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Abstract

Recently, the applications of complex artificial Intelligence (AI) models

have increased exponentially in almost every sector due to the enor-

mous advancement of computing power and the availability of high-

quality annotated data for training complex machine learning (ML) mod-

els. Generally, AI models are very complex in structure, and they of-

ten need to learn thousands, even millions, of parameters in the train-

ing phase. Though the predictions are accurate, due to the complex

decision-making process, the predictions from such AI models are not

understandable to users. Hence, AI systems lack explainability, trans-

parency, and trustworthiness in making the decision explainable to the

users. AI models with such complexity are often referred to as black-box

models.

To interpret the black-box AI models, recently, there has been a high in-

terest in the AI research community concentrating on extracting facts

and rationale to explain the reasons behind the prediction and overall

models’ decision-making priorities. The field that practices interpret-

ing complex AI models and explaining the predictions to uncover the

reasons behind particular predictions is known as eXplainable Artificial

Intelligence (XAI). Improvements in interpreting ML models have been

evident in this decade. However, the current explainability techniques

are helpful for AI practitioners in the way that they can employ explana-

tions to debug and eventually improve the models’ performance. How-

ever, the primary objective of XAI is to help laypeople understand the

predictions by providing human-centric explanations, which will even-

tually increase transparency and trust and lead to faster AI adoption

in real-world applications. A significant gap exists in achieving human-

centered explainability for AI systems due to associated challenges, in-

cluding user experience variability, context sensitivity, bias and data

deficiency, and actionability.
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This dissertation aims to advocate the human-understandable explain-

ability of AI-enabled systems and introduces explainable models in dif-

ferent real-world application scenarios. We strive to answer research

questions, including i) How can we achieve high-performance ML mod-

els addressing technical challenges, including data imbalance, data in-

adequacy, and model bias? ii) How do explanations vary across different

application contexts? iii) What underlying facts and rationale should be

considered when explaining prediction for a given context? and iv) How

could we achieve actionable explanations? We adopted an exploratory,

experimental approach to answering these questions by conducting a

wide range of experiments, introducing explainability techniques, and

demonstrating explanations in three application areas: smart home,

business, and natural language processing (NLP).

After carefully selecting application scenarios considering the mentioned

questions, this thesis proposed multiple high-performance ML models

for energy demand forecasting, occupants’ thermal comfort preference

modeling, product backorder prediction, multi-class patent classifica-

tion, and fake review identification. Then, it introduced explainability

to provide comprehensible, actionable explanations so that users and

stakeholders could understand the predictions and take necessary ac-

tion accordingly. The results from a wide range of experiments demon-

strated high performance compared to state-of-the-art methods. They

provided explanations that capture relevant facts and rationale to make

users understand the proposed ML models’ predictions and overall pri-

orities. The technical and empirical evaluation of the generated explana-

tions for explainable AI-enabled systems highlighted what information

needs to be considered and how they should be represented in explana-

tions. The broad contribution of this thesis is three-fold: i) We achieved

high-performance ML models in different application areas addressing

the challenges, including data inadequacy and extreme imbalance; ii)
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With a wide range of experiments, this thesis gives a holistic conclu-

sion on what facts and rationale should be employed in generating ex-

planations for a given application context; iii) Lastly, this dissertation

highlighted how we can achieve actionable explanations so that users

can take necessary actions to earn more system efficiency in the given

application context.
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1 Introduction

1.1 Motivation

In the past decade, the availability of Artificial Intelligence (AI) applica-

tions has exponentially increased and covers almost every aspect of our

lives. The applications cover almost all sectors, from entertainment to

medication and diagnostics and from smart homes to autonomous ve-

hicles [127, 278, 218]. Hence, AI applications are becoming ubiquitous

these days. These significant developments have happened due to the

enormous growth of the advancement in computing power and the de-

velopment of high-performance, sophisticated ML algorithms, especially

in deep learning (DL).

Along with that, the availability of vast amounts of high-quality data

through the advancement of accurate sensing power, for example, ad-

vanced web platforms, text and image data from social media, and high-

quality sensor data from connected home technology, make it possible

to analyze and provide unprecedented faster and accurate predictions.

Hence, AI-enabled systems are leading to breakthroughs in different ar-

eas, including smart homes, computer vision, natural language process-

ing (NLP), and predictive analysis in business and biomedical domains.

Moreover, the widespread availability of data and the implementation

of internet-connected devices have pushed the boundary of expan-

sion of AI-enabled systems in diverse sectors, especially in health-

care [228, 307], the Internet of Things (IoT) [10], manufacturing [338],

education [36, 272], and finance [9, 193, 91]. AI is revolutionizing dis-

ease diagnosis and medication recommendation [228]. In another sec-

tor, for example, in manufacturing, AI-enabled systems can monitor and

streamline production systems [338], while in education, it can rec-

ommend required lessons through personalized assistive learning plat-

forms for students [272]. The evolution of such AI systems is extending
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exponentially; hence, more improved and more comfortable human lives

are becoming increasingly apparent, which signals a new era of innova-

tion and transformations in every sector.

The widespread use of the recently introduced Large Language Mod-

els (LLMs) in diverse sectors is a testament to the relentless efforts of

the NLP research community [344]. With their unprecedented ability

to learn the context and tone of particular users, these systems have

revolutionized the field. They can generate human-like text for various

NLP tasks, from text summarizing to creative writing [326]. The applica-

tions of LLMs are now typical in terms of empowered virtual assistants,

content generation platforms, and even facilitating communication for

people with speech impairments. LLM is not just an application of NLP

research - it extends beyond language-centric applications. It is now

employed in healthcare, education, and finance through data analysis,

decision-making, and personalized platforms [324, 307], all thanks to

the dedication of the NLP research community.

1.2 Black-Box AI and XAI

Though the emerging ML models are highly accurate and efficient in

decision-making based on knowledge learned from massive fine-grained

datasets, these models lack interpretability, transparency, and trust on

the user end [4, 150]. The primary reason behind this is the models’

high complexity to make particular decisions. ML models, especially DL,

and their variants are more complex than laypeople can think of, and

input values go through many complex calculations. On top of that, DL

models often need to learn thousands or even millions of parameters for

convergence [151]. Hence, the learning and decision-making process is

like a “black-box” to the users.

The trained ML model is supposed to be a magic box where the user

1.2 Black-Box AI and XAI
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provides inputs, and promptly, the model provides the predicted out-

put. Therefore, the model’s decision-making priorities and the underly-

ing mechanism are not understandable and might not make users sense.

Moreover, the reason behind the particular decision or prediction is un-

known to the users, which might lead to mistrust. Hence, it can create

issues related to the real-world adoption of such complex models.

Recently, there has been massive attention to opening the black-box

models and explaining the overall models’ decision-making behind the

specific prediction from such model presenting the facts, priorities, and

rationale [251]. The field that practices and investigates to uncover

the black-box models and explain or interpret models’ overall decision-

making priorities and specific prediction visualizing by highlighting the

facts, reasons, priorities, and rationale is refereed to eXplainable Arti-

ficial Intelligence (XAI)1 [209, 251]. The terms explainability and inter-

pretability are broadly used interchangeably in the XAI research com-

munity since both focus on uncovering the complex decision-making

procedure and the facts behind their predictions.

Various explainability techniques have recently been introduced follow-

ing different contexts and scenarios. These techniques can be broadly

classified as global and local, where global XAI techniques focus on

explaining the overall models’ priorities, while local XAI explains the

specific prediction [195, 244]. Based on the generic explainability,

XAI techniques can be classified as model-agnostic and model-specific.

Model-agnostic techniques can explain the predictions from any ML

model while model-specific can only explain prediction for a specific

ML model [244]. Other than that, multiple hypotheses and contexts

have been considered to represent and explain the predictions, includ-

ing example-based, what-if scenario-based, contrastive, and counterfac-

tual explanations. So far, most widely applied explainability techniques

1Explainability and interpretability is used interchangeably throughout the disserta-
tion.

1.2 Black-Box AI and XAI
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include SHAP (Shapley additive explanations) [195], LIME (Local Inter-

pretable Model-agnostic Explanation) [244], DeepLIFT (Deep Learning

Important FeaTure) [293], LRP (Layer-wise Relevance Propagation) [211],

Grad-Cam [271], ICE (Individual Conditional Expectation) [45], DiCE (di-

verse counterfactual explanations) [213], and PDP (partial dependency

plot) [110]. Combining different primary XAI techniques, some notable

XAI frameworks can be used as a library to apply for explaining indi-

vidual ML model decisions, including Captum [166], AIX360 [24], and

Anchor [246].

1.3 Towards Human-centered XAI

The significant efforts in making AI models explainable so far are for

the AI practitioners and technical developers, where the intention be-

hind explainability is to modify the model to improve the performance

and debugging to find out possible errors [251, 277]. The progress in

explaining complex ML models and the decision-making process is im-

pressive from the technical perspective but needs to be closer to pro-

viding explanations understandable to general users. In other words,

the explanations from state-of-the-art XAI techniques help AI practi-

tioners improve the models’ performance. However, to make explana-

tions human-centered, much effort is needed to solve challenges related

to achieving user-centered explainability. The existing literature on the

efficiency of generating general user-understandable explanations con-

cluded that the prominent XAI techniques, including SHAP and LIME

and other techniques, fail to make user sense in various application

scenarios [251, 38].

The forms, types, and representation of explanations varied widely

across different contexts, the level of expertise of the users, and the ap-

plication scenarios [251]. We can use the revised version of the famous

phrase here to describe the situation with “one XAI technique does not

1.3 Towards Human-centered XAI
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fit all” [104]. Different applications have diverse contexts and pragmat-

ics, and most importantly, the consumers of explanations, the general

users, and the stockholders of different levels of expertise require vari-

ous information needs through explanations [173]. Therefore, human-

understandable explainability needs to address several challenges re-

lated to human-computer interaction, user study, and technical chal-

lenges [200]. The notable technical challenges to achieving robust ex-

plainability include the trade-off between accuracy vs interpretability,

bias and data deficiency, and actionability of the explanation. On the

other hand, human-centered explainability challenges are associated

with context sensitivity, user experience variability, and legal and ethical

bias.

This dissertation advocates the user-understandable explainability of

AI-enabled systems by demonstrating extensive experiments introduc-

ing explainable systems on three different application scenarios. This

thesis explores how explanation types, forms, and representations can

vary across different application scenarios, what important facts and

rationale should be considered in generating explanations, and how the

explanations can be made actionable so that users can take action for

possible changes along with understanding the decisions from AI mod-

els. We propose and introduce explainable techniques for different appli-

cation areas, including smart home, e-commerce, and NLP. We demon-

strated explanations generated by multiple explainability techniques.

Our evaluation of the efficiency of explanations in smart home appli-

cations has practical implications. We have introduced a new metric

for explainable smart home applications, and the results of our study

revealed that the proposed explainability techniques can efficiently iden-

tify the reasons behind predictions. The empirical user study to evaluate

the generated explanations for NLP applications also highlighted what

facts, rationale, and reasons should be selected in making explanations

1.3 Towards Human-centered XAI
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actionable, providing valuable insights for developers and professionals

in the field.

1.4 Research Challenges

Achieving human-understandable explainability for complex ML and

DNN models is much more challenging due to multiple factors that in-

clude the complex black-box nature of the model, the interim trade-off

between accuracy vs interpretability, user expertise variability in pro-

viding contextual explanations to help users understand decisions, rep-

resenting the facts behind predictions in a human-centered way, and

making explanations actionable so that users can take necessary ac-

tion based on predictions and explanations. There has been a massive

interest in opening the black box to achieve explainability without sac-

rificing accuracy. However, most of the works in this area of explain-

ability can provide explanations that can be useful to increase models’

performance. However, the explainability tools and techniques are not

readily applicable to provide human-centered actionable explanations

to the general users. Instead of discussing all associated challenges for

human-centered explanations for AI-enabled systems, we briefly discuss

the challenges considered to be addressed in this dissertation.

• User experience variability: Different users have different infor-

mation needs to understand the decision from AI-enabled systems.

On top of that, the context of applications also indicates the need

for different explanation types. For example, the explanations for

the smart home users for their household energy demand forecast-

ing systems will be completely different from the explanations for

the users of e-commerce websites for fake review identification.

Existing explainability techniques might not fit the problem domain

to tackle such a challenge [104]. Instead, we need to canonicalize

1.4 Research Challenges



1 Introduction 8

and contextualize the explanations to represent them so that users

can understand the rationale behind the prediction. On the other

hand, literacy in AI and technical applications for general users is

also a considerable factor that can challenge the success of human-

centered explanations. For a specific context of a single applica-

tion, users might have different expertise and understandability in

sense-making. Therefore, achieving human-centered explainabil-

ity for AI-enabled systems is a formidable challenge.

• Context Sensitivity: The explanations’ effectiveness to the end-

users depends heavily on the context of the application [12]. Let

us consider a well-known loan application example in XAI, where

the loan applicant might ask for explanations from the bank official

about why his/her loan has been rejected [209]. Here, the context

of the explanations is from the users’ side. Nevertheless, let us

consider the context of the manager or the bank stockholders. They

might also ask for explanations from the AI-enabled systems about

the factors they should consider to get more revenue. Other than

that, the expertise of different users varies widely. That is why it

could be more challenging to meet the information needs in the

form of explanations.

• Bias and Data Deficiency: Effective training of an ML model needs

an adequate amount of data. Though the current computing world

is enriched with high-quality available data, some applications still

need enough data with proper annotation. For example, in the case

of personal thermal comfort preference modeling, the datasets are

not enough to train a DL model. Because it is very time-consuming

and, at the same time, expensive to hire so many humans to anno-

tate the data. Along with data deficiency, sometimes the datasets

are biased and imbalanced. For example, the dataset for credit card

fraud detection is extremely imbalanced because very few amounts

1.4 Research Challenges
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of transactions are fraudulent, and more than 99% of transactions

are valid [287]. With such an imbalanced dataset, the learning

process of any ML model could often be biased and provide out-

comes biasedly. Providing explanations for such a biased model

will create other trust issues. Therefore, adequate balanced data

is mandatory for an ideal trained ML model.

• One XAI technique does not fit all: Although the current XAI-

research community has made significant advancements in ex-

plainability techniques over the last decade, it still faces dilemmas

such as the notion that “one solution does not fit all [104].” In other

words, explainability heavily depends on the context of the problem

at hand and the variability of technical and general user expertise.

Consequently, no single explainability technique can provide ex-

planations, even on a small scale, for all types of problems. Thus,

achieving human-centered explainability is much more challenging

than technical explainability alone. One approach could involve

leveraging insights from technical explainability methods and pre-

senting them in an easily understandable way for general users.

Alternatively, ML models may need to involve humans in decision-

making and provide explanations based on their feedback, which

is even more challenging.

• Actionable Explanations: The generated explanations should be

actionable. From the perspective of AI practitioners, insights

gleaned from technical explanations can inform modifications to

the model’s structure or other aspects to enhance model perfor-

mance. This makes the explanations actionable. Similarly, from

the standpoint of end-users, human-centered explanations must

fulfill a dual requirement: users should not only comprehend the

decisions but also be empowered to take appropriate action based

on the insights to optimize outcomes.

1.4 Research Challenges
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1.5 Research Questions

The primary goal of this dissertation is to advocate for generating

human-understandable explanations for the decisions or predictions

from ML models. As mentioned in the previous section, the explana-

tion types and representations might differ based on user experience

variability, context, and application discourse. Following this, we aimed

to make systems explainable by providing comprehensible explanations

for different applications covering different contexts and users with vari-

able experiences. We planned to study how the explanations can be dif-

ferent based on the application scenarios, what the facts and priorities

XAI models need to utilize to generate explanations, and how the expla-

nations can be actionable; hence, users can use them to corrective ac-

tion to make their interaction better with the systems and optimize their

practice. We explore introducing XAI techniques in multiple AI-enabled

innovative applications, including smart homes, NLP, and e-commerce.

Overall, we conducted experiments in different application domains to-

wards achieving human-understandable explanations by exploring the

following research questions listed below:

RQ 1: What techniques and strategies can be employed to achieve

high-performance ML models addressing technical chal-

lenges such as data imbalance, data inadequacy, and model

bias?

Since this dissertation focuses on achieving easy-to-understand

explainability for different application contexts and scenarios, we

first need high-performance ML models for particular tasks before

explaining the prediction. In answering this research question,

we strive to achieve high-performance ML models for a particular

problem by introducing new effective techniques. To do so, we

must address the challenges, including extreme data imbalances,

1.5 Research Questions
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inadequacy and model bias, by following effective strategies and

techniques.

RQ 2: How can human-understandable explainability be achieved

for ML models within a specific application domain?

Demonstrating the outcome from state-of-the-art XAI techniques

in multiple real-world problems in different domains, we try to

explore how we can achieve explainability and what the gaps

and challenges remain to implement in different application sce-

narios, including smart home, e-commerce, and NLP. We ex-

plored three different applications by conducting experiments

and proposing explainability methods to provide users with easy-

to-understand explanations for certain decisions from the AI

model. For smart home application scenarios, we propose Fore-

castExplainer to explain the prediction from a household energy

demand forecasting system powered by a complex deep neural

networks (DNNs) model. We observed that the explanations for

the time series forecasting models are two-dimensional. We can

not provide explanations just in the form of the contribution of

different features. Instead, we had to consider the temporality,

the time associated with the energy consumption. Unlike classi-

fication and regression tasks, the time series forecasting problem

differs, and time stumps play a vital role here.

We then explore how the explanations can be generated and rep-

resented for natural language processing applications. However,

we consider different applications for NLP applications, including

patent classification and fake review detection tasks. We pro-

posed high-performance prediction models and introduced ex-

plainability methods for explanations for the users to make them

understand why a particular patent is classified to a specific class

or why a review is predicted as fake, which are provided in the

1.5 Research Questions
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forms of highlighted words. We incorporate a layer-wise relevance

propagation technique to identify the weight of every word that

refers to the importance of a particular class. Then, different vi-

sualizations are applied to represent the explanations in the most

accessible forms. Along with the user-centric applications, we

also introduce the explainability method for product back-order

prediction tasks, a prominent problem in e-commerce, for the

company’s stakeholders so that they can take necessary steps to

get rid of being a product back-ordered. For the fake review iden-

tification task, the empirical evaluation of generated explanations

with human subjects demonstrated what information needs to be

considered to generate and represent explanations.

RQ 3: How do explanations vary across different real-world appli-

cations?

The types and formats of explanations significantly depend on the

context of the applications and even on the application scenarios.

For example, technically, explanations for energy demand fore-

casting systems differ significantly from those for patent classifi-

cation systems. In the former, explanations represent the energy

consumption for different appliances and corresponding times.

In contrast, in the latter, explanations mainly depend on scien-

tific terms and innovations related to specific research fields (such

as electricity patents or chemistry patents).

Moreover, the granularity of explanations also varies within differ-

ent application contexts. While end-users of one application may

require detailed, fine-grained, and easily understandable expla-

nations, others may expect higher-level explanations specific to

the context. In certain applications such as medical diagnostic

systems, it is imperative to consider ethical and regulatory re-

quirements when presenting explanations to users. Building on

1.5 Research Questions
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these observations, we aim to explore how the types and formats

of explanations vary across different applications. Therefore,

we conducted experiments introducing various forms of explain-

ability using state-of-the-art XAI techniques in smart homes, e-

commerce, and NLP application scenarios.

RQ 4: What underlying facts and rationale should we consider

when generating explanations within application scenar-

ios?

To achieve human-understandable explainability, it is crucial to

consider the underlying facts, context, and rationale before rep-

resenting explanations based on the model’s priorities. To under-

stand context, we should employ facts and rationale when gen-

erating explanations. We demonstrated explainability in multi-

ple application scenarios and investigated the significant require-

ments that must be considered. The most critical underlying

facts and rationale include end-user expertise, relevance to the

specific task at hand, and the actionability of the explanations. To

explore this research question better, we conducted a wide range

of experiments in different types of applications, which are also

diverse in terms of ML tasks. The ML task included multivariate

time series forecasting, classification, text processing, and multi-

level classification. Generating explanations for such diverse ap-

plications, we tried to explore what underlying facts and rationale

are essential to consider and represent in explanations.

In the context of NLP applications, for example, the users of ex-

plainable patent classification systems expect the provided ex-

planations not only to make sense of why a particular ML system

classifies a patent to a specific class but also to help them by pro-

viding holistic ideas on how they should present text information

in future patents to be classified to their desired patent class.

1.5 Research Questions
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RQ 5: How can actionable explanations be generated to optimize

practice for given application contexts?

Usually, explanations help users understand decisions made by

AI-enabled systems. We investigated how explanations can be

generated by representing facts and rationale to help users under-

stand the decision so that they might take the necessary action

to optimize their interaction with intelligent systems. However,

when explanations are actionable, stakeholders can take appro-

priate actions to optimize outcomes in various application sce-

narios. For instance, in a product backorder prediction scenario,

stakeholders expect to be informed of an impending backorder

and get the reasons provided by actionable explanations so that

they can make specific changes to prevent the backorder, maxi-

mizing revenue and minimizing loss.

Similarly, in the context of smart home applications, providing

consumption scenarios for future energy usage in terms of ac-

tivities rather than appliance-level consumption enables users

to optimize their consumption habits across different activities.

Our research findings support the generation of actionable ex-

planations that represent activity-based consumption, benefiting

end-users in understanding decisions and taking appropriate ac-

tions to maximize outcomes. Additionally, the granularity of ex-

planations varies across applications, with some users requir-

ing detailed, fine-grained explanations while others need context-

specific high-level explanations. Furthermore, ethical and reg-

ulatory considerations must be addressed when presenting ex-

planations to users in applications such as medical diagnostics

systems.

1.5 Research Questions
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1.6 Structure of the Dissertation

This dissertation consists of five different parts.

Part I presents the introduction & overview, related work and research

design & methodology. This part consists of three chapters. Chapter 1

presents the motivation, associated research challenges, research ques-

tions and the structure of the thesis. We discuss the related works in

XAI, human centered XAI with the possible research gaps in chapter 2.

Chapter 3 presents the details about the application area selection, tech-

nical highlight of applied methods, and study outline.

The following three parts discuss our proposed methods and findings

on introducing XAI in three research areas. Part II focuses on explain-

able smart home applications. Chapter 5 argues the need for human-

centered explainable systems in smart home environments. Chapter 6

presents an explainable energy demand forecasting system. The per-

sonal thermal comfort prediction system is introduced in chapter 7.

Part III is about explainable business applications. Chapter 9 presents

our proposed explainable product backorder prediction system and dis-

cusses the findings from generated explanations.

Next, in part IV, explainable methods on two different NLP applications

have been introduced. In chapter 11, we present an interpretable patent

classification system to generate explanations to understand the pre-

dicted class. Chapter 12 presents an interpretable fake review detection

method and the user evaluation of the generated explanations.

In the last part (Part V), we discuss the findings from the experiments

and analysis of the above three parts and the conclusive remark with

future work. Chapter 13 discusses the findings from the introduced

explainable techniques in three different application scenarios. At last,

chapter 14 concludes the dissertation with some future work to address

the potential limitations.

1.6 Structure of the Dissertation
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2 Related Work

In the last decade, there has been an enormous interest in the AI re-

search community in explaining ML models and their predictions to

have more interpretable, transparent, and trustworthy AI applications.

This chapter presents an overview of state-of-the-art XAI methods, the

progress in human-centered XAI, and the related research works on ML

and XAI techniques in the application areas studied in this dissertation,

including smart home, business, and NLP.

2.1 Explainable Artificial Intelligence

To define XAI, we quote the definition from the International Business

Machines Corporation (IBM), one of the pioneering institutions in ex-

plaining ML models, as follows:

Definition 1:: “Explainable artificial intelligence (XAI) is a set of pro-

cesses and methods that allows human users to comprehend and trust

the results and output created by machine learning algorithms.2”

State-of-the-art XAI techniques can be broadly classified into different

criteria, based on scope, model types, complexity of the techniques, and

methodology used [12]. A key factor in these techniques is feature impor-

tance. Techniques that are based on feature importance can be referred

to as scope-based XAI techniques. In such techniques, the features of

data samples are used to explain the overall model priorities and individ-

ual predictions, representing which features have positive (and negative)

contributions towards the model’s overall decision-making or specific

decisions.

XAI techniques that focus on explaining overall model priorities are

known as global. In contrast, XAI methods that focus on explaining
2Source: https://www.ibm.com/topics/explainable-ai

https://www.ibm.com/topics/explainable-ai
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individual decisions from the model are called local [4, 277]. One of the

most prominent global XAI techniques is Shapley Additive Explanations

(SHAP), proposed by Lundberg et al. [195] based on game theory. Their

hypothesis is similar to identifying individual players’ contribution to-

wards a game’s outcome. SHAP tries to explain decisions in terms of

feature importance (both negative and positive directions toward the de-

cision), where features are treated as players in a particular game (i.e.,

the application area), and the prediction is treated as the game’s out-

come.

Local Interpretable Model-agnostic Explanations (LIME) [244] can be

considered the most widely used local XAI technique, which explains

specific predictions from the models. LIME trains a surrogate inter-

pretable model that mimics or approximates the performance of the

complex model. Then, the surrogate model is employed to explain par-

ticular decisions from the original model [244].

Generally, there is a trade-off between the complexity and interpretabil-

ity of ML models. Less complex methods are supposed to be more in-

terpretable. The accuracy of ML models is inversely proportionate to

the degree of interpretability. Ideally, the ML model should be highly

accurate and interpretable simultaneously. However, this is practically

impossible due to the complexity of the models. Usually, complex models

such as deep neural networks have thousands or millions of parameters

related to predicting a particular decision. These complex models have

high accuracy but are also less interpretable because of their complexity.

On the other hand, basic logistic regression models offer high inter-

pretability. Their simplicity makes it easy to uncover any model’s

decision-making process. However, this high level of interpretability

comes at the cost of accuracy. In Fig. 1 and 2, we present the relation-

ship based on the accuracy and the interpretability. We can see from

both figures that, the DNNs model is highly accurate but has very less

2.1 Explainable Artificial Intelligence
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interpretability. The next accurate ML models are ensemble methods

such as XGBoost and random forest, followed by kernel-based meth-

ods, clustering, k-nearest neighbors, and decision trees. However, the

relationship based on the interpretability is inverse.

Figure 1: Accuracy vs Interpretability trade-off in machine learning
models.

In a practical scenario, we try to have a model that does not sacrifice

considerable accuracy but will achieve high interpretability. However,

the model selection for a particular application depends on many factors,

including the users and the objective of the application. To interpret

the prediction from the complexity of highly accurate models (i.e., DNNs

and Ensemble models) is possible thanks to the recent advancement in

uncovering the decision-making process.

Based on the complexity of the models, we can categorize XAI tech-

niques as intrinsic and post-hoc. The design and implementation of

intrinsic models ensure that the predicted decisions are inherently in-

terpretable. There is no need for other explainability techniques to com-

prehend decisions from such models. However, more complex ML mod-

2.1 Explainable Artificial Intelligence
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Figure 2: Accuracy vs Interpretability trade-off in machine learning
models in terms of line chart.

els like DNNs and autoencoders need another explainability model on

top of the ML models, referred to as post-hoc explainability techniques.

Model-agnostic XAI techniques offer post-hoc explainability and can be

applied to complex models to explain their decisions.

Some explainability techniques can be applied to any ML model, while

others are designed only for specific types of models. XAI techniques that

apply to multiple types of models to explain decisions are called model-

agnostic XAI techniques. SHAP and LIME are both model-agnostic

techniques and can be applied to classical ML models, from decision

trees to support vector machines, and DL models, from deep neu-

ral networks (DNNs) to recurrent neural networks (RNNs) and autoen-

coders [277, 4, 150].

Based on the methodologies used, there are two major categories of XAI

techniques: back-propagation-based and perturbation-based methods.

2.1 Explainable Artificial Intelligence
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XAI techniques based on back-propagation propagate the model’s out-

put backward from the output layers to the input layers of the DNNs.

In the back-propagation phase, XAI techniques try to capture the im-

portant changes in different nodes in every layer and map the weight

changes to compute the contributions of specific nodes. After the back-

ward propagation phase ends, these methods can identify the contri-

bution of different input features towards the predicted output. These

can also be called gradient-based techniques. Major examples of these

kinds of methods are saliency maps [295], layer-wise relevance propaga-

tion [19, 211], and Deep Learning Important FeaTures (DeepLIFT) [293].

To explain the prediction from a DL model, Montavon et al. [211] pro-

posed layer-wise relevance propagation (LRP)-based XAI technique. LRP

redistributes the weights of a particular neuron from the output layer

to the input layer through the intermediate layers of DNNs. By this pro-

cess, it assigns a weight to each node (neuron) in every layer by weight

redistribution and eventually marks different input features and assigns

weights that have the influence or contributions (both positive and neg-

ative) towards the predictions [211, 285]. Deep Learning Important Fea-

Tures (DeepLIFT) has been introduced by approximating the Shapley

values to decompose the deep neural network and explain particular

predictions from DNN-based models [293]. Grad-CAM, another notable

XAI technique, has been proposed based on gradient localization, which

can explain predictions for image processing applications.

Example-based explanations can make sense of why the ML model

predicted a specific outcome. These explanations provide similar ex-

amples with similar feature values contributing to the same predic-

tion [156, 117]. Contrary to example-based explanations, contrastive,

counterfactual, and what-if explanations also play a vital role in under-

standing [310, 213, 315]. Counterfactual explanations can make people

understand by changing specific feature values that might overturn the

2.1 Explainable Artificial Intelligence
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prediction so that users can comprehend the particular decision [315].

What-if scenario-based explanations demonstrate what will happen if

the user changes one or more specific values of the samples [309].

Several XAI techniques are introduced for AI experts based on sub-

space explanations and probabilistic interpretation for Bayesian deci-

sion trees [172, 263]. These explanations are also helpful in under-

standing the models’ predictions. Other notable XAI techniques in-

clude individual conditional expectation (ICE) [45], diverse counterfac-

tual explanations (DiCE) [213], and partial dependency plots (PDP) [110],

which have also been introduced following different hypotheses to ex-

plain the predictions of ML models. Combining different primary XAI

techniques, some notable XAI frameworks can be used as a library

to apply for explaining individual ML model decisions, including Cap-

tum [166], AIX360 [24], and Anchor [246].

2.2 Progress Towards Human-centered XAI

The significant progress in explaining the decisions from complex ML

models is centered on AI practitioners and developers to debug and

improve the performance of the models by modifying parameters and

architectures after careful analysis of the provided technical explana-

tions [250]. Nevertheless, many studies have been conducted to eval-

uate the current XAI techniques from a human-centered perspective.

Different studies were also carried out on eliciting the requirements for

achieving human understandable explainability with user studies.

One of the primary goals of XAI is to make people understand the

predictions from AI models. However, there is a clear difference be-

tween the user’s perspectives on comprehending the explanations and

how they are designed and presented using underlying facts and ratio-

nale [67, 122]. Rong et al. [251] classified the understanding of explana-

2.2 Progress Towards Human-centered XAI
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tions into objective and subjective. Objective understanding is related to

comprehending the decisions of the models in the application domain,

and for evaluating this, a proxy application with a questionnaire can be

a good tool. On the other hand, subject understanding can depend on

the user’s perspective, and it generally can be evaluated through user

study after the task has been completed [251]. A concept-based expla-

nations framework has been introduced by Ghorbani et al. [107] where

the authors proposed principles to overcome the problem with feature

importance-based explanations. Several studies have been conducted

to evaluate the users’ understanding of the explanations in different

application areas, including finance [48, 2], education [38] and image

processing [47].

The investigation on how the non-technical users are capable of un-

derstanding the decision-making priorities of the model by providing

global explanations has been conducted by Chromik et al. [67], and

they concluded that the global explanations in terms of features im-

portance are not enough. The effectiveness of global model-agnostic ex-

planations generated by SHAP for applications in finance and education

has been evaluated by the general users [38]. Their findings also indi-

cated that global explanations are insufficient in understanding model

behavior [280, 38].

Besides users’ understandability of the explanations, trust in XAI sys-

tems plays an essential role in the real-world adoption of AI models.

Moreover, it is a popular argument that XAI systems can increase user

trust [150, 38]; hence, human-centered explanations must be trust-

worthy. Studies across different research domains, including medi-

cal [229, 308], self-driving autonomous vehicles [70], recommendation

systems [187, 227] and banking applications [266] has been conducted

to measure whether the explanations increase trust on the automatic

decisions.

2.2 Progress Towards Human-centered XAI
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From the human-computer interaction (HCI) perspective, the usabil-

ity of XAI systems should consider different concepts such as ease of

use, helpfulness, and ability to detect undesired decisions from the sys-

tems. To measure the users’ satisfaction level on XAI-enabled systems

and their generated explanations, researchers introduced “Satisfaction

Scale” considering multiple aspects [229, 126, 48]. Based on the users’

ratings on the generated explanations, Nourani et al. [223] measures

how helpful the explanations are in comprehending the decisions. Sim-

ilarly, Zhang et al. [340] and Buccinca et al. [50] investigated to measure

the helpfulness of the explainable systems. To evaluate whether the gen-

erated explanations can audit the models, multiple studies conducted

user evaluation considering the fairness of the decisions [265, 238],

model bias [298, 243] in decision-making and undesired decisions [159].

Experiments based on simulateability also concluded that current inter-

pretability methods cannot explain model behavior [189, 251].

The explanations generated from prominent methods, including LIME

and anchor, have also been evaluated by Hase et al. [122]. They found

that counterfactual explanations perform better than others in under-

standing, and LIME explanations were practical in a few cases. Abdul

et al. [2] conducted an empirical user study with more than 80 partic-

ipants to measure the effectiveness and user satisfaction of the gener-

ated explanations. In summary, in case of understanding perspective,

the empirical user studies on multiple real-world applications suggest

the contradiction in achieving the XAI goals [188, 30, 235, 317].

2.3 XAI in Applications

This section provides a brief overview of the relevant AI and XAI research

works on different applications related to the research areas investigated

in this dissertation. We focus on three different research areas: smart

home, business, and NLP applications.

2.3 XAI in Applications
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2.3.1 Smart Homes Applications

The first application area of this dissertation is the smart home, which

includes applications for explainable energy demand forecasting and

predicting thermal comfort preferences for automatic heating and cool-

ing systems. Here, we discuss notable research related to smart home

applications.

The applications of AI-enabled systems are now becoming popular in

smart home scenarios [161, 162, 163, 311, 278]. AI-based predictive

models and recommender systems are utilized in the home environment

to provide more comfortable living space to the inhabitants [1]. More-

over, it intends to provide feedback to the inhabitants to be more opti-

mized in consuming energy and hence try to decrease carbon footprint

and households’ energy-related costs [77].

Energy demand forecasting is a kind of smart home application that

can provide the inhabitants about how much energy they will need in

the upcoming week or month [164, 163, 278, 153]. With overall future

energy demand forecasting, it can also provide appliance level predic-

tion so that the household member can understand how they might

optimize their energy consumption. Another impressive example of an

AI-enable system in a smart home is an intelligent heating and cooling

system based on the prediction of occupants’ thermal comfort prefer-

ences [25, 139, 177, 180]. In other words, the system can change the

house’s or workplace’s temperature after predicting the thermal comfort

preferences. Hence, the outcome after the AI-actuator is that changing

the temperature provide occupants with a more comfortable and pleas-

ant environment.

Forecasting household energy demand to make people aware of their en-

ergy consumption is a multi-variate time series forecasting task. Mak-

ing multi-variate time series forecasting explainable is challenging com-

2.3 XAI in Applications
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pared to classical classification and regression tasks. Because explana-

tions of mufti-variate time series forecasting models related not only to

the features of the sample but associated with the corresponding time

frame [278]. Therefore, the explanations are generally two-dimensional.

The existing XAI techniques often can not be used directly to explain the

time series forecasting task.

Several survey papers on explainable techniques for time series data

have discussed the overview and existing methods [249, 89, 32, 264,

260, 255]. An interpretable boosted regression model is introduced by

Ilic et al. [133] where they generate explanations for predictions employ-

ing regression tree. In terms of the saliency map, an explainable tech-

nique proposed that can decompose and explain the prediction from con-

volutional neural networks (CNNs) model [256, 257]. To explain the pre-

diction from the auto-encoder-based energy demand forecasting model,

Kim et al. [163, 162] proposed an interpretable method that can explain

the prediction in terms of the heatmap.

Grimaldo et al. [111] introduced visually interactive and explainable en-

ergy demand analysis systems incorporating different prosumer scenar-

ios. Jiao et al. [142] experimented on classical ML models to identify the

critical factors for energy demand forecasting in residential buildings.

Shapley value-based explanation technique is developed to interpret the

decision from DNNs-based energy forecasting model [232]. The two most

widely used XAI techniques, SHAP and LIME, have also been used in en-

ergy demand classification task [40].

Research on predicting personal thermal comfort prediction to provide

a more pleasant and comfortable indoor environment by changing tem-

perature and other parameters has got a significant interest in recent

time [334, 78, 329, 328]. Generally, ML models for thermal comfort pref-

erence prediction depend on high-dimensional feature spaces, including

physiological, environmental, and weather data. There are two technical

2.3 XAI in Applications
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challenges associated with thermal comfort preference modeling, includ-

ing inadequate data samples to train the models and high-dimensional

features space that might mislead the models [7, 237, 334, 78]. To ad-

dress the data inadequacy challenges, researchers employ different syn-

thetic data generation techniques such as generative adversarial net-

works (GANs) and their variants [237, 334, 78, 237]. To identify rele-

vant features and filter out irrelevant and correlated features, feature

selection techniques have been applied as a first step before training the

model [152, 289, 194].

2.3.2 Business Intelligence Applications

Predictive decision analysis and modeling are largely employed in e-

commerce, banking, and other business domains. Some examples of

AI-enable systems can be customer churn prediction, product backo-

rder prediction and fraud detection, inventory management, and supply

chain optimization [128, 286, 119, 204]. Identification of fake or AI-

generated reviews in e-commerce platforms is now evident by applying

advanced NLP techniques so that fake or artificial reviews of products

can not mislead customers. In summary, the customer and company

stakeholders can benefit from such systems, where general users might

get help to become more aware of fraud. The company can make more

profit and avoid possible losses by taking corrective action based on pre-

dictions from the AI model.

The applications in business intelligence can be broadly categorized into

two classes based on employed AI models. The first category is the

type of applications that employ classical ML models, including deci-

sion tree [119], support vector machine (SVM) [119, 226], and K-nearest

neighbor. Another category employed sophisticated DL techniques, in-

cluding DNNs, RNNs, and GAN [185, 286, 174]. The use of XAI tech-

niques in business applications is also evident in recent times [226, 225].

2.3 XAI in Applications
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However, the remainder of this subsection presents a brief overview of

applications of ML models and the use of XAI techniques in the business

area, especially in product backorder prediction.

One of the prior methods of product backorder prediction is proposed

by De et al. [79], where they overcome the imbalance problem with the

combination of oversampling and undersampling techniques. Ntakolia

et al. [226, 225] proposed two different methods to have an explain-

able inventory management system by applying a global XAI technique,

Shapley values. They relied on classical ML models for modeling prod-

uct backorder data, including SVM, random forest, and XGBoost. Hajek

et al. [119] introduced profit-maximization techniques by training ML

models for predicting product backorder. They have yet to explore the

explainability techniques. Islam et al. [134] used trained random for-

est and gradient boosting model to predict backorder for supply chain

management system.

Several researches on product backorder prediction introduced DL mod-

els [185, 262, 174, 286]. Lawal et al. [174] applied an RNN architecture

to model product backorder after applying preprocessing with a min-

max scaler and addressing the imbalance problem with the ADASYN

oversampling technique. Deep neural networks have also been proposed

for identifying product backorder [286]. Saraogi et al.[262] applied an

un-supervised approach with auto-encoder to predict future backorder.

Li [185] applied a series of ML models in his PhD thesis for modeling

product backorders.

However, almost all methods mentioned above employed complex ML

models for backorder prediction, but except few [226, 225] studies, none

of them try to explain the predictions from the trained model. Though

Ntkolia et al. only explore global explanations for the overall models’

priorities. One of the reasons why we chose this business task is to make

the predictions explainable so that the stakeholders, i.e., the inventory
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manager, can take corrective action to decrease future loss.

2.3.3 NLP Applications

There has been significant interest in explaining the predictions from

NLP models, including explainable sentiment classification [345, 6, 336],

and interpretable hate speech detection [149, 199]. Explainable tech-

niques including SHAP [195], LIME [244], ELI53, anchor [246] and

LRP [211] are the most notable methods employed in explaining de-

cisions from text classification models. In this thesis, we chose two

NLP applications to investigate, including patent classification and fake

review identification tasks. Following a brief discussion on the break-

through in NLP tasks, we briefly overview the related works in the two

tasks mentioned above.

The revolutionary methods of representing text by introducing word-

embedding models have changed the dimension of NLP applications and

achieved much higher accuracy in almost all sectors. Compared to the

classical text representation techniques such as bag-of-words (BoW) and

term Frequency - Inverse Document Frequency (TF-IDF), the semantic

representation of words can capture much better semantic information

for a longer context. Text-embedding models including word2vec [175],

sentence2vec [203], Glove [233] and fasttext [46] have been introduced

to represent text in high dimensional semantic vectors for modeling

NLP tasks. Therefore, the NLP task, including sentiment analysis, tex-

tual similarity estimation, question-answering, and machine transla-

tion, achieved higher performance than ever. However, after introduc-

ing transformer-based text representation techniques, the NLP applica-

tions achieve new state-of-the-art performance, which, in some cases, is

higher than that of humans. Transformer models from BERT [81] with

its varient such as DistilBERT [261], RoBERTa [192] to XLNET [333],

3ELI5: https://github.com/eli5-org/eli5
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Electra [68] are GPT [101] performing better to model NLP tasks. Re-

cently, large language models have been introduced, which have sur-

passed the performance of all previous methods in language generation

and understanding tasks. This dissertation investigated two NLP ap-

plications, including patent classification and fake review identification,

and introduced XAI-enabled models with easy-to-understand explana-

tions.

The number of patent applications in the last decade has increased ex-

ponentially. It needs a considerable effort to classify them manually for

the patent experts [288, 183, 178]. The preliminary methods for clas-

sifying patents relied on applying BoW and DF-IDF representation with

classical ML models, which included decision trees and SVM. Those text

representations have severe limitations in that they can not capture se-

mantic and contextual information of the texts. Multiple methods have

been proposed to classify patents employing DL techniques, including

CNNs, LSTM, BiLSTM, and hybrid approaches such as CNN-LSTM and

CNN-BiLSTM [183, 178, 63]. To achieve a multi-level patent classifica-

tion system, researchers applied pre-trained word-embedding [236] and

transformer models including Glove, fasttext, BERT, XLNet, RoBERTa

and Electra [68, 252, 141, 148].

Similar models are also applied in fake review identification tasks us-

ing text representation methods, including pre-trained word-embedding

and transformer models. The classification models include basic ML

models to complex and hybrid DL models [85, 335, 231, 230, 296,

80]. [80]. Duma et al. [85] proposed a deep fake review detection method

by analyzing ratings and latent text feature. Introducing features such

as authenticity and analytical thinking, Alsubari et al. [14] applied an

RNNs-based deceptive review identification method. The sentiment of

the reviews is also considered to classify whether the review is fake

or original [294]. Topic modeling and semi-supervised GAN have been

2.3 XAI in Applications
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employed with an attention mechanism to model fake review detection

tasks [43, 144]. Mohawesh et al. [207] proposed several deep learn-

ing models that include Bi-LSTM and CNN, and they also attempted to

explain the prediction with SHAP. Previously, they also considered ad-

dressing concept drift for identifying fake reviews [208, 206].

However, neither selected NLP task in this thesis has been studied well

enough to explain the predictions for the general users. For the patent

classification task, it is significant to explain to the patent experts why

the ML models predicted a patent text to one of the hundreds of classes.

The same holds for users of e-commerce platforms, where users might

be fooled by fake reviews posted by retailers or their competitors. It needs

to be detected automatically, providing explanations so that users can

trust the systems.

2.3 XAI in Applications
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3 Research Design & Methodology

This dissertation is focused on introducing explainable models and

demonstrating their applications in various areas. It investigates how

explanations for understanding decisions from complex AI models vary

across different application scenarios, contexts, and user experience

variability. The research delves into three diverse application areas:

smart home, NLP, and business intelligence.

3.1 Selection of Application Areas

It is of utmost importance to select application areas for in-depth ex-

ploration and investigation to address the challenges and answer the

research questions. We have chosen research areas based on several

criteria directly linked to the research questions. Our focus is not just

on understanding how explanations vary across different application

domains but also on the potential impact of this understanding. We

aim to identify the facts and rationale that should be considered when

generating explanations for a given application’s context and to produce

actionable explanations that can guide corrective actions, thereby mak-

ing a significant contribution to the application at hand.

Our objectives are underpinned by the recognition of significant research

challenges. These include the delicate balance between accuracy and

interpretability, the variability of user experience, the sensitivity to con-

text and bias, and the issue of data deficiency. These challenges are

not obstacles but rather opportunities for us to delve deeper into our re-

search questions. They guide us in selecting the three application areas

in multiple sub-tasks are diverse and can be investigated to find the an-

swers to our research questions and overcome the challenges to achieve

explainability.

We also stress the importance of investigating explainability techniques
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across various ML tasks, including time-series forecasting, tabular clas-

sification, and text classification. In the following, we discuss why the

three application areas were selected and how they provide us with the

platform to investigate the research questions, serving as the key areas

where our research will be applied and tested.

1. Smart Home: First, we selected the smart home application area

to investigate the explainability methods to generate explanations

so that the general users might understand the complex decisions

from AI models. Smart home users are laypeople who might need

a basic understanding of how systems make decisions. We found

that smart home applications are understudied in the direction of

XAI. Some ML-related works have been related to energy demand

forecasting and thermal comfort modeling. However, they all are

predictive systems applying black-box ML models. Few studies in

energy demand forecasting tried to explain the models’ decisions;

however, those methods aimed at using technical explainability to

debug and improve the model’s performance.

Energy demand forecasting is a multivariate time series predic-

tion task that is not similar to traditional classification task. The

predictions depend on the consumption of different appliances

and the associated time. Hence, the explanations are also two-

dimensional. Therefore, generating an explanation mapping the

contributions of features corresponding to the time is challenging.

On top of that, it should be easy to understand since the users are

lay people.

Significant attention has been paid to modeling the thermal com-

fort preference inside household and corporate buildings, applying

ML models to provide a comfortable environment, and controlling

the indoor temperature based on the preference prediction. This

area is challenging for two different reasons. First, it has high-

3.1 Selection of Application Areas
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dimensional features, which makes it challenging to select the most

important and which ones should be filtered out. Generating ex-

planations for high-dimensional datasets is much more challenging

than for smaller dimensions.

2. Business: We selected one business application, product backo-

rder prediction to have diversity in application areas. The explain-

ability of such applications has yet to be studied in the literature.

Usually, product backorder prediction is a very challenging task

for a few reasons. One of the most important reasons is that prod-

uct backorder is rare but essential even in inventory management.

This rarity leads to a highly imbalanced dataset, which hinders the

performance of ML models and leads to bias. In addition, the stake-

holders of such applications are not general users but the company

owner and inventory manager. Given this context, explaining the

decisions from the ML models to make stakeholders understand

the reasons is a formidable task due to the data imbalance and

user experience variability. The stakeholders here would not only

like to understand the decision but also want to overturn it by tak-

ing corrective actions.

3. Natural Language Processing: In the above application areas, we

investigate to explain the decisions from ML models trained on

datasets with time series and tabular numerical data. Since two of

our research questions were related to studying how the explana-

tions varied across application areas and what facts and rationale

needed to be considered in explaining the decisions, we would like

to investigate the decisions from NLP applications. Unlike the other

two selected application areas, the data in NLP areas is a text. So,

in terms of dataset types, the application domains will be diverse.

Hence, we chose two NLP applications: patent classification and

fake review identifications. These applications were chosen be-

3.1 Selection of Application Areas
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cause they represent different user groups and decision-making

processes, which allows us to explore the generalizability of our

findings. The two applications are different in terms of the users.

However, both applications are understudied in providing expla-

nations for the general users. The users of patent classification

systems are patent experts who manually classify patents into dif-

ferent classes, considering the scientific contributions and scope of

the patent text. On the other hand, for a fake review identification

system, the users are general people who want to know whether

the review is fake or original.

3.2 Technical Highlights

The overview of selected application areas with the particular sub-tasks

is depicted in Fig. 3, which also highlights that explainability is the cen-

tral focus of this dissertation. We investigated explainability methods on

diverse applications of different ML tasks, including tabular classifica-

tion, multi-variate time-series forecasting, and text classification. The

datasets are collected from different sources that contain time-series

household energy consumption datasets, thermal comfort datasets with

physiological, weather, and environmental features, inventory datasets,

and text datasets for patent and fake review identification tasks. The

types, forms, and representations of explanations widely varied across

those applications.

Therefore, we introduced different ML or DL methods selected after care-

ful analysis and preliminary investigations for every sub-task. Consid-

ering the dataset, users experience variability, and application context,

the explainability methods are selected, and the explanations are rep-

resented. However, we broadly relied on model-agnostic explainability

methods since these can explain the decisions of different models. Here,

we present the highlights of the methodologies applied to different ap-

3.2 Technical Highlights
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plication domains.

Figure 3: The application areas investigated in this dissertation with the
objective of achieving explainability

We first propose a deep energy demand forecasting model based on re-

current neural networks in the smart home application context. To de-

compose the decision-making procedure of the forecasting model, we use

DeepLIFT explainability tools and introduce them to explain the forecast-

ing. We also map the contributions of appliances with the corresponding

time so that the explanations represent the facts, including features and

time. An evaluation metric is also proposed to measure the efficiency of

the explanation by calculating the correlation between explanations and

ground truth.

Our research into predicting personal thermal comfort preferences in-

volves working with a high-dimensional dataset. To ensure the accuracy

of our predictions, we conduct a comprehensive analysis of the features,

3.2 Technical Highlights
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investigating whether there are any correlated and redundant features.

Based on the outcome of our correlation analysis, we introduce a range

of supervised feature selection techniques to filter out redundant fea-

tures. To address the challenges of data inadequacy, we introduce the

conditional tabular GAN to generate synthetic samples. Finally, we train

several classical ML models to identify preferences and explain the global

priorities of the model using Shapley values.

We propose convolutional neural networks-based predictive models for

the product backorder prediction task. Before that, we address the data

imbalance problem by using ADASYN. SHAP and LIME are employed to

explain the prediction of the CNNs-based backorder prediction model.

SHAP has been applied to provide global explanations to understand

the overall model’s decision-making priorities. SHAP and LIME have

been employed for local explanations for particular predictions, and the

explanations are represented in different forms.

Finally, for NLP applications, we explain the predictions from DL mod-

els applying the layer-wise relevance propagation (LRP) technique. We

proposed several DL models for patent classification systems, includ-

ing BiLSTM and CNN-BiLSTM. On the other hand, we employed trans-

former models to have the semantic representations of the text used in

the DL-based fake review identification system. For both applications,

we redistributed the prediction from the output layer to the input layers

through intermediate layers of the DL models. Finally, we present the

explanations using heatmaps and word clouds. We conducted an em-

pirical user study to evaluate the performance of the explanations for

the fake review identification system with human subjects.

3.2 Technical Highlights
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3.3 Study outline

We have structured this thesis into five parts. In addition to the first

(Part I) and last part (Part V), we have divided the main contribution of

this dissertation into three distinct parts: explainable models in smart

homes (Part II), business (Part III), and NLP (Part IV). Fig. 4 provides

a comprehensive overview of the different chapters in each part of this

dissertation, engaging you in the process of understanding.

Figure 4: An overview of the dissertation in terms of bottom-up layout
of different chapters

Part II Explainable models in Smart Home: We investigated the ex-

plainability in different perspectives and applications for the smart home

environment. We proposed an explainable energy demand forecasting

system by approximating shapely values with DeepLIFT and represent-

ing explanations mapping the feature contributions and associated time.

For another smart home application, we proposed applying a generative

adversarial network (GAN) to overcome the data deficiency in modeling

personal thermal comfort preferences, which can be used for automatic

heating and cooling control systems. Additionally, we explain the global

model priorities in modeling personal thermal comfort preferences. We

introduced global explanations to understand how the thermal comfort
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preference prediction model makes decisions.

Chapter 6 presents an explainable energy demand forecasting system

in smart homes, where a novel explainable framework is proposed to

generate human-understandable explanations applying DeepLIFT that

approximates shapley values. We first implemented a deep energy de-

mand forecasting model and then introduced the explainable model to

uncover the reasons behind any specific predictions from the model. We

also proposed a new evaluation metric to measure the performance of

our explainability techniques for the time series forecasting model. The

detailed experimental results on several households’ energy consump-

tion datasets are then presented to demonstrate the effectiveness of our

explainable forecasting model.

In chapter 7, we present an improved personal thermal comfort prefer-

ence prediction system, that can be employed in smart home automatic

heating and cooling systems. We proposed a generative adversarial net-

work (GAN)-based technique that addressed the data deficiency chal-

lenge by generating new synthetic data samples to effectively train the

thermal comfort preference prediction model. On top of that, we intro-

duced multiple supervised feature selection techniques to filter out the

irrelevant and noisy features. We present a wide range of experiment re-

sults to demonstrate the superiority of our proposed method. We then

discuss the global explainability of the model by highlighting the model

priorities in predicting personal thermal comfort preference.

Part III Explainable Models in Business: As noted earlier, the expla-

nations might vary in application scenarios and contexts. We explored

a different application in the inventory management system called prod-

uct back-order prediction. Back-orders are orders that customers place

for products that are not in stock. We proposed an explainable product

back-order prediction system applying prominent SHAP and LIME ex-

plainability techniques. Unlike the smart home application scenarios,
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the stakeholders and users in this application are not general people but

the company owners and managers. We generated explanations high-

lighting the essential critical features so that the manager could take

necessary action to overturn the product’s back-order scenarios, even-

tually decreasing the company’s loss.

We present how explainability techniques can be applied to e-commerce

and business applications. We present an explainable convolutional

neural networks (CNNs)-based product back-order prediction model,

by which the inventory manager can know what product will be back-

ordered (Chapter 9). We introduced SHAP and LIME, two prominent

explainability methods to offer extensive explanations for the company’s

stakeholders so that they can take necessary steps to overturn the de-

cision by incorporating the explanations. This chapter concluded with

the experimental findings applying our methods to a real-world dataset.

Part IV Explainable Models in NLP Applications: We introduced an

LRP-based explainable deep patent classification model that can explain

the particular decision of the model by highlighting the related scien-

tific words that are directly related to the particular class (i.e., electric-

ity patent). In this case, the users are specialists responsible for as-

signing a particular class to submit patents. For them, comprehending

the generated explanations is way easier than for lay people like smart

home users. In another NLP application, we investigate an explainable

fake review identification method where our model can identify whether

a particular product review is real or fake (written by LLM). Here, the

observation from the actual subject after demonstrating the generated

explanations shows that most subjects can not find the generated expla-

nations for the prediction, which helps them understand the AI decision.

Hence, the explainability technique here failed to make the general user

understand the decisions from the model.

This part focuses on the prospectus and findings of explainability tech-
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niques in different NLP applications, including patent classification and

fake review identification. We demonstrated how explainability tech-

niques can be applied in different application scenarios. We demon-

strated several deep learning and transformer-based text classification

techniques. We also integrated LRP explainability techniques to explain

the predictions.

Chapter 11 presents an explainable patent classification system. We

proposed several deep learning-based patent classification techniques,

and our methods’ performance is significantly better than the existing

approaches. We introduced layer-wise relevance propagation (LRP) tech-

niques to redistribute the weight from the output layer of the proposed

deep neural network model to the input layer through the hidden layers

to assign contribution weight for each feature (i.e., words). We then as-

sign weights for relevant words corresponding to the predicted class so

that the patent examiner can understand why that particular patent is

classified to a particular class. Difference visualizations of the explana-

tions are demonstrated for each prediction.

Chapter 12 is about identifying fake reviews and presenting why the

model thinks a particular review is fake. In this chapter, we proposed

advanced transformer-based fake review identification methods applying

DistilBERT and XLNet transformers and then modified LRP explainabil-

ity techniques to demonstrate the explanations for each prediction with

heatmap and word cloud-based representation. We also evaluate the ex-

plainability techniques through a user study showing the explanations

generated by the LRP technique. The findings suggest that the expla-

nations are not fully human-centered to comprehend the decision from

the AI model.

Part V Research Outcome and Conclusion: This part details the dis-

cussion on the overall findings from the experiments in the chapters

mentioned above. It also discusses the limitations and shortcomings of
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our introduced methods. Chapter 13 presents the discussion by revis-

iting the research questions. The summary of the dissertation, limita-

tions, and possible future works are presented in chapter 14.

3.3 Study outline
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Part II

Explainable Models in Smart Home
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4 Introduction

This part of the thesis focuses on investigating the explainable mod-

els of different smart home applications. We investigated two different

smart home applications, including energy demand forecasting system

and thermal comfort preference prediction.

In chapter 5, we first argue on generating human-centered explanations

by demonstrating technical explanations on two smart home applica-

tions with state-of-the-art explainability techniques. We then elicit sev-

eral challenges that need to be addressed in achieving human-centered

explainability in the context of smart homes. We conclude the chapter

by highlighting the possible human-computer interaction techniques to

achieve human-centered explainability in smart homes.

In Chapter 6, we then investigate how we can generate explanations for

energy demand forecasting systems. For doing so, we propose a new

explainable deep learning-based energy demand forecasting method by

approximating the Shapley values leveraging DeepLIFT explainability

technique. We present the experimental results on two different smart

home energy consumption datasets and demonstrate that our method

achieved state-of-the-art results in forecasting future energy demand

compared to known related methods.

On top of that, our methods demonstrated the explanations in terms

of the contribution of appliances and associated time. To evaluate the

efficiency of the generated explanations, we introduced new evaluation

metrics based on the monotonous relationship with the ground truth.

We found that the generated explanations can capture the efficient con-

tributions of different appliances. We also compared the findings with

one of the relevant works in the same dataset.

Next, this part presents the findings on thermal comfort preference pre-

diction for automatic heating and cooling systems. Chapter 7 first intro-
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duced four new supervised feature selection techniques to filter redun-

dant, noisy, and irrelevant features. We empirically investigated and

observed that many features are correlated and redundant. Then, we

come up with the feature selection techniques.

Then, we focus on the next challenge, data deficiency, because datasets

of thermal comfort prediction lack enough data to train the ML model.

We then introduce GAN to synthetic data samples to get rid of the chal-

lenges and train the models. Then, we evaluated the models, and in

terms of all evaluation metrics, our method achieved better performance

than existing methods. Finally, we present the global explainability of

the models at the end.
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5 Explaining AI Decisions: Towards Achieving

Human-Centered Explainability in Smart Home

Environments.

The content of this chapter has been presented in the 2nd World Conference
of eXplainable Artificial Intelligence (xAI2024) which has been held in Malta in
July 2024 and the paper has been published in the proceedings of the conference
by Springer Nature. The information of the published paper is given as follows:

Article Information: Md Shajalal, Alexander Boden, and Gunnar Stevens, Delong
Du, Dean-Robin Kern. 2024. Explaining AI Decisions: Towards Achieving Human-
Centered Explainability in Smart Home Environments. In Proceedings of the 2nd World
Conference on eXplainable Artificial Intelligence 2024 (xAI2024). Communications in
Computer and Information Science, Springer Nature Switzerland, 418–440. https:
//doi.org/10.1007/978-3-031-63803-9_23 ( Reproduced with permission from Springer
Nature)
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Abstract

Smart home systems are gaining popularity as homeowners strive to

enhance their living and working environments while minimizing en-

ergy consumption. However, the adoption of artificial intelligence (AI)-

enabled decision-making models in smart home systems faces chal-

lenges due to the complexity and black-box nature of these systems,

leading to concerns about explainability, trust, transparency, account-

ability, and fairness. The emerging field of explainable artificial intel-

ligence (XAI) addresses these issues by providing explanations for the

models’ decisions and actions. While state-of-the-art XAI methods are

beneficial for AI developers and practitioners, they may not be easily un-

derstood by general users, particularly household members. This pa-

per advocates for human-centered XAI methods, emphasizing the im-

portance of delivering readily comprehensible explanations to enhance

user satisfaction and drive the adoption of smart home systems. We re-

view state-of-the-art XAI methods and prior studies focusing on human-

centered explanations for general users in the context of smart home

applications. Through experiments on two smart home application sce-

narios, we demonstrate that explanations generated by prominent XAI

techniques might not be effective in helping users understand and make

decisions. We thus argue for the necessity of a human-centric approach

in representing explanations in smart home systems and highlight rel-

evant human-computer interaction (HCI) methodologies, including user

studies, prototyping, technology probes analysis, and heuristic evalu-

ation, that can be employed to generate and present human-centered

explanations to users.
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5.1 Introduction

Due to advancements in sensor technology and machine learning (ML)

over the past decades, smart home applications can now provide resi-

dents with the ability to monitor and control connected appliances via

sensors [278]. These applications can even make decisions automati-

cally using ML-driven techniques rather than relying on simple timetable

logic. In the smart home energy domain, one notable energy-aware

smart home application might be appliance-level energy-demand fore-

casting to make users more aware and help them optimize their energy

consumption practices [278, 162]. Adjusting the heating system to pro-

vide a comfortable and healthy household and work environment based

on predicting individuals’ thermal comfort preferences can be another

fascinating energy-related smart home application [11, 283, 282]. Other

applications also often utilize complex ML models to make decisions,

such as human activity recognition within the home, identification of

energy-intensive activities for different household tasks [302], fall detec-

tion and health monitoring [214], and energy optimization [163, 278].

AI-based applications in smart home systems are becoming increas-

ingly popular as homeowners aim to enhance their living environment

while reducing energy usage. Previous studies [161, 162, 163, 311, 278]

have modeled energy demand forecasting in smart homes using AI tech-

niques, including Deep Neural Networks (DNNs), Convolutional Neu-

ral Networks (CNNs), Auto-Encoders (AE), and Long-Short-Term Mem-

ory (LSTM). Classical Machine Learning (ML)-based predictive models

have also garnered attention for predicting personal thermal comfort in
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indoor environments, thereby enhancing resident comfort [283, 1, 64,

94, 106, 299, 258, 237]. The complexity and opacity of these ML models

often hinder their adoption in real-world scenarios due to difficulties in

aiding users’ decision-making. Since ML models can be very complex,

involving thousands to millions of model parameters (i.e., deep learn-

ing models), they are often referred to as black-boxes. Decisions from

black-box models can be unintelligible and may surprise users with un-

expected predictions. In such cases, users require explanations to com-

prehend the predictions. Recently, there has been significant interest in

elucidating the decisions of ML models across various fields, including

language processing [285], financial analytics [277], e-commerce [277],

medicine and health [151], bioinformatics [150], and smart home ap-

plications [163, 150, 278]. This effort to clarify ML models’ decisions is

referred to as eXplainable Artificial Intelligence (XAI).

XAI aims to develop AI systems that can provide clear explanations

about the decision-making processes and the predicted decisions [21].

The “black-box” issue can lead to users’ mistrust and confusion about

these technologies. To improve users’ trust and understanding, Human-

centered explanations4 can be a game-changer by providing clear and

effective explanations to users, enabling them to troubleshoot issues

and customize devices to suit their needs [88]. However, many XAI

methods have been introduced and developed to explain the models’

decision-making procedures and the reasons behind specific predic-

tions. Most of them are proposed to debug and improve models’ per-

formance [278, 87, 145]. In the context of smart home application sce-

narios, users in households are generally laypeople and may not have

sufficient knowledge to understand technical explanations (i.e., even AI

developers might struggle to understand explanations). Therefore, this

paper advocates the need for easily understandable explanations for gen-

4Throughout the paper, “Human-centered XAI” and “user-centered XAI” are used
interchangeably
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eral users to make sense of predictions, which we refer to as “Human-

centered” explanations.

While some studies have attempted to make models interpretable in the

context of smart homes, most are focused on explaining predictions to

improve performance and debug models [215, 112, 162]. As noted ear-

lier, smart home users often lack the technical expertise necessary to

understand many of the suggested explanations [247, 239, 145]. Addi-

tionally, research has shown that end-users have diverse perspectives

when trying to make sense of smart home systems [55], and these per-

spectives can evolve over time. Various studies have demonstrated that

current XAI techniques fail to produce human-centered explanations

that assist general users in understanding the decision-making process

and the reasons behind specific predictions [251, 38]. Given these find-

ings, generating human-centered explanations for complex smart home

applications is more challenging than might be initially assumed, espe-

cially considering the diverse backgrounds of general users.

Smart home systems encompass various energy consumption-related

subtasks, including energy demand forecasting [278, 163], appliance-

level consumption predictions [161], energy intensity identification

for different household activities [302], and thermal comfort predic-

tion [282, 283] for efficient heating systems. These systems are more

complex than classical classification or regression tasks, and their col-

lective outcomes contribute to the overall functionality of smart homes.

However, the complexity of these systems can lead to decisions that

are difficult for general users to understand, potentially hindering their

adoption in real-world settings. This paper emphasizes the importance

of human-centered explanations in smart home applications by review-

ing the progress of state-of-the-art technical and human-centered XAI

studies. We focus on two energy consumption-related application sce-

narios within smart home settings: energy demand forecasting and the
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prediction of personal thermal comfort preferences for smart heating

systems. We conduct experiments by applying deep neural network-

based energy forecasting and ML models on benchmark datasets to

model thermal comfort preferences. To uncover the complexity of the

predictions, we apply current prominent XAI methods to identify facts

by presenting the explanations in various forms.

We present explanations generated by multiple XAI methods and an-

alyze their understandability. We then identify the associated chal-

lenges that must be considered when generating human-centered ex-

planations. The need for user-friendly explanations in these contexts il-

lustrates the challenges in understanding complex decisions. Finally, we

highlight several HCI methodologies that could be beneficial in achieving

human-centered XAI in smart home applications. The contributions of

this paper are threefold:

• We present state-of-the-art XAI methods, discuss progress towards

human-centered XAI and highlight research gaps that hinder their

immediate application in smart home systems.

• Through careful analysis of experimental results based on promi-

nent explainability methods in two sub-tasks, we argue for the need

for human-centered explainability to understand decisions from

complex AI-enabled smart home applications.

• We also emphasize several human-computer interaction (HCI)

methodologies, including user studies, prototyping, technology

probes analysis, and heuristic evaluation, to achieve human-

centered XAI-enabled smart home applications.

The rest of the paper is organized as follows: In Section 5.2, we present

state-of-the-art technical XAI methods and human-centered XAI stud-

ies. In Section 5.3, we present two smart home application scenar-

ios that illustrate the need for human-centered explainability in smart
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homes. We conducted experiments applying prominent ML techniques

and XAI methods to predict and explain the models’ decisions in Sec-

tion 5.4. We also demonstrate why the provided explanations are insuf-

ficient for users to understand them. In Section 5.5, we highlight multi-

ple HCI methodologies that demonstrate how to elicit requirements and

design human-centered explanations. Finally, Section 5.6 concludes the

paper by outlining future directions.

5.2 Human-Centered XAI and Current Progress

The broad goal of XAI is to enable general users to understand the work-

ing principles of AI models and their decisions through explanations.

Several terms, such as “interpretable AI” and “transparent AI ”, are used

interchangeably to describe the exact purpose of XAI [251]. The major

objectives are similar: to make AI models and their decision-making pro-

cesses understandable to general users through explanations. However,

the number of methods focusing on a user-centered perspective is sig-

nificantly lower than methods prioritizing improving model performance

with technical explanations. As a result, the broad goal of XAI has not

yet been fully achieved, which could potentially hinder the adoption of

AI models in real-world applications.

This section provides a concise overview of the current cutting-edge ap-

proaches in explaining opaque decisions made by machine learning and

deep learning-based predictive technologies, focusing on both technical

and human-centered XAI. The primary aim of XAI advancements is to

clarify the overall priorities and predictions of models for developers,

facilitating the debugging process and enhancing model performance.

While the field of technical XAI offers a wide range of techniques aimed

at model improvement, it is important to note that the consideration

of human-centered perspectives is relatively limited [251]. To present

a comprehensive understanding of the literature, this section focuses
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on three key issues: i) technical XAI, which provides a background of

XAI; ii) human-centered XAI; iii) research gaps in the development of

human-centered applications for smart home technology.

5.2.1 Technical XAI

The methods used in explainable artificial intelligence can be broadly

classified into two categories: global and local explanation meth-

ods [209, 147]. Global explainability methods aim to identify the overall

priorities of a predictive model and provide a summary of the decision-

making process. In contrast, local explainability methods focus on un-

derstanding why a specific predictive decision was made, shedding light

on the insights associated with that decision. Additionally, explainable

AI approaches can be categorized as either model-agnostic or model-

specific. Model-agnostic approaches can be applied to any predictive

model to explain its predictions, while model-specific explainable tech-

niques are designed for particular predictive algorithms [277].

One prominent and widely used XAI method is SHapley Additive Ex-

planation (SHAP) [195], which generally explains the global priorities of

models and highlights the most and least significant features according

to their contribution. Following the game theory concept, SHAP com-

putes each feature’s weight that contributes to a specific decision. More-

over, SHAP can also provide local explanations for specific decisions. To

explain deep neural network-based predictive models, well-known meth-

ods such as Grad-CAM [271], based on gradient localization, and Layer-

wise Relevance Propagation (LRP) [211], which redistributes the output

weight using backward propagation, can be used. These methods rely

on saliency maps to explain decisions and can be applied to image and

text-based applications. To uncover a DNN model’s decisions, DeepLIFT

(Deep Learning Important FeaTures) [293] has been introduced to iden-

tify important features for specific predictions of a model. Lakkaraju et
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al. [172] proposed an XAI technique for AI experts to make the model and

its behavior understandable by using subspace explanations. To provide

explanations for experts, Schetinin et al. [263] introduced probabilistic

interpretation for Bayesian decision tree models.

Another way to explain models’ predictions to users is through example-

based explanations. With these types of explanations, XAI approaches

provide similar instances that match the corresponding samples with

the same decision. Several example-based interpretability models that

consider similar prototypes and criticisms have been introduced to help

users understand why a certain decision was made [156, 117]. To

explain predictions for any complex deep learning model, Local Inter-

pretable Model-Agnostic Explanations (LIME) [244] can create a surro-

gate model that mimics the performance of the complex model. The

surrogate model is explainable, and its performance is quite similar to

that of the original model. With LIME, any particular prediction can

be explained for tabular and textual data by highlighting positive and

negative features corresponding to the predicted decision.

To comprehend specific events, humans sometimes look for explanations

that involve significant changes in the attributes of a sample, which can

overturn the original decision. These are known as counterfactual expla-

nations. They help users understand “why a different prediction was not

possible?” or “what changes could modify the final prediction?” Coun-

terfactual explanations can also be illustrated by introducing new exam-

ple samples that could reverse the decision, known as "what-if" scenar-

ios. Various XAI approaches have been developed to explain "what-if"

and counterfactual scenarios [310, 213, 315]. Other methods, such

as the partial dependence plot (PDP), individual conditional expectation

(ICE), and DiCE [213], are also used for similar purposes. To integrate

multiple types of explanations into a unified framework, several open-

source toolkits are available, including captum [166], AIX360 [24], and
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Anchor [246].

5.2.2 Human-centered XAI

The progress in the field of XAI, thus far, in generating technical explana-

tions to interpret models for AI practitioners for debugging and improve-

ment, far exceeds the advances made in human-centered perspectives

of XAI. However, a significant number of scientific studies have emerged

that focus on the user-centric perspective. In this section, we review

some notable works on the evaluation of human-centered XAI.

Bell et al. [38] demonstrated that the model-agnostic explanations pro-

vided by one of the most prominent XAI techniques, SHAP, are not suf-

ficiently comprehensible for general users. They assessed the effective-

ness of these explanations through an empirical study involving non-

technical participants in two distinct application areas, education, and

finance [38]. Similarly, Abdul et al. [2] explored the trade-off between

accuracy and simplicity in explanation presentation and proposed a

cognitive generalized additive model (COGAM) for human-centered ex-

planation delivery. A generalized XAI design principle was introduced

to facilitate the presentation of local explanations to non-expert users

by contextualizing the exploration of feature importance. An empirical

study involving more than 80 participants was conducted to evaluate

the effectiveness and user satisfaction with the explanations provided.

Chromik et al. [67] investigated the capability of non-expert users to

understand and form a mental model of global explanations to compre-

hend the behavior of a model. Their findings indicated that global ex-

planations are insufficient for understanding the overall model behavior.

In a separate study, Hase et al. [122] to measured the simulatability of

various XAI techniques, including LIME, Anchor, prototypes, and de-

cision boundaries, for tabular and textual data. They concluded that
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LIME achieved good simulatability in a few cases, and prototype models

were useful for counterfactual explanations. Another study on simu-

latability found that current interpretability methods are inadequate in

explaining model behavior [189, 251]. However, multiple studies as-

sessing the effectiveness of incorporating XAI approaches in real-world

decision-making concluded that the evidence does not align with the

goals of XAI [188, 30, 235, 317].

5.2.3 The Research Gap

The related works discussed above, addressing both technical and

human-centered XAI, reveal a significant research gap in designing XAI

systems for general users. Although current XAI systems can provide in-

terpretable explanations in various forms—including global, local, coun-

terfactual, and example-based explanations—these methods often fail

to make predictions and model behavior understandable to non-expert

users. Yet, one of the primary goals of XAI is to enable lay users to com-

prehend the predictions. Furthermore, applications in smart homes,

such as energy demand forecasting, consumption practices, smart heat-

ing systems for comfortable home environments, and thermal comfort

preferences with AI-enabled prediction systems, necessitate diverse per-

spectives for implementing user-centered XAI adoption.

Consider the complex task of developing a human-centered XAI energy

prediction system for a smart home. This task is challenging due to the

system’s internal complexity and the diverse backgrounds of non-expert

users. While significant progress has been made in technical XAI for

applications related to classification and regression, the complexity of

energy forecasting, which involves two different dimensions—time and

characteristics or features—makes it difficult to represent the under-

lying factors behind the forecast. Moreover, the explanations must be

designed and presented in a human-centered manner, which poses ad-
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ditional challenges for creating human-centered explanations in smart

home applications.

Another smart home application involves the automatic control of the

heating system, which can be based on a prediction model of the in-

habitants’ thermal preferences. This system generally utilizes physio-

logical and environmental data from the inhabitants, as well as weather

data, to predict their thermal comfort preferences [283, 282]. Based on

these predictions, the smart home application then adjusts the heat-

ing system to control the indoor temperature. Since this system utilizes

data from various sources, it is crucial for users to understand how

and in what context their data are used. Therefore, we require human-

centered, easily understandable explanations from such systems to en-

sure transparency and trust.

5.3 Human-Centered Explainability in Smart Home

Smart homes equipped with AI-driven applications, including energy

demand forecasting, consumption routines analysis, heating systems

monitoring, and controlling indoor temperature based on occupants’

thermal preference prediction systems, are becoming increasingly pop-

ular [278, 140]. These systems often use complex ML-based predic-

tion systems that should be understandable to the household inhabi-

tants [282, 278, 163]. The adoption of advanced XAI within complex

smart home systems, offering human-centered explanations, could be

transformative. As a result, non-expert smart home users would gain a

clear and concise understanding of how their systems predict consump-

tion and preferences, analyze their data for daily consumption practices,

and control the indoor environment to ensure a comfortable living space.

Incorporating current XAI techniques and including users in the devel-

opment loop to consider their perspectives could significantly enhance

the provision of human-centered explanations.
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We present an overview of human-centered XAI in smart home appli-

cations with occupants actively involved, as shown in Fig. 5. The pre-

diction system should consider the occupants’ preferences and inten-

tions to provide meaningful explanations. Initially, ML-enabled predic-

tive models learn from preprocessed data to make future predictions

and forecasts. When implementing XAI models to elucidate the decision-

making processes of these models and offer explanations for individual

predictions, it is crucial to incorporate a human-centered perspective.

In this context, human-computer interaction methods are essential for

analyzing user feedback. Consequently, effectively presenting these ex-

planations can enhance the adoption of AI-enabled systems in real-world

smart home settings. To highlight the importance of human-centered

explainability methods in smart home applications, we selected two rel-

evant and extensively investigated problems within the smart home con-

text.

Figure 5: An overview of a human-centered XAI-enabled Smart Home
systems

To select the problem domain in the context of smart homes, we focus

on applications related to household energy consumption. This empha-

sis allows us to explore areas that enhance resident comfort while also

optimizing energy use. Additionally, smart applications should offer in-
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sights to help people optimize and reduce their energy costs. Therefore,

we have chosen two applications: household energy demand forecasting

and automatic control of heating based on predictions of thermal com-

fort preferences. Both applications are concerned with energy consump-

tion practices. The first application is an energy demand forecasting sys-

tem designed to increase awareness and optimize household electricity

use. The second involves modeling occupants’ thermal comfort prefer-

ences to ensure a comfortable and healthy indoor environment. In the

remainder of this section, we present two relevant smart home sub-tasks

that require human-centered explanations for successful adoption.

5.3.1 Household energy demand forecasting

Energy consumption in residential and commercial buildings signifi-

cantly exceeds that in other sectors [282, 278]. Additionally, the price of

energy is continuously increasing worldwide. However, this heightened

consumption also results in significant CO2 emissions, posing a serious

threat to global warming and the environment [282]. Smart home sys-

tems address these concerns by providing future energy demand fore-

casts for households based on historical energy usage data collected

from various appliances, thanks to advanced sensor technology [163].

Such predictions of total energy demand for the upcoming month or

week might raise household members’ awareness of their energy-related

activities, potentially encouraging them to optimize their energy usage.

Nevertheless, energy demand forecasting systems typically rely on highly

sophisticated ML and DL techniques [161, 163, 87], which perform com-

plex calculations and lead to opaque decision-making processes. Con-

sequently, some predictions may surprise users with unexpected out-

comes. For example, if a forecasting system predicts a high (or low) total

energy consumption for washing machines in the next month, users

might be taken aback, as they might perceive washing machines to con-
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sume less (or more) energy than predicted. In such scenarios, users

require easily understandable explanations from the systems to com-

prehend and build trust in AI-enabled systems, thereby enhancing their

adoption.

Unlike other classification and regression tasks, providing explanations

for energy demand forecasting systems is non-trivial, as it involves mul-

tivariate time series forecasting [278]. The explanations in such sys-

tems cover two dimensions: they relate to features or attributes and

time. Consequently, explainability methods must capture the impact of

time and features, making understanding explanations for time series

forecasting more challenging for users. Research into human-centered

explainability methods in this field is crucial to address this issue. This

research will enable inhabitants to understand why a certain energy de-

mand is anticipated for the upcoming month and will facilitate the de-

velopment of more optimal energy consumption plans based on factual

explanations.

5.3.2 Occupants’ thermal comfort preference modeling

Indoor thermal comfort is essential for the well-being, comfort, and work

productivity of inhabitants [282, 283]. With recent advancements in ef-

ficient sensors and smart home appliances, AI-driven heating, ventila-

tion, and air conditioning (HVAC) systems can monitor and control the

indoor environment. These systems have gained considerable attention

for applying machine learning techniques to automatically control pa-

rameters related to the comfort of the indoor environment [291, 283].

Personal thermal comfort preferences vary widely from person to per-

son, making the prediction of individual preferences crucial for providing

occupant-level comfort in households [282, 283]. Based on these pref-

erence predictions, the heating system can be automatically adjusted to

control the temperature at the occupant’s location.
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Householders often struggle with inconsistent temperatures in their

homes, especially during extreme weather conditions, leading to dis-

comfort and high energy costs [312]. Maintaining a consistent tempera-

ture throughout the house can be challenging, causing the HVAC system

to work harder to maintain a comfortable temperature using AI-enabled

computational models. However, these complex AI systems often lack in-

terpretability. Traditional temperature control systems typically react by

adjusting the temperature only after it has already started to fluctuate,

resulting in uncomfortable temperature swings and inefficiencies. To

address this problem, a more proactive approach to temperature control

is needed. Various methods have been introduced to predict personal

thermal comfort preferences using complex machine learning and deep

learning models [1, 92, 299, 282]. These automated systems, powered

by complex AI models, can monitor and control the indoor environment.

However, the decision-making process and the rationale behind specific

predictions and actions often remain unclear to the inhabitants, includ-

ing AI practitioners themselves. As XAI methods progress, it is crucial to

make the explanations human-centered, enabling household occupants

to understand the reasons behind predictions and the decision-making

of the models. This would facilitate the adoption of such complex models

and ensure successful smart home applications.

5.4 Experiments and Analysis

This section presents the details of the experiments we conducted on the

two aforementioned smart home scenarios. We carried out experiments

by training various predictive models on two distinct datasets collected

for both applications. Initially, we trained predictive models and subse-

quently applied two well-known XAI methods, namely SHAP [195] and

DeepLIFT [293]. We then analyzed the generated explanations for both

smart home applications and sought to identify reasons why these ex-
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planations might not be sufficient for smart home users to comprehend.

This section presents the experimental results, generated explanations,

and their analysis for each scenario.

5.4.1 Energy demand forecasting in smart home

Experimental Settings: We conducted experiments on the REFIT

dataset [217], which includes energy consumption data collected from

20 diverse households. The data encompasses various appliances such

as the Fridge-Freezer, Tumble Dryer, Washing Machine, Dishwasher,

Desktop Computer, Television, Microwave, Kettle, and Toaster, with

energy consumption recorded at 8-second intervals. We modeled the

weekly energy demand forecasting problem using a classical LSTM-

based model. The LSTM-based forecasting model features 10 total

features, a sequence length of 7, two hidden layers, 64 hidden units

in each layer, 100 epochs, a learning rate of 0.001, and a batch size of 64.

Results: The performance of the LSTM-based forecasting model to pre-

dict upcoming weekly energy demand is presented in Table 1. We can

see that the performance is quite effective in terms of four different eval-

uation metrics, including mean squared error (MSE), Root-MSE (RMSE),

mean average error (MAE), and Mean absolute percentage error (MAPE).

The performance across different households varied widely. For house

5, the forecasting performance is better than that of another household

in terms of MAPE and MSE. On the other hand, for house 13, LSTM

achieved the best performance in terms of MAE and RMSE. However,

presenting the forecasting performance here makes sense in that the

generated explanations for decisions can better capture facts and rea-

sons.

Explainability: To explain the predictions from the model, we uti-
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Table 1: Prediction performance in forecasting energy demand on 4 dif-
ferent households of REFIT dataset

House MAE MAPE MSE RMSE
House 2 0.1351 0.5421 0.03 0.1752
House 5 0.0768 0.4075 0.01 0.10
House 8 0.1934 0.4618 0.0451 0.2095

House 13 0.0435 0.8175 0.003 0.0564

Figure 6: Explanations for weekly energy demand forecasting highlight-
ing the contributions of different appliances.

lized Deep Learning Important Feature (DeepLIFT), which approximates

Shapley values to provide an explanation. This method combines the

contributions of different appliances towards the overall prediction,

thereby informing users about the activities responsible for the total

energy consumption. The explanations for weekly energy forecasting,

presented in Figure 6, show how the contributions of different appli-

ances vary over time. These explanations are fairly technical, indicating

that the contributions of different appliances change with time. Previous

studies have shown that general users often struggle to understand even

straightforward explanations generated for binary classification tasks.

On the other hand, energy demand forecasting is an even more chal-

lenging task, and the explanations provided differ significantly. The di-

mension of these explanations also relates to time. As a result, there is
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Figure 7: Explanations for weekly energy demand forecasting highlight-
ing consumption activity corresponding to the time (day)

a need for explanations that help laypeople understand how these AI-

enabled forecasting systems make decisions in their homes. To simplify,

we sum up the contributions of different appliances and present the

explanation using a bar chart. Figure 7 shows the contributions of dif-

ferent household activities responsible for overall energy consumption,

with cooking activities expected to consume the most energy. What use

are these explanations to a user? While they provide some insight into

the activities most responsible for energy use, they do not enable users

to optimize their energy consumption practices with the current form of

explanations. It is also clear that understanding explanations generated

by a single successful XAI technique can be challenging. The impact of

different activities on overall consumption varies across different days.

Non-expert users may develop a negative perception when confronted

with such complex explanations. Therefore, explanations should be easy

to follow, trustworthy, and tailored to a human-centered perspective to

facilitate sense-making.
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Table 2: The performance of different classical machine learning models
on predicting personal thermal comfort preference. The best results are
in bold.

Model Kappa Accuracy AUC
Decision Tree 0.6609 0.8315 0.8810

Support Vector Machine 0.5470 0.8167 0.9198
K-nearest Neighbor 0.3810 0.7589 0.8101

Gaussian Naive Bayes 0.4311 0.7148 0.7689
XGBoost 0.6774 0.8457 0.9487

Random Forest 0.5901 0.8195 0.9258

5.4.2 Personal thermal comfort preference prediction

Experimental Settings: For the second smart home sub-task, "thermal

comfort preference modeling," we conducted experiments using a wear-

able dataset collected by UC Berkeley. The dataset originates from a

field experiment involving 14 subjects living in Berkeley and San Fran-

cisco [283]. It contains a total of 3848 samples from all participants,

categorized into their thermal comfort preferences: "Cooler" (class 0),

"No Change" (class 1), and "Warmer" (class 2). Further details about

the dataset can be found in [283]. After preprocessing the values of the

features, we applied a feature selection technique to identify relevant

features, resulting in the selection of 32 different features [283]. We

then trained six different prominent classical machine learning models,

including Decision Tree (DT), Support Vector Machine (SVM), K-nearest

Neighbor (KNN), Gaussian Naive Bayes (GNB), XGBoost (XGB), and Ran-

dom Forest (RF).

Results: The performance of all trained machine learning models is

presented in Table 2. We evaluated their performance using metrics

such as Cohen’s Kappa, Accuracy, and Area Under the Curve (AUC).

Given that the dataset was quite imbalanced in terms of the number of

samples for different classes, we employed metrics that can effectively

evaluate the performance of ML classifiers on imbalanced data. For this

purpose, we applied Cohen’s Kappa and AUC. From Table 2, it is evident

5.4 Experiments and Analysis



5 Towards Achieving Human-Centered XAI in Smart Home 65

that XGBoost achieved better performance across all evaluation metrics.

The performance of the other five models was also quite consistent

compared to the baseline models on the same dataset by [283].

Explainability: We incorporated the prominent XAI method SHAP to

generate explanations. We illustrated the global and local explanations

in Figure 8 and 9. Figure 8 shows the global explanations, indicat-

ing that thermal sensitivity is the most important feature for modeling

personal thermal comfort. The next most important features are cold

experience, age, weight, and work hours. As an AI practitioner, one can

understand which features the model prioritizes for the overall decision.

However, as an inhabitant of the household, some might struggle to de-

rive meaningful insights from this explanation.

In Fig. 9, we illustrate the explanations for a particular subject’s thermal

preference at a certain time in terms of a waterfall plot; these explana-

tions follow the global explanations in a broader sense. We can observe

that the most important features are thermal sensitivity, height, and

temperature in the ankle. Once again, developers can leverage these in-

sights to enhance the models’ performance by canonicalizing and mod-

ifying them. Nevertheless, general occupants may find it challenging to

derive actionable insights from this information.

5.5 Challenges and HCI Techniques for Human-centered Ex-

plainability

After carefully analyzing the current literature on XAI and human-

centered XAI (Section 5.2) and generating explanations using two estab-

lished XAI methods across two different smart home scenarios, we have

identified challenges that need addressing to achieve human-centered

XAI in these applications. Smart home applications span various prob-

5.5 Challenges and HCI Techniques for Human-centered Explainability



5 Towards Achieving Human-Centered XAI in Smart Home 66

Figure 8: Global explanation for personal thermal comfort preference
prediction highlighting model’s overall priorities.

lem domains, including classification (e.g., PTC preference prediction),

time-series forecasting (e.g., energy demand forecasting, energy billing),

and regression (e.g., activity recognition). Thus, the challenges for

achieving user-centric explainability must be tailored to each specific

domain. While technical explanations are useful for debugging and op-

timizing model performance, they do not typically aid general users’

decision-making. If explanations do not meet users’ needs, this can

result in a lack of trust in the model and resistance to its use [21].

Human-centered XAI tools, designed with end-users in mind and pro-

viding contextually relevant and understandable explanations, can over-

come these challenges [88]. To offer human-centered explanations for

smart home systems, it is crucial to employ user-focused XAI tools, pro-

vide understandable explanations, and address the users’ inquiries and
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Figure 9: Explanation for a decision that predicts the occupants felling
“warmer”.

concerns [88]. Addressing the following challenges will help in gener-

ating human-centered, XAI-enabled explanations, ultimately improving

the adoption of AI systems in real-world applications.

5.5.1 Challenges in achieving human-centered explainability

When discussing the challenges of human-centered explainability, we

adopt the notions of syntax, semantics, and pragmatics, which are tradi-

tionally utilized in linguistics but are effectively applicable in identifying

challenges in smart home explanations. These concepts aid in under-

standing and improving how users design and perceive explanations.

The syntax level of explanations refers to the presentation and visual

encoding of explanations, emphasizing user-friendly choices in colors,

fonts, layouts, and chart design to minimize cognitive load and simplify

interactions with smart devices [300]. Although charts generated by

XAI frameworks such as SHAP or LIME are highly accurate, they tend
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to be mathematical and unengaging. In technical domains, this might

not pose a problem; however, for lay smart home users, factors such

as aesthetics, playfulness, comprehensibility, appropriate measurement

units, and careful wording are critical [56]. For instance, Schwartz et

al. [269] demonstrate that technical units like kWh (kilowatt-hour) or

kg CO2 eq (equivalent to the effect of one kg of CO2 emission) are too

complex, whereas laypersons typically prefer money as a well-known,

easy-to-interpret unit. Another challenge in the visual design of expla-

nations is the small screen size [300], as most people interact with their

smart home through smartphones or wall-mounted interfaces, necessi-

tating the simplification of complex explanations for small-screen visu-

alization.

The semantic level of explanations concerns how explanations are

interpreted and what mental models are generated [300]. In the con-

text of smart homes, for instance, many individuals possess incorrect

mental models of heating systems, leading to improper heating behav-

iors [154]. Therefore, explanations must be mathematically precise

and assist users in developing accurate mental models. In this re-

gard, Schwartz et al. [269] demonstrate that people often rely on ethno-

or folk-methods to construct their mental models. Regarding domestic

energy consumption, people interpret the information provided by eco-

feedback systems using money as the preferred unit to assess appliance

consumption, relate consumption to their habits, or compare their con-

sumption with others’ [269]. Explanations should leverage these folk

methods to help people build accurate mental models [154, 269].

The pragmatic level of explanations refers to the context-dependent,

practical significance of explanations as they apply to the user’s daily

life. For example, explanations can serve various purposes, such as

building trust in smart home systems [136], increasing the energy lit-

eracy of residents [267], supporting reflection on wasteful consumption
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habits [269], and prompting actions to detect and replace inefficient ap-

pliances. Additionally, they enhance predictability and accountability

[136] and support the co-performance of controlling domestic appliances

[168].

Explanations should be tailored to these pragmatic considerations to

be effective. For example, simple recommendations accompanied by

"what-if" explanations [315] are more effective for actions such as de-

tecting and replacing wasteful appliances. In contrast, more elaborated,

cause-effect-oriented explanation approaches [125] are more helpful in

enhancing energy literacy. By considering all three aspects—syntax,

semantics, and pragmatics—we can better identify and overcome the

specific challenges associated with explaining smart home technologies,

making them more user-friendly and aligned with human-centered de-

sign principles.

In the following, we discuss these challenges across three scenarios.

1. Making predictions and autonomous actions interpretable for

users: In the context of energy demand forecasting, XAI tools can

provide understandable explanations for the predictions made by

the forecasting model, highlighting the most influential factors con-

tributing to the prediction. These explanations should be pre-

sented in a user-friendly format that aligns with the user’s intu-

ition and understanding of the problem. Visualizations such as

graphs and charts can be used to illustrate the data and make it

easier for users to comprehend the predictions. In the case of an

autonomous action performed by an AI-enabled system (e.g., ad-

justing the room temperature based on predicted thermal comfort

preferences), the system should provide clear explanations for why

that particular action was taken.

2. Providing insights for an optimal energy consumption plan:
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Human-centered, XAI-powered smart home applications should of-

fer users insights into their optimal energy consumption plan by

considering their energy usage patterns, environmental conditions,

and preferences. The system might involve developing a personal-

ized energy optimization plan, such as adjusting the temperature

based on the user’s daily routines or turning off lights in unoc-

cupied rooms. The human-centered XAI-enabled system should

provide suggestions and explanations for energy-saving practices

and offer feedback on the impact of these practices on energy con-

sumption.

3. Making users aware of energy consumption: XAI tools should

help users understand how their energy consumption patterns af-

fect the home environment and their energy bills. This can be

achieved by providing real-time feedback on energy usage, high-

lighting areas where energy could be conserved, and suggesting

energy-efficient practices. For instance, the XAI tool can send

alerts or notifications to remind users to turn off lights or appli-

ances when not in use.

Figure 10: HCI techniques to enhance human-centered explainability

5.5.2 HCI techniques to enhance human-centered explainability

Focusing on human-centered XAI can align with users’ needs and pref-

erences, increasing their trust and understanding of smart home AI

systems [88]. This alignment is particularly significant as we strive for
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a more energy-efficient and comfortable living environment with smart

home systems. Thus, Incorporating HCI methodologies becomes effec-

tive in advancing smart home, human-centered XAI implementation.

The following non-linear process in Fig. 10 illustrates this approach:

User Studies [248], Prototyping [222], Technology Probes Analysis [132],

and Heuristic Evaluation [221].

1. User Studies: User studies employ detailed observation, daily

tracking, and interviews based on praxeological grounded design

methods to understand contextual user practices in smart home

environments [248]. This approach aims to gather deep insights

into how users interact with XAI artifacts of smart home technol-

ogy, facilitating a refined understanding of social practices. By an-

alyzing these interactions, developers can align XAI systems more

closely with user habits and expectations. Such alignment in-

creases user trust and enhances system transparency. These in-

sights are crucial for tailoring AI functionalities to manage home

heating or cooling systems efficiently. For example, based on col-

lected data, AI could predict and adjust indoor temperatures to

optimal levels just before users return home or during specific

weather conditions, thus maximizing comfort without the need for

manual adjustments [278, 283, 282]. These adaptive adjustments

contribute significantly to improving energy efficiency and overall

user comfort.

2. Prototyping: Developing several low-fidelity prototypes offers a

cost-effective way to explore different designs and continuously

gather user feedback. This process is characterized by iterative

testing and refinement cycles, heavily using participatory design

principles to align with user expectations and improve usabil-

ity [222]. Through prototyping, designers can quickly adapt and

evolve XAI features based on real user feedback, ensuring the sys-
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tem is both intuitive and directly useful to end-users. Such an

approach allows developers to fine-tune how XAI communicates

energy-saving decisions to users. For example, the explanations

might suggest reducing electricity use during off-peak hours as a

cost-saving measure. By clearly explaining the rationale behind

such recommendations, prototyping enhances the usability of XAI,

making it easier for users to trust and follow the AI’s guidance.

This process not only aids in reducing energy costs but also helps

in educating users about efficient energy practices.

3. Technology Probes Analysis: Technology probes are invaluable

for understanding how users interact with and respond to XAI sys-

tems within smart homes, especially focusing on aspects such as

interpretability, responsibility, and relevance of AI explanations. By

deploying technology probes, such as smart meters that track en-

ergy usage and provide feedback and advice based on AI analysis,

developers can gather rich data on user behavior and preferences

[132]. These probes reveal user reactions to automated sugges-

tions for optimizing energy consumption. The insights gained from

technology probes allow developers to refine human-centered XAI

explanations, ensuring they are both meaningful and actionable.

This process enhances the system’s usability and boosts users’ un-

derstanding of and trust in the AI explanations, leading to more

effective and sustainable smart energy management.

4. Heuristic Evaluation: Heuristic evaluation involves collaboration

with subject matter experts, including HVAC, electrical, and so-

cial engineers, to assess AI systems’ responsibility and user-centric

design. This evaluation focuses on key aspects such as trans-

parency, user control, and ethical considerations. Experts exam-

ine whether an AI system’s explanations for recommending specific

energy-saving measures are understandable and align with user
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values [221]. Such evaluations are crucial because they help en-

sure that AI systems are designed with a strong emphasis on user-

centric principles, which promotes a better understanding of and

trust in the technology. Heuristic evaluation is particularly effec-

tive at identifying aspects of AI explanations that may not be evident

through end-user testing alone. Doing so aids users in making in-

formed decisions about their energy use, like understanding why

certain settings are recommended for maximizing thermal comfort

without excessive energy use [278, 283, 282].

5.6 Conclusions and Future Directions

Our research strives to achieve human-centered XAI for smart home ap-

plications, aiming to make complex AI-driven models understandable

to laypeople. Through experiments on two smart home sub-tasks, we

demonstrated the challenges associated with understanding decisions

from such applications. We argue that current explanation generation

techniques are insufficient for making general users comprehend these

decisions. By identifying major challenges, we highlight the need for

human-centered explainability and discuss how these challenges can

be addressed using various human-computer interaction (HCI) tech-

niques, including user feedback, co-performance considerations, and

expert-user co-design. Future human-centered XAI can apply HCI tech-

niques to understand users’ requirements and preferences better, en-

abling them to understand decisions from AI-driven systems. Based on

the outcomes of these techniques, we aim to develop human-centered

explanations that facilitate user understanding and action.

However, challenges persist in generating human-centered explanations

that foster trust and interpretability in AI systems. Future research di-

rections include:
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• Exploring natural language explanations and interactive interfaces

• Developing standardized frameworks to evaluate the general user

experience of human-centered explainability

• Integrating HCI methodologies into the XAI development life-cycle

to ensure user-centered and effective explanations

Future research on emerging user interfaces, including ubiquitous and

pervasive technologies, can also advance the current state of the art

on human-centered XAI in the context of the smart home energy do-

main. As we envision the integration of smart devices such as voice as-

sistants, smart watches, and embedded sensors into everyday environ-

ments, these technologies provide a rich platform for deploying human-

centered solutions to benefit sustainability. Such interfaces can offer

intuitive and context-aware interactions, making AI explanations part

of the natural user environment and activities.
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6 ForecastExplainer : Explainable household en-

ergy demand forecasting by approximating

shapley values using DeepLIFT
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Abstract

The rapid progress in sensor technology has empowered smart home

systems to efficiently monitor and control household appliances. AI-

enabled smart home systems can forecast household future energy de-

mand so that the occupants can revise their energy consumption plan

and be aware of optimal energy consumption practices. However, deep

learning (DL)-based demand forecasting models are complex and deci-

sions from such black-box models are often considered opaque. Re-

cently, eXplainable Artificial Intelligence (XAI) has garnered substan-

tial attention in explaining decisions of complex DL models. The pri-

mary objective is to enhance the acceptance, trust, and transparency of

AI models by offering explanations about provided decisions. We pro-

pose ForecastExplainer, an explainable deep energy demand forecasting

framework that leverages Deep Learning Important Features (DeepLIFT)

to approximate Shapley values to map the contribution of different appli-

ances and features with time. The generated explanations can shed light

to explain the prediction highlighting the impact of energy consumption

attributes corresponding to time, such as responsible appliances, con-

sumption by household areas and activities, and seasonal effects. Ex-

periments on household datasets demonstrated the effectiveness of our

method in accurate forecasting. We designed a new metric to evaluate

the effectiveness of the generated explanations and the experiment re-

sults indicate the comprehensibility of the explanations. These insights

might empower users to optimize energy consumption practices, foster-

ing AI adoption in smart applications.

Keywords

Explainable energy demand forecasting, DeepLIFT, Shapley additive ex-

planation, Deep learning, Human-centered explanation



6 Explainable Household Energy Demand Forecasting 77

6.1 Introduction

Smart home systems offer users the ability to remotely control and

access household electrical appliances and monitor the environment

through various sensors [140, 278]. Additionally, these systems can

autonomously make decisions, such as adjusting the state of connected

actuators (e.g., controlling the heating system to adapt room temper-

ature) to enhance the dwellers’ comfort [140, 76, 197]. While many

smart applications follow simple timetable logic and classic automation

paradigms, an increasing number of decisions are made using a combi-

nation of machine learning models [13, 181].

Energy demand forecasting using machine learning (ML) models has

recently garnered significant attention in the literature. The objective

is to make smart home users more aware of their future energy con-

sumption [162, 341, 197, 161, 163]. These systems can even fore-

cast the energy consumption for individual appliances [120], which en-

hances household members’ awareness and encourages optimal elec-

tricity consumption practices. Since increased energy consumption can

lead to higher household costs, people are expected to become more

cautious and may modify their consumption behavior to decrease en-

ergy usage. How- ever, implementing such technology in the real world

poses challenges due to its lack of transparency and trust. Users may

not fully understand the reasons behind certain predictions and require

more trustworthy explanations regarding the facts behind predicted de-

cisions/recommendations. Alongside accurate energy demand predic-

tions, one sensible approach to building trust and increasing trans-

parency and fairness is to explain the predictions by highlighting im-

portant factors and time duration.

However, the underlying forecasting models are often black boxes for the

end-users (even for AI practitioners), who don’t have a clear understand-

ing of the decision-making procedures of these prediction systems. As
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a consequence, users might want factual explanations for why a partic-

ular decision has been taken on their behalf by the system [87]. They

might have queries such as “Why do we need this amount (more/less)

of energy in the upcoming week/month?”. The plausible reason behind

such an impression is that the system might surprise the user with

an unexpected prediction (i.e., forecasting more/less amount of energy

for next week/month compared to their expectation). However, provid-

ing explanations by highlighting the significant factors corresponding

to the time duration might make them understand the reasons behind

such predictions. Moreover, to plan the optimal energy consumption in

the household, it would be more effective if they know which appliances

might be responsible and consume more for the future overall predicted

consumption. The relevant question can be “How can I further optimize

my energy consumption?”.

Providing comprehensive explanations from the system to address these

questions would likely enhance the trust and transparency of AI models

for end-users [277, 109]. Additionally, in accordance with the General

Data Protection Regulation (GDPR), citizens of the EU have a civil right to

be informed about how AI-based models that pertain to them make de-

cisions [83]. The incorporation of explainability to ensure transparency,

offering comprehensive explanations employing clear and interpretable

facets unveiling DL-based fore- casting methods is expected. Explain-

able forecasting systems have the potential to augment seamlessly the

overarching goals centered on technological advancement in AI and com-

prehending their corresponding societal ramifications.

The research field that focuses on explaining (and/or interpreting) the

decision-making process is commonly referred to as eXplainable Ar-

tificial Intelligence (XAI). In recent years, there has been a signifi-

cant interest in interpreting and explaining complex machine learn-

ing models [244, 245, 195, 72, 71, 121], enabling AI practitioners
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and developers to enhance models’ performance. The application of

XAI has also received considerable attention in various fields, includ-

ing bio-informatics [150], healthcare [5], finance [331, 108, 86], inven-

tory management [277], natural language processing [149, 284] and so

on [160, 318, 157]. However, there remains a need for further research

on how to generate human-centered explanations that are accessible to

end-users with no expert knowledge in AI theory and development [158].

As the human-centered design is highly context-specific, such research

would arguably need to take into account the specific user needs of dif-

ferent domains, i.e., studying how explanations can be made meaningful

to users in a specific pragmatic context and situated action. In our study,

we focus on the domain of smart home technology, where such chal-

lenges are prominent but have been hardly studied to our knowledge.

In addition, explaining the multivariate time series forecasting model

is difficult [72], because the explanations might be two-dimensional,

including both time and features. Hence, generating human-centered

explanations for energy demand forecasting is a challenging task, espe-

cially when those are to be understood by end-users.

Figure 11: Daily distribution of global active power
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Figure 12: Daily energy consumption in the Kitchen

Let us discuss how different and complex the household energy demand

forecasting problems are. Here, we discuss the problem in two different

directions. Fig. 11 and 12 indicate the daily total energy consumed by

the whole household area and kitchen, respectively. We can see that the

energy consumption patterns are quite different. These complex and

dissimilar consumption patterns also exist in some other places of the

household area including the living room and laundry room. The irreg-

ularity in energy consumption for different appliances makes the fore-

casting problem challenging for any ML models. Moreover, the seasonal

consumption patterns for the different household areas are widely varied

over time. Therefore, forecasting household energy demand for different

areas of the house is challenging.

In addition, time series forecasting models are dependent not only on

the values of the features like classical classification or regression tasks

but also dependent on time. Since the multivariate forecasting models

are dependent on both the features and time, explaining specific predic-

tions by highlighting important factors and corresponding time frames

is very challenging. Moreover, unlike classification tasks, the progress

of developing XAI tools for understandable explanation is much lower
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for multivariate forecasting tasks. Therefore, explaining the decision for

the time series forecasting model is a more formidable task than other

classical classification or regression models.

In this paper, we present the underlying challenges to generate and

present explanations for a particular prediction of an energy demand

forecasting system. To explain the prediction of the energy demand fore-

casting system, we propose an explainable framework, ForecasExplainer

by approximating Shapley values leveraging DeepLIFT to explain pre-

dictions made by the deep learning-based energy demand forecasting

model. First, we developed an energy demand forecasting model apply-

ing long short-term memory (LSTM) networks, one of the most success-

ful recurrent neural networks (RNN)-based methods in multivariate time

series forecasting and then we introduced DeepLIFT-enabled explana-

tion generation technique. We chose LSTM with the objective that most

of the audience can understand our explainable framework. However,

our explainability method can be applicable to any deep learning-based

forecasting model (i.e., CNN, GRU). Due to the complex architecture and

working principle, deep time series forecasting models are very opaque

(i.e., black-box) and even AI developers struggle to understand the deci-

sion.

We approximate shapley values employing DeepLIFT to track the fea-

tures’ contribution in different layers. We apply DeepLIFT which de-

composes the complex LSTM energy forecasting model for a specific pre-

diction by back-propagating to compute the contributions of neurons

and approximate the Shapley values to generate explanations. Given

that multivariate time series forecasting involves both time and features,

we address the challenges of mapping feature contributions with cor-

responding time frames. Finally, we provide explanations by mapping

specific time series and feature importance (i.e., highlighting the contri-

bution of different appliances toward the prediction) with different easily
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understandable visualizations. Compared to the conventional applica-

tion of XAI tools (i.e., LIME [244]) in classification tasks, our method can

generate explanations that highlight feature contributions along with

their corresponding time frames.

We design a metric to measure the efficiency of the explanations by com-

paring the highlighted contributions for different appliances toward pre-

diction with the original contributions to the overall consumption. We

hypothesize that if the contributions of different features in the explana-

tions for the prediction correlate with the contributions towards the orig-

inal consumption and have an increasing monotonous relationship, the

explanations can be considered effective. The contributions of different

appliances toward the overall household consumption can be calculated

statistically and represented in vector. Then the contribution vectors for

original consumption and prediction are employed to measure effective-

ness. If there is a high monotonous correlation between the vectors of

contributions for original energy consumption data and Shapley values,

we can conclude that the generated contributions using DeepLIFT are

analogous. The degree of goodness of the generated explanations can

be represented by the correlation coefficient, where the higher the cor-

relation coefficient the better the generated explanations are. However,

the major contributions of this research can be summarized as follows:

• We employed DeepLIFT to enhance the explanations for the de-

cision provided by the deep multivariate time series forecasting

model by mapping the time and the contribution of different fea-

tures. Note that our method is applicable to explaining the deci-

sions of any other deep learning-based forecasting models, such as

CNN, GRU, etc.

• We designed and introduced an evaluation metric to measure

the effectiveness of the generated explanation considering the

monotonous relationship between the original and predicted im-
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pacts on the overall energy consumption. Our framework achieved

high efficiency in terms of the designed metric and can capture ap-

pliance contributions toward overall household energy consump-

tion.

• We elicit multiple research gaps in providing human-centered ex-

plainability by analyzing existing literature on energy demand fore-

casting and their explainability. These elicited research gaps would

provide future directions for HCI and AI practitioners toward mak-

ing forecasting systems understandable for users.

• Moreover, the results of multiple experiments on the benchmark

datasets with five different households demonstrate that our pro-

posed explainable energy demand forecasting framework achieved

effective prediction performance in terms of multiple evaluation

metrics.

The rest of the paper is organized as follows: In section 6.2, We sum-

marize state-of-the-art methods in energy demand forecasting and ad-

vancements in XAI for time series forecasting. We also highlight the

research gaps towards achieving explainable energy demand forecast-

ing. We then introduce our proposed explainable deep household energy

demand forecasting framework, called ForecastExplainer, which approx-

imates SHAP values using DeepLIFT (section 6.3). The experimental re-

sults with multiple settings on two different datasets are analyzed and

discussed in section 6.4. We also present the generated explanations

and their effectiveness in this section. Conclusions and key findings are

presented in section 6.5. Finally, section 6.6 outlines future research

directions, focusing on human-centered evaluation of the explanations

and eliciting further requirements through an empirical study from a

user-centered perspective in the context of smart home systems.

6.1 Introduction



6 Explainable Household Energy Demand Forecasting 84

6.2 Literature Review

This section presents an extensive discussion of the prior works on en-

ergy demand forecasting and the progress of explainable artificial in-

telligence, especially for time series forecasting models. Therefore, we

present prior research works reviewing published literature in two dif-

ferent sub-sections. At the end of this section, we highlight the research

gaps towards making the energy demand forecasting system explainable.

6.2.1 Energy demand forecasting

The methods to forecast households’ energy demand can range from

classical to complex ML and deep neural networks (DNN)-based tech-

niques [197, 311, 341]. In the recent past, there is a huge interest in

applying ML and deep learning techniques to forecast household energy

demand [341, 184, 163, 162, 161, 311]. Kazemzadeh et al. [153] pro-

posed a hybrid long-term demand forecasting model based on data min-

ing techniques. They applied particle swarm optimization in the hybrid

model consisting of support vector regressor, Auto-Regressive Integrated

Moving Average (ARIMA), and Artificial Neural Network (ANN). Similar to

Kazemzadeh et al. [153], Yan et al. [330] proposed an LSTM-based hy-

brid model for modeling individual household energy consumption. They

leveraged the stationary wavelet transform (SWT) technique to increase

the dimension of the data and tackle the volatility and then applied the

LSTM-based deep learning model. Fu et al. [105] proposed a data-driven

situational awareness framework that monitors energy consumption on

the campus. Their framework consists of two different components in-

cluding energy demand forecasting models and anomaly detection sys-

tems to support immediately on the campus. Similar to our research,

their energy demand forecasting system is modeled by LSTM-based neu-

ral network architecture. However, our goal in this research is to explain
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the prediction by energy demand forecasting models, not having a new

forecasting model. Since LSTM is most widely used and successful in en-

ergy demand forecasting tasks, we have applied our explainable frame-

work aiming to generate meaningful explanations for particular predic-

tion highlighting different features corresponding to the time duration.

Kim & Cho [164] proposed a CNN-LSTM neural network model combin-

ing convolutional neural networks (CNN) and LSTM networks to extract

better temporal and spatial features that can predict household energy

effectively. A hybrid deep learning framework is proposed by Syed et

al. [305] employing a fully connected neural network followed by a uni-

directional LSTM and bi-directional LSTM (Bi-LSTM) model to overcome

the temporal dependencies of the energy consumption. Chadoulos et

al. [57] introduced a deep learning model combining recurrent neural

networks (RNN) and multi-layer perceptron (MLP) to forecast hourly de-

mand for different households considering consumers’ profiles. In addi-

tion, the method can capture the past and future impacts of time series

and consumer profiles.

Some prior studies [163, 162, 161, 311] modeled the energy demand

forecasting task exploiting DNN, CNN, LSTM and auto-encoder, and ex-

plained the prediction. Kim et al. [163, 162, 161] conducted multiple

studies and proposed multiple methods for forecasting household elec-

tric demand. In the study [161], an auto-encoder-based deep learning

model is proposed which can predict the energy demand for each 15,

30, 45, and 60 minutes for various household scenarios. Similar to the

previous study, methods presented in [162, 163] applied also an auto-

encoder-based model consisting of four different components. The first

component models the past energy consumption, and then a subencoder

models consumption information and processes as latent variables. The

third component maps the future demand considering the latent vari-

ables. Lastly, the final component tried to interpret the important elec-
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tric information to highlight the model’s global interpretability.

Chakraborty et al. [58] introduced explainable artificial intelligence to

predict climate change impact on a scenario-based building cooling en-

ergy forecasting. For optimal management of the building’s energy, Es-

eye and Lehtonen [93] introduced short-term forecasting of heat energy

demand with integrated ML models. Their model incorporated a sup-

port vector machine (SVM) with an imperialistic competitive algorithm

embedding feature selection technique combining binary genetic algo-

rithm and Gaussian process regression. Zhang et al. [341] proposed

an explainable energy forecasting model exploiting AI-based techniques.

They trained a surrogate model to mimic the original trained model and

interpret the model. Ahmed et al. [8] proposed a random neural network-

based energy prediction model for large buildings. A wide range of exper-

iments was conducted on one-year energy data, and they have achieved

better performance than artificial neural networks and support vector

machine-based regression techniques.

6.2.2 Explainable AI in time series forecasting

Though there is some attention to making the model interpretable in

time series forecasting, most of those methods attempted to explain only

the algorithmic decision-making to increase the model’s performance

and debugging [215, 162]. However, the methods for generating expla-

nations for general users are not so common [87, 145]. Assaf & Schu-

mann [27] proposed a gradient-based technique to explain the prediction

from a CNN-based time series model. The explanations are provided via

a saliency map considering the time dimension and the features. Their

method can identify the specific time duration and highlight the most

important factors on the time for the particular prediction.

Similarly, Amal et al. [256, 257] proposed a CNN-based explainable time
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series forecasting model using adaptive saliency maps explanations.

Prior studies [249, 89, 32, 264, 260, 255] surveyed explainable meth-

ods on time series data by highlighting the overview, impacts and avail-

able methods in the field of explainable models for time series data. Ilic

et al. [133] introduced an explainable boosted regression technique for

time series forecasting. Their method provides explanations through

regression trees. A heatmap-based explainable technique by Kim &

Cho [162] is presented to explain the auto-encoder-based forecasting

model. Zdravkovic et al. [337] applied local interpretable model-agnostic

explanations (LIME) [244] to explain the heat energy demand forecast-

ing model. LIME and Shapley additive explanation (SHAP) [195] based

explainable models are also employed for explaining time series classifi-

cation not forecasting tasks.

The explanations and their representation interface will surely be differ-

ent in the case of human-centered explanations for general users [216,

247, 239, 145]. Some explainable methods are also published recently

where they focused on human-activity recognition and e-health in smart

home environments [155, 39, 76, 22, 75].

In conclusion, there is still a big gap in human-centered XAI systems

for general smart home users, particularly in the energy demand fore-

casting problem. In this research, we try to explain the complex en-

ergy demand forecasting prediction with approximating shapley values

incorporating DeepLIFT. Our visualizations towards explaining specific

decisions might help general users so that they can build more aware-

ness of consuming energy in their homes. Moreover, these explanations

might help towards optimizing their energy consumption considering the

factors behind the predictions.
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Table 3: The summary of the state-of-the-art research on household
energy demand forecasting with possible research gaps.

Authors and

Paper (ref.)

Summary of Method & Contri-

bution

Gaps related to ex-

plainability

Kazemzadeh

et al. [153]

& Yan et

al. [330]

Both papers proposed hybrid

models to predict household en-

ergy consumption. Kazemzadeh

et al. [153] applied ARIMA and

ANN, whereas Yan et al. [330]

applied a dimensionality reduc-

tion approach and LSTM-based

DL forecasting technique.

Did not consider

explainability

Fu et

al. [105]

Applied a data-driven situational

awareness for monitoring en-

ergy consumption in a university

campus

Did not consider

explainability

Kim &

Cho [164]

Proposed a predictive method

combining CNN and LSTM (CNN-

LSTM) for extracting better spa-

tial and temporal feature for res-

idential energy demand predic-

tion.

Did not consider

explainability

Kim et

al [163,

162, 161]

Modeled the energy demand fore-

casting problem using differ-

ent neural network-based ap-

proaches including CNN, LSTM

and auto-encoder.

The proposed mod-

els have global in-

terpretability. But

the method can not

explain for a partic-

ular prediction.
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Chakraborty

et al. [58]

Introduced an explainable AI-

driven approach to predict cli-

mate change impact for build-

ing’s cooling energy forecasting.

Incorporated Shap-

ley additive expla-

nations for high-

lighting the feature

impacts. But the

method can not ex-

plain for a particu-

lar prediction.

Eseye and

Lehto [93]

Proposed a method for forecast-

ing energy demand for household

with several ML models.

Did not consider

explainability

Zhang et

al. [341]

Introduced interpretable energy

forecasting model by developing

a surrogate model that might

mimic the original model’s per-

formance.

Only provide inter-

pretability about

the local mecha-

nism of the model

Assaf &

Schum-

man [27]

Proposed a CNN-based explain-

able time series forecasting

model via saliency map/heat

map.

The model can

provide global in-

terpretability with a

heatmap highlight-

ing both time and

features. But the

method can not ex-

plain for particular

prediction.

Amal et

al. [256, 257]

Proposed adaptive saliency map-

based explanation techniques for

time series forecasting models in-

cluding CNN and ensemble clas-

sifiers.

The model can

provide global in-

terpretability using

a saliency map.

But the method

can not explain for

particular predic-

tion.
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Ilic et al.[133] Introduced an explainable

boosted regression technique

and the explanations can be

presented via regression tree.

Explainable only

for boosted regres-

sion technique.

The summary of notable state-of-the-art methods in energy demand

forecasting and explaining time series forecasting is depicted in 3. We

observed that most of the studies in energy demand forecasting are

not explainable. The studies focusing on explainability in energy de-

mand forecasting only tried to highlight different features for global in-

terpretability. We also include related works [27, 256, 257, 133] that

aimed at explaining time series forecasting models. We observed that

few methods tried to explain the forecasting model based on time and

features. However, they only focus on global interpretability so that AI

practitioners can improve the model’s performance. Nevertheless, the

explanations are highly technical and not easily understandable by the

general users in smart homes. To the best of our knowledge, there is

no such model that can provide local explanations for energy demand

forecasting model highlighting time and features. In this paper, we try

to fill the gap in generating understandable explanations for certain pre-

dictions highlighting the time and features in an easily understandable

way. The primary goal is to provide such explanations to the user so

that they can be more optimal and aware when they utilize a particular

appliance.

6.3 Explainable Energy Demand Forecasting Framework

This section presents our explainable energy demand forecasting frame-

work. In particular, we have two major components in this framework,

(i) a deep LSTM networks-based energy demand forecasting model and

(ii) an inference and explanation generation technique by approximating
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Figure 13: An overview of explainable energy demand forecasting frame-
work for smart home

Shapley values applying DeepLIFT. The high-level building blocks of the

explainable energy forecasting framework are illustrated in Fig. 13. In

summary, we first preprocess the time series data by handling missing

values and filtering out the noisy data. The data were collected with

1-minute granularity. We re-sampled the data applying the sum on

an hourly, daily and weekly basis. Then, we trained an efficient deep

LSTM network-based energy demand forecasting model that can pre-

dict hourly, daily and weekly energy demand in the household. Finally,

we apply DeepLIFT to explain the individual prediction approximating

Shapley values and provide comparatively understandable explanations

through visualization. However, these two components - the forecasting

model and explanation generator - are separate from each other and the

prediction performance is not affected both positively and negatively.

However, the DeepLIFT-based explanation generation techniques map

6.3 Explainable Energy Demand Forecasting Framework



6 Explainable Household Energy Demand Forecasting 92

the impact of features in different layers and can highlight the contribu-

tion corresponding to a particular time duration.

With enormous success in predictive modeling, the complex deep neu-

ral network (DNN)-based approaches have received huge attention in ev-

ery sector. Recurrent neural network (RNN) is a successful DNN tech-

nique that can model sequential data better. However, traditional RNN

faced a problem in memorizing long-term dependency. This is widely

called a gradient vanishing problem. To make the presentation of the

DeepLIFT-enabled explainable forecasting model simpler for the audi-

ence, we chose a long-short term memory (LSTM) network, a widely used

variant of RNN that can overcome this long-term dependency problem.

For sequential predictive modeling, LSTM is one of the most successful

DNN models, especially for multivariate time-series forecasting. How-

ever, LSTM has a very complex architecture and hence the decision-

making procedure of these types of predictive model are very opaque,

even AI practitioners often fail to understand why a particular decision

is being predicted. We applied an efficient explainable LSTM networks-

based forecasting model for predicting the household energy demand.

Therefore, we first discuss the details of our energy demand forecast-

ing framework applying LSTM networks and then we present our ex-

planation generation technique for specific prediction. Note that our

DeepLIFT-enabled explanation techniques can be applicable to other

RNN-variants (i.e., GRU)-based DL forecasting models.

6.3.1 Energy demand forecasting framework with LSTM networks

In contrast to traditional feed-forward DNNs, LSTM networks possess

feedback connections that facilitate the processing of sequential data

and the retention of crucial information within the sequence. This ca-

pability empowers them to effectively handle subsequent data points.

Drawing inspiration from the accomplishments of LSTM-based mod-

6.3 Explainable Energy Demand Forecasting Framework



6 Explainable Household Energy Demand Forecasting 93

Figure 14: A LSTM block with forget, input and output gates, ft, it and
ot, respectively

els in addressing text, audio, and time series forecasting challenges,

we have developed a sophisticated energy forecasting model employing

deep LSTM architecture, featuring multiple LSTM layers. Furthermore,

the technique employed to generate explanations for such a successful

model holds potential for broader application across diverse domains.

It is, however, a reasonable expectation that heightened model perfor-

mance correlates with increased network depth. Guided by this ratio-

nale, we meticulously fine-tuned our deep LSTM model, making metic-

ulous selections of optimal parameters, including the number of hidden

layers, the number of hidden units within each LSTM layer, and the size

of epochs. In our tiered network, the output of the (k−1)-th LSTM layer

is harnessed as the input for the subsequent k-th layer. This intricately

layered architecture empowers our model with the capacity to make pre-

dictions regarding future energy demand.

To address the issue of gradient vanishing, LSTM cells incorporate three
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distinct components, known as gates, at a specific time step. The three

gates include the forget gate, input gate, and output gate. These gates

serve the purpose of regulating the information flow that enters, remains

stored, and exits the network, respectively. Each of these gates has its

own neural network, functioning as a filter within the LSTM cell. It

is important to note that the output of an LSTM cell is dependent on

the current input data, the current long-term memory, and the previ-

ous hidden state. The diagrammatic representation of an LSTM block,

showcasing the functioning of its different gates and states, is depicted

in Fig. 14. Let the current input data be xi at time t and the previous

hidden state be ht−1. For each gate, we denote input weight as U, recur-

rent weight as W and bias as b. First, LSTM processes the forget gate at

time t, ft which is the neural network working as follows:

ft = σ(XtUf +ht−1Wf +b f ), (6.1)

where forget get apply a sigmoid activation function that returns output

in the interval [0,1] and σ represents the Sigmoid activation function.

When the output of this network is close to 1, the forget gate chooses the

input component as relevant. Otherwise, it neglects for output closer to

0 as irrelevant.

After throwing out the irrelevant information, LSTM next decides which

information is to store and update the cell state. For this, it employs an

input gate as follows:

it = σ(XtUi +ht−1Wi +bi). (6.2)

A tanh activation function-based layer is then applied to combine the

previous hidden state and new input data for generating a new memory

update vector C̃t as follows
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C̃t = tanh(XtUc +ht−1Wc +bc). (6.3)

Applying point-wise multiplication and addition, the old state Ct−1 is then

updated as Ct.

Ct =Ct−1⊗ ft ⊕ it ⊗C̃t . (6.4)

With the help of output get, LSTM finally produces the output as the

next hidden state by processing cell state and input

ot = σ(XtUo +ht−1Wo +bo). (6.5)

To produce the final state, a point-wise multiplication is applied between

ot and cell state passed through a tanh activation function.

ht = ot ⊗ tanh(Ct). (6.6)

6.3.2 Explaining predictions with DeepLIFT approximating the

Shapley Value

To explain the opaque and very complex LSTM-based energy de-

mand forecasting model, we approximate Shapley values employing

DeepLIFT (Deep Learning Important FeaTures). DeepLIFT is a method

that decomposes the complex deep neural network-based methods for

specific prediction by back-propagating to compute the contributions of

neurons. For a given prediction, this method provides local explanations

summarizing the contributions computing the “difference in output from

some reference output considering the difference in input from some refer-

ence input” [293].

Let us assume that we have a neural network prediction model with an

input layer with neurons {x1,x2,x3, · · ·xn}, some hidden layers with sets

of neurons {h1,h2,h3, · · · ,hn} and a target output neuron t. Consider f (x)
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to be the activation of a particular neuron and f (x′) to be the reference

activation. DeepLIFT calculates the contributions scores as follows:

∆t = f (x)− f (x′) =
n

∑
i

C∆xi∆t , (6.7)

where C∆xi∆t refers to the contribution score in each neuron xi. For a

given target output t and its reference activation t0, the difference-from-

reference is computed as ∆t = t− t0. Eq. 6.7 is also called a summation-

to-delta property.

Let ∆x be the difference-from-reference of any input neuron calculated

in the same procedure described previously. For target output t and

difference from output reference ∆t, we can define the multiplayer by

averaging the difference as follows:

m∆x∆t =
C∆x∆t

∆x
. (6.8)

It can be seen as a contribution of ∆x to the target difference ∆t, com-

puted by diving with ∆x.

Let {x1,x2,x3, · · · ,xn} be the set of neurons for a complete neural network,

{h1,h2,h3, · · · ,hn} be the hidden layers with neurons’ set and t is a target

output neuron, we can define the contribution multiplier as a chain rule:

m∆xt∆t = ∑
j

m∆xi∆h j ·m∆h j∆t , (6.9)

where the contribution is calculated by applying iterative chain rules in

each layer. This can be applicable to any number of layers in the net-

works. By applying this chain rule, the contribution in terms of multi-

pliers can be computed for a given target employing back-propagation.

This is analogous to the chain rule in partial derivatives.

We employ DeepLIFT to approximate the Shapley values to explain any

particular prediction in energy demand forecasting. Here, the multipli-
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ers are represented in terms of SHAP values φi:

mx j, f j =
φi( f j,x)
x j,E[x j]

(6.10)

Similar to the chain rule mentioned in Eq. 6.9, this can be defined as

follows:

mx j, f j = ∑
j

mx j,h j ·mh j, f j (6.11)

Here, we approximate the reference value by averaging over the back-

ground instances. The approximation is done by summing up the dif-

ference between the expected model output of the background model

and the output of the current model, f (x)−E[x j]. The SHAP values are

computed as:

φi( f ,a′) = ∑
z′⊆{a′1,a′2,...,a′n}\{a′i}

(|z′|)!(M−|z′|−1)!
M!

· [ f (z′∪a′i)− f (z′)],

(6.12)

where a is the features vector and z′ and a subset of the features employed

by the model f . f (z′) is the prediction by the model f .

a′ is the vector with feature values to be explained and can be defined as

[ f (z′∪ x)− f (z′)] and M is the number of features. The prediction by the

model f is denoted by f (z′). Moreover, SHAP values are computed by a

standard game-theoretical approach and utilised Shapley values to have

a unified interpretable model with fast computation. More mathematical

and technical details of DeepLIFT and SHAP can be found in the study

published by [195] and [293], respectively.

6.4 Experiments and Evaluation

This section presents the details about datasets, evaluation metrics, ex-

perimental settings, performance in energy demand forecasting and the
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Table 4: Description of different variables in EnergyData

Feature, fi Description
Global active power, f1 Household global minute-averaged active

power
Global reactive power, f2 Household global minute-averaged reactive

power
Voltage, f3 Minute-averaged voltage (in ampere)
Global Intensity, f4 Household global minute-averaged current

intensity
Sub-metering_1, f5 It corresponds to the kitchen, containing

mainly a dishwasher, an oven and a mi-
crowave (hot plates are not electric but gas-
powered)

Sub-metering_2, f6 It corresponds to the laundry room, con-
taining a washing machine, a tumble drier,
a refrigerator and a light

Sub-metering_3, f7 It corresponds to an electric water heater
and an air-conditioner

generated explanations.

6.4.1 Datasets

We conducted experiments on two public benchmark datasets on house-

hold electric energy consumption including EnergyData,5 and REFIT

data [217]. Here we present the summary of two different datasets.

Household energy consumption dataset (EnergyData): The data has

been from a house for 47 months, particularly from December 2006 un-

til November 2010. The dataset consists of different energy consumption

measures including global active power, global reactive power, global in-

tensity and consumption in different household areas. A brief descrip-

tion of each feature is summarized in Table 4. Submetering_1 represents

the active power consumed by multiple appliances including a dish-

washer, an oven, and a microwave. The active power consumption by

the laundry room containing appliances including a washing machine,
5https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+

consumption
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a tumble-drier, a refrigerator, and a light is represented by submeter-

ing_2. The power consumed combined by an electric water heater and

an air-conditioner is denoted as submetering_3. All the above-mentioned

measures were collected for every minute.

REFIT smart home dataset:

This dataset contains cleaned electrical consumption data for 20 house-

holds with different properties [217]. The dataset includes the aggregate

electricity consumption and appliance-level consumption for 9-10 home

appliances in watts at an 8-second granularity. It was collected as part

of the REFIT project6. For our experiments, we selected four diverse

households based on different property characteristics as listed in 5.

The selected households are House 2, House 5, House 8, and House 13.

The properties of each household, including the number of occupants,

construction year, total owned appliances, type of the house, and size in

terms of bedrooms, are summarized in 5. Additionally, we provide a list

of appliances from which the energy consumption data were collected

for each respective house in 6.

Table 5: Properties of the selected households

House House Information
Occupants Year Appliance Type Size

House 2 4 - 15 Semi-Detached 3 bed
House 5 4 1878 44 Mid-terrace 4 bed
House 8 2 1966 35 Detached 2 bed

House 13 4 2002 28 Detached 4 bed

6.4.2 Evaluation metrics

We employed different evaluation metrics to validate the performance of

our method in forecasting household energy demand. Out of numerous

evaluation metrics, we employ four metrics including mean absolute er-

6Personalized Retrofit Decision Support Tools for UK Homes using Smart Home Tech-
nology’, Grant Reference EP/K002368/1/1
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Table 6: The list of appliances considered in collecting data for the se-
lected households

House # List of appliances
House 2 Fridge-Freezer, Washing Machine, Dishwasher, Televi-

sion, Microwave, Toaster, Hi-Fi, Kettle, Overhead Fan
House 5 Fridge-Freezer, Tumble Dryer, Washing Machine,

Dishwasher, Desktop Computer, Television, Mi-
crowave, Kettle, Toaster

House 8 Fridge, Freezer, Washer Dryer, Washing Machine,
Toaster, Computer, Television, Microwave, Kettle

House 13 Television Site Freezer, Washing Machine, Dish-
washer, Network Site, Microwave, Microwave, Kettle

ror (MAE), mean absolute percentage error (MAPE), mean squared Error

(MSE), and root mean squared error (RMSE) for evaluating the perfor-

mance. To measure the effectiveness of the generated explanations by

DeepLIFT, we introduced a new metric named contribution monotonicity

coefficient, CMC.

Evaluation metrics for forecasting:

MAE. The average of absolute differences between predicted values and

the original values are referred to as mean absolute error (MAE), which

can be computed as follows:

MAE =
∑

n
i=1 |yi− xi|

n
, (6.13)

where yi denotes the foretasted values and xi is the original energy con-

sumption. This metric calculates the degree of average error made by

the predictive model. The low MAE values close to zero indicate the high

accuracy of the predictor. Since this is the arithmetic average, it can be

affected by sampling fluctuation.
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MAPE. This can be computed by dividing the absolute difference be-

tween predicted and original values by original value.

MAPE =
100
n

n

∑
t=1

∣∣∣∣xt − yt

xt

∣∣∣∣ (6.14)

To address the sampling fluctuation issue, the division is done by xt for

corresponding predicted and original values.

MSE. This is another widely used evaluation metric that calculates the

average error by applying the squared difference between the predicted

and original values instead of the absolute difference.

MSE =
1
n

n

∑
i=1

(xi− yi)
2 (6.15)

One of the features of this metric is that it penalizes outliers and/or large

errors more than minor differences because of employing a square func-

tion. Compared with MAE and MAPE, this evaluation metric is better as

it overcomes the extreme and zero value problem.

RMSE. As an extension of MSE, RMSE applies the square-root function

over the squared difference between original and predicted values.

RMSE =

√
1
n

n

∑
i=1

(xi− ŷi)
2 (6.16)

This metric makes it easier to understand the performance of any fore-

casting model than other metrics. However, for all metrics, the lower the

value of any metric, the better the performance of the forecasting model

is.

Metric to measure explainability: We present the explanations gen-

erated by approximating Shapley values with DeepLIFT using different

visualizations to comprehend specific predictions from our forecasting
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methods. The core of these explanations is a list of contributions from

various appliances and features toward the predicted future overall con-

sumption. To assess the quality of these explanations, we compare the

highlighted contributions for different appliances in households with the

original contributions in the test data. We statistically compute the con-

tributions of different appliances to total energy consumption. In other

words, how much a particular appliance is responsible for the overall en-

ergy consumption for a certain time? The explanations we generate also

depict contributions from different appliances towards future consump-

tion, expressed as approximate Shapley values computed by applying

DeepLIFT to the deep forecasting model.

Our hypothesis for evaluating the computed contributions is to examine

how monotonous and correlated the generated contributions are with

the original contributions to overall energy consumption. If there are

high monotonous correlations between the vectors of contributions for

original energy consumption data and Shapley values, we can conclude

that the generated contributions using DeepLIFT are analogous. The

degree of goodness of the generated explanations can be represented by

the correlation coefficient, where a higher correlation coefficient indi-

cates better-generated explanations.

Following the above-mentioned hypothesis and intuition, we first com-

pute the total energy consumed by a particular appliance Ai, denoted

as TAi, and then calculate the contribution of the appliance CAi by divid-

ing the total energy consumption of the household TH by TAi ( CAi =
TAi
TH

).

Using the same formula, we compute the contributions for all appli-

ances represented in a vector. On the other hand, we have a contribu-

tion vector SAi in terms of Shapley values by DeepLIFT, representing the

predicted contributions for different appliances toward overall predicted

consumption. For two given contribution vectors, we can compute the

correlation coefficient between them. To do this, we consider the Spear-
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man correlation coefficient to assess the correlation between original

and predicted contributions to overall energy consumption. The Spear-

man Rank-correlation coefficient is chosen because it can identify the

monotonous relationship between two vectors. If we find a high correla-

tion and an increasing monotonous relationship, we can conclude that

the predicted contributions are analogous to the original contributions.

Contribution monotonicity coefficient, CMC: Given two contribution

vectors, C = {CA1 ,CA2 ,CA3 , · · · ,CAn} and S = {SA1 ,SA2 ,SA3 , · · · ,CAn} that repre-

sent the normalized contributions for different features. The CAi de-

notes the real contribution towards the overall consumption and the

SAi represents the predicted contributions by DeepLIFT techniques in

terms of Shapley values. We compute the Spearman-ranked correlation

coefficient-based measure contribution monotonicity coefficient, CMC as

follows:

ρCMC(CA,SA) = 1− 6∑di
2

n(n2−1)
, (6.17)

where di is the difference between the ranks of the contribution score

CAi and SAi and n is the length of the vectors. The higher the value of

ρ, the better the explanation is. The positive ρ indicates the increased

monotonous relationship between the vectors and the negative indicates

decreasing.

6.4.3 Experimental setting

The data were collected by measuring the energy consumption in differ-

ent household areas and appliances for 1 minute and 8 seconds time in-

tervals for EnergyData and REFIT datasets, respectively. We converted

the consumption in the datasets in three different forms applying re-

sampling in an hourly, daily and weekly manner. We have summed up

the energy consumed hourly, daily and weekly. Then we applied a classi-
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cal MinMax scaller to transform every feature’s values in similar ranging

from zero (0) to one (1). Along with this, we also have a de-scaler func-

tion so that we can convert the predicted values (energy forecasting) to

original units.

However, we applied 85% of the samples as a training set and the 15%

samples left were used for testing the model in all three types of forecast-

ing namely, hourly, daily and weekly. For hourly forecasting, in total, we

have household energy consumption data for 34589 hours (i.e., for En-

ergyData). The sequence lengths for three different forecasting models

were 24, 30 and 7, respectively. For all models the number of input fea-

tures in each sample was the same. Along with regular features includ-

ing the consumption by different household areas and appliances, we

also employ days of the week, month of the year, and quarter of the year

as features. Other than that, we subtracted the summation of energy

consumed by three different areas (sub-meters) from the total house-

hold energy consumption for EnergyData and used it as a new feature.

We conducted experiments for both datasets by applying 5-fold cross-

validation and applied arithmetic averages to calculate the performance

in terms of different evaluation metrics. The details of the parameters

of our LSTM models are summarized in Table 7.

Table 7: Summary of the parameters of the LSTM-based forecasting
model

Parameter Hourly Daily Weekly
# of features 10 10 10

Sequence Length 24 30 7
# of hidden layers 2 2 2
# of hidden units 64 64 64

# of Epoch 100 100 50
Learning rate 0.001 0.001 0.001

Batch Size 1024 1024 64

After training our LSTM-based forecasting model with adequate training

data, we applied our inference component to identify the facts (i.e., the
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importance of different features corresponding to time). Our inference

and explanations interface then visualize the impact of different fea-

tures with time duration in different forms. This explanation generation

component is different from the demand forecasting model. DeepLIFT

can identify contributions by approximating shapely values for different

features by mapping the changes of the values in the different layers. Fi-

nally, we highlight different features’ contributions with time duration.

To compare the performance of our explainable forecasting framework,

we applied the method proposed by Kim et al [164]. They applied a CNN-

LSTM-based deep learning model. We designed and conducted the ex-

periments by applying their method with the same feature scaling and

normalization techniques.

6.4.4 Experimental results

Along with the features described in Table 4, we also extracted hand-

crafted features and introduced four different features including sea-

sonality. Generally, the daily energy consumption is dependent on the

type of days. It is expected that the overall energy consumption on the

weekend is supposed to be different than on the weekdays. Similarly,

the season has a great impact on the overall consumption, i.e., the daily

consumption in the winter season will be different from the consump-

tion in summer and the consumption trend will be different in autumn

as well. Therefore, we extract three new features namely, the day of the

week, the month of the year, and the quarter of the year. Other than

these features, we noticed that the total energy measures by three sub-

meters are smaller than the total energy consumption. Therefore, we

add another new feature named others that indicates the energy con-

sumption extracted by subtracting the summation of three sub-meters

from the total energy consumption. We conducted experiments to pre-

dict hourly, daily and weekly energy demand to validate the performance
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of our framework.

Table 8: The performance of our proposed explainable forecasting com-
pared to other methods.

Mode Method MAE MAPE MSE RMSE

Hourly
Our Framework 0.075 48.9 0.009 0.096
Kim et al. [164] 0.077 77.5 0.009 0.098

Linear Regression 0.5022 83.74 0.4247 0.6517

Daily
Our Framework 0.052 23.3 0.005 0.069
Kim et al. [164] 0.063 28.4 0.006 0.083

Linear Regression 0.3915 52.69 0.2526 0.5026

Weekly
Our Framework 0.119 27.7 0.019 0.138
Kim et al. [164] 0.121 26.4 0.021 0.146

Linear Regression 0.3199 41.33 0.1480 0.3847

As we noted earlier, the main objective of our method is to explain the

complex forecasting model applying DeepLIFT to approximate the Shap-

ley values that highlight the contribution of different features corre-

sponding to time. Nevertheless, the performance of our framework in

forecasting hourly, daily, and weekly energy demand is summarized in

Table 8. We conducted experiments by applying 5-fold cross-validation

and applied arithmetic average to calculate the metrics. Along with

our framework, we also reported the performance of other well-known

household energy forecasting models. We can see that the performance

of our method is quite consistent and outperformed in predicting the

energy demand in the household energy demand.

Table 8 highlighted the performance comparison of our demand forecast-

ing frameworks with some known related works including linear regres-

sion and a demand forecasting model by Kim et al. [164] that applied a

CNN-LSTM-based deep learning model. We conducted experiments fol-

lowing the proposed model applying the same normalization and scaling

techniques. The results show better performance than their approach

except in terms of MAPE for weekly prediction. Though the performance

difference is not significant (27.7 vs 26.4). However, we can see from
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the table that the comparison illustrated a consistent performance in

forecasting in terms of multiple evaluation metrics.

Along with predicting the total energy consumption, we also carried out

experiments to see how our framework performed in predicting con-

sumption in a specific area of the household. Since we have the dataset

for three different sub-meters where the energy consumption was mea-

sured in the kitchen (i.e., dishwasher, an oven, and a microwave), the

laundry room (i.e., containing washing machine, a tumble-drier, a re-

frigerator and a light), and another room containing water heater and

air-conditioner. The performance in predicting energy consumption for

specific areas on an hourly, daily, and weekly basis is presented in Ta-

ble 9. In turn, our framework achieved efficient performance since the

prediction errors in terms of each evaluation metric are minimal.

Table 9: Prediction performance in forecasting energy demand for differ-
ent household areas

Forecasting Mode MAE MAPE MSE RMSE

Submetering_1
Hourly 0.149 0.934 0.028 0.168
Daily 0.149 0.646 0.031 0.175

weekly 0.106 0.244 0.020 0.142

Submetering_2
Hourly 0.150 0.912 0.029 0.170
Daily 0.164 0.677 0.036 0.189

Weekly 0.140 0.325 0.031 0.177

Submetering_3
Hourly 0.239 1.479 0.120 0.347
Daily 0.116 0.495 0.022 0.149

Weekly 0.098 0.230 0.015 0.121

The summary of the experimental results compared to two different fore-

casting methods including linear regression and deep learning models

demonstrated the efficiency of our explainable energy demand forecast-

ing model using LSTM. Moreover, the effectiveness of LSTM in time se-

ries forecasting is widely known as state-of-the-art in multiple applica-

tion areas, which concludes the consistency. However, the performance

difference is higher than the other baselines in all evaluation metrics. In
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turn, the prediction performance for the kitchen, an important energy

consumption household area for hourly, daily, and weekly consumption

is quite consistent and got better performance in all evaluation metrics.

To visualize the prediction performance of our framework more explicitly,

we presented the predicted hourly energy consumption of our frame-

work compared to the ground truth, actual energy consumption. We

presented the hourly prediction for 300 random hours in Fig. 15. We

can see that for the maximum data points, our prediction framework

performs with great consistency except for a few sudden fluctuations in

actual energy consumption hours.

Figure 15: Hourly prediction of our framework compared to the original
consumption. The X-axis represents the hours and the Y-axis represents
the original hourly energy consumption and predicted energy demand.

6.4.5 Explaining forecasting

The explanations for daily total energy demand forecasting in the house-

hold are presented in Fig. 16. We first illustrate the impacts of different

household areas to conclude which set of appliances has more respon-

sibility for particular forecasting. Then, we visualize the contributions

of seasonality features that reflect the impacts of weather conditions

on the final predicted energy consumption. Finally, the contributions
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Figure 16: The impact of the consumption in the different household ar-
eas on the total energy consumption prediction corresponding to time.
The X-axis represents the time and the Y-axis represents the contribu-
tions of household areas in terms of Shapley values.

of all mentioned features are presented combinedly in different forms

of visualizations. We can see that the daily total energy consumption

has a strong impact on energy consumption by air-conditioning and wa-

ter heaters. The next household area with appliances that have a high

impact on the household for overall consumption is the laundry room

containing appliances including a washing machine, a tumble-drier and

a refrigerator. We can also see the impact of time (in the day) that has

impact of consumption in different areas. The impacts in previous days

are widely different. On weekends, the impacts were comparatively lower

than on regular days..

In turn, we try to see that seasonal impact in the forecasting. Fig. 17 il-

lustrates the explanation in terms of seasonal impact. The figure demon-

strates that the quarter of the year has the highest impact on the final

prediction. It makes sense that the quarter of the year, particularly win-

ter, summer and autumn is supposed to have to higher impact on the

energy consumption in households. Similarly, particular months and

particular days also have an impact on energy consumption. For exam-

ple, energy consumption on weekend and weekday are supposed to be
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Figure 17: The seasonal impact on the total energy consumption pre-
diction corresponding to time. The X-axis represents the time and the
Y-axis represents the contributions of seasonality features in terms of
Shapley values.

Figure 18: Explanations in terms of the impact of all features corre-
sponding to time. The X-axis represents the time and the Y-axis repre-
sents the contributions of features in terms of Shapley values.

different. The month and quarter of the year have a high impact on the

energy demand forecasting.

Overall, the explanation for daily prediction is visualized in Fig. 18 in

terms of all features corresponding to time. To have better visualization

and illustration, the same explanation is presented in different formats

in Fig. 19 and 20. Presenting this explanation in an easier way to under-
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stand would enable users to become more aware of consuming energy

in the household. Moreover, with this explanation, users might think of

changing their energy use behavior and patterns to save more household

energy, hence leading to a decrease in overall carbon footprint.

Figure 19: The global importance of different features presented as ex-
planations in terms of Box Plot

Figure 20: Explanations in terms of histogram highlighting the impact
of all features corresponding to time

6.4.6 Performance Robustness

To validate the performance of the forecasting framework, we conducted

experiments with another dataset referred to as the “REFIT smart home
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dataset”. Moreover, we also visualized the explanations to illustrate the

appliances having impacts corresponding to the times.

Table 10: Prediction performance in forecasting energy demand on 4
households of REFIT dataset (sec. 6.4.1)

House # Mode MAE MAPE MSE RMSE

House 2
Hourly 0.047 2.125 0.007 0.083
Daily 0.151 0.701 0.037 0.192

Weekly 0.134 0.557 0.03 0.174

House 5
Hourly 0.022 0.516 0.001 0.034
Daily 0.085 0.476 0.012 0.109

Weekly 0.076 0.396 0.01 0.1

House 8
Hourly 0.037 0.436 0.004 0.065
Daily 0.173 0.411 0.041 0.203

Weekly 0.19 0.464 0.046 0.214

House 13
Hourly 0.044 0.603 0.006 0.079
Daily 0.037 0.698 0.003 0.056

Weekly 0.041 0.812 0.003 0.057

Forecasting performance on REFIT data: The performance of our ex-

plainable energy demand forecasting system is illustrated in Table 10.

We can observe that the forecasting performance for hourly, daily, and

weekly aggregate energy consumption across different households in the

REFIT dataset remains consistent across all evaluation metrics. More-

over, compared to the performance on the previous dataset, we can see

that the performance, based on all evaluation metrics, is even better.

The bold real numbers in the table indicate the best results achieved

across all four households for different forecasting modes (hourly, daily,

and weekly).

For hourly forecasting, with the exception of MAPE, we can observe that

the forecasting performance is better for House 5 across all evaluation

metrics. On the other hand, for daily forecasting, our method achieved

the best performance for House 13 in terms of MAE and RMSE, House

8 in terms of MAPE, and House 5 in terms of MSE. The weekly fore-

casting performance is quite similar to the daily performance, showing
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better results across all metrics except MAPE for House 13. However,

the performance difference across all households is not substantial.

Figure 21: Hourly prediction of our framework compared to the original
consumption on house 8 (REFIT dataset). The X-axis represents the
hours and Y-axis represents the original hourly energy consumption and
predicted energy demand.

Similar to the previous dataset, we present the hourly predictions for

house 8 compared to the original consumption in Fig. 21. The X-axis

represents 300 random consecutive hours, and the Y-axis represents the

normalized aggregate consumption. The figure demonstrates that our

method can accurately forecast future consumption over an extended

period, except for a very sudden fluctuation near hour 248.

Explaining forecasting on REFIT data: The explanations for house 8

are illustrated in Fig. 22 and 23 in terms of area plot and bar chart.

The X-axis represents days and the Y-axis represents the contribu-

tions/impacts of different appliances with seasonality. We can see that

the most influential appliances are the Fridge, Toster, Kettle, Microwave,

etc. In terms of seasonality, Quarter_of_Year has the highest influence

on the weekly prediction. The contributions or impacts of different fea-

ture appliances are illustrated in Fig. 24 in terms of the box plot. We
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Figure 22: Contributions of different appliances and features corre-
sponding to times (days) in house 8 towards overall weekly aggregate
forecasting.

Figure 23: Contributions of different appliances corresponding to
times (days) in house 8 towards overall weekly aggregate forecasting.

can see that the Fridge and Toaster are the two appliances having the

highest contribution toward the model’s prediction.

In general, kitchen appliances such as the Toaster, Microwave, and Ket-

tle collectively have a more significant impact on the overall energy con-

sumption prediction. However, evaluating the generated explanations

is subjective, especially in the context of time series forecasting, where

explanations become two-dimensional, making quantitative assessment

more challenging.
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Figure 24: Contributions of different appliances in house 8 towards over-
all weekly aggregate forecasting.

Table 11: The effectiveness of the generated explanations by DeepLIFT
on energy demand forecasting

Dataset Household Mode ρCMC P -value

EnergyData (sec. 6.4.1) House 1 Daily 0.8857 0.0188
Weekly 0.7881 0.0318

REFIT Data (sec. 6.4.1)

House 2 Daily 0.8166 0.0072
Weekly 0.7829 0.0198

House 5 Daily 0.6985 0.0345
Weekly 0.7315 0.0280

House 8 Daily 0.7133 0.0470
Weekly 0.7315 0.0102

House 13 Daily 0.7354 0.0297
Weekly 0.7918 0.0178

6.4.7 Evaluation of generated explanations

We already discussed and reported the forecasting performance on two

different datasets which includes data for five different households. We

also illustrated the generated explanations in terms of Shapely values

approximated with DeepLIFT. We have seen that the explanations can

indicate the factors and appliances associated with future consumption.

However, in this section, we computationally report the efficiency of our

generated explanations for forecasting in terms of contribution monotonic-
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ity coefficient, CMC. We designed this evaluation metric that can mea-

sure the degree of monotonicity coefficient considering the impacts of

different appliances on overall energy consumption on original data and

predicted consumption.

We presented the performance of explanations for daily and weekly fore-

casting in terms of CMC for both datasets, encompassing all five house-

holds, as shown in Table 11. It can be observed that the explanations

for daily energy demand forecasting in the EnergyData dataset achieved

the highest Contribution Monotonicity Coefficient (CMC) at 0.8857, with

an associated lower p-value, numerically 0.0188 (<0.05).

Concerning weekly energy demand forecasting, the effectiveness of the

explanations for Household 13 in the REFIT dataset attained the highest

CMC score. However, for other households, the correlation between the

impacts of different appliances on original consumption is highly con-

sistent with the generated explanations. Except for the explanations for

daily prediction for House 5, where the monotonicity coefficient exceeded

70%, indicating a consistently increasing relationship between the im-

pacts of appliances computed by DeepLIFT and the original impacts. The

performance on three households data including EnergyData, House 2,

and 13 even achieved nearly or more than 80% efficiency in terms of

CMC with lower p-value. The high correlation between the impact of

appliances in explanations and the original overall consumption of the

households indicates the efficiency of the generated explanations that

might make user sense of any prediction from a deep learning-based

forecasting model.

We also compared the impacts of different appliances on future

consumption with the findings from the experiments conducted by

Stankovic et al.[302], who investigated the contribution of daily activi-

ties to overall energy consumption. They used the same dataset as ours

and reported that cooking contributes to 16% of the total energy con-
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sumption in House 8. In our generated explanation, we also detected

the activity of cooking through the consumption patterns of kitchen ap-

pliances like the Toaster, Kettle, and Microwave, and their collective con-

tributions, as shown in the box plot (Fig. 24), are correlated. Combining

the contributions of these three cooking appliances shows that cooking

has the highest impact on overall consumption.

Stankovic et al. [302] further reported that the next significant activities

impacting energy consumption are laundering (4%) and watching TV

(1%). The laundry activity was detected through the consumption of the

washing machine and tumble dryer. Our generated explanation aligns

with this too, as we observed that the washing machine and dryer col-

lectively have the second-highest contributions, and the television_site

also makes considerable contributions.

Based on the careful analysis on the evaluation of the explanations com-

putationally, we can conclude that our method’s generated explanations

effectively identify the impact of different appliances on energy con-

sumption. With further empirical studies involving smart home users,

we aim to enhance and validate the explanation quality, enabling users

to optimize their energy consumption effectively. The predicted future

energy demand and the explanation can help the users with energy con-

sumption literacy [268, 270] and the policymaker can think of adopting

our method in dynamic pricing and energy policy optimization.

6.5 Conclusion

This paper presents an explainable energy demand forecasting system

where we attempt to generate easy-to-understand explanations for fore-

casting decisions for smart home users. For doing so, we approximate

the SHAP values by applying DeepLIFT to identify the feature’s contri-

butions in each neuron of an LSTM-based model. Our LSTM-based en-
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ergy demand forecasting model was used to predict hourly, daily and

weekly energy demand effectively on two different datasets for five dif-

ferent households in terms of all evaluation metrics.

The major goal of this study was to explain the predictions in such

a way that users can have a clear understanding of why a particu-

lar decision has been predicted. Our framework applied DeepLIFT to

approximate the SHAP values to generate easy-to-understand explana-

tions. These explanations generation technique combining DeepLIFT

and SHAP can be applied to interpret the predictions for any deep

learning-based forecasting models. The explanations can highlight both

the time or season and the impact of different attributes (features) for a

particular prediction at the same time. Based on our introduced evalu-

ation metric named contribution monotonicity coefficient, the generated

explanations achieved high efficiency and the relationship with original

contributions of different appliances toward the total consumption is

monotonous.

We also observed that the explanations for household energy forecast-

ing can identify the impacts of appliances for corresponding energy con-

sumption activities that are aligned and correlated with the findings of

the previous study [302]. With these explanations, users might be more

aware of and think of optimizing their energy consumption practice by

considering the most responsible factors for their upcoming energy con-

sumption demand. The predicted future energy demand and the expla-

nation can help the users with energy consumption literacy [268, 270]

and the policymaker can think of adopting our method in dynamic pric-

ing and energy policy optimization.
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6.6 Future Direction

In the pursuit of creating functional user interfaces tailored to smart

home users, we will adopt a user-centric design methodology, akin to the

approach advocated by Rikke et al. [140]. Our current trajectory involves

the development of a prototype for our proposed system, which aims to

offer transparent insights into energy demand prediction and forecast-

ing. Our underlying assumption is that by allowing smart home users

to interact with our prototype in their daily lives, we can glean insights

into both the domain and the technology. This interaction will provide

them the opportunity to articulate the types of explanations they con-

sider vital and valuable. This approach is especially significant in light of

existing systems, often geared towards developers and AI experts, which

may exhibit certain limitations. In this regard, we have outlined a set

of inquiries enumerated below, which we intend to pose as we construct

our explainable prediction system with a strong emphasis on human-

centered design.

1. Are these explanations helpful for you in understanding the

decision-making process?

2. What open or further questions would you like to have answered,

if any?

3. Do you find the presented user interface useful for engaging with

the presented explanations?

4. What problems or areas for improvement would you see in this re-

spect, if any?

5. Thinking aloud, would you please walk us through the explana-

tion interface, reflecting on a particular prediction that is presented

there?
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We believe that through a user-centered prototyping approach with dif-

ferent kinds of explanation visualizations, we can learn more about the

specific user needs in the energy domain, and elicit requirements and in-

sights towards building a collaborative, human-centered explainable en-

ergy demand forecasting system. Hence, the system will increase trans-

parency, fairness, and accountability to end-users.
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7 Improved Thermal Comfort Model Leveraging

Conditional Tabular GAN Focusing on Feature

Selection
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Abstract

The indoor thermal comfort in both homes and workplaces significantly

influences the health and productivity of inhabitants. The heating sys-

tem, controlled by Artificial Intelligence (AI), can automatically calibrate

the indoor thermal condition by analyzing various physiological and en-

vironmental variables. To ensure a comfortable indoor environment,

smart home systems can adjust parameters related to thermal comfort

based on accurate predictions of inhabitants’ preferences. Modeling per-

sonal thermal comfort preferences poses two significant challenges: the

inadequacy of data and its high dimensionality. An adequate amount of

data is a prerequisite for training efficient machine learning (ML) models.

Additionally, high-dimensional data tends to contain multiple irrelevant

and noisy features, which might hinder ML models’ performance. To

address these challenges, we propose a framework for predicting per-

sonal thermal comfort preferences, combining the conditional tabular

generative adversarial network (CTGAN) with multiple feature selection

techniques. We first address the data inadequacy challenge by applying

CTGAN to generate synthetic data samples, incorporating challenges as-

sociated with multimodal distributions and categorical features. Then,

multiple feature selection techniques are employed to identify the best

possible sets of features. Experimental results based on a wide range

of settings on a standard dataset demonstrated state-of-the-art perfor-

mance in predicting personal thermal comfort preferences. The results

also indicated that ML models trained on synthetic data achieved sig-

nificantly better performance than models trained on real data. Over-

all, our method, combining CTGAN and feature selection techniques,

outperformed existing known related work in thermal comfort predic-

tion in terms of multiple evaluation metrics, including area under the

curve (AUC), Cohen’s Kappa, and accuracy. Additionally, we presented a

global, model-agnostic explanation of the thermal preference prediction
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system, providing an avenue for thermal comfort experiment designers

to consciously select the data to be collected.

Keywords

Personal Thermal Comfort, Generative Adversarial Network, Feature Se-

lection, Machine Learning, Data Inadequacy

7.1 Introduction

Occupants’ well-being, health, and productivity significantly depend on

thermal comfort both at home and in the workplace [281, 191, 49, 190,

77, 96]. A notable portion of the total energy consumption is attributed

to the HVAC (heating, ventilation, and air conditioning) system, account-

ing for nearly half of the overall energy use in corporate and residential

buildings [77]. Additionally, these buildings contribute to almost 40%

of CO2 gas emissions [281, 77]. The advancements in sensor technol-

ogy over the last two decades have played a crucial role in shaping the

concept of smart home systems to reality, empowering inhabitants to

control and monitor the indoor environment within their homes and

workplaces [191, 49, 190, 77, 96, 278]. Environmental parameters re-

lated to thermal comfort, such as temperature and humidity, can be

adjusted using multiple machine learning-based systems with human-

in-the-loop interaction [281].

In general, artificial intelligence (AI)-based techniques can be applied to

have energy-efficient and comfortable indoor environment inside build-

ings [201, 220]. It is also evident that researchers often leveraged AI-

enabled techniques for energy aware and comfortable built environ-

ment. However, the primary objective is to save energy and decrease the

carbon-di-oxide footprints. The notable smart home energy-aware appli-

cations that generally applied deep learning (DL) and ML models can be
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energy demand forecasting, adjusting indoor environment by predicting

thermal comfort preferences, etc [281]. However, in this work we focus

on personal thermal comfort preference prediction. Recently, there has

been a considerable attention in applying ML models for thermal com-

fort preference prediction tasks [220, 1, 327, 60, 59, 64, 299, 106, 94,

92, 114, 61, 281].

Generally, the task of personal thermal comfort preference prediction

can be classified into two different categories, global and personal. In

global thermal comfort (GTC) preference prediction task, the model tries

to predict the overall thermal comfort preference in the rooms/zones.

On the other hand, since the thermal comfort of different person varied

widely, personal thermal comfort (PTC) preference prediction refers to

identifying an occupant’s individual thermal comfort [281]. Based on the

preference prediction system’s output, smart home systems can control

and adjust the environment to provide pleasant and comfortable living

space.

In most of the existing studies [191, 1, 92, 299], authors applied their

predictive models to high dimensional features to capture relation be-

tween the data and occupants’ thermal preference. There are two major

challenges associated with modeling the personal thermal comfort pref-

erence prediction: one is the high dimensionality of the data including

environmental and physiological features, and other one is the lake of

adequate amount of data samples to train efficient predictive ML model.

This is expected that the data to predict thermal comfort preference will

be high dimensional, since it considers every possible attributes that

are related to the occupants indoor HVAC comfort. On the other hand,

the data collection from real subjects with right annotation procedure

is very time consuming and costly.

Generally, ML models needs adequate data to train and this is a prime

requirement in any predictive models. To mitigate the data availabil-
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ity problem, an effective synthetic data generation technique addressing

associated challenges can be a game changer. The high-dimensionality

might be the curse in modeling indoor thermal comfort preference. Be-

cause there might have some features that are not relevant and can even

downgrade the performance of the predictive model. Hence, identifying

the possible relevant set of features is a prerequisite of the system with

high-dimensional data.

In this research, we propose a new indoor thermal comfort preference

prediction system by addressing the above-mentioned challenges by in-

corporating CTGAN and multiple feature selection techniques. First, we

address the data inadequacy challenge by employing one of the most

successful synthetic data generation techniques that incorporate the

multi-modal distribution in the numeric features with mode-specific

normalization technique. In addition with the data adequacy problem,

datasets related to the PTC preference are generally imbalanced, which

might make the performance biased towards the majority class samples.

By incorporating CTGAN, we address also the data imbalance problem

by synthetically generating the data for minority class samples.

The best set of relevant features generally provides high performance in

predictive modeling in case of high-dimensional datasets. Before apply-

ing feature selection techniques, we conducted experiments to determine

whether highly correlated features exist in the PTC dataset. Our hypoth-

esis for this experiment was that if we found more correlated features

related to PTC preference prediction, we could then make use of fea-

ture selection techniques to filter out irrelevant, noisy, and redundant

features. To achieve this, we carried out experiments on a PTC prefer-

ence prediction dataset [191]. The correlation among the 82 features,

based on Pearson’s correlation coefficient analysis, is illustrated in the

heatmap representation in Fig. 25.

We observed that more than 20 features out of the 82 different phys-
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Figure 25: Heatmap depicting correlation coefficient among different
features

iological, environmental, and weather features are highly correlated

(ρ ≥ 0.80) [281]. With these findings, we developed the idea to apply var-

ious feature selection techniques to filter out irrelevant features. Our

previous paper, based on the preliminary findings on the effect of apply-

ing feature selections, is published in the proceedings of the ACM Inter-

national Conference on Systems for Energy-Efficient Buildings, Cities,

and Transportation (ACM BuildSys 2022) [281]. Inspired by the impres-

sive preliminary findings, this extended research applied multiple fea-

ture selection techniques and introduced CTGAN to generate synthetic

data samples for effectively training ML models.

We conducted experiments by training six different ML models on a stan-

dard PTC prediction dataset by generated synthetic data samples em-

ploying CTGAN for thermal comfort prediction. We leveraged the best-

selected feature set, applying multiple feature selection techniques, for
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training the ML models. Since the dataset was imbalanced, we care-

fully utilized multiple evaluation metrics, including Cohen’s Kappa and

Area Under the Curve (AUC), along with accuracy, that can measure the

prediction performance a ML model for imbalance data distribution.

The experimental results, encompassing a wide range of settings,

demonstrated the superiority of the proposed method with synthetically

generated data focusing on feature selection techniques. The perfor-

mance of predictive models trained on synthetic data significantly out-

performed the baseline, as well as models trained on real data with

feature selections. Compared to known related works, our methods

also achieved much higher performance in terms of all evaluation met-

rics (AUC, Kappa, and Accuracy). The contributions of this research are

summarized as follows:

• We introduced CTGAN, a synthetic data generation technique, to

address the problem of data inadequacy by generating new per-

sonal thermal comfort data for individuals.

• We employed multiple feature selection techniques to identify the

best possible set of relevant features for effectively modeling per-

sonal thermal comfort preference prediction.

• The experimental results demonstrated the superiority of our

framework in modeling thermal comfort preference prediction. We

achieved significantly higher performance after applying feature se-

lection techniques and CTGAN, a synthetic data generation tech-

nique. The combination of both techniques showed a significant

improvement in performance compared to known related methods.

In the remainder of the paper, we present state-of-the-art on personal

thermal comfort preference prediction in section 7.2. We then present

our proposed thermal comfort modeling framework combining on CT-

GAN and feature selection techniques in section 7.3. In section 7.4, we
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discuss about the dataset, evaluation metrics, experimental design and

the findings by demonstrating results for wide range of experiments.

Finally, we conclude our findings with future research direction in sec-

tion 7.5.

7.2 Literature Review

The prior works on modeling PTC preferences are associated with the ex-

periments on the data collected from living labs [152, 26, 139, 177, 179,

180, 289]. Generally, a large number of features are included, often the

amount of data samples available after cleaning the data of any missing

value in the features decreases [152, 177, 289], especially for experi-

ments including physiological metrics for an occupant. Consequently,

classical ML models often have more predictive power compared to deep

learning based models [100, 325, 198, 99]. Therefore, unlike the latter

models, which automate the feature engineering by learning from the

data, with the classical models, feature engineering plays a key role in

the predictive power.

However, most of the datasets for PTC preference prediction task are

small in sample size and the sample distributions among different

classes are quite imbalanced. Since ML models need adequate data for

learning the pattern from the samples, it is challenging to train models

with small dataset. In addition, collecting big dataset from the partici-

pants in a living lab setting is quite time consuming and costly. There-

fore, synthetically generating data samples on the available data has got

considerable attention in thermal comfort modeling research in recent

time [237, 334, 78, 329, 328].

To address the data inadequacy challenges in thermal comfort prefer-

ence prediction task, several methods has been proposed that gener-

ate synthetic data [237, 334, 78]. Synthetic data generation techniques
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are also often applied for balancing the data [277, 287]. Quintana et

al. [237] employed conditional generative adversarial networks to gen-

erate synthetic data samples for minority class to address class imbal-

ance problem. Similarly, conditional Wasserstein GAN has been applied

by Yoshikawa et el. [334] for balancing the thermal comfort preference

prediction dataset. Das et al. [78] also applied basic GAN architecture

for the same purpose.

Evidently, the inclusion of redundant features degrades the performance

of the ML model [7]. Feature selection has also been of interest of similar

fields, e.g. in occupancy prediction where the objective is to predict the

occupancy count of the rooms in a building, adaptive lasso feature selec-

tion has been used to select the most relevant features [316]. Similarly

in [95] authors use genetic algorithms for feature selection.

Feature selection techniques based on manual observation that evalu-

ate the best combination by the prediction performance of the trained

model. For instance in [152], authors tried out the various combina-

tions of the input features and concluded that skin temperature and

heating settings are the best predictors for thermal comfort. In a similar

study [289], authors examined the skin temperature at 6 points on the

body and evaluated the various combinations, besides also proposing

a new feature representative of the body’s average temperature based

on Ramanathan’s formula as a combined feature [289]. In another

study [194], authors defined 3 feature sets and evaluated their predic-

tive power via precision and recall. The above-mentioned approaches,

despite being the most prevalent approaches adopted in the literature,

require significant background knowledge regarding the features and

significant manual labor. Also, the manual approach might not neces-

sarily result in the best combination, especially for datasets with high

dimensions.

Another selection method is related to the prior knowledge from thermal
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Figure 26: A high-level building block of the proposed PTC preference
prediction with synthetic data using CTGAN focusing on feature selec-
tion

comfort domain and literature. For example, in [343], authors have de-

fined new features based on the ASHRAE standard [320] which would

be representative for model structure and heat balance of the body. In

another study [115], authors derived new features based on the polyno-

mial basis function to capture the relation between the environmental

features and thermal perception. Although these groups of studies may

introduce new crucial features that may promote the predictive power,

they still have to employ a selection process to omit the less productive

features. Similar to the first group of the studies, this approach also

requires prior knowledge while introducing new features.

One of the most classical ways is to apply feature selection techniques

to find the relation between the input variables and the target variable.

For example, in the study conducted in [65], authors tried to find the

relation between the thermal sensation and the air quality via multi-

linear regression and hypotheses testing. However, in their study they

do not differentiate between heating and cooling. Similarly, in [114],

authors used Lasso feature selection to select among the features that

collected from an experimental study. Additionally, in the study done
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in [191], authors employed Pearson correlation coefficient among the

features and the target to measure the importance of the introduced

features.

In this research, we applied conditional tabular GAN [329, 328] in-

spired by the success achieving new benchmark. CTGAN can solve

the multimodal distributions in the numeric data points by incorporat-

ing mode-specific normalization technique and address challenge asso-

ciated with categorical features applying variational Gaussian-Mixture

model [329, 328]. Adequate training data, complemented by synthetic

data generated through CTGAN, ensures the effective training of ML

models. Furthermore, this can address the issue of data imbalance

in the training set, ensuring that the model does not exhibit bias to-

wards any majority class. On the other hand, we incorporated multiple

feature selection techniques to identify the best set of features that help

the ML models to achieve higher performance in thermal comfort pref-

erence prediction.

7.3 Methodology

The overview of our proposed PTC preference prediction framework is

illustrated in Fig. 26. We first generate synthetic data applying CTGAN

and then apply four different feature selection techniques to identify the

best possible sets of features. With the selected features, we employed

six different ML classification models to predict occupants’ thermal com-

fort preference.

7.3.1 Synthetic Data Generation with CTGAN

A significant challenge in developing predictive models for PTC prefer-

ences arises from the scarcity of adequate data. The dataset [191] uti-

lized in our experimental work, as described in greater detail in Sec-
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tion 7.4.1 was sourced from a group of 14 individuals. These subjects

participated in data collection activities that involved the annotation of

their thermal comfort preferences while residing in living laboratories

located in Berkeley and San Francisco.

It is worth noting that acquiring large datasets specially for training of

state-of-the-art ML models for PTC preference prediction is expected to

be very expensive and time consuming. Consequently, there is poten-

tial value in generating synthetic data through the application of robust

data generation techniques. This approach is inspired by the remarkable

achievements of generative adversarial networks (GAN) when applied to

tabular data, as evidenced by prior works [328, 329]. Specifically, we ex-

plore the application of conditional tabular GAN (CTGAN), which offers

particular advantages in addressing challenges related to mixed data

types and multi-modal distributions when generating synthetic tabular

data.

Unlike other GAN-based methods including WGAN [17] and WGAN-

GP [116], CTGAN can capture the heterogeneity of the real-world

data [328, 329]. To handle mixed data in creating synthetic data, CTGAN

developed a full workflow from data preprocessing to modifying GAN ar-

chitecture. The major challenge that CTGAN solved is non-Gaussian

multimodal distribution by introducing a mode-specific normalization

technique. It handles this problem by following multimodal distribu-

tions. By applying a variational Gaussian mixture model (VGM), it can

represent each continuous real-valued feature in a one-hot vector that

indicates the sampled mode and the normalized value [328, 329]. To

tackle challenges posed by categorical features, CTGAN introduced the

sparsity of one-hot-encoded vectors in real-valued data with probabil-

ity distributions [328, 329]. Further, it introduced a conditional data

generator that gets ride of the challenges posed by multimodal and im-

balanced data distributions. The detail description of CTGAN can be
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Figure 27: Heatmaps for four different subjects highlighting the corre-
lation among different features

found in [328, 329].

7.3.2 Feature Selection Techniques

Classifiers are often misled by redundant, correlated and noisy features.

In case of a high dimensional dataset, selecting best features’ set be-

fore applying classifier would be a better approach for modeling thermal

comfort. In this section, we will outline our visual exploration of feature

redundancy. This exploration indicates the usefulness of feature selec-

tion techniques to filter out less relevant features. Next we introduce

four feature selection techniques in our study to filter out redundant

and correlated features to improve the performance of PTC prediction

model.

Visual exploration: We explore the correlation among different features
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Figure 28: The workflow of the forward feature selection (FFS) technique
(Figure created based on [281])

across occupants numerically as well as visually to detect patterns in

them. Heatmaps in Fig. 27, show the feature correlation for four dif-

ferent occupants. We can see that there are a substantial number of

features that are correlated to each other. However, we can also see that

the correlation coefficients among different features are quite different

among different occupants. These observations and findings illustrate

why PTC prediction is a challenging task. The detailed view also shows

that there are some common patterns and correlations among some fea-

tures across the occupants. With this preliminary analysis, we hypoth-

esize that the elimination of these correlated and redundant features

might improve the PTC prediction model.

Correlation-based feature selection: Since one of our primary objec-

tives is to filter out irrelevant features before applying classifiers, we con-

ducted a correlation analysis across all features. In correlation-based

feature selection, we consider a feature as redundant if it has a high
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correlation coefficient (ρ ≥ 0.80) and remove it from the list [281]. We

compute the Pearson correlation coefficient between two features as fol-

lows:

ρ( fa, fb) =
∑

n
i=1 ( fai− f̄a)( fbi− f̄b)√

∑
n
i=1 ( fai− f̄a)2 ·∑n

i=1( fbi− f̄b)2
(7.1)

where fa and fb are two features from the list of features F =

{ f1, f2, f3, . . . , fk}. The average feature values for two different features fa

and fb are denoted by f̄a and f̄b, respectively [281].

Chi-Square test-based feature selection: The target of this technique

is to select those features, which have higher dependency with the re-

sponse. In statistics, Chi-Square test is a prominent technique applied

to test the independence of two different events. In this research, how-

ever, we employed Chi-Square test as a tool to select the best set of fea-

tures. Given two different variables, Chi-square test computes how the

expected count E deviates from the observed count O for those two vari-

ables. The computation is done as X 2 = ∑
(Oi−Ei)

2

Ei
. We employ this test

to determine the relationship between specific features and the labeled

response. Chi-Square will return a smaller value when two features are

independent. In other words, the observed count is close to the expected

count. Hence, the higher the Chi-Square value the feature is more de-

pendent on the response and that feature should be selected for train-

ing the model. We applied iterative approach to have Chi-Square test

for each feature and selected the best features’ set. To select an optimal

value for the number of selected features, we make use of a grid search.

The details on parameter tuning is presented in section 7.4.4

Supervised forward feature selection: We applied supervised forward

feature selection (FFS), which enables the selection of more insightful

features through a greedy iterative selection procedure. We present the

FFS procedure in Fig. 28 [281]. This approach first utilizes every feature

individually and applies a baseline classifier to predict occupants’ per-

sonal thermal comfort. By comparing the performance of all individual
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features, it selects the best-performing one as fbest. The first selected

feature fbest is then added to the selected feature set S. Subsequently,

FFS then combines the remaining features fi one at a time to the selected

feature set S and applies the classifier separately [281]. Considering the

performance of the classifier, FFS selects the feature fi if the combina-

tion achieved better performance than the previous classifier with the

already selected feature set S. This greedy approach continues for the

rest of the features. Applying this FFS approach allows us to select the

best set of features that are effective in predicting occupants’ PTC pref-

erences efficiently [281].

Supervised backward feature elimination: The working principle of

backward feature elimination (BFE) is the opposite of forward feature

selection. Unlike the forward feature selection approach, it first applies

all the features feeding to a classifier to model PTC and then computes

the classification performance. After computing the performance, it it-

eratively discards one feature at a time and checks whether the perfor-

mance of the model increases or decreases without that feature. If the

performance decreases, then it hypothesizes that the feature has an im-

portant role in modeling PTC. Consequently, it includes that feature in

the list of important features. In the opposite case, it ignores the feature

and discards it as less relevant.

7.4 Experiments

This section presents the wide range of experimental setups and perfor-

mance evaluations of our proposed methods that validate the efficiency

in modeling personal thermal comfort in terms of multiple evaluation

metrics on a PTC dataset.
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7.4.1 Dataset

We conducted experiments on a PTC preference prediction dataset col-

lected by Liu et al. [191]. The dataset was collected and annotated by

14 different subjects living in the areas of Berkeley and San Francisco.

During the study, the authors measured the skin temperature from dif-

ferent parts of the subjects’ bodies and the surrounding room tempera-

ture where the subjects were present. Additionally, they also measured

the activity and heart rate of the subjects using accelerometers and po-

lar sensors, respectively. The experiments spanned 14 days, with each

subject expected to provide their thermal comfort preference 12 times a

day, categorized as “Cooler,” “Warmer,” or “No Change.” Out of the col-

lected 3848 samples, the distribution across different classes is quite

imbalanced. Fig. 29 illustrates the percentage of samples across differ-

ent classes, showing that 68.5% of samples are for “No Change,” while

16.5% and 15% are for “Cooler” and “Warmer,” respectively.

Figure 29: Distribution of samples over PTC preferences
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7.4.2 Data Pre-Processing

The values of the features in the dataset vary widely in terms of their

units and ranges. In addition, there are some missing values which we

tackled by applying median values. After that we applied min-max nor-

malization [135] to map each variables’ values to a certain range [0,1].

We also grouped the dataset based on individual occupant and analyzed

the features for individual occupants.

7.4.3 Evaluation Metrics

In the assessment of any ML model, it is crucial to consider the evalu-

ation metrics with respect to the characteristics of the dataset. Accord-

ing to the literature on PTC models [190], Accuracy, AUC (Area Under

Curve), and Cohen’s kappa are the three widely used evaluation metrics.

The validity and usefulness of evaluation metrics also depends on the

specific domain and characteristics of the datasets. In our case, it is es-

sential that the evaluation metric are sensitive to the class-imbalance.

For instance, using accuracy alone will be problematic, since this met-

ric will not reflect the class-wise prediction performance. Considering

the imbalance distribution in the personal thermal comfort datasets, a

model classifying all the samples as “no change” with an 80% share in

the original dataset, would result in an 80% accuracy, which does not

necessarily suggest the strength of the classification.

In the following formulations, True Positive (TP) is an outcome where the

model correctly predicts the positive class, True Negative (TN) is an out-

come where the model correctly predicts the negative class, False Posi-

tive (FP) is an outcome where the model incorrectly predicts the positive

class, False Negative (FN) is an outcome where the model incorrectly

predicts the negative class.

Accuracy: As shown in equation 7.2, Accuracy only requires the class

7.4 Experiments



7 Thermal Comfort Preference Modeling 139

labels for evaluation and does not examine the separability strength of

the model. Nonetheless, it has also been reported to be compared with

the previous studies.

accuracyclass1 =
T P+T N

T P+T N +FP+FN
(7.2)

Area under the curve (AUC): In contrast to Accuracy, AUC [138] also

considers how well the predicted classes are distinguished, by taking the

prediction probabilities of each class into account. Technically, AUC is

the area under the curve of the ROC (Receiver Operative Characteristics)

which is the representation of TPR (True Positive Rate) with respect to the

FPR (False Positive Rate), defined in equations 7.3 and 7.4, respectively

when the decision boundary is moved through the data points.

T PR =
T P

T P+FP
(7.3)

FPR =
FP

T N +FP
(7.4)

Fundamentally, this metric is proposed for binary classification prob-

lem, however, in order to apply it to the multiclass cases, the One vs

Rest approach has been used.

Cohen’s Kappa: Cohen’s Kappa[138] is often an under-utilized, but

quite useful metric, which also considers the prediction probabilities

of each class. It can be defined as follows:

kappa =
P0−Pc

1−Pc
(7.5)

P0 =
T P+T N

T P+T N +FP+FN
(7.6)
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Pc = P(“Positive Classi f ied”)

+P(“Negative Classi f ied”)
(7.7)

P(“Positive Classi f ied”) =
T P+FP

T P+T N +FP+FN
(7.8)

P(“Negative Classi f ied”) =
T N +FN

T P+T N +FP+FN
(7.9)

Cohen’s kappa considers the quantity of the classes. More precisely,

it consider the probability of classes being changed, defined as PC (the

observed agreement) and P0 (the expected agreement) . It varies from 0

to 1, with 0 being a random classification.

7.4.4 Feature Selection

We applied the four feature selection techniques described in section 7.3.

The number of selected features differ among selection techniques.

Chi-Square technique’s parameter tuning: The Chi-Square-based fea-

ture selection technique requires to tune the parameter k, the number

of selected features. We applied a grid search to identify the optimal

number of selected features and evaluated the performance. The exper-

imental results in terms of AUC are illustrated in Fig. 30. The figure

concludes that the optimal number of features (highest AUC) should be

k = 17 and the performance with those selected features are on the y-

axis. Therefore, we select k = 17 and apply this parameter value in our

chi-square-based feature selection.

Result of feature selection techniques: None of the introduced fea-

ture selection techniques need parameter tuning except the Chi-Square

test. For correlation-based selection, we make use of ρ >= 0.80 (Eq. 7.1)

as highly correlated features. In turn, we could apply other techniques

straight forward. Table 12 presents the detailed results of our feature

selection techniques with the number of selected features. The four fea-
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Figure 30: Tuning the parameter k, number of selected features in Chi-
Square feature selection using grid search

Table 12: Results of applying feature selection techniques and notable
selected features

Features Chi-Square Correlation FFS BFE
# of features 17 59 27 32

Age x x x x
Height x x x x

Therm_sens x x x x
Temperature x x x x

Workhr x x x x
Hear rate x x x x

Sex - x - x
ColdSens - x x x
ColdExp - x - x

Coffeeintake - x - x
Location x x x x
Humidity - x - x

WristT x x - x
Winvel - x x -
AnkleT - x x x
PantT - x x x
Solar x x x x
Act x - x x
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Table 13: Performance of applying feature selection techniques in differ-
ent ML models trained on real data in global thermal comfort prediction.
The best results for each feature selection techniques are in bold. The
blue-colored values indicate the best performance among all experimen-
tal settings.

Feature Selection Model Kappa Accuracy AUC

Chi2-based Selection

DT 0.6331 0.8374 0.9229
SVM 0.5977 0.8270 0.9029
KNN 0.4966 0.7906 0.8574
BNB 0.4644 0.7464 0.8199
XGB 0.6585 0.8491 0.9401
RF 0.6567 0.8517 0.9378

Correlation-based
Selection [281]

DT 0.6551 0.8348 0.8964
SVM 0.5054 0.8023 0.9101
KNN 0.2830 0.7308 0.7802
GNB 0.2825 0.5825 0.7267
XGB 0.6830 0.8595 0.9370
RF 0.5417 0.8127 0.9167

Forward Feature
Selection [281]

DT 0.6471 0.8426 0.8852
SVM 0.5441 0.8127 0.9167
KNN 0.3939 0.7646 0.8184
GNB 0.4627 0.7256 0.7923 5
XGB 0.6782 0.8569 0.9362
RF 0.6109 0.8374 0.9380

Backward Feature
Elimination

DT 0.6709 0.8426 0.9007
SVM 0.5474 0.8140 0.9227
KNN 0.3733 0.7542 0.8029
GNB 0.4291 0.7113 0.7740
XGB 0.6717 0.8556 0.9438
RF 0.5895 0.8296 0.9375

ture selection techniques chi-square based, correlation based, forward

feature selection and backward feature elimination are denoted as Chi-

Square, Correlation, FFS and BFE, respectively. As outlined above, in

the case of Chi-Square-based feature selection technique, the number

of selected features was a result of our parameter tuning. We can see in

Table 12, some features are common in all selected feature sets. From

82 different features, we enlisted here the most notable 19 features. Of

these 19 features, some features have different varieties i.e., the tem-

perature has different varieties such as mean, gradient, and standard
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deviation of different time slots.

Similar to temperature, skin temperature on the wrist and ankle, wind

speed, and wrist acceleration also have some varieties. Here in this list,

we checked if any one of the varieties is selected by the feature selection

technique. However, we can see that age, height, thermal sensitivity,

temperature, working hour, heart rate, weight, and subject location are the

common features that all the selection techniques selected as relevant.

Other than that, the skin temperature of the wrist, ankle, and body

proximity temperature are important features considered by the three

selection techniques. Similarly thermal sensitivity, cold sensitivity and

cold extremity experience also came out to be important in modeling

PTC preference.

7.4.5 Experimental Setting

We first applied feature selection techniques and trained the ML models

on original data samples collected from 14 different subjects. For all of

these feature sets selected based on selection criteria, we carried out

a range of experiments to validate the performance of our introduced

feature selection techniques. At first, we applied our methods on the

whole dataset combining samples from all 14 subjects. The primary in-

tuition was to observe how our feature selection methods perform on

overall thermal comfort dataset. In other words, evaluating our meth-

ods on the global thermal comfort (GTC) preference in buildings. Then

we applied the similar experimental setting to train ML models on syn-

thetically generated data by CTGAN with the selected relevant features

sets.

Finally, with the selected features leveraging four different feature se-

lection techniques, we applied six different classical classifiers to model

the thermal comfort of the occupants. Then, we applied two best per-
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Table 14: Performance of applying feature selection techniques in dif-
ferent ML models trained on synthetic data with CTGAN in global ther-
mal comfort prediction. The best results for each feature selection tech-
niques are in bold. The blue-colored values indicate the best perfor-
mance among all experimental settings.

Feature Selection Model Kappa Accuracy AUC

Chi2-based Selection

DT 0.6400 0.7629 0.8857
SVM 0.6944 0.7983 0.9245
KNN 0.5410 0.7020 0.8716
GNB 0.5746 0.7206 0.8779
XGB 0.8265 0.8854 0.9734
RF 0.8054 0.8713 0.9638

Correlation-based
Selection

DT 0.5986 0.7366 0.8760
SVM 0.7449 0.8320 0.9404
KNN 0.5469 0.7067 0.8702
GNB 0.5827 0.7261 0.8671
XGB 0.8483 0.8998 0.9786
RF 0.8008 0.8686 0.9602

Forward Feature
Selection

DT 0.6537 0.7687 0.8836
SVM 0.7885 0.8603 0.9592
KNN 0.5265 0.6957 0.8859
GNB 0.5676 0.7170 0.8715
XGB 0.8872 0.9253 0.9890
RF 0.8282 0.8860 0.9765

Backward Feature
Elimination

DT 0.6673 0.6673 0.8973
SVM 0.7983 0.7983 0.9606
KNN 0.4954 0.6769 0.8730
GNB 0.6164 0.7485 0.8954
XGB 0.8802 0.9208 0.9885
RF 0.8455 0.8979 0.9788

forming models to observe the performance on PTC preference predic-

tion for individual subject. By doing so, we applied our method on 14

different subjects’ collected samples separately to model PTC. The re-

mainder of the section presents the experimental results for modeling

global and personal thermal comfort and performance comparison with

prior works. We repeat all experiments for GTC and PTC with train-

ing the models with our generated synthetic data by conditional tabular

generative adversarial networks for modeling thermal comfort preference

prediction.
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7.4.6 Global Thermal Comfort Prediction Performance

We designed the experiments in a way to visualize the performance of

the feature selection techniques in modeling thermal comfort preference

with the trained models on real data. As we noted earlier that the data

might not be adequate to train ML models, we employed CTGAN to

generate quality synthetic data and combine it with real data for training

the model with feature selection. Therefore, we first illustrate the per-

formance of different feature selection techniques on real data and then

we present the results on applying CTGAN for synthetic data generation.

Performance on real data: The performance of six different classifiers

trained on real data samples of the global thermal comfort dataset with

our introduced feature selection techniques is summarized in Table 13.

With the selected features for each feature selection technique, we ap-

plied six different classifiers: decision tree (DT), support vector ma-

chine (SVM), K-nearest neighbor (KNN), Gaussian Naive Bayes (GNB),

XGBoost (XGB), and random forest (RF). This results in a total of 24

experimental setups.

Table 13 shows that XGBoost with the correlation-based feature se-

lection technique achieved better performance among all experimen-

tal settings (highlighted in blue) in terms of Cohen’s Kappa and Accu-

racy. However, in terms of AUC, the XGBoost model with the backward

feature elimination technique obtained the best performance. Among

the six different ML models, the XGBoost model is consistently better

across all feature selection techniques, except for Forward feature selec-

tion and Chi-square-based selection techniques. In both cases, random

forest (RF) acquired the highest accuracy for the Chi-square-based se-

lection procedure and the best AUC for the forward feature selection

technique. However, it is also observed that the performance difference

among correlation-based, forward feature selection, and backward fea-
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ture elimination is not significant. We can broadly say that among all

six different classifiers, XGBoost and random forest are the two best-

performing models across all feature selection techniques.

Figure 31: The performance comparison of all experimental settings be-
tween the models trained on original data and synthetically generated
data by CTGAN, respectively.

Figure 32: The performance comparison of all experimental settings be-
tween the models trained on original data and synthetically generated
data by CTGAN, respectively.

Performance on Synthetic Data: The performance of introduced fea-

ture selection techniques with the synthetically generated data employ-

ing the prominent conditional tabular GAN is presented in Table 14.

The result shows clearly that the performance has been improved sig-

nificantly for all ML models with the trained models using synthetic data.
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The best performing model among all experimental settings is XGBoost

that used the selected features based on forward features selection tech-

niques, numerically the performance 20%, 7% and 5% higher than the

best performing model trained on original data (Table 13 ) in terms of

Kappa, Accuracy and AUC, respectively. Based on AUC score, XGBoost

model on real data with backward feature selection technique achieved

highest performance (numerically, 0.9438 (Table 13)) and on contrary

the XGBoost model trained on synthetic data generated by CTGAN is

way more higher than the the performance (numerically, 0.9885) on

same model trained with original data.

The superiority in modeling thermal comfort preference with syntheti-

cally generated data is visualized in Fig. 31 and 32 using bar and line

chart. In both figures, we highlight the difference in achieving the higher

performance in terms of most significant evaluation metrics AUC be-

tween model trained with original data and with synthetic data for all

24 experimental settings. In Fig. 31, the black colored bar denotes the

performance for trained models on synthetically generated data by CT-

GAN and the gray colored bars represent the performance for models

on original data. Similarly, the orange and blue colored line in Fig. 32

represent the similar performance of models with and without synthetic

data.

From both the figures we can see that, the models trained with synthetic

data demonstrated higher performance compared to all experimental

settings except two models, decision tree for Ch2-based and correlation-

based feature selection technique. Fig. 32 clearly illustrates the per-

formance improvements after integrating CTGAN based synthetic data

generation techniques. However, based on the facts and findings dis-

cussed above we can conclude that feature selection on synthetic data

can achieve higher performance in predicting thermal comfort prefer-

ence and that can be used to calibrate the indoor environment. Hence,
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Table 15: Performance in modeling PTC preference compared to with
baseline.

Sub. ID Model [CTGAN +FS] Liu et al. [191]
Kappa Accuracy AUC Kappa Accuracy AUC

1 XGB 0.2791 0.5294 0.8315 0.17 0.56 0.68RF 0.2718 0.5490 0.7994

2 XGB 0.3049 0.6666 0.8202 0.51 0.74 0.75RF 0.1898 0.5833 0.8065

3 XGB 0.7816 0.8785 0.9823 0.50 0.77 0.86RF 0.7521 0.8598 0.9778

4 XGB 0.1684 0.5393 0.8059 0.07 0.86 0.73RF 0.2014 0.5505 0.7904

5 XGB 0.5901 0.7528 0.9311 0.30 0.69 0.79RF 0.5191 0.6853 0.9327

6 XGB 0.3447 0.5500 0.7973 0.17 0.53 0.63RF 0.2595 0.4875 0.7970

7 XGB 0.5399 0.7230 0.9289 0.37 0.69 0.77RF 0.5334 0.7153 0.9245

8 XGB 0.6666 0.8974 0.9816 0.33 0.88 0.84RF 0.3960 0.7350 0.9610

9 XGB 0.3768 0.6547 0.9153 0.21 0.79 0.81RF 0.3741 0.7261 0.9020

10 XGB 0.5430 0.7294 0.8947 0.18 0.63 0.67RF 0.4430 0.6588 0.8555

11 XGB 0.43557 0.6590 0.9149 0.37 0.79 0.79RF 0.4590 0.7045 0.9109

12 XGB 0.4197 0.6545 0.8756 0.18 0.63 0.76RF 0.3243 0.6363 0.8408

13 XGB 0.9000 0.9545 0.9477 0.41 0.75 0.83RF 0.7928 0.9090 0.9643

14 XGB 0.1793 0.4018 0.9416 0.04 0.80 0.75RF 0.1917 0.4392 0.9030

this might provide more occupant-friendly environment that can be both

healthy and energy efficient in smart home.

7.4.7 Performance on PTC Preference Prediction

To predict occupants’ PTC preferences, we trained two ML models, in-

cluding XGBoost and Random Forest, which are the two best-performing

models on real and synthetically generated data. We considered the se-

lected features by applying backward feature elimination techniques and

trained both models for each subject separately on synthetically gener-
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Figure 33: Performance comparison with existing study in terms of AUC

Figure 34: Interpretation of PTC model with feature selection using
SHAP values

ated data leveraging CTGAN. The experimental results in predicting PTC

preferences for all 14 different subjects are presented in Table 15. We

also compared the results with existing work [191], where they trained

classical ML models on the same dataset. The best PTC preference pre-

diction performance among multiple ML models for every subject [191]

7.4 Experiments
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is reported in the right-hand side of Table 15.

Our trained models with the selected features on synthetic data by

CTGAN outperformed the models in related work in terms of Cohen’s

Kappa, except for one subject (Subject 2). In terms of the most impor-

tant metric, AUC, our method, combining synthetic data generation and

feature selection techniques, significantly outperformed existing works

for all 14 different subjects. AUC is the metric that can better measure

a classifier’s performance for imbalanced data distribution.

Liu et al. [191] applied multiple classical ML models on the annotated

data, considering all features. As we mentioned and analyzed earlier,

some features are correlated, redundant, and irrelevant. We observed

that our feature selection techniques identify the best sets of features

related to modeling PTC preference. Compared to prior research, their

model might suffer from irrelevant features that might mislead the clas-

sifiers.

One of the major problems in training the PTC preference model is the

inadequacy of sufficient data samples. We tackled this problem by in-

troducing CTGAN to generate high-quality synthetic data, and utilizing

those data, we trained the models efficiently. Hence, the model has

more data points about particular subjects and can learn better to pre-

dict thermal comfort preference more accurately. The dataset was imbal-

anced, CTGAN also solved that problem and mitigated the possible bias-

related issues in predicting thermal comfort. Based on the evaluation

metrics Kappa and AUC, both recommended due to the data imbalance

issue, our introduced models demonstrated significant improvements.

Therefore, we can say that applying CTGAN for data generation for per-

sonal thermal comfort with feature selection is an effective approach

that can be an effective combination to achieve high performance in PTC

prediction.

To point out the performance differences compared to previous work,
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we present a comparison with related work as a bar chart in Fig. 33 in

terms of performance based on AUC. AUC (CTGAN+FS) and AUC (ES)

denote the performance of our proposed method combining CTGAN and

feature selection (FS) and existing study (ES), respectively, in terms of

AUC. We can also observe from the figure that our method outperforms

prior work for all 14 subjects’ thermal comfort preference prediction. To

the best of our knowledge, this research is one of the few studies that

conduct an extensive study on the impact of synthetic data generation

by CTGAN and effective feature selection techniques in PTC preference

prediction.

7.4.8 Model Interpretability

To understand the priorities in decision-making of PTC model, we

applied one of the successful method, shapely additive explana-

tion (SHAP) [195]. The feature interpretation using SHAP is presented

in Fig. 34. Note that, we conducted this interpretability experiments

with the selected features by applying correlation-based feature selec-

tion technique. The figure shows the 15 most important features that

contributed most to make the decision of our proposed PTC model.

The top two most important features that the model takes into account

are thermal sensation and cold extremity experience. It makes sense

that thermal comfort preference should be dependent on these two fea-

tures most. However, the next three features are age, total working hours

per day and height of the subjects. Next, the skin temperature at ankle

and wrist contributed the PTC model in decision making. Interestingly,

subjects’ sex is also an important feature that is considerable in predict-

ing the PTC. In turn, body proximity temperature, outdoor temperature,

and heart rate is also considerably important features in modeling PTC

preference. This is in line with the feature selection results that we pre-

sented in Table 12.
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7.5 Conclusion and Future Work

This paper proposes a thermal comfort preference prediction method

that combines a two-step process involving synthetic data generation

using CTGAN and the selection of the best set of features by filtering

out irrelevant and noisy features using multiple feature selection ap-

proaches. The results on a wide range of experimental settings demon-

strated state-of-the-art performance and significantly outperformed ex-

isting known related work.

We observed that the ML models trained on synthetic data generated by

CTGAN can predict better PTC preference than on original data samples.

In addition, the introduction of a series of feature selection techniques

helps filter out irrelevant features in modeling PTC preference prediction

tasks. The interpretability of the model with SHAP demonstrated that

the important features also overlap with the selected features. Since

the PTC preference prediction task needs a substantial amount of data

samples per subject to train the model efficiently, the incorporation of an

effective data generation technique can save both data collection costs

and associated time. The findings with feature selection indicate not to

collect unnecessary data from the subject and environment and hence

it might also save potential cost in sensor-based data collection cost.

In the future, we plan to introduce explainable artificial intelligence (XAI)

on a large scale to provide a human-centered explanation so that oc-

cupants can understand the reason behind specific indoor parameter

changes related to thermal comfort in smart homes. Since the PTC

preference prediction model will be used in the smart home to control

the indoor environment, an exciting extension of this work would be to

conduct a user study to design a new collaborative interface for general

users in human-computer interaction (HCI) perspective so that they can

also be included in the loop of the smart heating system.
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8 Introduction

Our research delves into the nuances of explainability techniques across

diverse application scenarios. To shed light on this, we have selected

a unique e-commerce application-product backorder prediction. This

choice is significant as it introduces a new explainable deep learning

model in the business area, specifically tailored to the needs of inven-

tory management stakeholders. We have also made efforts to present the

explanations in various forms and visualizations, enhancing the stake-

holders’ understanding of their product.

This area somewhat differs from the previous applications presented in

the last Part II. The users of both systems are different, and their ex-

pertise in understanding and comprehending explanations varies. The

users of smart home applications are general people, and the stakehold-

ers for product backorder prediction systems are experts in inventory

management. So, the degree of comprehension of the explanation is dif-

ferent. In one of the challenges, we discussed how the variability of user

expertise affects the understanding of the explanation.

With a focus on our objectives, we propose a new explainable convo-

lutional neural network-based product backorder system. Our detailed

experiments on a standard dataset have shown a significant improve-

ment in accurate prediction compared to the known-related works. This

reassures the stakeholders of the robustness and reliability of our new

model, even in the face of a biased dataset with extreme imbalance, as

evidenced by our efficient prediction of backordered products and higher

AUC.

The explanations we have generated, by incorporating SHAP and train-

ing a surrogate model with LIME, are not just comprehensive but also

highly effective. They are presented in various forms and visualization

techniques, empowering the stakeholders to not only understand but
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also take corrective action to maximize their revenue potential.
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9 Explainable Product Backorder Prediction Ex-

ploiting CNN: Introducing Explainable Models in

Businesses

The content of this chapter has been published as a full paper in Electronic
Markets by Springer Nature. The information of the published paper is given
below:

Information of Article: Md Shajalal, Alexander Boden and Gunnar Stevens. 2022.
Explainable Product Backorder Prediction Exploiting CNN: Introducing Explainable
Models in Businesses. Electronic Markets, Springer-Nature 32, 2107–2122. https:
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ture)
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Abstract

Due to expected positive impacts on business, the application of artifi-

cial intelligence has been widely increased. The decision-making proce-

dures of those models are often complex and not easily understandable

to the company’s stakeholders, i.e. the people having to follow up on

recommendations or try to understand automated decisions of a system.

This opaqueness and black-box nature might hinder adoption, as users

struggle to make sense and trust the predictions of AI models. Recent

research on eXplainable Artificial Intelligence (XAI) focused mainly on

explaining the models to AI experts with the purpose of debugging and

improving the performance of the models. In this article, we explore how

such systems could be made explainable to the stakeholders. For doing

so, we propose a new convolutional neural network (CNN)-based explain-

able predictive model for product backorder prediction in inventory man-

agement. Backorders are orders that customers place for products that

are currently not in stock. The company now takes the risk to produce

or acquire the backordered products while in the meantime, customers

can cancel their orders if that takes too long, leaving the company with

unsold items in their inventory. Hence, for their strategic inventory man-

agement, companies need to make decisions based on assumptions. Our

argument is that these tasks can be improved by offering explanations

for AI recommendations. Hence, our research investigates how such ex-

planations could be provided, employing Shapley additive explanations

to explain the overall models’ priority in decision-making. Besides that,

we introduce locally interpretable surrogate models that can explain any

individual prediction of a model. The experimental results demonstrate

effectiveness in predicting backorders in terms of standard evaluation

metrics and outperform known related works with AUC 0.9489. Our

approach demonstrates how current limitations of predictive technolo-

gies can be addressed in the business domain.
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9.1 Introduction

Due to their superior predictive performance, complex machine learn-

ing and deep neural network-based models have received high attention

and are widely exploited in the business domain [35, 137, 69] along with

other fields including image processing [143], health [228, 33] and bioin-

formatics [52, 186]. The tasks of those technologies range across differ-

ent application areas including supply chain management, credit risk

prediction [212, 51], detection of fraud credit card transaction [53, 242]

and marketing campaigns in retail banking [171].

Generally, artificial intelligence (AI) techniques employ a huge size of

training data for making predictions. While there is a huge interest

in such predictions in various business domains [244], one of the ma-

jor problems of complex machine learning models is that they are very

difficult to understand [3, 4, 306]. Several Methods using induced or-

dered weighted averaging (IOWA) adaptive neuro-fuzzy inference sys-

tem (ANFIS) can deal with multidimensional data to predict the quality

of service and hence it help stakeholders in the decision-making pro-

cess [131, 129, 130]. As decisions often depend on a huge number of

model parameters [16], machine learning and deep learning techniques

are like black-boxes or magic boxes to the general users (and often even

for developers). The higher the accuracy of a complex machine learning

model, the more opaque the models tend to become [244]. This opaque-

ness leads to a situation where users might question the predictions,

because they are unable to understand the underlying decision making

processes (i.e. the reasons for why a maybe counter-intuitive recommen-
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dation has been given) [23].

User acceptance is generally one of the main barriers for the success

of technologies in companies. As AI-based recommendations can po-

tentially have a huge impact on operational as well as strategic deci-

sions in companies, it seems to be beneficial if users or consumers of AI

models could better understand why those recommendations have been

made [202]. Apart from increasing trust in AI-recommendations, having

factual explanations of a certain decision would also help users to learn

about the field of application (for instance gaining a better understand-

ing in the importance or non-importance of certain factors for business

decisions) [103]. In addition, according to the general data protection

regulation (GDPR) by the European Union, EU citizens have the right

to receive explanations about AI-based decisions, for instance if an AI

recommendation affects credit worthiness or insurance rates [202, 83].

In this research, we propose a novel explainable predictive model for

product backorder prediction. A backorder is a situation where cus-

tomers can order a product even though that particular product is out

of stock at the time when the order is placed [119, 226]. Basically, its

an order to a future inventory, going along with contingencies as time

of delivery can vary and is not definitely known. Backorders are espe-

cially common for items that are highly popular. While for some items

such as the latest flagship Apple iPhone, such events are quite com-

mon, it can be very unpredictable for other types of products. When

retail companies order high amounts of products based on backorders,

they risk their reputation if they are unable to keep the expected de-

livery dates. Another risk is that customers can cancel their orders

because they don’t want to wait any longer or found another retailer

where the product is in stock, leaving the company with excess prod-

ucts in their inventory. Here, predictive models can help to tackle these

challenge by predicting the probability whether a certain product will be

9.1 Introduction
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backordered or not, giving companies more time to plan and support-

ing them in their inventory management. In related works, researchers

have proposed complex machine learning based methods to predict fu-

ture product backorders. The predictive models include the application

of support vector machine, XBoost, ensemble classifier and deep neural

networks [134, 119, 185, 286].

However, the mere prediction of future backorders only solves part of

the problem. Suppose you are responsible for a particular inventory

management system at a retail company. When you are notified that the

AI model decided that a particular product is going to be backordered

in the near future, what will you do? Would you increase the inventory

level (i.e. obtaining more products in advance)? Would you change any

policy (negotiating with suppliers about faster transit times, lead times

etc)? If you increase the inventory level, how many products would you

order, assuming that some would surely be cancelled? For taking these

decisions, you would need to understand the reasons for the prediction.

Hence, our approach tries to provide insights into the factors that con-

tribute to a certain prediction, helping users to adapt their strategies

accordingly. Our paper contributes in the following ways:

• We proposed a new CNN-based model for backorder prediction.

Since backorders are rare events in inventory management sys-

tems, it is a challenging task to identify them. Their rarity leads to

an extremely imbalanced distribution within datasets. Often, the

percentage of the backodered samples is less than 0.01% (specif-

ically 0.007%, [79]). To address this data imbalance, we incor-

porated an adaptive synthetic oversampling (ADASYN) technique

that generates synthetic samples for a minority class. The results,

based on diverse experimental settings and comparison with exist-

ing known related works, illustrated that our method achieved bet-

ter prediction performance achieving a new state-of-the-art meth-
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ods performance in terms of standard evaluation metrics.

• To provide an overall insight of the predictive model’s decision-

making priorities, we investigate the impact of different attributes

of an order in the predictive models. We introduce an XAI tech-

nique, namely SHAP (Shapely additive explanations), that can in-

terpret and/or explain the predictive model to identify the most

important attributes of the decision making. Hence the stakehold-

ers are enabled to better understand the model’s decision-making

priorities and consider that when they have to work with such tech-

nologies.

• By explaining specific predictions, our method can answer why a

particular product will be backordered or not. Every order has

different feature’s values which are considered to make predic-

tions. Therefore, we trained a local interpretable surrogate model

employing LIME (local interpretable model-agnostic explanations),

and present explanations for an individual prediction to answer the

question “why has this specific decision been made?” Hence, stake-

holders can not only assess the models’ priorities in general, but

also analyse singular decisions to better understand them.

The organization of the rest of this paper is as follows: Section 9.2 sum-

marises related works on predicting product backorders. We present a

brief discussion about different XAI terminologies in section 9.3. In Sec-

tion 9.4, we present our method for predicting future product backorders

and the explanation generation techniques. The predictive performance

of our proposed CNN-based method and performance comparison with

classical machine learning classifiers and known related works are pre-

sented in detail in section 9.5. The decisions of complex machine learn-

ing and deep learning models are explained through different types of

explanations both for models’ priorities as well as specific predictions in

section 9.6. Finally, section 9.7 concludes our proposed methods and

9.1 Introduction
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findings of this study by discussing the prospects of introducing XAI

technology in the business domain.

9.2 Related Work

This section presents the discussion of related research on backorder

prediction and explainable artificial intelligence in supply chain man-

agement. Existing works proposed different models to predict plausi-

ble future backorders in inventory management systems. Based on the

types of techniques used, the predictive models can broadly be classi-

fied into two categories: i) Classical machine learning classifiers and ii)

Deep learning-based predictive models. In the former category, the clas-

sifiers include support vector machine [119], gradient boosting [226, 79],

decision trees, and random forests [134]. The deep learning-based

models employed recurrent neural networks (RNN) [185], deep auto-

encoders [262], as well as deep neural networks (DNN) [286].

Islam et al. [134] proposed a method to predict future backorders by ap-

plying distributed random forest and gradient boosting classifiers. They

introduced a ranged-based approach to cope with the numerous types

of real-time data. However, they did not include some features of the

samples such as features related to inventory level, previous sales, fu-

ture sale forecasting, and lead time. A profit-maximizing function based

approach is introduced by Hajek and Abedin [119].
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Table 16: The summary of existing study on product backorder predic-
tion

Research

Paper

Contributions Explainabaility

Islam &

Amin [134] • Applied Distributed

Random Forest (DRF)

and Gradient Boost-

ing Machine

• Employed SMOTE

oversampling

• Inherent (Global

feature impor-

tance)

• No local explana-

tion to understand

particular decision

Hajek & Abe-

din [119] • A genetic algorithm-

based profit maximiz-

ing prediction system

• Applied classical ML

classifiers

• Not Explainable
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Shajalal et

al. [286] • Proposed a deep neu-

ral network-based

prediction model

• Combined random

undersampling and

synthetic oversam-

pling to overcome

class imbalance

problem

• Not Explainable

Li et al. [185]

• Applied recurrent

neural network (RNN)

based predictive

model

• Exploited SMOTE,

ADASYN, and ran-

dom undersampling

for balancing the

dataset

• Not Explainable
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Saraogi et

al. [262] • Proposed deep au-

toencoder based

model for backorder

prediction

• Used unsupervised

approach rather than

supervised one

• Not Explainable

Ntakolia et

al. [226, 225] • Introduced classical

machine learning

model to predict

backorder

• Incorporated in-

terpretability to

understand decision

making

• Interpreted the

global feature

importance to

explain the model

• No local explana-

tion for particular

decisions
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Santis et

al. [79] • Exploited classical

machine learning

classifier including

gradient boosting

and ensemble model

• Used bagging to over-

come data imbalance

problem

• Not Explainable

Lawal & Ak-

intola [174] • Applied recurrent

neural network (RNN)

based predictive

model

• Exploited SMOTE,

ADASYN, and ran-

dom undersampling

for balancing the

dataset

• Not Explainable

They aligned their profit maximization function with classical machine

learning classifiers. The performance of their methods demonstrated

how much profit can be increased by predicting future backorders. An

explainable classical machine learning-based method is proposed by

[226]. Their method applied several classifiers such as random for-

est, XGBoost, SVM, etc. They also applied shapely additive values to

present the global explanations to interpret the models. Similarly, San-

tis et al. [79] also used different classical classifiers. The performance
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of deep learning approaches is comparatively better than the classical

classifiers. Shajalal et al. [286] proposed a deep neural network (DNN)

based backorder prediction model. Inspired by the success of deep

learning classifiers, Li et al. [185], Saraogi et al. [262] and Lawal and

Akintola [174] applied deep auto-encoder, a recurrent neural network-

based classification models.

Backorders are not a common scenario in inventory management sys-

tems. In turn, the number of non-backordered items is much larger than

the backordered ones. Hence, real-time data collected from any inven-

tory system will be strongly imbalanced, leading to challenges in predict-

ing future backorders on that basis. In this particular task [185], the

ratio between majority (non-backordered) and minority (backordered)

samples is 100:0.007. In the case of an imbalanced dataset, the clas-

sifiers might learn the pattern with potential bias. That is why differ-

ent under-sampling, oversampling, and class weight-based approaches

are common to balance the dataset and bias [119]. Randomly dupli-

cating the minority samples or randomly discarding the majority sam-

ples has also been applied to balance the dataset [62]. But randomly

duplicating the minority samples will increase redundant samples and

hence the model might be biased. Therefore, generating synthetic mi-

nority samples based on the Euclidean distance is a popular approach

to balance the dataset. This method is called SMOTE (Synthetic Mi-

nority Over-sampling Technique) [62]. The combination of SMOTE and

random under-sampling has been applied by Hajel & Abedin [119] and

Shajalal et al. [286, 273]. Li et al. [185] applied different balancing tech-

niques including SMOTE, ADASYN (Adaptive Synthetic Sampling) [123]

and random under-sampling. Bagging [44] is also applied for the same

purpose by Santis et al. [79]. Table 16 summaries the existing methods

for predicting product backorders. However, to the best of our knowl-

edge, none of the studies applied XAI to interpret their machine learning
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Table 17: Existing research gaps in explainable product backorder pre-
diction and our steps to fulfil the research gaps.

Issue Research Gaps in Lit-
erature

Our Contributions

Performance Most existing methods
suffer from low per-
formance in modelling
product backorder pre-
diction due to extreme
data imbalance prob-
lem. The majority of
prior studies applied
classical ML methods.

We proposed a novel
CNN-based prediction
model with the ADASYN
technique that achieved
new state-of-the-art
performance.

Model’s In-
terpretability

Lack of interest in ap-
plying XAI to explain
the predictive model’s
decision-making priori-
ties. Hence the exist-
ing models can be seen
by the stakeholders as
black-box.

We introduced shapely
additive explanation
(SHAP), one of the most
successful XAI tech-
niques to explain the
models’ global priorities
that help stakeholders
in sense-making about
the working strategy of
the predictive models.

Local Expla-
iability

No existing works ex-
plain the specific pre-
diction to answer “why
has this specific decision
been made?” (i.e., why a
certain product is going
to be backordered?)

We exploit LIME and
SHAP to explain specific
predictions about why
a particular product
is assumed to be on
backordered or not.
These techniques can
explain which fea-
tures/attributes are
responsible for a par-
ticular decision. Hence
the stakeholders are
enabled to take steps to
overcome future back-
order and reduce the
company’s loss.

model except [226].

In our paper, we propose a convolutional neural network framework-

based model that outperformed different classifiers including classical
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and deep learning-based models in backorder prediction. Ntakolia et

al. [226] interpreted only classical models mainly with global explana-

tions. Our method integrated explainable artificial intelligence that gen-

erates global explanations for the classical and deep learning-based pre-

diction model. Though the global interpretation is useful to illustrate the

general mechanisms and behavior of the model, it can not explain a par-

ticular prediction. We introduced a model applying shapely additive ex-

planation [195] and local interpretable model-agnostic explanation [244]

to interpret the overall model and local specific decisions.

To clearly illustrate the research gap in the existing literature and our

research focus, we present a comparative analysis in Table 17.

9.3 XAI Terminology

In this paper, we employed two XAI techniques, namely shapely addi-

tive explanations (SHAP) and local interpretable model-agnostic expla-

nations (LIME). Here, we present the background and working principle

of these two techniques.

9.3.1 SHapely Additive exPlanation

Lundberg and Lee [195] first proposed a unified approach to explain and

interpret the prediction of machine learning models. The explanations

basically illustrate the contributions (positive and negative importance

or influence) of different features for the predicted decision of a particu-

lar sample x. The overall feature importance of different features of the

whole model can also be interpreted as global explanations. In that case,

the importance score resembles the weight of features as in the linear

model. The SHAP values represent the importance of the features. The

explanation of every single prediction can be seen as a vector of shap

values. The same representation is used to interpret the overall model.

9.3 XAI Terminology
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For a given instance x, the explanation using SHAP can be defined as

g(z′) = φ0 +
M

∑
i=1

φ jz′j, (9.1)

where g is denoted as the explanation model. The vector for simplified

features, known as the coalition vector is represented by z′ (z′ ∈ {0,1}M).

The 1 represents that features’ values are the same as the original in-

stances and vice-versa. The attribution of particular features j of the

instance x is denoted by φ j which is a real number. The higher the value

of φ j, the more important the feature j. The φ j is computed based on

Shapely values [224], a game-theoretic approach that identifies and de-

tects the contribution of all players in a collaborative game. The collab-

orative game with multiple players is analogue to the prediction of the

instance having multiple features. In turn, applying this game-theoretic

approach we can examine the contribution of each feature to a particu-

lar decision. For a given feature vector x′ and a predictive model f , the

computation is done as follows:

φi( f ,x′) = ∑
z′⊆{x′1,x′2,...,x′n}\{x′i}

(|z′|)! (M−|z′|−1)!
M!

·
[

f (z′∪ x′i)− f (z′)
]

(9.2)

The subset of the features employed by the model is denoted as z′. x′ is

the vector with features values to be explained and can be defined as

[ f (z′∪ x′i)− f (z′)] and M is the number of features. The prediction by the

model f is denoted by f (z′). Moreover, SHAP values are computed by a

standard game-theoretical approach and utilized Shapely values to have

a unified interpretable model with fast computation. More mathematical

and technical details for SHAP can be found in the study published by

Lundberg et al. [195] as well as in [224].
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9.3.2 Local Interpretable Model-agnostic Explanation

LIME mainly provides model-agnostic explanations based on local sur-

rogate models. Ribeiro et al. [244] first introduced this approach for

training a local surrogate model instead of a global model for provid-

ing explanations for a particular prediction. LIME employed a new local

dataset containing the permuted samples with corresponding predic-

tions to train the local interpretable surrogate model. This surrogate

model is then used to explain individual predictions. The model is con-

sidered as a approximation of the original complex, black-box predictive

model. The computation of the surrogate model can be defined as fol-

lows:

ξ (x) = arg min
g∈G

L( f ,g,πx′)+Ω(g) (9.3)

The explanation model for a particular instance x and the explanation

family are represented by g and G, respectively. The original model is

denoted by f and L is the loss function. The complexity of the model can

be defined by Ω(g). LIME is useful to explain specific decision predicted

by the model (i.e., local prediction).

9.4 Explainable Product Backorder Prediction

The overview of our proposed explainable product backorder prediction

framework is depicted in Fig. 35. We first apply preprocessing step to

handle the missing values, converting qualitative variables into quan-

titative ones and normalizing the values in a similar range. Next, we

apply our proposed convolutional neural network-based backorder pre-

diction model to classify the product. Finally, we introduce explainable

AI techniques to explain both global, model agnostic aspects as well as

individual decisions with the intent to make the inventory manager un-

derstand better why his or her backorder prediction system acts as it

does.

9.4 Explainable Product Backorder Prediction
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Figure 35: Proposed explainable backorder prediction approach

9.4.1 Preprocessing and feature analysis

In our dataset, each particular sample has 21 different fea-

tures/attributes including current inventory, lead time, forecasting for a

different time, sales performance, different risk flags. The details of the

dataset are presented in section 9.5.1. The value of different features is

varied widely among binary, quantitative, qualitative, and categorical. In

this step, all the feature values are transformed into a real number. The

missing values are handled by filling them in with the median of other

samples’ values. A normalization technique is then applied to convert

each feature value into a certain range [0,1]. Here, we applied the most

widely recognized MinMax normalization technique.

However, a dataset having highly correlated features is not suitable for

applying classification methods. We investigate to see whether any high

correlated features are available, exploiting the Pearson correlation coef-

ficient measure for this purpose. According to the findings, we observe

that there are no features with a high correlation (ρ > .80). Hence, the

dataset should now be suitable for our purpose of backorder predictions.

9.4 Explainable Product Backorder Prediction
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Algorithm 1 ADASYN: Adaptive Synthetic Oversampling
1: procedure ADASYN_Oversampling(Dtrain)
2: d = mmin

mma j
▷ Finding the imbalance ratio

3: if d < dth then
4: G = (mma j−mmin)×β ▷ Number of synthetic examples need to

generate
5: for each xi ∈ Xmin do
6: Nkn = K_Nearest_Neighbors(xi)
7: ri = ∆i/K, i = 1, ...,mmin

8: end for
9: Normalize ri such that r̂i = ri/∑

mmin
i=1 ri

10: gi = r̂i×G ▷ Number of synthetic example per sample xi

11: for 1 to do gi

12: xzi = Random_choice(Xmin)
13: si = xi +(xxi− xi)×λ

14: end for
15: end if
16: end procedure

9.4.2 Handling class imbalance with ADASYN

As we noted earlier, a product backorder scenario is a rare event that

leads the dataset to be extremely imbalanced. Therefore, we employed

one of the efficient synthetic oversampling methods, ADASYN (Adaptive

Synthetic oversampling) [123] to balance the dataset. Considering the

difficulty level of learning, ADASYN generates synthetic minority class

examples utilizing the weighted distribution. ADASYN focused on gener-

ating more synthetic minority class examples for those minority samples

that are harder to classify. Given a training dataset, Dtrain with N number

of samples where each sample is denoted as x,y, the vector x is repre-

sented by a K dimensional vector containing different attributes of an

ordered product and y is the binary value that indicates the label (0 for

non-backordered and 1 for backordered one).

Let mmin and mma j be the number of examples of minority class and ma-

jority class, respectively such that mmin +mma j = N, and in this backorder

prediction task mmin <<mma j. ADASYN oversampling techniques generate

9.4 Explainable Product Backorder Prediction
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synthetic minority class examples to balance the dataset according the

algorithm illustrated in Algo. 1.

It first calculates the degree of imbalance d and then, depending on

the tolerated imbalance ratio, computes the number G that denotes the

number of synthetic minority class examples needed to be generated.

Here β ∈ [0,1] indicates the desired bleaching ratio, β = 1 indicated that

the dataset will be fully balanced. For each minority example xi, ADASYN

then calculate the ratio ri applying K-nearest neighbors with Euclidean

distance, where ∆i is the number of nearest neighbors of xi. Using the

normalized ratio r̂i, then it computes the number of synthetic examples

for each minority examples xi. Finally it generates the synthetic minority

class examples applying the distance vector and the random number λ .

9.4.3 Convolutional Neural Network-based Prediction Model

Inspired by the success of the convolutional neural network (CNN)-based

models in computer vision, natural language processing and other clas-

sification tasks, we proposed a 1-dimensional CNN classifier to predict

product backorder in advance. The structure of our proposed CNN-

based predictive model is illustrated in Fig. 36.

Our CNN-based predictive model has two convolutional hidden layers

with batch normalization, max-pooling, and dropout layers. To extract

unique and low-level features, the max-pooling layers are exploited. In

addition, max-pooling makes the computation faster by reducing the

dimension and parameters [323]. Moreover, it reduces the variance.

Then we utilized one flattened layer followed by three dense layers with

dropout layers. To overcome the over-fitting problem, dropout layers are

applied to randomly drop some neurons in the training process for regu-

larization [165, 301]. The parameters and activation functions in differ-

ent layers of convolutional neural networks are summarized in Table 18.
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Figure 36: Structure of our proposed convolutional neural network-
based backorder prediction model

In the convolutional layers and all hidden dense layers, we employed the

Relu [240] activation function. Finally, Sigmoid [240] activation function

is applied in the output layer.

Table 18: The summary of different layers with parameters and activa-
tion functions.

SL Layer Input/Output Activation
1. Conv1D (20,32) Relu
2. Batch Normalization (20,32) -
3. Max Pooling (10,32), stride=2 -
4. Dropout (10,32) -
5. Cov1D (9,64) Relu
6. Batch Normalization (9,64) -
7. Max Pooling (4,64), strid=2 -
8. Dropout (4,64) -
9. Flatten - -

10. Dense 64 Relu
11. Dropout 64 -
12. Dense 32 Relu
13. Dropout 32 -
14. Dense 1 Sigmoid
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9.5 Experiments and Evaluation

9.5.1 Dataset collection and evaluation metrics

This section presents the details of dataset that is leveraged to conduct

experiments using our proposed method. We also present a brief discus-

sion about the evaluation metrics considered to measure and validate

the performance.

Dataset: We carried out a wide range of experiments to validate the

performance of our methods on a publicly available benchmark dataset

called “Can you Predict Product Backorder7”. The dataset has an 8 weeks

inventory of historical data. The brief statistical summary of the dataset

is depicted in Table 19. The numerical figures in Table 19 illustrate that

Table 19: Brief statistical summary of the dataset

No of Samples No of Positive
Samples

No Nagative
Samples

Imbalance Ra-
tio

1,929,936 13,981 1,915,954 1:137

Figure 37: Distribution of backordered and non-backordered samples

the number of backordered (positive) samples is much lower than the

number of non-backordered (negative) samples. Hence, the ratio (1:137)

indicates that this dataset is an extremely imbalanced one. For a bet-

ter understanding of why this is a challenging problem, we illustrated

the distribution of backordered (positive) and non-backordered (nega-

7https://github.com/rodrigosantis1/backorder_prediction
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tive) samples using a doughnut chart in Fig. 37. There are 22 features

for each sample and the attributes/features include current inventory,

transit time, quantity, forecasting, and different risk flag. The list of

features with a brief description is depicted in Table 20.

Table 20: Description of different features/attributes of a particular or-
der

Feature fi Explanation
Current Inventory
f1

Current inventory level of component

lead Time f2 Registered transit time
Transit Quantity f3 Product amount in transit
Sale Forecasts
f4, f5, f6

Forecasting stock amount for upcoming 1, 3, 6,
9 months

Sales f7, f8, f9, f10 Amount of sold product in last 1, 3, 6, 9 months
Reco. Stock
Amount f11

Recommended amount (amount) in stock

Overdue f12 Overdue parts from source
Performance f13, f14 Performance of the product in last 6 months and

12 months
Stock Overdue f15 Overdue Stock amount for orders
Risks
f16, f17, f18, f19, f20, f21

Different general risk flags

Label Y Product went on backorder or not

Evaluation metrics: Generally, the performance of any classification

method is measured based on the common evaluation metrics includ-

ing accuracy, precision, recall and f1-score. The confusion metrix is used

to compute those metrics. However, the backorder prediction dataset is

extremely class imbalanced, and the above mentioned evaluation met-

rics are not enough to validate the performance of any classifier on a

imbalanced dataset. Therefore, we employed accuracy, AUC (Area Under

the Curve) and ROC (Receiver Operating Characteristics) curves to mea-

sure and visualize the performance of our proposed backorder prediction

method. The accuracy score is calculated by using the measures from
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confusion metrics as follows:

Acc =
t p+ tn

t p+ f p+ f n+ tn
, (9.4)

where tp, fp, fn and tn denote the number of classified samples as true

positive, false positive, false negative and true negative, respectively.

AUC is one of the most efficient metrics to measure the performance of

any classification model on imbalanced data. The AUC is calculated as

follows:

AUC =
1+P−F

2
, (9.5)

where P is the precision of the classifier and F is the false positive rate.

The details of the these metrics can be found elsewhere in the published

study by Chawla et al. [62] and Santis et al. [79].

9.5.2 Prediction Performance

We conducted a wide range of experiments with multiple settings to illus-

trate the performance of our backorder prediction methods. Since our

major goal in this study is to introduce the explainability of in backorder

prediction, we first applied classical machine learning and a deep neural

network-based classification approach. Then, we exploit XAI technolo-

gies (SHAP and LIME) to explain the model’s priorities and individual

prediction. Classifiers from classical machine learning including deci-

sion tree, support vector machine, gradient boosting, etc., were applied.

All experimental settings can be broadly classified into three different

types based on the chosen dataset balancing strategy, classical ML,

and deep learning. In all experimental setups, we applied two different

dataset balancing techniques ADASYIN and SMOTE [62]. Based on the

predictive models, we report the experimental results in two categories,

classical and deep classifiers.
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Table 21: Performance of classical machine learning models in terms of
accuracy and AUC. The best result is in bold.

Predictive Model Balancing Tech. Accuracy AUC
Decision Tree ADASYN 0.9366 0.8134

SMOTE 0.9338 0.8111
Support Vector Machine ADASYN 0.8511 0.8711

SMOTE 0.8455 0.8696
Gradient Boosting ADASYN 0.9548 0.8298

SMOTE 0.9538 0.8288
Gaussian Naive Bayes ADASYN 0.7947 0.8153

SMOTE 0.7836 0.8142
K-nearest Neighbor ADASYN 0.8970 0.8498

SMOTE 0.8977 0.8507

The prediction performance of all experimental setups using classical

machine learning is presented in Table 21. The results conclude that

the ASASYN balancing technique is more efficient and achieved higher

accuracy as well as AUC than SMOTE in most of the experimental se-

tups. In turn, we can conclude that for the backorder prediction task,

our introduced ADASYN balancing technique would be a better choice

to implement any real-time backorder prediction system. Among all five

different classical machine learning models, the gradient boosting (XG-

Boost) classifier achieved higher accuracy. On the other hand, in terms

of the most effective and important evaluation metric, AUC, support vec-

tor machine performs better than other models. In addition, other clas-

sification models including decision tree, SVM, and KNN also achieved

effective performance in backorder prediction except for Gaussian Naive

Bayes.

The experimental setup for deep learning techniques can be classified

based on the parameters. The experiments are conducted by training

CNN-based models with different settings. Two types of CNN models are

applied. One has max-pooling layers and the other does not. The models

were trained using two different epoch sizes which are 50 and 100. The

performance of all experimental settings is presented in Table 22.
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Table 22: Performance of CNN-based models in terms of accuracy and
AUC. The best result is in bold.

Predictive Model Balancing Tech. Accuracy AUC
CNN_50 ADASYN 0.8756 0.9443

SMOTE 0.8936 0.9425
CNN_100 ADASYN 0.8868 0.9460

SMOTE 0.8938 0.9432
MxCNN_50 ADASYN 0.8947 0.9475

SMOTE 0.8938 0.9432
MxCNN_100 ADASYN 0.8903 0.9489

SMOTE 0.8877 0.9462

From the results, we can see that the convolutional neural network-

based model with max-pooling layer (MxCNN_100 and MxCNN_50) per-

formed better among other experimental settings. It can also be con-

cluded that our introduced ADASYN data balancing technique achieved

efficient performance in both evaluation metrics. We added dropout lay-

ers that randomly drop some neurons in the training process for regu-

larisation to overcome the over-fitting problem. To illustrate the neces-

sity of dropout layers in CNN-based models, we carried out experiments

with and without dropout layers. The performance based on the eval-

uation metrics concludes that dropout layers overcome the over-fitting

problem. The MxCNN model without dropout layers achieved accuracy

and AUC in the training data of 0.9081 and 0.9651, respectively. On

the other hand, for testing data, the performance is lower in terms of

both metrics. Without dropout layers, the performance of the model on

test data based on accuracy and AUC are 0.8792 and 0.9411, respec-

tively. Though the performance difference (2.89% in accuracy and 2.4%

in AUC) between the training and testing data is not that big but still

it has over-fitting. The method with dropout layers got the training ac-

curacy and AUC of 0.8843 and 0.9499, respectively. For test data, the

performance is quite consistent with accuracy and AUC of 0.8903 and

0.9489, respectively. Thus, we can say that the inclusion of dropout

layers overcomes the over-fitting problem and eventually increases the
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performance.

Figure 38: Performance of convolutional neural network based predic-
tive model in terms of Receiver Operating Characteristic curve (ROC
curve). The X-axis and Y-axis indicate the false positive and true positive
percentage, respectively.

As compared to the performance of classical machine learning models

reported in Table 21, the prediction power of our proposed CNN-based

approach is way higher than the performance of ML methods. Although

classical machine learning classifiers achieved higher accuracy, our CNN

based model achieved a huge improvement in predicting future backo-

rder prediction in terms of AUC, which is a more important metric to

judge the performance of a classifier on data imbalance, because higher

accuracy alone might not guarantee the predictive power of a classifier in

case of extreme data imbalance. The performance of our method is also

depicted by the Receiver Operating Characteristic curve (ROC curve) in

Fig. 38. The curve illustrated the performance of our predictive model

as compared to a random classifier. The area within the green curve

shows the higher AUC achieved in predicting product backorders.

9.5 Experiments and Evaluation



9 Explainable Product Backorder Prediction 183

9.5.3 Performance Comparison with State-of-the-art Methods

The performance comparison of our proposed backorder prediction

model with existing state-of-the-art methods is presented in Table 23.

We directly reported the performance in terms of accuracy and AUC from

existing published papers. Some existing works reported the perfor-

mance only in terms of AUC but did not use accuracy and some others

did the opposite. The blank cells (i.e., “-”) in the table indicate that the

performance based on particular evaluation metric is not reported in

the published paper. According to the performance of different state-of-

the-art methods reported in the table, we can see that our CNN-based

predictive model outperformed the known related works in terms of both

evaluation metrics except for one method by [286]. In turn, our methods

significantly outperformed all methods based on accuracy. Shajalal et

al. [286] applied a deep neural network with SMOTE oversampling tech-

nique. They applied four different variants of their methods utilising

oversampling and under sampling techniques. Compared to the perfor-

mance of those methods, our model got the best performance except one.

Though one of their methods achieved a higher performance in terms of

AUC, the performance difference with our method is subtle. In addition,

their method lacks global interpretability and local explainability.

Table 23: Performance comparison of our method with known related
work on the same dataset in terms of accuracy and AUC. The perfor-
mance of our method is in bold.

Method Technique Accuracy AUC
Our Method ADASYN + CNN 0.8947 0.9489
Ntakolia et al. [226] NN (MLP) 0.8568 0.9200
Shajalal et a. [286] SMOTE_DNN – 0.9586

Weighted_DNN – 0.9350
Ran_Over_DNN – 0.9475

Islam et al. [134] DRF 0.8436 0.7870
GMB 0.7919 0.7950

Hajek et al. [119] RF – 0.9157
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[134] applied a distributed random forest (DRF) and gradient boosting

machine (GBM) classifier to model product backorder. The performance

of their models is struggling compared to the CNN-based model in terms

of both evaluation metrics. Another noticeable concern in the perfor-

mance of their method is substantial over-fitting. Numerically, their

training accuracy of 0.9835 is way higher than the testing accuracy

of 0.8436. Another work by [119] applied classical machine learning

classifiers to model product backorder prediction. From their applied

ML classifiers, random forest (RF) achieved the best AUC, which is still

lower than our method. Note that they did not report the accuracy in

the paper. Similar to Shajalal et al. [286], Ntakolia et al. [226] proposed

a multi-layer perceptron (MLP) based neural network (NN) for modelling

product backorder. But their performance is still much lower than ours

in terms of both evaluation metrics. We think adding ADASYN over-

sampling technique overcome the data imbalance problem better. With

this, our convolutional neural network-based predictive model capture

the product backorder more efficiently as compared to other state-of-

the-art methods. Having this comparative analysis, we can conclude

that our method has got a new state-of-the-art performance in predict-

ing product backorder in the inventory management system.

9.6 Explaining Backorder Prediction Model

This section presents the explainability of our introduced XAI techniques

to interpret and/or explain the overall model and particular decisions of

the proposed backorder prediction model. We first present the global

model agnostic explanations generated to interpret the overall model’s

prediction priorities. Then the local explanations for a certain predic-

tion are presented to provide the overall insight to understand a certain

product will be going to be backordered or not.
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9.6.1 Explaining overall model’s priority

To interpret and explain the overall model, we exploit Shapely Additive

values (Shap Values) that highlight the overall features’ contributions in

predicting the model’s decisions. The feature contributions for the best

performing model are depicted in Fig. 39 and 40. We can see both

Figure 39: Global interpretation of the features’ contributions of backo-
rder prediction model as summary plot.

Figure 40: Global interpretation of the features’ contributions of backo-
rder prediction model as bar chart.

figures indicate the top ten most important features that the prediction

model has given higher importance, such as current inventory, transit

quantity, lead time, performance in the last 12 and 6 months, and sales.
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We can conclude that these are the top 10 most important features on

which the model depends more to predict whether a product is going to

be backordered or not.

9.6.2 Explaining individual predictions

The features described in the previous figures (Fig. 39 and 40) have over-

all high importance in the predictive models. But it is expected that ev-

ery sample (order) is different and unique in terms of features’ values.

Therefore, the importance and contributions of different features also

will be different for particular order. To identify the most contributing

features of each order, we employed local interpretable model agnostic

explanation (LIME) to explain individual predictions. Using LIME, we

trained a surrogate model with a portion of training data that mimics

the performance and decision-making priorities of the proposed back-

order prediction model. The explanation using LIME is depicted in Fig

41 and 42. These are the explanations for two individual backordered

samples.

Figure 41: Local explanations of an individual prediction using LIME

The labels of these two products are 1 (backordered) and the model also

predicted the same. The features in the right side marked by Yellow

color pushed the predictive model to classifly as backordered, while Blue

colored features in the left side did the opposite. From Fig. 41, we can
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Figure 42: Local explanations of an individual prediction using LIME

see that the probability for being classified as backordered and non-

backordered is 66% and 34%, respectively. The figure also indicates that

the most important features (features in the right side) that lead to the

prediction as backordered are local_bo_qty, current_inventory, and sales

in the last 1 and 3 months and a risk flag. On the other hand, features

(features in the left side) like lead time, in_transit_quantity, performance

in the last 6 and 12 months, etc. try to push the model to predict a

product as non-backordered. However, for another backordered sample,

we can see that the list of contributed features for the backorder decision

is different than the previous one. In Fig. 42, features such as lead time

contributed the most to pushing the model to decide as a backordered

one, which was the opposite for the previous sample.

Figure 43: Local explanations of an individual prediction using Force
plot

To explain the local individual predictions more transparently, we ap-

plied shap values to plot the explanation as a force plot. Fig.43 and

44 illustrate the explanations for two different backordered samples. In

both figures, the predictions from the models, referred to as base val-

ues are 0.67 and 0.75, respectively for both samples. The closer the
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Figure 44: Local explanations of an individual prediction using Force
plot

Figure 45: Local explanations of an individual prediction using Waterfall
plot

value is to 1, the more the prediction leans toward backordered, while

the closer to 0, the decision will then predicted as non-backordered. The

red marked features contributed to increase the base value that help to

decide the sample as a backordered one, and blue marked features did

the opposite. The features having more impact on the base value remain

closer to the boundary. For example, the two most-contributing features

that push the model to decide the samples as backordered are current

inventory and per_6_months for the first force plot (Fig. 43). For another

example, the features with the most impact are current inventory and

the forecasting for 9 months (Fig. 44). The explanations for the same two

samples’ decisions are also presented using the waterfall plot in Fig. 45
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Figure 46: Local explanations of an individual prediction using Waterfall
plot

and 46. The red marked features contributed to predicting the sample

backordered and the blue colored try to push the classifier to predict the

sample as non-backordered. Here the number and the span indicate the

level of contributions of the features towards the decision.

With the help of our approach, stakeholders without in-depth knowl-

edge of how backorder prediction systems work can have a better under-

standing both in terms of how the models generally factor in different

types of data for making their decisions, as well as be enabled to anal-

yse concrete decisions (that might seem counter intuititve or risky) in

more depth than is possible with existing approaches. By applying such

visualisations in practice, stakeholders would thus be enabled to enact

suggestions from AI based systems more competently, and adapt their

business strategies and decisions accordingly. This has the potential

to both improve the usefulness, as well as also the willingness to adopt

such systems in practice. While our introduced explainabilty has still

to be evaluated with users, its is not trivial to implement such systems
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in practice. In this regard, our paper contributes a demonstration of

the applicability, and shows how such techniques can be implemented

in a way that provides value to other stakeholders than developers of

machine learning systems, to whose such applications are currently tar-

geted.

9.7 Conclusion & Future Directions

This paper proposed a novel CNN-based model for product backorder

prediction in an inventory management system and introduced global

and local explainability that can explain the overall model decision-

making priorities and answer the “why” question regarding any specific

prediction. First, we proposed a novel convolutional neural network-

based prediction model incorporating ADASYN oversampling technique

to address data imbalance problem. The performance carrying out di-

verse experiment setups concluded that our proposed CNN-based back-

order prediction model achieved a new state-of-the art result in product

backorder prediction. In addition, the performance comparison with

some known related methods demonstrated that our methods outper-

formed others in terms of multiple evaluation metrics. Secondly, our

model is not only able to predict the backordered item but also can ex-

plain the reasons why the model predicts that a product is going to be

backordered. For doing so, we utilised existing successful XAI tech-

niques, SHAP and LIME, to explain the overall predictive model and

individual decisions. Using global explanations, the stakeholder, and

inventory managers can have an idea and understanding of how the

overall model is making the decision. On the other hand, they can ex-

plicitly know and analyse why a certain product has a high chance to

be backordered in the future, leveraging the explanations for their busi-

ness decisions. Hence, they can identify which attributes have the most

impact on a particular decision, and then react by adapting controllable
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attributes (i.e. current inventory, lead time, etc.). Therefore, even when

our approach still needs to be evaluated in practice, we believe these

explanations can help the stakeholders to make their decision and min-

imize future losses. Most importantly, these explanations can increase

the trust, transparency, and accountability of the AI-based predictive

models in business problems, thus helping to overcome limitations of

existing approaches that are more like black boxes for the users. While

our study demonstrated the applicability of XAI techniques in the busi-

ness domain on the concrete example of backorder predictions, there are

multiple application areas such as customer churn prediction, customer

behavior prediction, credit-worthiness assessment, fraud detection etc.

where our explainable predictive model can be applied.

In the future, we plan to develop a collaborative interface to represent

the explanations so that people can understand the decision-making

more efficiently. We are also planning to introduce counterfactual ex-

planations to provide a clear understanding about what are the possible

actions she needs to take into account in the future.
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10 Introduction

In this part, we focus on investigating the explainability of NLP appli-

cations. To be diverse and explore how explanations can be changed in

different application scenarios, we proposed two explainable models for

patent classification and fake review identification. In the last two parts

(part II & III), we conducted experiments on smart home applications

with time series data and business applications with tabular data. In

this part, we demonstrated explanations of textual data for two different

applications.

Chapter 11 is about an explainable patent classification system, where

we proposed a layer-wise relevance propagation-based explainable deep

learning model. The proposed system can help patent experts classify

certain patents into specific classes, explaining why the corresponding

patent is classified to a particular class. Applying heatmap and word

cloud, we demonstrated the explanations in two different forms. It would

be easier to understand the relevant scientific terms that contribute to

the classification in those explanations.

With a similar LRP-based explainability technique, we proposed explain-

able fake review identification methods employing pre-trained trans-

former models in chapter 12. The outcome of the models can predict

the fake review with high precision, with explanations highlighting the

most contributed words. We also conducted an empirical evaluation of

the generated explanations and found that the explanations can make

sense to the general users to some extent. However, the evaluations

also concluded that the explanations should consider the grammatical

structure, sentence tone, and contributed words.



11 Explainable Deep Learning Models for Patent Classification 194

11 Unveiling the Black Box: Explainable Deep

Learning Models for Patent Classification

The content of this chapter has been presented in the 1st World Conference
of eXplainable Artificial Intelligence (xAI2023) which has been held in Lisbon,
Portugal in July 2023 and the paper has been published in the proceedings of the
conference as a full paper by Springer Nature. The information of the paper is
given as follows:

Information of the Article: Md Shajalal, Sebastian Denef, Md. Rezaul Karim,
Alexander Boden and Gunnar Stevens. 2023. Unveiling the Black Box: Explainable
Deep Learning Models for Patent Classification. In Proceedings of the 1st World Confer-
ence on eXplainable Artificial Intelligence 2023 (xAI2023). Communications in Computer
and Information Science, Springer Nature Switzerland 457–474. https://doi.org/10.
1007/978-3-031-44067-0_24 (Reproduced with permission from Springer Nature)
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Abstract

Recent technological advancements have led to a large number of patents

in a diverse range of domains, making it challenging for human experts

to analyze and manage. State-of-the-art methods for multi-label patent

classification rely on deep neural networks (DNNs), which are complex

and often considered black-boxes due to their opaque decision-making

processes. In this paper, we propose a novel deep explainable patent

classification framework by introducing layer-wise relevance propaga-

tion (LRP) to provide human-understandable explanations for predic-

tions. We train several DNN models, including Bi-LSTM, CNN, and

CNN-BiLSTM, and propagate the predictions backward from the out-

put layer up to the input layer of the model to identify the relevance of

words for individual predictions. Considering the relevance score, we

then generate explanations by visualizing relevant words for the pre-

dicted patent class. Experimental results on two datasets comprising

two-million patent texts demonstrate high performance in terms of var-

ious evaluation measures. The explanations generated for each predic-

tion highlight important relevant words that align with the predicted

class, making the prediction more understandable. Explainable sys-

tems have the potential to facilitate the adoption of complex AI-enabled

methods for patent classification in real-world applications.

Keywords

Patent Classification, Explainability, Layer-wise relevance propagation,

Deep Learning, Interpretability.

11.1 Introduction

Patent classification is an important task in the field of intellectual

property management, involving the categorization of patents into dif-
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ferent categories based on their technical contents [167]. Traditional

approaches to patent classification have relied on manual categoriza-

tion by experts, which can be time-consuming and subjective [183].

However, due to the exponential growth of patent applications in recent

times, it has become increasingly challenging for human experts to clas-

sify patents. The international patent classification (IPC) system, which

consists of 645 labels for the general classes and over 67,000 labels

for the sub-groups, reflects the magnitude of challenges in multi-level

patent classification tasks [167]. Furthermore, patent texts are gener-

ally lengthy and contain irregular scientific terms, making them a chal-

lenging field of application for text classification approaches, as patents

often include highly technical and scientific terms that are not com-

monly used in everyday language, and authors often use jargon to make

their patents unique and innovative [178]. These factors contribute to

the significant challenges associated with patent classification.

However, recent advancements in machine learning (ML) and deep

neural network (DNN) have made significant progress in automating

the patent classification process. In the past, classical ML models,

such as support vector machine (SVM), K-nearest neighbour, and naive

bayes, have been widely used to automatically classify patent texts [82].

However, more recently, several DNN models have been proposed to

address the challenges associated with patent classification. Gener-

ally, these models represent patent text using word embedding and

transformer-based pre-trained models [196, 141, 167, 183, 63]. The

DNN models, including recurrent neural networks (RNN) and their vari-

ants such as convolutional neural networks (CNN), long short-term

memory networks (LSTM), bidirectional LSTM (Bi-LSTM), and gated re-

current unit (GRU), can learn to classify patents based on their textual

content [196, 63, 183, 97, 118]. Hence, these enable faster and more

reliable categorization of patents and scientific articles.

11.1 Introduction
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Mathematically, DNN-based classification approaches are often com-

plex in their architecture, and the decision-making procedures can be

opaque [293, 195]. While these approaches may exhibit efficient per-

formance in classifying patents, the decisions they make are often not

understandable to patent experts, or even to practitioners of artificial

intelligence (AI). As a result, it is crucial to ensure that the methods and

decision-making procedures used in patent classification are transpar-

ent and trustworthy, with clear explanations provided for the reasons

behind each prediction. This is particularly important because patents

are legal documents, and it is essential to comprehend the reasoning be-

hind the classification decisions made by the model. Therefore, patent

classification models should be designed to be explainable, allowing the

reasons and priorities behind each prediction to be presented to users.

This will help build trust in the predictive models and promote trans-

parency among users and stakeholders.

For text-based uni-modal patent classification tasks, explanations can

be provided by highlighting relevant words and their relevance to the pre-

diction, thus increasing trust of users in the accuracy of predictions. In

recent years, there has been a growing interest in developing explainable

artificial intelligence (XAI) to unveil the black-box decision-making pro-

cess of DNN models in diverse fields, including image processing [28],

text processing, finance [170, 277], and health applications [332, 5].

These XAI models can provide insights into the decision-making pro-

cess, explaining the reasoning behind specific predictions, the overall

model’s priorities in decision making, and thereby enhancing the trans-

parency and trustworthiness of the application [195, 244, 293, 42, 28].

In this paper, our goal is to develop a patent classification framework

that not only predicts the classes of patents but also provides expla-

nations for the predicted classes. To achieve this, we propose a new

explainable method for patent classification based on layer-wise rele-
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vance propagation (LRP). This method can break down the contribu-

tion of patent terms that are crucial in classifying a given patent into

a certain class. We start by representing the patent terms using a

high-dimensional distributed semantic feature vector obtained from pre-

trained word-embedding models. Next, we proceed to train several DNN-

based models, including Bi-LSTM, CNN, and CNN-BiLSTM, which are

capable of predicting the patent class. Finally, the LRP-enabled expla-

nations interface highlights relevant words that contributed to the final

prediction, providing an explanation for the model’s decision.

We conducted experiments using two benchmark patent classification

datasets, and the experimental results demonstrated the effectiveness of

our approach in both classifying patent documents and providing expla-

nations for the predictions. Our contributions in this paper are twofold:

1. We propose an LRP-based explainability method that generates ex-

planations for predictions by highlighting relevant patent terms

that support the predicted class.

2. Our developed DNN models show effective performance in terms of

multiple evaluation metrics on two different benchmark datasets,

and performance comparison with existing works confirms their

consistency and effectiveness.

Overall, explainable DNN models offer promising solutions for patent

classification, enabling faster and more accurate categorization while

providing insights into the decision-making process. With the increas-

ing volume of patent applications, the development of such explainable

models could be beneficial in automatically categorizing patents with

efficiency and transparency.

The rest of the paper is structured as follows: section 11.2 presents

the summary of existing research on patent classification. Our pro-

posed explainable deep patent classification framework is presented in
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section 11.3. We demonstrate the effectiveness of our methods in clas-

sifying patents and explaining the predictions in detail in section 11.4.

Finally, section 11.5 concluded our findings with some future directions

in explainable patent classification research.

11.2 Related Work

In recent years, the patent classification task has gained significant at-

tention in the field of natural language processing (NLP) research, as evi-

denced by several notable studies [288, 183, 178]. Various methods have

been employed for classifying and analyzing patent data, and the meth-

ods can be categorized based on different factors such as the techniques

utilized, the tasks’ objectives (e.g., multi-class or multi-level classifica-

tion), and the type of resources used to represent the patent data (i.e.,

uni-modal vs multi- modal) [252, 63, 118]. However, traditional ap-

proaches have relied on classical ML and bag-of-words (BoW)-based text

representation, which have limitations in capturing semantic and con-

textual information of the text, as they can only capture lexical informa-

tion. With the advent of different word-embedding techniques such as

word2vec by Mikolov et al. [175, 203], Glove by Pennington et al. [233],

and FastText by Bojanowski et al. [46], the NLP research has been revo-

lutionized with the ability to represent text using high-dimensional se-

mantic vector representations [274, 275, 276]. More recently, there has

been a growing trend in employing transformer-based pre-trained mod-

els, including deep bidirectional transformer (BERT) [81], robust opti-

mized BERT (RoBERTa) [192], distilled BERT (DistilBERT) [261], and

XLNet [333], for text representation in NLP tasks.

Shaobo et al. [183] introduced a deep patent classification framework

that utilized convolutional neural networks (CNNs). They started by rep-

resenting the text of patents, which was extracted from the title and ab-

stract of the USPTO-2 patent collection, using a skip-gram-based word-
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embedding model [183]. They then used the resulting high-dimensional

semantic representations to train CNN model. Similarly, Lee et al. [178]

also employed a CNN-based neural network model, however, they fine-

tuned a pre-trained BERT model for text representations. A DNN-based

framework employing Bi-LSTM-CRF and Bi-GRU-HAN models has been

introduced to extract semantic information from patents’ texts [63].

A multi-level classification framework [118] has been proposed utilizing

fine-tuned transformer-based pre-trained models, such as BERT, XL-

Net, RoBERTa, and ELECTRA[68]. Their findings revealed that XLNet

outperformed the baseline models in terms of classification accuracy.

In another study, Roudsari et al. [252] addressed multi-level (sub-group

level) patent classification tasks by fine-tuning a DistilBERT model for

representing patent texts. Jiang et al. [141] presented a multi-modal

technical document classification technique called TechDoc, which incor-

porated NLP techniques, such as word-embedding, for extracting textual

features and descriptive images to capture information for technical doc-

uments. They modelled the classification task using CNNs, RNNs, and

Graph neural networks (GNNs). Additionally, Kang et al. [148] employed

a multi-modal embedding approach for searching patent documents.

A patent classification method called Patent2vec has been introduced,

which leverages multi-view patent graph analysis to capture low-

dimensional representations of patent texts [97]. Pujari et al. [236]

proposed a transformer-based multi-task model (TMM) for hierarchical

patent classification, and their experimental results showed higher pre-

cision and recall compared to existing non-neural and neural methods.

They also proposed a method to evaluate neural multi-field document

representations for patent text classification. Similarly, Aroyehun et

al. [18] introduced a hierarchical transfer and multi-task learning ap-

proach for patent classification, following a similar methodology. Roud-

sari et al. [253] compared different word-embedding methods for patent
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classification performance. Li et al. [182] proposed a contrastive learn-

ing framework called CoPatE for patent embedding, aimed at capturing

high-level semantics for very large-scale patents to be classified. An

automated ensemble learning-based framework for single-level patent

classification is introduced by Kamateri et al. [146] .

However, to the best of our knowledge, none of the existing patent classi-

fication methods are explainable. Given the complexity of the multi-level

classification task, it is crucial for users and patent experts to under-

stand the reasoning behind the AI-enabled method’s predictions, as it

classifies patents into one of more than 67,000 classes (including sub-

group classes). Therefore, the aim of this paper is to generate explana-

tions that highlight relevant words, helping users understand the ratio-

nale behind the model’s predictions. Taking inspiration from the effec-

tiveness and interpretability of layer-wise relevance propagation (LRP)

in other short-text classification tasks [19, 20, 149], we have adopted

LRP [28] as the method for explaining the complex neural networks-

based patent classification model.

Figure 47: A conceptual overview diagram of our explainable patent clas-
sification framework.
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11.3 Explainable Patent Classification

Our proposed explainable patent classification framework consists of

two major components, i) training DNN-based classification model us-

ing the semantic representation of patent text, and ii) explanation gen-

eration component leveraging layer-wise relevance propagation (LRP).

The conceptual diagram with major components is depicted in Fig 47.

Our method first represents preprocessed patent texts semantically by

high-dimensional vector leveraging pre-trained word embedding mod-

els. Then, the semantic representations for patent text are fed to train

multiple DNN-based classification models including Bi-LSTM, CNN, and

CNN-BiLSTM. For a particular deep patent classification model, our in-

troduced LRP algorithm computes the relevance score towards a certain

class for a given patent by redistributing the relevance score with back-

ward propagation from the output layer to the input layer. Eventually,

we get the score for patent terms that highlight the relevancy related to

the predicted class of a given input patent.

11.3.1 Training deep neural models

Before training any specific DNN-based patent classification model, we

employ FastText word-embedding model to represent each word of patent

text with a high-dimensional feature vector and the element of each

vector carries semantic and contextual information of that word. Fast-

Text is a character n-gram-based embedding technique. Unlike, Glove

and Word2Vec, it can provide a word vector for out-of-vocabulary (OOV)

words. Patents’ text contains less used scientific terms and some words

that are higly context specific. For example, patent in the field of chem-

istry has a lot of reagents and chemical names, even for some new

patents the reagents’ names might be completely new, proposed by the

inventors. Considering this intuition, we chose FastText embedding in-

11.3 Explainable Patent Classification



11 Explainable Deep Learning Models for Patent Classification 203

stead of Glove and word2vec. We make a sequence of embedding of the

words for each patent and then fed it into the deep-learning model. Our

trained different neural network models includes bidirectional LSTM (Bi-

LSTM), convolutional neural networks (CNN), CNN-BiLSTM, a combina-

tion of CNN and Bi-LSTM.

11.3.2 Explaining predictions with LRP

Let c denotes the predicted class for the input patent p. The LRP al-

gorithm applies the layer-wise conservation principle to calculate the

relevance score for features. The computation starts from the out-

put layer and then redistributes the relevance weight, eventually back-

propagating it to the input layers [20, 19]. In other words, the relevance

score is computed at each layer of the DNN model. Following a spe-

cific rule, the relevance score is attributed from lower-layer neurons to

higher-layer neurons, and each immediate-layer neuron is assigned a

relevance score up to the input layers, based on this rule.

The flow of propagation for computing the relevance is depicted by

the red arrow that goes from the output towards the input layers in

Fig. 48. The figure conceptually reflects how the semantic representa-

tion of patent text leads to a particular class in DNN models and back-

propagates the relevance score from the output layer to the input layer

for explanations highlighting relevant terms aligned with the predicted

class.

The prediction score, fc(p) by our deep patent classification model, which

is a scalar value corresponding to the patent class c. Using LRP, our aim

is to identify the relevance score for each dimension d of a given patent

vector p for the target patent class c. Our objective is to compute the

relevance score of each input feature (i.e., words) that illustrates how

positively (or negatively) contributes to classifying the patent as class c
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Figure 48: A conceptual overview diagram illustrating the working flow
of layer-wise relevance propagation (LRP) (Figure created based on [19]).

(or another class).

Let z j be the neuron of the upper layer and the computation of the neuron

is calculated as

z j = ∑
i

zi ·wi j +b j, (11.1)

where wi j be the weight matrix and b j denotes the bias [20]. Given that

the relevance score for upper-layer neurons z j is R j and we move towards

lower-layer neurons to distribute that relevance. In the final layer, there

is only one neuron (i.e., the prediction score) and in that case, R j is the

prediction score by the function fc(p). The redistribution of the rele-

vance to the lower layers is done by following two major steps. We need

to compute relevance messages to go from upper-layer to lower-layer neu-

rons [20].

Let i be the immediate lower layer and its neurons are denoted by zi.

Computationally, the relevance massages Ri← j can be computed as fol-

lowings [20].

Ri← j =
zi ·wi j +

ε·sign(z j)+δ ·b j
N

z j + ε · sign(z j)
·R j. (11.2)

11.3 Explainable Patent Classification



11 Explainable Deep Learning Models for Patent Classification 205

The total number of neurons in the layer i is denoted as N and ε is

the stabilizer, a small positive real number (i.e., 0.001). By summing

up all the relevance scores of the neuron in zi in layer i, we can obtain

the relevance in layer i, Ri = ∑i Ri← j. δ can be either 0 or 1 (we use δ =

1) [20, 149]. With the relevance messages, we can calculate the amount

of relevance that circulates from one layer’s neuron to the next layer’s

neuron. However, the computation for relevance distribution in the fully

connected layers is computed as R j→k =
z jk

∑ j z jk
Rk [19]. The value of the

relevance score for each relevant term lies in [0,1]. The higher the score

represents higher the relevancy of the terms towards the predicted class.

11.4 Experiments

This section presents the details about the datasets, experiment results,

and discussion of generated explanation with LRP.

11.4.1 Dataset

AI-Growth-Lab patent dataset: We conducted experiments on a

dataset containing 1.5 million patent claims annotated with patent

class8 [37]. According to the CPC patent system, the classification is

hierarchical with multiple levels including section, class, subclass, and

group. For example, there are 667 labels in the subclass level [37].

However, for a better understanding of the generated explanations and

the reasons behind a prediction for a given patent, we modeled the

patent classification task with 9 general classes including Human ne-

cessities, Performing operations; transporting, Chemistry; metallurgy, Tex-

tiles; paper, Fixed constructions, Mechanical engineering; lighting; heat-

ing; weapons; blasting engines or pumps, Physics, Electricity and Gen-

eral.

8Dataset: https://huggingface.co/AI-Growth-Lab
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BigPatent dataset: BigPatent9 dataset is prepared by processing 1.3

million patent texts [292]. However, the classification dataset contains in

total of 35k patent texts with 9 above-mentioned classes as labels. They

provided the dataset by splitting it into training, validation, and testing

set, the number of samples are 25K, 5K, and 5K, respectively. There are

two different texts for each patent, one is a raw text from patent claims

and another version is the human-generated abstract summarized from

the patent claims.

Figure 49: The distribution of the patents for different class on AI-
growth-Lab data

However, the number of samples per patent class is varied widely for

both both datasets, which means both are imbalanced dataset. The

horizontal bar chart in Fig. 49 and 50 show the level of imbalance for

both datasets. This imbalance distribution of samples per class poses

an additional challenge in this multi-level classification task.

11.4.2 Experimental setup

We conducted experiments using three different DNN models, namely

Bi-LSTM, CNN, and CNN-BiLSTM, utilizing the FastText pre-trained
9Dataset: https://huggingface.co/datasets/ccdv/patent-classification/tree/main
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Figure 50: The distribution of the patents for different class on BigPatent
data

word-embedding model for text representation in the embedding layers.

The Bi-LSTM model consists of a layer of Bi-LSTM with 64 units after

embedding layer, followed by another Bi-LSTM layer with 32 units, and

then two fully-connected layers with 64 and 9 units, respectively. We ap-

plied the rectified linear units (ReLU) activation function in the hidden

dense layer, and the softmax activation function in the output layer. For

the CNN model, after the embedding layer, we have a 1-dimensional con-

volutional layer followed by a global average pooling layer, and finally, the

output layer is a fully-connected layer with 9 units. The CNN-BiLSTM

model has a convolutional layer followed by a global average pooling

layer, and then the Bi-LSTM part is similar to the above-mentioned Bi-

LSTM model. The activation functions in the fully connected hidden

and output layers are ReLU and softmax, respectively. We implemented

our methods using scikit-learn and Keras, and represented the patent

text using the FastText pre-trained word-embedding model10. For im-

plementing LRP for the Bi-LSTM network, we followed the method de-

scribed in [20]11. For the BigPatent dataset, the training, testing, and

10https://fasttext.cc/docs/en/crawl-vectors.html
11https://github.com/ArrasL/LRP_for_LSTM
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validation sets are already split. For the AI-Growth-Lab data, the ratio

for the training and testing set is 80% and 20%, respectively.

Table 24: The performance of different deep patent classification models
on two datasets in terms of precision, recall and f1-score. The best result
is in bold.

Dataset Method Precision Recall F1-Score

AI-Growth-Lab
Bi-LSTM 0.69 0.70 0.69

CNN 0.62 0.63 0.62
CNN-BiLSTM 0.69 0.68 0.69

BigPatent
Bi-LSTM 0.79 0.78 0.78

CNN 0.75 0.76 0.76
CNN-BiLSTM 0.77 0.76 0.76

11.4.3 Performance analysis

The performance of the proposed classification models was evaluated us-

ing three evaluation metrics, including Precision, Recall, and F1-Score,

on two datasets, as shown in Table 24. The results demonstrate consis-

tent performance across most of the deep classification models. Among

them, the Bi-LSTM model exhibited better performance in terms of all

evaluation metrics on both datasets. However, the performance of the

other two models, CNN and CNN-BiLSTM, was also consistent and ef-

fective, though slightly lower than the Bi-LSTM model. Specifically, for

the first dataset, CNN-BiLSTM performed equally well in terms of Pre-

cision (0.69) and F1-Score (0.69), while the performance of the CNN-

based model was comparatively lower for the AI-Growth-Lab dataset,

with a Precision of 62%, which was 7% lower than the best-performing

Bi-LSTM model. However, for the BigPatent dataset, the CNN model ex-

hibited considerably better performance, with a Precision of 75%, which

was only 4% lower than the Bi-LSTM model. The performance difference

between the models for the other two metrics was even lower, at 2%.

The performance of all DNN-based classifiers on the BigPatent dataset
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Table 25: Class-wise performance of Bi-LSTM model on BigPatent
Dataset

Patent Class label Precision Recall F1-score
Human necessities 1 0.79 0.91 0.85
Performing_operations 2 0.74 0.66 0.70
Chemistry 3 0.75 0.88 0.81
Textiles 4 0.71 0.74 0.73
Fixed_constructions 5 0.65 0.70 0.67
Mechanical_engineering 6 0.60 0.84 0.70
Physics 7 0.75 0.82 0.78
Electricity 8 0.78 0.86 0.82
General 9 0.71 0.46 0.41

is significantly superior compared to the first dataset. This may be at-

tributed to the fact that the BigPatent dataset includes finely-grained ab-

stracts of patents which are generated by human assessors, taking into

consideration the patent texts. As a result, the semantic representation

of the fine-tuned text in the BigPatent dataset is enriched compared to

the raw patent claims in other dataset. We present the performance of

Bi-LSTM model by showcasing the class-wise performance on the Big-

Patent dataset. Table 25 displays the performance across nine different

patent classes. The Bi-LSTM model demonstrates favorable and consis-

tent performance across most patent classes, with the exception of the

general category. It is hypothesized that the patents in the “general”

category may contain more commonly used terms compared to patents

in other area-specific categories. Consequently, the captured semantic

information may not be sufficient, potentially resulting in lower perfor-

mance in terms of recall and F1-Score for the “general” class compared

to other classes.

We compared the performance of our models with similar models that

used FastText embedding for patent text representation. Compared to

existing works by Roudsari et al. [118] and Shaobo et al. [183], the per-

formance of our trained models is effective. Roudsari et al. also trained
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Table 26: Performance comparison with related works

Method Precision Recall F1-Score
Out Method 0.79 0.78 0.78

Roudsari et al. [118] (Bi-LSTM) 0.7825 0.6421 0.68.42
Roudsari et al. [118] (CNN-BiLSTM) 0.7930 0.6513 0.6938

Shaobo et al. [183] (DeepPatent) 0.7977 0.6552 0.6979

similar models with semantic text representation with a pre-trained

FastText word-embedding model. They also develop similar DNN mod-

els including Bi-LSTM and CNN-BiLSTM. Shaobo et al. [183] introduced

CNN-based deep patent modelling employing FastText word-embedding

model. The performance of our methods on BigPatent data is higher

than their models for all evaluation metrics except Precision. The com-

parison shows the effectiveness of our methods in classifying patents.

11.4.4 Generated explanation for prediction

We attempted to unbox the black-box nature of the deep patent classifi-

cation model by adopting a layer-wise relevance propagation technique

to compute the relevance score for each term by back-propagating the

prediction score from the output layer to input layers. To represent the

explanation per predicted class for a given patent text, we highlighted

the related words that contributed to the classifier’s prediction. As an

example explanation, a patent is classified as Chemistry, and the re-

lated words that contributed to the prediction are highlighted in red

color in Fig 51. The figure shows the explanation highlighting relevant

words for the patent that classified as chemistry. The intensity of the

color represents the contributions of a particular word. The higher the

intensity of the color (red), the better the relevancy the word is. We

can see that from the figure, the most relevant words include, alkali,

alkyl, monomer, acid, acrylate, acrylonitrile, acetate, polymer, ether. We

can observed that the highlighted words are completely related to terms
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Figure 51: An example explanation for a patent classified as Chemistry
patents highlighting relevant words. The higher the intensity of the color,
the better the relevancy of the words contributing to the prediction.

Figure 52: An example explanation for a patent classified as Chemistry
patents highlighting relevant words. The higher the intensity of the color,
the better the relevancy of the words contributing to the prediction.

used in organic chemistry and the explanation makes sense why this

patent has been classified as a chemical patent. The next relevant list

of words is soluble, water, stiffness, enhanching, etc. These words are

directly related to chemistry except stiffness and enhancing . Since en-

hancing the stiffness of the paper or paperboard is the objective of this

patent, these words are selected as relevant. Fig. 52 shows explanation
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for another Chemistry patent. We can also see that the relevant words

are highlighted including pulp, alcohol, sanitizer, calcium, carbonate, etc.,

are directly related to the chemistry field. To understand the impact of

particular words, we vidualize the words in the form of word cloud in

Fig. 53. The larger the word, the higher the relevancy of the word to the

certain class.

Figure 53: An example explanation for a patent classified as Chemistry
patent highlighting relevant words in word cloud. The larger the font
of the word, the better the relevancy of the words contributing to the
prediction.

For another example patent in the field of Electricity, Fig. 54 illustrates

the explanations highlighting relevant words that contributed to the

classifier to decide that the patent is from electricity field. The most rele-

vant words, in this case, include power, channel, modem, device, bonded,

bandwidth, data, etc. We can see that all identified related words are

used in electricity literature. The word device is used for common use

in some other fields also, but this word also can be used to mention any

electrical instrument in electricity-related explanation. Similar to the

Fig. 53, we present the word cloud for explanation in Fig. 55. However,

there are some words selected as relevant for both examples which are

not relevant to the specific fields but can be used in literature for any

field. One plausible reason is that those also might carry considerable

importance in describing the any scientific object (i.e., explaining chem-
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Figure 54: An example explanation for a patent classified as Electricity
patents highlighting relevant words. The higher the intensity of the color,
the better the relevancy of the words contributing to the prediction.

ical reaction) and capture good contextual and semantic information in

FastText embedding.

Figure 55: An example explanation for a patent classified as Electricity
patent highlighting relevant words in word cloud. The larger the font
of the word, the better the relevancy of the words contributing to the
prediction.
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11.4.5 Limitations

Our model can explain the prediction for multi-label classification. Since

the patents are classified in different levels and the patent classification

system has a huge set of classes to classify in different levels, it should be

explainable for multi-level classification also. This will be more challeng-

ing to explain the prediction for different subgroups-level classes. An-

other limitation is that our utilized pre-trained word-embedding model

is not trained on the patent corpus. The local word-embedding model

trained with patent corpus might capture better contextual and seman-

tic information for scientific terms and jargon. Hence, the performance

might be better than the current approach.

11.5 Conclusion and Future Direction

This paper aimed at explaining the predictions from DNN-based patent

classification models with layer-wise relevance propagation technique to

identify the relevance of different words in the patent texts for a certain

predicted class. Layer-wise relevance propagation technique can capture

context-specific explanatory and relevant words to explain the predic-

tions behind certain predicted classes. The experimental results demon-

strated the effectiveness of classifying patent documents with promising

performance compared to existing works. We observed that the expla-

nations generated by the LRP technique make it easier to understand

why a certain patent is classified as a specific patent class. Most of

the captured words have high relevancy with the patent domain, even

though a few words marked as related are not that relevant (which, how-

ever, should also provide useful information to human expert in assess-

ing the predictions). Even though our approach would still need to be

evaluation with users, we can observe that the explanations are helpful

to understand the question why a certain patent was classified into a
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specific class, and to assess the results of deep-learning-based complex

artificial intelligence-enabled models.

Since patents have a lot of scientific and uncommon words and phrases

(i.e., jargon) that are not often used in other texts, we plan to train a

local word-embedding model with patent texts to have better represen-

tation in our future work. It would be interesting to apply a transformer-

based approach for the same purpose. The explanations for sub-group

level prediction and capturing the sub-group context will be even more

explanatory. However, the generated explanations will need to be eval-

uated by human experts in the patent industry. Therefore, we plan to

have a user-centric evaluation for the generated explanations and elicit

more human-centric requirements to be addressed in the future for bet-

ter adoption real-word applications.
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Abstract

Customers’ reviews and feedback play crucial role on electronic com-

merce (E-commerce) platforms like Amazon, Zalando, and eBay in in-

fluencing other customers’ purchasing decisions. However, there is a

prevailing concern that sellers often post fake or spam reviews to de-

ceive potential customers and manipulate their opinions about a prod-

uct. Over the past decade, there has been considerable interest in using

machine learning (ML) and deep learning (DL) models to identify such

fraudulent reviews. Unfortunately, the decisions made by complex ML

and DL models - which often function as black-boxes - can be surpris-

ing and difficult for general users to comprehend. In this paper, we

propose an explainable framework for detecting fake reviews with high

precision in identifying fraudulent content with explanations and inves-

tigate what information matters most for explaining particular decisions

by conducting empirical user evaluation. Initially, we develop fake re-

view detection models using DL and transformer models including XL-

Net and DistilBERT. We then introduce layer-wise relevance propagation

(LRP) technique for generating explanations that can map the contri-

butions of words toward the predicted class. The experimental results

on two benchmark fake review detection datasets demonstrate that our

predictive models achieve state-of-the-art performance and outperform

several existing methods. Furthermore, the empirical user evaluation

of the generated explanations concludes which important information

needs to be considered in generating explanations in the context of fake

review identification.

Keywords

Fake Review, Explainability, LRP, Transformers, DistilBERT, XLNet, Em-
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12.1 Introduction

The rapid growth of e-commerce platforms for ordering various products

online makes consumers’ lives easier, saving potential time and cost for

both ends. Issues related to trust and transparency are always of high

importance, as they are directly associated with customer satisfaction

and the revenue of companies or retailers [259]. Generally, customers or

buyers in e-commerce or service providers tend to check the ratings and

reviews of previous customers who have already purchased the products

to get an idea of the quality of the targeted products. Users usually prefer

to buy products with higher ratings and better reviews from customers.

It is evident that companies or retailers sometimes take the opportunity

to post fake positive reviews for their products with the objective of mak-

ing their products appear better. Conversely, opposite scenarios are also

visible, where competitors of certain products might post fake negative

reviews to portray the products as being of poor quality.

However, identifying fake reviews can benefit both customers and retail-

ers or companies by providing a trusted and transparent e-commerce

platform. In the last decade, there has been a significant amount of at-

tention on identifying fake reviews using automated methods with ML

and DL-based classifiers. Notable ML methods such as SVM, NB, XG-

Boost, etc., generally use the TF-IDF or bag-of-words representation of

textual reviews [205, 102]. However, these methods are traditional ways

of representing text. The semantic representation of text using word

embeddings has been employed in almost every natural language pro-

cessing (NLP) task. Word embeddings can represent the semantic and

contextual information of text in a high-dimensional space. With these

representations, multiple methods have been proposed using DL-based

classifiers, including recurrent neural networks (RNN) and its variants

such as LSTM, BiLSTM, GRU, etc [285, 85, 335, 231, 230, 296, 80, 34].

After the invention of transformer-based text representations, NLP meth-
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ods achieved high performance in almost every section. Transformer-

based approaches, including BERT and its variants like DistilBERT,

mBERT, and RoBERTa, have been used in many text classification

tasks [149]. Recently, Electra [68], XLNet [333], GPT, and other large

language models (LLMs) have also garnered significant attention in text

classification, achieving high performance in numerous NLP tasks.

Generally, DL- and transformer-based approaches have complex archi-

tectures and involve a difficult decision-making process in predicting

the original class. In the context of fake review detection task, users

are typically laypeople with minimal knowledge about predictive mod-

els. The decisions might surprise them when they see a particular re-

view detected as fake, but they cannot figure out why it is predicted as a

fake review. Recently, explainable artificial intelligence (XAI) has gained

significant attention in different fields, including business [277], bioin-

formatics [150], NLP [285, 149, 19, 20], and more. In the use case men-

tioned above, XAI comes into play to explain and validate the predictions

made by the fake review detector. In this decade, XAI techniques have

gained considerable attention in explaining model decisions, allowing AI

practitioners and users to understand the reasons behind predictions

and improve model performance and decision understanding. Several

renowned XAI methods, including SHAP [195], LIME [244], LRP [20],

Bert-interprete [241], can be applied to explain decisions related to NLP

tasks.

The decisions made by complex ML models, which often function as

"black boxes," can be surprising and difficult for general users to com-

prehend. In this research paper, we propose a transparent and efficient

framework for detecting fake reviews, enabling high-precision identifi-

cation of fraudulent content and providing users with explanations to

help them understand the predictions. Initially, we develop fake review

detection models using cutting-edge transformer models such as XLNet
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and DistilBERT. We also applied different DL models, including BiLSTM,

CNN, CNN-LSTM, and CNN-GRU models for detecting fake reviews. We

then introduce LRP [19, 20] technique in fake review detection task to in-

terpret the decisions from DL models and present explanations for indi-

vidual predictions, highlighting the contributed words for the predicted

class.

We conducted experiments in multiple settings, and experimental re-

sults on two benchmark fake review detection datasets demonstrate that

our predictive models achieve state-of-the-art performance and outper-

form several existing methods. Furthermore, our generated explana-

tions can interpret specific decisions, enabling users to understand why

a particular review is classified as fake or genuine. The empirical evalu-

ation with 12 human subjects was conducted to examine the effective-

ness of the explanations and elicit further requirements in generating

explanations in the context of fake review identification. The major con-

tributions in this research are twofold:

• We introduced two transformer-based fake review detection mod-

els applying DistilBERT and XLNet that demonstrated significantly

better performance than DL methods and existing related works.

• Our method is able to explain specific predictions with explanations

introducing LRP techniques. The explanations might enable users

to make sense of why particular reviews have been predicted as

fake.

• Our conducted empirical evaluation of the generated explanations

with human subjects and the results indicate further requirements

in generating explanations for fake content identification tasks.

In the rest of the paper, we present the state-of-the-art methods in

fake review detection in Section 12.2. The next section, Section 12.3,

presents our method. The details of the dataset, experimental settings,
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results on two different datasets, generated explanations with discus-

sion and their empirical evaluation with human-subjects are presented

in Section 12.4. Finally, we conclude our paper with some future direc-

tions in Section 12.5.

12.2 Literature Review

To understand people’s strategies for creating and posting fake re-

views, [29] conducted an empirical study with participants. Their find-

ings suggested four stages involved in creating fake reviews: information

gathering, assimilating information, drafting, and posting the reviews.

These stages were identified through qualitative and quantitative meth-

ods with fifty-one participants. [169] highlighted two challenges in the

theoretical grounding and under-researched areas of fake reviews. The

first challenge is the lack of a conceptual understanding of the relation-

ship between writing styles and recommendations. The second chal-

lenge is the knowledge gap regarding product characteristics. Their em-

pirical investigation, which employed natural language processing (NLP)

techniques, revealed latent characteristics of the product correspond-

ing to buying preferences. However, their major findings suggested that

the characteristics of fake reviews have no influence on recommending

or discouraging the associated product. [234] analyzed the performance

of different automated approaches for detecting deceptive customer re-

views, with a focus on evaluating insights provided by multi-modal tech-

niques.

Various classical and deep learning-based text classification models

have been utilized, including support vector machines (SVM), k-nearest

neighbors (KNN), logistic regression (LR), light gradient boosting model

(LGBM) [254, 66, 90], long short-term memory network (LSTM), convo-

lutional neural networks (CNN), recurrent neural networks (RNN), and

transformers (e.g., BERT and its variants) for identifying the authen-
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ticity of online reviews [85, 335, 231, 230, 296, 80]. [80] proposed an

approach that combines CNN, particle swarm optimization (PSO), and

various NLP techniques to identify the credibility and authenticity of

online reviews using several datasets. Similarly, [85] presented a deep

hybrid model for fake review identification, considering the combination

of latent text features, aspect ratings, and overall ratings. [296] applied

various classical ML and DL models for identifying fake reviews. [14]

analyzed online deceptive reviews and proposed a recurrent neural net-

work model for fake review detection, focusing on new features such as

authenticity and analytical thinking. They conducted experiments on

Amazon and Yelp reviews for electronic products.

Due to the hidden and diverse characteristics of fake reviews, developing

a detection framework poses significant challenges. [294] proposed a de-

tection framework based on the sentiment intensity of a review and posi-

tive unlabelled (PU) learning. [297] introduced an ensemble-based learn-

ing approach, which balances classes using different sampling tech-

niques (WSEM-S), for modeling the fake review detection task. They

applied n-gram models to extract features before applying the model.

Their model’s performance was compared with conventional ML models,

including naive Bayes, XGBoost, KNN, and CNN. [205] applied different

supervised models, including classical ML models, using BERT repre-

sentations. [102] also employed supervised models.

A CNN-based fake news detection model was introduced by [314], which

considers the web-scraped content heading. [339] proposed a deep

learning-based method for fake news detection. [319] applied a voting-

based approach to determine whether a review is fake or not, using

multiple lists generated by different fake review detection models. [207]

proposed an explainable fake review detection framework using differ-

ent DL models, including Bi-LSTM, CNN, and DNN. They used Shapley

Additive Explanations (SHAP) [195] to explain the models. Previously,
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they addressed the concept drift problem within fake review detection

systems [206, 208]. With the success of large language models (LLMs)

in generating language for various purposes, it is evident that they are

also frequently employed to generate artificial product reviews to influ-

ence customers’ opinions [259]. [259] created a fake review dataset us-

ing multiple LMs and proposed detection methods for identifying fake

reviews. [34] introduced an intelligent fake review detection method us-

ing different RNN variants, including CNN and LSTM. They extracted

different aspects from the reviews and fed them into the deep learning

models.

Topic modeling techniques were also applied by [43] to identify fake re-

views. They combined review sentiment with other features for fake re-

view identification. A semi-supervised Generative Adversarial Network

(AspamGAN) model was proposed by [144], which incorporates an atten-

tion mechanism to address challenges related to the loss of important

information due to the relative length of online texts. [313] introduced an

ontology-based sentiment analysis approach that incorporates linguistic

features and part-of-speech (POS) for identifying fake reviews. They em-

ployed a rule-based classifier based on different extracted features. Dif-

ferent handcrafted features have also been applied for identifying spam

online reviews [290].Fang et al. [98] proposed a knowledge graph-based

method that considers the time and semantic aspects of online cus-

tomer reviews, as well as multi-source information. Feature-based and

content-based classification methods have also been proposed [31, 54].

Content-based and product-related features have been applied for cred-

ibility detection in reviews [303].

From the above-detailed literature review analyzing published papers in

the last five years, we can see that none of the methods are explainable

except one [207]. But that one method only applied SHAP value-based

explanation for global interpretability. Moreover, the methods proposed
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to detect fake or deceptive or spam reviews lagged behind the current

state-of-the-art methods including transformer-based methods. In this

paper, we employ efficient transformers including XLNet and DistilBERT

for modeling the fake review detection problem. We compared the per-

formance of different models with baseline deep learning models includ-

ing LSTM. BiLSTM, CNN, CNN-BiLSTM, and GRU using FastText word-

embedding-based text representation. In addition, we applied layer-wise

relevance propagation (LRP) based explanation technique to explain the

prediction from our models.

12.3 Our Method

12.3.1 DistilBERT Transformer

DistilBERT [261] is a general purposed distilled version of BERT [81].

It is 40% lighter and 60% faster transformer model than BERT model.

However, it retains 97% language understanding capabilities compared

to BERT model. DistilBERT used knowledge distillation technique [124]

which is a compression mechanism. In this mechanism a compact

model, DistilBERT is trained to reproduce the behavior of large model,

BERT. To reproduce the behavior of larger models, triple loss was em-

ployed in the training phase combining language modeling, distillation

and cosine-distance losses. Besides, DistilBERT has the same architec-

ture of the BERT model. As the number of layers have a smaller impact

on the computation efficiency, the number of layers is reduced by a fac-

tor of 2 in the DistilBERT architecture. The token-type embeddings and

pooler are also removed from the design of the compact model. Then Dis-

tilBERT is initialized from the BERT by taking one layer out of two and

trained on the same corpus as the original BERT model. The technical

details of DistilBERT can be found in the paper by [261].
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12.3.2 XLNet Transformer

XLNet [333] is a generalized autoregressive approach that utilized the

both of autoregressive and autoencoding language modeling. Unlike the

usages of the autoregressive models’ fixed forward or backward factor-

ization order, XLNet maximizes the log likelihood of a text sequence with

respect to all possible permutations of the factorization order to learn

the bidirectional context. In contrast to BERT’s pretrain-fineture dis-

crepancy, XLNet does not suffer from it. It also use the predicted token’s

joint probability are factorized with the product rule provided by the au-

toregressive objectives. XLNet improved its performance by integrating

the ideas of Transformer-XL [74] in its pretraining. As a result, XLNet

outperforms BERT on 20 tasks including question answering, sentiment

analysis, natural language inference and document ranking, etc. The

technical detail of XLNet can be found in the paper by [333].

12.3.3 Explaining the prediction

Inspired by the success of the LRP technique in explaining text classifi-

cation in different NLP applications, we adopted LRP [20, 19] to explain

the prediction to answer “why a particular review has been predicted

as fake?” question. The LRP technique can unveil the black-box deep

learning model by back-propagating the output from the output layer

up to the input layers through re-distributing the weight in the previ-

ous layers. In the end, LRP provides the weight for every input feature

and the higher the weight the higher the relevancy of the words towards

the predicted class. We then highlight the words based on the provided

weight and represent the explanations in terms of highlighted text and

word could.

For a deep neural network classification model, LRP re-distributed the

weight from the output layers back to the input layers [285]. Let i be the
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immediate lower layer and its neurons are denoted by zi. Computation-

ally the relevance messages Ri← j can be computed as followings [20].

Ri← j =
zi ·wi j +

ε·sign(z j)+δ ·b j
N

z j + ε · sign(z j)
·R j. (12.1)

The total number of neurons in the layer i is denoted as N and ε is

the stabilizer, a small positive real number (i.e., 0.001). By summing

up all the relevance scores of the neuron in zi in layer i, we can obtain

the relevance in layer i, Ri = ∑i Ri← j. δ can be either 0 or 1 (we use δ =

1) [20, 149, 285].

12.4 Experiments

12.4.1 Dataset

Fake Review Dataset: This fake review dataset contains 40000 re-

views in total. Among them, 50% reviews were originally written by

humans (i.e., reviews collected from Amazon). The rest of the reviews

are fake, generated by two different language models including ULM-

Fit (Universal Language model Fine-tuning) and GPT-2 [259]. The re-

views are for products from 10 different categories [259]. The categories

are Books, clothing, shoes and Jewelry, Electronics, Home and Kitchen,

Kindle, Movies and TV, Pet Supplies, Sports and Outdoors, Tools and

Home Improvements, and Toys and Games.

Yelp Review Dataset: We conducted experiments with another fake re-

view dataset named Yelp Review Dataset. Compared to the previous one,

this dataset is quite big and consists of more than 682K reviews and the

distribution is quite imbalanced. The dataset is accessible at Kaggle12.

12https://www.kaggle.com/datasets/abidmeeraj/yelp-labelled-dataset/data
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12.4.2 Experimental Settings

To assess the efficiency of our introduced fake review detection methods,

we conducted a comprehensive set of experiments using two distinct

fake review datasets. We initially applied an ensemble machine learn-

ing (ML) method, employing a majority voting technique on four different

ML models: Support Vector Machine (SVM), Decision Tree (DT), Random

Forest (RF), and XGBoost. Subsequently, we explored four distinct deep

learning models, namely BiLSTM, CNN, CNN-LSTM, and CNN-GRU. In

the BiLSTM model, we incorporated an embedding layer followed by a

Spatial dropout layer. This was followed by two bidirectional LSTM lay-

ers, each consisting of 64 and 32 BiLSTM units, along with a dropout

layer after each. The model then incorporated a fully connected layer

and concluded with an output layer featuring the sigmoid activation

function.

Similarly, the CNN model began with an embedding layer, followed by

a Spatial dropout layer. A convolutional layer was introduced, followed

by a dropout layer, and finally, two fully connected layers. The CNN-

LSTM model represented a hybrid combination of CNN and LSTM lay-

ers. It started with an embedding layer, followed by a CNN layer, an

LSTM layer, and two fully connected layers. The architecture for the

CNN-GRU model closely resembled that of the CNN-LSTM model, with

the key distinction being the replacement of LSTM layers with GRU lay-

ers. For our transformer-based approaches, we employed DistilBERT

and XLNet transformers for the purpose of detecting fake reviews. Since

there is a high chance of vocabulary mismatch problem, we employed

FastText, a character embedding-based pre-trained word embedding

model, to represent the reviews semantically for deep learning models.

For transformer models, we employed distilbert-base-uncased and xlnet-

base-cased for DistilBERT- and XLNet-based classification models, re-

spectively. For all experiments, we split both datasets into train, test,
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and validation sets in 70%, 15%, and 15%, respectively.

Table 27: The performance of different methods compared to baselines
on Fake Review Dataset.

Type Model Accuracy Precision F1Score
Baseline EnsembleML 0.8425 0.9147 0.9014

Deep Learning

BiLSTM 0.9556 0.9750 0.9466
CNN 0.9252 0.9268 0.9259

CNN-LSTM 0.9486 0.9454 0.9493
CNN-GRU 0.9476 0.9751 0.9466

Transformers DistilBert 0.9592 0.9906 0.9821
XLNet 0.9580 0.9887 0.9779

Table 28: The performance of the fake review detection method for dif-
ferent product categories.

Category Accuracy Precision F1Score
Home 0.9557 0.9786 0.9689
Sports 0.9544 0.9750 0.9686

Electronics 0.9461 0.9807 0.9479
Movies 0.9499 0.9689 0.9631
Tools 0.9508 0.9707 0.9711
Pet 0.9612 0.9833 0.9705

Kindle 0.9461 0.9795 0.9508
Books 0.9439 0.9772 0.9459
Toys 0.9341 0.9708 0.9325

Clothing 0.9351 0.9802 0.9295

12.4.3 Experimental Results

Performance on Fake Review Dataset: The performance of different

fake review detection models on Fake Review dataset [259] is presented

in Table 27 in terms of multiple evaluation metrics. Among four dif-

ferent deep learning models, BiLSTM performs better in terms of accu-

racy (0.9556) and F1-Score (0.9466). We can also see that CNN-GRU

performs equally compared to BiLSTM in terms of F1-Score and Preci-

sion which is almost the same. However, the other two DL models CNN

and CNN-LSTM also achieved consistent and effective performance. In

terms of all evaluation metrics, our proposed two transformer-based fake
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review detection models achieved significantly higher accuracy (0.9592),

precision (0.9906), and F1-Score (0.9821) among all employed models.

The performance difference between XLNet and DistilBERT is not sig-

nificant and it is only a 1% difference in terms of precision. DistilBERT

achieved more than 4% performance gain in terms of F1-Score.

To illustrate the performance of our best method (DistilBERT) in identify-

ing fake reviews, we present the performance across different categories.

Table 28 presents the performance for reviews in different product cat-

egories. Identifying fake reviews for pet supplies category, DistilBERT

achieved 96% accuracy and 98% precision compared to the performance

on other categories. On the other hand, it achieved higher F1-Score of

0.9711, which is higher across all categories.

Table 29: Performance comparison with existing method on fake Review
Dataset. The model OpenAI, NBSVM and fakeRoBERTa are proposed
by [259].

Method Precision Recall F1Score
OpenAI 0.83 0.82 0.82
NBSVM 0.95 0.95 0.95

fakeRoBERTa 0.97 0.97 0.97
DistilBert 0.9906 0.9738 0.9821

XLNet 0.9887 0.9703 0.9779

We compared the performance of our transformer-based models with

state-of-the-art methods on the same dataset by [259]. They applied

three different classification models to identify fake reviews. First, they

trained support vector machine-enabled classifier with Naive Bayes Fea-

ture (NBSVM). Then, an OpenAI model is specifically developed and ap-

plied for fake review detection. The OpenAI model is based on the idea of

Roboustly Optimized BERT Pretraining Approach (RoBERTa) with fine-

tuning. Finally, inspired by the performance on OpenAI, they designed

a RoBERTa-based customized model called fakeRoBERTa as their final

model. The comparison presented in Table 29 shows that our both trans-

former models XLNet and DistilBERT achieved significantly better per-
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formance in terms of precision and F1-score. In terms of recall, their

performance is quite consistent. However, the performance compared to

the results of a wide range of experiment settings and existing methods,

our introduced DistilBERT model demonstrated a new state-of-the-art

performance in fake review detection tasks.

Table 30: The performance of different methods compared to baselines
on Yelp Review Dataset.

Type Model Accuracy Precision F1Score AUC
Baseline EnsembleML 0.7848 0.7795 0.8156 0.6271

Deep Learning

BiLSTM 0.8947 0.8985 0.9444 0.7236
CNN 0.8961 0.8966 0.9451 0.7330

CNN-LSTM 0.8842 0.9007 0.9380 0.6780
CNN-GRU 0.8964 0.8978 0.9452 0.7249

Transformers DistilBert 0.9235 0.9326 0.9595 0.7958
XLNet 0.9349 0.9278 0.9654 0.8044

Performance on Yelp Review Dataset: We also carried out experi-

ments on another dataset to demonstrate performance consistency. As

we noted earlier the Yelp dataset is quite imbalanced and the number

of majority samples is way larger than the minority samples, we mea-

sure the performance in terms of area under curve measure along with

accuracy, precision, and F1-Score. We present the performance for the

Yelp dataset in table 30. The table summarized that transformers-based

classification models here also performed better than the deep learning

models and ensemble ML model. Unlike the performance in the previous

dataset, XLNet achieved higher accuracy, F1-Score and AUC compared

to the DistilBERT-based classifier. But for the other measure, in terms

of precision , DistilBERT performed better. However, the performance

difference is not that big but compared to the deep learning-based meth-

ods, both DistilBERT and XLNet outperformed significantly with a way

higher AUC. AUC is considered one of the best evaluation metrics to

measure the performance when the dataset is imbalanced.

Overall, the performance on this dataset is lower than on the previ-

ous dataset. There are several probable reasons. One is the size of
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the dataset, the Yelp dataset is significantly larger than the fake review

dataset and reviews are written by human. However, in the Fake re-

view dataset, the fake reviews are generated by the large language mod-

els (LLM). Additionally, the Yelp data is considerably imbalanced. Since

the reviews are generated by LLM, the transformer-based classification

models might recognize the review patterns better than the reviews writ-

ten by humans. However, considering the performance of a wide range

of experiments on two different datasets, we can conclude that Distil-

BERT and XLNet achieved new state-of-the-art results in identifying fake

reviews, both for human and machine-generated fake reviews.

12.4.4 Explainability of the predictions

We present explanations provided by LRP technique using highlighted

text and word cloud where the color intensity in highlighted text and

size of the words WordCloud represent the degree of relevancy towards

the class. We demonstrated explanations for two predictions from each

dataset. The first considered review is for a book. It is a fake review

generated by a transformer-based language model and our model also

predicted it correctly, as fake. The review is as follows:

Review 1: “First, let me say I’m an avid reader and this is a book that I

read as a child. I had to read it before. I could have a chance to take it to

college. I still enjoy reading it as a kid. This book is still one of my favorite

books. I have read the book over and over again and it is a must read.

I just can’t put it down. The only reason I gave it five stars is because I

want to read more about the characters. I liked the way they interacted

with the kids. I loved their reactions to.”

The explanation is depicted in Fig. 56. We can see the highlighted

words are related to the predicted class. The highlighted text and word
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Figure 56: Explanation with highlighting relevant words for a predicted
fake review.

cloud also show that words such as read, chance, enjoy, liked, loved

stars are some most relevant for the prediction. We have a closer look

at the review text, it is a review with exaggeratedly praises the book.

The highlighted words are used for exaggerated praise. Let’s consider

another fake review for the clothing category:

Review 2: “I actually have a review here on the site about these gloves.

These gloves are awesome and i highly recommend them. I am a 32-year-

old man who works at a large company and have had no issues with these

gloves. I have had no issues with the gloves falling apart or breaking.

They are the most comfortable I have ever worn, and I am so happy with

them. I recommend them to anyone looking for a glove that will last a long

time. I am very happy with my purchase and would recommend these

gloves to anyone looking for a great glove. These are super lightweight

and lightweight. I have used them for a couple of months, and they are
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still working great. I would definitely recommend them to anyone looking

for a good quality product. I’ve had no problems with them slipping or

sliding my only complaint is that I haven’t used them yet, but they are

very well made and have been used in my gym.”

Figure 57: Explanation with highlighting relevant words for a predicted
fake review.

The explanation for this review is illustrated in Fig. 57. This is a long

review for gloves and if we have a closer look on the the text, we can

see that it also has redundant praise (i.e., recommends the product sev-

eral times and claims that the gloves were the best the user experienced

ever). However, the LRP-enabled explanation identified words that in-
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dicated why it is classified as fake. The relevant words are awesome,

recommend, anyone, quality, etc.

In the Yelp dataset, the review text is not fine-grained since all the

reviews, both real and fake, are written by humans. The grammati-

cal quality is not similar to the previous dataset. However, let’s look

at the explanation of a review in Fig. 58. This is a review for a restaurant.

Review 3: “Omg this place is highly recommended to me by a friend and

I’m happy that I come here. It was fabulous. Everything was excellent.

Amazing food and service thank you for everything David. Such a amazing

service. You made my friend birthday great.”

Figure 58: Explanation with highlighting relevant words for a predicted
fake review for Yelp Dataset.

We can see from the figure that the highlighted words including amaz-

ing, fabulous, great, service, highly, recommended etc. play bigger roles

in helping the classifier to decide it is a fake review. For another review

which is quite longer than the previous one. Fig. 59 presents that the

responsible words for which the deep learning models decide it as a

12.4 Experiments



12 Towards Explainable Fake Review Detection 235

fake review are authentic, taste, favorites, dishes, open, place, etc.

Review 4:“NoodleTown is classic authentic chinese food. â The taste is

always there prices are not bad maybe 50 cents or 1 more than other

Chinatown restaurants but the food is good. Most of the dishes on the

menu is good. â Our favorites are beef Chowfun, Chicken Chowmein in

black pepper, sauce hoisin chowmein, seafood Congee with Cruellers if

they didn’t run out yet. Wonton Noodle, Soup dishes are good seafood.

Dumpling is good this place accomodates until late in the night. They

close around 4 am and re open soon after that definitely convenient and

good food.”

Figure 59: Explanation with highlighting relevant words for a predicted
fake review for Yelp Dataset.
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12.4.5 Empirical User Evaluation

To evaluate the effectiveness of the LRP-generated explanations high-

lighting the important relevant words to the predicted class, we con-

ducted an empirical user study with 12 human subjects. The subjects

are studying master’s in business informatics. We first give then an

overview of how our transformer-based model predicts the authentic-

ity of the review. Then we provide them with a simple demo about the

explanations and what those highlighted words mean.

We provided them three reviews (Review 1, Review 2, and Review 3) and

asked them to score how authentic the reviews were. All three reviews

were fake but we have not told them. Because we wanted to observe how

they identify and what are the logic behind. We also provided the details

about the products for which the reviews were posted. They were asked

to put score for each review, and the score ranges from one star (*) to five

star (*****). The highest value 5 (*****) indicates that the corresponding

review is original, while the lowest value 1 (*) indicates the review is

fake. The participants first score each review after carefully reading the

reviews without the generated explanations.

We then provided them with the LRP-generated explanations (Fig.,

56,57,58) for each reviews, respectively. We then instructed the par-

ticipant to look at the explanations and re-score the reviews whether

their assumptions changed after perceiving the explanations. We de-

note two scores before and after the explanations as score 1 and score

2, respectively.

We then discuss with every participant why they think a particular re-

view is original or fake. What are the reasons and rationale behind their

scores? We also asked them about the efficiency of the generated expla-

nations, and how they help the participants to decide on the authenticity

of the reviews.
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Table 31: The user evaluations whether the reviews are fake or real, with
and without explanations.

Subject Review 1 Review 2 Review 3
Score1 Score2 Score1 Score2 Score1 Score2

1 ** ** **** *** ** **
2 ** ** **** **** **** ****
3 * * * * ** **
4 *** ** * * **** ***
5 * * * * **** ****
6 ** ** ** *** ***** *****
7 ** ** * ** **** ****
8 * * * ** ***** **
9 * * * ** *** ****

10 * * *** *** ** **
11 * * * ** *** ***
12 *** * ** *** ***** *****

Table 31 represents the evaluation of the participants on whether those

three reviews are original or fake. We can see that all participants

thought that review 1 was fake except subjects 4 and 12. They pro-

vide three stars out of five, which concludes it is somewhat original.

However, they changed their decision after having the explanations bu

putting two and one star, respectively. For review 2, except for partici-

pants 1 and 2, everyone considered the review to be fake. Interestingly,

review 3 were considered solely as original by the majority of the par-

ticipants. However, after considering the explanations generated by the

LRP-enabled explainability technique, two participants (subject 4 and 8)

changed their decision by decreasing the mark.

Discussion on participants’ opinion: We had a detailed discussion

with each participant on how they came up with the decision whether a

particular review was fake or original. For example, we asked the subject

about the review 3. He said the following:

Subject 2: “The third review, because it was for me it was the most realis-

tic. There was the name inside. So he seems to know the guy who’s doing

it and it’s pretty, and it’s really short.”
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He thought it was short and he believed in the text because it has a

name. However, we asked him, what matters in predicting the review

whether it is real or fake. He replied, its more about linguistic form (i.e.,

meaning grammatical structure and tone), not individual word.

Subject 2: “Yeah, and the second it’s, uh, more about the words. And in

the first, first, it’s more about the linguistic form to me.”

Similarly, Subject 3 also thought that highlighting relevant words as

an explanation might not make sense in explaining review identification

whether it is fake or real. It’s about the whole text. He added, for the

second review, based on the repetitive texts he identified review 2 as fake.

Subject 3: Uh, the second one is, I also think it’s completely made up by

AI, um, because it’s very repetitive and, uh, uh, some sentences you just

read and you think no human would write like this. Um, and then the

third one to me also was the most realistic one because it is kind of short.

It’s very, it kind of seems authentic in terms of like the excitement.

Subject 3: “No, to me, it’s not the singular words. To me, it really is the

structure and the whole like, the thing as a whole that, um, makes it seem

like it’s AI generated”

Subjects 4 and 5 provided their insight about whether our generated ex-

planations make sense to understand the decision. They both thought

that the current form of explanation might help to some degree to com-

prehend the decision, 2 out of 10.

Subject 4: : “I think it might, it might make sense to some degree. But as,

uh, my colleague just said, it’s more about the, the overall. Two out of 10”

Subject 5: “No, no. Not from my part. I have to reread that, like out of 10.

Uh, like two or three.”

Subject 6 has found something very interesting in review 2, for example,

information like age, and jobs are not relevant and these are not com-

monly used in review. He also identified that this is a very long review,
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generally, people are too lazy to write.

Subject 6: “Because no matter, um, his age or his, um, job and something

like this or for buying gloves, um, and also it’s, um, too long. And I guess,

um, people are, most people are lazy to write this kind of message. Yeah.”

Grammatical information is identified as important to understand

whether the review is fake or real by subject 7. He considered the more

the number of adjectives that exist in the review, the more realistic the

review is.

Subject 7: “No, just any adjective. So for example, the ones that I have

rated the, the, the realest, have more objectives than, than the other ones.

So it could be just, um, your personal opinion, it’s not about.”

He also thought the individual word might have some importance to-

wards certain classes, but it should be the whole context of the review.

Subject 7: “For me, for me, they didn’t really help me to find out if they are

or not real. Uh, I think it’s more like a context thing. Only, I mean for me

the word has, has to, um, it’s okay. It was the, the same.”

Interestingly Subject 8 found our generated explanations are effective.

Before accessing the explanations, subject 8 provided review 3 as 5

starts, meaning a fully real review. But after he went through the gen-

erated explanations, he thought this was also a fake review. Though it

has several good adjectives, but he thinks these are the reasons to be

fake, contradictory to subject 7.

Subject 8: “So, the third one actually was from me, at the first, um, I

gave them five stars. So that it’s likely to happen because it’s short. I

think in real life everyone just give short recommendations and not long

recommendations. But then after reading the AI, um, explanation, yes.

Um, reading the words excellent, amazing, great. I also think that it’s, it’s

not a real review.”

In summary, the explanations generated by LRP technique to highlight-
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ing important relevant words in context of fake review identification can

make general users sense in minimum scale. On contrary, for some

application areas, for example, sentiment classification [19] and hate

speech recognition [149], where LRP-based explanations are quite good

to understand the reason behind the prediction. One of the main rea-

sons identified through the empirical user study why explanations high-

lighting relevant words is the use of similar words in both fake and orig-

inal review. For both positive and negative reviews, we observed similar

adjectives or other praising or criticizing words are used in both fake

and original reviews. For example, in sentiment analysis task, there

are some terms or negation elements that are used for specific posi-

tive and negative class [19]. For another example, patent classification

task [285], terms related to specific scientific fields are used in the patent

text. Rather, in the context of fake review identification task, grammat-

ical structure of the sentence, tone and overall context matters most in

explaining the decisions.

12.5 Conclusion and Future Direction

In this paper, we proposed transparent and interpretable fake review

detection framework applying transformer models including DistilBERT

and XLNet. We also apply multiple deep learning models including

BiLSTM, CNN, CNN-LSTM, and CNN-BiLSTM for modeling the fake re-

view detection task. Then, we adopted LRP technique to open the the

black-box deep learning model. The LRP can explain why a particu-

lar prediction has been made. We conducted experiments in multiple

settings and applied our models to two different benchmark datasets.

Based on the experimental results, we demonstrated that our proposed

DistilBERT- and XLNet-based fake review detection models significantly

outperformed other ensemble ML and DL models. Compared to the pre-

viously known related methods, our method also outperformed NBSVM,

12.5 Conclusion and Future Direction



12 Towards Explainable Fake Review Detection 241

OpenAI, and fakeRoBERTa methods on the same dataset. In the end,

we demonstrated explanations provided by our adopted LRP technique

for multiple example reviews for different categories. The empirical user

evaluation with human subjects indicates further requirements to gen-

erate and present the explanations for any specific decision.

In the future, we are planning to have an empirical study to measure the

quality of the generated explanations. Further, it would be interesting

to consider the elicited requirements and findings from user evaluation

for explanation generation.
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13 Discussion

This chapter presents the overall findings of the thesis and discusses

how much we addressed the research questions we mentioned sec-

tion 1.5 by mapping the findings and contributions. We present the ob-

servations on the experimental results of our proposed methods for three

different application scenarios. Our research questions were about how

the explanations vary across applications, what essential facts needed to

consider in presenting explanations, and how we can achieve actionable

explanations.

Overall, our research aimed to explore a wide range of application con-

texts and address the challenges of explaining AI models’ decisions. We

conducted extensive investigations into explainable AI methods across

three different application domains and various sub-tasks, leading to a

diverse array of findings and scenarios. In most application scenarios

we explored, certain types of explanations may be meaningful, while in

others, they may not be useful enough. On the other hand, explana-

tions representation and their underlying information can also vary on

the application contexts and user-expertise variability. In the following,

we first discuss the observation and findings on three different applica-

tion contexts and then we revisit the research questions with a broad

discussion on how much we achieved.

13.1 Overall Findings

The introduced XAI methods applied to three different application sce-

narios achieved effectiveness in accurate predictions and can explain the

predictions with a straightforward representation of the underlying facts

and rationale. We rely on model-agnostic explainability techniques to ex-

plain the prediction; in almost all experiments, we first develop ML or DL

predictive or forecasting models, and then XAI techniques come into play
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to explain the models and their predictions [279, 280, 277, 285]. Across

all applications, our introduced techniques achieved high performance

in terms of standard evaluation metrics and compared to the existing

approaches, the performances are significantly higher. This section will

highlight the performance of proposed methods in two directions: (i)

predictive performance and (ii) the evaluation and the observation of

generated explanations.

13.1.1 Smart Home Applications

Overall smart home system is a combination of multiple AI-driven appli-

cations including energy demand forecasting, indoor temperature con-

trol systems and HVAC system [140, 76, 197] (chapter 5, 6, & 7). Energy

demand forecasting for households with high precision needs extensive

analysis of different features, consumption patterns for appliances, ac-

tivities, and seasonal effects [164, 197]. DL-based multivariate fore-

casting model presented in chapter 6 can also predict the appliance

level future consumption effectively as compared to the previous stud-

ies [161, 164], which can make household members aware of being more

optimized in energy uses. On top of that, the explanations generated

by our introduced DeepLIFT-enabled explainable forecasting framework

can map the contribution of appliances and household activities with

the corresponding time. The generated explanations can provide more

fine-grained information about how and on which appliances their total

cost associated with energy consumption is distributed.

The need for easily understandable explanations in the context of smart

home systems analyzing two different application scenarios has been

presented in chapter 5. The demonstration of explanations for different

smart home applications highlighted the research gaps in why smart

home users might need more fine-grained explanations. Considering

the challenges and research gaps, chapter 5 sought three concepts of

13.1 Overall Findings



13 Discussion 245

syntax-, semantic- and pragmatic-level explanations. To achieve such,

HCI techniques, including user studies, prototyping, technology probes

analysis, and heuristic evaluation, are needed to apply for generating

better understandable explanations for users.

The explanations in terms of household activities responsible for future

energy consumption might solve the user experience variability chal-

lenges by providing more accessible explanations than highlighting the

contributions of every feature. Explanations using household activities

can be more beneficial in making sense of what household activities

might be responsible to future energy consumption. Considering the

presented data in explanations, they might change and optimize their

energy consumption practice.

The quality of the generated explanations can be evaluated based on

different criteria, including the contents, representation, and user sat-

isfaction [219]. There are several properties including correctness [15],

completeness [73], and consistency [210] that need to be considered

to evaluate the content of the explanations. On the other end, com-

pactness, composition, and confidence are other important properties

to judge the quality of the explanations representation [41, 219].

In chapter 6, the performance of the introduced household energy de-

mand forecasting system is effective and can predict the appliance level

consumption with better accuracy compared to the previous work [161,

163]. The generated explanations were evaluated by introducing a new

evaluation metric. Previously used metrics are often used for classifi-

cation tasks. However, the application context and features in energy

demand forecasting are pretty different. After carefully analyzing the

features, activities, and seasonality with the associated time frames, we

needed to evaluate the efficiency of the explanations employing a cor-

relation coefficient. The correlation coefficient can identify whether the

identified contributions of different features or activities in explanations
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align with the ground truth.

The explanations generated were evaluated by introducing a new metric,

contribution monotonicity coefficient, CMC, that can compute whether the

highlighted contributions are aligned with past consumption patterns.

This metric can evaluate how accurate the facts used in the represen-

tation of the explanations [219]. Compared with the ground truth, this

evaluation metric can measure the efficiency of the explanations in the

context of time series forecasting. The explanations represented with

relevant household activities indicated the efficiency of the generated

explanations and aligned with their findings compared to the existing

approach to household activity recognition [302]. Moreover, the exper-

iments on two different datasets concluded that the introduced metric

can be used to evaluate the effectiveness of the explanations of other

multivariate time series forecasting tasks.

One of the previous studies applied methods to explain the prediction

from energy demand forecasting systems with heatmap-based explana-

tions [163]. However, the generated explanations are highly technical

and could help practitioners design new models and improve perfor-

mance. The comparison of the overall findings of explanations gener-

ated using household activities is also analogous to the findings of the

household activity recognition from the energy consumption by [302].

Generally, modeling personal thermal comfort preference for an HVAC

system depends on high dimensional features, which might be costly to

implement since it requires various physiological data from the occu-

pants in the home [320, 191]. This requirement leads to a higher cost

of installing expensive sensors. The predictive models are also compu-

tationally expensive when the data samples have much more features to

consider. However, the findings for personal thermal comfort preference

prediction system in chapter 7 are pretty interesting. The preliminary

analysis and exploratory experiments concluded that several redundant
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and irrelevant features in the dataset might hinder prediction perfor-

mance. Following the preliminary findings and hypothesis, the use of

supervised feature selection techniques was effective in discarding noisy

and irrelevant features.

The data inadequacy was another challenge in modeling the thermal

comfort preference prediction task. The datasets often need to be more

prominent in size, more in terms of several samples to train ML models

for personal preference prediction. On the other hand, collecting data

from human subjects is expensive and lengthy. To overcome this chal-

lenge, conditional tabular generative adversarial networks (CTGAN) were

introduced to create synthetic samples considering the existing sam-

ples. With this, the dataset had enough samples to train the model.

The experimental results in multiple directions demonstrated the effec-

tiveness of the introduced feature selection and GAN compared to prior

works [78, 334].

The feature selection techniques were effective in presenting the expla-

nations because they discard irrelevant and redundant features. Hence,

the explanations only consider features that are highly relevant to the

decisions. In this way, feature selection can be used in presenting expla-

nations, and hence, explanations can be more focused. Similar findings

have also been reported in other applications for generating explanations

for high-dimensional datasets [151].

13.1.2 Business Applications

The objectives of having explainable business applications might be re-

lated to both the owner or stakeholders of the business and the end

users or clients of the applications (chapter 9). Therefore, the expla-

nations might play different roles for the different users [251]. In the

area of e-commerce, we demonstrated the explanations for stakehold-
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ers of the retail company on how they overcome future product back-

orders by considering the prediction and the explanations with extracted

facts. Eventually, the application’s performance should be accurate, be-

sides providing explanations. This dissertation also contributed to intro-

ducing a high-performance, explainable product back-order prediction

system. The CNN-based explainable model for product back-order pre-

diction improved significantly compared to existing methods. Since the

back-order is a rare event in inventory management, the dataset is ex-

tremely imbalanced. The imbalance in the dataset leads to model bias

and might hinder the high predictive performance. Our method of ap-

plying Adaptive Synthetic oversampling (ADASYN) [185, 123] to get rid

of the imbalance problem performs better than the other existing tech-

niques, including SMOTE [62, 119, 273]. The overall performance has

been evaluated based on AUC, the metric that can compute the perfor-

mance of the predictive models on a dataset with imbalances. Working

with such an imbalanced dataset requires decent preprocessing steps,

including handling missing values and normalization, before applying

the deep learning models.

Our generated global and local explanations, applying SHAP and LIME,

can make sense of the model’s overall priorities and the reason behind

specific predictions. Moreover, it can pinpoint the features responsible

for the future back-order of specific products. From the stakeholders’

point of view, the explanations can be further analyzed to know what

are the most responsible features that can be changed to overturn the

decision; hence, in the future, that particular product will not be back-

ordered, and it will ensure the revenue and decrease the possible loss.

13.1.3 NLP Applications

The explanations for NLP tasks are generally generated considering the

relevant terms towards the prediction model and classification mod-
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els [211]. In this dissertation, two different types of explainable text

classification methods have been introduced, one with DL models us-

ing the semantic representation from word embedding and another one

based on transformers for two different NLP applications, patent classifi-

cation and fake review identification, respectively (chapter 11 & 12). DL

models, including BiLSTM and CNN-BiLSTM, performed well in clas-

sifying scientific patents and outperformed previous existing methods

on two different patent classification datasets [252, 183]. On the other

hand, transformer-based fake review identification models could also

identify the review types effectively with high precision, compared to ex-

isting models [259].

However, the effectiveness of the explanations generated by our intro-

duced LRP techniques differs for the context of the two applications.

In the case of scientific patent classification, we observed that the ex-

planations help understand why a particular patent is classified into a

class. The explanations can map the related scientific terms related to

the class. For example, the explanations identified the words related

to chemistry patents, which are not generally used in other patents.

Along with identifying the relevant scientific terms for the corresponding

patents, it can emphasize the degree of relevancy of particular terms to

the class in different visualizations.

The decisions have been explained by highlighting the corresponding re-

lated terms for the fake review identification task. From the preliminary

analysis of the generated explanations for this application context, we

have observed that the identified terms for fake and original reviews are

similar. This is because both fake and original reviews generally use

similar words, either to praise or criticize a particular product. There-

fore, explanations highlighting only terms with the degree of relevancy

might not be efficient in this particular application.

To gain more insight into the generated explanations and determine
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whether they are helpful to understanding the AI decision or not, our

conducted user study on evaluating the explanations with human sub-

jects suggested that the explanations can make sense on a small scale.

The findings of the empirical user study concluded that the explanations

behind any particular reviews, be they fake or original, are not related

to only the terms used. Instead, it depends on the overall tone of the

sentences or text of the review and the grammatical structures.

13.2 Revisiting Research Questions

13.2.1 Achieving high-performance

Before exploring explainability in different application scenarios, first,

we needed to achieve high-performance ML models that provide accu-

rate prediction in every application. Here, we discuss how we tried to

answer the first research question and what strategies and techniques

were applied to overcome the challenges, such as data inadequacy and

data imbalances in achieving high-performance ML models.

• RQ 1: What techniques and strategies can be employed to achieve

high-performance ML models addressing technical challenges such

as data imbalance, data inadequacy, and model bias?

We explored and proposed high-performance ML models for smart home

systems for two major applications, including energy demand forecast-

ing and personal thermal comfort preference prediction tasks. From

these two applications, thermal comfort preference prediction datasets

need more data; there was a shortage of adequate data needed to train

ML model [78] effectively. Collecting and annotating high-dimensional

data from human subjects is also time-consuming and costly. We ana-

lyzed the available data carefully and introduced a conditional tabular

GAN architecture to generate synthetic data to achieve data adequacy
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for model training (chapter 7). The previously studied method also suf-

fers from data inadequacy challenges [191]. Since the data were high-

dimensional, the careful investigation applying a correlation coefficient

indicated that the data had too many high-correlated and redundant

features. Therefore, we introduced multiple supervised feature selection

techniques to filter such features. With synthetic data generation using

CTGAN and feature selection techniques, we achieved high-performance

personal thermal comfort preference prediction models compared to pre-

vious known related methods [191, 78, 25].

When it comes to forecasting energy demand for smart homes, we took

a different approach. Recognizing that the forecasting problem often

depends on seasonal effects, we extracted seasonality features. These

features, when combined with the energy consumption from different

appliances, were used to train the widely known LSTM model for weekly

and monthly prediction of the overall energy consumption. The re-

sults were promising. We achieved better performance in two differ-

ent datasets consisting of five different household energy consumption

data [164, 302]. The generated explanations not only validated our ap-

proach but also indicated that the introduced features were contributing

significantly to the overall prediction.

In the business problem of product backorder prediction, one of the

significant challenges was that the dataset was extremely imbalanced.

Therefore, the model is expected to be biased on the majority class sam-

ples. We applied several approaches to address the extreme class imbal-

ance problem and found that ADASYN oversampling would be the best

one to tackle data imbalance, particularly for modeling product backo-

rder prediction [286, 119]. Eventually, our proposed CNN-based prod-

uct backorder prediction model employing the data generated by the

ADASYN oversampling technique achieved a new state-of-the-art perfor-

mance and outperformed known related methods [286, 119, 226, 134].
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Applying DL and transformer-based classification models, we modeled

two different NLP applications before explaining the predictions. Com-

pared to the previous methods on both tasks, we achieved higher per-

formance due to the data imbalance, and our methods outperformed

other related methods that applied DL and transformer-based models to

classify scientific patents and detect fake reviews in e-commerce appli-

cations [252, 183, 259].

13.2.2 Explanations vary across applications’ context

The next two research questions was about how we can achieve human-

centered explainability for given different applications scenario and con-

texts. We mostly conducted experiments applying different XAI tech-

niques in the application areas including smart homes, e-commerce and

NLP.

• RQ 2: How can human-understandable explainability be achieved

for ML models within a specific application domain?

• RQ 3: How do explanations vary across different real-world appli-

cations?

For smart home application scenarios (chapter 5, 6 & 7), namely in

energy demand forecasting and personal thermal comfort preference

prediction, the outcome of our introduced methods and explainability

techniques concluded that even in the same application area, the ex-

planations types and representations might be different. For energy

demand forecasting, explanations for general users highlighting energy

consumption by different appliances and time of use might make sense

as to how their overall energy bills are associated with using different

appliances. They can find the distribution and pattern of energy uses

associated with the appliances.

13.2 Revisiting Research Questions



13 Discussion 253

To make more holistic explanations in more accessible forms, we empir-

ically observed that the explanations highlighting the contributions of

different household activities are adequate to understand. It provided

an overall view of how the household members consume energy in dif-

ferent activities such as cooking and watching TV. However, considering

the cost associated with the energy consumption of different appliances

and time of use might make another dimension, and inhabitants then

can optimize their energy consumption practices. It was also evident

that the associated cost might matter most on the energy consumption

in households in different activities (chapter 6).

The explanations help general smart home users understand why they

need a specific amount of energy for the upcoming month/week. The

explanations in terms of activities are also usable to change the con-

sumption practice since these might provide clear indications about

the responsible activities on total consumption. Therefore, users might

consider optimizing a specific activity (i.e., the most consumed one) by

changing their consumption routine. Compared to the previous studies

on household energy demand forecasting, our findings contributed to

explaining decisions in easily understandable representations. In con-

trast, previous methods [57, 162, 305] barely investigated explainability

except in one that provided technical explanations [163].

However, on explainable product backorder prediction tasks, the users

are not lay people but the stakeholders and inventory managers of the

retail company [119, 226]. So, the explanations only highlight why a

particular product will go back-ordered. However, they might expect to

know the factors and how they can overturn the prediction considering

the explanations.

In the explainable patent classification problem, explanations in terms

of heatmaps and word clouds are effective in understanding the rea-

son behind the prediction of the patent class. This is because the LRP-
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enabled explainability technique is capable of identifying relevant, im-

portant scientific terms corresponding to the particular patent.

On a similar application, fake review identification and explanations

with similar LRP-enabled explainability techniques could be more help-

ful in comprehending why a particular e-commerce review is predicted

as fake. Though it can identify the relevant important terms and present

them in terms of heatmap and word cloud, the user evaluation of such

explanations concluded that fake reviews depend on the structure and

tone of the sentences, not the terms. This is an interesting finding that

goes opposite to the observation on patent classification.

In summary, the investigation of demonstrating explanations with multi-

ple application areas introducing several explainability techniques con-

cluded that we must study the users’ and stakeholders’ needs. After

careful analysis and consideration, we must select and develop explain-

able systems. Interestingly, for the same text classification application,

the explanations in patent classifications with the same XAI techniques

help comprehend the prediction. However, explanations generated using

same techniques for fake review identification only makes a little more

sense.

13.2.3 Generating Explanations considering Underlying Facts

Generating explanations considering the facts extracted by the XAI tech-

niques for the overall global model’s priorities and specific predictions

depends on the application and users’ or stakeholders’ context. Our pro-

posed ML models and explainability techniques in different application

scenarios also concluded with similar findings.

• RQ 4: What underlying facts and rationale should we consider when

generating explanations within application scenarios?

For the energy demand forecasting system (chapter 5 & 6), DeepLIFT-
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based explainability techniques consider both the previous time frames

and the appliances’ consumption. Because the deep multi-variate fore-

casting model depends on the time sequence when predicting the total

consumption for the upcoming week/month. Therefore, we must con-

sider the time and consumption of appliances (features) in generating the

explanations. However, explanations of the intensity of energy consump-

tion by different activities in households can make sense to understand

more easily, depicting how their total consumption is distributed among

different activities. Therefore, for explaining prediction for energy de-

mand forecasting applications in smart homes, the relevant underlying

facts that could be easier for users to understand include the consump-

tion of appliances and activities, the time when the users might use to

consume more energy [113].

For global interpretability for the personal thermal comfort preference

prediction task, all features, both environmental and physiological,

should not be considered. Many features are not controllable, such as

weather information (i.e., outside temperature). Though explanations

using uncontrollable features can not provide insight to take necessary

actions, they can help users make sense.

The explanations for the predictions from our proposed CNN-based

backorder prediction model (chapter 9) and the overall global expla-

nations can identify the most critical relevant features for the overall

model’s decision-making. However, for local explanations for specific

predictions, we observed that some features are not controllable, mean-

ing the stakeholders can not take the necessary steps to overturn the

prediction to minimize future loss. The generated explanations are help-

ful to some extent, at least in knowing the reason, but those not change-

able features might be omitted for explanation generation. For exam-

ple, the shipping time can be an essential feature in inventory manage-

ment [119, 286], the explanations with the hint to increase or decrease
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the product shipping time would be somewhat more helpful for the in-

ventory manager to take necessary steps.

Since the priority from the stakeholder side is to increase the revenue

and decrease the company’s loss due to the possible backorder situa-

tion of a product [119], the features associated with cost should be given

importance in generating explanations. In particular, explanations are

expected to make the decision more transparent to the stakeholders so

they can have clear hints on overturning it and making it financially

profitable. For example, explanations can clarify what possible finan-

cial changes will happen if stakeholders change some policy, such as

adjusting lead time. At the same time, stakeholders need to be aware

of customer satisfaction. Therefore, explanations highlighting changing

features, such as extending the shipping time to overturn the backorder

situation, would not be ideal for the users.

On NLP applications, in patent classification and fake review identifica-

tion (chapter 11), the facts to consider for generating explanations are

contrary to our observation. The explanations generated for specific

predictions of a patent are helpful when they can identify the relevant

critical scientific terms. For explainable patent classification, the gener-

ated explanations applying word cloud and heatmap can illustrate why a

particular patent is classified to a specific class. The highlighted terms

used in the explanations are also helpful when users know about the

degree of relevance of the prediction. Despite a few exceptions, the rel-

evant identified terms towards the class and their degree of relevancy

can explain the underlying reasons why a patent is associated with the

particular patent.

However, in the same way, and applying the same LRP-enabled explain-

ability technique, the generated explanations for fake review identifica-

tion also represented highlighted weighted terms (chapter 12). However,

in fake review identification contexts, similar explanations are incapable
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of making sense compared to the patent classification task. Because ev-

ery patent has different words associated with patent classes. However,

in the fake review identification dataset, the reviews written by AI tools

also have terms often used by human subjects. That is why the reviews

written by human users and AI tools might have similar words to praise

or criticize certain products. In turn, the prediction, whether the re-

view is fake or original, might not be related to the words but to the

sentence’s structure and the language’s tone. The empirical study with

human subjects also concluded that in the case of fake review identifi-

cation, the identified words do not play a vital role in being classified as

fake or original but the overall structure or tone of the reviews.

13.2.4 Achieving Actionable Explanations

In the ideal case, the explanations should not only be self-explanatory

to understand the models and their predictions but also it should be

actionable [200]. By actionable, explanations should understand the

decision and provide insight to take corrective actions to the users. Tech-

nically, explanations often provide insights and facts that can be useful

for the AI practitioner to modify the ML models to improve the model’s

performance. For example, if we consider the explanations for deep en-

ergy demand forecasting systems, inhabitants should be able to use the

findings to optimize their energy consumption routine and change their

energy activity. This dissertation also focused on how we could generate

actionable explanations through exploratory explanations.

• RQ 5: How can actionable explanations be generated to optimize

practice for given application contexts?

In the case of NLP applications (chapter 11 & 12), from the discussion in

the previous section13.2.3, we presented that the prominent widely used

LRP-enabled explainability techniques provide meaningful explanations
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for patent classification. Eventually, explanations can be utilized to de-

termine why a patent has been classified into a specific class. Moreover,

the degree of relevant terms has also been identified as terms with the

highest influence on a specific class. Experts who work on classifying

patents and scientists in different scientific areas working on writing

patents might have substantial ideas about the reason for the classi-

fication of patents. In turn, the scientists can consider the generated

explanations to leverage their preferred terms in their patents. Besides,

the professionals who work for patent classification could have used the

explanations and be satisfied to assign a particular class to a patent.

However, for the fake review identification task (chapter 12), the same

LRP-enabled explainability techniques suffer to make understand why

the specific reviews are fake or original. In this case, the successful ex-

plainability techniques are not working correctly to make sense of the

prediction. The challenges we mentioned in section 1.4 are evident.

One specific XAI technique is not enough even for similar tasks, and

the application context played a vital role in understanding the facts.

Through the empirical evaluation with human subjects, it can be con-

cluded that the HCI techniques, such as user study and prototyping

discussed in chapter 5 should be considered before applying explain-

ability techniques. Otherwise, it might provide explanations that can be

useful to know the models’ priority but will not be actionable. The em-

pirical evaluation reveals that the grammatical structure and sentence

tone should be used to generate actionable explanations.

Since the explanations in energy demand forecasting systems are related

to two different dimensions, features and time (chapter 5 & 6), there

are some features that we tried to extract depending on the seasonality.

However, the explanations generated by DeepLIFT can depict the dis-

tributions of energy consumption in different household activities. The

explanations can highlight the contribution of different appliances and
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household activities responsible for energy consumption. Total house-

hold energy consumption, distributed by the intensity of different house-

hold activities, is more understandable than consumption distributed

across the appliances [302]. The explanations regarding the intensity

of activities are more actionable than the appliance-level consumption-

based explanations. With such explanations, household users might

take corrective action to optimize their total energy consumption. It

would be even further beneficial to the household inhabitants if expla-

nations could provide information highlighting some actions based on

their historical data that would help optimize energy consumption. Still,

the current form of explanations can be improved by incorporating the

users’ feedback by providing an interactive, collaborative interface. For

actionable explanations in thermal comfort preference prediction, oc-

cupants might expect information so that they can change particular

attributes not related to energy consumption. Hence, it reduces the as-

sociated energy cost and improves the comfort inside the home.

For explainable business systems (chapter 9), actionable explanations

are required to provide insight clearly that the stakeholder of the com-

pany can make policy-level decisions so that both the revenue of the

company and the satisfaction level of the customer would be higher. Our

proposed explainable product backorder prediction system can highlight

essential features related to a particular product. Suppose a particular

product is predicted as a backordered one. In that case, the explanations

associated with this prediction can depict the relevant feature to the in-

ventory manager, which can be analyzed for future changes [119, 286].

However, some features and attributes can not be changed immediately;

those are called uncontrollable, but the manager can think of changing

the controllable feature to see how that feature contributed to the pre-

diction. For example, the inventory amount and shipping time can be

features that have a higher influence on the prediction. So, changing
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such feature values for specific products back and forth might provide

critical insight that can be implemented to reverse future backorders.

13.2 Revisiting Research Questions
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14 Conclusion

14.1 Summary of the Dissertation

This dissertation focused on generating easy-to-understand actionable

explanations for general users so that they can understand the deci-

sions made by complex AI models and take corrective actions accord-

ingly. Therefore, different application scenarios have been investigated

to explore what facts and rationale should be considered in generating

explanations, how explanations vary across different applications, and

how explainability could be actionable. Keeping these as the main focus,

this dissertation has five parts.

The first part (Part I) is about the introduction & and overview of the

thesis, presenting the motivations and research challenges underlying

achieving explainable AI-enabled systems. It then presents the goal of

this thesis by mentioning the research questions that need to be ad-

dressed. The second chapter (chapter 2) of the first part discussed re-

lated works on the overall progress of technical and human-centered

XAI. It highlighted the state-of-the-art research on three selected appli-

cation areas: smart home, business, and NLP. The last chapter (chapter

3) of part I presented the selection of application areas, studied research

methodology, and outline of the study.

Next, part II presents the proposed approaches to make smart home

sub-tasks explainable. Chapter 5 advocated the necessity of applying

explainable methods in smart home application areas, demonstrating

the experiments, and analyzing scenarios. It further elicited the re-

search challenges and provided high-level research directions to con-

sider HCI methodology to make explanations user-centric. In the next

chapter (chapter 6), this thesis presented a novel XAI technique for deep

multi-variate time series, an energy demand forecasting model, and an

evaluation metric to compute the efficiency of the generated explana-
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tions compared to ground truth. The last chapter (chapter 7) of this part

was about modeling thermal comfort preference, which introduced fea-

ture selection techniques to discard irrelevant features, GAN to generate

data samples to overcome the data inadequacy challenge synthetically,

and finally, the global interpretability of thermal comfort preference pre-

diction models.

Part III focused on interpreting the models in the e-commerce area. This

part presented a new explainable CNN-based product backorder predic-

tion method that can efficiently predict future backorder by addressing

the extreme data imbalance challenge by introducing the ADASYN over-

sampling technique. To explain the prediction from the model, it can

present the explanations for both global and local contexts. Applying

two widely used model-agnostic XAI techniques, SHAP and LIME, it pre-

sented the explanations in different forms and purposes.

For explainable models in NLP, part IV presented interpretable models

for explaining the decisions for fake review detection (chapter 12) and

patent classification tasks (chapter 11). For both cases, the introduced

LRP explainability techniques can explain the prediction by identifying

relevant important terms with their degree of relevancy associated with

the predicted decisions. With an empirical user study, the efficiency of

the explanations for the fake review detection system has been evaluated,

and it was found that the explanation in this context might related to

the tone and grammatical structure, not related to the related words.

In the final part, this dissertation discussed the findings and contribu-

tions by revising the research questions. It then concludes the thesis

with potential limitations and possible future works.

14.1 Summary of the Dissertation
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14.2 Contributions

The broad contribution of this dissertation is related to the objective

to achieve easy-to-understand explanations for AI-enabled systems in-

vestigation by answering the research questions mentioned in 1.5. We

explored three application areas to investigate how explanations vary

across applications, how the user expertise variability matters for gen-

erating explanations, and what things should be considered to achieve

actionable and easy-to-understand explanations. The contributions of

this dissertation are summarized in three application areas.

In smart home application domain, we investigated and sought the

needs of human-centered explanations by demonstrating the experi-

mental results with state-of-the-art approaches. We elicited challenges

towards achieving human-centered explanations and the research di-

rections considering HCI techniques that can be studied and applied in

other applications (chapter 5). For a household energy demand forecast-

ing system, this thesis proposed an explainable deep multi-variate time

series forecasting technique for an energy demand forecasting system.

We modified DeepLIFT to map the contribution of different features cor-

responding to the time. The introduced evaluation metric, CMC, can

be applied to measure the effectiveness of explanations from other time

series forecasting models (chapter 6).

The performance of integration of feature selection techniques in model-

ing personal thermal comfort provides a broad direction for developing

any predictive systems with high dimensional data. Our introduced CT-

GAN can be applicable to overcome the data inadequacy challenge for

any other applications, which can be a pre-step before training robust

ML models (chapter 7). Moreover, the explanations from ML models that

incorporate data inadequacy and problems with high dimensional fea-

tures can be practical in two ways. The explanations might not be bi-

ased since it solves the data inadequacy and imbalance problem. On

14.2 Contributions
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the other hand, effective supervised feature selection techniques should

help represent facts in terms of explanations. The explanations might

be more comprehensive because feature selection techniques filter out

irrelevant features.

In business application domain, this thesis proposed a new explain-

able CNN-based product backorder prediction method applying model-

agnostic global and local explainability techniques. The model demon-

strated that the explanations can capture the facts behind specific pre-

dictions and explain the model’s overall decision-making priorities with

global explanations (chapter 9). The study also introduced the idea that

explanations should be more pinpointed so that the manager can take

controllable necessary steps.

Finally, for NLP applications, this thesis demonstrated interesting find-

ings that in the same text classification domain, the explanations could

be practical for the patent classification system (chapter 11). In contrast,

the explanations from the same XAI technique in fake review identifica-

tion can be less productive (chapter 12). However, our proposed DL and

transformer-based classification models performed significantly better

in patent classification and fake review identification tasks, respectively.

The conducted user study on evaluating explanations from fake review

identification systems indicates that competency and application objec-

tives should be considered to represent explanations.

14.3 Limitations & Future Work

The potential limitations of this dissertation will be discussed in the

remainder of this chapter, along with possible future work that might be

the next step in achieving human-centered explainability, ensuring that

general users have a complete understanding of explanations. Therefore,

this would enhance the real-world adoption of AI.

14.3 Limitations & Future Work
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This dissertation employed an experimental approach to applying var-

ious explainability techniques in different applications to understand

how we can achieve this with current progress in XAI. Therefore, the fol-

lowing points and areas might be interesting to investigate to fulfill the

requirements and implement human-centered explainability.

As noted earlier, one explanation technique only fits some. Therefore,

the adoption of multi-purpose explanation techniques is not just ideal,

but necessary for specific real-world applications. These techniques

offer explanations that consider the variability in stakeholders’ expe-

rience and the information they need to comprehend particular deci-

sions. Since smart home applications are more user-centric and there

is a high user experience variability to comprehend AI decisions, em-

ploying multi-purpose explanation interfaces would empower users to

choose the explanation types and understand the decisions better.

The introduction of Generative AI [304] and large language models

(LLMs) [342], a recent breakthrough, holds great promise in fine-tuning

the explanations. With their ability to understand and generate lan-

guage based on a command, LLMs can be used to represent and gener-

ate explanations. An empirical study with end-users could uncover the

potential of LLMs, offering a promising outlook. Furthermore, a knowl-

edge graph [84, 176] can be an asset for fine-graining the generated

explanations, further enhancing the potential benefits.

Another potential limitation of this dissertation is the pressing need for

large-scale user studies in different problem domains to understand how

the information needed for explanations varies across application areas

and users. Conducting larger-scale user studies and applying those re-

quirements to generate explanations would be an exciting research area.

We relied on technical experiments since we focused on generating user-

understandable explanations by introducing XAI techniques and using

facts and rationale to represent the explanations. This is another lim-

14.3 Limitations & Future Work
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itation of our work, as we have yet to explore designing interactive in-

terfaces [322, 321] to enhance user engagement. Therefore, this could

be a potential area for future work in designing and developing more

interactive interfaces to present the explanations.

14.3 Limitations & Future Work
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