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Abstract

Inverse problems arise when causes cannot be measured directly but must be
concluded from observed effects. The inaccuracies arising from measurements
of the effects can lead to significant deviations in determining the causes due
to the typically inherent ill-posedness in inverse problems. Regularization
methods overcome this ill-posedness by finding an approximation of the
solution that is stable with respect to the measured data. The regularization
parameter should be chosen optimally to achieve a balance between stability
and approximation, minimizing the deviation of the regularized solution
from the actual solution. This thesis examines Tikhonov regularization
for solving nonlinear ill-posed inverse problems. The considered Tikhonov
functional has an oversmoothing penalty term, such that minimization of the
Tikhonov functional determines regularized solutions that are, in a certain
sense, smoother than the actual solution of the inverse problem. Research
on oversmoothing Tikhonov regularization has rapidly advanced, focusing on
convergence rates under various conditions. Extensions to nonlinear operator
equations and exploration of different source conditions and parameter choice
strategies have enriched this field. This work contributes by generalizing
results to a mixed source condition and providing convergence rates for
a priori strategies and for the discrepancy principle as methods to select
the regularization parameter. Another focus is on oversmoothing Tikhonov
regularization in the finite-dimensional setting, where discretization is achieved
through projection methods. This is an area that has yet to be thoroughly
explored in this context.
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Zusammenfassung

Inverse Probleme entstehen, wenn Ursachen nicht direkt gemessen werden
können, sondern aus beobachteten Effekten geschlossen werden. Die bei
der Messung der Effekte auftretenden Ungenauigkeiten können aufgrund
der üblicherweise inhärenten Schlechtgestelltheit bei inversen Problemen zu
erheblichen Abweichungen in den zu ermittelnden Ursachen führen. Regu-
larisierungsmethoden überwinden diese Schlechtgestelltheit, indem sie eine
Approximation der Lösung ermitteln, welche stabil von den gemessenen Daten
abhängt. Der Regularisierungsparameter ist optimal zu wählen, sodass ein
Kompromiss zwischen Stabilität und Approximation entsteht und dadurch die
Abweichung der regularisierten zu der tatsächlichen Lösung minimal gehal-
ten wird. Diese Arbeit untersucht die Tikhonov-Regularisierung zur Lösung
nichtlinearer schlechtgestellter inverser Probleme. Das betrachtete Tikhonov-
Funktional enthält einen überglättenden Strafterm, sodass die Minimierung
des Funktionals regularisierte Lösungen bestimmt, die in gewissem Sinne
glatter sind als die tatsächliche Lösung des inversen Problems. Die Forschung
zur überglättenden Tikhonov-Regularisierung hat sich fortlaufend entwickelt
und setzt den Fokus insbesondere auf Konvergenzraten unter verschiedenen
Bedingungen. Erweiterungen auf nichtlineare Operatorgleichungen sowie die
Erforschung verschiedener Quellbedingungen und Parameterwahlstrategien
haben dieses Feld bereichert. Diese Arbeit trägt dazu bei, indem sie Ergeb-
nisse auf eine gemischte Quellbedingung verallgemeinert und Konvergenzraten
für a priori Strategien und das Diskrepanzprinzip als Methoden zur Auswahl
des Regularisierungsparameters liefert. Ein weiterer Schwerpunkt liegt auf der
überglättenden Tikhonov-Regularisierung im Rahmen endlichdimensionaler
Räume, wobei die Diskretisierung durch Projektionsverfahren erfolgt. Dieser
in diesem Zusammenhang noch nicht eingehend erforschte Bereich eröffnet
neue Forschungsmöglichkeiten.
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1 Introduction and outline

Introduction

Direct problems involve the computation of effects from a given cause using
a mathematical model typically represented by a set of equations, such as
ordinary or partial differential equations, or integral equations. In contrast,
indirect or inverse problems aim to deduce a cause from an observed effect,
relying on the model’s description. Those problems occur in practice whenever
relevant information is not accessible directly. In many cases, a model is
known or can be constructed that establishes a connection between measurable
data and the desired information. A classic example is computed tomography,
in which the density of body tissue is sought, but only the intensity of x-rays
can be measured. Utilizing the known properties of x-rays, a mathematical
model describes the relationship between these quantities.

Inverse problems encompass a broad spectrum of practical challenges
across various research domains. Monographs such as those authored by
Hofmann [18] and Groetsch [14] provide valuable insights into the diverse
nature of inverse problems. Inverse problems tend to be ill-posed. The presence
of ill-posedness leads to high sensitivity of the model to perturbations within
the observed data. In practical contexts, the presence of perturbations,
typically in the form of measurement errors, remains unavoidable.

Regularization methods contribute to alleviating the effect of ill-posedness
and help to reconstruct an adequate solution. Distinct regularization methods
evolved in the recent years. Broadly, these methods can be categorized as
variational methods, iterative techniques, and the method of approximate
inverse [54]. The most common variational regularization method is the
Tikhonov regularization. It has been studied rigorously in recent years. This
thesis contributes to existing research by analyzing Tikhonov regularization
with an oversmoothing penalty term. When the operator equation solution
does not satisfy certain properties, which are specified by the penalty term, an
application of the Tikhonov regularization leads to regularized solutions that,
according to that penalty term, are smoother than the actual solution. We call
the Tikhonov regularization oversmoothing in such situations. Mathematically,
the absence of a certain degree of smoothness, as prescribed by the penalty
term, is characterized by the fact that the searched-for solution of the operator
equation does not belong to the domain of definition of the penalty term.
Consequently, the Tikhonov functional fails to attain a finite value for this
solution. The regularized solutions, obtained as minimizers of the Tikhonov
functional with an adequate regularization parameter, however, lie in the
domain of definition of the penalty term. They exhibit a degree of smoothness
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surpassing that of the actual solution. The oversmoothing case may occur
intentionally, for example, when a smoother regularized solution is desired to
facilitate numerical implementation. Conversely, oversmoothing can also arise
unintentionally, for instance, if the smoothness of the searched-for solution is
overestimated.

Over the past few years, research on oversmoothing regularization has
developed rapidly. For the period prior to publication of this thesis, we briefly
summarize the state of research. In his seminal article [41], Natterer addressed
the oversmoothing Tikhonov regularization for linear operator equations. His
research revealed that, under certain conditions, optimal convergence rates
remain unaffected by oversmoothing penalty terms. One critical condition
is a two-sided Lipschitz-type inequality. Its formulation incorporates the
concept of Hilbert scales, a concept that Natterer also utilized in his main
Theorem’s proof. Some decades later, this approach has been extended to
oversmoothing Tikhonov regularization for nonlinear operator equations. In
particular, in the article [23], Hofmann and Mathé introduced and utilized
so-called auxiliary elements to establish convergence rates for oversmoothing
Tikhonov regularization for ill-posed nonlinear operator equations.

As explained in [8, p. 57], convergence rates can depend on a priori knowl-
edge on the solution of the operator equation. This knowledge is generally
provided by source conditions, containing information on the solution smooth-
ness. Classical source conditions are of Hölder type. Accordingly, the first
results on convergence rates for the oversmoothing Tikhonov regularization
were based on Hölder-type source conditions. Along with a specification of
a source condition, a specification of a parameter choice strategy is signif-
icant. In the mentioned paper [23], the authors provide convergence rates
for an a posteriori parameter choice strategy. The same authors [21], and
additional authors [12] completed these results by convergence rates results
for an a priori parameter choice. In [27], a different type of source condi-
tion, specifically a low-order source condition of logarithmic type, has been
examined for a non-oversmoothing setting. Such types of source conditions
are of particular interest due to their less restrictive nature. Hofmann and
Plato [24] incorporated this source condition and the situation of missing
smoothness assumptions in their study on oversmoothing Tikhonov regular-
ization. Their analysis thus covers three cases: the absence of smoothness
assumptions, Hölder-type smoothness assumptions, and low-order smoothness
assumptions. For all three cases, convergence rates for an a priori parameter
choice are provided. For the cases of a missing smoothness assumption and a
Hölder-type smoothness assumption, [24] also presents convergence assertions
for a discrepancy principle. However, low-order source conditions under the
discrepancy principle have not been investigated. One main topic of this thesis
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is to address this research opportunity. The result was published in [33]. In
this thesis, we give a further generalization of the result in [33] by generalizing
the source condition to a mixed sourced condition and involving both, an a
priori and an a posteriori parameter choice strategy in our analysis.

We now acknowledge research that either explores more general source
conditions, without addressing the oversmoothing situation or generalizes
our findings to the Banach space space setting, without considering the
more general mixed source condition. In the classical, non-oversmoothing
setting, Tikhonov regularization under a general source condition by means
of index functions has been investigated in [55], [38], and [22] for linear
inverse problems. In addition, there has been a recent increase in interest in
variational source conditions. Flemming [10] extensively explored variational
source conditions and existing studies. Ongoing research has successfully
extended results on oversmoothing Tikhonov regularization within the Hilbert
space setting to the Banach space setting. A first step for the analysis of
oversmoothing Tikhonov regularization towards the Banach space setting was
made in [5]. Establishing low-order source conditions in the Banach space
setting poses challenges due to the involvement of the logarithm of operators,
which are not as easily defined as in the Hilbert space setting. The authors
in [49] effectively addressed this difficulty.

Another topic of this thesis is discretization within the oversmoothing
Tikhonov regularization. In practical applications, discretization of continuous
problems is inevitable, because numerical implementation requires a finite
framework. We focus on discretization by projection methods. Our literature
research indicates that oversmoothing in the context of discretization within
regularization has not been investigated yet. We postpone a general literature
review concerning discretization in regularization theory to the introductory
remarks of Part II of this thesis.
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Outline

In Chapter 2, we provide the mathematical framework and the theoretical
background essential for understanding the methodology used in this thesis.
This chapter begins with a brief introduction to ill-posed inverse problems and
Section 2.2 continues to introduce the oversmoothing Tikhonov regularization,
the method utilized in this thesis to address these problems. Section 2.3
presents basic results on spectral calculus for certain operators, laying the
groundwork for understanding the mathematical tools utilized in the subse-
quent analysis. In the oversmoothing setting, we perform convergence analysis
within so-called pre-Hilbert scales. These are introduced in Section 2.4.

After introducing the shared mathematical framework, the thesis divides
into two parts: The first part deals with the oversmoothing Tikhonov reg-
ularization in the infinite-dimensional setting. The second part examines a
discretized version of the oversmoothing Tikhonov regularization. Both parts
begin with chapters on fundamental requirements. These chapters, namely
Chapter 3 and Chapter 7, establish well-posedness of the oversmoothing
Tikhonov regularization and incorporate additional assumptions, including
the source condition, necessary for proving convergence rates. The assump-
tions in the second part involve the projection operator as well. Therefore,
with Section 7.4 an additional section is included in Part II to provide an
example that confirms these assumptions. Chapters 3 and 7 also introduce
auxiliary elements that serve as fundamental tools in the convergence analysis.
Both parts proceed with a chapter on convergence analysis. While Chapter 4
of the first part involves both an a priori and an a posteriori parameter choice
strategy, Chapter 8 of the second part focuses solely on an a priori parameter
choice strategy. We confirm the established results numerically in Chapters 6
and 9. To validate the appropriateness of the considered examples, Chapter 5
establishes the related Fourier series. Specifically, the Fourier coefficients are
used to confirm that the examples are appropriate for the oversmoothing
setting and that they satisfy the source conditions.

Although the structure of both parts is nearly identical, we emphasize
the main differences within their subject matter: The first part analyzes
a more general mixed source condition and considers an a priori and an a
posteriori parameter choice strategy. The second part analyzes the classical
source condition of Hölder-type under an a priori parameter choice for the
regularization and discretization parameters. In sake of variety, each part
presents a different approach to constructing auxiliary elements.

This thesis concludes with a “Conclusion and outlook” chapter, sum-
marizing our main findings, and proposing future research directions and
opportunities for further exploration and development of the findings.
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2 Theoretical background

Beginning with a mathematical formulation of nonlinear inverse and ill-
posed problems in Section 2.1, this chapter introduces the central objective
of this thesis. Subsequently, in Section 2.2, it presents the oversmoothing
Tikhonov regularization as the method we employ to address these problems.
To establish convergence rates for this method under the considered source
condition, we require the understanding of functions of bounded and selfadjoint
operators. Spectral calculus provides the techniques to define functions of such
operators. The main statements are summarized in Section 2.3. Afterwards,
in Section 2.4, pre-Hilbert scales are introduced, which serve as the framework
for our analysis. These pre-Hilbert scales provide the necessary framework
to prove convergence rates. Unless otherwise specified, this chapter is based
on the monographs [18, Chapters 2.2, 3.2, and 4.3], [8, Chapter 10], and the
article [24].

2.1 Ill-posed inverse problems

In this section, we introduce the setting considered throughout this thesis.
Let X and Y be real Hilbert spaces with inner products ⟨·, ·⟩ and norms
∥ · ∥, respectively. We omit indices within the norms and inner products
that indicate the corresponding space whenever they can be identified from
the context. We consider a nonlinear operator F : X ⊃ D(F ) → Y . Our
objective is to recover a solution u†, presumed to exist within the domain
D(F ) of F , of the nonlinear operator equation

F (u) = f †, (1)

where the right-hand side f † ∈ Y is only given by noisy observations f δ ∈ Y .
These observations f δ are assumed to satisfy the deterministic noise model

∥f † − f δ ∥ ≤ δ (2)

for a known noise level δ > 0.
Linear inverse problems are typically ill-posed according to Hadamard [16],

meaning that they violate one of the following conditions of well-posedness:

• The operator F is surjective, that is for every f † ∈ Y there exists a solution
of the operator equation (1).

• The operator F is injective, that is for every f † ∈ Y the solution of (1) is
unique.
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• The solution of (1) depends continuously on the data.

This concept of well-posedness is global for linear operators F . The local
behavior of nonlinear operators might vary along their domain of definition,
thus we should focus on a local analysis in the case of nonlinear operators.
Therefore, we assume that the operator equation (1) is at least at the solution
u† locally ill-posed in the sense of the following definition, see [26], [25], or
[18, Definition 2.7].

Definition 2.1. We call an operator equation (1) locally well-posed at u†

if there is a closed ball Br(u
†) = {u ∈ X : ∥u − u†∥ ≤ r} with radius

r > 0 and center u†, such that for every sequence (un)n∈N ⊂ Br(u
†) ∩ D(F ),

the convergence of the images limn→∞ ∥F (un) − F (u)∥ = 0 implies the
convergence of the preimages limn→∞ ∥un − u∥ = 0. Otherwise, the operator
equation is called locally ill-posed at u†.

This definition suggests the local analysis of an operator equation focusing
on the stability of a solution. Since we presuppose that only noisy data f δ,
satisfying (2), is available, the absence of stability can lead to significant errors
in reconstructed solutions. Regularization methods improve the stability of an
inverse problem. The regularization method that we use, is the oversmoothing
Tikhonov regularization specified in the next section.

2.2 Oversmoothing Tikhonov regularization

Regularization methods are used to reconstruct a solution of an ill-posed
operator equation from non-exact data. Those methods attempt to overcome
the ill-posedness of an operator equation by finding a stable solution.

To obtain a regularized solution for u†, classical Tikhonov regularization
requires solving the minimization problem

min
u∈D(F )

{
∥F (u)− f δ ∥2 + α∥u− u∥2

}
for an adequate regularization parameter α > 0. The expression to be
minimized is known as the Tikhonov functional. The term ∥u − u∥2 is
called penalty term. The element u denotes a reference element and can be
interpreted as an initial guess of the actual solution u†.

Nevertheless, enhanced stability is accompanied by a decrease in the
accuracy of approximation. The regularization parameter α controls the
interplay between stability and approximation of the minimizer. Hence, one
objective is to determine a suitable value for the regularization parameter
that effectively balances this trade-off. There exist a priori parameter choice
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strategies, depending on the noise level δ only, as well as a posteriori parameter
choice strategies, depending on δ and f δ. In both parts of this thesis, we
examine an a priori parameter choice strategy. In the first part, we additionally
examine the discrepancy principle as an a posteriori parameter choice rule.
Heuristic parameter choice rules, depending only on f δ, are disregarded here.

In the oversmoothing setting, we consider a Tikhonov functional which
distinguishes in the penalty term. Specifically, the norm ∥ · ∥ in the penalty
term is replaced by a stronger norm ∥ · ∥1 equipping a densely defined subspace
X1 ⊂ X. The condition that ∥ · ∥1 is stronger than ∥ · ∥ means that

∥u∥ ≤ K∥u∥1 for all u ∈ X1

and for some positive finite constant K. We postpone a more precise definition
of the space X1 ⊂ X and its norm ∥ · ∥1 to Section 2.4.

The Tikhonov functional that we analyze is thus given by

T δ
α(u) := ∥F (u)− f δ ∥2 + α∥u− u∥21 for u ∈ X and α > 0. (3)

The oversmoothing situation is evoked by the condition

u† /∈ X1.

In this situation, the Tikhonov functional (3) fails to have a finite value at
the searched-for solution u† of the operator equation (1). Minimization of the
Tikhonov functional, however, results in a solution

uδα := argmin
u∈D(F )∩X1

T δ
α(u) (4)

that lies in X1. For this reason, we call the Tikhonov regularization over-
smoothing, because it generates a solution that is in some sense smother than
the actual solution u†.

The question arises if uδα is still a good approximation for u†. Convergence
rates, given by the limiting behavior of the expression

∥uδα − u†∥

as the noise level δ approaches zero, determine the precision of approximation.
The main goal of our study is to answer this question by providing

convergence rates. We also address this question in the finite-dimensional
setting in Part II of this thesis, where we minimize the Tikhonov functional T δ

α

over a finite-dimensional subspace Vh ⊂ X1. The next two sections provide
fundamental background knowledge required for the analysis in both parts.
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2.3 Basic results on spectral calculus for linear selfad-
joint operators

Spectral calculus provides a method for analyzing functions of certain op-
erators, extending classical concepts of calculus to the realm of operators.
Based on the presentations in [17, Chapter VI], we summarize the essential
fundamentals of spectral calculus for operators which are assumed to be linear,
selfadjoint, and bounded. The theory can be expanded to cover unbounded
operators, but the theory for bounded operators is sufficient in our setting.

Central to spectral calculus is the spectral decomposition given below in
Theorem 2.3. One main ingredient for the decomposition is the spectrum
of an operator. The spectrum σ(A) of a bounded, linear, and selfadjoint
operator A : X ⊃ D(A) → X is given by the set of all numbers λ ∈ R for
which the operator

A− λI

is not bijective. As usual, the operator I : X → X denotes the identity
operator.

In this section, we use the following notation:

σmin := min{λ : λ ∈ σ(A)} and σmax := max{λ : λ ∈ σ(A)}.

It holds that

σmin = inf{⟨Au, u⟩ : ∥u∥ = 1} and σmax = sup{⟨Au, u⟩ : ∥u∥ = 1} = ∥A∥,

such that
σ(A) ⊂ [σmin, ∥A∥].

Along with the spectrum, the notion of a spectral family plays a crucial
role. It provides a systematic way of decomposing an operator into orthogonal
projections associated with its spectrum. In the definition below, we formalize
the concept of a spectral family and outline its key properties.

Definition 2.2 (Spectral family). Let A be a bounded linear and selfadjoint
operator in X. We call a family {P (λ)}λ∈R of orthogonal projections in X
a spectral family of A if it satisfies the following properties for a decreasing
sequence (θn)n∈N ⊂ R of positive numbers converging to 0 as n→ ∞:

• P (λ1) ≤ P (λ2), for λ1 ≤ λ2,

• limn→∞ P (σmin − θn)u = 0 for all u ∈ X and P (σmax) = I,

• limn→∞ P (λ+ θn)u = P (λ)u for all u ∈ X and all λ ∈ R,
• A =

∫ σmax

σmin−θ
λ dP (λ), for θ > 0 arbitrary but fixed.
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The integral is of Riemann-Sieltjes type, which means that for every ε > 0
there exists some τ > 0 such that

∥A−
N∑

n=1

λ
′

n(P (λn)− P (λn−1))∥ ≤ ε,

whenever

λ0 < σmin = λ1 < · · · < λN−1 < λN = σmax,

λn − λn−1 ≤ τ for 1 ≤ n ≤ N,

λn−1 ≤ λ
′

n ≤ λn for 1 ≤ n ≤ N.

 (5)

We can now formulate the spectral Theorem, which is a central result in the
theory of spectral calculus. This theorem provides a powerful framework for
understanding continuous functions when applied to operators by connecting
the spectral decomposition of an operator to its functional calculus.

Theorem 2.3 (Spectral Theorem). Let A be a bounded linear and selfadjoint
operator on X. Then there exists a unique spectral family {P (λ)}λ∈R such
that for every continuous function ψ : R → C and θ > 0 fixed, we have

ψ(A) =

∫ σmax

σmin−θ

ψ(λ) dP (λ),

ψ(A)u =

∫ σmax

σmin−θ

ψ(λ) dP (λ)u, and

⟨ψ(A)u, v⟩ =
∫ σmax

σmin−θ

ψ(λ) d⟨P (λ)u, v⟩

for all u ∈ X and all v ∈ X. As above, the integrals are of Riemann-Stieljtes
type. That means that for every ε > 0 there exists some τ > 0, such that

∥ψ(A)−
N∑

n=1

ψ(λ
′

n)(P (λn)− P (λn−1))∥ ≤ ε

∥ψ(A)u−
N∑

n=1

ψ(λ
′

n)(P (λn)u− P (λn−1)u)∥ ≤ ε∥u∥, and

|⟨ψ(A)u, v⟩ −
N∑

n=1

ψ(λ
′

n)(⟨P (λn)u, v⟩ − ⟨P (λn−1)u), v⟩| ≤ ε∥u∥∥v∥

hold for all u, v ∈ X, whenever (5) hold.
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Without a proof, we collect useful properties concerning a continuous
function of an operator. The detailed proofs are available under Corollary 2.1,
Theorem 2, and Corollary 3.2 in [17, § 32].

Corollary 2.4. Let A be a linear, bounded, and selfadjoint operator on
X. Moreover let ψ : R → R be continuous. Then the following statements
hold:

• ψ(A) is selfadjoint as well,

• if AB = BA for a linear and bounded operator B, then ψ(A)B = Bψ(A),
and

• ∥ψ(A)∥ = sup{|ψ(λ)| : λ ∈ σ(A)}.

2.4 The concept of pre-Hilbert scales

The estimate T δ
α(u

δ
α) ≤ T δ

α(u
†), which is typically used to perform conver-

gence analysis in Tikhonov regularization, contains no information in the
oversmoothing situation. However, within the framework of Hilbert scales, or
more specifically pre-Hilbert scales, we can still establish convergence rates
effectively.

The concept is built based on an operator B that plays an important
role in our analysis. In addition to establishing the framework of pre-Hilbert
scales, the operator B specifies the penalty term of the Tikhonov functional.
Its inverse is used to set up smoothness assumptions on the operator F
in Section 3.1 and to define the source condition for the solution u† in
Sections 3.2 and 7.2. In Section 3.3 and Section 7.3, we use its inverse to
define auxiliary elements, which are essential for proving convergence rates in
the oversmoothing setting.

Let
B : D(B) → X (6)

be a selfadjoint, unbounded linear operator with dense domain D(B) ⊂ X.
Further, we assume that there exists a constant k > 0 such that

∥Bu∥ ≥ k∥u∥ for all u ∈ D(B). (7)

Since the adjoint of a densely defined operator is closed, it follows that the
operator B is closed. By (7), we know that B is injective, and we can define
its inverse

B−1 : R(B) → X,

with R(B) denoting the range of B. It follows, for example, by Theorem 4.2-C
in [56], that B−1 is closed as well. Using Theorem 4.2-D of the referenced
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monograph, we can deduce that D(B−1) = R(B) is closed. Consequently,
X can be decomposed as the orthogonal sum R(B)⊕R(B)⊥ of R(B) and
its orthogonal complement R(B)⊥. The latter is trivial because R(B)⊥ =
N (B) = 0. From R(B) = X, we can thus deduce that B is a bijection from
D(B) onto X. This means that the inverse B−1 : X → X is well-defined on
the entire space X. Condition (7) moreover implies that B−1 is bounded.

Based on the inverse B−1, which is bounded and selfadjoint, we use
spectral calculus to define for the fractional powers

(B−1)τ for τ ∈ R.

These are injective allowing as to express Bτ as

Bτ = ((B−1)τ )−1 for τ ∈ R.

Now we come to the definition of pre-Hilbert scales. We set

Xτ :=

{
D(Bτ ) for τ > 0,

X for τ ≤ 0

with norms
∥u∥τ = ∥Bτu∥.

We call the system of spaces (Xτ )τ∈R pre-Hilbert scale in this thesis. This
system of spaces is closely related to Hilbert scales, which are introduced, for
example, in [37, p. 92] or [8, Section 10.4]. A comprehensive introduction to
Hilbert scales for compact operators is given in [3, Section 5.1]. In the case of
negative τ , the definition of Hilbert scales requires a stricter definition of the
underlying spaces, namely that each space Xτ is defined as the completion
with respect to the corresponding norm ∥ · ∥τ of the set of elements for which
each power of the operator B is defined. Since for negative values of τ , the
corresponding spaces Xτ = X with norms ∥ · ∥τ are pre-Hilbert spaces in
our setting, we call the introduced system of spaces pre-Hilbert scale. This
terminology is in accordance to that in [36, p. 36].

Pre-Hilbert scales maintain useful properties of Hilbert scales. The power-
ful interpolation inequality, stated next, is one of them.

Lemma 2.5 (Interpolation inequality). For all p ≥ q ≥ s, p ̸= s, and u ∈ Xp,
we have

∥u∥q ≤ ∥u∥1−ν
p ∥u∥νs , (8)

where ν = (p− q)/(p− s).

The interpolation inequality can be proven using spectral calculus and
the Hölder inequality, see [34] or [8, p. 213].
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Part I
Oversmoothing Tikhonov

regularization –
the infinite-dimensional setting

We begin this part by ensuring that, under specific assumptions, minimization
of the Tikhonov functional T δ

α in (3) is well-posed. The notion of well-
posedness that we use, ensures that the minimizers exist and that they are
stable with respect to perturbations in the data f . Subsequently, we formulate
additional assumptions in Section 3.2, as well as auxiliary elements in Sec-
tion 3.3. Based on these assumptions and auxiliary elements, we can proceed
with convergence analysis for the oversmoothing Tikhonov regularization in
Chapter 4. This chapter involves the examination of an a priori and an a
posteriori parameter choice for the regularization parameter α. To numerically
confirm the convergence rates for an example in Chapter 6, Chapter 5 serves
as a preparatory chapter to justify the appropriateness of that example.

Passages of Chapter 3, Chapter 4, and Chapter 6 build upon the article [33],
expanding its findings to encompass a mixed source condition.

3 Fundamental requirements

3.1 Well-posedness

To ensure the effectiveness and reliability of the oversmoothing Tikhonov
regularization, we validate certain regularization properties of the extremal
problem

min
u∈D(F )∩X1

T δ
α(u). (9)

The regularization properties include the well-posedness of the extremal
problem (9), the stability of minimizers (4), and convergence of regularized
solutions. We focus on well-posedness and stability assertions in this section.
Convergence rates will be discussed in Chapter 4. For pure convergence
assertions, without any smoothness assumption, we refer to [24].

In our approach, we require the following assumptions, which are identical
to those in [24].

Assumption 3.1. (a) The operator F : D(F ) → Y is sequentially continuous
on its domain D(F ) ⊂ X with respect to the weak topologies of the Hilbert
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spaces X and Y . That means for a sequence (un)n∈N ⊂ D(F ) converging
with respect to the weak topology of X to some u ∈ D(F ) as n→ ∞ implies
the convergence of the image sequence (F (un))n∈N to F (u) with respect to
the weak topology of Y as n→ ∞.

(b) The domain D(F ) is a closed and convex subset of X.

(c) D := D(F ) ∩X1 ̸= ∅ and u ∈ D.

The following definition, based on [58, p. 59], which appears to originate
from the Russian monograph [59], provides the criterion for well-posedness of
the extremal problem (9). This definition inherits the existence of minimizers.
Moreover, we will observe in the progression of this section that stability of
minimizers is an implication of this definition, shedding light on its significance.

Definition 3.2 (Well-posedness (Vainikko)). We call the extremal problem (9)
well-posed if each corresponding minimizing sequence (un)n∈N ⊂ D, that means
each sequence (un)n∈N ⊂ D satisfying

lim
n→∞

T δ
α(un) = inf

u∈D
T δ
α(u),

has a subsequence that converges with respect to a given topology of X to a
minimizer of the extremal problem.

The next theorem shows, that the oversmoothing Tikhonov regularization
is well-posed in the sense of Definition 3.2. It establishes the well-posedness
condition under the stronger norm ∥ · ∥1, and inspects the limiting behavior
of the corresponding misfit and penalty functional sequences. A key aspect
utilized in its proof and throughout this section is the fact that the space X1,
defined as the domain of the operator B and equipped with the norm ∥ · ∥1,
is a Hilbert space.

Building upon this knowledge, we identify two important properties:

• The set D is closed in X1.

• The operator F when considered as F : X1 ⊃ D → Y is sequentially
continuous with respect to the weak topologies of X1 and Y .

The first property follows, because the embedding operator

i : X1 → X, u 7→ u

is continuous, and D(F ) is closed in X by assumption. More precisely, the
continuity of the embedding operator implies that its inverse i−1 maps closed
sets to closed sets. Therefore i−1(D(F )) = X1 ∩ D(F ) = D is closed in
X1. The closedness of D in X1 together with its convexity imply that D is
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weakly closed, and consequently, weakly sequentially closed in X1. This latter
characteristic is the one we specifically utilize in our proof of well-posedness.

The second property follows because, by Assumption 3.1, the operator F
is sequentially continuous with respect to the weak topologies of X and Y
and because convergence of a sequence with respect to the weak topology of
X1 implies its convergence with respect to the weak topology of X.

Theorem 3.3 (Well-posedness). Under Assumption 3.1, for each α > 0 and
each f δ ∈ Y the extremal problem minu∈D T

δ
α(u) is well-posed with respect

to the norm topology of X1 in the sense of Definition 3.2. Moreover, the
convergence of any minimizing subsequence (unk

)k∈N with respect to the weak
topology of X1 implies its convergence with respect to the norm topology of X1

to a minimizer uδα := argminu∈D T
δ
α(u) as k → ∞, and each such subsequence

satisfies

lim
k→∞

∥F (unk
)− f δ ∥ = ∥F (uδα)− f δ ∥ and lim

k→∞
∥unk

− u∥1 = ∥uδα − u∥1.
(10)

Proof. The proof is inspired by the proof of Propositions 4.1 and 4.2 in [54].
Since D ̸= ∅ by Assumption 3.1 (c), the infimum

T∗ := inf{T δ
α(u) : u ∈ D} ≥ 0

exists. This implies the existence of a minimizing sequence (un)n∈N ⊂ D such
that

lim
n→∞

T δ
α(un) = T∗.

Then (T δ
α(un))n∈N and consequently (∥un − u∥21)n∈N are bounded sequences

in R, implying that the sequence (un)n∈N is bounded in X1. Thus, there exists
a subsequence (unk

)k∈N ⊂ D converging with respect to the weak topology of
X1 to some element u∗ as k → ∞. Since D is weakly sequentially closed in
X1, the limit u∗ lies in D as well. Now let (unk

)k∈N ⊂ D be any minimizing
subsequence converging with respect to the weak topology of X1 to some
element u∗ ∈ D as k → ∞. Then, (F (unk

))k∈N converges with respect to
the weak topology of Y to F (u∗) as k → ∞, because the operator F , when
considered as F : X1 ⊃ D → Y , is sequentially continuous with respect to
the weak topologies of X1 and Y . The weak sequential lower semi-continuity
of the norms ∥ · ∥ and ∥ · ∥1 implies

T δ
α(u∗) = ∥F (u∗)− f δ ∥2 + α∥u∗ − u∥21

≤ lim inf
k→∞

∥F (unk
)− f δ ∥2 + α lim inf

k→∞
∥unk

− u∥21
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≤ lim inf
k→∞

(∥F (unk
)− f δ ∥2 + α∥unk

− u∥21) = T∗.

Hence, u∗ minimizes T δ
α, justifying the representation u∗ = uδα, which we

adopt henceforth. From the calculation above, we can conclude that

lim
k→∞

T δ
α(unk

) = T δ
α(u∗) = T δ

α(u
δ
α). (11)

Now we verify the convergence assertions in (10), beginning with the first.
On the one hand,

∥F (uδα)− f δ ∥2 = T δ
α(u

δ
α)− α∥uδα − u∥21

≥ lim
k→∞

T δ
α(unk

)− α lim inf
k→∞

∥unk
− u∥21

= lim
k→∞

T δ
α(unk

) + lim sup
k→∞

(−α∥unk
− u∥21)

= lim sup
k→∞

(T δ
α(unk

)− α∥unk
− u∥21) = lim sup

k→∞
∥F (unk

)− f δ ∥2.

On the other hand, the weak sequential lower semi-continuity of the norm
∥ · ∥ implies

∥F (uδα)− f δ ∥2 ≤ lim inf
k→∞

∥F (unk
)− f δ ∥2.

In combination, these estimates yield that

lim
k→∞

∥F (unk
)− f δ ∥2 = ∥F (uδα)− f δ ∥2.

We use this convergence and the convergence of the Tikhonov functional (11)
to verify the second statement of (10):

lim
k→∞

α∥unk
− u∥21 = lim

k→∞
(T δ

α(unk
)− ∥F (unk

)− f δ ∥2)

= T δ
α(u

δ
α)− ∥F (uδα)− f δ ∥2 = α∥uδα − u∥21.

This convergence of the penalty functional, together with the convergence
of (unk

)k∈N with respect to the weak topology of X1 and the Hilbert space
property of (X1, ∥ · ∥1), yields that (unk

)k∈N converges to uδα as k → ∞ with
respect to the norm topology of X1:

lim
k→∞

∥unk
− uδα∥21 = lim

k→∞
∥unk

− u+ u− uδα∥21
= lim

k→∞
(∥unk

− u∥21 + ∥u− uδα∥21 + 2⟨unk
− u, u− uδα⟩1)

= ∥uδα − u∥21 + ∥u− uδα∥21 − 2⟨uδα − u, uδα − u⟩1 = 0.

This confirms the well-posedness of the extremal problem with respect to the
norm topology of X1.
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Having established the well-posedness of the extremal problem (9), we
now utilize it to demonstrate the stability of regularized solutions in Theo-
rem 3.5 below. Stability is a fundamental aspect that ensures the resilience
of regularized solutions against perturbations in the data.

In this regard, we turn to the concept of stability as defined by Schuster
et al. [54, Proposition 4.2] in Definition 3.4 below. This definition guarantees
that minor changes in the data do not induce significant deviations in the
regularized solution.

Definition 3.4 (Stability (Schuster et al.)). Let α > 0. For a data sequence
(fn)n∈N ⊂ Y , with limn→∞ ∥fn − f δ ∥ = 0, we introduce the functionals

T n
α (u) := ∥F (u)− fn∥2 + α∥u− u∥21 for all n ∈ N. (12)

By (u∗n)n∈N we denote the corresponding sequence of minimizers of T n
α (u) over

D, that means

u∗n := argmin
u∈D

T n
α (u) for all n ∈ N.

We say that the minimizers uδα of (9) are stable with respect to the data f δ,
if every sequence (u∗n)n∈N of minimizers has a subsequence (u∗nk

)k∈N, which
converges with respect to the weak topology of X, and the weak limit u∗ ∈ X
of each such subsequence is a minimizer uδα of (9).

In addition to addressing a stronger formulation of the stability definition
of regularized solutions, the following theorem includes an assertion concerning
the convergence of the misfit and penalty functionals.

Theorem 3.5 (Stability of regularized solutions). Under Assumption 3.1, for
each α > 0, the minimizers of (9) are stable with respect to small perturbations
in the data f δ in the sense of Definition 3.4. Moreover, each subsequence
(u∗nk

)k∈N of minimizers of T n
α that converges with respect to the weak topology

of X1 as k → ∞, converges with respect to the norm topology of X1 to a
minimizer uδα of the Tikhonov functional T δ

α as k → ∞. Additionally, we can
conclude that

lim
k→∞

∥F (u∗nk
)− fnk

∥ = lim
k→∞

∥F (u∗nk
)− f δ ∥ = ∥F (uδα)− f δ ∥ and

lim
k→∞

∥u∗nk
− u∥1 = ∥uδα − u∥1.

Proof. For α > 0 and a data sequence (fn)n∈N ⊂ Y with limn→∞ ∥fn−f δ ∥ = 0
let (u∗n)n∈N be a sequence of minimizers of the functional (12). That is

u∗n := argmin
u∈D

{
∥F (u)− fn∥2 + α∥u− u∥21

}
for all n ∈ N.
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According to Theorem 3.3, these minimizers u∗n exist for all n ∈ N. We show
that (u∗n)n∈N minimizes T δ

α(u) = ∥F (u)− f δ ∥2 + α∥u− u∥21 as n→ ∞. One
relevant tool is the following estimate:

|T δ
α(u)− T n

α (u)| ≤ ∥f δ − fn∥2 + 2∥F (u)− fn∥∥fn − f δ ∥, u ∈ D, n ∈ N.
(13)

The right-hand side vanishes as n → ∞ if (∥F (u) − fn∥)n∈N is a bounded
sequence. We proceed with the usual notation uδα := argminu∈D T

δ
α(u), and

apply the estimate (13) twice to obtain

T δ
α(u

δ
α) ≤ T δ

α(u
∗
n) ≤ |T δ

α(u
∗
n)− T n

α (u
∗
n)|+ T n

α (u
∗
n)

≤ ∥f δ − fn∥2 + 2∥F (u∗n)− fn∥∥fn − f δ ∥+ T n
α (u

∗
n)

≤ ∥f δ − fn∥2 + 2∥F (u∗n)− fn∥∥fn − f δ ∥+ T n
α (u

δ
α)

≤ 2(∥f δ − fn∥2 + 2∥F (u∗n)− fn∥∥fn − f δ ∥) + T δ
α(u

δ
α).

(14)

Since ∥F (u∗n)−fn∥ ≤ T n
α (u

∗
n) ≤ T n

α (u) for all u ∈ D and n ∈ N, it follows that
lim supn→∞ ∥F (u∗n) − fn∥ ≤ lim supn→∞ T n

α (u) = T δ
α(u) < ∞ for all u ∈ D.

Therefore, the sequence (∥F (u∗n)− fn∥)n∈N is bounded, and the right-hand
side of estimate (14) converges to T δ

α(u
δ
α) as n→ ∞.

Thus, (u∗n)n∈N is a minimizing sequence for T δ
α. According to Theorem 3.3,

there exists a subsequence (u∗nk
)k∈N which converges with respect to the norm

topology of X1 to a minimizer of T δ
α as k → ∞. Furthermore, each cluster

point of the sequence (u∗n)n∈N is a minimizer of T δ
α. The assertions within

Theorem 3.3 addressing the convergence of the misfit and penalty functional
directly contribute to the proof’s conclusion.

Notably, convergence in the norm topology of X1 implies convergence
with respect to the norm and weak topology of X, aligning with the classical
stability condition according to Definition 3.4. Note, moreover, that the
article [49] presents a proof of a more general result, specifically the exponents
in the Tikhonov functional are replaced by arbitrary values.

Lastly, we mention that a minimizer of the Tikhonov functional may be
not unique because the misfit functional u 7→ ∥F (u) − f δ∥2 and hence the
Tikhonov functional T δ

α may be non-convex.

3.2 Additional assumptions and the mixed source con-
dition

It is possible to enhance the precision of the regularized solutions by presuming
information in a model. Such information can, for example, address the
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underlying spaces X and Y , the operator F , the operators domain of definition
D(F ), or the solution u†. In this section, we introduce assumptions essential for
establishing convergence rates of the oversmoothing Tikhonov regularization.
One of these assumptions concerns a smoothness condition on the solution u†,
specified through a mixed source condition. As mentioned above, we cite [24]
as the seminal work that presents pure convergence assertions, which do not
rely on any smoothness assumption on the solution u†.

To specify the source condition, we recall the operator B, introduced in (6)
in Section 2.4. By means of B, we define the linear operator G by

G : X → X, G := B−(2a+2), (15)

where a > 0 is determined through item (f) of Assumption 3.7 below. The op-
erator G is bounded, injective, selfadjoint, and positive semidefinite. Through-
out Part I of this thesis, we assume that the solution u† obeys the mixed
source condition defined as follows:

Definition 3.6 (Mixed source condition). We define the function

φ : (0, ∥G∥] → (0,∞), t 7→ (− ln ct)−κ, (16)

for κ > 0 and with
0 < c < ∥G∥−1. (17)

If the relation
u† − u = G

p
2a+2φ(G)w (18)

holds for some 0 ≤ p < 1 and an element w ∈ X with ∥w∥ ≤ ρ, where ρ > 0
is a constant, then we say that u† satisfies a mixed source condition.

If p = 0, the source condition (18) is of logarithmic type and hence of low-
order. If κ = 0, the source condition is of Hölder-type. The results established
in this part hold for both of these situations as well. The requirement in (17)
ensures that φ does not attain singularities. Throughout this part of the
thesis, the constant c denotes the constant specified for the function φ in (16).

Note that many studies and monographs involve the operator F , or its
Fréchet, Gâteaux, or directional derivative instead of B to define source
conditions; see, for example, [54, p. 65], [8, p. 247], or [26].

The following assumption summarizes conditions that are used to prove
convergence rates in Chapter 4. Since the assumptions supplement those in
Assumption 3.1, they commence with the item label (d).

Assumption 3.7. (d) The solution u† ∈ D(F ) is an interior point of D(F ).

(e) The observations f δ satisfy ∥f δ − f †∥ ≤ δ, for δ > 0.
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(f) Let a > 0, and let there exist positive finite constants ca ≤ Ca and c0, c1
such that

∥F (u)−f †∥ ≤ Ca∥u−u†∥−a for each u ∈ D with ∥u−u†∥−a ≤ c0 (19)

and

ca∥u−u†∥−a ≤ ∥F (u)−f †∥ for each u ∈ D with ∥F (u)−f †∥ ≤ c1. (20)

(g) Source condition (18) applies.

3.3 Auxiliary elements

In this section, we define auxiliary elements and establish some related results,
which are essential to determine convergence rates. As auxiliary elements,
also referred to as smooth approximations (see e.g. [39]), we consider the
minimizers ûβ of the artificial Tikhonov functional

Ta,β(u) := ∥u− u†∥2−a + β∥u− u∥21 for β > 0,

over the whole space X. These are uniquely defined, and it can be shown
that they admit the representation

ûβ := u+G(G+ βI)−1(u† − u) = u† − β(G+ βI)−1(u† − u) (21)

for β > 0, and G as defined in (15). This specific form of auxiliary elements
was introduced in [23]. A similar approach, involving the Fréchet derivative
of F at u† instead of G, can be found in the proof of Theorem 10.7 in [8].
Together with this representation, the following lemma, which corresponds to
Corollary 5.2 in [24], allows us to make the statements in Lemma 3.10.

Lemma 3.8. Let f : (0, ∥G∥] → (0,∞) be a continuous, monotonically
non-decreasing function with

lim
t↓0

f(t) = 0.

Moreover, suppose that for each exponent η and sufficiently small t > 0, the
quotient function t 7→ tη/f(t) is strictly increasing. Then, for each 0 ≤ θ < 1,
there exist finite constants β > 0 and C > 0 such that

sup
0<λ≤∥G∥

βλθf(λ)

λ+ β
≤ Cβθf(β)

holds for all 0 < β ≤ β.
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Proof. For the proof, we refer the interested reader to the aforementioned
paper [24].

Remark 3.9. The function φ, defined as in (16), fulfills the conditions of
Lemma 3.8:

Obviously, φ is a continuous, monotonically non-decreasing function and
satisfies limt↓0 φ(t) = 0. The last property, requiring quotient function
t 7→ tη/φ(t) to be strictly increasing for all η > 0 and sufficiently small t > 0,
is confirmed for 0 < t < c−1 e −κ/η through the following calculation:

d

dt

(
tη

(− ln ct)−κ

)
= ηtη−1(− ln ct)κ − tη−1κ(− ln ct)κ−1

= tη−1(− ln ct)κ−1 [η(− ln ct)− κ] > 0.

The next result in Lemma 3.10 provides bounds for norms involving the
auxiliary elements. Throughout this thesis, we make use of these bounds
on several occasions. We begin by applying them in the proof of the two
forthcoming lemmas, Lemma 3.11 and Lemma 4.1, and they continue to
be instrumental for the proofs of two main theorems of this part, namely
Theorem 4.4 and Theorem 4.14.

Lemma 3.10. Let source condition (18) be satisfied for some 0 ≤ p < 1 and
a > 0. Then, there exist positive constants Ci, for i = 1, 2, 3, and β0 ≤ ∥G∥
such that the following estimates hold for all 0 < β ≤ β0:

(i) ∥ûβ − u†∥ ≤ C1β
p

2a+2φ(β),

(ii) ∥ûβ − u†∥−a ≤ C2β
a+p
2a+2φ(β),

(iii) ∥ûβ − u∥1 ≤ C3β
p−1
2a+2φ(β).

Proof. To deduce the items of the lemma, we use representation (21), source
condition (18), as well as results on spectral theory along with Lemma 3.8.
According to Lemma 3.8, there exist positive constants C i and βi for i = 1, 2, 3,
such that

∥ûβ − u†∥ = ∥−β(G+ βI)−1(u† − u)∥ = ∥β(G+ βI)−1G
p

2a+2φ(G)w∥
≤ C1β

p
2a+2φ(β)ρ = C1β

p
2a+2φ(β), 0 < β ≤ β1,

and

∥ûβ − u†∥−a = ∥B−a(ûβ − u†)∥ = ∥G
a

2a+2 (ûβ − u†)∥
= ∥βG

a
2a+2 (G+ βI)−1G

p
2a+2φ(G)w∥

≤ C2β
a+p
2a+2φ(β)ρ = C2β

a+p
2a+2φ(β), 0 < β ≤ β2,
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as well as

∥ûβ − u∥1 = ∥B (ûβ − u)∥ = ∥ 1
β
βG− 1

2a+2G(G+ βI)−1(u† − u)∥

= ∥ 1
β
βG− 1

2a+2G(G+ βI)−1G
p

2a+2φ(G)w∥

≤ 1
β
C3ρβ

1+ p−1
2a+2φ(β) = C3β

p−1
2a+2φ(β), 0 < β ≤ β3,

with Ci = C iρ > 0, for i = 1, 2, 3, and ρ defined as the upper bound for the
source element w in (18). Setting β0 = min

{
β1, β2, β3

}
yields the assertion.

Note that Lemma 3.8 can be applied because the exponents of G within the
norms ∥ · ∥ sum up to values that are smaller than 1, because 0 ≤ p < 1.

Based on Lemma 3.10, we establish the following lemma, which gives
upper bounds for the same norms as in Lemma 3.10 when the parameter β is
chosen a priori in a specific manner. The corresponding bounds are expressed
through functions depending on the noise level δ. Although this lemma is
required only for proving convergence rates for the discrepancy principle in
Section 4.2, we include it in this current section, as the statement concerns
the auxiliary elements.

Lemma 3.11. Let source condition (18) hold with a > 0 and 0 ≤ p < 1.
By ûβ∗ we denote the auxiliary elements defined in (21), with regularization
parameter β = β∗ chosen a priori as

β∗ := β∗(δ) = δrφ(δ)−r,

where
r :=

2a+ 2

a+ p
.

For this parameter choice, the following bounds hold as δ ↓ 0:

(i) ∥ûβ∗ − u†∥ = O
(
δ

p
a+pφ(δ)

a
a+p

)
,

(ii) ∥ûβ∗ − u†∥−a = O(δ),

(iii) ∥ûβ∗ − u∥1 = O
(
δ

p−1
a+pφ(δ)

a+1
a+p

)
.

Proof. Without loss of generality, we can assume that β∗ ≤ β0, where β0 is
the constant from Lemma 3.10. According to that lemma, it is sufficient to
establish the estimates

(A) β
p

2a+2
∗ φ(β∗) = O

(
δ

p
a+pφ(δ)

a
a+p

)
,

(B) β
a+p
2a+2
∗ φ(β∗) = O(δ), and

(C) β
p−1
2a+2
∗ φ(β∗) = O

(
δ

p−1
a+pφ(δ)

a+1
a+p

)
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as δ ↓ 0. As a preliminary step, we verify that β∗ satisfies φ(β∗) = O(φ(δ))
as δ ↓ 0:

lim
δ↓0

φ(β∗)

φ(δ)
= lim

δ↓0

(− ln (cδr (− ln cδ)
κr
))

−κ

(− ln cδ)−κ

= lim
δ↓0

(
r ln cδ + ln c1−r + κr ln(− ln cδ)

ln cδ

)−κ

= lim
δ↓0

(
r
(
1 +

r−1 ln(c1−r) + κ ln(− ln cδ)

ln cδ

))−κ

= r−κ.

For item (A), we thus calculate that

β
p

2a+2
∗ φ(β∗) = (δ

2a+2
a+p φ(δ)−

2a+2
a+p )

p
2a+2O(φ(δ)) = O(δ

p
a+pφ(δ)1−

p
a+p )

= O(δ
p

a+pφ(δ)
a

a+p ) as δ ↓ 0.

Similarly, simple calculations verify (B) and (C):

β
a+p
2a+2
∗ φ(β∗) =

(
δ

2a+2
a+p φ(δ)−

2a+2
a+p

) a+p
2a+2O(φ(δ)) = O(δ) as δ ↓ 0,

and

β
p−1
2a+2
∗ φ(β∗) = (δ

2a+2
a+p φ(δ)−

2a+2
a+p )

p−1
2a+2O(φ(δ))

= O(δ
p−1
a+pφ(δ)

a+1
a+p ) as δ ↓ 0.
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4 Convergence analysis

This chapter divides into two sections. In Section 4.1, the first of these two,
we establish convergence rates for an a priori parameter choice of α. The
analysis is similar to that in [21], in which the authors consider a Hölder-
type source condition. In the second section, Section 4.2, after introducing
the discrepancy principle and related results, we establish convergence rates
when the regularization parameter α is chosen according to that discrepancy
principle. Our analysis relies on the auxiliary elements presented in Section 3.3.

In a first step, we establish an upper bound for the components of the
Tikhonov functional when applied to a minimizer. This upper bound is of
relevance in both sections.

Lemma 4.1. Under Assumptions 3.1 and 3.7, there exists a positive and finite
constant C4, such that the following estimate is satisfied for a minimizer uδα
of the Tikhonov functional (3) for all 0 < α ≤ ∥G∥ and δ > 0:

max
{
∥F (uδα)− f δ∥,

√
α∥uδα − u∥1

}
≤ C4α

a+p
2a+2φ(α) + δ.

Proof. The proof follows the proof of Lemma 3.2 in [24]. Let β0 ≤ ∥G∥ be
the constant from Lemma 3.10. Further, we set β = α as the regularization
parameter for the auxiliary elements ûβ defined in (21) and denote these
auxiliary elements by ûα. From item (i) of Lemma 3.10, we can deduce that
ûα belongs to D for sufficiently small α > 0, say α ≤ α0 for some α0 ≤ β0.
This conclusion stems from Assumption 3.7 (d) that u† is an interior point
of D(F ). Based on this information, the following inequality chain holds for
α ≤ α0:(

∥F (uδα)− f δ∥2 + α∥uδα − u∥21
) 1

2 ≤
(
∥F (ûα)− f δ∥2 + α∥ûα − u∥21

) 1
2

≤ ∥F (ûα)− f δ∥+
√
α∥ûα − u∥1

≤ ∥F (ûα)− f †∥+
√
α∥ûα − u∥1 + δ. (22)

According to item (ii) of Lemma 3.10, we have

∥ûα − u†∥−a ≤ C2α
a+p
2a+2φ(α) for α ≤ α0.

The function α 7→ α
a+p
2a+2φ(α) is monotonically increasing on (0, ∥G∥]. Hence

∥ûα − u†∥−a ≤ C2α
a+p
2a+2

0 φ(α0) =: c0 for α ≤ α0.

Consequently, estimate (19) applies for α ≤ α0, which allows us to determine
an upper bound for first summand of (22):

∥F (ûα)− f †∥ ≤ Ca∥ûα − u†∥−a ≤ CaC2α
a+p
2a+2φ(α) for α ≤ α0.
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Using item (iii) of Lemma 3.10, we find for the second summand of (22) that

√
α∥ûα − u∥1 ≤ C3α

1
2
+ p−1

2a+2φ(α) for α ≤ α0.

The claim thus holds for α ≤ α0 with C4 = CaC2 + C3.

Now we consider α0 < α ≤ ∥G∥. In this case

α
a+p
2a+2φ(α)

α
a+p
2a+2

0 φ(α0)
≥ 1

such that

T δ
α(u

δ
α)

1
2 ≤ ∥F (u)− f δ ∥ ≤ ∥F (u)− f †∥+ δ

≤ α
a+p
2a+2φ(α)

α
a+p
2a+2

0 φ(α0)
∥F (u)− f †∥+ δ for α0 < α ≤ ∥G∥.

Setting

C4 =
∥F (u)− f †∥

α
a+p
2a+2

0 φ(α0)

yields the assertion for α0 < α ≤ ∥G∥.

4.1 A priori parameter choice

Throughout this section, we assume that Assumptions 3.1 and 3.7 are satisfied.
As a preparation for the proof of this section’s main theorem, we collect some
estimates for norms involving minimizers uδα of (9). An immediate consequence
of Lemma 4.1 is the subsequent corollary.

Corollary 4.2. Let C4 be the constant from Lemma 4.1. Then for each
0 < α ≤ ∥G∥ and δ > 0, we have

∥uδα − u∥1 ≤
1√
α
(C4α

a+p
2a+2φ(α) + δ).

Lemma 4.3. Let C4 be the constant from Lemma 4.1. For each 0 < α ≤ ∥G∥
and 0 < δ <∞, we have

∥uδα − u†∥−a ≤
2

ca

(C4

2
α

a+p
2a+2φ(α) + δ

)
.
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Proof. To obtain the result, we use the estimate (20), the triangle inequality,
and Lemma 4.1 in the given order:

ca∥uδα − u†∥−a ≤ ∥F (uδα)− f †∥ ≤ ∥F (uδα)− f δ ∥+ δ

≤ C4α
a+p
2a+2φ(α) + 2δ

(23)

for 0 < α ≤ ∥G∥. Since δ ≤ δ0, for some δ0 <∞, and because the mapping
α 7→ α(a+p)/(2a+2)φ(α) is monotonically increasing on the interval (0, ∥G∥], the
right-hand side of (23) is bounded from above by C4∥G∥(a+p)/(2a+2)φ(∥G∥) +
2δ0 =: c1 for α ≤ ∥G∥, validating the applicability of estimate (20). Dividing
the estimate in (23) by ca yields the assertion.

We have now everything at hand to prove the next theorem, which gives
an upper bound for the error term ∥uδα − u†∥. This upper bound consists of
two components depending on α. The first component increases in α, while
the second component decreases in α. This highlights the importance of
choosing α appropriately.

Theorem 4.4. Let β0 ≤ ∥G∥ be the constant from Lemma 3.10. There exists
a positive and finite constant K1 such that the estimate

∥uδα − u†∥ ≤
( 2

ca

) 1
a+1 (K1α

p
2a+2φ(α) + δα− a

2a+2 )

holds for each 0 < α ≤ β0 and 0 < δ <∞.

Proof. As in the proof of Lemma 4.1, we consider the auxiliary elements ûβ
defined in (21) and set β = α as their regularization parameter. Accordingly,
we denote them by ûβ = ûα. Using the triangle and interpolation inequality (8)
gives

∥uδα − u†∥ ≤ ∥uδα − ûα∥+ ∥ûα − u†∥

≤ ∥uδα − ûα∥−a︸ ︷︷ ︸
=:I

1
a+1∥uδα − ûα∥1︸ ︷︷ ︸

=:II

a
a+1 + ∥ûα − u†∥︸ ︷︷ ︸

=:III

. (24)

For the term in I, another application of the triangle inequality along with
Lemma 4.3 and Lemma 3.10 yields that

I ≤ ∥uδα − u†∥−a + ∥u† − ûα∥−a ≤
2

ca
(
C4

2
α

a+p
2a+2φ(α) + δ) + C2α

a+p
2a+2φ(α)

=
2

ca

( (C4 + C2ca)

2
α

a+p
2a+2φ(α) + δ

)
,
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for 0 < α ≤ β0 and 0 < δ <∞. We determine a bound for the term in II by
making use of the triangle inequality, Corollary 4.2, and Lemma 3.10:

II ≤ ∥uδα − u∥1 + ∥u− ûα∥1 ≤
1√
α
(C4α

a+p
2a+2φ(α) + δ) + C3α

p−1
2a+2φ(α)

=
1√
α
((C3 + C4)α

a+p
2a+2φ(α) + δ)

for 0 < α ≤ β0 and 0 < δ <∞. Item (i) of Lemma 3.10 gives an upper bound
for the term in III :

III ≤ C1α
p

2a+2φ(α) for each 0 < α ≤ β0.

By inserting I , II, and III into (24), we obtain for C̃ := max{C4+C2ca
2

, C3+C4}
that

∥uδα − u†∥ ≤
( 2

ca
(C̃α

a+p
2a+2φ(α) + δ)

) 1
a+1

( 1√
α
(C̃α

a+p
2a+2φ(α) + δ)

) a
a+1

+ C1α
p

2a+2φ(α)

=
( 2

ca

) 1
a+1α− a

2a+2 (C̃α
a+p
2a+2φ(α) + δ) + C1α

p
2a+2φ(α)

=
( 2

ca

) 1
a+1 (K1α

p
2a+2φ(α) + α− a

2a+2 δ)

for each 0 < α ≤ β0 and 0 < δ <∞, and with K1 := C̃+(2/ca)
−1/(a+1)C1.

Theorem 4.5 (Convergence rates under a mixed source condition). For the
a priori parameter choice

α∗ := α∗(δ) = δrφ(δ)−r,

where
r :=

2a+ 2

a+ p
,

we have

∥uδα∗ − u†∥ = O
(
δ

p
a+pφ(δ)

a
a+p

)
as δ ↓ 0.

Proof. Noticing that α∗ coincides with β∗ of Lemma 3.11, we can conclude as
in the preparatory step of the proof of that lemma that φ(α∗) = O(φ(δ)) as
δ ↓ 0. Without loss of generality, we can assume α∗ ≤ β0, with β0 denoting the
constant from Lemma 3.10, and apply Theorem 4.4 to the a priori parameter
choice α∗:

∥uδα∗ − u†∥ ≤
( 2

ca

) 1
a+1 (K1α

p
2a+2
∗ φ(α∗) + δα

− a
2a+2

∗ )

=
( 2

ca

) 1
a+1 (K1δ

p
a+pφ(δ)−

p
a+pφ(α∗) + δδ−

a
a+pφ(δ)

a
a+p )

= O
(
δ

p
a+pφ(δ)

a
a+p

)
as δ ↓ 0.
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4.2 A posteriori parameter choice: Discrepancy princi-
ple

The classical a posteriori parameter choice is a discrepancy principle according
to Mozorov [40, p. 53], where the objective is to find a parameter α := α(f δ, δ)
such that the misfit functional ∥F (uδα)− f δ∥ approximately behaves like δ.
That is

k1δ ≤ ∥F (uδα)− f δ∥ ≤ k2δ

for constants 1 ≤ k1 ≤ k2 < ∞. In this thesis, following the research of
Hofmann and Plato [24], we employ a version of the discrepancy principle that,
particularly in the presence of potential discontinuities within the function
α 7→ ∥F (uδα)− f δ∥, holds greater significance than the classical discrepancy
principle. Moreover, it allows a sequential implementation, as demonstrated
by Algorithm 1.

Before detailing the procedure of the discrepancy principle, we present
relevant background information. Lemma 4.1 already suggests the potential
monotonic behavior of both, the misfit and penalty functionals of the Tikhonov
functional (3) when considered as functions of α. Now, we examine this
monotonic behavior in more detail. In combination with findings for the
limiting behavior of the misfit functional and the minimizers of (9), we can
substantiate the validity of the discrepancy principle introduced thereafter.
The next two lemmas cite the outcome of Proposition 4.5 from the work of [24].
We have separated the assertions from that proposition and incorporated
an auxiliary result of its proof into two distinct lemmas. Lemma 4.7, the
first of them, provides insights into the monotonic behavior of the misfit and
the penalty functional when considered as functions α 7→ ∥F (uδα)− f δ∥, and
α 7→ ∥uδα − u∥21 respectively, for fixed δ > 0.

The second lemma, Lemma 4.6, provides an overview of the limiting
behavior of the misfit functional when considered as a function α 7→ ∥F (uδα)−
f δ∥ for fixed δ > 0. Additionally, it provides a convergence assertion for the
minimizers uδα for fixed δ > 0.

The proofs follow the proof of Proposition 4.5 in [24]. For convenience,
we include them here.

Lemma 4.6. Under Assumption 3.1, for fixed δ > 0, the function

α 7→ ∥F (uδα)− f δ∥

is non-decreasing and the function

α 7→ ∥uδα − u∥1

is non-increasing.
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Proof. We begin by showing that the function α 7→ ∥uδα − u∥1 is non-
increasing.

Let 0 < α ≤ β. Then

T δ
β (u

δ
β) ≤ T δ

β (u
δ
α) = T δ

α(u
δ
α) + (β − α)∥uδα − u∥21

≤ T δ
α(u

δ
β) + (β − α)∥uδα − u∥21

= T δ
β (u

δ
β) + (β − α)(∥uδα − u∥21 − ∥uδβ − u∥21).

Therefore, we have ∥uδα−u∥21 ≥ ∥uδβ−u∥21, which confirms the first statement.
This allows us to compute

∥F (uδα)− f δ ∥2 + α∥uδα − u∥21 = T δ
α(u

δ
α)

≤ T δ
α(u

δ
β) = ∥F (uδβ)− f δ ∥2 + α∥uδβ − u∥21

≤ ∥F (uδβ)− f δ ∥2 + α∥uδα − u∥21.

It follows that ∥F (uδα)− f δ ∥2 ≤ ∥F (uδβ)− f δ ∥2, confirming the monotonic

behavior of α 7→ ∥F (uδα)− f δ∥.

Lemma 4.7. Under Assumptions 3.1 and 3.7, for fixed δ > 0, the function
α 7→ ∥F (uδα)− f δ∥ satisfies

lim
α↓0

∥F (uδα)− f δ∥ ≤ δ and lim
α→∞

∥F (uδα)− f δ∥ = ∥F (u)− f δ ∥. (25)

Furthermore,
lim
α→∞

∥uδα − u∥ = 0.

Proof. We begin by showing the last assertion, limα→∞∥uδα − u∥ = 0. The
estimate

∥F (uδα)− f δ∥2 + α∥uδα − u∥21 = T δ
α(u

δ
α) ≤ T δ

α(u) = ∥F (u)− f δ∥2 (26)

yields ∥uδα − u∥1 = O(α−1/2) as α → ∞. This, together with condition (7) of
the operator B, implies that ∥uδα − u∥ = O(α−1/2) as α → ∞.

The first statement of (25) follows from Lemma 4.1.
It remains to verify the second statement of (25). On the one hand, taking

the limit as α → ∞ in (26) gives

lim
α→∞

∥F (uδα)− f δ ∥ ≤ ∥F (u)− f δ ∥.

On the other hand, the convergence limα→∞ ∥uδα − u∥ = 0, together with
the sequential continuity of F with respect to the weak topologies of X
and Y and the weak lower semi-continuity of the norm ∥ · ∥ in Y , yields
limα→∞ ∥F (uδα)− f δ ∥ ≥ ∥F (u)− f δ ∥. This shows limα→∞ ∥F (uδα)− f δ ∥ =
∥F (u)− f δ ∥.
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Remark 4.8. • The statements of Lemma 4.6 and Lemma 4.7 concerning
non-oversmoothing Tikhonov regularization can be found in [58, Section 3.2].

• Note that Assumption 3.7 in Lemma 4.7 is only required to show that
limα↓0∥F (uδα)− f δ∥ ≤ δ through Lemma 4.1.

The statements of Lemma 4.6 and Lemma 4.7 justify the discrepancy
principle, defined in Definition 4.9 below, as a method for selecting the
regularization parameter α. Just like Lemma 4.6 and Lemma 4.7, the definition
for the sequential discrepancy principle originates from [24] and [58, p. 70].

Definition 4.9. (Discrepancy principle) For constants k, l ∈ (1,∞) proceed
as follows:

(a) If ∥F (u)− f δ∥ ≤ kδ holds, choose αdis = ∞, which means uδαdis
:= u ∈ D.

(b) If ∥F (u)− f δ∥ > kδ, determine α =: αdis ∈ (0,∞) such that

∥F (uδαdis
)− f δ∥ ≤ kδ ≤ ∥F (uδγ∗)− f δ∥, (27)

for some γ∗ ∈ [αdis, lαdis].

We can now proceed to establish relevant bounds for norms involving the
regularized solution uδαdis

.

Corollary 4.10. Let Assumptions 3.1 and 3.7 be satisfied. Further, let k > 1
be the constant specified in the discrepancy principle 4.9. Then, for α = αdis

determined through the discrepancy principle, we have

∥uδαdis
− u†∥−a ≤

k + 1

ca
δ for each 0 < δ <∞.

Proof. An application of estimate (20) and the triangle inequality yields

ca∥uδαdis
− u†∥−a ≤ ∥F (uδαdis

)− f †∥ ≤ ∥F (uδαdis
)− f δ ∥+ δ ≤ (k + 1)δ. (28)

The right-hand side of (28) is bounded from above by (k + 1)δ0 for δ ≤ δ0,
validating the applicability of the estimate (20). Division of (28) by ca
completes the proof.

As in the proof of the main theorem of the previous section, we require a
result similar to that of Corollary 4.2, tailored to the situation where α = αdis

is selected by the discrepancy principle. To establish such a result, we seek a
lower bound for αdis. The following result in Lemma 4.11 gives a lower bound
for the inverse of a specific function, which is instrumental in determining
this lower bound for αdis.
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Lemma 4.11. Let b, d > 0 be finite constants. We define the function χb,d by

χb,d : (0, ∥G∥] → R, t 7→ t
1
b (− ln ct)−d . (29)

Its inverse χ−1
b,d satisfies

χ−1
b,d(t) ≥ C5t

b (− ln ct)bd for 0 < t ≤ ∥G∥

and for some constant C5 > 0.

Proof. The basic idea of this proof stems from the proof of Lemma 3.3 in [55].
Noticing that χb,d is continuous and strictly monotonically increasing with
limt↓0 χb,d(t) = 0, we set χ−1

b,d(t) = λ. By multiplying tb(− ln ct)bd/(tb(− ln ct)bd),
we artificially expand this latter equation to

χ−1
b,d(t) = tb(− ln ct)bd

λ

tb(− ln ct)bd
. (30)

We consider the fraction in (30) separately and substitute t = χb,d(λ):

λ

tb(− ln ct)bd
=

λ(
λ

1
b (− ln cλ)

−d)b(− ln
(
cλ

1
b (− ln cλ)

−d))bd
=

(− ln
(
cλ

1
b

(
− ln cλ

)−d)
− ln cλ

)−bd

=
( 1

b ln cλ+ ln(c1−
1
b )− d ln (− ln cλ)

ln cλ

)−bd

=
(
1

b
+

ln(c1−
1
b )− d ln (− ln cλ)

ln(cλ)

)−bd

.

Now as λ ↓ 0, or equivalently t ↓ 0, we have

lim
λ↓0

(
1

b
+

ln c1−
1
b − d ln (− ln cλ)

ln cλ

)−bd

= bbd.

It follows

χ−1
b,d(t) = tb(− ln ct)bd(bbd + o(1)) as t ↓ 0.

Arguing that χ−1
b,d is continuous on the compact interval [ε, ∥G∥], for ε > 0

small, yields the existence of a constant C5 > 0 such that

χ−1
b,d(t) ≥ C5t

b(− ln ct)bd for 0 < t ≤ ∥G∥.
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Lemma 4.12 (Lower bound for αdis). Assume that case (b) of Definition 4.9
applies and that Assumptions 3.1 and 3.7 are satisfied. Then there exist
positive and finite constants C and δ0 such that the regularization parameter
αdis, chosen according to Definition 4.9, satisfies

αdis ≥ Cδr (− ln cδ)κr = Cδrφ(δ)−r for 0 < δ ≤ δ0,

with r given in Lemma 3.11.

In the following proof and throughout this thesis, the symbol ∼ denotes
asymptotic equivalence in the usual sense. This means we consider two
functions or sequences to be asymptotically equivalent if their behavior
becomes increasingly similar as a certain parameter approaches infinity or
some other limit. Specifically, f(x) ∼ g(x) as x→ x0, for some functions f
and g and some value x0, means that limx→x0 f(x)/g(x) = 1.

Proof. Let C4 and C5 be the constants from Lemma 4.1 and Lemma 4.11,
respectively. Further, let k, l, and γ∗ be the constants from Definition 4.9.
We consider the case 0 < lαdis ≤ ∥G∥ first. Condition (27) in case (b) of
Definition 4.9, the monotonic behavior of α 7→ ∥F (uδα)− f δ ∥, as described in
Lemma 4.6, and Lemma 4.1 yield

kδ ≤ ∥F (uδγ∗)− f δ∥ ≤ ∥F (uδlαdis
)− f δ ∥ ≤ C4(lαdis)

a+p
2a+2φ(lαdis) + δ

= C4χr,κ(lαdis) + δ,
(31)

where χr,κ is defined as in (29). The function χr,κ can be applied because
lαdis ≤ ∥G∥. We rearrange the estimate in (31) and write

C−1
4 (k − 1)δ ≤ χr,κ(lαdis).

The left-hand side is positive, because k > 1. Further, we can assume that
C−1

4 (k − 1)δ ≤ ∥G∥, for δ ≤ δ0 small enough, which allows an application of
the estimate for the inverse of χr,κ as given in Lemma 4.11:

lαdis ≥ C5(C
−1
4 (k − 1)δ)r(− ln cC−1

4 (k − 1)δ)κr for δ ≤ δ0.

We use the asymptotic equivalence

ln cδ ∼ ln cC−1
4 (k − 1)δ as δ ↓ 0

to deduce

αdis ≥ C6δ
r(− ln cδ)κr for δ ≤ δ0,
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for some positive and finite constant C6 and provided that δ0 is small enough.
In the case ∥G∥ < lαdis <∞ the assertion still follows, because

lαdis > ∥G∥

⇔ αdis >
∥G∥
l

≥ ∥G∥
l
δr (− ln cδ)κr for δ ≤ δ0,

with δ0 sufficiently small.

The lower bound of Lemma 4.12 allows us to verify the next estimate in
Lemma 4.13. This estimate is essential for proving this section’s main result,
stated in Theorem 4.14.

Lemma 4.13. Let Assumptions 3.1 and 3.7 be satisfied and suppose that αdis

is determined through the discrepancy principle in Definition 4.9. Then, we
can conclude that

∥uδαdis
− u∥1 = O

(
δ

p−1
a+pφ (δ)

a+1
a+p

)
as δ ↓ 0.

Proof. To prove the statement, we consider three different scenarios for
possible values of αdis:

• 0 < αdis ≤ ∥G∥,
• ∥G∥ < αdis <∞, and

• αdis = ∞.

We start with the examination of the first case. Corollary 4.2 yields

∥uδαdis
− u∥1 ≤ C4α

p−1
2a+2
dis φ(αdis) +

δ√
αdis

for 0 < αdis ≤ ∥G∥.

The term on the right-hand side is monotonically non-increasing for 0 < αdis ≤
∥G∥. Therefore, we insert the lower bound for αdis given in Lemma 4.12 to
obtain

∥uδαdis
− u∥1 ≤ C4(Cδ

rφ(δ)−r)
p−1
2a+2φ(Cδrφ(δ)−r) +

δ√
Cδrφ(δ)−r

, (32)

with 0 < δ ≤ δ0 small enough. Noticing that the lower bound Cδrφ(δ)−r of
αdis up to the constant C coincides with the a priori parameter choice β∗ for
the auxiliary elements in Lemma 3.11, we can show in the same manner as in
the proof of that lemma that

φ(Cδrφ(δ)−r) = O(φ(δ)) as δ ↓ 0.
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We use this asymptotic behavior together with

C4(Cδ
rφ(δ)−r)

p−1
2a+2 = C̃(δ

2a+2
a+p φ(δ)−

2a+2
a+p )

p−1
2a+2 = C̃δ

p−1
a+pφ(δ)

1−p
a+p ,

where C̃ := C4C
p−1
2a+2 , to deduce the following asymptotic behavior for the

first summand of (32):

C4(Cδ
rφ(δ)−r)

p−1
2a+2φ(Cδrφ(δ)−r) = C̃δ

p−1
a+pφ(δ)−

p−1
a+pO(φ(δ))

= O(δ
p−1
a+pφ(δ)

a+1
a+p ) as δ ↓ 0.

For the second summand in (32), we calculate

δ√
Cδrφ(δ)−r

= O(δ1−
a+1
a+pφ(δ)

a+1
a+p ) = O(δ

p−1
a+pφ(δ)

a+1
a+p ) as δ ↓ 0.

Hence, we conclude

∥uδαdis
− u∥1 = O(δ

p−1
a+pφ(δ)

a+1
a+p ) as δ ↓ 0.

Next, let ∥G∥ < αdis <∞. Since

∥F (uδαdis
)− f δ∥2 + αdis∥uδαdis

− u∥21 = T δ
αdis

(uδαdis
) ≤ T δ

αdis
(u) = ∥F (u)− f δ∥2,

we have

∥uδαdis
− u∥1 ≤

√
1

αdis

∥F (u)− f δ∥ = O(1) as δ ↓ 0.

Thus, especially

∥uδαdis
− u∥1 = O(δ

p−1
a+pφ(δ)

a+1
a+p ) as δ ↓ 0,

because limδ↓0 δ
p−1
a+pφ(δ)

a+1
a+p = ∞.

The third case αdis = ∞ coincides with case (a) of Definition 4.9, respec-
tively with the choice of uδαdis

= u. Thereupon, the claim of the lemma is an
immediate consequence.

The previous results provide all the necessary components to prove this
section’s main result, which expresses the convergence rate of the discrepancy
principle in the given setting. This convergence rate is asymptotically optimal
according to [28]. It is the same convergence rate as for the a priori parameter
choice established in Section 4.1.
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Theorem 4.14 (Convergence rates for the discrepancy principle). Under
Assumptions 3.1 and 3.7, the convergence rate

∥uδαdis
− u†∥ = O(δ

p
a+pφ(δ)

a
a+p ) as δ ↓ 0,

is attained for αdis selected by the discrepancy principle, specified in Defini-
tion 4.9.

Proof. We follow the decomposition procedure of ∥uδαdis
−u†∥ as in the proof of

Theorem 4.4. For the auxiliary elements ûβ, we use the regularization param-
eter β∗ as in Lemma 3.11 and write ûβ∗ . The triangle and the interpolation
inequality (8) yield

∥uδαdis
− u†∥ ≤ ∥uδαdis

− ûβ∗∥+ ∥ûβ∗ − u†∥

≤ ∥uδαdis
− ûβ∗∥−a︸ ︷︷ ︸
=:I

1
a+1∥uδαdis

− ûβ∗∥1︸ ︷︷ ︸
=:II

a
a+1 + ∥ûβ∗ − u†∥︸ ︷︷ ︸

=:III

. (33)

First, we establish a bound for the expression in I. The triangle inequality
yields

I = ∥uδαdis
− ûβ∗∥−a ≤ ∥uδαdis

− u†∥−a + ∥u† − ûβ∗∥−a. (34)

According to Corollary 4.10, we have

∥uδαdis
− u†∥−a = O(δ) as δ ↓ 0.

For the second summand in (34), item (ii) of Lemma 3.11 yields

∥u† − ûβ∗∥−a = O(δ) as δ ↓ 0.

It follows
I = O(δ) as δ ↓ 0.

Next, we estimate the expression in II. The triangle inequality yields

II = ∥uδαdis
− ûβ∗∥1 ≤ ∥uδαdis

− u∥1 + ∥u− ûβ∗∥1.
It follows from Lemma 4.13 and item (iii) of Lemma 3.11 that

II = O(δ
p−1
a+pφ(δ)

a+1
a+p ) as δ ↓ 0.

An estimate for the term in III is given by item (i) of Lemma 3.11:

III = ∥ûβ∗ − u†∥ = O(δ
p

a+pφ(δ)
a

a+p ) as δ ↓ 0.

Inserting the bounds for the components I , II , and III into estimate (33), we
can confirm the assertion of the theorem:

∥uδαdis
− u†∥ ≤ O(δ)

1
a+1O(δ

p−1
a+pφ(δ)

a+1
a+p )

a
a+1 +O(δ

p
a+pφ(δ)

a
a+p )

= O(δ
p

a+pφ(δ)
a

a+p ) as δ ↓ 0.
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5 Fourier series of a specific function

In this chapter, we seek a cosine series of the form

u∗(t) =
∞∑
n=1

an
√
2 cos(n− 1

2
)πt (35)

for u∗ given by

u∗ : (0, 1] → [0,∞), t 7→ t−µ(− ln θt)−ν , 0 < µ, θ < 1, ν > 0. (36)

The motivation for seeking such a representation becomes evident in Chapter 6.
Representation (35) allows us to verify the smoothness conditions on u∗ for
the example considered in Chapter 6. Specifically, in Chapter 6, we use
representation (35) to confirm that the considered solution u† is smooth
enough to meet the mixed source condition (18) but not sufficiently smooth
to lie in X1. Consequently, it is an appropriate example in the oversmoothing
analysis.

We show first that the system {
√
2 cos(n− 1/2)πt | 0 ≤ t ≤ 1}n∈N indeed

forms a complete orthonormal system, that is an orthonormal basis, of L2(0, 1).
This ensures that every element u ∈ L2(0, 1) admits the representation

u(t) =
∞∑
n=1

an
√
2 cos(n− 1

2
)πt, 0 ≤ t ≤ 1,

with coefficients an given by

an =
√
2

∫ 1

0

u(t) cos(n− 1
2
)πt dt, n ∈ N.

The orthonormality can be shown straightforwardly, so we omit these steps
here. To verify completeness of the system, we construct this representation
from the original Fourier series representation. According to Fourier analysis,
every square-integrable and 2π-periodic function

f̃ : [−π, π] → C

has the representation

f̃(x) =
∑
n∈Z

1

2π

∫ π

−π

f̃(t) e −int dt e inx, −π ≤ x ≤ π.
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For u ∈ L2(0, 1) arbitrary, we define its even extension ũ by

ũ(x) =

{
u(x), 0 ≤ x ≤ 1,

u(−x), −1 ≤ x < 0,

and consider

f̃(x) = ũ(x
π
) e

ix
2 .

This function has the series representation

ũ(x
π
) e

ix
2 =

∑
n∈Z

1

2π

∫ π

−π

ũ( t
π
) e

it
2 e −int dt e inx, −π ≤ x ≤ π.

Substitution of x = x/π and t = t/π yields

ũ(x) e
iπx
2 =

∑
n∈Z

1

2

∫ 1

−1

ũ(t) e −i(n− 1
2
)πt dt e iπnx, −1 ≤ x ≤ 1,

which is equivalent to

ũ(x) =
∑
n∈Z

1

2

∫ 1

−1

ũ(t) e −i(n− 1
2
)πt dt e i(n− 1

2
)πx, −1 ≤ x ≤ 1.

Using

e −i(n− 1
2
)πt = cos(n− 1

2
)πt− i sin(n− 1

2
)πt

and the fact that ũ is even, we can conclude that

ũ(x) =
∑
n∈Z

∫ 1

0

u(t) cos(n− 1
2
)πt dt cos(n− 1

2
)πx, −1 ≤ x ≤ 1.

We split the sum into two sums, shift the index in the first sum, and use the
property that cosine is an even function to obtain

ũ(x) =
∑
n∈N0

∫ 1

0

u(t) cos(−n− 1
2
)πt dt cos(−n− 1

2
)πx

+
∑
n∈N

∫ 1

0

u(t) cos(n− 1
2
)πt dt cos(n− 1

2
)πx

= 2
∑
n∈N

∫ 1

0

u(t) cos(n− 1
2
)πt dt cos(n− 1

2
)πx, −1 ≤ x ≤ 1.
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Restricting the domain of ũ to the interval [0, 1] yields the desired representa-
tion:

u(x) =
∑
n∈N

√
2

∫ 1

0

u(t) cos(n− 1
2
)πt dt

√
2 cos(n− 1

2
)πx, 0 ≤ x ≤ 1.

The coefficients for the function u∗ in (36) cannot be determined explicitly,
because the integral needed to calculate them is too complex to evaluate.
However, the following result gives the asymptotic behavior of the coefficients
for large n ∈ N. At this point, we reiterate that the symbol ∼ denotes
asymptotic equivalence in the usual manner, as mentioned prior to the proof
of Lemma 4.12.

Theorem 5.1. The coefficients an, n ∈ N of the series representation (35)
for u∗ given in (36) have the asymptotic behavior

an ∼
√
2πµ−1(n− 1

2
)µ−1(lnn)−νΓ(1− µ) sin

πµ

2
as n→ ∞.

The Greek letter Γ represents the Gamma function defined as

Γ(z) =

∫ ∞

0

tz−1 e −t dt, z ∈ C, Re(z) > 0,

where Re(z) denotes the real part of z.

Remark 5.2. The result of Theorem 5.1 can be generalized by replacing the
expression (− ln θt)−ν in (36) with a function L : (0, K] → (0,∞), x 7→ L(x),
K > 0, that is slowly varying as x → 0 and of bounded variation in every
interval (ε,K) for ε > 0. In this context, we call a function slowly varying
as x → 0, if for all δ > 0, the function x−δL(x) is decreasing and xδL(x) is
increasing in some neighborhood of x = 0. Such a generalized result is given
by Theorem 2.24 in [60, Chapter V]. The asymptotic behavior of the series
coefficients there are given based on classical orthonormal basis functions
en(t) = e int for n ∈ N0 and t ∈ (0, π], whereas we consider here the functions√
2 cos((n− 1/2)πt) with n ∈ N and t ∈ (0, 1] as orthonormal basis functions.

A sketch of a proof of that theorem is provided, primarily referring to the proof
of Theorem 2.6 in the same chapter of [60]. This referenced theorem provides
a converse result: for a given Fourier series of a function, it determines the
asymptotic behavior of the explicit representation of that function.

To prepare the proof of Theorem 5.1, we present some required results.
Firstly, we state the following mean value Theorem for integrals. This theorem
is well known and it can be found, for example, in [11, p. 134].
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Theorem 5.3 (Mean value Theorem for definite integrals). Let f : [a, b] → R
be a continuous function and let g : [a, b] → [0,∞) be integrable, then there
exists a number ξ ∈ [a, b] such that∫ b

a

f(x)g(x) dx = f(ξ)

∫ b

a

g(x) dx.

Proof. See for example [11].

A second result that we use to prove Theorem 5.1 is a conclusion of the
following representation of the Gamma function. This representation can be
found, for example, in [51, Theorem 2.12] or under equation (13·10) in [60,
Chapter II].

Lemma 5.4. Let z ∈ C with 0 < Re(z) < 1, then

e −πiz
2 Γ(z) =

∫ ∞

0

tz−1 e −it dt. (37)

Proof. The proof requires knowledge on complex analysis and line integrals,
so we refer to the textbook [51] for a detailed proof. In [60], the procedure
to deduce the result from the classical integral representation of the gamma
function is explained, as well.

Based on Lemma 5.4, we obtain the following result, which is essential
for proving Theorem 5.1. It is available, for example, as equation (37) in [2,
Section 1.6].

Corollary 5.5. For x ∈ R, with 0 < x < 1, we have

sin
πx

2
Γ(1− x) =

∫ ∞

0

t−x cos t dt.

Proof. By taking the real part of (37) with z replaced by 1− x, we deduce

Re( e −πi(1−x)
2 Γ(1− x)) = Re

(∫ ∞

0

t−x e −it dt
)
, 0 < x < 1

⇔ cos
π(1− x)

2
Γ(1− x) =

∫ ∞

0

t−x cos t dt, 0 < x < 1.

Because

cos
π(1− x)

2
= sin

πx

2
,

the statement of the corollary follows.
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Now we can proceed to the proof of Theorem 5.1.

Proof of Theorem 5.1. The proof is inspired by the approach in [60], where,
as mentioned in Remark 5.2, a converse result is proven. To keep the notation
simple, we use the notation ξ in each application of the mean value Theorem 5.3
for definite integrals, even though its value may differ depending on individual
applications.

To give an approximate behavior of an as n→ ∞, we split the integral

an =
√
2

∫ 1

0

u∗(t) cos(n− 1
2
)πt dt, n ∈ N,

into three parts:

an =
√
2(T1 + T2 + T3),

with

T1 :=

∫ ω
(n−1/2)π

0

t−µ(− ln θt)−ν cos(n− 1
2
)πt dt,

T2 :=

∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ(− ln θt)−ν cos(n− 1
2
)πt dt, and

T3 :=

∫ 1

Ω
(n−1/2)π

t−µ(− ln θt)−ν cos(n− 1
2
)πt dt,

where ω > 0 is sufficiently small and Ω > ω is sufficiently big. Let ε > 0.
Moreover, let n0 ≥ Ω/π + 1/2 represent a sufficiently large natural number.

An application of Theorem 5.3 yields for some ξ ∈ [0, ω
(n−1/2)π

] that

|T1| ≤
∫ ω

(n−1/2)π

0

∣∣t−µ(− ln θt)−ν cos(n− 1
2
)πt

∣∣ dt
≤

∫ ω
(n−1/2)π

0

t−µ(− ln θt)−ν dt = (− ln θξ)−ν

∫ ω
(n−1/2)π

0

t−µ dt

≤
(
− ln θ

ω

(n− 1
2 )π

)−ν 1

1− µ

(
ω

(n− 1
2 )π

)1−µ

≤ ε(n− 1
2
)µ−1πµ−1(lnn)−ν ,

for ω small and n ≥ n0. We continue with the examination of T2:

T2 =

∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ(− ln θt)−ν cos(n− 1
2
)πt dt
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=

∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ(lnn)−ν cos(n− 1
2
)πt dt

+

∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ((− ln θt)−ν − (lnn)−ν) cos(n− 1
2
)πt dt

= T
′

2 + T
′′

2 ,

with

T
′

2 :=

∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ(lnn)−ν cos(n− 1
2
)πt dt and

T
′′

2 :=

∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ((− ln θt)−ν − (lnn)−ν) cos(n− 1
2
)πt dt.

Substituting x = (n− 1/2)πt in T
′
2 gives

T
′

2 = (lnn)−ν(n− 1
2
)µ−1πµ−1

∫ Ω

ω

x−µ cos x dx.

For the integral, we have according to Corollary 5.5 that∫ Ω

ω

x−µ cos x dx ∈ (Γ(1− µ) sin(1
2
πµ)± ε),

for ω small and Ω big. Hence

T
′

2 ∈ (γ ± ε)(lnn)−ν(n− 1
2
)µ−1πµ−1,

with
γ := Γ(1− µ) sin 1

2
πµ.

An application of Theorem 5.3 to T
′′
2 , for ξ ∈

[
ω

(n−1/2)π
, Ω
(n−1/2)π

]
, results in

|T ′′

2 | ≤
∫ Ω

(n−1/2)π

ω
(n−1/2)π

|t−µ((− ln θt)−ν − (lnn)−ν) cos(n− 1
2
)πt| dt

≤
∫ Ω

(n−1/2)π

ω
(n−1/2)π

∣∣t−µ((− ln θt)−ν − (lnn)−ν)
∣∣ dt

=
∣∣(− ln θξ)−ν − (lnn)−ν

∣∣ ∫ Ω
(n−1/2)π

ω
(n−1/2)π

t−µ dt

=
|(− ln θξ)−ν − (lnn)−ν |

1− µ

((
Ω

(n− 1
2 )π

)1−µ

−
(

ω

(n− 1
2 )π

)1−µ)
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< ε(lnn)−ν(n− 1
2
)µ−1πµ−1 for n ≥ n0.

The last inequality follows because the asymptotic equivalence

(ln K
θ
(n− 1

2
))−ν ∼ (lnn)−ν as n→ ∞

holds uniformly for K ∈
[
π/Ω, π/ω

]
.

To give an estimate for T3, we first note that the function u∗, given as
in (36), is monotonically non-increasing on (0, θ−1 e −ν/µ] and monotonically
increasing on (θ−1 e −ν/µ,∞). Thus, depending on whether t∗ := θ−1 e −ν/µ

lies underneath, within, or above the interval

I :=
[ Ω

(n− 1/2)π
, 1
]
,

we distinguish three cases that determine the piecewise monotonic behavior
of u∗ on I:

(a) If t∗ = θ−1 e −ν/µ < Ω
(n−1/2)π

, then u∗ is monotonically increasing on I.

(b) If Ω
(n−1/2)π

≤ t∗ < 1, then u∗ is monotonically non-increasing on [ Ω
(n−1/2)π

, t∗]

and monotonically increasing on (t∗, 1].

(c) If 1 ≤ t∗, then u∗ is monotonically non-increasing on I.

By partial integration, with the notation u′∗(t) := d/ dt(u∗(t)), it follows

T3 =

∫ 1

Ω
(n−1/2)π

u∗(t) cos(n− 1
2
)πt dt

=
1

(n− 1
2 )π

(
sin((n− 1

2
)πt)u∗(1)− sin(Ω)u∗

(
Ω

(n− 1
2 )π

))
− 1

(n− 1
2 )π

∫ 1

Ω
(n−1/2)π

u′∗(t) sin(n− 1
2
)πt dt.

Thus

|T3| ≤
1

(n− 1
2 )π

(∣∣∣ sin((n− 1
2
)πt)u∗(1)− sin(Ω)u∗

(
Ω

(n− 1
2 )π

)∣∣∣
+
∣∣∣∫ 1

Ω
(n−1/2)π

u′∗(t) sin(n− 1
2
)πt dt

∣∣∣)
≤ 1

(n− 1
2 )π

(
u∗(1) + u∗

(
Ω

(n− 1
2 )π

)
+
∣∣∣∫ 1

Ω
(n−1/2)π

u′∗(t) sin(n− 1
2
)πt dt

∣∣∣)
≤ 1

(n− 1
2 )π

(
u∗(1) + u∗

(
Ω

(n− 1
2 )π

)
+

∫ 1

Ω
(n−1/2)π

|u′∗(t)| dt
)
. (38)
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Based on this latter estimate (38), we proceed to examine the three cases (a),
(b), and (c), which determine the sign of the integral in (38). We examine
case (a) first. In this case u′∗(t) > 0, hence

|T3| ≤
1

(n− 1
2 )π

(
u∗(1) + u∗

(
Ω

(n− 1
2 )π

)
+

∫ 1

Ω
(n−1/2)π

u′∗(t) dt
)

=
1

(n− 1
2 )π

(
u∗(1) + u∗

(
Ω

(n− 1
2 )π

)
+ u∗(1)− u∗

(
Ω

(n− 1
2 )π

))
=

2

(n− 1
2 )π

u∗(1)

= O((lnn)−ν(n− 1
2
)µ−1πµ−1) as n→ ∞.

The last equation follows, because

lim
n→∞

2
(n− 1

2 )π
u∗(1)

(lnn)−ν
((
n− 1

2

)
π
)µ−1 = 2(− ln θ)−ν lim

n→∞

(lnn)ν((
n− 1

2

)
π
)µ = 0.

Now we examine case (c). In this case u′∗(t) ≤ 0, hence

|T3| ≤
1

(n− 1
2 )π

(
u†(1) + u∗

(
Ω

(n− 1
2 )π

)
−

∫ 1

Ω
(n−1/2)π

u′∗(t) dt
)

=
1

(n− 1
2 )π

(
u∗(1) + u∗

(
Ω

(n− 1
2 )π

)
− u∗(1) + u∗

(
Ω

(n− 1
2 )π

))
=

2

(n− 1
2 )π

u∗

(
Ω

(n− 1
2 )π

)
= 2((n− 1

2
)π)µ−1Ω−µ

(
ln

(n− 1
2 )π

θΩ

)−ν

≤ ε(lnn)−ν(n− 1
2
)µ−1πµ−1,

for Ω big and n ≥ n0. For case (b) we split the integral in (38) into two
integrals : ∫ t∗

Ω
(n−1/2)π

|u′∗(t)| dt+
∫ 1

t∗

|u′∗(t)| dt

≤− u∗(t∗) + u∗

(
Ω

(n− 1
2 )π

)
+ u∗(1)− u∗(t∗)

≤u∗
(

Ω

(n− 1
2 )π

)
+ u∗(1).

An upper bound of |T3| is thus given by

|T3| ≤
2

(n− 1
2 )π

(
u∗

(
Ω

(n− 1
2 )π

)
+ u∗(1)

)
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≤ ε(lnn)−ν(n− 1
2
)µ−1πµ−1,

for Ω big and n ≥ n0. Collecting the estimates for T1, T2, and T3, it follows

√
2(γ − 4ε)(n− 1

2
)µ−1πµ−1(lnn)−ν < an <

√
2(γ +4ε)(n− 1

2
)µ−1πµ−1(lnn)−ν

for n ≥ n0. As ε > 0 approaches 0, the assertion of the theorem follows.
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6 Numerical results

In this chapter, we present the numerical results, both for α chosen a priori
and according to the discrepancy principle. The discrepancy principle is
realized by Algorithm 1 that is based on the procedure described in [24].

As an example, we consider the exponential growth model. In the over-
smoothing setting this example is also considered in the appendix of [23], as
well as in [19], and in [20] in a Banach space setting. Initially, it was presented
in [14, Section 3.1]. In what follows, we denote by u′ ∈ L1(0, 1) the weak
derivative of a function u ∈ L1(0, 1), that means∫ 1

0

u(t)f ′(t) dt = −
∫ 1

0

u′(t)f(t) dt,

for all infinitely differentiable functions f with f(0) = f(1) = 0. The
exponential growth model is described by the initial value problem

f ′(t) = u(t)f(t), 0 ≤ t ≤ T, f(0) = f0, (39)

for some positive constants T and f0. The function f : [0, T ] → [0,∞) is
interpreted as the time dependent size of a population. It is assumed that
the population size commences with an initial population size f0 and that
it can be measured throughout the observation period [0, T ]. The function
u : [0, T ] → R is interpreted as the time dependent growth rate. Defining the
forward operator F : L2(0, T ) → L2(0, T ) by

[F (u)](t) = f0 exp

(∫ t

0

u(z)dz

)
, 0 ≤ t ≤ T,

we can rewrite the initial value problem (39) as the operator equation

F (u) = f,

which is ill-posed on the whole domain D(F ) := L2(0, T ). The aim is to
determine the growth rate

u(t), 0 ≤ t ≤ T,

from noisy observations f δ ∈ L2(0, T ). To define an appropriate Hilbert scale,
we introduce the integration operator

J : X → X, [Ju](t) :=

∫ t

0

u(z)dz, 0 ≤ t ≤ T.
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By means of this operator, we define the linear, selfadjoint, and unbounded
operator

B = (J∗J)−
1
2 .

Moreover, we set
T = 1 and f0 = 1.

The scale generated by B is then given by

Xp = D(Bp) = R((J∗J)
p
2 ) = R((J∗)p), 0 < p ≤ 1,

where (J∗)p = (Jp)∗, with 0 < p ≤ 1, is the adjoint of a Riemann-Liouville
fractional integral operator Jp. Depending on the value of p, the spaces Xp

exhibit the following relation to Sobolev or fractional Sobolev spaces:

Xp =


Hp(0, 1) for 0 < p < 1/2

{u ∈ H1/2(0, 1) :
∫ 1

0
|u(x)|2/(1− x) dx <∞} for p = 1/2

{u ∈ Hp(0, 1) : u(1) = 0} for 1/2 < p < 3/2

{u ∈ H2(0, 1) : u′(0) = 0, u(1) = 0} for p = 2

,

see [12], or the references therein, that is [13, Lemma 8] and [36, Example 2.1.5].
The Sobolev spaces H1(0, 1) and H2(0, 1) consist of all square integrable
functions whose first and second weak derivatives, respectively, exist and lie
in L2(0, 1) as well. For non-integer values p > 0, the Sobolev spaces Hp(0, 1)
can be defined by an interpolation argument, and the corresponding norms
can be defined through Fourier analysis. See [12] or [1] for more details. The
appendix of [23] demonstrates that this example satisfies Assumption 3.7 (f)
with a = 1. In the next steps, we verify that the solution

u†(t) = (1− µ)t−µ(− ln θt)−ν + νt−µ(− ln θt)−ν−1, 0 < t ≤ 1,

with positive constants
µ < 1, ν, and θ < 1,

having
f †(t) = exp(t1−µ(− ln θt)−ν)

as an image under the operator F , is an appropriate example for the numerical
analysis of the oversmoothing Tikhonov regularization. Specifically, we show
that u† /∈ X1, or equivalently u† /∈ R(B−1), but u† ∈ R(Gpφ(G)) if the
constants µ, ν, κ, and p are chosen properly. As presented in [18, p. 101], the
singular value decomposition for the integration operator J is given by

Ju =
∞∑
i=1

σi⟨u, ui⟩vi,
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with singular values

σi =
1

(i− 1
2 )π

, i ∈ N,

and eigenfunctions

ui(t) =
√
2 cos(i− 1

2
)πt, vi(t) =

√
2 sin(i− 1

2
)πt, 0 ≤ t ≤ 1, i ∈ N.

We have seen in the preliminary steps of Chapter 5 that the system {ui(t)}i∈N
forms an orthonormal basis of the space L2(0, 1). Analogously, it can be
shown that the system {vi(t)}i∈N also forms an orthonormal basis of that
space. The singular value decomposition of J allows us to formulate the
operators G and Gpφ(G) as

Gu =
∞∑
i=1

σ4
i ⟨u, ui⟩ui and Gpφ(G)u =

∞∑
i=1

σ4p
i φ(σ

4
i )⟨u, ui⟩ui,

respectively. According to Theorem 5.1, the solution u† has the representation

u† =
∞∑
i=1

|⟨u†, ui⟩|ui =
∞∑
i=1

(ai + bi)ui

with

ai ∼
√
2γ(1− µ)πµ−1(i− 1

2
)µ−1(ln π

c1/4
(i− 1

2
))−ν and (40)

bi ∼
√
2γνπµ−1(i− 1

2
)µ−1(ln π

c1/4
(i− 1

2
))−ν−1

as i → ∞, where µ < 1, ν > 0, c ≤ (π/2)4, and γ = Γ(1 − µ) sin(πµ/2).
Without loss of generality, we have adjusted the expression in the logarithm.
The Picard criterion, which is given for example in [8, Theorem 2.8], states that
for the compact operator J with singular system {σi, ui, vi}i∈N, an element
u ∈ R(J) belongs to R(J) if and only if the series

∑∞
i=1 σ

−2
i |⟨u, vi⟩|2 converges.

We apply the Picard criterion to the compact operator Gp/4 to determine
which values for µ and ν yield u† /∈ Xq = D(Bq) = R(Gq/4). In a first step,
we realize that because of ai ≥ bi for all sufficiently large i ∈ N, the following
estimate holds:

C +
∞∑

i=i0

a2i

σ2q
i

≤
∞∑
i=1

|⟨u†, ui⟩|2

σ2q
i

=
∞∑
i=1

(ai + bi)
2

σ2q
i

≤ C + 4
∞∑

i=i0

a2i

σ2q
i

, (41)

where C is a positive and finite constant representing the value of the partial
sum

∑i0
i=1(ai + bi)

2/σ2q
i , and i0 ∈ N is assumed to be large enough such that

the asymptotic behavior of ai as i → ∞ applies. Therefore, it is sufficient
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to examine the series
∑∞

i=i0
a2i /σ

2q
i with ai replaced by the sequence in (40)

describing its asymptotic behavior:

2(γ(1− µ))2
∞∑

i=i0

(π(i− 1
2 ))

2(q+µ−1)

(ln π
c1/4

(i− 1
2 ))

2ν . (42)

If q + µ = 1, the series in (42) dominates the harmonic series, which diverges.
If q + µ > 1, the sequence within the series is not a null sequence and hence
the series diverges. If q + µ < 1, the sequence is non-increasing and positive,
so we can apply the integral test and analyze the behavior of

2(γ(1− µ))2
∫ ∞

i0

(π(x− 1
2 ))

2(q+µ−1)

(ln π
c1/4

(x− 1
2 ))

2ν dx.

Substitution of e t = π
c1/4

(x− 1
2
) leads to

2(γ(1− µ))2
c

1
2 (p+µ− 1

2 )

π

∫ ∞

ln(c−1/4π(i0−1/2))

e 2t(q+µ−1)+tt−2ν dt,

which converges if and only if either q+ µ < 1/2, or q+ µ = 1/2 and ν > 1/2.
Otherwise, the series diverges. Thus u† ∈ Xq, if q < 1/2−µ, or if q = 1/2−µ
and ν > 1/2. Conversely, u† /∈ Xq if q > 1/2 − µ or if q = 1/2 − µ and
ν ≤ 1/2. Therefore, the choice µ = 1/2 yields u† /∈ Xq for any 0 < q ≤ 1.

Now we demonstrate that with u = 0, the solution u† satisfies the source
condition (18). To do this, we apply the Picard criterion to Gpφ(G). Following
the same reasoning as in (41), it is sufficient to examine the behavior of the
series beginning at an index i0 and with the asymptotic behavior of a2i
replacing |⟨u†, ui⟩|2. Specifically, we examine the behavior of

∞∑
i=i0

a2i

σ8p
i φ(σ4

i )
2
∼

∞∑
i=i0

2(γ(1− µ))2
(π(i− 1

2 ))
2(µ−1+4p)

(ln π
c1/4

(i− 1
2 ))

2ν(− ln(cσ4
i ))

−2κ

= 2(γ(1− µ))242κ
∞∑

i=i0

(π(i− 1
2 ))

2(µ−1+4p)

(ln π
c1/4

(i− 1
2 ))

2(ν−κ)
.

A first necessary condition for the sequence within the series to be a null
sequence is µ− 1 + 4p < 0. So we assume that µ− 1 + 4p < 0. The sequence
within the series is positive and non-increasing for

i ≥ max
{
1,

c
1
4

π
exp

( ν − κ

µ− 1 + 4p

)
+ 1

2

}
=: i∗.
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Without loss of generality, we can assume that i0 ≥ i∗ and apply the integral
test followed by substitution of e t = (x− 1/2)π/c1/4:

γ

∫ ∞

i0

(π(x− 1
2 ))

2(µ−1+4p)

(ln π
c1/4

(x− 1
2 ))

2(ν−κ)
dx = γ

∫ ∞

t0

c
1
2
(µ− 1

2
+4p)π−1 e 2t(µ− 1

2
+4p)t2(κ−ν) dt,

where t0 := ln(i0−1/2)π/c1/4 and γ := 2(γ(1−µ))242κ. The integral converges
if and only if either µ < 1/2− 4p, or µ = 1/2− 4p and κ < ν − 1/2. Hence,
according to the Picard criterion, u† ∈ R(Gpφ(G)) if and only if µ < 1/2−4p,
or µ = 1/2− 4p and κ < ν − 1/2.

We are interested in the case u† /∈ Xq for any 0 < q ≤ 1, in which the choice
µ = 1/2 is necessary. In this case, the exponent p in the source condition (18)
has to be zero and the condition κ < ν − 1/2 has to hold. If alternatively
µ < 1/2, then source condition (18) applies for p < 1/4(1/2−µ). In this case,
we have to take into account that the Hölder-type source condition u† ∈ Xq

applies for 0 ≤ q < 1/2− µ, which might lead to faster convergence rates of
the form δq/(a+q).

The numerical computations were carried out in RStudio [52] under the
details summarized below.

• The minimization step utilized the “fmincon” command provided by the
“pracma” package [4].

• We discretized the observation period [0.001, 1] by N = 100 grid points.
The value 0.001 was chosen instead of 0 as a left endpoint because of the
singularity of u† at 0.

• The data f δ ∈ RN were perturbed by a normalized random vector Λ ∈
[−1, 1]N with entries following a standard normal distribution: f δ = f † + Λ.

• For u†, we chose the exponents µ = 0.5 and ν = 1.25, and the constant
θ = 0.6. This choice satisfies the source condition for p = 0 and κ < 0.75.

• For the function φ, we chose the constants κ = 0.7 and c = 0.6.

• The initial constants for the discrepancy principle in Algorithm 1 were
chosen as α(0) = 0.001, ϑ = 2, and k = 5.

• The integrals were discretized using the trapezoidal rule and the deriva-
tives required to compute the norm ∥ · ∥1 were obtained by finite difference
approximations.
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Algorithm 1: Sequential discrepancy principle

Result: Parameter αdis selected according to the discrepancy
principle in Definition 4.9.

1 Choose an initial guess α(0) and constants ϑ, k > 1;
2 if ∥F (uδ

α(0))− f δ∥ ≥ kδ then
3 repeat
4 α(i) = ϑ−iα(0), i = 1, 2, . . . ,
5 determine uδ

α(i) and ∥Fuδ
α(i) − f δ∥

6 until ∥F (uδ
α(i))− f δ∥ ≤ kδ ≤ ∥F (uδ

α(i−1))− f δ∥ for the first time;

7 set αdis = α(i);
8 if ∥F (uδ

α(0))− f δ∥ ≤ kδ then
9 repeat

10 α(i) = ϑiα(0), i = 1, 2, . . . ,
11 determine uδ

α(i) and ∥F (uδ
α(i))− f δ∥

12 until ∥F (uδ
α(i−1))− f δ∥ ≤ kδ ≤ ∥F (uδ

α(i))− f δ∥ for the first time;

13 set αdis = α(i−1);
14 return αdis

δ α∗ ∥uδα∗ − u†∥ ∥uδ
α∗−u† ∥
∥u† ∥ δ

p
a+pφ(δ)

a
a+p

0.1000 1.81 · 10−3 2.1595 0.7640 0.4848
0.0500 2.10 · 10−4 1.7272 0.6110 0.4155
0.0250 2.17 · 10−5 1.3521 0.4784 0.3662
0.0125 2.08 · 10−6 1.0516 0.3720 0.3291
0.0062 1.89 · 10−7 0.8459 0.2993 0.2999
0.0031 1.64 · 10−8 0.7316 0.2588 0.2764

Table 1: A priori parameter choices for α = α∗ and errors of the regularized
solutions for different values of δ.

Table 1 and Table 2 present the numerical results for the oversmoothing
Tikhonov regularization. Table 1 shows the results for α = α∗ chosen a priori
as in Theorem 4.5. Table 2 presents the results for the discrepancy principle
with α = αdis determined sequentially through Algorithm 1. In each table,
the second column illustrates values of the regularization parameter α for
the different noise levels in column 1. The third and the fourth column show
the error and the relative error of the regularized solution, respectively. The
fifth column includes the values for established converge rate, which is given
as φ(δ). The values for α are rounded to three significant digits in scientific
notation. All other values are rounded to four decimal places.
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Figure 1: The upper graphs and the graphs on the bottom left show the
regularized solutions for different noise levels δ, compared to the actual
solution u†. The bottom-right graph shows a comparison of the errors with
the established convergence rate.
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δ αdis ∥uδαdis
− u†∥ ∥uδ

αdis
−u† ∥

∥u† ∥ δ
p

a+pφ(δ)
a

a+p

0.1000 2.00 · 10−3 2.3705 0.8386 0.4848
0.0500 2.50 · 10−4 1.7453 0.6175 0.4155
0.0250 1.56 · 10−5 1.2457 0.4407 0.3662
0.0125 1.95 · 10−6 0.9821 0.3475 0.3291
0.0063 1.22 · 10−7 0.8110 0.2869 0.2999
0.0031 3.05 · 10−8 0.7187 0.2543 0.2764

Table 2: Parameters α = αdis determined through the discrepancy principle for
different values of δ and the corresponding errors of the regularized solutions.

Figure 1 illustrates the regularized solutions for α = α∗ chosen a priori
and α = αdis determined by the discrepancy principle. The figure consists of
six graphs: the upper four and the bottom-left graphs show the regularized
solutions as solid lines for the different indicated noise levels in comparison
to the actual solution u†, which is displayed as a dotted line. Regularized
solutions for α = α∗ chosen a priori are colored black, while those resulting for
the discrepancy principle are colored purple. In the bottom-right graph, the
errors for different noise levels, as detailed in Tables 1 and 2, are depicted by
circles. Consistent with the coloring of the regularized solutions, black-colored
circles correspond to errors for the a priori parameter choice, and purple
circles correspond to errors for the discrepancy principle. For comparison,
the function φ(δ), representing the convergence rate, is included as a solid
line with κ = 0.7 and c = 0.6. Note that it is scaled by a factor of 5. The
figure illustrates how the approximations for u† improve for decreasing noise
levels δ. The solution u† is approximated quite precisely except near the right
endpoint, where the boundary condition uδα(1) = 0 causes the regularized
solutions to deviate from the actual solution u†. The tables and the graphs
confirm our theoretical findings and reveal that both considered parameter
choice strategies lead to very similar solutions.
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Part II
Oversmoothing Tikhonov

regularization –
the finite-dimensional setting

Discretization is a fundamental step in practically applying regularization
methods to solve ill-posed problems. In many real-world scenarios, the
problems we encounter are continuous in nature, but for computational
purposes, we need to transform them into a discrete form that can be handled
by computers. Discretization involves approximating continuous functions,
operators, or equations by a finite set of discrete elements or values.

We focus on the discretization with projection methods.
For linear ill-posed problems, projection methods have been studied thor-

oughly:
While projection methods, such as the collocation or Galerkin methods,

are a general tool for solving linear operator equations [35, Chapter 13],
Natterer [42] demonstrated that projection methods can serve as regular-
ization methods by projecting onto a suitable subspace. The corresponding
regularization parameter is governed by the discretization level. Examples of
such methods include the least squares method, the Ritz method, and the
collocation method. Another classical example is the truncated singular value
decomposition for compact operators.

Fine discretization, however, leaves opportunities for incorporating reg-
ularization methods. The order in which discretization and regularization
are applied affects the analysis. Engl et al [8, p. 127] provide an overview
of research concerning various approaches on combining regularization and
discretization by projection. We briefly recapitulate this overview considering
the linear operator equation

Au = f

for a linear operator A : X → Y , and orthogonal projection operators
Ph : X → Vh and Qh : Y → Yh, where Vh ⊂ X and Yh ⊂ Y are suitable
(finite-dimensional) subspaces.

The approach
Ah = APh

was analyzed in [15, Chapter 4]. For Tikhonov regularization this approach
is equivalent to minimizing the Tikhonov functional over the subspace Vh.
Another approach

Ah = QhA
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corresponds to the case, where A is only known approximately. This was
studied by King and Neubauer [32] and Vainikko [58, Chapter 5]. Throughout
Section 5.2 in [8], the advantages of this approach over the strategy Ah = APh

are remarked.
Yet another approach

Ah = QhAPh

was studied by Plato and Vainikko [46].
Now we turn to research within discretization by projection methods for

nonlinear ill-posed and inverse problems. Kaltenbacher [31] showed that
for nonlinear ill-posed problems, projection methods can be considered as
regularization methods as well. She considered a priori as well as a poste-
riori choice strategies for the discretization level. Another projection-based
approach is to linearize the nonlinear problem using Newton methods and
regularize the linearized equation within each Newton step by projection. See,
for example, [30] and [29]. When it comes to combination of regularization
and projection methods, especially iterative multilevel discretization methods
have been studied. These methods combine regularization and discretization
across various discretization levels. More precisely, a discretization level is
initially fixed and a regularization method is applied. The obtained regular-
ized solution is used as an initial guess for a finer or coarser discretization.
Scherzer [53] and Ramlau [50] analyzed Landweber’s regularization in this
context. In [7], an iteratively regularized Gauss–Newton method turned out
to be advantageous compared to Landweber’s method.

Neubauer [43], [45] examined Tikhonov regularization in Hilbert scales
in combination with finite-dimensional approximation. Additionally, in his
work [44], he explored an approach closely related to ours, involving the
minimization of the Tikhonov functional over a finite-dimensional subspace.

The oversmoothing situation has not been investigated. Our objective is
to study the oversmoothing Tikhonov regularization in a finite-dimensional
setting. In this setting, we prove convergence rates for a priori parameter
choices for α and for the discretization level under a Hölder-type source
condition. As in Part I, this analysis relies on the use of auxiliary elements.
In Section 7.3, we propose an alternative approach to the auxiliary elements
in Section 3.3. The structure of this part is analogous to the structure of
Part I: We begin with a chapter on fundamental requirements. After that,
Chapter 8 establishes convergence rates, which are confirmed in Chapter 9 by
numerical results.
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Now, we proceed to specify our framework: For h > 0, which in general
describes the step size of the discretization, let

Vh ⊂ D = D(F ) ∩X1

be a finite-dimensional subspace of X1, where X1 ⊂ X, equipped with the
norm ∥ · ∥1, is specified in Section 2.4. We consider the orthogonal projection

Ph : X → Vh.

Given an initial guess u ∈ D(F ) ∩X1 and α > 0, we minimize the Tikhonov
functional

T δ
α(u) = ∥F (u)− f δ ∥2 + α∥u− u∥21,

with respect to u ∈ Vh, to obtain

uδh,α = argmin
u∈Vh

T δ
α(u).

For notational convenience, we omit the indices h for elements u ∈ Vh.
In line with the structure of the first part of this thesis, we begin with

the establishment of a well-posedness assertion in Chapter 7. This chapter
includes required assumptions, auxiliary elements, and presents an example
that assures the practicality of the required conditions on the projection
operator Ph.
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7 Fundamental requirements

In this chapter, we establish the groundwork towards proving convergence
rates for the setting explained above. While maintaining the same structure
as Chapter 3, this chapter introduces additional assumptions concerning the
projection operator Ph. Section 7.4 presents an example that validates these
new assumptions.

7.1 Well-posedness

As in the first part of this thesis, we establish regularization properties of the
extremal problem

min
u∈Vh

T δ
α(u). (43)

This is an essential step for validating the utility of our approach. Specifically,
we establish well-posedness of the extremal problem, as well as stability of
minimizers.

Assumption 7.1 below summarizes the required assumptions.

Assumption 7.1. (a) The operator F : X ⊃ D(F ) → Y is sequentially
continuous with respect to the norm topology of X and the weak topology
of Y .

(b) Vh ⊂ D = D(F ) ∩X1.

(c) u ∈ D.

We highlight the differences between this assumption and Assumption 3.1
from Part I. First, the operator F is now assumed to be sequentially continuous
with respect to the norm topology of X and the weak topology of Y instead
of the weak topologies of X and Y . Second, Assumption 7.1 (b) not only
replaces Assumption 3.1 (b), which required D(F ) to be a closed and convex
subset of X, but also replaces Assumption 3.7 (d), which required u† to be
an interior point of D(F ).

Based on these assumptions we can now verify regularization properties
equivalent to those in Section 3.1. The assertions hold for any norm in Vh
because the norms are equivalent in Vh.

Theorem 7.2 (Well-posedness). Under Assumption 7.1, for each α > 0
and each f δ ∈ Y , the extremal problem (43) is well-posed in the sense of
Definition 3.2. Moreover, the convergent minimizing subsequences (unk

)k∈N ⊂
Vh of (43) have a minimizer uδh,α of (43) as a limit and satisfy

lim
k→∞

∥F (unk
)− f δ ∥ = ∥F (uδh,α)− f δ ∥ and (44)
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lim
k→∞

∥unk
− u∥1 = ∥uδh,α − u∥1. (45)

Proof. Since Vh ̸= ∅, the infimum

Th,∗ := inf{T δ
α(u) : u ∈ Vh} ≥ 0

exists. Let (un)n∈N ⊂ Vh be a miminizing sequence such that

lim
n→∞

T δ
α(un) = Th,∗.

Then (T δ
α(un))n∈N and consequently (∥un − uh∥1)n∈N are bounded sequences

in R. This implies that the sequence (un)n∈N ⊂ Vh is bounded in the finite-
dimensional subspace (Vh, ∥ · ∥1). Since in finite-dimensional spaces, every
bounded sequence has a convergent subsequence, there exists a subsequence
(unk

)k∈N ⊂ Vh converging to some element uh,∗ as k → ∞. The limit uh,∗ lies
in Vh as well, because Vh is closed.

Now let (unk
)k∈N be any subsequence of the minimizing sequence that

converges to some limit uh,∗ as k → ∞. We show that this limit uh,∗ indeed
minimizes the Tikhonov functional T δ

α. From the sequential continuity of
F with respect to the norm topology of X and the weak topology of Y , it
follows that F (unk

) converges to F (uh,∗) with respect to the weak topology
of Y . The weakly lower semi-continuity of the norm ∥ · ∥ and the continuity
of the norm ∥ · ∥1 imply

T δ
α(uh,∗) = ∥F (uh,∗)− f δ ∥2 + α∥uh,∗ − uh∥21

≤ lim inf
k→∞

∥F (unk
)− f δ ∥2 + α lim

k→∞
∥unk

− uh∥21
≤ lim inf

k→∞
(∥F (unk

)− f δ ∥2 + α∥unk
− uh∥21) = Th,∗.

Hence uh,∗ minimizes T δ
α, and we write uδh,α := uh,∗. The convergence of the

penalty functional (45) is an immediate consequence of the continuity of
the norm ∥ · ∥1. The convergence of the misfit functional (44) can then be
deduced easily:

lim
k→∞

∥F (unk
)− f δ ∥2 = lim

k→∞
(T δ

α(unk
)− α∥unk

− u∥21)

= T δ
α(u

δ
h,α)− α∥uδh,α − u∥21 = ∥F (uδh,α)− f δ ∥2.

Theorem 7.3 (Stability of regularized solutions). Under Assumption 7.1, for
each α > 0, minimizers of (43) are stable with respect to small perturbations
in the data f δ in the sense of Definition 3.4. Specifically, for a data sequence
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(fn)n∈N ⊂ Y with limn→∞ ∥fn − f δ ∥ = 0, let (u∗n)n∈N ⊂ Vh be a sequence of
minimizers of the Tikhonov functional over Vh with f δ replaced by fn. That is

u∗n := argmin
u∈Vh

T n
α (u), n ∈ N,

where T n
α is given in (12). Then there exists a convergent subsequence (u∗nk

)k∈N
and each cluster point of (u∗n)n∈N is a minimizer of T δ

α. Furthermore, each
such convergent subsequence (u∗nk

)k∈N satisfies

lim
k→∞

∥F (u∗nk
)− fnk

∥ = ∥F (uδh,α)− f δ ∥ and

lim
k→∞

∥u∗nk
− u∥1 = ∥uδh,α − u∥1.

Proof. According to Theorem 7.2, the minimizers u∗n exist for all n ∈ N.
Analogously to the proof of Theorem 3.5, it can be shown that (u∗n)n∈N
minimizes T δ

α(u) = ∥F (u)− f δ ∥2 + α∥u− u∥21 over Vh as n→ ∞.
Thus, according to Theorem 7.2, there exists a subsequence (u∗nk

)k∈N ⊂ Vh
converging to uδh,α := argminu∈Vh

T δ
α(u) as k → ∞. The limit of each such

subsequence is a minimizer of T δ
α over Vh. Moreover, Theorem 7.2 implies the

convergence of the corresponding misfit and penalty functionals.

7.2 Additional assumptions

In this section, we summarize additional assumptions. These encompass the
source condition, assumptions on the projection operator Ph, and conditions
facilitating convergence rates similar to those in Assumption 3.7.

To define the source condition, we recall the operator B introduced in
Section 2.4. Instead of G = B−(2a+2) as in (15) in Section 3.2, we set

G := B−1.

The underlying Hölder-type source condition, which accompanies our study
in this part, is provided by

u† − u ∈ Xp,

or equivalently

u† − u = Gpw, (46)

for some 0 < p ≤ 1 and a source element w ∈ X, with ∥w∥ ≤ ρ, ρ > 0.
The case p < 1 leads to the oversmoothing situation that we are particularly
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interested in. However, we include p = 1 in our calculations since the
established results remain valid in that case as well.

Along with this source condition, we assume that there is a constant

p0 ≥ 2, (47)

such that

∥(I − Ph)u∥ ≤ k0h
p0∥u∥p0 for all u ∈ Xp0 and (48)

∥Phu∥1 ≤ k∗∥u∥1 for all u ∈ X1 (49)

hold throughout this part, where k0 and k∗ are positive and finite constants.
The value 2 in (47) is chosen arbitrarily; a higher value is desirable, because
as we shall see, a higher value of p0 permits a bigger scope for the value of a
that is determined through item (e) of Assumption 7.5.

Since G is selfadjoint, for any q ≥ 0, the operators Gq and G−1 are
selfadjoint, as well. Moreover, the operators (I − Ph), Ph are selfadjoint, thus
for any q ≥ 0

∥Gq(I − Ph)∥ = ∥(I − Ph)G
q ∥ and (50)

∥G−1Ph∥ = ∥PhG
−1∥. (51)

We are going to use these properties frequently throughout this chapter. A
first application allows us to formulate assumption (48) as

∥Gp0(I − Ph)w∥ ≤ k0h
p0∥w∥ for all w ∈ X, (52)

where we used that any u ∈ Xp0 can be written as u = Gp0w for some w ∈ X.
Based on (52) the next lemma extends the estimate of (48) to cover any
0 ≤ p ≤ p0.

Lemma 7.4. Assumption (48) implies

∥(I − Ph)u∥ ≤ kph
p∥u∥p, u ∈ Xp, 0 ≤ p ≤ p0, (53)

or equivalently

∥Gp(I − Ph)w∥ ≤ kph
p∥w∥, w ∈ X, 0 ≤ p ≤ p0, (54)

where kp = k
p/p0
0 and k0 is the constant from assumption (48). Obviously, kp

is bounded when considered as a function of p on [0, p0].
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Proof. For p = 0, the estimates in (53) and (54) hold trivially. For 0 <
p ≤ 1, the elements u ∈ Xp can be written as u = Gpw for some w ∈ X.
Therefore, by substitution and using (50), the estimates in (53) and (54) are
equivalent. We focus on verifying (54). Using the interpolation inequality (8)
and assumption (52), we show that for 0 < p ≤ p0, with p0 ≥ 2, the following
holds:

∥Gp(I − Ph)w∥ ≤ ∥Gp0(I − Ph)w∥
p
p0 ∥(I − Ph)w∥

p0−p
p0

≤ k
p
p0
0 hp∥I − Ph∥

p0−p
p0 ∥w∥, w ∈ X.

Since ∥I − Ph∥ ≤ 1, the assertion of the lemma is confirmed.

The subsequent assumption concludes our collection of assumptions, mir-
roring Assumption 3.7 (e)-(g) in the preceding part of this thesis, albeit with
the source condition replaced.

Assumption 7.5. (d) The observations f δ satisfy ∥f δ − f †∥ ≤ δ for δ > 0.

(e) Let a > 0, and let there exist positive finite constants ca ≤ Ca and c0, c1
such that

∥F (u)−f †∥ ≤ Ca∥u−u†∥−a for each u ∈ D with ∥u−u†∥−a ≤ c0 (55)

and

ca∥u−u†∥−a ≤ ∥F (u)−f †∥ for each u ∈ D with ∥F (u)−f †∥ ≤ c1. (56)

(f) Source condition (46) applies.

7.3 Discretized auxiliary elements and their properties

In this section, we provide another approach to auxiliary elements. This
approach was used for the oversmoothing Tikhonov regularization in the
Banach space setting, for example, in [49] or in [20], and the idea traces back
to the articles [48] and [46]. In this section, it will become clear why the
exponent 2a+ 2, with a determined through item (e) of Assumption 7.5, is
chosen for the inverse of B in Part I. To introduce the auxiliary elements, let

Rβ : X → X for β > 0

be an arbitrary family of regularizing operators. For G = B−1 set

Sβ := I −RβG for β > 0.
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We make the following assumptions on these operators:

∥Rβ ∥ ≤ c∗
β
, (57)

∥SβG
p∥ ≤ cpβ

p, 0 ≤ p ≤ p, (58)

RβG = GRβ, (59)

for β > 0, finite constants c∗ and cp, and a finite constant p that represents
the saturation of Rβ. Further, we assume that cp is bounded as a function of
p.

Remark 7.6. For a linear operator equation Au = f , where A : X → Y is a
bounded operator mapping between Hilbert spaces X and Y , regularization
methods can rely on the approach of approximating the Moore-Penrose
inverse of the linear operator. Such approximations are constructed by a
family {gβ}β>0 of Borel-measurable functions

gβ : [0, ∥A∥] → R, β > 0

satisfying

sup
0≤λ≤∥A∥

|gβ(λ)| ≤ c∗β
−1, β > 0 and (60)

sup
0≤λ≤∥A∥

λp|1− λgβ(λ)| ≤ cpβ
p, β > 0, 0 ≤ p ≤ p. (61)

The functions gβ can be traced back to [57] and they are called generator
functions [54, p. 58], or filter functions in the case of compact operators [36,
p. 55].

Therefore, in our setting, the regularization operators Rβ, satisfying (57)
and (58), can be defined by Rβ := gβ(G) for gβ satisfying (60) and (61) for
A = G = B−1.

For compact operators, the truncated singular value decomposition is a
regularization method that satisfies the conditions (57)–(59) for all p > 0, see
for example [36, Theorem 4.1.2]. For operators G, which are not necessarily
compact, an example for a family of regularization operators {Rβ}β>0 that
satisfies the assumptions in (57)-(59) with an integer p = m ≥ 1, is given by
Lavrientiev’s m-times iterated method, see [20]. In the following example, we
briefly outline this method.

Example 7.7 (Lavrientiev’s m-times iterated method). Let m ∈ N. For
f ∈ X and u = 0 the element Rβf is given by

(G+ βI)un = βun−1 for n = 1, 2, . . . ,m, Rβf := um.
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The operator Rβ can be written as

Rβ = β−1

m∑
j=1

βj(G+ βI)−j = G−1(I − βm(βI +G)−m)

and the operator Sβ has the form

Sβ = I −RβG = βm(βI +G)−m.

Remark 7.8. Form = 1 the iterated Lavrentiev’s method equals Lavrentiev’s
regularization method, where

Rβ := (G+ βI)−1.

This results in the auxiliary elements as in Section 3.3 when G is defined as
G = B−(2a+2). The fact that assumption (58) holds only for with p = 1 for
Lavrentiev’s regularization method is not restrictive then due to the choice
of the exponent 2a + 2 for the inverse of B. This adjustment replaces the
exponent p of assumption (58) by p/(2a + 2) such that the assumption is
required to hold for p/(2a+2) ≤ p = 1. The condition p/(2a+2) ≤ 1 holds for
all applications of the assumption in our proofs if we consider G = B−(2a+2)

instead of G = B−1. In summary, we could have employed the auxiliary
elements from Part I here as well; the necessity of assumption (58) clarifies
the choice of 2a+ 2 as an exponent in Part I.

A useful consequence arising from the assumptions in (57)-(59) is the
following lemma. The lemma and its proof are reproduced from [49] or [20].

Lemma 7.9. There exists some positive and finite constant c such that for
each 0 < p ≤ 1 it holds that

∥RβG
p∥ ≤ cβp−1 for β > 0.

Proof. Since RβG
p = GpRβ, by (59), the assertion follows with the interpola-

tion inequality (8), as well as the bounds in (57) and (58):

∥RβG
pw∥ = ∥GpRβw∥ ≤ ∥GRβw∥p∥Rβw∥1−p

= ∥(I − Sβ)w∥p∥Rβw∥1−p ≤ (1 + c0)
p∥w∥c1−p

∗ βp−1, w ∈ X.

Throughout this part, we assume that the operators {Rβ}β>0 satisfy the
conditions (57)-(59), with saturation

p ≥ a+ 1,
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where a is given by item (e) of Assumption 7.5. By means of Rβ, we define
the second variant of auxiliary elements as follows:

ûβ := u+RβG(u
† − u) = u† − Sβ(u

† − u) for β > 0. (62)

In our analysis, we specifically use their projections onto Vh, given by

ûh,β := Phûβ for β > 0 and h > 0. (63)

Providing upper limits for norms involving these auxiliary elements (63),
the following Lemma 7.10 gives an analogue to Lemma 3.10.

Lemma 7.10. If source condition (46) applies for some 0 < p ≤ 1 then there
exist positive constants ci, i = 1, 2, 3, such that the following inequalities hold
for a ≤ p0, with p0 given in assumption (48):

(i) ∥ûh,β − u†∥ ≤ c1(β
p + hp),

(ii) ∥ûh,β − u†∥−a ≤ c2(β
a+p + ha+p + haβp),

(iii) ∥ûh,β − u∥1 ≤ c3β
p−1,

for each h > 0 and each finite β > 0.

Proof. We begin with the proof of item (i). We use the representation of
the auxiliary elements ûh,β = Phûβ with ûβ in (62), source condition (46),
assumption (58), and estimate (53) of Lemma 7.4:

∥ûh,β − u†∥ = ∥Ph(u
† − Sβ(u

† − u))− u†∥ = ∥PhSβ(u− u†)− (I − Ph)u
†∥

≤ ∥PhSβG
pw∥+ ∥(I − Ph)u

†∥ ≤ cpβ
pρ+ kph

p∥u†∥p.

The estimates in (58) and (53) can be applied because with 0 < p ≤ 1 it
is clear that p ≤ p and p ≤ p0. Further, since u† − u ∈ Xp, it follows
that u† ∈ Xp, thus u

† is bounded in Xp. Moreover, cp and kp are bounded
as functions of p. Therefore, the estimate of item (i) follows for c1 chosen
appropriately. To show the estimate in item (ii), we first proceed similarly as
in the proof of item (i):

∥ ûh,β − u†∥−a = ∥Ga(PhSβ(u− u†)− (I − Ph)u
†)∥

= ∥GaSβ(u− u†)−Ga(I − Ph)u
† −Ga(I − Ph)Sβ(u− u†))∥

≤ ∥GaSβG
pw∥+ ∥Ga(I − Ph)u

†∥+ ∥Ga(I − Ph)SβG
pw∥

≤ c2(β
a+p + ha+p + haβp).

The last estimate requires some explanation. Therefore, we examine the
three norms before the last inequality separately. Condition (59) implies that
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GaSβ = SβG
a. Consequently, from (58) we obtain ∥GaSβG

pw∥ ≤ ca+pρβ
a+p

for a + p ≤ p. The condition a + p ≤ p holds, because p ≤ 1 and p is
assumed to satisfy p ≥ a+1. To give an estimate for the second norm, we use
Lemma 7.4 twice, taking advantage of the fact that the orthogonal projector
I − Ph is idempotent:

∥Ga(I − Ph)u
†∥ = ∥Ga(I − Ph)(I − Ph)u

†∥ ≤ ∥Ga(I − Ph)∥∥(I − Ph)u
†∥

≤ kpkah
a+p∥u†∥p.

Another application of Lemma 7.4 and (58) provides an estimate for the third
norm:

∥Ga(I − Ph)SβG
pw∥ ≤ kah

acpβ
pρ.

It remains to verify item (iii):

∥ ûh,β − u∥1 = ∥PhRβG(u
† − u)− (I − Ph)u∥1

= ∥G−1(PhRβG(u
† − u)− (I − Ph)u)∥

≤ ∥G−1PhRβG(u
† − u)∥+ ∥G−1(I − Ph)u∥.

We examine the summands in the latter expression separately. Using (59),
(51), and Lemma 7.9, we get

∥G−1PhRβG(u
† − u)∥ = ∥G−1PhGRβ(u

† − u)∥ = ∥PhRβ(u
† − u)∥

= ∥PhRβG
pw∥ ≤ cβp−1.

Since u ∈ X1, we have u = Gw for some w ∈ X with ∥w∥ ≤ ρ. Using (51),
which holds for I − Ph instead of Ph as well, and Lemma 7.4, it follows

∥G−1(I − Ph)u∥ = ∥G−1(I − Ph)Gw∥ = ∥(I − Ph)w∥ ≤ ρ.

Thus

∥ ûh,β − u∥1 ≤ cβp−1 +O(1) for 0 < β <∞.

Equipped with the auxiliary elements and the estimates of Lemma 7.10,
we can make further steps towards the proof of this part’s main theorem in
Chapter 8. Beforehand, in Section 7.4, we provide an example that satisfies
conditions (48) and (49).
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7.4 Illustrative example of a projection meeting re-
quired conditions

This section presents an example that satisfies the conditions (48) and (49).
Let X = L2(0, 1). As in Chapter 6, we consider the integration operator

J : X → X, [Ju](t) =

∫ t

0

u(x) dx, 0 ≤ t ≤ 1

and define B = (J∗J)−1/2. Then B is linear, densely defined, unbounded,
selfadjoint, and positive definite. Moreover

∥u∥1 = ∥Bu∥ = ∥(J∗J)−1/2u∥ = ∥u′∥, u ∈ D(B),

where u′ denotes the weak derivative of u ∈ X. To define a suitable finite-
dimensional subspace Vh, we consider the class of linear splines. We outline a
brief introduction to the space of linear spline functions. A comprehensive
treatment of this topic is given in the monograph [47, Chapter 2], which
serves as a starting point for this introductory part.

A linear spline s : [a, b] → R is a continuous function, that is piecewise
linear on given subintervals. These subintervals are determined through
ordered so-called knots xi ∈ [a, b], for i = 0, . . . , N and some N ∈ N such that

∆ := {a = x0 < x1 < · · · < xN = b} and

[a, b] = [x0, x1) ∪ [x1, x2) ∪ · · · ∪ [xN−1, xN) ∪ {xN}.

For a function u and a given set of knots ∆, the corresponding interpolating
linear spline s is determined uniquely through the local representations

s(x) = u(xi) +
u(xi+1)− u(xi)

xi+1 − xi
(x− xi), xi ≤ x ≤ xi+1,

for i = 0, . . . , N − 1. By

S∆ := {s ∈ C[a, b] : s is linear on [xi−1, xi], xi ∈ ∆ for i = 1, · · · , N}

we denote the space of linear splines for ∆.

Theorem 7.11. Let B = (J∗J)−1/2 be defined as above. Additionally, let
∆ = {0 = x0 < x1 < · · · < xN = 1} be a partition of the interval [0, 1], with
h = maxi=1,...,N(xi − xi−1) and h∗ = mini=1,...,N(xi − xi−1). Let Ph be the
orthogonal projection onto the corresponding space Vh = S∆ of linear splines.
If the ratio h/h∗ is bounded, then the conditions (48) and (49) are satisfied
with p0 = 2.
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Proof. For any u ∈ L2(0, 1), let Phu ∈ S∆ denote the orthogonal projection
of u onto S∆ and let s represent the corresponding interpolating linear spline.
The proof is structured in two steps. First, we demonstrate that (48) and
(49) hold when Phu is replaced by s. More precisely, we prove that

∥s− u∥ ≤
(h
π

)2∥u∥2 for all u ∈ X2 and (64)

∥s∥1 ≤ ∥u∥1 for all u ∈ X1. (65)

Subsequently, we verify that the original assertions of (48) and (49) are
satisfied. In the first step of the proof, we follow the procedure of the proof of
Theorem 6.2 in [9, Section 6.6]. We will utilize Friedrich’s inequality, which
can be found for example under Theorem 6.1 in [9, Section 6.6] or in [47,
Lemma 9.24]. It states that for functions u ∈ H1(a, b), with u(a) = u(b) = 0,
we have that

∥u∥ ≤ b− a

π
∥u′∥. (66)

To verify both of the estimates in (64) and (65), we use that for any u ∈ X1,
and consequently for u ∈ X2 ⊂ X1 the following equation holds:∫ 1

0

s′(x)(u′(x)− s′(x)) dx = 0. (67)

This follows because s′(x) takes constant values si on each interval [xi−1, xi]
for i = 1, . . . , N , and u(x) = s(x) at x = xi, i = 0, . . . , N :∫ 1

0

s′(x)(u′(x)− s′(x)) dx =
N∑
i=1

∫ xi

xi−1

s′(x)(u′(x)− s′(x)) dx

=
N∑
i=1

si(u(x)− s(x))
∣∣∣xi

x=xi−1

= 0.

We first verify (65). Let u ∈ X1 = D(B) = {u ∈ H1(0, 1) : u(1) = 0}. It
holds that

0 ≤
∫ 1

0

(s′(x)− u′(x))2 dx =

∫ 1

0

u′(x)2 − s′(x)2 − 2s′(x)(u′(x)− s′(x)) dx.

Equation (67) implies

0 ≤
∫ 1

0

u′(x)2 − s′(x)2 dx,
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which is equivalent to

∥s∥21 ≤ ∥u∥21, (68)

that is (65).
Now, we verify (64). Let u ∈ X2 = {u ∈ H2(0, 1) : u′(0) = 0, u(1) = 0}.

The equation in (67) can be expanded to∫ 1

0

(u′(x)− (u′(x)− s′(x)))(u′(x)− s′(x)) dx = 0,

which is equivalent to∫ 1

0

u′(x)(u′(x)− s′(x)) dx =

∫ 1

0

(u′(x)− s′(x))2 dx. (69)

By partial integration, the left-hand side of (69) can be formulated as∫ 1

0

u′(x)(u′(x)− s′(x)) dx =
N∑
i=1

∫ xi

xi−1

u′(x)(u′(x)− s′(x)) dx

=
N∑
i=1

(
u′(x)(u(x)− s(x))|xi

x=xi−1
−
∫ xi

xi−1

u′′(x)(u(x)− s(x)) dx
)
. (70)

The first term in the sum of (70) vanishes, therefore∫ 1

0

u′(x)(u′(x)− s′(x)) dx = −
∫ 1

0

u′′(x)(u(x)− s(x)) dx. (71)

By substitution of (71) into (69), we observe that∫ 1

0

(u′(x)− s′(x))2 dx = −
∫ 1

0

u′′(x)(u(x)− s(x)) dx.

The Cauchy-Schwarz inequality gives an upper bound for the right-hand side
of the latter equation, such that

∥u′ − s′∥2 ≤ ∥u′′∥∥u− s∥. (72)

Since u(x)− s(x) = 0 on the boundaries ∂([xi−1, xi]) = {xi−1, xi} and u(x)−
s(x) ∈ H1(xi−1, xi) for i = 1, . . . , N , we can apply Friedrichs’s inequality (66)

piecewise to
∫ 1

0
(u(x)− s(x))2 dx, which yields∫ 1

0

(u(x)− s(x))2 dx =
N∑
i=1

∫ xi

xi−1

(u(x)− s(x))2 dx
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=
N∑
i=1

∥u− s∥2L2(xi−1,xi)

≤
N∑
i=1

(xi − xi−1

π

)2∥u′ − s′∥2L2(xi−1,xi)

≤ max
i=1,...,N

(xi − xi−1

π

)2∥u′ − s′∥2. (73)

We can rewrite (73) and use (68) to conclude

∥u− s∥ ≤ h

π
∥u′ − s′∥ ≤ h

π
(∥u′∥+ ∥s′∥) ≤ 2h

π
∥u′∥, (74)

which is (48) with Phu replaced by s and for p0 = 1. Inserting (72) into (73)
yields

∥u− s∥2 ≤
(h
π

)2∥u′′∥∥u− s∥,

which is equivalent to

∥u− s∥ ≤
(h
π

)2∥u′′∥,
that is (64). We now proceed to prove the original assertions (48) and (49).
The first estimate, (48), follows directly from (64) noting that ∥Phu− u∥ ≤
∥ℓ − u∥ for any ℓ ∈ S∆. For the second assertion, (49), we remark that a
more general result is presented in [6]. To verify (49), we use that

∥Phu− s+ s∥1 ≤ ∥Ph(u− s)∥1 + ∥s∥1.

Combining this with (65) and the estimate ∥Ph(u− s)∥ ≤ ∥u− s∥ ≤ 2h
π
∥u∥1,

given in (74), it remains to show that

∥Ph(u− s)∥1 ≤
c

h∗
∥Ph(u− s)∥,

where c is a positive and finite constant. More generally, we show that for
any linear spline ℓ ∈ S∆ it holds that

∥ℓ∥1 = ∥ℓ′∥ ≤ c

h∗
∥ℓ∥.

By hi = xi+1 − xi for i = 0, . . . , N − 1 we denote the spacing between
consecutive grid points. A basis for Vh is formed by hat functions, defined as

ψ0(x) =

{
1− x

h0
, if x0 ≤ x ≤ x1,

0, otherwise
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for the boundary basis function at i = 0 and

ψi(x) =


x−xi−1

hi−1
, if xi−1 ≤ x ≤ xi,

xi+1−x
hi

, if xi < x ≤ xi+1,

0, otherwise,

for i = 1, . . . , N − 1. Any ℓ ∈ Vh thus has the representation

ℓ(x) =
N−1∑
i=0

biψi(x),

where bi are appropriate coefficients. The derivative of ℓ has the representation

ℓ′(x) =
N−1∑
i=0

biψ
′
i(x),

where ψ′
i are the derivatives of ψi for each i = 0, . . . , N − 1. That is

ψ′
0(x) =

{
− 1

h0
, if x0 ≤ x ≤ x1,

0, otherwise

and

ψ′
i(x) =


1

hi−1
, if xi−1 ≤ x ≤ xi,

− 1
hi
, if xi < x ≤ xi+1

0, otherwise

for i = 1, . . . , N − 1.
The corresponding Gram matrices G and G′ ∈ RN×N are symmetric

tridiagonal matrices given by

G =

 ⟨ψ0, ψ0⟩ · · · ⟨ψ0, ψN−1⟩
...

...
⟨ψN−1, ψ0⟩ · · · ⟨ψN−1, ψN−1⟩



=
1

6


2h0 h0 0 · · · 0
h0 2(h0 + h1) h1 · · · 0

0 h1
. . . . . .

...
...

. . . hN−2

0 · · · 0 hN−2 2(hN−2 + hN−1)
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and

G′ =

 ⟨ψ′
0, ψ

′
0⟩ · · · ⟨ψ′

0, ψ
′
N−1⟩

...
...

⟨ψ′
N−1, ψ

′
0⟩ · · · ⟨ψ′

N−1, ψ
′
N−1⟩



=



1
h0

− 1
h0

0 · · · 0

− 1
h0

1
h0

+ 1
h1

− 1
h1

· · · 0

0 − 1
h1

. . . . . .
...

...
. . . . . . − 1

hN−2

0 · · · 0 − 1
hN−2

1
hN−2

+ 1
hN−1

 .

For the spectral norm ∥ · ∥2 of G′ it holds that

∥G′∥2 ≤ ∥G′∥∞ ≤ 4

h∗
,

where ∥ · ∥∞ is the maximum of the absolute row sums. The matrix G is
strictly diagonal dominant, and for such a matrix, the following inequality
holds:

∥y∥∞ ≤ max
i=0,...,N−1

((
|⟨ψi, ψi⟩| −

N−1∑
k=0,k ̸=i

|⟨ψi, ψk⟩|
)−1

)
∥Gy∥∞,

for each y ∈ RN . In our case, this maximum leads to

∥y∥∞ ≤ h∗
3
∥Gy∥∞.

Further details are given for example in [47, Lemma 2.13]. Consequently,

∥G−1∥2 ≤ ∥G−1∥∞ ≤ 3

h∗
.

Moreover, G−1 is positive definite and G′ is positive semidefinite, with both
matrices being symmetric. Thus, G−1/2 and (G′)1/2 are symmetric satisfying

∥G− 1
2 ∥2 = ∥G−1∥ and ∥(G′)

1
2 ∥2 = ∥G′∥.

Using these equalities as well as the estimates for the spectral norms of G′

and G−1, we obtain

∥ℓ′∥2 = bTG′b = ∥(G′)
1
2 b∥22 ≤ ∥(G′)

1
2 ∥22∥b∥22 ≤

4

h∗
∥b∥22 =

4

h∗
∥G− 1

2G
1
2 b∥22

≤ 4

h∗
∥G− 1

2 ∥22∥G
1
2 b∥22 ≤

12

h2
∗
bTGb =

12

h2
∗
∥ℓ∥2.

Thus, the statement follows.
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8 Convergence analysis

In this chapter, we prove the main theorem of this part. As a preparation,
we prove the next lemma that gives an analogue to Lemma 4.1. It will be
used to prove the subsequent essential lemma. Throughout this chapter, we
assume that Assumptions 7.1 and 7.5 hold.

Lemma 8.1. It holds that

max
{
∥F (uδh,α)− f δ∥,

√
α∥uδh,α − u∥1

}
≤ Cac23h

a+p +
√
αc3h

p−1 + δ

for each positive α and δ, and each positive and finite h. The constant Ca

is given by Assumption 7.5 (e), and the constants c2 and c3 are given by

Lemma 7.10. The a priori choices h∗ = δ
1

a+p and α∗ = δ
2(a+1)
a+p lead to

max
{
∥F (uδh∗,α∗)− f δ∥,

√
α∗∥uδh∗,α∗ − u∥1

}
≤ c4δ

for each δ > 0, where c4 is a positive and finite constant.

Proof. We consider the auxiliary elements (63), with β = h. By Assump-
tion 7.5 (b), it holds that ûh,β ∈ Vh ⊂ D = D(F ) ∩ X1, and we can follow
the procedure as in the proof of Lemma 4.1. Specifically, we use the triangle
inequality, Assumption 3.7 (e), and Lemma 7.10 in the given order to obtain
the following estimate:

T δ
α(u

δ
h,α)

1
2 ≤ T δ

α(ûh,β)
1
2 ≤ ∥F (ûh,β)− f δ ∥+

√
α∥ ûh,β − u∥1

≤ ∥F (ûh,β)− f †∥+
√
α∥ ûh,β − u∥1 + δ

≤ Ca∥ ûh,β − u†∥−a +
√
α∥ ûh,β − u∥1 + δ

≤ Cac23h
a+p +

√
αc3h

p−1 + δ.

Note that (55) can be applied, because for finite h > 0 the norm ∥ ûh,β−u†∥−a

is bounded from above. Thus, the first statement of the lemma follows. The
second statement is an immediate consequence.

Notice the two terms ha+p and hp−1 in the upper bound of the first estimate
in Lemma 8.1: On the one hand, the term ha+p decreases, as h approaches
zero. On the other hand, the term hp−1 indicates that values of h close to
zero are not advantageous. This promotes a good balance between fine and
coarse discretization.

The next lemma establishes bounds for the difference uδh,α− ûh,β measured
under the strong norm ∥ · ∥1 and the weaker norm ∥ · ∥−a. The proof of this
chapter’s main theorem relies on these bounds.
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Lemma 8.2. There exist positive and finite constants c5 and c6, such that
for each positive and finite α, δ, and β = h, it holds that

∥uδh,α − ûh,β ∥−a ≤ c5(h
a+p + δ +

√
αhp−1) and (75)

∥uδh,α − ûh,β ∥1 ≤ α− 1
2 c6(h

a+p + δ +
√
αhp−1). (76)

For the a priori choices h∗ = δ
1

a+p and α∗ = δ
2(a+1)
a+p , it follows

∥uδh∗,α∗ − ûh∗,h∗ ∥−a ≤ c5δ and (77)

∥uδh∗,α∗ − ûh∗,h∗ ∥1 ≤ c6δ
p−1
a+p (78)

for each positive and finite δ.

Proof. We begin with the proof of (75). The triangle inequality, estimate (56)
in item (e) of Assumption 7.5, item (ii) of Lemma 7.10, and Lemma 8.1 yield
the following:

∥uδh,α − ûh,β ∥−a ≤ ∥uδh,α − u†∥−a + ∥u† − ûh,β ∥−a

≤ 1
ca
∥F (uδh,α)− F (u†)∥+ 3c2h

a+p

≤ 1
ca
(∥F (uδh,α)− f δ ∥+ δ) + 3c2h

a+p

≤ 1
ca
(Ca3c2h

a+p +
√
αc3h

p−1 + 2δ) + 3c2h
a+p

≤ c5(h
a+p + δ +

√
αhp−1),

for c5 > 0 chosen appropriately. The latter bound is finite, thereby justifying
our use of estimate (56).

We can give an estimate for ∥uδh,α − ûh,β ∥1 by applying the triangle
inequality, Lemma 8.1, and item (iii) of Lemma 7.10:

∥uδh,α − ûh,β ∥1 ≤ ∥uδh,α − u∥1 + ∥u− ûh,β ∥1
≤ 1√

α
(Ca3c2h

a+p +
√
αc3h

p−1 + δ) + c3h
p−1.

The statement in (76) follows for c6 > 0 chosen appropriately. The estimates
in (77) and (78) are immediate consequences.

We have now all the requisites to prove this chapter’s main theorem that
gives an error estimate for the discretized Tikhonov regularization under a
Hölder-type source condition (46) and an a priori parameter choice.

Theorem 8.3. There is a positive and finite constant C such that for h∗ =

δ
1

a+p and α∗ = δ
2(a+1)
a+p , we have

∥uδh∗,α∗ − u†∥ ≤ Cδ
p

a+p (79)

for each δ > 0.
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Proof. We consider the auxiliary elements ûh,β, with parameters h = β = h∗.
Applying the triangle inequality, the interpolation inequality (8), as well as
item (i) of Lemma 7.10, and Lemma 8.2 to the left-hand side of (79) yields

∥uδh∗,α∗ − u†∥ ≤ ∥uδh∗,α∗ − ûh∗,h∗ ∥+ ∥ ûh∗,h∗ − u†∥

≤ ∥uδh∗,α∗ − ûh∗,h∗ ∥
1

1+a

−a ∥uδh∗,α∗ − ûh∗,h∗ ∥
a

1+a

1 + c1δ
p

a+p

≤ (c5δ)
1

1+a (c6δ
p−1
a+p )

a
1+a + c1δ

p
a+p = Cδ

p
a+p

for each δ > 0 and C = c
1

1+a

5 c
a

1+a

6 + c1.
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9 Numerical results

To verify the results of Theorem 8.3 numerically, we recall the setting from
Chapter 6. Specifically, our objective is to solve the operator equation
F (u) = f †, for the operator F : L2(0, 1) → L2(0, 1) defined by

F (u) = exp[Ju],

with

[Ju](x) =

∫ x

0

u(t) dt for 0 ≤ x ≤ 1.

Moreover, B = (J∗J)−1/2. As a finite-dimensional subspace Vh, we consider
the space of linear splines, presented in Section 7.4. We examine two different
solutions u†1 and u†2 that satisfy the Hölder-type source condition (46). First,
we recall that u† as in Chapter 6 satisfies u† ∈ Xp = D(Bp) = R((J∗)p) for
either p+ µ < 1/2, or p+ µ = 1/2 and ν > 1/2. Therefore, the solution

u†1(t) = (1− µ)t−µ(− ln θt)−ν + νt−µ(− ln θt)−ν−1, 0 < t ≤ 1,

with
µ = 1

4
, ν = 1, and θ = 0.3

provides our first example with u†1 ∈ Xp for p < 1/4 and u†1 /∈ Xp for p ≥ 1/4.

The image of u†1 under F is given by

[F (u†1)](t) = f †
1(t) = exp(t1−µ(− ln θt)−ν).

The solution
u†2(t) = e −t, 0 ≤ t ≤ 1,

with
[F (u†2)](t) = f †

2(t) = exp( e −t − 1), 0 ≤ t ≤ 1,

provides our second example. We briefly verify that source condition (46)
with some 0 < p < 1/2 is satisfied for u†2. The coefficients for u†2 in the series
representation (35), are given by

an =

∫ 1

0

e−t cos(n− 1
2
)πt dt =

1 + e−1(n− 1
2 )π sin(n− 1

2 )π

1 + (n− 1
2 )

2π2 .

As in Chapter 6, the Picard criterion yields u†2 ∈ Xp = R((J∗)p) if and only if

∞∑
n=1

a2n
σ2
n

<∞,
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where σn = 1/((n− 1/2)π) are the singular values of J∗. The series can be
estimated as

∞∑
n=1

(n− 1
2 )

2pπ2p(1 + e−1(n− 1
2 )π sin(n− 1

2 )π)
2

(1 + (n− 1
2 )

2π2)2
<

∞∑
n=1

(n− 1
2
)2p−2π2p−2.

The dominating series converges if and only if 2p− 2 < −1, that is p < 1/2.
Conversely, it can be shown that the series on the left-hand side diverges
for p ≥ 1/2, because it behaves asymptotically like the harmonic series for
p = 1/2 and dominates the harmonic series for p > 1/2.

The numerical experiments were carried out in Rstudio [52] using the
fminunc command provided in the pracma package [4]. We perturbed f †

1 and
f †
2 in the following manner:

f δ
i (t) = f †

i (t) + δ sin(100πt) for i = 1, 2.

δ α∗ h∗ ∥uδh∗,α∗
− u†1∥

∥uδ
h∗,α∗−u†

1 ∥
∥u†

1 ∥
δ

p
a+p

0.0100 2.15 · 10−7 0.0215 0.1901 0.2200 0.4642
0.0050 2.14 · 10−8 0.0121 0.1151 0.1332 0.4135
0.0025 2.12 · 10−9 0.0068 0.0588 0.0680 0.3684
0.0012 2.10 · 10−10 0.0038 0.0403 0.0466 0.3282
0.0006 2.09 · 10−11 0.0021 0.0790 0.0914 0.2924
0.0003 2.07 · 10−12 0.0012 0.0099 0.0115 0.2605
0.0002 2.05 · 10−13 0.0007 0.0051 0.0059 0.2321

Table 3: Parameter selection and resulting errors for the regularized solutions
for u†1 for different noise levels and with p = 0.2.

Tables 3 and 4 present the results for the oversmoothing Tikhonov regu-
larization in the finite-dimensional setting. Table 3 presents results for the
example u†1, whit p chosen as p = 0.2 and Table 4 presents results for u†2
with p chosen as p = 0.45. In each table, the second and the third column
list values of the regularization parameters α = α∗ and h = h∗, respectively,
for the different noise levels in column 1. The third and the fourth column
show the error and the relative error of the regularized solution, respectively.
The fifth column includes the values for the established converge rate δp/(a+p).
The values for α are rounded to three significant digits in scientific notation.
All other values are rounded to four decimal places. The tables confirm the
established convergence rate.
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Figure 2: Regularized solutions for the oversmoothing Tikhonov regularization
on the space of linear splines for u†1 ∈ Xp, 0 ≤ p < 1/4 and different values
of δ. Bottom-right: Comparison of the errors to the established convergence
rate for p = 0.2.
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Figure 3: Regularized solutions for the oversmoothing Tikhonov regularization
on the space of linear splines for u†2 ∈ Xp, 0 ≤ p < 1/2 and different values
of δ. Bottom-right: Comparison of the errors to the established convergence
rate for p = 0.45.
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δ α∗ h∗ ∥uδh∗,α∗
− u†2∥

∥uδ
h∗,α∗−u†

2 ∥
∥u†

2 ∥
δ

p
a+p

0.0100 3.04 · 10−6 0.0418 0.0552 0.0840 0.2395
0.0050 4.49 · 10−7 0.0259 0.0502 0.0763 0.1931
0.0025 6.64 · 10−8 0.0161 0.0401 0.0609 0.1558
0.0012 9.81 · 10−9 0.0100 0.0286 0.0435 0.1256
0.0006 1.45 · 10−9 0.0062 0.0134 0.0204 0.1013
0.0003 2.14 · 10−10 0.0038 0.0089 0.0135 0.0817
0.0002 3.16 · 10−11 0.0024 0.0051 0.0077 0.0659

Table 4: Parameter selection and resulting errors for the regularized solutions
for u†2 for different noise levels and with p = 0.45.

Figures 2 and 3 show the regularized solutions for u†1 and u†2, respectively.
Each figure consists of six graphs: the upper four and the bottom-left graphs
show the regularized solutions as solid lines for different noise levels in
comparison to the actual solution u†, which is displayed in a dotted line. In
the bottom-right graph, the errors for different noise levels are compared to
the established convergence rate. The figures illustrate how the accuracy
of the regularized solutions increases as the noise level δ decreases, thereby
visually confirming our theoretical findings. The boundary condition uδα(1) = 0
does not affect the accuracy of the regularized solutions as much as in the
continuous setting because of the rapid drop of the spline functions at the
right endpoint.
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10 Conclusion and outlook

In the infinite-dimensional setting, we have established convergence rates
for the oversmoothing Tikhonov regularization under a mixed source condi-
tion, considering a priori as well as a posteriori parameter choice strategies.
Identifying suitable functions that satisfy the source condition is challenging.
However, after determining the asymptotic behavior of Fourier coefficients
for a specific function, we were able to validate the source condition for
this function. Numerical experiments involving this function confirmed our
findings regarding the convergence rates.

Within the research area of discretization in regularization methods,
oversmoothing has not yet been investigated. Therefore, our results provide
an initial step towards incorporating the aspect of oversmoothing into the
finite-dimensional setting. We have focused on establishing convergence rates
under Hölder-type source conditions and a priori choices for the regularization
parameter and the discretization level. We were able to replace the strong
assumption of u† being an interior point of the domain of F with the weaker
assumption that Vh ⊂ X1.

Future research encompasses promising tasks. First, extending our results
to a more general source condition in terms of an index function as in [38] in
the infinite-dimensional setting or in terms of a mixed source condition in the
finite-dimensional setting is a promising task of future work. Second, further
examples that satisfy these source conditions and the two-sided Lipschitz
inequality (see Assumption 3.7 (f)) should be identified. This two-sided
Lipschitz inequality has recently been relaxed to hold only locally. In earlier
studies, such as [24], this inequality was formulated to hold globally, on the
entire domain D. Further relaxation of this inequality might be another
future objective. Moreover, exploring a posteriori parameter choice strategies
and extending results to the Banach space setting in the finite-dimensional
setting are intriguing tasks for further investigation. Lastly, improving the
numerical results of Chapter 6 by considering a solution that satisfies the
boundary condition could be an additional objective.
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