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Abstract

The work presented here should fulfil the requirements for the granting of the degree of
Doctor of Engineering at the University Siegen. It was completed within the EU funded
project eFuture with the company Intedis. The goal of the project was to create an
efficient and safe electric vehicle on the basis of a Tata eVista with help of a complete
new architecture.
A novel robust vehicle observer was designed for an optimal support of the integrated
driver assistance systems. The concept for the observer is based upon an extended
Kalman Filter using a non-linear vehicle model and the Dugoff tire model.
Moreover, a parameter estimation and a plausibility check of the sensor signals were
developed to increase the robustness of the observer. The estimation of the vehicle
mass, the effective tire radii and the road adhesion were designed with an event-seeking
characteristic in order to minimise the computational load. In the plausibility check
delayed or faulty sensor signals are detected and corrected. Here the newly designed
replacement of delayed or missing sensor signals by the concept of Markov Chains is
pointed out. By this, the correctness of the output signals and the safety of the vehicle
can be guaranteed for a defined time. Additionally, the evaluation of the stability limits
and the driven distance of the vehicle are computed under the use of quantities that
were calculated before. After the model based design the software was integrated on the
hardware of the prototype. The functionality of this concept is given by results during
dynamic test drives.
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Zusammenfassung

Die hier vorgestellte Arbeit soll die Anforderungen zur Verleihung des Doktortitels an der
Universität Siegen erfüllen. Sie wurde im Rahmen des EU geförderten Projekts eFuture
bei der Firma Intedis in Würzburg abgeleistet, in welchem ein sicheres und effizientes
Elektrofahrzeug auf Basis eines Tata eVista dank eines neuen Konzeptes aufgebaut wur-
de.
Ein neuartiger robuster Fahrzeugbeobachter wurde entwickelt um die integrierten Fah-
rerassistenzsysteme optimal zu unterstützen. Das Konzept des Beobachters basiert auf
einem erweiterten Kalman Filter unter Verwendung eines nichtlinearen Fahrzeugmodells
und des Dugoff Reifenmodells.
Zusätzlich wurde eine Parameterschätzung sowie ein Plausibilitätscheck der Sensorsigna-
le integriert, um die Robustheit des Beobachters zu erhöhen. Die Parameterschätzung
von Fahrzeugmasse, effektiven Reifenradien und Haftreibung wurde mit Hinblick auf die
Berechnungslast ereignisbasierend aufgebaut. Im Plausibilitätscheck werden sowohl feh-
lerhafte oder verzögerte Signale detektiert als auch korrigiert. Hier ist das neu entworfene
Ersetzen von verzögerten oder fehlenden Sensorsignalen auf Basis der Theorie der Mar-
kov Ketten hervorzuheben. So kann auch bei einem Sensorausfall die Korrektheit der
Ausgangssignale für einen gewissen Zeitraum und dadurch auch die Sicherheit des Fahr-
zeugs unter Assistenzkontrolle garantiert werden. Die Evaluierung der Stabilitätsgrenzen
für das Fahrzeug sowie die Berechnung der gefahrenen Strecke für das Kombiinstrument
werden mit den zuvor ermittelten Größen durchgeführt. Nach der modellbasierten Ent-
wicklung wurde die Software auf der Hardware des Prototypen integriert. Ergebnisse bei
dynamischen Testfahrten zeigen die Funktionalität dieses Konzepts.
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1 Introduction

In nowadays vehicle control systems are widely used to enhance the safety and com-
fort. Since 1995, when the first series of Vehicle Dynamics Control (VDC) systems was
developed and staked in serial cars, the functionalities and importance in automotive
engineering increased incessantly. Through augmented VDC in vehicles the number of
traffic accidents could be reduced and thereby lives saved. Furthermore, the influence of
software on the vehicle dynamics by direct access to the actuators was increased. In 1.1
the most common VDC and their influence on the vehicle dynamics that are equipped in
newly produced serial cars are shown. Anti-lock Braking System (ABS), Traction Con-
trol System (TCS), Cruise Control (CC) and Adaptive Cruise Control (ACC) influence
the longitudinal vehicle dynamics where Electronic Stability Control (ESC) and Lane
Keeping Assistant System (LKAS) control the lateral dynamics of the vehicle. Addition-
ally, the function Torque Vectoring (TorVec) that controls the longitudinal and lateral
dynamics is listed.

Figure 1.1: Varierty of VDC and their influence

An overview of the state of the art VDC functions and their functionality is given in
[17]. By augmentation of VDC in vehicles, especially in electric vehicles, their Automo-
tive Safety Integrity Level (ASIL) level becomes more critical and affords more sensors,
more accuracy and more software functions [64]. Therefore, the ISO 26262 [35] specifies
guidelines for necessary software safety mechanisms at the software architecture level.

1



1. Introduction

By that time delay and missing measurements of vehicle dynamics sensors have received
much attention in the last years since time delays and stoppage of signal flow exist in
every electric vehicle architecture. In order to hit these requirements, to guarantee the
needed accuracy of the sensors and to deal with sensor malfunctions a novel approach
for a robust vehicle observer was developed.
In the eFuture project, which will be introduced in section 1.1, the function TorVec con-
trols the torque of the two individual controllable electric machines in order to improve
the performance, agility and safety of the vehicle. Besides the energy consumption can
be minimized by the use of an optimal friction. In order to guarantee these aspects the
function depends on reliable information. This will be provided by the vehicle observer
and read as follows: vehicle velocity, side slip angle, yaw rate, acceleration and road-
friction coefficients of the front wheels at any time.
Moreover, a new method based on Markov Chains for the handling of missing or delayed
sensor signals was designed. These appearances often cause instability or performance
degradation of the integrated VDC. The occurrence of communication delay [71], [72]
and packet loss [68], [70] is as common as it is random. For example the VDC in an
electric vehicle equipped with four individually assessable motors might bring the vehicle
in an unstable state due to time delay or absence of important sensor signals. As the
complexity and influence on vehicle dynamics of VDC will increase in the future [64]
the issue of handling time delayed and missing vehicle dynamics sensor signals even gets
more important. Consequently, this raises new requirements for vehicle safety demands.
In order to come up with the defined correction mechanisms, a novel method for han-
dling delayed and missing sensor signals to guarantee the vehicle and passenger safety
will be presented. Additionally, the stability assessment computes the dynamic stabil-
ity limits of the vehicle and the trip calculation outputs information about the covered
distance. After an introduction to the the project eFuture, within this work was done,
the used hardware is portrayed followed by the state of the art and the innovations that
were created during that work. Afterwards the top level of the Vehicle Observer func-
tion will be presented. Thereafter, the objective and the organisation of work is outlined.

1.1 eFuture Project

The presented work was done within the project eFuture which is a research project
funded by the European Community Seventh Framework programme (FP7/2007-2013)
under grant agreement No. 258133. The project started in September 2010 with a du-
ration of 3 years and 6 European partners from four different countries (see Fig. 1.2).

The main goals of this project were the development of a safe and efficient electric vehicle
by hardware changes and a completely new functional architecture. This created plat-
form should dynamically optimise its decision between performance and energy efficiency
without compromising safety. As the optimization of each component is not sufficient an
overall concept was mandatory to look at the interactions between the components. In

2



1.1. eFuture Project

Figure 1.2: Partners of eFuture

the functional architecture, shown in Fig. 1.3, a layer model with the classical command
and execution layer as the main axis for the driving has been chosen. The perception
layer combines all environmental information via the driver and the exteroceptive sensors
including navigation and eHorizon. In parallel, the energy layer accomplishes the control
of the energy flows and the assignment of reserves for the domains driving, comfort and
safety. This is a dynamical process depending on the driving situation and on driver
requests. The assessment between Advanced Driver Assistance Systems (ADAS) and
driver is performed by the Decision Unit 1 (DU1), thus defining the vehicle trajectory.
Finally, on the execution layer, a safe actuator control is achieved by stabilising ADAS
and the Decision Unit 2 (DU2) which chooses the appropriate actuator and the mode.
This architecture allows an elegant implementation of standard and new functions and
offers easy implementation and scalability for ADAS functions.
The basis vehicle was a Tata Indica eVista provided by the project partner Tata Mo-
tors European Technical Centre (TMETC). Details about the vehicle and the integrated
hardware will be presented in 1.2.
Intedis as project leader was in charge of vehicle functions in the command and execution
layer. Miljobil Grenland from Norway developed the high voltage battery, TMETC took
care of the hardware integration and testing of the vehicle. Hella designed the integrated
Vehicle Head Unit (VHU) and developed the software in the energy layer. IFSTTAR
from France integrated the hardware and engineered software for the perception layer

3



1. Introduction

Figure 1.3: Functional Architecture

and the command layer. Their point of focus mainly laid on the integrated ADAS sys-
tems. The psychologists from the Wuerzbuger Institute for traffic scientific (WIVW)
integrated additional screens and developed software for the Human Machine Interface
(HMI).

1.2 Hardware Description
In order to get a better overview a short introduction to the hardware of the vehicle and
especially the mounted sensors, which are source for the vehicle observer, shall be given.
At the beginning most important components of the prototype are presented followed
by the depiction of the characteristics of the three vehicle dynamic sensors.

1.2.1 Vehicle
The basis car for the eFuture project is a second generation Tata Indica Vista EV (see
Fig. 1.4). The most relevant vehicle data are listed in Table 1.1 [63].

The single permanent magnet synchronous motor of the basis vehicle was replaced by
two individually controllable permanent magnet synchronous AC electric machines on
the front axle. Each of them has a peak torque of 750 Nm and a continuous torque of
400 Nm with a power consumption of 55 kW . The overall maximum system efficiency

4



1.2. Hardware Description

Figure 1.4: Tata Indica Vista EV

Length Width Height Accel. Range Charge Time Weight
3.795 m 1.695 m 1.550 m 0 − 60 kph : 9s 165 km 8 h@220 V 1250 kg

Table 1.1: Vehicle Dimensions

is at 95 %. The speed range is limited to 2000 rpm and the maximum voltage is 380 V .
The electric machines, with 25 kg weight each, are mounted within a frame at the centre
of the engine bay together with the inverters, the Power Distribution Unit (PDU) and
the high voltage battery charger. The motor torque transmission ratio is fixed to 1.
The battery of the prototype vehicle is designed and produced by the Norwegian project
partner Miljobil. It is assembled with two strings of serially connected cells, where each
row contains 180 cells. This Lithium Ion Super Polymer (Li(NiCoMn)O2) battery is
mounted on the rear bottom of the vehicle. The battery has a maximum capacity of
26, 1kWh with an energy density of 103 Wh/kg. The duration of a fully charged battery
is about 8 hours at 220 V. The discharge power is 44kW at a continuous discharge current
of 200A. The peak discharge current is restricted to 400A. The nominal voltage is 220
V and the total weight of the package is 255 kg.
The integrated VHU, which was designed by Hella, contains four 32-bit micro-controllers
Bolero MPC5607B (see Fig.1.5). It has five analogue inputs, eleven digital inputs, sensor
and power outputs. For communication five different CAN channels are supported.

1.2.2 Sensors

In this section the equipped vehicle dynamic sensors will be explained in detail. The
signals measured by these sensors are the source of the vehicle observer inputs and,
thereby, the correct interpretation of all received signals is fundamental. For clarification
the most important facts of the respective sensor, the exact placement and technical data
for the yaw rate, steering angle and wheel speed sensor are described in detail. Where
the wheel speed sensors are carry over parts of the basic prototype the remaining sensors
were integrated supplementary.
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1. Introduction

Figure 1.5: Vehicle Head Unit

Yaw Rate Sensor

The implemented yaw rate sensor YRS 3 [25] from Bosch is a micro-mechanical accelera-
tion sensor and is equipped with an additional Controller Area Network (CAN) interface
(see Fig. 1.6). Besides the yaw rate of the vehicle it measures the longitudinal and lat-
eral acceleration of the vehicle. This sensor replaced the existing sensor (DRS-MM 3.7k)
that - in comparison to the new one - did not measure the longitudinal acceleration.
The sensor is ideally mounted in the Centre of Gravity (CoG) of the vehicle. But as the
exact CoG is difficult to determine and the number of suitable locations to fix the sensor
in the vehicle is limited the original location directly behind the gear lever was chosen.

Figure 1.6: Yaw rate sensor YRS 3

This yaw rate sensor is part of the established group of vibrating gyrometers operat-
ing on the Coriolis principle. It consists of an inverse tuning fork with two mutually
perpendicular linear vibration modes, drive circuit and evaluation circuit. A comb-like
structure provides electrostatic drive and evaluation. The Coriolis acceleration is mea-
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1.2. Hardware Description

sured electro-statically by way of engaging electrodes. The measurement element is made
up of two masses connected by way of a spring with the same resonance frequency for
both vibration modes which is typically 15 kHz and, thus, outside the normal vehicle
interference spectrum, making it resistant to disturbance acceleration.
The design of the acceleration module is comparable to that of the yaw sensor module
and consists of a micro-mechanical measurement element and an electronic evaluation
circuit. The spring-mass structure is moved in its sensitive axis by external acceleration
and evaluated using differential capacitor in the form of a common structure.
The most relevant technical data for the vehicle observer of the rotation and linear
acceleration sensor are listed in the table below:

Rotation sensor
Measuring range ± 160 ◦/s

Overrange limit ± 1.000 ◦/s

Absolute resolution 0.1 ◦/s

Maximum offset ≤ 3.5 ◦/s

Electrical noise ≤ 0.2 ◦/s

Quantisation CAN 0.005 ◦/s/digit

Linear acceleration sensor
Measuring range ± 4.1 g

Overrange limit ± 10 g

Absolute resolution 0.01 g

Maximum offset ≤ 0.1 g

Electrical noise ≤ 0.01 g

Quantisation CAN 0.0001274 g/digit

Table 1.2: Yaw rate sensor technical data

Steering Angle Sensor

For the measurement of the steering angle the Bosch steering-angle sensor [24] for angles
between −780◦ and +780◦ was selected (see Fig. 1.7). Besides its integrated plausibility
checks and special self-diagnosis functions, which makes it suitable for use in safety
systems, the sensor has a CAN interface. In addition to the steering angle and the
steering speed the sensor transmits several status signals. In detail there are the steering
angle status, the checksum of all bytes of the CAN matrix and the message counter to
identify lost messages between the reception of two messages. As the basic prototype
was not equipped with a steering angle sensor the optimal location had to be figured out.
Here, the position at the upper steering column nearby the steering wheel was chosen.

When mounted the steering column drives two measurement gears by way of a gear
wheel for evaluation of the current steering angle. Magnets are incorporated into the
measurement gears. Anisotropic Magnetoresistance (AMR) elements detect the angular
position of the magnets as the resistance is a function of the magnetic field direction. The
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Figure 1.7: Bosch steering angle sensor

analogously measured values are supplied to the microprocessor via an A/D converter.
The measurement gears have different numbers of teeth and their rotational position
thus changes at different rates. The total steering angle can be calculated by combining
the two current angles. After several turns of the steering wheel, the two measurement
gears have returned to their original positions. This measurement principle can therefore
be used to cover a measuring range of several turns of the steering wheel without the
need for a revolution counter. The steering angle is given as an absolute value over the
total angle range (turning range) of the steering column. A special feature of the sensor
is the correct angle output immediately after switching on the ignition without moving
the steering wheel (True Power On).The most relevant technical data to the vehicle
observer of the rotation and linear acceleration sensor are listed in the table below:

Steering angle
Measuring range ± 780 ◦

Absolute resolution 0.1 ◦

Non-linearity ± 2.5 ◦

Steering speed
Measuring range 0 − 1016 ◦/s

Absolute resolution ± 0.01 g

Table 1.3: Steering angle sensor technical data

Wheel Speed Sensors

The basic prototype is equipped with four DF11 sensors [26] from Bosch as angular
wheel speed sensors (see Fig. 1.8). These are carry over parts from the integrated ABS
and are thereby not affected by the hardware changes. They are mounted close to the
wheel and, hence, they are exposed to heavy loads like temperature changes, vibrations,
dirt and salt. Due to the location in the area of splashing water failures of the wheel
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speed sensor during wet driving conditions are likely to happen. As the sensor is active
it is connected to the 12 V voltage source.

Figure 1.8: Bosch DF11 wheel speed sensor

The sensor supplies a signal with constant amplitude independent of the rotary speed
and uses the Hall effect for the detection of the rotary speed signal. The application
of this measurement principle permits speed measurement until almost standstill. In
this way it is also possible to cover more difficult conditions of minimum velocity in,
for instance, navigation system implementations. This sensor model does not detect the
rotation direction of the wheels. The current signal is split into a 14 mA and a 7 mA
level. Where the first level serves as information signal the 7 mA signals attend as report
information for the malfunction storage. For the signal transmission a two wire interface
is used. The sensor is supplied by the low voltage on board electric system. In the VHU
the received sensor current will be converted into a voltage signal through the measuring
resistance. The analysis control will detect low or high signals by the amplitude of the
voltage.
Since the wheel speed sensors are originally integrated for the ABS function and this
data flow was not modified due to safety reason, the measured signals are received and
processed by the ABS algorithms first. So the vehicle observer receives the preprocessed
wheel speed sensor signals. These are the angular speed per minute and the status for
each of the for wheels. The exact signal description is given in the following table:

Wheel speed
Measuring range 0 − 4095 1/pm

Absolute resolution 1 1/pm

Table 1.4: Wheel speed sensor technical data

9
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1.3 Function Description

Figure 1.9: Structure of the Vehicle Observer

The development of the function vehicle observer was done to enhance the performance
of VDC functions since the reprocessing of the sensor signals provides more reliable in-
formation about the current vehicle states. In general, the vehicle observer gathers the
available sensor signals which often are distorted due to imprecise sensors or electronic
influences. The top level structure of the function with the main input sources and main
receiving sinks is displayed in Fig. 1.9.
The algorithm first checks and, if possible, corrects the received sensor signals in the
plausibility check subsystem. Based on an Extended Kalman Filter (EKF) concept the
EKF subsystems lower the noise level of the measured vehicle states and calculate un-
measured vehicle states with the usage of a non-linear vehicle model and a Dugoff tyre
model.
In the parameter estimation variable vehicle and environmental parameters are esti-
mated. Here, a concept with low computational load was selected in order to make the
complete algorithm runnable on the integrated hardware. By feedback of the estimated
parameters to the EKF subsystems the equations of the vehicle model are updated which
increases the accuracy of the complete function.
In the stability assessment subsystem the dynamic stability limits of the vehicle are
computed and transmitted to the DU1 where these limits are considered and actuator
requests are restricted to guarantee vehicle stability if necessary.
In the Trip Calculation subsystem the odometer and the tripmeter of the driven distance
are computed and displayed in the HMI, here the instrument cluster. As the tripmeter
can be reset by the driver at any time the event information of a pressed button in the
HMI is considered.
A huge added value of this vehicle observer in an Electric Vehicle (EV) has the function
Torque Vectoring which influences the lateral vehicle dynamics by torque distribution.
By using the observed signals, which contain more information than measured by the
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equipped sensors, this function is able to work more accurately and to improve vehicle
safety and stability by enhancing the road contact. Also the energy consumption can be
minimized by an optimal use of the maximum friction. Furthermore, the costs for the
equipment of sensors are reduced because there is no need for expensive sensors like a
side slip angle sensor.

1.4 State-of-the-art and Innovations
The presented work contains two innovative topics that together form the robust vehicle
state and parameter observation. On the one hand the new design of a common vehicle
state and parameter observation and on the other hand an innovative concept for the
handling of delayed or missing sensor signals. Both novel approaches and the state of
the art in the respective field of research are outlined in the next two subsections.

1.4.1 Vehicle state and parameter observation
Many technical approaches have been worked out in the area of vehicle state estimation.
M. Best designed a concept with an EKF to realize the parallel estimation of vehicle
states and parameters, but the change of road adhesion was not mentioned [12]. The use
of extended Kalman-Bucy method in combination with Bayesian was presented by L. R.
Ray in order to estimate vehicle states, tire forces and road friction coefficient. The main
problem of this conception is the non-practicability in real-time due to the complexity
of the algorithm [55]. D. Hu used the technique of a Dual Extended Kalman Filter
(DEKF) to estimate the vehicle states and tire-road friction coefficient synchronously.
This method improved the precision of the vehicle state estimation on adhesion-changing
roads with standard sensors mounted on the vehicle [34]. Since this concept has still
a high computational effort, the presented vehicle observer estimates the vehicle states
with a single EKF. The calculation of variable and unknown parameters is realized
through the usage of dynamical equations in driving situations when predefined values
hold. Here, the parallel estimation of vehicle mass, effective tire radius and mobilized
road friction is unique.

1.4.2 Handling of signal loss
Time delay and missing measurements of vehicle dynamics sensors have received much
attention in the last years since time delays and stoppage of signal flow exist in ev-
ery electric vehicle architecture (e.g. the architecture shown in Fig.1.10). Often these
appearances are the cause for instability or performance degradation of the integrated
VDC.
As stated before the occurrence of communication delay or packet loss of important ve-
hicle dynamics signals might cause vehicle instability by inappropriate actuator requests
from the VDC. By prospective increasing complexity and influence of VDC on the vehi-
cle dynamics the issue of handling signal loss even becomes more important and raises
new requirements for vehicle safety demands. The currently published ISO 26262 [35]
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Figure 1.10: Vehicle dynamics architecture

specifies guidelines for necessary software safety mechanisms at the software architecture
level. In order to fulfil the defined correction mechanisms a novel method for handling
delayed and missing sensor signals to guarantee the vehicle and passenger safety was
developed.
There were a lot of works dealing with the filtering problems for systems with miss-
ing measurements during the past years. Yang et al. [71] and Wang et al. [68] have
summarized the research results about H∞ filtering and control for various time-delayed
systems with missing and delayed measurements for single sensors out of published liter-
ature on the respective topics. Moreover H2 filtering [62] for multi-sensors in uncertain
linear systems and H∞ filtering concepts [45] for multi-sensors with classes of discrete-
time stochastic non-linear systems have been developed. So far the research for robust
Kalman filtering techniques focused on the classic Kalman Filter [41, 52] but not on
EKF for the replacement of delayed and missing sensor signals. Up to now either signals
were replaced by their last measured values [48], or the output is set to zero [33] or state
estimates [30] are used as outputs to the VDC. Recently Kluge et al. [43] analysed the
stochastic stability of EKF with intermittent observations. Unfortunately, there is no
applicable concept for the replacement of missing and delayed signals that guarantees
the correct execution of VDC.
In this work the use of Markov Chains is proposed to handle delayed and missing sen-
sor signals in order to improve the vehicle state and parameter estimation which is the
basic information for the commands of the VDC for the actuators. Here, the Markov
Chain algorithm was selected since the concept does not make any assumptions about
the system behaviour in the past and the complexity of the algorithm is still capable for
online integration in the vehicle.
Similar to [60] and [61] the delays and missing measurements are modelled by Bernoulli
distributed white sequences satisfying the known conditional probability distributions.

1.5 Objective and organisation of work
For the development of the robust vehicle state and parameter observer the model-based
design method was chosen. By applying this method function verification is enabled
from the beginning and obvious errors can be identified and corrected directly before
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the software is integrated into the target hardware. Ideally, this should safe time by
decreasing the number of debug steps that are necessary when the software is deployed
on the hardware. In order to utilise the model-based design a comprehensive electric
vehicle simulation model has been designed and calibrated with measurements of the
real prototype. This model and the basic vehicle dynamics are introduced in chapter 2.
The presentation of the joint approach for the vehicle state and parameter observation
for an optimal support of VDC based on the sensor measurements is given in chapter 3.
Here, the theory for the complete concept of a discrete vehicle observer is explained.
In chapter 4 the signal replacement during phases of sensor signal delay or absence with
the use of Markov Chains is shown. This temporary signal replacement improves the
robustness of the vehicle observer and, moreover, avoids VDC actuator requests that
could led to vehicle instability.
Validation results of the complete concept are presented in two ways: On the one hand
the normal performance with prototype test drives and on the other hand the malfunction
performance with software in the loop tests. The most significant outcomes are merged
in chapter 5.
Finally, the discussion of results and a conclusion are given in chapter 6.
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2 Vehicle simulation model
This chapter describes the vehicle simulation model that was designed to validate the
function itself and the complete system existing of driver, VDC, vehicle, environment
and sensors (see Fig. 2.1). In general, simulation tools and models are widespread in
industry and research fields of application and, thereby, the focus of every simulation
model is different. A vehicle energy simulation, for instance, needs a fast execution
time for long time simulations while there is no claim for high accuracy of the vehicle
dynamics.

Figure 2.1: Top level vehicle model

The following vehicle simulation is supposed to predict the vehicle behaviour on internal
inputs and external influences as close to reality as possible. Internal inputs include
driver commands such as steering wheel angle and accelerator pedal position, whereas
external influences include for example road friction or air drag. Since the highest
accuracy for vehicle dynamics could be achieved by application of physical laws but also
with more computational effort, finding compromise/balance between execution time
and accuracy is highly significant.
A non-linear vehicle model for the vehicle dynamics and the most important components
of an electric vehicle that were implemented are explained in the next section (2.1). These
are the electric machines, the inverter, the high voltage battery, the hydraulic brakes, the
tyres and the steering column of the vehicle. In order to get an electric vehicle simulation
model that is as close as possible to the real prototype additional calibration work was
necessary. Afterwards, the basic functionality of most common VDC is presented in 2.2.
Finally, the driver model and the simulated test manoeuvres are introduced in section
2.3.
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2. Vehicle simulation model

2.1 Vehicle model
In this section definitions and connections of the vehicle dynamics that are necessary to
build the basis of a vehicle model will be presented. Subsequently the most important
components of a vehicle in general and especially for an electric vehicle are introduced.
Finally, the tuning of the vehicle model is explained.

2.1.1 Vehicle dynamics
Broadly speaking, the vehicle can be considered as single point with the given mass M
at the CoG and a moment of inertia I. In the defined coordinate system (Fig. 2.2) the
CoG moves along three dimensions. The positive x-axis is along the forward longitudinal
direction of the vehicle, the positive y-axis points from the forward driving direction view
to the left and the positive z-axis is to the top side of the vehicle. The vehicle can also
rotate around these three axis. The rotation around the x-axis is specified as roll angle
φ, the rotation around the y-axis is known as pitch angle θ and the rotation around the
z-axis is determined as yaw angle ψ.

Figure 2.2: Coordination of the three dimensional vehicle

Opposed to the mentioned movement of the CoG the four contact points - front left (FL),
front right (FR), rear left (RL) and rear right (RR) - of the vehicle to the road surface
are fundamental. These are the only locations where the vehicle can transfer forces the
environment and, by that, effect the vehicle motion. As this vehicle coordinate frame
is not indicated at all the wheel coordinate frames are labelled with a superscripted w

(see Fig. 2.2). The orientations of these frames are different from the vehicle frame if
the wheels have a steering angle and the position of the wheel frames changes due to
horizontal movement of the vehicle.
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With the definition of coordinates for the vehicle body and the four wheels the vehicle
motion is computed by usage of equations of motions from Newton and Euler [36].

M(a − v × ω) = F = Fext +
4∑

i=1
(Fwheel,i + Fsusp,i) (2.1)

I(α − ω × ω) = M = Mext +
4∑

i=1
(Mwheel,i + Msusp,i) (2.2)

The forces generated by the wheels Fwheel,i and by the suspension Fsusp,i move the
CoG of the vehicle depending on the forces F = [Fx, Fy, Fz]T and the moments M =
[Mx, My, Mz]T . In addition, external forces Fext, air drag and rolling resistance, influ-
ence the CoG motion as well. Here, both external functions are modelled by empirical
functions which are dependent on the vehicle speed. For simplification the influence of
external moments was neglected during this work. Suspension forces Fsusp and moments
Msusp are modelled by a spring-damper model where the tire dynamics are transmitted
to the vehicle chassis under consideration of the road height. The subscripted character
i stands for the wheels where i = 1 is for the front left, i = 2 for the front right, i = 3 for
the rear left and i = 4 for the rear right tyre. The resulting moment M can be computed
when the forces and geometric properties of the vehicle are known. With the use of the
calculated moment M and the knowledge of the initial values the three dimensional ac-
celeration a = [ax, ay, az]T and the three dimensional angular acceleration around the
coordinate axes α = [αx, αy, αz]T can be computed with the knowledge of the initial
values of the velocity v0 and the angular velocity ω0. The velocity v = [vx, vy, vz]T and
the angular velocity ω = [ωx, ωy, ωz]T are defined as integrals of the acceleration a and
the angular acceleration α:

v =
∫

a dt + v0 (2.3)

ω =
∫

α dt + ω0 (2.4)

For a model-based function development of the vehicle observer it is sufficient to have
a realistic vehicle model and, therefore, to calculate the effects of vehicle dynamics (2.1
- 2.4). These equations describe the effects of the vehicle motion depending on the
acting forces. Furthermore, the position of the vehicle in the global coordinate frame
pg = [pg

x, pg
y, pg

z]T is required for functions like LKAS or ACC or, moreover, for the
visualisation of the vehicle in its environment. To calculate the global vehicle position
pg, the velocity of the vehicle v has to be converted into a vehicle velocity in global
coordinates vg, with the transformation matrix T . Similarly, the global vehicle angle
Φg = [φg,θg,ψg]T is computed from the angular velocity of the vehicle ωg which is
represented in the global coordinate system.
Integrating the velocity vg and the angular velocity ωg, with respect to time, defines the
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global position pg and the angle Φg with

pg =
∫

vg dt + pg
0 (2.5)

Φg =
∫

ωg dt + Φg
0, (2.6)

where pg
0 defines the initial vehicle position and Φg

0 the initial angle in the global vehicle
coordinate system.
The transformation matrix T is defined as

T g =

⎡
⎢⎣ 1 0 0,

0 cos φg sin φg

0 sin φg cos φg

⎤
⎥⎦
⎡
⎢⎣ cos θg 0 sin θg

0 1 0
sin θg 0 cos θg

⎤
⎥⎦
⎡
⎢⎣ cos ψg sin ψg 0

sin ψg cos ψg 0
0 0 1

⎤
⎥⎦ (2.7)

and converts the vehicle velocity v and the angular velocity ω into the same properties
but in the global coordinate frame g with

vg = T gv

ωg = T gω.
(2.8)

For the transformation matrices T the superscript indicates the new coordinate system
where the subscript defines the actual coordinate system. So T g defines the transforma-
tion from the vehicle coordinate system to the global coordinate system.
The vehicle side slip angle, that describes the angle between the vehicle velocity vector
and the longitudinal vehicle axle, is defined by:

β = arctan
(

vy

vx

)
. (2.9)

The side slip angle is an important indicator of the vehicle stability.

2.1.2 Components

After the discussion of the theoretical basis of the vehicle motion for a simulation model
the focus now lies on the generation of the resulting wheel forces and the components.
These forces are mainly generated by the propulsion system. In a pure electric vehicle
this propulsion system generally is composed of electric machines, hydraulic brakes and
the centrifugal forces. In the following section, these components, their respective direct
connected components and the used tyre model will be introduced. Firstly, the tyre
model that is used is presented, afterwards the components of the electric propulsion
chain are introduced. Subsequently, the model of the hydraulic brakes is shown and,
finally, the model of the steering column is presented.
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Tyre model

As the tyres are the only connection between the surface and the vehicle body the tyre
model has a big influence on the vehicle movement. It generates the lateral and longitu-
dinal forces from the vehicle body to the ground and vice versa. Moreover, the tyres act
as springs and dampers for the vertical movement of the vehicle. Just like the number
of different tyres, e.g. for winter or summer, the number of tyre models is large. So the
selection of the appropriate one is very important. The highly non-linear character of the
connection between the tyre and the road surface is problematic for the development of
every model. This connection varies and can, until now, not be understood sufficiently.
There are only few models which approximate the behaviour of the tyres. But most
models show the force characteristic that is shown in Fig. 2.3.

Figure 2.3: Wheel force generation over wheel slip

Most common and used tyre models are the extended Burckhardt model [42], the basic
Dugoff model [54] and the Pacejka tyre model [51]. The Burckhardt and the Dugoff
model are based on a physical concept and promise medium accuracy at low computa-
tional effort. In contrast, the Pacejka model is based on measured data and pledges high
accuracy at medium computational load. The biggest advantage of the Pacejka model
is its high scalability towards the aimed behaviour and, thereby, this model is used in
the vehicle simulation model. As the model needs the longitudinal tyre slip λ and the
wheel side slip angle α as inputs their definition is given before the Pacejka model is
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explained.
Basically, the wheel angular acceleration ω̇ changes due to the applied torque changes
according to:

ω̇i =
1

Iwi

(
T drive

i − T brake
i − F wi

x reffi

)

=
1

Iwi

(
T drive

i − T brake
i − T fric

i

) (2.10)

Here, Iwi is the wheel moment of inertia, reffi
is the effective tyre radius and F wi

x is
the traction force. The free body diagram from side view of one wheel and the effective
torques are shown in Fig. 2.4.

Figure 2.4: Wheel dynamics side view

The longitudinal force F wi
x is computed based on the longitudinal tyre slip λ

λi =
ωireffi

− vwi
x

max (|ωireffi
| , |vwi

x |) , (2.11)

where vwi
x is the longitudinal velocity of the tyre centre in the tire coordinate system.

Equation 2.11 is valid for all driving situations as there are traction, braking, reverse
and forward driving and the range for λ is [−1, 1]. When computing the wheel side slip
angle α

αi = arctan
(

vwi
y

vwi
x

)
, (2.12)

the lateral force F wi
y and the restoring moment Mwi

z can be deduced with the use of the
longitudinal vwi

x and lateral vwi
y velocity of the wheel. If these velocities are not known

or available there is an alternative way to compute the longitudinal and side slip of the
wheels instead. The velocity of any point of the vehicle can be calculated in detail when
the longitudinal vx and lateral vy vehicle body velocity and the yaw rate r are known.
Moreover, the signed longitudinal distance dx from the point to the CoG and the signed
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lateral distance dy from the point to the CoG are necessary. The sign of these distances
is defined within the coordinate system that is shown in Fig. 2.5.

Figure 2.5: Definition of coordinate system

The velocity of the wheel is computed with:

vwi
x = vxi = (vx − dyr) · cos δi + (vy + dxr) · sin δi

vwi
y = vyi = (vy + dxr) · cos δi − (vx − dyr) · sin δi

(2.13)

As the steering angle of the wheel influences the wheel side slip angle α the formula is:

αi = δi − arctan
(

vyi

vxi

)
, (2.14)

In most vehicle models it is assumed that the steering angle at the front axle is equal
δ1 = δ2 and the steering angle at the rear axle is zero δ3 = δ4 = 0.
After the inputs of the Pacejka tyre model were introduced now the model itself will be
presented. This model is named after its inventor Hans Peter Pacejka and is also known
as the "Magic Formula" tyre model. As mentioned before it is empirical and requires
a specific number of parameters determined from experimental measurements of tyre
forces and moments. Here, 18 parameters are used to compute the longitudinal wheel
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forces F wi
x , the lateral wheel forces F wi

y and the restoring moments Mwi
z with

F wi
x = (D · sin (arctan (B · X1 − E (B · X1 − arctan (B · X1))))) + Sv (2.15)

F wi
y = (D · sin (arctan (B · X2 − E (B · X2 − arctan (B · X2))))) + Sv (2.16)

Mwi
z = (D · sin (arctan (B · X2 − E (B · X2 − arctan (B · X2))))) + Sv (2.17)
X1 = λ + Sh (2.18)
X2 = α + Sh, (2.19)

where B, C, D and E are the tuning parameters and Sh and Sv are chassis-based pa-
rameters and vary for the calculations of forces and moments. The list of parameters is
given in table 2.1.

Name factor Fx,front Fy,front Mz,front Fx,rear Fy,rear Mz,rear

Stiffness factor B 39.7 40.7 10 39.7 44.7 10
Shape factor C 1.57 1.20 1.05 1.57 1.20 1.05
Peak factor D 0.95 0.94 0 0.95 0.94 0

Curvature factor E 0.96 0.88 -3 0.96 0.80 -3
Horizontal shift Sh 0 0 0 0 0 0

Vertical shift Sv 0 0 0 0 0 0

Table 2.1: Pacejka model parameters

Propulsion system

The electric architecture of the propulsion system is illustrated in Fig. 2.6. The battery
provides electrical power, the PDU splits the DC energy to the two inverters which
alter the energy to AC. Finally, the electric machines convert this electric energy to
mechanical energy or vice versa. Due to the low functionality of the PDU the model of
this component is not described further.

Battery model

The high voltage battery is the only energy source for the vehicle drive in a pure electric
vehicle. The briefly presented model is designed as Li-Ion battery. The input is the
current which is used by the electric load and the electric propulsion system. The
outputs are the battery voltage which is supplied to the electric energy consumers,
current limits for charging and discharging, State of Health (SOH) and State of Charge
(SOC). Within battery efficiency, power losses and thermal influences are calculated
to model the thermal and electrical dynamics of the battery. The model is composed
mainly of lookup-tables that were developed based on real measurements.
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Figure 2.6: Electrical architecture of the propulsion system

Inverter

As the inverters merely alternate the DC energy to an AC energy between the PDU
and the electric machines but the model of the electric machines was designed to deal
with DC energy there is no demand for a detailed inverter model in the simulation. So
the inverter loss is taken into account only by implementation of a lookup-table that is
based on values from the data sheet. In Fig. 2.7 this power loss is shown by the output
current.

Electric Machines

The electric machine basically converts electrical energy to mechanical energy in order
to accelerate the vehicle. Compared to a Internal Combustion Engine (ICE) the electric
machine can recover energy additionally during vehicle deceleration by regeneration.
By that, the overall efficiency of the electric machine performance is improved. The
design of the electric machine, meaning the dimensioning and classification, defines the
maximum torque and thereby the maximum vehicle acceleration which can be provided.
In general, the machine torque Tm is depending on the angular velocity of the machine,
so that the maximum torque decreases during higher angular velocities:

Tm =
Pm

ω
. (2.20)
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Figure 2.7: Inverter power loss

Fig. 2.8 shows the machine torque via the electric machine speed for different currents
in the first quadrant. Most important is the solid black line that shows the maximum
machine torque that can be applied. The electric machine has the same characteristic
- high torque at low speed and low torque at high speed, in the other three quadrants.
Moreover, the supplied voltage U , transmitted by the inverter, affects the energy losses
since the current I has to be higher at lower supply voltage if the electric power Pe

should remain constant according to:

Pe = U · I. (2.21)

Due to the higher current the power losses Pl increase as well with

Pl = R · I2. (2.22)

Furthermore, the increased power losses would lead to a heated electric machine which
would result in lower drive torque since the resulting mechanical power Pm is computed
by

Pm = Pe − Pl. (2.23)

The electric machine model was built as a physical system where the resulting torque is
equal to the requested one in normal performance. The torque output might be limited
by the maximum torque Tmax, the power limit Pmax or the torque slew rate limitation
Ṫmax. Here, no limitations due to thermal, mechanical or communication reasons are
considered since these effects are very complex and there is no need to include them in
the model based design of the vehicle observer.
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Figure 2.8: Machine torque over speed

Hydraulic Brakes

Hydraulic brakes generally convert mechanical energy to thermal energy which is then
radiated off in the environment. So their performance is suboptimal in terms of efficiency.
Additionally, the dynamic of the hydraulic brakes is by factor 10 slower than that of the
electric machines. The accuracy of the control decreases. But as the electric machine
torque is physically, as described in the previous section, and functionally limited, the
maximum electrical deceleration without ESC is −2m/s2. So there is still a need for
the hydraulic brakes. To guarantee vehicle deceleration in any situation, e.g. during
electric machine failure, the hydraulic brakes need to be implemented as well. By that
redundancy was created which increases safety even more. The model of the hydraulic
brakes apply a brake torque Tb to the tyre that is linear to the brake pedal position and
signed to the wheel angular velocity ω.

Steering Column

The steering column model transmits the steering torque of the driver to the front wheels
which results in a front wheel steering angle. The steering angle, in general, has a great
influence on the vehicle dynamics and, thereby, the model is crucial to get a vehicle
simulation model resembling the real prototype as much as possible. The inputs are the
driver steering torque T drvr

δ , the vehicle velocity v, the vehicle yaw rate r and the side
slip angle of the vehicle β. The output is the resulting front wheel steering angle δf .
The steering gear ratio Rs between the steering wheel and the front wheels is assumed
to be constant. The steering aligning torque, that brings the steering angle back in the
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neutral position, is computed by

T algn
δ =

2 · cf · ηt

Rs
·
(

−β − lf · r

v
+ 1
)

, (2.24)

where cf is the cornering stiffness of the front wheels, ηt is the effective tyre length
contact and lf is the longitudinal distance from CoG to the front axle. The steering
angle of the front wheels changes according

δ̈f · Is =
(

−Bs · δ̇f +
1

Rs

(
T drvr

δ − T algn
δ

))
, (2.25)

with the steering system damping coefficient Bs and the inertial moment of the steering
system Is. Alternatively, the steering column model can receive the steering angle of
the driver directly. In this case the input angle is divided by the steering gear ratio.
In general the steering angle at the front wheels is limited to its physical maximum at
δmax

f = 0.3491 rad.

2.1.3 Model calibration
Up to now, the vehicle simulation model is able to describe the non-linear vehicle be-
haviour in its environment. But since deviations to the prototype behaviour, which
might end up in time-consuming function parametrisation when integrating the code on
the target hardware, are likely, there is calibration work to be carried out. Thus, the
prototype was equipped with additional external sensors to log the most important ve-
hicle dynamic states. Test drives for different driving manoeuvres - normal driving and
high dynamic driving - were done. Afterwards, the recorded vehicle states were com-
pared to the simulated vehicle states. Here, the inputs to the vehicle simulation model
were the same as for the prototype. The environment was modelled as realistically as
possible. The calibration work mainly is about tuning of vehicle parameters with great
influence on the vehicle dynamics. These were partly measured and partly had to be
tuned empirically until the deviation between measured and simulated vehicle states
became acceptable. Where the vehicle mass, the moment of inertia and the tyre radius
at standstill could be measured, other parameters, for instance the cornering stiffness of
the tyres and damping coefficient of the steering column, had to be tuned heuristic.
The inputs to the model for this calibration work are the electric machine torques TeMach

and the steering wheel angle δdrvr. From the huge amount of output signals from the
simulation model the focus was directed to the vehicle states with the most informative
value for the longitudinal and lateral vehicle dynamics. These are the longitudinal ve-
locity vx, the lateral velocity vy and the yaw rate r. Subsequently, results for normal
driving and high dynamic driving are shown.

Normal driving

During this scenario the driver steers and accelerates averagely without any sudden
changes and thereby low specific rate of change. In Fig. 2.9 the steering angle and the
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electric machine torques are shown. The torque difference between left and right electric
machine is the result of TorVec which will be explained in the next section.

Figure 2.9: Model inputs at normal driving

In Fig. 2.10 the outputs of the simulation model and the measurements are displayed.
Where the measured data are drawn with a solid line, the simulated data are displayed
with a dashed line. From top to bottom the lateral velocity, the longitudinal velocity
and the yaw rate are shown.
The simulated and measured lateral velocity of the vehicle have a certain deviation but
the overall signal trend is almost identical. This deviation and the measured signal,
which is noisy, are the result of the optical sensor [59] which was mounted on the outside
right side of the car. So this deviation is not rated as critical.
The longitudinal velocity and the yaw rate of simulation and measurement are very
similar. The light differences are negligible and result from the surface of the test track
that is not perfectly plain. An adaptation of the road surface in the simulation model
was not done since its low cost-benefit ratio.
The overall accuracy of the simulation model compared to the measurements of the
prototype are sufficient for average driving manoeuvres.
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Figure 2.10: Model outputs at normal driving

High dynamic driving

For the high dynamic driving a Double Lane Change (DLC) manoeuvre was chosen
which is described in detail in section 5.1.2. In general, this test is appropriate to push
the vehicle to its lateral dynamical limits and, thereby, the vehicle performance is highly
non-linear. Moreover, vertical dynamics with rolling and pitching effect the maximum
tyre forces as well.
Fig. 2.11 shows the steering angle and the electric machine torques. From the beginning
of the measurement the vehicle is accelerated to a desired velocity until 14 s. Then, the
driver switches the gear to neutral to avoid effects resulting from the electric machines
during steering. At 15 s the vehicle reaches the test set-up and the driver tries to follow
the given trajectory by a strong left-right-left steering. Like in the normal driving the
different torques follow from TorVec to enhance the stability of the vehicle.
In comparison to the normal driving the torque and steering angle rates are much higher
and, thereby, vehicle is moved to its stability limits.
In Fig. 2.12 the outputs of the measurements and the simulation model are displayed in
the same order and with the same line types as before.

The lateral velocity of the simulation model and the measurements deviate in their
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Figure 2.11: Model inputs at high dynamic driving

amplitude but the general trend is accord. Again, the sensor measurement method, the
sensor calibration or the roll movement of the vehicle can be the root cause for that.
Here, the sensor noise level is not that relevant due to the higher amplitudes of the signal
during that scenario.
The longitudinal velocity of the simulation matches very well with the measurements.
The slight deviations from 4 s − 7 s and 21 s − 24 s are based on the non-optimal road
profile on the test track. Moreover, the non-linear behaviour of the external forces is not
totally realistic in the simulation. The deviation during the steering movement between
16 s and 19 s is the result of vehicle body rolling which influences the measurements of
the optical sensor.
A very accurate simulation of the yaw rate could be achieved with the vehicle simulation
model. The light deviation in the amplitudes during the steering, 16 s−19 s, is negligible
since unmeasurable environmental parameters cause them and the tyre model is not
tuned for high dynamic scenarios exclusively.
In summary, the built and calibrated vehicle simulation model is able to give realistic
data on the car behaviour compared to measurements from the prototype. In general, the
calibration work has to find a trade-off between the longitudinal and the lateral vehicle
dynamics. Additionally, these parameters should cover as many driving situations as
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Figure 2.12: Model outputs at high dynamic driving

possible with a suitable accuracy. The here presented vehicle model generates vehicle
states that mostly match the measured vehicle states in normal and highly dynamic
driving.

2.2 Vehicle dynamics controller

After the model and most important components for basic vehicle motion were intro-
duced in the previous section, now, the various VDC of the virtual prototype are de-
scribed roughly. Since these VDC have direct influence on the vehicle dynamics the
vehicle observer has to be tested during VDC activation. Moreover, the performance
of the VDC can be simulated with pure sensor signals and with outputs of the vehicle
observer. Thus, an enhanced vehicle stability with vehicle observer information and
VDC can be proven. The presented VDC are split into stability control and assistance
control.
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2.2.1 Stability controller
As the basic vehicle has a lack of stability and controllability in emergency manoeuvres
or road conditions with low road friction, stability controllers have become standard
in passenger vehicles in the last years. Here, controllers which only act on the vehicle
stability are presented: ABS, TCS, ESC and TorVec. Apart from these controllers,
other functions that improve vehicle performance and driver comfort are integrated in
serial cars as well. A well-established function is the Sky-Hook controller that acts on
the suspension in order to minimize the body roll and pitch variation. But as the main
purpose of functions like these is not the enhancement of the vehicle stability, although
they are doing it indirectly, and they are not integrated in the prototype there is no
description given here.

Anti-lock Braking System

Figure 2.13: ABS activation state machine

The ABS was the first stability control that was integrated in serial cars and was initi-
ated in 1978. In nowadays vehicles the function individually controls the brake pressure
of all four wheels by a 4-Channel ABS which is composed of four wheel speed sensors
and four brake pressure valves. The lock of wheels during hard braking manoeuvres
reduces the grip and thereby increases the braking distance. The additional by lock of
steering wheels, caused by that, decreases the controllability of the vehicle which is why
the ABS algorithm tries to keep the longitudinal wheel slip λ in a range of 0.08 − 0.25.
At this slip level a maximal grip domain is reached for almost all road conditions, see
Fig. 2.3. Moreover, by preventing a locked wheel the tyre wear is equal which extends
tyre longevity. The only drawback has the function at straight line braking on bulky
roads where the building up of material in front of the slipping wheels is avoided and,
thereby, the braking distance is longer in comparison to a locking wheel.
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The ABS algorithm computes the specific longitudinal wheel slip λi with the informa-
tion of the wheel speed from the sensor and the vehicle speed from the vehicle observer.
Then, a finite state machine realizes the activation strategy - see Fig. 2.13.
The transition between activation and deactivation depends on whether the considered
wheel is slipping or not.
When a slipping wheel is detected and the ABS is activated the brake pressure will be
held by default and remains in this state if the wheel slip is in the range that is regarded
as optimal. In case of higher wheel slip than this range or if the deceleration of the wheel
exceeds a defined limit, the ABS sends commands to the valves in order to reduce brake
pressure. In the same manner, the algorithm sends commands to the pumps to decrease
the brake pressure if the wheel slip is lower than the optimal range or the acceleration
exceeds a defined limit, which means that it is more efficient to brake the wheel than
wasting energy by wheel slip.

Traction Control System

The TCS, also named Anti-Slip Regulation (ASR), is designed to control the motor
torque and, thereby, prevent wheel slip during vehicle acceleration. Hence, the algo-
rithm reduces the motor torque if a driven wheel slips. Similar to the ABS, the TCS
guarantees the steering control for the driver, increases the life span of tyre and energy
efficiency by avoiding burn-outs.
The TCS functionality in the prototype is integrated in the function TorVec. The ex-
planation for that will be given in the following section.

Electronic Stability Control

ESC is currently the most advanced safety function embedded in mass-produced vehi-
cles. It aims at accessing the vehicle state to avoid unstable driving situations in case
of over- or understeering, as presented in Figure 2.14. To achieve this a vehicle stability
domain is defined and provides orders to the actuators only if the vehicle transgresses
this stability domain. Here, a standard ESC concept is introduced that uses differential
braking in order to stabilise the vehicle. In detail, just one wheel is braked at the same
time depending on the detected driving situation. To control the vehicle lateral dynam-
ics the ESC needs sensor information of the angular wheel speeds, the steering angle,
the lateral acceleration and the yaw rate. Additionally, information of road friction, lon-
gitudinal velocity, side-slip angle and tire slip, which all provided by a vehicle observer,
are necessary.
The decision of activation of the ESC depends on the driving situation and the defined
stability domain which are explained in the following. The stability domain is defined
by computing maximum reference states for the yaw rate and the side-slip angle. As
soon as one of the current vehicle states exceeds the corresponding maximum reference
state the vehicle leaves the stability domain. The computation of these values is based
on coefficients obtained through the analysis of the vehicle lateral dynamics. Based on
the vehicle state information a Characteristic Vehicle Stability Indicator (CVSI) is de-
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Figure 2.14: ESC principle

termined. The CVSI notifies if the vehicle is in over-, under- or neutral steering. The
activation logic decides if the ESC should be active and which wheel should be braked
by analysing the CVSI, vehicle state and maximum reference state information. Finally,
the brake commands to the actuators are generated by the combination of the activa-
tion signals and the commands computed by the control algorithm that is explained as
follows [13].
Once the maximum reference states are determined and the wheel to brake is selected,
the ESC control algorithm computes the commands to the electro-valves. This control
function is composed of two controllers in serial: the first one is an online-computed lin-
ear state space controller Kc, providing the targeted contact forces between the wheels
and the road surface. The second controller is a PID controller, converting these forces
into electro-valve commands. As the core of ESC is based on the computation of Kc,
only the way to compute this feedback is presented here while the PID gains are cali-
brated empirically. The feedback controller, Kc, is calculated through a pole-placement-
method, considering the vehicle as a linear system. To obtain a linear model of the
vehicle dynamics, the reduced two track vehicle model f is considered and linearised
online by computation of the Jacobian. The pole-placement state feedback, described
in eq. (2.26), is performed considering the pole matrix G and the Moore pseudo-inverse
of the system input matrix, i.e.,

[
∂f
∂u

]+
. The operating point changes at each iteration,

being considered to be the previous current state of the model at the previous step.

Kc =
[

∂f

∂u

]+
·
(

∂f

∂X
− G

)
(2.26)

Here u is the input vector, X is the state vector and G is the pole matrix.
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Torque Vectoring System

The function TorVec influences the lateral vehicle dynamics by a torque distribution
and, thereby, improves vehicle stability in extreme driving manoeuvres. Particularly,
this function is very suitable for electrically driven vehicles with at least two individual
controllable machines. The here presented TorVec has a joint approach for the control
of the longitudinal velocity and yaw rate and limitation of the longitudinal wheel slip.
It is designed for an electric vehicle with two electric machines on the front axle, like
displayed in Fig. 2.15.

Figure 2.15: TorVec principle

The control scheme is a Linear Parametric Varying (LPV) control and the algorithm is
based on a non-linear single track vehicle model [40]. The varying parameters are limited
to a zone of normal driving between a longitudinal velocity range of [12; 130] kph and
a yaw rate range of [−2; 2] rad/s. The stability and performance of the controller are
ensured by applying the Lyapunov function, shaping filters and Linear Matrix Inequality
(LMI)-conditions, H∞ for stability and L2 for performance. Furthermore, the concept
respects the physical limits of the electric machines and the tyres. The electric machines
are limited to power, maximum torque and torque rate where the tyres are limited to
slip, vertical force and road friction.
In the control architecture shown in Fig. 2.16, the desired values for the longitudinal
speed and the yaw rate are calculated based on the accelerator pedal position and the
steering angle. The control inputs are computed by subtraction of the vehicle states,
which are provided by the vehicle observer, from the desired values and an addition of
Torque Slip Limiter (TSL) value. In the control algorithm a feed-forward and a feedback
gain are computed with the additional input of the steering angle and result in a desired
force for both front wheels. Finally, limitations of the TSL and a saturation lead to the
applied wheel forces which are requested by TorVec.
Test drives with the prototype showed that the function entails an improved vehicle
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Figure 2.16: TorVec control architecture

performance for safety and comfort. A faster and more direct vehicle response to driver
inputs, no spinning or blocking wheels during test drives and less under- and oversteering
in high dynamic driving are the main factors for improved vehicle safety. The benefit of
this function in terms of comfort is a smaller steering effort, in torque and angle, for the
driver.

2.2.2 Assistance controller

Assistance controllers, also called ADAS, are designed to avoid accidents caused by driver
mistakes and to increase driver comfort. In case of an impending situation they warn the
driver or take over the vehicle control temporarily. In future, these controllers will be able
to drive the vehicle fully autonomous without any driver commands. The augmentation
of assistance controller in serial cars imposes new requirements on serial cars. The ASIL
is more critical, more sensor information is needed with a maximum of accuracy and the
software code which increases computational effort. Here, two assistance functions that
are mostly integrated in nowadays serial cars and in the prototype are presented. These
are the ACC for the longitudinal assistance and the LKAS for the lateral assistance.

Adaptive Cruise Control

When ACC is active, the basic control strategy is that the vehicle speed shall be con-
trolled automatically either to maintain a distance to a heading vehicle, or to maintain
the set speed, whichever speed is lower. The transition between these two control modes
is regulated automatically by the ACC system.
In common ACC systems two different low level functions are used. In the speed control
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mode, whenever no heading vehicle is detected, the vehicle speed must be controlled
according to the driver-desired speed. The vehicle speed is regulated according to the
heading vehicle speed in following control mode whenever a slower leading vehicle is
detected. A validation subsystem finally handles error flags and respects functional and
dynamic limits according to the current vehicle state. The functional top-level of the
ACC is displayed in Fig. 2.17.

Figure 2.17: Top-level view of ACC function

During speed control mode the control error of the ACC algorithm is the difference
between the driver selected speed vDrvr and the current vehicle speed v:

esc = vDrvr − v. (2.27)

The requested vehicle acceleration from the ACC aACC is then computed by using this
error and the speed control gain Ksc:

aACC = Ksc · esc. (2.28)

In following control, there are two control errors which have to be considered. The gap
error which is calculated with the help of the distance to the heading vehicle d, the
driver-desired time headway tDrvr and the vehicle speed:

eg = d − tDrvr · v. (2.29)

The speed following error is the difference between the velocity of the heading vehicle
vh and the vehicle speed:

esf = vh − v. (2.30)

The aimed vehicle acceleration of the ACC in following mode is computed with the usage
of the errors and gains for the gap Kg and the speed following Ksf :

aACC = Kg · eg + Ksf · esf . (2.31)
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The validation subsystem achieves the control of the output with respect to the dynamic
and functional limits. It raises an error flag as soon as the subsystem has to limit the
output acceleration according to the previous limitation.
The function showed good performance for speed and following mode during test drives
with the prototype on the test track. The final control error was sufficient, the driver
selected gap was kept to the heading vehicle and the acceleration felt comfortable to the
passengers.
An extended ACC version which respects a safe speed and includes an Autonomous
Emergency Braking (AEB) was developed as well. The safe speed is calculated with
the information of the road environment, like curves, road friction, and of a digital
map, e.g. legal speed limits. By this speed limitation the function increases the energy
efficiency compared to the presented basic ACC. The AEB applies the brakes in critical
situations, independently of the driver, to avoid or mitigate the accident. Consequently,
the distance to a front object is measured by perception functions and if this distance
reaches a minimum safety distance (related to the ego vehicle speed), the brakes are
autonomously activated. Since the extended ACC is out of focus in this work it is not
described in detail here.

Lane Keeping Assistance System

The LKAS gets active when the driver is inattentive and the car is moving towards
the lane border. In this case the algorithm takes over control for a limited time frame
and moves the vehicle back to the middle of the lane (see Fig. 2.18). Similar to the
effect of TorVec a controlled torque distribution on the driven front axle generates a yaw
moment that steers the vehicle to the desired trajectory. The necessary information for
this function is provided by cameras that detect the lane markings and by the vehicle
observer that allocates the current vehicle dynamic state.

Figure 2.18: LKAS principle
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The basic idea of LKAS is to compute the steering angle that is necessary to keep the
vehicle on the desired trajectory. This strategy can be decomposed in three steps:

1. Computation of the required yaw rate rR from the predicted Yp and the desired
Yd lateral displacement:
Using Taylor’s second order expansion and supposing that the side slip angle is
negligible, it can be found that [17]:

rR = − 2v

L2
s

(Yd − Yp) , (2.32)

where Ls is the length of the prediction horizon.

2. Calculation of the steering angle that is required to reach the requested yaw rate:
This is realized by an inverse transfer function of a vehicle dynamic model. Here,
a linear two-Degree of Freedom (DoF) and a two-wheel model is used.

3. Computation of the predicted lateral deviation from the target line:
The predicted lateral displacement Yp is deduced from the real lateral displacement
Yr and from the relative yaw angle rr:

Yp = Yr + Ls · rr, (2.33)

where this prediction takes the road curvature into account as well.

Moreover, the control strategy has to be a well configured transition logic that switches
between the driver and the LKAS control of the steering. The algorithm is activated
when the driver is identified as inattentive and the vehicle is moving towards a lane
border. Thus, the function will not be activated if the driver wants to change the lane.
The driver attention is monitored by analysing the steering torque and the direction
indicators. The transition is realized in a state machine. Additionally, the handling
of error flags and the adherence of functional and dynamic limits are realized in the
function as well to avoid unintended vehicle steering.

2.3 Driver model
The driver model was designed for an automated function validation of defined test
scenarios in changing environmental conditions. Here, the focus lies more on the re-
peatability of the scenarios than on getting a high realistic human driving behaviour.
Moreover, there exist many approaches to model different driver types (sporty, aggres-
sive, smooth,...) which can be found in literature, e.g. in [47] or [11]. In the vehicle
model presented here only one driver type (normal) was used.
The driver model (see Fig. 2.19) receives information of the current vehicle state and the
environment. Then, the relative position of the vehicle in its environment is computed.
A simple state-space-controller calculates the optimum steering angle to keep the vehicle
in the lane with the information of the relative yaw angle and the lateral deviation to
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Figure 2.19: Top-level view of driver model

the middle of the lane. The relative yaw angle is the angle between the vehicle yaw angle
and the yaw angle of the road. In that way curvature is compensated in this control.
The longitudinal control, i.e. the acting on brake and accelerator pedal, is designed by
a Proportional-Integral-Derivative (PID) control. Here, the control input is computed
by subtraction of the wished velocity from the current vehicle speed. The desired speed
can be given as fixed value or as speed profile. In addition to the dynamic control of the
driver there are many options to control set parameter of the equipped ADAS, change
the car key position, plug a charge cord and set the gear number.

2.3.1 Driving scenarios
For the function validation a set of different driving scenarios was implemented according
to published norms. Here, the steering and accelerator behaviour of the driver was
designed for these standardized tests. The tests are straight line driving, constant radius
turning, brake in bend, step steer, lift off oversteer, sine with dwell, and reverse driving.
A short description for each test is given in the following subsections. In general, all
scenarios were simulated for different road friction coefficients and varying initial speeds.

Straight line driving

In the straight line driving scenarios the steering angle is constantly at zero and the
acceleration request is either positive, to achieve a desired vehicle speed, or negative
in order to break until vehicle standstill. In both cases the respective pedal is pressed
to its maximum to achieve the highest acceleration rates and to ensure the TCS and,
accordingly, the ABS activation.
Straight line acceleration tests are mostly performed to measure the time the vehicle
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needs to accelerate from standstill to a certain speed. However, the time to accelerate to
a speed of 100 kph is the most common value and adducted to compare the acceleration
potential of different cars. For this work it was very helpful to model high tyre slip
during this acceleration period when TCS was deactivated. A more detailed explanation
will be given in the next chapter.
The straight line braking scenario was built-up according to [1]. From a given initial
speed the vehicle performs a strong deceleration until standstill. By that the stopping
distance can be measured which is an important value for the vehicle performance and
active vehicle safety. The vehicle observer performance could be improved significantly,
in particular when ABS was deactivated and tyre blocking occured.

Constant radius driving

In the constant radius driving scenario the dynamic behaviour, especially the lateral,
of a vehicle should be analysed. In [2] three different methods are presented: Constant
radius, constant steering-wheel and constant speed. As the first method is the easiest
to arrange since no extra calculations for analysis are necessary, this one was chosen for
simulation. Moreover, the driver model is suitable for this method as well as due to the
lane keeping algorithm included. The driver is modelled to follow a given radius at a
constant speed. The tests were simulated for different radii, speeds and road-friction
coefficients. Furthermore, both driving directions, clockwise and anti-clockwise, were
simulated. The initial velocity of the vehicle was set to the respective desired speed.

Bend driving

The bend driving tests are used to analyse the vehicle behaviour when sudden accelera-
tion or deceleration occurs. The execution for sudden acceleration and brake in a bend
was done according to [3]. Just as for the constant radius driving the simulation runs
were done for both driving directions. The basic requirement for the sudden acceleration
change is a steady state circular driving condition. When this requirement is fulfilled the
step on the accelerator pedal and brake pedal respective virtually to their maximum is
executed, the steering angle is held constant and the gear is switched to neutral. Again
the scenario was simulated for varying initial and desired speeds, radii and road friction.

Lift-off oversteer

The intention of the lift-off oversteer scenario is to determine the effect of sudden oc-
currence of a lift-off condition on course holding and directional behaviour of a vehicle
operating a steady-state circular motion. In general, a lift-off means that when the ve-
hicle is in gear and the accelerator pedal is fully released very quickly [5].
The scenario may be performed in two methods. In this case it was simulated in constant
radius tests. When the vehicle establishes a steady-state condition the steering angle
is fixed, the accelerator pedal is released as quick as possible and the gear remains in
its position. Like in the previous scenarios the simulation was repeated under varying
environmental conditions, initial speeds and radius.
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Step Steer

The step steer scenario is used to determine the lateral vehicle dynamics. In contrast to
the previous scenarios this one is an open-loop manoeuvre which has no realistic driving
conditions but is suitable to test the vehicle dynamics.

Figure 2.20: Steering angle in step steer scenario

According to [4] the initial speed is set to 80 kph and the steering angle is in zero
position. Starting with an almost zero yaw rate the steering angle has to be turned to a
defined value, here 3.6128 rad as quick as possible and kept constant until the measured
vehicle states are steady-state (see Fig. 2.20). During the steering movement the gear is
switched to neutral so that no longitudinal effects occur. The simulations were repeated
for speed steps of 20 kph and different road conditions.

Sine with dwell

The sine with dwell scenario was developed by the Alliance of Automobile Manufactors
and the National Highway Traffic Safety Administration (NHTSA) to provide data that
is used to objectively compare vehicle performance [22].
The steering angle in this scenario is basically a sine with identical amplitudes except
for the break of 500 ms when the minimum was reached. For the sinusoidal frequencies
of 0.5 Hz or 0.7 Hz are used. In Fig. 2.21 the example of a sine with dwell steering for
an amplitude of 3.6128 rad and a frequency of 0.7 Hz is shown.
The simulation of this scenario was executed for different speeds, steering amplitudes,
frequencies and road adhesions.

Reverse driving

The scenario of reverse driving was integrated to cover both driving directions and to
avoid sign failures during the development phase. In contrast to the other scenarios the
focus is not on the evaluation of vehicle dynamics. Slow speed reverse driving with and
without steering movement was simulated which is likely to occur in realistic driving
situations.
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Figure 2.21: Steering angle in sine with dwell scenario

In this case the calculation of the vehicle speed within the vehicle observer had to be
extended. This will be explained in the next chapter.
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3 Vehicle Observer
The term ’observation’ is seen as capture of the vehicle and the environment by sensors.
In general, the result of a measurement is a measurement vector which exists out of the
detected measurement attributes and a measurement time which is relevant for the esti-
mation of a dynamic processes. An observation reduces the real world to the attributes
detected by the sensors.
ADAS need reliable and accurate information of the current vehicle state and the envi-
ronment for an optimal and safe control of the vehicle actuators. The vehicle observer’s
task is to determine the required vehicle states and changing environmental parameters
as precisely as possible even if some are not measured by sensors directly.
An overview of filter concepts, a detailed survey of Kalman filters and the evaluation for
the best concept in this vehicle application are given in the next section. Afterwards,
the top-level structure of the vehicle observer, the data flow and signal definition are
presented. In section 3.3 the plausibility check with the detection and correction mech-
anisms in the basic version is explained. The subsystem EKF, which implies the general
EKF concept for observation of the vehicle states, and the necessary computation are
introduced in section 3.4. Here, the used vehicle and tyre models are shown and the
proof of observability of the complete vehicle state observer is given. Section 3.5 elab-
orates on the issue of the estimation of variable vehicle and environmental parameters.
The approach for each of the estimated parameters is specified there. The stability as-
sessment subsystem, which computes the dynamic stability limits of the vehicle based
on the estimated states and parameters, is presented in section 3.6. Finally, in section
3.7, the calculation of the driven distance of the vehicle is described .

3.1 Filter and estimation concepts
There are several filter concepts which are compatible with this challenge to smooth
measured sensor signals and to estimate unmeasured vehicle states. In Tab. 3.1 filter
concepts of the category g-h-filters are listed which determine the desired values by a
recursive method. With the help of the coefficients g and h a quantification between the
current measurement and the last estimated value is realised. They differ in the method
by evaluating these coefficients the one which may be constant over all iteration steps
or may vary with every iteration step. [15]

Statistical methods handle the system state as a random variable which is symbolised
through a conditional probability density. This conditional probability density represents
the information that is gathered from the measurement values on which it is based as
well. The realisation of the measurement values affects the form of the density function.
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Concept
1 Wiener filter
2 Fading-memory polynomial filter
3 Expanding-memory polynomial filter
4 Kalman filter
5 Bayes filter
6 Least-squares filter
7 Benedict-Bordner filter
8 Lumped filter
9 Discounted least squares g-h-filter
10 Critically damped g-h-filter
11 Growing memory filter

Table 3.1: g-h-filter concepts according to [15]

On the basis of this density function three different optimal estimation values are defined
which are shown in Fig. 3.1.:

• Conditional mode - maximum of the density function

• Conditional median - symmetry of area

• Conditional mean - CoG of the density function

If the observed system should consider the dynamical behaviour of the observed object
as well, a suitable model has to be regarded for the estimation. The observation of
dynamic systems is outlined in the following section.

DensityFunction

Conditional mode

Conditional median

Conditional mean

Density

Figure 3.1: Different estimation values for a density function
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3.1.1 Linear stochastic systems
The state vector of the observed object contains dynamic states, e.g. the acceleration
and the yaw rate. For an accurate and reliable observation, a model that takes into
account the dynamic movement is necessary. The following statement and annotations
are based on [9] and [28].
The motion of an object can be described by a dynamic equation from a continuous
linear stochastic system:

ẋ (t) = F (t) x (t) + C (t) u (t) + w (t) , (3.1)

where x is the system state vector, u the control input vector, w the zero-mean uncorre-
lated process noise vector, F the dynamic system matrix, C the coupling input matrix
and G the process noise coupling matrix.
The measurement equation is equal to:

y (t) = H (t) x (t) + D (t) u (t) + v (t) , (3.2)

with the measurement vector y, the measurement sensitivity matrix H, the output cou-
pling matrix D and the measurement noise vector v. The dimensions of the vectors and
matrices in Equation 3.1 and 3.2 depend on the system model that should be described
with the dimension of system states n and the dimension of measurement states � that
shall be observed (see Tab. 3.2).

Symbol Dimensions Symbol Dimensions
x, w, C n × 1 F n × n

y, v, D � × 1 H l × n

Δ, δ scalar

Table 3.2: Dimensions of vectors and matrices in linear models

Without the process noise w and measurement noise v the system would be a determin-
istic one. In stochastic systems both noise terms are assumed to be white noise, meaning
zero mean and finite variance, and as independent stochastic processes.
In general, applications for the observation of dynamic objects are not able to work in
continuous mode but with fixed time steps, thus, discrete-time. This is also valid for
most automotive applications. In this work, the target hardware, the VHU, runs with
a quasi-fixed sample time. In discrete systems the assumption is made, that the control
input vector in equation 3.1 is constant for a certain time.
The dynamic model for a discrete linear stochastic system in a Random Sequence (RS)
with initial conditions is then set up as follows:

xk = Φk−1xk−1 + Γk−1uk−1 + Gk−1wk−1, (3.3)

where xk−1 is the system state vector at time tk−1, xk is its value at time tk > tk−1,
Φk−1 is the state transition matrix for the system at time tk, uk is the input vector to
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the system at time tk and Γk the corresponding input coupling matrix.
The measurement equation in discrete time is equal to:

zk = Hkxk + Dkuk + vk, (3.4)

The process noise is assumed to be white and zero-mean uncorrelated, so that the
following equation holds with the covariance Q and the Kronecker delta function Δ:

E [wk] =0, (3.5)

E
[
wk1wT

k2
]

=Qk1Δ(k2 − k1). (3.6)

Accordingly, the measurement noise is supposed to be white and zero-mean uncorrelated
with the covariance R:

E [vk] =0, (3.7)

E
[
vk1vT

k2
]

=Rk1Δ(k2 − k1). (3.8)

Moreover, the noise sequences wk and vk are assumed to be uncorrelated to each other:

E
[
wk1vT

k2

]
= 0 for random k. (3.9)

As the system can be described by the last state completely it is called a Markov se-
quence.
The matrices Φ, Γ, G, H and D are supposed to be known and may vary with time.
The scope tends towards the conditional expected value of the system state x̂(j|k) at
the time j

x̂(j|k) ≡ E
[
x(j)|Zk

]
, (3.10)

with the condition that
Zk ≡ {z(j)}k

j=1 (3.11)

notates the measurement values at an arbitrary time k. A distinction is made between

1. the system state estimation (for j = k),

2. the smoothed system state (for j < k),

3. the predicted system state (for j > k).

The estimation error is defined as:

x̃k ≡ xk−1 − x̂k (3.12)

The conditional covariance matrix of the current system state is then:

Pk ≡ E
[
[xk−1 − x̂k] [xk−1 − x̂k]T |zk

]
= E

[
x̃kx̃T

k |zk
] (3.13)
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3.1.2 Kalman filter
A Kalman filter in general is an estimator for linear-quadratic problems, which is given
in estimating the instantaneous state of a linear dynamic system which is perturbed by
white noise. The estimator provides the statically optimal result with respect to any
quadratic function of the estimation error.
The Kalman filter is a set of mathematical equations that were named after its developer
Rudolf E. Kalman. A special feature of the 1960 released filter concept is the special
mathematical structure which facilitates the use in real-time applications in different
technical areas. Mostly it is used for the control of complex dynamic systems such as
continuous manufacturing processes, aircraft, ships, spacecraft and of course in the au-
tomotive sector.
Basically, the Kalman filter has a recursive algorithm to compute the optimal estimation
value which considers all available measurement values up to the current time. If the
density function is normally distributed for the state as well as for the measurement val-
ues, the state density function, which bases on the measurement values, is not normally
distributed as well and the optimal estimation values coincide like shown in Fig. 3.1.
In the next sections the theory of standard Kalman filter, which is suitable for linear
systems, the extended and unscented Kalman filter, which are designed for non-linear
systems, will be introduced.
In general, Kalman filter algorithms are separated in two main computation steps: the
prediction step and the correction step. Results of the prediction step are marked with
(−) and results of the correction step are labelled with (+). In the prediction step the
predicted state, based on the input vector and the system model, and the predicted
state estimate covariance are computed. Afterwards, among other operations, the opti-
mal Kalman gain K̄k is calculated and the state estimation and the estimated covariance
are updated in the correction steps. The estimate covariance is used in the next time
step for the prediction computation again.

Standard Kalman-Filter

The algorithm of the Standard Kalman-Filter (SKF), which is known as linear Kalman
filter as well, starts with the initial values of the state E(x0) = x̂0 and the covariance
E(x̃ox̃o

T ) = P0, so that the nx dimensions of the normal distribution are completely
described. The estimation of the predicted state x̂k(−) at the time k with covariance
Pk−1(+) is done by updating with a new measurement, zk, as follows:

1. Prediction step
The priori estimate x̂k(−) of xk will be determined with the current state esti-
mate x̂k−1(+), the state transition matrix, the control input vector and the input
coupling matrix:

x̂k(−) = Φk−1x̂k−1(+) + Γk−1uk−1 (3.14)

The priori covariance matrix Pk(−) is computed by the use of the posteriori covari-
ance Pk−1(+), the state transition matrix and the covariance matrix of the process
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noise:
Pk(−) = Φk−1Pk−1(+)ΦT

k−1 + Qk−1 (3.15)

2. Correction step
Computing the optimal Kalman gain K̄k using the priori covariance, the sensitivity
matrix and the covariance matrix of the measurement noise:

K̄k = Pk(−)HT
k

[
HkPk(−)HT

k + Rk

]−1
(3.16)

Update the covariance matrix to get the posterior covariance matrix Pk(+) with
the identity matrix I, the Kalman gain and the sensitivity matrix:

Pk(+) =
[
I − K̄kHk

]
Pk(−) (3.17)

Finally, compute the successive values of x̂k(+), recursively using the calculated
results of K̄k, the given initial estimated states x̂0 and the measurement input data
zk:

x̂k(+) = x̂k(−) + K̄k [zk − Hkx̂k(−)] (3.18)

For a correct functionality of the SKF certain postulations have to be fulfilled. The
initial estimation state x̂0 and the covariance P0 have to be known as well as the state
transition matrix and the sensitivity matrix. Moreover, the process and measurement
noise are assumed to be zero mean Gaussian white noise and known:

E [wk] =0, (3.19)

E
[
wk1wT

k2
]

=Q(k)Δ(k2 − k1), (3.20)

E [vk] =0 (3.21)

E
[
vk1vT

k2
]

=R(k)Δ(k2 − k1). (3.22)

In addition, there are no correlations between the noise signals and the initial state x0:

E
[
x0wT

k

]
=0, (3.23)

E
[
x0vT

k

]
=0, (3.24)

E
[
vjwT

k

]
=0. (3.25)

During the computation of the priori and the posterior covariance matrix it should be
checked for symmetry and positive definiteness. Here, any failure indicates to either a
software error or an ill-conditioned problem.
The overview of the SKF algorithm is shown in Fig. 3.2.
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Figure 3.2: Standard Kalman filter algorithm

Linearisation methods

The SKF for discrete and continuous systems was deduced in the previous section and
the resulting optimal estimator is simple in form and powerful in effect. The combi-
nation of linear functions, quadratic performance criteria, in detail the minimization of
the quadratic norm of the estimation error, and Gaussian statistics is essential for the
development of this estimator.
But as many dynamic systems and sensors have no complete linear behaviour, but one
that is not too far away from it, extensions for such non-linear problems have to be
applied. Different techniques for the linearisation of the non-linear functions around
the current system state were designed to fit the equations into the Kalman filter con-
cept. These techniques are applicable if f and h are twice-continuously differentiable
only. Basically, the linearisation around a nominal trajectory and the linearisation about
the estimated trajectory are two techniques to solve this problem and will be explained
roughly now.

Linearisation about the nominal trajectory A nominal trajectory refers to the trajec-
tory which is obtained when the random variates assume their expected values. But
the nominal trajectory will have small deviation to the real trajectory due to unknown
influences on the plant like in most dynamic systems. These influences are, for example,
the initial system state x0, the process noise wk and the measurement noise vk. If the
non-linear function f is differentiable infinitely often, the small deviations to the real
trajectory can be represented by a Taylor series expansion about the nominal trajec-
tory. The magnitudes of the deviations are determined by the variances of the variates
involved. The approximation is acceptable when terms beyond some order may be ig-
nored if these deviations are relatively small compared to the higher order coefficients
of the expansion. These magnitudes, however, have to be evaluated before making such
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an assumption.
The symbol ϑ denotes the deviations from the nominal,

ϑxk =xk − xnom
k , (3.26)

ϑzk =zk − h(xnom
k , k). (3.27)

If the high order terms can be neglected the Taylor series expansion of f(x, k − 1) with
respect to x at x = xnom

k−1 in discrete form is:

xk =f(xk−1, k − 1)

=f(xk−1)nom, k − 1) +
∂f(x, k − 1)

∂x

∣∣∣∣∣
x=xnom

k−1

ϑxk−1

=xnom
k +

∂f(x, k − 1)
∂x

∣∣∣∣∣
x=xnom

k−1

ϑxk−1

(3.28)

or
ϑxk =xk − xnom

k

=
∂f(x, k − 1)

∂x

∣∣∣∣∣
x=xnom

k−1

ϑxk−1
(3.29)

Simplified, when the high order terms are neglected, the deviation is approximated with:

ϑxk ≈ Φ[1]
k−1ϑxk−1 + wk−1, (3.30)

where the first order approximation coefficients are given by a n × n constant matrix:

Φ[1]
k−1 =

∂f(x, k − 1)
∂x

∣∣∣∣∣
x=xnom

k−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

· · · ∂f2
∂xn

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3

· · · ∂f3
∂xn

...
...

... . . . ...
∂fn

∂x1
∂fn

∂x2
∂fn

∂x3
· · · ∂fn

∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=xnom

k−1

.

(3.31)

Analogous to the non-linear transfer function the non-linear measurement transfer func-
tion h can be represented by a Taylor series when it is sufficiently differentiable and the
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assumption is made that the high order terms can be neglected:

h(xk, k) = h(xnom
k , k) +

∂h(x, k)
∂x

∣∣∣∣∣
x=xnom

k

ϑxk (3.32)

or

ϑzk =
∂h(x, k)

∂x

∣∣∣∣∣
x=xnom

k

ϑxk. (3.33)

The alternative representation to the equations 3.32 and 3.33 for the deviations in the
measurement is given by:

ϑzk = H
[1]
k ϑxk, (3.34)

where the first-order variational term is

H
[1]
k =

∂h(x, k)
∂x

∣∣∣∣
x=xnom

k

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

· · · ∂h1
∂xn

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

· · · ∂h2
∂xn

∂h3
∂x1

∂h3
∂x2

∂h3
∂x3

· · · ∂h3
∂xn

...
...

... . . . ...
∂hn
∂x1

∂hn
∂x2

∂hn
∂x3

· · · ∂hn
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x=xnom

k

.

(3.35)

Linearisation about the estimated trajectory As the linearisation about the nominal
trajectory has the problem that the deviation towards the current trajectory increases
with time, and, thereby, the significance of higher order terms in the Taylor series ex-
pansion increases as well, the method of the linearisation about the estimated trajectory
is presented now.
When a system is sufficiently observable, then, the deviations between the current tra-
jectory and the estimated trajectory will remain relatively small, so that the linearisation
assumption is valid [27]. By replacing the nominal by the estimated trajectory the in-
creasing deviation problem is solved and the Taylor series expansion can be evaluated.
A clear disadvantage of this method is the tendency towards high computational load
in real-time. In contrast to the linearisation about the nominal trajectory, where Φ, H
and K̄k can be computed offline, in the linearisation about the estimated trajectory they
have to be computed in real time as function of the priori estimate.
Thus, the only rearrangement in the evaluation of the partial derivatives is to replace
the priori nominal state xnom

k−1 by the estimated state x̂k−1 and the current nominal state
xnom

k by the actual estimated state x̂k. Thereby, the matrices of the partial derivatives
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now become

Φ[1](x̂, k) =
∂f(x, k)

∂x

∣∣∣∣∣
x=x̂k(−)

, (3.36)

and

H [1](x̂, k) =
∂h(x, k)

∂x

∣∣∣∣∣
x=x̂k(−)

. (3.37)

Extended Kalman-Filter

Here, the first method to cope with Kalman filtering in ’slightly non-linear’ problems is
the EKF concept. The essential idea of the EKF was proposed by Stanley F. Schmidt
and has been called the Kalman-Schmidt filter [10].
In case of a non-linear system the plant and measurement models, based on 3.1 where
the entries C and G are equal to one and there is no direct influence of the input u on
the output z, for a discrete stochastic system are presented by:

xk =f(xk−1, k − 1) + uk + wk−1, (3.38)
zk =h(xk, k) + vk. (3.39)

where f describes the non-linear transfer function for the system state and h is the non-
linear measurement transfer function.
Analogous to the SKF the EKF algorithm can be separated into a prediction and a
correction step:

1. Prediction step
Computing the predicted state estimate with the non-linear equations

x̂k(−) = fk−1(x̂k−1(+)) + uk, (3.40)

and the priori error covariance matrix

Pk(−) = Φ[1]
k−1Pk−1(+)Φ[1]T

k−1 + Qk−1

with Φ[1]
k−1 ≈ ∂f

∂x

∣∣∣∣∣
x=x̂k(−)

.
(3.41)

2. Correction step
Calculation of the optimal Kalman gain

K̄k = Pk(−)H [1]T
k

[
H

[1]
k Pk(−)H [1]T

k + Rk

]−1

with H
[1]
k ≈ ∂h

∂x

∣∣∣∣∣
x=x̂k(−)

,
(3.42)
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the posterior error covariance matrix

Pk(+) =
[
I − K̄kH

[1]
k

]
Pk(−), (3.43)

and the predicted estimate on the measurement

x̂k(+) = x̂k(−) + K̄k(zk − H
[1]
k x̂k(−)). (3.44)

In Fig. 3.3 an overview of the EKF algorithm is given.

Figure 3.3: Extended Kalman filter algorithm

Unscented Kalman-Filter

Another method that is used to estimate non-linear systems is the Unscented Kalman-
Filter (UKF) which was introduced by Julier and Uhlmann in 1997 [38]. The concept
promises performance like the EKF for non-linear systems and almost the same compu-
tational effort.
It uses the principle in which a set of discretely sampled points can be used to parametrise
mean and covariance. Therefore, the linearisation of the non-linear system is replaced
by a deterministic approach - the unscented transformation. Here, the state distribution
is approximated again by the use of a Gaussian Random Variable (GRV) but is repre-
sented by a set of chosen sample points - the sigma points. This set of sigma points
completely covers the true mean and covariance of the GRV, and when applied to a
non-linear system, captures the posterior mean and covariance exactly to the 3rd order
of the Taylor series expansion for any non-linearity. What is noteworthy here, is that the
computational effort of this method can be compared to the one of the EKF algorithm
where the linearisation steps are quite complex.
The Unscented Transformation (UT) is a method for calculating the statistics of a ran-
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dom variable which undergoes a non-linear transformation [38]. Let x be a random vari-
able with the dimension L that is propagated through a non-linear function y = g(x).
The mean x̄ and the covariance Px of x are assumed to be known. To compute the statis-
tics of y a matrix X of 2L + 1 sigma vectors Xi is formed with the following equations:

X0 = x̄

Xi = x̄ +
(√

(L + κ)Px

)
i

i = 1, . . . , L

Xi = x̄ −
(√

(L + κ)Px

)
i−L

i = L + 1, . . . , 2L,

(3.45)

where κ is a scaling parameter for the distribution of the sigma points around x̄. In
case of a Gaussian distribution the condition κ = 3 − L has to be fulfilled. The term(√

(L + κ)Px

)
i

represents the ith row of the covariance matrix. This set of sigma points
is now transformed with the non-linear function

Yi = g(Xi) i = 0, · · · , 2L, (3.46)

the mean and covariance for y are approximated using a weighted sample mean and
covariance of the posterior sigma points,

ŷ ≈
2L∑
i=0

w
(m)
i Yi (3.47)

Py ≈
2L∑
i=0

w
(c)
i (Yi − ŷ)(Yi − ŷ)T , (3.48)

and the corresponding weighting factors wi are given by

w
(m)
0 =

κ

(L + κ)

w
(c)
0 =

κ

(L + κ)
+ (1 − χ2 + ζ)

w
(m)
i =w

(c)
i =

1
[2(L + κ)]

(3.49)

where χ and ζ are scaling parameters which have influence on the spreading of the sigma
points around the mean state x̂. Usually, the χ is set to a very small positive value and
ζ is set to zero.
A simple example for a two-dimensional system is shown in Fig. 3.4: the left plot shows

the true mean and covariance propagation using the Monte-Carlo sampling; the centre
plots show the results using a linearisation approach like it is realised in the EKF; the
right plots show the performance of the UT (note only five sigma points are required).
By this, the superior performance of the UT becomes clear.
The UKF algorithm is a straightforward extension of the unscented transmission to
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Figure 3.4: Example of the Unscented transformation

recursive estimation of non-linear systems. Again, the algorithm for discrete systems
can be represented by the prediction and correction steps with the initial conditions
x̂0 = E[x0] and P0 = E

[
(x0 − x̂0)(x0 − x̂0)T

]

1. Prediction step
Compute the set of sigma points with

Xk−1 =
[
x̂k−1 x̂k−1 +

√
(L + κ)Pk−1 x̂k−1

√
(L + κ)Pk−1

]
, (3.50)

for k ∈ [1, · · · , ∞]. The priori mean and covariance are calculated by

Xi =f(Xk−1) (3.51)

xk(−) =
2L∑
i0

w
(m)
i Xi (3.52)

Pk(−) =
2L∑
i0

w
(c)
i (Xi − x̂k(−))(Xi − x̂k(−))T + Qk (3.53)

2. Correction step
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Computation of the measurement estimation and the covariances

ŷk(−) =
2L∑
i0

w
(m)
i h(Xi) (3.54)

Pỹkỹk
=

2L∑
i0

w
(c)
i (h(Xi) − ŷk(−))(h(Xi) − ŷk(−))T + Rk (3.55)

Pxkyk
=

2L∑
i0

w
(c)
i (Xi − x̂k(−))(h(Xi) − ŷk(−))T , (3.56)

and the estimation update equations

x̂k =x̂k(−) + Pxkyk
P −1

ỹkỹk
(yk − ŷk(−)) (3.57)

Pk =Pk(−) − KPỹkỹk
K (3.58)

with K =Pxkyk
P −1

ỹkỹk
(3.59)

Although the UKF offers improvements in the approximation of non-linear transfer and
measurement equations, it is noteworthy that the overall number of computations is al-
most the same as for the EKF. Moreover, this concept is applicable if the measurement
vector has the same dimension for all sets of sigma points only. That condition is not
fulfilled in every real system. The overview of the UKF algorithm is given in Fig. 3.5.

Figure 3.5: Unscented Kalman filter algorithm
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As the improvements of the approximations of the non-linear system and measurement
equations are obvious, the complexity of the complete concept has to be compared to
the one of the EKF. Here, the effort for the choice of sigma points affects the overall
computational load since they have to be calculated for the system and measurement
equation. For a measurement function which is highly non-linear, and their linearisation
is evaluated symbolic, the UKF algorithm has a significant higher execution time.
Recent publications try to minimise the effects of linearisation that come with trigono-
metric and exponential functions [37] or try to optimise the scaling of the sigma points
[39].
As an application example for the UKF [66] estimates vehicle states from the inertial
sensor, the odometry and the Differential Global Positioning System (DGPS). Here, sim-
ulations show an improved performance compared to the EKF but no verification with
real sensor data is given.

3.1.3 Evaluation of most proper Kalman-filter

After the three different Kalman filter concepts - SKF, EKF and UKF - were presented,
now, an evaluation of the most proper concept for the estimation of vehicle states has
to be figured out. Accuracy and computational complexity of these concepts should be
analysed in detail in order to choose the optimal approach for the implementation on
the VHU. Therefore, a simple single track model and a discrete filter for each approach
was built and tests for different driving manoeuvres were simulated. The discrete form
of the filter is chosen because of the target hardware which is not real-time applicable.
The execution time of the controller was estimated to TS = 10ms.
The well-known single track model (STM), also referred to as bicycle model, is the easiest
and most common model to describe the vehicle dynamics [46] [7]. It was designed by
Riekert and Schunck in 1940 basically for the analysis of steering and distortion behaviour
during strong side wind effects [56]. Today, it is mainly used in the early development
phase of lateral vehicle controllers and for the detection of driver commands, like in the
ESC. The model concentrates both wheels on front and rear axle to one wheel in the
centre of the vehicle (see Fig. 3.6).
Under the assumption that the lateral wheel forces are equal for left and right the lateral
force generation is linear to the combined tyre slip angle α. For the longitudinal motion
a general, longitudinal input force Fx is combined. In general, two variants of the STM
are used - a linear and a non-linear version. As the performance of the different Kalman
filter variants should be analysed here, the non-liner STM is used. But this model can
be linearised for any fixed velocity vx.
Basically, this non-linear STM has three states. The first one is the longitudinal velocity
vx, second the lateral velocity vy and the third the yaw rate ψ. The non-linear model is
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Figure 3.6: Single track model

described by the following equations:

v̇x =vyr +
1
m

Fx (3.60)

v̇y = − Cy,f + Cy,r

mvx
vy +

(−lf Cy,f + lrCy,r

mvx
− vx

)
r +

Cy,f

m
δ (3.61)

ṙ =
lrCy,r − lf Cy,f

Izvx
vy − l2f Cy,f + l2rCy,r

Izvx
r +

lf Cy,f

Iz
δ +

1
Iz

Mz (3.62)

The parameters and their values are given in Tab. 3.3. The last term in equation 3.62
is integrated because of the additional yaw moment Mz that is created by the torque
distribution of the function TorVec. By that, the analysis of the Kalman filter concepts
is close to the real applications even in this early phase of development. The STM is
suitable to simulate vehicle motion as long as the tyre forces remain in their linear force
generation. So the lateral acceleration should remain under |4|m/s2 and the tyre slip
|λ| < 0.15 and the tyre slip angle |α| < 0.1 are assumed to be small.
Note that the second state is exchangeable by the side slip angle β by the relation:

β = arctan

(
vy

vx

)
(3.63)

The inputs to each Kalman filter are the steering angle at the front wheels δ, the longi-
tudinal force Fx and the additional moment around the z-axis Mz. To all of these inputs
is added white noise with a level that is expected with the real hardware as well. The
states that should be estimated are the side slip angle β̂ and the yaw rate r̂. Here, the
side slip angle is measurable with extremely expensive sensors in reality only.
The state vector for the Kalman filter has the from x = [vx, vy, r], the input vector
u = [Fx, δ, Mz] and the measurement vector y = [β, r]. For the non-linear transfer func-
tion of the system f the equations 3.60-3.62 were used. The non-linear measurement
transfer function h was formed to get the desired vehicle states, thus, by the use of 3.63
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Symbol Value Description
lf 1.240 Distance from CoG to front axle [m]
lr 1.240 Distance from CoG to rear axle [m]

Cy,f 70000 Cornering stiffness of front axle [N ]
Cy,r 84000 Cornering stiffness of rear axle [N ]
m 1492 Total mass of the vehicle [kg]
Iz 1800 Moment of inertia around the z-axis [kgm2]

Table 3.3: Vehicle parameter of the non-linear single track model

and the state r as direct output. The parameter for each concept, system and mea-
surements covariance matrices, spreading of sigma points, were tuned until the results
were satisfying. They do not represent the optimum but still are significant enough to
compare the outcomes.
The simulation was designed as standalone model for each Kalman filter concept and
was executed for different scenarios. To analyse the different concepts, execution time
and estimation accuracy were compared.
To analyse the computational effort of the concepts, the model contains as few additional
computations to the filter algorithms as possible. Hence, only the distorted signals of
the non-linear STM as source and a sink for the estimated state is integrated. The intro-
duced non-linear STM is used as reference model here. The simulations were repeated
ten times to exclude influences of other processes of the computer on the execution time.
In Fig. 3.7 the estimation results for the lateral deviation from the middle of the lane in
a sine with dwell for an initial velocity of 65 kph are shown. Where the estimated state of
the EKF concept remains close to the reference signal all the time, the estimated state of
the SKF and the UKF concept show great deviation between simulation time 0.8−1.6, s
and a minor deviation for the SKF concept between 2.0 − 3, s. That is because of the
non-linear behaviour of the vehicle and the drawback of this standard concept. Overall
the EKF method offers the results with the highest accuracy, particularly in situations
with non-linear vehicle motion.

For the analysis of the estimation accuracy, the Normalised Mean Square Error (NMSE)
was computed in a post-processing step. This value is computed by:

NMSE(x, x̂) =
k∑

i=1

|xk − x̂k|2
|xk|2 (3.64)

Here, the index i represents the order of the discrete sample time. The results of the
complete simulations for each concept are summarized in Tab. 3.4. The advantages of
the SKF of the lower computational complexity compared to the other concepts is very
obvious. Likewise, the accuracy of the EKF and UKF Kalman filter concept is outstand-
ing in contrast to the classic Kalman filter approach. Moreover, the NMSE of the SKF
is not higher since the vehicle dynamics during most of the simulation time remain in
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Figure 3.7: Estimation of the lateral deviation

their linear regime in which this concept has a satisfying performance Fig. 3.7. But as
in the linear vehicle regime instability is very unlikely and ADAS help to increase the
drivers comfort in such situations it is more important to achieve high accuracy of the
measured vehicle states during highly non-linear and dynamic vehicle movements from
a point of view of passenger safety.

Concept Average execution time [s] Average NMSE
SKF 4.758 0.087
EKF 7.217 0.004
UKF 7.184 0.012

Table 3.4: Vehicle parameter of the non-linear single track model

Since the high accuracy of the concept has priority, the choice had to be made between
the EKF and the UKF concept. As the computational effort for the EKF concept is
almost the same as for the UKF concept but the accuracy is three times better, the EKF
concept was selected for the further work of designing a vehicle observer for an electric
vehicle.

3.2 Vehicle observer structure
After the filtering concepts were presented, three different Kalman filters were analysed
in a simple application and the decision was made to work with the EKF concept. Now,
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the structure of the complete vehicle observer is presented. Basically, the vehicle ob-
server is composed of five subsystems, see Fig. 3.8, that fulfil different requirements.
Here, a rough description of each functionality will be given.

Figure 3.8: Structure with subsystems of the Vehicle Observer

The plausibility check (see section 3.3) is the first receiver of the sensor signals. Here,
the analysis of the sensor signals and, if required, the correction of false signals or even
the replacement of missing or delayed signals is realized. In addition, a confidence value
dependent on the signal checks is computed.
In the EKF-named subsystem the required vehicle states for a safe vehicle control of the
ADAS are estimated using a Dugoff Tyre model, a non-linear two-track vehicle model
and the EKF algorithm itself (see section 3.4).
The calculation of variable vehicle and environmental parameters is realized in the pa-
rameter estimation subsystem. This is realised by use of dynamical equations in driving
situations when predefined values hold. The detailed description is given in section 3.5.
Afterwards, the computation of stability limits for the current vehicle state and the en-
vironmental conditions are presented in section 3.6.
Finally, in section 3.7, the calculation of the driven distance of the vehicle is introduced.

3.2.1 Data Flow and signal definition
In this section the data flow in the top level and the definition of in- and outputs of the
vehicle observer shall be explained to provide the reader with an overview.

Data flow

As seen in Fig. 3.8, the incoming sensor signals are analysed in the plausibility check
block. If this test block is successfully executed, the signals are transmitted to the EKF
block which first calculates the auxiliary quantities of the tyres: slip, side slip and forces.
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Subsequently, the EKF algorithm is executed and the vehicle states are computed. With
the results from the vehicle state observer the estimation of unknown and variable pa-
rameters is done. The estimated parameters are then fed back to the EKF subsystem
to update the model equations. By the use of the estimated parameters and the ob-
served vehicle states, the stability limits for the vehicle are evaluated. These limits are
sent to the DU1 directly. The trip calculation of the vehicle needs the observed vehicle
states and a signal from the HMI which basically is initiated by the driver directly. The
computed values are sent to the HMI and displayed in the odometer at the instrument
cluster.
Finally, the output of the vehicle observer contains the vehicle states, estimated param-
eters, the confidence value, stability limits and the driven distance.

Signal definition

Here the in- and outputs of the vehicle observer are specified in detail. The vehicle
observer receives the following signals from the equipped sensors:

• Yaw rate r with the longitudinal ax and lateral acceleration ay provided, by the
yaw rate sensor

• The angular velocities ωi of the four wheels transmitted by the ABS with their
respective status

• Steering angle δ, measured by a steering angle sensor which is mounted on the
steering column together with the status, a message count and a checksum

• The angular velocities Ωi of the two electric machines on the front axle

In Tab. 3.5 the list of input signals with unit, allowed range, expected accuracy and
noise is displayed:

Signal name Unit Range Accuracy Maximal noise
Yaw rate ◦/s ±1.7453 0.005 0.096

Longitudinal acceleration g ±4.1768 0.0001274 0.064
Lateral acceleration g ±4.1768 0.0001274 0.064

Wheel velocity 1/pm 0 − 4095 1 −
Wheel velocity status - 0 − 3 1 −

Steering angle ◦ ±3276 0.1 0.1
Steering angle status - 0 − 255 1 −

Steering angle message count - 0 − 15 1 −
Steering angle checksum - 0 − 15 1 −

Machine velocity rpm ±60000 1 −

Table 3.5: List of input signals
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3.2. Vehicle observer structure

The list of desired output signals can be split into the vehicle states and parameters:
Vehicle states:

• Angular wheel velocity of the front axle

– Measured by the four wheel speed sensors

• Longitudinal Tyre slip of the front axle

• Steering angle and status

– Measured by the steering angle sensor

• Norm velocity and status

• Longitudinal and lateral acceleration

– Measured by the yaw rate sensor

• Longitudinal and lateral velocity

• Yaw rate

– Measured by the yaw rate sensor

• Side slip angle

Parameters:

• Vehicle mass

• Maximum longitudinal acceleration and status

• Minimum inverse curve radius and status

• Trip- and Odometer value

• Road friction of the front axle

• Vehicle observer confidence

In Tab. 3.6, unit, range and aimed accuracy are listed for the output signals. Where
most of the output signals are obvious, the minimum inverse curve radius represents the
inverse of the minimum possible drivable curve radius for the current estimated road
friction coefficient. For more details see sub-chapter 3.6.

After all input and output signals are defined, now, the subsystems of the vehicle observer
will be explained in detail. The first subsystem to be presented in the following section
is the plausibility check.
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Signal name Unit Range Accuracy
Angular wheel velocity (front axle) rad/s ±250 0.0078
Longitudinal Tyre slip (front axle) - ±1 0.0156

Steering angle rad ±2.529 0.00007
Norm velocity kph 0 − 250 0.0039

Longitudinal acceleration m/s2 ±17.658 0.001
Lateral acceleration m/s2 ±17.658 0.001

Longitudinal velocity m/s ±63.9 0.0019
Lateral velocity m/s ±10 0.0004

Yaw rate rad/s ±1.745 6.1e−5

Side slip angle rad ±1.5707 6.1e−5

Vehicle mass kg 1000 − 2050 50
Maximum longitudinal acceleration m/s2 0 − 8 0.0001

Minimum inverse curve radius 1/m 0 − 10 0.00015
Trip- and Odometer km 0 − 9999999 0.1

Road friction − 0.1 − 1.2 0.1
Vehicle Observer confidence − 0 − 1 0.01

Signal status − 0 − 1 1

Table 3.6: List of output signals
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3.3. Plausibility Check

3.3 Plausibility Check

As the performance of the vehicle observer depends on the input signals a novel plausi-
bility check is implemented. This sub-function checks the sensor signals which then serve
the observer. Moreover, the lately published ISO 26262 [35] defined new requirements
for the software integration in vehicles. Here, guidelines for necessary software safety
mechanisms at the software architecture level are specified. To fulfil these requirements
a novel robust plausibility check is presented here with regard to the work of Versmold
and Saeger [65].
The function plausibility check as the first receiver verifies the incoming sensor signals
and detects faulty or missing signals. It basically consists of four subsystems: detection
mechanism, correction mechanism, calculation of signal confidence and vehicle observer
activation. Moreover, the sensor signals are converted to International System of Units
(SI) at the beginning of the plausibility check. The arrangement of the plausibility check
is shown in Fig. 3.9.

Figure 3.9: Structure with subsystems of the Vehicle Observer

The signal error detection mechanisms are set together out of a single signal check, a
redundant signal check and a model-based signal check. Moreover, some error handling
mechanisms are included in this function. Here, signals that are detected as faulty are
corrected in the redundant check, if possible, and missing signals are replaced temporar-
ily. Additionally, an offset compensation is implemented during standstill. The function
is completed by the calculation of the confidence and an activation decision of the vehicle
observer algorithm. The precise functionality of each block will be explained in the next
sections starting with the signal conversion towards SI.
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3.3.1 Signal Conversion
The SI is the most widely used modern form of metric systems in science. It is based
on seven base units and 22 named and an indeterminate number of unnamed coherent
derived units to build a coherent system. The first standards were published in 1960.
In this case, SI is used to avoid functional errors that are caused due to false presump-
tions of the signal unit. All project partners agreed to develop their functions on this
international system. But as there is no possibility to influence the sensor signal units,
the vehicle observer is responsible for the conversion.
The converted signals, signal unit, factor and SI unit are listed in Tab. 3.7. It has to be
noticed that for the steering angle the steering gear ratio has been considered since for
most ADAS and vehicle model equations, the steering angle at the front wheels is used
instead of the steering angle at the steering wheel.

Signal name Sensor Unit Factor SI unit

Yaw rate ◦/s π
180 rad/s

Acceleration g 9.81 m/s2

Wheel velocity 1/pm 2π
60 rad/s

Steering angle ◦ π
180×22.6 rad

Table 3.7: List of converted signals

3.3.2 Detection Mechanisms
The detection mechanisms block is designed to detect signal errors and to report the false
sensor functionality to the correction mechanisms afterwards. The subsystem composed
of the single signal check, the redundant signal check and the model based signal check.
These functions are executed simultaneously and are independent of each other. The
detailed functionality of each detection mechanism is explained in the following.

Single signal check

The single signal check contains the range check of all sensor signals, the check of gra-
dients and the analysis of status signals to validate signal correctness.
The range check is done by comparing the current signal with the range given by the
respective data sheet (see Tab. 3.5).
The check of gradient for every signal is done in the second sub function. The limits for
the absolute gradient value were evaluated by the analysis of measurement data from
the prototype in driving situations with high dynamics (see Tab. 3.8). The effects of
the TorVec lead to a bigger absolute gradient value on the front axle.
The value of the confidence calculation is equal to one whenever the range and gradient
check detect no failure. If the signal value, or rather the gradient, does not exceed a
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Signal name Sensor Unit Absolute gradient
δ rad 0.0352 [rad/s]
ax m/s2 1.6992 [m/s2]
ay m/s2 3.1992 [m/s2]
r rad/s 0.1396 [rad/s2]

ω1,2 rad/s 14.2031 [rad/s2]
ω3,4 rad/s 2.9063 [rad/s2]

Table 3.8: List of converted signals

specific lower threshold, the confidence value is not affected. As soon as the property
value exceeds this lower threshold the confidence value decreases linearly until it reaches
its minimum by crossing the upper threshold. The process of the confidence value calcu-
lation can be seen in Fig. 3.10. As the falsification has different influences on the vehicle
control, for instance the information of the wheel speeds are more important than the
lateral acceleration, there are specific confidence limits for each signal. The explanation
will be given in section 3.3.4.

Figure 3.10: Confidence process for a single signal check

Additionally, the status signals are evaluated in the single signal check as well. The sta-
tus for the specific wheel velocity is zero for a correct signal and the steering angle status
for a correct signal is seven. All other values are judged as implausible signal. As there
are no status signals for the accelerations and the yaw rate, the signals are set to their
maximum values if the sensor is disconnected. So the diagnosis for the signals measured
by the yaw rate sensor works for a broken or disconnected sensor and, thereby, more
signal checks have to be applied in the remaining detection mechanisms. In general, the
confidence is lowered if the status signals indicate an implausible sensor signal beginning
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from a time window of at least 5 time steps only. This timing was implemented to avoid
jumps in the confidence that may affect the ADAS influence on the vehicle by oscillating
actuator commands. This would mean a downgraded level of comfort to the driver.
For the steering angle two more signals are analysed in terms of signal correctness. The
message count signal monitors the transmission of the steering sensor. It informs the
receiving functions if messages are lost between the reception of two messages by increas-
ing the value for every sent message. As the signal has a range of 0 − 15 it comes to an
overflow when a new message is transmitted and the previous message count value was
15. So changes by 1 and 16 between two steps are seen as correct signal whereas other
values indicate a problem. The checksum of the steering angle represents the checksum
of all bytes on the CAN matrix to detect errors that may have been introduced during
transmission. The rule to build the checksum, thus verifying the data integrity, is:

temp_result =lowerbyte(LWS_Angle) XOR higher byte(LWS_Angle)
XOR LWS_Speed XOR LWS_Stat

checksum =higher nibble(temp_result)XOR lower nibble (temp_result)
XOR Msg_Count

(3.65)

The terms "lowerbyte" and "higherbyte" are used when a data type uses more than one
byte. The "lowerbyte" is the byte that holds the least significant part of an integer -
the last eight bits of a 16-bit signal. Vice versa the "higherbyte" holds the most signif-
icant part - the first eight bits of a 16-bit signal. Likewise, the "lowernibble" contains
the least significant part of a 8-bit signal and the "highernibble" the most significant part.

Redundant signal check

Compared to the single signal check the redundant signal check offers a much higher
detection potential. It uses redundant sensor signals for the analysis and calculates the
confidence value from the difference between them. The obvious disadvantage of this
method is the need of redundant sensors which stands in conflict to the cost optimisation
in the automotive production.
As the prototype will not be equipped with redundant sensors the angular wheel speeds
ωi of the front axle and the machine velocities Ωi are used for the redundant signal check.
Hence, the rotation speed should not deviate a lot since they are statically connected.
Falsification of this check would indicate either a mechanical or a communicational prob-
lem. As a consequence the torque of the motors would be set to zero in order to prevent
unsafe motor control that may result in an unstable state of the vehicle.
In order to not affect the vehicle performance during small deviations a safety gap of
15 rad/s was implemented. The inequality for the evaluation of the redundant signal
check including the conversion of the machine velocity is:∣∣∣∣ωi −

∣∣∣∣Ωi
π

30

∣∣∣∣
∣∣∣∣ < 15

1
sec

, for i = 1, 2. (3.66)
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Moreover, the different angular wheel speeds are seen as additive redundant signals which
have a smaller influence on the confidence than the proper check introduced before. This
check was implemented to monitor and validate all measured wheel speeds together. The
analysis of the signals is arranged in two different steps: The detection of the deviation
between each wheel and the determination of the deviating signal. A deviation of wheel
speeds is valid when the difference of both wheel speeds divided by the smaller one is
larger than 0.2: ∣∣∣∣ ωi − ωj

min(ωi, ω, j)

∣∣∣∣ < 0.2, for i, j ∈ [1, 2, 3, 4]. (3.67)

This check is done for each possible combination of wheel speeds. In order to determine
which wheel speeds are deviating the three detection results for each wheel are added.
In case that this sum is less than three the respective wheel speed is determined as valid
otherwise as deviated.
Additionally, a check of axle speed is implemented. Here, the front and rear wheel
detection results are summarized. If an axle deviation is detected the mean of the rear
wheel speeds is assumed as reference signal. In acceleration situations especially, when
the wheel slip of the driven axle is great, this method shows good performance.
The confidence of the redundant signal check depends on the results of different velocity
sensors and the number of signals detected as deviated. Again, the confidence is 1 if
no critical deviation of the wheel speeds is detected. With an increasing number of
deviating signals the confidence decreases linearly until it is 0 when all wheel speeds are
detected as deviated. Or, in case the proper redundant check fails, the confidence is
lowered to 0.39 directly to cut off the motor torque immediately.

Model-based signal check

In contrast to the redundant signal check the model-based check examines the connec-
tions between different signals for the confidence assessment. Here, analytical connec-
tions based on mathematical description and vehicle behaviour modelling procures the
basis for the evaluation of the signal plausibility. The here presented model-based signal
check is extended by two special checks that guarantee the signal correctness for TorVec.
The model-based signal check was developed on the fact, that in driving manoeuvres
with side slip angle unequal 0, e.g. curve driving, the outer wheels spin with higher
velocity than the inner ones. Through empirical determination in the non-linear 14 DoF
simulation model based on [54] and analysis of data recorded in test drives with the
prototype the following formula, which describes the dependence between wheel speed
and yaw rate, could be formed:

Δ ω =
bf

reff
× r. (3.68)

Here, the maximum deviation between the different wheel speeds Δωmax should be equal
to the absolute yaw rate r multiplied by the vehicle width bf and divided by the effective
tyre radius reff . As this equation was evaluated in a vehicle model the range of validity
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is limited due to parameter variations during dynamic driving situations. Thus, this
formula is valid as long as the side slip angle of the vehicle is below 0.1047 rad which
covers all "normal" driving situations.
As the activation of the function TorVec might lead to damage of the driveshaft if it
distributes the torque based on wrong vehicle states, two more checks were implemented
that validate the sensor data for this function. For instance, an offset in the steering
angle sensor could generate a maximum delta torque even on straight road which is a
big safety concern as well. Consequently, two concepts for the detection of wrong sensor
signals that potentially effect mechanical damage were implemented:

1. The comparison of sensor yaw rate with the estimated yaw rate that is based on a
single track model according to:

ṙ =a21β + a22r + b2δf , with assumption β = 0

= − 11.069
v

r + 65.444δf

a22 =
2
(
l2rcr − l2f cf

)
Jv

; b2 =
2cf lf

J

(3.69)

Here, the estimated longitudinal velocity of the previous time step vx,k−1 is used.
Finally, the difference between the measured yaw rate and the computed yaw rate
should remain under 0.1 rad/s to be valid.

2. A rough interrelation between the angular wheel speed process and the current
longitudinal acceleration. If the wheel is rolling when driving straight, the wheel
acceleration and vehicle acceleration are almost the same. This check is another
validation of the information about the longitudinal motion of the vehicle provided
by different sensors. The equation for this check is:

ax =ω̇ × reff

=
ω3,k − ω3,k−25

ΔT
× reff

(3.70)

Here, one of the non-driven wheels wheels that is not influenced by the active torque dis-
tribution was chosen. The long time period between the two wheel speed measurements,
24 time steps which means 240 ms, was selected to compensate noise effects during low
speed.
The confidence value is calculated from the deviation between the model equation and
the measured values in all cases by adding the result of the model-based equation to the
default confidence value one. Since the equation result affects the confidence only if this
result is negative, the confidence value will decrease bounded to the formula.

3.3.3 Correction Mechanisms
The correction mechanisms block is composed of the replacement of signals and the
offset compensation. Just as in the detection mechanisms the blocks are executed si-

70



3.3. Plausibility Check

multaneously and work independently. The functionality of this block is based on the
results of the detection mechanisms. The detailed description is explained in the next
two sub-sections.

Signal replacement

The signal replacement is designed to catch two possible failures: Delayed or missing
and faulty sensor signals. The replacement of faulty sensor signals touches upon the
results of the redundant signal check described in 3.3.2. Here, the index signal sets the
switch for the signal replacement where the mean of the valid wheel speeds is taken as
reference.
The exact functionality of the signal replacement by the use of Markov chain concept
will be given in 4.

Offset compensation

As any of the equipped sensors has offset problems over lifetime or due to incorrect
mounting, the detection and correction of that deviation is very important for a robust
and reliable state estimation. The developed concept for offset compensation integrates
the sensor signals during valid standstill according to the following equation:

ζ̂i =
1

tstandstill
×
∫

uidt (3.71)

Where ζ̂i is the estimated offset, tstandstill is the time of valid standstill and ui is the
analysed sensor signal. Here, standstill is seen as valid when the angular velocity of all
four wheels is below a defined threshold near to 0. In detail, the offset is computed
for the lateral and longitudinal acceleration and the yaw rate. To protect the concept
against fatal sensor malfunctions, the estimated offset value is limited to the respective
data of each sensor. The concept was validated with recorded sensor signals from test
drives with the prototype (see section 5) and is asssuming, that the vehicle is standing
on a plane surface.

3.3.4 Confidence calculation

In general, the confidence expresses the reliability and accuracy of the estimated outputs
of the vehicle observer. The maximum value of the confidence is 1. In this case, the best
accuracy and reliability is guaranteed for all output signals. With decreasing value the
accuracy decreases successively.
The confidence was classified into three levels: the performance level where different
torques on the front axle are allowed, the safety level where equal torque for the electric
machines is allowed only and an emergency level where no torque will be applied.
For the performance level the lateral and longitudinal acceleration might show implausi-
ble signal information only. These two signals do not have much influence on the vehicle
control. Thereby, a malfunction is not considered as critical. If the steering angle or
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the yaw rate signals do not pass the detection checks, the torque will be kept equal
since these two signals are very important for the lateral dynamics of the vehicle. As
soon as the angular velocities of the vehicle indicate a problem no torque will be applied
because no valid prediction of the current vehicle speed can be made and false torques
might cause a vehicle accident. An overview of the confidence level is given in Fig. 3.11.

Figure 3.11: Confidence levels and drivetrain limitations

3.3.5 Vehicle observer activation

In order to save calculation capacity of the VHU, the vehicle observer algorithm should
not be executed permanently. As the integrated ADAS do not affect the vehicle motion
during standstill or in low speed situations the vehicle observer is activated when the
vehicle surpasses a certain threshold only. Because this decision should be independent
of the wheel slip the two angular velocities of the non -driven rear axle are taken into
consideration.
In addition, the confidence value of the received sensor signals should be greater than
0.4. According to 3.3.4 there is no need for the ADAS for the vehicle observer outputs
since no torque is applied for a confidence below this threshold.
Finally, the vehicle observer algorithm is executed if both rear wheels have an angular
velocity greater than 0.1047 rad/s and the confidence is above 0.4. When deactivated
default vehicle states will be calculated (see 3.4.7) and the estimated parameters hold
their last evaluated value.
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3.4 Extended Kalman Filter Algorithm

3.4.1 Build up and functionality

The EKF-titled subsystem can be divided into three different subsystems (see Fig. 3.12).
Here, the calculation of slip and sideslip of the wheels, the computation of the tyre forces
with the Dugoff Tyre model and the execution of the EKF algorithm can be separated,
which will be explained in detail in the following subsections. The functionality of this
subsystem contains the main task of the vehicle observer function: to smooth distorted
sensor signals and to compute unmeasured vehicle states. The observed vehicle states
are: âx the longitudinal acceleration, v̂x the longitudinal velocity, ây the lateral acceler-
ation, v̂y the lateral velocity, r̂ the yaw rate and β̂ the side slip angle.

Figure 3.12: Structure of the EKF subsystem

3.4.2 Slip and Side slip Calculation

The slip describes the relative motion between the tyre and the road surface it is moving
on. Whereas the slip represents the longitudinal motion, the side slip stands for the
complementary lateral relative movement between tyre and road surface. They are basi-
cally needed to compute the tyre forces of the vehicle. The formulas for the calculation
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of the front and rear slip on the left side 3.72 and right side 3.73 are:

λ̂L,i =
r̂effi

ωi −
(
v̂x − r

af/r

2

)
cos(δi)

max
(
|r̂effi

ωi| ,
∣∣∣v̂x − r

af/r

2

∣∣∣) for i = 1, 3 and (3.72)

λ̂R,i =
r̂effi

ωi −
(
v̂x + r

af/r

2

)
cos(δi)

max
(
|r̂effi

ωi| ,
∣∣∣v̂x + r

af/r

2

∣∣∣) for i = 2, 4. (3.73)

Here, reff is the effective tyre radius of the particular wheel and af/r is the width
of the front/rear axle. These two equations are valid for a non-steered rear axle only
(δ3 = δ4 = 0).
Since the effective tyre radius and the longitudinal speed of the vehicle are not measured
by the mounted sensors, these values are taken from the results of the vehicle observer.
Thus, a feedback between the in- and outputs of the vehicle observer is created which is
delayed with one discrete step in order to avoid an algebraic loop.
The equations for the computation of the front and rear sideslip on the left and right
side for front and rear axle are shown as follows:

α̂i =δf − arctan
v̂y ± rlf/r

v̂x ± r
af/r

2
for i = 1, 2 (3.74)

α̂i = − arctan
v̂y ± rlf/r

v̂x ± r
af/r

2
for i = 3, 4. (3.75)

Notice that the steering angle at the rear wheels is assumed to be zero at any time.
Additional to the computation of the slip of the wheels the information of the lateral
velocity is needed, which will also be taken from the vehicle observer.
With the information of the slip and side slip of the tyres and the measured sensor data
it is possible to compute the tyre forces in longitudinal, lateral and horizontal direction.
This is done with the Dugoff Tyre model, which is described in the next section.

3.4.3 Dugoff Tyre Model

The Dugoff Tyre model was developed by Dugoff and others in 1969 [20] as an alternative
to the elastic foundation analytical tyre model. Although the applications of Pacejka
[51] and Burckhardt [16] tyre models are widely spread, the Dugoff Tyre model was
chosen because of the following two advantages:

• Independent values of tyre stiffness in lateral and longitudinal direction are allowed

• Direct relation of the lateral and longitudinal forces to the road friction coefficient
in transparent equations

Before the model equations can be used, the horizontal tyre forces of the vehicle have
to be computed. Here, the equation from Jazar [36] is chosen on the assumption that
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there is no road slope:

F̂z,1 = m ·
(

lr
lf + lr

· g − hCoG

lf + lr
· âx

)
·
(

1
2

+
hCoG

af · g
· ây

)
(3.76)

F̂z,2 = m ·
(

lr
lf + lr

· g − hCoG

lf + lr
· âx

)
·
(

1
2

− hCoG

af · g
· ây

)
(3.77)

F̂z,3 = m ·
(

lf
lf + lr

· g +
hCoG

lf + lr
· âx

)
·
(1

2
+

hCoG

ar · g
· ây

)
(3.78)

F̂z,4 = m ·
(

lf
lf + lr

· g +
hCoG

lf + lr
· âx

)
·
(1

2
− hCoG

ar · g
· ây

)
(3.79)

where g is the gravitational acceleration constant and hCoG is the height of the CoG.
By the use of the Dugoff Tyre model the longitudinal force is given by:

Fx,i = Cx · λ̂i

1 +
∣∣∣λ̂i

∣∣∣ · f(σi). (3.80)

The lateral force is given by:

Fy,i = Cy · tan(α̂i)
1 + λ̂i

· f(σi). (3.81)

Cx and Cy are the longitudinal and lateral cornering stiffness and σi is given by:

σi =
μi · Fz,i · (1 + λ̂i)

2 ·
[(

Cx · λ̂i

)2
+ (Cy · tan(α̂i))2

] 1
2

. (3.82)

μi is the tyre-road friction coefficient of the respective tyre. The function of σi is given
by:

f(σi) =(2 − σi) · σi, if σi < 1 (3.83)
f(σi) =1, if σi ≥ 1 (3.84)

Together with the measured sensor signals these calculated tyre forces are the input for
the EKF algorithm, which is described in the next section.

3.4.4 EKF Algorithm
As explained in 3.1.2 any type of the Kalman filters needs model equations to predict
the system behaviour. For the representation of lateral dynamics with low lateral accel-
eration (less than 4 m/s2) the well-known STM is often used. But as this model contains
many simplifications, e.g. the two tyres of an axle are merged into a single tyre in the
middle of the axle, the CoG is assumed to be on the road level, etc., a non-linear vehicle
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model is chosen for this observer design in order to achieve a higher precision.

Figure 3.13: Non-linear two-track model

Moreover, the use of a non-linear model guarantees validation for driving manoeuvres
with high vehicle dynamics. The vehicle model shown in Fig. 3.13 represents the longi-
tudinal and lateral behaviours and the yaw rate dynamics in response to the interaction
between the four wheels. In this vehicle model aerodynamic resistance, roll, pitch and
heave motions are neglected. Thus, the dynamic equations for the two- track model are
given by:

ȧx = 0 (3.85)

v̇x = vy · r +
1
m

[(Fx,1 + Fx,2) · cos δf + Fx,3 + Fx,4 − (Fy,1 + Fy,2) · sin δf ] (3.86)

ȧy = 0 (3.87)

v̇y = − vx · r +
1
m

[(Fy,1 + Fy,2) · cos δf + Fy,3 + Fy,4 + (Fx,1 + Fx,2) · sin δf ] (3.88)

ṙ =
1
Iz

[lf · ((Fx,1 + Fx,2) · sin δf + (Fy,1 + Fy,2) · cos δf ) − lr · (Fy,3 + Fy,4)] (3.89)

β̇ = − r +
1

m ·
√(

v̂2
x + v̂2

y

)
[

(Fx,1 + Fx,2) · sin
(
δf − β̂

)

+ (Fy,1 + Fy,2) · cos
(
δf − β̂

)
+ (Fy,3 + Fy,4) · cos

(
β̂
) ] (3.90)
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In this equation the orientation of the forces is in accordance to Fig. 3.13. By applying
3.85 and 3.87 to be zero, the Kalman filter transfer function for these two states gets a
first-order polynomial that is called first-order delay element (PT1-element).
The state vector of the estimated system x̂ is a combination of longitudinal velocity and
acceleration, lateral velocity and acceleration, yaw rate and side slip angle:

x̂ =
[
âx, v̂x, ây, v̂y, r̂, β̂

]T
(3.91)

the input consists out of the longitudinal and lateral tyre forces and the steering angle:

u =
[
F̂x,1, F̂y,1, F̂x,2, F̂y,2, F̂x,3, F̂y,3, F̂x,4, F̂y,4, δf

]T
(3.92)

Where the superscripted T stands for the transpose of the vector.
Hence, the two-track model can be described in state space by this equation:

ˆ̇x = f(x̂, u) (3.93)

As the states of the lateral and longitudinal velocity are integrations of their respective
accelerations, the differential equations from 3.86 to 3.90 are valid for the vectorial non-
linear function f .
For the concept of the EKF algorithm it is very important to define the relationship
between the system states and the measured values. This is very easy if the measured
signal is identical with the system state. In this approach this is appropriate for the
longitudinal / lateral acceleration and the yaw rate. These are system states and so the
measurement equation is linear as shown in the following example for the longitudinal
acceleration:

y1 = ax = C1 · y with C1 = [0000100]. (3.94)

The estimation of the system states will improve its precision, with the number of mea-
sured values involved. As the vehicle is equipped with four wheel speed sensors the
following equations, that are valid for situations without any slip λi = 0, are used. The
wheel speed in the vehicle coordinates are given by:

vx,1 = v · cos β − af

2
· r, vy,1 = v · sin β + lf · r, (3.95)

vx,2 = v · cos β +
af

2
· r, vy,2 = v · sin β + lf · r, (3.96)

vx,3 = v · cos β − af

2
· r, vy,3 = v · sin β − lf · r, (3.97)

vx,4 = v · cos β +
af

2
· r, vy,3 = v · sin β − lf · r. (3.98)

With these four equations and the use of the transformation into the wheel coordination
with equation 2.13 the wheel velocity of the four wheels in longitudinal direction can be
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computed:

vω1
x =v · cos (β − δf ) − af

2
· r · cos δf + lf · r · sin δf , (3.99)

vω2
x =v · cos (β − δf ) +

af

2
· r · cos δf + lf · r · sin δf , (3.100)

vω3
x =v · cos β − af

2
· r · cos δf − lf · r · sin δf , (3.101)

vω4
x =v · cos β +

af

2
· r · cos δf − lf · r · sin δf . (3.102)

By the use of these wheel velocities and the estimated effective tyre radius r̂eff,i the
rotational wheel speeds can be calculated:

ω̂1 =
1

r̂eff,1
·
(√

v̂2
x + v̂2

y · cos(δf − β̂) − af

2
· r · cos δf + lf · r · sin δf

)
(3.103)

ω̂2 =
1

r̂eff,2
·
(√

v̂2
x + v̂2

y · cos(δf − β̂) +
af

2
· r · cos δf + lf · r · sin δf

)
(3.104)

ω̂3 =
1

r̂_eff, 3
·
(√

v̂2
x + v̂2

y · cos(β̂) − ar

2
· r

)
(3.105)

ω̂4 =
1

r̂eff,4
·
(√

v̂2
x + v̂2

y · cos(β̂) +
ar

2
· r

)
. (3.106)

As the assumption for no tyre slip is not valid for all driving situations, an adaptive
covariance matrix, see 3.4.6 for details, is formed to compensate the different vehicle
behaviour during tyre slip.
Finally, the output of the two-track model in state space is described by:

y = h(x̂, u), with h = [ω̂1, ω̂2, ω̂3, ω̂4, ax, ay, r] . (3.107)

With the definition of the system equation the algorithm of the EKF can be explained
in the next sections.

Prediction

The concept of the EKF can be derived from the design of a Kalman filter for linear
systems. Here, the non-linear system equations are linearised around the current esti-
mated system trajectory, so that the SKF equations can be applied. The postulate for
the utilisation of the traditional stochastic equations is to discretise the system equation
3.93. Here, the assumption was made that the process has a state vector x ∈ �n with

xk = f(xk−1, uk−1, wk−1), (3.108)

where wk is a random variable that represents the process noise which is assumed to be
zero-mean and uncorrelated. In general, the process noise is not assignable because of
uncertainties of the non-linear system where the measurement noise should be analysed
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by the sensor producer and documented in the specific data sheet. The system input is
supposed as deterministic.
In the prediction step the approximate state and the priori error covariance matrix are
calculated out of the system equations. In practice the exact individual noise for the
process noise wk is not known at each time step. However, one can approximate the
state and measurement vector without setting them to zero.
The priori state is calculated by:

x̂k(−) = f(x̂k−1, uk−1, 0) (3.109)

and the priori error covariance matrix by use of

Pk(−) = Φ[1]
k−1Pk−1(+)Φ[1]T

k−1 + WkQk−1W T
k , (3.110)

with Φ[1]
k as the Jacobian matrix of the partial derivatives of f with respect to x, that is

Φ[1]
k−1[i,j] =

∂f[i]
∂x[j]

(x̂k−1, uk−1, 0) , (3.111)

and Wk as the Jacobian matrix of the partial derivatives of f with respect to w, that is

W
[1]
k−1[i,j] =

∂f[i]
∂w[j]

(x̂k−1, uk−1, 0) . (3.112)

Here, i represents the dimension of the model functions and j the dimension of the sys-
tem state which are equal in this application.
The influence of the additional yaw moment Mz, that is created by the torque distri-
bution of TorVec, on the vehicle states and the priori system states is noticeable when
the torque difference is close to the maximum only. In simulations the vehicle observer
showed robust performance during active TorVec. Thus, the system equations were not
modified to consider this yaw moment. Therefore, is applicable for most other vehicles
as well.

Correction

In the correction step the prediction results are corrected with the help of the measure-
ments and the priori error covariance is updated. Here, the optimal Kalman gain, the
posterior covariance matrix and the predicted estimate on the measurements are com-
puted. By that, the Kalman algorithm is completed.
Similar to the system function the measurement function 3.107 is linearised around the
current predicted state and the zero mean measurement noise by the use of the tradi-
tional stochastic equations with a measurement y ∈ �m:

yk = h(xk−1, uk−1, vk−1). (3.113)
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Again, vk is assumed to be a random variable that represents the process noise which is
zero-mean and uncorrelated.
First, the optimal Kalman gain is computed by:

K̄k = Pk(−)H [1]T
k

[
H

[1]
k Pk(−)H [1]T

k + VkRkV T
k

]−1
, (3.114)

with Hk as the Jacobian matrix of the partial derivatives of h with respect to x,

H
[1]
k−1[i,j] =

∂h[i]
∂x[j]

(x̂k−1, uk−1, 0) , (3.115)

and Vk as the Jacobian matrix of the partial derivatives of h with respect to v,

V
[1]

k−1[i,j] =
∂h[i]
∂v[j]

(x̂k−1, uk−1, 0) . (3.116)

The error covariance matrix update is computed by:

Pk(+) =
(
I − K̄kH

[1]
k

)
Pk(−)

(
I − K̄kH

[1]
k

)T
+ K̄kVkPkV T

k K̄T
k

=
(
I − K̄kH

[1]
k

)
Pk(−),

(3.117)

and, finally, the predicted state estimate is calculated by the use of the equation:

x̂k(+) = x̂k(−) + K̄k(yk − H
[1]
k x̂k(−)). (3.118)

For the implementation of the EKF, the system equations of the vehicle model have to
be discretised. For this purpose the discretisation from Euler is chosen:

xk+1 = xk + T · f(xk, uk). (3.119)

With the definition of the system equation and the explanation of the algorithm the
proof of observability of the EKF can be explained in the next section.

3.4.5 Proof of observability

To guarantee that the presented non-linear system is observable, thereby the concept
is feasible, an analysis of the observability is given here. Moreover, the performance
of an observer is highly linked to the observability of the system. Thus, the proof of
observability is a given for the presented observer concept.
Observability, in general, means that when the input vector u and the system matrices
A and H are known with the process of the output vector z in a finite time t0 ≤ t ≤ t1
the initial state of the system x(t0) can be determined uniquely.
Since the chosen system is non-linear the observability analysis is done locally by us-
ing the Lie algebra [44]. In general, the system with ẋ = f(x̂, u) and z = h(x̂) is
locally observable at x0 if there exists a neighbourhood of x0 such that every x in that
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neighbourhood other than x0 is distinguishable from x0. In general, the jth order Lie
derivative of the function hi along the vector field f is defined as:

Lj
f hi(x̂, u) =

∂Lj−1
f hi(x̂, u)

∂x
· f(x̂, u) with j = 1, . . . , 6, (3.120)

where
L0

f h(x̂, u) = h(x̂, u). (3.121)

The observability matrix for each function hi can be computed by:

oj =
[
hi(x̂, u), L1

f hi(x̂, u), . . . , L5
f hi(x̂, u)

]T
with i = 1, . . . , 7. (3.122)

The system is locally observable at x0 if the observability matrix of all functions h has
the same rank as the state dimension:

Oi = [o1, o2, o3, o4, o5, o6, o7]T . (3.123)

As the rank of this matrix was constant, rank(Oi) = 6, throughout all simulations and
post-processing simulations with measurements from the prototype as inputs, the system
is locally observable. So the requirement for the observer design is fulfilled.

3.4.6 Adaptive System Covariance Matrix

During simulations it could be noticed that the performance of the vehicle observer
showed not the desired accuracy. The reason for this is the accuracy of the non-linear
two-track model equations in situations with high tyre slip (3.72, 3.73, 3.103 - 3.106 ),
since in these cases the assumption for having no tyre slip is not valid of course.

Figure 3.14: Structure of adaptive covariance matrix
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To cope with this problem two system covariance matrices were designed: One for high
model confidence during low tyre slip and one for low model confidence when the tyre
slip exceeds a defined threshold. However, since switching might cause algorithm in-
stability or lower the passenger comfort due to quick changing estimated vehicle states
an interpolation between the two system covariance matrices was implemented (see Fig.
3.14). This interpolation guarantees a smooth transition of the matrices and prevents
unwanted rapid changes of the observed states.

3.4.7 Default vehicle states

Whenever the vehicle observer algorithm is not activated (see 3.3.5) the so called default
vehicle states are the output. They are composed partly of the sensor signals and partly
by alternative computations. It is worth mentioning that the plausibility check is always
activated and, thereby, the pre-processing computations are executed anyway.
For the states that are measured by sensors, longitudinal acceleration ax, lateral accel-
eration ay and yaw rate r, the signals are routed through the function whenever the
vehicle observer algorithm is not activated.
As the lateral velocity vy and the side slip angle β cannot be calculated by simple equa-
tions and these states are not essential for any other function, these states are set to
zero whenever the vehicle observer algorithm is not in process.
As the longitudinal velocity vx is displayed in the instrument cluster and other functions
receive this vehicle state as well, an alternative effortless computation for the velocity
is implemented. Here, all measured angular speeds, from the wheels ωi and the electric
machines Ωi, are used. The electric machine speeds are utilised to determine the velocity
direction, positive for forward and negative for backward movement, and to detect signal
errors in a very basic way. The equation for the computation of the longitudinal velocity
is:

vx = sign(Ω2) · (sign (Ω1) ∧ sign (Ω2)) · 0.2833
4

·
4∑

i=1
ωi. (3.124)

Here, the value 0.2833 represents the static effective tyre radius rstat.

3.5 Parameter Estimation
As the vehicle has many variable parameters which have a great influence on the stability,
the function parameter estimation was implemented in the vehicle observer. Here, the
most important vehicle and environmental variables are estimated online. The input of
this estimation is composed of all computed values in the EKF algorithm subsystem.
Here, slip and side slip of tyres, tyre forces, steering angle, vehicle states and activation
Boolean, which is determined in the plausibility check, are part of it.
There were many estimation methods developed in the past. In this case, the use of
a combination of Kalman filter and Bayesian networks, an approach with non-linear
observer and others were designed. Due to the fact that the computational effort of these
concepts is very high, this work concentrates on an approach with low computational
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Figure 3.15: Structure of the parameter estimation

load in order to keep the algorithm of the whole vehicle observer real-time compatible.
Therefore, an event seeking characteristic was chosen for the parameter estimation as, for
instance, the estimation of the vehicle mass during constant velocity is not meaningful.
The calculations for the three estimated parameters, effective tyre radius reff , vehicle
mass m and the road friction coefficient μi, are arranged in parallel subsystems (see Fig.
3.15). First the estimation of the effective tyre radii is explained in the next section.
The estimation of the vehicle mass is given in 3.5.2. Finally, the computation of the
approximated road friction coefficient is given.

3.5.1 Effective Tyre Radius
In general, the tyre can be modelled as a springer-damper system in vertical and torsional
direction, see 2.1.2. As the tyre radius is dependent on air pressure, speed and load,
the effective tyre radius is very mutable. Basically, the effective radius, among other
effects, is dependent on the inflation pressure. If this pressure decreases the tyre radius
decreases as well which makes the wheel turn faster. Moreover, the estimation of the
effective tyre radius is important for the calculation of the tyre slip (see equations 3.72
and 3.73) and the estimation of system states (see equations 3.103-3.106).
As shown in Fig. 3.16 the tyre radius on the front axle decreases with increasing velocity
and vice versa for the rear axle. These effects were simulated during a straight line
acceleration by the use of the complete vehicle model. The variation in terms of speed is
strongly dependent on the tyre carcass structure. These results are used to demonstrate
the general variation of the effective tyre radius only. In this case the CoG is located
in the rear half of the vehicle because of the heavy high voltage battery. By that, the
load force at high longitudinal accelerations has more effect on the rear wheels and with
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Figure 3.16: tyre radius over vehicle speed

smaller acceleration values the load is distributed to the front axle. Thereby, the effective
tyre radius on the front axle decreases while that on the rear axle increases.
Additionally, lateral dynamics affect the effective tyre radius due to centrifugal force and
vehicle weight distribution. A process of this effect is displayed in Fig. 3.17 where a
sine with dwell driving scenario was simulated. Here, the influence of the CoG on the
effective tyre radius of front and rear axle can be identified again. Furthermore, the left
wheels have a smaller radius for negative yaw rates, due to the lateral load in right curves
that is mainly on the left vehicle side, and a bigger radius for positive yaw rates since
the lateral load in left curves is mainly on the right vehicle side. Vice versa this is valid
for the right side as well. Because this effect has a direct impact on the wheel angular
velocity ωi, it has not to be taken into account in the effective tyre radius estimation
since the wheel angular velocity is used in the computation of the effective tyre radius.

The equation for the estimation of the effective tyre radius needs the information of the
longitudinal velocity and the respective angular wheel speed [36]:

reff,i = r0,i − εr,i =
vx

ωi
, (3.125)

where r0,i is the initial tyre radius at standstill and εr,i denotes the change of radius
affected by deflation. Since this equation is valid for driving situations with no tyre slip,
λi = 0, and and a steering angle equal to zero, δf = 0, the computation is activated only
if these conditions are valid.
Since the variation of the tyre radius for low velocities is almost zero, the calculation is
activated for a wheel speed above 1 m/s. Below this speed the last estimated effective
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Figure 3.17: tyre radius over vehicle yaw rate

tyre radius is held. In order to avoid errors in the estimation the value of the effective
tyre radius is limited to a range between 0.25 m − 0.35 m.

3.5.2 Vehicle Mass

The variation of the vehicle mass, in general, has a potential of up to 40% and is strongly
connected to the number of passengers, the payload and the amount of fuel. As an EV
uses the high voltage battery as energy source, which has constant weight, the variation
due to fuel is not relevant but still the variance can be up to 35%. Hence, the knowledge
of the exact vehicle mass has benefits for the state estimation, the vehicle control and
the energy management.
For the state prediction (see equation 3.86 and 3.88) and the estimation of the tyre forces
(3.76-3.79) the feedback of the estimated mass improves the accuracy. The control algo-
rithms of the implemented ADAS can use this parameter information for a more reliable
computation of the moments that are needed for the desired vehicle motion. Moreover,
infeasible brake or acceleration commands that might bring the vehicle in an unstable
situation can be avoided. Finally, the energy management uses the vehicle mass to cal-
culate the energy consumption estimation to the destination.
The vehicle mass estimation algorithms described in literature ([53], [12], [23], [8], [14])
are broadly classified on whether they are event-seeking or averaging. Since none of
these algorithms satisfies the requirements of processing limitations, accuracy, speed of
estimation, reliability, robustness, deviation and costs, a new kind of estimator was de-
veloped.
Here, an event-seeking estimator was designed that uses the results from the EKF al-
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gorithm and and is therefore less susceptible for noise. The vehicle mass estimation is
build of three subsystems: activation decision, mass estimation and logic decision, the
latter discretising the estimated mass amongst others (see Fig. 3.18).

Figure 3.18: Structure of mass estimation

The activation assessment is a simple check if all conditions for the mass estimation
are fulfilled. These conditions were evaluated empirically and restrict the activation to
accelerating situations from standstill of the vehicle. The exact postulates for the acti-
vation check are listed in Tab. 3.9.

Condition Sensor Unit
|r| < 0.0175 rad/s

1 ≤ ax ≤ 4 m/s2

0.3 ≤ vx ≤ 3.55 m/s

λi < 0.15 −
Fx,1 > 400 N

Fx,2 > 400 N

confidence = 1 −

Table 3.9: Activation conditions for mass estimation

Through the activation decision the computation of the vehicle mass is only enabled
whenever the activation decision was successfully executed. By this implementation, the
mass estimator becomes the event seeking characteristic.
These defined conditions are checked with a sample time of TS = 10 ms and the output
of the activation assessment is Boolean. Whenever the output is true the mass estima-
tion will be executed. The equation for the computation of the vehicle mass assumes
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that there is no road slope and is given by:

m̂ =
−Fext +

∑4
i=1 Fx,i

ax
(3.126)

Where Fext are the external forces due to rolling resistance and aerodynamic drag which
are computed by using empirical functions. Fig. 3.19 shows their contributions in
different vehicle velocities. This figure indicates that at low speed, the rolling resistance,
which remains almost constant over the whole velocity spectrum, becomes the dominant
resistance force.

Figure 3.19: Process of the external forces

Finally, in the logic block three improvements for reliability, accuracy and robustness
are implemented. Due to the aimed accuracy of ±50 kg the estimated mass is discretised
in 50 kg steps between the fixed minimum mass of 1300 kg and the maximum presumed
mass of 2250 kg. For a fast and reliable mass estimation at vehicle start-up the default
vehicle mass of 1500 kg is taken, as long as the mass estimation was not activated.
Finally, the robustness of the mass estimation is increased by a time analysis of the
evaluated mass. In detail, the estimated mass has to be constant for a time period of
1 s. Thus, the estimation is not susceptible for short influences of road banking/grade
and unexpected aerodynamic forces.

3.5.3 Road Friction Coefficient
The estimation of the road friction coefficient has great impact on the control of a vehicle
since the potential of tyre forces is limited to road conditions. Thereby, an accurate
information of the road friction improves the safety and energy efficiency of a vehicle
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by preventing motion requests that exceed the friction potential of the road surface and
might lead to slipping wheels or an unstable vehicle.
Basically, the accuracy of the proposed road-friction coefficient estimation is determined
by the tyre model. According to equations 3.80 until 3.82 there a two basic parameters
which have great influence on the tyre forces: tyre longitudinal/lateral cornering stiffness
Cx/Cy and the road friction coefficient μ. Whereas the cornering stiffness is characteristic
for the tyre and is assumed to be constant, the road friction coefficient is variable and
changes largely with road surface modifications.
The friction coefficient in general is the relation of the resulting friction force to the
normal force FN , where the consistency of friction has to be considered. For a given
wheel, the normalized traction force, μ, is:

μi =
Fres,i

FN , i
=

√
F 2

x,i + F 2
y,i

Fz,i
for i = 1, . . . , 4. (3.127)

For each wheel, μmax is the maximum achievable value of |μ| that the presented approach
estimates here. The friction coefficient, μ, at a tyre is related to the amount of slip at
this tyre. The well-known model for this relationship is the presented "Magic-Formula"
[51] which is used to generate the plots for traction and braking on four different road
surfaces. In Fig. 3.20 it can be seen that μ is an increasing function of λ until a critical
slip value, where μ reaches μmax and then decreases.
Moreover, it is obvious that the friction slope is different for diverse road surfaces, that
is defined as [31]:

Mi =
dμi

dλi
|μ=0. (3.128)

Whereas this equation is valid for even roads and small slip values.

Examples [36] for the maximum friction coefficient for a passenger car tyre 215/65 R15
and the according friction slope evaluated in simulation runs are given in the following
table:

Road surface Maximum friction coefficient μmax friction slope M
Dry asphalt 0.8 − 0.9 45 − 50
Dry concrete 0.8 − 0.9 45 − 50
Wet asphalt 0.5 − 0.7 30 − 40
Wet concrete 0.8 35 − 45

Gravel 0.6 35
Packed snow 0.2 7

Ice 0.1 2

Table 3.10: Average of maximum friction coefficients and friction slope
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Figure 3.20: Friction coefficient over tyre slip

The phenomenon of friction has a big impact on the development of electromechanical
systems since it occurs in nearly all interrelated motions where the surfaces of objects
have contact to each other. For a prediction of the effects of friction on the system
performance based on numeric simulations, dependable models are necessary.

But since the accuracy of the classic models was not sufficient enough and the com-
plexity of the dynamic models was too high for implementation on the VHU or the
convergence was not fast enough, a different concept was chosen for the implementation.
This tyre-slip-based approach with Recursive Least Squares (RLS) will be presented in
the next section.

RLS slip based estimation

A RLS concept was selected for the parameter identification that minimises a weighted
linear least squares cost function related to the input signal. To find the parameter a and
b a parameter vector is build, ΘT = [a, b], and the functional of a residuum is minimised.
This functional is defined as difference between the current output value y(k) and the
estimated model output ŷ(k) that is based on the currently iterated parameters Θ(k).
The iteration of the desired parameters is realised by application of the Gauss-Newton
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algorithm in which the sum of the error squares should be minimised:∑
(ŷ(k) − y(k))2 → min!. (3.129)

The forgetting factor τRLS is introduced to assess the current data related to the past
data. This factor with a range between 0 and 1 leads to exponential loss of memory from
the past data. This fact has a high significance on the online identification of a time
variable system since the influence of non representative values on the current model can
be eliminated.
The complete RLS computation steps are given as follows [58]:

• Residuum Δ(k):
Δ(k) = y(k) − ŷ(k) (3.130)

• Priori estimation:
ŷ(k) = ΨT (k) · Θ̂(k − 1) (3.131)

• Jacobi matrix of the residuum Δ(k) dependent on the parameter vector Θ(k):

Ψ(k) =
[

∂Δ(k)
∂a(k)

· ∂Δ(k)
∂b(k)

]
(3.132)

• Gain vector ρ for a simplified notation of the algorithm:

ρ(k) =
P (k − 1) · Ψ(k)

ΨT (k) · P (k − 1) · Ψ(k) + τRLS
(3.133)

• Covariance matrix P (k):

P (k) =
1

τRLS

[
P (k − 1) − ρ(k) · ΨT (k) · P (k − 1)

]
(3.134)

• Estimation of parameters Θ̂(k):

Θ̂(k) = Θ̂(k − 1) + ρ(k) · Δ(k) (3.135)

During this computation the matrix P will converge asymptotically to the error estima-
tion covariance matrix of the identified parameters. Thereby, a static criteria for the
validity of most scenarios is represented.
A common approach for the initialisation is Θ̂(k0) = 0 for the parameter estimation
and P (k0) = C · I for the covariance matrix, where C is constant and I = dimΘ is the
identity matrix [58]. Here, a big value of C implies that the reliance on Θ̂(k0) is very
low and leads to a high adaptivity rate.
The overview of the complete RLS algorithm is given in Fig. 3.21:
To enable a linear estimation with the RLS concept the current longitudinal tyre slip λ̂i
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Figure 3.21: Structure of the RLS algorithm

is defined as input and computed according to 3.74 and 3.75:

ui(k) = λ̂i(k) for i = 1, . . . , 4. (3.136)

Generally, the maximum friction coefficient and friction slope M have a positive corre-
lation and the relationship can be simplified as a curve obtained through interpolation
of Table 3.10. The measurement input y(k), which is the maximum friction coefficient
based on the friction slope, when using 3.127 and 3.128 is then defined as:

y(k) = μmax(M). (3.137)

For the estimation of the maximum friction coefficient a friction model has to be used.
There exist several friction models that are fine for a rough identification of the friction
coefficient based on observable in- and outputs. A comparatively recent published model
is the LuGre-model [18], named after their designer at universities Lund and Grenoble.
This model is able to simulate the bulk of observed friction effects without distinguishing
a special case for the standstill. The friction is seen as resistance force of a bristle which
describes the aggregated state of all bristles. Here, a longitudinal tyre slip, λ, based
approach is chosen according to:

ŷ(k) =
μ′(0) · λ

1 + a · λ + b · λ2 . (3.138)

The initial gradient μ′(0) is constant for almost all road conditions and has a value
of 30. The current road friction coefficient is then a function of the longitudinal tyre
slip and the parameters a and b. As the number of the unknown parameter is two the
identification of the model is relatively easy.
This model represents the relation between the road friction coefficient μ and the current
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longitudinal tyre slip λ and, thereby, enables the linear estimation of the parameters a
and b. The accuracy of this approach is dependent on the tyre slip and the method to
estimate the parameter.

3.6 Stability Assessment

The vehicle observer computes stability limits to guarantee the stability of the vehicle
and an optimal use of the propulsion torque. With these limits, the DU1 restricts motion
requests, either from the driver or from ADAS that exceed the stability limits.
In detail, the maximum longitudinal acceleration and the minimum curvature are cal-
culated based on the circle of forces [51] by the use of the longitudinal velocity v̂x and
the maximum road friction coefficient μ̂max.
The absolute maximum longitudinal acceleration amax

x for braking and acceleration is
computed by [57]:

amax
x =

1
4

· g ·
4∑

i=1
μ̂max,i. (3.139)

The absolute minimum curvature γ for left and right bends is calculated with:

γmin =
1

4 · v2
x

· g ·
4∑

i=1
μ̂max,i = amax

x · 1
v2

x

. (3.140)

Figure 3.22: Limitation of driver request

In both upper equations the average of the four estimated maximum friction coefficients
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is computed, to get one value for each limit.
An example of the functionality of the stability assessment is shown in Fig. 3.22. Here,
the yellow area represents the zone in which the motion requests are stable. The driver,
symbolized by the red arrow, wants to brake with a mild left steering but as the braking
would exceed the stability zone, the driver request is restricted by the functional limita-
tion, which is symbolized by the green arrow.

3.7 Trip Computation
The calculation of the driven distance is needed as information for the driver and dis-
played in the instrument cluster of the vehicle. On the one hand there is the odometer
value of the driven distance over vehicle lifetime and on the other hand there is the
tripmeter value which can be reset by the driver at any time. The signal request to reset
this value is transmitted by the HMI software. Physically, the driver pushes a button in
the instrument cluster.
The calculation for odometer so and tripmeter st is very simple as the longitudinal
velocity is integrated by:

so,k = so,k−1 + v̂x,k · ΔT · 0.001, (3.141)
st,k = st,k−1 + v̂x,k · ΔT · 0.01. (3.142)

The difference in the last factor of the computations is based on the desired accuracy.
The odometer needs an accuracy of 1 km whereas the tripmeter is more accurate with a
resolution of 0.1 km.
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4 Markov Chains for signal replacement
As the performance of the presented vehicle observer depends highly on the sensor sig-
nals, a concept for the handling of delayed or missing sensor signals is introduced in this
chapter. By the use of the Markov Chain method missing sensor information is estimated
and transmitted to the vehicle observer algorithm. Thereby, the concept increases the
robustness to sensor failures and, moreover, has an augmented safety for the passenger
in the vehicle.
Firstly, the problem of delayed or missing sensor signals is explained. Afterwards, the
method of Markov Chains is introduced. An overview of the build up and function-
ality is given in section 4.3, the calculation of the initial distribution is presented in
section 4.4 and the design of the transition matrices is shown in section 4.5. Finally, the
computation of the state of the Markov Chain is given.

4.1 Problem of Delayed or Missing Sensor Signals
Where sensor signal drop-outs or delays have been more or less neglected in past vehicle
control architectures since the driver requests had the highest priority for the actuator
commands, the increased amount of electronics in vehicle control makes new demands to
this issue. By the augmented electric vehicle control, the safety, comfort and efficiency
of the entire car is improved and the driver is relieved by a system take-over of vehicle
control for an increased number of manoeuvres. Thus, the trend to raise the grade of
automation gradually leads from a vehicle merely controlled by the driver to a vehicle
which is driven autonomously. Current forecasts estimate autonomous driving on high-
ways for the year 2025.
By the rising grade of automation the importance of reliable sensor signals is increasing
as well because the performance of ADAS control algorithms are dependent on them.
This means that wrong, delayed or missing sensor information can lead to a degraded
automation state or bring the vehicle in an unstable state. In both cases, the safety
of the passengers is no longer guaranteed. A fact, that calls for new interception con-
cepts. Moreover, there is a paradigm shift in the type of operation since in the past,
the specification was to have a fail-safe operation, which means that the control should
either control everything and work perfectly or should not engage at all. For highly
automated or autonomous driving the requirement for the control operation is to per-
form fail-tolerant in every situation. Therefore, any failure should be compensated to
guarantee at least a degraded mode where the control is able to operate with limited
performance or to maintain a state of safety without endangering other road users.
For instance, there will be a defined time slot for the transition phase from autonomous
driving mode to driver vehicle control in case of a detected failure that limits the vehicle
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performance. The autonomous driving will switch to a limp home mode, try to enter
a safe spot and the passengers are informed to take over the vehicle control. Yet the
length of this time slot is not fixed by law. The vehicle control has to guarantee this safe
vehicle mode and, thereby, relies on the provided sensor information. Currently, Origi-
nal Equipment Manufacturer (OEM) tend towards a transfer time between 5 − 10 s for
highly automated driving and a transfer time longer than 10 s for autonomous driving
[32].

4.2 Introduction to Markov Chains
In this section, a general explanation and the basic properties of Markov Chains method
are introduced. In 1907, Andrei A. Markov began the study of an important new type
of change process. In this concept the outcome of a given experiment can affect the
outcome of the next experiment. This type of stochastic process is called Markov Chain
[29]. The most specific characteristic of Markov Chains is that they are memoryless:
the next state depends only on the current state and not on the sequence of events that
preceded it. In general, Markov Chains are applicable in discrete and continuous time.
As the target hardware is a micro-controller with discrete sample time we focus on the
discrete time method.
The assumption for discrete-time Markov Chains [49] is the definition of a limited set of
possible states, the bounded state space I. The process starts in one single state i ∈ I and
changes over time. More precisely, we assume a finite state space with I = {1, 2, · · · , l}
where l ∈ N = {1, 2, · · · } is an arbitrary but specified natural number. For every state
i ∈ I the probability χ that the considered system at instant of time n = 0 is in state i
is given by:

0 ≤ χi ≤ 1, with
l∑

i=1
χi = 1. (4.1)

The vector χ = (χ1, · · · , χl)T of all single probabilities χ1, · · · , χl forms the initial dis-
tribution of the Markov Chain. Similar to the initial distribution there is a probability
pi,j that the system state changes from state i directly to state j. As this probability
exists for every pair of states i, j ∈ I a l × l matrix can be built. This matrix is called
the transition matrix P = (pij)i,j=1,··· ,l and is given by:

pi,j ≥ 0, with
l∑

j=1
pi,j = 1. (4.2)

For every quantity I = {1, 2, . . . , l} and for every vector χ = (χ1, . . . , χl)T there is a
respective matrix P = (pij), that fulfils the requirements (4.1) and (4.2). The Markov
Chain can be defined as follows:

• Unless X0, X1, . . . : Ω → I is a series of stochastic variables that are defined
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in the same state space (Ω, F, P ) and they take their value out of the quantity
I = {1, 2, . . . , l}.

• Then X0, X1, . . . is called a homogeneous Markov Chain with the initial distribution
χ = (χ1, . . . , χl)T and the transition matrix P = (pij), if (4.3) is valid for arbitrary
n = 1, 2, . . . and i0, i1, . . . , in ∈ I.

P (X0 = i0, X1 = i1, . . . , Xn = in)
= χi0pi0i1 . . . pin−1in

(4.3)

Moreover, the following points have to be considered:

• A quadratic matrix P = (pij) that fulfills (4.2) is called stochastic matrix.

• With the following definition the meaning of the intuitive equation (4.3) is pointed
out, especially the notation of initial distribution and transition matrix.

Theorem 2.1
The series Xn of arbitrary values from I is called a Markov chain if there exists a
stochastic matrix P = pij , so that

P (Xn = in|Xn−1 = in−1, . . . , X0 = i0) = pin−1in (4.4)

for any n = 1, 2, . . . and i0, i1, . . . , in ∈ I with P (Xn−1 = in−1, . . . , X0 = i0) > 0.
The proof is given by the assumption that (Xn)0≤n≤N is Markov (χ, P ), then

P (X0 = i0, X1 = i1, . . . , XN = iN )
= P (X0 = i0)P (X1 = i1|X0 = i0) · · · P (XN = iN |X0 = i0, . . . , XN−1 = iN−1)
= χi0pi0i1 . . . piN−1iN .

(4.5)
On the other hand, if (4.3) holds for N , then the summation of both sides over in ∈ I
and using

∑
j∈I pij = 1 it is obvious that (4.3) holds for N − 1 and, by induction

P (X0 = i0, X1 = i1, . . . , Xn = in) = χi0pi0i1 . . . pin−1in (4.6)

for all n = 0, 1, . . . , N . In particular, P (X0 = i0) = χi0 and, for n = 0, 1, . . . , N − 1
equation (4.5) is valid. So (Xn)0≤n≤N is Markov (χ, P ).
The next result confirms the basic Markov property: the memoryless characteristic.
γi = (γij : j ∈ I) is for the unit mass at i, where

γij =
{

1, if i = j
0, otherwise .

(4.7)

Theorem 2.2
Let (Xn)n≥0 be Markov (χ, P ). Then, conditional on Xm = i, (Xm+n)n≥0) is Markov
(γi, P ) and is independent of the random variables X0, . . . , Xm.
The proof is produced by the random event A determined by X0, . . . , Xm that conducts
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to
P ( {Xm = im, . . . , Xm+n = im+n} ∩ A|Xm = i)
=γiimpimim+1 . . . pim+n−1im+nP (A|Xm = i)

(4.8)

then the result follows by theorem 2.1. First, consider the case of elementary events

A = {X0 = i0, . . . , Xm = im} . (4.9)

In that case it has to be shown

P (X0 = i0, . . . , Xm+n = im+nand i = im/P (Xm = i))
=γiimpimim+1 . . . pim+n−1im+nP (X0 = i0, . . . , Xm = im and i = im)/P (Xm = i)

(4.10)

which is true by theorem 2.1. In general, any event A determined by X0, . . . , Xm may
be written as a countable disjoint union of elementary events

A =
∞⋃

k=1
Ak. (4.11)

The desired identity (4.8) for A follows by summing up the corresponding identities for
Ak.
In order to calculate the probability that after n steps of the Markov Chain the system is
in a given state, we regard distributions and measures χ as row vectors whose components
are indexed by I, just as P is a matrix whose entries are indexed by I × I. When I
is finite, the states are labelled 1, 2, . . . , N . Consequently, χ will be an N-vector and P
an N × N -matrix. For these objects, matrix multiplication is a familiar operation. The
matrix multiplication is extended to the general case with definition of a new measure
χP and a new matrix P 2 by

(χP )j =
∑
i∈I

χipij , (P 2)ik =
∑
j∈I

pijpjk. (4.12)

Similarly, the definition of P n is done for any n. The first transition matrix P 0 is the
identity matrix I, where (I)ij = γij . The context will make it clear when I refers to the
state space and when to the identity matrix. The diction for the (i, j) entry in P n is
established as p

(n)
ij = (P n)ij .

In the case where χi > 0 it is written Pi(A) for the conditional probability P (A|X0 = i).
By the Markov property at time m = 0, under Pi, (Xn)n≥0) is Markov (γi, P ). Thus,
the behaviour of (Xn)n≥0) under Pi does not depend on χ.

Theorem 2.3
Let (Xn)n≥0) be Markov (χ, P ). Then, for all n, m ≥ 0,

1. P (Xn = j) = (χP n)j)

2. Pi(Xn = j) = P (Xn+m = j|Xm = i) = p
(n)
ij
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The proof for the first point is given by theorem 2.1:

P (Xn = j) =
∑
i0∈I

. . .
∑

in−1∈I

P (X0 = i0, . . . , Xn−1 = in−1, Xn = j)

=
∑
i0∈I

. . .
∑

in−1∈I

αi0pi0i1 . . . pin−1j = (αP n)j

(4.13)

The second proof is produced by Markov property, conditional on Xm = i, (Xm+n)n≥0
is Markov (γi, P ), so χ = γi is set in 1.
In light of this, theorem p

(n)
ij is the n-step transition probability from i to j.

4.3 Buildup and functionality
The error correction mechanisms are based on the analysis of the sensor signals by the
error detection algorithm (3.3.2). The Markov Chain algorithm will only be executed
whenever a sensor signal is detected either as delayed or missing. In order to reduce the
computational effort there are several different subsystems containing a specific algo-
rithm of the Markov Chain method. Only one of them will be activated, depending on
the information of missing or delayed signals reported by the error detection mechanisms
(see Fig. 4.1).

Figure 4.1: Structure of the signal replacement

For example, the wheel speed subsystem will be enabled whenever the error detection
mechanisms detect a delayed or missing wheel speed signal. The signal bus entering
the signal replacement subsystem contains the measured sensor signals as well as the
results from the error detection mechanisms. Here, the Markov Chain concept replaces
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the delayed or missing sensor signals based on the still available sensor signals and the
last measured value of the specific signal. The following output signals are transmitted
to the presented vehicle observer: the four wheel speeds, the yaw rate, longitudinal and
lateral acceleration and the steering angle.
Each of the subsystems is build by two subsystems itself - the calculation of the input
signals for the Markov Chain and the Markov Chain function. In the first subsystem
the last measured sensor signal is held, the gradient of the last available sensor signals is
calculated and the tendency for a state change is computed. In the Markov function the
confidence is calculated and the Markov Chain state for the delayed or missing sensor
signal is estimated. Here, the computation of the initial distribution, the Markov Chain
algorithm and the final state calculation are carried out. The generic structure for all
signal replacement subsystems using the Markov Chain concept is given in Fig. 4.2.

Figure 4.2: Generic structure of one signal replacement subsystem

4.4 Calculation of initial distribution
The initial distribution for each Markov Chain is based on the last available measurement
from the sensor with malfunction and the current values from the remaining available
sensor signals. First of all, the range for the specific sensor has to be discretised with a
fixed number of states i. Thus the vector for the initial distribution u has a dimension
of 1 × i. As the last measurement represents the basis for the initial distribution, the
current measurements are taken to estimate the probabilities for the surrounding states.
In particular, the first initial distribution of the last measured state i is set to 0.5. The
remaining 0.5 are allocated by calculating the distributions on the basis of the current
measurements where every subsystem has its own equations. In the second time step the
estimated state is seen as reference measurement and the probability of it is set to 0.5.
Hence, the computation of the initial distribution is an ongoing process and, thereby,
executed online. Moreover all computations that are belonging to the initial distribution
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are calculated without any dimensions.
The detailed equations for every subsystem will be given in the following subsections.
In general, the maximum gradients σu for each signal u are compared to the defined in-
terval Δu and, thus, the number of states m that may have an initial distribution greater
than zero is calculated by m = σu

Δu . The tendency towards which direction of the last
measured state the next state will tend is determined by comparison to thresholds for
the gradients of the specific measurement. These threshold values were evaluated empir-
ically in simulations with highly dynamical manoeuvres and were verified by outcomes
of recorded data from real test drives. If the gradients cross this certain threshold, only
the distribution of the m states to the left and accordingly right side of the last measured
state are upgraded. In case no threshold is crossed, the remaining 0.5 are allocated equal
to the m/2 entries to each side. The sum to add for each entry is calculated by du = 0.5

m .
Moreover, an adjacent tendency value ζ based on the available sensor signals that give
additional information for the direction and the dimension of state changes of the cur-
rently missing or delayed sensor signal is computed. In each subsystem either the signals
that are directly linked to the missing sensor signals or information about the current
process can be derived from it. Here, easy equations that represent the connections be-
tween the different sensor signals are derived. The results are standardised and limited
to enable an easy adjustment for the Markov Chain state estimation algorithm, espe-
cially the design of the initial distribution.
After the buildup and the functionality were introduced shortly, the detailed description
of the calculation of the initial distribution is given in the next subsections starting with
the equations for the absence of one of the four wheel speed sensors. As the holding of
the last measured sensor signal and the computation of the gradient are simple equations
and are the same for all subsystems, these sub functions are not explained here.

4.4.1 Wheel speed

As stated above first of all the range for the wheel speed sensor [0 − 2551/pm] has to
be discretised for the initial distribution vector uω with a length of 101 entries. This
means, that every entry in the vector represents an wheel speed according to:

uω,i ≡ ωj,max/101 · (i − 1), (4.14)

where j represents the wheel number.
Since the wheel speed sensor is the only one equipped on the vehicle that can been seen
as a redundant sensor since there is a sensor for each of the four wheels, an additional
computation was implemented for the absence of a wheel speed sensor signal in the
calculation of the initial distribution. In detail, the mean wheel speed of the three
remaining sensor signals is computed to get more information about the process of the
missing sensor signal. The advantage of taking all available wheel speeds is that the
speed of spinning wheels on the driven front-axle and shortly blocked wheels during
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braking is almost compensated by the mean. So the mean wheel speed is computed by:

ωmean(k) =
1
3

·
3∑

j=1
ωj(k), (4.15)

where the index j = [1 − 3] represents the current measurements of the available wheel
speeds.
The adjacent tendency value for the direction and dimension of the state process is
calculated by:

ζ(k) = ωmean(k) − ωj(k0), (4.16)

where ωj(k0) is the last received sensor signal.
Now, the last measured signal ωj(k0), the derivative ω̇j(k0) = Δω

T = ωj(k)−ωj(k−1)
T with

T as sample time, the mean wheel speed ωmean and the adjacent tendency ζ value are
transmitted to the Markov function. In the calculation of the initial distribution 4.1,
the basic index i0 for the design of the vector uωi is computed by

i0(k) =
⌊(

ωj(k0)
σu

)⌉
, (4.17)

where � are the Gaussian brackets and represent the nearest integer to
(

ωj(k0)
σu

)
.

To consider the adjacent tendency value ζ an auxiliary variable m is calculated by:

m(k) = sign(ζ(k)) ·
⌊∣∣∣∣
(

ζ(k)
ζlim

)∣∣∣∣
⌋

, (4.18)

where ζlim is the value to standardise the adjacent value and �� are the Gaussian brackets
and represent the largest integer less than or equal to

∣∣∣( ζ(k)
ζlim

)∣∣∣. Finally, the base index
ibase is built by the sum of the basic index i0 and the auxiliary variable m:

ibase(k) = i0(k) + m(k). (4.19)

Afterwards, this base index ibase is set to 0.5 in the vector of the initial distribution:

uω,i (1, ibase) = 0.5. (4.20)

After the base index value in the initial distribution vector is set, the remaining 0.5
according to 4.1 are logically distributed. This is done by the consideration of the
maximum gradients σu and special rules when the base index reaches one limit of the
defined state space. This logic for the different cases is given in the following table:
This table is also valid for the configuration of all the other initial distributions. After
the composition of the initial distribution for a missing wheel speed sensor signal was
introduced now this is done for the yaw rate.
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Condition Distribution
(ibase == imin) && (ω̇i(k0) < −σ) uω,i(1, ibase) = 1
(ibase == imax) && (ω̇i(k0) > σ) uω,i(1, ibase) = 1
(ω̇i(k0) > σ) || (ibase == imin) uω,i(1, ibase+1) = 0.5

(ω̇i(k0) < −σ) || (ibase == imax) uω,i(1, ibase−1) = 0.5
else (default) uω,i(1, ibase−1) = 0.25 && uω,i(1, ibase+1) = 0.25

Table 4.1: Distribution rules for initial distribution vector

4.4.2 Yaw rate

In the input calculation for the initial distribution of the yaw rate and all following
subsystems, the equation of the adjacent tendency will be given only as the remaining
operations in this system do not change.
As the wheel speeds give an approximate account of the yaw rate, see [21], all wheel
speeds are considered for the evaluation of the adjacent tendency. Let us assume the
prior adjacent tendency ζ∗ as:

ζ∗(k) = (ω2(k) − ω1(k)) · 0.2 + (ω4(k) − ω3(k)) . (4.21)

Here, the difference of the front axle is included with a fifth of it since slippery or blocking
wheels on this driven axle might disturb the computation results.
Moreover, as the lateral acceleration ay influences the yaw rate as well, the rate of change
of this measured signal is also taken into account. To face the problem of inaccurate
sensor signals and the dynamics of the vehicle, the derivative of the prior adjacent
tendency and the lateral acceleration are taken into consideration in the final adjacent
tendency calculation:

ζ(k) = ζ̇∗ · 0.5 − ȧy

= (ζ∗(k) − ζ∗(k − 1)) · 0.5 − (ay(k) − ay(k − 1)) .
(4.22)

Similar to the input calculation subsystem, in the Markov function subsystems all cal-
culations are the same except those of the auxiliary variable m and the base index ibase.
Where the equation for the variable auxiliary changes for every subsystem since the
synchronisation, the base index changes only because the wheel speed signal is unsigned
and the other measured sensor signals are signed. Thus, the calculation of the index for
the last measured sensor signal in the defined state space system requires an offset value
that has to be added in order to begin at the zero value.
The auxiliary value for the estimation of the yaw rate is computed with:

m(k) = sign(ζ(k)) ·
[(∣∣∣∣
(

ζ(k)
ζlim

)∣∣∣∣
)]

, (4.23)
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where for each subsystem different limiting adjacent values ζlim are valid and given in
Tab. 4.2.
As stated above, the base index changes by adding an offset, here half of the state space
101:

ibase(k) = i0 + 101 + m(k). (4.24)

4.4.3 Longitudinal acceleration
As the longitudinal acceleration is very important for the implemented ADAS control
algorithms, the estimation by Markov Chain methodology during sensor signal delay or
absence has to be designed very carefully. Compared to the previous introduced subsys-
tem, only the computation of the adjacent tendency value differs.
Again, the wheel speeds give information about the process of the longitudinal acceler-
ation but due to the sensor signal resolution and occurring wheel slip all wheel speeds
are considered to design the initial distribution. So the prior adjacent value is:

ζ∗
i (k) = (ωi(k) − ωi(k − 1)) with i = (1, · · · , 4), (4.25)

where in contrast to equation 4.21 the front and rear wheel speeds are included equally
since the influence of high wheel slip showed no big effect on the results during simulation.
To solve the problem of high oscillation during low differences between wheel speeds at
following time steps, the prior adjacent value is derived again and the mean of these four
results is computed:

ζ(k) =
1
4

( 4∑
i=1

ζ∗
i (k) − ζ∗

i (k − 1)
)

. (4.26)

The remaining equations in the Markov function subsystem are exactly the same as for
the calculation of the initial distribution of the yaw rate.

4.4.4 Lateral acceleration
In the input computation subsystem an additional operation was included in the design
of the initial distribution for the lateral acceleration ay. To identify the current lateral
acceleration the derivative of a crosswise wheel pair is considered. This is done since the
direction of the lateral acceleration is directly linked to the wheel speed process of the
left and the right side. Here, the front left and rear right wheel speeds were taken into
account but any other combination of left and right tire speed would be fine as well.
Hence, the priori adjacent value of the current lateral acceleration is determined by:

ζ∗(k) =
(ω1(k) − ω4(k)) − (ω1(k − 1) − ω4(k − 1))

T
. (4.27)

The adjacent tendency value for the lateral acceleration is extended by a logical check
since there is no influence of the wheel speeds, so the priori tendency value ζ∗, on the
lateral acceleration as long as the steering angle or the yaw rate of the vehicle are close
to zero. This is valid for the assumption that the road conditions, here friction and
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4.4. Calculation of initial distribution

inclination, are in a normal zone. In detail, the influence is cancelled out if the steering
angle is δ < ±0.01rad or the yaw rate is r < ±0.01rad/s.
As the yaw rate is a good indicator for the process of the lateral acceleration and, thereby,
for the real vehicle lateral movement, it has more significance for the calculation than
the wheel speeds. Moreover, the steering activity has not been incorporated since during
standstill or high wheel slip this may lead to false results. The final adjacent tendency
value is computed by:

ζ(k) =

⎧⎨
⎩

−
(

r(k)−r(k−1)
T

)
, if ((δ < ±0.01) || (r < ±0.01))

ζ∗(k) · 1
200 −

(
r(k)−r(k−1)

T

)
, if ((δ ≥ ±0.01) || (r ≥±0.01)) .

(4.28)

The rest of the equations in the calculation of the initial distribution are exactly the
same as for the yaw rate computation.

4.4.5 Steering angle

The steering angle of the vehicle is not only the most important signal for the correct
functionality of the vehicle observer and the correct execution of the ADAS functions,
it is as well the one which is hardest to estimate when the sensor or the network has a
failure. As stated before, the actual steering angle might be totally independent of the
other measured vehicle states such as yaw rate or lateral acceleration due to slippery
road or road inclination.
During analysis of the steering angle in dynamic and normal driving situations it turned
out that most reliable information of the process can be extracted from the difference
of the front wheel speeds and the yaw rate. To enable an individual handling of both
signals in the design of the initial distribution, the priori adjacent is formed as a vector:

ζ∗(k) = (ω2(k) − ω1(k), r(k))T . (4.29)

For the evaluation of the adjacent tendency vector, an ongoing comparison of the current
sensor signals to the one when the signal loss of the steering angle sensor occurred is
implemented. Therefore, the final adjacent tendency vector is computed by:

ζ(k) = (ζ∗(k) − ζ∗(k0)) . (4.30)

In the composition of the initial distribution exist two auxiliary variables m and n which
are calculated with:(

m

n

)
(k) = sign

(
ζω(k)
ζr(k)

)
·
⌊(∣∣∣∣∣
(

ζω(k)/ζω,lim

ζr(k)/ζr,lim

)∣∣∣∣∣
)⌋

. (4.31)

Finally, the table of the maximum gradient values σ, that were evaluated by empirical
work for each sensor signal with recorded measurements of the prototype vehicle, and
the adjacent tendency limits ζ are shown in Tab. 4.2. These values base on the general
sample time for the entire vehicle observer with Ts = 10ms.
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Signal σ ζ

ωi 2 1
r 0.171 5
ax 0.5 0.007
ay 50 0.2
δ 0.002

(0.007
0.04
)

Table 4.2: Limit value for gradient and adjacent tendency

A short explanation of the outliers in this table should be given here. On the one hand
the maximum gradient value for the lateral acceleration results from the high dynamic
driving manoeuvres. On the other hand the high adjacent tendency value follows from
the addition of the wheel speeds as well as from lateral acceleration during high dynamic
driving scenarios.

4.5 Design of transition matrices
The first important task when designing the transition matrices for the Markov Chains
is the definition of the bounded state space. As the ranges of the respective sensors are
known by their data sheet, the task is to find a good agreement between the wanted
accuracy and the restriction of computational effort. In Tab. 4.3 the empirically gath-
ered values for the equal spaced interval Δu, the range given by the data sheet and the
arising length of the state space l, which showed good performance, are listed. Hence,
each transition matrix P has the size l × l.

Δu range l unit
ωi 2.5 0 − 250 101 rad/s

r 0.02895 ±2.895 201 rad/s

ax 0.177 ±17.70 201 m/s2

ay 0.177 ±17.70 201 m/s2

δ 0.005547 ±0.5547 201 rad

Table 4.3: Discretisation of signals

Similar to the calculation of the initial distribution, the row entries of the transition
matrices are calculated. The most important differences are that the current measure-
ments are neglected and the calculation of the entries is done offline. Therefore, the
transition matrices are static and the Markov Chain is called a homogeneous one. At
the beginning, the maximum number of possible state changes for each signal is taken
into account by using the current gradient and the remaining sensor signals. In a second
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step the static distribution vector is built where the probability values are concentrated
around the current state entry which results in a binomial distribution is done. An
example of the probability values for an even and uneven distribution vector is given in
the following picture.

Figure 4.3: Binomial distribution of probability values for even and uneven case

The computation for each row j is done by incrementing the starting index for the
distribution vector. Here, special rules for the distribution at the outer limits were inte-
grated so that the sum of each row is equal to 1 like as defined in eq. 4.2. In fact, the
distribution values are lowered from the current state space entry.

4.6 Computation of Markov Chain state
Consequently, the outputs of the Markov Chain state estimation are calculated based on
the use of the online computed initial distribution ui and the offline calculated transition
matrix Pi for the respective activated subsystem. As the complete vehicle observer is
designed for a sample time of Ts = 10(ms) the equation

vi(k) = ui(k) · P n
i (4.32)

is updated in every execution step k. Here, v is a vector of the dimension 1 × li. In case
of delayed signals this calculation is done for the first power of Pi. In case of missing
signals the power increases with the time of signal absence. To reduce the computational
effort the row searching is limited to the gradient thresholds. But as this vector v can
not be used for the final state estimation, an additional computation is implemented.
For a higher accuracy of the state estimation during delayed or missing sensor signals
all non-zero entries of the vector v are taken into account. Here, an interpolation is
implemented and, by this, the defined limited state space is extended without any high
computational complexity. This post-processing is composed of four different steps.
Firstly, all indices of entries in vi that are non-zero are written into a new vector v∗

i .
Secondly, a factor g is calculated that compensates the decreasing probability values for
a longer activation time of the Markov Chain state estimation. That factor guarantees
that the sum of all probability values remains at 1 for all time steps k. This factor is
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computed by the use of the following equation:

g(k) =
1∑d

j=1 v∗
i (j)

, (4.33)

where d is the last entry of vector v∗
i .

The sum f of the weighted probabilities for all non-zero entries, which results in the
index of the state space, is computed in the third step according to:

f(k) =
d∑

j=1
g(k) · v∗

i (j) · vi(j). (4.34)

In contrast to the defined state space, the index f can also represent fraction numbers
and, thereby, enable a higher precision of the result.
Finally, the Markov Chain state estimation is computed by:

ûi = f(k) · Δui (4.35)

In the here introduced concept, by the use of Markov Chains, the time for replacement
of missing signals is bounded to a maximum of tmax = 3 (s). As the safety concept
accepts tolerance times of 50(ms) to detect false sensor performance the sample time is
short enough to fulfil this requirement.
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5 Results
After the developed functions Vehicle Observer and Markov Chains were described in
detail in the chapters before, now the validation of these functions should be given.
Firstly, the software was validated in general with simulation runs for the described
driving manoeuvres, see 2.3.1. When the results met the defined accuracy, the software
was converted and integrated into the VHU for the second validation step. During this
work, these validation steps were repeated several times for an optimised performance
in terms of execution efficiency and accuracy of the results.
In order to integrate the designed software into the VHU of the prototype it had to be
converted into machine code. The machine code is required to run the software on the
micro-controller with the highest efficiency. A drawback of the machine code is that it
is not very intelligible which makes debugging work almost impossible.
Moreover, the data types of the functions had to be converted from floating point into
fixed point as the micro-controller is optimised for operations with fixed point data. Here,
the hardware was limited to 32-bit signals which resulted in a slight lowered accuracy
compared to the floating point software during simulation runs.
Due to technical limitations and safety concerns with the prototype, the validation was
split for the two software blocks. On the one hand the Vehicle Observer software was
implemented into the target hardware on the prototype. On the other hand the complete
observer including Markov Chains algorithm was tested by Hardware in the Loop (HiL)
with measured sensor signals from the prototype as inputs.
In this chapter the validation of the Vehicle Observer with prototype runs is given in
section 5.1. Here, different driving manoeuvres were carried out. In section 5.2 the
performance of the Markov Chains method for signal replacement is shown during HiL
tests.

5.1 Prototype results
During the eFuture project many vehicle tests were defined and performed with the
prototype. Here, two scenarios for the developed software are discussed: Slalom driving
and double lane change.
The tests took place at the airbase in Giebelstadt where a plain area of about 315 × 70
meters was available. The road surface is concrete for the complete area. The handling
tests covered circular driving, double lane change, slalom driving, straight acceleration
and braking at different speeds. The tests were done with and without the function
Torque Vectoring to proof the enhanced stability control with this function. The figures
for all presented scenarios were measured with enabled Torque Vectoring. In this case,
the additional generated yaw moment changes the expected model behaviour in the EKF
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subsystem so that a deviation would occur if the designed observer was not adaptive and
robust enough.
The measurement signals were recorded from three CAN buses with the software CA-
NOE. For the reference measurements a Correvit optical sensor [59] was fixed on the
rear right door (see Fig. 5.1). This sensor measures the longitudinal velocity, the lateral
velocity and the side slip angle of the vehicle. Since the Correvit sensor was not fixed
in the CoG of the vehicle an additional calculation has to be done in order to clear po-
sition influences on the measurements. In detail, the yaw rate multiplied by the lateral
distance of the sensor to the CoG has to be added to the lateral velocity. The lateral
distance was measured by hand during standstill: lCorr = 0.6m. It turned out, that the
impact on the measurement of the side slip angle could be neglected.

Figure 5.1: Prototype equipped with Correvit sensor

As the figures of the different vehicle states are not specific enough for the analysis of
the vehicle observer accuracy, the computation of the Root Mean Square Error (RMSE)
is inserted. In general, the RMSE of a data series is just one value. This method was
extended by a sliding window so that the accuracy can be analysed at different moments
during the process. Here, the length of the sliding horizon was set to tslide = 2 s. With
a sample time Ts = 0.01 s, the latest 200 values are taken into account to compute the
current RMSEi. The equation is given by:

RMSEi =

√√√√√ Ts

tslide

k=ki+ΔT∑
k=ki

(x(k) − x̂(k))2 (5.1)

110



5.1. Prototype results

Where Ts is the before mentioned sample time, ki is the starting index of the simulation
time, x is the reference value and x̂ is the observed value. This calculation could be
carried out for the three states that are measured by the Correvit optical sensor. Here,
the most important results for circular driving, double lane change and road friction
estimation are presented.

5.1.1 Slalom driving

Figure 5.2: Slalom driving set up

Test description

For the slalom driving tests, eight cones were arranged with a distance of 18 m (see
Fig. 5.2). After a straight line acceleration to the desired speed, the driver tried to hold
the vehicle speed during the movement through the cones. As it was a non-professional
driver, this goal could not be achieved for all speeds since it is very hard to hold the
velocity at high dynamic cornering. The tests were carried out with increasing speed
until the handling limit of the vehicle was reached. The process of the steering angle is
displayed in Fig. 5.3.

Signal comparison

In Fig. 5.4 to Figure 5.6 the longitudinal and lateral acceleration and the yaw rate of
the sensor and the vehicle observer are displayed for a slalom drive at 50 kph. During
standstill and during low speed, from measurement beginning until 6 s, the signals are
identical because the vehicle observer algorithm is not activated and the sensor signals are
bypassed. When the algorithm is executed, the smoothing and correction of the sensor
signals become obvious. The noise level of the longitudinal and lateral acceleration could
be lowered significantly and signal peaks could be erased but the general progression of
the signals remains, whereas the noise level of the yaw rate sensor signal seems very low
for this driving manoeuvre and, thereby, the sensor and observer outputs are mainly
the same. The high yaw rate at the end of the measurement gives an indication that
the vehicle got unstable for this speed and the test was not successful. These results
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Figure 5.3: Steering angle during slalom driving

were selected to show that the observer is capable to observe the vehicle states even in
uncontrolled vehicle movements.

In Figure 5.7 to Figure 5.9 the longitudinal and lateral speed and the side slip angle
of the reference sensor and the vehicle observer are shown. Moreover, the corresponding
longitudinal speed computed with the front wheel speeds are plotted in Figure 5.7.
Where the longitudinal velocities match for the reference and observer outputs, except
for the end of the measurement where the vehicle got unstable, the lateral velocity and
the side slip angle have a different amplitude and a delay between the sensor and observer
output of about 100 ms could be detected. The deviation of the amplitudes is caused
by the correction of the observer algorithm or the not well calibrated reference sensor.
The delay between both signals is a time stamp problem of the measurements. Here,
the synchronisation of reference sensor and vehicle CAN did not work correctly.

Signal analysis

The progression of the RMSE for the three vehicle states that have reference data are
shown in Figure 5.10 to Figure 5.12. The limits for the RMSE, that were defined at the
beginning of the project, are not exceeded for most of the time but, as outlined above,
the vehicle instability caused an overshoot of the longitudinal velocity RMSE at the end
of the measurements. Considering the unstable vehicle state and since this overshoot is
close to the limit, this deviation is not critical. Thereby, the vehicle observer performs
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Figure 5.4: Longitudinal acceleration

Figure 5.5: Lateral acceleration
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Figure 5.6: Yaw rate

Figure 5.7: Longitudinal velocity
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Figure 5.8: Lateral velocity

Figure 5.9: Side slip angle
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Figure 5.10: RMSE of the longitudinal velocity

Figure 5.11: RMSE of the lateral velocity
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Figure 5.12: RMSE of the side slip angle

with the aimed accuracy during the slalom driving scenario.

5.1.2 Double lane change

Figure 5.13: Double lane change set up

Test description

The DLC (also known as elk-test) manoeuvre is appropriate to test lateral dynamics
with fast changing steering inputs. It gives a good indication of the stability and control
of a vehicle. It is carried out by driving through a tight lane of cones, swerving hard
into another lane of cones, before swerving hard back into the original lane. It is also
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designed to simulate the sudden DLC that can cause vehicle instability. The test was set
up according to the standardized ISO 3888-2 norm [6] for a manually measured vehicle
width of b = 1.4 m (see Figure 5.13). In order to remove longitudinal influences, the
driver shifted to neutral gear before the steering test began. At the end of the test,
the driver used the hydraulic brake to stop the vehicle. Starting with an initial speed
of 30 kph, the speed was increased in steps of 5 kph until the vehicle trajectory could
not hold the defined path any more. As the test was done by a non-professional driver,
the results have an optimisation potential. Subsequently, the results for a DLC with an
initial speed of 50 kph are shown. The process of the steering angle is displayed in Fig.
5.14.

Figure 5.14: Steering angle during double lane change

Signal comparison

In Figure 5.15 to Figure 5.17 the longitudinal and lateral acceleration and the yaw rate
of the sensor and the vehicle observer are presented. When the observer algorithm is
executed from simulation time 2 s on the lowering of the noise level, the correction of
amplitudes and cancellation of signal peaks is obvious. In comparison to the yaw rate
results from the slalom driving, which were equal for most of the time, here, a correction
of the measured yaw rate can be identified. The yaw rate before and after the DLC
manoeuvre has static characteristics which is reasonable for the straight acceleration
and braking. Thus, the performance of the observer for these three signals is satisfying.
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Figure 5.15: Longitudinal acceleration

Figure 5.16: Lateral acceleration
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Figure 5.17: Yaw rate

In Fig. 5.18 to Fig. 5.20 the longitudinal and lateral speed and the side slip angle of
the reference sensor and the vehicle observer are shown. Where the longitudinal veloc-
ities match exactly with the acceleration and braking period of reference and observer
outputs, there is a slight deviation during the steering manoeuvre. The oscillating speed
of the Correvit sensor from 15.5 s to 19 s is based on the outer right position of the
sensor. In detail, the sensor detects a higher velocity when the vehicle steers to the
left side and vice versa. At the beginning, the observer signal noise level of the lateral
velocity and the side slip angle is greater than that of the reference sensor. This is
based on the calibration period of the observer algorithm where the covariance between
model and sensor state is tuned. When this process is completed (∼ 6s) the noise level
of the observer outputs are lower than those of the reference sensor. The deviation of
the amplitudes results from roll movement of the vehicle and the outside position of the
reference sensor. Moreover, the correction of the algorithm influences the amplitudes as
well.

Signal analysis

The progression of the RMSE for the three vehicle states that have reference data are
shown in Figure 5.21 to Figure 5.23. The limits for the RMSE that were defined are
not passed. By that, the vehicle observer performs with the aimed accuracy during
the double lane change scenario. In all three figures the RMSE value is rising during
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Figure 5.18: Longitudinal velocity

Figure 5.19: Lateral velocity
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Figure 5.20: Side slip angle

Figure 5.21: RMSE of the longitudinal velocity
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Figure 5.22: RMSE of the lateral velocity

Figure 5.23: RMSE of the side slip angle

123



5. Results

steering but, as written before, the dynamic influences on the reference sensor could not
be eliminated.

5.1.3 Road friction estimation
The road friction estimation has great impact on the vehicle dynamics since it limits the
maximum motor torque with respect to the stability limits of the vehicle. Because the
road friction is hard to measure some tests on dry surface and slightly wet surface were
carried out to validate the estimation. Unfortunately, there were no real wet weather
conditions during the testing phase but the results indicate the correctness of the road
friction estimation.
As the presented concept bases on the longitudinal tyre slip λ, the estimated value for
both test conditions are shown in Fig. 5.24. Whereas the longitudinal slip is estimated
as very high, when the vehicle observer algorithm is activated at 5s, the values decrease
rapidly when the observer estimates the real vehicle velocity. After this initializing phase,
in which the slip for both conditions is almost the same, the slip for the wet conditions
is higher than the slip for the dry conditions.

Figure 5.24: Longitudinal tyre slip estimation

In Figure 5.25 a comparison of the estimated maximum road friction coefficient μmax

for DLC on dry and light wet road surface in a straight line acceleration scenario is
given. Here, both measurements were synchronized, that it is possible to plot them in
one single figure.
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Figure 5.25: Friction estimation for different road conditions

As the method of estimating the road friction with recursive least squares is based on the
wheel slip, the value increases quickly for both methods when the vehicle is accelerated
from standstill at time 5s. After a calibration period of about 0.5 s, where the estimated
values are increasing very quick, the friction coefficient for the dry condition is at 0.75
and the one for wet conditions is at 0.65. Then the estimation concept is improving these
values which takes more time, about 3s, than the rough estimation in the first phase.
The final estimated maximum friction coefficient μmax of the light wet concrete is 0.85
and the one for dry concrete is at 0.94. This is conform with the information that can
be found in literature [67] and 3.10.
In order to validate this estimation further, some tests on snow or icy road would be
needed.

5.2 Hardware in the loop results

As stated before, the Markov Chain algorithm for the sensor signal replacement was
validated by HiL tests. Technical limitations on the one hand and safety concerns on
the other are the reason that the software was not tested for the prototype.
For the implementation of the software into the prototype, from a technical point of
view, there was a lack of hardware to feed defective sensor signals on the CAN to all
components. It would have been possible to influence the input to the vehicle observer
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Figure 5.26: HiL set-up for validation

but as the sensor signal is transmitted to other software blocks as well this may cause an
undefined vehicle control. In the worst case, that could have lead to a hardware defect
or an unstable vehicle.
The safety concerns arose from these technical limitations. In order to prevent mechan-
ical damage of the prototype, the limited test area and due to budget constraints, the
project management decided not to integrate the software into the vehicle. Moreover,
this concept of signal replacement for delayed or missing sensor signals was not part of
the project. Nevertheless, the Markov Chains were implemented on the VHU and tested
by a HiL process. The set-up and configuration will be given in the next section.

5.2.1 HiL set-up

The validation of the Markov Chain algorithm took place in the test-bench laboratory at
Intedis. Here, the required hardware was provided and necessary engineering safeguards
are installed to realise HiL tests. Before the validation on the target hardware, the
software had to be converted to use Fixed-Point data types and a machine code had to
be build again.
To validate the signal replacement by HiL, the signal routing of recorded sensor signals
with a random deactivation of the specific signal to the extended vehicle observer was
built in a model. By the use of the dSpace Real-Time Interface (RTI) library that
enables the CAN communication between the VHU and the applied hardware, which
will be described later on, a code is generated for the use in the software ControlDesk R©

(see Fig. 5.26). ControlDesk R© itself is an universal experiment software for Electronic
Control Unit (ECU) development which was designed, among others, for HiL validation
and testing [19]. Here, the signal routing takes place and important signals can be
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monitored easily during validation by an user friendly Graphical User Interface (GUI).
The real-time system consists of a DS 1006 processor board, a E/S DS 2211 and DS814
card to connect the real-time system to the host PC (see Fig. 5.27 left). On the front,
there are three ECU connectors, an adapter for On-board diagnostics (OBD) connector
and jacks for the battery voltage and ground. An optical cable is used for the connection
itself.

Figure 5.27: HiL for validation

The VHU is connected to an external 12V power supply and the CAN port of the
hardware (see Fig. 5.26 right). As the hardware is limited to drive two CAN channels
only, but the VHU has four channels, some modifications in the software were needed
in order to guarantee the validation was working. By this, vehicle and motor CAN were
sufficient to perform the tests. Additional connectors in the wiring between the real-time
system and the VHU enabled the access to one specific CAN signal for monitoring.

5.2.2 Validation process
In this section the process of the HiL tests are introduced. As mentioned before, these
tests were performed with recorded sensor signals from the prototype during test runs
as inputs to the VHU. Here, random sensor failures were implemented where only one
sensor at once is affected and the absence time varies between 0.5 and 3 seconds for
every sensor malfunction. During this sensor malfunction, the recorded sensor signal is
replaced by a signal that is constant zero.
The results are presented for the pure signal replacement by using the Markov Chain al-
gorithm and for the complete observer performance. Ongoing, the results are shown for
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three different malfunction scenarios and were tested with sensor signals whose absence
is seen as critical for the ADAS vehicle control. In detail, the defective performance of
the steering angle sensor, one wheel speed sensor and the yaw rate sensor is given.
To proof the enhanced accuracy of the signal replacement with the Markov Chain con-
cept, the RMSE is computed again. In contrast to the observer states, where a sliding
window was used, in HiL tests the values for the RMSE during signal loss are calculated
sequentially by:

RMSE(k) =
√

|x(k) − x̂(k)|2 (5.2)

The presented scenario was a normal anti-clockwise driving on the test area where the
speed varied between 9 and 16m/s.

5.2.3 Steering angle sensor malfunction

Figure 5.28: Signal replacement of missing steering angle sensor

The first presented scenario of sensor malfunction is the steering angle. This signal is
one of the most important signals for the lateral dynamics of the vehicle. Here, a high
accuracy is needed for a correct ADAS performance. For instance, the desired vehicle
states for the TorVec function are computed by the use of the steering angle.

In Fig. 5.28 the reference sensor signal is plotted with a solid line and the estimated
signal by the Markov Chain concept is plotted by a dashed line. During the time the
sensor signal is detected as correct, the Markov Chains algorithm is deactivated and
the signal is thus set to zero. Whenever the signal is missing, the concept is able to
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Figure 5.29: Zoomed view of signal replacement for missing steering angle sensor

replace the steering angle. Minor changes can be seen if the steering angle is around
zero. Here, small oscillations are the result of the online calculated initial distribution
but the amplitude of that deviation is very low. Moreover, it can be seen, that the
output values are more precise than the discrete state space that was defined in Tab.
4.3. As the exact performance of the signal replacement is non-optimal displayed over
the complete measurement time in Fig. 5.29 a zoomed view is given, where more details
are displayed. It can be seen, that the reference values are not met exactly at each step
but the deviation is very low.

In Fig. 5.30 the process of the RMSE for the Markov concept is plotted by a solid line
and the missing sensor signal is plotted by a dashed line. Only when the reference steer-
ing angle was around zero, the Markov concept showed a worse performance since the
sensor signal was set to zero during this time. Whenever the sensor signal was missing
during cornering, the RMSE of the Markov concept shows a much lower value than the
one measured by the sensor .
As the validation was proven for the signal replacement of the steering angle, now, the
improved performance of the complete vehicle observer shall be shown as well. Since
the steering angle is not an observed state of the observer, the yaw rate was selected to
analyse the overall observer performance.
In Fig. 5.31 the observed yaw rate with Markov input is plotted solid, the one with
sensor input is plotted dashed and the reference sensor signal is plotted dashed-dotted.
Only during cornering between 62 − 65 s and 84 − 87 s a difference between the signals
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Figure 5.30: RMSE of sensor and signal replacement

Figure 5.31: Observed yaw rate for sensor and Markov input

130



5.2. Hardware in the loop results

can be detected. This means that the vehicle observer algorithm is capable of estimating
the yaw rate quite accurately even without knowing the steering angle. As well changes
with high frequency of the steering angle have almost no influence on the yaw rate, since
the vehicle does not react on these rapidly. In consequence, the sensor signals of four
different wheel speeds and the yaw rate itself provide enough information for an accurate
vehicle observer performance.

Figure 5.32: Observer RMSE with sensor and Markov input

The analysis of the RMSE for sensor and Markov performance is shown in Fig. 5.32.
Except for the beginning, where the yaw rate is close to zero, the value of the RMSE
with Markov concept for the yaw rate estimation is always lower than the one with
sensor input. Overall, it has to be pointed out that the limit for the yaw rate estimation
neither by the sensor nor by the Markov concept is exceeded. The improved robustness
is validated in the first malfunction scenario.

5.2.4 Wheel speed sensor malfunction
The second scenario that was tested by HiL was the malfunction of one wheel speed
sensor. It is of great importance for the complete functional architecture since it has a
big influence on the vehicle speed which is used in many vehicle functions and, of course,
in the vehicle observer to estimate the tyre slip and tyre forces. The implemented
ADAS especially take the speed into account for activation decision and for the correct
computation of the actuator requests in the control algorithms. For instance, a velocity
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based gain scheduling control needs the exact vehicle velocity to compute the appropriate
controller output.

Figure 5.33: Signal replacement of missing wheel speed information

Although the wheel speed sensor in general can be seen as the one with the highest
redundancy, since the vehicle is equipped with four for each wheel, the observer algorithm
needs all four inputs to compute an accurate velocity. Here, the wheel speed sensor of the
left rear wheel was simulated as being defective, due to the fact that the front angular
velocities could be easily replaced by the respective electric machine angular velocity.
Moreover, the angular velocities of the non-driven axle are preferred for the computation
of the vehicle speed in serial cars because longitudinal positive tyre slip can be excluded.
In Fig. 5.33 the reference signal of the rear left wheel speed is plotted by a solid line
and the estimated Markov signal is plotted by a dashed line. Here, the random failure
occurrence was activated very often. As soon as the signal is detected as missing, the
Markov algorithm is able to estimate the current wheel angular velocity with satisfying
accuracy. Minor deviations, especially from 37 to 39 s of simulation time, appear.
As the exact performance of the signal replacement is non-optimal displayed over the
complete measurement time in Fig. 5.34 a zoomed view is given, where more details are
displayed. It can be seen, that the reference values are not met exactly at each step but
the deviation is very low.

To analyse the performance, the comparison of the RMSE was carried out in Fig.
5.35. Here, the value of the Markov concept is up to 10 times smaller than the sensor
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Figure 5.34: Zoomed view of signal replacement for missing wheel speed information

Figure 5.35: RMSE of sensor and signal replacement
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Figure 5.36: Observed longitudinal speed for sensor and Markov input

Figure 5.37: Observer RMSE with sensor and Markov input
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performance. This is because the setting to zero of the faulty sensor signal has a much
bigger impact on the RMSE than for the missing steering angle before. Hence, the
Markov Chain method improves the observer input very much.
In a second step, the influence of a wheel speed sensor malfunction on the observed vehicle
speed shall be analysed. In Fig. 5.36 the observed vehicle speed with Markov is plotted
by a solid line, the one with sensor by dashed and the reference by dashed-dotted. Where
the observed vehicle velocity with replaced sensor signals tracks the reference signal quite
well during signal loss, the deviation of the pure sensor performance to the reference is
bigger than expected. But when considering the influenced wheel slip calculations in
case of zero wheel speed λ = −1, this deviation can be explained. In addition, the
falsely observed velocity has an impact on the parameter estimation as well. Here, the
slip based road friction value and the effective tyre radius show different values and,
thereby, the updated vehicle model within the observer lowers the accuracy.
The RMSE are shown in Fig. 5.37. The Markov value is plotted by a solid line, the
one of the sensor by a dashed and the defined limit by a dashed-dotted one. It is no
surprise that the sensor RMSE is much higher than the Markov one. As the Markov
concept remains below the limit almost throughout the complete sensor loss time, the
performance is considered to be very good and the functionality is thus proven.

5.2.5 Yaw rate sensor malfunction

The last presented scenario is a malfunction of the yaw rate sensor. In general, if the
yaw rate sensor would have a malfunction, e.g. loss of power supply, it would cause the
absence of all three measured signals (yaw rate, long. & lat. acceleration). But since
the concept for signal replacement, up to now, is designed to replace one sensor signal
failure at once, only the yaw rate signal was affected by a malfunction here.
The yaw rate sensor signal was chosen because it represents an important state for the
lateral dynamics of the vehicle and is used in every implemented function that influences
them. Furthermore, the function TorVec, for which the observer is optimised, needs an
accurate yaw rate to compute the desired reference states for the control.

In Fig. 5.38 the performance of the Markov Chain concept for a missing yaw rate sensor
is shown. Similar to the two malfunction scenarios presented previously, the reference
signal is estimated as very good except when the yaw rate signal is close to zero. But
as the situations, where the yaw rate is very low are not critical and do not indicate an
unstable vehicle situation, small differences will not lead to fatal actuator requests from
the ADAS.
The RMSE values for the Markov and sensor signal are displayed in Fig. 5.40. Here, the
value of the Markov concept is up to four times lower than the pure sensor performance.
Moreover, it can be seen that the influence of the deviation from the signal replacement
on the RMSE, when the absolute value is very low, is very poor. Again a zoomed view is
displayed in Fig. 5.39, where more details are shown. It can be seen, that the reference
values are not met exactly at each step but the deviation is very low. Moreover the
estimated signal state switches with a high frequency so that this is like a noisy signal
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Figure 5.38: Signal replacement of yaw rate information

Figure 5.39: Zoomed view of signal replacement for missing yaw rate information
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Figure 5.40: RMSE of sensor and signal replacement

Figure 5.41: Observed yaw rate for sensor and Markov input
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for the observer input.
In Fig. 5.41 the estimated yaw rate of the observer for Markov and sensor signal input
is shown. As the yaw rate itself is considered important for a correct ADAS execution,
the influences on the same signal are analysed. Moreover, the yaw rate has only small
impacts on the lateral acceleration and the side slip angle. The results for the observer
output look quite similar to the ones from the pure signal replacement. Thereby, the
noise level of the Markov signal could be filtered by the observer algorithm. As a
consequence, the vehicle observer algorithm is not able to compensate the signal loss of
the yaw rate sensor. Thus, the presented observer is highly dependent on the yaw rate
input for the output itself.

Figure 5.42: Observer RMSE with sensor and Markov input

Finally, the RMSE for the observed yaw rate with both different inputs is presented in
Fig. 5.42. Where the Markov concept holds the defined limit, the sensor performance
crosses these limits clearly for four times.
Therefore, the performance of the yaw rate replacement by the use of Markov Chains
leads to an improved accuracy of the observed yaw rate as well.
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6 Conclusion and future work
In this chapter a conclusion about the thesis and an outlook for interesting fields of
further research, which arose during this work and will be solved in the future, are
given.

6.1 Conclusion
The dynamics of an automotive vehicle are explained in chapter 2. The basic equations
of motion are introduced and a three dimensional vehicle model is generated. This model
has 14 degrees of freedom. The vehicle model can move into all three axis in space, ro-
tate about all three axis and each wheel has 2 more degree of freedom. This model was
extended with several VDC in order to validate the interaction between the designed
functions and the standard integrated ones. This model was calibrated to match with
the real prototype and is used for the model-based design of different vehicle functions
during the eFuture project. In the end, driver models are presented which enable the
automated testing with the defined driving scenarios.
An overview of filtering and estimation concepts that are applied in the automotive in-
dustry is given at the beginning of chapter 3. Here, the EKF concept turned out to be
the best solution in terms of accuracy and computational load. After the structure of
the Vehicle Observer was introduced a detailed explanation of the different subsystems
is given. In the plausibility check the received sensor signals are handled by detection
and correction mechanisms according to ISO 26262. The observation of the defined ve-
hicle states with the EKF method by the use of non-linear vehicle model equations and
a Dugoff tyre model is shown in the Extended Kalman Filter Algorithm. By applying
the Lie-Derivative the observability of this concept is proven. Through implementation
of variable system covariance matrices the observer became robust even in situations
with high tyre slip where the model equations are not valid any more. In order to give
information about varying parameters that have big influence on the vehicle dynamics,
a parameter estimation is presented afterwards. In general, this estimation has event-
seeking characteristics to minimise the computational load. With the feedback of these
parameters to the model equations of the non-linear vehicle model, the observer has
adaptive characteristics and the accuracy is improved. To prevent actuator requests
that might bring the vehicle in an unstable state, an assessment of the stability limits
is integrated as well. At last a computation of the driven distance of the vehicle is pre-
sented that is displayed in the instrument cluster.
The algorithm to replace delayed, missing or faulty sensor signals with the Markov Chain
concept is introduced in chapter 4. After the problem of delayed or missing sensor sig-
nals is pointed out, the theory of Markov Chains, in general, is given. Here, the most
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important attributes are that they are nearly memoryless, only the last state is required,
and are applicable in discrete systems. When the buildup and functionality was shown,
the computation of the initial distribution vector of the Markov Chains for every kind
of sensor signal is described. This is followed by the design of the transition matrices
which includes the probability for state changes. The computation of the final Markov
Chain state is given at the end of this chapter.
In chapter 5 the necessary steps for the implementation of the algorithms into an au-
tomotive micro-controller are described. The software is implemented onto the micro-
controller and tested within the prototype and by hardware in the loop tests. Various
tests have been performed and three relevant tests for the Vehicle Observer are described.
During slalom driving and a double lane change the performance of the Vehicle Observer
is shown in high dynamic driving situations. The improved signal quality and accuracy
for the vehicle states is proven by reference sensors and computation of the recursive
mean-square error. Due to the lack of reference sensors for the estimated parameters,
only the verification of the estimation of the road friction coefficient for different road
conditions is given. Here, the estimation of a lower road friction coefficient on slightly
wet road conditions compared to the performance on dry road conditions indicates the
correctness of the estimation. The validation of the signal replacement was carried out
by HiL tests. Three scenarios of different sensor failures, which are seen as critical, are
presented additionally. By this signal replacement, the performance and, thereby, the
robustness of the Vehicle Observer is enhanced even during driving scenarios with high
dynamics.

6.2 Future Work

The here presented Vehicle Observer algorithm assumes some parameters as constant
although they are not. The most important ones are the road inclination and the tyre
stiffness since their influence on the model equations, so on the priori estimation results,
is very big. For this concept the road was assumed to be ideally flat, so the inclination
was set to zero. Hence, no weight distribution during hill driving or acceleration and
braking is considered. A first step would be to test the robustness of the observer to
ascents. If the accuracy would not hold the defined limits, an additional concept for the
road inclination should be developed and implemented. The tyre stiffness, in general,
depends on the vehicle speed, the road friction and the side slip angle of the vehicle. Here,
the values can vary widely. An estimation concept for the tyre stiffness of each wheel
would increase the precision of the tyre force calculation and the observer performance.
Moreover, TorVec would benefit since the maximum applicable motor torque for each
wheel could be computed depending on the current driving situation.
Another topic that should be elaborated on in the future is additional testing with the
prototype. Here, tests with additional reference sensors and on icy road would enable
the validation of the Vehicle Observer algorithm. With these reference sensors and a
scale, the results for the estimation of the vehicle weight and the effective tyre radius
which were not presented in this thesis could be validated.
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The Markov Chain concept could be improved by extending the algorithm in order to
deal with more than one sensor failure at a time. Here, only the computation of the
initial distributions has to be modified. Moreover, the used state space for each sensor
signal could be re-designed with a non-equal distribution of the states. In detail, the
focus should be laid on the values around an extended normal driving zone wherein the
vehicle states remain for over 97% of the time. Thus, the accuracy of the concept can be
improved. Finally, a feasibility analysis could be made if this concept has the potential
to replace external sensors, like radar, camera or lidar, as well.
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