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Abstract

Real Time Object Recognition and Tracking Using 2D/3D Images

Object recognition and tracking are the main tasks in computer vision applications such as safety, 
surveillance, human-robot-interaction, driving assistance system, traffic monitoring, remote surgery, 
medical reasoning and many more. In all these applications the aim is to bring the visual perception 
capabilities of the human being into the machines and computers. 

In this context many significant researches have recently been conducted to open new horizons in 
computer vision by using both 2D and 3D visual aspects of the scene. While the 2D visual aspect 
represents some data about the color or intensity of the objects in the scene, the 3D denotes some 
information about the position of the object surfaces. In fact, these aspects are two different modalities 
of vision which should be necessarily fused in many computer vision applications to comprehend our 
three-dimensional colorful world efficiently.

Nowadays, the 3D vision systems based on Time of Flight (TOF), which fuse range measurements 
with  the  imaging  aspect  at  the  hardware  level,  have  become  very  attractive  to  be  used  in  the 
aforementioned applications. However, the main limitation of current TOF sensors is their low lateral 
resolution which makes these types of sensors inefficient for accurate image processing tasks in real 
world problems. On the other hand, they do not provide any color information which is a significant 
property of the visual data. Therefore, some efforts have currently been made to combine TOF cameras 
with standard cameras in a binocular setup. Although, this solves the problem to some extent, it still 
deals with some issues, such as complex camera synchronization, complicated and time consuming 
2D/3D image calibration and registration, which make the final solution practically complex or even 
infeasible for some applications. 

On the other hand, the novel 2D/3D vision system, the so-called MultiCam, which has recently been 
developed at Center for Sensor Systems (ZESS), combines a TOF-PMD sensor with a CMOS chip in a 
monocular setup to provide high resolution intensity or color data with range information.

This  dissertation  investigates  different  aspects  of  employing  the  MultiCam for  a  real  time  object 
recognition and tracking to  find advantages  and limitations  of  this  new camera system.  The core 
contribution of this work is threefold:

In  the  first  part  of  this  work,  the  MultiCam  is  presented  and  some  important  issues  such  as 
synchronization, calibration and registration are discussed. Likewise, TOF range data obtained from 
the PMD sensor are analyzed to find the main sources of noise contributions and some techniques are 
presented to enhance the quality of the range data. In this section, it is seen that due to the monocular 
setup of the MultiCam, the calibration and registration of 2D/3D images obtained from the two sensors 
is simply attainable  [12]. Also, thanks to a common FPGA processing unit used in the MultiCam, 
sensor synchronization, which is a crucial point in the multi-sensor systems, is possible. These are, in 
fact,  the vital  points which make the MultiCam suitable for a vision based object recognition and 
tracking.

In the second part, the key point of this work is presented. In fact, by having both 2D and 3D image 
modalities, obtained from the MultiCam, one can fuse the information from one modality with the 
other one easily and fast. Therefore, one can take the advantages of both in order to make a fast, 
reliable and robust object classification and tracking system. As an example, we observe that in the 
real  world  problems,  where  the  lighting  conditions  might  not  be  adequate  or  the  background  is 
cluttered, 3D range data are more reliable than 2D color images. On the other hand, in the cases where 
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many small  color  features  are  required  to  detect  an  object,  like  in  gesture  recognition,  the  high 
resolution color data can be used to extract good features. Thus, we have found that a fast fusion of 
2D/3D data obtained from the MultiCam, at pixel level,  feature level and decision level,  provides 
promising results for real time object recognition and tracking. This is validated in different parts of 
this work ranging from object segmentation to object tracking.

In the last part, the results of our work are utilized in two practical applications. In the first application, 
the MultiCam is used to observe the defined zones to guarantee the safety of the personnel in a close 
cooperation with a robot. In the second application, an intuitive and natural interaction system between 
the human and a robot is implemented. This is done by a 2D/3D hand gesture tracker and classifier 
which  is  used  as  an  interface  to  command the  robot.  These  results  validate  the  adequacy of  the 
MultiCam for real time object recognition and tracking at the indoor conditions.
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Kurzfassung

Objekterkennung und -verfolgung in Echtzeit mit Hilfe von 2D/3D Bildern

In  vielen  Anwendungen  der  Computervision  besteht  die  Hauptaufgabe  aus  dem Erkennen  und 
Verfolgen  von  Objekten.  Dazu  zählen  z.B.  Anwendungen  aus  dem  Bereich  der 
Sicherheitsüberwachung,  der  Mensch-Maschine-Interaktion  sowie  Fahrerassistenz-  und 
Verkehrsüberwachungssysteme oder auch Anwendungen aus dem medizinischen Bereich. Allen diesen 
Anwendungen  ist  das  Ziel  gemein,  die  visuellen  Fähigkeiten  des  Menschen  auf  Maschinen  und 
Computer zu übertragen.

In diesem Zusammenhang wurden in der Vergangenheit bis heute viele Forschungsansätze verfolgt, 
um neue Horizonte im Bereich der  Computervision zu eröffnen,  indem sowohl 2D- als  auch 3D-
Aspekte der Szene berücksichtigt  werden.  Während die 2D-Informationen sich auf die Farbe oder 
Intensität der Objekte in der Szene beziehen, geben die 3D-Daten Aufschluss über die Positionen der 
Objektoberflächen.  Diese  beiden  Aspekte  repräsentieren  verschiedene  Modalitäten,  die 
notwendigerweise fusioniert werden müssen, um die farbige 3D-Welt effizient zu interpretieren.

Heutzutage sind die optischen 3D-Messsysteme, die auf der Phasenlaufzeitmessung beruhen und die 
eine  örtlich  aufgelöste  Abstandsmessung auf  Hardwarebasis  ermöglichen,  für  die  oben  genannten 
Anwendungsbereiche sehr attraktiv geworden.  Jedoch haben die derzeitigen 3D-Sensoren nur eine 
sehr geringe laterale Auflösung, was für Bildverarbeitungsaufgaben bei realen Szenen sehr hinderlich 
ist. Zudem übertragen sie keine Informationen über die Farbe, eine wichtige Eigenschaft der visuellen 
Daten. Aus diesem Grund wurde in letzter Zeit einiger Aufwand getrieben, um die 3D-Kameras mit 
Standardkameras  in  einem  binokularen  Aufbau  miteinander  zu  verbinden.  Obwohl  dadurch  das 
Problem  zu  einem  gewissen  Ausmaß  gelöst  wird,  entstehen  neue  Probleme  wie  die  genaue 
Synchronisierung, Kalibrierung und Registrierung der Daten, wodurch die finale Lösung sehr komplex 
oder teilweise unmöglich wird.  Auf der anderen Seite wurde am Zentrum für Sensorsysteme eine 
2D/3D-Kamera entwickelt  („MultiCam“),  die einen 3D-PMD-Sensor mit  einem gewöhnlichen 2D-
CMOS-Sensor  in  einem  monokularen  Aufbau  verbindet  und  somit  gleichzeitig  hochaufgelöste 
Farbbilder und Distanzdaten zur Verfügung stellt.

Diese  Dissertation  untersucht  verschiedene  Aspekte  der  MultiCam für  eine  Objekterkennung  und 
-verfolgung  in  Echtzeit  und  stellt  die  Vorzüge  und  Einschränkungen  dieser  Technik  heraus.  Der 
Kernbeitrag dieser Arbeit ist in drei Punkten zu sehen:

Im ersten Teil der Arbeit wird die MultiCam vorgestellt und auf einige wichtige Eigenschaften wie die 
Synchronisierung,  Kalibrierung  und  Registrierung  der  Daten  eingegangen.  Außerdem werden  die 
Abstandsdaten  der  Kamera  untersucht  und  einige  Techniken  zur  Rauschunterdrückung  werden 
vorgestellt.  Auf  Grund  des  monokularen  Aufbaus  der  MultiCam  kann  die  Kalibrierung  und 
Registrierung der 2D/3D Bilder sehr einfach erhalten werden [12]. Die Synchronisierung der Daten ist 
dank  einer  gemeinsamen  FPGA-Verarbeitung  möglich,  was  ein  entscheidender  Punkt  in 
Multisensorsystemen darstellt. Dieses sind die wichtigsten Eigenschaften, die die MultiCam für ein 
optisches Objekterkennungs- und verfolgungssystem sehr effizient machen.

Im zweiten Teil wird der Hauptpunkt dieser Arbeit präsentiert. Dadurch, dass 2D- und 3D-Bilder durch 
eine Kamera akquiriert werden, kann man die Informationen der einen Modalität mit der anderen sehr 
einfach fusionieren. Somit können beide Modalitäten genutz werden, um ein schnelles, zuverlässiges 
und robustes Objektklassifizierungs- und verfolgungssystem zu entwickeln. Zum Beispiel können bei 
in der Realität häufig auftretenden schlechten Lichtverhältnissen die 3D-Daten benutzt werden, um 
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Objekte  zuverlässiger  zu  detektieren,  als  dies  mit  den  Farbinformationen  möglich  wäre.  Auf  der 
anderen Seite ist zur Erkennung von Gesten eine hohe laterale Auflösung nötig, so dass hierfür das 2D-
Farbbild sehr gut verwendet werden kann. Aus diesem Grund bietet die schnelle Fusion der 2D/3D-
Daten  der  MultiCam  auf  einem  Bildpunkte-,  Merkmals-  oder  Entscheidungs-orientierten  Level 
vielversprechende Ergebnisse für  eine  Objekterkennung und -verfolgung in  Echtzeit.  Dies wird in 
dieser Arbeit in verschiedenen Abschnitten validiert, angefangen bei der Objektsegmentierung bis 
hin zur Verfolgung. 
Im letzten Teil werden die Ergebnisse unserer Arbeit in zwei praktischen Anwendungen realisiert. In 
der  ersten  Anwendung  wird  die  MultiCam zur  Überwachung  definierter  Zonen  benutzt,  um  die 
Sicherheit des Bedienpersonals eines Roboters zu gewährleisten. In der zweiten Anwendung wird ein 
intuitives und natürliches Interaktionssystem zwischen Mensch und Roboter implementiert. Dies wird 
durch eine Handverfolgung und Gestendetektion erreicht, die als Schnittstelle zur Roboterbedienung 
dienen. Diese Resultate bestätigen die Effizienz und Eignung der MultiCam für die Objektdetektion 
und -verfolgung in Echtzeit bei Innenraumbedingungen.
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1
Introduction

Research is to see what everybody else has seen, and to think what nobody
   else has thought.

Albert von Szent-Gyoergyi (1893-1986)

This thesis aims at the study and analysis of different aspects of real time object recognition and 
tracking using a monocular 2D/3D imaging system and to validate the results in practical applications. 
In this chapter, an introduction is given which first states the motivation behind our work, following 
with the  problem description and finally highlighting the  key contribution of the  thesis.  The last 
section outlines the theoretical and practical framework on which this work is based.

1.1 Motivation

Object detection and tracking is of utmost importance for different kinds of applications such as 
safety, surveillance, man-machine interaction, driving assistance system, traffic monitoring and many 
more. In each of these applications, the aim is to detect the desired object and find its position at each 
time instance. While in the safety application the personnel, as the desired objects, should be detected 
and tracked in hazardous environments to keep them safe from the machinery,  in the  surveillance 
application, they are detected to analyze their motion behavior for conformity to a desired norm for 
social control and security.  Man-Machine Interaction, on the other hand, has become an important 
topic for the robotic community. A powerful intuitive interaction between man and machine requires 
the robot to detect the presence of the user and interpret his gesture motions. This requirement can be 
fulfilled efficiently just  by having  a  robust  gesture  recognition  and tracking  system.  Likewise,  a 
driving assistance system detects and tracks the obstacles, vehicles and pedestrians in order to avoid 
any collision in the moving path. The goal of traffic monitoring in an intelligent transportation system 
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is to improve the efficiency and reliability of the transport system to make it safe and convenient for 
the  people.  Vehicle  tracking  and  accident  detection  in  the  roads  are  the  main  tasks  of  traffic 
monitoring.  There  are  still  so  many  significant  applications  in  our  daily  life  in  which  object 
recognition and tracking play an important role.

However, in all such applications the first question which arises is what kind of information should be 
acquired from the environment to make a fast, robust and reliable object detection and tracking system. 
Since the biological vision is the most significant source of information which is used by the humans 
for this purpose, it has apparently inspired the idea to use the same artificially for an object recognition 
and tracking system. Thus, advanced image sensors are employed to provide visual data for a vision 
based object detection and tracking system.

Visual object detection and tracking is nevertheless a complex problem due to the noise in the data, 
huge size  of  visual  information,  sensitivity of  the  visual  data  by changing the  lighting condition, 
complexity in the object shape and its motion, non-rigidity of the object, occlusion, abrupt motion, real 
time requirements and so many other issues. In this context, visual object detection and tracking has 
emerged as  one of the  active research areas  within the computer  vision and artificial  intelligence 
communities.

In order to build a typical visual object recognition and tracking system, the following main questions 
should first be addressed:

➢ How to acquire the visual data?

➢ How to represent the object of interest in the large visual data?

➢ How to detect and classify the objects in the image?

➢ How to track the object of interest and find its trajectory?

The first issue is addressed using different kinds of visual sensors whereas the last three questions can 
be answered differently based on numerous object detection and tracking algorithms. The selection of 
the suitable sensor and algorithm is heavily dependent on the application requirements.

In  the  recent  years,  many research  has  been  conducted,  both  in  the  software1 and  the  hardware2 
domain, either to propose a new solution for the problem of visual object recognition and tracking or 
to improve the performance of current approaches. In fact, different advanced algorithmic solutions 
besides the progress in sensor technology have opened new horizons in the computer vision field.

Most of the approaches in computer vision utilize different types of solid state imaging sensors like 
CCD3 and CMOS4 which can observe only greyscale or color information. The world is, however, 
three dimensional and therefore the spatial information about the objects in the scene as well as their 
3D shape are vital factors in many computer vision problems. For this reason the range sensors, which 
can provide depth information, have gained a lot of attention to be used in different applications in last 
years.

On the other hand, when we, as human beings, see, we observe both the 2D geometrical features from 
greyscale or color data and 3D aspects from range information. The same is absolutely necessary for 
most of computer vision applications ranging from gaming to safety and security. Therefore, the new 
approaches and novel technologies are making numerous efforts  to merge both 2D and 3D visual 
aspects to improve the performance of the application.

This thesis on the one hand will present a new multimodal 2D/3D imaging system, which has been 
implemented at ZESS, and on the other hand will show some solutions to the object recognition and 
tracking problems in real time applications by fusion of 2D and 3D images.

1 Software designates the algorithmic aspects.
2 Hardware denotes the visual sensor technology.
3 Charge Coupled Device.
4 Complementary Metal Oxide Semiconductor.
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1.2 Problem Description

Employing static 2D imaging sensors, like CCD or CMOS sensors, has some difficulties for object 
recognition in real  world problems where the lighting conditions  might  change as well  as having 
shadows  in  the  scene.  Likewise,  generating  of  3D  range  data  from  static  2D  images  is  a 
computationally  expensive  process. In  other  words,  as  the  size  of  image  and  video  information 
increases, the problem of implementation of a real time system to detect and classify the objects will 
become more complex. To overcome these problems, many approaches have been followed in recent 
years such as enhancement of processing speed attained by means of parallel processing techniques 
and implementation of new and fast algorithms.

Range images5,  on the other hand have gained a lot  of attention recently for  such applications as 
detection and classification of moving objects. The range data are usually provided by different 3D 
range sensor systems such as Laser Range Finder, Stereo Vision System, Structured Light Approach 
(SLA) and 3D Time of Flight (TOF) Camera. Since each of these sensors have their own strength and 
weakness points, the selection of suitable range system depends on the application requirements. For 
example, although the common 2D laser range finder can provide accurate range data, it usually scans 
the  environment  radially in  a  plane  parallel  to  the  ground.  In  other  words,  it  provides  the  range 
information only in 2D slices of the environment. Also, the time it takes to scan the whole surface of 
the object is one of its main drawbacks in real time applications. SLA, same as laser range finder has a 
low acquisition rate and it  is not so appropriate for most  of real time applications. Likewise, it  is 
sensitive  to  the  illumination  which  creates  limitations  for  real  world  applications.  Stereo  vision 
systems like CCD or CMOS cameras have difficulties to provide reliable information under varying 
lighting conditions. In addition, the range images of stereo vision are texture dependent and without 
presence of the texture on the object, the range measurement gets completely wrong data. Due to high 
computational requirements for the calculation of the disparity map from right and left images, the 
frame rate of the stereo vision is also an issue which should be considered for some applications. In 
comparison to all these range sensor systems, 3D TOF cameras, which fuse range measurement with 
the imaging aspects at the hardware level, can provide range and intensity information at video frame 
rates which is  promising for  real  time applications.  However,  one of the main weaknesses of  the 
current TOF sensors is their limitation in lateral resolution which makes them inefficient for many 
applications  in  which the  high resolution image  data  is  required.  On the  other  hand,  they do not 
provide any color information which is a significant property of the visual data. These drawbacks can 
be overcome by combining a TOF camera with a conventional RGB camera in which the advantages 
of high resolution imaging aspects is utilized in a 2D/3D scenario. In recent research works there is a 
tendency for such a combination because even with regard to the emerging new generation of TOF 
sensors with high resolution6, an additional 2D sensor still results in a higher resolution and provides 
additional color information.

Regarding a simple combination of a TOF camera with a standard one in a binocular setup, in which 
two cameras are put close to each other, and correlate their generated images, the following issues, 
however, should be addressed:

➢ Binocular parallax effect: Since in such a binocular setup there are two objective lenses, 
parallax errors occur. In other words, the 2D and 3D images are not directly coregistered and 
therefore some techniques should be applied to register two different images.

➢ Lens distortion: The two cameras have different lens distortions and therefore for an error-
free operation a calibration technique should be applied.

➢ Frame  rate: As  the  two  cameras  usually  have  different  maximal  frame  rates,  a  precise 
5 The terms range image, 3D image and depth image are used interchangeably in this work.
6 At the time of writing this thesis the resolution of such cameras is limited up to some thousand pixels. For example: 

PMD-41K-S (204×204 Pixels)  [31], Zcam-prototype (320×480 Pixels)  [30] and SwissRanger 4000 (176×144 Pixels) 
[29].
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synchronization for two cameras is necessary.

Thus, the combination of such two camera systems in a binocular setup demands complicated and time 
consuming calibration,  registration and synchronization approaches which makes the final solution 
practically complex or even infeasible for some real time applications. 

1.3 Key Contribution

The key contribution of this work is to fuse Time of Flight (TOF) range data with high resolution 
2D images for real time object recognition and tracking. This is performed in a monocular setup which 
implies no need for any complex registration, calibration and synchronization techniques.

The multimodal image acquisition device, used in this work, is a monocular 2D/3D vision system, 
called the MultiCam7. This camera consists of two imaging sensors, a near infrared lighting system, a 
FPGA based processing unit, a beam splitter and USB 2.0 communication interface. A conventional 
10-bit CMOS sensor with VGA resolution of 640×480 pixels and a Photonic Mixer Device (PMD) 
[31] with a resolution of 64×48 pixels are employed to provide high resolution 2D information and 3D 
range data respectively. The PMD is an implementation of an optical TOF sensor, able to deliver range 
data at  quite high frame rates8.  The principles of  this  sensor will  be presented briefly in the next 
chapter. The dichroic beam splitter behind the camera lens is used in order to divide the incident light 
into two spectral ranges: The visible part, which is forwarded to the CMOS chip and the near infrared 
part to the TOF sensor. Thus, the MultiCam is, indeed, a multi-spectral device.

Since the MultiCam is a monocular camera with one unique objective lens and as the 2D and 3D 
sensors have 1:10 proportional resolution, the range image and the 2D image correlate directly using a 
trivial mapping technique. This makes the fusion of 2D and 3D features much easier and faster which 
consequently has a big positive influence on the performance concerning real time aspects.

In fact, this dissertation states that by having both 2D and 3D image modalities, obtained from the 
MultiCam,  one can fuse  the  information,  at  pixel  level,  feature  level  or  decision level,  from one 
modality with the other one easily and fast. Therefore, one can take the advantages of both in order to 
make a fast, reliable and robust object classification and tracking system.

1.4 Thesis Outline

In  chapter  2,  we  will  review  the  3D vision  system in  general  and  the  2D/3D vision  system, 
especially the MultiCam, in particular. In this chapter some main aspects of the used 2D/3D camera 
system will be discussed and it will be shown how 2D and 3D images captured by the MultiCam can 
be registered easily. We will highlight this point because it is the key factor which makes this thesis 
different from other similar works in which the 2D and 3D image data are fused. 

In chapter  3, object recognition using 2D/3D imaging data will be studied. This consists of feature 
extraction, multimodal data fusion, segmentation and classification. We have considered two types of 
feature extraction in our work. The features which are derived based on some heuristics which are 
called human generated features and the features which are derived using some mathematical methods 
which are called machine generated features. In fact, selecting the type of the features depends on the 
problem. While in some problems an object can be represented easily using a set of heuristic features, 
in some others it is not the case and therefore a mathematical approach should be applied to highlight 
the features with highest similarities and differences in a huge data set. Principal Component Analysis 
(PCA) and Linear Discriminant Analysis (LDA) are two feature extraction techniques which will be 

7 The term MultiCam will be used in this work to denote the monocular 2D/3D vision system which has recently been 
developed at the Center for Sensor Systems (ZESS).

8 The frame rate of a TOF sensor depends on some parameters which will be discussed in the next chapter.
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used as the machine generated type in this work. Also, we will discuss the heuristic approaches with an 
example to show how the knowledge based features can make the problem easier.

Next  in  this  chapter,  we  will  discuss  image  segmentation  as  an  important  preprocessing  step  in 
computer  vision  solutions.  The  segmentation  technique  based  on  TOF  range  images  and  using 
clustering techniques will be discussed. Likewise, we will study some aspects of multimodal image 
segmentation and represent some results.

In the last part of this chapter, the classification approach based on supervised learning techniques is 
reviewed.  Two important  classifiers including Support  Vector  Machines (SVM) and AdaBoost  are 
studied and  we  will  test  these  classifiers  for  moving  object  classification tasks  using  multimodal 
2D/3D image data.

Chapter 4 addresses some solutions to the object tracking using 2D/3D images. In this chapter, we first 
study dynamic scene analysis aspects like background subtraction and real time issues. The tracking 
techniques  used  in  this  work  are  divided  in  two  main  categories.  Object  representation  and 
identification is the first type in which the objects of interest are detected in each frame and then the 
correspondences are matched based on a distance function, which is derived from 2D/3D features. In 
this part of work we will show how the fusion of 2D and 3D features can improve the performance of 
tracking. Probabilistic approach is the second category of object tracking techniques, used in this work. 
The Kalman filter and the CONDENSATION  algorithm are two main probabilistic techniques which 
will be discussed in this chapter. We will review these two approaches briefly and then apply them to 
track the people. Finally, we will compare the results of these two trackers and conclude some points.

In chapter  5, we validate the results of the reviewed techniques in two practical applications. In the 
first application the safety of the personnel in the close cooperation with a robot is analyzed. We will 
show how the different zones around an industrial robot can be monitored dynamically using 2D/3D 
camera system to guarantee the safety of the personnel. In the second application, which complements 
the first one, an interaction system between the robot and the user will be presented. In fact, we will 
implement an intuitive, natural commanding system to control the robot. This is done based on hand 
gesture recognition and tracking system using multimodal 2D/3D images.

Finally, in chapter 6 we will conclude our work and remark some points.
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2
Analysis of 2D/3D Image Data

The scientist is not a person who gives the right answers, he's one who asks the  
   right questions.

Claude Lévi-Strauss (1908-2009)

Nowadays, in order to facilitate our daily activities by employing computers, tools and machines, 
different types of visual data like greyscale, color, range, X-ray, CT and SAR images are used. In this 
chapter, we analyze 2D/3D imaging data which are combinations of Time of Flight range data with 
greyscale or color information. For this purpose, first we review the main techniques of range imagery 
and discuss some of their important issues. Next, we will study the principle of the 2D/3D camera 
system which is used in this work and analyze the main aspects of the 2D/3D visual data.

2.1 3D Range Measurement

As our state world is at least three dimensional, there is an increasing demand on depth perception 
in different applications of computer vision. In fact, in many practical applications, range data, which 
contains 3D information about a scene, is used to perceive the world in three dimensions. Range 
images,  in  contrast  to  2D  intensity  or  color  images,  can  explicitly  represent  three  dimensional 
information about the surface of objects in a scene. In other words, a range image is a digital image in 
which each pixel expresses the distance between a known reference and a visible point on the object 
surface in the scene. Range images should provide geometric information about an object independent 
of  its  position,  direction,  and  intensity  of  light  sources  illuminating  the  scene,  or  even  of  the 
reflectance properties of that object. 3D range images are also referred to as depth images, depth 
maps,  xyz maps,  surface profiles and 2.5D images  [15].  In this  section we will  review the main 
significant approaches which are used for depth perception.
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Range sensors, in general, can be classified into passive and active devices. While active range sensors 
project energy like light into the scene and detect the distance by determining some properties of the 
reflected energy9 back from the scene, the passive techniques reconstruct the range without emitting 
any energy  into  the  scene  and  only  based  on  feature  matching  in  2D  images.  However,  feature 
matching is a time consuming process and it can fail if no features are present. On the other hand, 
active approaches overcome this problem and simplify many tasks in range measurement at the cost of 
using advanced sensitive  elements  to  the  reflection properties  and consequently cost  of  3D range 
sensor.

Some typical examples of 3D range measurement techniques are Stereo Vision Technique, Time of 
Flight  (TOF) and Structured Light  Approach (SLA).  The principle of  these  techniques,  which are 
schematically illustrated in Fig. 2.1, will be reviewed in the following subsections.

2.1.1 Stereoscopic Imaging

Stereoscopic imaging is a passive triangulation method in which depth information about the scene 
is measured from multiple static 2D images, each acquired from a different viewpoint in space. In a 
classical stereoscopic vision technique, called stereo vision, two cameras are employed in a binocular 
vision system, analogous to the two eyes in the human visual system, to capture two images. Stereo 
vision which is a passive method has the advantage that it does not require any light sources and only 
two 2D sensors are used.

In binocular stereo vision in which two cameras are displaced from each other, by knowing the camera 
focal  lengths and using geometry,  the depth of objects  in an imaged scene can be estimated in a 
canonical stereoscopic vision system as follows [1], [4], [36]

L= f 1 d
b−a

  (2.1)

where f  is the focal length of camera lenses, b-a is the disparity and d is the parallax or inter ocular 
separation (see Fig. 2.1).

9 For  example,  angle  of  return  is  the  property which  is  measured  in  the  triangulation  technique  and  time,  phase  or 
frequency delay are the properties which are considered in the Time of Flight approach.
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Figure 2.1: Conceptual schematic of some typical 3D range measurement  
techniques [4].
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In any stereo vision technique the range image of the scene is obtained in two following process steps:

➢ Correspondence Process: In the first  step a specific searching and matching technique is 
applied to find pairs of matched points in two images. These points are found such that each 
point  in  the  pair  is  the  projection  of  the  same  3D  point  in  the  scene.  The  input  of 
correspondence process are two 2D images taken from two cameras and the output will be a 
disparity map which is the difference of the matched points on the horizontal coordinates. 

➢ Reconstruction Process: By having the disparity map, which is derived from previous step, 
and given the stereo geometry, the 3D image of the scene can be reconstructed.

The main drawback of stereoscopic imaging approach is that no range data can be obtained in uniform 
regions, like a white wall, where there are no features present for the correspondence process [18]. The 
shadowing effect is also a typical problem for stereo vision systems which can be minimized by using 
multi view triangulation systems at the price of an enormous increase of data processing as well as 
increasing the number of cameras [17].

2.1.2 Structured Light Approach

Structured Light Approach (SLA) is an active triangulation method for 3D range measurement. It is 
based on the same principle of passive stereo vision. In the SLA, a light projector and a 2D intensity 
camera, which are placed at a certain distance from each other, are used. The projector illuminates the 
scene with a light pattern, so-called structured light. The most common patterns are planes and single 
beams. At the same time, the 2D camera acquires an image of the scene which is called pattern image. 
The intersection of the projected light plane with the scene surface is a planar curve called the strip. 
By having the geometry of light source and the camera as well as the orientation of the project plane, 
the depth information of all points under the strip can be calculated. In fact, identification of the light 
planes in the pattern image is the characteristic problem of the SLA, comparable to the correspondence 
problem in stereo vision systems  [77]. However, the identification or decoding problem in the SLA, 
contrary  to  the  correspondence  problem in  the  stereo  case,  is  easier  because  the  laser  spots  are 
normally brighter than the other points in the pattern image which can be identified obviously [56].

As it can be seen in Fig.  2.1, in the SLA technique, the light projector and the 2D camera with one 
point  on  the  object  surface  build  a  triangle  in  which  the  distance  L can  be  calculated  through 
triangulation method as follows [4]

L= f 1d
a
 (2.2)

where f is the focal length of the camera lens, d is the distance between camera and light projector and 
a is the lateral displacement of the light spot on the pattern image.

The main important task of depth perception in the SLA is to identify the light planes in the pattern 
image if more than one light plane is projected at a time. This problem can be solved by employing a 
light projector which encodes the light planes with different IDs, for example by assigning each light 
plane a specific color, the light planes can then be decoded in the pattern image [82].

The main drawbacks of the active triangulation technology are its low acquisition rate and missing 
range data at parts of the scene which are visible to the 2D camera and not visible to the light projector 
or vice versa [17], [56].

Likewise, most of the SLA systems impose strong constraints on the scene by requiring the following 
conditions [82]:

➢ Controlling the illumination in the scene

➢ Static scene
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➢ Natural scene reflectivity

➢ Low contrast of the textures in the scene.

There have been some works in the enhancement of the SLA system and reducing the constraints. For 
a much more in depth understanding the reader is referred to [82], [44].

2.1.3 Laser Pulse Range Finder

Laser range finder is an active Time of Flight (TOF) based approach for measuring the distance of 
objects in the scene. In this technique a laser is used to emit a pulse in the scene and the distance L is 
determined by measuring the time the pulse takes to hit the object, be reflected and reach back to the 
detector as follows

L=T⋅c
2  (2.3)

where c denotes the speed of light and T is the echo time.

It should be noted that for an unambiguous range measurement the pulse width tp should be smaller 
than time T [104].

The main problem in laser range finder is the realization of an exact time measuring process. It is 
because  the accuracy of laser range finder depends on the speed of detector and timing circuit which 
is  used  in  this  device.  The  main  advantage  of  this  technique  is  its  large  unambiguous  distance 
measurement which requires a high dynamic receiver with a large bandwidth [17].

TOF laser range finders, which are the most commonly used systems for 3D digitization, are usually 
available as 2D or 3D scanners  [104]. In a 2D laser scanner, the laser beam is usually swept by a 
rotating mirror and the laser range finder provides depth of the points which lie in the plane in which 
the laser beam is swept. One of the main drawbacks of 2D laser scanners is that they can only scan in 
horizontal direction, i.e., they provide the range only in planes. On the other hand, a 3D laser scanner 
which is usually built based on 2D laser scanner can provide range information in 3D volumes by 
rotating the scanning module in vertical direction at regular time intervals [104], [81].

The main drawback of laser range finders is their long acquisition time which is due to the scanning 
process. The output of laser range finders are point clouds which are not directly usable in most of 3D 
applications and therefore they should be converted to 3D models or range images which is itself a 
time consuming process.

2.1.4 Time of Flight Camera

Range imaging in a 3D-Time of Flight camera is the fusion of the distance measurement technique 
with the imaging aspect. The principle of the range measurement in a TOF camera, similar to the laser 
range finder,  is based on the measurement of the time the light needs to travel from one point to 
another. This time which is so-called Time of Flight is directly proportional to the distance the light 
travels (see equation 2.3). However, in a TOF camera, the round-trip time is not measured directly, but 
the phase difference between the sent  and received signals is  measured.  In the following we will 
review the principle of our TOF camera which is based on Photonic Mixer Device (PMD) [31].

  ZESS-Time of Flight Camera10

Our 3D non-scanning Time of Flight (TOF) camera system consists of an infrared lighting source, 

10 This is a Time of Flight camera, based on PMD-3KS, which has been implemented at Center for Sensor Systems (ZESS).
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Photonic Mixer Device (PMD) sensor [31], FPGA based processing and communication unit including 
FireWire, USB and Ethernet.

The  lighting  source  illuminates  the  scene  with  the  modulated  near  infrared  light  signal  which  is 
generated using a MOSFET based driver and a bank of high speed infrared emitting diodes at the 
frequency of 20 MHz. The illuminated scene is observed by a smart pixel array (PMD) via an optical 
lens for focusing, where each pixel on the PMD sensor can individually determine the turnaround time 
of the modulated light [31]. Typically this is done by using continuous modulation and measuring of 
the phase delays in each pixel  [70]. The conceptual schematic of the TOF camera, which has been 
developed at ZESS is illustrated in Fig. 2.2.

Assuming continuous sinusoidal or rectangular modulation, the distance is calculated as follows [70]

d= c⋅
4⋅ f mod

 (2.4)

where f mod denotes the modulation frequency and =2⋅ f mod⋅t represents the phase delay.

To calculate the phase delay, the autocorrelation function of electrical and optical signal is analyzed by 
a phase-shift algorithm. Using four samples  A1, A2, A3 and  A4 each shifted by 90 degrees, the phase 
delay  can be calculated using the following equation [70]

=arctan 
A1−A3

A2−A4
 . (2.5)

In addition to the phase shift of the signal, the strength of the received signal a, which is also termed as 
modulation amplitude, and the gray scale value b are formulated respectively as follows [70]

a= A1−A3
2 A2−A4

2

2
 (2.6)

b=
A1A2A3A4

4
. (2.7)

Likewise, the theoretical response of a pixel can be expressed by [67]

r c=∑
n=1

N

Bn⋅e
j4 rn

  (2.8)

where =c / f mod denotes the wave length of the modulated signal, Bn is the backscatter coefficient of 
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Figure 2.2: Conceptual schematic of ZESS-TOF camera based on PMD-3KS.
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the point n and rn=[xn , y n , zn ] represents the distance vector to all visible object points with n=1,...,N.

At the modulation frequency of 20  MHz the unambiguous distance is equal to 15  m, i.e., the maximum 
distance for the target is 7.5 m. This is because the illumination has to cover the distance twice: from 
the sender to the target and back to the sensor chip.

The  environment  lighting  conditions  in  the  background  should  be  considered  in  all  TOF optical 
sensors. This effect can be handled by various techniques such as using an optical filter which only 
passes the band around the active light [73], or applying some algorithmic techniques that remove the 
noise  of  ambient  light  [69].  In  our  case,  PMD  has  an  in-pixel  SBI-circuitry  (Suppression  of 
Background Illumination) which increases the sensor dynamics under strong light conditions [66]. 

TOF  cameras,  unlike  the  stereo  vision  camera,  are  texture  independent  and  since  the  range  is 
calculated directly at the hardware level for each pixel with minimal processing, a very high frame 
rate, dependent on the exposure time, can be obtained11.

One of  the  main limitations of  current  TOF cameras  is  their  low lateral  resolution which will  be 
addressed in this chapter by implementing a 2D/3D vision system.

Finally, in order to have a general overview about the discussed 3D range measurement techniques, the 
main important advantages and drawbacks of each of them are summarized in Table 2.1.

11 As an example, by setting the exposure time to 5 ms and using a USB 2.0 communication protocol, the frame rate of 50 
range images per second, with the resolution of 64×48 pixels, is possible.
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Table 2.1: Advantages and disadvantages of main 3D range measurement techniques.

Advantages Disadvantages

Stereo Vision High resolution 3D data with 
intensity or color information

No need for energy source (passive)

No range data on the surfaces without 
texture

Sensitive to lighting conditions

Disturbed by shadows

Calibration needed

Time consuming correspondence 
problem

Structured Light 
Approach

High resolution 3D data 

Low cost

Low acquisition rate

Sensitive to illumination changes

Limited to static scenes

Laser Range 
Finder

High accuracy

Long distance measurement

To some extent insensitive to 
weather conditions 

Long acquisition time due to scanning

Need for mechanical components

High cost

Time of Flight 
Camera

High acquisition rate

Insensitive to lighting changes in 
indoor environments

Providing range image in one-shot

Reasonable cost

Low lateral resolution

Noisy range data from poorly 
reflecting surfaces

Not reliable for outdoor applications
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As it can be seen from Table 2.1, each of the range sensors has its own weaknesses and strengths. This 
is the reason why many current approaches have combined different 3D range sensors in order to take 
advantages of more sensors and reduce their drawbacks. However, the sensor combination or fusion 
should be performed in an optimal way in order not to increase the complexity or cost of the final 
sensor system or to become infeasible for a practical application.

2.2 2D/3D Vision System

A 2D/3D vision system usually denotes the combination of a 3D range sensor with a 2D vision 
sensor in order to take the advantages of both types of sensors. In this context, some investigations 
have been conducted either to integrate a 3D range measurement system with a conventional camera or 
to combine two different types of range sensors to obtain both range and intensity in a 2D/3D vision 
system. Some of main important sensor combinations are reviewed in the following:

➢ Combination of laser range finder with a standard 2D camera system: The integration of 
laser scanners and vision sensors is performed in order to compensate the limitations of each 
of them by using the other one. For example, the main advantage of laser range finders over 
vision sensors is their high accuracy of range measurement in large angular fields. However, 
most  of  current  laser  scanners  can  only provide  2D representations  of  the  3D space  and 
therefore  they  have  disadvantages  in  data  completeness  as  well  as  lacking  of  color 
information. Fusion of these two sensors can provide reliable range data with high resolution 
intensity or color data [21], [68], [34], [76].

➢ Combination of a stereo vision system with a laser range finder: 2D laser range finders 
measure  distance to  the  objects  only in a  2D plain form,  and stereo vision is  not  able  to 
determine distances to surfaces with little or no texture at all. While the potential solution of 
3D range finders is a quite expensive one, the integration of a 2D laser range finder with stereo 
vision not only solves such problems but also provides color information taken from the vision 
system [72], [43], [65].

➢ Combination of a TOF camera with a high resolution 2D camera: Although Time of Flight 
cameras are becoming more attractive as very fast range measurement sensors in different 
fields, they still suffer from low lateral resolution. Many applications, however, require high 
resolution range and color data. The combination of a TOF camera with a conventional high 
resolution 2D camera is a typical solution for this problem. Some of current research works in 
which a TOF camera is combined with a standard one have been referenced in  [102],  [64], 
[33] and  [55].  In  all  these  works,  a  TOF camera  is  fixed close  to  a  normal  camera in  a 
prototype binocular setup.

➢ Combination of TOF cameras and stereo vision systems: The combination of TOF camera 
and stereo vision can improve the final range data dramatically. TOF cameras can provide real 
time distance data in real world conditions, where a stereo vision does not work well. For 
example, while stereo vision does not generate proper range data of uniform surfaces without 
texture or under varying lighting conditions, a TOF camera does. However, TOF sensors have 
low lateral resolution which makes them inefficient in providing detailed intensity and range 
data. Likewise, the details and discontinuities in intensity and range decrease the performance 
of a TOF sensor, whereas they increase the performance of stereo vision. Thus, the key idea in 
this  integration is  to fuse the range information captured by both TOF camera and stereo 
vision in order to solve some ambiguities of the range data and increase the performance of 
range measurement [42], [54], [53], [63].

Selecting the type of sensor integration in a 2D/3D vision system depends heavily on the application 
requirements and it should be done in such a way to achieve an optimum solution with respect to some 
criteria such as accuracy, reliability, real time aspects and cost.
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Although, fusion of data (depth and intensity) from multiple sensors can improve the reliability of a 
system, if the fusion is not performed in a proper way, the whole effort of sensor integration is in vain.

Most of the aforementioned sensor combinations, however, need complex and time consuming fusion 
techniques, such as calibration and registration of data which might make them inefficient for many 
real time applications. Apart from this point, the hardware limitation of such combinations, like time 
synchronization, is also a big issue which should be addressed.

2.3 The MultiCam

Among all sensor combinations for making a 2D/3D vision system, integrating the TOF sensor with 
a conventional  2D sensor in a monocular  setup which realizes 3D range measurements with high 
resolution intensity or color data, is one of the promising techniques in 2D/3D imaging.

In fact, although a TOF camera can determine both 2D intensity and 3D depth at pixel level, the low 
lateral resolution of the current TOF sensors makes them inefficient for many applications in which a 
high resolution visual data analysis is required. As a solution to this problem, the Center for Sensor 
Systems  (ZESS)  has  recently  proposed  and  implemented  a  2D/3D  vision  system,  the  so-called 
MultiCam12, in which a TOF sensor with a high resolution CMOS chip are integrated in a monocular 
setup. In this section, we will introduce this 2D/3D camera system and study some of its main aspects. 
A detailed analysis of the MultiCam in the scope of our Dyn3D-DFG project [32] is still ongoing and 
for a much more in depth understanding the reader is referred to [12].

In order to understand the main problem of current TOF sensors, some 2D/3D image samples taken by 
three main TOF sensor providers are illustrated in Fig.  2.3. As it can be seen, on the one hand these 
images have low lateral resolution and on the other hand they are lacking color information. Only the 
MultiCam, as a solution to such problems, provides range data with high resolution color information 
as it has been shown in the last column of Fig. 2.3.

The  MultiCam consists  of  two  imaging  sensors  (a  conventional  10-bit  CMOS sensor  with  VGA 
resolution  and  a  PMD  sensor  with  3K  resolution13),  a  dichroic  beam  splitter,  a  near-infrared

12 The concept of the MultiCam originates from [16].
13 The design of the MultiCam is such that it allows to replace the 2D/3D sensors with their alternatives at the cost of some 

FPGA modifications. For example, PMD-3K-S can be replaced by the new version PMD-19K-S or PMD-41K-S [31].

-14-

Figure 2.3: Some Time of Flight 2D/3D images. First three columns: Low resolution intensity and range 
images taken by three different TOF cameras: PMD [31], SwissRanger [29] and Canesta [28] 

respectively. Last column: 2D/3D image taken by the MultiCam. 
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lighting system, FPGA based processing unit and USB 2.0 communication interface. As it is shown in 
Fig.  2.4, the MultiCam has a monocular setup which allows a simple image registration for 2D/3D 
images. The lighting source has a MOSFET based driver circuit which can drive the high speed near-
infrared emitting diodes at different frequencies. The typical frequency used in our work is 20 MHz 
which leads to an unambiguous range measurement of 7.5  m. A single lens is used to gather the light 
for both sensors. While the 3D sensor needs to acquire the modulated near-infrared light (in our case 
870 nm) back from the scene, the 2D sensor is used to capture the images in the visible spectrum 
(approximately 400 nm to 800 nm). To do this, a dichroic beam splitter14 behind the lens has been used 
which divides the acquired light into two spectral ranges: the visible light which is forwarded to the 
2D sensor and the near-infrared spectrum which is directed to the 3D sensor [12].

The MultiCam with two different  optical  designs  are  available:  F-mount  and C-mount  which are 
illustrated in Fig.  2.5. The F-mount optical design has a simple setup due to its large flange focal 
distance15 which makes positioning of the chips as well as their adjustment in the setup simple. In this 
case, a beam splitter which is a commercial cold mirror is fixed at the angle of 45° with the rear 
surface being anti-reflection-coated for the near-infrared spectrum. In fact, such a coating is the crucial 
part of optical design.

However,  F-mount  is  not  suitable  for  1/2"  chip formats  like PMD sensor  because the large focal 
distance of F-mount with a small chip size of 1/2" yield a narrow angle of view16 which is not suitable 
for some applications.

On the other hand, C-mount lenses are good options for the chips with 1/2" format. However, in a C-

14 Dichroic beam splitters are used to combine or separate beams of two different wavelengths.
15 The flange focal distance is 46.500  mm for a F-mount, whereas it is 17.526  mm for a C-mount lens.
16 The angle of view is calculated as =2arctan d / 2f  where d represents the size of chip and f is the focal length of lens.

-15-

Figure 2.4: The MultiCam 2D/3D vision system developed at ZESS.

Figure 2.5: Optical setup of the MultiCam. Left: F-mount, Right: C-mount [12], [35].
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mount design the flange focal distance is shorter than in a F-mount which consequently makes the 
mechanical design and adjustment of the sensors in the setup more complicated.

One solution to this problem, which is used in the design of the C-mount MultiCam, is to use a prism 
beam splitter, as illustrated in Fig.  2.5. In fact, in this case the beam splitter is placed between two 
prisms made out of glass. As the glass has a higher refractive index, the optical path length gets bigger 
which consequently increases the focal length. In other words, by using the prisms made of glass one 
can lengthen the distance between the lens and the sensors which makes the arranging as well  as 
adjusting the chips in the optical setup easier.

2.3.1 Time of Flight Range Analysis

In general, the range data provided by the TOF sensors are noisy. In order to enhance the range data 
obtained by the MultiCam, the main noise sources in the range images are reviewed briefly and some 
solutions will be presented in the following:

➢ Random Noise: The range data of a TOF chip (in our case PMD) have some random noise 
with a changing pattern. In fact, the random noise appearing in the range data of PMD is a part 
of systematic error of the chip. In order to filter this noise and smooth the range data, a median 
filter is applied. Fig. 2.6 outlines the range measurement of a cut through the range image in 
the distance of about 2 m before and after filtering. As it is seen, the range data gets smoother 
by applying the median filter [41].

➢ Fixed Pattern Noise: The second type of noises in the range data is fixed pattern noise which 
generally appears with a unique unchanging distribution.  In  [12] this  kind of noise in the 
MultiCam range data has been determined by using a homogeneous illumination and a gray 
chart as a uniform target. By acquiring a fixed pattern noise matrix, the offset between the real 
distance  and  the  measured  distance  can  be  minimized.  This  type  of  noise  has  also  been 
addressed in analysis of range images of a SwissRanger camera in [62].

➢ Motion Artifacts: The motion artifact in a 3D range image is somehow equivalent to the 
motion blur in a normal 2D picture. When the object moves fast, this problem will occur, 
especially on the edges of the object. In fact, as it was already mentioned in section 2.1.4, the 
distance data in our TOF camera is calculated based on four phase images [52], [61]. Since in 
a  dynamic  scenario  an  object  might  move  between  the  phase  images,  each  phase  image 
receives infrared light from a different distance. Therefore the range image which is calculated 
from these phase images gets the motion artifact. One general solution to this problem is to 
increase the frame rate of the camera which will be the case in the new generation of the 
MultiCam by  changing  the  communication  interface  from  USB  2.0  to  Gigabit  Ethernet. 
However, one can correct such noises to a great extent by applying morphological operations 
consisting of erosion and dilation. Fig.  2.7 shows a top distance view of a cubic box taken 
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Figure 2.6: Left: Range measurement before filtering. Right: Range measurement after filtering.
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while it  moves at  the velocity of  20 cm/s  in horizontal  direction.  The motion artifacts  are 
observed on the edges. To eliminate the motion artifacts in the range image, it is first binarized 
and then an eroded image is derived from it. Based on the binarized eroded image, the range 
image is eroded as well. Then the dilated image is obtained from the eroded image by applying 
a gray level dilation operation. Finally the output image is constructed from that which clears 
the motion artifacts as illustrated in Fig. 2.7.

➢ Out-of-Range Noise: If the infrared lighting system does not illuminate the whole Field of 
View (FOV)  observed  by the  PMD chip,  the  non-illuminated  regions  get  wrong distance 
information which is called out-of-range noise in our work. This is shown in Fig.  2.8 where 
the  corners  of  a  plain  background  are  not  properly  illuminated  and  therefore  the  pixels 
corresponding  to  these  areas  get  out-of-range  data.  These  pixels  can  be  filtered  out  by 
checking  their  modulation  amplitude  in  order  not  to  affect  the  accuracy  of  the  image 
processing. Likewise, employing a lighting system with an illuminating angle bigger or equal 
to the angle of view of the camera can solve this problem in a simple way.

It should also be mentioned that there is another type of error in the range data of the PMD, even in the 
static case. This kind of range error which usually appears on the edges of an object is due to the fact 
that the resolution of the PMD sensor is low and therefore range discontinuities are observed in one 
pixel. In other words, the pixels corresponding to the contour of an object acquire the reflected near-
infrared  light  from  two  different  distance  points,  once  from the  edge  point  and  once  from  the 
background, and therefore they get wrong range data.

The dependency of the range data on the exposure time as well as the temperature are also important 
and interesting issues in analysis of the MultiCam. These issues have been studied in detail in [12] and 
therefore we will skip them in this work and refer the reader to this reference.
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Figure 2.8: Out-of-range errors appear in the corners of a plain surface which are out of the 
illumination zone of the lighting system.

Figure 2.7: Left: 3D image from a box with motion artifact on the edges . Right: Motion artifacts  
are eliminated by morphological operations.
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2.3.2 Range Calibration

In order to investigate the range measurement accuracy of the PMD sensor in the MultiCam and 
calibrate it, a very precise positioning unit [101] with the resolution of  x=10 µm is used. In fact, we 
employ  a  setup  in  which  the  MultiCam  is  mounted  on  the  positioning  unit  and  it  is  moved 
automatically to acquire distance data from a fixed target in the range of 60  cm to 450 cm with a fixed 
distance of 5 cm between each measurement step.

From the acquired distance data, the center pixel is taken as a representative point in order to build the 
initial  data  set  with X={ p1 , x1 ,  p2 , x 2 , ... ,  p N , xN  } with  pi as  the  ith position  and  xi as  its 
corresponding range measurement. The deviation from an ideal range measurement device with xi = pi 

is retrieved by simply subtracting X from the ideal set I={ p1 , p1 , p2 , p2 , ... ,  p N , p N } delivering 
the difference D={ pi , pi− xi} , i∈{1,. .. , N }.

The upper graph in Fig. 2.9 shows the plot of the ideal range measurement along with the plot of the 
acquired range measurement for the exposure time of 5 ms. In order to obtain the offset  b between 
these two plots the set D is linearly fitted by using the data from 60 cm up to 450 cm. Subtracting this 
from each element of  D yields the first approximation: D'= pi , pi−xi−b , i∈{1,. .. , N }. By fitting 
D' with an  n-order polynomial, we get the set of coefficients K={k 0 , ... , k n} which are used for the 
final approximation process. Hence, for each measured pixel we compute [41]

xcalibrated=∑
i=0

n

xmeasured−bi⋅k i . (2.9)

The lower graph in Fig. 2.9 illustrates the deviation plot along with 5th and 7th degree polynomial fits 
which are used in this work.

It should be mentioned that the offset b along with the polynomial coefficients K have been computed 
for each integration time from 1  ms to 20 ms (step size  t=1ms ) independently in this work.

For more information regarding the error form in Fig. 2.9, the reader is referred to [12] and [62].
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Figure 2.9: Range calibration. Top: Real distance versus measured distance. Bottom: Offset fitting 
and correction using polynomials.
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2.3.3 2D/3D Synchronization

Synchronization is  one of  the  main issues  in  using multiple  visual  sensors  to  observe dynamic 
environments.  It is,  indeed, one of the main problems in the binocular setups where two different 
cameras  with different  frame rates are combined.  For example,  in  [102],  where a TOF camera is 
combined with a standard one, to overcome the problem of synchronization the frame rates of both 
cameras are set down to 10 frames per second and the spatial offset in 2D and 3D images at different 
velocities is calculated. In fact, in such setups there is no direct control to trigger both cameras to 
acquire the images at an exact time; and even if there would be such a common trigger signal, due to 
different electronic characteristics of each camera, the temporal synchronization cannot be exact. On 
the other hand, since the MultiCam has a common FPGA based processing unit for both 2D and 3D 
sensors, it can trigger both sensors to acquire images at the same time. This makes the problem of 
synchronization in the MultiCam much easier.

As already stated, a TOF range image is constructed from four phase images in the MultiCam. In this 
regard, three types of synchronization can be considered for the MultiCam which is shown in Fig. 
2.10. In the first possibility, the first phase image and 2D image are synchronized such that they are 
both captured at the same time. In this case, the last three remaining phase images are acquired after 
finishing the acquisition of a 2D image. In the second possibility, contrary to the first, the last phase 
image is synchronized with 2D image. In fact, after acquiring the first three phase images, acquisition 
of both 2D and fourth phase image starts. The last possibility of synchronization which is the most 
common configuration is to acquire one 2D image per four phase images. In this case the starting time 
of 2D image acquisition can be set in the interval of range acquisition arbitrary.

As it can be seen from Fig.  2.10, in the first case of synchronization the time between the first and 
second phase image might not be as equal as the time between the other phase images. In the second 
case all phase images are captured in the equal time interval and therefore it is preferred. However, in 
both cases there might be a quick change in the scene which is observed by one of the sensor, whereas 
it is not acquired by the other one. The solution to this problem is to use the last configuration in which 
on the one hand all four phase images have the same time interval and on the other hand a 2D image is 
synchronized with a  full  range image.  In  fact,  in  this  case  the  total  acquisition time  is  kept  to  a 
minimum value [12].
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Figure 2.10: Different possibilities of 2D/3D Synchronizing in the MultiCam [12].
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2.3.4 2D/3D Image Calibration and Registration

In this section we will review calibration and registration aspects for the MultiCam briefly which is 
done in [12]. For a much deeper understanding the reader is referred to this reference.

For the MultiCam, the pin-hole camera model like the one used in OpenCV [3] is used. In this model 
due to the monocular optical setup, both sensors share the same set of extrinsic camera parameters. 
These parameters describe the transformation function between world and camera coordinate system. 
On  the  other  hand,  an  individual  set  of  intrinsic  camera  parameters,  describing  the  perspective 
projection of the scene onto the sensor, have to be determined for each sensor. This is because in spite 
of using a common lens, the beam splitter, the IR cut filter in front of the 2D chip, the sensor window 
in  front  of  the  PMD chip  and  the  fact  that  the  sensors  are  operated  in  different  spectral  ranges 
potentially  influence  the  projection  process.  These  camera  parameters  can  be  acquired  by  using 
standard software  such as OpenCV,  which also takes  the radial  and tangential  distortions  up to  a 
certain degree into account [41].

In  [12] the results of calibration for the MultiCam have been stated which show that the pin hole 
camera model can be used for the MultiCam with sufficient accuracy.

After the calibration,  we need to identify a spatial  transformation function which maps the image 
coordinates of the 2D sensor to the corresponding coordinates of the 3D sensor as follows [35]

[ x1 , y1 , z1]
T=f [ x2 , y2 , z2]

T  . (2.10)

With regard to the MultiCam setup, the same field of view is observed by a conventional 2D sensor 
with the resolution of  640×480  pixels on the one hand, and by a 3D-TOF sensor (PMD) with the 
resolution of 64×48 pixels on the other hand [41]. While each pixel of the used 2D sensor has the size 
of 10×10  µm2, each pixel of the PMD is 100×100  µm2  [31].

To do the registration for the MultiCam, first the uncorrected view after sensor alignment in the setup 
should be detected. This is due to the angle error which occurs if the beam splitter in the setup is not 
mounted exactly at the angle of 45° [12]. Given that there are no angle errors in the sensors’ alignment, 
the monocular design of the MultiCam has the advantage that the mapping between the images is 
constant. This fact is verified by mounting the MultiCam on a precise linear axis and positioning a 
predefined target on one end of the axis. The camera is then moved and positioned at a number of 
known distances  to  the  target  and  both  sensors’ images  are  acquired.  The target  is  a  test  pattern 
consisting of a grid of circles. It is also assumed that the reflectivity of the test pattern in the visible 
spectrum is same as its reflectivity in the near infrared spectrum [12]. After rescaling the PMD image 
to VGA resolution by means of a near neighborhood interpolation, the circles' centers of the target are 
determined in both images and stored in two sets:  PPMD and P2D  . The average distances between 2D 
and PMD circle points in these two sets are calculated in both x and y directions (displacements). Fig. 
2.11 shows the average of the displacement between these two sets in units of 2D pixels as a function 
of the distance between the camera and the pattern for a constant focal length. 

It can be observed that the displacement averages are stable over distance, which means that there is 
virtually no angle error in the sensor alignment in the observed range [41]. Likewise, by examining the 
distribution  of  the  displacement  in  the  whole  image,  it  turns  out  that  these  displacements  do  not 
depend on the location in the image. This implies that the mapping neither depends on the resolution 
of  the  range data nor  on the location of the feature  in the  image,  which constitutes an important 
difference to the binocular 2D/3D combinations. In other words, in the MultiCam the registration of 
2D/3D can be done simply by a two dimensional translation function which maps a 10×10 2D pixel to 
one single PMD pixel.
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2.4 Summary

Stereoscopic  imaging,  Structured  Light  Approach  and  Time  of  Flight  are  the  main  range 
measurement  techniques  which  have  been  reviewed  in  this  chapter.  As  discussed,  each  range 
measurement technique has its own advantages and disadvantages. Thus, sensor fusion is a general 
solution  to  take  the  advantages  of  multiple  sensors.  For  example,  a  2D/3D vision  system which 
combines  the  imaging  aspects  with  the  depth  perception  is  an  interesting  sensor  combination  for 
computer vision applications.

The MultiCam is a 2D/3D vision system which has recently been developed at ZESS. It is a novel 
camera system which employs a PMD-TOF sensor with a CMOS chip in a monocular optical setup. 
While the PMD sensor observes the third dimension of the scene, the CMOS sensor provides high 
resolution intensity or color information. 

Some important aspects of the MultiCam such as range analysis, 2D/3D synchronization, calibration 
and registration have been investigated in this chapter. As it was seen, the MultiCam, as opposed to the 
binocular 2D/3D vision systems, does not require any complicated and time consuming calibration and 
registration techniques. Likewise, the MultiCam can synchronize 2D and 3D sensors via a common 
FPGA processing unit efficiently. These are, in fact, the vital points in this work because they make the 
MultiCam suitable for the real time object recognition and tracking problems which will be discussed 
in the rest of this work.
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Figure 2.11: Uncorrected dislocation of PMD and 2D sensor in the MultiCam [12].
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3
2D/3D Object Recognition

The whole of science is nothing more than a refinement of everyday thinking.
Albert Einstein (1879-1955)

Object  recognition is  the visual  perception of  familiar  objects  despite  of  the  changes in  color, 
texture, shape, size, form, etc. The problem of object recognition can be described as the task of how 
to detect the desired object in the scene and classify it based on the visual information. In general, an 
object recognition mechanism consists of a visual sensor which acquires the visual information from 
the environment where the object may exist; a preprocessing unit which makes the object recognition 
task easier  and faster;  and an  object  classification which distinguishes between different  detected 
objects and put the same objects in a class.

In this context, many investigations have been conducted using different kinds of visual sensors as 
well as applying different preprocessing techniques and classification algorithms. However, in all of 
these  studies  the  performance  of  the  real  time  recognition  system  depends  on  the  accuracy, 
recognition time and reliability. In fact, these are the main criteria which can be used to validate the 
visual sensors as well as the algorithmic approaches in an object recognition mechanism.

As already mentioned in section 1.2, the 2D imaging sensors, like CCD or CMOS sensors, have some 
difficulties in real world problems where the lighting conditions might change. Likewise, they do not 
provide range information which is a crucial factor in 3D object recognition. Therefore, they cannot 
fulfill the accuracy and reliability criteria in real world problems. Generating of 3D data from static 
2D images is also a computationally expensive process, i.e., it does not satisfy the recognition time 
criterion.

Although 3D range sensors can provide depth information, they have still  some limitations which 
were already discussed for each sensor in the previous chapter. On the other hand, employing both 2D 
and 3D visual sensors in a monocular setup can satisfy the accuracy, recognition time and reliability
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requirements for  the  object  recognition  to  a  great  extent  in  many  computer  vision  applications.

We have already discussed the first part of object recognition mechanism in this work by presenting 
the 2D/3D vision system in the previous chapter. In fact, the presented 2D/3D vision system is used 
because  it  can  fulfill  the  aforementioned  criteria  for  an  object  recognition  task  in  the  indoor 
applications.

Now, in  this  chapter,  we will  study and discuss the two remaining parts  of  an object  recognition 
mechanism, consisting of preprocessing and classification approaches, using Time of Flight range data 
as well as 2D/3D images.

The  original  visual  data  is  usually  too  large  and  too  redundant  to  be  directly  used  as  the  input 
information, esp. for real time applications. The preprocessing, consisting of different techniques, such 
as feature extraction and segmentation, is usually performed on the one hand to extract the informative 
part of the data and on the other hand to reduce the dimension of the input data which consequently 
speeds up the computational processing. With regard to the preprocessing in this work, we will discuss 
some techniques to extract numeric or symbolic features from 2D/3D images. Furthermore, we will 
present  some  aspects  of  multimodal  data  fusion  and  object  segmentation  and  validate  them  by 
presenting some results. 

After applying preprocessing techniques, which simplify the problem and extract the features, in the 
next step, a classification approach is applied to distinguish between different detected objects in the 
scene. The classification in this work will be performed based on two advanced supervised learning 
techniques which have shown promising results in many machine learning tasks recently.

3.1 Feature Extraction

Each observation taken by a visual sensor consists of the data which might include intensity, color 
or range information. With the increase in the dimension of the data, the processing time increases 
significantly and becomes a big issue in real time applications. In order to address this problem, a set 
of  information derived from the original  data,  so-called  feature  vectors,  are used.  Feature vectors 
should  effectively  represent  the  information  contents  of  an  observation  while  reducing  the 
dimensionality. Therefore, a well-defined feature extraction technique makes the recognition process 
more effective and efficient.  In this  work,  the features have been grouped in two types:  Machine 
generated features and  Human generated features. Machine generated features are the similarity and 
differences in the large data set which cannot be visualized easily by the human being, but they can be 
highlighted by means of some mathematical approaches such as Principal Component Analysis (PCA) 
and Linear Discriminant Analysis (LDA). On the other hand, human generated features are knowledge 
based  data  which  can  be  extracted  through  some  heuristic  approaches.  The  knowledge  based 
information can either be derived from parametric visual data in an image like edge, corner, line, etc. 
or from statistical properties of the data.

3.1.1 Principal Component Analysis

Principal Component Analysis (PCA) is a way of simplifying the data set by expressing the data in 
such a way as to highlight their similarities and dissimilarities. It is a linear transformation of the data 
to a new coordinate system which represents the data set in a better way. This transformation is a 
rotation of the original axes to the new orientations that are orthogonal to each other. The first axis of 
the  new coordinate  system contains  the  maximum amount  of  variation  which  represents  the  first 
Principal Component (PC), the second axis with the second greatest variance, orthogonal to the first 
axis, represents the second  PC and so forth until the last axis which has the least variation which 
represents the last PC. The PCA can be used to reduce the dimensionality by eliminating the later PCs. 
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Fig. 3.1 shows the graphical representation of PCA in two dimensions. 

Principal  components  are  found by extracting the  eigenvalues  and eigenvectors  of  the  covariance 
matrix of the data which are calculated efficiently via  Singular Value Decomposition (SVD). In the 
following the stepwise approach to perform Principal Component Analysis on n images is discussed:

➢ Data preparation: All  pixel  values  of  each image (original  features)  are  arranged in  the 
column vectors of the matrix A with the size of m×n where m represents the dimension of data 
(number of original features including range, intensity, modulation amplitude and color data) 
and n represents the number of images (observations).

➢ Calculation of  adjusted matrix: In  the  next  step,  the  mean  vector  along the  features  is 
calculated, and then it is subtracted from matrix A to derive the adjusted matrix M as follows

i=
1
n∑j=1

n

a ij (3.1)

M=A−u (3.2)

where u is a 1×n vector of 1's and the dyadic product u  has the size of m×n.

➢ Calculation of the covariance of adjusted matrix: The covariance matrix S is calculated as 
follows

S= M M T

n−1
. (3.3)

The covariance matrix S gets the size of m×m, where m is the dimension of the data.
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Figure 3.1: Graphical representation of PCA in two 
dimensions [24].
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➢ Calculation of the eigenvalues and eigenvectors of the covariance matrix: The covariance 
matrix  S is  diagonalized  using  eigenvalue  decomposition  to  find  the  eigenvalues  and 
eigenvectors such that

S=Q QT  (3.4)

where  Q  is  the  eigenvector  matrix  and  Λ  is  the  corresponding  diagonal  matrix  of  its 
eigenvalues as follows

Q=[eigenvec1 , eigenvec2 ,... , eigenvecm] , (3.5)

=diag 1 ,2 , ... ,m . (3.6)

➢ Rearrangement of eigenvectors based on eigenvalues: In the next step, the eigenvectors are 
rearranged in descending order of  their corresponding eigenvalues starting with the largest λ. 
The first  p largest eigenvectors17 are then selected, where pm , to reduce the dimension of 
the data such that

v=1 ,2 ,... ,p , (3.7)

f =[eigenvec1 , eigenvec2 ,eigenvec3 , ... ,eigenvec p] . (3.8)

➢ Calculation of new data set:  In the last step, the new data set is derived by projecting the 
original data to the new coordinate system (with the dimension of p) through the feature vector 
f as follows

final data= f T M . (3.9)

  Computational Cost of PCA

Computational cost is one of the most important criteria which is usually considered in the selection 
of an algorithm. The cost can be evaluated based on the time complexity function of the algorithm. For 
a PCA algorithm, the main part of computation is the eigenvalue and eigenvector calculation. The 
typical algorithms which are used to find the eigenvectors of a m×m matrix have a time complexity 
function of O(m3). For our applications in this work, each pixel of a 2D/3D image has range, intensity, 
modulation amplitude or even color information. Therefore, each observation corresponds to a vector 
in a space of thousands and eventually more dimensions (m) and so the calculation of eigenvectors 
becomes computationally expensive which consequently makes the application of PCA for real time 
application computationally infeasible. In addition to this point, in our applications mostly the number 
of observations  n  is smaller than the dimension of the data  m. For example we have some hundred 
images as training data set where each image has at least some thousands pixel data. In this case nm  
and therefore we will get  m-n+1 zero eigenvalues. A zero eigenvalue corresponds to an eigenvector 
along its directions the data set gets zero variance and therefore such an eigenvector does not give any 
information about the similarities and differences in the data set. In order not to calculate the zero 
eigenvalues as well as resolve the problem of computational expense of PCA, a trick is applied which 
is described in the following [2]:

First, we define a new matrix H as follows

17 The criteria for selection of the first p largest eigenvalues will be discussed later in this section.
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H=M T M
n−1

. (3.10)

H gets the size of n×n which is much smaller than the covariance matrix S with the size of m×m. In 
the next step, the eigenvalues and eigenvectors of the lower dimension matrix H are calculated. The 
n-1 eigenvalues of matrix H are the same as the non-zero eigenvalues of covariance matrix S which 
has m-n+1 additional zero eigenvalues. Now, the eigenvectors in the original data set can be calculated 
by

v=M v' (3.11)
where v' represents the eigenvectors of matrix H and M represents the adjusted matrix.

  Eigenimages and PCA Reconstruction

As  already  discussed  in  this  chapter,  using  the  images  directly  as  the  input  data  makes  the 
classification task cumbersome. Having  n  images of different objects, the task of recognition is to 
discriminate them in several classes. PCA is used on the one hand to reduce the dimension of the data 
and on the other hand to derive some characteristic properties of the image data. In fact, using PCA 
each image in the data set can be represented as a weighted sum of the basis vectors. These vectors are 
the eigenvectors which are derived in the PCA process, described in the previous section, and called 
eigenfaces18. In principle, PCA searches for directions in the image data with the largest variance and 
projects  the  images  from  image  space  onto  those  directions.  In  this  way,  a  lower  dimensional 
representation of the image data is obtained, which neglects some of the noisy directions. Thus, instead 
of directly working with high dimensional images, we project them using the eigenimages and their 
weights in the new coordinate system.

Figure 3.2: Some examples of 2D color images from a person 
data set taken by MultiCam, converted to gray scale and resized.

In Fig. 3.2 some example of 2D images from a person data set have been shown. In the person data set, 
we have collected 2D/3D images of three seated people with different poses. These images are taken 
by the MultiCam. The 2D color images have been converted to gray scale images and then resized to 

18 The  term eigenface  originates  from facial  recognition  community  because  this  technique  was  developed  and  used 
successfully for the first time by Turk et al.  [96] for the face recognition problem. However, as this technique has been 
used later for different object recognition tasks, some researchers  prefer to use the term eigenimage instead of eigenface.
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32×24  pixels.  These  images  are  highly  correlated  in  image  space.  Projecting  them through  the 
eigenimages make them uncorrelated in the new subspace with lower dimension. 

The first four eigenimages derived from 2D images are shown in Fig. 3.3. Each eigenimage represents 
only certain features which might be present in the original image. For example, an image might have 
40% of the first eigenimage, 25% of the second eigenimage, 15% of the third eigenimage, 10% of the 
fourth eigenimage and 10% of the rest of eigenimages. Using the weights (eigenvalues in PCA) and 
eigenimages (eigenvectors in PCA), an image is projected to the new coordinate system with lower 
dimension.

Fig.  3.4 shows some example of range images from the person data set. In these images, the range 
information has been coded in the gray values such that the darker pixels represent the smaller distance 
to the camera. 

The first four eigenimages derived from range images are illustrated in Fig. 3.5. One can observe that 
the eigenimages cover the shape of the persons with different poses. 
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Figure 3.3: The first four eigenimages of 2D images from person data set.

Figure 3.4: Some examples of range images from the person 
data set taken by MultiCam. The range data have been coded 
in gray values such that the darker the pixel, the smaller the 

distance to the camera.

Figure 3.5: The first four eigenimages of range images from person data set.
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In Fig. 3.6, the projection of 60 images (2D and range) of three people (20 images per person) from the 
person data set on the first four principal components is shown. One can observe that the first two 
principal  components  are  more  informative  than  the  other  last  two components  and  therefore  the 
projected data are better separated concerning the first two principal components than the last two 
components. The distribution of the projected data on the first two PCs shows that two classes are well 
separated in 2D image space whereas the same two classes are mixed in 3D range space and vice 
versa. Thus, fusing the features derived from 2D images with those extracted from 3D range images 
yields a feature space where all three classes are well separated. Another approach would be to make a 
classifier for each feature set (derived from 2D and range images) and combine them to make a strong 
classifier. The number of chosen principal components determines the new dimension of the data. One 
of the key questions is how many eigenimages should be selected. In order to answer this question, 
one can look at the spectrum of the eigenvalues. The eigenvalues with low slope can be neglected 
because their corresponding eigenimages do not give any useful information about the data.

In Fig.  3.7, the spectrum of the first 20 eigenvalues, sorted in descending order, for 2D and range
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Figure 3.7: Eigenvalue spectrum, Left: Derived from range images. Right: Derived from 2D 
images. The first four eigenvalues have the highest slope.

Figure 3.6: Distribution of the projected data on the first four principal components.
Left: Derived from the 2D images. Right: Derived from the range images.
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images of person data set are plotted. As we can see, for this case the first four eigenvalues have the 
highest slope and therefore they have the maximum impact in giving the information about the data.

After projecting the images to the new subspace, they can be reconstructed in the cases where needed. 
The reconstruction can be done by retaining p principal components. As p increases the reconstructed 
image becomes more accurate and would be as original when the number of principal components is 
equal to the resolution of the original image. An example of image reconstruction using the first  p 
components can be seen in Fig. 3.8.

3.1.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is another technique in machine learning for feature extraction 
and  dimension  reduction  which  is  usually  applied  to  the  data  before  classification.  LDA,  unlike 
Principal  Component  Analysis  is  a  supervised technique.  In  other  words,  LDA includes  the  label 
information of the data (to which class the data belongs) in the projection process. 

A classical  LDA as the normal  linear  function projects  the  m  dimensional  data  x onto a lower  p 
dimensional y space as follows

y=wT x (3.12)

where w is the projection matrix with the size of m×p and y is the projected data in the new dimension. 
Fig.  3.9 shows the projection of two dimensional data features of three classes to one dimensional 
subspace using LDA technique. 
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Figure 3.8: An example of image reconstruction. First row: The original 2D image together with its PCA 
reconstruction. Second row: The original range image together with its PCA reconstruction.

Figure 3.9: Projection of the 3-class feature data to a 
1D subspace using LDA. X1 and X2 represent two 

arbitrary features.
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Now, the question is how we can use the label information to find the best projection of the data. 
Fisher  [2] proposed the answer by finding the direction along which the classes are best separated. 
This is done by maximizing a function J that will give a large separation between the projected class 
means while giving a small variance within each class as follows 

J w =
wT S b w
wT S w w

(3.13)

where Sb is the class separation which is called between classes scatter matrix and is given by

Sb=∑
c

N c c− xc−x T  (3.14)

where c=1 /N c ∑
x i∈C

xi is the mean of the data in the class c and x=1 /N∑
c

N c c is the mean of the whole 

data in which N c is the number of data in class c and N=∑
c

N c is the total number of data points.

In equation 3.13, Sw is the within classes scatter matrix and can be formulated as follows

Sw=∑
c
∑
i∈c

 xi−cx i−c 
T

. (3.15)

Maximization of J function can be done by differentiating 3.13 with respect to w as follows

(3.16)

By dividing the both sides of 3.16 by wTSww and multiplying it by S w
−1 we will obtain

S w
−1 Sbw=J w  (3.17)

which looks like an eigenvalue equation. The first p largest eigenvectors of S w
−1 S b corresponding to the 

p largest eigenvalues determine the projection vector w.

Since  LDA as  a  supervised  algorithm  takes  the  label  information  into  consideration,  it  usually 
outperforms PCA when there exist a large sample data set for each class. However, when the data are 
undersampled, i.e., there is a small sample size, LDA fails because a classical LDA requires that all 
scatter matrices to be nonsingular  [85],  [92]. This is not the case in many applications like in our 
person  data  set  example  where  the  sample  size  (number  of  observations)  does  not  exceed  the 
dimension of data. This limitation of LDA is known as the singularity or undersampled problem.

Recently many approaches have been proposed to solve this problem such as PCA+LDA, regularized 
LDA, Pairwise Discriminant Analysis (PDA), Penalized LDA and LDA/GSVD [88], [51], [85], [92].

The PCA+LDA approach which has been used in face recognition problem proposes to project the 
data first to an intermediate space using PCA and then apply the classical LDA to project them to the
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d
dw [ J w ] = d

dw [wT S b w
wT S w w ]

= [wT S w w ] d [wT S b w ]
dw

−[wT S b w ] d [wT S w w ]
dw

= [wT S w w ]2Sb w−[wT Sb w ]2Sw w = 0 .
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final space.

In Fig.  3.10 we have shown the results of  projecting the person data set onto a four dimensional 
subspace using PCA+LDA technique.

Comparing these data with the results of the PCA in Fig. 3.6 shows that PCA+LDA outperforms PCA 
in this case. However, the computational cost of PCA+LDA is higher which should be considered in 
the real time applications.

3.1.3 Knowledge Based Features

Knowledge based features belong to the human generated features. These kinds of features refer to 
the information which is derived from the 2D/3D images through some heuristics. For this reason, it 
has also been termed as heuristic features in some literature. In our work, knowledge based features 
are either derived from parametric visual data which give the information about the shape, size, color 
and position of the desired object or they are calculated from statistical properties which give the 
information  about  the  distribution  of  the  data.  In  fact,  knowledge  based  features  are  application 
dependent  which give abstract  information about  the object  of  interest  in the image.  The abstract 
information can be used as the lower dimension features for  detection,  classification and tracking 
algorithms. In the following, two main types of these features are described:

➢ Parametric Visual Data: They can be derived directly from the 2D/3D images based on some 
image processing techniques. Some of these features are listed as follows: 

i. Number of edges in the Region of Interest (ROI)

ii. Detected corners in the ROI

iii. Lines in the ROI

iv. The circularity  ratio of the detected object in the ROI

v. Color

vi. Size of the object derived from 3D image
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Figure 3.10: Distribution of the projected data using PCA+LDA in the four dimension.
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vii. Distance of the object to the camera

➢ Statistical  Properties:  The statistical  properties  can  be  defined by the  user  based  on the 
knowledge about the desired object in the application. For example, the number of non-zero 
pixels after the segmentation, the minimum of the range data, standard deviation of the data in 
ROI  or  histogram properties  can  be  used  as  good features  for  some  object  classification 
problems.

However, the knowledge based features cannot be generalized for all types of problems. While they 
can be used as good features for a specific problem (for example face detection), in another type of 
problem (for instance torso detection) they cannot yield good results. On the other hand, integrating 
the knowledge based data with machine generated features, which is so-called hybrid features, will 
provide more accurate information for classification and tracking problems. We will show some results 
of hybrid features used in object classification problem in section 3.3.2.

  An Example of Knowledge Based Features using 2D/3D Images

In this section, it is shown how a heuristic technique can be applied to 2D/3D images to extract 
knowledge based features which are used to classify two poses of the hand (palm and fist). We assume 
that  the  hand is  detected using a  kind  of  machine learning technique (in  our  case  we  have  used 
AdaBoost which will be described in section 3.3.4). Now, in the next step, the pose of the hand should 
be classified. In fact, we consider a binary classification problem to distinguish palm from fist. As we 
have  some  prior  knowledge  about  the  shape  of  the  object  of  interest,  a  heuristic  technique  is 
implemented to extract this knowledge and convert it to a function feature which is used to classify the 
hand. The heuristic technique which is similar to [60], is summarized as follows:

Heuristic Algorithm:

Assumption: Given the Region of Interest D(x,y) in the 2D image I(x,y), in where the hand is
       detected.

1) Extract the all n pixels with the skin color in D and save them in new data set E(x,y).

2) Find the mass center O of the hand in E(x,y) as follows

xO=
∑ X i

n
 , yO=

∑Y i

n
.

where X i and Y i represent the position of the pixels with skin color in E derived in step 1.

3) Extract the distance value d of the center point O from 3D range image.

4) Draw a circle at the center point of O with the radius of r as

where r=k⋅d , and k=cte , i.e., the size of circle is adjusted using the range data from 3D 
image. In other words, the closer the hand to the camera is, the bigger the circle is.

5) Trace the circle and construct a binary intersection function of the circle with the hand 
such that

6) Count the number of transitions from 1 to 0 and save it as a feature.
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ℂ: x−x O
2 y− y O

2=r2

f x , y ={1 if  x , y ∈ℂ
0 if  x , y ∉ℂ
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Fig.  3.11 shows an example of the applied heuristic technique to the hand images. While the feature 
number for palm posture is usually 6 (five fingers plus wrist), it is always 1 for fist posture because in 
this case the hand lies inside the circle and only the wrist intersects with the circle.

3.1.4 Haar-like Features

Haar-like features have been used successfully in object recognition problems such as face detection 
and hand recognition. Haar-like features, which originate from Haar-wavelets, encode the knowledge 
about the desired object which is difficult to be extracted from the raw pixel data. The value of a Haar-
like feature in an image is calculated by subtracting the sum of pixel values in the black subregion 
from the same in the white subregion as follows

f x =∑
black

 pixel value−∑
white

 pixel value . (3.18)

The standard Haar-like features are illustrated in Fig. 3.12. 
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Figure 3.11: Knowledge based feature extraction using heuristics for hand pose 
classification. First row: 2D images. Second row: Hand detected images from 2D/3D 

data. Third row: The binary intersection function derived from tracing the circle.

Figure 3.12: Standard Haar-like Features [80].
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To detect the object, the image is scanned by a search window containing a Haar-like feature. The 
presence of a Haar-like feature is determined by comparing feature  f(x)  with a threshold  θ which is 
found in  the  training phase.  If  f(x) is  above the  threshold,  that  feature  is  said  to  be  present  and 
accordingly a binary classifier h(x) for the Haar-like feature t is generated as follows

h tx ={1 if f x 
0 if f x  . (3.19)

Determination of the presence or absence of all Haar-like features at every location of the image with 
different scales is computationally too expensive. Viola and Jones [80] proposed a solution which is 
extremely fast and can be used for real time applications. This method will be reviewed in section 
3.3.4.

3.2 Multimodal Image Segmentation

Segmentation is the first challenge in vision based object recognition problems. It is the way of 
partitioning the image into a set of meaningful regions. This simplifies the processing task of object 
recognition  because  instead  of  dealing  with  a  large  number  of  pixel  data,  the  complex  scene  is 
segmented to the separated areas which provide a simpler description of the desired object  in the 
image. Therefore, segmentation is usually considered as a preprocessing step in many computer vision 
applications. Since the results of the segmentation directly affect the performance of the subsequent 
processing techniques like feature extraction and classification, it is one of the most important steps in 
computer vision problems.

There are many approaches which have been used for object segmentation using 2D images (color and 
intensity) as well as 3D range data [22], [14], [19], [87]. In general, these methods can be categorized 
as pixel based, edge based, region based and hybrid segmentation approaches:

➢ Pixel Based Segmentation:  They are local segmentation methods which group the similar 
pixels in the image in one segment with respect to some characteristics such as intensity, color, 
texture  or  range  data.  Some  of  the  approaches  used  in  this  category are  as  thresholding, 
clustering, histogramming and fuzzy clustering.

➢ Edge Based Segmentation:  They consist  of  local  and global  segmentation  methods.  The 
difference between local and global methods is the way they define an edge point which is 
characterized by a vector with size, position and direction. In a local technique, the edge pixel 
is  determined with the information in the neighborhood of that  pixel,  whereas in a global 
technique  it  is  identified  after  many optimizations  in  a  large  area.  Canny edge  detector, 
differential  edge  detection  and  Markov  random  field  are  some  of  such  segmentation 
techniques in this group.

➢ Region Based Segmentation:  They are global segmentation methods which use uniformity 
criteria  calculated in the regions  of  image domain.  These techniques are divided into two 
groups:  region  growing and  split  and  merge.  While  the  region  growing  starts  with  some 
uniform regions (seeds) and applies some strategies to add the surrounding neighbors to grow 
the region, split and merge method starts from nonuniform regions and split them to obtain the 
uniform ones, and then applies some merging techniques to get the maximum uniform region.

➢ Hybrid Segmentation: It is a method which combines the previous mentioned techniques to 
provide more accurate segmentation results.

There  are  many  publications  in  the  computer  vision  literature  which  have  studied  the  image 
segmentation approaches ranging from simple ad hoc schemes to more sophisticated ones using object 
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models  [22],  [56]. There are also some good survey articles which have compared these techniques 
[22],  [100],  [95]. However, there is no universally applicable segmentation technique which can be 
used  for  all  of  the  applications,  and  therefore  the  appropriate  segmentation  technique  should  be 
selected and validated based on the particular application criteria. For example, there might be some 
segmentation techniques which are highly accurate for a specific object recognition problem, but they 
are computationally expensive which makes them inefficient for real time tasks. Thus, there should be 
a trade-off between the required criteria to find the optimum technique. 

In  the  image  segmentation  area,  due  to  the  lack  of  benchmarks  the  evaluation  of  segmentation 
performance is very difficult. In fact, in a general purpose problem, “correct” segmentation is not well 
defined and there is no unique ground truth which can be compared against the result of segmentation. 
Likewise,  the evaluation results  of  different  segmentation techniques in one application cannot  be 
applied to other applications. However, there are still some good benchmarks which produce a score 
for the algorithms and therefore they can be compared with each other. Currently the most important 
benchmarking used for evaluation of 2D gray scale and color image segmentation is “The Berkeley 
Segmentation Dataset and Benchmark”  [27] with 12000 hand-labeled segmentations of 1000 Corel 
dataset images from 30 human subjects. Also, Hoover et al. [95] has created a publicly available tool 
to measure the results of 3D range image segmentation.

Studying the current segmentation techniques as well as creating a benchmark to compare the results is 
out of scope of this work. In this section the object segmentation using multimodal data including 
range, modulation amplitude and intensity is studied. These data are provided either by a 3D Time of 
Flight camera (low resolution range and intensity data) or by the novel monocular 2D/3D imaging 
system (low resolution range and high resolution intensity or color data). In fact, the segmentation in 
this work, as a preprocessing step, aims first at distinguishing foreground objects from background and 
then classify them using multimodal data in order to make the object recognition problem easier and 
faster.

3.2.1 Range Segmentation

A range image which reveals direct distance information about the object's surface can explicitly 
represent the surface geometry of the scene. In many applications like autonomous navigation where 
the objects should be identified based on their distance to the sensor, range segmentation plays a key 
role. As the range image acquisition techniques are different, there are different types of range images. 
For this reason, unlike intensity image segmentation, there is no generic algorithm for range image 
segmentation.

A simple example of TOF range image segmentation is shown in Fig. 3.13. The range data has been 
coded in the intensity values such that the darker a pixel is, the closer it is to the sensor. Three objects 
can be seen in this image. We assume that the closest chair in the foreground is the object of interest 
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Figure 3.13: Range Segmentation. Left: TOF range image subtracted from the 
background. Middle: Normalized histogram of range image. Right: Range segmented 

object.
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which should be segmented from the background as well  as other objects  in the foreground.  The 
thresholding technique is used for this purpose. The concept of this technique is based on subtracting 
the range image Ir from the background image Ib. The background image is already averaged (median) 
from many range images from the scene in the absence of the objects to reduce the statistical noise of 
TOF sensor to the minimum value. The background can also be modeled from range images like what 
is usually done in 2D background subtraction techniques. Since the variation of range data is not so 
high by changing the lighting conditions in the environment, background averaging is sufficient and 
therefore background modeling is not necessary.

Each pixel element in the subtraction matrix is compared with the threshold T and outputs the label 
background or object by

{I sm ,n=I rm ,n if ∣I r m ,n− I bm ,n∣T
I sm ,n=0 else  (3.20)

where Is ( m, n )  corresponds to the value of segmented image at row m and column n. The threshold 
level  T can be selected by examining the normalized histogram of the range image. In the example 
shown in Fig.  3.13,  the  threshold of  0.58,  corresponds to  the  distance of  2 m from the sensor,  is 
selected to segment the foreground chair from the rest of objects in the scene. Likewise, the multiple 
thresholding technique can be used to segment a mid-ground object in the range image data.

Since TOF range images contain explicit 3D information about the objects, the range segmentation is 
comparably easy and computationally inexpensive. However, TOF range images have problems with 
transparent or reflecting materials like glasses or metal objects. Also, the range data in a TOF image is 
affected by the color of the objects, i.e. two surfaces with different colors at the same distance might 
get different range data in a TOF image (see Fig.  3.14). Therefore, in a real world problem with a 
complex scene, the problem of range segmentation cannot be solved so easily just by using range data. 
This problem can be solved to some extent by fusing the range data with modulation amplitude and 
intensity data as we will describe in the next section.

3.2.2 Multimodal Data Fusion

The TOF camera delivers three data items for each pixel at each time step consist of intensity, range 
and modulation amplitude which is the amplitude of the received modulated light back from the scene. 
Therefore, a modulation image is like a quality index image for the range data. The intensity image of 
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Figure 3.14: Two examples of TOF range mis-measurements. First row: TOF intensity images (64×48 
pixels). Second row: Corresponding range images coded in gray values. Left: The hair gets wrong range 

data because of its black color. Right: The metal part of the chair has wrong distance data. 
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the  TOF  camera,  comparable  to  the  intensity  images  in  CCD  or  CMOS  cameras,  relies  on  the 
environment  lighting  conditions,  whereas  the  range  image  and  the  amplitude  of  the  received 
modulated light are mutually dependent. None of these individual data can be used solely to make a 
robust segmentation under challenging conditions in a real world problem. Fusing these data provides 
more reliable information which is used to improve the performance of the segmentation technique.

In this work we have used the basic technique for the fusing of the range and intensity data which has 
already been used in other fields like SAR imaging. We observed that the range data in our TOF sensor 
is dependent on the reflection factor of the object surface. Therefore, there is a correlation between the 
intensity and range vector sets in a TOF image. These two vector sets are fused to derive a new data 
set, so-called ”phase”, which indicates the angle between two intensity and range vector sets and is 
derived as follows: 

First, using the intensity and range data in each image  a  new resulting set of complex number  C is 
derived such that

C rc=g rc jd rc , j=−1  (3.21)

where grc corresponds  to  the  normalized  gray  value  and  drc represents  the  normalized  range 
information for each pixel in row r and column c of the intensity and range images respectively.

Next, the phase of each complex number  is calculated in the polar coordinate system for the whole 
array of the pixels as follows

rc=arctan 
d rc

grc
 . (3.22)

The flow of the range and intensity fusion is depicted in Fig. 3.15.

The phase of the complex value and range data are then combined into a 2D feature space where each 
pixel is described by a feature vector frc , containing range and phase information as follows

f rc=d rc ,rc . (3.23)

Here, range denotes the position of the object in z direction in the world coordinate system which is 
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Figure  3.15: Flow of the range and intensity fusion. 
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aligned to the optical axis.

Another type of fusion which has also been used in our work is to weight the value of the range for 
each pixel using the modulation amplitude factor and then calculate the phase vector. In this case, the 
phase vector is calculated from the following complex set

C rc=g rc j d rc⋅mrc , j=−1  (3.24)

where mrc represents the normalized modulation amplitude for the pixel in row r and column c. This 
adjusts the range level in those regions where the range data might get wrong.

3.2.3 Unsupervised Clustering

Unsupervised clustering techniques aim at partitioning a data set into K clusters. They are popular 
methods in image segmentation area. K-means and Expectation Maximization (EM) are two widely 
used approaches which we have employed in our work because on the one hand they are easy to 
implement and on the other hand they are fast enough to be used for real time object recognition tasks.

  K-Means

K-means  is  one  of  the  simplest  unsupervised  learning  algorithms  that  solves  the  well  known 
clustering problem by partitioning the data set {x1,x2,...,xn} into some number  K of clusters. This is 
done by minimizing the objective function, given by [2]

J=∑
n=1

N

∑
k=1

K

r nk∥xn−k∥
2  (3.25)

where rnk is a binary membership function which is defined for each data point xn as follows

r nk={1 if xn assigned to cluster k
0 otherwise .

(3.26)

In equation 3.25, ||xn-μk||2 represents the square of the distance between the data point xn and the cluster 
center μk. In fact, the goal is to find the values for the {rnk} and the {μk} so as to minimize J. This is 
done  through  an  iterative  procedure  in  which  each  iteration  involves  two  successive  steps 
corresponding to successive optimization with respect to the rnk and the μk  [2].

The main advantages of this algorithm are its simplicity and speed. The computational cost of K-
means is  O(KN), which allows it to run on large data sets. However, K-means is a data dependent 
algorithm. Although it can be proved that the procedure will always terminate, the algorithm does not 
achieve a global minimum. Since K-means is a distance based or hard membership algorithm, every 
data point, at each iteration, is assigned uniquely to one, and only one, of the clusters. For the data 
points which lie roughly midway between cluster centers, the hard assignment to the nearest cluster 
might  not be the most appropriate one. By adopting the probabilistic approaches, like Expectation 
Maximization (EM), a soft assignments of data points can be obtained.

  Expectation Maximization

Expectation Maximization (EM) is a powerful method to find the maximum likelihood solution for 
models with incomplete or missing data (see Appendix A - Expectation Maximization). This approach 
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can be used for image segmentation where each segment (cluster) is mathematically represented by a 
parametric Gaussian distribution. The entire data set (image) is therefore modeled by a mixture of 
Gaussian distributions. The missing data in Gaussian mixture model, which is also known as hidden or 
latent variable, is the Gaussian cluster from which the observation data originate.

As mentioned, we assume that the entire image data X={x1,x2,...,xn} is modeled using a mixture of K 
Gaussian distributions as follows19

f X //P =∑
k=1

K

k f X /k
/k  , ∀ X ∈ℝn  (3.27)

where  and P={1 , ... ,K } are  dummy  vectors  such  that  , P∈ℝn .  α  represents  the  mixing 

weights for the Gaussian distributions where∑
k=1

K

k=1 .

Likewise, =1 , ... ,K ,1 , ... ,K  describes the collection of all parameters in the mixture model.

In fact, in the mixture model, each component is represented by a Gaussian with the parameter k

consisting of mean and covariance k=k ,k  as follows

f X / k ,k
/o ,o=

1
2d /2∣o∣

1 /2 exp{−1
2
−o

T o
−1−o}  (3.28)

where d represents the dimension of the data. In other words, it is the number of features which are 
used for image segmentation.

The EM algorithm, as a generalization of maximum likelihood estimation, consists of the iterations of 
Expectation-step and Maximization-step to find the parameters of the mixture model.

The first step in applying the EM algorithm is to initialize the parameters. After the initialization, the 
aforementioned two steps are iteratively performed till the algorithm converges and gives a maximum 
likelihood estimation. The implementation of EM algorithm can be summarized as follows:

➢ Initialization: The parameters we want  to learn are initialized which consist  of  mean k , 
covariance  k and mixing coefficients k .

➢ Expectation: In the expectation step the current parameters are used to evaluate the posteriori 
probabilities,  which are equivalent to the expected values of the latent variables,  given the 
parameters =1 , ... ,K ,1 , ... ,K  . In fact, it is the probability that  kth Gaussian distribution 
fits to the observation data xi and formulated as follows

p {:k=/ x i= ,=Pold }=
 f x i/ 

i /

∑
m=1

K

m f xi /
i /m

(3.29)

where w∈ is a point value in the sample space ={1,... , K } and ∈ℝ is the dummy variable.

19 The notations are taken from [10] and [11].
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➢ Maximization: Once the expected values have been calculated, the parameters of the mixture 
model are re-estimated as follows [2], [8], [97], [107].

k
new=1

n∑i=1

n

p {: k=/ x i= ,=Pold }  (3.30)

k
new=

∑
i=1

n

i p {: k=/ x i= ,=Pold }

∑
i=1

n

p {: k=/ x i= ,=Pold }
 (3.31)

k
new=

∑
i=1

n

p { :k=/ x i= ,=Pold }i−k
new i−k

newT

∑
i=1

n

p {: k=/ xi= ,=Pold }
 (3.32)

➢ Evaluation: In  this  step  the  log  of  the  likelihood  function  3.27 is  evaluated  and  the 
convergence of the parameters or the log likelihood is checked. If the convergence criterion is 
not satisfied the algorithm returns to the expectation step.

  K-means Expectation Maximization (KEM)

As it was already mentioned the K-means algorithm has a hard membership function and a small 
shift of a data point can flip it to a different cluster. The solution to this problem is to replace hard 
clustering of K-means with soft probabilistic assignments [2]. This is done by EM algorithm because 
EM has no strict boundary among clusters and a data point is assigned to each cluster with a certain 
probability. However, the techniques such as EM might yield poor clusters if the parameters are not 
initialized properly. To solve this problem we propose a technique which combines K-means with EM, 
so-called KEM. This technique is similar to that presented in [59]. It employs K-means as the initial 
clustering to find the initial cluster centers. This reduces the sensitivity of the initial points and gives 
the centers which are widely spread within the data. These centers are used as the initial parameters for 
EM and it starts iterating to find the local maximum.

3.2.4 Experiments and Results

In this section, the results of object segmentation using multimodal data from a TOF-PMD camera 
and MultiCam are discussed. As stated before, the evaluation of segmentation results is still an open 
issue in this field. This is due to the lack of benchmarks in this area. In our work, it is even more 
difficult, because at the time of writing this thesis there is no TOF range image database which can be 
used to  test  the  performance of the  segmentation algorithms.  Creation of a database for  the TOF 
images in general and 2D/3D images in particular has high potential and will surely have big impact 
on new research work in the future.

The results in this section are presented in three subsections: i) The results of hand segmentation using 
clustering techniques based on TOF images taken by a PMD-3K camera, ii)  The results  of object 
segmentation using clustering techniques based on 2D/3D images taken by MultiCam, and iii) The 
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results of segmentation by using the integration of two techniques and based on 2D/3D images taken 
by MultiCam.

  Low Resolution Hand Segmentation Results

All experiments have been done under real time conditions. The range and intensity images are 
taken directly in each snap shot of a TOF camera based on a PMD sensor. The resolution of the camera 
we have used is 3k (64×48 pixels). The modulation frequency and the exposure time have been set to 
20 MHz and 5 ms respectively. Under these conditions, the frame rate of the camera is about 50 images 
per  second,  including  the  intensity,  range  and  modulation  amplitude  images.  Using  K-means 
Expectation Maximization (KEM) which was discussed in the last section, each image is segmented. 
The frame rate of the segmented images is above video frame rates which is suitable for the real time 
gesture  recognition and tracking.  We evaluate  our  segmentation technique for  the  three  following 
cases:

➢ Case 1 - Hand gesture is posed in the foreground of a simple scene: Fig. 3.16 shows some 
images for this case. In these images the hand is posed in the distance of over 10 cm from the 
background, torso or face. The first row in Fig. 3.16 shows the intensity images for 8 different 
poses. The second row shows the coded range images such that the pixels of the background 
are darker than the pixels of the hand gesture in the foreground. The third row shows the 
results of segmentation using the KEM technique for six clusters. The images 1 to 3 show the 
hand gesture in a plain background while the images 4 to 8 show it in the scene where the 
user's body, face or arm are observed as well.  As it is seen from the segmented images, the 
pixels related to the hand gesture have been grouped in one cluster very well without any error. 
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Figure 3.16: Results of hand gesture segmentation in a simple scene . First row: Intensity images. Second 
row: Range images. Third row: Segmented images [50].
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In this case, since the hand distance from the background, torso or face (10 cm) is larger than 
the statistical noise of TOF range images (about 4 cm), the range information, without fusing 
with the intensity data, can be used as a single feature for the segmentation algorithm and it 
yields the same results as when the fusion of range and phase is employed.

➢ Case 2 - Hand gesture is posed in the foreground in a cluttered and complex scene: Some 
of these images are shown in Fig. 3.17. In this case the hand gesture is posed in a cluttered and 
complex scene where the lighting condition as well as the color of the objects affect the TOF 
images and make the problem more complicated. In this case, we have segmented the images 
once using just the range data as a single feature and once using the range and phase data 
derived from the fusion of range and intensity as discussed in section 3.2.2. The first and the 
second  row of  each  hand  gesture  in  Fig.  3.17.  show the  intensity  and  the  range  images 
respectively. The third row shows the results of the segmentation using the range data while 
the last row shows the segmented images using the fused data and range information.

As we can see from the results, the segmented images using just range information get too 
much error and the pixels related to the hand gesture do not get separated from the pixels of 
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Figure 3.17: Results of hand gesture segmentation in a complex scene. First row: Intensity images.  
Second row: Range images. Third row: Segmented images using range feature. Fourth row: Segmented 

images using the fusion of range and phase features [50].
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the other objects very well. In the images 1 and 4 the range data are affected by the color, i.e., 
the black color20 does not  reflect  too much infrared light  and therefore the range data get 
wrong values for these objects. This is one of the problems of a TOF camera which we have 
already discussed in this chapter. In the range images 2 and 6 since the face is not illuminated 
very well by the lighting system, it gets some errors in the range data. Likewise, the range data 
in images 3 and 5 are noisy because the hand gesture distance to the torso, face, arm or other 
objects in these images is smaller than the statistical error rate of TOF image (about 4  cm). 
However, these examples show that the TOF range images cannot be used solely to build a 
robust segmentation under these conditions. Fusing the range data with the intensity images 
can solve this problem to a great extent. As the results of the segmentation based on fused data 
in the last row of  Fig.  3.17 show, the pixels related to the hand have been grouped in one 
cluster and the hand gesture has been segmented very well from the face, torso or other objects 
in the complex scene.

➢ Case 3 - A sequence of moving gesture from foreground to the background: Fig. 3.18 
shows a sequence of moving hand from foreground to the background in the steps of 15  cm. As 
the  previous  figures,  the  first  and  second  rows  show  the  intensity  and  range  images 
respectively while the third row shows the segmented images using KEM technique. The hand 
is segmented from the user's body, face and arm very well in all of the sequences except image 
sequence number 4 where the hand gesture and face are posed in the same distance from the 
camera and they both have the same intensity (or color) values. This is actually the case that 
the segmentation fails. However, this problem can still be solved by applying post-processing 
techniques like connected component algorithm to segment face and hand.

  2D/3D Object Segmentation Results

Using  MultiCam,  we  can  acquire  low resolution  TOF  images  consisting  of  range,  modulation 
amplitude and intensity data; and high resolution 2D Images. Same as the previous section, first we 
apply  a  clustering  technique  to  segment  the  low  resolution  TOF  images.  Next,  we  map  the  3D 
segmented image to 2D image. Due to the monocular setup of MultiCam, as discussed in chapter  2, 

20 The color of the shirt in image number 1 and the color of the hair in image number 4 in Fig. 3.17.
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Figure 3.18: Results of gesture segmentation in a sequence of movement from foreground to the 
background. First row: Intensity images. Second row: Range images. Third row: Segmented images [50].
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mapping the 3D range image to the 2D image is a trivial and fast task which consequently makes the 
segmentation of high resolution 2D image computationally cheap.

This kind of segmentation has two main advantages over 2D segmentation. On the one hand 3D range 
segmentation is more reliable and robust in a natural environment where lighting conditions might 
change and on the other hand due to the low resolution of 3D image, segmentation is faster.

In order to present the results, two examples are considered. In the first example which is illustrated in 
Fig. 3.19, a person stands in mid-ground, between a closet as foreground and a door as background, in 
the distance of about 4 m which is in the range of unambiguity of TOF sensor. First, the human is 
segmented based on range information by applying the K-means clustering technique. Next, we resize 
the segmented image to the resolution of 640×480 pixels which corresponds to the resolution of 2D 
image and map it directly to the 2D image. As can be seen from the results in Fig. 3.19, the person has 
been segmented very well except the boundary pixels correspond to the contour of the body. This is 
because the resolution of 3D image is low and range discontinuities between the contour of the body 
and background are usually observed in one pixel which results the wrong range information. 

In the second example shown in Fig.  3.20 we consider a more complicated case. In this example, 
although the person stands in the unambiguity range of TOF sensor, the area behind him is out of the 
range of 3D sensor (more than 7.5  m at the modulation frequency of 20 MHz). Therefore, the pixels 
corresponding to this area get wrong range data. For example, the objects in the real distance of 9   m get 
the distance of 1.5 m  wrongly and therefore range segmentation gets much error (see Fig.  3.20). In 
order to solve this problem, we take the modulation amplitude image into consideration. We know the 
objects lie in the further distance reflect less infrared light in comparison to the objects in the closer 
distance21. Thus, we multiply the normalized modulation amplitude with range data and use the result 
as the input data for clustering technique. This solves the problem to some extent as the pixels with 
wrong range data get corrected through their modulation amplitude values as the weighting factors. As 
can be seen in Fig. 3.20, by applying this method the person has been segmented from the background. 

21 Unless the objects are extremely different in reflecting the near infrared light.

-45-

Figure 3.19: Human segmentation in 2D/3D images. Top Left: Low resolution range image from PMD- 
3K camera. Top Right: High resolution (640×480) 2D color image. Bottom Left: 3D segmented image 

using K-means and rescaled in high resolution. Bottom Right: 2D segmented image result from mapping.
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In addition to some mis-segmentation in this example, it is noted that the hair has been excluded in the 
segmentation result. This is because the hair in this example has black color which does not reflect as 
much as light like other parts of the body such as face and hands.

  Integration of Edge Detection and Clustering in 2D/3D Image Segmentation

In the last section of the segmentation results an enhancement to the segmentation in 2D/3D images 
will  be  presented.  The  proposed  method  is  based  on  the  combination  of  edge  detection  and  the 
unsupervised clustering technique. While the former is applied to the high resolution 2D images, the 
latter is done based on the low resolution TOF images as we have already discussed in the previous 
section. 

The  block  diagram of  the  improved segmentation  method  is  shown in  Fig.  3.21.  The  range  and
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Figure 3.21: Block diagram of the improved segmentation technique.

Figure 3.20: Human segmentation in 2D/3D images. Top Left: Low resolution range image from TOF 
sensor. Top Middle: High resolution 2D image. Top Right: Modulation amplitude image. Bottom Left: 3D 

rescaled segmented image. Bottom Middle: Rescaled segmented image using fusion of range and 
modulation amplitude data. Bottom Right: 2D segmented image result from mapping.
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intensity images taken from PMD sensor are fused as discussed before. The fused result, so-called 
phase information, with range data are employed as the input for the KEM clustering. On the other 
hand, the edges in the high resolution 2D image are detected by applying a Canny edge detector and 
improved by applying some morphological operations to get an edge map. Finally the clustered image 
derived from 3D-TOF images is integrated with the edge map to derive an improved 2D/3D segmented 
image.

The Canny edge detection operator which is applied to the 2D intensity image tries to satisfy three 
goals simultaneously: i) Minimize the number of wrong edge detections, ii) Place the edges accurately 
(near to the real edges in the image), and iii) Mark each edge only once. To achieve this, the algorithm 
first computes the gradient of the image intensity, and later thins and thresholds the edge map in order 
to obtain a binary edge map [40]. 

By means of morphological operations (erosion, dilation), small edge elements are filtered. Finally, the 
boundary edges are traced in order to have individual contour information on the objects. We consider 
two examples of improved object segmentation using integration of clustering with the edge map. 

In the first example, shown in Fig.  3.22, two objects (cone and beneath box) are posed in the same 
distance to the camera to make the object segmentation based on range data infeasible. On the other 
hand, this case is simple for segmentation using the 2D image, because one can see that the individual 
objects in the scene are segmented quite well by only using the edge information. This is because there 
is no specific texture on the objects that could be misinterpreted as edges and because the objects have 
clearly distinct  intensity distributions.  After  tracing  the  boundary edges,  three  distinct  objects  are 
revealed and knowledge on a pixel level is obtained, i.e., one knows exactly which pixels belong to 
which object. Therefore the mis-segmentation problem in the clustered image is solved by using the 
edge information.
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Figure 3.22: Object segmentation using the integration of clustering and edge detection - simple case.

Figure 3.23: Object segmentation using the integration of clustering and edge detection -  
complicated case with texture.
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In the second example which is illustrated in Fig.  3.23 we have made the segmentation task more 
complicated by putting some textures on one of the objects and posing two boxes at the same distance. 
The edge detection mechanism missegments the texture, which consists of the letters "EDGE" in this 
example, as boundary edges, and it  is difficult  to identify the texture and the object without prior 
knowledge of the scene. Also, the clustering technique missegments the boxes which are posed at the 
same distance. In this example neither the clustering nor the edge detector yield good segmentation 
result. 

3.3 Object Classification

Object classification, which is a subtopic of pattern recognition, occurs in a wide range of our daily 
activities. When we observe, we usually see a complex scene which consists of a collection of objects. 
Due to the strong perception power of human beings, a specific object in the complex scene can be 
easily detected and classified very fast. The same, a fast and accurate recognition system, has been 
wished  for  real  world  computer  vision  problems,  where  it  aims  to  make  computers  have  such 
capabilities (seeing and recognition) owned by the human being.

Object classification, as the last stage of an object recognition problem, is a procedure, in which some 
decisions or forecasts are made on the basis of already acquired observations. The decisions are then 
applied to a new set of observations to assign each observation in a predefined group, called class. 
Each observation consists of a set of attributes or features in an image which are derived by feature 
extraction techniques already discussed in this chapter.

A wide variety of approaches has been taken towards the object classification problem grouped in 
three categories as statistical models, neural networks and machine learning techniques  [9]. In this 
work, the problem of object classification is addressed using supervised machine learning techniques, 
which will be discussed in this sections. 

A supervised learning classification is one of the machine learning techniques in which a decision 
function is built from a set of labeled training data, in contrast to an unsupervised learning, where 
instances are unlabeled. The decision function, called classifier, is used to assign a new observation to 
a predefined class. 

In this context a classification system is implemented in three steps as follows:

➢ Creation of training data set: Training data set S is created from the extracted features of n 
observations as follows

where X j=x 1 , x2 , ... , xm is an observation with m features and y=1,2,. .. , k  represents the 
output domain with k classes.

➢ Training: A supervised training algorithm, dependent on the type of problem, is chosen to 
create a classifier from training data set.

➢ Test and evaluation: The derived classifier is tested with a test data set. The test data set 
should have the same features which are used in the training data set. 

In the implementation of a classifier, some issues of concern to the would-be classifier are listed as 
follows:

➢ Generalization: The ability of a classifier to correctly classify new observations which are not 
in the training set. In other words, it is the accuracy of a classifier in labeling the test data set.

➢ Speed: In  real  time  applications,  the  speed  of  a  classifier  is  a  very important  issue.  For 
example a classifier which is 90% accurate might  be preferred over a classifier  with 95% 
accuracy if it is 100 times faster [9].
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➢ Complexity: A classifier  which  is  too  complex  may  fit  the  noise  and  finally  leading  to 
overfitting problem. The best way to avoid overfitting is to use lots of training data.

➢ Size of training data: The size  of  the  training data set  is  also an important  issue.  Some 
supervised  learning  techniques  require  a  huge  training data  set  in  order  to  yield  a  highly 
accurate classifier. In some applications, collecting so many training data sets is infeasible. 
This problem can be solved by applying online learning techniques where a decision function 
is updated in response to each new observation. Likewise, semi-supervised techniques such as 
co-training can be applied to solve this problem.

➢ Time to learn: If a classifier should be learned real time in rapidly changing conditions, time 
to learn will play an important role which must be considered. This might imply that we need 
to use a small training data set to learn classifier.

In  this  work,  we  use  two recent  most  popular  supervised  learning  techniques  to  classify moving 
objects in 2D/3D images: Support Vector Machines and the AdaBoost technique.

3.3.1 Support Vector Machines

Support  Vector Machines  (SVMs) provide one of  the  most  recently proposed machine learning 
techniques which has been very effective for general purpose pattern recognition problems. SVM is 
selected in our work because:

➢ It outperforms conventional classifiers, especially when the size of training data is small and 
the number of features is large.

➢ It can lead to high performance in practical applications.

➢ SVM has no local minima, i.e., the found solution is always the optimum solution derived 
from the given training data set.

➢ Since a few vectors out of the training set (support vectors) are selected to build the decision 
function  the  computational  cost  is  reduced  which  is  an  important  criteria  in  real  time 
applications.

➢ It is based on some simple ideas which makes its implementation easy.

The basic idea behind SVM is that for a given finite amount of training data, the best generalization 
performance will be achieved if the right balance is struck between the capacity of learning and the 
accuracy on that particular training set [106]. Successfully governing the relation between the capacity 
and  performance  of  a  learning  machine  requires  a  sophisticated  theory of  generalization.  Several 
theories exist that can be applied to this problem. The theory of Vapnik and Chervonenkis (VC) is most 
appropriate and classically used to describe SVMs and motivate them [7].

In the following we briefly review the theory of SVM and for a much more in depth understanding the 
reader  is  referred  to  [2],  [5],  [6],  [7] and  [106].  In  our  work  the  term  SVM  will  refer  to  the 
classification with support vector methods while regression has been excluded.

Consider  the  problem  of  classifying  a  data  set S with  n observation  vectors x1 , x 2 , ... , x n and 
corresponding class labels y1 , y2 , ... , y n . For the moment, we assume we have a binary classification 
problem, therefore the data set S can be described as

S :x1 , y1 , ... , xn , yn ∈ℜn×{±1 } . (3.33)

The goal is to create a function  f from the training data set  S such that  f will correctly classify new 
examples. The procedure of  creating such a function with the support vector method is  explained 
stepwise in the following:
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  Linear Support Vector Machines - Separable Case (Hard-Margin Classifier)

In this case there exists a normal vector w∈ℝn and bias b∈ℝ such that

f x i={wT x ib≥1 for y i=1
wT x ib≤−1 for y i=−1

 (3.34)

where (w,b) defines a set of hyperplane functions as wTx+b = 0. There may, of course, exist many such 
functions that separate the classes exactly (see Fig. 3.24.) Therefore, we should try to find the one that 
will give the smallest generalization error. The support vector machine addresses this problem through 
the so-called maximal margin solution,  i.e.,  SVM tries to find the Optimal  Separating Hyperplane 
(OSH) for which the margin is maximized. An example of OSH is illustrated in Fig. 3.24.

  

Equation 3.34 can be written into one set of inequality as follows

y iw
T x ib≥1 ∀ i . (3.35)

The orthogonal distance of point xi from the separating hyperplane can be formulated by

d i=
wT x ib
∥w∥

. (3.36)

By combining inequality 3.35 and equation 3.36 we will get

y i d i∥w∥≥1 ⇒ y i d i≥
1

∥w∥ . (3.37)

Hence 1/||w|| is the lower bound on the distance between the point xi and the separating hyperplane 
(w,b) and the margin is simply 2/||w||. Now, we can find the maximum margin by maximizing 1/||w||, 
which is equivalent to minimizing ||w||2, subject to the constraint in equation 3.35. Therefore the OSH 
can be regarded as the solution to the following optimization problem
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Figure 3.24: Left: Set of separating hyperplanes. Right: Optimal Separating Hyperplane (OSH). The 
dashed lines identify the margin. f1 and f2 represent two arbitrary features.
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P1:{Minimize: 1
2
∥w∥2

wrt : y iw
T x ib≥1 ∀ i .

(3.38)

Note that the factor 1/2 is included for later convenience. This is a quadratic programming problem in 
which we try to minimize a quadratic function subject to a set of linear inequality constraints.

To  solve  this  problem  we  switch  to  the  Lagrangian  form  by  introducing  positive  Lagrangian 
multipliers =1 ,2 , ... ,N  .

In fact, the solution to the problem P1 is equivalent to determining the saddle point of the Lagrangian 
function as follows

L w ,b ,=1
2

wT w−∑
i=1

N

i {yi w
T x ib −1} . (3.39)

We must now minimize L with respect to b and w such that

∂L w ,b ,
∂ b

=0 ⇒ ∑
i=0

N

i y i=0 , (3.40)

∂L w ,b ,
∂w

=0 ⇒ w−∑
i=1

N

i yi x i=0 ⇒ w=∑
i=1

N

i y i x i . (3.41)

Rewriting the Lagrangian function L using the obtained above conditions gives the dual representation 
of the maximum margin problem in which we should maximize

L =∑
i=1

N

i−
1
2 ∑i , j=1

N

i j y i y j x i
T x j  (3.42)

with respect to

∑
i=1

N

i y i=0 , ≥0 ∀ i . (3.43)

Thus, the dual problem can be formulated by

P2:{Maximize : L=∑
i=1

N

i−
1
2
T D

wrt : ∑
i=1

N

i y i=0 , ≥0 ∀ i
 (3.44)

where Dij≡ y i y j xi
T x j is a N×N Hessian matrix.

The optimization problem P2 can be solved by introducing an additional Lagrangian multiplier  and 
applying the Karush-Kuhn-Tucker (KKT) conditions as follows
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L  ,=∑
i=1

N

i−
1
2
T D∑

i=1

N

i yi . (3.45)

By setting ∂ L ,/∂=0 , the Lagrangian coefficients i 's can be determined. For every training 
point there is a Lagrangian multiplier i . Those points for which i0 are called support vectors and 
they correspond to the points that lie  on the maximum margin hyperplane in the feature space as 
illustrated in Fig. 3.24. Having solved the quadratic programming problem and found a value for each
 , we can then determine the value of w as follows

w=∑
i=1

N

i yi x i . (3.46)

Once the model is trained, a significant proportion of the data can be discarded because they have
=0 and therefore only the support vectors are retained.

As it  was  seen while  w is  explicitly determined by the  training procedure,  the threshold  b is  not 
because it does not appear in the dual form and so  b must be found by applying the Karush-Kuhn-
Tucker (KKT) conditions to primal problem P1 as follows

i y iw
T x ib−1=0 ∀ i . (3.47)

For SV points: ≠0 and therefore for each SV point we calculate b by

b= y i−wT xi . (3.48)

From the standpoint of precision of calculations, it is better to take the mean value of b resulting from 
all support vectors such that

b= 1
N S
∑
i∈S

y i−wT x i  (3.49)

where S is the set of support vector indices and NS is the total number of support vector points.

Thus, after the calculation of w and b, the decision function can be written as follows

D  x=∑
i∈S

i y i xi
T xb . (3.50)

And finally the problem of classifying a new data point x is solved by

{class 1 if D x0
class 2 if D x 0 . (3.51)

  Linear Support Vector Machines - Inseparable Case (Soft-Margin Classifier)

Since  in  many real  world  problems  there  is  no  linear  separation  in  the  data,  the  hard  margin 
classifier which was discussed in the previous subsection cannot be used directly. Therefore we need to 
modify it  so  as  to  allow some of  the  training  data  to  be  misclassified.  To do this,  we  introduce 
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nonnegative slack variables i0 such that

y iw
T x ib≥1−i ∀ i . (3.52)

In this case, the goal is to maximize the margin while penalizing the misclassified points. Therefore we 
can write the OSH as follows

{Minimize: 1
2
∥w∥2C∑

i=1

N

i

wrt : y iw
T xib≥1−i , i≥0 ∀ i

 (3.53)

where C is called the generalization parameter which controls the trade-off between the slack variable 
penalty and the margin.

By rewriting the above optimization problem in Lagrangian form we obtain

L w ,b , , ,=1
2

wT wC∑
i=1

N

i−∑
i=1

N

i[ yiw⋅xib−1i]−∑
i=1

N

ii  (3.54)

where  and  are the Lagrangian multipliers.

Similar to the previous case we apply the KKT conditions as follows

∂ Lw ,b , , ,
∂w

=0 ⇒ w−∑
i=1

N

i y i xi=0 ⇒ w=∑
i=1

N

i y i xi (3.55)

(3.56)

(3.57)

(3.58)

(3.59)

By substituting equations  3.55,  3.56 and  3.57 into equation  3.54,  we obtain the dual  form of  the 
problem as follows

{Maximize : L =∑
i=1

N

i−
1
2
T D

wrt : ∑
i=1

N

i y i=0 , 0≤iC ∀ i
 (3.60)

which is identical to the separable case, except that the i cannot exceed C.

Again the points, for which i=0 do not contribute in making the decision functions. These points are 
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∂L w ,b , , ,
∂ b

=0 ⇒ ∑
i=0

N

i y i =0

∂L w , b , , ,
∂ 

=0 ⇒ ii =C ∀ i

i[ y iw
T xib−1i ] =0 ∀ i

ii =0 ∀ i
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not support vectors and are classified correctly. The remaining data points are support vectors for them 
we have either iC or i=C . In the first case, equation 3.57 implies i0 , which yields i=0 from 
equation 3.59, and therefore such points lie on the margin. On the other hand, SV points with i=C lie 
inside the margin. In this case, if 0i≤1 the points are correctly classified, i.e., they lie inside the 
margin but on the correct side of decision function and for the points which i1 they lie on the wrong 
side of the decision function and are misclassified.

The decision function is the same as that for the hard margin case given in equations 3.50 and 3.51.

  Nonlinear Support Vector Machines - Kernel Based

If the training data are not linearly separable, the obtained decision function may not have high 
generalization ability. In order to solve this problem and enhance linear separability, the original input 
data is mapped into a higher dimensional space called the feature space where the data are linearly 
separable (see Fig. 3.25 [23]).

For the nonlinear case, the decision function in equation  3.50 is formulated in the feature space as 
follows

D x=∑
i∈S

i y i x i
Tx b (3.61)

where :ℝnℝm , mn is a mapping function. 

Although mapping the data to the higher dimensional feature space solves the problem of nonlinearity, 
working with high dimensional  data is  computationally expensive and the curse of  dimensionality 
problem might  occur.  This  problem is  solved  by the  kernel  trick  in  which  the  inner  product  of
 xi 

T  x j is directly computed in the feature space as a function of the original data in the input 
space. In other words, a kernel is a function such that

K x i , x j=x i
Tx j . (3.62)

Now  we  just  need  to  replace xi
T x j by K  xi , x j in  the  training  data  and  by  reusing  the  whole 

considerations of the previous sections the algorithm will produce a support vector machine in the high 
dimension feature space with roughly the same amount of time it would take on the unmapped input 
data.

In fact, by using a kernel K we do not even need to know the mapping function  . Hence, the decision 
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Figure 3.25: Mapping the nonlinear input training data into a higher dimensional  
feature space via map function  [23].
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function can be written as follows

D  x=∑
i∈S

i y i K x i , x b . (3.63)

The  Gaussian  Radial  Basis  Function  (RBF)  is  one  of  the  commonly used  kernel  which  has  the 
following form

K x i , x j=exp−∥x i− x j∥
2

2 2  . (3.64)

For the sake of simplicity up to now we just discussed the binary classification problem. For the multi 
class (n classes), the problem can be solved by using two basic approaches:

➢ One-vs.-All approach: n SVMs are trained; each of the SVMs separates a single class from 
all remaining classes.

➢ One-vs.-One approach:  n(n-1)/2 SVMs are trained; each of the SVMs separates a pair of 
classes.

The One-vs.-All approach with Radial Basis Function (RBF) kernel is used for our experiments, which 
will be described in the next section, because it has shown better performance in our case and only n 
SVMs have to be trained.

Here we focused only on the key concepts of SVM and for more detailed discussion the reader is 
referred to [2], [5], [6], [7] and [106].

3.3.2 Moving Object Classification Using Support Vector Machines

In this  section we describe a classification system  for moving objects  based on Support  Vector 
Machines  and  using  3D  range  images.  Two  kinds  of  camera  systems  are  used  to  provide  the 
classification system with 3D range images: a PMD Time-of-Flight camera and a stereo vision system.

The current approaches for the classification of moving objects can be categorized in shape-based and 
motion-based methods. In this work we focus on shape-based methods where the features extracted 
from 3D appearance of the objects are used as the input data for the classification system. The motion 
based techniques are excluded because in our experiments the objects have similar motion form while 
their 3D shape differ from each other.

  Set-Up and Image Acquisition

Each camera system is mounted in a fixed structure, pointing down and oriented in such a way to 
have the same Field of View (FOV). The 3D range images are taken from the moving objects during 
their motion in the field of view of the camera via an object detection program. The object detection 
results  from the continuous comparison of the acquired range image with that  of the background, 
previously recorded in the absence of any object. The comparison criteria are based on some statistical 
characteristics  of  the  range data which are considered as  threshold in  the detection program.  The 
background is averaged from 100 range images taken by each camera in order to reduce the statistical 
noise, especially in the range images of PMD [61].

Image sampling is one of the significant points in detection and classification of moving objects. The 
number of acquired images using the TOF camera is higher than that using a stereo vision system. 
Because the distance data in the TOF camera is determined directly inside the hardware using smart 
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pixel array of the PMD, whereas the stereo vision system provides the 3D data from stereo imaging 
through some computational techniques which are time consuming. For the TOF camera this number 
is a function of the velocity v of the moving object, exposure time te , transfer time tt  and processing 
time tp  as follows

N= f v , t e , tt , t p . (3.65)

The exposure time is the time which the TOF camera needs to illuminate the scene in order to get 
accurate range data.

For stereo vision, the sampling number is a function of velocity v, computational time tc , transfer time 
tt  and processing time tp  as follows

N= f v , t c , tt , t p . (3.66)

While the exposure time is neglected for the stereo system, the computational time is the time which 
stereo system needs to calculate the disparity map from the right and left images.

The velocity is tunable in the setup from 5 cm/sec to 20  cm/sec. As both cameras transfer the images via 
a FireWire interface and use the similar PC, the transfer time as well as processing time are same for 
the both. The above functions yield a frame rate of 20 range images per second for the TOF camera 
and 5 range images per second for the stereo vision system. At the velocity of  5 cm/sec,  the TOF 
camera captures 160 range images from the object during its motion in the FOV (40 cm with the focal 
length of  16 mm) while the stereo system takes 40 range images. At the maximum velocity of 20 
cm/sec, the number of sample images are 40 and 10 for the TOF and the stereo system, respectively.

  Classification Algorithm

An overview of the algorithm is shown in Fig.  3.26. The input data are range images which are 
taken by both the TOF and the stereo system and saved in two image sets. The stereo range images
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Figure 3.26: Flow of the moving object classification algorithm.
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with the resolution of 640×480 pixels are resized to have the same size as TOF range images with the 
resolution of  64×48  pixels. The range images are then used as the input data for the classification 
system. They are first segmented from the background and then normalized and projected to compute 
the 3D coordinates of the points on the object surface with respect to the camera coordinate system. 
Then,  the  features  are  extracted,  using two different  kinds  of  approaches,  consisting  of  computer 
generated  features  and  human  generated  features.  While  the  former  are  extracted  using  Principal 
Component Analysis (PCA), the latter are knowledge-based data obtained by applying some heuristic 
methods. The derived features are saved in the vectors of the training dataset matrix for each object. 
These features constitute three training datasets as a human-generated, a computer generated and a 
hybrid dataset which is combined from both features. For each configuration a support vector machine 
classifier is trained and tested in a setup under real time conditions. 

The range images of the TOF camera are to a great extent independent of the lighting conditions, 
whereas the range images of the stereo vision system have the following difficulties:

➢  No 3D information over the plain surface of an object without texture,

➢  Strongly dependent on the lighting conditions,

➢  Disturbed by shadows.

Considering these difficulties we have taken three image sets for each object:

➢ TOF: Range images taken by the TOF camera under varying lighting conditions and objects 
are moving at different velocities.

➢ Stereo 1: Range images taken by the stereo system under the same conditions as TOF.

➢ Stereo 2: Range images taken by the stereo system under artificial conditions.

Artificial conditions consist of stable and non-varying lighting conditions and painting textures over 
the surface of the objects to get 3D information.

Fig. 3.27 shows some range images of the multi object set including box, ball and cone, which were 
taken by the TOF camera and the stereo system under natural conditions. As it is observed the range 
images of the stereo system cannot provide any reliable 3D data on the plain surface of the object and 
therefore the value is set to the value of the background which is shown as black in the picture.

  Classification Results Using PMD TOF Images 

For the PMD set the range images have been collected for each object set at two different velocities 
of  5 cm/s and 10 cm/s under varying lighting conditions. For each range image collection per day, a 
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Figure 3.27: Range images of the multi object set including box, ball and cone.
Top Left: TOF range images. Top Right: The stereo range images and

the lower row shows the longitudinal sections through the middle of each range image.
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corresponding background image has been taken and used for segmentation technique to minimize the 
statistical noise at a constant threshold. The other parameters, such as modulation frequency, exposure 
time and the aperture of the lens have been always set the same at  15 MHz,  1 ms and 1.4 (for  16 mm 
lens) respectively. 

For  the  TOF case,  three  sets  of  the  objects  have  been  considered  in  our  experiments  to  test  the 
proposed classification system:

➢ Set 1: Multi-set with three different shape objects, including cubic box, spherical ball and cone 
which has been illustrated in Fig. 3.27.

➢ Set 2: Binary set with two exact shape objects from the point of view (POV) of the camera 
including sphere and hemisphere.

➢ Set 3: Binary set with two exact shape, same surface but different height from POV of the 
camera including cubic boxes.

While the set  1 has been selected to test  the classification system in general,  the set  2 and set  3 
challenge the proposed system for classifying the objects with the same appearance and the same color 
as the background. Detection and classification of such objects by using just gray values in 2D sensor 
based classification system is a big issue which requires special tricks.

For each training dataset, three different classifiers have been trained based on heuristic, PCA and 
hybrid features. The RBF kernel with the kernel argument of 1 and regularization constant of 10 have 
been used in the SVM training algorithm.

The training dataset includes 171 range images for object set 1 and 112 range images for object set 2 
and 3 respectively. The system has been tested with the testing dataset including 129 images for object 
set 1, 280 for object set 2 and 84 test images for object set 3.

Table  3.1 shows the results of the classification for the general object set 1. While the PCA feature 
based classifier outperforms the heuristic feature based one, the hybrid feature based classifier which 
employs the combination of both features yields the best result with the minimum error rate of 2.32%.

Table 3.2 shows the results of the classification of the object set 2. PCA based classifier improves the 
error rate from 5.71% in the heuristic case to 3.21%. Using the hybrid features the classifier outputs 
the best result with the full accuracy of 100%.

In Table 3.3 the results of the classification for the object set 3 are shown. In this case, the heuristic 
feature based classifier contrary to that in the previous cases gives the best performance. It is observed 
that the heuristic features representing the shape of the object are quite appropriate in the training for 
the classification of the cubic boxes. 
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Table 3.1: Number of misclassifications and error rate for object set 1 (General Case).

Heuristic PCA Hybrid

Cubic Box 4 0 0

Spherical Ball 1 3 1

Cone 0 1 2

Error (%) 3.87 3.1 2.32



Chapter 3: 2D/3D Object Recognition  

The other advantage of the heuristic based classifier in this case is that since the calculation of features 
is trivial and the numbers of features are limited, the classification process is not time consuming and 
can be interesting for the real time object classification. The PCA based classifier gives a poor result 
with the error rate of 14.28% for this case. This error is expected because at the edges perpendicular to 
the direction of the movement of the boxes some mis-measurements occur which affect the result of 
PCA method strongly, whereas they do not affect the result of the heuristic techniques. These mis-
measurements are called motion artifacts which appear in TOF images when an object moves. They 
are comparable to the motion blur in 2D images. As we have already discussed it in chapter  2, the 
motion artifacts can be removed by applying some morphological operations. Likewise, employing the 
hybrid features improves the accuracy and reduces this error to the rate of 3.57%.

It is noticed that in the cases where the heuristic features cannot represent a good distinction factor like 
in object set 1 and object set 2,  the classifier which takes the most relevant principal components 
improves the accuracy. However, the combination of features which are obtained from heuristic and 
PCA outputs the best results.

  Classification Results Using Stereo Range Images

In the previous experiments we compared three classifiers using different features derived from TOF 
images. Now, in this section we will compare the results of object classification based on PCA and 
heuristic features derived from TOF and stereo images. For each range image set (Stereo 1 and Stereo 
2), two training data sets have been derived using PCA and heuristic features. Then for each training 
data set a multi class SVM classifier has been trained. As in the previous case, we have selected the 
RBF kernel with the kernel argument of 1 and regularization constant of 10. The SVM classifier is 
trained with 90 range images for each image set which are taken at the velocity of  5 cm/sec.  The 
classification system has been tested with 90 range images for each set. The results for the multi object 
case (general case) are shown in Table  3.4. While the TOF range based classifier outperforms the 
stereo range based one, it is observed that the classifier which employs the range images of Stereo 2 
(artificially textured with fixed lighting conditions) yields the best results with the full accuracy of 
100%. 
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Table 3.2: Number of misclassifications and error rate for object set 2 (Sphere and Hemisphere).

Heuristic PCA Hybrid

Sphere 10 3 0

Hemisphere 6 6 0

Error (%) 5.71 3.21 0

Table 3.3: Number of misclassifications and error rate for object set 3 (Boxes).

Heuristic PCA Hybrid

Cubic Box 1 0 4 3

Cubic Box 2 0 8 0

Error (%) 0 14.28 3.57
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As we observe the Stereo 1 based classifier shows a high error rate. This is because the range data in 
Stereo1 are too inaccurate. Fig.  3.28 shows the distribution of the features on the first two principal 
components for Stereo1 and TOF. It is observed that the features of two classes in Stereo1 are very 
mixed and difficult to distinguish. Training the data in this case yields a classifier with a high number 
of support vector points (88 support vectors out of 90 training data points) which indicates a poor 
classifier.

By applying the artificial techniques which we mentioned before, these data are separated and the 
margin between the classes increases. Therefore, we get the best results in the case of Stereo 2. Also, it 
can be noticed that in all of the cases the PCA feature based classifier gives a better result than the 
heuristic feature based one.

For the binary object set (e.g., two cubic boxes with the same shape form but different heights from the 
camera's point of view), same as for multi object set, the results for the stereo image set under natural 
conditions (Stereo 1) are very poor. Changing the conditions as discussed before improves the results 
in the image set of Stereo 2 to the lowest error rate of 1.67% using PCA features.

3.3.3 AdaBoost Classification

AdaBoost, adaptive boosting, is one of the most widely used form of boosting techniques which 
combines multiple base classifiers in order to produce a strong classifier. This technique which was 
developed by Freund and Schapire  [2],  [80] proved that  the  training error  of  the  strong classifier 
approaches zero exponentially in the number of boosting rounds even if the base classifiers are weak 
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Figure 3.28: Distribution of the features on the first two principal components with the separating 
SVM based hyperplane. Left: TOF. Right: Stereo 1 (The support vectors are indicated by circles).

Table 3.4: Error rate for multi object set classification (%).

Heuristic PCA

Stereo 1 30.00 30.00

Stereo 2 1.11 0

TOF 3.87 3.1
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with a performance that is only slightly better than random.

In this  section we describe  the  original  form of  the  AdaBoost  technique.  In  the  next  section,  the 
modified AdaBoost technique, proposed by Viola and Jones which is sometimes called Viola-Jones 
method  [80], will be explained and we will show how this method has been utilized using 2D/3D 
images for a fast and accurate real time hand detection.

Having a binary classification problem, with the training data set of x1 , y1 , ... , xn , yn  where xi∈ℝ
n

and yi∈{±1} , AdaBoost constructs a strong classifier H(x) from a linear combination of weak (base) 
classifiers h(x) through an iterative T  rounds of boosting as follows

H T x=sign∑
t=1

T

t ht x   (3.67)

where t are coefficients found during the boosting process.

Each data point in the training set is given an associated weighting parameter w i which is initially set 
to 1/n for all data points. Also, we shall assume that there is a training procedure to derive the weak 
classifier h t  x  from the  weighted  training  data  in  each  iteration.  After  each  round  the  weighting 
coefficients  are  updated such that  the  weights  of  the  misclassified points  in  the  round before  get 
greater. This is because the next weak classifier should focus much more on the hard examples which 
are not correctly classified in the round before. The details of the AdaBoost technique are as follows:

AdaBoost Algorithm:

Assumption: Given the training data set S={x 1 , y1  , ... , xn , yn }∈ℝ
n×{±1}

1. Initialization: Initialize  the  weighting  factors  for  all  data  points  to  get  a  uniform 
distribution of the data: w i

1=1 /n , i.e., at the beginning all the data points have the same 
importance for the learning algorithm.

2. Loop: for t=1,. .. ,T do:

A) Train a weak classifier by minimizing the weighted error function as follows

J t=∑
i=1

n

wi
 t  I ht x i≠ y i , I ht x i≠ y i={1 if ht x i≠ yi

0 otherwise

B) Evaluate the error rate and calculate t as follows

t=
∑
i=1

n

wi
t  I ht xi≠ y i

∑
i=1

n

wi
t 

and t=ln
1−t

t

C) Update the weighting factors such that the misclassified data get greater weights as 
follows

3. Create  strong  classifier:  after  finding  the  weak  classifier,  the  final  strong  model  is 
constructed by

H T x =sign ∑
t=1

T

t ht x  .
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w i
t1 =w i

 t exp {t I ht x i≠ y i } .
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3.3.4 2D/3D Object Detection Using the Viola-Jones Method

In this section we discuss another example of object recognition using 2D/3D images. The proposed 
technique is a very fast and accurate method for object detection. The detection technique is based on 
the AdaBoost approach which was proposed by Viola and Jones [80]. Therefore it is also called Voila-
Jones method. We will first review their method and then discuss, how it has been used for object 
detection using 2D/3D images and finally represent some results.

  Viola-Jones Method

The Viola-Jones  object  detection  framework  which  employs  the  Haar-like  features,  which  was 
already described in section 3.1.4, consists of three main contributions as follows:

➢ Integral Image:  Although Haar-like features might be good features to detect an object in 
the image, the exhaustive set of these features in a search window is very large and therefore 
the calculation of all these features in an image is very time consuming. The integral image is 
an  intermediate  representation  of  the  image  which  makes  the  computation  of  Haar-like 
features extremely rapid.

Given an image i(x,y), the integral image ii(x,y) can be calculated as follows [80]

ii x , y = ∑
x '≤ x , y'≤ y

i x ' , y '  . (3.68)

In fact, the integral image at location x,y contains the sum of the pixels above and to the left of x, y.  
The integral image can be calculated in a very simple way in one pass through the original image. 
Having the integral image any rectangular sum (like Haar-like features) can be computed very fast as it 
is illustrated in Fig. 3.29.

  

➢ AdaBoost:  The next main contribution is to use AdaBoost in order to select a small set of 
Haar-like features and train a strong classifier from these features.

The number of possible Haar-like features in a search window is far larger than the number of pixels in 
that window. Although by applying the integral image one can calculate a Haar-like feature very fast, 
as the number of these features is vast, considering all of them in a rapid object detection problem is 
infeasible. On the other hand, most of the features in a search window are useless and do not represent 
any information about the detected object in the image. By applying AdaBoost to a given training data 
set the best features with the minimum error rate (smallest number of misclassification) are iteratively 
selected.  After  picking  the  first  best  features  from the  feature  pool,  the  training  samples  are  re-
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Figure 3.29: The sum of the pixels in the rectangle D can be 
calculated simply as: D=(4+1)-(2+3) where 1=A, 2=A+B, 3=A+C and 

4=A+B+C+D [80].
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weighted such that the misclassified data points get a larger weight and correctly classified samples 
obtain smaller weights.  In the next iteration, the now best feature is picked and then the samples re-
weighted and so on. In each iteration a weak classifier, which corresponds to the best feature in that 
round, is selected. The final strong classifier is then constructed from these weak classifiers as it was 
explained in the AdaBoost algorithm.

For each feature fj   a weak classifier hj is defined by

h jx ={1 if p j f jx  p j j

0 otherwise
(3.69)

where x is the search window,  fj  is the absolute value of the feature,  pj  is the parity indicating the 
direction of  the  inequality and  θj  is  the  threshold.  The value of  θj  is  determined  in  the  AdaBoost 
procedure  such that  the  classification error  on the  training data  (positive  and negative  classes)  is 
minimized.

➢ The Attentional Cascade: The last contribution of the Viola-Jones method is a technique for 
combining  successively more  strong  classifiers  in  a  cascade  structure  which  dramatically 
increase the detection performance.

The performance of a strong classifier which was created through AdaBoost is not good enough for 
many real world object classification problems. In order to achieve increased detection performance 
while  radically  reducing  computation  time  several  classifiers  are  arranged  in  a  cascade  form as 
illustrated in Fig. 3.30. Using the cascade structure many negative samples (sub-windows) are rejected 
at the earliest  stage possible. The first stage has a high detection rate (nearly 100%) and the false 
positive rate (about 50%). It means in this stage all of positive samples are detected correctly while 
about half of the negative samples are rejected. Each stage in the cascade reduces the false positive 
rate  and  decreases  the  detection  rate.  As  the  detection  rate  of  each  stage  is  close  to  one,  their 
multiplication results a final detection rate of close to one, while the multiplication of the false positive 
rates approaches zero.

  Overview of Object Detection Algorithm

There are two main issues in real time object detection using the AdaBoost technique. The first issue 
is that background noise in the training images degrades detection accuracy significantly, especially 
when we have a cluttered background under varying lighting conditions which is the case in many real 
world problems. The second issue is that the computation of all sub-windows in an image for every 
scale is too costly if the real time constraints are to be met [49]. 

The fundamental idea of our algorithm is to address the solution to these problems using the fusion of 
3D range data with 2D images. In order to extinguish the background issue from object recognition 
problem, the procedure of object detection is divided into two levels. In the low level we use range 
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Figure 3.30: Cascade of classifiers [80].
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data in order to: i) Define a 3D volume where the object of interest is appearing and eliminate the 
background to achieve robustness against cluttered backgrounds and ii) Segment the foreground image 
into different clusters using unsupervised learning techniques which were already discussed in section 
3.2.3. In the high level, we map the 3D segmented image to its corresponding 2D color image and 
apply the Viola-Jones method (searching with Haar-like features) to find the object in the image. Fig. 
3.31 shows some examples of these two levels.

The second issue (computation of all search windows in an image for every scale is too costly) can be 
addressed by using the range information directly. After segmentation, the distance of the segmented 
object from the camera can be easily derived from the 3D range image. By having the information 
about the distance of the object from the camera, its size can be roughly estimated and a set of search 
windows which could fit to the size of the object is selected. This reduces the computational cost of the 
Viola-Jones  technique to  a  great  extent  which  is  a  significant  point  in  real  time  applications. An 
example of selecting the search windows for hand detection has been illustrated in Fig. 3.32.
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Figure 3.31: Solution to the background issue in object detection using the Viola-Jones method. 
Using range data, the cluttered background is removed and the foreground image is segmented and 

mapped to the 2D image. The Viola-Jones technique is applied to the 2D segmented image to find the 
object of interest.

Figure 3.32: Selection of search windows using range information for hand detection. Left: Hand is  
far from the camera and therefore the image is searched with small search windows. Right: Hand is  

close to the camera and therefore the image is scanned with large search windows to find the hand in 
the image.
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3.4 Summary

An object recognition mechanism consists of a sensor system, a preprocessing unit and an object 
classification. In the preceding chapter, we discussed the first part by introducing a 2D/3D camera 
system. In this chapter, some different aspects of preprocessing and classification techniques using 2D 
and 3D image data were studied.

Preprocessing,  in  our  work,  consists  of  feature  extraction  and  image  segmentation  which  are 
performed before classification in order to make the problem simpler.

We have discussed machine generated and human generated features by using Principal Component 
Analysis, Linear Discriminant Analysis and some heuristic approaches.

Multimodal image segmentation is the next issue which has been studied in this chapter. It was seen 
that  even the low resolution range data can be used directly to segment the objects  in the scene. 
Likewise,  we  have  studied  some  aspects  of  image  segmentation  in  which  range,  intensity  and 
modulation amplitude are fused to increase the performance of the segmentation. On the other hand, 
some  improvements  in  image  segmentation  have  been  realized  by  integration  of  two  different 
approaches: Clustering and Edge detection. While the former is applied to 3D range data, the latter is 
performed on high resolution 2D image. Integration of the clustered range image with 2D edge map 
yields a highly accurate segmented image.

In the last section of this chapter, two advanced classification techniques, which have recently gained a 
lot of attention, have been presented: Support Vector Machines (SVM) and AdaBoost. Both of these 
approaches are supervised learning techniques. They have been employed for classification of moving 
object in the real world problems in this chapter. It was seen that the SVM performs very well in 3D 
object  classification  using TOF range data  even with  small  training data  set.  On the  other  hand, 
AdaBoost is a very fast classifier which has shown promising results for real time applications. Using 
3D range data, the background noise as well as the computational issue have been addressed in the 
AdaBoost approach.

-65-



Chapter 3: 2D/3D Object Recognition  

-66-



4
2D/3D Object Tracking

When I want to understand what is happening today or try to decide what will 
   happen tomorrow, I look back. 

Omar Khayyam (1048-1131)

In the previous chapter we discussed some techniques for object detection using 2D/3D images. 
The next step in many real time computer vision applications is to locate the position of the detected 
object(s) in each frame in order to find its (their) trajectory in a video. In general, object tracking in a 
real world environment is a very challenging problem due to different issues such as complex object 
motion, scene illumination changes, scene appearance changes, noise in images, nonrigid nature of 
objects, occlusions and real time processing requirements. There are numerous techniques which have 
been proposed  to  solve  object  tracking  problems recently.  Yilmaz  et  al.  [86] have given  a  good 
overview  and  comparison  of  many  state-of-art  tracking  methods.  The  reader  is  referred  to  this 
reference in order to have a general overview about object tracking techniques. Almost all  object 
tracking techniques  apply some constraints  to  the  problem to simplify it.  For  example,  in  many 
techniques it is assumed that the motion of the object is smooth without any abrupt changes. In some 
other techniques, different constraints are applied either to the appearance of the object(s) or to the 
background. Likewise, some prior knowledge about the object of interest such as shape, size or color 
is  used  as  a  prior  assumption  to  simplify the  problem.  Although these  kinds  of  constraints  and 
assumptions  reduce  the  complexity  of  object  tracking  task,  they,  in  fact,  constrain  real  world 
problems.

Object detection, in fact, is one of the main mechanisms in object tracking which is either done in 
each frame or at least in the first frame where the object of interest should be detected to trigger the 
tracking system. In this chapter, some object tracking techniques based on 2D/3D images will be 
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studied and we will show, how multimodal 2D/3D data can be used  to simplify the problem.

Two main aspects of this simplicity in our work are as follows: 

➢ Using additional range information, the number of constraints which are usually applied to the 
tracking problem can be reduced. Thus, the proposed solutions based on 2D/3D image data are 
more applicable to real world problems. For example, 3D range data are more reliable than 2D 
images under varying lighting conditions and therefore there is no need to keep the lighting 
conditions  unchanged.  Also,  by having 3D data,  some assumed information,  like  size and 
shape of object can be exactly calculated in each frame without any prior assumptions.

➢ Computational time is a critical issue in an object tracking problem, especially in those cases 
where the object moves fast. 2D/3D data in our vision system can complement each other, 
without  any time  consuming  procedures,  such  that  the  good  features  for  tracking  can  be 
extracted very fast. As an example, in a gesture based robot control application, where the 
hand of the user is to be detected and tracked, using 3D range data the operating volume can 
be defined and extracted easily. This volume is then mapped to the corresponding 2D image 
where the useful features are calculated. This reduces the computational demand to a great 
extent because just the 2D/3D data in the volume is processed and there is no need to process 
the whole image data.

A typical object tracker can generally be built in two ways: i) A bottom-up approach in which an object 
detection technique is  first  employed to find the object(s) of  interest  in each frame and then it  is 
followed by a technique to find corresponding objects across the frames, ii) A top-down process, which 
deals with the dynamics of the moving object as well as prior observations of the scene. In this case 
the  position of the object is estimated by iteratively updating object location from previous frames 
[90].

In this chapter both techniques are reviewed in general,  and we apply them by using some recent 
advanced approaches in each technique and based on 2D/3D images. As object tracking is a very wide 
and complex problem, first we define the framework of our work in order to avoid any confusion for 
the reader and to make our results comparable with the others in the same framework. Object tracking 
in this chapter is performed in the following framework:

➢ A single static MultiCam (2D/3D Vision System) observing the scene.

➢ Objects move in an indoor dynamic scene in any arbitrary direction.

➢ Lighting conditions may change.

➢ Single and multiple object tracking are considered.

➢ Person, robot and hand are the main objects of interest in this work for applications which 
will be described in chapter 5.

In this context, we will mainly answer the questions such as how to represent the object of interest, 
how to subtract foreground objects from the background, what kind of features should be used, how to 
extract the features, how to detect the objects of interest, how to match detected objects in consecutive 
frames or how to predict the position of the object of interest in the new frame and finally how to find 
the trajectory of the moving object.

4.1 Dynamic Scene Analysis

In our work a dynamic scene is a scene which changes from time to time due to changes in the 
environment illumination, motion changes, like static object removal or intrusion as well as changes in 
the scene, due to occlusion. In this section some aspects of a dynamic scene based on 2D/3D images 
are studied.

-68-



Chapter 4: 2D/3D Object Tracking  

4.1.1 Background Subtraction

In many computer vision applications where the camera is  fixed, scene analysis  often starts  by 
distinguishing foreground objects from the background. In fact, background subtraction is the most 
common approach to identify the moving objects in the foreground from the background. In general, 
background subtraction can be done by making a reference image and subtracting each new frame 
from the reference image and threshold the result [79]. Although it looks very simple, it rarely works 
in the real world applications and there are many challenges in making a good background subtraction. 
For example a good background subtraction should be robust against illumination changes as well as 
avoiding the detection of non-stationary objects in the background as foreground objects. Likewise, it 
should be fast enough to be used in the real time applications.

A typical  approach to subtract  the background is  to  make a statistical  model  of  the  scene,  called 
background model, and update it constantly over the time. The moving objects identification in each 
frame can be performed by spotting the parts of the current image that deviate from that model.

There are numerous approaches to model  the background which differ  in the type of background 
model as well as way of its updating. A standard method is to average the images over time to create a 
time averaged background model. Although it is an effective and simple method, it has many problems 
which cannot be used for a real world problem. For example, it is not robust in the cases where there 
are many moving objects, especially if they move slowly. Also, it requires a training period to learn the 
background in the absence of foreground objects. In addition to these drawbacks, gradual changes in 
the lighting conditions cause problem for this technique. Therefore, one of the main requirements for 
making a good background subtraction is to reestimate the model constantly. 

One of the successful background modeling is to learn each pixel of the background using a Mixture of 
Gaussian (MoG) models. This approach which was proposed by Stauffer and Grimson [84] was later 
improved  by  KaewTraKulPong  et  al.  [79] to  run  faster  and  become  more  accurate  in  the  busy 
environments.

As in the original approach of Grimson et al. each pixel is modeled with a mixture of Gaussian over 
color, it performs poorly in the backgrounds with dynamic textures such as trees waving in the wind. 
Recently, a generalization of the MoG approach is proposed by Grimson [39] himself which handles 
dynamic textures as well.

The modification of MoG done by KaewTraKulPong et al. [79] has been implemented in OpenCV for 
real time background subtraction and it is used for 2D background subtraction in our work. On the 
other hand, we will implement a simple background subtraction using 3D range data which are more 
reliable  than  2D images  in  the  varying  light  conditions.  The  results  of  these  two techniques  are 
evaluated and we will select the better one for background subtraction.

  Adaptive Gaussian Mixture Model

As opposed to modeling the values of  all  pixels with a particular type of distribution function, 
Stauffer  and  Grimson  [84] proposed  to  model  the  value  of  a  particular  pixel  by a  mixture  of  K 
Gaussian distributions. They define the probability that a certain pixel s has the value of X at time t as

 

f X t
=∑

i=1

K

wi ,t⋅ f X t /i , t ,i , t
/o ,o  (4.1)

where  is the dummy variable corresponding to the pixel value  X,  K is the number of distributions 
and f X t/ i , t , i , t

/o ,o is the ith Gaussian probability density function which is formulated as follows
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f X t / i , t ,i , t
/o ,o=

1
2d /2∣o∣

1 /2 exp{− 1
2
−o

T o
−1−o}  (4.2)

where μi,t  and Σi,t are the mean and the covariance of ith Gaussian density function in the mixture model 
at time t and d represents the dimension of the pixel data X. For example, if we use RGB color images, 
then X∈ℝ3 and therefore the model  will  be a multivariate Gaussian with three dimensions.  If we 
consider the range data in addition to the color for each pixel, we will have X ∈ℝ4 and the model will 
be a multivariate Gaussian with four dimensions.

In equation 4.1,  wi,t is a weight factor for  ith  Gaussian at time t which represents what portion of the 
data is accounted for by this Gaussian model.

For computational reasons, Stauffer and Grimson  [84] suggested to take the covariance matrix as a 
diagonal one such that

i ,t=i ,t
2 I . (4.3)

This assumption holds that the feature values of a pixel,  Xt={xt1,...,xtd}, are independent and have the 
same variance.

In their approach all weights are updated at every new frame and every given new pixel value  Xt  is 
checked against  the  existing  K Gaussian distributions.  If  the  pixel  value falls  within 2.5 standard 
deviation of any distribution22, the distribution is marked as a matched component and its parameters 
are updated as follows

w it=1−wi ,t−1 (4.4)

i , t=X i , t1−i ,t−1 (4.5)

i ,t
2 =1−i ,t−1

2  X i , t−i ,t
T  X i ,t−i , t (4.6)

where  is the learning rate and 1/  determines the speed at which the parameters are changed.  is 
the second learning factor which is defined as 

= f X t /i , t ,i , t
/o ,o . (4.7)

For unmatched distributions, the parameters  and  remain the same, whereas the weighting factors 
for those distributions are reduced as follows [38]

w i , t=1−wi ,t−1 . (4.8)

If none of distributions match the current pixel value in that frame, then the distribution with the least 

22 It is about 98.76% of all realizations lie within the interval [μ-2.5σ, μ+2.5σ].
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weight is replaced with a new distribution with the mean of  Xt, an initial large variance and a small 
weight.

Once every Gaussian model is updated, the distributions are ordered by the value of w / and then the 
first B distributions are chosen to create the model of background where B is calculated by

B=argminb∑
j=1

b

w jT  (4.9)

where the threshold  T is  the minimum fraction of the data which should be accounted for by the 
background model. 

In  their  paper,  those  pixels  which  have  the  values  greater  than  2.5  standard  deviation  of  any 
distribution in  B are then marked as foreground pixels. In our experiments we take this value as a 
variable threshold which is set in order to evaluate the results in a quantitative form.

  Background Subtraction Using Range Thresholding

As the  range  data  are  more  robust  than  2D images  against  lighting  changes  as  well  as  other 
variations in the scene,  it  is  not  absolutely necessary to apply complex approaches to get  a good 
background subtraction result. A simple range thresholding can even identify foreground objects from 
background without so much computational demand.

Given a range image Ix,y,z,t in each frame, first the range image is filtered such that the out of range data 
are eliminated. In our case, we have defined out of range data as very small or very large range values 
which either belong to objects in the ambiguous range of PMD sensor23 or consist of systematic noises 
of the PMD sensor described in chapter  2. To eliminate them, a bandpass filter with two cut-offs is 
defined.  In  fact,  the  cut-offs  define  the  limit  of  a  3D scene  volume in  z direction.  This  volume 
represents the 3D volume where the objects  of  interest  may move in and therefore we call  it  the 
volume of interest in our work. Next, the filtered range data are smoothed using a Gaussian kernel 
succeeding with morphological operations consisting of erosion and dilation with a 3x3 rectangular as 
structuring element, in order to remove irrelevant information.

In the last step a fixed level thresholding is applied to the processed range data which discriminates the 
foreground objects from the background and finally the remaining foreground objects in the volume of 
interest are separated using a connected component technique.

  Evaluation of Results

In order to evaluate the results of the discussed techniques for background subtraction using 2D and 
3D images, we have considered two scenarios: i) A person walks in normal lighting conditions with a 
cluttered background, ii) A person walks in a challenging scene where the lighting conditions vary 
extremely and we have a clutter background with illumination disturbances and shadows. In both cases 
the 2D and 3D range data are recorded in a video format and they are used as the index videos for 
comparison of the background subtraction techniques which will be explained in this section.

Some results of background subtraction techniques using 2D images and 3D range data under normal 
lighting condition are depicted in Fig. 4.1. In order to make the results comparable, 3D range images 
are rescaled to 640×480 pixels which is the original resolution of the 2D images.

In  the  calculated  foreground  images  white  color  represents  the  foreground  pixels,  whereas  the 
background pixels are marked in black. The shown results in Fig  4.1 are calculated by setting the  

23 It is more than 7.5 m at a frequency of 20  MHz.
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threshold for each technique at the most optimal point with the maximum hit rate and minimum false 
positive rate.

In  order  to  compare  the  performance of  the  two discussed techniques  quantitatively,  we  will  use 
Receiver Operating Characteristic (ROC) curves [103] which are useful graphs for the visualization of 
the performance. ROC curves have long been used in signal detection theory which is later adopted to 
machine  learning  and  computer  vision  to  evaluate  and  compare  the  results  of  segmentation, 
classification  and  tracking  techniques.  ROC  curves  are  usually  two  dimensional  graphs  which 
represent the trade-off between hit rate (true positive) and false positive (false alarm). However, in the 
cases where the time plays a key role as an evaluation factor, ROC curves can be plotted dependent on 
time.

To plot ROC curves we need to calculate the hit  rate and false positive rate of each technique at 
different thresholds. The hit rate is defined as the ratio of the number of correctly detected foreground 
pixels to the number of all foreground pixels in the ground truth. The false positive rate is determined 
as the ratio of the number of wrongly detected foreground pixels to the total number of background 
pixels in the ground truth. Since the video sequence consists of too many images, we have selected 
some index images within the video at constant time stamps.

The foreground pixels are manually marked in each index image to create its corresponding ground 
truth  image.  Having  ground  truth  images  and  the  results  of  background  subtraction  (calculated 
foreground images) for each threshold  T,  the hit rate and false alarm are calculated for each index 
image at that threshold. The calculated hit rates and false alarms are then averaged to derive the final 
hit rate and false positive rate for the video at threshold T. Likewise, the processing time to calculate 
the foreground image for each threshold in each technique is recorded. 

The ROC curves for the normal lighting conditions are shown in Fig. 4.2. The hit rate and false alarm 
depends heavily on the threshold. Setting threshold to a very low level implies high true and false 
positive rates which means it takes all the pixels which are slightly different from the background as
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Figure 4.1: Some results of background subtraction under normal lighting conditions. First row: 
Original 2D images, frames number 55, 105, 160, 220 and 260. Second row: Corresponding 

foreground images derived using the adaptive Gaussian mixture model technique on the 2D images.  
Third row: Corresponding foreground images derived using range thresholding and the connected 

components technique from corresponding 3D images. 
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foreground (top right point on ROC curve). In this case, although the hit rate is high, there is also a 
high false alarm which reduces the performance of the technique. On the other hand by setting the 
threshold to a high level, the rates of hit and false positive reduce dramatically which means just pixels 
which are very different from background are considered as foreground pixels (bottom left point on 
ROC curve). The best threshold would be somewhere between these two points which has the highest 
hit rate with the lowest false alarm. 

The left graph in Fig. 4.2 shows the trade-off between the hit rate and false alarm which is like a usual 
ROC graph. To compare these two techniques, we do not calculate and consider the area under ROCs 
as a performance criteria, but rather we compare the best operating point for each ROC. As it can be 
seen from this graph, the best operating point for the Gaussian mixture model is the threshold which 
yields the hit rate of 84.4% with false alarm of 2.2%, whereas for the range thresholding the best point 
is the threshold which gives the hit rate of 85.5% which is slightly more than the hit rate of the former 
technique, but results in the false alarm of 4.4% which is two times bigger than the false alarm for the 
other technique. Therefore, in this manner the adaptive Gaussian mixture model technique using 2D 
images outperforms the simple 3D range thresholding.

By taking the time as the third evaluation parameter into consideration, we have plotted the ROC 
curves  depending  on  the  time  which  are  depicted  in  the  right  part  of  Fig.  4.2.  As  it  is  clearly 
recognizable from these graphs, adaptive Gaussian mixture model technique is computationally more 
expensive than the simple range thresholding. Therefore,  in such a manner the range thresholding 
technique outperforms the adaptive Gaussian mixture model. As an example, for the above mentioned 
best operating points the Gaussian mixture model takes 205  ms to subtract the background, whereas for 
range thresholding it just takes 103  ms.  (both techniques have been run under the same processing 
conditions). Thus, the selection of one of these techniques depends on the priority of the evaluation 
criteria. While the hit rates of both techniques at the best threshold are nearly the same, 3D range 
thresholding has double false alarm rate with half time expense to the 2D Gaussian technique. The 
high rate of false alarms in the 3D case is mainly because the ground truth images have been derived 
manually from 2D images which have higher resolution than the range images (1 to 100 in this case).

In the second case, we make the problem of background subtraction more challenging. In this case, the 
lighting condition change extremely to disturb the background subtraction. Due to the light variation 
over  the   time,  some  shadows appear  in  some  image  sequences  and  disappear  afterwards.  Some 
examples of such images taken from the video are shown in Fig.  4.3. Same as before, background 
subtraction is performed using the two aforementioned techniques and the results are compared. Some 
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Figure 4.2: ROC curves for the image sequences under normal lighting conditions. Left: Trade-off  
between hit rate and false positive rate. Adaptive Gaussian mixture model using 2D images outperforms 

3D range background subtraction. Right: Time dependent ROC curve. Considering time as the third 
evaluation parameter, 3D background subtraction outperforms 2D background subtraction.
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index images are selected from the video such that they can present the whole video under varying 
lighting condition.

Since the lighting has a big influence on 2D images, the results are not so satisfactory, as it can be seen 
in sample images in Fig. 4.3. On the other hand, range data are quite reliable in such conditions and 
changing lighting and/or having shadows in the scene does not influence range information. Same as 
the previous case the ROC curves are provided which are illustrated in Fig. 4.4. As we can see from 
the ROC curves, 3D range thresholding succeeding with connected components outperforms the 2D 
adaptive Gaussian mixture model dramatically in both time dependent and independent cases.
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Figure 4.3: Some results of background subtraction under varying lighting conditions. First row: Original  
2D images, frames number 130, 180, 310 and 415. Second row: Corresponding foreground images using 
the adaptive Gaussian mixture model on 2D images. Third row: Corresponding foreground images using 

range thresholding. Forth row: Connected components on 3D foreground images.

Figure 4.4: ROC curves for image sequences under varying lighting conditions. Left: Trade-off between 
hit and false positive rates. Right: ROC curve dependent on time. In both cases range thresholding 

followed by connected components outperforms the adaptive Gaussian mixture model using 2D images. 
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4.1.2 Real Time Aspects

Real  time  computing  is  one  of  the  key  issues  in  object  tracking  which  implies  selecting  the 
algorithms and hardware such that they meet the given real time constraints. Real time constraints are 
the deadlines from event to system response. In other words, the time which a system needs to analyze 
or detect an event at exactly the time as the event is taking place in the reality. For example, in a real 
time traffic video analysis a car should be detected and tracked as fast as its motion in reality. The term 
real time is sometimes misunderstood as analyze and calculation of an event extremely quick. This is 
totally wrong because the event itself might take place slowly and therefore it is not absolute necessary 
to have a high performance computing system.

In order to implement a real time tracking system, first we need to know, how fast an object can move 
and how fast it can be detected and tracked. In this work, as already mentioned, we focus on tracking 
of people, hand gestures and robots. While an average walking speed of a person is about 4 to 5  km/h 
which is equal to 1.1 to 1.4 m/s, the robot which is used in this work can move at different velocities 
from 5 cm/s to 2 m/s. For the hand movement there is no reference value because it can be moved at 
different velocities. However, based on our laboratory experiences, the maximum velocity of 1  m/s is 
assumed for that. Therefore the maximum motion velocity in this work is limited to 2 m/s.

In the next step we need to define an event. An event is the motion of an object of interest with a fixed 
distance resolution. For example, a person should be detected and tracked at every 20  cm motion or a 
hand can be detected and tracked for every 2  cm motion in a real  time hand based robot  control 
application. Given the maximum motion velocity of the object V max and detection resolution Rdetection , 
the time of event can be calculated by

t event=
Rdetection

V max
. (4.10)

In a real time system the hardware and software should be selected such that the total time for taking 
the data (2D/3D images) and analyze it (detection and tracking) should be less or equal than tevent .

Now, we will have a look at the hardware which is the camera system. As already discussed in the 
previous chapter the time it needs to take an observation is a function of exposure time te , transfer 
time t t and processing time t p  as follows

t observation= f te ,t t , t p . (4.11)

Exposure time is the time which the TOF camera needs to illuminate the scene to get accurate range 
data. Transfer time depends on the communication protocol requirements (in our work USB 2.0) and 
processing time is the time to calculate range and modulation amplitude data from PMD phase images.

In  the  software  part  we  term  response  time tresponse as  the  time  which  the  whole  algorithms  and 
techniques,  such  as  data  preprocessing,  background  subtraction,  segmentation,  feature  extraction, 
classification and tracking, need to detect the object of interest and locate its position. 

Finally, to make an object detection and tracking system “real time”, the following condition must be 
met

t observation t response≤t event . (4.12)

This condition will be discussed more in details for the real time applications in chapter 5.
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4.2 Object Representation and Identification

Object representation and identification is the most common approach to track the objects. It is a 
bottom-up approach which is performed by first detecting the objects of interest in each frame and 
then identify them24 from frame to frame. In general, this approach consists of three steps which have 
been illustrated in Fig.  4.5. In the first  step, background subtraction is done to obtain the possible 
regions which can represent the objects of interest in the scene. In our work, background subtraction is 
done using range images and based on the technique which was already discussed in this chapter. In 
the next step, a contour detection technique is applied to the foreground image to find all contours. 
Very small  contours belong to noise in the images are filtered out.  Each detected contour is  then 
labeled and mapped to the corresponding 2D image. Due to the monocular setup of 2D/3D camera, 
mapping is trivial and fast. In the last step, each object is represented by some useful features which 
are extracted within detected contours in 2D and 3D images and finally the feature sets derived from 
the contours in two consecutive frames are used for correspondence matching which will be discussed 
in the following section.

4.2.1 Feature Extraction and Correspondence Matching

The main part of object representation and identification technique is to correspond detected objects 
across successive frames. To do that, first we need to represent the objects using a model. For example, 
an  object  can  be  represented  using  geometric  shapes  or  (and)  appearance  models.  While  simple 
geometric shapes  like  rectangle  and ellipse  are appropriate to  represent  a  simple  rigid object,  the 
appearance models based on contour and silhouette are suitable to represent nonrigid objects. Since in 
the applications of this work we are involved in detecting and tracking nonrigid objects like persons 
(full body) and hand, we have used the contour which provides an accurate object representation. The 
contours in the image are obtained by applying contour detection to the foreground image. The found 
contours corresponding to the noises in the foreground image are eliminated by filtering the contours 
through the  area  size  criteria.  The  remaining contours  are  then  mapped to  the  2D images.  Some 
examples are shown in Fig. 4.6. 

24 Identification means to find out which object is which.
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Figure 4.5: Block diagram of bottom-up tracking approach in general.
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As we can see from these images, the found contours do not fit exactly to the boundary of the objects 
in the 2D images. This is because the resolution of the range image (64×48 pixels) is much smaller 
than the resolution of the 2D image (640×480 pixels) and therefore mapping the found contours from 
the 3D foreground image to the corresponding 2D image gets some inaccuracies. Likewise, due to the 
systematic range error in the boundary pixels of the object in 3D image25,  the derived foreground 
image has some error which consequently induces inaccuracies in the result of the contour derivation. 
For the applications where the boundary of the object must be extracted precisely, the contours can be 
improved by applying some image post-processing techniques at the expense of time. Since in our 
work we rather detect and track the full objects than the parts of the objects, this error is neglected.

The flowchart of feature extraction and correspondence matching is shown in Fig.  4.7. In the first 
frame, after detecting the contours in the image, each contour is summarized by a bounding box with a 
color which represents the number of that object in the scene. For example, green represents object 
number one, red describes object number two, blue identifies object number three and so on. The 
colors do not  imply any specific meaning or information about  the objects.  They are just  defined 
arbitrarily to identify the objects in order. The next step is to match similar objects and label them with 
the same numbers (colors). Each object is represented by a feature set including the number of object, 
associated to it in the first frame, center of mass of the object in the world coordinate system, the 
average and standard deviation of color of the object in RGB space, something similar to Gaussian 
probability distribution function for the object, and the size of the object.

In a new frame at time t, first the number of detected objects n in the foreground image is compared to 
the number of detected objects m in frame t-1. As we can see from the flowchart in Fig. 4.7, based on 
the comparison result of m to n, three cases can be considered as follows:

1. n = m implies that all detected objects in frame  t-1 exist in the new frame  t. In this case, a 
correspondence matching technique is applied to identify these detected objects in the new 
frame.  In  our  work,  a  heuristic  graph  matching  approach  is  used  to  determine  the 
correspondences  between  the  objects.  The  principle  of  this  technique  is  to  calculate  the 
similarity-based probability between an object Oi

t in the new frame t with all existing objects
O1,2,... ,m

t−1 in the previous frame. This procedure is iteratively done for all objects in frame t and 
the results of probability calculation are stored in a m×n matrix such that each column i shows 
the  similarity-based  probabilities  between  object  i  in  frame t and  all  m objects  in  frame

25 The range error of the boundary pixels of an object was already discussed in chapter 2.
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Figure 4.6: Top: Foreground images derived using background subtraction technique. Bottom: 
Corresponding 2D images with detected contours as object of interest. It is noticeable that due to the 
low resolution of 3D images, the contours which are derived from range data do not completely fit to 

the boundary of their corresponding objects in the 2D images.
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t-1.  The  maximum over  the  columns  of  the  matrix  is  then  calculated.  The  result  of  the 
maximum is  a  row  vector  containing  the  maximum element  from each  column  with  its 
corresponding index. Object i is then matched to the object j, where j represents the index of ith 

maximum element in the row vector. If two or more objects in frame t  are associated to one 
unique object in frame t-1, there will be similar indexes in the row vector. In such a case, the 
similarity-based probabilities of the objects are compared to keep the highest probability and 
set  the other(s)  to zero.  Again,  the graph matching technique is  fulfilled to determine the 
correspondences and this procedure continues iteratively until every object in frame  t takes 
one and only one correspondence in frame t-1.

2. n < m means that either one or more objects have merged and made occlusion (partially or full) 
or one or more objects have already left the scene or they are beyond the detection zone of the 
3D sensor which cannot be recognized in the 3D foreground image26. In the case of occlusion, 
an occlusion handling is performed which will be discussed in detail in the next section. In the 
case of object disappearance, the correspondence matching technique, same as the previous 
case, is directly applied to find the correspondences of the remaining objects in the new frame. 
After finding the matches of the objects from frame  t-1, the disappeared object(s) and their 
corresponding feature set(s) are determined and removed from detected object set.

3. If n > m, either one or more new objects have entered the scene or two or more objects, which 
had already merged and made occlusion, have split. In the former case, by applying a graph 
matching technique two or more objects in the new frame t correspond to one object in frame 

26 Over 7.5 m at a frequency of 20  MHz. In other words, the objects which lie in the distance over 7.5  m cannot be detected in 
the range images, although they might be seen in the 2D images. See Fig. 4.6 third image from left.
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Figure 4.7: Flowchart of feature extraction and correspondence matching technique.
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t-1. This happens because the number of objects in the new frame t is bigger than the number 
of objects in frame t-1. To solve this problem, the similarity-based probabilities of such objects 
with the unique correspondence are compared. While the object with the highest probability is 
selected as the match to the object in frame t-1, the other one(s) are labeled as new object(s) 
with new number(s) and they will be added to the detected object set. In the latter case, where 
two  or  more  objects  split,  first  the  object  split  occurrence  is  confirmed  and  then  the 
correspondence matching is performed. This will be explained more in the next section where 
we address the solution to the occlusion problem.

The similarity-based probability between two objects in the consecutive frames is calculated by

P X i
t∣X j

t−1=∑
k=1

K

k 1− f d ij
k   (4.13)

where X i
t is the feature set of object  i in the frame  t, X j

t−1 is the feature set of object  j  in frame t-1, 
f d ij

k  is  the  normalized distance  function between two similar  features  k  for  objects  i and j.  K 
represents  the  total  number  of  features  in  the  feature  set  and αk  is  the  weighting  factor  of  the 
probability  for  feature  k,  which  defines  the  importance  of  feature  k in  making  similarity-based 
probability between two objects.

The values of αk should be selected such that

∑
k=1

K

k=1, 0≤k≤1 . (4.14)

The equation 4.13 can be understood by assuming two identical objects where the distance between 
their  features  is  zero and therefore  the  normalized similarity-based probability between these  two 
objects is 1 or the other way around, by taking two dissimilar objects with the maximum normalized 
distance of 1 which yields the normalized similarity-based probability of 0.

We use multiple features, extracted from 2D and 3D images to reduce the error of correspondence 
matching. For example, if we just consider the probability density function of the color of the object as 
a  feature,  there  might  be  cases  where  two different  objects  with similar  color  probability density 
functions cannot be distinguished. This is also true for other single features like distance or size of the 
object. Thus, the fusion of all these features in making the similarity-based probability makes the error 
of matching to the lowest rate. On the other hand, the number of different features should not be so big 
such that their calculation as well as their fusion become computationally expensive.

The normalized distance function between two objects  i and  j  based on all the features used in our 
work is formulated by

f d ij =d ij
zd ij

xyd ij
RGBd ij

a  (4.15)

where d ij
z is the distance between objects  i and  j in  z  direction and it is derived directly from range 

images.

d ij
xy is the Euclidean distance between the center of mass of two objects i and j which is formulated as 

follows

d ij
xy=x i− x j

2 y i− y j
2  (4.16)

in which xi , yi and x j , y j are the center of mass points of two objects i and j respectively derived 
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from bounding box of contours.

In equation 4.15, d ij
RGB stands for the metric distance between the color of objects i and j in RGB space 

which can be described by

d ij
RGB=R2G 2B2  (4.17)

where  R , G and  B represent the difference between red, green and blue channels of two objects 
i and j in the consecutive frames. 

Finally d ij
a in equation 4.15 represents the distance between the area size of two objects.

As already mentioned, for each feature a weighting factor is defined which can take the value between 
0 and 1. For the aforementioned discussed features, the weighting factors α1, α2, α3 and α4 are defined 
respectively and they should be set such that the correspondence matching gets the minimum error 
rate. 

To analyze the results of the correspondence matching technique over the weighting factors, we have 
recorded four  video sequences including about  3000 images.  These videos have been recorded in 
different environments with different lighting conditions,  with people walking around (mostly two 
persons) and appearing at close, medium and far distances to the camera. In these video sequences, 
there are a variety of cases where two persons appear at the same distance to the camera, they have 
same area size,  or  even they appear in very similar  colored clothes.  Also,  all  three general  cases 
discussed before (n = m existing objects, n < m occlusion or object disappearance and n > m object split 
or new object intrusion) have been considered in these videos.

In order to evaluate the results, we have defined two evaluation parameters: correspondence matching 
accuracy and correspondence matching error rate. While the former refers to the number of correctly 
matched frames to the total number of frames in the video sequences, the latter defines the number of 
wrongly matched  frames  in  relation  to  the  total  number  of  frames.  For  each  video  set,  we  have 
manually determined the correspondences between detected objects over the frames in order to create 
ground truth data. By having the ground truth images and changing the values for α1 (corresponding to 
the distance feature),  α2  (corresponding to the center of mass feature),  α3  (corresponding to the color 
feature) and α4 (corresponding to the area size feature) we can calculate the correspondence matching 
accuracy and error rate for each set of α. Since setting α's for all possible values and calculating the 
results is an extreme costly task, we have limited the values of α to seven sets between the main three 
following P sets:

1. P1={α1=α2=α4=0, α3=1}, in this case the similarity-based probability is made by only using 
the color feature. In other words, correspondence matching is done just based on 2D features.

2. P4={α1=α2=α3=α4=0.25},  this  α  set  represents  contribution  of  2D/3D features  with  equal 
weights  in  making  a  similarity-based  probability.  Note  that  for  occlusion  handling  the 
matching is done by just distance feature (see section 4.2.2).

3. P7={α2=α3=α4=0, α1=1}, in this set the distance feature extracted from 3D range image is the 
only contributor in similarity-based probability function.

The results of the correspondence matching over mentioned  P's are shown in Fig.  4.8. As it can be 
seen from these graphs, setting the α set to P4, where both 2D and 3D features contribute in probability 
function, yields the best result. While setting the α set to P1, where just 2D color feature is used, has 
the lowest performance, adjusting α set to P7, where distance feature is only contributor in probability 
function, has better result. Here, we just present how the fusion of features can improve the results of 
correspondence matching dramatically and the results can neither be generalized for all applications 
nor compared as the final results of tracking. In fact, setting the weighting factors is heavily dependent 
on the application domain. Likewise, the presented results might even be improved by finding a better 
α set which can be derived by a kind of automatic program.
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4.2.2 Occlusion Handling

Occlusion is one of the most crucial problems in object tracking. It is one of the constraints in object 
tracking which in some works is not considered at all, or in some others it is minimized by applying 
some assumptions. However, there are still some novel approaches which address the solution to this 
problem cited  in  [93],  [83],  [78],  [71],  [75] and  [89].  One  of  the  principal  techniques  to  handle 
occlusion  is  to  use  multiple  cameras  where  the  depth  information  can  be  used  to  overcome  the 
occlusion problem in a multi-object tracking problem. 

In this section we will discuss a heuristic technique for handling occlusion using 2D/3D data. The 
other  standard  techniques  will  not  be  discussed  in  this  work  and  the  reader  is  referred  to 
aforementioned references.

The proposed technique consists of three steps to handle occlusion: i) Object occlusion detection step 
to detect the start of occlusion during the tracking process, ii) Object split detection step to detect the 
end of occlusion and iii) Correspondence matching to determine the correspondences after occlusion.

  Object Occlusion Detection

An occlusion  normally starts  partially when two (or  more)  objects  merge  and  can  continue  to 
become a full occlusion problem. When one of the detected objects is occluded by the other one, that 
object and its corresponding features get lost in the scene. Thus, the first step in handling an occlusion 
problem is to detect whether it has been occurred or not. To do that, in each frame, after background 
subtraction  and  detecting  the  objects  of  interest,  the  number  of  objects  of  interest  and  their 
corresponding size are calculated and recorded. A partial occlusion in frame t happens if the following 
conditions are met:

➢ The number of detected objects  n in the new frame t is smaller than the number of detected 
objects  m in frame t-1. This is because two merged objects in the new frame are detected as 
one.

➢ The size of one of detected objects changes, i.e., the size increase is bigger than a predefined 
threshold.
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Figure 4.8: Performance of the correspondence matching technique over different weighting factors (P 
sets). P1 represents the weighting factor set where just 2D features contribute in making the similarity-

based probability. P4 contains the weighting factors, where 2D/3D features contribute to the 
correspondence matching and P7 represents the weighting factor set where 3D features contribute in 

making the similarity-based probability.
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An example of occlusion occurring in low resolution range data is illustrated in Fig.  4.9, where two 
persons pass by and occlude. In this work, when an occlusion is detected, the two merged objects are 
identified with a default black bounding box and the box is labeled with “Occlusion” word.

There are some techniques to recover the missing object regions during occlusion like the shape prior 
technique proposed by Yilmaz et al. [89], and the appearance models approach presented by Senior et 
al. [78]. In this work, we do not focus on this specific part of the occlusion problem in detail. However, 
one of the possible solutions is to use 3D range data of a merged object and apply clustering technique 
to classify the pixels of the merged object into two clusters which represent two merged objects. For 
this purpose, we have used the K-means technique which was already discussed in section 3.2.3. Some 
results of segmentation of merged objects during occlusion in order to recover the missing parts are 
shown in Fig. 4.10.
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Figure 4.9: Left: Before occlusion, the number of detected objects= 3. Middle: Partial occlusion happening, 
number of detected objects= 2 and the change of area size of one of the objects (occluded objects) is bigger  

than the predefined threshold. Right: After occlusion, two objects split, the number of detected objects  
increases to 3 and the size of detected objects (split ones) reduce dramatically.

Figure 4.10: Segmentation of merged objects during partial occlusion using range data and based on 
the K-means clustering technique. Top: 2D images, occlusion has been detected and labeled. Middle:  

Foreground range images. Bottom: Segmentation of merged objects.
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  Object Split Detection

When an occlusion is  detected,  the  occluded objects  are  labeled and the  tracker  takes  the  two 
occluded object as one object with a default  specific number. The occlusion is resolved when two 
occluded objects split. Therefore, after occlusion the tracker starts checking in every new frame if an 
object split happens. An object split occurs if the following conditions are met:

➢ The number of detected objects  n in the new frame  t is bigger than the number of detected 
objects m in frame t-1.

➢ The size of one of the objects changes, i.e., the reduction in size is bigger than a predefined 
threshold.

An example of object split after occlusion is shown in Fig. 4.9. When an object split is detected, the 
occlusion flag in the tracking is switched off and object matching function is called to determine the 
correspondences.

  Object Matching

The  last  step  of  occlusion  handling  is  to  match  the  split  objects  after  occlusion  to  their 
corresponding objects before occlusion. In order to do that, the similarity-based probability between 
the objects, as discussed in the previous section, is used. The conceptual graph of object matching for 
the three cases, consists of before, within and after occlusion, is illustrated in Fig. 4.11.

Since  in  the  first  frame  immediately after  the  object  split,  two objects  lie  in  absolutely different 
distances to the camera (z direction), the range information which is directly derived from 3D image is 
a very strong feature to create a good similarity-based probability. Therefore, for object matching in 
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Figure 4.12: Occlusion handling. Left: Before occlusion. Middle: Occlusion detected and labeled. Right:  
After occlusion.

Figure 4.11: Correspondence matching. Left: Existing objects (n = m). Middle: Object occlusion 
(n < m). Right: Object split (n > m). Note that after two objects split in frame t+T, they are 

matched to the objects before occlusion in frame t+1.
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the  first  frame  after  occlusion  we  use  just  the  range  feature  as  the  contributor  for  making  the 
probability function. An example of occlusion handling is shown in Fig. 4.12.

4.2.3 Tracking with Classifiers

Another approach for object identification in a tracking process is to use a classifier directly to 
distinguish between different detected objects. In fact, if the classification method is fast enough to 
operate at the image acquisition frame rate, it can be directly used for tracking as well. For example, 
supervised learning techniques such as Support Vector Machines (SVM) and AdaBoost can be directly 
employed to classify the objects in each frame because they are fast techniques which can work at real 
time rates for many applications.

Object identification is performed by applying a supervised classification function (model) to each 
frame which associates each of the detected objects in the scene to a class. The classification model is 
generated  from training  data.  Therefore,  a  tracking  system which  employs  a  classifier  for  object 
identification requires storing many images of different views of the objects in advance. A feature 
extraction technique is then applied on the one hand to derive a representative feature set for each 
object and on the other hand to reduce the dimension of the data. In the last step, each derived feature 
set, corresponding to an object, is manually associated to a class label and they altogether compose the 
training data set. Finally, the training data set is used to learn a function which can map each new 
object to a class label.

In this section, we describe tracking with classifier more in detail by applying a supervised classifier 
based on AdaBoost to 2D/3D videos in order to detect and track the hand. The details of the classifier 
was already discussed in section 3.3.4.

  Hand Detection and Tracking in 2D/3D Videos 

A general overview of the algorithm is shown in Fig. 4.13. The inputs of the algorithm are the low 
resolution range and modulation amplitude data from the TOF sensor and high resolution 2D color 
image from the CMOS sensor, taken by the MultiCam. In the first step, the Volume of Interest (VOI) is 
extracted from the range image. VOI, which has already been specified by the user is the volume 
where the user assumes to stand in and operate. For example, in human-robot interaction (HRI) it is the 
volume in where the user communicates with the robot. This volume which is specified in x,y and z 
direction in the world coordinate system is projected onto the 3D image. The pixels out of the volume 
in  the  range and modulation amplitude images  are  then filtered out.  This  makes  the  detection of 
moving objects in the cluttered background much simpler because the objects outside VOI do not 
appear in the image. In the next step, the filtered range and modulation data are fused as the input 
features for a supervised clustering technique to segment the objects in the volume of interest. As 3D 
image has a low resolution, the segmentation is done very fast. The segmented range image is then 
mapped to the 2D color image. Due to the monocular setup of the MultiCam, mapping from 3D range 
data  to  the  corresponding  2D color  data  is  trivial,  and  it  does  not  need  any extra  calibration  or 
registration techniques. This consequently makes the segmentation of 2D color image fast enough for 
our application. In the next step, the mapped color image is plugged into the cascade of AdaBoost to 
find the region of the hand in the image. Since AdaBoost sometimes finds only a part of the hand, the 
found  region  is  post-processed  to  extract  the  complete  hand  and  eliminate  the  non-connected 
components in that region. The centroid of the extracted hand region is recorded as the position of the 
hand in that frame, and the posture of the hand (palm or fist) is classified using a fast heuristic method 
which was already discussed in section 3.1.3.

To search for the object in the whole image one can move the search window across the image and 
check every location using the classifier. As already discussed the AdaBoost classifier is designed so 
that it can be easily "resized" in order to be able to find the objects of interest at different sizes, which
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is  more  efficient  than resizing the  image itself  [2].  However,  in  our  work,  as  we have the  range 
information from 3D image, the size of the hand (desired object) can be estimated and therefore we 
can set the initial size of search window without starting from a very small kernel size. This reduces 
the computational time for finding the hand in the image [37].

  Evaluation of Hand Detection Results

We have tested the  performance of  our  algorithm in a  robot  control  application which will  be 
explained in chapter 5. For training of the classifier, we took 1037 positive hand images from 7 people, 
and 1269 negative  images  from non-hand objects  in  our  lab environment.  Using OpenCV  [3] we 
trained our classifier with 20 stages and a window size of 32×32 pixels. 

In order to analyze the performance of the system, we recorded the results of the hand detection from 
our GUI in video format while different users were commanding the robot. Likewise, we moved the 
camera and took the videos from the environment where non-hand objects could be observed. These 
videos are labeled as "positive" and "negative" data. While positive stands for the hand, the negative 
represents the non-hand objects from the background which can confuse the classifier. The data were 
acquired using a PC with dual core 2.4 GHz CPU. The exposure time for 3D sensor was set at  2 ms 
while for 2D sensor it was about  10 ms. The confusion matrix derived from these videos with 2857 
hand images and 2717 non-hand images is shown in Table 4.1. As we can calculate from this table, the 
system has a hit rate of 0.921, false positive rate of 0.032 and the recognition accuracy of 94.4%. Some 
examples of hand detection results are shown in Fig. 4.14.
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Figure 4.13: Block diagram of the hand detection algorithm.
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4.3 Probabilistic Object Tracking

The aim of any kind of object tracking technique is to determine the location of the object of interest 
across successive frames. In all non-probabilistic tracking approaches, like object representation and 
identification which was presented in the previous section, the determination of the location of the 
object  is  obtained  directly from the  observations.  Each  observation  is  acquired  from the  sensor's 
outputs. However, measurements taken from visual sensors contain noises. For example, in this work 
we have already discussed some of them in the 3D time of flight images in chapter 2. Although such 
noises in the measurements are always tried to be eliminated using some preprocessing techniques in 
earlier stages, they are still inevitable and therefore any observation is corrupted to some extent by 
noise which consequently creates inaccuracies in object tracking results. Moreover, issues arising from 
complex object motions like maneuvering, appearance changing, occlusion and sudden disappearance 
of observations27 make the deterministic trackers inefficient.

Probabilistic object tracking methods address a solution to these problems. They, as opposed to object 
representation and identification, are top-down tracking approaches. In other words, they first estimate 
the position of the desired object jointly from the history of observations, obtained from previous 
frames, with the model of the system (dynamic of object). This estimation is then corrected with a new 
measurement in the current frame. In fact, if the dynamic of the moving object is known, which is 
usually assumed as known, the position of the object (state space) in time t can be predicted and it can 

27 For example, when an object gets out of the field of view of the camera suddenly for a short while and then it appears 
again.
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Figure 4.14: Some results of hand detection. Left: Example of correctly detected images (True Positive).  
Right: Example of wrongly detected images (First row: missed hand - False Negative. Second row: 

misclassified-False Positive).

Table 4.1: Confusion matrix for hand detection system.

Hand Non-Hand

Hand 2633 87

Non-Hand 224 2630

Sum 2857 2717
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be combined with the current measurement at time t to get a robust and more accurate result.

In this section we briefly review two widely used probabilistic approaches for object tracking and then 
we will  show how these approaches have been used in our work for object tracking using 2D/3D 
images.

4.3.1 The Kalman Filter

The Kalman filter is the most widely used technique in probabilistic tracking approaches. It is a 
stochastic, recursive data processing algorithm which tries to obtain an optimal estimate of state of the 
system from noisy data with the minimum error rate.

This section reviews the basic idea behind the Kalman filter and explains how it has been used in our 
work. For a much more in depth understanding about the principle of the Kalman filter, the reader is 
referred to [10], [108], [11] and [105].

Assume that we want to know the position of an object in a video data with the state vector of s∈ℝn

which consists of three position variables x, y and z and their velocities v x , v y and v z respectively. The 
Kalman  filter  addresses  the  solution  to  this  problem in  two  steps:  Prediction  (time  update)  and 
Correction (measurement update). In the prediction step, the current state and error covariance are 
projected forward to obtain the a priori estimates for the next time step. In the correction step, the new 
measurement at time  t is incorporated into the  a priori estimate to obtain an improved  a posteriori  
estimate [108].

Estimation of the Kalman filter is basically performed under three following assumptions [11]:

➢ The system has a linear dynamic.

➢ System and measurement noises are “white”.

➢ System and measurement noises are of Gaussian forms.

Based on these assumptions the state of the object of interest can be formulated by a linear difference 
equation as follows28

s t=A s t−1wt (4.18)

where A represents the state transition matrix (transfer matrix) and wt is associated with the white noise 
process with the Gaussian distribution and the known covariance Qt .

On the other hand, the measurements z t are obtained from an observation which might or might not be 
a direct measurement of the state and therefore it can be formulated by

z t=H stv t (4.19)

where  H  represents  the  measurement  matrix  and vt is  the  associated measurement  noise  with the 
Gaussian distribution and the covariance matrix Rt .

Now, all we need to do is to consider the aforementioned assumptions and use the above equations to 
perform the Kalman filter in two mentioned steps as follows:

➢ Prediction (Time Update)

In this step, first the a priori estimate (prediction) of the state st
- 29 is computed from the state space 

model by

28 Note that the state of a system in general is written as st =Ast-1+But+wt  where the term But is associated to the control unit 
in the system. Since in our work, there is no external control on the state of the system (motion of an object), this term is 
neglected.

29 The superscript minus sign means at the time immediately prior to the new measurement.
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s t
-=A st−1

 wt . (4.20)

Likewise, the a priori estimate for the error covariance  t
- of the prediction is calculated as follows

t
-=At−1 ATQ . (4.21)

In fact, these equations make a prediction about the state of the system based on prior knowledge. 
Since the prediction is not accurate enough, it will be corrected in the next step by a new measurement.

➢ Correction (Measurement Update)

In this step, the Kalman gain is first computed by

K t= t
- H T H  t

- H TR−1 . (4.22)

The Kalman gain gives some information about how to weight the new information against the prior 
one.  By having the  Kalman gain and taking a  new measurement z t ,  the  a posteriori state  and  a 
posteriori error covariance are generated as follows

st
=s t

-K t  zt−H s t
-  (4.23)

k= I−K t H  t
- . (4.24)

The term z t−H st
- in equation 4.23 is known as innovation or measurement residual.

After each prediction and correction, the process is repeated with the previous a posteriori estimates to 
obtain new  a priori estimates. In fact, this procedure is performed in a recursive manner such that 
there  is  no  require  for  all  previous  data  to  be  kept  and  reprocessed  every time  which  is  a  very 
important point in the practical real time applications.

Now, we will discuss, how the Kalman filter is used in this work to track an object in 2D/3D videos. 
First of all, we need to detect the object of interest in the video to activate the tracking system and 
provide it with an initial state. In fact, as soon as the desired object appears in the scene, the detection 
mechanism should recognize it and trigger the Kalman filter in order to track its motion. We have 
already discussed object recognition techniques using 2D/3D images in the previous chapter as well as 
in the previous section where an object detection (classifier) is performed in each frame to detect the 
object of interest and locate its position. For example, an AdaBoost classifier can be applied to find the 
object of interest, or some appearance based techniques, like contour detection can be performed to 
detect the desired object. However, in our work we have used a simple object detection mechanism 
consisting of background subtraction, foreground segmentation and contour detection to find the object 
of interest in the image. This is exactly the same as what we presented in non-probabilistic object 
tracking in the previous section. The object of interest is defined with a point corresponding to its 
center of mass. Therefore, the state of the object is summarized by three position variables in x, y and z 
directions with their corresponding velocities as v x , v y and v z . In the first frame where the object is 
detected, the state is initialized with the position of the object (x, y, z) and with zero velocities (vx = vy 

= vz = 0). However, we assume that afterward the object moves with a constant velocity. Therefore, we 
neglect the acceleration in the state space equations. Thus, the state vector  st and the state transition 
matrix A in equation 4.18 can be written as follows
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st=[
x
y
z

v x

v y

v z

] , A=[
1 0 0  t 0 0
0 1 0 0  t 0
0 0 1 0 0  t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

] (4.25)

where  t corresponds to the time step between two frames in a video and it is determined by the 
frame rate of the 2D/3D camera system which is dependent on the observation time given in equation 
4.11.

On the other hand, since the velocity of an object cannot always be constant in our applications, the 
above assumption is not true which consequently causes some errors in the prediction of the state from 
the dynamics of the object. Therefore, we assign process noise w t in equation  4.18 with covariance 
matrix of Qt to reflect this error.

To do a new measurement for the correction step in the Kalman filter, like what we did in the previous 
section, first we subtract the background and then apply contour detection to find the object of interest. 
In the next step, the center of mass of the found object in x, y and z is calculated and considered as the 
new measurement. Therefore, the measurement z t and the measurement matrix H in equation 4.19 can 
be formulated as

z t=[ x
y
z ] , H=[1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0]. (4.26)

This is actually the simplest case where there is just one single object moving in the scene. In the case 
of multi-object tracking, for each object a Kalman filter step is performed to predict its state. In the 
next pace, a correspondence matching approach similar to what we presented in the last section is 
fulfilled in order to correspond the new measurements to the predicted data derived from the Kalman 
filters.

For the cases with the nonlinear dynamics or measurement relations, an extended Kalman filter [108] 
can be used to handle these nonlinearities. Since in our applications it turned out that the Kalman filter 
is still useful we have excluded the extended Kalman filter from our work. 

4.3.2 The CONDENSATION Algorithm

The  main  limitation  of  the  Kalman  filter  in  visual  tracking  is  the  assumption  that  the  state's 
probability distribution is unimodal Gaussian. Therefore, the Kalman filter cannot represent multiple 
hypotheses  simultaneously.  For  example,  in  cluttered  scenes  there  are  typically  more  competing 
observations which lead to a non-Gaussian state density  [20],  or  in the cases where the object of 
interest might stop, reverse the direction or continue moving at the same speed, the Kalman filter is 
unable  to  represent  such  multimodal  distributions.  The  Conditional  Density  Propagation 
(CONDENSATION)  algorithm  [20] which  is  based  on  particle  filters  is  designed  to  address  the 
solution to such problems. 

The  CONDENSATION algorithm  is  an  iterative  algorithm  to  calculate  the  a  posteriori density
f x t∣Z t∣Z t  , where the x(t) represents the state vector at time t with the dummy vector  30and Z(t) 

30 The notations are taken from [10] and [11].
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is the history of all observations {z 1 , z 2 , ... , z t } up to time t. An iteration step of the CONDENSATION 
algorithm at time t starts with a sample set {s t

n:n=1,. .. , N } with weights t
n (sampling probability). 

This sample set represents the a posteriori density f x t−1∣Z  t−1t−1∣Z t−1 from the previous time step. 
The  sample  set  s is  propagated  to  obtain  a  new  sample  set  s'  according  to  the  system  model
f x t/ x t−1∣xt−1 .  The sample set  s'  represents the  a priori density  f x t∣Z t−1∣Z t−1 .  Using the 

observation density f z t ∣x t ∣ and by applying the factored sampling a new sample set s'' is derived 
from s' which represents the new a posteriori density f x t/ Z  t∣Z t  . A more detailed explanation of 
this algorithm can be found in [20], [94], [91] and [48].

For the implementation of the CONDENSATION algorithm in our work, in the first frame, the regions of 
interest which might represent the position of the desired objects are found in 2D/3D video. This is 
done by applying background subtraction and contour detection as we discussed before. In the next 
step, we initialize 100 3D-particles, with x,  y and z elements, randomly inside the detected contours 
with the equal weights, i.e., the particles (hypotheses) are associated to the contours which represent 
the object of interest potentially.

Based on a new measurement, the weights of all particles are updated. This is done by looking at the 
distance value (3D data) of that particle in the 3D segmented image. Finally, the particles are updated 
in  a  re-sampling  process  in  which  a  new  set  of  samples  are  generated  based  on  the  computed 
confidences.

4.3.3 Evaluation of Results

In this section, we evaluate some results of the probabilistic tracking approaches using the discussed 
Kalman filter and the CONDENSATION techniques. To do that, we have selected three scenarios which 
are recorded as 2D/3D videos, in each of them a person is moving in the scene. To evaluate the results, 
we find the trajectory of the person in x and y directions in the image coordinate system and label it as 
the ground truth. In fact, in the ground truth, the position of the person in each time stamp is derived 
manually by identifying the center of the bounding box to the person at that time. To compare the 
results  of  the  tracking techniques  we plot  the  trajectory of  the  object  obtained from each tracker 
against the ground truth and calculate the error rate.

In the first scenario, a person appears in the scene from the left, follows a path to the right, stops in a 
distance close to the camera and then returns back the same path and finally leaves the scene. The 
person is tracked using both the Kalman filter and the CONDENSATION technique. Some of the results 
of tracking are shown in Fig. 4.15. For the Kalman filter, both the prediction and correction results are 
depicted as the red and yellow points in the image respectively. From these samples, it can be seen 
explicitly that how the predicted point in each image (red point) deviates from the real center of mass 
and how it has been corrected (yellow point) using a new measurement in the Kalman process. For the 
CONDENSATION, the person is represented with the updated particles in each frame which are shown as 
the green points in the image. To derive the trajectory, we calculate the mean31 of all particles and 
consider it as the result of the tracker. The mean point of the particles is shown as a yellow point in the 
image results. 

The ground truth trajectory of the person with the found trajectories from both trackers are shown in 
Fig. 4.16. As we can conclude from the results, while the CONDENSATION technique outperforms the 
Kalman filter  in  the  tracking  of  the  person in  x direction (main  direction of  the  movement),  the 
trajectory found by the  CONDENSATION  technique in  y direction is  not  as  satisfactory as in the  x 
direction.  To compare  the  results  of  the  trackers  quantitatively we  calculate  the  error  rate  of  the 
tracking as the mean Euclidean distance between the tracked points and the ground truth points over 
all the images in the video. This error rate is then presented in percentage by dividing it by the width 
and height of the image for x and y directions respectively. 

31 The mean of particles is a linear average of positions of the particles with equivalent weights.
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Figure 4.15: Some results of person tracking using the Kalman filter and the CONDENSATION technique (frame 
number 10, 35, 60, 150, 185, 215, 225, 235). First two rows represent the Kalman filter results. Red point  
shows the predicted (intermediate) position and yellow shows the corrected point (final result). Last two 

rows represent the CONDENSATION result where the particles are depicted in green and the mean of all (final  
result) is in yellow. 

Figure 4.16: Trajectory of the person in the image coordinate system. Black: Ground truth, Red: Kalman 
filter, Blue: CONDENSATION. Top: Trajectory in x direction. Bottom: Trajectory in y direction.
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In this case, the Kalman filter has an error rate of 6.54% in the x direction while the CONDENSATION 
gets the error of 5.3%, but on the other hand, the Kalman filter performs much better in  y direction 
with the error rate of 1.01%, whereas the CONDENSATION has the error rate of 6.54%.

In the second scenario, contrary to the first scenario, a person enters the scene from the camera side 
and moves away from the camera to reach the maximum 3D visible distance32. He returns the same 
path back to leave the scene. Some of the images of this scenario with the tracking results are shown in 
Fig. 4.17.

Same as the previous case we compare the results of the trajectories found by the trackers in x and y 
directions in the image coordinate system which are shown in Fig.  4.18. As can be seen from these 
results,  in  the  x direction both trackers  perform well  except  in  the  couple  of  first  frames  for  the 
CONDENSATION which is because of wrong initialization of the filter. Excluding the first two frames 
from the results, the CONDENSATION has the error rate of 2.71% while the Kalman filter performs with 
the error rate of 3.71%.

In y direction, the Kalman filter, same as the previous case, outperforms the CONDENSATION with the 
error rate of 4.52% which is about 6.87% for the CONDENSATION technique by excluding the first two 
frames from the results and 8.38% by including these two frames.

In the last case, we have considered a challenging scenario where a person first stands in the middle of 
the scene and then he starts moving towards the camera and stops in a fixed distance to the camera, 
then he bows down, waving the hands, jumping up and then moves again. This scenario represents a 
multi-modal movement (multi hypotheses) which can be difficult for a normal Kalman filter.

32 It is usually 7.5  m at frequency of 20 MHz.
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Figure 4.17: Some results of person tracking using the Kalman filter and the CONDENSATION technique (frame 
number 55, 80, 95, 150, 195, 215, 275, 295). First two rows represent the Kalman filter results. Red point  
shows the predicted (intermediate) position and yellow shows the corrected point (final result). Last two 

rows represent the CONDENSATION result where the particles are depicted in green and the mean of all (final  
result) is in yellow. 
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Figure 4.18: Trajectory of the person in the image coordinate system. Black: Ground truth, Red: Kalman 
filter, Blue: CONDENSATION. Top: Trajectory in x direction. Bottom: Trajectory in y direction.

Figure 4.19: Some results of person tracking using the Kalman filter and the CONDENSATION technique (frame 
number 25, 40, 70, 85, 120, 230, 280, 355). First two rows represent the Kalman filter results. Red point  
shows the predicted (intermediate) position and yellow shows the corrected point (final result). Last two 

rows represent the CONDENSATION result where the particles are depicted in green and the mean of all (final  
result) is in yellow. 
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However,  we have applied both the  Kalman filter  and the  CONDENSATION  technique to  track the 
person. Some results of this scenario are shown in Fig.  4.19. Likewise, the results of the trajectories 
obtained by the trackers are depicted in Fig. 4.20. As it can be seen from these results, in this case the 
CONDENSATION technique outperforms the Kalman filter in both x and y directions.

In x direction, while the Kalman filter has a higher error rate of 7.58%, the CONDENSATION technique 
results in just the error rate of 3.53%. In y direction, the CONDENSATION yields the error rate of 5.91%, 
whereas the Kalman filter has the error rate of 9.22%.

As seen, in the first two examples the person does not have so much movement in  y direction, like 
jumping up or bowing down movements. Therefore, the results of the Kalman filter in y direction is 
better  than  the  results  of  the  CONDENSATION.  In other  words,  the  tracking  in  y direction  can  be 
performed with a single Gaussian motion model better than by using a multimodal non-Gaussian one.

In the last example, in which the person sometimes jumps up and bows down, he has a multimodal 
movement in y direction. Therefore, the CONDENSATION which has a multimodal concept yields better 
result than a unimodal Kalman filter.

In all three examples, the CONDENSATION outperforms the Kalman filter in tracking the person in  x 
direction.
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Figure 4.20: Trajectory of the person in the image coordinate system. Black: Ground truth, Red: Kalman 
filter, Blue: CONDENSATION. Top: Trajectory in x direction. Bottom: Trajectory in y direction.
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4.4 Summary

This  chapter  discussed object  tracking using 2D/3D images.  In  the  first  step,  a  dynamic scene 
analysis is performed, consists of background subtraction and real time analysis. We have introduced a 
Mixture of Gaussian (MoG) and range thresholding, as background subtraction techniques, in 2D and 
3D image modalities respectively. The results showed that range thresholding performs better for the 
real time applications under varying lighting conditions.

In the next part, we have studied 2D/3D object representation and identification as a bottom-up object 
tracking approach. In this context, the features, which are extracted from both 2D and 3D images, are 
used to construct a similarity-based function. This function is used directly to establish correspondence 
between  detected  objects  across  the  frames.  In  this  section,  a  heuristic  technique  for  handling 
occlusion problem using 2D/3D image data has been presented.

Another approach for object identification is to use a classifier. In fact, if the object classifier is fast 
enough, it can be used directly for tracking purpose as well. This has been verified in this chapter by 
using Viola-Jones method for hand tracking.

Finally, we presented two main probabilistic object tracking consisting of the Kalman filter and the 
CONDENSATION. These techniques have been tested for the person tracking in this chapter. As it was 
seen, while the Kalman filter is a good tracker for the objects with the single Gaussian motion model, 
the CONDENSATION can perform much better in tracking the objects with multimodal non-Gaussian 
motion models like a fast maneuvering person.
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5
Applications

The only source of knowledge is experience. 
Albert Einstein (1879-1955)

In the previous two chapters we studied some aspects of object recognition and tracking based on 
2D/3D image data. In this chapter, we realize these aspects by putting them into practice in two major 
applications.  These two applications  have been selected such that  to  validate some results  of  the 
reviewed techniques in this work as well as to highlight the motivation behind our work in some real 
world problems.

The considered applications in this chapter are related to safety and control issues in the field of 
Human Robot Interaction (HRI). In the first application, the safety of the personnel working in close 
cooperation with an industrial robot is analyzed. In the second application, we will show how to make 
a  natural  interaction  system  to  command  an  industrial  robot,  using  hand  gestures.  These  two 
applications can, in fact, complement each other in many robot based domains in which on the one 
hand the safety of the operator is the main concern and on the other hand a natural and effective 
interaction with the robot is required.

5.1 Personnel Safety in a Human Robot Cooperation

The safety of the personnel in advanced industrial  automation, where the human and the robot 
share  the  workplace  and  cooperate  closely,  is  a  significant  issue.  Monitoring  of  the  working 
environment is one of the main approaches which can improve the safety of the personnel in a close 
cooperation with a robot. In this section we will show an example of a dynamic visual monitoring 
system for the safety of the personnel in the cooperation with a 4-axis swivel arm robot based on 
2D/3D imaging data.
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5.1.1 Background

In a conventional robot based automation system, the main approach to ensure safety is to exclude 
the involvement of humans in the working area of the robot in order to protect them from any hazards 
[58]. Therefore, many sensors and equipments are employed to separate the working area of the robot 
from the personnel.  The isolation of the operational  area of  the robot  in industrial  applications is 
usually performed based  on  the  main  standards  for  robot  safety in  the  factories  including  of  the 
American standard ANSI/RIA 15.0633 [99] and the European standard En-77534 [98]. In fact,  these 
standards address the requirements for the safety of the personnel in a fence guarded system, where the 
robot’s workplace is completely separated from the human. In other words, these standards prescribe 
that the safety is achieved by defining a region around the robot or the machine [13]. Some examples 
of the typical safety systems which isolate the defined region from the presence of the human are 
shown in Fig. 5.1 [26]. 

However,  in novel  and advanced robot  based automation,  the demands for highly flexible robotic 
systems, in which the complementary capabilities of robots and humans are combined, are rapidly 
increasing [58], [13], [109], [57]. In fact, in such applications the robot and human have to share the 
operational space and cooperate very closely. Thus, the complete isolation of the robot from the human 
is impossible and consequently the aforementioned standards are no longer tenable. Likewise, as the 
robots take more attention to be used widely in unstructured environments like in medical, office or 
home, close interaction or cooperation between humans and robots becomes inevitable and therefore 
such standards will be precluded from performing.

In general, there are three main approaches which can be applied to mitigate the hazards during the 
close cooperation of the human with a robot: i) Redesign the mechanical system of the robot, ii) Warn 
and train the operator and iii) Control the hazard using a safeguarding system [13]. 

The proper mechanical design of the robot can eliminate hazards to a great extent. For example, by 
using viscoelastic covering or spherical and compliant joints in the mechanics of a robot,  one can 
reduce the risk effectively [13]. Also, personnel training in order to instruct them, how to cooperate 
closely with a robot  is a widely used option in industry.  However, control  the hazards during the 
operation is the most important part of a safety solution in a close cooperation between human and 
robot. In fact, by controlling the hazards during operation, one can protect the personnel from the 
machinery and the machines from unauthorized objects. Monitoring of the working environment, as a 
key component of the hazards control, can provide useful information about the potential hazards in 
order to avoid them from occurring and enhance the safety.

33 Standard for Industrial Robots and Robot Systems - Safety Requirements.
34 Manipulating Industrial Robots - Recommendations for Safety.
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Figure 5.1: Typical safety systems.
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5.1.2 Dynamic Visual Monitoring 

The main aim of monitoring in a robot safety system is to detect and track the humans, objects as 
well as the robot itself during the operation in order to avoid any collision. To achieve this aim, first 
the zones around the working place of the robot should be defined. Then we need to specify the risk 
level for each zone. The standard safety solution systems, such as optoelectronic protective devices or 
light  grids,  can  monitor  the  predefined  areas  and  the  personnel  can  be  protected  from hazards. 
However, such safety systems have still some limitations which make them inefficient for using in a 
close man robot cooperation. Some of their limitations are as follows:

➢ They are unable to monitor the zones (3D volumes), they can just monitor the planes [25].

➢ They are not dynamically adjustable, i.e., any change to the field construction in the factory 
demands redesign and remounting the whole safety system.

➢ They always implement an emergency stop in the case of danger, independent of the level of 
danger. After each emergency stop, an expert must be called to return the robot to its exact 
position prior  to the  stop in  order  to  restart.  This  costs  time which has  a  negative effect, 
especially in the production line [25].

➢ They are expensive and complex in mounting.

➢ They usually need complementary sensors or components to provide a high safety level.

On the other hand, 3D vision systems, which can deliver range information, have the main advantage 
to observe the objects three dimensionally in any predefined zones and find their position precisely. 
This is the reason why nowadays the 3D Time of Flight cameras as well as laser scanners and stereo 
vision systems have gained a lot of attention to be used in this field [26], [109], [25].

In this work, using our new 2D/3D camera system, we propose a simple monitoring system, which not 
only provides us with the distance information but also with the high resolution intensity or color data. 
While the distance information is directly used to prevent any danger in terms of unauthorized  entry in 
the predefined zones, the color or intensity data from 2D sensor are employed to detect or classify the 
endangered object in order to make a right decision. In other words, the 2D/3D monitoring system is 
used such that to fulfill the following main safety requirements:

➢ Reliability: The hazards should be detected and tracked accurately and fast.

➢ Simple mount: The monitoring system usually consists of a camera(s) and a PC. Therefore, 
there is no need for any complex wiring or extra physical components.

➢ Dynamic adjustment: Different  zones  in  the  field  of  view of  the  camera can be created 
dynamically and a risk level is specified to each zone simply in the software level without any 
need for mounting sensors,  components or physical barriers.  The zones can be eliminated, 
combined or take different shapes for different scenarios.

➢ Non-binary functionality: Different zones have different risk levels. Therefore, as opposed to 
the conventional safety systems with binary functionality35,  the output of system is a non- 
binary function. In other words, a decision is made based on the detected danger level in each 
zone which does not necessarily imply an emergency stop.

In fact, the concept of safeguarding application presented in this work is based on the observation of 
dynamically producible volumes with arbitrary shapes and contexts to which we refer to as risk level. 
An example of an observation system using two cameras with a simple context36 is shown in Fig. 5.2. 
As we can see, in this case the whole area around the robot is observed with two cameras. Three  

35 Binary functionality of a safety system means that either it does not detect any hazard and let the robot operate, or it  
detects a danger and stops the operation of the robot completely.

36 Simple context signifies simple zone labeling.
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zones have been created around the robot with spherical shapes and for each zone a label is specified 
which signifies the risk level in that zone.

Safe zone is asserted to the volume where the robot and the tools attached to it do not reach to that and 
therefore the personnel are safe in this zone. Detection of the human or objects in this zone does not 
have any effect on the operation of the robot.

A shared zone is the defined volume, where the human and the robot cooperate closely. Although the 
presence of the personnel in this zone is allowed, this volume is the critical zone and it should be 
monitored precisely to avoid any collision. If neither personnel nor unauthorized objects are detected 
in this volume, the robot can operate at maximum velocity. If a human or an authorized object37 is 
detected in the shared zone, the velocity of the robot will be reduced. In this case, while any potential 
danger with the low risk level38 in this zone implies a warning signal, the one with the high risk level 
performs an emergency stop. Finally, detection of any unauthorized object in the shared zone implies 
danger with the high risk level which stops the robot from operation.

Hazardous zone is indeed a non-permissive volume around the robot in which the presence of any 
object or personnel is prohibited and therefore detection of anything except the robot and its attached 
tools in this zone implements an emergency stop.

5.1.3 Experiments and Results

In this section we present some results of our safety concept for cooperation with a Turboscara SR6, 
which is  a 4-axis robot  from Bosch Rexroth AG. The proper design of the safety system for this 
particular  application  relies  upon a  hazard  analysis  of  the  robot  system’s  use,  programming,  and 
maintenance operations.  According to the standard documents for  the  safety of  the personnel  who 
interact with the used robot, we have implemented the concept of context volume monitoring as shown 
in Fig. 5.3. Four zones with different context, interpreted as different levels of hazardous, have been 
defined and observed by the use of a 3D-TOF camera and a 2D/3D MultiCam. While the 3D camera is 
a C-mount camera with a large field of view, the used 2D/3D Multicam is a F-mount one with a 
narrow field of view. The main reason to use two camera systems in this application is to observe the 
whole four defined zones. As mentioned before, the zones can be defined and shaped dynamically 
during runtime. We label zone 1 as the hazardous volume. Zones 2 and 3 are the workplaces which can 

37 An authorized object can be any known object on which the robot operates. For example, for a packaging robot a known 
package is an authorized object whereas a metal tool left by the personnel is an unauthorized object.

38 The risk level is identified based on the distance of the personnel or object to the robot.
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Figure 5.2: An example of dynamic safety zones [figures are taken from web- 
unknown source] 
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be shared by the human and the robot and zone 4, since it is out of the robot’s range, is a safe volume 
for the personnel. In fact, if there is no object or person in the hazardous zone as well as in the shared 
volumes,  the robot works at  maximum speed.  If an object  or person is detected in a shared zone 
different of that in which the robot operates in, for example object or human is in zone 2, while the 
robot works in zone 3, an alarm is triggered and the robot reduces its operation speed. As soon as the 
object  or  person  enters  the hazardous  zone  or  is  occluded  by the  robot  in  the  shared  zones,  an 
emergency stop is performed and the robot motion stops immediately. In our setup, while the 3D-TOF 
camera monitors the four mentioned zones at high frame rates (100 images per second in our case), 
any motion in the shared zones are analyzed based on 2D/3D images.

It should be mentioned that the choice of four context volume is done for the sake of simplicity. One 
can think of an implementation using a higher amount of context zones, leading to a much more 
sophisticated control of the scene.

The moving objects in the predefined zones are detected and tracked. While the detection is done 
based  on  segmentation  and  classification  techniques,  the  tracking  is  implemented  using  the 
CONDENSATION algorithm.

First the background image of the scene without the presence of any moving objects including the 
robot or personnel is captured and saved. By starting the object detection and tracking program, the 
background is subtracted from each frame. After the simple background subtraction, the intensity and 
range  data  are  fused  to  be  used  as  the  input  information  for  the  segmentation  algorithm.  In  this 
application, the segmentation is treated as a clustering problem which we have already discussed in 
section 3.2.3. Each segmented object in the image is then classified based on some heuristics. As the 
robot is a rigid object and it is made of metal one can take the size and modulation amplitude39 as two 
explicit knowledge based features for the classification. Thus, we use the size of the robot and its 
corresponding modulation amplitude as important signatures to distinguish the robot from non-robot 
objects. After detection of the object(s), the tracking mechanism starts to estimate the position of the 
detected objects in each zone. As mentioned we have used the CONDENSATION algorithm, which was 
already discussed  in  the  last  chapter,  for  the  tracking  purpose.  The  observation  model  has  been 
configured to track the pixels of  the nearest  cluster  (the closest object) to each camera which are 
derived directly from range data. The number of particles in the CONDENSATION algorithm has been 
set to 50 samples and the particles are randomly initialized in a box form matching to the image size. 
The detection and tracking algorithms have been implemented using OpenCV library [3]. The robot 

39 The objects made of metal can reflect the emitted infrared light from 3D camera much more than non-metal objects.
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Figure 5.3: Left: Turboscara SR6, 4-axis robot which is used for our experiments. Middle: Space secured 
according to EN 775 given by the robot provider. Right: Dynamic safety system using MultiCam and 3D-

PMD. The zones can be defined dynamically.
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moves with the different velocities from the minimum 5  cm/s to the maximum 2  m/s.

In Fig.  5.4 some results of robot tracking in some instances are shown. The robot is detected and 
tracked after 5 iterations40 and the presence of the human as a new moving object in the safety zone 
does not confuse the tracking system, i.e., the robot is detected and tracked continuously [41]. 

Fig. 5.5 shows some results of human tracking in the workplace where the robot is far from the human 
and is not detected in the image. In this case, same as the previous case, the person is detected and 
tracked after 5 iterations.

In Fig. 5.6, we have shown some of the tracking results using 2D/3D images of MultiCam. The results 
are presented in the 2D images. The first row shows some frames where the robot operates in the FOV 
of the camera in hazardous and shared zones and can be detected and tracked successfully. Second row 
shows some frames where the hand is moved close to the moving robot in the shared zone to grab

40 The time for an iteration depends on the frame rate of the camera, samples number and the processing capability of the 
computer.
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Figure 5.4: Tracking of robot in the workspace using range images. The presence of the human in the safe 
zone does not confuse tracking. First column: Images taken by a normal camera from the scene. Last three 
columns: Robot tracked in 3D range images, green points are the particles and orange circle represents the 

center of all particles.

Figure 5.5: Tracking of human in the workspace using range images and without presence of the robot.  
First column: Images taken by a normal camera from the scene. Last three columns: Human tracked in 3D 

range images, green points are the particles and orange circle represents the center of all particles.
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something. In this case the hand is detected immediately and tracking is switched from the robot to the 
hand. This is because the hand is closer to the camera and assigned to the nearest cluster. By getting 
the exact position of the robot from the robot control system and having the position of the hand from 
tracking system, any occlusion can be avoided. After removing the hand from the occlusion area, the 
tracking system starts tracking the robot again and can find it after 5 to 6 iterations, dependent on the 
latest position of the robot, successfully.

5.2 Hand Based Robot Control

In the interaction between man and machine, an efficient, natural and intuitive commanding system 
plays a key role. Vision based techniques are usually used to provide such a system. In this section, we 
present  our  second  application,  so-called  “Hactor”,  in  which  a  real  time  hand  tracking  and 
classification system has been used as an interface for sending the commands to an industrial robot. 
The 2D/3D images, including low resolution range data and high resolution color information, are 
provided by a MultiCam at video frame rates. This real time application has shown promising results, 
even under challenging varying lighting conditions which was demonstrated at the Hannover Fair in 
2008.

5.2.1 Background

Nowadays,  robots  are  used  in  different  domains  ranging  from search  and  rescue  in  dangerous 
environments to interactive entertainment. The more the robots are employed in our daily life, the 
more  a  natural  communication  with  the  robot  is  required.  Current  communication  devices,  like 
keyboard, mouse, joystick and electronic pen are not intuitive and natural enough. On the other hand, 
hand gestures,  as  a  natural  interface  means,  has  been  attracting  so much attention  for  interactive 
communication with robots in recent  years  [60],  [47],  [74],  [46]. In this context, vision based hand 
detection and tracking techniques  are used to provide an efficient real time interface with the robot. 
However,  the  problem of  visual  hand  recognition  and  tracking  is  quite  challenging.  Many early 
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Figure 5.6: Tracking of the robot and the hand of an operator in the shared workspace using 2D/3D images,  
green points are particles and orange circle represents the center of the particle (final detected point).
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approaches used position markers or colored gloves to make the problem of hand recognition easier, 
but due to their inconvenience, they cannot be considered as a natural interface for the robot control. 
Thanks to the latest advances in the computer vision field, the recent vision based approaches do not 
need any extra hardware, except for a camera. These techniques can be categorized as model based and 
appearance based methods [45]. While model based techniques can recognize the hand motion and its 
shape exactly,  they are computationally expensive and therefore they are infeasible for a real time 
control application. The appearance based techniques, on the other hand, are faster but they still deal 
with some issues such as:

➢ complex nature of the hand with more than 20 Degree of Freedom (DOF)

➢ cluttered and variant background

➢ variation in the lighting conditions 

➢ real time computational demand.

In this application, on the one hand, we address the solution to the aforementioned issues in the hand 
recognition problem, using 2D/3D images and on the other hand we propose an innovative natural 
commanding system for a Human Robot Interaction (HRI). 

5.2.2 System Description

The system which is developed for hand based robot control consists of a set-up of the robot, 2D/3D 
imaging system and a control application.

➢ Set-Up: The set-up mainly consists of three parts:

1. A six axis, harmonic driven robot from Kuka of type KR 3 with attached magnetic 
grabber.  The robot itself has been mounted onto an aluminum rack along with the 
second system component. 

2. A dedicated robot control unit, responsible for robot operation and communication by 
running proprietary software from Kuka company.

3. The  main  PC  responsible  for  data  acquisition  from  2D/3D  imaging  system 
(MultiCam) and running the algorithms.

The communication between the robot  control unit  and the application PC is done by exchanging 
XML-wrapped messages via TCP/IP. The network architecture follows a strict client server model, 
with the control unit as the client connecting to the main PC, running a server thread, during startup.

➢ 2D/3D Imaging System: A 2D/3D imaging system using Time-of-Flight (TOF) technique is 
used. The principle of the camera system was already discussed in chapter 2.

➢ Control Application: In order to make the interaction system with the robot more convenient 
for the user, all the necessary commands to control the robot such as moving the robot in 6 
directions (x+, x-, y+, y-, z+, z-) or (de)activating the grabber are done by using a self developed 
GUI based application which is illustrated in Fig. 5.7. 

As a first step, we track the user's hand movement in a predefined volume which is observed by the 
MultiCam. After finding the hand in the image space, its position in the world coordinate system is 
calculated  and  mapped  into  a  virtual  space  inside  the  GUI  (see  Fig.  5.7).  The  virtual  space  is 
represented  by a  cuboid  of  defined  size  and  correlates  with  the  MultiCam's  view frustum.  Hand 
movement is visualized by placing a 3D hand model in the according location within the virtual space 
which can be observed by the user in the GUI. Thus, the user can see the movement of his hand 
virtually in the cuboid. Depending on the hand's distance from the center of the cuboid, a velocity 
vector is generated and wrapped into XML message. Some other state information are added to that 
message and it is sent to the  robot's control unit which is in charge of unwrapping and sending the  
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appropriate information to the robot itself.

By placing the hand model in the center of virtual space, the system can be put in a mode which is 
susceptible for special commands. For that matter, a rudimentary gesture classification algorithm has 
been implemented which is able to distinguish between a fist and a palm. We use self-defined fist to 
palm transition sequences (e.g., a palm-fist-palm transition) in order to perform a robot reset, put the 
system in predefined modes and to (de)activate the magnetic grabber which in turn enables the robot to 
handle ferric objects.

5.2.3 Algorithms Overview and Results

In order to remind the used techniques for this application, which have already been discussed in detail 
in the two previous chapters, an overview of the hand detection and posture classification has been 
shown in Fig. 5.8.

As we can see, the K-Means, as the clustering approach, is used to segment the range image which was 
discussed in section 3.2.3. After segmenting the range image, the 3D segmented image is mapped to 
the 2D image in order to obtain a 2D segmented image. As discussed in the previous chapter, due to 
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Figure 5.8: Hand detection and posture classification techniques for Hactor application.

Figure 5.7: Left: Hand based robot control using Multicam, Hannover Fair 2008.
Right: Graphical User Interface (GUI).
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the monocular setup of the camera, mapping is trivial and fast. Having a 2D segmented image, the 
Viola-Jones method is applied to detect the hand in the image which we already explained in section 
3.3.4. In fact, using the Viola-Jones technique we have implemented a binary classifier to distinguish 
between hand and non-hand objects. Since this classifier is very fast, we use it directly as a hand 
tracker which was stated in detail in section 4.2.3.

After the hand has been detected using the classifier, in the next step the pose of the hand should be 
classified. For this application, we consider a simple binary posture classifier to distinguish between 
palm and fist. As mentioned, any change from palm to fist and vice versa are interpreted as a special 
command for the robot. To solve the posture classification problem, a heuristic approach has been used 
which is very accurate and fast and it was already discussed in section 3.1.3.

Fig.  5.9 shows some qualitative results of hand detection and Fig.  5.10 depicts some pictures of the 
Hactor application in operation at the Hannover Fair in which the people control the robot using hand 
gestures. The quantitative results of this application was already stated in section 4.2.3.
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Figure 5.10: Demonstration of Hactor application at the Hannover Fair 2008. 

Figure 5.9: Some results of hand detection.
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5.3 Summary

The results of object recognition and tracking using 2D/3D image data have been realized in two 
practical  applications.  These applications  are  a  small  part  of  the whole field  where  2D/3D vision 
system can yield promising results.

In the first application, the safety of the personnel in a close cooperation with an industrial robot has 
been  investigated.  In  fact,  it  was  seen  that  using the  MultiCam one can  create  a  dynamic  visual 
monitoring system to observe the predefined zones around the robot and control its operation in order 
to avoid any hazardous.

In the second application,  as  the complement to  the first  one,  an intuitive and natural  interaction 
between the human and a robot has been presented. This is done by implementing a real time hand 
detection,  tracking and classification,  using 2D/3D images,  which is  employed as an interface for 
sending the commands to the robot.
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6
Discussion and Conclusion

A conclusion is the place where you got tired of thinking.
Arthur Bloch (1948-present)

This  dissertation  successfully  investigates  different  aspects  of  employing  a  monocular  2D/3D 
vision system for a real time object recognition and tracking. The core contribution of this work is 
fourfold: In the first part, a novel monocular 2D/3D vision system which can provide 3D range and 
2D color information, at video frame rate, is presented. In the second part, some aspects of object 
recognition using 2D/3D data are analyzed. This part  consists of preprocessing and classification. 
While the preprocessing approaches are used to fuse 2D/3D data, extract the features and segment the 
objects in the scene, the classification techniques are employed to detect the objects of interest and put 
the same in a class. The third part of this work, as a complement to the previous part, deals with the 
object tracking to locate the position of the desired object at each frame and find its trajectory. Finally, 
the last part validates the results of object recognition and tracking in some practical applications.

6.1 Conclusions

In the following the main conclusion points of this work are summarized: 

➢ Combination of TOF cameras with the high resolution standard cameras is a typical solution 
to the low lateral resolution issue in the current TOF cameras. In fact, such a combination can 
provide high resolution 2D images with distance information. However, combining these two 
cameras in a binocular setup deals with some issues such as sensor synchronization, image 
calibration and registration which can make the final solution practically complex or even 
infeasible for real world problems. 
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➢ The MultiCam which integrates a TOF sensor with a CMOS chip in a monocular setup has the 
main advantage that it does not require any complicated and time consuming calibration and 
registration techniques. Likewise, synchronization of 2D and 3D sensors in the MultiCam is 
simply attainable.

➢ Feature  extraction is  an important  aspect  in  this  work which deals  with derivation of  the 
informative attributes from acquired 2D/3D images. The features used in our work are either 
obtained by applying some mathematical approaches or based on some heuristics. While the 
former  presents  some  similarities  and  differences  in  the  data  which  cannot  be  observed 
directly by the  human being,  the  latter  indicates  some prior  knowledge about  the  desired 
object,  known by the  human.  Therefore,  the  features  in  our  work  are  categorized  in  two 
groups: Machine generated features and Human generated features.

➢ Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are two main 
techniques  to  extract  machine  generated  features.  It  was  seen  that  the  LDA  usually 
outperforms the PCA because LDA is a supervised technique which takes the label of the 
observation into account. However, when the data are undersampled, LDA is unable to achieve 
good results. PCA+LDA which first project the data to an intermediate space using PCA and 
then apply LDA can be a good solution to this problem.

➢ Human  generated  features,  which  are  derived  using  some  simple  heuristics,  can  be  good 
features for some applications in which we have a prior knowledge about the object of interest. 
Also, extraction of such features is usually performed very fast which is a significant point in 
the real time object recognition tasks.

➢ Range images can yield good results for object segmentation in the real world problems with 
varying lighting conditions.

➢ Fusion of multimodal range, intensity and modulation amplitude, output from a TOF sensor, 
provides new information which can improve the results of object recognition.

➢ Integration of two different segmentation approaches, performed for each modality imaging, 
can  improve  the  final  result  dramatically.  For  example,  while  edge  detection  yields  good 
results on high resolution 2D color images, the unsupervised clustering performs very well on 
3D range images. Integration of the 2D edge map with the clustered 3D image results in an 
improved 2D/3D segmented image. 

➢ Classification of moving objects using range data which is based on Support Vector Machines 
(SVM) yields good results even with a small training data set. Therefore, SVM can be a good 
choice for such cases where the number of training data is limited or it is impossible to collect 
so much training samples.

➢ AdaBoost is a very fast classification technique. Therefore, it is employed in the Viola-Jones 
method for real time object detection. By employing 2D/3D images in the Viola-Jones method, 
on the one hand the solution to the noisy background issue is addressed by using 3D range 
data and on the other hand the Haar-like features are extracted from high resolution 2D color 
image.

➢ Background subtraction using range date is much more functional than using 2D images in 
cluttered scenes.

➢ Fusion of features derived from 2D and 3D images can improve the performance of object 
tracking dramatically.

➢ Occlusion is one of the most significant challenges in the object tracking which can be handled 
by using 2D/3D image data to some extent.

➢ Two merged objects during occlusion can be identified by applying range segmentation.
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➢ If  a  classifier  is  fast  enough it  can be used directly as an object  tracker.  This is  done by 
applying the Viola-Jones  method and using 2D/3D images for  hand gesture  detection and 
tracking.

➢ Probabilistic  object  tracking  methods  like  the  Kalman  filter  and  the  CONDENSATION 
algorithm can address  the solution to  issues such as  inaccuracies in sensor data,  complex 
object motions, appearance changing, occlusion and sudden lost of observations.

➢ While  the  Kalman filter  performs  very well  for  tracking  objects  with  unimodal  Gaussian 
motion  model,  the  CONDENSATION can  perform  much  better  in  tracking  objects  with 
multimodal  non-Gaussian  motion  models.  This  is  shown  in  tracking  a  fast  maneuvering 
person.

➢ The results of 2D/3D object recognition and tracking are validated in the personnel safety and 
robot control applications successfully.

6.2 Limitations

In this section, we will review some main limitations of this work which can be addressed in the 
future works.

➢ The unambiguous  range  measurement  in  the  MultiCam is  restricted.  For  example,  in  the 
frequency of 20 MHz, it is limited to 7.5  m. Therefore, while the objects over this distance can 
be observed in 2D image of the MultiCam, they do not have any reliable distance information 
in the 3D image.  Although reducing the frequency can increase the unambiguity of  range 
measurement, it reduces the resolution of range measurement as well.

➢ One of the main limitations of the MultiCam is its poor performance in outdoor applications. 
This is because the TOF range data are affected by the sun light to a great extent. This makes 
the use of current TOF range sensors impractical in outdoor environments like in automotive 
applications. 

➢ The  infrared  lighting  is  one  of  the  key  components  of  TOF  cameras.  For  a  good  depth 
perception  of  the  scene,  a  powerful  lighting  system is  required.  For  example,  for  some 
applications  where  a  large  scale  scene  should  be  observed,  a  very powerful  illumination 
system is required which can increase the complexity of the camera system as well as its cost.

➢ The current  TOF sensors are still  more expensive than the conventional  CCD and CMOS 
sensors which limits their large scale use for many applications.

6.3 Suggestions for Future Works

There are still some ongoing works at ZESS to improve the MultiCam as well as the techniques for 
object recognition and tracking. Some other points can be considered in future work. However, in the 
following we list some important points as suggestions:

➢ Improving the MultiCam by employing the new version of TOF sensors with higher resolution 
than what we have used in this work.

➢ Employing distributed lighting systems in those applications, where one lighting system is not 
enough to illuminate the whole scene.

➢ Upgrading the communication protocol from USB 2.0 to Gigabit Ethernet or USB 3.0 in order 
to increase the acquisition rate of the MultiCam.

➢ Implementation of some basic and general algorithms which might be used for many object 
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recognition problems inside the FPGA in the MultiCam.

➢ Using more than one MultiCam in the multi camera scenarios where the scene can be observed 
from different views.

➢ Investigation on the combination of the MultiCam with stereo vision systems or even setting 
up a stereo vision system using two MultiCams.

➢ Design and implementation of an automatic zoom for the MultiCam which can be interesting 
for some applications where an object in the scene can be zoomed to analyze it precisely.

➢ Integrating of the MultiCam with other sensors in a heterogeneous sensor network can address 
some solutions to the limitations of  the MultiCam, especially in outdoor applications.  For 
example, combining the MultiCam with other sensors such as thermal or acoustic sensors can 
be considered for a reliable object recognition and tracking.
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Appendix A - Expectation Maximization

Probabilistic models are usually used in order to model the observed data. For example, a data set 
can be characterized by a mixture of Gaussian distributions as a probabilistic model. The aim is to find 
the parameters of the model which best fit to the observed data. Maximum Likelihood Estimation 
(MLE) is  one of the popular  approaches to find the  parameters  of  the model.  However,  in  many 
situations the data are incomplete, i.e., some parts of an observation are missing. For example, in the 
case where a whole data set is to be modeled with a mixture of Gaussian, we do not know which data 
belongs  to  which  distribution,  therefore  the  class  labels  are  missing  or  hidden.  This  is  called 
incomplete data and one cannot easily apply the MLE to estimate the parameters of a model for such a 
data. Expectation Maximization (EM) is a general approach to iterative computation of  maximum-
likelihood estimates when the observations can be viewed as incomplete data. This appendix reviews 
the main important points in derivation of EM technique [97], [107], [8].

A.1 Maximum Likelihood
We let f X //P  be a probability density function which is  governed by the set  of  unknown 

parameters ={1 , ... ,n } . We also suppose that there is a sample data set X={x1,...,xn} with n data 
vectors which are independent and identically distributed (iid) with distribution f. For iid sample set 
the density function can be written as follows

f X //P = f x1, x2 , ... , xn /1, 2,. .. ,n
1,2 , ... ,n/1,2 , ... ,n  

= f x1/ 1
1/1 . f x2 /2

2/2 . ... . f xn / n
n/n=∏

i=1

n

f x i/ i
i /i  A.1

where  and P={1 , ... ,n} are dummy vectors such that  , P∈ℝn .

This function can also be seen in such a way that the observed data X is fixed and the parameters   
can be varied. Form this point of view, it is called the likelihood of parameters given the data or so-
called likelihood function which is formulated as follows

L/X P /=∏
i=1

n

f x i /i
i /i . A.2

The idea behind MLE is to maximize the likelihood of parameters with respect to the observation data. 
In other words, we would like to find  where

=argmax
P

L/ X P / . A.3

Since it  is  analytically easier  to work with the logarithm of likelihood function we maximize the 
following function instead
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L/X P /=∑
i=1

n

ln f x i/ i
i /i . A.4

The objective function L/X P / for some cases in which the data is complete has a single global 
optimum which can be found in closed form. In contrast, for the incomplete data cases the objective 
function has multiple local maxima and no closed form solution. More often, however, the observed 
data are incomplete and therefore the closed form solution to this maximization problem does not 
exist. In such cases we need to apply more elaborate techniques to the problem. The EM algorithm is 
one of such techniques which will be studied in next sections.

A.2 EM Algorithm
The  Expectation  Maximization  (EM)  algorithm  is  a  generalization  of  maximum  likelihood 

estimation for finding the parameters of a model from a data set which is incomplete or has missing 
values. In general, there are two types of the EM applications. In the first type, the EM algorithm is 
applied when the data has missing values due to the problems or limitation of observation process. The 
second  type  of  the  EM  application  is  when  optimizing  the  likelihood  function  is  analytically 
intractable  and the  likelihood function can be simplified by considering the additional  but  hidden 
(missing) parameters. In both of these applications, the EM algorithm provides a simple and robust 
tool for parameter estimation in an iterative computation process. Since each iteration of the algorithm 
consists of an expectation step followed by a maximization step, it is called the EM algorithm [107].

We assume that the data X is an incomplete observed data set, and associated with a complete data set 
Z such that Z = {X,Y} and there is a projection Z X which is many to one. The joint density function 
for the complete data set can be written as follows

f Z / /P= f X , Y / ,/P = f Y / X ,/ , P f X //P  (A.5)

where  , P ,  and  are dummy variables in real coordinate space ℝn .

In fact, the EM algorithm is directed at finding the parameters  which maximizes f X //P  given 
an  observed data  X by  the  use  of  the  associated  family f Z /  /P .  In  other  words,  for  each 
observation in the incomplete data set X, we consider the corresponding value of the latent variable in 
Y such that  {X,Y} makes our complete data set. Now we define a new likelihood function called the 
complete-data likelihood which is as follows

L/Z P /=L/ X ,Y P / , . (A.6)

This function is a random variable because the hidden variables  Y  is  unknown. We will  suppose, 
however, that maximization of the complete-data log likelihood function is straightforward.

Since we do not have the complete data set Z, we cannot use the complete-data log likelihood function. 
The solution, proposed in the EM algorithm, is to find the expected value of the complete-data log 
likelihood with respect  to the  unknown hidden data  Y given the  observed data  X and the  current 
parameters.  This,  in  fact,  corresponds to  the  E-step of  the  EM algorithm and is  expressed in  the 
following function
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Q P , Pold =E [ ln f X ,Y /old  ,/P/ , Pold ]  (A.7)

where old are the current parameter values with corresponding dummy variables Pold in the density 
function. In this equation, the data set X and parameters old are known and constant and  is a set of 
parameters  that  we  want  to  adjust  and  Y is  a  random  variable  which  is  governed  by  the
f Y / X ,old / , Pold  . Therefore, the equation A.7 can be written as follows

QP , Pold =∑


ln f X ,Y / ,/P f Y / X ,old / , Pold   (A.8)

where  is the space of values the random variable Y can take on.

It should be mentioned that f Y / X ,old / , Pold  is the marginal distribution of the hidden variables 
and is dependent on the observed data X and the current parameters old .

In the next step, the EM algorithm determines the revised parameter estimate new by maximization of 
the Q function. This is called M-step in the EM algorithm.

Pnew=argmaxQ P , Pold  . (A.9)

In fact, the EM algorithm starts by choosing some values for the parameters as the initial values and 
then these two steps are repeated till  the algorithm converges to a local maxima of the likelihood 
function.

A.3 The EM for Gaussian Mixtures
The  estimation  of  parameters  for  a  mixture  of  Gaussian  distributions  is  one  of  the  widely used 
applications of the EM algorithm in the pattern recognition field. In fact, Gaussian mixture model, as a 
simple linear superposition of Gaussian components, can provide a richer class of density models than 
a single Gaussian. In this case, the sample data set X={x1,...,xn} can be modeled using a mixture density 
function as follows

f X //P =∑
k=1

K

k f X /k
/k   (A.10)

where each Gaussian density function is parametrized by i∈ and the parameters k∈ are called 

mixing coefficients such that∑
k=1

K

k=1 .

Therefore the incomplete-data log likelihood function for A.10 is as follows

ln L/ X P /=ln∏
i=1

n

f xi /
i /P=∑

i=1

n

ln∑k=1

K

k f x i / k
i /k  . (A.11)
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Optimizing the log likelihood function A.11 is difficult because it contains the log of the sum. In order 
to  solve  this  problem,  we  consider  X  as  incomplete  data  set  and  associate  unobserved  data
Y={y1, y2 , ... , yn } in which y i∈{1,... , K } and  yi = k  if the  ith data sample is generated by the  kth 

mixture component.

Now  by  assuming  the  existence  of  the  hidden  variables  Y and  making  an  initial  guess  for  the 
parameters, old , we can obtain the marginal density function f Y / X ,old / , Pold  as follows

f Y / X ,old / , Pold =∏
i=1

n

f y i/ x i ,
old i /i , Pold  . (A.12)

Therefore the equation Q in A.8 for this case takes the form of

Q P , Pold =∑


ln f X ,Y / ,/P∏
i=1

n

f y i / x i ,
old i /i , Pold   

=∑
yi∈
∑
i=1

n

ln  yi
f xi / y i

y i i /y i
∏

i=1

n

f y i/ xi ,old i /i , Pold   (A.13)

we follow the same mathematical simplification which is done in  [107] to take the  Q equation as 
follows

Q P /Pold =∑
k=1

K

∑
i=1

n

ln k  p {: k=/ x i= ,=Pold }  

∑
k=1

K

∑
i=1

n

ln f xi / k

k i /k  p {: k=/ x i= ,=Pold }  (A.14)

where  is a dummy variable corresponding to the kth Gaussian distribution.

Now, in order to find the parameters k and k for the kth distribution, we can maximize the two terms 
in Q function independently because these parameters are not related.

By introducing the Lagrange multiplier  with the constraint∑
k
 k=1 we can find k by solving the 

following equation

∂
∂k [∑k=1

K

∑
i=1

n

ln  k  p {:k=/ xi= ,=Pold }∑k
 k−1]=0  

 ∑
i=1

n 1
k

p {: k=/ x i= ,=Pold }=0 . (A.15)

Summing over k, we get =−n which consequently results in
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k=
1
n∑i=1

n

p {: k=/ x i= ,=Pold } . (A.16)

For the kth Gaussian distribution with the dimension of d, we are looking for the parameters consisting 
of mean and covariance k=k ,k  in the following density function

f x/k ,k

k /o ,o=
1

2d /2∣o∣
1 /2 exp{−1

2
−o

T o
−1−o} . (A.17)

By substituting the Gaussian distribution in the second component of equation A.14, and taking the 
derivative with respect to k and setting to zero, we get the following equation

∑
i=1

n

k
−1 x i−k  p {: k=/ x i= ,=Pold }=0  (A.18)

in which we can find the parameter k  as follows

k
new=

∑
i=1

n

i p {: k=/ x i= ,=Pold }

∑
i=1

n

p {: k=/ x i= ,=Pold }
. (A.19)

By taking the derivative of the same with respect to k and taking some assumptions, we can obtain 
the k

as follows

k
new=

∑
i=1

n

p { :k=/ x i= ,=Pold }i−k i−k 
T

∑
i=1

n

p {:k=/ x i= ,=Pold }
. (A.20)
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Appendix B- The CONDENSATION Algorithm

The CONDENSATION algorithm is based on factored sampling. It is a solution to the problems with 
multimodal non-Gaussian observations. In the following this technique will be reviewed  [20],  [91], 
[94].

Table B.1- Notation of vectors and probability distributions.

Symbol meaning

x t  State vector at time t with corresponding dummy 
vector 

z t  Measurement vector at time t with 
corresponding dummy vector 

X t  History of the state {x1,..., xt} up to time t

Z t History of all observations {z1,..., zt} up to time t

f x t /Z t / z t The a posteriori density function

f x t /Z t−1/ z t−1 The a priori density function

f x t / x t−1/ xt−1 The process density describing the stochastic 
dynamics

f z t / x t / The observation density

f x t−1 /Z t−1 t−1/Z t−1 The initialization density

➢ Stochastic Dynamics

Based on general assumption from Markov chain, the new state is conditional directly only on
the immediately preceding state, but not on any function prior to t-1.

f x t /X t−1 / X t−1= f x t / x t−1/ x t−1 . B-1

➢ Measurement

Observations  are assumed  to  be  independent  and  therefore  defined  by  specifying  the 
conditional density f z t / x t / .

-118-



➢ Propagation

Given a continuous-valued Markov chain with independent observations, the conditional state
density at time t is defined by f x t /Z t /Z t . This can be calculated as follows

f x t /Z t /Z t=k t f z t  / x t  / f x t /Z t−1/Z t−1 . B-2

where kt is a normalization constant and

f x t /Z t /Z t=∫
x t−1

f x t / xt−1/ x t−1 f x t−1 /Z  t−1 x t−1/Z t−1dx t−1 . B-3

In fact, the problem can be summarized as follows

f x t−1 /Z t−1 x t−1/Z t−1 
dynamics f x t  /Z t−1 /Z t−1 

measurement  f x t /Z  t /Z t 
.

B-4

To solve this problem, the CONDENSATION algorithm, as opposed to the analytical solutions, employs 
factored sampling. The factored sampling generates a random variate  x'  from a distribution f x 
which  approximates  the  posterior f x t /Z t /Z t .  To  do  that,  first  a  sample  set  {s(1),...,s(N)}  is 
generated from the priori density f x   with probability  j as follows

 j=
f z  s

 j

∑
j=1

N

 f z s
 j 

 B-5

where

f z= f z t  / x t  /  B-6

is the conditional observation density.

In  fact,  the  CONDENSATION algorithm  applies  factored  sampling  iteratively  to  calculate  the  a 
posteriori density f x t /Z t /Z t. An iteration  step  starts  with  a  sample  set  s representing  the  a 
posteriori density f x t−1 /Z t−1 x t−1/Z t−1 from the previous time step. In the prediction step,  s is 
propagated to obtain a new sample set  s' according to the system model.  s' represents the a priori 
density f x t /Z t−1/Z t−1. In updating step the observation density is used to derive a new sample 
set  s''  by  applying  factored  sampling.  Thus  s''  represents  the  new  a  posteriori  density 
f x t /Z t /Z t.

One time step in the CONDENSATION algorithm has been shown in Fig. B.1.
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Figure B-1: One time-step in the CONDENSATION algorithm [20].



Appendix C- The MultiCam's Data Sheet
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