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Abstract

Hypoglycemia is a serious condition associated with increased mortality in patients
with type 1 diabetes, which is an incurable autoimmune disease. Hypoglycemia is
defined by blood glucose levels below 70 mg/dL. The causes can include excessive insulin
injections, skipping meals, or increased physical activity. It can occur suddenly and may
be asymptomatic, impeding timely preventive measures. Thus, innovative technologies,
such as machine learning, can help to predict the state before it occurs. Prediction
models are mainly classified as short- and long-term prediction horizons (PHs) of up
to 2 hours and up to 24 hours, respectively. Most research conducted in the field of
diabetes forecasts blood glucose values. Still, the obtained accuracy may not be su!cient
to prevent hypoglycemia due to the possible time lag of CGM devices. Moreover, most
studies focus on one PH only. This thesis included short- and long-term PHs in the same
classification model to consider multiple use cases and to enable better decision support.
The predicted times are 5-15 min, 15-30 min, 30 min-1 h, 1-2 h, 2-4 h, 4-8 h, 8-12 h,
12-24 h before hypoglycemia. The input features are prior glucose measurements, the
administered basal and bolus insulin dosages, and acceleration data. First, a correlation
analysis between the input features and the classes is conducted. Thereafter, RNN
and CNN are explored to classify the onset of hypoglycemia based on the proposed
nine classes. Furthermore, training with six classes classifying up to 4 hours before the
onset is compared. Finally, subject-specific models are tested. The population-based
correlation analysis reveals a very weak association between basal insulin and glucose,
and between basal insulin and acceleration data. An individual correlation analysis
showed stronger relationships, but the scores varied significantly among the subjects. For
the classification model with nine classes, the best results are obtained with a LSTM
model. Subject-specific models improve the performance. However, only classes 0-2 could
be well classified with recalls of 98%, 72%, and 50%, respectively. A population-based
model with only six classes obtains better results with recalls of 99%, 73%, and 56%
for classes 0, 1, and 2, respectively. In conclusion, the proposed system that includes
short- and long-term PHs is not feasible with the data or models used. Whereas, a model
classifying multiple short-term horizons up to 4 hours before hypoglycemia produces
promising results with improved precision, and F1-measure and indicates that at least
60% of events can be predicted which is increased to approximately 70% in subject 563.
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1. Introduction

Diabetes mellitus is one of the fastest increasing and most prevalent chronic diseases
and is predicted to a"ect approximately 1.3 billion people worldwide by 2050 [1]. It
is a long-term disease in which glucose cannot be metabolized normally, leading to
continuously elevated blood glucose levels [2]. Diabetes mellitus is mainly classified into
type 1, type 2, and type 3 diabetes. Type 1 Diabetes (T1D) is an incurable autoimmune
disease in which insulin production is destroyed, type 2 diabetes can result from an
unhealthy lifestyle and diet, and type 3 diabetes which is gestational diabetes occurs
during pregnancy [3]. In particular, T1D may be more di!cult to manage because its
onset can occur in childhood and youth. It has been reported that T1D accounts for 2%
of all cases of diabetes [4] and has a global prevalence of 9.5% [5]. Patients with T1D
cannot produce su!cient insulin. Therefore, blood glucose levels are not harmonically
regulated and external insulin injections are required. The main goal of diabetes therapy
is to maintain normal glucose levels and to prevent increased glucose concentrations
above 180 mg/dL defined as hyperglycemia, and decreased glucose concentrations below
70 mg/dL, defined as hypoglycemia. As a consequence, hyperglycemia and hypoglycemia
are associated with vascular complications and comorbidities. Notably, hypoglycemia is
more often seen in patients with T1D. It can be life-threatening and is mainly caused
by inadequate insulin dosages. In addition, it could be impacted by low meal intakes
[4]. Other direct or long-term causes of hypoglycemia can include extensive activity
necessitating increased glucose levels in muscle cells, which may impact insulin sensitivity
hours later [6, 4]. These associations can lead to fear and anxiety. As a result, patients
with T1D are less active and feel discouraged from participating in sports [6, 7].
Hypoglycemia is a serious condition, but it can be prevented by glucose intake if the
condition is detected before it occurs. If the event is asymptomatic and unnoticed,
preventive self-actions may be impeded. Nocturnal hypoglycemia, for instance, appears
to be mostly asymptomatic and is considered to be one of the main causes of sudden death
of T1D. Moreover, children are at higher risk for hypoglycemia, nocturnal hypoglycemia,
and exercise-induced hypoglycemia, because of their active and unpredictable lifestyle
[8, 7]. Therefore, technological approaches could help to prevent the state by predicting
adverse events, thus enabling timely treatment. Currently, diabetes care is improved by
Continuous Glucose Monitoring (CGM) devices, which are sensors that measure glucose
concentrations in interstitial fluid under the skin. CGM devices can be augmented with
machine learning techniques to forecast future glucose values [9]. They also visualize
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glucose values in real time and can alert the patients of abnormal patterns. Machine
learning is a function approximation problem and learns patterns from the given data to
draw inferences. As a result, if adverse events can be predicted before their occurrence,
the risk can be reduced by adjusting the intake of food, insulin dosage, or activity type.
Artificial Intelligence (AI) and data analysis can support individualized decisions based on
the patient’s current condition [6]. Moreover, insulin pumps worn on a belt were designed
to subcutaneously infuse insulin substitutions. If CGM devices are connected to insulin
pumps, insulin dosages can be adjusted and controlled automatically. Such a system
is called an artificial pancreas or closed loop system [9, 10]. In this context, previous
studies developing systems based on machine learning methods for glucose prediction have
concluded that physical activity, data of the given insulin dosage, and information about
the meal intake can improve the application’s performance for short-term Prediction
Horizons (PHs) and horizons above 45 minutes [11, 12]. However, available hybrid
insulin pumps are not fully automatic and require manual user interventions of food
intake and physical activity. Wearable devices may therefore be used for data estimation.
Currently, various Food and Drug Administration-approved devices measuring heart
rate, galvanic skin response, and acceleration data are available. Wearables are portable
small computers or devices that can be embedded with sensors and wireless technology
so that physiological parameters can be continuously estimated and visualized in smart
devices. In 2006-2007, the first wearable fitness trackers were introduced [13]. In those, an
accelerometer measures the static or dynamic acceleration forces and the rate of change
in velocity along multiple axes. The experienced physical movement of a mechanical
element within the accelerometer structure is then converted into an electrical signal [14].
A literature review has shown that most diabetes research based on short-term PHs
which range from 30-120 minutes focuses on forecasting glucose values using regression.
Contrariwise, studies based on long-term prediction horizons which range from 2-24 hours
more often classify adverse events with binary classification. However, to the authors’
knowledge, no study has integrated short-term and long-term PHs into the same model,
which is possible in classification systems, unlike regression models. A model, which
identifies the risk from 24 hours to 15 minutes before, can enable short-term preventive
actions, and the adaption of daytime activities and insulin dosages. With this in mind,
as a di"erence from other present studies, this thesis includes multiple time horizons
into one model to classify the time to the onset of hypoglycemia in patients with T1D.
Utilized data includes glucose concentrations, applied basal and bolus insulin dosages,
and physical activity. The capability of machine learning methods is investigated for the
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proposed task. In this context, deep learning methods were chosen because no feature
engineering is required and the performance does not depend on extracted features. This
study compares Convolutional Neural Networks (CNN) and Recurrent Neural Networks
(RNN) architectures including One Dimensional Convolutional Neural Networks (1DCNN)
and Long Short-Term Memory (LSTM) models. In particular, answers to the following
research question are investigated:

“In patients with T1D, how e!ective are machine learning models in

predicting the time until the occurrence of hypoglycemia when utilizing

glucose levels, physical activity data, and insulin values as input features?”

Notably, this thesis will make the following contributions:

1. It investigates the correlation between estimated glucose, basal insulin, bolus insulin,
and the magnitude of acceleration for di"erent time intervals before hypoglycemia.

2. It investigates the performance of deep learning models while comparing Residual
Network (ResNet), LSTM, and a hybrid model of ResNet and LSTM.

3. It compares between population-based and subject-specific models.

4. Finally, it compares between short-term and long-term prediction horizons.

The objective is to decrease the risk of hypoglycemic events, including insulin-induced and
exercise-induced hypoglycemia, by alerting patients with T1D beforehand. Conclusively,
this thesis aims to promote short-term self-management as well as the long-term prediction
of hypoglycemic events which could improve decision support. The included PHs are
5-15 minutes, 15-30 minutes, 30 minutes-1 hour, 1-2 hours, 2-4 hours, 4-8 hours, 8-12
hours, 12-24 hours, and 24–48 hours before the event. Those interventions could provide
better management, better planning of daytime activities and meals, better life quality,
and better physiological and psychological health of T1D patients.
This study is further structured as follows. Chapter 2 gives the necessary background
information about T1D and its therapy, and about machine learning, in particular about
the applied deep learning methods such as 1DCNN and LSTM. Then, chapter 3 explores
the state of the art in diabetes research, hypoglycemia estimation, and research gaps.
The methodology of this work is presented in chapter 4 by describing the utilized data
and its pre-processing steps, the methods for the correlation analysis, and the model
architectures. The results are presented in chapter 5 while chapter 6 discusses the findings,
and chapter 7 concludes the main contributions of this work. Finally, chapter 8 highlights
possible future work.
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2. Foundamentals

This chapter gives the necessary background information to understand the motivation
and aim of this thesis. Furthermore, the theory of applied technological methods is
demonstrated. To begin with, the metabolic disease “Diabetes Mellitus”, especially type 1
diabetes with its therapy methods and complications are described. Here, the focus is set
on hypoglycemia, the various insulin replacements, and the impact of physical activity.
Afterward, machine learning, neural networks, and deep learning are explained while
highlighting models like 1DCNN and LSTM since those are utilized in the experiments.

2.1. Diabetes Mellitus

Diabetes mellitus is a chronic disease in which insulin cannot be secreted or used e!ciently
by the body. Furthermore, the glucose metabolism can be destroyed as to why more
glucose fluctuates in the blood. Those dysfunctions and deficiencies lead to elevated
and varying Blood Glucose Levels (BGLs) [3]. In particular, major complications of
diabetes are hyperglycemia and hypoglycemia. Hyperglycemia is defined by increased
BGLs above 180 mg/dL, and chronic hyperglycemia highly impacts life quality because it
can lead to organ damage and further dysfunctions. In addition, hyperglycemia can cause
microvascular and macrovascular diseases such as retinopathy, nephropathy, neuropathy,
or cardiovascular diseases [3, 15]. Contrariwise, hypoglycemia is defined by decreased
BGLs below 70 mg/dL and can be life-threatening since it can result in coma or in death
in the worst case. Therefore, both conditions are dangerous and should be avoided.
537 million people were living with diabetes in 2021 according to the International
Diabetes Federation, and it was predicted that 643 million people could be diagnosed
with diabetes by 2030 and 783 million people by 2045 [16]. In 2023, it was reported
that the expected cases could rise from 529 million to 1.3 billion by 2050 [1]. Moreover,
diabetes-related complications a"ected 6.7 million deaths worldwide in 2021. For only
Europe, it is revealed that 61 million persons had diabetes and 1.1 million people died
from diabetes in 2021. In addition, an expected rise to 67 million persons by 2030 and
69 million persons by 2045 is predicted [16]. Following these reports, it can be seen
that diabetes mellitus is a global health problem and needs more preventive actions to
decrease the rising incidence rate.
Diabetes mellitus is classified into di"erent types based on its etiology. It is mainly
di"erentiated between type 1, type 2, and type 3 diabetes, all of which may require
di"erent treatments and management. T1D is an autoimmune disease that mostly has a
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genetic etiology as will be explained in subsection 2.1.1.
In Type 2 diabetes, su!cient insulin can be produced by the pancreas but it cannot
be used e"ectively due to insulin resistance. Hence, the BGLs are elevated [3, 15]. In
2010, it was reported that 90-95% of all diabetic patients are diagnosed with type 2
diabetes [3, 15], increasing to 96% in 2023 according to the Institute for Health Metrics
and Evaluation [1]. The etiology is based on unhealthy diet and lifestyle including
obesity, stress, and physical inactivity. Type 2 diabetes is curable in its early stages since
the glucose concentrations can be controlled with an adequate lifestyle [3]. The main
complications of type 2 diabetes are hyperglycemia and resulting comorbidities.
Type 3 diabetes is gestational diabetes and develops before or during pregnancy because
of the pregnancy hormones which could destroy the produced insulin. Type 3 diabetes
is normally said to disappear after delivery but the a"ected are at increased risk of
developing type 2 diabetes [15].

2.1.1. Type 1 Diabetes

Type 1 diabetes is one of the most prevalent chronic diseases in children and often has its
onset in youth. In 2010, it was reported that the incidence and prevalence are increasing
and around 5-10% were estimated to have T1D [3]. In 2020, Mobasseri et al. presented
that the incidence of T1D was 15 per 100.000 people and the worldwide prevalence was
9.5% [5]. In 2021, the Robert Koch Institute reported that 1.5 million people under
20 years were diseased with T1D. In addition, for Germany, a global incidence rate of
3-4% is estimated for the last decades, while the estimated prevalence in children and
adolescents was 235.5 per 100.000 persons in 2020 of whom more boys were a"ected [17].
As indicated earlier, T1D is an autoimmune disorder in which the immune system attacks
the pancreatic cells. Therefore, insulin-producing ω-cells in the islets of Langerhans
are damaged by white blood cells which are called B-cells and T-cells [3, 15, 18, 19].
In this process, B-cells present produced antigens to T-cells, so that falsely identified
invaders are eliminated [15]. Markers could be islet cell auto-antibodies, auto-antibodies
to insulin, auto-antibodies to GAD identified as GAD65, and auto-antibodies to the
tyrosine phosphatases identified as IA-2 and IA-2 [3]. If the ω-cells are destroyed, insulin
cannot be produced su!ciently, as why external insulin injections are required as a
replacement therapy [18, 19]. Additionally, Bolli et al. present that the ω-cell destruction
could result in a deficiency of amylin secretion. Given this, T1D could be a dual hormone
deficiency disease. These deficiencies would usually cause high glucose variations in
patients with T1D, and a more di!cult glucose control especially after the meal [20].
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Amylin is also a hormone secreted by the ω-cells. Amylin secretion is activated by insulin
secretion when a person starts to eat, and the hormone could impact glucose homeostasis
[20]. Besides, patients with T1D can also develop a dysfunction of ε-cells which secrete
glucagon to prevent hypoglycemia [10]. Figure 1 summarizes the pathology of T1D.

Figure 1: Pathology of type 1 diabetes [21]

T1D is categorized as a polygenic disorder [22], and the etiology could be explained by
genetic predispositions, particularly in children and youth-onset type 1 diabetes. Besides,
external factors such as viruses, the environment, and diet or stress could trigger ω-cell
destruction [3, 15, 19]. Twin studies have also revealed that non-genetic factors could
contribute to the activation of T1D [22]. The destruction or dysfunction of pancreatic
tissues may also be caused by other diseases, such as chronic pancreatitis, trauma, or
surgical removal of the pancreas. Moreover, endocrine diseases, such as excessive growth
hormone production and Cushing’s syndrome, could impact the onset due to significantly
increased cortisol production, as stated by Nilam et al. [15]. In addition, Lucier et al.
asserted that the metabolic, genetic, and immunogenetic characteristics of T1D could
di"er among subjects. Age could also influence the disease development and treatment
as to why personalized treatment methods and therapies are suggested [19].
Finally, T1D is classified into three stages. The first stage is the early asymptomatic
stage, which is defined by normal fasting glucose and normal glucose tolerance [19, 22].
The development of autoimmunity can usually be detected by the presence of at least
two circulating pancreatic islet auto-antibodies, despite the absence of symptoms at the
early stage [19, 22]. Stage 2 which is called asymptomatic dysglycemia, can be diagnosed
if a large number of ω-cells have already been destroyed and if multiple auto-antibodies
are detected. It can be further di"erentiated by impaired fasting glucose or impaired
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glucose tolerance [19]. Lastly, stage 3 is identified with the onset of hyperglycemia
caused by insu!cient insulin secretion with clinical symptoms [19, 22]. Those patients
could randomly have glucose concentrations above 199 mg/dL, and a fasting glucose
concentration above 125 mg/dL [19].

2.1.2. Complications of Type 1 Diabetes

Patients with T1D are at a higher risk for developing critical comorbidities as listed in 2.1
and other autoimmune disorders, such as autoimmune thyroid disease, celiac disease [19],
Graves’ disease, Hashimoto’s thyroiditis, autoimmune hepatitis, or pernicious anemia [3].
Moreover, they could have a relatively higher risk of developing cardiovascular diseases.
Especially, women with T1D could be at greater risk [23] Lucier et al. point out that the
mortality risk could be 2-5 times higher compared to non diseased [19]. The main issue is
that the blood glucose concentration cannot be harmonically regulated without external
help resulting in continuously elevated BGLs. Subsequently, if T1D is not treated with
insulin replacements, and the patient is often in a hyperglycemic state, severe conditions
like diabetic ketoacidosis can occur which is estimated to appear more often in youth
[19, 15]. Ketoacidosis is also called a diabetic coma and is a consequence of insulin
deficiency, falsely managed insulin therapy, and acute, severe conditions [24].
Hypoglycemia is another serious life-threatening condition of patients with T1D resulting
in coma, acute brain damage, arrhythmia, and death in the worst case [20, 25]. In this
context, 6-10% of T1D related death cases were estimated to be caused by hypoglycemia,
according to reports of Cederblad et al. [25]. Hypoglycemic conditions are mainly a
consequence of insulin therapy, particularly with inadequate and extensive insulin dosages,
as well as an insulin injection at the wrong time [24, 19]. Furthermore, skipped meals or
insu!cient meal intake can lead to decreased blood glucose concentrations. Lastly, physi-
cal activity in which more glucose is consumed by muscle cells can provoke hypoglycemic
events [24]. Moreover, it is mentioned that insulin sensitivity can vary based on the
daytime. Here, Haak et al point out that it is increased during the night, after physical
fitness, or after improved glucose control [24]. Overall, the main challenge for patients
with T1D is to maintain normal glucose values and to prevent serious fluctuations since
the treatment of elevated glucose concentration can result in an unwanted decrease.
Hypoglycemia can be classified into 3 levels. Stage 1 is non-severe and characterized by
glucose concentrations between 54 mg/dL to less than 70 mg/dL. It is helpful to predict
the occurrence of stage 1 since it alerts to take preventive actions and to prevent further
decrease. Stage 2 is clinically important and characterized by significantly decreased
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glucose values less than 54 mg/dL. Notably, it requires immediate action. Stage 3 is severe
hypoglycemia and can cause (long-term) cognitive impairment. A"ected then depend on
external help [26] as to why the condition is particularly dangerous for children. Severe
hypoglycemia often results in asymptomatic hypoglycemia or nocturnal hypoglycemia
since the patient is unaware of their glucose drop. In particular, the elderly would be at
higher risk for severe hypoglycemia. Besides, nocturnal hypoglycemia is a life-threatening
condition since it can result in sudden death. Additionally, impaired glucose awareness
is associated with frequent hypoglycemia. [26]. As mentioned already, asymptomatic
hypoglycemia is a challenging condition and hard to predict. Mujahid et al. remark that
consuming 15-20 grams of fast-acting carbohydrates could prevent further decrease of
BGLs if the glucose levels decrease below 70 mg/dL. Nevertheless, the state needs to be
predicted before because the glucose requires time to get into the blood which could take
10-15 minutes [27]. Moreover, a snack before sleeping is reported to reduce the risk of
nocturnal hypoglycemia, if a possible occurrence is detected before [28]. Technological
approaches are still being investigated and improved to alert patients of an incoming
event. Advanced methods such as machine learning can be utilized. Correspondingly, the
model needs to predict an event at least 15 minutes before so that the consumed glucose
can be regulated. In particular, technology could support parents with the management
of their children’s diabetes. The management of glucose concentrations of children with
T1D is more complicated since they can have a more active lifestyle which does not follow
a routine provoking adverse events.
If not asymptomatic, symptoms can be “diaphoresis, tachycardia, lightheartedness, con-
fusion, hunger, visual changes, and tremors” according to Lucier et al. [19]. Unawareness
is highlighted to appear commonly if the disease is ongoing for a longer time [19]. Other
consequences of hypoglycemia can be psychological conditions such as fear and anxiety.
Those conditions can lead to reduced insulin dosages or less physical activity further
leading to an increased risk for comorbidities [26, 7]. Additionally, hypoglycemia could
reduce life quality, cause mood swings, increase stress, and could decrease concentration
[26]. Altogether, a severe hypoglycemic episode could be associated with an increased
risk of death within 5-10 years [7, 25].

2.1.3. Therapy and Technology

To prevent the complications described in the previous subsection 2.1.2, it is relevant to
monitor the blood glucose values frequently, ideally continuously. Thus, consequences
of inadequate actions can be detected and preventive actions can be taken timely. The
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monitoring and control of other parameters such as blood pressure and cholesterol levels
could be relevant as well [15].

CGM

Conventional methods for the assessment of blood glucose concentrations were based
on intravenous blood analysis. Then, improved technology enabled more frequent daily
self-monitoring with blood analysis by finger-pricks. Nowadays, medically certified CGM
devices are available which are based on electrochemical sensors. Currently, they are
the most accurate devices for measuring blood glucose levels continuously. With these
advances, diabetes management rapidly improved, as well as the life quality of the
patients [22]. Furthermore, new technologies were enabled such as insulin pumps, and
artificial pancreas systems.
CGM devices are based on a biotechnological approach that uses enzyme reactions, a
wireless sensor, a transmitter, and a receiver to measure BGLs in the interstitial fluid.
The wireless sensor is inserted into the subcutaneous tissue under the skin and the glucose
is measured usually at intervals of 5-15 minutes [19, 29]. The readings are then exchanged
with the receiver presenting the outcome [19]. These can be augmented with further trend
estimation or prediction models to alert the patient of adverse events. Moreover, it can be
coupled with an insulin pump and help to adjust insulin dosages [19]. CGM devices are
intended for long-term monitoring and usually last for multiple days. Nevertheless, they
have a limited lifetime because they are based on electrochemical reactions. Furthermore,
they need to be calibrated at least twice a day with finger prick-based blood analysis
[30, 10]. One disadvantage is a reported time lag of 6-12 minutes since the glucose is not
directly assessed from the blood but from interstitial flood [30, 10]. Here, the glucose
is transported from the vascular to the interstitial space [10], as why the prediction
accuracy of machine learning models needs to be as accurate as possible.
To summarize, CGM devices can assist a healthier lifestyle and educate patients since
the consequences of actions are better understood [19, 29].

Insulin

Patients with T1D depend on external insulin treatment to decrease their glucose levels.
Therapy with insulin started in 1921-1922 and new advances, medications, and technolo-
gies were invented over those last 100 years [31, 32, 20]. Nowadays, the physiology and
biochemistry of insulin and pancreatic cells are well understood [20] enabling precise
replacement therapies. Insulin is a hormone produced by pancreatic cells. The pancreas
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regulates its secretion and delivers it into the portal vein in cyclic pulses. The produced
insulin binds to its receptors and a"ects carbohydrate, lipid, and protein metabolism,
while each metabolic process could have a di"erent insulin sensitivity [20]. Besides,
di"erent insulin sensitivity is observed in glucose production and use. It is known that
endogenous glucose production can be stopped with even small increases in insulin, so
even a little overdosage can provoke hypoglycemia [20]. Normally, once a person starts
a meal or once the glucose concentration in the blood increases, the insulin secretion
activates [15]. Conversely, insulin secretion decreases if the plasma glucose concentration
decreases [20]. Moreover, insulin enables the glucose to get into the cells and reach organs
and tissues. Hence, if insulin is not produced or cannot be used, the glucose cannot leave
the blood and is elevated [15].
Insulin replacements are classified into two groups: long-acting basal insulin and rapid-
acting bolus insulin. Basal insulin helps to maintain a stable glucose level in the fasting
state and during the night. In automatic insulin pump therapies, basal insulin is infused
in small dosages during the day, while the insulin is often given before sleep with external
self-injections [4]. In contrast, bolus insulin regulates the glucose rise after the meal [4].
Regularly used short-acting insulin, has an onset in 30 minutes to 1 hour and peaks in
2-4 hours with a duration of 5-8 hours. A rapid-acting insulin is reported to have its
onset in 12-30 minutes, a peak in 1-3 hours, and a duration of action of 3-6 hours [19].
Moreover, ultra-rapid-acting insulin has a quicker onset and shorter duration of action.
Basal insulin is often only given once or twice a day and can normally last for 20-24
hours [19, 31]. Also, some basal replacements are mentioned to last for more than 24-42
hours [19]. Intermediate insulin which more often leads to hypoglycemia as reported in
[19], has its onset in 1-2 hours, peak of action at 2-8 hours, duration of 12-24 hours, and
is usually given before breakfast or sleeping.
For the calculation of the appropriate initial daily insulin dosage, the person’s weight in
kilograms is multiplied by 0.2 to 0.6 units. The basal needs would be generally 0.4 to 0.5
of the daily needed dosage, while the rest consists of rapid-acting insulin injected before
or after the meal. The initial formula is personalized and changed based on external
factors. Moreover, the insulin needs vary over the lifespan of the patient. In this context,
in the early stage, when first diagnosed, less insulin may be more appropriate while in
puberty increased dosages may be required [19].
Multiple daily insulin injections using basal and bolus replacements, continuous subcuta-
neous insulin infusion through an insulin pump, or the use of automated insulin delivery
systems are available nowadays [19]. The main goal is to keep the glucose concentration in
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a normal range without high fluctuations [32]. Normally produced insulin autonomously
adjusts and activates the insulin secretion to maintain a target range of 72-180 mg/dL.
They have a short duration and action of approximately half time under 5 minutes as
reported by Home and Mehta [31]. However, insulin replacements still cannot reach the
activation time and duration of real insulin. Therefore, new drugs and new technological
methods are investigated.
Insulin pumps generally consist of an insulin tank, a pump, and a controller. The dosage
is externally controlled and predefined [4]. Those can be based on open-loop systems
requiring user input such as meal intake, or they can be based on closed-loop systems,
coupled with a CGM device, which is then called an artificial pancreas. Currently, hybrid
models are more in use requiring user input and control [4]. Lucier et al. point out
that more often rapid-acting insulin is used in insulin pumps which are usually delivered
every 5 minutes. The basal rates can be programmed and corrected, and insulin delivery
can be stopped if a hypoglycemic event is sensed. In addition, advanced systems can
automatically correct bolus dosages [19]. The artificial pancreas is intended to imitate
the function of a pancreas for glucose control. It is designed as a fully closed-loop system.
It is highlighted that the ideal insulin imitation would be one replacing prandial and
basal insulin needs [32]. Those systems are also augmented with further algorithms and
AI so that future predictions and patient behavior can be included in the insulin dosage
calculation. Automated insulin pumps are said to reduce the occurrence of especially
nocturnal hypoglycemia. They would also lead to better management of target values.
Furthermore, they would lessen the anxiety of patients and reduce the duration of events
[10, 19]. However, limitations include the subcutaneous time lag in the di"usion of
glucose and insulin from blood, the time lag of the estimated glucose by the CGM device,
and the delay and variation in insulin absorption and action, particularly of subcutaneous
rapid-acting insulin analogs [10, 32, 4]. Therefore, it is asserted that stopping insulin with
sensed decreasing glucose values would possibly not prevent hypoglycemia [4]. Irregular
behavior such as meals, or illness can also cause unpredicted glucose fluctuations [10].
Another challenge is the timely prediction of exercise-induced hypoglycemia to adjust
the administered insulin dosage.
Those limitations led to the research of dual hormone insulin pumps [19] which usually
deliver glucagon and insulin to reduce hypoglycemic events. Figure 2 visualizes the
di"erence between a single hormone and multiple hormone pump as an artificial pancreas
system. As can be seen, the products are designed as minimally as possible and should
not be very obstructive for the user which increases the complexity. According to Infante
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(a) (b)

Figure 2: Hormone-pumps [10]
(a) Single hormone insulin pump (b) Dual hormone pump

et al., a study has reported that dual hormone closed loop systems can reduce the time
spent in a hypoglycemia. However, the system was only tested with controlled in-clinic
exercises. It was associated with more glucose values in hyperglycemic ranges than with
a single hormone pump [10]. Given this, dual hormone systems would reduce the time in
hypoglycemic events, but reportedly do not eliminate the risk and contrariwise, could
lead to hyperglycemia. Dual hormone systems could be beneficial for a subgroup of
patients with T1D such as athletes, subjects with a recent history of severe hypoglycemia,
or subjects su"ering from hypoglycemia unawareness [10].
On the whole, physical activity is still a challenge for single hormone pumps and dual
hormone pumps currently are not flawless. Thus, AI can be utilized to prevent exercise-
induced hypoglycemia to decrease the risk of severe events. Furthermore, Home and
Mehta point out that 24-hour euglycemia is currently not easily managed and suggest the
need for better control and prediction algorithms. In particular, those should focus on
intra-person variations of BGLs as well as the insulin sensitivity influenced by physical
exercise, meal intake, and other physiological or hormone changes such as stress [31].

Exercise

Exercise-induced hypoglycemia is still a major problem, which is mostly caused by the
administered insulin, since it is not automatically stopped or adjusted, and still has an
action duration. However, physical activity is recommended for improved life quality
and fitness. It can help to control BGLs and could increase insulin sensitivity possibly
leading to decreased insulin dosage requirements [15, 7]. Furthermore, physical activity
is positively associated with a decreased risk of vascular complications and comorbidities
[18]. Nevertheless, the management of glucose values can be more di!cult during
physical activity, resulting in an avoidance of sports due to increased fear and anxiety of
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hypoglycemia. Additionally, the fear could cause increased carbohydrate consumption
mitigating the advantages of exercising. The main problem is that exercise-induced
hypoglycemia might be asymptomatic and not realized [7]. Kelly et al. outline that for
patients with T1D an optimal glucose concentration during exercise is between 108-250
mg/dL [33]. Children are said to have an increased risk of exercise-induced hypoglycemia.
Cockroft et al. report that in a study 30% of participants had a hypoglycemic event after
the exercise and even 30 minutes of activity could increase the risk for hypoglycemic
events by 30%. It is highlighted that almost 11.8% of adults and 6.2% of children had at
least one severe exercise-induced hypoglycemia per year in 2013 [7].
The challenge is that insulin replacements are not directly secreted into the portal vein
as why the insulin levels cannot be rapidly and dynamically decreased. It is mentioned
that it could even increase since in patients with T1D, exercise could cause increased
subcutaneous blood flow [34]. Here, it is di"erentiated between resistance exercise and
high-intensity exercise. During the first category, glucose is remarked to decrease due to
the increased glucose consumption of muscles. During the latter category, the glucose
levels may increase since the endogenous glucose release is increased and the rise in
muscle insulin sensitivity may be weakened [34]. Therefore, the pump system should
notice the start of an exercise session, its type, and its intensity. If the exercise is known,
insulin pumps can modify the insulin dosage calculation. Also, if insulin is self-injected,
exercise should be ideally planned before. The dosage would depend on the time after
the meal. It is suggested to start reducing the administered insulin by 50% if the type
and duration are not known. Furthermore, the basal insulin could be reduced by 80%
from 40 minutes before until the end of the exercise session [7]. Studies further report
the importance of the timing of physical activity. A fasting state could help to prevent
hypoglycemia. A session of less than 45 minutes possibly could even result in less risk
of hypoglycemia over the next 24 hours after the exercise [7]. Morning exercise could
also decrease the risk of hypoglycemic events compared to afternoon exercise sessions
[35]. Lastly, it is reported that exercise should be avoided if a hypoglycemic event is
experienced in the last 24 hours since it increases the risk of another event. [7].
To sum up this section, Paldus et al. finally suggest the use of physiological signals as
additional inputs for algorithms. Lactate, ketones, accelerometry, heart rate, galvanic
skin response, skin temperature, and blood volume pulse could inform about the onset,
o"set, and intensity of physical activity as can be seen in their proposal in figure 3.
Lactate is asserted to correlate and increase with exercise intensity. In addition, ketone
would inform about the exercise type. Moreover, machine learning can be utilized for
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Figure 3: Solution to reduce exercise-induced hypoglycemia [34]

personalized models based on the behavior, profile, and patterns of the user [34]. Lastly,
looking at the e"ect of exercise and the action and duration times of insulin replacement
therapies, it is noticed that exercise-induced hypoglycemia can occur 24 hours after the
activity and may not be predictable immediately without additional information. Also,
the accuracy could be improved if the type of activity is known.
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2.2. Machine Learning

Machine Learning is a sub-field of AI in which patterns are learned from the given input
data. The models are classified into unsupervised learning, supervised learning, and
reinforcement learning [36]. Unsupervised models most often solve clustering problems
and are utilized for data pre-processing or dimension reduction. Here, the input dataset
is not annotated with a label but is grouped based on the patterns in the data [37]. In
healthcare, unsupervised models can be used to find subgroups in patients, or in the case
of diabetes, the time series can be grouped based on similar patterns. Here, only the
number of wanted groups and the input features are given to the model. Contrariwise,
in supervised learning, each sample of the input data is labeled and the model finds a
function describing and separating the instances based on their distinctive patterns [37].
Common problems are classification and regression tasks, in which the outcome is either
the annotated class or a numerical value such as the glucose value, respectively [36]. In the
case of diabetes research, usually, the glucose value is predicted with regression models,
and the onset of an event or the onset of a condition is predicted with a classification
model. Common machine learning models in diabetes research include Support Vector
Machiness (SVMs), support-vector-regressions (SVR), K-Nearest-Neighbor (KNN), and
Decision Trees. Those require feature engineering, hence the input features need to be
manually computed and selected. In SVMs, a hyperplane is computed to separate the
data.

2.2.1. Neural Networks

For advanced problems and larger datasets, Neural Networkss (NNs) are approached,
which are function approximation problems and extract features autonomously. A basic
NN consists of three layers being the input layer, a hidden layer, and the output layer.
Here, the connections between the neurons and layers imitate the connections of neurons
in the brain. Besides, a deep learning model is a neural network with multiple hidden
layers and deeper connections. Deep learning is often utilized for larger datasets such as
image classification and natural language processing or for sequential data like time series
[36]. A Multilayer Perceptron (MLP) is the simplest deep learning architecture in which
the output neurons of the previous layer are forwarded and connected to the next layer.
Each layer computes its own output and the connections of each layer are controlled by a
set of weights [38]. The initial weights are mostly selected randomly and updated in the
iterative learning process. Here, the error between the predicted and the true output is

15



estimated through the loss function and the weights are adjusted in the back-propagation
process to minimize the error. The iteration stops either with a predefined epoch size or
if a predefined condition is met [38, 39]. Fawaz et al. provide the following equation of a
general non-linearity transformation which computes the output of each layer:

Ali = f(ϑli →X + b) (1)

Accordingly, X represents the data, ϑli contains the set of weights, b is the bias, and Ali

is the activation function of the neurons for the layer li [38]. In the final output layer, an
activation function decides if the output should be classification or regression. A softmax
layer has the size of the set of all classes and outputs a probability distribution over
the classes. Whereas, a sigmoid function is used for regression and outputs a possible
number [38]. The basic feed-forward model is visualized in figure 4.

Figure 4: Basic architecture of a Feedforward Network [40]

Most commonly used deep learning approaches for time series classification or regression
include 1DCNN and LSTM as can be seen in chapter 3. Therefore, both models are used
and compared in this thesis. A typical time series could be described as an input feature
vector of XtϖRF0 with the length F0 and a defined time step t which is greater than 0 but
not greater than the measured time T for each layer l as Tl. Furthermore, each sequence
is either annotated with a class or with an actual true value for a regression output [41].

2.2.2. 1DCNN

CNN are advantageous for autonomously extracting features and reducing the dimension.
Thus, feature engineering is not necessary beforehand and the outcome does not depend
on the quality of the chosen features. For one-dimensional data, 1DCNN are utilized,
which only perform one-dimensional convolutions [39].
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CNN usually consists of three primary layers which are the convolutional layers, the
pooling layers, and the fully connected layers [29, 30]. Figure 5 shows the architecture and
process of a 1DCNN model if utilized for sequential data. First, the convolutional layers

Figure 5: 1DCNN model for sequential data [39]

extract local features and generate a one-dimensional (1D) feature map. The weights are
then shared with local connections on the same input feature map [42, 39]. Each kernel
is assigned to extract di"erent features from the input feature map. Then, a set of 1D
filters is applied over each layer L that analyzes the patterns of the input sequence. The
filters for each layer are parameterized by the tensor W (l)

ϖRFl→dFl→1 and biases b(l)ϖRFl

[41]. Huang et al. describe a 1D convolutional layer by the following equation in which L

represents the layer, f() the non-linear activation function, k the kernels, j the number
of kernels, M the channel number of the input x

l↑1
i , → the convolution operator, and

lϖ1, ..., L the layer index [39]:

x
l
j = f(

M∑

i=1

x
l↑↑1
i → kl

ij + b
l
j) (2)

Here, based on the input size and input structure, a di"erent filter size and number of
deepness of layers may be more appropriate. If the data is characteristic enough, too
many layers would not increase the performance and could lead to overfitting [42].
Furthermore, the pooling layers are discriminative classifiers and reduce the dimension
of feature maps while preserving the most relevant information and enabling a better
generalization [42, 38]. However, an inappropriate pooling size could lead to worse
performance since important information could be lost [42]. The pooling layer can be
local or global. Local poolings reduce the data over a sliding window of the time series.
Whereas, global poolings reduce the time series over the whole time dimension to a single
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value [38]. Lastly, normalization layers can be approached to enable a fast converge [38].
After the convolutions, fully connected layers can be applied and lastly, the final output
layer is added which classifies and outputs the results [39].
The training of the network is summarized as follows. First, after building the architecture,
the weights and bias are initialized. Then, a learning rate ϱ is selected and the output
for each layer is calculated. In the next step, the weights and bias are updated by
back-propagation which simply is based on the gradient descent method described by
the following equation presented by Zhao et al. [43]:

p = p↑ ϱ
ςE

ςp
(3)

CNN are initially applied for images but can be also used to extract patterns in natural
language, in time series classification, and for prediction tasks with reported high
accuracy. CNN are practical in time series since it can extract local features as well
as temporal patterns [44, 38]. Furthermore, CNN are reported to be robust against
noisy data and outliers as why they would work well with data acquired by sensors
[30]. Additionally, Hwong et al. point out that CNN have the potential to predict
blood glucose levels precisely and can be used for diabetes management. They can
learn non-linear relationships between the input and the output, which would be crucial
in predicting glucose levels [30]. Nevertheless, the disadvantages, that this thesis will
possibly experience, are the need for large datasets, large amounts of labeled data, and the
overfitting of the trained data which is a challenge for generalized and population-based
models [29, 30]. Lastly, compared to most of the machine learning methods, CNN and
deep learning, in general, are di!cult to interpret and explain [29].

2.2.3. ResNet

Residual Networks (ResNet) are one of the state-of-the-art deep learning models usually
applied for image classification. It is also shown to perform well on univariate and
multivariate time series data [38]. The architecture is based on stacked CNN layers
which are the residual blocks. Then, a shortcut connection is added to each block to
overcome the vanishing gradient problem [46]. Figure 6 (a) visualizes the architecture
of one residual block in which x denotes the input and the identity mapping of the
shortcut connection, F (x) is a function for the stacked layers, and finally F (x) + x is the
output [45]. Furthermore, an example network for time series data is given in figure 6
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(a) (b)

Figure 6: ResNet architecture
(a) ResNet block [45] (b) 3 block ResNet for time series data [46]

(b). However, the same drawback as in 1DCNN and CNN can be seen. It is reported
that small datasets of time series data can easily result in overfitting [46].

2.2.4. LSTM

In feed-forward neural networks and CNN time series, each time stamp of the time
series has its own weight as to why the temporal information is lost [38]. Hence, a
network architecture with backward connections like RNN may be more appropriate
for considering contextual information [30]. Here, the input contains the information at
the previous time-steps which is a great advantage for sequential data [36]. Karim et al.
mention that RNN maintain a hidden vector h which is updated at time step t for the
final prediction. They define RNN in the following equation in which tanh (hyperbolic
tangent function) is the activation function, W is the weight matrix, I is the projection
matrix, and yt is the outcome [41]:

ht = tanh(Wht↑1 + Ixt), (4)

yt = softmax(Wht↑1).

Here, a softmax function is applied for a classification model but it can be exchanged with
a sigmoid activation. Furthermore, deeper architectures can be created if h is inputted
to another RNN as defined in the following equation by Karim et al. [41]:

h
l
t = ϑ(Wh

l
t↑1 + Ih

l↑1
t ) (5)

However, simple RNN have a gradient vanishing and exploding problem during back-
propagation which hinders the learning of optimized results. Therefore, more advanced
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models are investigated. A state-of-the-art recurrent architecture is the LSTM model
which can save long-term information and forget a part of their hidden state by integrating
gating functions into their state dynamics [36, 30, 47]. Thus, a memory vector m is
included which controls the state updates and outputs. According to Karim et al., the
computation at time step t would be the following equations, in which the sigmoid
function is represented by ϑ, the ↓ represents element-wise multiplication, W u

,W
f
,W

o
,

and W
c are the recurrent weight matrices and I

u
, I

f
, I

o
, and I

c represent projection
matrices [41]:

g
u = ϑ(W u

ht↑1 + I
u
xt)

g
f = ϑ(W tf

ht↑1 + I
f
xt)

g
o = ϑ(W o

ht↑1 + I
o
xt) (6)

g
c = tanh(W c

ht↑1 + I
c
xt)

mt = g
f ↓mt↑1 + g

u ↓ g
c

ht = tanh(go ↓mt)

xt is the input while ht is the output for each time step. Furthermore, gu, gf , and g
o

are the input, forget, and output gates, while g
c is a vector with new possible values

for the cell state [47]. Figure 7 visualizes the architecture of an LSTM model. Here,
mt is replaced with c(t), and g

o, gf , gu, gc with o(t), f(t), i(t), cin respectively, while
the final output ht by h(t). Additionally, Aiello et al. highlight that “during temporal
unfolding, both ht and mt are passed to the temporal replica of the next cell in the fold ” [47].
A variation of conventional forward LSTM models are Bidirectional Long Short-Term

Figure 7: Architecture of an LSTM model and its cells [47]

Memory (BiLSTM) models, consisting of two LSTM layers. Here, the first layer is applied
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to train the input data in its original direction from the past to the future, while the
other layer takes the input data in its revered direction, thus training backward [48].
RNN models are reported to be superior in natural language processing and speech
recognition [36]. Moreover, they are mostly utilized for regression and prediction tasks of
time series data in the financial or healthcare domain. Hwong et al. further point out
the potential in glucose time sequence data since the long-term temporal dependencies
are considered [30]. But, RNN and LSTM are mostly applied for forecasting and not for
classification regarding diabetes research [38] as also seen in chapter 3. Disadvantages
include overfitting with inappropriate regularization, the high computational cost of the
training process, and the sensibility to noise [30, 38].
As can be seen, deep learning models have common advantages such as automatic feature
extraction and learning from large and complex datasets. Especially, in diabetes research
they could be superior for multivariate time series. However, compared to conventional
machine learning models, deep learning models are more di!cult to interpret [30]. When
comparing 1DCNN and LSTM, it can be said that 1DCNN is computationally more
e!cient as it can reduce the features and neuron connections between layers enormously.
Also, it can better generalize [40, 39, 36], and is robust against noise, but it cannot
capture temporal context that well. In the state of art models both architectures are
combined to extract features with 1DCNN and compute temporal dependencies with
LSTM [36, 30].
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3. State of the Art

As it was demonstrated, diabetes care is improved with technological advances and the
inclusion of artificial intelligence, enabling better self-control. In the last decades, much
research has been conducted in the diabetes field. The literature review shows that
studies can be classified into glucose forecasting, insulin forecasting, classification of the
onset of diabetes, and lastly, the classification of the onset of adverse events. In particular,
diabetes research has progressed with methods predicting blood glucose values. Here,
Bremer and Gough are reported to be pioneers considering past glucose values in 1999
[49, 50]. In the same year, Tresp et al. were among the first researchers to apply RNN
and a linear error model on time series to imitate the blood glucose metabolism [51].
In the following, recent studies contributing to the field of diabetes and hypoglycemia
research will be presented. This thesis classifies the onset of hypoglycemia, therefore
only glucose forecasting and hypoglycemia prediction models are reviewed. Related work
was searched in the "ScienceDirect" database, in the "IEEE Xplore" dataset and on
"Google Scholar" with the following search terms: ("hypoglycemia" AND "classification"
AND "glucose" AND "insulin" AND ("exercise" OR "activity") AND "diabetes" AND
("machine learning" OR "deep learning")), ("hypoglycemia" AND "classification" AND
"glucose" AND "insulin" AND "exercise"). Additionally, the keyword ("long-term") was
added. The results were filtered to studies being published since 2020 since the interest
lay in the most advanced methods. Some related studies published from 2013 onward
were also added after being highlighted in other reviews. The final set consisted of 19
studies of which 10 focus on forecasting glucose values, seven focus on the classification
of events, and three studies do prediction and classification within the same work.
The selected studies are classified into short- and long-term PHs and for each PHs,
the best methods are highlighted in subsection 3.1 and subsection 3.2, respectively.
Furthermore, the applied input sequence length and input features are compared in
subsection 3.3. Lastly, identified shortcomings are summarized in subsection 3.4.

3.1. Short-Term Prediction Horizons

Short-term PHs are defined as a horizon from 30-120 minutes supporting timely preventive
action of a carbohydrate intake. Table 1 presents all studies covering short-term PHs
which are ordered after their publication date. In total nine studies focus on regression
while two studies predict and classify. Here, it can be seen that most works only predict
up to 60 minutes of BGL, which are six in total [54, 55, 56, 59, 61, 60]. Whereas Swain et
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Table 1: State of the Art: Short-term PHs
Study Aim Model Input Performance of PHs

30 45 60 ↔120

Georga et al.,
2013 [52]

prediction
(RMSE)

SVR 15 6.03 7.14 7.62

Zarkogianni et
al., 2015 [53]

prediction
(RMSE)

SOM 10 11.42 19.58 31.00

Munoz Or-
ganero et al.,
2020 [54]

prediction
(RMSE)

LSTM 40/ 9 6.42 11.35

Seo et al., 2021
[55]

prediction
(RMSE)

CNN 29 17.8 23.2 28.1

Nemat et al.,
2022 [56]

prediction
(RMSE)

CCMBA
+ LSTM

6/6 20.09/
19.439

32.901/
34.791

Jaloli et al.,
2022 [57]

prediction
(RMSE)

CNN +
LSTM

168/
59

9.28/
9.81

16.51/
18.32

23.45/
25.12

Phadke et al.,
2022 [58]

prediction
(MAPE)

ANN 12 0.037 0.069 0.148

Zhu et al.,
2022 [59]

prediction
(RMSE)

FCNN 12/12/
25

18.64/
20.23/
20.25

31.07/
35.4/
34.03

Zhu et al.,
2022 [59]

classification
(SE, PRE)

FCNN 12 84.09/
65.69

68.58/
60.64

Zhu et al.,
2022 [60]

prediction
(RMSE)

LR 12 20.92 28.99 35.28

Zhu et al.,
2022 [60]

classification
(SE, PRE)

LR 12 0.76,
0.66

0.72,
0.58

0.70,
0.56

Chen et al.,
2023 [61]

prediction
(RMSE,MAPE)

CNN 10 10.51,
0.029

15.98,
0.032

Swain et al.,
2023 [62]

prediction
(MAPE)

p-
LSTM

5 0.0628 0.0846

Abbreviation: PH = Prediction Horizon

al. have a maximum PH of 45 minutes [62], Jaloli et al. predicted up to 90 minutes [57]
and lastly, three studies forecast 120 minutes of glucose values [52, 53, 58]. Among the
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PHs, di"erent algorithms are approached which are Support Vector Regression (SVR),
Linear Regression (LR), NN. Furthermore, deep learning models are applied, specifically
LSTM and CNN, but also Artificial Neural Networks (ANN), Fast-adaptive and Confident
Neural Networks (FCNN), Self Organizing Maps (SOM), and hybrid learning methods of
CNN and LSTM. A trend for utilizing more deep learning and hybrid models is noticed
with advancing time.
The best performance for forecasting glucose values with a PH of 30 minutes, 60 minutes,
and 120 minutes is obtained with an SVR trained with 10-fold cross-validation by Georga
et al. obtaining a Root Mean Squared Error (RMSE) of 6.03 mg/dL, 7.14 mg/dL, and
7.62 mg/dL, respectively. Their input data consists of 15 patients from the METABO
dataset of whom glucose, insulin, carbohydrate, and physical activity were collected for
10 days. Additionally, the accuracy of correctly predicted hypoglycemia is presented with
87%, 83%, and 85% for 30, 60, and 120 minutes, respectively. These results indicate
that more than 80% of hypoglycemic events could be predicted accurately even 2 hours
before [52]. Munoz et al. obtained a similar RMSE value for a PH of 30 minutes with
6.42 mg/dL testing in nine real patients from the D1NAMO dataset, but their model
is not that stable for a longer PH of 60 minutes, as it increases to 11.35 mg/dL. The
input features consist of glucose, insulin data, and meal intake collected for 4 days.
Contrariwise, Munoz et al. applied a hybrid model integrating mathematical models to a
LSTM RNN network to simulate the metabolic process of glucose. They trained with
a hold-out validation using 70% of data for training and 30% for testing. Furthermore,
they initially trained on 40 virtual patients achieving much better results of 3.45 mg/dL
and 4.72 mg/dL, for 30 and 60 minutes, respectively. But, those results cannot be taken
as a baseline for comparison [54].
The third best results which are clinically acceptable, are noticed in Jaloli et al. achieving
RMSE values of 9.28 mg/dL, 16.51 mg/dL, and 23.45 mg/dL for 30, 60, and 120 minutes,
respectively. They approached a hybrid LSTM and CNN model with the input data of
168 participants from the Replace-BG dataset of whom glucose, insulin, and carbohydrate
data were collected in free-living conditions. Their dataset is the largest utilized dataset
among all studies. Thus, the results represent more patients and could be used for a
population-based model. It is also induced that the proposed method is indeed suitable
for analyzing time series patterns to forecast glucose values. Moreover, the DIAdvisor
dataset of 59 subjects of whom data was collected in hospital settings, was used for
better validation. Accordingly, for the test dataset similar outcomes were obtained with
RMSE values of 9.81 mg/dL, 18.32 mg/dL, and 25.12 mg/dL for 30, 60, and 120 minutes,
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respectively. Consequently, good stability and generalization are presented, and the
model does not overfit much to the trained data, even if both datasets were collected
under di"erent settings [57]. Compared with the results of Georga et al., the RMSE value
for 120 minutes of Jaloli et al. is increased by 15.83 mg/dL. This variation can either
depend on the dataset, input features, or the utilized machine learning model. Hence, it
cannot be highlighted if conventional machine learning models or deep learning models
are better for a short-term PH of up to 60 minutes. Nevertheless, within their study, the
hybrid LSTM CNN model outperformed LSTM, autoregressive model and exogenous
input (ARX), and SVR models [57]. The last relevant results are reported by Chen et al.
utilizing a hybrid model of CNN and Transformers which are usually used for natural
language processing. They achieved an RMSE value of 10.51 mg/dL and 15.58 mg/dL,
for 30 and 60 minutes, respectively which is similar to the performance of Jaloli et al.
but improved for the PH of 60 minutes. However, only data from 10 virtual patients is
used [61], while the model of Munoz et al. is not outperformed.
Coming now to the applied classification models, only two studies are presented using
FCNN and LR, both by Zhu et al. [59, 60]. The regression outcomes are not that
clinically acceptable if compared with the other studies, but the results for hypoglycemia
classification indicate that more than 70% of hypoglycemic events could be predicted even
one hour before. Zhu et al. utilized FCNN based on an attention-based RNN in their first
work. The performance is validated with the OhioT1DM, ARISES, and ABC4D datasets,
only using glucose measurements as input. They trained the model with a hold-out
validation with 80% as training data and 20% as validation data. For 30 and 60 minutes,
hypoglycemia is classified with sensitivity and precision of 84.09% and 65.69%, and of
68.58% and 60.64%, respectively for the 12 patients of the OhioT1DM dataset [59]. In
the other study, linear regression is applied having worse results in glucose forecasting. In
contrast, more input features are used including insulin, carbohydrates, and parameters
from a wristband like heart rate, galvanic skin response, and physical activity. For the
classification of hypoglycemia, achieved sensitivity and precision are 76.08% and 65.65%,
for a 30-minute PH, and 70.30% and 56.20%, for a 60-minute PH, respectively [60]. Both
studies have similar performance with a higher sensitivity than precision. Hence, most of
the hypoglycemic events are foreseen by the system. Nevertheless, the precision needs
improvements, as it is not that e!cient to have false positive alarms often. This can
be caused due to the imbalance of the dataset and less available hypoglycemic events
compared to hyperglycemia and euglycemia. Comparing the outcomes, it cannot be seen
if the included exercise data in the LR model has any impact since it is asserted that the
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FCNN, in general, performs better than a basic LR algorithm.
Conclusively, Georga et al. achieved the best performance despite publishing their work
in 2013 with an SVR [52], followed by Munoz et al. using LSTM and transfer-learning
[54]. Additionally, the worst results are obtained by Nemat et al., and Swain et al. using
only six and five patients of the OhioT1DM database, respectively and both utilizing deep
learning models indicating that deep learning should be used for larger datasets [56, 62].
Lastly, studies often use multiple datasets for better validation and generalization, and
more input data seems to have better performance.

3.2. Long-Term Prediction Horizons

Chapter 2.1.3 showed that insulin replacements can be active for up to 42 hours, thereby
a"ecting glucose metabolism. Furthermore, exercise can influence glucose metabolism
for up to 24 hours, which is why longer PHs can enable better day-to-day management,
and better choice of meals and insulin dosages, as discussed in 2.1.3. Here, the long-term
PH ranges from 2-24 hours. Looking at table 2, it is noticed that applied models mainly
include conventional machine learning algorithms such as Decision Trees, Random Forest,
Support Vectors, and LR. Neural networks and deep learning models such as CNN and
ANN are utilized, but rarely in comparison. It is noticed that none of the presented studies
approaches an LSTM network for longer PHs probably due to their long computation
time. Among presented works, seven studies do classification [63, 64, 65, 28, 6, 67, 11].
Phadke et al. forecast glucose values with a regression model and is the continuation of
the study in table 1, since they have predicted from 30 minutes up to 24 hours [58]. Lastly,
Tyler et al. focus on regression and classification [66]. The works cannot be compared
that easily since not every study approaches the same classification task. Oviedo et al.,
and Vehi et al. for instance, classify between level 1 (below 70 mg/dL) and level 2 (below
54 mg/dL) hypoglycemia [63, 65] while Bertachi et al., Vehi et al., and Parcerisas et
al. approach nocturnal hypoglycemia classification [64, 65, 28], and Tyler et al., and
Piersanti et al. approach exercise-induced hypoglycemia [66, 6]. Finally, Vehi et al.,
Alvardo et al., and Felizardo et al. classify the risk of the occurrence of hypoglycemia in
the next 24 hours [65, 67, 68].
Phadke et al. forecast glucose values and cannot achieve better results compared to
already presented studies but have stable results among the PHs. They are the only
researchers considering short- and long-term PHs up to 24 hours for glucose forecasting.
The achieved Mean absolute percentage error (MAPE) values are 0.037, 0.069, 0.149,
0.215, and 0.134 for 30, 60, and 120 minutes, and 3 and 24 hours, respectively. Considering
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Table 2: State of the Art: Long-term PHs
Study Aim Model Input Performance of PHs

↔2h ↔4h 6h 24h

Oviedo et al.,
2019 [63]

classification
(SP, SE)
(level 1, level
2)

SVC 10 0.79,
0.71/
0.81,
0.77

Bertachi et al.,
2020 [64]

classification
(SE, SP)

SVM 10 0.78,
0.82

Vehi et al.,
2019 [65]

classification
(SE, SP)

GE,
SVM,
ANN,
NCD

10/6/
100

0.48,
0.93

0.69,
0.80/
0.75,
0.81

0.44,
0.86

0.99,
0.92

Tyler et al.,
2022 [66]

classification
(SE, SP)

MARS 20 0.73,
86

0.56,
96

Tyler et al.,
2022 [66]

prediction
(RMSE)

MARS 20 18.7 23.0

Phadke et al.,
2022 [58]

prediction
(MAPE)

ANN 12 0.148 0.215 0.134

Pakerisas et
al., 2022 [28]

classification
(F1,SE,SP)

SVM 10 0.76,
0.74,
0.76

Piersanti et al.,
2023 [6]

classification
(PRE, SE,
SP, F1)

DT 50 0.87,
0.76,
0.87

Alvardo et al.,
2023 [67]

classification
(accuracy)

CNN 4 0.79

Felizardo et
al., 2023 [68]

classification
(SE, SP)

RF +
SkNN

54 0.45,
0.89

Abbreviation: PH = Prediction Horizon

the increase in PHs and the change in performance, the prediction of 24 hours seems
reasonable, is even better than with 2 hours, and significantly better than with 3 hours.
They applied an ANN model while utilizing glucose, insulin, carbohydrate, physical
activity, and self-reported data from 12 patients of the OhioT1DM dataset [58].
Moving on to the results of classification systems, a sensitivity and F1-measure of at
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least 70% is achieved in most of the studies [63, 66, 28, 6], indicating that at least 70%
of all hypoglycemic events could be predicted. However, some studies can only achieve a
sensitivity up to 40% or 60% [65, 66, 68] which still needs improvement.
In the case of severity classification, Oviedo et al. used a Support Vector Classifier
(SVC) for a private dataset with 10 patients of whom glucose, insulin, and carbohydrate
data were collected under free-living conditions to estimate the risk of hypoglycemia
within the next 24 hours. The model was trained individually on each patient with a
hold-out validation using 80% for training and 20% for testing. A median specificity of
79% and a sensitivity of 71% for level 1 hypoglycemia was obtained. The sensitivity and
specificity for level 2 hypoglycemia were 81% and 77%, respectively [63]. Vehi et al, have
considered two di"erent PHs of 1 hour and 4 hours for predicting level 1 and level 2
hypoglycemia. For the 1-hour classification, a model based on grammatical evolution
(GE) was approached while using glucose and insulin data, carbohydrate information,
and the circadian rhythm of patients. The dataset consists of 100 virtual patients.
They present a model based on a problem-specific free-context grammar and a fitness
function consisting of a glucose-specific mean squared error. The model is trained with
a hold-out validation using 66.6% of the data for training and 33.3% for testing. A
population accuracy of 86.1%, sensitivity of 48.5%, and specificity of 93% is achieved [65].
Furthermore, postprandial hypoglycemia 4 hours after the meal was classified with SVMs.
The input data consisted of 10 patients of whom glucose, insulin, and carbohydrate were
collected. They trained a population model with a hold-out validation using 80% of the
data for training and 20% for testing. Finally, sensitivity and specificity of 69% and 80%
are achieved for level 1 and 75% and 81% for level 2 hypoglycemia, respectively [65].
Despite defining a longer PH, Oviedo et al. achieved a better sensitivity and almost the
same specificity. Thus, it can be asserted that support vectors can predict at least 69%
of hypoglycemic events. Also, the severity of the event 4 hours and even 24 hours before
can be predicted allowing the person to plan their day and meal accordingly.
Tyler et al. used a PH of 4 hours as well. They classify the risk for hypoglycemia
induced by aerobic exercise 40 minutes after the start of the exercise and 4 hours after the
exercise. The utilized dataset consists of 20 patients’ glucose and physical activity data.
Furthermore, the prior history of exercise information is used for training a Multivariate
adaptive Regressionssplines (MARS) model. The models are trained with a hold-out
validation. The patients performed 8 identically designed clinical exercises and had
the same schedule while having measured their data. A PH of 40 minutes achieves a
sensitivity, specificity, and accuracy of 73%, 95%, and 88% for individualized models,
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and 73%, 86%, and 81% for a population model, respectively. Both models have similar
results and indicate that at least 80% of hypoglycemic cases could be known before
starting the exercise. The performance for 4 hours after the exercise was 56%, 96%, and
84% for the personalized models for sensitivity, specificity, and accuracy, respectively.
Moreover, for a 16-fold cross-validation-based population model a sensitivity of 79%,
a specificity of 61%, and an accuracy of 69% was achieved. Comparing both models,
the overall performance of personalized models is better but the population model has
increased sensitivity by 23%. In total, 79% of all hypoglycemic events could be predicted
which can be caused within the next 4 hours by exercise [66]. Therefore, it is asserted
that personalized models perform better and a high sensitivity needs more training data
so that all the variations between and within persons can be learned. It is noticed that
Tyler et al.’s results are much better in sensitivity compared to Vehi et al.’s. Furthermore,
Tyler et al. have predicted glucose values by the same model and the same PHs and
achieved an RMSE value of 18.7 mg/dL for 30 minutes which does not outperform
previous studies. However, an RMSE value of 23.0 mg/dL is reported for 4 hours which
surprisingly is better than the 2-hour prediction of Jaloli et al. indicating that a MARS
model can be utilized for long-term prediction and classification [66].
Turning now to nocturnal hypoglycemia, a PH of 6 hours is used by all studies, and
mostly an input sequence length of 6 hours is chosen. All presented studies utilize the
glucose and physical activity data of 10 patients as input. Bertachi et al. applying a SVM
achieved the best performance with a population model. They obtained a sensitivity of
78.75%, a specificity of 82.15%, and an accuracy of 80.77%. The performance of SVMs
is compared with NLP and outperforms it. As limitations, the less available data and
the exhaustive feature selection for SVMs are reported [64]. Vehi et al. approached
ANN and overcame one of the limitations by not doing manual feature engineering.
Reported population outcomes are 80.1%, 44.0%, and 85.9% for accuracy, sensitivity,
and specificity, respectively [65]. Vehi et al. have better specificity and similar accuracy
but the sensitivity is much lower with a di"erence of 34.75%, hence 56% of hypoglycemic
events are missed. Lastly, Parcerisas et al. used SVMs as well and compared them to
di"erent machine learning methods including LSTM. Likewise, SVMs performed best.
The model was trained with a hold-out validation with 80% of data used for training and
20% for testing. A sensitivity and specificity of F1-measure of 74% and 77% are achieved
for the population model, respectively. The median specificity for individualized models
decreased to 68% while the sensitivity performed the same [28]. They cannot outperform
Bertachi et al. but obtain better sensitivity than Vehi et al., as to why it is induced
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that SVMs may be better than simple ANN, NLP, and LSTM models for the long-term
classification of hypoglycemia with a PH of 6 hours. Neural networks could possibly not
learn patterns well with less data leading to more missed cases and decreased sensitivity
or overfitting. With the model of Bertachi et al. 78% of all hypoglycemic events could
be predicted before going to sleep.
The last field of interest was the risk assessment of hypoglycemia within the next 24
hours which was the focus of four studies. In this context, Vehi et al. clustered di"erent
glucose profiles of patients while using a data mining model based on a normalized
compression distance (NCD). They used 100 virtual patients while utilizing glucose and
insulin data. The final performance of the classifier was 92% and 99% for specificity and
sensitivity, respectively [65]. Contrariwise, Piersanti et al. used a decision-tree-based
model to estimate the long-term prediction risk of exercise-induced hypoglycemia. They
used a dataset of 50 children and teenagers from the Diabetes Research in Children
Network (DirecNet) multi-center study group and are the first group to study children
in this literature review. Hypoglycemia was defined with a threshold of 60 mg/dL
and participants experiencing hypoglycemia within the next 24 hours after exercising
were labeled as hypoglycemia. A model trained with Leave One Out Cross-Validation
(LOOCV) achieved results of 85.5%, 87.2%, 86.9%, 87.2%, 76.1%, and 86.9% for AUC,
classification accuracy, precision, sensitivity, specificity, and F1-measure, respectively
[6]. These could be very good results from a clinical perspective, as almost 80% of all
hypoglycemic events occurring due to exercise could be predicted one day before and
the control of glucose values is much more di!cult with children. Furthermore, this
group has used more input data than most of the studies presented. Alvardo et al. used
only 4 patients of whom only data of glucose was measured as why the method cannot
validate a general appliance. However, the method itself is very di"erent compared to
usual time series classification methods and even with fewer participants, good results
are obtained. They utilized a transformer function to generate an image of the time
series sequence and apply a CNN model. The images were labeled as hypoglycemia if
a hypoglycemic event had occurred within the day by a threshold of 70 mg/dL. The
model was trained with hold-out validation in which 75% of the images were used for
training, 15% for validation, and 10% for testing. The average classification accuracy of
the validation process was 80%, while an accuracy of 78.78% was achieved for the test
data. An accuracy of 88% is reported to be the best performance, while an accuracy of
73% is said to be the worst performance of all cases [67]. Nevertheless, the sensitivity
and precision are not computed which disables a comparison. Finally, Felizardo et al.
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applied an ensemble model with 2 classifiers which are Random Forest and Subspace
k-Nearest neighbor (RF and SkNN). They utilized the University of California Irvine
diabetes dataset of 54 patients whose data of glucose, carbohydrate, exercise, and therapy
inputs as contextual information was collected. The model was trained with leave one
patient out validation and it was classified between 3 classes, being no risk, risk for
hypoglycemia, and hypoglycemic event. Hypoglycemia was defined by a threshold of 75
mg/dL to not miss any events. For the reported results, only the produced outcomes for
23 subjects who had an accuracy higher than 60% and false alarms less than 30% were
considered. Thus, an average accuracy, sensibility, specificity, and false alarm rate of
75.3%, 45.4%, 89.4%, and 13.5%, are achieved respectively. Overall, 76.2% of all events
were predicted. It is pointed out that only for 53% of patients more than 70% of the
events could be predicted. For 52% of those patients, a false alarm rate of less than
15% was achieved indicating high variations between patients. Consequently, the model
cannot be applied for each individual with the same performance [68].
Thus, Oviedo et al. and Bertachi et al. achieved the best population models in which
more than 70% of the events could be predicted 24 hours before. Both of those studies
utilized conventional machine learning methods being SVM and DTs. Additionally, for
the classification of nocturnal and postprandial hypoglycemia, a SVM performed best for
sensitivity. Nevertheless, there were not many studies utilizing deep learning models for
a better comparison of classification and regression applied for long-term PHs. Alvardo
et al. achieved good accuracy but did not present more metrics. The main drawback in
neural networks is that available datasets do not have su!cient training samples which
leads to overfitting, and decreased learning performance and sensitivity outcomes.
Altogether, comparing short- and long-term PHs in diabetes research, glucose forecasting
is more often utilized for shorter PHs up to 120 minutes. In contrast, classification is
more often applied for longer horizons up to 24 hours.
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3.3. Variables and Features Impacting the Performance

It is noticed that the input sequence length is highly relevant for the final accuracy of
the model and depends on the targeted PH. Not every study informs about their input
sequence length since also not every model works with time series data. For short-term
prediction and classification, it can be seen that Munoz et al. use a sequence length of 9
hours for a maximum PH of 1 hour [54], Jaloli et al. use 3 times the PH [57], and Netmat
et al. use 90 minutes of prior history data to predict a maximum of 1 hours of glucose
values [56]. Lastly, Vehi et al. use 2 hours prior measurements for the classification of 1
hour. Now turning to long-term prediction and classification, Vehi et al. utilize 1 hour
of glucose data before the meal to predict postprandial hypoglycemia 4 hours after the
meal [65]. Bertachi et al., Parcerisas et al., and Vehi et al. extract 6 hours of history
data before sleeping to classify nocturnal hypoglycemia within 6 hours after sleeping
[64, 28, 65]. And finally, all studies having a PH of 24 hours use 24 hours of prior data
[63, 65, 11, 67]. Hence, it can be asserted that an input length at least as long as the
PH should be utilized. Moreover, double as the input seems reasonable for short-term
prediction and classification and it can be asserted that longer sequences lead to better
results ranging from 3 to 9 hours. For long-term input sequence lengths, at least the
time of PH seems to be reasonable.
Concerning the input data used, almost all studies reported that the information regarding
insulin dosage increased the performance compared to using only glucose. In addition,
physical activity has been reported to further improve performance and stabilize the
model [53, 52, 60, 28]. Zarkogianni et al. point out that including exercise information
could mainly influence the performance of hypoglycemia identification [53]. Georga et
al. assert that glucose may be appropriate for short-term PHs but more input variables
should improve the performance for longer PHs [52]. Nocturnal hypoglycemia may be
related to daily physical activity and multiple daily insulin dosages [64, 28]. Lastly,
Phadke et al. say that uni-variate data cannot achieve the same results as multi-variate
data for a PH greater than 45 min, and highlight that more features than only glucose
should be utilized for better performance [58]. Conclusively, often information about
glucose, insulin, and carbohydrates is used as input data, followed by exercise, and lastly,
three studies only use glucose [55, 59, 67]. Heart rate and galvanic skin response are
rarely used.
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3.4. Identified Research Gaps

As could be identified there are some limitations and shortcomings in diabetes research.
The first major challenge is the insu!cient size of datasets, which could lead deep
learning models to overfit and disable generalizable pattern learning. Currently, most
available multi-variate datasets have only data collected from 10 to 15 patients. Thus, a
population-based model might not achieve very good performance. However, personalized
models could not be feasible due to small datasets per subject. Especially, studies
focusing on hypoglycemia research face this shortcoming, since hypoglycemic events do
not occur as often as hyperglycemia and the dataset becomes imbalanced.
The second limitation is the possible time lag of CGM devices, as also presented in
chapter 2.1.3. Hence, regression models need to be very accurate, but presented studies
achieve an approximate mean RMSE of 10-15 mg/dL, while the best RMSE values
are between 6-9 mg/dL for 30 minutes. With this in mind, short-term hypoglycemia
prevention might be challenging and not that precise. In contrast, a classification model
only analyzes the patterns in data and predicts the risk for an adverse event as to why
the numerical di"erences are less relevant. Furthermore, classification models can be
more robust against noise and missing data, being shortcomings of wearable data. Lastly,
classification methods can work better with imbalanced data and simplify the problem
by focusing on the event only [69].
The third observed shortcoming is that most studies focus on short-term PHs of 30-60
minutes. These can enable preventive self-actions but cannot be used for the adjustment
of insulin dosages, suitable meals, and exercise duration listed as the main causes of
hypoglycemia. Furthermore, most long-term PHs range only up to 6 or 24 hours and
are based on binary classification or at most three classes. Particularly, only one PH is
used in one model, and the larger the PH, the worse the results get. Subsequently, none
of the presented studies have integrated multiple PHs in one model, which should be
possible using a classification system.
Lastly, it can be seen that presented works prefer machine learning over deep learning,
as why 1DCNN, LSTM, and hybrid models of CNN and LSTM are not often applied
for long-term classification tasks while those could learn long-term relationships better
and may be suitable for longer input sequence lengths. But, it can be seen that with
presented studies SVMs obtain the best performance while neural networks need an
improvement for sensitivity as this metric is often worse than specificity.
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4. Methodology

Following the presented shortcomings, this thesis approaches a di"erent perspective by
classifying the time to the onset of hypoglycemia while including multiple prediction
horizons. Thus, if a person is alerted to have hypoglycemia in the next 4 hours and
preventive actions do not reduce the risk, the model would predict the risk 1-2 hours
or 30-15 minutes before hypoglycemia until no risk is assessed anymore. If the risk is
foreseen 24 hours before, it could help to manage meals and sports activities. Whereas,
a PH of 5-12 hours before the onset of the event can help to adjust insulin dosages.
Therefore, multiple PHs can enable a better decision of daytime activities, can be useful
for artificial insulin pumps as severe and adverse events could be predicted before giving
the dosage, and can allow short-term prevention by a glucose intake.
This chapter presents the used dataset, the applied pre-processing steps, and the distri-
bution of classes in subsection 4.1. Then, subsection 4.1.2 introduces the method for
the correlation between the glucose concentration, the basal insulin dosage, the bolus
insulin dosage, and the magnitude of acceleration values. Subsection 4.2 explores the
applied models1 and subsection 4.3 explains the used metrics. Finally, the main expected
limitations of this work are listed in subsection 4.4. The process flow chart visualizing
the pipeline of this thesis can be seen in figure 8.

Figure 8: Pipeline of this thesis

1The code can be found in https://github.com/Mirai22/Hypoglycemia_Detection_MA
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4.1. Dataset: OhioT1DM

Looking at previously utilized databases collecting data in free-living conditions in
chapter 3, this thesis has decided to use the most often chosen OhioT1DM dataset
because features such as glucose, insulin dosage, and exercise were collected. It contains
data from only 12 patients, but as not that many public datasets with more input data
are available, the state-of-the-art standards are met, unless own data is collected. The
D1NAMO dataset contains only data of nine patients with T1D and insulin information
is not collected, and virtual simulators do not have exercise data. Furthermore, as could
be seen, if models trained on virtual data are tested on real data, the same accuracy
range is not achieved.
In this context, the OhioT1DM dataset contains data of six patients of whom data was
collected in 2018, and another six patients of whom data was later collected in 2020. The
patients’ age ranges between 20 and 80 years while mostly 40-60 are representative. From
all of the 12 patients, seven subjects are males and five subjects are females. Accordingly,
each subject had data recorded for 8 weeks. A CGM device estimated the substantial
glucose values every 5 minutes. Additionally, the subjects have worn an insulin pump and
a fitness tracker or health wristband to record physiological parameters and vital signs.
The dataset utilized the Medtronic Enlite CGM sensor for all patients, three patients
have worn the Medtronic 630G pump and nine patients have worn the Medtronic 530G
pump, hence there is no great variation of insulin pumps allowing a more uniform data
representation. The pumps have recorded basal and bolus insulin. The basal rate is
reported to be infused continuously until a new basal rate is set. Moving over to the
wearables, the 2018 cohort was given the Basis Peak fitness bands collecting data in
5-minute intervals, while the 2020 cohort was given the Empatica Embrace collecting
data in 1-minute intervals. Both wristbands measured the galvanic skin response, the
skin temperature, and the subject’s sleep time. But as a di"erence, the Basis Peak band
estimated the heart rate, the air temperature, and the step count while the Empatica
Embrace band collected the magnitude of acceleration. Additionally, self-inputted data
is available, such as the meal intake as carbohydrate data and the meal time, glucose
values by finger pricks, self-reported times, duration and intensity of exercise, sleep,
work, stress, and illness. The data was stored in XML files. Lastly, it is reported that
the time and the month information is shifted, as to why the date information cannot
be used as a feature [70]. Tables 3 and 4 summarize the number of total instances as
well as the number of hypoglycemic data points that are less or equal to 70 mg/dL for
the 2018 cohort and 2020 cohort, respectively. Here, the intra-person variations can be
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seen and it is foreseen that the model can be influenced by a bias since subjects 540,
567, and 575 experienced the most time in hypoglycemic states while subjects 544, 584,
and 588 experienced significantly less. Lastly, the total time of missing glucose data is
summarized per patient.

Table 3: Number of samples in the OhioT1DM dataset: 2018
Subject ID 559 563 570 575 588 591

Number of Hypoglycemic

events

518 329 227 1173 136 570

Total time of missing glucose

values in hours/days

137/
5.7

91/
3.8

63.6/
2.6

113.8/
4.7

46/
1.9

166/
6.9

Number of Samples 12792 14365 13500 13283 15295 13037

Table 4: Number of samples in the OhioT1DM dataset: 2020
Subject ID 540 544 552 567 584 596

Number of Hypoglycemic

events

986 188 408 925 137 300

Total time of missing glucose

values in hours/days

111/
4.6

205.7/
8.6

300/
12.5

263/
11

119/
5

251/
10.5

Number of Samples 14843 13339 11444 13247 14815 13620

4.1.1. Pre-processing

Health data measured by wearables and sensors usually require additional pre-processing
steps before being AI-ready and usable as input data for machine learning models. In
particular, the data collected under free-living conditions may contain noise, missing
data values, and larger data gaps. Gaps can be caused by di"erent data storage methods,
di"erent estimation intervals, noisy data samples, or if the wearable was not worn for the
entire study duration. A literature review shows that for filling in missing values, linear
methods are most often applied while defining a limit for allowed consecutive missing
values. In contrast, larger gaps are completely removed. From tables 3 and 4, it can be
seen that over the 8 weeks of measurements, multiple days of missing data per patient
are present. The duration of missing data is especially increased for the 2020 cohort.
The maximum gap is obtained in subject 552 with more than 12 days, which does not
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mean that there are missing measurements for consecutive days but the total sum of
gaps accounts for 12 days. Thus, those gaps require data imputation or pre-processing.
In this context, Bertachi et al. imputed data with gaps less or equal to 120 minutes,
and Jaloli et al. only imputed missing data of 60 minutes [64, 57]. For data imputation,
most use linear interpolation for training data and linear extrapolation for testing data
to guarantee that future data would not be observed by the model [71]. Nemat et al.
further substitute non-reported insulin data with zeros [71]. Finally, the data can be
normalized for better generalization, to avoid overfitting, and to enable better training.
Here, the input sequence can be scaled for each value to the minimum and maximum
value over the entire training set of that variable [71], or all parameters can be scaled to
a range between 0 and 1 [57].

Handling Missing Data: Since multiple variables, such as glucose values, given insulin
dosages, and acceleration data are utilized, this thesis down-sampled the data to fit the
time of glucose leading to more uniform time series sequences. Furthermore, it reduced
the amount of missing values. Therefore, first, the time points were rounded to 5 minutes
and then resampled to 5-minute intervals. Considering previous work, this thesis decided
to use linear interpolation which is a method filling missing data points between two
known values of the same parameter so that they are connected by a straight line [72].
The following formula is used for a basic linear interpolation, in which f(x1) and f(x0)

represent the known values of the independent variables x1 and x0, while f1(x) is the
missing value:

f1(x) = f(x0) +
f(x1)↑ f(x0)

x1↑ x0
→ (x↑ x0). (7)

In addition, linear extrapolation including values that are not in the range of f(x1) and
f(x0) was tested, but the outcome was the same as interpolation for the OhioT1DM
dataset. On average, most missing values appeared for glucose and then for the accelera-
tion data. Only missing values less than 120 minutes being 24 consecutive instances were
interpolated, since there are many missing glucose values. The remaining missing values
for glucose were removed so that each patient had a collection of multiple data-frames
without any time gaps and without any missing glucose data. Contrariwise, missing
acceleration values were replaced with a ↑1, to indicate missing values, since glucose
is the ground truth for defining the classes. Whereas, it is natural that wearable data
will not be available for the entire time, as why the system should learn to identify and
handle missing data points in wearables.

Pre-processing: Before removing the gaps, the data of single parameters were pre-
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processed, and then all data was concatenated. For basal insulin, the continuously applied
dosage as well as the temporally applied dosage was reported. Thus, first, the basal
insulin was resampled to 5-minute intervals by filling values in between with the previous
value. Then, both data-frames were merged. In the next step, all indexes of the basal
dosage for which the temporal basal dosage had a corresponding entry were replaced with
the entry. Missing data of basal insulin was filled forwards and backward with previously
known values since basal insulin is given periodically. For bolus insulin, the starting and
the ending time of infusion were reported. For those reported intervals, the given dosage
was applied, and the remaining values were filled with a 0 as not reported times indicate
that no bolus was infused.
This thesis wanted to include data of physical activity, but as reported in 4.1, the
OhioT1DM dataset used two di"erent wristbands for each cohort leading to the estimation
of two di"erent parameters for activity data. As a result, both cohorts’ data could not be
merged that easily. The 2018 cohort collected the step size while the 2020 cohort collected
the magnitude of acceleration. Since the magnitude of acceleration can be approximately
computed given the step count and time information, the following formulas were used
to have uniform data for both cohorts taken [73, 74]:

distance(x) = step_count(x) → 0.75

velocity(x) = distance(x)/time (8)

acceleration(x1) = (velocity(x1)↑ velocity(x0))/time_intervall.

Acceleration is the change in velocity divided by the change in time. Since the steps were
measured every 5 minutes, the time for each distance and the time di"erence between
velocity changes in 5 minutes [73, 74]. Furthermore, the unit for distance is meters, as
why the step had to be multiplied by 0.75 to be converted into meters. This number was
chosen after a literature review reporting values from 0.74-0.76 meters for the standard
equality of one step and one meter. Lastly, to have uniform data, the acceleration data
of both cohorts were scaled to values between 0 and 1.

Annotation of Classes: To define hypoglycemia, some studies suggest event-based
classification over sample-based classification, in which consecutive data samples meeting
a requirement are defined as an event. In a sample-based classification all samples
under one defined threshold are annotated with the class [52]. However, since this work
classifies multiple prediction horizons and predicts the risk of a possible hypoglycemic
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state, event-based classification would first reduce the number of samples, and second
would not enable better accuracy. The literature review has shown that the most often
utilized threshold, which is also the standard threshold for defining hypoglycemia, is
70 mg/dL for patients with T1D. Only Georga et al. and Piersanti et al. defined
hypoglycemia by a threshold of 60 mg/dL [52, 6]. Thus, each sample less and equal to
70 mg/dL was annotated with class 0 to describe the hypoglycemic state. From there,
5-15 minutes before hypoglycemia was assigned to class 1, more than 15-30 minutes
before was classified as class 2, more than 30-60 minutes before as class 3, more than
1-2 hours before as class 4, more than 2-4 hours before as class 5, more than 4-8 hours
before as class 6, more than 8-12 hours before as class 7, more than 12-24 hours before as
class 8, and lastly more than 24-48 hours before as class 9, as also summarized in table
5. Class 0 is not that sensible to use for prediction but as hypoglycemic events can be
asymptomatic, the class was still included to alert the patient. Most importantly, as a
hypoglycemic event can occur for a longer duration it had to be ensured that no instance
is overwritten with new classes. Therefore, all instances were first assigned a value of ↑1

as the class. Then, the hypoglycemia threshold was applied over all samples to define the
hypoglycemic state. Thereafter, the time condition was only used for instances that were
assigned to class ↑1. Hence, only instances which do not belong to any class already
could be assigned a new class. For instance, if samples are assigned to class 0, they are
not taken into consideration again for the requirement and thus, cannot be reassigned.

Table 5: Assignment of the classes
Prediction Horizon Label

0 (hypoglycemic event) Class 0
5-15 minutes Class 1
20-30 minutes Class 2
35-60 minutes Class 3
65-120 minutes Class 4
125-240 minutes Class 5
245-480 minutes Class 6
485-720 minutes Class 7
725-1440 minutes Class 8
1445-2880 minutes Class 9
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4.1.2. Correlation Analysis

The correlation coe!cient presents the association between two given variables. Consider-
ing all data points, the relation in the change of two parameters is computed, measuring
the degree to which both variables would fit on a straight line. It is to note that even
if a correlation analysis does not depend on the measurement units, it varies with the
range of observations [75] which could lead to a bias and di"erences in this work since the
number of samples varies between subjects. The strength of the correlation is evaluated
with the absolute value. Here, the score mostly ranges from ↑1 and +1 in which a value
of +1 indicates a complete correlation. Thus, for given parameters X and Y , Y would
be positively correlated to X most strongly. A score of 0 means that both variables are
not dependent and do not have any associated behavior, while negative values indicate
inverse correlation. Consequently, while one parameter increases the other parameter
tends to decrease. It is reported that in general, a correlation score above 0.60 can
be evaluated as strong and above 0.80 as very strong [76]. Table 6 summarizes the
interpretation for given correlation score ranges in the biological domain given by Miot
which is also reported to be the rule of thump in behavioral science by Mukaka [77, 78].
The interpretation of the correlation coe!cient depends on the context and domain as to

Table 6: Rule of thump for correlation interpretation [77]
Correlation Range Interpretation
0 to 0.3 (0 to -0.3) negligible

0.31 to 0.5 (-0.31 to -0.5) weak
0.51 to 0.7 (-0.51 and -0.7) moderate
0.71 to 0.9 (-0.71 to 0.9) strong correlations

> 0.9 (< -0.9) very strong

why even if guidelines define a score as weak, it could be still of significance, especially
in the medical domain [75]. Medical events can be multi-factorial and in the diabetes
domain, a hypoglycemic event can be impacted by multiple parameters.
One of the most often utilized methods for quantitative correlation analysis is the Pear-
son correlation assuming a normal distribution and a linear relationship between the
parameters. The formula for Pearson correlation is presented in the following, in which
COV (X, Y ) is the covariance of X and Y , ϑX and ϑY are the deviations of X and Y ,
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and µx and µy are the respective means [76]:

φX,Y =
COV (X, Y )

ϑXϑY
=

E[(X ↑ µx)(Y ↑ µy)]

ϑXϑY
(9)

Contrariwise, the Spearman correlation is a non-parametric method and an extended
version of Pearson. It is based on ranks and not the actual value of the observations
making it robust to outliers [75, 79]. If both variables are ranked, the following formula
can be used presented in [79], in which d

i is the di"erence between each pair of the ranked
variables and N represents the total number of samples:

rs = 1↑ 6
∑

d
2
i

N(N2 ↑ 1)
(10)

di = X
r
i ↑r

i

For this thesis, the Pearson correlation between glucose, basal insulin dosage, bolus
insulin dosage, and acceleration data was computed. Furthermore, as a comparison, the
Spearman correlation was analyzed since a linear relationship cannot be directly assumed.
The correlation analysis aims to investigate the relation of parameters during the chosen
classes, which could give insights into the distinctions or similarities between classes.
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4.2. Model Architectures

This work developed a population-based deep-learning model to solve a multi-class
classification problem and to classify the time to the onset of hypoglycemia. In the first
step, a test subject was randomly chosen to decide on the main model architectures.
These models were then tuned on the test subject. Data from the remaining 11 subjects
was split into training and validation data and was shu#ed. The validation data consisted
of the last 20% from each training person’s data. Then, the trained models were tested
on the whole data of the selected test subject 552. In total four models were approached.
The best LSTM architecture was compared to a BiLSTM model, while the best ResNet
architecture was compared to a 1DCNN model.
For all models, early stopping, the saving and restoring of best weights, and the decrease
of the learning rate were applied as callback functions observing the validation loss. In
addition, the patience of early stopping was set to 5 for the RNN models due to the
longer computation time, while it was set to 10 for the CNN models. The patience of
the learning rate reduction was set to 3 for all models.
As a starting point, a simple LSTM and ResNet model were developed which were then
further tuned. Both architectures were tested with di"erent batch-sizes and various input
time sequence lengths of 12 hours which are 144 data-points, 8 hours which are 96 data-
points, 6 hours which are 72 data-points, and 4 hours which are 48 data-points. Moreover,
each model used the Adam optimizer and the sparse-categorical-cross-entropy loss function.
Additionally, weights were applied for each class due to the high imbalance of classes.
The weights were computed with the following function, in which "class_occurrence"
counts the number of samples for the considered class x, "total" counts the number of
all available samples among all classes, while "number_of_classes" refers to the set of
classes utilized:

weightx = (1/class_occurrence) → (total/number_of_classes) (11)

The functions for calculating the weights are provided by TensorFlow in [80]. Moreover,
to ensure reproducible results, a seed value of 42 was chosen.
The model was first trained with all 10 proposed classes, however, it had poor performance
and many misclassified instances. Therefore, the last class was removed, and all subsequent
experiments used only nine classes classifying up to 24 hours before the hypoglycemic
event. A comparison of confusion matrices using 10 and 9 classes for the best RNN
models and CNN models can be seen in figure 10 and in figure 12, respectively showing
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a slight improvement when using 9 classes.
Finally, in the final population-based approach, which is explained in subsection 4.2, the
superior models were compared. Additionally, a hybrid model consisting of the better
CNN and better RNN model was tested.

LSTM vs BiLSTM Model

Three LSTM models were tested to select the basic architecture that was tuned for the
test data. The first model consisted of one layer with 128 units, and the second model
consisted of two layers of which the first had 128 units and the second had 64 units. The
third model consisted of three stacked layers with 128 units followed by 64 units and 32
units. As a result, the performance of the third was best. Additionally, a model with
three stacked layers with units of 256, 128, and 64 was tested which was superior but had
a longer computation time. All models utilized the tanh activation function because other
functions, such as rectified linear unit (ReLu), exponential linear unit (ELU), or swish
could not produce any results. Thereafter, the model was tested with dropout layers,
removing 20% of data-points after the first and after the second layers, which resulted
in a worse classification performance. In addition, a global average 1D pooling layer
was applied after the final LSTM layer, resulting in a worse performance. Among the
tested batch-sizes of 32, 64, and 128, batch-size 128 and 64 performed similarly. However,
batch-size 64 showed better overall performance. The model was also tested with a dense
layer of 100 units following the last LSTM layer, which led to an increase in the metric
values. For all reported experiments, an input sequence length of 12 hours was utilized.
Thereafter, di"erent sequence lengths were explored, and 8 hours and 12 hours yielded
similar results, as shown in table 7. However, the short computation time of a smaller
sequence length was considered superior. After deciding on the best LSTM model, a
BiLSTM model with 128 units followed by an LSTM layer with 64 units was compared
with input sequences of 12 and 8 hours. The architecture of compared RNN models can
be seen in figure 9. The performances, when utilizing 8 hours of prior measurements,
were similar. Whereas, the accuracy was increased with the BiLSTM model as can be
seen in table 7. Nevertheless, LSTM was seen as superior due to the shorter computation
time and better recall for the first classes, and class 5. Finally, the confusion matrices of
the best LSTM and BiLSTM models are presented in figure 10, revealing that the model
is not capable of classifying the latter classes well.
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Figure 9: Architecture of applied RNN models
a) LSTM, b) BiLSTM

Abbreviation: tanh = hyperbolic tangent function (Activation function)

Table 7: Comparison of LSTM and BiLSTM models trained with a batch-size of 64 across
9 classes

Model Input-

Length

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

Measure

(%)

LSTM 12 hours 30 33 42 35
LSTM 8 hours 30 33 42 35
BiLSTM 12 hours 31 32 41 33
BiLSTM 8 hours 32 33 42 35

1DCNN vs ResNet Model

Di"erent kernel sizes and layer configurations were experimentally tested for the 1DCNN
and the ResNet models. In short, it was observed that 1DCNN models train and learn
faster, especially with greater kernel-sizes. However, the validation and test accuracy
are poor. Therefore, a ResNet model was used as a basic model. As a starting point,
di"erent block sizes and kernel sizes were tested, and a model with 5 residual blocks of
which each block consisted of 2 1DCNN layers with the same kernel-size was selected.
The kernel-sizes for blocks 1, 2, 3, 4, and 5 were 7, 5, 3, 3, and 3, respectively. Before the
first block, a 1DCNN layer with a kernel-size of 9 was used without a shortcut connection.
The filter-sizes of each 1DCNN layer were 64. In addition, each 1DCNN layer followed a
batch-normalization and the ReLu activation function. The basic model was tested with
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(a) (b)

(c)

Figure 10: Confusion-matrices of RNN models
(a) LSTM model trained with an input length of 8 hours and 9 classes (b) LSTM model
trained with an input length of 12 hours and 10 classes (c) BiLSTM model trained with

an input length of 8 hours and 9 classes

a 1D max-pool layer of pool-size 2 after the first convolutional layer before the residual
blocks, which resulted in worse metrics. Next, the model was tested with and without a
dense layer with 100 units following the global 1D average pooling, which resulted in
improved performance. Batch-sizes 32, 64, 128, and 256 were also tested. Here batch-size
128 outperformed the others. In contrast to the LSTM model, dropout layers after each
residual block except the last block increased the classification performance. Finally,
the best model was tested with various activation functions including ELU, swish, and
tanh but none outperformed the ReLu activation function. Thereafter, three blocks were
tested with kernel-sizes of 7, 5, and 3, respectively. The model with three blocks was
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Figure 11: Architecture of applied CNN models
a) ResNet, b) 1DCNN

Abbreviations: BN = Batch-normalization, ReLU = Rectified Linear Units (Activa-

tion function)

tested with a filter-size of 128 for the last residual block, and the model with five blocks
was tested with a filter-size of 128 for the 4th and the 5th residual blocks, respectively.
Furthermore, each model was tested with three stacked convolutional layers for each
block. However, the results were worse. A model with filter-sizes of 64, 64, 64, 128,
and 128 and kernel sizes of 7, 5, 3, 3, and 3 for blocks 1, 2, 3, 4, and 5, respectively
performed best. Lastly, di"erent input sequence lengths were tested, and a length of 6
hours achieved the best outcome, while 12 hours was similar, and 9 hours had the worst
results. The metrics for 12 and 6 hours of prior measurements as the input data are
summarized in table 8. The advantage of using only 6 hours of prior measurements is
that all data-frames can be used, while 12 hours lead to lost samples.
Thereafter, the same architecture without the shortcut connections was tested as a simple
1DCNN model of which the results can be seen in table 8 as well. The architecture
of compared CNN models is visualized in figure 11. It can be seen that the ResNet
model has a slightly better classification performance, thus it was chosen as superior.
Additionally, the ResNet model depicted in [38] and visualized in figure 6 (b) was tried
but resulted in a longer computation time (70-90 minutes). The confusion matrices of the
best ResNet and the best 1DCNN model are presented in figure 12, which show a similar
pattern to the experiments with RNN models. It is further noticed that the metrics of
the best LSTM and the best ResNet model do not vary much.
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Table 8: Comparison of ResNet and 1DCNN models trained with a batch-size of 128
across 9 classes

Model Input-

Length

Accuracy

(%)

Precision

(%)

Recall

(%)

F1-

Measure

(%)

ResNet 12 hours 29 32 36 33
ResNet 6 hours 28 33 42 34
1DCNN 12 hours 27 27 33 28
1DCNN 6 hours 28 30 37 31

Hybrid Model

The hybrid model depicted in figure 13, is a stacked model consisting of the ResNet
model built by one 1DCNN layer followed by 5 residual blocks, a 1D average pooling
layer, and 3 LSTM layers, followed by a global 1D average pooling and a dense layer.
This model architecture was not tested prior on subject 552.

Experiments

For the final implementation, the three chosen models were tested on the whole dataset
on all subjects with a LOOCV. Here, as visualized in figure 14, each subject gets the test
person, while the model is tested with the remaining 11 persons. In total, 12 folds were
built since the dataset consists of 12 subjects. Each test fold held the data of a di"erent
test person for whom the data was not present in the training fold. Furthermore, for the
validation fold, the last 20% of each subject’s data is removed from the training fold to
include all train persons’ data in the validation. The ResNet and Hybrid models were
both trained with an input sequence length of 6 hours, and a batch-size of 128, while the
LSTM model was trained with an input sequence length of 8 hours, and a batch-size of 64.
For all models, a patience of 10 was applied for the early stopping. Then, as a comparison,
transfer learning was utilized in which the model was further trained with 50% of the
test subject’s data. 20% of the data was used for validation and 30% for testing. These
"individualized" models, utilized a batch-size of 16. Furthermore, the patience for early
stopping was increased to 20 epochs for the subject-specific approach. Transfer learning
is a method applied often for small datasets, in which an already trained model with
similar data is reused for a new dataset. It can either be used for further training or for
validating a model with unseen data. The proposed method is also applied by Deng et
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(a) (b)

(c)

Figure 12: Confusion-matrices of CNN models
(a) ResNet model trained with an input length of 6 hours and 9 classes (b) ResNet

model trained with an input length of 12 hours and 10 classes (c) 1DCNN model trained
with an input length of 6 hours and 9 classes

al. who train a model with the training dataset and data of the test subject is used for
further training [81]. Transfer learning was chosen since not every subject had enough
data to train individual models. Moreover, the population-based models were tested with
the same reduced test data to enable a fair comparison. Lastly, since the best LSTM
and ResNet models did not reveal a very promising performance, the population-based
and subject-specific models were also trained by utilizing only 6 classes classifying up to
4 hours before hypoglycemia. The batch-size for all models was half of the prior used
batch-size, because the removal of classes resulted in fewer samples. Furthermore, the
input sequence length of all models was set to 4 hours being 48 data-points.
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Figure 13: Architecture of applied hybrid model: ResNet + LSTM
Abbreviations: BN = Batch-normalization, ReLU = Rectified Linear Units (Activa-

tion function), tanh = hyperbolic tangent function (Activation function)

Figure 14: Architecture of LOOCV [82]

4.3. Metrics used for the Model Evaluation

This thesis is based on a multi-class classification task. Therefore, the developed models
need to be validated with metrics such as accuracy, precision, recall, and F1-measure.
All utilized metrics are in the range of 0 and 1. Furthermore, the confusion matrices
for some models are visualized which is a cross table showing the true and predicted
classes of each sample as already seen in the previous subsection. The true positives
(TP), the false positives (FP), the false negatives (FN), and the true negatives (TN)
can be extracted from the confusion matrix and give more insight into the classification
performance of the single classes. In this case, TP are values that are correctly identified
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as positive by the model, whereas FP are predicted to be positive but belong to another
class. FN are classified as negative but belong to the considered class. Lastly, TN is
correctly classified as negative. The equations for the proposed metrics can be seen in
the following, utilizing the described components [83]:

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1↑Measure =
2↗ Precision

Precision+Recall
(15)

From the given formulas, it can be seen that the precision computes the portion of
truly positive samples from all as positive classified instances. Whereas, recall gives
the portion of identified samples of one class [83]. To illustrate the di"erence, precision
tells how many alarms for a hypoglycemic event are indeed true alarms, while recall
considers how many of the hypoglycemic events are indeed recognized, and thus could
be prevented. Furthermore, the F1-Score is the harmonic mean between precision and
recall. Accuracy computes the portion of correctly classified data-samples considering the
whole dataset. Hence, it calculates the average probability of a correct classification for a
random sample. One major disadvantage of the accuracy metric is that it is biased with
imbalanced datasets, especially in multi-class classification problems [83]. To illustrate
the drawback, if half of the entire dataset belongs to one specific class and those are all
classified correctly, the accuracy would be around 50%. However, if other classes have
poor performance, it cannot be concluded that a random sample is classified correctly
with an accuracy of 50%. Finally, this work will report the macro averages for each
metric, due to the high imbalance in data. The macro average considers all classes equally
without having a bias of popular and less popular classes [83].
The literature review has shown that often relevant events are detected but most systems
have a low precision inducing many false alarms. Bertachi et al. state that too many
false alarms could cause the patient to consume unnecessary carbohydrates, especially
at night time, which could lead to hyperglycemia and weight gain [64]. Hence, the false
alarm rate must be in acceptable ranges. In relation, recall is more important compared
to precision in clinical settings which is also reported by Zhu et al. [59]. Consequently,
the F1-Measure is of high relevance.
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4.4. Expected Limitations

From the previous subsections, it could be seen that the dataset itself has some drawbacks
and that the reported models do not perform that well. There are many gaps in the
data which could cause the loss of important information and the dataset is not that
large. Furthermore, the distribution of classes is imbalanced which could lead to a worse
classification of underrepresented classes. Besides, the experienced hypoglycemic events
di"er between the patients as why the model could be biased and is limited in learning the
data of the population equally. The data is split into training and validation, but because
the last 20% is assigned as validation data and since the classes are highly imbalanced,
it is not known if the validation data represents all classes equally well. Lastly, as also
depicted in chapter 2, deep learning could cause overfitting with small datasets which
was also observed in the reported models in subsection 4.2.
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5. Results

This chapter first explores the pre-processed dataset and visualizes the parameters of
selected hypoglycemic events for each patient in subsection 5.1. In the second part,
the population- and individual-based correlation results are analyzed in subsection 5.2.
Lastly, subsection 5.3 reports the results of applied deep learning models.

5.1. Preliminary Data Analysis

Time series sequences were created for the train and test datasets to train and evaluate
the deep learning models. Here, a sequence length was defined and the last value of
the series decided the class of the sequence. The literature review showed that the
input series should be as long as the maximal prediction horizon. Nevertheless, the
experiments in chapter 4.2 revealed that sequence lengths of 6 and 8 hours yield better
performances when classified up to 24 hours before hypoglycemia. Longer sequences
either have ine!cient computation time or result in lost data samples due to unusable
data-frames. The distribution of samples per class before pre-processing can be seen in
table 9. Contrariwise, table 10 presents the classes’ distribution after pre-processing,
gaps removal, and after the creation of time series sequences with a sequence length of
8 hours. The comparison illustrates the number of lost instances since the removal of
gaps leads to unusable data-frames and samples because not every data-frame meets the
requirement of the defined sequence length. Thus, most subjects have reduced samples
using an input sequence of 8 hours. Most samples are lost in the latter classes. Whereas,
linear interpolation also increases the number of instances of some subjects in class 0.
Using an input sequence of 12 hours or 24 hours resulted in even fewer samples.

Data Exploration: Figures 15, 16, 17, and 18 visualize the collected pre-processed
parameters 48 hours before a hypoglycemic event. Here, only one hypoglycemic data
point was selected for each patient. It can be seen that the applied insulin dosage is
highly associated with the decrease of glucose and the hypoglycemic event in most of the
cases presented.
For subject 540, it can be observed that three hypoglycemic events were experienced
within 48 hours, one of the most recent events was severe hypoglycemia. Bolus insulin
was administered prior to the depicted hypoglycemic event while exercise data did not
seem to impact glucose values.
For subject 544, increased insulin dosages were injected and the maximum glucose values
were higher in comparison. The chosen data point is the first hypoglycemic event within
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Table 9: Samples per class with raw data
Class

ID Total 0 1 2 3 4 5 6 7 8 9

540 15229 986 314 298 566 1025 1707 2779 1952 3400 2202
544 8049 188 87 75 122 216 432 864 864 2409 2792
552 11377 408 142 137 261 514 1007 1769 1354 2814 2971
559 12725 518 184 167 318 612 1176 2156 1727 3281 2586
563 11099 329 130 122 223 427 709 1336 1206 2805 3812
567 14406 925 140 125 238 453 878 1722 1495 3638 4792
570 7543 227 87 77 137 250 420 768 760 1987 2830
575 14812 1173 291 263 485 930 1655 2734 1926 3385 1970
584 5384 137 72 64 126 236 406 593 528 1439 1783
588 6372 136 77 68 132 241 456 805 693 1621 2143
591 14357 570 233 213 401 767 1326 2258 1952 3798 2803
596 13245 300 167 143 260 516 990 1774 1602 3501 3992

Table 10: Samples per class for pre-processed time series data of 8 hours
Class

ID Total 0 1 2 3 4 5 6 7 8 9

540 13722 894 291 277 523 933 1521 2418 1640 3086 2139
544 7366 184 78 69 110 192 398 842 861 2073 2559
552 9168 418 130 125 237 466 908 1520 1176 2154 2034
559 11450 441 152 138 268 522 1037 1950 1589 3066 2287
563 10613 327 124 118 217 415 685 1283 1114 2577 3753
567 11747 932 137 120 226 429 830 1495 1242 2698 3638
570 7050 227 87 77 135 238 396 720 686 1804 2680
575 13738 1158 261 236 437 834 1488 2538 1777 3140 1869
584 4921 130 70 64 126 236 404 589 528 1370 1404
588 6078 138 77 68 132 238 432 757 645 1448 2143
591 12919 600 214 197 382 731 1263 2110 1807 3419 2196
596 10384 259 136 122 218 425 788 1412 1273 2850 2901
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the presented 48 hours. Furthermore, increased physical activity is identified at some
points but because bolus insulin is also increased at the same time, the direct dependence
cannot be clarified.
Subject 552 was in a hypoglycemic state one day before the chosen event and possibly
had increased physical activity for a longer duration one day before, which could have
an impact on the decrease in glucose values. Moreover, basal insulin was constantly
administered with the same dosage.
Subject 559 experienced five hypoglycemic events one day before and had high variations
in glucose. Most events seem to result from the bolus and basal insulin dosages.
For subject 563, in general, moderate activity data and a constant basal insulin dosage
of 0.70 can be seen. Within the last 48 hours, four hypoglycemic events were experienced
of which the first one was severe hypoglycemia, and the last hypoglycemia occurred right
before the presented event.
For subject 567 a trend for glucose data is noticed which immediately decreases with the
applied bolus insulin. No hypoglycemic events were experienced before.
Likewise, subject 570 had not experienced any hypoglycemia. Exercise data as well as
the bolus insulin dosage seem to be increased, while basal insulin was administered in
constant dosages in the last 48 hours. Besides, during the night and in the morning the
subject had increased glucose values between 200-300 mg/dL.
Subject 575 had one severe hypoglycemia two days before the chosen event. Before the
illustrated hypoglycemic value which is experienced during the night, bolus insulin was
administered, although the glucose values were not that increased and had already shown
a pattern of decrease. Additionally, activity data seems to be slightly increased.
Moving to subject 584, it can be observed that one hypoglycemia was experienced one
day before the presented event. Glucose values seem to be increased before the first
hypoglycemic event with values up to 400 mg/dL. Additionally, multiple bolus insulin
dosages were infused within the day while also basal insulin was applied. During the
decrease of glucose, physical activity seems to be increased as well. Then, before the
presented event, bolus insulin was applied twice for glucose values of approximately 200
mg/dL. As a result, glucose stayed moderate between 175 and 225 mg/dL for the next
few hours until it suddenly decreased at midnight.
Subject 588 had great fluctuations in glucose data and compared to the other subjects,
the infused bolus insulin dosages were not that increased while basal insulin was more
adjusted and not constant. Increased exercise can be seen at some time points but no
hypoglycemic events are experienced in the last 48 hours and in general the glucose
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values are not that elevated. Therefore, the direct cause of the chosen hypoglycemic
event cannot be recognized.
For subject 591, five hypoglycemic events can be seen in the last two days of which
three were severe events including the most recent state. Additionally, increased activity
is noticed one day before the chosen event. The subject had increased glucose values
between 200-250 mg/dL during the night which decreased with the infused bolus insulin
before sleeping at around 6 a.m.. Another dosage of bolus insulin was administered after
some hours which happened to be right before the chosen event. Moreover, basal insulin
was infused in small dosages, although the patient had glucose values under 100 mg/dL.
Lastly, subject 596 has more often normal glucose values between 100-150 mg/dL. In
general, decreased insulin dosages were infused compared to the other subjects, while
basal insulin was given in constant dosages. Two hypoglycemic events were experienced in
the last two days and the last event was recent to the chosen hypoglycemic state. Before
the hypoglycemic states, the glucose levels were increased up to 300 mg/dL. Furthermore,
both hypoglycemic events seem to be associated with the bolus dosage.
From the presented visualizations of selected hypoglycemic data points, it can be summa-
rized that some of the events could be prevented with prediction algorithms, especially in
subjects 570, 575, 584, 591, and 596. In those patients, it is asserted that the event was
the result of short-term actions right before the hypoglycemia. Moreover, the number
of prior experienced hypoglycemic states also seems to be of relevance looking at all
subjects. Physical activity could impact the behavior of glucose but a direct relation
could not be highlighted since most often insulin was also increased at the same time.
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(a)

(b)

(c)

(d)

Figure 15: Parameters in the last 48 hours before hypoglycemia (1)
(a) Subject 540 (b) Subject 544 (c) Subject 552 (d) Legend
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(a)

(b)

(c)

(d)

Figure 16: Parameters in the last 48 hours before hypoglycemia (2)
(a) Subject 559 (b) Subject 563 (c) Subject 567 (d) Legend
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(a)

(b)

(c)

(d)

Figure 17: Parameters in the last 48 hours before hypoglycemia (3)
(a) Subject 570 (b) Subject 575 (c) Subject 584 (d) Legend
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(a)

(b)

(c)

(d)

Figure 18: Parameters in the last 48 hours before hypoglycemia (4)
(a) Subject 588 (b) Subject 591 (c) Subject 596 (d) Legend
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5.2. Results of the Correlation Analysis

Subsection 5.2.1, describes the results of the Pearson and Spearman correlation which
are applied to the whole population. Furthermore, population-based pairwise plots of
given variables are illustrated. Lastly, subsection 5.2.2 observes the individual-based
results of the Pearson correlation method.

5.2.1. Population-based Correlation

To estimate a population-based correlation, the data-frames of all patients were concate-
nated and then grouped by classes. The computed Pearson and Spearman coe!cients
per class are presented in table 11. First looking at the Pearson coe!cient, it can be seen
that the correlation score between glucose and basal insulin is negligible and there is no
significant relation among the classes. The latter classes achieve the maximum scores
with 0.108, 0.149, and 0.160, showing an increase from class 9 to class 7, respectively.
However, even 0.160 only represents a very weak to negligible relation. Likewise, the
relation between glucose and bolus insulin is not significant with a maximum score of
0.228 in class 8. Therefore, glucose and bolus insulin seem to have a very weak association
12 to 24 hours before the hypoglycemic event. Glucose and the Magnitude of Acceleration
(macc) indicate a negligible and irrelevant correlation among all classes with a maximum
value of -0.075 in class 9. The strongest coe!cient in the Pearson correlation can be seen
between basal insulin and macc, but it does not follow a specific trend among the classes.
Class 9 and 8 show a negative very weak dependence of -0.223 and -0.241, respectively.
The other classes can be interpreted as non-relevant, while the correlation score shows a
negative very weak association in class 5 increasing to the maximum score of -0.298 and
-0.282 in classes 2 and 1, respectively. To summarize the relation between basal insulin
and macc, all coe!cients are negative and the average correlation among the classes is
-0.215, indicating the possibility of a very weak dependence, especially 15 to 60 minutes
before the hypoglycemic event. The Pearson coe!cients between bolus insulin and macc,
and between bolus and basal insulin do not reveal any relevant dependence.
Comparing the Pearson coe!cients with the Spearman coe!cients, it is noticed that there
is not a significant di"erence between most of the parameters. However, the dependence
between glucose and bolus insulin, and between glucose and macc have some variations
among the classes. While the maximum score is 0.228 in class 8, which is 12-24 hours
before hypoglycemia, using the Pearson correlation, it is 0.256 in class 6, which is 4-8
hours before hypoglycemia, using the Spearman correlation, which is a di"erence of at

60



Ta
bl
e
11
:P

op
ul
at
io
n-
ba

se
d
Pe

ar
so
n
an

d
Sp

ea
rm

an
co
rr
el
at
io
n
an

al
ys
is

C
o
r
r
e
la
t
io
n
s

C
la
s
s
e
s

0
1

2
3

4
5

6
7

8
9

gl
uc
os
e/

ba
sa
l

0.
05
9

0.
08
8

0.
09
0

0.
03
4

0.
04
0

0.
06
0

0.
09
2

0
.1
6
0

0.
14
9

0.
10
8

gl
uc
os
e/

bo
lu
s

0.
04
7

-0
.0
30

0.
00
3

0.
02
1

0.
01
0

0.
02
2

0.
03
0

0.
05
2

0
.2
2
8

0.
04
2

P
e
a
r
s
o
n

gl
uc
os
e/

m
ac
c

-0
.0
63

-0
.0
33

-0
.0
08

-0
.0
34

0.
02
0

0.
01
6

-0
.0
30

-0
.0
33

-0
.0
55

-
0
.0
7
5

ba
sa
l/

m
ac
c

-0
.0
83

-0
.2
82

-
0
.2
9
6

-0
.2
60

-0
.2
47

-0
.2
22

-0
.1
14

-0
.1
86

-0
.2
41

-0
.2
23

bo
lu
s/

m
ac
c

-0
.0
35

-
0
.0
4
2

0.
00
4

-0
.0
13

0.
00

0
.0
4
2

0.
03
7

0.
00

-0
.0
14

0.
00
3

ba
sa
l/

bo
lu
s

0.
02
0

0.
01
7

-0
.0
18

0.
00
7

-
0
.0
2
2

0.
00

-0
.0
12

0.
01
3

0.
00
7

0.
00
3

gl
uc
os
e/

ba
sa
l

0.
04
2

0.
06
7

0.
04
4

0.
04
9

0.
07
9

0.
06
9

0.
09
5

0
.1
6
0

0.
14
7

0.
09
4

gl
uc
os
e/

bo
lu
s

0.
05
2

-0
.0
03

0.
00
3

0.
01
6

0.
02
4

0.
00
1

0
.2
4
6

0.
04
8

0.
03
9

0.
04
6

S
p
e
a
r
m
a
n

gl
uc
os
e/

m
ac
c

-0
.0
25

-0
.0
59

-0
.0
33

-0
.0
34

0.
01
1

-
0
.1
2
0

-0
.0
34

-0
.0
49

-0
.0
29

-0
.0
82

ba
sa
l/

m
ac
c

-0
.0
43

-
0
.2
5
9

-0
.2
57

-0
.2
26

-0
.2
10

-0
.1
77

-0
.0
84

-0
.1
36

-0
.2
03

-0
.2
04

bo
lu
s/

m
ac
c

0.
00
4

0.
01
8

0
.0
5
7

-0
.0
06

0.
01
1

0.
03
5

0.
04
5

0.
00
6

0.
00
1

0.
01
5

ba
sa
l/

bo
lu
s

0.
02
6

-0
.0
16

-
0
.0
3
2

0.
01
5

-0
.0
30

0.
01
3

-0
.0
12

0.
01
2

0.
00

-0
.0
09

61



least 8 to 16 hours. Lastly, the relation between glucose and macc is not relevant using
the Pearson correlation, while the maximum score using the Spearman correlation is
-0.120 in class 5 which could be interpreted as a very weak dependence.
To conclude, comparing the classes, the most significant Pearson coe!cients can be seen
in classes 8, and 7 with a very weak relation between glucose and basal insulin, and
between glucose and bolus insulin, respectively. While classes 1-9 show a very weak
to weak dependence between basal insulin and macc. As a di"erence in the Spearman
coe!cients, class 5 shows a very weak relation between glucose and macc, and class 6
between glucose and bolus insulin. Lastly, it is worth mentioning that between glucose
and basal insulin, there are only positive coe!cients, while for basal insulin and macc,
the coe!cients are negative.
Moreover, pairwise plots are presented to visualize the degree to which the data fits into
a straight line. Here, the data of two parameters are plotted against each other. If a
trend of a straight line is visible, a linear dependence is indicated [75]. The pairwise plots
can be seen in figures 19, 20, 21, 22, 23 illustrating very high variations, especially with
increasing classes and time horizons.
For class 0 which is visualized in figure 19 (a), there cannot be seen any particular
strong relationship among the parameters as also shown by the Pearson and Spearman
correlation analysis. Higher bolus insulin is more often applied with glucose values
between 60 and 70 mg/dL. In addition, for basal and bolus insulin, there seems to be a
very weak linear relation for few values since more often there is no bolus insulin infused.
If basal insulin is applied, there could be a very weak relation between basal insulin and
macc. Likewise, the pairwise plots for class 1 visualized in figure 19 (b) shows a possible
dependence between bolus and basal insulin. Moreover, macc seems to be more often
increased with normal glucose values between 70 and 100 mg/dL. In particular, increased
dosages are more often noticed for glucose levels under 100 mg/dL, if any bolus insulin is
administered. The plots of class 2 which can be seen in figure 20 (a) behave similarly.
Furthermore, in class 3, which is shown in figure 20 (b), glucose values ranging up to 200
mg/dL are more often associated with increased basal insulin dosages. In the plots of
class 4, which can be seen in figure 21 (a), nothing significant is recognized. The values
of macc are increased in general, and a negative relation is noticed between glucose and
bolus insulin for some instances. It can be further observed that the pairwise plots of
glucose and basal insulin, and glucose and macc resample a histogram from class 1 to 4 in
which, for a specific threshold, both parameters tend to increase, and after the threshold
glucose tends to decrease.
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(a)

(b)

Figure 19: Pairwise-plots (1)
(a) Class 0 (b) Class 1
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(a)

(b)

Figure 20: Pairwise-plots (2)
(a) Class 2 (b) Class 3

64



(a)

(b)

Figure 21: Pairwise-plots (3)
(a) Class 4 (b) Class 5
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(a)

(b)

Figure 22: Pairwise-plots (4)
(a) Class 6 (b) Class 7
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(a)

(b)

Figure 23: Pairwise-plots (5)
(a) Class 8 (b) Class 9
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Bolus and basal insulin, and glucose and bolus insulin seem to be (very) weakly related
in a negative way, for class 5, which is presented in figure 21 (b). In both plots, bolus
insulin increases with the decrease of the other parameter. In general, macc is increased
and high bolus seems to be associated with increased acceleration. Lastly, bolus and
basal insulin are most increased with glucose values between 200 and 300 mg/dL, whereas
higher glucose is more often associated with lower bolus and moderate basal insulin.
Classes 6 and 7 visualized in figure 22, do not variate much from class 5 and a similar
positive relation can be observed between bolus insulin and macc. However, there does
not seem to be any negative association between glucose and bolus insulin, or any relation
between basal and bolus insulin. Likewise, for classes 8 and 9 which can be seen in figure
23 no significant di"erences are noticed. Bolus insulin and macc could have a very weak
negative dependence. Besides, glucose and bolus insulin seem to be negatively associated
after a glucose threshold above 200 mg/dL. Moreover, bolus and basal insulin could have
a negative correlation after a threshold above 1.0 for bolus. Lastly, higher glucose values,
especially above 300 mg/dL, are more often associated with increased basal dosages.
Conclusively, it can be asserted that a negative correlation score between glucose and
insulin most possibly indicates the decrease of glucose and increase of basal or bolus
insulin. Increased macc may be related to decreased glucose levels.

5.2.2. Individual-based Correlation

For individual-based analysis, the data-frames of each patient were concatenated and
grouped by classes before the correlation was computed. Tables 26, 27, 28 and 29 in the
appendix present the individual correlation coe!cients for each class. Here, it can be
seen that the coe!cients vary between the subjects while some indicate strong relations
between parameters and some show irrelevant behavior between the same parameters.
Looking at the correlation coe!cients of subject 540, a weak positive relation between
glucose and basal insulin is noticed in classes 9 and 8. Then, the dependence decreases
and is very weak in class 5, and non-relevant from classes 4-1. Hence, the increase in
glucose seems to be weakly or moderately associated with the increase of basal insulin
12-48 hours before the event. For basal insulin and macc, the coe!cients do not present
any notable relevance. Only classes 9 and 1 have a very weak score of -0.151 and -0.198,
respectively. Lastly, glucose and macc have a very weak to weak correlation among the
classes with the maximum coe!cients of -0.287 and -0.226 for class 9 and 0, respectively.
Furthermore, class 5 is very weak, but other classes do not indicate any significant
dependence. Thus, it is noticed that the maximum coe!cients of glucose and macc
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overlap with the maximum coe!cient of glucose and basal insulin. Other parameters do
not indicate any significant relation.
Contrariwise in subject 544, it can be observed that the correlation between glucose
and basal insulin is not significant during classes 9 and 8. Classes 7 and 6 have a very
weak relation, which is negative and weak in classes 5 and 4 with a score of -0.365 and
-0.361, respectively. Thereafter, a moderate dependence can be seen in class 3 with a
coe!cient of -0.611. Starting from class 2 the score decreases and is very weak in class 0.
Likewise, there is a strong association between basal insulin and macc. Class 9 starts with
a weak relation increasing to -0.603 in class 7 and then slowly decreases from moderate
to very weak in class 0. Therefore, there is a negative dependence 30-60 minutes before
hypoglycemia for glucose and basal insulin, while 8-12 hours before the event seems most
significant for the correlation between basal insulin and macc. Glucose and bolus insulin
show a weak dependence in class 2 with 0.310, decreasing to -0.124 in class 1 and to
0.109 in class 0. Glucose and macc indicate a very weak relationship for classes 9, 6, and
2, respectively. Then, the score increases to -0.222 in class 1 and changes to 0.210 in
class 0. Additionally, the correlation analysis between bolus insulin and macc presents
a very weak positive dependence in classes 6 and 5 with 0.237 and 0.280, respectively.
Similarly, the coe!cient for basal insulin and bolus insulin is very weak in class 5 with
-0.274 and class 0 with -0.187.
For subject 552 it can be seen that the relation between glucose and basal insulin is not
very relevant with a maximum coe!cient of 0.241 and 0.130 in classes 5 and 4, respectively.
Furthermore, between glucose and bolus insulin, between bolus and macc, and between
basal and bolus insulin, no significant dependence is evident. The achieved maximum
scores are 0.042 in class 9, -0.150 in class 4, and -0.165 in class 4, respectively. There is
a very weak to weak relation between glucose and macc. The maximum coe!cient is
-0.315 in class 7 indicating a negative weak dependence 8-12 hours before hypoglycemia,
which decreases to -0.207 in class 3. Then, it is non-significant in class 0. Likewise, basal
insulin and macc indicate a weak relation starting with a very weak coe!cient in classes
6 and 5, increasing to 0.358 in class 4. Thereafter, the correlation score decreases and is
very weak with -0.232 and -0.277 in classes 1 and 0, respectively. To conclude, class 4,
which represent 1-2 hours before hypoglycemia, seems most significant for subject 552
considering the pairwise correlations of all parameters, while class 7, which represents
8-12 hours before the event, is most relevant for glucose and macc.
The only relevant relation in subject 559 can be seen between glucose and basal insulin
which reveals a very weak positive dependence starting from class 5 with 0.293. The
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coe!cient then decreases and is suddenly increased to a weak positive relation in class 0
with 0.495.
Likewise, subject 563 does not have any strong correlation coe!cients. The most
significant scores are seen between glucose and basal insulin with 0.299 and 0.274 in class
7 and 6, respectively. Other classes are negligible or not relevant. Between glucose and
macc there is a very weak relation in classes 2 and 1 with 0.174 and -0.124, respectively,
showing a change from positive to negative in 15 minutes. Basal insulin and macc have
only a very weak coe!cient in classes 3 and 2 with 0.170 and 0.110, respectively, and
lastly, between basal insulin and bolus insulin, there seems to be a weak dependence
in class 3 with 0.327. As a result, the first classes are more significant and only the
correlation of glucose and basal insulin is more relevant in the latter classes.
Additionally, subject 567 does not show strong correlation scores. There is a very weak
to weak correlation between glucose and basal insulin starting with -0.293 in class 6,
increasing to 0.362 in class 4 which then decreases to -0.234 in class 0. For basal insulin
and macc, there is a very weak relation with -0.178, 0.188, -0.125, and -0.175 in classes
7, 6, 5, and 4, respectively, which then increases to -0.202 in class 2. Lastly, the other
parameters are less relevant with only very weak coe!cients less than 0.160 or -0.160.
For subject 570, a positive very weak to weak dependence can be seen between glucose
and basal insulin. Class 9 indicates a very weak relation with 0.236, while classes 7 and
6 illustrate a weak relation of 0.336 and 0.327, respectively. The coe!cient is moderate
with 0.547 in class 2 and then decreases to a very weak negative association. Bolus
insulin and macc seem to have a positive weak association in class 1 with 0.224, while
basal insulin and bolus insulin have a very weak association in class 7 with 0.184 and a
weak to moderate relation in class 5 with 0.359. Glucose and macc have a very weak
relation in classes 2 and 1 with 0.247 and -0.186, respectively. Other parameters are not
that relevant.
Subject 575 indicates a possible weak relation between glucose and basal insulin in
classes 7 and 6 with -0.273 and -0.168, respectively, and a weak association between basal
insulin and macc in classes 9 and 8 with -0.164 and -0.127, respectively. Whereas, other
parameters do not indicate any significant dependence.
The correlation analysis of subject 584 presents a very weak relationship between glucose
and basal insulin from class 9-6. Then, the coe!cient is moderate in class 5 with -0.628
and weak in class 3 with -0.359. It starts decreasing in class 1 with -0.106 and is again
moderate in class 0 with 0.528. Thus, the maximum coe!cient is achieved in class 5 with
a negative relation while class 0 is moderate with a positive dependence. Furthermore,
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glucose and bolus insulin have a very weak association from class 7-5 and reach their
maximum score in class 3 with 0.227. For glucose and macc, a very weak relation starts
in class 6 with -0.169 increasing to 0.266, 0.126, 0.242, and 0.330 from class 5-2. For basal
insulin and macc, a very weak relation can be observed with -0.227 in class 5 decreasing
to -0.127 in class 2. Thereafter, class 1 has no relevance, and class 0 indicates a very
weak relation of -0.175. Other parameters do not reveal a relevant dependence.
Subject 588 indicates less relevant dependence between glucose and basal insulin with a
very weak score of -0.193 in class 5 which increases to 0.204, and 0.205 in class 4 and
3. Then, the relation decreases and is increased with the maximum value in class 0
with 0.287. Glucose and bolus insulin do not indicate any dependence, likewise glucose
and macc, bolus insulin and macc and bolus and basal insulin. For basal insulin and
macc starting from class 8, there is a strong relation with -0.752 which is the maximum
score among all classes. The correlation then decreases to -0.670 in class 7. Class 6 only
indicates a weak relation of -0.258, while class 5 is moderate with -0.581. Thereafter, the
coe!cient slowly decreases to -0.105 in class 2, and increases again to -0.212 in class 1.
Class 0 is very weak with only -0.123.
Subject 591 shows a very weak relation between glucose and basal insulin in class 0 with
a score of 0.201. For glucose and macc there is a very weak relation in class 5 with -0.125,
with -0.210 in class 2, and with 0.140 in class 0. For basal insulin and macc, there is a
very weak to weak relation starting from class 9 with -0.259, which increases to -0.304 in
class 7. Class 5 is irrelevant, while class 4 is increased with -0.369, which then decreases
to -0.113 in class 0. Other parameters do not show any significant association.
Lastly, looking at the correlation coe!cients of subject 596 it can be seen that there is
a very weak relation between glucose and basal insulin with 0.172 in class 9, and with
-0.130 in class 6. Glucose and macc reveal a very weak relation in classes 5 and 3 with
0.201 and -0.257, respectively. Basal insulin and macc have a fragile relation in classes
8 and 5 with 0.189 and 0.119, respectively. Lastly, bolus insulin and macc show a very
weak relation in classes 3 and 1 with -0.169 and -0.115, respectively. Other parameters
do not indicate any dependence.
To summarize, it can be stated that the most significant classes change from subject
to subject and that the maximum scores do not always overlap within the participants.
Furthermore, basal insulin seems to be most impactful, followed by bolus insulin and
then the macc. In particular, the maximum scores are obtained in subjects 544, 584, and
588, but in di"erent classes for either glucose and basal insulin or basal insulin and macc.
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5.3. Deep Learning models

This subsection reports the population-based deep learning models consisting of a ResNet,
an LSTM, and a hybrid model utilizing 9 classes in subsection 5.3.1. Then, the person-
specific models are compared in subsection 5.3.2. Finally, the same experiments are
investigated with reduced classes classifying the onset of hypoglycemia up to 4 hours
before in subsections 5.3.3 and 5.3.4.

5.3.1. Population-based Models using 9 Classes

First, up to 24 hours before the hypoglycemic event was classified while utilizing classes
0-8 for training. Table 12 presents the results of the macro average metrics for each
subject and each model and highlights the best values. On average, the LSTM model
performs best however, the values of the metrics di"er between the subjects. Thus, no
model is superior for all individuals. The hybrid model tested on subject 570 obtained
the best accuracy of 43% with a great di"erence. Nevertheless, most samples of the
popular class were detected in subject 570, as to why the accuracy does not reveal the
classification capacity of the model. The second best accuracy is obtained at 38% with
the hybrid model as well for subject 567, followed by an accuracy of 37% for subject
563 with the ResNet model, and for subject 544 with the LSTM model. Moreover, the
ResNet model reports the best macro average precision with 41% for subject 575 while
the other models only reach a precision of 29%, followed by a precision of 40% in subject
567 with the hybrid model. Subject 567 has the best macro average recall of 47% with
the LSTM model, again with a great di"erence. Thereafter, the second best recall is
reported for subject 559 with 42%, who has the best values in every with the LSTM
model. Lastly, the best macro average F1-measure is achieved with 39% for subject
567 with the LSTM model as well, followed by subjects 552, 559, and 563 having an
F1-measure of 34% with the LSTM model. Consequently, the LSTM model shows a
better harmony between precision and recall. In total, the LSTM model is better with at
least three metrics for subject 540 with a great di"erence, subjects 552, 559, and 563 with
a moderate di"erence, and subject 591 with a minimal di"erence only. Therefore, the
onset of hypoglycemia is better classified with an LSTM model for 5 out of 12 persons.
Whereas, the ResNet model is slightly better with at least three metrics for subjects 584,
588, and 596 making 3 out of 12 persons. For subject 588, the ResNet model and the
LSTM share the same precision and recall, and the F1-measure is better with 0.01 in
the LSTM model but the ResNet has better accuracy. The hybrid model is only better
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with at most two metrics and often with no strong di"erences from the other models.
Conclusively, the LSTM model obtained better results on average, especially for the
recall and the F1-measure, while ResNet does not show great variations. Moreover, it
can be seen that on average, the precision is worse than the recall and the accuracy is the
worst metric. Overall, the best performance for all metrics is obtained for subject 567.
Nevertheless, considering all maximum values, the model has a poor overall classification
ability and cannot even achieve a recall of 50%, whereas the best F1-Measure is only
39%. In addition, the training accuracy of the LSTM model was between 30% and 40%.
In the following, the performance of the single classes is investigated for a population-
based LSTM model since the LSTM model was selected as superior considering the
overall results. Table 13 presents the precision, recall, and F1-measure of each class and
each subject, in which the best values of each metric among the subjects are highlighted.
Considering all subjects, it is noticed that the first classes are better identified while the
latter are less distinguishable. The first class which represents the hypoglycemic event
itself is mostly detected correctly. In detail, a recall of at least 80% for subjects 544, 570,
and 591 is achieved, while the remaining subjects obtain a recall of at least 97%. The
precision behaves very similarly leading to the worst F1-measure of 88% in subject 544
and the best F1-measure of 100% in subject 567. Turning now to the performance of
class 1, a decrease in the classification ability and more variation between the subjects
is evident. In total, 6 subjects have a recall of at least 70%, and the population recall
considering all subjects is 66%. In contrast, the precision is very low with 39% for all
subjects, inducing many false alarms. Only subject 567 has a precision greater than 50%
with 58%, who has the best performance with a recall of 77% and an F1-measure of
66%. Whereas, the worst performance is noticed in subject 544 with an F1-measure of
40%, a recall of 47%, and a precision of 35%, indicating a great di"erence. Thus, on
average more than 60% of all hypoglycemic cases are detected up to 15 minutes before
but with an average F1-measure of 49%. Class 2 shows even more variations and reveals
a population-based precision, recall, and F1-measure of 16%, 49%, and 24%, respectively.
The worst metrics are obtained in subjects 575 and 588 with an F1-measure of 17%. The
precision is 12% and 11%, while the recall is 34% and 36%, respectively. Contrariwise,
the best precision can be seen in subject 567 with only 25%, who also has the best
F1-measure with 37%, while the best recall is seen in subject 544 with 71% but with a
precision of only 16%. Consequently, the model is not capable of alerting hypoglycemic
cases 30 minutes as well as 15 minutes before the event since too many false alarms
occur. Then, the performance of classes decreases radically with increasing prediction
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horizons. For class 3, the best values can be seen in subject 567 with precision, recall,
and F1-measure of only 21%, 44%, and 29%, while the population-based mean values are
13%, 31%, and 18%, respectively. Thus, a great di"erence between recall and precision
is recognized. Besides, the worst metrics are 8%, 18%, and 11% for precision, recall,
and F1-measure, respectively in subject 584. Likewise, class 4 behaves similarly. The
best precision is 24% in subject 570, the best recall is 55% in subject 588 and the best
F1-measure is 25% in subject 575. Hence, subject 567 does not have the best results
anymore and only achieves 15%, 41%, and 22% for precision, recall, and F1-measure,
respectively. The worst performance is seen in subject 544 with 0% in all metrics. The
population-based precision, recall, and F1-measure are 14%, 27%, and 18%, respectively.
Class 5 performs very poorly with precision, recall, and F1-measure of 15% considering
the population. Subject 552 is above the average with 18%, 40%, and 25% for precision,
recall, and F1-measure, respectively. Moving to class 6, the best values are seen in
subject 579 with 22%, 57%, and 32% and the population-based metrics are 24%, 20%,
and 22%, respectively for precision, recall, and F1-measure. Besides, class 7 obtains its
best metrics in subject 567 with an F1-measure of 23% while the population F1-measure
for all subjects is 16%. Lastly, in comparison, class 8 has an improved performance with
average metrics of 42%, 31%, and 35%, for precision, recall, and F1-measure, respectively.
The best precision is seen at 48%, the best recall at 63%, and the best F1-measure at
54% in subject 544. Contrariwise, the worst performance is seen in subject 570 with
40%, 9%, and 14% for precision, recall, and F1-measure, respectively.
To conclude, it can be seen that the first classes can be better classified, despite having
fewer samples, and the latter classes cannot be well di"erentiated. Thus, the model
can only identify the hypoglycemic event 0-30 minutes before with an acceptable recall
but decreased precision. Since early stopping is used, it is identified that subjects who
trained for more epochs also achieved better classification results. Contrariwise, subjects
544, 570, 575, 588, 591, and 596 trained for less than 5 epochs, and do not show any
improvement in the validation loss. Subject 567 had its best validation loss after 9 epochs
but training for more epochs led to overfitting.
As reported previously, the LSTM model is not superior for every subject and some
subjects have better average metrics with a ResNet model. Thus, considering the metrics
of the single classes for each subject using a ResNet model which can be seen in the
appendix in table 30, it is noticed that the maximum values in average decrease and
that subject 567 has not the best results anymore. The best values for class 0 are
obtained with subjects 584 and 591, with an F1-measure of 97% each, lower than the
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maximum value using an LSTM model. However, subject 570 has an increased recall
and F1-measure, while the precision is decreased in comparison. Other subjects have
worse or similar results compared to the results of the LSTM model. For class 1, the
best recall is seen in subject 559 with 82%, the best F1-measure in subject 591 with 54%
while the precision is also best in subject 567 but with 53%. A decrease in the overall
performance is evident, while the performance in subject 591 increases using the ResNet
model. The worst results are obtained in subject 588, the recall is decreased to 28%
for subject 567, and the F1-measure is 36%. Similar results can be seen for the other
classes. Overall, there are stronger variations between the subjects and the classes using
the ResNet model. Subject 563 has the best F1-measure for class 4 with 20%, while the
best recall is noticed in subject 544 with 35%. The best precision is 16% in subjects 563
and 575. Lastly, the best recall of 63% and F1-measure of 63% can be seen in subject
588 in class 8. Overall, the precision is even more decreased than with the LSTM model.
Considering the hybrid model, it can be seen that the recall in class 0 is strongly decreased
in most of the subjects, and decreases to at least 48% for subject 563. The metrics of
subject 567 are still the highest but with decreased values. For class 1, the best precision
is 41%, the best recall is 64% and the best F1-measure is 46%, illustrating again a great
decrease compared to the results of the other approaches. Still, despite having worse
results, most subjects behave similarly to the performance of the LSTM model.
Moreover, the comparison of the population performances for each class and each model
presented in table 14 reveals that the LSTM model is indeed superior considering all
subjects. Notably, classes 0-2, 4, and 8 are better classified. Classes 3, 5, and 7 have
slightly increased metrics with the hybrid approach, while the ResNet model produces
better results for class 6.
Finally, figure 24 visualizes the confusion matrices of the best subject for each model.
Here, subject 563 was selected for the ResNet model, and subject 567 was selected for the
LSTM and hybrid models. For the LSTM model, class 0 is only misclassified with class
1, while most of the samples of class 1 are classified correctly or as class 2. Furthermore,
the model cannot distinguish samples belonging to class 3 from class 1 or 2 with high
confidence while more instances are classified correctly. Thus, even if some samples
are misclassified in the first classes, the hypoglycemic event could still be identified but
with shifted time. Starting with class 4, the performance decreases and low precision is
noticed. In short, the LSTM model indeed outperforms the other models, with a better
recall, especially for the first classes. In addition, misclassifications are more often with
the nearest neighbors.
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Table 12: Macro average metrics of each model for each subject using 9 classes
Abbreviations: ACC = accuracy; M-PR = macro-precision; M-RC = macro-recall;

M-F1-M = macro-F1-measure

Subject Model Metric

ACC M-PR M-RC M-F1-M
ResNet 0.26 0.23 0.31 0.25

540 LSTM 0.28 0.31 0.38 0.32

Hybrid 0.27 0.29 0.30 0.28

ResNet 0.24 0.29 0.38 0.29

544 LSTM 0.37 0.27 0.35 0.28
Hybrid 0.23 0.30 0.35 0.29

ResNet 0.26 0.32 0.37 0.31
552 LSTM 0.27 0.33 0.41 0.34

Hybrid 0.24 0.31 0.31 0.28

ResNet 0.25 0.30 0.37 0.29
559 LSTM 0.28 0.32 0.42 0.34

Hybrid 0.23 0.32 0.35 0.25

ResNet 0.37 0.33 0.37 0.33
563 LSTM 0.31 0.33 0.41 0.34

Hybrid 0.34 0.29 0.33 0.26

ResNet 0.34 0.31 0.28 0.28
567 LSTM 0.36 0.37 0.47 0.39

Hybrid 0.38 0.40 0.41 0.34

ResNet 0.25 0.27 0.26 0.25
570 LSTM 0.26 0.32 0.35 0.31

Hybrid 0.43 0.27 0.36 0.29
ResNet 0.31 0.41 0.36 0.31

575 LSTM 0.28 0.29 0.36 0.29
Hybrid 0.32 0.29 0.38 0.30

ResNet 0.21 0.32 0.33 0.28

584 LSTM 0.21 0.26 0.31 0.27
Hybrid 0.20 0.28 0.30 0.26

ResNet 0.34 0.30 0.37 0.29
588 LSTM 0.25 0.30 0.37 0.30

Hybrid 0.21 0.28 0.30 0.26

ResNet 0.22 0.29 0.35 0.30

591 LSTM 0.27 0.31 0.34 0.30

Hybrid 0.21 0.28 0.29 0.26

ResNet 0.26 0.31 0.40 0.32

596 LSTM 0.26 0.30 0.39 0.31
Hybrid 0.26 0.27 0.30 0.30
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Table 13: Population-based LSTM results for each subject using 9 classes
Abbreviation: F1-M = F1-measure

Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 1.00 0.42 0.16 0.11 0.12 0.15 0.29 0.19 0.35

540 Recall 0.98 0.70 0.54 0.18 0.26 0.15 0.20 0.18 0.20
F1-M 0.99 0.53 0.25 0.14 0.16 0.15 0.23 0.19 0.26

Precision 0.97 0.35 0.16 0.09 0.00 0.00 0.20 0.16 0.48
544 Recall 0.80 0.47 0.71 0.23 0.00 0.00 0.24 0.05 0.63

F1-M 0.88 0.40 0.26 0.13 0.00 0.00 0.22 0.07 0.54

Precision 0.99 0.47 0.18 0.13 0.15 0.18 0.28 0.10 0.43
552 Recall 0.97 0.66 0.62 0.36 0.22 0.40 0.22 0.06 0.23

F1-M 0.98 0.55 0.28 0.19 0.18 0.25 0.25 0.07 0.30

Precision 1.00 0.40 0.16 0.13 0.14 0.19 0.26 0.16 0.42
559 Recall 0.97 0.70 0.61 0.37 0.32 0.17 0.15 0.16 0.32

F1-M 0.99 0.51 0.25 0.20 0.19 0.18 0.19 0.16 0.36

Precision 1.00 0.40 0.16 0.13 0.15 0.15 0.21 0.25 0.48
563 Recall 0.99 0.75 0.51 0.29 0.32 0.13 0.19 0.17 0.35

F1-M 0.99 0.52 0.24 0.18 0.20 0.14 0.20 0.20 0.40

Precision 1.00 0.58 0.25 0.21 0.15 0.15 0.33 0.22 0.48
567 Recall 1.00 0.77 0.69 0.44 0.41 0.24 0.12 0.25 0.32

F1-M 1.00 0.66 0.37 0.29 0.22 0.18 0.18 0.23 0.39

Precision 1.00 0.36 0.16 0.18 0.24 0.12 0.22 0.17 0.40
570 Recall 0.80 0.60 0.33 0.30 0.20 0.06 0.57 0.25 0.09

F1-M 0.89 0.45 0.22 0.23 0.22 0.08 0.32 0.20 0.14

Precision 0.94 0.30 0.12 0.19 0.17 0.11 0.25 0.26 0.32
575 Recall 1.00 0.71 0.34 0.26 0.46 0.00 0.24 0.05 0.37

F1-M 0.97 0.42 0.17 0.22 0.25 0.00 0.24 0.08 0.34

Precision 0.99 0.41 0.11 0.08 0.08 0.13 0.12 0.09 0.38
584 Recall 1.00 0.58 0.37 0.18 0.16 0.10 0.14 0.07 0.24

F1-M 0.99 0.48 0.17 0.11 0.11 0.11 0.13 0.08 0.29

Precision 0.93 0.44 0.11 0.11 0.13 0.15 0.20 0.12 0.55

588 Recall 1.00 0.59 0.36 0.23 0.55 0.11 0.28 0.02 0.21
F1-M 0.96 0.50 0.17 0.15 0.21 0.13 0.23 0.03 0.30

Precision 1.00 0.37 0.14 0.13 0.11 0.13 0.29 0.18 0.42
591 Recall 0.80 0.50 0.44 0.40 0.08 0.21 0.20 0.14 0.32

F1-M 0.89 0.43 0.21 0.19 0.09 0.16 0.23 0.15 0.37

Precision 0.99 0.44 0.19 0.09 0.11 0.11 0.13 0.19 0.40
596 Recall 1.00 0.75 0.46 0.49 0.11 0.14 0.01 0.26 0.33

F1-M 0.99 0.56 0.27 0.15 0.11 0.12 0.02 0.22 0.36
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(a) (b)

(c)

Figure 24: Population-based confusion-matrices across 9 classes
(a) Subject 563 trained with the ResNet model (b) Subject 567 trained with the LSTM

model (c) Subject 567 trained with the hybrid model

5.3.2. Subject-specific and Population-based Models using 9 Classes

As demonstrated above, the metrics of the subjects vary, as to why subject-specific models
were approached utilizing transfer learning. The macro averages of each subject trained
with person-specific models are summarized in table 15. Here, the best performance
is achieved in subject 567 with an accuracy of 39% using a ResNet model. The other
metrics obtain their best values using the LSTM model with a precision of 38%, a recall
of 46%, and an F1-measure of 38%. Besides, the performance between the ResNet and
the LSTM model does not vary much for subject 567. On average, it can be seen that
the LSTM model does not produce the best outcomes for most of the subjects anymore,
and is only superior with at least three metrics in four subjects. Whereas, the ResNet
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model is better with at least three metrics in five subjects. Subject 540 behaves very
similarly in both models. Nevertheless, considering all subjects, it is noticed that the best
F1-measures are achieved with the LSTM model. Overall, there do not seem to be great
di"erences between the results of the LSTM and the ResNet models. However, if great
variations are present, the LSTM model is superior such as in subjects 563, 570, 584,
and 588. In contrast, the ResNet model is only significantly better in subjects 575 and
591. The hybrid model is not superior in any subject. Subsequently, LSTM is selected
again for the detailed comparison of population-based and subject-specific approaches.
The performance of single classes for each patient obtained with the population-based
LSTM model is presented in table 17, while the results of the subject-specific LSTM
model can be seen in table 16. When comparing both approaches, it is noticed that the
overall performance is improved for most of the subjects with person-specific models.
Particularly, for class 0, the lowest values which are obtained in the population-based
models improve from 93%, 76%, and 86%, to 97%, 89%, and 94% for the subject-specific
models for precision, recall, and F1-measure, respectively. Altogether, subject 540 has
an increased recall, subject 544 has a decreased precision but increased recall and F1-
measure, subjects 559, 588, and 596 have increased metrics, and subjects 591 and 570
have significantly increased metrics. The recall improved from 76% to 94% and from
79% to 89%, while the F1-measure improved from 86% to 96% and from 88% to 94%,
respectively. Contrariwise, subjects 552, 567, and 575 have decreased performances.
Likewise, most subjects perform slightly better with the subject-specific models in class
1. Whereas, subjects 559, and 588 have worse outcomes. The most significant change
can be observed in subject 570. Here, the precision increases from 40% to 44%, the recall
from 62% to 72%, and the F1-measure from 48% to 55%. Furthermore, the precision,
recall, and F1-measure of subject 591 improves from 39%, 53%, and 45% to 44%, 78%,
and 56% with the person-specific models. Thus, 10% and 25% more hypoglycemic cases
can be predicted up to 15 minutes before hypoglycemia using an individualized model,
respectively for subjects 570 and 591. Finally, the minimum values of the population-
based models change from 25%, 46%, and 33% to 20%, 52%, and 29% for precision,
recall, and F1-measure, respectively for the subject-specific models but the metrics are
observed in di"erent subjects in both approaches. The precision worsens while the other
metrics improve. Likewise, similar outcomes can be described for class 2. Subjects 599,
570, 591, and 596 decrease in performance, whereas the remaining subjects have better
metrics with the person-specific models. The most significant increase is seen in subject
540 with a precision, recall, and F1-measure from 15%, 57%, and 23% to 16%, 64%,
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and 26%. The lowest values do not vary much but are obtained for di"erent persons in
both approaches. Contrariwise, the maximum values are the same and obtained for the
same persons. Moving to class 4, fewer variations are seen. Subjects 559, 584, and 588
decrease significantly, and have a very poor performance in the person-specific models.
Furthermore, subjects 570, 575, and 596 increase in performance. Similarly, the highest
values are obtained for the same persons for precision and F1-measure but with decreased
values compared to the population-based model. In addition, the best recall can be
seen in subject 575 with 42% in the population-based model decreasing to 37% in the
personalized model in subject 563. The lowest values do not change. Then, class 5
shows similar results but while no instances are classified correctly in subject 575 in
the population-based model, the precision increases to 16%, the recall to 41%, and the
F1-measure to 23% with a subject-specific approach. In addition, classes 6 and 7 behave
similarly as well, most subjects have slightly increased values, and subjects 544, 559, and
591 have decreased performance. Finally, in class 8, the performance only increases for
subjects 567, 570, and 588 and decreases for the remaining test persons.
The learning processes are similar as well. Subjects 552, 575, and 584 stopped after
reaching 100 epochs and could further train, subject 540 had its best loss value after
50 epochs, subject 591 after 19 epochs, while the remaining subjects had their best
validation loss only after at most 4 epochs.
In short, it was demonstrated that most subjects achieve better results with subject-
specific models, especially in the first classes and in the recall metric. From the population
metrics considering all patients, presented in table 18, it is noticed that the accuracy of
both LSTM approaches is very similar. Besides, all metrics in classes 0, 1, and 5 increase
for the subject-specific model, class 2 has only a better recall for the subject-specific
model, while the precision and F1-measure are decreased. Class 3 remains the same
in all metrics, while classes 4, 6, 7, and 8 are better with the population-based model.
Furthermore, again it can be seen that the LSTM model outperforms the other models.
Even the population-based LSTM model is better for classes 0-2 than the ResNet and
the hybrid model. The population-based hybrid model and the subject-specific ResNet
model are slightly better in class 3, the subject-specific ResNet is slightly better in class
4, the subject-specific hybrid and the ResNet model are better in class 5, while the
subject-specific ResNet is better in class 6. Then, the population-based hybrid model has
increased metrics in class 7, and lastly, the population-based LSTM model is superior
in class 8. It can be further seen that the individualized ResNet model is significantly
increased in all macro average metrics compared to the population-based ResNet model.
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Lastly, the hybrid model increases in accuracy and the macro average recall for the
subject-specific model, while the population-based hybrid model does not vary much
from the results of the LSTM model.
Thus, none model is suitable for classifying all classes well and the best metrics vary among
the classes. The first classes are better classified with the LSTM model, while the person-
specific ResNet model can better identify the latter classes. Still, the overall classification
ability of long-term prediction horizons is not su!cient. In short, individualized training
mostly impacts the performance of the ResNet model while the LSTM model obtains
the same macro average metrics in both approaches and only profits in the first classes.
Lastly, figure 25 reveals the best confusion matrices for the LSTM and ResNet models
since the hybrid model was not superior for any specific patient. Subjects 567 and 570
are selected for the LSTM model, while subject 575 is selected for the ResNet model.
Commonly, classes 4 to 9 cause the most misclassification while the first classes seem
to have good precision and recall. Figure 26 shows the confusion matrices for each
population-based and subject-specific model reflecting the described behaviors. While
the LSTM models indeed behave similarly it can be observed that the ResNet model has
an increased recall and the instances are better classified, with less misclassification in
the first classes using the personalized approach. The hybrid models behave similarly as
well and it can be seen that class 6 is better classified but still with a poor classification
ability.
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Table 15: Subject-specific macro average metrics of each model for each subject using 9
classes

Subject Models Metrics

ACC M-PR M-RC M-F1-M
ResNet 0.33 0.33 0.39 0.32

540 LSTM 0.30 0.32 0.40 0.33

Hybrid 0.30 0.31 0.39 0.31

ResNet 0.24 0.26 0.46 0.29
544 LSTM 0.36 0.27 0.39 0.29

Hybrid 0.25 0.31 0.51 0.32

ResNet 0.26 0.32 0.38 0.31

552 LSTM 0.23 0.31 0.37 0.31

Hybrid 0.21 0.28 0.38 0.28

ResNet 0.27 0.31 0.38 0.31

559 LSTM 0.23 0.30 0.36 0.30
Hybrid 0.26 0.35 0.37 0.27

ResNet 0.24 0.24 0.32 0.25
563 LSTM 0.23 0.28 0.39 0.30

Hybrid 0.23 0.25 0.34 0.26

ResNet 0.39 0.34 0.46 0.37
567 LSTM 0.38 0.38 0.46 0.38

Hybrid 0.34 0.28 0.37 0.29

ResNet 0.24 0.27 0.31 0.26
570 LSTM 0.36 0.39 0.40 0.36

Hybrid 0.29 0.25 0.32 0.26

ResNet 0.30 0.33 0.44 0.34

575 LSTM 0.23 0.27 0.41 0.30
Hybrid 0.24 0.28 0.39 0.28

ResNet 0.20 0.34 0.32 0.27
584 LSTM 0.22 0.35 0.38 0.34

Hybrid 0.15 0.22 0.29 0.23

ResNet 0.25 0.26 0.33 0.27
588 LSTM 0.29 0.29 0.34 0.30

Hybrid 0.26 0.27 0.32 0.27

ResNet 0.24 0.31 0.34 0.31

591 LSTM 0.21 0.28 0.33 0.28
Hybrid 0.24 0.30 0.35 0.28

ResNet 0.27 0.33 0.41 0.33

596 LSTM 0.25 0.30 0.40 0.32
Hybrid 0.24 0.25 0.30 0.26
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Table 16: Subject-specific LSTM results for each subject using 9 classes
Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 1.00 0.35 0.16 0.11 0.12 0.13 0.40 0.21 0.39

540 Recall 1.00 0.79 0.64 0.20 0.18 0.11 0.26 0.19 0.24
F1-M 1.00 0.49 0.26 0.14 0.14 0.12 0.31 0.20 0.30

Precision 0.97 0.20 0.12 0.09 0.00 0.00 0.24 0.23 0.60

544 Recall 0.92 0.54 0.60 0.39 0.00 0.00 0.48 0.19 0.42
F1-M 0.94 0.29 0.19 0.14 0.00 0.00 0.32 0.21 0.50

Precision 1.00 0.59 0.15 0.08 0.06 0.13 0.17 0.15 0.48
552 Recall 0.93 0.52 0.71 0.37 0.12 0.20 0.18 0.09 0.25

F1-M 0.96 0.55 0.25 0.13 0.08 0.15 0.17 0.11 0.33

Precision 1.00 0.38 0.16 0.09 0.08 0.12 0.33 0.17 0.36
559 Recall 0.99 0.65 0.57 0.16 0.19 0.20 0.10 0.29 0.13

F1-M 1.00 0.48 0.25 0.11 0.12 0.15 0.16 0.21 0.19

Precision 1.00 0.43 0.16 0.13 0.16 0.12 0.02 0.18 0.29
563 Recall 0.99 0.82 0.58 0.36 0.37 0.08 0.01 0.18 0.15

F1-M 1.00 0.56 0.25 0.19 0.22 0.10 0.02 0.18 0.20

Precision 1.00 0.44 0.27 0.19 0.14 0.14 0.42 0.28 0.52
567 Recall 1.00 0.75 0.67 0.33 0.31 0.23 0.09 0.31 0.45

F1-M 1.00 0.55 0.39 0.24 0.19 0.17 0.14 0.29 0.48

Precision 1.00 0.44 0.13 0.20 0.25 0.30 0.29 0.32 0.58
570 Recall 0.89 0.72 0.18 0.33 0.29 0.15 0.68 0.16 0.20

F1-M 0.94 0.55 0.15 0.25 0.27 0.20 0.41 0.21 0.30

Precision 0.98 0.33 0.14 0.15 0.14 0.16 0.22 0.18 0.10
575 Recall 0.97 0.67 0.44 0.51 0.35 0.41 0.22 0.15 0.01

F1-M 0.98 0.44 0.21 0.23 0.20 0.23 0.22 0.16 0.02

Precision 1.00 1.00 0.27 0.10 0.15 0.06 0.08 0.02 0.45
584 Recall 1.00 0.75 0.67 0.28 0.25 0.07 0.17 0.01 0.27

F1-M 1.00 0.86 0.39 0.14 0.19 0.06 0.11 0.01 0.34

Precision 0.98 0.33 0.08 0.07 0.14 0.16 0.38 0.09 0.42
588 Recall 1.00 0.56 0.29 0.08 0.17 0.25 0.42 0.01 0.30

F1-M 0.99 0.41 0.13 0.08 0.15 0.20 0.40 0.01 0.35

Precision 0.99 0.44 0.10 0.06 0.02 0.10 0.32 0.12 0.34
591 Recall 0.94 0.78 0.36 0.20 0.04 0.10 0.10 0.12 0.33

F1-M 0.96 0.56 0.15 0.10 0.03 0.10 0.16 0.12 0.33

Precision 1.00 0.52 0.18 0.09 0.14 0.13 0.06 0.17 0.45
596 Recall 1.00 0.82 0.40 0.45 0.19 0.23 0.01 0.21 0.28

F1-M 1.00 0.64 0.25 0.15 0.16 0.17 0.01 0.19 0.34
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Table 17: Population-based LSTM results with less test data for each subject using 9
classes

Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 1.00 0.37 0.15 0.11 0.14 0.13 0.35 0.25 0.43

540 Recall 0.99 0.76 0.57 0.19 0.25 0.12 0.21 0.28 0.23
F1-M 1.00 0.50 0.23 0.14 0.18 0.12 0.27 0.26 0.30

Precision 1.00 0.26 0.11 0.10 0.00 0.00 0.21 0.50 0.65

544 Recall 0.81 0.46 0.60 0.33 0.00 0.00 0.45 0.18 0.59

F1-M 0.90 0.33 0.18 0.16 0.00 0.00 0.29 0.26 0.62

Precision 1.00 0.52 0.14 0.08 0.05 0.15 0.14 0.09 0.59
552 Recall 0.95 0.52 0.71 0.40 0.08 0.32 0.13 0.05 0.27

F1-M 0.97 0.52 0.24 0.14 0.06 0.20 0.13 0.06 0.36

Precision 1.00 0.39 0.19 0.13 0.10 0.19 0.36 0.22 0.46
559 Recall 0.97 0.68 0.68 0.27 0.26 0.20 0.21 0.25 0.27

F1-M 0.98 0.49 0.29 0.17 0.14 0.19 0.26 0.24 0.34

Precision 1.00 0.42 0.16 0.13 0.16 0.12 0.02 0.18 0.28
563 Recall 0.98 0.78 0.58 0.36 0.37 0.07 0.02 0.18 0.15

F1-M 0.99 0.54 0.25 0.19 0.22 0.09 0.02 0.18 0.20

Precision 1.00 0.43 0.25 0.20 0.13 0.12 0.45 0.28 0.49
567 Recall 1.00 0.71 0.63 0.33 0.31 0.19 0.08 0.30 0.44

F1-M 1.00 0.53 0.36 0.25 0.19 0.15 0.13 0.29 0.46

Precision 1.00 0.40 0.18 0.14 0.30 0.30 0.27 0.31 0.55
570 Recall 0.79 0.62 0.24 0.21 0.29 0.15 0.67 0.17 0.18

F1-M 0.88 0.48 0.20 0.17 0.30 0.20 0.38 0.22 0.28

Precision 0.93 0.25 0.13 0.13 0.12 0.00 0.18 0.31 0.39
575 Recall 1.00 0.71 0.46 0.29 0.42 0.00 0.18 0.04 0.43

F1-M 0.97 0.37 0.20 0.18 0.19 0.00 0.18 0.08 0.41

Precision 1.00 1.00 0.27 0.10 0.16 0.06 0.08 0.02 0.45
584 Recall 1.00 0.75 0.67 0.28 0.25 0.07 0.17 0.02 0.28

F1-M 1.00 0.86 0.39 0.14 0.19 0.06 0.11 0.02 0.34

Precision 0.95 0.41 0.07 0.13 0.11 0.17 0.29 0.80 0.19
588 Recall 1.00 0.60 0.17 0.21 0.34 0.14 0.38 0.05 0.06

F1-M 0.97 0.48 0.10 0.16 0.16 0.16 0.33 0.10 0.09

Precision 1.00 0.39 0.13 0.09 0.11 0.08 0.36 0.17 0.43
591 Recall 0.76 0.53 0.38 0.35 0.09 0.12 0.26 0.11 0.39

F1-M 0.86 0.45 0.20 0.14 0.10 0.10 0.30 0.13 0.41

Precision 1.00 0.55 0.21 0.10 0.16 0.15 0.00 0.18 0.41
596 Recall 0.99 0.79 0.40 0.44 0.18 0.16 0.00 0.26 0.36

F1-M 0.99 0.65 0.27 0.16 0.17 0.16 0.00 0.21 0.38
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(a)

(b)

(c)

Figure 25: Subject-specific confusion-matrices across 9 classes
(a) Subject 567 trained with the LSTM model (b) Subject 570 trained with the LSTM

model (c) Subject 575trained with the ResNet model
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(a) (b)

(c) (d)

(e) (f)

Figure 26: Population-based and subject-specific confusion-matrices across 9 classes
(a) Population-based LSTM model (b) Subject-specific LSTM model (c)

Population-based ResNet model (d) Subject-specific ResNet model (e) Population-based
hybrid model (f) Subject-specific hybrid model
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5.3.3. Population-based Models using 6 Classes

The comparison in the prior subsections revealed that the proposed models have di!culties
in distinguishing the latter classes. The first classes had better performance and induced
that around 60-70% of all hypoglycemic events could be predicted on short notice.
However, the models obtained low precision causing many false alarms. Thus, the same
models were run for only 6 classes classifying up to 4 hours before hypoglycemia to
investigate if the precision increases.
Table 20 presents the macro average metrics for each subject and each model. Similarly
to the previous experiments, it can be seen that LSTM is superior and has even better
metric values. The best average values are still obtained for subject 567 with an accuracy
of 75%, a precision of 63%, a recall of 67%, and an F1-measure of 64% using the LSTM
model. On average, around 70% of all events are classified but the precision is still
lower than the recall causing an F1-measure below 65%. The lowest best metrics are
an accuracy of 52% for subject 584 using a ResNet model, a precision of 51%, a recall
of 49%, and an F1-measure of 49% using an LSTM model. Thus, at worst around 50%
of all instances can be classified. Moreover, the LSTM model is superior in at least
three metrics for all subjects but subject 596, who is slightly better classified with the
hybrid model. On average, an accuracy of 60%, a precision of 55%, a recall of 58%, and
an F1-measure of 55% is achieved considering the maximum values in each subject. In
addition, the LSTM model had a training accuracy between 60-65%.
Table 21 reveals the performance of single classes obtained with the LSTM model. Also
here, high variations between the subjects can be seen. Similarly, class 0 is distinctive
and can be classified with at least 94% which is a significant increase by 14%. Almost
all hypoglycemic events are detected with an average of 99%. Turning now over to the
performance of class 1, it is evident that the results start to vary among the subjects. The
best result is noticed in subject 567 with a precision of 66% and an F1-measure of 70%,
while subject 552 has the best recall with 78% but a precision of only 61%. Compared to
the results obtained with 9 classes, the precision and F1-measure of subject 567 increase
by 8% and 4%, respectively, while the recall decreases by 2%. For subject 552, the
performance is significantly better with 6 classes and increases from an F1-measure of
55% to 69%. Furthermore, subjects 540 and 544 show better performance in all metrics.
Subjects 570, 575, 584, 588, and 591 reveal a significant increase from an average recall of
60% to 69% and an average precision of 38% to 58%. Thus, 9% more hypoglycemic states
can be predicted 15 minutes before with fewer false alarms. The worst performance is
seen with a precision of 46%, a recall of 52%, and an F1-measure of 49% in subject 544.
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Moving to class 2, subject 567 has still the best results but with increased performance.
The precision improves by 16% and the F1-measure by 14%. Nevertheless, the precision
is still low with under even 50%. In some subjects only the precision and F1-measure
increase, while most of the subjects increase in all metrics. The population performance
considering all subjects of class 2 is 27%, 53%, and 36% for precision, recall, and F1-
measure, respectively which varies significantly from the performance of class 1 especially
in precision by a di"erence of 33%. The worst performance can be seen with 17%, 37%,
and 23% in subject 584 who had an even worse performance with 9 classes. For classes
3 and 4, the results are even more decreased and the best recall is obtained at only
42% in subject 567 and 44% in subject 588, respectively. The best precision is 43% in
subject 567 and 48% in subject 563. Furthermore, the best F1-measure can be observed
in subject 567 with 42% and 41%, respectively for classes 3 and 4. Overall, most subjects
have improved performance compared to when using 9 classes. The average F1-measure
improves from 18% to 31% for class 3, and from 18% to 34% for class 4. Nevertheless,
the classification ability is still insu!cient. Subjects 552 and 567 have a worse recall for
class 3, and subjects 559, 567, 575, and 588 have a worse recall for class 4, while the
precision is significantly increased. Lastly, a significant di"erence can be seen for class
5 which increases from a population F1-measure considering all subjects of 15% using
9 classes to 69% using 6 classes. Thus, all subjects reveal increased performance. The
best performance is noticed in subject 567 with 80%, 79%, and 80% while the worst
performance is seen in subject 584 with 63%, 48%, and 55%, for precision, recall, and
F1-measure, respectively. To sum up, subject 567 has the best metric values on average
for all classes. While the worst performance is seen for subjects 584 and 544 with low
precision and lower recall than the other patients. However, even with the reduced classes,
the model cannot distinguish better between classes 3 and 4, while class 5 is significantly
increased compared to the model trained with 9 classes.
The training process shows that training with fewer classes, on average most subjects
stopped after 13-14 epochs, subjects 544, 567, and 575 stopped before 10 epochs, and
lastly, subject 584 trained for 22 epochs which shows an improvement in learning and
decrease of the validation loss over epochs.
Now coming to the ResNet model, a significant improvement can be seen as well. Subject
540 has better values for all metrics and the F1-measure increases from 53% and 21% to
80% and 54% for classes 1 and 2, respectively. Subjects 544, 552, 563, 567, 575, 588, and
596 also improve in all metrics. The best F1-measures are 99%, 68%, 44%, 39%, 38%,
and 81%, for classes 0, 1, 2, 3, 4, and 5 respectively improving by 1%, 14%, 16%, 19%,
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18%, and by 59% in comparison to the model trained with 9 classes. It is noticed that
only class 5 has a better performance than using LSTM.
Contrariwise, the best obtained F1-measures using the hybrid model improve from 95%
to 98%, from 46% to 64%, from 32% to 50%, from 28% to 41%, from 21% to 42%, from
24% to 76% for classes 0, 1, 2, 3, 4, 5 respectively. Hence, also the hybrid model shows a
performance improvement and has better values than the ResNet model in classes 2, 3,
and 4, whereas only the F1-measure in class 4 is better than the LSTM model.
The confusion matrices of subject 567 for each model are presented in 28. Likewise, it
can be seen that most misclassifications are within the neighbor classes, especially for
classes 0-2. Class 4 cannot be well di"erentiated. Furthermore, while the hybrid and
LSTM models perform similarly, the ResNet model has more misclassifications for classes
2-4, while for class 0 all instances are classified, and most samples of class 5 are correctly
classified.
Finally, the macro averages of all models in table 19 reveal an improvement with
reduced classes while the LSTM model is superior in all classes. On average, 60% of all
hypoglycemic events can be predicted with a precision of 55%.

Table 19: Performance of each class for each model using 6 classes
Metric Avg Class

0 1 2 3 4 5

Precision 0.51 0.95 0.47 0.27 0.29 0.37 0.68

ResNet Recall 0.53 0.96 0.60 0.38 0.31 0.23 0.73

F1-M 0.51 0.95 0.53 0.32 0.30 0.28 0.71

Precision 0.55 0.99 0.60 0.27 0.29 0.39 0.74

LSTM Recall 0.59 0.99 0.71 0.53 0.34 0.31 0.65

F1-M 0.56 0.99 0.65 0.36 0.31 0.34 0.69

Precision 0.51 0.96 0.46 0.26 0.29 0.37 0.70

Hybrid Recall 0.55 0.95 0.69 0.41 0.31 0.26 0.68

F1-M 0.52 0.96 0.55 0.32 0.30 0.31 0.69
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Table 20: Macro average metrics of each model and each subject using 6 classes
Subject Model Metric

ACC M-PR M-RC M-F1-M
ResNet 0.56 0.51 0.57 0.52

540 LSTM 0.59 0.53 0.57 0.55

Hybrid 0.56 0.49 0.55 0.50

ResNet 0.60 0.51 0.52 0.51
544 LSTM 0.61 0.52 0.53 0.52

Hybrid 0.60 0.51 0.55 0.51

ResNet 0.57 0.50 0.57 0.52
552 LSTM 0.59 0.53 0.59 0.55

Hybrid 0.59 0.49 0.55 0.51

ResNet 0.60 0.48 0.51 0.49
559 LSTM 0.60 0.54 0.60 0.55

Hybrid 0.58 0.51 0.56 0.53

ResNet 0.62 0.54 0.56 0.54
563 LSTM 0.65 0.63 0.63 0.61

Hybrid 0.62 0.54 0.58 0.55

ResNet 0.74 0.59 0.59 0.58
567 LSTM 0.75 0.63 0.67 0.64

Hybrid 0.71 0.59 0.65 0.61

ResNet 0.55 0.45 0.46 0.43
570 LSTM 0.60 0.53 0.55 0.53

Hybrid 0.54 0.46 0.49 0.46
ResNet 0.66 0.55 0.54 0.52

575 LSTM 0.67 0.58 0.61 0.58

Hybrid 0.65 0.53 0.56 0.53

ResNet 0.52 0.46 0.45 0.45
584 LSTM 0.47 0.51 0.49 0.49

Hybrid 0.43 0.44 0.45 0.44

ResNet 0.55 0.50 0.49 0.49
588 LSTM 0.54 0.53 0.55 0.53

Hybrid 0.52 0.48 0.49 0.48

ResNet 0.55 0.47 0.47 0.46
591 LSTM 0.56 0.52 0.57 0.53

Hybrid 0.56 0.49 0.52 0.50

ResNet 0.60 0.56 0.58 0.56
596 LSTM 0.60 0.55 0.58 0.56

Hybrid 0.62 0.55 0.59 0.57
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Table 21: LSTM results for each subject using 6 classes
Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.60 0.28 0.26 0.38 0.69

540 Recall 0.99 0.72 0.52 0.32 0.31 0.59
F1-M 0.99 0.66 0.37 0.29 0.34 0.64

Precision 0.96 0.46 0.25 0.21 0.43 0.79
544 Recall 0.94 0.52 0.37 0.23 0.35 0.76

F1-M 0.95 0.49 0.30 0.22 0.38 0.78

Precision 1.00 0.61 0.26 0.24 0.36 0.74
552 Recall 0.99 0.78 0.62 0.28 0.28 0.62

F1-M 0.99 0.69 0.36 0.26 0.32 0.67

Precision 1.00 0.62 0.27 0.26 0.37 0.73
559 Recall 1.00 0.70 0.66 0.37 0.23 0.64

F1-M 1.00 0.66 0.38 0.31 0.28 0.68

Precision 1.00 0.63 0.35 0.36 0.48 0.75
563 Recall 0.99 0.74 0.55 0.40 0.34 0.76

F1-M 0.99 0.68 0.43 0.38 0.40 0.75

Precision 1.00 0.66 0.41 0.43 0.45 0.80

567 Recall 1.00 0.75 0.67 0.42 0.37 0.79

F1-M 1.00 0.70 0.51 0.42 0.41 0.80

Precision 0.99 0.49 0.19 0.34 0.39 0.75
570 Recall 0.98 0.64 0.38 0.31 0.27 0.72

F1-M 0.99 0.59 0.25 0.32 0.32 0.73

Precision 0.99 0.64 0.27 0.33 0.45 0.77
575 Recall 0.99 0.73 0.52 0.34 0.36 0.71

F1-M 0.99 0.68 0.35 0.33 0.40 0.74

Precision 1.00 0.56 0.17 0.21 0.31 0.63
584 Recall 1.00 0.65 0.37 0.27 0.28 0.48

F1-M 1.00 0.60 0.23 0.24 0.29 0.55

Precision 1.00 0.59 0.21 0.27 0.37 0.75
588 Recall 0.99 0.66 0.40 0.31 0.44 0.53

F1-M 1.00 0.63 0.27 0.28 0.40 0.62

Precision 0.98 0.61 0.27 0.28 0.30 0.66
591 Recall 1.00 0.76 0.48 0.35 0.25 0.55

F1-M 0.99 0.68 0.34 0.31 0.27 0.60

Precision 1.00 0.57 0.30 0.30 0.37 0.77
596 Recall 0.97 0.63 0.55 0.37 0.32 0.67

F1-M 0.98 0.60 0.39 0.33 0.34 0.72
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(a)

(b)

(c)

Figure 27: Population-based confusion-matrices across 6 classes
(a) Subject 567 trained with the LSTM model (b) Subject 567 trained with the ResNet

model (c) Subject 567 trained with the hybrid model
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5.3.4. Subject-specific and Population-based Models using 6 Classes

The macro average metrics of each subject for the subject-specific models using 6 classes
which are presented in table 22, show that LSTM is still the best model. The best values
are achieved for subject 563 with the LSTM model with accuracy, precision, recall, and
F1-measure of 70%, 66%, 69%, and 65%. Additionally, the LSTM model outperforms
the other models for all patients but one who is better with the hybrid model. The
ResNet model is not superior for any patient, unlike the subject-specific models using
9 classes. The performances of each model vary in most of the patients. Notably, the
LSTM model is better with a visible di"erence except for subjects 544, 552, and 559.
The LSTM model is significantly better in subjects 563, 567, 570, 575, 588, and 591.
Thus, for the comparison of single classes, again the LSTM model is selected. The per-
formance of the population-based approach can be seen in table 24, whereas the results
of the individualized models are presented in table 23. Unlike in the previous experiment
with 9 classes, the di"erences are not that strong and a significant improvement cannot
be observed. For class 0, it is evident that the performance for most of the patients
is the same, subjects 563, 570, and 596 have better values, while subjects 552 and 591
decrease in performance. The maximum values are obtained in five patients with 100%
for all metrics in the subject-specific and population-based model. Turning now to class
1, only the performance of subjects 540, 563, 570, 588, 591, and 596 improve. In contrast,
the metrics of the other subjects either remained the same or decreased. Notably, the
recall of subject 567 improved from 77% to 81% while the precision and F1-measure
decreased. The maximum values are the same for both approaches for the same subject
with 100%, 83%, and 91% for precision, recall, and F1-measure, respectively. Likewise,
in class 2 more subjects have the same or decreased values. Only subjects 544, 559, and
588 improve in performance from an F1-measure of 44% to 49%, 39% to 42%, and 19%
to 25%, respectively. The maximum values also do not change and are seen in subject
563 with 74%, and 49% for recall, and F1-measure, respectively. The best precision is
increased by 1% and seen in subject 544 in the individualized approach. Contrariwise, the
metrics of three subjects decrease. Furthermore, similar behavior can be observed in class
3. Subjects 567 and 575 increase in performance, subjects 591 and 596 decrease, while
the remaining subjects vary just slightly or remain the same. The maximum precision
is the same, but recall and F1-measure are decreased in the subject-specific model. In
general, it is noticed that the recall and F1-measure are decreasing after class 2. In class
4, subjects 552 and 575 are slightly increased, and subjects 567 and 591 are decreased in
performance. The maximum values increase using the subject-specific model and are seen
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in di"erent subjects from 58%, 34%, 42% to 59%, 41%, and 44% for precision, recall, and
F1-measure, respectively. Lastly, in class 5 it is visible that almost all subjects behave
similarly with only little variations. The best precision increase from 93% to 95%, the
recall is the same with 84% and the F1-measure increases from 82% to 83%.
The training process for the subject-specific LSTM model reveals that most subjects
trained only for 1 epoch which supports the similar metrics for both approaches. Subject
588 trained for 12 epochs, subject 559 for 29 epochs, subject 575 for 59 epochs, and
finally, subjects 544, 567, and 591 stopped at 100 epochs.
Figure 28 presents the best confusion matrix for each model. Here, subjects 563 and
567 are chosen for the LSTM model, while subject 575 is selected for the ResNet and
the hybrid model. The confusion matrices of both LSTM models illustrate that the
performance decreases after class 3 and that classes 3 and 4 have poor performance. The
ResNet model is also poor for classes 1 and 3. Here, the misclassification is only with the
nearest neighbor but on average fewer samples are correctly identified. However, classes
4 and 5 are better classified as most instances for class 4 would be predicted 2 hours
before but not after, while most events of class 5 are classified correctly in comparison to
the other models. For the hybrid model, similar observations are made.
From table 25 it can be seen that both approaches with the LSTM model are indeed very
similar in the population performance considering all subjects, while the population-based
model is better for classes 1, 2, and 4. Furthermore, the individual model is only better
in class 4. Comparing the macro averages of all models, it is visible that both LSTM
approaches perform best, followed by the hybrid population-based model. Likewise, the
individualized models do not show a great di"erence and more often decrease in values
using the other models. It can be seen that especially the individualized hybrid model
has a significant decrease in all metrics for the first classes and is only better in class 4.
The ResNet model has the worst macro average metrics and also here, the subject-specific
model is only better in class 4. On average, when training with only 6 classes, more
instances are classified correctly with a population-based model. The LSTM model is
capable of classifying 60% of all hypoglycemic events at the right time, while 73% of all
events can be predicted up to 15 minutes before with a false alarm possibility of 40%.
Lastly, figure 29 shows the confusion matrices for each population-based and subject-
specific model reflecting the observed behaviors. As also recognized in the other experi-
ments, it is noticed that the LSTM models have the best recall.
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Table 22: Subject-specific macro average metrics of each model and each subject using 6
classes

Subject Model Metric

ACC M-PR M-RC M-F1-M
ResNet 0.56 0.51 0.56 0.52

540 LSTM 0.59 0.54 0.59 0.55

Hybrid 0.53 0.50 0.56 0.50

ResNet 0.56 0.42 0.45 0.42
544 LSTM 0.63 0.53 0.56 0.53

Hybrid 0.64 0.55 0.59 0.54

ResNet 0.54 0.52 0.57 0.54
552 LSTM 0.56 0.56 0.58 0.56

Hybrid 0.54 0.50 0.54 0.51

ResNet 0.56 0.48 0.52 0.49
559 LSTM 0.57 0.52 0.58 0.53

Hybrid 0.56 0.51 0.56 0.52

ResNet 0.63 0.53 0.57 0.54
563 LSTM 0.70 0.66 0.69 0.65

Hybrid 0.63 0.55 0.59 0.54

ResNet 0.64 0.49 0.53 0.49
567 LSTM 0.71 0.56 0.63 0.58

Hybrid 0.59 0.47 0.51 0.47

ResNet 0.50 0.39 0.44 0.41
570 LSTM 0.59 0.57 0.55 0.55

Hybrid 0.46 0.39 0.40 0.39

ResNet 0.69 0.59 0.59 0.57
575 LSTM 0.69 0.60 0.62 0.61

Hybrid 0.69 0.58 0.61 0.58

ResNet 0.51 0.53 0.55 0.53
584 LSTM 0.51 0.56 0.55 0.55

Hybrid 0.42 0.49 0.45 0.47

ResNet 0.42 0.36 0.41 0.37
588 LSTM 0.51 0.46 0.50 0.47

Hybrid 0.46 0.38 0.40 0.39

ResNet 0.55 0.49 0.46 0.46
591 LSTM 0.57 0.54 0.57 0.55

Hybrid 0.57 0.52 0.51 0.50

ResNet 0.52 0.47 0.54 0.49
596 LSTM 0.57 0.52 0.59 0.54

Hybrid 0.56 0.51 0.59 0.54
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Table 23: Subject-specific LSTM results for each subject using 6 classes
Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.55 0.30 0.30 0.40 0.66

540 Recall 1.00 0.79 0.54 0.32 0.35 0.55
F1-M 1.00 0.65 0.39 0.31 0.37 0.60

Precision 0.98 0.48 0.38 0.25 0.39 0.68
544 Recall 0.96 0.53 0.69 0.17 0.23 0.79

F1-M 0.97 0.50 0.49 0.20 0.29 0.73

Precision 1.00 0.71 0.36 0.23 0.36 0.70
552 Recall 0.95 0.63 0.64 0.37 0.30 0.60

F1-M 0.97 0.67 0.46 0.29 0.33 0.64

Precision 1.00 0.60 0.30 0.27 0.32 0.66
559 Recall 0.99 0.65 0.70 0.32 0.21 0.60

F1-M 1.00 0.62 0.42 0.29 0.25 0.62

Precision 1.00 0.82 0.36 0.36 0.59 0.81
563 Recall 1.00 0.74 0.74 0.44 0.34 0.84

F1-M 1.00 0.78 0.49 0.40 0.43 0.83

Precision 1.00 0.52 0.34 0.33 0.38 0.80
567 Recall 1.00 0.81 0.60 0.37 0.26 0.77

F1-M 1.00 0.63 0.43 0.35 0.31 0.79

Precision 0.98 0.54 0.20 0.37 0.36 0.95

570 Recall 0.98 0.69 0.29 0.41 0.31 0.63
F1-M 0.98 0.61 0.23 0.39 0.33 0.76

Precision 0.99 0.69 0.34 0.36 0.47 0.75
575 Recall 0.99 0.68 0.56 0.39 0.41 0.72

F1-M 0.99 0.69 0.43 0.37 0.44 0.73

Precision 1.00 1.00 0.32 0.22 0.25 0.59
584 Recall 1.00 0.83 0.40 0.20 0.23 0.62

F1-M 1.00 0.91 0.35 0.21 0.24 0.61

Precision 1.00 0.34 0.18 0.27 0.36 0.63
588 Recall 1.00 0.53 0.41 0.25 0.24 0.56

F1-M 1.00 0.42 0.25 0.26 0.29 0.59

Precision 1.00 0.66 0.26 0.29 0.30 0.70
591 Recall 0.97 0.77 0.49 0.32 0.21 0.69

F1-M 0.99 0.71 0.34 0.31 0.25 0.69

Precision 1.00 0.53 0.29 0.34 0.28 0.70
596 Recall 0.99 0.76 0.57 0.44 0.20 0.59

F1-M 0.99 0.62 0.38 0.38 0.24 0.64
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Table 24: Population-based LSTM results with less test data for each subject using 6
classes

Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.54 0.31 0.30 0.40 0.66

540 Recall 1.00 0.79 0.54 0.33 0.34 0.55
F1-M 1.00 0.64 0.39 0.32 0.37 0.60

Precision 0.98 0.48 0.35 0.25 0.38 0.68
544 Recall 0.96 0.53 0.62 0.17 0.23 0.79

F1-M 0.97 0.50 0.44 0.20 0.29 0.73

Precision 1.00 0.71 0.33 0.27 0.33 0.70
552 Recall 0.99 0.71 0.69 0.35 0.27 0.60

F1-M 0.99 0.71 0.45 0.30 0.30 0.65

Precision 1.00 0.62 0.27 0.26 0.35 0.67
559 Recall 1.00 0.70 0.70 0.32 0.21 0.58

F1-M 1.00 0.66 0.39 0.28 0.26 0.62

Precision 1.00 0.79 0.37 0.35 0.58 0.80
563 Recall 0.99 0.74 0.74 0.44 0.33 0.84

F1-M 0.99 0.77 0.49 0.39 0.42 0.82

Precision 1.00 0.55 0.37 0.32 0.42 0.79
567 Recall 1.00 0.77 0.67 0.30 0.32 0.76

F1-M 1.00 0.64 0.48 0.31 0.36 0.78

Precision 0.98 0.52 0.20 0.37 0.35 0.93

570 Recall 0.95 0.69 0.29 0.41 0.29 0.63
F1-M 0.97 0.60 0.23 0.39 0.32 0.75

Precision 0.99 0.69 0.36 0.35 0.43 0.74
575 Recall 0.99 0.71 0.61 0.35 0.32 0.75

F1-M 0.99 0.70 0.46 0.35 0.37 0.74

Precision 1.00 1.00 0.32 0.22 0.25 0.59
584 Recall 1.00 0.83 0.40 0.20 0.23 0.62

F1-M 1.00 0.91 0.35 0.21 0.24 0.61

Precision 1.00 0.37 0.14 0.24 0.35 0.64
588 Recall 1.00 0.53 0.29 0.25 0.26 0.55

F1-M 1.00 0.43 0.19 0.25 0.30 0.59

Precision 1.00 0.64 0.29 0.30 0.31 0.70
591 Recall 0.99 0.77 0.45 0.35 0.24 0.68

F1-M 1.00 0.70 0.35 0.33 0.27 0.69

Precision 1.00 0.51 0.31 0.36 0.28 0.69
596 Recall 0.95 0.73 0.60 0.48 0.20 0.59

F1-M 0.98 0.60 0.41 0.41 0.23 0.64
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Table 25: Comparison of the population-based and subject-specific approach for each
model using 6 classes

Metric Avg Class

0 1 2 3 4 5

Precision 0.51 0.94 0.47 0.30 0.34 0.35 0.66

PB ResNet Recall 0.54 0.96 0.58 0.41 0.33 0.22 0.72

F1-M 0.52 0.95 0.52 0.35 0.33 0.27 0.69

Precision 0.49 0.94 0.39 0.27 0.30 0.37 0.68

SS ResNet Recall 0.53 0.90 0.62 0.42 0.32 0.25 0.69

F1-M 0.50 0.92 0.48 0.33 0.31 0.30 0.69

Precision 0.55 1.00 0.60 0.31 0.31 0.37 0.71

PB LSTM Recall 0.59 0.99 0.73 0.56 0.34 0.28 0.66

F1-M 0.56 0.99 0.66 0.40 0.32 0.32 0.68

Precision 0.55 1.00 0.60 0.30 0.31 0.38 0.71

SS LSTM Recall 0.59 0.99 0.71 0.56 0.35 0.29 0.66

F1-M 0.56 0.99 0.65 0.39 0.32 0.33 0.68

Precision 0.52 0.97 0.46 0.30 0.32 0.37 0.69

PB Hybrid Recall 0.56 0.95 0.70 0.44 0.34 0.27 0.68

F1-M 0.53 0.96 0.55 0.36 0.33 0.31 0.69

Precision 0.50 0.96 0.39 0.28 0.30 0.38 0.70

SS Hybrid Recall 0.54 0.88 0.63 0.46 0.35 0.27 0.65

F1-M 0.51 0.92 0.49 0.35 0.33 0.32 0.68

Conclusively, the proposed models cannot outperform the results of presented state-of-
the-art studies, the same di!culties are faced and the precision is very low. Therefore, it
is noticed that a classification system with multiple classes causes more misclassifications
and worse recall. Nevertheless, as pointed out, the confusion matrices reveal that most
of the miss-classifications are with the nearest neighbors when using 6 classes and up to
30 minutes before the event can be classified with a good recall.
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(a) (b)

(c) (d)

Figure 28: Subject-specific confusion-matrices across 6 classes
(a) Subject 563 trained with the LSTM model (b) Subject 567 trained with the LSTM
model (c) Subject 575 trained with the ResNet model (d) Subject 575 with the hybrid

model
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(a) (b)

(c) (d)

(e) (f)

Figure 29: Population-based and subject-specific confusion-matrices across 6 classes
(a) Population-based LSTM model (b) Subject-specific LSTM model (c)

Population-based ResNet model (d) Subject-specific ResNet model (e) Population-based
hybrid model (f) Subject-specific hybrid model
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6. Discussion

As demonstrated in the previous chapters, hypoglycemia prediction is a major challenge
in diabetes research. Notably, all experiments showed that hypoglycemic events, the
causes leading to hypoglycemia, and the patterns before the event revealed great vari-
ations between and within the subjects. From the presented visualizations of chosen
hypoglycemic data points, it can be concluded that some of the events were most possibly
caused by excessive insulin dosages and could be prevented with prediction algorithms.
Especially, in the data-plots of subjects 570, 575, 584, 591, and 596, it is asserted that
hypoglycemia was the result of short-term actions right before the state. Moreover,
the number of prior experienced hypoglycemic states could be of relevance as it was
seen that most subjects experienced multiple events within the last 48 hours including
severe hypoglycemia. Multiple hypoglycemic events in such a short time could increase
insulin sensitivity and cause greater variations in glucose. Section 2.1.2 also reported
that recent severe hypoglycemia can provoke another event. Besides, the patterns in
glucose data are very individual, and often showed high variations within the day, which
could depend on the lifestyle, fitness, and eating behavior of the person. Notably, the
short-term decrease in glucose before the event is similar in most subjects. The data-plots
illustrate that some patients did not have much variation in glucose data and had smaller
insulin dosages infused, while others experienced multiple hypoglycemic events before.
Glucose values were usually above 200 mg/dL and could rise to 300-400 mg/dL in selected
patients, which could most possibly happen after the meal necessitating increased insulin
dosages. Exercise-induced hypoglycemia could not be directly identified. Increased
physical activity was noticed in some patients for a specific time interval within the last
48 hours or timely before the decrease of glucose values. However, the activity often
overlapped with the administered insulin dosages. Here, for a better analysis, additional
information is required, such as the activity type, intensity, and time interval of the
sports session. Furthermore, data from athletes or children could reveal more insights
into exercise-related hypoglycemia because the OhioT1DM is mostly represented by an
age range of 40–60 years.
Additionally, the correlation analysis illustrated great variations. While some subjects
revealed moderate to strong correlations, others only showed weak dependence for the
same pairs of parameters. Furthermore, the maximum scores change concerning the
classes. The best correlation scores considering the population were obtained between
glucose and bolus insulin, between glucose and basal insulin, and between basal insulin
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and magnitude of acceleration. It needs to be highlighted, that the correlation score
between the latter pair is very weak to weak from classes 1-9. Thus, a direct relation
for a specific PH is not evident. The maximum score was obtained with -0.296 between
basal insulin and macc 15-30 minutes before hypoglycemia. Whereas, glucose and basal
insulin only obtain a very weak score for at most three classes between 8-48 hours before
hypoglycemia, and glucose and bolus insulin show only a relevant dependence 12-24
hours before the event. Moreover, minimal di"erences were observed between the Pearson
and Spearman correlations, while the best coe!cient between some pairs was shifted
among the classes. Most values followed a similar trend. Thus, a linear dependence
cannot be directly assumed, especially for glucose and bolus insulin. Considering the
individual Pearson correlation coe!cients, the best scores are seen between glucose and
basal insulin and likewise between basal insulin and macc but with increased maximum
scores indicating a weak to moderate dependence. In particular, subjects 544, 570, and
584 showed a moderate dependence between glucose and basal insulin in classes 3, 2,
and 5, respectively. This demonstrates that the behavior of these parameters is more
dependent on short-term prediction horizons. For subjects 554 and 584, negative behavior
was observed, which could show an increase in insulin and a decrease in glucose, as
concluded from the pairwise plots. When looking at all patients, increased scores more
often show a positive correlation, which could be due to increased insulin administrations
with increased glucose, leading to hypoglycemia, or an administration of insulin before
the rise of glucose. The best coe!cients between basal insulin and macc can be observed
8-24 hours before hypoglycemia for subjects 544 and 588 with a negative moderate to
strong dependence. Most often, the scores are increased between classes 4-9 while in
some subjects, the maximum score is noticed in short-term prediction horizons. However,
the cause of dependence cannot be directly interpreted. A possible scenario is a decrease
in insulin administration with planned exercise. In contrast, the relationship between
glucose and macc varies greatly among subjects and classes, and the best achieved score
indicates only a very weak to weak correlation. Thus, it is foreseen that not all subjects
would perform well and that not all variables would show a significant association. The
worst coe!cients were observed in subjects 563, 575, and 596. Moreover, participants
who experienced more hypoglycemic events could impact the deep learning model and
lead to biased training. Hence, testing on subjects behaving di"erently from popular
subjects could lead to worse results.
One major challenge of machine learning models in diabetes research is that data is
not AI-ready and requires multiple pre-processing steps. In particular, this problem
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is faced when using multiple features, which is suggested because other studies have
presented that additional features such as insulin, exercise, or information about meal
intake improve performance, as presented in 3.3. The OhioT1DM dataset collected data
from two di"erent cohorts and used two di"erent wearable devices. Thus, the estimated
exercise data di"ered and could not be used without data imputation. Here, feature
engineering is required to enable uniform data representations. This work has decided
to convert the step count to acceleration data, but variations between both parameters
could still be noticed. Moreover, large gaps in glucose data were identified, which could
cause significant information loss and disable the use of all data. Subjects 552 and 567
had the most missing glucose values with estimated gaps of 12.5 and 11 days, respec-
tively. Consequently, Prof. Bunescu of the OhioT1DM dataset was asked about possible
causes of missing data in glucose since CGM devices should continuously measure. He
responded that gaps are most likely to occur if patients change their infusion set or if the
sensor becomes detached or is not inserted correctly under the skin. Subsequently, these
problems represent a great disadvantage of wearable sensors, leading to noise or missing
values. In particular, monitoring systems are disabled to alert patients. To compensate
for the gaps and reduce the number of missing values, linear interpolation was applied.
As mentioned already, linear methods might not work well for glucose as to why a limit
was set for allowed consecutive missing values. Better methods could help to impute
more data. The described pre-processing steps require time and knowledge in feature
engineering and would probably require more e"ort to have a standard representation
that is not dependent on the sensor brands.
Moving to the deep learning models, the training process illustrated a significant di"erence
between the training performance and the validation and test performance. If trained for
su!cient epochs, almost all instances of the training data were classified correctly which
demonstrates overfitting. Thus, early stopping had to be applied but resulted in shorter
training periods of the model. It can be seen that some subjects were only trained for
less than five epochs resulting in worse performance. Consequently, the training accuracy
was between 30% and 40% when using 9 classes and between 60% to 65% when using 6
classes. Nevertheless, the validation loss did not directly show a learning behavior, could
not achieve any su!cient value, and did not reflect the behavior of the training loss.
These observations indicate great variations within the experienced hypoglycemic events
and between the subjects. In addition, even if the model is only trained and validated
on one subject, the model cannot identify the classes well in the validation data. This
highlights the di"erence in glucose patterns within the same person. It is possible that
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the validation data did not represent the learned patterns of the training data. This
problem could be further led by the small size of the dataset and the nature of deep
learning architectures. Another major cause could be the imbalance of classes or the bias
of popular classes. Moreover, popular subjects could impact the model and lead to a bias
so that less represented samples are not learned with strong connections. Nevertheless,
even if having imbalanced data and fewer samples for the first classes, the latter classes
had worse results using 9 classes. The recall in the first classes was significantly better
but with poor precision indicating many false alarms. In this context, the applied weights
could impact a bias of underrepresented classes but a model without any weights classified
every instance to the popular class. Hence, in a population-based approach, the patterns
leading to the onset of hypoglycemia in short-term prediction horizons are similar in
most of the subjects. In contrast, it is more di!cult to develop a model that is capable of
predicting multiple hours before the event because each hypoglycemic event could follow
a di"erent trend. It is believed that a system based on long-term prediction horizons
needs a larger dataset and individual training of the patients. It can be seen that the
hypoglycemic event itself was almost classified correctly in all approaches, models, and
patients while the LSTM model is superior and had the highest minimal value. This
value was even increased with the individualized models and when training only with 6
classes. Furthermore, 15-30 minutes before the state obtained a su!cient recall.
Coming to the comparison of population-based and subject-specific models, it is observed
that when using 9 classes, population-based models profit from transfer learning especially
in short-term PHs. Thus, the prediction of hypoglycemia in 5-30 minutes seems very much
possible while almost all hypoglycemic events are detected. In particular, the greatest
performance improvement could be seen in subject 570. This subject interestingly had
a small dataset with only 227 hypoglycemic data-points and trained for less than five
epochs. Furthermore, subjects 540, 575, and 591 improved significantly. Whereas, those
trained for much longer epochs with 50, 19, and 100, respectively, and belong to the group
of subjects with the largest dataset. Thus, it cannot be directly asserted that less data
and less training disables individualized models and performance improvement. Data
of subject 570 could be still representative enough, enabling better performance with
fewer epochs. Nevertheless, the trend in the other subjects shows that larger datasets
lead to better training and more stable results. In contrast, models trained with 6 classes
either were not greatly impacted by individualized training or had slightly decreased
performance for the first classes. Improvements could be only observed with minimal
increases. In particular, subject 570 again showed a better performance for classes 0 and
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1. Furthermore, subjects 563 and 596 increased in performance for more classes. All
were trained for only one epoch which does not reflect the previously observed behavior.
Moreover, it was concluded, that the subject-specific model using 6 classes profits mostly
in class 4 in the population metrics considering all subjects. In contrast, the other
classes are similar or slightly decreased compared to the population-based approach.
One drawback of using transfer learning is that some subjects with fewer samples train
for fewer epochs and possibly cannot impact the performance. In particular, this could
be the case when training with only 6 classes, since the popular classes were removed
resulting in fewer samples in total. It was also noticed that the performance of most
subjects did not vary much. Therefore, it is not known if the performance would be
better with more samples and more training. Most probably, individual models only
trained with the data of the test subject can produce better results. Nevertheless, as
could be identified, the sample sizes per subject are not su!cient to train and validate
individual models without training on the data of other subjects.
The macro averages for the population-based model using 9 classes reveal that the model
does not work that well and that the imbalance can cause biases. Even the most popular
classes are not detected that well which can be caused by the applied weights. Also, it is
asserted that the latter classes are not that distinctive. The population-based LSTM
model using 9 classes was capable of classifying 50-68% of all hypoglycemic events 30-15
minutes before, while the performance of the individualized model increased to 50-72%.
Contrariwise, 56-73%, and 56-71% instances were correctly classified 30-15 minutes before
when using 6 classes, respectively for the population-based and subject-specific model.
The macro average recall of all classes improved by 20% using 6 classes and was 59%. In
detail, up to 30 minutes before the event could be prevented accurately while classes 3
and 4 were insu!ciently classified. When using 6 classes, 70% of all hypoglycemic events
can be foreseen before 15 minutes. Notably, in subject 552 even up to almost 80% of
events are identified. For most of the subjects, 60-70% of all hypoglycemic cases could
be predicted up to 30 minutes before. As a conclusion, most of the classes’ performance
increased when using fewer classes.
It was further observed that the performance of each model varied. While using 9 classes,
LSTM was slightly better than ResNet and while using 6 classes, LSTM was significantly
better. Additionally, the performance of each subject di"ered. Consequently, individually
tuned and selected models for each subject are suggested which could be more sensible for
a population-based approach rather than using the same model to test each subject. In
general, subject 567 achieved the best results. In particular, for a population-based model
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using 9 classes, subject 563 had its best metrics with a ResNet and subject 567 with
an LSTM model. Furthermore, using individualized models, subject 570 achieved good
results with an LSTM model while subject 575 had a better performance with a ResNet
model. With 6 classes and individualized training, subjects 563 and 567 were better with
the LSTM model, and 575 was still better using the ResNet and hybrid models. Lastly,
for a population-based model with 6 classes, subject 567 obtained the best results for
all models. Now, looking in more detail into the data of the best subjects, it can be
noticed that subject 567 experienced the third most hypoglycemic data-points, and has
the second most missing glucose values of a total of 11 days. Fewer instances of class 1
are available compared to the proportion in other subjects’ data. This could indicate
that most events are of longer duration and could also be severe hypoglycemia. Moreover,
looking at the results of the correlation analysis no variables reach a moderate to strong
relation, and the maximum score is obtained with 0.362 between glucose and basal insulin
for class 4. In addition, subject 567 trained for 9 epochs in the population-based LSTM
model and for 4 epochs in the individualized LSTM model using 9 classes, which were
9 and 100 epochs, respectively using 6 classes. The same can be seen in subject 575
who experienced the most hypoglycemic values, and in comparison has fewer samples in
class 1. Thus, the model possibly can learn better without the data of the most popular
persons. In other words, as foreseen before, the biased subjects possibly impact the
model and disable a population-based classification.
There are still some challenges, especially with the low precision of classes, but it needs
to be considered that the model was not tuned for training 6 classes. Thus, better results
could be possible. Lastly, the size of the dataset is not su!cient to teach all patterns and
behaviors observed in the patients. Nevertheless, since the training data can be classified
very well, it can be assumed that it is possible to classify the onset of hypoglycemia up
to 4 hours before.
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7. Conclusion

This thesis described that hypoglycemia is a life-threatening condition mainly a"ecting
patients with type 1 diabetes. The state can be prevented with glucose intake or an
adapted lifestyle and good management of insulin dosages. Thus, AI methods can help in
predicting the onset of hypoglycemia. It was demonstrated that physical activity could
have an impact on insulin sensitivity and glucose values even 24 hours after the session,
while the dosage of bolus insulin is still e"ective 12 hours after the injection. Basal insulin
is fast-acting insulin and can result in an immediate decrease in glucose values. Conse-
quently, actions up to 24 hours before can result in hypoglycemia. The literature review
summarized that prediction models classify between short- and long-term prediction
horizons, while each model only focused on one prediction time. Most studies forecast
glucose values while classification models are mainly based on hypoglycemia, severe
hypoglycemia, exercise-induced hypoglycemia, or nocturnal hypoglycemia identification.
Thus, this thesis included nine prediction horizons into one classification model ranging
from 0-24 hours before the occurrence of hypoglycemia. With this concept, multiple use
cases are considered and the patient is supported in planning their daytime activities and
meals, and in taking short-term preventive actions. To train the models, the OhioT1DM
dataset was selected since it collected glucose, basal, and bolus insulin, and activity data.
This work has further explored the OhioT1DM dataset and identified drawbacks such
as gaps in the estimated glucose data resulting in information loss. Moreover, since
data from two di"erent cohorts was collected, the physical activity was estimated as two
di"erent parameters. Thus, pre-processing was required. Missing glucose values were
imputed with linear interpolation while larger gaps of more than 2 hours were removed,
and the step count was converted to the magnitude of acceleration to have uniform data.
The pre-processed parameters were plotted, and the visualizations of the last 48 hours
before a hypoglycemic event for each subject revealed that most events could be foreseen
and prevented. The decrease in glucose seemed to be related to the administered insulin
dosages and prior experienced (severe) hypoglycemia. This thesis further investigated the
correlation between glucose, basal, and bolus insulin, and the magnitude of acceleration
illustrating great variations between the subjects. The best coe!cients were obtained
between glucose and basal insulin in short-term prediction horizons, and between basal
insulin and magnitude of acceleration in long-term prediction horizons. Thereafter, the
time to the onset of hypoglycemia was classified up to 48 hours before utilizing 10 classes.
The chosen deep learning architectures were based on CNN and RNN models. However,
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the performance was not su!cient and many instances were misclassified as to why the
last class was removed. Then, subsequent experiments were classified only up to 24 hours
before the event. In particular, an LSTM model, a ResNet model, and a hybrid model of
both architectures were compared for a population-based and a subject-specific approach.
The comparison revealed that in general LSTM models are superior. Furthermore, the
individualized models had significantly increased performance. It could be observed that
patients with more data-samples could lead to biased training decreasing the capability
of population-based classification. In general, those subjects obtained better performance
with subject-specific models and also trained for more epochs than patients with fewer
samples. Best classified classes were the first classes ranging from 0-30 minutes before
hypoglycemia. The latter classes could not obtain a good performance with the proposed
methods and data which led to many misclassifications. Thus, the same experiments
were run with six classes classifying up to 4 hours before hypoglycemia. This approach
improved the general performance, in all classes, and mostly for class 5. Furthermore,
it showed that the misclassifications are mostly within the nearest neighbors. Most
events could be predicted and prevented but some samples were classified with shifted
time. Especially, classes 3 and 4, representing 1-2 hours before the event could not be
identified with high confidence and were not very distinguishable. Classifying only 6
classes, it was also noticed that the subject-specific models did not result in performance
improvement, and mostly the values of metrics among the classes were similar. In general,
class 4 profited from the individualized models. Altogether, the training accuracy and
training loss were very accurate and indicated a correct classification of almost all samples
while the same behavior was not reflected in validating and testing. Nevertheless, the
proposed architecture was seen as advantageous since it can better support patients and
can help in completely preventing one event if the classification capability can reach
su!cient performance. The best performance using 9 classes was 31%, 39%, and 32%
improving to 55%, 59%, and 56% using 6 classes for precision, recall, and F1-measure,
respectively. Hence, it is concluded that around 60% of all hypoglycemic states can be
predicted with a short-term prediction model. In subject 563, even 70% of all states were
detected considering the macro average metrics. Consequently, it is suggested to separate
between short-term and long-term classifications such as in the literature review and to
not include both PHs in the same model. Furthermore, the model should be tuned for
the reduced classes. In addition, it was observed that proposed deep learning models
lead to overfitting due to the small dataset size, as to why conventional machine learning
models should be investigated.
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8. Future Work

For future work, it is suggested to tune the model which was trained with 6 classes, and
focus on short-term and long-term classification separately. Here, a layered classification
system can be developed in which the first model decides if the time series sequence
induces a short-term, long-term, or no risk. Based on the outcome, the time sequence is
then either forwarded to the short-term classification model or the long-term classification
model. In this context, the short-term prediction could classify up to 2 hours or up to 4
hours before while the long-term model should classify up to 24 hours before hypoglycemia.
Furthermore, di"erent machine learning models should be explored such as SVMs or
other machine learning models usually applied for smaller datasets because those achieved
better performance in the literature review. As depicted above, it is also suggested to
explore other data imputation methods to compensate for the missing glucose data, since
glucose patterns are generally not linear. A possible method could be cubic interpolation,
linear regression for time series data, or random forest regression predicting the most
possible values while considering the time. Thus, a prediction algorithm that works well
for glucose data can be utilized to fill in missing values. A model considering multiple
PHs and transforming the forecasting task into a classification task, which seems feasible
for short-term classification, can be integrated into more complex systems. One use case
could be digital twins since those consist of individual patient profiles, learn the patterns
of each subject, and are individualized systems continuously learning and adapting to the
patient’s data and behavior. Thus, it could be possible to compensate for the variations
within the subject. Furthermore, fault detection could be utilized to detect the cause of
hypoglycemia, and improve decision support. An artificial pancreas might also be best
integrated with digital twin technologies because those are used for predicting adverse
events. Furthermore, the possible impact of the utilized insulin dosage with the estimated
glucose trend considering multiple variables and features could be simulated. Thus,
Laubenbacher et al. conclude that digital twins can advance the possibilities for health
care as not only a small perspective is known but the system considers the whole patient
profile, which is especially relevant with diabetes patients since the life quality is impacted
by multiple components [84]. Lastly, to investigate exercise-induced hypoglycemia, not
only the acceleration data but intensity and type of activity should be considered as
in the work of Cho et al in [85]. Besides, even if collected in free-living conditions, the
patients should be asked to do controlled sports sessions. Moreover, data from athletes
or children could give more insights into the impact of physical activity on glucose.
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Table 26: Pearson correlation analysis for each class for each subject (1)
Correlations Classes

0 1 2 3 4 5 6 7 8 9

glucose/ basal 0.048 0.035 0.094 0.077 0.116 0.264 0.313 0.386 0.451 0.475

glucose/ bolus 0.056 0.011 -0.055 -0.001 0.041 -0.060 0.030 0.047 0.018 0.020

540 glucose/ macc -0.226 0.016 -0.010 0.006 0.011 -0.170 -0.022 -0.075 -0.147 -0.287

basal/ macc 0.006 -0.198 -0.044 -0.040 -0.078 -0.012 0.006 -0.031 -0.089 -0.151

bolus/ macc -0.033 0.105 0.120 -0.100 0.028 0.032 0.073 0.040 0.039 0.077

basal/ bolus -0.019 -0.109 -0.020 0.047 -0.035 0.103 -0.014 -0.030 0.038 -0.018

glucose/ basal -0.110 -0.236 -0.430 -0.611 -0.361 -0.365 0.203 0.211 0.057 0.085

glucose/ bolus 0.109 -0.124 0.310 NaN NaN -0.035 -0.075 -0.099 -0.097 -0.070

544 glucose/ macc 0.210 -0.222 -0.173 -0.055 0.043 0.010 -0.193 -0.032 0.130 -0.143

basal/ macc -0.045 -0.181 -0.191 -0.275 -0.381 -0.528 -0.536 -0.603 -0.321 -0.216

bolus/ macc 0.097 -0.100 -0.057 NaN NaN 0.280 0.237 -0.034 -0.041 0.001

basal/ bolus -0.187 0.034 -0.083 NaN NaN -0.274 -0.143 -0.124 -0.035 -0.029

glucose/ basal 0.031 0.027 -0.044 0.055 0.130 0.241 0.034 0.001 0.112 0.127

glucose/ bolus -0.015 NaN NaN NaN 0.038 0.012 -0.018 0.020 0.025 0.042

552 glucose/ macc -0.011 -0.116 -0.154 -0.207 0.036 0.068 -0.075 -0.315 -0.094 -0.143

basal/ macc -0.277 -0.232 -0.147 -0.004 0.358 -0.117 -0.134 0.032 0.094 -0.057

bolus/ macc -0.003 NaN NaN NaN -0.150 0.022 -0.073 -0.019 -0.022 -0.035

basal/ bolus 0.053 NaN NaN NaN -0.165 0.045 0.051 0.030 0.019 0.009
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Table 27: Pearson correlation analysis for each class for each subject (2)
Correlations Classes

0 1 2 3 4 5 6 7 8 9

glucose/ basal 0.495 -0.061 0.120 0.070 0.102 0.293 0.086 0.024 0.064 0.143

glucose/ bolus 0.042 NaN NaN NaN -0.014 0.051 0.046 0.026 0.048 0.042

559 glucose/ macc -0.024 -0.018 0.135 0.092 -0.041 -0.018 0.012 0.029 0.003 -0.043

basal/ macc -0.057 -0.085 0.009 -0.056 0.015 -0.033 -0.031 -0.046 -0.026 -0.028

bolus/ macc -0.005 NaN NaN NaN -0.031 0.071 0.003 0.018 0.002 -0.004

basal/ bolus 0.072 NaN NaN NaN -0.043 0.020 0.024 -0.024 -0.001 -0.012

glucose/ basal -0.067 0.085 0.084 0.036 -0.016 0.096 0.274 0.299 0.082 0.032

glucose/ bolus -0.011 -0.019 NaN -0.013 0.084 0.077 0.079 0.103 0.071 0.072

563 glucose/ macc -0.053 -0.124 0.174 0.005 -0.036 -0.028 -0.056 -0.099 -0.062 -0.019

basal/ macc 0.005 0.097 0.110 0.170 -0.025 -0.076 0.003 -0.014 0.024 -0.028

bolus/ macc 0.046 -0.034 NaN 0.092 -0.018 -0.063 -0.058 -0.003 -0.052 -0.026

basal/ bolus -0.024 -0.034 NaN 0.327 -0.004 -0.030 0.032 -0.008 -0.025 -0.011

glucose/ basal -0.234 0.097 0.045 0.117 0.362 0.074 -0.293 0.002 0.180 -0.172

glucose/ bolus 0.029 NaN NaN 0.155 -0.058 0.052 0.096 0.123 0.069 0.078

567 glucose/ macc -0.098 -0.020 -0.127 -0.023 0.048 0.087 -0.145 0.067 0.150 0.015

basal/ macc -0.022 -0.036 -0.202 0.164 -0.175 -0.125 0.188 -0.178 0.006 0.022

bolus/ macc 0.008 NaN NaN -0.070 -0.072 0.030 0.00 0.024 -0.029 -0.019

basal/ bolus 0.006 NaN NaN -0.079 -0.122 0.018 0.008 0.023 0.004 -0.021
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Table 28: Pearson correlation analysis for each class for each subject (3)
Correlations Classes

0 1 2 3 4 5 6 7 8 9

glucose/ basal -0.143 0.311 0.547 0.151 -0.145 0.327 0.402 0.336 -0.022 0.236

glucose/ bolus 0.085 -0.087 -0.039 0.067 0.067 0.016 -0.035 0.140 -0.045 0.039

570 glucose/ macc 0.079 -0.186 0.247 0.078 0.051 0.066 0.107 -0.105 0.070 -0.081

basal/ macc 0.006 -0.124 0.064 -0.037 0.005 0.008 0.037 -0.083 -0.063 0.00

bolus/ macc -0.045 0.224 -0.105 0.006 -0.071 0.006 0.017 -0.120 -0.015 -0.010

basal/ bolus 0.040 -0.034 -0.015 -0.033 -0.056 0.369 0.055 0.184 -0.014 0.047

glucose/ basal 0.116 0.025 0.117 0.097 0.036 0.008 -0.168 -0.273 0.029 -0.144

glucose/ bolus -0.019 -0.010 NaN -0.041 -0.027 0.021 0.002 0.014 0.065 0.043

575 glucose/ macc -0.019 0.019 -0.068 0.022 0.042 0.021 0.045 0.002 -0.002 -0.003

basal/ macc 0.013 0.012 -0.003 0.005 0.022 0.031 -0.069 -0.127 -0.004 -0.164

bolus/ macc 0.014 0.011 NaN -0.022 -0.037 0.047 -0.026 0.023 -0.006 -0.005

basal/ bolus 0.001 -0.024 NaN 0.021 0.033 0.026 -0.040 -0.035 -0.030 -0.038

glucose/ basal 0.528 -0.106 -0.216 -0.359 -0.059 -0.628 0.128 0.187 -0.156 0.105

glucose/ bolus NaN NaN NaN 0.227 -0.008 0.122 0.110 0.090 0.031 0.039

584 glucose/ macc -0.014 0.025 0.330 0.242 0.126 0.266 0.169 -0.041 -0.013 -0.113

basal/ macc -0.175 -0.097 -0.127 -0.166 -0.116 -0.277 -0.079 0.073 -0.060 0.008

bolus/ macc NaN NaN NaN 0.047 0.007 0.085 0.060 0.003 -0.026 -0.044

basal/ bolus NaN NaN NaN 0.046 0.026 -0.049 0.008 0.005 -0.005 0.017
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Table 29: Pearson correlation analysis for each class for each subject (4)
Correlations Classes

0 1 2 3 4 5 6 7 8 9

glucose/ basal 0.287 -0.153 0.116 0.205 0.204 -0.193 0.041 0.052 0.085 -0.010

glucose/ bolus 0.011 -0.093 NaN 0.188 -0.082 -0.027 -0.005 0.048 -0.014 -0.023

588 glucose/ macc 0.056 -0.025 -0.025 0.053 -0.021 0.066 0.056 0.00 -0.036 0.019

basal/ macc -0.123 -0212 -0.105 -0.252 -0.317 -0.581 -0.258 -0.670 -0.752 -0.048

bolus/ macc -0.007 -0.013 NaN -0.023 -0.043 -0.010 0.013 -0.014 0.004 -0.003

basal/ bolus -0.078 0.030 NaN 0.005 0.042 -0.006 -0.002 0.034 0.005 0.018

glucose/ basal 0.201 0.066 0.045 0.063 0.077 0.138 0.048 0.007 0.008 -0.074

glucose/ bolus 0.005 -0.023 0.017 0.023 0.067 0.001 0.055 0.039 0.020 0.035

591 glucose/ macc 0.140 -0.091 -0.120 -0.078 -0.071 -0.125 -0.030 -0.017 -0.061 -0.007

basal/ macc -0.113 -0.190 -0.296 -0.305 -0.349 -0.369 -0.031 -0.304 -0.250 -0.259

bolus/ macc 0.027 0.027 -0.049 -0.025 -0.037 0.036 0.001 -0.020 -0.029 0.008

basal/ bolus 0.050 0.024 0.029 0.031 0.024 -0.004 -0.036 0.015 0.003 -0.024

glucose/ basal -0.094 0.151 0.119 0.137 0.154 0.026 -0.130 0.079 -0.086 0.172

glucose/ bolus 0.040 -0.083 NaN -0.048 0.027 -0.032 -0.019 0.004 -0.008 0.00

596 glucose/ macc -0.064 0.059 -0.033 -0.257 -0.044 0.201 0.063 0.080 0.047 -0.086

basal/ macc 0.087 -0.011 0.003 0.014 0.062 0.119 0.053 -0.004 0.189 0.012

bolus/ macc 0.052 -0.115 NaN -0.169 -0.012 -0.087 0.00 0.028 0.003 -0.029

basal/ bolus 0.052 -0.030 NaN -0.014 -0.027 0.021 -0.024 0.053 0.026 0.002
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Table 30: Population-based ResNet results for each subject using 9 classes
Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 0.73 0.32 0.19 0.13 0.15 0.07 0.29 0.16 0.32

540 Recall 0.96 0.53 0.21 0.08 0.04 0.00 0.11 0.70 0.14
F1-M 0.83 0.40 0.20 0.10 0.07 0.01 0.16 0.26 0.20

Precision 0.97 0.32 0.18 0.11 0.10 0.13 0.18 0.19 0.41
544 Recall 0.80 0.51 0.67 0.35 0.33 0.11 0.29 0.12 0.21

F1-M 0.88 0.39 0.28 0.16 0.15 0.12 0.22 0.15 0.28

Precision 0.98 0.37 0.19 0.16 0.13 0.21 0.23 0.19 0.45
552 Recall 0.89 0.66 0.51 0.20 0.14 0.24 0.51 0.14 0.07

F1-M 0.93 0.48 0.28 0.18 0.14 0.22 0.31 0.16 0.12

Precision 0.99 0.32 0.10 0.09 0.11 0.11 0.27 0.18 0.50
559 Recall 0.95 0.82 0.47 0.17 0.11 0.07 0.15 0.42 0.18

F1-M 0.97 0.46 0.17 0.12 0.11 0.09 0.10 0.25 0.26

Precision 1.00 0.30 0.19 0.16 0.16 0.25 0.28 0.17 0.45
563 Recall 0.80 0.74 0.38 0.27 0.15 0.08 0.32 0.05 0.59

F1-M 0.89 0.42 0.25 0.20 0.16 0.12 0.30 0.08 0.51

Precision 0.92 0.53 0.16 0.16 0.15 0.09 0.22 0.17 0.43
567 Recall 0.98 0.28 0.09 0.09 0.06 0.04 0.50 0.13 0.30

F1-M 0.95 0.36 0.12 0.12 0.09 0.06 0.30 0.15 0.35

Precision 0.97 0.39 0.15 0.05 0.05 0.05 0.14 0.15 0.53
570 Recall 0.88 0.39 0.19 0.04 0.04 0.05 0.07 0.45 0.25

F1-M 0.92 0.39 0.17 0.04 0.04 0.05 0.09 0.23 0.34

Precision 0.93 0.39 0.16 0.16 0.24 0.23 0.25 0.22 1.00

575 Recall 0.93 0.57 0.41 0.15 0.15 0.13 0.34 0.58 0.01
F1-M 0.95 0.47 0.23 0.15 0.19 0.16 0.29 0.32 0.01

Precision 0.97 0.39 0.19 0.10 0.06 0.12 0.14 0.16 0.78
584 Recall 0.98 0.49 0.46 0.20 0.04 0.10 0.17 0.47 0.09

F1-M 0.97 0.43 0.27 0.14 0.04 0.11 0.15 0.24 0.17

Precision 0.96 0.20 0.06 0.10 0.15 0.28 0.30 0.16 0.50
588 Recall 0.92 0.76 0.24 0.25 0.18 0.18 0.05 0.10 0.63

F1-M 0.94 0.32 0.09 0.14 0.17 0.22 0.08 0.12 0.56

Precision 0.97 0.47 0.16 0.13 0.09 0.11 0.26 0.17 0.22
591 Recall 0.97 0.64 0.41 0.31 0.17 0.19 0.22 0.17 0.08

F1-M 0.97 0.54 0.23 0.18 0.12 0.14 0.24 0.17 0.12

Precision 0.99 0.40 0.18 0.14 0.14 0.10 0.24 0.15 0.40
596 Recall 0.90 0.74 0.49 0.31 0.35 0.12 0.36 0.08 0.22

F1-M 0.94 0.52 0.26 0.19 0.20 0.11 0.28 0.10 0.29
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Table 31: Population-based hybrid model results for each subject using 9 classes
Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 1.00 0.17 0.16 0.15 0.18 0.19 0.22 0.20 0.36

540 Recall 0.63 0.28 0.35 0.34 0.31 0.16 0.11 0.22 0.32
F1-M 0.77 0.21 0.22 0.21 0.23 0.18 0.14 0.21 0.34

Precision 0.97 0.36 0.17 0.09 0.05 0.06 0.24 0.29 0.44
544 Recall 0.85 0.56 0.39 0.30 0.15 0.13 0.24 0.43 0.10

F1-M 0.90 0.44 0.24 0.14 0.07 0.08 0.24 0.35 0.17

Precision 1.00 0.22 0.20 0.22 0.12 0.17 0.32 0.22 0.30
552 Recall 0.70 0.32 0.43 0.19 0.18 0.38 0.07 0.43 0.13

F1-M 0.82 0.26 0.27 0.20 0.14 0.24 0.11 0.29 0.18

Precision 0.99 0.27 0.13 0.11 0.12 0.18 0.45 0.22 0.41
559 Recall 0.79 0.47 0.53 0.20 0.21 0.24 0.00 0.67 0.01

F1-M 0.88 0.35 0.21 0.14 0.15 0.20 0.01 0.33 0.03

Precision 1.00 0.23 0.18 0.15 0.19 0.15 0.16 0.13 0.43
563 Recall 0.48 0.64 0.37 0.35 0.25 0.05 0.07 0.01 0.71

F1-M 0.65 0.34 0.24 0.21 0.21 0.07 0.10 0.02 0.53

Precision 0.97 0.41 0.26 0.21 0.12 0.17 0.36 0.60 0.48
567 Recall 0.93 0.53 0.40 0.43 0.46 0.31 0.05 0.00 0.53

F1-M 0.95 0.46 0.32 0.28 0.20 0.22 0.09 0.01 0.51

Precision 0.95 0.31 0.15 0.21 0.16 0.07 0.00 0.09 0.50

570 Recall 0.91 0.56 0.41 0.30 0.14 0.05 0.00 0.01 0.84

F1-M 0.93 0.40 0.22 0.25 0.15 0.06 0.00 0.02 0.63

Precision 0.88 0.25 0.14 0.15 0.18 0.21 0.30 0.19 0.35
575 Recall 0.98 0.51 0.36 0.26 0.26 0.27 0.06 0.47 0.07

F1-M 0.93 0.33 0.20 0.19 0.21 0.23 0.10 0.27 0.11

Precision 0.99 0.26 0.18 0.09 0.10 0.12 0.14 0.20 0.40
584 Recall 0.78 0.33 0.42 0.18 0.22 0.21 0.07 0.32 0.14

F1-M 0.87 0.29 0.26 0.12 0.13 0.15 0.10 0.25 0.21

Precision 1.00 0.25 0.11 0.09 0.13 0.19 0.15 0.19 0.40
588 Recall 0.72 0.37 0.32 0.28 0.26 0.18 0.21 0.10 0.19

F1-M 0.83 0.30 0.16 0.13 0.17 0.18 0.18 0.13 0.26

Precision 0.97 0.37 0.16 0.14 0.11 0.12 0.28 0.25 0.42
591 Recall 0.89 0.61 0.40 0.38 0.24 0.19 0.22 0.36 0.05

F1-M 0.93 0.46 0.22 0.20 0.15 0.15 0.25 0.30 0.08

Precision 0.83 0.39 0.15 0.14 0.10 0.14 0.10 0.24 0.36
596 Recall 1.00 0.51 0.36 0.32 0.18 0.22 0.01 0.46 0.22

F1-M 0.91 0.44 0.22 0.19 0.13 0.17 0.01 0.32 0.27
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Table 32: Subject-specific ResNet results for each subject using 9 classes
Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 1.00 0.23 0.19 0.14 0.20 0.24 0.35 0.15 0.47

540 Recall 0.73 0.67 0.54 0.32 0.40 0.12 0.24 0.05 0.41

F1-M 0.84 0.35 0.28 0.20 0.26 0.16 0.28 0.08 0.44

Precision 0.86 0.25 0.16 0.07 0.15 0.00 0.22 0.18 0.43
544 Recall 1.00 0.81 0.69 0.36 0.53 0.00 0.39 0.24 0.11

F1-M 0.93 0.38 0.26 0.11 0.24 0.00 0.28 0.21 0.18

Precision 1.00 0.38 0.14 0.13 0.05 0.19 0.22 0.24 0.54

552 Recall 0.81 0.48 0.67 0.40 0.15 0.30 0.30 0.12 0.23
F1-M 0.89 0.42 0.23 0.19 0.08 0.23 0.26 0.16 0.33

Precision 1.00 0.33 0.13 0.12 0.06 0.07 0.38 0.24 0.48
559 Recall 0.96 0.77 0.53 0.25 0.11 0.12 0.14 0.28 0.26

F1-M 0.98 0.46 0.21 0.16 0.08 0.09 0.21 0.26 0.34

Precision 0.78 0.15 0.06 0.10 0.12 0.11 0.21 0.34 0.32
563 Recall 1.00 0.45 0.28 0.31 0.23 0.07 0.18 0.20 0.16

F1-M 0.87 0.22 0.10 0.15 0.16 0.08 0.20 0.25 0.22

Precision 0.94 0.35 0.25 0.20 0.16 0.18 0.45 0.00 0.49
567 Recall 0.97 0.77 0.43 0.38 0.37 0.40 0.46 0.00 0.34

F1-M 0.95 0.48 0.32 0.26 0.22 0.24 0.45 0.00 0.40

Precision 0.79 0.33 0.12 0.13 0.09 0.07 0.04 0.23 0.59
570 Recall 0.95 0.54 0.29 0.25 0.10 0.09 0.03 0.35 0.18

F1-M 0.86 0.41 0.17 0.17 0.10 0.08 0.03 0.28 0.27

Precision 0.99 0.21 0.16 0.17 0.23 0.25 0.28 0.16 0.48
575 Recall 0.92 0.73 0.44 0.40 0.38 0.45 0.28 0.16 0.20

F1-M 0.95 0.32 0.24 0.24 0.29 0.32 0.28 0.16 0.28

Precision 0.79 0.75 0.09 0.09 0.13 0.09 0.12 0.12 0.87
584 Recall 1.00 0.43 0.33 0.28 0.11 0.12 0.18 0.31 0.12

F1-M 0.88 0.55 0.14 0.14 0.12 0.10 0.15 0.17 0.22

Precision 0.88 0.21 0.09 0.10 0.09 0.24 0.40 0.14 0.24
588 Recall 1.00 0.68 0.25 0.15 0.10 0.26 0.19 0.06 0.29

F1-M 0.94 0.32 0.13 0.12 0.09 0.25 0.25 0.08 0.26

Precision 1.00 0.49 0.14 0.15 0.08 0.10 0.24 0.29 0.25
591 Recall 0.95 0.54 0.20 0.21 0.11 0.12 0.24 0.31 0.11

F1-M 0.95 0.54 0.20 0.21 0.11 0.12 0.24 0.21 0.11

Precision 0.88 0.38 0.12 0.11 0.12 0.29 0.46 0.18 0.41
596 Recall 1.00 0.76 0.34 0.27 0.36 0.26 0.34 0.24 0.09

F1-M 0.94 0.50 0.17 0.15 0.18 0.27 0.39 0.20 0.15
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Table 33: Population-based ResNet results with less test data for each subject using 9
classes

Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 0.85 0.28 0.26 0.13 0.11 0.00 0.00 0.14 0.41

540 Recall 0.96 0.65 0.28 0.08 0.04 0.00 0.00 0.76 0.17
F1-M 0.90 0.39 0.27 0.10 0.06 0.00 0.00 0.23 0.24

Precision 0.98 0.25 0.20 0.19 0.06 0.10 0.00 0.03 0.43
544 Recall 0.82 0.44 0.77 0.68 0.28 0.28 0.09 0.00 0.25

F1-M 0.89 0.32 0.31 0.29 0.10 0.09 0.00 0.03 0.31

Precision 1.00 0.34 0.14 0.10 0.04 0.06 0.18 0.28 0.55
552 Recall 0.82 0.48 0.50 0.21 0.06 0.07 0.39 0.20 0.15

F1-M 0.90 0.40 0.22 0.13 0.04 0.06 0.25 0.23 0.23

Precision 1.00 0.32 0.12 0.08 0.06 0.06 0.33 0.15 0.42
559 Recall 0.95 0.79 0.50 0.14 0.06 0.05 0.21 0.31 0.17

F1-M 0.97 0.46 0.20 0.10 0.06 0.05 0.26 0.20 0.25

Precision 1.00 0.28 0.16 0.18 0.17 0.00 0.14 0.01 0.30
563 Recall 0.72 0.78 0.39 0.30 0.16 0.00 0.18 0.00 0.32

F1-M 0.84 0.41 0.22 0.22 0.17 0.00 0.16 0.01 0.31

Precision 0.92 0.29 0.14 0.21 0.14 0.14 0.18 0.16 0.52
567 Recall 0.96 0.19 0.10 0.07 0.05 0.06 0.39 0.19 0.29

F1-M 0.94 0.23 0.12 0.10 0.07 0.08 0.24 0.17 0.37

Precision 0.97 0.41 0.15 0.00 0.06 0.18 0.23 0.15 0.39
570 Recall 0.76 0.38 0.13 0.00 0.05 0.11 0.18 0.38 0.19

F1-M 0.85 0.39 0.14 0.00 0.05 0.14 0.20 0.21 0.26

Precision 0.98 0.36 0.12 0.10 0.11 0.03 0.14 0.28 1.00

575 Recall 0.92 0.58 0.39 0.10 0.10 0.02 0.18 0.67 0.01
F1-M 0.95 0.44 0.18 0.10 0.10 0.02 0.16 0.39 0.01

Precision 1.00 0.83 0.14 0.09 0.07 0.05 0.08 0.16 0.69

584 Recall 0.96 0.71 0.44 0.33 0.06 0.05 0.12 0.44 0.10
F1-M 0.98 0.77 0.22 0.14 0.06 0.05 0.09 0.23 0.17

Precision 0.93 0.17 0.07 0.09 0.11 0.32 0.00 0.15 0.31
588 Recall 0.94 0.68 0.21 0.15 0.09 0.26 0.00 0.13 0.45

F1-M 0.93 0.27 0.10 0.11 0.10 0.29 0.00 0.14 0.37

Precision 1.00 0.51 0.13 0.10 0.08 0.11 0.23 0.22 0.11
591 Recall 0.95 0.64 0.31 0.25 0.15 0.16 0.18 0.21 0.05

F1-M 0.97 0.57 0.18 0.14 0.10 0.13 0.20 0.21 0.06

Precision 0.99 0.51 0.20 0.13 0.17 0.19 0.35 0.13 0.34
596 Recall 0.89 0.76 0.45 0.27 0.36 0.18 0.44 0.07 0.22

F1-M 0.94 0.61 0.28 0.18 0.23 0.18 0.39 0.09 0.26
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Table 34: Subject-specific hybrid model results for each subject using 9 classes
Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 0.99 0.26 0.15 0.15 0.15 0.28 0.27 0.17 0.40

540 Recall 0.91 0.75 0.42 0.40 0.23 0.19 0.09 0.23 0.28
F1-M 0.95 0.38 0.23 0.22 0.18 0.23 0.13 0.19 0.33

Precision 0.82 0.21 0.18 0.15 0.15 0.28 0.24 0.16 0.59

544 Recall 1.00 0.62 0.54 0.55 0.58 0.74 0.14 0.34 0.08
F1-M 0.90 0.32 0.27 0.23 0.24 0.40 0.17 0.22 0.14

Precision 1.00 0.30 0.15 0.10 0.07 0.15 0.16 0.27 0.37
552 Recall 0.82 0.52 0.67 0.35 0.20 0.42 0.07 0.27 0.09

F1-M 0.90 0.38 0.24 0.16 0.10 0.22 0.09 0.27 0.14

Precision 0.95 0.25 0.13 0.10 0.11 0.19 0.91 0.25 0.29
559 Recall 0.91 0.60 0.40 0.22 0.21 0.16 0.02 0.72 0.07

F1-M 0.93 0.35 0.20 0.14 0.14 0.18 0.04 0.37 0.11

Precision 0.86 0.21 0.06 0.10 0.12 0.23 0.12 0.18 0.32
563 Recall 0.95 0.70 0.36 0.36 0.15 0.18 0.07 0.11 0.19

F1-M 0.90 0.33 0.11 0.16 0.14 0.20 0.09 0.14 0.24

Precision 0.98 0.20 0.17 0.12 0.10 0.26 0.24 0.00 0.41
567 Recall 0.85 0.68 0.27 0.27 0.33 0.42 0.07 0.00 0.48

F1-M 0.91 0.31 0.21 0.16 0.15 0.32 0.10 0.00 0.45

Precision 0.82 0.23 0.12 0.13 0.16 0.39 0.05 0.01 0.36
570 Recall 0.86 0.38 0.29 0.33 0.26 0.15 0.01 0.01 0.55

F1-M 0.84 0.29 0.17 0.29 0.20 0.21 0.01 0.01 0.44

Precision 1.00 0.27 0.11 0.12 0.17 0.16 0.13 0.24 0.29
575 Recall 0.87 0.60 0.44 0.32 0.40 0.32 0.02 0.45 0.05

F1-M 0.93 0.37 0.17 0.18 0.24 0.21 0.04 0.31 0.09

Precision 0.83 0.50 0.09 0.09 0.07 0.08 0.23 0.08 0.00
584 Recall 0.83 0.36 0.22 0.22 0.19 0.11 0.49 0.18 0.00

F1-M 0.83 0.42 0.13 0.13 0.10 0.09 0.32 0.11 0.00

Precision 0.90 0.20 0.11 0.11 0.08 0.23 0.08 0.48 0.29
588 Recall 0.85 0.44 0.29 0.27 0.13 0.15 0.00 0.27 0.44

F1-M 0.90 0.28 0.16 0.16 0.10 0.18 0.00 0.35 0.35

Precision 0.99 0.36 0.11 0.08 0.07 0.12 0.31 0.25 0.37
591 Recall 0.85 0.79 0.31 0.26 0.14 0.08 0.03 0.44 0.23

F1-M 0.92 0.52 0.17 0.12 0.09 0.10 0.06 0.32 0.28

Precision 0.67 0.37 0.08 0.04 0.07 0.13 0.33 0.29 0.30
596 Recall 1.00 0.33 0.24 0.08 0.13 0.18 0.17 0.41 0.14

F1-M 0.80 0.35 0.12 0.05 0.09 0.15 0.23 0.34 0.19
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Table 35: Population-based hybrid model results with less test data for each subject
using 9 classes

Subject Metric Class

0 1 2 3 4 5 6 7 8
Precision 1.00 0.18 0.14 0.15 0.19 0.24 0.24 0.18 0.36

540 Recall 0.68 0.35 0.35 0.33 0.30 0.16 0.04 0.27 0.36
F1-M 0.81 0.24 0.20 0.21 0.23 0.19 0.07 0.21 0.36

Precision 0.96 0.27 0.13 0.14 0.06 0.08 0.16 0.18 0.65

544 Recall 0.86 0.44 0.31 0.36 0.31 0.22 0.16 0.32 0.10
F1-M 0.91 0.33 0.19 0.20 0.10 0.12 0.16 0.23 0.18

Precision 1.00 0.32 0.19 0.07 0.07 0.13 0.28 0.23 0.21
552 Recall 0.77 0.32 0.54 0.09 0.15 0.38 0.07 0.33 0.09

F1-M 0.87 0.32 0.28 0.08 0.10 0.20 0.11 0.27 0.12

Precision 0.97 0.25 0.15 0.12 0.09 0.17 1.00 0.24 0.30
559 Recall 0.83 0.40 0.50 0.22 0.15 0.21 0.01 0.78 0.01

F1-M 0.90 0.31 0.23 0.16 0.11 0.19 0.02 0.36 0.02

Precision 1.00 0.20 0.16 0.15 0.15 0.08 0.10 0.04 0.37
563 Recall 0.36 0.68 0.47 0.39 0.21 0.03 0.08 0.00 0.47

F1-M 0.53 0.31 0.24 0.21 0.17 0.04 0.09 0.01 0.41

Precision 0.99 0.35 0.25 0.19 0.09 0.22 0.58 0.60 0.43
567 Recall 0.94 0.61 0.30 0.32 0.38 0.37 0.09 0.01 0.50

F1-M 0.96 0.45 0.27 0.23 0.14 0.28 0.16 0.02 0.46

Precision 0.90 0.31 0.10 0.16 0.15 0.04 0.00 0.18 0.35
570 Recall 0.93 0.49 0.23 0.27 0.12 0.03 0.00 0.02 0.69

F1-M 0.91 0.38 0.14 0.20 0.13 0.04 0.00 0.03 0.47

Precision 0.88 0.16 0.16 0.12 0.15 0.18 0.24 0.23 0.36
575 Recall 0.98 0.42 0.56 0.33 0.33 0.28 0.04 0.50 0.06

F1-M 0.93 0.24 0.25 0.18 0.20 0.22 0.07 0.32 0.10

Precision 1.00 0.31 0.33 0.11 0.11 0.08 0.00 0.14 0.33
584 Recall 0.52 0.29 0.33 0.28 0.33 0.23 0.00 0.26 0.09

F1-M 0.69 0.30 0.33 0.16 0.16 0.12 0.00 0.18 0.14

Precision 1.00 0.13 0.07 0.11 0.11 0.31 0.24 0.30 0.29
588 Recall 0.66 0.24 0.17 0.29 0.21 0.14 0.22 0.24 0.21

F1-M 0.80 0.17 0.10 0.16 0.15 0.19 0.23 0.27 0.25

Precision 0.99 0.39 0.14 0.14 0.09 0.12 0.28 0.30 0.19
591 Recall 0.84 0.66 0.36 0.38 0.22 0.16 0.19 0.40 0.02

F1-M 0.91 0.49 0.20 0.20 0.13 0.14 0.23 0.34 0.04

Precision 0.85 0.55 0.16 0.13 0.07 0.16 0.00 0.25 0.25
596 Recall 1.00 0.57 0.32 0.20 0.12 0.20 0.00 0.40 0.23

F1-M 0.92 0.56 0.22 0.16 0.09 0.18 0.00 0.31 0.24
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Table 36: Population-based ResNet results for each subject using 6 classes
Subject Metric Class

0 1 2 3 4 5
Precision 0.99 0.46 0.27 0.28 0.35 0.70

540 Recall 0.92 0.80 0.54 0.34 0.27 0.55
F1-M 0.96 0.59 0.36 0.31 0.30 0.62

Precision 0.98 0.39 0.31 0.24 0.41 0.74
544 Recall 0.86 0.70 0.20 0.28 0.35 0.73

F1-M 0.92 0.50 0.24 0.26 0.37 0.74

Precision 0.98 0.49 0.25 0.22 0.31 0.75
552 Recall 0.98 0.78 0.52 0.28 0.24 0.61

F1-M 0.98 0.60 0.34 0.25 0.27 0.67

Precision 0.85 0.40 0.26 0.32 0.35 0.71
559 Recall 1.00 0.41 0.37 0.33 0.22 0.73

F1-M 0.92 0.40 0.30 0.32 0.27 0.72

Precision 0.90 0.43 0.42 0.35 0.42 0.73
563 Recall 0.98 0.61 0.29 0.43 0.33 0.73

F1-M 0.94 0.51 0.34 0.39 0.37 0.73

Precision 0.98 0.61 0.42 0.35 0.45 0.74
567 Recall 1.00 0.77 0.30 0.32 0.26 0.90

F1-M 0.99 0.68 0.35 0.34 0.33 0.81

Precision 0.81 0.25 0.16 0.30 0.54 0.64
570 Recall 1.00 0.39 0.25 0.20 0.15 0.77

F1-M 0.90 0.31 0.20 0.24 0.23 0.70

Precision 0.94 0.57 0.28 0.35 0.49 0.65
575 Recall 1.00 0.49 0.37 0.32 0.16 0.88

F1-M 0.97 0.53 0.32 0.33 0.24 0.75

Precision 0.96 0.45 0.26 0.24 0.27 0.60
584 Recall 0.92 0.37 0.29 0.18 0.18 0.78

F1-M 0.94 0.40 0.28 0.20 0.22 0.68

Precision 0.95 0.65 0.23 0.23 0.34 0.59
588 Recall 1.00 0.56 0.27 0.19 0.16 0.78

F1-M 0.97 0.60 0.25 0.20 0.21 0.67

Precision 1.00 0.49 0.20 0.25 0.26 0.60
591 Recall 0.90 0.51 0.29 0.21 0.15 0.76

F1-M 0.95 0.50 0.24 0.23 0.19 0.67

Precision 1.00 0.45 0.39 0.32 0.41 0.77

596 Recall 0.84 0.64 0.50 0.44 0.36 0.69
F1-M 0.91 0.53 0.44 0.37 0.38 0.73
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Table 37: Population-based hybrid model results for each subject using 6 classes
Subject Metric Class

0 1 2 3 4 5
Precision 0.98 0.40 0.26 0.29 0.33 0.67

540 Recall 0.90 0.78 0.46 0.30 0.22 0.62
F1-M 0.93 0.53 0.33 0.29 0.27 0.64

Precision 0.93 0.37 0.31 0.25 0.38 0.83
544 Recall 0.99 0.76 0.20 0.41 0.24 0.68

F1-M 0.96 0.50 0.25 0.31 0.29 0.75

Precision 0.98 0.45 0.24 0.26 0.31 0.71
552 Recall 0.99 0.76 0.42 0.26 0.18 0.72

F1-M 0.98 0.57 0.31 0.26 0.23 0.71

Precision 0.99 0.47 0.28 0.28 0.31 0.75
559 Recall 0.91 0.66 0.55 0.33 0.29 0.63

F1-M 0.95 0.55 0.37 0.30 0.30 0.68

Precision 0.98 0.43 0.32 0.38 0.46 0.70
563 Recall 0.90 0.68 0.46 0.43 0.23 0.79

F1-M 0.94 0.53 0.38 0.40 0.31 0.74

Precision 1.00 0.56 0.40 0.37 0.39 0.83

567 Recall 0.97 0.76 0.65 0.48 0.37 0.70
F1-M 0.98 0.64 0.50 0.41 0.38 0.76

Precision 0.90 0.34 0.16 0.24 0.39 0.70
570 Recall 0.98 0.54 0.27 0.28 0.20 0.65

F1-M 0.94 0.42 0.20 0.26 0.27 0.67

Precision 0.98 0.50 0.24 0.34 0.43 0.68
575 Recall 0.97 0.73 0.39 0.17 0.27 0.82

F1-M 0.97 0.59 0.30 0.22 0.33 0.74

Precision 1.00 0.38 0.15 0.16 0.35 0.60
584 Recall 0.94 0.46 0.29 0.21 0.39 0.41

F1-M 0.97 0.42 0.20 0.18 0.37 0.48

Precision 0.97 0.50 0.16 0.25 0.33 0.64
588 Recall 0.95 0.63 0.20 0.29 0.27 0.63

F1-M 0.96 0.56 0.18 0.27 0.30 0.63

Precision 0.93 0.54 0.30 0.30 0.25 0.66
591 Recall 0.99 0.55 0.32 0.36 0.20 0.67

F1-M 0.93 0.54 0.30 0.30 0.25 0.66

Precision 1.00 0.54 0.28 0.29 0.45 0.76
596 Recall 0.96 0.79 0.43 0.27 0.39 0.70

F1-M 0.98 0.64 0.34 0.28 0.42 0.73
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Table 38: Subject-specific ResNet results for each subject using 6 classes
Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.39 0.28 0.30 0.40 0.71

540 Recall 0.92 0.91 0.54 0.34 0.32 0.50
F1-M 0.96 0.55 0.36 0.32 0.35 0.59

Precision 0.94 0.37 0.11 0.19 0.29 0.62
544 Recall 0.94 0.68 0.08 0.21 0.08 0.74

F1-M 0.94 0.48 0.09 0.20 0.13 0.67

Precision 1.00 0.53 0.34 0.28 0.28 0.70
552 Recall 0.89 0.71 0.61 0.40 0.23 0.60

F1-M 0.94 0.61 0.44 0.33 0.25 0.65

Precision 0.85 0.32 0.27 0.29 0.41 0.72
559 Recall 1.00 0.40 0.50 0.30 0.36 0.56

F1-M 0.92 0.35 0.35 0.29 0.39 0.63

Precision 0.84 0.33 0.30 0.44 0.50 0.77
563 Recall 1.00 0.45 0.33 0.59 0.24 0.79

F1-M 0.91 0.38 0.32 0.50 0.32 0.78

Precision 1.00 0.29 0.17 0.23 0.42 0.82

567 Recall 0.80 0.74 0.17 0.32 0.34 0.80
F1-M 0.89 0.42 0.17 0.26 0.38 0.81

Precision 0.77 0.40 0.22 0.11 0.28 0.59
570 Recall 1.00 0.47 0.21 0.07 0.17 0.69

F1-M 0.87 0.44 0.22 0.09 0.21 0.64

Precision 0.99 0.49 0.34 0.43 0.61 0.70
575 Recall 0.91 0.54 0.58 0.39 0.22 0.91

F1-M 0.95 0.52 0.43 0.41 0.32 0.79

Precision 1.00 0.79 0.32 0.27 0.23 0.58
584 Recall 1.00 0.83 0.47 0.13 0.20 0.66

F1-M 1.00 0.81 0.38 0.18 0.21 0.62

Precision 0.89 0.26 0.14 0.12 0.27 0.46
588 Recall 0.95 0.53 0.29 0.06 0.14 0.50

F1-M 0.92 0.35 0.19 0.08 0.18 0.48

Precision 1.00 0.38 0.23 0.38 0.29 0.64
591 Recall 0.71 0.41 0.29 0.32 0.16 0.84

F1-M 0.83 0.40 0.26 0.35 0.20 0.73

Precision 0.96 0.38 0.27 0.23 0.29 0.72
596 Recall 0.94 0.82 0.43 0.28 0.25 0.52

F1-M 0.95 0.51 0.33 0.25 0.27 0.61
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Table 39: Population-based ResNet results with less test data for each subject using 6
classes

Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.43 0.29 0.35 0.35 0.67

540 Recall 0.92 0.84 0.58 0.42 0.27 0.51
F1-M 0.96 0.57 0.39 0.39 0.30 0.58

Precision 0.98 0.36 0.33 0.14 0.40 0.61
544 Recall 0.90 0.68 0.23 0.12 0.17 0.74

F1-M 0.93 0.47 0.27 0.13 0.24 0.67

Precision 1.00 0.63 0.34 0.28 0.29 0.73
552 Recall 0.97 0.83 0.69 0.38 0.24 0.57

F1-M 0.99 0.72 0.45 0.32 0.26 0.64

Precision 0.89 0.40 0.29 0.24 0.33 0.67
559 Recall 1.00 0.44 0.47 0.30 0.27 0.64

F1-M 0.94 0.42 0.36 0.32 0.29 0.66

Precision 0.87 0.46 0.47 0.46 0.56 0.75

563 Recall 0.99 0.55 0.33 0.61 0.33 0.82
F1-M 0.93 0.50 0.39 0.52 0.42 0.78

Precision 0.98 0.45 0.23 0.21 0.40 0.74
567 Recall 1.00 0.74 0.17 0.20 0.28 0.81

F1-M 0.99 0.56 0.19 0.21 0.33 0.78

Precision 0.70 0.35 0.21 0.17 0.38 0.51
570 Recall 1.00 0.33 0.18 0.12 0.16 0.71

F1-M 0.82 0.34 0.19 0.14 0.22 0.59

Precision 0.97 0.65 0.38 0.49 0.50 0.66
575 Recall 1.00 0.48 0.53 0.35 0.14 0.93

F1-M 0.98 0.55 0.44 0.41 0.22 0.77

Precision 0.84 0.69 0.40 0.46 0.23 0.57
584 Recall 0.84 0.50 0.27 0.20 0.21 0.88

F1-M 0.84 0.58 0.32 0.28 0.16 0.69

Precision 0.91 0.44 0.08 0.19 0.28 0.49
588 Recall 1.00 0.42 0.12 0.17 0.19 0.55

F1-M 0.95 0.43 0.10 0.18 0.23 0.52

Precision 1.00 0.51 0.20 0.32 0.26 0.65
591 Recall 0.85 0.45 0.25 0.26 0.15 0.85

F1-M 0.92 0.48 0.23 0.29 0.19 0.73

Precision 1.00 0.39 0.35 0.36 0.30 0.69
596 Recall 0.89 0.64 0.47 0.44 0.31 0.55

F1-M 0.94 0.48 0.40 0.40 0.31 0.61

138



Table 40: Subject-specific hybrid model results for each subject using 6 classes
Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.34 0.29 0.33 0.36 0.67

540 Recall 0.80 0.82 0.59 0.36 0.28 0.51
F1-M 0.89 0.48 0.39 0.34 0.31 0.58

Precision 0.91 0.36 0.50 0.32 0.43 0.76
544 Recall 1.00 0.68 0.46 0.46 0.12 0.78

F1-M 0.95 0.47 0.48 0.38 0.19 0.77

Precision 0.98 0.50 0.34 0.23 0.27 0.67
552 Recall 0.84 0.66 0.61 0.24 0.19 0.68

F1-M 0.91 0.57 0.44 0.23 0.22 0.67

Precision 0.98 0.51 0.29 0.27 0.31 0.69
559 Recall 0.98 0.67 0.57 0.34 0.23 0.58

F1-M 0.98 0.58 0.39 0.30 0.27 0.63

Precision 0.87 0.41 0.27 0.37 0.59 0.77

563 Recall 1.00 0.55 0.48 0.48 0.23 0.78

F1-M 0.93 0.47 0.35 0.42 0.33 0.77

Precision 1.00 0.24 0.25 0.24 0.36 0.77

567 Recall 0.77 0.55 0.43 0.32 0.33 0.67
F1-M 0.87 0.33 0.31 0.27 0.34 0.71

Precision 0.82 0.32 0.09 0.17 0.43 0.53
570 Recall 0.95 0.39 0.11 0.20 0.17 0.58

F1-M 0.88 0.35 0.10 0.18 0.25 0.55

Precision 0.99 0.47 0.32 0.44 0.51 0.76
575 Recall 0.92 0.70 0.56 0.26 0.45 0.78

F1-M 0.95 0.56 0.41 0.33 0.48 0.77

Precision 0.95 0.92 0.20 0.22 0.16 0.49
584 Recall 1.00 0.67 0.20 0.17 0.18 0.50

F1-M 0.97 0.77 0.20 0.19 0.17 0.49

Precision 0.80 0.24 0.05 0.15 0.44 0.59
588 Recall 0.95 0.37 0.06 0.14 0.40 0.51

F1-M 0.87 0.29 0.05 0.14 0.42 0.55

Precision 1.00 0.35 0.27 0.38 0.41 0.69
591 Recall 0.68 0.45 0.37 0.63 0.17 0.78

F1-M 0.81 0.39 0.31 0.48 0.24 0.73

Precision 0.95 0.48 0.29 0.28 0.36 0.74
596 Recall 1.00 0.91 0.43 0.35 0.34 0.51

F1-M 0.98 0.62 0.35 0.31 0.35 0.60
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Table 41: Population-based hybrid model results with less test data for each subject
using 6 classes

Subject Metric Class

0 1 2 3 4 5
Precision 1.00 0.35 0.29 0.38 0.35 0.66

540 Recall 0.88 0.84 0.54 0.37 0.27 0.53
F1-M 0.94 0.50 0.38 0.38 0.30 0.59

Precision 0.92 0.38 0.50 0.32 0.47 0.77
544 Recall 1.00 0.74 0.46 0.42 0.19 0.78

F1-M 0.96 0.50 0.48 0.36 0.27 0.78

Precision 0.97 0.57 0.40 0.32 0.37 0.70
552 Recall 0.99 0.77 0.61 0.27 0.24 0.75

F1-M 0.98 0.66 0.48 0.29 0.29 0.72

Precision 1.00 0.52 0.34 0.30 0.33 0.69
559 Recall 0.92 0.65 0.65 0.33 0.32 0.58

F1-M 0.96 0.58 0.45 0.32 0.32 0.63

Precision 0.98 0.45 0.36 0.35 0.54 0.73
563 Recall 0.87 0.71 0.56 0.46 0.25 0.81

F1-M 0.92 0.55 0.43 0.40 0.34 0.77

Precision 0.99 0.43 0.24 0.25 0.34 0.82

567 Recall 0.96 0.77 0.33 0.35 0.37 0.60
F1-M 0.98 0.55 0.28 0.29 0.35 0.69

Precision 0.81 0.38 0.11 0.21 0.42 0.60
570 Recall 0.97 0.50 0.14 0.22 0.22 0.53

F1-M 0.88 0.43 0.12 0.22 0.29 0.56

Precision 0.99 0.51 0.33 0.48 0.45 0.70
575 Recall 0.97 0.71 0.44 0.24 0.26 0.87

F1-M 0.98 0.60 0.37 0.32 0.33 0.77

Precision 1.00 0.75 0.19 0.23 0.22 0.47
584 Recall 0.89 0.50 0.20 0.20 0.28 0.44

F1-M 0.94 0.60 0.19 0.21 0.25 0.46

Precision 0.95 0.27 0.11 0.23 0.41 0.65
588 Recall 0.95 0.37 0.18 0.28 0.33 0.56

F1-M 0.95 0.31 0.14 0.25 0.37 0.60

Precision 0.91 0.64 0.38 0.36 0.41 0.69
591 Recall 0.99 0.64 0.35 0.52 0.14 0.83

F1-M 0.95 0.64 0.36 0.42 0.21 0.75

Precision 1.00 0.99 0.28 0.27 0.42 0.72
596 Recall 0.99 0.88 0.43 0.31 0.37 0.57

F1-M 0.99 0.63 0.34 0.29 0.39 0.64
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