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Abstract

Die automatische Erkennung von Emotionen mit Hilfe biologischer Signale ist ein sehr
vielversprechendes Forschungsgebiet in den Gesundheitswissenschaften. Vor allem die
fortschreitende Entwicklung von Wearables und Cloud-Computing ermöglicht eine kon-
tinuierliche Erfassung der Daten und die Erkennung der Emotionen, welche helfen
frühzeitige Diagnosen von psychologischen Erkrankungen wie Depression festzustellen.
Ebenfalls können Therapiemethoden entsprechend dem psychologischen Wohlbefinden
individuell angepasst/gestaltet werden. Gängige Sensordaten hierbei sind der Blutvol-
umenpuls, die Herzrate, die Herzraten-Varibilität, die Hautleitfähigkeit und die Haut-
temperatur. Nach einer Filterung und (statistischen) Merkmalsextraktionen der Signale
werden öfteres maschinelle Lernverfahren zur Klassifizierung benutzt (Support Vector Ma-
chines, K-Nearest-Neighbor, Random-Forest...). Neuerdings gibt es auch Forschungen für
Deep-Learning Methoden wie Convolutional-Neural-Networks. Für die Emotionsklassi-
fizierung gibt es zwei konkrete Emotionenmodelle, das diskrete, in welchem vorbestimmte
Emotionen analysiert und das dimensionale, in welchem Emotionen als Kombination
(Vektoren) aus mehreren Komponenten (Dimensionen) dargestellt werden. Hierbei ist
das zwei dimensionale Model am gängigsten, in welchem eine Achse die Intensität und
die andere die Polung der Emotion darstellt. In dieser Arbeit wurde mittels bereits
durchgeführter Studien, welche das zwei dimensionale Model benutzt haben, unter Be-
trachtung der verfügbaren Sensoren analysiert, ob Wearables eine gute Basis für die
Ermittlung von Emotionen darbieten. Die Analyse zeigt, dass Wearables vielversprechend
sind und genaue Ergebnisse liefern können, jedoch müssen Daten sehr gut für die Klassi-
fizierungsmethode vorbereitet werden. Zudem ist eine große Datenmenge und homogen
verteilte Gruppe an Probanden notwendig. Es wird festgestellt, dass die Genauigkeit
stark von den Probanden abhängt und Emotionen sehr subjektiv bewertet werden. Des
weiteren scheint das vorgestellte zwei-dimensional Model nicht ausreichend zu sein und es
wird eine Erweiterung vorgeschlagen, um bessere Grenzen zwischen ähnlichen Emotionen
zu ziehen. Letzlich kann durch den Vergleich verschiedener Arbeiten angenommen werden,
dass es nicht das genau Richtige oder die Beste Klassifizierungsmethode/Algorithmus
gibt und für jede Datenmenge die beste Methode “erkundet” werden sollte.
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Glossary

Convolutional Neural Networks a deep learning method, which takes images as input
data and learns their specific patterns regarding the output. 24

Deep Learning a sub-area of machine learning, which can handle more complex problems
and data, since it has more hidden layers. As a di!erence to usual neural networks
humans only ensure that the data for learning is available and do not intervene. 24

K Nearest Neighbor a supervised machine learning method, which classifies data and
forms groups with the assumption that near data-points in the same space belong
to the same group. The di!erence between points are calculated through a distance
function and clusters are adjusted in an (k times) iterative process [Al +19]. 24

Random Forest a decision tree based algorithm combining multiple decision trees with
di!erent characteristics, which can be used for high dimensional data. Decision
trees portion data into groups as homogeneous as possible and predict the value of
a target variable by learning decision rules from the data [AYK16]. 24

Subject/User-dependent the outcome is dependent on the user’s parameters, and
cannot be used generally. Hence, for every person calibration is necessary, before
the system can categorize. Here, training and testing are performed on the same
individual [Al +19]. 12, 27, 28

Subject/User-independent the outcome is general and the system can categorize every
person. Here, parameters are normalized first, for which the average is calculated
and subtracted from the individual signals. Thus, no user specific information is
contained in the data. Furthermore, training and testing are performed on totally
di!erent groups/persons [Al +19]. 11, 27, 28

Support Vector Machines a supervised machine learning method, which can handle
non linearly separable data [Al +19]. The input is labeled and the computation of
an optimized hyperplane is the output. As a result, data not related to each other
are separated [Rag+17]. 24

I
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1. Introduction

In the past decade, understanding the emotions has played an important role in product
recommendation as in music-/movie-streaming applications and also in designing human
like robots for successful and comfortable human-machine-communication. Since then,
researchers have explored various evocation, measurement and classification methods.
Another key revolution is seen in the health care sector. It has gone through many
reforms in the last years, and nowadays much is invested in digitization and knowledge-
based-systems. Digital advances expand possibilities in detecting hidden diseases and can
be used in almost every medical department. Consequently, clinical goals are changing
from only curing the patient to preventing from diseases. Also life insurances promote
disease preventing programs. Especially, elderly are monitored for a long time to ensure
early detection and fast action. Furthermore, the human lifestyle and current trends
have changed sharply, resulting in a way that more and more people want to be aware
of and control their own health data. These progresses have been influential in the
field of emotion recognition for medical use, since emotion recognition systems could
diagnose mood-based diseases like depression, Alzheimer and Parkinson earlier. Besides,
therapies could be adjusted individually, whilst recognizing the patient’s fear level in
phobia therapies would be possible. For instance, if the subject has a phobia of dogs
or spiders, the animal could become calmer and go further away, or otherwise, nearer
and more aggressive. Moreover, deaf people and children with autism could be helped
since expressing emotions is a more di#cult task for them. As a result, physicians would
be aware of their patient’s anxiety without burdening them during the examination or
therapy. Thus, sensible people could be treated more suitable and individually.
Most of the research in this field approaches this challenge by studying speech and facial
recognition. Nonetheless, these cannot be analyzed continuously, and a human might be
able to control those parameters, resulting with inaccuracy. They can put on a poker
face or still smile while being sad, the same goes for the control of voice. People often
tend to say that they are fine with a calm voice, despite having a hard time. Hence, new
perspectives are explored by considering physiological body signals, which cannot deceive
easily because most of these parameters are beyond humans own control. Considering this
problem, several physiological sensors have been tested like the Electroencephalogram
(EEG), the Respiration-Rate (RSP), the Electrocardiography (ECG), the Electrodermal-
Activity (EDA), the Photoplethysmogram (PPG), the Electromyography (EMG) and
the Electrooculography (EOG) (most of them in laboratory or clinical setups) [DKB20].
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Especially, EEG and EMG are supposed to identify whether the subject feels a positive or
negative emotion as the distinction of sad and joyful. EDA and Skin-Temperature (SKT)
would better detect how intense the person experiences the emotion, as the di!erence
of being excited or calm, and further, cardiac activity as well as EEG would contain
both information [ELH19]. However, most of these are not handy sensors and limited in
comfort. Their preparation is elaborate, especially in time, and the subject cannot move
freely without being conscious of the equipment. Consequently, they are obstructive
and not suitable for everyday use, which is why they cannot be used outside controlled
events [Rag+17]. These are also more expensive, since their accuracy and setup are of
high medical level [Wan+20]. Particularly, recommendations and analysis estimated and
calculated by own devices have become highly relevant in this matter. These could track
physiological signals for a long time period and could alarm about serious conditions,
allowing physicians to be updated with data in regular terms or only in emergency
situations. These advances make individual adjusted monitoring possible.

(a) (b)

Figure 1: Emotion Recognition
(a) Methods 1 (b) Empatica E4 2

Wearables are a part of the field of ubiquitous computing, which deals with small
computers augmenting daily life. It is a widely approached developing field nowadays and
also studied for emotion recognition due to their a!ordable and comfortable characteristics.
These can be used in easy setups and could track emotions during daily activity since the
subject only needs to wear the device on their wrist like a regular watch. Furthermore,
wearables can detect for as long as being worn and do not need complex preparations.
Mark Weiser declares that “the most profound technologies are those that disappear”
[Wei99], meaning that they are so intensely integrated in the lifestyle, that using them
1 https://www.mdpi.com/2079-9292/11/3/496/htm, 27.07.2022
2https://www.researchgate.net/figure/Empatica-E4-wristband-physiological-signal-monitoring-
14_fig9_322206805, 27.07.2022
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gets a habit and is not considered as a task or burden. Hence, they are used unconsciously
as an everyday tool without active consideration. The most important task of ubiquitous
computing is that they operate in the background and not themselves, but their task and
its output are relevant for the user [Wei99]. Another significant aspect of wearables is
that they are always ready to be used. Therefore, the user and the physician should not
take extra e!ort for the preparation and measurement of the sensors and their parameters,
but only focus on the outcome (emotion) itself and it’s reasons. As a result, wearables
can expand the possibilities of emotion recognition applications, so that they can be used
for measuring daily activity and the burden of measurement is taken away, giving more
time in analyzing the actual emotion.
However, only few studies have directly dealt with emotion recognition via wearable
sensors so far. The Empatica E4 (seen in figure 1) is a commonly used health wristband
[Sch+19; Sag+20], but often other sensors’ data are emerged. Furthermore, most of
researches including wearables are focused on discrete emotions, whereas this study will
explore the circumplex (dimensional) emotion model by Russel, which has a wider range
of usage as later illustrated in section 2. In particular, no study, to our knowledge, has
analyzed only in wearable integrated sensors, measuring emotions on a dimensional scope.
As why, in this work approaches will be listed and compared, and it will be discussed if
wearable sensors are su#cient. If possible, better methods will be recognized.
The structure of our work will be as follows: In section 2 emotions, the history of emotion
recognition systems and the two-dimensional model will be defined, in which also the
advantages of this approach are presented. Furthermore, the functions of the Automatic
Nervous System (ANS) will be explained, as well as in which aspects they are related
to emotions. Section 3 will introduce the most common wearable sensors, their data
and relation with the ANS. In section 4, which is the focus of this work, 12 studies will
be compared in detail to discuss the e!ect of various methods. Our aim is to state out
whether current works and methods are satisfying and trustworthy in accuracy or need
to be further researched and improved. Thus, we will analyze if wearables are qualified
to measure emotions. We will answer if multiple sensors are more accurate than single
ones and if more input-data and features increase the accuracy or not. Further, we will
focus on the influences of the setup methods like the stimuli, the chosen participants
and the chosen sensors. Consequently, we want to highlight outstanding methods, so
that future works can build a system combining all introduced advantages and avoid
represented mistakes. In the last section 5, described methods and possible projects will
be discussed.
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2. Emotions

2.1. Definition

Dzedzickis, Kaklauskas and Bucinskas explain that emotions are the human body’s
reaction to specific stimuli’s activation. They are triggered through interacting with
the environment, encountering a situation or particular circumstances of the person.
Therefore, emotions do not last long, are very intense and the person acknowledges and
senses them consciously [DKB20]. Additionally, Posner, Russel and Peterson explain that
emotions inducing physiological changes are influenced by “eliciting stimuli, memories of
prior experiences, behavioral responses, and semantic knowledge” [PRP05], demonstrating
that they are subjective. These can be reactions to a joke or comedy clip, leading someone
to laugh and be joyful or others to be bored. Whereas a!ect is a “neurophysiological
state” indicated by emotions, with the main di!erence that it is not directly induced by
any particular “entity” [Sag+20], but only a “simple raw (nonreflective) primitive feeling”
[Sch+19]. Schmidt, Reiss, Dürichen and Van Laerhoven describe this di!erence with
the example that a state of being angry arises quickly, but does not last long. However,
exactly this emotion “might lead to an irritable mood, which can last for a long time”
[Sch+19]. In contrast, feelings are individual reactions and depend on experiences with
the event [DKB20]. For instance, someone can argue with a friend, be angry, but cannot
hold a grudge, reflects the situation and thus, gets sad instantly. On the contrary, another
person who does not have a particular relationship with the partner might be angry over
a longer time, and may start to avoid this person. Lastly, mood is longer lasting and
less intense. It a!ects the “a!ective state” and leads emotions to a “positive or negative
direction” [DKB20]. Moreover, the person is often not conscious of their mood, since it
happens in the background [Sch+19]. As a result, depressive mood arises sad and bored
emotions, whereas anxiety leads to stress and could cause emotions like anger and fear.
Another key point is that emotions could induce each other and that they could be felt
simultaneously [PRP05]. Thus, a!ective states and emotions are dependent and should
be considered together as related states, not as separate ones. Emotions can further be
divided into primary and secondary. The first group consists of the six basic emotions
[Al +19], which will be explained in the following subsection 2.2. Contrariwise, the
second group are emotions arising through responses to primary emotions’ experiences
[BMT21c]. Knowing these distinctions helps to choose the most suitable setup for the
targeted emotions. Hence, the chosen stimuli and time duration of measurement variate.
Sadness and depression, for instance, may look very similar, as well as fear and anxiety,
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but one is categorized as an emotion, the other one as a longer-lasting mood, respectively.

2.2. History of Emotion-Research

The research of emotion models had basically started long ago with roman philosophers
like Cicero, who has classified into four basic emotions (fear, pain, lust and pleasure)
[Sch+19]. However, Posner et al. present that the maintained discrete theory, in which
emotions are labeled beforehand and categorized in primary basic emotions to approach
separate a!ective states [Al +19], have been derived later from animal studies. They
further report that researchers have claimed that specific neural pathways are connected
with each basic emotion by observing the animal’s behavior after stimulating the pathways
[PRP05]. Nonetheless, animal studies could not include experiences and the animal’s
subjective thinking. Noticing these limitations, researchers had started studying on
humans, allowing better interpretation and validation due to the participant’s verbal
responses, according to the views of Panksepp in 1998, which is cited by Posner et
al.. Hence, inconsistencies between both approaches have revealed the importance of
considering individual feelings [PRP05].

Cicero: 4 basic emotions animal studies on basic emotions

Ekman, Friesen: 6 basic emotionsPlutchik; Zenonos et al: 8 basic emotions

Wundt: 3 dimensions Russel: circumplex model

Figure 2: History of Emotion Recognition

Here, Ekman and Friesen’s basic emotion model (1976), categorizing into six emotions
(joy, sadness, anger, fear, disgust, and surprise) is the root of other discrete approaches
[Sch+19; ELH19]. Following in 1980, Plutchik expanded the model to “eight primary
emotions: grief, amazement, terror, admiration, ecstasy, vigilance, rage, and loathing”)
[Sch+19]. Later on in 2016, Zenonos et al. further categorized into “8 di!erent emotions
and moods (excited, happy, calm, tired, bored, sad, stressed, and angry)” [Sch+19].
Moreover, as introduced in section 1, facial expressions and peripheral physiological
responses were researched by basic emotion theorists, assuming that patterns of autonomic
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activation and facial innervation are specific to each basic emotion. However, these
assumptions could not be proven and are criticized [PRP05]. In 1873, Wundt explored
dimensional approaches and described an emotion as a three-dimensional point (with the
axis of “pleasure/displeasure”, “excitement/inhibition” and “tension/relaxation”) [Sch+19;
ELH19]. At the end of the 1970s, Russell highly suggested a two-dimensional model
(arousal/valence), which is the most known dimensional approach till date [Sch+19].
Additionally, infants’ a!ective responses were studied, because researchers have claimed
that the dimensional approach is not fit for infants, who cannot express themselves,
since they do not have the necessary cognitive capacities. However, this model is highly
compared to the animal studies since both are nonverbal and only limited to behavior
[PRP05].

2.3. Circumplex Model of Emotion

As seen above, the two common approaches for emotion recognition nowadays are the
discrete and the two-dimensional/circumplex model. In this section, we will focus on the
dimensional approach, which portions the emotion into more psychological dimensions.
Hence, the combination defines the final outcome [Al +19] as seen in figure 3.

(a) (b)

Figure 3: 2-Dimensional-Model: (a) [DKB20] (b) [ELH19]

In the two-dimensional model, the emotion consists of an arousal and a valence space,
which are both “two independent neurophysiological systems” [PRP05]. Here, arousal
means the intensity level (passive to active), and valence the distinction between positive
and negative emotions [ELH19], and the output of both spaces’ linear combination is
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described as the emotion [PRP05]. So, emotions are projected into a two-dimensional
space as a discrete point (vector) [Sch+19], in which the axes’ values are discretely labeled
[Sag+20]. Another aspect of these components is that arousal as well as “single valence
can have multiple levels” [Sag+20], allowing the analysis of intensity levels of one emotion.
Referring to the views of Posner et al., it is assumed that all a!ective states are the result
of “a complex interaction between cognitions” [PRP05]. These assumptions illustrate
that single emotions are more complex and consist of multiple aspects and components
influencing them. As why, these influences should be considered and measured when
estimating emotions.
If having a two-dimensional space with one axis representing the arousal and the other
one the valence level, four quadrants can be defined. A Low Arousal High Valence
(LAHV), a Low Arousal Low Valence (LALV), a High Arousal Low Valence (HALV), and
a High Arousal High Valence state (HAHV). These “can be attributed with sad, relaxed,
angry, and happy” [Sch+19]. Some also add more emotions in one quadrant like angry,
fear and being nervous. Notably, disgust is a confusing emotion, since some studies point
it out as a LALV and some as a HALV state. The significant point in this model is that
it simplifies emotion classification and is not limited to static values. The quadrants can
be taken as a basis for a field of emotions, which are similar to each other in physiological
aspects. In addition, quadrants can have a primary emotion and sub emotions [Dis+19].
It should also be noted that there are a!ected states which are so similar to each other,
that based on arousal and valence, a distinction is very hard to impossible, since similar
emotions have the same value in a quadrant. In the HALV quadrant emotions like fear
and anger can be assumed, which are di!erent emotions, sometimes felt simultaneously
or a!ect each other. However, the system would define all in the same quadrant and here,
depending on the viewed research, the vector-value of these emotions di!er. For example
in figure 3, anger is illustrated at di!erent arousal levels in both figures. Consequently, it
is not an easy task to separate similar feelings within the same quadrant correctly. A way
to overcome this problematic could be using very impactful stimuli or adding dimensions.
In extension, a model with 9 categories is also common, in which the neutral state
is considered, for more detailed classification. But the more emotions and groups are
considered the less accurate the system will possibly become [Al +19; AKJ21]. Moreover,
with a dimensional perspective, it is possible to focus on one emotion’s di!erent levels
like no fear, little fear, moderate fear, pretty much fear as seen in figure 17 [B"l+19].
It should be noted that one of the positive and most useful aspects of the dimensional
approach is that more axes, hence, more emotions can be added as proposed above, since
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emotions represent a vector in dimensional space. The model is very flexible and can be
modified, adjusted and improved depending on the purpose. Therefore, additional spaces
could support the distinction between similar emotions like anger and fear, which only
have a slight di!erence in arousal and valence, but are completely di!erent in terms of
dominance (anger is a dominant emotion which is being controlled by the person itself,
whereas fear arises spontaneously [B"l+19]). Another significant consideration is the
extension of a time dimension, which would distinct sadness from depression and fear
from anxiety, or a space for the likability.
The most critical disadvantage for an automatic emotion recognition system based on
the dimensional approach is that the model needs to be trained depending on the user’s
self-evaluation of the perceived contribution of arousal and valence. However, the reports
are very individual for each stimuli and person and influenced by various aspects like
sociological stereotypes, culture and experience. Also, it is a di#cult process to evaluate
own emotions and feelings, especially if the emotion is split into di!erent components.
The same complication can be seen in case history for diagnosis, in which the patient is
asked to define their level of pain. Some tend to exaggerate and some to understate. So,
even in simple questionnaires, people do not always know how to rate themselves and
how honest they want to be.
Contrariwise, the discrete labeling of emotions only requires the felt emotion, which
is much easier to report. Nonetheless, it is limited to predefined emotions and cannot
be expanded. Each emotion is restricted to a single word, so that emotions are all
independent from the other. But, emotions are more complex to be summarized in only
one word. Often multiple emotions are induced simultaneously or respectively arise each
other, as explained above. It can even happen that emotions of two di!erent quadrants
arise, simultaneously. The discrete model does not consider these influences, hence, is
more a one-sided model for each basic emotion. In addition to this critical perspective,
Posner et al. declare the need of moving away from a static discrete model to dimensional
models. They further claim that humans find it challenging to di!erentiate exactly
between emotions and to be fully aware of which and how many emotions are felt in
total [PRP05], inducing that for instance watching a horror movie, one often feels fear,
but is amused and tensed/excited at the same time. The discrete model would not
consider the involvement of multiple emotions or the distinction from a mood. Although
not describing the feeling necessarily with words, the distinction between quadrants in
the circumplex model can be su#cient to declare the a!ective state and the emotion.
Additionally, the observation is shared that subjects often describe positive emotions in
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relation to other positive ones [PRP05].
When comparing both methods, the discrete suits well, if only some particular emotions
are considered by the system as in phobia therapies, in which one only wants to recognize
if the emotion (fear) is present or not, thus, in binary evaluations. But in more detailed
applications, which analyzes more emotions and more levels like the intensity of fear in a
specific range, the (discrete) dimensional model suits better. Here, the developer is free to
expand the model and set the number of dimensions and emotions. Furthermore, we claim
that mood based diseases like depression are more likely to be detected and monitored
by dimensional models, with the involvement of arousal, valence, time and dominance
spaces. Since more aspects, influencing the mood and illustrating the evolution of the
disease are considered and measured compared to the discrete model.

2.4. Relation with ANS

Emotions’ physiological response are mostly controlled by the ANS, ruling over internal
organs including heart activity, skin conductance, blood pressure and the digestion
system3. Hence, Kreibig predicates that it manages the human organism and allows
the extraction of human behavior, since the brain structure mostly controls the activity
[Kre10].
The ANS consists of the Sympathetic Nervous System (SNS) and the Parasympathetic
Nervous System (PNS), which interact with and regulate each other. Being excited as in
a “fight and flight” situation and experiencing intense feelings, the SNS activates and the
organism responses with increased parameters. As a result, more adrenaline, hormones
and energy (glucose) are provided. Thus, high activity of the SNS regulates Skin-
Conductance (SC), Heart-Rate (HR) and Heart-Rate-Variability (HRV) [Sch+19]. The
HR and blood pressure increase through the “constriction of blood vessels and bronchial
dilation”4. On the contrary, the PNS is triggered when normalizing the parameters as
in the “rest and digest” state. The person feels relaxed, is calm and the bodies’ signals
become moderate again. Thus, a decrease in the related physiological signals can be
observed [Sch+19; ELH19; DKB20]. This is why emotions’ physiological responses are
lead by the interaction of PNS and SNS and can be measured via sensors.
Despite knowing their own emotions, humans barely have any influence on the regulation
of physiological signals, because it is almost impossible to control the ANS, reported
by Schmidt et al. [Sch+19]. These signals are directly governed by the nervous- and

3https://psu.pb.unizin.org/psych425/chapter/744/, 10.06.2022
4https://wtcs.pressbooks.pub/pharmacology/chapter/4-2-ans-basics/, 10.06.2022

9

https://psu.pb.unizin.org/psych425/chapter/744/
https://wtcs.pressbooks.pub/pharmacology/chapter/4-2-ans-basics/


endocrine system as seen in figure 4, thus, by instinctive responses to stimuli and not by
“subjective thinking” [Sch+19]. These observations induce that parameters measured by
sensors can be an accurate source for emotion recognition.

Figure 4: The Functions of SNS and PSN4

Lastly, it needs to be mentioned that the SNS and PNS can operate at the same time
or simultaneously3. Hence, it is challenging to acknowledge which system gets triggered
exactly by the targeted emotions. Here, the example is presented that the heart activity
can increase due to activation of the ANS or sudden decrease of the PNS. Eventually,
it is possible that only specific di!erent organs are targeted at the same time by both
systems as a normal HR but increased SC3, which makes the measurement a di#cult
task.
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3. Physiological Data

Nowadays, sensors are getting smaller and smaller and fit in wearable devices like health-
wristbands or smartwatches, allowing the assessment of ANS’s activation easily worn
from the wrist. Especially the Galvanic-Skin-Response (GSR)/ EDA, the PPG and a
skin-thermometer are seen as the most e!ective sensors. These can measure the Blood-
Volume-Pulse (BVP), from which HR, HRV and Inter-Beat-Interval (IBI) are computed,
the SC and the SKT, respectively. All parameters are out of humans own control and
mostly regulated by the ANS as illustrated in subsection 2.4.

Sensordata Increased Decreased

BVP excited relaxed

HR anger, anxiety, fear, embarrass-
ment, crying sadness, pleasure, hap-
piness, joy, surprise

disgust, imminent-threat fear, non-
crying sadness, suspense

HRV stress, frustration, contamination-
related disgust, acute sadness,
amusement, joy, potential state of
mental stress

relaxed, happiness, visual anticipa-
tory pleasure, psychiatric disorders

SC all other acute or non-crying sadness, plea-
sure, relief

SKT relaxed anxiety, stress, anger, embarrass-
ment, humiliation, joy with anxiety,
depression with hostility, sadness

Table 1: Physiological reactions to emotions according to the works of: [Kre10; DKB20;
ELH19]

However, even if the measurement itself is a convenient task, an emotion recognition
application is more complex due to the subject’s high dependence. The responses can
change with the individual and are influenced by various factors including age, gender,
experiences, the state of health and the social environment [Al +19]. If a general system,
which is Subject/User-independent, is targeted, the parameters need to be normalized,
after acquiring the data in order to narrow down “the individual’s impact” [Wan+20].
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Therefore, the system does not have to calibrate for each user individually as in a
Subject/User-dependent system, before making decisions about the a!ective state [Al
+19]. A dependent model is more accurate in most studies, because it learns the behavior
and parameters of the specific subject and adjusts to the measured values. Nonetheless,
even the same person can react di!erently to same emotions. Furthermore, it is not
practical for most cases, since it would take much time to evoke and capture relevant
responses to stimuli for the calibration [Al +19]. in addition, filtering, scaling and noise
reduction is required for accuracy improvement. Especially, sensors in wristbands are
challenging due to high motion noises. They can depend on factors like skin color and
diseases as blood circulation problems [Sch+19]. Also we have heard that the skin
temperature can be influential as well, since some sensors like the PPG could not always
measure well on cold skin. After data cleaning, the relevant features are computed,
which often are statistical values in the time and/or frequency domain. These are then
represented as feature-vectors, therewith ensuing that the data can be used as input for
the learning algorithm. Later, the model is trained to classify and the estimated data-
signals are split into training and testing data. Thus, before starting the measurement,
necessary preparations need to be done, and the researchers should aim for a dependent
or general system beforehand according to their purpose.

3.1. Blood-Volume-Pulse

The cycle of cardiac activity has two di!erent phases, whose harmonized interaction
regulates the heartbeat and the blood flow through the vessels to all organs5. These are
the systole (state of activation), in which the heart contracts to pump the blood, and
the diastole (state of relaxation) after the contraction. The heartbeat is triggered by
electrical impulses, which can be measured via electrodes as in the ECG5. In addition,
the cardiac activity can be identified with the reflection of light as in the PPG sensor
[DKB20]. In the systolic phase, more light is reflected by the skin and absorbed back
by the sensor, whereas in the diastolic phase the skin absorbs more light. Hence, more
blood in the vessels result with more light absorption and the HR increases with the
systolic and decreases with the diastolic phase, reflecting the interplay of contacting and
relaxing as seen in figure 5.

5https://my.clevelandclinic.org/health/articles/17064-heart-beat, 10.06.2022
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(a) (b)

Figure 5: PPG-Signal
(a) Compared with ECG [DKB20] (b) Typical Pattern [GG19]

Although being noisy in comparison, the PPG can still compete with the ECG’s accuracy.
Accordingly, a correlation of up to 88% is possible [ELH19] and studies of McCarthy and
collaborators promise that PPG signals obtained from the Empatica E4 are su#ciently
precise for cardiac activity assessment, cited by Ragot, Martin, Em, Pallamin and Diverrez
[Rag+17]. Besides, it is reported that the Empatica E4 combines a red and a green
light to remove motion related artifacts from the BVP signal [Sax+20] and as seen in
figure 8, the E4 algorithm can detect correctly classified heartbeats (green points) from
declassified (red crosses) ones. Goshvarpour and Goshvarpour report a study, which has
compared the accuracy of HR measured by PPG and ECG and obtained an average
cross-correlation of 99.17% [GG19].
The main di!erence to the ECG is that the PPG sensor measures blood volume changes,
referred to as the BVP and not the pulse itself directly. Blood flows continuously through
the vessels with a varying flow (volume), from which the heartbeat can be extracted
[ELH19]. Hence, the BVP is dependent on the heart’s activity, regulating the pulse-wave
and the flow of blood [ELH19]. In figure 5, the signal pattern is illustrated in relation to
the usual PQRST-wave. Furthermore, it can be noticed that in each cycle two peaks are
present, referred as the main and secondary peak, representing the volume pulse wave
and the pressure pulse wave, respectively [Wan+20]. Additionally, figure 12 and figure
13 illustrate possible features which can be extracted by the PPG sensor.

3.1.1. Heart-Rate

The HR describes the number of heartbeats in a minute and can be computed by
the PPG through extracting the intervals between neighbor peaks [Sax+20]. Kreibig
points out that the short term HR is regulated by the interaction between the PNS and
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SNS. By contrast, the long term modulation is induced by the endocrine system, which
produces noradrenaline, released in the blood flow [Kre10]. Noradrenaline contracts
vessels, resulting with increased blood pressure. Both parameters can be influenced, but
not regulated by the individual [Kre10]. For example, if someone is afraid of spiders,
she/he can tell herself/himself that they should not fear and try to stay calm, but the
heart still might beat faster and the emotion fear is experienced. Only if the person gets
used to the spider and overcomes the phobia with time she/he might control.

Figure 6: HR-Signal for Di!erent Emotions [ROM10]

The HR can measure the valence composition, as Kreibig assumes. She supports her
view with a study’s insight illustrating how the participant’s HR is suddenly faster while
watching unpleasant films [Kre10]. Additionally, Bulagang, Mountstephens and Teo claim
that HR represents the arousal level [BMT21b]. Thus, according to viewed researches,
the HR holds both arousal and valence information [ELH19].
Furthermore, it is proven that the HR changes with the mood/emotion. Ekman et al.
showed in 1983 that it increases with facing emotions like anger or anxiety and decreases
“significantly with disgust”, cited by Shu et al. [Shu+20]. In addition, Kreibig illustrates
that the HR is increased for negative and positive emotions as well as for surprise. Also,
she demonstrates that the HR is decreased in emotions like disgust, fear and types of
sadness as well as suspense [Kre10]. Moreover, Rattanyu, Ohkura and Mizukawa share
the observance that in an angry state the HR first decreases, then increases linearly
before decreasing again. In comparison, when having fear the HR rises immediately as
seen in figure 6 [ROM10]. Brittons’ study further reveals that during a happy mood
the HR is lower than in a neutral mood, cited by Shu et al. [Shu+20]. In interest is
also the statement that the ANS’s ability to regulate the HR decreases under negative
circumstances like stress, tension and illness [Tak+21]. High physiological activity rises
the HR [Tak+21], indicating that subjects with a history of diseases, likewise with specific
conditions should not be chosen.
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Lastly, Hui and Sherratt have discovered a correlation of HR variations with the ANS’s
activity by an accuracy of 87.4% [HS18].

3.1.2. Heart-Rate-Variability

The HRV represents time-related changes “in each cycle of a heartbeat” [DKB20] and
detects irregularities and the time variation between them [Sag+20].

Figure 7: The Process of HRV Computation [Zha+18a]

Dzedzickis et al. report that out of regular pattern (increased HRV) are emotions like
anger or moods as depression causing stress. (Additionally, it can be influenced by
various other factors like health issues, genes, weight, age, gender and the use of tobacco,
alcohol or ca!eine.) By contrast, a regular beat (low HRV) demonstrates relaxed states
like calmness or pleasure [DKB20]. Kreibig further observes that “contamination-related
disgust” is the only negative emotion definitely followed by an increased HRV. In addition,
she reports that acute sadness possibly could be characterized by increased HRV, but
this assumption is not proven. Furthermore, the HRV rises with positive emotions like
amusement and joy, whereas it drops with happiness and visual anticipatory pleasure.
Hence, it is proposed that PNS’s activity influences positive as well as some negative
emotions [Kre10].
In addition, Egger, Ley and Hanke assume that a reduced HRV can relate to psychiatric
illnesses as depression, anxiety and/or alcohol use disorders [ELH19], which present
criteria for acquiring participants. Finally, referring to the statement of Kreibig, although
features in the time domain are most often studied, the frequency domain should contain
important data as well, especially, regarding the activity of ANS [Kre10].
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3.1.3. Inter-Beat-Interval

The IBI signal is measured by computing the distance between two consecutive heartbeats
in milliseconds [Sax+20; BMT21b]. Through the IBI the HRV and the HR can be
estimated6. Unfortunately, no information regarding emotional data were found, but
Bulagang et al. assert that it represents the valence state of emotions [BMT21b]. In the
following section, a study exploring the IBI will be presented, as why a short introduction
was seen necessary.

Figure 8: IBI-Signal Captured by the E46

3.2. Skin Conductance

The human body has millions of sweat glands, whose activity can be measured with
an EDA/ a GSR sensor. It detects the skin’s electrical activation, changing with the
variation of positive and negative ions’ balance [DKB20] and the measured parameter is
called the SC.

(a) (b)

Figure 9: Signal of SC
(a) both components [DKB20] (b) only SCR [DS21]

6https://support.empatica.com/hc/en-us/articles/360030058011-E4-data-IBI-expected-signal,
1.07.2022
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Sweat glands activate with high physiological activity or intense psychological states as
well as mood changes. Sweating increases the salt level, which increases the EDA. Thus,
the skin surface gets moist, following changes in “the electrical currents’ flow property on
the skin” [DKB20; DS21]. It flows more readily when sweating, resulting in variations of
the SC [DS21].
Row GSR data provides the tonic and phasic activity of the SC, which estimates the
skin conductance level (SCL) and the skin conductance response (SCR), respectively
[Sch+19; DKB20]. The tonic level determines the baseline SC, altering slowly over time
and is individual for every person. It depends on the environment, temperature, skin
hydration level and dryness [Sch+19; DKB20]. In comparison, phasic activity responses
to the activation of the SNS and illustrates “short term peaks” of the EDA, which barely
depend on the tonic level [DKB20; Sch+19; Dis+19]. Hence, the SCR can be measured
by stimuli of really short duration [Kre10] and a short window size. So, it is claimed
that it highly depends on the stimuli type, which has shown better results with acoustic
stimuli [Al +19].
Furthermore, the components of the GSR define immediate increases (peaks), returning
to baseline slowly. Thus, most information is captured by the amplitude (time) and
frequency domain, usually through analyzing statistical features [DKB20]. Possible
extracted features can be seen in figure 14 and in figure 15. The responses of the SC are
split into stimulus (lower peaks) and spontaneous [Wan+20]. Wang et al. report that
a typically sudden increase should last 1 to 3 seconds and returning to baseline would
take longer with 2 to 10 seconds [Wan+20]. According to Zhao, Wang, Yu and Guo, it
often happens that the EDA signal requires additional pre-processing. Especially, deep
smoothing and signal separation could be necessary. Here, most often used are adaptive
bandpass filters to remove artifacts [Zha+18b].
Moreover, Ayata, Yaslan and Kamasak claim that the resistance of SC decreases with
increased sweat in aroused emotions like stress or surprise [AYK16]. Likewise, Dzedzickis
et al. report that the signal’s amplitude is related to high arousal states and stress,
correlating with self-reported feelings of participants [DKB20]. Whereas Kreibig observes
a decrease in sad states (acute or non-crying), pleasure and relief. All other emotions
of her findings result an increased EDA [Kre10]. Another significant assumption is
that the GSR could discover decision-making processes, since a!ective states contain
attention-grabbing and demanding tasks, which follow a synchronized “increase of the
frequency and magnitude of GSR” [DKB20]. In addition, Hui and Sherratt have reported
a correlation of the SC’s variations with the specificity of ANS by an accuracy of 95.8%
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[HS18]. Hence, we notice that SC holds emotion-related information, especially regarding
the intensity and the ANS’s activity. Concluding, that the more intense the emotion,
the faster the variations in SC can be detected. However, Desai and Shetty point out
that the GSR is not capable detecting the exact sort of emotion, but only the existence
[DS21]. Most researches claim that EDA variations are related to emotional arousal and
can distinguish between relaxed and stressed states [HS18; Kre10; Sch+19].

3.3. Skin Temperature

SKT can be measured with an infrared thermometer and is controlled by the heart
activity and sweat production [DKB20], but also environmental factors. Zhao et al.
report that variations in the SKT mostly arise from localized changes in the blood flow,
which are induced by “vascular resistance” or “arterial blood pressure”. First, is regulated
by smooth muscle tone, which is a!ected by the SNS. Second, is a model of cardiovascular
regulation by the ANS [Zha+18b].

(a) (b)

Figure 10: Pattern of SKT (a) [DKB20] (b) [Wan+20]

The ANS controls the skin’s hydration through regulating the vessels’ activity [DKB20].
With the triggering of the SNS, the blood flow to the extremities can be restricted,
resulting in changes in peripheral temperature [Sch+19]. Egger et al. present that
during relaxed states dilated vessels can get warmer. In comparison, with the vessels’
constriction during high aroused states, the individual might get colder, despite producing
more sweat, which is more likely to be cold sweat in circumstances like anxiety and
stress. Thus, the SKT can distinct stressed and relaxed states, similarly to the SC
[ELH19]. It is said that (high aroused) negative emotions possibly lead to a decrease
in finger temperature [DKB20]. A fall was also detected in a study when the subject
was influenced by other’s speech (feeling emotions like anger or anxiety), despite not
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being involved himself/herself [DKB20]. Contrariwise, an increase was observed with
the presence of less aroused negative emotions in comparison to less aroused positive
emotions [DKB20]. Summing up, responses to stimuli can be measured by SKT in setups
like watching movie clips, listening to music or discussions.
In the process of signal analyzing first, the measured SKT needs to be converted into an
discrete electrical signal, then the arousal can be categorized into five states to identify
which state should be low, medium and high aroused [ELH19]. Features like the minimum,
maximum and average temperature can be extracted from longer measured signals, more
possible features can be seen in figure 16. Consequently, it is noticed that one of the
negative points of this method is the need of a window size with longer duration, since the
temperature needs time to change. Hence, stimuli of short duration like pictures are not
suited and e!ective [DKB20]. Referring to the views of Dzedzickis et al., SKT can detect
arousal well, but is still not as sensitive to valence recognition [DKB20]. This statement
is further claimed by Egger et al. [ELH19]. However, Hui and Sherratt assume that
fingertip temperature helps to di!erentiate between pleasant and unpleasant emotions
[HS18]. Moreover, Kreibig assumes a decrease in SKT when feeling variations of sadness
[Kre10].
To conclude, there are di!erent opinions about the dimension detection capabilities of
SKT and it may vary from the measuring body part. Hui and Sherratt have captured
fingertip temperature and as a result have discovered that SKT can measure the ANS
specificity by an accuracy of 96.4% [HS18]. Here, the fingertip might be the most sensible,
but is not suitable for wearable wristbands, as why we assume that SKT measured from
the wrist can di!er.
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4. Comparison Between Works

4.1. Methodology

Only studies focusing on wearable sensors, introduced in 3 were chosen for this work. We
have restricted our comparison to only dimensional emotion models after comparing both
in section 2, since it was recognized to be more flexible and advantageous for a general
analysis. Further, we have excluded works which do not testify significant results or have
too few participants and have eliminated studies which have fused additional data/used
clinical sensors. Moreover, we have tried to choose more studies of the same research
groups to see improvements within the same setup and research. We have also tried to
show di!erent results regarding the used emotion model and did not want to focus on
the four quadrants approach only. 12 works are arranged in table 2, listed after their
release date, so a di!erence in accuracy within the years can be noticed. In this section
we will compare these in the following order: First, we will sum up their setups and note
most significant points, further, the induced emotions and the used sensor-data will be
presented. Moreover, we will compare the classification and feature extraction methods,
and finally present the results of each study. So works will be compared from the worst
to the best accuracy. We aim to highlight better methods and want to point out the
significance of each viewed aspect with this analysis. So that we can make suggestions
for further researches if needed. A more detailed table of our comparison can be seen in
figure 18.

7 Abbreviations:
a= arousal; v= valence; s-d= subject-dependent; s-i= subject-independent;
EDG= Electrodermography;
img-trans.= image-transformation; f.e.m= feature extraction methods
DEAP: open database with 32 subjects and 40 music video clips [GG19]
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Document Setup Data Emotions Methods Features Results

[AYK16],
2016

DEAP SC 4 class RF 14 81-85% a, 82-
89% v

[Rag+17],
2017

19 subjects,
45 pictures

SC, HR
(E4)

9 class SVM 9 70% a, 66% v
(s-i)

[AYK18],
2018

DEAP SC, BVP 4 class? RF 22 72.06% a,
71.05% v

[Zha+18b],
2018

15 subjects,
self-chosen
movie clips

SC, BVP,
HRV, SKT
(E4)

4 class SVM 28 76% (s-d)

[GG19],
2019

DEAP SC, BVP 4 class PNN 3 f.e.m. 88.57% a,
86.8% v (s-i)

[Al +19],
2019

DEAP SC 4 class CNN raw
data

85% s-d, 82%
s-i

[AKJ21],
2021

16 debate
sessions with
pairs

SC, BVP,
HRV, SKT
(E4)

4 class fine
KNN

N/A 87.80%

[AKJ21],
2021

16 debate
sessions with
pairs

SC, BVP,
HRV, SKT
(E4)

9 class fine
KNN

N/A 75.80%

[BMT21c],
2021

20 subjects,
16 videos
(VR)

HR (E4) 4 class SVM 3 46.7% (s-i)

[BMT21a],
2021

10 subjects,
videos (VR)

EDG/SC,
HR (E4)

4 class SVM raw
data

66% (s-i)

[BMT21b],
2021

24 subjects,
16 videos
(VR)

HR, IBI
(E4)

4 class SVM N/A 67.4% (s-d)

[Nas+21],
2021

80 subjects,
self-report

HR (MB 2) valence CNN
(SVM)

5 img-
transf.

> 91%

Table 2: Comparison of 12 Studies7

21



4.2. Di!erent Setups

Ayata et al., Al Machot, Elmachot, Ali, Al Machot and Kyamakya as well as Goshvarpour
and Goshvarpour use the DEAP data-set [AYK18; AYK16; Al +19; GG19], which
measures various body signals of 32 subjects (16 females, 16 males) between 19 and
37 years old [GG19]. 40 one-minute music video clips were used to evoke the emotions
and the participants have rated valence and arousal. Here, 63 seconds of signals were
acquired for every video in total [AYK16; GG19].
Furthermore, Zhao et al. measure on 15 participants (9 males and 6 females), who are
between 22 and 28 years old and have none diseases, that could influence the parameters
[Zha+18b]. Additionally, the subjects are asked to avoid food/beverage, which could
a!ect the measurement. As a di!erence to DEAP, a video bank of 20 five-minute movie
clips is o!ered, in which the subjects can choose which video to watch. There is a one-
minute break after each video to report the emotion via a questionnaire. The data-set
consists of di!erent genres including comedy, documentary, horror and war. Thereby, the
clips are split into four di!erent variations of targeted emotions: happy (4 videos), sad (4
videos), fear (2 videos) and anger (2 videos), with the aim to only evoke one emotion
[Zha+18b].
Bulagang et al. focus on 16 360→ video clips in a Virtual Reality (VR) environment as
stimuli, which are 6 minutes and 5 seconds long in total, including rest periods of 10
seconds to recover from the emotion [BMT21c; BMT21a; BMT21b]. 3 works with the
same setup, but di!erent sensor-data and number of participants are done by the same
researchers. In the first one 20 healthy subjects (12 males, 8 females), who do not have
any heart disease history, between 20 and 28 years, currently working and/or studying,
participate [BMT21c]. In the second one 10 healthy subjects [BMT21b] are present, and
lastly 24 subjects participate [BMT21b]. As seen, only in the first study details about
the subjects are revealed.
Only the study of Ragot et al. presents a set of 45 pictures to induce emotions, which
are randomly shown on a display [Rag+17]. They measure parameters on 19 participants
(12 women, 7 men) with an average age of 33,89, a minimum age of 23.49 years and a
maximum age of 52.46 years. All are said not to have diseases, which could influence the
parameters and have not taken any somatic drugs. Valence and arousal are balanced for
each picture rated from three arousal and three valence levels, then five pictures of each
category are presented with the condition that two of the same subcategories are not
shown consecutively. Thereafter, the emotions are reported via Self-Assessment-Manikin
(SAM) within 15 seconds and a black fixation cross on a white screen is displayed in
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order to bring the emotion to baseline values [Rag+17].
Alskafi, Khandoker and Jelinek try a di!erent approach beyond a controlled setup. They
decide for the “K-EmoCon” data-set, in which subjects debate in pairs for 10 minutes,
which should naturally induce specific emotions [AKJ21]. The participants consist of
male and female students between 19 and 36 years, but the exact numbers are not
announced. In total, they record 16 debate sessions [AKJ21].
Lastly, Nasrat et al. research emotion stimuli in natural life with 80 healthy subjects
consisting of male and female between 19 and 40 years [Nas+21]. The participants live
normally in their daily surroundings and report the emotional experiences at random
times for 7 days by rating the state of arousal and valence on a 7-point scale with the
Experience Sample Method (ESM) [Nas+21].
To conclude, the number of participants varies from 10 to 80 and their combination
of age and gender also di!er. We notice that almost only students are acquired. The
maximum age within the studies is 40/50 and the majority seems to be around 20
years. Hence, we do not think that the group is evenly distributed and that elderly
are considered. Furthermore, not every study reveals the same amount of information
about their participants which does not allow a direct comparison. But, when targeting
a general recognition system, it is critical to have a biased group of gender and age, since
the likelihood for overfitting increases. Especially, with a small number of participants, a
slight di!erence in the combination could possibly a!ect the results, as why the studies
of Ragot et al., Bulagang et al. and Zhao et al. [Rag+17; BMT21c; Zha+18b] are
seen critically. In addition, it is noticeable that videos are the most popular method for
emotion evocation and are seen more powerful, because the subject is confronted with
visual and audio stimuli at the same time. But while sitting and watching di!erent clips
for a longer time, without much possibility for relaxation and movement, the subject could
be out of focus and feel forced. Therefore, the VR environment seems very promising,
allowing the subject to experience the virtual environment more intensely. Contrariwise,
pictures possibly depend more on the individual’s experiences and are seen critically.
Natural environments out of control can become more complex and elaborate because
a longer observation is needed to capture every desired emotion, and there is a strong
dependence on the subjects. Nonetheless, it can be assumed that the ratings are more
reliable, since the participant does not have any pressure. The most critical problem in
all these setups is the self-rating of emotions by participants as explained in 2. But there
is no other known method to get a response from the user.
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4.3. Induced Emotions & Used Sensors

Eight studies in this analysis focus on the four-quadrant model [AYK16; Al +19; Zha+18b;
AKJ21; BMT21c; BMT21a; BMT21b; GG19], whereas two approach the nine-class one
[Rag+17; AKJ21]. Ayata et al. focus only on separate arousal and valence levels with
their second experiment and do not exactly emerge them. But considering their first
study, we suppose that they have used the four-class one. However, this cannot be
assumed for sure. [AYK18; AYK16]. Furthermore, Nasrat et al. only concentrate on
binary valence level and do not take into account the arousal space. They aim to find
out if the participant feels negative or positive emotions, but the intensity is not relevant
[Nas+21].
Some studies only use single sensors, others rather research on the e!ectiveness of mutliple
sensors. We see that the PPG sensor is the most popular, represented in a total of 10
studies, followed by the EDA in 9 studies. SKT is only analyzed in 3 works, of which
two are from the same environment. However, the SC is measured more often, followed
by HR as seen in table 2.

4.4. Used Features & Classifications

Most studies use supervised learning methods, since the data is labeled (input as well
as the output is known). Support Vector Machines (SVM) are most often utilized in
a total of 5 studies [Rag+17; Wan+20; BMT21c; BMT21a; BMT21b]. Followed by
Convolutional Neural Networks (CNN), a Deep Learning (DL) method, in 2 studies [Al
+19; Nas+21]. K Nearest Neighbor (KNN) as well as Random Forest (RF) are each used
in two studies: [AYK18; AYK16; AKJ21; AKJ21], respectively. Lastly, Probabilistic
Neural Networks (PNN) are only explored by Goshvarpour and Goshvarpour’s work
[GG19].
Ayata et al. explore 4 di!erent approaches (RF, KNN, Decision Tree and SVM) to choose
the most accurate learning algorithm, which ends up to be Random-Forest (RF) [AYK16;
AYK18]. They split each sensor’s data into sub-signals, then compute features in the
time domain for each sensor’s signal. Each sub-signal’s features are concatenated into
one feature-vector, used as the input for each emotion’s learning process. In addition,
they test four feature-sets (10, 14, 18, 22), which can be seen in more detail in figure 19,
and feature-set-14 and feature-set-10 seem to be the most accurate for GSR and PPG,
respectively [AYK18]. Also, the window size duration between 1 and 60 seconds are
experimented. The best results are achieved with 3 and 8 seconds for GSR and PPG,
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respectively. Additionally, they analyze signal processing with and without convolution,
resulting that convolution increases the accuracy, especially in GSR’s valence. Finally,
the system is tested with the 10-fold-cross-validation [AYK16]. Same procedures are done
for the GSR sensor only, in their study before. However, Empirical-Mode-Decomposition
(EMD) is used before feature extraction to increase the accuracy [AYK16]. Eventually,
discrete wavelet transformation are compared with the accuracy of time domain features.
This approach is advantageous for non-stationary signals and can handle noise better
than the usual frequency domain features [AYK16]. However, time-based features result
to be more reliable [AYK16].
Similarly, Zhao et al. explore four algorithms (RF, Neural Network, Support-Vector-
Machines (SVM) and Naïve Bayes) and use the leave-one-out-cross-validation for each
classification [Zha+18b]. Overall, SVM give the best results. A window size of 16 seconds
is applied before filtering and normalizing the signal to eliminate noise. They study
feature extraction and feature-vectors’ influences, therefore extract time, frequency and
nonlinear features. Then, the extracted features are filtered via the sequence forward
floating selection (SFFS) and Information Gain (IG) method to select the most relevant
ones relating emotions [Zha+18b]. In total, 28 features are calculated from all sensors
(6 for PPG, 12 for HRV, 6 for SC and 4 for SKT) and for all obtained instances the
SFFS+SVM is applied [Zha+18b]. The extracted features can be seen in figure 20 and
the result of their filtering in figure 21. Lastly, for system evaluation the 10-fold-cross-
validation is applied [Zha+18b].
Likewise, Alskafi et al. analyze di!erent classification methods (decision tree, SVM,
K-Nearest-Neighbor (KNN), Kernel Naive Bayes as well as ensembles classifiers) and
decide for fine KNN, which has the highest accuracy for the four and even nine-class
emotion classification [AKJ21]. They implement 5-second segments for each data, but no
detailed inside about extracted features are given.
Ragot et al. extract nine features in total (HR, AVNN, SDNN, rMSSD, pNN50, LF,
HF, RD, AVSCL) and apply SVM to classify the emotions [Rag+17]. Furthermore,
cross-validation is used and data is divided into training (80%) and testing (20%) to
improve the accuracy. In addition, they train two separate models: one for valence and
one for arousal [Rag+17].
Also, Bulagang et al. implement SVM in all of their works after testing three di!erent
classifiers (SVM, KNN, RF) in their first study [BMT21c]. The average BPM (beats per
minute), maximum, and minimum for individual data signals are extracted. Furthermore,
subject dependent and independent systems are approached in this study and they have
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used the 10-fold-cross-validation [BMT21c]. In their second work input data consists of
raw data without any extracted features [BMT21a] and lastly, in their third, in which
the IBI and the HR are fused, no specific information about the input data is given
[BMT21b], consequently, raw data can be assumed. Hence, neither Ragot et al., neither
the two other studies of Bulagang et al. search after the best classification methods in
relation to their data-set. But, only because SVM were the best method for a data-set
with only HR measurements does not imply giving the best solution for the other cases.
On the contrary, Al Machot et al. explore Convolutional Neural Networks (CNN), in
which raw data is given after the input-data is transformed into matrices [Al +19].
Additionally, the system is tested with two di!erent databases: DEAP and MAHNOB.
This study aims to study the relevance of Deep-Learning-methods in emotion’s signal
analyzing, to reveal if learning from images are more accurate than extracting features by
hand. Their system has three convolutional layers, three subsampling layers in between
and one output layer [Al +19]. Also here, the 10-fold-cross-validation is used, hence
10 subjects from each database are selected for training. Additionally, SVM, KNN,
Naive Bayes, RF are compared to evaluate whether the proposed system has the best
performance. As a result, CNN indeed perform the best, followed by KNN and then RF
[Al +19]. For data pre-processing, “raw data of EDA are scaled such that the distribution
is centered around 0, with a standard deviation of 1”, then data are normalized and
labeled with valence and arousal [Al +19].
Likewise, Nasrat et al. develop CNN, and for accuracy improvement they combine the
network with SVM, whilst the final output layers of the CNN are SVM’s input [Nas+21].
After the HR signal’s time series are normalized and labeled, they are transformed into
five di!erent images, which act as input data for the CNN. These are explained in detail
in [Nas+21], namely: Spectrogram (STFT), Scalogram (WT), Wigner Ville distribution
images, Gramian angular fields (GAF) and Markov transition fields (MTF) images. As a
result, MTF had the best accuracy and STFT the lowest. But all images are used for the
network. Thereafter, the probabilistic outputs of CNN train the SVM, used as arrays,
to classify them into binary valence labels [Nas+21]. Here, the SVM utilizes “a fast
linear solver as the kernel function of the separating hyperplane” [Nas+21]. In total, the
network consists of three convolutional layers, two fully connected layers (with a dropout
layer in between) and the output layer. Finally, they apply five-fold-cross-validation for
training and testing [Nas+21].
Lastly, Goshvarpour and Goshvarpour try a new approach with PNN. They assume that
physiological reactions to emotions do not necessarily have a typical pattern, rather be
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more chaotic. It is claimed that the parameters are not random, since they depend
on the individual and the emotion [GG19]. This approach categorizes data into two
levels of arousal and two of valence, whilst the normalized non-linear data are given
as input. Then the first layer computes the similarity between the feature and the
training vector [GG19]. In the second layer, the contributions for each valence and
arousal categories are summed up. Later, a probability vector is attained and a transfer
function selects the maximum probability. Finally, the network produces two classes (0
and 1). This study extracts three non-linear based features of the signals (ApEn, LE
and Poincare) [GG19]. They describe that the first ones presents “global information
about the signal’s trajectory in the reconstructed state space, while Poincare’s indices
characterize the trajectories shape in detail” [GG19]. Finally, the PNN is trained by
adjusting the sigma value. Here, di!erent parameters are tested and the best ends up
to be 0.1 for sigma (for both Subject/User-dependent and Subject/User-independent)
[GG19]. The features and methods are further explained in [GG19].
To sum up, most studies test various classification methods and choose the one with best
accuracy. We cannot point out the best method, since the results of the comparisons
show that the classification method’s output depends on the given data-set and number
of classes. Eventually, the chosen emotion model could a!ect them, too. Due to the
tests and comparisons of Ayata et al., it is obvious that the window size duration and
number of extracted features influence the e!ectivity of machine learning algorithms.
Hence, the chosen methods of most studies are reliable, because they are used after
evaluating more models. It is also noticed that Ayata et al. and Zhao et al. explore
di!erent feature-sets and verify that more data does not mean more relevant information,
whereas too less data is also risky, since relevant information could be missed. Especially,
some features extract the arousal and some the valence level better (as seen in the table
21). Eventually, the feature sets also depend on the used sensors [AYK18]. Therefore,
it would be significant to know the influences of feature selections in the other studies,
but none have explored the relevance of features as detailed as the two works mentioned
above. Furthermore, machine learning methods like SVM are the most applied ones, but
there are various recent approaches with neural networks, too. On the one side, SVM are
easy to use, e#cient in terms of memory and the kernel can be linear or non-linear. They
are e!ective for higher dimensions, however not very suitable for large data-sets, since the
training time can become very long. On the other side, neural networks including Deep
Learning (DL) methods are very powerful, since they do not need extracted features
and one does not have to worry if too little or much input vectors are given. However,
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they should be openly revealed by the authors to be more understandable and can be
used or improved further. They often act like a black box, hence, the reasons for the
outcome are not easy to follow. Additionally, they cannot be visualized to understand the
decision-process. If inputs with high noises, wrong measurements and outliers are used,
it can a!ect the output enormously, and when having only few subjects they can tend
to overfit. (Hence, Wang et al.’s study shows that SVM suits better for their data-set
than neural networks [Zha+18b].) However, neural networks can provide better results
than statistical methods, since all relevant features are extracted and connected through
the whole system and they are suitable for large data-sets and many data dimensions.
Additionally, with the saying of the researchers, it can be noticed that multiple methods
can increase stability [AYK16; Al +19]. Lastly, ten- fold-cross-validation is applied the
most.

4.5. Results & Findings

Bulagang et al. reach accuracies of 46.7%, 42.9%, 43.3% for their tested three classifiers:
SVM, KNN, RF, respectively in an Subject/User-independent approach [BMT21c].
However, an accuracy up to 100% can be achieved with Subject/User-dependent models.
We notice here, that the lowest dependent results are 45.4% with SVM and these are near
the overall accuracies of the independent model before. They observe that with only HR
data, in which three features are extracted, negative valence is more accurate (LAHV with
40%, HANV with 96%) [BMT21c]. In their next study once again the subject-independent
approach is challenged and an accuracy of 66% is achieved [BMT21a]. As a result, despite
using the same setup and having less participants, the accuracy is much higher when
combining two sensors, although only raw data is used. Notably, single data reveals less
information regarding the emotion response. Here, it would be interesting to see if the
accuracy increases through feature extraction, which was defined as a key factor for better
results in the subsection above. It also must be revealed that this study is a preliminary
work and a future study may be more improved and accurate. Nevertheless, we wanted to
include it in our comparison to highlight the importance of feature extraction and of the
EDA. Moreover, Bulagang et al. also explore a model only considering subject-dependent
accuracy with 67,4% [BMT21b]. This study claims that the IBI is e!ective for valence
detection, but it cannot be said if the accuracy is better than with only measuring the
HR, since here, information about user-independent results is not revealed and in the
other study an average accuracy of subject-dependent is not computed. Nonetheless,
their results are not satisfying compared to their study combining SC and HR, which
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has almost the same results for user-independent measurements, despite the assumption
that SC is one-dimensional and only sensitive to arousal. So, alone with the results of
this study, no assertion can be made about the relevance of the IBI. Despite having
more participants none improvement can be seen. Additionally, possibly none feature is
extracted in this study, hence the importance of the input data is once again noticed
[BMT21b].
In Ragot et al’s research accuracies of 66% for valence and 70% for arousal based on
subject-independent approach are obtained fusing both sensor’s data [Rag+17]. (However,
not all data of participants can be used as inputs, because 2.3% of responses were missing.)
This study proves that wearables are as accurate as laboratory sensors, inducing that
their parameters are clinically reliable [Rag+17]. Furthermore, high correlations between
cardiac activity and middle correlation between EDA and emotions are observed [Rag+17].
Ragot at el. have better accuracy as Bulagang et al. with the fusion of SC and HR
[BMT21a]. Here, a direct comparison is possible since both use user-independent models,
the same sensors and SVM. Bulagang et al. use less subjects and a di!erent stimuli.
And eventually, Ragot et al. classify 9 classes of emotions, which indeed should have less
accuracy, since more classes are considered as defined in section 2. It is obvious that in
Ragot et al. better results are obtained, regardless of using pictures as stimuli, which
were seen skeptical before. Therefore, it is surprising that the VR environment could
not induce higher results, despite seeming very promising. It can be further claimed
again, that feature extraction is of high relevance and only raw data does not feed the
classification algorithm enough. Bulagang et al. have poor data preparing, thus, we
suggest that the VR method needs to be further investigated with better methods.
In addition, Ayata et al. achieve best accuracy with the feature-set 22 with 72.06% and
71.05% for arousal and valence, respectively, fusing both sensor’s data [AYK18]. It is not
uncovered if the result is subject-dependent or not, hence more comparison with other
results and an evaluation of their methods is not directly possible. They try to develop
a system for individual music recommendation, inducing that a dependent approach is
sensible. Comparing single and multiple sensor results, it is observed that two are more
reliable and increase the accuracy. Thereby, for the GSR it was 71.53% and 71.04% for
arousal and valence, respectively and for PPG 70.92% and 70.76% for arousal and valence,
respectively before [AYK18]. Despite not changing much in GSR, there is an increase in
arousal with both sensors. Using both sensors’ data, the most suitable feature-set has
changed, which could mean that the extracted features are very relevant for the outcome.
Zhao et al. have an an overall subject-dependent (cross-subject) accuracy of 75.56%,
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and we want to mention that they calculate accuracy and precision for every class
[Zha+18b]. Overall accuracy for arousal and valence is 78.89% and 75.56%, respectively
[Zha+18b]. They comment that “the performance of the model across participants and
subject-independent method is worse than that for a single participant model” [Zha+18b].
However, the meaning after this claim is not clear, since a subject-independent accuracy
is not presented and is not the same as a cross-subject accuracy, which in the end is only
the average performance of all subjects’ individual results. Nonetheless, their results
regarding feature selection shows that the accuracy improves with the iterative adding of
features. The arousal has its best accuracy with 14 and the valence with 18 features, while
the four-class model has its peak with 16 features [Zha+18b]. Furthermore, since most
of the features are extracted from the HRV in the arousal space, they assume that the
HRV is more sensitive to arousal. Surprisingly, for valence EDA-related features are more
e!ective [Zha+18b]. Here, the assumptions that the EDA sensor is a one-dimensional
sensor to arousal are turned down. Their results prove that multiple sensors are more
e!ective. Additionally, also here it is pointed out that features need to be analyzed
thoroughly since like in this study, the number varies regarding arousal, valence and
4-class approaches.
Alskafi et al. who have applied the 9-class model, achieve results of 80,9% (fine KNN) for
arousal and 81,1% (weighted KNN) for valence, which ends up being 75,8% on average
with the fine KNN method [AKJ21]. We notice that this result is much higher than
the one of Ragot et al.. These results could support their method of evoking emotions
naturally through debates and conversations. Likewise in the study of Zhao et al. it is
observed that more sensor data leads to better results. However, it is not announced if
the result is subject-dependent or not, which does not allow direct comparison with the
other works. Even for subject-dependent results, their system have higher accuracy than
Bulagang et al., Ayata et al. and Zhao et al, despite approaching 9 classes.
Furthermore, Ayata et al. prove that EMD before feature extraction will improve the
overall accuracy and that time domain features are more e!ective [AYK16]. With the
EMD, the accuracy increase from 71.93% to 85.07% for arousal, 71.04% to 82.81% for
valence. But within the same study it is claimed that the accuracy increase from 71.53%
to 81.81% for arousal and 71.04% to 89.29% for valence. [AYK16]. The results are not
extremely reliable and it can only be claimed that at least an accuracy of 81% for arousal
and 82% for valence can possibly be achieved. Additionally, it is unknown if the model
is subject-independent or not, and it also cannot be analyzed which dimension is more
accurately classified due to the di!erent presented numbers. Only the increase with the
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use of the EMD can be pointed out here.
Machot et al. achieve a total accuracy of 81% for the MAHNOB and 85% for the DEAP
data-set for subject-dependent and 78% and 82% for subject-independent, respectively
[Al +19]. Since the subject independent results are pretty high even for the 4-class
model, it can be supposed that CNN can indeed analyze emotional patterns in sensor
data accurately. Eventually, accuracy, precision, recall and F-measure are calculated in
this study. The DEAP data-set results in 0.85 in all user-dependent metrics and with
independent: 0.82, 0.83, 0.82, 0.83, respectively, when using CNN [Al +19]. Hence, CNN
performs best among all tested classifiers in every metric. Furthermore, MAHNOB8

and DEAP are compared in this study [Al +19]. Comparing the results, DEAP achieve
higher accuracy with every metric, inducing that their subject composition (gender, age)
and stimuli corpus must be better, since for both the same classification methods are
used. Thus, this work shows that CNN are indeed promising.
Moreover, Alskafi et al. attain 87.2% (fine KNN) accuracy for arousal and 89.5%
(finegaussian SVM) for valence, which results to be 87.2% on average with the fine
KNN method [AKJ21]. They state that 2-class models for separate arousal and valence
(4-quadrant) performs better than more classes, nonetheless, the 3 class one shows “higher
balance between classes in terms of correctly classified instances. Same as observed
between joined models” [AKJ21]. Furthermore, despite not knowing if the results are
subject-dependent or not and despite using way less subjects, their accuracy is better than
with the CNN method of Al Machot et al.. The main di!erence between both studies are
the available sensor-data, the classification method and the stimuli inducement, which
implies that measuring multiple sensors increases the accuracy and natural setups could
be more reliable than videos. Eventually, it is noticeable that the accuracy of valence is
higher than the arousal.
Goshvarpour and Goshvarpour obtain maximum accuracy of 88.57% and 86.8% for
arousal and valence in subject independent mode, respectively [GG19]. Generally, results
of the arousal dimension are the highest as in every other study until now, regardless of
being user-independent. They demonstrate that emotion recognition is highly dependent
on the participant and it is easier to detect arousal [GG19]. For both sensors, highest
accuracy of 100% can be achieved for the most participants in arousal space and less in
valence. Furthermore, the most irregularity is observed during the high valence state and
the least during low valence [GG19]. Consequently, signals’ irregularity is supposed to be

8open databse with 30 participant (17 men and 13 women) between 19 and 40 years old without any
diseases. Here, 20 video clips were presented and the emotion was reported via SAM (arousal and
valence from 1 to 9) [Al +19]
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influenced by the valence dimension [GG19]. The results also show that the fusion has
more potential for emotion recognition than using each signal separately. Another key
point is that emotions indeed have irregular patterns, which can be analyzed better with
PNN [GG19]. Hence, this approach is very promising and should be further investigated
with more sensor-data and more classes. Additionally, it is observed that the PPG obtain
better classification results compared to the GSR. Finally, in total, better accuracy is
achieved for the arousal space.
Lastly, Nasrat et al. attain an accuracy of more than 91% with the classification-
combination method, showing an improvement of the binary classification of emotional
valence by more than 19% compared to using CNNs on their own [Nas+21]. Furthermore,
it is proven that the combination of CNN with SVM can achieve pretty high and satisfying
results, which can be used as a basis for further research. After emerging all image
transformations very high results of 97.7% are reported, in spite of the fact that the
lowest accuracy and F1-Score are 64.37% and 76.95% with STFT, and the highest are
72.32% and 83.34% with MTF, respectively [Nas+21]. It is not revealed if the system
is dependent on the subject or not, however, the results imply that HR can be very
accurate in measuring valence. In addition, it is seen that self-reports at random times
when emotions naturally arise, are more accurate than controlled setups. The study
have better results than other subject-dependent or independent models and also stands
out beside other studies’ valence accuracy. However, since only two classes are classified
a comparison is not that e!ective. Nevertheless, the results are very promising and
also reveal that a model can be better trained with a large data-set and more subjects
[Nas+21]. It would be significant to expand the study of Al Machot et al. with the
advantages of Nasrat et al. to allow better comparison. Eventually, multiple CNN
could increase the accuracy even more and also more image transformations could be of
advantage in Machot et al’s work. In both studies, it would be interesting to see how the
accuracy changes with including more sensor data. However, we need an extension of
dimensions and classes in the work of Nasrat et al. [Nas+21] to be able to compare and
to imply the better methods.
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5. Discussion & Future Works

5.1. Reflection & Discussion

Our comparison and analysis result with promising outcomes for the viewed purpose of
estimating emotions via wearables. However, not all studies are individually satisfying in
every aspect. Hence, new studies focusing on each study’s advantages and fusing them
in one system would be beneficial to attain maximum accuracy.
First of all, we have noticed in which aspect the emotion evocation methods influence
the result. Here, natural stimuli act better, assuming that the subject is not stressed and
forced, so that the emotion is induced without putting pressure. In addition, participants
have reported the emotion more accurately as seen in the works of Alskafi et al. and
Nasrat et al. [AKJ21; Nas+21]. The VR environment seems promising, considering that
it brings visual and audio stimuli together in a virtual world experience, but this could
not be proven with results by the analyzed studies of Bulagang et al. [BMT21c; BMT21a;
BMT21b]. More researches into these stimuli are welcome for a better evaluation, since
we claim that the problems in those studies mostly lied in the feature extraction methods,
not in the stimuli itself. Furthermore, it would be meaningful to know if self-chosen video
clips are more accurate, due to the high dependency of emotions on the individual’s
experiences. But direct comparison was not seen as sensible with the presented works,
because in Zhao et al.’s study [Zha+18b] only 15 participants are present and twice
as much in the other studies. Hence, despite approaching similar methods as in the
studies of Ayata et al., the better stimuli cannot be pointed out clearly. Zhao et al.
indeed achieve better accuracy than in Ayata et al. with the fused sensor data [AYK18].
However, in the study of Ayata et al., in which only GSR data is estimated [AYK16], it
is less accurate, possibly highlighting the impact of applying methods like EMD. It is not
directly possible to state out which stimuli or number of participants is the best, since
even when using the same method, it is possible that one study has a better selection of
videos/pictures/music/prepared discussion themes,[. . . ] and we do not have a detailed
insight into every study, which restricts the comparison. Here, for example one song
could induce sadness for one person, if it was listened to with someone who is not around
anymore, and the other person might be very happy, because it was their wedding song.
Moreover, we think that the number and combination of participants could play a great
role, but it seems that not every study has paid much attention to the selection of their
subjects. It is especially seen that small groups are preferred and most of them are in
the same age group, since they acquire college students. We further notice that some
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studies o!er money for subjects to motivate/encourage them like in the study of Ragot
et al. [Rag+17]. Of course, even with only 10 to 30 subjects, much data can be acquired,
especially when measuring multiple sensor-data and for a longer time. However, this
also means that a big data source is only from one person, which is not e!ective for
training a subject-independent system. Regarding this matter, Zhao et al. compare
two di!erent databases with the same methods (more information about the databases
is given in section 4) resulting with varying accuracy, inducing that the chosen videos
or the selection of subjects are e!ective, since in both the same stimuli were used and
the only di!erence lies in the subjects. Here, individual preferences, the culture and
the education could play an important role. Some may enjoy history and war movies,
while others could become emotional or angry. The same can be seen in comedy movies:
some may enjoy and laugh, others might not really understand the jokes or even feel
o!ended. Furthermore, as described in section 2, we assume that some subjects could
rate their own emotions better than others. Knowing this problem, Deng, Chang, Yang,
Huo and Zhou focus on heartbeat di!erences between men and women feeling the same
emotion [Den+16]. As a conclusion, emotions like anger and joy are felt more intense by
men. But, women usually tend to report stronger responses, especially related to sadness.
The heartbeat shows that men experience the most emotions more intense, but report
less aroused states. Consequently, the researchers suppose that social stereotypes force
participants to think about how they need to feel or to hide/exaggerate their emotions
[Den+16]. The results of this study can be seen in figure 22. Leading to a further relevant
point that, again, self-reports are not very accurate and trustworthy. Thus, depending
highly on the individual. Furthermore, rating emotions on di!erent dimensions is a pretty
complex task, resulting that people may not be capable to exactly know and report the
felt a!ective state, especially if multiple emotions are involved.
Another research group highlights that the felt emotion varies with the participant’s
age by letting them report their emotions after watching video clips [Fer+18]. Older
adults in this study experience negative emotions stronger than younger adults. Most
di!erences are noticed in clips inducing disgust and fear. Furthermore, higher arousal is
reported by elder people for sadness, anger and tenderness clips and by young adults
for amusement clips. Another important point is that older adults can recover more
easily from the emotions. Therefore, from this study one can learn the importance of
controlling the baseline and setting rest periods of su#cient duration [Fer+18]. We have
also seen in section 3 that diseases can influence physiological parameters, as why the
outcome of the emotion can di!er from person to person. Here, mostly elderly are likely
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to have health issues. As explained before, it is relevant to choose subjects without health
issues and past diseases. Moreover, it seems sensible asking them to obviate specific
food/drugs/beverage as in Zhao et al.’s work [Zha+18b]. We think that it is a naive and
not reliable approach to build a classification system with only 10-20 subjects, especially,
if one gender is more presented. Consequently, we see that the selection of participants
is an important task, but in our comparison it is noticed that most studies only use
students as participants. The same observance is reported by Schmidt et al. who say
that it is more convenient to acquire research stu! or students [Sch+19]. Hence, the
groups are unevenly distributed. As why, we assume that more studies involving elderly
and more age groups are necessary, particularly, for health-related applications, since
parameters can act di!erently with the age.
Another key aspect we want to point out is related to the emotion model. When
comparing two-dimensional models of di!erent studies, it is noticed that the definition of
emotions in vector space di!er. It is hard to impossible to tell which emotion exactly
is composed of which arousal and valence level with current studies. This realization
demonstrates again that self-reports are very subjective and it is critical to build an
overall user-independent system with few participants’ data. Therefore, it is proposed
that at least a new axis could di!erentiate between similar emotions in a new dimension
as explained in section 2 and illustrated in figure 11.

Figure 11: E!ect of Expanding Dimensions9

Furthermore, it is relevant to mention that not all sensors can measure valence and
arousal spaces with the same sensibility. But, due to di!erent accuracies of studies, it
cannot be outlined which dimension is measured best by which sensor. Mostly, it is
observed that the detection of valence is still not as accurate as the arousal as seen in
9https://www.researchgate.net/figure/The-three-dimensional-space-spanned-by-the-VAD-dimensions-
For-a-more-intuitive_fig1_313056245, 04.07.2022
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section 4. Dzedzickis et al. present that clinical-level-sensors like the EEG or EMG/EOG
can evaluate valence better [DKB20]. Whereas it is said that EDA is sensible to arousal,
HR is two-dimensional and can detect arousal and valence [Sch+19]. However, for skin
temperature the assumptions are contradictory as seen in section 3.3. Such assumptions
are hard to prove, since the results of sensor analysis depend highly on the extracted
features and evoked stimuli. We want to mention that studies have shown, as pointed out
before, that algorithms and the extraction of features improve the quality of valence, as in
the work of Nasrat et al. [Nas+21] and Ayata et al. with using the EMD method [AYK16].
In addition, wearable sensors have almost the same accuracies as clinical sensors, which is
proven by Ragot et al.’s work, in which laboratory sensors (Biopac MP150) are compared
with wearables (E4) for cardiac and electrodermal activity [Rag+17]. Furthermore, Wang
et al. have improved the “EmotionSense” [Zha+18b] by fusing data of ACC (acceleration)
to measure the activity, which shows results up to an accuracy of 74.3% [Wan+20].
Hence, it is advantageous to use every available sensor and fuse the data because the
information of all can lead to better accuracies in valence and arousal, as analyzed in
section 4. However, we have also seen in chapter 3 that di!erent sensors need di!erent
window sizes and not all stimuli methods need to results in the same way with every
sensor. SKT for example was said not to be suited for short stimuli evocation methods
like pictures.
In data science is is a skeptical approach to feed the system with every possible data
without knowing it’s impact on the result, since irrelevant data can lead to very insignifi-
cant findings. However, in our viewed purpose it is already proven that viewed sensors
hold information on emotional states as shown in section 4.
Coming to the classification methods and extracted features, we want to convey that
filtering, normalizing and a thorough exploration of feature-sets are of high relevance.
The optical window size duration needs to be individually experimented, which varies
from the considered emotion. The studies have illustrated that the classification methods
depend on the data-set and hence, the best methods needs to be explored. Consequently,
we are not able to highlight the best proceedings as originally intended, but for large
data-sets neural networks combined with SVM seemed the most promising so far, like in
Nasrat et al.’s system [Nas+21]. At the beginning, we have approached neural networks
more critically since they can lead to better accuracies, but also are more out of control
and can be highly influenced by outliers. They are more complex and require more time
for training and preparation. Furthermore, with other methods the origin of the decision
can be better understood as presented by Rattanyu et al. [ROM10]. Alternatively,
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Machot et al. report that limits of supervised machine learning systems, in which feature
extraction is very important and having one more feature or less has a great impact on
the result, can be overcome with DL methods. They claim that researches focus more on
basic features and relevant information is sometimes not extracted [Al +19]. Concluding,
again, that we cannot highlight the best solution, but only can suggest to compare more
methods within the study and chose the best for the purposed data-set. Finally, only
using raw data is not considered a good approach.
Our most critical point regarding the studies is that not everyone reveals the same amount
of information, resulting in a suspicious impression. Hence, we as the readers, have to
make our own assumptions. Sometimes the number of gender is not revealed, the number
of features and most importantly, if a subject dependent or independent approach was
aimed. Here, it is important to acknowledge that subject independent does not mean an
average of all subject dependents or an average accuracy when the signals are normalized.
Rather, they need to be normalized and trained and tested on separate groups [Al +19].
In addition, Machot et al. support the view that it is far from practical reality to collect
data each time for each subject. Thus, they state out that independent systems should
be targeted [Al +19]. Another point is that not every researcher in our comparison
has made use of metrics and frequently only has calculated the accuracy. Sometimes a
confusion matrix is revealed, but metrics like recall, precision and F-measure are rarely
used. Nonetheless, as Alskafi et al. mention, in emotion recognition, it is significant to
know the number of correctly classified emotions, and in our interest the declassified are
important as well if we want to build phobia therapies. Therefore, besides accuracy the
results of other metrics are important to know [AKJ21].
Lastly, nobody has approached the privacy aspect of such applications. As mentioned in
section 1, the lifestyle has changed in the last decade, and most humans are conscious
about the rights of their own data. We know that we are tracked through various
websites and applications, and that our data is almost never secure. We even need to
accept cookies and allow websites to make use of our data. However, people tend to act
di!erent about their health information. It is observed that most want to protect their
data and were pretty long skeptical to the health care sector’s digitization. Especially,
diseases regarding emotional states are sensible data and emotional information could be
of interest for advertising, hence, need to be secure. Therefore, the system should be
aimed to be as secure as possible. But since data are captured through wearables and
often connected to apps/ the web/ the cloud, a secure protection cannot be guaranteed,
which makes the use and acceptance of these systems pretty complicated in health care.
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Lastly, we suggest anonymous questionnaires to be aware of the actual perspective of the
di!erent age groups.

5.2. Future Works

For further work, we suggest taking advantage of all possible sensor data. We want to
point out that according to some reviews like the one of Dzedzickis et al. and the study
of Egger et al., the PPG is capable of calculating the RSP from the BVP, containing
information about the breathing behavior and thus, can possibly distinguish between
negative and positive emotions and their intensity [DKB20; ELH19]. Therefore, we
suggest correlation studies between the PPG extracted RSP and conventional methods.
We have found studies focusing on a pulse-oximeter, but no reliable statements could
be extracted since they were contradictory [Hak+18; Wen+14]. Hence, more research is
advantageous, to see if SpO2 contains emotional data or not. Moreover, blood pressure
could hold information about the a!ective state, which can possibly also be measured by
wearables. Summing up, features as IBI, RSP, blood-pressure and SpO2 should be further
researched in relation to emotion recognition. Eventually, acceleration can be measured
as in the “EmotionSense” of Wang et al. [Wan+20]. We notice that gender and age
di!erences should be researched more and studies need to focus on their containment of
participants. As proposed before in section 2, dimension extensions should be investigated,
since the two-dimensional approach has it’s limitations. Lastly, we want to mention
that the E4 (which is used in most studies including seven of our compared works)
is very pricey and acts as a medical device. Therefore, we suggest that more studies
focus on usual recent smart/fitness-watches, which are used in everyday life by more
people. However, if too many di!erent wearables are used and tested by di!erent studies,
comparison between works becomes even harder. Maybe watches with the most accurate
sensors can be chosen as basic wearable devices, until better ones are released.
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6. Conclusion

This work has shown that emotion recognition via wearables would bring new possibilities
to health care and new diagnosis/support applications could be designed. The analysis
reveals that current trends are promising (best accuracy in the 4-class model with 87.2%
(fineKNN) and 88.57% and 86.8% for arousal and valence, respectively with (PNN) and
through di!erent algorithms like the EMD and specific feature extractions, accurate
valence and arousal detection is possible. Wearable sensors like the EMD, PPG , the GSR/
EDA and skin temperature are very reliable and almost of clinical accuracy. Furthermore,
it is seen that more sensors result in better accuracy, since each sensor has their own
advantages regarding the spaces. Some give better results in one space, some in the
other, or in both dimensions, thus, the fusion increases overall accuracy. Regarding
the classification methods, neural networks have shown the most promising accuracies
(CNN, PNN), especially when emerging with SVM. Another significant point is that more
studies need to approach a subject-independent-system and we think that the influences
of the subject group’s composition should be more researched. In addition, it would be
interesting to see if gender-related systems are more accurate. Moreover, RSP, SpO2 and
ACC should be further investigated, since not much information could be found. We
also suggest that the dimensional-model needs to be expanded and tested for accuracy
with additional spaces like dominance or time. We have seen that the dimensional-model
is much more flexible and reliable than the discrete one, since the emotions are not fixed
discretely. Lastly, it is noted that natural environments can induce stronger emotions or
the emotion report is more accurate, and it is more trustworthy to monitor the person
for a longer time.
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A. Appendix

Figure 12: List of PPG-Signal’s Extracted Features I. [HS18]

Figure 13: List of PPG-Signal’s Extracted Features II. [HS18]

Figure 14: List of GSR-Signal’s Extracted Features I. [HS18]
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Figure 15: List of GSR-Signal’s Extracted Features II. [MGK18]

Figure 16: List of SKT-Signal’s Extracted Features [HS18]

Figure 17: Di!erent Fear Levels [B"l+19]
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Figure 18: Comparison of 12 Studies: Complete table
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(a) (b)

Figure 19: Feature-Set of Ayata et al. [AYK18]

(a) (b)

Figure 20: Features of Zhao et al. [Zha+18b]

Figure 21: Best Features of Zhao et al. [Zha+18b]
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Figure 22: Di!erences in Gender [Den+16]
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