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Abstract

Since their introduction, ordinal patterns have proven to be a powerful tool not only in the
context of dynamical systems, but also in time series analysis. Even though working with
ordinal patterns leads to a loss of information, they bring many advantages which justify this
loss. In this thesis, we contribute to ordinal pattern analysis in various ways.

With regard to the basics, we provide a comparative analysis of different representa-
tions of (multivariate generalizations of) ordinal patterns. Furthermore, we give a historical
overview of the applications of ordinal patterns in data analysis and mathematical statistics.
However, since there is already an extensive amount of literature available, we do not claim
completeness.

Afterwards, we consider a specific measure of complexity in a time series or dynamical
system, namely the symbolic correlation integral. We investigate it by providing limit theo-
rems for an estimator of this quantity which is based on U-statistics under the assumption of
short-range dependence. This also covers limit theorems for the Rényi-2 permutation entropy
due to the close relation between these two. To this end, we slightly generalize existing limit
theorems in the framework of approximating functionals. Afterwards we derive an estimator
for the limit variance to lay the foundation for possible hypothesis tests.

Then, we turn our attention from the structure within a univariate time series to the
structure between the components of a bivariate time series. Ordinal pattern dependence
has been introduced in order to capture how strong the co-movement between two data sets
or two time series is. Betken et al. (2021) aimed to show that ordinal pattern dependence
fits into the axiomatic framework for multivariate measures of dependence between random
vectors of the same dimension which had been proposed by Grothe et al. (2014). We re-
consider the results by Betken et al. (2021). We show that there is an error with regard
to the concordance ordering and that this cannot be verified in general for ordinal pattern
dependence. Furthermore, we show that ordinal pattern dependence satisfies a modified set
of axioms instead. In addition, we also consider ordinal pattern dependence in the context
of supermodular ordering.

Finally, we prove general limit theorems for the distributions of multivariate ordinal pat-
terns under the assumption of not only serial but also componentwise independence. We use
our results to propose novel tests for cross-dependence. These include a test based on ordinal
pattern dependence. We compare their performance with three competitors, namely classical
Pearson’s and Spearman’s correlations and Chatterjee’s correlation coefficient. To this end,
we conduct a comprehensive simulation study. Two real-world data examples complete this
thesis.
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Zusammenfassung

Seit ihrer Einführung haben sich ordinale Muster nicht nur im Zusammenhang mit dynamis-
chen Systemen, sondern auch in der Zeitreihenanalyse als ein mächtiges Werkzeug erwiesen.
Auch wenn die Arbeit mit ordinalen Mustern zu einem Informationsverlust führt, bringen sie
viele Vorteile mit sich, die diesen Verlust rechtfertigen. In dieser Dissertation leisten wir auf
verschiedene Weise einen Beitrag zur ordinalen Muster-Analyse.

Im Hinblick auf die Grundlagen geben wir eine komparative Analyse verschiedener Re-
präsentationen von (multivariaten Verallgemeinerungen von) ordinalen Mustern. Außerdem
geben wir einen historischen Überblick über die Anwendungen von ordinalen Mustern in der
Datenanalyse und der mathematischen Statistik. Da aber bereits eine Fülle an Literatur
existiert, erheben wir keinen Anspruch auf Vollständigkeit.

Anschließend betrachten wir ein spezifisches Maß für die Komplexität in einer Zeitreihe
oder einem dynamischen System, nämlich das sogenannte symbolische Korrelationsintegral.
Wir untersuchen es, indem wir Grenzwertsätze unter der Annahme der Kurzzeitabhängigkeit
für einen auf U-Statistiken basierenden Schätzer dieser Größe liefern. Dies schließt auch Gren-
zwertsätze für die Rényi-2-Permutationsentropie ein, da diese beiden Größen eng miteinander
verwandt sind. Zu diesem Zweck verallgemeinern wir bestehende Grenzwertsätze im Rah-
men von approximierenden Funktionalen leicht. Anschließend leiten wir einen Schätzer für
die Varianz im Grenzwert her, um damit die Grundlage für mögliche Hypothesentests zu
legen.

Anschließend richten wir unsere Aufmerksamkeit von der Struktur innerhalb einer uni-
variaten Zeitreihe auf die Struktur zwischen den Komponenten einer bivariaten Zeitreihe. Die
ordinale Muster-Abhängigkeit wurde eingeführt, um zu ermitteln, wie stark die Ko-Bewegung
zwischen zwei Datensätzen oder zwei Zeitreihen ist. Betken et al. (2021) wollten zeigen, dass
die ordinale Muster-Abhängigkeit in den von Grothe et al. (2014) vorgeschlagenen axioma-
tischen Rahmen für multivariate Abhängigkeitsmaße zwischen Zufallsvektoren der gleichen
Dimension passt. Wir revidieren die Ergebnisse von Betken et al. (2021). Wir zeigen, dass
es einen Fehler in Bezug auf die Konkordanzordnung gibt und dass diese im Allgemeinen
nicht für ordinale Muster-Abhängigkeit verifiziert werden kann. Außerdem zeigen wir, dass
die ordinale Muster-Abhängigkeit stattdessen einen modifizierten Satz von Axiomen erfüllt.
Darüber hinaus betrachten wir die ordinale Muster-Abhängigkeit im Kontext der supermod-
ularen Ordnung.

Schließlich beweisen wir allgemeine Grenzwertsätze für die Verteilungen von multivariaten
Verallgemeinerungen ordinaler Muster unter der Annahme von nicht nur serieller, sondern
auch komponentenweiser Unabhängigkeit. Wir nutzen unsere Ergebnisse, um neue Tests
für Kreuzabhängigkeit vorzuschlagen. Darunter ist ein auf ordinaler Muster-Abhängigkeit
basierender Test. Wir vergleichen die Performanz unserer Tests mit drei Konkurrenten,
nämlich den klassischen Korrelationen von Pearson und Spearman sowie dem Korrelation-
skoeffizienten von Chatterjee. Zu diesem Zweck führen wir eine umfassende Simulationsstudie
durch. Zwei reale Datenbeispiele vervollständigen diese Arbeit.
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1 Introduction

Ordinal patterns are defined as the description of the relation of the elements of d consecutive
data points in terms of position and rank order. This means that an ordinal pattern is fully
specified by relations xs < xt or xs > xt for all pairs (s, t) of distinct points in time.

With regard to a data set (xt)t∈N and a fixed length or order d ≥ 2 (or embedding di-
mension as it is sometimes called), the ordinal structure is captured by a sliding window
approach, i.e., ordinal patterns for windows (xt, xt+∆ . . . , xt+(d−1)∆) of length d are deter-
mined, where ∆ ∈ N := {1, 2, . . . } denotes the delay or lag parameter. Thus, the original
process is transformed into a categorical ordinal pattern process.

Note that the delay is often denoted by τ in the literature. However, in order to keep the
notation as consistent as possible, we have decided to use ∆ here. (Furthermore, we implicitly
assume ∆ = 1 from Chapter 2 onwards. Hence, we will not have to explicitly take it into
account any further.) In practice, recommendations for the order d are made depending on
the field of application, but in general a choice d ∈ {2, . . . , 7} is reasonable. For illustration,
all possible ordinal patterns of length d = 3 are depicted in Fig. 1.1.

The actual values xt are not taken into account, so working with ordinal patterns leads
to a loss of information. (The actual amount of information lost is considered more closely
in Section 1.1.2.) However, analyzing data via ordinal patterns has many advantages which
justify this loss. First of all, ordinal patterns are invariant with regard to (not necessarily
linear) monotone transformations, which particularly implies that ordinal patterns are scale-
invariant. Therefore, the choice of measuring instrument used for data collection has no
influence on the result. Furthermore, ordinal patterns are robust with regard to small noise
which can be possibly caused by measurement errors. Overall, the concept of ordinal patterns
is very intuitive and extremely fast algorithms are available (see for instance Keller et al.
[44], Unakafova and Keller [85] and Berger et al. [14]).

Due to these qualities, ordinal patterns have been used extensively in many contexts where
random or ‘random-like’ systems are considered, the most prominent ones being dynamical
systems or symbolic dynamics, information theory and time series analysis. In fact, there is
already an extensive amount of literature on ordinal patterns available which covers a wide
range of applications (see Section 1.1).

This dissertation ties in at various points of ordinal pattern analysis, though its main
focus lies in the context of time series analysis and dependence. There it is a key problem to
determine whether dependence is present at all in the data or underlying time series (either
within one or between two time series). However, in order to be able to properly recognize
our contributions, we first provide an overview of the existing literature. Admittedly, as we
can only consider the tip of the iceberg, we do not claim completeness.

Figure 1.1: Ordinal patterns of length d = 3.
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1.1 Historical Background

We begin by delving into the origins of ordinal patterns which lie in the theory of dynamical
systems. From there we explore in different directions. Section 1.1.2 deals with data analysis
and the estimation of parameters of the underlying processes. Ties between values are treated
in Section 1.1.3. Section 1.1.4 deals with serial dependence and dependence between time
series or data sets, followed by a survey on recent developments with regard to multivariate
extensions of ordinal patterns in Section 1.1.5. We conclude this overview by considering
some practical applications.

The historical overview (as well as parts of the above introductory section) are based on
the joint work [81] with A. Schnurr.

1.1.1 Dynamical Systems and Entropy

Ordinal patterns have been introduced in the seminal paper by Bandt and Pompe [10] in
the context of dynamical systems. At this point, the main purpose of ordinal patterns was
to define so-called permutation entropy, which is the Shannon entropy for the distribution of
ordinal patterns, as a measure of complexity in a dynamical system or time series. Most of
the main types of complexity parameters, which are given by entropies, fractal dimensions,
and Lyapunov exponents, break down as soon as noise is added to the series (see Bandt and
Pompe [10]). In contrast, permutation entropy can be calculated for arbitrary real-valued
time series. As permutation entropy is based on ordinal patterns, it inherits their advantages
when compared to other complexity measures. Furthermore, for the family of logistic maps
it behaves similarly to Lyapunov exponents [10].

Shortly thereafter, Bandt et al. [13] considered permutation entropy more theoretically
and showed that, at least for piecewise monotone interval maps, limits exist and coincide
with the Kolmogorov-Sinai entropy. A similar statement holds for topological entropy. In
applications, this means that the complicated (but important) Kolmogorov-Sinai entropy
can be approximated in several contexts by the much simpler permutation entropy. This has
prompted further investigation into the relationship between these two entropy concepts in
greater generality. Amigó et al. [5] have considered a definition of permutation entropy slightly
differing from the one originally given. The authors have proved the result of [13] for their
concept of permutation entropy under the additional requirement of ergodicity (Theorem 2),
and extended it to maps on d-dimensional intervals (Theorem 4). Moreover, they showed that
the permutation entropy of ergodic one-dimensional interval maps, as originally defined by
[13], is an upper bound for the Kolmogorov-Sinai entropy. Considering the more general case
of one-dimensional measure-preserving dynamical systems, Keller and Sinn [43] have shown
that the Kolmogorov-Sinai entropy is not larger than permutation entropy under the sole
assumption of measurability, which generalizes the result by Amigó et al. [5]. The relationship
between these entropies has been further investigated by Keller et al. [45] and Amigó [1], where
the latter has been able to extend the equality between the altered permutation entropy as
proposed in [5] and the Kolmogorov-Sinai entropy also to (not necessarily ordered) measure-
preserving dynamical systems without further assumptions.

Compare in this context also the recent PhD thesis [33]. There, Gutjahr has shown
equality between the Kolmogorov-Sinai entropy and permutation entropy as defined by Bandt
and Pompe [10] for one-dimensional dynamical functions which are monotone on a countable
partition of the domain of definition (Theorem 3.17). Note that this generalizes the result

3



given by Bandt et al. [13]. Furthermore, the author has investigated whether this equality also
holds true if the Shannon entropy used in the definition of permutation entropy is replaced by
the Rényi entropy. (Note that the Rényi entropy is a generalization of the Shannon entropy
by definition, see Section 2.2.) In general this is not the case (see [33, Section 3.4.8]).

1.1.2 Data Analysis and Parameter Estimation

As already mentioned, the actual values of a time series are not taken into account in ordinal
pattern analysis, but, as the name already suggests, only the ordinal structure. Hence, the
question arises how much information on the structure of the underlying process has been
neglected. Bandt and Shiha [11] have shown that for stationary ergodic processes, all finite-
dimensional distributions can be recovered from the ordinal structure complemented by the
one-dimensional distribution (Theorem 2). Even though this is a rather theoretical statement,
it further justifies the use of ordinal patterns in practice.

However, before we further consider values based on pattern probabilities, let us take a
step back to simply observing the sequence of patterns in a system. Already the visualization
of ordinal patterns of fixed length in time can give useful insights into the nature of a time
series. Amigó et al. [3] even recommend it to be the first step in analysis. To this end,
ordinal patterns are symbolized by integers in a natural way. (Later, we will refer to them
as number representations of ordinal patterns, see Chapter 3.2.) Usually they are numbered
lexicographically according to their degree of deviation from a monotonically increasing pat-
tern. On this basis, Keller and Sinn [42] have introduced so-called ‘ordinal transformation’
where the ordinal information contained in a time series up to some point in time (order) is
extracted by some number in the interval [0, 1]. The higher the order, the more information
is extracted, and for the (theoretical) case of an order equal to infinity, all information is
extracted. This approach can be used, e.g., to detect change points in data sets or to classify
different states (see, e.g., [42] for detection of epileptic seizures).

Now returning to values based on pattern probabilities, data analysis with regard to
ordinal patterns is by no means limited to permutation entropy and variants of it. Rather,
the consideration of frequencies of ordinal patterns already provides a lot of interesting insight
on the underlying process. Sinn and Keller [83] were the first to study estimators based on
ordinal pattern frequencies. They have thus derived an estimation of the Hurst parameter
H of the data generating process. However, their considerations were restricted to the case
H < 3

4 . Betken et al. [16] have complemented their work by considering the long-range
dependent case H > 3

4 .

Bandt and Shiha [11] have proposed comparing the balance of monotone increasing and
decreasing patterns (of length d = 2), which they refer to as up-down balance, in a time
series as a function of the delay ∆. They also recommend consideration of relative frequen-
cies of ordinal patterns of length d = 3, again depending on the delay (in accordance with
the autocorrelation function). On this basis, they define the indicators of persistence and
rotational symmetry. While the latter is self-explanatory, persistence describes how often a
pattern xt < xt+∆ or xt > xt+∆ will persist in subsequent comparisons between xt+∆ and
xt+2∆. It can be used to detect periodicities [11] and for small delays ∆, it describes the
degree of smoothness present in the data [7]. Turning rate, which has been discussed by
Bandt [7], counts the number of turning points and can be understood as complementary to
persistence as it is a measure of roughness. We refer to these as well as so-called up-down
scaling as pattern contrasts. They have been discussed further in terms of describing cer-
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tain asymmetries and periodicities [7], change points [8] and independence of (most) pattern
contrasts under certain assumptions [9]. Moreover, at this point we would like to emphasize
applicational results with regard to EEG data from sleep research in particular: The work
by Bandt [9] indicates a very tight connection between sleep stages and turning rate. Fur-
thermore, it shows that slow oscillations, which, as the author states, are hardly accessible
by conventional methods, can be detected by turning rate.

1.1.3 Ordinal Patterns and Ties

Since their introduction, a critical assumption for the definition of ordinal patterns stemming
from a time series has been the continuity of the underlying distribution such that no or just a
few equal values are present. We refer to these equalities by ties. However, if ties are present
in the data, three different approaches are common [72]: In the first approach, windows
containing ties are omitted from the analysis which might lead to a great loss of information
in case of many ties being present. For the second approach a small noise is added to the
data having the drawback of disregarding constant patterns or possibly underestimating the
co-movement between multiple time series. For the last approach, the definition of ordinal
patterns is altered in favor of increasing patterns, i.e., ties xs = xt with s < t are treated as
if ‘xs < xt’. However, this maps the vectors (1, 1, 1) and (1, 10, 100) onto the same ordinal
pattern, that is, they are considered to exhibit the same up and down movement, which is
clearly not the case here.

Therefore, Schnurr and Fischer [72] introduced so-called generalized ordinal patterns
where they explicitly allow for ties by referring to a larger set of possible patterns. Gener-
alized ordinal patterns clearly overcome the drawbacks of the previously mentioned classical
approaches, but depending on the order of ordinal patterns, a lot more patterns need to be
considered. In fact, the patterns are no longer classical permutations, but Cayley permuta-
tions, whose number is equal to the ordered Bell number of order d. This can result in a
greater computational cost and more underlying parameters in statistical estimation. There-
fore, the recommendation is to use them with regard to time series where many ties are to
be expected, as it is, e.g., the case for categorical time series with few categories. For more
information on capturing the ordinal structure in presence of ties, see Section 3.4.

So far, generalized ordinal patterns have been (mostly) considered in the context of de-
pendence.

1.1.4 Dependence

As serial independence is a critical assumption for most statistical tests, there is a great
interest in testing for dependence. As a result, an extensive amount of literature is available
on this matter (see for instance [55] and the references mentioned therein). Ordinal patterns
have also been widely applied to derive tests for (possibly non-linear) serial dependence.
Compared to other tests, tests based on ordinal patterns have many advantages. Essentially,
the main characteristics of ordinal patterns are preserved, that is, they are robust with
regard to small noise and invariant with regard to monotone transformations. Furthermore,
the tests are non-parametric. Only the order of the ordinal patterns considered has to be
fixed beforehand, though there are recommendations available based on the selected test and
the length of the data set at hand. Computational simplicity and, resulting from this, short
computational times make tests based on ordinal patterns very appealing.

5



One of the first tests on serial dependence has been provided by Matilla-Garćıa [54].
There, the idea was to compare the relative frequencies of ordinal patterns (of fixed length)
with their distribution under the null of serial independence following Pearson’s approach in
[65]. Later, Matilla-Garćıa and Maŕın [55] have introduced a consistent test based on the
permutation entropy and maximum likelihood estimation. Caballero-Pintado et al. [21] have
defined the symbolic correlation integral which is highly inspired by the classical correlation
integral, but avoids the necessity of choosing an adequate distance parameter beforehand by
being based on ordinal patterns. On this basis, the authors have proposed a new “nonpara-
metric test for independence that overcomes some of the pitfalls of the BDS statistic, which
is a test based on the standard correlation integral and therefore is distance-dependent” [21,
p. 548].

Weiß [87] has derived tests in real-valued time series not only based on the permutation
entropy as well as some modifications of it including the symbolic correlation integral, but also
on most of the pattern contrasts by investigating their asymptotic distributions under the null
of independence. Weiß and Schnurr [89] have proposed a test for independence in time series
where ties are explicitly allowed, using generalized ordinal patterns as introduced in Schnurr
and Fischer [72]. They have shown that the pattern distribution is not uniform under the
null of serial independence, but depends strongly on the underlying distribution. Therefore,
they have chosen a data-driven approach based on the classical Efron’s bootstrap procedure
in order to dispose of parametric assumptions. On the other hand, Weiß and Testik [90] have
extended the theory in terms of monitoring for the existence of serial dependence in real-
valued and continuously distributed processes. There, ‘monitoring’ means that deviations
with regard to independence can already be detected during data collection. In this regard,
the authors have proposed control charts based on ordinal patterns, which overcome the
typical drawbacks of control charts discussed so far. This means, that their approach is fully
non-parametric and distribution-free, no parameter estimation is required and it can be used
almost immediately at the start of process monitoring, i.e., there is (almost) no delay.

With regard to dependence between time series, Matilla-Garćıa et al. [57] have proposed a
test for independence between time series which is based on permutation entropy. As a result,
the authors obtain a non-parametric test for not-necessarily linear processes, which does
not require restrictive assumptions and is consistent for those processes where dependence
structure is within the (a priori fixed) order of ordinal patterns. The authors’ approach is
extended by Matilla-Garćıa et al. [56], who have derived a non-parametric test for linear and
nonlinear causality.

With regard to measuring dependence between time series, so-called ordinal pattern de-
pendence has been proposed by Schnurr [70] and Schnurr and Dehling [71]. The idea is to
count the number of coincident patterns in both time series and compare this with the ex-
pected number in case of (hypothetical) independence. Then, numerous coincident patterns
would indicate similar up-and-down behavior and hence, co-monotonic behavior of the two
time series.

Ordinal pattern dependence has several advantages when compared to classical measures
of dependence: Apart from the advantages that ordinal patterns entail, ordinal pattern de-
pendence does not require the existence of second moments. The concept is very intuitive
and again fast algorithms are available. Betken et al. [17] have investigated how ordinal pat-
tern dependence fits into the axiomatic framework of multivariate measures of dependence
proposed by Grothe et al. [32].

Schnurr and Dehling [71] have derived limit theorems for ordinal pattern dependence and
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a test on structural breaks under stationarity and some mild assumptions on short-range
dependence. Later, Betken et al. [16] and Nüßgen and Schnurr [62] have supplemented limit
theorems under long-range dependence with the latter also considering the mixed cases of
short- and long-range dependence.

Schnurr and Fischer [73] have proposed a method to detect change points in the de-
pendence structure between possibly non-stationary time series which is based on ordinal
patterns. They have demonstrated that their method overcomes problems of classical tech-
niques in case of non-stationarity.

1.1.5 Multivariate Extensions

Recently, there has been a growing interest in extending ordinal patterns to multivariate time
series. An overview of early approaches has been provided by Mohr et al. [58], but, as the
authors have pointed out, none of those take potential correlations between the movement of
the variables into account. Instead, Mohr et al. [58] have proposed two approaches of their
own. Their first idea is what we refer to as multivariate ordinal patterns in the remaining and
is based on the idea of storing the classical univariate ordinal patterns of both components in
one vector/matrix (depending on the chosen representation, see Section 6.1). The second idea
is based on principal component analysis. There, the multivariate time series is transformed
into a univariate time series from which univariate ordinal patterns then can be obtained as
usual. Even though both of the approaches lead to the avoidance of a loss of information
with regard to the co-movement of the components, the advantage of the second method over
the first is that a smaller number of patterns has to be taken into account there.

Later, Bandt and Wittfeld [12] have proposed a method where even more information is
preserved and which we refer to as spatial ordinal patterns. There the patterns of ups and
downs are no longer determined component by component, but across all dimensions. In
particular, the authors have considered 2×2-patterns and categorized them into three types.
Then, they have proposed statistics based on these types in order to describe and distinguish
textures in images and therefore, highlighted the application of spatial ordinal patterns with
regard to image processing. Weiß and Kim [88] have considered spatial ordinal patterns under
the assumption of (spatial) independence. They have derived the asymptotics under the null
and proposed tests for spatial dependence.

Restricting themselves to two dimensions, Fischer et al. [29] have introduced the concept
of motion patterns. There, the authors considered the definition of multivariate ordinal
patterns, i.e., vectors of univariate patterns, and reduced their number by categorization
in order to obtain a computationally efficient procedure which retains a sufficient amount
of information. This categorization is done by depicting both univariate ordinal patterns of
order d = 3 in a grid and considering the nature of the resulting movement. Then, the ordinal
behavior of the time series can be analyzed in terms of classes of movements. Both cases
with and without ties have been considered by the authors, and limit theorems for motion
pattern distributions for stationary strongly mixing processes have been derived.

Betken and Schnurr [15] have established a definition for ordinal patterns in more than
one dimension based on the concept of Tukey’s halfspace depth. “The basic idea of statistical
depth is to measure how deep a specific element in a multidimensional space lies in a given,
multivariate reference distribution, and therefore naturally leads to a center-outward order-
ing of sample points in multivariate data” [15]. This way univariate ordinal patterns can be
determined which represent the multivariate ordinal structure of the data (dimension reduc-
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tion technique). The authors have provided limit theorems for the cases where the reference
function is known and where it is unknown under the assumption of weak dependence of the
underlying time series.

1.1.6 Practical Applications

Ordinal pattern analysis is a “popular method in biology and medicine, especially when
it comes to distinguishing abnormal from normal health conditions in real time” [3, p. 2].
In fact, “it is not surprising that permutation entropy and similar measures are applied to
physical data because such data are characterized by special underlying patterns often related
to certain states of a system (e.g. spike-and-wave patterns related to epilepsy, special sleep
patterns such as sleep spindles, and burst suppression patterns related to inactivated brain
states, or Wolff–Parkinson–White patterns in abnormal electrocardiograms). It seems that
ordinal patterns are appropriate for capturing structures containing such patterns and also
abrupt changes in their distributions” [3, p. 13]. For a throughout survey on applications of
ordinal pattern analysis in biomedicine, we refer to [3] and the references therein. Apart from
the applications mentioned so far (including the previous sections), from the very beginning,
ordinal patterns have been used to analyze speech signals [10]. Further applications include
finance [8, 55, 56]. In the context of negative dependence between financial index data,
ordinal pattern dependence was used in [70]. Multivariate patterns were applied to climate
data (center of rain events) in [29] and patterns with ties to hydrological data in [72] and
[73]. Furthermore, extremal events were treated in [63].

1.2 Goals of this Thesis

As already mentioned, this work picks up on various points in the existing literature. We
mainly contribute to the theory of dependence between two time series. There, one of the
intended contributions is to propose non-parametric tests for dependence between time series
based on multivariate extensions of ordinal patterns and conduct a comparative performance
analysis taking into account some classic competitors. Furthermore, we reconsider the results
of Betken et al. [17] with regard to ordinal pattern dependence and the axiomatic framework
for multivariate measures of dependence proposed by Grothe et al. [32]. Silbernagel [79,
p. 89ff] has noted that there is an error in the proof of the fifth axiom. Therefore, a ques-
tion which naturally arises is whether this axiom (concordance ordering) can be verified for
ordinal pattern dependence at all. In addition, the question arises as to how ordinal pattern
dependence relates to other stochastic order relations.

Another main goal of this work is to complement the work of Caballero-Pintado et al. [21]
by establishing limit theorems for the symbolic correlation integral under the assumption of
short-range dependence. This would pave the way for several possible applications, which are
not feasible with the results limited to the independent and identically distributed (i.i.d.) case.
In particular, this would form the basis for the development of hypothesis tests on whether two
(short-range dependent) time series have the same underlying structure/complexity/model.

Another aim is given by the small but non-negligible contribution of a survey on ordinal
pattern representations existing in the literature, with a special focus on their applicability
from different perspectives.
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1.3 Outline of this Thesis

In Chapter 2, we introduce the reader to most of the mathematical tools and concepts nec-
essary for the remaining of this work: We provide basic definitions in the context of time
series analysis and dependence properties, as well as entropy, which has its origin in infor-
mation theory, but has also become an important tool especially in the context of ordinal
patterns and dynamical systems. Furthermore, we introduce the reader to U-statistics and
approximating functionals in the context of short-range dependent stochastic processes. We
derive or rather generalize limit theorems for U-statistics of approximating functionals given
by Borovkova et al. [18], which will be useful later. We conclude this chapter with a short
introduction to regular conditional distributions.

The main part of this work can be divided into two parts. In the first part, we contribute
to ordinal pattern analysis by considering classical (univariate) ordinal patterns. We begin
with an extensive introduction to ordinal patterns in Chapter 3. There we describe and an-
alyze different approaches to represent them by deriving their advantages and disadvantages
in different contexts. Namely, we consider digital implementation of ordinal patterns, inverse
patterns and ties between values. Chapter 4 deals with the symbolic correlation integral
and the Rényi entropy with regard to ordinal pattern distributions. We introduce a natural
estimator on the basis of U-statistics and derive limit theorems under the assumption of
short-range dependence. Here we make use of the limit theorems considered in Chapter 2.
We complete this chapter with simulations to support and discuss our results in more detail.
In Chapter 5 we reconsider the results of Betken et al. [17] with regard to the axiomatic
framework of multivariate measures of dependence proposed by Grothe et al. [32]. We es-
tablish a counterexample which shows that ordinal pattern dependence does not satisfy the
fifth axiom, and derive a proof under different but arguably similar assumptions. Moreover,
we consider ordinal pattern dependence with regard to other stochastic order relations. We
conclude this chapter (as well as the first part of this thesis) with a critical look at axiomatic
approaches with regard to measures of dependence.

The second part of this thesis focuses on multivariate extensions of ordinal patterns.
In the same way as in the first part, in Chapter 6 we discuss representations of two of the
extensions, namely, multivariate ordinal patterns and spatial ordinal patterns. With regard to
these, we continue with the introduction of a general framework for dependence tests between
time series under the assumption of serial independence (Chapter 7). This also includes
ordinal pattern dependence as it can be embedded into the context of multivariate ordinal
patterns. To this end, we prove general limit theorems of multivariate pattern distributions.
These encompass some existing results. We compare the performance of the proposed ordinal
pattern-based statistics with three competitors, namely classical Pearson’s and Spearman’s
correlation as well as the rank-based Chatterjee’s correlation coefficient, in a simulation study
and real-world data examples.
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2 Mathematical Preliminaries

In this chapter, we give an overview on the mathematical tools and concepts necessary for
our results. This does not yet encompass ordinal patterns, which are treated in the subse-
quent chapter. First of all, we provide a brief introduction into time series and short-range
dependence. Then we introduce the concepts of entropy and U-statistics, before we discuss
a broad class of short-range dependent processes in more detail, namely r-approximating
functionals. There we derive limit theorems for U-statistics of r-approximating functionals
which constitute generalizations of the limit theorems established by Borovkova et al. [18].
Those will be of great importance to us in Chapter 4. We conclude this chapter with a short
introduction to regular conditional distributions, which will be relevant in Chapter 5.

2.1 Time Series Analysis and Dependence

In order to define time series, let us recall the definition of stochastic processes first.

Definition 2.1.1 (Brockwell and Davis [20, Definition 1.2.1]). Let (Ω,F ,P) denote a prob-
ability space, (S,S) a measurable space and T an index set. If Xt : Ω → S is a (possibly
multivariate) random variable for each t ∈ T , then we call (Xt)t∈T a stochastic process and
(S,S) its state space.

Based on the above definition, a stochastic process is an indexed family of random vari-
ables. As the name might already suggest, in time series analysis the index set T consists
of time points - we then call (Xt)t∈T a time series. Such index sets are, for example, given
by the natural numbers N := {1, 2, . . . , } or positive real numbers R+ := ]0,∞[. If the past
is also to be taken into account, a two-sided process can be considered by setting the set of
integers Z or the entirety of the real numbers R as the index set. In this thesis, we focus on
discrete time.

A further distinction must be made in the choice of the state space (S,S): We distinguish
between continuous- and discrete-valued processes, depending on whether S is continuous
or discrete. This distinction is crucial when dealing with ordinal patterns: The nature of
the state space largely determines whether ties have to be taken into account, which in turn
have an enormous influence on the resulting ordinal pattern distribution. Recall that the
probability of coinciding values equals zero in the continuous case. In this thesis, most of the
time, that is, unless indicated otherwise, we deal with the admittedly easier continuous case.

Due to its great importance, we remind the reader of the definition of stationarity:

Definition 2.1.2 (Brockwell and Davis [20, Definitions 1.3.2/1.3.3.]). 1. A time series
(Xt)t∈Z is called weakly stationary if it satisfies the following three conditions:

a) E |Xt|2 <∞ for all t ∈ Z,

b) EXs = EXt for all s, t ∈ Z,

c) Cov(Xs+h, Xt+h) = Cov(Xs, Xt) for all s, t, h ∈ Z.
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2. A time series (Xt)t∈Z is called (strictly) stationary if

(Xt1 , . . . , Xtk)
D
= (Xt1+h, . . . , Xtk+h)

for all k ≥ 1 and t1, . . . , tk, h ∈ Z, where D
= denotes equality in distribution.

Note that the definition of strict stationarity is equivalent to the statement that

(X1, . . . , Xk)
D
= (X1+h, . . . , Xk+h) for all k ≥ 1 and h ∈ Z

(see, e.g., [20, Remark 4]). Furthermore, note that a time series (Xt)t∈Z with finite variance
is weakly stationary (cf. [20, Chapter 1.3]).

Dependence properties of time series play a crucial role for the application of limit theo-
rems. In general, a distinction is drawn between short- and long-range dependent processes.
These are characterized by properties of their autocovariance functions.

Definition 2.1.3 (Brockwell and Davis [20, Definition 1.3.1/Remark 2]). Let (Xt)t∈Z be
a weakly stationary time series. We define the autocovariance function γX associated with
(Xt)t∈Z by

γX(h) := Cov(Xt, Xt+h) = Cov(X0, Xh) for t, h ∈ Z.

If the association with the time series (Xt)t∈Z is clear from the context, we omit the index
and simply write γ(·) := γX(·).

Definition 2.1.4 (Pipiras and Taqqu [66, Definition 2.3.1/Section 2.1]). A weakly stationary
time series (Xt)t∈Z is called

◦ short-range dependent if its autocovariance functions are absolutely summable, that is,∑∞
h=−∞ |γ(h)| <∞,

◦ and long-range dependent else, i.e., if
∑∞

h=−∞ |γ(h)| = ∞.

Note that there are various definitions of long-range dependence which can be equivalent
depending on the choice of the slowly varying functions [66]. For more details, we refer the
reader to [66, Chapters 2.1 – 2.2].

Classical examples for short-range and long-range dependent processes are autoregressive
moving average (ARMA)-processes and autoregressive fractionally integrated moving average
(ARFIMA or FARIMA)-processes, respectively [66, p. 15]. (A proper definition for ARMA-
processes is given in Section 2.4.1.) Consider in this regard the autocovariance functions of
the AR(1)- and FAR(1)-process depicted in Fig. 2.1. The autocovariance function of the
AR(1)-process converges very quickly to 0. This is not the case for the FAR(1)-process.
There, the dependence seems to reach infinitely far – or at least it is decaying very slowly.

In this thesis, we restrict ourselves to short-range dependent processes. There are many
kinds of short-range dependent processes which are varying in strength of the assump-
tions. We do not intend to discuss all of them in detail here. Instead we provide a brief
overview in Fig. 2.2. There, the arrows imply, e.g., that absolute regular processes are also
r-approximating functionals, that is, absolute regularity is stronger than the r-approximating
condition. Furthermore, note that “mixing” in the lower left part of this illustration is meant
in the ergodic-theoretic sense, and let us emphasize that the r-approximating condition and
Lr-near-epoch dependence (Lr-NED) are equivalent only for stationary processes. Note that
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(i) (ii) (iii)

Figure 2.1: Autocovariance functions of (i) an i.i.d. series, (ii) an AR(1)-process with autoregressive
parameter ϕ = 0.5 and (iii) an FAR(1)-process with ϕ = 0.5 and d = 0.4.

this overview constitutes only a selection and is by no means a complete list of all concepts
available in the literature. Furthermore, let us emphasize that we refrain from giving a
definition for each of the concepts mentioned, since this is beyond the scope of this thesis.
Instead, we refer the interested reader for more details, e.g., to Bradley [19] and Davidson
[24, Chapters 13 – 14, 17], as well as Dehling et al. [26] with regard to near-epoch dependence
in probability (P-NED).

In this thesis, we mainly focus on r-approximating functionals (Section 2.4). It is in fact
no easy task to find/construct a short-range dependent stochastic process which does not
fulfill the r-approximating condition (see Section 2.4.1), which already speaks for the sheer
size of this class of short-range dependent processes.

Figure 2.2: Illustration of the relations between different kinds of short-range dependent processes
under the assumption of stationarity.
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2.2 Entropy

The concept of entropy was first introduced in 1865 by Clausius [23] in the context of ther-
modynamics. Later, Shannon [78] used entropy as a basis to build the theory of information
and communication on. For a historical overview and recent applications, we refer, e.g., to
the review by Amigó et al. [4]. However, entropy has also become highly relevant in the
context of ordinal patterns (recall that ordinal patterns have been originally introduced as a
tool for so-called permutation entropy in [10]).

In general, entropies measure inhomogeneity, impurity, complexity and uncertainty or
unpredictability [58]. In this thesis, we are going to employ the concept of entropy to perform
classification tasks on the degree of complexity present within a single time series (Chapter 4)
as well as tests for dependence between two time series (Chapter 7), since dependence is
strongly connected to how unpredictable or uncertain an event is. To this end, we first give a
mathematical definition of uncertainty (taken from the field of information theory) and then,
we indicate how entropy is a measure of uncertainty. Thereafter, we state the definition of
(Shannon) entropy and discuss some of its most characteristic properties. Lastly, we give the
definition of the Rényi entropy as one example of so-called generalized entropies and discuss
its relation to the classical (Shannon) entropy.

Definition 2.2.1 (Martin and England [53, Defintion 2.1]). Let (Ω,F ,P) denote a probability
space. The information, or uncertainty, I : [0, 1] → R is a real-valued function of probabilities
of measurable events which satisfies the following three properties:

(I1) An event A ∈ F which occurs almost surely, that is, with probability P(A) = 1, has
zero uncertainty: I(P(A)) = 0.

(I2) If an event A1 ∈ F is less probable than another event A2 ∈ F , then the first event
A1 has more uncertainty than the second A2. That is, p(1) := P(A1) ≤ P(A2) =: p(2)

implies I(p(1)) ≥ I(p(2)).

(I3) The uncertainty of the simultaneous occurrence of two independent events is the sum
of their individual uncertainties. In more detail, for events A1, A2 ∈ F with p12 :=
P(A1∩A2) = P(A1)·P(A2) = p(1) ·p(2), it follows I(p12) = I(p(1) ·p(2)) = I(p(1))+I(p(2)).

As explained by Martin and England [53], it is quite easy to find functions which satisfy
the first two properties. The third condition is more restrictive. In fact, it is a classical
result that the only measurable function f : [0, 1] → R which satisfies the functional equation
f(xy) = f(x) + f(y) for x, y ∈ [0, 1] is given by a constant multiple of the natural logarithm,
i.e., f(x) = C log(x) for C ∈ R constant (see [53, p. 52]). Note that f vanishes at 1 for any
constant C, but it is monotonously decreasing if and only if C < 0. Therefore, if we require
the uncertainty to be measurable with regard to the probabilities of events, then I is uniquely
defined by

I(P(A)) =

{
−b log(P(A)) if P(A) > 0,

∞ if P(A) = 0,
(2.1)

where b > 0 is some positive real number and A ∈ F denotes some measurable event.

Unless stated otherwise, we use natural logarithms (which we denote by log), though
logarithms to base 2 are often a more natural choice with regard to information and entropy
(see, e.g, [4, 53]).
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Let the m-dimensional vector p = (p(1), . . . , p(m))⊤ ∈ [0, 1]m refer to the probability mass
function (pmf) of some discrete random variable X with finite range of possible states. Note
that, in particular, the components of p have to sum up to one, i.e., p(1) + · · · + p(m) = 1.
Then, the Shannon entropy H of p is defined as the linear average of the information function
I defined in (2.1) or, equivalently, as the expected value of the random variable I(p(X)) =
−b log(p(X)), where p denotes the function which assigns the respective probability p(j) to
each realization xj of X:

H(p) = E(I(p(X))) =
m∑
j=1

p(j)I(p(j)) = −b
m∑
j=1

p(j) log p(j) (2.2)

with the convention x log x = 0 for x = 0 (see [4, 53]). Hence, entropy can be interpreted as
the expected uncertainty or randomness. It holds

0 ≤ H(p) ≤ b logm

(see, e.g., [53, Theorem 2.3]), and thus, setting b = 1/ log(m) yields a natural standardization.

Definition 2.2.2. Let p ∈ [0, 1]m be a pmf. Then, its (standardized) Shannon entropy is
defined as

H(p) := − 1

log(m)

m∑
j=1

p(j) · log(p(j)),

with the convention 0 · log(0) := 0.

Remark 2.2.3. The Shannon entropy is often referred to as just entropy (see, e.g., [4, 53])
due to its uniqueness (see below). If p expresses the ordinal pattern probabilities of a time
series, then PE(p) := H(p) is referred to as the (standardized) permutation entropy, which
has been introduced by Bandt and Pompe [10].

For a uniform distribution, that is, all possible states appear with the same probability
1/m, the standardized Shannon entropy attains its upper bound given by 1 as the time series
is then the most uncertain or unpredictable. In contrast, a time series is the least complex
if it follows a one-point distribution, i.e., p(j) = 1 for one 1 ≤ j ≤ m and p(k) = 0 otherwise,
which yields PE(p) = 0 in consequence (see, e.g., [47, p. 4]).

Remark 2.2.4. Note that discrete pmf vectors p may also arise if some originally continuously
distributed time series is transformed into a sequence of ordinal patterns. Now, let us make
some remarks about what the above means with regard to ordinal patterns. First of all, even
though the pattern distribution is uniform for (classical) univariate ordinal patterns stemming
from an i.i.d. time series, this is not the case for generalized ordinal patterns (see Weiß and
Schnurr [89]). Next, a one-point ditribution with regard to ordinal pattern distributions
corresponds to a monotonically increasing or decreasing time series. This is, in fact, the only
case where the ordinal patterns of a time series follow a one-point distribution, because the
ordinal patterns are obtained from a time series in an overlapping nature. In more detail,
the windows (xt, . . . , xt+d−1) consisting of the original data (xt)t∈N potentially share some
components for t ∈ N. Consequently, the respective ordinal patterns must indicate the same
ordinal structure for the overlapping segments. For illustration, consider Figure 2.3. There,
an ordinal pattern of length d = 3 which is neither monotonically increasing nor decreasing is
depicted in black. All options for subsequent patterns (of length d = 3) are shown in green,
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Figure 2.3: An ordinal pattern of length d = 3 in black, and its possible subsequent ordinal patterns
in green.

but none of them agrees with the original ordinal pattern, making a one-point distribution
impossible (see Silbernagel et al. [82]).

Shannon entropy is unique in the sense that it is the only function defined on pmfs which
satisfies the so-called Khinchin-Shannon axioms [4]:

(KS1) Continuity: H(p) depends continuously on all variables for each m.

(KS2) Maximality: For all m,

H(p) ≤ H
( 1

m
, . . . ,

1

m

)
.

(KS3) Expansibility: For all m and 1 ≤ j ≤ m,

H(0, p(1), . . . , p(m)) = H(p(1), . . . , p(j), 0, p(j+1), . . . , p(m)) = H(p).

(KS4) Separability (or strong additivity): For all m,n ≥ 2 it holds

H(p11, . . . , p1n, p21, . . . , p2n, . . . , pm1, . . . , pmn)

= H(p(1), . . . , p(m)) +
m∑
i=1

p(i)H
( pi1
p(i)

, . . . ,
pin

p(i)

)
,

where p(i) =
∑n

j=1 pij .

If
pX,Y = (p11, . . . , p1n, p21, . . . , p2n, . . . , pm1, . . . , pmn)

⊤

corresponds to the joint pmf of some random variables X and Y with marginal distributions

pX = (p
(1)
X , . . . , p

(m)
X )⊤ = (p(1), . . . , p(m))⊤ and pY = (p

(1)
Y , . . . , p

(n)
Y )⊤,

respectively, where p
(j)
Y =

∑m
i=1 pij , then axiom (KS4) is equivalent to H(pXY ) = H(pX) +

H(pY |X) where H(pY |X) is the entropy of Y conditional on X. If X and Y are independent,

i.e., pij = p
(i)
X p

(j)
Y , then H(pY |X) = H(pY ) and

H(pX,Y ) = H(pX) +H(pY ) (2.3)

(see [4], [47, p. 4f]). Property (2.3) is referred to by additivity. Note the connection to (I3).
Non-negative functions defined for pmfs which satisfy (KS1) – (KS3) are referred to as

generalized entropies [4]. Classical examples are the Tsallis entropy and Rényi entropy. Here
we focus on the latter due to its relevance in Chapter 4.
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Definition 2.2.5 (Rényi [68]). The Rényi-q entropy of some pmf vector p = (p(1), . . . , p(m))⊤

is defined as

Rq(p) :=
1

1− q
log
( m∑
j=1

(p(j))q
)

where q ≥ 0, q ̸= 1.

Remark 2.2.6. If p expresses the ordinal pattern probabilities of a time series, then Rq(p) is
called Rényi-q permutation entropy [2].

Hence, the Rényi entropy is actually a one-parameter family of entropies. It was intro-
duced with the motivation in mind to find the most general class of information measures
that preserved the additivity of statistically independent systems and were compatible with
Kolmogorov’s probability axioms (for more details, see Principe [67, Chapter 2.2]). At this
point, let us remark that the Shannon entropy is the simplest of those information measures
[67].

Furthermore, one can show that the Rényi entropy is related to the Shannon entropy by
its limit:

lim
q→1

1

1− q
log
( m∑
j=1

(p(j))q
)
= − lim

q→1

∂

∂q
log
( m∑
j=1

(p(j))q
)

= − lim
q→1

1∑m
j=1(p

(j))q

m∑
j=1

(p(j))q log p(j)

= −
m∑
j=1

p(j) log p(j),

where we have used L’Hopital’s rule in the first equation and
∑m

j=1 p
(j) = 1 in the last [4].

For further information on the Rényi entropy we refer the reader to Principe [67, Chapter 2].
The empirical versions are obtained by using relative frequencies p̂(j), 1 ≤ j ≤ m, instead

of probabilities.

2.3 U-statistics

Even though certain optimal properties of U-statistics have been proved before by Halmos
[34], U-statistics have been formally introduced by Hoeffding [35]. Many classical estima-
tors have been recognized as U-statistics, including the sample mean, sample variance and
Kendall’s τ . However, many recently proposed estimators are also based on U-statistics as,
e.g., the estimator for the symbolic correlation integral and Rényi-2 permutation entropy (see
Chapter 4).

Definition 2.3.1 (Hoeffding [35]). Let (Xt)t∈N be a stationary sequence of d-dimensional ran-
dom vectors each with cumulative distribution function (cdf) F . For m ≥ 1, let
h : Rm×d → R be a measurable function which is invariant under permutation of its ar-
guments. The U-statistic of order (or degree) m with kernel h is defined by

Un := Un(h) :=

(
n

m

)−1 ∑
1≤t1<···<tm≤n

h(Xt1 , . . . , Xtm).
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U-statistics were named after their property of being unbiased estimators for so-called
regular functionals

θ(F ) =

∫
· · ·
∫
h(x1, . . . , xm)dF (x1) . . . dF (xm)

(therefore the letter ‘U’), even though their “symmetric nature [. . . ] plays a more important
role in the characterization of their optimality properties” [76, p. 301].

A crucial tool for analyzing the asymptotic behavior of U-statistics is the Hoeffding-
decomposition [35], where a U-statistic Un(h) with kernel h is decomposed into a linear and
a degenerate part. For m = 2, this is

Un(h) = θ +
2

n

n∑
t=1

h∗(Xt) +
2

n(n− 1)

∑
1≤t1<t2≤n

J(Xt1 , Xt2), (2.4)

where θ = Eh(X1, X2), h1(x1) = Eh(x1, X2), h
∗(x1) = h1(x1)−θ and J(x1, x2) = h(x1, x2)−

h1(x1)− h1(x2) + θ. Then, it directly follows

Un(h) = θ + 2Un(h
∗) + Un(J),

where Un(h
∗) and Un(J) denote the U-statistics with regard to the respective kernels. One

then shows that the degenerate part Un(J) is asymptotically negligible such that it remains
to consider the asymptotic distribution of the linear part Un(h

∗).
Hoeffding has established asymptotic normality and a law of large numbers for i.i.d. se-

quences in [35] and [36], respectively. Since then, asymptotical results for U-statistics (includ-
ing invariance principles for empirical processes of U-statistics structure) have been proved for
cases where the underlying stochastic process (Xt)t∈N exhibits different kinds of dependence;
for a brief historical overview, we refer to [18, Sections 4.1, 4.2 and 5.1].

2.4 Approximating Functionals

Now, we give an introduction to r-approximating functionals as considered by Borovkova
et al. [18]. First of all, we provide mathematical definitions and discuss some basic properties
(Section 2.4.1). Afterwards, we generalize some theorems of [18] in Sections 2.4.2–2.4.3 in
order to establish generalizations of two of their main results, namely a law of large numbers
(LLN) [18, Theorem 6] and a central limit theorem (CLT) [18, Theorem 7] for U-statistics of
r-approximating functionals of absolutely regular processes (Section 2.4.4). If not indicated
otherwise, our derivations are based on the joint work [75] with A. Schnurr and M. R. Maŕın
and supplemented with further examples.

2.4.1 Mathematical Definitions

First of all, let us give the definition of a functional.

Definition 2.4.1 (Borovkova et al. [18, Definition 1.3]). Let (Zt)t∈Z be a real-valued sta-
tionary process. We call a sequence (Xt)t∈Z a functional of (Zt)t∈Z if there is a measurable
function f defined on RZ such that

Xt = f((Zt+k)k∈Z).
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Note that (Xt)t∈Z is necessarily a stationary process.

The idea is that even though functionals of mixing processes are not necessarily mixing
themselves, as long as they can be ‘approximated’ almost entirely by the ‘near epoch’ of
the mixing process, they still often have properties which allow for the application of limit
theorems (cf. Davidson [24, p. 261]). In what follows, we will resort to absolute regular
processes as ‘background processes’. Recall that absolute regularity constitutes a certain
type of mixing condition (see Fig. 2.2).

Definition 2.4.2 (Borovkova et al. [18, Definition 1.2]). For a time series (Zt)t∈Z and k, l ∈ Z
with k ≤ l, define Al

k := σ(Zk, ..., Zl) as the σ-algebra generated by Zk, . . . , Zl. (Zt)t∈Z is
called absolutely regular if βk → 0 where

βk = 2 sup
n

{
sup

A∈A∞
n+k

(P(A|An
1 )− P(A))

}

= sup
n

sup
I∑

i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)|

 ,

where the last supremum is over all finite An
1 -measurable partitions (A1, ..., AI) and all finite

A∞
n+k-measurable partitions (B1, ..., BJ).

Let N0 := N∪{0} denote the natural numbers including zero and ∥·∥ a norm on Rd. Note
that the background process (Zt)t∈Z is not further specified in the subsequent definition of
r-approximating functionals. Furthermore, note that the r-approximating condition does not
necessarily require that the r-th order moments of X0 exist.

Definition 2.4.3 (Borovkova et al. [18, Definition 1.4]/Davidson [24, p. 261f]). Let (Xt)t∈Z
be a functional of (Zt)t∈Z and let r ≥ 1. Suppose that (ak)k∈N0 are constants with ak → 0.
We say that (Xt)t∈Z satisfies the r-approximating condition or that it is an r-approximating
functional if

E
∥∥∥X0 − E(X0|Ak

−k)
∥∥∥r ≤ ak (2.5)

for all k ∈ N0. The sequence (ak)k∈N0 of approximating constants is said to be of size −λ if
ak = O(k−λ−ε) for some ε > 0, where O denotes the Landau Big O.

r-approximating functionals include one of the most important classes for parametric mod-
els of weakly stationary time series, namely ARMA-processes. In a nutshell, an ARMA(p, q)-
process (Xt)t∈Z is a weakly stationary process which satisfies the so-called ARMA-equation

Xt − ϕ1Xt−1 − · · · − ϕpXt−p = Zt + θ1Zt−1 + · · ·+ θqZt−q (2.6)

for some constants ϕ1, . . . , ϕp, θ1, . . . , θq ∈ R and white noise (Zt)t∈Z ∼ WN(0, σ2) [20, Defi-
nition 3.1.2]. Thereby, white noise is defined as a weakly stationary process which has zero
mean, whose second moments exist and whose components are pairwise uncorrelated [20,
Definition 3.1.1].

Example 2.4.4. First, let us consider the special case of an ARMA(0, 1)-process, namely
a moving average-process of order 1 (short: MA(1)-process) (Xt)t∈Z on some white noise
(Zt)t∈Z ∼ WN(0, 1) defined by

Xt = θZt−1 + Zt
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for some constant θ ∈ R. We assume that the white noise is Gaussian. For k ≥ 1, it
holds E(X0|Ak

−k) = X0 due to measurability of X0 with respect to Ak
−k and thus, E|X0 −

E(X0|Ak
−k)|r = 0. Hence, the approximating constants (ak)k∈N0 converge to 0 as k tends to

infinity, and in fact, they do so very fast. What remains now is to show the boundedness of
the r-approximating condition in case of k = 0. Note that for jointly normal distributed ran-
dom variables, uncorrelatedness and independence are equivalent [64, 9.1.2] and all absolute
moments exist [64, 2.2.1]. Then, it follows

E(X0|Z0) = θ · E(Z−1|Z0) + E(Z0|Z0) = θ · EZ−1 + Z0 = Z0

by definition of X0 and properties of the conditional expectation, and hence,

E|X0 − E(X0|Z0)|r = |θ|r · E|Z0|r︸ ︷︷ ︸
<∞

=: a0 <∞.

Example 2.4.5. Now, we return to the more complex case of general ARMA(p, q)-processes,
though we only consider the case of 1-approximating functionals (r = 1) for illustration. First,
let us set the more compact notation

ϕ(z) := 1− ϕ1z − · · · − ϕpz
p

θ(z) := 1 + θ1z + · · ·+ θqz
q

for the pth and qth degree polynomials and let B denote the backward shift operator defined
by

BjXt := Xt−j , j ∈ Z.

Then, the ARMA-equation (2.6) is equivalent to

ϕ(B)Xt = θ(B)Zt, t ∈ Z

[20, p. 78]. Let (Zt)t∈Z ∼ WN(0, 1) again denote some Gaussian white noise. If ϕ(z) ̸= 0 for
all z ∈ C such that |z| = 1, then [20, Theorem 3.1.3] implies that the ARMA-equations have
the unique stationary solution

Xt =

∞∑
j=−∞

ψjZt−j ,

where the coefficients ψj are defined by

ψ(z) := θ(z)ϕ(z)−1 =
∞∑

j=−∞
ψjz

j , c−1 < |z| < c,

for some c > 1. With regard to the 1-approximating condition, that is Eq. (2.5) with r = 1,
for k ∈ N0 it then follows

E
∣∣X0 − E(X0|Ak

−k)
∣∣ = E

∣∣∣∣ ∞∑
j=−∞

ψjZ−j − E
( ∞∑
j=−∞

ψjZ−j

∣∣Ak
−k

)∣∣∣∣
= E

∣∣∣∣∑
|j|>k

ψjZ−j − E
(∑
|j|>k

ψjZ−j

∣∣Ak
−k

)∣∣∣∣
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= E
∣∣∣∣∑
|j|>k

ψjZ−j − E
(∑
|j|>k

ψjZ−j

)∣∣∣∣
= E

∣∣∣∣∑
|j|>k

ψjZ−j −
∑
|j|>k

ψj · EZ−j

∣∣∣∣
due to measurability, independence and the dominated convergence theorem. Note that the
coefficients ψj are absolutely summable. Since EZ0 = 0, it follows

E
∣∣X0 − E(X0|Ak

−k)
∣∣ = E

∣∣∣∣∑
|j|>k

ψjZ−j

∣∣∣∣ ≤ ∑
|j|>k

|ψj | · E |Z−j | =
√

2

π
·
∑
|j|>k

|ψj | := ak.

These constants are bounded for all k ∈ N0 and ak → 0 as k → ∞. Hence, ARMA-processes
which are defined on, e.g., some Gaussian white noise (Zt)t∈Z ∼ WN(0, 1) and satisfy ϕ(z) ̸= 0
for all z ∈ C such that |z| = 1 are 1-approximating functionals.

The class of r-approximating functionals is in fact quite vast. It includes, e.g., Lipschitz
functionals (cf. Borovkova et al. [18, Section 1]), but is not limited to them as the subsequent
example shows:

Example 2.4.6. A functional defined by a map f : RZ → R is called Lipschitz if there are
constants C > 0 and 0 < α < 1 such that for any two sequences (bt)t∈Z and (b′t)t∈Z satisfying
bt = b′t for −k ≤ t ≤ k for some k ∈ N0 it holds∣∣f((bt)t∈Z)− f((b′t)t∈Z)

∣∣ ≤ Cαk

[18, Definition 1.3]. Let R := R ∪ {−∞,∞} denote the extended real number line. We
consider the functional (Xt)t∈Z of (Zt)t∈Z defined by the map Xt = f((Zt+k)k∈Z) with

f : [0, 1]Z → R, (..., z−1, z0, z1, ...) 7→

{
∞ if z1 = 1,

0 else.

Furthermore, suppose that (Zt)t∈Z is i.i.d. and P(Zt ̸= 1) = 1 such that P(Xt = 0) = 1.
For k = 0 and sequences (bt)t∈Z and (b′t)t∈Z defined by b1 = 1, b′1 ̸= 1 and bt = b′t for all
t ∈ Z \ {1}, it holds ∣∣f((bt)t∈Z))− f((b′t)t∈Z))

∣∣ = ∞,

that is, (Xt)t∈Z is not Lipschitz. On the contrary, it holds

E |X0 − E(X0|Z0)| = E |X0 − EX0| ≤ 2E |X0| = 0

due to independence, and

E
∣∣X0 − E(X0|Ak

−k)
∣∣ = E

∣∣X0 −∞ · 1{1}(Z1)
∣∣ ≤ E |X0|+∞ · P(Z1 = 1) = 0

for k ≥ 1. Therefore, (Xt)t∈Z is a 1-approximating functional.

Including the examples given by Borovkova et al. [18], so far we have only seen processes
that satisfy the r-approximating condition. Therefore, it might be interesting to consider a
non-trivial (i.e. well-defined in the sense of existing conditional expectations/first moments)
example of a functional which does not satisfy the r-approximating condition.
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Example 2.4.7. Let Z and Z̃ be two independent, identically Pareto(2, 1)-distributed ran-
dom variables defined on the same probability space and (Zt)t∈Z a time series defined by

Zt :=

{
Z if t even,

Z̃ if t odd.

Note that

EZn =

{
2

2−n if 2 > n,

∞ if 2 ≤ n,

(see, e.g., [48, Chapter 24]). For another time series (Xt)t∈Z, suppose that (Xt)t∈Z =
(Zt+1)t∈Z. For r > 0 and k ≥ 0, then it holds

E
∣∣Xt − E(Xt|At+1

t−1)
∣∣r = E|Zt+1 − E(Zt+1|Zt−k, ..., Zt+k)|r

=

{
E|Zt+1 − EZt+1|r if k = 0,

E|Zt+1 − Zt+1|r = 0 else.

Considering the case k = 0 and r = 2, it follows

E|Zt+1 − EZt+1|2 = E(Zt+1 − 2)2 = EZ2
t+1 − 2 · 2 · EZt+1 + 22 = ∞.

Therefore, Example 2.4.7 violates the 2-approximating condition with regard to upper
bounds. Admittedly, it is debatable whether a finite number of approximating constants
should be allowed to be equal to infinity by definition (see the discussion below). However,
the next example gives a sufficient condition on the existence of such bounds.

Example 2.4.8. Let r ≥ 1 and suppose that (Xt)t∈Z is a stationary sequence of random
variables such that E|X0|r <∞. Then, it holds∣∣X0 − E(X0|Ak

−k)
∣∣r ≤ 2r−1

(
|X0|r +

∣∣E(X0|Ak
−k)
∣∣r)

≤ 2r−1
(
|X0|r + E

(
|X0|r

∣∣Ak
−k

))
for all k ≥ 0, where we used the well-known cr-inequality given by

|U + V |r ≤ cr · (|U |r + |V |r), (2.7)

for random variables U and V and

cr :=

{
2r−1 if r > 1,

1 if 0 < r ≤ 1

[50, p. 157] and the conditional Jensen-inequality. By the law of total expectation it holds

E
(
2r−1

(
|X0|r + E

(
|X0|r

∣∣Ak
−k

)))
= 2r−1

(
E|X0|r + E

(
E(|X0|r|Ak

−k)
))

= 2r · E|X0|r <∞.

In particular, for k ≥ 0, E|X0 − E(X0|Ak
−k)|r is bounded by a series of constants.

21



The concepts of Lr-near-epoch dependence (for a definition, see, e.g., Davidson [24, Def-
inition 17.1]) and r-approximating functionals are closely linked: Under the assumption of
stationarity, possible trends as considered in the definition of Lr-near-epoch dependence are
omitted, hence, Lr-near-epoch dependence and the r-approximating condition are equivalent
for stationary time series. The only (notational) difference is the size of the constants under
consideration: If (Xt)t∈Z is a stationary Lr-near-epoch dependent time series on (Zt)t∈Z with
constants (ak)k∈N0 , then (Xt)t∈Z is an r-approximating functional of (Zt)t∈Z with constants
(ark)k∈N0 .

The following lemma is very important for the subsequent reasoning. As we have seen,
(2.5) is only demanded to hold at time zero. For stationary time series, this equation is ‘shift
invariant’. This fact seems to be clear for most authors, but as we could not find a proof in
the existing literature, we have decided to close this gap.

Lemma 2.4.9. Let (Xt)t∈Z be a (possibly Rd-valued) functional of a stationary time series
(Zt)t∈Z and r > 0. Then, for all l ≥ 0 it holds

E
∥∥∥Xt − E(Xt|At+l

t−l)
∥∥∥r = E

∥∥∥X0 − E(X0|Al
−l)
∥∥∥r (2.8)

for all t ∈ Z.

Proof. Define the vector Zl
k := (Zk, ..., Zl), k < l, consisting of l − k + 1 consecutive compo-

nents of the time series (Zt)t∈Z. Let l ≥ 0 and t ∈ Z be fixed. By the Doob–Dynkin lemma
(or factorization lemma) [41, Lemma 1.14], there is a map g : R2l+1 → Rd such that

E(Xt|Zt+l
t−l) = g

(
Zt+l
t−l

)
holds almost surely. Since g depends only on the distribution of (Xt,Z

t+l
t−l) [41, p. 167] and

(Xt,Z
t+l
t−l)

D
= (X0,Z

l
−l) by stationarity and definition of Xt, it follows

E(Xt|Zt+l
t−l) = E(X0|Zl

−l) a.s.

Note that the random variables do not necessarily need to be measurable with respect to the
same σ-algebra. Then, it holds

P
(
Xt − E(Xt|Zt+l

t−l) ∈ B
)
= P

(
Xt − E(X0|Zl

−l) ∈ B
)
= P

(
X0 − E(X0|Zl

−l) ∈ B
)

for all B ∈ B(R), which concludes the proof.

At this point we would like to discuss the possibility of some approximating constants
ak being equal to infinity in more detail. In general, the r-approximating condition is not
violated by definition if there is a finite number of approximating constants which are equal
to infinity as long as the sequence still converges to 0. Therefore, with regard to limit
theorems a problem can only arise if an additional summability condition is imposed on the
approximating constants, i.e. something along the lines of

∑∞
k=0 ak < ∞. This is precisely

the case for the limit theorems of Borovkova et al. [18] which we would like to employ in
Chapter 4 in the more generalized setting mentioned before. However, the summability
condition in their limit theorems can be weakened such that summability is only required for
all but a finite number of approximating constants. Even though our proofs follow mainly
those of Borovkova et al. [18], they are still very technical and not straightforward.
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Without loss of generality, in what follows we assume that the first d approximating
constants (ak)k∈N0 of some time series (Xt)t∈Z are infinite, i.e., a0 = · · · = ad−1 = ∞ for
some finite constant d > 0. Therefore, we consider altered summability conditions of the
form

∑
k=d ak <∞ or

∑
k=d k

2ak <∞. The proof in case of ai0 = · · · = aid−1
= ∞ for some

indices i0, . . . , id−1 ∈ N works analogously.

In order to consider the main theorems, which are given by a law of large numbers (Theo-
rem 2.4.16) and a central limit theorem (Theorem 2.4.17) for U-statistics of r-approximating
functionals, first we consider some of the preceding results of Borovkova et al. [18] with regard
to our generalized summability condition. Following the authors’ ideas, we are going to use
these for the proofs of the main results.

However, the reader may also skip the subsequent sections initially and look up the
relevant theorems later.

2.4.2 Near-epoch Dependence and Near Regularity

We begin by defining blocking, which constitutes a useful tool, and near regularity.

Definition 2.4.10 (Borovkova et al. [18, Definitions 2.3/2.6]). 1. Let (Xt)t∈N be a sto-
chastic process, let M,N ∈ N be positive integers and moreover assume that M is
even. An (M,N)-blocking of (Xt)t∈N is defined as the sequence of blocks B1, B2, . . .
each consisting of N consecutive Xt’s, where each two consecutive blocks are separated
by blocks of length M , more precisely,

Bs = (X(s−1)(M+N)+M
2
+1, . . . , Xs(M+N)−M

2
), s ≥ 1.

The set of indices in a block Bs is denoted by Is := {(s−1)(M+N)+ M
2 +1, . . . , s(M+

N)− M
2 }.

2. A stochastic process (Xt)t∈N is called nearly regular if for any ε, δ > 0 there exists an
M ∈ N such that for all N ∈ N we can find a sequence (B′

s)s∈N consisting of independent
RN -valued random vectors which satisfy the following two conditions:

a) Let Bs denote the s-th (M,N)-block of (Xt)t∈N. Then, B
′
s has the same distribu-

tion as Bs.

b) It holds P(∥Bs −B′
s∥ ≤ δ) ≥ 1 − ε, where ∥·∥ denotes the L1-norm on RN , that

is, ∥x∥ =
∑N

i=1 |xi|.

“Absolute regularity of a process implies that the sequence of (M,N)-blocks can be per-
fectly coupled with the sequence of independent long blocks, which have the same distribution
as those of the original process” [18, p. 4271]. Near regularity in turn refers to the similarity
to absolute regularity in terms of this property, that is, near regularity implies closeness to
such a process.

Theorem 3 of [18] shows that 1-approximating functionals with summable approximating
constants are nearly regular. However, since the authors have not used the assumed summa-
bility condition in their proof, their result remains valid even if the summability condition is
not satisfied at all, though it then becomes trivial. For our purpose it is enough to consider
the following generalization:
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Theorem 2.4.11. Let (Xt)t∈N be a 1-approximating functional with approximating constants
(ak)k∈N0 of an absolutely regular process with mixing coefficients (βk)k∈N0. If there are inte-
gers K,L,N ∈ N, K even, such that

∑∞
k=L ak < ∞, then we can approximate the sequence

of (K + 2L,N)-blocks (Bs)s∈N by a sequence of independent blocks (B′
s)s∈N with the same

marginal distribution in such a way that

P(
∥∥Bs −B′

s

∥∥ ≤ 2aL) ≥ 1− βK − 2aL, (2.9)

where

aL := (2
∞∑

k=L

al)
1/2, (2.10)

so (Xt)t∈N is nearly regular by definition.

2.4.3 Moment Inequalities and a Central Limit Theorem for Partial Sums

Now we generalize some inequalities for second and fourth order moments of partial sums
ξn := X1+ · · ·+Xn of 1-approximating functionals of absolutely regular processes which have
been given in [18]. Note that such partial sums are often denoted by Sn in the literature.
However, in order to avoid confusion with regard to the notation Sd, which will be intro-
duced in the subsequent chapter and is highly accepted and standard in the ordinal pattern
community, we decided to opt for ξn instead.

Our proofs are closely linked to the original proofs of Borovkova et al. [18], but our
basic idea is to split the respective sums appearing in the proofs according to our altered
summability condition. Hence, the difference is that we need to find some other bounds for
the first summands.

Lemma 2.4.12. Let (Xt)t∈N be a 1-approximating functional with constants (ak)k∈N0 of an
absolutely regular process with mixing coefficients (βk)k∈N0. Moreover, suppose that EX0 = 0
and that one of the following conditions holds for a fixed integer d ≥ 0:

1. X0 is bounded a.s. and
∑∞

k=d(ak + βk) <∞.

2. E|X0|2+δ <∞ for some δ > 0 and
∑∞

k=d(a
δ

1+δ

k + β
δ

2+δ

k ) <∞.

Then it follows

1

n
Eξ2n → EX2

0 + 2
∞∑
k=1

E(X0Xk) (2.11)

as n→ ∞ and the sum on the r.h.s. converges absolutely.

Proof. The proofs under the different conditions are basically the same using the respective
results of Lemma 2.18 in [18]. Therefore, we just give a proof under the second condition. It
holds

Eξ2n =
∑

1≤i,j≤n

EXiXj

= nEX2
0 + 2

n∑
k=1

(n− k)EX0Xk
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= n

(
EX2

0 + 2
(3d−1∑

k=1

(
1− k

n

)
EX0Xk +

n∑
k=3d

(
1− k

n

)
EX0Xk

))
by stationarity of (Xt)t∈N.
Due to E|X0|2+δ < ∞, EX2

0 as well as EX0Xk are bounded by a constant C1 > 0 for
1 ≤ k < 3d, so in particular,

∑3d−1
k=1 (1 − k

n)EX0Xk is bounded by (3d − 1)C1. (Note the
difference to [18] at this point.). Since EX0 = 0 by assumption, for k ≥ 3d, Lemma 2.18 (ii)
of [18] yields

|EX0Xk| ≤ 4 ∥X0∥
δ

1+δ

2+δ (a⌊ k
3
⌋)

δ
1+δ + 2 ∥X0∥22+δ (β⌊ k

3
⌋)

δ
2+δ .

Hence,

∞∑
k=3d

|EX0Xk| ≤ C2

∞∑
k=3d

(
(a⌊ k

3
⌋)

δ
1+δ + (β⌊ k

3
⌋)

δ
2+δ

)
= 3C2

∞∑
k=d

(
a

δ
1+δ

k + β
δ

2+δ

k

)

converges absolutely by assumption, where C2 := max{4 ∥X0∥
δ

1+δ

2+δ , 2 ∥X0∥22+δ}. Then the
dominated convergence theorem yields

n∑
k=3d

(
1− k

n

)
EX0Xk →

∞∑
k=3d

EX0Xk

as n→ ∞, which proves our claim.

We continue with an inequality for fourth order moments of partial sums:

Lemma 2.4.13. Let (Xt)t∈N be a 1-approximating functional with constants (ak)k∈N0 of an
absolutely regular process with mixing coefficients (βk)k∈N0. Moreover, suppose that EX0 = 0
and that one of the following conditions holds for a fixed integer d ≥ 0:

1. X0 is bounded a.s. and
∑∞

k=d k
2(ak + βk) <∞.

2. E|X0|4+δ <∞ for some δ > 0 and
∑∞

k=d k
2(a

δ
3+δ

k + β
δ

4+δ

k ) <∞.

Then, there exists a constant C > 0 such that

Eξ4n ≤ Cn2. (2.12)

The proof follows the same idea, but is slightly more involved.

Proof. Again, the proofs are very similar using the respective results of Lemma 2.18 as well
as Lemma 2.21 and Lemma 2.22 of [18], respectively, so we only give the proof with regard
to the second condition. By stationarity it holds

Eξ4n ≤ 4!
∑

1≤i1≤i2≤i3≤i4≤n

|E(Xi1Xi2Xi3Xi4)|

≤ 4!n
∑

i,j,k≥0
i+j+k≤n

|E(X0XiXi+jXi+j+k)| . (2.13)
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We can split the sum appearing in (2.13) in the following way:∑
i,j,k≥0

i+j+k≤n

|E(X0XiXi+jXi+j+k)|

≤
∑

0≤j,k≤i≤n

|E(X0XiXi+jXi+j+k)|+
∑

0≤i,j≤k≤n

|E(X0XiXi+jXi+j+k)|

+
∑

0≤i,k≤j≤n

|E(X0XiXi+jXi+j+k)|

=
∑

0≤j,k≤i<3d

|E(X0XiXi+jXi+j+k)|︸ ︷︷ ︸
(I)

+
∑

3d≤i≤n
0≤j,k≤i

|E(X0XiXi+jXi+j+k)|

+
∑

0≤i,j≤k<3d

|E(X0XiXi+jXi+j+k)|︸ ︷︷ ︸
(II)

+
∑

3d≤k≤n
0≤i,j≤k

|E(X0XiXi+jXi+j+k)|

+
∑

0≤i,k≤j<3d

|E(X0XiXi+jXi+j+k)|

︸ ︷︷ ︸
(III)

+
∑

3d≤j≤n
0≤i,k≤j

i<3d or k<3d

|E(X0XiXi+jXi+j+k)|

︸ ︷︷ ︸
(IV)

+
∑

3d≤i,k≤j≤n

|E(X0XiXi+jXi+j+k)|︸ ︷︷ ︸
(V)

.

Due to E|X0|4+δ <∞ and the assumed stationarity, there exists a constant C1 > 0 such that
|E(X0XiXi+jXi+j+k)| < C1 (as well as a constant C2 > 0 such that |E(X0Xi)| < C2), and
hence, the finite sums (I), (II) and (III) which are independent of n are obviously finite, too.
In particular it follows∑

0≤j,k≤i<3d

|E(X0XiXi+jXi+j+k)| ≤ (3d)3 · C1 = 27d3 · C1

for sums of this type. By adding a zero-valued term we obtain

|E(X0XiXi+jXi+j+k)| = |E(X0XiXi+jXi+j+k)| − |E(X0Xi)| · |E(Xi+jXi+j+k)|
+ |E(X0Xi)| · |E(Xi+jXi+j+k)|

such that we can find the following bound for (IV) + (V):∑
3d≤j≤n
0≤i,k≤j

i<3d or k<3d

|E(X0XiXi+jXi+j+k)|+
∑

3d≤i,k≤j≤n

|E(X0XiXi+jXi+j+k)|

=
∑

3d≤j≤n
0≤i,k≤j

i<3d or k<3d

|E(X0XiXi+jXi+j+k)| − |E(X0Xi)| · |E(Xi+jXi+j+k)|
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+
∑

3d≤j≤n
0≤i,k≤j

i<3d or k<3d

|E(X0Xi)| · |E(Xi+jXi+j+k)|

+
∑

3d≤i,k≤j≤n

|E(X0XiXi+jXi+j+k)| − |E(X0Xi)| · |E(Xi+jXi+j+k)|

+
∑

3d≤i,k≤j≤n

|E(X0Xi)| · |E(Xi+jXi+j+k)|

≤
∑

3d≤j≤n
0≤i,k≤j

|E(X0XiXi+jXi+j+k)| − |E(X0Xi)| · |E(Xi+jXi+j+k)|

+ n
∑

3d≤i,k≤n

|E(X0Xi)| · |E(X0Xk)|+ n
∑

0≤i,k≤n
i<3d or k<3d

|E(X0Xi)| · |E(X0Xk)| .

Note that there we have summed up the first and the third term and we have bounded the
second and fourth term by using stationarity. Accordingly it follows∑

i,j,k≥0
i+j+k≤n

|E(X0XiXi+jXi+j+k)|

≤ 3 · 27d3 · C1 +
∑

3d≤i≤n
0≤j,k≤i

|E(X0XiXi+jXi+j+k)| +
∑

3d≤k≤n
0≤i,j≤k

|E(X0XiXi+jXi+j+k)|

+
∑

3d≤j≤n
0≤i,k≤j

|E(X0XiXi+jXi+j+k)| − |E(X0Xi)| · |E(Xi+jXi+j+k)|

+ n ·
∑

3d≤i,k≤n

|E(X0Xi)| · |E(X0Xk)| + n ·
∑

0≤i,k≤n
i<3d or k<3d

|E(X0Xi)| · |E(X0Xk)| .

(2.14)

The idea is now to apply different upper bounds on the remaining summands as it has been
done by Borovkova et al. [18]. In more detail: Since EX0 = 0, Lemma 2.22 of [18] implies

|E(X0(XiXi+jXi+j+k))| ≤ 6(β⌊ i
3
⌋)

δ
4+δ ∥X0∥44+δ + 8(a⌊ i

3
⌋)

δ
3+δ ∥X0∥

12+3δ
3+δ

4+δ

|E((X0XiXi+j)Xi+j+k)| ≤ 6(β⌊ k
3
⌋)

δ
4+δ ∥X0∥44+δ + 8(a⌊ k

3
⌋)

δ
3+δ ∥X0∥

12+3δ
3+δ

4+δ .

Furthermore, application of Lemma 2.22 and Lemma 2.18 of [18], respectively, yields

|E((X0Xi)(Xi+jXi+j+k))| − |E(X0Xi)| · |E(Xi+jXi+j+k)|

≤ 6(β⌊ j
3
⌋)

δ
4+δ ∥X0∥44+δ + 8(a⌊ j

3
⌋)

δ
3+δ ∥X0∥

12+3δ
3+δ

4+δ

and

|E(X0Xi)| · |E(X0Xk)| ≤
(
2 ∥X0∥24+δ (β⌊ i

3
⌋)

2+δ
4+δ + 4 ∥X0∥

4+δ
3+δ

4+δ (a⌊ i
3
⌋)

2+δ
3+δ

)
×
(
2 ∥X0∥24+δ (β⌊ k

3
⌋)

2+δ
4+δ + 4 ∥X0∥

4+δ
3+δ

4+δ (a⌊ k
3
⌋)

2+δ
3+δ

)
.
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Hence, we obtain∑
0≤i,k≤n

i<3d or k<3d

|E(X0Xi)| · |E(X0Xk)|

≤
∑

0≤i,k≤3d

|E(X0Xi)| · |E(X0Xk)|+ 2 ·
∑

0≤i<3d
3d≤k≤n

|E(X0Xi)| · |E(X0Xk)|

≤ (3d)2C2
2 + 2 · 3d · C2

n∑
k=3d

|E(X0Xk)|

≤ 9d2C2
2 + 6d · C2

n∑
k=3d

(
2 ∥X0∥24+δ (β⌊ k

3
⌋)

2+δ
4+δ + 4 ∥X0∥

4+δ
3+δ

4+δ (a⌊ k
3
⌋)

2+δ
3+δ

)
with regard to the last summand appearing in (2.14). (Note that we have used Lemma 2.18
of [18] for the last inequality.) Therefore, there is a constant C3 > 0 such that

Eξ4n ≤ (4! · 81d3 · C1)n+ (4! · 9d2C2
2 )n

2 + C3n

( ∑
3d≤i≤n
0≤j,k≤i

(
(a⌊ i

3
⌋)

δ
3+δ + (β⌊ i

3
⌋)

δ
4+δ

)

+
∑

3d≤k≤n
0≤i,j≤k

(
(a⌊ k

3
⌋)

δ
3+δ + (β⌊ k

3
⌋)

δ
4+δ

)
+

∑
3d≤j≤n
0≤i,k≤j

(
(a⌊ j

3
⌋)

δ
3+δ + (β⌊ j

3
⌋)

δ
4+δ

)

+ n ·
∑

3d≤i,k≤n

(
(β⌊ i

3
⌋)

2+δ
4+δ + (a⌊ i

3
⌋)

2+δ
3+δ

)(
(β⌊ k

3
⌋)

2+δ
4+δ + (a⌊ k

3
⌋)

2+δ
3+δ

)

+ n
n∑

k=3d

(
(β⌊ k

3
⌋)

2+δ
4+δ + (a⌊ k

3
⌋)

2+δ
3+δ

))

≤ (4! · 81d3 · C1)n+ (4! · 9d2C2
2 )n

2 + C3n

(
3
∑

3d≤j≤n
0≤i,k≤j

(
(a⌊ j

3
⌋)

δ
3+δ + (β⌊ j

3
⌋)

δ
4+δ

)

+ n
∑

3d≤i,k≤n

(
(β⌊ i

3
⌋)

2+δ
4+δ + (a⌊ i

3
⌋)

2+δ
3+δ

)(
(β⌊ k

3
⌋)

2+δ
4+δ + (a⌊ k

3
⌋)

2+δ
3+δ

)

+ n
∑

3d≤k≤n

(
(β⌊ k

3
⌋)

2+δ
4+δ + (a⌊ k

3
⌋)

2+δ
3+δ

))
.

Due to the flooring and the assumed summability of the constants it holds

∑
3d≤j≤n
0≤i,k≤j

(
(a⌊ j

3
⌋)

δ
3+δ + (β⌊ j

3
⌋)

δ
4+δ

)
=

n∑
j=3d

j∑
i,k=0

(
(a⌊ j

3
⌋)

δ
3+δ + (β⌊ j

3
⌋)

δ
4+δ

)

=

n∑
j=3d

(j + 1)2
(
(a⌊ j

3
⌋)

δ
3+δ + (β⌊ j

3
⌋)

δ
4+δ

)

≤ 3

n/3∑
j=d

(3j + 1)2
(
a

δ
3+δ

j + β
δ

4+δ

j

)
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≤ 3
∞∑
j=d

9(j + 1)2
(
a

δ
3+δ

j + β
δ

4+δ

j

)
<∞.

In a similar manner we obtain

n∑
i,k=3d

(
(β⌊ i

3
⌋)

2+δ
4+δ + (a⌊ i

3
⌋)

2+δ
3+δ

)(
(β⌊ k

3
⌋)

2+δ
4+δ + (a⌊ k

3
⌋)

2+δ
3+δ

)

=

 n∑
j=3d

(β⌊ j
3
⌋)

2+δ
4+δ + (a⌊ j

3
⌋)

2+δ
3+δ

2

≤ 9

 ∞∑
j=d

β
2+δ
4+δ

j + a
2+δ
3+δ

j

2

<∞

and
∑

3d≤k≤n

(
(β⌊ k

3
⌋)

2+δ
4+δ + (a⌊ k

3
⌋)

2+δ
3+δ

)
<∞, which concludes the proof.

The central limit theorem for partial sums of functionals of absolutely regular processes
given by Borovkova et al. [18, Theorem 4] can be directly extended with regard to our slightly
weaker summability condition. The respective proofs are very much the same: First of all,
the introduced (Kn+2Ln, Nn)-blocking which has to satisfy conditions (3.5)-(3.8) of [18] can
be chosen such that Ln ≥ d. Then, using Lemma 2.4.12 and 2.4.13 instead of Lemma 2.23
and 2.24 of [18], respectively, already yields the desired result:

Theorem 2.4.14. Let (Xt)t∈N be a 1-approximating functional with approximating constants
(ak)k∈N0 of an absolutely regular process with mixing coefficients (βk)k∈N0. Furthermore,
suppose that EX0 = 0, E |X0|4+δ <∞ and

∞∑
k=d

k2
(
a

δ
3+δ

k + β
δ

4+δ

k

)
<∞

for some δ > 0 and a fixed integer d ≥ 0. Then, as n→ ∞,

1√
n

n∑
t=1

Xt
D−→ N(0, σ2),

where σ2 = EX2
0 + 2

∑∞
k=1 E(X0Xk). In case σ2 = 0, we adopt the convention that N(0, 0)

denotes the point mass at the origin.

2.4.4 Law of large numbers and central limit theorem for U-statistics

In order to establish the generalizations of the LLN and CLT of U-statistics of r-approximating
functionals, that is [18, Theorem 6] and [18, Theorem 7], respectively, first we need to give
the following technical condition:

Definition 2.4.15 (Borovkova et al. [18, Definition 2.12]). Let (Yt)t∈Z be a stationary time
series and h : R2d → R be a measurable, symmetric kernel. Then we say that h is p-continuous
if there exists a function ϕ : ]0,∞[ → ]0,∞[ with ϕ(ε) = o(1) as ε→ 0 such that

E
∣∣∣h(U, V )− h(Ũ , V )

∣∣∣p 1{∥U−Ũ∥≤ε} ≤ ϕ(ε) (2.15)
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for all random variables U , Ũ , V with marginal distribution F = FY0 and such that (U, V )
either has distribution F × F (independent case) or P(Y0,Yt) for some t ∈ N, where the latter
denotes the joint distribution of Y0 and Yt.

Note that we state this definition in the multivariate version. The Sections 1 to 5 of [18]
are all written down for the one-dimensional case. However, in the sixth section, the one
dealing with entropy concepts, the authors state that all the previous results hold true in a
d-dimensional setting as well. Instead of calling a kernel h p-continuous, some authors say
that h satisfies the p-Lipschitz condition.

Now, utilizing the proof given by Borovkova et al. [18] though using Theorem 2.4.11
instead of their Theorem 3, we already obtain a law of large numbers for U-statistics of
functionals of absolutely regular processes under our weaker summability condition:

Theorem 2.4.16. Let (Xt)t∈N be a 1-approximating functional with approximating constants
(ak)k∈N0 of an absolutely regular process, where

∑∞
k=d ak < ∞ for some integer d ≥ 0.

Furthermore, suppose that h : R2d → Rd is a measurable and symmetric function which is
1-continuous, and that the family of random variables {h(Xs, Xt) : s, t ≥ 1} is uniformly
integrable. Then,

Un(h) =
1

n(n− 1)

∑
1≤s,t≤n

s̸=t

h(Xs, Xt)
P−→
∫
R2d

h(x, y)dF (x)dF (y) =: θ,

as n→ ∞.

What remains to show in order to complete our generalized theory on limit theorems for
U-statistics for r-approximating functionals is a central limit theorem:

Theorem 2.4.17. Let (Xt)t∈N be a 1-approximating functional with approximating con-
stants (ak)k∈N0 of an absolutely regular process with mixing coefficients (βk)k∈N0, and let
h be a bounded and 1-continuous kernel. Suppose that the sequences (ak)k∈N0, (βk)k∈N0 and
(ϕ(ak))k∈N0 satisfy the summability condition

∞∑
k=d

k2(βk + ak + ϕ(ak)) <∞ (2.16)

for some fixed integer d ≥ 0. Then the series

σ2 = Var(h1(X0)) + 2
∞∑
k=1

Cov(h1(X0), h1(Xk)) (2.17)

converges absolutely and, as n→ ∞,

√
n(Un(h)− θ)

D−→ N(0, 4σ2).

Note that there is a typo in the long-run variance given in [18, Theorem 7]: In fact, the
variance should not be squared. This can be verified by considering the proof, which, among
others, is based on [18, Theorem 4]. There, the long-run variance with respect to centered
1-approximating functionals of absolute regular processes is given correctly.
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The proof is again very similar to the one given by Borovkova et al. [18]. The main idea
is to make use of the Hoeffding decomposition (2.4). Then we use Theorem 2.4.14 (instead
of [18, Theorem 4]) to show the convergence of the linear part, that is

2√
n

n∑
t=1

(h1(Xt)− θ)
D−→ N(0, 4σ2).

Let us emphasize at this point that h1(Xt)−θ is bounded, since h is a bounded kernel. Hence,
the moment assumption in Theorem 2.4.14 is satisfied. We do not use Theorem 2.4.14 on
(Xt)t∈N itself, therefore we do not need any additional assumptions on the original process.
For more details on this part of the proof, we refer the reader to [18, p. 4301].

Defining

Rn :=
2

n(n− 1)

∑
1≤i<j≤n

J(Xi, Xj)

as the degenerate part of the Hoeffding decomposition (2.4), it then remains to show that√
nRn is asymptotically negligible under our altered summability condition instead of using

[18, Lemma 4.4]:

Lemma 2.4.18. Under the conditions of Theorem 2.4.17, it holds

sup
n

E
(
1

n

∑
1≤i<j≤n

J(Xi, Xj)

)2

<∞, (2.18)

and therefore,
√
nRn

P−→ 0, as n→ ∞.

In comparison to the analogous result [18, Lemma 4.4], we need to ensure convergence of
series for which we cannot find a bound using our summability condition. Nevertheless, our
proof is still similar to the one given by the authors.

Proof of Lemma 2.4.18. For k ∈ {i1, i2, j1, j2}, let EXk
(J(Xi1 , Xj1)J(Xi2 , Xj2)) denote the

expected value of J(Xi1 , Xj1)J(Xi2 , Xj2) taken with respect to the random variable Xk, with
the remaining variables kept fixed. (We adopt this notation from [18].) Since J(x, y) is a
degenerate kernel, i.e.,

∫
J(x, y)dF (x) = 0 for all y ∈ Rd where F denotes the cdf of the

margins Xt, it follows

EXj2
(J(Xi1 , Xj1)J(Xi2 , Xj2)) =

∫
Rd

J(Xi1 , Xj1)J(Xi2 , y)dF (y) = 0, (2.19)

and similarly for EXi1
, EXi2

and EXj1
. As both h and h1 are bounded by definition and

1-continuous by [18, Lemma 2.15]), the same holds for g(x1, x2, x3, x4) = J(x1, x2)J(x3, x4)
due to [18, Lemma 2.14]. Hence, there is a constant C1 > 0 such that

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) < C1, (2.20)

EXi1
,Xi2

EXj1
,Xj2

(J(Xi1 , Xj1)J(Xi2 , Xj2)) < C1. (2.21)

By linearity of the expected value it holds

E
( ∑

1≤i<j≤n

J(Xi, Xj)

)2

= E

( ∑
1≤i1<j1≤n
1≤i2<j2≤n

J(Xi1 , Xj1)J(Xi2 , Xj2)

)

31



=
∑

1≤i1<j1≤n
1≤i2<j2≤n

i1=i2 and j1=j2

E (J(Xi1 , Xj1)J(Xi2 , Xj2))

+
∑

1≤i1<j1≤n
1≤i2<j2≤n

i1 ̸=i2 or j1 ̸=j2

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) . (2.22)

With regard to the first sum given by
∑

1≤i<j≤n E (J(Xi, Xj)J(Xi, Xj)) there are at most
n(n− 1)/2 summands, so ∑

1≤i<j≤n

E (J(Xi, Xj)J(Xi, Xj)) ≤ n2C1. (2.23)

In the remainder, we consider the sum given by (2.22). First, let us assume that at least one
index is different from all the others, e.g., j2, and suppose that i1 ≤ i2 ≤ j1 < j2. Let ∆i

denote the i-th largest difference between two consecutive indices. In contrast to [18] we need
to split the sum according to some values of ∆i and find a different bound for it for small
values of ∆i. If ∆1 = j2 − j1, then∑

1≤i1≤i2≤j1<j2≤n
∆1=j2−j1

E (J(Xi1 , Xj1)J(Xi2 , Xj2))

=
∑

1≤i1≤i2≤j1<j2≤n
∆1=j2−j1<3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) +
∑

1≤i1≤i2≤j1<j2≤n
∆1=j2−j1≥3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) .

(2.24)

With regard to the first sum appearing in (2.24), there are 3d− 1 values possible for ∆1 and
each of them can be obtained less than n times by shifting j1 and j2 = j1+∆1. Furthermore,
for fixed j1, at most 3d choices for i2 are possible by definition of 0 ≤ ∆3 ≤ ∆2 ≤ ∆1. The
same holds true for i1 and fixed i2, which leads to∑

1≤i1≤i2≤j1<j2≤n
∆1=j2−j1<3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) ≤ n(3d)3C1.

Now we consider second sum appearing in (2.24). Eq. (2.19) yields

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) = E (J(Xi1 , Xj1)J(Xi2 , Xj2))

− EXi1
,Xj1

,Xi2
EXj2

(J(Xi1 , Xj1)J(Xi2 , Xj2)),

so application of Lemma 4.3 of [18] (with r = ∞, s = 1 and M = C1) yields∑
1≤i1≤i2≤j1<j2≤n

∆1=j2−j1≥3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2))

≤ 4C1

∑
1≤i1≤i2≤j1<j2≤n

∆1=j2−j1≥3d

(
β⌊∆1/3⌋ + a⌊∆1/3⌋ + 2ϕ

(
a⌊∆1/3⌋

))
= 4C1

∑
1≤j1<j2≤n

∆1=j2−j1≥3d

(∆1 + 1)2
(
β⌊∆1/3⌋ + a⌊∆1/3⌋ + 2ϕ

(
a⌊∆1/3⌋

))
,
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since there are ∆1 + 1 possibilities for i2 for each j1 due to 0 ≤ j1 − i2 ≤ ∆1 by assumption
and, dependent on the choice of i2, the same holds true for i1, which results in a total of
(∆1 + 1)2 possibilities for i1 and i2 for each j1. Furthermore, for each ∆1 ≥ 3d there are
n−∆1 possible choices for pairs (j1, j2) such that 1 ≤ j1 < j2 ≤ n and ∆1 = j2 − j1, which
yields

4C1

∑
1≤j1<j2≤n

∆1=j2−j1≥3d

(∆1 + 1)2
(
β⌊∆1/3⌋ + a⌊∆1/3⌋ + 2ϕ

(
a⌊∆1/3⌋

))

≤ 4C1n
n−3d∑
∆1=3d

(∆1 + 1)2
(
β⌊∆1/3⌋ + a⌊∆1/3⌋ + 2ϕ

(
a⌊∆1/3⌋

))

≤ 4C1n

⌊n−3d
3

⌋∑
k=d

(3k + 1)2 (βk + ak + 2ϕ (ak))

≤ 36C1n
n∑

k=d

(k + 1)2 (βk + ak + 2ϕ (ak)) .

If ∆1 ̸= j2 − j1, then, depending on whether ∆1 is located between i1 and i2 or i2 and j1, by
applying Lemma 4.3 of [18] twice, we obtain a bound for E(J(Xi1 , Xj1)J(Xi2 , Xj2)). E.g., if
∆1 = j1 − i2, then

E(J(Xi1 , Xj1)J(Xi2 , Xj2))

= E(J(Xi1 , Xj1)J(Xi2 , Xj2))− EXi1
,Xi2

EXj1
,Xj2

(J(Xi1 , Xj1)J(Xi2 , Xj2))

+ EXi1
,Xi2

EXj1
,Xj2

(J(Xi1 , Xj1)J(Xi2 , Xj2))

≤ 4C1

(
β⌊∆1

3
⌋ + a⌊∆1

3
⌋
)
+ 2ϕ

(
a⌊∆1

3
⌋
)
+ 4C1

(
β⌊∆2

3
⌋ + a⌊∆2

3
⌋
)
+ 2ϕ

(
a⌊∆2

3
⌋
)
, (2.25)

where we have used (2.19) as well as (2.20) and (2.21). Note that due to Fubini’s theorem, we
can always change the order of the expected values in Lemma 4.3 of [18] such that we always
obtain the result with respect to ∆2. Furthermore, note that ∆2 ≥ 3d implies ∆1 ≥ 3d. Now
considering (2.22) again, in this case it holds∑

1≤i1≤i2≤j1<j2≤n
j2−j1 ̸=∆1

E (J(Xi1 , Xj1)J(Xi2 , Xj2))

=
∑

1≤i1≤i2≤j1<j2≤n
∆1 ̸=j2−j1
∆2<3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) +
∑

1≤i1≤i2≤j1<j2≤n
∆1 ̸=j2−j1
∆2≥3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) .

The first sum is bounded by∑
1≤i1≤i2≤j1<j2≤n

∆1 ̸=j2−j1
∆2<3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) ≤
∑

1≤i1≤i2≤j1<j2≤n
∆1 ̸=j2−j1
∆2<3d

C1 ≤ n2(3d)2C1,

as there are 3d possible values for ∆2, which can be each obtained less than n times, and
for each ∆2 there are 3d possible choices for ∆3. For a given ∆2, we do not have much
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information on ∆1, so we multiply with the factor n. On the other hand, by application of
(2.25) for the second sum it holds∑

1≤i1≤i2≤j1<j2≤n
∆1 ̸=j2−j1
∆2≥3d

E (J(Xi1 , Xj1)J(Xi2 , Xj2))

≤ 4C1

∑
1≤i1≤i2≤j1<j2≤n

∆1 ̸=j2−j1
∆2≥3d

(
β⌊∆1

3
⌋ + a⌊∆1

3
⌋ + ϕ

(
a⌊∆1

3
⌋
)
+ β⌊∆2

3
⌋ + a⌊∆2

3
⌋ + ϕ

(
a⌊∆2

3
⌋
))

≤ 4C1

n−3d−1∑
∆1=3d

(
n · (∆1 + 1)2 ·

(
β⌊∆1

3
⌋ + a⌊∆1

3
⌋ + ϕ

(
a⌊∆1

3
⌋
))

+

∆1∑
∆2=3d

n · (∆2 + 1) ·
(
β⌊∆2

3
⌋ + a⌊∆2

3
⌋ + ϕ

(
a⌊∆2

3
⌋
)))

≤ 4C1

(( n∑
∆1=3d

n · (∆1 + 1)2 ·
(
β⌊∆1

3
⌋ + a⌊∆1

3
⌋ + ϕ

(
a⌊∆1

3
⌋
)))

+

( n∑
∆2=3d

n2 · (∆2 + 1) ·
(
β⌊∆2

3
⌋ + a⌊∆2

3
⌋ + ϕ

(
a⌊∆2

3
⌋
))))

≤ 8C1n(n+ 1)

n∑
k=d

(3k + 1) · (βk + ak + ϕ(ak)),

since ∆1 + 1 ≤ n + 1 for 3d ≤ ∆1 ≤ n. Proceeding in an analogous way in the other cases,
by our assumed summability condition (2.16) we get that∑

1≤i1<j1≤n
1≤i2<j2≤n

i1 ̸=i2 or j1 ̸=j2

E (J(Xi1 , Xj1)J(Xi2 , Xj2)) ≤ C2n
2,

for some constant C2 > 0. Combining this with (2.23) we directly obtain (2.18).

2.5 Conditional Distributions

In this section, we give a very brief introduction to regular conditional probabilities stating
all results we will make use of in Chapter 5, so that we can refer to them in a proper manner.

Let (Ω,F ,P) be a probability space and A ⊂ F a sub-σ-algebra. A conditional probability
given A is defined by

P(B,A)(ω) := E(1{B}|A)(·)

for each measurable set B ∈ F and ω ∈ Ω. It would now be desirable if these conditional
distributions fulfilled the definition of a probability measure. However, even though countable
additivity holds for almost all ω ∈ Ω by definition of the conditional expectation and the
monotone convergence theorem, in general it is not directly given. This is due to the fact
that the null sets might depend on the sequence of distinct measurable sets Bi ∈ F , i ∈ N,
and the union of these null sets might cover Ω (cf. Dudley [27, Chapter 10.2]). Therefore,

34



the need for the additional condition of regularity arises: Let P|A be the restriction of P to
A. A regular conditional probability is a function P|A(·, ·) : Ω×F → [0, 1] such that for each
B ∈ F , P|A(·, B) := P(B|A)(·) is a conditional probability, and for P|A-almost all ω ∈ Ω,
P(·|A)(ω) is a probability measure on F (cf. Dudley [27, Chapter 10.2]).

Based on these regular conditional probabilities, now the general definition of the condi-
tional distribution of a random variable X given a σ-algebra A can be given.

Definition 2.5.1 (Dudley [27, Chapter 10.2]). Let (Ω,F ,P) be a probability space and (S,S)
a measurable space. Let X : Ω → S be a measurable function. Furthermore, let A ⊂ F be a
sub-σ-algebra. A conditional distribution for X, given A, is a function PX|A(·, ·) : Ω × S →
[0, 1] such that

(1) for P-almost all ω ∈ Ω, PX|A(ω, ·) is a probability measure on S,

(2) for each B ∈ S, PX|A(·, B) is A-measurable, and

(3) for each B ∈ S, it holds PX|A(·, B) = P(X−1(B)|A)(·) almost surely.

Remark 2.5.2. (a) Regarding the existence and uniqueness of such a distribution, the fulfill-
ment of the first condition (regularity) is the crucial point. The necessary requirements
for this are stated in Theorem 2.5.3.

(b) The above definition is the most generalized one as it is given in terms of conditioning
on a σ-algebra A. However, when conditioning on a random variable Z : Ω′ → S′, the
conditional distribution can be defined equivalently as a function

PX|Z(·, ·) = PX|σ(Z)(·, ·) : S′ × S → [0, 1]

such that

(1a) for P-almost all z ∈ S′, PX|Z(z, ·) := PX|Z=z(·) is a probability measure on S

in addition to conditions (2) and (3) of Definition 2.5.1 (cf. Dudley [27, Chapter 10.2]).
The equivalence holds due to

P(X−1(B)|Z)(ω) = E(1{X−1(B)}|Z)(ω)
= E(1{X−1(B)}|Z = z) ◦ Z(ω)
= P(X−1(B)|Z = z) ◦ Z(ω),

for all ω ∈ Ω′.

Theorem 2.5.3 (Dudley [27, Theorem 10.2.2]). Let S be a Polish space, S its σ-algebra
of Borel sets, X : Ω → S a random variable on a probability space (Ω,F ,P) and A ⊂ F a
sub-σ-algebra. Then, a conditional distribution PX|A(·, ·) on Ω×S exists. It is unique in the

sense that if P̃(·, ·) also satisfies the definition of PX|A, then for P-almost all ω, the two laws

P̃(ω, ·) and PX|A(ω, ·) are identical.

Note that it is possible to construct more general spaces on which regular conditional
probabilities do not exist.
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On the other hand, note that the real line is a Polish space and that countable products
of Polish spaces provided with the product topology are again Polish (cf., e.g., [86, Exam-
ple 13.15/Theorem 13.16]). Hence, Rd is Polish for any dimension d ≥ 1 and therefore,
existence and uniqueness of conditional distributions PX|A(·, ·) on Ω× B(Rd) is guaranteed.

The last theorem of this chapter states that if a conditional distribution exists, conditional
expectations can be written as integrals for each ω ∈ Ω.

Theorem 2.5.4 (Dudley [27, Theorem 10.2.5]). Let X : (Ω,F ,P) → (S,S) be a random
variable, A ⊂ F a sub-σ-algebra and PX|A(·, ·) a conditional distribution on Ω×S. Further-

more, let g : S → Rd be a measurable function with E|g(X)| < ∞. Then for P-almost all
ω ∈ Ω, g is integrable with respect to PX|A(ω, ·), and

E(g ◦X|A)(ω) =

∫
g(x)PX|A(ω, dx). (2.26)
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3 Univariate Ordinal Patterns and their
Representations

In this chapter we introduce (univariate) ordinal patterns by describing and analyzing dif-
ferent approaches to represent them. Most of them can be found in the literature, though
usually one gets the impression that the authors have chosen the respective representations
randomly or ‘just because others have used them before’. Therefore, we compare the most
important representations (plus sub-classes) with regard to their applicability from different
angles, namely digital implementation, inverse patterns and ties between values in the data.

This chapter is structured as follows: In the first section, we present the main mathemat-
ical concepts. Sections 3.2–3.4 constitute a comparison of the previously defined ordinal pat-
tern representations from different perspectives followed by a short case study in Section 3.5.
We conclude this chapter with a short guideline on which occasions which representation
should be used, on what we base our choice of representations used in the remaining of this
thesis.

This chapter is essentially a revised version of the publication [74], which is a joint work
with A. Schnurr.

3.1 Definitions and Mathematical Framework

Let χ be a totally ordered space and x = (x1, ..., xd) ∈ χd with d ≥ 2.

Definition 3.1.1. The (univariate) ordinal pattern (of length d) of x is defined as the de-
scription of the relation of the elements of x in terms of their position and rank order.

Considering the vector (5, 3, 7) ∈ N3 as an example, its ordinal pattern is fully specified
by: “Of three elements, the third is the largest, while the second is the least”. Note that
this description applies to any vector (x1, x2, x3) satisfying the relation x2 < x1 < x3, hence
all of them correspond to the same ordinal pattern. For now, we focus on the restriction
that x consists of pairwise distinct elements. Allowing for ties, i.e., equalities between some
elements, requires more refined representations, which are the subject of Section 3.4. With
this restriction, for d = 2 there are only 2 ordinal patterns, namely, the upward pattern
x1 < x2 and the downward pattern x1 > x2. For d = 3, there are already 6 possible patterns,
which are depicted in Fig. 1.1.

Now, this specification via text or illustration is quite cumbersome in practice, so the
need for other representations arises. Let Sd denote the set consisting of the permutations of
{1, . . . , d} and note that |Sd| = d!, where | · | denotes the cardinality of a set.

Definition 3.1.2. The permutation representation of the ordinal pattern of x is defined as
the permutation π = (π1, ..., πd) ∈ Sd satisfying

xπ1 < ... < xπd
. (3.1)
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π = (3, 2, 5, 1, 4)

r = (4, 2, 1, 5, 3)

Figure 3.1: Ordinal pattern representations for x = (9, 5, 4, 10, 8).

This representation is used, e.g., in [13, 87, 90]. The tuple defined above consists of the
indices of the respective elements of x sorted from the least to the largest value. Instead of
an increasing order, the permutation representation of ordinal patterns is sometimes defined
in a decreasing order, i.e., the pattern π has to satisfy xπ1 > ... > xπd

(see, e.g., [73]).
Moreover, even though for our purpose consideration of the length d of an ordinal pattern
is more convenient, regarding ordinal time series analysis it is more common to count the
number of increments instead of d [17], so, starting in zero instead of one, it is prevalent
to consider permutation representations (π0, π1, ..., πd) of vectors (x0, x1, ..., xd) with d ∈ N
(see, e.g., [10, 17, 44, 71]). This already results in four different possibilities to represent an
ordinal pattern which are all closely linked to each other. Let us now come to a contrasting
but complementary representation.

Definition 3.1.3. The rank representation r = (r1, ..., rd) ∈ Sd of the ordinal pattern of x
is defined by the condition

rj < rk ⇐⇒ xj < xk for all j, k ∈ {1, ..., d}. (3.2)

This representation is used, e.g., in [7, 11, 87, 89]. Originally, the permutation represen-
tation has been most prevalent in the literature. Now it seems that there is a shift in recent
publications as the rank representation seems to become more popular. A reason for this
may be the intuitiveness of the concept of ranks in general.

For the rank representation, the entries are given by the ranks of the respective values,
where 1 denotes the minimum and d the maximum. Again, an inverted definition in terms of
ranks is possible such that 1 denotes the maximum, while d denotes the minimum, though it
is not very common.

For better illustration of the ideas, consider Fig. 3.1. There the ordinal pattern of the
vector x = (9, 5, 4, 10, 8) is depicted together with the respective permutation and rank
representations. Note the dichotomy: While for the rank representation unique ranks are
assigned to the indices of x, for the permutation representation of ordinal patterns indices are
assigned to ranks. Nevertheless, the definitions are equivalent: Any pattern π = (π1, ..., πd)
can be determined by a distinct permutation function σ : N → N defined by σ(j) = πj , that
is, the condition xσ(1) < ... < xσ(d) is satisfied. Moreover, its inverse function σ−1 : N → N
satisfies

rj = σ−1(j) < σ−1(k) = rk ⇐⇒ xj < xk,

which already constitutes the rank representation [14].
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Definition 3.1.4. Define the set

Id =
d

×
k=1

{0, 1, ..., d− k}

for d ≥ 2. The inversion representation of the ordinal pattern of x is defined as the tuple
η = (η1, ..., ηd) ∈ Id consisting of the (right) inversion counts, that is,

ηj =
d∑

k=j+1

1{xj>xk} (3.3)

for j ∈ {1, ..., d}.

This representation is used, e.g., in [14]. Note that it holds ηd = 0 for the rightmost
inversion count, which is why most authors omit it in their definitions of the inversion repre-
sentation. We leave it as it is, so that all representations using tuples have the same length.

Unlike the other two representations using tuples, the inversion representation has no
meaningful pictorial interpretation from which one could immediately read the pattern of
up and down within the vector. Originating in discrete mathematics, this representation is
typically used with regard to digital implementation of ordinal patterns as it is very convenient
there with regard to numerical encoding of ordinal patterns (see Section 3.2), though, instead
of the (right) inversion counts, sometimes variations in terms of left inversion counts or non-
inversion counts are used as, e.g., in [42, 44].

The question now arises whether it is possible to find explicit maps which allow to switch
from one representation to another one. For the permutation and rank representations, the
question is already settled. Noting that the inversion counts ηj , j ∈ {1, ..., d}, can be obtained
via

ηj =
d∑

k=j+1

1{rj>rk}, (3.4)

where rk denotes the rank of xk, it is sufficient to show that the permutation representation
π can be obtained by the inversion representation η. For this, let π(1), π(2), ..., π(d) = π be a
sequence of permutations of {d}, {d, d−1}, ..., {d, d−1, ..., 1}, respectively. Since {d} consists
of one element, π(1) = (d) denotes the trivial permutation. Suppose π(l−1) = (ρ1, ρ2, ..., ρl−1)
is given for an l ∈ {2, ..., d}. Then π(l) can be obtained from π(l−1) by inserting d+1− l into
(ρ1, ..., ρl−1):

1. If ηd+1−l = 0, then d + 1 − l is inserted to the left of ρ1, such that π(l) = (d + 1 −
l, ρ1, ..., ρl−1).

2. Otherwise it is inserted to the right of ρηd+1−l
.

For a similar procedure regarding a definition of the inversion representation in terms of
different (non-)inversion counts, see, e.g., Keller et al. [44]. In fact, this procedure is based
on the authors’ ideas.

Example 3.1.5. Consider the representation η = (3, 1, 0, 1, 0). Since d = 5, it holds π(1) =
(5). Due to η4 = ηd+1−2 = 1, ‘4’ has to be inserted to the right of ρη3 = ρ1 = 5 such that
π(2) = (5, 4). It holds η3 = 0, which yields π(3) = (3, 5, 4). Then, because of η2 = 1 it follows
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that ‘2’ has to be inserted to the right of ρ1 = 3, so π(4) = (3, 2, 5, 4). Finally, it holds η1 = 3,
hence ‘1’ has to be inserted to the right of ρ4 = 4 such that π = π(5) = (3, 2, 5, 4, 1). Note
that this is precisely the permutation representation which has been considered in Fig. 3.1,
which complements the representations mentioned so far for x = (9, 5, 4, 10, 8).

3.2 Digital Implementation

With regard to digital implementation, in order to derive fast algorithms for the determina-
tion of ordinal patterns stemming from a time series, it is necessary to keep computational
and memory costs (in the sense of storing the obtained ordinal patterns) as low as possible.
Therefore, the naive solution of storing ordinal patterns as d-dimensional arrays is disadvan-
tageous, since, among other reasons, testing a pair of ordinal patterns for equality would
require up to d comparisons, and storing arrays in general results in a way larger memory
footprint compared to simple integers [14]. Hence, an ordinal pattern representation in terms
of a single (non-negative) integer is preferable.

Definition 3.2.1. For d ≥ 2, let unique non-negative integers n ∈ N0 be assigned to the
ordinal patterns of x according to some bijective map. We call this a number representation
of ordinal patterns.

Note that the map is not further specified, i.e., any bijective map can generate a number
representation of ordinal patterns, though for digital implementation it is advantageous if
the number representation can be directly computed from any other ordinal pattern repre-
sentation mentioned before instead of implementing some sort of lookup table [14]. In this
context, approaches/solutions using the inversion representation are already available: Let
η = (η1, ..., ηd) ∈ Id be the inversion representation of an ordinal pattern. Keller et al. [44]
proposed a numerical encoding defined by the relation

nKSE =
d∑

j=1

ηj ·
d!

(d− j + 1)!
∈ {0, 1, ..., d!− 1}, (3.5)

where ‘KSE’ refers to the name of the authors. Another approach based on the Lehmer code
is proposed by Berger et al. [14]. There, ordinal patterns are enumerated by

nLC =
d∑

j=1

ηj · (d− j)! ∈ {0, 1, ..., d!− 1}. (3.6)

Note that both maps (3.5) and (3.6) are bijective [14, 44]. The second encoding preserves the
lexicographic sorting order with regard to a deviation from an increasing pattern (1, 2, . . . , d)
[14]. Note that with regard to the inversion representation this is equivalent to (η1, ..., ηd) ≼
(η∗1, ...η

∗
d) if and only if

(η1, ..., ηd) = (η∗1, ..., η
∗
d) or η1 = η∗1, ..., ηk−1 = η∗k−1, ηk ≤ η∗k

for some k ∈ N with k ≤ d − 1 [44]. For a better understanding consider Table 3.1, where
both numerical encodings for all possible ordinal patterns of length d = 3 are listed. Note
that even though [44] claimed their numerical encoding to be lexicographic, here it is not
as, e.g., Table 3.1 shows. Rather it follows a different order. This is due to the different
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Table 3.1: Numerical encodings for ordinal patterns of length d = 3.

Rank Representation Inversion Representation nKSE nLC

(1, 2, 3) (0, 0, 0) 0 0
(1, 3, 2) (0, 1, 0) 3 1
(2, 1, 3) (1, 0, 0) 1 2
(2, 3, 1) (1, 1, 0) 4 3
(3, 1, 2) (2, 0, 0) 2 4
(3, 2, 1) (2, 1, 0) 5 5

definitions of the vector x under consideration: The vector x considered by [44] is of the form
x = (x−1, x−2, ..., x−d) = (x∗d, x

∗
d−1, ..., x

∗
1). Therefore, one could argue that the inversion

representation the authors use is with respect to non-inversion counts rather than (right)
inversion counts. In fact, consideration of variants of inversion counts, as, e.g., left inversion
counts or non-inversion counts, does not result in a different type of encoding, but changes
the produced enumeration order.

As the encodings presented above only vary with regard to the weights, at first glance
one may say that mentioning both encodings is redundant. However, the approach based on
the Lehmer code leads to a remarkably simple algorithm for extracting and storing ordinal
patterns in computer memory, which results in a reduction of computational complexity [14].

Algorithms for extracting ordinal patterns from time series data using the encodings
presented above have been proposed by Berger et al. [14], Keller et al. [44] and Unakafova
and Keller [85]. For a thorough discussion of these algorithms in terms of strengths and
weaknesses we especially refer to [14].

In summary, the inversion representation is very advantageous with regard to digital
implementation of ordinal patterns, since it allows for a direct computation of number rep-
resentations. What about the permutation and rank representations?

The rank representation is disadvantageous for digital implementation, since the iden-
tification of the rank of an entry needs d comparisons, which sums up to d2 comparisons
for the entire representation. In contrast, the identification of the j-th inversion number
requires d − j comparisons, which results in a total of

∑d
j=1 d − j = (d2 − d)/2. This can

make a major difference regarding the computational time with respect to extracting ordinal
patterns from a large data set. Furthermore, (at least to our knowledge) it is not possible
to find weights w1, ..., wd ∈ N such that the encoding en : Sd → {0, 1, ..., d! − 1} defined by∑d

j=1 rj · wj constitutes a bijective map. An alternative (injective) encoding, e.g., may be
given by en′ : Sd → N with

en′(r) =

d∑
j=1

rj · dj−1. (3.7)

Even though this encoding is still very natural, the disadvantages in terms of computational
time remain. Furthermore, noting that the image set is different, i.e., it contains larger
values than d!−1 in particular, and recalling that large integers demand more memory space
if compared to smaller integers, the enumeration with regard to the inversion representation
is still more advantageous.

The permutation representation is unsuitable, too, since even the extraction of the ordinal
pattern of a vector makes the additional step of rank identification necessary.
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π = (3, 2, 5, 1, 4)

r = (4, 2, 1, 5, 3)

πs = (4, 1, 5, 2, 3)

rs = (2, 4, 5, 1, 3)

πt = (3, 4, 1, 5, 2)

rt = (3, 5, 1, 2, 4)

Figure 3.2: Ordinal patterns of x = (9, 5, 4, 10, 8) (left) inversed in space (top right) and time
(bottom right).

3.3 Inverse Ordinal Patterns

For a vector x = (x1, ..., xd) there are two possible ordinal inversions, namely an inversion
in time obtained by considering the entries of x in a reversed order, i.e. (xd, ..., x1), and an
inversion in space given by the reflected vector (−x1, ...,−xd). Figuratively speaking, an
inversion in time means reflecting on a vertical line, while a reflection on a horizontal line
yields an inversion in space. These result in altered ordinal patterns and hence, they have
different effects on the proposed representations, which we want to discuss in this section.

The occurrence of a certain pattern in another data set along with its inversion in space
can be interpreted as antimonotone behavior, that is, if a certain value at one point in time
is high, then it is likely that the corresponding value in the other data set is low. This is a
phenomenon which can be observed, e.g., in finance and has been analyzed for the S&P 500
and the corresponding volatility index VIX in Schnurr [70] and Schnurr and Dehling [71].

First, let us consider representations of ordinal patterns inversed in space. For such an
inversion, the ordinal pattern is reflected on a horizontal line such that the largest value be-
comes the least, the second largest becomes the second least, and so on. For the permutation
representation π = (π1, ..., πd) this means that it has to be read from right to left, that is, the
permutation representation of the space-inversed ordinal pattern is given by πs = (πd, ..., π1)
(or πsj = πd+1−j for all j ∈ {1, ..., d}). In contrast, the space-inversed rank representation
rs = (rs1, ..., r

s
d) results from an inversion of the type rsj = d+ 1− rj , j ∈ {1, ..., d}. For time-

inversed ordinal patterns, the entries of x are considered from right to left instead of from left
to right, so the time-inversed rank representation is given by the original rank representation
read from right to left, i.e., rt = (rd, ..., r1), while the time-inversed permutation represen-
tation is obtained via πt = d + 1 − πj for j ∈ {1, ..., d}. Note that the rank representations
follow the respective transformations of the vector x under consideration, while the ‘oppo-
site’ transformation (in terms of horizontal and vertical) yields the respective permutation
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representations.
Finally, let us consider inversion representations of ordinal patterns inversed in space and

time. From (3.4), for the inversion counts ηsj of the ordinal pattern inversed in space it follows

ηsj =

d∑
k=j+1

1{rsj>rsk} =

d∑
k=j+1

1{d+1−rj>d+1−rk} =

d∑
k=j+1

1{rj<rk} = d− j − ηj

for j ∈ {1, ..., d}, since there are d − j values to compare with rj and we already know that
ηj of these comparisons constitute inversions. Obviously, this can be easily computed from
the inversion counts. On the other hand, for ordinal patterns inversed in time it holds

ηtj =
d∑

k=j+1

1{rtj>rtk}
=

d∑
k=j+1

1{rd+1−j>rd+1−k} =

d+1−j−1∑
l=1

1{rd+1−j>rl}

for j ∈ {1, ..., d}. These constitute the left non-inversion counts, which we cannot deduce
from ηj in general.

3.4 Ties

Up to this point, we assumed that ties are not present in x. This is an assumption often made
in the literature. With regard to time series models, this matches the case that the probability
of coincident values equals zero. With regard to data, however, one might still encounter ties.
In practice, three approaches are common [72] (recall Section 1.1.3): In the first approach,
the respective data points are skipped, i.e., the vectors containing ties are omitted. This is
the approach used, e.g., in [7, 13]. In this case one might lose a lot of information, especially
considering categorical data sets with a small number of categories. The second approach
is randomization, e.g., by adding a small noise to the data in order to avoid ties, which has
been done, e.g., by [10, 11]. This has the drawback of possibly underestimating co-movement
between data sets or disregarding constant patterns in one data set.

The last of those approaches is an alteration of the respective ordinal pattern representa-
tions using tuples in terms of adding a supplementary condition, that is, then the permutation
representation of an ordinal pattern of x is defined as the permutation π = (π1, ..., πd) satis-
fying

xπ1 ≤ ... ≤ xπd
and πj−1 < πj if xπj−1 = xπj (3.8)

for j ∈ {2, ..., d}. This representation is used, e.g., in [3, 17, 87], and it is equivalent to the
adjusted rank representation r = (r1, ..., rd) defined by

rj < rk ⇐⇒ xj < xk or (xj = xk and j < k) (3.9)

by the same argument as in the case of distinct values considered in Section 3.1, and which
in turn is used, e.g., in [87, 90]. This means in particular that both representations are used
in [87]. Note the additional conditions in comparison to (3.1) and (3.2).

Since the increasing order is retained in case of ties, the inversion representation does
not need to be adjusted further, and equivalence of all three representations using tuples
is guaranteed. However, this approach maps the vectors (1, 1, 1) and (1, 10, 100) onto the
same pattern π = r = (1, 2, 3), thus, they are considered to exhibit the same up and down
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(3, 2, 1) (3, 1, 2)

(2, 3, 1) (2, 2, 1) (2, 1, 3) (2, 1, 2) (2, 1, 1)

(1, 3, 2) (1, 2, 3) (1, 2, 2) (1, 2, 1) (1, 1, 2) (1, 1, 1)

Figure 3.3: Generalized rank representations for ordinal patterns of length d = 3.

movement, which clearly is not the case here. Hence, with this approach valuable information
is possibly lost. Due to this reason, Schnurr and Fischer [72] propose so-called generalized
ordinal patterns explicitly allowing for ties by referring to a larger set of possible patterns. The
authors propose the following representation, which we will simply refer to as the generalized
rank representation:

Definition 3.4.1 (Schnurr and Fischer [72]). Suppose that the values (y1, ..., ym), which are
already ordered by the condition y1 < y2 < ... < ym, are attained in the vector x = (x1, ..., xd).
There, m ∈ {1, ..., d} is the number of different values. The generalized rank representation
of the ordinal pattern of x is defined as the vector ψ = (ψ1, ..., ψd) ∈ Nd satisfying

ψj = k ⇐⇒ xj = yk.

By this definition, the vector (1, 5, 4, 3) yields the generalized rank representation
(1, 4, 3, 2), which coincides with the rank representation as defined in Def. 3.1.3, while the
vector (1, 1, 4, 3) has the generalized rank representation (1, 1, 3, 2) in contrast to (1, 2, 4, 3).
Hence, this representation is in fact a generalization of the rank representation with respect
to ties. All generalized ordinal patterns of length d = 3 with their respective generalized
rank representations are depicted in Fig. 3.3 (in co-lexicographic order). Note that there are
already 13 generalized ordinal patterns of length d = 3 (and 3 for d = 2). Denoting the set
of all generalized rank representation patterns by Td, the cardinal numbers |Td|, d ≥ 2, are
given by the ordered Bell number of order d.

Schnurr and Fischer [72] applied generalized rank representations to hydrological data sets
consisting of five flood classes (plus ‘absence of flood’) in terms of measuring the association
within a data set by ordinal pattern dependence. As it is a categorical data set with only six
categories, the occurrence of many ties is expected, so the authors compare the proposed gen-
eralized ordinal patterns to two classical approaches, namely randomization and the altered
definition of sorting from beneath by the first appearance (see (3.8) and (3.9)). Overall, they
demonstrate that the classical approaches tend to underestimate the dependence present in
the data due to the changes of pattern structure, while their proposed approach of generalized
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patterns overcomes this. Nevertheless, a new drawback arises: Depending on the length of
the ordinal pattern, a lot more patterns need to be considered, which can possibly result,
e.g., in a greater computational cost with regard to digital implementation. Therefore, the
recommendation is to use this approach when dealing with categorical time series, as it is
especially designed for them, while the classical approaches are more advantageous for time
series for which the probability of coincident values is very small.

The question now arises to what extent it is possible to find generalizations of the permu-
tation and inversion representation, respectively, which are equivalent to the generalized rank
representation as defined in Def. 3.4.1. As a matter of fact, there is a natural way in terms of
preimages (in the first case), though notationally disadvantageous: The idea of permutation
representations is to sort the indices of the entries of x according to their ordinal pattern.
However, in case of ties, the indices cannot be sorted in a unique way nor can ties be read
directly without further information from the arrangement of the indices in a tuple. This
changes when we consider a tuple consisting of sets. Let

σ̃ : {1, ..., d} → {1, ...,m}

be the map that assigns the ranks to the respective indices, where m denotes the previously
determined number of different values in x. Clearly, σ̃ is surjective. Hence, for fixed l ∈
{1, ...,m}, the preimage σ̃−1(l) = {ψ1, ..., ψln} is defined, and a generalized permutation
representation can be given by

(σ̃−1(1), ..., σ̃−1(m)).

Consider the following illustrative example: For x = (4, 4, 6), the generalized rank represen-
tation is given by ψ = (1, 1, 2), so the first two entries obtain rank 1, while the last entry
has rank 2. Then, the generalized permutation representation as proposed above is given by
({1, 2}, {3}). This has the advantage that {1, 2} = {2, 1}, so no order is suggested for ties.
Nevertheless, the notation is a bit cumbersome compared to sorting the indices themselves
as it is done in the classical approach. Obviously, the generalized permutation representation
and generalized rank representation are equivalent.

In case of ties, an inversion representation does not make sense as it cannot be defined
in a unique way: Considering, e.g., the vectors (4, 4, 5) and (4, 5, 6), under the definition in
(3.3) both are mapped to the same inversion representation (0, 0, 0). The naive idea of an
adjustment of (3.3) in terms of ≥, that is, ηj =

∑d
k=j+1 1{xj≥xk}, does not solve the problem,

since then (4, 4, 5) and (4, 3, 5) are both mapped to (1, 0, 0). The same problem arises when
considering other variants of inversion counts. As a consequence, a number representation
consisting of d! consecutive integers can be directly computed neither from a generalized
inversion representation (as it does not exist) nor the generalized rank representation (due to
the same reasons as for the classical rank representation). However, an enumeration according
to the encoding en′(r) =

∑d
j=1 ψj ·dj−1 (see Section 3.2) is advantageous with regard to digital

handling of generalized ordinal patterns so that working with vectors can be avoided. An
even more advantageous method is considering

∑d
j=1(ψj − 1) · dj−1 in order to keep the

values of the image set as low as possible. Note that the obtained number representations do
not consist of consecutive integers here. (Compare with the R-package “ordinalpattern”,
where the function “countingpatterns” has been added in Version 0.2.5, which computes the
empirical (generalized) ordinal pattern distribution according to this approach.)
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Figure 3.4: ‘Open prices’ of VIX and SPX, respectively, in the time period 01/02/1990 to 31/01/2023
corresponding to n = 8313 data points (left). First 10 data points corresponding to the time period
01/02/1990 to 14/02/1990 (right).

3.5 Case Study

In what follows, we consider the S&P 500 (SPX) and the corresponding volatility index (VIX)
as a real-world example in order to illustrate the use of the aforementioned ordinal pattern
representations as well as their performance with regard to digital efficiency. We performed
our analysis in GNU R (Version 4.4.0) on a MacBook Pro (Apple M1).

We have analyzed daily data in the time period 01/02/1990 to 31/01/2023 resulting in n =
8313 data points, and which is available as open source historical data on finance.yahoo.com.
We have restricted ourselves to the ‘open prices’ and, if not mentioned otherwise, we have
considered ordinal patterns of length d = 3.

The first 10 data points are illustrated at the r.h.s. of Fig. 3.4 from which the respective
ordinal patterns can be mapped directly to the rank or permutation representation. If one is
interested in the probability of certain patterns, e.g., the upward movement π = r = (1, 2, 3)
as it might be connected to economic growth (in the case of SPX), determining the relative
frequencies for estimation is crucial. Here, we make use of the number representation nLC
(see Eq. (3.6)), which utilizes indirectly the inversion representation i = (i1, .., id), and use
the ‘Plain Algorithm’ as proposed by Berger et al. [14]. In summary, this yields the relative
frequencies stated in Table 3.2. Using the R-package “microbenchmark”, we have obtained
the results in far less than one second, respectively, that is, out of 1000 repetitions, an
average of about 32 milliseconds was needed for each of the two data sets. Note that the
data exhibits a negligible number of ties, hence, here we have used the altered definition of
ordinal patterns which retains the increasing order in case of ties (see Eq. (3.8), (3.9)), so the
inversion representation does not need to be adjusted further.

In addition, we have investigated the computational cost with regard to ordinal pattern

Table 3.2: Relative frequencies of ordinal patterns nLC of length d = 3 with regard to VIX and SPX
rounded to the third digit.

nLC 0 1 2 3 4 5

VIX 0.210 0.135 0.137 0.134 0.131 0.253
SPX 0.295 0.130 0.127 0.118 0.121 0.209
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Table 3.3: Ordinal pattern dependence (OPD) for different lengths d with regard to VIX and SPX
rounded to the third digit.

d 2 3 4 5 6 7

OPD -0.365 -0.251 -0.146 -0.076 -0.036 -0.017

dependence, which can be conveniently computed via the function “patterndependence” from
the R-package “ordinalpattern”. This function uses an approach for assigning number
representations to the respective patterns which is not based on the inversion representation,
but works along the lines of Eq. (3.7). Initially, an additional randomization was required
in case of ties, so slightly different results can be obtained in each run. (Note that this was
the case when the paper on which this chapter is based on was published.) Since Version
0.2.5, however, there is the possibility to choose whether the function uses randomization
or the method in favor of increasing patterns mentioned before. We have summarized our
results with regard to the latter for different pattern lengths d in Table 3.3. All in all, the
time needed for the computation of ordinal pattern dependence with d = 3 is about one
quarter of the time needed with regard to the pattern probabilities computed before (8.5
milliseconds on average out of 1000 repetitions), even though these probabilities must also
be determined for ordinal pattern dependence. Moreover, the computation of ordinal pattern
dependence with d = 7 takes still far less than one second, but twice the time with regard to
the aforementioned computations (about 62 milliseconds on average). This is probably the
case, since parts of the computation in “patterndependence” are outsourced to C shortening
the computation time.

3.6 Interim Conclusion

In probability theory and statistics in the context of ordinal pattern analysis, most of the
time the distribution of ordinal patterns is of interest. In order to determine or estimate
probabilities of certain ordinal patterns, the pattern representation itself is not relevant,
since the choice of the representation usually does not influence the obtained results directly.
However, it is still advantageous to opt for a representation for which the ordinal pattern can
be read directly, namely the permutation or rank representation. Here, we prefer the second
one, since the concept of ranks is more intuitive and the ups and downs of the ordinal pattern
can be read directly. Furthermore, a vector like x = (2, 3, 1, 4) is mapped to r = (2, 3, 1, 4)
(instead of π = (3, 1, 2, 4)) which is very natural.

When considering inverse patterns, permutation and rank representation are both reason-
able, since they behave in a similar, but ‘opposite’ way regarding the transformations needed
for the respective inversions (see Section 3.3). On the other hand, the inversion representa-
tion, even though counterintuitive, is advantageous with respect to ordinal patterns inversed
in space due to its closed form in terms of the original inversion counts. But with regard to
inversions in time, it is inconvenient, because then one has to compute non-inversion counts
which cannot be obtained from the (right) inversion counts directly. However, the inversion
representation is very practical when it comes to digital implementation, since it leads to re-
markably simple algorithms for extracting and storing ordinal patterns in computer memory,
that keep computational and memory costs very low.

In the context of ties being present in the data, the use of the three classical approaches
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Table 3.4: Ordinal patterns of length d = 2 in (i), d = 3 in (ii), and d = 4 in (iii). Unless explicitly
indicated otherwise, from now on classical ordinal patterns are referred to by the letter π.

(i)

d = 2

k π(k)

1 (1, 2)

2 (2, 1)

(ii)

d = 3

k π(k) k π(k)

1 (1, 2, 3) 2 (1, 3, 2)

3 (2, 1, 3) 4 (2, 3, 1)

5 (3, 1, 2) 6 (3, 2, 1)

(iii)

d = 4

k π(k) k π(k) k π(k)

1 (1, 2, 3, 4) 2 (1, 2, 4, 3) 3 (1, 3, 2, 4)

4 (1, 3, 4, 2) 5 (1, 4, 2, 3) 6 (1, 4, 3, 2)

. . . . . . . . .

22 (4, 2, 3, 1) 23 (4, 3, 1, 2) 24 (4, 3, 2, 1)

using tuples is recommended for data sets for which many ties are not expected, e.g., data
stemming from real-valued time series. Then, even for the third approach, where the defi-
nitions of the permutation and rank representation are altered, respectively, the previously
discussed advantages and disadvantages remain valid. However, if, e.g., a categorical data
set with a small number of categories is considered, many ties are to be expected. Hence,
the classical approaches would lead to a distortion of the underlying distribution and/or loss
of valuable information. Therefore, in this case the generalized rank representation is very
beneficial, even though the number of possible patterns increases even more rapid for length
d than the set of permutations considered in the case of vectors containing pairwise dis-
tinct elements. The equivalent generalized permutation representation, which we proposed,
is notationally more cumbersome, hence, we still recommend the use of the generalized rank
representation.

All in all, if not stated otherwise, in the remaining we refer to classical ordinal patterns
by rank representations denoted by π (instead of r) in order to keep the notation simple and
intuitive. We sort them according to the number representations nLC + 1 ∈ {1, . . . , d!} as
proposed by Berger et al. [14], since these correspond to a lexicographical sorting order of
the patterns. A brief overview on the actual numberings in combination with the respective
rank representations for d ∈ {2, 3, 4} is shown in Table 3.4.

49



4 Limit Theorems for the Symbolic
Correlation Integral and Rényi-2 Entropy
for Short-range Dependent Time Series

Originally, ordinal patterns have been introduced by Bandt and Pompe [10] as a tool to define
permutation entropy which is a measure for quantifying complexity or uncertainty within a
given time series (or data stemming from it). As discussed before, ordinal patterns have many
desirable properties like invariance under monotone transformations, robustness with respect
to small noise and simplicity in computation. These properties are directly transferred to
ordinal pattern based measures, e.g., permutation entropy.

Since permutation entropy is defined as the Shannon entropy of the ordinal pattern distri-
bution (see Definition 2.2.2), it is a natural idea to also consider other variants of complexity
measures based on ordinal patterns (for a discussion of different variants of permutation en-
tropy, see Keller et al. [46]). Both the Rényi and the Tsallis entropy converge to the Shannon
entropy for q → 1, so it is especially natural to generalize permutation entropy to variants of
these (cf. Liang et al. [49], Zunino et al. [92])

Here, we will particularly consider a variant based on Rényi-2 entropy. Even though both
variants seem to behave not too differently from the practical perspective (see Keller et al.
[46] for a discussion from the viewpoint of their application in EEG analysis), the Rényi-2
entropy has some interesting properties and advantages. First of all, it is strongly related to
the symbolic correlation integral recently proposed by Caballero-Pintado et al. [21], which is
inspired by the widely used classical correlation integral defined by Grassberger and Procaccia
[31] and can be interpreted as the degree of recurrence of ordinal patterns in the time series
(cf. [46, p. 8], [21, p. 537]). In fact, from a practical viewpoint the symbolic correlation
integral and Rényi-2 entropy can be used more or less interchangeably as we will see later.
Another advantage of the Rényi-2 entropy or symbolic correlation integral is a strong relation
to U-statistics, which will prove useful in the context of establishing limit theorems.

In this chapter, our goal is to derive the limit distribution of the symbolic correlation
integral (and hence also the Rényi-2 entropy) for a broad class of short-range dependent
processes, namely 1-approximating functionals. Therefore, we complement the results by
Caballero-Pintado et al. [21] who only considered the i.i.d. case. Our contributions will prove
to be useful in a variety of classification tasks, that is, they allow us to distinguish time series
or data stemming from time series based on the degree of complexity present in each one
of them. For example, to a certain extent we are able to distinguish, e.g., ARMA-models
that differ only in the choice of their parameters. Furthermore, our approach also allows for
testing whether two time series follow the same underlying model in the sense of a distinction
between, e.g., an AR- and an MA-model. Possible practical applications include, e.g., the
distinction between healthy patients and patients with specific diseases for which the collected
data exhibits a different degree of complexity if compared to the data collected from healthy
patients. Well-known examples for such a diseases are epilepsy as well as different kinds of
heart diseases (see Amigó et al. [3] and the references mentioned therein). Classification of
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sleep states might be another possible application.
This chapter is organized as follows: First we give a brief introduction into the main

quantity of interest, namely the symbolic correlation integral (Section 4.1). Then we derive
its limit distribution for the class of 1-approximating functionals (Section 4.2) and estimate
the limit variance (Section 4.3), followed by a short simulation study in Section 4.4 to support
our theoretical findings. An interim conclusion rounds off this chapter.

The development of hypothesis tests as well as their practical applications are not ad-
dressed in this work. Instead this can be found in the joint work [75] with A. Schnurr and
M. R. Maŕın, on which this chapter (as well as the introduction above) is based on in most
parts. In the course of this chapter, we will clearly point out the results to which we have not
contributed significantly, but which we nevertheless need for the rigor of our mathematical
conclusions, by referring to the joint work accordingly. The included simulations (with the
exception of Proposition 4.4.1) were conducted independently of [75] as a result of our own
work.

4.1 Rényi-2 Permutation Entropy and the Symbolic
Correlation Integral

In this chapter, we consider the stationary one-dimensional time series (Xt)t∈Z whose finite
dimensional distributions we assume to be continuous. Since we are interested in the rela-
tionship between d consecutive data points, it is convenient to consider the modified time
series (Xt)t∈Z defined by the components

Xt := (Xt, ..., Xt+d−1)

obtained by a sliding window approach. Note that if the time series (Xt)t∈Z is stationary,
then (Xt)t∈Z is also stationary, since considering d consecutive data points is only a simple
functional used on the original time series. Let F denote the cumulative distribution function

F (y) = FX0
(y) = FXt

(y) = P(Xt ≤ y)

for y ∈ Rd. Given some t ∈ Z and recalling that Π : Rd → Sd denotes the function which
assigns each d-dimensional vector its ordinal pattern, the main quantity under consideration
in this chapter is∑

π∈Sd

P(1{Π(Xt)=π})
2 =

∑
π∈Sd

(∫
Rd

1{Π(x)=π} dF (x)

)2

=
∑
π∈Sd

∫
Rd

∫
Rd

1{Π(x)=π}1{Π(y)=π} dF (x)dF (y)

=

∫
Rd

∫
Rd

1{Π(x)=Π(y)} dF (x)dF (y) =: Sd, (4.1)

which does not depend on t ∈ Z by stationarity. Note that we have applied Fubini’s theorem
in the second equation. The r.h.s. of (4.1) is the symbolic correlation integral (SCI) as
recently proposed by Caballero-Pintado et al. [21]. As the l.h.s. shows, it is nothing more
than the exponential function applied to the sign-reversed Rényi-2 entropy

R2 = R2((pπ)π∈Sd
) = − log

∑
π∈Sd

p2π
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of the ordinal pattern distribution (pπ)π∈Sd
=
(
P(Π(Xt) = π)

)
π∈Sd

(see Chapter 2.2).
The definition of the SCI is highly influenced by the widespread and well-known classical

correlation integral by Grassberger and Procaccia [31], which is given by the probability of
two arbitrary points on the orbit of the state space that are within a distance of ε for some
ε > 0 fixed beforehand [21]. In other words, the correlation integral depends highly on the a
priori selection of ε. The SCI, on the other hand, avoids this ε-dependence and, as Caballero-
Pintado et al. [21] have shown, it can be used to construct a new test for serial dependence
and causality, that is consistent, nuisance-parameter-free, and computationally efficient.

Eq. (4.1) shows that the SCI can be easily computed if the ordinal pattern probabilities are
known. For example, in case of a uniform distribution, which is, e.g., the case for i.i.d. series,
it holds

Sd =
∑
π∈Sd

p2π = d! ·
(
1

d!

)2

=
1

d!
.

For most of the time series models, nothing is known yet about the obtained ordinal pattern
distributions. Exceptions are Gaussian as well as ARMA-processes, that is at least under
some additional restrictions. The corresponding theorems can be found in Sections 5 and 6
of Bandt and Shiha [11].

Note that the SCI attains its minimum in case of uniformly distributed ordinal patterns,
that is 1/d!, and its maximum of 1 in case of a one-point distribution. Recall in this regard
Remark 2.2.4. For the Rényi-2 permutation entropy R2 = − log(Sd) maximum and minimum
are reversed.

We consider the U-statistic

Sd
n :=

2

n(n− 1)

∑
1≤j<k≤n

1{Π(Xj)=Π(Xk)}

as an estimator of Sd. Note the connection to the recurrence of ordinal patterns by definition.
By now, the limit results for this statistic are limited to the i.i.d. case [21], which is a serious
drawback, since several applications one has in mind exhibit serial dependence. We close this
gap in the following.

4.2 Limit Theorems for the Symbolic Correlation Integral

The key idea for giving more general statements for a broad class of short-range dependent
processes, namely 1-approximating functionals (see Chapter 2.4), is to use the theorems of
Borovkova et al. [18]. In order to make use of them, amongst others we have to show that
our kernel

h(x, y) := 1{Π(x)=Π(y)}

satisfies the technical condition of p-continuity (Def. 2.4.15) with regard to our time series
(Xt)t∈Z.

Proposition 4.2.1 (Schnurr et al. [75, Proposition 4.2]). Let p ≥ 1. The kernel h : (x, y) 7→
1{Π(x)=Π(y)} is p-continuous with respect to (Xt)t∈Z.

For the proof we refer the reader to [75]. There, we make use of the concept of minimal
spread of a vector. To our knowledge this concept is new, at least in the context of ordinal
pattern analysis.
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Definition 4.2.2 (Schnurr et al. [75, Definition 2.8]). Let X1 = (X1, ..., Xd) ∈ Rd. The
minimal spread of the vector is

ms(X1) := min{|Xj −Xk| : 1 ≤ j < k ≤ d}.

In particular, we show in our proof that the function ϕ :]0,∞[→]0,∞[ with regard to the
p-continuity condition can be explicitly given for our kernel, namely by ϕ(ε) = 2pP(ms(U) ≤
2ε). Compare in this context Borovkova et al. [18]. They work with the Grassberger-Procaccia
dimension estimator and hence, use the family of kernels ht(x, y) = 1{|x−y|≤t}. In order to
guarantee that these satisfy the 1-continuity assumption, the family of distribution functions
of |Xj −Xk| has to be equicontinuous in t. This might be very difficult to check in practice.
Using a different kernel and other method of proof, our limit results work without these
equicontinuity assumptions [75]. Hence, this kernel is a significant advantage in favor of the
entropy concept we are using here.

In order to employ the theorems of Borovkova et al. [18], it is even more intriguing
to consider how the r-approximating condition of (Xt)t∈Z is transferred to (Xt)t∈Z. The
following lemma shows that it is, at least to some degree, inherited by (Xt)t∈Z.

Lemma 4.2.3. Let r ≥ 1. If the time series (Xt)t∈Z can be expressed as an r-approximating
functional Xt = f((Zt+k)k∈Z) of the stationary time series (Zt)t∈Z with approximating con-
stants (ak)k∈N0 of size −λ, then Xt = g((Zt+k)k∈Z) itself satisfies the r-approximating con-
dition for k ≥ d with approximating constants of the same size.

Proof. Let (Xt)t∈Z be an r-approximating functional of (Zt)t∈Z. It holds

E
∥∥∥X0 − E(X0|Ak

−k)
∥∥∥r
r
= E

(∣∣X0 − E(X0|Ak
−k)
∣∣r + ...+

∣∣Xd−1 − E(Xd−1|Ak
−k)
∣∣r)

= E
∣∣X0 − E(X0|Ak

−k)
∣∣r + ...+ E

∣∣Xd−1 − E(Xd−1|Ak
−k)
∣∣r.

Here, we have used the r-norm, which can be done, since every norm on Rd is equivalent. For

k ≥ d, Ai+(k−i)
i−(k−i) = Ak

−k+2i ⊂ Ak
−k constitutes a sub-σ-algebra of Ak

−k for all 0 ≤ i ≤ d− 1, so,

e.g., [24, Theorem 10.28] yields

E
∣∣Xi − E(Xi|Ak

−k)
∣∣r ≤ 2E

∣∣Xi − E(Xi|Ak
−k+2i)

∣∣r
for all 0 ≤ i ≤ d− 1. Hence, using Lemma 2.4.9 it follows

E
∥∥∥X0 − E(X0|Ak

−k)
∥∥∥r
r
≤ 2

d−1∑
i=0

E
∣∣Xi − E(Xi|Ak

−k+2i)
∣∣r

= 2

d−1∑
i=0

E
∣∣X0 − E(X0|Ak−i

−(k−i))
∣∣r

≤ 2
d−1∑
i=0

ak−i.
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Unfortunately, without further assumptions we cannot validate the r-approximating con-
dition of (Xt)t∈Z for 0 ≤ k < d, that is, the boundedness of

E
∥∥∥X0 − E(X0|Ak

−k)
∥∥∥r
r

for 0 ≤ k ≤ d− 1.

In fact, this makes it impossible to use the limit theorems for U-statistics of r-approximating
functionals established by Borovkova et al. [18] (cf. the discussion in Section 2.4). For this
reason we make use of generalizations which are suitable for our endeavor and which we have
derived in Sections 2.4.2–2.4.4. Then, we obtain the following law of large numbers for our
estimator Sd

n.

Theorem 4.2.4. Let (Xt)t∈N be a 1-approximating functional of a stationary and absolutely
regular time series with summable approximating constants (ak)k∈N0. Then, it holds

Sd
n

P−→ Sd,

as n→ ∞.

Note that we are still dealing with a two-sided functional, which is common practice with
regard to time series analysis. But since we are considering data in order to estimate the
SCI, for simplicity we omit observations indexed by t ≤ 0.

Proof. The statement follows from Theorem 2.4.16, since the time series (Xt)t∈N is stationary
and itself a 1-approximating functional of an absolutely regular time series which approximat-
ing constants are summable disregarding the first d constants (Lemma 4.2.3). Furthermore,
we have seen in Proposition 4.2.1 that our kernel satisfies the 1-Lipschitz condition. Fi-
nally, the family of random variables (1{Π(Xj)=Π(Xk)})j,k∈N is uniformly integrable, since it
is bounded by 1, which is obviously integrable w.r.t. a probability measure.

For a kernel h : R2d → R, recall that we write

h1(x) :=

∫
Rd

h(x, y) dF (y)

(see Section 2.3). Now we can prove a central limit theorem. Since our kernel h is bounded
and 1-continuous, the following central limit theorem follows by Theorem 2.4.17.

Theorem 4.2.5. Let (Xt)t∈N be a 1-approximating functional of an absolutely regular time
series with mixing coefficient (βk)k∈N0, and let h and h1 be as above. Suppose that the
sequences (βk)k∈N0, (ak)k∈N0 and (ϕ(ak))k∈N0 satisfy the following summability condition:

∞∑
k=1

k2(βk + ak + ϕ(ak)) < +∞.

Then the series

σ2 = Var(h1(X1)) + 2
∞∑
k=2

Cov(h1(X1), h1(Xk)) (4.2)

converges absolutely and, as n→ ∞,

√
n(Sd

n − Sd)
D−→ N(0, 4σ2).
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Since in our case we know the function ϕ explicitly, we can derive the following:

ϕ(ε) = 2P(ms(Xk) ≤ 2ε) ≤ 2
∑

k≤i,j≤k+d−1

P(Xi −Xj ≤ 2ε).

This means that if the distribution functions FXi−Xj (for 0 ≤ i, j,≤ d − 1) are all Lipschitz
continuous, then the summability condition

∞∑
k=1

k2(βk + ak) < +∞

is sufficient [75].

Due to Sd > 0 for all ordinal pattern distributions (pπ)π∈Π, by application of the “Delta
method” (see [77, Theorem 3.1.A]) we finally obtain the following corollary with regard to
the estimation of the Rényi-2 permutation entropy R2 = − log(Sd):

Corollary 4.2.6. Under the assumptions of Theorem 4.2.5, it holds

√
n(log(Sd

n)− PE2)
D−→ N(0, 4σ2/(Sd)2)

as n→ ∞.

Recall that 1/d! ≤ Sd ≤ 1. Hence, the limit variance w.r.t. the Rényi-2 permutation
entropy becomes larger by application of the “Delta method” if compared to the limit variance
of the SCI.

4.3 Estimating the Limit Variance

If we can find an estimator σ̂2n such that σ̂2n
D−→ σ2, then Slutsky’s theorem yields

√
n(Sd

n − Sd)

2σ̂n

D−→ N(0, 1),

so, e.g., asymptotic confidence intervals can be determined. De Jong and Davidson [25] have
proposed consistent estimators based on kernels for the series on the r.h.s. of σ2, provided some
technical conditions are satisfied. As we are going to employ their results in the following,
first we state the necessary assumptions:

Assumption 4.3.1. Let κ(·) : R → [−1, 1] be a kernel function satisfying the following
conditions:

◦ κ(0) = 1,

◦ κ(·) is symmetric in the sense that κ(x) = κ(−x) for all x ∈ R,

◦ κ(·) is continuous at 0 and at all but a finite number of points,

◦
∫∞
−∞ |κ(x)|dx <∞, and
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◦
∫∞
−∞ |ψ(ξ)|dξ <∞ where

ψ(ξ) = (2π)−1

∫ ∞

−∞
κ(x)eiξxdx.

The authors stated the next assumption originally in terms of Lr-near epoch dependent
triangular arrays. However, for our purpose consideration of time series is enough. Note
that considering a time series (Yt)t∈N one can always define a triangular array (Ynt)n,t∈N by
Ynt = n−1/2Yt. Then, using the triangular constant array cnt defined by cnt = n−1/2 yields
Assumption 4.3.2 as derived below.

Assumption 4.3.2. (Yt)t∈N is a 2-approximating functional of size −1 on a strongly mixing
(resp. uniformly mixing) time series (Zt)t∈Z of size −p/(p − 2) (resp. −p/(2p − 2)), and it
holds

sup
t≥1

∥Yt∥p <∞ (4.3)

for some p > 2, where ∥Y ∥p := (E ∥Y ∥p)1/p denotes the Lp-norm of the random variable Y .

Under uniform mixing, p = 2 is also permitted if |Yt|2 is uniformly integrable.

We will not go into “strong mixing” and “uniform mixing” in detail here. For us, it
is sufficient to be familiar with their relation to absolute regularity, which is illustrated in
Fig. 2.2.

Assumption 4.3.3. For a bandwidth sequence (bn)n∈N, it holds

lim
n→∞

(b−1
n + bn · n−1) = 0.

There are several possible choices for the kernel function κ(·) and the bandwidth sequence
(bn)n≥1 such that Assumptions 4.3.1 and 4.3.3 are fulfilled. One possible choice is the Bartlett-
kernel κ(x) = (1− |x|) · 1[−1,1](x) and bn = log(n), n ∈ N. We will use these in Section 4.4.

We define

σ2n := Var(h1(X1)) + 2

n∑
k=2

Cov(h1(X1), h1(Xk)) =
1

n

n∑
i,j=1

Cov(h1(Xi), h1(Xj))

and its estimator

σ̂2n :=
1

n

n∑
i,j=1

κ((j − i)/bn) · (h1(Xi)− Sd
n)(h1(Xj)− Sd

n).

Note that the equality holds due to stationarity of (Xt)t∈N. The subsequent theorem shows
consistency of the proposed estimator σ̂2n.

Theorem 4.3.4. Let (Xt)t∈N be a 2-approximating functional of a stationary absolute regular
time series (Zt)t∈Z with constants (ak)k∈N0 and mixing coefficients (βk)k∈N0, and let h and
h1 be as above. Suppose that the sequences (βk)k∈N0, (ak)k∈N0 and (ϕ(ak))k∈N0 satisfy the
following summability condition:

∞∑
k=1

k4(βk + ak + ϕ(ak)) < +∞.
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Moreover, suppose κ(x) and (bn)n∈N satisfy Assumptions 4.3.1 and 4.3.3. Then

σ̂2n − σ2n
P−→ 0,

as n→ ∞.

The proof is based on De Jong and Davidson [25, Theorem 2.1]. Hence, we need to verify
Assumption 4.3.2. In this regard, we need to show that the immediate application of h1 to
(Xt)t∈N yields a 2-approximating functional with approximating constants of the required
size. For this we utilize of Lemma 4.3.6 which makes a statement about the immediate
application of an r-continuous function onto an r-approximating functional, and which is a
generalization of [18, Proposition 2.11] with regard to r-approximating functionals in general
for r ≥ 1. For convenience, first we complement the definition of p-continuous functions with
just one argument.

Definition 4.3.5 ([18, Definition 2.10]). Let F be some distribution on Rd. A measurable
function g : Rd → Rd is called p-continuous with respect to F if there exists a function
ϕ :]0,∞[→]0,∞[ with ϕ(ε) = o(1) as ε→ 0 such that

E
(∣∣g(Y )− g(Y ′)

∣∣p 1{|Y−Y ′|≤ε}
)
≤ ϕ(ε) (4.4)

holds for all random vectors Y and Y ′ with distribution F . If the underlying distribution is
clearly understood, we simply say that g is p-continuous.

Lemma 4.3.6. For r ≥ 1, let (Yt)t∈N be an r-approximating functional of (Zt)t∈N with
constants (ak)k∈N0 of size −λ, and let g : Rd → Rd be r-continuous with respect to the
distribution of Y0. Furthermore, suppose that ∥g(Y0)r∥2+δ < ∞ for some δ > 0. Then
(g(Yt))t∈N is also an r-approximating functional of (Zt)t∈N with constants

bk = ϕ(
√
2a

1/2r
k ) + 2r ∥g(Y0)r∥2+δ · (

√
2a

1/2r
k )(1+δ)/(2+δ). (4.5)

If g is bounded, then the same holds with approximating constants

bk = ϕ(
√
2a

1/2r
k ) + 2r ∥g(Y0)r∥∞ ·

√
2a

1/2r
k (4.6)

instead of (4.5).

The proof proceeds analogously to the one given in Borovkova et al. [18] for the restricted
case of 1-approximating functionals.

Proof. Let (Z ′
t)t∈N be a copy of (Zt)t∈N with Zt = Z ′

t for −k ≤ t ≤ k, and let (Yt)t∈N and
(Y ′

t )t∈N denote the respective functionals. Defining B := {|Y0 − Y ′
0 | > ε} it holds

E
∣∣g(Y0)− g(Y ′

0)
∣∣r = E

(∣∣g(Y0)− g(Y ′
0)
∣∣r · 1Bc

)
+ E

(∣∣g(Y0)− g(Y ′
0)
∣∣r · 1B

)
.

While we can use ϕ(ε) as a bound for the first summand due to the r-continuity of g, for the
second summand it holds

E
(∣∣g(Y0)− g(Y ′

0)
∣∣r · 1B

)
≤
∥∥∣∣g(Y0)− g(Y ′

0)
∣∣r∥∥

2+δ
· ∥1B∥(2+δ)/(1+δ)

≤
∥∥2r−1

(
|g(Y0)|r +

∣∣g(Y ′
0)
∣∣r)∥∥

2+δ
· P(B)(1+δ)/(2+δ)
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≤ 2r−1
(
∥g(Y0)r∥2+δ +

∥∥g(Y ′
0)

r
∥∥
2+δ

)
· P(B)(1+δ)/(2+δ)

= 2r ∥g(Y0)r∥2+δ · P(B)(1+δ)/(2+δ),

where we have consecutively applied the Hölder-, the cr- and the Minkowski-inequality, re-
spectively. (Recall the cr-inequality from Example 2.4.8.)
By the r-approximating condition and Lemma 2.7 (i) of [18] it holds

E
∣∣Y0 − Y ′

0

∣∣r ≤ 2r · ak.

Then, using the Markov-inequality (as well as the Hölder-inequality) yields

P(B) ≤ E |Y0 − Y ′
0 |

ε
≤ (E |Y0 − Y ′

0 |
r)

1/r

ε
≤

2a
1/r
k

ε
.

Choosing ε =
√
2a

1/2r
k and summing everything up, it follows

E
∣∣g(Y0)− g(Y ′

0)
∣∣r ≤ ϕ(

√
2a

1/2r
k ) + 2r ∥g(Y0)r∥2+δ · (

√
2a

1/2r
k )(1+δ)/(2+δ),

which already implies the r-approximating condition for g(Y0) by Lemma 2.7 (ii) of [18].

Remark 4.3.7. The attentive reader may have noticed that by Lemma 4.3.6 it is implicitly
required that the approximating constants (ak)k∈N0 of (Yt)t∈N are finite, since the function
ϕ is defined on the open set ]0,∞[. However, if there is a finite number of approximating
constants such that ak = ∞, then without loss of generality, we may set bk = ∞ for all k
such that ak = ∞, as the approximating property is then still inherited in the same way,
especially with regard to the convergence rate of the approximating constants.

Nevertheless, there exists a series of finite constants b′k such that the approximating con-
dition is satisfied: By assumption it holds ∥g(Y0)r∥2+δ < ∞, so ∥g(Y0)∥r < ∞ in particular.

Example 2.4.8 then yields that E
∥∥g(Y0)− E(g(Y0)|Ak

−k)
∥∥r is bounded by some (finite) con-

stant for all k ∈ N0. Let us again emphasize that the number of constants which are affected
by this is finite, thus they still do not have an influence on the convergence rate as obtained
in Lemma 4.3.6. Therefore, even if some ak = ∞, under the assumptions of Lemma 4.3.6
it follows that there is a series of (finite) approximating constants (b′k)k∈N0 with respect to
g(Y0) with the convergence rate implied by the above lemma.

Proof of Theorem 4.3.4. As already mentioned, the proof is based on Theorem 2.1 of [25],
so we need to verify Assumption 4.3.2. Without loss of generality, here it is sufficient to
only consider Yt := h1(Xt), t ∈ N, since adding a constant does not affect our results. By
Lemma 4.2.3 it holds that (Xt)t∈N is a 2-approximating functional of the same size as (Xt)t∈N,
though a0, . . . , ad−1 are possibly equal to infinity. Furthermore, by Proposition 4.2.1 it follows
that our kernel h as defined before is 2-continuous in particular, so Lemma 2.15 of [18] yields
that h1 is also 2-continuous. The 2-approximating condition is preserved when 2-continuous
functions are applied (see Lemma 4.3.6), therefore (Yt)t∈N remains to be 2-approximating,
and even though the size of the approximating constants changes, now all approximating
constants are finite (cf. Remark 4.3.7).
Using the supposed summability conditions yields that k4βk → 0 as k → ∞. Consequently,
(Zt)t∈Z is absolutely regular of size -4. Note that absolute regularity implies strong mixing
of at least same size: For absolute regularity coefficients (βk)k∈N0 of size −λ0 it holds

kλ0αk ≤ kλ0βk → 0
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as k → ∞, where the series (αk)k∈N0 denotes the strong mixing coefficients. (For further
information on mixing, see, e.g., [24, Chapter 14].) Therefore, the inequality − p

p−2 ≥ −4

needs to be fulfilled, which is the case for p ≥ 8
3 . Equation (4.3) is satisfied due to the

assumed stationarity: It holds

sup
t≥1

∥Yt∥3 =
∥∥h1(X1)

∥∥
3
≤ 1 <∞,

since h1(x) = E(1π(x)=π(X0)
) ≤ 1 for all x by monotonicity.

Furthermore, in an analogous way it follows that the approximating constants (ak)k≥0 of
(Xt)t∈N are of size -4. Denoting the approximating constants of (Xt)t∈N by (ak)k∈N0 , by
Lemma 4.3.6 (ak)k∈N0 is of size −1.

4.4 Simulations

In this section, we complement our theoretical results with simulations, where we analyze
the behavior of our estimators on the basis of three examples. However, we do not consider
specific applications such as hypothesis tests here. These are discussed in the joint work [75]
with A. Schnurr and M. R. Maŕın.

Throughout this section, we set N = 10000 as the number of repetitions. Furthermore,
we use the Bartlett-kernel κ(x) = (1− |x|) · 1[−1,1](x) and bn = log(n), n ∈ N.

4.4.1 I.I.D. Random Variables

First of all, we consider the most trivial example of an r-approximating functional, namely
an i.i.d. series where the functional is given by the identity. To be precise, we consider
n ∈ {10000, 30000, 50000} ordinal patterns of length d = 3 stemming from data simulated
according to a series consisting of T = n+ d− 1 independent standard normally distributed
random variables. Recall that it holds Sd = 1/d! in the i.i.d. case (independent of the choice
of the underlying marginal distribution).

The l.h.s. of Fig. 4.1 shows the empirical distribution of the respective estimators S3
n,

while the r.h.s. shows the empirical distribution of its standardization
√
n(S3

n − 1/6)/2σ̂n.
First of all, observe that the estimator seems to converge from the left to the theoretical
value S3 = 1

6 . In particular, this means that there is an empirical bias to the left. This can
be explained by the fact that even though Sd obtains its minimum of 1/d! in the i.i.d case,
the lower bound of Sd

n lies even below in case of uniformly distributed ordinal patterns and
only converges to Sd as n tends to infinity. However, taking a closer look onto the x-axis (on
the l.h.s.), we observe that not only the deviation in the mean is already very small for the
case n = 10000, but also the empirical variance. Furthermore, no significant changes can be
found in the empirical densities of the standardized estimator (r.h.s.) for n > 10000. Hence,
it seems that it has reached its limit distribution. However, it deviates from the asymptotic
standard normal distribution proposed in Theorem 4.2.5.

In this regard, let us consider the empirical densities for the standardized versions of Sd
n

for d ∈ {2, 3, 4, 5} and N = n = 10000 and the respective QQ-Plots in Fig. 4.2. For d = 2,
a rather strong deviation from the standard normal distribution becomes apparent, which
seems to disappear for larger d. How can this be in spite of our theoretical results?
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Figure 4.1: Empirical densities of S3
n (left) and

√
n(S3

n − 1/6)/2σ̂n (right), where the dashed lines
denote the respective theoretical means Sd = 1/6 and 0.

Proposition 4.4.1. Let h and h1 be as above. If the ordinal patterns of length d are uniformly
distributed, then it follows Var(h1(X1)) = 0 and hence, the limit variance σ2 defined by (4.2)
equals zero.

Proof. Since Var(X) = EX2 − (EX)2 for any random variable X ∈ L2 := {Y : (Ω,F ,P) →
(S,S) random variable : E|Y |2 <∞}, it suffices to show that

E(h1(X1)
2) = (Sd)2 =

1

(d!)2
.

The second claim then follows by definition of the limit variance (4.2) and the Cauchy-Schwarz
inequality.

To simplify notation, for the duration of this proof we set X = X1. Now, let us consider
the random variable h1(X)2. Using Fubini’s theorem twice yields

h1(X)2 =

(∫
h(X, y)dF (y)

)2

=

∫ ∫
h(X, y1)h(X, y2)dF (y1)dF (y2)

=

∫ ∫
1{Π(X)=Π(y1)=Π(y2)}dF (y1)dF (y2)

=

∫ ∫ ∑
π∈Sd

1{Π(X)=π}1{Π(y1)=Π(y2)=π}dF (y1)dF (y2)

=
∑
π∈Sd

1{Π(X)=π}

∫ ∫
1{Π(y1)=π}1{Π(y2)=π}dF (y1)dF (y2)

=
∑
π∈Sd

1{Π(X)=π}

(∫
1{Π(y)=π}dF (y)

)2

=
∑
π∈Sd

1{Π(X)=π}p
2
π,
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(i)

(ii)

(iii)

(iv)

Figure 4.2: Empirical densities of
√
n(S3

n − Sd)/2σ̂n and the respective QQ-Plots, where N = n =
10000 and (i) d = 2, (ii) d = 3, (iii) d = 4, (iv) d = 5. The dashed line denotes the theoretical mean 0
and the confidence bands are computed for a nominal level of 5%.
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where pπ denotes the probability of the ordinal pattern π ∈ Sd. By application of the expected
value it then follows

E(h1(X)2) =
∑
π∈Sd

p2π · E
(
1{Π(X)=π}

)
=
∑
π∈Sd

p3π.

Note that up to this point, we have not used our assumption, but if we do so now, then we
obtain

E(h1(X)2) =
∑
π∈Sd

p3π = d! ·
(
1

d!

)3

=
1

(d!)2
.

Hence, in the i.i.d. case the limit variance equals 0 and thus, we end up in the theoretical
limit distribution N(0, 0) which denotes the point mass at the origin (see Theorem 2.4.17).
Consequently, the form of the distribution for finite n does not matter. To be precise, it may
be of any form here as it only has to converge to a point mass.

The observation above is interesting for two reasons: Firstly, this special case of a limit
distribution is not often discussed in the literature for explicit estimators - or at least we have
not encountered such a case yet. It is, therefore, crucial to cover this case here, especially
for the sake of practitioners. Secondly, this shows the value of the results of Caballero-
Pintado et al. [21] who derived limit theorems under the assumption of i.i.d. with regard to
a different convergence rate (hence, it does not lead to a one-point distribution). Therefore,
our contributions can be seen as a complement rather than a generalization of the results of
[21].

Unfortunately, their results do not cover other models where the obtained ordinal pat-
tern distribution is uniform. Furthermore, Proposition 4.4.1 makes no statement about the
other direction, that is, whether there exist other ordinal pattern distributions such that
the limit variance σ2 equals zero. Based on the proof, conclusions can only be drawn with
regard to Var(h1(X1)): It is in fact zero if and only if the ordinal pattern distribution is
uniform. This holds, since

∑
π∈Sd

p3π obtains its minimum only in this case. However, if

Var(h1(X1)) is strictly positive, then it still may be canceled out by the autocovariances
Cov(h1(X1), h1(Xk)), k ≥ 2. Conditions for potential existence of such processes are still an
open question.

4.4.2 MA(1)-Process

Now, let us consider two examples of simple r-approximating functionals which exhibit some
form of short-range dependence. The examples are chosen in such a way that we can deter-
mine the theoretical values of the SCI using the results of Bandt and Shiha [11]. The SCI for
most of the other, especially the more complex, time series cannot be computed as nothing
is known yet about the ordinal pattern distributions stemming from those.

The first example is given by an MA(1)-process on a Gaussian white noise (Zt)t∈N ∼
WN(0, 1) with parameter θ = 1, that is,

Xt = Zt−1 + Zt.

For d = 2, the ordinal pattern distribution is uniform (cf. [11, Proposition 7]), therefore we
obtain similar results to Fig. 4.2 (i), that is, a one-point distribution. For d = 3, however,
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Figure 4.3: Empirical densities of
√
n(S3

n−S3)/2σ̂n for varying n (left), where (Xt)t∈N is an MA(1)-
process. The dashed line indicates the theoretical mean 0 and the standard normal density is depicted
in red. The r.h.s. shows the QQ-plot for n = 10000. There the confidence bands are computed for a
nominal level of 5%.

each of the monotone patterns (1, 2, 3) and (3, 2, 1) has probability 1/4, while all the other
patterns have probability 1/8 each (cf. again [11, Proposition 7]), which results in the SCI
given by S3 = 3/16. Our simulation results for d = 3 and N = 10000 are depicted in Fig. 4.3.
The standard normal distribution in the limit can be clearly detected already for n ≥ 1000.

4.4.3 AR(1)-Process

Finally, let us consider an AR(1)-process on a Gaussian white noise (Zt)t∈N ∼ WN(0, 1) with
autoregressive parameter ϕ = 0.5, i.e.,

Xt = 0.5Xt−1 + Zt.

Note that this process is stationary. Let p(1) and p(6) denote the probability of the increasing
and decreasing ordinal pattern (1, 2, 3) and (3, 2, 1), respectively. By [11, Corollary 1] it
holds

p(1) =
1

π
arcsin

(
1

2

√
1 + ϕ

)
.

Furthermore, [11, Proposition 4] states that p(1) = p(6) and all the remaining ordinal pattern
probabilities are given by (1 − 2p(1))/4 each. This leads to

S3 = 2 · (p(1))2 + (1− 2p(1))2

4
≈ 0.1722

for ϕ = 0.5. Our simulation results are summarized in Fig. 4.4 and Table 4.1. The latter shows
that the estimations of the ordinal pattern probabilities are very close to their theoretical
values. Compare in this regard also the simulation results of Bandt and Shiha [11, Table 2].
Again, the convergence to a standard normal distribution is clearly there.

4.5 Interim Conclusion

In this chapter, we have complemented the work of Caballero-Pintado et al. [21] by establish-
ing limit theorems for the SCI, and hence the Rényi-2 permutation entropy, for the broad class
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Figure 4.4: Empirical densities of
√
n(S3

n−S3)/2σ̂n for varying n (left), where (Xt)t∈N is an AR(1)-
process. The dashed line indicates the theoretical mean 0 and the standard normal density is depicted
in red. The r.h.s. shows the QQ-plot for n = 10000. There the confidence bands are computed for a
nominal level of 5%.

Table 4.1: Theoretical ordinal pattern probabilities and their estimations (relative frequencies) ob-
tained from the first run of our simulation with n = 10000.

j 1 2 3 4 5 6

p(j) 0.210 0.145 0.145 0.145 0.145 0.210

p̂(j) 0.212 0.145 0.146 0.143 0.142 0.212

of short-range dependent processes of approximating functionals. We have shown asymptotic
normality and estimated the limit variance. Furthermore, we have supported our theoretical
results by simulations. In this process, we have seen that the limit variance with regard to
our estimator equals 0 in case of a uniform ordinal pattern distribution, for which we also
provided a theoretical proof. In this case, the estimator does not converge to a normal dis-
tribution, but the special case of a one-point distribution. We recommend practitioners to
use the results of Caballero-Pintado et al. [21] in case of an i.i.d. series as an estimator with
different convergence rate is discussed there. However, the constraints of our theory remain
in case of, e.g., an MA(1)-process and ordinal patterns of length d = 2, since there the proba-
bilities of both ordinal patterns coincide resulting in a uniform distribution. Although we do
recommend the use of ordinal patterns of length d = 3, as more information is retained and
the required time for computation is still tractable here, there is still a bitter flavor to the
above: It is not known for many, if not most, time series models what the resulting ordinal
pattern distributions look like. Hence, neither do we know if it corresponds to a uniform dis-
tribution nor can we compute the theoretical value of the SCI. Hence, it makes sense to close
the existing gap on ordinal pattern distributions in the literature as good as possible as a part
of future research. This is accompanied by the open question with regard to the potential
existence of time series models which do not imply a uniform ordinal pattern distribution,
but nevertheless a zero limit variance.

However, classification or discrimination problems can still make sense here. In the joint
work [75] we have developed hypothesis tests on whether two time series exhibit the same
degree of complexity/structure that work without the information on the theoretical SCI.
In this regard, we have conducted a simulation study where we have considered different
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models including AR-, MA- and ARCH-processes with varying parameters. Furthermore,
we have illustrated the applicability of our test with a real-world data example given by the
BonnEEG-database. In a nutshell, the Bonn EEG-data base is publicly available and consists
of 5 data sets. These are given by EEG-recordings of healthy (open and closed eyes) and
epileptic patients, whereby the data is recorded either when no epileptic seizure was present
(either in the hemisphere of the epileptogenic zone or in the opposite hemisphere) or during
an epileptic seizure. For a more detailed description of the dataset, we refer the reader to
[6]. We have tested all pairwise possibilities of the 5 EEG data series described above at a
significance level of 0.05. In all cases the null hypothesis that the data series come from the
same data generating process is rejected. For more details, see [75].

Another direction for future research is to develop the above tests into tests for time-
reversibility or even Gaussianity: If a stationary time series is time-reversible, then ordi-
nal patterns would have the same probability as their inversions in time. In case of time-
reversibility, in addition to the classic method there is also the possibility of estimating ordinal
pattern probabilities by taking the average between the relative frequency of the pattern itself
and the relative frequency of its inversion. The difference of the SCI obtained in the classical
way and in this way is non-negative. Recall that SCI obtains its minimum for uniform dis-
tributions and note that the distribution at hand is artificially brought closer to a uniform
distribution by averaging. A large difference would be in favor of time-irreversibility.

In a similar way one can obtain a test for Gaussianity, since for stationary Gaussian
stochastic processes both inversions in time and in space have the same probability. Hence,
in this case one would average between 4 values. Both tests mentioned fit the more general
situation where the set of ordinal patterns is divided into non-empty subsets and the null
that inside each subset ordinal pattern probabilities are the same is tested. An analysis with
regard to the performance of such tests (possibly compared to the performance of classical
tests for Gaussianity) would be particularly interesting.
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5 Ordinal Pattern Dependence and
Multivariate Measures of Dependence

With regard to dependence between time series, ordinal pattern dependence, which has been
proposed by Schnurr [70] and Schnurr and Dehling [71], captures how strong the co-movement
between two data sets or two time series is. Applications of ordinal pattern dependence
include finance [70], manufacturing [82] and hydrology [28, 72, 73].

Grothe et al. [32] have suggested an axiomatic framework for multivariate measures of
dependence between random vectors of the same dimension in which Betken et al. [17] aimed
to fit ordinal pattern dependence. However, there is an error in the proof of the fifth axiom
[79, p. 89ff]. In general, this axiom cannot be verified for ordinal pattern dependence. In this
regard, we provide several suitable counterexamples in Section 5.2. In order to make it easier
for the reader to understand the idea, these are arranged in such a way that they increase
in difficulty and lead to the most common requirements in practice, namely stationarity of a
time series. In Section 5.3 we give a proof making different assumptions with regard to the
(conditional) cumulative distribution functions and (conditional) survival functions, i.e., we
make an alteration to the assumptions on concordance ordering.

While the first four axioms in [32] are (more or less) canonical, the fifth one is strongly
inspired by Schmid et al. [69], who deal with dependence within one random vector. In
particular, the authors deal with copula-based measures of association. With regard to these
it is quite natural to define dependence or association in terms of joint cumulative distribution
functions and survival functions, but this might not be the case for measures which are not
based on copulas, so arguably one could have formulated this axiom differently. This is
discussed in Section 5.4. We conclude this chapter with some further thoughts on measuring
dependence in Section 5.5.

Sections 5.1–5.3 are largely based on the joint work [80] with A. Schnurr supplemented
with further examples.

5.1 Mathematical Background

Recalling that Π : Rd → Sd denotes the map that assigns to any vector x its ordinal pattern,
first we give the definition of the main quantity under consideration.

Definition 5.1.1. The ordinal pattern dependence (OPD) between two random vectors X :=
(X1, . . . , Xd) and Y := (Y1, . . . , Yd) is defined by

OPDd(X,Y) :=
P(Π(X) = Π(Y))−

∑
π∈Sd

P(Π(X) = π)P(Π(Y) = π)

1−
∑

π∈Sd
P(Π(X) = π)P(Π(Y) = π)

.

Intuitively speaking, one compares in the numerator the probability of coincident pat-
terns with the hypothetical case of independence, before the value is standardized by the
denominator.
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Remark 5.1.2. The above definition focuses on positive dependence in a sense, namely the co-
occurrence of the same ordinal patterns. One may also consider a kind of negative dependence,
namely the co-movement of X and −Y = (−Y1, . . . ,−Yd) instead [82]. A natural way to
consider both dependencies at the same time is the generalization to the so-called standardized
OPD given by

OPDd(X,Y)+ −OPDd(X,−Y)+,

where a+ := max{0, a} for all a ∈ R [17, 71]. In what follows, however, (for simplicity) we
only consider (positive) OPD in the sense of Definition 5.1.1.

For any random vector X = (X1, . . . , Xd), let

FX(x) := P(X ≤ x) = P(X1 ≤ x1, . . . , Xd ≤ xd)

and
FX(x) := P(X ≥ x) = P(X1 ≥ x1, . . . , Xd ≥ xd)

denote the joint cumulative distribution function (cdf) and survival function, respectively.
Note that for d ≥ 2 in general FX(x) ̸= 1− FX(x).

With the following definition, Grothe et al. [32] proposed an axiomatic theory for multi-
variate measures of dependence between random vectors of the same dimension. We state it
in the wording of Betken et al. [17]:

Definition 5.1.3 (Betken et al. [17, Definition 2]). Let L0 denote the space of random vectors
with values in Rd on the common probability space (Ω,F ,P). A function µ : L0 ×L0 → R is
called a d-dimensional measure of dependence if

1. it takes values in [−1, 1],

2. it is invariant with respect to simultaneous permutations of the components within two
random vectors X,Y,

3. it is invariant with respect to increasing transformations of the components within two
random vectors X,Y,

4. it is zero for two independent random vectors X,Y,

5. it respects concordance ordering, i.e., for two pairs of random vectors X,Y and X∗,Y∗

which satisfy X
D
= X∗ and Y

D
= Y∗, it holds that(

X
Y

)
≼C

(
X∗

Y∗

)
⇒ µ(X,Y) ≤ µ(X∗,Y∗).

Here, ≼C denotes concordance ordering, i.e.,(
X
Y

)
≼C

(
X∗

Y∗

)
if and only if F(

X
Y

) ≤ F(
X∗
Y∗

) and F(
X
Y

) ≤ F(
X∗
Y∗

),
where ≤ is meant pointwise.

In Theorem 2.3 of [17] it has been claimed that OPD is a d-dimensional measure of
dependence. While the proof of the first four axioms is correct, there is an error regarding
the treatment of the conditional probabilities and concordance ordering in the proof of the
fifth axiom (see Silbernagel [79, p. 89ff]).
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5.2 Counterexamples

We now give counterexamples showing that OPD cannot satisfy the fifth axiom and thus does
not fit into the axiomatic framework of multivariate measures of dependence as proposed by
Grothe et al. [32]. As stated by Betken et al. [17], for the verification of the last axiom
it is sufficient to restrict our considerations to the probability P(Π(X) = Π(Y)), since the
remaining terms of OPDd(X,Y) only relate to the distributions of X andY separately. (Note

that X
D
= X∗ and Y

D
= Y∗.) For d = 2, there are only two patterns, namely the upward

pattern (1, 2) and the downward pattern (2, 1). We have to deal with vectors of length 2d
when considering dependence, so even in case of d = 2, the problem is 4-dimensional.

At first, consider the following illustrative example for a discrete state space:

Example 5.2.1. Let (X,Y), (X∗,Y∗) be random vectors on a common probability space
with state space N4 defined by the probabilities

P((X,Y) = (1, 2, 3, 4)) = P((X,Y) = (3, 2, 3, 2)) =
1

2

P((X∗,Y∗) = (1, 2, 3, 2)) = P((X∗,Y∗) = (3, 2, 3, 4)) =
1

2
,

where X = (X1, X2),Y = (Y1, Y2),X
∗ = (X∗

1 , X
∗
2 ) and Y∗ = (Y ∗

1 , Y
∗
2 ) denote the two-

dimensional marginals, respectively. It is easy to see that the marginals satisfy the desired

equalities in distribution, i.e., X
D
= X∗ and Y

D
= Y∗. (For illustration of the respective

distributions, see Fig. 5.1).

The cdfs as well as the survival functions of (X,Y) and (X∗,Y∗), respectively, are outlined
in Table 5.1. Note that here it is sufficient to state the respective functions at the mass points,
since they are constant hereinafter up to the next mass point. Denoting the respective cdfs by
F(

X
Y

) and F(
X∗
Y∗

) as well as the respective survival functions by F(
X
Y

) and F (
X∗
Y∗

), we observe
F(

X
Y

) ≤ F(
X∗
Y∗

) and F(
X
Y

) ≤ F(
X∗
Y∗

) pointwise. Thus, the defined random vectors satisfy the

required conditions.

However, regarding the probabilities with respect to the increasing pattern it holds

P(X1 ≤ X2, Y1 ≤ Y2) = P((X,Y) = (1, 2, 3, 4))

=
1

2
> 0 = P(X∗

1 ≤ X∗
2 , Y

∗
1 ≤ Y ∗

2 ).

Analogously, for the decreasing pattern it holds

P(X1 ≥ X2, Y1 ≥ Y2) = P((X,Y) = (3, 2, 3, 2))

=
1

2
> 0 = P(X∗

1 ≥ X∗
2 , Y

∗
1 ≥ Y ∗

2 ).

Consequently, this yields

P(Π(X) = Π(Y)) = 1 > 0 = P(Π(X∗) = Π(Y∗)),

and hence, OPD2(X,Y) > OPD2(X
∗,Y∗). Thus, we have found two vectors which satisfy

the property of concordance ordering showing the opposite behavior in terms of OPD.
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2
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1
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1
2

1
2

1
2

(ii)

Figure 5.1: Illustration of the respective pmfs: joint pmfs in (i) and pmfs of the respective marginals
in (ii). Here, the arrows imply that the random vector of interest attains the respective outcome with
the indicated probability (of 1/2).

Table 5.1: Cdfs and survival functions of (X,Y) and (X∗,Y∗), respectively.

(x1, x2, y1, y2) F(
X
Y

) F(
X∗
Y∗

) F(
X
Y

) F(
X∗
Y∗

)
(1, 2, 3, 2) 0 1

2 1 1

(1, 2, 3, 4) 1
2

1
2

1
2

1
2

(3, 2, 3, 2) 1
2

1
2

1
2

1
2

(3, 2, 3, 4) 1 1 0 0

Even though the consideration of ties is avoided in this example, it is still discrete-valued.
Thus, we extend it to the R4-valued case by proposing a continuous uniform distribution
based on the aforementioned points:

Example 5.2.2. Define the probability densities f(X
Y

) and f(X∗
Y∗

) by

f(X
Y

)(x1, x2, y1, y2) = 1

2
· 1]0,1[(x1) · 1]1,2[(x2) · 1]2,3[(y1) · 1]3,4[(y2)

+
1

2
· 1]2,3[(x1) · 1]1,2[(x2) · 1]2,3[(y1) · 1]1,2[(y2)

f(X∗
Y∗

)(x1, x2, y1, y2) = 1

2
· 1]0,1[(x1) · 1]1,2[(x2) · 1]2,3[(y1) · 1]1,2[(y2)

+
1

2
· 1]2,3[(x1) · 1]1,2[(x2) · 1]2,3[(y1) · 1]3,4[(y2),

where 1]a,b[(z) denotes the indicator function on the open interval ]a, b[ for a, b ∈ R, a < b.
Concerning the marginal densities it holds

fX(x1, x2) =

∫
f(X

Y

)(x1, x2, y1, y2) d(y1, y2)
=

1

2
· 1]0,1[(x1) · 1]1,2[(x2) +

1

2
· 1]2,3[(x1) · 1]1,2[(x2)

=

∫
f(X∗

Y∗
)(x1, x2, y1, y2) d(y1, y2)

= fX∗(x1, x2),
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Figure 5.2: Illustration of probability mass of the auxiliary functions h (left) and h∗ (right): The
blue squares denote the places where the respective functions hold mass 0.5. Otherwise they are zero.
Considering the rectangle ]−∞, 2.5]× ]−∞, 3.5] (green) as an illustrative example, we observe that h
has less cumulative mass than h∗. This holds for any point (x1, y2).

and hence, X
D
= X∗. Analogously, it follows Y

D
= Y∗.

Regarding the verification of the condition on the cdfs, it suffices to take a closer look at
the respective density functions. We observe that the term 1]1,2[(x2) · 1]2,3[(y1) appears in
each summand of both of the density functions. Therefore, it is sufficient to fix x2 > 1 and
y1 > 2, and to consider subsequently the two-dimensional auxiliary functions

h(x1, y2) :=
1

2
· 1]0,1[(x1) · 1]3,4[(y2) +

1

2
· 1]2,3[(x1) · 1]1,2[(y2)

h∗(x1, y2) :=
1

2
· 1]0,1[(x1) · 1]1,2[(y2) +

1

2
· 1]2,3[(x1) · 1]3,4[(y2),

which determine where the mass of the probability distribution lies. For any point (x1, y2) ∈
R2 we consider the resulting rectangle ]−∞, x1] × ]−∞, y2]. For any of these, h has less
cumulative mass than h∗, which shows that it holds F(

X
Y

) ≤ F(
X∗
Y∗

) pointwise (see Fig. 5.2).

Fixing x2 < 1 and y1 < 2, and considering rectangles of the form [x1,∞[ × [y2,∞[ for
x1, y2 ∈ R, the respective result for the survival functions, i.e., F(

X
Y

) ≤ F(
X∗
Y∗

) pointwise,

follows analogously.
Nevertheless, with a close look at the probability densities it follows

P(Π(X) = Π(Y)) = 1 > 0 = P(Π(X∗) = Π(Y∗)),

which completes this counterexample.

In practice, however, ordinal patterns, and OPD in particular, are often considered in the
context of stationary time series. This can be broken down to the additional condition of

X1
D
= X2 and Y1

D
= Y2 in our case. Obviously, the counterexamples previously presented do

not satisfy these additional restrictions. However, such counterexamples still exist, though
these then become more complicated. This is due to the fact that the components of X
and Y, respectively, have to be defined on the same state space. If we want to proceed as
before, that is, if we want to give the idea by considering the discrete case first, then this
would lead us to not being able to make a statement on the joint cdfs and survival functions
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in the respective mass points as, e.g., there is no order for (1, 2, 1, 2) and (2, 1, 1, 2) in the
4-dimensional space. However, this does not mean that discrete stationary examples do not
exist - it is only potentially very tendious to determine the cdfs and survival functions for
every relevant point by hand. Therefore, we directly consider the following example with
regard to the continuous case:

Example 5.2.3. We consider the probability densities f = f(X
Y

) and f∗ = f(X∗
Y∗

) defined by

f(x1, x2, y1, y2) = 1{0≤x1≤x2≤1} · 1{1<y1≤y2≤2} + 1{0≤x2<x1≤1} · 1{1<y2<y1≤2}

+ 1{1<x1≤x2≤2} · 1{0≤y1≤y2≤1} + 1{1<x2<x1≤2} · 1{0≤y2<y1≤1}

f∗(x1, x2, y1, y2) = 1{0≤x1≤x2≤1} · 1{0≤y2<y1≤1} + 1{0≤x2<x1≤1} · 1{1<y2<y1≤2}

+ 1{1<x1≤x2≤2} · 1{0≤y1≤y2≤1} + 1{1<x2<x1≤2} · 1{1<y1≤y2≤2}.

Obviously it holds

fX(x1, x2) =
1

2

(
1{0≤x1≤x2≤1} + 1{0≤x2<x1≤1}

)
+

1

2

(
1{1<x1≤x2≤2} + 1{1<x2<x1≤2}

)
=

1

2

(
1{0≤x1,x2≤1} + 1{1<x1,x2≤2}

)
= fX∗(x1, x2)

as well as

fX1(x) =
1

2

(
1{0≤x≤1} + 1{1<x≤2}

)
=

1

2
1{0≤x≤2} = fX2(x)

such that X
D
= X∗ and X1

D
= X2. Analogously it follows Y

D
= Y∗ and Y1

D
= Y2.

In order to prove the conditions on the joint cdfs and survival functions, first we take a
closer look at the respective density functions and observe that the summands 1{0≤x2<x1≤1} ·
1{1<y2<y1≤2} and 1{1<x1≤x2≤2} · 1{0≤y1≤y2≤1} appear in both f and f∗. Therefore, for our
purpose it is sufficient to only consider the auxiliary functions h and h∗ defined by

h(x1, x2, y1, y2) := 1{0≤x1≤x2≤1} · 1{1<y1≤y2≤2} + 1{1<x2<x1≤2} · 1{0≤y2<y1≤1}

h∗(x1, x2, y1, y2) := 1{0≤x1≤x2≤1} · 1{0≤y2<y1≤1} + 1{1<x2<x1≤2} · 1{1<y1≤y2≤2}.

Now, let us consider Fig. 5.3. There, it is depicted where the respective auxiliary functions
h and h∗ hold mass, where blue denotes the case 0 ≤ x1 ≤ x2 ≤ 1, while red denotes the
case 1 < x2 < x1 ≤ 2. Note that each auxiliary function contains both cases, and only these
two cases in particular. Hence, it is sufficient to limit our considerations with regard to the
comparison of the respective cdfs and survival functions to these two scenarios.

With regard to the cdfs, in case of 0 ≤ x1 ≤ 1 or 0 ≤ x2 ≤ 1 we only consider the mass
denoted by the blue triangles, while we need to consider the triangles of both colors in case
of x1, x2 > 1. Then, for both scenarios rectangles of the form ]−∞, y1] × ]−∞, y2] contain
more mass with regard to h∗ if compared to h, so F(

X
Y

) ≤ F(
X∗
Y∗

) pointwise. In contrast,

with regard to survival functions we need to proceed ‘the other way around’: For 0 ≤ x1 ≤ 1
or 0 ≤ x2 ≤ 1 we only consider the red triangles. In case of x1, x2 > 1 it is both colors
again. Hence, for rectangles of the form [y1,∞[× [y2,∞[, h∗ holds more mass, and therefore
F(

X
Y

) ≤ F (
X∗
Y∗

) pointwise, which shows that all conditions are satisfied.
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Figure 5.3: Illustration of the mass of h (left) and h∗ (right): The functions attain the value 1 for
0 ≤ x1 ≤ x2 ≤ 1 in the blue area and for 1 ≤ x2 ≤ x1 ≤ 2 in the red area. Otherwise they are
zero. Consider the rectangle ]−∞, 0.5] × ]−∞, 1.5] (green) as an illustrative example with regard to
the respective cdfs.

Now, we return to considering the density functions f and f∗. By construction of f , an
increasing pattern x1 ≤ x2 in the first component occurs if and only if it also occurs in the
second component, that is y1 ≤ y2. The same holds true for decreasing patterns. However,
the situation is different with regard to f∗: There, coincident patterns are only predetermined
by two of the four summands. The remaining two summands only allow for non-coincident
patterns. Then, due to

P(Π(X) = Π(Y)) = 1 >
1

2
= P(Π(X∗) = Π(Y∗))

it follows OPD2(X,Y) > OPD2(X
∗,Y∗).

5.3 Proof under Slightly Different Assumptions

Although OPD does not satisfy the fifth axiom and hence does not fit into the axiomatic
framework of multivariate measures of dependence as proposed by Grothe et al. [32], we can
prove a similar result under stronger/different assumptions.

In what follows, we consider OPD with respect to random vectors which stem from sta-
tionary bivariate time series (Xt, Yt)t∈N, (X

∗
t , Y

∗
t )t∈N with continuous marginal distributions.

Then, due to the assumed stationarity, it is sufficient to consider the first components of the
time series, i.e., without loss of generality we consider

X = (X1, . . . , Xd),Y = (Y1, . . . , Yd),

X∗ = (X∗
1 , . . . , X

∗
d),Y

∗ = (Y ∗
1 , . . . , Y

∗
d ).

Theorem 5.3.1. Let X,X∗,Y and Y∗ be d-dimensional random vectors with X
D
= X∗ and

Y
D
= Y∗. Let J = {1, . . . , d} denote an index set.

(a) Suppose for all I ⊂ J , Ic := J \ I, with I, Ic ̸= ∅ it holds

F(
X
Y

)Ic
∣∣∣∣(XY)I ≤ F(

X∗
Y∗

)Ic
∣∣∣∣(XY)I and F (

X
Y

)Ic
∣∣∣∣(XY)I ≤ F (

X∗
Y∗

)Ic
∣∣∣∣(XY)I
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as well as

F(
X
Y

)Ic
∣∣∣∣(X∗
Y∗

)I ≤ F(
X∗
Y∗

)Ic
∣∣∣∣(X∗
Y∗

)I and F (
X
Y

)Ic
∣∣∣∣(X∗
Y∗

)I ≤ F (
X∗
Y∗

)Ic
∣∣∣∣(X∗
Y∗

)I

pointwise, where
(
X
Y

)I
= (XI ,YI) denotes the subvector of variables with indices in I. Then,

it holds that

OPDd(X,Y) ≤ OPDd(X
∗,Y∗). (5.1)

(b) Alternatively, the condition

F(
X
Y

)Ic
∣∣∣∣(XY)I ≤ F(

X∗
Y∗

)Ic
∣∣∣∣(XY)I and F (

X
Y

)Ic
∣∣∣∣(XY)I ≤ F (

X∗
Y∗

)Ic
∣∣∣∣(XY)I (5.2)

for all I ⊂ J with I ̸= J is sufficient for (5.1) to hold. In particular, with I = ∅ we
make a statement about the (unconditional) cdf and survival function, meaning that this case
corresponds to concordance ordering.

Note that Theorem 2.5.3 ensures existence and uniqueness of the regular conditional
distributions used above, such that the (conditional) cdfs and survival functions are defined
for almost all (x,y) ∈ R2·|I| by definition, respectively. This statement on regular conditional
distributions is important as in general the consideration of conditional probabilities where
the event that is conditioned on has probability mass zero can be problematic. The proof of
Theorem 5.3.1 follows the ideas of Betken et al. [17] and hence, makes use of the so-called
disintegration theorem. Basically, disintegration denotes the representation of a (conditional)
expectation as an integral in terms of a (regular conditional) probability distribution (for a
brief overview, see Chapter 2.5).

Proof of Theorem 5.3.1. We give a proof for d = 2 and d = 3. Though the difficulties of the
proof are not revealed for d = 2, it gives an intuition how to proceed in case d = 3. The
proof for d > 3 works analogously to the case d = 3, but is notationally more complicated.

Since the remaining terms of OPDd(X,Y) only relate to the distributions of X and Y
separately, we restrict our considerations to

P(Π(X) = Π(Y)) =
∑
π∈Sd

P(Π(X) = Π(Y) = π).

Now, without loss of generality, it is sufficient to only consider the probability

P(Π(X) = Π(Y) = π)

with regard to one arbitrary pattern π ∈ Sd, as for any other pattern π′ ̸= π there exists a
permutation σ : {1, . . . , d} → {1, . . . , d} such that

P(Π(X1, . . . , Xd) = Π(Y1, . . . , Yd) = π′) = P(Π(Xσ(1), . . . , Xσ(d)) = Π(Yσ(1), . . . , Yσ(d)) = π).

Hence, everything can be reduced to a re-indexing such that considering these probabilities
for the respective patterns is analogous. Here, we choose the increasing patterns (1, 2) and
(1, 2, 3), respectively.
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We denote the conditional cdfs and survival functions by

F
xi1

,...,xik
,yi1 ,...,yik(

X
Y

)Ic (x,y) := F
xi1

,...,xik
,yi1 ,...,yik(

X
Y

)Ic
∣∣∣∣(XY)I (x,y)

:= P
(
(X,Y)I

c ≥ (x,y)|Xij = xij , Yij = yij∀j ∈ {1, . . . , k}
)

F
xi1

,...,xik
,yi1 ,...,yik(

X∗
Y∗

)Ic (x,y) := F
xi1

,...,xik
,yi1 ,...,yik(

X∗
Y∗

)Ic
∣∣∣∣(XY)I (x,y)

:= P
(
(X∗,Y∗)I

c ≥ (x,y)|Xij = xij , Yij = yij∀j ∈ {1, . . . , k}
)

F
xi1

,...,xik
,yi1 ,...,yik(

X
Y

)Ic
∣∣∣∣(X∗
Y∗

)I (x,y) := P
(
(X,Y)I

c ≤ (x,y)|X∗
ij = xij , Y

∗
ij = yij∀j ∈ {1, . . . , k}

)
F

xi1
,...,xik

,yi1 ,...,yik(
X∗
Y∗

)Ic
∣∣∣∣(X∗
Y∗

)I (x,y) := P
(
(X∗,Y∗)I

c ≤ (x,y)|X∗
ij = xij , Y

∗
ij = yij∀j ∈ {1, . . . , k}

)
for all I = {i1, . . . , ik} ⊂ {1, . . . , d} with 1 ≤ k ≤ d − 1, Ic := {1, . . . , d} \ I and (x,y) ∈
R2(d−k).

Suppose d = 2. We begin with the proof of (a) in this setting. Using disintegration as
stated in Theorem 2.5.4 (or alternatively the law of total expectation), it holds

P(X1 ≤ X2, Y1 ≤ Y2) =

∫
R2

P(X1 ≤ X2, Y1 ≤ Y2|X1 = x1, Y1 = y1) dP(
X1
Y1

)(x1, y1)
=

∫
R2

P(x1 ≤ X2, y1 ≤ Y2|X1 = x1, Y1 = y1) dP(
X1
Y1

)(x1, y1)
=

∫
R2

F
x1,y1(
X2
Y2

)(x1, y1) dP(
X1
X2

)(x1, y1).
Using our assumption and reversing the previous steps yields∫

R2

F
x1,y1(
X2
Y2

)(x1, y1) dP(
X1
Y1

)(x1, y1) ≤
∫
R2

F
x1,y1(
X∗

2
Y ∗
2

)(x1, y1) dP(
X1
Y1

)(x1, y1)
= P(X1 ≤ X∗

2 , Y1 ≤ Y ∗
2 ).

In an analogous way we obtain

P(X1 ≤ X∗
2 , Y1 ≤ Y ∗

2 ) =

∫
R2

F x2,y2(
X1
Y1

)∣∣∣(X∗
2

Y ∗
2

)(x2, y2) dP(
X∗

2
Y ∗
2

)(x2, y2)
≤
∫
R2

F x2,y2(
X∗

1
Y ∗
1

)∣∣∣∣(X∗
2

Y ∗
2

)(x2, y2) dP(
X∗

2
Y ∗
2

)(x2, y2)
= P(X∗

1 ≤ X∗
2 , Y

∗
1 ≤ Y ∗

2 ).

Under the assumptions in (b) the desired inequality follows due to the fact that(
X
Y

)
≼C

(
X∗

Y∗

)
implies

(
X
Y

)I′

≼C

(
X∗

Y∗

)I′

for all subvectors of variables with indices in I ′ ⊂ J , i.e., removing dimensions does not

influence which scenario has the larger dependence measure [32]. Note that

(
X
Y

)
≼C

(
X∗

Y∗

)
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holds due to Equation (5.2) with I = ∅. Hence, we deduce that∫
1[a,∞[×[b,∞[(x, y) dP(

Xi
Yi

)(x, y) ≤
∫

1[a,∞[×[b,∞[(x, y) dP(
X∗

i
Y ∗
i

)(x, y) (5.3)

for all a, b ∈ R and i ∈ {1, . . . , d}. Survival functions can be approximated by sums of
indicator functions, i.e., F (x, y) = limn→∞

∑n
k=1 1{[ak,∞[×[bk,∞[}(x, y) for constants ak, bk ∈

R, so the bounded convergence theorem yields∫
R2

F
x1,y1(
X∗

2
Y ∗
2

)(x1, y1) dP(
X1
Y1

)(x1, y1) ≤
∫
R2

F
x1,y1(
X∗

2
Y ∗
2

)(x1, y1) dP(
X∗

1
Y ∗
1

)(x1, y1)
= P(X∗

1 ≤ X∗
2 , Y

∗
1 ≤ Y ∗

2 ).

Now, suppose d = 3. Defining

Px1,y1(A) := P(A|X1 = x1, Y1 = y1)

for any event A, and using disintegration (Theorem 2.5.4) twice yields

P(X1 ≤ X2 ≤ X3, Y1 ≤ Y2 ≤ Y3)

=

∫
R2

Px1,y1(x1 ≤ X2 ≤ X3, y1 ≤ Y2 ≤ Y3) dP(
X1
Y1

)(x1, y1)
=

∫
R2

∫
[x1,∞[×[y1,∞[

Px1,y1(x2 ≤ X3, y2 ≤ Y3|X2 = x2, Y2 = y2)

dPx1,y1(
X2
Y2

)(x2, y2) dP(
X1
Y1

)(x1, y1).
Since

Px1,y1(x2 ≤ X3, y2 ≤ Y3|X2 = x2, Y2 = y2)

= P(x2 ≤ X3, y2 ≤ Y3|X1 = x1, X2 = x2, Y1 = y1, Y2 = y2)

= F
x1,x2,y1,y2(
X3
Y3

) (x2, y2),

due to our assumptions in (a) it follows

P(X1 ≤ X2 ≤ X3, Y1 ≤ Y2 ≤ Y3)

=

∫
R2

∫
[x1,∞[×[y1,∞[

F
x1,x2,y1,y2(
X3
Y3

) (x2, y2) dPx1,y1(
X2
Y2

)(x2, y2) dP(
X1
Y1

)(x1, y1)
≤
∫
R2

∫
[x1,∞[×[y1,∞[

F
x1,x2,y1,y2(
X∗

3
Y ∗
3

) (x2, y2) dPx1,y1(
X2
Y2

)(x2, y2) dP(
X1
Y1

)(x1, y1).
Furthermore,

F
x1,y1(
X
Y

)Ic (x2, x3, y2, y3) ≤ F
x1,y1(
X∗
Y∗

)Ic (x2, x3, y2, y3)

with Ic = {2, 3} yields
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F
x1,y1(
X2
Y2

)(x2, y2) = F
x1,y1(
X
Y

)Ic (x2,−∞, y2,−∞)

≤ F
x1,y1(
X∗
Y∗

)Ic (x2,−∞, y2,−∞)

= F
x1,y1(
X∗

2
Y ∗
2

)(x2, y2)

such that∫
1[a,∞[×[b,∞[(x2, y2) dP

x1,y1(
X2
Y2

)(x2, y2) ≤
∫

1[a,∞[×[b,∞[(x2, y2) dP
x1,y1(
X∗

2
Y ∗
2

)(x2, y2)

for all a, b ∈ R. Conditional survival functions are indeed survival functions, which can be
approximated by sums of indicator functions of the form above. Hence, by the bounded
convergence theorem it holds∫

R2

∫
[x1,∞[×[y1,∞[

F
x1,x2,y1,y2(
X∗

3
Y ∗
3

) (x2, y2) dPx1,y1(
X2
Y2

)(x2, y2) dP(
X1
Y1

)(x1, y1)
≤
∫
R2

∫
[x1,∞[×[y1,∞[

F
x1,x2,y1,y2(
X∗

3
Y ∗
3

) (x2, y2) dPx1,y1(
X∗

2
Y ∗
2

)(x2, y2) dP(
X1
Y1

)(x1, y1)
= P(X1 ≤ X∗

2 ≤ X∗
3 , Y1 ≤ Y ∗

2 ≤ Y ∗
3 ).

By defining

P̃x3,y3(A) := P(A|X∗
3 = x3, Y

∗
3 = y3)

for any event A, in an analogous way it holds

P(X1 ≤ X∗
2 ≤ X∗

3 , Y1 ≤ Y ∗
2 ≤ Y ∗

3 )

=

∫
R2

P̃x3,y3(X1 ≤ X∗
2 ≤ x3, Y1 ≤ Y ∗

2 ≤ y3) dP(
X∗

3
Y ∗
3

)(x3, y3)
=

∫
R2

∫
]−∞,x3]×]−∞,y3]

P̃x3,y3(X1 ≤ x2, Y1 ≤ y2|X∗
2 = x2, Y

∗
2 = y2)

dP̃x3,y3(
X∗

2
Y ∗
2

)(x2, y2) dP(
X∗

3
Y ∗
3

)(x3, y3)
=

∫
R2

∫
]−∞,x3]×]−∞,y3]

F x2,x3,y2,y3(
X
Y

)Ic
∣∣∣∣(X∗
Y∗

)I (x2, y2) dP̃
x3,y3(
X∗

2
Y ∗
2

)(x2, y2) dP(
X∗

3
Y ∗
3

)(x3, y3)
≤
∫
R2

∫
]−∞,x3]×]−∞,y3]

F x2,x3,y2,y3(
X∗
Y∗

)Ic
∣∣∣∣(X∗
Y∗

)I (x2, y2) dP̃
x3,y3(
X∗

2
Y ∗
2

)(x2, y2) dP(
X∗

3
Y ∗
3

)(x3, y3)
= P(X∗

1 ≤ X∗
2 ≤ X∗

3 , Y
∗
1 ≤ Y ∗

2 ≤ Y ∗
3 )

with I = {2, 3} and Ic = {1}, accordingly. Under the alternative assumption (b), the function

H(x1, y1) :=

∫
[x1,∞[×[y1,∞[

F
x1,x2,y1,y2(
X∗

3
Y ∗
3

) (x2, y2) dPx1,y1(
X∗

2
Y ∗
2

)(x2, y2)
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can be, at least up to scaling, considered as a survival function, so by using an approximation
by sums of indicator functions as above and Inequality (5.3) it follows

P(X1 ≤ X2 ≤ X3, Y1 ≤ Y2 ≤ Y3)

≤
∫
R2

∫
[x1,∞[×[y1,∞[

F
x1,x2,y1,y2(
X∗

3
Y ∗
3

) (x2, y2) dPx1,y1(
X∗

2
Y ∗
2

)(x2, y2) dP(
X1
Y1

)(x1, y1)
=

∫
R2

H(x1, y1) dP(
X1
Y1

)(x1, y1)
≤
∫
R2

H(x1, y1) dP(
X∗

1
Y ∗
1

)(x1, y1)
= P(X∗

1 ≤ X∗
2 ≤ X∗

3 , Y
∗
1 ≤ Y ∗

2 ≤ Y ∗
3 ).

The assumptions on the conditional cdfs and conditional survival functions seem quite
restrictive. Nevertheless, there are still natural examples of random vectors which satisfy
these as we illustrate in the following.

Example 5.3.2. Let (X,Y) and (X∗,Y∗) be 4-dimensional random vectors defined on a
common probability space with

X = (X1, X2), X∗ = (X∗
1 , X2), Y = (Y1, Y2), Y∗ = (Y ∗

1 , Y2),

and X
D
= X∗ and Y

D
= Y∗, i.e., in particular it holds X1

D
= X∗

1 and Y1
D
= Y ∗

1 . Furthermore,
it is enough to suppose that (X1, Y1) and (X∗

1 , Y
∗
1 ) are both independent of (X2, Y2), respec-

tively. Therefore, it is sufficient to only consider the distributions of (X1, Y1) and (X∗
1 , Y

∗
1 ),

respectively.
Again, we start with a construction of a discrete example in order to extend it to the

continuous case afterwards in a natural way. Suppose the probability distributions of (X1, Y1)
and (X∗

1 , Y
∗
1 ) are given by

P((X1, Y1) = (1, 3)) = P((X1, Y1) = (2, 2)) =
1

2

P((X∗
1 , Y

∗
1 ) = (1, 2)) = P((X∗

1 , Y
∗
1 ) = (2, 3)) =

1

2
.

In particular, we observe that X1
D
= X∗

1 and Y1
D
= Y ∗

1 . (For an overview, see Fig. 5.4.) The
cdfs as well as the survival functions are outlined in Tab. 5.2. We observe

F(
X1
Y1

) ≤ F(
X∗

1
Y ∗
1

) and F (
X1
Y1

) ≤ F(
X∗

1
Y ∗
1

)
which implies

F(
X
Y

)Ic
∣∣∣∣(XY)I ≤ F(

X∗
Y∗

)Ic
∣∣∣∣(XY)I and F (

X
Y

)Ic
∣∣∣∣(XY)I ≤ F (

X∗
Y∗

)Ic
∣∣∣∣(XY)I

as well as

F(
X
Y

)Ic
∣∣∣∣(X∗
Y∗

)I ≤ F(
X∗
Y∗

)Ic
∣∣∣∣(X∗
Y∗

)I and F (
X
Y

)Ic
∣∣∣∣(X∗
Y∗

)I ≤ F (
X∗
Y∗

)Ic
∣∣∣∣(X∗
Y∗

)I
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(1, 2)

(1, 3)

(2, 2)

(2, 3)

(
X1
Y1

) (
X∗

1
Y ∗
1

)1
2

1
2

1
2

1
2

(i)

1

2

3

X1, X
∗
1 Y1, Y

∗
1

1
2

1
2

1
2

1
2

(ii)

Figure 5.4: Illustration of the respective pmfs: joint pmfs in (i) and pmfs of the respective marginals
in (ii). Here, the arrows imply that the random vector of interest attains the respective outcome with
the indicated probability (of 1/2).

Table 5.2: Cdfs and survival functions of (X1, Y1) and (X∗
1 , Y

∗
1 ), respectively.

(x1, y1) F(
X1
Y1

) F(
X∗

1
Y ∗
1

) F(
X1
Y1

) F(
X∗

1
Y ∗
1

)
(1, 2) 0 1

2 1 1

(1, 3) 1
2

1
2

1
2

1
2

(2, 2) 1
2

1
2

1
2

1
2

(2, 3) 1 1 0 1
2

for all I ⊊ {1, 2} and Ic = {1, 2} \ I due to the assumed independence, therefore, both sets
of assumptions in Theorem 5.3.1 are satisfied.

All that is left is to extend the random vectors to the continuous case. For this, let
f(X2

Y2

) denote the probability density function of (X2, Y2), and define the densities f and f∗

of (X1, Y1) and (X∗
1 , Y

∗
1 ), respectively, by

f(x1, y1) := f(X1
Y1

)(x1, y1) = 1

2

(
1]0,1[(x1) · 1]2,3[(y1) + 1]1,2[(x1) · 1]1,2[(y1)

)
f∗(x1, y1) := f(X∗

1
Y ∗
1

)(x1, y1) = 1

2

(
1]0,1[(x1) · 1]1,2[(y1) + 1]1,2[(x1) · 1]2,3[(y1)

)
.

Let (X1, Y1) and (X∗
1 , Y

∗
1 ) be independent of (X2, Y2), respectively, such that the densities of

(X,Y) and (X∗,Y∗) are given by

f(X
Y

)(x1, x2, y1, y2) = f(X1
Y1

)(x1, y1) · f(X2
Y2

)(x2, y2)
f(X∗

Y∗
)(x1, x2, y1, y2) = f(X∗

1
Y ∗
1

)(x1, y1) · f(X2
Y2

)(x2, y2).

Obviously, it holds X1
D
= X∗

1 and Y1
D
= Y ∗

1 . Moreover, it holds F(
X1
Y1

) ≤ F(
X∗

1
Y ∗
1

) and F(
X1
Y1

) ≤

F(
X∗

1
Y ∗
1

) (see Fig. 5.5). Therefore, again both sets of assumptions in Theorem 5.3.1 are satisfied.
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(1.5, 2.5)

x1

y1

1

1

2

2

3

3

(i)

(1.5, 2.5)

x1

y1

1

1

2

2

3

3

(ii)

Figure 5.5: Examplary illustration of the density functions f and f∗: The blue squares denote the
places where the respective functions hold mass. Considering the exemplary rectangle ]−∞, 1.5] ×
]−∞, 2.5] (green) we observe that f has less cumulative mass than f∗. This holds for any point
(x1, y1) ∈ R2 as well as for rectangles of the form [x1,∞[× [y1,∞[ ⊂ R2.

(1, 2)

(1, 3)

(2, 2)

(2, 3)

(
X1
Y1

∣∣∣(X2, Y2) = c1

) (
X∗

1
Y ∗
1

∣∣∣(X2, Y2) = c1

)1
2

1
2

1
2

1
2

(i)

(1, 2)

(1, 3)

(2, 2)

(2, 3)

(
X1
Y1

∣∣∣(X2, Y2) = c2

) (
X∗

1
Y ∗
1

∣∣∣(X2, Y2) = c2

)
1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

(ii)

(1, 2)

(1, 3)

(2, 2)

(2, 3)

(
X1
Y1

) (
X∗

1
Y ∗
1

)
1
8

3
8

3
8

1
8

3
8

1
8

1
8

3
8

(iii)

1

2

3

X1, X
∗
1 Y1, Y

∗
1

1
2

1
2

1
2

1
2

(iv)

Figure 5.6: Illustration of the respective pmfs: conditional pmfs in (i) and (ii), joint pmfs in (iii)
and pmfs of the respective marginals in (iv). The arrows imply that the random vector of interest
attains the respective outcome with the indicated probability.
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Example 5.3.3. In the previous example we assumed independence of (X1, Y1) and (X∗
1 , Y

∗
1 )

with regard to (X2, Y2). Let us also present an example with dependent random vectors. For
this, assume that (X2, Y2) ∈ {c1, c2} and

P((X2, Y2) = c1) =
1

2
= P((X2, Y2) = c2).

We consider the dependence structure as illustrated in Fig. 5.6 (i) and (ii). The respective
conditional cdfs and conditional survival functions are outlined in Tables 5.3 (i) and (ii). We
observe that the conditions on the conditional cdfs and survival functions required by the
first set of assumptions are satisfied. Moreover, even the conditions on the joint distributions
which are necessary for the alternative set of assumptions are fulfilled, as Fig. 5.6 (iii) and
Table 5.3 (iii) indicate. Extending this to the continuous case in an analogous manner as we
have done before concludes this example.

Table 5.3: (Conditional) cdfs and survival functions of (X1, Y1) and (X∗
1 , Y

∗
1 ), respectively. Here,

F c(
X1
Y1

) denotes the cdf of (X1, Y1|(X2, Y2) = c). Note that all of the desired inequalities are satisfied.

(x1, y1) F c1(
X1
Y1

) F c1(
X∗

1
Y ∗
1

) F
c1(
X1
Y1

) F
c1(
X∗

1
Y ∗
1

)

(1, 2) 0 1
2 1 1

(1, 3) 1
2

1
2

1
2

1
2

(2, 2) 1
2

1
2

1
2

1
2

(2, 3) 1 1 0 1
2

(i)

(x1, y1) F c2(
X1
Y1

) F c2(
X∗

1
Y ∗
1

) F
c2(
X1
Y1

) F
c2(
X∗

1
Y ∗
1

)

(1, 2) 1
4

1
4 1 1

(1, 3) 1
2

1
2

1
2

1
2

(2, 2) 1
2

1
2

1
2

1
2

(2, 3) 1 1 1
4

1
4

(ii)

(x1, y1) F(
X1
Y1

) F(
X∗

1
Y ∗
1

) F(
X1
Y1

) F(
X∗

1
Y ∗
1

)
(1, 2) 1

8
3
8 1 1

(1, 3) 1
2

1
2

1
2

1
2

(2, 2) 1
2

1
2

1
2

1
2

(2, 3) 1 1 1
8

3
8

(iii)
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5.4 Other Stochastic Order Relations

By means of their fifth axiom, Grothe et al. [32] attempted to make a statement of the form:
‘If one pair of random vectors is more interdependent than another pair, then the measure
of dependence should reflect this’. Inspired by Schmid et al. [69], they used multivariate
concordance ordering for this, which is defined by the ordering of the respective multivariate
cdfs and survival functions. Intuitively this means that random vectors are concordant if their
components tend to be either “all large together or all small together” [38, p. 1]. The question
remains whether this is the most natural characterization of dependence. In fact, one might
argue that it is more natural to consider such a behavior in a bivariate sense instead of in all
dimensions simultaneously, that is, two random vectors are more dependent if they show the
above tendency just componentwise. This leads us to so-called supermodular ordering.

Definition 5.4.1 (Müller and Scarsini [60]). A function g : Rd → R is called supermodular
if

g(x ∧ y) + g(x ∨ y) ≥ g(x) + g(y) ∀ x,y ∈ Rd,

where the lattice operators ∧ and ∨ are defined as

x ∧ y := (min{x1, y1}, . . . ,min{xd, yd})

and
x ∨ y := (max{x1, y1}, . . . ,max{xd, yd}).

For an equivalent way to define supermodular functions in terms of difference operators,
we refer to Müller and Scarsini [60].

Definition 5.4.2 (Müller and Scarsini [60, Definition 2.3]). A random vectorV = (V1, . . . , Vd)
is said to be smaller than a random vector W = (W1, . . . ,Wd) in the supermodular order (or
order by L-superadditive functions), written V ≼sm W, if Eg(V) ≤ Eg(W) for all supermod-
ular functions g such that the expectations exist.

Both supermodular and concordance ordering fulfill the nine axioms for multivariate pos-
itive dependence orders as proposed by Joe [39, p. 38ff] (cf. Müller and Scarsini [60]). It is
well-known that supermodular order implies concordance order [60]. Let us remark in this
context that concordance order has been proposed by Joe [38] recognizing that it is a gener-
alization of supermodular order. The author argues for the use of the weaker property as it
can be checked more easily in practice. Equivalence of these stochastic order relations holds
only in case of d = 2, while supermodular ordering is strictly stronger for the cases d ≥ 3
(see Joe [38, Example A.1.3] for d > 3, and Müller and Scarsini [60, Theorem 2.6], who have
complemented it with the case d = 3).

Therefore, it might be interesting to check whether OPD respects supermodular ordering.
The following example shows that it does not:

Example 5.4.3. We consider again the discrete distributions from Example 5.2.1, which
were illustrated in Fig. 5.1, and in order to simplify the notation we write V = (X,Y) and
W = (X∗,Y∗). Let g denote a supermodular function. Then it holds

Eg(V) =
1

2
·

g(1, 2, 3, 4︸ ︷︷ ︸
=a

) + g(3, 2, 3, 2︸ ︷︷ ︸
=b

)

 ≤ 1

2
·

g(1, 2, 3, 2︸ ︷︷ ︸
=a∧b

) + g(3, 2, 3, 4︸ ︷︷ ︸
=a∨b

)

 = Eg(W),

81



so V ≼sm W. However, according to Example 5.2.1 it holds OPD2(X,Y) > OPD2(X
∗,Y∗),

so OPD does not respect supermodular ordering.

In an analogous way, the condition on supermodular ordering can be verified for the
refined Counterexamples 5.2.2–5.2.3. We only show the proof of the latter, since this is the
more involved case.

Example 5.4.4. We reconsider the probability distribution from Example 5.2.3. Again we
simplify the notation by V = (X,Y) and W = (X∗,Y∗). Let g denote a supermodular
function. Then it holds

Eg(V) =

∫
g(x1, x2, y1, y2) ·

(
1{0≤x1≤x2≤1} · 1{1<y1≤y2≤2}

+ 1{1<x1≤x2≤2} · 1{0≤y1≤y2≤1}

)
d(x1, x2, y1, y2)

+

∫
g(x1, x2, y1, y2) ·

(
1{0≤x2<x1≤1} · 1{1<y2<y1≤2}

+ 1{1<x2<x1≤2} · 1{0≤y2<y1≤1}

)
d(x1, x2, y1, y2)

≤
∫
g(x1, x2, y1, y2) ·

(
1{0≤x1≤x2≤1} · 1{0≤y1≤y2≤1}

+ 1{1<x1≤x2≤2} · 1{1<y1≤y2≤2}

)
d(x1, x2, y1, y2)

+

∫
g(x1, x2, y1, y2) ·

(
1{0≤x2<x1≤1} · 1{0≤y2<y1≤1}

+ 1{1<x2<x1≤2} · 1{1<y2<y1≤2}

)
d(x1, x2, y1, y2)

= Eg(W),

where we used the supermodularity of g twice. Note that for all

a ∈ {(x1, x2, y1, y2) ∈ R4 : 0 ≤ x1 ≤ x2 ≤ 1, 1 < y1 ≤ y2 ≤ 2}
b ∈ {(x1, x2, y1, y2) ∈ R4 : 1 ≤ x1 ≤ x2 ≤ 2, 0 ≤ y1 ≤ y2 ≤ 1},

it follows

a ∧ b ∈ {(x1, x2, y1, y2) ∈ R4 : 0 ≤ x1 ≤ x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1}
a ∨ b ∈ {(x1, x2, y1, y2) ∈ R4 : 1 ≤ x1 ≤ x2 ≤ 2, 1 < y1 ≤ y2 ≤ 2}.

Similar applies to the indicators of the second integral. Hence, V is smaller than W in the
supermodular order, but Example 5.2.3 yields OPD2(X,Y) > OPD2(X

∗,Y∗).

Thus, there are stationary continuously distributed examples such that OPD does not
respect supermodular order either. Although humbling, these results make sense at second
glance. Concordance order as well as supermodular order are defined on the level of the
concrete values, while OPD operates on the level of ordinal patterns, that is, on the level
of the ordinal relations between those values. Even if values have a greater tendency to be
large or small together in one pair of random vectors if compared to another vector (either
dimensionwise or all together), a destruction of the prevalent ordinal relations cannot be
ruled out.
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5.5 Quantifying Dependence: A Critical Look at Axiomatic
Approaches

People have been interested in relevant criteria for distinguishing measures of dependence.
In this regard, Grothe et al. [32] proposed an axiomatic framework for multivariate measures
of association between random vectors (see Def. 5.1.3), to which Betken et al. [17] referred
under the notion of multivariate measures of dependence. The ideas of Grothe et al. [32]
were based on the work of Schmid et al. [69], who gave an overview on existing criteria for
copula-based multivariate measures of association. Multivariate measures of concordance
were also discussed by them. Those are particularly characterized by the fact that they
satisfy concordance ordering (Axiom 5). Intuitively speaking this means that the more the
random variables tend to be large or small together, the larger the value of the measure at
hand should be (cf., e.g., [38]). Hence, this is a statement of the form ‘the more dependent
a pair of random vectors (X,Y) is, the larger the value of the measure applied to this pair
should be’, where dependence is characterized by concordance in this case.

Obviously, the purpose of measures of dependence is to actually measure dependence.
However, in order to do so, first the term ‘dependence’ needs to be defined. Even though
dependence is such a central concept in statistics, it is rarely defined formally, and if it is, then
it is equated to non-independence (see Geenens [30] and the references mentioned therein).
This would make dependence a binary concept: Either random variables are dependent or not,
without room for nuance [30, p. 2]. On the other hand, various measures (e.g., (multivariate)
Kendall’s τ , Spearman’s ρS and Pearson’s correlation, OPD, etc.) have been and are still
being developed in order to somehow quantify dependence. Hence, dependence seems to be
quantifiable, which proves the binary definition to be inadequate (cf. [30, p. 2]).

Geenens [30] has recently proposed a general definition of dependence between two random
variables defined on the same probability space. The author defines dependence between
such random variables as the information which is necessary and sufficient to unambiguously
identify their joint distribution in its Fréchet class, that is, the class of distributions with given
marginals. Furthermore, Geenens argues that most of the proposed dependence measures, or
at least the classical ones, do not actually measure dependence. The author writes as follows
[30, p. 28]:

Most of statistical theory developed from the initial works of Galton and Pear-
son on the Gaussian distribution (Stigler, 2002). As a result, much of the statis-
tical jargon in use today retains a strong Gaussian connotation. For example, the
fact that the dependence reduces down to the parameter ρ in a bivariate Gaus-
sian distribution [. . . ] largely explains why the correlation coefficient has been
referred to as a ‘dependence measure’ universally, including outside the Gaussian
model. [. . . ] This has caused, through a similar process of conflation, most of
those relations to be indiscriminately labelled as ‘dependence’.

And furthermore with a special focus on concordance [30, p. 29]:

That the two concepts [correlation and concordance] coincide in the Gaussian
case may explain why concordance is commonly understood as ‘some form’ of de-
pendence. For example, the term ‘monotone dependence’ (‘positive’/‘negative’,
for concordance/discordance) is often used, while Spearman’s ρS and Kendall’s
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τ are routinely referred to as ‘dependence measures’, in spite of specifically ac-
counting for concordance.

It becomes clear that Geenens has a rigorous understanding of dependence and dependence
measures in particular. The author states that a dependence measure should attain the
value 0 if and only if the random variables under consideration are independent. (Note that
Axiom 4 of Definition 5.1.3 constitutes a less strict version, that is, independence =⇒ value 0.)
As a matter of fact, e.g., concordance/discordance indicates an influence of one variable on
another. But neither does the absence of concordance/discordance imply independence, nor
do different levels of concordance implicate gradations in the degree of dependence (cf. [30,
Section 5]). Therefore, the author takes the view that “there is in general no link between
concordance and dependence” [30, p. 30].

We take a different, less strict perspective. That is, we think of different types of depen-
dence, e.g., linear dependence, concordance/discordance, association, ordinal dependence, to
name but a few; cf. Section 3.10 and Fig. 3.2 of Müller and Stoyan [61] for an overview on (the
relations between) various concepts of dependence. In accordance, the proposed measures
focus on the respective qualities, e.g., Pearson’s correlation (as well as its multivariate gener-
alizations) measures linear dependence. It becomes clear that each of those has advantages
and disadvantages compared to the others with regard to different contexts. Moreover, it is
not a contradiction if a measure of concordance is zero for non-concordant, but dependent
random variables. However, we agree with the author that these terms should be used more
precisely in the literature in general. Note that there are, of course, communities of experts
in this field who already do so.

Concordance is clearly not the type of dependence that is measured by OPD, so Axiom 5
is not well-suited in this case. That raises the question whether it is a good idea at all to
propose one axiom which has to be satisfied by all dependence concepts. Instead it might
be the better choice to directly distinguish between the respective concepts. Therefore, a
direction for future research might be to develop a stochastic order relation on the ordinal
level suited for measures based on ordinal patterns. It might be interesting to see whether
this can be done in such a way that it fulfills the properties of a multivariate dependence
order as suggested by Joe [39, Section 2.2.3] (or at least most of them as, e.g., bivariate
concordance arguably does not make so much sense in terms of ordinal patterns). To our
knowledge, this has not been done yet.

At this point, we would also like to draw the reader’s critical eye to another issue: OPD
is based on the comparison of the ordinal relations within both vectors. In fact, it is a spe-
cial comparison, since only identical and, depending on the chosen variant of OPD, opposite
(= space-inversed) patterns are considered. In general, it is also possible to propose similar
measures by considering other types of ordinal pattern relations. Because what does depen-
dence between two time series mean in terms of their ordinal patterns? It means that the
more frequently specific ordinal patterns in one time series are coupled with specific (possibly
different) ordinal patterns in the other, the more dependent are these time series. It should
be noted, however, that we obtain ordinal patterns in a sliding window approach. So do
bijective maps σ : Sd → Sd exist which are not the identity or the spatial inversion such that
this overlapping structure is preserved? The answer is yes, at least for d ≥ 3. (Recall that
there are only two patterns for d = 2 such that the identity and spatial inversion are the only
possibilities in this case.)
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For illustration consider the following example for d = 3: Suppose the increasing pattern
(1, 2, 3) is directly followed by the pattern (1, 3, 2), that is, they have an overlap of length
2. Then mapping (1, 2, 3) 7→ (3, 2, 1) and (1, 3, 2) 7→ (2, 3, 1) does not respect the overlapping
structure, since (3, 2, 1) cannot be directly followed by (2, 3, 1). On the contrary, the mapping
(1, 2, 3) 7→ (3, 2, 1) and (1, 3, 2) 7→ (2, 1, 3) works with the sliding window approach. Note
that when constructing such a bijection, it is crucial to consider all possible combinations of
subsequent overlapping patterns. Hence, the above just serves as a simplified example.

Even though such a bijection between two time series indicates perfect ordinal dependence,
OPD still might be equal to zero or at least close to zero (again depending on the considered
version of OPD). On one hand it is a serious drawback that OPD does not account for such
dependencies. On the other hand, they seem to be kind of artificial, that is, in practice this is
not the kind of dependence one would intuitively think of. Hence, another direction for future
research might be to propose variants or generalizations of OPD and perform a comparative
analysis in terms of advantages and disadvantages of the respective measures.
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6 Some Multivariate Extensions of
Ordinal Patterns

Within the scope of this dissertation, so far we have only considered ordinal patterns stem-
ming from a one-dimensional time series. With regard to those, we have discussed the esti-
mation of the SCI, and hence also the estimation of the Rényi-2 permutation entropy. These
allow for the quantification of the complexity in a time series, assuming that the time series
under consideration exhibits some form of short-range dependence. Furthermore, we have
investigated OPD in the context of the axiomatic framework for multivariate measures of
dependence as proposed by Grothe et al. [32]. Note that OPD is still defined in terms of the
ordinal patterns of the respective univariate time series.

In what follows, we consider two multivariate extensions of ordinal patterns, namely mul-
tivariate ordinal patterns and spatial ordinal patterns. These have been recently introduced
by Mohr et al. [58] and Bandt and Wittfeld [12], respectively (recall the historical background
in Chapter 1.1.5). We discuss different possibilities of representing those as well as their re-
spective advantages and disadvantages with a special focus on digital implementation. In
addition, the representations are also briefly considered in terms of the occurrence of ties.

This chapter builds vaguely on the preliminaries of the joint work [82] with C. H. Weiß
and A. Schnurr. This applies in particular to the part regarding the partition of the set
of spatial ordinal patterns. However, this chapter contains additional examples and further
thoughts which complement our discussion of univariate ordinal patterns in Chapter 3.

The subsequent chapter continues with a comparative analysis of various methods for
testing for dependence between two time series consisting of serially independent and iden-
tically distributed random variables based on multivariate extensions of ordinal patterns. In
particular, OPD is placed in the context of multivariate ordinal patterns.

6.1 Multivariate Ordinal Patterns

Let m ≥ 2 denote the dimension of a multivariate time series. Mohr et al. [58] defined
multivariate ordinal patterns as the vector consisting of the univariate ordinal patterns with
respect to each dimension:

Definition 6.1.1 (Mohr et al. [58, Definition 3]). Let d ≥ 2. A matrix x11 . . . xd1
...

. . .
...

x1m . . . xdm

 ∈ Rm×d

has the multivariate ordinal pattern (MOP) π = (π1, . . . , πm)⊤ ∈ Sm
d , where πi denotes the

univariate ordinal patterns of (x1i, . . . , xdi), i = 1, . . . ,m.

As a consequence, (d!)m MOPs are possible.
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Table 6.1: Enumeration of MOPs with m = 2.

π1\π2 0 1 2 . . . d!− 1

0 0 1 2 . . . d!− 1
1 d! d! + 1 d! + 2 . . . 2d!− 1
...

...
...

...
. . .

...
d!− 1 (d!)2 − d! (d!)2 − (d!− 1) (d!)2 − (d!− 2) . . . (d!)2 − 1

Note that here columns are indicated before rows. This is due to the fact that we are
going to consider such matrices stemming from bivariate time series (Xt)t = (Xt,1, Xt,2)t
where the time component t runs columnwise, i.e., from left to right, in particular.

As the attentive reader may have noticed, the above definition is independent of the
chosen representation of univariate ordinal patterns presented in Chapter 3. This leads to
MOPs being represented by matrices or, in case of number representations, vectors, as it is
illustrated by the subsequent example:

Example 6.1.2. Consider the (2× 3)-dimensional matrix x ∈ N2×3
0 given by

x =

(
2 5 4
1 7 3

)
.

In order to determine its MOP, we need to obtain the univariate ordinal patterns with regard
to each component. In this case, both components exhibit the same ordinal pattern given by
π = r = (1, 3, 2) or number representation nLC = 1. Hence, the MOP of x is given by(

1 3 2
1 3 2

)
or

(
1
1

)
depending on the choice of ordinal pattern representation.

As we have already discussed in Section 3.2, with regard to digital implementation of
ordinal patterns, a representation in terms of one number is preferable to a vector (or even
matrix). Therefore, the question arises whether this kind of representation is also possible
for MOPs. We suggest the following way to do so for the bivariate case m = 2:

For MOPs of length d, there are d! possible univariate ordinal patterns for both com-
ponents, respectively. With regard to number representations, this leads to the integers
0, 1, 2, . . . , d!−1 as possible representations. So how can we number the (d!)2 MOPs consecu-
tively without the need for a look-up table? A simple way is to proceed row by row. For the
pattern represented by ‘0’ in the first component, the MOPs are numbered from 0 to d!− 1
depending on the ordinal pattern in the second component, while the MOPs range from d!
to 2d!− 1 for the univariate ordinal pattern ‘1’ in the first component, and so on. This yields
the formula

π = d! · π1 + π2 (6.1)

for computing the suggested number representation for MOPs where π1 and π2 denote the
number representations of the respective univariate components. An overview of this enu-
meration is given in Tab. 6.1.
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Example 6.1.3. Consider the matrix x ∈ N2×3 from Example 6.1.2. We have seen that its
MOP represented by univariate number representations is given by (1, 1)⊤. By application
of Eq. (6.1) we obtain the MOP number representation π = 3! · 1 + 1 = 7.

For m ≥ 2, Eq. (6.1) can be generalized to

π = (d!)m−1 · π1 + · · ·+ d! · πm−1 + πm. (6.2)

As MOPs consist of the rowwise univariate ordinal patterns, our discussion and guideline
on (univariate) representations remains valid. This includes the consideration of ties.

6.2 Spatial Ordinal Patterns

Bandt and Wittfeld [12] proposed an extension of univariate ordinal patterns to the multi-
variate case by considering all entries of a matrix ‘as a whole’ and determining its ‘ordinal
pattern’.

Definition 6.2.1 (Bandt and Wittfeld [12]). Let d ≥ 2. A matrix(
x11 . . . xd1
x12 . . . xd2

)
=

(
w1 . . . wd

wd+1 . . . w2d

)
∈ R2×d

(potentially stemming from a bivariate time series) has spatial ordinal pattern (SOP)

Π :=

(
r1 . . . rd
rd+1 . . . r2d

)
if and only if

rj < rk ⇐⇒ wj < wk

for all 1 ≤ j < k ≤ 2d.

Note that the ordinal information between the components is preserved here. This is in
contrast to MOPs, where only the ordinal information within the respective components is
kept. Furthermore, note that here, we have implicitly set m = 2. Generalization to m ≥ 2 is
straightforward, but it is not recommendable due to the large number of SOPs which have
to be considered resulting in large computation times: For m = 2, there are already (2 · d)!
SOPs to be considered. This already leads to 24 possible SOPs for d = 2 and 720 for d = 3.
In general, (m · d)! patterns have to be considered. So far, it is even common to consider
m = d = 2 in practice, see Bandt and Wittfeld [12] and Weiß and Kim [88].

The above definition of SOPs is given in terms of ranks, therefore it can be regarded as a
rank representation. Vectorization of SOPs, that is, considering a SOP as the univariate ordi-
nal pattern (r1, . . . , rd, rd+1, . . . , r2d) of (x11, . . . , xd1, x12, . . . , xd2), allows for the application
of our previous results: Number representations as discussed in Chapter 3 are applicable here
and we especially emphasize the use of these with regard to digital implementation of SOPs,
since vectors of length 2d (or (2 × d)-dimensional matrices) are much more time-consuming
with regard to testing for equality. Similar holds for their respective memory footprints.
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Example 6.2.2. Consider the matrices x and x∗ given by

x =

(
2 5
1 7

)
and x∗ =

(
5 4
7 3

)
.

Their respective SOPs are given by

Π =

(
2 3
1 4

)
and Π∗ =

(
3 2
4 1

)
.

By vectorization they can also be represented by inversions, that is, η = (1, 1, 0, 0) and η∗ =
(2, 1, 1, 0). Hence, we obtain, e.g, the number representations nLC = 1·(4−1)!+1·(4−2)! = 8
and n∗LC = 2 · (4− 1)! + 1 · (4− 2)! + 1 · (4− 3)! = 15.

However, apart from digital implementation we do not recommend expressing SOPs as
vectors. This notation should only be utilized when a number representation is derived as it
may be confusing for the reader to refer to SOPs being matrices by some vector. Therefore,
we also do not recommend the use of permutations or inversions for the representation of
SOPs due to the matrix-structure. Instead, we think it makes sense to stick with the rank
representation.

In case of ties, the definition of SOPs can be slightly adjusted, e.g., in favor of increasing
patterns, that is,

rj < rk ⇐⇒ wj < wk or (wj = wk and j < k).

At this point, let us emphasize that ties can be not only encountered componentwise, but
also between components here. To illustrate this, consider the matrix x given by

x =

(
4 3
6 4

)
.

With regard to MOPs, there are no ties present such that we obtain π =

(
2 1
2 1

)
. With

regard to its SOP, however, it holds w1 = w4, which then leads to the pattern Π =

(
2 1
4 3

)
.

Another possibility in case of ties is of course again adding small noise to the data. If
many ties are present in the data, then both approaches lead to a distortion of the ordinal
structure or a loss of information, as the presence ties also contains information. An interest-
ing approach may be the generalization of SOPs in terms of generalized ordinal patterns (see
Section 3.4). However, this is a point for future research, though the number of generalized
SOPs and the associated potential impracticality have to be kept in mind.

Now, let S denote the set consisting of the SOPs of length d. For 1 ≤ K ≤ (2d)!, suppose
there is a partition of S into K non-empty subsets S = S1 ∪ · · · ∪ SK . These may either
contain exactly one SOP each, i.e., K = (2d)!, or be defined according to some rule. This
allows for a reduction of ordinal pattern probabilities which have to be considered and hence,
leads to a reduction of the length of the time series needed in order to obtain representative
probabilities.
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Focusing on d = 2, Bandt and Wittfeld [12] proposed a partition into so-called ‘types’ of
SOPs. Types imply a partition of S into the following three subsets:

S1 =
{
( 1 2
3 4 ) , (

1 3
2 4 ) , (

2 1
4 3 ) , (

2 4
1 3 ) , (

3 1
4 2 ) , (

3 4
1 2 ) , (

4 2
3 1 ) , (

4 3
2 1 )

}
,

S2 =
{
( 1 2
4 3 ) , (

1 4
2 3 ) , (

2 1
3 4 ) , (

2 3
1 4 ) , (

3 2
4 1 ) , (

3 4
2 1 ) , (

4 1
3 2 ) , (

4 3
1 2 )

}
,

S3 =
{
( 1 3
4 2 ) , (

1 4
3 2 ) , (

2 3
4 1 ) , (

2 4
3 1 ) , (

3 1
2 4 ) , (

3 2
1 4 ) , (

4 1
2 3 ) , (

4 2
1 3 )

}
.

(6.3)

As noted by [12], the first type corresponds to a monotonic behavior in both rows and columns,
while the second type matches a monotonic behavior in either rows or columns and, hence,
an antimonotonic behavior in the respective other direction. By contrast, in case of the third
type, both lowest and both highest ranks appear either on the diagonal or the antidiagonal,
respectively. Note that a SOP’s type is equal to that rank number which shares a diagonal
with the rank 4, see the bold ranks in (6.3).

Bandt and Wittfeld [12] used this classification to describe and distinguish textures in
images. Shortly thereafter, Weiß and Kim [88] have not only considered SOPs but also this
classification to test for (spatial) dependence (cf. Section 1.1.5).

Bandt and Wittfeld [12] have provided the following pseudo-algorithm, which can be
used to calculate the type directly, either from the SOP Π = (r1, r2, r3, r4) or the local data
w = (w1, w2, w3, w4). For the former, substitute w by Π in the algorithm.

Algorithm 1 The algorithm for computation of the type of a 2×2-matrix provided by Bandt
and Wittfeld [12].

a = (w1 < w2) + (w3 < w4)
if a = 2 then

a = 0
end if
b = (w1 < w3) + (w2 < w4)
if b = 2 then

b = 0
end if
type = a+ b+ 1

This means that it is once again possible to represent the ordinal structure of a 2 × 2-
matrix by some number type ∈ {1, 2, 3}, which can be easily computed. A generalization to
‘extended types’ for d > 2 (or at least d = 3) has not yet been proposed in the literature.

6.3 Interim Conclusion

All in all, our recommendation on the representation of choice for the considered multivariate
extensions of ordinal patterns remains the same as in the univariate case. That is, for
mathematical considerations it is advantageous to opt for the rank representation as there the
pattern can be read directly. In the context of ties, the classical three approaches discussed
before are reasonable regarding data sets for which not many ties are expected. If, on the
other hand, many ties are expected, consideration of generalized ordinal patterns in the
definition of MOPs is preferable, though the set of possible generalized MOPs becomes quite
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large then. Consideration of generalized SOPs remains future research as it is not in the
scope of this work.

Alternatively, the multivariate extensions can be represented by numbers, which is again
particularly practical in the context of digital implementation. At this point, let us remark
another option with regard to the indexing of MOP probabilities: Instead of using the number
representation nLC + 1 of the multivariate pattern as an index for the respective pattern
probability pnLC+1, it can be more natural to use the number representations of the respective
univariate ordinal patterns to indicate a joint pattern probability. Considering the MOP(

1 3 2
1 3 2

)
from Examples 6.1.2 and 6.1.3, its probability can be either represented by pnLC+1 = p8 or
p2,2, since it holds nLC = 1 for the pattern (1, 3, 2) and we use number representations of
the form nLC + 1. Note that in the case of univariate number representations of the form
nLC +1, number representations for MOPs can be derived by d! · (π1−1)+π2. Compare this
with Eq. (6.1). The first variant p8 is more compact in its notation, but as there are (d!)2

MOPs, without a look-up table it can get confusing quite fast. In comparison, d! univariate
patterns are more manageable. Furthermore, consideration of the joint univariate pattern
probabilities is necessary anyway in order to derive the MOP probabilities.

Another interesting question is which extension is preferable in practice. This question
cannot be answered in general as the answer may depend on the context. It has been shown
that SOPs perform well in the context of spatial dependence (see [12]). In fact, it has to
be noted that SOPs preserve more ordinal information than MOPs, which also shows in the
number of possible patterns. This is probably why they are better suited for the spatial
context (as their name may already suggest).

However, to our knowledge the only comparative study of these extensions has been
conducted in the context of non-parametric tests for dependence between times series (see
the subsequent chapter, which is based on the joint work Silbernagel et al. [82]). There the
performance of the proposed tests is additionally compared to some (classical) competitors.
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7 Non-parametric Tests for Dependence
Between Time Series based on Multivariate
Extensions of Ordinal Patterns

In this chapter, we consider multivariate random variables being observed sequentially in time,
which we denote as (Xt)t∈N. Our primary interest here is the mutual pairwise dependence
between the individual components, so without loss of generality, we assume that (Xt)t∈N =
(Xt,1, Xt,2)t∈N is a bivariate process. We are interested in whether the components Xt,1 and
Xt,2 are dependent or not, that is, we want to test the null hypothesis H0 that Xt,1 and Xt,2

are independent of each other against the alternative H1 that they are not:

H0 : Xt,1 ⊥⊥ Xt,2 vs. H1 : Xt,1 ⊥̸⊥ Xt,2.

Moreover, we assume that (Xt)t∈N is an i.i.d. sequence of two-dimensional random vectors.
Such kind of data do not only occur in multivariate time series analysis, see [51] for a com-
prehensive discussion, but also when monitoring multiple-stream processes. The latter refers
to simultaneous measurements from several individual sources and is particularly relevant in
manufacturing applications (e.g., parallel production lines or machines with several heads),
see [59, Section 10.3] for details and references. Later in Section 7.4, for example, we shall be
concerned with cascade process data and with product wafer data from a photolithographic
process.

An obvious first idea for a corresponding hypothesis test is to rely on the classical Pear-
son correlation coefficient. This Pearson test, however, suffers from several drawbacks: It
solely focuses on linear dependence, it is of parametric nature and actually assumes normally
distributed data, and it is not robust against outliers, just to mention a few. Thus, the rank-
based Spearman correlation might appear more attractive in practice, although this test is
not an all-encompassing solution either. For example, it is only able to uncover monotone
forms of dependence. For illustration, let us look at the three examples shown in Figure 7.1.
Neither Pearson nor Spearman lead to a rejection of the null of independence, although we
are faced with strong forms of cross-dependence in either case: quadratic dependence in (i),
piecewise-linear dependence in (ii), and a quite appealing co-movement of the pairs being
plotted in part (iii). The last example was derived from the R-package “datasauRus” as
described in https://stats.stackexchange.com/q/595761.

In view of these apparent drawbacks of the classical Pearson and Spearman correlation
coefficients, we propose a new approach of testing for cross-dependence in (Xt)t∈N. Inspired
by Weiß [87], we utilize appropriate kinds of (multivariate extensions of) ordinal patterns.
Being rank-based statistics as well, ordinal patterns are known to be robust against outliers.
In addition, if the considered process (Xt)t∈N is continuously distributed, then corresponding
tests of the i.i.d.-null are non-parametric (distribution-free), which is highly attractive for ap-
plications in practice. In the case of discrete integer-valued data, however, the non-parametric
nature can be preserved by adding uniform noise prior to the ordinal pattern analysis, see
Section 7.3.1 for details.
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(i)

(ii)

(iii)

Figure 7.1: Data with regard to three different scenarios (rows), where the respective time series
plots and scatterplots are given on the left and right, respectively. For each scenario, Pearson’s
and Spearman’s correlation coefficients are indicated in the bottom right corner of the respective
scatterplot, with none of them being significantly different from zero on the 5%-level.

The remainder of this chapter is organized as follows: First we derive a general central
limit theorem for MOPs in Section 7.1.1, which allows us to establish the asymptotic distri-
butions of various test statistics afterwards in Sections 7.1.2 and 7.1.3. As we will show in
Section 7.2, also SOPs might form the starting point for constructing non-parametric tests of
cross-dependence. The finite-sample performance of our novel ordinal pattern-based depen-
dence tests is analyzed by simulations in Section 7.3, where it turns out that they constitute
relevant complements of the popular Pearson and Spearman tests. Section 7.4 then presents
the aforementioned real-world data examples to illustrate the applications of our tests in
practice. Finally, we close in Section 7.5 with an interim conclusion and outline possible
directions for future research in this regard.

This chapter as well as its introduction are based on the joint work [82] with C. H. Weiß
and A. Schnurr.
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7.1 Dependence Tests based on MOPs

Let (Xt)t∈N = (Xt,1, Xt,2)t∈N be a bivariate process, which we assume to be i.i.d. (but possibly
cross-dependent) with some continuous bivariate cdf F , and recall that here we consider
time series where the time component t runs column-wise from left to right. Furthermore,
recall that the requirement for continuously distributed random variables implies that the
probability of ties, both serially and between the components, equals zero. Under the null
hypothesis, we suppose the additional independence between the components of Xt, i.e.,
F (x, y) = F1(x) · F2(y) for all x, y.

7.1.1 A Central Limit Theorem for MOPs

For i = 1, 2, let the binary vectors Zt,i = (Z
(1)
t,i , . . . , Z

(d!)
t,i )⊤ ∈ {0, 1}d! be defined by Z

(k)
t,i = 1

iff the vector (Xt,i, . . . , Xt+d−1,i) stemming from the i-th component of the time series at hand

has the univariate ordinal pattern π(k), and Z
(k)
t,i = 0 otherwise (“one-hot encoding”). Then,

the vector consisting of the respective marginal probabilities is given by pi = (p
(k)
i )1≤k≤d! =

E(Zt,i), i = 1, 2, while the vector consisting of the joint probabilities across components is
given by (pk,l)1≤k,l≤d! = E(Z⊤

t,1Zt,2). In favor of a more compact notation, we write Z̃t =

(Z̃t,r)1≤r≤2d!+(d!)2 with

Z̃t,r =


Z

(r)
t,1 if 1 ≤ r ≤ d!,

Z
(s)
t,2 if r = d! + s with 1 ≤ s ≤ d!,

Z
(a)
t,1 · Z(b)

t,2 if r = 2d! + (a− 1)d! + b = (a+ 1)d! + b

with 1 ≤ a, b ≤ d!,

(7.1)

which encodes not only the respective univariate ordinal patterns of the marginals, but also
the multivariate ordinal pattern at time t. Furthermore, we write p̃ = E(Z̃t) ∈ [0, 1]2d!+(d!)2

for the vector consisting of all aforementioned probabilities. Note that under the null of
independent components, it holds that

p̃ =
( 1

d!
, . . . ,

1

d!︸ ︷︷ ︸
(2·d!)−times

,
1

(d!)2
, . . . ,

1

(d!)2︸ ︷︷ ︸
(d!)2−times

)⊤
.

If (Xt)t∈N is i.i.d., then the series of MOPs stemming from (Xt)t∈N is a stationary and
(d− 1)-dependent process itself, since MOPs are obtained from (Xt)t∈N by a sliding window
approach. These properties transfer to (Z̃t)t∈N accordingly. So estimating the above prob-
abilities by the sample mean p̂ = 1

n

∑n
t=1 Z̃t, the application of a central limit theorem for

(d− 1)-dependent processes (see [37]) yields

√
n(p̂− p̃)

D−→ N(0,Σ) (7.2)

with mean 0 = (0, . . . , 0)⊤ and cross-covariance matrix Σ = (σk,l)1≤k,l≤2d!+(d!)2 , where

σr,s = Cov(Z̃0,r, Z̃0,s) +

d−1∑
h=1

(
Cov(Z̃0,r, Z̃h,s) + Cov(Z̃h,r, Z̃0,s)

)
.
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According to (7.1), we obtain the following partition of Σ:

Σ =

 σk,l σk, d!+l σk, (r+1)d!+s

σd!+k, l σd!+k, d!+l σd!+k, (r+1)d!+s

σ(a+1)d!+b, l σ(a+1)d!+b, d!+l σ(a+1)d!+b, (r+1)d!+s


1≤k,l,a,b,r,s≤d!

. (7.3)

The respective covariances can be computed exactly. We summarize the main results:

Lemma 7.1.1. Let (Xt)t∈N = (Xt,1, Xt,2)t∈N be an i.i.d. series of random vectors. Under
the null, we obtain the following results for Partition (7.3) of Σ: For the blocks at positions
(1, 1) and (2, 2) in (7.3), equality holds, i.e.,

(σd!+k, d!+l)1≤k,l≤d! = (σk,l)1≤k,l≤d!. (7.4)

The blocks at positions (1, 2) and (2, 1), in turn, vanish:

σd!+k, l = σk, d!+l = 0 for 1 ≤ k, l ≤ d!. (7.5)

The blocks at positions (1, 3) and (2, 3) satisfy

σk, (r+1)d!+s =
1

d!
· σk,r and σd!+k, (r+1)d!+s =

1

d!
· σk,s (7.6)

for 1 ≤ k, r, s ≤ d!, and those at positions (3, 1) and (3, 2) that

σ(a+1)d!+b, l =
1

d!
· σa,l and σ(a+1)d!+b, d!+l =

1

d!
· σb,l (7.7)

for 1 ≤ a, b, l ≤ d!. Finally, the covariances of the block at position (3, 3) are given by

σ(a+1)d!+b, (r+1)d!+s = p(a,r)(0) · p(b,s)(0)− 1

(d!)4

+
d−1∑
h=1

(
p(a,r)(h) · p(b,s)(h) + p(r,a)(h) · p(s,b)(h)− 2

(d!)4

)
,

(7.8)

where p(k,l)(h) := E(Z(k)
t,1 · Z(l)

t+h,1), 1 ≤ h ≤ d − 1, denotes the joint probability within one
component with lag h.

Note the difference between p(k,l) = p(k,l)(0) = E(Z(k)
t,1 · Z(l)

t,1) = E(Z(k)
t,2 · Z(l)

t,2) and pk,l =

E(Z(k)
t,1 ·Z(l)

t,2). Furthermore, note that p(k,l)(h) for d = 2 and d = 3 has already been computed
by Weiß [87], where also closed-form expressions for the respective cases d = 2 and d = 3 of
(7.4) are provided. Hence, the covariances in (7.5)–(7.7) can also be directly derived from
these. The covariances in (7.8), in turn, need to be computed separately. For d = 2 and
d = 3, the exact cross-covariance matrices Σ are given in Appendix A.1.

Proof. Note that under the i.i.d.-assumption on (Xt)t∈N, it follows that (Zt,1)t∈N and (Zt,2)t∈N
are identically distributed such that σk,l = σd!+k, d!+l holds for 1 ≤ k, l ≤ d!, which proves
(7.4). In fact, for 1 ≤ k, l ≤ d! and 0 ≤ h ≤ d− 1, it holds that

Cov(Z
(k)
t,2 , Z

(l)
t+h,2) = Cov(Z

(k)
t,1 , Z

(l)
t+h,1) = E(Z(k)

t,1 · Z(l)
t+h,1)−

1

(d!)2
.
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Due to independence of the components under the null, it holds

Cov(Z
(k)
t,1 , Z

(l)
t+h,2) = 0 = Cov(Z

(k)
t+h,1, Z

(l)
t,2)

for all 0 ≤ h ≤ d− 1, so (7.5) follows.

With the same reasoning, we obtain

Cov(Z
(j)
t,1 , Z

(k)
t+h,1 · Z

(l)
t+h,2) = E(Z(j)

t,1 · Z(k)
t+h,1 · Z

(l)
t+h,2)−

1

(d!)3

=
1

d!

(
E(Z(j)

t,1 · Z(k)
t+h,1)−

1

(d!)2

)
=

1

d!
Cov(Z

(j)
t,1 , Z

(k)
t+h,1),

and analogously Cov(Z
(j)
t,2 , Z

(k)
t+h,1 · Z

(l)
t+h,2) =

1
d! Cov(Z

(j)
t,2 , Z

(l)
t+h,2). Therefore, we obtain (7.6).

Furthermore, by the symmetry of the cross-covariance matrix, (7.7) follows.

Lastly, for 1 ≤ a, b, r, s ≤ d!, consider

Cov(Z
(a)
t,1 · Z(b)

t,2 , Z
(r)
t+h,1 · Z

(s)
t+h,2) = E(Z(a)

t,1 · Z(r)
t+h,1 · Z

(b)
t,2 · Z(s)

t+h,2)−
1

(d!)4

= E(Z(a)
t,1 · Z(r)

t+h,1) · E(Z
(b)
t,2 · Z(s)

t+h,2)−
1

(d!)4

= p(a,r)(h) · p(b,s)(h)− 1

(d!)4
.

7.1.2 The Permutation Entropy of MOPs

Regarding the PE of MOPs as suggested by Mohr et al. [58], it is sufficient to only consider
the probabilities of the respective (d!)2 MOPs, which correspond to the joint probabilities
(pk,l)1≤k,l≤d! as well as their respective estimators. Then, the CLT (7.2) in Section 7.1.1
immediately yields

√
n
(
(p̂k,l)1≤k,l≤d! − p

) D−→ N(0,Σ33) (7.9)

under the null of independence, where

p = (p1,1, . . . , p1,d!, p2,1, . . . , pd!,d!)
⊤ =

(
1

(d!)2
, . . . ,

1

(d!)2

)⊤
,

and where Σ33 = (σkl)2d!+1≤k,l≤2d!+(d!)2 equals the lower right submatrix of Σ in (7.3). Using
the second-order Taylor expansion at p, the standardized permutation entropy becomes

PE
(
(p̂j,k)1≤k,l≤d!

)
≈ PE(p) − 1

2 log(d!)

d!∑
j,k=1

(log(pj,k) + 1) · (p̂j,k − pj,k)

− 1

4 log(d!)

d!∑
j,k=1

(p̂j,k − pj,k)
2

pj,k
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= 1− (d!)2

4 log(d!)

d!∑
j,k=1

(
p̂j,k −

1

(d!)2

)2

,

where PE(p) = 1 under the null of independence between components. Thus, it follows that

n ·
(
PE
(
(p̂k,l)1≤k,l≤d!

)
− 1
)
≈ −n · (d!)2

4 log(d!)

d!∑
j,k=1

(
p̂j,k −

1

(d!)2

)2

.

Now, application of (7.9) and Theorem 3.1 in [84] yields the following:

Theorem 7.1.2. Let (Xt)t∈N = (Xt,1, Xt,2)t∈N be an i.i.d. series of random vectors. Under
the null, it holds

−n · 4 log(d!)
(d!)2

(PE((p̂k,l)1≤k,l≤d!)− 1)
D−→

l∑
i=1

λi · χ2
ri =: Qd,

where λ1, . . . , λl ̸= 0 denote the eigenvalues of Σ33 with algebraic multiplicities r1, . . . , rl,
respectively, χ2

r refers to a χ2-distributed random variable with r degrees of freedom and
χ2
r1 , . . . , χ

2
rl

are independent of each other.

Consequently, mean and variance of the limit distribution are equal to EQd =
∑l

i=1 ri·λi =
trace(Σ33) and Var(Qd) = 2

∑l
i=1 ri · λ2i , respectively.

For d = 2, the non-zero eigenvalues of Σ33 are given by λ1 = 11/36 and λ2 = 1/12 with
respective multiplicities r1 = 1 and r2 = 2. Also note that in case of the mean we obtain∑2

i=1 ri · λi =
17
36 and for the variance 2 ·

∑2
i=1 riλ

2
i =

139
648 .

Corollary 7.1.3. Let d = 2. Under the assumptions of Theorem 7.1.2,

−n log(2) (PE((p̂k,l)1≤k,l≤d!)− 1)

is asymptotically distributed like the quadratic form

Q2 =
11

36
· χ2

1 +
1

12
· χ2

2.

In particular, its asymptotic mean and variance are given by 17
36 and 139

648 , respectively.

For d = 3, some of the eigenvalues are roots of third- and fourth-order polynomials such
that they cannot be written down exactly in compact form. Thus, numerical approximations
to the non-zero eigenvalues of 1 000 · Σ33 together with their respective multiplicities are
enlisted in Table 7.1.

Corollary 7.1.4. Let d = 3. Under the assumptions of Theorem 7.1.2,

−n · log(6)
9

(PE((p̂k,l)1≤k,l≤d!)− 1)

is asymptotically distributed like the quadratic form

Q3 =
22∑
i=1

λi · χ2
ri ,

where the eigenvalues λi and multiplicities ri are provided by Table 7.1. In particular, its
asymptotic mean and variance are given by 203

225 and 95 431
1 620 000 , respectively.
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Table 7.1: Non-zero eigenvalues (rounded) of 1 000 · Σ33 from Corollary 7.1.4 and their respective
multiplicities.

i 1 2 3 4 5 6 7 8

λi 0.631118 0.474196 0.406304 0.376367 0.364922 0.350167 0.315313 0.3125
ri 1 2 1 2 2 1 1 1

i 9 10 11 12 13 14 15 16

λi 0.293148 0.277778 0.268432 0.263119 0.261076 0.258333 0.223257 0.222222
ri 1 1 2 2 1 1 2 2

i 17 18 19 20 21 22

λi 0.218622 0.212237 0.208333 0.183974 0.166667 0.0813592
ri 1 2 1 1 2 2

Based on Theorem 7.1.2 (and its Corollaries 7.1.3 and 7.1.4), we can now define the
following (one-sided) hypothesis tests on level α. Let qd,1−α denote the (1 − α)-quantile of
the quadratic form distribution Qd. Then, we reject the null of independent components if

PE
(
(p̂k,l)k,l

)
< 1− (d!)2

n · 4 log(d!)
qd,1−α. (7.10)

The critical values from (7.10) which are most frequently required in practice are provided
by Table 7.2.

Table 7.2: Critical values (rounded) from (7.10) for α ∈ {0.10, 0.05, 0.01} and d ∈ {2, 3} depending
on the sample size n.

α 0.10 0.05 0.01

d = 2 1− 1.5/n 1− 1.992/n 1− 3.214/n
d = 3 1− 6.145/n 1− 6.719/n 1− 7.91/n

7.1.3 Dependence Tests via Ordinal Pattern Dependence

As OPD evaluates the agreement between the ordinal patterns in the respective components
X = (X1,1, . . . , Xd,1) and X∗ = (X1,2, . . . , Xd,2), it can also be interpreted as a special MOP-
based statistic (different to PE), where only MOPs with equal components are considered.
Hence, noting that the OPD between X and X∗ can be written as

OPDd(X,X
∗) =

∑d!
k=1 pk,k −

∑d!
k=1 p

(k)
1 · p(k)2

1−
∑d!

k=1 p
(k)
1 · p(k)2

,

we derive the limit distribution of OPD under the null. The following result encompasses
Theorem 2 of Betken et al. [17], since here we explicitly derive the covariance structure. The
proofs are still very similar though.
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Theorem 7.1.5. Let (Xt)t∈N = (Xt,1, Xt,2)t∈N be an i.i.d. series of random vectors. Let
Σ∗ ∈ [−1, 1]3d!×3d! denote that submatrix of Σ from (7.3), which refers to

(Z
(1)
t,1 , . . . , Z

(d!)
t,1 , Z

(1)
t,2 , . . . , Z

(d!)
t,2 , Z

(1)
t,1 · Z(1)

t,2 , Z
(2)
t,1 · Z(2)

t,2 , . . . , Z
(d!)
t,1 · Z(d!)

t,2 )⊤.

Furthermore, denote

D :=

(
−1

d!− 1
, . . . ,

−1

d!− 1︸ ︷︷ ︸
(2d!)-times

,
d!

d!− 1
, . . . ,

d!

d!− 1︸ ︷︷ ︸
(d!)-times

)
.

Then, under the null of independence, it holds that

√
n OPDd(X,X

∗)
D−→ N(0, σ2), where σ2 = DΣ∗D⊤.

Proof. The proof is done by applying the “Delta method” (see [77, Theorem 3.3.A]) to (7.2).
For this purpose, define the function f : Rd! × Rd! × Rd! → R by

f(u,v,w) :=
w⊤1− u⊤v

1− u⊤v
= 1 +

w⊤1− 1

1− u⊤v
,

such that OPDd(X,X
∗) = f

(
(p

(k)
1 )1≤k≤d!, (p

(k)
2 )1≤k≤d!, (pk,k)1≤k≤d!

)
. Then, the gradient ∇f

is given by

∇f(u,v,w) =

(
v · w⊤1− 1

(1− u⊤v)2
,u · w⊤1− 1

(1− u⊤v)2
,1 · 1

1− u⊤v

)⊤

.

Under the null, it holds that(
(p

(k)
1 )1≤k≤d!, (p

(k)
2 )1≤k≤d!, (pk,k)1≤k≤d!

)
=

(
1

d!
, . . . ,

1

d!︸ ︷︷ ︸
(2d!)-times

,
1

(d!)2
, . . . ,

1

(d!)2︸ ︷︷ ︸
(d!)-times

)
,

so that

∇f
(
(p

(k)
1 )1≤k≤d!, (p

(k)
2 )1≤k≤d!, (pk,k)1≤k≤d!

)
=

(
−1

d!− 1
, . . . ,

−1

d!− 1︸ ︷︷ ︸
(2d!)-times

,
d!

d!− 1
, . . . ,

d!

d!− 1︸ ︷︷ ︸
(d!)-times

)
.

This expression for D together with the Delta method completes the proof.

We were able to compute the cross-covariance matrix Σ for d = 2 and d = 3 exactly (under
the null), recall Appendix A.1. Consequently, we are able to give exact limiting variances σ2

in Theorem 7.1.5 for these cases.

Corollary 7.1.6. Under the assumptions of Theorem 7.1.5, it follows

√
n OPD2(X,X

∗)
D−→ N

(
0,

11

9

)
,

√
n OPD3(X,X

∗)
D−→ N

(
0,

401

1250

)
.
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Based on the results of Corollary 7.1.6, two-sided critical values can be derived. The null
of independence is rejected if

|OPD2(X,X
∗)| > z1−α/2

√
11/(9n),

|OPD3(X,X
∗)| > z1−α/2

√
401/(1250n),

where z1−α/2 denotes the (1− α/2)-quantile of a standard normal distribution.

7.2 A Spatial Approach towards Cross-Dependence

Bandt and Wittfeld [12] and Weiß and Kim [88] have considered rectangular spatial data
occurring in a regular grid, being generated by a stationary random field with continuous
distribution. For analyzing the corresponding spatial dependence structure, they have used
a spatial extension of ordinal patterns, namely SOPs, which are a kind of rectangular ordinal
pattern. In the present research, we are not concerned with spatial data, but with data
generated by a bivariate process. Hence, the MOPs discussed in Section 7.1.1 are the natural
approach for analyzing the cross-dependence structure. But as a bivariate time series of
length n can also be interpreted as a 2 × n-rectangle, there appears a possibility to utilize
SOPs as well. The motivation is that MOPs analyze the bivariate data in a componentwise
manner, whereas SOPs consider the order within the extracted segment holistically and thus,
they might be better suited to uncover certain forms of cross-dependence. For this reason, as
a further competitor to MOP-based tests, we shall also investigate whether SOP-based tests
might be useful in some situations for uncovering cross-dependence in bivariate time series
data.

Recall that S is defined as the set consisting of the (2d)! SOPs. For a specified partition

S = S1∪· · ·∪SK , 1 ≤ K ≤ (2d)!, we define again binary vectors Zt ∈ {0, 1}K , where Z
(j)
t = 1

iff the SOP Πt of Xt belongs to Sj and Z
(j)
t = 0 otherwise. We denote the mean of Zt by

p = EZt ∈ [0, 1]K , whereas we denote its sample mean by p̂ = Z = 1
n

∑n
t=1 Zt. Note that

p(j) = P(Πt ∈ Sj).

Remark 7.2.1. There is a fundamental difference in applying MOPs and SOPs. For MOPs,
the distribution of the components Xt,i does not matter, it is just important that the pairs
(Xt)t∈N = (Xt,1, Xt,2)t∈N are i.i.d. with independent components under the null hypothesis.
SOPs, in turn, require an identical (continuous) distribution for the whole rectangular data set
(plus independence under the null, i.e., altogether an i.i.d. random field as the data generating
process). Hence, in order to analyze an i.i.d. bivariate process (Xt)t∈N = (Xt,1, Xt,2)t∈N for
cross-dependence, we have to assume that Xt,1 and Xt,2 are also identically distributed.
If then the null of mutually independent components Xt,1 and Xt,2 holds, it even follows
that Xt,1 and Xt,2 are i.i.d. (and not just independent).

Altogether, we have a more specific field of application for SOPs than for MOPs. In some
applications, the assumption of identically distributed components is fulfilled naturally, e.g.,
if the considered process refers to parallel production lines in manufacturing industry. But
often, it will not be satisfied. In such cases, see the details in Section 7.3, we recommend
to apply the subsequent SOP-based statistics only after a prior standardization of the com-
ponents (Xt,1)t∈N and (Xt,2)t∈N, respectively. This does not guarantee exactly identically
distributed components, but at least approximately ones. In Section 7.3, we shall analyze by
simulations if this approximate approach is sufficient for practice.
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For the rest of this section, let us assume that (Xt)t∈N = (Xt,1, Xt,2)t∈N is an i.i.d. process
with identically and continuously distributed components. Furthermore, assume that Xt,1

and Xt,2 are independent (null hypothesis). Then, p =
(
|S1|/(2d)!, . . . , |Sq|/(2d)!

)⊤
holds. If

extracting SOPs from a bivariate process, horizontal overlaps arise naturally. These overlaps
again result in some kind of (d− 1)-dependence between successive SOPs. This dependence
has to be considered regarding the asymptotic distribution of p̂.

Focusing on d = 2, Weiß and Kim [88] have deduced the limiting behavior of the SOP fre-
quencies p̂ (in a more general setting than considered here, see [88, Theorem 2.1]). Adapting
their results to the bivariate time series case, we obtain

√
n(p̂− p)

D−→ N(0, Σ̃) (7.11)

with
Σ̃ = diag(p)− pp⊤ + (1− 1

n)(H+H⊤ − 2pp⊤), (7.12)

where the matrix H refers to the (horizontal) overlaps of successive SOPs. In [88], the authors
have computed H for K = (2d)!, see Table A.3 in Appendix A.1.3, from which the respective
matrices for cases K < (2d)! can be immediately derived. In Appendix A.1.3, we also provide
the result for the large-sample approximation of Σ̃, where we set the factor (1 − 1

n) ≈ 1.
As there are 24 different SOPs of length d = 2, the vector p is 24-dimensional and,

thus, difficult to estimate from small data sets. Therefore, we follow the recommendation in
[12, 88], where the asymptotic behavior regarding so-called “types” instead of all individual
SOPs has been derived (see Section 6.2).

For partition (6.3), p = (1/3, 1/3, 1/3)⊤ under the null, and the matrix H becomes the
symmetric matrix

H =
1

180

 21 20 19
20 21 19
19 19 22

 .

Therefore, Σ̃ from (7.12) simplifies to

Σ̃ = diag(p)− pp⊤ + 2(1− 1
n)
(
H− pp⊤

)
=

1

9

 2 −1 −1
−1 2 −1
−1 −1 2

 + 2 ·
(
1− 1

n

)
· 1

180

 1 0 −1
0 1 −1
−1 −1 2



→ 1

90

 21 −10 −11
−10 21 −11
−11 −11 22

 for n→ ∞,

(7.13)

see [88] for detailed derivations.

Remark 7.2.2. The larger d, the more kinds of horizontal overlaps have to be considered,
which we refer to as overlaps of order 1 to d − 1. This is illustrated in Figure 7.2 for SOPs
of length d = 3.

Bearing this in mind, we may generalize (7.11) and (7.12) for d ≥ 2. In fact, (7.11) holds
for any d ≥ 2 by the central limit theorem for (d− 1)-dependent processes (see [37]), but the
limit covariance matrix Σ̃ = Σ̃(d) is dependent on d. In general it holds

n · Σ̃(d) = n2 · Cov(Z,Z⊤
) =

n∑
t1,t2=1

Cov(Zt1 ,Z
⊤
t2)
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x11 x21 x31 x41 x51 x61 x71 . . .

x12 x22 x32 x42 x52 x62 x72 . . .

Figure 7.2: Overlapping SOPs of length d = 3 in a bivariate time series: consecutive blocks have
overlaps of order d − 1 = 2, while skipping a block (delay by 1) leads to overlaps of order d − 2 = 1.
Delays > 1 lead to non-overlapping blocks.

with

Cov(Zt1 ,Z
⊤
t2) = 0(2d)!×(2d)! for |t1 − t2| ≥ d,

where 0(2d)!×(2d)! denotes the (2d)! × (2d)! zero matrix. These constitute the non-overlaps.
Now, considering the total overlaps as well as the overlaps of order o ∈ {1, . . . , d − 1}, it
follows

n · Σ̃(d) = n · Cov(Z0,Z
⊤
0 ) +

d−1∑
o=1

(n− (d− o))
(
Cov(Z0,Z

⊤
d−o) + Cov(Zd−o,Z

⊤
0 )
)
.

Then, defining Ho := E(ZtZ
⊤
t+d−o) = E(ZtZ

⊤
t+k) for k ∈ {1, . . . , d− 1}, this yields

Σ̃(d) = diag(p)− pp⊤ +
d−1∑
o=1

(
1− d− o

n

)(
HoH

⊤
o − 2pp⊤

)
.

Depending on d, we then need to estimate the probabilities for (jointly) observing SOPs,
that is, we need to consider the frequencies of SOPs of length up to 2d− 1. Hence, in order
to obtain reasonable frequencies either a very large data set or forming K ≪ (2d)! groups of
SOPs is necessary (see [88]). With regard to the latter, it is part of future research to find
such an appropriate partition for d > 2 or at least d = 3 (‘extended types’, recall Section 6.2).
However, in the remaining we focus on d = 2.

Similar to the case of MOPs in Theorem 7.1.2, using the second-order Taylor expansion
as well as (7.11) and Theorem 3.1 of [84], we obtain the following asymptotic result.

Theorem 7.2.3. Let (Xt)t∈N = (Xt,1, Xt,2)t∈N be an i.i.d. series of random vectors. Under
the null, it holds

−n · 2 log(K)

K

(
PE(p̂)− 1

) D−→
l∑

i=1

λi · χ2
ri ,

where λ1, . . . , λl ̸= 0 denote the eigenvalues of Σ̃ with algebraic multiplicities r1, . . . , rl, re-
spectively. Here, χ2

r refers to a χ2-distributed random variable with r degrees of freedom, and
χ2
r1 , . . . , χ

2
rl

are independent of each other.

Therefore, asymptotically, we obtain again a quadratic-form distribution. Note that if
considering types (K = 3), the required non-zero eigenvalues of the large-sample approxima-
tion to Σ̃ in (7.13) are given by 11

30 and 31
90 (multiplicity 1 each), so

−n · 2 log(3)
3

(
PE(p̂)− 1

) D−→ 11
30 · χ2

1 +
31
90 · χ2

1 with mean 32
45 and variance 41

81 . (7.14)
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Table 7.3: Non-zero eigenvalues and their respective multiplicities for Σ̃ according to Table A.4.

i 1 2 3 4 5 6 7 8 9 10

λi
1
12

7
120

17
360

2
45

1
24

7
180

13
360

1
40

7
360

1
120

ri 1 3 1 3 6 3 1 2 1 1

For the large-sample approximation to Σ̃ in case of individual SOPs (K = 24), see Table A.4,
the non-zero eigenvalues are given in Table 7.3. Hence, in this case, the corresponding
quadratic-form distribution has mean 331

360 and variance 623
7200 .

The asymptotics according to Theorem 7.2.3 can now be used to define a (one-sided)
hypothesis test on level α. Let Q denote the asymptotic quadratic-form distribution obtained
in Theorem 7.2.3, and let q1−α be its (1− α)-quantile. Then, we reject the null if

PE(p̂) < 1− K

n · 2 log(K)
q1−α.

In case of considering types, further statistics than just the PE are possible. Bandt and
Wittfeld [12] have proposed

τ = p(1) − 1/3 and κ = p(2) − p(3),

which have range [−1/3, 2/3] and [−1, 1], respectively, and become zero under the null. As
an alternative, they have proposed

τ ′ = p(3) − 1/3 and κ′ = p(1) − p(2).

We denote the respective test statistics by τ̂ = Z1−1/3, κ̂ = Z2−Z3, τ̂
′ = Z3−1/3 and

κ̂′ = Z1 − Z2, where Z = (Z1, Z2, Z3)
⊤ (recall that K = 3). Then, adapting the derivation

of Corollary 3.1 in [88] to (7.13), we obtain that under the null, the vectors (τ̂ , κ̂) and (τ̂ ′, κ̂′)

are asymptotically normally distributed, namely
√
n(τ̂ , κ̂)

D−→ N(0,Σ′) and
√
n(τ̂ ′, κ̂′)

D−→
N(0,Σ′′), where

Σ′ =
2

9

(
1 0
0 3

)
+
(
1− 1

n

)
· 1

90

(
1 1
1 5

)
≈ 1

90

(
21 1
1 65

)

Σ′′ =
2

9

(
1 0
0 3

)
+
(
1− 1

n

)
· 1

45

(
1 0
0 1

)
≈ 1

45

(
11 0
0 31

) (7.15)

for n large. On this basis, Weiß and Kim [88] defined four kinds of hypothesis test on level
α. As an illustrative example, the null is rejected by the τ ′-test if

√
n |τ̂ ′| > z1−α/2

√
2

9
+

1

45

(
1− 1

n

)
, (7.16)

where z1−α/2 again denotes the (1 − α/2)-quantile of the standard normal distribution. For
large n, one may use the respective approximate expression for the variance in (7.15) instead.
In our simulation study in Section 7.3, we have used the critical values based on the exact
variances.
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7.3 Performance of Dependence Tests

In this section, the finite-sample performance of the novel dependence tests is investigated
by simulations. While we considered all statistics discussed before in our simulation study,
we restrict our presentation to the PE of 2nd-order MOPs (MOP2) from Corollary 7.1.3,
the PE of 3rd-order MOPs (MOP3) from Corollary 7.1.4, the dependence measures OPD2

and OPD3 from Corollary 7.1.6, and to two-SOP-based statistics, namely the PE of types
(PEtyp) from (7.14) as well as τ ′ from (7.16), because these six statistics generally turned out
to perform best. Compare in this regard the recommendation in Bandt and Wittfeld [12],
who preferred τ and κ in the context of image analysis instead of τ ′, and Weiß and Kim [88].
As the competitors, we use the classical Pearson’s and Spearman’s correlation (“Pears” and
“Spear”, respectively) as well as the rank-based Chatterjee’s correlation coefficient (CCC)
from Chatterjee [22], which has recently become quite popular. Note that Chatterjee con-
stitutes a directed measure of dependence, so we always consider both versions, CCC12 and
CCC21.

Throughout our simulations, we considered time series of i.i.d. pairs (Xt,1, Xt,2)t=1,...,n

of length n ∈ {50, 100, 250, 500} and 10,000 repetitions. The nominal level of the tests was
chosen as 5%. Moreover, as identically distributed components (which hardly ever holds in
practice) are required for the SOPs to be uniformly distributed (under the null of indepen-
dence), and as the SOP distribution is very sensitive to different scalings in the respective
components in particular, we applied the SOP-based statistics only after first performing
a standardization of the components: Given (X1,1, X1,2), . . . , (Xn,1, Xn,2), we computed the
component-wise sample means x1, x2 and sample standard deviations s1, s2. Then, we substi-
tuted the original data Xt,i by Yt,i = (Xt,i−xi)/si for i = 1, 2, and applied the SOP statistics
to these standardized data afterwards. All other tests were performed on the original (non-
standardized) data.

All computations of this section (as well as the subsequent data analyses) have been carried
out in R, where we used the packages “ordinalpattern” and “xicor” for the computation
of OPDd and Chatterjee’s coefficients (as well as p-values of the latter), respectively. The
results are tabulated in Appendix A.2.

7.3.1 Analysis of Sizes

The starting point of our discussion is size analysis, i.e., if (Xt,1, Xt,2)t∈N has independent
components. There, we have investigated the following scenarios:

1. Both components are identically distributed according to

N-N: Xt,1, Xt,2 ∼ N(0, 1);

E1-E1: Xt,1, Xt,2 ∼ Exp(1);

P1-P1: Xt,1, Xt,2 ∼ Poi(1).

Here, N(0, 1) denotes the standard normal distribution, Exp(1) the exponential distri-
bution with parameter value 1, and Poi(1) the Poisson distribution with mean 1.

2. The components have distributions from different continuous distribution families:

N-E1: Xt,1 ∼ N(0, 1) but Xt,2 ∼ Exp(1).
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3. Components have distributions from different distribution families, where at least one
component is discrete-valued:

N-P1: Xt,1 ∼ N(0, 1), but Xt,2 ∼ Poi(1);

N-P5: Xt,1 ∼ N(0, 1), but Xt,2 ∼ Poi(5).

Note that if a component Xt,i is discrete-valued with the range being coded by integers, as
it is the case here for the Poisson-distribution, then ordinal pattern-based statistics require
to first apply “jittering” to that component, see [52, 89], the randomization by standard-
uniform noise. The same applies to Chatterjee’s correlation coefficient, see [22], while we have
computed the classical cross-correlations from the original data (without noise). For example,
in the last scenario, we have considered a second component of the form Xt,2 = Zt + εt
with Zt ∼ Poi(5) and εt ∼ U[0, 1], a uniform distribution on [0, 1], except for the classical
correlations.

We report the tests’ empirical sizes in Table A.5 in Appendix A.2.1. The rejection rates
of most statistics are reasonably close to the nominal level of 5 % except for MOP3. There,
oversizing for small sample sizes n ∈ {50, 100} can be recognized. However, this is not sur-
prising. There are (3!)2 = 36 MOPs of length d = 3, to which only n − 2 MOPs stemming
from the sample of size n can be assigned. Therefore, for small sample sizes, the MOP distri-
bution can deviate from the uniform distribution quite easily. On the contrary, the empirical
size converges to the theoretical significance level quite fast for larger sample sizes, and it is
already quite close to the significance level for n = 250. At this point, also note that the
scenario at hand does not seem to have a strong influence on the degree of oversizing. In this
context, it is also worth noting that the SOP-based statistics hold the level reasonably well
also in the mixed cases N-E1, N-P1, and N-P5. While we performed a component-wise
standardization prior to SOP computation, this does still not ensure an identical distribu-
tion across the components (only equal means and variances). Nevertheless, the SOP-based
statistics appear to be robust against the remaining deviations from identical distributions.

7.3.2 Analysis of Sizes under Outliers

In this section, we still restrict to mutually independent components such that the null
hypothesis is satisfied. But now, we complement our analysis of sizes by consideration of the
following scenarios, where outliers can be observed.

1. Both components are identically t1-distributed, that is,

t1-t1: Xt,1, Xt,2 ∼ t1.

2. Standard normal variates are randomly contaminated by additive outliers (AOs), which
occur either simultaneously (sim) in both components or not (nsim), and either a few
strong or many weak AOs:

AO10
nsim: 10 percent outliers with mean 1, which occur randomly but non-simul-

taneously in both components;

AO2
nsim: 2 percent outliers with mean 10, which occur randomly but non-simul-

taneously in both components;
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AO10
sim: 10 percent outliers with mean 1, which occur randomly and simulta-

neously in both components;

AO2
sim: 2 percent outliers with mean 10, which occur randomly and simulta-

neously in both components.

From Table A.6, we again observe an oversizing-effect for MOP3. In addition, with regard
to the t1-distributed marginals, there is strong oversizing for SOP-based tests. This can be
explained by the fact that the SOP-based tests require prior standardization, which, in turn,
is affected by the outliers. While both mean and variance are generally sensitive to outliers,
in case of the t1-distribution, these do not even exist anymore. For the same reason, also
the sizes of the Pearson correlation are misleading, being too large for n = 50 (oversizing)
and too small (undersizing) otherwise. Regarding the non-simultaneous outliers, we do not
observe any systematic effects on the rejection rates.

However, this changes for simultaneous outliers. There, oversizing can be noted for all
tests, though to varying extent. In fact, this behavior is reasonable (although not desirable),
as the simultaneous occurrence of outliers causes a kind of positive dependence. In case of
many weak outliers, tests based on Chatterjee’s coefficient are most robust, followed by SOP-
based tests. Apart from the difficulties being typical for MOPs of length d = 3, the rejection
rates for the MOP-based tests (including OPD) are relatively similar, while Pearson’s and
Spearman’s correlation perform worst in comparison. In case of few strong simultaneous
outliers, SOP-based tests are superior followed by MOP2 and OPD2. For larger sample
sizes, even OPD3 and MOP3 outperform Spearman’s and Chatterjee’s coefficients. Pearson’s
correlation is clearly worst with a rejection rate of 100%, as simultaneous outliers cause a
kind of bogus linearity.

Finally, if we compare the tests regarding few strong or many weak outliers, then MOP2,
OPD2 and Spearman’s correlation perform better with regard to few weak, while it is the
other way round for tests based on Pearson’s and Chatterjee’s coefficients. For tests based on
MOP3 and OPD3 as well as SOP-based tests, no notable difference can be reported. Overall,
our proposed tests seem to be more robust with respect to simultaneous outliers.

7.3.3 Power Analysis

For the power analysis without outliers, we have considered the same six scenarios as in the
size analysis, but with additonal cross-dependence. For the sake of uniqueness, we always
used a Gaussian copula for causing cross-dependencies, where the dependence parameter
was set to ±0.3, respectively. The respective results are reported in Tables A.7 and A.8 in
Appendix A.2.2. Except for OPD3 and SOP-based tests, the rejection rates for both tables
are quite similar. Therefore, we first consider the performance for cross-dependence +0.3, and
subsequently, we point out the differences in terms of the rejection rates for cross-dependence
−0.3.

With regard to ordinal pattern-based statistics under cross-dependence +0.3, OPD3 per-
forms best for smaller sample sizes n ∈ {50, 100}, whereas OPD2 has the largest empirical
powers for larger sample sizes n ∈ {250, 500}. A modest performance can be reported for tests
based on SOPs. Interestingly, the rejection rates of Chatterjee’s correlation coefficient are
inferior to every other statistic considered, whereas the best empirical powers are generally
obtained for Pearson’s and Spearman’s correlations.
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For cross-dependence −0.3, the rejection rates for OPD3 clearly deteriorate, which is due
to the fact that we have only considered positive OPD as discussed in Remark 5.1.2, that is,
the co-occurence of the same ordinal patterns while disregarding inversed patterns. Also the
SOP-based statistics perform worse for negative cross-dependence (especially τ ′), although
not to such an extent as OPD3. The ordinal pattern-tests based on MOP2, MOP3, and OPD2,
by contrast, are at most slightly affected by the change in the sign of dependence such that
OPD2 and MOP2 now show the best empirical powers within the ordinal pattern framework.
Also Chatterjee’s correlation coefficient is not affected by the sign of cross-dependence, but
still it shows the worst power performance among all dependence tests.

7.3.4 Power Analysis under Outliers

In order to check the robustness of the power results reported in Section 7.3.3, we have again
complemented our analysis by considering additional outliers, that is, we have considered
cross-dependence (both ±0.3) together with t1-distributed marginals, and or with random
contamination of normal variates by additive non-simultaneous outliers. Note that we do not
consider simultaneous outliers in the context of existing cross-dependence as this would even
intensify the dependence structure. The results are summarized in Table A.9.

Recalling that the SOP-based rejection rates for t1-variates are not interpretable due to
size problems, the relations for the respective empirical powers with regard to the ordinal
pattern framework remain as in the case without outliers (compare Tables A.7 and A.8). In
particular, we recognize that OPD3 and the SOP-based tests show better performance for
positive rather than for negative dependence, whereas MOP2, MOP3, and OPD2 are (nearly)
not affected by the sign of dependence. The latter statement also holds for Chatterjee’s
coefficient, but it again performs worst in most scenarios anyway.

Interestingly, it can be observed that all tests except Pearson show larger rejection rates
for few strong outliers rather than for many weak ones. This is plausible as we are concerned
with non-simultaneous outliers, where more outliers can break the dependence structure in
more places of the time series. For the Pearson test, it is the other way round, i.e., already
few strong outliers or t1-marginals severely deteriorate the power, whereas the power was
robust against only weak outliers.

While the performance of Pearson’s test is severely affected by outliers, the ordinal
pattern-based tests (as well as the test based on Spearman’s correlation, which generally
performs best in the scenarios of Table A.9) are rather robust against outliers. In particular,
the rejection rates for MOP2 and MOP3 for the scenario t1-t1 coincide with the results for
N-N in Tables A.7 and A.8, which is plausible as the t1-distribution is just a continuous
distribution, although tending to produce extreme observations.

7.3.5 Power Analysis for Non-monotone Scenarios

While the dependence scenarios considered so far are rather simple (Gaussian copula with or
without outliers), let us finally investigate some more demanding kinds of cross-dependence.
More precisely, we consider non-monotone dependence structures, which are chosen such that
the components have zero correlation:

Xt,1 ∼ N(0, 1), Xt,2 = f(Xt,1) + εat ,

where functions f are chosen such that E(X f(X)) = 0, while εat ∼ U[−a, a], a > 0, denotes
some noise. Let φ and Φ denote the density and distribution function of a standard normal
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distribution, respectively. Then, we consider data generating processes based on the following
choices of f and a:

abs: f(x) = |x| and a = 0.25;

square: f(x) = x2 and a = 1;

cos: f(x) = cos(x) and a = 0.25;

asym1: f(x) =

{ −Φ(1)
1−Φ(1) · (x+ 1) if x ≤ −1,

x+ 1 if x > −1,
and a = 1;

asym2: f(x) =

{
3φ(1)−Φ(1)

1−Φ(1) · (x+ 1) + 3 if x ≤ −1

x+ 1, if x > −1,
and a = 0.5.

The last two scenarios describe some form of asymmetric monotone dependence, where
asym1 is illustrated by Figure 7.1 (i). There, we can clearly observe similar or oppo-
site/inverse behavior in terms of ups and downs. Note that for asym1 and asym2, the
property E(X f(X)) = 0 was shown by using [91].

The obtained power values are summarized in Table A.10. Since we are concerned with
non-monotone dependencies, it is not surprising that Pearson’s and Spearman’s correlation
coefficients show a poor power performance. In fact, Pearson’s correlation is not powerful
throughout, while we note a certain power for Spearman’s correlation in both asymmetric
scenarios. Nevertheless, its power is worse than for the best ordinal pattern-based tests.

So let us next turn our attention to the ordinal pattern-based tests in Table A.10. Among
the MOP-based tests, MOP3 and OPD3 exhibit better power than MOP2 and OPD2. This is
plausible as MOP3 and OPD3 are based on three consecutive data points such that they can
account for the apparent non-monotonicity (recall Figure 7.1 (i) and (ii)). For the SOP-based
tests, the PE of the types performs better than the τ ′, and in the case of asym2, it even
outperforms the MOP-based tests. Recall that τ ′ solely focuses on type 3 whereas the PE of
types considers all three types jointly. So in case of the non-monotone dependencies, it seems
that all three types provide useful information on the actual dependence structure, whereas
in the previous scenarios, it was often sufficient to concentrate on type 3 only.

Let us conclude the discussion with a look at Chatterjee’s coefficient. While it showed a
very poor power performance in the “standard scenarios” of Sections 7.3.3 and 7.3.4, it excels
in all non-monotone cases with a rejection rate of (almost) 100% for n ≥ 50 (provided that
the considered direction of dependence is correct). So Chatterjee’s coefficient seems to have
a highly specialized field of application, whereas the OPD3-test, for example, is universally
applicable, with reasonable power for both monotone and non-monotone dependencies.

All in all, dependence tests based on multivariate extensions of ordinal patterns constitute
a valuable complement to the classical dependence tests. They perform reasonably well across
various kinds of dependence, and they are robust with respect to outliers. The existing tests
appear to have quite specialized fields of application (Pearson correlation only linear and
without outliers, Spearman correlation only monotone, Chatterjee’s coefficient only non-
monotone), whereas the proposed ordinal pattern-based tests may be used to fill these gaps
and constitute more of an all-rounder.
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(i) (ii)

(iii)
MOP2 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

value 0.854 0.584 0.234 0.688 -0.282 0.001 -0.036 -0.058 0.021
decision 1 1 1 1 1 0 0 0 0

Figure 7.3: Cascade process data of Section 7.4.1: (i) time series plot and (ii) scatterplot of the
first input and output variable. Test statistics and decisions in (iii), where “1” (“0”) indicates
(non-)rejection at 5% level.

7.4 Data Applications

In the following, we apply our novel ordinal pattern-based test statistics as well as the pre-
viously considered competitors to two real-world data examples. The first data set in Sec-
tion 7.4.1 consists of sequentially observed input and output variables, which makes it a
candidate for a regression model after first having analyzed the cross-dependence structure.
The second data set in Section 7.4.2 refers to measurements at three sites on a product wafer
for consecutive lots.

7.4.1 Cascade Process Data

The first example are the cascade process data taken from [59, Table 11.5]. The eleven
process variables have an inherent hierarchy, namely nine input variables and two output
variables (with sample size n = 40). For illustrative purposes, we focus on the dependence
between the first input and first output variable. As we shall see, these two variables exhibit
a demanding dependence structure. In addition, this combination of variables contains only
few ties, namely zero ties for ordinal patterns of length 2, and two ties for ordinal patterns of
length 3. For SOPs and MOPs, these are captured by definition, whereas we have used the
randomization predefined in the respective R-packages “ordinalpattern” and “xicor”. The
cascade data are plotted in Figure 7.3. While the scatterplot does not exhibit a pronounced
dependence structure, one can note a simultaneous up and down behavior in the time series
plot.

The computed statistics as well as the respective test decisions at level 5% are given in
Figure 7.3 (iii), where ‘1’ denotes rejection of the null. Note that we omitted the MOP3-
test due to the size problems for small sample sizes (here: n = 40), recall Section 7.3.1.
It is immediately apparent that all the ordinal pattern-based statistics reject the null. By
contrast, none of the competitors leads to a rejection of null of independence. These opposite
test decisions can be explained by the aforementioned discrepancy between scatterplot and
time series plot, where only the latter shows the coupled behavior of input and output variable.
Hence, our novel ordinal pattern-based tests constitute a valuable complement of the existing
tests for cross-dependence.
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(i) (ii)

(iii)

MOP2 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

n = 74 value 0.955 0.285 0.300 0.981 -0.087 0.668 0.436 0.111 0.060
decision 1 1 1 0 0 1 1 0 0

n = 73 value 0.958 0.276 0.291 0.983 -0.083 0.404 0.413 0.057 0.116
decision 1 1 1 0 0 1 1 0 0

Figure 7.4: Product wafer data of Section 7.4.2: (i) time series plot and (ii) scatterplot of the
first input and output variable. Test statistics and decisions in (iii), where “1” (“0”) indicates
(non-)rejection at 5% level.

7.4.2 Product Wafer Data

The second data set consists of trivariate observations, measured at three sites on a product
wafer from a photolithographic process, for n = 74 consecutive lots, which is taken from [40,
Appendix A]. Here, we have considered the observations for Sites 1 and 2, see the plots in
Figure 7.4. However, the data exhibit a single simultaneous outlier in lot 40. It is well known
that Pearson’s correlation is sensitive with respect to outliers, also recall our simulation study
in Sections 7.3.2 and 7.3.4, whereas our ordinal pattern-based tests turned out to be robust.
Therefore, to further investigate the possible effect of an outlier on the different dependence
measures, let us not only analyze the full data set, but also the subset where the outlier in
Figure 7.4 is omitted (thus n = 73).

The obtained results are summarized in Figure 7.4 (iii), where we again omitted the
MOP3-test due to the small sample sizes. Interestingly, MOP2, OPD2, and OPD3 as well as
Pearson’s and Spearman’s correlations indicate significant dependence between these sites of
a wafer, whereas both SOP-based tests, i.e., the PE of types and τ ′, as well as Chatterjee’s
coefficient do not. However, the decision to reject the null of independence appears reasonable
as observations at different sites on a wafer are often correlated in practice, see [40, p. 346].
The most interesting feature of the product wafer data is the outlier at t = 40. If comparing
the statistics for the reduced data set (row “n = 73” in (iii)) to those of the full data set (row
“n = 74”), we observe that our statistics and Spearman’s correlation are robust against the
single outlier. This is not the case for Chatterjee’s coefficient and especially for the Pearson
correlation, although the test decision itself is not affected in this case. Altogether, the
robustness against outliers for our novel ordinal pattern-based tests is an appealing property
for applications in practice.

7.5 Interim Conclusion

In this chapter, we developed ordinal pattern-based methods for uncovering various forms of
cross-dependence in sequentially observed random vectors. The main approaches are statistics
related to MOPs, where we considered permutation entropy and OPD. Furthermore, we also
showed that SOPs can be adapted to this framework, although they were originally developed
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for spatial data. For all considered statistics, we derived closed-form asymptotics, which allow
for a computationally efficient implementation of the corresponding non-parametric tests for
cross-dependence. In a comprehensive simulation study, we analyzed the size and power
properties of our novel tests compared to popular competitors. It turned out that the ordinal
pattern-based tests constitute a valuable complement to the classical dependence tests. They
show an appealing performance across various kinds of dependence as well as robustness with
respect to outliers. They are less specialized than the existing tests and constitute more of
an all-rounder. Finally, we illustrated the practical application of our tests by two real-world
data examples.

There are various directions for future research. In Section 7.2, we restricted to SOPs of
length d = 2 in view of keeping the complexity at a feasible level. However, SOPs of length
d > 2 might be better able to uncover non-monotone forms of dependence (in analogy to
MOP3 and OPD3). In order to obtain manageable asymptotics, one could try to find an
appropriate partition for such SOPs with d > 2 (see Remark 7.2.2). As a second topic for
future research, one could try to combine the approach of MOPs from Section 7.1.1 with the
generalized ordinal patterns considered by Weiß and Schnurr [89]. Doing this, it might be
possible to get an improved power performance for discrete-valued bivariate data. Finally,
a sequential implementation of our proposed MOP-tests appears desirable for practice, e.g.,
by developing corresponding control charts in analogy to Weiß and Testik [90]. This would
allow for an online monitoring of the bivariate time series in order to detect changes in the
cross-dependence structure.

However, our approaches are still limited to i.i.d pairs. Even though this has many
practical application, e.g., in the field of manufacturing, this means that we cannot directly
apply our theory to serially dependent time series. Further development of the theory in
this respect could also be interesting for future research, although it is not yet clear to what
extent it could be used for hypothesis testing in terms of size and power.
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8 Conclusion and Outlook

Motivated by the advantages of ordinal patterns if compared to classical methods, we have
made various contributions to the ordinal pattern analysis throughout this thesis. First
and foremost is a comprehensive comparative analysis of different representations of classical
ordinal patterns (Chapter 3), which is extended to multivariate generalizations of ordinal
patterns in Chapter 6.

In Chapter 4 we have complemented the work of Caballero-Pintado et al. [21] by deriving
limit theorems for the symbolic correlation integral, and hence also the Rényi-2 permutation
entropy, for the short-range dependent case. Furthermore, we have provided a consistent
estimator for the limit variance. All in all, this allows to test whether two data series stem
from the same data generating processes.

However, challenges arise for the cases where the limit variance equals zero as it is, e.g.,
in the i.i.d. case (see Proposition 4.4.1). There, the limit distribution follows a one-point
distribution. In this particular example, the results of Caballero-Pintado et al. [21] can be
used, who considered the i.i.d. case with regard to another convergence rate, but caution
is advised in the other cases. This highlights how little is known about ordinal pattern
distributions stemming from classical models of time series analysis. To our knowledge, so
far only Gaussian and ARMA-models haven been addressed (see Bandt and Shiha [11]).
Therefore, this gap should become subject of future research. Another direction for future
research is to use the above limit theorems to develop a test for time-reversibility or even
Gaussianity.

In Chapter 5 we have corrected a result by Betken et al. [17] and have proved that
OPD does not satisfy concordance ordering. Grothe et al. [32] have imposed this condition in
their proposed axiomatic framework for multivariate measures of dependence between random
vectors of same dimension. Arguably one could have formulated this axiom differently. As an
example, we have considered supermodular ordering as a special case of concordance ordering.
In this regard we have proved that our counterexamples already fulfill supermodular ordering.
Hence, OPD does not respect supermodular ordering either. However, making an alteration
to the assumptions of concordance ordering, we have shown that OPD satisfies ordering
defined in terms of (conditional) cdfs and (conditional) survival functions, though these sets
of assumptions are less intuitive and very difficult to check in practice.

All the orderings considered so far operate on the level of the actual values of the random
vectors. Since OPD works on the level of ordinal patterns, that is, the relation of consecutive
elements in terms of position and rank, here it seems to be more appropriate to consider an
ordering which also operates on this level. Establishing such an order relation remains future
research.

In Chapter 7, we have introduced a general framework for dependence tests between time
series under the assumption of serial independence with regard to multivariate extensions
of ordinal patterns. This also includes OPD as it can be embedded into the context of
multivariate ordinal patterns. To this end, we have proved general limit theorems of multi-
variate pattern distributions. These encompass some existing results. Based on the derived
asymptotics, we have proposed non-parametric tests for cross-dependence. We have done a
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comprehensive simulation study of our novel tests where we have analyzed their performance
compared to popular competitors. There, we have shown that our ordinal pattern-based
tests constitute a valuable complement to the classical dependence tests. In particular, we
would like to emphasize that our tests are less specialized than the existing ones and hence,
constitute more of an all-rounder.

Our contributions open up various directions for future research. First of all, consideration
of SOPs of length d > 2 might be better suited to uncover forms of non-monotone dependence.
In this regard, an appropriate partition of such SOPs would be reasonable in order to keep
the asymptotics as well as the computational costs manageable. Furthermore, it would be
interesting to explore the effects of generalized MOPs (as well as SOPs) in terms of generalized
ordinal patterns. Finally, we suggest the development of corresponding control charts to allow
for an online monitoring for changes in the cross-dependence structure.
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A Appendix

A.1 Computation of Cross-Covariance Matrices

A.1.1 Ordinal Patterns of Length d = 2

To compute the cross-covariance matrix Σ for d = 2, we need to compute the 3 × 3 blocks
according to (7.3). All blocks except the one at position (3, 3) can be computed from the
covariances σk,l given in formula (13) of [87], namely

(σk,l)k,l=1,2 =
1

12

(
1 −1

−1 1

)
,

by just applying formulae (7.4) to blocks (1, 1) and (2, 2), (7.5) to blocks (1, 2) and (2, 1), (7.6)
to blocks (1, 3) and (2, 3), and (7.7) to blocks (3, 1) and (3, 2). The block at position (3, 3),
in turn, is computed via (7.8), where generally p(k,l)(0) = 1/d! · (δkl−1/d!) with δkl := 1{k=l}
denoting the Kronecker delta, and where(

p(k,l)(1)
)
k,l=1,2

=

(
1/6 1/3
1/3 1/6

)
for d = 2 according to formula (12) in [87]. The resulting expression for Σ is shown in
Table A.1.

Table A.1: Entries of the matrix 144 ·Σ for d = 2.

12 -12 0 0 6 6 -6 -6
-12 12 0 0 -6 -6 6 6

0 0 12 -12 6 -6 6 -6
0 0 -12 12 -6 6 -6 6

6 -6 6 -6 17 -11 -11 5
6 -6 -6 6 -11 17 5 -11
-6 6 6 -6 -11 5 17 -11
-6 6 -6 6 5 -11 -11 17

A.1.2 Ordinal Patterns of Length d = 3

The case d = 3 is computed in the same way as in Appendix A.1.1, but the involved ex-
pressions for σk,l and p(k,l)(h) differ. According to Section III.B in [87], these are given
by

(
p(k,l)(1)

)
k,l=1,...,6

=
1

24



1 1 0 2 0 0
0 0 1 0 1 2
1 2 0 1 0 0
0 0 1 0 2 1
2 1 0 1 0 0
0 0 2 0 1 1

 ,
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by

(
p(k,l)(2)

)
k,l=1,...,6

=
1

120



1 1 3 3 6 6
3 3 4 4 3 3
1 1 3 3 6 6
6 6 3 3 1 1
3 3 4 4 3 3
6 6 3 3 1 1

 ,

and by

(σk,l)k,l=1,...,6 =
1

360



46 −23 −23 7 7 −14
−23 28 10 −20 −2 7
−23 10 28 −2 −20 7

7 −20 −2 28 10 −23
7 −2 −20 10 28 −23

−14 7 7 −23 −23 46

 .

The resulting expression for Σ is shown in Table A.2.
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A.1.3 Spatial Ordinal Patterns of Dimension d = 2

Table A.3 shows the entries of the matrix H, whereas Table A.4 provides the large sample
approximation of Σ̃ according to (7.12):

Σ̃ ≈ diag(p)− pp⊤ + H+H⊤ − 2pp⊤.

Table A.3: Entries of matrix 720 ·H, where row horizontally before column, see [88].

π(1) π(2) π(3) π(4) π(5) π(6) π(7) π(8) π(9) π(10) π(11) π(12) π(13) π(14) π(15) π(16) π(17) π(18) π(19) π(20) π(21) π(22) π(23) π(24)

π(1) 2 3 1 3 1 2 2 4 0 4 0 2 0 3 0 3 0 0 0 0 0 0 0 0

π(2) 2 1 3 1 3 2 4 2 0 2 0 4 0 3 0 3 0 0 0 0 0 0 0 0

π(3) 1 1 1 1 1 1 3 3 0 3 0 3 0 6 0 6 0 0 0 0 0 0 0 0

π(4) 0 0 0 0 0 0 0 0 3 0 3 0 4 0 2 0 2 4 2 3 1 3 1 2

π(5) 0 0 0 0 0 0 0 0 1 0 1 0 3 0 1 0 1 3 3 6 1 6 1 3

π(6) 0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 2 2 4 3 3 3 3 4

π(7) 3 6 1 6 1 3 1 3 0 3 0 1 0 1 0 1 0 0 0 0 0 0 0 0

π(8) 4 3 3 3 3 4 2 2 0 2 0 2 0 1 0 1 0 0 0 0 0 0 0 0

π(9) 1 1 1 1 1 1 3 3 0 3 0 3 0 6 0 6 0 0 0 0 0 0 0 0

π(10) 0 0 0 0 0 0 0 0 3 0 3 0 2 0 4 0 4 2 2 1 3 1 3 2

π(11) 0 0 0 0 0 0 0 0 1 0 1 0 3 0 1 0 1 3 3 6 1 6 1 3

π(12) 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3 0 3 1 3 1 6 1 6 3

π(13) 3 6 1 6 1 3 1 3 0 3 0 1 0 1 0 1 0 0 0 0 0 0 0 0

π(14) 3 1 6 1 6 3 3 1 0 1 0 3 0 1 0 1 0 0 0 0 0 0 0 0

π(15) 2 3 1 3 1 2 2 4 0 4 0 2 0 3 0 3 0 0 0 0 0 0 0 0

π(16) 0 0 0 0 0 0 0 0 6 0 6 0 3 0 3 0 3 3 1 1 1 1 1 1

π(17) 0 0 0 0 0 0 0 0 1 0 1 0 2 0 2 0 2 2 4 3 3 3 3 4

π(18) 0 0 0 0 0 0 0 0 1 0 1 0 1 0 3 0 3 1 3 1 6 1 6 3

π(19) 4 3 3 3 3 4 2 2 0 2 0 2 0 1 0 1 0 0 0 0 0 0 0 0

π(20) 3 1 6 1 6 3 3 1 0 1 0 3 0 1 0 1 0 0 0 0 0 0 0 0

π(21) 2 1 3 1 3 2 4 2 0 2 0 4 0 3 0 3 0 0 0 0 0 0 0 0

π(22) 0 0 0 0 0 0 0 0 6 0 6 0 3 0 3 0 3 3 1 1 1 1 1 1

π(23) 0 0 0 0 0 0 0 0 3 0 3 0 4 0 2 0 2 4 2 3 1 3 1 2

π(24) 0 0 0 0 0 0 0 0 3 0 3 0 2 0 4 0 4 2 2 1 3 1 3 2

Table A.4: Entries of matrix 2880 · Σ̃, where Σ̃ denotes the large-sample approximation to (7.12).

π(1) π(2) π(3) π(4) π(5) π(6) π(7) π(8) π(9) π(10) π(11) π(12) π(13) π(14) π(15) π(16) π(17) π(18) π(19) π(20) π(21) π(22) π(23) π(24)

π(1) 121 5 −7 −3 −11 −7 5 17 −11 1 −15 −7 −3 9 −7 −3 −15 −15 1 −3 −7 −15 −15 −15

π(2) 5 113 1 −11 −3 −7 25 5 −11 −7 −15 1 9 1 −3 −3 −15 −15 −3 −11 −11 −15 −15 −15

π(3) −7 1 113 −11 −11 −11 1 9 −11 −3 −15 −3 −11 33 −11 9 −15 −15 −3 9 −3 −15 −15 −15

π(4) −3 −11 −11 105 −15 −15 9 −3 1 −15 −3 −15 25 −11 5 −15 −7 1 5 1 −7 −3 −11 −7

π(5) −11 −3 −11 −15 105 −15 −11 −3 −7 −15 −11 −15 1 9 −7 −15 −11 −3 9 33 1 9 −11 −3

π(6) −7 −7 −11 −15 −15 105 −3 1 −7 −15 −11 −15 5 −3 1 −15 −7 −7 17 9 5 −3 −3 1

π(7) 5 25 1 9 −11 −3 113 5 −3 −3 −15 −11 −11 1 −7 −11 −15 −15 −7 −3 1 −15 −15 −15

π(8) 17 5 9 −3 −3 1 5 121 −3 −7 −15 −7 −3 −7 1 −11 −15 −15 −7 −11 −7 −15 −15 −15

π(9) −11 −11 −11 1 −7 −7 −3 −3 105 9 −11 1 −15 9 −15 33 −11 −11 −15 −15 −15 9 −3 −3

π(10) 1 −7 −3 −15 −15 −15 −3 −7 9 105 −3 −15 5 −11 17 −15 1 −7 1 −7 5 −11 −3 −7

π(11) −15 −15 −15 −3 −11 −11 −15 −15 −11 −3 113 −11 −3 −15 −11 9 −7 1 −3 9 −11 33 1 9

π(12) −7 1 −3 −15 −15 −15 −11 −7 1 −15 −11 105 −7 −3 5 −15 −3 −11 5 1 25 −11 9 −3

π(13) −3 9 −11 25 1 5 −11 −3 −15 5 −3 −7 105 −11 −15 1 −7 −11 −15 −15 −15 −3 1 −7

π(14) 9 1 33 −11 9 −3 1 −7 9 −11 −15 −3 −11 113 −3 −11 −15 −15 −11 −11 −3 −15 −15 −15

π(15) −7 −3 −11 5 −7 1 −7 1 −15 17 −11 5 −15 −3 105 9 −7 −3 −15 −15 −15 −3 −7 1

π(16) −3 −3 9 −15 −15 −15 −11 −11 33 −15 9 −15 1 −11 9 105 −3 −3 −7 −7 1 −11 −11 −11

π(17) −15 −15 −15 −7 −11 −7 −15 −15 −11 1 −7 −3 −7 −15 −7 −3 121 5 1 −3 −3 9 5 17

π(18) −15 −15 −15 1 −3 −7 −15 −15 −11 −7 1 −11 −11 −15 −3 −3 5 113 −3 −11 9 1 25 5

π(19) 1 −3 −3 5 9 17 −7 −7 −15 1 −3 5 −15 −11 −15 −7 1 −3 105 −15 −15 −11 −7 −7

π(20) −3 −11 9 1 33 9 −3 −11 −15 −7 9 1 −15 −11 −15 −7 −3 −11 −15 105 −15 −11 −3 −11

π(21) −7 −11 −3 −7 1 5 1 −7 −15 5 −11 25 −15 −3 −15 1 −3 9 −15 −15 105 −11 −11 −3

π(22) −15 −15 −15 −3 9 −3 −15 −15 9 −11 33 −11 −3 −15 −3 −11 9 1 −11 −11 −11 113 1 −7

π(23) −15 −15 −15 −11 −11 −3 −15 −15 −3 −3 1 9 1 −15 −7 −11 5 25 −7 −3 −11 1 113 5

π(24) −15 −15 −15 −7 −3 1 −15 −15 −3 −7 9 −3 −7 −15 1 −11 17 5 −7 −11 −3 −7 5 121
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A.2 Simulation Study

A.2.1 Analysis of Sizes

Tables A.5 and A.6 show the rejection rates for the scenarios described in Sections 7.3.1 and
7.3.2, respectively. The strongly oversized values, i.e., where the simulated size is ≥ 0.10, are
indicated in italics.

Table A.5: Empirical sizes for the scenarios described in Section 7.3.1 for varying sample sizes n and
nominal level 5%.

n π2 π3 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

N-N 50 0.056 0.179 0.051 0.047 0.054 0.042 0.053 0.049 0.047 0.045
100 0.054 0.128 0.046 0.052 0.048 0.052 0.048 0.045 0.046 0.049
250 0.051 0.066 0.050 0.050 0.047 0.048 0.051 0.052 0.050 0.054
500 0.048 0.060 0.051 0.052 0.051 0.051 0.052 0.052 0.048 0.049

E1-E1 50 0.050 0.178 0.049 0.043 0.053 0.041 0.051 0.052 0.051 0.047
100 0.053 0.121 0.045 0.048 0.049 0.052 0.050 0.050 0.049 0.053
250 0.051 0.068 0.051 0.049 0.050 0.045 0.050 0.050 0.050 0.049
500 0.049 0.059 0.052 0.053 0.050 0.054 0.050 0.051 0.049 0.053

P1-P1 50 0.051 0.180 0.050 0.047 0.055 0.040 0.049 0.052 0.044 0.048
100 0.057 0.127 0.048 0.049 0.050 0.053 0.048 0.049 0.048 0.050
250 0.050 0.067 0.051 0.050 0.050 0.047 0.051 0.051 0.050 0.047
500 0.050 0.061 0.052 0.049 0.051 0.053 0.046 0.048 0.051 0.051

N-E1 50 0.052 0.177 0.053 0.045 0.058 0.041 0.053 0.051 0.047 0.050
100 0.055 0.129 0.048 0.054 0.055 0.058 0.052 0.054 0.050 0.052
250 0.054 0.067 0.050 0.048 0.065 0.053 0.052 0.049 0.049 0.049
500 0.053 0.057 0.054 0.052 0.079 0.062 0.049 0.049 0.051 0.050

N-P1 50 0.051 0.182 0.048 0.045 0.060 0.044 0.048 0.045 0.046 0.046
100 0.052 0.130 0.044 0.049 0.050 0.052 0.052 0.051 0.050 0.050
250 0.053 0.068 0.052 0.049 0.048 0.047 0.047 0.051 0.048 0.050
500 0.049 0.055 0.053 0.049 0.053 0.051 0.047 0.047 0.050 0.051

N-P5 50 0.051 0.181 0.048 0.042 0.057 0.045 0.050 0.047 0.045 0.046
100 0.054 0.130 0.047 0.050 0.050 0.050 0.052 0.055 0.051 0.045
250 0.051 0.071 0.052 0.048 0.050 0.044 0.047 0.049 0.044 0.049
500 0.051 0.061 0.052 0.052 0.049 0.049 0.047 0.046 0.053 0.047

Table A.6: Empirical sizes for the scenarios described in Section 7.3.2 for varying sample sizes n and
nominal level 5%.

n π2 π3 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

t1-t1 50 0.056 0.179 0.051 0.047 0.229 0.193 0.061 0.049 0.047 0.045
100 0.054 0.128 0.046 0.052 0.346 0.328 0.044 0.045 0.046 0.049
250 0.051 0.066 0.050 0.050 0.510 0.468 0.037 0.052 0.050 0.054
500 0.048 0.060 0.051 0.052 0.623 0.585 0.029 0.052 0.048 0.049

AO10
nsim 50 0.054 0.186 0.051 0.045 0.058 0.044 0.047 0.049 0.046 0.047

100 0.049 0.128 0.045 0.051 0.045 0.052 0.049 0.051 0.047 0.051
250 0.054 0.073 0.052 0.051 0.050 0.045 0.051 0.052 0.051 0.048
500 0.051 0.058 0.052 0.053 0.047 0.048 0.050 0.051 0.050 0.049

AO2
nsim 50 0.050 0.175 0.047 0.043 0.053 0.039 0.028 0.049 0.047 0.046

100 0.054 0.131 0.047 0.050 0.051 0.058 0.051 0.054 0.047 0.047
250 0.053 0.075 0.052 0.054 0.055 0.050 0.056 0.049 0.052 0.051
500 0.053 0.060 0.051 0.053 0.052 0.051 0.050 0.053 0.051 0.052

AO10
sim 50 0.065 0.186 0.062 0.072 0.058 0.043 0.085 0.075 0.058 0.053

100 0.072 0.150 0.063 0.087 0.048 0.055 0.128 0.109 0.057 0.059
250 0.111 0.105 0.112 0.118 0.065 0.065 0.259 0.209 0.068 0.063
500 0.157 0.133 0.165 0.166 0.087 0.089 0.455 0.366 0.072 0.065

AO2
sim 50 0.056 0.181 0.052 0.064 0.057 0.043 1.000 0.058 0.054 0.056

100 0.061 0.141 0.052 0.077 0.051 0.055 1.000 0.076 0.099 0.102
250 0.086 0.103 0.085 0.118 0.060 0.059 1.000 0.147 0.198 0.199
500 0.121 0.123 0.124 0.164 0.074 0.084 1.000 0.253 0.354 0.342
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A.2.2 Power Analysis

Tables A.7–A.10 show the rejection rates for the scenarios described in Sections 7.3.3–7.3.5,
respectively. Those empirical powers, which are not interpretable due to the size problems
indicated in Appendix A.2.1, are written in italic font. The best empirical powers among the
remaining OP-statistics are printed in bold font.

Table A.7: Empirical powers for the scenarios described in Section 7.3.3 with cross-dependence +0.3
for varying sample sizes n and nominal level 5%.

n π2 π3 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

N-N 50 0.233 0.341 0.229 0.266 0.117 0.110 0.570 0.520 0.138 0.139
100 0.428 0.422 0.411 0.432 0.172 0.210 0.868 0.833 0.193 0.202
250 0.792 0.694 0.800 0.766 0.392 0.454 0.998 0.996 0.356 0.344
500 0.975 0.953 0.978 0.960 0.699 0.758 1.000 1.000 0.543 0.535

E1-E1 50 0.233 0.341 0.229 0.266 0.121 0.116 0.449 0.520 0.138 0.139
100 0.428 0.422 0.411 0.432 0.189 0.229 0.719 0.833 0.193 0.202
250 0.792 0.694 0.800 0.766 0.402 0.470 0.978 0.996 0.356 0.344
500 0.975 0.953 0.978 0.960 0.703 0.768 1.000 1.000 0.543 0.535

P1-P1 50 0.161 0.273 0.159 0.186 0.090 0.075 0.438 0.428 0.102 0.108
100 0.277 0.303 0.261 0.281 0.118 0.142 0.725 0.717 0.140 0.137
250 0.579 0.471 0.586 0.554 0.252 0.292 0.982 0.982 0.225 0.228
500 0.856 0.772 0.867 0.813 0.478 0.555 1.000 1.000 0.349 0.341

N-E1 50 0.233 0.341 0.229 0.266 0.134 0.133 0.497 0.520 0.138 0.139
100 0.428 0.422 0.411 0.432 0.222 0.280 0.793 0.833 0.193 0.202
250 0.792 0.694 0.800 0.766 0.507 0.582 0.994 0.996 0.356 0.344
500 0.975 0.953 0.978 0.960 0.822 0.875 1.000 1.000 0.543 0.535

N-P1 50 0.186 0.297 0.185 0.216 0.100 0.093 0.497 0.476 0.116 0.117
100 0.349 0.366 0.331 0.352 0.150 0.188 0.807 0.784 0.156 0.167
250 0.683 0.572 0.693 0.650 0.316 0.374 0.993 0.990 0.263 0.284
500 0.933 0.885 0.940 0.901 0.604 0.676 1.000 1.000 0.418 0.440

N-P5 50 0.222 0.334 0.218 0.260 0.106 0.102 0.563 0.521 0.135 0.139
100 0.413 0.418 0.398 0.427 0.169 0.210 0.868 0.834 0.191 0.195
250 0.776 0.680 0.785 0.746 0.369 0.432 0.998 0.996 0.331 0.335
500 0.972 0.947 0.975 0.953 0.686 0.745 1.000 1.000 0.517 0.520

Table A.8: Empirical powers for the scenarios described in Section 7.3.3 with cross-dependence −0.3
for varying sample sizes n and nominal level 5%.

n π2 π3 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

N-N 50 0.233 0.341 0.241 0.083 0.124 0.115 0.570 0.520 0.139 0.138
100 0.428 0.422 0.415 0.243 0.177 0.219 0.868 0.833 0.202 0.193
250 0.792 0.694 0.799 0.588 0.357 0.393 0.998 0.996 0.344 0.356
500 0.975 0.953 0.978 0.896 0.642 0.686 1.000 1.000 0.535 0.543

E1-E1 50 0.233 0.341 0.241 0.083 0.123 0.110 0.372 0.520 0.139 0.138
100 0.428 0.422 0.415 0.243 0.178 0.213 0.702 0.833 0.202 0.193
250 0.792 0.694 0.799 0.588 0.356 0.389 0.982 0.996 0.344 0.356
500 0.975 0.953 0.978 0.896 0.639 0.684 1.000 1.000 0.535 0.543

P1-P1 50 0.161 0.269 0.160 0.061 0.100 0.094 0.400 0.418 0.104 0.107
100 0.275 0.301 0.261 0.154 0.124 0.165 0.712 0.715 0.138 0.136
250 0.569 0.459 0.577 0.386 0.239 0.285 0.981 0.982 0.222 0.224
500 0.859 0.777 0.867 0.719 0.433 0.530 1.000 1.000 0.334 0.339

N-E1 50 0.233 0.341 0.241 0.083 0.116 0.097 0.492 0.520 0.139 0.138
100 0.428 0.422 0.415 0.243 0.156 0.182 0.794 0.833 0.202 0.193
250 0.792 0.694 0.799 0.588 0.330 0.312 0.993 0.996 0.344 0.356
500 0.975 0.953 0.978 0.896 0.601 0.573 1.000 1.000 0.535 0.543

N-P1 50 0.195 0.307 0.201 0.072 0.106 0.103 0.497 0.476 0.115 0.129
100 0.350 0.367 0.336 0.199 0.147 0.184 0.807 0.784 0.161 0.179
250 0.682 0.567 0.691 0.480 0.280 0.319 0.994 0.992 0.257 0.288
500 0.934 0.880 0.941 0.822 0.515 0.588 1.000 1.000 0.410 0.441

N-P5 50 0.228 0.334 0.232 0.085 0.116 0.110 0.562 0.521 0.137 0.139
100 0.424 0.420 0.409 0.236 0.165 0.210 0.865 0.832 0.198 0.199
250 0.771 0.674 0.779 0.565 0.343 0.376 0.997 0.995 0.323 0.332
500 0.974 0.942 0.977 0.889 0.618 0.663 1.000 1.000 0.512 0.526
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Table A.9: Empirical powers for the scenarios described in Section 7.3.4 with cross-dependencies
±0.3 for varying sample sizes n and nominal level 5%.

n π2 π3 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

t1-t1 50 0.233 0.341 0.229 0.266 0.398 0.400 0.172 0.520 0.138 0.139
+0.3 100 0.428 0.422 0.411 0.432 0.581 0.617 0.183 0.833 0.193 0.202

250 0.792 0.694 0.800 0.766 0.827 0.854 0.189 0.996 0.356 0.344
500 0.975 0.953 0.978 0.960 0.951 0.964 0.199 1.000 0.543 0.535

AO10
nsim 50 0.161 0.266 0.157 0.185 0.088 0.078 0.349 0.336 0.100 0.101

+0.3 100 0.277 0.302 0.259 0.286 0.118 0.145 0.617 0.608 0.124 0.122
250 0.565 0.450 0.572 0.553 0.247 0.290 0.944 0.945 0.195 0.192
500 0.850 0.763 0.862 0.830 0.471 0.539 0.999 0.998 0.293 0.295

AO2
nsim 50 0.202 0.306 0.199 0.237 0.103 0.097 0.053 0.453 0.121 0.133

+0.3 100 0.369 0.379 0.351 0.390 0.155 0.190 0.112 0.767 0.183 0.176
250 0.727 0.618 0.736 0.707 0.350 0.403 0.274 0.991 0.318 0.321
500 0.952 0.914 0.956 0.933 0.629 0.702 0.549 1.000 0.492 0.484

t1-t1 50 0.233 0.341 0.241 0.083 0.206 0.135 0.172 0.520 0.139 0.138
−0.3 100 0.428 0.422 0.415 0.243 0.323 0.230 0.183 0.833 0.202 0.193

250 0.792 0.694 0.799 0.588 0.542 0.354 0.189 0.996 0.344 0.356
500 0.975 0.953 0.978 0.896 0.737 0.475 0.199 1.000 0.535 0.543

AO10
nsim 50 0.157 0.273 0.164 0.061 0.092 0.087 0.347 0.335 0.099 0.096

−0.3 100 0.276 0.298 0.263 0.151 0.115 0.149 0.612 0.606 0.127 0.124
250 0.568 0.453 0.579 0.372 0.236 0.264 0.947 0.946 0.195 0.197
500 0.852 0.762 0.862 0.687 0.417 0.484 0.999 0.999 0.295 0.294

AO2
nsim 50 0.203 0.305 0.210 0.078 0.108 0.104 0.073 0.450 0.131 0.120

−0.3 100 0.369 0.377 0.356 0.198 0.150 0.192 0.150 0.765 0.178 0.182
250 0.727 0.620 0.736 0.514 0.321 0.358 0.352 0.991 0.318 0.308
500 0.950 0.914 0.957 0.844 0.568 0.633 0.631 1.000 0.483 0.492

Table A.10: Empirical powers for the scenarios described in Section 7.3.5 for varying sample sizes n
and nominal level 5%.

n π2 π3 OPD2 OPD3 PEtyp τ ′ Pears Spear CCC12 CCC21

abs 50 0.081 0.861 0.081 0.192 0.110 0.054 0.253 0.140 1.000 0.608
100 0.087 0.996 0.076 0.280 0.154 0.060 0.245 0.138 1.000 0.834
250 0.080 1.000 0.082 0.509 0.346 0.054 0.255 0.141 1.000 0.991
500 0.081 1.000 0.085 0.750 0.625 0.062 0.249 0.142 1.000 1.000

square 50 0.075 0.587 0.071 0.132 0.068 0.053 0.346 0.124 0.994 0.361
100 0.075 0.844 0.067 0.174 0.078 0.074 0.343 0.120 1.000 0.554
250 0.070 0.999 0.071 0.316 0.121 0.088 0.352 0.124 1.000 0.835
500 0.073 1.000 0.075 0.497 0.195 0.132 0.351 0.126 1.000 0.976

cos 50 0.084 0.750 0.083 0.172 0.089 0.054 0.277 0.136 1.000 0.490
100 0.081 0.969 0.072 0.233 0.107 0.070 0.263 0.131 1.000 0.705
250 0.081 1.000 0.079 0.414 0.203 0.074 0.274 0.134 1.000 0.950
500 0.074 1.000 0.076 0.659 0.362 0.091 0.271 0.138 1.000 0.998

asym1 50 0.464 0.746 0.456 0.719 0.364 0.283 0.334 0.652 0.999 0.876
100 0.754 0.958 0.742 0.935 0.654 0.586 0.325 0.888 1.000 0.992
250 0.983 1.000 0.985 1.000 0.981 0.945 0.327 0.998 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 0.999 0.320 1.000 1.000 1.000

asym2 50 0.417 0.947 0.405 0.858 0.969 0.173 0.183 0.329 1.000 1.000
100 0.689 0.999 0.678 0.984 1.000 0.327 0.179 0.468 1.000 1.000
250 0.963 1.000 0.967 1.000 1.000 0.611 0.185 0.732 1.000 1.000
500 1.000 1.000 1.000 1.000 1.000 0.869 0.181 0.927 1.000 1.000
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entropy based test for causality: The volume–stock price relation. Physica A: Statistical
Mechanics and its Applications, 398:280–288, 2014.
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test for testing independence between time series. Journal of Time Series Analysis, 31
(2):76–85, 2010.

[58] Marisa Mohr, Florian Wilhelm, Mattis Hartwig, Ralf Möller, and Karsten Keller. New
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the symbolic correlation integral and the Rényi-2 entropy under short-range dependence.
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Notation

Basics and Conventions

N, N0 1, 2, 3, . . . , N0 = N ∪ {0}
]a, b[ , ]a, b] , [a, b[ , [a, b] open, left-open, right-open,

closed interval

R+, R, R ]0,∞[, ]−∞,∞[, [−∞,∞]

n! n factorial

log natural logarithm

ak ∈ O(bk) lim supk→∞
ak
bk

< ∞, Landau

Big O notation

⌊a⌋ max{n ∈ Z : n ≤ a}
a+ max{0, a}
|a| absolute value of a ∈ R
|A| cardinality of a set A

⊂ subset (incl. “=”)

1A indicator function of set A

δkl = 1{k=l} Kronecker delta

x value x

x = (x1, . . . , xd) vector x

x ∧ y (min{x1, y1}, . . . ,min{xd, yd})
x ∨ y (max{x1, y1}, . . . ,max{xd, yd})
0p×r (p× r)-zero matrix

∥·∥ norm

Probabilistic Notation

(Ω,F ,P) probability space

(S,S) state space

A ⊂ F sub-σ-algebra

σ(A), σ(Z) generated σ-algebra

Al
k σ(Zk, . . . , Zl) ⊂ F

X,Y, Z random variable

X,Y,Z random vector

Lp := {X rv : E ∥X∥p < ∞} set of p-integrable random
variables

∥X∥p := (E ∥X∥p)1/p Lp-norm

F,G cumulative distribution
function (cdf)

F ,G survival function

f = fX density function of X

N(µ, σ2) normal distribution

N(µ,Σ) multivariate normal
distribution

Qd quadratic form distributed
random variable

χ2
r χ2-distributed random variable

with r degrees of freedom

⊥⊥ independence

p ∈ [0, 1] probability

p = (p(1), . . . , p(d))⊤ probability mass function
D
= equality in distribution
D−→,

P−→ convergence in distribution,
probability

Time Series Analysis

(Xt)t∈T , (Zt)t∈T stochastic process/time
series

(xt)t∈T , (Xt)t∈T (ω) data, realizations of
(Xt)t∈T

γX(·) autocovariance function of
(Xt)t∈Z weakly stationary

Ordinal Pattern Analysis

π ordinal pattern

d length/order/embedding
dimension of ordinal pattern

Sd set consisting of ordinal
patterns of length d
(symmetric group)

Π : Rd → Sd function which assigns to
each vector its ordinal
pattern

∆ delay parameter

p(j) probability of j-th ordinal
pattern

pj,k joint ordinal pattern
probability

OPDd(X,Y) ordinal pattern dependence
of X,Y

π multivariate ordinal pattern

Π spatial ordinal pattern

S set consisting of spatial
ordinal patterns of fixed
order d

Miscellaneous

I : [0, 1] → R information function I(p)
w.r.t. p

H(p) (Shannon) entropy w.r.t. p

PE(p) permutation entropy w.r.t.
p

Rq(p) Rényi-q entropy w.r.t. p
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Un(h) U-statistic with kernel h

h1 h1(x1) = Eh(x1, X2)

(βk)k∈N0
absolute regularity coefficients

(ak)k∈N0
approximating constants

ϕ : ]0,∞[ → ]0,∞[ p-continuity function

Sd, Sd
n symbolic correlation integral

and its estimator

≼C concordance ordering

≼sm supermodular ordering

Abbrevations

a.s. almost surely

cdf cumulative distribution
function

CLT central limit theorem

i.i.d. independent and identically
distributed

LLN law of large numbers

Lr-NED Lr-near-epoch dependence

MOP multivariate ordinal pattern

P-NED near-epoch dependence in
probability

OPD ordinal pattern dependence

pmf probability mass function

SCI symbolic correlation integral

SOP spatial ordinal pattern
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