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Abstract

T
he present thesis addresses the topic of 3D range imaging in a twofold way: new
methods in the field of range data simulation as well as the accumulation of

range images into a consistent data representation, namely 3D environment models,
for high quality 3D object reconstruction are proposed.

Within the last years inexpensive Time-of-Flight (ToF) range imaging devices have
become an alternative to traditional depth measuring approaches. ToF cameras mea-
sure full-range distance information by actively illuminating a scene and measuring
the time until back-scattered light is detected. The final distance information is com-
puted from multiple raw images. This thesis proposes a method for simulating the
ToF principle in real-time along with the major sensor characteristics. The approach
is motivated by physically-based illumination models and applied to the simulation
of Photonic Mixing Devices, a specific type of ToF sensors.

Furthermore, this thesis presents new methods of range data accumulation in real-
time. While the hierarchical volumetric approach supports merging and subtraction
of sub-volumes with arbitrary resolutions, the point-based fusion method accounts for
spatial limitations of previous approaches and addresses high quality 3D reconstruc-
tions at extended scales. Additionally, dynamically changing scenes are supported
which results in advanced camera pose estimation as well as reduced drift errors.
The algorithms are evaluated using simulated data as well as real camera data from
structured light and ToF devices.

The algorithms presented in this thesis feature an extensive data-parallel implemen-
tation on current graphics processing units in order to ensure the online capability
of the methods but without restricting the algorithms to hardware-specific features.
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Zusammenfassung

D
ie vorliegende Arbeit befasst sich im Bereich der 3D Tiefen-Bildverarbeitung mit
zwei unterschiedlichen Themengebieten: zum einen geht es um neue Ansätze

zur Simulation von Tiefenbilddaten, zum anderen geht es um die Akkumulierung
von Entfernungsbildern in eine konsistente Datenbasis - auch 3D Umgebungsmodelle
genannt - für qualitativ hochwertige 3D Objektrekonstruktionen.

Im Laufe der letzten Jahre haben sich kostengünstige 3D Laufzeitkamerasysteme
(Time-of-Flight, ToF) zu einer ernstzunehmenden Alternative zu traditionellen Ab-
standsmessverfahren etabliert. ToF-Kameras erfassen Entfernungsbilder, indem die
Szene aktiv beleuchtet und die Laufzeit des reflektierten Lichts bestimmt wird. Dabei
werden die Tiefendaten aus mehreren Rohbildern rekonstruiert. Diese Arbeit stellt
einen Ansatz zur Echtzeit-Simulation des ToF-Verfahrens vor, welcher auch die Simu-
lation von relevanten Sensor-Charakteristiken umfasst. Der Ansatz ist physikalisch
motiviert und findet seine Anwendung in der Simulation von Photomischdetektoren
(Photonic Mixing Devices), welche auf dem Lichtlaufzeitverfahren basieren.

Darüber hinaus werden in der vorliegenden Arbeit neue Verfahren für die Akkumu-
lierung von Entfernungsbildern präsentiert. Der hierarchisch-volumetrische Ansatz
unterstützt das Hinzufügen und Entfernen von Teil-Volumen mit unterschiedlicher
Auflösung. Im Gegensatz zu bisherigen Ansätzen stellt die punkt-basierte Metho-
de qualitativ hochwertige Rekonstruktion von großen Szenen sicher. Des Weiteren
werden dynamische Szenen unterstützt. Dadurch verbessern sich die Abschätzung
der Kamerapose sowie das Abdriften während der Datenfusion. Die Anwendung der
Algorithmen wird unter Nutzung von Simulationsdaten und realen Kameradaten (ba-
sierend sowohl auf dem strukturierten Licht-Ansatz als auch auf dem ToF Verfahren)
demonstriert.

Alle präsentierten Algorithmen zeichnen sich durch eine umfangreiche daten-parallele
Implementierung auf derzeit verfügbaren Grafikkarten aus, um die Echtzeitverarbei-
tung sicherzustellen. Die Algorithmen werden dabei nicht auf hardware-spezifische
Aspekte eingeschränkt.

iii





Contents

Abstract i

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overall Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Fundamentals 7
2.1 Current Range Imaging Techniques . . . . . . . . . . . . . . . . . . . . 7
2.2 Photo Mixing Device Technology . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Signal Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Pixel Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Sensor Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Environment Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Types of Representation . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Graphics Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Graphics Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 General Purpose Computation . . . . . . . . . . . . . . . . . . 27
2.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Time-of-Flight Sensor Simulation 31
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Physically-based Sensor Model . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Illumination and Radiosity . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Simple Model with Point Light Illumination . . . . . . . . . . . 34
3.3.3 Enhanced Model including Area Light Illumination . . . . . . . 36

3.4 Simulation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.1 Phase Image Calculation . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Flying Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.3 Motion Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.4 Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5.5 Integration of Sensor Noise . . . . . . . . . . . . . . . . . . . . 42

3.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

v



vi CONTENTS

3.6.1 Evaluation: Comparison to Real Sensor Data . . . . . . . . . . 43
3.6.2 Wiggling Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.3 Motion Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.6.4 Illumination: Point Light vs. Area Light . . . . . . . . . . . . . 45
3.6.5 Experimental Scenes . . . . . . . . . . . . . . . . . . . . . . . . 46

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Hierarchical Volumetric Data Accumulation 51
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Overview of Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Tree Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.2 Tree Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.1 Storage of Dynamic Volume Trees . . . . . . . . . . . . . . . . 58
4.4.2 Modification of Dynamic Volume Trees . . . . . . . . . . . . . 59
4.4.3 Redundancy Optimization . . . . . . . . . . . . . . . . . . . . . 62
4.4.4 Generation of Dynamic Volume Trees . . . . . . . . . . . . . . 62
4.4.5 Rendering Taversals . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.1 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 65
4.5.2 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.4 Experimental Scenes . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Point-based Fusion of Range Data 77
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3 Basic Fusion System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Overview of Concept . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Depth Map Pre-processing . . . . . . . . . . . . . . . . . . . . 81
5.3.3 Depth Map Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.4 Camera Pose Estimation and Rendering . . . . . . . . . . . . . 87

5.4 Advanced Fusion System: Scene Dynamics . . . . . . . . . . . . . . . . 89
5.4.1 Overview of Concept . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Algorithmic Details . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Occupancy Grid Integration . . . . . . . . . . . . . . . . . . . . . . . . 91
5.5.1 Overview of Concept . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.6.1 Ground Truth Data Evaluation . . . . . . . . . . . . . . . . . . 98
5.6.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6.3 Experimental Scenes . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6 Conclusion and Outlook 105
6.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 105



CONTENTS vii

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

List of Figures 122

List of Tables 123





Chapter 1

Introduction

N
owadays, a wide range of applications rely not only on two dimensional image

data but utilize additional sources such as depth information in order to increase

accuracy and to solve ill-posed problems. Many applications in the field of gaming,

robotics, automotive, and augmented reality rely on range images which are used

for capturing the real world environment in 3D. The ability of rapidly responding to

environmental changes requires real-time camera systems for range data acquisition

as well as online 3D reconstruction methods.

The emergence of inexpensive consumer depth cameras received much attention by

developers in the 3D reconstruction community since classical range imaging devices

are rather expensive and inconvenient to use. Microsoft’s Kinect camera is a famous

example of a widely distributed range imaging system and its successful usage in

many application areas. The Kinect has originally been provided along with Mi-

crosoft’s Xbox for steering games with gestures in order to allow for a novel and

immersive gaming experience. Its technology is based on the structured light prin-

ciple. However, the mass distribution of the Kinect helps also other range imaging

systems to be accepted by developers and by the market. Within the last years

Time-of-Flight (ToF) range imaging has become an alternative to traditional depth

measuring approaches. These cameras have the potential of efficiently generating

depth data at the desired quality for a wide range of applications. ToF cameras

measure full-range distance information by estimating the elapsed time between the

emission and the reception of active light in real-time. Such sensors are inexpensive,

compact, and they have a high performance. In contrast to stereoscopic approaches,

ToF sensors compute range data by simple calculations which require only a small

amount of computational resources. However, current ToF sensors are affected by

systematic error sources as well as motion artifacts. Furthermore, their spatial reso-

lution is low compared to other depth sensing technologies.

In this dissertation a new physically-based ToF sensor simulation is proposed which

is capable of simulating the major sensor artifacts in real-time. Furthermore, new 3D

reconstruction algorithms of environmental modeling and high quality surface ren-

dering are introduced which utilize latest consumer depth cameras. The problems of

real-time processing of noisy range images are addressed and solutions are presented

for capturing large scale environments.
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2 Introduction

1.1 Context

Parts of this thesis have been developed within the Lykeus 3D project, an interdis-

ciplinary collaboration of various universities and companies. The project has been

funded by the Federal Ministry of Education and Research (BMBF) and its main goal

is the creation of 3D real-time camera systems for intelligent environment capturing

using Photo-Mixing-Device (PMD) technology which is based on the ToF principle

(Lynkeus promotional reference: 16SV2296). In particular, the project focused on

the development of hardware standards, interfaces, and modular software compo-

nents in the field of 3D vision. The project covered the design of a newly developed

3D camera chip, the creation of novel image processing algorithms as well as the

depth sensor’s application in real world scenarios. In detail, the 3D camera system

has been demonstrated in a robot’s bin picking application, a driverless transport

system, a human-robot interaction application, and finally in the area of terahertz

imaging.

In the context of Lynkeus 3D, the Computer Graphics and Multimedia Systems

Group at the University of Siegen has been responsible for two main components of

the camera system. On the one hand, the project demanded for an application which

simulates ToF sensors in real-time. The physically-based simulation of such sensors is

an essential building block for hardware design and application development. There-

fore, the simulation data must capture the major sensor characteristics. On the other

hand, the creation of a 3D model of the environment in real-time has been required.

The major purpose of environment modeling is the temporal accumulation of sensor

data into a consistent data basis which then is available for subsequent algorithms

of the various demonstrators.

After successfully finalizing the work in the Lynkeus project the research has been

extended in the area of environment modeling. Ongoing collaborations with the

German Aerospace Center in Munich, pmdtechnologies in Siegen, Microsoft Research

in Cambridge, and the University College London led to various publications as well

as fruitful co-operations during the time this thesis has been prepared.

1.2 Overall Goals

In this dissertation the topic of 3D range imaging is investigated in a twofold way:

range data simulation as well as the accumulation of range images into a consistent

data basis, namely 3D environment models, is discussed. However, from a general

point of view similar goals can be pointed out:

High quality results The results of the various approaches are of high quality.
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Regarding the ToF sensor simulation the computed output data is as close

as possible to the data of real world devices reflecting also technology-based

artifacts. In the field of range data accumulation the reconstructed 3D models

represent the environment in original scale including small details and an overall

minimal drift error.

Real-time capability The real-time application of all methods is important. The

ToF sensor simulation is seen as a substitute for a real world device and thus

adequate frame-rates need to be maintained. Since the data accumulation

methods reflect changes in the environment immediately the processing of the

devices’ full frame is targeted.

Applicability Parts of this thesis rely on the processing power of GPUs in order

to ensure the real-time capability. However, the algorithms are designed and

implemented regardless of latest specific GPU features in order to allow for a

wider acceptance by the community. Additionally, all approaches are described

as complete as possible not assuming any prerequisites which further increases

the usability of the methods.

1.3 Contributions

This thesis contributes to two major parts in the field of 3D range imaging: firstly, the

real-time simulation of ToF range data is addressed. Secondly, new methods of the

accumulation of range images for high quality 3D object reconstruction are proposed.

Most parts of this work have been published in several scientific articles [KOKP07,

KK09, KCK09, OKK09, FHK∗10, KLL∗13]. In particular, the contributions of the

presented work are:

Real-time simulation of Time-of-Flight sensors This approach proposes a novel

method for simulating the ToF principle along with its major artifacts. The

approach is physically-based and applied to the simulation of PMD sensors, a

specific type of ToF sensors. The simulation incorporates various new elements:

– Development of a theoretical physically-based sensor model for the ToF

principle.

– Simulation of the major temporal and spatial ToF artifacts as well as the

systematic deviation error.

– Implementation of data-parallel algorithms for real-time simulation.

– Development of a GPU-based generic sensor simulation framework. The

framework allows for the integration and adaption of new sensor concepts
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as well as for dynamic scene configuration and simulation sequence export.

A standalone version of the simulation framework is available to project part-

ners and therefore has been actively used for the development of subsequent

processing algorithms as well as for the generation of ground-truth data. Be-

sides the presented work, the proposed simulation approach contributed to the

following publications (mostly for comparison as well as for evaluation purpose):

[HLK13a, LHK13, KLL∗13, MNK13]. Recently, the presented simulation ap-

proach has been taken one step further by Lambers et al. [LHK15] by using

physical units throughout the parametrization and simulation process.

Methods of range data accumulation Various methods for the generation of en-

vironmental models are proposed. Therefore, the accumulation of single range

images is processed in real-time in order to reflect changes in the environment

immediately. In this context new strategies are developed:

– Development of a novel hierarchical volumetric GPU-based data structure.

The merging and subtraction of (sub-)volumes with nearly arbitrary reso-

lution is supported.

– Development of a new point-based fusion approach for depth data accu-

mulation. No data structure, nor topological assumptions of the points

are required for smooth high quality surface reconstructions.

– A fully point-based range image accumulation-pipeline is presented, with-

out converting between multiple representations. Thus, data is merged on

point-level for memory efficiency to support scalable dense reconstructions

of large scenes.

– The application of a new sensor uncertainty model leads to better denoised

reconstruction results.

– Improvement of camera pose estimation by segmenting dynamic objects

in the scene, even when the camera is moving, which results in reduced

drift errors.

– Proposal of a combined occupancy grid and surface reconstruction method

in order to allow for autonomous exploration in unknown areas.

Main objective of all methods has been their real-time application. The algo-

rithms are optimized for the GPU’s parallel processing architecture in order

to ensure the online capability of range data accumulation and 3D reconstruc-

tion: the point-based fusion approach defines new state-of-the-art capabilities

for high quality reconstruction of point clouds in real-time. Recently, the basic

point-based fusion technique has been extended by other researchers: Whelan

et al. [WLSM∗15] expand the basic point-based fusion technique by online loop
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closure whereas Lefloch et al. [LWK15] further improve the reconstruction qual-

ity by accumulating anisotropic point-representations. The volumetric data

structure has been integrated into a robot’s bin picking showcase application

in collaboration with the German Aerospace Center (DLR) [FHK∗10] which

led to best paper nomination in the category best application paper award at

IROS 2010 conference.

1.4 Outline

The main parts of the research proposed in this dissertation have been published

in various publications during the time at the Computer Graphics and Multimedia

Systems Group at the University of Siegen. Therefore, the key chapters of this thesis

reflect the contributions of the publications. The work is structured in five main

chapters:

Chapter 2 gives a general introduction to current range imaging techniques and

outlines the ToF principle and its technology-based error effects. Furthermore, an

overview about environmental modeling is given. The chapter closes with an overview

about current graphics hardware and its relation to real-time processing.

Chapter 3 describes the “Real-time Simulation of Time-Of-Flight Sensors” [KK09]

which has been published in the journal Simulation Practice and Theory (Simpat

2009). The theoretical sensor model’s integration into “A Simulation Framework for

Time-Of-Flight Sensors” [KOKP07], published on the IEEE Symposium on Signals,

Circuits and Systems (ISSCS 2007), is also described.

Chapter 4 presents the “Interactive Dynamic Volume Trees on the GPU” [KCK09],

published in the Proc. of the Vision, Modeling, and Visualization workshop (VMV

2009) which proposes a temporal accumulation of sensor data into a consistent data

basis. The approach has been integrated into “Cooperative Bin Picking with ToF-

Camera and Impedance Controlled DLR Light-Weight Robot III" [FHK∗10], as pre-

sented in the Proceedings of the International Conference on Intelligent Robots and

Systems (IROS 2010) in collaboration with the Institute of Robotics and Mechatron-

ics of the German Aerospace Center in Munich.

Chapter 5 outlines the “Real-time 3D Reconstruction in Dynamic Scenes using Point-

based Fusion” [KLL∗13], presented in the Proceedings of the Joint 3DIM/3DPVT

Conference (3DV 2013). This work has been published in collaboration with Mi-

crosoft Research in Cambridge and the University College London. Furthermore, an

alternative fusion technique based on moving least squares is described as well as

the proposal of an occupancy grid integration. The work utilizes a GPU framework

described in “Integrating GPGPU Functionality into Scene Graphs” [OKK09], which
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is published in the Proc. of the Vision, Modeling, and Visualization workshop (VMV

2009).

Finally, Chapter 6 gives a summary and discusses the contributions of this thesis

along with providing an outlook of future research.



Chapter 2

Fundamentals

T
he following sections give a general introduction to current range imaging tech-

niques. The Time-of-Flight principle is outlined and compared to other depth

sensing approaches. Furthermore, the artifacts of the Time-of-Flight data are cat-

egorized and described. With regard to the processing of depth sensor generated

data this chapter presents an overview of the modeling of environments, i.e. process-

ing approaches for 3D data accumulation. Finally, with respect to real-time data

processing, an overview about current graphics hardware is given to complete the

fundamental background for this thesis.

2.1 Current Range Imaging Techniques

This work addresses two aspects in the field of range imaging: on the one hand, the

topic of real-time simulation of Time-of-Flight (ToF) depth sensors is discussed. On

the other hand, approaches of depth data processing are described. This section

outlines today’s depth imaging techniques with respect to the topic of this thesis

to allow an insight into the details of the sensor simulation and the subsequent

processing of depth data.

In general, a range image is a 2D matrix consisting of depth information in each entry.

Each value of this matrix corresponds to a specific distance to the scene imaged by

an optical system. This image is called depth map and it contains the distances

to all objects in the scene within the field of view of the acquisition system. The

sensor device that is capable of producing such depth maps is often referred to as a

range camera. Range cameras operate with a number of different depth measurement

techniques which can be classified into triangulation approaches (including passive

stereoscopic as well as active approaches such as structured light), and active depth

sensing approaches such as ToF concept.

Passive Stereoscopic Approaches Classical triangulation approaches (also

known as stereoscopic approaches) compute the depth information of a single pixel by

analyzing the projections of two optical systems. Typically, a stereo setup consists of

two cameras which are mounted next to each other with a certain distance observing

7
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Figure 2.1: Triangulation in passive stereoscopy. The working principle of passive

stereoscopy is illustrated by a simplified two-dimensional sketch.

the same scene. This distance defines the baseline b of the system. Knowing the

internal and external camera parameters the depth information can be estimated. A

triangle is defined by the two lines of sight observing a particular surface point as

well as the baseline connecting both lines in a common image plane. The depth infor-

mation is then computed by taking into account the baseline’s length as well as the

two angles of the lines of sight. Fig. 2.1 displays a simple example where the depth d

of point X can be reconstructed by detecting this point in both images ImageL and

ImageR and calculating its disparity xp = UL − UR. d is then computed by d = f∗b
xp

.

If the epipolar geometry is known the problem of finding the best correspondence

in ImageL and ImageR can be limited to search for a best match along a scan line

[BF82].

In general, passive stereoscopic approaches require the identification of correspon-

dences along the acquired images. Finding such matches in real-time demands for

powerful computational hardware [SS02]. However, the main challenge is to find

correspondences anyway since in sparsely textured areas or homogeneous regions

ambiguities cannot be avoided and unique matches cannot be identified. The ac-

curacy of the data strongly depends on the properties of the acquired scene (e.g.

contrast and quality of light) as well as on the computational resources. Several

approaches have been published which try to overcome these limitations by utiliz-

ing various techniques: such as dynamic programming [OK83], relaxation techniques

[MP79, PMF85], and prediction methods [AF87]. All in all, stereo vision is a very

flexible method to generate depth maps. It can be applied in various environments

and since it is a passive system it is not affected by the illumination of direct sunlight.
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(a) (b)

Figure 2.2: Structured light projection pattern. The speckle pattern exemplarily

described in the original Primesense patent is shown in 2.2(a). 2.2(b) displays the

infrared image of Microsoft Kinect’s speckle pattern projected onto a sample scene.

Fig. courtesy of [SZ08, KE12].

Structured Light The method of structured light belongs to the group of active

stereoscopic approaches. The most challenging task in stereo vision is the identi-

fication of correspondences along acquired images and the principle of structured

light overcomes this problem by using a projection unit. A pattern is generated by

this unit on the imaged surface (see Fig. 2.2). In practice the projection of a single

pattern is not enough for a unique detection of correspondences. Thus, time- or

color-multiplexed illumination is used. In comparison to passive stereoscopy one of

the cameras is substituted by an infrared projection unit.

A famous example for a depth measurement system based on structured light tech-

nology is Microsoft’s Kinect [Kin] which is shipped for a very low consumer price

with the Xbox 360 gaming console. Microsoft licensed this approach of Primesense.

Since details about the specific algorithms are not publicly available their description

is mostly speculative and based on Primsense’s patents. The patents describe the

use of a classic computer vision technique called depth-from-focus which is applied

besides the stereo vision approach. Depth-from-focus is based on the principle that

projections which are more blurry are also further away. The Kinect consists of a

special lens with different focal lengths in the lateral domain. Thus, a projected

circle then becomes an ellipse whose orientation depends on depth. Finally, depth

maps are produced with 640 × 480 pixels at 30 frames per second (fps). The depth

resolution decreases with increasing distance, with 1 cm depth resolution at 2 m and

7 cm resolution at 5 m [KE12].

Although Microsoft’s Kinect is a successful example of a widely distributed consumer
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depth camera triangulation techniques in general suffer from a non-neglectable draw-

back: a large baseline may be required depending on the scene depth and the required

accuracy. Thus, stereoscopic approaches may not be usable for the acquisition of

large distances. Furthermore, occlusion and shadow effects still remain as significant

problems based on different viewing and illumination positions. These effects may

result in incomplete depth maps.

Time-of-Flight Within the last years ToF range imaging has become an alterna-

tive to traditional depth measuring approaches. The range information is estimated

by measuring the time between the emission of a signal and the detection of its

backscattering from an object. The distance to an object is then computed as d = v∗t
2 ,

v being the signal’s velocity and t the time measured for the signal to return to the

sensor. The signal can be an optical, electromagnetic or acoustic signal. Historically,

radar and sonar are two well known ToF systems. The latter uses slow sound waves in

contrast to an electromagnetic signal as the electronics responsible for the time mea-

surement does not need to be of high accuracy. However, it is very difficult to achieve

a high lateral resolution for depth maps since narrow beams could not be maintained

successfully. Therefore, illumination based on visible or infrared light is desirable

which is significantly easier to focus than sound waves. But this requires a much

higher precision in the timing electronics for distance measurement. ToF systems

are commonly categorized into direct-, shuttered-pulse-based-, and continuous-wave

ToF systems.

Direct ToF systems typically use a diode or a laser for emitting a light pulse and

then measure the time until the light pulse returns. These systems achieve a high

accuracy and are available for acquiring a single point, a scan-line, or also a fully

covered field of view. The main drawback of these relatively expensive systems is

their mechanical vulnerability since laser scanners are mechanically complex devices

with moving components.

The shuttered pulse-based technique emits discrete light pulses and requires an

image sensor which integrates the incident light (from the backscattered pulse) over

a given exposure time. A very fast shutter is needed in order to estimate the pulsed-

light delay from the total amount of light observed by the sensor. For instance, this

technique is used by the ZCam device developed by 3DV Systems [JVC, GY06].

Continuous-wave (CW) ToF systems do not require high speed shutter electron-

ics in contrast to pulse-based techniques. Using an amplitude modulated light source

the depth is determined by measuring the phase shift between the emitted and the

received optical signal. In contrast to stereoscopic approaches, devices which uti-

lize the CW-ToF approach as well as the pulse-based ToF principle compute depth

maps by simple calculations requiring only a small amount of computational re-
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sources. Both ToF systems suffer also less from shadowing effects. However, due

to the periodicity of the emitted optical signal the CW-ToF systems’ non-ambiguity

range is limited. The CW-ToF approach is utilized by a number of ToF depth cam-

era manufacturers: e.g. Canesta/Microsoft, MESA Imaging, SoftKinetic, and PMD

[GYB04, MES, KVN07, RH07].

2.2 Photo Mixing Device Technology

In this section the principles of ToF systems as well as their error characteristics

are briefly discussed for Photo Mixing Devices (PMD) developed by the company

pmdtechnologies. PMD sensors gained a lot of attention in literature because of

their open design as well as for the known processing pipeline [Lan00]. The general

working principle should be also applicable to other ToF device manufacturers who

use very similar techniques [OLK∗04, GYB04]. Thus, the overview which is given in

this section should be valid in a rather general sense for ToF systems.

2.2.1 Signal Theory

PMD sensors consist of two key components: a light source which illuminates the

scene with modulated, incoherent near infrared (NIR) light as well as a CMOS ToF

sensor which measures the returning light (see Fig. 2.3). So-called smart pixel sensors

[XSH∗98, Lan00] gather the reflected light. Usually a complete sensor array and

proper imaging optics are used to provide a full field of view. However, in comparison

to multi mega-pixel RGB cameras ToF cameras have a rather low lateral resolution,

e.g. current models are available from 160×120, and 200×200 pixels [PMD] up to

512×424 pixels (Microsoft ToF Kinect for Windows, [Kin]).

A single pixel samples and correlates the incoming optical signal with the internal

reference signal of the modulated illumination which results in an image of a per-

pixel sampling of the correlation function with an additional internal phase delay.

This image is also called phase image. A PMD sensor takes typically four of these

phase images to determine the distance related phase shift and thus the distance to

the respective object region can be calculated.

This process can be expressed by the following equations: given a reference signal g(t)

and the optical signal s(t) incident to a PMD pixel, the pixel samples the correlation

function c(τ) for a given internal phase delay τ :

c(τ) = s⊗ g = lim
T →∞

1

T

∫ T/2

−T/2
s(t) · g(t + τ) dt. (2.1)
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Figure 2.3: ToF principle. The principle of PMD’s ToF technology is illustrated.

Assuming the reference signal to be sinusoidal, i.e. g(t) = cos(ωt) and no additional

non-linear signal deformation, the optical response signal is given by s(t) = b +

a cos(ωt+ϕ), with ω = 2πf being the angular modulation frequency, a the amplitude

of the incident optical signal, b the correlation function’s bias (e.g. background light),

and ϕ the phase shift relating to the object distance. It should be noted that the

modulation frequency defines the distance unambiguity for the distance sensing, e.g.

a modulation frequency of 20 MHz results in an unambiguous range of about 7.5 m.

Basic trigonometric calculations yield:

cτ (ϕ) = b+ a
2 cos(τ + ϕ). (2.2)

To be more precise, the demodulation of the correlation function is achieved by using

several samples of cτ (ϕ) which are obtained by four sequential PMD phase images

Ai = cτi
(ϕ) which use internal phase delays τi = i · π

2 , i ∈ {0, 1, 2, 3}. The final

distance d to the object’s surface (see Eq. (2.4)) can be calculated based on the four

phase images:

ϕ = arctan

(

A3 −A1

A0 −A2

)

, (2.3)

d =
clight

2ω
ϕ , (2.4)

with clight ∼ 3 ·108 m
s being the speed of light. The factor 1/2 represents the fact that

the light travels the distance twice between the light source and the PMD sensor.
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Figure 2.4: PMD pixel design. Simplified pixel design of a single PMD pixel. Fig.

courtesy of [MKF∗05, Lin10].

Additionally to the distance the intensity values b as well as the signal’s correlation

amplitude a (see Eq. (2.5)) can be calculated:

b =
A0 +A1 +A2 +A3

4
and a =

√

(A3 −A1)2 + (A0 −A2)2

2
. (2.5)

While the intensity values b are comparable to a grey scale image the signal’s ampli-

tude values can be interpreted as a confidence value for the distance measurement.

2.2.2 Pixel Design

The pixel’s hardware design is based on the CCD principle as Complementary Metal

Oxide Semiconductor (CMOS) sensors which provides a low cost production pro-

cess, small-sized pixels as well as low power requirements. In contrast to standard

CMOS pixels which typically contain a single photodiode and a charge accumulat-

ing capacitor, each PMD pixel consists of several photogates above a light sensitive

area and two corresponding capacitors. This principle is called 2-tap approach since

multiple measurements (i.e. two) of the correlation function can be performed in

parallel [Lan00]. A variable electrical field is generated across the pixel which shifts

the electrons generated by the incident photons to one or the other photodiode. This

principle accumulates electrons either to the left or the right integration node (see

Fig. 2.4) and mixes the incoming photo-electrons with the phase shifted electronic sig-

nal by synchronizing the electrical field with the modulated light source. The mixed

signals of the two integration nodes are then integrated over a certain exposure time

in order to accumulate enough electrons for a valid signal level.

Both of the integration nodes (often referred to as channel A and channel B) are
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sensitive to ambient background light. Thus, both channels will contain an equal

offset of electrons. However, this offset does not influence the overall measurement

since after each integration period the two channels A and B are subtracted. This

result is then used for distance calculation.

Especially outdoor applications suffer from limited sensor dynamics since a certain

amount of the capacitor is already occupied by uncorrelated sunlight carrying no

distance information. Thus, the final signal amplitude is comparatively small and

the accuracy of the distance measurement is reduced significantly. The use of longer

exposure times in order to achieve a better resolution of the signal may be limited

by the pixel’s early saturation. To reduce the influence of excessive background light

a special suppression of background illumination (SBI) circuit has been developed.

The SBI circuit dynamically adjusts the charge level for both photodiodes. This

effectively improves the dynamic range of a PMD pixel for correlated signals. For

detailed information about the technological background of PMD sensors see Lange

[Lan00].

2.2.3 Sensor Effects

The data of a ToF sensor, here illustrated by the example of PMD, has a couple

of artifacts coming along with the implementation of this kind of technology. An

understanding of these artifacts is required in order to get an idea of the data quality.

Wiggling Algorithms which determine the phase shift and compute the distance

measurement assume a certain waveform of the correlation function (see Eq. (2.1)).

The wiggling error is the error which arises from the higher harmonics in the optical

and the reference signal, i.e. the signal is not perfectly sinusoidal. This error is also

known as the systematic deviation error. Fig. 2.5(a) displays the sensor data which is

measured by capturing a planar surface. However, the actual distance of the surface

is marked by the position of the reference plane. In Fig. 2.5(b) the wiggling error is

plotted over the interval 1-4 m. Rapp et al. [RFHJ07] investigated the systematic

errors and statistical uncertainties of PMD sensors. The distance based errors of

the PMD sensors are also examined by Lindner et al. [LK06, LK07] who presented a

lateral and depth calibration approach of such sensors in order to account for wiggling

effects.

Noise The signal quality and thus the resulting distance measurement is affected by

various categories of noise resulting from the pixel’s underlying CMOS design: time-

dependent noise, time-independent noise, and signal noise influence the accuracy of

the measured distance.
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(a) (b)

Figure 2.5: Systematic deviation error. In 2.5(a) the wiggling error is exposed by

the reference plane which marks the actual distance from the surface. In 2.5(b) the

error is displayed in [cm] over the interval 1-4 m with a b-spline fitting (solid line),

Fig. courtesy of [LKR08].

Thermal noise, dark current noise and reset noise [Kle08] are time-dependent and

significantly increase with rising temperature since electronic components of a camera

react sensitively to a variation in temperature. This kind of noise can be reduced or

eliminated by a proper cooling of the system as well as linear correction functions

[Tem96].

So-called fixed pattern noise introduces an individual offset to each pixel due to

statistical process variations and different signal propagation delays in conventional

CMOS imagers. This noise artifact can be compensated by determining the offset

values which are then finally subtracted from the actual sensor output.

The last noise-category emerges from the photon shot noise: the signal noise. It

cannot be compensated and therefore has a significant impact on the effective signal-

to-noise ratio. In Fig. 2.5(a) the noise becomes visible in the cloud of points while

capturing a planer surface.

Motion Blur The total capturing time for a single depth image is composed of the

acquisition times of several (typically four) phase images and the respective readout

times between the phase image measurements. This temporal integration leads to

a motion blurring effect in dynamic scene setups (i.e. moving objects or moving

camera itself) since the phase images Ai lead to varying object points observed by

the respective pixels (see Fig. 2.6). This results in unmatching phase values during

the demodulation of the correlation function. The level of motion blur increases with

the speed of the moving objects as well as the duration of the integration time. A

compensation model is described by Lindner and Kolb [LK09].
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Figure 2.6: Motion artifacts. The object is moving from the right to the left side.

This results in motion artifacts which are especially visible at the boundary of the

object.

Mixed Phases The artifacts which are covered by mixed phases can have a variety

of reasons. In all cases the integrated light for a PMD pixel does not originate from

a single, well defined distance of a single object. In these situations different phases

from the various distances interfere and are mixed in a single pixel. Flying pixels as

well as multipath-interference are typically caused by mixed phases.

If a reconstructed depth value provides inaccurate distance information and its solid

angle covers depth inhomogeneities, this pixel is called flying pixel. The typical

artifacts where the object’s boundaries tend to drift either towards the background

or the camera sensor are illustrated in Fig. 2.7(a). A common approach is the

classification of flying pixels by the number of valid neighbor pixels which then can

be discarded if the number of nearby pixels is below a certain threshold [LLK08].

If light from the active light source not only illuminates the object directly (normally

referred to as the primary return of the light) but also partly by a reflection in

the scene the measured distance to the object is corrupted. This effect is called

multipath-interference. While this type of artifact is hard to quantify and depends

on the actual scene it is clearly visible in situations where two planar walls enclose a

certain angle (see Fig. 2.7(b)). The acquisition of the scene with multiple frequencies

and its subsequent data evaluation help to detect and to eliminate multipath effects

[Fuc10, DGC∗11, FSK∗14].

2.3 Environment Modeling

As the second focus of this thesis is the processing of depth sensor generated data the

following sections present an overview of the basic processing techniques with regard

to the modeling of environments. The major purpose of environment modeling is

the temporal accumulation of sensor data, namely 3D depth maps, into a consistent
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(a) (b)

Figure 2.7: Artifacts caused by mixed phases. In 2.7(a) the flying pixels of the

objects’ boundaries are displayed which mainly drift towards the background. Top

view of a corner scene is shown in 2.7(b). The planar reference walls are depicted in

grey whereas the actual multipath-interference measurement is colored in blue.

3D model. However, the pure accumulation of several depth maps into a common

coordinate space is often not enough. The result would be an unstructured 3D point

cloud containing multiple 3D points for the same observed scene point due to the

noisy character of the sensor data. Thus, proper environment modeling requires

additional computation steps.

In literature numerous approaches describe the acquisition of 3D objects. Many

of the publications in the field of environment modeling are often referred to as

(online) 3D reconstruction approaches for reconstructing complex geometrical ob-

jects [CM91, BDL95, CL96, Neu97, RA99, RHHL02]. The generation and appli-

cation of environment models traditionally resides in the area of mobile robotics

and is also used in the fields of 3D outdoor scenery acquisition, navigation and self-

localization. Some of the applications utilize 2D laser scanners for data acquisition

[HBT03, LEC∗01, FZ01]. Other approaches use 3D laser scanners for acquiring the

scene [ASG∗01, HDH∗01, NSH03]. More recent examples for the use of environment

models are in-door navigation systems [Pro] as well as hand held scanning applica-

tions [IKH∗11, NZIS13].

The first step for 3D scene reconstruction is the data acquisition step which is per-

formed by utilizing mainly one of the range imaging techniques described in Sec. 2.1,

i.e. 3D laser devices, structured-light devices, or ToF devices. Next, the data pre-

processing stage includes the filtering of raw depth maps as well as determining out-

liers for better reconstruction results (see also [NIH∗11] for details about individual

pre-processing steps).
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(a) (b) (c)

Figure 2.8: Various types of environment models are shown: polygonal model (2.8(a),

Fig. courtesy of [TL94]), surface voxel model (2.8(b)), and full voxel model (2.8(c)).

The remaining steps of 3D reconstruction involve the registration of multiple datasets,

followed by merging the depth data into a common model which usually includes also

a data fusion step in order to reduce the overall data load. The following sections

summarize the various types of environment models and further describe the basic

steps of environment modeling.

2.3.1 Types of Representation

In general, environment models can be represented by various geometric representa-

tions. The most important types are polygon models, surface and full voxel models

(see Fig. 2.8) as well as point-based representations (see Fig. 2.11(a)). Polygonal

models consist of several individual polygon meshes which are merged into a single

polygonal model as proposed by Turk and Levoy [TL94]. In addition to the sur-

face voxel model which contains only voxels close to the object’s surface, the full

voxel model also includes the voxels which are located in the inner region of the

object. Moravec and Elfes [ME85] introduced occupancy grid mapping in the field

of robotics dividing the full model’s space into unknown, occupied, and free areas.

Point-based representations are more amenable to the input data acquired from depth

sensors in contrast to the afore-mentioned methods. A dense surface is represented

by the accumulation of point data suitable for high quality scanning of small objects

[WWLVG09] as well as large scale reconstructions [HKH∗12].

Visual Hull The visual hull of an object is defined as the full voxel model compris-

ing the intersections of all 2D silhouettes showing the object from arbitrary views.

Therefore, the foreground object is segmented from the background for each of the
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2D source images. The computation of the visual hull is based on volume carving

starting from an initially occupied volume of voxels. The intermediate model rep-

resentation during the carving process may be a binary occupancy grid. Kuzu and

Sinram [KS04] refine the volume carving algorithm by checking the voxels of the vi-

sual hull for color correspondence. Tosovic et al. [TSK02] describe a combination of

structured light- and visual hull-algorithms using a hierarchical data structure. The

structured-light approach allows for the reconstruction of concavities on an object’s

surface. However, Matusik et al. [MBR∗00] describe an image-based method for the

computation of visual hulls which does not rely on a volumetric representation, but

computes a viewpoint dependent visual hull in image space.

Grid types Grids are used for storing the spatial data information of the specific

type of environment model. Grids are also utilized as acceleration structures for

fast access of the data within the environment model. The most important data

structures are regular grids as well as hierarchical grids.

Regular grids divide the space into axes-parallel, rectangular volume elements (voxels)

having all edges of a single axis of the same size. The simplest volumetric case is

the so-called cartesian grid composed of cubical cells. A regular grid ensures fast

access to its elements, e.g. neighborhood searches. Its main disadvantage is the large

memory footprint needed for the entire allocation of the volume - memory is also

allocated for space which will remain unoccupied. Large sized volumes as well as

volumes with a very fine grained resolution, i.e. small size of individual cells, are

challenging and cannot be handled efficiently.

The solution is the usage of hierarchical grids which allocate the memory on demand

only. The advantage of hierarchical data structures is their high local adaptivity for

representing spatial details. The adaptive size of the grid cells can be determined by

taking the lateral resolution of the depth camera into account as well as its depth

accuracy. Prominent types of those grids are octrees and kd-trees.

Octree The octree is a recursive data structure in which a single octree node has

either eight or zero child-nodes. Each octree node represents a position in 3D

space and occupies its respective volume. In general, every node consists of an

element which carries the node’s data. However, usually it is sufficient that only

the leafs of the octree structure contain the application relevant data elements.

The root node corresponds to the entire 3D space being occupied by the octree.

In [Mea82, LC94] first octrees have been used with regard to the representation

of depth maps. Schiller and Koch [SK09] explore octrees for capturing dynamic

scenes. Octomap presented by Hornung et al. [HWB∗13] is a modern example

of environment modeling using octress for representing occupancy grids.

Kd-tree The kd-tree is a binary tree consisting of nodes which represent a k-



20 Fundamentals

dimensional point, with k = 3 in 3D space. A kd-tree recursively subdivides

the space into two subnodes by generating a splitting hyperplane. Every node

is associated with one of the k-dimensions with the hyperplane perpendicular

to that dimension’s axis [Ben75, ZHWG08].

2.3.2 Registration

The acquisition of a single depth map is only an intermediate step with regard to

the entire acquisition process. Multiple depth maps acquired from various sensor

positions require knowledge about the position and the orientation of the sensor

in order to transform the data, namely the respective 3D points, into a common

coordinate system. The localization of the sensor could be done either based on an

initial calibration and measurement process determining the exact sensor position,

e.g. by taking a robot’s pose into account. Or a so-called registration step could be

performed on the depth map data directly.

Iterative Closest Point At the beginning of the registration usually depth maps

are transformed into a good initial starting position, sometimes this is done manually.

In a second step a variant of the well known iterative closest point (ICP) algorithm

[BM92, CM91] is performed for fine tuning the initial registration guess. This method

has become the prevalent algorithm for aligning 3D datasets into a common model

purely based on their geometry.

As a prerequisite this algorithm requires that the two depth maps which are trans-

formed to each other are overlapping to a sufficient amount. Pairs of points are iden-

tified as point-correspondences based on appropriate criteria, e.g. points’ distance,

surface orientation, and color. The error, i.e. the point pairs’ criterion, is mini-

mized using the least squares approach as applied by Rusinkiewicz et al. [RHHL02].

Often the procedure of finding point correspondences and optimizing the transfor-

mation result is performed multiple times until the overall error is small enough,

i.e. the transformation of the depth map into a common coordinate space is found

(see Fig. 2.9). This type of registration is called pairwise registration. This means

that a sequence of consecutive depth maps are sequentially registered to each other.

The various variants of the ICP algorithm mostly differ regarding the choice of the

correspondence criterion.

Simultaneous Registration Better than only registering consecutive frames to

each other is the approach of registering all views simultaneously [Pul99]. This mini-

mizes the global error and avoids inconsistent scene reconstructions. The simultane-

ous approach uses the result of the pairwise registration while diffusing the pairwise
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(a) (b) (c)

Figure 2.9: Iterative closest point algorithm. Minimizing the error metric moves the

blue dataset closer to the red dataset. Fig. courtesy of [RHHL02].

registration errors by directly registering a view’s neighboring depth maps. Fur-

ther approaches of simultaneous registration are described in [BDL95, Neu97, BS97].

Bernardini et al. [BR02] use also optical properties of the scene in comparison to

traditional registration algorithms. The color is used to significantly improve the

registration result for objects with less geometric features.

2.3.3 Merging

A consistent data representation, preferably without holes in the geometry, is created

in the merging stage as soon as the registration of the individual depth maps is

finished. Merging algorithms need to be efficient concerning computation time and

resources. Literature differentiates between the reconstruction of 3D point clouds

[BMR∗99, GKS00] and 3D reconstruction based on depth maps [TL94, CL96].

Mesh-based Approaches Zippering [TL94] is a popular approach for transform-

ing multiple depth maps into a consistent triangulated mesh. Depth maps are con-

nected to each other on the basis of polygonal meshes. For that to happen, depth

maps are tessellated and their vertices are weighted. Redundant triangles in overlap-

ping regions are discarded. The remaining meshes are zippered together. Once all

meshes have been combined, the individual depth maps contribute to the resulting

surface by finding the consensus geometry. The final position of a vertex is calcu-

lated by taking the nearby positions from each of the original depth maps. Surface

refinement is postponed until the overall geometry has been determined. Thus, dis-

continuities are eliminated which may have been introduced in the zippered regions.
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(a) (b)

Figure 2.10: Volumetric merging. 2.10(a) shows an ideal merging result for no noisy

data. In practice, the noise in the data leads to a wider layer of voxels as illustrated

in 2.10(b). Fig. courtesy of [RHHL02].

Implicit Approaches: Function- and Volume-based The approach of com-

bining depth maps into a volumetric model avoids problems which occur in the pre-

viously described approach of combining polygon meshes. Curless and Levoy [CL96]

use weighted signed distance functions. Therefore, each depth map is converted to a

signed distance function and finally added to the already existing model data. The

resulting surface is extracted via isosurface rendering based on marching cubes as

proposed by Lorensen et al. [LC87].

Rusinkiewicz et al. [RHHL02] present a first system for real-time acquisition of 3D

models using a voxel-based merging approach. All points of the depth map are added

to the voxel grid by quantizing their positions and determining their orientation, i.e.

normal calculation. While adding new depth maps to the voxel model also the

normal per voxel is accumulated. Sensor noise and registration inaccuracies are only

partly taken into account: depth maps are temporarily triangulated before being

added to the volume structure. Thus, tiny triangles are discarded to account for

measurement inaccuracies. A sequence of ideal or highly accurate depth data would

result in a narrow band of surface voxels. However, noisy measurements involve much

more surface voxels (see Fig. 2.10). Rusinkiewicz et al. [RHHL02] use this online

accumulation only for interactive user feedback. The final model is constructed by

utilizing an offline registration approach based on [Pul99] in order to achieve high

quality results. The actual merging step is then based on weighted signed distance

functions. Finally, the surface is converted to a mesh using the marching cubes

algorithm.

With the emergence of inexpensive consumer depth cameras, e.g. Microsoft’s Kinect,

real-time variations of Curless and Levoy’s volumetric fusion approach [CL96] have

been proposed [IKH∗11, NIH∗11]. Moving volume variants [RV12, WKF∗12] try to

overcome memory limitations and allow for the reconstruction of larger volumes.

Nießner et al. [NZIS13] use a hashing data structure in order to reconstruct scenes

at larger scales.
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(a) (b) (c)

Figure 2.11: Rendering techniques. The image in 2.11(a) is rendered using QSplats -

a splatting approach for rendering large scale models. In 2.11(b), marching cubes is

applied for extracting a polygonal mesh. 2.11(c) employs a ray casting approach for

high quality surface reconstruction. Fig. courtesy of [RL00, RHHL02, NIH∗11].

2.3.4 Rendering

The environment model is visualized by rendering its data representation. Various

techniques are capable of generating synthetic views of the accumulated data (see

Fig. 2.11).

Splatting The splatting approach [Wes90] projects the 3D points’ footprints di-

rectly onto the image plane. Additional properties such as orientation of the surface

and the distance to the sensor’s projection center are taken into account [RL00,

RPZ02]. The approach by Stolte [Sto11] is based on hierarchical octree structures.

Splatting offers a way for rendering also large point-based models in real-time.

Polygon Surface The advantage of extracting polygonal surfaces from volumetric

grid cells is that standard methods of computer graphics and image synthesis can be

applied to polygonal meshes for further processing. The marching cubes algorithm

[LC87] is directly employed on regular volumetric grid structures and creates a mesh.

Alternative approaches work also on octree structures. The generation of polygonal

surfaces may be challenging for large models in real-time.

Ray Casting One of the most popular image-order methods for rendering volu-

metric data is the ray casting algorithm (see discussion in Levoy [Lev88]). For each

pixel in the image domain a single ray is cast into through the volumetric grid. The

data is then resampled at discrete positions along the ray. As the graphics processing

units evolve and become even more powerful ray casting approaches can handle also

large datasets at reasonable frame-rates [RGW∗03, KW03].
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2.3.5 Discussion

The choice of algorithm strongly depends on the project’s requirements, i.e. the

features which are supported by the environment model. The decision whether to

use the full voxel model or the surface model depends on the support of volume

carving, the model spatial’s extension as well as the availability of processing power.

Furthermore, the decision for the accuracy of the registration strongly influences the

requirements for the computational resources.

Full Voxel Model vs. Surface Model Approaches such as volume carving

algorithms and the generation of occupancy grids are based on full voxel models

[KS04, HWB∗13]. This type of representation is computationally expensive since not

only the surface voxels need to be determined but also the inner as well as outer voxels

need to be classified and processed. This means, if the processing of the environment

model is critical in terms of available processing power then the full voxel model will

be a rather inappropriate choice. However, e.g. in the area of robotics this type of

environment model is often mandatory. Autonomous guidance as well as the ability

of rapidly responding to environmental changes ideally require full voxel models.

If a full voxel model is not mandatory then a surface voxel model only or a model

which completely works without an underlying data structure would be the better

option. If requirements demand for large sized environment models with regard to

spatial extension or memory resources then adaptive grids provide a high spatial

resolution locally, e.g. octrees or kd-trees. Selecting the proper merging strategy

may also depend on the choice of the environment model’s type of representation.

Intermediate data representations may introduce discontinuities, limit the scalability

and automatically add computational complexity to the approach [SB12, RHHL02].

Thus, intermediate forms of representation are preferably avoided in real-time appli-

cations.

The volumetric tree approach described in Chap. 4 uses a voxel-grid structure which

supports volume carving on the environment model. A redesign of the original algo-

rithm leads to an approach which does not employ a spatial data structure at all for

high quality surface reconstruction (see the point-based fusion approach proposed

in Chap. 5). However, optionally the point-based approach can be extended by a

probabilistic occupancy grid for the use in robotic scenarios (see Sec. 5.5).

Registration Accuracy vs. Processing Speed The choice of the specific regis-

tration algorithm mainly depends on the overall setup. Additional registration steps

might be required even if the exact sensor position and orientation is provided along

with the depth maps, e.g. by taking a robot pose into account of a depth sensor
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which is mounted onto the robot’s end effector. The accuracy of the orientation of

the robot’s joints still introduces small errors in terms of computing the six degree-of-

freedom (6 DoF) robot pose [FHK∗10]. The pairwise ICP registration approach may

be used in order to improve inaccuracies of given registration poses. Alternatively,

ICP can be applied for calculating the transformation information of two subsequent

depth maps from scratch starting with an initial guess. It should be noted that the

major drawback of the pairwise ICP registration approach is the accumulation of

small errors during the registration process of two consecutive frames which leads to

significant errors after registering multiple depth maps.

On the other hand, global registration approaches such as simultaneous registration

[Pul99] are more accurate compared to simple pairwise registration. However, si-

multaneous registration algorithms suffer from their computational complexity. The

temporal resolution of depth maps is considerably high and thus requires a lot of

computation power. Additionally, the original depth maps are stored for the subse-

quent registration steps which demands computational resources as well as sufficient

memory. Usually, global registration approaches are performed as an offline post-

processing step [RHHL02].

2.4 Graphics Hardware

The high temporal resolution of sensor data and the constraint of real-time data

processing require the utilization of multi-core processing units such as graphics

processing units (GPUs) instead of using a single central processing unit (CPU)

only. The nature of GPUs is the ability of handling massive amounts of data by

its parallel processing architecture. This means that programming of GPUs has to

be taken into account which requires an adaption of the algorithms to the GPU’s

parallel processing layout.

This section gives a brief overview about graphics hardware and GPU programming

to allow for a better understanding of the design and implementation of the pro-

cessing algorithms presented in this thesis. The proposed simulation of ToF data as

well as the methods for the processing of millions of 3D points into an environment

model are computationally intensive approaches. These algorithms run at interac-

tive frame-rates by using the parallel execution power of GPUs which cannot be

addressed by traditional CPUs. While CPUs sequentially apply a single instruction

to a single data element at a time modern GPUs are highly optimized data-parallel

streaming processors following the SIMD architecture principle (single instruction,

multiple data) [KH10]. In recent years, developments regarding a more generalized

architecture and programming model provide computing capabilities for a variety

of application areas such as computational fluid dynamics, medical imaging, and
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Figure 2.12: Programmable graphics pipeline. A single render pass, i.e. the process

from vertices to screen pixels, comprises the three programmable processing stages.

environmental science [SK10].

2.4.1 Graphics Pipeline

The GPU is designed for generating raster images extremely fast and efficiently.

Therefore, a virtual scene must be decomposed into planar polygons in the tessella-

tion step. In the display traversal step all polygonal primitives are then converted

into a raster image. However, all 3D graphics processors carry out the display traver-

sal as a pipeline of processing stages. While first graphics processors implemented the

so-called fixed function pipeline, modern GPUs are rather flexible and programmable

[HKRs∗06, PF05, FK03]. Earlier programmable hardware architectures used dedi-

cated hardware called shader units which where optimized for a special task. With

the introduction of Nvidia’s GeForce 8 and ATI’s Radeon HD 2000 series the unified

shader architecture has been introduced. This hardware consists of many computing

(shader) units, each capable of processing any task within the stages of the graph-

ics pipeline. This leads to a better load balancing and thus increases computation

throughput of the GPU significantly. Fig. 2.12 shows the three processing stages

which set up a single render-pass.

Vertex Processing In the vertex stage a vertex program processes incoming ver-

tices, i.e. geometry, and computes linear transformations such as rotation, translation

and scaling of the vertices in the 3D domain. Modeling transformation (transform lo-

cal coordinates into world space), viewing transformation (convert into camera space)

and finally the projection matrix (transform into screen space) are also applied in this

stage. Before projecting the vertices a simple per-vertex light model can be applied

[Bli77]. Geometric primitives are then assembled and handed over to the fragment

stage.
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Geometry Processing With the specification of shader model 4.0 the vertex pro-

cessing stage is extended by the so-called geometry processing stage which is ap-

plied after assembling the primitives. The primitives can be modified by geometry

programs. This means, additional primitives can be created as well as the entire

geometry can be generated procedurally by emitting or discarding arbitrary vertices.

Fragment Processing In the rasterization stage each geometric primitive is de-

composed into a set of fragments. Every fragment corresponds to a specific pixel

in screen space. A fragment program can perform several texture fetches as well as

filtering operations per fragment and finally computes the color of each pixel.

By using uniform variables all stages can be supplied with additional input data.

Processing results can be stored and supplied to subsequent render passes as input

data, i.e. geometry shader output is fed via the transform feedback feature back into

the pipeline and processed fragments can be read back as textures by being written

to a separate render target instead of the frame buffer.

The application developer gets access to the graphics pipeline by utilizing the open

graphics library (OpenGL)1 or DirectX2, the two main application programming

interfaces (APIs) for graphics. The various shader stages are programmed by using

C for Graphics (CG)3, OpenGL shading language(GLSL)4, or high level shading

language (HLSL) - all are inspired by C-like syntax and allow e.g. control flow

statements such as loops and conditional branches.

2.4.2 General Purpose Computation

General purpose computing on GPU (GPGPU) performs computations in application

areas which are traditionally handled by the CPU. These programs gain a massive

performance boost based on the highly parallel streaming processors of the GPU. The

invention of the programmable shader pipeline as well as floating point support on the

GPU (∼ 2001) made general purpose programming popular. Nowadays, the GPU can

be programmed in two different ways with regard to general purpose computation:

using the graphics API (shader-based) or using CUDA/OpenCL. Both of the methods

are used for implementing the algorithms presented in this thesis.

Shader-based GPGPU In the early days, programming GPGPU required re-

formulating algorithmic problems to the graphics pipeline specification. Since GPUs

1OpenGL, https://www.opengl.org.
2DirectX and HLSL, https://msdn.microsoft.com/.
3CG, https://developer.nvidia.com/cg-toolkit.
4GLSL, https://www.opengl.org/documentation/glsl/.

https://www.opengl.org
https://msdn.microsoft.com/
https://developer.nvidia.com/cg-toolkit
https://www.opengl.org/documentation/glsl/
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Figure 2.13: Cuda architecture. Cuda threads are organized in a multi-dimensional

grid and block structure. Fig. courtesy of [KH10].

only process vertices and fragments the programmer needs to learn graphics terminol-

ogy (such as textures, vertices, and frame buffers) for non-graphics problems. Owens

et al. [OLG∗07, OHL∗08] describe many of the commonly used techniques which map

complex applications to the GPU. Not only that researchers need to learn OpenGL

or DirectX as well as the specific shading language to get access to the GPU’s com-

putation power - the main drawback of using the graphics API is the cumbersome

translation of problems to map them onto the programmable graphics pipeline.

CUDA and OpenCL: non graphics interfaces In 2006, Nvidia introduced the

compute unified device architecture (CUDA) which includes several new components

specifically designed for GPU computing. CUDA aims to get rid of the limitations

which prevented previous graphics processors from being used by more researchers

in even more application areas for GPGPU. It is not necessary anymore to access

the GPU by programming the shader units only. The new architecture allowed

all algorithmic logic units (ALUs) to be marshaled by programs performing general

purpose computations and thus the ALUs comply with IEEE requirements for single-

precision and floating-point arithmetic [WFF11]. CUDA C became the first language



2.4 Graphics Hardware 29

to facilitate GPGPU without having knowledge about the graphics pipeline which is

only accessed though OpenGL and DirectX. Fig. 2.13 illustrates the basic working

principle of CUDA’s thread invocation: when a kernel is launched, it is executed as a

grid of parallel threads. Each CUDA thread grid consists of many (e.g. millions) of

lightweight GPU threads per kernel invocation. All threads within the same block can

synchronize their execution and efficiently share data through a low-latency memory.

In 2009, Apple, ATI/AMD, Intel and Nvidia developed the Open Computing Lan-

guage1 (OpenCL) as a standardized programming model. OpenCL defines language

extensions and runtime APIs which allow developers to program parallelized code

on massively parallel processors such as GPUs. Applications which have been devel-

oped in OpenCL can run without being modified on all processors that support also

OpenCL in contrast to CUDA which is only supported by Nvidia GPUs.

2.4.3 Discussion

The choice of shader-based versus non-graphics pipeline-based GPGPU strongly de-

pends on the application and on the formulation of the algorithmic problem. Further-

more, the developer needs to determine which GPU vendors are supported and which

GPU features are required for the algorithm in order to achieve the maximum perfor-

mance speed-up. The algorithms presented in this thesis are implemented using both:

the graphics pipeline based GPGPU approach as well as using Nvidia’s CUDA. The

ToF sensor simulation approach (see Chap. 3) is implemented using pure shader-

based GPGPU techniques since the synthesis of the depth camera’s image-output

perfectly fits to the shader-based graphics pipeline. This way also older GPU models

are supported which results in lower hardware requirements and better acceptance

by the users.

The volume tree approach (see Chap. 4) for the accumulation of depth maps is

also programmed with shader-based GPGPU techniques. It exhaustively uses the

transform feedback feature of the graphics pipeline. However, the complexity of the

shaders is noticeable and the overall render-pass structure is rather sophisticated

which is mandatory for performing the data structure’s expansion and reduction

algorithms correctly. Anyhow, this way also older graphics card models are supported

which achieve already a substantial performance boost for real-time data processing.

In Chap. 5 the point-based fusion method is presented for depth map accumulation

and high quality online 3D scene reconstruction. This approach is implemented using

a mixture of the shader-based pipeline and Nvidia’s CUDA. Technically, central parts

of the algorithms could also be thought of being converted to the standard graphics

pipeline although they are implemented in CUDA which has been the decision for

1Khronos Group - OpenCL, https://www.khronos.org/opencl.

https://www.khronos.org/opencl
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developing the algorithms faster as well as having better debugging possibilities. The

reason for taking CUDA over OpenCL is that OpenCL programming constructs are

at a lower level and thus more tedious to use compared to CUDA which follows a

rather high-level programming interface.



Chapter 3

Time-of-Flight Sensor Simulation

I
n the previous chapter current range imaging techniques have been briefly de-

scribed and the PMD-based ToF principle has been outlined (see Sec. 2.1 and 2.2).

The current chapter focuses on real-time sensor simulation for ToF sensors. Dynamic

motion blurring and resolution artifacts such as flying pixels as well as the typical de-

viation error are prominent effects of real world systems and therefore the modeling

of these artifacts (see Sec. 2.2.3) is essential for an authentic simulation approach.

After starting with a general section about motivation and research objectives, the

structure of this chapter is as follows: in Sec. 3.2, an overview of the related work on

ToF sensor simulations is given. Sec. 3.3 proposes the physical sensor model which

is the basis for the simulation approach. While in Sec. 3.4 the generic simulation

framework for the integration of sensor concepts is presented, a realization of the

theoretical sensor model is described in Sec. 3.5. The results of the sensor simulation

are presented in Sec. 3.6 along with the evaluation of simulation data. Finally, Sec. 3.7

discusses the presented simulation approach.

Publications The sensor simulation framework which provides the technical basis for the simulation

approach has been published in [KOKP07]. The theoretical approach of simulating ToF sensors in

real-time and a comparison of simulation results and real sensor data has been presented in [KK09].

3.1 Motivation

The real-time simulation approach for ToF sensors has been developed in the context

of the Lynkeus 3D project (cmp. Chap. 1). The project demanded for a physically-

based simulation of such sensors as an essential building block for hardware design

and application development.

A simulation of ToF sensors is helpful in numerous use cases. On the one hand,

the sensor parameters such as resolution, focal-length and frequency can easily be

modified and distortion effects can be evaluated in detail. On the other hand, ex-

periments can be carried out under reproducible conditions, especially with regard

to dynamic scene setups. The simulation approach should not be based on an ideal

type of sensor, of course, rather the simulation result must reflect the major sensor

31
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characteristics in order to produce results comparable to real sensor data. The de-

velopment of subsequent algorithms is significantly effected by the simulation data,

e.g. in the fields of object recognition and image analysis as well as correction of

calibration errors. A real-time simulation is favored since the algorithms themselves

handle the sensor data also in real-time within the data processing pipelines. This

means that the sensor simulation is preferably as fast as real world sensors.

Challenges Since subsequent algorithms may use the simulation as a substitute

for a real world device the simulation approach focuses on real-time simulation. This

means, not only the generation of synthetic sensor data and its high precision is

challenging but also the manipulation of single camera parameters is required. High

performance can be achieved by GPU programming. However, using standard ras-

terization techniques limits the data processing to per-pixel data only which requires

an adaption of the simulation algorithms to the GPUs parallel SIMD architecture

(cmp. Sec. 2.4).

Objectives The goal of this chapter is the proposal of a physically-based simulation

approach for ToF sensors. The simulation covers major artifacts such as flying pixels,

motion blur, as well as the systematic deviation error which are typical effects of

ToF cameras. The capability of real-time simulation is ensured by developing a

parallelized simulation approach using the programmability of GPUs. This way, the

simulation allows for interactive feedback and real-time processing of subsequent

processing algorithms.

3.2 Related Work

Researchers often apply their algorithms on both real sensor data and simulated

sensor data. Peters et al. [PHKL06] use synthetic test data for the localization of

mobile robots. Their ToF simulator application is Matlab-based and not suitable for

real-time simulation. The analysis of the synthetic scene geometry with regard to

its visibility to the simulated PMD pixels is part of their simulation approach. In

contrast to Peters, the approach proposed in this thesis uses the rendering pipeline

of the graphics card which automatically provides the relevant scene geometry with

respect to the current camera pose instead of calculating it laboriously manually.

This enables the simulation approach being suitable for real-time applications. In

[PLHK07] they extend their application in order to model the bistatic effects which

are caused by the spatially separated illuminator and receiver positions in real 3D

cameras.
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Streckel et al. [SBKK07] use synthetic ideal depth data to test their structure from

motion algorithms in combination with ToF sensors. Their simulation of depth

noise is based on results presented by Kuhnert and Stommel [KS06] who assume

a quadric relation between the camera-object distance and the standard deviation of

the PMD sensor’s depth data. The latter approaches neglect sensor characteristics

like flying pixels and distance deviation (see Fig. 3.9). These artifacts are covered by

the approach presented in this chapter.

Meister et al. [MNK13] extend the simplified local illumination approach presented in

Sec. 3.3.2 by taking into account realistic light propagation using bidirectional path-

tracing. Their simulation model is not real-time capable. However, their technique

successfully simulates multipath-interference effects. In contrast to the previously

presented simulation models Schmidt et al. [SJ09] focus on the simulation of sensor

hardware and thus do not handle the light propagation and illumination in their

approach, instead they use pre-computed light maps as input.

3.3 Physically-based Sensor Model

In this section a physically motivated sensor model is presented. The model is the

basis for the simulation approach and it comprises the sensor characteristics described

in Sec. 2.2.3 in order to be comparable to real sensor data. In particular, the approach

aims at the simulation of the following ToF specific artifacts:

Flying pixels Pixels which cover depth inhomogeneities of the scene.

Motion blur The temporal integration during the acquisition of the individual

phase images leads to blurring artifacts in the resulting depth map.

Wiggling This systematic deviation error occurs from the higher harmonics in the

optical- and the reference signal.

Noise Various noise sources lead to inaccurate measurements.

3.3.1 Illumination and Radiosity

Radiosity is defined as the density of the total emitted and reflected radiation leaving

an infinite small surface element. The radiosity B is calculated for a point P of a

lambertian surface which is illuminated by an area light source L as follows:

B(P ) =

∫

Q∈L
f(−ω̂Q)

1

dP,Q
2 (ω̂Q · n̂P ) · kP dQ , (3.1)
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Figure 3.1: Radiosity. The surface is illuminated by an area light source L. The

brightness of the light which is emitted in P depends on ω̂Q and n̂P . These vectors

form the light’s angle of incidence.

where f is assumed to be the emission distribution function of L. Then B(P ) is the

outgoing intensity at point P (see Fig. 3.1). The term dP,Q stands for the distance

from P to a point Q of L. The brightness depends on the light’s angle of incidence

which is calculated by the dot product of the light direction ω̂Q and the surface

normal n̂P of P . kP is a constant which expresses the surface’s diffuse reflectivity at

P .

3.3.2 Simple Model with Point Light Illumination

The demodulation of the correlation function c has been presented in Sec. 2.2 for

ideal sinusoidal signals (see Eq. (2.1)). The attenuation of the signal in proportion

to a point’s distance dP to the sensor is already included in the optical function s,

with s ∝ 1
dP

2 . Furthermore, s includes the radiosity in point P of the object’s surface

which means s ∝ B(P ). If it is assumed that s equals the reference function g with

an additional phase shift ϕP , then this can be expressed by:

s(t) = g(t + ϕP ) · B(P )

dP
2 . (3.2)

In this first approach the illumination of the scene is restricted to a point light

source. This simplification limits the light source L in Eq. (3.1) so that it consists

of one sample Q which means it is not integrated over the area of the light source.

Furthermore, if it is assumed that a PMD pixel is affected by just a single point P

of the surface, this results in the equation:

Ai = lim
T →∞

1

T

∫ T/2

−T/2
g(t + ϕP ) · B(P )

dP
2 · g(t + τ) dt . (3.3)
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Figure 3.2: Solid angle. A single PMD pixel covers not just the distance to one point

of the surface, it rather represents also depth inhomogeneities which are covered by

its solid angle.

A closer look at the physical setup of the ToF sensors shows that a modification of

Eq. (3.3) is still required. A single PMD pixel covers not only the distance to one

point of an object’s surface, it rather receives the reflected optical signal within its

solid angle Ω which is illustrated in Fig. 3.2. Therefore, it is necessary to integrate

over Ω:

Ai = lim
T →∞

1

T

∫ T/2

−T/2

[
∫

ω̂P ∈Ω
g(t + ϕP ) · B(P )

dP
2 dω̂P

]

· g(t + τ) dt

=

∫

ω̂P ∈Ω

B(P )

dP
2

[

lim
T →∞

1

T

∫ T/2

−T/2
g(t + ϕP ) · g(t + τ) dt

]

dω̂P . (3.4)

Now c̄ is introduced as the normalized correlation function which is - in contrast to c

in Eq. (2.1) - independent of the illumination and the attenuation of the signal, thus

Eq. (3.4) can be written as

Ai =

∫

ω̂P ∈Ω

B(P )

dP
2 · c̄τ (ϕP ) dω̂P

=

∫

ω̂P ∈Ω
f(−ω̂Q)

1

dP,Q
2 (ω̂Q · n̂P ) · kP ·

1

dP
2 · c̄τ (ϕP ) dω̂P . (3.5)

If the position of the point light source is set exactly to the position of the sensor,

which means that dP,Q = dP , a discretization of Eq. (3.5) yields:

Ai =
∑

ω̂P ∈Ω

f(−ω̂Q)
ω̂Q · n̂P

dP
4 · kP · c̄τ (ϕP ) . (3.6)
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3.3.3 Enhanced Model including Area Light Illumination

The approach of a point light illumination which is described in the previous section

can be extended to an illumination with area lights which represents the realistic light

model of a real world device. Assuming an area light source L, then all quantities

which are related to the light position have to be varied. Then Eq. (3.5) leads to:

Ai =

∫

ω̂P ∈Ω

kP

dP
2

[

∫

Q∈L
f(−ω̂Q)

1

dP,Q
2 (ω̂Q · n̂P ) · c̄τ (ϕP,Q) dQ

]

dω̂P . (3.7)

It should be noted that the phase shift ϕ depends on the distance dP,Q from the

point Q of the light source to the point of the surface P as well as on the distance

dP from the surface to the sensor, which means that ϕP,Q ∝ ‖P −Q‖ + dP . The

discretized version of Eq. (3.7) reads:

Ai =
∑

ω̂P ∈Ω

kP

dP
2

∑

Q∈L

f(−ω̂Q)
1

dP,Q
2 (ω̂Q · n̂P ) · c̄τ (ϕP ) . (3.8)

3.4 Simulation Framework

The simulation approach particularly aims at the generation of synthetic sensor data

and the manipulation of camera parameters in real-time, while incorporating the

most relevant artifacts of PMD-based ToF cameras. The idea of facilitating the

generation of such synthetic data led to the development of a framework which al-

lows for the simulation of various full-range camera-like ToF sensors [KOKP07]. Its

interfaces regarding data-manipulation and sensor-simulation are generic, thus new

sensor concepts can be incorporated into the framework.

The high performance of the framework is achieved by utilizing programmable GPUs

which allow for interactive simulator feedback. All relevant scene-, object- and

camera-parameters are editable and accessible to the frameworks’s simulation core.

The framework provides the possibility to add user-defined parameters which are

essential for integrating additional sensor characteristics. The basic architecture of

the simulation framework is illustrated in Fig. 3.3.

Configuration The scene consisting of various geometric objects and state defini-

tions is loaded into the application using a VRML compatible data format [Web97,

Aut06]. Optical camera parameters like exposure time, focal length and image resolu-

tion as well as sensor specific parameters such as modulation frequency are accessible
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Figure 3.3: Framework architecture. All parameters are freely configurable and

accessible by the scene manager and the simulation core. A timer triggers the various

rendering passes. The simulation core has full access to the output of the gathering

fragment program which calculates several data per pixel.

and editable via the user interface. Additionally, the configuration of object and cam-

era motion during a simulation sequence can be specified. The simulation itself is

then based on all specified parameters. During a simulation sequence each frame

can be selected and viewed separately due to the real-time capability of the system.

Also all parameters are reconfigurable during the simulation which simplifies the

evaluation process.

Programmable Simulation Core The framework’s simulation core resembles

the characteristics of the sensor’s hardware and offers the ability to simulate the

sensor-internal data generation process. The emulation of ToF sensors is achieved by

implementing the simulation core’s freely configurable vertex and fragment programs

on the GPU according to the sensor model (see Fig. 3.3). The image data is directly

stored in the GPU’s memory, thus providing full access to the GPU’s flexibility and

efficiency [SDK05, Owe05]. Its parallel stream processor concept offers a way to

outsource a considerable part of the sensor simulation to the graphics card and thus

a sensor-pixel is processed very fast.

Limitations and Advanced Features The approach of using standard rasteriza-

tion techniques of the graphics card is limited to the simulation of one ray per pixel

at one moment in time. For more detailed information about the standard rendering

pipeline in computer graphics see [AMH02]. In order to compensate for this disad-

vantage the framework supplies several features: the spatial super-sampling feature
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Figure 3.4: Simulation application. The user interface of the simulation framework

including manipulation and simulation sequence modules.

allows the sampling of multiple rays per pixel at one moment in time. This way,

the information from neighboring pixels is gathered and evaluated. Furthermore, a

super-sampling on the time-axis is provided by the framework, which is useful for

the implementation of motion blur artifacts by integrating the data on the temporal

basis. The framework also supports the execution of multiple render passes which

is necessary in the case of more sophisticated and complex networks of vertex and

fragment programs. In Fig. 3.4 a screenshot of the framework’s user interface is

displayed. A detailed description of the implementation aspects with regard to the

simulation framework can be found in [KOKP07].

3.5 Implementation

In this section the theoretical sensor model of Sec. 3.3.2 is implemented which in-

corporates a point light illumination. The goal is the simulation of the generation

process of the four phase images Ai. These phase images also form the basis for

further data output of the PMD sensor such as phase shift, depth, intensity and

amplitude data.
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3.5.1 Phase Image Calculation

As standard graphics rasterization techniques are used it is possible to take advan-

tage of the scene’s depth information which is automatically provided by the graphics

pipeline. The depth data is available within the range of [0, 1] and includes a pro-

jective depth deformation, i.e. nonlinear. The ideal distance information dideal is

then calculated by a perspective correction of the depth data. dideal also contains the

transformation from cartesian coordinates into radial coordinates in order to fit the

ToF approach where light source and sensor are located nearly in the same position.

First, the scene is rendered four times according to the phase delay τi in order to

generate the four phase images Ai. The resulting distance dideal is then used for the

calculation of the ideal phase shift, cmp. Eq. (2.4):

ϕideal =
2ω

clight
dideal. (3.9)

Second, the phase images Ai are calculated by sampling the normalized correlation

function c̄ and incorporating the object’s IR reflectivity and its orientation as well

as the intensity attenuation. Thus, the adaption of Eq. (3.6) results in

Ai = f(−ω̂Q)
v̂ · n̂
dideal

2 · k · c̄τi
(ϕideal), τi = i · π

2 , i ∈ {0, 1, 2, 3} , (*) (3.10)

with the intensity of the lambertian light source being f(−ω̂Q) = 1. k is the object’s

reflectivity constant, v̂ is the vector from the object point towards the camera position

and its illumination, and n̂ is the surface normal. The brightness is determined by

the dot product of v̂ and n̂ (see Eq. (3.1)).

3.5.2 Flying Pixels

In Eq. (3.6), a PMD pixel is influenced by the information which is covered by its

solid angle Ω. Since only per-pixel data is available at the GPU a spatial super-

sampling algorithm is used which is applied to a higher resolution rendering of the

scene. Thus, a simulated pixel will also contain the information which relates to

several directional samples within its solid angle (see Fig. 3.2). In Fig. 3.5, a simple

super-sampling algorithm is illustrated which simulates the coverage of a pixel’s solid

angle and thus leads to a satisfactory simulation of a real world sensor’s flying pixel

(*)It should be noted that the total amount of light received by a PMD pixel does not depend

on its distance since the surface area covered by the pixel’s solid angle scales up with the pixel’s

distance. The original publication presented in [KK09] stated wrongly a 1/d4
ideal relation.
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Figure 3.5: Spatial super sampling. The higher resolution image is sampled several

times (here: four times). The value for the resulting pixel is based on the mean value.

Thus, an approximation of the flying pixel effect of a PMD device is implemented.

effect. The algorithm splits a pixel into several sub-pixels, and a sample is taken for

each of the sub-pixels. The resulting pixel’s phase value A for a certain phase image

i is then defined as the mean value of all m sub-pixels j:

Ai =
1

m

m−1
∑

j=0

Aj
i . (3.11)

It should be noted that in contrast to Peters et al. [PLHK07] the sampling of the

normalized correlation function c̄ is applied to each sub-pixel (see Eq. (3.10)), whereas

Peters first computes the phase ϕideal by superpositioning individual point responses

and applies the correlation function afterwards. Peters et al. [PLHK07] do not give

results regarding the flying pixel effect.

3.5.3 Motion Blur

The motion blurring effect of a ToF device is implemented by rendering the scene

several times according to the quantity of phase images Ai. Here the original scene

is rendered four times subsequently at four different points of time. This means that

during a simulation sequence the geometric setup of the scene, e.g. camera and object

position as well as orientation, will differ between the phase images. The left part of

Fig. 3.6 shows the various images which are taken during a camera movement. The

four phase images Ai which are calculated on the basis of the rendered images are

depicted in the middle. Since phase images are used to calculate the resulting data

such as the depth information, each of the phase images contributes to the simulation

result (figure on the right). Thus, the implementation of motion blur is achieved by

temporal super-sampling.
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Figure 3.6: Temporal super-sampling in a dynamic scene. The figure on the left

shows the rendered images of a dynamic simulation scenario which contain color and

depth information. The computation of the phase images (middle) is based on the

rendered images. The temporal super-sampling leads to artifacts in the depth values

(figure on the right) which are calculated on the basis of the simulated phase images.

3.5.4 Correlation Function

The actual function cannot be measured exactly since the precise form of the corre-

lation function c of a PMD device is influenced by numerous physical and electronic

effects. Although a measurement of the signal response of a real PMD pixel can be

achieved by directly illuminating it while applying all values of the internal phase

delays τi, the simulation result differs from the real sensor behavior, i.e. the system-

atic deviation error is not reproducible (see Sec. 2.2.3). The simulation framework is

flexible and configurable and thus offers a comfortable way of testing the influence

of the correlation function’s various implementations on the results. The values of

the measured correlation function, which are displayed in Fig. 3.7(a), are written to

a texture which afterwards is available for a texture look-up on the GPU. Thus, the

correlation function’s values are integrated into the calculation of the phase images

Ai. However, the measured correlation function suffers from the static amount of

noise which is present in the data as well as from the lack of the wiggling effect.

More realistic simulation results of the systematic deviation error are achieved by an

approximation of the sinusoidal signal by various Fourier-modes:

c (τi, ϕideal) =
1

2
· (1 + cos(ϕideal + τi)− 0.041 · cos (3 · (ϕideal + τi))) , (3.12)

with τi = i · π
2 , i ∈ {0, 1, 2, 3}. This signal form results from a phenomenological

approach, the plot of Eq. (3.12) is shown in Fig. 3.7(b). The approach refers to the

publications by Rapp et al. [RFHJ07, Rap07] who evaluated the higher harmonics

in the signal.
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(a) (b)

Figure 3.7: Correlation functions. The measured correlation function for all values

of the phase shift ϕ and the internal phase delay τi is displayed in 3.7(a). The

correlation function of Eq. (3.12) is shown in 3.7(b).

3.5.5 Integration of Sensor Noise

A simple noise model is used in the sensor simulation which results in the plausible

behavior of the simulated sensor. The idea is to include the noise even on the level

of phase images. To be more precise, a certain amount of randomly chosen noise

values is added to the values of the phase image Ai. Due to the fact that the noise is

a per-pixel noise it is added to the resulting phase images after super-sampling the

higher resolution image. This means, Ai of Eq. (3.11) is modified in the following

way:

Anoisy,i = Ai + α · nrand +Ai · β · nrand , (3.13)

with α, β ≥ 0 being the noise coefficients, nrand ∈ [−1, 1] is a random Gaussian

number, and Anoisy,i is the resulting pixel’s phase value A for a certain phase image

i. The signal-to-noise ratio is described by α · nrand which results in a constant

pixel noise. The term Ai · β · nrand models intensity related noise effects. Since it

is tricky to generate random numbers on graphics hardware, a texture is sampled

which contains random numbers. The influence of the noise is then controlled by

adjusting α and β. Noisy phase images then result in depth images which contain

also noisy measurements.
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Comparison of flying pixel behavior of real PMD data and simulation

results. The top row shows the data of the real PMD sensor while the bottom row

displays the simulation data. 3.8(a) and 3.8(d) show the scene setup. The object’s

width is 0.34 m and its height is 0.24 m. All depth data is transformed into 3D world

coordinates for visualization purpose. The flying pixels’ behavior of the object with

a short distance to the background is shown in 3.8(b) and 3.8(e). 3.8(c) and 3.8(f)

display the effect of a large distance between object and background.

3.6 Results and Analysis

The simulation of PMD’s phase images allows for the reconstruction of depth, inten-

sity and amplitude data by using known demodulation formulas (see Sec. 2.2). In

this section, the proposed ToF sensor simulation approach is evaluated and compared

to real sensor data. Furthermore the simulation is applied to a series of experimental

scenes.

3.6.1 Evaluation: Comparison to Real Sensor Data

The side-by-side comparison of the real data and the simulation data (at modulation

frequency of 20 MHz) shows correspondence to a great extent regarding the sensor

behavior. In the first scenario, the object is positioned in a short distance from the

wall in order to demonstrate the flying pixels which tend to drift from the object

towards the wall. The distance between object and camera sensor is 1.67 m. The
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(a) (b)

Figure 3.9: Deviation error. The graph 3.9(a) of a real PMD device with a resolution

of 160 × 120 pixels is compared to the simulation data in 3.9(b). On the x-axis the

measured distances are shown and the deviation error is marked on the y-axis (both

in meters).

object itself is placed in front of the wall at a distance of 0.36 m (see Fig. 3.8(b) and

3.8(e)). In the second scenario, a large distance of 4.13 m between the object and

the wall results in flying pixels which are located in front of the object and drift in

the direction of the camera sensor (see Fig. 3.8(c) and 3.8(f)).

3.6.2 Wiggling Evaluation

The validation of the simulation data is quite elaborate. The wiggling errors of a

real PMD device and the sensor simulation are displayed in Fig. 3.9. This simulation

uses the Fourier-mode correlation function which is described in Eq. (3.12), since the

correlation function which is based on a measured signal response (see Fig. 3.7(a))

results in slightly noisy data due to the specific measuring technique. The graph is

plotted as a function of the measured distance for the image depth information of

distances from 0.9 m to 4.0 m. Fig. 3.9(a) displays the real world sensor results and

Fig. 3.9(b) shows this function measured by the sensor simulation. The simulation

uses a spatial super-sampling on a higher resolution rendering with 640× 480 pixels

and with a down-sampling of 4 × 4 sub-pixels. The noise model uses α = 0.000164

and β = 0.047. As the simulation results in relative intensity values, the data is

linearly transformed on the y-axis which depends on the internal camera design with

its latency time. However, the simulated data clearly indicate the typical deviation

error of the real world sensor.
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(a) (b)

Figure 3.10: Comparison of depth data of a dynamic scene. 3.10(a) shows the scene

in 3D world coordinate view acquired by a real PMD device. The scene displays a

horizontal movement of a box object (which is shown in Fig. 3.8) from the left to the

right. The simulated data during the same object movement is displayed in 3.10(b).

3.6.3 Motion Evaluation

Compared to images of static scenes which are relatively easy to verify, the validation

of dynamic scenes is quite difficult because of the spatial and temporal artifacts

which occur at the same time. The comparison of real dynamic PMD sensor data

with simulated data on a quantitative basis is difficult. Therefore, only a qualitative

comparison is presented in Fig. 3.10. This shows a moving box in front of a wall with

a lateral velocity of approximately 2 m/s. The typical temporal artifacts visible in

the simulated data on the left and the right end of the object are highly comparable

to real sensor data as well as spatial artifacts.

3.6.4 Illumination: Point Light vs. Area Light

In Sec. 3.5 the theoretical sensor model of Sec. 3.3.2 has been implemented which

supports a point light source at camera position. The advantage of this approach

is that the graphics hardware needs less computation time for the illumination of

the scene and thus the simulation feedback is achieved in real-time at interactive

frame-rates. With regard to the model of the graphics card, the frame-rates are

between 15 and 30 fps. The approach of a scene illumination with area lights as

proposed in Sec. 3.3.3 has been also implemented. According to Eq. (3.8), an area

light illumination is simulated which is approximated by up to 112 single lights which

are located next to the sensor and are regularly distributed onto an area of 19×4.5 cm.

This corresponds to the specification of the 19 k model by PMD. The distance from

the camera and its illumination to the center of the scene is 2 m. The difference
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Figure 3.11: Area light vs. point light approach. Difference between both of the

phase images A0 generated by the area light approach and point light approach.

image of the two illumination models is illustrated in Fig. 3.11. The error values

are calculated by subtracting the phase image A0 produced by the simplified point

lights approach from the phase image A0 generated by the area lights approach. It

should be noted that the black regions differ less than 0.005% from the area lights

approach and the white regions contain even smaller differences. This means that

the resulting values are almost zero and thus the two approaches produce nearly

the same simulation results. However, the frame-rate of the area light illumination

decreases to less than one frame per second because of the high computational costs.

3.6.5 Experimental Scenes

The results presented in this section use a spatial super-sampling which is computed

on a scene which has 12 times the size of the simulation’s target resolution. This

corresponds to 1920 × 1440 pixels for a ToF resolution of 160 × 120 pixels. The

down-sampling ratio for simulating spatial artifacts is adjusted to 40× 40 sub-pixels.

Furthermore, the correlation function is based on Fourier-modes (see Sec. 3.5.4) and

the noise model uses α = 0.000035 and β = 0.01.

Static and Moving Scene: Cubes Scene

The cubes scene displayed in Fig. 3.12 show three static cubes in front of a wall. The

virtual ToF sensor is positioned directly in front of the cubes. Fig. 3.12(a) shows the

calculated depth information coded in color (small depth values → red, large depth

values → blue). A perspective view of the depth data transformed into 3D world

coordinates is visualized in Fig. 3.12(b). Here, the flying pixels located between the

cube’s front faces and the background wall become visible. Fig. 3.12(c) shows the

same scene during a movement of the ToF sensor. The temporal artifacts based

on the motion blur approach (see Sec. 3.5.3) are indicated by a tail of flying pixels

drifting towards the sensor.



3.6 Results and Analysis 47

(a) (b)

(c)

Figure 3.12: Simulation results. The simulated depth information of a PMD sensor

is displayed in 3.12(a). In 3.12(b), the scene is shown in 3D world coordinate view.

Its calculation is based on simulated phase images. The temporal artifacts of a PMD

sensor become visible during the rotational movement of the ToF sensor in 3.12(c)).

(a) (b) (c)

Figure 3.13: Tubes box scene. The scene simulates a robot’s bin picking application.

3.13(a) displays the scene setup of the simulation framework. A single simulated

depth image (noise and motion artifacts are noticeable) is shown in 3.13(b). The

accumulation of all depth data of the simulation sequence comprises ∼ 7 mio 3D

data points (160×120 pixels ×360 frames) as visualized in 3.13(c).
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Simulation Sequence: Tubes Box Scene

The tubes box scene as shown in Fig. 3.13 consists of a box with multiple tubes of

various sizes inside. This scene simulates a real world bin picking application as

specified in the Lynkeus 3D project (see Chap. 1 for a brief description regarding the

project): a robot autonomously explores the environment and empties the box as

demonstrated in [FHK∗10] 1. During the simulation sequence the virtual ToF sensor

moves across the scene and acquires the data from various angles. Therefore, various

positions and orientations of the sensor are configured in a key-frame sequence. The

processing of the simulation data is done in real-time during the playback of the

simulation sequence. The full dataset counts 360×4 phase images and comprises the

corresponding depth, amplitude and intensity data. In Fig. 3.13(c) all depth images

have been accumulated into a consistent model. The motion blur artifacts are clearly

visible especially at the object boundaries, i.e. the tubes.

Multi-Sensor Setup: 3D Data Acquisition System

The proposed sensor simulation framework handles the simulation of multiple sensors

simultaneously. Thus, not only a single ToF sensor can be placed into a synthetic

scene but also multiple sensors at various positions. In Fig. 3.14 a general 3D data

acquisition setup for ToF data is proposed. A car wash system is simulated for

the acquisition and 3D reconstruction of a driving car as published for a real world

car reconstruction system in [HLK13b] as part of the German Research Foundation

(DFG) project Imaging New Modalities 2.

The scene consists of several walls and a floor in order to represent realistic back-

ground data. Three ToF sensors are placed onto an arch where the objects are

passed through (see Fig. 3.14(a)). In detail, the positions of the sensors are chosen

with regard to an optimal setup for objects which move through the arch: left-hand

side, right-hand side, and the top of the object are acquired at a time. Fig. 3.14(c)

- Fig. 3.14(e) show the data acquired from the respective ToF sensors. Motion arti-

facts are visible at the object’s contours while it is moving through the acquisition

arch. In Fig. 3.14(b) all depth images from the three sensors have been accumulated

into a common model. Motion artifacts are strongly highlighted by the spread data

points. However, the illumination interference from multiple sensors is not taken into

account by the sensor simulation. This means, each sensor simulation is considered

apart from other sensors. A sensor does not interfere with the active illumination of

a second sensor as in real world.

1For more information about the accumulation of the simulation data into an environment model

see the hierarchical volumetric data structure approach in Chap. 4.
2Research Training Group - Imaging New Modalities, http://www.grk1564.uni-siegen.de.

http://www.grk1564.uni-siegen.de
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(a) (b)

(c) (d) (e)

Figure 3.14: Data acquisition system with multiple sensor devices. The simulation

setup is shown in 3.14(a). In total, ∼ 12.5 mio 3D data points (200×200 pixels ×
3 sensors ×100 frames) are simulated. All 3D points are accumulated and rendered

into a common coordinate system as visualized in 3.14(b). Points which are spread

off from the car are caused by the car’s motion. Individual simulated depth images

of the three sensors of time stamp 43 are displayed in the bottom row showing the

left, top, and right-hand side of the car.

The multi-sensor simulation as well as the arch-based acquisition setup for the driving

car simulation have been developed in collaboration with Thomas Hoegg, Christ-

Elektronik GmbH in Memmingen.

3.7 Discussion

In this chapter a fully equipped simulation model of a ToF sensor has been presented.

The simulation is based on a physical model and resembles the sensor’s phase image

generation. Relevant sensor effects like flying pixels, wiggling and motion blurring

have been reproduced by applying this model in connection with the use of spatial

and temporal super-sampling techniques. Furthermore, a noise model is integrated
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into the sensor simulation.

The proposed algorithms are incorporated into a sensor simulation framework which

imports 3D scenes and provides tools for object and camera manipulation as well

as simulation sequence. The framework is hardware accelerated in order to support

interactive simulation feedback, making use of the programmability of GPUs. The

resulting data is comparable to real world sensor data exposing the results of dynamic

scenes which contain camera and object movements.

The proposed simulation concept is based on research with regard to ToF sensors,

in particular PMD technology. Nevertheless, the implementation of other simulation

concepts as well as lessons learned from the current model can be applied continuously

to the simulation system, e.g. integration of new correlation functions as well as

applying sophisticated noise models.

However, the simulation approach has limitations in terms of the utilization of stan-

dard rasterization techniques of the GPU. Thus, advanced illumination models are

not supported directly which means that ToF sensors’ multipath-interference is not

covered by the current sensor simulation model. The advanced illumination would re-

quire the implementation of effortful ray-tracing algorithms, e.g., and thus real-time

constraints are hard to accomplish. The reader is referred to the offline simulation ap-

proach by Meister et al. [MNK13] for the simulation of such effects. Furthermore, the

current simulation approach deals only with physical units for the final depth maps.

Intermediate results such as the computed phase images are normalized. Lambers

et al. [LHK15] enhance the current simulation model by using physical units through-

out the simulation process. Additionally, their sensor model handles the evaluation

of chip layout variants as well as lens parameterization accounting for vignetting

effects.



Chapter 4

Hierarchical Volumetric Data Accumulation

T
he temporal accumulation of sensor data into a consistent data representation

is called environment modeling and is of importance for subsequent algorithms

which need information about the environment’s state. In this chapter a volumetric

data structure called Dynamic Volume Trees is introduced for the purpose of environ-

ment modeling. An adaptive hierarchical data structure is proposed being updated

from depth sensor data in real-time. Its online capability is achieved by realizing

both the hierarchical data structure as well as the manipulation of the structure

solely on the GPU. The data is organized in a hierarchical kd-tree-like structure

which provides a compact storage of multi-resolution volumes with no redundant

memory consumption. Boolean operations are supported, i.e. sub-volumes can be

efficiently merged and removed with nearly arbitrary resolution.

The current chapter is structured as follows: a motivational part including challenges

and research objectives is given at the beginning. The overview of the related work is

found in Sec. 4.2, followed by a conceptual overview of the dynamic volumetric tree

structure (Sec. 4.3). A description about the implementation is presented in Sec. 4.4.

Then, in Sec. 4.5, the approach is analyzed and evaluated presenting applications

as well as experimental scenes featuring a volume drawing application and depth

map accumulation examples. Finally, this chapter closes with a discussion about the

volumetric data structure in Sec. 4.6.

Publications The approach about Interactive Dynamic Volume Trees on the GPU has been presented

in [KCK09]. Furthermore, the application of the environment model utilizing the presented data

structure within a robotic bin picking application has been published in cooperation with the German

Aerospace Center, Inst. of Robotics and Mechatronics, in [FHK∗10].

4.1 Motivation

The presented approach about the new hierarchical volumetric data structure for

data accumulation and environment modeling has been developed in the context of

the Lynkeus 3D project. The project’s environment model demands for the following

requirements: a model with a flexible spatial resolution is required since various

application scenarios cover a variety of different setups (indoor: 4× 6.5× 6.5 m with

51
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0.005 m accuracy; outdoor: up to 2 km2 with 0.08 m accuracy). Also the exploration

of unknown environments needs to be ensured. This means, the environment model

is set up starting from scratch by accumulating multiple depth maps into a consistent

model. Furthermore, dynamically changing environments are supported since objects

which are added to or removed from the scene are represented by the accumulated

model in real-time. Finally, subsequent processing algorithms are not restricted to

the use of the model’s surface representation only. Rather, the project demands for

volume carving which means that a full voxel model is required.

The accumulation of data acquired from the environment and fed into a consistent

model belongs to the area of 3D reconstruction algorithms which have a long tradition

in computer graphics. Unlike methods that focus on reconstruction from a complete

set of 3D points [HDD∗92, KBH06], online methods require the fusion of many

overlapping depth maps into a single 3D representation that is continuously refined.

A challenging subproblem resides in the real-time capability of these algorithms. One

of the first real-time reconstruction systems for hand held scanning was demonstrated

by Rusinkiewicz et al. [RHHL02], who still need an offline step for accurate surface

reconstruction. The volumetric fusion method of Curless and Levoy [CL96] is also

not applicable to the requirements stated above since their system lacks on scalability

and real-time performance.

In sum, the requirements lead to the development of a new fast and dynamic data

structure. Such data structures are essential in many fields related to sensor data

processing. Algorithms in areas such as ray tracing, collision detection, and volume

data processing, e.g., require exhaustive memory and computational resources. Thus,

these applications organize their data mainly in hierarchical structures for fast and

efficient traversals for data sampling and manipulation. Tasks such as real-time data

processing and accumulation request for the development of parallel algorithms as

supported by today’s GPUs. While previous data structures like kd-trees were built

by the CPU and finally transferred to the GPU memory for traversal and sampling

tasks [FS05], today’s techniques generate even complex data hierarchies directly on

the GPU [ZHWG08]. This way, expensive latency for copying data structures is

avoided.

Challenges Ensuring the data structures’ online capability is the main challenge.

About 60 million depth samples per minute need to be handled in real-time since in

the Lynkeus 3D project a ToF chip has been utilized with a lateral resolution of max.

200x200 pixels at a frame-rate of 25 Hz.

Objectives This chapter focuses on the development of a hierarchical volumetric

data structure with online processing capabilities. The structure is built and man-
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aged by the GPU for the reason of real-time performance. Furthermore, the support

of merging and subtraction of sub-volumes is essential.

4.2 Related Work

This section focuses on approaches about dynamically changing data structures

rather than on known accumulation systems, such as [CL96] and [RHHL02] since ex-

isting systems do not meet the project’s requirements of real-time 3D reconstructions

as stated in Sec. 4.1. Data structures such as kd-trees, grids, or bounding volume

hierarchies (BVHs) are especially required in areas of high performance algorithms

but the relative effectiveness of these structures varies tremendously depending on

the application.

Any approaches in the context of dynamic data structures can be classified into

three categories. The first category is characterized by reconstructing the entire data

structure whenever the scene has changed, e.g. Shevtsov et al. [SSK07] rebuild a kd-

tree every frame. The primary challenge of this approach is that it can be expensive to

rebuild the full data structure especially for large scenes and sophisticated structures.

Secondly, if the majority of the scene remains static, a significant coherence exists

among subsequent frames. A full reconstruction of the data structure is omitted by

updating only the parts which have changed, as proposed by Larsson and Akenine-

Möller [LAM06], for instance. Finally, the last category contains approaches which

are applicable for scenes consisting of a large set of (rather) static objects. The idea

is to pre-compute an acceleration structure for the static parts and to separate it

from the dynamic geometry (see [LAM01, WBS03]).

One of the early approaches proposing a dynamic data structure for ray tracing appli-

cations has been presented by Reinhard et al. [RSH00], which allows the insertion and

the deletion of objects in constant time. The structure is based on hierarchical grids

which entirely ran on the CPU. While some methods were examined in order to avoid

the performance limiting reconstruction of such structures [LAM01], first approaches

started to use the GPU for graphics hardware accelerated data structures [CHH02]

but were still limited due to architectural constraints. Modern approaches process

hierarchical acceleration structures such as kd-trees [FS05, HSHH07, HMHB06] and

BVHs [GPSS07]. However, these approaches essentially built their structures on the

CPU, and do not support any GPU-based updates. The efficient GPU-based data

structures proposed by [CHL04] and [LKHW05] still use the CPU as a memory man-

ager instance. In fact, Purcell et al. [PDC∗03] were the first to describe an entirely

GPU-updated, dynamic sparse data structure. Newer GPU approaches, build ocrees

for point cloud handling [ZGHG08], and construct kd-trees [ZHWG08] or use BVH

[LGS∗09] for ray tracing.
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More recently, interesting work has been published in the area of hierarchical data

structures with regard to environment modeling: octomap [HWB∗13] implements

a probabilistic 3D map representation of the environment which enables robots for

collision free path-planning since voxels are classified into unknown, free and occupied

categories. The data structure is completely CPU-based. Depending on the length of

the measurement beams the integration of a single depth map takes approximately 1-7

seconds. In contrast to this, the approach presented in this chapter manages complete

hierarchical volumes on the GPU and introduces further processing capacities, e.g.

merging and subtraction of sub-volumes at interactive frame-rates.

4.3 Overview of Concept

In the remainder of this chapter, the proposed dynamic data structure is called

Dynamic Volume Tree (DVT). The DVT resides completely on the GPU and it is

only updated in those regions where changes have been made. The concept of DVTs

involves a representation suited for the GPU and a set of operations which allow to

modify the structure in an efficient way. In the following, the DVT is introduced by

providing a conceptual overview of the method.

4.3.1 Tree Topology

The DVT subdivides space similar to a kd-tree. However, the splitting scheme is

uniform and axis-aligned: each splitting plane halves the previous block into a pair

of two equal-sized sub-blocks. Subdivision is repeatedly performed along the x, y

and z-axis, where the depth level of the tree may vary locally. By using a constant

bounding box this spatial division scheme assigns a fixed subspace (voxel) to each

node in the binary tree. In principle, this rule can be applied to a spatial subdivision

in arbitrary dimensions (see Fig. 4.1).

As mentioned before, the representation of geometry is of interest. Thus, only the

leafs of the tree, which are defined as voxels, contain spatial information and values

are stored to mark the object’s interior (0) and exterior (1) as leaf attributes. To

improve the accuracy float values can be stored within the range of [0, 1] specifying

the distance of the voxel to the respective surface of the object (see Sec. 4.4.5 for

rendering aspects). For reasons of simplification, in the following binary values are

assumed to be stored in the leafs.
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Figure 4.1: Tree structure. An example (in 2D) consisting of a specific tree and

its corresponding spatial representation. The node stream results from a pre-order

tree-traversal.

4.3.2 Tree Manipulation

The modification of the DVT can be seen as an operation which changes the structure

and the values in the tree. Given a current tree and an input tree, which specifies

an implicit geometry, e.g. a sphere, or a polygonal mesh (see Sec. 4.4.4 for details

on hierarchical geometry rasterization). The task is to “insert” the new tree into the

current one. Two basic boolean operations are supported, i.e.

Merge The input geometry is merged with the geometry represented in the current

tree; this relates to a union operation.

Subtract The input geometry is subtracted from the geometry represented in the

current tree; this relates to the relative complement.

It should be noted that the processing of leafs is sufficient, i.e. both operations

can be realized by writing new leafs into the current DVT-structure. Merging and

subtracting are realized by reading 1 s from the input stream and writing them to the

current DVT as 1 s and 0 s respectively in case of subtracting geometry (see Fig. 4.2.)

The resulting DVT has the same topological structure in both cases, but it may

contain redundancies. An optimization pass is proposed which removes redundant

subtrees (Sec. 4.4.3). No restrictions are put on the voxels of the input tree with

regard to their locations within the hierarchy which results in voxels of various sizes.
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Figure 4.2: Merge and subtract. An example showing the result after a merge or

subtract operation. The yellow-marked nodes form the input.

This means that the locations in the tree which may be affected by a modification

process are scattered arbitrarily. Thus, depending on the topology of the current

tree, it may be necessary to expand or reduce complete subtrees in order to write the

respective input voxels into the tree (see Fig. 4.2). This is achieved by performing

the tree modifications iteratively, namely by adding and removing node levels locally.

The iteration terminates, if no modifications are pending and if the node stream of

the current DVT does not change anymore.

The iteration is split up in three data-parallel passes: the mark, the restructure and

the remap pass:

Mark Pass Nodes are selected within the current DVT which need to be expanded

or reduced (see Sec. 4.4.2). The depth of these marked nodes corresponds to

the resolution of the respective input voxel. This information needs to be stored

together with the input voxels and will later be referred to as the target depth.

Restructure Pass This pass interprets the marked nodes and adds or removes

them (see Sec. 4.4.2). Both operations handle subtrees despite the fact that

one single level is added/removed per iteration. Adding subtrees is realized

by marking newly added nodes in the next mark pass; removing subtrees is

realized by removing subsequent children during the next restructure pass.

Remap Pass Finally, a correctly pointered tree structure is ensured by resetting

all pointers. This involves a two-pass routine using a temporary look-up table

(see Sec. 4.4.2).
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Algorithm 1: Overview

1 do

2 // pass 1 (mark):

3 for each input voxel

4 if appropriate node existent in tree:

5 update value

6 else if subtree needs to be expanded/reduced:

7 mark node for pass 2

8

9 // pass 2 (restructure):

10 for each marked node n

11 if n is marked for expansion

12 add children

13 if (n marked for reduction)

14 or (n has invalid parent)

15 set n’s childrens’ parent ptrs. invalid

16 remove n

17

18 // pass 3 (remap):

19 for each node n:

20 add node to look−up table

21 for each node n:

22 read pointers from look−up table

23

24 while (∃ marked nodes)

25 or (stream has been altered)

The overall modification process is described in the algorithmic overview given in

Alg. 1. A more detailed and implementation-driven explanation of the single passes

involved in the algorithm, including technical aspects, is given in the next section.

4.4 Implementation

This section provides an implementation specific view of the strategies presented

in the previous section. Alg. 1 is explained in detail including technical aspects

which are necessary to realize the data structure on the GPU. A shader API-oriented

terminology has been chosen as the DVT method fits perfectly to the use of geometry

shaders.
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Figure 4.3: Data streams. The tree structure is represented by streams. The cells

belonging to one node are marked yellow.

4.4.1 Storage of Dynamic Volume Trees

The tree is stored in three vertex streams in graphics memory. These streams can

be propagated through the graphics pipeline in a single render pass. The layout of

the node information is shown in Fig. 4.3.

Pointer Stream This stream contains the pointer structure, i.e. the node’s parent

and children as node IDs, and the node’s value. A pointer can be set to −1,

meaning that it is invalid, e.g. the parent in the case of the root and the

children in the case of leaf nodes do not exist.

Node Stream This stream provides a node’s spatial position and a depth value

implying its level in the hierarchy. This stream information can be used for

an efficient rendering without always being forced to determine each node’s

position.

Remap Stream The third stream is used as a temporary container for coding the

look-up table which is necessary when remapping pointers.

These streams are stored in gl_Position, gl_TexCoord[0] and gl_TexCoord[1]

respectively. During processing, stream information can be transferred to a texture

object and back by using the pixel buffer extension. This allows the algorithm to

use stream processing (e.g. using a geometry shader) and rendering for scattering

operations. This strategy is used to read the pointer stream through texture-fetching.

To achieve a fragment-based process, the texture object is double-buffered, thus being

accessible for writing operations. From now it is assumed that all streams can be

read and written as streams or textures, assuming that the data has been transferred
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appropriately before processing. The nodes of the binary tree are stored in pre-order.

This ensures that the root node is located at the beginning of the stream and does

not change its location when modifying the tree.

4.4.2 Modification of Dynamic Volume Trees

The write operation is the central algorithm of the DVT approach. It solves the

problem of adding and removing nodes when merging a new input volume to the

tree. As mentioned previously, depending on the location of input voxels (e.g. leaf

of the input DVT) the tree structure must be expanded in regions where its depth is

insufficient, whereas it must be reduced at oversampled regions in order to eliminate

superfluous nodes. Alg. 1 contains the steps necessary to realize modifications in

parallel. The approach is reformulated to meet the specifics of the GPU, including

a workflow which can be realized by using stages of the graphics pipeline.

The workflow consists of a loop with three passes: mark, restructure and remap. Not

forgetting that the input consists of a stream of input voxels together with their

target depths. The mark pass selects a set of tree nodes which are affected by the

input by writing special marker values into the pointer stream. The marked stream

is then processed in a geometry shader pass: the restructure pass. Finally, the remap

pass takes care of correct pointers. The three passes are repeated until nothing has

to be changed any longer, i.e. if no node is marked and no node is added or removed.

Mark Pass

The idea of the mark pass is to select tree nodes which are affected by a write

operation. This selection is realized by a scattering approach which is implemented

in a vertex shader. In order to simultaneously read from and write to the pointer

stream, a double-buffered access is necessary. As only a subset of the stream nodes is

changed, the output as well as the input must be initialized to the current state of the

pointer stream. The actual marking is done using a scattering approach implemented

in a vertex shader: The tree is traversed for each input voxel until the target depth

or a leaf node is reached. There are three cases where nodes are marked when a

voxel, i.e. leaf node of the input stream at a given level (“target level”), is processed:

1. If a leaf node at target depth is reached in the current DVT and the value

of this leaf node is different from the value of the input voxel, then the input

voxel’s value is written into the leaf node of the current DVT.

2. If in the current DVT a leaf node is reached at an insufficient depth, i.e. the

DVT needs to be expanded, then the node is marked.
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(a) (b)

Figure 4.4: Tree reduction and expansion. In 4.4(a) the reduction of DVTs is il-

lustrated by removing superfluous nodes below the marked intermediate node. The

example in 4.4(b) displays the expansion of DVTs as new nodes are added.

3. If an intermediate node is reached in the current DVT at the target depth, i.e.

the tree needs to be reduced, then the node is marked.

In all other cases the current vertex is clipped by moving it out of the output stream

and no value is written. Nodes are marked by subtracting a high number from the

node’s value. Such nodes are later unmarked by adding back the same high number

to the value.

The Restructure Pass

The restructure pass processes the node stream in a geometry shader. Nodes are

removed and added where it is necessary. Fig. 4.4 shows how removing and adding

of nodes works by means of two examples. Both operations use a two-pass strategy:

turn pointers to a special value (in the following the value −2 is used) and update

them in a subsequent pass.
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Figure 4.5: The remap operation. Two nodes (marked red) are removed and the

respective pointers are updated.

The root of subtrees which have to be removed in the current DVT is indicated

by marked intermediate nodes. Starting from the marked nodes the reduction is

performed iteratively. Since the subtree’s root node remains in the tree as leaf, its

children are made invalid, which is indicated by setting their parent pointers to

−2. Invalid nodes can be removed safely in the next restructure pass. By removing

these nodes in the next pass, their children are transformed into invalid nodes again.

Essentially, this is realized by the iteration. In the example given in Fig. 4.4(a), two

levels of nodes need to be removed underneath the marked intermediate node. The

iteration stops as soon as changes do not occur anymore (after step 1d). Nodes are

added at marked leaf nodes which imply insufficient depth. Fig. 4.4(b) illustrates how

children are added below the marked node. The geometry program emits two new

vertices which, due to the pre-order sequence, are located directly after the current

node. The parent-pointers of the two children nodes can be set directly as the parent

is exactly the node processed currently in the shader. On the other hand, the newly

added nodes do not possess a valid ID yet since the parallel stream processing does

not allow to create a globally unique ID sequence. Thus, the parent pointers of the

new nodes are temporarily set to −2. The next remap pass takes care of remapping

the pointers and updating those pointers set to −2. This is an easy task since the

children are located next to the parent node in the stream (at offsets +1 and +2).

The Remap Pass

Each time the size of the node stream is altered, the pointer structure needs to be

updated accordingly. The problem is that moving nodes to other stream locations

implies that all pointers to these nodes must be redirected (see Fig. 4.5) which can

be done in parallel using the following scattering approach. Assume that each node

possesses an ID corresponding to its location in the stream. One node moves from
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an old ID to a new ID if the stream is modified:

1. Render new node IDs as vertices into the remap stream which serves as a

look-up table in the subsequent step. The output location of each vertex is

determined by the old ID.

2. Process the new stream and perform the following operation: update the point-

ers (parent, left, right) for each node by reading the remap stream.

4.4.3 Redundancy Optimization

After a write operation on the tree there are cases which can occur where two children

or even a whole subtree hold the same value (compare with Fig. 4.2). These cases

can be collapsed without changing the represented volume. Accordingly, the collapse

operation solves the problem of joining two leaves at the same depth with equal value.

The operator is implemented in a geometry pass which detects superfluous successors.

The parent node is set to the value of the successors and the successors themselves

are removed. In order to speed-up the shader, a window of four adjacent nodes is

processed by using the adjacency capability of OpenGL in connection with line strips.

This avoids texture fetch and ensures best caching behavior. After collapse, a pointer

remap is performed according to Sec. 4.4.2.

4.4.4 Generation of Dynamic Volume Trees

Initially, in Sec. 4.3 it is assumed that the input geometry is already given as DVT.

Even though the rasterization of 3D objects is a field by its own, in the following the

generation of DVTs for objects is outlined briefly.

Voxelization of Polygon Meshes A simple, yet potentially exhaustive technique

is to rasterize an object on a certain tree level and apply the optimization technique

described in Sec. 4.4.3 (see also [FL00]). Possibly, this requires a huge amount of

data and time since the DVT has to be fully instantiated at the predefined level.

Similar to [WE98] clipping planes as well as front- and back-face rendering is used

in order to generate slices which are rendered to a 3D texture. The result is a binary

solid voxel model, the quality of which is depending on the volume resolution of the

3D texture.

Hierarchical Rasterization A more effective approach directly works in a hierar-

chical manner. The hierarchical rasterization provided in Alg. 2 creates a temporary

node stream containing a hierarchical description of the object to be written into the



4.4 Implementation 63

Algorithm 2: Hierarchical rasterization

1 initialize a stream with root node of value 1

2 for each depth d ∈ {0, . . . , dtarget}
3 for each non-finished stream node n

4 if n is outside the object:

5 discard n

6 else if n is inside the object, or d = dtarget:

7 mark n as finished

8 else if n crosses the object’s surface

9 subdivide n by adding 2 children to stream

10 process the new stream according to Sec. 4.3.2

global structure. The stream is constructed in a loop where each iteration adds one

depth level. Thus, the strategy can be seen as a refinement of the hierarchy from

coarse (only the root node) to a specific target depth which is given as input parame-

ter. A special marker is used to identify nodes which do not need to be refined again,

so-called finished nodes. It has to be noted that this algorithm heavily depends on

the inside/outside/boundary detection for a given geometry in order to be rasterized

hierarchically. For implicit geometries, this functionality can easily be realized using

the inherent distance measure, whereas polygonal meshes require more sophisticated

techniques in order to determine this classification.

Sub-Voxel Accuracy As mentioned in Sec. 4.3.1, voxels are capable of storing

float values which specify the distance of the voxel’s center to the exact object’s

surface location. The way of computing this distance depends on the type of geom-

etry, e.g. for implicit geometries it is rather straight forward. To keep the memory

consumption low, this is applied only to voxels close to the surface, i.e. within a

narrow band. This leads to a representation of the object as a signed distance field

and allows for rendering of the surface at sub-voxel accuracy, e.g. when ray casting

is performed.

4.4.5 Rendering Taversals

In order to access the information of the data structure the DVTs are traversed

down to the leaf nodes since these voxels contain the actual spatial information. The

information is visualized using various rendering approaches. In this section the visu-

alization based on primitives and ray casting are proposed. Due to the hierarchical

structure, both approaches implicitly implement an empty-space skipping similar to

[RSK05].
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(a) (b)

Figure 4.6: Rendering of leaf nodes. In 4.6(a) the rendering based on primitives is

shown (Fig. courtesy of [KCK09]). The various sizes of the primitives represent the

respective levels of the tree hierarchy: the smallest primitive size is defined by the

minimum voxel size of the tree. 4.6(b) illustrates the tree structure rendered by ray

casting.

Primitive Rendering This rendering approach uses the graphics hardware’s ge-

ometry shader. The node stream is processed by a geometry program which renders

a geometric primitive, e.g. a cube or a screen aligned quad, for each voxel which is

marked as the object’s interior (see Fig. 4.6(a)). The size of the rendering primitive

is calculated by identifying the voxel’s position in the DVT, i.e. the depth level of

the node stream. If a voxel’s orientation is available (e.g. by pre-processing the in-

put data and calculating normals) then rendering of surface splats is useful in order

to represent the surface’s orientation. The geometry shader’s processing speed is

affected by the increasing number of nodes which can be reduced by the redundancy

optimization. The approach skips the empty space as the geometric primitives adapt

exactly their spatial regions corresponding to the voxel size. Its complexity scales

with the number of nodes n which are to process with O(n) rather than with the

number of pixels of the output image.

Ray Casting Visualization based on ray casting implements the tree traversal as

well as its interpretation as a fragment program (similar to [HSS∗05] ). The DVT

is traversed for each pixel of the target image. All the voxels along a viewing ray

are traced for further evaluation. If a voxel does not fit the criterion for the object’s

interior, it is skipped and the next voxel along the ray is processed. The first hit of a

voxel of the object’s interior represents its surface. Its complexity with O(p) depends

on the number of pixels p of the resulting image which initiate the DVT-traversals

along the viewing rays.
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Figure 4.7: Performance analysis scene: a 3D torus is drawn automatically by insert-

ing multiple solid spheres into the tree data structure.

The assignment of float values as leaf-attributes (see sub-voxel accuracy in the previ-

ous section) is useful to improve the visual appearance of the tree’s rendering. The

information can be applied to the calculation of shading algorithms, e.g. the compu-

tation of gradients at sub-voxel level improves the phong shading (see Fig. 4.6(b)).

4.5 Results and Analysis

In this section the proposed volumetric data structure is analyzed in terms of perfor-

mance and scalability. The application of DVTs is presented by processing various

scenes demonstrating its online merging capabilities.

4.5.1 Performance Analysis

A test scene is processed by the volumetric data structure in order to analyze the

performance as well as the memory consumption. The test is executed on an Intel

Dual Core 2.67GHz CPU with a Nvidia GeForce GTX 280 (1024MB) graphics card.

The maximum depth level for the number of nodes is set to 221. The test setup

automatically draws a fine grained, solid sphere which occupies around 98.000 nodes

in the data structure. Then the sphere is moved in a circular shape with a step-width

of 3◦. After each step the sphere is written to the data structure which finally results

in a 3D torus (see Fig. 4.7). The torus is drawn in four variations:

1. Drawing with no redundancy optimization and no hierarchical rasterization

(NO),

2. drawing with redundancy optimization enabled and no hierarchical rasteriza-

tion (RO),

3. drawing with hierarchical rasterization enabled (HR),

4. and drawing with both redundancy optimization and hierarchical rasterization

enabled (ROHR).



66 Hierarchical Volumetric Data Accumulation

 0

 100

 200

 300

 400

 500

 600

 0  20  40  60  80  100  120

m
ill

is
e
c

steps

NO
RO
HR

ROHR

Figure 4.8: Performance plot: timings. Variations of the write and collapse oper-

ations are plotted (see Sec. 4.5.1 for legend’s abbreviations). A torus is drawn in

120 steps (x-axis). The time for writing the new data into the DVT is measured in

milliseconds (y-axis).
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Figure 4.9: Performance plot: number of nodes. The total number of nodes (fill-level)

during the drawing of the torus is displayed.
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#procs 16 32 48 64 80 96 112 128 speed-up

171.751 nodes 474ms 254ms 185ms 149ms 131ms 120ms 113ms 107ms 4.43

1.232.589 nodes 4086ms 2100ms 1444ms 1120ms 938ms 816ms 773ms 669ms 6.11

Table 4.1: Write operation scalability. The last column shows the speed-up of the

use from 16 to 128 processors while inserting a certain number of nodes into the DVT

(GeForce 8800 GTX graphics card).

The results of the measurements of tree modifications, i.e. performing write and

collapse operations (rendering is switched off during performance measurements), are

displayed in the plots shown in Fig. 4.8 and 4.9. The best performance is achieved

by enabling the redundancy optimization as well as the hierarchical rasterization

which performs the collapse operation every 10th step as indicated by the respective

peaks in the time measurement (see RO and ROHR in Fig. 4.8). The effect of the

redundancy optimization is also illustrated by the decreasing number of nodes after

each iteration (see RO and ROHR in Fig. 4.9). The continuous ups and downs of

each plot in Fig. 4.8 are explained by the fact that the tree does not need to be

expanded in certain regions during each write operation as previous write operations

may have expanded the tree already close to the specific target depth. This results

in a better performance and thus in a better time measurement.

4.5.2 Scalability

The scalability of the parallel DVT implementation is examined by disabling pro-

cessing units of the graphics hardware. Similar to [ZHWG08] the NVStrap-driver in

RivaTuner [nic] is used in order to reduce the number of processors of a Geforce 8800

GTX (since the NVStrap cannot be applied to latest Nvidia GPUs). The running

time of the write operation is scalable to a great extent. However, its scalability is

sublinear due to the constant overhead in API management. Two test-cases are listed

in Table 4.1, i.e. inserting a medium and a high number of nodes into the DVT. Each

column illustrates the timings for the specific number of active processing units.

4.5.3 Comparison

In contrast to other spatial data structures the DVT focuses on a multi-resolution

spatial volume representation for depth map processing as well as object voxelization.

It is rather difficult to do a direct comparison with approaches utilizing acceleration

structures mostly applied in the area of ray tracing without integrating these data

structures into the same application. However, Zhou et al. [ZHWG08] construct

a kd-tree on graphics hardware for ray tracing as well as photon mapping for dy-
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Figure 4.10: Volume drawing results. The tree’s high spatial resolution is illustrated

by the volume drawing application. The objects are drawn interactively in real-time

in solid mode (data structure: 2.5M nodes, 25 fps, primitives rendering approach).

namic scenes. The kd-tree is built from scratch for every frame, similar to Lauter-

bach et al. [LGS∗09] who rebuild their BVH for each frame. By the time when DVTs

have been published [KCK09], Zhou et al. [ZGHG08] proposed an octree-structure

which is build in real-time on the GPU in order to handle point clouds. New points

can be inserted into the hierarchy and the respective object surface is reconstructed.

Basic boolean operations are also supported by computing implicit functions for the

surface. However, in contrast to Zhou et al. DVTs can handle data in a nearly ar-

bitrary resolution, i.e. target depth, furthermore the values of the data structure

are not sorted before processing. In general, a quantitative comparison of the data

structures is difficult due to the different fields of applications.

4.5.4 Experimental Scenes

The creation of DVTs has been tested for various scenes: a volume drawing applica-

tion demos online drawing and object-rasterization in 3D space. The capabilities of

range data accumulation are shown in several sceneries handling synthetic data as

well as real camera data.

High Resolution Volume Drawing

An interactive volume drawing application is demonstrated that stores the drawing

into a DVT (see Fig. 4.10). The application is well suited to show the interactive

performance of the hierarchical data structure. The data can be drawn into the

DVT with a nearly arbitrary effective spatial resolution that is only constrained by

the hardware’s floating point precision. Its size is bounded by the size of the GPU

memory. The brush mode (solid or surface), the brush size as well as the brush’s

voxel size are adjustable by the user. The voxel size defines the spatial resolution,

i.e. the target depth of the tree where the current drawing is written to. This
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also defines the minimum voxel size. The application catches drawing events at 60

fps and processes the data immediately. Thus, an interactive feedback is provided

while drawing in 3D space. Additionally, the application allows for the voxelization

of polygonal meshes which can be processed by the DVT, e.g. the voxelized rabbit

mesh in Fig. 4.10. Interactive frame-rates are maintained during the drawing process.

In particular, the frame-rates depend on the number of nodes which are currently

to be processed as well as the fill level of the DVT. With regard to the boolean

operations merge and subtract, DVTs cannot only draw new data into the structure

but also carve out data.

Range Data Accumulation

Primarily, DVTs have been developed in order to accumulate range images into a

consistent data basis. Therefore, depth maps acquired from various scenes have been

processed. While the synthetic reference scene Sim illustrates the accumulation of

hundreds of range images, the Tubes Box scene simulates a robot’s bin picking appli-

cation. Finally, the bin picking application is also performed with real sensor data.

All accumulation scenes are processed by the DVT with redundancy optimization as

well as the hierarchical rasterization enabled. A 6 DoF camera pose transformation

comprising rotation and translation information is assigned to each depth map for

transforming the depth data into a common 3D world coordinate basis.

Synthetic Reference Scene Sim The data structure’s ability of range data accu-

mulation has been tested with a simulation sequence recorded by a camera rotating

around the simple synthetic reference scene Sim1. The range data is computed by

using the sensor simulation framework described in Chap. 3 which has been config-

ured in order to generate ideal depth data, i.e. typical ToF effects are not present

in this dataset. The final range images are stored in two sizes: 160× 120 pixels and

640× 480 pixels. The total simulation sequence consists of 950 depth maps acquired

by a camera rotating around a scene comprising two teapots and two box objects.

One full turn of the virtual camera is reached after 520 images. The accumulated

result is displayed in Fig. 4.11.

The processing of low resolution images with 160×120 pixels as well as the high

resolution images with 640×480 pixels are compared to each other as displayed in the

plots in Fig. 4.13 and 4.14. Obviously, the processing of the low resolution sequence

(thin orange curve) with a mean processing time of 44 ms (∼ 23 fps) outperforms the

high resolution sequence (bold curve) with a mean of 455 ms (∼ 2.2 fps) which is no

1The same simulation scene is also used for evaluation purpose in Chap. 5 presenting a point-based

fusion algorithm.



70 Hierarchical Volumetric Data Accumulation

(a) (b)

Figure 4.11: Visualization of the synthetic reference scene Sim. 4.11(a) displays the

tree structure colored in red. The blue colored voxels indicate the leaf nodes of the

tree containing the actual information. In 4.11(b) the leaf nodes of the partially

accumulated scene are rendered with point sprites visualized as spherical primitives.

longer feasible for real-time accumulation of depth sensor data. The processing time

of an individual depth map strongly depends on the balancing of the DVT’s nodes.

In suboptimal situations the processing lasts over 650 ms in contrast to 300 ms in

well suited situations. The significant ups and downs are also caused by the GPU’s

overall workload which requires a high number of parallel threads for the processing

of the high resolution depth maps while both sequences occupy approximately the

same number of total nodes in the DVT (∼ 200.000 nodes).

Tubes Box Scene The synthetic Tubes Box scene consists of a box with multiple

tubes of different sizes inside (see Fig. 4.12). A virtual camera moves over the scene

and acquires data from various angles which simulates the real world bin picking

application where a robot is equipped with a depth sensor and explores the scenery.

The sequence of 360 depth maps is acquired by the simulation framework as explained

in Sec. 3.6.5. Depth maps are simulated in several variants such as 160×120 pixels

which contain ideal depth values as well as 160×120 pixels which include typical ToF

artifacts such as motion blur, flying pixels, and sensor noise (see Fig. 4.12(c)). Addi-

tionally, a sequence with high resolution images of 640×480 pixels is produced which

contains ideal depth values with no ToF specific senor artifacts. Fig. 4.12(d) displays

the sequence’s volume carving result. Therefore, the individual depth maps are vox-

elized comprising their full spatial volumetric representation. Then, the depths maps’

solid voxel representation is subtracted from an initially occupied volume.

The plots of the Tubes Box scene (also displayed in Fig. 4.13 and 4.14) expose a

similar behavior as the previously presented reference scene Sim: the processing

of low resolution images (thin green curve) with a mean of 160 ms (∼ 6.2 fps) is
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(a) (b)

(c) (d)

Figure 4.12: Visualization of the Tubes Box scene. 4.12(a) displays the tree structure

colored in red (leaf nodes: blue). 4.12(b) shows the reconstructed surface after accu-

mulating the ideal depth maps while in 4.12(c) the result of a ToF simulated dataset

is shown including typical artifacts such as motion blur and noise. 4.12(d) displays

the scene’s volume carving result which is obtained by subtracting the individual

depth maps from the initially occupied volume.

significantly faster than the processing of high resolution images (bold curve) with

a mean of 750 ms (∼ 1.3 fps). The characteristics of ToF data in contrast to ideal

data are illustrated by the large number of ∼ 1 mio nodes which is more than twice

the number of nodes as of the ideal dataset. The large number of nodes is caused

by the noisy character of ToF data which affects more nodes in the DVT than noise

free data.

The overall computation time of the Tubes Box scene is increased in comparison to

the reference scene data. This is due to the fact that the Tubes Box scene is processed

into the DVT with higher details, namely with a normalized target voxel size of 1
512

in contrast to the coarser voxel size of the reference scene, i.e. 1
256 . The computation

time of the Tubes Box scene with a decreased voxel size of 1
256 is displayed as a dotted

green curve in Fig. 4.13. Here, the mean processing time is 76 ms (∼ 13 fps) which

is of the same magnitude as its equivalent of the reference scene.
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Figure 4.13: Range data accumulation: timings. The timings for depth maps with
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displayed. The performance measured in milliseconds for each time step is plotted

for the synthetic reference scene Sim (orange colored curves) as well as for the Tubes
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of the accumulation is displayed for the synthetic reference scene Sim and the Tubes
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4.5 Results and Analysis 73

(a) (b)

(c) (d)

Figure 4.15: Robot’s bin picking application. The DVT structure is incorporated

into the environment model of the robot’s bin picking application system. 4.15(a)

shows the DLR lightweight robot which allows for cooperative bin picking tasks with

a human co-worker. In 4.15(b) a screenshot of the accumulated data in the environ-

ment model is displayed. 4.15(c) and 4.15(d) show the fully automated bin picking

application performed by an industrial robot at Karlsruhe Institute of Technology

(KIT), utilizing the DVT featured environment model.

Bin Picking Application The bin-picking application is a showcase application

in robotics which combines several robotic challenges such as object recognition and

localization, grasp planning, path planning, and collision avoidance. The DVT is

incorporated into an environment model which allows industrial robots to efficiently

explore their environment and to fulfill new classes of picking tasks. Three key

components set up the bin picking application: a 14 kg lightweight robot (German

Aerospace Center, DLR LWR-III) performs the bin picking tasks as well as allows

for direct interaction with humans. Secondly, a ToF camera which is mounted to the

robot’s front most joint continuously observes the scene. Thirdly, a software system

evaluates the observed scene which is accumulated in the environment model. This
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is the basis for further computation tasks such as object localization, tracking and

path-planning. The communication between the components is based on network

protocols which ensure a high performance of the overall system.

The robot’s task is to pick the tubes out of the box autonomously. The localization of

small objects is feasible only at close distances with the utilized depth sensor which

provides a small field of view (∼ 45◦) and a lateral resolution of 200×200 pixels.

Furthermore, the working range of the robot does not allow for the observation of

the complete workbench at one point in time. Thus, capturing the entire scene is

achieved by moving the robot to various positions in order to explore the overall

workspace. All acquired depth maps and the respective robot poses are then fed

into the environment model which accumulates the data into a consistent data ba-

sis. Finally, the object localization and path planning modules request virtual views

from the environment model by providing a virtual pose along with image properties

(such as image resolution) in order to run segmentation and object localization algo-

rithms on the data. Fig. 4.15 shows the lightweight robot performing the bin picking

application as well as a large industrial robot utilizing DVTs incorporated into the

system’s environment model.

4.6 Discussion

In this chapter an adaptive hierarchical volume data structure has been presented,

namely the Dynamic Volume Tree (DVT), which runs on the GPU and can be modi-

fied interactively. The kd-tree-like hierarchical structure is built and managed on the

GPU and supports boolean operations for merging and subtraction of sub-volumes

with nearly arbitrary resolution. The tree is integrated into a real-time volume

drawing application for multi-resolution drawings. Furthermore, the accumulation

of hundreds of depth maps has been demonstrated by DVTs. The integration of the

data structure into a robot’s bin picking application has also been presented.

During the practical use of the data structure the following observations have been

made:

Real-time Capability DVTs have been proven to successfully handle the accumu-

lation of input data at interactive frame-rates (see Fig 4.8 and 4.13). However,

standard real-world scenes result in unbalanced trees which progressively slows

down the accumulation. While the processing of depth maps of 160 × 120 pix-

els looses its online capability for scenes with high details, the accumulation of

high resolution depth maps, e.g. 640x480 pixels, could not reach an interactive

frame-rate from the start (see Fig. 4.13).

Lean Data Structure Although the development of DVTs targets explicitly the
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field of lean and efficient data structures, the current implementation still occu-

pies a certain amount of GPU memory and spends a significant part of process-

ing resources for managing the data structure. Thus, computation overhead

causes a slower processing of the data.

Registration The current implementation does not compensate for tracking errors.

Depth maps are transformed into a common coordinate basis for accumulation

purpose only. The transformation matrix is delivered along with the depth

maps into the DVT system (e.g. by simulation or robot pose) without account-

ing for slightly misaligned data. An internal registration step, e.g. pairwise

ICP, is not implemented. Finally, this results in an inaccurate accumulation

model.

Data Pre-processing The current approach does not account for pre-processing of

noisy input data. For example, filtering of ToF artifacts (noise, outliers, flying

pixels) is not applied since prefiltering would further decrease the performance

of the system. Thus, the current accumulation results are rather noisy.

Spatial Representation The voxel data structure is a spatial representation of the

data in the proposed examples, i.e. the extension of a leaf-voxel represents a

data point’s spatial extension in space. Due to the hierarchical approxima-

tion the approach loses data precision. The precision is defined by the tree

structure’s target depth.

Alternative Approaches The observations mentioned before open up several di-

rections regarding alternative approaches. Potential work areas are: to ensure the

real-time capability of the system even for sensors with high lateral resolution; to

pre-process and filter noisy input data, to compensate tracking-errors, and to gain

a higher precision in the data’s spatial representation. The point-based fusion ap-

proach, which is proposed in the next chapter, improves the volumetric approach in

terms of processing speed, accuracy, and rendering quality.





Chapter 5

Point-based Fusion of Range Data

T
he accumulation system proposed in the previous chapter is limited by the com-

putational overhead of the underlying volumetric data structure. Interactive

frame-rates are hard to reach for larger scenes as well as for depth sensors with

higher resolution, such as Microsoft’s Kinect with VGA resolution of 640x480 pix-

els. In this chapter, a point-based fusion algorithm is presented which accounts for

the limitations of the previous approach. The method focuses on real-time dense

reconstruction of 3D environments with equivalent quality to existing online meth-

ods, but with support for additional spatial scale and robustness in dynamic scenes.

The approach is designed around a simple and flat point-based representation, which

directly works with the input acquired from depth sensors, without the overhead of

converting between representations. The use of points enables speed and memory

efficiency.

After the introductory sections about motivation and related work, the chapter pro-

ceeds with the basic point-based fusion approach in Sec. 5.3. Sec. 5.4 describes the

support of dynamically changing scenes, followed by a section about the integration

of occupancy grids (Sec. 5.5) which addresses the topic of environment models for

safe robot navigation and autonomous exploration in unknown areas. The chapter

closes with results and their analysis (Sec. 5.6.3) as well as a conclusive discussion in

Sec. 5.7.

Publications The proposed work on real-time 3D reconstruction using point-based fusion has been

published in collaboration with Microsoft Research, Cambridge, and the University College London

in [KLL∗13]. The underlying GPU framework has been proposed in [OKK09]. The part about

sketching an alternative fusion technique based on MLS instead of computing a running average has

not been published yet. The section about the integration of occupancy grids into the point-based

system remains also unpublished so far.

5.1 Motivation

The availability of consumer depth cameras, such as the structured light version of

Microsoft’s Kinect (2011) as well as their ToF version (2014), has made real-time

depth map acquisition a commodity. This has brought the topic of real-time 3D

77
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reconstruction further to the forefront. KinectFusion [IKH∗11, NIH∗11] has been an

inspiration to the approach presented in this chapter. KinectFusion fuses multiple

overlapping depth maps into a single 3D representation which is continuously refined

over time while acquiring new depth maps. The system deals with the registration

of depth maps to the sensor’s ego-motion, takes care of outlier removal, and uses

a simple weighted averaging approach in order to fuse the data. However, existing

grid-based methods such as KinectFusion either trade scale to achieve higher qual-

ity real-time reconstructions. Or support larger scenes at the expense of real-time

performance and/or quality.

The point-based fusion approach presented in this thesis accounts for spatial limita-

tions which also became apparent in the volumetric volume trees method presented in

the previous chapter: a purely point-based algorithm removes the need for a spatial

data structure and thus eliminates spatial dependencies.

Challenges The approach’s online capability needs to be ensured even for large

reconstruction scenes as well as for high lateral resolution depth maps and high

temporal data acquisition: depth sensors such as the Kinect with 640×480 pixels

at 30 Hz acquire about 550 million depth samples per minute. Also high quality

surface rendering should be achieved which requires the precise computation for a

point’s spatial orientation. This is challenging due to noisy input data from depth

sensors. Furthermore, the handling of dynamically changing scenes demands for a

robust object segmentation algorithm in real-time.

Objectives This chapter targets the development of a real-time 3D reconstruction

approach using a point-based representation, rather than any spatial data structure.

The method deals with incremental reconstruction from noisy depth maps without

converting between different geometry representations.

5.2 Related Work

When Microsoft’s Kinect was brought to market a new era of real-time 3D recon-

struction approaches began. Izadi and Newcombe [IKH∗11, NIH∗11] achieve high-

quality results by adopting the original volumetric fusion method of Curless and

Levoy [CL96] in order to perform real-time processing. Their approach supports

incremental updates, exploits redundant samples, makes no topological assumptions.

Furthermore, sensor uncertainty is partially incorporated, and fusion is performed

using a simple weighted average. For active sensors, this method produces very

compelling results [CL96, LPC∗00, IKH∗11, NIH∗11]. The drawback of this method
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is the computational overhead needed to continuously transition between different

data representations: where point-based input is converted to a continuous implicit

function, discretized within a regular grid data structure, and converted back to an

(explicit) form using computationally expensive polygonization [LC87] or raycasting

[PSL∗98] methods. As well as the memory overheads imposed by using a regular

voxel grid, which represents both empty space and surfaces densely, and thus signif-

icantly limits the size of the reconstruction volume due to computational resources

such as GPU memory.

These memory limitations have led to moving-volume systems [RV12, WKF∗12],

which still operate on a very restricted volume, but free-up voxels as the sensor

moves; or hierarchical volumetric data structures [ZZZL13], which incur additional

computational and data structure complexity for limited gains in terms of spatial

extent. Recently, Nießner et al. [NZIS13] presented an efficient voxel-based hashing

data structure for volumetric real-time 3D reconstruction which produces promising

high quality reconstruction results at larger scales.

Beyond volumetric methods, simpler representations have also been explored. Height-

map representations [GPF10] work with compact data structures allowing scalability,

especially suited for modeling large buildings with floors and walls, since these appear

as clear discontinuities in the height-map. Multi-layered height-maps support recon-

struction of more complex 3D scenes such as balconies, doorways, and arches [GPF10].

While these methods support compression of surface data for a specific class of scenes,

the 2.5D representation fails to model complex 3D environments efficiently.

Point-based representations are more amenable to the input acquired from depth

sensors. Rusinkiewicz et al. [RHHL02] use a point-based method and a custom

structured light sensor to demonstrate in-hand online 3D scanning. Online model

rendering requires an intermediate volumetric data structure. Interestingly, an of-

fline volumetric method [CL96] was used for higher quality final output, which nicely

highlights the computational and quality trade-offs between point-based and volu-

metric methods. Weise et al. [WWLVG09] took this one step further, demonstrating

higher quality scanning of small objects using a higher resolution custom structured

light camera, sensor drift correction, and higher quality surfel-based [PZVBG00] ren-

dering. These systems however focus on single small object scanning. Further, the

sensors produce less noise than consumer depth cameras making model denoising

less challenging.

Beyond reducing computational complexity, point-based methods lower the memory

overhead associated with volumetric (regular grid) approaches, as long as overlap-

ping points are merged. Such methods have therefore been used in larger sized

reconstructions [HKH∗12, SB12]. However, a clear trade-off becomes apparent in

terms of scale versus speed and quality. For example, Henry et al. [HKH∗12] allow
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for reconstructions of entire floors of a building (with support for loop closure and

bundle adjustment), but the frame-rate is limited (∼ 3 Hz) and an unoptimized surfel

map representation for merging 3D points can take seconds to compute. Stückler and

Behnke [SB12] use a multi-level surfel representation that achieves interactive rates

(∼ 10 Hz) but requires an intermediate octree representation which limits scalability

and adds computational complexity.

The approach proposed in this chapter tackles also the topic of dynamically changing

scenes: while previous systems assume a scene to be static or treat dynamic content as

outliers [RHHL02, WWLVG09], KinectFusion [IKH∗11] is capable of reconstructing

moving objects in a scene, providing a preliminary acquired static pre-scan of the

background. In contrast to this, the current approach presents a robust segmentation

algorithm for dynamic objects without assuming strong requirements about the scene

layout.

5.3 Basic Fusion System

In this section the basic fusion approach is presented and its algorithmic components

are described. The following high-level approach shares commonalities with existing

incremental reconstruction systems: samples are used from a moving depth sensor;

first the depth data is pre-processed; then the current 6 DoF pose of sensor relative

to the scene is estimated; and finally this pose is used to convert depth samples

into a unified coordinate space. The depth samples are fused into an accumulated

global model. Unlike other systems, a purely point-based representation is adopted

throughout the processing, designed to support data fusion with quality comparable

to online volumetric methods, whilst enabling real-time reconstructions at extended

scales.

5.3.1 Overview of Concept

The main system pipeline as shown in Fig. 5.1 is similar to the one proposed by New-

combe et al. [NIH∗11] for volumetric fusion. The pipeline is based on the following

steps:

Depth Map Pre-processing Using the intrinsic parameters of the camera, each

input depth map from the depth sensor is transformed into a set of 3D points, stored

in a 2D vertex map. Corresponding normals are computed from central-differences

of the denoised vertex positions, and per-point radii are computed as a function of

depth and gradient (stored in respective normal and radius maps). In Sec. 5.3.2 the

pre-processing is outlined.
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Figure 5.1: Main system pipeline.

Depth Map Fusion Given a valid camera pose, input points are fused into the

global model. The global model is a list of 3D points with associated attributes.

Points evolve from unstable to stable status based on the confidence they gathered

(essentially a function of how often they are observed by the sensor). Data fusion

first projectively associates each point in the input depth map with the set of points

in the global model, by rendering the model as an index map. If corresponding

points are found, the most reliable point is merged with the new point estimate

using a weighted average. If no reliable corresponding points are found, the new

point estimate is added to the global model as an unstable point. The global model

is cleaned up over time to remove outliers due to visibility and temporal constraints.

Sec. 5.3.3 discusses the point-based data fusion in detail.

Camera Pose Estimation and Rendering All established (high confidence)

model points are passed to the visualization stage, which reconstructs dense surfaces

using a surface splatting technique (see Sec. 5.3.4). To estimate the 6 DoF camera

pose, the model points are projected from the previous camera pose, and a pyramid-

based dense iterative closest point (ICP) [NIH∗11] alignment is performed using this

rendered model map and input depth map. This provides a new relative rigid 6

DoF transformation that maps from the previous to new global camera pose. Pose

estimation occurs prior to data fusion, to ensure the correct projection during data

association.

5.3.2 Depth Map Pre-processing

A 2D pixel is denoted as u = (x, y)⊤ ∈ R
2. Di ∈ R is the raw depth map at time

frame i. Given the intrinsic camera calibration matrix K i, Di is transformed into a

corresponding vertex map Vi, by converting each depth sample Di(u) into a vertex

position vi(u) = Di(u)K−1
i (u⊤, 1)⊤∈ R

3 in camera space. A copy of the depth map

(and hence associated vertices) is also denoised using a bilateral filter [TM98] (for

camera pose estimation later). A corresponding normal map Ni is determined from
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(a) (b) (c)

Figure 5.2: Filtered normal map. 5.2(a) displays the greyscale depth image from a

Kinect sensor. The unfiltered normal map is shown in 5.2(b) whereas a pre-processed

normal map is displayed in 5.2(c) using the bilateral filtered depth image.

central-differences of the bilateral filtered vertex map:

ni(u) =
(

vi(x+ 1, y)− vi(x− 1, y)
) × (

vi(x, y + 1)− vi(x, y − 1)
) ∈ R

3 , (5.1)

and normalized to unit length (see Fig. 5.2).

The 6 DoF camera pose transformation comprises rotation matrix (Ri ∈ SO3) and

translation vector (ti ∈ R
3), computed per frame i as T i = [Ri, ti] ∈ SE3. A vertex

is converted to global coordinates as v
g
i = T ivi. The associated normal is converted

to global coordinates as n
g
i (u) = Ri ni(u). Multi-scale pyramids V l

i and N l
i are

computed from vertex and normal maps for hierarchical ICP, where l ∈ {0, 1, 2}
and l = 0 denotes the original input resolution (e.g. 640×480 pixels for Kinect or

160×120/200×200 pixels for PMD Camboard devices respectively).

Each input vertex also has an associated radius ri(u) ∈ R (collectively stored in a

radius map Ri ∈ R), determined as in [WWLVG09]:

ri(u) =
1√
2

vi(u)(z)/f

ni(u)(z)
∈ R, (5.2)

where f is the focal length of the depth sensor and z denotes the vertex’s cartesian

depth value and the normal’s z component respectively. To prevent arbitrarily large

radii from oblique views, radii for grazing observations exceeding 75◦ are clamped.

In the remainder of this chapter, time frame indices i are omitted for clarity, unless

two different time frames are addressed at once.

5.3.3 Depth Map Fusion

The approach maintains a single global model, which is simply an unstructured set

of points M̄k each with associated position v̄k ∈ R
3, normal n̄k ∈ R

3, radius r̄k ∈ R,
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Figure 5.3: Index map: all global model points are rendered from the previous camera

perspective into the index map I; encoding the points’ position in the global array.

This way, the data is accessed fast and efficiently without using an explicit data

structure.

confidence counter c̄k ∈ R, and time stamp t̄k ∈ N, stored in a flat array indexed by

k ∈ N.

New measurements v are either added as or merged with unstable points, or they get

merged with stable model points. Merging v with a point M̄k in the global model

increases the confidence counter c̄k. Eventually an unstable point changes its status

to stable: points with c̄k ≥ cstable are considered stable (in practice cstable = 10). In

specific temporal or geometric conditions, points are removed from the global model.

Data Association

After estimating the camera pose of the current input frame (see Sec. 5.3.4), each

vertex v
g and associated normal and radius are integrated into the global model.

In a first step, for each valid vertex v
g potential corresponding points are found in

the global model. Given the inverse global camera pose T
−1 and intrinsics K , each

point M̄k in the global model can be projected onto the image plane of the current

physical camera view, where the respective point index k is stored: all model points

are rendered into a sparse index map I (see Fig. 5.3). Unlike the splat-based dense

surface reconstruction renderer used in other parts of the approach (see Sec. 5.3.4),

this stage renders each point index into a single pixel to reveal the actual surface

sample distribution. Generating this index map is performed efficiently using the

standard graphics pipeline (allowing parallel processing of points and features such

as efficient frustum culling). As nearby model points may project onto the same

pixel, the resolution of I is increased by supersampling, representing I at 4×4 the

resolution of the input depth map. While the surface sample distribution is mostly

sparse in the index map, regions of high curvature as well as the object’s silhouette
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are rather dense. This is due to the fact that the objects’ front- and backfacing points

are projected onto nearby pixels.

Firstly, the model points near v
g(u) are identified by collecting point indices within

the 4×4-neighborhood around each input pixel location u (suitably coordinate-transformed

from D to I). Amongst those points, a single corresponding model point is deter-

mined by applying the following criteria:

1. Discard points larger than ±δdepth distance from the viewing ray v
g(u) (the

sensor line of sight), with δdepth adapted according to sensor uncertainty (i.e.

as a function of depth for triangulation-based methods [NIL12]).

2. Discard points whose normals have an angle larger than δnorm to the normal

n
g(u). In particular, δnorm = 20◦ is used.

3. From the remaining points, select the ones with the highest confidence count.

4. If multiple such points exist, select the one closest to the viewing ray through

v
g(u).

Point Averaging with Sensor Uncertainty

If a corresponding model point M̄k is found during data association, this is averaged

with the input vertex v
g(u) and normal n

g(u) as follows:

v̄k ←
c̄kv̄k + αv

g(u)

c̄k + α
, n̄k ←

c̄kn̄k + αn
g(u)

c̄k + α
, r̄k ←

c̄k r̄k + αr(u)

c̄k + α
, (5.3)

c̄k ← c̄k + α , t̄k ← t , (5.4)

where t is a new time stamp. The weighted average is distinct from the original

KinectFusion system [NIH∗11], as an explicit sample confidence α is introduced. This

applies a Gaussian weight on the current depth measurement as α = e−γ2/2σ2
, where γ

is the normalized radial distance of the current depth measurement from the camera

center, and σ = 0.6 is derived empirically. This approach weights measurements

based on the assumption that measurements closer to the sensor center will increase

in accuracy [CL96]. As shown in Fig. 5.4, modeling this sensor uncertainty leads to

higher quality denoising.

Since the noise level of the input measurement increases as a function of depth [NIL12],

Eqs. (5.3) is only applied if the radius of the new point is not significantly larger than

the radius of the model point, i.e., if r(u) ≤ (1 + δr)r̄; δr = 1/2 is empirically chosen.

This ensures that details are always refined, but the global model is never coars-

ened. The time stamp and the confidence counter updates are applied according to

Eqs. (5.4) irrespectively.
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(a) (b)

Figure 5.4: Sensor uncertainty. Weighted averaging of points using the method of

[NIH∗11] is shown in 5.4(a). The new uncertainty model is applied to the scene

displayed in 5.4(b) which leads to better denoising results.

If no corresponding model point has been identified, a new unstable point is added

to the global model with c̄k = α, containing the input vertex, normal and radius.

Extended Data Fusion using Moving Least Squares

The process of data fusion as described in the prior section is solely based on pre-

processed input depth maps and on averaging the global model data. In this section

the approach is extended by applying a robust moving least squares (MLS) algorithm

to the input data similar to Rusu et al. [RBM∗07, RMB∗08]. This way, the input

data better approximates the actual geometry which reduces the noise significantly.

In detail, the following steps are applied in order to update the input depth map D:

1. For each input point v
g(u) a set Q is selected which contains a local neighbor-

hood of model points within a certain radius h. The sampling of the points is

based on the look-up mechanism described previously by using the index map

I.

2. The model points in Q are still influenced by noise and measuring errors. There-

fore, a local reference plane is robustly computed by taking the largest number

n of inliers into account, with v̄k ∈ Qinlier ⊂ Q which are obtained by perform-

ing a random sample consensus algorithm (RANSAC) [FB81]. The equation of

the plane is computed by using eigenanalysis on the covariance matrix of the

inlier points.

3. The polynomial fitting step of the MLS procedure is performed by transforming

the inlier model points into the local coordinate system which is defined by the
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(a) (b) (c)

(d) (e) (f)

Figure 5.5: MLS results. The top row displays simple weighted averaging results, and

the bottom row shows improvements based on MLS. Edges are rounded off caused by

the weighted averaging as shown in 5.5(a), whereas MLS improves the reconstruction

quality with sharp object edges as illustrated in 5.5(d). A better result is also achieved

for spherical objects as well as for data with a significant amount of noise, see teapot

and noisy box respectively.

local reference plane. A high-order bivariate polynomial (here a 3rd order

polynomial is chosen) is fitted to the heights of the model points above the

plane. The height of the fitted input point is then recalculated which yields

the MLS result v
mls(u). During the fitting step each of the model points v̄k

is explicitly assigned with a weighting value w̄k. This way, the model points’

distances to the current input point as well as their confidence is taken into

account: w̄ = ψc̃k, where ψ = e−‖v
g

−v̄k‖2
/h and c̃k is the weight based on the

normalized confidence counter with c̃k = c̄k/cstable. Thus, the input point is

moved towards the fitting result with respect to the weighting of inliers.

4. The influence of the input point v
g(u) is ensured by weighting its current

position with v
mls(u):

v
g(u)← αv

g(u) + ŵv
mls(u)

α+ ŵ
, with ŵ =

1

n

n
∑

j=1

w̄k j (5.5)

5. The input point’s normal n̄k is set to the normal of the polynomial. Its radius

r̄k is calculated as the radius of the re-computed input point v(u).
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This algorithm ensures that sharp edges are preserved since the reference plane is

robustly computed. Additionally, the resulting quality is improved by considering

the recalculated point normals (see Fig. 5.5).

Finally, further processing of the recalculated input points and normal vectors follows

the procedure described in the previous sections about data association and point

averaging.

Removing Points

So far new measurements have been merged or added to the global model. Another

key step is to remove points from the global model due to various conditions:

1. Points that remain in the unstable state for a long time are likely outliers or

artifacts from moving objects and will be removed after tmax time steps.

2. For stable model points that are merged with new data, all model points are

removed that lie in front of these newly merged points, as these are free-space

violations. To find these points to remove, the index map is used again and

the neighborhood is searched around the pixel location that the merged point

projects onto1. This is similar in spirit to the free-space carving method of

[CL96], but avoids expensive voxel space traversals.

3. If after averaging, a stable point has neighboring points (identified again via

the index map) with very similar position and normal direction and their radii

overlap, then these redundant neighboring points are merged to further simplify

the model.

Points are first marked to be removed from M̄k, and in a second pass, the list is

sorted (using a fast radix sort implementation), moving all marked points to the

end, and finally items are deleted. This way, the global model only contains relevant

model points. Furthermore, the global model is kept lightweight.

5.3.4 Camera Pose Estimation and Rendering

Following the approach of KinectFusion [NIH∗11], the camera pose estimation uses

dense hierarchical ICP to align the bilateral filtered input depth map Di (of the cur-

rent frame i) with the reconstructed model as frame-to-model camera pose estimation

has been shown to be superior to frame-to-frame methods [NIH∗11].

1Backfacing points that are close to the merged points remain protected - such points may occur

in regions of high curvature or around thin geometry in the presence of noise and slight registration

errors. Furthermore, points are protected that would be consistent with direct neighbor pixels in D,

to avoid spurious removal of points around depth discontinuities.
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(a) (b) (c)

Figure 5.6: Surface splatting. Model points are rendered as disk-shaped splats as

shown in 5.6(a). Phong shading as well as a bilateral filter is added for visual user

feedback. In the close-ups of 5.6(b) and 5.6(c) various filter settings are applied.

Given the previous camera pose T i−1 and camera intrinsics K , first a virtual depth

map D̂i−1 of all stable model points is rendered. Using D̂i−1 and the current input

depth map Di, vertex and normal pyramids V l
i and N l

i are generated with the finest

level at the camera’s resolution; unstable model points are ignored - except when a

new accumulation sequence is started based on an empty global model: in the first

couple of seconds all points are taken into account for pyramids generation. These

maps are then passed to a hierarchical ICP step, based on the original KinectFusion

method, which iteratively aligns the two sets of point clouds, outputting a single

relative 6 DoF transformation providing the relative change from T i−1 to T i.

While KinectFusion employs raycasting of the implicit voxel-based reconstruction,

the current approach renders the explicit, point-based representation using a simple

surface-splatting technique: overlapping, disk-shaped surface splats are rendered that

are spanned by the model point’s position v̄, radius r̄ and orientation n̄. Unlike more

refined surface-splatting techniques, such as EWA Surface Splatting [ZPBG01], the

proposed approach does not perform blending and analytical prefiltering of splats

but trades local surface reconstruction quality for performance by simply rendering

opaque splats.

The same point-based renderer is used for visual user feedback, but Phong shading

of surface splats is added, and also the dynamic regions of the input depth map (see

next section) are overlayed. In order to improve the overall visual quality the virtual

depth map is filtered using low bilateral filter settings. This results in a smoother

representation of the surface by the disk-shaped splats (see Fig. 5.6).
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Figure 5.7: Main system pipeline with dynamics extension.

5.4 Advanced Fusion System: Scene Dynamics

This section describes an extension to the basic system that allows support for dynam-

ically changing scenes, i.e. moving objects (see Fig. 5.7). The method automatically

detects dynamic changes in the scene, the global reconstruction is updated accord-

ingly which results in a more robust camera tracking. The idea is based on the

re-utilization of the ICP result of the camera tracking stage. Starting from areas

where no point correspondences are found, a point-based region growing procedure

is performed to identify dynamic regions.

The work presented in this section has been developed in collaboration with Damien

Lefloch, member of the Computer Graphics and Multimedia Systems Group at the

University of Siegen, who has been responsible for real-time implementation of the

dynamics segmentation algorithm, i.e. region growing method based on hierarchical

connected components.

5.4.1 Overview of Concept

The basic system as described previously already has limited support for dynamic

objects, in that unstable points must gain confidence to be promoted to stable model

points, and thus fast moving objects will be added and then deleted from the global

model. This basic behavior is extended by additional steps that lead to an explicit

classification of observed points as being part of a dynamic object. Furthermore, the

concept of handling dynamically changing scenes aims at segmenting entire objects

whose surface is partially moving and remove them from the global point model.

The method builds upon an observation by Izadi et al. [IKH∗11]: when performing

ICP, failure of data association to find model correspondences for input points is a

strong indication that these points are depth samples belonging to dynamic objects.

Accordingly, this information is retrieved by constructing an ICP status map S (see

Sec. 5.4.2). Next, this map is used for creating a dynamics map X which segments
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the dynamic parts of the current input frame by using a region growing algorithm.

This method aims at marking entire objects as dynamic even if only parts of them

actually move. This high-level view on dynamics is an improvement over the handling

of dynamics in [IKH∗11]. Finally, dynamics classification affects the depth map fusion

stage in order to reflect the input points’ dynamic status also in the global model

data.

The complete world view of the system consists of two point sets: the global model

points, which represent the reliable static parts of the environment, and the set of

input points marked as dynamic, which represent moving objects.

5.4.2 Algorithmic Details

The ICP status map S with its elements si(u) encodes for each depth sample the

return state of ICP’s search for a corresponding model point:

no_input: vk(u) is invalid or missing.

no_cand: No stable model points in proximity of vk(u).

no_corr: Stable model points in proximity of, but no valid ICP corre-

spondence for vk(u).

corr: Otherwise ICP found a correspondence.

Input points which are marked as no_corr are a strong initial estimate of parts of

the scene that move independent of camera motion, i.e. dynamic objects in the scene.

These points are used to seed the segmentation method based on region growing.

Building the Dynamics Map X The goal of the segmentation is essentially to

find connected components in D belonging to potentially moving objects. In the

absence of explicit neighborhood relations in the point data, the region growing

algorithm is performed on the input depth map based on point attribute similarity.

Starting from the seed points, points are agglomerated whose position and normal are

within given thresholds of vertex v(u) and normal n(u) of a neighbor. This results

in the dynamics map X, storing the connected components xi(u), that segments the

current input frame into static and dynamic points. Fig. 5.8 illustrates the various

steps from the initial ICP output of the camera tracking stage to a fully segmented

object. Details about the region growing approach have been published in [KLL∗13].

Updating the Global Model In the depth map fusion stage, model points that

are merged with input points marked as dynamic are potentially demoted to unstable

points using the following rule:

if xi(u) ∧ c̄k ≥ cstable + 1 then c̄k ← 1 (5.6)
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(a) (b) (c)

Figure 5.8: Dynamics segmentation. 5.8(a) displays the initial ICP output. The

white regions in 5.8(b) indicate the seed points for region growing after applying an

erosion step in order to eliminate noise. In 5.8(c) the final segmentation result is

displayed showing the full person who initially started moving hands.

Thus, the state change from static to dynamic is reflected immediately in the model.

A critical aspect is the offset of +1 in Eq. (5.6): it ensures that any dynamic point

that sufficiently grew in confidence (potentially because it is now static) is allowed

to be added to the global model for at least one iteration; otherwise, a surface

that has once been classified as dynamic would never be able to be re-added to the

global model, as it would always be inconsistent with the model, leading to no_corr

classification. Most often, however, dynamic points remain unstable and as such are

not considered for camera pose estimation (see Sec. 5.3.4), which improves accuracy

and robustness of T (see moving person scene in Sec. 5.6.3).

Conversely, input points of previously moving objects are merged into the model and

gradually increase confidence counters until the object becomes part of the global

model again. Thus, the state change from dynamic to static naturally requires a

few input frames until enough confidence is gained, similar to the acquisition of new

scene parts.

5.5 Occupancy Grid Integration

The point-based fusion approach presented so far produces high quality surface re-

construction results. However, in the area of robotics this type of environment model

is often not sufficient and occupancy grids are required. Occupancy grids address

the problem of generating consistent maps from noisy and uncertain measurement

data. These 3D models represent not only occupied areas of the surrounding (i.e.

the global model containing the 3D surface points) but also free and unknown parts.

While the distinction between occupied and free space is crucial for safe navigation,

the knowledge about unknown areas (i.e. areas where no information is available yet)
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is important for autonomous exploration.

5.5.1 Overview of Concept

The approach proposed by Hornung et al. [HWB∗13] about OctoMap, a probabilistic

3D map representation, is adapted to point-based fusion. The OctoMap approach

converts point clouds into 3D occupancy grids representing occupied, free, and un-

known areas which allows for a collision-free navigation planning and the exploration

of unknown areas. Hornung’s approach is extended by integrating the dynamics clas-

sification of dynamically changing scenes (see Sec. 5.4) into the sensor model utilized

in the occupancy grid representation. By doing this, the point-based fusion’s surface

reconstruction quality is combined with the advantages of acquiring the environ-

ment’s state into a full voxel model. The integration comprises the following three

main aspects: the data structure, its traversal, and the application of the sensor

model.

Regular Grid Structure The occupancy grid represents its content in terms of

a map of binary random variables, arranged in a regular spaced 3D grid. Each

variable corresponds to the occupancy of the location it covers, i.e. voxels. A rather

coarse voxel size (∼ 2cm - 10cm) is preferred for covering the various states of the

environment roughly since the surface is already represented in high quality by the

point-based representation (e.g. see millimeter scale of telephone keys in Fig. 5.16(c)

in results section).

Update Traversal A voxel’s state is modeled probabilistically, this means the

probability of each grid cell is estimated as being occupied. Since the environment is

subject to change and new noisy depth maps are permanently accumulated into the

system the occupancy grid is synchronously updated in order to reflect the real world

situation. A ray casting approach is performed by traversing the occupancy grid

along the viewing rays of v
g(u) from the current (pre-processed) input depth map.

Thus, the voxels along the sensor measurements of the current view are determined.

Each voxel that the ray passes through lowers the voxel’s occupancy probability, while

the probability is raised for the voxel that the ray ends in. A voxel is considered as

being occupied if a probability close to 1 is reached, whereas a voxel’s state is free

for a probability close to 0.

Probabilistic Sensor Model The sensor measurements are integrated into the

occupancy grid by applying the traditional occupancy grid mapping approach by

Moravec and Elfes [ME85]. Analogous to [ME85] and [TBF05] the recursive update
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rule for a voxel’s probability P is transformed to the commonly used logOdds (L)

notation:

L(c | z1:i) = L(c | z1:i−1) + L(c | zi) (5.7)

with L(c) = log

[

P (c)

1− P (c)

]

, (5.8)

being L(c | z1:i) the probability of a voxel c to be occupied in logOdds notation

given the set of all sensor measurements up to frame i, whereas zi and z1:i−1 denote

the measurements of the i-th frame and the previous estimate respectively. logOdds

values can be converted back into probability values and the other way round. How-

ever, logOdds values allow for faster updates due to less computational overhead for

pre-computed sensor models and are therefore used directly in the occupancy grid.

The inverse sensor model (in logOdds notation) defines how the voxels are updated

along the viewing rays of the current input depth map:

L(c | zi) =























ldynOcc , if ray ends in voxel ∧ x(u) 6= 0

ldynFree , else if ray passes through voxel ∧ x(u) 6= 0

locc , else if ray ends in voxel

lfree , else if ray passes through voxel

, (5.9)

with using explicit update values ldynOcc and ldynFree for dynamic data as marked

in the dynamics map X (see Sec. 5.4.2). This ensures that the occupancy grid

immediately reflects the dynamic parts of the current frame.

5.5.2 Implementation

The integration of the occupancy grid requires that the spatial extend of the scene

and its boundaries are defined a priori when starting data acquisition. This is nec-

essary for a proper setup of the regularly spaced grid structure. All voxels are

initialized with a given uniform prior probability P (c) = 0.5, which corresponds to

L(c) = 0 in logOdds notation. The inverse sensor model is based on the values pro-

posed by [HWB∗13], which has been originally developed for laser scanners, and is

extended with regard to scene dynamics: ldynOcc = 4.6 (0.99), ldynFree = −4.6 (0.01),

locc = 0.85 (0.7) and lfree = −0.4 (0.4). All values are in logOdds notation, the respec-

tive probability values are denoted in parentheses. The occupancy grid is updated

performing the following steps:
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(a) (b)

Figure 5.9: Occupancy grid states. A person is moving in an office room (see RGB

image). The colored grid cells illustrate the occupancy grid’s various states after the

accumulation of several hundred range images (5.9(a): top view, 5.9(b): perspective

view). For visualization purpose the cell size is enlarged to 10 cm.

1. A temporary grid structure tmpGridv (aligned to the occupancy grid) is com-

puted for all vertices v
g(u) of the current input depth map according to [Gre12]

using hash values and sorting. This way all measurements are assigned to grid

cells which allows a fast spatial access.

2. The occupancy grid is traversed by adapting a fast 3D variant of the Bresenham

algorithm [Bre65, AW87] to GPU processing. The casting of rays is performed

in parallel and therefore atomic operations [NVI11] are utilized which ensures a

proper integration of the individual measurements. If rays pass through voxels

then voxels are updated by applying the inverse sensor model with values lfree

and ldynFree. If rays end within voxels then values locc and ldynOcc are applied1.

Voxels which are measured as occupied are preserved from receiving further

updates of being free (invoked by neighboring rays which just pass through).

Therefore, the respective cells in tmpGridv are checked as to whether they are

free or contain a measurement from the current depth map.

3. Instead of using Eq. 5.7 directly the logOdds values of voxels which have been

updated by non-dynamic data are clamped to thresholds lmin = −2 (0.12) and

lmax = 3.5 (0.97) according to Yguel et al. [YAL07]. This lower and upper

1In practice, values locc and lfree are only applied to voxels which are traversed by viewing rays

of v
g(u) associated with stable model points, i.e. c̄k ≥ cstable (see Sec. 5.3.3). Thus, the occupancy

grid’s update strategy is rather conservative.
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(a) (b)

(c) (d)

Figure 5.10: Occupancy grid overlay and 3D reconstruction (grid size: 4 cm). 5.10(a)

and 5.10(b) show the initially unknown area as well as the grid’s state after processing

multiple range images during a ballgame. 5.10(d) displays a close-up of the 3D

reconstruction with occupied grid cells overlayed. Cyan grid cells reflect dynamic

parts of the currently processed scene (see RGB image).

bound of a voxel’s probability ensures that the voxel needs only a limited

number of updates in order to change its state and thus it reflects changes in

the environment quickly. Whereas voxels which have been affected by dynamic

data are reset to their previous state before processing the next input depth

map. This way, the dynamic data is represented by the occupancy grid only

for a single frame.

In Fig. 5.9 and 5.10 the states of the occupancy grid are illustrated by various colors:

red (unknown area), blue (occupied), and green (free). Voxels are considered occu-

pied or free if their values have reached the upper or the lower bound, respectively.

Dynamic data is reflected immediately in the occupancy grid by cyan (occupied) and

yellow (free) if a voxel’s estimate has been assigned with ldynOcc or ldynFree.
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(a) (b)

Figure 5.11: Scene acquisition devices. In 5.11(a) Microsoft Kinect is shown and in

5.11(b) PMD Camboard XS is displayed during scene acquisition.

5.6 Results and Analysis

The proposed point-based fusion system has been tested on a variety of scenes. In this

section qualitative and quantitative results are presented that show robust tracking

and high quality reconstructions of a diverse set of scenes at varying scales (see

Table 5.1). Also an experimental comparison to KinectFusion is depicted.

Scene Acquisition Setup The proposed point-based fusion algorithm has been

integrated into an application with an underlying client-server architecture. Depth

sensors are connected to the system and the acquisition of depth data is performed

independently from its processing by using multiple threads. Thus, a good work-

load of CPU cores as well as the graphics unit is ensured. The system handles hard

disks’ data-saving and loading procedures with almost no latency. The playback of

acquired range images allows for parameter changes under reproducible conditions.

See Fig. 5.11 for an illustration of the acquisition setup. The GPU algorithms are

programmed using [OKK09]. As shown in Sec. 5.3.3, the data fusion algorithm using

MLS achieves better results in areas with sharp geometrical edges. However, the

current implementation of the MLS method is not applicable to real-time process-

ing. Therefore, the standard fusion method has been used for performance reasons

implementing weighted averaging of points.
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#frames input/processed #model- Avg. timings [ms]

(fps acquisition/processed) points ICP Dyn- Fusion

Seg.

Sim 950/950 467,200 18.90 2.03 11.50

(15/15)

Flower- 600/480 496,260 15.87 1.90 6.89

pot (30/24)

Teapot 1000/923 191,459 15.20 1.60 5.56

(30/27)

Large 11892/6704 4,610,800 21.75 2.39 13.90

Office (30/17)

Moving 912/623 210,500 15.92 3.23 16.61

Person (30/20)

Ball- 1886/1273 350,940 16.74 3.15 17.66

game (30/21)

PMD 4101/4101 280,050 10.70 0.73 3.06

(27/27)

Table 5.1: Acquisition scenes and timings. The table displays results from test scenes

obtained on a PC equipped with an Intel i7 8-core CPU and an Nvidia GTX 680

GPU. Input frames have a size of 640×480 pixels, except for the PMD scene which

uses a frame size of 200×200 pixels.

(a) (b)

Figure 5.12: The synthetic reference scene Sim. 5.12(a) illustrates the error in the

final global model based on ground truth camera transformations. 5.12(b) displays

the final error based on ICP pose estimation.
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(a) (b) (c)

(d) (e) (f)

Figure 5.13: The scenes Flowerpot (top row) and Teapot (bottom row). 5.13(a) and

5.13(d) show reconstruction results of the original KinectFusion system. The other

images show the proposed point-based fusion method: 5.13(b) and 5.13(e) display

phong-shaded surfels; 5.13(c) and 5.13(f) show model points colored with surface

normals.

5.6.1 Ground Truth Data Evaluation

Fig. 5.12 shows the synthetic reference scene Sim1 which has been presented in

Sec. 4.5.4 already. Ground truth camera transformations T
GT
i is assigned to each

depth map as well as ground truth scene geometry is provided. Using T
GT
i , the

points in the resulting global model have a mean position error of 0.019 mm. This

demonstrates only minimal error for the point-based data fusion approach. The

camera transformations T i obtained from ICP have a mean position error of 0.87 cm

and a mean viewing direction error of 0.1◦. This results in a mean position error of

0.20 cm for global model points.

5.6.2 Comparison

In this section the point-based approach is compared to the original KinectFusion al-

gorithm [NIH∗11]. The Flowerpot and Teapot scenes shown in Fig. 5.13 were recorded

by Nguyen et al. [NIL12]. The objects are placed on a turntable which is rotated

in front of a stationary Kinect camera. A Vicon optical tracking system is used

1The comparison is rendered using CloudCompare, http://www.danielgm.net/cc/.

http://www.danielgm.net/cc/
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Figure 5.14: Tracking comparison. Tracking errors for the original KinectFusion

system compared to the proposed point-based approach. Blue indicates that the

error of KinectFusion exceeds the point-based approach. Where the error of point-

based fusion exceeds the original approach, the gap is colored red.

Figure 5.15: Turntable performance plot. The number of global model points stored

on the GPU plotted over time for the Flowerpot and Teapot scenes. Note after the

completion of one full turn of the turntable, the number of points converges instead

of continuously growing.
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for ground truth pose estimation of the Kinect, which are compared to ICP for

the point-based method as well as the original KinectFusion system (see Fig. 5.14).

The tracking results were computed on the Flowerpot sequence, by subtracting Vi-

con ground truth data from the resulting per frame 3D camera position. For each

system, the error is computed as the absolute distance between the estimated cam-

era position and the ground truth position (after aligning both coordinate spaces

manually). Where the error of the original KinectFusion exceeds that of the new

approach, the gap is colored blue. Where the error of the new method exceeds the

original, the gap is colored red. The point-based method is similar in performance

with the largest delta being ∼ 1 cm. Fig. 5.15 shows that the number of global model

points for these scenes remains roughly constant after one full turn of the turntable.

This demonstrates that new points are not continuously added; and the global model

is refined but kept compact. It should be noted that a single Kinect camera input

frame provides up to 307, 200 input points, but the total number of points in the

final global teapot model is less than 300, 000.

5.6.3 Experimental Scenes

Spatial extent: Large Office Scene

The Large Office scene shown in Fig. 5.16 consists of two rooms with a total spatial

extent of approximately 10 m × 6 m × 2.5 m. A predefined volumetric grid with

32-bit voxels and 512 MB of GPU memory would result in a voxel size of more

than 1 cm3. In contrast, the point-based system does not define the spatial extent

of the scene in advance: the global model grows as required. Furthermore, it does

not limit the size of representable details; Fig. 5.16(c) shows close-ups of details on

the millimeter scale (e.g. the telephone keys). The 4.6 million global model points

reported in Tab. 5.1 can be stored in 110 MB of GPU memory using 3 floating point

values for the point position, 2 for the normalized point normal, 1 for the radius, and

one extra byte for a confidence counter. Additionally, RGB colors can be stored for

each global point, to texture the final model (see Fig. 5.16(b) and 5.16(c) far right).

Rather than merge RGB samples, the last one is stored currently.

Dynamics Detection: Moving Person and Ballgame Scenes

The detection and handling of scene dynamics is demonstrated by the Moving Person

and the Ballgame scenes. In the Moving Person scene shown in Fig. 5.17, the person

first sits in front of the sensor and is reconstructed before moving out of view. Since

the moving person occupies a large part of the sensor’s field of view, leaving only

few reliable points for ICP, camera tracking fails with previous approaches (e.g. see
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(a) (b)

(c)

Figure 5.16: The Large Office scene, consisting of two large rooms and connecting

corridors as displayed in 5.16(a) and 5.16(b). Close-ups are shown in 5.16(c) high-

lighting the high spatial resolution at millimeter scale, e.g. keys of the telephone.

Fig. 5.17(c) and Izadi et al. Fig. 8 [IKH∗11]). However, the point-based fusion

system segments the moving person and ignores dynamic scene parts in the ICP stage,

thereby ensuring robustness to dynamic motion (see 5.17(e) and 5.17(f), dynamic

parts are colored with surface normals).

The Ballgame scene shown in Fig. 5.18 shows two people playing with a ball across a

table. The region growing approach segments dynamics on the object level instead of

just the point level: each person is recognized as dynamic even if only parts of their

bodies are actually moving. This high-level dynamics information combined with

the reliable global model is useful for applications requiring user interaction. Static

objects that start moving are marked as dynamic and their model points are demoted
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(a) (b) (c)

(d) (e) (f)

Figure 5.17: Moving Person scene. Person sits on a chair, is reconstructed, and then

moves. Dynamic parts occupy the field-of-view and cause ICP errors with previous

approaches, 5.17(b) and 5.17(c). Segmenting the dynamics and ignoring them during

pose estimation (see 5.17(d)) allows increased robustness, 5.17(e) and 5.17(f).

(a) (b) (c)

(d) (e) (f)

Figure 5.18: Ballgame scene. Two people moving a ball across a table. 5.18(a):

global model colored with surface normals; 5.18(b): raw input data of the previously

static ball being picked up; 5.18(c): segmentation of dynamic parts; Bottom row

shows reconstructed results (model points and dynamic parts).
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(a) (b) (c)

(d)

(e)

Figure 5.19: PMD ToF scenes. The first row illustrates the scene listed in Table 5.1.

5.19(d) is recorded by a Camboard XS sensor with 160×120 pixels whereas the same

scenes in 5.19(e) are acquired using a 100k prototype camera with 352×288 pixels.

to unstable status, while dynamic objects that stop moving eventually reach stable

status in the global model when the observed points gain enough confidence.

Time-of-Flight Sensor Scenes

Most scenes shown throughout this chapter were acquired with a Microsoft Kinect

camera configured in near mode, but the proposed point-based fusion method is ag-

nostic to the type of sensor used. Fig. 5.19 shows experimental scenes recorded with

a PMD ToF camera, which exhibits significantly different noise and error characteris-

tics [KBKL10]. In these examples, the per-pixel amplitude information provided by

PMD sensors is used in the computation of the sample confidence α (see Sec. 5.3.3):
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a high amplitude value results in a high confidence of the respective depth sample

whereas a low amplitude value implies less reliability. The close-ups shown in 5.19(b)

and 5.19(c) use per-pixel amplitude values also for coloring.

The scenes in Fig. 5.19(d) are recorded with a PMD Camboard XS providing a reso-

lution of 160×120 pixels whereas in Fig. 5.19(e) the same scenes are acquired using a

PMD prototype camera which provides 100k depth samples per frame (352×288 pix-

els). Please note, the fine details of the facial contours and the clothing of the people

in the high resolution scenes in comparison to the low resolution scenes. However,

the point-based fusion approach is still capable of fusing low resolution depth maps

with only ∼ 19, 000 depth samples each into a consistent model without considerable

drift errors.

5.7 Discussion

A system for online 3D reconstruction has been presented in this chapter which

demonstrates state-of-the-art reconstruction capabilities. The system is designed to

allow for a single point-based representation to be used throughout the full processing

pipeline, which closely fits the sensor input.

Despite the lack of a spatial data structure, the system still captures many benefits

of volumetric data fusion (see KinectFusion [NIH∗11]), allowing for accumulation of

denoised 3D models over time that exploit redundant samples, model measurement

uncertainty, and make no topological assumptions. This is achieved using the point-

based fusion method based on [CL96]. In comparison to other point-based methods

the proposed approach has its strengths in scene reconstructions at the presented

scale, quality and speed. The basic system is extended by dealing with scene motion

and dynamic updates of the global model. Furthermore, the integration of an occu-

pancy grid allows for autonomous robot navigation in unknown areas. Experimental

results have shown that the presented approach does not rely on a specific kind of

depth sensor, rather the accumulation of data from structured light (e.g. Microsoft

Kinect) as well as ToF cameras (e.g. PMD Camboard) leads to promising results.

However, the current implementation of the point-based fusion approach loses perfor-

mance in large scenes with multi-million points (see large office scene in Table 5.1).

Streaming the data which is currently not in use from GPU memory to CPU could

help to balance the overall system. Additionally, the topic of sensor drift is not ad-

dressed yet by the presented approach which can become an issue in considerably

large scenes.



Chapter 6

Conclusion and Outlook

3D
range imaging systems gain more and more importance these days. Initially

started out with Microsoft’s Kinect sensor based on structured-light technol-

ogy, a new generation of inexpensive depth sensors has entered the consumer market

which deliver reliable depth data. Today’s consumer depth sensors increasingly focus

on the Time-of-Flight principle, e.g. Kinect’s second generation and pmdtechnolo-

gies’ Camboard series. Traditional application areas such as mobile robotics and also

trendy application fields such as virtual and augmented reality incorporate range

image data acquired by modern depth sensors. Recently Microsoft presented the

Hololens which essentially mixes real world with holograms in a wearable glasses-like

display device featuring a Time-of-Flight sensor.

The work presented in this thesis proposes a simulation approach for Time-of-Flight

sensors as well as techniques for environment modeling. These approaches allow

for the development of new algorithms which rely on realistic depth data under

reproducible conditions as well as high quality environment capturing.

6.1 Summary and Conclusion

Chapter 2 presented a rough overview about current range imaging techniques. A

more detailed introduction has been given to the Time-of-Flight principle and the

relating photo mixing device (PMD) technology. The major sensor effects have been

discussed, such as wiggling, noise, motion blur, and mixed phases. The second

main topic of this thesis, namely environment modeling, has been introduced by

presenting an overview about the processing steps in the area of 3D reconstruction

and the respective approaches. Finally, the chapter closed with a review about the

programmable graphics pipeline and its application to real-time data processing.

In Chapter 3 an approach for real-time simulation of Time-of-Flight sensors has been

proposed. The major sensor artifacts such as wiggling, flying pixels, and motion blur

are simulated by a physically-based sensor model which aims at the generation of

phase images. The theoretical model has been integrated into a simulation framework

which targets real-time simulation by the use of graphics processing units (GPUs).

In particular, a PMD sensor has been implemented and the simulation results in
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static as well as dynamic scenes corresponded to a great extent to real sensor data.

Various scenes have been simulated and the results have been processed by volumetric

environment modeling (for simulating the bin-picking application) as well as point-

based fusion (for ground truth data alignment in order to evaluate ICP quality).

However, artifacts like multipath-interference, which are successfully simulated by

Meister et al. [MNK13] in an offline approach, are not feasible. These effects demand

for more sophisticated rendering techniques such as ray-tracing algorithms.

In Chapter 4 the hierarchical volume data structure has been presented. While

supporting boolean operations for merging and subtraction of sub-volumes the data

structure is completely managed by the GPU. The accumulation of hundreds of

range images into the data structure has been demonstrated. Furthermore, the ap-

proach has been integrated into a robot’s bin picking application, which demos the

robot’s ability to empty a box of tubes autonomously. However, runtime observa-

tions revealed weak spots of the approach: the data structure’s real-time applicability

strongly depends on the lateral resolution of the range images, e.g. the processing

of 640x480 pixels could not reach interactive frame-rates anymore. The proposed

implementation uses shader based GPGPU techniques. However, an experimental

comparison of CUDA’s stream expansion and compaction algorithms [HSO07] and

the geometry program usage with transform feedback does not show a significant

performance difference. Nevertheless, a CUDA implementation would decrease the

complexity of the program structure. In fact, the management of the tree structure

itself causes computational overhead. Furthermore, high quality reconstruction re-

sults have not been achieved by solely applying the volumetric data structure during

rendering. Due to the hierarchical approximation the approach lost data precision

and thus a smooth surface representation is hardly feasible.

The point-based fusion approach presented in Chapter 5 basically made up for the

drawbacks of the volumetric accumulation approach. Depth sensors with VGA reso-

lution and scenes of larger scales, e.g. the office scene with dimensions of 10 m × 6 m

× 2.5 m, have been addressed at interactive frame-rates. The point-based represen-

tation throughout the full processing pipeline allowed for high quality reconstruction

results. The basic system has been extended in order to handle dynamically chang-

ing scenes which improved the ICP-based tracking significantly. Dynamic changes in

the scene are automatically detected and the global reconstruction model is updated

accordingly. Additionally, occupancy grids have been integrated into the point-based

fusion system which allowed for autonomous robot navigation in unknown areas while

simultaneously preserving detailed surface representation. Experimental results have

shown that high quality reconstruction results are not only obtained by depth sensors

providing high lateral resolution and reduced sensor noise but also by sensors with

low lateral resolution, such as ToF devices. However, the processing of scenes which

contain several million model points has slowed down. While interactive frame-rates
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are still feasible real-time processing could not be guaranteed. This is mainly due

to an unoptimized implementation which maintained the global model solely on the

GPU and which did not support CPU-GPU data streaming in order to keep the

GPU data processing compact. It should be noted that the topic of sensor drift has

not been addressed yet. Although considerable drift errors did no become obvious

in small scenes the drift reduction in large environments would increase the overall

quality.

6.2 Outlook

The upcoming generation of depth sensors will be even more miniaturized compared

to today’s sensors clearly targeting mobile applications on devices such as smart-

phones and tablets. One important aspect is the reduction of the overall power

consumption on mobile devices. This can be achieved by decreasing the chip size

and the frame-rate as well as the exposure time of the sensor’s illumination unit

which may have a significant impact on the quality of the data. Algorithms need to

learn how this data can be handled successfully.

The ToF sensor simulation approach proposed in this thesis is a starting point for sim-

ulating the next generation of depth sensors in order to prepare the applications and

algorithms appropriately. Reduced frame-rates at a diminished lateral resolution as

well as a higher amount of depth noise can be easily accomplished by the ToF sensor

simulation approach. However, the extensions presented by Lambers et al. [LHK15],

who enhance the current simulation model by using physical units throughout the

simulation process, would significantly upscale the benefit of the simulation frame-

work. Furthermore, the integration of their lens vignetting effects would help to

make the simulation data look as real as possible. Another topic which is worth to

be addressed is the simulation of data acquired by multiple frequencies since this will

help to detect and to eliminate multipath effects [Fuc10, DGC∗11, FSK∗14].

In the context of range data accumulation various techniques could be applied to fur-

ther improve the performance and 3D reconstruction quality of the work presented in

this thesis. The current implementation of the point-based fusion approach still suf-

fers from performance losses in considerable large scenes with several million points.

Mechanisms for streaming subsets of points (from GPU to CPU) especially once

they are significantly far away from the current pose would help to increase perfor-

mance. Clearly the point-based data would be low overhead in terms of CPU-GPU

bandwidth.

A further way to reduce the overall computation time would be the reutilization of the

rendering pass: for camera pose estimation as well as for user feedback visualization
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the model points are rendered as surfels. The processing of a large number of model

points is a time consuming operation in the vertex shader stage and re-using the

rendering results would significantly reduce the processing time. One possibility

would be to render the various attributes for the ICP algorithm as well as for the

visual feedback into separate render targets. Furthermore, the rendering quality

could be improved by incorporating the work presented by Lefloch et al. [LWK15]

about anisotropic point-based fusion which features also a reduced memory footprint

of point attributes and thus allows for the storage of additional properties such as

accumulated anisotropic noise.

Another issue is the occurrence of sensor drift: the presented accumulation approach

does not tackle this topic explicitly and instead focuses on the data representation

itself. Drift in larger environments can become an issue and remains an interesting

direction for improvements. Anyway, after loop closure detection the point-based

representation might be more amenable to correction and post processing optimiza-

tion, rather than resampling a dense voxel grid. Recently, Whelan et al. [WLSM∗15]

published ElasticFusion, an approach which extends the basic point-based fusion

technique with regard to online loop closure on point data.

As it has been experimentally shown: the application of a moving least squares

algorithm for the correction of the input data has a positive impact on the data

quality of the global model especially in areas with sharp edges. A GPU based

version of the current CPU implementation would be necessary for its real-time

applicability. Thus, the input data would approximate the actual scene geometry in

a better way which reduces the noise in the data significantly.

Finally it should be noted that the solutions presented in this thesis are not limited

to the specific setting they have been applied to. In fact, the ToF sensor simulation

is not restricted to the simulation of PMD sensors. The working principle should

be applicable also to other ToF manufacturers. Furthermore, the implementation of

alternative simulation concepts is also possible in the sensor simulation framework.

The same flexibility applies to the accumulation techniques for environment modeling:

the algorithms are not restricted to the utilized depth sensors. Any kind of range

images should be qualified for being processed by the proposed 3D reconstruction

methods.
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