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Abstract
How can quantum systems be probed by random measurements? And what are the advantages?
With the advance of quantum technologies, larger and larger quantum systems have to be char-
acterized. An important question in quantum information theory is therefore the development of
efficient methods to infer properties of a quantum system. In this regard, random measurements
are discussed in a variety of different contexts. The applications range from the estimation of
the fidelity by sampling the Pauli operators at random to measurements in random directions for
entanglement detection. Random measurements have also been used in the original formulation
of shadow tomography.

In this thesis we first consider the evaluation of spin-squeezing inequalities by random mea-
surements in Sec. 3. For this purpose we note that the spin-squeezing inequalities can also be
retrieved from pair correlations. This opens the possibility to randomize the scheme. We show
that spin-squeezing inequalities can be obtained from random pair correlations, i.e., correlations
between random pairs of qubits. The spin-squeezing inequalities are nonlinear in the quantum
state and thus we propose an approach to perform a statistical analysis of the nonlinear estima-
tors. Our statistical analysis is not limited to spin-squeezing inequalities but can also be applied
to other linear or nonlinear quantities.

In Sec. 4, we apply a similar randomized approach to Bell inequalities. Certain classes of Bell
inequalities for multiqubit systems show the promising feature of an exponentially increasing
violation of the bound in local theories. Whereas this makes the inequalities more robust against
noise, it also comes with the caveat that the measurement resources increase exponentially. We
show that it is not necessary to sample all measurement settings of the Bell inequality. A
statistically significant violation of a Bell inequality can also be achieved by sampling fewer
measurement settings at random. We further point out that for graph states, which are a
specific subset of entangled multiqubit states, there are Bell inequalities known that exhibit an
exponential nonlocality. As graph states can be readily adapted to the two-qubit connectivity
of a quantum computer, they can be used to benchmark quantum computers by the produced
nonlocality.

In Sec. 5 in turn, we consider measurements in random bases. We show that all invariants
under local unitary transformations can be inferred from randomized measurements and give
expressions for all invariants in the two qubit case. The method is implemented in an experiment
and we include two applications. On the one hand, we derive the Bell violation that can be
observed for the state in the experiment. On the other hand, we show that also the usefulness
of the state in teleportation protocols can be assessed from the data.

Finally, in Sec. 6 we discuss a new formulation of shadow tomography. Whereas the origi-
nal scheme uses unitaries that are sampled from a fixed set at random, we show that shadow
tomography can also be formulated in terms of generalized measurements. This formulation
puts the method in a new light. Especially, it shows that shadow tomography cannot only be
implemented by randomization but also by introducing an ancilla system. The formulation in
terms of generalized measurements in addition allows for a natural way to include noise and for
the optimization of the measurements.
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Zusammenfassung
Wie lassen sich Quantensysteme mit Hilfe von zufälligen Messungen erforschen? Und ergeben sich
daraus Vorteile? Der Fortschritt der Quantentechnologien erfordert es, immer größere Quanten-
systeme zu charakterisieren. Eine drängende Frage in der Quanteninformationstheorie ist daher
die Entwicklung effizienter Messmethoden. In diesem Zuammenhang wurden zufällige Messun-
gen für eine Vielzahl unterschiedlicher Anwendungen diskutiert. Die Anwendungen reichen dabei
von der Abschätzung der Fidelität eines Quantenzustands durch zufällige Messung der Pauli-
Operatoren bis hin zu Messungen in zufälligen Richtungen zum Nachweis von Verschränkung.
Zudem werden Zufallsmessungen auch in der ursprünglichen Formulierung von Shadow Tomog-
raphy verwendet.

In dieser Arbeit betrachten wir in Abschnitt 3 zunächst die Auswertung von Spin-Squeezing-
Ungleichungen durch zufällige Messungen. Dazu weisen wir darauf hin, dass die Spin-Squeezing-
Ungleichungen auch aus Paarkorrelationen bestimmt werden können. Dies ermöglicht, das
Schema zu randomisieren. Wir zeigen, dass Spin-Squeezing-Ungleichungen aus zufälligen Paar-
korrelationen, d.h. Korrelationen zwischen zufälligen Paaren von Qubits, gewonnen werden kön-
nen. Spin-Squeezing-Ungleichungen sind nicht linear im Quantenzustand und wir schlagen daher
eine statistische Analyse vor, die auch bei nicht linearen Größen verwendet werden kann. Die
statistische Analyse ist nicht auf Spin-Squeezing-Ungleichungen beschränkt, sondern kann auch
auf andere lineare oder nichtlineare Größen angewendet werden.

In Abschnitt 4 wenden wir einen ähnlichen Ansatz auf Bell-Ungleichungen an. Bestimmte
Klassen von Bell-Ungleichungen für Multiqubit-Systeme zeigen die vielversprechende Eigen-
schaft, dass die Verletzung der lokalen Schranke exponentiell mit der Anzahl der Qubits zunimmt.
Dies macht die Ungleichungen zwar robuster gegen Rauschen, der experimentelle Test benötigt
jedoch Messressourcen, die auch exponentiell ansteigen. Wir zeigen, dass es nicht notwendig ist,
alle Messeinstellungen der Bell-Ungleichung zu messen. Eine statistisch signifikante Verletzung
einer Bell-Ungleichung kann auch durch eine zufällige Auswahl weniger Messeinstellungen erreicht
werden. Wir betonen, dass für Graphen-Zustände, die eine spezielle Untermenge von verschränk-
ten Multiqubit-Zuständen darstellen, Bell-Ungleichungen mit einer exponentiellen Verletzung
bekannt sind. Da Graphenzustände leicht an die Zwei-Qubit-Konnektivität eines Quantencom-
puters angepasst werden können, lassen sie sich für den Vergleich von Quantencomputern anhand
der erzeugten Verletzung verwenden.

In Abschnitt 5 betrachten wir Messungen in zufälligen Messbasen. Wir zeigen, dass alle
Invarianten unter lokal unitären Transformationen aus zufälligen Messungen abgeleitet werden
können und geben die Ausdrücke aller Invarianten für ein System aus zwei Qubits an. Die
Methode wird an einem System aus zwei Qubits experimentell durchgeführt. Als Anwendung
leiten wir einerseits die mögliche Bell-Verletzung des Quantenzustands ab. Andererseits zeigen
wir, dass mithilfe zufälliger Messeungen abgeschätzt werden kann, ob der Quantenzustand sich
für Teleportationsprotokolle eignet.

Schließlich diskutieren wir in Abschnitt 6 eine neue Formulierung der Shadow Tomography.
Während die ursprüngliche Methode unitäre Transformationen verwendet, die zufällig aus einer
festen Menge ausgewählt werden, zeigen wir, dass Shadow Tomography auch mit verallgemein-
erten Messungen formuliert werden kann. Daraus ergeben sich neue Sichtweisen auf die Methode.
Insbesondere zeigt die Formulierung mithilfe von verallgemeinerten Messungen, dass Shadow
Tomography nicht nur durch zufällige Messungen sondern auch durch die Einführung eines Hil-
fssystems umgesetzt werden kann. Die Formulierung in Form von verallgemeinerten Messungen
ermöglicht darüber hinaus die einfache Berücksichtigung von Rauschen und die Optimierung der
Messungen.
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Introduction

Introduction
Since the formulation of quantum theory, it was recognized that it predicts peculiar effects that
contradict the intuitive assumptions on a physical theory. For this reason, Einstein, Podolsky
and Rosen were of the opinion that the theory is incomplete [5]. This led to the idea of local
hidden variable (LHV) models to complete quantum mechanics to a local realistic theory. The
reasoning was later formalized by Bell, which led to the formulation of Bell inequalities [6]. A
violation of a Bell inequality contradicts the assumption of locality and is therefore nowadays
referred to as nonlocality [7]. Intertwined with nonlocality is the effect of entanglement. The
term entanglement was first used by Schrödinger [8] and refers to the effect that certain quantum
states of composite systems do not allow for a separate description of the parts. It later turned
out that entanglement has many applications and plays a crucial role, when it comes to the
advantage of quantum technology over classical systems. Entanglement can for example be used
to enhance the precision in metrology [9–11] or to generate secure keys in cryptography [12, 13]
It moreover is a key resource in quantum computation [14, 15].

To make use of entanglement, however, requires good control over the quantum system. Not
only does one have to be able to prepare and modify the quantum state. It is also important to
characterize the system. For this purpose, the system has to be probed by measurements, e.g.,
to get insight into the state of the system [16] or to detect entanglement [17].

In recent years, random measurements have gotten more and more into focus. The term
random measurements is used in various contexts. On the one hand, random measurements have
been proposed to reduce the measurement resources. For example, the fidelity of a multiqubit
state can be inferred by performing random Pauli measurements. This approach is known as
direct fidelity estimation [18, 19]. Moreover, entanglement can be detected by measuring two-
outcome observables at random [20, 21]. On the other hand, entanglement is invariant under
local unitary transformations [17]. It is thus invariant under local basis change, and it has
been shown that entanglement can be inferred from measurements in random bases that are
sampled according to the Haar measure [22–25]. This approach is commonly referred to as
randomized measurements. Finally, we note that random measurements are also used in the
original formulation of shadow tomography [26]. The goal of shadow tomography is to estimate
in principle any observable from the recorded data without reconstructing the density matrix.
For this purpose, Ref. [26] proposed a scheme that applies specific unitaries at random before the
measurement, which is equivalent to sampling from a set of observables that are tomographically
complete.

In this thesis we discuss various aspects of random measurements. In doing so, we are con-
cerned with the question which properties can be efficiently observed by random measurements.
In Sec. 1, we introduce the basic concepts of quantum information theory that are used in this
thesis. As one of the main goals is entanglement detection, we introduce entanglement witnesses,
spin-squeezing inequalities and Bell inequalities. But we also give an introduction how entangle-
ment can be verified from randomized measurements. Finally, we briefly describe the scheme of
shadow tomography.

As we pose the question whether properties can be efficiently inferred from random mea-
surements, we make use of statistical tools. For this purpose we introduce hypothesis testing in
Sec. 2. The sample complexity can be assessed with the help of concentration inequalities.

In Sec. 3, we propose a scheme to evaluate spin-squeezing inequalities from random pair
correlations. We furthermore assess the sample complexity of the approach. For this we discuss
a statistical analysis of the nonlinear estimators for the spin-squeezing inequalities. We note that
the analysis is not limited to spin-squeezing inequalities. It also allows gauging the statistics of
other linear or nonlinear quantities.

8



Introduction

In the same spirit, we dedicate Sec. 4 to the evaluation of multipartite Bell inequalities. We
propose to sample the different terms of the Bell inequalities, i.e., the measurement settings,
at random. We show that this can significantly reduce the sample complexity. Especially for
multipartite Bell inequalities the sample complexity is an issue, as in many interesting cases the
number of measurement settings increases exponentially with the number of parties.

Sec. 5 deals with randomized measurements, i.e., the measurements are performed in random
local bases. It is thus only possible to infer properties that are invariant under local unitary (LU)
transformations. We show how to express LU invariants in terms of the moments of randomized
measurements and give the expressions for the complete set of LU invariants for two qubits.
Finally, the two-qubit case is implemented in an experiment.

In Sec. 6, we formulate shadow tomography in terms of generalized measurements (positive
operator valued measure (POVM)s). The focus in this section is not on how the tomographic
data can be obtained from random measurements. This has already been established by the
original scheme in [26]. Rather, the formulation in terms of POVMs allows for an implementation
of shadow tomography without random measurements. The formulation thus simplifies the
method of shadow tomography and allows naturally to take into account noise and to optimize
the measurements.
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1 Quantum information theory

1 Quantum information theory
We start with a brief introduction to the theory of quantum information [27, 28]. In doing so, we
introduce the basic concepts that are needed in this thesis. First, we will discuss how quantum
states are represented in quantum theory, which is directly related to the concept of entanglement.
Afterward, we will introduce graph states, which are an important class of entangled multiqubit
states. What follows is a description of measurements in quantum mechanics and an introduction
how entanglement can be detected [17]. We close this section by a more detailed description of
randomized measurements and shadow tomography.

1.1 Entanglement
In quantum mechanics, states are described by vectors |ψ⟩ in a Hilbert space H over the complex
field C. We denote a basis of H by B = {|i⟩ | i = 0, . . . d− 1}, where d is the dimension. A state
|ψ⟩ can be expanded in the basis B, i.e.,

|ψ⟩ =
d−1∑
i=0

αi |i⟩ . (1.1)

In the above expression, αi is the projection of the state |ψ⟩ on the basis state |i⟩, i.e., αi =
⟨i|ψ⟩. A defining property of quantum mechanics is the way composite systems are described.
Suppose two quantum systems A and B with bases BA = {|i⟩A | i = 0, . . . , dA − 1} and BB =
{|j⟩B | j = 0, . . . , dB − 1}. In case system A is in the state |ψ⟩A =

∑dA−1
i=0 αi |i⟩A and the state

of system B is described by |ϕ⟩B =
∑dB−1
j=0 βj |j⟩B , the state of the composite system is given by

|ψ⟩A ⊗ |ϕ⟩B :=
dA−1∑
i=0

dB−1∑
j=0

αiβj |i⟩A ⊗ |j⟩B . (1.2)

In the above equation, ⊗ denotes the tensor product of states in HA and HB . The composite
Hilbert space is thus given by the tensor product space HAB = HA ⊗ HB that is spanned by the
basis BAB = {|i⟩A ⊗ |j⟩B | i = 0, . . . dA − 1; j = 0, . . . dB − 1}. We can see that the composite
Hilbert space has dimension dim(HAB) = dA × dB . Composite systems are thus not described
by the direct sum of the Hilbert spaces. Rather, the dimensions multiply.

It turns out, however, that not all states of the composite system can be described by states
of the form in Eq. (1.2). This leads to the concept of entanglement.

Definition 1.1. A bipartite, pure state |ψ⟩ ∈ HA ⊗ HB is called separable if it can be written
as a tensor product of states |ϕ⟩A ∈ HA and |φ⟩B ∈ HB , i.e.,

|ψ⟩ = |ϕ⟩A ⊗ |φ⟩B . (1.3)

Otherwise, |ψ⟩ is called entangled.

In case the knowledge about the quantum state is limited, the state can be described by a
mixed state

ρ =
∑
i

pi |ψi⟩⟨ψi| , (1.4)

where the system is in state |ψi⟩ with probability pi ≥ 0. In particular, it is
∑
i pi = 1. Entan-

glement can also be defined for mixed states.

10



1.2 Graph states

Definition 1.2. A bipartite mixed state ρ is called separable if it can be written as a convex
combination of product states ρAi ⊗ ρBi , i.e.,

ρ =
∑
i

piρ
A
i ⊗ ρBi . (1.5)

Above ρAi and ρBi are states of system A and B respectively. Otherwise, the mixed state ρ is
entangled.

From the above definition, we can conclude that the set of separable states is convex.
For more than two parties, entanglement becomes more complex. A fully separable state of

n parties can be defined analogously to the bipartite case.

Definition 1.3. A mixed state ρ is called (fully) separable if it can be written as a convex
combination of product states, i.e.,

ρ =
∑
i

piρ
(1)
i ⊗ ρ

(2)
i ⊗ . . .⊗ ρ

(N)
i , (1.6)

where ρ
(k)
i denotes the state of party k. Otherwise, at least some parts of the system are

entangled.

From the above definition, we can conclude that multipartite entanglement can be further
classified by identifying the number of separable parts. This concept is known as k-separability.

Definition 1.4. A multipartite, pure state |ψ⟩ is called k-separable with 1 < k ≤ N if the N
parties can be divides into k parts P1, . . . , Pk such that

|ψ⟩ = |ϕ1⟩P1
⊗ . . .⊗ |ϕk⟩Pk

, (1.7)

where |ϕi⟩Pi
is a state of part Pi. A mixed state ρ is correspondingly k-separable if it can

be written as a convex combination of k-separable pure states. The pure states can be k-
separable with respect ot different partitions. In case a quantum state is neither k-separable for
k = 2, . . . , N , it is N -partite entangled, which is referred to as genuine multipartite entanglement
(GME).

1.2 Graph states
Graph states are an important class of multiqubit states in quantum information theory [17, 29].
They are specifically useful as they describe a subset of entangled states.

Definition 1.5. Suppose G = (V,E) is a graph with a set of n vertices V that are connected
by a set of edges E. For each vertex i in G, we define a stabilizing operator gi by

gi := Xi

⊗
j∈N (i)

Zj , (1.8)

where N (i) is the neighborhood of vertex i, i.e., all vertices that are connected to i. In the above
definition, Xi, Yi and Zi denote the Pauli matrices acting on qubit i. The graph state |G⟩ that is
associated with G is the common eigenstate of all stabilizing operators with eigenvalue +1, i.e.,

gi |G⟩ = |G⟩ , for i = 1, . . . , n. (1.9)
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1.2 Graph states

Figure 1.1: Three exemplary graph
states: (a) For three qubits, the GHZ
state and the LC state coincide. The
star graph in (b) corresponds to the
GHZ state of n qubits, whereas the
line graph in (c) is associated to the
LC state of n qubits. The figure is
reprinted from [P4].

A few examples of graph states are shown in Fig. 1.1. Fig. 1.1 (a) is equivalent to the 3-qubit
Greenberger–Horne–Zeilinger (GHZ), whereas Fig. 1.1 (b) shows a graph for the n-qubit GHZ
state. The graph state in Fig. 1.1 (c), in turn, is called linear cluster (LC) state. As a more
detailed example we show that the graph state in Fig. 1.1 (b) is indeed equivalent to the n-qubit
GHZ state.

Example 1.6. As an example, we deduce the graph state that corresponds to the star graph in
Fig. 1.1 (b). From Eq. (1.8), we get the stabilizers g1, . . . gn, that are written in the left column
below. By a local basis change for qubits 2, . . . n that maps the eigenstates of the Pauli operator X
to the eigenstates of Z, we can transform the stabilizers to g̃1, . . . g̃n. The transformed stabilizers
are shown in the right column.

g1 = X1Z2Z3 . . . Zn

g2 = Z1X2

g3 = Z1 X3

gn

...= Z1 Xn

Local basis
change−−−−−−−→

g̃1 = X1X2X3 . . . Xn

g̃2 = Z1 Z2

g̃3 = Z1 Z3

g̃n

...= Z1 Zn

For an eigenstate of g̃2, . . . g̃n the state of the qubits 2, . . . , n in the computational basis has to
coincide with the state of the first qubit. The common eigenstate |G̃⟩ is thus a superposition of
the states |00 . . . 0⟩ and |11 . . . 1⟩. Since g̃1 maps these states to each other, we see that both states
have equal weights. We can thus conclude that the common eigenstate of the g̃i is the GHZ state

|G̃⟩ = 1√
2

(|00 . . . 0⟩ + |11 . . . 1⟩). (1.10)

The graph state |G⟩ that corresponds to the star graph in Fig. 1.1 (b) is thus up to local basis
change equivalent to the GHZ state, i.e., they are LU equivalent.

Alternatively, the graph state |G⟩ can also be constructed explicitly by the expression [29]

|G⟩ =
∏

(i,j)∈E

CZ(i,j) |+⟩⊗n
, (1.11)

where E is the set of edges of the graph, CZ(i,j) is the controlled-Z gate acting on qubits i and
j, and |+⟩ = 1√

2 (|0⟩ + |1⟩).
Different graphs may lead to graph states that are connected by a LU transformation, which

does not change the entanglement properties. A special class of LU transformations are local
Clifford operations [29], that can be described by a graphical rule called local complementation.
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1.3 Measurements

Definition 1.7 (Local complementation). A local complementation LCi in vertex i transforms
a graph G = (V,E) into a graph G′ = (V,E′) by inverting the neighbourhood N (i) of vertex i.
For two vertices j, k ∈ N (i), if (j, k) ∈ E then (j, k) /∈ E′ and vice versa. The set of vertices V
is unchanged.

As an example, we show in Fig. 1.2 the graphs that are equivalent under local complementa-
tions to the 4-qubit star graph. We note that the neighborhood of the vertices 2, 3 and 4 only
consists of vertex 1, i.e., N (i) = {1} for i = 2, 3, 4. As a result, a local complementation in
these vertices leaves the graph unchanged. Only a local complementation in the center node 1
has a nontrivial effect. The neighborhood of the center node is N (1) = {2, 3, 4}. As the vertices
{2, 3, 4} are not connected to each other, the local complementation LC1 adds an edge between
all the vertices {2, 3, 4}. The local complementation LC1 thus results in the fully connected
graph of four vertices in Fig. 1.2 (b). We note that the star graph can be retrieved from the fully
connected graph by a local complementation in any vertex.

Figure 1.2: Local complementation of the 4-qubit star graph. The star graph in (a) is equivalent
to the fully connected graph in (b). The graph (a) is transformed into the graph (b) and vice
versa by a local complementation in vertex 1, i.e., LC1.

1.3 Measurements
So far, we have discussed the description of quantum states. We have seen that composite
system exhibit entangled states. The discussion was, however, limited to the theoretical aspects
and detached from how properties of the states can be inferred by measurements. In this section,
we therefore explain how measurements are described in quantum theory [28, 30].

Quantum mechanics postulates the measurement process that is often described as the col-
lapse of the quantum state. The general form of a measurement is given by a set of K measure-
ment operators Ak that fulfill the completeness relation [30]:

K∑
k=1

A†
kAk = 1. (1.12)

Each of the operators Ak is associated to an outcome k of the measurement. In case the system
is described by a state ρ, the probability to obtain result k is given by

pk = Tr
(
AkρA

†
k

)
. (1.13)

Accordingly, the state collapses to

ρk = AkρA
†
k

Tr
(
AkρA

†
k

) . (1.14)
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1.3 Measurements

In the following, we will discuss two kinds of measurements that are commonly used: pro-
jective measurements and positive operator valued measures (POVMs).

1.3.1 Projective measurements

The first type are projective measurements. In this case, the measurement operators Ak are
orthogonal projectors, i.e., Ak = Pk. Orthogonal projectors are Hermitian operators with the
property

PkPl = δklPk. (1.15)
Projective measurements are directly connected to observables and thus play an important role.
An observable O in quantum mechanics is a Hermitian operator. As O is Hermitian, there exist
a spectral decomposition [27]

O =
∑
i

λiPi, (1.16)

where λi are the eigenvalues and Pi the projectors on the corresponding eigenspaces. The eigen-
values are identified with the possible measurement outcomes of the observable O and the pro-
jectors Pi as the measurement operators. The probability to obtain result λi is then given by
Eq. (1.13), which takes the form

pi = Tr
(
PiρP

†
i

)
= Tr (ρPi) . (1.17)

The expectation value of an observable is accordingly given by

⟨O⟩ =
∑
i

piλi =
∑
i

Tr (ρPi)λi = Tr (ρO) . (1.18)

1.3.2 Positive operator valued measures (POVMs)

Another, more general type of measurement is a POVM. A POVM is a set of positive operators
Ek that sum up to identity, i.e.,

K∑
k=1

Ek = 1 with E†
k = Ek, Ek ≥ 0 for k = 1, . . . ,K. (1.19)

The operators Ek are called effects and each effect is associated to a possible outcome of the
POVM. The result k is observed with probability

pk = Tr (ρEk) . (1.20)

We note, however, that a POVM does not fix the post-measurement state. The effects are related
to the measurement operators by Ek = A†

kAk. We can thus conclude that the effects Ek fix the
measurement operators, but there is the freedom to choose a unitary, e.g., Ak = Uk

√
Ek.

As an example, we discuss two POVMs for a qubit. We note that for qubits, polyhedra
inscribed in the Bloch sphere define POVMs. The vertices of the polyhedra correspond to the
effects. We stress, however, that the effects have to be normalized to match the condition in
Eq. (1.19). Fig. 1.3 shows two polyhedra that are commonly used: the tetrahedron and the
octahedron. For the tetrahedron, the states that correspond to the Bloch vectors are given by

|t1⟩ = |0⟩ , |t2⟩ = 1√
3

|0⟩ +
√

2
3 |1⟩ ,

|t3⟩ = 1√
3

|0⟩ +
√

2
3e

2iπ/3 |1⟩ , |t4⟩ = 1√
3

|0⟩ +
√

2
3e

4iπ/3 |1⟩ . (1.21)
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1.3 Measurements

Figure 1.3: Examples of POVMs for a single qubit. For a qubit, POVMs can be described by
polyhedra that are inscribed in the Bloch sphere. The effects are associated to the vertices of the
polyhedra. The POVM described by the tetrahedron in (a) thus has four effects, whereas the
octahedron in (b) defines a POVM with six effects. The octahedron describes the Pauli-POVM.

The set of effects is thus given by E =
{ 1

2 |t1⟩⟨t1| , 1
2 |t2⟩⟨t2| , 1

2 |t3⟩⟨t3| , 1
2 |t4⟩⟨t4|

}
.

The vertices of the octahedron can be identified with the eigenstates of the Pauli matrices,
which we denote by |x±⟩ for the Pauli operator X. Correspondingly |y±⟩ and |z±⟩ refer to the
eigenstates of Y and Z respectively. The normalized effects are then given by

E =
{

1
3
∣∣x+〉〈x+∣∣ , 1

3
∣∣x−〉〈x−∣∣ , 1

3
∣∣y+〉〈y+∣∣ , 1

3
∣∣y−〉〈y−∣∣ , 1

3
∣∣z+〉〈z+∣∣ , 1

3
∣∣z−〉〈z−∣∣} . (1.22)

For this reason the octahedron is associated to the Pauli-POVM.
To answer the question of how POVMs can be implemented, we first point out Naimark’s

theorem [28, 30].

Theorem 1.8 (Naimark’s theorem). For any POVM {Ek} in a Hilbert space H, there exists an
isometry A : H → H ⊗ HA to a larger Hilbert space H ⊗ HA such that

Ek = A†(1 ⊗ |k⟩⟨k|)A, (1.23)

where {|k⟩} is a basis of the ancilla system HA.

Proof. The map A : H → H ⊗ HA, A =
∑
k

√
Ek ⊗ |k⟩ is an isometry as

A†A =
∑
k,l

√
Ek
√
El ⟨k|l⟩ =

∑
k

Ek = 1. (1.24)

Moreover, A maps the projectors 1 ⊗ |k⟩⟨k| to the effects of the POVM, i.e.,

A†(1 ⊗ |k⟩⟨k|)A =
(∑

m

√
Em ⊗ ⟨m|

)
(1 ⊗ |k⟩⟨k|)

(∑
n

√
En ⊗ |n⟩

)
=
∑
m

√
Em
√
En ⟨m|k⟩ ⟨k|n⟩ = Ek.

(1.25)

Naimark’s theorem provides a way to implement a POVM. For this the Hilbert space H is
extended by an ancilla system HA. The state ρ ∈ H is accordingly transformed to the dilated
Hilbert space by AρA†. The projective measurement 1 ⊗ |k⟩⟨k| then yields the same statistics as
the POVM, i.e.,

Tr
(
(1 ⊗ |k⟩⟨k|)AρA†) = Tr

(
A†(1 ⊗ |k⟩⟨k|)Aρ

)
= Tr (Ekρ) = pk. (1.26)
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1.4 Entanglement detection

We note that the projective measurement on the ancilla yields probabilistic results. In this
regard, the POVM can be viewed as a randomized measurement, where the randomness is
introduced by the ancilla system [30]. This raises the question whether a POVM can also
be implemented by using a classical source of randomness. As an example, we consider the
Pauli-POVM described by the octahedron in Fig. 1.3. The effects of this POVM consist of the
eigenstates of the Pauli matrices. For this reason, we consider the projective measurement of the
Pauli observables Mσ = {σx, σy, σz}. We moreover assume that the measurement implements
the Pauli observables at random and with equal probability, i.e., px = py = pz = 1

3 . With the
knowledge about the performed measurement to possible outcomes are thus {x±, y±, z±}. The
probability to observe an outcome k ∈ {x±, y±, z±} is then given by the probability

pk = p(σ(k))p(k|σ(k)) = 1
3 Tr (ρ |k⟩⟨k|) = Tr

(
ρ

1
3 |k⟩⟨k|

)
= Tr (ρEk) , (1.27)

where the Pauli observable σ(k) that is associated to result k is chosen with probability p(σ(k))
and the conditional probability to subsequently obtain the outcome k is p(k|σ(k)). In the above
equation, we have identified the effects of the Pauli-POVM that are given in Eq. (1.22). The
probabilities coincide with the statistics of the Pauli-POVM and we can conclude that the Pauli-
POVM can be simulated by classical randomization of projective measurements. We note, how-
ever, that not all POVMs can be simulated classically by randomization and post-processing
[31].

1.4 Entanglement detection
We now elaborate on how to decide whether a state |ψ⟩ is entangled or not. There are various
methods to detect entanglement [17]. On the one hand there are criteria that require knowledge
of the density matrix, like the criteria of the positive partial transpose (PPT) [32, 33] or the com-
putable cross norm or realignment (CCNR) criterion [34, 35]. The PPT criterion needs insight
in the eigenvalues of the partial transpose of the density matrix, whereas the CCNR criterion is
formulated in terms of the singular values of the density matrix. As for large quantum systems it
is infeasible to reconstruct the density matrix [16], alternative methods have to be used. In this
section, we discuss methods that require only the measurement of specific observables. First,
we will discuss entanglement witnesses. But we will also introduce spin-squeezing inequalities,
that rely on the expectation values of the total angular momenta, and Bell inequalities, which
for graph states involve the expectation values of stabilizer operators.

1.4.1 Entanglement witnesses

An observable whose expectation value is positive for all separable states is referred to as an
entanglement witness. This is formalized in the definition below [17].

Definition 1.9. An entanglement witness W is an observable that fulfills:

(i) Tr (ρW) ≥ 0 for all separable states,

(ii) Tr (ρW) < 0 for at least one entangled state.

Measuring a negative expectation value ⟨W⟩ρ < 0 classifies the state ρ as entangled. From a
geometric point of view, an entanglement witness is a hyperplane that splits the space of density
matrices into two parts: the sector with Tr (ρW) ≥ 0 and the one with Tr (ρW) < 0. This is
depicted in Fig. 1.4. The subset of separable states is completely in the part with Tr (ρW) ≥ 0.
In contrast, the region of entangled state for which Tr (ρW) < 0 is detected as entangled by the

16



1.4 Entanglement detection

Figure 1.4: Schematic representation of an entanglement witness W. W splits the set of density
matrices into two parts with Tr (ρW) ≥ 0 and Tr (ρW) < 0, respectively. The subset of separable
states are in the section with Tr (ρW) ≥ 0 and all states in the part with Tr (ρW) < 0 are detected
as entangled.

witness W. The geometric picture moreover suggests that it is possible to find a hyperplane for
any entangled state that separates it from the set of separable states, i.e., for any entangled state
there exists a witness that detects the state as entangled. This was formally shown in [33].

As a first example, we discuss fidelity witnesses. Fidelity witnesses for an entangled state |ψ⟩
have the form [17, 36]

W = α1 − |ψ⟩⟨ψ| . (1.28)

Depending on the different kinds of entanglement that should be witnessed, α has to be chosen
accordingly. For example, if one likes to detect that a state is not fully separable, α has to
be chosen as the maximal fidelity of a fully separable state with the target state |ψ⟩, i.e., α =
maxρ∈SEP Tr (ρW), where SEP denotes the set of separable states. We note that this results in
a witness that detects any entanglement in the state. In case, the witness should detect genuine
n-partite entanglement, α has to be chosen as the maximal fidelity with the target state |ψ⟩ that
can be achieved with biseparable states, i.e., α = maxρ∈BISEP Tr (ρW). BISEP refers to the set
of biseparable, i.e., states that are 2-separable.

For a graph state |G⟩ the maximal fidelity with a biseparable state is upper bounded by 1
2

[37]. The witness
W = 1

21 − |G⟩⟨G| (1.29)

thus detects GME [38]. We conclude this section by a brief description of how this witness can
be measured. The projector on the graph state |G⟩ can be expressed in terms of all stabilizers S
of the stabilizer group S:

|G⟩⟨G| = 1
2n
∑
S∈S

S. (1.30)

It it thus possible to evaluate the witness in Eq. (1.29) by measuring all stabilizers, which each
constitute a string of Pauli operators. In this regard, the approach only relies on local measure-
ments. The stabilizer group S, however, consists of 2n elements, where n is the number of qubits
of the graph state. For this reason, it becomes quickly infeasible to measure all stabilizers with an
increasing number of qubits n. A possible solution is to use a randomized measurement scheme.
Ref. [18] introduces a method that is based random sampling of Pauli strings to estimate the
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1.4 Entanglement detection

fidelity. The Pauli strings are chosen according to a probability distribution that is determined
by the target state. Especially, they show that for stabilizer states the total number of state
samples is independent of the system size. Another approach is to find entanglement witnesses
that require by construction less measurement resources. For example the stabilizer sum witness

W = (n− 1)1 −
n∑
k=1

gk (1.31)

detects GME just from the measurement of the n generators gk of the stabilizer group [36, 38].

1.4.2 Spin-squeezing inequalities

Another approach to detect entanglement uses spin-squeezing inequalities that are especially
useful in n-partite systems with large n. The presentation in this section follows [P3]. Spin-
squeezing was first introduced in the context of metrology. It was recognized that the precision
of a measurement can be increased with the help of spin-squeezed states [9, 10, 39–42]. The
conditions for spin-squeezing are commonly expressed in terms of the first and second moments
of the angular momentum operator. In direction α = x, y, z, the angular momentum operator of
an n-qubit system is given by

Jα = 1
2

n∑
i=1

σ(i)
α , (1.32)

where σ(i)
α is the corresponding Pauli matrix for qubit i. In a simplified view, the variance in

a direction orthogonal to the mean spin direction is reduced for a spin-squeezed state. This is
reflected for instance by the spin-squeezing parameter ξR in Ref. [10]. A state that fulfills

ξ2
R = n(∆Jn⊥)2

|⟨J⟩|2
< 1 (1.33)

is called spin-squeezed. In the above equation, ⟨J⟩ = (⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) is the mean spin direction,
i.e., the expectation value of the angular momentum vector. (∆Jn⊥)2 denotes the smallest
variance of the spin in a direction n⊥ orthogonal to the mean spin direction. This definition is
similar to squeezed states of light, where the state also exhibits a reduced variance in a direction
in phase space [43]. In Ref. [10], spin-squeezed states are used to improve the sensitivity in
Ramsey spectroscopy. Experimentally, spin-squeezed states have been successfully prepared in
atomic ensembles and especially in Bose-Einstein condensates [44–51].

The advantage of spin-squeezed states in metrology is due to quantum-mechanical correlations
between the particles [9]. A connection to entanglement was first shown in Ref. [52]. All states
that are fully separable fulfill the inequality

n(∆Jz)2

⟨Jx⟩2 + ⟨Jy⟩2 ≥ 1. (1.34)

Thus, a violation implies that the state is entangled. After the formulation of the first spin-
squeezing inequality, many other criteria have been found [53–57]. For large systems quantum
state tomography quickly becomes infeasible [16]. Spin-squeezing inequalities, however, have the
advantage that they also can be directly determined by measuring the first and second moment of
the total angular momentum operator, which requires fewer measurements than quantum state
tomography [58]. Spin-squeezing inequalities have thus been readily applied in experiments [52,
59–62]. For example, the original spin-squeezing inequality is introduced in Ref. [52] to verify
entanglement in a Bose-Einstein condensate.
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1.4 Entanglement detection

After the discovery of the original spin-squeezing inequality given by Eq. (1.34), refined spin-
squeezing inequalities have been found. Here, we will focus on the optimal spin-squeezing in-
equalities formulated in Refs. [56, 57]. The aim of these inequalities is to detect entanglement
and thus they differ from the spin-squeezing inequalities used in metrology. Though, they are of
the same form and use both the first and second moments of the angular momentum operators
given in Eq. (1.32):

〈
J2
x

〉
+
〈
J2
y

〉
+
〈
J2
z

〉
≤ n(n+ 2)

4 , (1.35a)

(∆Jx)2 + (∆Jy)2 + (∆Jz)2 ≥ n

2 , (1.35b)〈
J2
k

〉
+
〈
J2
l

〉
− n

2 ≤ (n− 1)(∆Jm)2, (1.35c)

(n− 1)
[
(∆Jk)2 + (∆Jl)2] ≥

〈
J2
m

〉
+ n(n− 2)

4 . (1.35d)

The above inequalities are fulfilled by all fully separable states that are defined in Def. 1.3. Due to
the limited information in terms of the first and second moments of the total angular momenta,
the characterization of entanglement is not complete. The optimal spin-squeezing inequalities
[56, 57] detect the maximal amount of entangled states that can be extracted from the first and
second moments of the total angular momenta. In contrast to entanglement witnesses, however,
spin-squeezing inequalities are usually non-linear in the quantum state as they involve second
moments. In Eq. (1.35), (k, l,m) is a permutation of (x, y, z). Whereas Eq. (1.35a) is valid for all
quantum states, a violation of Eqs. (1.35b)–(1.35d) implies entanglement. For fixed mean spin
(⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩), the inequalities in Eq. (1.35) define a polytope in the space of (⟨J2

x⟩, ⟨J2
y ⟩, ⟨J2

z ⟩)
[57]. This is exemplary shown for (⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) = (0, 0, 0) in Fig. 1.5. In the limit N → ∞
but also for special cases of finite N , there exists a separable state for all points inside the
polytope. In these cases the inequalities identify the maximal amount of entangled states that
can be detected by the first and second moments of the angular momentum operators.

For example, Eq. (1.35b) detects many-body singlet states as entangled [57]. These states are
eigenstates of the total angular momentum J⃗ with eigenvalue zero, i.e.,

(⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) = (0, 0, 0),
(⟨J2

x⟩, ⟨J2
y ⟩, ⟨J2

z ⟩) = (0, 0, 0).
(1.36)

Figure 1.5: Polytope in the space of (⟨J2
x⟩, ⟨J2

y ⟩, ⟨J2
z ⟩) defined by the spin-squeezing inequalities

in Eq. (1.35). For (⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) = (0, 0, 0) all separable state lie within the blue polytope.
The figure is reprinted from [57].
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Figure 1.6: Visualization of the singlet state
|Ψ−⟩ (red) and the Dicke state

∣∣DN,N/2
〉

(blue)
on the collective Bloch sphere [63]. Singlet
states are characterized by vanishing mean spin
⟨J⃗⟩ = 0 and variances. Hence, the singlet state
|Ψ−⟩ corresponds to the red dot at the origin.
The Dicke state

∣∣DN,N/2
〉

is also at the origin,
though it has a nonzero variance in the x-y plane
that is shown by the blue shaded area. The fig-
ure is reprinted from [P3].

As the left-hand side of Eq. (1.35b) is non-negative, we see that Eq. (1.35b) is maximally violated
by the many-body singlet states. To visualize the state, we can make use of the collective Bloch
sphere [63]. In this representation the mean spin of the states is plotted. In addition, the
variances (∆Jx)2, (∆Jy)2, (∆Jz)2 are used to give the uncertainty. For many-body singlet states,
both the mean spin and the variances are zero. Hence, many-body singlet states correspond to
the red dot at the origin in Fig. 1.6. A specific example of a many-body singlet state for an even
number of qubits N is given by ∣∣Ψ−〉 =

N/2⊗
k=1

∣∣ψ−〉 , (1.37)

with the two-qubit singlet state |ψ−⟩ = 1√
2 (|01⟩−|10⟩). We show in App. A.3.1 that |Ψ−⟩ indeed

fulfills the defining property in Eq. (1.36).
The inequality in Eq. (1.35c) is in turn maximally violated by the symmetric Dicke state∣∣DN,N/2

〉
with m = N

2 excitations [57]. For m excitations, the symmetric Dicke state is defined
as

|DN,m⟩ =
(
N

m

)− 1
2 ∑

k

Pk(|11, . . . , 1m, 0m+1, . . . , 0N ⟩), (1.38)

where the sum iterates over all distinct permutations Pk of the qubits and
(
N
m

)
denotes the

binomial coefficient. The first and second moments of the angular momenta of the Dicke states
are

(⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) =
(

0, 0, N2 −m

)
,

(⟨J2
x⟩, ⟨J2

y ⟩, ⟨J2
z ⟩) =

(
N

4 + m(N −m)
2 ,

N

4 + m(N −m)
2 , [N2 −m]2

)
.

(1.39)

Hence, the Dicke state |DN,N/2⟩ with m = N
2 excitations is also located at the origin of the

collective Bloch sphere. However, the variances (∆Jx)2 and (∆Jy)2 are nonzero. They are of the
order O(N2), which is of the same magnitude as the radius of the Bloch sphere. This is shown
as the blue circle in Fig. 1.6.

Finally, many-body singlet states violate also the fourth spin-squeezing inequality (1.35d)
[57].

1.4.3 Bell inequalities

Another approach to detect entanglement are Bell inequalities. Though, the primary goal of Bell
inequalities is to exclude nonclassical correlations. In this section, we first consider the bipartite
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case and discuss the CHSH inequality as an example. In doing so, we point out the relation to
entanglement. Finally, we discuss multipartite Bell inequalities.

Bipartite case

Let us consider the bipartite Bell scenario in Fig. 1.7. The two parts are referred to as Alice (A)
and Bob (B). The source S distributes an entangled pair of particles between Alice and Bob.
Both, Alice and Bob can then choose their setting i and j to perform the corresponding mea-
surement on the particles. The outcomes of the measurements are denoted a and b, respectively.
In this section, we will consider the scenario that both parties can choose from two measurement
settings, i.e., Alice can choose between the measurements A1, A2 and Bob between B1 and B2.
All observables are, moreover, dichotomic, i.e., they exhibit two possible outcomes a, b ∈ {−1, 1}.
In the following we provide the argument for the CHSH inequality as presented in Ref. [64]. For
the derivation, we need the following properties of a probability measure P. Probability measures
are introduced in Sec. 2.1.

Consider two events X and Y . We say X implies Y , i.e., X ⇒ Y , if X ⊆ Y . It thus holds

(X ⇒ Y ) ⇒ P(X) ≤ P(Y ),
P(X ∪ Y ) ≤ P(X) + P(Y ).

(1.40)

Under the assumptions that the measurement setting i and outcome a do not influence the
measurement Bj and vice versa (locality) the following implication for the observables Ai and
Bj holds:

(A1 = B1) ∩ (A1 = B2) ∩ (A2 = B1) ⇒ (A2 = B2). (1.41)

The CHSH inequality can be derived from the negation

(A2 ̸= B2) ⇒ (A1 ̸= B1) ∪ (A1 ̸= B2) ∪ (A2 ̸= B1). (1.42)

From Eq. (1.40) follows for the probability

P(A2 ̸= B2) ≤ P(A1 ̸= B1) + P(A1 ̸= B2) + P(A2 ̸= B1). (1.43)

To arrive at the inequality in terms of expectation values, we note that P(Ai ̸= Bj) = 1−P(Ai =
Bj). The above inequality can thus be equivalently written as

−P(A2 = B2) ≤ 2 − P(A1 = B1) − P(A1 = B2) − P(A2 = B1). (1.44)

Figure 1.7: Bipartite Bell scenario. The source S prepares an entangled qubit pair and sends
one qubit to each party, Alice (A) and Bob (B), respectively. Alice and Bob both can choose
their measurement settings i and j and obtain the outcomes a and b.
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1.4 Entanglement detection

The sum of Eqs. (1.43) and (1.44) thus yields

[P(A1 = B1) − P(A1 ̸= B1)] + [P(A1 = B2) − P(A1 ̸= B2)]
+ [P(A2 = B1) − P(A2 ̸= B1)] − [P(A2 = B2) − P(A2 ̸= B2)] ≤ 2.

(1.45)

As Ai and Bj are dichotomic observables with outcomes {±1}, we have AiBj = 1 for Ai = Bj
and AiBj = −1 for Ai ̸= Bj . The expressions in square brackets are thus the expectation values,
which yields the CHSH inequality

⟨A1B1⟩ + ⟨A1B2⟩ + ⟨A2B1⟩ − ⟨A2B2⟩ ≤ 2. (1.46)

The CHSH inequality is derived under the assumption of locality. The idea of a local theory
can be further formalized [7]. For this, one can define a variable λ that describes all information
that can have a causal influence on both Alice and Bob. The measurements Alice and Bob
perform on their system on the other hand are space-like separated and cannot influence each
other under the locality assumption. The probabilities thus factorize in the sense

P(ab|ij, λ) = P(a|i, λ)P(b|j, λ). (1.47)

By integrating over the probability distribution P(λ) we can derive the probabilities to obtain
results a, b when Alice and Bob have chosen the measurement settings i, j, i.e.,

P(ab|ij) =
∫
dP(λ)P(a|i, λ)P(b|j, λ). (1.48)

A local theory that satisfies the above equation is also referred to as LHV model.
Finally, we can consider the probability distribution that is generated by a separable bipartite

state ρAB =
∑
k pkρ

A
k ⊗ρBk defined in Def. 1.2. We consider projective measurements and denote

the projectors for the outcome a, b of the observables Ai, Bj as Ma|i and Mb|j , respectively. The
probability distribution for a separable state is thus

P(ab|ij) = Tr
(
ρABMa|i ⊗Mb|j

)
=
∑
k

pk Tr
(
ρAkMa|i

)
Tr
(
ρBkMb|j

)
, (1.49)

which with the identification P(a|i, λ) = Tr
(
ρAλMa|i

)
and P(b|i, λ) = Tr

(
ρBλMb|i

)
is of the form

of a local theory in Eq. (1.48). We can conclude that the statistics of a separable state can
be described by a local theory. Conversely, if the statistics cannot be written in the form of
Eq. (1.48), e.g., if a violation of a Bell inequality is observed, the state must be entangled.

Multipartite case

The notion of a local theory can be extended to n parties. The parties can choose their mea-
surement settings i1, . . . , in and accordingly measure the observable Ai1 , . . . , Ain . We denote the
outcomes of the measurements as a1, . . . , an. The probability distribution in a local theory of n
parties takes the form [65]

P(a1 . . . an|i1 . . . in) =
∫
dP(λ)P(a1|i1, λ) . . .P(an|in, λ). (1.50)

Ref. [65] derived a Bell inequality that is commonly referred to as Mermin’s inequality:

BM = 1
2i
[
(X + iY )⊗n − (X − iY )⊗n] . (1.51)
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1.4 Entanglement detection

The classical bound that can be achieved by a LHV model is given by

⟨BM⟩LHV ≤ CM =
{

2n/2, for even n

2(n−1)/2, for odd n.
(1.52)

The maximal value of Mermin’s inequality is achieved for the GHZ state with QM = ⟨BM⟩GHZ =
2n−1. Mermin’s inequality thus exhibits a relative violation D = QM/CM that increases exponen-
tially with n. This makes Mermin’s inequality more resistant to noise. Let us for example consider
the effect of depolarisation noise, i.e., the state is given by ρ = p |GHZ⟩⟨GHZ| + (1 − p)1/2n.
From Eq. (1.51) it is apparent that Mermin’s inequality only contains full correlation terms. As
a result, the expectation value of the maximally mixed state is zero and we get

⟨BM⟩ρ = p×QM. (1.53)

To observe a violation it is thus sufficient to prepare the GHZ state with probability p >

CM/QM = 2− n−2
2 (2− n−1

2 ) for even (odd) n. With increasing number of qubits, Mermin’s
inequality can thus tolerate an exponentially increasing amount of noise.

We now shift the discussion to Bell inequalities for graph states. We note that all graph
states that contain at least one edge violate the Bell inequality that consists of all stabilizing
operators [66], i.e.,

B =
∑
S∈S

S. (1.54)

In the above Bell operator, S denotes the stabilizer group. We have seen above that the power of
a Bell inequality can be measured in terms of the relative violation. In this sense, however, the
Bell operator in Eq. (1.54) is not optimal for many graph states [67]. Instead Bell operators that
only consist of a subset of the stabilizers often yield a higher relative violation. For example,
also Mermin’s inequality in Eq. (1.51) can be written in terms of the stabilizers of the GHZ state.
The Bell operator

BGHZ
n = g1

n∏
i=2

(1 + gi) (1.55)

is up to local unitary transformations equivalent to Mermin’s inequality in Eq. (1.51) [17]. We
stress that BGHZ

n only contains half of the stabilizers as opposed to all 2n−1 stabilizers in
Eq. (1.54).

We have seen in Sec. 1.2 that for three qubits the GHZ and the LC state can be represented
by the same graph state. Therefore, in the case of three qubits both states are equivalent up
to local unitary transformations. Based on this, it is possible to derive a Bell inequality that is
maximally violated by the LC state of three qubits. In terms of the stabilizers of the LC state,
the Bell inequality reads [67–70]

BLC
n=3 = (1 + g1)g2(1 + g3). (1.56)

It has been shown in [71] that the above Bell inequality can be generalized to LC states which
contain a number of qubits that is a multiple of three. The generalized Bell inequality reads

BLC
n =

n/3∏
i=1

(1 + g3i−2)g3i−1(1 + g3i) (1.57)

and the upper bound for LHV models is given by

⟨BLC
n ⟩LHV ≤ 2n/3 = CLC. (1.58)
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As the Bell operator in Eq. (1.57) is expressed in terms of stabilizers that have a maximal eigen-
value of 1, we observe that the maximal violation is indeed obtained for the LC state with
QLC = ⟨BLC

n ⟩LC = 4n/3. We conclude that also the Bell inequality for the LC state in Eq. 1.57
allows for an exponential violation of the classical bound as QLC/CLC = 2n/3.

As a final remark, we point out that a violation of the Bell inequalities in this section does
not imply genuine multipartite nonlocality. A violation of the Bell inequalities is a contradiction
to the multipartite LHV model in Eq. (1.50). This model can already be violated in case two
parties share nonclassical correlations. A generalization to genuine multipartite nonlocality is
established by Svetlichny’s inequality [72].

1.5 Randomized measurements
All entanglement criteria that we have introduced so far use explicit measurement settings. In
this section we will discuss to what extent a quantum system can be characterized by randomized
measurements. This approach relies on performing measurements on the system in random bases.
We first motivate the detection of entanglement with randomized measurements and describe
the advantages of the approach. Accordingly, we formalize the method. In doing so, we discuss
that the outcome distribution of randomized measurements can be characterized by its moments.
Finally, we introduce LU invariants and discuss the complete set of LU invariants for two qubits.

1.5.1 Motivation

To motivate the use of randomized measurements in the detection of entanglement, we first note
that the Bell state |ψ−⟩ = 1/

√
2(|01⟩ − |10⟩) is invariant under unitary transformations of the

form U ⊗ U , i.e.,
U ⊗ U

∣∣ψ−〉 = eiϕ
∣∣ψ−〉 (1.59)

for some phase ϕ ∈ [−π, π). The measurement outcomes of the Bell state |ψ−⟩ are thus perfectly
correlated in any basis as long as the basis coincides for both parties. In fact, it is a general
property of entanglement to be invariant under LU transformations [17]. This poses the question,
what we can learn in case the measurement bases of the two parties are chosen independently.

For this purpose, we consider the observable

σ(A)
u1

⊗ σ(B)
u2
. (1.60)

σu = u·σ denotes a rotated Pauli matrix with eigenbasis |u±⟩ that corresponds to the points ±u
on the Bloch sphere. We choose u1,u2 at random according to the uniform distribution on the
Bloch sphere. The observable in Eq. (1.60) thus corresponds to measurements in random bases.
Fig. 1.8 shows two outcome distributions of the observable σ(A)

u1 ⊗σ(B)
u2 for 10000 random directions

u1 and u2. The measurements are simulated for the product state |00⟩ and the maximally
entangled Bell state |ψ−⟩. The distributions of the two states in Fig. 1.8 differ significantly. This
shows that the outcome distributions of randomized measurements can be used to characterize
properties of the state at least to some extent. And it turns out that especially entanglement
can be detected by randomized measurements [25].

We conclude this section by discussing the advantages of randomized measurements. On the
one hand, randomized measurements do not require to align the measurement bases [23, 25].
This is especially relevant in case the measurements are performed on distant parties, when it is
challenging to align the reference frames.

On the other hand, the approach is insensitive to specific kinds of noise [73–75]. In case
randomized measurements are chosen according to the Haar measure, i.e., the measurement
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Figure 1.8: Binned outcome distribution of the observable σ(A)
u1 ⊗σ(B)

u2 for 10000 random directions
u1 and u2. The distribution is shown for the product state |00⟩ and the Bell state |ψ−⟩.

bases are sampled uniformly, the approach is insensitive to unitary noise [25]. This is useful as
the effect of a noisy environment can often be described by random unitary rotations. This,
however, does not change the sampling of the measurements.

Finally, randomized measurements allow to directly infer properties like entanglement [23,
24]. It is thus not necessary to reconstruct the density matrix of the system. As a result the
method scales well to large system sizes.

1.5.2 Moments of the outcome distributions

In this section, we are interested in randomized measurements where the measurement on each
part is rotated by a LU transformation. We assume a quantum system of n parts described by
a density matrix ρ. The random sampling of the local measurement bases can equivalently be
described by LU transformations of the quantum state, i.e., ρ 7→ (U1 ⊗ . . .⊗Un)ρ(U †

1 ⊗ . . .⊗U †
n).

Accordingly, an observable M is measured. The outcome distribution can be described by its
moments

R(t)
M(ρ) :=

∫
dU1 . . .

∫
dUn Tr

[
(U1 ⊗ . . .⊗ Un)ρ(U†

1 ⊗ . . .⊗ U†
n)M

]t
. (1.61)

Typically, the randomized measurement schemes are formulated for product observables [P2],
i.e., observables of the form

M = M1 ⊗ . . .⊗Mn. (1.62)

We note, however, that a general observable can be decomposed into product observables. The
results for non-product observables can thus be derived from the data of product observables
and classical postprocessing.

As an example, we illustrate how the state of two qubits can be characterized by the moments
of the outcome distribution in Fig. 1.8. Fig. 1.8 shows the distribution of the observable σ(A)

u1 ⊗σ(B)
u2

where the directions u1 and u2 are sampled uniformly on the Bloch sphere. We note that an
arbitrary unitary U that acts on a qubit can be decomposed in a phase factor and a rotation by
angle ϕ around the direction given by n, i.e., U = eiαRn(ϕ) [76]. The rotation in turn is defined
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as Rn(ϕ) = exp(−iϕn · σ/2). This yields that for a unitary U there exists a unit vector u ∈ R3

such that U †σzU = u · σ. The expectation value ⟨σ(A)
u1 ⊗ σ

(B)
u2 ⟩ can thus be written as

⟨σ(A)
u1

⊗ σ(B)
u2

⟩ = Tr
[
(U1 ⊗ U2)ρ(U†

1 ⊗ U†
2 )σz ⊗ σz

]
. (1.63)

We thus see that the measurement σ(A)
u1 ⊗ σ

(B)
u2 fits into the description with random unitaries.

Accordingly, the second moment can also be written in terms of integrals over the Bloch sphere
S2:

R(2)(ρ) = 1
(4π)2

∫
S2

∫
S2

⟨σ(A)
u1

⊗ σ(B)
u2

⟩2du1du2. (1.64)

It has been shown that for separable states it is R(2) ≤ 1/32 [22]. The second moment thus
yields the entanglement criterion

R(2)(ρ) > 1
32 ⇒ ρ is entangled. (1.65)

1.5.3 Local unitary invariants

The moments R(t)
M(ρ) are invariant under LU transformations. A function f of a quantum state

ρ is invariant under LU transformations if

f
[
(U1 ⊗ . . .⊗ Un)ρ(U †

1 ⊗ . . .⊗ U†
n)
]

= f [ρ] . (1.66)

This poses the question of which quantities apart from the moments R(t)
M(ρ) are LU invariant.

In the two-qubit case, all LU invariants have been classified, which are known as the Makhlin
invariants [77]. The Makhlin invariants are formulated with the help of the Bloch decomposition
for two qubits. A two-qubit state ρ can be written in the form

ρ = 1
4

1 ⊗ 1 + α · σ ⊗ 1 + 1 ⊗ β · σ +
3∑

i,j=1
Tijσi ⊗ σj

 , (1.67)

where α and β are the Bloch vectors of the first and second qubit and T is the correlation matrix.
The Makhlin invariants can be expressed in terms of α,β and T :

I4 = α2, I7 = β2, I2 = Tr
(
TTT

)
,

I12 = αTTβ, I1 = det(T ),

I5 = [αTT ]2, I8 = [Tβ]2, I3 = Tr
(
TTTTTT

)
,

I14 = Tr
[
(⋆α)T (⋆β)TTT

]
,

I13 = αTTTTTβ, I6 = [αTTTT ]2, I9 = [TTTβ]2. (1.68)

The invariants are ordered such that the invariants of second order in the quantum state ρ are
in the first row, the ones of degree three are in the second row, whereas the invariants in the
third and fourth row are of degree three and four, respectively. The invariant I14 is expressed
with the help of the Hodge star ⋆, which is defined as (⋆α)ij =

∑
k ϵijkαk.
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1.6 Shadow tomography
We now discuss the basic idea of shadow tomography. The term shadow tomography was intro-
duced in Ref. [78] for the purpose to estimate the outcomes of observables without reconstructing
the density matrix. As the name suggests the method falls into the category of tomography. It
is thus not the aim to measure the observables directly. Rather, the observables should be es-
timated from the tomographic data. The method thus has to address the problem of how the
recorded data can be efficiently stored. In this section, we will recap the scheme for shadow to-
mography that was proposed in Ref. [26]. The scheme is formulated for qubits and can be broken
down into two separate steps: the data acquisition and the prediction of expectation values from
the recorded data.

We will first discuss the data acquisition. The scheme assumes a system of n-qubits that
is described by the density matrix ρ. As a first step, the state is rotated by a unitary U ,
i.e., ρ → UρU †. The unitary U is chosen randomly from an ensemble U . Common choices
for the ensemble U cover the group of global Clifford circuits Cl(2n) or local Clifford circuits
Cl(2)⊗n, i.e., Pauli measurements. The rotated state is then measured in the computational
basis {|b⟩ | b ∈ {0, 1}n}. In case, where the ensemble U contains a finite number of unitaries, the
data of N repetitions of the experiment is thus of the form

(ik, b̂k), for k = 1, . . . , N, (1.69)

where ik denotes the index of the unitary. After the measurement, the random unitary transfor-
mation can be inverted by U†|b̂⟩⟨b̂|U , where b̂ denotes the outcomes of the measurement in the
computational basis.

To estimate expectation values from the recorded data, the average over both the outcomes
and the unitaries of the final state is considered. This can be viewed as a quantum channel

M(ρ) = E
[
U†|b̂⟩⟨b̂|U

]
= EU

[ ∑
b∈{0,1}n

P(b̂ = b)U †|b̂⟩⟨b̂|U
]
, (1.70)

where EU denotes the average over the unitary ensemble and the probability to observe b in the
computational basis reads P(b̂ = b) = ⟨b|UρU † |b⟩. The unitary ensemble is tomographically
complete if there are no two states σ ̸= ρ that yield the same statistics, i.e., there is a U ∈ U
for which the outcome b has different probabilities ⟨b|UσU † |b⟩ ̸= ⟨b|UρU † |b⟩. In this case, the
channel M can be inverted and

ρ̂ = M−1(U†|b̂⟩⟨b̂|U) (1.71)

is the estimate for the density operator ρ that is connected to the outcome b̂ for the unitary
U . ρ̂ yields in expectation the density operator ρ, i.e., E[ρ̂] = ρ. For special classes of the
unitary ensemble, analytical expressions of the inverse M−1 have been found. For example, for
local Clifford circuits Cl(2)⊗n the unitary transformation decomposes into a product state, i.e.,
U |b̂⟩ =

⊗n
j=1 Uj |b̂j⟩ and the inverse reads

ρ̂ =
n⊗
j=1

(
3U†

j |b̂j⟩⟨b̂j |Uj − 1
)
. (1.72)

On the one hand, the above expression decomposes into a product of single-qubit states. It is thus
not necessary to construct the full density matrix if the goal is to estimate a product observable,
i.e., O =

⊗n
j=1 Oj . On the other hand, Eq. (1.72) only contains Clifford operations that act on

computational basis states. It can thus be efficiently represented in the stabilizer formalism [26,
79]. Each measurement yields a snapshot ρ̂ that can be used to calculate the expectation value
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of an observable O by Tr (ρ̂O). This corresponds to a single-shot estimate, which can be very
noisy. For this reason, the classical shadow in Ref. [26] consists of N snapshots, i.e.,

S(ρ,N) = (ρ̂1, . . . , ρ̂N ) with ρ̂k = M−1(U†
k |b̂k⟩⟨b̂k|Uk). (1.73)

Moreover, Ref. [26] uses the median of means estimation [80] to make the estimation more robust
against outliers. For the median of means estimation, the single-shot estimates (ρ̂1, . . . , ρ̂N ) are
divided into K groups of equal size. For each group, the average estimator ρ̂(k) is calculated by

ρ̂(k) = 1
⌊N/K⌋

k⌊N/K⌋∑
l=(k−1)⌊N/K⌋+1

ρ̂l. (1.74)

The expectation value of an observable O is then estimated by the median of the estimates of
each group:

ô(N,K) = median
[
Tr
(
ρ̂(1)O

)
, . . . ,Tr

(
ρ̂(K)O

)]
. (1.75)

What are the benefits of shadow tomography? To answer this question, Ref. [26] derived
bounds on the sample complexity. For this purpose, the shadow norm is introduced that upper
bounds the variance of an estimate. Let us consider an observable O and a single classical
shadow ρ̂. From the above discussion, the expectation value ⟨O⟩ is estimated by ô = Tr (ρ̂O).
The variance Var(ô) = E[(ô− E[ô])2] is upper bounded by

Var(ô) ≤
∥∥∥∥O − Tr (O)

2n 1

∥∥∥∥2

shadow
, (1.76)

where the shadow norm is defined as

∥O∥shadow := max
σ

EU
∑

b∈{0,1}n

⟨b|UσU † |b⟩ ⟨b|UM−1(O)U † |b⟩2

1/2

. (1.77)

The shadow norm is derived by maximizing the variance over all states σ. In this sense, it
describes the variance in the worst case scenario. The shadow norm is thus independent of the
quantum state and only depends on the unitary ensemble. With the help of the shadow norm,
Ref. [26] formulates the following theorem that assesses the sample complexity.

Theorem 1.10. Fix a measurement primitive U , a collection O1, . . . , OM of 2n × 2n Hermitian
matrices and accuracy parameters ϵ, δ ∈ [0, 1]. Set

K = 2 log(2M/δ) and N = 34
ϵ2

max
1≤i≤M

∥∥∥∥Oi − Tr (Oi)
22 1

∥∥∥∥2

shadow
. (1.78)

Then, a collection of NK independent classical shadows allow for accurately predicting all fea-
tures via median of means prediction:

|ôi(N,K) − Tr (ρOi) | ≤ ϵ for all 1 ≤ i ≤ M (1.79)

with probability at least 1 − δ.

We conclude this section, by pointing out that the class of observables that can be efficiently
predicted by shadow tomography depends on the unitary ensemble. To illustrate this, we note
that for the example of Pauli measurements the shadow norm is upper bounded by∥∥∥∥O − Tr (O)

2n 1

∥∥∥∥2

shadow
≤ 4locality(O)∥O∥2

∞, (1.80)
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where locality(O) denotes the number of qubits on which O is acting non-trivially. We can thus
conclude that shadow tomography based on Pauli measurements works best for observables that
act only on few qubits.
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2 Statistical tools
Statistical tools are necessary in quantum theory from two points of view. On the one hand,
any physical theory has to be tested experimentally. The outcomes of experiments are, however,
subjected to statistical fluctuations. To evaluate the results, it is thus necessary to perform a
statistical analysis. On the other hand, quantum theory is also a statistical theory in itself. It
only predicts the probabilities of the outcomes. For this reason, we will review some statistical
methods in this section.

2.1 Probability and random variables
We start this section by introducing the basic terms in probability theory [81, 82]. The set of
possible outcomes of an experiment is called sample space Ω. On the sample space Ω, a σ-algebra
A can be introduced, which formalizes the notation of an event. A σ-algebra is a set of subsets
of Ω.

Definition 2.1 (σ-algebra). A set A ⊆ P(Ω) of the power set P (Ω) of the sample space Ω is
called σ-algebra if

(i) ∅ ∈ A,

(ii) if A ∈ A then Ac ∈ A,

(iii) Aj ∈ A for all j ∈ N implies
⋃
j∈NAj ∈ A.

In the above definition, Ac = Ω\A denotes the complement. The elements in A correspond to
the events we would like to assign probabilities to. For this, a probability measure P is defined.

Definition 2.2 (Probability measure). A function P : A → R+ from a σ-algebra A to the
positive real numbers R+ is called probability measure or probability distribution if

(i) for disjoint Aj ∈ A with j ∈ N it is P
(⋃

· j∈NAj

)
=
∑
j∈N P(Aj),

(ii) P(Ω) = 1.

To put differently, a probability measure is additive for exclusive events and the probability
for the certain event, i.e., to observe an outcome from the sample space Ω, is one. In this
sense, a POVM gives rise to a probability measure for any quantum state ρ. POVMs have been
introduced in Sec. 1.3.2. The triple (Ω,A,P) is called a probability space. On a probability space,
random variables can be defined.

Definition 2.3 (Random variable). Suppose (Ω,A,P) is a probability space. A random variable
X is a mapping

X : Ω → Ω′ (2.1)

to another non-empty set Ω′ with σ-algebra A′, such that

∀A ∈ A′ : X−1(A′) ∈ A. (2.2)

The inverse is defined as X−1(A′) := {ω ∈ Ω : X(ω) ∈ A′}.
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(b)
s

(2)
z = 0 s

(2)
z = 1

s
(1)
z = 0 1/2 0
s

(1)
z = 1 0 1/2

(c)
s

(2)
z = 0 s

(2)
z = 1

s
(1)
z = 0 1/4 1/4
s

(1)
z = 1 1/4 1/4

Table 2.1: Probability distributions P(s(1)
z , s

(2)
z ) to measure s(i)

z = 0, 1 for qubit i = 1, 2. (a)
shows the distribution for the Bell state |Φ+⟩, (b) for the mixed state ρ = 1

2 |00⟩⟨00| + 1
2 |11⟩⟨11|

and (c) for the maximally mixed state 1
4 .

An example of a random variable is the identity map Id : Ω → Ω. In case Ω′ = R, X is called
a real random variable.

We have already noted that from a quantum state, probability distributions can be derived.
Though, two quantum states can yield the same distribution. As an example we consider the
pure state |ψ⟩ = 1√

2 (|0⟩ + |1⟩) and the mixed state ρ = 1
2 |0⟩⟨0| + 1

2 |1⟩⟨1|. We denote the sample
space of the Pauli operator Z as Ω = {−1, 1} and we use the power set A = P(Ω) as the set
of events. The outcome of the measurement we associate to the random variable S. Then both
states yield the probability distribution

Pψ(S = i) = | ⟨i|ψ⟩ |2 = 1
2 = Tr (ρ |i⟩⟨i|) = Pρ(S = i) (2.3)

for i = 0, 1.
Finally, we need the notion of statistical independence.

Definition 2.4. Let (Ω,A,P) be a probability space. Two events A,B ∈ A are considered
independent if

P (A ∩B) = P(A)P(B). (2.4)

Correspondingly, two random variable X,Y are independent if for all events A,B

P(X ∈ A, Y ∈ B) = P (X ∈ A) P (Y ∈ B) . (2.5)

To illustrate this by an example, we consider the Bell state |Φ+⟩ = 1√
2 (|00⟩ + |11⟩), the

mixed state ρ = 1
2 |00⟩⟨00| + 1

2 |11⟩⟨11| and the maximally mixed state 1
4 of two qubits. For a

measurement of the observable Z ⊗Z, the sample space is Ω = {00, 01, 10, 11}. The first digit is
the outcome of the first qubit, which we denote by the random variable s(1)

z . Correspondingly,
we refer to the second digit as the random variable s(2)

z that describes the outcome of the second
qubit. Tab. 2.1 shows the probability distributions that are derived from the quantum states.
We note that the distribution of the Bell state |Φ+⟩ is equal to the distribution of the mixed
state ρ. Moreover, for this distribution the random variables s(1)

z and s
(2)
z are not independent,

as
Pψ/ρ

(
s(1)
z = 0, s(2)

z = 0
)

= 1
2 ̸= 1

4 = Pψ/ρ
(
s(1)
z = 0

)
Pψ/ρ

(
s(2)
z = 0

)
. (2.6)

The probability distribution derived from the maximally mixed is shown in Tab. 2.1 (c) and it can
be checked that for this distribution the random variables s(1)

z and s
(2)
z are indeed independent.

To characterize a random variable with unknown probability distribution it is useful to con-
sider the moments.
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Definition 2.5 (Moments). The n-th moment of a random variable X is defined as

E[Xn] :=
∫
XndP =

{∑
x∈Ω x

nP(x), X is a discrete random variable∫
xnf(x)dx, X is a continuous random variable.

(2.7)

For n = 1, this defines the expectation value

µ := E[X] (2.8)

of the random variable X. Instead of the second moment, it is more common to consider the
variance that is defined as

Var(X) = (∆X)2 := E[(X − µ)2] = E[X2] − E[X]2. (2.9)

As a final remark, we introduce the concept of conditional probability.

Definition 2.6. Let (Ω,A,P) be a probability space. We consider two events A,B ∈ A with
P > 0. The probability

P(A|B) := P(A ∩B)
P(B) (2.10)

is called conditional probability.

P (A|B) describes the probability for outcome A if the event B is assumed to occur.

2.2 Estimators
In an experiment an observed quantity is always subjected to statistical fluctuations. On the one
hand this can be due to noise. But also in an ideal case, quantum theory predicts that different
outcomes occur with certain probabilities. It is thus not possible to directly access, e.g., the
expectation value of an observable. Rather, it is necessary to estimate the parameter from the
random outcomes of the experiment. In case a single value is estimated from the outcomes, this
is known as point estimation [81].

Definition 2.7 (Point estimator). Suppose that X1, . . . , Xn are independent and identically
distributed (iid) random variables that describe the outcomes of an experiment. A function

θ̂ = θ̂(X1, . . . , Xn) (2.11)

of the random outcomes X1, . . . , Xn that estimates a parameter θ is called (point) estimator.
We denote an estimator by a hat.

The biasedness of an estimator captures how much the expectation value of the estimator
deviates from the true value.

Definition 2.8. The bias of an estimator is defined as

bias(θ̂) = E[θ̂] − θ, (2.12)

where θ denotes the true value of the parameter. An estimator is called unbiased if bias(θ̂) = 0.
In this case the estimator yields in expectation the true value, i.e., E[θ̂] = θ.
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2.3 Hypothesis test

As two examples, we discuss the sample mean and the sample variance. These are used to
estimate the mean and variance for a set of data points X1, . . . , Xn. The sample mean is defined
as

X̂ := 1
n

n∑
j=1

Xj , (2.13)

and it can be straightforwardly shown that the sample mean is an unbiased estimator E[X̂] =
1
n

∑n
j=1 E[Xj ] = µ. For the estimator to be unbiased it is thus necessary to have iid random

variables, such that E[Xj ] = µ for all j = 1, . . . , N .
For the variance, it turns out that an unbiased estimator is given by [83]

Ŝ2 := 1
n− 1

n∑
j=1

(Xj − X̂)2. (2.14)

2.3 Hypothesis test
The previous section dealt with the estimation of a parameter θ from the random outcomes of
an experiment. But, we did not answer the question how to interpret such an estimate. Often it
is the case that we would like to verify a hypothesis that the parameter θ lies in the range Θ0.
The complementary case is called alternative hypothesis. This is outlined below.

• Null hypothesis H0: θ ∈ Θ0,

• Alternative hypothesis H1: θ ∈ Θ1.

Θ1 is the complement of the range Θ0, such that Θ0 ∪· Θ1 covers the whole sample space of
the parameter θ. A hypothesis test for a single parameter is usually left-sided, right-sided or
centered. This is visualized in Fig. 2.1. For example, for an entanglement witnesses W the null
hypothesis is usually that the state is separable, i.e., ⟨W⟩ ≥ 0. The alternative hypothesis is
accordingly that ⟨W⟩ < 0, which implies that the state is entangled.

According to some decision criterion a rejection range ΘR is defined, e.g., for a left-handed
hypothesis test

ΘR =
{
θ̂ < c

}
. (2.15)

We note that the criterion is formulated in terms of the estimator θ̂ for the parameter θ. For
estimates smaller than some critical value c, the null hypothesis is dismissed. For example, for
an entanglement witness, we accept the null hypothesis if ˆ⟨W⟩ > c for some c < 0 and we dismiss
H0 if ˆ⟨W⟩ < c. Even though the bound for separable states is zero, the decision criterion is set
to a negative value c to adjust the error probability.

Figure 2.1: Common orientations of a hypothesis test for a single parameter. A one-dimensional
hypothesis test is usually either (a) right-sided, (b) left-sided or (c) centered.
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2.3 Hypothesis test

Accept H0 Reject H0
H0 is true type I error
H1 is true type II error

Table 2.2: Types of errors in a hypothesis test [81]. The case the null hypothesis H0 is true but
rejected is called type I error. Type II error in contrast refers to a falsely accepted H0.

For a hypothesis test there are two types of errors that originate from wrong classification.
Either the null hypothesis H0 is true but the test falsely dismisses H0. This is known as type I
error. The other wrong classification can happen if H0 is falsely accepted and H1 is true. The
types of errors are summarized in Tab. 2.2. The power of a hypothesis test can be characterized
by the probabilities that the errors occur. The probability for type I error is denoted by

α := P(H0 is rejected |H0 is true), (2.16)

whereas β refers to the probability of type II error:

β := P(H0 is accepted |H1 is true). (2.17)

α is thus the probability to falsely reject the null hypothesis H0 and is known as the significance
level of the hypothesis test. β in contrast denotes the probability to falsely accept H0. In this
case, the alternative hypothesis H1 is in fact true. The probability to rightfully discard H0 is
thus P(H0 is rejected |H1 is true) = 1 − β. 1 − β is called the power of the test. In practice,
hypothesis tests are designed to meet a given significance level of α. Common values are α = 0.05
or smaller.

To design a test that has a given significance level α, however, requires evaluating the probabil-
ity in Eq. (2.16). This in turn requires the knowledge or at least an assumption on the probability
distribution of the estimator θ̂. Another possibility to assess the outcome of a hypothesis test is
the p value.

Definition 2.9 (p value). The p value is defined as the probability for an outcome to be at least
as extreme as the observed result θO given that the null hypotheses H0 is true, i.e.,

p := P(θ̂ > θO|H0). (2.18)

Figure 2.2: Upper bound of the p value for a right-sided hypothesis test. The aim is to check
the null hypothesis H0 = θ ∈ Θ0 = (−∞, b], i.e., whether the parameter θ is smaller than some
value b. In case H0 is true, an unbiased estimator thus has to deviate from its mean by at least
t = θO − b for a value θO to be observed. The corresponding probability P(θ̂ − θ ≥ t) is shown
in red.
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In the above definition, the p value is defined for a right-sided hypothesis test. For a left-sided
test the p value can be defined accordingly. To calculate the exact p value also requires knowledge
about the probability distribution of the estimator θ̂. However, we can derive an upper bound
for the p value. The derivation of the upper bound for a right-sided hypothesis test is visualized
in Fig. 2.2. The goal is to verify the null hypothesis H0 = θ ∈ Θ0 = (−∞, b] that the parameter
is in the range (−∞, b]. In case H0 is true, the mean of an unbiased estimator can thus take at
most the value b. To observe a value θO it is thus necessary for the estimator to exceed its mean
by at least t = θO − b. This results in the upper bound

p ≤ P(θ̂ − θ ≥ t). (2.19)

2.4 Concentration inequalities
The right-hand side of Eq. (2.19) can in turn be upper bounded with concentration inequalities
[81, 84]. Concentration inequalities bound the probability that a random variable X exceeds some
value or deviates from their mean. Crucially, the inequalities do not require the full knowledge
about the probability distribution of X. As a first example, let us consider a non-negative random
variable X and a > 0. The expectation value of X can be lower bounded by

E[X] =
∫ ∞

0
xdPX(x) =

∫ a

0
xdPX(x) +

∫ ∞

a

xdPX(x)

≥
∫ ∞

a

xdPX(x) ≥ a

∫ ∞

a

dPX(x) = aP(X ≥ a).
(2.20)

This in turn yields an upper bound for the probability P(X ≥ a) that the random variable X
exceeds a value a > 0. The result is known as Markov’s inequality
Theorem 2.10 (Markov’s inequality). Suppose X is a non-negative random variable and the
expectation value E[X] exists. For any a > 0, it holds

P(X ≥ a) ≤ E[X]
a

. (2.21)

We note that for Markov’s inequality only the expectation value E[X] has to be known. In
addition to Markov’s inequality there is a variety of other concentration inequalities. In the
remainder of this section, we will introduce two additional inequalities that are used later.

The first inequality is Cantelli’s inequality [84]. Instead of the mean value, it relies on the
variance of the estimator.
Theorem 2.11 (Cantelli’s inequality). Let X be a real random variable with mean E[X] and
variance Var(X). The probability that X exceeds its mean by at least t ≥ 0 is upper bounded by

P(X − E[X] ≥ t) ≤ Var(X)
Var(X) + t2

. (2.22)

Another concentration inequality that does not rely on any moments of the probability dis-
tribution is Hoeffding’s inequality [85]. For Hoeffding’s inequality to be applicable, however, the
random variable has to be a sum of independent random variables.
Theorem 2.12 (Hoeffding’s inequality). Suppose X1, . . . , XN are independent random variables
with range ai ≤ Xi ≤ bi for all i = 1, . . . , N . The probability that the sum Y =

∑N
i=1 Xi exceeds

its mean E[Y ] by t > 0 is upper bounded by

P(Y − E[Y ] ≥ t) ≤ exp
(

− 2t2∑N
i=1(bi − ai)2

)
. (2.23)
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3 Error estimation of different schemes to measure spin-squeezing inequalities

3 Error estimation of different schemes to measure spin-
squeezing inequalities

In this chapter, we consider different measurement schemes for spin-squeezing inequalities. For
this purpose, we formulate estimators that rely either on the total spin of a multiqubit system or
on pair correlations. We show that the estimator in terms of pair correlations can be randomized
in the sense that random pairs of qubits are measured. We further analyze the statistics of the
estimator by deriving analytical expressions of their variances. The significance of an experi-
mental result can thus be assessed with Cantelli’s inequality. The presentation in this section is
taken from publication [P3].

3.1 Introduction
We consider the problem of estimating spin-squeezing parameters from experimental data. For
this purpose we discuss different schemes to measure the optimal spin-squeezing inequalities
in Eq. (1.35) that have been introduced of Refs. [56, 57]. As a first approach, we consider an
estimator based on the well-known sample mean and sample variance. This serves as a benchmark
for the second and third approaches, which are formulated in terms of pair correlations. The
second approach relies on the measurement of all pair correlations and single qubits. This
in turn can be randomized. Instead of looking at all pair correlations and single qubits, the
qubit pairs and single qubits are measured randomly. The approach to measure the qubits at
random follows the methods in Refs. [18, 20, 21]. In Ref. [18] the fidelity of an N -qubit system
is estimated. For this purpose, the Pauli measurements are performed at random according to
some probability distribution that is determined by the target state. The authors show that this
approach requires less resources than full tomography. Moreover, measurements from a set of
two-outcome observables are drawn randomly in Refs. [20, 21] to verify entanglement.

The investigation of different schemes to test spin-squeezing inequalities is experimentally
motivated. For different experimental setups, some of the approaches are more suitable than
others. For example, in Bose-Einstein condensates the total angular momenta can usually be
resolved by absorption images [47, 61, 86]. By shining a laser on the atoms whose frequency
matches an internal transition, one of the spin states is pumped into an excited state. By imaging
the intensity of the light that has passed through the atom cloud, the total number of atoms in
each spin state can be inferred. As the atoms are indistinguishable and no measurements on single
atoms are performed, an estimator that relies on the total angular momentum is appropriate.
This is also the case for hot atomic vapors [87, 88]. In atomic vapors the total spin can be inferred
from the Faraday effect. For this the vapor is irradiated by polarized light. The polarization
rotates depending on the spin polarization and the changed polarization can be detected.

For distinguishable particles, we show that in addition to the total spin the spin-squeezing
parameters can also be estimated from pair correlations. For example, ion traps usually allow the
readout of the individual atoms by fluorescence measurements. For this, the ions are irradiated
by a laser that couples the ions in the |1⟩ state to an excited state [89]. In the process of
decaying back to state |1⟩, the ions emit a photon. The ions in state |1⟩ can thus be identified
by the photons they emit. The total spin can be determined accordingly in a postprocessing
step by adding up the individual spins, although the simultaneous readout of the ions becomes
challenging with increasing number of ions in the trap [90]. In this case we propose schemes that
rely on pair correlations as an alternative. We note that the qubits have to be distinguishable to
measure the pair correlations. We point out that also superconducting qubits are distinguishable
and are read out individually. For this, the qubits are coupled to harmonic resonators [91].
Depending on the state of the qubit, the frequency of the resonator shifts, which can be detected
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by a probe signal. The simultaneous readout, however, is a bit more affected by noise [92]. It
might thus be advantageous to read out pair correlations. Finally, this also allows evaluation
of spin-squeezing parameters for past experiments where only spin-spin correlations have been
recorded [93].

Spin-squeezing parameters are usually formulated in terms of the first and second moments
of angular momentum operators and thus constitute nonlinear quantities in the quantum state.
To compare the different approaches, we discuss a statistical analysis that can be applied to
nonlinear estimators. Consequently, our methods will be useful to estimate other nonlinear
parameters (e.g., the purity or the Fisher information) as well.

As the spin-squeezing parameters can only be estimated from experimental data, we formulate
the problem as a hypothesis test in Sec. 3.2. Thereafter, we will explain the three approaches to
estimate the spin-squeezing parameters in detail in Sec. 3.3. Finally, we show how the statistics
of the derived non-linear estimators can be analyzed in Sec. 3.4.

3.2 Formulation as a hypothesis test
To evaluate the spin-squeezing inequalities from experimental data, we define corresponding
parameters that include the quantities to estimate:

ξa =
〈
J2
x

〉
+
〈
J2
y

〉
+
〈
J2
z

〉
, (3.1a)

ξb = (∆Jx)2 + (∆Jy)2 + (∆Jz)2, (3.1b)
ξc =

〈
J2
k

〉
+
〈
J2
l

〉
− (N − 1)(∆Jm)2, (3.1c)

ξd = (N − 1)
[
(∆Jk)2 + (∆Jl)2]−

〈
J2
m

〉
. (3.1d)

Then, the inequalities in Eq. (1.35) imply for separable states: ξa ≤ N(N+2)
4 , ξb ≥ N

2 , ξc ≤ N
2 ,

and ξd ≥ N(N−2)
4 . Although the spin-squeezing parameters, ξ = ξu for u = a, b, c, d in Eq. (3.1),

contain terms that can be directly measured in an experiment, their exact values cannot be
obtained from a finite number of measurement repetitions. In the following we consider how
to estimate the spin-squeezing parameters in practice. For this purpose we focus on the spin-
squeezing parameter in Eq. (3.1c). We note that for this parameter, the bound in Eq. (1.35c)
is an upper bound. The hypothesis test is thus right-sided. The left-sided hypothesis test for
spin-squeezing parameters that are lower bounded can be formulated analogously.

Let us begin by defining an estimator ξ̂ for ξ (which we denote by a hat). An estimator
ξ̂ is a random variable according to some probability distribution, which can be created from
experimental data. It is common to require that the estimator is unbiased, meaning that the
expectation coincides with the target parameter value, i.e., E[ξ̂] = ξ. But due to the finite
statistics, the estimator ξ̂ exhibits fluctuations, and there are unavoidable errors in the estimation.
The presence of such errors yields a finite probability for a violation of a spin-squeezing inequality,
even though the actual quantum state is separable. For this reason we formulate the question of
whether a state is entangled as a hypothesis test. The basics of a hypothesis test are presented
in Sec. 2.3. We apply statistical methods described in Ref. [94], where the methods are used in
the context of quantum state verification and fidelity estimation. Explicitly, we consider the
hypotheses:

• Null hypothesis H0: The quantum state is fully separable, i.e., ρ =
∑
k pkρ

(1)
k ⊗. . .⊗ρ(N)

k .

• Alternative hypothesis H1: The quantum state is not fully separable, i.e., it is entan-
gled.
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3.3 Three ways to measure spin-squeezing inequalities

Figure 3.1: Upper bound of the p value. The plot shows an exemplary probability density
function fξ̂ of the estimator for a separable state with spin-squeezing parameter ξ = ξs. ξs
denotes the extremal value that can be achieved by separable states. To observe an outcome ξ1,
the estimator has to deviate at least by t = ξ1 − ξs from its mean. The probability P(ξ̂ − ξ ≥ t)
for this to happen corresponds to the red area. The figure is taken from [P3].

For the spin-squeezing parameter ξc the inequality (1.35c) is an upper bound. The hypothesis
test is thus right-sided and the rejection criteria is of the form ξ̂ > εc for some threshold εc. Note
that εc does not necessarily correspond to the upper bound of the spin-squeezing parameter for
separable states.

We are interested in the significance level α of an experimental result. This means that the
probability to detect a state as entangled even though it was separable, i.e., the probability for
Type I error, is at most α:

P(ξ̂ > εc|H0) ≤ α. (3.2)
However, it is difficult to fix a threshold εc as the probability distribution of the estimator depends
on the quantum state and is unknown. Rather, we use the p value to assess the significance of
an experimental outcome ξ1. The p value denotes the probability that an outcome at least as
extreme as ξ1 is observed under the assumption that H0 is true:

p = P
(
ξ̂ ≥ ξ1

∣∣∣H0

)
. (3.3)

The p value depends on the specific separable state at hand. We can derive an upper bound
of the p value by considering a state that saturates the separable bound, i.e., ξ = ξs. This is
shown in Fig. 3.1. For a separable state the estimator has to deviate at least by t = ξ1 − ξs ≥ 0
from its mean, in case a violation is observed. As a result, we obtain the inequality

p ≤ P
(
ξ̂ − ξ ≥ t

)
. (3.4)

The probability on the right-hand side can in turn be bounded with the help of concentration
inequalities, e.g., Cantelli’s inequality [84]. Concentration inequalities have been introduced in
Sec. 2.4. These are large deviation bounds that typically involve the number of repetitions and
thus connect the p value to the number of experimental runs. Finally, we say that a result with
a certain p value has a confidence level of γ = 1 − p. As a result, we can determine the necessary
number of repetitions to assure a given confidence level.

3.3 Three ways to measure spin-squeezing inequalities
In this section we are going to present the three measurement schemes to obtain the spin-
squeezing parameters. As the expectation value is linear, we give the unbiased estimators for the

38
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terms in the spin-squeezing parameters separately. We start with the scheme that uses total spin
measurements. For this scheme we discuss the estimators for the expectation value ⟨J2

α⟩ and the
variance (∆Jα)2. In contrast, for the approaches that are based on pair correlations we explain
the estimators for ⟨J2

α⟩ and (∆Jα)2, but also for ⟨Jα⟩.

3.3.1 Estimator based on the total spin

The first approach relies on the measurement of the total spin. To evaluate the spin-squeezing
parameters, the observables Jx, Jy, and Jz , that are defined in Eq. (1.32) are measured, i.e., the
total spin in x, y, and z direction. In each direction α ∈ {x, y, z} the measurement is repeated
KTS times. We denote the measurement results of the kth repetition as m(k)

α . The possible
outcomes are m(k)

α ∈ {−N
2 ,−

N
2 + 1, . . . , N2 }. This is depicted in Fig. 3.2. From the experimental

data, we can infer the expectation value by the sample mean:

⟨̂J2
α⟩TS =

KTS∑
k=1

(m(k)
α )2

KTS
. (3.5)

In the above estimator we used that the result mα for a measurement of Jα implies the result
m2
α for a measurement of J2

α.
Correspondingly, we can estimate the variance by the sample variance:

̂(∆Jα)2
TS = 1

KTS − 1

KTS∑
k=1

(
m(k)
α − ⟨̂Jα⟩TS

)2
, (3.6)

where ⟨̂Jα⟩TS =
∑KTS
k=1

m(k)
α

KTS
denotes the estimator for the expectation value ⟨Jα⟩. Both the

sample mean and the sample variance are unbiased estimators [83], i.e., it is E[⟨̂J2
α⟩TS] = ⟨J2

α⟩
and E[ ̂(∆Jα)2

TS] = (∆Jα)2. With these building blocks we can write down unbiased estimators
for the spin-squeezing parameters in Eq. (3.1), e.g.,

(ξ̂c)TS = ⟨̂J2
x⟩TS + ⟨̂J2

y ⟩TS + (N − 1) ̂(∆Jz)2
TS. (3.7)

We note that the three estimators on the right-hand side of the above equation rely on the
outcomes of spin measurements in different directions. The data is thus obtained in different
experimental runs and the estimators are statistically independent.

k m
(k)
α

1 + 1
2 − 1

2 − 1
2 + 1

2 + 1
2 + 1

2

2 − 1
2 − 1

2 − 1
2 + 1

2 − 1
2 + 3

2
...

KTS − 1
2 + 1

2 − 1
2 − 1

2 + 1
2 − 1

2

Figure 3.2: Measurement scheme for the estimators ⟨̂J2
α⟩TS and ̂(∆Jα)2

TS. In each repetition
k, the total spin of the system is measured. In an ion trap, this can be done by resonance
fluorescence [89], which also gives access to the spin of the individual qubits. The figure includes
an image of trapped 171Yb+ ions, which is reprinted from [89]. The figure is taken from [P3].
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Moreover, the total spin in each direction is measured KTS times. The estimator in Eq. (3.7)
thus requires in total 3KTS state samples.

3.3.2 Estimator based on pair correlations

Instead of the total spin, an estimator can also be formulated in terms of pair correlations. This
is motivated by the decomposition of the expectation value ⟨J2

α⟩ in two-qubit correlations:

⟨J2
α⟩ = N

4 + 1
4
∑
i̸=j

⟨σ(i)
α σ(j)

α ⟩. (3.8)

We can thus estimate the expectation value ⟨J2
α⟩ by measuring the correlations of all distinct

qubit pairs (AP). For this purpose, we propose to measure the two-qubit correlations ⟨σ(P1)
α σ

(P2)
α ⟩

KAP times each. The above correlation has to be determined for every distinct pair, i.e., for all
pairs P = (P1, P2) of qubits P1 and P2 with P1 ̸= P2. The corresponding estimator reads

⟨̂J2
α⟩AP = N

4 + 1
KAP

∑
P

KAP∑
k=1

s(P1,k)
α s(P2,k)

α . (3.9)

In the above equation, s(P1/2,k)
α denotes the spin in direction α of qubit P1/2 in the kth measure-

ment repetition of the pair P . This scheme is visualized in Fig. 3.3 (a). We show in App. A.1.1
that the above estimator is unbiased, i.e., E[⟨̂J2

α⟩AP] = ⟨J2
α⟩.

To estimate the variances we propose two different schemes.
Scheme AP1. The first scheme uses the data as presented in Fig. 3.3 (a), i.e., it estimates

the variance with the help of two-qubit correlations, although we assume that the measurement
results for the individual qubits are captured. The estimator takes the form

̂(∆Jα)2
AP = N

4 + 1
KAP

∑
P

KAP∑
k=1

s(P1,k)
α s(P2,k)

α

− 1
KAP(KAP − 1)(N − 1)2

∑
P,Q

KAP∑
k ̸=l

s(P1,k)
α s(Q2,l)

α .

(3.10)

With the estimators in Eqs. (3.9) and (3.10) we can compose estimators for the spin-squeezing
parameters, e.g.,

(ξ̂c)AP1 = ⟨̂J2
x⟩AP + ⟨̂J2

y ⟩AP + (N − 1) ̂(∆Jz)2
AP. (3.11)

As E[ ̂(∆Jα)2
AP] = (∆Jα)2 (cf. App. A.1.1), (ξ̂c)AP1 is also an unbiased estimator of ξc. Again,

the three estimators on the right-hand side of Eq. (3.11) are obtained in different measurements
and are thus statistically independent. For each direction all distinct pairs are measured KAP1
times, and hence the total number of state samples is 3N(N − 1)KAP1.

Scheme AP2. Alternatively, we can calculate the variance by estimating the expectation
value ⟨Jα⟩2 separately, i.e., by ⟨̂J2

α⟩AP − ⟨̂Jα⟩2
AP. For this purpose we propose to measure the

spin of one qubit in each experimental run. From the outcomes, the expectation value ⟨Jα⟩2 can
be estimated by multiplying the results of two different experimental runs. This ensures that
the two outcomes are statistically independent. To formulate the estimator, we measure all pairs
(i, j), where we allow i = j. We divide the number of repetitions into two groups. KAP

2 of the

40



3.3 Three ways to measure spin-squeezing inequalities

Figure 3.3: Measurement pattern for (a) ⟨̂J2
α⟩AP in Eq. (3.9) as well as ̂(∆Jα)2

AP in Eq. (3.10)
and (b) ⟨̂Jα⟩2

AP in Eq. (3.12). In pattern (a) all N(N − 1) distinct pairs of qubits are measured
KAP-times. In contrast, in pattern (b) all N2 pairs are measured, with each qubit observed only
in KAP

2 of the experimental runs to ensure statistical independence. The approach AP1 relies
only on the measurement pattern (a), whereas for AP2 both the patterns (a) and (b) are used.
The figure is reprinted from [P3].

times we measure the spin of qubit i and for the remaining repetitions we observe qubit j. This
results in the following estimator:

⟨̂Jα⟩2
AP =

N∑
i,j=1

1
KAP

2

KAP
2∑

k=1
s(i,2k)
α s(j,2k−1)

α . (3.12)

The measurement scheme is depicted in Fig. 3.3 (b). However, this comes at the expense that
the correlations between the two estimators ⟨̂J2

α⟩AP and ⟨̂Jα⟩2
AP have to be taken into account

or two independent datasets have to be obtained. In the following statistical analysis, we assume
that two independent datasets are used. We show in App. A.1.1 that Eq. (3.12) is an unbiased
estimator and thus

(ξ̂c)AP2 = ⟨̂J2
x⟩AP + ⟨̂J2

y ⟩AP + (N − 1)
(

⟨̂J2
z ⟩AP − ⟨̂Jz⟩2

AP

)
(3.13)

obeys E[(ξ̂c)AP2] = ξc. In case all estimators on the right-hand side of Eq. (3.13) are obtained
from different datasets, they are independent. Since the estimator in Eq. (3.12) uses all pairs of
qubits, the total number of state samples is (4N − 3)NKAP2.

3.3.3 Estimator based on random pair correlations

In the previous section we have formulated an estimator that relies on the measurement of all
pair correlations and single qubits. Hence, the question arises whether the total number of
measurements can be reduced by randomly choosing the pair correlations and qubits that are
measured. This can be achieved by introducing additional random variables for the qubit indices
(i, j). For LRP randomly chosen pairs, the estimator for ⟨J2

α⟩ reads

⟨̂J2
α⟩RP = N

4 + N(N − 1)
KRPLRP

LRP∑
l=1

KRP∑
k=1

s(Il,k)
α s(Jl,k)

α , (3.14)
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3.3 Three ways to measure spin-squeezing inequalities

Figure 3.4: Measurement pattern for (a) ⟨̂J2
α⟩RP in Eq. (3.14) and ̂(∆Jα)2

RP in Eq. (3.16) and
for (b) ⟨̂Jα⟩2

RP in Eq. (3.18). In pattern (a), LRP random pair correlations are measured KRP
times each. Pattern (b) in turn uses also LRP random pairs (i, j), but with the possibility that
i = j. In KRP

2 of the repetitions qubit i is measured, whereas in the other repetitions qubit j is
observed. The scheme RP1 is only based on the pattern (a), whereas RP2 relies on both patterns
(a) and (b). The figure is reprinted from [P3].

where each pair is measured KRP times. Similar to Eq. (3.9), s(Il,k)
α and s(Jl,k)

α denote the spins
in the kth measurement of the qubit pair (Il,Jl). However, in the above expression the indices
Il and Jl are random variables with l ∈ {1, . . . , LRP}. As only distinct pairs are of interest, we
use the probability distribution

P(Il = i,Jl = j) =
{

1/[N(N − 1)], for i ̸= j,

0, for i = j.
(3.15)

Also, the estimator in Eq. (3.14) is unbiased, as we show in App. A.1.2. The scheme is visualized
in Fig. 3.4 (a).

Scheme RP1. From the data that is obtained by the pattern in Fig. 3.4 (a), we can also
estimate the variance (∆Jα)2. Let us again denote the outcomes of the spin measurement in
direction α for the kth repetition of the lth random pair (Il,Jl) by s(Il,k)

α and s(Jl,k)
α . Then, an

unbiased estimator of (∆Jα)2 (cf. App. A.1.2) is given by

̂(∆Jα)2
RP = N

4 + N(N − 1)
LRPKRP

LRP∑
l=1

KRP∑
k=1

s(Il,k)
α s(Jl,k)

α

− N2

LRP(LRP − 1)K2
RP

LRP∑
l ̸=m

KRP∑
k,q=1

s(Il,k)
α s(Jm,q)

α .

(3.16)

The random variables Il,Jl obey the probability distribution in Eq. (3.15). Finally, we note that
E[ ̂(∆Jα)2

RP] = (∆Jα)2 as is shown in App. A.1.2. With the help of Eq. (3.14) and Eq. (3.16),
unbiased estimators for the spin-squeezing parameters can be formulated, e.g.,

(ξ̂c)RP1 = ⟨̂J2
x⟩RP + ⟨̂J2

y ⟩RP + (N − 1) ̂(∆Jz)2
RP. (3.17)

Again, the estimators on the right-hand side of the above equation are statistically independent
as they are obtained from different measurements. In total the estimator in Eq. (3.17) requires
3LRP1KRP1 state samples.
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Scheme RP2. Alternatively, we can estimate ⟨Jα⟩2 separately. For this purpose, we choose
also LRP random pairs (Il,Jl). However, in each experimental run only one qubit is measured.
Thus for KRP measurements of the pair (Il,Jl), we measure KRP

2 times the spin of qubit Il and
KRP

2 times the spin of qubit Jl. An estimator is retrieved by the product of the results for each
pair (Il,Jl), i.e., ⟨Jα⟩2 can be obtained by the estimator

⟨̂Jα⟩2
RP = 2N2

KRPLRP

LRP∑
l=1

KRP
2∑

k=1
s(Il,2k)
α s(Jl,2k−1)

α . (3.18)

In the derivation of the above estimator, all pairs (i, j) have to be considered. Hence, we use
the uniform probability distribution P(Il = i,Jl = j) = 1

N2 for all i, j ∈ {1, . . . , N}. Fig. 3.4 (b)
shows a sketch of the estimator. In App. A.1.2 we prove that the estimator in Eq. (3.18) is
unbiased and hence we can compose, for example, the unbiased estimator

(ξ̂c)RP2 = ⟨̂J2
x⟩RP + ⟨̂J2

y ⟩RP + (N − 1)
(

⟨̂J2
z ⟩RP − ⟨̂Jz⟩2

RP

)
. (3.19)

The estimators for different spin directions are independent, as they have to be obtained from
different datasets. Finally, we assume that also ⟨J2

z ⟩ and ⟨Jz⟩2 are estimated from different
datasets, which assures that all estimators on the right-hand side of Eq. (3.19) are independent.
This approach needs in total 4LRP2KRP2 state samples.

3.4 Statistical analysis
As the estimators are formulated in terms of the random outcomes of the measurements, they
are random variables themselves. Hence, they obey a probability distribution. This is exemplary
shown for (ξ̂c)TS in Fig. 3.5. The following section therefore contains a statistical analysis of the
estimators.

We start with the variances to get an insight on the spreading of the probability distribution.
This results in state-dependent expressions for the variances. Accordingly, we use these results
to derive probability bounds with Cantelli’s inequality, which in turn can be used to assess the
confidence level or the necessary number of measurements.
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Var((ξ̂c)TS) = 0.34
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Figure 3.5: Probability distribution of the estimator (ξ̂c)TS. The simulation has been performed
for the 10-qubit Dicke state |D10,5⟩ defined in Eq. (1.38) with KTS = 7400. The histogram
contains 99 bins, but due to the small bin size of 0.02 they are not well resolved. The figure is
reprinted from [P3].
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Figure 3.6: Probability distribution of the estimator (ξ̂c)RP1. The simulation has been performed
for the 10-qubit Dicke state |D10,5⟩. LRP1 = 7400 random pairs have been chosen with KRP1 = 1
repetition. The histogram consists of 99 bins with a size of 0.2. The figure is reprinted from
[P3].

3.4.1 Variances

In App. A.2 we derive the variances of the estimators. Exemplarily, we discuss here the variance
of the total spin estimator (ξ̂c)TS for the third spin-squeezing inequality in Eq. (1.35c):

Var
[
(ξ̂c)TS

]
= 1
KTS

[
(∆J2

x)2 + (∆J2
y )2 + (N − 1)2(∆J2

z )2

+ (N − 1)2
[

2
KTS − 1 ⟨J2

z ⟩2 + 42KTS − 3
KTS − 1 ⟨J2

z ⟩⟨Jz⟩2

− 4⟨J3
z ⟩⟨Jz⟩ − 22KTS − 3

KTS − 1 ⟨Jz⟩4
] ]
.

(3.20)

As expected, the variance decreases with the number of measurement repetitions KTS. In Tab. 3.1
we show the variance of (ξ̂c)TS calculated with the analytic expression in Eq. (3.20) for KTS =
7400. The total number of state samples is thus 22200. Indeed, the variance matches the
simulation in Fig. 3.5 as 2 × Var((ξ̂c)TS)1/2 = 0.3369 ≈ 0.34.

In the same manner, we derive in App. A.2 the variances of the estimators of schemes AP1
and AP2 as well as of schemes RP1 and RP2. In Tab. 3.1 the variances of the different estimators
for the parameter ξc are shown. To compare the variances, we ensure that the total number of
state samples is equal. For this reason we have chosen KAP2 = 60, LRP1 = 7400 with KRP1 = 1
and LRP2 = 2775 with KRP2 = 2. For scheme AP1, however, there is no integer KAP1 to match
the total number of state preparations of 22200. For this reason, we choose KAP1 = 82 to obtain
the closest number of state samples 22140.

The results in Tab. 3.1 show the smallest variance for the estimator (ξ̂c)TS. Var((ξ̂c)TS) is
about two magnitudes smaller than the next bigger variances of schemes AP1 and RP1. We
note that this appears reasonable, as in each experimental run only two qubits are measured in
schemes AP1 and RP1. Therefore, in a hand-wavy sense, less information is extracted in each
step. The variances of both schemes AP1 and RP1 are almost the same, in which the value is
slightly larger for scheme AP1. This appears counterintuitive as the additional randomization
in scheme RP1 is expected to introduce further uncertainty. We note, however, that this is due
to the slightly fewer state samples used for scheme AP1. In case we increase the number of
repetitions by 1, i.e., KAP1 = 63, we obtain Var((ξ̂c)AP1) = 5.5163.

The fact that the variance of (ξ̂c)RP1 is two orders larger than for (ξ̂c)TS is also revealed in
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Estimator Var(ξ̂) Estimator Var(ξ̂)
(ξ̂c)TS 0.0284
(ξ̂c)AP1 5.5836 (ξ̂c)AP2 24.5046
(ξ̂c)RP1 5.5685 (ξ̂c)RP2 25.6667

Table 3.1: Variances of the estimators for the Dicke state |D10,5⟩. The variances are obtained for
KTS = 7400, KAP1 = 82, and KAP2 = 60. For the randomized approaches we used LRP1 = 7400
with KRP1 = 1 and LRP2 = 2775 with KRP2 = 2. In this case the total number of measurements
is 22200 for all schemes except AP1. For scheme AP1 the total number of state samples is slightly
less: 22140.

Fig. 3.6. Fig. 3.6 shows the histogram of (ξ̂c)RP1 for the Dicke state |D10,5⟩. From Tab. 3.1, we
obtain 2 × Var((ξ̂c)RP1)1/2 = 4.7195 ≈ 4.68. The deviation is attributed to the finite number of
repetitions. The histogram in Fig. 3.6 is obtained from 10000 samples of (ξ̂c)RP1.

Finally, the variances of schemes AP2 and RP2 are in turn almost an order larger than the
variances of schemes AP1 and RP1. This seems plausible, as both schemes AP2 and RP2 rely
also on measurements on single qubits, and thus less information is revealed from each state
sample as compared to schemes AP1 and RP1. In detail, the variance Var((ξ̂c)RP2) is slightly
larger than the variance Var((ξ̂c)AP2), which we attribute to the additional randomness in scheme
RP2.

3.4.2 Scaling of the variances

Next we will compare the estimators by the scaling of the variances for specific states that violate
the spin-squeezing inequalities. On the one hand, we use the many-body singlet state presented
in Eq. (1.37) for the spin-squeezing inequalities in Eqs. (1.35b) and (1.35d). Many-body singlet
states maximally violate Eq. (1.35b) and also show a violation of Eq. (1.35d). On the other hand,
the spin-squeezing inequality (1.35c) is maximally violated by the Dicke state |DN,N/2⟩ defined
in Eq. (1.38). Thus, we analyze the variances of ξc with the help of the Dicke state.

For the many-body singlet state in Eq. (1.37), we show the expressions for the variances
Var(ξ̂b) and Var(ξ̂d) in Tab. 3.2. We observe that for the total spin estimator both Var((ξ̂b)TS) = 0
and Var((ξ̂d)TS) = 0. This is due to the properties in Eq. (1.36). Moreover, Tab. 3.2 shows that
both Var((ξ̂b)AP1) and Var((ξ̂b)AP2) scale as O(N2), whereas Var((ξ̂b)RP1) and Var((ξ̂b)RP2) scale
as O(N4). As expected, the variances of the estimator that use random pair correlations scale
worse with N . We note that the scaling differs in a factor of N2, which corresponds to the order
of qubit pairs. Alike, we obtain that the variances for the spin-squeezing parameter ξd scale as
Var((ξ̂d)AP1),Var((ξ̂d)AP2) ∼ O(N4), and Var((ξ̂d)RP1),Var((ξ̂d)RP2) ∼ O(N6). We note that
the result differs to that of ξb by a factor of N2. This is due to the additional factor of N − 1 in
the parameter ξd.

Finally, for the variance of ξc we consider the Dicke state |DN,N/2⟩. The results in Tab. 3.2
show that for this case the total spin estimator has a nonzero variance that scales as Var((ξ̂c)TS) ∼
O(N4). For the Dicke state, also the variances of the estimator AP1 and AP2 show the same
scaling in N , i.e., Var((ξ̂c)AP1),Var((ξ̂c)AP2) ∼ O(N4). However, we note that each pair has
to be measured KAP times. Thus, in case the variance is considered as a function of the total
number of experimental runs, the scaling is O(N6). As for the other parameters, we observe
that the variances of the randomized approaches RP1 and RP2 are two orders larger than for
schemes AP1 and AP2. We obtain Var((ξ̂c)RP1),Var((ξ̂c)RP2) ∼ O(N6).
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ξb ξc ξd

TS 0 N4+4N3−4N2−16N
64KTS

0

AP1 3N(KAP1O(N5)−O(N5))
16(KAP1−1)KAP1(N−1)4

N(KAP1O(N5)−O(N5))
32(KAP1−1)KAP1(N−1)2

N(KAP1O(N5)−O(N5))
16(KAP1−1)KAP1(N−1)2

AP2 9N2−6N
16KAP2

6N5−20N4+25N3−16N2+4N
32KAP2(N−1)

6N4−16N3+15N2−6N
16KAP2

RP1 3N3(LRP1O(N3)+O(N2))
16(LRP1−1)LRP1(N−1)2

N2(LRP1O(N4)+O(N3))
32(LRP1−1)LRP1

N3(LRP1O(N3)+O(N2))
16(LRP1−1)LRP1

RP2 9N4−6N3

16KRP2LRP2
6N6−16N5+17N4−12N3+4N2

32KRP2LRP2
6N6−16N5+15N4−6N3

16KRP2LRP2

Table 3.2: Expressions for the variances for specific states. The inequality Eq. (1.35b) is maxi-
mally violated by many-body singlet states in Eq. (1.37). For this reason, we show the variance
for the many-body singlet states. Correspondingly, we evaluate the variance of ξ̂c for the Dicke
state

∣∣DN,N/2
〉
, as this state violates Eq. (1.35c) the most. Finally, the many-body singlet states

also violate Eq. (1.35d), and the variance for these states is shown in the third column. We note
that the variances for scheme RP1 are given for the case KRP1 = 1.

3.4.3 Statistical test

With the help of the variances, we can now make a statement on the p value and thus on the
significance of an experimental result. For this purpose we use Cantelli’s inequality [84] that has
been introduced in Sec. 2.4. Cantelli’s inequality is a bound on the probability that a real-valued
random variable ξ̂ exceeds its mean value by an amount t, i.e.,

P
(
ξ̂ − E(ξ̂) ≥ t

)
≤ Var(ξ̂)

Var(ξ̂) + t2
. (3.21)

As we are focused on unbiased estimators, Cantelli’s inequality bounds the probability that the
estimator deviates from the actual value ξ = E[ξ̂]. However, the variances depend on the quantum
state. As a result, we have to take the upper bound of the variance over all quantum states.

In this section, however, we use a different approach. We consider that the target state is
the Dicke state |DN,N/2⟩. In addition, we assume that only depolarization noise affects the state
preparation, i.e., the prepared state has the form

ρ = p
∣∣DN,N/2

〉〈
DN,N/2

∣∣+ (1 − p) 1
2N , (3.22)

with p ∈ [0, 1]. For N = 10 qubits, the variances are plotted in Fig. 3.7. We can observe that for
the whole range of p, the variances of (ξ̂c)AP1 and (ξ̂c)RP1 are at least two orders of magnitude
larger than the variance of (ξ̂c)TS. The variances of (ξ̂c)AP2 and (ξ̂c)RP2 are in turn three orders
larger.

Moreover, Fig. 3.7 shows that the variances take the smallest value for the pure Dicke state,
i.e., for p = 1. What is more, the spin-squeezing inequality in Eq. (1.35c) detects the mixture ρ
as entangled for p > p∗ = N−1

2N−1 . For N = 10, the critical value is p∗ = 0.47. As a result, all
variances take the maximum in the region of separable states.

To assess the number of state preparations, we can make use of Cantelli’s inequality in
Eq. (3.21). For this purpose we use the assumption that the state is always described by the
mixture in Eq. (3.22). Moreover, we use that for any t > 0, the bound in Cantelli’s inequality
is monotonically increasing in the variance. For this reason we can take the maximum of the
variance for the mixture ρ. To verify a violation of t by at least a confidence level of γ = 1 − p,
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Figure 3.7: Variances of the estimators (ξ̂c)TS, (ξ̂c)AP1, (ξ̂c)AP2, (ξ̂c)RP1 and (ξ̂c)RP2 for the
Dicke state of N = 10 qubits |D10,5⟩ mixed with depolarization noise, i.e., ρ = p |D10,5⟩⟨D10,5| +
(1 − p)1/2N . The variances are obtained for KTS = 7400, KAP1 = 82, KAP2 = 60, LRP1 = 7400
with KRP1 = 1 and LRP2 = 2775 with KRP2 = 2. The figure is reprinted from [P3].

we can rearrange Cantelli’s inequality to obtain a lower bound for the necessary number of state
samples. To be precise, Cantelli’s inequality yields the number of repetitions KTS, KAP1, KAP2
and LRP1 under the assumption that KRP1 = 1. In addition, we used Cantelli’s inequality to
obtain the product KRP2LRP2 such that the observed violation of t has a confidence of γ. In
Fig. 3.8 we show the total number of state preparations, i.e., we plot 3KTS, 3KAP1N(N − 1),
KAP2N(4N − 3), 3KRP1LRP1 and 4KRP2LRP2.

The figure shows that (ξ̂c)TS requires the least number of state samples. Moreover, the
number of state samples that are necessary in scheme TS scales favorably with N compared to
the other schemes. It is interesting to note that the number of required state samples for schemes
AP1, AP2, RP1, and RP2 obeys the same scaling with N . For schemes AP1 and RP1, almost
the same number of state samples are needed. This appears reasonable, as the variances of both
schemes do not differ much, as is shown in Fig. 3.7 (b). More samples are needed for schemes AP2
and RP2. However, Fig. 3.7 (c) shows that also the variances of schemes AP2 and RP2 do not
differ by much. Schemes AP2 and RP2 thus require almost the same number of state samples,
whereas slightly more state samples are needed for scheme RP2.

3.5 Discussion
We have discussed different approaches to estimate spin-squeezing inequalities from experimen-
tal data. On the one hand, this includes the straightforward estimation from measurements of
the total angular momenta. On the other hand, we have introduced different schemes to esti-
mate spin-squeezing inequalities from pair correlations. In doing so we have shown that it is
also possible to sample the pair correlations at random. By providing different schemes to esti-
mate spin-squeezing inequalities, it is possible to choose the most suitable approach for a given
experimental setup.

As the second important point of the paper, we have performed a rigorous error analysis of
the schemes. The spin-squeezing inequalities are nonlinear in the quantum state and thus are
the estimators. We therefore provide an error analysis based on the variances of the estimators
and Cantelli’s inequality that can be applied to generic nonlinear estimators. Finally, we apply
the error analysis to derive the necessary number of measurements to verify a violation of a
spin-squeezing inequality with a given confidence level.

Our methods and results will not only be useful for experimental studies on spin-squeezing,
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Figure 3.8: Number of state preparations necessary to verify a violation of Eq. (1.35c) by t =
0.1 × N

2 with a significance level of γ = 0.95. The figure is reprinted from [P3].

they also lead to further research questions worthy of study. For instance, one may extend
the presented methods to other nonlinear figures of merit, such as the purity or entropies of a
quantum state. Furthermore, it would be interesting to study the concept of randomly picked
subsets of particles also in the context of other methods of quantum state analysis, such as
shadow tomography.
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4 Generating multipartite nonlocality to benchmark quan-
tum computers

In the previous section, we have discussed how spin-squeezing inequalities can be evaluated by
measuring random pair correlation. We now apply a similar idea to evaluate Bell inequalities.
Multipartite Bell inequalities often have the problem that they require a number of measurement
settings that increases exponentially with the number of qubits. In this section, we show that the
Bell inequalities can also be evaluated by sampling the terms of the Bell operators at random.
This reduces the measurement resources. For the presentation, we follow publication [P4].

4.1 Introduction
The term “n-partite nonlocality” refers to correlations between n parties that cannot be explained
by any local realistic model [7, 95]. It can be detected by a violation of a multipartite Bell
inequality, which shows that at least one of the assumptions of a local realistic model is false [6,
96]. The experimental test of n-partite nonlocality is, however, challenging. The first and main
reason is that it is very difficult to have physical systems with n parts that can be prepared in a
genuinely n-partite entangled quantum state [65] and on which specific local measurements can
be performed on each of the n individual parts. From this perspective, quantum computers offer a
unique chance to realistically go to a large n and test quantum theory. Quantum computers have
dozens, hundreds, or even thousands of qubits which can, in principle, be prepared in arbitrary
quantum states and then measured individually.

We propose a method to produce and certify n-qubit Bell nonlocality with unprecedented
large n. Quantum mechanics predicts nonlocality and that the violation increases exponentially
with n. The main motivation is thus to experimentally test this prediction for large n, i.e., in
the “macroscopic” limit. Specifically, in our case, the aim is observing nonlocality produced by
“a superposition of macroscopically distinct states” [65]. In this respect, this work is in the line
of recent results showing that quantum computers can produce correlations that are impossible
in other platforms [97] or used for many-body simulation of fermionic systems [98].

The second motivation is to use the observed Bell violation as a benchmark to compare
different quantum computers. Since, as far as we know, n-partite nonlocality is a phenomenon
specific to quantum theory, one can think of using it to quantify the “quantumness” of the device
that has produced it. This can be achieved by the fraction Dn = Qn/Cn of the maximal quantum
value Qn and the classical bound Cn [65–67, 99]. For our use-case, we stress that Dn is related
to the resistance of the violation to depolarization noise. Moreover, Dn is associated to the
detection efficiency that is required to classically simulate the quantum nonlocality [67].

A variety of benchmarks have been proposed to test the quality of quantum computers, i.e.,
the quantum volume or the cross-entropy benchmark [91, 100, 101]. Still, no universally accepted
standard has been established. Current approaches do not fulfill the ideal requirements to be
independent of the noise model and the hardware: to not be tied to one algorithm but still being
predictive and scalable in practice [101]. The phenomenon of n-partite nonlocality is promising
in this regard, as a Bell violation has an interpretation independent of the hardware and the
specific noise. Observing a violation of a Bell inequality requires specific quantum states and
measurements. Consequently, Bell inequalities can be used to certify both measurements and
states [102], which makes them attractive for benchmarking. In contrast, entanglement witnesses
certify a quantum state given some well-characterized measurements, which requires additional
assumptions. In addition, a Bell test can be carried out, in principle, for all pure entangled
states [103]. In this sense, using Bell inequalities for benchmarking does not rely on a specific
algorithm to prepare a certain quantum state. The fraction Dn grows with system size, and we
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show that this facilitates the scaling of the Bell test to many qubits. Finally, an observed Bell
violation can be used to lower bound the fidelity, which allows one to predict the quality of other
computations.

Experimentally, violations of n-partite Bell inequalities have been observed in a variety of
physical systems that are promising for quantum computing [104–114]. So far, however, mostly
systems with a relatively small number of parties, n, have been considered. In an ion trap,
violations of up to n = 14 have been verified [104], whereas nonlocality has also been shown
for n = 6 with photons [105]. n = 3 nonlocality has been verified on a nuclear magnetic
resonance (NMR) quantum simulator [114]. Finally, nonlocality has also been investigated in
atomic ensembles [115] and in optical lattices [106]. The largest number of parties has been
achieved with superconducting qubits with up to n = 57 [112]. To limit the experimental
resources, however, this reference considered Bell inequalities that do not show an exponential
violation in n.

The question remains why exponentially increasing nonlocality has not been verified with
quantum computers before. There are, fundamentally, three challenges:

(i) Typically, quantum computers can apply two-qubit gates only on some specific pairs of
qubits. Hereafter, we will refer to the map that specifies these pairs as the connectivity of the
quantum computer. A consequence of this limitation is that not all connectivities allow us to
equally well prepare an n-qubit GHZ state [116], which was the default option in [104, 107].

(ii) Quantum computers with larger n are typically more affected by noise and decoherence.
Therefore, the larger n is, the harder it becomes to prepare the target state and to observe a
violation of a Bell inequality.

(iii) The number of different combinations of local measurements (contexts) needed to test
a Bell inequality increases with n. For example, in the case that there are two measurements
per qubit, the number of contexts scales exponentially in n and, typically, so does the number
of terms needed to test the Bell inequality. Therefore, measuring all contexts becomes infeasible
for large n.

In this work, we show how to overcome or alleviate each of these three challenges. First,
we will show that there is a natural solution to problem (i). For a given connectivity, we can
focus on the graph states that are compatible with the connectivity graph. Graph states are a
specific set of pure entangled states [29] and can be prepared by applying controlled-Z (CZ) gates
on adjacent qubits in the graph. Thus, if we assume that CZ gates can be performed between
connected qubits, graph states that correspond to subgraphs of the two-qubit connectivity can
be readily prepared.

For n-qubit graph states, there are some general methods to obtain n-partite Bell inequalities
[66–68, 70, 71]. However, it is, in general, a hard task to find the optimal one (in the sense
of resistance to noise of the violation); the optimal n-partite Bell inequalities in terms of the
stabilizers have been identified for some graph states [67]. In particular, the optimal n-partite
Bell inequalities associated to the GHZ and LC state are known [67, 71]. These states correspond
to the extreme cases of connectivity: On the one side, the GHZ state is easy to prepare when all
qubits can be coupled to each other. On the other side, we consider the LC state that can be
conveniently prepared on a quantum computer with minimal connectivity, i.e., the connectivity
graph is a line. Cluster states have, in addition, the advantage to be more resistant to decoherence
[117]. Quantum theory predicts that for the GHZ and LC states, the ratio Dn can be made
arbitrarily large by increasing the number of qubits [65, 71, 118]. This means that in theory, the
resistance to noise of multipartite nonlocality grows exponentially with the number of particles.
This helps to overcome (ii).

In addition, the main aim of this work is to introduce a general method to address problem
(iii). For this purpose, we discuss how the expectation value of a Bell operator can be estimated
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from the measurements of only a few terms. The terms are chosen at random and thus the
method falls into line with previous randomized measurement approaches, e.g., direct fidelity
estimation [18, 19] or few-copy entanglement verification [119]. As this method is not restricted
to a specific Bell inequality, it can be applied to the Bell operator that is most appropriate for
the experimental set-up taking into account the feasible interactions.

We note, however, that quantum computers usually are not suited for a loophole-free Bell test.
For example, ions are typically in the same trap and superconducting qubits on the same chip.
It is thus not possible to rule out communication. However, in principle, the interactions can be
tuned to minimize the crosstalk between the qubits. Hereafter, we will refer to this assumption
as the no-crosstalk assumption and we will make it on the belief that quantum computers are
the only way to investigate n-partite nonlocality with large n.

The proposed method uses graph states that have been introduced in Sec. 1.2. Moreover,
we have seen in Sec. 1.4.3 that there are Bell inequalities for graph states that show a relative
violation that increases exponentially with the number of qubits. In Sec. 4.2, we will explain
the method to measure the Bell inequalities. As we propose to evaluate the Bell inequalities by
random sampling in Sec. 4.2.2, we first formulate the Bell test as a hypothesis test in Sec. 4.2.1.
After we discuss the sample complexity in Sec. 4.3, we will apply the method exemplarily to
the Bell inequalities of the GHZ and LC states in Sec. 4.4. These Bell inequalities cover the
extreme cases of connectivities in quantum computers. Finally, we use this to benchmark actual
architectures in Sec. 4.5 and include a simulation for the IBM Eagle quantum processor in
Sec. 4.5.3.

4.2 Methods
The Bell operators in Sec. 1.4.3 rely on a number of measurement settings that scales exponen-
tially in the number of qubits n, i.e., there are, in principle, an exponential number of terms to
measure. The number of observables thus quickly becomes infeasible. In this section, we intro-
duce a general method to evaluate a Bell inequality by sampling random terms. The terms of the
Bell inequality are picked according to a uniform probability distribution. This approach stands
in line with previous schemes that use randomization to reduce the number of measurements,
e.g., direct fidelity estimation [18, 19] or few-copy entanglement detection [21]. Finally, there
exist different methods to assess the statistical strength of Bell tests [64, 120–122]. We gauge the
significance of a violation with the help of the p value. For this purpose, we start by formulating
a Bell test as a hypothesis test.

4.2.1 Bell test as a hypothesis test

The task is to evaluate a general Bell inequality with classical bound C, i.e., to check the
inequality

⟨B⟩ ≤ C. (4.1)

The expectation value on the right-hand side, however, cannot be inferred exactly in an experi-
ment. Rather, the expectation value has to be estimated from multiple experimental repetitions.
For this purpose, it is useful to consider an unbiased estimator ⟨B̂⟩, which we denote by a hat.
An estimator ⟨B̂⟩ is a function of the experimental data and it is unbiased in case it reproduces
the actual value in expectation, i.e., E[⟨B̂⟩] = ⟨B⟩.

Due to the finite statistics, however, the estimate ⟨B̂⟩ fluctuates. There is thus a nonzero
probability to observe a violation of the Bell inequality, although the actual state does not violate
it. To quantify the probability that an observed violation is only due to statistical fluctuations,
we formulate the Bell test as a hypothesis test. The hypotheses are as follows:
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Figure 4.1: Upper bound of the p value. To observe a value of θ > C even though the state
obeys the classical bound, the estimator ⟨B̂⟩ has to exceed its mean by at least t. The figure is
taken from [P4].

• Null hypothesis H0: The measurement outcomes can be described by a LHV model.

• Alternative hypothesis H1: The Bell inequality is violated.

To gauge whether the observed data is in contradiction with the null hypothesis H0, we look
at the p value. The p value is defined as the probability to observe an estimate at least as large
as some value θ in case H0 is true, i.e.,

p = P
(

⟨B̂⟩ > θ
∣∣ H0

)
. (4.2)

But the p value is hard to calculate since the probability depends on the probability distribution
of the estimator ⟨B̂⟩, which is unknown. We can, however, upper bound the p value. A local
theory can, at most, reach a value of ⟨B⟩ = E[⟨B̂⟩] = C. Thus, in case H0 is true, the estimator
⟨B̂⟩ has to exceed its mean by at least t = θ − C if a violation ⟨B̂⟩ = θ > C is observed. This is
sketched in Fig. 4.1. We consequently obtain the upper bound

p ≤ P(⟨B̂⟩ − ⟨B⟩ ≥ t). (4.3)

In the following, we use Hoeffding’s inequality [85] to upper bound the right-hand side of Eq. (4.3).
Hoeffding’s inequality is a large deviation bound that typically involves the number of repetitions.
This allows us to connect the number of repetitions to the p value. Finally, we say that an
observed result has a confidence level of γ = 1 − p.

4.2.2 Random sampling

So far, we have noted that there are known multipartite Bell inequalities that adapt to the
architecture of the quantum computer and show a growing resistance to white noise. This allows
one to overcome problems (i) and (ii). We have also seen, however, that the number of terms
grows exponentially, which makes it experimentally infeasible to measure all terms. In this
section, we describe a scheme to overcome this problem and which allows one to evaluate the
Bell inequalities.

A general Bell operator B can be written as a sum of observables:

B =
M∑
j=1

Bj . (4.4)

We note that for the Bell inequalities in Sec. 1.4.3, the number of terms equals the quantum
bound, i.e., M = Qn. We propose to estimate the expectation value of the Bell operator by

52



4.3 Number of measurement repetitions

measuring the expectation value of L randomly chosen terms. To analyze how many terms L
have to be sampled, we first assume that the expectation values can be inferred directly, i.e., we
consider the limit of infinite measurements. With this simplification, the estimator reads

⟨B̂⟩∞ = M

L

L∑
l=1

⟨BJl
⟩. (4.5)

We note that in the above expression, J1, . . . , JL are independent random variables with possible
outcomes in the range {1, . . . ,M}. We assume that all outcomes are equally likely, i.e., P(Jl =
j) = 1

M for all j ∈ {1, . . . ,M}. In App. B.1.1, we show that the estimator is unbiased, i.e.,
E[⟨B̂⟩∞] = ⟨B⟩. To show that

To assess the significance of an observed violation, we consider the p value. We upper bound
the p value with the help of Eq. (4.3). The probability on the right-hand side of Eq. (4.3) can be
bounded with the help of concentration inequalities. Here, we consider Hoeffding’s inequality,
which yields

p ≤ P(⟨B̂⟩∞ − ⟨B⟩ ≥ t) ≤ exp
(

− t2

2M2L

)
. (4.6)

The details of Hoeffding’s inequality are presented in App. B.2.1. This result can be used to
derive a lower bound on the necessary L. To reach a confidence level of γ = 1 − p,

L ≥
⌈

−2M2

t2
ln(1 − γ)

⌉
(4.7)

random terms of the Bell operator have to be sampled.

4.3 Number of measurement repetitions
We now take into account that the expectation values cannot be inferred directly. Rather, the
measurement of each chosen term Bj has to be repeated multiple times. In this section, we are
interested in how many repetitions are necessary. For this purpose, we adjust the estimator in
Eq. (4.5) to include the measurement repetitions. We assume that every term is measured K
times. This yields the estimator

⟨B̂⟩ = M

KL

L∑
l=1

K∑
k=1

b
(k)
Jl
. (4.8)

In the above estimator, b(k)
j denotes the measurement outcome of the term Bj in the kth repeti-

tion. Thus, we have b(k)
j ∈ {±1}. As in Eq. (4.5), J1, . . . , JL denote independent random variables

that uniformly distributed take values in the range {1, . . . ,M}. We also show in App. B.1.2 that
the estimator in Eq. (4.8) is unbiased, i.e., E[⟨B̂⟩] = ⟨B⟩. Finally, we can again use Eq. (2.19)
and Hoeffding’s inequality to bound the p value,

p ≤ P(⟨B̂⟩ − ⟨B⟩ ≥ t) ≤ exp
(

− t2

2M2KL

)
. (4.9)

The detailed evaluation of Hoeffding’s inequality is shown in App. B.2.2. However, we have
already derived a lower bound for L. We thus obtain a lower bound on K from Eq. (4.9):

K ≥ 1
L

⌈
−2M2

t2
ln(1 − γ)

⌉
. (4.10)

Since L ≥ ⌈− 2M2

t2 ln(1 − γ)⌉, we observe that K ≥ 1. As a result, we can conclude that it is
sufficient to measure each term only once.
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4.4 Analysis of the Bell inequalities for the GHZ and LC state
In this section, we are going to apply the method to the Bell inequalities for graph states. In
particular, we will look at the Bell inequalities for the GHZ and the LC states. As described in
Sec. 4.1, these Bell inequalities are promising to detect a large violation.

For this purpose, we express the observed expectation value as a fraction α of the quantum
bound, i.e.,

⟨B̂⟩ = αQn. (4.11)

As we have seen in Sec. 1.4.3, to observe a violation of the Bell inequality we have to have
α > (Cn/Qm) n→∞→ 0. In case a violation is observed, it is t = αQn − Cn. The number of
random terms that are necessary to ensure a confidence level γ is given by Eq. (4.7) that takes
the form

L ≥
⌈

− 2
(α−D−1

n )2 ln(1 − γ)
⌉
. (4.12)

We note that for the Bell inequalities in Sec. 1.4.3, the number of terms equals the quantum
bound, i.e., M = Qn. As D−1

n converges to zero in the limit n → ∞, we can conclude that
L converges against some constant value for fixed α. This is shown for the Bell inequalities
associated to the GHZ and LC states in Fig. 4.2.

For both the GHZ state and the LC state, we have assumed an observed violation of ⟨B̂⟩ =
αQn with α = 0.6. This moreover implies that the assumed violation increases with the number
of qubits n. We thus stress that Fig. 4.2 is only valid in case at least a value ⟨B̂⟩ = αQn is
observed and does not show the generic scaling of L with n. As an example, we can make the
following observation:

Observation 1. In case a violation ⟨B̂⟩ = αQn of the Bell inequality associated to the GHZ
state or the LC state for n = 81 qubits has been observed by sampling L = 80 random terms, the
result has a confidence level of γ = 5σ.

We note that for small n, L exceeds the number of contexts of the Bell operator. This,
however, is not a contradiction as we do not exclude that a term is sampled multiple times.
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Figure 4.2: Necessary number of random observables, L, which are measured K = 1 times each,
such that an observed violation of at least ⟨B̂⟩ = αQn for α = 0.6 has a confidence of γ = 5σ.
The figure is taken from [P4].
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Figure 4.3: Confidence levels γ for an observed violation ⟨B̂⟩ with L random terms (K = 1) in
case the classical bound Cn is negligible compared to the observed violation ⟨B̂⟩. The figure is
taken from [P4].

In addition, Eq. (4.12) shows that with increasing L a decreasing violation ⟨B̂⟩ = αQn with
α ∼ O(L−1/2) can be verified.

Finally, we see in Fig. 4.2 that already for relatively small n the classical bound Cn becomes
negligible compared to the observed violation 0.6 ×Qn. Therefore, it does not have an effect on
L for large n. We thus show the contours of the confidence levels γ = 1σ, 2σ and 5σ in the limit
n → ∞ for a given observation ⟨B̂⟩ with L random terms in Fig. 4.3.

4.5 Bell nonlocality as benchmark
We now discuss Bell nonlocality as a benchmark for quantum computers. We will investigate
the Bell violations that can be achieved on current quantum computers. For this purpose, we
first consider the connectivity graphs of different quantum computers and discuss what Bell
inequalities can be used. Afterward, we include noise to assess realistic violations.

4.5.1 Connectivities of current quantum computers

We start by having a look at the connectivity graphs of different quantum computers and the
Bell inequalities that can be evaluated on the different architectures. In Fig. 4.4, we show the
connectivity graphs of a few current quantum computers. The first connectivity in Fig. 4.4 (a) is
the star graph of five qubits, i.e., one central qubit connected to four other qubits. This layout is
used, e.g., in the Starmon-5 quantum processor [123]. Fig. 4.4 (b) shows the connectivity graph
that is used by IBM’s Falcon processor [124]. The ion trap quantum computer in Ref. [125] has
20 qubits that can all be coupled. The corresponding connectivity graph is shown in Fig. 4.4 (c).
We also include the connectivity graphs of Google’s Sycamore processor in Fig. 4.4 (d) [91] that
has 53 qubits and IBM’s Eagle processor [124] that has 127 qubits in Fig. 4.4¸(e).

As the optimal Bell inequality that is associated to the connectivity graph is, in general,
hard to determine, we will focus on the Bell inequalities for the GHZ and the LC states. In the
following, we are interested in the largest GHZ and LC states that can be natively prepared on
the different layouts in Fig. 4.4, i.e., that can be prepared by the available two-qubit gates only.

Observation 2. On a quantum computer of n qubits, it is always possible to prepare a GHZ
state of all n qubits with a circuit of O(n) depth.
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Figure 4.4: Connectivities of different quantum computers. The connectivity graph in (a) is used,
for example, by the Starmon-5 quantum processor [123], whereas IBM’s Falcon processor [124] is
based on layout (b). (c) The connectivity of the ion trap quantum computer in Ref. [125]. (d) The
connectivity graph of Google’s Sycamore processor [91]; (e) IBM’s Eagle processor ibm_brisbane
[124]. The figure is reprinted from [P4].

Proof. The connectivity graph of quantum computers is usually connected. Thus, by the follow-
ing steps, a GHZ state of all n qubits can be prepared. The steps are illustrated in Fig. 4.5 for
the architecture in Fig. 4.4 (b).

1. Prepare a star graph with center at the qubit with the largest connectivity [Fig. 4.5 (b)].

2. By performing two local complementations, the center of the star graph can be shifted to
any node of the graph. Thus, the center can be moved to a vertex with still uncoupled
neighbors [Figs. 4.5 (c) and 4.5 (d)].

3. By applying a CZ gate between the center node and the uncoupled neighbors, the adjacent
qubits can be added to the GHZ state [Fig. 4.5 (e)].

4. Step 2 and 3 can be repeated until all qubits are coupled.
This procedure requires at least n−1 consecutive CZ gates. In the worst case, there are two local
complementations needed between all CZ gates. Combined with the initial Hadamard gates, the
circuit depth is 3n+ 1.

We point out that the GHZ state can also be prepared in logarithmic step complexity [126,
127], depending on the connectivity.

For the LC state, in contrast, we make the following observation.
Observation 3. Assume that the connectivity graph of a quantum computer is connected. Then,
a linear cluster state containing all n qubits can be prepared with a circuit depth of O(n). In
practice, however, it is often beneficial to prepare the LC state that is associated to the longest
simple path in the connectivity graph [19]. The corresponding circuit has a constant depth of
three, independent of the number of qubits.
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Figure 4.5: Preparation scheme for the GHZ state on the 7-qubit interaction topology that is,
for example, used by IBM’s Falcon processor. The dotted lines indicate the physical CZ gates,
whereas the graph state is drawn in red. The figure is reprinted from [P4].

Proof. We show in App. B.3 that it is always possible to prepare a LC state that contains all
qubits in linear circuit depth. The longest simple path, in contrast, can be generated by first
preparing all qubits in the |+⟩ state, i.e., by applying Hadamard gates. Afterwards, every second
CZ gate can be performed in parallel. The circuit depth is thus three, independent of the length
of the simple path. The circuit is shown for the 6-qubit LC state in Fig. 4.6 (a).

As we only know the Bell inequality for the LC state with a number of qubits that is a
multiple of three, we search for the longest path of length divisible by three. The longest paths
that fulfill this restriction are drawn in pink in Fig. 4.4. The connectivity graphs in Figs. 4.4 (a)
and 4.4 (b) allow one to prepare a 3-qubit LC state. The largest simple path on the 20 qubit
full-connectivity graph in Fig. 4.4 (c) with length divisible by three has length 18. The quantum
computer in Fig. 4.4 (c) thus allows one to check the Bell inequality for the 18 qubit LC state.
To find the longest path is an NP-complete problem [128]. We can thus not verify if the marked
paths for the layouts in Figs. 4.4 (d) and 4.4 (e) are indeed the longest paths. In Fig. 4.4 (d), we
have identified a 48 qubit path as longest simple path. The layout in Fig. 4.4 (e) in turn allows
the preparation of the 108 qubit LC state.

(a) H •

H • •

H • •

H • •

H • •

H •

(b) H • • • • •

H •

H •

H •

H •

H •

Figure 4.6: Quantum circuits to prepare (a) the LC state and (b) the GHZ state for n = 6
qubits. The circuits make use of the Hadamard gate denoted by H and CZ operations that are
represented by the connected dots. The figure is reprinted from [P4].
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Single-qubit gate Two-qubit gate Readout
IBM Eagle 2.417 × 10−4 7.409 × 10−3 1.390 × 10−2

Google Sycamore
isolated 1.5 × 10−3 3.6 × 10−3 3.1 × 10−2

simultaneous 1.6 × 10−3 6.2 × 10−3 3.8 × 10−2

Table 4.1: Average error rates of IBM’s Eagle processor ibm_brisbane calibrated on 27.02.2024
18:32:14 [124] and Google’s Sycamore processor [91]. Google gives the error rates for the cases
that the gates are performed isolated or simultaneously on all qubits.

4.5.2 Noise

In the following section, we will discuss the effect of noise. The goal is to roughly estimate
the violation that can be realistically observed on quantum computers. Commonly, the errors of
quantum computers are specified in terms of the error rates for single-qubit gates, two-qubit gates,
and readout. The error rates for IBM’s Eagle processor ibm_brisbane and Google’s Sycamore
processor are shown in Tab. 4.1. The error rate for the single-qubit gates is typically about an
order smaller than the other error rates. We thus neglect the single-qubit errors. The readout
error on the other side can be mitigated by classical postprocessing [129, 130]. We thus focus on
the error in the two-qubit gates. For this purpose, we will consider a simple depolarisation noise
model.

In the depolarization noise model, we assume that an error results, on average, in a maximally
mixed state, i.e., the circuit for the graph state |G⟩ prepares the mixture

ρ = p |G⟩⟨G| + (1 − p) 1
2n . (4.13)

The probability that no error in the two-qubit gates occurs is p = (1 − p2)N2 , where p2 is the
error rate and N2 the number of the two-qubit gates. The observed violation is thus

⟨B⟩ = p×Qn. (4.14)

In Fig. 4.6, we show the circuits to prepare the LC and GHZ states in the case of n = 6 qubits.
For the LC state, the CZ gates can be performed simultaneously and thus the circuit exhibits a
constant depth of three, independent of the number of qubits. For the GHZ state, however, the
preparation with CZ gates requires the gates to be consecutively applied. The circuit depth thus
grows with the number of qubits. The number of CZ gates, however, is equal.

Violation ⟨B⟩/Q L for γ = 5σ
Google Sycamore

LC state (n = 48) 0.6913 41
GHZ state (n = 53) 0.7656 34

IBM ibm_brisbane
LC state (n = 108) 0.4396 102
GHZ state (n = 127) 0.3800 136

Table 4.2: Results for the depolarization noise model that takes the 2-qubit gate error into
account. For the noise data of Google’s Sycamore [91] and IBM’s Eagle processor [124], we show
the violations in terms of the quantum bound Q. The last column shows the number of random
terms, L, that have to be sampled to verify the violation with a confidence of 5σ.
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The results in Tab. 4.2 show that the simple noise model predicts a violation of more than
0.6 × Q for Google’s Sycamore processor and a bit less for ibm_brisbane. We note, however,
that we considered more qubits on the IBM machine. A violation can thus be verified on both
machines with L ∼ O(10) − O(102). This is of the same order as in Sec. 4.4. However, we
stress that the considered noise model does not take the 1-qubit gate errors and readout errors
into account. Real quantum computers, moreover, do not implement all gates natively. IBM’s
Eagle processor, for example, does not support the CZ gate. Rather, it has to be composed
of the available gates. The circuit in practice thus contains more gates and possibly exhibits
a larger depth. For these reasons, the noise model overestimates the violation. However, it
is still interesting to note that the noise model predicts the number of samples L to increase
exponentially in n. This is shown in Fig. 4.7.

101

102

53 12
70 20 40 60 80 10

0
12
0

L

n

IBM Eagle processor ibm_brisbane
Google Sycamore (LC state)
Google Sycamore (GHZ state)

Figure 4.7: Number of terms, L, that have to be sampled to verify the violation predicted by the
depolarization noise model with a confidence level of γ = 5σ. The figure is taken from [P4].

4.5.3 Simulation for an IBM quantum computer

Finally, we simulate the Bell inequalities of the LC and the GHZ states for the IBM Eagle
quantum processor. For this purpose, we use the Qiskit AerSimulator [131] with the noise data
of the quantum computer ibm_brisbane available at [124]. In Fig. 4.6, we show the ideal circuits
to prepare the LC and the GHZ states for n = 6 qubits. The advantage of the LC state is that it
can be prepared by a circuit of constant depth of three, whereas the step complexity for the GHZ
state increases with the number of qubits, n. We note, however, that IBM’s Eagle processor does
not implement the Hadamard and CZ gates natively. Rather, the gates have to be composed in
terms of the available gate set. In practice, the circuits thus involve more gates and exhibit a
larger depth.

After the preparation, L random terms of the corresponding Bell inequality are measured.
The measurement of each random term is not repeated, i.e., K = 1. Fig. 4.9 shows the average
expectation values of the Bell inequalities for the LC and GHZ states of up to n = 24 qubits.
We have chosen L = 800 random terms and the average is taken over 10 repetitions. Moreover,
the number of qubits is a multiple of three as only in this case is a good Bell inequality for the
LC state known. Fig. 4.9 shows that for both states, the simulation predicts a Bell violation
that increases exponentially with n. The LC state, however, shows a slightly higher relative
violation compared to the GHZ state. This can be seen in Fig. 4.10 (a). The plot in Fig. 4.10 (a)
displays the observed violation as a fraction of the total number of terms in the Bell inequality,
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Figure 4.8: Average p value of the results for the LC and GHZ states in Fig. 4.9. The average is
taken over the p values of the 10 repetitions. The error bars denote the standard deviation. We
plot only the top error bars as we are interested in the uncertainty to larger p values. The figure
is reprinted from [P4].

i.e., t2/M2 = (⟨B̂⟩ − Cn)2/M2. We fit the data points to an exponential and obtain(
t2

M2

)
LC

(n) = exp(−0.10n− 0.65),(
t2

M2

)
GHZ

(n) = exp(−0.17n− 0.54).
(4.15)

This affirms that the relative violation of the GHZ state decreases faster with n compared to the
LC state. We attribute this to the larger circuit depth that is required for the GHZ state. The
preparation of the GHZ state is thus more affected by noise. The smaller relative violation is also
the reason for the larger p values for the GHZ state, which we present in Fig. 4.8. Except for the
cases of n = 3, 15, the p values of the LC state are smaller, which implies a higher significance
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Figure 4.9: Simulation for the IBM Eagle quantum processor. The simulation uses the error
rates of the real device ibm_brisbane [124] and the violation is estimated by measuring L = 800
random terms of the Bell inequality K = 1 times each. In (a) the average expectation value of
the Bell inequality BLC is shown for the LC state, whereas (b) shows the violation of BGHZ for
the GHZ state. In both cases, the expectation values are averaged over 10 repetitions and the
error bars show the standard deviation. The figure is reprinted from [P4].
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Figure 4.10: (a) Observed violation in relation to the number of terms in the Bell inequality,
i.e., t2/M2 = (⟨B̂⟩ − Cn)2/M2. The data points are fitted by an exponential. From the fitted
function t2/M2, we estimate the number of random terms, L, that have to be sampled to reach
a confidence of γ = 1σ, 2σ, 5σ. (b) The results for the LC state; (c) the predictions for the GHZ
state. The figure is reprinted from [P4].

of the observed violation.
Finally, we use Eq. (4.15) to extrapolate the violation to larger n. Hoeffding’s inequality in

Eq. (4.9) yields the following for K = 1 and a target value for the confidence γ:

L(n, γ) ≥
⌈

− 2
(t2/M2)(n) ln(1 − γ)

⌉
. (4.16)

The number of necessary sampled terms, L, is shown in Fig. 4.10 (b) for the LC state and in
Fig. 4.10 (c) for the GHZ state. We first point out the different scaling of L compared to Fig. 4.2.
Whereas in Fig. 4.2 L decreases with n until a plateau is reached, Fig. 4.10 suggests that L
increases exponentially with n. This, however, can be attributed to fact that Fig. 4.2 has been
obtained with the assumption that the relative violation stays constant with the number of qubits,
n. But Fig. 4.10 (a) indicates that this assumption is not true for a real quantum computer.
However, we still obtain that the number of terms, L, that have to be sampled is much smaller
than the total number of terms, M .

As an example, we discuss L for the case of n = 81 qubits and a target confidence of γ = 5σ:

LLC(n = 81, γ = 5σ) = 182813,
LGHZ(n = 81, γ = 5σ) = 47170845.

(4.17)

The above numbers are much smaller than MLC ≈ 1016 and MGHZ ≈ 1024, but larger than the
values predicted in Sec. 4.4. As previous, we attribute this to the unrealistic assumption that,
independent of n, a violation ⟨Bn⟩ = 0.6×Qn can be observed. For n = 24 qubits the simulation
yields ⟨B̂LC

n ⟩/QLC
n = 0.28 for the LC state and ⟨B̂GHZ

n ⟩/QGHZ
n = 0.09 for the GHZ state, which

is already much smaller than 0.6 in both cases.

4.6 Discussion
We have demonstrated a method to test n-partite Bell nonlocality on quantum computers. Quan-
tum computers often have restricted two-qubit connectivity. We have thus pointed out that graph
states are a natural choice of nonlocal states that can be readily prepared if the graph is a sub-
graph of the connectivity graph. Moreover, for certain graph states, good Bell inequalities are
known. These Bell inequalities allow for an exponential violation of the classical bound, but in
turn also typically require an exponential number of measurements. On the one hand, the ex-
ponential violation makes them increasingly robust to noise. On the other hand, it is impossible
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to measure all terms in an experiment. We have solved this problem by proposing a method
in the manner of randomized measurements, e.g., direct fidelity estimation [18, 19] or few-copy
entanglement detection [119]. By sampling the terms of the Bell operator at random, the number
of measurements can be drastically reduced. The violation can, however, still be verified with
high significance. We have gauged the significance of a result with Hoeffding’s inequality. It thus
dependents on the violation that is observed. To assess the usefulness of the method on real
devices, we have first used a simple depolarization noise model to estimate realistic violations.
Finally, we have simulated the method for the IBM Eagle quantum processor. As expected with
increasing accuracy of the noise model, the predicted violation shrinks. However, also, the sim-
ulator of the IBM processor predicts the number of terms that have to be sampled to be much
smaller than the total number of terms in the Bell inequalities.

Our method will hence be useful to verify Bell violations in quantum systems of many qubits.
This includes current quantum computers in the NISQ regime, e.g., the quantum computers
accessible at IBM Quantum [124]. In addition, the observed Bell violation can be used to
benchmark and compare different quantum computers. The Bell violation can be interpreted
as a measure for the nonclassical correlations that can be produced. The preparation of the
associated state depends on the connectivity of the quantum computer. We thus can benchmark
the nonclassical correlations for states that require different levels of two-qubit connectivity.
Finally, we stress that our method is not restricted to qubits and can be readily applied to Bell
inequalities with higher local dimension.

Furthermore, the method could also be refined. For example, as the Bell inequalities only
include stabilizers of the graph state, all observables commute. It might thus be feasible to find
a (possibly very complicated) POVM to simultaneously measure all of the terms.

Moreover, it could be interesting to analyze the Bell inequalities with other statistical meth-
ods. Instead of the p value, one might look at the Kullback-Leibler divergence that has been
used to assess the statistical strength of Bell inequalities for few parties [64].

The relation to other benchmarks, e.g., the quantum volume [132, 133] or the layer fidelity
[134], is also yet to be explored. In particular, the layer fidelity can be measured by benchmarking
a linear string of qubits of the quantum computer.
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5 Complete characterization of quantum correlations by
randomized measurements

In this section, we are going to discuss how LU invariants can be evaluated with the help of
randomized measurements. In particular, for two-qubits, we derive explicit expressions for the
Makhlin invariants, that have been introduced in Sec. 1.5.3. Moreover, we note that the eigen-
values of a density matrix are invariant under unitary transformations and we show that they
can be derived from the LU invariants. As an application we discuss how Bell nonlocality and
the teleportation fidelity can be obtained from randomized measurements. The section is based
on [P2], and some subsection have been taken on.

5.1 Introduction
We have discussed in Sec. 1.5 that entanglement is invariant under local unitary transformations.
Entanglement is thus independent of the choice of the local bases. Moreover, this suggests that
entanglement can be characterized by LU invariants. We are mainly concerned with a bipartite
system of two qubits that is described by a density operator ρAB . From the definition in Sec. 1.5.3,
a function f of the density matrix is LU invariant if f(ρAB) = f((UA ⊗UB)ρAB(U†

A ⊗U†
B)). As

a result, the function value can be inferred by sampling the function with random unitaries that
are chosen according to the Haar measure, i.e.,

f(ρAB) =
∫∫

dUAdUBf(UA ⊗ UBρABU
†
A ⊗ U†

B). (5.1)

Especially, f is LU invariant if it can be expanded in terms of expectation values of LU invariant
observables Mi, i.e.,

f(ρAB) =
∑
t⃗

ct⃗ ⟨M1⟩t1⟨M2⟩t2 . . . , (5.2)

where t⃗ = (t1, t2, . . . ) denotes the vector of the indices ti. As the observables are LU invariant
they can be obtained from randomized measurements. The expectation values can be identified
with the moments of the outcome distribution:

f(ρAB) =
∑
t⃗

ct⃗ R(t1)
M1

(ρAB)R(t2)
M2

(ρAB) . . . (5.3)

For a bipartite observable the tth moment in Eq. (1.61) takes the form

R(t)
M(ρ) :=

∫∫
dUAdUB{tr[(UA ⊗ UB)ρ(U †

A ⊗ U †
B)M]}t. (5.4)

In the literature, randomized measurements have been investigated for product observables in
Refs. [22, 25, 73, 135, 136]. As the moments are obtained from randomized measurements that are
sampled according to the Haar measure, the method does not require a shared reference frame.
In this sense, randomized measurements require less control over the experiment. This simplifies
the experimental implementation. Moreover, we have discussed in Sec. 1.5 that randomized
measurements are insensitive to local unitary noise [25]. However, it has to be guaranteed that
the measurements are indeed sampled according to the Haar measure in an experiment. As
an alternative, the moments can also be inferred from unitary t-designs [137, 138]. Unitary t-
designs in turn require the implementation of specific unitaries. The original scheme of shadow
tomography in Ref. [26] is also formulated in terms of random unitaries that are sampled from
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a fixed finite set. We note, however, that the aim of shadow tomography is to infer arbitrary
properties of the quantum state, whereas from the moments in Eq. (5.4) only LU invariant
quantities can be derived.

In this work we extend the standard schemes and consider also randomized measurements
with non-product observables. We point out that non-product observables can always be written
as a sum of product observables. The moments for non-product observables can hence be obtained
from the data of multiple product observables.

The moments of the outcome distribution are the quantities that can be directly measured.
Whereas in principle any (polynomial) LU invariant can be expanded in terms of the moments,
so far only a subset of these moments have been utilized for specific tasks like entanglement
detection [23, 24, 139, 140] or fidelity estimation [18, 140].

In this work we present a general framework to express LU invariants in terms of the moments
of randomized measurements. For finite dimensional systems of local dimension d, the set of
polynomial LU invariants is finitely generated [141, 142]. This simplifies the discussion as it is
sufficient to consider the generators. For the case of two qubits and special classes of higher-
dimensional systems, the complete set of generators has been characterized [77, 143]. In the
first part of the section, we reflect on how all two-qubit invariants can be expressed in terms
of the moments of randomized measurements. Based on this connection all invariants can be
inferred from randomized measurements. We explain by the example of the Kempe invariant
in three qubits [144, 145] that the approach can also be applied to higher-dimensional systems.
Finally, we test our method by an experiment with two qubits. We show that from the obtained
invariants, Bell nonlocality can be verified and the usefulness of the state for teleportation can
be assessed. Especially, we discuss the statistical analysis of the results.

5.2 LU invariants from the moments of randomized measurements
The goal is to experimentally evaluate the Makhlin invariants that have been introduced in
Sec. 1.5.3. For this purpose we reproduce the expressions of the Makhlin invariants in terms of
the moments of randomized measurements [P2, 146].

Let us now state explicitly how to measure the LU invariants in a randomized measurement
scheme. To that end, recall that in order to observe the moments in Eq. (5.4), one has to choose
an appropriate observable. Here, we show how to choose it in order to obtain the invariants I1,
I2 and I3.

As a first example, we explore the moments for the choice M = Z⊗Z. Note that choosing any
other combination of Pauli matrices yields the same results, as they are related by local unitary
rotations. For this choice, the first moment vanishes and we obtain as the second moment

R(2)
Z⊗Z = 1

9 tr(TTT ) = 1
9I2, (5.5)

where the occurring integrals can be solved using Weingarten calculus [P2, 147].
Next, t = 3 yields again zero (as well as any odd moment). For t = 4, we obtain

R(4)
Z⊗Z = 1

75[2 tr(TTTTTT ) + tr(TTT )2]

= 1
75 [2I3 + I2

2 ], (5.6)

giving access to the invariant I3.
Finally, as I1 = det(T ) flips sign under partial transposition, we consider the non-product

observable Mdet =
∑3
i=1 σi ⊗ σi and t = 3. Note that even though the observable is non-

product, the moments can still be obtained by local measurements, as the expectation value can
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be obtained from the three measurements X ⊗X, Y ⊗ Y , Z ⊗ Z for a fixed choice of unitaries.
The corresponding moment yields

R(3)
Mdet

(ρ) = det(T ) = I1. (5.7)

Similarly, we can find appropriate observables to express also the remaining Makhlin invariants
in terms of moments of randomized measurements [P2].

5.3 Experimental setup
We experimentally verify the functionality of the proposed randomized measurement method for
the two-qubit case using polarization-entangled photon pairs. A schematic of our experimental
setup is shown in Fig. 5.1 (a). The entangled photon source (EPS) generates signal and idler
photon pairs via four-wave mixing in a dispersion shifted fiber (DSF) [148]. The DSF is pumped
with a 50 MHz pulsed fiber laser centered at 1552.52 nm and is arranged in a Sagnac loop with a
polarizing beam splitter (PBS) to entangle the signal and idler in polarization. The photons are
spectrally demultiplexed into 100 GHz-spaced channels on the International Telecommunication
Union (ITU) grid after the Sagnac loop, resulting in photons with a temporal duration of about
15 ps [149, 150]. For the experiment described here, ITU channels 27 (1555.75 nm) and 35
(1549.32 nm) are used. The source is tunable and typically outputs µ = 0.001 − 0.1 pairs per
pump pulse. Each photon is detected with gated InGaAs detectors with detection efficiencies of
η ∼ 20% and dark count probabilities of ∼ 4 × 10−5 per gate [151, 152].

Given the polarization-entangled state generated by our source, we must implement random
local unitary rotations in the form of random polarization state rotations. Therefore, we utilize
the scrambling function of automated polarization controllers in order to apply random polariza-
tion rotations (for the remainder of the paper, a polarization controller operating in scrambling
mode will be referred to as a polarization scrambler).

After verifying that the polarization scramblers can be used to apply sufficiently-random
unitaries, we measured unbiased estimators (see [P2] App. C) for the I1, I2, and I3 invariants
via Eqs. (5.5)-(5.7). Each polarization scrambler was set to rotate incident light to a random
polarization state (therefore, acting as a random unitary), and coincidences were measured in
different bases. To that end, we define for each of the two parties i = 1, 2 the local bases
{|H⟩i , |V ⟩i} of horizontally and vertically polarized light, {|D⟩i , |A⟩i} of diagonal and anti-
diagonal polarized light and {|L⟩i , |R⟩i} of left circular and right circular polarized light. Note
that while we associate these bases to polarization states, the unitary invariance of the measured
quantities allows us to choose any local bases, as long as they are rotated by π

2 on the Bloch
sphere w.r.t. each other. In particular, the bases for measuring photons 1 and 2 do not need to
be aligned, i.e. |H⟩1 and |H⟩2 do not need to be equivalent on their respective Bloch spheres.
We then measured in each combination of these local bases repeatedly for M = 200 different
settings of the polarization scramblers, i.e. 200 different random unitaries were applied, where
for each of these settings, K ≈ 1500 repetitions were used to measure the expectation value.

The method to estimate I1, I2, and I3 from finite measurement results is discussed in detail
in [P2] App. C. Although we collect measurement results in the {|H⟩i , |V ⟩i}, {|D⟩i , |A⟩i} and
{|L⟩i , |R⟩i} bases described above, the estimators for I2 and I3 only require projective measure-
ments in a single joint basis. Therefore, those estimators are calculated using only a subset of
the data, for example, the results for |H⟩1|H⟩2, |H⟩1|V ⟩2, |V ⟩1|H⟩2, and |V ⟩1|V ⟩2. On the other
hand, the estimator for I1 requires projective measurements in all three of the measured joint
bases. After calculating the invariants, the experiment described above was repeated 25 different
times to allow for a statistical analysis of the results.
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Figure 5.1: (a) Schematic diagram of the experimental setup for performing the randomized
measurement protocol with polarization-entangled photon pairs. DS: detector station. DSF:
dispersion-shifted fiber. EPS: entangled photon source. PA: polarization analyzer. SCR: polar-
ization scrambler. SPD: single photon detector. (b, c, d) Experimentally determined unbiased
estimators for the invariants I1, I2, and I3 for 25 different runs consisting of measurements with
200 different random unitaries. The black lines show the expected values of each parameter
calculated from the density matrix of the experimental system. The figure has been taken from
[P2].

The experimentally determined estimators of the I1, I2, and I3 invariants for all 25 runs (each
run is shown in a different color) are shown in Fig. 5.1 (b), (c), and (d), respectively. The green
band in all plots corresponds to the expected value of each invariant to allow for comparison with
our method. The band represents the mean value plus or minus the standard deviation of each
invariant calculated by performing quantum state tomography many times to characterize the
state output by the EPS. A more-detailed description of how these expected values are calculated
is found in App. E.3 in the Supplemental Material [P2]. The experimentally determined invariants
converge near the expected values, therefore validating our randomized measurement protocol.

5.4 Applications
Finally, we show that the moments I1, I2 and I3 can be used to obtain the maximal Bell violation
that can be achieved with the prepared quantum state. Moreover, the invariants can be used
to assess the usefulness of the state in quantum teleportation. We first reproduce how the
Bell violation and the teleportation fidelity can be derived from the moments [P2, 146]. We,
afterward, discuss how the error can be analyzed, and give the results with the corresponding
error bounds.

5.4.1 Detection of Bell nonlocality

The most straight-forward application is the evaluation of I2 = tr(TTT), also known as the two-
body sector length [153]. A quantum state is entangled if I2 > 1, and the maximal value is I2 = 3
for Bell states. Note that additional knowledge of I3 = tr(TTTTTT) allows for the detection
of many more entangled states [24]. Combined knowledge of I1 = det(T ), I2 = tr(TTT ) and
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I3 = tr(TTTTTT) is useful for completely determining if a state’s nonlocality can be detected
by a CHSH-like inequality: Given the observable [154]

B =
3∑

i,j=1
[ai(cj + dj) + bi(cj − dj)]σi ⊗ σj , (5.8)

where a⃗, b⃗, c⃗ and d⃗ are real, normalized vectors, its expectation value is bounded by 2 for local
states. For a given quantum state, the maximum expectation value that one can observe by
varying the vectors that define the observable is given by 2

√
λ2

1 + λ2
2, where λ1 and λ2 are the

two largest singular values of the correlation matrix T [155]. Thus, the quantity

CHSH(ρ) = 2
√
λ2

1 + λ2
2 − 2 (5.9)

measures the observable violation.
As the squares of the singular values of T coincide with the eigenvalues of TTT, we can obtain

them by measuring the coefficients of the characteristic polynomial

pT (x) = x3 − tr(TTT)x2 − 1
2
[
tr(TTTTTT) − tr(TTT)2]x− det(T )2

, (5.10)

which are LU invariants, and calculating its roots. However, some care is needed to properly
transfer statistical errors from finite statistics of the invariants to the roots of this polynomial.
We explain the data analysis methods in Sec. 5.4.3.

5.4.2 Teleportation fidelity

As a second figure of merit, we can decide whether a given two-qubit state is useful in a telepor-
tation protocol. There, the maximal fidelity fmax of the teleported state is given by [156]

fmax = Fmaxd+ 1
d+ 1 , (5.11)

where in our case d = 2 and Fmax is the maximal overlap of the distributed state with the maxi-
mally entangled state |ϕ+⟩ = 1√

2 (|00⟩+ |11⟩) under local operations and classical communication.
As LU rotations constitute a subset of these, we can lower bound Fmax by optimizing over LUs
instead, yielding [157]

Fmax ≥FUmax := 1
4 max{1−λ1−λ2−λ3, 1−λ1+λ2+λ3,

1+λ1−λ2+λ3, 1+λ1+λ2−λ3}. (5.12)

By examining the invariants I1, I2 and I3, we can minimize FUmax over all singular values λi
which are compatible with the observed data, giving a lower bound on the teleportation fidelity
of the prepared quantum state.

5.4.3 Error bounds of the moments

In order to derive confidence levels for the quantities that we derive, we apply Hoeffding’s in-
equality (see also Sec. 2.4), stating that for a set of n statistically independent random variables
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{X1, . . . , Xn}, where each Xi ∈ [ai, bi], the probability of observing their sum deviating more
than δ from the mean value is bounded by [85]

P

(
|
∑
i

Xi − E[
∑
i

Xi]| ≥ δ

)
≤ 2 exp

(
− 2δ2∑

i(bi − ai)2

)
. (5.13)

We will use this inequality for independent, subsequent runs of the same inequality, i.e., ai ≡ a,
bi ≡ b for all i, and are interested in the mean, which demands a rescaling of Xi → Xi/n. By
fixing the right-hand side to a desired error probability 1 − γ, where γ denotes the confidence,
we obtain the following upper bound for the deviation δ:

δ = b− a√
2n

√
ln
(

2
1 − γ

)
. (5.14)

This allows us, for any given estimator of an experimental quantity which yields numbers in the
range [a, b], to derive the maximal deviation of the true mean value given a certain confidence
level of γ. We will use this to bound the LU invariants tr(TTT), tr(TTTTTT) and det(T ), needed
to determine the roots of the characteristic polynomial in Eq. (5.10) in the main text.

What is left is to translate the confidence region of these coefficients into confidence regions
of the roots. For that, we first give a naive bound on the confidence level that all of the measured
quantities lie within their individual confidence levels.

To that end, consider first two random variables x and y, the experimental values of which
being with confidence level γ in the regions [x0, x1] and [y0, y1], respectively. This is depicted
in Fig. 5.2, where the confidence intervals of the two variables split the graph into 9 different
regions, where the symbols a, b, . . . , i denote the probability to find a pair of measurement results
in the corresponding region. We have d + e + f = b + e + h = γ and a + b + c + g + h + i =
a+c+d+f+g+i = 1−γ. The probability to find an experimental value outside of at least one of
the confidence intervals is given by a+b+c+d+f+g+h+i = 2(1−γ)−(a+c+g+i) ≤ 2(1−γ).
Therefore, the probability to have measurement results within both confidence bands is at least
1−2(1−γ). The same argument can be applied to more than two variables, x(1), . . . , x(n), where

Figure 5.2: Illustration of the estimate in the text for two random variables: The probability to
find experimental values inside of region e is lower-bounded by the expression in Eq. (5.15). The
figure is taken from [P2].
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each variable x(i) lies in the interval [x(i)
0 , x

(i)
1 ] with confidence γ, yielding

P(∀i : x(i)
0 ≤ x(i) ≤ x

(i)
1 ) ≥ 1 − n(1 − γ). (5.15)

Finally, we determine the expression in Eq. (5.9) for each choice of coefficients in their corre-
sponding confidence regions to obtain a range of violations, in which the true violation lies with
confidence level 1 − 3(1 − γ).

5.4.4 Results for the Bell violation and teleportation fidelity

In order to certify the achieved violation of the CHSH inequality using Eq. (5.9), we first have
to determine appropriate confidence intervals for the three LU invariants tr(TTT ), det(T ) and
tr(TTTTTT ), respectively. To do so, we follow two approaches, the first of which assumes that
the coarse-graining of all 25×200 data points in 25 groups is enough to justify that the resulting
data be normally distributed. Calculating the mean values and standard deviations based on
this assumption yields

det(T ) = −0.62 ± 0.15, (5.16)
tr(TTT ) = 2.41 ± 0.15, (5.17)

tr(TTTTTT ) = 2.21 ± 0.21, (5.18)

with 3σ, i.e., 99.73% confidence levels.
Alternatively, we can drop the assumption of normally distributed data and use the Hoeffding

inequality to determine appropriate error bounds [85]. For instance, the sector length tr(TTT )
can be directly expressed as a sample mean

∑M
i=1 Xi/M of the squared correlation function

Xi = ⟨UA†ZUA ⊗ UB
†ZUB⟩2 = 9(p(i)

00 − p
(i)
01 − p

(i)
10 + p

(i)
11 )2, with Xi ∈ [0, 9]. Applying the

Hoeffding inequality to this case allows us to assign, with confidence γ, the following two-sided
error bound:

δ = 9√
2M

√
ln
(

2
1 − γ

)
, (5.19)

which for M = 25 × 200 = 5000 and γ = 0.9973 (3σ) leads to

tr(TTT ) = 2.41 ± 0.24. (5.20)

Using the Hoeffding inequality for the determinant, we obtain

det(T ) = −0.62 ± 1.09, (5.21)

which is significantly worse compared to the Gaussian estimate. Lastly, for tr(TTTTTT ), we
cannot apply the same arithmetic, as this quantity does not originate directly from a sample
average over the runs but instead also involves the square of the respective sector length tr(TTT )2.
As a workaround, we exploit the insight that the range of physically allowed values of the quantity
tr(TTTTTT ) is constrained by the value of tr(TTT ). Thus, we can derive a region of compatible
values of tr(TTTTTT ) from the confidence region of tr(TTT ), i.e. tr(TTT ) = 2.41 ± 0.24.
Following this procedure, we obtain

tr(TTTTTT ) = 2.00 ± 0.42. (5.22)
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We now have two sets of results including 3σ confidence levels for the three invariants un-
der consideration. We can thus proceed to calculate the roots of the characteristic polyno-
mial Eq. (5.10), and, respectively, the achievable violation of the CHSH inequality. In order to
determine the best permissible value of the latter, we scan the whole range of allowed values
of the three invariants and calculate the corresponding roots and CHSH violation for each of
them. Finally, we use the largest violation which is still compatible with the observed data. The
confidence of this violation is then given by 1 − 3(1 − γ) = 0.991 ≈ 2.6σ, as detailed in Sec. 5.4.3.

Following the above procedure, we obtain the following CHSH violations:

CHSHGauss ≥ 0.46, (5.23)
CHSHHoeff ≥ 0.40. (5.24)

Note that the maximal observable value is given by 2
√

2 − 2 ≈ 0.83. Similarly, by requiring a
higher confidence level of 5σ for the invariants, or equivalently γ = 0.9999994, we obtain

CHSHGauss ≥ 0.42, (5.25)
CHSHHoeff ≥ 0.34, (5.26)

with confidence 1 − 3(1 − γ) = 0.999998 ≈ 4.7σ. Using either method, our results clearly show
that the randomized measurement protocol successfully determines that the state output by our
EPS has the potential to violate a CHSH inequality.

The same error analysis can be used to obtain the lower bound FUmax in Eq. (5.12) in the
main text from the confidence intervals of the LU invariants. For a confidence level of 3σ of the
LU invariants, we obtain a lower bound of at least:(

FUmax
)

Gauss = 0.88, (5.27)(
FUmax

)
Hoeff = 0.85, (5.28)

with a confidence level of 1 − 3(1 − γ) = 0.991 ≈ 2.6σ. Similarly, we obtain the lower bounds(
FUmax

)
Gauss = 0.86, (5.29)(

FUmax
)

Hoeff = 0.60, (5.30)

for a confidence level of 5σ of the LU invariants. The confidence level of the bounds is 1−3(1−γ) =
0.999998 ≈ 4.7σ.

5.5 Conclusion
In this section, we have shown that all LU invariants can be directly inferred from random-
ized measurements of appropriately chosen observables. For the special case of two qubits, we
have derived explicit expressions of the LU invariants in terms of the moments of randomized
measurements.

We have demonstrated the introduced method by an experiment with entangled photon pairs.
The experiment has given access to the LU invariants I1, I2, and I3. The invariants in turn are
connected to different properties of the quantum state. As applications, we have calculated
from the invariants the maximal Bell violation that could be observed from the prepared state.
Moreover, we have assessed the usefulness of the state for quantum teleportation. To back the
experimental findings up we have considered the confidence levels of the results by a statistical
analysis. Finally, we point out that as a byproduct of the investigation, we have introduced a
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method to verify the degree of randomness of the implemented unitary transformation. This
method is described in detail in [P2].

We emphasize the simplicity of the presented scheme which allows inferring several important
properties of the underlying quantum state through a number of randomly assorted measure-
ments. For this reason, it will be an interesting direction of future research to extend the present
explicit constructions for two-qubit states also to higher-dimensional systems, which likely will
find ample applications in quantum communication tasks. Also, it would be desirable to extend
our approach to the characterization of nonlocal quantum channels and multiparticle quantum
correlations such as multi-setting Bell nonlocality or spin-squeezing.
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6 Optimizing shadow tomography with generalized measurements

6 Optimizing shadow tomography with generalized mea-
surements

In the previous sections we have discussed how specific properties of quantum systems can be
inferred. This included the direct measurement of spin-squeezing inequalities, Bell inequalities
and LU invariants. This section in contrast discusses shadow tomography. The idea of quantum
state tomography is to reconstruct the quantum state. Accordingly, any observable can be
estimated. The aim of shadow tomography, however, is not to reconstruct the density matrix
but to directly estimate expectation values from the tomographic data. This section is adapted
from publication [P1].

6.1 Introduction
For quantum technology it is crucial to have precise control over isolated quantum systems.
This refers to both the preparation and the manipulation as well as the readout of quantum
states. To characterize a quantum system it is necessary to read out the relevant information.
For this purpose, it is necessary to perform measurements on the system that ideally allow the
estimation of arbitrary observables. A common approach is to characterize the state of the
system by quantum state tomography [16]. The key idea of quantum state tomography is to
perform a sufficiently large number of different measurements such that the density operator of
the state can be reconstructed [158–162].

For large systems, however, it is impossible to reconstruct the density operator as the dimen-
sion increases exponentially with the number of particles. In practice, it turns out though that
often not the entire information of the density operator is used later on [78]. This is for example
the case if one is only interested in some properties, e.g., the expectation value of certain observ-
ables or the entropy. Ref. [78] thus has theoretically proposed shadow tomography as a method
to avoid reconstructing the density operator and directly estimating the observables from the
tomographic data. The practical scheme that was thereafter introduced in [26] has attracted a
lot of attention.

Here, we will only briefly sketch the idea of the protocol. A more detailed description is given
in Sec. 1.6. Whereas quantum state tomography is only considered useful when enough statistics
is gathered such that the prediction are accurate, state estimators can already be applied to
arbitrary sparse data [163]. This fact is, for example, used in data science and machine learning
[164, 165]. From a single data point a noisy estimate can be derived. The noise can be reduced
by averaging over all the data points. Even though the estimated state from sparse data can
be very noisy and far away from the actual state, the noisy estimate can accurately predict
certain observables [26, 78]. For the method to be computationally advantageous, however, it is
crucial that the expectation values and other properties can be calculated without reconstructing
the density operator [26]. Shadow tomography scales more easily to large systems than full
tomography.

To collect data, Ref. [26] proposed to first apply unitaries that are randomly drawn from
a specified set. The system is afterward measured in the computational basis. Equivalently,
this method can be seen as choosing a random measurement from a chosen set. The technique
has been applied in various scenarios that include energy estimation [166, 167], entanglement
detection [140, 168], metrology [169], analyzing scrambled data [170], and quantum chaos [171].
Moreover, there have been additional improvements of the performance of the scheme [74, 140,
172–175] and the method has been generalized to channel shadow tomography [176, 177].

In this section, we formulate shadow tomography in terms of POVMs. This theoretical
framework contains the randomization of unitaries as a special case and is thus a generalization
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of the original scheme in [26]. Moreover, POVMs allow analyzing unavoidable errors in realistic
quantum measurements [91, 178] that can not be easily described by projective measurements.
We note that Ref. [179] has also proposed a procedure for shadow tomography with POVMs.
The method in [179], however, uses the original construction of classical shadows in Ref. [26]
by manually synthesizing the post-measurement states for POVMs. On the contrary, here we
show that classical shadows for POVMs can be derived straightforwardly from the least-square
estimator [163], which requires no further assumptions on the post-measurement states and
contains that for ideal measurements as a special case. In this sense, our proposed framework is
more general and at the same time simpler than randomization of unitaries.

6.2 Shadow tomography formulated in terms of POVMs
We are now going to discuss the main results of publication [P1], that has also been presented
in [180]. In Sec. 1.6, we have described the implementation of shadow tomography that has been
proposed in Ref. [26]. In this implementation, the state is measured after random unitaries from
a fixed ensemble have been applied. This is equivalent to measurements in random bases. We
have described in Sec. 1.3.2 that some POVMs can be implemented by random measurements.
This suggests that shadow tomography can be formulated with POVMs.

6.2.1 Shadow tomography derived from the least square estimator

We consider a quantum system with dimension D that is composed of qubits. As described in
Sec. 1.3.2, a POVM E is a set of effects E = {E1, E2, . . . , EN} that are positive and sum up
to identity, i.e.,

∑N
k=1 Ek = 1. Each effect is associated to an outcome k that is observed with

probability pk = Tr (ρEk). A POVM thus maps a density operator ρ to a probability distribution,
i.e., it defines the map ΦE : MD → R,

ΦE(ρ) = (Tr (ρEk))Nk=1 , (6.1)

where MD denotes the set of density matrices in dimension D.
In contrast to POVMs, observables in quantum mechanics give rise to projective measure-

ments. Projective measurements are a special class of POVMs whose effects consist of the D
projectors that project on the eigenspaces of the observables. For example, the measurement
of the Pauli operator σx corresponds to the POVM with the effects {|x+⟩⟨x+| , |x−⟩⟨x−|}. In
turn, measuring the three Pauli observables σx, σy and σz at random with equal probability 1/3
can be described by the POVM with effects {|x±⟩⟨x±| , |y±⟩⟨y±| , |z±⟩⟨z±|}. This is explained in
Sec. 1.3.2. The effects of the Pauli-POVM form an octahedron on the Bloch sphere, thus it is
also referred to as octahedron POVM. The same construction can be used for other polytopes.
A few examples of polytopes that are used to construct POVMs are shown in Fig. 6.1.

The goal in tomography is to estimate the density operator ρ from the observed measurement
outcomes, i.e., from the frequencies the different outcomes occur. This can be described formally
by an estimator χ, which is a map that transfers a probability distribution to a density operator,
i.e., χ : RN → MD. We require the estimator to be unbiased and linear. This means that in
expectation, i.e., for the exact probabilities of the POVM, χ yields the correct quantum state ρ.
As a result, (χ ◦ ΦE) = 1MD

acts are the identity over MD.
A POVM is informationally complete if the density matrix can be uniquely derived from the

statistics. If the POVM has just enough effects to form a basis for the operator space, it is not
overcomplete. In this case ΦE is invertible and χ = Φ−1

E . An overcomplete POVM on the other
hand does not uniquely define χ. It is thus reasonable to consider the estimate that minimizes
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6.2 Shadow tomography formulated in terms of POVMs

Figure 6.1: Examples of polytopes on the Bloch sphere that are used to define POVMs: octa-
hedron (N = 6), tetrahedron (N = 4), cube (N = 8), cuboctahedron (N = 12), icosahedron
(N = 12), dodecahedron (N = 20), icosidodecahedron (N = 30). The figure is reprinted from
[P1].

the sum of squares, i.e.,

χLS(p⃗) = arg min
τ
L(τ), where L(τ) =

N∑
i=1

[tr(τEi) − pi]2. (6.2)

The estimator χLS is called the least square estimator. L is a quadratic function and thus only
takes a single minimum. At the minimum, the variation δL = L(τ + δτ) − L(τ) vanished up to
linear order in δτ . From the first order expansion in δτ ,

δL = 2
N∑
i=1

[tr(τEi) − pi] tr(Eiδτ), (6.3)

it follows that δL = 0 for all choices of δτ if
N∑
i=1

[tr(τEi) − pi]Ei = 0. (6.4)

To rewrite the above equation in terms of the map ΦE , we note that the adjoint Φ†
E : RN → MD

is defined by

⟨ΦE(ρ),v⟩RN
!= ⟨ρ,Φ†

E(v)⟩MD
, for all v ∈ RN and ρ ∈ MD, (6.5)

where ⟨·, ·⟩RN and ⟨·, ·⟩MD
denote the inner products on RN and MD, respectively. From the

above equation, we get

Φ†
E(v) =

N∑
k=1

vkEk. (6.6)

Eq. (6.4) can thus be written as
Φ†
E [ΦE(τ) − p⃗] = 0. (6.7)

This yields the following expression for the least square estimator

χLS = (Φ†
EΦE)−1Φ†

E . (6.8)
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We note that the solution is also valid in case ΦE is invertible, χLS = Φ−1
E . It is important

to point out that the estimator χLS is indeed linear. We can thus easily check that χLS is an
unbiased estimator. In expectation, the observed probabilities match the theoretical ones, i.e.,
ΦE(ρ), and we get

χLS(ΦE(ρ)) = (Φ†
EΦE)−1Φ†

E(ΦE(ρ)) = (Φ†
EΦE)−1(Φ†

EΦE)(ρ) = ρ. (6.9)

The estimator thus yields the correct ρ if the exact measurement statistics are known.
As the estimator is linear, it commutes with taking the average over the data. It is thus

possible to associate an estimate to each data point. To clarify this, we denote the outcome k of
a single measurement by the elementary statistics vector qk = (δki)Ni=1 ∈ RN . By averaging over
the complete dataset {ki}Mi=1, the probabilities of the outcomes can be estimated, i.e.,

p̂ = 1
M

M∑
i=1

qki
. (6.10)

The estimator χLS then splits into the average over the estimates for the single data points:

χLS(p̂) = 1
M

M∑
i=1

χLS(qki
). (6.11)

We identify the estimates that are associated to the elementary outcomes as the classical
shadows, i.e., ρ̂k := χLS(qk). To simplify the notation, we note that for an informationally
complete POVM the map Φ†

EΦE is invertible, and we define

CE(ρ) := Φ†
EΦE(ρ) =

N∑
k=1

Tr (ρEk)Ek. (6.12)

We further note that for an elementary statistics vector the adjoint map in Eq. (6.6) takes the
form Φ†

E(qk) = Ek. As a result the classical shadows can be written as

ρ̂k := χLS(qk) = C−1
E (Ek). (6.13)

Similar to the classical shadows in Ref. [26], the average over the shadows of an infinite
number of measurements yields the state ρ, i.e., limM→∞

1
M

∑M
i=1 ρ̂ki = ρ. The convergence

alone, though, does not imply that χLS is a good estimator. Rather, this is suggested by the fact
that χLS is the least square estimator. We also stress that the estimate ρ̂ is not necessarily a
valid density operator as it is not guaranteed that Tr (ρ̂) = 1. This only holds if all effects have
the same trace.

Finally, we note that it is essential for shadow tomography that the estimator is linear. This
enables the estimation of observables from single data points, which, however, can be very noisy.
A low number of samples, M ≪ D, can still be sufficient to estimate many linear observables [26,
78].

6.2.2 Relation to randomized projective measurements

The definition of the classical shadows in Eq. (6.13) resembles the one given in Ref. [26], that we
have discussed in Sec. 1.6. This poses the question of how the two definitions are related.

The scheme in Ref. [26] applies unitaries that are randomly chosen from a fixed set U before a
projective measurement in the computational basis is performed. In case the unitary U is applied,
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and the system is measured to be in the computational basis state |b⟩ with b ∈ {0, 1}n, the post-
measurement state corresponds to the state U†|b̂⟩⟨b̂|U before the unitary has been applied. The
procedure can thus be seen as a projective measurement in the basis {U† |b⟩ | b = 1, . . . , D}.
For a finite unitary ensemble U of size |U|, the measurement can be identified as a POVM with
effects {

1
|U|

U†|b̂⟩⟨b̂|U
∣∣∣ U ∈ U , b ∈ {0, 1}n

}
. (6.14)

The randomized measurement approach can thus be viewed as an implementation of the above
POVM [27, 31].

The formulation in terms of POVMs opens several interesting perspectives. We first note that
the description of the randomized measurement approach is much more complicated than the
formulation of the corresponding POVM. In Sec. 1.6, we have discussed that a common choice of
the unitary ensemble is the group of local Clifford circuits Cl(2)⊗n. The Clifford group Cl(2) for
a single qubit has 24 elements [181]. The local Clifford circuits implement Pauli measurements
that can be described by the octahedron POVM that has 6 outcomes corresponding to the
effects 1/3 × {|x±⟩⟨x±| , |y±⟩⟨y±| , |z±⟩⟨z±|}. There are thus more parameters needed for the
randomized implementation, which makes it more complex and harder to optimize. Ultimately,
it seems intractable to determine the optimal unitary ensemble. We show, however, that it is
possible to optimize the POVM.

Furthermore, we have discussed in Sec. 1.3.2 that the octahedron POVM can also be imple-
mented by measuring the Pauli observables at random. The same POVM can thus be imple-
mented by different sets of unitaries. But it is not possible to simulate all POVMs by randomized
measurements [31, 182].

Finally, we note that POVMs can also be implemented by coupling the system to an ancilla
system by means of Naimark’s theorem 1.8. The formulation with POVMs thus paves the way
to implement shadow tomography in a different way.

6.2.3 Symmetry of generalized measurements and the computation of the classical
shadows

In the previous section, we have derived the classical shadows from the least square estimates, that
are associated to the elementary outcomes. To apply Eq. (6.13), we need to invert the map CE .
In this section, we show how the inverse map C−1

E can be found from the symmetry of the POVM.
A POVM E = (E1, E2, . . . , EN ) is called symmetric if there is a subgroup G of the permutation
group over (1, 2, . . . , N) and a representation U : G → U(D) such that Eg(k) = UgEkUg−1 [183].
If E is symmetric under the action of G, it follows that ΦE : MD → RN is covariant under
G, i.e., ΦE(UgρUg−1) = g[ΦE(ρ)]. The action of g on the probability distribution is defined as
(g[p])k = pg−1(k). The adjoint map Φ†

E is accordingly covariant, i.e., Φ†
E [g(p)] = UgΦ†(p)Ug−1

for all distributions p. As a result, the map CE = Φ†
EΦE and its inverse C−1

E are covariant, too.
For all hermitian operators X and g ∈ G, it is C−1

E (UgXUg−1) = UgC
−1
E (X)Ug−1 .

A POVM E is called uniform if there is a permutation G that acts transitively on the
outcomes, i.e., for any two effects Ei, Ej there is a group element g such that Ej = UgEiUg−1 .
It directly follows that Tr (Ei) = Tr (Ej) =: α for all i, j ∈ {1, . . . , N}. The stabilizer subgroup
Gk over k is the subgroup of G that leaves k invariant [183]. Since Gk leaves k invariant, Ek
commutes with all representations of the group U(Gk). As C−1

E is covariant, this also holds for
the classical shadows ρ̂k = C−1

E (Ek). E is called rigidly symmetric [183] if the representation U
restricted to any stabilizer subgroup Gk over k has exactly two irreducible representations. An
operator commuting with U(Gk) can thus only be a linear combination of Ek and 1. As a result
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d ST N Comments a b

2

8
6 Octahedron 9 −1
8 Cube 12 −1
12 Cuboctahedron 18 −1

16
12 Icosahedron 18 −1
20 Dodecahedron 30 −1
30 Icosidodecahedron 45 −1

3

24 21 28 −1
25 12 csMUB 16 −1

27 45 60 −1
60 80 −1

4

28 12 Real MUB 9 − 1
2

29
20 csMUB 25 −1
40 50 −1
80 100 −1

30 300 225 − 1
2

31 60 75 −1
480 600 −1

Table 6.1: Parameters for the inverse of the measurement channels for rigidly symmetric POVMs
constructed in Ref. [183] with the same naming convention of the symmetry groups. Each row
corresponds to a single POVM, which is decomposed to several projective measurements in Ref.
[183]. The decomposition can be used to simulate the POVM by randomized measurements.

if E is rigidly symmetric, then the classical shadows are of the form

ρ̂k = aEk + b1. (6.15)

What is left is to determine the parameters a and b. For this purpose, we notice that Ek =
CE(ρ̂k) = a

∑N
l=1 Tr(EkEl)El + bα1. We can now consider the trace of this equation and also

the trace of the equation multiplied from both sides with Ek. This yields

α = aα2 + bαD, (6.16)
β = aγ + bα2, (6.17)

with β = Tr
(
E2
k

)
, γ =

∑N
l=1 Tr(EkEl)2, both independent of k as E is uniform.

We can thus express the coefficients a and b in terms of properties of the considered POVM:

a = (Dβ − α2)/(Dγ − α3), (6.18)
b = (γ − αβ)/(Dγ − α3). (6.19)

Various rigidly symmetric measurements are investigated in Ref. [183] and we give the corre-
sponding parameters in Tab. 6.1.

6.2.4 Tensoring the shadow construction for many-body systems

The idea of shadow tomography is to avoid reconstructing the density matrix such that also
properties of large systems can be inferred. For this goal it is important to efficiently store and
process the classical shadows. For this purpose, Ref. [26] used the stabilizer formalism [79]. In
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this section, we discuss that for a POVM that is composed of generalized measurements for the
single qubits, also the classical shadows are product states.

We consider a system with n qubits, such that the total dimension is D = 2n. Moreover,
we choose (identical or not identical) POVMs {E(1), E(2), . . . , E(n)} for each of the qubits, that
are described by a collection of Ni effects E(i) = {E(i)

k }Ni

k=1 each. The effects of the POVM Etot

on the whole system can thus be labeled by a string of outcomes kkk = {k(1), k(2), . . . , k(n)}. The
corresponding effect is

Etot
kkk = E

(1)
k(1) ⊗ E

(2)
k(2) ⊗ · · · ⊗ E

(n)
k(n) . (6.20)

We note that the combined POVM is rigidly symmetric, too, and it thus follows that also the
classical shadows can be written as a tensor product:

ρ̂tot
kkk = ρ̂

(1)
k(1) ⊗ ρ̂

(2)
k(2) ⊗ · · · ⊗ ρ̂

(n)
k(n) , (6.21)

where ρ̂(i)
k(i) being the classical shadow corresponding to the measurement E(i) on the ith qubit.

Observables that also split into a product of single-qubit observables can thus be readily
estimated without computing the classical shadows of the full system. This would quickly become
impossible as the full classical shadows are of size D × D. For a product observable X =
X(1) ⊗X(2) ⊗ · · · ⊗X(n) a single outcome kkk gives rise to a single estimate

⟨X̂⟩ = Tr
[
ρ̂

(1)
k(1)X

(1)
]

Tr
[
ρ̂

(2)
k(2)X

(2)
]

· · · Tr
[
ρ̂

(n)
k(n)X

(n)
]
. (6.22)

The final estimate of ⟨X⟩ is as usual obtained by averaging over all data points. It is thus not
necessary to reconstruct the large density matrix of the full system.

6.2.5 Protocol of shadow tomography with generalized measurements

We will end this section by an overview of shadow tomography with a POVM E = {Ei}Ni=1. The
aim is to estimate a set of observables X = {Xi}mi=1.

1. For measurement E = {Ei}Ni=1, the classical shadows {ρ̂k}Nk=1 are determined by Eqs. (6.13)
or (6.15).

2. The data is collected by performing the POVM E on the desired quantum state. In total,
the measurement is repeated M times such that a collection {kj}Mj=1 of M outcomes is
recorded.

3a. The mean values of {Xi}mi=1 are estimated by ⟨Xi⟩ ≈ 1/M
∑M
j=1 Tr

(
ρ̂kj

Xi

)
.

We note that the procedure can also be used to estimate polynomial functions of ρ [26]. For
example, the purity Tr

(
ρ2) can be estimated by adjusting the last step to

3b. The purity Tr
(
ρ2) is estimated by Tr

(
ρ2) ≈ 1/[M(M − 1)]

∑
j1 ̸=j2

Tr(ρ̂j1 ρ̂j2).

6.3 Statistical analysis: Shadow norm
After we have discussed the formulation of shadow tomography in terms of POVMs, this section
is concerned with the statistical analysis. The classical shadows in Eq. (6.13) serve as the tomo-
graphic data in shadow tomography. They have to be efficiently stored and are later on used to
estimate observables. Each classical shadow gives rise to a single estimate

x̂k = Tr(ρ̂kX). (6.23)

78



6.3 Statistical analysis: Shadow norm

Since the average of the classical shadows 1/M
∑M
i=1 ρ̂ki

converges to the actual state ρ, i.e.,
limM→∞ 1/M

∑M
i=1 ρ̂ki = ρ, the average 1/M

∑M
i=1 x̂ki converges to ⟨X⟩. We note that the

asymptotic rate of convergence is related to the variance of the estimator. This can be seen for
example from Cantelli’s inequality in Thm. 2.11. For this reason, we will look at the variance
Var(x̂k) of a single data point x̂k. The variance is given by

Var(x̂k) = E[x̂2
k] − E[x̂k]2 =

N∑
k=1

P(k)x̂2
k − ⟨X⟩2 =

N∑
k=1

Tr (ρEk) x̂2
k − ⟨X⟩2, (6.24)

where we have used that P(k) = Tr (ρEk) and E[x̂k] = ⟨X⟩. By neglecting the second term and
maximizing the the variance over all states, we find the upper bound

Var(x̂k) ≤
N∑
k=1

Tr (ρEk) x̂2
k =

N∑
k=1

Tr (ρEk) Tr (ρkX)2 ≤ max
ρ

Tr
(
ρ
N∑
k=1

Tr (ρkX)2
Ek

)

= λmax

{
N∑
k=1

Tr (ρkX)2
Ek

}
=: ∥X∥2

E ,

(6.25)

where λmax{·} denotes the maximal eigenvalue of the operator. ∥X∥E is the shadow norm of the
operator X. To show the equivalence to the definition of the shadow norm in Ref. [26], we use
Eq. (6.14). The original scheme uses randomized projective measurements that correspond to a
POVM with effects {EU,b = 1/|U| × U† |b⟩ ⟨b|U | U ∈ U , b ∈ {0, 1}n}. In case the ensemble U is
finite, Eq. (6.25) can thus be written as

∥X∥2
E = max

ρ
Tr
(
ρ
N∑
k=1

Tr (ρkX)2
Ek

)
= max

ρ

∑
U∈U

∑
b∈{0,1}n

Tr
[
C−1
E (EU,b)X

]2 Tr (ρEU,b) .

(6.26)

The measurement channel M in [26] is related to CE , by M(ρ) = |U|CE(ρ). The inverse of CE
is thus C−1

E (ρ) = |U|M−1(ρ) and we get by inserting the effects:

∥X∥2
E = max

ρ

∑
U∈U

∑
b∈{0,1}n

Tr
[
|U|M−1

(
1

|U|
U† |b⟩ ⟨b|U

)
X

]2
Tr
(
ρ

1
|U|

U † |b⟩ ⟨b|U
)

= max
ρ

1
|U|

∑
U∈U

∑
b∈{0,1}n

Tr
(
ρU † |b⟩ ⟨b|U

)
Tr
[
M−1 (U† |b⟩ ⟨b|U

)
X
]2
.

(6.27)

The first sum can be identified with the average over the unitary ensemble. Moreover, we note
that M−1 is self-adjoint [26], i.e., Tr

(
M−1(X)Y

)
= Tr

(
XM−1(Y )

)
. We can thus perform the

traces and arrive at the definition of the shadow norm in Ref. [26]:

∥X∥2
E = max

ρ
EU

∑
b∈{0,1}n

⟨b|UρU † |b⟩ ⟨b|UM−1(X)U † |b⟩2
. (6.28)

From the classical shadows not only one observable can be estimated but also a set of ob-
servables X . We assume that all observables have the same physical unit. The shadow norm of
X can then be defined as the maximal shadow norm,

κ2
E(X ) = max{∥X∥2

E : X ∈ X }. (6.29)
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As the shadow norm is an upper bound on the variance, the smaller κ2
E , the better is the accuracy

of the estimates. The shadow norm is derived for the worst case scenario. We note, however, that
the target state could be far away from the worst case scenario. It thus might be also informative
to consider the variance in the average case.

6.4 Effects of noise in measurements
In realistic experiments not only the state of the system, but also the measurements are sub-
jected to noise. Errors in the measurements stem from different sources, e.g., the setup of the
measurement might be affected by noise or there is noise in the readout signal [91, 178].

If the implementation of the measurement goes wrong with probability p, and in this case
yields a random result, we can describe the noisy measurement by a depolarization noise model.
This can be readily formulated as a POVM with effects {p1/N + (1 − p)Ek}Nk=1. The impact of
depolarization noise on the shadow norm is shown in Fig. 6.2 (a) for classical shadows constructed
from the tetrahedron and octahedron POVM. As observables, we have chosen 128 projectors on
pure states that have been randomly sampled according to the Haar measure. Fig. 6.2 (b) shows
that for small failure probability p the shadow norm increases only slightly. For larger p, however,
the figure bears that κ2

E increases exponentially with p. What is not shown in the figure is that
in fact κ2

E diverges for p → 1. This is expected as in this case the measurements yield completely
random outcomes and no information can be extracted.

The second case refers to noise in the readout signal [184, 185]. This can lead to misclassifi-
cation of the outcomes and is thus called readout error. This kind of error is for example caused
by decoherence during the measurement process or by inability to perfectly distinguish the states
|0⟩ and |1⟩. We note, however, that readout error can be mitigated by classical postprocessing
[129, 130, 184, 185].

In the following, we describe a model that assumes the readout error to affect the qubits
independently, i.e., the model does not take crosstalk during the measurement into account. The
readout noise is assumed to be uncorrelated and can be written as a tensor product. It is thus
sufficient to consider the effect on a single qubit. We denote the probability that outcome 0
in the computational basis is misread as 1 by q+, whereas the opposite case that outcome 1 is
misclassified as 0 occurs with probability q−. The effect on one qubit can thus be written in
terms of the matrix

A =
(

1 − q+ q−
q+ 1 − q−

)
, (6.30)

where Aij is the probability that outcome j is interpreted as outcome i. A 2-outcome mea-
surement E = (E0, E1) is therefore modified to a new measurement Ẽ with effects Ẽ0 =
A00E0 +A01E1 and Ẽ1 = A10E0 +A11E1. We have discussed in Sec. 1.3.2 that the Pauli-POVM
can be simulated by randomization of the Pauli observables. In this case, each Pauli observable
is separately affected by readout errors. This in turn can be described by the POVM with effects
{1/3 × [(1 − q±) |t±⟩⟨t±| + q∓ |t∓⟩⟨t∓|] , t = x, y, z} This shows that the model for readout error
depends on the implementation of the POVM. In case the POVM is implemented by coupling
the system to n ancilla qubits, also the ancilla qubits are affected by readout noise. In principle,
the noise acts differently on the qubits. The readout error can thus be described by the tensor
product A = A1 ⊗ · · · ⊗ An, where Ak describes the readout error for the ancilla qubit k. The
effects of the noisy POVM, however, depend on the exact implementation by the ancilla system,
such that no generic form can be given.

For the analysis of readout error it is convenient to define the average error rate q̄ = (q+ +
q−)/2. The difference in the error rates can, accordingly, be described by ϵ = (q+−q−)/(q++q−).
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Figure 6.2: Shadow norm κ2
E in the presence of depolarization noise (a) and simple readout error

noise (b). The maximal shadow norm is computed for 128 projections on pure states that are
sampled randomly according to the Haar measure. For analogous results see Ref. [P1, 180].

Analogous to depolarization noise, we assess the quality of shadow tomography in the presence of
readout error by the shadow norm κ2

E . For this purpose we have chosen |X | = 128 projections of
rank one that are sampled randomly according to the Haar measure as observables. Fig. 6.2 (b)
shows the shadow norm as a function of ϵ for the average error rates of q̄ = 0.04, 0.08 and 0.12.
The classical shadows are obtained with the octahedron POVM. For small average error q̄, the
shadow norm is only weakly dependent on ϵ. We note that readout noise has the same effect as
depolarization noise if ϵ = 0. In this sense, Fig. 6.2 (b) confirms that a small amount of noise has
limited effect on the κ2

E and thus on the quality of shadow tomography.

6.5 Inferring properties of the Ising model
We now investigate the Ising model with the help of shadow tomography. In particular, we are
interested in the deviations from the exact results and the convergence of the estimates.

The Hamiltonian of the transverse Ising model is [186, 187]

H = −J
∑
⟨ij⟩

ZiZj − h
∑
i

Xi (6.31)

and describes distinguishable spin- 1
2 particles that are distributed on a lattice. Zi denotes the

Pauli Z matrix for spin i and ⟨ij⟩ are the pairs of adjacent spins. The interaction is thus
determined by the spin in z direction and the strength of the interaction is described by J . In
addition the spins are subjected to a magnetic field of strength h that couples to the spins by
the Pauli X matrix. To get a first insight into the properties of the model, we will discuss the
phases the ground state |GS⟩ of the model exhibits. For this purpose we will look at the limiting
cases.

In the limit J > 0 and h = 0, the Hamiltonian only consists of the first term, i.e., H =
−J

∑
⟨ij⟩ ZiZj . In this case the eigenstates are common eigenstates of Zi for all i. The energy

is minimized in case all spin are oriented in the same direction. Based on this, the ground state
is degenerate and the subspace of lowest energy is spanned by the two states

|00 . . . 0⟩ and |11 . . . 1⟩ . (6.32)

This phase is known as the ordered phase [187].
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Figure 6.3: Correlation matrices ⟨ZiZj⟩ for the transverse Ising model of n = 10 spin- 1
2 particles.

(a) shows the exact results that are obtained by diagonalization, whereas (b) depicts the estimates
from shadow tomography. The estimates in (b) have been calculated from 1000 classical shadows
that have been constructed by the tetrahedron POVM.

In contrast, in the limit J = 0 and h > 0 the Hamiltonian consists only of the second term
H = −h

∑
iXi such that the eigenstates are common eigenstates of all Xi. The ground state is

given by
|+ + . . .+⟩ , (6.33)

where |+⟩ is the eigenstate of Pauli X for eigenvalue +1.
We now investigate the correlations ⟨ZiZj⟩ with the help of shadow tomography. For this

purpose we consider the Ising model of n = 10 spins that are distributed on a linear chain. We
generate 1000 classical shadows with the tetrahedron POVM. The tetrahedron POVM is defined
for a single qubit and the composite measurement can, accordingly, be constructed by the tensor
product (Sec. 6.2.4). The results are shown in Fig. 6.3. Panel (a) in Fig. 6.3 shows the results that
are obtained by exact diagonalization, whereas in (b) the estimates from shadow tomography are
shown. We can observe that shadow tomography predicts the features of the correlation matrix
correctly. The data is, however, subjected to statistical fluctuations. For 1000 classical shadows,
deviations from the exact value of roughly 30% can be observed.

In the next step, we therefore study the convergence of shadow tomography. For this pur-
pose, we consider an Ising chain of three qubits with the parameters J = 1 and h = 1. As
observables we choose either the set of Pauli observables {σ(i)

x |i = 1, 2, 3}, {σ(i)
y |i = 1, 2, 3} or
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Figure 6.4: Maximal error as a function of the number of classical shadows M . For the tetra-
hedron, tilted tetrahedron and the octahedron POVM, we have estimated the observables (a)
{σ(i)

x |i = 1, 2, 3}, (b) {σ(i)
y |i = 1, 2, 3} and (c) {σ(i)

z |i = 1, 2, 3}. The maximal error is averaged
over 50 repetitions. For the calculation, the parameters J = 1 and h = 1 have been used.

{σ(i)
z |i = 1, 2, 3}. The expectation values are estimated from M classical shadows, which are

constructed with either the tetrahedron, the tiled tetrahedron or the octahedron POVM. The
tiled tetrahedron measurement corresponds to the violet tetrahedron in Fig. 6.5 (b). In Fig. 6.4,
we plot the maximal deviation in the set of observables. The maximal deviation is averaged
over 50 repetitions. Fig. 6.4 reveals that in all simulations the maximal error decreases polyno-
mially with the number of classical shadows M . Fig. 6.4 (a) shows the results for the observables
{σ(i)

x |i = 1, 2, 3}. The results show that the tetrahedron POVM yields slightly larger errors than
the tilted tetrahedron and the octahedron measurement. The reverse result is obtained for the
observables {σ(i)

y |i = 1, 2, 3}. Fig. 6.4 (b) shows that the tetrahedron POVM is least affected by
error. For the observables {σ(i)

z |i = 1, 2, 3} in turn Fig. 6.4 (c) shows no difference between the
different POVMs. It is interesting to note that for the chosen observables, the tilted tetrahedron
POVM yields the same magnitude of errors as the octahedron measurement. We see that it
depends on the POVM which observables can be estimated well from the classical shadows.

6.6 Outlook
To conclude this section we discuss a direct application of the formulation of shadow tomography
in terms of POVMs: In case the observables that should be estimated are known, the formulation
allows the optimization of the POVM. Finally, we end this section by discussing the further
prospects.

6.6.1 Optimization of POVMs for shadow tomography

In this section we discuss the optimization of shadow tomography that has been presented in
Ref. [P1]. We assume that the set of observables X that should be estimated from the classical
shadows, are known in advance. The goal is to find the POVM E∗ that minimizes the shadow
norm:

E∗ = arg min
E

κ2
E(X ). (6.34)

We have noted in Sec. 6.2.2 that the optimization in case of randomized measurements is cum-
bersome. The set of generalized measurements is convex. This simplifies the optimization. We
mention, however, that the shadow norm is not convex in the POVM E. We thus have performed
the optimization with the help of simulated annealing [P1].
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(a) (c) (d)

(b)

Figure 6.5: Targeted observables and optimal generalized measurements. (a) For the observables
that correspond to the four projections defined by the orange tetrahedron, the measurement
corresponding to the invert tetrahedron POVM (violet) is optimal. (b) For observables corre-
sponding to eigenprojections of the Pauli observables σx, σy and σz (orange octahedron), the
violet tetrahedron POVM is optimal. (c) Optimal shadow norms given by the optimizer (labeled
Opt with the number of measurement outcomes) as a function of the number of single-qubit pro-
jection observables randomly distributed according to the Haar measure. (d) Similarly, optimal
shadow norms given by the optimizer as a function of the number of qubits. The observables
are tensor products of single-qubit projections distributed according to the Haar measure. In
(c) and (d), the shadow norm for the tetrahedron and octahedron POVM are also shown. The
figure is taken from [P1].

As a first example, we investigate the case of a single qubit. Specifically, we consider the
following observables X : (a) the 4 projections that correspond to the orange tetrahedron in
Fig. 6.5 (a), (b) the projections onto the eigenstates of the Pauli observables and (c) random
projections that are sampled according to the Haar measure.

(a): For the 4 projections that correspond to the orange tetrahedron in Fig. 6.5 (a), we first
try classical shadows that have been constructed with the tetrahedron POVM. In this case the
squared shadow norm κ2

E is 2. The octahedron measurement yields an improved shadow norm
of 3/2. The optimization, however, results in the tetrahedron POVM that is plotted in violet in
Fig. 6.5 (a). Compared to the orange tetrahedron, the violet one is centrally inverted and yields
a squared shadow norm of κ2

E = 1.
(b) Next, we consider the projections onto the eigenstates of the Pauli observables. The

projections correspond to the orange octahedron in Fig. 6.5 (b). The classical shadows obtained
with the octahedron measurement itself give κ2

E = 3/2. Interestingly, the optimization yields
κ2
E = 3/2 also with the tetrahedron POVM of 4 outcomes that is shown in violet in Fig. 6.5 (b).

(c) Finally, we consider random projections that are sampled according to the Haar measure
on the Bloch sphere. In Fig. 6.5 (c), we show the shadow norm that has been found with the
optimizer as a function of the number of random observables. For small number of observables
(|X | ≲ 15), there is always a POVM with N = 4, 6 and 8 outcomes that yields a smaller shadow
norm than the standard tetrahedron (N = 4) or the octahedron measurements (N = 6). In
case the number of outcomes is N = 6 or 8, the squared shadow norm converges to κ2

E = 3/2
for an increasing number of observables. We point out that this is the value of the octahedron
measurement. This highlights that the octahedron POVM is special. For the octahedron POVM
the squared shadow norm of any projection is κ2

E = 3/2. We show in Ref. [P1] that if all
observables are projections onto pure states and the effects of the POVM have equal trace, the
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octahedron measurement is optimal.
Next, we will consider how the POVM can be optimized for many-body systems. The number

of parameters that are necessary to describe a POVM increase exponentially with the number of
qubits. To simplify and make the optimization feasible, we assume that POVM that factorizes
as a tensor product over the qubits as discussed in Sec. 6.2.4. Moreover, we assume that, E(1) =
E(2) = · · · = E(n). This assumption is reasonable in case there is no preference among the
qubits. Under these assumptions, the complexity of the optimization only increases linear in the
number of qubits and observables. For an explicit calculation, we consider a system of up to
n = 64 qubits. Moreover, we choose |X | = n product observables, i.e., the observables can also
be written as a tensor product of single qubit observables.

The single qubit observables in turn are again projections onto pure states that are sampled
at random according to the Haar measure. Our optimization confirms this expectation that the
optimal product measurement are similar to the ones discussed for a single qubit. Fig. 6.5 (d)
shows that for small number of qubits (n ≲ 10), the optimal POVM with N = 6 and N = 8
effects yields significantly lower shadow norms compared to the tetrahedron or octahedron mea-
surements. In addition, the optimal shadow norm converges to the one given by the octahedron
measurement with increasing number of qubits. This again shows that the octahedron POVM
is special.

6.6.2 Discussion

We end this section by a summary and outlook. Whereas shadow tomography was originally
formulated in terms of randomized measurements [26], we have shown that shadow tomography
can also be based on POVMs. In doing so, we have derived the classical shadows as the least
squares estimator. Moreover, we have discussed the class of rigidly symmetric POVMs for which
analytical expressions for the classical shadows can be derived. We have further demonstrated
how the observables can be estimated without reconstructing the full density matrix. This con-
stitutes the main advantage of shadow tomography compared to full quantum state tomography
and requires an efficient representation of the classical shadows. For this purpose, we show that
it is convenient to consider POVMs that are composed as a tensor product of single qubit mea-
surements. We further demonstrate the advantage of the formulation in terms of POVMs by
showing that noise can be readily taken into account and that the POVM can be optimized in
case the observables to estimate are known.

The formulation in terms of POVMs also opens various perspectives for future research. For
example can a more realistic analysis of noise be performed for experiments based on shadow
tomography [188, 189]. Moreover, it would be interesting to extend the method the channel
tomography or to incorporate the technique of derandomization [172]. We have seen that the
octahedron POVM takes a special role in qubit systems. It could be investigated if there are
also POVMs that are optimal for a large class of observables in higher dimensions.

Finally, it would also be interesting to work out whether quantum state tomography benefits
from the shadow tomography and vice versa. In particular, statistical methods that have been
developed in the context of full quantum state tomography [190] could improve the statistical
analysis of shadow tomography.
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Conclusion and outlook
In this thesis, we have considered how properties of quantum systems can be obtained from
random measurements. For this purpose, we have used random measurements in various forms.

In Sec. 3 and 4, we have discussed how random measurements can help to extract certain
properties of quantum states. We have discussed in Sec. 3 that spin-squeezing inequalities can be
evaluated by random pair correlations. In this case randomness is used in the choice of the qubit
pairs that are sampled. An important result of this section is also the statistical analysis. As the
spin-squeezing inequalities are nonlinear in the quantum state, also the estimates are nonlinear
in the data. We thus have proposed a statistical analysis that can be applied to nonlinear
quantities. The statistical analysis is, however, not limited to spin-squeezing inequalities. It can
also be used for other nonlinear properties. For example, the method would also be of interest
for the statistical analysis of the purity or of entropies. Finally, we point out that random
sampling of the qubits could also be used in other contexts. This is especially promising for
averaged quantities like average two-qubit correlations that cannot be obtained from collective
measurements.

We have used a similar approach in Sec. 4. Multipartite Bell inequalities often exhibit a
number of measurement settings that increases exponentially with the number of parties. It thus
quickly becomes infeasible to implement all measurement settings. As a solution we propose to
sample the measurement settings at random. With a similar statistical analysis as in Sec. 3, we
have shown that by random sampling fewer measurements are necessary. To demonstrate the
method, we have performed a simulation for an IBM quantum computer. We have furthermore
pointed out that a Bell violation can be used to benchmark quantum computers. There are
various directions for further research. Bell violations on a quantum computer have to be taken
with a grain of salt, as the qubits are not space-like separated. Communication between the
qubits thus cannot be ruled out and therefore quantum computers exhibit the locality loophole.
But to close the locality loophole, also the random sampling has to be adapted. In the proposed
scheme the measurement settings are chosen globally. To guarantee the independence of the
measurement settings, the settings have to be chosen locally. Multipartite Bell inequalities,
however, typically do not contain all combinations of local measurement settings. In fact, the
incorrect settings can simply be discarded in a postprocessing step, but this comes at the expense
of an additional sampling overhead that has to be investigated. Maybe it is also possible to sample
the measurement settings more efficiently. It might further be interesting to analyze the statistics
of the Bell inequalities with the relative entropy [64] and explore the connection of nonlocality
to other benchmarks, as the quantum volume [132, 133] or the layer fidelity [134].

In Sec. 5, we have used measurements in random bases, which can be described by applying
random unitaries before the measurement. The unitaries are sampled according to the Haar
measure, which makes the sampling invariant under LU transformations. We have shown that
all LU invariants of a quantum system can be inferred from randomized measurements. We
further have given explicit expressions for the LU invariants of a two-qubit system and implement
the method with photons. As applications, we have derived from the obtained invariants the
maximal violation of a Bell inequality that could be observed for the state. In addition, we have
discussed whether the state could be used for quantum teleportation. As a direct generalization,
it would be interesting to express also LU invariants of higher dimensional systems in terms of the
moments of randomized measurements. Another research direction is to investigate whether Bell
nonlocality in multipartite systems can be efficiently detected with randomized measurements.
In Sec. 4, we have proposed a method to evaluate Bell inequalities by sampling the terms at
random. The problem of sampling the measurement settings locally could potentially be solved
by randomized measurements.
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Finally, in Sec. 6 we have formulated shadow tomography in terms of POVMs. This has lead
to new insights into the method of shadow tomography. On the one hand, we were able to better
characterize the measurements for which the measurement channel can be analytically inverted.
To be precise, we have derived the classical shadows for rigidly symmetric POVMs. The main
idea of shadow tomography is to find a method that allows estimating arbitrary observables
from the recorded data and scales well to high-dimensional systems. We have pointed out that,
for this purpose, it is constructive to consider measurements that are composed as the tensor
product of single-qubit POVMs. We, moreover, have shown that the new formulation allows for a
natural adaption to noise and that an optimization of the POVM can be performed. Ultimately,
the formulation in terms of POVMs also puts the implementation in a new light. Whereas the
original scheme in [26] uses random unitaries, our formulation allows for an implementation
without randomization. Rather than by randomization, POVMs can also be implemented by an
ancilla system. This also paves the way for future research. Even though the defining property of
shadow tomograph is to avoid the reconstruction of the density matrix, the formulation in terms
of POVMs shows striking similarity to ordinary quantum state tomography. It thus might be
interesting to investigate whether the statistical tools that have been developed in the context
of quantum state tomography can be used for shadow tomography [190]. Moreover, it would
be interesting to consider shadow tomography in the presence of more realistic noise and to
generalize the formalism to channel tomography.
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List of abbreviations
CCNR computable cross norm or realignment. 16

DSF dispersion shifted fiber. 65, 66

EPS entangled photon source. 65, 66, 70

GHZ Greenberger–Horne–Zeilinger. 12, 23, 50, 51, 54–61

GME genuine multipartite entanglement. 11, 17, 18

iid independent and identically distributed. 32, 33

ITU International Telecommunication Union. 65

LC linear cluster. 12, 23, 24, 50, 51, 54–61

LHV local hidden variable. 8, 22–24, 52

LU local unitary. 9, 12, 24–26, 63, 64, 67–70, 72, 86

NMR nuclear magnetic resonance. 50

PBS polarizing beam splitter. 65

POVM positive operator valued measure. 9, 14–16, 30, 62, 72–85, 87

PPT positive partial transpose. 16
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A Additional calculations for Sec. 3
A.1 Unbiased estimators
In this appendix we will prove that the estimators in Sec. 3.3 are unbiased. For the total spin
estimator, ⟨̂J2

α⟩TS is the sample mean and ̂(∆Jα)2
TS is the sample variance. Hence, the estimators

are known to be unbiased [83]. We will therefore focus on the estimators that rely on pair
correlations.

A.1.1 Estimator based on pair correlations

As the term s
(P1,k)
α s

(P2,k)
α is the product of the spins of the qubit pair P = (P1, P2) in the same

measurement repetition k, we have for i ∈ {1, 2}

E
[
s(Pi,k)
α

]
= 1

2 ⟨σ(Pi)
α ⟩ and E

[
s(P1,k)
α s(P2,k)

α

]
= 1

4 ⟨σ(P1)
α σ(P2)

α ⟩. (A.1)

As a result, we obtain

E
[
⟨̂J2
α⟩AP

]
= N

4 +
∑
P

1
KAP

KAP∑
k=1

E
[
s(P1,k)
α s(P2,k)

α

]
= N

4 + 1
4
∑
P

⟨σ(P1)
α σ(P2)

α ⟩ = ⟨J2
α⟩, (A.2)

where we have used that
1
4
∑
P

⟨σ(P1)
α σ(P2)

α ⟩ = 1
4
∑
P1 ̸=P2

⟨σ(P1)
α σ(P2)

α ⟩ = 1
4
∑
P1,P2

⟨σ(P1)
α σ(P2)

α ⟩ − 1
4
∑
P1=P2

⟨(σ(P1)
α )2⟩ = ⟨J2

α⟩ − N

4 .

(A.3)

Next, we will show that the estimator for the variance in Eq. (3.10) is unbiased.

E
[
̂(∆Jα)2

]
=N

4 + 1
KAP

∑
P

∑
k

E
[
s(P1,k)
α s(P2,k)

α

]
− 1
KAP(KAP − 1)(N − 1)2

∑
P,Q

∑
k ̸=l

E
[
s(P1,k)
α s(Q2,l)

α

]
=N

4 + 1
KAP

∑
P

∑
k

1
4 ⟨σ(P1)

α σ(P2)
α ⟩

− 1
KAP(KAP − 1)(N − 1)2

∑
P,Q

∑
k ̸=l

E
[
s(P1,k)
α

]
E
[
s(Q2,l)
α

]
=N

4 +
∑
P

1
4 ⟨σ(P1)

α σ(P2)
α ⟩ − 1

KAP(KAP − 1)(N − 1)2

∑
P,Q

∑
k ̸=l

1
2 ⟨σ(P1)

α ⟩1
2 ⟨σ(Q2)

α ⟩

=⟨J2
α⟩ − 1

(N − 1)2

(∑
P

1
2 ⟨σ(P1)

α ⟩
)(∑

Q

1
2 ⟨σ(Q2)

α ⟩
)

= ⟨J2
α⟩ − ⟨Jα⟩2 = (∆Jα)2

(A.4)

In the above calculation, we have used that∑
P

1
2 ⟨σ(P1)

α ⟩ =
∑
P1 ̸=P2

1
2 ⟨σ(P1)

α ⟩ = (N − 1)⟨
∑
P1

1
2σ

(P1)
α ⟩ = (N − 1)⟨Jα⟩. (A.5)
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A.1 Unbiased estimators

To show that the estimator of ⟨Jα⟩2 is unbiased, we use that the qubits of each pair (i, j)
are measured in different experimental runs. Hence, the outcomes are statistically independent:
E[s(i,2k)

α s
(j,2k−1)
α ] = E[s(i,2k)

α ]E[s(j,2k−1)
α ] = 1

4 ⟨σ(i)
α ⟩⟨σ(j)

α ⟩. Thus, the estimator is unbiased:

E

[
⟨̂Jα⟩2

AP

]
=

N∑
i,j=1

1
KAP

2

KAP
2∑

k=1
E[s(i,2k)

α s(j,2k−1)
α ] =

N∑
i,j=1

1
4 ⟨σ(i)

α ⟩⟨σ(j)
α ⟩ = ⟨1

2

N∑
i=1

σ(i)
α ⟩⟨1

2

N∑
j=1

σ(j)
α ⟩

= ⟨Jα⟩2.

(A.6)

A.1.2 Estimator based on random pair correlations

We now want to calculate the expectation values of the estimators that make use of random pair
correlations. For this, we have to first specify how the expectation value has to be understood.
As both the indices of the qubits and the outcomes are random variables, we can calculate the
expectation value by the law of iterated expectations. In case I is a random variable that takes
the values I = 1, . . . , N with uniform probability, the expectation value of the spin of qubit I
evaluates to

E
[
s(I,k)
α

]
= EI

[
Es
(
s(I,k)
α

∣∣I)] = EI

[
1
2 ⟨σ(I)

α ⟩
]

=
N∑
i=1

P(I = i)1
2 ⟨σ(i)

α ⟩ = 1
N

N∑
i=1

1
2 ⟨σ(i)

α ⟩

= 1
N

⟨Jα⟩.

(A.7)

In the above equation, we used the uniform probability distribution P(I = i) = 1
N . We note that

this is indeed the marginal distribution in case we sample uniformly all distinct pairs with the
probability distribution in Eq. (3.15), i.e., P(I = i) =

∑N
j=1 P(I = i,J = j) =

∑N
j ̸=i

1
N(N−1) =

1
N = P(J = j). Similarly, we can show that

E
[
s(I,k)
α s(J ,k)

α

]
= EI,J

[
Es

(
s(I,k)
α s(J ,k)

α

∣∣∣∣I,J)] = EI,J

[
1
4 ⟨σ(I)

α σ(J )
α ⟩

]
=

N∑
i̸=j

P(I = i,J = j)1
4 ⟨σ(i)

α σ(j)
α ⟩

=
N∑
i̸=j

1
N(N − 1)

1
4 ⟨σ(i)

α σ(j)
α ⟩

= 1
N(N − 1)

(
⟨J2
α⟩ − N

4

)
,

(A.8)

where we have used in the third step that only distinct pairs are considered, i.e., P(I = i,J =
i) = 0. We can thus evaluate the expectation value:

E
[
⟨̂J2
α⟩RP

]
= N

4 + N(N − 1)
KRPLRP

LRP∑
l=1

KRP∑
k=1

E
[
s(Il,k)
α s(Jl,k)

α

]
= N

4 + N(N − 1)
KRPLRP

LRP∑
l=1

KRP∑
k=1

1
N(N − 1)

(
⟨J2
α⟩ − N

4

)
= ⟨J2

α⟩.

(A.9)
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A.2 Derivation of the variances

To calculate the expectation value of the estimator ̂(∆Jα)2
RP, we use Eq. (A.8) and apply that

the product in the last term of the estimator only involves independent random variables:

E
[
̂(∆Jα)2

RP

]
=N

4 + N(N − 1)
LRPKRP

LRP∑
l=1

KRP∑
k=1

E
[
s(Il,k)
α s(Jl,k)

α

]
− N2

LRP(LRP − 1)K2
RP

LRP∑
l ̸=m

KRP∑
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E
[
s(Il,k)
α

]
E
[
s(Jm,q)
α

]

=N

4 + N(N − 1)
LRPKRP

LRP∑
l=1

KRP∑
k=1

1
N(N − 1)

(
⟨J2
α⟩ − N

4

)
− N2

LRP(LRP − 1)K2
RP

LRP∑
l ̸=m

KRP∑
k,q=1

1
N2 ⟨Jα⟩2

=⟨J2
α⟩ − ⟨Jα⟩2 = (∆Jα)2.

(A.10)

Similarly, we can show for the estimator of ⟨Jα⟩2 for scheme RP2 that

E

[
⟨̂Jα⟩2

RP

]
= 2N2

KRPLRP

LRP∑
l=1

KRP
2∑

k=1
E[s(Il,2k)

α ]E[s(Jl,2k−1)
α ] = 2N2

KRPLRP

LRP∑
l=1

KRP
2∑

k=1

1
N2 ⟨Jα⟩2 = ⟨Jα⟩2.

(A.11)

Here, we used again that the outcomes of each pair (i, j) are obtained from different experimental
runs and are thus independent. Moreover, all pairs are considered with uniform probability, such
that also the random variables I,J are independent.

A.2 Derivation of the variances
A.2.1 Estimator based on the total spin

The variances of the estimators can be derived from the variances of the parts. Thus, we are
going to derive the variances Var(⟨̂J2

α⟩TS) = E[(⟨̂J2
α⟩TS)2] − (E[⟨̂J2

α⟩])2 and Var( ̂(∆Jα)2
TS) =

E[( ̂(∆Jα)2
TS)2] − E[ ̂(∆Jα)2

TS]2.
For a clear arrangement of the calculation, we will apply a graphical representation. We use

the first expression to explain the representation.

E
[
(⟨̂J2

α⟩TS)2
]

=E

(KTS∑
k=1

(m(k)
α )2

KTS

)2 = 1
K2

TS

KTS∑
k1,k2=1

E
[
(m(k1)

α )2(m(k2)
α )2

]

= 1
K2

TS

KTS∑
k1 ̸=k2=1

E
[
(m(k1)

α )2(m(k2)
α )2

]
+ 1
K2

TS

KTS∑
k1=k2=1

E
[
(m(k1)

α )4
]

k1 k2
+

k1 k2

=KTS − 1
KTS

⟨J2
α⟩2 + 1

KTS
⟨J4
α⟩

(A.12)

In the above derivation, we consider the terms with k1 ̸= k2 separately, as the outcomes are
obtained in different experimental runs and thus E[(m(k1)

α )2(m(k2)
α )2] = E[(m(k1)

α )2]E[(m(k2)
α )2] =

⟨J2
α⟩2. For terms with more indices it becomes tedious to write down all possibilities for the
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A.2 Derivation of the variances

indices to coincide. Therefore, we will use the graphical representation instead. Two indices are
connected if and only if they coincide. With Eq. (A.12) we can evaluate the variance

Var
(

⟨̂J2
α⟩TS

)
=E[(⟨̂J2

α⟩TS)2] − (E[⟨̂J2
α⟩])2 = KTS − 1

KTS
⟨J2
α⟩2 + 1

KTS
⟨J4
α⟩ − ⟨J2

α⟩2

= 1
KTS

(
⟨J4
α⟩ − ⟨J2

α⟩2) = 1
KTS

(
∆J2

α

)2
.

(A.13)

Next, we will derive the variance of ̂(∆Jα)2
TS.

E
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̂(∆Jα)2

TS

]2
}

= E


 1
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
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KTS
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E
[
m(k1)
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(A.14)
To evaluate the expression above, we apply the graphical representation to the sums. We obtain

KTS∑
k1,k2=1

E
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m(k1)
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)2 (
m(k2)
α

)2
]

=
k1 k2

+
k1 k2
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α⟩2 +KTS⟨J4

α⟩, (A.15)

K∑
k1,k2,k3=1

E

[(
m(k1)
α

)2
m(k2)
α m(k3)

α

]
(A.16)

=
k1 k1 k2 k3

+
k1 k1 k2 k3

+
k1 k1 k2 k3

+
k1 k1 k2 k3

+
k1 k1 k2 k3

(A.17)

= KTS(KTS − 1)(KTS − 2)
〈
J2
α

〉
⟨Jα⟩2 +KTS(KTS − 1)

〈
J2
α

〉2 (A.18)
+ 2KTS(KTS − 1)

〈
J3
α

〉
⟨Jα⟩ +KTS

〈
J4
α

〉
(A.19)

and
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+
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〉
.

(A.20)
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A.2 Derivation of the variances

This finally yields
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[(
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(A.21)

As a result, we arrive at the variance
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̂(∆Jα)2
TS

)
= E

[(
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(A.22)

We note that the above expression coincides with [83]. As the measurements in x, y, and z
direction are obtained in independent experimental runs, the different estimators are statistically
independent. We can thus write the variance as the sum of the variances of the individual terms.
Thereby, we can derive the variances of the spin-squeezing parameters from the above expressions.
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A.2 Derivation of the variances

As an example, we derive the variance of (ξ̂c)TS that is given in the main text in Eq. (3.20):
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(A.23)

In the above calculation, we used that the estimators ⟨̂J2
x⟩

2
TS, ⟨̂J2

y ⟩
2

TS, and (̂∆J2
z )TS are statisti-

cally independent.

A.2.2 Estimator based on pair correlations

We are going to derive the variances of ⟨̂J2
α⟩AP, ̂(∆Jα)2

AP, and ⟨̂Jα⟩2
AP. As a result, this allows

us to obtain the variances of the spin-squeezing parameters. We start with the variance of the
estimator ⟨̂J2

α⟩AP in Eq. (3.9). As the constant term does not contribute and the second term is
a sum of independent random variables, we obtain
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(A.24)

With the help of Eq. (A.1) and

E
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α s(P2,k)

α

)2
]

= 1
16 ⟨(σ(P1)

α )2(σ(P2)
α )2⟩ = 1

16 , (A.25)

we can evaluate the variances of the individual terms:
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(A.26)

As a result, we obtain
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)
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∑
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 ,

(A.27)

where we made it explicit that the sum over all pairs P = (i, j) only contains distinct pairs i ̸= j.
To determine the variance of the estimator ̂(∆Jα)2

AP in Eq. (3.10), we use Bienaymé’s identity
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A.2 Derivation of the variances

[191]:
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(A.28)

In the above expression, we applied that the constant term does not contribute to the variance.
Moreover, the random variables in the first sum are statistically independent, such that the
variance of the sum is just the sum of the variances. The variance can be obtained by plugging
in the expressions
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4 ⟨σ(i)

α ⟩2

)

+ 2
(

⟨J2
α⟩ +N(N − 2)⟨Jα⟩2 − N

4 +
N∑
i=1

1
4 ⟨σ(i)

α ⟩2

)]

+KAP(KAP − 1)
[

(N − 1)2

(
(N − 1)⟨Jα⟩2 + N

4 −
N∑
i=1

1
4 ⟨σ(i)

α ⟩2

)2

+
(

⟨J2
α⟩ +N(N − 2)⟨Jα⟩2 − N

4 +
N∑
i=1

1
4 ⟨σ(i)

α ⟩2

)2 ]
−K2

AP(KAP − 1)2(N − 1)4⟨Jα⟩4,

(A.29)
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and

Cov

∑
P

KAP∑
k=1

s(P1,k)
α s(P2,k)

α ,
∑
P,Q

KAP∑
k ̸=l

s(P1,k)
α s(Q2,l)

α


=KAP(KAP − 1)(KAP − 2)

(
⟨J2
α⟩ − N

4

)
(N − 1)2⟨Jα⟩2

+KAP(KAP − 1)(N − 1)⟨Jα⟩[N − 1
2 ⟨Jα⟩ + 2(N − 1)⟨Jα⟩

(
⟨J2
α⟩ − N

4

)
−
∑
i̸=j

1
8 ⟨σ(i)

α σ(j)
α ⟩

(
⟨σ(i)
α ⟩ + ⟨σ(j)

α ⟩
) ]

−K2
AP(KAP − 1)(N − 1)2⟨Jα⟩2

(
⟨J2
α⟩ − N

4

)
.

(A.30)

Finally, we can combine Eq. (A.27) and Eq. (A.28) to obtain the variance of the spin-squeezing
parameters, e.g.,

Var
(

(ξ̂c)AP1

)
= Var

(
⟨̂J2
x⟩AP

)
+ Var

(〈̂
J2
y

〉
AP

)
+ (N − 1)2Var

(
̂(∆Jz)2

AP

)
. (A.31)

However, due to the size of the equation, we omit an explicit expression.
For the variance of ⟨̂Jα⟩2

AP, we compute

Var
(

⟨̂Jα⟩2
AP

)
=Var

 N∑
i,j=1

1
KAP

2

KAP
2∑

k=1
s(i,2k)
α s(j,2k−1)

α

 = 4
K2

AP

N∑
i,j=1

KAP
2∑

k=1
Var

(
s(i,2k)
α s(j,2k−1)

α

)
.

(A.32)

As we have (s(i,k)
α )2 = 1

4 , we obtain

Var
(
s(i,2k)
α s(j,2k−1)

α

)
=E

[(
s(i,2k)
α s(j,2k−1)

α

)2
]

− E
[
s(i,2k)
α s(j,2k−1)

α

]2

= 1
16 −

(
E
[
s(i,2k)
α

]
E
[
s(j,2k−1)
α

])2
= 1

16

(
1 − ⟨σ(i)

α ⟩2⟨σ(j)
α ⟩2

)
.

(A.33)

The variance of ⟨̂Jα⟩2
AP thus takes the form

Var
(

⟨̂Jα⟩2
AP

)
= 4
K2

AP

N∑
i,j=1

KAP
2∑

k=1

1
16

(
1 − ⟨σ(i)

α ⟩2⟨σ(j)
α ⟩2

)
= 1

8KAP

N2 −
N∑

i,j=1
⟨σ(i)
α ⟩2⟨σ(j)

α ⟩2

 .

(A.34)

With the assumption that the terms ⟨J2
z ⟩ and ⟨Jz⟩2 are calculated from the data of different

experimental runs, we have E[⟨̂J2
z ⟩⟨̂Jz⟩2] = E[⟨̂J2

z ⟩]E[⟨̂Jz⟩2]. Hence, the variance of the spin-
squeezing estimators can be deduced from the variances derived in this section. For the estimator
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(ξ̂c)AP2, we obtain

Var
(

(ξ̂c)AP2

)
=Var

(
⟨̂J2
x⟩AP

)
+ Var

(〈̂
J2
y

〉
AP

)
+ (N − 1)2

[
Var

(
⟨̂J2
z ⟩AP

)
+ Var

(
⟨̂Jz⟩2

AP

)]

= 1
16KAP

2N(N − 1) −
∑
i̸=j

(
⟨σ(i)
x σ(j)

x ⟩2 + ⟨σ(i)
y σ(j)

y ⟩2
)

+ (N − 1)2

8KAP

N(N − 1)
2 − 1

2
∑
i̸=j

⟨σ(i)
z σ(j)

z ⟩2 +N2 −
∑
i,j

⟨σ(i)
z ⟩2⟨σ(j)

z ⟩2

 .
(A.35)

A.2.3 Estimator based on random pair correlations

We now consider the estimation using random pair correlations. First, we will derive the vari-
ance of the estimator ⟨̂J2

α⟩RP in Eq. (3.14). For this purpose we use that the constant term in
the estimator does not contribute to the variance. Moreover, all terms in the second sum are
independent random variables, and thus we can write the variance as the sum of the variances
of the individual terms, i.e.,

Var
(

⟨̂J2
α⟩RP

)
=Var

(
N

4 + N(N − 1)
KRPLRP

LRP∑
l=1

KRP∑
k=1

s(Il,k)
α s(Jl,k)

α

)

=N2(N − 1)2

K2
RPL

2
RP

LRP∑
l=1

KRP∑
k=1

Var
(
s(Il,k)
α s(Jl,k)

α

)
.

(A.36)

To calculate the variances of the individual terms, we can make use of Eq. (A.8) and that
(s(Il,k)
α )2 = 1

4 :

Var
(
s(Il,k)
α s(Jl,k)

α

)
=E

[(
s(Il,k)
α s(Jl,k)

α

)2
]

−
(
E
[
s(Il,k)
α s(Jl,k)

α

])2

= 1
16 − 1

N2(N − 1)2

(
⟨J2
α⟩ − N

4

)2
.

(A.37)

Thus, the variance takes the form

Var
(

⟨̂J2
α⟩RP

)
=N2(N − 1)2

K2
RPL

2
RP

LRP∑
l=1

KRP∑
k=1

[
1
16 − 1

N2(N − 1)2

(
⟨J2
α⟩ − N

4

)2
]

= 1
KRPLRP

(
N3(N − 2)

16 − ⟨J2
α⟩2 + N

2 ⟨J2
α⟩
)
.

(A.38)

To calculate the variance of the estimator ̂(∆Jα)2
RP, we restrict ourselves to the case of one

repetition for each random pair, i.e., KRP = 1. Moreover, we use that the first constant term in
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Eq. (3.16) does not contribute to the variance:

Var
(

̂(∆Jα)2
RP

)
=Var

N
4 + N(N − 1)

LRP

LRP∑
l=1

s(Il)
α s(Jl)

α − N2

LRP(LRP − 1)

LRP∑
l ̸=m

s(Il)
α s(Jm)

α


=N2(N − 1)2

L2
RP

LRP∑
l=1

Var
(
s(Il)
α s(Jl)

α

)
+ N4

L2
RP(LRP − 1)2 Var

LRP∑
l ̸=m

s(Il)
α s(Jm)

α


− 2 N3(N − 1)

L2
RP(LRP − 1)Cov

LRP∑
l=1

s(Il)
α s(Jl)

α ,

LRP∑
l ̸=m

s(Il)
α s(Jm)

α

 .

(A.39)

In the above expression we used Bienaymé’s identity. In addition, we applied that the random
variables s(Il)

α s
(Jl)
α in the first sum are statistically independent. The separate terms evaluate to

Var
(
s(Il)
α s(Jl)

α

)
= 1

16 −
[

1
N(N − 1)

(
⟨J2
α⟩ − N

4

)]2
,

Var

LRP∑
l ̸=m

s(Il)
α s(Jm)

α

 = LRP

16

(
−32⟨Jα⟩4(LRP − 1)(2LRP − 3)

N4

+8⟨Jα⟩2(LRP − 2)(LRP − 1)(4⟨J2
α⟩ + (N − 2)N)

(N − 1)N3

+(LRP − 1)(N − 4⟨J2
α⟩)2

(N − 1)2N2 + LRP − 1
)
,

Cov

LRP∑
l=1

s(Il)
α s(Jl)

α ,

LRP∑
l ̸=m

s(Il)
α s(Jm)

α

 = LRP(LRP − 1)(LRP − 2)
N(N − 1)

(
⟨J2
α⟩ − N

4

)
1
N2 ⟨Jα⟩2

+ LRP(LRP − 1)
2N2 ⟨Jα⟩2

− L2
RP(LRP − 1)
N3(N − 1)

(
⟨J2
α⟩ − N

4

)
⟨Jα⟩2.

(A.40)

Plugging the expressions in Eq. (A.39) yields

Var
(

̂(∆Jα)2
RP

)
= 1

16(LRP − 1)LRP(N − 1)2

[
− 32⟨Jα⟩4(2LRP − 3)(N − 1)2

− 8⟨Jα⟩2(N − 1)
(
4⟨J2

α⟩(−3LRPN + 2LRP + 4N − 2) +N2(LRPN − 2)
)

− 16⟨J2
α⟩2 (LRP(N − 1)2 − 2N(N − 1) − 1

)
+ 8⟨J2

α⟩N
(
LRP(N − 1)2 − 2N(N − 1) − 1

)
+N3 (LRP(N − 2)(N − 1)2 +N(2N − 3) + 2

) ]
.

(A.41)

With the help of Eqs. (A.38) and (A.41), we can derive the variances for scheme RP1 in case
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KRP1 = 1, e.g.,

Var
(

(ξ̂c)RP1

)
= Var

(
⟨̂J2
x⟩RP1

)
+ Var

(〈̂
J2
y

〉
RP1

)
+ (N − 1)2Var

(
̂(∆Jz)2

RP1

)
= 1
LRP

[
N3(N − 2)

8 −
(
⟨J2
x⟩2 + ⟨J2

y ⟩2)+ N

2
(
⟨J2
x⟩ + ⟨J2

y ⟩
)]

+ 1
16(LRP − 1)LRP(N − 1)2

[
− 32⟨Jα⟩4(2LRP − 3)(N − 1)2

− 8⟨Jα⟩2(N − 1)
(
4⟨J2

α⟩(−3LRPN + 2LRP + 4N − 2) +N2(LRPN − 2)
)

− 16⟨J2
α⟩2 (LRP(N − 1)2 − 2N(N − 1) − 1

)
+ 8⟨J2

α⟩N
(
LRP(N − 1)2 − 2N(N − 1) − 1

)
+N3 (LRP(N − 2)(N − 1)2 +N(2N − 3) + 2

) ]
.

(A.42)

Similarly, we obtain the variance of the estimator ⟨̂Jα⟩2
RP in Eq. (3.18) as the individual

terms of the sum are independent:

Var
(

⟨̂Jα⟩2
RP

)
=Var

 2N2

KRPLRP

LRP∑
l=1

KRP
2∑

k=1
s(Il,2k)
α s(Jl,2k−1)

α


= 4N4

K2
RPL

2
RP

LRP∑
l=1

KRP
2∑

k=1
Var

(
s(Il,2k)
α s(Jl,2k−1)

α

)
.

(A.43)

The variance of the individual terms yields

Var
(
s(Il,2k)
α s(Jl,2k−1)

α

)
=E

[(
s(Il,2k)
α s(Jl,2k−1)

α

)2
]

−
(
E
[
s(Il,2k)
α s(Jl,2k−1)

α

])2

= 1
16 −

(
E
[
s(Il,2k)
α

]
E
[
s(Jl,2k−1)
α

])2
= 1

16 − 1
N4 ⟨Jα⟩4.

(A.44)

In the above equation, we have used again that (s(Il,k)
α )2 = 1

4 . In addition, s(Il,2k)
α and s(Jl,2k−1)

α

are obtained in different experimental runs and are thus independent. Finally, we have applied
Eq. (A.7). As a result, we end up with

Var
(

⟨̂Jα⟩2
RP

)
= 4N4

K2
RPL

2
RP

LRP∑
l=1

KRP
2∑

k=1

(
1
16 − 1

N4 ⟨Jα⟩4
)

= 2N4

KRPLRP

(
1
16 − 1

N4 ⟨Jα⟩4
)

= 1
KRPLRP

(
N4

8 − 2⟨Jα⟩4
)
.

(A.45)

In case ⟨J2
z ⟩ and ⟨Jz⟩2 are estimated from different datasets, we can derive the variance of
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(ξ̂c)RP2:

Var
(

(ξ̂c)RP2

)
=Var

(
⟨̂J2
x⟩RP

)
+ Var

(〈̂
J2
y

〉
RP

)
+ (N − 1)2

(
Var

(
⟨̂J2
z ⟩RP

)
+ Var

(
⟨̂Jx⟩2

RP

))
= 1
KRP2LRP2

[
N3(N − 2)

8 −
(
⟨J2
x⟩2 + ⟨J2

y ⟩2)+ N

2
(
⟨J2
x⟩ + ⟨J2

y ⟩
)

+(N − 1)2
(
N3(N − 2)

16 − ⟨J2
z ⟩2 + N

2 ⟨J2
z ⟩ + N4

8 − 2⟨Jz⟩4
)]

= 1
KRP2LRP2

[
N3(N − 2)

8 + N

2
(
⟨J2
x⟩ + ⟨J2

y ⟩ + ⟨J2
z ⟩
)

−
(
⟨J2
x⟩2 + ⟨J2

y ⟩2 + ⟨J2
z ⟩2)

+N(N − 2)
(
N

2 ⟨J2
z ⟩ − ⟨J2

z ⟩2
)

+ (N − 1)2
(
N3(N − 2)

16 + N4

8 − 2⟨Jα⟩4
)]

.

(A.46)

A.3 Expressions for the singlet and Dicke state
In this Appendix we derive the expressions of the variances for the singlet state in Eq. (1.36) and
the Dicke state in Eq. (1.38). For this purpose we evaluate all expectation values that appear
in the variances of the different schemes. Specifically, we give explicit expressions for Eq. (3.20),
Eq. (A.31), Eq. (A.35), Eq. (A.42), and Eq. (A.46).

A.3.1 Singlet state

We start with the singlet state in Eq. (1.37), i.e.,

∣∣Ψ−〉 =
N/2⊗
k=1

∣∣ψ−〉 , (A.47)

with the two-qubit singlet state |ψ−⟩ = 1√
2 (|01⟩ − |10⟩). The state |Ψ−⟩ is indeed a many-body

singlet state, as it is an eigenstate of the total angular momentum Jα:

Jα
∣∣Ψ−〉 =

(
1
2

N∑
i=1

σ(i)
α

)
N/2⊗
k=1

∣∣ψ−〉
= 1

2

N/2∑
i=1

∣∣ψ−〉⊗ . . .
∣∣ψ−〉⊗

(
σ(2i−1)
α + σ(2i)

α

) ∣∣ψ−〉︸ ︷︷ ︸
=0

⊗
∣∣ψ−〉⊗ . . .⊗

∣∣ψ−〉 = 0.
(A.48)

Thus we obtain that for |Ψ−⟩ all moments of the angular momentum are zero, i.e., for all n ∈ N,

⟨Jnα ⟩ = 0. (A.49)

In particular, this also shows the defining property of many-body singlet states in Eq. (1.36). In
addition, we have that σx ⊗ σx |ψ−⟩ = − |ψ−⟩, σy ⊗ σy |ψ−⟩ = |ψ−⟩ and σz ⊗ σz |ψ−⟩ = − |ψ−⟩.
Therefore, the expectation value

〈
Ψ−∣∣σ(i)

α σ(j)
α

∣∣Ψ−〉 =
{

±1, in case the reduced state is ρij = |ψ−⟩⟨ψ−|
0, otherwise.

(A.50)
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In the above equation, we have used that for the two-qubit singlet state holds, ⟨ψ−|σα⊗1 |ψ−⟩ =
⟨ψ−| 1 ⊗ σα |ψ−⟩ = 0. As a result, we obtain the following for the singlet state |Ψ−⟩:∑

i̸=j
⟨σ(i)
α σ(j)

α ⟩2 =
∑
i̸=j

ρij=|ψ−⟩⟨ψ−|

1 = N, (A.51)

as |Ψ−⟩ is composed of N2 two-qubit singlet states |ψ−⟩ and each pair is counted twice. Moreover,
we obtain

N∑
i,j=1

⟨σ(i)
α ⟩2⟨σ(i)

α ⟩2 = 0. (A.52)

With these expressions we can evaluate the variances of the estimators ξ̂b and ξ̂d, which results
in

Var
(

(ξ̂b)TS

)
= 0,

Var
(

(ξ̂b)AP1

)
=

3N
(
KAP1(N − 2)(N − 1)4 −N5 + 6N4 − 13N3 + 14N2 − 7N + 2

)
16(KAP1 − 1)KAP1(N − 1)4 ,

Var
(

(ξ̂b)AP2

)
= 3N(3N − 2)

16KAP2
,

Var
(

(ξ̂b)RP1

)
=

3N3 (LRP1(N − 2)(N − 1)2 + 2N2 − 3N + 2
)

16(LRP1 − 1)LRP1(N − 1)2 ,

Var
(

(ξ̂b)RP2

)
= 3N3(3N − 2)

16KRP2LRP2
.

(A.53)

and

Var
(

(ξ̂d)TS

)
= 0,

Var
(

(ξ̂d)AP1

)
=

N
(
KAP1(N − 1)2 (2N3 − 8N2 + 11N − 6

)
− 2N5 + 12N4 − 27N3 + 32N2 − 19N + 6

)
16(KAP1 − 1)KAP1(N − 1)2 ,

Var
(

(ξ̂d)AP2

)
=
N
(
6N3 − 16N2 + 15N − 6

)
16KAP2

,

Var
(

(ξ̂d)RP1

)
=
N3 (LRP1

(
2N3 − 8N2 + 11N − 6

)
+ 4N2 − 7N + 6

)
16(LRP1 − 1)LRP1

,

Var
(

(ξ̂d)RP2

)
=
N3 (6N3 − 16N2 + 15N − 6

)
16KRP2LRP2

.

(A.54)

A.3.2 Dicke states

The first and second moments of the Dicke states are [57]

(⟨Jx⟩, ⟨Jy⟩, ⟨Jz⟩) = (0, 0, N2 −m),

(⟨J2
x⟩, ⟨J2

y ⟩, ⟨J2
z ⟩) =

[
N

4 + m(N −m)
2 ,

N

4 + m(N −m)
2 , (N2 −m)2

]
.

(A.55)
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Moreover, the Dicke states |DN,m⟩ in Eq. (1.38) are eigenstates of Jz:

Jz |DN,m⟩ =
(
N

m

)− 1
2 ∑

k

JzPk(|11, . . . , 1m, 0m+1, . . . , 0N ⟩)︸ ︷︷ ︸
=[(N−m)−m]/2Pk(|11,...,1m,0m+1,...,0N ⟩)

=
[
N

2 −m

]
|DN,m⟩ . (A.56)

Therefore, we have for the Dicke states

⟨Jnz ⟩ =
(
N

2 −m

)n
. (A.57)

To evaluate the variances of the estimators, we need the forth moments of Jx and Jy. Therefore,
we calculate for α = x, y and i ̸= j

⟨DN,m|σ(i)
α σ(j)

α |DN,m⟩

=
[(

N

m

)− 1
2 ∑

k

Pk(⟨11, . . . , 1m, 0m+1, . . . , 0N |)
]
σ(i)
α σ(j)

α[(
N

m

)− 1
2 ∑

l

Pl(|11, . . . , 1m, 0m+1, . . . , 0N ⟩)
]

=
(
N

m

)−1∑
k,l

〈
sPk(1)

∣∣sPl(1)
〉

× . . .×
〈
sPk(i)

∣∣σ(i)
α

∣∣sPl(i)
〉

× . . .×
〈
sPk(j)

∣∣σ(j)
α

∣∣sPl(j)
〉

× . . .

×
〈
sPk(N)

∣∣sPl(N)
〉
,

(A.58)

where si ∈ {0, 1} is the state of qubit i. For the terms to be nonzero, we have
∣∣sPk(n)

〉
=
∣∣sPl(n)

〉
for n ̸= i, j and

∣∣sPk(n)
〉

̸=
∣∣sPl(n)

〉
for n = i, j, since σx and σy are off-diagonal. As a result,

for n ̸= i, j the distinct permutations Pk and Pl coincide. Hence, both (sPk(i), sPk(j)) and
(sPl(i), sPl(j)) have to be a permutation of (0, 1). Moreover, fixing the permutation (sPk(i), sPk(j))
determines the permutation (sPl(i), sPl(j)), such that the matrix elements are non-zero. There
are two permutations (sPk(i), sPk(j)) of (0, 1) and

(
N−2
m−1

)
permutations to distribute the remaining

states. We thus obtain

⟨DN,m|σ(i)
α σ(j)

α |DN,m⟩ =
(
N

m

)−1
×
(
N − 2
m− 1

)
× 2 = 2m(N −m)

N(N − 1) . (A.59)

Similarly, we obtain for α = x, y and distinct i, j, k, l

⟨DN,m|σ(i)
α σ(j)

α σ(k)
α σ(l)

α |DN,m⟩ = 6m(m− 1)(N −m− 1)(N −m)
N(N − 1)(N − 2)(N − 3) . (A.60)
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With these expressions we can determine the fourth moments for α = x, y:

⟨J4
α⟩ = 1

16
∑
i,j,k,l

⟨σ(i)
α σ(j)

α σ(k)
α σ(l)

α ⟩

= 1
16

[ ∑
i̸=j ̸=k ̸=l

⟨σ(i)
α σ(j)

α σ(k)
α σ(l)

α ⟩ + 6
∑

i=j ̸=k ̸=l
⟨(σ(i)

α )2σ(k)
α σ(l)

α ⟩

+ 3
∑

i=j ̸=k=l
⟨(σ(i)

α )2(σ(k)
α )2⟩ + 4

∑
i=j=k ̸=l

⟨(σ(i)
α )3σ(l)

α ⟩ +
∑

i=j=k=l
⟨(σ(i)

α )4⟩
]

= 1
16

[ ∑
i̸=j ̸=k ̸=l

⟨σ(i)
α σ(j)

α σ(k)
α σ(l)

α ⟩ + 2(3N − 4)
∑
i̸=j

⟨σ(i)
α σ(j)

α ⟩ + 3N2 − 2N
]

= 1
16 [N(3N − 2) + 4(3N − 4)m(N −m) + 6m(m− 1)(N −m− 1)(N −m)] .

(A.61)

With these expressions in turn we obtain the variances

Var
(

(ξ̂c)TS

)
=
N
(
N3 + 4N2 − 4N − 16

)
64KTS

,

Var
(

(ξ̂c)AP1

)
=

N
(
KAP1

(
2N5 − 10N4 + 21N3 − 25N2 + 16N − 4

)
− 2N5 + 10N4 − 19N3 + 21N2 − 12N + 4

)
32(KAP1 − 1)KAP1(N − 1)2 ,

Var
(

(ξ̂c)AP2

)
=
N
(
6N4 − 20N3 + 25N2 − 16N + 4

)
32KAP2(N − 1) ,

Var
(

(ξ̂c)RP1

)
=
N2 (LRP1

(
2N4 − 8N3 + 13N2 − 12N + 4

)
+ 4N3 − 9N2 + 12N − 4

)
32(LRP1 − 1)LRP1

,

Var
(

(ξ̂c)RP2

)
=
N2 (6N4 − 16N3 + 17N2 − 12N + 4

)
32KRP2LRP2

.

(A.62)
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B Additional calculations for Sec. 4
B.1 Unbiased estimators
In this Appendix we show that the estimators used in the main text are unbiased.

B.1.1 Estimator in the infinite measurement limit

First, we assume that the expectation values can be inferred directly, i.e., that we can repeat
the measurement of the operator infinite times. In this case, the estimator is given by Eq. (4.5).
The expectation value has to be calculated with respect to the random variables Jl. With
E[⟨BJl

⟩] =
∑M
j=1 p(Jl = j)⟨Bj⟩ = 1

M

∑M
j=1⟨Bj⟩, we obtain

E[⟨B̂⟩∞] =M

L

L∑
l=1

E[⟨BJl
⟩] = M

L

L∑
l=1

1
M

M∑
j=1

⟨Bj⟩ =
M∑
j=1

⟨Bj⟩ = ⟨B⟩. (B.1)

B.1.2 Estimator for finite repetitions

To calculate the expectation value of the estimator in Eq. (4.8), we note that both the measure-
ment outcomes bj and the index J of the terms are random variables. Hence, the expectation
value of the estimator has to be taken over both the measurement outcomes as well as the ran-
dom picking, i.e., over J . To evaluate the expectation value, we can thus make use of the law of
iterated expectation. That is,

E[. . .] = EJ
{

EbJl
[. . . |Jl = J ]

}
. (B.2)

This results in

E[⟨B̂⟩] = M

KL

L∑
l=1

K∑
k=1

EJ
{

EbJl
[b(k)
Jl

|Jl = J ]︸ ︷︷ ︸
=⟨BJ ⟩

}

= M

KL

L∑
l=1

K∑
k=1

EJ [⟨BJ⟩]

= M

KL

L∑
l=1

K∑
k=1

M∑
j=1

p(j) ⟨Bj⟩︸ ︷︷ ︸
=
∑M

j=1
1

M ⟨Bj⟩

=
M∑
j=1

⟨Bj⟩ = ⟨B⟩ .

(B.3)

B.2 Hoeffding’s inequality
B.2.1 Estimator in the infinite measurement limit

The estimator in Eq. (4.5) can be written as a sum of random variables as follows:

⟨B̂⟩∞ =
L∑
l=1

M

L
⟨BJl

⟩︸ ︷︷ ︸
=:Xl

. (B.4)
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Since each term Bj in the Bell operator is a tensor product of Pauli operators, ⟨Bj⟩ ∈ [−1, 1] and
thus −M

L = al ≤ Xl ≤ bl = M
L . Moreover, the bounded random variables Xl are independent,

as they are obtained from different experimental runs. We can thus use Hoeffding’s inequality
[85], which states that

P(⟨B̂⟩∞ − ⟨B⟩ ≥ t) ≤ exp
(

− 2t2∑L
l=1(bl − al)2

)

= exp
(

− 2t2∑L
l=1( 2M

L )2

)

= exp
(

− t2

2M2L

)
.

(B.5)

B.2.2 Estimator for finite repetitions

As in the previous section, we can apply Hoeffding’s inequality to the estimator in Eq. (4.8).
Also the estimator in Eq. (4.8) is a sum of independent random variables,

⟨B̂⟩ =
L∑
l=1

K∑
k=1

M

KL
b

(k)
Jl︸ ︷︷ ︸

=:Ykl

. (B.6)

Since the outcomes b(k)
Jl

are obtained from different experimental runs, they are independent
and thus are the random variables Ykl. In addition, the outcomes can only take the values
b

(k)
Jl

∈ {−1, 1}. Therefore, we have that the random variables Ykl are bounded as − M
KL = akl ≤

Ykl ≤ bkl = M
KL . Finally, we get from Hoeffding’s inequality,

P(⟨B̂⟩ − ⟨B⟩ ≥ t) ≤ exp
(

− 2t2∑L
l=1
∑K
k=1(bkl − akl)2

)

= exp
(

− 2t2∑L
l=1
∑K
k=1( 2M

KL )2

)

= exp
(

− t2

2M2KL

)
.

(B.7)

B.3 Preparation scheme for the LC state
We discuss a scheme to prepare a LC state with all qubits of an n-qubit quantum computer.
This can be done by preparing all qubits in the |+⟩ state and then applying CZ gates between
some of them. A problem can be that the connectivity of the quantum computer does not allow
one to perform a specific gate between qubits i and j directly. The following lemma shows that
this is not a fundamental problem.

Lemma B.1. Consider a qubit array with a connected connectivity graph, where a CZ gate should
be applied to two qubits for graph state generation from the state |+⟩⊗n. This can be achieved by
a sequence of CZ gates between adjacent qubits (in the sense of the connectivity graph) and local
complementations.
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Figure B.1: Scheme to decompose the CZ gate between arbitrary qubits 1 and m into a sequence
of CZ gates between adjacent qubits and local complementations. The dotted lines denote the
CZ gates that can be performed, whereas the red lines indicate the graph state. Qubit 1 can
already be coupled to different qubits, whereas the qubits 2, . . .m have to be uncoupled. The
figure is reprinted from [P4].

Proof. We give an explicit construction that is visualized in Fig. B.1. The initial state is shown
in Fig. B.1 (a). We would like to perform a CZ gate between qubits 1 and m, i.e., CZ1m. The
interaction topology, however, does not allow a direct coupling. Rather, the qubits 1 and m are
connected by the path of qubits 1, 2, . . .m. Here, all the qubits 1, 2, . . .m should be in the |+⟩
state; in particular, it is important that no CZ gate has been applied yet to the qubits 2, . . .m.
In this case, we can apply the following scheme:

(1) Connect qubit 2 by performing the CZ12 gate to generate the first PAIR(1, 2) [Fig. B.1 (b)].

(2) While k < m, transform PAIR(1, k) → PAIR(1, k + 1) by the following:

(a) Couple qubit k and k + 1 by CZk,k+1 [Fig. B.1 (c)].
(b) Couple qubit 1 and k+1 by a local complementation on qubit k, i.e., LCk [Fig. B.1 (d)].
(c) Cancel the CZ gate between qubits 1 and k by performing LCk+1 [Fig. B.1 (e)].
(d) Cancel the CZ gate between qubits k and k + 1 by CZk,k+1 [Fig. B.1 (f)].
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Figure B.2: Illustration of the scheme in Observation 4 for an exemplary two-qubit connectivity
of eight qubits. The dotted lines denote the CZ gates that can be performed, whereas the red
lines indicate the graph state. The figure is taken from [P4].

This allows one to decompose the CZ1m gate into a sequence with circuit depth 3(m − 2) +
1. We note that step (2) is only necessary for m > 1 and requires three steps as the local
complementations in (b) and (c) can be combined.

Lemma B.1 can be used to construct a linear cluster state on an arbitrary interaction topology.

Observation 4. On a quantum computer of n qubits, it is possible to prepare an n-qubit LC
state with O(n) circuit depth.

Proof. The connectivity of a quantum computer is a connected graph G. It thus has a spanning
tree, i.e., a tree graph that covers all vertices of G. A tree graph in turn can be covered by a
LC state by the following steps. At the start, all qubits are assumed to be prepared in the state
|+⟩⊗n.

(1) We start at a leaf and successively couple the adjacent qubits in the direction of the root
by CZ operations.

(2) At a branch-off, check whether the other branch has already been covered. If all other
branches have already been covered, we continue step (1) in the direction of the root.
Otherwise, Lemma B.1 can be used to couple the last qubit to a leaf in the uncovered
branch. From there, we can continue again with step (1).

The scheme is shown for an exemplary two-qubit connectivity in Fig. B.2. To investigate the
circuit depth, we note that steps (1) and (2) are executed alternately. We thus count the number
of steps for each run. ki denotes the number of steps for the ith execution of step (1), whereas
li stands for the steps required for the ith execution of step (2). In step (1), adjacent qubits
are consecutively coupled by CZ gates. We thus have

∑
i ki < n. In each step (2), a qubit at
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distance mi is coupled and, from Lemma B.1, we know that li = 3(mi − 2) + 1. As each branch
is only passed once, we have

∑
i(mi − 2) ≤ n. Moreover, there are less than n branch-offs, i.e.,∑

i 1 ≤ n. Therefore, we obtain
∑
i li =

∑
i 3(mi − 2) + 1 ≤ 4n. The final circuit depth of the

scheme is thus upper bounded by
∑
i(ki + li) ≤ n+ 4n = 5n.
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