at both source and sink. Still only the matrix element at the sink is

evolved along the flow time and is used for defining the ‘flowed’ bag parameters, while
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the source matrix elements cancel the same source matrix element appearing in the

definition of the three-point function.

Due to the rearranged structure of the 3-point correlators for the τi operators on the

lattice which relate to the Ti operators, these do not have the same simplification as for

the other operators and must be defined slightly differently, since the induced state at

either side of the 3-point function is not the same. Labelling the QQ̄ state ηQ and the

qq̄ state ηq since we induce pseudoscalar meson states, the correlation function reads

C3pt
τi (t,∆T, τ) =

∑
n,m

⟨0|Qγ5Q̄|η(n)Q ⟩⟨η(n)Q |τi|η(m)
q ⟩⟨η(m)

q |qγ5q̄|0⟩
e−M

(m)
ηq te

−M(n)
ηQ

(∆T−t)

4M
(m)
ηq M

(n)
ηQ

.

(6.15)

In a similar fashion to what is common in form factor analysis (see e.g. [460]), the matrix

elements ⟨τi⟩ can be extracted as

⟨τi⟩(τ) = lim
0≪t≪∆T

C3pt
τi (t,∆T, τ)√

C2pt
ηq (t)C2pt

ηQ (∆T − t)

√
4MηqMηQ

e−Mηq t−MηQ
(∆T−t) , (6.16)

where the 2-point functions used are the PP correlators for the ηQ and ηq states. Note

that these do not show a τ dependence since they are only used for cancelling the source

matrix elements of the 3-point function and thus are always taken at zero flow time. By

combining the extracted bag parameters Bi with the ⟨τi⟩ following equation (6.11), the

bag parameters ϵi are given by

ϵ1(τ) = −1

2

⟨τ1⟩(τ)
⟨0|Qγtγ5q̄|HQ⟩(τ)2

− 1

2Nc
B1(τ), (6.17)

ϵ2(τ) =
1

4

⟨τ2⟩(τ)
⟨0|Qγ5q̄|HQ⟩(τ)2

− 1

2Nc
B2(τ). (6.18)

For this rearranged method of extracting the bag parameters, the pseudoscalar and axial

matrix elements must be independently extracted from the 2-point functions.

6.2.2 Preliminary Work

Valence sector measurements are performed using the Grid [461, 462] and Hadrons [463]

frameworks. The fermionic gradient flow evolution had not yet been implemented in

Grid or Hadrons, and the first milestone of the project presented here was developing

and validating new modules into Hadrons to perform the fermionic gradient flow required

for the renormalisation procedure3. The validation procedure was performed against an

implementation of the fermionic gradient flow [452, 464] written in QLUA [465]. To

3https://github.com/mbr-phys/Hadrons/tree/test/GradientFlowLumi/Hadrons/Modules/MGradientFlow

https://github.com/mbr-phys/Hadrons/tree/test/GradientFlowLumi/Hadrons/Modules/MGradientFlow
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validate, gauge observables such as the plaquette and rectangle as well as fermionic

2-point functions were evolved along the gradient flow in both implementations and

agreement was found at double precision. The modules written for this project are

listed in appendix C. In addition, we greatly benefited from the recent ‘file bundling’

feature added to Hadrons such that the very large output of the gradient flow could be

better controlled in fewer files.

While the physical charm masses on the C and M ensembles were known from previous

studies [218], this set-up had not previously been used before on the F1S ensemble.

Therefore an important step before running the full simulation for the ∆Q = 0, 2 matrix

elements was tuning the charm mass on the F1S ensemble to its physical value. 2-point

correlation functions are analysed in a ground + first-excited state fit to precisely extract

the ground state mass of the Ds meson simulated at multiple charm-like masses. Charm-
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Figure 6.6: Physical charm mass interpolation on F1S from the Ds meson simulated
at amc = 0.30, 0.35, 0.40.

like masses were chosen such that these would bracket the expected value to replicate

the physical mass of the Ds meson, and the resulting value could then be interpolated

from the fitted results. The analysed charm masses and the interpolation to the physical

value used in the full scale simulation on F1S are shown in figure 6.6.
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6.2.3 Correlator Analysis

In the following we cover the analysis of the correlation functions obtained from the

lattice simulations. For all analyses, we use the single-elimination jackknife resampling

procedure and perform correlated frequentist fits to the data, see appendix B for details.

The first data considered for analysis are 2-point correlation functions. From these

we can validate that the meson states we anticipate are being well-resolved and that

the heavy quark mass indeed yields a physical Ds mass as desired for this pilot study.

Furthermore, we extract the meson-to-vacuum matrix elements required for e.g. the

analysis of the τi operators. In figure 6.7, we show examples of fits to 2-point correlation

functions at different flow times on the M2 ensemble. On the left is shown the fit for
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Figure 6.7: Examples of ground + first-excited state fits to 2-point correlation func-
tions on the M2 ensemble at zero flow time (left) and τ/a2 = 1.50 (right). 6 correlators
are fitted simultaneously on the left, and two on the right, where the right also uses
information from the zero-flow-time fit for better constraint. SS, SP and aa, ap, pp are
explained in the text.

zero flow time, where we have access to a larger set of correlation functions from which

we extract our information. Without the gradient flow, we use ‘smeared-smeared’ (SS)

data, i.e. with Gaussian smearing at both source and sink, or ‘smeared-point’ (SP) data

with Gaussian smearing at the source and a point sink. Due to the nature of the 3-point

correlators and therefore the bag parameter ratios, it only makes sense that the local

matrix element defined at a point sink is evolved along the gradient flow. So we have

fewer correlation functions to work with for extracting this directly. The axial-axial (aa)

and axial-pseudoscalar (ap) correlators have the benefit of having the same meson mass

states as the pseudoscalar-pseudoscalar (pp) case and as such all six (aa, ap, pp for both

SS or SP) can be fitted simultaneously. We perform a ground + first-excited state fit to

the data of all correlators, since it is commonly found that including an excited state in

the analysis improves the statistical resolution of the ground state. The resulting fit at

zero flow time outputs the meson mass (as written on the figure) and also the axial and
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pseudoscalar matrix elements for both smeared and local operators. The meson mass

and smeared-source matrix elements will not be changed by the gradient flow, and can

be used as input to the fits on the ‘flowed’ correlators to better constrain the ‘flowed’

local matrix elements. As can be seen in the right of figure 6.7, the gradient flow also

results in a smearing effect as the flow time is increased and the signal of the data for

earlier timeslices is ‘destroyed’, such that some information can be lost at larger flow

times without other constraints. Similar analysis is performed on all ensembles and also

for the ηQ and ηq states needed for the τi matrix elements.

Next we turn our attention to the analysis of the bag parameters. With the focus on

testing and validation of the gradient flow renormalisation, we consider only O1 for

∆Q = 2 and O1 and T1 for ∆Q = 0. First we discuss the similar O1 operators for

∆Q = 0, 2. The bag parameters (recall equations (6.12) and (6.13)) are symmetric in

the Euclidean time between 0 and ∆T (the two source positions) such that we expect

to find a plateaued region in the centre as the value of the bag parameter with excited

state contributions growing as we move further from the centre. Example fits to the bag
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Figure 6.8: Examples of ground state fits to the O1 operators for ∆Q = 2 (left) and
∆Q = 0 (right) on the M2 ensemble at fixed flow time τ/a2 = 1.50.

parameters at fixed flow time τ/a2 = 1.50 on the M2 ensemble are shown in figure 6.8.

Note that for the case of the ∆Q = 0 operator on the right, we have exploited the

symmetry of the signal and ‘folded’ the data in order to gain some improvement in the

statistical signal of the plateau and to make the fitting procedure easier by reducing the

number of data points4. In both cases, we find that extending the fits to include excited

states does not improve the precision of the results while worsening the quality of the

fits and therefore we choose to only consider ground state ‘plateau’ fits here.

The case of the T1 operator is different since the operator is no longer symmetric in

Euclidean time (recall equations (6.15) and (6.16)) due to the states defined at either

4In principle, this can be also be done for the ∆Q = 2 correlator which is also symmetric.
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side of the 3-point correlator being different. However, one still expects a plateau to be

reached at some point where the excited states from both sides die off and the ground

state matrix element ⟨τi⟩ is found. Examples of fits to the bag parameter of T1 at
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Figure 6.9: Examples of ground state fits to the T1 operator for ∆Q = 0 on the M2
ensemble at fixed flow times τ/a2 = 0.70 (left) and τ/a2 = 4.20 (right).

fixed flow times on the M2 ensemble are shown in figure 6.9. We find that for smaller

flow times (as shown in the left of the figure), a ground state fit is sufficient to extract

the signal, however for larger flow times the signal region becomes poorer (as shown in

the right of the figure) and in future analysis more complex fits to e.g. multiple source

separations ∆T simultaneously will also be studied. Extending the usable range of flow

times in earlier steps of the analysis is always favoured for propagating onwards. It is

however worth noting that the typical flow time values where the signal significantly

worsens are beyond the scope of expected validity for the short-flow-time expansion and

as such it can be argued to disregard these already at this stage.

Furthermore, the reliability of the extraction of T1 depends on how reliable the meson-to-

vacuum matrix elements are extracted from the 2-point correlator analysis. As the flow

time increases, the ‘smearing’ effect of the gradient flow increases, which first enhances

the overlap with the ground state but eventually the smearing grows too large and even

the ground state matrix elements and masses can become difficult to resolve. There-

fore for later flow times (again expected to be outside the range of the short-flow-time

expansion), we cannot trust the analysis for T1.

The fits discussed above to extract the bag parameters are performed at each discrete

flow time as described in table 6.2, such that we can see the evolution of these bag

parameters with the gradient flow as they are renormalised. In figures 6.10 and 6.11 the

evolutions of B1 for ∆Q = 2 and ∆Q = 0 are respectively shown, where the flow time

evolution is shown on the left in lattice units τ/a2 and on the right in physical units

τ [GeV−2]. One sees that while ∆Q = 2 and ∆Q = 0 are of different magnitude, they
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Figure 6.10: Flow time evolution of the ∆Q = 2 bag parameter B1 in lattice units
τ/a2 (left) and τ [GeV−2] (right).

behave almost identically in the gradient flow evolution. On the left, we observe overlap

between ensembles with the same lattice spacing differing only in the mass of the light

sea quarks. Hence we can infer that sea quark effects are negligible. Furthermore on

the right once at physical flow time, we find that all data at different lattice spacings

and/or sea quark masses overlap beautifully. Thus we expect a mild continuum limit

extrapolation.
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Figure 6.11: Flow time evolution of the ∆Q = 0 bag parameter B1 in lattice units
τ/a2 (left) and τ [GeV−2] (right).

Next in figure 6.12 we show the flow time evolution of the ϵ1 bag parameter for ∆Q =

0. Notice that the extent in flow time of these plots is smaller than that for the B1

parameters; this is due to the discussion above where for larger flow times the data

of both the 2- and 3-point functions exhibit large smearing effects and the required

matrix elements cannot be reliably extracted. In the left plot, one can see that while

differences between ensembles at the same lattice spacing are small, they are still more

noticeable than they were for B1. This is understood to be down to fit systematics
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Figure 6.12: Flow time evolution of the ∆Q = 0 bag parameter ϵ1 across in lattice
units τ/a2 (left) and τ [GeV−2] (right).

and these differences should be minimised by further improvement in the extraction of

individual data points. In the centre region of the plots, where the flow time is not

too small nor too large such that it is more suited to the short-flow-time expansion, the

systematic effects of the fitting procedure are better controlled and there is more overlap

of these ensembles. In the right plot in physical units, we notice that the continuum

limit of this operator is not as mild as for B1 since one sees a clear difference between

the ensembles at different lattice spacings. While the stability and ‘smoothness’ of the

evolutions leaves some space for improvement, the data within the typical range for

short-flow-time analysis still looks to behave well such that a continuum limit seems

viable and the short-flow-time expansion can be performed.

6.2.4 The Continuum Limit

After completing the correlator analyses along the flow time, the next step is taking the

continuum limit. As already mentioned in the discussion around figures 6.10 and 6.11,

additional systematics appear to be relatively small, such that we can advocate for a

simple continuum limit fit of the form

B = B + a2Γ, (6.19)

i.e. a linear fit in a2 since that is the lowest order at which discretisation errors of the

used actions are expected. We perform this fit at each discrete flow time step of the

finest ensemble F1S. To do this, we first interpolate the values of the C and M ensembles

from their discrete flow times to the F1S values, assuming a linear region between two

data points bracketing the desired value. In figure 6.13, we show the continuum limit

extrapolations at two values of the flow time for the B1 bag parameter for ∆Q = 2, where
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Figure 6.13: Examples of continuum limit extrapolations for the B1 bag parameter
for ∆Q = 2 at flow time τ = 0.09GeV−2 (left) and τ = 0.54GeV−2 (right). For
visibility, the M1 ensemble (red) is plotted with a slight offset to the left, and the C2
(cyan) and M3 (pink) ensembles to the right.

the left plot shows one of the ‘flattest’ extrapolations and the right plot one with the

largest slope, which is however still relatively mild. The continuum limit extrapolations

at other flow times and also for B1 for ∆Q = 0 look similar, as shown in figure 6.14.
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Figure 6.14: Examples of continuum limit extrapolations for the B1 bag parameter
for ∆Q = 0 at flow time τ = 0.19GeV−2 (left) and τ = 0.41GeV−2 (right). For
visibility, the M1 ensemble (red) is plotted with a slight offset to the left, and the C2
(cyan) and M3 (pink) ensembles to the right.

As expected from figure 6.12, the continuum limits for ϵ1 are not as flat as those above.

The procedure for the continuum limit is however similar to that for the B1’s: the data

is first interpolated on the C and M ensembles to match the flow time values of the F1S

ensemble, then a naive linear fit in a2 is used to take the continuum limit. In figure 6.15,

we show continuum limit extrapolations at two values of the flow time for ϵ1. Although

these data show a steeper line than the cases for B1, they are still in good agreement

with a linear ansatz. The spread between the values corresponding the different sea

quark masses at the same lattice spacing may be indicative of unaccounted systematic
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Figure 6.15: Examples of continuum limit extrapolations for the ϵ1 bag parameter for
∆Q = 0 at flow time τ = 0.19GeV−2 (left) and τ = 0.53GeV−2 (right). For visibility,
the M1 ensemble (red) is plotted with a slight offset to the left, and the C2 (cyan) and
M3 (pink) ensembles to the right.

uncertainties in fitting the plateaus and less likely to be resolving effects due to the

different sea quark masses.

6.2.5 Matching to MS

With continuum results as a function of the flow time, the final step of the procedure is

to match these GF-renormalised results to the MS scheme.

First, we consider the B1 bag parameter for the ∆Q = 2 operator. The perturbative

calculation of ζ−1
B1

is taken at both NLO and NNLO such that we can observe the

systematic effects of the use of perturbation theory. In addition, we also include the

logarithmic terms at higher powers of αs to observe these effects, although the full

calculation beyond NNLO has not been performed. In figure 6.16, we show the flow-

time dependence of ζ−1
B1

(τ) at NLO and NNLO, including the effects of the logarithms

at higher powers of αs.

The matching factor in the different perturbative scenarios is then combined with the

continuum-limit lattice data; this combination is shown in figure 6.17. As discussed

above, the short-flow-time expansion now relates this quantity to the MS-renormalised

result BMS
1 in the limit of τ → 0, assuming a linear extrapolation in the flow time.

Recall that this extrapolation involves the consideration of a ‘window’ problem where we

recognise that the data at very small τ suffers from e.g. interference with UV fluctuations,

and higher-power effects dominate at larger τ . At NLO we choose the flow time window

0.28GeV−2 ≤ τ ≤ 0.49GeV−2 and at NNLO (as well as with higher logarithms) we

choose 0.18GeV−2 ≤ τ ≤ 0.49GeV−2. Within the flow time windows, an uncorrelated

linear fit to the data is performed and then extrapolated to τ = 0. The uncertainty on
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where at NNLO we also consider logarithms at higher powers of αs (blue, red, green).
The renormalisation scale is set to µ = 3GeV.

the extrapolation is taken as the difference between the fit for the central values and

the fit for the upper limits of the data. As can be seen both in the figure and from

the chosen flow time windows, the effect of going to higher order in perturbation theory

extends the region of validity for the flow time window towards smaller τ .
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the τ → 0 extrapolations taken from uncorrelated linear fits; the results at τ = 0 are
then shown in the left panel.
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As previously mentioned, we simulate an unphysical ‘neutral charm-strange’ meson

which does not have exact phenomenological meaning for its ∆Q = 2 operators, how-

ever this can be seen as a proxy to the short-distance effects of D0 meson mixing, up to

some spectator effects which are likely to be small. In the literature, the short-distance

matrix elements for D0 mixing have been calculated on the lattice by FNAL/MILC at

Nf = 2 + 1 and ETMC at Nf = 2 + 1 + 1, with µ = 3GeV. ETMC finds a value of

BMS
1 = 0.757(27) [466]. FNAL/MILC quotes a values for ⟨O1⟩MS; using PDG [54] and

equation (3.104), this leads to BMS
1 = 0.795(57) [467]. There also exists a prediction

from HQET sum rules which, again using PDG [54], results in BMS
1 = 0.654+0.060

−0.052 [168].

By comparing to figure 6.17, one can see that the preliminary results found here lie

between the two literature values from lattice QCD and slightly above that from HQET

sum rules. We take the range from the different perturbative orders, including their

uncertainties, as the range of our final value and assume symmetric errors. This yields

BMS
1 (3GeV) = 0.787(5), (6.20)

where the uncertainty incorporates the statistical uncertainty of the data and the sys-

tematic error of different truncations in perturbation theory. While treatment of further

systematic effects is still required (see section 6.3), this agreement with the literature is

a clear sign of success for the gradient flow and short-flow-time expansion as a renor-

malisation and matching procedure.

Next, we consider the B1 and ϵ1 bag parameters for the ∆Q = 0 operators. The

perturbative matching matrix ζ−1
nm is taken at NLO, and we remind the reader again

that a simplified picture of the operators for lifetime differences is used to calculate

the matching where the complications of lower-dimensional perturbative mixing are

removed. We assume this matching is sufficient to give first estimates of these quantities

while the method is tested and validated, and the full calculation will be completed for

future results with increased accuracy. The flow-time dependence of the components of

ζ−1
nm(τ) for matching to BMS

1 (left) and ϵMS
1 (right) are shown in figure 6.18.

The matching matrices are then combined with the continuum-limit lattice data as

shown in figure 6.19 for BMS
1 and figure 6.20 for ϵMS

1 . We choose the flow time window

0.39GeV−2 ≤ τ ≤ 0.61GeV−2 for both bag parameters and perform an uncorrelated

linear fit to the data to then extrapolate to τ = 0. Unlike the case for ∆Q = 2, the

∆Q = 0 QCD matrix elements for a charm-strange meson do have phenomenological

meaning on their own to determine the Ds meson lifetime. However, as stressed in the

goal of this project, there are no existing predictions for these from lattice QCD in the

literature. There does exist a HQET sum rule calculation for D0 lifetimes, predicting
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Figure 6.18: Flow-time dependence of ζ−1
nm(τ) at NLO for BMS

1 (left) and ϵMS
1 (right).

The solid line indicates the component of ζ−1 which multiplies BGF
1 (left) / ϵGF

1 (right)
and the dashed line indicates the component of ζ−1 which multiplies ϵGF

1 (left) / BGF
1

(right). The renormalisation scale is set to µ = 3GeV.
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Figure 6.19: Flow-time dependence of the combination ζ−1
nB1

(µ, τ){B1, ϵ1}(τ) at NLO
(purple). The continuum-limit lattice data for B1 (ϵ1) is shown in black (gray) and
their individual combinations with ζ−1 in blue (red). Error bars represent statistical
uncertainties only, however the continuum extrapolation particularly at small flow times
(τ ≲ 0.2GeV−2) will contribute large systematic effects. The gray band represents the
τ → 0 extrapolation taken from the purple data in the chosen window; the result at
τ = 0 is shown in the left panel.

B1 = 0.902+0.077
−0.051 and ϵ1 = −0.132+0.041

−0.046 [168]. In our calculation we find

BMS
1 (3GeV) = 1.110(2), (6.21)

ϵMS
1 (3GeV) = 0.119(1), (6.22)

with statistical uncertainties only; see section 6.3 for a breakdown of further uncertainties
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to be quantified. We see that both B1 and ϵ1 bag parameters have the correct order of

magnitude with respect to the literature values, which we take as a promising sign for

these early results. However, one also notices that the ϵ1 parameter currently has a sign

difference to the literature value. It it still to be understood how this sign difference

arises which is to be included in future work, although it is worth noting that the existing

HQET sum rules result is also currently under scrutiny.
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Figure 6.20: Flow-time dependence of the combination ζ−1
nϵ1(µ, τ){ϵ1, B1}(τ) at NLO

(purple). The continuum-limit lattice data for ϵ1 (B1) is shown in black (gray) and
their individual combinations with ζ−1 in blue (red). Error bars represent statistical
uncertainties only, however the continuum extrapolation particularly at small flow times
(τ ≲ 0.2GeV−2) will contribute large systematic effects. The gray band represents the
τ → 0 extrapolation taken from the purple data in the chosen window; the result at
τ = 0 is shown in the left panel.

We stress again that this does not yet represent a complete calculation of the bag

parameters for ∆Q = 0 from lattice QCD since we are still to include the ‘eye’ diagram

contributions and the complete perturbative matching. However, these results show a

first estimate from lattice QCD and represent a promising first step towards a complete

calculation of the bag parameters for ∆Q = 0 operators.

6.3 Systematics

As the research presented here is a pilot study aimed at establishing the gradient flow

renormalisation and matching procedure, we have not yet been concerned about propa-

gating all systematic effects through the analysis and into the results in figures 6.17, 6.19,

and 6.20 and equations (6.20)-(6.22). However, these must be kept in mind as they will
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represent an important aspect of the final results. Below we briefly collect and discuss

some of the important systematic effects in our calculation.

Correlator Fitting

The fitting of the 2- and 3-point correlation functions can introduce a bias and systematic

effect through the choice of specific fit ranges being favoured over others. We can

minimise our bias, and estimate any systematic uncertainties, by varying the fit ranges

used for fitting and observing the subsequent spread of results. Furthermore, since we

do not expect significant sea quark effects for the heavy-light system considered, the

ensembles at the same lattice spacing should give compatible results and the fit ranges

used on the different ensembles are therefore in most cases the same. This serves as a

necessary but not sufficient condition to reduce bias in choosing the fit range.

Continuum Limit

A systematic uncertainty from the continuum limit extrapolation can be estimated by

varying the fit ansatz to test for e.g. O(a4) effects, finite volume corrections, etc. Further-

more, different subsets of the lattice ensembles can be considered instead, for example

omitting the two coarsest ensembles.

Discretisation Errors

The dominant discretisation errors associated with the gauge and fermion actions are

O((aΛQCD)
2), which will be accounted for in the continuum limit extrapolations as long

as a term ∝ a2 is present.

Sub-dominant effects from the discretisation can also be considered, however these are

typically seen to be < 1% and taken as negligible here.

Lattice Scale Uncertainty

The uncertainties on the lattice scales of the various ensembles are well-determined;

see table 6.1. These uncertainties can be accounted for as part of the continuum limit

analysis by varying the lattice spacings input to the continuum fit by 1σ and assigning

an uncertainty from the resulting spread of continuum values.

The gradient flow time in physical units is also determined using the lattice scale as a

conversion factor, and as such the lattice scale uncertainty must also be propagated into

the flow time. Similarly to above, the lattice scale in this conversion can be varied by

1σ and the systematic effect estimated from any difference.

Quark Mass Tuning

The simulated strange quark masses have a slight mistuning to the determined physical

values on each ensemble, with the mistuning effect varying by ensemble. In general,

light spectator effects are expected to be small for four-quark operators and heavy-light
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systems such that the small mistuning of their value is not anticipated to present a

significant effect. Simulations with varied values of the charm and/or strange quark

mass allow however to properly estimate these effects.

The value of the charm quark on each ensemble is tuned to replicate the physical Ds

meson mass. On all ensembles, the Ds meson mass is reproduced within 10MeV of the

physical value and mistuning effects are expected to be subleading.

In a larger-scale simulation, measurements can be performed at multiple values of the

valence quark masses for both charm and strange such that systematic uncertainties

from mistuning can be quantitatively evaluated.

Perturbative Matching

As mentioned in the discussion around figure 6.17, we can associate a systematic uncer-

tainty with the perturbative matching calculation by observing the variation in the result

at different perturbative orders. The results between NLO and NNLO for the ∆Q = 2

B1 parameter are in close agreement with one another where their difference implies an

uncertainty associated with the perturbative truncation which is already incorporated

into the quoted error.

The systematic effects for the ∆Q = 0 perturbative matching remain to be evaluated

and will be meaningful in the context of the complete matching calculation still to be

done.

τ → 0 limit

An effect which will be correlated with the perturbative matching procedure above is

how to take the τ → 0 limit. In a full analysis, this extrapolation should be performed

using a fully-correlated fit instead of the simple uncorrelated fit chosen so far for this

pilot study. In this way, some of the additional effects of this extrapolation will already

be accounted for properly as part of the quoted statistical uncertainty of the final result.

Further systematic effects in this extrapolation could be considered by e.g. varying the

fit ansatz to include further terms such as quadratic or logarithmic behaviour in the

flow time; any additional ansätze should however be well-motivated from the theoretical

perspective of the gradient flow.

6.4 Future Prospects

In the above discussions, we have laid out a pilot study to establish the gradient flow

as a non-perturbative renormalisation procedure for lattice QCD calculations and its

short-flow-time expansion as a perturbative matching method to the MS scheme. While
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this pilot study shows promising first results for this method, further work is required to

expand and improve upon this study. Below we list some of the future tasks we have in

mind to develop this study further and extend its reach to the main phenomenological

motivation – B meson lifetimes.

Eye Diagram Contributions

The simulations carried out for this pilot study do not take into account the ‘eye’ diagram

contributions to the ∆Q = 0 operators (recall figure 6.5). These diagrams are much more

expensive to simulate to a statistically-viable level and are meanwhile expected to have

only small contributions to the final result. It is however important to validate the

expectation of their size by calculating these and including their effects in a final result.

These diagrams are planned to be simulated in the future using the method discussed

in [430].

Full Operator Bases

In addition to the O1 operator for ∆Q = 2 and O1, T1 operators for ∆Q = 0 considered

here, we extend our analysis to cover the full operator bases of ∆Q = 2 and ∆Q = 0 as

defined in equations (6.7) and (6.9) respectively.

Perturbative Matching Calculation

We have so far stressed that the perturbative matching calculation for ∆Q = 0 is taken in

the simplified limit of the lifetime difference operators where the mixing with operators

of lower mass-dimension completely cancels out. It is difficult to estimate how large the

impact of this simplification is to the complete result. Work is ongoing to calculate the

full perturbative matching to more accurately predict our final values.

In addition, the perturbative matching has not yet been calculated for the full ∆Q = 2

operator basis; for predictions of this set of operators, this calculation must also be

undertaken.

Large-scale Simulation

For this pilot study, we minimised simulation cost by only simulating at a single fixed

charm and strange quark mass, targeting the physical Ds meson. For a full-scale run

in order to better account for all systematic effects in the quark mass values and also

to extend the project to D0, B0, Bs mesons, we want to perform the simulation for

multiple ‘heavy’ quark masses ranging from charm to ‘near-to-bottom’. The reach above

the charm quark mass must be carefully controlled to keep discretisation effects under

control (recall section 5.1.6) while minimising the extrapolation to the physical b quark.

We will also simulate multiple spectator quark masses for both light and strange quarks

to consider all spectator effects and control all systematics towards the physical systems.
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Simulating at both light and strange spectator quarks will in addition allow us to consider

the matrix elements for the lifetime differences and predict ratios such as τBs/τBd
.

Further Observables

While the bag parameters studied here are a particularly well-suited choice for the gradi-

ent flow renormalisation since in the ratios used to define them, additional multiplicative

renormalisation factors cancel out which would otherwise also have to be calculated. For

other observables, it can nonetheless be possible to calculate this additional renormali-

sation if needed and the gradient flow procedure could be beneficial to many calculations

in the future.



Chapter 7

Conclusions

It is obvious both phenomenologically and cosmologically that there must be more to the

fundamental laws of physics at the smallest scales than what is currently described by

the Standard Model. While a number of experimental measurements lie in tension with

their SM predictions, none yet are taken to be significant enough to confirm a discovery

of some new physics effect. Attention should be given in the search for new physics

to quark flavour physics where important insights into the limitations of the Standard

Model and the accessibility of new physics can be made.

We performed global fits to the current experimental state of the quark flavour sector

and others in the context of indirect searches for new physics, specifically Two-Higgs-

Doublet Models of various types. The collection of flavour observables considered were

a powerful tool in shaping the landscape of the allowed parameter space for various

types of the Two-Higgs-Doublet Model, which better informs experiment where direct

searches may reveal new particles if such a scenario has been chosen by nature.

Furthermore, in the search for new physics at collider experiments, one can motivate

searches for decay channels which will never be observed in the Standard Model as

‘smoking gun’ signatures for new physics. Specifically, we showed that the decay mode

Bs → e+e−, while orders of magnitude too small to be observed in the foreseeable future

in the Standard Model, can be significantly enhanced by a Two-Higgs-Doublet Model

without contradicting other measurements, such that any observation of this in a modern

particle collider is not only a smoking gun signature of new physics, but a theoretically

well-motivated one.

From the analysis of these indirect BSM searches, it is clear that a significant lim-

itation to the leverage of quark flavour physics observables is the precision of their

non-perturbative hadronic parameters. Many observables, such as the mass difference
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of neutral B meson mixing, are in a strong place to further constrain our tests for new

physics, however their hadronic uncertainties decrease their significance. Therefore an

important factor towards refining the Standard Model and constraining possible new

physics is the increased precision of these hadronic observables.

We therefore followed the goal to improve the precision of the predictions of hadronic

observables through non-perturbative methods. We perform a lattice QCD calculation

aimed at predicting the matrix elements of the dimension-six four-quark operators de-

scribing neutral meson mixing (∆Q = 2) and meson lifetimes (∆Q = 0). The main

highlight of this calculation is that we demonstrate a new non-perturbative renormal-

isation procedure based on the gradient flow which is then perturbatively matched to

the MS using the short-flow-time expansion. Since ∆Q = 2 matrix elements are well-

established, these provide a test case for validation of our method, while the goal is to

use this new method to provide first predictions from full lattice QCD for the ∆Q = 0

matrix elements.

The results of this pilot study are simulated at the physical charm and strange masses

to produce a ‘neutral charm-strange’ meson. We determined the bag parameters of the

∆Q = 2 matrix elements which can be compared to the existing literature results from

both lattice QCD and HQET sum rules for short-distance D0 mixing. These should be

equivalent up to spectator effects. Indeed, we find good agreement between the literature

values and our results based on the new renormalisation procedure presented here. We

quote a value of

BMS
1 (3GeV) = 0.787(5), (7.1)

where the preliminary uncertainty incorporates the statistical uncertainty of the data

and the systematic of different truncations in perturbation theory.

Furthermore, we pioneer first estimates for the bag parameters of the ∆Q = 0 operators

for meson lifetimes at the Ds mass scale, finding

BMS
1 (3GeV) = 1.110(2), (7.2)

ϵMS
1 (3GeV) = 0.119(1), (7.3)

with statistical uncertainties only. These early results show promise towards a final

prediction, with the expected magnitudes comparable to HQET sum rules. However a

sign difference in the ϵ1 bag parameter is still to be understood. With the encouraging

pilot study almost complete, we look forward to the prospects of performing the full

calculation including all diagrams and perturbative contributions in the future.
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With the method of gradient flow renormalisation and the short-flow-time expansion

matching showing promising early signs, next steps will be towards a larger-scale simu-

lation to improve upon the study presented here, where the goal will be to give first-time

lattice QCD predictions for the ∆Q = 0 bag parameters for D and B mesons with dif-

ferent spectator quarks. Finally, with the method established from the bag parameter

calculations, the gradient flow renormalisation procedure can be further applied to other

lattice QCD calculations as a new non-perturbative renormalisation scheme.



Appendix A

Algebra of the Standard Model

A.1 Gauge Groups

A.1.1 SU(2)

The generators τi of the SU(2) group in the fundamental representation are proportional

to the Pauli matrices σi, i.e.

τi =
1

2
σi, (A.1)

where the Pauli matrices are defined

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)

These satisfy

σjσk = δjk + iϵjklσl, (A.3)

where the 3-dimensional Levi-Civita tensor elements are the structure constants of su(2)

and the convention used is that ϵ123 = 1. In the 3-dimensional adjoint representation of

SU(2), the generators Ti are defined by the structure constants themselves:

(T i)jk = − i

2
ϵijk. (A.4)

A.1.2 SU(3)

The generators τa of the su(3) group in the fundamental representation are related to

the Gell-Mann matrices λa which are derived as an extension of the Pauli matrices to a
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3-dimensional space as

τa =
1

2
λa. (A.5)

The Gell-Mann matrices are written as

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0

 ,

λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i
0 0 0

i 0 0

 ,

λ6 =


0 0 0

0 0 1

0 1 0

 , λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 .

(A.6)

These satisfy the commutation relation

[λa, λb] = 2ifabcλc, (A.7)

where fabc are the structure constants of SU(3). The generators Ta in the adjoint

representation are defined by

(T a)bc = −ifabc. (A.8)

A.2 Clifford Algebra and Dirac matrices

A.2.1 Minkowski Dirac Matrices

We define the Dirac matrices γµ, µ = 0, 1, 2, 3 in four-dimensional Minkowski space as

γ0 =

(
12 0

0 −12

)
, γj =

(
0 σj

−σj 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 12

−12 0

)
. (A.9)

These obey the Clifford algebra

{γµ, γν} = 2gµν14, (A.10)

where gµν is the Minkowski metric tensor

gµν = diag(1,−1,−1,−1). (A.11)
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The commutator of two Dirac matrices is written

σµν =
i

2
[γµ, γν ]. (A.12)

A.2.2 Euclidean Dirac Matrices

With the Wick rotation to Euclidean space, the Euclidean Dirac matrices γEµ , µ =

1, 2, 3, 4 are related to the Minkowski matrices as

γE4 = γM0 , γEj = −iγMj , γE5 = γ1γ2γ3γ4. (A.13)

The Euclidean Clifford algebra is

{γEµ , γEν } = 2δµν14, (A.14)

where δµν is the Kronecker delta.

A.3 Grassmann Variables

Here we summarise the basic algebra of Grassmann variables. The interested reader

should turn to e.g. [351] for further details.

A.3.1 Basic Rules

We define θi, i = 1, 2, . . . , N to be Grassmann numbers. Then, the basic anticommuting

definition of these requires

θiθj = −θjθi ∀ i, j. (A.15)

This further implies the Grassmann variables are nil-potent, i.e.

θ2i = 0, (A.16)

and also that a power series for some function f(θi) will terminate after a finite number

of terms. The only relevant class of functions are the polynomials

P = a+
∑
i

aiθi +
∑
i<j

aijθiθj +
∑
i<j<k

aijkθiθjθk + · · ·+ a12...Nθ1θ2 . . . θN , (A.17)

with complex coefficients a, ai, aij , . . . , a12...N . These polynomials can be added and

multiplied, i.e. they form the basis for the Grassmann algebra.
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A.3.2 Differentiation

Elements of the Grassmann algebra can be differentiated with respect to the Grassmann

variables θi – the θi can also be described as the generators of the Grassmann algebra.

Consider the polynomial A and its derivative in θ1:

A = a+ a1θ1 + a2θ2 + a12θ1θ2,

∂A

∂θ1
= a1 + a12θ2.

(A.18)

If we rewrite A using the anticommutation rule (equation (A.15)), we can see that to

maintain consistency, we require to define the Grassmann anticommutation property for

the derivative also:
∂

∂θ1
θ2 = −θ2

∂

∂θ1
. (A.19)

Further applying the derivative ∂
∂θ2

to ∂A
∂θ1

reveals that derivatives must anticommute as

well. In summary, this all results with the following Grassmann rules for differentiation:

∂

∂θi
1 = 0,

∂

∂θi

∂

∂θj
= − ∂

∂θj

∂

∂θi
,

∂

∂θi
θi = 1,

∂

∂θi
θj = −θj

∂

∂θi
for i ̸= j.

(A.20)

A.3.3 Integration

To perform integration for Grassmann variables, we need a consistent definition of in-

tegration in RN . For an integral of f(x) over the domain Ω ∈ RN that vanishes at the

boundary ∂Ω, ∫
Ω
dNx f(x) =

∫
Ω
dx1 . . . dxN f(x1, x2, . . . , xN ), (A.21)∫

Ω
dNx

∂

∂xi
f(x1, . . . , xN ) = 0, (A.22)

we consider this a linear functional of f . We want an equivalent definition for an integral∫
dNθ of a Grassmann polynomial P . The integral then must have the properties∫

dNθ P = C,∫
dNθ (λ1P1 + λ2P2) = λ1

∫
dNθ P1 + λ1

∫
dNθ P2 for λ1, λ2 ∈ C.

(A.23)

Then the Grassmann integral ∫
dNθ

∂

∂θi
P = 0 (A.24)
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is the equivalent of equation (A.22). This implies that
∫
P vanishes if P = ∂

∂θi
P ′ for

some other polynomial P ′. This in turn reveals that
∫
P must be proportional to a12...N

for the highest power of generators θi. Now we can write the normalisation condition∫
dNθ θ1θ2 . . . θN = 1 =⇒

∫
dNθ P = a12...N (A.25)

and furthermore write the integral measure dNθ as a product of individual measures,

i.e.

dNθ = dθNdθN−1 . . . dθ2dθ1. (A.26)

These measures then follow the rules∫
dθi = 0,

∫
dθi θi = 1, dθidθj = −dθjdθi. (A.27)

Notice that the integral measure rules in equation (A.27) follow the same algebra as the

rules for differentiation in equation (A.20).

Something which we will find useful later on is linear transformations of Grassmann

variables, i.e.

θ′i =
N∑
j=1

Mijθj for Mij a complex N ×N matrix. (A.28)

Applying this linear transformation to the normalisation condition of equation (A.25),

we find ∫
dNθ θ1 . . . θN =

∫
dNθ′ θ′1 . . . θ

′
N

=

∫
dNθ′

∑
i1,...,iN

M1i1 . . .MNiN θi1 . . . θiN

=

∫
dNθ′

∑
i1,...,iN

M1i1 . . .MNiN ϵi1i2...iN θ1 . . . θN

= det[M ]

∫
dNθ′ θ1 . . . θN .

(A.29)

From this transformation, we can read off the transformation rule for the integral mea-

sure as

dNθ = det[M ]dNθ′. (A.30)
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A.3.4 Gaussian Integrals with Grassmann Variables

Consider a set of 2N Grassmann variables θi, θ̄i for i ∈ {1, 2, . . . , N}, all of which

anticommute with one another. For such a set, an important result is the Matthews-

Salam formula [468, 469]:

ZF =

∫
dθNdθ̄N . . . dθ1dθ̄1 exp


N∑
i,j

θ̄iMijθj

 = det[M ]. (A.31)

The Matthews-Salam formula is crucial in the formulation of lattice QCD as it shows

that the fermionic partition function ZF can be expressed in terms of a determinant, i.e.

the determinant of the Dirac operator. In terms of Grassmann variables, we can write

the path integral formulation of an n-point correlation function as

⟨θ̄i1θj1 . . . θin θ̄jn⟩ =
1

ZF

∫ ( N∏
k=1

dθkdθ̄k

)
θ̄i1θj1 . . . θin θ̄jn exp


N∑
l,m

θ̄lMlmθm

 . (A.32)

We can then extend the Matthews-Salam formula to the path integral formulation using

Wick’s theorem [370], resulting in

⟨θ̄i1θj1 . . . θin θ̄jn⟩ = (−1)n
∑

P (1,2,...,n)

sign(P )

N∏
k

(M−1)ikjPk
, (A.33)

where P denotes permutations of the Grassmann variables. One can see that equa-

tion (A.33) is only non-zero for equal numbers of i and j indices; this requires that the

Grassmann variables always come in pairs – these are the quark bilinears. Connect-

ing the 2N Grassmann variables into quark bilinears then indicates that there are N

propagators in the correlation function.
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Statistical Data Analysis

B.1 Jackknife Resampling

The single elimination jackknife [470] is a method to estimate the bias of an estimator

θ̂M of the parameter θ. For a dataset M of size N with entries n ∈ 1, 2, . . . , N , it

does so by removing the nth entry of the dataset and calculating θ̂Sn for the remaining

subset Sn of the data. We say θ̂ is the estimator of the parameter θ extracted from all

measurements M = {M1,M2, . . . ,MN}, for example, the sample mean:

θ̂M =
1

N

∑
θn, (B.1)

where θn is the value of θ extracted from measurementMn. Then θ̂Sn is the estimator on

the subset of the data without the nth entry, i.e. Sn = {M1, . . . ,Mn−1,Mn+1, . . . ,MN}:

θ̂Sn =
1

N − 1

∑
i∈Sn

θi. (B.2)

The θ̂Sn are alternative estimates of θ̂ from the subsets of the data, which may be treated

as if they are independent but drawn from the same probability distribution [471] – the

jackknife samples. The variance of the θ̂Sn can then be used to estimate the variance of

θ̂. We derive the jackknife estimator of the variance of θ̂ as

σ2 =
N − 1

N

N∑
n=1

(
θ̂Sn − 1

N

N∑
m=1

θm

)2

. (B.3)

Finally, an expectation value of a quantity calculated from a jackknife resampled dataset

is presented as ⟨θ⟩ = θ̂ ± σ.
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B.1.1 Super Jackknife

The super jackknife method is designed to connect uncorrelated datasets of different

sizes in a jackknife resampling approach Consider M lattice ensembles, where on the

kth ensemble, the estimator of some quantity is θ̂k with Nk jackknife samples θkn for n =

1, 2, . . . , Nk. We will combine these into N =
∑M

k=1Nk super jackknife blocks Bj where

the jth block (for j ∈ 1, 2, . . . , N) is composed of M estimators ϕk for k ∈ 1, 2, . . . ,M ,

which are selected as follows:

ϕk =


θ̂Sn ,

l<k∑
l=1

Nl ≤ j <

l≤k∑
l=1

Nl; n = j −
l<k∑
l=1

Nl

θ̂Nk
, otherwise

. (B.4)

To make this clear, take the example of two ensembles X of size NX = 40 and Y of size

NY = 60. Then the jth super jackknife block Bj has two values, ϕ1,2. If j ≤ 40 then

ϕ1 = θ̂Sj is the jth jackknife sample from ensemble X’s jackknife block and ϕ2 = θ̂NY

is the sample mean from ensemble Y ; if j > 40 then ϕ1 = θ̂NX
is the sample mean from

ensemble X and ϕ2 = θ̂Sn is the nth jackknife sample from ensemble Y ’s jackknife block

where n = j − 40.

The super jackknife method appropriately propagates the correlations within each en-

sembles dataset through the analysis chain, but implicitly assumes zero correlations

between the different ensembles. By taking M = 1, one can recover the standard jack-

knife method.

B.2 Correlator Fitting

We perform frequentist fits of lattice data in order to extract bare parameters which

are related to the mass, energy, and matrix elements of meson states defined inside

various correlation functions. A fit range [t0, t1] in the Euclidean time signal is chosen

for which data points will enter the fit; the fit range must be chosen to avoid excited

state contamination beyond the scope of the fit parameterisation in earlier timeslices

while also taking advantage of the more precise data before the signal-to-noise ratio

worsens with increasing Euclidean time. The fits make use of a least squares fit of the

correlator data C(ti) to some fit parameterisation f(θ⃗, ti), where θ⃗ is the vector of fit

parameters to be extracted and ti are the discrete timeslices. The correlated χ2 to be

minimised is defined

χ2(θ⃗) = (C(ti)− f(θ⃗, ti)) · cov−1
ij · (C(tj)− f(θ⃗, tj)), (B.5)
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where cov is the variance-covariance matrix, defined

covij =
N − 1

N

N∑
k=1

(
CSk

(ti)− ĈM (ti)
)(

CSk
(tj)− ĈM (tj)

)
, (B.6)

where following the notation of appendix B.1, ĈM (t) is the sample mean of the correlator

C(t) on the lattice ensemble M with N measurements and CSk
(t) is the kth jackknife

sample of the correlator. Note that the prefactor to the sum is specific to jackknife

resampling and other procedures (such as bootstrap) have different prefactors. One may

find that the covariance matrix is ill-conditioned and numerical matrix inversion applies

poorly. First, one may try to define an alternative (but equivalent) χ2 where only the

correlation matrix, which typically is easier to invert, gets inverted:

χ2(θ⃗) =
C(ti)− f(θ⃗, ti)

σi
· corr−1

ij · C(tj)− f(θ⃗, tj)

σj
, (B.7)

where σi = diag(covij)
1/2 and the correlation matrix is defined

corrij = σ−1
i · covij · σ−1

j . (B.8)

However, in some scenarios this may still not be suitable, in which case one may consider

a completely diagonal correlation matrix – this is known as an uncorrelated χ2 fit, i.e.

χ2(θ⃗) =

(
C(ti)− f(θ⃗, ti)

σi

)2

. (B.9)

To indicate the quality of fit once the χ2 function is minimised, one can consider the

indicator the ‘reduced χ2’:

χ2
ν =

χ2
min

# dof
, (B.10)

where ‘# dof’ is the number of degrees of freedom of the fit, i.e. the number of fitted

data points minus the number of parameters of the fit. For a correlated χ2 fit, this can

be interpreted probabilistically and gives an evaluation of the quality of fit; for large #

dof and a good fit, χ2
ν should approach 1. This is further related to the p-value, defined

p = 1− F (x; k) = 1− 1

Γ(k2 )
γ

(
k

2
,
x

2

)
, (B.11)

where F (x; k) is the χ2 cumulative distribution function and γ(s, t) is the lower incom-

plete gamma function,

γ(s, x) =

∫ x

0
ts−1e−t dt. (B.12)
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The p-value interprets how likely it is that a certain fit is an acceptable description

of that data; we choose the common prescription that a correlated fit is acceptable if

p ≥ 5%.

There is no formal interpretation of the quality of fit for an uncorrelated fit to inherently-

correlated data, such that the reduced χ2 and p-value lose clear meaning. While not as

rigid as for a correlated fit and must be taken with a grain of salt, these still provide

some indication of the fit quality. Whenever possible, it is still preferred to perform a

correlated fit which is statistically well-defined.



Appendix C

Gradient Flow Implementation in

Hadrons

1 /*

2 * GaugeFlow.hpp , part of Hadrons (https :// github.com/aportelli/Hadrons)

3 *

4 * Copyright (C) 2015 - 2022

5 *

6 * Author: Antonin Portelli <antonin.portelli@me.com >

7 * Author: Matthew Black <matthewkblack@protonmail.com >

8 *

9 * Hadrons is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation , either version 2 of the License , or

12 * (at your option) any later version.

13 *

14 * Hadrons is distributed in the hope that it will be useful ,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Hadrons. If not , see <http ://www.gnu.org/licenses/>.

21 *

22 * See the full license in the file "LICENSE" in the top level

distribution

23 * directory.

24 */

25

26 /* END LEGAL */

27 #ifndef Hadrons_MGradientFlow_GaugeFlow_hpp_

28 #define Hadrons_MGradientFlow_GaugeFlow_hpp_
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29

30 #include <Hadrons/Global.hpp >

31 #include <Hadrons/Module.hpp >

32 #include <Hadrons/ModuleFactory.hpp >

33 #include <Hadrons/Serialization.hpp >

34 #include <Hadrons/Modules/MGradientFlow/Utils.hpp >

35

36 BEGIN_HADRONS_NAMESPACE

37

38 /* *************************************************************

39 * Gauge Field Gradient Flow *

40 ************************************************************* */

41 BEGIN_MODULE_NAMESPACE(MGradientFlow)

42

43 class GaugeFlowPar: Serializable

44 {

45 public:

46 GRID_SERIALIZABLE_CLASS_MEMBERS(GaugeFlowPar ,

47 std::string , output ,

48 std::string , gauge ,

49 int , steps ,

50 double , step_size ,

51 int , meas_interval ,

52 std::string , maxTau);

53 };

54

55 template <typename GImpl ,typename FlowAction >

56 class TGaugeFlow: public Module <GaugeFlowPar >

57 {

58 public:

59 INHERIT_GIMPL_TYPES(GImpl);

60 class Result : Serializable

61 {

62 public:

63 GRID_SERIALIZABLE_CLASS_MEMBERS(Result ,

64 std::vector <double >, plaquette ,

65 std::vector <double >, rectangle ,

66 std::vector <double >, clover ,

67 std::vector <double >, topcharge ,

68 std::vector <double >, action);

69 };

70 public:

71 // constructor

72 TGaugeFlow(const std:: string name);

73 // destructor

74 virtual ~TGaugeFlow(void) {};

75 // dependency relation

76 virtual std::vector <std::string > getInput(void);
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77 virtual std::vector <std::string > getOutput(void);

78 // setup

79 virtual void setup(void);

80 // action

81 FlowAction SG = FlowAction (3.0);

82 // execution

83 virtual void execute(void);

84 };

85

86 MODULE_REGISTER_TMP(WilsonFlow , ARG(TGaugeFlow <GIMPL ,WilsonGaugeAction <

GIMPL >>), MGradientFlow);

87 MODULE_REGISTER_TMP(SymanzikFlow , ARG(TGaugeFlow <GIMPL ,

SymanzikGaugeAction <GIMPL >>), MGradientFlow);

88 MODULE_REGISTER_TMP(ZeuthenFlow , ARG(TGaugeFlow <GIMPL ,ZeuthenGaugeAction <

GIMPL >>), MGradientFlow);

89

90 /* *********************************************************

91 * TGaugeFlow implementation *

92 ********************************************************* */

93 // constructor /////////////////////////////////////////////

94 template <typename GImpl ,typename FlowAction >

95 TGaugeFlow <GImpl ,FlowAction >:: TGaugeFlow(const std:: string name)

96 : Module <GaugeFlowPar >(name)

97 {}

98

99 // dependencies/products ///////////////////////////////////

100 template <typename GImpl ,typename FlowAction >

101 std::vector <std::string > TGaugeFlow <GImpl ,FlowAction >:: getInput(void)

102 {

103 std::vector <std::string > in = {par().gauge};

104

105 return in;

106 }

107

108 template <typename GImpl ,typename FlowAction >

109 std::vector <std::string > TGaugeFlow <GImpl ,FlowAction >:: getOutput(void)

110 {

111 std::vector <std::string > out = {getName (),getName ()+"_U"};

112

113 return out;

114 }

115

116 // setup ///////////////////////////////////////////////////

117 template <typename GImpl ,typename FlowAction >

118 void TGaugeFlow <GImpl ,FlowAction >:: setup(void)

119 {

120 envCreateLat(GaugeField , getName ()+"_U");

121 envCreate(HadronsSerializable , getName (), 1, 0);
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122 }

123

124 // execution ///////////////////////////////////////////////

125 template <typename GImpl ,typename FlowAction >

126 void TGaugeFlow <GImpl ,FlowAction >:: execute(void)

127 {

128 std:: string type = SG.action_name ();

129 std:: string ga = "GaugeAction";

130 std:: string :: size_type i = type.find(ga);

131 if (i != std:: string ::npos) {

132 type.erase(i, ga.length ());

133 }

134

135 LOG(Message) << "Setting up " << type << " Flow on ’" << par().gauge

<< "’ with " << par().steps

136 << " step" << ((par().steps != 1) ? "s." : ".") << std::

endl;

137

138 double mTau = -1.0;

139 if(!par().maxTau.empty ()) {

140 LOG(Message) << "Using adaptive algorithm with maxTau = " << par

().maxTau << std::endl;

141 mTau = (double)std::stoi(par().maxTau);

142 }

143

144 auto &out = envGet(HadronsSerializable , getName ());

145 auto &result = out.template hold <Result >();

146

147 auto &U = envGet(GaugeField , par().gauge);

148 auto &Uwf = envGet(GaugeField , getName ()+"_U");

149

150 Uwf = U;

151 double time = 0;

152

153 Evolution <FlowAction > evolve (3.0, par().step_size , mTau , par().

step_size);

154 if (par().steps == 0) { // if steps = 0, give the status of gauge

field without flowing

155 result.plaquette.resize (1);

156 result.rectangle.resize (1);

157 result.clover.resize (1);

158 result.topcharge.resize (1);

159 result.action.resize (1);

160 evolve.template gauge_status <GImpl ,GaugeField ,ComplexField ,

GaugeLinkField ,Result >(Uwf ,result ,0);

161 } else {

162 result.plaquette.resize(par().steps);

163 result.rectangle.resize(par().steps);
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164 result.clover.resize(par().steps);

165 result.topcharge.resize(par().steps);

166 result.action.resize(par().steps);

167 if (mTau > 0) {

168 unsigned int step = 0;

169 do {

170 step ++;

171 evolve.template evolve_gauge_adaptive <GImpl ,GaugeField >(

Uwf);

172 if (step % par().meas_interval == 0) {

173 evolve.template gauge_status <GImpl ,GaugeField ,

ComplexField ,GaugeLinkField ,Result >(Uwf ,result ,step -1);

174 }

175 } while (evolve.taus < mTau);

176 } else {

177 for (unsigned int step = 1; step <= par().steps; step ++) {

178 evolve.template evolve_gauge <GImpl ,GaugeField >(Uwf);

179 if (step % par().meas_interval == 0) {

180 evolve.template gauge_status <GImpl ,GaugeField ,

ComplexField ,GaugeLinkField ,Result >(Uwf ,result ,step -1);

181 }

182 }

183 }

184 }

185 saveResult(par().output ,"gauge_obs",result);

186 }

187

188 END_MODULE_NAMESPACE

189

190 END_HADRONS_NAMESPACE

191

192 #endif // Hadrons_MGradientFlow_GaugeFlow_hpp_

Listing C.1: MGradientFlow/GaugeFlow.hpp

1 /*

2 * FermionFlow.hpp , part of Hadrons (https :// github.com/aportelli/Hadrons

)

3 *

4 * Copyright (C) 2015 - 2022

5 *

6 * Author: Antonin Portelli <antonin.portelli@me.com >

7 * Author: Matthew Black <matthewkblack@protonmail.com >

8 *

9 * Hadrons is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation , either version 2 of the License , or

12 * (at your option) any later version.
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13 *

14 * Hadrons is distributed in the hope that it will be useful ,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Hadrons. If not , see <http ://www.gnu.org/licenses/>.

21 *

22 * See the full license in the file "LICENSE" in the top level

distribution

23 * directory.

24 */

25

26 /* END LEGAL */

27 #ifndef Hadrons_MGradientFlow_FermionFlow_hpp_

28 #define Hadrons_MGradientFlow_FermionFlow_hpp_

29

30 #include <Hadrons/Global.hpp >

31 #include <Hadrons/Module.hpp >

32 #include <Hadrons/ModuleFactory.hpp >

33 #include <Hadrons/Serialization.hpp >

34 #include <Hadrons/TimerArray.hpp >

35 #include <Hadrons/Modules/MGradientFlow/Utils.hpp >

36

37 BEGIN_HADRONS_NAMESPACE

38

39 /* *************************************************************

40 * Propagator Field Gradient Flow *

41 ************************************************************* */

42 BEGIN_MODULE_NAMESPACE(MGradientFlow)

43

44 class FermionFlowPar: Serializable

45 {

46 public:

47 GRID_SERIALIZABLE_CLASS_MEMBERS(FermionFlowPar ,

48 std::string , output ,

49 std::vector <std::string >, props ,

50 std::string , gauge ,

51 int , bc,

52 int , steps ,

53 double , step_size ,

54 int , meas_interval ,

55 std::string , maxTau);

56 };

57

58 template <typename FImpl ,typename GImpl ,typename FlowAction >

59 class TFermionFlow: public Module <FermionFlowPar >
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60 {

61 public:

62 BASIC_TYPE_ALIASES(FImpl ,);

63 GAUGE_TYPE_ALIASES(GImpl ,);

64 class GaugeResult : Serializable

65 {

66 public:

67 GRID_SERIALIZABLE_CLASS_MEMBERS(GaugeResult ,

68 std::vector <double >, plaquette ,

69 std::vector <double >, rectangle ,

70 std::vector <double >, clover ,

71 std::vector <double >, topcharge ,

72 std::vector <double >, action);

73 };

74 public:

75 // constructor

76 TFermionFlow(const std:: string name);

77 // destructor

78 virtual ~TFermionFlow(void) {};

79 // dependency relation

80 virtual std::vector <std::string > getInput(void);

81 virtual std::vector <std::string > getOutput(void);

82 // setup

83 virtual void setup(void);

84 // action

85 FlowAction SG = FlowAction (3.0);

86 // execution

87 virtual void execute(void);

88 };

89

90 MODULE_REGISTER_TMP(WilsonFermionFlow ,ARG(TFermionFlow <FIMPL ,GIMPL ,

WilsonGaugeAction <GIMPL >>),MGradientFlow);

91

92 /* ***********************************************************

93 * TFermionFlow implementation *

94 *********************************************************** */

95 // constructor ///////////////////////////////////////////////

96 template <typename FImpl ,typename GImpl ,typename FlowAction >

97 TFermionFlow <FImpl ,GImpl ,FlowAction >:: TFermionFlow(const std:: string name

)

98 : Module <FermionFlowPar >(name)

99 {}

100

101 // dependencies/products /////////////////////////////////////

102 template <typename FImpl ,typename GImpl ,typename FlowAction >

103 std::vector <std::string > TFermionFlow <FImpl ,GImpl ,FlowAction >:: getInput(

void)

104 {
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105 std::vector <std::string > in = {par().gauge};

106 for (std:: string q : par().props) {

107 in.push_back(q);

108 }

109

110 return in;

111 }

112

113 template <typename FImpl ,typename GImpl ,typename FlowAction >

114 std::vector <std::string > TFermionFlow <FImpl ,GImpl ,FlowAction >:: getOutput(

void)

115 {

116 std::vector <std::string > out = {getName (),getName ()+"_U"};

117 for (int i = 1; i <= par().steps; i++)

118 {

119 if ((i % par().meas_interval == 0) || (i == par().steps)) {

120 std:: stringstream st; st << i;

121 for (int j = 0; j < par().props.size(); j++) {

122 std:: stringstream qt; qt << j;

123 out.push_back(getName ()+"_q"+qt.str()+"_"+st.str());

124 }

125 }

126 }

127 return out;

128 }

129

130 // setup /////////////////////////////////////////////////////

131 template <typename FImpl ,typename GImpl ,typename FlowAction >

132 void TFermionFlow <FImpl ,GImpl ,FlowAction >:: setup(void)

133 {

134 envCreateLat(GaugeField , getName ()+"_U");

135

136 for (int j = 0; j < par().props.size(); j++) {

137 std:: stringstream qt; qt << j;

138 envTmpLat(PropagatorField , "q"+qt.str()+"wf");

139 }

140

141 for (int i = 1; i <= par().steps; i++)

142 {

143 if ((i % par().meas_interval == 0) || (i == par().steps)) {

144 std:: stringstream st; st << i;

145 for (int j = 0; j < par().props.size(); j++) {

146 std:: stringstream qt; qt << j;

147 envCreateLat(PropagatorField , getName ()+"_q"+qt.str()+"_"

+st.str());

148 }

149 }

150 }
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151 envCreate(HadronsSerializable , getName (), 1, 0);

152 }

153

154 // execution /////////////////////////////////////////////////

155 template <typename FImpl ,typename GImpl ,typename FlowAction >

156 void TFermionFlow <FImpl ,GImpl ,FlowAction >:: execute(void)

157 {

158 std:: string type = SG.action_name ();

159 std:: string ga = "GaugeAction";

160 std:: string :: size_type i = type.find(ga);

161 if (i != std:: string ::npos) {

162 type.erase(i, ga.length ());

163 }

164

165 std:: string props = "";

166 for (std:: string q : par().props) props += q + " ";

167 LOG(Message) << "Setting up " << type << " Fermion Flow on ’" << par

().gauge << "’ Gauge Field and "

168 << props << ((par().props.size() > 1) ? "Fermion

Propagators " : "Fermion Propagator ")

169 << "with ppp" << ((par().bc < 0) ? "a" : "p") << "

boundary conditions and "

170 << par().steps << " step" << ((par().steps > 1) ? "s." :

".") << std::endl;

171

172 std::vector <int > bc = {1,1,1};

173 if (par().bc < 0) bc.push_back (-1);

174 else bc.push_back (1);

175

176 double mTau = -1.0;

177 if(!par().maxTau.empty ()) {

178 LOG(Message) << "Using adaptive algorithm with maxTau = " << par

().maxTau << std::endl;

179 mTau = (double)std::stoi(par().maxTau);

180 }

181

182 auto &out = envGet(HadronsSerializable , getName ());

183 auto &Uresult = out.template hold <GaugeResult >();

184

185 Uresult.plaquette.resize(par().steps);

186 Uresult.rectangle.resize(par().steps);

187 Uresult.clover.resize(par().steps);

188 Uresult.topcharge.resize(par().steps);

189 Uresult.action.resize(par().steps);

190

191 auto &U = envGet(GaugeField , par().gauge);

192 auto &Uwf = envGet(GaugeField , getName ()+"_U");

193 Uwf = U;
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194

195 for (int j = 0; j < par().props.size(); j++) {

196 auto &qj = envGet(PropagatorField , par().props[j]);

197 std:: stringstream jt; jt << j;

198 PropagatorField &qjwf = *env().template getObject <PropagatorField

>( getName ()+"_tmp_q"+jt.str()+"wf");

199 qjwf = qj;

200 }

201

202 double time = 0;

203 Evolution <FlowAction > evolve (3.0, par().step_size , mTau , par().

step_size);

204 if (mTau > 0) {

205 unsigned int step = 0;

206 do {

207 step ++;

208 startTimer("gauge field step");

209 std::vector <GaugeField > Wi = evolve.template

evolve_gaugeFF_adaptive <GImpl ,GaugeField ,GaugeLinkField >(Uwf ,bc);

210 stopTimer("gauge field step");

211 evolve.template gauge_status <GImpl ,GaugeField ,ComplexField ,

GaugeLinkField ,GaugeResult >(Uwf ,Uresult ,step -1);

212 if (step % par().meas_interval == 0) {

213 std:: stringstream st; st << step;

214 for (int j = 0; j < par().props.size(); j++) {

215 std:: stringstream jt; jt << j;

216 PropagatorField &qjwf = *env().template getObject <

PropagatorField >( getName ()+"_tmp_q"+jt.str()+"wf");

217 startTimer("fermion field "+jt.str()+" step");

218 evolve.template laplace_flow <PropagatorField ,GImpl ,

GaugeField ,GaugeLinkField >(Wi[0],Wi[1],Wi[2],qjwf);

219 stopTimer("fermion field "+jt.str()+" step");

220 auto &qji = envGet(PropagatorField , getName ()+"_q"+jt

.str()+"_"+st.str());

221 qji = qjwf;

222 }

223 }

224 } while (evolve.taus < mTau);

225 } else {

226 for (unsigned int step = 1; step <= par().steps; step ++) {

227 startTimer("gauge field step");

228 std::vector <GaugeField > Wi = evolve.template evolve_gaugeFF <

GImpl ,GaugeField ,GaugeLinkField >(Uwf ,bc);

229 stopTimer("gauge field step");

230 evolve.template gauge_status <GImpl ,GaugeField ,ComplexField ,

GaugeLinkField ,GaugeResult >(Uwf ,Uresult ,step -1);

231 if ((step % par().meas_interval == 0) || (step == par().steps

)) {
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232 std:: stringstream st; st << step;

233 for (int j = 0; j < par().props.size(); j++) {

234 std:: stringstream jt; jt << j;

235 PropagatorField &qjwf = *env().template getObject <

PropagatorField >( getName ()+"_tmp_q"+jt.str()+"wf");

236 startTimer("fermion field "+jt.str()+" step");

237 evolve.template laplace_flow <PropagatorField ,GImpl ,

GaugeField ,GaugeLinkField >(Wi[0],Wi[1],Wi[2],qjwf);

238 stopTimer("fermion field "+jt.str()+" step");

239 auto &qji = envGet(PropagatorField , getName ()+"_q"+jt

.str()+"_"+st.str());

240 qji = qjwf;

241 }

242 }

243 }

244 }

245 saveResult(par().output ,"gauge_obs",Uresult);

246 }

247

248 END_MODULE_NAMESPACE

249

250 END_HADRONS_NAMESPACE

251

252 #endif // Hadrons_MGradientFlow_FermionFlow_hpp_

Listing C.2: MGradientFlow/FermionFlow.hpp

1 /*

2 * Utils.hpp , part of Hadrons (https :// github.com/aportelli/Hadrons)

3 *

4 * Copyright (C) 2015 - 2022

5 *

6 * Author: Antonin Portelli <antonin.portelli@me.com >

7 * Author: Matthew Black <matthewkblack@protonmail.com >

8 *

9 * Hadrons is free software: you can redistribute it and/or modify

10 * it under the terms of the GNU General Public License as published by

11 * the Free Software Foundation , either version 2 of the License , or

12 * (at your option) any later version.

13 *

14 * Hadrons is distributed in the hope that it will be useful ,

15 * but WITHOUT ANY WARRANTY; without even the implied warranty of

16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

17 * GNU General Public License for more details.

18 *

19 * You should have received a copy of the GNU General Public License

20 * along with Hadrons. If not , see <http ://www.gnu.org/licenses/>.

21 *
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22 * See the full license in the file "LICENSE" in the top level

distribution

23 * directory.

24 */

25

26 /* END LEGAL */

27 #ifndef Hadrons_MGradientFlow_Utils_hpp_

28 #define Hadrons_MGradientFlow_Utils_hpp_

29

30 #include <Hadrons/Global.hpp >

31 #include <Hadrons/Module.hpp >

32

33 BEGIN_HADRONS_NAMESPACE

34

35 BEGIN_MODULE_NAMESPACE(MGradientFlow)

36

37 // additional action(s) /////////////////////////

38 template <class GImpl >

39 class ZeuthenGaugeAction {

40 public:

41 INHERIT_GIMPL_TYPES(GImpl);

42

43 double beta;

44 SymanzikGaugeAction <GImpl > SG;

45

46 ZeuthenGaugeAction(double b): beta(b),SG(SymanzikGaugeAction <GImpl >(b

)) {};

47

48 virtual std:: string action_name (){return "ZeuthenGaugeAction";}

49

50 virtual double S(const GaugeField &U) {

51 return SG.S(U);

52 };

53

54 virtual void deriv(const GaugeField &Umu , GaugeField &dSdU) {

55 // beta = 3.0, cl =

-1.0/12.0 -> Symanzik

56 double factor_p = 5.0/ double(Nc)*0.5; // 5.0 = beta *(1.0 -8.0*

cl)

57 double factor_r = -0.25/ double(Nc)*0.5; // -0.25 = beta*cl

58

59 GridBase *grid = Umu.Grid();

60

61 std::vector <GaugeLinkField > U (Nd ,grid);

62 std::vector <GaugeLinkField > U2(Nd ,grid);

63

64 for(int mu=0;mu <Nd;mu++){

65 U[mu] = PeekIndex <LorentzIndex >(Umu ,mu);
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66 WilsonLoops <GImpl >:: RectStapleDouble(U2[mu],U[mu],mu);

67 }

68

69 GaugeLinkField dSdU_mu(grid);

70 GaugeLinkField staple(grid);

71 GaugeLinkField tmp(grid),tmq(grid),tmr(grid);

72

73 for (int mu=0; mu < Nd; mu++){

74 // Staple in direction mu

75 WilsonLoops <GImpl >:: Staple(staple ,Umu ,mu);

76 tmp = Ta(U[mu]* staple)*factor_p;

77

78 WilsonLoops <GImpl >:: RectStaple(Umu ,staple ,U2 ,U,mu);

79 tmp = tmp + Ta(U[mu]* staple)*factor_r;

80

81 tmq = (adj(Cshift(U[mu],mu ,-1)) * Cshift(tmp ,mu ,-1) * Cshift(

U[mu],mu ,-1));

82 tmr = (U[mu] * Cshift(tmp ,mu ,1) * adj(U[mu]));

83

84 dSdU_mu = 5.0/6.0* tmp + 1.0/12.0* tmq + 1.0/12.0* tmr;

85 PokeIndex <LorentzIndex >(dSdU , dSdU_mu , mu);

86 }

87 };

88 };

89

90 // clover //////////////////////////////////////////

91 template <typename GImpl , typename ComplexField , typename GaugeLorentz ,

typename GaugeMat >

92 void siteClover(ComplexField &Clov , const GaugeLorentz &U)

93 {

94 GaugeMat Fmn(U.Grid()), Cmn(U.Grid()), scaledUnit(U.Grid()), Umu(U.

Grid());

95 Clov = Zero();

96 for (int mu = 1; mu < Nd; mu++) {

97 for (int nu = 0; nu < mu; nu++) {

98 Umu = PeekIndex <LorentzIndex >(U, mu);

99 scaledUnit = (1.0/Nc) * (adj(Umu) * Umu);

100 WilsonLoops <GImpl >:: FieldStrength(Fmn , U, mu , nu);

101 Cmn = Fmn - trace(Fmn) * scaledUnit;

102 Clov = Clov - trace(Cmn * Cmn);

103 }

104 }

105 }

106

107 template <typename GImpl , typename ComplexField , typename GaugeLorentz ,

typename GaugeMat >

108 double avgClover(const GaugeLorentz &Umu)

109 {



Appendix C Gradient Flow Implementation in Hadrons 175

110 ComplexField Clov(Umu.Grid());

111

112 siteClover <GImpl ,ComplexField ,GaugeLorentz ,GaugeMat >(Clov , Umu);

113 auto Tc = sum(Clov);

114 auto c = TensorRemove(Tc);

115

116 double vol = Umu.Grid()->gSites ();

117

118 return c.real() / vol;

119 }

120

121 // field evolution /////////////////////////////////

122 template <typename FlowAction >

123 class Evolution {

124 public:

125 double epsilon , maxTau , taus;

126 FlowAction SG;

127 Evolution(double beta , double step , double mTau , double ts) :

128 SG(FlowAction(beta)), epsilon(step), maxTau(mTau), taus(ts)

{};

129

130 template <typename GImpl ,typename GaugeField >

131 std::vector <GaugeField > gauge_RK(GaugeField U) {

132

133 std::vector <GaugeField > Wi;

134

135 GaugeField Z(U.Grid());

136 GaugeField tmp(U.Grid());

137 Wi.push_back(U); // W0

138 SG.deriv(U, Z);

139 Z *= 0.25; // Z0 = 1/4 * F(U

)

140 GImpl :: update_field(Z, U, -2.0* epsilon); // U = W1 = exp(

ep*Z0)*W0

141 Wi.push_back(U); // W1

142

143 Z *= -17.0/8.0;

144 SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 + Z1

145 Z *= 8.0/9.0; // Z = -17/36*Z0

+8/9*Z1

146 GImpl :: update_field(Z, U, -2.0* epsilon); // U_= W2 = exp(

ep*Z)*W1

147 Wi.push_back(U); // W2

148

149 Z *= -4.0/3.0;

150 SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36* Z0

-8/9*Z1) + Z2
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151 Z *= 3.0/4.0; // Z = 17/36* Z0

-8/9*Z1 +3/4* Z2

152 GImpl :: update_field(Z, U, -2.0* epsilon); // V(t+e) = exp(

ep*Z)*W2

153 Wi.push_back(U); // W3

154

155 return Wi;

156 };

157

158 template <typename GImpl ,typename GaugeField >

159 std::vector <GaugeField > gauge_RK_adaptive(GaugeField U) {

160

161 std::vector <GaugeField > Wi;

162

163 if (maxTau - taus < epsilon){

164 epsilon = maxTau -taus;

165 }

166 GaugeField Z(U.Grid());

167 GaugeField Zprime(U.Grid());

168 GaugeField tmp(U.Grid()), Uprime(U.Grid());

169 Uprime = U;

170 Wi.push_back(U); // W0

171 SG.deriv(U, Z);

172 Zprime = -Z;

173 Z *= 0.25; // Z0 = 1/4 * F(U

)

174 GImpl :: update_field(Z, U, -2.0* epsilon); // U = W1 = exp(

ep*Z0)*W0

175 Wi.push_back(U); // W1

176

177 Z *= -17.0/8.0;

178 SG.deriv(U, tmp); Z += tmp; // -17/32*Z0 +Z1

179 Zprime += 2.0* tmp;

180 Z *= 8.0/9.0; // Z = -17/36*Z0

+8/9*Z1

181 GImpl :: update_field(Z, U, -2.0* epsilon); // U_= W2 = exp(

ep*Z)*W1

182 Wi.push_back(U); // W2

183

184 Z *= -4.0/3.0;

185 SG.deriv(U, tmp); Z += tmp; // 4/3*(17/36* Z0

-8/9*Z1) +Z2

186 Z *= 3.0/4.0; // Z = 17/36* Z0

-8/9*Z1 +3/4* Z2

187 GImpl :: update_field(Z, U, -2.0* epsilon); // V(t+e) = exp(

ep*Z)*W2

188 Wi.push_back(U); // W3

189
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190 GImpl :: update_field(Zprime , Uprime , -2.0* epsilon); // V’(t+e)

= exp(ep*Z’)*W0

191 Wi.push_back(Uprime); // Uprime

192

193 return Wi;

194 };

195

196 template <typename GaugeField >

197 void adaptive_eps(const GaugeField& U, const GaugeField& Uprime)

{

198 // Compute distance as norm^2 of the difference

199 GaugeField diffU = U - Uprime;

200 double diff = norm2(diffU);

201 // adjust integration step

202

203 taus += epsilon;

204 epsilon = epsilon *0.95* std::pow(1e-4/diff ,1./3.);

205 };

206

207 template <typename GImpl ,typename GaugeField >

208 void evolve_gauge(GaugeField &U) {

209 std::vector <GaugeField > Wi = gauge_RK <GImpl ,GaugeField >(U);

210 U = Wi[3];

211 };

212

213 template <typename GImpl ,typename GaugeField >

214 void evolve_gauge_adaptive(GaugeField &U) {

215 std::vector <GaugeField > Wi = gauge_RK_adaptive <GImpl ,

GaugeField >(U);

216 adaptive_eps(Wi[3],Wi[4]);

217 U = Wi[3];

218 };

219

220 template <typename GaugeField ,typename GaugeLinkField >

221 void gauge_apply_boundary(GaugeField &Umu , std::vector <int > bc) {

222 GaugeLinkField tmp1(Umu.Grid());

223 GaugeLinkField tmp2(Umu.Grid());

224 GaugeLinkField tmp3(Umu.Grid());

225 Lattice <iScalar <vInteger >> coord(Umu.Grid());

226

227 for (int mu = 0; mu < Nd; mu++) {

228 LatticeCoordinate(coord ,mu);

229

230 tmp1 = PeekIndex <LorentzIndex >(Umu ,mu);

231 tmp2 = (double)bc[mu]*tmp1;

232 int dimSize = Umu.Grid()->GlobalDimensions ()[mu] - 1;

233 tmp3 = where ((coord == dimSize), tmp2 , tmp1);

234 PokeIndex <LorentzIndex >(Umu , tmp3 , mu);
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235 }

236 };

237

238 template <typename FImpl ,typename GImpl ,typename GaugeField ,

typename GaugeLinkField >

239 FImpl generic_laplace(double a, double b, GaugeField &Umu , const

FImpl& x_in , int skip_axis) {

240 double Nx = Nd;

241 if (skip_axis != -1) Nx --;

242

243 FImpl x_out = (a + -2.0*Nx*b) * x_in;

244 for (int mu = 0; mu < Nd; mu++) {

245 if (mu != skip_axis) {

246 GaugeLinkField U = PeekIndex <LorentzIndex >(Umu , mu);

247 x_out += b*( GImpl:: CovShiftForward(U,mu ,x_in) + GImpl

:: CovShiftBackward(U,mu,x_in));

248 }

249 }

250 return x_out;

251 };

252

253 template <typename FImpl ,typename GImpl ,typename GaugeField ,

typename GaugeLinkField >

254 void laplace_flow(GaugeField &W0, GaugeField &W1, GaugeField &W2,

FImpl &prop) {

255 FImpl psi1 = prop + (epsilon /4.0)*generic_laplace <FImpl ,GImpl

,GaugeField ,GaugeLinkField >(0.0 , 1.0, W0 , prop , -1);

256 FImpl psi2 = prop + (8.0* epsilon /9.0)*generic_laplace <FImpl ,

GImpl ,GaugeField ,GaugeLinkField >(0.0, 1.0, W1, psi1 , -1) - (2.0*

epsilon /9.0)*generic_laplace <FImpl ,GImpl ,GaugeField ,GaugeLinkField

>(0.0 , 1.0, W0 , prop , -1);

257 FImpl psi3 = psi1 + (3.0* epsilon /4.0)*generic_laplace <FImpl ,

GImpl ,GaugeField ,GaugeLinkField >(0.0, 1.0, W2, psi2 , -1);

258

259 prop = psi3;

260 };

261

262 template <typename GImpl ,typename GaugeField ,typename

GaugeLinkField >

263 std::vector <GaugeField > evolve_gaugeFF(GaugeField &U, std::vector

<int > &bc) {

264 std::vector <GaugeField > Wi = gauge_RK <GImpl ,GaugeField >(U);

265 U = 1.0*Wi[3];

266

267 gauge_apply_boundary <GaugeField ,GaugeLinkField >(Wi[0],bc);

268 gauge_apply_boundary <GaugeField ,GaugeLinkField >(Wi[1],bc);

269 gauge_apply_boundary <GaugeField ,GaugeLinkField >(Wi[2],bc);

270



Appendix C Gradient Flow Implementation in Hadrons 179

271 return Wi;

272 };

273

274 template <typename GImpl ,typename GaugeField ,typename

GaugeLinkField >

275 std::vector <GaugeField > evolve_gaugeFF_adaptive(GaugeField &U,

std::vector <int > &bc) {

276 std::vector <GaugeField > Wi = gauge_RK_adaptive <GImpl ,

GaugeField >(U);

277 U = 1.0*Wi[3];

278

279 gauge_apply_boundary <GaugeField ,GaugeLinkField >(Wi[0],bc);

280 gauge_apply_boundary <GaugeField ,GaugeLinkField >(Wi[1],bc);

281 gauge_apply_boundary <GaugeField ,GaugeLinkField >(Wi[2],bc);

282

283 adaptive_eps(Wi[3],Wi[4]);

284

285 return Wi;

286 };

287

288 // gauge field status //////////////////////////////

289 template <typename GImpl ,typename GaugeField ,typename

ComplexField ,typename GaugeLinkField ,typename Result >

290 void gauge_status(GaugeField &Umu , Result &result , int index)

291 {

292 double Q = WilsonLoops <GImpl >:: TopologicalCharge(Umu);

293 double plaq = WilsonLoops <GImpl >:: avgPlaquette(Umu);

294 double rect = WilsonLoops <GImpl >:: avgRectangle(Umu);

295 double clov = avgClover <GImpl ,ComplexField ,GaugeField ,

GaugeLinkField >(Umu);

296 double act = SG.S(Umu);

297

298 result.plaquette[index] = plaq;

299 result.rectangle[index] = rect;

300 result.clover[index] = clov;

301 result.topcharge[index] = Q;

302 result.action[index] = act;

303 };

304 };

305

306 END_MODULE_NAMESPACE

307

308 END_HADRONS_NAMESPACE

309

310 #endif // Hadrons_MGradientFlow_Utils_hpp_

Listing C.3: MGradientFlow/Utils.hpp
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[395] BMW collaboration, S. Borsányi et al., High-precision scale setting in lattice

QCD, JHEP 09 (2012) 010 [arXiv:1203.4469].

[396] M. R. Hestenes et al., Methods of conjugate gradients for solving linear systems,

vol. 49. NBS Washington, DC, 1952.

[397] P. A. Boyle, Hierarchically deflated conjugate gradient, arXiv:1402.2585.

[398] P. A. Boyle et al., Use of stochastic sources for the lattice determination of light

quark physics, JHEP 08 (2008) 086 [arXiv:0804.1501].

[399] UKQCD collaboration, C. McNeile and C. Michael, Decay width of light quark

hybrid meson from the lattice, Phys. Rev. D 73 (2006) 074506

[arXiv:hep-lat/0603007].

[400] S.-J. Dong and K.-F. Liu, Stochastic estimation with Z(2) noise, Phys. Lett. B

328 (1994) 130 [arXiv:hep-lat/9308015].

[401] UKQCD collaboration, M. Foster and C. Michael, Quark mass dependence of

hadron masses from lattice QCD, Phys. Rev. D 59 (1999) 074503

[arXiv:hep-lat/9810021].

[402] T. Blum, T. Izubuchi and E. Shintani, New class of variance-reduction techniques

using lattice symmetries, Phys. Rev. D 88 (2013) 094503 [arXiv:1208.4349].

https://doi.org/10.1016/j.nuclphysbps.2004.11.180
https://arxiv.org/abs/hep-lat/0409118
https://doi.org/10.1016/j.nuclphysbps.2006.01.047
https://doi.org/10.1016/j.nuclphysbps.2006.01.047
https://arxiv.org/abs/hep-lat/0511031
https://doi.org/10.1016/j.cpc.2017.01.024
https://arxiv.org/abs/1206.5214
https://doi.org/10.1103/PhysRevD.102.034510
https://arxiv.org/abs/2004.02142
https://doi.org/10.1016/0550-3213(94)90473-1
https://doi.org/10.1016/0550-3213(94)90473-1
https://arxiv.org/abs/hep-lat/9310022
https://doi.org/10.1007/JHEP08(2010)071
https://doi.org/10.1007/JHEP08(2010)071
https://arxiv.org/abs/1006.4518
https://doi.org/10.1007/JHEP09(2012)010
https://arxiv.org/abs/1203.4469
https://arxiv.org/abs/1402.2585
https://doi.org/10.1088/1126-6708/2008/08/086
https://arxiv.org/abs/0804.1501
https://doi.org/10.1103/PhysRevD.73.074506
https://arxiv.org/abs/hep-lat/0603007
https://doi.org/10.1016/0370-2693(94)90440-5
https://doi.org/10.1016/0370-2693(94)90440-5
https://arxiv.org/abs/hep-lat/9308015
https://doi.org/10.1103/PhysRevD.59.074503
https://arxiv.org/abs/hep-lat/9810021
https://doi.org/10.1103/PhysRevD.88.094503
https://arxiv.org/abs/1208.4349


Bibliography 209

[403] T. Blum, T. Izubuchi and E. Shintani, Error reduction technique using covariant

approximation and application to nucleon form factor, PoS LATTICE2012

(2012) 262 [arXiv:1212.5542].

[404] E. Shintani et al., Covariant approximation averaging, Phys. Rev. D 91 (2015)

114511 [arXiv:1402.0244].

[405] A. S. Gambhir, A. Stathopoulos and K. Orginos, Deflation as a Method of

Variance Reduction for Estimating the Trace of a Matrix Inverse, SIAM J. Sci.

Comput. 39 (2017) A532 [arXiv:1603.05988].

[406] Hadron Spectrum collaboration, M. Peardon et al., A Novel quark-field creation

operator construction for hadronic physics in lattice QCD, Phys. Rev. D 80

(2009) 054506 [arXiv:0905.2160].

[407] S. Gusken et al., Nonsinglet Axial Vector Couplings of the Baryon Octet in

Lattice QCD, Phys. Lett. B 227 (1989) 266.

[408] W. E. Caswell and G. P. Lepage, Effective Lagrangians for Bound State Problems

in QED, QCD, and Other Field Theories, Phys. Lett. B 167 (1986) 437.

[409] B. A. Thacker and G. P. Lepage, Heavy quark bound states in lattice QCD, Phys.

Rev. D 43 (1991) 196.

[410] G. P. Lepage et al., Improved nonrelativistic QCD for heavy quark physics, Phys.

Rev. D 46 (1992) 4052 [arXiv:hep-lat/9205007].

[411] P. Boyle et al., Domain Wall Charm Physics with Physical Pion Masses: Decay

Constants, Bag and ξ Parameters, PoS LATTICE2015 (2016) 336

[arXiv:1511.09328].

[412] Y.-G. Cho et al., Improved lattice fermion action for heavy quarks, JHEP 05

(2015) 072 [arXiv:1504.01630].

[413] C. Morningstar and M. J. Peardon, Analytic smearing of SU(3) link variables in

lattice QCD, Phys. Rev. D 69 (2004) 054501 [arXiv:hep-lat/0311018].

[414] P. Boyle et al., BSM B − B̄ mixing on JLQCD and RBC/UKQCD Nf = 2 + 1

DWF ensembles, PoS LATTICE2021 (2022) 224 [arXiv:2111.11287].

[415] M. Luscher, Volume Dependence of the Energy Spectrum in Massive Quantum

Field Theories. 1. Stable Particle States, Commun. Math. Phys. 104 (1986) 177.

[416] G. Colangelo, S. Durr and C. Haefeli, Finite volume effects for meson masses

and decay constants, Nucl. Phys. B 721 (2005) 136 [arXiv:hep-lat/0503014].

https://doi.org/10.22323/1.164.0262
https://doi.org/10.22323/1.164.0262
https://arxiv.org/abs/1212.5542
https://doi.org/10.1103/PhysRevD.91.114511
https://doi.org/10.1103/PhysRevD.91.114511
https://arxiv.org/abs/1402.0244
https://doi.org/10.1137/16M1066361
https://doi.org/10.1137/16M1066361
https://arxiv.org/abs/1603.05988
https://doi.org/10.1103/PhysRevD.80.054506
https://doi.org/10.1103/PhysRevD.80.054506
https://arxiv.org/abs/0905.2160
https://doi.org/10.1016/S0370-2693(89)80034-6
https://doi.org/10.1016/0370-2693(86)91297-9
https://doi.org/10.1103/PhysRevD.43.196
https://doi.org/10.1103/PhysRevD.43.196
https://doi.org/10.1103/PhysRevD.46.4052
https://doi.org/10.1103/PhysRevD.46.4052
https://arxiv.org/abs/hep-lat/9205007
https://arxiv.org/abs/1511.09328
https://doi.org/10.1007/JHEP05(2015)072
https://doi.org/10.1007/JHEP05(2015)072
https://arxiv.org/abs/1504.01630
https://doi.org/10.1103/PhysRevD.69.054501
https://arxiv.org/abs/hep-lat/0311018
https://doi.org/10.22323/1.396.0224
https://arxiv.org/abs/2111.11287
https://doi.org/10.1007/BF01211589
https://doi.org/10.1016/j.nuclphysb.2005.05.015
https://arxiv.org/abs/hep-lat/0503014


Bibliography 210

[417] N. Carrasco et al., QED Corrections to Hadronic Processes in Lattice QCD,

Phys. Rev. D 91 (2015) 074506 [arXiv:1502.00257].

[418] P. Colangelo and A. Khodjamirian, QCD sum rules, a modern perspective,

arXiv:hep-ph/0010175.

[419] E. de Rafael, An Introduction to sum rules in QCD: Course, in Les Houches

Summer School in Theoretical Physics, Session 68: Probing the Standard Model

of Particle Interactions, pp. 1171–1218, 7, 1997, arXiv:hep-ph/9802448.

[420] S. Narison, QCD spectral sum rules for heavy flavors, Acta Phys. Polon. B 26

(1995) 687 [arXiv:hep-ph/9503234].

[421] L. J. Reinders, H. Rubinstein and S. Yazaki, Hadron Properties from QCD Sum

Rules, Phys. Rept. 127 (1985) 1.

[422] M. A. Shifman, Quark hadron duality, in 8th International Symposium on Heavy

Flavor Physics, vol. 3, (Singapore), pp. 1447–1494, World Scientific, 7, 2000,

arXiv:hep-ph/0009131, DOI.

[423] D. J. Broadhurst and A. G. Grozin, Operator product expansion in static quark

effective field theory: Large perturbative correction, Phys. Lett. B 274 (1992) 421

[arXiv:hep-ph/9908363].

[424] E. Bagan et al., QCD sum rules in the effective heavy quark theory, Phys. Lett. B

278 (1992) 457.

[425] M. Neubert, Heavy meson form-factors from QCD sum rules, Phys. Rev. D 45

(1992) 2451.

[426] Tsang, Justus Tobias, B(s)-mixing parameters from all-domain-wall-fermion

simulations. Parallel Talk Lattice 2023, Fermilab, Illinois, USA, 2023.

[427] G. Isidori, G. Martinelli and P. Turchetti, Rare kaon decays on the lattice, Phys.

Lett. B 633 (2006) 75 [arXiv:hep-lat/0506026].

[428] RBC, UKQCD collaboration, N. H. Christ et al., Prospects for a lattice

computation of rare kaon decay amplitudes: K → πℓ+ℓ− decays, Phys. Rev. D 92

(2015) 094512 [arXiv:1507.03094].

[429] N. H. Christ et al., First exploratory calculation of the long-distance

contributions to the rare kaon decays K → πℓ+ℓ−, Phys. Rev. D 94 (2016)

114516 [arXiv:1608.07585].

https://doi.org/10.1103/PhysRevD.91.074506
https://arxiv.org/abs/1502.00257
https://arxiv.org/abs/hep-ph/0010175
https://arxiv.org/abs/hep-ph/9802448
https://arxiv.org/abs/hep-ph/9503234
https://doi.org/10.1016/0370-1573(85)90065-1
https://arxiv.org/abs/hep-ph/0009131
https://doi.org/10.1142/9789812810458_0032
https://doi.org/10.1016/0370-2693(92)92009-6
https://arxiv.org/abs/hep-ph/9908363
https://doi.org/10.1016/0370-2693(92)90585-R
https://doi.org/10.1016/0370-2693(92)90585-R
https://doi.org/10.1103/PhysRevD.45.2451
https://doi.org/10.1103/PhysRevD.45.2451
https://doi.org/10.1016/j.physletb.2005.11.044
https://doi.org/10.1016/j.physletb.2005.11.044
https://arxiv.org/abs/hep-lat/0506026
https://doi.org/10.1103/PhysRevD.92.094512
https://doi.org/10.1103/PhysRevD.92.094512
https://arxiv.org/abs/1507.03094
https://doi.org/10.1103/PhysRevD.94.114516
https://doi.org/10.1103/PhysRevD.94.114516
https://arxiv.org/abs/1608.07585


Bibliography 211

[430] RBC, UKQCD collaboration, P. A. Boyle et al., Simulating rare kaon decays

K+→π+ℓ+ℓ- using domain wall lattice QCD with physical light quark masses,

Phys. Rev. D 107 (2023) L011503 [arXiv:2202.08795].

[431] J. Lin, W. Detmold and S. Meinel, Lattice Study of Spectator Effects in b-hadron

Decays, PoS LATTICE2022 (2023) 417 [arXiv:2212.09275].

[432] R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum

Wilson loop operators, JHEP 03 (2006) 064 [arXiv:hep-th/0601210].
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