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Criticality-enhanced precision in phase thermometry
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Temperature estimation of interacting quantum many-body systems is both a challenging task and topic
of interest in quantum metrology, given that critical behavior at phase transitions can boost the metrological
sensitivity. Here we study noninvasive quantum thermometry of a finite, two-dimensional Ising spin lattice
based on measuring the dephasing dynamics of a spin probe coupled to the lattice. We demonstrate a strong
critical enhancement of the achievable precision in terms of the quantum Fisher information, which depends on
the coupling range and the interrogation time. Our numerical simulations are compared to instructive analytic
results for the critical scaling of the sensitivity in the Curie-Weiss model of a fully connected lattice and to the
mean-field description in the thermodynamic limit, both of which fail to describe the critical spin fluctuations on
the lattice the spin probe is sensitive to. Phase metrology could thus help to investigate the critical behavior of
finite many-body systems beyond the validity of mean-field models.
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I. INTRODUCTION

Temperature is one of the key thermodynamical quantities
that determine the feasibility and performance of quantum
experiments and technological applications such as quan-
tum sensors [1] and quantum computers [2,3]. Its accurate
determination is crucial for enhancing control in ultracold
experiments and deepening our understanding of the underly-
ing physics. However, accurately measuring low temperatures
in ultracold experiments is challenging, as the precision of
estimation, quantified by a relative error, tends to exponen-
tially diverge as temperatures decrease [4–8]. To estimate the
temperature of a quantum system, one brings in a probe,
i.e., the quantum thermometer, couples it to the system and
measures it. Repeating this procedure, either in parallel with
independently prepared copies, or sequentially with the same
continuously coupled probe, one infers the temperature from
the statistics of measurement outcomes. One can measure the
probe after it has already achieved thermal equilibrium with
the system [6,7,9–14], or one can monitor its nonequilibrium
dynamics [15–27].

For the assessment and optimization of quantum ther-
mometry protocols, two main paradigms are pursued in the
literature. Either one characterizes and maximizes the glob-
ally achievable accuracy averaged over a range of possible
temperature values, typically based on Bayesian estimation
and data analysis methods [12,28–31]. Or one focuses on
the locally achievable precision of the estimate around fixed
temperatures, as described by the Cramér-Rao bound in the
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limit of asymptotic data [9,32,33]. The main goal is then to
optimize the measurement strategy with respect to the probe’s
quantum Fisher information (QFI) on temperature. This local
paradigm is the most widespread one [5,7,10,11,21,34], and
we will adopt it here to investigate temperature estimation
near the critical point of an interacting spin system.

Physical systems close to a quantum or classical phase
transition are extremely sensitive to small fluctuations of the
relevant parameters, which can be exploited for quantum
metrology and enhanced sensing. Most critical metrology
studies can be categorized into two approaches. One focuses
on quantum critical systems as probes for estimating Hamilto-
nian parameters. The probe is initially prepared in the ground
or a steady state of the Hamiltonian around its quantum crit-
ical point and subsequently measured. As the susceptibility
of the state diverges, this would allow for arbitrarily precise
parameter estimates; but the time required to prepare the
state also diverges, a phenomenon known as critical slowing
down [13,35–39]. The other approach focuses on the time
evolution of (open) quantum systems induced by a parameter-
dependent Hamiltonian (or Liouvillian) [40,41]. Close to a
critical point, the parameter sensitivity of the evolved state
can exhibit a Heisenberg-like quadratic scaling in time. (For
open quantum systems, this might apply to the global state
including environmental degrees of freedom only, necessitat-
ing measurements on both the system and its output.) Here we
aim at exploiting a phase transition for enhanced temperature
estimation, which is still an open problem.

In principle, one can infer the temperature of an equilib-
rium system from energy measurements, but in a strongly
interacting many-body system, this would require global mul-
tiparticle measurements that are difficult to implement without
disturbing the system. In certain types of systems away from
criticality, measurements of extensive observables could be
a viable alternative [5]. Another one is the minimally inva-
sive “local” probing of small subsystems in order to infer
the global temperature [6,30,42]. In any case, an exponen-
tially bad sensitivity at low temperatures is expected both
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for local and global strategies, unless the probed system is
gapless [8,43].

In this work, we study phase thermometry: a noninvasive
temperature estimation strategy in which a probe is brought
into contact with a localized part of the sample system and
undergoes pure dephasing, such that the sample temperature
can be estimated by measuring the probe coherence over time.
Previous works have considered phase thermometry of large
bosonic samples with Ohmic spectral densities [24,44] as well
as noninteracting Fermi gases [21–23,45].

Here we set out to explore temperature estimation of in-
teracting systems close to a phase transition and investigate
phase thermometry of a two-dimensional Ising model at zero
field [46]. Ising spin lattices may represent various physical
scenarios such as arrays of Rydberg atoms [47–50], systems
of nitrogen vacancy centers [51–56], a spin-polarized Fermi
gas [57,58], and macroscopic magnetic systems [46].

An additional spin embedded within the sample and in-
teracting uniformly with a controlled subset of neighboring
spins, will undergo temperature-dependent dephasing and
thus serve as the phase probe. We will show that its sensitivity
is critically enhanced at the phase transition point, allowing us
to read out a significant portion of the temperature information
contained in the state of those surrounding sample spins. We
compare our Monte Carlo simulation results to two well-
known effective descriptions: the Curie-Weiss model [46] in
which each spin couples to the uniform sample average of
all other spins and the mean-field approximation. Both cap-
ture the critical sensitivity boost qualitatively, but they fail
to predict both the critical point and the exact enhancement
quantitatively.

We structure the paper as follows: Section II briefly reviews
how to characterize the temperature estimation precision by
means of the Fisher information. In Sec. III, we introduce
our model for the phase thermometer immersed in a thermal
Ising spin lattice, the time evolution of which we solve using
a previously developed framework [59]. We then present our
main result, the quantitative assessment of thermometric per-
formance in terms of the Fisher information around the critical
point, in Sec. IV. It starts with the effective Curie-Weiss
model, which is analytically tractable in the thermodynamic
limit, followed by the exact numerical treatment of a finite
zero-field Ising lattice of 20 × 20 spins and the associated
mean-field approximation. The scaling of the Fisher informa-
tion is evaluated as a function of the number of lattice spins the
probe interacts with, and we also consider a high-temperature
expansion to approximate the behavior in the paramagnetic
regime far above the critical temperature. Finally, we conclude
in Sec. V.

II. PRECISION OF TEMPERATURE ESTIMATES

Quantum estimation protocols generically start from a
quantum system initialized in a fiducial state ρp(0), which
picks up information about a parameter, here the temperature
T of a thermal environment, as it evolves to a state ρp(t,T )
at time t . One then performs a measurement, described by
a positive operator-valued measure (POVM) {∐x} satisfying∫
dx
∐

x = 1, which results in a random outcome x at the
likelihood p(x|t,T ) = tr{ρp(t,T )

∐
x}. The protocol is

repeated M times to gather an appropriately large data
sample x = {x1, x2, . . . , xM} at chosen probe times
t = {t1, t2, . . . , tM}, from which one can construct a
temperature estimator T̃ yielding the estimate T̃ (x|t). One
speaks of an unbiased estimator when the expectation value
of the estimator over the likelihood of outcomes at a given
true value T matches the true value, E[T̃ (x|t)] = T [28,32].
This may hold merely approximately or asymptotically, in the
limit of large data, as often the case with the commonly used
maximum-likelihood estimator, for example.

In equilibrium thermometry, the system is allowed to ex-
change energy with the environment until it equilibrates to a
thermal state after a sufficiently long time, t → ∞. One then
measures in the energy basis to infer its thermal populations
and thereby estimate the temperature. In phase thermome-
try, a probe system is prepared in a superposition state that
is then subjected to a thermal sample inducing dephasing
over time, which one detects by performing phase-sensitive
interferometric measurements on the probe at finite times
t . Repeating this procedure M times, one arrives at a tem-
perature estimate by, e.g., maximizing the likelihood of the
obtained outcomes with respect to temperature, T̃ (x|t) =
arg maxT

∏M
j=1 p(x j |t j,T ). By varying the evolution time in

different repetitions, one can increase the range of dephasing
times, and thus temperatures, the probe would be sensitive to.
We will focus our view on upper bounds to the achievable
sensitivity and consider a single optimally chosen time t for all
repetitions in the following. As a benchmark, we will compare
this phase thermometry scheme to equilibrium thermometry
based on directly measuring the local magnetization of a num-
ber of spins in the thermal sample.

Every temperature estimate carries an unavoidable uncer-
tainty due to the random character of quantum measurements
and the finite data size M. The statistical uncertainty of the
temperature estimate can be defined with help of a suitable
relative error quantifier, which allows us to compare the
achievable precision at different temperature scales. A suit-
able common choice is the relative mean-square deviation
from the true value, E[(T̃ − T )2]/T 2, which for unbiased
estimators can be obtained from the data as the variance di-
vided by the squared mean, Var[T̃ ]/(E[T̃ ])2. This figure of
merit for the local precision of temperature estimates at a
given true temperature T obeys the (quantum) Cramér-Rao
bound [60,61],

E[T̃ (x|t ) − T )2]

T 2
� 1

MT 2FT (t )
� 1

MT 2FQ
T (t )

. (1)

Here the first inequality is specific to the chosen quantum
measurement and given in terms of the Fisher information (FI)
of the associated likelihood with respect to temperature,

FT (t ) =
∫

dx p(x|t,T )

[
∂ ln p(x|t,T )

∂T

]2

. (2)

It quantifies the sensitivity of the likelihood to small tempera-
ture changes around T at the interrogation time t .

The more fundamental second inequality is obtained
by optimizing the FI over all possible POVMs, FQ

T (t ) =
max{∐x} FT (t ). The so-defined QFI is a function of the
state ρp(t,T ) and sets the ultimate precision bound, i.e., the
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maximum local temperature sensitivity, attainable for any
chosen measurement on that state at that time.

The QFI can be given explicitly in terms of the symmetric
logarithmic derivative (SLD) operator L̂T (t ), which is the self-
adjoint solution to the Lyapunov equation,

∂ρp(t,T )

∂T
= 1

2
[ρp(t,T )L̂T (t ) + L̂T (t )ρp(t,T )]. (3)

The solution depends on the probe state. The eigenbasis of
L̂T (t ) gives the corresponding optimal projective measure-
ment that would saturate the QFI precision bound at a given
temperature [62]. The QFI then reads as

FQ
T (t ) = tr

[
ρp(t,T )L̂2

T (t )
] = 2

∑
nm

|〈ψm|∂Tρp(t,T )|ψn〉|2
ρn + ρm

.

(4)
Here the second expression follows by expanding the probe
state in its eigenbasis, ρp(t,T ) =∑n ρn|ψn〉〈ψn|, which leads
to

L̂T (t ) = 2
∑
nm

〈ψm|∂Tρp(t,T )|ψn〉
ρn + ρm

|ψm〉〈ψn|. (5)

In the following, we will conveniently express the temper-
ature in terms of the inverse temperature scale parameter β =
1/kBT . This reparametrization leaves the relative Cramér-Rao
bounds in (1) invariant, T 2FT = β2Fβ and thus T 2FQ

T =
β2FQ

β , as one can easily check using (2). These dimensionless
bounds will be used to characterize the performance of our
phase thermometer scheme.

III. ZERO-FIELD ISING MODEL
WITH A SINGLE PHASE PROBE

We consider a finite two-dimensional Ising spin lattice with
nearest-neighbor interactions as the thermal sample whose
temperature we seek to estimate. It is described by the
Hamiltonian

Ĥs = −J
∑
〈i j〉

σ̂ i
z ⊗ σ̂ j

z − h
N∑
i=1

σ̂ i
z , (6)

where N is the total spin number, h the single-site energy
due to an external field, J the nearest-neighbor coupling en-
ergy, and 〈i j〉 denotes any possible pair of nearest neighbors
assuming periodic boundary conditions. The dimensionless
spin operator σ̂ i

z describes the Z component of a spin-1/2 on
the i-th lattice site with eigenvalues mi = ±1. We describe
the sample in thermal equilibrium at temperature T by the
Gibbs state ρs = e−βĤs/Z , with the partition function Z =
tr(e−βĤs ). In the following, we will focus on the case h = 0
and J > 0, which exhibits a critical phenomenon at the tran-
sition between the paramagnetic phase at high temperatures
and the ferromagnetic phase at low temperatures. For analytic
calculations, it is expedient to leave the external magnetic field
strength h in the expression (6). This way, one can express
the magnetization and the susceptibility of the system by h
derivatives of the partition function, before setting h = 0.

Even though the above Ising spin lattice Hamiltonian
is a highly simplified model for ferromagnetism, it can be
representative of a large class of systems (including realistic

FIG. 1. Two-dimensional Ising lattice model. The probe spin is
depicted on top of the lattice layer and interacts with system spins
inside of a clusterC (dark gray circle) with uniform coupling strength
g. The system spins interact with each other at coupling strength J .

ones) and admit a quantitative understanding of these systems
near their critical point [46]. This is because, by virtue of
universality, the behavior of a system in the vicinity of a phase
transition becomes essentially independent of its microscopic
details.

As our noninvasive phase probe, we consider a single spin-
1/2 (or two-level system) that interacts with some lattice spins
in its vicinity through the Ising Z-Z coupling; see Fig. 1 for a
sketch. For simplicity, we restrict the probe-sample interaction
to a finite cluster of n lattice spins within a certain radius
and assume a uniform coupling rate g. This will allow us to
compare the temperature information acquired by the probe
with the information one could obtain if one were to directly
measure the local configuration of the n lattice spins. The joint
probe-sample Hamiltonian is

Ĥ = Ĥs + h̄ωp

2
σ̂ p
z + h̄g

2
σ̂ p
z ⊗ Ẑn, (7)

with h̄ωp the probe energy, σ̂
p
z the Pauli-Z matrix of the probe

(with eigenvalues ±1), and Ẑn =∑n
i=1 σ̂ i

z the total spin of the
n-site cluster. In the extreme case n = N , the probe senses the
collective fluctuating magnetization of the whole sample.

The probe-sample coupling commutes with the probe
Hamiltonian, which implies that the diagonal terms of the
probe density operator in the energy basis remain constant.
We start with a generic initial probe state that is uncorrelated
to the Gibbs state ρs of the sample,

ρp =
(
p c
c∗ 1 − p

)
, c = q

√
p(1 − p)e−iφ, (8)

where p, q ∈ [0, 1] to ensure positivity. The state will un-
dergo pure dephasing due to averaging over the random phase
shifts caused by the thermally occupied spin configurations
of the sample. Explicitly, the reduced probe state evolves
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as

ρp(t ) = trs
[
e−iĤt/h̄ρp ⊗ ρse

iĤt/h̄
]

=
(

p ce−iωpt r(t, β )
c∗eiωpt r∗(t, β ) 1 − p

)
, (9)

with the decoherence factor

r(t, β ) = tr[ρse
−igẐnt ] = 1

Z tr[e−βĤs e−igẐnt ]. (10)

This factor has the form of a characteristic function that gen-
erates the moments of the n-site cluster’s magnetization Ẑn,
via 〈Ẑm

n 〉 = (i/g)m∂m
t r(0, β ). Hence, one could in principle

infer the full spin distribution of the cluster by sampling the
decoherence factor at many different times.

Here we will be concerned with the maximum information
about the sample temperature the probe can acquire. The QFI
associated to the probe state (9) can be given analytically,

FQ
β (t ) = 4q2p(1 − p)

|∂βr|2 − q2(Im[r∂βr∗])2

1 − q2|r|2 . (11)

It is easy to check that the fraction is monotonically increas-
ing in q2, given that (Im[r∂βr∗])2 � |r|2|∂βr|2, which implies
that, to maximize the QFI, the probe state must be initially
pure, q = 1. Moreover, one must also maximize p(1 − p),
which happens at p = 1/2, regardless of φ. Consequently, any
state lying on the equator of the Bloch sphere can serve as the
optimal initial probe state for phase thermometry, resulting in
the QFI

FQ
β (t ) = |∂βr|2 − (Im[r∂βr∗])2

1 − |r|2 . (12)

We start from the σ̂x-eigenstate ρp = |+〉〈+| with p, c = 1/2.
The projective measurement that saturates the QFI bound at
some (t, β ) corresponds to the eigenbasis of the SLD opera-
tor (3), given by the state

|ψβ (t )〉 = 1√
2

(
eiθ

1

)
, θ = ωpt + arg[∂βr + irIm(r∂βr

∗)],

(13)
and its orthogonal complement. For the results presented in
the following, we evaluate the maximum of the QFI (12) with
respect to t,Fopt

β = maxt FQ
β , showing the highest attainable

phase thermometry precision in our setting.
Crucially, our treatment is exact at this point; it encom-

passes effects such as coherence revivals whenever gt is a
multiple of 2π , which go beyond simple Markovian dephas-
ing models in the weak-coupling limit [63]. For an efficient
numerical modeling of the dephasing, we describe the Ising
model by means of a weighted graph in binary representa-
tion [59]. Each spin is depicted as a vertex i to which we assign
a binary value bi ∈ {0, 1} representing its spin state. The bi-
nary array b ∈ {0, 1}×N and the associated state vector |b〉 then
represent a specific N-spin configuration of the sample lattice,
such that σ̂ i

z |b〉 = (1 − 2bi )|b〉 for all i. A nearest-neighbor
pair 〈i j〉 is depicted as an edge in the graph with a weight
corresponding to the associated coupling strength, here set
uniformly to −J . These edges are conveniently encoded in
the N × N adjacency matrix �, which assumes �i j = −J for
nearest-neighbor pairs 〈i j〉 and zero otherwise. Reformulating

the Hamiltonian (6) in terms of the binary representation,

Ĥs = −
∑
〈i j〉

J (1i − 2|1〉i〈1|) ⊗ (1 j − 2|1〉 j〈1|)

− h
N∑
i=1

(1i − 2|1〉i〈1|)

= (2h + 8J )
∑
i

|1〉i〈1| − 4J
∑
〈i j〉

|11〉i j〈11| + E0 1, (14)

and omitting the constant zero-energy shift E0, we can express
the energy of a given spin configuration by E (b) = (2h +
8J )
∑N

i=1 bi − 2b · �b and the thermal occupation probability

by p(b) = e−βE (b)/Z .
Now, let us split the binary array, b = (b′, b′′), into the

configuration b′ of the n-spin cluster interacting with the probe
and the configuration b′′ of the remaining N − n spins. Given
the 1 × n adjacency matrix �′ of the probe-sample interaction,
which in our uniform coupling model amounts to simply
�′ = g(1, 1, . . . , 1), the decoherence factor reads as

r(t, β ) =
∑
b′

⎛
⎝∑

b′′
p(b′, b′′)

⎞
⎠e−it�′ ·b′

. (15)

IV. TEMPERATURE SENSITIVITY NEAR
THE CRITICAL POINT

The theoretical model at hand, we will now assess the
maximum sensitivity of a phase probe to the temperature of
an Ising lattice sample of N spins at thermal equilibrium.
Different approximate treatments will be compared to an exact
simulation. Our aim is to scrutinize and quantify our expecta-
tion that the temperature sensitivity will reach a pronounced
peak, and even diverge for N → ∞, at the critical temperature
of the ferromagnetic-paramagnetic phase transition.

We start with the extreme case of probing the whole
sample magnetization (n = N) and introduce the instructive
Curie-Weiss model, which serves as a form of mean-field ap-
proximation of the Ising lattice. The model can also represent
a scenario of its own: a fully and uniformly connected spin
network, see Fig. 2.

Subsequently, we will evaluate the exact results for the
Ising lattice and varying cluster size n and compare them to
the sensitivity predicted by the conventional mean-field ap-
proximation. Moreover, we will consider a high-temperature
expansion to model the thermometric precision in the param-
agnetic regime.

A. Curie-Weiss model

The Curie-Weiss model is based on the idea that, in a
ferromagnetic lattice, all spins align in response to a collective
magnetization or to an external magnetic field [46]. Rather
than nearest-neighbor or more general site-specific couplings,
each spin σ̂ i

z in the lattice shall react only to the collective
spin of the whole lattice,

∑
j σ̂

j
z . For consistency with the

microscopic two-spin coupling model of strength J > 0, we
divide by N and thus couple each spin to a lattice-averaged
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FIG. 2. In the Curie-Weiss model, every spin interacts with all
the others uniformly, as can be represented by a complete graph. In
this graph, each spin is represented by a vertex. An edge connect-
ing a pair of vertices i and j represents the coupling contribution
−(J/N )σ̂ i

z ⊗ σ̂ j
z to the total energy, where J represents the interaction

strength and N denotes the total number of spins (here 12).

macroscopic spin density, described by the Hamiltonian

ĤCW
s = − J

2N

N∑
i, j=1

σ̂ i
z ⊗ σ̂ j

z − h
N∑
i=1

σ̂ i
z . (16)

The factor 1/2 prevents double counting of spin pairs, and
the diagonal terms (i = j) in the double sum merely give an
irrelevant energy offset. One can envision this model as a spin
network defined by a complete graph with N vertices, wherein
every pair of distinct vertices is connected by an edge, as
illustrated in Fig. 2.

At thermal equilibrium, the partition function of the model
is

Z =
1∑

m1=−1

. . .

1∑
mN=−1

e(J/2N )β(
∑N

i=1 mi)
2+hβ

∑N
i=1 mi

=
N∑

M=−N

(
N

N+M
2

)
e(J/2N )βM2+hβM , (17)

where M =∑N
i=1 mi is the total dimensionless spin or mag-

netization. For a large lattice, N → ∞, we first approximate
the binomial coefficient by virtue of the Stirling formula and
then approximate the discrete sum over M by an integral over
a continuous magnetization density m = M/N ∈ [−1, 1] per
number of spins,

Z ≈
∫ 1

−1
e−N f (m)dm, (18)

where the free energy density is approximately given as

f (m) ≈ 1 + m

2
ln

1 + m

2
+ 1 − m

2
ln

1 − m

2
− βJm2

2
− βhm,

(19)

The integral in Eq. (18) is dominated by the vicinity of the
saddle point m0 of the function f where f ′(m0) = 0 [46],
which satisfies

tanh (Jβm0 + hβ ) = m0. (20)

We can thus perform the saddle-point approximation,

Z ≈ e−N f (m0 )

√
2π

N f ′′(m0)
, (21)

with f ′′(m0) = 1/(1 − m2
0 ) − Jβ.

The saddle-point solution m0 of (20) also constitutes
the mean magnetization, 〈∑i σ̂

i
z 〉 = β−1∂h lnZ ≈ Nm0, and

thus describes the spontaneous symmetry breaking at the
ferromagnetic-paramagnetic phase transition. For h = 0,
spontaneous finite magnetization occurs at the critical point
Jβc = 1, where f ′′(m0) = 0 [46,64].

1. Phase thermometry

For temperature sensing, we consider a qubit probe inter-
acting with all N lattice spins with uniform coupling rate g.
The decoherence factor (10) can then be given consistently in
the continuum and saddle-point approximation for N → ∞ as

r(t, β ) =
N∑

M=−N

(
N

N+M
2

)
e(J/2N )βM2+(hβ−igt )M

≈ e−ig̃tm0−(g̃t )2/[2N f ′′(m0 )], (22)

with g̃ = gN . The effect of the lattice is a frequency shift
proportional to the mean magnetization and, to second order
in g̃t , a dephasing due to the thermal spin fluctuations with
a characteristic (e−1/2) coherence decay timescale g̃τ (β ) =√
N f ′′(m0). The coherence decays more rapidly as the lattice

size N increases, since τ (β ) ∝ 1/
√
N . Notice that the exact

expression (22) is periodic, and the approximation in the sec-
ond line is given only for the first time period, |t | � π/g.

To illustrate the behavior, consider the probe initialized in
the X-eigenstate |+〉 (which is the optimal initial state for
phase thermometry [21]) and an observation of the spin-X
component as a function of time. The expectation value of this
coherence observable shows oscillations and the so-called free
induction decay (FID) [65],

FID(t ) = tr
{
σ̂ p
x ρp(t )

} = cos(g̃tm0)e−t2/2τ 2(β ). (23)

We plot this quantity at zero field and N = 400 for various
temperatures around the critical point in Fig. 3(a). We ob-
serve a Gaussian decay for above-critical temperatures in the
paramagnetic phase (Jβ < 1) where the mean magnetization
vanishes (m0 = 0). Conversely, in the ferromagnetic phase,
we observe a damped oscillation with a Gaussian envelope.
The decay time is minimal at the critical point (black solid
line) and increases further away from the critical point in both
directions, see also Fig. 3(b). In the limit of zero tempera-
ture, we have no decay, m0 → 1 and τ (β → ∞) → ∞, as
expected. In the paramagnetic phase, we always have m0 =
0, and in the high-temperature limit, τ (0) = 1/g

√
N . In the

ferromagnetic phase close to the critical point, we can Taylor-
expand the tanh in (20) in small m0 > 0 and ε = 1 − Jβ =
1 − β/βc < 0, resulting in m0 ≈ √−3ε.
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FIG. 3. (a) Coherence dynamics of the spin probe interacting
with the Curie-Weiss lattice at different temperatures over time,
measured in terms of the free induction decay (23). (b) Coherence
decay time versus inverse temperature, as predicted by the Curie-
Weiss model in the thermodynamic limit. We set the parameters
N = 400, h = 0.

2. Temperature precision at criticality

One observes in Fig. 3 that the coherence dynamics of the
phase probe exhibits a critical damping at the phase transition
point. One can attribute this to the influence of the fluctuations
in the system at criticality, which lead to the divergence of the
second moment of its magnetization, 〈(∑i σ̂

i
z )2〉 = N/ f ′′(m0),

and thus its magnetic susceptibility and heat capacity [66].
Since the probe dephasing factor r(t, β ) also depends on
higher moments of the lattice magnetization, a temperature
change can be sensed very precisely around the transition.
This is quantified by the QFI FQ

β ; the greater it is at a given
temperature, the higher the estimation precision and the lower
the uncertainty around that temperature. Inserting the deco-
herence factor (22) into the QFI (12) and several steps of
algebra result in

FQ
β = J2

4

[(
1 − m2

0

)2
f ′′(m0) − 2m2

0

]2(
1 − m2

0

)4
[ f ′′(m0)]4

t4/τ 4(β )

et2/τ 2(β ) − 1

+NJ2 m2
0

f ′′(m0)

t2

τ 2(β )
e−t2/τ 2(β ), (24)

see Appendix for details on the derivation. The highest pos-
sible temperature sensitivity is attained at the time t that
maximizes the QFI, Fopt

β = maxt FQ
β at topt

β = arg maxtFQ
β .

In the paramagnetic phase (β < βc = 1/J), where m0 = 0
and f ′′(0) = 1 − β/βc = ε > 0, the QFI simplifies to

FQ
β<βc

= J2

4ε2
S

(
g̃2t2

Nε

)
, S(x) = x2

ex − 1
. (25)

Optimal sensitivity is achieved at the time t that maximizes
the function S, which yields the numerical values Fopt

β�βc
≈

0.162J2/ε2 at (g̃topt
β )2 ≈ 1.594Nε.

In the ferromagnetic phase (β > βc, ε < 0) near the critical
temperature, the magnetization is also small, m0 ≈ √−3ε 
1, and we have f ′′(m0) ≈ −2ε. Hence, to leading order in the
temperature deviation ε,

FQ
β>βc

≈ J2

ε2
S

(
− g̃2t2

2Nε

)
, (26)

leading to the same ε scaling of the optimal QFI and the time
as in the paramagnetic case. In total, we have the following
critical exponents: The optimal QFI diverges like Fopt

β ∝ ε−2

and the optimal time before measuring the probe scales like
topt
β ∝ |ε|1/2 for ε → 0 in the thermodynamic limit. An exact

evaluation of the probe decoherence factor r(t, β ) at finite
N without performing the continuum approximation in (22)
would result in a QFI that remains finite at all temperatures.

It is instructive to compare the temperature sensitivity of
the phase spin probe to a different estimation scheme based
on directly probing the local magnetization on a single lattice
spin. That is, in this scheme, we measure σ̂ i

z at a random
lattice site i of the sample and estimate temperature from
the statistics of outcomes from independent repetitions. In the
thermodynamic limit, the probability to obtain either outcome
±1 is given by p± = (1 ± m0)/2, and hence the FI of this
measurement with respect to β, here called local FI, is

F (lc)
β = (∂βm0)2

1 − m2
0

ε→0−−→
ε<0

−3J2

4ε
. (27)

For temperatures above the critical point, the average mag-
netization is zero, i.e., m0 = 0, and consequently the local
FI vanishes; whereas closely below the critical point, the FI
diverges like |ε|−1–more weakly than the QFI of the phase
probe.

We illustrate the difference between the local FI and the
optimal phase probe QFI Fopt

β close to the phase transition
in Fig. 4. In both cases, only a single spin degree of free-
dom is measured, but the phase probe interacts with the
whole lattice and thus picks up correlated thermal fluctuations
around the mean magnetization m0 through the dephasing
factor (22), leading to a much higher temperature sensitivity.
In the following, we will see a similar, albeit less pronounced,
advantage of the phase probe in the Ising lattice.

B. 2D Ising model at zero field

We now turn to phase thermometry of the finite fer-
romagnetic Ising lattice at zero field, as described by the
Hamiltonian (6) with h = 0 and J > 0. To obtain our results
and sample the thermally occupied spin configurations, we
performed a Monte Carlo simulation on a 20 × 20 lattice
(N = 400) with periodic boundary conditions. The probability
p(b) of each spin configuration is simulated by the relative
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FIG. 4. Optimal QFI of the phase probe [obtained by maximizing
Eq. (24) with respect to time] and local FI (27) for a direct measure-
ment of a lattice spin versus the relative temperature deviation ε from
the critical point. We assume a Curie-Weiss model with probe-lattice
coupling strength h̄g/J = 0.4 and lattice coupling J = 1/4 in units
of an arbitrary reference energy scale.

frequency over 1.2 × 107 instances. The decoherence factor of
the phase probe (15) can then be used to compute the QFI (12)
at arbitrary times and its maximum Fopt

β = maxt FQ
β (t ) with

respect to time.
Figure 5(a) shows the simulation results for the maximum

QFI in relative units as a function of inverse temperature
β, for various cluster sizes n the probe interacts with. The
cluster sizes n correspond to the total number of spins within
a circle around a lattice point with radius r = 1,

√
2, 2, and√

5 times the lattice spacing, respectively (see Fig. 8 for
r = 2). The inverse temperature is plotted relative to the
known critical value βc = ln (1 + √

2)/2J for a 2D Ising
model in the thermodynamic limit [67], which matches the
QFI peaks in this 20 × 20 simulation. The visible jumps at
β ∼ 1.2βc are due to the numerical instability of the Monte
Carlo algorithm near the phase transition point, where the
symmetry is spontaneously broken. Just below the phase tran-
sition point, a zero-field Ising system of finite size may still
randomly assume both of the two opposite ferromagnetically
ordered states [66,68]. At lower temperatures, however, the
sample system is confined to one of these two possible states.
Hence, the Monte Carlo algorithm changes from sampling a

probabilistic mixture of both options to sampling one of them,
which entails a noticeable jump in the decoherence factor (15)
and thus in the QFI.

Although the phase thermometer probes the occupied con-
figurations of an n-spin cluster, the measurement outcome is
still a single bit value. Let us compare this to temperature
estimation based on a direct measurement of the local cluster
configurations b′ in the Ising lattice, thermally occupied with
the marginal probability pn(b′) =∑b′′ p(b′, b′′). The temper-
ature sensitivity of this n-bit measurement is given by the
local FI

F (lc)
β =

∑
b′

1

pn(b′)

[
∂ pn(b′)

∂β

]2

=
∑
b′

1

pn(b′)

⎡
⎣∑

b′′
E (b)p(b)

⎤
⎦2

− 〈Ĥs〉2, (28)

which we could sample from our Monte Carlo simulation for
moderate n � 30. The results are plotted in Fig. 5(b) for the
same temperature range and cluster sizes as before. We once
again observe a peak at the phase transition, but now a less
steep decay into the paramagnetic phase. Naturally, the local
FI of this n-bit measurement is greater than the QFI of the
phase probe, but the ratio of both quantities close to the critical
point grows only sublinearly with n, as can be seen in (c).
Deep in the ferromagnetic phase, in particular, the lattice spins
are strongly aligned (i.e., correlated) such that the phase probe
picks up almost all the temperature information in the cluster.
Conversely, in the paramagnetic phase, the correlations are
broken and the disparity between both measurements grows.

The scaling of the optimal QFI with cluster size n is plot-
ted on a double-logarithmic scale in Fig. 6 at the critical
point, as well as 10 % above and below. From the average
slopes, we obtain a critical scaling with n0.73; weaker in the
ferromagnetic phase and about as strong in the paramagnetic
phase. This sublinear scaling illustrates the strong correlations
among the cluster spins.

In the following, we investigate approximate analytical
models for the temperature sensitivity based on the widely
used mean-field theory (MFT) and on a high-temperature
expansion (HTE) of the Gibbs state. We will see that these
models yield accurate predictions for temperatures deep in the

FIG. 5. (a) Optimal QFI of the phase probe (optimized over time) interacting with spin clusters of varying size n in a 20 × 20 Ising lattice,
as a function of inverse temperature relative to the critical point (vertical dashed line). (b) local FI from Eq. (28) associated to a direct local
measurement of the configuration of the n cluster spins. (c) Ratio of optimal probe QFI and direct local FI close to the critical point. We use
the probe-cluster coupling strength h̄g/J = 0.4 and set J = 1/4 (in arbitrary reference units).
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FIG. 6. Scaling of the optimal probe QFI with the size n of the
lattice spin cluster that it interacts with, using the parameters of
Fig. 5. The rightmost data points correspond to n = 21 and the
data to the left are obtained by successively removing one of the
outer spins from the cluster. We compare the scaling at the critical
point to the scaling at a 10% higher temperature (β = 0.9βc) and at a
10% lower temperature. The solid lines are linear fits on the double-
logarithmic scale with slopes 0.73, 0.71, and 0.49, respectively.

ferromagnetic and paramagnetic phase, respectively, but they
fail to reproduce the critical behavior of our exact numerical
simulation.

1. Mean-field approximation

In MFT, one describes a large ferromagnetic Ising lattice
by a mean homogeneous magnetization m0 = 〈σ̂ i

z 〉 ∀i and ex-
pands in the microscopic fluctuations around this mean [69].
Inserting the ansatz σ̂ i

z = m0 + δσ̂ i
z into the Hamiltonian (6)

at h = 0 and neglecting second-order terms in the fluctuation
operators, one obtains

Ĥ (MFT)
s ≈ −J

∑
〈i, j〉

m0
(
σ̂ i
z + σ̂ j

z − m0
)

= NJqm2
0

2
− Jqm0

N∑
i=1

σ̂ i
z , (29)

with q the number of nearest neighbors per spin, here q = 4.
The Hamiltonian describes independent spins aligning with
respect to an effective mean field hMFT = Jqm0, which it-
self is determined by the mean spin alignment. At thermal
equilibrium, the partition function and the thermal occupation
probability are products of N identical single-spin terms,

Z = e−βNqJm2
0/2[2 cosh (Jqm0β )]N , (30)

p(b) = e−2Jqm0β
∑

i bi

(1 + e−2Jqm0β )N
. (31)

The corresponding average alignment of each spin leads
to the self-consistency equation m0 = 〈σ̂ i

z 〉 = tanh[Jqm0β],
which overestimates the critical temperature here to Jβ =
1/q = 0.25 (as opposed to Jβc ≈ 0.44 for N � 1). The self-
consistency condition has the same form as in the Curie-Weiss
model in Sec. IV A if we replace Jq by an average effective
coupling strength, but the key difference is that we have a
collective spin-N/2 model there and N individual spins here,
reflected by the distinct partition functions.

FIG. 7. Optimal QFI of the phase probe as a function of in-
verse temperature relative to the critical point (vertical dashed line),
extending the results in Fig. 5(a). We separate the four cases corre-
sponding to different cluster sizes n into different diagrams (a)–(d),
comparing the exact Monte Carlo simulation data to the approx-
imate predictions of the mean-field theory (solid lines) and the
high-temperature expansion (dashed).

The effect on the phase probe over time follows by insert-
ing (31) into the decoherence factor expression (15),

r(t, β ) =
[

1 − 1 − e−igt

1 + e2Jqm0β

]n
≈ e(1−cos gt−i sin gt )np1 , (32)

with the single-spin excitation probability p1 = 1/(1 +
e2Jqm0β ). The approximation holds for moderate cluster sizes n
in the ferromagnetic phase. From this, we arrive at an analytic
expression for the QFI,

F (MFT)
β = J2q2n2(m0 + β∂βm0)2

4 cosh4(Jqm0β )
e−2γ (1−p1 )

×
[

sin2(gt ) + (1 − cos gt )2)

1 − e−2γ (1−p1 )

]
. (33)

As the derivative ∂βm0 diverges at the (overestimated) criti-
cal temperature, so does the approximated QFI. Above that
temperature, both the mean field and the approximated QFI
vanish.

In Figs. 7(a)–7(d), we compare the MFT-approximation for
the QFI (black solid line) with the exact Monte Carlo simula-
tion results for four different cluster sizes. We find that (33)
predicts the temperature sensitivity well for subcritical tem-
peratures, but fails at and above the phase transition. This
is expected since above the critical point the magnetization
vanishes. To study the QFI above the critical point, we use a
high-temperature expansion [64].

2. High-temperature expansion

At high temperatures in the paramagnetic phase, ther-
mal fluctuations are dominant and the lattice spins tend

043094-8



CRITICALITY-ENHANCED PRECISION IN PHASE … PHYSICAL REVIEW RESEARCH 6, 043094 (2024)

to be randomly oriented. The properties of the sample
can be studied by performing an expansion of the rele-
vant physical quantities in terms of the inverse temperature

β  1/J . Specifically, we must expand up to second order in
tanh(Jβ ) to arrive at a nontrivial result. The partition function
expands as

Z = tr
{
eβ
∑

〈i j〉 Jσ̂
i
z⊗σ̂

j
z
} = tr

⎧⎨
⎩∏〈i j〉

[
cosh (βJ ) + sinh (βJ )σ̂ i

z ⊗ σ̂ j
z

]⎫⎬⎭
≈ tr

⎧⎨
⎩coshK (βJ )

[
1 + tanh(βJ )

∑
〈i j〉

σ̂ i
z ⊗ σ̂ j

z + tanh2(βJ )
∑

〈i j〉<〈kl〉

(
σ̂ i
z ⊗ σ̂ j

z

)(
σ̂ k
z ⊗ σ̂ l

z

)]⎫⎬⎭
= 2N coshK (βJ ), (34)

where the K is the total number of pair bonds (i.e., interacting spin pairs) in the lattice. The double sum over pair bonds in
the fourth line counts each pair only once. To obtain the final form, notice that the first- and second-order terms in tanh(βJ )
in the third and fourth line vanish when taking the trace, since there are always at least two distinct spins contributing a factor
tr{σ̂ i

z } = 0. Here the first nonvanishing contribution would come from the fourth-order summation over products of four pair
bonds forming a closed loop between four adjacent spins [64]: 〈i j〉, 〈 jk〉, 〈k�〉, 〈�i〉.

The phase probe’s decoherence factor (10) expands as

r(t, β ) = 1

Z tr
{
eβ
∑

〈i j〉 Jσ̂
i
z⊗σ̂

j
z e−igt Ẑn

} ≈ 1

Z coshK (βJ )

[
tr{e−igt Ẑn} + tanh(βJ )

∑
〈i j〉

tr
{(

σ̂ i
z ⊗ σ̂ j

z

)
e−igt Ẑn

}

+ tanh2(βJ )
∑

〈i j〉<〈kl〉
tr
{(

σ̂ i
z ⊗ σ̂ j

z

)(
σ̂ k
z ⊗ σ̂ l

z

)
e−igt Ẑn

}]
. (35)

Here the first- and second-order terms in tanh(βJ ) no longer
vanish due to the additional unitary generated by the cluster
magnetization Ẑn. Writing

e−igt Ẑn = cosn(gt )
n∏

m=1

[
1 − i tan(gt )σ̂m

z

]
, (36)

we see that the first-order term in the third line of (35) adds
a term ∝ tan2(gt ) for every pair bond 〈i j〉 whose both spins
are contained in the cluster. Let K12 denote the number of
such intracluster pair bonds. For the second-order term in
the fourth line of (35), nonvanishing contributions can come
from doublets of pair bonds with at least two spins inside
the cluster, as illustrated in Fig. 8: K22 counts the number of
pair bond doublets with two spins inside and one mutual spin

FIG. 8. Construction of pair bond doublets in the Ising lattice.
The cluster C of spins interacting with probe (dark blue) are con-
tained in a circle. Exemplary red lines symbolize pair bonds due
to the Ising interaction between any two neighboring lattice spins.
From left to right, each marked doublet of pair bonds represents one
possible contribution that is counted by the numbers K22,K23,K24,
respectively. In the depicted configuration there are n = 13 cluster
spins, K12 = 16 intracluster bonds, and one obtains (K22,K23,K24) =
(8, 34, 86).

outside the cluster, K23 counts doublets of intracluster pair
bonds with one mutual spin, and K24 = K12(K12 − 1)/2 − K23

counts doublets of intracluster pair bonds with no mutual spin.
We arrive at

r(t, β ) = cosn(gt ){1 − tanh(βJ ) tan2(gt )

× [K12 − tanh(βJ )(K22 + K23 − tan2(gt )K24)]}.
The QFI of the phase probe with respect to the inverse tem-

perature can once again be given analytically. For a compact
expression in the high-temperature regime, we now approxi-
mate tanh(Jβ ) ≈ Jβ and arrive at

F (HTE)
β = J2�2(t ) tan4(gt ) cos2n(gt )

1 − [Jβ�(t ) tan2(gt ) − 1]2 cos2n(gt )
,

�(t ) = K12 + 2Jβ[K22 + K23 − K24 tan2(gt )]. (37)

The phase probe thus picks up temperature information
through the correlations between at most four lattice spins. In
Fig. 7, the dashed lines depict the HTE (37) of the QFI, which
matches the exact results for β  βc in the paramagnetic
phase.

We conclude that the actual critical behavior and the peak
value of the phase probe’s temperature sensitivity cannot be
accurately described by either analytical approximation to the
QFI. The MFT fails due to the buildup of strong long-range
thermal fluctuations, while the HTE fails due to the buildup of
long-range multispin correlations in the critical Ising lattice.
Moreover, the finite peak value of the QFI cannot be captured
by continuous models that describe the phase transition in the
thermodynamic limit, necessitating numerical simulations.

043094-9



YU, NGUYEN, AND NIMMRICHTER PHYSICAL REVIEW RESEARCH 6, 043094 (2024)

V. CONCLUSION

In this work, we considered noninvasive quantum ther-
mometry of finite, strongly interacting Ising spin systems
at temperatures around their critical phase transition point.
We demonstrated that the dephasing of a quantum probe in
the vicinity of such a critical system picks up thermal spin
fluctuations and thus reaches peak temperature sensitivity at
the critical point. Consequently, one can estimate the system
temperature by monitoring the probe’s phase coherence over
time, and one achieves the highest estimation precision (i.e.,
minimum relative error, as measured by the QFI) at the critical
temperature—applying critical quantum metrology [35–38]
for temperature estimation.

To exemplify the critical sensitivity enhancement in an
instructive analytical manner, we first performed a case study
of phase thermometry on the Curie-Weiss model of a fully
connected spin network in the thermodynamic limit. The QFI
of a single spin probe exhibits a singularity at the critical tem-
perature, and the probe dynamics changes from an oscillatory
to a nonoscillatory decay of phase coherence as the system
transitions from the ferromagnetic to the paramagnetic phase.
The achievable sensitivity clearly surpasses that of a local
single-spin measurement of the lattice.

For our main results, we performed Monte Carlo sim-
ulations on a 20 × 20 Ising lattice with ferromagnetic
nearest-neighbor coupling, showing a finite critical sensitiv-
ity peak of the probe that depends on the number of lattice
spins it interacts with. In the critical range of temperatures,
analytic approximations such as mean-field theory for the fer-
romagnetic phase and the high-temperature expansion for the

paramagnetic phase do not accurately capture the thermal spin
fluctuations leading to the strongest response of the probe.
Accordingly, phase thermometry constitutes a suitable, non-
invasive metrology scheme to access the theoretically elusive
critical regime of strong fluctuations in interacting many-body
systems. The noninvasive nature admits multiple probe repe-
titions on the same thermal sample, alleviating the problem of
long equilibration times when preparing the sample. Succes-
sive phase-sensitive measurements of the probe states could
be done adaptively at varying times in order to approach the
optimal temperature sensitivity studied here.

Future research could explore phase probes for temper-
ature estimation in finite samples of Heisenberg-type spin
systems, for example. Bayesian phase thermometry schemes
with optimal, ancilla-augmented probe states could also be
considered [70]. Moreover, the spreading of Fisher infor-
mation from a target location across the spin lattice could
be considered for remote sensing and parameter estimation
tasks.
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APPENDIX: ANALYTICAL DERIVATION OF QFI IN CURIE-WEISS MODEL

Here we derive the expression (24) for the QFI of the phase probe in the Curie-Weiss model. Our starting point is the
approximate decoherence factor r(t, β ) in the thermodynamic limit given in (22). In order to determine from it the QFI using (12),
we must calculate the derivative of r(t, β ) with respect to β,

∂βr = e−ig̃tm0−g̃2t2/[2N f ′′(m0 )]

(
−ig̃t

∂m0

∂β
+ g̃2t2

2N f ′′(m0)2

∂ f ′′(m0)

∂β

)
. (A1)

From this we obtain the terms

|∂βr|2 = e−g̃2t2/[N f ′′(m0 )]

(
g̃2t2

(
∂m0

∂β

)2

+ g̃4t4

4N2 f ′′(m0)4

(
∂ f ′′(m0)

∂β

)2
)

, (A2)

r∗∂βr = e−g̃2t2/[N f ′′(m0 )]

(
−ig̃t

∂m0

∂β
+ g̃2t2

2N f ′′(m0)

∂ f ′′(m0)

∂β

)
, (A3)

r∂βr
∗ = e−g̃2t2/[N f ′′(m0 )]

(
ig̃t

∂m0

∂β
+ g̃2t2

2N f ′′(m0)

∂ f ′′(m0)

∂β

)
, (A4)

|r|2 = e−g̃2t2/[N f ′′(m0 )]. (A5)

Now, making use of the fact that f ′′(m0) = 1/(1 − m2
0 ) − Jβ, we can take the derivative of the magnetization m0 with respect to

β in the self-consistency equation (20) at h = 0 and get

∂m0

∂β
= [1 − tanh2 (Jβm0)]︸ ︷︷ ︸

=1−m2
0

(
Jm0 + Jβ

∂m0

∂β

)
⇒ ∂m0

∂β
= Jm0

(
1 − m2

0

)
1 − Jβ

(
1 − m2

0

) = Jm0

f ′′(m0)
. (A6)
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Plugging all these expressions into Eq. (12) yields

FQ
β (t ) = e−g̃2t2/[N f ′′(m0 )]g̃2t2

(
∂m0

∂β

)2

+ e−g̃2t2/[N f ′′(m0 )]

1 − e−g̃2t2/[N f ′′(m0 )]

g̃4t4

4N2 f ′′(m0)4

(
∂ f ′′(m0)

∂β

)2

= e−g̃2t2/[N f ′′(m0 )] J
2m2

0g̃
2t2

f ′′(m0)2
+ e−g̃2t2/[N f ′′(m0 )]

1 − e−g̃2t2/[N f ′′(m0 )]

J2g̃4t4
[(

1 − m2
0

)2
f ′′(m0) − 2m2

0

]2
4N2

(
1 − m2

0

)4
f ′′(m0)6

= NJ2 m2
0

f ′′(m0)

t2

τ 2(β )
e−t2/τ 2(β ) + J2

4

[(
1 − m2

0

)2
f ′′(m0) − 2m2

0

]2
(1 − m0)4[ f ′′(m0)]4

t4/τ 4(β )

et2/τ 2(β ) − 1
, (A7)

where τ (β ) = √
N f ′′(m0)/g̃ sets the coherence decay timescale. The last line is stated in (24).
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