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Abstract

The quest for the fundamental constituents of matter, as well as the interactions between
them, has a long tradition in science in general, and in physics in particular. Already
the ancient Greeks pursued the idea that macroscopic matter should be made up of tiny
building blocks which cannot be subdivided any further. They referred to them as “atoms”
(from “ατoµoζ”, impartible), a notion which is still present in our modern language. This
concept was fuelled anew in the 17th, 18th, and 19th century by discoveries related to
thermodynamics and the kinetic theory of gases, as well as to chemical reactions. To mention
two examples, the ideal gas law (and special cases thereof such as the law of Boyle-Mariotte)
can be explained by assuming numerous collisions of tiny particles with each other and
with the walls of the container. Later, Dalton used the concept of atoms to explain why
in chemical reactions elements react with each other always in proportions of small integer
numbers, the so-called “law of multiple proportions”, which became one of the foundations
of stoichiometry.

Since the late 19th and early 20th century we know that atoms are not impartible,
but have a substructure. The discovery of the electron, the phenomenon of radioactivity,
Rutherford’s scattering experiment and the resulting atomic model, and the formulation
of relativity and quantum mechanics are among the early milestones towards the era of
subatomic physics.

The search for the fundamental building blocks of matter is inherently related to the
problem of resolving smaller and smaller length scales. Since the resolution power of any
analysing apparatus is of the order of the deployed wavelength λ, the problem is equivalent
to creating smaller and smaller wavelengths. For instance, an optical microscope, which uses
visible light, can resolve structures down to ∼ 500nm. Decreasing the wavelength further
leads to X-rays, which are used to analyse cristals with a lattice spacing of several angstroms
(1Å = 0.1nm). A further reduction of wavelengths is obtained by using matter waves.
According to de Broglie, every particle of momentum p can be assigned a wavelength λ = h/p,
where h is Planck’s constant. Electron microscopes use this principle to reach resolutions
which are several orders of magnitude better compared to ordinary light microscopes.

By further increasing the momentum (or, equivalently, the energy) of a particle, one
can obtain a resolution of structures in the region of pico- or even femtometers. For this
purpose, particle accelerators have been developed since the middle of the last century.
Their main benefit is the possibility to study particle reactions in a laboratory environment.
Elementary particles get accelerated either in a straight line (linear colliders) or in storage
rings. Afterwards, the particles are brought to collision, either by letting particles from two
oppositely moving beams collide, or by sending fast particles onto a target at rest (fixed
target experiment). The particle energies achieved at an accelerator entail several important
consequences. First, since the energies reach or, in many cases, exceed the rest energy,
relativistic kinematics has to be applied according to Einstein’s relation between a particle’s
energy E, its momentum p and its rest mass m,

E2 = m2c4 + p2c2 , (1)

where c denotes the speed of light. Second, particle number is not conserved in this type
of reactions. Though particle reactions obey the fundamental conservation laws of nature
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such as overall energy, momentum, or charge conservation, particles can be created and
annihilated. One major consequence of this feature is the possibility to create heavy particles
from energetic light ones, which becomes clear by looking at eq. (1). The produced heavy
particles are usually not stable, but decay within a fraction of a second. The decay products
leave tracks and are thereby identified and measured in a detector, which is built around
the collision point. Third, the result of a single reaction cannot be predicted with absolute
certainty. The reaction of two particles t1 and t2 or the decay of a heavy particle T can –
according to quantum mechanics – result in different final states Xn and one can only give
a probability pn for each of the Xn to occur. These probabilities are determined at particle
accelerators by measuring cross sections and decay rates , respectively. One therefore needs
a multitude of collisions in order to determine each of the pn accurately.

In this way, and by means of a close interplay between theory and experiment, many
new particles have been discovered and symmetry principles established. To mention a few
examples, in 1928 Dirac’s relativistic quantum theory of an elementary spin-1/2 particle
predicted the existence of anti-particles, whose first representative was discovered in 1932 in
form of the positron, the electron’s anti-particle. Later, in 1970, after the quarks had been
accepted as physical degrees of freedom and the three species u, d, and s were known, the
existence of a fourth quark (charm) was predicted by Glashow, Iliopoulos, and Maiani [1]
in order to explain the tiny decay width in flavour-changing neutral current decays such
as KL → µ+ µ−. The charm quark was discovered four years later in the J/ψ resonance
independently by two experiments. Another example is related to discrete symmetries. The
violation of the CP symmetry, the combined transformation of charge conjugation (C) and
parity (P), was observed in 1964 by Fitch and Cronin in decays of neutral Kaons. In 1973,
Kobayashi and Maskawa [2] suggested a third generation of fermions as one possibility to
explain this phenomenon. The first members of the third generation, the τ -lepton and the
bottom (b)-quark, were found in 1974 and 1977, respectively. Their partners, the τ -neutrino
and the top (t)-quark, were discovered in 2000 and 1995, respectively. However, even before
its discovery via direct production at the Tevatron, the effects of the top quark were already
seen in B-meson oscillations at the ARGUS experiment at DESY Hamburg in 1987. From
the value of the oscillation frequency one could already infer that the top quark is very heavy.
We will come back to this point below. This list of examples of interplay between theory
and experiment is by far not exhaustive and could be extended almost arbitrarily. One of
the latest examples is the discovery of the Higgs boson at the LHC in 2012 [3,4], which was
already predicted in the 1960’s by Brout, Englert [5], Higgs [6–8] and others [9, 10] to give
masses to vector bosons in gauge theories via spontaneous symmetry breaking.

On the theoretical side, the concepts of special relativity and quantum mechanics were
combined to formulate quantum field theory (QFT). Early breakthroughs in quantizing a rel-
ativistically covariant theory were achieved in the field of quantum electrodynamics (QED)
by Feynman [11], Schwinger [12, 13], and Tomonaga [14]. Later on, the concept of non-
abelian gauge theories was introduced by Yang and Mills [15], and their quantization was
achieved by Faddeev and Popov [16], as well as by Becchi, Rouet, Stora, and Tyutin [17–19].
The ideas of the spontaneous breaking of global and local symmetries, initially put forward
by Goldstone [20], Nambu [21], Jona-Lasinio [22,23] and the aforementioned persons related
to the Higgs mechanism, marked additional milestones in the formulation of modern par-
ticle theory. The unification of the electromagnetic and weak interaction by Glashow [24],
Salam [25], and Weinberg [26], as well as the formulation of Quantum Chromodynamics
(QCD) [27] and the phenomenon of asymptotic freedom [28,29] paved the road towards the
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Standard Model of Particle Physics , a theory that comprises all currently known elemen-
tary particles, as well as their interactions, with the exception of gravity. The Standard
Model (SM) is a spontaneously broken, non-abelian local gauge theory. This kind of theory
was shown to be renormalisable by ’t Hooft and Veltman [30]. Together with the insights
on the renormalisation group by Wilson [31, 32], this guarantees the predictive power of
the theory also beyond the Born level. Besides, the development of renormalisation group
techniques also triggered the development of effective field theories (EFTs), which are ap-
plicable to physical problems with widely separated scales SH � SL. The EFT serves to
efficiently describe processes at scales of order SL, and can be formulated in terms of the
pertinent degrees of freedom. Among the most prominent representatives of EFTs are Chi-
ral Perturbation Theory (ChPT) [33–37] (for reviews, see [38, 39]), Heavy-Quark Effective
Theory [40–44] (for reviews, see [45, 46]), Soft-Collinear Effective Theory (SCET) [47–50]
(for a review see [51]), and the Effective Weak Hamiltonian [52]. Recently, also the complete
dimension-six Lagrangian for the SM was formulated in [53–61], (see also [62, 63]), building
on earlier work from [64]. Many EFTs allow to formulate factorization theorems and serve as
precision tools in contemporary particle physics phenomenology. Many excellent textbooks
on QFT, the SM of particle physics, and EFTs can be found on the market (see, e.g. [65–72]).

The particle content of the SM consists of six quarks (u, d, c, s, t, b) and six leptons (νe,
e, νµ, µ, ντ , τ), all of which are spin-1/2 fermions and constitute the matter content of the
SM. They can be classified into three families or generations , where {u, d, νe, e}, {c, s, νµ, µ},
and {t, b, ντ , τ} make up the first, second, and third generation, respectively. Moreover, each
fermion has a corresponding anti-particle. The interactions between them are based on a
local SU(3)C × SU(2)L × U(1)Y gauge symmetry, which gets spontaneously broken via
the Higgs mechanism to SU(3)C × U(1)em, where U(1)em is the gauge symmetry of QED.
The corresponding spin-1 gauge bosons (or force carriers) are the gluons g, associated with
the colour group SU(3)C of the strong interaction, the W± and Z0 bosons associated with
the weak interaction, and the photon γ which mediates the electromagnetic force. The
three generations of quarks and leptons differ only by their (highly hierarchical) masses, but
have otherwise identical couplings to gauge bosons. Finally, the Higgs boson H is the only
currently-known elementary spin-0 particle.

The dynamics of the SM particles is encoded in a Lagrangian density which can be
subdivided into a gauge (or kinetic) part that contains all terms with field strength tensors
and covariant derivatives and therefore the gauge fields, into a Higgs part which contains the
Higgs potential, and into a Yukawa part which contains the couplings of scalars to fermions.
After diagonalisation of the Yukawa matrices residual terms remain in the kinetic terms of the
fermions which are non-diagonal in familiy space. This mixing of the different quark species
(“flavours”) is encoded in the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix [2,73] 1.
The quark mixing pattern via the CKM matrix allows for flavour transitions via the weak
interaction and entails a plethora of interesting applications, the most prominent ones being
neutral meson mixing and the phenomenon of CP violation. The quark flavour sector of
the SM has been subject to numerous experimental and theoretical studies in recent years.
In particular, the experiments at the B-factories at SLAC in Stanford (California, USA)
and at KEK in Tsukuba (Japan), but also at DAFNE in Frascati (Italy), the BEPC in
Beijing (China), the Tevatron in Batavia (Illinois, USA) and recently at the LHC in Geneva
(Switzerland), have performed precision tests of various flavour observables and confirm the

1Due to the non-zero neutrino masses, there occurs also mixing in the lepton sector, described by the
PMNS matrix.
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CKM mechanism as the correct description of quark flavour physics. Since the area of quark
flavour physics is a very active field of reserach, about half of the papers accumulated in the
present thesis are on this topic.

The SM is also extremely successful in describing all phenomena up to the highest ac-
cessible energies in the gauge and the Higgs sector. But despite the tremendous success of
the SM, there is consensus that most likely it is not the ultimate theory of nature. A few
prominent shortcomings and open questions related to the SM are:

• Why do the masses of the fermions span more than ten orders of magnitude? Why do
we observe three generations?

• What is the origin of the large hierarchy between the electroweak and the Planck scale?

• Are there new particles, new interactions or other new degrees of freedom (e.g. Super-
symmetry, axions, additional spatial dimensions)?

• What is Dark Matter made of? What is Dark Energy?

• Why is there a matter-antimatter asymmetry in our Universe? What is the mechanism
of baryo- and leptogenesis? Are there additional sources of CP violation?

• Are neutrinos Dirac or Majorana particles, i.e. are they their own anti-particles?

• Do the strong and electroweak interaction get unified at some high scale?

• Can gravity be embedded into the theory?

Again, this list is not exhaustive. Owing to these open questions, one expects new effects
(new particles and/or interations) at yet unexplored scales, so-called Physics beyond the SM ,
or New Physics . There are essentially two approaches to search for New Physics: Direct
searches via the on-shell production of new particles at colliders, and indirect searches via
virtual effects in low-energy processes, mostly in flavour physics, just like the aforementioned
effects of the heavy top quark in B-meson oscillations. In both approaches, precision in
theoretical predictions and in experimental measurements is an indispensable ingredient for
testing the SM, and for the quest of finding effects beyond it. Since interacting quantum field
theories lead to expressions that are non-linear in the fields, expressions for cross sections
and decay rates cannot be written down in closed form, but they can be organised in a
power series in the coupling constants, the perturbative expansion. Via the knowledge of
higher orders in the perturbative expansion, the perturbative uncertainty can be reduced
order by order. The computation of higher-order perturbative corrections is therefore of
crucial relevance [74], and besides improved theory predictions it has also been responsible
for tremendous progress in computational techniques. The present thesis accumulates papers
that contain perturbative calculations from different fields of high-energy physics, such as
quark flavour physics, collider physics, and supersymmetric gauge theories. Moreover, they
address technical and conceptual issues, as well as results of phenomenological analyses.

Unfortunately, except for some tensions which are statistically not significant, there is cur-
rently no definite evidence for physics beyond the SM, neither in direct nor indirect searches.
On the experimental side, current and future facilities such as the LHC, the planned Belle-II
experiment, and experiments related to the charged lepton and the neutrino sector will try
to shed light on the open questions related to particle physics, the fundamental constituents
of matter and their interactions, and will also contribute to technological progress. On the
theory side, the concepts of EFTs, precision calculations, and model building will be among
the main pillars to make the most of the experimental data and to suggest new measurements
and observables.
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The present thesis consists of three parts, with a total of twelve scientific articles [75–86].
The first part contains work that is related to the quark flavour sector of the Standard
Model [75–81]. The second part deals with higher-order corrections in perturbative QCD
to two particular quantities which have numerous applications in collider physics, namely
the quark and gluon form factors [82, 83]. Finally, the third part consists of calculations in
supersymmetric gauge theories, in particular N = 4 super Yang-Mills theory [84–86]. In the
following I will summarize the papers in the different parts in turn and in the end comment
on my personal contributions to the various articles.

The first part “Quark Flavour Physics” contains papers from two sub-areas of this field
of research. Rare and radiative B-decays [75,79–81], as well as non-leptonic B-decays [76–78].
These topics also constitute two of the main pillars of the DFG Research Unit “Quark
Flavour Physics and Effective Field Theories”, where the author is principal investigator of
the project on non-leptonic B-decays and participating researcher in the project on rare and
radiative B-decays. The Research Unit was established in 2013 in Siegen and Dortmund,
and recently got extended until the end of 2018.

The first part of the thesis starts with the paper “Heavy-to-light currents at NNLO in
SCET and semi-inclusive B̄ → Xs�

+�− decay” [75], which already got completed before the
start of the Research Unit. It contains the matching calculation from QCD onto SCET for
the complete set of Dirac structures at next-to-next-to-leading order (NNLO), i.e. O(α2

s).
In order to determine the matching coefficients at this order, a two-loop computation is re-
quired, which is carried out by means of Passarino-Veltman reduction of tensor integrals [87],
followed by Laporta-reduction [88, 89] to so-called master integrals via integration-by-parts
identities [90, 91], and finally the evaluation of the master integrals. These techniques have
become standard in the field of loop computations and will be applied in all following papers
which deal with the evaluation of loop integrals. The master integrals have been known ana-
lytically from earlier calculations such as the two-loop matching of the vector current [92–96],
and NNLO corrections to non-leptonic B-decays [97–99]. The size of the NNLO correction to
the matching coefficients depends on the momentum transfer q2 of the heavy-to-light decay,
and one can identify regions in q2 where the NNLO correction is sizable (see Figure 1 of [75]).
However, the perturbative corrections are always small enough such that this does not indi-
cate a breakdown of perturbation theory. With the matching coefficients at NNLO at hand
we discuss three physical applications: Heavy-to-light form factor ratios, exclusive radiative
B-decays, and the semi-inclusive B̄ → Xs�

+�− decay. In the context of heavy-to-light form
factor ratios we discuss relations between different QCD form factors FB→M

i (E) (M denotes
a light meson and E its energy), which contain short-distance coefficients that are expressible
in terms of the heavy-to-light matching coefficients. For M being a pseudoscalar or vector
meson, there are in total five independent short-distance coefficients (Eq. (54) of [75]). And
in the physical form factor scheme, there are only three non-trivial ratios thereof (Eq. (58)
of [75]), which we discuss in detail. In these ratios, the size of the NNLO corrections is mod-
erate, and in general smaller than the next-to-leading order (NLO) terms (see Figures 2 – 4
of [75]). Moreover, their scale dependence decreases, as expected when adding another term
in the perturbative expansion (see Figure 2 of [75]). The exclusive radiative B-decays then
make use of the form factor ratios at maximum recoil. The inclusive decay B̄ → Xs�

+�−

was measured by the B-factories [100–103]. In order to reduce background coming from
b → c �− ν̄� → s �+�− ν�ν̄�, a cut on the invariant mass mX of the Xs system is imposed.
Babar chooses mX = 1.8 GeV, whereas Belle takes mX = 2.0 GeV. In our third applica-
tion, we compute the zero-crossing q20 of the forward-backward asymmetry in semi-inclusive
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B̄ → Xs�
+�−, i.e. in the presence of a cut on mX . Our result q20 = 3.40+0.22

−0.25 GeV2 for
mX = 1.8 GeV (q20 = 3.34+0.22

−0.25 GeV2 for mX = 2.0 GeV) is considerably smaller than in the
exclusive B̄ → K∗�+�− case [104,105], but in the same region as in the inclusive case [81,106].

The two following papers in the first part deal with the penguin amplitudes at two-loop
order in the QCD factorisation approach [107–110] to non-leptonic decays of B-mesons. The
QCD factorisation approach disentangles short and long distances (corresponding to pertur-
bative and non-perturbative quantities, respectively) in the decay amplitude systematically,
and the established factorisation formula is valid to all orders in αs and to leading order
in ΛQCD/mb. The first work “Master integrals for the two-loop penguin contribution in
non-leptonic B-decays” [76] contains the result of the most difficult part of the two-loop
calculation, namely the analytic evaluation of the master integrals. This task is complicated
due to the fact that it is a genuine two-loop, two-scale problem, the two scales being the
momentum fraction of the quark in one of the final-state mesons, and the quark-mass ratio
m2

c/m
2
b . A common method to solve this kind of master integrals are differential equations

in the kinematic invariants [111, 112]. This method got recently refined in the sense that if
a particularly suitable basis of master integrals is chosen the dependence on the kinematic
invariants in the differential equations is factorised from that on the number of space-time
dimensions [113]. A basis that exhibits this property is referred to as canonical basis . In
our work, we identify the canonical basis of master integrals for the two-loop penguin am-
plitudes, and subsequently give analytic results for all of them in terms of iterated integrals
with rational weight functions. Our work is the first application of this method to the case
of two different internal masses (mc and mb). There are multiple benefits of choosing a
canonical basis. First, the system of differential equations disentangles order by order in
the dimensional resularisation parameter ε. Second the solution can be written in terms of
iterated integrals whose weight is uniform within a certain power in the ε-expansion. Third,
if the basis of master integrals is chosen unhandily, one might have to include terms in
individual integrals which are of higher weight than what can appear in the final expres-
sion of the QCD amplitude. These fake higher weights will cancel once the contributions
of all master integrals are summed up since the expression for the QCD amplitude is inde-
pendent of the basis that one chooses for the master integrals. If, one the other hand, a
canonical basis of master integrals is chosen, fake higher weights are absent by construction
at any stage of the calculation. Fourth, the expression of the QCD amplitude as a linear
combination of pre-factors times master integrals looks much simpler in a canonical basis,
especially the denominators of the pre-factors of the master integrals. Finally, and indeed
most importantly, finding analytic results by means of the method of differential equations
in a canonical basis catalyses the convolution with the light-cone distribution amplitude of
the light meson, which in turn enables us to obtain the leading penguin amplitudes at two
loops in QCD factorisation almost completely analytically. The computation and the results
of these amplitudes is the subject of the next paper “Two-loop current-current operator
contribution to the non-leptonic QCD penguin amplitude” [77]. The main motivation to
calculate the penguin amplitudes at two-loop order are the direct CP asymmetries. They
vanish at leading order (LO) since the amplitude is real, which is a consequence of the fact
that in the QCD factorisation framework strong phases are generated perturbatively or via
power corrections. Hence, our NNLO correction is only the first perturbative correction, so
NNLO is in fact NLO for the direct CP asymmetries. In our work [77], we focus on the
contribution from the current-current operators Q1,2 from the effective weak Hamiltonian,
since these insertions already render the bulk of the contribution at NLO, and, moreover,
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c/m
2
b . A common method to solve this kind of master integrals are differential equations
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only a subset of about two dozens of diagrams (out of a total of ∼ 70) has to be evaluated.
After the calculation of the bare two-loop amplitude, ultra-violet (UV) renormalisation and
infra-red (IR) subtraction (via matching onto SCET) is carried out in order to cancel all
poles in the dimensional regularisation parameter ε. With the NNLO contribution at hand,
we study its impact on the leading penguin amplitudes ap4 (with p = u, c) and provide a first
estimate of NNLO CP asymmetries in penguin-dominated b → s transitions. One observes
that the new correction is rather large, see eqs. (13), (14) and Figure 2 in [77]. However, this
does not imply a breakdown of the perturbative expansion, as we will argue below. Next,
we study the dependence of the amplitudes on the renormalisation scale µ, which is usually
considered as a measure of the accuracy of the approximation at a given order in perturba-
tion theory. This is shown in Figure 3 of [77]. One observes a considerable stabilization of
the scale dependence for the real part, but less for the imaginary part. The reason for this
feature is the fact that the imaginary part vanishes at LO. We also study ratios of penguin
amplitudes over the sum of colour-allowed and colour-suppressed tree-amplitudes (see Fig-
ure 4 in [77]), as well as estimates of the direct CP asymmetries, including suitably chosen
linear combinations of asymmetries (see Table 1 in [77]). Comparing the NLO and NNLO
predictions of direct CP asymmetries, one observes that the large NNLO correction of the
penguin amplitudes gets diluted in the physical observables, for several reasons. First, in
most of the channels also the tree amplitudes enter. Second, there is the contribution from
the power-suppressed but chirally enhanced scalar penguin amplitude rM2

χ ap6(M1M2), which
is small when meson M2 is a vector meson, but larger than the leading-power amplitude for
pseudoscalar M2. It interferes constructively if M1 is pseudoscalar, and destructively if M1

is a vector meson. It follows from this brief discussion that the impact of the NNLO correc-
tion to ap4 is always diluted in the full penguin amplitude. In the third column of Table 1
in [77] we give the predictions for the CP asymmetries once the power-corrections from weak
annihilation is added on top. These power-corrections are parametrised in the annihilation
model via a magnitude and a phase. They have a large impact on the central values, and give
rise to sizable uncertainties, which, however, are partially tamed in the linear combinations
δ(M1M2) and ∆(M1M2). This discussion clearly shows the need to better understand the
power-suppressed terms in QCD factorisation.

The next paper in the first part, “Two-loop master integrals for non-leptonic heavy-to-
heavy decays” [78], is the last one on non-leptonic B-decays. It deals with heavy-to-heavy
decays like, for example, B → Dπ. These decays are interesting on their own grounds, and
address – at least indirectly – the aforementioned lack of understanding of power-corrections
in QCD factorisation. In the QCD factorisation framework, the decay B → Dπ at leading
power is very clean. There is neither a colour-suppressed tree amplitude nor penguin con-
tributions, and spectator scattering and weak annihilation are power-suppressed [108]. One
therefore only has the vertex kernels to the colour-allowed tree amplitude. Hence, a precise
theory prediction of this single contribution, together with comparison to experimental data,
might give a reliable estimate of the size of power corrections in QCD factorisation. We aim
at computing the short-distance part of the B → Dπ amplitude to NNLO. The NNLO cor-
rections may be significant in size since the contribution at NLO is colour suppressed and
appears alongside small Wilson coefficients. The calculation again amounts to the evaluation
of ∼ 70 two-loop diagrams, whose reduction to master integrals is performed along the same
lines as in previous works. The paper [78] then constitutes another non-trivial application
for finding a canonical basis for two-loop master integrals in a genuine two-scale problem.
The results are given as linear combinations of Goncharov polylogarithms. Again, the solu-
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tion takes a convenient form for a subsequent convolution with the light meson’s light-cone
distribution amplitude in the QCD factorisation approach. Comparing the integrals in [78]
to those in [76], one observes both, similarities and differences. Both are two-loop problems
with the same two scales (momentum fraction u and quark-mass ratio zc). The integrals
in [78] are a bit less involved compared to those in [76], in a sense that the linear combi-
nations that form a canonical master integral are shorter, the occurring weights are fewer,
and the choice of kinematic invariants is less complicated. The main reason for this is that
in [78] the external kinematics of the final state contains also the second internal mass, no-
tably mc. On the other hand, the only five-line integral in [76], a two-point function (M22),
is in fact a one-scale integral, whereas in [78] we encountered several five-line integrals with
four external legs which are genuine two-scale functions. Moreover, most of the integrals
in [78] are needed to order O(ε4), whereas in [76] all but two integrals were required only
to order O(ε3). Putting the computation of master integrals in a canonical basis on more
general grounds, it will be interesting to investigate how the canonical basis depends on
the number of loops, legs, scales, space-time dimensions, and on the external kinematics.
Every representative therefore sharpens our understanding of the patterns that such bases
follow. We hope that our examples will contribute to the development of an algorithm for
the automated construction of canonical bases.

The project of NNLO corrections to B → Dπ in QCD factorisation was done in collabora-
tion with the Ph.D. student Susanne Kränkl, who did the calculation under my supervision.
Every step was carried out and cross-checked by both of us. The master integrals already got
published in [78]. The QCD amplitude, the phenomenological analysis of B → Dπ decays,
and the interpretation of the results are in preparation.

The next two papers in the first part deal with the inclusive radiative decay B̄ → Xsγ,
which is still a paradigm for precision tests of the Standard Model in quark flavour physics.
The first estimate to NNLO in QCD was given in 2006 [114], where certain contributions –
which in part even count as NLO – were not included since they were assumed to be negligible.
A major part of these unknown pieces are four-body contributions corresponding to the
partonic process b → sq̄qγ at NLO, which we address in the paper “Four-body contributions
to B̄ → Xsγ at NLO” [79]. The smallness of the Wilson coefficients of penguin operators
and CKM-suppression of current-current operators suggests that this contribution should be
small. However, only an explicit calculation can turn this estimate into a firm statement.
The calculation arises from tree and one-loop Feynman diagrams, but it involves the four-
body phase-space integration in dimensional regularisation, which makes the calculation non-
trivial owing to the appearance of higher transcendental functions such as hypergeometric
functions. Moreover, the cancellation of poles in the dimensional regularisation parameter ε
is only achieved after proper UV and IR renormalisation. The latter gives rise to logarithms
ln(mb/mq) when turning the dimensional into a mass regulator. These logarithms stem from
the phase space region of energetic collinear photon radiation off light quarks in the final
state. They are of the same physical origin as the collinear logarithms ln(mb/m�) in inclusive
B̄ → Xs�

+�− [115], and are computed with the splitting function technique. We perform
an exhaustive numerical analysis. We find a pronounced reduction of the scale uncertainty
compared to the corresponding LO [116] contribution (Figure 7 in [79]). In addition, we
study the dependence on the photon energy cut and the quark-mass ratio m2

c/m
2
b (Figure 8

in [79]). We find that the contribution of the four-body NLO correction to the total rate in
the Standard Model is below the 1% level. This statement even holds true once we vary the
input parameters such as the charm mass, the photon energy cut, the masses of the light
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quarks, or the renormalisation and matching scales.
The second paper on B̄ → Xsγ, “The (Q7, Q1,2) contribution to B̄ → Xsγ at O (α2

s)” [80],
addresses the interference of the magnetic dipole operator Q7 with the current-current op-
erators Q1,2 at O (α2

s). This contribution was considered in [117] in the limit mc � mb/2
and then extrapolated to physical charm masses. In [80] we computed this interference for
mc = 0, and use both limits for an interpolation in mc. The calculation amounts to the eval-
uation of more than 800 four-loop Feynman diagrams of which two-, three-, and four-particle
cuts need to be taken. Besides the bare calculation at O (α2

s) we also provide all necessary
counter-terms and a master formula (Eq. (2.10) of [80]) which shows how the renormalised
matrix elements are constructed. Further, we investigate the impact of the interpolation in
mc (Figures 4 and 5 [80]). In the phenomenological study we also include all those contri-
butions that have become available since 2006. Their sum amounts to a shift of +6.4%, and
the updated prediction for the CP- and isospin-averaged branching ratio in the Standard
Model reads BSM

sγ = (3.36± 0.23)× 10−4 for a photon energy cut of Eγ > 1.6GeV. It agrees
very well with the current experimental world average Bexp

sγ = (3.43 ± 0.21 ± 0.07) × 10−4

and allows to put stringent constraints on many extensions of the Standard Model, e.g. on
the mass of the charged Higgs boson in type-II two-Higgs doublet models [118].

The final paper of the first part, “Inclusive B̄ → Xs�
+�−: complete angular analysis and

a thorough study of collinear photons” [81], deals with the rare inclusive decay B̄ → Xs�
+�−.

We compute logarithmically enhanced electromagnetic corrections to the entire set of angular
observables. The logarithmic enhancement stems from the region in phase space where an
energetic photon is radiated collinearly off a final state lepton [115]. We observe that the
structure of the double differential decay rate is modified in the presence of QED corrections.
The simple second-order polynomial in the angular variable z (Eq. (1.4) in [81]) is replaced by
a complicated functional dependence (Eq. (3.28) in [81]). We therefore propose a procedure
how to project onto the individual observables, and in addition identify new observables
which vanish if only QCD corrections are taken into account. We then give the Standard
Model predictions of all (conventional and newly identified) observables for different bins in
the lepton invariant-mass squared q2, thereby taking all available NNLO QCD, NLO QED
and power corrections into account. To supplement our analytic calculation we carry out
a dedicated Monte Carlo study on the treatment of collinear photons. We investigate how
the electromagnetic logarithms are treated correctly in the presence of angular and energy
cuts. We find that our analytical predictions can be directly applied, with the exception of
the electron channel at BaBar, where our numbers have to be modified by a few percent
(Eqs. (7.1) and (7.2) in [81]). Finally we investigate the sensitivity of the observables to
New Physics in a model-independent way. We give all observables in terms of ratios of high-
scale Wilson coefficients, which we assume to be altered by new interactions. We also study
correlations between different observables, bins and channels, and extrapolate to the final
Belle II data set of 50 ab−1. We find that the inclusive B̄ → Xs�

+�− decay can constrain
the ratios of high-scale Wilson coefficients significantly, and gives additional and in part
complementary information compared to exclusive b → s�+�− transitions. Last but not
least, we study the experimental sensitivity to the newly identified observables at Belle II.

The second part of the thesis discusses the quark and gluon form factors to three loops
in perturbative QCD, and contains the articles [82] and [83]. The quark form factor is the
coupling of a virtual photon to a massless quark-antiquark pair, while the gluon form factor
is the coupling of a Higgs boson to a pair of gluons in an effective Lagrangian where the top
quark is heavy and has been integrated out [119, 120]. These form factors are the simplest
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objects containing infrared divergences at higher orders in massless quantum field theory,
and therefore are of particular interest in many respects. They appear, for instance, as
virtual higher-order corrections in coefficient functions for the inclusive Drell-Yan process,
in deep-inelastic scattering, and in the inclusive Higgs production cross section (for recent
updates including all currently available corrections, see [121, 122]). In these observables,
the infrared poles of the form factors cancel against infrared singularities from real radiation
corrections. The computation of perturbative QCD corrections to the quark and gluon form
factor has a rather long history. The one- and two-loop contributions were already completed
several years ago [123–127]. In [127] closed expressions valid to all orders in the dimensional
regularisation parameter ε were provided. At the three-loop order, the pole terms in ε can
be inferred from the three-loop calculation of the splitting functions [128–131]. Numerical
values for the finite pieces were first obtained in [132]. In our work [82] we give analytic
results for the three-loop quark and gluon form factors through to the finite terms, thereby
confirming the ones from [132]. In addition, we provide results for certain subleading terms
in the ε-expansion. The form factors are obtained by applying projection operators on the
three-loop amplitudes (equations (2.1) and (2.2) in [82]). Afterwards, the calculation again
amounts to a Laporta reduction to master integrals, followed by the computation of the
latter. Both steps are highly non-trivial. The system of linear equations that is generated
during the course of the Laporta reduction reaches almost a million equations, and the run-
time to solve them is of the order of several weeks to a few months. In total, one obtains
22 master integrals, 14 of which are genuine three-loop vertex functions. Their analytic
evaluation proved to be a major technical challenge, which was completed only in several
steps [133–136]. Having analytic results through to three loops at hand, one can use them for
several applications, two of which are discussed in our work [82]. First, by general arguments
about the infrared pole structure of QCD amplitudes one can extract the cusp and collinear
anomalous dimensions to three loops. We confirm all results obtained previously in the
literature [130, 131, 137, 138]. Moreover, in this context we derive the pole structure of the
four-loop result, assuming Casimir scaling of the cusp anomalous dimension. As a second
application, we derive the matching coefficients onto SCET up to three loops.

In the second article of part II of the thesis [83], we extend the results of [82] to two
more orders in the ε-expansion. The master integrals became available analytically to this
order in [139]. We confirmed these results partially analytically and numerically to better
than one per-mille for the remaining coefficients, and subsequently used them to derive
the three-loop quark and gluon form factors to O(ε2). These contributions are relevant in
the study of the infrared singularity structure at four loops. In particular, the O(ε) terms
of the three-loop form factors are required for the extraction of the four-loop quark and
gluon collinear anomalous dimensions. The O(ε2) terms contribute to the finite part of the
infrared-subtraction of the form factors at four loops. It is this infrared-subtracted finite
part which is relevant for the study of the next-to-next-to-next-to-next-to-leading (N4LO)
Drell-Yan and Higgs production processes. In particular, the O(ε2) three-loop contributions
represent a finite ingredient to these processes at four-loops. In this context, one also needs
the O(ε6) and O(ε4) results of the one- and two-loop form factors, respectively. Since all-
order expressions for these quantities exist (see e.g. [127]) it is very simple to obtain them.

The third part of the thesis contains the articles [84–86], and is devoted to multi-loop
calculations in supersymmetric gauge theories, in particular N = 4 super Yang-Mills (SYM)
theory. N = 4 SYM is not realised in nature in the unbroken way in which it is written down
in the Lagrangian [140], but due to its large symmetry content is ideally suited as a testing
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ground for properties of many observables in realistic theories such as QCD. It is a conformal
theory and as such has vanishing β-function. For pedagogical introductions to N = 4 SYM,
see [141, 142]. In recent years, scattering amplitudes in N = 4 SYM have been intensively
studied, and many properties such as dual conformal invariance have been investigated in
order to exploit the beauty and simplicity that scattering amplitudes in N = 4 SYM ex-
hibit (for a review, see [143]). Form factors, on the other hand, were so far only marginally
studied in N = 4 SYM. The Sudakov form factor for instance has been known to two loops
only, and its calculation dates back to 1986 [144]. Compared to scattering amplitudes, form
factors are, on one hand, simpler because they do not depend on Mandelstam variables like
s or t, but have trivial kinematic dependence. On the other hand, form factors are more
complicated than scattering amplitudes since even at leading colour they have contributions
from non-planar diagrams. Expressing the latter statement in the context of the unitarity
approach, it means that form factors are sensitive to subleading double trace terms of scat-
tering amplitudes. The main motivation for our work [84] was therefore to see how much of
the simplicity of scattering amplitudes carries over to form factors, and to extend the calcu-
lation [144] to one higher loop. We construct the Sudakov form factor from unitarity cuts,
and were surprised to see that at one, two and three loops, the form factor can be written as
a linear combination of, respectively, one, two and eight integrals only. They are not master
integrals in the sense of a Laporta reduction, but instead have the beautiful property that
each coefficient of the Laurent expansion about ε = 0 is of uniform transcendental weight.
For the derivation of this result, our preliminary work [82, 83] proved to be of essential rel-
evance. From the result we can make a number of further interesting observations. First, a
nice manifestation of the leading transcendentality principle [145] is revealed by specifying
the QCD quark and gluon form factors to a supersymmetric Yang-Mills theory containing
a bosonic and fermionic degree of freedom in the same colour representation. By doing so,
the leading transcendentality pieces of the quark and gluon form factor become equal, and
coincide, up to a normalisation factor, with the coefficients of the Sudakov form factor in
N = 4 SYM. Second, the cusp and collinear anomalous dimension can be inferred from the
logarithm of the form factor. Finally, we investigate the UV behaviour of the form factor,
which is UV-finite in D = 4 dimensions. The question in which dimension Dc – the so-called
critical dimension – it first develops UV-divergent parts, is of theoretical interest, can give
useful cross-checks on calculations, and constrains the appearance of certain diagrams. We
find that Dc = 6 for the one-, two-, and three-loop form factor.

The second article of this part of the thesis [85] deals with the angle-dependent cusp-
anomalous dimension in supersymmetric Yang-Mills theory. In a previous paper [146], a
scaling limit was identified in which the ladder diagrams are dominant and are mapped onto
a one-dimensional Schrödinger problem. In our article [85] we show how to solve the latter in
perturbation theory and provide an algorithm to compute the solution at any loop order. The
answer is written in terms of harmonic polylogarithms, which at L loops are of homogeneous
weight 2L − 1. Moreover, we give evidence for two curious properties of the result. First,
we observe that the result can be written using the subset of harmonic polylogarithms with
non-negative indices only, which we confirm to six loops. Second, we show that in the light-
like limit, only single zeta values and products thereof appear in the asymptotic expansion,
although multiple zeta values of depth ≥ 2 would be allowed in principle. Again, we verify
this feature explicitly up to six loops. We then extend the analysis of the scaling limit to
systematically include subleading terms. This leads to a Schrödinger-type equation, but with
an inhomogeneous term. We show how its solution can be computed in perturbation theory,
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in a way similar to the leading order case. Finally, we analyse the strong coupling limit of
these subleading contributions and find that they are in agreement with the corresponding
string theory answer.

The final article of the thesis [86] is the computation of the angle-dependent cusp-
anomalous dimension in N = 4 SYM at the four-loop order. Besides the usual leading
colour factor NL

c at L loops, there appears, due to the advent of the quartic Casimir, for the
first time a subleading colour factor N2

c , which renders this loop-order particularly interest-
ing. There have been conjectures based on factorisation theorems [138] that this subleading
colour piece vanishes in the light-like limit. In our work [86] we compute the complete pla-
nar contribution of N4

c , and the subleading, non-planar contribution in the aforementioned
scaling limit. The result can again be written in terms of harmonic polylogarithms of weight
2L− 1 with non-negative indices.We study several applications of our result. First we take
certain limits, such as the light-like limit, or the limits of small and large cusp angles. Finally,
we use the available perturbative data, as well as insight from AdS/CFT [147], in order to
extrapolate the leading order values at strong coupling. The latter agree within two percent
with the corresponding string theory result, over a wide range of parameters.

Let me finally make a few comments on my personal contribution to the various articles.
I would like to emphasize that listing my achievements does not mean that I am the only
person who performed these steps, but the size and complexity of the calculations require a
cross check by at least two people. This automatically means that in all two-author papers
(i.e. [76, 78, 85, 86]) all steps were carried out and cross-checked by both authors, and an
explicit listing of my personal contributions becomes obsolete. For all other papers, I list
my contribution in the following. In [75] I performed the entire two-loop calculation and
the derivation of the matching coefficients. Moreover, I implemented the form factor ratios
and performed the phenomenology related to the zero of the forward-backward asymmetry.
In [77] I performed the entire two-loop calculation, including the reduction to master in-
tegrals and the analytic evaluation of the latter (separately published in [76]). Moreover I
performed the convolution with the light-cone distribution amplitude of the bare amplitude
and the counterterms, and verified the cancellation of all poles to obtain the NNLO contri-
bution to the topological QCD penguin amplitude. In [79] I computed the matrix elements
of all necessary interferences, including the phase space integration, UV renormalisation and
splitting function contribution. I derived all formulas of the final result, and performed
a small part of the numerics. In [80] I evaluated analytically all master integrals for the
boundary conditions. Moreover, I checked that all formulas consistently add up to the final
result (eq. (2.11)), and provided some of the new relations in Appendix B. In [81] I derived
the entire set of formulas for the logarithmically enhanced QED corrections, implemented all
master formulas, and did the entire phenomenological analysis in the SM. I also derived and
implemented the New Physics formulas in terms of ratios of high-scale Wilson coefficients.
In [82] and [83] I did part of the Laporta reduction, computed all genuine three-loop vertex
master integrals (see also [133–136]), checked that all formulas consistently make up the
form factors, and from the final result derived the cusp and collinear anomalous dimensions
and the SCET matching coefficients. Finally, in [84] I wrote down the linear combination
of homogeneous integrals that builds the form factor, derived the momentum routing invari-
ances based on graph symmetries, and carried out all calculations related to the logarithm
of the form factor and its UV behaviour in higher dimensions. Besides calculating, I also
did a major part of the write-up of all papers. These statements show that I contributed in
a significant and leading manner to all papers.
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Abstract

We perform the two-loop matching calculation for heavy-to-light currents from QCD onto soft-collinear
effective theory for the complete set of Dirac structures. The newly obtained matching coefficients enter
several phenomenological applications, of which we discuss heavy-to-light form factor ratios and exclusive
radiative decays, as well as the semi-inclusive decay B̄ → Xs�

+�−. For this decay, we observe a significant
shift of the forward–backward asymmetry zero and find q2

0 = (3.34+0.22
−0.25) GeV2 for an invariant mass cut

mcut
X

= 2.0 GeV.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The flavour-changing quark currents q̄Γib, with Γi = {1, γ5, γ
μ, γ5γ

μ, iσμν}, govern the
hadronic dynamics in semi-leptonic and radiative B decays. The matrix elements of the cur-
rents, usually parameterized by several transition form factors, are also important inputs to the
factorization formulae for non-leptonic B decays [1]. In the kinematic region where the hadronic
final state has small invariant mass but large energy, soft-collinear effective theory (SCET) [2,3]
is the appropriate theoretical framework, with which transparent factorization formulae for the

* Corresponding author at: Department of Physics, Henan Normal University, Xinxiang, Henan 453007, PR China.
E-mail address: xqli@itp.ac.cn (X.-Q. Li).
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heavy-to-light form factors have been derived [4] (see also [5,6]). Thus, the accurate representa-
tion of the heavy-to-light currents in SCET is of particular interest.

The LO and NLO matching coefficients for heavy-to-light currents from QCD onto SCET
for an arbitrary Dirac matrix have been worked out a few years ago [2,7,8]. The coefficients
for V–A currents have recently been determined to NNLO in the context of inclusive semi-
leptonic B decays [9–12] in the shape-function region. In this paper we complete the NNLO
calculation by computing the remaining matching coefficients of the tensor currents. The tensor
matching coefficients enter several phenomenological applications, of which we shall discuss
heavy-to-light form factor ratios and exclusive radiative decays, as well as the semi-inclusive
decay B̄ → Xs�

+�−.
The paper is organized as follows. In Section 2 we first set up notation and then briefly re-

capitulate the techniques applied and the necessary ingredients for the two-loop calculation. In
Section 3 the two-loop calculation of the QCD form factors and the corresponding matching co-
efficients are presented in detail. Three interesting phenomenological applications of our results
to heavy-to-light form factor ratios, exclusive radiative decays, as well as the inclusive decay
B̄ → Xs�

+�− are discussed in Sections 4 and 5. We conclude in Section 6. The lengthy analytic
expressions for the coefficient functions can be found in Appendices A and B.

2. NNLO calculation

2.1. Set-up of the matching calculation

A generic heavy-to-light current q̄Γib is represented in SCET by a set of non-local “two-
body” and “three-body” [3–6] operators,

[q̄Γib](0) =
∑
j

∫
ds C̃

j
i (s)[ξ̄Whc](sn+)Γ �

j hv(0)

+
∑
j

∫
ds1 ds2 C̃

(B1)j
iμ (s1, s2)O

(B1)jμ
i (s1, s2) + · · · , (1)

where hv is the static heavy quark field defined in HQET, whereas ξ and Whc are the hard-
collinear light quark field and a hard-collinear Wilson line from SCET, respectively. In this paper
we are concerned with the calculation of the matching coefficients in the first line of (1). The
three-body operators O

(B1)jμ
i (s1, s2) in the second line are 1/mb-suppressed but relevant at lead-

ing power for exclusive transitions and form factors due to the matrix element suppression of the
leading term. Their one-loop matching coefficients are known from [8,13] and this suffices to
work out their contribution to the exclusive transitions at O(α2

s ). We refer to [14] for the details
of the calculation of these spectator-scattering terms. In the current work we consider the miss-
ing O(α2

s ) matching coefficients of the two-body operators [ξ̄Whc](sn+)Γ �
j hv(0) and adopt the

momentum space representation, which follows from

C
j
i (n+p) =

∫
ds eisn+pC̃

j
i (s). (2)

We decompose the heavy-to-light currents in the basis from [14] (summarized in Table 1) with
two reference vectors v and n− that fulfill v = (n− + n+)/2, n2± = 0 and n+n− = 2. The

matching calculation involves 12 coefficient functions C
j
i , which are not independent in a renor-

malization scheme with anti-commuting γ5 due to the chiral symmetry of QCD. In the NDR
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Table 1
Matching coefficients C

j
i

according to the decomposition in (1) (a[μbν] ≡ aμbν − aνbμ).

Γi 1 γ5 γ μ γ5γ μ iσμν

Γ �
j

1 γ5 γ μ vμ n
μ
− γ5γ μ vμγ5 n

μ
−γ5 γ [μγ ν] v[μγ ν] n

[μ
− γ ν] n

[μ
− vν]

C
j
i

CS CP C1
V

C2
V

C3
V

C1
A

C2
A

C3
A

C1
T

C2
T

C3
T

C4
T

scheme adopted in this work, this translates into the constraints CP = CS and Ci
A = Ci

V , while
similar relations hold between the matching coefficients of the tensor and the pseudotensor cur-
rent. As the latter is reducible in four space–time dimensions, we obtain the additional constraints
C2

T = C4
T = 0 in four dimensions. We nevertheless keep the more general basis from Table 1,

since we work in dimensional regularization and obtain intermediate results that are valid in
d = 4 − 2� dimensions, where C2

T and C4
T are of O(�) but non-vanishing.

It is convenient to perform the matching calculation with on-shell quarks and to use dimen-
sional regularization to regularize ultraviolet (UV) and infrared (IR) singularities. The SCET
diagrams are then scaleless and vanish and the computation essentially amounts to a two-loop
calculation in QCD. We, in particular, introduce an analogous tensor decomposition to (1) and
parameterize the QCD result in terms of 12 form factors,

〈
q(p)

∣∣q̄Γib
∣∣b(pb)

〉 =
∑
j

F
j
i

(
q2)ū(p)Γ �

j u(pb), (3)

where pb = mbv is the momentum of the heavy quark, p = umbn−/2 the momentum of the light
quark and q2 = (pb − p)2 = (1 − u)m2

b denotes the momentum transfer. Due to the absence of
loop contributions on the effective theory side, the SCET matrix elements are given by the tree
level matrix elements multiplied by a universal renormalization factor ZJ of the SCET current
[ξ̄Whc]Γ �

j hv . There is thus a one-to-one correspondence between the matching coefficients C
j
i

and the form factors F
j
i ,

C
j
i = Z−1

J F
j
i . (4)

As the form factors are, however, in general IR-divergent, there exists no analogous relation on
the form factor level to the four-dimensional constraints C2

T = C4
T = 0.

The purpose of our analysis consists in the computation of the matching coefficients C
j
i (and

the respective form factors F
j
i ) to NNLO in QCD. Whereas the NLO corrections have been

worked out in [2,7,8], the coefficients Ci
V and Ci

A have recently been determined to NNLO in
the context of inclusive semi-leptonic B decays [9–12]. In the current work we complete the
NNLO calculation by computing the remaining matching coefficients CS , CP and Ci

T . The four-
dimensional constraints mentioned above, will serve as a non-trivial check of our calculation.

2.2. Technical aspects of the calculation

We organize the calculation along the strategy that we used in our previous works on the
V–A current [11,12]. The calculation is based on an automated reduction algorithm, which uses
integration-by-parts techniques [15] and the Laporta algorithm [16] to express the two-loop di-
agrams (shown in Fig. 1 of [11]) in terms of a small set of scalar master integrals. The required
master integrals are already known from the computations in [9–11,17,18].
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Our results will be given in terms of the following set of harmonic polylogarithms
(HPLs) [19],

H(0;x) = ln(x), H(0,0,1;x) = Li3(x),

H(1;x) = − ln(1 − x), H(0,1,1;x) = S1,2(x),

H(−1;x) = ln(1 + x), H(0,0,0,1;x) = Li4(x),

H(0,1;x) = Li2(x), H(0,0,1,1;x) = S2,2(x),

H(0,−1;x) = −Li2(−x), H(0,1,1,1;x) = S1,3(x),

H(−1,0,1;x) ≡H1(x), H(0,−1,0,1;x) ≡H2(x), (5)

where we introduced a shorthand notation for the last two HPLs. Whereas the first one can be
written in a compact form [20],

H1(x) = ln(1 + x)Li2(x) + 1

2
S1,2

(
x2) − S1,2(x) − S1,2(−x), (6)

the second one, H2(x) = ∫ x

0 dx�H1(x
�)/x�, cannot be expressed in terms of Nielsen Polyloga-

rithms and has to be evaluated numerically.
The charm quark enters the matching calculation at the two-loop level through the gluon self

energy which contains closed fermion loops. Our analytical results from Sections 3.1 and 3.2
are valid for massless charm quark, but we also show some numerical results in Section 3.2
that include charm mass effects. In this case we formally keep mc/mb fixed in the heavy-quark
expansion, so the coefficients depend non-trivially on the quark mass ratio (see Section 5 of [12]).

The pure two-loop calculation yields bare form factors F
j
i that are UV- and IR-divergent.

The UV-divergences are subtracted in a standard renormalization procedure, which has been de-
scribed in detail in our previous works [11,12]. We, in particular, renormalize the strong coupling
constant in the MS-scheme, whereas the quark wave-functions and the b-quark mass are renor-
malized in the on-shell scheme. The only difference in the current calculation consists in the fact
that the scalar and the tensor current have non-vanishing anomalous dimensions in contrast to the
vector current considered in [11,12]. This gives rise to an additional multiplicative counterterm
Z−1

i (i = S,T ). We expand the inverse

Zi = 1 +
∞∑

k=1

(
α

(5)
s

4π

)k

Z
(k)
i (7)

in terms of the renormalized coupling constant of a theory with five active quark flavours. In the
MS-scheme the respective NLO coefficients are then given by Z

(1)
S = 3CF /� and Z

(1)
T = −CF /�

for the scalar and the tensor current, respectively. At NNLO the counterterms can be inferred
from [21],

Z
(2)
S = CF

{[
9

2
CF − 11

2
CA + 2nf TF

]
1

�2
+

[
3

4
CF + 97

12
CA − 5

3
nf TF

]
1

�

}
,

Z
(2)
T = CF

{[
1

2
CF + 11

6
CA − 2

3
nf TF

]
1

�2
+

[
19

4
CF − 257

36
CA + 13

9
nf TF

]
1

�

}
, (8)

where nf = 5 denotes the number of active quark flavours.
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from [21],

Z
(2)
S = CF

{[
9

2
CF − 11

2
CA + 2nf TF

]
1

�2
+

[
3

4
CF + 97

12
CA − 5

3
nf TF

]
1

�

}
,

Z
(2)
T = CF

{[
1

2
CF + 11

6
CA − 2

3
nf TF

]
1

�2
+

[
19

4
CF − 257

36
CA + 13

9
nf TF

]
1

�

}
, (8)

where nf = 5 denotes the number of active quark flavours.
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3. Results

3.1. Renormalized form factors

We first present our results for the renormalized form factors F
j
i , which are UV-finite but

IR-divergent. It will be convenient to decompose the form factors according to

F
j
i =

∞∑
k=0

(
α

(5)
s

4π

)k

F
j,(k)
i , F

j,(k)
i =

∑
l

F
j,(k)
i,l �l . (9)

In this normalization the form factors become at tree level

F
(0)
S = −2F

1,(0)
T = 1,

F
2,(0)
T = F

3,(0)
T = F

4,(0)
T = 0. (10)

Here and below we do not quote our results for the pseudoscalar and the (axial) vector current,
since the former are equal to those of the scalar current in the NDR scheme, while the latter have
already been computed before and can be found in [9–12].

One-loop form factors. At NLO we compute the form factors up to terms of O(�2). Our results
are given in terms of a set of coefficient functions gi(u), which we list in Appendix A. The scalar
form factor is IR-divergent and becomes (with q2 = ūm2

b , ū = 1 − u and L = lnμ2/m2
b),

F
(1)
S,−2(u) = −CF ,

F
(1)
S,−1(u) = CF

(
g0(u) − L

)
,

F
(1)
S,0(u) = CF

(
g1(u) + [

g0(u) + 3
]
L − 1

2
L2

)
,

F
(1)
S,1(u) = CF

(
g2(u) + g1(u)L + 1

2

[
g0(u) + 3

]
L2 − 1

6
L3

)
,

F
(1)
S,2(u) = CF

(
g3(u) + g2(u)L + 1

2
g1(u)L2 + 1

6

[
g0(u) + 3

]
L3 − 1

24
L4

)
. (11)

The first tensor form factor is also IR-divergent and given by

F
1,(1)
T ,−2(u) = CF

2
,

F
1,(1)
T ,−1(u) = −CF

2

(
g0(u) − L

)
,

F
1,(1)
T ,0 (u) = −CF

2

(
g4(u) + [

g0(u) − 1
]
L − 1

2
L2

)
,

F
1,(1)
T ,1 (u) = −CF

2

(
g5(u) + g4(u)L + 1

2

[
g0(u) − 1

]
L2 − 1

6
L3

)
,

F
1,(1)
T ,2 (u) = −CF

2

(
g6(u) + g5(u)L + 1

2
g4(u)L2 + 1

6

[
g0(u) − 1

]
L3 − 1

24
L4

)
, (12)

whereas the other tensor form factors are IR-finite at NLO and read
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F
2,(1)
T ,0 (u) = 0,

F
2,(1)
T ,1 (u) = CF g7(u),

F
2,(1)
T ,2 (u) = CF

(
g8(u) + g7(u)L

)
, (13)

F
3,(1)
T ,0 (u) = CF g9(u),

F
3,(1)
T ,1 (u) = CF

(
g10(u) + g9(u)L

)
,

F
3,(1)
T ,2 (u) = CF

(
g11(u) + g10(u)L + 1

2
g9(u)L2

)
, (14)

F
4,(1)
T ,0 (u) = 0,

F
4,(1)
T ,1 (u) = CF g12(u),

F
4,(1)
T ,2 (u) = CF

(
g13(u) + g12(u)L

)
. (15)

Two-loop form factors. At NNLO the IR-divergent parts of the form factors can be expressed
in terms of the one-loop coefficient functions gi(u). The divergent terms of the scalar form factor
read

F
(2)
S,−4(u) = 1

2
C2

F ,

F
(2)
S,−3(u) = C2

F

(
L − g0(u)

) + 11

4
CACF − nlTF CF ,

F
(2)
S,−2(u) = C2

F

[
L2 − (

2g0(u) + 3
)
L + 1

2
g0(u)2 − g1(u)

]
+ 4

3
LTF CF

+ CACF

[
11

6

(
L − g0(u)

) − 67

36
+ π2

12

]
+ nlTF CF

[
5

9
− 2

3

(
L − g0(u)

)]
,

F
(2)
S,−1(u) = C2

F

[
2

3
L3 −

(
2g0(u) + 9

2

)
L2 − (

2g1(u) − g0(u)2 − 3g0(u)
)
L

+ g0(u)g1(u) − g2(u) − 3

8
+ π2

2
− 6ζ3

]

+ CACF

[(
π2

6
− 67

18

)(
L − g0(u)

) + 461

216
− 17π2

24
+ 11

2
ζ3

]

+ nlTF CF

[
10

9

(
L − g0(u)

) − 25

54
+ π2

6

]

+ TF CF

[
2L2 − 4

3
g0(u)L + π2

9

]
, (16)

and for the first tensor form factor we get

F
1,(2)
T ,−4(u) = −1

4
C2

F ,

F
1,(2)
T ,−3(u) = −1

2
C2

F

(
L − g0(u)

) − 11

8
CACF + 1

2
nlTF CF ,

F
1,(2)
T ,−2(u) = −1

2
C2

F

[
L2 − (

2g0(u) − 1
)
L + 1

2
g0(u)2 − g4(u)

]
− 2

3
LTF CF
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F
2,(1)
T ,0 (u) = 0,

F
2,(1)
T ,1 (u) = CF g7(u),

F
2,(1)
T ,2 (u) = CF

(
g8(u) + g7(u)L

)
, (13)

F
3,(1)
T ,0 (u) = CF g9(u),

F
3,(1)
T ,1 (u) = CF

(
g10(u) + g9(u)L

)
,

F
3,(1)
T ,2 (u) = CF

(
g11(u) + g10(u)L + 1

2
g9(u)L2

)
, (14)

F
4,(1)
T ,0 (u) = 0,

F
4,(1)
T ,1 (u) = CF g12(u),

F
4,(1)
T ,2 (u) = CF

(
g13(u) + g12(u)L

)
. (15)

Two-loop form factors. At NNLO the IR-divergent parts of the form factors can be expressed
in terms of the one-loop coefficient functions gi(u). The divergent terms of the scalar form factor
read

F
(2)
S,−4(u) = 1

2
C2

F ,

F
(2)
S,−3(u) = C2

F

(
L − g0(u)

) + 11

4
CACF − nlTF CF ,

F
(2)
S,−2(u) = C2

F

[
L2 − (

2g0(u) + 3
)
L + 1

2
g0(u)2 − g1(u)

]
+ 4

3
LTF CF

+ CACF

[
11

6

(
L − g0(u)

) − 67

36
+ π2

12

]
+ nlTF CF

[
5

9
− 2

3

(
L − g0(u)

)]
,

F
(2)
S,−1(u) = C2

F

[
2

3
L3 −

(
2g0(u) + 9

2

)
L2 − (

2g1(u) − g0(u)2 − 3g0(u)
)
L

+ g0(u)g1(u) − g2(u) − 3

8
+ π2

2
− 6ζ3

]

+ CACF

[(
π2

6
− 67

18

)(
L − g0(u)

) + 461

216
− 17π2

24
+ 11

2
ζ3

]

+ nlTF CF

[
10

9

(
L − g0(u)

) − 25

54
+ π2

6

]

+ TF CF

[
2L2 − 4

3
g0(u)L + π2

9

]
, (16)

and for the first tensor form factor we get

F
1,(2)
T ,−4(u) = −1

4
C2

F ,

F
1,(2)
T ,−3(u) = −1

2
C2

F

(
L − g0(u)

) − 11

8
CACF + 1

2
nlTF CF ,

F
1,(2)
T ,−2(u) = −1

2
C2

F

[
L2 − (

2g0(u) − 1
)
L + 1

2
g0(u)2 − g4(u)

]
− 2

3
LTF CF
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− 1

2
CACF

[
11

6

(
L − g0(u)

) − 67

36
+ π2

12

]
− 1

2
nlTF CF

[
5

9
− 2

3

(
L − g0(u)

)]
,

F
1,(2)
T ,−1(u) = −1

2
C2

F

[
2

3
L3 −

(
2g0(u) − 3

2

)
L2 − (

2g4(u) − g0(u)2 + g0(u)
)
L

+ g0(u)g4(u) − g5(u) − 3

8
+ π2

2
− 6ζ3

]

− 1

2
CACF

[(
π2

6
− 67

18

)(
L − g0(u)

) + 461

216
− 17π2

24
+ 11

2
ζ3

]

− 1

2
nlTF CF

[
10

9

(
L − g0(u)

) − 25

54
+ π2

6

]

− 1

2
TF CF

[
2L2 − 4

3
g0(u)L + π2

9

]
. (17)

The IR-divergent parts of the other tensor form factors are given by

F
2,(2)
T ,−1(u) = −C2

F g7(u), (18)

and

F
3,(2)
T ,−2(u) = −C2

F g9(u),

F
3,(2)
T ,−1(u) = C2

F

(
g0(u)g9(u) − g10(u) − 2g9(u)L

)
, (19)

and

F
4,(2)
T ,−1(u) = −C2

F g12(u). (20)

The finite parts of the two-loop form factors involve a new set of coefficient functions hi(u),
which we specify in Appendix B. We find

F
(2)
S,0(u) = C2

F

[
1

3
L4 −

(
4

3
g0(u) + 7

2

)
L3 −

(
2g1(u) − g0(u)2 − 9

2
g0(u) − 9

2

)
L2

−
(

2g2(u) − 2g1(u)g0(u) − 3g1(u) − 3

4
− π2 + 12ζ3

)
L + h1(u)

]

+ CACF

[
−11

18
L3 +

(
11

6
g0(u) + 16

9
+ π2

6

)
L2

+
(

11

3
g1(u) +

(
67

9
− π2

3

)
g0(u) + 2207

108
− 17π2

12
+ 11ζ3

)
L + h2(u)

]

+ nlTF CF

[
2

9
L3 −

(
2

3
g0(u) + 8

9

)
L2 −

(
4

3
g1(u) + 20

9
g0(u) + 115

27
− π2

3

)
L

− 4

3
g2(u) − 20

9
g1(u) −

(
20

27
+ π2

3

)
g0(u) − 541

324
− 13π2

18
+ 10

3
ζ3

]

+ TF CF

[
14

9
L3 − (

2g0(u) + 2
)
L2

−
(

4

3
g1(u) + 10

3
− 2π2

9

)
L + h3(u)

]
, (21)
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and

F
1,(2)
T ,0 (u) = −1

2
C2

F

[
1

3
L4 −

(
4

3
g0(u) − 7

6

)
L3 −

(
2g4(u) − g0(u)2 + 3

2
g0(u) − 1

2

)
L2

−
(

2g5(u) − 2g4(u)g0(u) + g4(u) − 35

4
− π2 + 12ζ3

)
L + h4(u)

]

− 1

2
CACF

[
−11

18
L3 +

(
11

6
g0(u) − 50

9
+ π2

6

)
L2

+
(

11

3
g4(u) +

(
67

9
− π2

3

)
g0(u) − 1081

108
− 17π2

12
+ 11ζ3

)
L + h5(u)

]

− 1

2
nlTF CF

[
2

9
L3 −

(
2

3
g0(u) − 16

9

)
L2

−
(

4

3
g4(u) + 20

9
g0(u) − 53

27
− π2

3

)
L

− 4

3
g5(u) − 20

9
g4(u) −

(
20

27
+ π2

3

)
g0(u) + h6(u)

]

− 1

2
TF CF

[
14

9
L3 −

(
2g0(u) − 2

3

)
L2

−
(

4

3
g4(u) − 26

9
− 2π2

9

)
L + h7(u)

]
, (22)

and

F
2,(2)
T ,0 (u) = C2

F

(
g0(u)g7(u) − g8(u) − 2g7(u)L

)
, (23)

and

F
3,(2)
T ,0 (u) = C2

F

[−2g9(u)L2 + (
2g0(u)g9(u) − g9(u) − 2g10(u)

)
L + h8(u)

]

+ CACF

[
11

3
g9(u)L + h9(u)

]
+ TF CF

[
−4

3
g9(u)L + h10(u)

]

+ nlTF CF

[
−4

3
g9(u)L − 4

3
g10(u) − 8

9
g9(u) + 4u

3ū2
ln(u) + 4u

3ū

]
, (24)

and

F
4,(2)
T ,0 (u) = C2

F

(
g0(u)g12(u) − g13(u) − 2g12(u)L

)
. (25)

3.2. Matching coefficients

The matching coefficients C
j
i follow from the above expressions for the renormalized form

factors F
j
i after multiplication with the inverse of the renormalization factor of the SCET current

ZJ , cf. (4). To this end one has to keep in mind that the form factors have been computed in QCD
with five active quark flavours, while ZJ is usually given in SCET with four active flavours. We
thus have

ZJ = 1 +
∞∑

k=1

(
α

(4)
s

4π

)k

Z
(k)
J , (26)



27

27
Author's personal copy

150 G. Bell et al. / Nuclear Physics B 843 (2011) 143–176

and

F
1,(2)
T ,0 (u) = −1

2
C2

F

[
1

3
L4 −

(
4

3
g0(u) − 7

6

)
L3 −

(
2g4(u) − g0(u)2 + 3

2
g0(u) − 1

2

)
L2

−
(

2g5(u) − 2g4(u)g0(u) + g4(u) − 35

4
− π2 + 12ζ3

)
L + h4(u)

]

− 1

2
CACF

[
−11

18
L3 +

(
11

6
g0(u) − 50

9
+ π2

6

)
L2

+
(

11

3
g4(u) +

(
67

9
− π2

3

)
g0(u) − 1081

108
− 17π2

12
+ 11ζ3

)
L + h5(u)

]

− 1

2
nlTF CF

[
2

9
L3 −

(
2

3
g0(u) − 16

9

)
L2

−
(

4

3
g4(u) + 20

9
g0(u) − 53

27
− π2

3

)
L

− 4

3
g5(u) − 20

9
g4(u) −

(
20

27
+ π2

3

)
g0(u) + h6(u)

]

− 1

2
TF CF

[
14

9
L3 −

(
2g0(u) − 2

3

)
L2

−
(

4

3
g4(u) − 26

9
− 2π2

9

)
L + h7(u)

]
, (22)

and

F
2,(2)
T ,0 (u) = C2

F

(
g0(u)g7(u) − g8(u) − 2g7(u)L

)
, (23)

and

F
3,(2)
T ,0 (u) = C2

F

[−2g9(u)L2 + (
2g0(u)g9(u) − g9(u) − 2g10(u)

)
L + h8(u)

]

+ CACF

[
11

3
g9(u)L + h9(u)

]
+ TF CF

[
−4

3
g9(u)L + h10(u)

]

+ nlTF CF

[
−4

3
g9(u)L − 4

3
g10(u) − 8

9
g9(u) + 4u

3ū2
ln(u) + 4u

3ū

]
, (24)

and

F
4,(2)
T ,0 (u) = C2

F

(
g0(u)g12(u) − g13(u) − 2g12(u)L

)
. (25)

3.2. Matching coefficients

The matching coefficients C
j
i follow from the above expressions for the renormalized form

factors F
j
i after multiplication with the inverse of the renormalization factor of the SCET current

ZJ , cf. (4). To this end one has to keep in mind that the form factors have been computed in QCD
with five active quark flavours, while ZJ is usually given in SCET with four active flavours. We
thus have

ZJ = 1 +
∞∑

k=1

(
α

(4)
s

4π

)k

Z
(k)
J , (26)

Author's personal copy

G. Bell et al. / Nuclear Physics B 843 (2011) 143–176 151

with NLO coefficient [2],

Z
(1)
J = CF

{
− 1

�2
− 1

�

(
ln

μ2

u2m2
b

+ 5

2

)}
. (27)

The two-loop anomalous dimension can be deduced from [22] (see also [10])

Z
(2)
J = CF

{
CF

2�4
+

[(
ln

μ2

u2m2
b

+ 5

2

)
CF + 11

4
CA − nlTF

]
1

�3

+
[

1

2

(
ln

μ2

u2m2
b

+ 5

2

)2

CF +
(

π2

12
− 67

36
+ 11

6

(
ln

μ2

u2m2
b

+ 5

2

))
CA

+
(

5

9
− 2

3

(
ln

μ2

u2m2
b

+ 5

2

))
nlTF

]
1

�2
+

[(
π2

2
− 3

8
− 6ζ3

)
CF

+
(

461

216
− 17π2

24
+ 11

2
ζ3 +

(
π2

6
− 67

18

)(
ln

μ2

u2m2
b

+ 5

2

))
CA

+
(

π2

6
− 25

54
+ 10

9

(
ln

μ2

u2m2
b

+ 5

2

))
nlTF

]
1

�

}
, (28)

where nl = nf − 1 = 4 is the number of active quark flavours in the effective theory.
We now expand the matching coefficients in terms of the coupling constant of the four-flavour

theory as

C
j
i =

∞∑
k=0

(
α

(4)
s

4π

)k

C
j,(k)
i , (29)

and rewrite (4) up to NNLO, which yields

C
j,(0)
i = F

j,(0)
i ,

C
j,(1)
i = F

j,(1)
i − Z

(1)
J F

j,(0)
i ,

C
j,(2)
i = F

j,(2)
i + δα(1)

s F
j,(1)
i − Z

(1)
J

(
F

j,(1)
i − Z

(1)
J F

j,(0)
i

) − Z
(2)
J F

j,(0)
i . (30)

Notice that the last relation implies a term which stems from the conversion of the five-flavour to
the four-flavour coupling constant,

α(5)
s = α(4)

s

[
1 + α

(4)
s

4π
δα(1)

s +O
(
α2

s

)]
(31)

with (see also [11,12] for further details)

δα(1)
s = TF

[
4

3
ln

μ2

m2
b

+
(

2

3
ln2 μ2

m2
b

+ π2

9

)
� +

(
2

9
ln3 μ2

m2
b

+ π2

9
ln

μ2

m2
b

− 4

9
ζ3

)
�2

+O
(
�3)

]
. (32)

At LO the matching coefficients then become

C
(0)
S = −2C

1,(0)
T = 1,

C
2,(0)
T = C

3,(0)
T = C

4,(0)
T = 0. (33)
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At NLO the matching coefficients are given by the finite terms of the one-loop form factors,

C
(1)
S (u) = F

(1)
S,0(u),

C
1,(1)
T (u) = F

1,(1)
T ,0 (u),

C
3,(1)
T (u) = F

3,(1)
T ,0 (u), (34)

and, in particular, C
2,(1)
T = F

2,(1)
T ,0 = 0 and C

4,(1)
T = F

4,(1)
T ,0 = 0 in accordance with the four-

dimensional constraints for the tensor coefficients that we mentioned in Section 2.1. Here and in
the following we provide the expressions for the matching coefficients in the limit � → 0, since
the O(�) terms are not relevant in two-loop applications.

At NNLO the matching coefficients are no longer given by the finite terms of the respective
form factors alone. We now find

C
(2)
S (u) = F

(2)
S,0(u)

+ TF CF

[
4

9
ζ3 + π2

9
g0(u) + 2

9

(
6g1(u) − π2)L + (

2g0(u) + 4
)
L2 − 14

9
L3

]

+ C2
F

[
g3(u) − g0(u)g2(u) + (

2g2(u) − g0(u)g1(u)
)
L

+ 1

2

(
3g1(u) − g0(u)2 − 3g0(u)

)
L2 +

(
5

6
g0(u) + 2

)
L3 − 5

24
L4

]
, (35)

and

C
1,(2)
T (u) = F

1,(2)
T ,0 (u) − 1

2
TF CF

[
4

9
ζ3 + π2

9
g0(u) + 2

9

(
6g4(u) − π2)L

+
(

2g0(u) − 4

3

)
L2 − 14

9
L3

]

− 1

2
C2

F

[
g6(u) − g0(u)g5(u) + (

2g5(u) − g0(u)g4(u)
)
L

+ 1

2

(
3g4(u) − g0(u)2 + g0(u)

)
L2 +

(
5

6
g0(u) − 2

3

)
L3 − 5

24
L4

]
, (36)

and

C
3,(2)
T (u) = F

3,(2)
T ,0 (u) + TF CF

[
4

3
g9(u)L

]

+ C2
F

[
g11(u) − g0(u)g10(u) + (

2g10(u) − g0(u)g9(u)
)
L + 3

2
g9(u)L2

]
. (37)

The other tensor coefficients are again found to fulfill the four-dimensional constraints

C
2,(2)
T (u) = F

2,(2)
T ,0 (u) − C2

F

[
g0(u)g7(u) − g8(u) − 2g7(u)L

] = 0,

C
4,(2)
T (u) = F

4,(2)
T ,0 (u) − C2

F

[
g0(u)g12(u) − g13(u) − 2g12(u)L

] = 0, (38)

which provides a non-trivial cross check of our calculation.
As a further check of our NNLO results we verified that the matching coefficients obey the

renormalization group equation,
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At NLO the matching coefficients are given by the finite terms of the one-loop form factors,

C
(1)
S (u) = F

(1)
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C
1,(1)
T (u) = F

1,(1)
T ,0 (u),

C
3,(1)
T (u) = F

3,(1)
T ,0 (u), (34)

and, in particular, C
2,(1)
T = F

2,(1)
T ,0 = 0 and C

4,(1)
T = F

4,(1)
T ,0 = 0 in accordance with the four-

dimensional constraints for the tensor coefficients that we mentioned in Section 2.1. Here and in
the following we provide the expressions for the matching coefficients in the limit � → 0, since
the O(�) terms are not relevant in two-loop applications.

At NNLO the matching coefficients are no longer given by the finite terms of the respective
form factors alone. We now find
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9
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9

(
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L2 − 14

9
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F

[
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6
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24
L4
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, (35)

and
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9
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3

)
L2 − 14

9
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2
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L
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2

(
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5

6
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3

)
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24
L4

]
, (36)

and

C
3,(2)
T (u) = F

3,(2)
T ,0 (u) + TF CF

[
4

3
g9(u)L

]

+ C2
F

[
g11(u) − g0(u)g10(u) + (

2g10(u) − g0(u)g9(u)
)
L + 3

2
g9(u)L2

]
. (37)

The other tensor coefficients are again found to fulfill the four-dimensional constraints

C
2,(2)
T (u) = F

2,(2)
T ,0 (u) − C2

F

[
g0(u)g7(u) − g8(u) − 2g7(u)L

] = 0,

C
4,(2)
T (u) = F

4,(2)
T ,0 (u) − C2

F

[
g0(u)g12(u) − g13(u) − 2g12(u)L

] = 0, (38)

which provides a non-trivial cross check of our calculation.
As a further check of our NNLO results we verified that the matching coefficients obey the

renormalization group equation,
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d

d lnμ
C

j
i (u;μ) =

[
Γcusp

(
α(4)

s

)
ln

umb

μ
+ γ �(α(4)

s

) + γi

(
α(5)

s

)]
C

j
i (u;μ), (39)

which consists of a universal piece related to the renormalization properties of the SCET current
with

Γcusp
(
α(4)

s

) =
∞∑

k=1

(
α

(4)
s

4π

)k

Γ (k)
cusp, γ �(α(4)

s

) =
∞∑

k=1

(
α

(4)
s

4π

)k

γ � (k), (40)

and a second term that contains the anomalous dimension of the QCD current with

γi

(
α(5)

s

) =
∞∑

k=1

(
α

(5)
s

4π

)k

γ
(k)
i . (41)

The one- and two-loop coefficients needed for the check read Γ
(1)

cusp = 4CF , γ � (1) = −5CF ,

Γ (2)
cusp = CACF

[
268

9
− 4π2

3

]
− 80

9
nlTF CF ,

γ � (2) = C2
F

[
2π2 − 3

2
− 24ζ3

]
+ CACF

[
22ζ3 − 1549

54
− 7π2

6

]

+ nlTF CF

[
250

27
+ 2π2

3

]
, (42)

and

γ
(1)
S = 6CF , γ

(2)
S = CF

[
3CF + 97

3
CA − 20

3
(nl + 1)TF

]
,

γ
(1)
T = −2CF , γ

(2)
T = CF

[
19CF − 257

9
CA + 52

9
(nl + 1)TF

]
. (43)

The twofold structure of (39) can be used to distinguish the scale μ, that governs the renormal-
ization group evolution in SCET, from a second scale ν, that is related to the non-conservation
of the scalar/tensor current in QCD. More explicitly the distinction between the scales μ and ν

can be accounted for by writing

C
j
i (u;μ,ν) = C

j
i (u;μ) + δC

j
i (u;μ,ν), (44)

where the first term on the right-hand side refers to the above expressions for the matching coef-
ficients, C

j
i (u;μ) ≡ C

j
i (u), while the latter captures the dependence on ln(ν/μ), which vanishes

when the two scales are not distinguished. Expanding the new contribution as

δC
j
i =

∞∑
k=1

(
α

(4)
s (μ)

4π

)k

δC
j,(k)
i , (45)

we find

δC
j,(1)
i (u;μ,ν) = γ

(1)
i C

j,(0)
i ln

ν

μ
(46)

in NLO, and
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δC
j,(2)
i (u;μ,ν) =

[
γ

(1)
i

2

2
− γ

(1)
i β

(5)
0

]
C

j,(0)
i ln2 ν

μ

+
[(

γ
(2)
i + 4

3
TF γ

(1)
i ln

μ2

m2
b

)
C

j,(0)
i + γ

(1)
i C

j,(1)
i (u;μ)

]
ln

ν

μ
(47)

in NNLO. (Here β
(5)
0 = 11CA/3 − 4/3TF nf refers to the QCD beta-function with nf = nl + 1

flavours.) Our final results for the matching coefficients with the two scales μ and ν distinct from
each other are provided in electronic form in [23].

The matching coefficients with the SCET and QCD scale distinct from each other can be used
for additional cross-checks. The scalar coefficient is not independent but can be related to the
vector coefficients by means of the equations of motion, yielding [13]

C1
V (u;μ) +

(
1 − u

2

)
C2

V (u;μ) + C3
V (u;μ) = mb(ν)

mb

CS(u;μ,ν), (48)

where mb(ν) is the MS renormalized mass in five-flavour QCD. Due to the conservation of the
vector current the left-hand side of (48), which happens to be just the coefficient C

(A0)
f0

from (54)
below, is free of ν. Hence the QCD scale must also drop out of the right-hand side. We checked
that our results satisfy (48). An equivalent formulation of (48) was given in [9] in terms of a
Ward-identity. Also the tensor coefficients at u = 1, corresponding to q2 = 0, can be checked
against existing results in the literature, since they enter the b → sγ process. From [24] (see
also [25]) one can infer the combinations

−2F 1
T (u = 1) + 1

2
F 2

T (u = 1) + F 3
T (u = 1) (49)

and

−2C1
T (u = 1;μ,ν) + C3

T (u = 1;μ,ν). (50)

The latter equation can again be checked for distinct μ and ν, and both (49) and (50) agree with
the formulas in [24]. Note that (50) is just the coefficient C

(A0)
T1

from (54) at u = 1.

In Fig. 1 we evaluate the matching coefficients for μ = ν = mb and α
(4)
s (mb) = 0.22. For

completeness we show the full set of matching coefficients C
j
i that we introduced in Table 1.

We see that the NNLO corrections are in general moderate and add in each case constructively
to the NLO corrections. In Fig. 1 we also show the effect of a finite charm quark mass, which is
generally rather small, typically modifying the NNLO correction by about 10–20%.

4. Exclusive semi-leptonic and radiative B decays

With the two-loop matching coefficients C
j
i at hand, we explore several applications to B

meson decays in this and the following section. For the numerical study we use the following
input parameters: the b-quark pole mass mb = 4.8 GeV; the renormalization scale of the QCD
scalar and tensor currents ν = mb; the hard scale μ = mb . The strong coupling constant is ob-

tained from α
(4)
s (mb) = 0.215 by employing three-loop running (Λ

(nf =4)

MS
= 290.9 MeV), which

gives α
(4)
s (1.5 GeV) = 0.349. When we add the hard spectator-scattering contribution from [14]

as required for exclusive processes, we need further parameters (such as moments of light-cone
distribution amplitudes), for which we use the same values as [14] including the hard-collinear
scale μhc = 1.5 GeV.
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δC
j,(2)
i (u;μ,ν) =

[
γ

(1)
i

2

2
− γ

(1)
i β

(5)
0

]
C

j,(0)
i ln2 ν

μ

+
[(

γ
(2)
i + 4

3
TF γ

(1)
i ln

μ2

m2
b

)
C

j,(0)
i + γ

(1)
i C

j,(1)
i (u;μ)

]
ln

ν

μ
(47)

in NNLO. (Here β
(5)
0 = 11CA/3 − 4/3TF nf refers to the QCD beta-function with nf = nl + 1

flavours.) Our final results for the matching coefficients with the two scales μ and ν distinct from
each other are provided in electronic form in [23].

The matching coefficients with the SCET and QCD scale distinct from each other can be used
for additional cross-checks. The scalar coefficient is not independent but can be related to the
vector coefficients by means of the equations of motion, yielding [13]

C1
V (u;μ) +

(
1 − u

2

)
C2

V (u;μ) + C3
V (u;μ) = mb(ν)

mb

CS(u;μ,ν), (48)

where mb(ν) is the MS renormalized mass in five-flavour QCD. Due to the conservation of the
vector current the left-hand side of (48), which happens to be just the coefficient C

(A0)
f0

from (54)
below, is free of ν. Hence the QCD scale must also drop out of the right-hand side. We checked
that our results satisfy (48). An equivalent formulation of (48) was given in [9] in terms of a
Ward-identity. Also the tensor coefficients at u = 1, corresponding to q2 = 0, can be checked
against existing results in the literature, since they enter the b → sγ process. From [24] (see
also [25]) one can infer the combinations

−2F 1
T (u = 1) + 1

2
F 2

T (u = 1) + F 3
T (u = 1) (49)

and

−2C1
T (u = 1;μ,ν) + C3

T (u = 1;μ,ν). (50)

The latter equation can again be checked for distinct μ and ν, and both (49) and (50) agree with
the formulas in [24]. Note that (50) is just the coefficient C

(A0)
T1

from (54) at u = 1.

In Fig. 1 we evaluate the matching coefficients for μ = ν = mb and α
(4)
s (mb) = 0.22. For

completeness we show the full set of matching coefficients C
j
i that we introduced in Table 1.

We see that the NNLO corrections are in general moderate and add in each case constructively
to the NLO corrections. In Fig. 1 we also show the effect of a finite charm quark mass, which is
generally rather small, typically modifying the NNLO correction by about 10–20%.

4. Exclusive semi-leptonic and radiative B decays

With the two-loop matching coefficients C
j
i at hand, we explore several applications to B

meson decays in this and the following section. For the numerical study we use the following
input parameters: the b-quark pole mass mb = 4.8 GeV; the renormalization scale of the QCD
scalar and tensor currents ν = mb; the hard scale μ = mb . The strong coupling constant is ob-

tained from α
(4)
s (mb) = 0.215 by employing three-loop running (Λ

(nf =4)

MS
= 290.9 MeV), which

gives α
(4)
s (1.5 GeV) = 0.349. When we add the hard spectator-scattering contribution from [14]

as required for exclusive processes, we need further parameters (such as moments of light-cone
distribution amplitudes), for which we use the same values as [14] including the hard-collinear
scale μhc = 1.5 GeV.
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Fig. 1. Matching coefficients C
j
i

at the scale μ = ν = mb as a function of u (the momentum transfer is given by q2 =
(1 − u)m2

b
). The dotted horizontal lines show the tree level results, the dashed lines the one-loop approximation and the

solid lines the two-loop approximation with massless charm quarks (orange/light grey) and massive charm quarks with
mc/mb = 0.3 (blue/dark grey).

4.1. Heavy-to-light form factor ratios

The heavy-to-light form factors in the large-recoil regime, where the light meson momentum
is parametrically of order of the heavy-quark mass, take the following factorization formula [4,7]

FB→M
i (E) = Ci(E)ξa(E) +

∞∫

0

dω

ω

1∫

0

dv Ti(E; lnω,v)φB+(ω)φM(v), (51)
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where E denotes the energy of the light meson M , ξa(E) is the single non-perturbative form
factor (one of two when M is a vector meson), and φX the light-cone distribution amplitudes of
the B meson and the light meson. The short-distance coefficients Ci and the spectator-scattering
kernel Ti can be calculated in perturbation theory. The two terms in the above equation corre-
spond to the matrix elements of the two terms in the operator matching equation (1). In particular,
the two-loop results from the previous section enter the coefficients Ci(E) of the first term. The
spectator-scattering kernels Ti have been calculated at O(αs) in [7], and at O(α2

s ) in [13,14].
In the following we discuss relations between different QCD form factors FB→M

i (E) that can
be deduced from the factorization formula (51). Adopting the same conventions and notations as
[14], we can express the three independent B → P form factors as

f+(E) = C
(A0)
f+ (E)ξP (E) +

∫
dτ C

(B1)
f+ (E, τ)ΞP (τ,E),

mB

2E
f0(E) = C

(A0)
f0

(E)ξP (E) +
∫

dτ C
(B1)
f0

(E, τ)ΞP (τ,E),

mB

mB + mP

fT (E) = C
(A0)
fT

(E)ξP (E) +
∫

dτ C
(B1)
fT

(E, τ)ΞP (τ,E), (52)

and the seven independent B → V form factors as

mB

mB + mV

V (E) = C
(A0)
V (E)ξ⊥(E) +

∫
dτ C

(B1)
V (E, τ)Ξ⊥(τ,E),

mV

E
A0(E) = C

(A0)
f0

(E)ξ�(E) +
∫

dτ C
(B1)
f0

(E, τ)Ξ�(τ,E),

mB + mV

2E
A1(E) = C

(A0)
V (E)ξ⊥(E) +

∫
dτ C

(B1)
V (E, τ)Ξ⊥(τ,E),

mB + mV

2E
A1(E) − mB − mV

mB

A2(E) = C
(A0)
f+ (E)ξ�(E) +

∫
dτ C

(B1)
f+ (E, τ)Ξ�(τ,E),

T1(E) = C
(A0)
T1

(E)ξ⊥(E) +
∫

dτ C
(B1)
T1

(E, τ)Ξ⊥(τ,E),

mB

2E
T2(E) = C

(A0)
T1

(E)ξ⊥(E) +
∫

dτ C
(B1)
T1

(E, τ)Ξ⊥(τ,E),

mB

2E
T2(E) − T3(E) = C

(A0)
fT

(E)ξ�(E) +
∫

dτ C
(B1)
fT

(E, τ)Ξ�(τ,E). (53)

Here mB represents the B meson mass, mP and mV refer to the pseudoscalar and vector light
meson masses, respectively. The coefficient functions C

(A0)
F and C

(B1)
F are defined as linear com-

binations of the matching coefficients of two- (“A0-type”) and three-body (“B-type”) SCET op-
erators, while Ξa(τ,E) denotes the matrix elements of the three-body operators O

(B1)jμ
i (s1, s2),

see (1). In terms of the coefficients C
j
i introduced in previous sections, the five independent

A0-coefficients are given by

C
(A0)
f+ = C1

V (u;μ) + u

2
C2

V (u;μ) + C3
V (u;μ),

C
(A0)
f0

= C1
V (u;μ) +

(
1 − u

2

)
C2

V (u;μ) + C3
V (u;μ),

C
(A0)
fT

= −2C1
T (u;μ,ν) + C2

T (u;μ,ν) − C4
T (u;μ,ν),
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where E denotes the energy of the light meson M , ξa(E) is the single non-perturbative form
factor (one of two when M is a vector meson), and φX the light-cone distribution amplitudes of
the B meson and the light meson. The short-distance coefficients Ci and the spectator-scattering
kernel Ti can be calculated in perturbation theory. The two terms in the above equation corre-
spond to the matrix elements of the two terms in the operator matching equation (1). In particular,
the two-loop results from the previous section enter the coefficients Ci(E) of the first term. The
spectator-scattering kernels Ti have been calculated at O(αs) in [7], and at O(α2

s ) in [13,14].
In the following we discuss relations between different QCD form factors FB→M

i (E) that can
be deduced from the factorization formula (51). Adopting the same conventions and notations as
[14], we can express the three independent B → P form factors as

f+(E) = C
(A0)
f+ (E)ξP (E) +

∫
dτ C

(B1)
f+ (E, τ)ΞP (τ,E),

mB

2E
f0(E) = C
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f0

(E)ξP (E) +
∫
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(E, τ)ΞP (τ,E),
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mB + mP

fT (E) = C
(A0)
fT

(E)ξP (E) +
∫

dτ C
(B1)
fT

(E, τ)ΞP (τ,E), (52)

and the seven independent B → V form factors as

mB

mB + mV

V (E) = C
(A0)
V (E)ξ⊥(E) +

∫
dτ C

(B1)
V (E, τ)Ξ⊥(τ,E),

mV

E
A0(E) = C
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(E)ξ�(E) +
∫
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(B1)
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(E, τ)Ξ�(τ,E),
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2E
A1(E) = C

(A0)
V (E)ξ⊥(E) +

∫
dτ C

(B1)
V (E, τ)Ξ⊥(τ,E),

mB + mV

2E
A1(E) − mB − mV

mB

A2(E) = C
(A0)
f+ (E)ξ�(E) +

∫
dτ C

(B1)
f+ (E, τ)Ξ�(τ,E),

T1(E) = C
(A0)
T1

(E)ξ⊥(E) +
∫

dτ C
(B1)
T1

(E, τ)Ξ⊥(τ,E),

mB

2E
T2(E) = C

(A0)
T1

(E)ξ⊥(E) +
∫

dτ C
(B1)
T1

(E, τ)Ξ⊥(τ,E),

mB

2E
T2(E) − T3(E) = C

(A0)
fT

(E)ξ�(E) +
∫

dτ C
(B1)
fT

(E, τ)Ξ�(τ,E). (53)

Here mB represents the B meson mass, mP and mV refer to the pseudoscalar and vector light
meson masses, respectively. The coefficient functions C

(A0)
F and C

(B1)
F are defined as linear com-

binations of the matching coefficients of two- (“A0-type”) and three-body (“B-type”) SCET op-
erators, while Ξa(τ,E) denotes the matrix elements of the three-body operators O

(B1)jμ
i (s1, s2),

see (1). In terms of the coefficients C
j
i introduced in previous sections, the five independent

A0-coefficients are given by

C
(A0)
f+ = C1

V (u;μ) + u

2
C2

V (u;μ) + C3
V (u;μ),

C
(A0)
f0

= C1
V (u;μ) +

(
1 − u

2

)
C2

V (u;μ) + C3
V (u;μ),

C
(A0)
fT

= −2C1
T (u;μ,ν) + C2

T (u;μ,ν) − C4
T (u;μ,ν),
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C
(A0)
V = C1

V (u;μ),

C
(A0)
T1

= −2C1
T (u;μ,ν) +

(
1 − u

2

)
C2

T (u;μ,ν) + C3
T (u;μ,ν). (54)

Recall that in D = 4 dimensions one has C2
T = C4

T = 0. The variable E used in (52) and (53) is
related to u through u = 2E/mB . The five independent B-coefficients are given in Appendix A2
of [14].

From (52) and (53), we have the following two identities

mB

mB + mV

V (E) = mB + mV

2E
A1(E), T1(E) = mB

2E
T2(E) (55)

up to power corrections [26]. In the physical form factor scheme [7,14], where the SCETI form
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the five remaining form factors read
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and

C
(B1)
0+ (τ,E) = C

(B1)
f0

(τ,E) − C
(B1)
f+ (τ,E)R0(E),

C
(B1)
T + (τ,E) = C

(B1)
fT

(τ,E) − C
(B1)
f+ (τ,E)RT (E),

C
(B1)
T1V

(τ,E) = C
(B1)
T1

(τ,E) − C
(B1)
V (τ,E)R⊥(E). (59)

We denote Lμ = ln(μ2/m2
b), Lν = ln(ν2/m2

b), and β
(4)
0 = 11/3CA − 4/3TF nl . The functions

ji(u) can be found in Appendix B. One recognizes the relatively simple structure of the ratios RX

in the physical form factor scheme. Compared to the matching coefficients, where we encounter
up to the fourth power of logarithms, the ratios RX have logarithmic dependences that are at most
quadratic, since the universal Sudakov logarithms cancel in the ratios.

As expected in any perturbative QCD calculation, the higher-order correction is necessary to
eliminate scale ambiguities. While the A0-coefficients C

(A0)
X depend on the hard scale μ (which

is cancelled by the corresponding dependence of the SCETI form factors ξa(E)), the μ de-
pendence of the ratios RX (X = 0, T ,⊥) arises only from the scale-dependence of αs(μ) and
should be reduced after including the higher-order correction. In Fig. 2, we show the depen-
dence of the three ratios RX on the scale μ at u = 0.85 (corresponding to the light-meson energy
E = umB/2 = 2.24 GeV or momentum transfer q2 = 4.18 GeV2) and fixed renormalization
scale ν = mb of the QCD tensor current. In the absence of radiative and power corrections, all
these coefficients equal 1 (dotted lines). We observe that the scale dependence is reduced at the
two-loop order for the ratios R0,T , but not for R⊥, which receives a large two-loop correction.

Since the A0-type coefficients C
(A0)
X and hence the ratios RX also depend on the momentum

transfer q2, we show in Fig. 3 these coefficients as a function of u (related to light-meson energy
E = umB/2 or momentum transfer q2 = (1 − u)m2

B ), with the scales fixed at ν = μ = mb . As

illustrated in Fig. 3, the NNLO correction to all the five coefficients C
(A0)
X is quite similar and

adds in each case constructively to the NLO result; among the three ratios RX , the two-loop
correction to R⊥, i.e. to the ratio of the tensor and vector form factor, T1/V , is most significant.

To further investigate these two-loop corrections to the form factor ratios, following [14] we
also take the B → π and B → ρ transitions as examples. Seven ratios among the total of ten
pion and ρ meson form factors can be obtained from the two identities (55), which do not receive
any perturbative corrections, and the five relations that follow from (57) by dividing through the
appropriate ξFF

a . The q2 dependence of these form factor ratios are shown in Fig. 4. As in [14] the
q2-dependence of the ξFF

a in the normalization of the spectator-scattering correction is taken from
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in the physical form factor scheme. Compared to the matching coefficients, where we encounter
up to the fourth power of logarithms, the ratios RX have logarithmic dependences that are at most
quadratic, since the universal Sudakov logarithms cancel in the ratios.

As expected in any perturbative QCD calculation, the higher-order correction is necessary to
eliminate scale ambiguities. While the A0-coefficients C
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X depend on the hard scale μ (which

is cancelled by the corresponding dependence of the SCETI form factors ξa(E)), the μ de-
pendence of the ratios RX (X = 0, T ,⊥) arises only from the scale-dependence of αs(μ) and
should be reduced after including the higher-order correction. In Fig. 2, we show the depen-
dence of the three ratios RX on the scale μ at u = 0.85 (corresponding to the light-meson energy
E = umB/2 = 2.24 GeV or momentum transfer q2 = 4.18 GeV2) and fixed renormalization
scale ν = mb of the QCD tensor current. In the absence of radiative and power corrections, all
these coefficients equal 1 (dotted lines). We observe that the scale dependence is reduced at the
two-loop order for the ratios R0,T , but not for R⊥, which receives a large two-loop correction.

Since the A0-type coefficients C
(A0)
X and hence the ratios RX also depend on the momentum

transfer q2, we show in Fig. 3 these coefficients as a function of u (related to light-meson energy
E = umB/2 or momentum transfer q2 = (1 − u)m2

B ), with the scales fixed at ν = μ = mb . As

illustrated in Fig. 3, the NNLO correction to all the five coefficients C
(A0)
X is quite similar and

adds in each case constructively to the NLO result; among the three ratios RX , the two-loop
correction to R⊥, i.e. to the ratio of the tensor and vector form factor, T1/V , is most significant.

To further investigate these two-loop corrections to the form factor ratios, following [14] we
also take the B → π and B → ρ transitions as examples. Seven ratios among the total of ten
pion and ρ meson form factors can be obtained from the two identities (55), which do not receive
any perturbative corrections, and the five relations that follow from (57) by dividing through the
appropriate ξFF

a . The q2 dependence of these form factor ratios are shown in Fig. 4. As in [14] the
q2-dependence of the ξFF

a in the normalization of the spectator-scattering correction is taken from
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Fig. 2. Dependence of the ratios RX (X = 0, T ,⊥) defined in (58) on the scale μ, with u = 0.85 (corresponding to the
light-meson energy E = umB/2 = 2.24 GeV or momentum transfer q2 = 4.18 GeV2) and ν = mb (the renormalization
scale of the QCD tensor current). All of them equal 1 in the absence of radiative and power corrections (dotted line). The
solid and dashed lines denote the NNLO and NLO results, respectively.

the QCD sum rule calculation. The ratios are normalized such that in absence of any radiative and
power corrections they equal 1 for all q2. Our final results, including both RX and the spectator-
scattering term to order α2

s , are shown as solid dark grey (blue in colour) curves, while the results
with RX evaluated only at NLO as solid light grey (orange in colour) ones. One can see that
the radiative correction always enhances the symmetry-breaking effect, and the NNLO term is
generally quite moderate; the most significant effect from the two-loop correction is on the ratio
T1/V (through the ratio R⊥). To see the relative size of the two terms in the factorization formula
(51), we also show the result without the spectator-scattering term (dashed curves with blue/dark
grey and orange/light grey denoting the NNLO and NLO results, respectively). Comparing the
solid with the dashed curves, one can see that the radiative correction from the A0-coefficients
C

(A0)
X is always smaller than the spectator-scattering contribution.

To compare our results with the QCD sum rule calculations [27], the sum rule predictions for
these form factor ratios are shown as dash-dotted curves in Fig. 4. One notices that, while the
sum rule calculation generally satisfies the symmetry relations better than predicted on the basis
of the heavy-quark limit corrected by radiative and spectator-scattering effects, see for instance
the lower right panel of Fig. 4, there are also significant differences concerning the sign of the
correction, which might be due to 1/mb power corrections or ununderstood systematics of the
sum rule calculations; further detailed discussions could be found in [7,14,28]. The new two-loop
correction does not affect the conclusions on this point.

4.2. Exclusive radiative B decays

As factorization calculations of exclusive radiative and hadronic B decays involving only
light mesons make use of the heavy-to-light form factors at maximal recoil, it is of interest to
investigate the short-distance corrections at u = 1, i.e. E = mB/2 or q2 = 0. In this subsection
we shall consider the following two ratios [14]
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Fig. 3. The A0-type coefficients C
(A0)
X

and the ratios RX (X = 0, T ,⊥) defined in (58) as a function of u (related to

light-meson energy E = umB/2 or momentum transfer q2 = (1 − u)m2
B

), with the scales fixed at ν = μ = mb . The
legend is the same as in Fig. 2.

R1(E) ≡ mB

mB + mP

fT (E)

f+(E)
= RT (E) +

1∫

0

dτ C
(B1)
T + (τ,E)

ΞP (τ,E)

f+(E)
,

R2(E) ≡ mB + mV

mB

T1(E)

V (E)
= R⊥(E) + mB + mV

mB

1∫

0

dτ C
(B1)
T1V

(τ,E)
Ξ⊥(τ,E)

V (E)
, (60)

defined in the physical form factor scheme. Note that in this scheme the above expressions for
the form factor ratios are valid independent of the size of the second term, which arises from the
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Fig. 3. The A0-type coefficients C
(A0)
X

and the ratios RX (X = 0, T ,⊥) defined in (58) as a function of u (related to

light-meson energy E = umB/2 or momentum transfer q2 = (1 − u)m2
B

), with the scales fixed at ν = μ = mb . The
legend is the same as in Fig. 2.
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defined in the physical form factor scheme. Note that in this scheme the above expressions for
the form factor ratios are valid independent of the size of the second term, which arises from the
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Fig. 4. Corrections to the B → π and B → ρ form factor ratios as a function of momentum transfer q2. All the ratios
equal 1 in the absence of radiative corrections. Solid curves: full results with RX evaluated at NNLO (blue/dark grey)
and NLO (orange/light grey), including the spectator-scattering term; dashed: results without the spectator-scattering
contribution; dash-dotted: results from QCD sum rule calculation. The lower right panel shows the two form factor ratios
that equal 1 at leading power. For comparison, the QCD sum rule results for these two ratios are also shown (upper line
refers to A1/V , lower line to T2/T1).

spectator-scattering term in (51), relative to the first one. Thus, the issue of whether the spectator
contribution should be counted as O(αs) or rather O(1) debated in [29] has no bearing on (60).

At u = 1 and assuming the asymptotic form for the light-meson distribution amplitude
φM(v) = 6vv̄, the analytic expressions for these two ratios simplify considerably, even at NNLO.
As the spectator-scattering contribution is already given by Eq. (124) in [14], here we give only
the expressions for the ratios RT,⊥ at u = 1 (as a consequence of the equations of motion, we
have R0(u = 1) ≡ 1),
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s
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[
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π2 ln 2

]
,
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3
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]
+

(
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)2[
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ν − 778

27
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+ 4ζ(3) − 5

3
π4 + 428

27
π2 − 13 013

162
− 88

27
π2 ln 2

]
, (61)

with Lμ = ln(μ2/m2
b), Lν = ln(ν2/m2

b), and nl = 4 has been used. Using the three-loop running
coupling and specifying to the pion (R1) and ρ meson (R2), numerically we obtain (setting
ν = μ = mb)

R1(Emax) = 1 + [
0.046(NLO) + 0.015(NNLO)

]
(RT )

− 0.160
{
1 + 0.524(NLO spec.) − 0.002

(
δ
�
log

)}

= 0.817,

R2(Emax) = 1 − [
0.023(NLO) + 0.030(NNLO)

]
(R⊥)

+ 0.084
{
1 + 0.406(NLO spec.) + 0.032

(
δ
�
log

)}

= 1.067. (62)

In these expressions we separated the symmetry-conserving (first number, normalized to 1), A0-
and B-type corrections (denoted by RT,⊥ and the remaining terms, respectively). The parameter
δ
�
log denotes the small effect from renormalization-group summation and has the same meaning

as in Eq. (124) of [14]. We observe that the A0-type and spectator-scattering corrections always
have opposite sign, but the latter are larger (though not O(1)) and determine the sign of the
deviation from the symmetry limit. We also notice that the two-loop correction to R⊥ is more
significant than to RT . The small numerical difference of spectator-scattering contribution rel-
ative to Eq. (124) in [14] is due to the fact that now the three-loop running coupling is used.
For comparison the QCD sum rule calculation [27] gives R1 = 0.955 and R2 = 0.947. For the
tensor-to-vector ratio R2, one notices that the sign of the symmetry-breaking correction between
these two methods is opposite. Since the form factor ratio T1/V is important for radiative and
electroweak penguin decays (see the discussion in Section 5.2 of [14]), the discrepancy between
the SCET and QCD sum rules results for R2 suggests that a dedicated analysis of symmetry
breaking corrections to form factors (rather than the form factors themselves) with the QCD sum
rule method should be performed.

5. Semi-inclusive B̄ → Xs�
+�− decays

Rare inclusive B-meson decays induced by the quark level transition b → s�+�− are highly
sensitive to new physics. Due to the presence of two extra operators (�̄�)V,A(s̄b)V −A in the effec-
tive Hamiltonian and the availability of additional kinematical observables, such as the dilepton
invariant mass (q2) spectrum and the forward–backward asymmetry, the b → s�+�− decay pro-
vides complementary information relative to the radiative b → sγ process.

The exclusive decay process B → K∗�+�− has been studied in great detail, both with re-
spect to its QCD dynamics [30] and to the sensitivity of various observables to new physics
[31], because it can be measured relatively easily at hadron colliders. Also on the inclusive de-
cay process B̄ → Xs�

+�− dedicated work exists on higher order radiative corrections (see [32]
for recent reviews), power corrections [33,34], and on the identification of additional kinematic
observables [35].

The low dilepton invariant mass region, 1 GeV2 � q2 � 6 GeV2 is particularly interesting,
since it benefits from smaller theoretical uncertainties and a higher rate. At somewhat higher
q2 the spectrum is dominated by charmonium resonances (which also determine the integrated
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breaking corrections to form factors (rather than the form factors themselves) with the QCD sum
rule method should be performed.
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spect to its QCD dynamics [30] and to the sensitivity of various observables to new physics
[31], because it can be measured relatively easily at hadron colliders. Also on the inclusive de-
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+�− dedicated work exists on higher order radiative corrections (see [32]
for recent reviews), power corrections [33,34], and on the identification of additional kinematic
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since it benefits from smaller theoretical uncertainties and a higher rate. At somewhat higher
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decay rate, see the discussion in [36]). On the other hand, for q2 < 1 GeV2, the branching ratio is
determined largely by the contribution from almost real intermediate photons, and hence contains
essentially the same information as the b → sγ transition.

In the following we discuss semi-inclusive B̄ → Xs�
+�− decay, where the hadronic final

state Xs is constrained to have small invariant mass mX and q2 is in the range from 1 GeV2 to
6 GeV2. In this kinematic region (the so-called “shape function region”), the outgoing hadronic
state is jet-like and the relevant degrees of freedom are hard-collinear and soft modes. The semi-
inclusive decay rates can be calculated by matching the effective weak interaction Hamiltonian to
soft-collinear effective theory. At the leading order in the ΛQCD/mb expansion, the decay rates
can be factorized into process-dependent hard functions h[0], related to physics at the hard scale
μ ∼ mb and above, a universal jet function J , related to physics at the intermediate hard-collinear
scale μhc ∼ √

mbΛQCD, as well as a universal non-perturbative shape function S, describing the
internal soft dynamics of the B meson, with the following schematic form [37,38]

dΓ [0] = h[0] × J ⊗ S, (63)

a result already applied extensively to inclusive B̄ → Xu�ν̄ and B̄ → Xsγ decays in the shape-
function region. The two-loop matching coefficients of the tensor currents calculated in the
present paper provide further input to reaching NNLO (α2

s ) accuracy in h[0] and the entire
differential decay rate dΓ [0]. Compared to exclusive decays mediated by the b → s�+�− tran-
sition [30] the semi-inclusive case has the advantage that the theoretically less certain spectator-
scattering contributions to the currents that enter the exclusive form factors are power-suppressed
and can be dropped.

In the following we will be mainly interested in the forward–backward asymmetry of the
differential rate integrated up to an invariant mass mcut

X in the final state. We briefly review the
theoretical description of this quantity, adopting the same conventions and notation as [38], to
which we also refer for further details. The short-distance coefficients h[0] at the hard matching
scale μ are composed of products of two factors, since the hadronic part of the effective weak
interaction Hamiltonian is first matched to two QCD (rather than SCET) currents,

J
μ
9 = s̄γ μPLb, J

μ
7 = 2mb

q2
s̄iqρσρμPRb

∣∣∣∣
ν=mb

, (64)

with coefficients Cincl
i (q2,μ) and PL,R = (1 ∓ γ5)/2. Moreover, mb in J

μ
7 refers to the bottom

quark pole mass. The QCD currents are then related to the corresponding SCET currents,

J
μ
9 =

∑
i=1,2,3

c9
i (u,μ)[ξ̄Whc]Γ μ

9,ihv,

J
μ
7 = 2mb

q2

∑
i=1,2

c7
i (u,μ)[ξ̄Whc]Γ μ

7,ihv. (65)

These equations represent the momentum space versions of (1). The variable u is related to the
kinematics of the process by u = p−/mb , where

p− = n+p = mb − q2

mB − p+
X

, (66)

and p+
X = n−pX � mB is the small light-cone component of the hadronic final state’s momen-

tum. The basis of Dirac structures is chosen as
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Γ
μ

9,i = PR

{
γ μ, vμ, qμ

}
,

Γ
μ

7,i = PR

{
iqνσ

νμ, qν

(
qνvμ − qμvν

)}
. (67)

As noted in [38], the choice of qμ instead of n
μ
− for Γ

μ
9,3 is convenient here as it makes explicit the

constraint from lepton current conservation, which implies that for massless leptons c9
3 does not

contribute, while for Γ
μ

7,i there are only two independent coefficients. Transforming the basis (67)

to our operator basis listed in Table 1, the matching coefficients c9
i and c7

i are given, respectively,
as

c9
1(u,μ) = C1

V (u;μ),

c9
2(u,μ) = C2

V (u;μ) + 2

u
C3

V (u;μ),

c9
3(u,μ) = − 2

umb

C3
V (u;μ),

c7
1(u,μ) = −2C1

T (u;μ,ν = mb) + C3
T (u;μ,ν = mb),

c7
2(u,μ) = − 2

umb

C3
T (u;μ,ν = mb). (68)

The two-loop matching coefficients c9
i for the vector current have become available in the context

of inclusive semi-leptonic B decays [9–12]. The results of this paper allow us to compute also the
matching coefficients c7

i at NNLO. As a consequence the factor in h[0] related to the QCD current
matching is now complete at NNLO, while the other factor related to Cincl

i (q2,μ) is known at the
next-to-next-to-leading logarithmic (NNLL) order, since the three-loop O(α2

s ) matrix elements
of the current–current operators (giving rise to charm-loop diagrams) are not available.

In Fig. 5 we show these matching coefficients as a function of u in the one- (dashed) and
two-loop (solid) approximation, evaluated at μ = mb = 4.8 GeV (blue/dark grey curves) and at
μ = 1.5 GeV (orange/light grey curves), respectively. The difference between these two different
choices of the IR factorization scale μ is compensated by the corresponding scale dependence of
the convolution J ⊗ S such that the differential rate (63) is μ-independent. Note that, while we
show the entire range of u, Eq. (66) implies that the relevant values of u for b → s�+�− in the
q2 region of interest are above u ≈ 0.75. In the lower right panel of Fig. 5, we also show the ratio
c7

1/c
9
1, which equals the quantity R⊥ defined earlier in (58) at ν = mb , and plays an important

role for the forward–backward asymmetry as discussed below. Note that R⊥ is μ-independent,
except for the truncation of the perturbative series. In evaluating this ratio to a given order in αs ,
we expand the denominator and truncate the expanded expression.

Comparing the dashed (one-loop approximation) and solid (two-loop approximation) curves
of the same colour in Fig. 5, we observe that the two-loop corrections are generally moderate in
the large u (low q2) region, whereas the large correction in the region of small u is due to the
fact that increasing powers of large logarithms take over in this region. However, the correction is
amplified in the ratio R⊥, where the two-loop correction exceeds the one-loop term. This leads to
a considerable residual μ-dependence (difference of blue/dark grey and orange/light grey curves)
as can also be seen in Fig. 2. Since the infrared physics drops out from the ratio c7

1/c
9
1 the natural

scale is of order of the hard scale mb .
The differential decay rate (63) can be written as

d3Γ

dq2 dp+
X d cos θ

= 3

8

[(
1 + cos2 θ

)
HT

(
q2,p+

X

) + 2
(
1 − cos2 θ

)
HL

(
q2,p+

X

)
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Fig. 5. The matching coefficients c9
i
(u,μ) and c7

i
(u,μ) as a function of u (related to the dilepton invariant mass q2 =

(1 − u)m2
b

) in the one-loop (dashed) and two-loop (solid) approximation. The blue/dark grey curves refer to μ = mb =
4.8 GeV, and the orange/light grey ones to μ = 1.5 GeV.

+ 2 cos θHA

(
q2,p+

X

)]
, (69)

where for B̄ decay, θ denotes the angle between the positively charged lepton and the B̄ meson
in the centre-of-mass frame of the �+�− pair. For fixed p+

X , the forward–backward asymmetry in
θ therefore vanishes for a particular q2

0 at which HA(q2
0 ,p+

X) = 0. Integrating over the invariant
mass of the hadronic final state up to the cut mcut

X , the asymmetry zero occurs at

0 =
p+cut

X∫

0

dp+
X HA

(
q2

0 ,p+
X

)

= const×
p+ cut

X∫

0

dp+
X h

[0]
A

(
q2

0 ,p+
X

) (q0+ − q0−)2

q0+
q2

0

∫
dωp−J

(
p−ω

)
S
(
p+

X − ω
)
, (70)

where [38] q+ = mB − p+
X , q− = q2/q+,

p+cut
X = 1

2mB

[
m2

B + (
mcut

X

)2 − q2 −
√(

m2
B + (

mcut
X

)2 − q2
)2 − 4m2

B

(
mcut

X

)2 ]
, (71)
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and

h
[0]
A

(
q2,p+

X

) = 2C10c
9
1(u)Re

[
Cincl

9

(
q2)c9

1(u) + 2mb

q−
Cincl

7

(
q2)c7

1(u)

]
. (72)

We now observe that h
[0]
A (q2

0 ,p+
X) depends on p+

X only through the definition of u in (66) and
the kinematic factor 2mb/q−. For typical mcut

X of 2 GeV this dependence is very weak, since then
p+

X ∼ 1 GeV � mB . Thus, p+
X appears only as a small correction to mB − p+

X , and in the defini-
tion of u in a term that is additionally suppressed by q2/mB relative to mb , see (66). This results
in a very small variation of u of about 0.02 over the entire p+

X integration region. We may there-

fore pull the slowly varying function h
[0]
A (q2

0 ,p+
X) in front of the p+

X integration in (70) thereby
replacing p+

X in the argument by an average value which we assume to be �p+
X� = p+cut

X /2.
The remaining integral over the jet and soft function is different from zero, thus the forward–
backward asymmetry zero is determined by h

[0]
A (q2

0 , �p+
X�) = 0. Using (72) this is equivalent to

the condition

q2
0

2mb(mB − �p+
X�) = −Re[Cincl

7 (q2
0 )]

Re[Cincl
9 (q2

0 )]
c7

1(u0)

c9
1(u0)

(73)

with u0 ≡ 1 − q2
0/(mb(mB − �p+

X�)). This result leads to the important conclusion that the QCD
dynamics that determines the location of the asymmetry zero is to a very good approximation
independent of the long-distance physics below the scale mb contained in the jet function and the
non-perturbative shape function. It also depends only very weakly on the value of the invariant
mass cut through the dependence of �p+

X� on mcut
X . The bulk dependence of q2

0 on the invariant
mass cut mcut

X enters through the kinematical factor mB −�p+
X� on the left-hand side of (73). This

conclusion is in agreement with the study [37] where the near-independence of q2
0 on the value

of mcut
X has been noted.

We are now in the position to quantify the impact of the two-loop calculation of R⊥(u0, ν =
mb) = c7

1(u0)/c
9
1(u0) on q2

0 . In [38] the asymmetry zero has been determined by keeping the full
NNLL expression for Re[Cincl

7 (q2)]/Re[Cincl
9 (q2)] but setting R⊥ = 1. In this approximation,

and excluding 1/mb-suppressed shape function effects for the moment, the zero is found to be

q2
0

∣∣
R⊥=1

= (3.62 . . .3.69) GeV2 for mcut
X = (2.0 . . .1.8) GeV. (74)

As indicated the lowest value corresponds to mcut
X = 2.0 GeV and the highest one to mcut

X =
1.8 GeV. Our value is somewhat larger than what can be extracted from Fig. 4 of [38], because
we expand the factor mb(μ)/m

pole
b that accompanies C7 in αs . Moreover, the variation of the

zero when changing mcut
X from 1.8 GeV to 2.0 GeV is about twice as large compared to what can

be read off from Fig. 4 of [38], which is likely due to our approximation of pulling the slowly
varying function h

[0]
A (q2

0 ,p+
X) out of the integral in (70). However, our approximation is still

justified since even the increased sensitivity of the zero on mcut
X is only ±0.03 GeV2 and hence

below 1%. Taking into account R⊥ at the NLO, we find for the position of the zero

q2
0

∣∣
R⊥NLO

= (3.55 . . .3.61) GeV2 for mcut
X = (2.0 . . .1.8) GeV. (75)

The impact of the NLO correction to R⊥ is to shift the zero by −2.2%. As we already stated
before, and as can also be seen from Figs. 2 and 5, the size of the NNLO correction to R⊥ is
significant. It amounts to a shift of the NLO zero in (75) by another −3% and hence is larger
than the NLO shift. The total shift induced by R⊥ through NNLO therefore amounts to −5%.
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Table 2
Numerical inputs that we use in the phenomenological analysis of the
forward–backward asymmetry zero.

αs(MZ) = 0.1180 λ2 � 1
4 (m2

B∗ − m2
B

) � 0.12 GeV2

sin2 θW = 0.23122 m
pole
t = 171.4 GeV

MW = 80.426 GeV m
pole
c = (1.5 ± 0.1) GeV

MZ = 91.1876 GeV mPS
b

(2 GeV) = (4.6 ± 0.1) GeV

Before proceeding to our final result we briefly comment on the rôle of power corrections. The
authors of [38] performed a thorough study of 1/mb-suppressed shape function effects which re-
sult in a shift of the zero of −0.05 GeV2 to −0.1 GeV2. This shift is more strongly dependent on
the invariant mass cut and the theoretical error increases when mcut

X is chosen smaller. In the fol-
lowing we take the larger value as an estimate for the shift and also for the associated uncertainty.
However, the study of power corrections in [38] does not cover all such corrections and applies a
rather crude treatment to those arising from soft gluon attachments to the charm-loop diagrams
by absorbing the 1/m2

c non-perturbative power corrections into the Cincl
i , which is justified only

in the absence of invariant mass cuts. In the semi-inclusive region, the matrix element of (29)
in [34] cannot, due to the presence of a soft gluon, be expressed in terms of a short-distance co-
efficient times a local matrix element, since the soft gluon attached to the charm loop affects the
invariant mass of an energetic hadronic final state by a relevant amount

√
mbΛQCD, which must

be accounted for by a subleading shape function. By treating this correction as in the inclusive
case, the authors of [38] implicitly assumed that this shape function somehow factorizes into the
local heavy-quark effective theory matrix element λ2 and the leading-power shape function. It
is not clear to us how this simplification can be justified and it is likely not even parametrically
correct. Nevertheless, in the absence of better information we follow the treatment of [38] and
include the 1/m2

c power corrections into the Cincl
i . This results in a shift of the asymmetry zero

by +0.07 GeV2, which is included in (74), (75), and below in (76). To be conservative we as-
sign another 0.1 GeV2 uncertainty to this estimate and add it in quadrature with the other power
correction uncertainty.

We are now in the position to present our final NNLO result based on the numerical input
parameters and their respective intervals as specified in Table 2. We then find

q2
0 = [

(3.34 . . .3.40)+0.04
−0.13μ ± 0.08mb

+0.05
−0.04mc ± 0.14SF ± 0.14�p+

X �
]

GeV2

= [
(3.34 . . .3.40)+0.22

−0.25

]
GeV2 for mcut

X = (2.0 . . .1.8) GeV. (76)

The error estimate is computed as follows: The range of scale variation is taken to be 2.3 GeV <

μ < 9.2 GeV, and we vary the scale in the Cincl
i and in R⊥ independently to account conserva-

tively for the absence of the O(α2
s ) correction to the Cincl

i . The input quark mass is the bottom
mass in the potential-subtracted (PS) scheme [39], see Table 2. The pole mass and MS mass
used in intermediate expressions are computed using the one-loop conversion factors resulting
in m

pole
b = 4.78 GeV and m(mPS

b ) = 4.36 GeV, respectively, when mPS
b (2 GeV) = 4.6 GeV. The

dependence on the charm quark mass enters through the matrix elements of the current–current
operators. The error labelled “SF” is connected with the subleading shape function effects as
discussed above. Finally we have added an uncertainty estimate for the approximation made by
pulling out the slowly varying function h

[0]
A (q2

0 ,p+
X) out of the p+

X integral in (70). We estimate
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this error rather generously by varying �p+
X� from pcut

X /4 to 3pcut
X /4. The total error is obtained

by adding all these uncertainties in quadrature.
We note that the value of the asymmetry zero in semi-inclusive b → s�+�− decay is signif-

icantly smaller than for the exclusive case [30], where spectator scattering is responsible for a
positive shift as is the fact that in this case �p+

X� = 0 in (73). On the other hand the semi-inclusive
zero is in the same region as in the inclusive case [40], where virtual effects together with hard
gluon bremsstrahlung encoded in functions ω710 and ω910 [41] also induce a negative shift on
the zero.

6. Conclusion

In this paper we completed the two-loop matching calculation for heavy-to-light currents from
QCD onto SCET for the complete set of Dirac structures. These matching coefficients enter sev-
eral phenomenological applications, of which we have discussed their effects on heavy-to-light
form factor ratios, exclusive radiative and semi-leptonic decays, as well as the inclusive decay
B̄ → Xs�

+�− in the shape-function region. The two-loop corrections are generally relatively
small, in the few percent range. However, one ratio, R⊥ = c7

1(u,μ)/c9
1(u,μ), which is also the

most important for phenomenology, since it enters the comparison of radiative and semi-leptonic
decays as well as the forward–backward asymmetry in exclusive and semi-inclusive b → s�+�−
transition, exhibits a two-loop correction that is larger than the one-loop term. The two-loop
term alone shifts the location of the asymmetry zero by about −0.1 GeV2, comparable to the
effect of 1/mb suppressed shape functions estimated in [38]. We showed that the location of the
asymmetry zero in semi-inclusive B̄ → Xs�

+�− with an invariant mass cut is to a very good
approximation independent of the long-distance physics below the scale mb contained in the
jet function and the non-perturbative shape function, and obtain q2

0 = (3.34+0.22
−0.25) GeV2 for an

invariant mass cut mcut
X = 2.0 GeV as our best estimate for the asymmetry zero. Moreover, we

confirm the discrepancy between QCD sum rule and SCET results for the form factor ratio T1/V

in the low q2 region discussed in [14] and suggest that a dedicated QCD sum rules analysis of
deviations from the symmetry limit (rather than the form factors themselves) should be done to
clarify the situation.
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Appendix A. NLO coefficient functions

In Section 3.1 we introduced the following set of one-loop coefficient functions,

g0(u) = −5

2
+ 2 ln(u),

g1(u) = −π2

12
+ 2

ū
ln(u) − 2 ln2(u) − 2Li2(ū),
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QCD onto SCET for the complete set of Dirac structures. These matching coefficients enter sev-
eral phenomenological applications, of which we have discussed their effects on heavy-to-light
form factor ratios, exclusive radiative and semi-leptonic decays, as well as the inclusive decay
B̄ → Xs�

+�− in the shape-function region. The two-loop corrections are generally relatively
small, in the few percent range. However, one ratio, R⊥ = c7

1(u,μ)/c9
1(u,μ), which is also the

most important for phenomenology, since it enters the comparison of radiative and semi-leptonic
decays as well as the forward–backward asymmetry in exclusive and semi-inclusive b → s�+�−
transition, exhibits a two-loop correction that is larger than the one-loop term. The two-loop
term alone shifts the location of the asymmetry zero by about −0.1 GeV2, comparable to the
effect of 1/mb suppressed shape functions estimated in [38]. We showed that the location of the
asymmetry zero in semi-inclusive B̄ → Xs�

+�− with an invariant mass cut is to a very good
approximation independent of the long-distance physics below the scale mb contained in the
jet function and the non-perturbative shape function, and obtain q2

0 = (3.34+0.22
−0.25) GeV2 for an

invariant mass cut mcut
X = 2.0 GeV as our best estimate for the asymmetry zero. Moreover, we

confirm the discrepancy between QCD sum rule and SCET results for the form factor ratio T1/V

in the low q2 region discussed in [14] and suggest that a dedicated QCD sum rules analysis of
deviations from the symmetry limit (rather than the form factors themselves) should be done to
clarify the situation.

Acknowledgements

We would like to thank F. Tackmann and M. Misiak for useful correspondence. This work was
supported in part by the DFG Sonderforschungsbereich/Transregio 9 “Computergestützte Theo-
retische Teilchenphysik” (G.B., M.B.), the Helmholtz alliance “Physics at the Terascale” (T.H.),
the Alexander-von-Humboldt Stiftung (X.-Q. Li), and the National Natural Science Foundation
under contract No. 11005032 (X.-Q. Li). X.-Q. Li acknowledges hospitality from the Institute of
Theoretical Physics, Chinese Academy of Science, where part of this work was performed.

Appendix A. NLO coefficient functions

In Section 3.1 we introduced the following set of one-loop coefficient functions,

g0(u) = −5

2
+ 2 ln(u),

g1(u) = −π2

12
+ 2

ū
ln(u) − 2 ln2(u) − 2Li2(ū),
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g2(u) = π2

24
+ 1

3
ζ3 + 12(1 + ū) + π2ū

6ū
ln(u) − 2

ū

(
ln2(u) + Li2(ū)

) + 4

3
ln3(u)

+ 4 ln(u)Li2(ū) − 2Li3(ū) + 4S1,2(ū),

g3(u) = − π4
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3
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− 12(1 + ū) + π2ū

6ū
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) − 8 ln(u)S1,2(ū)

+ 4 ln(u)Li3(ū) − 2Li4(ū)

+ 2

ū
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2

3
ln3(u) + 2 ln(u)Li2(ū) − Li3(ū) + 2S1,2(ū)

)
− 8S1,3(ū) + 4S2,2(ū),

g4(u) = g1(u) − 6 − 4u

ū
ln(u),
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3
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3 ln(u) − 2 ln2(u) − 2Li2(ū)
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+ 4 ln(u)Li2(ū) − 2Li3(ū) + 4S1,2(ū)
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g7(u) = − 2

ū
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ū2
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g8(u) = − 6

ū
− 2u

ū2

(
2 ln(u) − ln2(u) − Li2(ū)
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g9(u) = 2u

ū
ln(u),

g10(u) = u(1 + 4ū)

ū2
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ln(u) − u(1 + 4ū)
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g13(u) = g8(u) + 6 + 2u

ū
ln(u). (77)

Appendix B. NNLO coefficient functions

The finite parts of the two-loop form factors involve the following coefficient functions,

h1(u) = −2(7 − 2ū + 3ū2)

u2
Li4(ū) − 4(11 + 2ū + 3ū2)
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u2

)
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u2
Li2(ū)2
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S1,2(ū) + 29 − 35ū
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− (7 − 8ū + 4ū2)π2
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u
ln(2),

h3(u) = 8

3
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3ū
ln3(u)
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3uū
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S2,2(ū) − 2

u2
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3u2

)
Li2(ū)
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3u2ū
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Li2(ū) + 128(1 + ū + ū2)
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ū
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ū2
+ (9u − 4) ln(u)

ū
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u3



49

49
Author's personal copy

172 G. Bell et al. / Nuclear Physics B 843 (2011) 143–176

− 8(1 + 2ū + 15ū2)
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u3

+ 4(2u − 1)2 ln2(u)

ū2
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9ū
− (8u − 51) ln2(u)

3u
− 257 ln(u)

9
+ 269

9
,

j3(u) = −26

9
g9(u) + 8u

3ū
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3u3

− 8π2(6u2 − 32u + 29)Li2(ū)

3u3
− 2Li2(ū)

ū

+ 4(2u3 − 237u2 + 387u − 7)Li2(u) ln(u)

3u3
+ 2π4(20u2 − 83u + 73)

45u3

+ 8(4u2 − 183u + 306)ζ(3)

3u2
− π2(11u2 − 206u + 218)

3u2

+ 8π2(u2 − 72u + 120) ln(u)

9u2

+ 2(7u3 − 159u2 + 255u − 7) ln2(u) ln(ū)

3u3
+ 4 ln2(u)

ū
+ ln(u)

ū
− 13 ln(u)

− 2(27u − 125) ln2(u)

3u
− 8π2 ln(2) + 563

24
,

j6(u) = 2(u − 2)(u2 − 2u + 2)

3u2ū
s1(u) − 8ū

3u3
s2(u) − 2(7u2 − 17u + 11)

3u3
s3(u)

+ (u + 1)(u2 + 2u + 7)

3u3
s5(u) + 4(7u2 − 25u + 19)Li4(ū)

u3
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− 2(35u2 − 133u + 73)Li2(ū)

3u2
+ 2(7u3 − 99u2 + 129u − 7)(Li3(ū) − ζ(3))

3u3

− 2(45u3 − 273u2 + 273u + 7)Li3(u)

3u3

− 2π2(21u2 − 59u + 41)Li2(ū)

3u3
+ 22Li2(ū)

3ū

+ 2(28u3 − 204u2 + 207u + 7)Li2(u) ln(u)

3u3
+ π4(35u2 − 122u + 92)

45u3

+ 2(40u2 − 369u + 378)ζ(3)

3u2
− π2(68u2 − 279u + 267)

9u2

+ 4π2(8u2 − 75u + 78) ln(u)

9u2

+ (11u3 − 135u2 + 141u + 7) ln2(u) ln(ū)

3u3
+ 13 ln2(u)

3ū
− 269 ln(u)

9ū

+ 4π2 ln(u)

3ū
+ 215 ln(u)

9
− (40u − 73) ln2(u)

3u

+ 4π2 ln(2) − 4421

216
,

j7(u) = 38

9
g9(u) − 8u

3ū

[
ln2(u) + Li2(ū)

] + 4π2

9
+ 205

54
,

j8(u) = −8π2(u2 + 8u − 16)

9u2
+ 32ū(Li3(ū) − ζ(3))

u3
+ 8(u − 2)(u2 − 10u + 10)Li2(ū)

3u2ū

+ 76 ln(u)

9ū
− 232

3u
− 4(19u − 156) ln(u)

9u
+ 1429

54
,

j9(u) = −5π2(5u + 4)

6u
− 16ū(Li3(ū) − ζ(3))

u2
− 2(u − 2)Li2(ū)

u
+ u2 ln2(u)

ū2

− 12 ln(u) − 6ζ(3) + 4π2 ln(2) + 563

16
,

j10(u) = 4π2(u + 1)

3u
+ 8ū(Li3(ū) − ζ(3))

u2
+ 4 ln(u) + 3ζ(3) − 2π2 ln(2) − 5141

144
, (79)

with

s1(u) = 12H1(ū) + π2 ln(2 − u),

s2(u) = 12H2(ū) − π2Li2(−ū),

s3(u) = 3Li22(ū) − 24S2,2(ū) − 17π4

60
,

s4(u) = 6Li3(u) − 3Li2(u) ln(u) + 3Li3(ū) − 2π2 ln(u) − 6ζ(3),

s5(u) = −2Li3(−u) + 2Li2(−u) ln(u) + ln(u + 1) ln2(u) + π2 ln(u + 1). (80)
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3ū

+ 2(28u3 − 204u2 + 207u + 7)Li2(u) ln(u)

3u3
+ π4(35u2 − 122u + 92)

45u3

+ 2(40u2 − 369u + 378)ζ(3)

3u2
− π2(68u2 − 279u + 267)

9u2

+ 4π2(8u2 − 75u + 78) ln(u)

9u2

+ (11u3 − 135u2 + 141u + 7) ln2(u) ln(ū)
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3u2ū
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s1(u) = 12H1(ū) + π2 ln(2 − u),

s2(u) = 12H2(ū) − π2Li2(−ū),
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1 Introduction

The study of flavour-changing quark transitions provides an important indirect probe to

search for new heavy particles as well as to test the CKM mechanism of flavour mixing and

CP violation. One prominent class of such transitions are non-leptonic B-meson decays,
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1 Introduction

The study of flavour-changing quark transitions provides an important indirect probe to

search for new heavy particles as well as to test the CKM mechanism of flavour mixing and

CP violation. One prominent class of such transitions are non-leptonic B-meson decays,
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which offer a rich and interesting phenomenology including many CP-violating asymme-

tries. Non-leptonic two-body decays therefore play a central role at current and future

B-physics experiments. The extraction of the underlying decay amplitudes is, however,

complicated by the strong-interaction dynamics of the purely hadronic environment. A

systematic formalism to compute the hadronic matrix elements arises in the heavy-quark

limit [1–3]. Schematically,

〈M1M2|Qi|B̄〉 � FBM1

∫
du T I

i (u)φM2(u)

+

∫
dω dv du T II

i (ω, v, u)φB(ω)φM1(v)φM2(u) , (1.1)

where M1,2 are light (charmless) pseudo-scalar or vector mesons and Qi is a generic oper-

ator of the effective weak Hamiltonian. The hadronic dynamics in the above factorisation

formula is encoded in a form factor F and in light-cone distribution amplitudes φ. The

hard-scattering kernels T , on the other hand, can be computed to all orders in perturba-

tion theory in a partonic calculation. In the last few years, the perturbative corrections

have been worked out to next-to-next-to-leading order (NNLO) accuracy. While the full

set of O(α2
s) corrections to the spectator-scattering kernels T II

i is known [4–8], NNLO

corrections to the kernels T I
i have to date only been determined for the topological tree

amplitudes [9–11].

The missing NNLO ingredient consists of a two-loop calculation of the hard-scattering

kernels T I
i in the penguin sector. The calculation involves various types of operator inser-

tions, for details we refer to a future publication [12]. The one-loop contribution of the

magnetic dipole operator has been computed in [13]. The most difficult part of the calcula-

tion consists in the computation of massive two-loop penguin diagrams like the ones shown

in figure 1. Whereas the integrals that entered the two-loop tree calculation [14, 15] can

be expressed in terms of Harmonic Polylogarithms (HPLs) [16], the massive propagator in

the penguin loop introduces an additional scale and complicates the calculation. In the

present paper we give analytic results for the master integrals that arise in this calculation.

A convenient technique for the calculation of multi-scale integrals is the method of

differential equations [17–19]. In combination with integration-by-parts identities [20, 21]

and Laporta’s reduction algorithm [22], the master integrals are computed by solving a set

of differential equations where the derivatives are taken with respect to the external scales

of the process. It has recently been pointed out that the solution simplifies considerably

if the basis of master integrals is chosen appropriately [23]. We will discuss the properties

of such a canonical basis in detail below. The method has been successfully applied to

compute various massless as well as massive two-loop and three-loop integrals [24–33].

The present calculation is the first application of the method in which the integrals have

two different internal masses.

Our paper is organised as follows. We first discuss the kinematics of the process and

introduce a generalisation of the HPLs in section 2. The canonical basis of master integrals

is defined in section 3, and analytic results for all master integrals are given in section 4.

We comment on several cross-checks of our calculation in section 5, before we conclude in

– 2 –
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pb

uq ūq

p

Figure 1. Sample diagrams that arise in the two-loop calculation of the leading penguin amplitudes.

The black square denotes an insertion of an operator from the effective weak Hamiltonian. The

line to the left of the square is the incoming b-quark with momentum pb = q+ p. The quark in the

penguin loop can either be massless (up, down, strange) or massive (charm, bottom). The momenta

of the massless final state quarks are outgoing.

section 6. The paper is complemented by three appendices with various technical details,

as well as an electronic file that contains the analytic results of all master integrals and is

attached to the arXiv submission of the present work.

2 Definitions and notation

2.1 Kinematics

The kinematics of the process is depicted in figure 1. We write pb = q+p with p2b = m2
b and

p2 = q2 = 0. The momentum q of the emitted final state meson is split up into two parallel

momenta q1 = uq and q2 = (1− u)q ≡ ūq of the quark and anti-quark, respectively, where

u ∈ [0, 1] is the convolution variable that enters the first term of eq. (1.1). The quark in

the penguin loop can either be massless in the case of up, down and strange quarks, or

massive of mass mc or mb in the case of charm or bottom. For massless quarks, the master

integrals are already known from the calculation of the two-loop tree amplitudes in [14, 15].

We therefore only consider the situation with a massive quark in the penguin loop in the

following. The problem then depends on two dimensionless variables, which we choose as

the momentum fraction ū of the anti-quark and the mass ratio zf ≡ m2
f/m

2
b , with f = c, b.

The analytic continuation is done via zf → zf − iη, with infinitesimally small η > 0.

In order to express the solution to the master integrals in terms of iterated integrals

with rational weights, it will be convenient to trade the variables ū and zf for other sets

of variables. Our default choice is the set (r, s) with

r ≡
√
1− 4zf , s ≡

√
1−

4zf
ū

, (2.1)

which, when solved for the original variables, implies

ū =
1− r2

1− s2
, zf =

1− r2

4
. (2.2)

Let us have a look at the possible values of s. When ū runs from 0 → 1, the variable s for

4zf > 1 runs from +i∞ → r along the imaginary axis. For 4zf < 1, s runs from +i∞ → 0

along the imaginary axis, followed by 0 → r along the real axis. In this case the threshold

at ū = 4zf is mapped onto s = 0.
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pb

uq ūq

p

Figure 1. Sample diagrams that arise in the two-loop calculation of the leading penguin amplitudes.

The black square denotes an insertion of an operator from the effective weak Hamiltonian. The

line to the left of the square is the incoming b-quark with momentum pb = q+ p. The quark in the

penguin loop can either be massless (up, down, strange) or massive (charm, bottom). The momenta

of the massless final state quarks are outgoing.

section 6. The paper is complemented by three appendices with various technical details,

as well as an electronic file that contains the analytic results of all master integrals and is

attached to the arXiv submission of the present work.

2 Definitions and notation

2.1 Kinematics

The kinematics of the process is depicted in figure 1. We write pb = q+p with p2b = m2
b and

p2 = q2 = 0. The momentum q of the emitted final state meson is split up into two parallel

momenta q1 = uq and q2 = (1− u)q ≡ ūq of the quark and anti-quark, respectively, where

u ∈ [0, 1] is the convolution variable that enters the first term of eq. (1.1). The quark in

the penguin loop can either be massless in the case of up, down and strange quarks, or

massive of mass mc or mb in the case of charm or bottom. For massless quarks, the master

integrals are already known from the calculation of the two-loop tree amplitudes in [14, 15].

We therefore only consider the situation with a massive quark in the penguin loop in the

following. The problem then depends on two dimensionless variables, which we choose as

the momentum fraction ū of the anti-quark and the mass ratio zf ≡ m2
f/m

2
b , with f = c, b.

The analytic continuation is done via zf → zf − iη, with infinitesimally small η > 0.

In order to express the solution to the master integrals in terms of iterated integrals

with rational weights, it will be convenient to trade the variables ū and zf for other sets

of variables. Our default choice is the set (r, s) with

r ≡
√

1− 4zf , s ≡
√

1−
4zf
ū

, (2.1)

which, when solved for the original variables, implies

ū =
1− r2

1− s2
, zf =

1− r2

4
. (2.2)

Let us have a look at the possible values of s. When ū runs from 0 → 1, the variable s for

4zf > 1 runs from +i∞ → r along the imaginary axis. For 4zf < 1, s runs from +i∞ → 0

along the imaginary axis, followed by 0 → r along the real axis. In this case the threshold

at ū = 4zf is mapped onto s = 0.
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Another convenient choice of variables will be the set (r, s1), with

s1 ≡
√
1− 4zb

ū
(2.3)

and zb = 1 − iη. The variable s1 runs from +i∞ → +i
√
3 along the imaginary axis once

we let ū run from 0 → 1.

A third choice of variables consists of the set (r, p) with

p ≡
1−

√
u2 + 4ūzf
ū

. (2.4)

When solved for the original variable ū one obtains

ū =
r2 + 1− 2p

1− p2
. (2.5)

When ū runs from 0 → 1, the variable p runs from 1− 2zf → 1− 2
√
zf .

2.2 Iterated integrals

One of the classical examples of iterated integrals are HPLs [16]. They are generalisations

of ordinary polylogarithms and appear in many calculations of higher-order corrections in

perturbative Quantum Field Theory. The HPLs are defined by

Ha1,a2,...,an(x) =

∫ x

0
dt fa1(t)Ha2,...,an(t) , (2.6)

where the parameters ai can take the values 0 or ±1, and n is called the weight of the HPL.

In the special case that all indices are zero, one defines H�0n
(x) = 1

n! ln
n(x). The weight

functions fai(x) are given by

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (2.7)

In addition one assigns the weight k to numbers like πk, lnk(2) and the Riemann zeta

function ζk, and one uses that the product of two expressions of weights k1 and k2 has

weight k1 + k2.

These definitions were generalised in [34] by introducing linear combinations of f1(x)

and f−1(x), the so-called “+” and “−”-weights, according to

f+(x) =f1(x) + f−1(x) =
2

1− x2
, (2.8)

f−(x) =f1(x)− f−1(x) =
2x

1− x2
. (2.9)

In the present work we further generalise the weights by allowing more generic expres-

sions to appear in the weight functions. For any expression w �= 0 we define

fw(x) =
1

w − x
, f−w(x) =

1

w + x
, (2.10)
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and accordingly

fw+(x) = fw(x) + f−w(x) =
2w

w2 − x2
, (2.11)

fw−(x) = fw(x)− f−w(x) =
2x

w2 − x2
. (2.12)

Also with these newly introduced weight functions we define a general HPL by means of

eq. (2.6), but we also allow the weights (2.10) – (2.12) to enter the integrand. In the current

calculation, we encounter the following expressions for w,

w1 =1 , w4 = 1 +
√
1− r2 ,

w2 = r , w5 = 1−
√
1− r2 .

w3 =
r2 + 1

2
, (2.13)

We will refer to w1 – w5 as rational weights , since any of the wi is rational either in r or

mf , given that
√
1− r2 = 2

√
zf = 2mf/mb is free of any square roots.

As a matter of fact, the generalised HPLs are closely related to Goncharov poly-

logarithms [35], which are defined by

Ga1,a2,...,an(x) =

∫ x

0

dt

t− a1
Ga2,...,an(t) (2.14)

and G�0n
(x) = H�0n

(x). We can therefore always write a generalised HPL as a linear

combination of Goncharov polylogarithms, for example

Hw+
2
(x) = G−r(x)−Gr(x) , (2.15)

and similarly for higher weights.

The structure of the differential equations in the subsequent sections reveals that the

results of the master integrals are most compactly written in terms of HPLs with generalised

weights. For their numerical evaluation described in section 5, however, we prefer the

notation in terms of Goncharov polylogarithms.

3 Canonical basis

Within dimensional regularisation where space-time is analytically continued to D = 4−2ε

dimensions, integration-by-parts identities [20, 21] provide non-trivial relations between

different loop integrals. It has now become a standard tool to use automated reduction

algorithms to express complicated multi-loop calculations in terms of a much smaller set

of irreducible master integrals. The choice of the master integrals is, however, not unique.

Henn recently conjectured that the set �M of master integrals can always be chosen in a

way such that the set of differential equations assumes the form [23]

∂

∂xm
�M(ε, xn) = εAm(xn) �M(ε, xn) , (3.1)

– 5 –
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and accordingly

fw+(x) = fw(x) + f−w(x) =
2w

w2 − x2
, (2.11)

fw−(x) = fw(x)− f−w(x) =
2x

w2 − x2
. (2.12)

Also with these newly introduced weight functions we define a general HPL by means of

eq. (2.6), but we also allow the weights (2.10) – (2.12) to enter the integrand. In the current

calculation, we encounter the following expressions for w,

w1 =1 , w4 = 1 +
√

1− r2 ,

w2 = r , w5 = 1−
√

1− r2 .

w3 =
r2 + 1

2
, (2.13)

We will refer to w1 – w5 as rational weights , since any of the wi is rational either in r or

mf , given that
√
1− r2 = 2

√
zf = 2mf/mb is free of any square roots.

As a matter of fact, the generalised HPLs are closely related to Goncharov poly-

logarithms [35], which are defined by

Ga1,a2,...,an(x) =

∫ x

0

dt

t− a1
Ga2,...,an(t) (2.14)

and G�0n
(x) = H�0n

(x). We can therefore always write a generalised HPL as a linear

combination of Goncharov polylogarithms, for example

Hw+
2
(x) = G−r(x)−Gr(x) , (2.15)

and similarly for higher weights.

The structure of the differential equations in the subsequent sections reveals that the

results of the master integrals are most compactly written in terms of HPLs with generalised

weights. For their numerical evaluation described in section 5, however, we prefer the

notation in terms of Goncharov polylogarithms.

3 Canonical basis

Within dimensional regularisation where space-time is analytically continued to D = 4−2ε

dimensions, integration-by-parts identities [20, 21] provide non-trivial relations between

different loop integrals. It has now become a standard tool to use automated reduction

algorithms to express complicated multi-loop calculations in terms of a much smaller set

of irreducible master integrals. The choice of the master integrals is, however, not unique.

Henn recently conjectured that the set �M of master integrals can always be chosen in a

way such that the set of differential equations assumes the form [23]

∂

∂xm
�M(ε, xn) = εAm(xn) �M(ε, xn) , (3.1)
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where xn are dimensionless kinematic variables and Am(xn) is a matrix which does not

depend on ε. In this form the system of differential equations decouples order-by-order in

the ε-expansion. The system (3.1) can be written as a total differential,

d �M(ε, xn) = ε dÃ(xn) �M(ε, xn) . (3.2)

The matrix Ã contains the relevant information about the structure of the occurring weight

functions. Together with suitably chosen boundary conditions, this entirely fixes the solu-

tion. As an additional feature, the solutions to the master integrals contain functions that

are of uniform weight at each order in ε, and the weight increases by unit steps as one goes

from one power to the next one in the ε-expansion. As a consequence, by assigning the

weight −1 to ε and multiplying the master integrals by an appropriate power of ε, one can

achieve that the total weight of each master integral is zero to all orders in ε. Integrals

with the latter property and a system of differential equations of the form (3.2) will be

referred to as a canonical basis.

At present there does not exist a systematic algorithm to find a canonical basis of

master integrals. The construction therefore requires some level of experimentation, for

some guidelines cf. the discussions in [24, 27, 29, 31, 32]. In the current calculation we

mainly used explicit integral representations to find the canonical basis. The basis consists

of 29 master integrals which we denote by M1−29. In terms of the integrals I1−34 defined

in figure 2, they are given by

M1(r, s) = ε ū s I1(ū, zf ) , (3.3)

M2(ū) = ε2u I2(ū) , (3.4)

M3(r, s) = ε2ū I3(ū, zf ) , (3.5)

M4(r, s) = ε2ū s
(
I3(ū, zf ) + 2I4(ū, zf )

)
, (3.6)

M5(r) = ε2r
(
I5(zf ) + 2I6(zf )

)
, (3.7)

M6(r, s) = ε3ū I7(u, zf ) , (3.8)

M7(r, s) =
ε2ū s

2m2
b

(
2um2

b I8(u, zf )− I3(1, zf )− 2I4(1, zf )
)
, (3.9)

M8(r, s) = ε3u I9(u, zf ) , (3.10)

M9(r, s) =
ε2ū s

2m2
b

(
2um2

b I10(u, zf )− I5(zf )− 2I6(zf )
)
, (3.11)

M10(r, s) = ε3u I11(ū, zf ) , (3.12)

M11(r, s) = ε2ū s
(
I12(ū, zf ) + 2I13(ū, zf )

)
, (3.13)

M12(r, s) = ε3u I14(ū, zf ) , (3.14)

M13(r, s) = ε3u I15(ū, zf ) , (3.15)

– 6 –
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M14(r, s) =
ε2s

(1 + r2)m2
b

{
4zfm

2
b

(
1− ū+ ūzf

)(
I16(ū, zf ) + I17(ū, zf )

)

+ 3I3(1, zf ) + 2ε
(
1− ū+ 2ūzf

)(
I15(ū, zf ) + 2I14(ū, zf )

)}
, (3.16)

M15(r, s) = ε3ū I18(ū, zf ) , (3.17)

M16(r, s) = ε3ū I19(ū, zf ) , (3.18)

M17(r, s) =
ε2ū s

m2
b

(
2zfm

2
b I20(ū, zf ) + ε I19(ū, zf ) + 2ε I18(ū, zf )

)
, (3.19)

M18(r, s) = ε3u I21(ū, zf ) , (3.20)

M19(r, s) = ε3u I22(ū, zf ) , (3.21)

M20(r, s) = −ε2ū s

2m2
b

{
um2

b

(
I23(ū, zf ) + I24(ū, zf )

)
+ I5(zf ) + 2I6(zf )

}
, (3.22)

M21(r, s) =
ε2

ūm2
b

{
2m2

b

(
(1 + ū)2zf − ū2

)
I25(ū, zf ) + 2zf (1 + ū)

(
I ′5(zf ) + 2I ′4(zf )

)

+
(
ū2 − 2(1 + ū)zf

)(
I5(zf ) + 2I6(zf )

)
+ 2ε uū

(
I21(ū, zf ) + I22(ū, zf )

)

− ūm2
b(1 + ū)(ū− 4zf )

(
I23(ū, zf ) + I24(ū, zf )

)
+ 2ū I ′4(zf )

}
, (3.23)

M22(r, s) = ε3(1− 2ε) ū I26(ū, zf ) , (3.24)

M23(r, s1) = ε3 u I27(ū, zf ) , (3.25)

M24(r, s1) =
2ε2(1 + s1)

(1− s1)2m2
b

√
1 +

8zf (1− s1)

(1 + s1)2

{
m2

b (1− s1)
(
I28(ū, zf ) + 2 I29(ū, zf )

)

− 2m2
b (1 + s1) I30(ū, zf ) + (1− s1)

(
I ′5(zf ) + 2I ′4(zf )

)}
, (3.26)

M25(r, s1) =
2ε2(1− s1)

(1 + s1)2m2
b

√
1 +

8zf (1 + s1)

(1− s1)2

{
m2

b (1 + s1)
(
I28(ū, zf ) + 2 I29(ū, zf )

)

− 2m2
b (1− s1) I30(ū, zf ) + (1 + s1)

(
I ′5(zf ) + 2I ′4(zf )

)}
, (3.27)

M26(s1) = ε3u I31(ū) , (3.28)

M27(s1) = − 2ε2s1
(1− s21)m

2
b

(
m2

b I32(ū) + 3ε I31(ū)
)
, (3.29)

M28(r, p) = ε3u I33(ū, zf ) , (3.30)

M29(r, p) =
ε2

2m2
b

{
2u

(
1− ūp

)
m2

bI34(ū, zf )−
(
ūp− 1 + 2

√
zf
)(
I ′5(zf ) + 2I ′4(zf )

)}
.

(3.31)

The variables r, s, s1 and p have been introduced in section 2.1, and the definition of

the integrals I ′4,5(zf ) can be found in appendix B. In addition there are seven auxiliary

integrals, labeled M ′
1−7, which are already known from previous calculations but which are

needed in order to close the system of differential equations.
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M14(r, s) =
ε2s

(1 + r2)m2
b

{
4zfm

2
b

(
1− ū+ ūzf

)(
I16(ū, zf ) + I17(ū, zf )

)

+ 3I3(1, zf ) + 2ε
(
1− ū+ 2ūzf

)(
I15(ū, zf ) + 2I14(ū, zf )

)}
, (3.16)

M15(r, s) = ε3ū I18(ū, zf ) , (3.17)

M16(r, s) = ε3ū I19(ū, zf ) , (3.18)

M17(r, s) =
ε2ū s

m2
b

(
2zfm

2
b I20(ū, zf ) + ε I19(ū, zf ) + 2ε I18(ū, zf )

)
, (3.19)

M18(r, s) = ε3u I21(ū, zf ) , (3.20)

M19(r, s) = ε3u I22(ū, zf ) , (3.21)

M20(r, s) = −ε2ū s

2m2
b

{
um2

b

(
I23(ū, zf ) + I24(ū, zf )

)
+ I5(zf ) + 2I6(zf )

}
, (3.22)

M21(r, s) =
ε2

ūm2
b

{
2m2

b

(
(1 + ū)2zf − ū2

)
I25(ū, zf ) + 2zf (1 + ū)

(
I ′5(zf ) + 2I ′4(zf )

)

+
(
ū2 − 2(1 + ū)zf

)(
I5(zf ) + 2I6(zf )

)
+ 2ε uū

(
I21(ū, zf ) + I22(ū, zf )

)

− ūm2
b(1 + ū)(ū− 4zf )

(
I23(ū, zf ) + I24(ū, zf )

)
+ 2ū I ′4(zf )

}
, (3.23)

M22(r, s) = ε3(1− 2ε) ū I26(ū, zf ) , (3.24)

M23(r, s1) = ε3 u I27(ū, zf ) , (3.25)

M24(r, s1) =
2ε2(1 + s1)

(1− s1)2m2
b

√
1 +

8zf (1− s1)

(1 + s1)2

{
m2

b (1− s1)
(
I28(ū, zf ) + 2 I29(ū, zf )

)

− 2m2
b (1 + s1) I30(ū, zf ) + (1− s1)

(
I ′5(zf ) + 2I ′4(zf )

)}
, (3.26)

M25(r, s1) =
2ε2(1− s1)

(1 + s1)2m2
b

√
1 +

8zf (1 + s1)

(1− s1)2

{
m2

b (1 + s1)
(
I28(ū, zf ) + 2 I29(ū, zf )

)

− 2m2
b (1− s1) I30(ū, zf ) + (1 + s1)

(
I ′5(zf ) + 2I ′4(zf )

)}
, (3.27)

M26(s1) = ε3u I31(ū) , (3.28)

M27(s1) = − 2ε2s1
(1− s21)m

2
b

(
m2

b I32(ū) + 3ε I31(ū)
)
, (3.29)

M28(r, p) = ε3u I33(ū, zf ) , (3.30)

M29(r, p) =
ε2

2m2
b

{
2u

(
1− ūp

)
m2

bI34(ū, zf )−
(
ūp− 1 + 2

√
zf
)(
I ′5(zf ) + 2I ′4(zf )

)}
.

(3.31)

The variables r, s, s1 and p have been introduced in section 2.1, and the definition of

the integrals I ′4,5(zf ) can be found in appendix B. In addition there are seven auxiliary

integrals, labeled M ′
1−7, which are already known from previous calculations but which are

needed in order to close the system of differential equations.
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I1(x, zf ) I2(x) I3(x, zf ) I4(x, zf ) I5(zf )

I6(zf) I7(x, zf ) I8(x, zf ) I9(x, zf ) I10(x, zf )

I11(x, zf ) I12(x, zf ) I13(x, zf ) I14(x, zf ) I15(x, zf )

I16(x, zf ) I17(x, zf ) I18(x, zf ) I19(x, zf ) I20(x, zf )

I21(x, zf ) I22(x, zf ) I23(x, zf ) I24(x, zf ) I25(x, zf )

I26(x, zf ) I27(x, zf ) I28(x, zf ) I29(x, zf ) I30(x, zf )

I31(x) I32(x) I33(x, zf ) I34(x, zf )

Figure 2. Integrals required to define the basis integrals in (3.3)–(3.31). Dashed/wavy/double

internal lines denote propagators with mass 0/
√
zfmb/mb. Dashed/solid/double external lines

correspond to virtualities 0/xm2
b/m

2
b . Dotted propagators are taken to be squared.
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In the given integral basis the system of differential equations takes the form (3.2).

Instead of one large matrix Ã, we solve each topology separately and in turn get several

smaller matrices Ãk. We give the solution to the basis integrals M1−29 in the next section,

together with the relevant boundary conditions. The solution to the auxiliary integrals

M ′
1−7 can be found in appendix B.

4 Results

We write the results for the master integrals in the form

M = iL SL
Γ

(
m2

b

)LD/2−N
M̃ , (4.1)

with the number of loops L and an integer N which denotes the sum of all propagator

powers. The integral M̃ is therefore dimensionless. Our integration measure per loop is∫
dDk/(2π)D and the pre-factor SΓ reads

SΓ =
1

(4π)D/2 Γ(1− ε)
. (4.2)

Once the differential equations are set up, the only missing ingredient are the boundary

conditions. It turns out that the following conditions — almost all of which describe the

vanishing of an integral in a particular kinematic point — are sufficient to write down the

entire solution to an integral. We find thatM1,3,4,6,7,9,11,14−17,20−22(r, s) andM27(s1) vanish

in ū = 0, corresponding to s = +i∞ or s1 = +i∞. Furthermore, M8,10,12,13,18,19(r, s),

M2(ū), M23(r, s1), M26(s1), and M28,29(r, p) vanish in ū = 1, corresponding to s = r,

s1 = +i
√
3 or p = 1 − 2

√
zf . Moreover, M5(r) vanishes in r = 0. Finally, the integrals

M24,25(r, s1) fulfill

M̃24,25(r, s1 = +i∞) = 4 M̃23(r, s1 = +i∞) − 4 M̃ ′
4(zf ) , (4.3)

which can be derived using the Laporta reduction algorithm [22]. All these considerations

lead to the full set of solutions which we list below.

4.1 M1

As a warm-up exercise and to demonstrate how the method of differential equations in the

canonical basis works, we consider the one-loop integral

M1(r, s) =

∫
dDk

(2π)D
ε ū s

[(k + p− uq)2 − zfm
2
b ][k

2 − zfm
2
b ]
2
. (4.4)

The auxiliary integral

M ′
1(zf ) =

∫
dDk

(2π)D
ε

[k2 − zfm
2
b ]
2

(4.5)

appears as a subtopology and has to be taken into account in order to make the system of

differential equations complete. The solution to the auxiliary integral M ′
1(zf ) is elementary

and can be found in appendix B.
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In the given integral basis the system of differential equations takes the form (3.2).

Instead of one large matrix Ã, we solve each topology separately and in turn get several

smaller matrices Ãk. We give the solution to the basis integrals M1−29 in the next section,

together with the relevant boundary conditions. The solution to the auxiliary integrals

M ′
1−7 can be found in appendix B.

4 Results

We write the results for the master integrals in the form

M = iL SL
Γ

(
m2

b

)LD/2−N
M̃ , (4.1)

with the number of loops L and an integer N which denotes the sum of all propagator

powers. The integral M̃ is therefore dimensionless. Our integration measure per loop is∫
dDk/(2π)D and the pre-factor SΓ reads

SΓ =
1

(4π)D/2 Γ(1− ε)
. (4.2)

Once the differential equations are set up, the only missing ingredient are the boundary

conditions. It turns out that the following conditions — almost all of which describe the

vanishing of an integral in a particular kinematic point — are sufficient to write down the

entire solution to an integral. We find thatM1,3,4,6,7,9,11,14−17,20−22(r, s) andM27(s1) vanish

in ū = 0, corresponding to s = +i∞ or s1 = +i∞. Furthermore, M8,10,12,13,18,19(r, s),

M2(ū), M23(r, s1), M26(s1), and M28,29(r, p) vanish in ū = 1, corresponding to s = r,

s1 = +i
√
3 or p = 1 − 2

√
zf . Moreover, M5(r) vanishes in r = 0. Finally, the integrals

M24,25(r, s1) fulfill

M̃24,25(r, s1 = +i∞) = 4 M̃23(r, s1 = +i∞) − 4 M̃ ′
4(zf ) , (4.3)

which can be derived using the Laporta reduction algorithm [22]. All these considerations

lead to the full set of solutions which we list below.

4.1 M1

As a warm-up exercise and to demonstrate how the method of differential equations in the

canonical basis works, we consider the one-loop integral

M1(r, s) =

∫
dDk

(2π)D
ε ū s

[(k + p− uq)2 − zfm
2
b ][k

2 − zfm
2
b ]
2
. (4.4)

The auxiliary integral

M ′
1(zf ) =

∫
dDk

(2π)D
ε

[k2 − zfm
2
b ]
2

(4.5)

appears as a subtopology and has to be taken into account in order to make the system of

differential equations complete. The solution to the auxiliary integral M ′
1(zf ) is elementary

and can be found in appendix B.
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In terms of the variables r and s, the system of differential equations becomes

∂M̃1(r, s)

∂s
= − 2 ε M̃1(r, s)

s (1− s2)
+

2 ε M̃ ′
1(zf )

1− s2
, (4.6)

∂M̃ ′
1(zf )

∂s
= 0 , (4.7)

and

∂M̃1(r, s)

∂r
=

2 ε r M̃1(r, s)

1− r2
, (4.8)

∂M̃ ′
1(zf )

∂r
=

2 ε r M̃ ′
1(zf )

1− r2
. (4.9)

The system of differential equations can be brought into the canonical form (3.2), with
�M = {M̃1(r, s), M̃

′
1(zf )} and

Ã1(r, s) =




ln(1− s2)− 2 ln(s)− ln(1− r2) ln

(
1 + s

1− s

)

0 − ln(1− r2)


 . (4.10)

Solving eqs. (4.6) and (4.8) together with the aforementioned boundary condition gives

M̃1(r, s) = z−ε
f

{
ε [Hw+

1
(s)− iπ]

+ ε2 [π2 + 2 iπ H0(s) + iπ Hw−
1
(s)− 2H0,w+

1
(s)−Hw−

1 ,w+
1
(s) + 2 iπ ln(2)]

+ ε3
[
iπ3

6
− 2π2H0(s)− π2Hw−

1
(s) +

π2

6
Hw+

1
(s)− 4 iπH0,0(s)− 2 iπH0,w−

1
(s)

− 2iπHw−
1 ,0(s)− iπHw−

1 ,w−
1
(s) + 4H0,0,w+

1
(s) + 2H0,w−

1 ,w+
1
(s) + 2Hw−

1 ,0,w+
1
(s)

+Hw−
1 ,w−

1 ,w+
1
(s)− 2π2 ln(2)− 4iπH0(s) ln(2)− 2iπHw−

1
(s) ln(2)− 2iπ ln2(2)

]

+O(ε4)

}
. (4.11)

The solution can also be obtained from the following closed form,

M̃1(r, s) = z−ε
f

2 ε sΓ(1− ε) Γ(1 + ε)

s2 − 1
2F1

(
1, 1 + ε ;

3

2
;

1

1− s2

)
, (4.12)

by expanding the hypergeometric function e.g. with HypExp [36, 37].

4.2 M2

From now on, we will not give the explicit form of the differential equations anymore, but

only the corresponding matrices Ãk and the final solution to the integrals. The integral

– 10 –
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M2 only depends on one kinematic variable, which we choose to be ū. The set of integrals

is now given by �M =
{
M̃2(ū), M̃

′
1(zf = 1), M̃ ′

2(ū)
}
, and we have

Ã2(ū) =




2 ln(1− ū)− 2 ln(ū) − ln(ū) − ln(ū)

0 0 0

0 0 − ln(ū)


 . (4.13)

The solution reads

M̃2(ū) = ε2 [iπ H0(ū)−H0,0(ū)]

+ ε3
[
− iπ3

3
− 2

3
π2H0(ū)− 3 iπH0,0(ū)− iπHw−

1 ,0(ū)− iπHw+
1 ,0(ū) + 3H0,0,0(ū)

+Hw−
1 ,0,0(ū) +Hw+

1 ,0,0(ū)− 2 ζ3

]
+O(ε4) . (4.14)

Also in this case the solution can be obtained from an expression containing hypergeometric

functions,

M̃2(ū) =
(1− ū) εΓ(1− ε) Γ(1 + ε)

Γ(2− 2ε)

{
Γ(1− 2ε) 2F1 (1, 1 ; 2− 2ε ; 1− ū)

− Γ2(1− ε) eiπε ū−ε
2F1 (1, 1− ε ; 2− 2ε ; 1− ū)

}
. (4.15)

4.3 M3 and M4

In this topology we have the set of integrals �M =
{
M̃3(r, s), M̃4(r, s),

[
M̃ ′

1(zf )
]2}

, together

with the corresponding matrix Ã3,4(r, s). Since the expressions for the matrices Ãk become

more and more involved, we from now on relegate them to appendix A. The solution to

M3(r, s) and M4(r, s) reads

M̃3(r, s) = z−2ε
f

{
ε2 [−π2 − 2 iπ Hw+

1
(s) + 2Hw+

1 ,w+
1
(s)]

+ ε3
[
− π2Hw−

1
(s) + 6π2Hw+

1
(s)− 2 iπ Hw−

1 ,w+
1
(s) + 12 iπ Hw+

1 ,0(s)

+ 8 iπ Hw+
1 ,w−

1
(s) + 2Hw−

1 ,w+
1 ,w+

1
(s)− 12Hw+

1 ,0,w+
1
(s)− 8Hw+

1 ,w−
1 ,w+

1
(s)

− 2π2 ln(2) + 16 iπ Hw+
1
(s) ln(2)− 21 ζ3

]
+O(ε4)

}
, (4.16)

M̃4(r, s) = z−2ε
f

{
ε [2 iπ − 2Hw+

1
(s)]

+ ε2
[
12H0,w+

1
(s) + 8Hw−

1 ,w+
1
(s)− 12 iπH0(s)− 8 iπHw−

1
(s)− 16 iπ ln(2)− 6π2

]

+ ε3
[
− 4 iπ3 + 36π2H0(s) + 24π2Hw−

1
(s)− 20

3
π2Hw+

1
(s) + 72 iπ H0,0(s)

+ 48 iπ H0,w−
1
(s) + 48 iπ Hw−

1 ,0(s) + 32 iπ Hw−
1 ,w−

1
(s)− 12 iπ Hw+

1 ,w+
1
(s)

− 72H0,0,w+
1
(s)− 48H0,w−

1 ,w+
1
(s)− 48Hw−

1 ,0,w+
1
(s)− 32Hw−

1 ,w−
1 ,w+

1
(s)

+ 12Hw+
1 ,w+

1 ,w+
1
(s) + 48π2 ln(2) + 96 iπ H0(s) ln(2)

+ 64 iπ Hw−
1
(s) ln(2) + 64 iπ ln2(2)

]
+O(ε4)

}
. (4.17)
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M2 only depends on one kinematic variable, which we choose to be ū. The set of integrals

is now given by �M =
{
M̃2(ū), M̃

′
1(zf = 1), M̃ ′

2(ū)
}
, and we have

Ã2(ū) =




2 ln(1− ū)− 2 ln(ū) − ln(ū) − ln(ū)

0 0 0

0 0 − ln(ū)


 . (4.13)

The solution reads

M̃2(ū) = ε2 [iπ H0(ū)−H0,0(ū)]

+ ε3
[
− iπ3

3
− 2

3
π2H0(ū)− 3 iπH0,0(ū)− iπHw−

1 ,0(ū)− iπHw+
1 ,0(ū) + 3H0,0,0(ū)

+Hw−
1 ,0,0(ū) +Hw+

1 ,0,0(ū)− 2 ζ3

]
+O(ε4) . (4.14)

Also in this case the solution can be obtained from an expression containing hypergeometric

functions,

M̃2(ū) =
(1− ū) εΓ(1− ε) Γ(1 + ε)

Γ(2− 2ε)

{
Γ(1− 2ε) 2F1 (1, 1 ; 2− 2ε ; 1− ū)

− Γ2(1− ε) eiπε ū−ε
2F1 (1, 1− ε ; 2− 2ε ; 1− ū)

}
. (4.15)

4.3 M3 and M4

In this topology we have the set of integrals �M =
{
M̃3(r, s), M̃4(r, s),

[
M̃ ′

1(zf )
]2}

, together

with the corresponding matrix Ã3,4(r, s). Since the expressions for the matrices Ãk become

more and more involved, we from now on relegate them to appendix A. The solution to

M3(r, s) and M4(r, s) reads

M̃3(r, s) = z−2ε
f

{
ε2 [−π2 − 2 iπ Hw+

1
(s) + 2Hw+

1 ,w+
1
(s)]

+ ε3
[
− π2Hw−

1
(s) + 6π2Hw+

1
(s)− 2 iπ Hw−

1 ,w+
1
(s) + 12 iπ Hw+

1 ,0(s)

+ 8 iπ Hw+
1 ,w−

1
(s) + 2Hw−

1 ,w+
1 ,w+

1
(s)− 12Hw+

1 ,0,w+
1
(s)− 8Hw+

1 ,w−
1 ,w+

1
(s)

− 2π2 ln(2) + 16 iπ Hw+
1
(s) ln(2)− 21 ζ3

]
+O(ε4)

}
, (4.16)

M̃4(r, s) = z−2ε
f

{
ε [2 iπ − 2Hw+

1
(s)]

+ ε2
[
12H0,w+

1
(s) + 8Hw−

1 ,w+
1
(s)− 12 iπH0(s)− 8 iπHw−

1
(s)− 16 iπ ln(2)− 6π2

]

+ ε3
[
− 4 iπ3 + 36π2H0(s) + 24π2Hw−

1
(s)− 20

3
π2Hw+

1
(s) + 72 iπ H0,0(s)

+ 48 iπ H0,w−
1
(s) + 48 iπ Hw−

1 ,0(s) + 32 iπ Hw−
1 ,w−

1
(s)− 12 iπ Hw+

1 ,w+
1
(s)

− 72H0,0,w+
1
(s)− 48H0,w−

1 ,w+
1
(s)− 48Hw−

1 ,0,w+
1
(s)− 32Hw−

1 ,w−
1 ,w+

1
(s)

+ 12Hw+
1 ,w+

1 ,w+
1
(s) + 48π2 ln(2) + 96 iπ H0(s) ln(2)

+ 64 iπ Hw−
1
(s) ln(2) + 64 iπ ln2(2)

]
+O(ε4)

}
. (4.17)
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A closed form of these integrals is given by

M̃3(r, s) = z−2ε
f

Γ2(1− ε) Γ2(1 + ε)

2 s2 (ε− 1)

{
(ε− 1) (s2 + 1) (4.18)

+ (1− 2ε) (3− s2) 3F2

(
1, ε, 2ε ; 2− ε,

1

2
+ ε ;

1

1− s2

)

− (2− 3ε) (1− s2) 3F2

(
1, ε, 2ε− 1 ; 2− ε,

1

2
+ ε ;

1

1− s2

)}
,

M̃4(r, s) = z−2ε
f

Γ2(1−ε) Γ(1 + ε) Γ(ε− 1)

4 s3

{
(ε− 1)

[
ε(4s4 − 6s2 + 6)− (s2 − 1)2

]
(4.19)

− (1− 2ε)(3 + s2)
[
ε
(
4s2 − 6

)
− s2 + 1

]
3F2

(
1, ε, 2ε ; 2− ε,

1

2
+ ε ;

1

1− s2

)

− (2− 3ε)(1−s2)
[
ε
(
4s2+6

)
− s2−1

]
3F2

(
1, ε, 2ε− 1 ; 2− ε,

1

2
+ ε ;

1

1−s2

)}
.

4.4 M5

In this case the set of integrals consists of �M =
{
M̃5(r),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf ) M̃
′
1(zf = 1)

}
.

The matrix Ã5(r) can be found in appendix A, and the solution becomes

M̃5(r) = ε2 [−2Hw+
1 ,w−

1
(r)− 4Hw+

1
(r) ln(2)]

+ ε3
[
4H0,w+

1 ,w−
1
(r)− 6Hw+

1 ,w−
1 ,w−

1
(r) + 8H0,w+

1
(r) ln(2)− 12Hw+

1 ,w−
1
(r) ln(2)

− 12Hw+
1
(r) ln2(2)

]
+O(ε4) , (4.20)

which can also be obtained from the expansion of

M̃5(r) =
41+ε ε r Γ2(1− ε)Γ2(1 + ε)

1 + 2ε
(4.21)

×
{
(1−r2)−ε

2F1

(
1,

1

2
;
3

2
+ ε ; r2

)
− 4ε(1−r2)−2ε

2F1

(
1,

1

2
− ε ;

3

2
+ ε ; r2

)}
.

4.5 M6 and M7

Here the topology consists of six integrals

�M =
{
M̃6(r, s), M̃7(r, s), M̃3(r, s = r), M̃4(r, s = r), M̃ ′

1(zf )M̃
′
2(u),

[
M̃ ′

1(zf )
]2}

, (4.22)

and the corresponding matrix is Ã6,7(r, s). The solutions to the integrals reads

M̃6(r, s) = ε3
[
− iπ3

2
+ π2H0(r) +

π2

2
Hw−

1
(s) + iπHw−

1
(s)Hw+

1
(r)− π2

2
Hw−

2
(s)

− iπHw+
1
(r)Hw−

2
(s) + 2 iπH0,w+

1
(r)−Hw−

1
(s)Hw+

1 ,w+
1
(r) +Hw−

2
(s)Hw+

1 ,w+
1
(r)

+ iπHw+
1 ,w+

1
(s)− 2H0(r)Hw+

1 ,w+
1
(s)−Hw−

1
(r)Hw+

1 ,w+
1
(s)− iπHw+

1 ,w+
2
(s)

+Hw+
1
(r)Hw+

1 ,w+
2
(s)− 2H0,w+

1 ,w+
1
(r)−Hw+

1 ,w+
1 ,w−

1
(s) +Hw+

1 ,w+
1 ,w−

2
(s)

− 2Hw+
1 ,w+

1
(s) ln(2) +

7

2
ζ3

]
+O(ε4) , (4.23)
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M̃7(r, s) = ε2
[
− iπHw+

1
(s) + 2H0(r)Hw+

1
(s) +Hw−

1
(r)Hw+

1
(s) + iπHw+

2
(s)

−Hw+
1
(r)Hw+

2
(s) +Hw+

1 ,w−
1
(s)−Hw+

1 ,w−
2
(s) + 2Hw+

1
(s) ln(2)

]

+ ε3
[
13

6
π2Hw+

1
(s) + 2 iπH0(r)Hw+

1
(s)− iπHw−

1
(r)Hw+

1
(s)− 3π2Hw+

2
(s)

+ 3iπHw+
1
(r)Hw+

1
(s)− 6iπH0(r)Hw+

2
(s)− 2iπHw−

1
(r)Hw+

2
(s) +Hw−

2 ,w+
1 ,w−

1
(s)

− 4Hw+
1
(s)H0,0(r) + 2Hw+

1
(s)H0,w−

1
(r) + 6Hw+

2
(s)H0,w+

1
(r) + 4 iπH0,w+

1
(s)

− 8H0(r)H0,w+
1
(s)− 4Hw−

1
(r)H0,w+

1
(s)− 4 iπH0,w+

2
(s) + 4Hw+

1
(r)H0,w+

2
(s)

+ 2Hw+
1
(s)Hw−

1 ,0(r) + 3Hw+
1
(s)Hw−

1 ,w−
1
(r) + 2Hw+

2
(s)Hw−

1 ,w+
1
(r)

−Hw+
1 ,w−

2 ,w−
2
(s) + 3 iπHw−

1 ,w+
1
(s)− 6H0(r)Hw−

1 ,w+
1
(s)− 3Hw−

1
(r)Hw−

1 ,w+
1
(s)

− 3iπHw−
1 ,w+

2
(s) + 3Hw+

1
(r)Hw−

1 ,w+
2
(s)− 2Hw+

2
(s)Hw+

1 ,w−
1
(r) + iπHw+

1 ,w−
1
(s)

− 2H0(r)Hw+
1 ,w−

1
(s) +Hw−

1
(r)Hw+

1 ,w−
1
(s)− 3Hw+

1
(s)Hw+

1 ,w+
1
(r)− iπHw+

1 ,w−
2
(s)

+ 2H0(r)Hw+
1 ,w−

2
(s)−Hw−

1
(r)Hw+

1 ,w−
2
(s)− iπHw−

2 ,w+
1
(s) + 2H0(r)Hw−

2 ,w+
1
(s)

+Hw−
1
(r)Hw−

2 ,w+
1
(s) + iπHw−

2 ,w+
2
(s)−Hw+

1
(r)Hw−

2 ,w+
2
(s)− 4H0,w+

1 ,w−
1
(s)

+ 4H0,w+
1 ,w−

2
(s)− 3Hw−

1 ,w+
1 ,w−

1
(s) + 3Hw−

1 ,w+
1 ,w−

2
(s)−Hw+

1 ,w−
1 ,w−

1
(s)

+Hw+
1 ,w−

1 ,w−
2
(s) +Hw+

1 ,w−
2 ,w−

1
(s)−Hw−

2 ,w+
1 ,w−

2
(s)− 2 iπHw+

1
(s) ln(2)

+ 4H0(r)Hw+
1
(s) ln(2) + 6Hw−

1
(r)Hw+

1
(s) ln(2)− 4 iπHw+

2
(s) ln(2)

− 4Hw+
1
(r)Hw+

2
(s) ln(2)− 8H0,w+

1
(s) ln(2)− 6Hw−

1 ,w+
1
(s) ln(2)

+ 2Hw+
1 ,w−

1
(s) ln(2)− 2Hw+

1 ,w−
2
(s) ln(2) + 2Hw−

2 ,w+
1
(s) ln(2)

+ 6Hw+
1
(s) ln2(2)

]
+O(ε4) . (4.24)

4.6 M8 and M9

Also here the topology consists of six integrals, namely

�M =
{
M̃8(r, s), M̃9(r, s), M̃5(r), M̃

′
1(zf )M̃

′
3(u),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1)

}
, (4.25)

and the matrix Ã8,9(r, s). Owing to simple boundary conditions, the result is quite short,

M̃8(r, s) = ε3 [−Hw+
1 ,w+

1 ,w−
1
(r) +Hw+

1 ,w+
1 ,w−

1
(s)− 2Hw+

1 ,w+
1
(r) ln(2)

+ 2Hw+
1 ,w+

1
(s) ln(2)] +O(ε4) , (4.26)

M̃9(r, s) = ε2 [Hw+
1 ,w−

1
(s) + 2Hw+

1
(s) ln(2)]

+ ε3 [−2Hw+
1
(s)H0,w−

1
(r)−Hw+

1
(s)Hw−

1 ,w−
1
(r) +Hw+

2
(s)Hw+

1 ,w−
1
(r)

+ 2Hw−
1
(r)Hw+

1 ,w−
1
(s) +Hw−

1
(r)Hw+

1 ,w−
2
(s)− 4H0,w+

1 ,w−
1
(s)− 3Hw−

1 ,w+
1 ,w−

1
(s)

−Hw+
1 ,w−

1 ,w−
1
(s)−Hw+

1 ,w−
2 ,w−

1
(s)−Hw−

2 ,w+
1 ,w−

1
(s) + 4Hw−

1
(r)Hw+

1
(s) ln(2)
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M̃7(r, s) = ε2
[
− iπHw+

1
(s) + 2H0(r)Hw+

1
(s) +Hw−

1
(r)Hw+

1
(s) + iπHw+

2
(s)

−Hw+
1
(r)Hw+

2
(s) +Hw+

1 ,w−
1
(s)−Hw+

1 ,w−
2
(s) + 2Hw+

1
(s) ln(2)

]

+ ε3
[
13

6
π2Hw+

1
(s) + 2 iπH0(r)Hw+

1
(s)− iπHw−

1
(r)Hw+

1
(s)− 3π2Hw+

2
(s)

+ 3iπHw+
1
(r)Hw+

1
(s)− 6iπH0(r)Hw+

2
(s)− 2iπHw−

1
(r)Hw+

2
(s) +Hw−

2 ,w+
1 ,w−

1
(s)

− 4Hw+
1
(s)H0,0(r) + 2Hw+

1
(s)H0,w−

1
(r) + 6Hw+

2
(s)H0,w+

1
(r) + 4 iπH0,w+

1
(s)

− 8H0(r)H0,w+
1
(s)− 4Hw−

1
(r)H0,w+

1
(s)− 4 iπH0,w+

2
(s) + 4Hw+

1
(r)H0,w+

2
(s)

+ 2Hw+
1
(s)Hw−

1 ,0(r) + 3Hw+
1
(s)Hw−

1 ,w−
1
(r) + 2Hw+

2
(s)Hw−

1 ,w+
1
(r)

−Hw+
1 ,w−

2 ,w−
2
(s) + 3 iπHw−

1 ,w+
1
(s)− 6H0(r)Hw−

1 ,w+
1
(s)− 3Hw−

1
(r)Hw−

1 ,w+
1
(s)

− 3iπHw−
1 ,w+

2
(s) + 3Hw+

1
(r)Hw−

1 ,w+
2
(s)− 2Hw+

2
(s)Hw+

1 ,w−
1
(r) + iπHw+

1 ,w−
1
(s)

− 2H0(r)Hw+
1 ,w−

1
(s) +Hw−

1
(r)Hw+

1 ,w−
1
(s)− 3Hw+

1
(s)Hw+

1 ,w+
1
(r)− iπHw+

1 ,w−
2
(s)

+ 2H0(r)Hw+
1 ,w−

2
(s)−Hw−

1
(r)Hw+

1 ,w−
2
(s)− iπHw−

2 ,w+
1
(s) + 2H0(r)Hw−

2 ,w+
1
(s)

+Hw−
1
(r)Hw−

2 ,w+
1
(s) + iπHw−

2 ,w+
2
(s)−Hw+

1
(r)Hw−

2 ,w+
2
(s)− 4H0,w+

1 ,w−
1
(s)

+ 4H0,w+
1 ,w−

2
(s)− 3Hw−

1 ,w+
1 ,w−

1
(s) + 3Hw−

1 ,w+
1 ,w−

2
(s)−Hw+

1 ,w−
1 ,w−

1
(s)

+Hw+
1 ,w−

1 ,w−
2
(s) +Hw+

1 ,w−
2 ,w−

1
(s)−Hw−

2 ,w+
1 ,w−

2
(s)− 2 iπHw+

1
(s) ln(2)

+ 4H0(r)Hw+
1
(s) ln(2) + 6Hw−

1
(r)Hw+

1
(s) ln(2)− 4 iπHw+

2
(s) ln(2)

− 4Hw+
1
(r)Hw+

2
(s) ln(2)− 8H0,w+

1
(s) ln(2)− 6Hw−

1 ,w+
1
(s) ln(2)

+ 2Hw+
1 ,w−

1
(s) ln(2)− 2Hw+

1 ,w−
2
(s) ln(2) + 2Hw−

2 ,w+
1
(s) ln(2)

+ 6Hw+
1
(s) ln2(2)

]
+O(ε4) . (4.24)

4.6 M8 and M9

Also here the topology consists of six integrals, namely

�M =
{
M̃8(r, s), M̃9(r, s), M̃5(r), M̃

′
1(zf )M̃

′
3(u),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1)

}
, (4.25)

and the matrix Ã8,9(r, s). Owing to simple boundary conditions, the result is quite short,

M̃8(r, s) = ε3 [−Hw+
1 ,w+

1 ,w−
1
(r) +Hw+

1 ,w+
1 ,w−

1
(s)− 2Hw+

1 ,w+
1
(r) ln(2)

+ 2Hw+
1 ,w+

1
(s) ln(2)] +O(ε4) , (4.26)

M̃9(r, s) = ε2 [Hw+
1 ,w−

1
(s) + 2Hw+

1
(s) ln(2)]

+ ε3 [−2Hw+
1
(s)H0,w−

1
(r)−Hw+

1
(s)Hw−

1 ,w−
1
(r) +Hw+

2
(s)Hw+

1 ,w−
1
(r)

+ 2Hw−
1
(r)Hw+

1 ,w−
1
(s) +Hw−

1
(r)Hw+

1 ,w−
2
(s)− 4H0,w+

1 ,w−
1
(s)− 3Hw−

1 ,w+
1 ,w−

1
(s)

−Hw+
1 ,w−

1 ,w−
1
(s)−Hw+

1 ,w−
2 ,w−

1
(s)−Hw−

2 ,w+
1 ,w−

1
(s) + 4Hw−

1
(r)Hw+

1
(s) ln(2)
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+ 2Hw+
1
(r)Hw+

2
(s) ln(2)− 8H0,w+

1
(s) ln(2)− 6Hw−

1 ,w+
1
(s) ln(2)

+ 2Hw+
1 ,w−

1
(s) ln(2)− 2Hw−

2 ,w+
1
(s) ln(2) + 6Hw+

1
(s) ln2(2)] +O(ε4) . (4.27)

4.7 M10 and M11

This topology consists of seven integrals

�M=
{
M̃10(r, s), M̃11(r, s), M̃3(r, s), M̃4(r, s), M̃5(r),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf =1)

}
, (4.28)

and the matrix Ã10,11(r, s). The result is rather long since we need functions up to weight

four in M10(r, s),

M̃10(r, s) = ε3
[
− π2

2
Hw−

1
(r) +

π2

2
Hw−

1
(s)− i πHw−

1
(r)Hw+

1
(s) + i πHw−

1 ,w+
1
(s)

+ i πHw+
1 ,w−

1
(s) +Hw−

1
(r)Hw+

1 ,w+
1
(s)−Hw−

1 ,w+
1 ,w+

1
(s)−Hw+

1 ,w−
1 ,w+

1
(s)

−Hw+
1 ,w+

1 ,w−
1
(r)− 2Hw+

1 ,w+
1
(r) ln(2) + 2Hw+

1 ,w+
1
(s) ln(2)

]

+ ε4
[
3π2Hw−

1
(r)Hw+

1
(s) + π2Hw−

1
(r)Hw−

2
(s)− 4 iπHw+

1
(s)H0,w−

1
(r)

− 3

2
π2Hw−

1 ,w−
1
(r)− 5 iπHw+

1
(s)Hw−

1 ,w−
1
(r) +

3

2
π2Hw−

1 ,w−
1
(s)− 3π2Hw−

1 ,w+
1
(s)

− π2Hw−
1 ,w−

2
(r) + 6 iπHw−

1
(r)Hw+

1 ,0(s)− 3π2Hw+
1 ,w−

1
(s)

+ 5 iπHw−
1
(r)Hw+

1 ,w−
1
(s) + 3Hw−

1 ,w−
1
(r)Hw+

1 ,w+
1
(s) + 2 iπHw−

1
(r)Hw+

1 ,w−
2
(s)

+ 2Hw+
1 ,w−

1
(r)Hw+

1 ,w+
2
(s)− π2Hw−

2 ,w−
1
(s) + 2 iπHw−

1
(r)Hw−

2 ,w+
1
(s)

+ 4 iπH0,w−
1 ,w+

1
(r) + 4 iπH0,w+

1 ,w−
1
(r) + 2 iπHw−

1 ,w−
1 ,w+

1
(r) + 3 iπHw−

1 ,w−
1 ,w+

1
(s)

− 6 iπHw−
1 ,w+

1 ,0(s) + 2 iπHw−
1 ,w+

1 ,w−
1
(r)− 2 iπHw−

1 ,w+
1 ,w−

1
(s)− 2 iπHw−

1 ,w+
1 ,w−

2
(r)

− 2 iπHw−
1 ,w−

2 ,w+
1
(r) + 4 iπHw+

1 ,0,w−
1
(r)− 6 iπHw+

1 ,0,w−
1
(s)

− 6Hw−
1
(r)Hw+

1 ,0,w+
1
(s)− 6 iπHw+

1 ,w−
1 ,0(s) + 2 iπHw+

1 ,w−
1 ,w−

1
(r)

− 7 iπHw+
1 ,w−

1 ,w−
1
(s)− 5Hw−

1
(r)Hw+

1 ,w−
1 ,w+

1
(s)− 2 iπHw+

1 ,w−
1 ,w−

2
(r)

− 2Hw−
1
(s)Hw+

1 ,w+
1 ,w−

1
(r) + 2Hw−

2
(s)Hw+

1 ,w+
1 ,w−

1
(r)− 2 iπHw+

1 ,w−
2 ,w−

1
(s)

− 2Hw−
1
(r)Hw+

1 ,w−
2 ,w+

1
(s)− 2 iπHw−

2 ,w−
1 ,w+

1
(s)− 2 iπHw−

2 ,w+
1 ,w−

1
(s)

− 2Hw−
1
(r)Hw−

2 ,w+
1 ,w+

1
(s)− 3Hw−

1 ,w−
1 ,w+

1 ,w+
1
(s) + 6Hw−

1 ,w+
1 ,0,w+

1
(s)

+ 2Hw−
1 ,w+

1 ,w−
1 ,w+

1
(s)−Hw−

1 ,w+
1 ,w+

1 ,w−
1
(r) + 2Hw−

1 ,w+
1 ,w−

2 ,w+
1
(r)

+ 2Hw−
1 ,w−

2 ,w+
1 ,w+

1
(r) + 6Hw+

1 ,0,w−
1 ,w+

1
(s) + 6Hw+

1 ,0,w+
1 ,w−

1
(r) + 6Hw+

1 ,w−
1 ,0,w+

1
(s)

+ 7Hw+
1 ,w−

1 ,w−
1 ,w+

1
(s) + 4Hw+

1 ,w−
1 ,w+

1 ,w−
1
(r)− 2Hw+

1 ,w−
1 ,w+

1 ,w+
2
(r)

+ 2Hw+
1 ,w−

1 ,w−
2 ,w+

1
(r) +Hw+

1 ,w+
1 ,w−

1 ,w−
1
(r)− 2Hw+

1 ,w+
1 ,w−

1 ,w−
2
(r)

− 4Hw+
1 ,w+

1 ,w−
1 ,w+

2
(r)− 2Hw+

1 ,w+
1 ,w−

2 ,w−
1
(r)− 4Hw+

1 ,w+
1 ,w+

2 ,w−
1
(r)

– 14 –
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+ 2Hw+
1 ,w−

2 ,w−
1 ,w+

1
(s)− 2Hw+

1 ,w+
2 ,w+

1 ,w−
1
(r) + 2Hw−

2 ,w−
1 ,w+

1 ,w+
1
(s)

+ 2Hw−
2 ,w+

1 ,w−
1 ,w+

1
(s)− 3π2Hw−

1
(r) ln(2) + 3π2Hw−

1
(s) ln(2)

+ 4 iπHw−
1
(r)Hw+

1
(s) ln(2)− 4 iπHw−

1 ,w+
1
(s) ln(2)− 4 iπHw+

1 ,w−
1
(s) ln(2)

− 4Hw−
1
(s)Hw+

1 ,w+
1
(r) ln(2) + 4Hw−

2
(s)Hw+

1 ,w+
1
(r) ln(2)

+ 6Hw−
1
(r)Hw+

1 ,w+
1
(s) ln(2) + 4Hw+

1
(r)Hw+

1 ,w+
2
(s) ln(2)−2Hw−

1 ,w+
1 ,w+

1
(r) ln(2)

+ 12Hw+
1 ,0,w+

1
(r) ln(2)− 12Hw+

1 ,0,w+
1
(s) ln(2) + 8Hw+

1 ,w−
1 ,w+

1
(r) ln(2)

− 10Hw+
1 ,w−

1 ,w+
1
(s) ln(2)− 2Hw+

1 ,w+
1 ,w−

1
(r) ln(2)− 4Hw+

1 ,w+
1 ,w−

2
(r) ln(2)

− 8Hw+
1 ,w+

1 ,w+
2
(r) ln(2)− 4Hw+

1 ,w−
2 ,w+

1
(s) ln(2)− 4Hw+

1 ,w+
2 ,w+

1
(r) ln(2)

− 4Hw−
2 ,w+

1 ,w+
1
(s) ln(2)− 6Hw+

1 ,w+
1
(r) ln2(2) + 6Hw+

1 ,w+
1
(s) ln2(2)

− 21

2
Hw−

1
(r) ζ3 +

21

2
Hw−

1
(s) ζ3

]
+O(ε5) , (4.29)

M̃11(r, s) =ε [Hw+
1
(s)− iπ]

+ ε2
[
3π2 + 6 iπH0(s)− i πHw−

1
(r) + 3 iπHw−

1
(s) +Hw−

1
(r)Hw+

1
(s)

− 6H0,w+
1
(s)− 3Hw−

1 ,w+
1
(s) + 4 iπ ln(2) + 2Hw+

1
(s) ln(2)

]

+ ε3
[
2 iπ3 − 18π2H0(s) + 3π2Hw−

1
(r) + 6 iπH0(s)Hw−

1
(r)− 9π2Hw−

1
(s)

+ 3 iπHw−
1
(r)Hw−

1
(s) +

10

3
π2Hw+

1
(s)− 2 iπHw−

1
(r)Hw−

2
(s)− 36 iπH0,0(s)

+ 4 iπH0,w−
1
(r)− 18 iπH0,w−

1
(s)− 6Hw−

1
(r)H0,w+

1
(s)− 18 iπHw−

1 ,0(s)

+ i πHw−
1 ,w−

1
(r) +Hw+

1
(s)Hw−

1 ,w−
1
(r)− 9 iπHw−

1 ,w−
1
(s)− 3Hw−

1
(r)Hw−

1 ,w+
1
(s)

− 2Hw+
2
(s)Hw+

1 ,w−
1
(r) + 6iπHw+

1 ,w+
1
(s) + 2iπHw−

2 ,w−
1
(s) + 2Hw−

1
(r)Hw−

2 ,w+
1
(s)

+ 36H0,0,w+
1
(s) + 18H0,w−

1 ,w+
1
(s) + 18Hw−

1 ,0,w+
1
(s) + 9Hw−

1 ,w−
1 ,w+

1
(s)

− 6Hw+
1 ,w+

1 ,w+
1
(s)− 2Hw−

2 ,w−
1 ,w+

1
(s)− 12π2 ln(2)− 24 iπH0(s) ln(2)

+ 4 iπHw−
1
(r) ln(2)− 12 iπHw−

1
(s) ln(2) + 2Hw−

1
(r)Hw+

1
(s) ln(2)

− 4Hw+
1
(r)Hw+

2
(s) ln(2)− 12H0,w+

1
(s) ln(2)− 6Hw−

1 ,w+
1
(s) ln(2)

+ 4Hw−
2 ,w+

1
(s) ln(2)− 8 iπ ln2(2) + 2Hw+

1
(s) ln2(2)

]
+O(ε4) . (4.30)

4.8 M12 – M14

Again we need seven integrals to complete the system of differential equations. They are

�M=
{
M̃12(r, s), M̃13(r, s), M̃14(r, s), M̃3(r, r), M̃4(r, r),

[
M̃ ′

1(zf )
]2
, M̃1(r, s)M̃

′
1(zf )

}
, (4.31)

together with the matrix Ã12−14(r, s). The results are

– 15 –



69

69

J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

+ 2Hw+
1 ,w−

2 ,w−
1 ,w+

1
(s)− 2Hw+

1 ,w+
2 ,w+

1 ,w−
1
(r) + 2Hw−

2 ,w−
1 ,w+

1 ,w+
1
(s)

+ 2Hw−
2 ,w+

1 ,w−
1 ,w+

1
(s)− 3π2Hw−

1
(r) ln(2) + 3π2Hw−

1
(s) ln(2)

+ 4 iπHw−
1
(r)Hw+

1
(s) ln(2)− 4 iπHw−

1 ,w+
1
(s) ln(2)− 4 iπHw+

1 ,w−
1
(s) ln(2)

− 4Hw−
1
(s)Hw+

1 ,w+
1
(r) ln(2) + 4Hw−

2
(s)Hw+

1 ,w+
1
(r) ln(2)

+ 6Hw−
1
(r)Hw+

1 ,w+
1
(s) ln(2) + 4Hw+

1
(r)Hw+

1 ,w+
2
(s) ln(2)−2Hw−

1 ,w+
1 ,w+

1
(r) ln(2)

+ 12Hw+
1 ,0,w+

1
(r) ln(2)− 12Hw+

1 ,0,w+
1
(s) ln(2) + 8Hw+

1 ,w−
1 ,w+

1
(r) ln(2)

− 10Hw+
1 ,w−

1 ,w+
1
(s) ln(2)− 2Hw+

1 ,w+
1 ,w−

1
(r) ln(2)− 4Hw+

1 ,w+
1 ,w−

2
(r) ln(2)

− 8Hw+
1 ,w+

1 ,w+
2
(r) ln(2)− 4Hw+

1 ,w−
2 ,w+

1
(s) ln(2)− 4Hw+

1 ,w+
2 ,w+

1
(r) ln(2)

− 4Hw−
2 ,w+

1 ,w+
1
(s) ln(2)− 6Hw+

1 ,w+
1
(r) ln2(2) + 6Hw+

1 ,w+
1
(s) ln2(2)

− 21

2
Hw−

1
(r) ζ3 +

21

2
Hw−

1
(s) ζ3

]
+O(ε5) , (4.29)

M̃11(r, s) =ε [Hw+
1
(s)− iπ]

+ ε2
[
3π2 + 6 iπH0(s)− i πHw−

1
(r) + 3 iπHw−

1
(s) +Hw−

1
(r)Hw+

1
(s)

− 6H0,w+
1
(s)− 3Hw−

1 ,w+
1
(s) + 4 iπ ln(2) + 2Hw+

1
(s) ln(2)

]

+ ε3
[
2 iπ3 − 18π2H0(s) + 3π2Hw−

1
(r) + 6 iπH0(s)Hw−

1
(r)− 9π2Hw−

1
(s)

+ 3 iπHw−
1
(r)Hw−

1
(s) +

10

3
π2Hw+

1
(s)− 2 iπHw−

1
(r)Hw−

2
(s)− 36 iπH0,0(s)

+ 4 iπH0,w−
1
(r)− 18 iπH0,w−

1
(s)− 6Hw−

1
(r)H0,w+

1
(s)− 18 iπHw−

1 ,0(s)

+ i πHw−
1 ,w−

1
(r) +Hw+

1
(s)Hw−

1 ,w−
1
(r)− 9 iπHw−

1 ,w−
1
(s)− 3Hw−

1
(r)Hw−

1 ,w+
1
(s)

− 2Hw+
2
(s)Hw+

1 ,w−
1
(r) + 6iπHw+

1 ,w+
1
(s) + 2iπHw−

2 ,w−
1
(s) + 2Hw−

1
(r)Hw−

2 ,w+
1
(s)

+ 36H0,0,w+
1
(s) + 18H0,w−

1 ,w+
1
(s) + 18Hw−

1 ,0,w+
1
(s) + 9Hw−

1 ,w−
1 ,w+

1
(s)

− 6Hw+
1 ,w+

1 ,w+
1
(s)− 2Hw−

2 ,w−
1 ,w+

1
(s)− 12π2 ln(2)− 24 iπH0(s) ln(2)

+ 4 iπHw−
1
(r) ln(2)− 12 iπHw−

1
(s) ln(2) + 2Hw−

1
(r)Hw+

1
(s) ln(2)

− 4Hw+
1
(r)Hw+

2
(s) ln(2)− 12H0,w+

1
(s) ln(2)− 6Hw−

1 ,w+
1
(s) ln(2)

+ 4Hw−
2 ,w+

1
(s) ln(2)− 8 iπ ln2(2) + 2Hw+

1
(s) ln2(2)

]
+O(ε4) . (4.30)

4.8 M12 – M14

Again we need seven integrals to complete the system of differential equations. They are

�M=
{
M̃12(r, s), M̃13(r, s), M̃14(r, s), M̃3(r, r), M̃4(r, r),

[
M̃ ′

1(zf )
]2
, M̃1(r, s)M̃

′
1(zf )

}
, (4.31)

together with the matrix Ã12−14(r, s). The results are

– 15 –

J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

M̃12(r, s) = ε3
[
π2Hw−

1
(r)− π2Hw−

1
(s)− 2π2Hw+

1
(r)− 2iπHw−

1
(s)Hw+

1
(r) + 2π2Hw+

1
(s)

+ 4 iπH0(r)Hw+
1
(s) + 2iπHw−

1
(r)Hw+

1
(s)− 3

4
π2Hw−

3
(r) +

3

4
π2Hw−

3
(s)

+ 2iπHw+
1
(r)Hw−

3
(s) + π2Hw+

3
(r)− π2Hw+

3
(s)− 2iπH0(r)Hw+

3
(s)

− iπHw−
1
(r)Hw+

3
(s)− 4 iπH0,w+

1
(r) + 2iπH0,w+

3
(r) + iπHw−

1 ,w+
3
(r)

− 4 iπHw+
1 ,0(r)− iπHw+

1 ,w−
1
(r) + iπHw+

1 ,w−
1
(s) + 2Hw−

1
(s)Hw+

1 ,w+
1
(r)

− 2Hw−
3
(s)Hw+

1 ,w+
1
(r)− 2iπHw+

1 ,w−
3
(r) + 2iπHw+

1 ,w−
2
(r)− 2iπHw+

1 ,w−
2
(s)

− 2iπHw+
1 ,w+

2
(r) + 2iπHw+

1 ,w+
2
(s)− 2Hw+

1
(r)Hw+

1 ,w+
2
(s)− 3

2
iπHw−

3 ,w+
1
(r)

− 1

2
iπHw−

3 ,w+
1
(s) + 2iπHw+

3 ,0(r) +
3

2
iπHw+

3 ,w−
1
(r)− 1

2
iπHw+

3 ,w−
1
(s)

− iπHw+
3 ,w−

2
(r) + iπHw+

3 ,w−
2
(s) + iπHw+

3 ,w+
2
(r)− iπHw+

3 ,w+
2
(s)

+Hw+
1
(r)Hw+

3 ,w+
2
(s)− 2Hw−

1 ,w+
1 ,w+

1
(r)−Hw+

1 ,w−
1 ,w+

1
(r)−Hw+

1 ,w−
1 ,w+

1
(s)

− 2Hw+
1 ,w+

1 ,w−
1
(r) + 2Hw+

1 ,w+
1 ,w−

3
(r) + 4Hw+

1 ,w+
1 ,w+

2
(r) + 2Hw+

1 ,w−
3 ,w+

1
(r)

−Hw+
1 ,w+

3 ,w+
2
(r)− 2Hw+

1 ,w−
2 ,w+

1
(r) + 2Hw+

1 ,w−
2 ,w+

1
(s) + 2Hw+

1 ,w+
2 ,w+

1
(r)

+
3

2
Hw−

3 ,w+
1 ,w+

1
(r) +

1

2
Hw−

3 ,w+
1 ,w+

1
(s)− 1

2
Hw+

3 ,w−
1 ,w+

1
(r) +

1

2
Hw+

3 ,w−
1 ,w+

1
(s)

−Hw+
3 ,w+

1 ,w+
2
(r) +Hw+

3 ,w−
2 ,w+

1
(r)−Hw+

3 ,w−
2 ,w+

1
(s)−Hw+

3 ,w+
2 ,w+

1
(r)

− 2iπHw+
1
(r) ln(2) + 2iπHw+

1
(s) ln(2) + iπHw+

3
(r) ln(2)− iπHw+

3
(s) ln(2)

]

+O(ε4) , (4.32)

M̃13(r, s) = ε2
[
iπHw+

1
(r)− iπHw+

1
(s)−Hw+

1 ,w+
1
(r) +Hw+

1 ,w+
1
(s)

]

+ ε3
[
− 1

2
π2Hw−

1
(r) +

1

2
π2Hw−

1
(s)− π2Hw+

1
(r) + π2Hw+

1
(s) +

3

4
π2Hw−

3
(r)

− 2iπHw−
1
(r)Hw+

1
(s)− 3

4
π2Hw−

3
(s)− 2iπHw+

1
(r)Hw−

3
(s)− π2Hw+

3
(r)

+ π2Hw+
3
(s) + 2iπH0(r)Hw+

3
(s) + iπHw−

1
(r)Hw+

3
(s) + 2iπHw+

1
(r)Hw−

2
(s)

− 2iπH0,w+
3
(r) + iπHw−

1 ,w+
1
(r) + iπHw−

1 ,w+
1
(s)− iπHw−

1 ,w+
3
(r)− 2iπHw+

1 ,0(r)

+ 2iπHw+
1 ,0(s) + iπHw+

1 ,w−
1
(r) + iπHw+

1 ,w−
1
(s) + 2Hw−

3
(s)Hw+

1 ,w+
1
(r)

− 2Hw−
2
(s)Hw+

1 ,w+
1
(r) + 2Hw−

1
(r)Hw+

1 ,w+
1
(s) + 2iπHw+

1 ,w−
3
(r)− 2iπHw+

1 ,w−
2
(r)

+
3

2
iπHw−

3 ,w+
1
(r) +

1

2
iπHw−

3 ,w+
1
(s)− 2iπHw+

3 ,0(r)−
3

2
iπHw+

3 ,w−
1
(r)

+
1

2
iπHw+

3 ,w−
1
(s) + iπHw+

3 ,w−
2
(r)− iπHw+

3 ,w−
2
(s)− iπHw+

3 ,w+
2
(r)

+ iπHw+
3 ,w+

2
(s)−Hw+

1
(r)Hw+

3 ,w+
2
(s)− 2iπHw−

2 ,w+
1
(s)−Hw−

1 ,w+
1 ,w+

1
(r)

−Hw−
1 ,w+

1 ,w+
1
(s) + 2Hw+

1 ,0,w+
1
(r)− 2Hw+

1 ,0,w+
1
(s)−Hw+

1 ,w−
1 ,w+

1
(r)
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−Hw+
1 ,w−

1 ,w+
1
(s)− 2Hw+

1 ,w+
1 ,w−

1
(r)− 2Hw+

1 ,w+
1 ,w−

3
(r) + 2Hw+

1 ,w+
1 ,w−

2
(r)

− 2Hw+
1 ,w−

3 ,w+
1
(r) +Hw+

1 ,w+
3 ,w+

2
(r) + 2Hw+

1 ,w−
2 ,w+

1
(r)− 3

2
Hw−

3 ,w+
1 ,w+

1
(r)

− 1

2
Hw−

3 ,w+
1 ,w+

1
(s) +

1

2
Hw+

3 ,w−
1 ,w+

1
(r)− 1

2
Hw+

3 ,w−
1 ,w+

1
(s) +Hw+

3 ,w+
1 ,w+

2
(r)

−Hw+
3 ,w−

2 ,w+
1
(r) +Hw+

3 ,w−
2 ,w+

1
(s) +Hw+

3 ,w+
2 ,w+

1
(r) + 2Hw−

2 ,w+
1 ,w+

1
(s)

+ 2iπHw+
1
(r) ln(2)− 2iπHw+

1
(s) ln(2)− iπHw+

3
(r) ln(2) + iπHw+

3
(s) ln(2)

− 4Hw+
1 ,w+

1
(r) ln(2) + 4Hw+

1 ,w+
1
(s) ln(2)

]
+O(ε4) , (4.33)

M̃14(r, s) = ε2
[
− 2π2 − 4iπH0(r)− 2iπHw−

1
(r)− iπHw−

1
(s) + 2iπHw−

2
(s)− 2iπHw+

2
(s)

+ 2Hw+
1
(r)Hw+

2
(s) +Hw−

1 ,w+
1
(s)− 2Hw−

2 ,w+
1
(s)− 2iπ ln(2)

]

+ ε3
[
− 11

3
iπ3 − 2π2H−1(r

2) + 12π2H0(r) + 4π2H0(s) + 8 iπH0(r)H0(s)

+ 4iπH0(s)Hw−
1
(r) + 5π2Hw−

1
(s) + 8 iπH0(r)Hw−

1
(s) + 2iπHw−

1
(r)Hw−

1
(s)

− 3

2
π2Hw+

1
(s)− 4iπHw+

1
(r)Hw+

1
(s) + π2Hw−

3
(s) + 2iπH0(r)Hw−

3
(s)

+ iπHw−
1
(r)Hw−

3
(s)− 3

4
π2Hw+

3
(s)− 2iπHw+

1
(r)Hw+

3
(s)− 6π2Hw−

2
(s)

− 8 iπH0(r)Hw−
2
(s) + 6π2Hw+

2
(s) + 12iπH0(r)Hw+

2
(s) + 4iπHw−

1
(r)Hw+

2
(s)

− 2iπH−1,0(r
2)− 2iπH−1,1(r

2) + 16 iπH0,0(r) + 2iπH0,w−
1
(s)

− 12Hw+
2
(s)H0,w+

1
(r)− 4iπH0,w−

2
(s) + 4iπH0,w+

2
(s)− 4Hw+

1
(r)H0,w+

2
(s)

− 4iπHw−
1 ,0(r) + 2iπHw−

1 ,0(s)− 6 iπHw−
1 ,w−

1
(r) + 3 iπHw−

1 ,w−
1
(s)

− 4Hw+
2
(s)Hw−

1 ,w+
1
(r) + 2Hw−

1
(r)Hw−

1 ,w+
1
(s)− 4iπHw−

1 ,w−
2
(s) + 4iπHw−

1 ,w+
2
(s)

− 4Hw+
1
(r)Hw−

1 ,w+
2
(s) + 4Hw+

2
(s)Hw+

1 ,w−
1
(r) + 4Hw+

1
(s)Hw+

1 ,w+
1
(r)

+ 2Hw+
3
(s)Hw+

1 ,w+
1
(r) + iπHw+

1 ,w+
1
(s) +

1

2
iπHw−

3 ,w−
1
(s)− iπHw−

3 ,w−
2
(s)

+ iπHw−
3 ,w+

2
(s)−Hw+

1
(r)Hw−

3 ,w+
2
(s) +

1

2
iπHw+

3 ,w+
1
(s)− 4iπHw−

2 ,0(s)

− 4iπHw−
2 ,w−

1
(s)− 4Hw−

1
(r)Hw−

2 ,w+
1
(s) + 4iπHw−

2 ,w−
2
(s)− 4iπHw−

2 ,w+
2
(s)

+ 4Hw+
1
(r)Hw−

2 ,w+
2
(s)− 2H0,w−

1 ,w+
1
(s) + 4H0,w−

2 ,w+
1
(s)− 2Hw−

1 ,0,w+
1
(s)

− 3Hw−
1 ,w−

1 ,w+
1
(s) + 4Hw−

1 ,w−
2 ,w+

1
(s)−Hw+

1 ,w+
1 ,w+

1
(s)− 1

2
Hw−

3 ,w−
1 ,w+

1
(s)

+Hw−
3 ,w−

2 ,w+
1
(s)− 1

2
Hw+

3 ,w+
1 ,w+

1
(s) + 4Hw−

2 ,0,w+
1
(s) + 4Hw−

2 ,w−
1 ,w+

1
(s)

− 4Hw−
2 ,w−

2 ,w+
1
(s) + 2π2 ln(2)− 2iπH−1(r

2) ln(2) + 4iπH0(s) ln(2)

− 6 iπHw−
1
(r) ln(2) + 2iπHw−

1
(s) ln(2) + iπHw−

3
(s) ln(2) + 8 iπHw+

2
(s) ln(2)

+ 8Hw+
1
(r)Hw+

2
(s) ln(2) + 4Hw−

1 ,w+
1
(s) ln(2)− 8Hw−

2 ,w+
1
(s) ln(2)− 2iπ ln2(2)

]

+O(ε4) . (4.34)
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−Hw+
1 ,w−

1 ,w+
1
(s)− 2Hw+

1 ,w+
1 ,w−

1
(r)− 2Hw+

1 ,w+
1 ,w−

3
(r) + 2Hw+

1 ,w+
1 ,w−

2
(r)

− 2Hw+
1 ,w−

3 ,w+
1
(r) +Hw+

1 ,w+
3 ,w+

2
(r) + 2Hw+

1 ,w−
2 ,w+

1
(r)− 3

2
Hw−

3 ,w+
1 ,w+

1
(r)

− 1

2
Hw−

3 ,w+
1 ,w+

1
(s) +

1

2
Hw+

3 ,w−
1 ,w+

1
(r)− 1

2
Hw+

3 ,w−
1 ,w+

1
(s) +Hw+

3 ,w+
1 ,w+

2
(r)

−Hw+
3 ,w−

2 ,w+
1
(r) +Hw+

3 ,w−
2 ,w+

1
(s) +Hw+

3 ,w+
2 ,w+

1
(r) + 2Hw−

2 ,w+
1 ,w+

1
(s)

+ 2iπHw+
1
(r) ln(2)− 2iπHw+

1
(s) ln(2)− iπHw+

3
(r) ln(2) + iπHw+

3
(s) ln(2)

− 4Hw+
1 ,w+

1
(r) ln(2) + 4Hw+

1 ,w+
1
(s) ln(2)

]
+O(ε4) , (4.33)

M̃14(r, s) = ε2
[
− 2π2 − 4iπH0(r)− 2iπHw−

1
(r)− iπHw−

1
(s) + 2iπHw−

2
(s)− 2iπHw+

2
(s)

+ 2Hw+
1
(r)Hw+

2
(s) +Hw−

1 ,w+
1
(s)− 2Hw−

2 ,w+
1
(s)− 2iπ ln(2)

]

+ ε3
[
− 11

3
iπ3 − 2π2H−1(r

2) + 12π2H0(r) + 4π2H0(s) + 8 iπH0(r)H0(s)

+ 4iπH0(s)Hw−
1
(r) + 5π2Hw−

1
(s) + 8 iπH0(r)Hw−

1
(s) + 2iπHw−

1
(r)Hw−

1
(s)

− 3

2
π2Hw+

1
(s)− 4iπHw+

1
(r)Hw+

1
(s) + π2Hw−

3
(s) + 2iπH0(r)Hw−

3
(s)

+ iπHw−
1
(r)Hw−

3
(s)− 3

4
π2Hw+

3
(s)− 2iπHw+

1
(r)Hw+

3
(s)− 6π2Hw−

2
(s)

− 8 iπH0(r)Hw−
2
(s) + 6π2Hw+

2
(s) + 12iπH0(r)Hw+

2
(s) + 4iπHw−

1
(r)Hw+

2
(s)

− 2iπH−1,0(r
2)− 2iπH−1,1(r

2) + 16 iπH0,0(r) + 2iπH0,w−
1
(s)

− 12Hw+
2
(s)H0,w+

1
(r)− 4iπH0,w−

2
(s) + 4iπH0,w+

2
(s)− 4Hw+

1
(r)H0,w+

2
(s)

− 4iπHw−
1 ,0(r) + 2iπHw−

1 ,0(s)− 6 iπHw−
1 ,w−

1
(r) + 3 iπHw−

1 ,w−
1
(s)

− 4Hw+
2
(s)Hw−

1 ,w+
1
(r) + 2Hw−

1
(r)Hw−

1 ,w+
1
(s)− 4iπHw−

1 ,w−
2
(s) + 4iπHw−

1 ,w+
2
(s)

− 4Hw+
1
(r)Hw−

1 ,w+
2
(s) + 4Hw+

2
(s)Hw+

1 ,w−
1
(r) + 4Hw+

1
(s)Hw+

1 ,w+
1
(r)

+ 2Hw+
3
(s)Hw+

1 ,w+
1
(r) + iπHw+

1 ,w+
1
(s) +

1

2
iπHw−

3 ,w−
1
(s)− iπHw−

3 ,w−
2
(s)

+ iπHw−
3 ,w+

2
(s)−Hw+

1
(r)Hw−

3 ,w+
2
(s) +

1

2
iπHw+

3 ,w+
1
(s)− 4iπHw−

2 ,0(s)

− 4iπHw−
2 ,w−

1
(s)− 4Hw−

1
(r)Hw−

2 ,w+
1
(s) + 4iπHw−

2 ,w−
2
(s)− 4iπHw−

2 ,w+
2
(s)

+ 4Hw+
1
(r)Hw−

2 ,w+
2
(s)− 2H0,w−

1 ,w+
1
(s) + 4H0,w−

2 ,w+
1
(s)− 2Hw−

1 ,0,w+
1
(s)

− 3Hw−
1 ,w−

1 ,w+
1
(s) + 4Hw−

1 ,w−
2 ,w+

1
(s)−Hw+

1 ,w+
1 ,w+

1
(s)− 1

2
Hw−

3 ,w−
1 ,w+

1
(s)

+Hw−
3 ,w−

2 ,w+
1
(s)− 1

2
Hw+

3 ,w+
1 ,w+

1
(s) + 4Hw−

2 ,0,w+
1
(s) + 4Hw−

2 ,w−
1 ,w+

1
(s)

− 4Hw−
2 ,w−

2 ,w+
1
(s) + 2π2 ln(2)− 2iπH−1(r

2) ln(2) + 4iπH0(s) ln(2)

− 6 iπHw−
1
(r) ln(2) + 2iπHw−

1
(s) ln(2) + iπHw−

3
(s) ln(2) + 8 iπHw+

2
(s) ln(2)

+ 8Hw+
1
(r)Hw+

2
(s) ln(2) + 4Hw−

1 ,w+
1
(s) ln(2)− 8Hw−

2 ,w+
1
(s) ln(2)− 2iπ ln2(2)

]

+O(ε4) . (4.34)
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4.9 M15 – M17

The integrals in this topology only depend on one non-trivial scale ratio, and their solution

can be written in terms of ordinary HPLs. The topology involves five integrals,

�M =
{
M̃15(r, s), M̃16(r, s), M̃17(r, s),

[
M̃ ′

1(zf )
]2
, M̃1(r, s)M̃

′
1(zf )

}
, (4.35)

and the matrix Ã15−17(r, s). The result reads

M̃15(r, s) = z−2ε
f

{
ε3 [−iπHw+

1 ,w−
1
(s) +Hw+

1 ,w−
1 ,w+

1
(s)− 2iπHw+

1
(s) ln(2)− 7 ζ3] +O(ε4)

}
,

(4.36)

M̃16(r, s) = z−2ε
f

{
ε2
[
π2

2
+ iπHw+

1
(s)−Hw+

1 ,w+
1
(s)

]

+ ε3
[
− π2

2
Hw−

1
(s)− π2Hw+

1
(s)− iπHw−

1 ,w+
1
(s)− 2iπHw+

1 ,0(s)− iπHw+
1 ,w−

1
(s)

+Hw−
1 ,w+

1 ,w+
1
(s) + 2Hw+

1 ,0,w+
1
(s) +Hw+

1 ,w−
1 ,w+

1
(s)− π2 ln(2)− 2iπHw+

1
(s) ln(2)

+
21

2
ζ3

]
+O(ε4)

}
, (4.37)

M̃17(r, s) = z−2ε
f

{
ε2[iπHw−

1
(s)−Hw−

1 ,w+
1
(s) + 2iπ ln(2)]

+ ε3
[
iπ3

6
− π2Hw−

1
(s)− π2

2
Hw+

1
(s)− 2iπH0,w−

1
(s)− 2iπHw−

1 ,0(s)

− 3 iπHw−
1 ,w−

1
(s)− iπHw+

1 ,w+
1
(s) + 2H0,w−

1 ,w+
1
(s) + 2Hw−

1 ,0,w+
1
(s)

+ 3Hw−
1 ,w−

1 ,w+
1
(s) +Hw+

1 ,w+
1 ,w+

1
(s)− 2π2 ln(2)− 4iπH0(s) ln(2)

− 6 iπHw−
1
(s) ln(2)− 6 iπ ln2(2)

]
+O(ε4)

}
. (4.38)

4.10 M18 – M21

This is the largest topology with eleven integrals,

�M =
{
M̃18(r, s), M̃19(r, s), M̃20(r, s), M̃21(r, s), M̃5(r),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1),

M̃ ′
1(zf )M̃1(r, s), M̃

′
1(zf = 1)M̃1(r, s), M̃

′
4(zf ), M̃

′
5(zf )

}
, (4.39)

and the matrix Ã18−21(r, s). It turns out that we need the combination M̃18(r, s)+M̃19(r, s)

up to functions of weight four. This very coefficient fills several pages and is relegated to

appendix C. The results up to functions of weight three are

M̃18(r, s) = ε3
[
− π2

6
Hw−

1
(r) +

π2

6
Hw−

1
(s)− π2

12
Hw−

3
(r) +

π2

12
Hw−

3
(s)− iπHw−

1
(r)Hw+

3
(s)

+Hw−
1
(s)Hw−

1 ,w−
1
(r)−Hw−

3
(s)Hw−

1 ,w−
1
(r) + iπHw−

1 ,w+
3
(r)− iπHw+

1 ,w−
1
(r)

+ iπHw+
1 ,w−

1
(s)− 1

2
iπHw−

3 ,w+
1
(r) +

1

2
iπHw−

3 ,w+
1
(s) +

1

2
iπHw+

3 ,w−
1
(r)

– 18 –
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+
1

2
iπHw+

3 ,w−
1
(s) +Hw−

1
(r)Hw+

3 ,w+
1
(s)− 3Hw−

1 ,w−
1 ,w−

1
(r) +Hw−

1 ,w−
1 ,w−

3
(r)

+Hw−
1 ,w−

3 ,w−
1
(r)−Hw−

1 ,w+
3 ,w+

1
(r) +Hw+

1 ,w−
1 ,w+

1
(r)−Hw+

1 ,w−
1 ,w+

1
(s)

+Hw−
3 ,w−

1 ,w−
1
(r) +

1

2
Hw−

3 ,w+
1 ,w+

1
(r)− 1

2
Hw−

3 ,w+
1 ,w+

1
(s)− 1

2
Hw+

3 ,w−
1 ,w+

1
(r)

− 1

2
Hw+

3 ,w−
1 ,w+

1
(s)−Hw+

3 ,w+
1 ,w−

1
(r) + 2Hw−

1
(r)Hw−

1
(s) ln(2)− 2iπHw+

1
(r) ln(2)

+ 2iπHw+
1
(s) ln(2)− 2Hw−

1
(r)Hw−

3
(s) ln(2) + iπHw+

3
(r) ln(2)

− iπHw+
3
(s) ln(2)− 4Hw−

1 ,w−
1
(r) ln(2) + 2Hw−

1 ,w−
3
(r) ln(2) + 2Hw−

3 ,w−
1
(r) ln(2)

− 2Hw+
3 ,w+

1
(r) ln(2) + 2Hw+

3 ,w+
1
(s) ln(2)− 2Hw−

1
(r) ln2(2) + 2Hw−

1
(s) ln2(2)

+ 2Hw−
3
(r) ln2(2)− 2Hw−

3
(s) ln2(2)−Hw−

1
(r)Li2(1− zf ) +Hw−

1
(s)Li2(1−zf )

+Hw−
3
(r)Li2(1− zf )−Hw−

3
(s)Li2(1− zf )

]
+O(ε4), (4.40)

M̃19(r, s) = ε3
[
− π2

3
Hw−

1
(r) +

π2

3
Hw−

1
(s)− iπHw−

1
(r)Hw+

1
(s) +

π2

12
Hw−

3
(r)− π2

12
Hw−

3
(s)

+ iπHw−
1
(r)Hw+

3
(s)−Hw−

1
(s)Hw−

1 ,w−
1
(r) +Hw−

3
(s)Hw−

1 ,w−
1
(r) + iπHw−

1 ,w+
1
(s)

− iπHw−
1 ,w+

3
(r) + iπHw+

1 ,w−
1
(r) +Hw−

1
(r)Hw+

1 ,w+
1
(s) +

1

2
iπHw−

3 ,w+
1
(r)

− 1

2
iπHw−

3 ,w+
1
(s)− 1

2
iπHw+

3 ,w−
1
(r)− 1

2
iπHw+

3 ,w−
1
(s)−Hw−

1
(r)Hw+

3 ,w+
1
(s)

+ 3Hw−
1 ,w−

1 ,w−
1
(r)−Hw−

1 ,w−
1 ,w−

3
(r)−Hw−

1 ,w+
1 ,w+

1
(s)−Hw−

1 ,w−
3 ,w−

1
(r)

+Hw−
1 ,w+

3 ,w+
1
(r)−Hw+

1 ,w−
1 ,w+

1
(r)−Hw+

1 ,w+
1 ,w−

1
(r)−Hw−

3 ,w−
1 ,w−

1
(r)

− 1

2
Hw−

3 ,w+
1 ,w+

1
(r) +

1

2
Hw−

3 ,w+
1 ,w+

1
(s) +

1

2
Hw+

3 ,w−
1 ,w+

1
(r) +

1

2
Hw+

3 ,w−
1 ,w+

1
(s)

+Hw+
3 ,w+

1 ,w−
1
(r)− 2Hw−

1
(r)Hw−

1
(s) ln(2) + 2iπHw+

1
(r) ln(2)

− 2iπHw+
1
(s) ln(2) + 2Hw−

1
(r)Hw−

3
(s) ln(2)− iπHw+

3
(r) ln(2)

+ iπHw+
3
(s) ln(2) + 4Hw−

1 ,w−
1
(r) ln(2)− 2Hw−

1 ,w−
3
(r) ln(2)− 2Hw+

1 ,w+
1
(r) ln(2)

+ 2Hw+
1 ,w+

1
(s) ln(2)− 2Hw−

3 ,w−
1
(r) ln(2) + 2Hw+

3 ,w+
1
(r) ln(2)

− 2Hw+
3 ,w+

1
(s) ln(2) + 2Hw−

1
(r) ln2(2)− 2Hw−

1
(s) ln2(2)− 2Hw−

3
(r) ln2(2)

+ 2Hw−
3
(s) ln2(2) +Hw−

1
(r)Li2(1− zf )−Hw−

1
(s)Li2(1− zf )

−Hw−
3
(r)Li2(1− zf ) +Hw−

3
(s)Li2(1− zf )

]
+O(ε4), (4.41)

M̃20(r, s) = ε2
[
− iπHw−

1
(r)+ iπHw−

1
(s)+Hw−

1
(r)Hw+

1
(s)−Hw−

1 ,w+
1
(s) + 2Hw+

1
(s) ln(2)

]

+ ε3
[
π2Hw−

1
(r) + 2iπH0(s)Hw−

1
(r)− π2Hw−

1
(s) + 3iπHw−

1
(r)Hw−

1
(s)

− 2iπHw−
1
(r)Hw−

5
(s)− π2

6
Hw+

5
(s)− 2iπHw−

1
(r)Hw−

4
(s) +

11

6
π2Hw+

4
(s)
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+
1

2
iπHw+

3 ,w−
1
(s) +Hw−

1
(r)Hw+

3 ,w+
1
(s)− 3Hw−

1 ,w−
1 ,w−

1
(r) +Hw−

1 ,w−
1 ,w−

3
(r)

+Hw−
1 ,w−

3 ,w−
1
(r)−Hw−

1 ,w+
3 ,w+

1
(r) +Hw+

1 ,w−
1 ,w+

1
(r)−Hw+

1 ,w−
1 ,w+

1
(s)

+Hw−
3 ,w−

1 ,w−
1
(r) +

1

2
Hw−

3 ,w+
1 ,w+

1
(r)− 1

2
Hw−

3 ,w+
1 ,w+

1
(s)− 1

2
Hw+

3 ,w−
1 ,w+

1
(r)

− 1

2
Hw+

3 ,w−
1 ,w+

1
(s)−Hw+

3 ,w+
1 ,w−

1
(r) + 2Hw−

1
(r)Hw−

1
(s) ln(2)− 2iπHw+

1
(r) ln(2)

+ 2iπHw+
1
(s) ln(2)− 2Hw−

1
(r)Hw−

3
(s) ln(2) + iπHw+

3
(r) ln(2)

− iπHw+
3
(s) ln(2)− 4Hw−

1 ,w−
1
(r) ln(2) + 2Hw−

1 ,w−
3
(r) ln(2) + 2Hw−

3 ,w−
1
(r) ln(2)

− 2Hw+
3 ,w+

1
(r) ln(2) + 2Hw+

3 ,w+
1
(s) ln(2)− 2Hw−

1
(r) ln2(2) + 2Hw−

1
(s) ln2(2)

+ 2Hw−
3
(r) ln2(2)− 2Hw−

3
(s) ln2(2)−Hw−

1
(r)Li2(1− zf ) +Hw−

1
(s)Li2(1−zf )

+Hw−
3
(r)Li2(1− zf )−Hw−

3
(s)Li2(1− zf )

]
+O(ε4), (4.40)

M̃19(r, s) = ε3
[
− π2

3
Hw−

1
(r) +

π2

3
Hw−

1
(s)− iπHw−

1
(r)Hw+

1
(s) +

π2

12
Hw−

3
(r)− π2

12
Hw−

3
(s)

+ iπHw−
1
(r)Hw+

3
(s)−Hw−

1
(s)Hw−

1 ,w−
1
(r) +Hw−

3
(s)Hw−

1 ,w−
1
(r) + iπHw−

1 ,w+
1
(s)

− iπHw−
1 ,w+

3
(r) + iπHw+

1 ,w−
1
(r) +Hw−

1
(r)Hw+

1 ,w+
1
(s) +

1

2
iπHw−

3 ,w+
1
(r)

− 1

2
iπHw−

3 ,w+
1
(s)− 1

2
iπHw+

3 ,w−
1
(r)− 1

2
iπHw+

3 ,w−
1
(s)−Hw−

1
(r)Hw+

3 ,w+
1
(s)

+ 3Hw−
1 ,w−

1 ,w−
1
(r)−Hw−

1 ,w−
1 ,w−

3
(r)−Hw−

1 ,w+
1 ,w+

1
(s)−Hw−

1 ,w−
3 ,w−

1
(r)

+Hw−
1 ,w+

3 ,w+
1
(r)−Hw+

1 ,w−
1 ,w+

1
(r)−Hw+

1 ,w+
1 ,w−

1
(r)−Hw−

3 ,w−
1 ,w−

1
(r)

− 1

2
Hw−

3 ,w+
1 ,w+

1
(r) +

1

2
Hw−

3 ,w+
1 ,w+

1
(s) +

1

2
Hw+

3 ,w−
1 ,w+

1
(r) +

1

2
Hw+

3 ,w−
1 ,w+

1
(s)

+Hw+
3 ,w+

1 ,w−
1
(r)− 2Hw−

1
(r)Hw−

1
(s) ln(2) + 2iπHw+

1
(r) ln(2)

− 2iπHw+
1
(s) ln(2) + 2Hw−

1
(r)Hw−

3
(s) ln(2)− iπHw+

3
(r) ln(2)

+ iπHw+
3
(s) ln(2) + 4Hw−

1 ,w−
1
(r) ln(2)− 2Hw−

1 ,w−
3
(r) ln(2)− 2Hw+

1 ,w+
1
(r) ln(2)

+ 2Hw+
1 ,w+

1
(s) ln(2)− 2Hw−

3 ,w−
1
(r) ln(2) + 2Hw+

3 ,w+
1
(r) ln(2)

− 2Hw+
3 ,w+

1
(s) ln(2) + 2Hw−

1
(r) ln2(2)− 2Hw−

1
(s) ln2(2)− 2Hw−

3
(r) ln2(2)

+ 2Hw−
3
(s) ln2(2) +Hw−

1
(r)Li2(1− zf )−Hw−

1
(s)Li2(1− zf )

−Hw−
3
(r)Li2(1− zf ) +Hw−

3
(s)Li2(1− zf )

]
+O(ε4), (4.41)

M̃20(r, s) = ε2
[
− iπHw−

1
(r)+ iπHw−

1
(s)+Hw−

1
(r)Hw+

1
(s)−Hw−

1 ,w+
1
(s) + 2Hw+

1
(s) ln(2)

]

+ ε3
[
π2Hw−

1
(r) + 2iπH0(s)Hw−

1
(r)− π2Hw−

1
(s) + 3iπHw−

1
(r)Hw−

1
(s)

− 2iπHw−
1
(r)Hw−

5
(s)− π2

6
Hw+

5
(s)− 2iπHw−

1
(r)Hw−

4
(s) +

11

6
π2Hw+

4
(s)
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− 2

3
π2Hw+

1
(s) + iπHw−

1
(r)Hw−

3
(s)− π2

12
Hw+

3
(s) + 2iπHw−

1
(r)Hw−

2
(s)

− 2iπH−1,1(r
2) + 4iπH0,w−

1
(r)− 2iπH0,w−

1
(s)− 2Hw−

1
(r)H0,w+

1
(s)

− 2iπHw−
1 ,0(s)− 3iπHw−

1 ,w−
1
(r)−Hw+

5
(s)Hw−

1 ,w−
1
(r)−Hw+

4
(s)Hw−

1 ,w−
1
(r)

+ 2Hw+
1
(s)Hw−

1 ,w−
1
(r) +Hw+

3
(s)Hw−

1 ,w−
1
(r)− 3iπHw−

1 ,w−
1
(s)

− 3Hw−
1
(r)Hw−

1 ,w+
1
(s) + 2iπHw−

5 ,w−
1
(s)+2Hw−

1
(r)Hw−

5 ,w+
1
(s) + 2iπHw+

5 ,w+
1
(s)

+ 2iπHw−
4 ,w−

1
(s) + 2Hw−

1
(r)Hw−

4 ,w+
1
(s) + 2iπHw+

4 ,w+
1
(s)

− 2Hw+
5
(s)Hw+

1 ,0(
√
zf ) + 2Hw+

4
(s)Hw+

1 ,0(
√
zf ) + 2Hw+

2
(s)Hw+

1 ,w−
1
(r)

− iπHw+
1 ,w+

1
(s)− 1

2
iπHw−

3 ,w−
1
(s)−Hw−

1
(r)Hw−

3 ,w+
1
(s)− 1

2
iπHw+

3 ,w+
1
(s)

− 2iπHw−
2 ,w−

1
(s)− 2Hw−

1
(r)Hw−

2 ,w+
1
(s) + 2H0,w−

1 ,w+
1
(s) + 2Hw−

1 ,0,w+
1
(s)

+ 3Hw−
1 ,w−

1 ,w+
1
(s)− 2Hw−

5 ,w−
1 ,w+

1
(s)− 2Hw+

5 ,w+
1 ,w+

1
(s)− 2Hw−

4 ,w−
1 ,w+

1
(s)

− 2Hw+
4 ,w+

1 ,w+
1
(s) +Hw+

1 ,w+
1 ,w+

1
(s) +

1

2
Hw−

3 ,w−
1 ,w+

1
(s) +

1

2
Hw+

3 ,w+
1 ,w+

1
(s)

+ 2Hw−
2 ,w−

1 ,w+
1
(s)− 2iπH−1(r

2) ln(2)− 2iπHw−
1
(r) ln(2)

− 2Hw−
1
(r)Hw+

5
(s) ln(2)− 2Hw−

1
(r)Hw+

4
(s) ln(2) + 4Hw−

1
(r)Hw+

1
(s) ln(2)

+ iπHw−
3
(s) ln(2) + 2Hw−

1
(r)Hw+

3
(s) ln(2) + 4Hw+

1
(r)Hw+

2
(s) ln(2)

− 4H0,w+
1
(s) ln(2)− 6Hw−

1 ,w+
1
(s) ln(2)+4Hw−

5 ,w+
1
(s) ln(2) +4Hw−

4 ,w+
1
(s) ln(2)

− 2Hw−
3 ,w+

1
(s) ln(2)− 4Hw−

2 ,w+
1
(s) ln(2)− 2Hw+

5
(s) ln2(2)− 2Hw+

4
(s) ln2(2)

+ 4Hw+
1
(s) ln2(2) + 2Hw+

3
(s) ln2(2)−Hw+

5
(s)Li2(1−zf )−Hw+

4
(s)Li2(1−zf )

−Hw+
1
(s)Li2(1− zf ) +Hw+

3
(s)Li2(1−zf )

]
+O(ε4) , (4.42)

M̃21(r, s) =ε2
[
− π2 − 2iπHw+

1
(s) + 2Hw+

1 ,w+
1
(s)

]

+ ε3
[
− 4π2H0

(
1

1+2
√
zf

)
− π2Hw−

1
(r) +

8

3
π2Hw−

1
(s) +

π2

3
Hw−

5
(s)

+ 4iπHw−
1
(r)Hw+

5
(s)− 11

3
π2Hw−

4
(s) + 4iπHw−

1
(r)Hw+

4
(s) + 2π2Hw+

1
(s)

− 8iπHw−
1
(r)Hw+

1
(s) +

π2

6
Hw−

3
(s)− 2iπHw−

1
(r)Hw+

3
(s)−2Hw−

1
(s)Hw−

1 ,w−
1
(r)

+ 2Hw−
5
(s)Hw−

1 ,w−
1
(r) + 2Hw−

4
(s)Hw−

1 ,w−
1
(r)− 2Hw−

3
(s)Hw−

1 ,w−
1
(r)

+ 6iπHw−
1 ,w+

1
(s)− 4iπHw−

5 ,w+
1
(s)− 4iπHw+

5 ,w−
1
(s)− 4Hw−

1
(r)Hw+

5 ,w+
1
(s)

− 4iπHw−
4 ,w+

1
(s)− 4iπHw+

4 ,w−
1
(s)− 4Hw−

1
(r)Hw+

4 ,w+
1
(s) + 4iπHw+

1 ,0(s)

+ 4Hw−
5
(s)Hw+

1 ,0(
√
zf )− 4Hw−

4
(s)Hw+

1 ,0(
√
zf ) + 6iπHw+

1 ,w−
1
(s)

+ 8Hw−
1
(r)Hw+

1 ,w+
1
(s) + iπHw−

3 ,w+
1
(s) + iπHw+

3 ,w−
1
(s) + 2Hw−

1
(r)Hw+

3 ,w+
1
(s)

+ 16H0,w+
1 ,0

(
1

1+2
√
zf

)
− 8H0,w+

1 ,w−
1
(1− 2

√
zf ) + 8H0,w+

1 ,w−
1

(
1

1+2
√
zf

)

– 20 –



74

74
J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

+ 2H0,w+
1 ,w−

1
(1− 2zf )− 8H0,w+

1 ,w+
1
(1− 2

√
zf ) + 8H0,w+

1 ,w+
1

(
1

1+2
√
zf

)

+ 2H0,w+
1 ,w+

1
(1− 2zf )− 6Hw−

1 ,w+
1 ,w+

1
(s) + 4Hw−

5 ,w+
1 ,w+

1
(s) + 4Hw+

5 ,w−
1 ,w+

1
(s)

+ 4Hw−
4 ,w+

1 ,w+
1
(s) + 4Hw+

4 ,w−
1 ,w+

1
(s)− 4Hw+

1 ,0,w+
1
(s)− 6Hw+

1 ,w−
1 ,w+

1
(s)

−Hw−
3 ,w+

1 ,w+
1
(s)−Hw+

3 ,w−
1 ,w+

1
(s)− 3π2 ln(2)− 4Hw−

1
(r)Hw−

1
(s) ln(2)

+ 4Hw−
1
(r)Hw−

5
(s) ln(2) + 4Hw−

1
(r)Hw−

4
(s) ln(2)− 4iπHw+

1
(s) ln(2)

− 4Hw−
1
(r)Hw−

3
(s) ln(2)− 2iπHw+

3
(s) ln(2)− 16H0,w+

1
(1− 2

√
zf ) ln(2)

+ 16H0,w+
1

(
1

1+2
√
zf

)
ln(2) + 4H0,w+

1
(1− 2zf ) ln(2)

− 8Hw+
5 ,w+

1
(s) ln(2)− 8Hw+

4 ,w+
1
(s) ln(2) + 16Hw+

1 ,w+
1
(s) ln(2)

+ 4Hw+
3 ,w+

1
(s) ln(2)− 4Hw−

1
(s) ln2(2) + 4Hw−

5
(s) ln2(2) + 4Hw−

4
(s) ln2(2)

− 4Hw−
3
(s) ln2(2)− 2Hw−

1
(s)Li2(1− zf ) + 2Hw−

5
(s)Li2(1− zf )

+ 2Hw−
4
(s)Li2(1− zf )− 2Hw−

3
(s)Li2(1− zf ) + 14ζ3

]
+O(ε4) . (4.43)

4.11 M22

This is the only integral with five lines. However, since it is essentially a one-scale integral

its result can be written in terms of ordinary HPLs. The topology consists of seven integrals,

�M =
{
M̃22(r, s), M̃3(r, s), M̃4(r, s), M̃

′
1(zf )M̃

′
2(ū),

[
M̃ ′

1(zf )
]2
,

M̃1(r, s)M̃
′
1(zf ), M̃1(r, s)M̃

′
2(ū)

}
, (4.44)

and the matrix Ã22(r, s). The result reads

M̃22(r, s) = z−2ε
f

{
ε3
[
− iπ3

2
− π2Hw−

1
(s) + π2Hw+

1
(s)− 2 iπ Hw−

1 ,w+
1
(s) + iπ Hw+

1 ,w−
1
(s)

+ iπ Hw+
1 ,w+

1
(s) + 2Hw−

1 ,w+
1 ,w+

1
(s)−Hw+

1 ,w−
1 ,w+

1
(s)− 2π2 ln(2)−Hw+

1 ,w+
1 ,w−

1
(s)

+ 2 iπ Hw+
1
(s) ln(2)− 2Hw+

1 ,w+
1
(s) ln(2) +

21

2
ζ3

]
+O(ε4)

}
. (4.45)

4.12 M23 – M25

Also this topology is quite large and we need nine integrals

�M =
{
M̃23(r, s1), M̃24(r, s1), M̃25(r, s1), M̃5(r),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1),

M̃ ′
4(zf ), M̃

′
5(zf ), M̃

′
1(zf )M̃1(r = i

√
3, s1)

}
, (4.46)

where r = i
√
3 corresponds to zf = 1. Here we choose the set of variables (r, s1). The fact

that the number of integrals is large is not the only complication of this topology. As can

be seen from the matrix Ã23−25(r, s1) in eq. (A.11), many factors appear in the differential
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+ 2H0,w+
1 ,w−

1
(1− 2zf )− 8H0,w+

1 ,w+
1
(1− 2

√
zf ) + 8H0,w+

1 ,w+
1

(
1

1+2
√
zf

)

+ 2H0,w+
1 ,w+

1
(1− 2zf )− 6Hw−

1 ,w+
1 ,w+

1
(s) + 4Hw−

5 ,w+
1 ,w+

1
(s) + 4Hw+

5 ,w−
1 ,w+

1
(s)

+ 4Hw−
4 ,w+

1 ,w+
1
(s) + 4Hw+

4 ,w−
1 ,w+

1
(s)− 4Hw+

1 ,0,w+
1
(s)− 6Hw+

1 ,w−
1 ,w+

1
(s)

−Hw−
3 ,w+

1 ,w+
1
(s)−Hw+

3 ,w−
1 ,w+

1
(s)− 3π2 ln(2)− 4Hw−

1
(r)Hw−

1
(s) ln(2)

+ 4Hw−
1
(r)Hw−

5
(s) ln(2) + 4Hw−

1
(r)Hw−

4
(s) ln(2)− 4iπHw+

1
(s) ln(2)

− 4Hw−
1
(r)Hw−

3
(s) ln(2)− 2iπHw+

3
(s) ln(2)− 16H0,w+

1
(1− 2

√
zf ) ln(2)

+ 16H0,w+
1

(
1

1+2
√
zf

)
ln(2) + 4H0,w+

1
(1− 2zf ) ln(2)

− 8Hw+
5 ,w+

1
(s) ln(2)− 8Hw+

4 ,w+
1
(s) ln(2) + 16Hw+

1 ,w+
1
(s) ln(2)

+ 4Hw+
3 ,w+

1
(s) ln(2)− 4Hw−

1
(s) ln2(2) + 4Hw−

5
(s) ln2(2) + 4Hw−

4
(s) ln2(2)

− 4Hw−
3
(s) ln2(2)− 2Hw−

1
(s)Li2(1− zf ) + 2Hw−

5
(s)Li2(1− zf )

+ 2Hw−
4
(s)Li2(1− zf )− 2Hw−

3
(s)Li2(1− zf ) + 14ζ3

]
+O(ε4) . (4.43)

4.11 M22

This is the only integral with five lines. However, since it is essentially a one-scale integral

its result can be written in terms of ordinary HPLs. The topology consists of seven integrals,

�M =
{
M̃22(r, s), M̃3(r, s), M̃4(r, s), M̃

′
1(zf )M̃

′
2(ū),

[
M̃ ′

1(zf )
]2
,

M̃1(r, s)M̃
′
1(zf ), M̃1(r, s)M̃

′
2(ū)

}
, (4.44)

and the matrix Ã22(r, s). The result reads

M̃22(r, s) = z−2ε
f

{
ε3
[
− iπ3

2
− π2Hw−

1
(s) + π2Hw+

1
(s)− 2 iπ Hw−

1 ,w+
1
(s) + iπ Hw+

1 ,w−
1
(s)

+ iπ Hw+
1 ,w+

1
(s) + 2Hw−

1 ,w+
1 ,w+

1
(s)−Hw+

1 ,w−
1 ,w+

1
(s)− 2π2 ln(2)−Hw+

1 ,w+
1 ,w−

1
(s)

+ 2 iπ Hw+
1
(s) ln(2)− 2Hw+

1 ,w+
1
(s) ln(2) +

21

2
ζ3

]
+O(ε4)

}
. (4.45)

4.12 M23 – M25

Also this topology is quite large and we need nine integrals

�M =
{
M̃23(r, s1), M̃24(r, s1), M̃25(r, s1), M̃5(r),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1),

M̃ ′
4(zf ), M̃

′
5(zf ), M̃

′
1(zf )M̃1(r = i

√
3, s1)

}
, (4.46)

where r = i
√
3 corresponds to zf = 1. Here we choose the set of variables (r, s1). The fact

that the number of integrals is large is not the only complication of this topology. As can

be seen from the matrix Ã23−25(r, s1) in eq. (A.11), many factors appear in the differential
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equations which are irrational in both r and s1. For example,

∂M̃23(r, s1)

∂s1
=
2ε M̃23(r, s1) s1

(
5− s21

)
(
1− s21

) (
3 + s21

) − ε M̃24(r, s1) (3− s1)

4(1− s21)
√
1 + 2(1−r2)(1−s1)

(1+s1)2

+
ε M̃25(r, s1) (3 + s1)

4
(
1− s21

) √
1 + 2(1−r2)(1+s1)

(1−s1)2

+
2ε M̃ ′

4(zf ) s1

1− s21
. (4.47)

Fortunately, we can still find a form of the differential equations which allows us to apply

the formulas for iterated integrals from section 2. There are two reasons why this is

possible. First, there exist variable transformations which rationalise either of the square

roots, namely

t =
1− s1

2
+

1 + s1
2

√
1 +

2(1− r2)(1− s1)

(1 + s1)2
=⇒ s1 =

2t2 − 2t− 1 + r2

r2 − 2t+ 1
, (4.48)

and

v =
1 + s1

2
+

1− s1
2

√
1 +

2(1− r2)(1 + s1)

(1− s1)2
=⇒ s1 =− 2v2 − 2v − 1 + r2

r2 − 2v + 1
. (4.49)

For later convenience we also define

t0 = e
iπ
3 r + e−

iπ
3 ,

v0 = e−
iπ
3 r + e

iπ
3 , (4.50)

which correspond to the limit s1 → +i
√
3 of t and v, respectively. Second, it turns out

that we only need the lowest order in the ε-expansion for each of the integrals M23−25.

This ensures that M24 appears only in combination with t, whereas M25 appears only with

v, without any admixture of the respective other variable. This does not hold at higher

orders in ε, which can be concluded for instance from the appearance of the logarithm L15

in Ã23−25(r, s1) in eq. (A.11) which contains both t and v. Having said this, we find

M̃23(r, s1) = ε3
[
f (1)(t) + f (2)(t) + f (1)(v)− f (2)(v) + f (3)(v) (4.51)

− f (1)(t0)− f (2)(t0)− f (1)(v0) + f (2)(v0)− f (3)(v0) + (Hw−
1
(s1) + 2 ln(2))

×
(
− π2

12
− 1

2
Hw−

1 ,w−
1
(r)−Hw−

1
(r) ln(2)− ln2(2)− 1

2
Li2(1−zf )

)]
+O(ε4) ,

M̃24(r, s1) = ε2[f (4)(t) + f (5)(t)] +O(ε3) , (4.52)

M̃25(r, s1) = ε2[f (4)(v)− f (5)(v) + f (6)(v)] +O(ε3) , (4.53)

with

f (1)(x) = −5π2

12
Hw+

1
(x)− 5π2

24
Hw−

3
(x)− 5π2

24
Hw+

3
(x) +Hw+

1
(x)H−1,0(r

2)

+
1

2
Hw−

3
(x)H−1,0(r

2) +
1

2
Hw+

3
(x)H−1,0(r

2) + 2Hw+
1
(x)Hw−

1 ,0(r)

+Hw−
3
(x)Hw−

1 ,0(r) +Hw+
3
(x)Hw−

1 ,0(r) +
1

2
Hw+

1
(x)Hw−

1 ,w−
1
(r)

– 22 –
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+
1

4
Hw−

3
(x)Hw−

1 ,w−
1
(r) +

1

4
Hw+

3
(x)Hw−

1 ,w−
1
(r)− 2H0(r)Hw+

1 ,w+
1
(x)

−Hw−
1
(r)Hw+

1 ,w+
1
(x)−H0(r)Hw+

1 ,w−
3
(x)−H0(r)Hw+

1 ,w+
3
(x)−H0(r)Hw−

3 ,w+
1
(x)

−1

2
Hw−

1
(r)Hw−

3 ,w+
1
(x)− 1

2
H0(r)Hw−

3 ,w−
3
(x)− 1

2
H0(r)Hw−

3 ,w+
3
(x)

−H0(r)Hw+
3 ,w+

1
(x)− 1

2
Hw−

1
(r)Hw+

3 ,w+
1
(x)− 1

2
H0(r)Hw+

3 ,w−
3
(x)

−1

2
H0(r)Hw+

3 ,w+
3
(x)−Hw+

1 ,w+
1 ,w−

1
(x) +

1

2
Hw+

1 ,w+
1 ,w−

5
(x) +

1

2
Hw+

1 ,w+
1 ,w+

5
(x)

+
1

2
Hw+

1 ,w+
1 ,w−

4
(x) +

1

2
Hw+

1 ,w+
1 ,w+

4
(x)− 1

2
Hw+

1 ,w−
3 ,w−

1
(x) +

1

4
Hw+

1 ,w−
3 ,w−

5
(x)

+
1

4
Hw+

1 ,w−
3 ,w+

5
(x) +

1

4
Hw+

1 ,w−
3 ,w−

4
(x) +

1

4
Hw+

1 ,w−
3 ,w+

4
(x)− 1

2
Hw+

1 ,w+
3 ,w−

1
(x)

+
1

4
Hw+

1 ,w+
3 ,w−

5
(x) +

1

4
Hw+

1 ,w+
3 ,w+

5
(x) +

1

4
Hw+

1 ,w+
3 ,w−

4
(x) +

1

4
Hw+

1 ,w+
3 ,w+

4
(x)

−1

2
Hw−

3 ,w+
1 ,w−

1
(x) +

1

4
Hw−

3 ,w+
1 ,w−

5
(x) +

1

4
Hw−

3 ,w+
1 ,w+

5
(x) +

1

4
Hw−

3 ,w+
1 ,w−

4
(x)

+
1

4
Hw−

3 ,w+
1 ,w+

4
(x)− 1

4
Hw−

3 ,w−
3 ,w−

1
(x) +

1

8
Hw−

3 ,w−
3 ,w−

5
(x) +

1

8
Hw−

3 ,w−
3 ,w+

5
(x)

+
1

8
Hw−

3 ,w−
3 ,w−

4
(x) +

1

8
Hw−

3 ,w−
3 ,w+

4
(x)− 1

4
Hw−

3 ,w+
3 ,w−

1
(x) +

1

8
Hw−

3 ,w+
3 ,w−

5
(x)

+
1

8
Hw−

3 ,w+
3 ,w+

5
(x) +

1

8
Hw−

3 ,w+
3 ,w−

4
(x) +

1

8
Hw−

3 ,w+
3 ,w+

4
(x)− 1

2
Hw+

3 ,w+
1 ,w−

1
(x)

+
1

4
Hw+

3 ,w+
1 ,w−

5
(x) +

1

4
Hw+

3 ,w+
1 ,w+

5
(x) +

1

4
Hw+

3 ,w+
1 ,w−

4
(x) +

1

4
Hw+

3 ,w+
1 ,w+

4
(x)

−1

4
Hw+

3 ,w−
3 ,w−

1
(x) +

1

8
Hw+

3 ,w−
3 ,w−

5
(x) +

1

8
Hw+

3 ,w−
3 ,w+

5
(x) +

1

8
Hw+

3 ,w−
3 ,w−

4
(x)

+
1

8
Hw+

3 ,w−
3 ,w+

4
(x)− 1

4
Hw+

3 ,w+
3 ,w−

1
(x) +

1

8
Hw+

3 ,w+
3 ,w−

5
(x) +

1

8
Hw+

3 ,w+
3 ,w+

5
(x)

+
1

8
Hw+

3 ,w+
3 ,w−

4
(x) +

1

8
Hw+

3 ,w+
3 ,w+

4
(x) +Hw−

1
(r)Hw+

1
(x) ln(2)

+
1

2
Hw−

1
(r)Hw−

3
(x) ln(2) +

1

2
Hw−

1
(r)Hw+

3
(x) ln(2)− 2Hw+

1 ,w+
1
(x) ln(2)

−Hw−
3 ,w+

1
(x) ln(2)−Hw+

3 ,w+
1
(x) ln(2) +Hw+

1
(x) ln2(2) +

1

2
Hw−

3
(x) ln2(2)

+
1

2
Hw+

3
(x) ln2(2) +

1

2
Hw+

1
(x) Li2(1− zf ) +

1

4
Hw−

3
(x) Li2(1− zf )

+
1

4
Hw+

3
(x) Li2(1− zf ) , (4.54)

f (2)(x) =iπ

[
−H−1(r

2)Hw+
1
(x)−Hw−

1
(r)Hw+

1
(x)− 1

2
H−1(r

2)Hw−
3
(x)

− 1

2
Hw−

1
(r)Hw−

3
(x)− 1

2
H−1(r

2)Hw+
3
(x)− 1

2
Hw−

1
(r)Hw+

3
(x) +Hw+

1 ,w+
1
(x)

+
1

2
Hw+

1 ,w−
3
(x) +

1

2
Hw+

1 ,w+
3
(x) +

1

2
Hw−

3 ,w+
1
(x) +

1

4
Hw−

3 ,w−
3
(x) +

1

4
Hw−

3 ,w+
3
(x)

+
1

2
Hw+

3 ,w+
1
(x) +

1

4
Hw+

3 ,w−
3
(x) +

1

4
Hw+

3 ,w+
3
(x)

]
, (4.55)

– 23 –



77

77

J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

+
1

4
Hw−

3
(x)Hw−

1 ,w−
1
(r) +

1

4
Hw+

3
(x)Hw−

1 ,w−
1
(r)− 2H0(r)Hw+

1 ,w+
1
(x)

−Hw−
1
(r)Hw+

1 ,w+
1
(x)−H0(r)Hw+

1 ,w−
3
(x)−H0(r)Hw+

1 ,w+
3
(x)−H0(r)Hw−

3 ,w+
1
(x)

−1

2
Hw−

1
(r)Hw−

3 ,w+
1
(x)− 1

2
H0(r)Hw−

3 ,w−
3
(x)− 1

2
H0(r)Hw−

3 ,w+
3
(x)

−H0(r)Hw+
3 ,w+

1
(x)− 1

2
Hw−

1
(r)Hw+

3 ,w+
1
(x)− 1

2
H0(r)Hw+

3 ,w−
3
(x)

−1

2
H0(r)Hw+

3 ,w+
3
(x)−Hw+

1 ,w+
1 ,w−

1
(x) +

1

2
Hw+

1 ,w+
1 ,w−

5
(x) +

1

2
Hw+

1 ,w+
1 ,w+

5
(x)

+
1

2
Hw+

1 ,w+
1 ,w−

4
(x) +

1

2
Hw+

1 ,w+
1 ,w+

4
(x)− 1

2
Hw+

1 ,w−
3 ,w−

1
(x) +

1

4
Hw+

1 ,w−
3 ,w−

5
(x)

+
1

4
Hw+

1 ,w−
3 ,w+

5
(x) +

1

4
Hw+

1 ,w−
3 ,w−

4
(x) +

1

4
Hw+

1 ,w−
3 ,w+

4
(x)− 1

2
Hw+

1 ,w+
3 ,w−

1
(x)

+
1

4
Hw+

1 ,w+
3 ,w−

5
(x) +

1

4
Hw+

1 ,w+
3 ,w+

5
(x) +

1

4
Hw+

1 ,w+
3 ,w−

4
(x) +

1

4
Hw+

1 ,w+
3 ,w+

4
(x)

−1

2
Hw−

3 ,w+
1 ,w−

1
(x) +

1

4
Hw−

3 ,w+
1 ,w−

5
(x) +

1

4
Hw−

3 ,w+
1 ,w+

5
(x) +

1

4
Hw−

3 ,w+
1 ,w−

4
(x)

+
1

4
Hw−

3 ,w+
1 ,w+

4
(x)− 1

4
Hw−

3 ,w−
3 ,w−

1
(x) +

1

8
Hw−

3 ,w−
3 ,w−

5
(x) +

1

8
Hw−

3 ,w−
3 ,w+

5
(x)

+
1

8
Hw−

3 ,w−
3 ,w−

4
(x) +

1

8
Hw−

3 ,w−
3 ,w+

4
(x)− 1

4
Hw−

3 ,w+
3 ,w−

1
(x) +

1

8
Hw−

3 ,w+
3 ,w−

5
(x)

+
1

8
Hw−

3 ,w+
3 ,w+

5
(x) +

1

8
Hw−

3 ,w+
3 ,w−

4
(x) +

1

8
Hw−

3 ,w+
3 ,w+

4
(x)− 1

2
Hw+

3 ,w+
1 ,w−

1
(x)

+
1

4
Hw+

3 ,w+
1 ,w−

5
(x) +

1

4
Hw+

3 ,w+
1 ,w+

5
(x) +

1

4
Hw+

3 ,w+
1 ,w−

4
(x) +

1

4
Hw+

3 ,w+
1 ,w+

4
(x)

−1

4
Hw+

3 ,w−
3 ,w−

1
(x) +

1

8
Hw+

3 ,w−
3 ,w−

5
(x) +

1

8
Hw+

3 ,w−
3 ,w+

5
(x) +

1

8
Hw+

3 ,w−
3 ,w−

4
(x)

+
1

8
Hw+

3 ,w−
3 ,w+

4
(x)− 1

4
Hw+

3 ,w+
3 ,w−

1
(x) +

1

8
Hw+

3 ,w+
3 ,w−

5
(x) +

1

8
Hw+

3 ,w+
3 ,w+

5
(x)

+
1

8
Hw+

3 ,w+
3 ,w−

4
(x) +

1

8
Hw+

3 ,w+
3 ,w+

4
(x) +Hw−

1
(r)Hw+

1
(x) ln(2)

+
1

2
Hw−

1
(r)Hw−

3
(x) ln(2) +

1

2
Hw−

1
(r)Hw+

3
(x) ln(2)− 2Hw+

1 ,w+
1
(x) ln(2)

−Hw−
3 ,w+

1
(x) ln(2)−Hw+

3 ,w+
1
(x) ln(2) +Hw+

1
(x) ln2(2) +

1

2
Hw−

3
(x) ln2(2)

+
1

2
Hw+

3
(x) ln2(2) +

1

2
Hw+

1
(x) Li2(1− zf ) +

1

4
Hw−

3
(x) Li2(1− zf )

+
1

4
Hw+

3
(x) Li2(1− zf ) , (4.54)

f (2)(x) =iπ

[
−H−1(r

2)Hw+
1
(x)−Hw−

1
(r)Hw+

1
(x)− 1

2
H−1(r

2)Hw−
3
(x)

− 1

2
Hw−

1
(r)Hw−

3
(x)− 1

2
H−1(r

2)Hw+
3
(x)− 1

2
Hw−

1
(r)Hw+

3
(x) +Hw+

1 ,w+
1
(x)

+
1

2
Hw+

1 ,w−
3
(x) +

1

2
Hw+

1 ,w+
3
(x) +

1

2
Hw−

3 ,w+
1
(x) +

1

4
Hw−

3 ,w−
3
(x) +

1

4
Hw−

3 ,w+
3
(x)

+
1

2
Hw+

3 ,w+
1
(x) +

1

4
Hw+

3 ,w−
3
(x) +

1

4
Hw+

3 ,w+
3
(x)

]
, (4.55)
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f (3)(x) =

[
1

4
H0(r

4)−H0(r)

]
×

[
4H−1(r

2)Hw+
1
(x) + 4Hw−

1
(r)Hw+

1
(x)

+ 2H−1(r
2)Hw−

3
(x) + 2Hw−

1
(r)Hw−

3
(x) + 2H−1(r

2)Hw+
3
(x) + 2Hw−

1
(r)Hw+

3
(x)

− 4Hw+
1 ,w+

1
(x)− 2Hw+

1 ,w−
3
(x)− 2Hw+

1 ,w+
3
(x)− 2Hw−

3 ,w+
1
(x)−Hw−

3 ,w−
3
(x)

−Hw−
3 ,w+

3
(x)− 2Hw+

3 ,w+
1
(x)−Hw+

3 ,w−
3
(x)−Hw+

3 ,w+
3
(x)

]
, (4.56)

f (4)(x) =
5π2

3
+ 8H0(r)Hw+

1
(x) + 4Hw−

1
(r)Hw+

1
(x) + 4H0(r)Hw−

3
(x) + 4H0(r)Hw+

3
(x)

− 4H−1,0(r
2)− 8Hw−

1 ,0(r)− 2Hw−
1 ,w−

1
(r) + 4Hw+

1 ,w−
1
(x)− 2Hw+

1 ,w−
5
(x)

− 2Hw+
1 ,w+

5
(x)− 2Hw+

1 ,w−
4
(x)− 2Hw+

1 ,w+
4
(x) + 2Hw−

3 ,w−
1
(x)−Hw−

3 ,w−
5
(x)

−Hw−
3 ,w+

5
(x)−Hw−

3 ,w−
4
(x)−Hw−

3 ,w+
4
(x)+2Hw+

3 ,w−
1
(x)−Hw+

3 ,w−
5
(x)−Hw+

3 ,w+
5
(x)

−Hw+
3 ,w−

4
(x)−Hw+

3 ,w+
4
(x)− 4Hw−

1
(r) ln(2) + 8Hw+

1
(x) ln(2)− 4 ln2(2)

− 2Li2(1− zf ) , (4.57)

f (5)(x) = iπ
[
4H−1(r

2) + 4Hw−
1
(r)− 4Hw+

1
(x)− 2Hw−

3
(x)− 2Hw+

3
(x)

]
, (4.58)

f (6)(x) =2
[
4H0(r)−H0(r

4)
][
2H−1(r

2)+2Hw−
1
(r)−2Hw+

1
(x)−Hw−

3
(x)−Hw+

3
(x)

]
. (4.59)

For numerical cross-checks, we also present two-fold integral representations over ordinary

Feynman parameters. For the relevant coefficients of the ε-expansion of M23−25(r, s1), they

read (x̄ = 1− x, x̂ = 1 + x)

M̃23(r, s1) =

1∫

0

dt1

1∫

0

dt2

ε3
(
s21 + 3

)
t̄2 ln

[
(1−s21)(t21t2 t̄2+t̄1zf)
t2 t̄2((1−2t1)

2−s21)

]

t2t̄2
((
s21 + 3

)
t1 + s21 − 1

)
+

(
1− s21

)
zf

+O(ε4) ,

M̃24(r, s1) =

1∫

0

dt1

1∫

0

dt2
ε2ŝ1

√
1 +

8s̄1zf
ŝ21

ŝ21t2t̄2 + 2s̄1zf

[
2 (ŝ1t1t2t̄2 − 2zf )

t21t2t̄2 + t̄1zf
+

4s1ŝ1

s21 − (1− 2t1)
2

]
+O(ε3) ,

M̃25(r, s1) = M̃24(r,−s1) . (4.60)

4.13 M26 and M27

This topology consists of four integrals, �M =
{
M̃26(s1), M̃27(s1), M̃

′
6, M̃

′
7

}
, and the matrix

Ã26,27(s1). The integrals in this topology depend on a single variable and we only need

functions up to weight two. The solution reads

M̃26(s1) = ε2
[
− 4π2

3
− 3 iπHw+

1
(s1) + 3Hw+

1 ,w+
1
(s1)

]
+O(ε3) , (4.61)

M̃27(s1) = ε [−Hw+
1
(s1) + iπ]

+ ε2
[
1

2
Hw−

1 ,w+
1
(s1) + 2H0,w+

1
(s1)−

iπ

2
Hw−

1
(s1)− 2 iπ H0(s1)− π2 − iπ ln(2)

]

+O(ε3) . (4.62)

– 24 –



78

78
J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

4.14 M28 and M29

The integrals in this topology already appeared in the two-loop calculation of the tree am-

plitudes [9–11], where explicit Mellin-Barnes (MB) representations have been used for their

numerical evaluation (for a convenient parameterisation cf. also the appendix of [38]). With

the current techniques, we are now in the position to compute these integrals analytically.

For this topology, it will be convenient to use the variables (r, p) defined in section 2.

We need seven integrals,

�M=
{
M̃28(r, p), M̃29(r, p), M̃

′
1(zf )M̃

′
3(ū),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1), M̃ ′

4(zf ), M̃
′
5(zf )

}

(4.63)

and the matrix Ã28,29(r, p). The integral M28 is required up to functions of weight three,

but M29 is only needed up to weight two. The solution is again lengthy, and we introduce

a short-hand notation for p0 = 1− 2
√
zf . We find

M̃28(r, p) = ε3 [f (7)(p)− f (7)(p0)] +O(ε4) , (4.64)

M̃29(r, p) = ε2[f (8)(p)− f (8)(p0)] +O(ε3) , (4.65)

with

f (7)(x) =− iπHw+
1
(x)Hw+

1
(p0) + 2H0(r)Hw+

1
(x)Hw+

1
(p0) +Hw−

1
(r)Hw+

1
(x)Hw+

1
(p0)

− π2

6
Hw−

3
(x)− iπ

2
Hw+

1
(p0)Hw−

3
(x) +H0(r)Hw+

1
(p0)Hw−

3
(x)− π2

6
Hw−

1
(x)

+
1

2
Hw−

1
(r)Hw+

1
(p0)Hw−

3
(x)− iπ

2
Hw+

1
(x)Hw−

3
(p0)−Hw−

1
(r)Hw+

1 ,w+
1
(x)

+H0(r)Hw+
1
(x)Hw−

3
(p0)−

iπ

4
Hw−

3
(x)Hw−

3
(p0) +

1

2
H0(r)Hw−

3
(x)Hw−

3
(p0)

− π2

6
Hw+

3
(x)− iπ

2
Hw+

1
(p0)Hw+

3
(x) +H0(r)Hw+

1
(p0)Hw+

3
(x)− π2

2
Hw+

1
(x)

+
1

2
Hw−

1
(r)Hw+

1
(p0)Hw+

3
(x)− iπ

4
Hw−

3
(p0)Hw+

3
(x) +

1

2
H0(r)Hw−

3
(p0)Hw+

3
(x)

− iπ

2
Hw+

1
(x)Hw+

3
(p0) +H0(r)Hw+

1
(x)Hw+

3
(p0)−H0(r)Hw+

1 ,w−
3
(x)

− iπ

4
Hw−

3
(x)Hw+

3
(p0) +

1

2
H0(r)Hw−

3
(x)Hw+

3
(p0)−

iπ

4
Hw+

3
(x)Hw+

3
(p0)

+
1

2
H0(r)Hw+

3
(x)Hw+

3
(p0)− 2Hw−

1
(x)H0,0(

√
zf ) +Hw−

3
(x)H0,0(

√
zf )

+Hw+
3
(x)H0,0(

√
zf ) +

1

2
Hw−

3
(x)Hw−

1 ,0(
√
zf ) +

1

2
Hw+

3
(x)Hw−

1 ,0(
√
zf )

−Hw+
1
(x)Hw+

1 ,0(
√
zf )−

1

2
Hw−

3
(x)Hw+

1 ,0(
√
zf )−Hw−

1
(x)Hw−

1 ,0(
√
zf )

− 1

2
Hw+

3
(x)Hw+

1 ,0(
√
zf ) +Hw+

1
(x)Hw+

1 ,w−
1
(p0) +

1

2
Hw−

3
(x)Hw+

1 ,w−
1
(p0)

+
1

2
Hw+

3
(x)Hw+

1 ,w−
1
(p0)−

1

2
Hw+

1
(x)Hw+

1 ,w−
5
(p0)−

1

4
Hw−

3
(x)Hw+

1 ,w−
5
(p0)

− 1

4
Hw+

3
(x)Hw+

1 ,w−
5
(p0)−

1

2
Hw+

1
(x)Hw+

1 ,w+
5
(p0)−

1

4
Hw−

3
(x)Hw+

1 ,w+
5
(p0)
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4.14 M28 and M29

The integrals in this topology already appeared in the two-loop calculation of the tree am-

plitudes [9–11], where explicit Mellin-Barnes (MB) representations have been used for their

numerical evaluation (for a convenient parameterisation cf. also the appendix of [38]). With

the current techniques, we are now in the position to compute these integrals analytically.

For this topology, it will be convenient to use the variables (r, p) defined in section 2.

We need seven integrals,

�M=
{
M̃28(r, p), M̃29(r, p), M̃

′
1(zf )M̃

′
3(ū),

[
M̃ ′

1(zf )
]2
, M̃ ′

1(zf )M̃
′
1(zf = 1), M̃ ′

4(zf ), M̃
′
5(zf )

}

(4.63)

and the matrix Ã28,29(r, p). The integral M28 is required up to functions of weight three,

but M29 is only needed up to weight two. The solution is again lengthy, and we introduce

a short-hand notation for p0 = 1− 2
√
zf . We find

M̃28(r, p) = ε3 [f (7)(p)− f (7)(p0)] +O(ε4) , (4.64)

M̃29(r, p) = ε2[f (8)(p)− f (8)(p0)] +O(ε3) , (4.65)

with

f (7)(x) =− iπHw+
1
(x)Hw+

1
(p0) + 2H0(r)Hw+

1
(x)Hw+

1
(p0) +Hw−

1
(r)Hw+

1
(x)Hw+

1
(p0)

− π2

6
Hw−

3
(x)− iπ

2
Hw+

1
(p0)Hw−

3
(x) +H0(r)Hw+

1
(p0)Hw−

3
(x)− π2

6
Hw−

1
(x)

+
1

2
Hw−

1
(r)Hw+

1
(p0)Hw−

3
(x)− iπ

2
Hw+

1
(x)Hw−

3
(p0)−Hw−

1
(r)Hw+

1 ,w+
1
(x)

+H0(r)Hw+
1
(x)Hw−

3
(p0)−

iπ

4
Hw−

3
(x)Hw−

3
(p0) +

1

2
H0(r)Hw−

3
(x)Hw−

3
(p0)

− π2

6
Hw+

3
(x)− iπ

2
Hw+

1
(p0)Hw+

3
(x) +H0(r)Hw+

1
(p0)Hw+

3
(x)− π2

2
Hw+

1
(x)

+
1

2
Hw−

1
(r)Hw+

1
(p0)Hw+

3
(x)− iπ

4
Hw−

3
(p0)Hw+

3
(x) +

1

2
H0(r)Hw−

3
(p0)Hw+

3
(x)

− iπ

2
Hw+

1
(x)Hw+

3
(p0) +H0(r)Hw+

1
(x)Hw+

3
(p0)−H0(r)Hw+

1 ,w−
3
(x)

− iπ

4
Hw−

3
(x)Hw+

3
(p0) +

1

2
H0(r)Hw−

3
(x)Hw+

3
(p0)−

iπ

4
Hw+

3
(x)Hw+

3
(p0)

+
1

2
H0(r)Hw+

3
(x)Hw+

3
(p0)− 2Hw−

1
(x)H0,0(

√
zf ) +Hw−

3
(x)H0,0(

√
zf )

+Hw+
3
(x)H0,0(

√
zf ) +

1

2
Hw−

3
(x)Hw−

1 ,0(
√
zf ) +

1

2
Hw+

3
(x)Hw−

1 ,0(
√
zf )

−Hw+
1
(x)Hw+

1 ,0(
√
zf )−

1

2
Hw−

3
(x)Hw+

1 ,0(
√
zf )−Hw−

1
(x)Hw−

1 ,0(
√
zf )

− 1

2
Hw+

3
(x)Hw+

1 ,0(
√
zf ) +Hw+

1
(x)Hw+

1 ,w−
1
(p0) +

1

2
Hw−

3
(x)Hw+

1 ,w−
1
(p0)

+
1

2
Hw+

3
(x)Hw+

1 ,w−
1
(p0)−

1

2
Hw+

1
(x)Hw+

1 ,w−
5
(p0)−

1

4
Hw−

3
(x)Hw+

1 ,w−
5
(p0)

− 1

4
Hw+

3
(x)Hw+

1 ,w−
5
(p0)−

1

2
Hw+

1
(x)Hw+

1 ,w+
5
(p0)−

1

4
Hw−

3
(x)Hw+

1 ,w+
5
(p0)
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− 1

4
Hw+

3
(x)Hw+

1 ,w+
5
(p0)−

1

2
Hw+

1
(x)Hw+

1 ,w−
4
(p0)−

1

4
Hw−

3
(x)Hw+

1 ,w−
4
(p0)

− 1

4
Hw+

3
(x)Hw+

1 ,w−
4
(p0)−

1

2
Hw+

1
(x)Hw+

1 ,w+
4
(p0)−

1

4
Hw−

3
(x)Hw+

1 ,w+
4
(p0)

− 1

4
Hw+

3
(x)Hw+

1 ,w+
4
(p0) + iπHw+

1 ,w+
1
(x)− 2H0(r)Hw+

1 ,w+
1
(x) +

iπ

2
Hw+

1 ,w−
3
(x)

+
1

2
Hw+

1
(x)Hw−

3 ,w−
1
(p0) +

1

4
Hw−

3
(x)Hw−

3 ,w−
1
(p0) +

1

4
Hw+

3
(x)Hw−

3 ,w−
1
(p0)

− 1

4
Hw+

1
(x)Hw−

3 ,w−
5
(p0)−

1

8
Hw−

3
(x)Hw−

3 ,w−
5
(p0)−

1

8
Hw+

3
(x)Hw−

3 ,w−
5
(p0)

− 1

4
Hw+

1
(x)Hw−

3 ,w+
5
(p0)−

1

8
Hw−

3
(x)Hw−

3 ,w+
5
(p0)−

1

8
Hw+

3
(x)Hw−

3 ,w+
5
(p0)

− 1

4
Hw+

1
(x)Hw−

3 ,w−
4
(p0)−

1

8
Hw−

3
(x)Hw−

3 ,w−
4
(p0)−

1

8
Hw+

3
(x)Hw−

3 ,w−
4
(p0)

− 1

4
Hw+

1
(x)Hw−

3 ,w+
4
(p0)−

1

8
Hw−

3
(x)Hw−

3 ,w+
4
(p0)−

1

8
Hw+

3
(x)Hw−

3 ,w+
4
(p0)

+
iπ

2
Hw−

3 ,w+
1
(x)−H0(r)Hw−

3 ,w+
1
(x)− 1

2
Hw−

1
(r)Hw−

3 ,w+
1
(x) +

iπ

4
Hw−

3 ,w+
3
(x)

+
iπ

4
Hw−

3 ,w−
3
(x)− 1

2
H0(r)Hw−

3 ,w−
3
(x) +

iπ

2
Hw+

1 ,w+
3
(x)−H0(r)Hw+

1 ,w+
3
(x)

− 1

2
H0(r)Hw−

3 ,w+
3
(x) +

1

2
Hw+

1
(x)Hw+

3 ,w−
1
(p0) +

1

4
Hw−

3
(x)Hw+

3 ,w−
1
(p0)

+
1

4
Hw+

3
(x)Hw+

3 ,w−
1
(p0)−

1

4
Hw+

1
(x)Hw+

3 ,w−
5
(p0)−

1

8
Hw−

3
(x)Hw+

3 ,w−
5
(p0)

− 1

8
Hw+

3
(x)Hw+

3 ,w−
5
(p0)−

1

4
Hw+

1
(x)Hw+

3 ,w+
5
(p0)−

1

8
Hw−

3
(x)Hw+

3 ,w+
5
(p0)

− 1

8
Hw+

3
(x)Hw+

3 ,w+
5
(p0)−

1

4
Hw+

1
(x)Hw+

3 ,w−
4
(p0)−

1

8
Hw−

3
(x)Hw+

3 ,w−
4
(p0)

− 1

8
Hw+

3
(x)Hw+

3 ,w−
4
(p0)−

1

4
Hw+

1
(x)Hw+

3 ,w+
4
(p0)−

1

8
Hw−

3
(x)Hw+

3 ,w+
4
(p0)

− 1

8
Hw+

3
(x)Hw+

3 ,w+
4
(p0) +

iπ

2
Hw+

3 ,w+
1
(x)−H0(r)Hw+

3 ,w+
1
(x) +

iπ

4
Hw+

3 ,w−
3
(x)

− 1

2
Hw−

1
(r)Hw+

3 ,w+
1
(x)− 1

2
H0(r)Hw+

3 ,w−
3
(x)+

iπ

4
Hw+

3 ,w+
3
(x)− 1

2
H0(r)Hw+

3 ,w+
3
(x)

+
1

2
Hw+

1 ,w+
1 ,w−

5
(x) +

1

2
Hw+

1 ,w+
1 ,w+

5
(x)− 1

2
Hw−

3 ,w+
1 ,w−

1
(x)−Hw+

1 ,w+
1 ,w−

1
(x)

+
1

2
Hw+

1 ,w+
1 ,w−

4
(x) +

1

2
Hw+

1 ,w+
1 ,w+

4
(x)− 1

2
Hw+

1 ,w−
3 ,w−

1
(x) +

1

4
Hw+

1 ,w−
3 ,w−

5
(x)

+
1

4
Hw+

1 ,w−
3 ,w+

5
(x) +

1

4
Hw+

1 ,w−
3 ,w−

4
(x) +

1

4
Hw+

1 ,w−
3 ,w+

4
(x)− 1

2
Hw+

1 ,w+
3 ,w−

1
(x)

+
1

4
Hw+

1 ,w+
3 ,w−

5
(x) +

1

4
Hw+

1 ,w+
3 ,w+

5
(x) +

1

4
Hw+

1 ,w+
3 ,w−

4
(x) +

1

4
Hw+

1 ,w+
3 ,w+

4
(x)

+
1

4
Hw−

3 ,w+
1 ,w−

5
(x) +

1

4
Hw−

3 ,w+
1 ,w+

5
(x) +

1

4
Hw−

3 ,w+
1 ,w−

4
(x) +

1

4
Hw−

3 ,w+
1 ,w+

4
(x)

− 1

4
Hw−

3 ,w−
3 ,w−

1
(x) +

1

8
Hw−

3 ,w−
3 ,w−

5
(x) +

1

8
Hw−

3 ,w−
3 ,w+

5
(x) +

1

8
Hw−

3 ,w−
3 ,w−

4
(x)

+
1

8
Hw−

3 ,w−
3 ,w+

4
(x)− 1

4
Hw−

3 ,w+
3 ,w−

1
(x) +

1

8
Hw−

3 ,w+
3 ,w−

5
(x) +

1

8
Hw−

3 ,w+
3 ,w+

5
(x)
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+
1

8
Hw−

3 ,w+
3 ,w−

4
(x) +

1

8
Hw−

3 ,w+
3 ,w+

4
(x)− 1

2
Hw+

3 ,w+
1 ,w−

1
(x) +

1

4
Hw+

3 ,w+
1 ,w−

5
(x)

+
1

4
Hw+

3 ,w+
1 ,w+

5
(x) +

1

4
Hw+

3 ,w+
1 ,w−

4
(x) +

1

4
Hw+

3 ,w+
1 ,w+

4
(x)− 1

4
Hw+

3 ,w−
3 ,w−

1
(x)

+
1

8
Hw+

3 ,w−
3 ,w−

5
(x) +

1

8
Hw+

3 ,w−
3 ,w+

5
(x) +

1

8
Hw+

3 ,w−
3 ,w−

4
(x) +

1

8
Hw+

3 ,w−
3 ,w+

4
(x)

− 1

4
Hw+

3 ,w+
3 ,w−

1
(x) +

1

8
Hw+

3 ,w+
3 ,w−

5
(x) +

1

8
Hw+

3 ,w+
3 ,w+

5
(x) +

1

8
Hw+

3 ,w+
3 ,w−

4
(x)

+
1

8
Hw+

3 ,w+
3 ,w+

4
(x)+2Hw+

1
(x)Hw+

1
(p0) ln(2)−Hw−

3 ,w+
1
(x) ln(2)−Hw+

3 ,w+
1
(x) ln(2)

+Hw+
1
(p0)Hw−

3
(x) ln(2) +Hw+
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1
(x) ln(2) , (4.66)
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5 Checks and validation

We performed several cross checks of the analytic results presented in the previous section.

First of all, we evaluated the generalised HPLs numerically by rewriting them in terms of

Goncharov polylogarithms and evaluating them both with the GiNaC-library [39, 40] and

an in-house Mathematica routine. We also derived MB representations for most of the

integrals, where the AMBRE-package [41] proved to be useful. Their numerical evaluation

with the MB-package [42], however, turned out to be difficult due to highly oscillating inte-

grands related to the presence of the threshold. We therefore used the MB representations

to derive ordinary Feynman parameter representations, similar to the ones given in (4.60).

Another purely numerical method is sector decomposition, where we used both the SecDec-

package [43, 44] as well a Mathematica-based in-house routine. For the most complicated

coefficients the numerical evaluations confirm the analytic results at the level of 10−4, and

for the simpler coefficients the agreement is several orders of magnitude better.

6 Conclusion and outlook

We computed the master integrals that arise in the computation of the two-loop correction

to the vertex kernel of the leading penguin amplitudes in non-leptonic B-decays. The

calculation is complicated by the presence of two non-trivial scales (ū and zf = m2
f/m

2
b),

as well as the kinematic threshold at ū = 4zf . We computed the master integrals in

a recently advocated canonical basis, which enabled us to derive analytic results for all
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5 Checks and validation

We performed several cross checks of the analytic results presented in the previous section.

First of all, we evaluated the generalised HPLs numerically by rewriting them in terms of

Goncharov polylogarithms and evaluating them both with the GiNaC-library [39, 40] and

an in-house Mathematica routine. We also derived MB representations for most of the

integrals, where the AMBRE-package [41] proved to be useful. Their numerical evaluation

with the MB-package [42], however, turned out to be difficult due to highly oscillating inte-

grands related to the presence of the threshold. We therefore used the MB representations

to derive ordinary Feynman parameter representations, similar to the ones given in (4.60).

Another purely numerical method is sector decomposition, where we used both the SecDec-

package [43, 44] as well a Mathematica-based in-house routine. For the most complicated

coefficients the numerical evaluations confirm the analytic results at the level of 10−4, and

for the simpler coefficients the agreement is several orders of magnitude better.

6 Conclusion and outlook

We computed the master integrals that arise in the computation of the two-loop correction

to the vertex kernel of the leading penguin amplitudes in non-leptonic B-decays. The

calculation is complicated by the presence of two non-trivial scales (ū and zf = m2
f/m

2
b),

as well as the kinematic threshold at ū = 4zf . We computed the master integrals in

a recently advocated canonical basis, which enabled us to derive analytic results for all
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master integrals in terms of generalised HPLs. The results are given up to the relevant

order in the ε-expansion that is needed to obtain the finite terms of the penguin amplitudes.

Our calculation is the first application of a canonical basis to integrals with two different

internal masses. Apart from the integral basis, we find that the choice of the kinematic

variables is of utmost importance since it renders the logarithms in the matrices Ãk rational

and therefore makes the formulas for iterated integrals applicable.

The results of this paper form the basis to derive fully analytic expressions for the hard-

scattering kernels T I
i in the factorisation formula (1.1). In phenomenological applications,

one has to integrate over the product of the kernels and the Gegenbauer expansion of

the light-cone distribution amplitudes. The presence of the charm threshold makes the

numerical evaluation of the convolutions delicate. The threshold is much easier to handle

in an analytic approach, and the convolutions can now be computed to very high precision.

The integrals presented here are also relevant for other applications such as rare or

radiative B-meson decays. For example, the two-loop QCD correction to the matrix ele-

ments of current-current operators in inclusive B̄ → Xs�
+�− decays have to date only been

computed numerically [45] or as expansions in the lepton-invariant mass q2 [46, 47]. With

the present results, one can now obtain completely analytical expressions for any value

of q2. In exclusive B̄ → K(∗)�+�− decays, one can study non-factorisable corrections to

charm-loop effects.
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A Matrices Ãk

In this appendix we list the matrices Ãk for the different subtopologies. To this end, we

define the following logarithms,

Lx
1 = ln(x) , Lx

11 = ln

(
1−

√
1− r2 + x

1−
√
1− r2 − x

)
,

Lx
2 = ln(1− x2) , L12 = ln

(
2 +

√
1− r2

2−
√
1− r2

)
,

Lx
3 = ln

(
1 + x

1− x

)
, Lx

13 = ln

(
x2 + 3

4

)
,

Lx
4 = ln(r2 − x2) , Lx

14 = ln
(
x2 − x (r2 + 1) + 1

)
,

Lx
5 = ln

(
r + x

r − x

)
, L15 = ln ((1− s1)(1− t)− (1 + s1)(1− v)) ,

– 28 –



82

82
J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

Lx
6 = ln

((
r2 + 1

2

)2

− x2

)
, L16 = ln ((1 + s1)(1 + r)− 2(1− t)) ,

Lx
7 = ln

(
r2 + 2x+ 1

r2 − 2x+ 1

)
, L17 = ln ((1− s1)(1 + r)− 2(1− v)) ,

Lx
8 = ln

((
1 +

√
1− r2

)2
− x2

)
, L18 = ln

(√
1− r2 − 2t+ (1− s1)(1 +

1

2

√
1− r2)

)
,

Lx
9 = ln

(
1 +

√
1− r2 + x

1 +
√
1− r2 − x

)
, L19 = ln

(√
1− r2 − 2v + (1 + s1)(1 +

1

2

√
1− r2)

)
.

Lx
10 = ln

((
1−

√
1− r2

)2
− x2

)
, (A.1)

The matrices Ãk now assume a compact form,

Ã3,4 =




−Ls
2−2Lr

2 −Ls
3 0

6Ls
3 −6Ls

1+4Ls
2−2Lr

2 −2Ls
3

0 0 −2Lr
2


 , (A.2)

Ã5 =




−2Lr
1 −2Lr

3 2Lr
3

0 −2Lr
2 0

0 0 −Lr
2


 , (A.3)

Ã6,7 =




−Ls
2−Lr

2−Ls
4 −Ls

3
Ls
2
2 − Ls

4
2 0 0 0

3Ls
3 −4Ls

1+3Ls
2−Lr

2−Ls
4 −3Ls

3
2

Ls
5
2 Ls

3 Ls
3

0 0 −3Lr
2 −Lr

3 0 0

0 0 6Lr
3 2Lr

2−6Lr
1 0 −2Lr

3

0 0 0 0 Ls
2−Lr

2−Ls
4 0

0 0 0 0 0 −2Lr
2




(A.4)

Ã8,9 =




−Ls
2−3Lr

2+Ls
4 Ls

3
Lr
3
2 0 0 0

−3Ls
3 −4Ls

1+3Ls
2−3Lr

2+Ls
4 −Ls

5
2 Ls

3 Ls
3 −Ls

3

0 0 −2Lr
1 0 −2Lr

3 2Lr
3

0 0 0 Ls
2−3Lr

2+Ls
4 0 Lr

2−Ls
2

0 0 0 0 −2Lr
2 0

0 0 0 0 0 −Lr
2




(A.5)

Ã10,11 =




−2Ls
2−3Lr

2+2Ls
4 −Ls

3
Ls
2
2 − Lr

2
2

6Ls
3 −6Ls

1+3Ls
2−3Lr

2+2Ls
4 −3Ls

3

0 0 −Ls
2−2Lr

2

0 0 6Ls
3

0 0 0

0 0 0

0 0 0

– 29 –



83

83

J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

Lx
6 = ln

((
r2 + 1

2

)2

− x2

)
, L16 = ln ((1 + s1)(1 + r)− 2(1− t)) ,

Lx
7 = ln

(
r2 + 2x+ 1

r2 − 2x+ 1

)
, L17 = ln ((1− s1)(1 + r)− 2(1− v)) ,

Lx
8 = ln

((
1 +

√
1− r2

)2
− x2

)
, L18 = ln

(√
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√
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Ã3,4 =




−Ls
2−2Lr

2 −Ls
3 0

6Ls
3 −6Ls

1+4Ls
2−2Lr

2 −2Ls
3

0 0 −2Lr
2


 , (A.2)
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2−Lr

2−Ls
4 −3Ls

3
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0 0 −3Lr
2 −Lr

3 0 0

0 0 6Lr
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2−6Lr
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−Ls
2−3Lr
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4 Ls
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Lr
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−3Ls
3 −4Ls

1+3Ls
2−3Lr

2+Ls
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5
2 Ls

3 Ls
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0 0 −2Lr
1 0 −2Lr

3 2Lr
3

0 0 0 Ls
2−3Lr

2+Ls
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0 0 0 0 0 −Lr
2


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(A.5)

Ã10,11 =
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

−2Ls
2−3Lr

2+2Ls
4 −Ls

3
Ls
2
2 − Lr

2
2

6Ls
3 −6Ls

1+3Ls
2−3Lr

2+2Ls
4 −3Ls

3

0 0 −Ls
2−2Lr

2

0 0 6Ls
3

0 0 0
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−Ls
3
2

Lr
3
2 0 0

Ls
4−Lr

2 Ls
5 0 Ls

3

−Ls
3 0 0 0

−6Ls
1+4Ls

2−2Lr
2 0 −2Ls

3 0

0 −2Lr
1 −2Lr

3 2Lr
3

0 0 −2Lr
2 0

0 0 0 −Lr
2




(A.6)

Ã12−14 =




−Ls
2 − 2Lr

2+2Ls
4 − Ls

6 Lr
2 −

Ls
6
2

Ls
7
2 − Ls

3

Ls
2 − 2Ls

4+Ls
6 Ls

2 − Lr
2 − 2Ls

4+
Ls
6
2 −Ls

7
2

Ls
3 − Ls

7 −Ls
3 −

Ls
7
2 −2Ls

1+2Ls
2 − Lr

2 − 2Ls
4+

Ls
6
2

0 0 0

0 0 0

0 0 0

0 0 0

−Ls
2 −

Lr
2
2 +

3Ls
6

4 0 0 0
Ls
2
2 +Lr

2 −
3Ls

6
4

Lr
3
2 0 Ls

3
3Ls

3
2 +

3Ls
7

4 −Ls
5 0 −Ls

2 − 2Lr
2+2Ls

4

−3Lr
2 −Lr

3 0 0

6Lr
3 2Lr

2 − 6Lr
1 −2Lr

3 0

0 0 −2Lr
2 0

0 0 Ls
3 −2Ls

1+Ls
2 − 2Lr

2




(A.7)

Ã15−17 =




−Ls
2 − 2Lr

2 0 −Ls
3 0 0

Ls
2 Ls

2 − 2Lr
2 0 0 −Ls

3

Ls
3 −Ls

3 −2Ls
1+2Ls

2 − 2Lr
2 0 Ls

2

0 0 0 −2Lr
2 0

0 0 0 Ls
3 −2Ls

1+Ls
2 − 2Lr

2




, (A.8)

Ã18−21 =




−Ls
2 − 2Lr

2+2Ls
4 − Ls

6 0

Ls
6 − Ls

2 −2Ls
2 − Lr

2+2Ls
4

−3Ls
3 − Ls

7+2Ls
9+2Ls

11 −2Ls
3+2Ls

9+2Ls
11

−10Ls
2+4Ls

4 − 2Ls
6+4Ls

8+4Ls
10 −12Ls

2+4Ls
4+4Ls

8+4Ls
10

0 0

0 0

0 0

0 0

0 0

0 0

0 0
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−Ls
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Ls
2
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−2Ls
1+2Ls

2 − Lr
2+2Ls

4+
Ls
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2 − 2Ls

8 − 2Ls
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Ls
3
2 +

Ls
7
4 − Ls

9 − Ls
11 −Ls

5 Ls
3

4Ls
3+Ls

7 − 4Ls
9 − 4Ls

11 3Ls
2 − Lr

2+
Ls
6
2 − 2Ls

8 − 2Ls
10 0 0

0 0 −2Lr
1 −2Lr

3

0 0 0 −2Lr
2

0 0 0 0

0 0 0 Ls
3

0 0 0 0

0 0 0
Lr
2
2 − Lr

13
2

0 0 0 L12
2

0
Ls
7
2 − Ls

3 Ls
3 −

Ls
7
2 2Ls

2+2Lr
2 − 2Ls

6 0

0 Ls
3 −

Ls
7
2

Ls
7
2 − Ls

3 −2Ls
2 − 2Lr

2+2Ls
6 0

−Ls
3

Ls
6
2 − Lr

2 Ls
2 −

Ls
6
2 2Ls

3 − 2Ls
7+2Ls

9+2Ls
11 2Ls

11 − 2Ls
9

0 2Ls
3+Ls

7 −Ls
7 −4Ls

2 − 4Ls
6+4Ls

8+4Ls
10 4Ls

10 − 4Ls
8

2Lr
3 0 0 0 0

0 0 0 0 0

−Lr
2 0 0 0 0

0 −2Ls
1+Ls

2 − 2Lr
2 0 0 0

Ls
3 0 −2Ls

1+Ls
2 − Lr

2 0 0
Lr
13
2 − Lr

2
2 0 0 −3Lr

13 −L12

−L12
2 0 0 3L12 Lr

13 − 2Lr
2




(A.9)

Ã22 =




Ls
2 −Ls

2 0 0 0 −Ls
3 −Ls

3

0 −Ls
2 −Ls

3 0 0 0 0

0 6Ls
3 4Ls

2 − 6Ls
1 0 −2Ls

3 0 0

0 0 0 Ls
2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 Ls
3 Ls

2 − 2Ls
1 0

0 0 0 Ls
3 0 0 2Ls

2 − 2Ls
1




− 2Lr
2 17×7 , (A.10)
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−Ls1
2 − 3Lr

2+2Ls1
13 −Lt

3
4 − Lr

2
4 +

Lt
6
8 − Lt
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B Auxiliary integrals

Here we collect the results of the integrals that are already known from previous calcula-

tions, but which appear as subtopologies of the master integrals discussed in the main text

and are needed in order to make the system of differential equations complete. In terms of
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Ã28,29 =




−Lp
2 − 3Lr

2 −
Lp
6
2 +

Lp
7
2 +Lp

8 − Lp
9+Lp

10 − Lp
11

−3Lp
3 − 3Lr

2+
3Lp

6
2 − 3Lp

7
2

0

0

0

0

0

Lp
3+Lr

2 −
Lp
6
2 +

Lp
7
2 0

3Lp
2+Lr

2+
3Lp

6
2 − 3Lp

7
2 − Lp

8+Lp
9 − Lp

10+Lp
11 − 4Lp

14 −Lp
3 − Lr

2+
Lp
6
2 − Lp

7
2

0 Lp
2 − Lr

2+
Lp
6
2 − Lp

7
2 − Lp

8+Lp
9 − Lp

10+Lp
11

0 0

0 0

0 0

0 0

0 0 −Lp
2+

Lp
6
2 − Lp

7
2

−Lp
3 −

Lr
2
2 − L12

2 +
Lr
13
2 Lp

3+
Lr
2
2 + L12

2 − Lr
13
2 −3Lp

3 −
3Lp

6
2 +

3Lp
7

2 − 3L12+3Lr
13

0 −Lp
2+

Lp
8
2 − Lp

9
2 +

Lp
10
2 − Lp

11
2 0

−2Lr
2 0 0

0 −Lr
2 0

Lr
2
2 − Lr

13
2

Lr
13
2 − Lr

2
2 −3Lr

13
L12
2 −L12

2 3L12

Lp
3+Lr

2 −
Lp
6
2 +

Lp
7
2

3Lp
2+3Lr

2+
3Lp

6
2 − 3Lp

7
2 − 2Lp

8+2Lp
9+L12 − Lr

13 − 4Lp
14

0

0

0

−L12

Lr
13 − 2Lr

2




. (A.13)

B Auxiliary integrals

Here we collect the results of the integrals that are already known from previous calcula-

tions, but which appear as subtopologies of the master integrals discussed in the main text

and are needed in order to make the system of differential equations complete. In terms of

– 33 –

J
H
E
P
1
2
(
2
0
1
4
)
1
2
9

the integrals defined in figure 3, they read

M ′
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, (B.1)

M ′
2(x) = ε x I ′2(x) , M ′

6 = ε2
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)
, (B.2)
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Figure 3. Integrals required to define the auxiliary integrals in (B.1)–(B.4). The notation has been

introduced in the caption of figure 2.

C M̃18 + M̃19 to O(ε4)

Here we present the result of M̃18(r, s) + M̃19(r, s) to O(ε4). This result is needed in the

final result of the QCD amplitude, but due to its length it was relegated to this appendix.
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Figure 3. Integrals required to define the auxiliary integrals in (B.1)–(B.4). The notation has been

introduced in the caption of figure 2.
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Here we present the result of M̃18(r, s) + M̃19(r, s) to O(ε4). This result is needed in the

final result of the QCD amplitude, but due to its length it was relegated to this appendix.
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1 ,w−
5
(s) +

π2

6
Hw+

1 ,w+
5
(r) + 2Hw+

1 ,0(
√
zf )Hw+

1 ,w+
5
(r)− π2

6
Hw+

1 ,w+
5
(s)

−Hw−
1 ,w−

1
(r)Hw+

1 ,w+
5
(s)− 2Hw+

1 ,0(
√
zf )Hw+

1 ,w+
5
(s)− 2iπHw−

1
(r)Hw+

1 ,w−
4
(s)

−11

6
π2Hw+

1 ,w+
4
(r)− 2Hw+

1 ,0(
√
zf )Hw+

1 ,w+
4
(r) +

11

6
π2Hw+

1 ,w+
4
(s)

−Hw−
1 ,w−

1
(r)Hw+

1 ,w+
4
(s) + 2Hw+

1 ,0(
√
zf )Hw+

1 ,w+
4
(s) +

2

3
π2Hw+

1 ,w+
1
(r)− 2

3
π2Hw+

1 ,w+
1
(s)

+2Hw−
1 ,w−

1
(r)Hw+

1 ,w+
1
(s) + iπHw−

1
(r)Hw+

1 ,w−
3
(s) +

π2

12
Hw+

1 ,w+
3
(r)− π2

12
Hw+

1 ,w+
3
(s)
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+Hw−
1 ,w−

1
(r)Hw+

1 ,w+
3
(s) + 2iπHw−

1
(r)Hw+

1 ,w−
2
(s) + 2Hw+

1 ,w−
1
(r)Hw+

1 ,w+
2
(s)

−π2Hw−
2 ,w−

1
(s) + 2iπHw−

1
(r)Hw−

2 ,w+
1
(s)− 4iπH0,w−

1 ,w+
1
(r)

+8Hw−
1
(r)H0,w+

1 ,0

(
1

1+2
√
zf

)
− 8Hw−

1
(s)H0,w+

1 ,0

(
1

1+2
√
zf

)
− 4iπH0,w+

1 ,w−
1
(r)

−4Hw−
1
(r)H0,w+

1 ,w−
1
(1− 2

√
zf ) + 4Hw−

1
(s)H0,w+

1 ,w−
1
(1− 2

√
zf )

+4Hw−
1
(r)H0,w+

1 ,w−
1

(
1

1+2
√
zf

)
− 4Hw−

1
(s)H0,w+

1 ,w−
1

(
1

1+2
√
zf

)

+Hw−
1
(r)H0,w+

1 ,w−
1
(1− 2zf )−Hw−

1
(s)H0,w+

1 ,w−
1
(1− 2zf )

−4Hw−
1
(r)H0,w+

1 ,w+
1
(1− 2

√
zf ) + 4Hw−

1
(s)H0,w+

1 ,w+
1
(1− 2

√
zf )

+4Hw−
1
(r)H0,w+

1 ,w+
1

(
1

1+2
√
zf

)
− 4Hw−

1
(s)H0,w+

1 ,w+
1

(
1

1+2
√
zf

)

+Hw−
1
(r)H0,w+

1 ,w+
1
(1− 2zf )−Hw−

1
(s)H0,w+

1 ,w+
1
(1− 2zf ) + 4iπHw−

1 ,w−
1 ,w+

5
(r)

+4iπHw−
1 ,w−

1 ,w+
4
(r)− iπHw−

1 ,w−
1 ,w+

1
(s)− 2iπHw−

1 ,w−
1 ,w+

3
(r)− 2iπHw−

1 ,w−
5 ,w+

1
(r)

+2iπHw−
1 ,w−

5 ,w+
1
(s) + 2iπHw−

1 ,w+
5 ,w−

1
(s) + 2Hw−

1
(r)Hw−

1 ,w+
5 ,w+

1
(s)− 2iπHw−

1 ,w−
4 ,w+

1
(r)

+2iπHw−
1 ,w−

4 ,w+
1
(s) + 2iπHw−

1 ,w+
4 ,w−

1
(s) + 2Hw−

1
(r)Hw−

1 ,w+
4 ,w+

1
(s)− 2iπHw−

1 ,w+
1 ,0(s)

−iπHw−
1 ,w+

1 ,w−
1
(r)− iπHw−

1 ,w+
1 ,w−

1
(s) + 2iπHw−

1 ,w+
1 ,w−

5
(r) + 2iπHw−

1 ,w+
1 ,w−

4
(r)

−2Hw−
1
(r)Hw−

1 ,w+
1 ,w+

1
(s)− iπHw−

1 ,w+
1 ,w−

3
(r)− 2iπHw−

1 ,w+
1 ,w−

2
(r) +

1

2
iπHw−

1 ,w−
3 ,w+

1
(r)

−1

2
iπHw−

1 ,w−
3 ,w+

1
(s)− 1

2
iπHw−

1 ,w+
3 ,w−

1
(r)− 1

2
iπHw−

1 ,w+
3 ,w−

1
(s)−Hw−

1
(r)Hw−

1 ,w+
3 ,w+

1
(s)

−2iπHw−
1 ,w−

2 ,w+
1
(r)− 4iπHw+

1 ,0,w−
1
(r)− 2iπHw+

1 ,0,w−
1
(s)− 2Hw−

1
(r)Hw+

1 ,0,w+
1
(s)

−2iπHw+
1 ,w−

1 ,0(s)− 3 iπHw+
1 ,w−

1 ,w−
1
(s) + 2iπHw+

1 ,w−
1 ,w−

5
(r) + 2iπHw+

1 ,w−
1 ,w−

4
(r)

−3Hw−
1
(r)Hw+

1 ,w−
1 ,w+

1
(s)− iπHw+

1 ,w−
1 ,w−

3
(r)− 2iπHw+

1 ,w−
1 ,w−

2
(r) + 2iπHw+

1 ,w−
5 ,w−

1
(s)

+2Hw−
1
(r)Hw+

1 ,w−
5 ,w+

1
(s)− 2iπHw+

1 ,w+
5 ,w+

1
(r) + 2iπHw+

1 ,w+
5 ,w+

1
(s) + 2iπHw+

1 ,w−
4 ,w−

1
(s)

+2Hw−
1
(r)Hw+

1 ,w−
4 ,w+

1
(s)− 2iπHw+

1 ,w+
4 ,w+

1
(r) + 2iπHw+

1 ,w+
4 ,w+

1
(s)

−2Hw−
1
(s)Hw+

1 ,w+
1 ,w−

1
(r) + 2Hw−

2
(s)Hw+

1 ,w+
1 ,w−

1
(r) + iπHw+

1 ,w+
1 ,w+

1
(r)

−iπHw+
1 ,w+

1 ,w+
1
(s)− 1

2
iπHw+

1 ,w−
3 ,w−

1
(r)− 1

2
iπHw+

1 ,w−
3 ,w−

1
(s)−Hw−

1
(r)Hw+

1 ,w−
3 ,w+

1
(s)

+
1

2
iπHw+

1 ,w+
3 ,w+

1
(r)− 1

2
iπHw+

1 ,w+
3 ,w+

1
(s)− 2iπHw+

1 ,w−
2 ,w−

1
(s)− 2Hw−

1
(r)Hw+

1 ,w−
2 ,w+

1
(s)

−2iπHw−
2 ,w−

1 ,w+
1
(s)− 2iπHw−

2 ,w+
1 ,w−

1
(s)− 2Hw−

1
(r)Hw−

2 ,w+
1 ,w+

1
(s)− 6Hw−

1 ,w−
1 ,w−

1 ,w−
1
(r)

+3Hw−
1 ,w−

1 ,w−
1 ,w−

5
(r) + 3Hw−

1 ,w−
1 ,w−

1 ,w−
4
(r)− 3Hw−

1 ,w−
1 ,w−

1 ,w−
3
(r) + 2Hw−

1 ,w−
1 ,w−

5 ,w−
1
(r)

−4Hw−
1 ,w−

1 ,w+
5 ,w+

1
(r) + 2Hw−

1 ,w−
1 ,w−

4 ,w−
1
(r)− 4Hw−

1 ,w−
1 ,w+

4 ,w+
1
(r) +Hw−

1 ,w−
1 ,w+

1 ,w+
5
(r)

+Hw−
1 ,w−

1 ,w+
1 ,w+

4
(r) +Hw−

1 ,w−
1 ,w+

1 ,w+
1
(r) +Hw−

1 ,w−
1 ,w+

1 ,w+
1
(s)−Hw−

1 ,w−
1 ,w+

1 ,w+
3
(r)

−2Hw−
1 ,w−

1 ,w−
3 ,w−

1
(r) + 2Hw−

1 ,w−
1 ,w+

3 ,w+
1
(r) +Hw−

1 ,w−
5 ,w−

1 ,w−
1
(r) + 2Hw−

1 ,w−
5 ,w+

1 ,w+
1
(r)

−2Hw−
1 ,w−

5 ,w+
1 ,w+

1
(s)− 2Hw−

1 ,w+
5 ,w−

1 ,w+
1
(s)− 2Hw−

1 ,w+
5 ,w+

1 ,w−
1
(r) +Hw−

1 ,w−
4 ,w−

1 ,w−
1
(r)

+2Hw−
1 ,w−

4 ,w+
1 ,w+

1
(r)− 2Hw−

1 ,w−
4 ,w+

1 ,w+
1
(s)− 2Hw−

1 ,w+
4 ,w−

1 ,w+
1
(s)− 2Hw−

1 ,w+
4 ,w+

1 ,w−
1
(r)

+2Hw−
1 ,w+

1 ,0,w+
1
(s) +Hw−

1 ,w+
1 ,w−

1 ,w+
5
(r) +Hw−

1 ,w+
1 ,w−

1 ,w+
4
(r) + 2Hw−

1 ,w+
1 ,w−

1 ,w+
1
(r)

+Hw−
1 ,w+

1 ,w−
1 ,w+

1
(s)−Hw−

1 ,w+
1 ,w−

1 ,w+
3
(r)− 2Hw−

1 ,w+
1 ,w−

5 ,w+
1
(r) +Hw−

1 ,w+
1 ,w+

5 ,w−
1
(r)

– 36 –
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−2Hw−
1 ,w+

1 ,w−
4 ,w+

1
(r) +Hw−

1 ,w+
1 ,w+

4 ,w−
1
(r) + 2Hw−

1 ,w+
1 ,w+

1 ,w−
1
(r) +Hw−

1 ,w+
1 ,w−

3 ,w+
1
(r)

−Hw−
1 ,w+

1 ,w+
3 ,w−

1
(r) + 2Hw−

1 ,w+
1 ,w−

2 ,w+
1
(r)−Hw−

1 ,w−
3 ,w−

1 ,w−
1
(r)− 1

2
Hw−

1 ,w−
3 ,w+

1 ,w+
1
(r)

+
1

2
Hw−

1 ,w−
3 ,w+

1 ,w+
1
(s) +

1

2
Hw−

1 ,w+
3 ,w−

1 ,w+
1
(r) +

1

2
Hw−

1 ,w+
3 ,w−

1 ,w+
1
(s) +Hw−

1 ,w+
3 ,w+

1 ,w−
1
(r)

+2Hw−
1 ,w−

2 ,w+
1 ,w+

1
(r) + 2Hw+

1 ,0,w−
1 ,w+

1
(s) + 2Hw+

1 ,0,w+
1 ,w−

1
(r) + 2Hw+

1 ,w−
1 ,0,w+

1
(s)

+Hw+
1 ,w−

1 ,w−
1 ,w+

5
(r) +Hw+

1 ,w−
1 ,w−

1 ,w+
4
(r) +Hw+

1 ,w−
1 ,w−

1 ,w+
1
(r) + 3Hw+

1 ,w−
1 ,w−

1 ,w+
1
(s)

−Hw+
1 ,w−

1 ,w−
1 ,w+

3
(r)− 2Hw+

1 ,w−
1 ,w−

5 ,w+
1
(r) +Hw+

1 ,w−
1 ,w+

5 ,w−
1
(r)− 2Hw+

1 ,w−
1 ,w−

4 ,w+
1
(r)

+Hw+
1 ,w−

1 ,w+
4 ,w−

1
(r) + 3Hw+

1 ,w−
1 ,w+

1 ,w−
1
(r)− 2Hw+

1 ,w−
1 ,w+

1 ,w+
2
(r) +Hw+

1 ,w−
1 ,w−

3 ,w+
1
(r)

−Hw+
1 ,w−

1 ,w+
3 ,w−

1
(r) + 2Hw+

1 ,w−
1 ,w−

2 ,w+
1
(r)− 2Hw+

1 ,w−
5 ,w−

1 ,w+
1
(s)− 2Hw+

1 ,w−
5 ,w+

1 ,w−
1
(r)

+Hw+
1 ,w+

5 ,w−
1 ,w−

1
(r) + 2Hw+

1 ,w+
5 ,w+

1 ,w+
1
(r)− 2Hw+

1 ,w+
5 ,w+

1 ,w+
1
(s)− 2Hw+

1 ,w−
4 ,w−

1 ,w+
1
(s)

−2Hw+
1 ,w−

4 ,w+
1 ,w−

1
(r) +Hw+

1 ,w+
4 ,w−

1 ,w−
1
(r) + 2Hw+

1 ,w+
4 ,w+

1 ,w+
1
(r)− 2Hw+

1 ,w+
4 ,w+

1 ,w+
1
(s)

+2Hw+
1 ,w+

1 ,w−
1 ,w−

1
(r)− 2Hw+

1 ,w+
1 ,w−

1 ,w−
2
(r)− 4Hw+

1 ,w+
1 ,w−

1 ,w+
2
(r)−Hw+

1 ,w+
1 ,w+

1 ,w+
1
(r)

+Hw+
1 ,w+

1 ,w+
1 ,w+

1
(s)− 2Hw+

1 ,w+
1 ,w−

2 ,w−
1
(r)− 4Hw+

1 ,w+
1 ,w+

2 ,w−
1
(r) +

1

2
Hw+

1 ,w−
3 ,w−

1 ,w+
1
(r)

+
1

2
Hw+

1 ,w−
3 ,w−

1 ,w+
1
(s) +Hw+

1 ,w−
3 ,w+

1 ,w−
1
(r)−Hw+

1 ,w+
3 ,w−

1 ,w−
1
(r)− 1

2
Hw+

1 ,w+
3 ,w+

1 ,w+
1
(r)

+
1

2
Hw+

1 ,w+
3 ,w+

1 ,w+
1
(s) + 2Hw+

1 ,w−
2 ,w−

1 ,w+
1
(s)− 2Hw+

1 ,w+
2 ,w+

1 ,w−
1
(r) + 2Hw−

2 ,w−
1 ,w+

1 ,w+
1
(s)

+2Hw−
2 ,w+

1 ,w−
1 ,w+

1
(s)− 3

2
π2Hw−

1
(r) ln(2) +

3

2
π2Hw−

1
(s) ln(2)

+2iπH−1(r
2)Hw+

1
(r) ln(2)− 2iπH−1(r

2)Hw+
1
(s) ln(2)− 2iπHw−

1
(r)Hw+

1
(s) ln(2)

−8Hw−
1
(r)H0,w+

1
(1− 2

√
zf ) ln(2) + 8Hw−

1
(s)H0,w+

1
(1− 2

√
zf ) ln(2)

+8Hw−
1
(r)H0,w+

1

(
1

1+2
√
zf

)
ln(2)− 8Hw−

1
(s)H0,w+

1

(
1

1+2
√
zf

)
ln(2)

+2Hw−
1
(r)H0,w+

1
(1− 2zf ) ln(2)− 2Hw−

1
(s)H0,w+

1
(1− 2zf ) ln(2)

+2Hw−
1
(r)Hw−

1 ,w−
1
(s) ln(2)− 2Hw−

1
(r)Hw−

1 ,w−
5
(s) ln(2)− 2Hw−

1
(r)Hw−

1 ,w−
4
(s) ln(2)

+2iπHw−
1 ,w+

1
(s) ln(2) + 2Hw−

1
(r)Hw−

1 ,w−
3
(s) ln(2)− iπHw−

1 ,w+
3
(r) ln(2)

+iπHw−
1 ,w+

3
(s) ln(2) + 2iπHw+

1 ,w−
1
(r) ln(2)− 2Hw−

1
(r)Hw+

1 ,w+
5
(s) ln(2)

−2Hw−
1
(r)Hw+

1 ,w+
4
(s) ln(2)− 4Hw−

1
(s)Hw+

1 ,w+
1
(r) ln(2) + 4Hw−

2
(s)Hw+

1 ,w+
1
(r) ln(2)

+4Hw−
1
(r)Hw+

1 ,w+
1
(s) ln(2)− iπHw+

1 ,w−
3
(r) ln(2) + iπHw+

1 ,w−
3
(s) ln(2)

+2Hw−
1
(r)Hw+

1 ,w+
3
(s) ln(2) + 4Hw+

1
(r)Hw+

1 ,w+
2
(s) ln(2)− 6Hw−

1 ,w−
1 ,w−

1
(r) ln(2)

+4Hw−
1 ,w−

1 ,w−
5
(r) ln(2) + 4Hw−

1 ,w−
1 ,w−

4
(r) ln(2)− 4Hw−

1 ,w−
1 ,w−

3
(r) ln(2)

+2Hw−
1 ,w−

5 ,w−
1
(r) ln(2)− 4Hw−

1 ,w+
5 ,w+

1
(r) ln(2) + 4Hw−

1 ,w+
5 ,w+

1
(s) ln(2)

+2Hw−
1 ,w−

4 ,w−
1
(r) ln(2)− 4Hw−

1 ,w+
4 ,w+

1
(r) ln(2) + 4Hw−

1 ,w+
4 ,w+

1
(s) ln(2)

+2Hw−
1 ,w+

1 ,w+
5
(r) ln(2) + 2Hw−

1 ,w+
1 ,w+

4
(r) ln(2) + 4Hw−

1 ,w+
1 ,w+

1
(r) ln(2)

−4Hw−
1 ,w+

1 ,w+
1
(s) ln(2)− 2Hw−

1 ,w+
1 ,w+

3
(r) ln(2)− 2Hw−

1 ,w−
3 ,w−

1
(r) ln(2)

+2Hw−
1 ,w+

3 ,w+
1
(r) ln(2)− 2Hw−

1 ,w+
3 ,w+

1
(s) ln(2) + 4Hw+

1 ,0,w+
1
(r) ln(2)

−4Hw+
1 ,0,w+

1
(s) ln(2) + 2Hw+

1 ,w−
1 ,w+

5
(r) ln(2) + 2Hw+

1 ,w−
1 ,w+

4
(r) ln(2)

– 37 –
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−2Hw−
1 ,w+

1 ,w−
4 ,w+

1
(r) +Hw−

1 ,w+
1 ,w+

4 ,w−
1
(r) + 2Hw−

1 ,w+
1 ,w+

1 ,w−
1
(r) +Hw−

1 ,w+
1 ,w−

3 ,w+
1
(r)

−Hw−
1 ,w+

1 ,w+
3 ,w−

1
(r) + 2Hw−

1 ,w+
1 ,w−

2 ,w+
1
(r)−Hw−

1 ,w−
3 ,w−

1 ,w−
1
(r)− 1

2
Hw−

1 ,w−
3 ,w+

1 ,w+
1
(r)

+
1

2
Hw−

1 ,w−
3 ,w+

1 ,w+
1
(s) +

1

2
Hw−

1 ,w+
3 ,w−

1 ,w+
1
(r) +

1

2
Hw−

1 ,w+
3 ,w−

1 ,w+
1
(s) +Hw−

1 ,w+
3 ,w+

1 ,w−
1
(r)

+2Hw−
1 ,w−

2 ,w+
1 ,w+

1
(r) + 2Hw+

1 ,0,w−
1 ,w+

1
(s) + 2Hw+

1 ,0,w+
1 ,w−

1
(r) + 2Hw+

1 ,w−
1 ,0,w+

1
(s)

+Hw+
1 ,w−

1 ,w−
1 ,w+

5
(r) +Hw+

1 ,w−
1 ,w−

1 ,w+
4
(r) +Hw+

1 ,w−
1 ,w−

1 ,w+
1
(r) + 3Hw+

1 ,w−
1 ,w−

1 ,w+
1
(s)

−Hw+
1 ,w−

1 ,w−
1 ,w+

3
(r)− 2Hw+

1 ,w−
1 ,w−

5 ,w+
1
(r) +Hw+

1 ,w−
1 ,w+

5 ,w−
1
(r)− 2Hw+

1 ,w−
1 ,w−

4 ,w+
1
(r)

+Hw+
1 ,w−

1 ,w+
4 ,w−

1
(r) + 3Hw+

1 ,w−
1 ,w+

1 ,w−
1
(r)− 2Hw+

1 ,w−
1 ,w+

1 ,w+
2
(r) +Hw+

1 ,w−
1 ,w−

3 ,w+
1
(r)

−Hw+
1 ,w−

1 ,w+
3 ,w−

1
(r) + 2Hw+

1 ,w−
1 ,w−

2 ,w+
1
(r)− 2Hw+

1 ,w−
5 ,w−

1 ,w+
1
(s)− 2Hw+

1 ,w−
5 ,w+

1 ,w−
1
(r)

+Hw+
1 ,w+

5 ,w−
1 ,w−

1
(r) + 2Hw+

1 ,w+
5 ,w+

1 ,w+
1
(r)− 2Hw+

1 ,w+
5 ,w+

1 ,w+
1
(s)− 2Hw+

1 ,w−
4 ,w−

1 ,w+
1
(s)

−2Hw+
1 ,w−

4 ,w+
1 ,w−

1
(r) +Hw+

1 ,w+
4 ,w−

1 ,w−
1
(r) + 2Hw+

1 ,w+
4 ,w+

1 ,w+
1
(r)− 2Hw+

1 ,w+
4 ,w+

1 ,w+
1
(s)

+2Hw+
1 ,w+

1 ,w−
1 ,w−

1
(r)− 2Hw+

1 ,w+
1 ,w−

1 ,w−
2
(r)− 4Hw+

1 ,w+
1 ,w−

1 ,w+
2
(r)−Hw+

1 ,w+
1 ,w+

1 ,w+
1
(r)

+Hw+
1 ,w+

1 ,w+
1 ,w+

1
(s)− 2Hw+

1 ,w+
1 ,w−

2 ,w−
1
(r)− 4Hw+

1 ,w+
1 ,w+

2 ,w−
1
(r) +

1

2
Hw+

1 ,w−
3 ,w−

1 ,w+
1
(r)

+
1

2
Hw+

1 ,w−
3 ,w−

1 ,w+
1
(s) +Hw+

1 ,w−
3 ,w+

1 ,w−
1
(r)−Hw+

1 ,w+
3 ,w−

1 ,w−
1
(r)− 1

2
Hw+

1 ,w+
3 ,w+

1 ,w+
1
(r)

+
1

2
Hw+

1 ,w+
3 ,w+

1 ,w+
1
(s) + 2Hw+

1 ,w−
2 ,w−

1 ,w+
1
(s)− 2Hw+

1 ,w+
2 ,w+

1 ,w−
1
(r) + 2Hw−

2 ,w−
1 ,w+

1 ,w+
1
(s)

+2Hw−
2 ,w+

1 ,w−
1 ,w+

1
(s)− 3

2
π2Hw−

1
(r) ln(2) +

3

2
π2Hw−

1
(s) ln(2)

+2iπH−1(r
2)Hw+

1
(r) ln(2)− 2iπH−1(r

2)Hw+
1
(s) ln(2)− 2iπHw−

1
(r)Hw+

1
(s) ln(2)

−8Hw−
1
(r)H0,w+

1
(1− 2

√
zf ) ln(2) + 8Hw−

1
(s)H0,w+

1
(1− 2

√
zf ) ln(2)

+8Hw−
1
(r)H0,w+

1

(
1

1+2
√
zf

)
ln(2)− 8Hw−

1
(s)H0,w+

1

(
1

1+2
√
zf

)
ln(2)

+2Hw−
1
(r)H0,w+

1
(1− 2zf ) ln(2)− 2Hw−

1
(s)H0,w+

1
(1− 2zf ) ln(2)

+2Hw−
1
(r)Hw−

1 ,w−
1
(s) ln(2)− 2Hw−

1
(r)Hw−

1 ,w−
5
(s) ln(2)− 2Hw−

1
(r)Hw−

1 ,w−
4
(s) ln(2)

+2iπHw−
1 ,w+

1
(s) ln(2) + 2Hw−

1
(r)Hw−

1 ,w−
3
(s) ln(2)− iπHw−

1 ,w+
3
(r) ln(2)

+iπHw−
1 ,w+

3
(s) ln(2) + 2iπHw+

1 ,w−
1
(r) ln(2)− 2Hw−

1
(r)Hw+

1 ,w+
5
(s) ln(2)

−2Hw−
1
(r)Hw+

1 ,w+
4
(s) ln(2)− 4Hw−

1
(s)Hw+

1 ,w+
1
(r) ln(2) + 4Hw−

2
(s)Hw+

1 ,w+
1
(r) ln(2)

+4Hw−
1
(r)Hw+

1 ,w+
1
(s) ln(2)− iπHw+

1 ,w−
3
(r) ln(2) + iπHw+

1 ,w−
3
(s) ln(2)

+2Hw−
1
(r)Hw+

1 ,w+
3
(s) ln(2) + 4Hw+

1
(r)Hw+

1 ,w+
2
(s) ln(2)− 6Hw−

1 ,w−
1 ,w−

1
(r) ln(2)

+4Hw−
1 ,w−

1 ,w−
5
(r) ln(2) + 4Hw−

1 ,w−
1 ,w−

4
(r) ln(2)− 4Hw−

1 ,w−
1 ,w−

3
(r) ln(2)

+2Hw−
1 ,w−

5 ,w−
1
(r) ln(2)− 4Hw−

1 ,w+
5 ,w+

1
(r) ln(2) + 4Hw−

1 ,w+
5 ,w+

1
(s) ln(2)

+2Hw−
1 ,w−

4 ,w−
1
(r) ln(2)− 4Hw−

1 ,w+
4 ,w+

1
(r) ln(2) + 4Hw−

1 ,w+
4 ,w+

1
(s) ln(2)

+2Hw−
1 ,w+

1 ,w+
5
(r) ln(2) + 2Hw−

1 ,w+
1 ,w+

4
(r) ln(2) + 4Hw−

1 ,w+
1 ,w+

1
(r) ln(2)

−4Hw−
1 ,w+

1 ,w+
1
(s) ln(2)− 2Hw−

1 ,w+
1 ,w+

3
(r) ln(2)− 2Hw−

1 ,w−
3 ,w−

1
(r) ln(2)

+2Hw−
1 ,w+

3 ,w+
1
(r) ln(2)− 2Hw−

1 ,w+
3 ,w+

1
(s) ln(2) + 4Hw+

1 ,0,w+
1
(r) ln(2)

−4Hw+
1 ,0,w+

1
(s) ln(2) + 2Hw+

1 ,w−
1 ,w+

5
(r) ln(2) + 2Hw+

1 ,w−
1 ,w+

4
(r) ln(2)
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+6Hw+
1 ,w−

1 ,w+
1
(r) ln(2)− 6Hw+

1 ,w−
1 ,w+

1
(s) ln(2)− 2Hw+

1 ,w−
1 ,w+

3
(r) ln(2)

−4Hw+
1 ,w−

5 ,w+
1
(r) ln(2) + 4Hw+

1 ,w−
5 ,w+

1
(s) ln(2) + 2Hw+

1 ,w+
5 ,w−

1
(r) ln(2)

−4Hw+
1 ,w−

4 ,w+
1
(r) ln(2) + 4Hw+

1 ,w−
4 ,w+

1
(s) ln(2) + 2Hw+

1 ,w+
4 ,w−

1
(r) ln(2)

−4Hw+
1 ,w+

1 ,w−
2
(r) ln(2)− 8Hw+

1 ,w+
1 ,w+

2
(r) ln(2) + 2Hw+

1 ,w−
3 ,w+

1
(r) ln(2)

−2Hw+
1 ,w−

3 ,w+
1
(s) ln(2)− 2Hw+

1 ,w+
3 ,w−

1
(r) ln(2)− 4Hw+

1 ,w−
2 ,w+

1
(s) ln(2)

−4Hw+
1 ,w+

2 ,w+
1
(r) ln(2)− 4Hw−

2 ,w+
1 ,w+

1
(s) ln(2)− 2Hw−

1 ,w−
1
(r) ln2(2)

+2Hw−
1 ,w−

1
(s) ln2(2) + 2Hw−

1 ,w−
5
(r) ln2(2)− 2Hw−

1 ,w−
5
(s) ln2(2) + 2Hw−

1 ,w−
4
(r) ln2(2)

−2Hw−
1 ,w−

4
(s) ln2(2)− 2Hw−

1 ,w−
3
(r) ln2(2) + 2Hw−

1 ,w−
3
(s) ln2(2) + 2Hw+

1 ,w+
5
(r) ln2(2)

−2Hw+
1 ,w+

5
(s) ln2(2) + 2Hw+

1 ,w+
4
(r) ln2(2)− 2Hw+

1 ,w+
4
(s) ln2(2)− 4Hw+

1 ,w+
1
(r) ln2(2)

+4Hw+
1 ,w+

1
(s) ln2(2)− 2Hw+

1 ,w+
3
(r) ln2(2) + 2Hw+

1 ,w+
3
(s) ln2(2)−Hw−

1 ,w−
1
(r) Li2(1− zf )

+Hw−
1 ,w−

1
(s) Li2(1− zf ) +Hw−

1 ,w−
5
(r) Li2(1− zf )−Hw−

1 ,w−
5
(s) Li2(1− zf )

+Hw−
1 ,w−

4
(r) Li2(1− zf )−Hw−

1 ,w−
4
(s) Li2(1− zf )−Hw−

1 ,w−
3
(r) Li2(1− zf )

+Hw−
1 ,w−

3
(s) Li2(1− zf ) +Hw+

1 ,w+
5
(r) Li2(1− zf )−Hw+

1 ,w+
5
(s) Li2(1− zf )

+Hw+
1 ,w+

4
(r) Li2(1− zf )−Hw+

1 ,w+
4
(s) Li2(1− zf ) +Hw+

1 ,w+
1
(r) Li2(1− zf )

−Hw+
1 ,w+

1
(s) Li2(1− zf )−Hw+

1 ,w+
3
(r) Li2(1− zf ) +Hw+

1 ,w+
3
(s) Li2(1− zf )

+7Hw−
1
(r) ζ3 − 7Hw−

1
(s) ζ3 . (C.1)
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1. Introduction

Non-leptonic exclusive decays of B mesons play a crucial role 
in studying the CKM mechanism of quark flavour mixing and in 
quantifying the phenomenon of CP violation. Direct CP violation is 
related to the rate difference of B̄ → f decay and its CP-conjugate 
and arises if the decay amplitude is composed of at least two 
partial amplitudes with different re-scattering (“strong”) phases, 
which are multiplied by different CKM matrix elements. Very of-
ten useful information on the CKM parameters including the CP-
violating phase can be obtained from combining different decay 
modes, whose partial amplitudes are related by the approximate 
flavour symmetries of the strong interaction [1], which are then 
determined from data.

The direct computation of the partial amplitudes is a com-
plicated strong interaction problem, which can, however, be ad-
dressed in the heavy-quark limit. The QCD factorization approach 
[2–4] employs soft-collinear factorization in this limit to express 
the hadronic matrix elements in terms of form factors and convo-
lutions of perturbative objects (hard-scattering kernels) with non-
perturbative light-cone distribution amplitudes (LCDAs). At leading 
order in �/mb ,
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430079, PR China.
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�M1M2|Q i |B̄� = im2
B

{
f BM1+ (0)

1∫

0

du T I
i (u) fM2φM2(u)

+ (M1 ↔ M2)

+
∞∫

0

dω

1∫

0

dudv T II
i (ω, v,u) f̂ BφB(ω)

× fM1φM1(v) fM2φM2(u)

}
, (1)

where Q i is a generic operator from the effective weak Hamilto-
nian. At this order the re-scattering phases are generated at the 
scale mb only, and reside in the loop corrections to the hard-
scattering kernels. Beyond the leading order factorization does not 
hold, and re-scattering occurs at all scales. The leading contribu-
tions to the strong phases are therefore of order αs(mb) or/and 
�/mb . It is of paramount importance for the predictivity of the ap-
proach for the direct CP asymmetries to know whether the short-
distance or long-distance contribution dominates in practice, since 
apart from being parametrically small, both could be numerically 
of similar size.

The short-distance contribution to the direct CP asymmetries is 
fully known only to the first non-vanishing order (that is, O(αs)) 
through the one-loop computations of the vertex kernels T I

i per-
formed long ago [2,4,5]. A reliable result presumably requires 
the next-to-next-to-leading order O(α2

s ) hard-scattering kernels, at 
least their imaginary parts. For the spectator-scattering kernels T II

i
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SCOAP3.



96

96

G. Bell et al. / Physics Letters B 750 (2015) 348–355 349

this task is already completed, both for the tree [6–8] and penguin 
[9,10] amplitudes, but for the so-called form factor term(s) in the 
first two lines of (1) an important piece is still missing, which is 
the focus of this Letter.

We recall that due to CKM unitarity, the amplitude for a B̄ de-
cay governed by the b → D (D = d, s) transition can always be 
written in the form

A(B̄ → f ) = λ
(D)
u [T + . . .] + λ

(D)
c [Pc + . . .], (2)

where λ(D)
p = V ∗

pD V pb . It is generic that the first CKM structure 
is dominated by the colour-allowed or colour-suppressed topolog-
ical tree amplitude, both denoted by T here, corresponding to the 
flavour quantum numbers of a b → uūD transition, while the sec-
ond is dominated by the topological QCD penguin amplitude of the 
b → ∑

q=u,d,s qq̄D transition. The first is typically larger than the 
second for D = d and vice-versa for the D = s case, which there-
fore refers to the penguin-dominated decays such as B̄ → π K and 
related. In the notation of [5,9], Pc corresponds to the quantity 
αc
4(M1M2).1

The vertex kernels T I
i have been computed at the two-loop 

O(α2
s ) order only for the topological tree amplitudes T [11–13]. 

However, direct CP asymmetries can only be non-zero due to the 
interference of the two terms in (2), hence the penguin amplitude 
Pc is also needed. Only the one-loop O(α2

s ) contribution from the 
chromomagnetic dipole operator Q 8g to Pc has been considered 
in the past [14], while the dominant, genuine two-loop contribu-
tions remain to be computed. This calculation is technically very 
involved since it requires the computation of massive two-loop 
penguin diagrams – a genuine two-loop, two-scale problem. One 
step towards this goal was recently achieved in [15], where ana-
lytic results of all occurring master integrals were derived.

At this point it is important to note that the topological tree 
and penguin amplitudes are not in one-to-one correspondence 
with the tree (or current–current) operators Q p

1,2 and QCD penguin 
operators Q 3−6 of the weak effective Hamiltonian. By contracting 
the pp̄ fields of the operators Q p

1,2 (see (5) below), they contribute 
to the QCD penguin amplitude starting from the one-loop order. 
Since these “penguin contractions” of the current–current opera-
tors come with the large short-distance coefficients C1,2, we may 
argue that they constitute the largest contribution to the penguin 
amplitude at any given loop order.2 At next-to-leading order we find 
for the penguin contractions (including the chromomagnetic dipole 
operator Q 8g )

au4(π K̄ )|NLO = (−0.0087 − 0.0172i)|Q1,2

+ (0.0042+ 0.0041i)|Q3−6
+ 0.0083|Q8g

,

ac4(π K̄ )|NLO = (−0.0131− 0.0102i)|Q1,2

+ (0.0042+ 0.0041i)|Q3−6
+ 0.0083|Q8g

, (3)

where we separated the contributions from the current–current 
and the other operators. While there is a cancellation for the 
real part, the imaginary part from Q p

1,2 is clearly dominant. If we 
add the vertex contractions at leading (LO) and next-to-leading 
order (NLO) and consider the entire form factor contribution 

1 αu
4 (M1M2) refers to a generically sub-leading penguin contribution to the term 

multiplied by the CKM factor λ
(D)
u . We also note that αp

4 (M1M2) consists of a 
leading-power term ap

4 and a power-suppressed term ap
6 [5]. The calculation re-

ported here concerns the leading-power contribution ap
4 .

2 Since the contribution from Q p
1,2 alone is not renormalization-group invariant, 

this statement cannot be true in arbitrary schemes nor at arbitrary renormalization 
scales. What we mean is that the statement holds in the conventional MS scheme 
and with a reasonable choice O(mb) of scale.

to ap
4 (M1M2) at NLO, the second term changes to (−0.0266 +

0.0032i)|Q3−6
in both expressions, and the imaginary part from 

Q p
1,2 is still by far dominant. Thus, at NLO, the short-distance di-

rect CP asymmetries are mainly determined by the one-loop pen-
guin contractions of the current–current operators. It is reasonable 
to assume that the insertion of Q u,c

1,2 at two loops also captures the 
bulk of the yet unknown NNLO form factor contribution T I

i to the 
penguin amplitudes au,c

4 . In this Letter we report the result of this 
computation together with a few phenomenological implications. 
We shall provide more technical details together with the remain-
ing contributions from the QCD penguin operators Q 3−6, which 
require additional work on infrared subtractions not present for 
Q p

1,2, in a future publication.

2. Outline of the calculation

The effective weak Hamiltonian for b → D transitions (D = d, s) 
is given by

Heff = 4GF√
2

∑
p=u,c

V ∗
pD V pb

(
C1Q

p
1 + C2Q

p
2 + . . .

)
+ h.c.. (4)

Here and in the following we give explicitly only the definitions 
pertinent to the current–current operators relevant to our calcula-
tion. We adopt the Chetyrkin–Misiak–Münz (CMM) operator basis 
[16], where the current–current operators are defined as

Q p
1 = (p̄Lγ

μT AbL) (D̄ LγμT A pL),

Q p
2 = (p̄Lγ

μbL) (D̄ LγμpL), (5)

in terms of left-chiral quark fields qL = 1
2 (1 − γ5)q. In dimen-

sional regularization the operator basis has to be supplemented by 
evanescent (vanishing in D = 4 dimensions) operators, for which 
we adopt the convention of [17].

At the two-loop level about 70 diagrams contribute to the QCD 
penguin amplitude, but only a subset of two dozens (shown in 
Fig. 1) are non-vanishing for the insertion of the current–current 
operators Q p

1,2. The quark in the fermion loop can either be mass-
less (for p = u) or massive (for p = c). In the massless case the 
problem involves one non-trivial scale, the momentum fraction 
ū = 1 − u of the anti-quark in meson M2, and the structure is 
similar to the NNLO calculation of the tree amplitudes [11–13]. 
In the massive case, however, we are dealing with a genuine two-
loop, two-scale problem since the hard-scattering kernels depend 
in addition on the mass ratio sc =m2

c /m
2
b . As we have already elab-

orated extensively on the kinematics in [15], we shall not repeat 
those formulae here.

The calculation is performed in dimensional regularization with 
D = 4 −2� , where ultraviolet (UV) and infrared (soft and collinear) 
divergences manifest themselves as poles in � . The CMM basis en-
sures that the NDR scheme with a fully anti-commuting γ5 can 
be adopted. The amplitude of the diagrams is then computed us-
ing standard multi-loop techniques. After a Passarino–Veltman [18]
decomposition of the tensor integrals, the scalar integrals are re-
duced to a small set of master integrals by means of integration-
by-parts techniques [19,20] and the Laporta algorithm [21,22]. To 
this end, we use the program AIR [23] as well as an in-house rou-
tine.

For the massless up-type operator insertions, the diagrams can 
be expressed in terms of the master integrals that appeared in 
our former calculations [11–13]. For the massive charm-type in-
sertions, on the other hand, we find 29 new master integrals. The 
computation of the master integrals constitutes the main technical 
challenge of the calculation. Analytic results for all master inte-
grals have recently been derived in [15], based on a differential 



97

97

G. Bell et al. / Physics Letters B 750 (2015) 348–355 349

this task is already completed, both for the tree [6–8] and penguin 
[9,10] amplitudes, but for the so-called form factor term(s) in the 
first two lines of (1) an important piece is still missing, which is 
the focus of this Letter.

We recall that due to CKM unitarity, the amplitude for a B̄ de-
cay governed by the b → D (D = d, s) transition can always be 
written in the form

A(B̄ → f ) = λ
(D)
u [T + . . .] + λ

(D)
c [Pc + . . .], (2)

where λ(D)
p = V ∗

pD V pb . It is generic that the first CKM structure 
is dominated by the colour-allowed or colour-suppressed topolog-
ical tree amplitude, both denoted by T here, corresponding to the 
flavour quantum numbers of a b → uūD transition, while the sec-
ond is dominated by the topological QCD penguin amplitude of the 
b → ∑

q=u,d,s qq̄D transition. The first is typically larger than the 
second for D = d and vice-versa for the D = s case, which there-
fore refers to the penguin-dominated decays such as B̄ → π K and 
related. In the notation of [5,9], Pc corresponds to the quantity 
αc
4(M1M2).1

The vertex kernels T I
i have been computed at the two-loop 

O(α2
s ) order only for the topological tree amplitudes T [11–13]. 

However, direct CP asymmetries can only be non-zero due to the 
interference of the two terms in (2), hence the penguin amplitude 
Pc is also needed. Only the one-loop O(α2

s ) contribution from the 
chromomagnetic dipole operator Q 8g to Pc has been considered 
in the past [14], while the dominant, genuine two-loop contribu-
tions remain to be computed. This calculation is technically very 
involved since it requires the computation of massive two-loop 
penguin diagrams – a genuine two-loop, two-scale problem. One 
step towards this goal was recently achieved in [15], where ana-
lytic results of all occurring master integrals were derived.

At this point it is important to note that the topological tree 
and penguin amplitudes are not in one-to-one correspondence 
with the tree (or current–current) operators Q p

1,2 and QCD penguin 
operators Q 3−6 of the weak effective Hamiltonian. By contracting 
the pp̄ fields of the operators Q p

1,2 (see (5) below), they contribute 
to the QCD penguin amplitude starting from the one-loop order. 
Since these “penguin contractions” of the current–current opera-
tors come with the large short-distance coefficients C1,2, we may 
argue that they constitute the largest contribution to the penguin 
amplitude at any given loop order.2 At next-to-leading order we find 
for the penguin contractions (including the chromomagnetic dipole 
operator Q 8g )

au4(π K̄ )|NLO = (−0.0087 − 0.0172i)|Q1,2

+ (0.0042+ 0.0041i)|Q3−6
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,

ac4(π K̄ )|NLO = (−0.0131− 0.0102i)|Q1,2

+ (0.0042+ 0.0041i)|Q3−6
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, (3)

where we separated the contributions from the current–current 
and the other operators. While there is a cancellation for the 
real part, the imaginary part from Q p

1,2 is clearly dominant. If we 
add the vertex contractions at leading (LO) and next-to-leading 
order (NLO) and consider the entire form factor contribution 

1 αu
4 (M1M2) refers to a generically sub-leading penguin contribution to the term 

multiplied by the CKM factor λ
(D)
u . We also note that αp

4 (M1M2) consists of a 
leading-power term ap

4 and a power-suppressed term ap
6 [5]. The calculation re-

ported here concerns the leading-power contribution ap
4 .

2 Since the contribution from Q p
1,2 alone is not renormalization-group invariant, 

this statement cannot be true in arbitrary schemes nor at arbitrary renormalization 
scales. What we mean is that the statement holds in the conventional MS scheme 
and with a reasonable choice O(mb) of scale.
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4 (M1M2) at NLO, the second term changes to (−0.0266 +
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in both expressions, and the imaginary part from 
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1,2 is still by far dominant. Thus, at NLO, the short-distance di-

rect CP asymmetries are mainly determined by the one-loop pen-
guin contractions of the current–current operators. It is reasonable 
to assume that the insertion of Q u,c

1,2 at two loops also captures the 
bulk of the yet unknown NNLO form factor contribution T I

i to the 
penguin amplitudes au,c

4 . In this Letter we report the result of this 
computation together with a few phenomenological implications. 
We shall provide more technical details together with the remain-
ing contributions from the QCD penguin operators Q 3−6, which 
require additional work on infrared subtractions not present for 
Q p
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2. Outline of the calculation

The effective weak Hamiltonian for b → D transitions (D = d, s) 
is given by
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in terms of left-chiral quark fields qL = 1
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sional regularization the operator basis has to be supplemented by 
evanescent (vanishing in D = 4 dimensions) operators, for which 
we adopt the convention of [17].

At the two-loop level about 70 diagrams contribute to the QCD 
penguin amplitude, but only a subset of two dozens (shown in 
Fig. 1) are non-vanishing for the insertion of the current–current 
operators Q p

1,2. The quark in the fermion loop can either be mass-
less (for p = u) or massive (for p = c). In the massless case the 
problem involves one non-trivial scale, the momentum fraction 
ū = 1 − u of the anti-quark in meson M2, and the structure is 
similar to the NNLO calculation of the tree amplitudes [11–13]. 
In the massive case, however, we are dealing with a genuine two-
loop, two-scale problem since the hard-scattering kernels depend 
in addition on the mass ratio sc =m2
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orated extensively on the kinematics in [15], we shall not repeat 
those formulae here.

The calculation is performed in dimensional regularization with 
D = 4 −2� , where ultraviolet (UV) and infrared (soft and collinear) 
divergences manifest themselves as poles in � . The CMM basis en-
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decomposition of the tensor integrals, the scalar integrals are re-
duced to a small set of master integrals by means of integration-
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sertions, on the other hand, we find 29 new master integrals. The 
computation of the master integrals constitutes the main technical 
challenge of the calculation. Analytic results for all master inte-
grals have recently been derived in [15], based on a differential 

350 G. Bell et al. / Physics Letters B 750 (2015) 348–355

Fig. 1. Two-loop penguin diagrams that contribute to the insertion of the operators Q u,c
1,2 (black square). The gray filled circle denotes the one-loop gluon self-energy.

equation approach in a canonical basis [24]. The canonical basis, 
together with suitably chosen kinematic variables, also catalyses 
the convolution of the hard-scattering kernels with the LCDA.

After the computation of the bare QCD two-loop amplitude, 
the hard-scattering kernels are extracted from a matching calcu-
lation onto soft-collinear effective theory (SCET). The main con-
ceptual challenge in this context is the consistent treatment of 
evanescent and Fierz-equivalent operators in SCET, for which we 
follow the method employed in [13]. The SCET operators have the 
flavour structure 

∑
q(χ̄Dχq)(ξ̄qhv) where χ and ξ denote collinear 

light-quark fields moving in opposite directions. The two-loop dia-
grams relevant to the penguin amplitude ap

4 are all of the “wrong-
insertion” type (see [13]) and hence lead to operators where the 
fermion indices are contracted in the form 

∑
q(ξ̄qχq)(χ̄Dhv). In 

Fig. 1 the (ξ̄qχq) fermion lines correspond to the solid line on the 
right side of the diagram. In the following we omit the sum over q
and the flavour labels on the fields. In the CMM basis the fermion 
line that corresponds to (ξ̄χ) carries no γ5 matrix. This suggests 
that we use the following basis for the SCET operators:

O 1 = χ̄
/n−
2

(1 − γ5)χ ξ̄ /n+(1− γ5)hv ,

Õn = ξ̄ γ α
⊥γ

μ1
⊥ γ

μ2
⊥ . . . γ

μ2n−2
⊥ χ

× χ̄ (1 + γ5)γ⊥αγ⊥μ2n−2γ⊥μ2n−3 . . . γ⊥μ1hv , (6)

where we need n up to 2 (strings with three γ matrices in each 
bilinear). The operator O 1 is the only physical SCET operator. It is 
the same as in [13], whereas the Õn differ by the absence of the 
1 − γ5 factor to the left of χ . The operators Õn are evanescent for 
n > 1. Õ 1 is Fierz-equivalent to O 1/2 in four dimensions, so we 
add Õ 1 − O 1/2 as another evanescent operator. We also recall that 
the SCET operators are non-local on the light-cone [13].

After operator matching the hard-scattering kernels follow from 
the bare QCD amplitudes plus subtraction terms from UV coun-
terterms of the operators Q i and the SCET operators. The master 
formulae at LO, NLO, and NNLO read, respectively,

T̃ (0)
i = Ã(0)

i1 , (7)

T̃ (1)
i = Ã(1)nf

i1 + Z (1)
i j Ã(0)

j1 + . . . , (8)

T̃ (2)
i = Ã(2)nf

i1 + Z (1)
i j Ã(1)

j1 + Z (2)
i j Ã(0)

j1 + Z (1)
α Ã(1)nf

i1

+ (−i) δm(1) Ã�(1)nf
i1 + Z (1)

ext

[
Ã(1)nf
i1 + Z (1)

i j Ã(0)
j1

]

− T̃ (1)
i

[
C (1)
FF + Ỹ (1)

11

] + . . . . (9)

The symbols have the same meaning as in Eq. (29) of [13]. The el-
lipses denote further terms that do not contribute to the kernels 
i = 1, 2 of the current–current operators. The matrices Z (1)

i j and 
Z (2)
i j contain the UV counterterms from operator mixing. Compared 

to the calculation of the tree amplitudes, they have to be extended 
by the mixing with the penguin operators including the correspon-
dent evanescent operators [17]. This implies, in particular, that the 
one-loop amplitudes Ã(1)

j1 must be computed including the O(�)

terms for all operators Q j , which mix with the current–current 
operators. Finally, one has to convolute the hard-scattering kernels 
with the LCDA, for which we adopt the conventional Gegenbauer 
expansion.

3. The topological QCD penguin amplitude

In this section we give the numerical results of the penguin 
amplitudes au4 and ac4 and discuss the size and scale dependence 
of the new contribution. At LO, the penguin amplitude coefficients 
are given in the CMM basis by (Nc = 3, CF = 4/3)

ap
4,LO = 1

Nc
[C3 + CF C4 + 16(C5 + CF C6)] . (10)

They are identical for p = u, c and independent of the LCDA. At 
NLO we have (L = lnμ2/m2

b , sp =m2
p/m

2
b , ū = 1 − u)

ap
4,NLO| C1,2 = αs

4π

CF

Nc

(
C2 − C1

2Nc

)

×
1∫

0

du

[
−2

3
L + 2

3
− G(sp − i�, ū)

]
φM2(u), (11)

where we show only the terms from the current–current operators 
to illustrate the structure of the result. Here

G(s,u) = 2(12s + 5u − 3u ln s)

9u
− 2ξ(2s + u)

3u
ln

ξ + 1

ξ − 1
(12)

is the one-loop penguin function with ξ = √
1− 4s/u. In practice, 

one then inserts the Gegenbauer expansion of φM2 (u) truncated 
at the second order to perform the integral. The result is finally 
expressed in terms of Wilson coefficients, quark masses and the 
Gegenbauer moments aM2

1,2.
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Fig. 2. The LO, NLO and NNLO values of au4(π K̄ ) and ac4(π K̄ ) in the complex plane. 
The NNLO point includes a theoretical error estimate.

At NNLO the explicit expressions are involved, and we postpone 
the details to a future publication. Our final numerical predictions 
for the leading QCD penguin amplitudes au,c

4 (π K̄ ) are given as (for 
input parameters, see Section 4):

au4(π K̄ )/10−2 = −2.87− [0.09+ 0.09i]V1

+ [0.49− 1.32i]P1 − [0.32 + 0.71i]P2
+

[ rsp
0.434

]{
[0.13]LO + [0.14+ 0.12i]HV

− [0.01 − 0.05i]HP + [0.07]tw3

}

= (−2.46+0.49
−0.24) + (−1.94+0.32

−0.20)i , (13)

ac4(π K̄ )/10−2 = −2.87− [0.09+ 0.09i]V1

+ [0.05 − 0.62i]P1 − [0.77+ 0.50i]P2
+

[ rsp
0.434

]{
[0.13]LO + [0.14+ 0.12i]HV

+ [0.01 + 0.03i]HP + [0.07]tw3

}

= (−3.34+0.43
−0.27) + (−1.05+0.45

−0.36)i . (14)

In both equations the third and fourth lines represent the spectator-
scattering term, which for rsp = 0.434 makes only a small contri-
bution to ap

4 . In the respective first and second lines, the number 
without brackets is the LO contribution, which has no imaginary 
part, the following two numbers are the vertex and penguin NLO 
terms, and the new two-loop NNLO contribution from the current–
current operators Q p

1,2 is the number labelled P2. We observe that 
the new correction is rather large. It amounts approximately to 
40% (15%) of the imaginary (real) part of au4(π K̄ ), and 50% (25%) 
in the case of ac4(π K̄ ). Graphical representations of ap

4 (π K̄ ) are 
shown in Fig. 2 at LO, NLO and NNLO, where the NNLO point in-
cludes the theoretical error estimate.3 The larger uncertainty of 
the imaginary part of ac4(π K̄ ) is a consequence of the sensitivity 

3 The LO and NLO numbers here as in the subsequent figure are not the same 
as (13), (14) truncated to LO and NLO, because they employ Wilson coefficients Ci

at LO and NLO, respectively. Moreover, consistent with previous LO and NLO calcu-
lations, they are computed in the operator basis as defined in [25]. On the other 
hand, in (13), (14) NNLO Wilson coefficients in the CMM basis are used throughout.

to the charm-quark (pole) mass, for which we adopt the conserva-
tive range mc = 1.3 ± 0.2 GeV.

The values (13), (14) depend on the renormalization scale due 
to the truncation of the perturbative expansion and on hadronic 
parameters. The dependence on the renormalization scale μ may 
be considered as a measure of the accuracy of the approximation 
at a given order in perturbation theory. This is shown in Fig. 3
for the form factor term contribution to ap

4 (π K̄ ) up to NNLO. We 
observe a considerable stabilization of the scale dependence for 
the real part, but less for the imaginary part. This is explained by 
the fact that the imaginary part vanishes at LO. Hence only the 
first correction is now available and is, moreover, large.

4. Phenomenology – direct CP asymmetries

We now consider the new contribution to ap
4 in the context 

of the full QCD penguin amplitude and provide first results for 
some direct CP asymmetries. We defer the discussion of branching 
fractions to the more complete treatment including the two-loop 
matrix elements of the penguin operators Q 3−6.

We recall that in the QCD factorization approach the full QCD 
penguin amplitude consists of the parameters ap

4 , a
p
6 , and the pen-

guin annihilation amplitude β p
3 in the combination [5]

α̂
p
4 (M1M2) = ap

4 (M1M2) ± rM2
χ ap

6 (M1M2) + β
p
3 (M1M2), (15)

where the plus (minus) sign applies to the decays where M1 is a 
pseudoscalar (vector) meson. The first term, ap

4 (M1M2), is the only 
leading-power contribution. Its real part is of order −0.03. The an-
nihilation term is 1/mb suppressed and cannot be calculated in the 
factorization framework. Estimates based on the model defined in 
[4] suggest that its modulus is also of order 0.03. While the mag-
nitude of these two terms is largely independent of the spin of 
the final state mesons, the contribution from the power-suppressed 
scalar penguin amplitude rM2

χ ap
6 (M1M2) is very small when M2 is 

a vector meson, but larger than the leading-power amplitude for 
pseudoscalar M2. It interferes constructively for the PP final state, 
and destructively for VP. It follows from this brief discussion that 
the impact of a correction to ap

4 is always diluted in the full pen-
guin amplitude. When M2 = V , the computation of ap

4 ascertains 
the short-distance contribution to the amplitude, and hence the 
direct CP asymmetry, but there is an uncertain annihilation con-
tribution of similar size. When M2 = P , there is another NNLO 
short-distance contribution from ap

6 , which is difficult though not 
impossible to calculate, since it is power-suppressed. These fea-
tures will be clearly seen in the analysis below.

In the following we adopt the same values for the Standard 
Model, meson and form factor parameters as in Table 1 of [13]
with the exception of |Vub/Vcb| = 0.085 ± 0.015, τBd = 1.52 ps, 
ms(2 GeV) = (90 ± 10) MeV, and f Bd = (190 ± 10) MeV. The decay 
constants, Gegenbauer moments and form factors involving kaons 
coincide with [9], those involving K ∗ mesons with [5], except for 
ABK∗
0 (0) = 0.39 ± 0.06. We note that the B-meson LCDA parame-

ter λB is not important here, since the leading spectator-scattering 
contribution to the QCD penguin amplitude is colour-suppressed.

In Fig. 4 we show the QCD penguin amplitude α̂c
4(M1M2) nor-

malized to the sum of colour-allowed and colour-suppressed tree 
amplitude α1(ππ) + α2(ππ),4 as was shown before in [5,9], but 
now includes the NNLO computation for numerator and denomi-
nator. The NNLO result is represented by the dark point with error 

4 For M1M2 = π K̄ , π K̄ ∗ . For M1M2 = ρ K̄ , ρ K̄ ∗ we use the ρρ final state in-
stead. Also, for ρ K̄ ∗ and ρρ , only the longitudinal polarization amplitude is consid-
ered in the following.
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Fig. 2. The LO, NLO and NNLO values of au4(π K̄ ) and ac4(π K̄ ) in the complex plane. 
The NNLO point includes a theoretical error estimate.
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for the leading QCD penguin amplitudes au,c
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+ [0.49− 1.32i]P1 − [0.32 + 0.71i]P2
+

[ rsp
0.434

]{
[0.13]LO + [0.14+ 0.12i]HV

− [0.01 − 0.05i]HP + [0.07]tw3

}

= (−2.46+0.49
−0.24) + (−1.94+0.32

−0.20)i , (13)

ac4(π K̄ )/10−2 = −2.87− [0.09+ 0.09i]V1
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[ rsp
0.434
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[0.13]LO + [0.14+ 0.12i]HV

+ [0.01 + 0.03i]HP + [0.07]tw3

}

= (−3.34+0.43
−0.27) + (−1.05+0.45

−0.36)i . (14)
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without brackets is the LO contribution, which has no imaginary 
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4 (π K̄ ) are 
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as (13), (14) truncated to LO and NLO, because they employ Wilson coefficients Ci
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lations, they are computed in the operator basis as defined in [25]. On the other 
hand, in (13), (14) NNLO Wilson coefficients in the CMM basis are used throughout.
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impossible to calculate, since it is power-suppressed. These fea-
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with the exception of |Vub/Vcb| = 0.085 ± 0.015, τBd = 1.52 ps, 
ms(2 GeV) = (90 ± 10) MeV, and f Bd = (190 ± 10) MeV. The decay 
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coincide with [9], those involving K ∗ mesons with [5], except for 
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0 (0) = 0.39 ± 0.06. We note that the B-meson LCDA parame-

ter λB is not important here, since the leading spectator-scattering 
contribution to the QCD penguin amplitude is colour-suppressed.

In Fig. 4 we show the QCD penguin amplitude α̂c
4(M1M2) nor-

malized to the sum of colour-allowed and colour-suppressed tree 
amplitude α1(ππ) + α2(ππ),4 as was shown before in [5,9], but 
now includes the NNLO computation for numerator and denomi-
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Fig. 3. The dependence of the leading QCD penguin amplitudes ap
4 (π K̄ ) on the hard renormalization scale μ (form factor term only). Dashed, dashed–dotted and solid lines 

represent LO, NLO, and NNLO, respectively.

bars and corresponds to setting �A = 0 in the annihilation model, 
which implies a small value of βc

3. The nearly circular contours 
around this point show the variation of the theoretical prediction 
when the phase of the annihilation model is varied from 0 to 2π
for fixed �A = 1, 2, 3 (inner to outer circles). The radius of the cir-
cle for �A = 1 leads to the estimate |βc

3| ≈ 0.03 mentioned above. 
The LO and NLO results are marked by diamonds without error 
bars. Despite the sizable NNLO correction to ac4 as shown in Fig. 2, 
the difference between NNLO and NLO is small. This is a conse-
quence of the “dilution” discussed above and a partial cancellation 
in the ratio of amplitudes.

The theoretical prediction can be compared to data, since the 
amplitude ratio can be related to CP-averaged decay rates � and 
direct CP asymmetries. We discuss this for the PP case, from which 
the others can be inferred by obvious replacements. First, to very 
good approximation [5]
∣∣∣∣∣

α̂c
4(π K̄ )

α1(ππ) + α2(ππ)

∣∣∣∣∣ =
∣∣∣∣
Vub

Vcb

∣∣∣∣
fπ
f K

[
�π− K̄ 0

2�π−π0

]1/2

, (16)

which determines the gray rings around the origin. The darker 
rings are due to the experimental errors in the branching frac-
tions and the lighter ones include also the uncertainty of |Vub/Vcb|
(added linearly). To obtain the wedges we define ψ to be the phase 
of the amplitude ratio shown in the figure, and

R = α1(π K̄ ) + α̂u
4 (π K̄ )

α1(ππ) + α2(ππ)
. (17)

We then find

− sinψ + ImR
ReR

cosψ

= 1

2 sinγ ReR

∣∣∣∣
Vcs

Vus

∣∣∣∣
fπ
f K

�π+K−√
2�π−π0�π− K̄ 0

ACP(π
+K−) . (18)

In previous discussions [5,9] the experimental error on the observ-
ables on the right-hand side and the error on γ combined was 
large, so that it was justified to assume that R is real and to ne-
glect the theoretical uncertainty on ReR, which mainly stems from 
the colour-suppressed tree amplitude α2(ππ). This is no longer 
the case. The outer wedge now includes the theoretical uncertainty 
on R and γ , which is added linearly to the purely experimental 
uncertainties (inner wedge). The middle wedge includes the un-
certainty from γ only. Note that (18) has two solutions as shown 
in the figure, but the wedge that does not match the theoretical 
prediction is excluded by �π+K−/�π− K̄ 0 < 1.

Since the NNLO correction to the amplitude ratio turned out to 
be small, we can reaffirm the conclusions from [9] in the light of 
significantly improved data. The different magnitude of the PP pen-
guin amplitude vs. PV , VP and VV is clearly reflected in the data as 
predicted. There is reasonable quantitative agreement as indicated 
by the error bars and the small onion-shaped regions correspond-
ing to �A = 1. An annihilation contribution of 0.02 to 0.03 seems 
to be required, except for the longitudinal VV final states. The red 
square in the first three plots of Fig. 4 corresponds to the the-
oretical prediction with �A = 1 and the phase φA = −55◦ (PP), 
φA = −45◦ (PV), φA = −50◦ (VP) (see [4] for the definition of these 
quantities), which is similar to the favoured parameter set S4 of 
[5]. Only the CP asymmetry of the π K final state now appears to 
require a value larger than �A = 1 for a perfect fit. More general 
parametrizations of the power corrections with a non-universal 
value for ρA can in principle be adopted, at the price of losing 
predictive power.

Moving to the observables themselves, we show in Table 1 the 
theoretical predictions for direct CP asymmetries, defined as the 
rate asymmetry between B̄ and B decays, together with the world 
average of experimental data (last column), compiled from HFAG 
[26]. We focus on the penguin-dominated b → s transitions of non-
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Fig. 4. The QCD penguin amplitude α̂c
4(M1M2) for the PP = π K final state and its PV , VP, and VV relatives. The VV case refers to the longitudinal polarization amplitude 

only. Shown are the theoretical predictions for the ratios α̂c
4(M1M2)/(α1(ππ) + α2(ππ)) (ρρ instead of ππ in the lower row) and a comparison of extractions of the 

modulus (rings) and phase (wedges) from data. Note there is no data for the CP asymmetry in the rate of the longitudinally polarized ρ+K ∗− final state. See text for further 
explanations. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

strange B mesons to π K final states and their PV and VP relatives. 
We also show the CP asymmetry difference

δ(π K̄ ) = ACP(π
0K−) − ACP(π

+K−) (19)

and the asymmetry “sum rule”

�(π K̄ ) = ACP(π
+K−) + �π− K̄ 0

�π+K−
ACP(π

− K̄ 0)

− 2�π0K−

�π+K−
ACP(π

0K−) − 2�π0 K̄ 0

�π+K−
ACP(π

0 K̄ 0) . (20)

The latter quantity is expected to be small [27], since the lead-
ing CP-violating interference of QCD penguin and tree ampli-
tudes cancels out in the sum. In order to focus on the effect of 
the new NNLO correction on the perturbatively calculable short-
distance part of the CP asymmetry, the columns labelled “NLO” and 
“NNLO” give the respective results, when the long-distance, power-
suppressed terms are set to zero. This means that we set β p

3 to 

zero, as well as power-suppressed spectator-scattering terms. How-
ever, we keep the short-distance dominated, but power-suppressed 
scalar penguin contributions. The column labelled “NNLO+LD” 
adds the previously neglected terms back. The main effect is from 
weak annihilation, for which we adopt the S4-like scenario (S �

4) 
marked by the red square in Fig. 4.

Focusing first on the “NLO” and “NNLO” results, we note that 
for the PP final states the change is minor, since, as discussed 
above, ac4 represents only part of the short-distance penguin am-
plitude. The situation is different for the π K ∗ final states where 
the ac6 contribution is small, and for the ρK final states where due 
to the opposite sign of ac4 and ac6 a cancellation occurs. In these 
cases, we observe a large modification for the π0K ∗− , π+K ∗−
and the corresponding ρK final states, for which the CP asymme-
try arises predominantly from the imaginary part of α̂c

4/α1. These 
modifications are a reflection of the sizable corrections seen in 
Fig. 2. The effect is much less pronounced in the remaining modes, 
where the asymmetry is due to interference with α̂u

4 (in case of 
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The latter quantity is expected to be small [27], since the lead-
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tudes cancels out in the sum. In order to focus on the effect of 
the new NNLO correction on the perturbatively calculable short-
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ever, we keep the short-distance dominated, but power-suppressed 
scalar penguin contributions. The column labelled “NNLO+LD” 
adds the previously neglected terms back. The main effect is from 
weak annihilation, for which we adopt the S4-like scenario (S �
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Focusing first on the “NLO” and “NNLO” results, we note that 
for the PP final states the change is minor, since, as discussed 
above, ac4 represents only part of the short-distance penguin am-
plitude. The situation is different for the π K ∗ final states where 
the ac6 contribution is small, and for the ρK final states where due 
to the opposite sign of ac4 and ac6 a cancellation occurs. In these 
cases, we observe a large modification for the π0K ∗− , π+K ∗−
and the corresponding ρK final states, for which the CP asymme-
try arises predominantly from the imaginary part of α̂c
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4 (in case of 

354 G. Bell et al. / Physics Letters B 750 (2015) 348–355

Table 1
Direct CP asymmetries in percent for the π K , π K ∗ , and ρK final states. The theoretical errors shown correspond to the uncertainties 
due to the CKM and hadronic parameters, respectively. The errors on the experimental values of δ and � are computed from those 
of the individual observables appearing in (20) ignoring possible correlations.

f NLO NNLO NNLO+LD Exp

π− K̄ 0 0.71+0.13+0.21
−0.14−0.19 0.77+0.14+0.23

−0.15−0.22 0.10+0.02+1.24
−0.02−0.27 −1.7±1.6

π0K− 9.42+1.77+1.87
−1.76−1.88 10.18+1.91+2.03

−1.90−2.62 −1.17+0.22+20.00
−0.22 −6.62 4.0±2.1

π+K− 7.25+1.36+2.13
−1.36−2.58 8.08+1.52+2.52

−1.51−2.65 −3.23+0.61+19.17
−0.61 −3.36 −8.2±0.6

π0 K̄ 0 −4.27+0.83+1.48
−0.77−2.23 −4.33+0.84+3.29

−0.78−2.32 −1.41+0.27+5.54
−0.25−6.10 1±10

δ(π K̄ ) 2.17+0.40+1.39
−0.40−0.74 2.10+0.39+1.40

−0.39−2.86 2.07+0.39+2.76
−0.39−4.55 12.2±2.2

�(π K̄ ) −1.15+0.21+0.55
−0.22−0.84 −0.88+0.16+1.31

−0.17−0.91 −0.48+0.09+1.09
−0.09−1.15 −14±11

π− K̄ ∗0 1.36+0.25+0.60
−0.26−0.47 1.49+0.27+0.69

−0.29−0.56 0.27+0.05+3.18
−0.05−0.67 −3.8±4.2

π0K ∗− 13.85+2.40+5.84
−2.70−5.86 18.16+3.11 +7.79

−3.52−10.57 −15.81+3.01+69.35
−2.83−15.39 −6±24

π+K ∗− 11.18+2.00 +9.75
−2.15−10.62 19.70+3.37+10.54

−3.80−11.42 −23.07+4.35+86.20
−4.05−20.64 −23±6

π0 K̄ ∗0 −17.23+3.33 +7.59
−3.00−12.57 −15.11+2.93+12.34

−2.65−10.64 2.16+0.39+17.53
−0.42−36.80 −15±13

δ(π K̄ ∗) 2.68+0.72+5.44
−0.67−4.30 −1.54+0.45+4.60

−0.58−9.19 7.26+1.21+12.78
−1.34−20.65 17±25

�(π K̄ ∗) −7.18+1.38+3.38
−1.28−5.35 −3.45+0.67+9.48

−0.59−4.95 −1.02+0.19+4.32
−0.18−7.86 −5±45

ρ− K̄ 0 0.38+0.07+0.16
−0.07−0.27 0.22+0.04+0.19

−0.04−0.17 0.30+0.06+2.28
−0.06−2.39 −12±17

ρ0K− −19.31+3.42+13.95
−3.61 −8.96 −4.17+0.75+19.26

−0.80−19.52 43.73+7.07 +44.00
−7.62−137.77 37±11

ρ+K− −5.13+0.95+6.38
−0.97−4.02 1.50+0.29 +8.69

−0.27−10.36 25.93+4.43+25.40
−4.90−75.63 20±11

ρ0 K̄ 0 8.63+1.59+2.31
−1.65−1.69 8.99+1.66+3.60

−1.71−7.44 − 0.42+0.08+19.49
−0.08 −8.78 6±20

δ(ρ K̄ ) −14.17+2.80+7.98
−2.96−5.39 −5.67+0.96+10.86

−1.01 −9.79 17.80+3.15+19.51
−3.01−62.44 17±16

�(ρ K̄ ) −8.75+1.62+4.78
−1.66−6.48 −10.84+1.98+11.67

−2.09 −9.09 − 2.43+0.46 +4.60
−0.42−19.43 −37±37

π− K̄ ∗0, ρ− K̄ 0) or α2 (in case of π0 K̄ ∗0, ρ0 K̄ 0), and the effect of 
the NNLO correction cancels to a certain extent in the ratio of in-
terfering amplitudes. Despite these large modifications of some of 
the PV and VP modes’ asymmetries, the long-distance annihilation 
contribution is always more important numerically, and usually 
required to obtain a satisfactory description of the data. The mod-
elling of the long-distance contribution also determines the final 
theoretical uncertainty, which can become very large. Given that 
the short-distance contribution is now known to NNLO and given 
the large amount of experimental data, it becomes imperative to 
better determine the annihilation amplitude, presumably through 
fits to data.

5. Conclusion

The computation of direct CP asymmetries in charmless B de-
cays at next-to-next-to-leading order in QCD has been a long-
standing issue. The long- and short-distance contributions can in 
principle be of the same order and a NNLO calculation is required 
to ascertain the perturbative part. In this paper we computed the 
two-loop contributions of the current–current operators Q p

1,2 to 
the QCD penguin amplitude, which are expected to constitute the 
dominant contribution, at least to the imaginary part, which is 
required for observing CP violation. We find a sizable correction 
to the short-distance part of the direct CP asymmetry, the effect 
of which is, however, tempered by power-suppressed short- and 
long-distance terms. Our preliminary conclusion is that the NNLO 
correction does not help resolving the π K CP asymmetry puzzle, 
nor does it render the poorly known annihilation terms redundant. 
The final analysis should, however, include the penguin operator 
matrix elements, as well as the one from the chromomagnetic op-
erator considered in [14]. The corresponding calculations are in 
progress.
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1 Introduction

Non-leptonic B-decays are interesting for a number of phenomenological applications like

the extraction of CKM elements and the study of CP asymmetries. Their study has

already entered the area of precision physics, both on the experimental [1] and on the the-

oretical side. However, their theoretical description is complicated by the purely hadronic

environment, entailing QCD effects from many widely separated scales. The two main

approaches to non-leptonic B-decays are flavour symmetries of the light quarks [2] and

factorisation frameworks such as pQCD [3] and QCD factorisation (QCDF) [4–6]. In the

latter framework, next-to-leading order (NLO) corrections to both, heavy-to-heavy [5] and

heavy-to-light [4, 7] transitions have been known since more than a decade. More recently,

also next-to-next-to-leading order (NNLO) results for heavy-to-light decays have become

– 1 –
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1 Introduction

Non-leptonic B-decays are interesting for a number of phenomenological applications like

the extraction of CKM elements and the study of CP asymmetries. Their study has

already entered the area of precision physics, both on the experimental [1] and on the the-

oretical side. However, their theoretical description is complicated by the purely hadronic

environment, entailing QCD effects from many widely separated scales. The two main

approaches to non-leptonic B-decays are flavour symmetries of the light quarks [2] and

factorisation frameworks such as pQCD [3] and QCD factorisation (QCDF) [4–6]. In the

latter framework, next-to-leading order (NLO) corrections to both, heavy-to-heavy [5] and

heavy-to-light [4, 7] transitions have been known since more than a decade. More recently,

also next-to-next-to-leading order (NNLO) results for heavy-to-light decays have become
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available [8–12]. In the present article, we consider NNLO corrections also to the heavy-to-

heavy decays such as B→Dπ in the framework of QCDF [13]. In the heavy-quark limit,

the decay amplitude for B̄0 → D+π− is given by [5]

〈D+π−|Oi|B̄0〉 =
∑
j

FB→D
j (m2

π)

∫ 1

0
duTij(u)Φπ(u) , (1.1)

where Oi are the operators from the effective Hamiltonian that describe the underly-

ing weak decay. The FB→D
j form factors and the pion light-cone distribution amplitude

(LCDA) Φπ(u), with momentum fractions u and 1−u shared among the pion constituents,

are the non-perturbative inputs. The hard-scattering kernels Tij(u), on the other hand,

can be evaluated in a perturbative expansion in the strong coupling, and are known in

QCD to NLO accuracy [5]. Yet it is interesting to go beyond NLO in B → Dπ transitions:

since the contribution at NLO is colour suppressed and appears alongside small Wilson

coefficients, the NNLO corrections may be significant in size. Moreover, since there is

neither a colour-suppressed tree amplitude nor penguin contributions, and spectator scat-

tering and weak annihilation are power-suppressed [5], we have only the vertex kernels to

the colour-allowed tree amplitude. A precise theory prediction of this single contribution,

together with comparison to experimental data, might give a reliable estimate of the size

of power corrections in the QCDF framework.

The evaluation of Feynman diagrams that contribute to the NNLO hard-scattering

kernel amounts to the computation of ∼ 70 two-loop diagrams. By using contemporary

techniques to evaluate multi-loop integrals, the two-loop Feynman diagrams are reduced

to a small set of a few dozens of master integrals. A powerful method to evaluate the

latter analytically are differential equations [14–16]. This method was recently refined by

Henn [17]. Considering that the basis of master integrals is not unique, Henn discovered

that in a suitably chosen basis — denoted as canonical basis — the differential equations

can be cast into a form that factorises the dependence on the kinematic variables from

that on the number of space-time dimensions D. In this case, the solution is expressed in

terms of iterated integrals. This method was recently applied to a number of problems for

loop [11, 18–26] and phase-space [27, 28] integrals.

To the present day, the construction of the canonical basis is mostly based on experience

or experimentation, rather than on a systematic procedure, although developments in this

direction have recently become available [21, 29, 30]. In the future it would be most

desirable to have a general algorithm for finding a canonical basis for arbitrary external

kinematics and numbers of loops, legs, scales, and space-time dimensions. Therefore, every

non-trivial example of a canonical basis is most valuable, and our results contribute towards

finding a general algorithm for constructing the canonical basis.

Last but not least, if the master integrals that enter the hard-scattering kernels Tij(u)

are written in terms of iterated integrals, the convolution with the pion LCDA in (1.1)

simplifies to a large extent. Our results therefore catalyse the steps necessary to obtain the

decay amplitudes considerably, and constitute an important step towards the phenomenol-

ogy of B → Dπ decays at NNLO in QCDF.

– 2 –
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This paper is organized as follows. In section 2 we introduce the kinematics of the

two-body decay and present the generic form of the differential equations with respect to

the kinematic variables. We proceed by defining Goncharov polylogarithm in section 3,

which are a class of iterated integrals suited to describe the solutions to the differential

equations. In section 4 the canonical basis is defined and the expressions for the master

integrals in this basis are presented. We also elaborate on strategies to find a canonical

basis. The boundary conditions for the integrals are discussed in section 5 and the results

are presented in section 6. In section 7 we comment on the performed cross-checks before

concluding in section 8. In appendix A we collect the matrices that contain all relevant

information on the differential equations. The analytic results of all master integrals are

also available electronically [31].

2 Kinematics

We consider the kinematics of the decay B̄0 → D+π−, which emerges from the underlying

weak transition b → cūd. A sample of Feynman diagrams contributing to the two-loop

hard-scattering kernels is given in figure 1. The complete set of diagrams consists of those

shown in figures 15 and 16 of [5], supplemented by gluon self-energy insertions in one-loop

diagrams. All external momenta are taken to be incoming throughout this work. q4 and q3
denote the external momenta of the b and the c quark, respectively, which fulfill the on-shell

constraints q24,3 = m2
b,c. The constituents of the pion share the momentum q with q1 = uq

and q2 = (1−u)q ≡ ūq, where u ∈ [0, 1] is the momentum fraction of the quarks inside the

pion entering eq. (1.1) in a convolution of the hard-scattering kernel with the pion LCDA.

We consider the pion to be massless, i.e. q2 = q21,2 = 0. Due to the linear dependence of

the momenta, q1 + q2 = q = −q3 − q4, the kinematics is completely determined by two of

the on-shell conditions and one additional kinematic invariant, for instance

q24 = m2
b , q23 = m2

c , q3q4 = −1

2
(m2

b +m2
c) . (2.1)

We apply commonly used multi-loop techniques which include integration-by-parts identi-

ties [32, 33] and the Laporta algorithm [34], and reduce the two-loop Feynman diagrams to

master integrals [35, 36]. Furthermore, we construct the differential equation of the latter

with respect to kinematic variables. In the derivation of eq. (1.1) the charm quark was as-

sumed to be heavy. Hence, the ratio mc/mb remains fixed in the heavy-quark limit and our

master integrals depend on two scales: the momentum fraction u and the ratio of the heavy

quark masses z ≡ m2
c/m

2
b . They are further functions of the kinematic invariants (2.1)

C(u, z) = C(u, q23(z), (q4q3)(z), q
2
4(z), z) . (2.2)

Thus, the total derivative of a generic master integral C with respect to u is given by

dC

du
=

∂C

∂u
, (2.3)

whereas the one in z reads

dC

dz
=

∂C

∂z
+

∂C

∂q23

dq23
dz

+
∂C

∂(q3q4)

d(q3q4)

dz
+

∂C

∂q24

dq24
dz

. (2.4)

– 3 –
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constraints q24,3 = m2
b,c. The constituents of the pion share the momentum q with q1 = uq

and q2 = (1−u)q ≡ ūq, where u ∈ [0, 1] is the momentum fraction of the quarks inside the

pion entering eq. (1.1) in a convolution of the hard-scattering kernel with the pion LCDA.

We consider the pion to be massless, i.e. q2 = q21,2 = 0. Due to the linear dependence of

the momenta, q1 + q2 = q = −q3 − q4, the kinematics is completely determined by two of

the on-shell conditions and one additional kinematic invariant, for instance

q24 = m2
b , q23 = m2

c , q3q4 = −1

2
(m2

b +m2
c) . (2.1)

We apply commonly used multi-loop techniques which include integration-by-parts identi-

ties [32, 33] and the Laporta algorithm [34], and reduce the two-loop Feynman diagrams to

master integrals [35, 36]. Furthermore, we construct the differential equation of the latter

with respect to kinematic variables. In the derivation of eq. (1.1) the charm quark was as-

sumed to be heavy. Hence, the ratio mc/mb remains fixed in the heavy-quark limit and our

master integrals depend on two scales: the momentum fraction u and the ratio of the heavy

quark masses z ≡ m2
c/m

2
b . They are further functions of the kinematic invariants (2.1)

C(u, z) = C(u, q23(z), (q4q3)(z), q
2
4(z), z) . (2.2)

Thus, the total derivative of a generic master integral C with respect to u is given by

dC

du
=

∂C

∂u
, (2.3)

whereas the one in z reads

dC

dz
=

∂C

∂z
+

∂C

∂q23

dq23
dz

+
∂C

∂(q3q4)

d(q3q4)

dz
+

∂C

∂q24

dq24
dz

. (2.4)
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q4 q3

q1 q2

Figure 1. Sample of Feynman diagrams: q4 and q3 are the momenta of the quark lines with masses

mb and mc, respectively. q1 = uq and q2 = ūq are the momenta of the light quark and anti-quark,

respectively. q = q1 + q2 is the momentum of the pion. All momenta are incoming. The black

square denotes an operator insertion from the weak effective Hamiltonian.

The computation of ∂C/∂z is straightforward. The partial derivatives of C with respect

to the kinematics on the r.h.s. of eq. (2.4) can be expressed in terms of partial derivatives

with respect to the momenta q3,µ and q4,µ [37], which can be easily carried out. Note that

the last term on the r.h.s. vanishes since dq24/dz = 0. We finally obtain

dC

dz
=

∂C

∂z
− 1

1− z

(
q3,µ

∂C

∂q3,µ
+ q4,µ

∂C

∂q3,µ

)
. (2.5)

This is the differential equation with respect to z valid for a generic master integral C(u, z).

3 Iterated integrals and Goncharov polylogarithms

The classical example of iterated integrals is given by the harmonic polylogarithms

(HPLs) [38]. They generalise the ordinary polylogarithms and are defined by

Ha1,a2,...,an(x) =

∫ x

0
dt fa1(t)Ha2,...,an(t) , (3.1)

where the parameters ai can be 0 or ±1, and n is the weight of the HPL. The integral (3.1)

diverges for HPLs with trailing zeroes. In order to handle HPLs in such cases, one defines

H�0n
(x) = 1

n! ln
n(x). The weight functions fai(x) are simply

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (3.2)

The HPLs fulfil a Hopf algebra according to

H�a(x)H�b
(x) =

∑

�c∈�a��b

H�c(x) , (3.3)

where �a ��b are all possibilities of arranging the elements of �a and �b such that the internal

order of the elements of �a and �b is preserved individually (cf. also [39]). Hence the product

of two HPLs of weights w1 and w2 has weight w1 +w2. The Hopf algebra can also be used

to extract singular behaviour near x = 0 or x = 1. Due to the relation

H0,...,0,1(1) = ζk (3.4)

with k − 1 zeroes and k > 1, one also assigns the weight k to numbers like ζk and πk.

– 4 –
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A generalisation of the HPLs are the Goncharov polylogarithms [40], whose defini-

tion reads

Ga1,a2,...,an(x) =

∫ x

0

dt

t− a1
Ga2,...,an(t) (3.5)

and G�0n
(x) = H�0n

(x). They fulfil a Hopf algebra that has the same structure as (3.3), and

allow for more general weights ai than just 0 or ±1. In particular, in multi-scale problems

the argument x can be represented by one scale, and the remaining scales are comprised in

the weights ai. In our problem at hand, it is most convenient to choose u as the argument

of the Goncharov polylogarithm whenever there is a dependence on this scale, bearing in

mind that this choice simplifies a subsequent convolution with the light-cone distribution

amplitude, which in a Gegenbauer expansion is a u-dependent polynomial. In this case the

weights are either integer (0,±1) or one of the following six z-dependent weights,1

a1 =
1

1− z
, a3 =

1

1−
√
z
, a5 =

√
z√

z − 1
,

a2 =
z

z − 1
, a4 =

1

1 +
√
z
, a6 =

√
z√

z + 1
. (3.6)

Goncharov polylogarithms that do not depend on u are written in terms of integer weights

and argument z or
√
z. Products of Goncharov polylogarithms of the same argument are

expanded by means of the Hopf algebra.

4 The canonical basis

We work in dimensional regularisation with D = 4−2ε and evaluate the two-loop, two-scale

master integrals by applying the method proposed by Henn [17]. Considering a specific

power in the ε-expansion of a master integral, the associated function is called uniform if

each summand has the same weight. Moreover, a uniform function is called pure, if its

derivative with respect to any one of its arguments yields a uniform function whose weight

is lowered by one unit.

The proposal in [17] now states that a basis �C of master integrals can be found such

that the system of differential equations in the kinematic variables xj is given by

di �C(xj , ε) = εAi(xj)�C(xj , ε) , (4.1)

where di ≡ d/dxi. The �C(xj , ε) denote the N master integrals and Ai(xj) are N × N

matrices which are independent of ε. It turns out that eq. (4.1) can be expressed in a

compact form

d�C(xj , ε) = ε
(
d Ã(xj)

)
�C(xj , ε) , (4.2)

with the function Ã determined by the differential diÃ = Ai. We note that Ã, together

with the boundary conditions, completely determines the solution to a master integral. The

1The analytic results in section 6 contain only a1 − a4. The results of the “mass-flipped” integrals (see

section 6 and [31]) contain also a5 and a6.
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master integrals by applying the method proposed by Henn [17]. Considering a specific

power in the ε-expansion of a master integral, the associated function is called uniform if

each summand has the same weight. Moreover, a uniform function is called pure, if its

derivative with respect to any one of its arguments yields a uniform function whose weight

is lowered by one unit.

The proposal in [17] now states that a basis �C of master integrals can be found such

that the system of differential equations in the kinematic variables xj is given by

di �C(xj , ε) = εAi(xj)�C(xj , ε) , (4.1)

where di ≡ d/dxi. The �C(xj , ε) denote the N master integrals and Ai(xj) are N × N

matrices which are independent of ε. It turns out that eq. (4.1) can be expressed in a

compact form

d�C(xj , ε) = ε
(
d Ã(xj)

)
�C(xj , ε) , (4.2)

with the function Ã determined by the differential diÃ = Ai. We note that Ã, together

with the boundary conditions, completely determines the solution to a master integral. The

1The analytic results in section 6 contain only a1 − a4. The results of the “mass-flipped” integrals (see

section 6 and [31]) contain also a5 and a6.
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master integrals in such a basis have in turn several pleasant features: first, the solution

decouples order-by-order in the ε-expansion. Second, it is given by pure functions to all

orders in ε. Consequently, assigning a weight −1 to each power of the expansion parameter

ε and multiplying each master integral by an appropriate power of ε renders the total

weight of the master integral to be zero to all orders. Third, the solution can be expressed

in terms of iterated integrals. If the coefficients Ai(xj) are rational functions of the xj , the

Goncharov polylogarithms discussed above represent a suitable class of iterated integrals

to describe the master integrals. We will refer to such a basis as a canonical basis .

In the absence of a completely general algorithm for the systematic construction of

the canonical basis, the procedure of finding such a basis requires a certain amount of

experience and experimentation. In our case, we start from a “traditional” basis that

consists of undotted and singly-dotted integrals, and compute them up to terms that involve

functions of weight two. For this task, alternative approaches like Feynman parameters

or Mellin-Barnes representations [41, 42] have to be used. Afterwards one plugs these

expressions into seemingly more complicated integrals like the ones in figures 2 and 3 and

investigates if the resulting expressions are uniform or even pure. This method is mostly

based on trial and error, but has proven to be successful as we show below.

In the case at hand, many master integrals can be adopted from several B → ππ cal-

culations [8–10, 43]. In order to describe the yet unknown ones in the canonical basis, a set

of 39 integrals is needed. We obtain the following expressions for the canonical master inte-

grals C1−39 in terms of the integrals I1−42, which are defined in figures 2 and 3 (x̄ = 1− x).

C1(u, z) = ε3 uz̄ I1(u, z) , (4.3)

C2(u, z) = ε3 u(z − 1)z I2(u, z) , (4.4)

C3(u, z) = ε3 ūz̄ I3(u, z) , (4.5)

C4(u, z) = ε3 ūz̄ I4(u, z) , (4.6)

C5(u, z) = ε3 ū(z − 1) I5(u, z) , (4.7)

C6(u, z) = ε3 ū(z − 1) I6(u, z) , (4.8)

C7(z) = ε (1− ε)z̄ I7(z) , (4.9)

C8(u, z) = ε2 (ū+ uz) I8(u, z) , (4.10)

C9(u, z) = ε2 uz̄
(
I9(u, z) + 2I8(u, z)

)
, (4.11)

C10(u, z) = ε2 (u+ ūz) I10(u, z) , (4.12)

C11(u, z) = ε2 u(z − 1)
(
I11(u, z) + 2I10(u, z)

)
, (4.13)

C12(z) = ε2 I12(z) , (4.14)

C13(u, z) = ε4 uz̄ I13(u, z) , (4.15)

C14(z) = ε3 z̄ I14(z) , (4.16)
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Figure 2. Part I of the basic integrals needed in the construction of the canonical basis: 1, . . . , 4

denote the incoming momenta q1, . . . , q4. The double/curly/dashed line represents a propagator

with mass mb/mc/0. The dot on a line indicates a squared propagator.
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Figure 3. Part II of the basic integrals needed in the construction of the canonical basis. All

symbols have the same meaning as in figure 2.

C15 = ε2 I15 , (4.17)

C16(u, z) = ε3 ūz̄ I16(u, z) , (4.18)

C17(u, z) = ε3 ūz̄ I17(u, z) , (4.19)

C18(u, z) = ε2 (1− ūz̄)

(
I18(u, z) +

ε

m2
b

I17(u, z) +
2ε

m2
b

I16(u, z)

)
, (4.20)

C19(z) = ε2 z I19(z) , (4.21)
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C20(z) = ε2 z̄
(
I20(z) + 2I19(z)

)
, (4.22)

C21(u, z) = ε2 (1− uz̄) I21(u, z) , (4.23)

C22 = ε2 I22 , (4.24)

C23(u, z) = ε3 ūz̄ I23(u, z) , (4.25)

C24(u, z) = ε3 ūz̄ I24(u, z) , (4.26)

C25(u, z) = ε2 (1− ūz̄)

(
I25(u, z) +

ε

m2
b

I24(u, z) +
2ε

m2
b

I23(u, z)

)
, (4.27)

C26(u, z) = ε2 (1− uz̄) I26(u, z) , (4.28)

C27(z) = ε2 z I27(z) , (4.29)

C28(u, z) = ε3 ūz̄ I28(u, z) , (4.30)

C29(u, z) = ε3 ūz̄ I29(u, z) , (4.31)

C30(u, z) =
1

2
ε2 uūz̄2

(
I31(u, z) + I30(u, z)−

1− ε

ε

1

m2
buz̄

I7(z)

)
, (4.32)

C31(z) = ε2 z I32(z) , (4.33)

C32(z) = ε2
√
z
(
I33(z) + 2I32(z)

)
, (4.34)

C33(z) = ε3 z̄ I34(z) , (4.35)

C34(z) = ε3 z̄ I35(z) , (4.36)

C35(u, z) = ε3 ūz̄ I36(u, z) , (4.37)

C36(u, z) = ε2 (1− uz̄)2 I37(u, z) , (4.38)

C37(u, z) = ε2 (1− uz̄) I38(u, z) , (4.39)

C38(u, z) = ε3 uz̄ I39(u, z) , (4.40)

C39(u, z) = ε2
{
uz̄ [1− (1− uz̄)p] I40(u, z)

− 1

m2
b

(√
z − 1− (1− uz̄)p

2

)(
I41(z) + 2I42(z)

)}
, (4.41)

with

p =
1−

√
(2− uz̄)2 − 4z̄(1− uz̄)

1− uz̄
. (4.42)

Note that the master integrals have to be evaluated to O(ε4) since the two-loop amplitude

contains poles up to 1/ε4 stemming from the infrared and ultraviolet regions. A few

exceptions are C26,38 and C39 which only enter the hard-scattering kernel to order O(ε3)

and O(ε2), respectively.
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C24(u, z) = ε3 ūz̄ I24(u, z) , (4.26)

C25(u, z) = ε2 (1− ūz̄)
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Note that the master integrals have to be evaluated to O(ε4) since the two-loop amplitude

contains poles up to 1/ε4 stemming from the infrared and ultraviolet regions. A few

exceptions are C26,38 and C39 which only enter the hard-scattering kernel to order O(ε3)
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– 9 –

J
H
E
P
0
4
(
2
0
1
5
)
1
4
0

5 Boundary conditions

Before we present the differential equations, we specify the boundary conditions that are

used to completely fix the solution. In the simplest cases, the master integrals vanish in

a specific kinematic point. This is the case for C13,38,39, which vanish in u = 0, whereas

C3,4,5,6,16,17,23,24,28,29,30,35 vanish in u = 1. Moreover, C19,31,32 vanish in z = 0, whereas

C7,14,33,34 vanish in z = 1. In other cases we find special relations between integrals,

that hold either in general, or in certain kinematic points, and can be used as boundary

conditions. Examples are the relation C26 = z−εC21, or the following relations that hold

in u = 1,

C8
u→1−→ C19 , C10

u→1−→ C↔
19 ,

C9
u→1−→ C20 , C11

u→1−→ C↔
20 , (5.1)

where the symbol “↔” is used for the corresponding “mass-flipped” integral, in which

mc ↔ mb and q3 ↔ q4, see section 6 for more details. Hence, the integrals C↔
19,20 can be

easily obtained from C19,20 or from [31]. Relations that have a similar structure than (5.1)

hold in z = 1 for

C12
z→1−→ C22 , C27

z→1−→ C15 . (5.2)

For the remaining integrals we either use that they assume simple, closed forms that are

valid to all orders in the ε-expansion, or asymptotic forms as u → 0 or z → 0. Examples

of the former type are (see below in section 6 for the precise definition of C̃i)

C̃15 = −Γ4(1− ε)Γ(1− 4ε)Γ(1 + ε)Γ(1 + 2ε)

4Γ(1− 3ε)Γ(1− 2ε)
,

C̃22 = Γ2(1− ε)Γ2(1 + ε) ,

C̃36 =

[
−ε (1− uz̄)

(1− ε)
Γ(1− ε) Γ(1 + ε) 2F1 (1, 1 + ε ; 2− ε ; ū+ uz)

]

×
[
−ε z−ε (1− uz̄)

(1− ε)z
Γ(1− ε) Γ(1 + ε) 2F1

(
1, 1 + ε ; 2− ε ; u+

ū

z

)]
, (5.3)

where for C36 we give the result for each loop separately, such that also the boundary

conditions for C21,37 can be read off. Asymptotic expansions as u → 0 or z → 0 were

derived by means of MBasymptotics.m [44] for

C̃20
z→0
= −1− 2π2

3
ε2 + 2ζ3ε

3 − 5π4

18
ε4 +O(ε5, z),

C̃1
u→0
=

1

24
+ ε

[
− 1

6
ln(u) +

1

8
G0(z)−

1

6
G1(z) +

1

4
iπ

]

+ ε2
[
1

3
ln2(u) +

(
2

3
G1(z)−

1

2
G0(z)− iπ

)
ln(u) +

3

4
iπG0(z)− iπG1(z) +

3

8
G0,0(z)

− 1

2
G0,1(z)−

1

2
G1,0(z) +

2

3
G1,1(z)−

37π2

72

]
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+ ε3
[
− 4

9
ln3(u) + (G0(z)−

4

3
G1(z) + 2iπ) ln2(u) +

(
4iπG1(z)− 3iπG0(z)

− 3

2
G0,0(z) + 2G0,1(z) + 2G1,0(z)−

8

3
G1,1(z) +

37π2

18

)
ln(u)− 37π2

24
G0(z)

+
37π2

18
G1(z) +

5

4
iπG0,0(z)− 3iπG0,1(z)− 2iπG1,0(z) + 4iπG1,1(z) +

1

8
G0,0,0(z)

− 3

2
G0,0,1(z)−

3

2
G0,1,0(z) + 2G0,1,1(z)−

1

2
G1,0,0(z) + 2G1,0,1(z) + 2G1,1,0(z)

− 8

3
G1,1,1(z)−

17

6
ζ3 −

7

12
iπ3

]

+ ε4
[
4

9
ln4(u) +

(
16

9
G1(z)−

4

3
G0(z)−

8

3
iπ

)
ln3(u) +

(
6iπG0(z)− 8iπG1(z)

+ 3G0,0(z)− 4G0,1(z)− 4G1,0(z) +
16

3
G1,1(z)−

37π2

9

)
ln2(u) +

(
37π2

6
G0(z)

− 74π2

9
G1(z)− 5iπG0,0(z) + 12iπG0,1(z) + 8iπG1,0(z)− 16iπG1,1(z) +

34

3
ζ3

− 1

2
G0,0,0(z) + 6G0,0,1(z) + 6G0,1,0(z)− 8G0,1,1(z) + 2G1,0,0(z)− 8G1,0,1(z)

− 8G1,1,0(z) +
32

3
G1,1,1(z) +

7

3
iπ3

)
ln(u)− 17

12
iπ3G0(z) + 2iπ3G1(z)− 8G1,0,1,1(z)

− 35π2

24
G0,0(z) +

37π2

6
G0,1(z) + 3π2G1,0(z)−

74π2

9
G1,1(z) +

3

4
iπG0,0,0(z)

− 5iπG0,0,1(z)− 4iπG0,1,0(z) + 12iπG0,1,1(z)− 2iπG1,0,0(z) + 8iπG1,0,1(z)

+ 6iπG1,1,0(z)− 16iπG1,1,1(z) +
3

8
G0,0,0,0(z)−

1

2
G0,0,0,1(z)−

3

2
G0,0,1,0(z)

+ 6G0,0,1,1(z) +
1

2
G0,1,0,0(z) + 6G0,1,0,1(z) + 6G0,1,1,0(z)− 8G0,1,1,1(z) +

82π4

135

− 1

2
G1,0,0,0(z) + 2G1,0,0,1(z) + 3G1,0,1,0(z)− 8G1,1,0,1(z)− 8G1,1,1,0(z)

+
32

3
G1,1,1,1(z)−

17

2
G0(z)ζ3 +

34

3
G1(z)ζ3 − 12iπζ3

]
+O(ε5, u), (5.4)

C̃2
u→0
=

1

24
+ ε

[
− 1

6
ln(u)− 1

24
G0(z)−

1

6
G1(z)−

1

12
iπ

]

+ ε2
[
1

3
ln2(u) + (

1

6
G0(z) +

2

3
G1(z) +

1

3
iπ) ln(u) +

1

12
iπG0(z) +

1

3
iπG1(z)

+
1

24
G0,0(z) +

1

6
G0,1(z) +

1

6
G1,0(z) +

2

3
G1,1(z) +

11π2

72

]

+ ε3
[
− 4

9
ln3(u) +

(
− 1

3
G0(z)−

4

3
G1(z)−

2

3
iπ

)
ln2(u) +

(
− 1

3
iπG0(z)−

4

3
iπG1(z)

− 1

6
G0,0(z)−

2

3
G0,1(z)−

2

3
G1,0(z)−

8

3
G1,1(z)−

11π2

18

)
ln(u)− 11π2

72
G0(z)

− 11π2

18
G1(z)−

1

12
iπG0,0(z)−

1

3
iπG0,1(z) +

2

3
iπG1,0(z)−

4

3
iπG1,1(z)
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12
iπ3G0(z) + 2iπ3G1(z)− 8G1,0,1,1(z)

− 35π2

24
G0,0(z) +

37π2

6
G0,1(z) + 3π2G1,0(z)−

74π2

9
G1,1(z) +

3

4
iπG0,0,0(z)

− 5iπG0,0,1(z)− 4iπG0,1,0(z) + 12iπG0,1,1(z)− 2iπG1,0,0(z) + 8iπG1,0,1(z)

+ 6iπG1,1,0(z)− 16iπG1,1,1(z) +
3

8
G0,0,0,0(z)−

1

2
G0,0,0,1(z)−

3

2
G0,0,1,0(z)

+ 6G0,0,1,1(z) +
1

2
G0,1,0,0(z) + 6G0,1,0,1(z) + 6G0,1,1,0(z)− 8G0,1,1,1(z) +

82π4

135

− 1

2
G1,0,0,0(z) + 2G1,0,0,1(z) + 3G1,0,1,0(z)− 8G1,1,0,1(z)− 8G1,1,1,0(z)

+
32

3
G1,1,1,1(z)−

17

2
G0(z)ζ3 +

34

3
G1(z)ζ3 − 12iπζ3

]
+O(ε5, u), (5.4)

C̃2
u→0
=

1

24
+ ε

[
− 1

6
ln(u)− 1

24
G0(z)−

1

6
G1(z)−

1

12
iπ

]

+ ε2
[
1

3
ln2(u) + (

1

6
G0(z) +

2

3
G1(z) +

1

3
iπ) ln(u) +

1

12
iπG0(z) +

1

3
iπG1(z)

+
1

24
G0,0(z) +

1

6
G0,1(z) +

1

6
G1,0(z) +

2

3
G1,1(z) +

11π2

72

]

+ ε3
[
− 4

9
ln3(u) +

(
− 1

3
G0(z)−

4

3
G1(z)−

2

3
iπ

)
ln2(u) +

(
− 1

3
iπG0(z)−

4

3
iπG1(z)

− 1

6
G0,0(z)−

2

3
G0,1(z)−

2

3
G1,0(z)−

8

3
G1,1(z)−

11π2

18

)
ln(u)− 11π2

72
G0(z)

− 11π2

18
G1(z)−

1

12
iπG0,0(z)−

1

3
iπG0,1(z) +

2

3
iπG1,0(z)−

4

3
iπG1,1(z)
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− 1

24
G0,0,0(z)−

1

6
G0,0,1(z)−

1

6
G0,1,0(z)−

2

3
G0,1,1(z) +

5

6
G1,0,0(z)−

2

3
G1,0,1(z)

− 2

3
G1,1,0(z)−

8

3
G1,1,1(z)−

17

6
ζ3 −

1

4
iπ3

]

+ ε4
[
4

9
ln4(u) +

(
4

9
G0(z) +

16

9
G1(z) +

8

9
iπ

)
ln3(u) +

(
2

3
iπG0(z) +

8

3
iπG1(z)

+
1

3
G0,0(z) +

4

3
G0,1(z) +

4

3
G1,0(z) +

16

3
G1,1(z) +

11π2

9

)
ln2(u) +

(
11π2

18
G0(z)

+
22π2

9
G1(z) +

1

3
iπG0,0(z) +

4

3
iπG0,1(z)−

8

3
iπG1,0(z) +

16

3
iπG1,1(z)

+
1

6
G0,0,0(z) +

2

3
G0,0,1(z) +

2

3
G0,1,0(z) +

8

3
G0,1,1(z)−

10

3
G1,0,0(z) +

8

3
G1,0,1(z)

+
8

3
G1,1,0(z) +

32

3
G1,1,1(z) +

34

3
ζ3 + iπ3

)
ln(u) +

1

4
iπ3G0(z) +

2

3
iπ3G1(z)

+
11π2

72
G0,0(z) +

11π2

18
G0,1(z)−

5π2

9
G1,0(z) +

22π2

9
G1,1(z) +

1

12
iπG0,0,0(z)

+
1

3
iπG0,0,1(z)−

2

3
iπG0,1,0(z) +

4

3
iπG0,1,1(z) +

10

3
iπG1,0,0(z)−

8

3
iπG1,0,1(z)

− 14

3
iπG1,1,0(z) +

16

3
iπG1,1,1(z) +

1

24
G0,0,0,0(z) +

1

6
G0,0,0,1(z) +

1

6
G0,0,1,0(z)

+
2

3
G0,0,1,1(z)−

5

6
G0,1,0,0(z) +

2

3
G0,1,0,1(z) +

2

3
G0,1,1,0(z) +

8

3
G0,1,1,1(z)−

4

3
iπζ3

+
19

6
G1,0,0,0(z)−

10

3
G1,0,0,1(z)−

7

3
G1,0,1,0(z) +

8

3
G1,0,1,1(z)−

16

3
G1,1,0,0(z) +

49π4

135

+
8

3
G1,1,0,1(z) +

8

3
G1,1,1,0(z) +

32

3
G1,1,1,1(z) +

17

6
G0(z)ζ3 +

34

3
G1(z)ζ3

]
+O(ε5, u),

(5.5)

C̃18
u→0
= ε2[G1(z) ln(u)−G0,1(z) +G1,1(z)]

+ ε3
[
(G0,1(z)− 6G1,1(z)) ln(u)−G1(z) ln

2(u) +
π2

6
G1(z) + 5G0,1,1(z)− 6G1,1,1(z)

]

+ ε4
[
2

3
ln3(u)G1(z) + (6G1,1(z)−G0,1(z)) ln

2(u) +

(
2π2

3
G1(z) +G0,0,1(z)

− 6G0,1,1(z)− 4G1,0,1(z) + 28G1,1,1(z)

)
ln(u) + 5ζ3G1(z)−

5π2

6
G0,1(z)

+
π2

3
G1,1(z)−G0,0,0,1(z) +G0,0,1,1(z) + 4G0,1,0,1(z)− 22G0,1,1,1(z) + 4G1,0,0,1(z)

− 4G1,0,1,1(z) + 2G1,1,0,1(z) + 28G1,1,1,1(z)

]
+O(ε5, u), (5.6)

C̃25
u→0
= ε2

[
ln2(u)

2
+ (G1(z)−G0(z)) ln(u) +G0,0(z)−G0,1(z)−G1,0(z) +G1,1(z) +

π2

2

]

+ ε3
[
− ln3(u) +

(
3

2
G0(z)− 3G1(z)

)
ln2(u) + (3G0,1(z) + 2G1,0(z)− 6G1,1(z)

– 12 –
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− π2) ln(u)− π2

2
G0(z)−

7π2

6
G1(z)− 3G0,0,0(z) +G0,1,0(z) + 3G0,1,1(z)

+ 2G1,0,1(z) + 2G1,1,0(z)− 6G1,1,1(z)

]

+ ε4
[
7

6
ln4(u) +

(
14

3
G1(z)−

5

3
G0(z)

)
ln3(u) +

(
1

2
G0,0(z)− 5G0,1(z)− 3G1,0(z)

+ 14G1,1(z) +
7π2

3

)
ln2(u) +

(
5π2G1(z)−

5π2

3
G0(z)−G0,0,0(z) +G0,0,1(z)

− 10G0,1,1(z) + 2G1,0,0(z)− 6G1,0,1(z)− 4G1,1,0(z) + 28G1,1,1(z) + 6ζ3

)
ln(u)

− 6ζ3G0(z) + 3ζ3G1(z) +
19π2

6
G0,0(z)−

3π2

2
G0,1(z)−

5π2

3
G1,0(z) +

16π2

3
G1,1(z)

+ 10G0,0,0,0(z)−G0,0,0,1(z)− 3G0,0,1,0(z) +G0,0,1,1(z)− 2G0,1,0,0(z)− 2G0,1,1,0(z)

− 10G0,1,1,1(z)− 2G1,0,0,0(z) + 2G1,0,0,1(z) + 2G1,0,1,0(z)− 6G1,0,1,1(z)

+ 2G1,1,0,0(z)− 4G1,1,0,1(z)− 4G1,1,1,0(z) + 28G1,1,1,1(z) +
16π4

15

]
+O(ε5, u). (5.7)

6 Results

In order to facilitate the presentation of the results we write the master integrals as

C = − S2
Γ

(
m2

b

)D−n
C̃ , (6.1)

with an integer n that denotes the sum of all propagator powers, such that the integral C̃ is

dimensionless. Our integration measure is
∫
dDk/(2π)D per loop and we use the pre-factor

SΓ =
1

(4π)D/2 Γ(1− ε)
. (6.2)

Besides the integrals defined in section 4, the QCD amplitude also contains the same set of

integrals but with mc ↔ mb and q3 ↔ q4. We will refer to these as “mass-flipped” integrals

and denote them as C↔, see section 5. However, we note here that in order to define C̃↔

we factor out an appropriate power of mb, rather than mc.

As stated earlier the QCD amplitude requires terms of order O(ε4) for most of the

integrals. However, in order to keep the paper at a reasonable length, we only give terms

up to order O(ε3) explicitly below. If desired, terms of weight four can be derived from

the Ã and the boundary condition, which we actually give to weight four. Moreover, we

refrain from presenting the “mass-flipped” integrals explicitly. They can be obtained by

letting z → 1/z, keeping in mind that analytic continuation is done via z → z − iη, with

infinitesimal η > 0. We provide the results to all integrals, including the “mass-flipped”

ones, to order O(ε4) in electonic form in [31].

Last but not least, instead of dealing with one large 39 × 39 system of equations, we

solve each topology separately and therefore deal with several, smaller matrices Ãi which

we collect in appendix A. This finally puts us in the position to present the analytic results

to the C1−39.

– 13 –



117

117

J
H
E
P
0
4
(
2
0
1
5
)
1
4
0

− π2) ln(u)− π2

2
G0(z)−

7π2

6
G1(z)− 3G0,0,0(z) +G0,1,0(z) + 3G0,1,1(z)

+ 2G1,0,1(z) + 2G1,1,0(z)− 6G1,1,1(z)

]

+ ε4
[
7

6
ln4(u) +

(
14

3
G1(z)−

5

3
G0(z)

)
ln3(u) +

(
1

2
G0,0(z)− 5G0,1(z)− 3G1,0(z)

+ 14G1,1(z) +
7π2

3

)
ln2(u) +

(
5π2G1(z)−

5π2

3
G0(z)−G0,0,0(z) +G0,0,1(z)

− 10G0,1,1(z) + 2G1,0,0(z)− 6G1,0,1(z)− 4G1,1,0(z) + 28G1,1,1(z) + 6ζ3

)
ln(u)

− 6ζ3G0(z) + 3ζ3G1(z) +
19π2

6
G0,0(z)−

3π2

2
G0,1(z)−

5π2

3
G1,0(z) +

16π2

3
G1,1(z)

+ 10G0,0,0,0(z)−G0,0,0,1(z)− 3G0,0,1,0(z) +G0,0,1,1(z)− 2G0,1,0,0(z)− 2G0,1,1,0(z)

− 10G0,1,1,1(z)− 2G1,0,0,0(z) + 2G1,0,0,1(z) + 2G1,0,1,0(z)− 6G1,0,1,1(z)

+ 2G1,1,0,0(z)− 4G1,1,0,1(z)− 4G1,1,1,0(z) + 28G1,1,1,1(z) +
16π4

15

]
+O(ε5, u). (5.7)

6 Results

In order to facilitate the presentation of the results we write the master integrals as

C = − S2
Γ

(
m2

b

)D−n
C̃ , (6.1)

with an integer n that denotes the sum of all propagator powers, such that the integral C̃ is

dimensionless. Our integration measure is
∫
dDk/(2π)D per loop and we use the pre-factor

SΓ =
1

(4π)D/2 Γ(1− ε)
. (6.2)

Besides the integrals defined in section 4, the QCD amplitude also contains the same set of

integrals but with mc ↔ mb and q3 ↔ q4. We will refer to these as “mass-flipped” integrals

and denote them as C↔, see section 5. However, we note here that in order to define C̃↔

we factor out an appropriate power of mb, rather than mc.

As stated earlier the QCD amplitude requires terms of order O(ε4) for most of the

integrals. However, in order to keep the paper at a reasonable length, we only give terms

up to order O(ε3) explicitly below. If desired, terms of weight four can be derived from

the Ã and the boundary condition, which we actually give to weight four. Moreover, we

refrain from presenting the “mass-flipped” integrals explicitly. They can be obtained by

letting z → 1/z, keeping in mind that analytic continuation is done via z → z − iη, with

infinitesimal η > 0. We provide the results to all integrals, including the “mass-flipped”

ones, to order O(ε4) in electonic form in [31].

Last but not least, instead of dealing with one large 39 × 39 system of equations, we

solve each topology separately and therefore deal with several, smaller matrices Ãi which
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6.1 C1 − C12

We start right away with the largest topology, which contains twelve integrals,

�C =
{
C̃1, C̃2, C̃3, C̃4, C̃5, C̃6, C̃7, C̃8, C̃9, C̃10, C̃11, C̃12

}
. (6.3)

The corresponding matrix is Ã1−12. Taking into account the boundary conditions specified

in the previous section, the solution to the twelve integrals reads

C̃1 =
1

24
+ ε

[
− 1

6
G0(u) +

1

8
G0(z)−

1

6
G1(z) +

1

4
iπ

]

+ ε2
[
− 1

2
G0(z)G0(u) +

2

3
G1(z)G0(u)− iπG0(u) +

3

4
iπG0(z)− iπG1(z)

+
1

2
G0(z)Ga2(u)−

1

2
G1(z)Ga2(u) +

1

2
iπGa2(u) +

2

3
G0,0(u) +

3

8
G0,0(z)−

1

2
G0,1(z)

− 1

2
G1,0(z) +

2

3
G1,1(z)−

1

2
Ga2,0(u)−

37π2

72

]

+ ε3
[
− 3iπG0(z)G0(u) + 4iπG1(z)G0(u)−

3

2
G0,0(z)G0(u) + 2G0,1(z)G0(u)

+ 2G1,0(z)G0(u)−
8

3
G1,1(z)G0(u) +

37π2

18
G0(u)−

37π2

24
G0(z) + iπG0(z)G1(u)

+
37π2

18
G1(z) +

1

2
iπG0(z)Ga2(u)− 2iπG1(z)Ga2(u)−

13π2

12
Ga2(u) + 2G0(z)G0,0(u)

− 8

3
G1(z)G0,0(u) + 4iπG0,0(u) +G1(u)G0,0(z)−Ga2(u)G0,0(z) +

5

4
iπG0,0(z)

− 1

2
Ga2(u)G0,1(z)− 3iπG0,1(z)− 2G0(z)G0,a2(u) + 2G1(z)G0,a2(u)− 2iπG0,a2(u)

− 1

2
Ga2(u)G1,0(z)− 2iπG1,0(z) + 2Ga2(u)G1,1(z) + 4iπG1,1(z)−G1(z)G1,a1(u)

+G0(z)G1,a2(u)−G1(z)G1,a2(u) + iπG1,a2(u)−
1

2
G0(z)Ga2,0(u) + 2G1(z)Ga2,0(u)

− 2iπGa2,0(u)−
1

2
G0(z)Ga2,a2(u) +

1

2
G1(z)Ga2,a2(u)−

1

2
iπGa2,a2(u)−

8

3
G0,0,0(u)

+
1

8
G0,0,0(z)−

3

2
G0,0,1(z)−

3

2
G0,1,0(z) + 2G0,1,1(z) + 2G0,a2,0(u)−

1

2
G1,0,0(z)

+ 2G1,0,1(z) + 2G1,1,0(z)−
8

3
G1,1,1(z)−G1,a1,0(u)−G1,a2,0(u) + 2Ga2,0,0(u)

+
1

2
Ga2,a2,0(u)−

17

6
ζ3 −

7

12
iπ3

]
+O(ε4), (6.4)

C̃2 =
1

24
+ ε

[
− 1

6
G0(u)−

1

24
G0(z)−

1

6
G1(z)−

1

12
iπ

]

+ ε2
[
1

6
G0(z)G0(u) +

2

3
G1(z)G0(u) +

1

3
iπG0(u) +

1

12
iπG0(z) +

1

3
iπG1(z)

− 1

2
G1(z)Ga1(u) +

2

3
G0,0(u) +

1

24
G0,0(z) +

1

6
G0,1(z) +

1

6
G1,0(z) +

2

3
G1,1(z)

− 1

2
Ga1,0(u) +

11π2

72

]

– 14 –
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+ ε3
[
− 1

3
iπG0(z)G0(u)−

4

3
iπG1(z)G0(u)−

1

6
G0,0(z)G0(u)−

2

3
G0,1(z)G0(u)

− 2

3
G1,0(z)G0(u)−

8

3
G1,1(z)G0(u)−

11π2

18
G0(u)−

11π2

72
G0(z) + iπG0(z)G1(u)

− 11π2

18
G1(z)−

π2

12
Ga1(u)−

2

3
G0(z)G0,0(u)−

8

3
G1(z)G0,0(u)−

4

3
iπG0,0(u)

+G1(u)G0,0(z)−
1

12
iπG0,0(z)−

1

2
Ga1(u)G0,1(z)−

1

3
iπG0,1(z) + 2G1(z)G0,a1(u)

− 1

2
Ga1(u)G1,0(z) +

2

3
iπG1,0(z) + 2Ga1(u)G1,1(z)−

4

3
iπG1,1(z)−G1(z)G1,a1(u)

+G0(z)G1,a2(u)−G1(z)G1,a2(u) + iπG1,a2(u)−
1

2
G0(z)Ga1,0(u) + 2G1(z)Ga1,0(u)

+
1

2
G1(z)Ga1,a1(u)−

8

3
G0,0,0(u)−

1

24
G0,0,0(z)−

1

6
G0,0,1(z)−

1

6
G0,1,0(z)

− 2

3
G0,1,1(z) + 2G0,a1,0(u) +

5

6
G1,0,0(z)−

2

3
G1,0,1(z)−

2

3
G1,1,0(z)−

8

3
G1,1,1(z)

−G1,a1,0(u)−G1,a2,0(u) + 2Ga1,0,0(u) +
1

2
Ga1,a1,0(u)−

17

6
ζ3 −

1

4
iπ3

]
+O(ε4),

(6.5)

C̃3 =ε3
[
iπGa2(u)G0(z)−Ga2,0(u)G0(z) + 2Ga2,a2(u)G0(z) +

π2

2
G0(z) +

π2

3
Ga2(u)

+ 2Ga2(u)G0,0(z)−Ga2(u)G0,1(z)−Ga2(u)G1,0(z)− 2G1(z)Ga2,a2(u)

+ 2iπGa2,a2(u) +G0,0,0(z)−G0,1,0(z)− 2Ga2,a2,0(u) + 2ζ3

]
+O(ε4), (6.6)

C̃4 =ε2
[
G0(u)G0(z)−Ga2(u)G0(z)− iπG0(z) +G1(z)Ga2(u)− iπGa2(u)−G0,0(z)

+G0,1(z) +Ga2,0(u) +
π2

6

]

+ ε3
[
4iπG0(z)G0(u) + 3G0,0(z)G0(u)− 4G0,1(z)G0(u)− 2G1,0(z)G0(u)

− π2

3
G0(u) +

3π2

2
G0(z)− 2iπG0(z)G1(u) +

π2

3
G1(u)−

π2

3
G1(z)

− 3iπG0(z)Ga2(u) + 4iπG1(z)Ga2(u) +
3π2

2
Ga2(u)− 4G0(z)G0,0(u)

− 2G1(u)G0,0(z)− 2Ga2(u)G0,0(z)− 3iπG0,0(z) + 2G1(u)G0,1(z)

+ 3Ga2(u)G0,1(z) + 4iπG0,1(z) + 4G0(z)G0,a2(u)− 4G1(z)G0,a2(u) + 4iπG0,a2(u)

+ 2G0(z)G1,0(u) + 3Ga2(u)G1,0(z) + 2iπG1,0(z)− 4Ga2(u)G1,1(z) + 2G1,0,0(z)

− 2G0(z)G1,a2(u) + 2G1(z)G1,a2(u)− 2iπG1,a2(u) + 3G0(z)Ga2,0(u)

− 4G1(z)Ga2,0(u) + 4iπGa2,0(u)− 3G0(z)Ga2,a2(u) + 3G1(z)Ga2,a2(u)

− 3iπGa2,a2(u)− 2G0,0,0(z) + 3G0,0,1(z) + 3G0,1,0(z)− 4G0,1,1(z)− 4G0,a2,0(u)

− 2G1,0,1(z) + 2G1,a2,0(u)− 4Ga2,0,0(u) + 3Ga2,a2,0(u)− ζ3 +
1

3
iπ3

]
+O(ε4), (6.7)
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+ ε3
[
− 1

3
iπG0(z)G0(u)−

4

3
iπG1(z)G0(u)−

1

6
G0,0(z)G0(u)−

2

3
G0,1(z)G0(u)

− 2

3
G1,0(z)G0(u)−

8

3
G1,1(z)G0(u)−

11π2

18
G0(u)−

11π2

72
G0(z) + iπG0(z)G1(u)

− 11π2

18
G1(z)−

π2

12
Ga1(u)−

2

3
G0(z)G0,0(u)−

8

3
G1(z)G0,0(u)−

4

3
iπG0,0(u)

+G1(u)G0,0(z)−
1

12
iπG0,0(z)−

1

2
Ga1(u)G0,1(z)−

1

3
iπG0,1(z) + 2G1(z)G0,a1(u)

− 1

2
Ga1(u)G1,0(z) +

2

3
iπG1,0(z) + 2Ga1(u)G1,1(z)−

4

3
iπG1,1(z)−G1(z)G1,a1(u)

+G0(z)G1,a2(u)−G1(z)G1,a2(u) + iπG1,a2(u)−
1

2
G0(z)Ga1,0(u) + 2G1(z)Ga1,0(u)

+
1

2
G1(z)Ga1,a1(u)−

8

3
G0,0,0(u)−

1

24
G0,0,0(z)−

1

6
G0,0,1(z)−

1

6
G0,1,0(z)

− 2

3
G0,1,1(z) + 2G0,a1,0(u) +

5

6
G1,0,0(z)−

2

3
G1,0,1(z)−

2

3
G1,1,0(z)−

8

3
G1,1,1(z)

−G1,a1,0(u)−G1,a2,0(u) + 2Ga1,0,0(u) +
1

2
Ga1,a1,0(u)−

17

6
ζ3 −

1

4
iπ3

]
+O(ε4),

(6.5)

C̃3 =ε3
[
iπGa2(u)G0(z)−Ga2,0(u)G0(z) + 2Ga2,a2(u)G0(z) +

π2

2
G0(z) +

π2

3
Ga2(u)

+ 2Ga2(u)G0,0(z)−Ga2(u)G0,1(z)−Ga2(u)G1,0(z)− 2G1(z)Ga2,a2(u)

+ 2iπGa2,a2(u) +G0,0,0(z)−G0,1,0(z)− 2Ga2,a2,0(u) + 2ζ3

]
+O(ε4), (6.6)

C̃4 =ε2
[
G0(u)G0(z)−Ga2(u)G0(z)− iπG0(z) +G1(z)Ga2(u)− iπGa2(u)−G0,0(z)

+G0,1(z) +Ga2,0(u) +
π2

6

]

+ ε3
[
4iπG0(z)G0(u) + 3G0,0(z)G0(u)− 4G0,1(z)G0(u)− 2G1,0(z)G0(u)

− π2

3
G0(u) +

3π2

2
G0(z)− 2iπG0(z)G1(u) +

π2

3
G1(u)−

π2

3
G1(z)

− 3iπG0(z)Ga2(u) + 4iπG1(z)Ga2(u) +
3π2

2
Ga2(u)− 4G0(z)G0,0(u)

− 2G1(u)G0,0(z)− 2Ga2(u)G0,0(z)− 3iπG0,0(z) + 2G1(u)G0,1(z)

+ 3Ga2(u)G0,1(z) + 4iπG0,1(z) + 4G0(z)G0,a2(u)− 4G1(z)G0,a2(u) + 4iπG0,a2(u)

+ 2G0(z)G1,0(u) + 3Ga2(u)G1,0(z) + 2iπG1,0(z)− 4Ga2(u)G1,1(z) + 2G1,0,0(z)

− 2G0(z)G1,a2(u) + 2G1(z)G1,a2(u)− 2iπG1,a2(u) + 3G0(z)Ga2,0(u)

− 4G1(z)Ga2,0(u) + 4iπGa2,0(u)− 3G0(z)Ga2,a2(u) + 3G1(z)Ga2,a2(u)

− 3iπGa2,a2(u)− 2G0,0,0(z) + 3G0,0,1(z) + 3G0,1,0(z)− 4G0,1,1(z)− 4G0,a2,0(u)

− 2G1,0,1(z) + 2G1,a2,0(u)− 4Ga2,0,0(u) + 3Ga2,a2,0(u)− ζ3 +
1

3
iπ3

]
+O(ε4), (6.7)
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C̃5 =ε3
[
Ga1,0(u)G0(z)−

π2

6
G0(z) +

π2

3
Ga1(u) +Ga1(u)G0,1(z) +Ga1(u)G1,0(z)

− 2G1(z)Ga1,a1(u)−G0,1,0(z)− 2Ga1,a1,0(u) + 2ζ3

]
+O(ε4), (6.8)

C̃6 =ε2
[
−G0(u)G0(z) +G1(z)Ga1(u)−G0,1(z) +Ga1,0(u)−

π2

6

]

+ ε3
[
G0,0(z)G0(u) + 4G0,1(z)G0(u) + 2G1,0(z)G0(u) +

π2

3
G0(u) +

π2

2
G0(z)

− π2

3
G1(u) +

π2

3
G1(z)−

π2

2
Ga1(u) + 4G0(z)G0,0(u)− 2G1(u)G0,1(z)

−Ga1(u)G0,1(z)− 4G1(z)G0,a1(u)− 2G0(z)G1,0(u)−Ga1(u)G1,0(z)

− 4Ga1(u)G1,1(z) + 2G1(z)G1,a1(u)−G0(z)Ga1,0(u)− 4G1(z)Ga1,0(u)

+ 3G1(z)Ga1,a1(u) +G0,0,1(z) +G0,1,0(z) + 4G0,1,1(z)− 4G0,a1,0(u) + 2G1,0,1(z)

+ 2G1,a1,0(u)− 4Ga1,0,0(u) + 3Ga1,a1,0(u)− ζ3

]
+O(ε4), (6.9)

C̃7 =εG0(z) + ε2
[
−G0,0(z)− 2G1,0(z) +

π2

3

]
(6.10)

+ ε3
[
π2

3
G0(z)−

2π2

3
G1(z) +G0,0,0(z) + 2G1,0,0(z) + 4G1,1,0(z)− 2ζ3

]
+O(ε4),

C̃8 =ε[−G0(u)−G1(z)]

+ ε2
[
4G0(u)G1(z)−Ga1(u)G1(z) + 4G0,0(u) + 4G1,1(z)−Ga1,0(u) +

π2

6

]

+ ε3
[
− 16G1,1(z)G0(u)−

5π2

3
G0(u)−

5π2

3
G1(z) +

π2

6
Ga1(u)− 16G1(z)G0,0(u)

+ 6G1(z)G0,a1(u) + 4Ga1(u)G1,1(z) + 4G1(z)Ga1,0(u)−G1(z)Ga1,a1(u)− 7ζ3

− 16G0,0,0(u) + 6G0,a1,0(u)− 16G1,1,1(z) + 4Ga1,0,0(u)−Ga1,a1,0(u)

]
+O(ε4),

(6.11)

C̃9 =− 1 + ε[4G0(u) + 4G1(z)]

+ ε2
[
− 16G0(u)G1(z) + 6Ga1(u)G1(z)− 16G0,0(u)− 16G1,1(z) + 6Ga1,0(u)−

5π2

3

]

+ ε3
[
64G1,1(z)G0(u) +

20π2

3
G0(u) +

20π2

3
G1(z)− π2Ga1(u) + 64G1(z)G0,0(u)

− 24G1(z)G0,a1(u)− 24Ga1(u)G1,1(z)− 24G1(z)Ga1,0(u) + 6G1(z)Ga1,a1(u) + 20ζ3

+ 64G0,0,0(u)− 24G0,a1,0(u) + 64G1,1,1(z)− 24Ga1,0,0(u) + 6Ga1,a1,0(u)

]
+O(ε4),

(6.12)
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C̃10 =ε[−G0(u) +G0(z)−G1(z) + iπ]

+ ε2
[
− 2G0(z)G0(u) + 4G1(z)G0(u)− 4iπG0(u) + 2iπG0(z)− 4iπG1(z)

+G0(z)Ga2(u)−G1(z)Ga2(u) + iπGa2(u) + 4G0,0(u)− 2G0,1(z)− 2G1,0(z)

+ 4G1,1(z)−Ga2,0(u)−
11π2

6

]

+ ε3
[
− 8iπG0(z)G0(u) + 16iπG1(z)G0(u)− 4G0,0(z)G0(u) + 8G0,1(z)G0(u)

+ 8G1,0(z)G0(u)− 16G1,1(z)G0(u) +
19π2

3
G0(u)−

8

3
π2G0(z) +

19π2

3
G1(z)

+ 2iπG0(z)Ga2(u)− 4iπG1(z)Ga2(u)−
11π2

6
Ga2(u) + 8G0(z)G0,0(u)

− 16G1(z)G0,0(u) + 16iπG0,0(u) + 4iπG0,0(z)− 2Ga2(u)G0,1(z)− 8iπG0,1(z)

− 6G0(z)G0,a2(u) + 6G1(z)G0,a2(u)− 6iπG0,a2(u)− 2Ga2(u)G1,0(z)− 8iπG1,0(z)

+ 4Ga2(u)G1,1(z) + 16iπG1,1(z)− 2G0(z)Ga2,0(u) + 4G1(z)Ga2,0(u) + 4G0,0,0(z)

− 4iπGa2,0(u) +G0(z)Ga2,a2(u)−G1(z)Ga2,a2(u) + iπGa2,a2(u)− 16G0,0,0(u)

− 4G0,0,1(z)− 4G0,1,0(z) + 8G0,1,1(z) + 6G0,a2,0(u)− 4G1,0,0(z) + 8G1,0,1(z)

+ 8G1,1,0(z)− 16G1,1,1(z) + 4Ga2,0,0(u)−Ga2,a2,0(u)− 7ζ3 − iπ3

]
+O(ε4), (6.13)

C̃11 =− 1 + ε[4G0(u)− 2G0(z) + 4G1(z)− 4iπ]

+ ε2
[
8G0(z)G0(u)− 16G1(z)G0(u) + 16iπG0(u)− 8iπG0(z) + 16iπG1(z)

− 6G0(z)Ga2(u) + 6G1(z)Ga2(u)− 6iπGa2(u)− 16G0,0(u)− 4G0,0(z) + 8G0,1(z)

+ 8G1,0(z)− 16G1,1(z) + 6Ga2,0(u) +
19π2

3

]

+ ε3
[
32iπG0(z)G0(u)− 64iπG1(z)G0(u) + 16G0,0(z)G0(u)− 32G0,1(z)G0(u)

− 32G1,0(z)G0(u) + 64G1,1(z)G0(u)−
76π2

3
G0(u) +

38π2

3
G0(z)−

76π2

3
G1(z)

− 12iπG0(z)Ga2(u) + 24iπG1(z)Ga2(u) + 11π2Ga2(u)− 32G0(z)G0,0(u)

+ 64G1(z)G0,0(u)− 64iπG0,0(u)− 16iπG0,0(z) + 12Ga2(u)G0,1(z) + 32iπG0,1(z)

+ 24G0(z)G0,a2(u)− 24G1(z)G0,a2(u) + 24iπG0,a2(u) + 12Ga2(u)G1,0(z)

+ 32iπG1,0(z)− 24Ga2(u)G1,1(z)− 64iπG1,1(z) + 12G0(z)Ga2,0(u) + 64G0,0,0(u)

− 24G1(z)Ga2,0(u) + 24iπGa2,0(u)− 6G0(z)Ga2,a2(u) + 6G1(z)Ga2,a2(u)

− 6iπGa2,a2(u)− 8G0,0,0(z) + 16G0,0,1(z) + 16G0,1,0(z)− 32G0,1,1(z)

− 24G0,a2,0(u) + 16G1,0,0(z)− 32G1,0,1(z)− 32G1,1,0(z) + 64G1,1,1(z)

− 24Ga2,0,0(u) + 6Ga2,a2,0(u) + 20ζ3 + 4iπ3

]
+O(ε4), (6.14)

C̃12 =1− εG0(z) + ε2
[
G0,0(z) +

π2

3

]
+ ε3

[
− π2

3
G0(z)−G0,0,0(z)

]
+O(ε4). (6.15)
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C̃10 =ε[−G0(u) +G0(z)−G1(z) + iπ]

+ ε2
[
− 2G0(z)G0(u) + 4G1(z)G0(u)− 4iπG0(u) + 2iπG0(z)− 4iπG1(z)

+G0(z)Ga2(u)−G1(z)Ga2(u) + iπGa2(u) + 4G0,0(u)− 2G0,1(z)− 2G1,0(z)

+ 4G1,1(z)−Ga2,0(u)−
11π2

6

]

+ ε3
[
− 8iπG0(z)G0(u) + 16iπG1(z)G0(u)− 4G0,0(z)G0(u) + 8G0,1(z)G0(u)

+ 8G1,0(z)G0(u)− 16G1,1(z)G0(u) +
19π2

3
G0(u)−

8

3
π2G0(z) +

19π2

3
G1(z)

+ 2iπG0(z)Ga2(u)− 4iπG1(z)Ga2(u)−
11π2

6
Ga2(u) + 8G0(z)G0,0(u)

− 16G1(z)G0,0(u) + 16iπG0,0(u) + 4iπG0,0(z)− 2Ga2(u)G0,1(z)− 8iπG0,1(z)

− 6G0(z)G0,a2(u) + 6G1(z)G0,a2(u)− 6iπG0,a2(u)− 2Ga2(u)G1,0(z)− 8iπG1,0(z)

+ 4Ga2(u)G1,1(z) + 16iπG1,1(z)− 2G0(z)Ga2,0(u) + 4G1(z)Ga2,0(u) + 4G0,0,0(z)

− 4iπGa2,0(u) +G0(z)Ga2,a2(u)−G1(z)Ga2,a2(u) + iπGa2,a2(u)− 16G0,0,0(u)

− 4G0,0,1(z)− 4G0,1,0(z) + 8G0,1,1(z) + 6G0,a2,0(u)− 4G1,0,0(z) + 8G1,0,1(z)

+ 8G1,1,0(z)− 16G1,1,1(z) + 4Ga2,0,0(u)−Ga2,a2,0(u)− 7ζ3 − iπ3

]
+O(ε4), (6.13)

C̃11 =− 1 + ε[4G0(u)− 2G0(z) + 4G1(z)− 4iπ]

+ ε2
[
8G0(z)G0(u)− 16G1(z)G0(u) + 16iπG0(u)− 8iπG0(z) + 16iπG1(z)

− 6G0(z)Ga2(u) + 6G1(z)Ga2(u)− 6iπGa2(u)− 16G0,0(u)− 4G0,0(z) + 8G0,1(z)

+ 8G1,0(z)− 16G1,1(z) + 6Ga2,0(u) +
19π2

3

]

+ ε3
[
32iπG0(z)G0(u)− 64iπG1(z)G0(u) + 16G0,0(z)G0(u)− 32G0,1(z)G0(u)

− 32G1,0(z)G0(u) + 64G1,1(z)G0(u)−
76π2

3
G0(u) +

38π2

3
G0(z)−

76π2

3
G1(z)

− 12iπG0(z)Ga2(u) + 24iπG1(z)Ga2(u) + 11π2Ga2(u)− 32G0(z)G0,0(u)

+ 64G1(z)G0,0(u)− 64iπG0,0(u)− 16iπG0,0(z) + 12Ga2(u)G0,1(z) + 32iπG0,1(z)

+ 24G0(z)G0,a2(u)− 24G1(z)G0,a2(u) + 24iπG0,a2(u) + 12Ga2(u)G1,0(z)

+ 32iπG1,0(z)− 24Ga2(u)G1,1(z)− 64iπG1,1(z) + 12G0(z)Ga2,0(u) + 64G0,0,0(u)

− 24G1(z)Ga2,0(u) + 24iπGa2,0(u)− 6G0(z)Ga2,a2(u) + 6G1(z)Ga2,a2(u)

− 6iπGa2,a2(u)− 8G0,0,0(z) + 16G0,0,1(z) + 16G0,1,0(z)− 32G0,1,1(z)

− 24G0,a2,0(u) + 16G1,0,0(z)− 32G1,0,1(z)− 32G1,1,0(z) + 64G1,1,1(z)

− 24Ga2,0,0(u) + 6Ga2,a2,0(u) + 20ζ3 + 4iπ3

]
+O(ε4), (6.14)

C̃12 =1− εG0(z) + ε2
[
G0,0(z) +

π2

3

]
+ ε3

[
− π2

3
G0(z)−G0,0,0(z)

]
+O(ε4). (6.15)
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6.2 C13 − C15

The new integrals in this topology are C13 – C15. However, in order to close the system of

differential equations nine integrals are needed which we order as follows,

�C =
{
C̃13, C̃5, C̃6, C̃7, C̃14, C̃8, C̃9, C̃15, C̃12

}
. (6.16)

The corresponding matrix is Ã13−15. The solution to the C13 – C15 reads

C̃13 =ε3
[
G1(z)G1,a1(u) +G1,a1,0(u)−G0,1(z)G1(u)−

π2

6
G1(u)−G0(z)G1,0(u)

]
+O(ε4),

(6.17)

C̃14 =ε3
[
π2

6
G0(z) +G0,1,0(z)− 2ζ3

]
+O(ε4), (6.18)

C̃15 =− 1

4
− ε2

π2

4
− ε32ζ3 +O(ε4). (6.19)

6.3 C16 − C22

This topology has seven integrals, none of which has appeared in previous subsections.

They are ordered according to

�C =
{
C̃16, C̃17, C̃18, C̃19, C̃20, C̃21, C̃22

}
. (6.20)

The corresponding matrix is Ã16−22. The solution reads

C̃16 =ε3[Ga1(u)G0,1(z)−Ga2(u)G0,1(z) +Ga1(u)G1,1(z) +Ga2(u)G1,1(z)

+G1(z)Ga1,0(u)−G1(z)Ga1,a1(u) +G1(z)Ga2,0(u)− 2G0,0,1(z) +Ga1,1,0(u)

−Ga1,a1,0(u) +Ga2,1,0(u)− 2ζ3] +O(ε4), (6.21)

C̃17 =ε2
[
−G1(z)Ga1(u) +G0,1(z)−Ga1,0(u) +

π2

6

]

+ ε3
[
− 2G0,1(z)G1(u)−

π2

3
G1(u)−

π2

3
G1(z) +

π2

6
Ga1(u) +Ga1(u)G0,1(z)

+Ga2(u)G0,1(z) + 3Ga1(u)G1,1(z)−Ga2(u)G1,1(z) + 2G1(z)G1,a1(u)−Ga2,1,0(u)

+ 3G1(z)Ga1,0(u)− 2G1(z)Ga1,a1(u)−G1(z)Ga2,0(u) + 3G0,0,1(z)− 4G0,1,1(z)

− 2G1,0,1(z) + 2G1,a1,0(u) + 2Ga1,0,0(u) +Ga1,1,0(u)− 2Ga1,a1,0(u) + 3ζ3

]
+O(ε4),

(6.22)
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C̃18 =ε2[G0(u)G1(z)−G0,1(z) +G1,0(u) +G1,1(z)]

+ ε3
[
−G0,1(z)G1(u) +

π2

6
G1(u) +

π2

6
G1(z)− 2G1(z)G0,0(u) +G0(u)G0,1(z)

+G1(z)G0,a1(u)− 4G1(z)G1,0(u)− 6G0(u)G1,1(z) +G1(z)G1,a1(u)− 2G0,1,0(u)

+ 5G0,1,1(z) +G0,a1,0(u)− 2G1,0,0(u)− 2G1,1,0(u)− 6G1,1,1(z)+G1,a1,0(u)

]
+O(ε4),

(6.23)

C̃19 =− εG1(z) + ε2[4G1,1(z)−G0,1(z)] (6.24)

+ ε3
[
− 2π2

3
G1(z)−G0,0,1(z) + 4G0,1,1(z) + 6G1,0,1(z)− 16G1,1,1(z)

]
+O(ε4),

C̃20 =− 1 + ε4G1(z) + ε2
[
6G0,1(z)− 16G1,1(z)−

2π2

3

]
(6.25)

+ ε3
[
8π2

3
G1(z)+6G0,0,1(z)− 24G0,1,1(z)− 24G1,0,1(z)+ 64G1,1,1(z) + 2ζ3

]
+O(ε4),

C̃21 =ε[G0(u) +G1(z)] (6.26)

+ ε2
[
− 2G0(u)G1(z) +Ga1(u)G1(z)− 2G0,0(u)− 2G1,1(z) +Ga1,0(u)−

π2

6

]

+ ε3
[
4G1,1(z)G0(u) +

2π2

3
G0(u) +

2π2

3
G1(z)−

π2

6
Ga1(u) + 4G1(z)G0,0(u)

− 2G1(z)G0,a1(u)− 2Ga1(u)G1,1(z)− 2G1(z)Ga1,0(u) +G1(z)Ga1,a1(u)

+ 4G0,0,0(u)− 2G0,a1,0(u) + 4G1,1,1(z)− 2Ga1,0,0(u) +Ga1,a1,0(u) + ζ3

]
+O(ε4),

C̃22 =1 + ε2
π2

3
+O(ε4). (6.27)

6.4 C23 − C27

This topology has also seven integrals, of which C23 – C27 are new. The entire topol-

ogy reads

�C =
{
C̃23, C̃24, C̃25, C̃7, C̃26, C̃27, C̃12

}
. (6.28)

The corresponding matrix is Ã23−27. The solution reads

C̃23=ε3
[
−Ga2,0(u)G0(z) +

π2

2
G0(z) +

π2

6
Ga1(u) +

π2

2
Ga2(u) +Ga2(u)G0,0(z)

−Ga2(u)G0,1(z)−Ga2(u)G1,0(z)+Ga1(u)G1,1(z)+Ga2(u)G1,1(z) +G1(z)Ga1,0(u)

−G1(z)Ga1,a1(u) +G1(z)Ga2,0(u)+G0,0,0(z)−G0,1,0(z)+Ga1,0,0(u)−Ga1,a1,0(u)

+Ga2,0,0(u) + 2ζ3

]
+O(ε4), (6.29)
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C̃18 =ε2[G0(u)G1(z)−G0,1(z) +G1,0(u) +G1,1(z)]

+ ε3
[
−G0,1(z)G1(u) +

π2

6
G1(u) +

π2

6
G1(z)− 2G1(z)G0,0(u) +G0(u)G0,1(z)

+G1(z)G0,a1(u)− 4G1(z)G1,0(u)− 6G0(u)G1,1(z) +G1(z)G1,a1(u)− 2G0,1,0(u)

+ 5G0,1,1(z) +G0,a1,0(u)− 2G1,0,0(u)− 2G1,1,0(u)− 6G1,1,1(z)+G1,a1,0(u)

]
+O(ε4),

(6.23)

C̃19 =− εG1(z) + ε2[4G1,1(z)−G0,1(z)] (6.24)

+ ε3
[
− 2π2

3
G1(z)−G0,0,1(z) + 4G0,1,1(z) + 6G1,0,1(z)− 16G1,1,1(z)

]
+O(ε4),

C̃20 =− 1 + ε4G1(z) + ε2
[
6G0,1(z)− 16G1,1(z)−

2π2

3

]
(6.25)

+ ε3
[
8π2

3
G1(z)+6G0,0,1(z)− 24G0,1,1(z)− 24G1,0,1(z)+ 64G1,1,1(z) + 2ζ3

]
+O(ε4),

C̃21 =ε[G0(u) +G1(z)] (6.26)

+ ε2
[
− 2G0(u)G1(z) +Ga1(u)G1(z)− 2G0,0(u)− 2G1,1(z) +Ga1,0(u)−

π2

6

]

+ ε3
[
4G1,1(z)G0(u) +

2π2

3
G0(u) +

2π2

3
G1(z)−

π2

6
Ga1(u) + 4G1(z)G0,0(u)

− 2G1(z)G0,a1(u)− 2Ga1(u)G1,1(z)− 2G1(z)Ga1,0(u) +G1(z)Ga1,a1(u)

+ 4G0,0,0(u)− 2G0,a1,0(u) + 4G1,1,1(z)− 2Ga1,0,0(u) +Ga1,a1,0(u) + ζ3

]
+O(ε4),

C̃22 =1 + ε2
π2

3
+O(ε4). (6.27)

6.4 C23 − C27

This topology has also seven integrals, of which C23 – C27 are new. The entire topol-

ogy reads

�C =
{
C̃23, C̃24, C̃25, C̃7, C̃26, C̃27, C̃12

}
. (6.28)

The corresponding matrix is Ã23−27. The solution reads

C̃23=ε3
[
−Ga2,0(u)G0(z) +

π2

2
G0(z) +

π2

6
Ga1(u) +

π2

2
Ga2(u) +Ga2(u)G0,0(z)

−Ga2(u)G0,1(z)−Ga2(u)G1,0(z)+Ga1(u)G1,1(z)+Ga2(u)G1,1(z) +G1(z)Ga1,0(u)

−G1(z)Ga1,a1(u) +G1(z)Ga2,0(u)+G0,0,0(z)−G0,1,0(z)+Ga1,0,0(u)−Ga1,a1,0(u)

+Ga2,0,0(u) + 2ζ3

]
+O(ε4), (6.29)
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C̃24 =ε2
[
G0(u)G0(z)−G1(z)Ga1(u) +G0,1(z)−Ga1,0(u) +

π2

6

]

+ ε3
[
−G0,0(z)G0(u)− 4G0,1(z)G0(u)− 2G1,0(z)G0(u)−

π2

3
G0(u)− π2G0(z)

+
π2

3
G1(u)−

π2

3
G1(z) +

π2

3
Ga1(u)−

π2

2
Ga2(u)− 4G0(z)G0,0(u)−Ga2(u)G0,0(z)

+ 2G1(u)G0,1(z) +Ga1(u)G0,1(z) +Ga2(u)G0,1(z) + 4G1(z)G0,a1(u)− 2Ga1,a1,0(u)

+ 2G0(z)G1,0(u) +Ga1(u)G1,0(z) +Ga2(u)G1,0(z) + 3Ga1(u)G1,1(z)−Ga2,0,0(u)

−Ga2(u)G1,1(z)− 2G1(z)G1,a1(u) +G0(z)Ga1,0(u) + 3G1(z)Ga1,0(u) + 3Ga1,0,0(u)

− 2G1(z)Ga1,a1(u) +G0(z)Ga2,0(u)−G1(z)Ga2,0(u)−G0,0,0(z)−G0,0,1(z)

− 4G0,1,1(z) + 4G0,a1,0(u)− 2G1,0,1(z)− 2G1,a1,0(u)− ζ3

]
+O(ε4), (6.30)

C̃25 =ε2
[
G0(u)(G1(z)−G0(z)) +G0,0(u) +G0,0(z)−G0,1(z)−G1,0(z) +G1,1(z) +

π2

2

]

+ ε3
[
3G0,1(z)G0(u) + 2G1,0(z)G0(u)− 6G1,1(z)G0(u)− π2G0(u)−

π2

2
G0(z)

− π2

6
G1(u)−

7π2

6
G1(z) + 3G0(z)G0,0(u)− 6G1(z)G0,0(u)−G1(u)G0,1(z)

+G1(z)G0,a1(u)−G0(z)G1,0(u) +G1(z)G1,a1(u)− 6G0,0,0(u)− 3G0,0,0(z)

+G0,1,0(z) + 3G0,1,1(z) +G0,a1,0(u) + 2G1,0,1(z) + 2G1,1,0(z)− 6G1,1,1(z)

+G1,a1,0(u)

]
+O(ε4), (6.31)

C̃26 =ε[G0(u) +G1(z)]

+ ε2
[
−G0(u)G0(z)− 2G0(u)G1(z) +G1(z)Ga1(u)− 2G0,0(u)−G0,1(z)−G1,0(z)

− 2G1,1(z) +Ga1,0(u)−
π2

6

]

+ ε3
[
G0,0(z)G0(u) + 2G0,1(z)G0(u) + 2G1,0(z)G0(u) + 4G1,1(z)G0(u) +

2π2

3
G0(u)

+
π2

6
G0(z) +

2π2

3
G1(z)−

π2

6
Ga1(u) + 2G0(z)G0,0(u) + 4G1(z)G0,0(u) +G1,0,0(z)

−Ga1(u)G0,1(z)− 2G1(z)G0,a1(u)−Ga1(u)G1,0(z)− 2Ga1(u)G1,1(z) + 2G1,0,1(z)

−G0(z)Ga1,0(u)− 2G1(z)Ga1,0(u) +G1(z)Ga1,a1(u) + 4G0,0,0(u) +G0,0,1(z)

+G0,1,0(z) + 2G0,1,1(z)− 2G0,a1,0(u) + 2G1,1,0(z) + 4G1,1,1(z)− 2Ga1,0,0(u)

+Ga1,a1,0(u) + ζ3

]
+O(ε4), (6.32)

C̃27 =− 1

4
+ ε

1

2
G0(z) + ε2

[
−G0,0(z)−

π2

4

]
+ ε3

[
π2

2
G0(z) + 2G0,0,0(z)− 2ζ3

]
+O(ε4).

(6.33)
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6.5 C28 − C32

This topology has ten integrals, of which the five integrals C28 – C32 are new. They are

embedded in the topology as follows

�C =
{
C̃28, C̃29, C̃30, C̃7, C̃26, C̃21, C̃22, C̃31, C̃32, C̃12

}
. (6.34)

The corresponding matrix is Ã28−32. The solution reads

C̃28 =ε3
[
−G1,0(u)G0(z) +

π2

6
G0(z)−

π2

6
G1(u)−

π2

6
Ga1(u)−G1(u)G0,1(z)

−G1(z)G0,a1(u) +G1(z)G1,a1(u) +G1(z)Ga1,a1(u)−G0,a1,0(u) +G1,a1,0(u)

+Ga1,a1,0(u)

]
+O(ε4), (6.35)

C̃29 =ε3
[
G0,1(z)G1(u) +

π2

6
G1(u)−

π2

6
Ga1(u)−Ga1(u)G0,1(z) +G1(z)G0,a1(u)

+G0(z)G1,0(u)−Ga1(u)G1,0(z)−G1(z)G1,a1(u)−G0(z)Ga1,0(u) +G1(z)Ga1,a1(u)

+G0,1,0(z) +G0,a1,0(u)−G1,a1,0(u) +Ga1,a1,0(u)− 2ζ3

]
+O(ε4), (6.36)

C̃30 =ε2
[
−G0(u)G0(z) +G1(z)Ga1(u)−G0,1(z) +Ga1,0(u)−

π2

6

]

+ ε3
[
2G0,0(u)G0(z)− 3G1,0(u)G0(z)− 2Ga1,0(u)G0(z) + 2Ga3,0(u)G0(z)

+ 2Ga4,0(u)G0(z) +
π2

6
G0(z)−

π2

2
G1(u) +

π2

3
G1(z)−

2π2

3
Ga1(u)+

2π2

3
Ga3(u)

+
2π2

3
Ga4(u)−2Ga3(u)G−1,0(

√
z)+2Ga4(u)G−1,0(

√
z) +G0(u)G0,0(z)−G0,a1,0(u)

+ 2G0(u)G0,1(z)− 3G1(u)G0,1(z)− 2Ga1(u)G0,1(z) + 2Ga3(u)G0,1(z) +G0,1,0(z)

+ 2Ga4(u)G0,1(z)−G1(z)G0,a1(u) + 2Ga3(u)G1,0(
√
z)− 2Ga4(u)G1,0(

√
z)

+ 2G0(u)G1,0(z)− 2Ga1(u)G1,0(z) +Ga3(u)G1,0(z) +Ga4(u)G1,0(z) +G0,0,1(z)

− 2Ga1(u)G1,1(z) + 3G1(z)G1,a1(u)− 2G1(z)Ga1,0(u) + 4G1(z)Ga1,a1(u) + ζ3

− 4G1(z)Ga3,a1(u)− 4G1(z)Ga4,a1(u) + 2G0,1,1(z) + 2G1,0,1(z)− 4Ga4,a1,0(u)

+ 3G1,a1,0(u)− 2Ga1,0,0(u) + 4Ga1,a1,0(u)− 4Ga3,a1,0(u)

]
+O(ε4), (6.37)

C̃31 =− ε2
1

2
G1,0(z) + ε3

[
−G−1,−1,0(

√
z) +G−1,1,0(

√
z)− 1

2
G0,1,0(z) +G1,−1,0(

√
z)

+
1

2
G1,0,0(z)−G1,1,0(

√
z) +

3

2
G1,1,0(z)

]
+O(ε4), (6.38)
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6.5 C28 − C32

This topology has ten integrals, of which the five integrals C28 – C32 are new. They are

embedded in the topology as follows

�C =
{
C̃28, C̃29, C̃30, C̃7, C̃26, C̃21, C̃22, C̃31, C̃32, C̃12

}
. (6.34)

The corresponding matrix is Ã28−32. The solution reads

C̃28 =ε3
[
−G1,0(u)G0(z) +

π2

6
G0(z)−

π2

6
G1(u)−

π2

6
Ga1(u)−G1(u)G0,1(z)

−G1(z)G0,a1(u) +G1(z)G1,a1(u) +G1(z)Ga1,a1(u)−G0,a1,0(u) +G1,a1,0(u)

+Ga1,a1,0(u)

]
+O(ε4), (6.35)

C̃29 =ε3
[
G0,1(z)G1(u) +

π2

6
G1(u)−

π2

6
Ga1(u)−Ga1(u)G0,1(z) +G1(z)G0,a1(u)

+G0(z)G1,0(u)−Ga1(u)G1,0(z)−G1(z)G1,a1(u)−G0(z)Ga1,0(u) +G1(z)Ga1,a1(u)

+G0,1,0(z) +G0,a1,0(u)−G1,a1,0(u) +Ga1,a1,0(u)− 2ζ3

]
+O(ε4), (6.36)

C̃30 =ε2
[
−G0(u)G0(z) +G1(z)Ga1(u)−G0,1(z) +Ga1,0(u)−

π2

6

]

+ ε3
[
2G0,0(u)G0(z)− 3G1,0(u)G0(z)− 2Ga1,0(u)G0(z) + 2Ga3,0(u)G0(z)

+ 2Ga4,0(u)G0(z) +
π2

6
G0(z)−

π2

2
G1(u) +

π2

3
G1(z)−

2π2

3
Ga1(u)+

2π2

3
Ga3(u)

+
2π2

3
Ga4(u)−2Ga3(u)G−1,0(

√
z)+2Ga4(u)G−1,0(

√
z) +G0(u)G0,0(z)−G0,a1,0(u)

+ 2G0(u)G0,1(z)− 3G1(u)G0,1(z)− 2Ga1(u)G0,1(z) + 2Ga3(u)G0,1(z) +G0,1,0(z)

+ 2Ga4(u)G0,1(z)−G1(z)G0,a1(u) + 2Ga3(u)G1,0(
√
z)− 2Ga4(u)G1,0(

√
z)

+ 2G0(u)G1,0(z)− 2Ga1(u)G1,0(z) +Ga3(u)G1,0(z) +Ga4(u)G1,0(z) +G0,0,1(z)

− 2Ga1(u)G1,1(z) + 3G1(z)G1,a1(u)− 2G1(z)Ga1,0(u) + 4G1(z)Ga1,a1(u) + ζ3

− 4G1(z)Ga3,a1(u)− 4G1(z)Ga4,a1(u) + 2G0,1,1(z) + 2G1,0,1(z)− 4Ga4,a1,0(u)

+ 3G1,a1,0(u)− 2Ga1,0,0(u) + 4Ga1,a1,0(u)− 4Ga3,a1,0(u)

]
+O(ε4), (6.37)

C̃31 =− ε2
1

2
G1,0(z) + ε3

[
−G−1,−1,0(

√
z) +G−1,1,0(

√
z)− 1

2
G0,1,0(z) +G1,−1,0(

√
z)

+
1

2
G1,0,0(z)−G1,1,0(

√
z) +

3

2
G1,1,0(z)

]
+O(ε4), (6.38)
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C̃32 =ε2[G−1,0(
√
z)−G1,0(

√
z)]

+ ε3
[
− 2G−1,−1,0(

√
z)− 2G−1,0,0(

√
z)− 4G−1,1,0(

√
z)− 2G0,−1,0(

√
z)

+ 2G0,1,0(
√
z) + 4G1,−1,0(

√
z) + 2G1,0,0(

√
z) + 2G1,1,0(

√
z)
]
+O(ε4). (6.39)

6.6 C33 and C34

This topology has seven integrals, of which only C33 – C34 have not yet appeared in the

previous topologies. The integrals are ordered as

�C =
{
C̃33, C̃34, C̃7, C̃22, C̃31, C̃32, C̃12

}
. (6.40)

The corresponding matrix is Ã33,34. The solution to O(ε3) is very short

C̃33 =ε3[G0,1,0(z)− 2ζ3] +O(ε4), (6.41)

C̃34 =ε3
π2

6
G0(z) +O(ε4). (6.42)

At order O(ε4) the solution requires also Goncharov polylogarithms of argument
√
z.

6.7 C35

This topology has three integrals, and only C35 is new. The integrals are ordered as

�C =
{
C̃35, C̃19, C̃20

}
. (6.43)

The corresponding matrix is Ã35. The solution reads

C̃35 =ε
1

2
G0(u) + ε2

[
− 2G0(u)G1(z) +Ga1(u)G1(z)−

3

2
G0,0(u)−G0,1(z)−

1

2
G1,0(u)

+Ga1,0(u)−
π2

12

]

+ ε3
[
8G1,1(z)G0(u) +

7π2

12
G0(u) +

π2

12
G1(u) +

π2

3
G1(z)−

π2

6
Ga1(u) +

9

2
G0,0,0(u)

+ 6G1(z)G0,0(u) +G1(u)G0,1(z)−Ga1(u)G0,1(z)− 3G1(z)G0,a1(u)− 3G0,a1,0(u)

+ 2G1(z)G1,0(u)− 4Ga1(u)G1,1(z)−G1(z)G1,a1(u)− 4G1(z)Ga1,0(u) + 4G1,0,1(z)

+ 2G1(z)Ga1,a1(u)−G0,0,1(z) +
3

2
G0,1,0(u) + 4G0,1,1(z) +

3

2
G1,0,0(u) +

1

2
G1,1,0(u)

−G1,a1,0(u)− 3Ga1,0,0(u)−Ga1,1,0(u) + 2Ga1,a1,0(u) + ζ3

]
+O(ε4). (6.44)
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6.8 C36 and C37

This topology has four integrals, of which C36 and C37 are new. The integrals are

�C =
{
C̃36, C̃37, C̃26, C̃12

}
. (6.45)

The corresponding matrix is Ã36,37. The solution reads

C̃36 =ε2[−G0(z)G0(u) +G1(z)G0(u)− iπG0(u) +G1(u)G1(z)− iπG1(z)

+G0,1(u)−G0,1(z) +G1,0(u)−G1,0(z) + 2G1,1(z)]

+ ε3
[
4iπG1(z)G0(u) +G0,0(z)G0(u) + 2G0,1(z)G0(u) + 3G1,0(z)G0(u)

− 6G1,1(z)G0(u) +
2π2

3
G0(u) +

π2

6
G0(z)−

π2

6
G1(u) + 2iπG1(u)G1(z) +

π2

2
G1(z)

− 2iπG1(z)Ga1(u) + 2G0(z)G0,0(u)− 2G1(z)G0,0(u) + 2iπG0,0(u) +G0(z)G0,1(u)

− 4G1(z)G0,1(u) + 2iπG0,1(u) +G1(u)G0,1(z)− 2Ga1(u)G0,1(z)−G0(z)G0,a1(u)

+G1(z)G0,a1(u)− iπG0,a1(u) +G0(z)G1,0(u)− 4G1(z)G1,0(u) + 2iπG1,0(u)

+G1(u)G1,0(z)− 2Ga1(u)G1,0(z)− 2G1(z)G1,1(u)− 6G1(u)G1,1(z) + 6iπG1,1(z)

+ 4Ga1(u)G1,1(z) +G1(z)G1,a1(u)− 2G0(z)Ga1,0(u) + 2G1(z)Ga1,0(u) + 3G1,0,1(z)

− 2iπGa1,0(u) + 2G1(z)Ga1,1(u)− 2G0,0,1(u) +G0,0,1(z)− 2G0,1,0(u)− 2G1,0,1(u)

− 2G0,1,1(u)+2G0,1,1(z) +G0,a1,1(u)−2G1,0,0(u) +G1,0,0(z) +G0,1,0(z)− 2G1,1,0(u)

+ 4G1,1,0(z)− 12G1,1,1(z) +G1,a1,0(u) + 2Ga1,0,1(u) + 2Ga1,1,0(u) +
1

6
iπ3

]
+O(ε4),

(6.46)

C̃37 =ε[−G0(z) +G1(u) +G1(z)− iπ]

+ε2
[
G0(z)G1(u)−2G1(z)G1(u)+2iπG1(u)+2iπG1(z)−G0(z)Ga1(u) +Ga1,1(u)

+G1(z)Ga1(u)− iπGa1(u) +G0,0(z) +G1,0(z)− 2G1,1(u)− 2G1,1(z) +
2π2

3

]

+ε3
[
− 2G1,1(u)G0(z)+2G1,a1(u)G0(z) +Ga1,1(u)G0(z)−Ga1,a1(u)G0(z)

− π2

3
G0(z)−π2G1(u)−4iπG1(u)G1(z)−π2G1(z) + 2iπG1(z)Ga1(u) + 4G1,1,1(z)

+
2π2

3
Ga1(u)−G1(u)G0,0(z) +Ga1(u)G0,0(z)− 2G1(u)G1,0(z) +Ga1(u)G1,0(z)

+ 4G1(z)G1,1(u)− 4iπG1,1(u) + 4G1(u)G1,1(z)− 2Ga1(u)G1,1(z)− 4iπG1,1(z)

− 2G1(z)G1,a1(u)+2iπG1,a1(u)−2G1(z)Ga1,1(u)+2iπGa1,1(u) +G1(z)Ga1,a1(u)

− iπGa1,a1(u)−G0,0,0(z)−G1,0,0(z)− 2G1,1,0(z) + 4G1,1,1(u)− 2G1,a1,1(u)

− 2Ga1,1,1(u) +Ga1,a1,1(u) + 2ζ3

]
+O(ε4). (6.47)
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6.8 C36 and C37

This topology has four integrals, of which C36 and C37 are new. The integrals are

�C =
{
C̃36, C̃37, C̃26, C̃12

}
. (6.45)

The corresponding matrix is Ã36,37. The solution reads

C̃36 =ε2[−G0(z)G0(u) +G1(z)G0(u)− iπG0(u) +G1(u)G1(z)− iπG1(z)

+G0,1(u)−G0,1(z) +G1,0(u)−G1,0(z) + 2G1,1(z)]

+ ε3
[
4iπG1(z)G0(u) +G0,0(z)G0(u) + 2G0,1(z)G0(u) + 3G1,0(z)G0(u)

− 6G1,1(z)G0(u) +
2π2

3
G0(u) +

π2

6
G0(z)−

π2

6
G1(u) + 2iπG1(u)G1(z) +

π2

2
G1(z)

− 2iπG1(z)Ga1(u) + 2G0(z)G0,0(u)− 2G1(z)G0,0(u) + 2iπG0,0(u) +G0(z)G0,1(u)

− 4G1(z)G0,1(u) + 2iπG0,1(u) +G1(u)G0,1(z)− 2Ga1(u)G0,1(z)−G0(z)G0,a1(u)

+G1(z)G0,a1(u)− iπG0,a1(u) +G0(z)G1,0(u)− 4G1(z)G1,0(u) + 2iπG1,0(u)

+G1(u)G1,0(z)− 2Ga1(u)G1,0(z)− 2G1(z)G1,1(u)− 6G1(u)G1,1(z) + 6iπG1,1(z)

+ 4Ga1(u)G1,1(z) +G1(z)G1,a1(u)− 2G0(z)Ga1,0(u) + 2G1(z)Ga1,0(u) + 3G1,0,1(z)

− 2iπGa1,0(u) + 2G1(z)Ga1,1(u)− 2G0,0,1(u) +G0,0,1(z)− 2G0,1,0(u)− 2G1,0,1(u)

− 2G0,1,1(u)+2G0,1,1(z) +G0,a1,1(u)−2G1,0,0(u) +G1,0,0(z) +G0,1,0(z)− 2G1,1,0(u)

+ 4G1,1,0(z)− 12G1,1,1(z) +G1,a1,0(u) + 2Ga1,0,1(u) + 2Ga1,1,0(u) +
1

6
iπ3

]
+O(ε4),

(6.46)

C̃37 =ε[−G0(z) +G1(u) +G1(z)− iπ]

+ε2
[
G0(z)G1(u)−2G1(z)G1(u)+2iπG1(u)+2iπG1(z)−G0(z)Ga1(u) +Ga1,1(u)

+G1(z)Ga1(u)− iπGa1(u) +G0,0(z) +G1,0(z)− 2G1,1(u)− 2G1,1(z) +
2π2

3

]

+ε3
[
− 2G1,1(u)G0(z)+2G1,a1(u)G0(z) +Ga1,1(u)G0(z)−Ga1,a1(u)G0(z)

− π2

3
G0(z)−π2G1(u)−4iπG1(u)G1(z)−π2G1(z) + 2iπG1(z)Ga1(u) + 4G1,1,1(z)

+
2π2

3
Ga1(u)−G1(u)G0,0(z) +Ga1(u)G0,0(z)− 2G1(u)G1,0(z) +Ga1(u)G1,0(z)

+ 4G1(z)G1,1(u)− 4iπG1,1(u) + 4G1(u)G1,1(z)− 2Ga1(u)G1,1(z)− 4iπG1,1(z)

− 2G1(z)G1,a1(u)+2iπG1,a1(u)−2G1(z)Ga1,1(u)+2iπGa1,1(u) +G1(z)Ga1,a1(u)

− iπGa1,a1(u)−G0,0,0(z)−G1,0,0(z)− 2G1,1,0(z) + 4G1,1,1(u)− 2G1,a1,1(u)

− 2Ga1,1,1(u) +Ga1,a1,1(u) + 2ζ3

]
+O(ε4). (6.47)
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6.9 C38 and C39

These integrals arise from diagrams with a massive quark loop inside a gluon propagator.

They appeared in a slightly different version already in the calculation of the two-loop

tree amplitudes in B → ππ [9, 10], and analytic results were recently derived in [11] as

M28,29. It turns out that the results of C38,39 can be obtained from the latter reference if

one adjusts the kinematics to the present problem. To be precise, one has to replace

u → u (1− z) (6.48)

in the expressions in [11]. That is, in the definition of the canonical basis (cf. (3.30) and

(3.31) of [11] and (4.40), (4.41) of the present article), and also in the solution, eqs. (4.64)

and (4.65) of [11]. In particular, the kinematic variable p changes to (z̄ = 1− z)

p =
1−

√
(2− uz̄)2 − 4z̄(1− uz̄)

1− uz̄
. (6.49)

7 Checks

In order to validate the analytic results presented above, we performed several checks of

analytic and numeric nature. Those integrals that possess a closed form in terms of hyper-

geometric functions were analytically expanded in ε using HypExp [45, 46]. Subsequently,

we re-wrote the resulting polylogarithms and HPLs in terms of Goncharov polylogarithms

and compared to the results obtained by the differential equation method.

For the numerical checks we used a dozen points in the u− z plane. We first evaluated

the Goncharov polylogarithms that appear in our analytic results numerically with the

GiNaC-library [47, 48]. We also derived Mellin-Barnes (MB) representations, partially

using the AMBRE-package [49]. The analytic continuation to ε = 0 and subsequent numerical

integration was carried out by MB.m [50]. This worked for almost all cases, even in the

presence of kinematic thresholds, and yielded agreement to the GiNaC results to 5 ·10−10 or

better. There are, however, a few cases in which the Monte-Carlo integration implemented

in MB.m failed due to highly oscillating integrands, notably for the integrals C28−30, and

their “mass-flipped” counterparts (where mc ↔ mb and q3 ↔ q4). In these cases, we

relied on the sector decomposition method implemented in SecDec [51, 52], which yielded

agreement with GiNaC at the level of 8 ·10−7 for the highest ε-coefficients in C28−30, and at

the level of 6 · 10−4 for the highest ε-coefficients of their “mass-flipped” counterparts. The

agreement is several orders of magnitude better for the lower coefficients in the ε-expansion.

Another important point to mention is the fact that the GiNaC results were obtained

in the canonical basis, whereas most of the MB representations and the SecDec results

were derived in an “ordinary” basis of un-dotted and singly-dotted master integrals. The

change of basis was then performed using the Laporta reduction. Having calculated the

numerics in two different integral bases constitutes another non-trivial check of our results.
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8 Conclusion

We obtained analytic results to all two-loop master integrals that are necessary for the

description of the non-leptonic decay B → Dπ at NNLO in QCD factorisation. They are

expressed in terms of Goncharov polylogarithms of argument u and weights that are either

integer numbers (0 or ±1), or contain the second kinematic varible, z. It is remarkable that

six z-dependent weights are sufficient for writing down the entire set of solutions, including

the “mass-flipped” integrals.

With the master integrals at hand, the bare two-loop part of the hard-scattering kernels

Tij(u) in (1.1) is complete. The remaining task consists of renormalising the ultraviolet

divergences and subtracting infrared divergences via matching from QCD onto soft-collinear

effective theory. Steps towards this goal are outlined in [13]. Having the hard-scattering

kernels Tij(u) written in terms of iterated integrals is an optimal choice for carrying out

the convolution integral with the pion LCDA in (1.1), and it might be feasible to obtain

the NNLO topological tree amplitude in analytic form. In any case our results constitute

an important step towards the phenomenology of B → Dπ decays at NNLO in QCD

factorisation.

Let us compare the integrals in the present work to those recently obtained in [11]

during the evaluation of the two-loop penguin amplitude. Both are two-loop problems

with scales u and z. The present integrals are a bit less involved compared to those in [11],

in a sense that the linear combinations that form a canonical master integral are shorter,

the occurring weights are fewer, and the choice of kinematic invariants is less complicated.

The main reason for this is that in the present work the external kinematics of the final

state contains also the second internal mass, notably mc. On the other hand, the only

five-line integral in [11], a two-point function (M22), is in fact a one-scale integral, whereas

here we encountered several five-line integrals with four external legs which are genuine

two-scale functions. Moreover, most of our integrals are needed to order O(ε4), whereas

in [11] all but two integrals were required only to order O(ε3).

On more general grounds, it will be interesting to investigate how the canonical basis

depends on the number of loops, legs, scales, space-time dimensions, and on the external

kinematics. Every example therefore sharpens our understanding of the patterns that

such bases follow, with the goal of eventually developing an algorithm for their automated

construction.
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expressed in terms of Goncharov polylogarithms of argument u and weights that are either

integer numbers (0 or ±1), or contain the second kinematic varible, z. It is remarkable that

six z-dependent weights are sufficient for writing down the entire set of solutions, including

the “mass-flipped” integrals.

With the master integrals at hand, the bare two-loop part of the hard-scattering kernels

Tij(u) in (1.1) is complete. The remaining task consists of renormalising the ultraviolet

divergences and subtracting infrared divergences via matching from QCD onto soft-collinear

effective theory. Steps towards this goal are outlined in [13]. Having the hard-scattering

kernels Tij(u) written in terms of iterated integrals is an optimal choice for carrying out

the convolution integral with the pion LCDA in (1.1), and it might be feasible to obtain

the NNLO topological tree amplitude in analytic form. In any case our results constitute

an important step towards the phenomenology of B → Dπ decays at NNLO in QCD

factorisation.

Let us compare the integrals in the present work to those recently obtained in [11]

during the evaluation of the two-loop penguin amplitude. Both are two-loop problems

with scales u and z. The present integrals are a bit less involved compared to those in [11],

in a sense that the linear combinations that form a canonical master integral are shorter,

the occurring weights are fewer, and the choice of kinematic invariants is less complicated.

The main reason for this is that in the present work the external kinematics of the final

state contains also the second internal mass, notably mc. On the other hand, the only

five-line integral in [11], a two-point function (M22), is in fact a one-scale integral, whereas

here we encountered several five-line integrals with four external legs which are genuine

two-scale functions. Moreover, most of our integrals are needed to order O(ε4), whereas

in [11] all but two integrals were required only to order O(ε3).

On more general grounds, it will be interesting to investigate how the canonical basis

depends on the number of loops, legs, scales, space-time dimensions, and on the external

kinematics. Every example therefore sharpens our understanding of the patterns that

such bases follow, with the goal of eventually developing an algorithm for their automated

construction.
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A The matrices Ã

Here we list the matrices Ã for the different topologies. Their entries can all be expressed

in terms of the following nine logarithms,

L1 = ln(u) , L6 = ln(z+u(1− z)) ,

L2 = ln(1− u) , L7 = ln
(
1− u

(
1−

√
z
))

,

L3 = ln(z) , L8 = ln
(
1− u

(
1+

√
z
))

,

L4 = ln(1− z) , L9 = ln

(
1−

√
z

1+
√
z

)
. (A.1)

L5 = ln(1− u(1− z)) ,

The matrices Ã now assume the following compact form,

Ã1−12 =




−4L1−L4 3L3−3L4 −2L2− L3
2 − L4

2 +L6 −L2+
L3
2 −L4+

L6
2 L2+

L3
2 − L4

2

−3L4 −4L1−L3−L4 L2− L4
2 −L2−L4 −2L2− L4

2 +L5

0 0 2L2−L3+2L4−2L6 L3−L6 0

0 0 −2L1−2L4+2L6 −4L1+2L2−2L4+L6 0

0 0 0 0 2L2−L3+2L4−2L5

0 0 0 0 −2L1−2L4+2L5

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−L2+L3−L4
L3
4 − L6

4 0 L3
4 − L4

4
3L6
2 − 3L3

2 −L3
2 + L4

4 + L6
4

L6
4 − L3

4

−L2−L4+
L5
2

L5
4

3L5
2

L4
4 + L5

4 0 −L4
4

L5
4

0 L6
2 0 0 −2L6 −L6

2 −L6
2

0 L1− L6
2 0 0 L6

L6
2

L6
2

−L5
L3
2 − L5

2 2L3−2L5
L3
2 − L5

2 0 0 L3
2 − L5

2

−4L1+2L2−L3−2L4+L5 −L1− L3
2 + L5

2 L5−L3
L5
2 − L3

2 0 0 L5
2 − L3

2

0 −2L4 0 0 0 0 L3

0 0 L5 L1+L4 0 0 0

0 0 −6L5 −4L1−4L4 0 0 0

0 0 0 0 L6−3L3 L1−L3+L4 0

0 0 0 0 6L3−6L6 −4L1+2L3−4L4 0

0 0 0 0 0 0 −L3




,

(A.2)

Ã13−15 =




−2L4 L3−L4 L2 0 L3−L4

0 2L2−L3+2L4−2L5 −L5
L3
2 − L5

2 0

0 −2L1−2L4+2L5 −4L1+2L2−L3−2L4+L5 −L1− L3
2 + L5

2 0

0 0 0 −2L4 0

0 0 0 −L3
2 2L4−L3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
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2L4−2L3
L4
2 − L3

2 2L3−2L4 0

2L3−2L5
L3
2 − L5

2 0 L3
2 − L5

2

L5−L3
L5
2 − L3

2 0 L5
2 − L3

2

0 0 0 L3

0 0 −2L3 −L3
2

L5 L1+L4 0 0

−6L5 −4L1−4L4 0 0

0 0 0 0

0 0 0 −L3




, (A.3)

Ã16−22 =




2L2−2L3+2L4+L5 L5−L3 −L3+L5+L6

−2L2+2L3−2L4+L5 −2L2+L3−2L4+L5 L3+L5−L6

−2L1−3L2+2L3−5L4 −L1+L3−L4 −2L1−2L2+L3−4L4

0 0 0

0 0 0

0 0 0

0 0 0

2L5−2L3
L5
2 − L3

2 0 L5
2 − L3

2

L3+2L5
L3
2 + L5

2 −L5
L3
2 + L5

2

−3L1−3L2+3L3−6L4 −L1
2 −L2+

L3
2 − 3L4

2 L2+L4 −L1
2 −L2+

L3
2 − 3L4

2

L3 L4 0 0

−6L3 −4L4 0 0

0 0 −2L1−2L4+L5 L1+L4

0 0 0 0




, (A.4)

Ã23−27 =




2L2−3L3+2L4+L5 L5 −L3+L5+L6

−2L1−L3−2L4+L5 −4L1+2L2−2L3−2L4+L5 −L3+L5−L6

−3L1−2L2+3L3−5L4 −L2−L4 −4L1+L3−4L4

0 0 0

0 0 0

0 0 0

0 0 0

L3
2 − L5

2 0 2L5−2L3
L5
2 − L3

2

L1+
L3
2 − L5

2 L3−L5 2L5−2L3
L5
2 − L3

2
L1
2 − L3

2 + L4
2 L1−L3+L4 −6L1+6L3−6L4 −3L1

2 + 3L3
2 − 3L4

2

−2L4 0 0 L3

0 −2L1−L3−2L4+L5 0 L1+L4

0 0 −2L3 0

0 0 0 −L3




, (A.5)
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2L4−2L3
L4
2 − L3

2 2L3−2L4 0

2L3−2L5
L3
2 − L5

2 0 L3
2 − L5

2

L5−L3
L5
2 − L3

2 0 L5
2 − L3

2

0 0 0 L3

0 0 −2L3 −L3
2

L5 L1+L4 0 0

−6L5 −4L1−4L4 0 0

0 0 0 0

0 0 0 −L3




, (A.3)

Ã16−22 =




2L2−2L3+2L4+L5 L5−L3 −L3+L5+L6

−2L2+2L3−2L4+L5 −2L2+L3−2L4+L5 L3+L5−L6

−2L1−3L2+2L3−5L4 −L1+L3−L4 −2L1−2L2+L3−4L4

0 0 0

0 0 0

0 0 0

0 0 0

2L5−2L3
L5
2 − L3

2 0 L5
2 − L3

2

L3+2L5
L3
2 + L5

2 −L5
L3
2 + L5

2

−3L1−3L2+3L3−6L4 −L1
2 −L2+

L3
2 − 3L4

2 L2+L4 −L1
2 −L2+

L3
2 − 3L4

2

L3 L4 0 0

−6L3 −4L4 0 0

0 0 −2L1−2L4+L5 L1+L4

0 0 0 0




, (A.4)

Ã23−27 =




2L2−3L3+2L4+L5 L5 −L3+L5+L6

−2L1−L3−2L4+L5 −4L1+2L2−2L3−2L4+L5 −L3+L5−L6

−3L1−2L2+3L3−5L4 −L2−L4 −4L1+L3−4L4

0 0 0

0 0 0

0 0 0

0 0 0

L3
2 − L5

2 0 2L5−2L3
L5
2 − L3

2

L1+
L3
2 − L5

2 L3−L5 2L5−2L3
L5
2 − L3

2
L1
2 − L3

2 + L4
2 L1−L3+L4 −6L1+6L3−6L4 −3L1

2 + 3L3
2 − 3L4

2

−2L4 0 0 L3

0 −2L1−L3−2L4+L5 0 L1+L4

0 0 −2L3 0

0 0 0 −L3




, (A.5)
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Ã28−32 =




L2−L3−L5 L2−2L3+2L4 −L1+L2−L3+L5 −L1
2

L2+2L4−L5 L2 L1−L2+L5
L1
2

−L2−3L5+2L7+2L8 L2−2L7−2L8 −L1+3L2−2L4+3L5−4L7−4L8 −L1
2

0 0 0 −2L4

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

L1+L3−L5 −L1−L3+L5
L1
2 2L5−2L3 0 −L1

2

−L1 L1 −L1
2 2L5−2L3 0 L1

2

−L1−L3−L5+2L7+2L8 L1+2L5−2L7−2L8 −L1
2 6L5−6L7−6L8 2L8−2L7

L1
2

0 0 0 0 0 L3

−2L1−L3−2L4+L5 0 0 0 0 L1+L4

0 −2L1−2L4+L5 L1+L4 0 0 0

0 0 0 0 0 0

0 0 −L4
2 L3−3L4 L9

L4
2

0 0 −L9
2 −3L9 L4−L3

L9
2

0 0 0 0 0 −L3




,

(A.6)

Ã33,34 =




0 2L4 0 0 −2L3 0 0

2L4 − 2L3 −L3
L3
2 −L3

2 −2L3 0 L3
2

0 0 −2L4 0 0 0 L3

0 0 0 0 0 0 0

0 0 0 −L4
2 L3 − 3L4 L9

L4
2

0 0 0 −L9
2 −3L9 L4 − L3

L9
2

0 0 0 0 0 0 −L3




, (A.7)

Ã35 =




−3L1 − L2 − 4L4+2L5 L3 − L5 −L1
2

0 L3 L4

0 −6L3 −4L4


 , (A.8)

Ã36,37 =




2L5 − 2L1−2L2 − 4L4 L1+L4 L2 − L3+L4 0

0 L5 − 2L2 − 2L4 0 L2−L3+L4

0 0 L5−2L1−L3−2L4 L1+L4

0 0 0 −L3


.

(A.9)
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Abstract: Ongoing efforts to reduce the perturbative uncertainty in the B̄ → Xsγ decay

rate have resulted in a theory estimate to NNLO in QCD. However, a few contributions

from multi-parton final states which are formally NLO are still unknown. These are para-

metrically small and included in the estimated error from higher order corrections, but must

be computed if one is to claim complete knowledge of the B̄ → Xsγ rate to NLO. A major

part of these unknown pieces are four-body contributions corresponding to the partonic

process b → sq̄qγ. We compute these NLO four-body contributions to B̄ → Xsγ, and con-

firm the corresponding tree-level leading-order results. While the NLO contributions arise

from tree-level and one-loop Feynman diagrams, the four-body phase-space integrations

make the computation non-trivial. The decay rate contains collinear logarithms arising

from the mass regularization of collinear divergences. We perform an exhaustive numer-

ical analysis, and find that these contributions are positive and amount to no more than

∼ 1% of the total rate in the Standard Model, thus confirming previous estimates of the

perturbative uncertainty.
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1 Introduction

The inclusive radiative B meson decay B̄ → Xsγ is the paradigm for precision tests of

the Standard Model (SM) in quark flavor physics. Its branching ratio is measured with a

precision of ∼ 7% [1–8],1

B(B̄ → Xsγ)
exp
Eγ>1.6GeV = (3.43± 0.22) · 10−4 . (1.1)

To match this experimental precision, a theory calculation to next-to-next-to-leading

order (NNLO) accuracy is necessary. This program has been carried out during the last

1The semi-inclusive measurement in reference [2] has recently been superseded by a new, more precise

one — see refs. [9, 10]. However, this new measurement is not yet taken into account in the HFAG average

of eq. (1.1).
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1 Introduction

The inclusive radiative B meson decay B̄ → Xsγ is the paradigm for precision tests of

the Standard Model (SM) in quark flavor physics. Its branching ratio is measured with a

precision of ∼ 7% [1–8],1

B(B̄ → Xsγ)
exp
Eγ>1.6GeV = (3.43± 0.22) · 10−4 . (1.1)

To match this experimental precision, a theory calculation to next-to-next-to-leading

order (NNLO) accuracy is necessary. This program has been carried out during the last

1The semi-inclusive measurement in reference [2] has recently been superseded by a new, more precise

one — see refs. [9, 10]. However, this new measurement is not yet taken into account in the HFAG average

of eq. (1.1).
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two decades and it is almost – but not quite – finished. The current theory estimate results

in the following value [11]:

B(B̄ → Xsγ)
SM
Eγ>1.6GeV = (3.15± 0.23) · 10−4 , (1.2)

where the total ±7% uncertainty is due to non-perturbative (5%), parametric (3%), higher

orders (3%) and mc-interpolation ambiguity (3%) [11].

The calculation can be divided into: 1. Matching conditions [12–20], 2. Anomalous di-

mensions [21–30], and 3. Matrix elements [31–50]. Matching conditions and anomalous di-

mensions are complete up to NNLO since a long time. Missing pieces includemc-dependent

matrix elements at NNLO [43, 51], as well as next-to-leading-order (NLO) matrix elements

proportional to penguin or CKM-suppressed current-current operators. The latter are for-

mally NLO but are suppressed by very small Wilson coefficients, and should indeed be

rather small, fitting within the estimated ∼ 3% uncertainty from higher orders [11, 52].

However, only a full calculation can provide precise knowledge of their true effect, and

we intend to do that here. This work constitutes part of an ongoing effort to reduce the

perturbative uncertainty down to a negligible level.

The B̄ → Xsγ rate is given by the inclusive partonic rate of the b quark, up to non-

perturbative effects that, for a photon energy cut E0 = 1.6GeV, are estimated at the level

of ∼ 5% [53],

Γ(B̄ → Xsγ)Eγ>E0 = Γ(b → Xparton
s γ)Eγ>E0 +O(1/mb) (1.3)

where b → Xparton
s γ denotes the partonic decay of the b quark into any number of particles

with an overall strangeness S=−1, plus a hard photon with Eγ>E0, and excluding charm:

Γ(b → Xparton
s γ) = Γ(b → sγ) + Γ(b → sgγ) + Γ(b → sqq̄γ) + · · · , (1.4)

with q = u, d, s. Each individual rate is an interference of different amplitudes, computed

as matrix elements of local operators in the effective Lagrangian:

Leff = LQED+QCD +
4GF√

2
V ∗
tsVtb

[
2∑

i=1

(Cu
i P

u
i + Cc

iP
c
i ) +

8∑
i=3

CiPi

]
+ h.c. , (1.5)

where the operators Pi are defined as [24]:

P q
1 = (s̄LγµT

aqL)(q̄Lγ
µT abL) , P q

2 = (s̄LγµqL)(q̄Lγ
µbL) ,

P3 = (s̄LγµbL)
∑

q(q̄γ
µq) , P4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq) ,

P5 = (s̄LγµγνγρbL)
∑

q(q̄γ
µγνγρq) , P6 = (s̄LγµγνγρT

abL)
∑

q(q̄γ
µγνγρT aq) ,

P7 = (e/16π2)mb(s̄Lσ
µνbR)Fµν , P8 = (gs/16π

2)mb(s̄Lσ
µνT abR)G

a
µν .

(1.6)

With this notation, Cq
1,2 contain CKM phases: Cq

1,2 = −λqC1,2, with λq ≡ V ∗
qsVqb/V

∗
tsVtb

and C1,2 defined in the usual way, e.g. ref. [24]. We will also use the notation C1u ≡ Cu
1 etc.

The other Wilson coefficients are simply C3,...,8 = C3,...,8 as in ref. [24].
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For more than two final state particles, the rate involves integration over phase space;

the photon spectrum opens up, and the rate depends on the photon-energy cut. The

perturbative contribution can be written, in the notation of ref. [40], as:

Γ(b → Xparton
s γ)Eγ>E0 = Γ0

∑
i,j

Ceff
i (µb)

∗ Ceff
j (µb) G̃ij(µb, δ) , (1.7)

summed over i, j = 1u, 2u, 3, . . . , 6, 1c, 2c, 7, 8, and with the normalization

Γ0 =
G2

Fm
5
bαe|V ∗

tsVtb|2

32π4
. (1.8)

The “effective” Wilson coefficients are Ceff
1q,2q,3,...,6 = C1q,2q,3,...,6, Ceff

7 = C7 − 1
3C3 −

4
3C4 −

20
3 C5 −

80
9 C6 and Ceff

8 = C8 + C3 − 1
6C4 + 20C5 − 10

3 C6. Throughout the paper we use the

NDR-MS scheme with fully anti-commuting γ5.

The objects G̃ij arise from the interference of operators Pi and Pj in the squared matrix

elements, integrated over phase space. They depend on the photon energy cut through the

variable δ ≡ 1− 2E0/mb. In the notation of ref. [43], where normalization to the inclusive

semileptonic b→u rate is used, Kij=G̃ij/Gu, with Gu=1+CF

(
25
2 − 12ζ2

)
αs
4π +O(α2

s) [54].

In this paper we focus on the four-body contributions to Γ(b → Xparton
s γ)Eγ>E0 , cor-

responding to Γ(b → sq̄qγ):

Γ(b → sq̄qγ)Eγ>E0 = Γ0

∑
i,j

Ceff
i (µb)

∗ Ceff
j (µb)Gij(µb, δ) , (1.9)

where we define Gij as the b → sq̄qγ contribution to G̃ij . In addition, we expand Gij as:

Gij(µ, δ) = G
(0)
ij (δ) +

αs(µ)

4π
G

(1)
ij (µ, δ) +O(α2

s) . (1.10)

There is a hierarchy in the size of the Wilson coefficients of the operators in eq. (1.6),

which can be divided into two classes:

A = {P c
1 , P

c
2 , P7, P8} ; B = {P u

1 , P
u
2 , P3, P4, P5, P6} . (1.11)

Operators in class A have large Wilson coefficients, whereas class-B operators have either

very small Wilson coefficients or are CKM-suppressed. Among the four-body leading and

next-to leading contributions we distinguish four groups:

• Tree-level (B,B) interference (figure 1.a). These are the leading-order (LO) contri-

butions and provide the complete matrix G(0)(δ). This matrix has been computed in

ref. [50].

• Tree-level (A,B) interference (figures 1.b and 1.c). These are NLO and provide the

matrix elements G
(1)
7j and G

(1)
8j , with j = 1u, 2u, 3, . . . , 6.

• One-loop (A,B) interference (figure 1.d). These are NLO and provide the matrix

elements G
(1)
ij , with i = 1c, 2c and j = 1u, 2u, 3, . . . , 6.
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For more than two final state particles, the rate involves integration over phase space;

the photon spectrum opens up, and the rate depends on the photon-energy cut. The

perturbative contribution can be written, in the notation of ref. [40], as:
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3 C6. Throughout the paper we use the
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elements, integrated over phase space. They depend on the photon energy cut through the

variable δ ≡ 1− 2E0/mb. In the notation of ref. [43], where normalization to the inclusive

semileptonic b→u rate is used, Kij=G̃ij/Gu, with Gu=1+CF

(
25
2 − 12ζ2

)
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4π +O(α2

s) [54].

In this paper we focus on the four-body contributions to Γ(b → Xparton
s γ)Eγ>E0 , cor-

responding to Γ(b → sq̄qγ):

Γ(b → sq̄qγ)Eγ>E0 = Γ0

∑
i,j

Ceff
i (µb)

∗ Ceff
j (µb)Gij(µb, δ) , (1.9)

where we define Gij as the b → sq̄qγ contribution to G̃ij . In addition, we expand Gij as:

Gij(µ, δ) = G
(0)
ij (δ) +

αs(µ)

4π
G

(1)
ij (µ, δ) +O(α2

s) . (1.10)

There is a hierarchy in the size of the Wilson coefficients of the operators in eq. (1.6),

which can be divided into two classes:

A = {P c
1 , P

c
2 , P7, P8} ; B = {P u

1 , P
u
2 , P3, P4, P5, P6} . (1.11)

Operators in class A have large Wilson coefficients, whereas class-B operators have either

very small Wilson coefficients or are CKM-suppressed. Among the four-body leading and

next-to leading contributions we distinguish four groups:

• Tree-level (B,B) interference (figure 1.a). These are the leading-order (LO) contri-

butions and provide the complete matrix G(0)(δ). This matrix has been computed in

ref. [50].

• Tree-level (A,B) interference (figures 1.b and 1.c). These are NLO and provide the

matrix elements G
(1)
7j and G

(1)
8j , with j = 1u, 2u, 3, . . . , 6.

• One-loop (A,B) interference (figure 1.d). These are NLO and provide the matrix

elements G
(1)
ij , with i = 1c, 2c and j = 1u, 2u, 3, . . . , 6.
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(a) (b) (c)

(d) (e) (f)

Pu
1 P4 P7 P4 P8 P4

P c
1 P4 Pu

1 P4 P3 P4

Figure 1. Sample cut-diagrams contributing to LO and NLO four-body matrix elements. In our

calculation we include all contributions but those from panel (f). See the text for details.

• One-loop (B,B) interference (figures 1.e and 1.f). The ones in panel (e) can be

obtained from the ones in panel (d) as discussed in section 2.1, and provide the

matrix elements G
(1)
ij , with i, j = 1u, 2u, 3, . . . , 6. The ones in panel (f) include five-

particle cuts since the one-loop four-body diagrams must be complemented with the

five-body gluon-bremsstrahlung correction b → sq̄qγ + g. We therefore leave the

contributions from panel (f) aside from the present four-body calculation.

We note that NLO (A,B) interference terms are presumably as large as the (B,B)

interference at the LO since C1u,2u,3,...,6 ∼ αs/π C1c,2c,7,8. For the same reason, the partly

neglected (B,B) interference terms at the NLO are expected to be much smaller than the

(A,B) interferences that we calculate in a complete manner. As a final comment, we note

that four-body NNLO contributions of the type b → sggγ are part of the calculation in

ref. [51], and do not interfere with our results.

The structure of the paper is the following. In section 2 we discuss the details of our

calculation and the structure of the different contributions, including the set of diagrams

needed, the UV renormalization, and the treatment of collinear divergences. In section 3

we collect the final results. In section 4 we perform a numerical study of all the evaluated

interferences. Section 5 contains our conclusions. In appendix A we collect some interme-

diate results of the calculation, where analytic cancellation of UV and collinear divergences

can be explicitly checked.
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2 Details of the calculation

The NLO calculation is performed in 4 steps:

1. Evaluation of the cut-diagrams shown in figures 2, 3, 4. We use the Cutkosky rules

for cut (on-shell) propagators, accounting for spin and color sums for all external

particles. The result of each diagram is a contribution to the differential decay rate

K(sij), a scalar function of the momentum invariants sij , i, j = 1, . . . , 4, with i �= j

(see sections 2.4 and 2.3.2).

2. Integration over the four-particle phase-space. This step is described in section 2.4.

3. Renormalization: this requires the evaluation of the tree-level diagrams with coun-

terterms shown in figure 5, and the corresponding phase-space integration. As a

bonus, this step allows one to check the LO result for G
(0)
ij of ref. [50]. This step is

described in section 2.5.

4. Collinear logarithms: having regularized collinear divergences in dimensional regular-

ization, we use the method of splitting functions [50, 55–58] to transform 1/εcoll poles

into collinear logarithms of the form log(mq/mb). This requires the computation of

the corresponding b → sq̄q corrections with subsequent photon emission q′ → q′γ

(with q′ = q, s), by evaluation of the diagrams shown in figure 6, the convolution

with the splitting function, and the three-particle phase-space integration. This step

is described in section 2.6.

We note that every diagram has to be computed inserting all the operators P1u,2u,3,...,6

to the right of the cut, and P1u,2u,1c,2c,3,...,8 to the left (see e.g. figure 1), leading to all the

different interference terms in the matrix G
(1)
ij . In section 2.1 we argue that most of the

elements of this matrix can be obtained from a reduced set by the use of different operator

relations and Fierz identities. In addition, this spells out transparently the dependence of

the full result on the Wilson coefficients before any calculation is performed. We will see

that — with one exception discussed at the end of section 2.1.3 — only diagrams with

P7,8,1c to the left of the cut and P4 to the right must be considered. This simplifies the

calculation considerably.

Finally, for each diagram in figures 2–6, there is the corresponding mirror image. These

“mirror” contributions are just obtained by complex conjugation, and ensure that the rate

is real, i.e. G
(1)
ij is hermitian. We disregard these mirror contributions in the calculation,

but at the end we substitute G
(1)
ij → G

(1)
ij +G

(1) ∗
ji .

2.1 Operator identities

2.1.1 Color

Diagrams with insertion of the color octet operators P4,6 are related to the ones with

insertion of color singlet operators P3,5 by a simple color factor, which can be obtained just
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Finally, for each diagram in figures 2–6, there is the corresponding mirror image. These

“mirror” contributions are just obtained by complex conjugation, and ensure that the rate
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(1)
ij is hermitian. We disregard these mirror contributions in the calculation,
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from the color structure of the gluon penguin:

(“straight”) −→

{
tr(T a) = 0 color singlet

tr(T bT a)T b = 1
2T

a color octet
(2.1)

(“crossed”) −→

{
T a color singlet

T bT aT b = − 1
2Nc

T a color octet
(2.2)

This leads to the rule that P3,5 can always be replaced by:

P3,5 → 0 (straight insertion) , (2.3)

P3,5 → −6P4,6 (crossed insertion) . (2.4)

For the same reason, one can always put P q
2 → −6P q

1 , meaning that Cq
1,2 always come in

the combination (Cq
1 − 6 Cq

2).

2.1.2 Insertions to the right of the cut

We restrict ourselves here to the insertion of operators to the right of the cut. Using the

4D identity γµγνγλ = gµνγλ + gνλγµ − gµλγν + iεµνλαγαγ5 we find:

P6 = 10P4 − 6P̃4 +O(ε) , (2.5)

where P̃4 =
∑

q(s̄Lγ
µT abL)(q̄γµγ5T

aq). We now consider the following “crossed” insertion

of P̃4 into a massless fermion loop with an arbitrary number of vector currents:

P̃4

= · · · γµPL · γµ1γµ2 · · · γµN · γµ︸ ︷︷ ︸
even # of γ’s

γ5 · · · =

−P4

(2.6)

There is always an even number of gamma matrices to the left of γ5, which can be moved

besides the projector PL. After that, the relationship PLγ5 = −PL provides the given

negative sign.

The “straight” insertion of P̃4 does not vanish in general but does not contribute in

our case: in the situation where one vector current is attached to the loop (figure 2), the

result is proportional to Tr[γµγνγργλγ5] ∼ εµνρλ, but there are not enough independent

momenta to be contracted with the antisymmetric tensor, so this contribution vanishes.

This is true also in the case where the photon couples twice to the quark loop (figure 4).

In the case of two current insertions (figure 3) the result is non-zero, but summing over

u, d, s quarks in the loop the result is proportional to Qu +Qd +Qs = 0.
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Summing up, in the diagrams with a P6 insertion one can always substitute:

P6 → 10P4 +O(ε) (straight insertion) ,

P6 → 16P4 +O(ε) (crossed insertion) . (2.7)

The replacement rules (2.7) combined with eqs. (2.3) and (2.4) imply that the full contri-

bution from P3,4,5,6 can be obtained from the terms proportional to C∗
4 :

Result(P3,4,5,6,straight) = (C∗
4 + 10 C∗

6)× Result(P4,straight), (2.8)

Result(P3,4,5,6,crossed) = (−6 C∗
3 + C∗

4 − 96 C∗
5 + 16 C∗

6)× Result(P4,crossed). (2.9)

Since this is based on a 4D identity, it is in principle only true up to evanescent terms.

Below we show that up to the needed order in ε these terms do not contribute. We have

also checked this by direct computation.

The (crossed) insertion of the operators P u
1,2 can also be obtained from P4 by an

argument almost identical to that of eq. (2.6). In this case one must pay attention to

the case where the photon couples to the loop, where the P4 and P u
1,2 contributions are

proportional to different charge factors.

2.1.3 Insertions to the left of the cut

We have shown that we only need to compute diagrams with an insertion of P4 to the

right of the cut. To the left of the cut we must insert P7,8 as well as P3,4,5,6 and P u,c
1,2 . As

before, P2,3,5 contributions are related to P1,4,6 by a simple color factor. In addition, the

contribution from P u
1 is obtained from the P c

1 insertion with the replacement mc → 0. We

now show that insertions of P4,6 are also known from the insertions of P7, P8 and P c
1 .

First we consider the case of the photon penguin, where the gluon does not couple to

the fermion loop to the left of the cut. By direct inspection be find that:

b s

q
µ

∣∣∣∣∣∣∣∣∣∣
q2=0

= − ie

(4π)2
(Ceff

7 +O(ε))mb[q/, γ
µ]PR +Xq/qµPL , (2.10)

where Ceff
7 = C7 − C3/3 − 4 C4/3 − 20 C5/3 − 80 C6/9 is the usual “effective” Wilson coeffi-

cient [25], which includes the contributions from b-quark loops. The O(ε) corrections are

irrelevant to our calculation as the contributions from P7 are finite. The term Xq/qµ denotes

the contribution from four-quark operators proportional to the structure [q/qµ−q2γµ]. This

last term does not contribute in our case. To see this, consider the insertion of P1,2 into

the full diagram:

Γµν

qµ
kν

P1,2

∼ · · ·Γµν · · · (q/qµ − q2γµ)PL · · · = 0 . (2.11)
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irrelevant to our calculation as the contributions from P7 are finite. The term Xq/qµ denotes
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Here the gluon is attached to either ‘×’. Since we cut the photon propagator, the photon

is on-shell but there is no q2 denominator, and therefore the q2 term cancels. The term q/qµ
also cancels due to the Ward identity qµΓ

µν = 0. Note that non-zero contributions to the

Ward identity vanish since they either involve a massless fermion tadpole, or if the gluon

couples to the loop then it does not depend on the incoming/outgoing quark momenta.

We have also checked this result by explicit computation, and indeed the different sets of

diagrams satisfying the Ward identity vanish identically.

To summarize: all contributions from photon penguins to the left of the cut are ob-

tained from the diagrams with insertion of P7 by the replacement C7 → Ceff
7 .

Next, we consider the case of the gluon penguin, where the photon does not couple to

the fermion loop to the left of the cut. We find:

b s

q
µ, a

= − igs
(4π)2

[
(Ceff

8 +O(ε))mbT
a[q/, γµ]PR +XT a(q/qµ − q2γµ)PL

]
,

(2.12)

where Ceff
8 = C8 + C3 − C4/6 + 20 C5 − 10 C6/3, as usual (e.g. ref. [37]). As before, O(ε)

corrections to the chromomagnetic contribution are irrelevant for our calculation because

contributions from P8 are UV-finite (collinear divergences are inconsequential here). In the

last term, the quantity X is given by:

X = −1

6

[
(Cc

1 − 6 Cc
2) g(mc) + (Cu

1 − 6 Cu
2 ) g(0) + (C4 − 6 C3)[g(0) + g(mb)]

+(4 C6 − 24 C5)(4− ε− ε2) [g(0) + g(mb)]

−6 C4 + (60− 36ε)C6
1− ε

[n� g(0) + g(mc) + g(mb)]

]
, (2.13)

where n� = 3 is the number of light flavors and

g(m) =
2

3
(1− ε)µ2εeεγEm−2ε Γ(ε) 2F1(ε, 2; 5/2; q

2/4m2) (2.14)

is the loop integral to all orders in ε. Therefore, all contributions from gluon penguins to

the left of the cut are known from the contribution of P8 and P c
1 .

Now we consider the case in which both the photon and the gluon couple to the loop:

b s

µ ν

=

P c
1,2

c +

Pu
1,2

u +

P6

q

+

P3,4,5,6

s +

P3,4,5,6

b (2.15)
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When inserted into the full diagrams, these contributions are both UV-finite and collinear

safe,2 and we can use 4D identities. The first term in the right-hand side of eq. (2.15) can

be written as Qu(Cc
1 − 6Cc

2)h
µν(mc), which defines the function hµν(m). The second term

can be obtained from the first term by the replacement mc → 0: Qu(Cu
1 − 6Cu

2 )h
µν(0). The

third term (q = u, d, s, c, b) contains only the insertion of P6, because P3,5 insertions are

zero due to color, while the insertion of P4 vanishes due to Furry’s theorem. For P6 we can

make use of the Fierz identity:3

P q
1 = − 4

27
P q
3 +

1

9
P q
4 +

1

27
P q
5 − 1

36
P q
6 +O(ε) , (2.16)

which implies that we can trade the straight insertion of P q
6 with the crossed insertion of

−36P q
1 . Note also that the contributions from q = u, d, s add up to zero in the massless

limit due to electric charge: Qu+Qd+Qs = 0. This means that the third term in eq. (2.15)

is given by −36 C6(Quh
µν(mc) +Qdh

µν(mb)).

The fourth term can be obtained from the first one using the identities in eqs. (2.5)

and (2.6), leading to: Qd(−6 C3 + C4 − 96 C5 + 16 C6)hµν(0). The fifth term cannot be

completely determined from the insertion of P1 due to the chirality structure. Using the

Fierz identity (2.5) we can trade P b
6 → 4P b

4 + 12P b
1 . The second piece, together with the

corresponding contribution from P5, results in Qd(−72 C5 + 12 C6)hµν(mb). The rest will

provide a term Qd(−6 C3 + C4 − 24 C5 + 4 C6)h̃µν(mb), where h̃µν �= hµν . Altogether, the

right-hand side of eq. (2.15) can be written as:

Qu(Cc
1 − 6Cc

2)h
µν(mc) +Qu(Cu

1 − 6Cu
2 )h

µν(0)− 36 C6Quh
µν(mc)

−Qd(72 C5 + 24 C6)hµν(mb) +Qd(−6 C3 + C4 − 96 C5 + 16 C6)hµν(0)
+Qd(−6 C3 + C4 − 24 C5 + 4 C6)h̃µν(mb) . (2.17)

Therefore only diagrams with insertions of the operators P7,8 and P c
1 to the left of the

cut need to be calculated, plus the extra contribution from h̃µν(mb). All these relationships

shape the structure of the full results displayed below in the following sections.

2.2 Set of diagrams

There are three types of diagrams:

Type (i). The photon does not couple to the cut fermion loop (figure 2): in this case

crossed and straight diagrams contribute. In addition, straight diagrams contain a factor

n�. All in all, the contribution from these diagrams is:

Dk
(i) = Qd

[
n� (C∗

4+10 C∗
6)〈P4〉s,k(i) + (Cu∗

1 − 6 Cu∗
2 − 6 C∗

3 + C∗
4−96 C∗

5+16 C∗
6)〈P4〉×,k

(i)

]
, (2.18)

where 〈P4〉s,k(J) and 〈P4〉×,k
(J) denote the contributions to (Pk, P4) interference terms from

straight and crossed insertions of the operator P4 to the right of the cut, to diagrams of

type (J), respectively.

2We consider always the sum of the two diagrams obtained by swapping the gluon and photon insertions.
3Here we use the notation Pu

3 = (s̄LγµbL)(ūγ
µu), etc.
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When inserted into the full diagrams, these contributions are both UV-finite and collinear

safe,2 and we can use 4D identities. The first term in the right-hand side of eq. (2.15) can

be written as Qu(Cc
1 − 6Cc

2)h
µν(mc), which defines the function hµν(m). The second term

can be obtained from the first term by the replacement mc → 0: Qu(Cu
1 − 6Cu

2 )h
µν(0). The

third term (q = u, d, s, c, b) contains only the insertion of P6, because P3,5 insertions are

zero due to color, while the insertion of P4 vanishes due to Furry’s theorem. For P6 we can

make use of the Fierz identity:3

P q
1 = − 4

27
P q
3 +

1

9
P q
4 +

1

27
P q
5 − 1

36
P q
6 +O(ε) , (2.16)

which implies that we can trade the straight insertion of P q
6 with the crossed insertion of

−36P q
1 . Note also that the contributions from q = u, d, s add up to zero in the massless

limit due to electric charge: Qu+Qd+Qs = 0. This means that the third term in eq. (2.15)

is given by −36 C6(Quh
µν(mc) +Qdh

µν(mb)).

The fourth term can be obtained from the first one using the identities in eqs. (2.5)

and (2.6), leading to: Qd(−6 C3 + C4 − 96 C5 + 16 C6)hµν(0). The fifth term cannot be

completely determined from the insertion of P1 due to the chirality structure. Using the

Fierz identity (2.5) we can trade P b
6 → 4P b

4 + 12P b
1 . The second piece, together with the

corresponding contribution from P5, results in Qd(−72 C5 + 12 C6)hµν(mb). The rest will

provide a term Qd(−6 C3 + C4 − 24 C5 + 4 C6)h̃µν(mb), where h̃µν �= hµν . Altogether, the

right-hand side of eq. (2.15) can be written as:

Qu(Cc
1 − 6Cc

2)h
µν(mc) +Qu(Cu

1 − 6Cu
2 )h

µν(0)− 36 C6Quh
µν(mc)

−Qd(72 C5 + 24 C6)hµν(mb) +Qd(−6 C3 + C4 − 96 C5 + 16 C6)hµν(0)
+Qd(−6 C3 + C4 − 24 C5 + 4 C6)h̃µν(mb) . (2.17)

Therefore only diagrams with insertions of the operators P7,8 and P c
1 to the left of the

cut need to be calculated, plus the extra contribution from h̃µν(mb). All these relationships

shape the structure of the full results displayed below in the following sections.

2.2 Set of diagrams

There are three types of diagrams:

Type (i). The photon does not couple to the cut fermion loop (figure 2): in this case

crossed and straight diagrams contribute. In addition, straight diagrams contain a factor

n�. All in all, the contribution from these diagrams is:

Dk
(i) = Qd

[
n� (C∗

4+10 C∗
6)〈P4〉s,k(i) + (Cu∗

1 − 6 Cu∗
2 − 6 C∗

3 + C∗
4−96 C∗

5+16 C∗
6)〈P4〉×,k

(i)

]
, (2.18)

where 〈P4〉s,k(J) and 〈P4〉×,k
(J) denote the contributions to (Pk, P4) interference terms from

straight and crossed insertions of the operator P4 to the right of the cut, to diagrams of

type (J), respectively.

2We consider always the sum of the two diagrams obtained by swapping the gluon and photon insertions.
3Here we use the notation Pu

3 = (s̄LγµbL)(ūγ
µu), etc.
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Figure 2. Diagrams of type (i). Crosses denote alternative insertions of the photon vertex (always

one vertex at each side of the cut). Circle-cross denotes the alternative insertion of the gluon vertex.

Figure 3. Diagrams of type (ii). Crosses denote alternative insertions of the photon vertex (always

one vertex at each side of the cut). Circle-cross denotes the alternative insertion of the gluon vertex.

Type (ii). The photon couples to the cut fermion loop once (figure 3): in this case the

straight diagrams are proportional to Qu +Qd +Qs = 0 and need not be considered. The

P u
1,2 contributions are proportional to Qu. Therefore the total contribution from these

diagrams is:

Dk
(ii) =

[
Qd

(
− 6 C∗

3 + C∗
4 − 96 C∗

5 + 16 C∗
6

)
+Qu (Cu∗

1 − 6 Cu∗
2 )

]
〈P4〉×,k

(ii) . (2.19)

Type (iii). The photon couples to the cut fermion loop twice (figure 4): in this case

crossed diagrams are proportional to Q2
s = Q2

d (or Q2
u in the case of P u

1,2) and straight

diagrams to Q2
u +Q2

d +Q2
s = Q2

u + 2Q2
d. We have:

Dk
(iii) = [Q2

u + 2Q2
d]
(
C∗
4 + 10 C∗

6

)
〈P4〉s,k(iii)

+
[
Q2

d

(
− 6 C∗

3 + C∗
4 − 96 C∗

5 + 16 C∗
6

)
+Q2

u (Cu∗
1 − 6 Cu∗

2 )
]
〈P4〉×,k

(iii) . (2.20)

We assume that the objects 〈P4〉I,k(J) are phase-space-integrated matrix elements containing

no prefactors or couplings, such that:

∑
i=3,...,8,1q,2q
j=3,...,6,1u,2u

C∗
i Cj G

(1)
ij =

∑
J=i,ii,iii

[
DC

(J) +
∑

k=3,...,8,1q,2q

Dk
(J)

]
(2.21)
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in the notation of eq. (1.9). In eq. (2.21), DC
(J) denotes the UV counterterms, and both

DC
(J),D

k
(J) include the relevant collinear counterterms. Both are discussed below in sec-

tions 2.5 and 2.6. The structure of the objects 〈P4〉(s,×),k
(J) can be deduced from the discus-

sion in section 2.1.3. In the case of P7,8 we have:

〈P4〉I,7(J) = Ceff
7 FI,7

(J)(δ) for (I, J) = (s, i), (×, i), (×, ii) ,

〈P4〉I,8(J) = Ceff
8 Qd F̂I,8

(J)(δ) for (I, J) = (s, i), (×, i), (×, ii) ,

〈P4〉I,8(J) = Ceff
8 F̂I,8

(J)(δ) for I = s,× and J = iii . (2.22)

For P
(u)
1,2 we have:

∑
k=1,2

〈P4〉I,k(J) = (Cc
1 − 6 Cc

2)
[
QdF̂I,1

(J)(zc, δ) +QuF̃I,1
(J)(zc, δ)

]

for (I, J) = (s, i), (×, i), (×, ii) ,
∑
k=1,2

〈P4〉I,k(J) = (Cc
1 − 6 Cc

2) F̂
I,1
(J)(zc, δ) for I = s,× and J = iii , (2.23)

∑
k=1u,2u

〈P4〉I,k(J) = (Cu
1 − 6 Cu

2 )
[
QdF̂I,1

(J)(0, δ) +QuF̃I,1
(J)(0, δ)

]

for (I, J) = (s, i), (×, i), (×, ii) ,
∑

k=1u,2u

〈P4〉I,k(J) = (Cu
1 − 6 Cu

2 ) F̂
I,1
(J)(0, δ) for I = s,× and J = iii , (2.24)

where zc ≡ m2
c/m

2
b . The contributions with penguin operators to the left of the cut are

given by:
∑

k=3...6

〈P4〉I,k(J) = (C4 − 6 C3)Qd

[
F̂I,1
(J)(0, δ) + F̂I,1

(J)(1, δ) + F̃I,1
(J)(0, δ)

]

+4(C6 − 6 C5)Qd

[
(4− ε)

(
F̂I,1
(J)(0, δ) + F̂I,1

(J)(1, δ)
)
+ 4 F̃I,1

(J)(0, δ)
]

−6 C4 + (60− 36ε) C6
1− ε

Qd

[
n� F̂I,1

(J)(0, δ) + F̂I,1
(J)(zc, δ) + F̂I,1

(J)(1, δ)
]

−36 C6Qu F̃I,1
(J)(zc, δ)− 24(3 C5 + C6)Qd F̃I,1

(J)(1, δ)

+(−6 C3 + C4 − 24 C5 + 4 C6)Qd F̃I,4
(J)(δ)

for (I, J) = (s, i), (×, i), (×, ii) ,

∑
k=3...6

〈P4〉I,k(J) =
[
(C4 − 6 C3) + 4(4− ε)(C6 − 6 C5)

] [
F̂I,1
(J)(0, δ) + F̂I,1

(J)(1, δ)
]

−6 C4 + (60− 36ε) C6
1− ε

[
n� F̂I,1

(J)(0, δ) + F̂I,1
(J)(zc, δ) + F̂I,1

(J)(1, δ)
]

for I = s,× and J = iii . (2.25)
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in the notation of eq. (1.9). In eq. (2.21), DC
(J) denotes the UV counterterms, and both

DC
(J),D

k
(J) include the relevant collinear counterterms. Both are discussed below in sec-

tions 2.5 and 2.6. The structure of the objects 〈P4〉(s,×),k
(J) can be deduced from the discus-

sion in section 2.1.3. In the case of P7,8 we have:

〈P4〉I,7(J) = Ceff
7 FI,7

(J)(δ) for (I, J) = (s, i), (×, i), (×, ii) ,

〈P4〉I,8(J) = Ceff
8 Qd F̂I,8

(J)(δ) for (I, J) = (s, i), (×, i), (×, ii) ,

〈P4〉I,8(J) = Ceff
8 F̂I,8

(J)(δ) for I = s,× and J = iii . (2.22)

For P
(u)
1,2 we have:

∑
k=1,2

〈P4〉I,k(J) = (Cc
1 − 6 Cc

2)
[
QdF̂I,1

(J)(zc, δ) +QuF̃I,1
(J)(zc, δ)

]

for (I, J) = (s, i), (×, i), (×, ii) ,
∑
k=1,2

〈P4〉I,k(J) = (Cc
1 − 6 Cc

2) F̂
I,1
(J)(zc, δ) for I = s,× and J = iii , (2.23)

∑
k=1u,2u

〈P4〉I,k(J) = (Cu
1 − 6 Cu

2 )
[
QdF̂I,1

(J)(0, δ) +QuF̃I,1
(J)(0, δ)

]

for (I, J) = (s, i), (×, i), (×, ii) ,
∑

k=1u,2u

〈P4〉I,k(J) = (Cu
1 − 6 Cu

2 ) F̂
I,1
(J)(0, δ) for I = s,× and J = iii , (2.24)

where zc ≡ m2
c/m

2
b . The contributions with penguin operators to the left of the cut are

given by:
∑

k=3...6

〈P4〉I,k(J) = (C4 − 6 C3)Qd

[
F̂I,1
(J)(0, δ) + F̂I,1

(J)(1, δ) + F̃I,1
(J)(0, δ)

]

+4(C6 − 6 C5)Qd

[
(4− ε)

(
F̂I,1
(J)(0, δ) + F̂I,1

(J)(1, δ)
)
+ 4 F̃I,1

(J)(0, δ)
]

−6 C4 + (60− 36ε) C6
1− ε

Qd

[
n� F̂I,1

(J)(0, δ) + F̂I,1
(J)(zc, δ) + F̂I,1

(J)(1, δ)
]

−36 C6Qu F̃I,1
(J)(zc, δ)− 24(3 C5 + C6)Qd F̃I,1

(J)(1, δ)

+(−6 C3 + C4 − 24 C5 + 4 C6)Qd F̃I,4
(J)(δ)

for (I, J) = (s, i), (×, i), (×, ii) ,

∑
k=3...6

〈P4〉I,k(J) =
[
(C4 − 6 C3) + 4(4− ε)(C6 − 6 C5)

] [
F̂I,1
(J)(0, δ) + F̂I,1

(J)(1, δ)
]

−6 C4 + (60− 36ε) C6
1− ε

[
n� F̂I,1

(J)(0, δ) + F̂I,1
(J)(zc, δ) + F̂I,1

(J)(1, δ)
]

for I = s,× and J = iii . (2.25)
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Figure 4. Diagrams of type (iii). Crosses denote alternative insertions of the photon vertex (always

one vertex at each side of the cut).

The functions F̂I,k
(J) = FI,k

(J) + FI,k
coll(J) include the collinear regulators discussed in sec-

tion 2.6. The functions F̃I,1
(J) and F̃I,4

(J) are related to diagrams where the photon couples

to the left-hand quark loop, corresponding respectively to the terms with hµν and h̃µν in

eq. (2.17). Explicit results for all these functions are collected in appendix A.

2.3 Other details

2.3.1 Irrelevance of evanescent terms to the right of the cut

In the case of (P7, Pi) interference, there are no UV or collinear divergences, and therefore

evanescent structures are irrelevant for the O(ε0) result.

In the case of (P8, Pi) interference, collinear divergences appear which combined with

evanescent terms give finite contributions in the dimensionally regularized result. However

these finite terms cancel when we express the dimensional regulators in terms of logarithms

of masses, via the splitting-function approach (see section 2.6):

dΓ

dx
=

dΓε

dx
+

dΓshift

dx
+ ε

(
dΓEv

ε

dx
+

dΓEv
shift

dx

)
=

dΓmass reg.

dx
+O(ε) (2.26)

since the 1/ε terms cancel in both 4D and evanescent terms separately.

In the case of (P1,2, Pi) interference, UV and collinear divergences are nested inside

dimensionally regularized expressions. However all UV divergences cancel against coun-

terterm diagrams, including finite terms from evanescent operators:

εOEVP1,2

+

εOEVC1,2

= ε

(
1

εcoll
+UV finite

)
(2.27)

All “finite” terms from collinear divergences now disappear when going to mass regular-

ization, as in the case with P8.

2.3.2 Cancellation of iεµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 terms

Traces with γ5 will introduce terms proportional to iεµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 in the differential decay

rate. Here we show that these terms always cancel if we perform a full angular integration

over phase-space.
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Consider fixing all double invariants ki · kj . Then all ki are fixed only up to an Euler

rotation and an orientation. To see this go to the rest frame of the b-quark. Momentum

conservation fixes all the energies (since ki · pb are fixed). This implies that �ki · �kj are also

fixed. We can rotate the frame to put �k1 along the positive z axis, and �k2 in the (y, z) plane.

Then �k3 is fixed only up to a two-fold ambiguity (an orientation), given by the sign of its

x component. Once this sign is chosen k4 is also fixed. This proves that iεµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 is

fixed by ki · kj up to a sign, which is given by the orientation of (�k1, �k2, �k3).

Now consider phase-space integration. Terms in the integrand of the form F (ki · kj)
do not depend on the Euler rotation nor the orientation, and the angular integral over

dΩ3dΩ2dΩ1 can always be performed trivially, giving a factor 16π2. Terms of the form

F (ki ·kj)εµνρσkµ1 kν2k
ρ
3k

σ
4 , however, change sign under change of orientation, and vanish upon

integration over dΩ1. Obviously parity-odd terms cancel out in parity-even observables.

Therefore we drop these terms from the beginning in the calculation of the integrated

decay rate.

2.4 Phase-space integration

The phase-space measure for a (1 → 4) decay of a particle of mass M into four massless

particles with momenta k1,2,3,4 is given in terms of kinematic invariants by [59]:

dPS4 = µ̃6ε 25−5dπ4−3dM3d−8 (−∆4)
d−5
2 δ(1− s12 − s13 − s14 − s23 − s24 − s34)

×Θ(−∆4) dΩd−1 dΩd−2 dΩd−3 ds12 ds13 ds14 ds23 ds24 ds34 , (2.28)

where sij = 2ki · kj/M2 (0 ≤ sij ≤ 1), and ∆4 is the Gram determinant:

+ ∆4 = s212s
2
34 + s213s

2
24 + s214s

2
23 − 2s12s34s13s24 − 2s12s34s14s23 − 2s13s24s14s23 . (2.29)

The unpolarized decay rate is given by the phase-space integral:

Γ =
1

2M

1

2Nc

∫ ∑
|M|2dPS4 (2.30)

where the sum runs over the spins and color of all particles (we assume the parent is a

color triplet).
∑

|M|2 depends only on sij :
∑

|M|2 ≡ K(sij), so the angular integrations

can be performed trivially:

∫
dΩd−1 dΩd−2 dΩd−3 =

8π
3d−6

2

Γ(d−1
2 )Γ(d−2

2 )Γ(d−3
2 )

, (2.31)

and the general formula for the decay rate becomes

Γ =
µ̃6ε 28−5d π1−3d/2M3d−9

4NcΓ(
d−1
2 )Γ(d−2

2 )Γ(d−3
2 )

∫
[dsij ] δ(1−

∑
sij)K(sij)(−∆4)

d−5
2 Θ(−∆4) . (2.32)

This integral might contain soft and/or collinear divergences associated to regions of phase

space where some particles are soft or collinear. These divergences can be regularized in

dimensional regularization by setting d = 4 − 2ε. If we insist on integrating over these
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Consider fixing all double invariants ki · kj . Then all ki are fixed only up to an Euler

rotation and an orientation. To see this go to the rest frame of the b-quark. Momentum

conservation fixes all the energies (since ki · pb are fixed). This implies that �ki · �kj are also

fixed. We can rotate the frame to put �k1 along the positive z axis, and �k2 in the (y, z) plane.

Then �k3 is fixed only up to a two-fold ambiguity (an orientation), given by the sign of its

x component. Once this sign is chosen k4 is also fixed. This proves that iεµνρσk
µ
1 k

ν
2k

ρ
3k

σ
4 is

fixed by ki · kj up to a sign, which is given by the orientation of (�k1, �k2, �k3).

Now consider phase-space integration. Terms in the integrand of the form F (ki · kj)
do not depend on the Euler rotation nor the orientation, and the angular integral over

dΩ3dΩ2dΩ1 can always be performed trivially, giving a factor 16π2. Terms of the form

F (ki ·kj)εµνρσkµ1 kν2k
ρ
3k

σ
4 , however, change sign under change of orientation, and vanish upon

integration over dΩ1. Obviously parity-odd terms cancel out in parity-even observables.

Therefore we drop these terms from the beginning in the calculation of the integrated

decay rate.

2.4 Phase-space integration

The phase-space measure for a (1 → 4) decay of a particle of mass M into four massless

particles with momenta k1,2,3,4 is given in terms of kinematic invariants by [59]:

dPS4 = µ̃6ε 25−5dπ4−3dM3d−8 (−∆4)
d−5
2 δ(1− s12 − s13 − s14 − s23 − s24 − s34)

×Θ(−∆4) dΩd−1 dΩd−2 dΩd−3 ds12 ds13 ds14 ds23 ds24 ds34 , (2.28)

where sij = 2ki · kj/M2 (0 ≤ sij ≤ 1), and ∆4 is the Gram determinant:

+ ∆4 = s212s
2
34 + s213s

2
24 + s214s

2
23 − 2s12s34s13s24 − 2s12s34s14s23 − 2s13s24s14s23 . (2.29)

The unpolarized decay rate is given by the phase-space integral:

Γ =
1

2M

1

2Nc

∫ ∑
|M|2dPS4 (2.30)

where the sum runs over the spins and color of all particles (we assume the parent is a

color triplet).
∑

|M|2 depends only on sij :
∑

|M|2 ≡ K(sij), so the angular integrations

can be performed trivially:

∫
dΩd−1 dΩd−2 dΩd−3 =

8π
3d−6

2

Γ(d−1
2 )Γ(d−2

2 )Γ(d−3
2 )

, (2.31)

and the general formula for the decay rate becomes

Γ =
µ̃6ε 28−5d π1−3d/2M3d−9

4NcΓ(
d−1
2 )Γ(d−2

2 )Γ(d−3
2 )

∫
[dsij ] δ(1−

∑
sij)K(sij)(−∆4)

d−5
2 Θ(−∆4) . (2.32)

This integral might contain soft and/or collinear divergences associated to regions of phase

space where some particles are soft or collinear. These divergences can be regularized in

dimensional regularization by setting d = 4 − 2ε. If we insist on integrating over these
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regions, one must include virtual corrections to cancel the divergences. Otherwise, the

regulator must be traded by a physical cutoff at a later stage.

We now specify to the b → q(k1)q̄(k2)s(k3)γ(k4) case. We consider a cut on the photon

energy Eγ > E0 ≡ mb
2 (1 − δ) (in the b quark rest frame), which defines the parameter δ.

This translates into the constraint s14+s24+s34 > 1−δ, which can be included in the phase-

space integral in the following way. We include a delta function δ(1− z − s14 − s24 − s34)

in the integrand, and we integrate over the new variable z from 0 to δ:
∫ δ

0
dz

∫ 1

0
[dsij ] δ(1−z−s14−s24−s34)δ(z−s12−s23−s13)K(sij)(−∆4)

d−5
2 Θ(−∆4) . (2.33)

The delta functions can be used to integrate over two invariants, e.g. s13 and s24:

ΓEγ>E0 = N(d)

∫ δ

0
dz

∫ z̄

0
ds34

∫ z̄−s34

0
ds14

∫ z

0
ds12

∫ z−s12

0
ds23 K(sij)(−∆4)

d−5
2 Θ(−∆4)

∣∣∣
s13,s24

(2.34)

where z̄ ≡ 1− z, and N(d) is given by the prefactor in eq. (2.32), and the substitution rule

X|s13,s24 corresponds to s13 → z − s12 − s23 and s24 → z̄ − s14 − s34. The next integration

can be performed over an invariant that appears only polynomially in K (see e.g. [60]). It

is easy to see that s23 always satisfies this criterion by checking the uncut propagators in

figures 2, 3, 4 and the loop functions. Upon substitution of s13, s24, the Gram determinant

remains quadratic in s23: −∆4 = (z̄− s34)
2(a+− s23)(s23− a−), where a± are complicated

functions of the rest of the invariants:

(z̄ − s34)
2a± = (z̄ − s34)[z(z̄ − s34)(1− s14)− s12(z̄ − s14)(z̄ + s34)]± 2

√
Ξ , (2.35)

Ξ = s12s14s34(s14 + s34 − z̄)[zs34 − z̄(z − s12)] . (2.36)

Thus, −∆4 is positive only if a± are real (happening only if s34 < z̄(z − s12)/z < z̄), and

for a− < s23 < a+. In addition, a− > 0. This sets the integration limits for s23 and s34
imposed by the Θ-function, which can then be dropped:

ΓEγ>E0 = N(d)

∫ δ

0
dz

∫ z

0
ds12

∫ z̄(z−s12)/z

0
ds34

∫ z̄−s34

0
ds14

∫ a+

a−
ds23 K(sij)(−∆4)

d−5
2

∣∣∣
s13,s24

. (2.37)

Now it is convenient to perform the following changes of variables:

s12 = zvw s34 = z̄v̄

s14 = z̄vx s23 = (a+ − a−)u+ a−
(2.38)

where u, v, w, x are integrated independently from 0 to 1, and

(a+ − a−) = 4z(v̄ww̄xx̄)1/2 , (2.39)

a− = z
[
v̄wx+ w̄x̄− 2(v̄ww̄xx̄)−1/2

]
. (2.40)

This gives

ΓEγ>E0 = N(d)

∫ δ

0
dz z z̄d−3

∫ 1

0
du dv dw dx (uū)

d−5
2 vd−3(a+ − a−)d−4 K

= N(d) 4d−4

∫ δ

0
dz (zz̄)d−3

∫ 1

0
du dv dw dx (uū)

d−5
2 vd−3(v̄ww̄xx̄)

d−4
2 K . (2.41)
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In the following we must consider the kernel K(u, v, w, x, z). As mentioned above, K is

polynomial in s23: K =
∑

fn(v, w, x, z)s
n
23. Expanding s23 according to (2.38)–(2.40) will

provide a sum of terms of the form

K =
∑
m,n

fn,m(v, w, x, z) um , (2.42)

and the integral over the variable u gives a factor β
(
d−3
2 +m, d−3

2

)
for each term. The next

steps depend on the diagram at hand. Consider the diagrams with P7,8. In this case,

fn,m(v, w, x, z) = va v̄bwc w̄e xf x̄g zh z̄p (1− z̄v̄)q (1− zw̄)r (2.43)

for some a, b, c, . . . ∈ R. The integral over x gives again a β-function: β
(
d−2
2 + f, d−2

2 + g
)
.

Because of the (1− z̄v̄)q and (1−zw̄)r factors, the next steps will introduce hypergeometric

functions. The integral over v gives

β

(
d− 2 + a,

d− 2

2
+ e

)
2F1

(
−q,

d− 2

2
+ b;

3d− 6

2
+ a+ b; z̄

)
, (2.44)

and the integral over w, gives:

β

(
d− 2

2
+ c,

d− 2

2
+ e

)
2F1

(
−r,

d− 2

2
+ e; d− 2 + c+ e; z

)
. (2.45)

The next step is to expand around ε → 0 (with d = 4 − 2ε). The expansion of hyperge-

ometric functions is performed automatically by the package HypExp [61]. This will give

finite results in the case of P7, but 1/ε poles in the case of P8, corresponding to collinear

divergences. The integration over the photon energy z ∈ (0, δ) can then be performed, also

analytically, for all terms.

The case of loop diagrams is in principle more complicated, as the function K contains

already a hypergeometric function. For instance, in the case of diagrams (i) with the

photon not attaching to the quark loop, the variable s12 appears in the function g(mq) ∼
2F1(ε, 2;

5
2 ;

s12
4zq

) (cf. eq. (2.14)). However, by a suitable choice in the order of integration,

analytic results can be obtained as before. In the case of diagrams such as (iii), the

hypergeometric function depends on the triple invariant s124 = s12 + s14 + s24, and the

sequential-integration procedure described above does not seem to work up to finite order

in ε. In this case we extract all the 1/ε2 and 1/ε poles analytically and leave the finite

terms differential in one of the variables, which we integrate numerically afterwards. This

is also the case for the diagrams where the photon couples to the charm loop, which are

both UV and collinear finite. In general, for the loop contributions, some finite terms turn

out to be complicated functions of δ and zc ≡ m2
c/m

2
b . We give these results as polynomial

expansions in δ around the physical value δ = 0.316. The coefficients of this expansion

are presented as numerical interpolations in the variable zc, reproducing the exact results

to enough precision for all practical purposes. We have checked that the interpolated

expressions in the appendix reproduce the exact results with high precision in the full

range zc ∈ (0, 1) for values of δ near 0.316.
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In the following we must consider the kernel K(u, v, w, x, z). As mentioned above, K is

polynomial in s23: K =
∑

fn(v, w, x, z)s
n
23. Expanding s23 according to (2.38)–(2.40) will

provide a sum of terms of the form

K =
∑
m,n

fn,m(v, w, x, z) um , (2.42)

and the integral over the variable u gives a factor β
(
d−3
2 +m, d−3

2

)
for each term. The next

steps depend on the diagram at hand. Consider the diagrams with P7,8. In this case,

fn,m(v, w, x, z) = va v̄bwc w̄e xf x̄g zh z̄p (1− z̄v̄)q (1− zw̄)r (2.43)

for some a, b, c, . . . ∈ R. The integral over x gives again a β-function: β
(
d−2
2 + f, d−2

2 + g
)
.

Because of the (1− z̄v̄)q and (1−zw̄)r factors, the next steps will introduce hypergeometric

functions. The integral over v gives

β

(
d− 2 + a,

d− 2

2
+ e

)
2F1

(
−q,

d− 2

2
+ b;

3d− 6

2
+ a+ b; z̄

)
, (2.44)

and the integral over w, gives:

β

(
d− 2

2
+ c,

d− 2

2
+ e

)
2F1

(
−r,

d− 2

2
+ e; d− 2 + c+ e; z

)
. (2.45)

The next step is to expand around ε → 0 (with d = 4 − 2ε). The expansion of hyperge-

ometric functions is performed automatically by the package HypExp [61]. This will give

finite results in the case of P7, but 1/ε poles in the case of P8, corresponding to collinear

divergences. The integration over the photon energy z ∈ (0, δ) can then be performed, also

analytically, for all terms.

The case of loop diagrams is in principle more complicated, as the function K contains

already a hypergeometric function. For instance, in the case of diagrams (i) with the

photon not attaching to the quark loop, the variable s12 appears in the function g(mq) ∼
2F1(ε, 2;

5
2 ;

s12
4zq

) (cf. eq. (2.14)). However, by a suitable choice in the order of integration,

analytic results can be obtained as before. In the case of diagrams such as (iii), the

hypergeometric function depends on the triple invariant s124 = s12 + s14 + s24, and the

sequential-integration procedure described above does not seem to work up to finite order

in ε. In this case we extract all the 1/ε2 and 1/ε poles analytically and leave the finite

terms differential in one of the variables, which we integrate numerically afterwards. This

is also the case for the diagrams where the photon couples to the charm loop, which are

both UV and collinear finite. In general, for the loop contributions, some finite terms turn

out to be complicated functions of δ and zc ≡ m2
c/m

2
b . We give these results as polynomial

expansions in δ around the physical value δ = 0.316. The coefficients of this expansion

are presented as numerical interpolations in the variable zc, reproducing the exact results

to enough precision for all practical purposes. We have checked that the interpolated

expressions in the appendix reproduce the exact results with high precision in the full

range zc ∈ (0, 1) for values of δ near 0.316.
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2.5 Renormalization

Tree-level four-body contributions from four-quark operators arise at LO in αs and have

been computed in ref. [50]. At NLO the corresponding counterterm contributions must be

included, which cancel the UV divergences from the loop diagrams. One must consider the

insertion of the bare operators P
(0)
i , i = 1q, 2q, 3, . . . , 6, in the tree-level diagrams to the

left of the cut, where:

∑
i=3,...,6,1q,2q

Ci P (0)
i =

∑
i=3,...,6,1q,2q
j=3,...,6,1u,2u

Ci ZijPj =
∑

i=3,...,6,1q,2q
j=3,...,6,1u,2u

Ci
(
δij +

1

ε

αs

4π
δZij

)
Pj

=
∑

i=3,...,6,1u,2u

Ci Pi +
1

ε

αs

4π

∑
i=3,...,6,1q,2q
j=3,...,6,1u,2u

Ci δZijPj (2.46)

The first term leads to the LO contributions in ref. [50], while the second term contributes

to the NLO result and takes care of the UV divergences. For this we need, a priori, the tree

level results with P3,...,6,1u,2u including O(ε) terms, and the renormalization factors δZij .

The relevant renormalization factors are simple to compute. Using the relationships

developed in section 2.1, and expressing the result in terms of tree-level matrix elements

of four-quark operators, we find that:

=
[
Cu
1 − 6 Cu

2 + Cc
1 − 6 Cc

2 − 12 C3 − 28 C4 − 192 C5 − 268 C6
]

× 1

9

1

ε

αs

4π
〈P4〉tree +O(ε0) .

(2.47)

This fixes the renormalization factors needed in our calculation:

δZ1u 4 = −1
9 δZ1c 4 = −1

9 δZ34 =
4
3 δZ44 =

28
9

δZ2u 4 =
2
3 δZ2c 4 =

2
3 δZ54 =

64
3 δZ64 =

268
9 .

(2.48)

We also see that we need only tree level diagrams with insertion of P4 to the left of the

cut. All the diagrams needed are shown in figure 5.

For the operator insertions to the right of the cut we can (and must) use the 4D

identities derived in section 2.1, noting that evanescent terms cancel in the renormal-

ization process by virtue of eq. (2.27). This leads to exactly the same structure as

eqs. (2.18), (2.19), (2.20) for the counterterm diagrams DC
(J) (i.e. eq. (2.21)), with the

corresponding matrix elements 〈P4〉I,C(J) given by:

〈P4〉I,C(J) =
[
Cu
1 − 6 Cu

2 + Cc
1 − 6 Cc

2 − 12 C3 − 28 C4 − 192 C5 − 268 C6
]

×




QdF̂I,C
(J) (δ) for (I, J) = (s, i), (×, i), (×, ii)

F̂I,C
(J) (δ) for I = s,× and J = iii .

(2.49)
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Figure 5. Tree-level counterterm diagrams. Crosses denote alternative insertions of the photon

vertex (always one vertex at each side of the cut). These diagrams can be classified in types (i),

(ii), (iii) as done for the loop diagrams.

Again, F̂I,C
(J) = FI,C

(J) + FI,C
coll(J). The functions FI,C

(J) ,F
I,C
coll(J) are given in appendix A. One

can check that all UV divergences cancel, as expected: 〈P4〉I,C(J) +
∑

k〈P4〉I,k(J) = UV finite.

2.6 Collinear divergences and splitting functions

The region of phase space in which the photon is collinear to one of the light quarks

gives rise to collinear divergences. These divergences are regulated dimensionally in our

computation. However, these are just artifacts of the massless limit used for light quarks,

and there is a more natural regulator: a physical cut-off given by the light meson masses.

A suitable parametrization of such (near-) collinear effects consists in keeping the light

quarks massive and perform a massive phase-space integration. This is quite complicated

from the practical point of view, taking into account that the massless phase-space integrals

computed here are already rather challenging.

Fortunately, one may resort to the factorization properties of the amplitudes in the

quasi-collinear limit (see e.g. [50]). The idea is that close to the collinear region, the

b → q1q̄2q3γ amplitude may be expressed as a b → q1q̄2q3 amplitude times a splitting

function fi, describing the quasi-collinear emission of a photon from qi, summed over

i = 1, 2, 3. The splitting functions encode the collinear divergences, and can themselves be

regulated by quark masses or in dimensional regularization. Both approaches are rather

simple, since in this limit the four-body phase space factorizes into a convolution of the

three-body phase space of the non-radiative process and the phase space of the radiative

process alone: dΦ4 = dΦ3 ⊗ dΦ. By comparing the splitting functions regulated in these

two different schemes, one can write a formula to switch from one to the other at the level

of the decay rate [50]:
dΓm

dz
=

dΓε

dz
+

dΓshift

dz
(2.50)

where

dΓshift

dz
=

1

2mb

1

2Nc

∫
dPS3K3(sij)

αe

2πz̄

{
Q2

1

[
1 +

(z − s23)
2

(1− s23)2

]

×
[
1

ε
− 1 + 2 log

(1− s23)µ

mq1(1− z)

]
Θ(z − s23) + (cyclic)

}
. (2.51)

Here K3 =
∑

|M3|2 is the spin-summed squared matrix element of the b → q1q̄2q3 decay

obtained by evaluating the diagrams in figure 6, and dPS3 is the three-particle phase-space
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Figure 5. Tree-level counterterm diagrams. Crosses denote alternative insertions of the photon

vertex (always one vertex at each side of the cut). These diagrams can be classified in types (i),

(ii), (iii) as done for the loop diagrams.

Again, F̂I,C
(J) = FI,C

(J) + FI,C
coll(J). The functions FI,C

(J) ,F
I,C
coll(J) are given in appendix A. One

can check that all UV divergences cancel, as expected: 〈P4〉I,C(J) +
∑

k〈P4〉I,k(J) = UV finite.

2.6 Collinear divergences and splitting functions

The region of phase space in which the photon is collinear to one of the light quarks

gives rise to collinear divergences. These divergences are regulated dimensionally in our

computation. However, these are just artifacts of the massless limit used for light quarks,

and there is a more natural regulator: a physical cut-off given by the light meson masses.

A suitable parametrization of such (near-) collinear effects consists in keeping the light

quarks massive and perform a massive phase-space integration. This is quite complicated

from the practical point of view, taking into account that the massless phase-space integrals

computed here are already rather challenging.

Fortunately, one may resort to the factorization properties of the amplitudes in the

quasi-collinear limit (see e.g. [50]). The idea is that close to the collinear region, the

b → q1q̄2q3γ amplitude may be expressed as a b → q1q̄2q3 amplitude times a splitting

function fi, describing the quasi-collinear emission of a photon from qi, summed over

i = 1, 2, 3. The splitting functions encode the collinear divergences, and can themselves be

regulated by quark masses or in dimensional regularization. Both approaches are rather

simple, since in this limit the four-body phase space factorizes into a convolution of the

three-body phase space of the non-radiative process and the phase space of the radiative

process alone: dΦ4 = dΦ3 ⊗ dΦ. By comparing the splitting functions regulated in these

two different schemes, one can write a formula to switch from one to the other at the level

of the decay rate [50]:
dΓm

dz
=

dΓε

dz
+

dΓshift

dz
(2.50)

where

dΓshift

dz
=

1

2mb

1

2Nc

∫
dPS3K3(sij)

αe

2πz̄

{
Q2

1

[
1 +

(z − s23)
2

(1− s23)2

]

×
[
1

ε
− 1 + 2 log

(1− s23)µ

mq1(1− z)

]
Θ(z − s23) + (cyclic)

}
. (2.51)

Here K3 =
∑

|M3|2 is the spin-summed squared matrix element of the b → q1q̄2q3 decay

obtained by evaluating the diagrams in figure 6, and dPS3 is the three-particle phase-space
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Figure 6. Three-particle-cut diagrams needed for the calculation of collinear terms.

measure in d = 4− 2ε dimensions [59]:

dPS3 = µ̃4ε 22−3dπ3−2dm2d−6
b (s12s13s23)

d−4
2 δ(1− s12 − s13 − s23)

× dΩd−1dΩd−2 ds12ds13ds23 . (2.52)

Integrating eq. (2.51) over z ∈ [0, δ] provides the terms Fcoll contained in the func-

tions F̂ . The contributions from the chromomagnetic operator (figure 6, left) enter

into eq. (2.22). The contributions from four-quark operators (figure 6, center) go into

eqs. (2.23), (2.24) and (2.25). The counterterm contributions (figure 6, right), enter into

eq. (2.49). The functions Fcoll(δ) are collected in appendix A.

One can check that adding the collinear contribution removes the 1/ε terms that survive

the renormalization process, trading them for collinear logarithms of quark-mass ratios.

These collinear logarithms are of the form log(mq/mb), with q = u, d, s. The quark masses

are collinear regulators and it is difficult to relate them to physical masses. In our numerical

analysis we will take a common constituent-quark mass mq ∼ 100− 250MeV for all three

light flavors, and use the notation Lq = log(mq/mb) ∼ log(mu/mb) ∼ log(md/mb) ∼
log(ms/mb). This should provide a reasonable estimate of the effect of collinear logarithms.

3 Results

We write the four-body contribution to the B̄ → Xsγ rate as:

∆Γ(B̄ → Xsγ)
sq̄qγ
Eγ>E0

= Γ0

∑
i,j

Ceff
i (µb)

∗ Ceff
j (µb)Gij(µb, δ) , (3.1)

where Γ0 is the absolute normalization of the decay rate:

Γ0 =
G2

Fαem
5
b |V ∗

tsVtb|2

32π4
. (3.2)

The sum runs over i, j = 1u, 2u, 3, . . . , 6, 1c, 2c, 7, 8. The Wilson coefficients C3,...,8 are real,

but C1u,2u,1c,2c contain CKM phases:

Ceff
3,...,6 = C3,...,6 , Ceff

1u,2u = −V ∗
usVub

V ∗
tsVtb

C1,2 , Ceff
1c,2c = −V ∗

csVcb

V ∗
tsVtb

C1,2 ,

Ceff
7 = C7 −

1

3
C3 −

4

3
C4 −

20

3
C5 −

80

9
C6 ,

Ceff
8 = C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6 , (3.3)
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with Ci the Wilson coefficients in the notation of ref. [24]. They are needed here to NLO:

Ceff
i (µ) = C(0)eff

i (µ) +
αs(µ)

4π
C(1)eff
i (µ) +O(α2

s), (3.4)

their numerical values are given below.

The matrix elements Gij(µ, δ) depend on the renormalization scale and the photon-

energy cut and can be split into LO and NLO components:

Gij(µ, δ) = G
(0)
ij (δ) +

αs(µ)

4π
G

(1)
ij (µ, δ) +O(α2

s) . (3.5)

The LO matrix G(0) is real and symmetric and was computed in ref. [50]: we reproduce

and confirm these results (after the 2014 update of that paper). We write (here i, j =

1u, 2u, 3, . . . , 6):

G(0)(δ) =


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(3.6)

where:

T1(δ) =
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+

4

9
δ3 log(δ) +

17δ2
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− 1

3
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109δ
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3
δ log(δ) +
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18
log(1− δ)− 5

3
log(1− δ) log(δ)

+

[
δ4 − 8
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δ3 +

2

3
δ2 +
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3
δ +

10

3
log(1− δ)

]
log

(
mq

mb

)
− 5Li2(δ)

3
, (3.7)

T2(δ) =
1181δ4

2592
− 17

108
δ4 log(δ)− 395δ3

648
+
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27
δ3 log(δ) +

7δ2
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− 1

9
δ2 log(δ) +

187δ
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133

108
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+
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17δ4
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− 8δ3
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+
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(
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− Li2(δ)

2
, (3.8)
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+
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+
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9
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. (3.9)

The NLO matrix G(1) contains perturbative strong phases from on-shell contributions from

light quarks, as well as from charm quarks when the photon-energy cut is low enough. The
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The NLO matrix G(1) contains perturbative strong phases from on-shell contributions from
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matrix G(1) is the main result of this paper. It has the following structure:

G(1)(µ, δ) = G1(δ)LqLµ +G2(δ)Lµ +G3(zc, δ)Lq +G4(zc, δ) , (3.10)

where Lµ ≡ log(µ/mb), Lq ≡ log(mq/mb) and zc ≡ m2
c/m

2
b . The explicit form of G

(1)
ij is

too complicated to be written down here. However, it can be constructed completely from

the expressions in sections 2.2, 2.5 and appendix A: start from eq. (2.21), substitute the

objects D(J) from eqs. (2.18), (2.19), (2.20), then use eqs. (2.22)–(2.25) and (2.49) for the

different matrix elements 〈P4〉(J), and use the expressions in the appendix for the functions

F(J), Fcoll(J) and F̃(J), noting that F̂(J) ≡ F(J)+Fcoll(J). Finally, perform the replacement

G(1) → G(1)+G(1)† to account for the “mirror” contributions. For convenience, we provide

the full matrices G
(0)
ij and G

(1)
ij in the file “Gij.m” attached to the arXiv submission of the

present manuscript. The first is given by the 6× 6 matrix “GijLO” (i, j = 1u, 2u, 3, . . . , 6)

and the second by the 10× 10 matrix “GijNLO” (with i, j = 1u, 2u, 3, . . . , 6, 1c, 2c, 7, 8).

4 Numerical analysis

We briefly discuss here the numerical impact of the four-body contributions to the total

B̄ → Xsγ rate. We consider for convenience the following quantity:

∆̃Γ =
∆Γ(B̄ → Xsγ)

sq̄qγ
Eγ>E0

Γ0

∣∣C(0)eff
7

∣∣2 , (4.1)

given by eq. (3.1) and normalized to the leading contribution to the decay rate. The Wilson

coefficients are given by:

Ceff
i (µ) = C(0)eff

i (µ) +
αs(µ)

4π
C(1)eff
i (µ) +O(α2

s), (4.2)

which are computed following ref. [17]. For the reference matching and renormalization

scales µ0 = 160GeV, µ = µb = 2.5GeV, we have:4

C(0)eff
i = (0.828λq,−1.063λq,−0.013,−0.125, 0.0012, 0.0027,−0.372,−0.172) , (4.3)

C(1)eff
i = (−15.32λq, 2.10λq, 0.097,−0.447,−0.021,−0.013, nn, nn) , (4.4)

for i = 1q, 2q, 3, . . . , 8. However, the µ-dependence of the Wilson coefficients is important

and we will analyze it here. In addition, λq ≡ V ∗
qsVqb/V

∗
tsVtb denote the appropriate CKM

factors, given by [62]:

λu = −0.0059 + 0.018i , λc = −0.97 . (4.5)

The quantity ∆̃Γ can be expanded in αs:

∆̃Γ = ∆̃ΓLO + ∆̃ΓNLO =
∑

i, j = 1u, 2u
3, . . . , 6

C(0)∗
i C(0)

j∣∣C(0)eff
7

∣∣2 G
(0)
ij (4.6)

+
αs(µ)

4π

[ ∑
i, j = 1u, 2u

3, . . . , 6

C(1)∗
i C(0)

j + C(0)∗
i C(1)

j∣∣C(0)eff
7

∣∣2 G
(0)
ij +

∑
i,j=all

C(0)∗
i C(0)

j∣∣C(0)eff
7

∣∣2 G
(1)
ij

]
.

4The NLO Wilson Coefficients Ceff
7,8 are not needed for our NLO results as P7,8 do not contribute at LO.

– 20 –



156

156
J
H
E
P
0
1
(
2
0
1
5
)
1
1
5

mq�mb�50

LO

LO � full NLO

LO � NLO �C1,2
c � 0�

LO � NLO �C1,2
c ,C7,8

eff � 0�

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.1

0.2

0.3

0.4

0.5

Μ �GeV�

�
��
���

mq�mb�20

LO

LO � full NLO

LO � NLO �C1,2
c � 0�

LO � NLO �C1,2
c ,C7,8

eff � 0�

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.00

0.05

0.10

0.15

0.20

Μ �GeV�

�
��
���

Figure 7. Renormalization-scale dependence of ∆̃Γ in percent units. Here we have taken µ0 =

160GeV, zc = 0.07, δ = 0.316 and Lq = − log 50 (mq ∼ 100MeV) [Left panel], or Lq = − log 20

(mq ∼ 250MeV) [Right panel].

We begin with a discussion of the µ-dependence of our results. To leading order, the µ-

dependence is given purely by the LL (leading-log) running in the effective theory. Note

that to this order, only Cu
1,2 and C3,4,5,6 contribute. At NLO, three new contributions

arise: (i) the contribution from NLO Wilson coefficients, (ii) NLO matrix elements and

(iii) contributions from Cc
1,2, C7,8, absent at LO. The µ-dependence should cancel up to a

residual scale-dependence from higher orders, and up to the neglected contributions shown

in figure 1.f (note that the Z factors in eq. (2.48) are not the full renormalization constants).

In figure 7 we show the µ-dependence of the LO result, and LO+NLO excluding

Cc
1,2, C7,8, LO+NLO excluding Cc

1,2 and LO+ full NLO. We also gauge the impact of collinear

logarithms, showing the result for two different choices of Lq, corresponding to mq = mb/50

(mq ∼ 100MeV) and mq = mb/20 (mq ∼ 250MeV). Collinear logarithms are, as expected,

numerically important.

Contributions from P c
1,2 and P7,8 arise only at NLO and therefore introduce at this

order a novel µ-dependence. Although, as we will see, certain cancellations make the

NLO contribution small, there is a considerable reduction in the renormalization-scale

dependence of the full LO+NLO result as compared to the LO contribution alone. This is

due to the fact that the main µ-dependence of the leading order contribution arises from

the mixing of P c
1,2 into penguin operators, which is compensated at NLO by the matrix

elements of P c
1,2. This can be seen in figure 7: the reduction in the µ-dependence is achieved

only after including Cc
1,2 contributions.

In the left plot of figure 7 one can see that for the value µ � 4GeV strong cancellations

make the NLO contribution very small. More concretely, for the inputs µ0 = 160GeV,

µ = 4GeV, zc = 0.07, δ = 0.316 and mq = mb/50, we have:

∆̃Γ(%) = (0.300)LO + (0.044)NLO WCs − (0.087)NLO penguins − (0.169)Ceff
7,8

+ (0.219)Cc
1,2

= (0.300)LO + (0.044)NLO WCs − (0.036)NLO MEs

= (0.300)LO − (0.007)NLO (4.7)
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Figure 7. Renormalization-scale dependence of ∆̃Γ in percent units. Here we have taken µ0 =

160GeV, zc = 0.07, δ = 0.316 and Lq = − log 50 (mq ∼ 100MeV) [Left panel], or Lq = − log 20

(mq ∼ 250MeV) [Right panel].

We begin with a discussion of the µ-dependence of our results. To leading order, the µ-

dependence is given purely by the LL (leading-log) running in the effective theory. Note

that to this order, only Cu
1,2 and C3,4,5,6 contribute. At NLO, three new contributions

arise: (i) the contribution from NLO Wilson coefficients, (ii) NLO matrix elements and

(iii) contributions from Cc
1,2, C7,8, absent at LO. The µ-dependence should cancel up to a

residual scale-dependence from higher orders, and up to the neglected contributions shown

in figure 1.f (note that the Z factors in eq. (2.48) are not the full renormalization constants).

In figure 7 we show the µ-dependence of the LO result, and LO+NLO excluding

Cc
1,2, C7,8, LO+NLO excluding Cc

1,2 and LO+ full NLO. We also gauge the impact of collinear

logarithms, showing the result for two different choices of Lq, corresponding to mq = mb/50

(mq ∼ 100MeV) and mq = mb/20 (mq ∼ 250MeV). Collinear logarithms are, as expected,

numerically important.

Contributions from P c
1,2 and P7,8 arise only at NLO and therefore introduce at this

order a novel µ-dependence. Although, as we will see, certain cancellations make the

NLO contribution small, there is a considerable reduction in the renormalization-scale

dependence of the full LO+NLO result as compared to the LO contribution alone. This is

due to the fact that the main µ-dependence of the leading order contribution arises from

the mixing of P c
1,2 into penguin operators, which is compensated at NLO by the matrix

elements of P c
1,2. This can be seen in figure 7: the reduction in the µ-dependence is achieved

only after including Cc
1,2 contributions.

In the left plot of figure 7 one can see that for the value µ � 4GeV strong cancellations

make the NLO contribution very small. More concretely, for the inputs µ0 = 160GeV,

µ = 4GeV, zc = 0.07, δ = 0.316 and mq = mb/50, we have:

∆̃Γ(%) = (0.300)LO + (0.044)NLO WCs − (0.087)NLO penguins − (0.169)Ceff
7,8

+ (0.219)Cc
1,2

= (0.300)LO + (0.044)NLO WCs − (0.036)NLO MEs

= (0.300)LO − (0.007)NLO (4.7)
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Figure 8. ∆̃Γ in percent units. Left: dependence on the photon energy cut E0. Right: dependence

on the charm mass. We have fixed µ0 = 160GeV, µ = 2.5GeV and Lq = − log 50 (mq ∼ 100MeV).

The vertical dashed line in the left panel shows the benchmark point δ = 0.316, while the vertical

band in the right panel corresponds to the physical value zc = 0.07± 0.02.

where the term labeled ‘NLO WCs’ corresponds to the second term in eq. (4.6). This

cancellation is very efficient for µ � 3.8GeV, but depends strongly on mq and zc. However,

it is a general feature of our results that the contribution from Cc
1,2 is of the same order as

the rest of the NLO contribution, but with opposite sign, leading always to some level of

cancellation. Note also that the (NLO) Cc
1,2 contribution is also as large as the LO result.

In the following we fix the renormalization scale to µ = 2.5GeV and study the depen-

dence on the charm mass and the photon-energy cut. This is shown in figure 8. In general

the full LO+NLO result increases with δ and decreases with mc, always remaining below

the 1% level for δ � 0.45. We note that these results are only valid for δ not far from 0.316

as some of the functions are expanded up to second order in (δ − 0.316).

Finally, we provide some results for two different values of E0 of interest: E0 = 1.6GeV,

corresponding to δ = 0.316, and E0 = 1.9GeV, corresponding to δ = 0.188. For the input

parameters and their uncertainties we take: µ0 = 160+90
−80, µ = 2.5+2.5

−0.5 and zc = 0.07±0.02,

which captures the different values for mc within different schemes.

For mq = mb/50 ∼ 100MeV, we find:

∆̃ΓE0=1.6GeV [%] = (0.419)LO − (0.080)NLO ± (0.028)µ0 ± (0.032)µ ± (0.019)zc

= 0.34± 0.05 (4.8)

∆̃ΓE0=1.9GeV [%] = (0.105)LO − (0.077)NLO ± (0.012)µ0 ± (0.009)µ ± (0.003)zc

= 0.03± 0.02 (4.9)

For mq = mb/20 ∼ 250MeV:

∆̃ΓE0=1.6GeV [%] = (0.189)LO − (0.107)NLO ± (0.019)µ0 ± (0.007)µ ± (0.007)zc

= 0.08± 0.02 (4.10)

∆̃ΓE0=1.9GeV [%] = (0.037)LO − (0.081)NLO ± (0.009)µ0 ± (0.020)µ ± (0.001)zc

= −0.04± 0.02 (4.11)
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For the value δ = 0.188 (E0 = 1.9GeV) we have used the exact results (not the

expanded ones), as for this value of δ the quadratic expansion is not expected to be accurate

enough.

5 Conclusions

The inclusive radiative decay B̄ → Xsγ has beyond any doubt reached the era of precision

physics, with the total uncertainties on both the experimental and theoretical side being

at the ±7% level. The foreseen improvement in precision on the experimental side — the

envisaged uncertainty with 50/ab at Belle II is of O(6%) [63], although this might even be

a conservative estimate — justifies every effort to reduce the theoretical error to at least

the same level.

The present article aims at addressing a particular higher-order perturbative contribu-

tion, namely the four-body contributions b → sqq̄γ to Γ(B̄ → Xsγ) at NLO. The smallness

of the Wilson coefficients of penguin operators and CKM-suppression of current-current

operators suggests that this contribution should be small. However, only an explicit cal-

culation can turn this estimate into a firm statement. The calculation arises from tree and

one-loop amplitudes, but it involves the four-body phase-space integration in dimensional

regularization, which makes the calculation non-trivial owing to the appearance of higher

transcendental functions. Moreover, the cancellation of poles in the dimensional regular-

ization parameter ε is only achieved after proper UV and IR renormalization. The latter

gives rise to logarithms ln(mq/mb) when turning the dimensional into a mass regulator.

These logarithms stem from the phase space region of energetic collinear photon radiation

off light quarks in the final state. They are computed with the splitting function technique

and treated in the same way as in [50, 60].

We find indeed that the contribution of our four-body NLO correction to the total

rate is below the 1% level, as expected. This statement even holds true once we vary the

input parameters such as the charm mass mc, the photon energy cut (parameterized by δ),

the masses mq of the light quarks, or the renormalization and matching scales, as can be

seen by the numbers and the plots in section 4. We also confirm the LO results presented

previously in ref. [50].

Yet the NLO calculation of B̄ → Xsγ is still not complete. There are certain yet

unpublished three-particle cuts contributing to Γ(b → sgγ), mainly interferences of P u
1,2

with P c
1,2, which are also of the (A,B)-interference type. These contributions can be

extracted from the results of ref. [32]. The only missing pieces are given by the diagrams in

figure 1.f. These are NLO interferences of the type (B,B) and are expected to be negligible

with respect to the (A,B) ones that we have calculated in a complete manner. While these

contributions can be calculated with the techniques described in this paper, they are left

for future work.
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tion, namely the four-body contributions b → sqq̄γ to Γ(B̄ → Xsγ) at NLO. The smallness

of the Wilson coefficients of penguin operators and CKM-suppression of current-current

operators suggests that this contribution should be small. However, only an explicit cal-

culation can turn this estimate into a firm statement. The calculation arises from tree and

one-loop amplitudes, but it involves the four-body phase-space integration in dimensional

regularization, which makes the calculation non-trivial owing to the appearance of higher

transcendental functions. Moreover, the cancellation of poles in the dimensional regular-

ization parameter ε is only achieved after proper UV and IR renormalization. The latter

gives rise to logarithms ln(mq/mb) when turning the dimensional into a mass regulator.

These logarithms stem from the phase space region of energetic collinear photon radiation

off light quarks in the final state. They are computed with the splitting function technique

and treated in the same way as in [50, 60].

We find indeed that the contribution of our four-body NLO correction to the total

rate is below the 1% level, as expected. This statement even holds true once we vary the

input parameters such as the charm mass mc, the photon energy cut (parameterized by δ),

the masses mq of the light quarks, or the renormalization and matching scales, as can be

seen by the numbers and the plots in section 4. We also confirm the LO results presented

previously in ref. [50].

Yet the NLO calculation of B̄ → Xsγ is still not complete. There are certain yet

unpublished three-particle cuts contributing to Γ(b → sgγ), mainly interferences of P u
1,2

with P c
1,2, which are also of the (A,B)-interference type. These contributions can be

extracted from the results of ref. [32]. The only missing pieces are given by the diagrams in

figure 1.f. These are NLO interferences of the type (B,B) and are expected to be negligible

with respect to the (A,B) ones that we have calculated in a complete manner. While these

contributions can be calculated with the techniques described in this paper, they are left

for future work.
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A Intermediate results

A.1 (P7, Pi) interference

The functions FI,7
(J)(δ) are given by:

Fs,7
(i) (δ) = −6F×,7

(i) (δ) ; (A.1)

F×,7
(i) (δ) =

−18δ + 33δ2 − 2δ3 − 13δ4 + 6δ3(2 + δ) log(δ)

243(1− δ)
; (A.2)

F×,7
(ii) (δ) =

12δ − 3δ2 − 8δ3 − δ4 + 6δ2(2 + δ) log(δ)

54(1− δ)
; (A.3)

A.2 (P8, Pi) interference

Up to subleading terms in ε, we have always

Fs,8(δ) = −6 (1 + ε)F×,8(δ) . (A.4)

The functions F×,8(δ) are given by:

F×,8
(i) (δ) = A8(δ)

[
1

ε
+ 6Lµ

]
+B8(δ) ; (A.5)

F×,8
(ii) (δ) = B′

8(δ) ; F×,8
coll(ii)(δ) = 0 ; (A.6)

F×,8
(iii)(δ) = A′′

8(δ)

[
1

ε
+ 6Lµ

]
+B′′

8 (δ) ; (A.7)

F×,8
coll(i)(δ) = −A8(δ)

[
1

ε
+ 6Lµ − 2Lq

]
+D8(δ) ; (A.8)

F×,8
coll(iii)(δ) = −A′′

8(δ)

[
1

ε
+ 6Lµ − 2Lq

]
+D′′

8(δ) ; (A.9)

where Lµ = log(µ/mb) and Lq = log(mq/mb), and:

A8(δ) =
4δ3

81
− δ2

27
+

4δ

27
+

4

27
log(1− δ) ; (A.10)

A′′
8(δ) = −4δ3

81
+

10δ2

27
+

2δ

27
−

(
2δ2

9
− 4δ

9
− 2

27

)
log(1− δ) ; (A.11)

B8(δ) =
62δ3

243
− 17δ2

162
+

116δ

81
−

(
8δ3

81
− 2δ2

27
+

8δ

27

)
log δ − 8

27
log δ log(1− δ)

− log(1− δ)

(
8δ3

81
− 2δ2

27
+

8δ

27
− 92

81

)
− 4

27
log2(1− δ)− 8Li2(δ)

27
; (A.12)
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B′
8(δ) =

4δ

27
− δ2

9
+

2δ3

81
+

4 log(1− δ)

27
; (A.13)

B′′
8 (δ) = −8δ3

27
+

199δ2

81
+

119δ

81
+

(
8δ3

81
− 20δ2

27
− 4δ

27

)
log δ

+

(
8δ3

81
− 47δ2

27
+

50δ

27
+

107

81
+

4δ2 log δ

9
− 8δ log δ

9
− 4 log δ

27

)
log(1− δ)

+

(
5δ2

9
− 10δ

9
+

7

27

)
log2(1− δ) +

(
4δ2

9
− 8δ

9
− 4

27

)
Li2(δ) ; (A.14)

D8(δ) = −37δ3

243
+

δ2

54
− 8δ

9
+ log(1− δ)

(
8δ3

81
− 2δ2

27
+

8δ

27
+

4 log δ

27
− 20

27

)

+

(
4δ3

81
− δ2

27
+

4δ

27

)
log(δ) +

4

27
log2(1− δ) +

4Li2(δ)

27
; (A.15)

D′′
8(δ) = +

37δ3

243
− 35δ2

27
− 10δ

9
−

(
8δ3

81
− 32δ2

27
+

20δ

27
+

28

27

)
log(1− δ)

−
(
4δ3

81
− 10δ2

27
− 2δ

27

)
log δ −

(
2δ2

9
− 4δ

9
− 2

27

)
log δ log(1− δ)

−
(
4δ2

9
− 8δ

9
+

4

27

)
log2(1− δ)−

(
2δ2

9
− 4δ

9
− 2

27

)
Li2(δ) ; (A.16)

A.3 (Pi, Pj) interference

For FI,1
(J)(δ) we give analytical results for mc-independent functions, but the mc-dependence

is given as interpolated functions. Up to subleading terms in ε, we have always

Fs(zq, δ) = −6 (1 + ε+ ε2)F×(zq, δ) . (A.17)

The functions F×(zq, δ) are given by:

F×,1
(i) (zq, δ) = A(δ)

[
1

ε2
+

1

ε
8Lµ + 32L2

µ

]
+B(zq, δ)

[
1

ε
+ 8Lµ

]
+ C(zq, δ) ; (A.18)

F×,1
(ii) (zq, δ) = B′(δ)

[
1

ε
+ 8Lµ

]
+ C ′(zq, δ) ; F×,1

coll(ii)(zq, δ) = 0 ; (A.19)

F×,1
(iii)(zq, δ) = A′′(δ)

[
1

ε2
+

1

ε
8Lµ + 32L2

µ

]
+B′′(zq, δ)

[
1

ε
+ 8Lµ

]
+ C ′′(zq, δ) ; (A.20)

F×,1
coll(i)(zq, δ) = −A(δ)

[
1

ε2
+

1

ε
(8Lµ − 2Lq) + 30L2

µ − 12LµLq + 2Lµ − 2Lq

]
(A.21)

−[B(zq, δ) + F (δ) +H(δ)]

[
1

ε
+ 8Lµ − 2Lq

]
+ f(δ) [Lµ − Lq] + E(zq, δ);

F×,1
coll(iii)(zq, δ) = −A′′(δ)

[
1

ε2
+

1

ε
(8Lµ − 2Lq) + 30L2

µ − 12LµLq + 2Lµ − 2Lq

]
(A.22)

−[B′′(zq, δ)+ F ′′(δ)+H ′′(δ)]

[
1

ε
+ 8Lµ − 2Lq

]
+ f ′′(δ) [Lµ − Lq] + E′′(zq, δ);
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B′
8(δ) =

4δ

27
− δ2

9
+

2δ3

81
+

4 log(1− δ)

27
; (A.13)

B′′
8 (δ) = −8δ3

27
+

199δ2

81
+

119δ

81
+

(
8δ3

81
− 20δ2

27
− 4δ

27

)
log δ

+

(
8δ3

81
− 47δ2

27
+

50δ

27
+

107

81
+

4δ2 log δ

9
− 8δ log δ

9
− 4 log δ

27

)
log(1− δ)

+

(
5δ2

9
− 10δ

9
+

7

27

)
log2(1− δ) +

(
4δ2

9
− 8δ

9
− 4

27

)
Li2(δ) ; (A.14)

D8(δ) = −37δ3

243
+

δ2

54
− 8δ

9
+ log(1− δ)

(
8δ3

81
− 2δ2

27
+

8δ

27
+

4 log δ

27
− 20

27

)

+

(
4δ3

81
− δ2

27
+

4δ

27

)
log(δ) +

4

27
log2(1− δ) +

4Li2(δ)

27
; (A.15)

D′′
8(δ) = +

37δ3

243
− 35δ2

27
− 10δ

9
−

(
8δ3

81
− 32δ2

27
+

20δ

27
+

28

27

)
log(1− δ)

−
(
4δ3

81
− 10δ2

27
− 2δ

27

)
log δ −

(
2δ2

9
− 4δ

9
− 2

27

)
log δ log(1− δ)

−
(
4δ2

9
− 8δ

9
+

4

27

)
log2(1− δ)−

(
2δ2

9
− 4δ

9
− 2

27

)
Li2(δ) ; (A.16)

A.3 (Pi, Pj) interference

For FI,1
(J)(δ) we give analytical results for mc-independent functions, but the mc-dependence

is given as interpolated functions. Up to subleading terms in ε, we have always

Fs(zq, δ) = −6 (1 + ε+ ε2)F×(zq, δ) . (A.17)

The functions F×(zq, δ) are given by:

F×,1
(i) (zq, δ) = A(δ)

[
1

ε2
+

1

ε
8Lµ + 32L2

µ

]
+B(zq, δ)

[
1

ε
+ 8Lµ

]
+ C(zq, δ) ; (A.18)

F×,1
(ii) (zq, δ) = B′(δ)

[
1

ε
+ 8Lµ

]
+ C ′(zq, δ) ; F×,1

coll(ii)(zq, δ) = 0 ; (A.19)

F×,1
(iii)(zq, δ) = A′′(δ)

[
1

ε2
+

1

ε
8Lµ + 32L2

µ

]
+B′′(zq, δ)

[
1

ε
+ 8Lµ

]
+ C ′′(zq, δ) ; (A.20)

F×,1
coll(i)(zq, δ) = −A(δ)

[
1

ε2
+

1

ε
(8Lµ − 2Lq) + 30L2

µ − 12LµLq + 2Lµ − 2Lq

]
(A.21)

−[B(zq, δ) + F (δ) +H(δ)]

[
1

ε
+ 8Lµ − 2Lq

]
+ f(δ) [Lµ − Lq] + E(zq, δ);

F×,1
coll(iii)(zq, δ) = −A′′(δ)

[
1

ε2
+

1

ε
(8Lµ − 2Lq) + 30L2

µ − 12LµLq + 2Lµ − 2Lq

]
(A.22)

−[B′′(zq, δ)+ F ′′(δ)+H ′′(δ)]

[
1

ε
+ 8Lµ − 2Lq

]
+ f ′′(δ) [Lµ − Lq] + E′′(zq, δ);
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Counterterms are given by:

F×,C
(i) (δ) = −A(δ)

[
1

ε2
+

1

ε
6Lµ + 18L2

µ

]
+ F (δ)

[
1

ε
+ 6Lµ

]
+G(δ) ; (A.23)

F×,C
(ii) (δ) = −B′(δ)

[
1

ε
+ 6Lµ

]
+G′(δ) ; F×,C

coll(ii)(zq, δ) = 0 ; (A.24)

F×,C
(iii) (δ) = −A′′(δ)

[
1

ε2
+

1

ε
6Lµ + 18L2

µ

]
+ F ′′(δ)

[
1

ε
+ 6Lµ

]
+G′′(δ) ; (A.25)

F×,C
coll(i)(δ) = A(δ)

[
1

ε2
+

1

ε
(6Lµ − 2Lq) + 16L2

µ − 8LµLq + 2Lµ − 2Lq

]

+H(δ)

[
1

ε
+ 6Lµ − 2Lq

]
− f(δ) [Lµ − Lq] + I(δ) ; (A.26)

F×,C
coll(iii)(δ) = A′′(δ)

[
1

ε2
+

1

ε
(6Lµ − 2Lq) + 16L2

µ − 8LµLq + 2Lµ − 2Lq

]

+H ′′(δ)

[
1

ε
+ 6Lµ − 2Lq

]
− f ′′(δ) [Lµ − Lq] + I ′′(δ) ; (A.27)

where again Lµ = log(µ/mb) and Lq = log(mq/mb). From these expressions one can check

the pattern of cancellation of UV and collinear divergences. The zq-independent functions

are given by (with the notation δ̄ ≡ 1− δ, Lδ̄ ≡ log(1− δ), Lδ ≡ log δ),

A(δ) = − δ4

1458
− δ

243
− 1

243
Lδ̄ ; (A.28)

A′′(δ) = − 2δ4

729
+

2δ3

729
− δ2

486
− 2δ

243
− 2

243
Lδ̄ ; (A.29)

B′(δ) = − 2δ3

2187
+

2δ2

729
− 2δ

729
− 2

729
Lδ̄ ; (A.30)

f(δ) =

(
4δ2

243
− 4δ

729
− 1

243

)
Lδ̄ +

2

243
L2
δ̄ +

11δ4

8748
+

5δ3

729
− 23δ2

1458
− δ

243
; (A.31)

f ′′(δ) =

(
10δ2

243
− 16δ

729
− 2

729

)
Lδ̄ +

4

243
L2
δ̄ +

11δ4

2187
+

34δ3

2187
− 29δ2

729
− 2δ

729
; (A.32)

F (δ) = −
(
2Lδ̄

243
+

δ4

729
+

2δ

243

)
Lδ −

(
δ4

729
+

2δ

243
− 97

2916

)
Lδ̄ −

L2
δ̄

243
+

53δ4

17496
+

4δ3

2187

+
7δ2

5832
+

121δ

2916
− 2Li2(δ)

243
; (A.33)

F ′′(δ) = −
(
4Lδ̄

243
+

4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243

)
Lδ −

(
4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243
− 47

729

)
Lδ̄

−
2L2

δ̄

243
+

71δ4

4374
− 38δ3

2187
+

49δ2

2916
+

59δ

729
− 4Li2(δ)

243
; (A.34)

G(δ) =

(
δ4

729
+

2δ

243
− 97

2916

)
L2
δ̄ +

(
2Lδ̄

243
+

δ4

729
+

2δ

243

)
L2
δ +

2L3
δ̄

729
−
(
53δ4

8748
+

8δ3

2187

+
7δ2

2916
+

121δ

1458
− 4Li2(δ)

243
+

7π2

972
− 6901

34992

)
Lδ̄ +

(
2δ4

729
+

4δ

243
− 97

1458

)
LδLδ̄
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+

(
4L2

δ̄

243
− 53δ4

8748
− 8δ3

2187
− 7δ2

2916
− 121δ

1458
+

4Li2(δ)

243

)
Lδ −

13π2δ4

17496
+

2233δ4

209952
+

δ3

81

+
733δ2

69984
− 13π2δ

2916
+

9805δ

34992
− 97Li2(δ)

1458
+

4Li3(δ̄)

243
− 4Li3(δ)

243
− 4ζ(3)

243
; (A.35)

G′(δ) = −
(
4Lδ̄

729
+

4δ3

2187
− 4δ2

729
+

4δ

729

)
Lδ −

(
4δ3

2187
− 4δ2

729
+

4δ

729
− 59

2187

)
Lδ̄ −

2L2
δ̄

729

+
5δ3

729
− 50δ2

2187
+

71δ

2187
− 4Li2(δ)

729
; (A.36)

G′′(δ) =

(
4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243
− 47

729

)
L2
δ̄ +

(
4Lδ̄

243
+

4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243

)
L2
δ

+
4

729
L3
δ̄ −

(
71δ4

2187
− 76δ3

2187
+

49δ2

1458
+

118δ

729
− 8Li2(δ)

243
+

7π2

486
− 1645

4374

)
Lδ̄

−Lδ

[(
− 8δ4

729
+

8δ3

729
− 2δ2

243
− 8δ

243
+

94

729

)
Lδ̄ −

8L2
δ̄

243
+

71δ4

2187
− 76δ3

2187
+

49δ2

1458

+
118δ

729
− 8Li2(δ)

243

]
− 13π2δ4

4374
+

1877δ4

26244
+

13π2δ3

4374
− 527δ3

6561
− 13π2δ2

5832
+

1493δ2

17496

−13π2δ

1458
+

2353δ

4374
− 94Li2(δ)

729
+

8Li3(δ̄)

243
− 8Li3(δ)

243
− 8ζ(3)

243
; (A.37)

H(δ) =

(
Lδ̄

243
+

δ4

1458
+

δ

243

)
Lδ +

(
δ4

729
+

2δ

243
− 7

324

)
Lδ̄ +

L2
δ̄

243
− 5δ4

3888
− 19δ3

8748

− 7δ2

5832
− 25δ

972
+

Li2(δ)

243
; (A.38)

H ′′(δ) =

(
2Lδ̄

243
+

2δ4

729
− 2δ3

729
+

δ2

486
+

2δ

243

)
Lδ +

(
4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243
− 7

162

)
Lδ̄

+
2L2

δ̄

243
− 2δ4

243
+

29δ3

4374
− 8δ2

729
− 25δ

486
+

2Li2(δ)

243
; (A.39)

I(δ) = −
(

Lδ̄

486
+

δ4

2916
+

δ

486

)
L2
δ −

(
δ4

729
− 2δ2

243
+

8δ

729
− 23

972

)
L2
δ̄ +

(
5δ4

1944
+

19δ3

4374

+
67δ2

2916
+

61δ

4374
+

2Li2(δ̄)

243
+

π2

486
− 809

11664

)
Lδ̄ − Lδ

[(
δ4

729
+

2δ

243
− 7

729

)
Lδ̄

− 5δ4

3888
− 19δ3

8748
− 7δ2

5832
− 25δ

972
+

Li2(δ)

243

]
+

π2δ4

2916
− 5δ4

2916
+

247δ3

34992
− 2461δ2

69984

+
π2δ

486
− 1109δ

11664
− 35Li2(δ̄)

2916
+

7Li2(δ)

729
− 2Li3(δ̄)

243
+

Li3(δ)

243
+

2ζ(3)

243
+

35π2

17496
; (A.40)

I ′′(δ) = −
(
4δ4

729
− 4δ3

729
− 4δ2

243
+

20δ

729
− 73

1458

)
L2
δ̄ −

(
Lδ̄

243
+

δ4

729
− δ3

729
+

δ2

972
+

δ

243

)
L2
δ

+

(
4δ4

243
− 29δ3

2187
+

58δ2

729
+

5δ

2187
+

4Li2(δ̄)

243
+

π2

243
− 2215

17496

)
Lδ̄ − Lδ

[(
4δ4

729

− 4δ3

729
+

δ2

243
+

4δ

243
− 5

243

)
Lδ̄ −

2δ4

243
+

29δ3

4374
− 8δ2

729
− 25δ

486
+

2Li2(δ)

243

]
+

π2δ4

729

− 383δ4

23328
− π2δ3

729
+

923δ3

17496
+

π2δ2

972
− 1357δ2

11664
+

π2δ

243
− 3115δ

17496
− 11Li2(δ̄)

486
+

5Li2(δ)

243

−4Li3(δ̄)

243
+

2Li3(δ)

243
+

4ζ(3)

243
+

11π2

2916
; (A.41)
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17496
+

2233δ4

209952
+

δ3

81

+
733δ2

69984
− 13π2δ

2916
+

9805δ

34992
− 97Li2(δ)

1458
+

4Li3(δ̄)

243
− 4Li3(δ)

243
− 4ζ(3)

243
; (A.35)

G′(δ) = −
(
4Lδ̄

729
+

4δ3

2187
− 4δ2

729
+

4δ

729

)
Lδ −

(
4δ3

2187
− 4δ2

729
+

4δ

729
− 59

2187

)
Lδ̄ −

2L2
δ̄

729

+
5δ3

729
− 50δ2

2187
+

71δ

2187
− 4Li2(δ)

729
; (A.36)

G′′(δ) =

(
4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243
− 47

729

)
L2
δ̄ +

(
4Lδ̄

243
+

4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243

)
L2
δ

+
4

729
L3
δ̄ −

(
71δ4

2187
− 76δ3

2187
+

49δ2

1458
+

118δ

729
− 8Li2(δ)

243
+

7π2

486
− 1645

4374

)
Lδ̄

−Lδ

[(
− 8δ4

729
+

8δ3

729
− 2δ2

243
− 8δ

243
+

94

729

)
Lδ̄ −

8L2
δ̄

243
+

71δ4

2187
− 76δ3

2187
+

49δ2

1458

+
118δ

729
− 8Li2(δ)

243

]
− 13π2δ4

4374
+

1877δ4

26244
+

13π2δ3

4374
− 527δ3

6561
− 13π2δ2

5832
+

1493δ2

17496

−13π2δ

1458
+

2353δ

4374
− 94Li2(δ)

729
+

8Li3(δ̄)

243
− 8Li3(δ)

243
− 8ζ(3)

243
; (A.37)

H(δ) =

(
Lδ̄

243
+

δ4

1458
+

δ

243

)
Lδ +

(
δ4

729
+

2δ

243
− 7

324

)
Lδ̄ +

L2
δ̄

243
− 5δ4

3888
− 19δ3

8748

− 7δ2

5832
− 25δ

972
+

Li2(δ)

243
; (A.38)

H ′′(δ) =

(
2Lδ̄

243
+

2δ4

729
− 2δ3

729
+

δ2

486
+

2δ

243

)
Lδ +

(
4δ4

729
− 4δ3

729
+

δ2

243
+

4δ

243
− 7

162

)
Lδ̄

+
2L2

δ̄

243
− 2δ4

243
+

29δ3

4374
− 8δ2

729
− 25δ

486
+

2Li2(δ)

243
; (A.39)

I(δ) = −
(

Lδ̄

486
+

δ4

2916
+

δ

486

)
L2
δ −

(
δ4

729
− 2δ2

243
+

8δ

729
− 23

972

)
L2
δ̄ +

(
5δ4

1944
+

19δ3

4374

+
67δ2

2916
+

61δ

4374
+

2Li2(δ̄)

243
+

π2

486
− 809

11664

)
Lδ̄ − Lδ

[(
δ4

729
+

2δ

243
− 7

729

)
Lδ̄

− 5δ4

3888
− 19δ3

8748
− 7δ2

5832
− 25δ

972
+

Li2(δ)

243

]
+

π2δ4

2916
− 5δ4

2916
+

247δ3

34992
− 2461δ2

69984

+
π2δ

486
− 1109δ

11664
− 35Li2(δ̄)

2916
+

7Li2(δ)

729
− 2Li3(δ̄)

243
+

Li3(δ)

243
+

2ζ(3)

243
+

35π2

17496
; (A.40)

I ′′(δ) = −
(
4δ4

729
− 4δ3

729
− 4δ2

243
+

20δ

729
− 73

1458

)
L2
δ̄ −

(
Lδ̄

243
+

δ4

729
− δ3

729
+

δ2

972
+

δ

243

)
L2
δ

+

(
4δ4

243
− 29δ3

2187
+

58δ2

729
+

5δ

2187
+

4Li2(δ̄)

243
+

π2

243
− 2215

17496

)
Lδ̄ − Lδ

[(
4δ4

729

− 4δ3

729
+

δ2

243
+

4δ

243
− 5

243

)
Lδ̄ −

2δ4

243
+

29δ3

4374
− 8δ2

729
− 25δ

486
+

2Li2(δ)

243

]
+

π2δ4

729

− 383δ4

23328
− π2δ3

729
+

923δ3

17496
+

π2δ2

972
− 1357δ2

11664
+

π2δ

243
− 3115δ

17496
− 11Li2(δ̄)

486
+

5Li2(δ)

243

−4Li3(δ̄)

243
+

2Li3(δ)

243
+

4ζ(3)

243
+

11π2

2916
; (A.41)
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J
H
E
P
0
1
(
2
0
1
5
)
1
1
5

{j} f
(0)
B,{j} f

(1)
B,{j} f

(2)
B,{j} h

(0)
B,{j} h

(1)
B,{j} h

(2)
B,{j}

{5} 2.6085e2 -2.3748e3 7.8427e2 -2.5964e0 -1.8780e1 -7.0839e1

{4} 5.5417e2 1.6248e2 8.9587e2 3.6935e0 2.6299e1 8.9418e1

{3} -8.6141e0 1.2216e3 -2.0894e2 -1.6902e0 -1.1864e1 -3.5637e1

{2} -1.5107e0 -9.2378e1 2.1731e1 3.2301e-1 2.2545e0 6.0307e0

{1} 1.1241e-1 5.4522e0 -1.3841e0 -2.6875e-2 -1.8840e-1 -4.5543e-1

{0} 3.2101e-3 2.0675e-2 4.0727e-2 8.0387e-4 5.7122e-3 1.2664e-2

{-1} 2.7478e1 2.4959e2 -3.5865e1 5.1543e0 -9.6139e0 -2.1925e1

{-2} -6.5543e1 -4.3377e3 5.9242e2 -2.5093e2 -1.8937e2 -1.6101e2

{-3} -9.6131e3 5.7863e4 -5.6283e3 1.7465e4 1.1349e4 1.1056e4

{-4} 2.2612e5 7.7096e4 2.1131e4 -4.3025e5 -2.3262e5 -1.5200e5

{-5} 1.6782e5 -2.0939e5 3.8351e4 4.3797e6 1.7123e6 7.2442e5

Table 1. Padé coefficients for B(zq, δ).

While our calculation provides exactly all the functions B(′′)(zq, δ), C
(′,′′)(zq, δ) and

E(′′)(zq, δ), the corresponding expressions depend on zq and the photon energy Eγ through

complex functions of harmonic polylogarithms of various weights, which must be integrated

in the region 2Eγ/mB ∈ [1− δ, 1]. Solving these integrals analytically is highly non-trivial,

and even the numerical integration is computationally demanding. We have performed a

numerical evaluation of such integrals and find it more convenient to present the results

as an expansion in δ around the value δ = 0.316, and as an interpolation in zq. These

interpolations coincide with the exact results in the region z ∈ [0, 1] to a very good precision.

The relevant functions are written as:

G(zq, δ) =
[
f
(0)
G (zq) + i h

(0)
G (zq)

]
+

[
f
(1)
G (zq) + i h

(1)
G (zq)

]
(δ − 0.316)

+
[
f
(2)
G (zq) + i h

(2)
G (zq)

]
(δ − 0.316)2 + · · · (A.42)

with G = B,B′′, C, C ′, C ′′, E,E′′. The functions f
(i)
G (zq), h

(i)
G (zq) are fitted to padé approx-

imants of order [5/5]:

f
(i)
G (zq) =

f
(i)
G,{5}z

5
q + f

(i)
G,{4}z

4
q + f

(i)
G,{3}z

3
q + f

(i)
G,{2}z

2
q + f

(i)
G,{1}zq + f

(i)
G,{0}

f
(i)
G,{−5}z

5
q + f

(i)
G,{−4}z

4
q + f

(i)
G,{−3}z

3
q + f

(i)
G,{−2}z

2
q + f

(i)
G,{−1}zq + 1

(A.43)

and similar for h
(i)
G (zq). The Padé coefficients f

(i)
G,{j}, h

(i)
G,{j} are given in tables 1–7.

The functions F̃(zq, δ) are UV finite and collinear safe. Again, we have the following

relationship,

F̃s,1
(i) (zq, δ) = −6 F̃×,1

(i) (zq, δ) . (A.44)

As before, the ‘crossed’ functions F̃×,1
(J) (zq, δ) are known exactly but we provide here sim-

plified expressions as an expansion in (δ − 0.316) and interpolated in zq. We write:

F̃×,1
(J) (zq, δ) =

[
f̃
(0)
(J)(zq) + i h̃

(0)
(J)(zq)

]
+

[
f̃
(1)
(J)(zq) + i h̃

(1)
(J)(zq)

]
(δ − 0.316)

+
[
f̃
(2)
(J)(zq) + i h̃

(2)
(J)(zq)

]
(δ − 0.316)2 + · · · (A.45)
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J
H
E
P
0
1
(
2
0
1
5
)
1
1
5

{j} f
(0)
B′′,{j} f

(1)
B′′,{j} f

(2)
B′′,{j} h

(0)
B′′,{j} h

(1)
B′′,{j} h

(2)
B′′,{j}

{5} -9.5739e-1 -9.6422e0 -2.8386e1 -7.9067e-2 -6.6893e-1 -2.9051e0

{4} 3.0239e0 2.7036e1 1.2991e2 1.9267e-1 1.6095e0 6.3544e0

{3} -3.9058e-1 -6.8880e-1 2.3899e0 -1.7623e-1 -1.4512e0 -5.1486e0

{2} 3.7847e-3 -6.4972e-1 -4.0154e0 7.5813e-2 6.1479e-1 1.9516e0

{1} -9.5759e-3 3.6265e-3 2.4684e-1 -1.5417e-2 -1.2304e-1 -3.5068e-1

{0} 3.9641e-3 3.0018e-2 7.5378e-2 1.1925e-3 9.3670e-3 2.4204e-2

{-1} -4.6336e0 -2.3791e0 2.8343e-1 -7.6041e0 -6.7239e0 -5.9052e0

{-2} 3.1991e1 1.5265e1 -1.9554e0 5.0750e1 4.1512e1 2.0995e1

{-3} -2.6083e2 -2.3013e2 -3.0385e2 -1.6999e2 -8.9622e1 2.8933e2

{-4} 1.1184e3 1.4088e3 2.6697e3 -2.6338e2 -7.5669e2 -4.3799e3

{-5} -3.1470e2 -4.4778e2 -4.4635e2 3.2029e3 5.1645e3 1.9822e4

Table 2. Padé coefficients for B′′(zq, δ).

{j} f
(0)
C,{j} f

(1)
C,{j} f

(2)
C,{j} h

(0)
C,{j} h

(1)
C,{j} h

(2)
C,{j}

{5} 6.7269e2 4.9426e2 1.0451e3 -3.4512e1 -2.3670e2 -9.4447e2

{4} 3.3679e3 5.8344e3 3.4974e3 4.8342e1 3.2457e2 1.1315e3

{3} 2.3178e2 2.4369e2 -6.8258e2 -2.1749e1 -1.4292e2 -4.2386e2

{2} -3.3437e1 -8.0765e1 7.0897e1 4.0984e0 2.6571e1 6.7645e1

{1} 1.7801e0 2.8034e0 -5.3246e0 -3.3765e-1 -2.1805e0 -4.8418e0

{0} 1.8570e-2 1.0740e-1 1.8133e-1 1.0040e-2 6.5154e-2 1.2819e-1

{-1} 7.1021e1 1.0292e1 -3.4108e1 9.6116e0 -8.1610e0 -2.2268e1

{-2} -6.9880e2 -1.5360e2 5.3644e2 -6.8385e2 -3.9083e2 -2.5150e2

{-3} -5.9528e3 -6.3499e3 -5.0770e3 3.0179e4 1.5933e4 1.3515e4

{-4} 3.3626e5 9.9501e4 2.0032e4 -6.1404e5 -2.6974e5 -1.6966e5

{-5} 1.9465e5 4.3193e4 3.0917e4 5.0960e6 1.7175e6 7.4113e5

Table 3. Padé coefficients for C(zq, δ).

{j} f
(0)
C′,{j} f

(1)
C′,{j} f

(2)
C′,{j} h

(0)
C′,{j} h

(1)
C′,{j} h

(2)
C′,{j}

{5} 3.7841e2 5.9118e2 3.9056e2 -4.5121e-1 -6.0463e1 -2.1698e1

{4} 2.7044e2 4.8884e2 5.4690e2 7.9268e-1 8.8873e1 3.5043e1

{3} -1.1579e2 -1.8312e2 -1.8791e2 -5.0952e-1 -3.9767e1 -1.8854e1

{2} 1.3594e1 1.9867e1 2.5682e1 1.5463e-1 5.9243e0 4.2454e0

{1} 3.0297e-2 -1.6165e-1 -1.7434e0 -2.2768e-2 -1.7640e-1 -4.0900e-1

{0} 5.8184e-3 3.5538e-2 5.7703e-2 1.3344e-3 8.5805e-3 1.5244e-2

{-1} 1.4953e0 -7.2811e0 -3.1995e1 1.1886e1 -8.8975e0 -2.7485e1

{-2} 2.4503e3 6.0955e2 4.7985e2 -5.2688e2 4.2689e2 3.3788e2

{-3} -1.9815e4 -5.2682e3 -3.4156e3 5.3900e3 1.1219e4 -9.5618e2

{-4} 3.7632e4 1.1781e4 8.8305e3 -2.3444e4 -1.4783e5 -1.2086e4

{-5} 1.0249e5 2.6408e4 1.1136e4 3.8372e4 5.4497e5 8.0691e4

Table 4. Padé coefficients for C ′(zq, δ).
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J
H
E
P
0
1
(
2
0
1
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)
1
1
5

{j} f
(0)
B′′,{j} f

(1)
B′′,{j} f

(2)
B′′,{j} h

(0)
B′′,{j} h

(1)
B′′,{j} h

(2)
B′′,{j}

{5} -9.5739e-1 -9.6422e0 -2.8386e1 -7.9067e-2 -6.6893e-1 -2.9051e0

{4} 3.0239e0 2.7036e1 1.2991e2 1.9267e-1 1.6095e0 6.3544e0

{3} -3.9058e-1 -6.8880e-1 2.3899e0 -1.7623e-1 -1.4512e0 -5.1486e0

{2} 3.7847e-3 -6.4972e-1 -4.0154e0 7.5813e-2 6.1479e-1 1.9516e0

{1} -9.5759e-3 3.6265e-3 2.4684e-1 -1.5417e-2 -1.2304e-1 -3.5068e-1

{0} 3.9641e-3 3.0018e-2 7.5378e-2 1.1925e-3 9.3670e-3 2.4204e-2

{-1} -4.6336e0 -2.3791e0 2.8343e-1 -7.6041e0 -6.7239e0 -5.9052e0

{-2} 3.1991e1 1.5265e1 -1.9554e0 5.0750e1 4.1512e1 2.0995e1

{-3} -2.6083e2 -2.3013e2 -3.0385e2 -1.6999e2 -8.9622e1 2.8933e2

{-4} 1.1184e3 1.4088e3 2.6697e3 -2.6338e2 -7.5669e2 -4.3799e3

{-5} -3.1470e2 -4.4778e2 -4.4635e2 3.2029e3 5.1645e3 1.9822e4

Table 2. Padé coefficients for B′′(zq, δ).

{j} f
(0)
C,{j} f

(1)
C,{j} f

(2)
C,{j} h

(0)
C,{j} h

(1)
C,{j} h

(2)
C,{j}

{5} 6.7269e2 4.9426e2 1.0451e3 -3.4512e1 -2.3670e2 -9.4447e2

{4} 3.3679e3 5.8344e3 3.4974e3 4.8342e1 3.2457e2 1.1315e3

{3} 2.3178e2 2.4369e2 -6.8258e2 -2.1749e1 -1.4292e2 -4.2386e2

{2} -3.3437e1 -8.0765e1 7.0897e1 4.0984e0 2.6571e1 6.7645e1

{1} 1.7801e0 2.8034e0 -5.3246e0 -3.3765e-1 -2.1805e0 -4.8418e0

{0} 1.8570e-2 1.0740e-1 1.8133e-1 1.0040e-2 6.5154e-2 1.2819e-1

{-1} 7.1021e1 1.0292e1 -3.4108e1 9.6116e0 -8.1610e0 -2.2268e1

{-2} -6.9880e2 -1.5360e2 5.3644e2 -6.8385e2 -3.9083e2 -2.5150e2

{-3} -5.9528e3 -6.3499e3 -5.0770e3 3.0179e4 1.5933e4 1.3515e4

{-4} 3.3626e5 9.9501e4 2.0032e4 -6.1404e5 -2.6974e5 -1.6966e5

{-5} 1.9465e5 4.3193e4 3.0917e4 5.0960e6 1.7175e6 7.4113e5

Table 3. Padé coefficients for C(zq, δ).

{j} f
(0)
C′,{j} f

(1)
C′,{j} f

(2)
C′,{j} h

(0)
C′,{j} h

(1)
C′,{j} h

(2)
C′,{j}

{5} 3.7841e2 5.9118e2 3.9056e2 -4.5121e-1 -6.0463e1 -2.1698e1

{4} 2.7044e2 4.8884e2 5.4690e2 7.9268e-1 8.8873e1 3.5043e1

{3} -1.1579e2 -1.8312e2 -1.8791e2 -5.0952e-1 -3.9767e1 -1.8854e1

{2} 1.3594e1 1.9867e1 2.5682e1 1.5463e-1 5.9243e0 4.2454e0

{1} 3.0297e-2 -1.6165e-1 -1.7434e0 -2.2768e-2 -1.7640e-1 -4.0900e-1

{0} 5.8184e-3 3.5538e-2 5.7703e-2 1.3344e-3 8.5805e-3 1.5244e-2

{-1} 1.4953e0 -7.2811e0 -3.1995e1 1.1886e1 -8.8975e0 -2.7485e1

{-2} 2.4503e3 6.0955e2 4.7985e2 -5.2688e2 4.2689e2 3.3788e2

{-3} -1.9815e4 -5.2682e3 -3.4156e3 5.3900e3 1.1219e4 -9.5618e2

{-4} 3.7632e4 1.1781e4 8.8305e3 -2.3444e4 -1.4783e5 -1.2086e4

{-5} 1.0249e5 2.6408e4 1.1136e4 3.8372e4 5.4497e5 8.0691e4

Table 4. Padé coefficients for C ′(zq, δ).
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{j} f
(0)
C′′,{j} f

(1)
C′′,{j} f

(2)
C′′,{j} h

(0)
C′′,{j} h

(1)
C′′,{j} h

(2)
C′′,{j}

{5} -7.7072e0 -7.3684e1 -3.2672e2 -8.7364e-1 -6.3940e0 -3.5367e1

{4} 6.5728e0 3.6241e1 1.4444e2 2.0978e0 1.5469e1 7.3871e1

{3} 4.6807e0 7.0186e1 3.8320e2 -1.8917e0 -1.4054e1 -5.6847e1

{2} -1.5486e0 -1.9670e1 -9.3766e1 8.0372e-1 6.0118e0 2.0476e1

{1} 1.0573e-1 1.6449e0 8.0166e0 -1.6179e-1 -1.2175e0 -3.5220e0

{0} 1.8873e-2 1.3658e-1 3.3186e-1 1.2423e-2 9.3960e-2 2.3583e-1

{-1} -4.4964e-1 4.8147e0 1.4577e1 -6.6212e0 -4.6773e0 -2.9278e0

{-2} -2.5309e0 -4.5104e1 -1.3130e2 2.2861e1 -8.8411e0 -7.8932e1

{-3} -1.7756e2 -5.9658e1 1.1661e2 1.0154e2 4.6805e2 1.6895e3

{-4} 1.3958e3 1.8710e3 3.9334e3 -1.5110e3 -3.7935e3 -1.3934e4

{-5} -1.0185e3 -1.5684e3 -3.2201e3 5.1086e3 1.1386e4 4.4771e4

Table 5. Padé coefficients for C ′′(zq, δ).

{j} f
(0)
E,{j} f

(1)
E,{j} f

(2)
E,{j} h

(0)
E,{j} h

(1)
E,{j} h

(2)
E,{j}

{5} 6.4806e1 3.5981e2 1.2940e2 2.1801e1 1.5065e2 6.3214e2

{4} -8.5279e2 -1.5483e3 -1.4843e3 -3.0643e1 -2.0732e2 -7.5761e2

{3} -9.9349e1 -4.0637e2 2.2130e2 1.3820e1 9.1544e1 2.8342e2

{2} 1.2871e1 6.1243e1 -2.0763e1 -2.6077e0 -1.7054e1 -4.5145e1

{1} -5.9578e-1 -2.2780e0 1.9360e0 2.1490e-1 1.4015e0 3.2245e0

{0} -7.3348e-3 -4.1945e-2 -7.8462e-2 -6.3860e-3 -4.1912e-2 -8.5194e-2

{-1} 4.7343e1 2.3190e1 -3.2893e1 1.4649e1 -3.5937e0 -1.8952e1

{-2} -1.4068e2 -3.0228e2 5.2625e2 -7.6567e2 -5.4265e2 -3.8314e2

{-3} -1.3594e4 -7.1646e3 -5.3673e3 3.2909e4 1.9737e4 1.5799e4

{-4} 3.2738e5 1.3102e5 2.2555e4 -6.6974e5 -3.2807e5 -1.9062e5

{-5} 2.8262e5 4.3433e4 3.7019e4 5.6997e6 2.0888e6 8.2259e5

Table 6. Padé coefficients for E(zq, δ).

{j} f
(0)
E′′,{j} f

(1)
E′′,{j} f

(2)
E′′,{j} h

(0)
E′′,{j} h

(1)
E′′,{j} h

(2)
E′′,{j}

{5} -2.7046e1 -1.1652e2 -6.3378e3 4.8640e-1 3.9114e0 1.7243e1

{4} -4.2392e2 -4.6203e3 -5.8000e4 -1.1720e0 -9.3898e0 -3.7292e1

{3} 1.3189e2 1.3432e3 1.5166e4 1.0609e0 8.4650e0 3.0070e1

{2} -8.8744e0 -9.3948e1 -1.1660e3 -4.5251e-1 -3.5954e0 -1.1478e1

{1} -1.4275e0 -1.2464e1 -8.5821e1 9.1466e-2 7.2362e-1 2.1083e0

{0} -4.5677e-3 -3.6869e-2 -1.1199e-1 -7.0517e-3 -5.5554e-2 -1.5106e-1

{-1} 2.8279e2 3.0406e2 7.1445e2 -7.6394e0 -6.0846e0 -4.0315e0

{-2} -1.2889e3 -9.3334e2 1.1757e3 3.3059e1 7.5335e0 -4.7914e1

{-3} 9.6814e3 7.3874e3 -7.4918e3 1.2448e1 2.7671e2 1.2068e3

{-4} -7.8680e4 -8.4193e4 -1.9839e5 -1.0211e3 -2.5305e3 -1.0096e4

{-5} 2.9932e5 3.9930e5 1.7241e6 3.8601e3 7.8008e3 3.2678e4

Table 7. Padé coefficients for E′′(zq, δ).
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{j} f̃
(0)
(i),{j} f̃

(1)
(i),{j} f̃

(2)
(i),{j} f̃

(0)
(ii),{j} f̃

(1)
(ii),{j} f̃

(2)
(ii),{j}

{5} -6.0396e1 -7.9313e2 -4.1781e2 8.5226e3 5.9559e4 6.0577e2

{4} -4.3337e1 4.3943e1 1.7075e2 5.2397e2 -1.7693e3 -2.4607e2

{3} 2.7398e1 7.1810e1 -2.3013e1 -6.9260e2 -2.5828e3 4.0981e1

{2} -4.9232e0 -1.6196e1 1.0162e0 1.3412e2 5.3783e2 -3.9970e0

{1} 1.9455e-1 6.9739e-1 -1.0853e-2 -3.4138e0 -1.4094e1 2.4014e-1

{0} 4.7105e-4 2.1302e-3 4.5410e-4 -1.5811e-3 -8.3330e-3 -5.1000e-3

{-1} 3.2507e2 2.5362e2 -6.7339e1 1.8946e3 1.4787e3 -3.6244e1

{-2} -1.2129e3 -3.3619e3 2.9914e3 2.7983e4 1.4145e4 1.3530e3

{-3} 4.5871e4 3.7550e4 -6.7242e4 3.3450e5 -3.5081e4 -3.2312e4

{-4} -2.7172e5 8.5735e4 7.6883e5 2.2367e6 7.2362e6 4.1425e5

{-5} -3.6784e5 -2.6336e6 -4.2134e6 -4.8970e7 -7.8826e7 -2.5466e6

{-6} 4.8301e6 9.5241e6 8.8361e6 3.1279e8 4.0127e8 5.9475e6

Table 8. Padé coefficients for the real parts of F̃×,1
(J) (zq, δ).

with J = i, ii. The functions f̃
(i)
(J)(zq) are again fitted to Padé approximants:

f̃
(i)
(J)(zq) =

f̃
(i)
(J),{5}z

5
q + f̃

(i)
(J),{4}z

4
q + f̃

(i)
(J),{3}z

3
q + f̃

(i)
(J),{2}z

2
q + f̃

(i)
(J),{1}zq + f̃

(i)
(J),{0}

f̃
(i)
(J),{−6}z

6
q+f̃

(i)
(J),{−5}z

5
q+f̃

(i)
(J),{−4}z

4
q+f̃

(i)
(J),{−3}z

3
q+f̃

(i)
(J),{−2}z

2
q+f̃

(i)
(J),{−1}zq+1

(A.46)

but a different parameterization for the functions h̃
(i)
(J)(zq) is found to reproduce the exact

result more accurately. While for h̃
(0)
(J)(zq) and h̃

(1)
(J)(zq) we use

h̃
(i)
(J)(zq) = zq exp

[
− h̃

(i)
(J),{e} zq

] (1

4
− zq

)2

θ

(
1

4
− zq

) 6∑
j=0

h̃
(i)
(J),{j} z

j
q , (A.47)

we make the ansatz

h̃
(2)
(J)(zq) = zq

(
1

4
− zq

)2

θ

(
1

4
− zq

) ∑7
j=0 h̃

(2)
(J),{j} z

j
q

1 +
∑7

j=1 h̃
(2)
(J),{j} z

j
q

(A.48)

for h̃
(2)
(J)(zq). The coefficients f̃

(i)
(J),{j} and h̃

(i)
(J),{j} can be found in tables 8 and 9, respectively.

Finally the functions F̃I,4
(J)(δ) are given by

F̃s,4
(i) (δ) = −6 F̃×,4

(i) (δ) (A.49)

and

F̃×,4
(i) (δ) = −0.0000513772− 0.0003375398 (δ − 0.316)− 0.000532746 (δ − 0.316)2 + · · · ,

F̃×,4
(ii) (δ) = −0.0001176336− 0.0003362453 (δ − 0.316) + 0.001067501 (δ − 0.316)2 + · · · .

(A.50)

– 31 –



167

167

J
H
E
P
0
1
(
2
0
1
5
)
1
1
5

{j} f̃
(0)
(i),{j} f̃

(1)
(i),{j} f̃

(2)
(i),{j} f̃

(0)
(ii),{j} f̃

(1)
(ii),{j} f̃

(2)
(ii),{j}

{5} -6.0396e1 -7.9313e2 -4.1781e2 8.5226e3 5.9559e4 6.0577e2

{4} -4.3337e1 4.3943e1 1.7075e2 5.2397e2 -1.7693e3 -2.4607e2

{3} 2.7398e1 7.1810e1 -2.3013e1 -6.9260e2 -2.5828e3 4.0981e1

{2} -4.9232e0 -1.6196e1 1.0162e0 1.3412e2 5.3783e2 -3.9970e0

{1} 1.9455e-1 6.9739e-1 -1.0853e-2 -3.4138e0 -1.4094e1 2.4014e-1

{0} 4.7105e-4 2.1302e-3 4.5410e-4 -1.5811e-3 -8.3330e-3 -5.1000e-3

{-1} 3.2507e2 2.5362e2 -6.7339e1 1.8946e3 1.4787e3 -3.6244e1

{-2} -1.2129e3 -3.3619e3 2.9914e3 2.7983e4 1.4145e4 1.3530e3

{-3} 4.5871e4 3.7550e4 -6.7242e4 3.3450e5 -3.5081e4 -3.2312e4

{-4} -2.7172e5 8.5735e4 7.6883e5 2.2367e6 7.2362e6 4.1425e5

{-5} -3.6784e5 -2.6336e6 -4.2134e6 -4.8970e7 -7.8826e7 -2.5466e6

{-6} 4.8301e6 9.5241e6 8.8361e6 3.1279e8 4.0127e8 5.9475e6

Table 8. Padé coefficients for the real parts of F̃×,1
(J) (zq, δ).

with J = i, ii. The functions f̃
(i)
(J)(zq) are again fitted to Padé approximants:

f̃
(i)
(J)(zq) =

f̃
(i)
(J),{5}z

5
q + f̃

(i)
(J),{4}z

4
q + f̃

(i)
(J),{3}z

3
q + f̃

(i)
(J),{2}z

2
q + f̃

(i)
(J),{1}zq + f̃

(i)
(J),{0}

f̃
(i)
(J),{−6}z

6
q+f̃

(i)
(J),{−5}z

5
q+f̃

(i)
(J),{−4}z

4
q+f̃

(i)
(J),{−3}z

3
q+f̃

(i)
(J),{−2}z

2
q+f̃

(i)
(J),{−1}zq+1

(A.46)

but a different parameterization for the functions h̃
(i)
(J)(zq) is found to reproduce the exact

result more accurately. While for h̃
(0)
(J)(zq) and h̃

(1)
(J)(zq) we use

h̃
(i)
(J)(zq) = zq exp

[
− h̃

(i)
(J),{e} zq

] (1

4
− zq

)2

θ

(
1

4
− zq

) 6∑
j=0

h̃
(i)
(J),{j} z

j
q , (A.47)

we make the ansatz

h̃
(2)
(J)(zq) = zq

(
1

4
− zq

)2

θ

(
1

4
− zq

) ∑7
j=0 h̃

(2)
(J),{j} z

j
q

1 +
∑7

j=1 h̃
(2)
(J),{j} z

j
q

(A.48)

for h̃
(2)
(J)(zq). The coefficients f̃

(i)
(J),{j} and h̃

(i)
(J),{j} can be found in tables 8 and 9, respectively.

Finally the functions F̃I,4
(J)(δ) are given by

F̃s,4
(i) (δ) = −6 F̃×,4

(i) (δ) (A.49)

and

F̃×,4
(i) (δ) = −0.0000513772− 0.0003375398 (δ − 0.316)− 0.000532746 (δ − 0.316)2 + · · · ,

F̃×,4
(ii) (δ) = −0.0001176336− 0.0003362453 (δ − 0.316) + 0.001067501 (δ − 0.316)2 + · · · .

(A.50)

– 31 –

J
H
E
P
0
1
(
2
0
1
5
)
1
1
5

{j} h̃
(0)
(i),{j} h̃

(1)
(i),{j} h̃

(0)
(ii),{j} h̃

(1)
(ii),{j}

{6} 0 0 2.7269e9 3.0740e10

{5} 0 5.9601e5 -5.6512e8 -5.4396e9

{4} -3.4279e4 -2.5773e5 5.1876e7 4.4076e8

{3} 5.4423e3 3.5916e4 -2.2643e6 -1.6493e7

{2} -5.0377e2 -2.5068e3 5.7546e4 3.7561e5

{1} 9.7190e0 2.9523e1 -5.7810e2 -3.0581e3

{0} -7.3742e-1 -2.5466e0 6.7661e0 3.4673e1

{e} 2.9801e1 2.3898e1 8.2260e1 9.3516e1

{j} h̃
(2)
(i),{j} h̃

(2)
(ii),{j}

{7} 1.9156e7 0

{6} -1.2045e7 -4.0614e7

{5} 2.7691e6 2.8773e7

{4} -2.4695e5 -9.2094e6

{3} -1.3034e3 1.6547e6

{2} 1.5514e3 -1.5575e5

{1} -8.3143e1 5.4749e3

{0} 1.1641e0 3.0407e1

{-1} 5.3853e1 1.0191e3

{-2} -4.7202e3 5.4442e3

{-3} 1.2537e5 -6.7695e5

{-4} -1.7062e6 1.0194e7

{-5} 1.2920e7 -4.8380e7

{-6} -5.1347e7 -2.3921e7

{-7} 8.3239e7 4.9141e8

Table 9. Coefficients for the imaginary parts of F̃×,1
(J) (zq, δ).
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1 Introduction

The inclusive weak radiative decay B̄ → Xsγ is known to provide valuable tests of the

Standard Model (SM), as well as constraints on beyond-SM physics. Measurements of its

CP- and isospin-averaged branching ratio Bsγ at the Υ(4S) experiments, namely CLEO [1],

Belle [2, 3] and Babar [4–7], contribute to the following world average1 [8]

Bexp
sγ = (3.43± 0.21± 0.07)× 10−4 (1.1)

for Eγ > E0 = 1.6GeV in the B-meson rest frame. A significant suppression of the

experimental error is expected once Belle II begins collecting data in a few years from

now [10, 11].

Let us describe the relation of Bsγ to decay rates in an untagged measurement at

Υ(4S). One begins with the CP-averaged decay rates

Γ0 =
Γ(B̄0 → Xsγ) + Γ(B0 → Xs̄γ)

2
, Γ± =

Γ(B− → Xsγ) + Γ(B+ → Xs̄γ)

2
. (1.2)

1The new semi-inclusive measurement by Belle [9] which supersedes [2] is not yet taken into account in

this average.
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Their isospin average Γ = (Γ0 +Γ±)/2 and asymmetry ∆0± = (Γ0 −Γ±)/(Γ0 +Γ±) are

related to Bsγ as follows

Bsγ = τB0Γ

(
1 + rfrτ
1 + rf

+∆0±
1− rfrτ
1 + rf

)
. (1.3)

Here, rτ = τB+/τB0 = 1.076 ± 0.004 [8] and rf = f+−/f00 = 1.059 ± 0.027 [8] are the

measured lifetime and production rate ratios of the charged and neutral B-mesons at Υ(4S).

The term proportional to ∆0± in eq. (1.3) contributes only at a permille level, which follows

from the measured value of ∆0± = −0.01± 0.06 (for Eγ > 1.9GeV) [7, 12, 13].

The final state strangeness in eq. (1.2) (−1 for Xs and +1 for Xs̄) as well as the

neutral B-meson flavours have been specified upon ignoring effects of the B0B̄0 and K0K̄0

mixing. Taking the K0K̄0 mixing into account amounts to replacing Xs and Xs̄ by X|s|
with an unspecified strangeness sign, which leaves Γ0 and Γ± invariant. Next, taking

the B0B̄0 mixing into account amounts to using in Γ0 the time-integrated decay rates of

mesons whose flavour is fixed at the production time. Such a change leaves Γ0 practically

unaffected because mass eigenstates in the B0B̄0 system are very close to being orthogonal

(|p/q| = 1) and having the same decay width [13]. In the following, we shall thus ignore

the neutral meson mixing effects.

Theoretical calculations of the B̄ → Xsγ decay rate are based on the equality

Γ(B̄ → Xsγ)Eγ>E0 = Γ(b → Xp
s γ)Eγ>E0 + δΓnonp, (1.4)

where the first term on the r.h.s. stands for the perturbatively calculable inclusive decay

rate of the b quark into charmless partons Xp
s = s, sg, sgg, sqq̄, . . . and the photon. For

appropriately chosen E0, the second term δΓnonp becomes small, and is called a non-

perturbative correction. For E0 = 1.6GeV, the uncertainty due to poor knowledge of

δΓnonp has been estimated to remain below 5% of the decay rate [14]. The non-perturbative

correction is partly correlated with the isospin asymmetry because δΓnonp depends on

whether B̄ = B̄0 or B̄ = B− [14].

As far as the perturbative contribution Γ(b → Xp
s γ) is concerned, its determination

with an accuracy significantly better than 5% is what the ongoing calculations aim at. For

this purpose, order O(α2
s ) corrections need to be evaluated. Moreover, resummation of log-

arithmically enhanced terms like
(
αs ln(M

2
W /m2

b)
)n

is necessary at each order of the usual

αs-expansion.
2 Such a resummation is most conveniently performed in the framework of an

effective theory that arises after decoupling of the electroweak-scale degrees of freedom. In

the SM, which we restrict to in the present paper, one decouples the top quark, the Higgs

boson and the gauge bosons W± and Z0. Barring higher-order electroweak corrections, all

the relevant interactions are then described by the following effective Lagrangian:

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2

[
V ∗
tsVtb

8∑

i=1

Ci(µ)Qi + V ∗
usVub

2∑

i=1

Ci(µ)(Qi −Qu
i )

]
,

(1.5)

2After the resummation, subsequent O(1), O(αs) and O(α2
s ) terms in this expansion are called Leading

Order (LO), Next-to-Leading Order (NLO) and Next-to-Next-to-Leading Order (NNLO).

– 2 –
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where GF is the Fermi constant, and Vij are the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements. The operators Q
(u)
i are given by

Qu
1 = (s̄LγµT

auL)(ūLγ
µT abL),

Qu
2 = (s̄LγµuL)(ūLγ

µbL),

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL),

Q2 = (s̄LγµcL)(c̄Lγ
µbL),

Q3 = (s̄LγµbL)
�

q

(q̄γµq),

Q4 = (s̄LγµT
abL)

�

q

(q̄γµT aq),

Q5 = (s̄Lγµ1γµ2γµ3bL)
�

q

(q̄γµ1γµ2γµ3q),

Q6 = (s̄Lγµ1γµ2γµ3T
abL)

�

q

(q̄γµ1γµ2γµ3T aq),

Q7 =
e

16π2
mb(s̄Lσ

µνbR)Fµν ,

Q8 =
g

16π2
mb(s̄Lσ

µνT abR)G
a
µν , (1.6)

where the sums inQ3,...,6 go over all the active flavours q = u, d, s, c, b in the effective theory.

Decoupling (matching) calculations give us values of the electroweak-scale Wilson co-

efficients Ci(µ0), where µ0 ∼ (MW ,mt). Next, renormalization group equations are used to

evolve them down to the low-energy scale, i.e. to find Ci(µb), where µb ∼ mb/2 is of order

of the final hadronic state energy in the B̄-meson rest frame. Determination of the Wilson

coefficients C1,...,8(µb) up to O(α2
s ) in the SM was completed in 2006 [15–19]. Matching

calculations up to three loops [16] and anomalous dimension matrices up to four loops [19]

were necessary for this purpose. The three-loop matching calculation has recently been

extended to the Two-Higgs-Doublet-Model case [20]. Most of the final results have been

presented for the so-called effective coefficients

Ceff
i (µ) =





Ci(µ), for i = 1, . . . , 6,

C7(µ) +
�6

j=1 yjCj(µ), for i = 7,

C8(µ) +
�6

j=1 zjCj(µ), for i = 8,

(1.7)

where the numbers yj and zj are such that the LO decay amplitudes for b → sγ and

b → sg are proportional to the LO terms in Ceff
7 (µb) and Ceff

8 (µb), respectively [21]. In

the MS scheme with fully anticommuting γ5, one finds �y = (0, 0,−1
3 ,−4

9 ,−20
3 ,−80

9 ) and

�z = (0, 0, 1,−1
6 , 20,−10

3 ) [22].
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Once the Wilson coefficients Ceff
i (µb) have been found up to the NNLO, one proceeds

to evaluating all the on-shell decay amplitudes that matter at this order for3

Γ(b → Xp
s γ)Eγ>E0 =

G2
Fαemm5

b,pole

32π4
|V ∗

tsVtb|2
8∑

i,j=1

Ceff
i (µb) C

eff
j (µb)×

×
[
G̃

(0)
ij (E0) +

αs

4π
G̃

(1)
ij (E0, µb) +

(αs

4π

)2
G̃

(2)
ij (E0, µb) +O(α3

s )

]
+ . . . , (1.8)

where ellipses stand for higher-order electroweak corrections. At the LO, the symmetric

matrix G̃
(0)
ij takes the form

G̃
(0)
ij (E0) = δi7δj7 + T

(0)
ij , (1.9)

where T
(0)
ij describe small tree-level contributions to b → sqq̄γ from Qu

1,2 and Q3,...,6 [23, 24].

At the NLO and NNLO, numerically dominant effects come from G̃
(n)
77 , G̃

(n)
17 and G̃

(n)
27 .

While G̃
(2)
77 is known in a complete manner [25–29], calculations of G̃

(2)
17 and G̃

(2)
27 are still

in progress. Contributions from massless and massive fermion loops on the gluon lines

have been found in refs. [30–32], and served as a basis for applying the Brodsky-Lepage-

Mackenzie (BLM) approximation [33]. The remaining (non-BLM) parts of G̃
(2)
(1,2)7 have

been known so far in the heavy charm quark limit only (mc ≫ mb/2) [34, 35].

In the present work, we evaluate the full G̃
(2)
(1,2)7 for mc = E0 = 0. It is achieved by

calculating imaginary parts of several hundreds four-loop propagator-type diagrams with

massive internal lines. Next, both limits are used to interpolate in mc those parts of the

non-BLM contributions to G̃
(2)
(1,2)7 whose exact mc-dependence is not yet known. It will

give us an estimate of their values at the measured value of mc, and for non-vanishing E0.

Our current approach differs in several aspects from the one in ref. [34] where

interpolation in mc was applied to a combined non-BLM effect from all the G̃
(2)
ij with

i, j ∈ {1, 2, 7, 8}.4 In the present paper, the only interpolated quantities are the above-

mentioned parts of G̃
(2)
(1,2)7. Exact mc-dependence of most of the other important non-BLM

contributions to G̃
(2)
ij is now available thanks to calculations performed in refs. [29, 32, 36].

Last but not least, the current analysis includes the previously unknown mc-independent

part of G̃
(2)
78 [37], all the relevant BLM corrections to G̃

(2)
ij with i, j �= 7 [31, 38, 39],

tree-level contributions T
(0)
ij [23, 24], four-body NLO corrections [24], as well as the

updated non-perturbative corrections [14, 40, 41]. The only contributions to G̃
(2)
ij with

i, j ∈ {1, 2, 7, 8} that remain neglected are the unknown (n ≥ 3)-body final state

contributions to the non-BLM parts of G̃
(2)
ij with i, j �= 7.

The article is organized as follows. In section 2, we describe the calculation of G̃
(2)
(1,2)7 for

mc = E0 = 0. A new phenomenological analysis begins in section 3 where mc-dependence

of the considered correction is discussed, and the corresponding uncertainty is estimated.

3Following the notation of ref. [25], we use tilde over G in the r.h.s. of eq. (1.8) to indicate the overall

normalization to m5
b,pole.

4At the NNLO level, we neglect the small Wilson coefficients C3, . . . , C6, and the CKM-suppressed effects

from Qu
1,2.
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In section 4, we evaluate our current prediction for Bsγ in the SM, which constitutes an up-

date of the one given in ref. [42]. We conclude in section 5. Appendix A contains results for

all the massless master integrals that were necessary for the calculation in section 2. Several

relations to quantities encountered in ref. [43] are presented in appendix B. In appendix C,

we collect some of the relevant NLO quantities. Appendix D contains a list of input pa-

rameters for our numerical analysis together with a correlation matrix for a subset of them.

2 Calculation of G̃
(2)
17 and G̃

(2)
27 for mc = E0 = 0

2.1 The bare calculation

Typical diagrams that had to be evaluated for the present project are shown in figure 1.

They represent a subset of possible unitarity cut contributions to the b-quark self-energy

due to the interference of various effective operators. At the highest loop level, i.e. four-

loops, this interference involves the operators Q1,2 and Q7. We need to consider two-,

three- and four-particle cuts. Possible five-particle cuts would necessarily involve real

cc̄ pairs originating from the Q1,2 operator vertices, while open charm production is not

included in B̄ → Xsγ by definition. For this reason, we skip the diagrams with five-particle

cuts together with all the diagrams with real cc̄ production or virtual charm loops on the

gluon lines. In section 3, contributions from virtual charm loops on the gluon lines will be

taken over from the mc �= 0 calculation of ref. [32], and added to the final result.

For efficiency reasons, we work directly with cut diagrams and employ the technique

first proposed in [44]. The idea of the method is to represent cut propagators as

− 2πiδ(p2 −m2) =
1

p2 −m2 + iε
− 1

p2 −m2 − iε
. (2.1)

As long as we perform only algebraic transformations on the integrands, there is no dif-

ference between the first and second terms on the r.h.s. of the above equation, and it is

sufficient to work with one of them only. This is particularly convenient for the integration-

by-parts (IBP) method for reduction of integrals [45]. The only difference in such an ap-

proach between complete integrals and cut integrals is that a given integral vanishes if the

cut propagator disappears due to cancellation of numerators with denominators. This fact

reduces the number of occurring integrals in comparison to a computation without cuts.

In practice, the calculation follows the standard procedure. Diagrams are generated

with DiaGen [46], the Dirac algebra is performed with FORM [47], and the resulting scalar

integrals are reduced using IBP identities with IdSolver [46]. The main challenge of this

calculation begins after these steps. The amplitudes for the interference contributions

are expressed in terms of a number of master integrals, most of them containing massive

internal b-quark lines and a non-trivial phase space integration in D = 4 − 2ǫ spacetime

dimensions, with up to four particles in the final state. A feeling for the size of the problem

can be gained from table 1.

Having a large number of massive cut integrals, it is advantageous to devise a strategy

to treat them in a uniform manner. It is clear that purely massless cut integrals are easier to

– 5 –



177

177
J
H
E
P
0
4
(
2
0
1
5
)
1
6
8

Figure 1. Sample diagrams for G̃
(2)
(1,2)7 with some of the possible cuts indicated by the dashed lines.

nD nOS neff nmassless

two-particle cuts 292 92 143 9

three-particle cuts 267 54 110 11

four-particle cuts 292 17 37 7

total 851 163 290 27

Table 1. Number of diagrams nD, number of massive on-shell master integrals nOS , number of

effectively computed massive master integrals neff , and number of massless master integrals nmassless.

The last two columns are explained in the text.

calculate than massive ones. Therefore, we aim at replacing a calculation of massive prop-

agator integrals by a calculation of massless ones. This can be achieved by extending the

integral definitions. We assume, namely, that the external momentum squared p2b is a free

parameter, and treat coefficients Ii in the ǫ-expansion of the master integrals as functions

of a single dimensionless variable x = p2b/m
2
b . IBP identities give us differential equations

d

dx
Ii(x) =

∑

j

Jij(x)Ij(x) , (2.2)
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Figure 2. Diagrammatic representation of the asymptotic large mass expansion of two non-planar

master integrals.Thick and thin lines represent massive and massless propagators, respectively, while

dashed lines show the unitarity cuts.

with Jij(x) being certain rational functions of x. Boundary conditions for these equations

in the vicinity of x = 0 are given by asymptotic large-mass expansions, i.e. by power-log

series in x. A few leading terms in the series for each Ii can be found by calculating

products of massive tadpole integrals up to three loops and massless propagator ones up

to four loops, as illustrated in figure 2. Next, higher-order terms can be determined from

the differential equations themselves by substituting Ii in terms of power-log series in x.

For our application it turns out that around 50 terms are sufficient to obtain the desired

accuracy. This gives us high-precision boundary conditions at small but non-vanishing x

for solving the differential equations (2.2) numerically.

On the way from the vicinity of x = 0 to the physical point at x = 1, one often

encounters spurious singularities on the real axis. To bypass them, the differential equations

are solved along ellipses in the complex x plane. Several such ellipses are usually considered

to test whether the numerical solution is stable.

Naively, one might think that as long as there are no infinities at x = 1, the numerical

solution could be continued up to that point. However, there is an essential singularity

there, and the integrals behave as (1− x)n lnm(1− x), with n,m > 0 being some positive

powers. Due to such a behaviour, the numerical solution has poor convergence, as the

algorithms assume locally polynomial behaviour of the considered functions. In order to

overcome this problem, we perform another power-log expansion around x = 1, and match

it onto the numerical result. To determine the maximal power of the logarithms, we begin

with observing that the highest poles in the cut diagrams could potentially be of order

1/ǫ6, due to the presence of collinear and soft divergences. The coefficient of the leading

singularity contains no ln(1−x) because logarithms are generated by expanding expressions
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Figure 3. Left (a): integration contour in the complex x plane. The numerical integration (NI) is

performed between the regions close to x = 0 and x = 1 that are accessible by power-log expansions

(PLE). Right (b): diagrams that give the terms marked with κ in eq. (2.3).

of the form (1 − x)aǫ/ǫ6 (with a being some constant) in the framework of expansion by

regions. Thus, finite parts of the master integral expansions may only contain ln6(1− x).

Higher powers may be needed due to the presence of spurious singularities, i.e. poles in

the coefficients at the master integrals in the physical amplitude. In practice, we have

used an ansatz with logarithm powers up to fifteen. Our numerical matching has shown

that such high powers never occur in the considered problem, i.e. the respective expansion

coefficients are consistent with zero to very high numerical precision. Using the matched

series, we finally obtain the required values of the original master integrals at x = 1. The

solution procedure is schematically represented in figure 3a.

Since the master integrals are considered for x �= 1, their overall number neff is larger

than it would be for x = 1, i.e. neff > nOS . However, the massless integrals that are

necessary to determine the boundary conditions near x = 0 are not only simpler, but

also their number nmassless is much smaller than nOS , as seen in table 1. All the massless

integrals that we had to consider are depicted in appendix A, in figure 7 and table 3.

Using the above method, we have obtained the following bare NNLO results for the

considered interferences in the Feynman-’t Hooft gauge:

G̃
(2)bare
17 = −1

6
G̃

(2)bare
27 +

80

81 ǫ2
+

1592 + 54π2

243 ǫ
+ 42.0026519628,

G̃
(2)bare
27 = − 4

3 ǫ3
− 30332 + 432π2

2187 ǫ2
− 67.66077706444119

ǫ
+ 44.5070537274

+κnl

(
32

729 ǫ
+ 0.6520676315

)
+ nl

(
352

729 ǫ2
+

11624

2187 ǫ
+

228656

6561
− 188

243
π2

)

+nb

(
352

729 ǫ2
+

5.17409838118169

ǫ
+ 15.1790288135

)
+O(ǫ). (2.3)

Here, nl and nb denote numbers of massless and massive (m = mb) quark flavours, while

κ = 1 marks contributions from the diagrams in figure 3b describing interferences involving

four-body sqq̄γ final states and no cc̄γ couplings. The terms proportional to nl and nb but

not marked by κ reproduce (after renormalization) the mc → 0 limits of what is already
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known for non-zero mc [30–32]. For compactness, all the results in this subsection are given

for µ2 = eγm2
b/(4π), where γ is the Euler-Mascheroni constant.

Some of the numbers in eq. (2.3) have been given in an exact form even though our

calculation of the master integrals at x = 1 is purely numerical. However, the accuracy is

very high (to around 14 decimals), so identification of simple rationals is possible. Moreover,

renormalization gives us relations to lower-order results where more terms are known in

an exact manner (see below). For the nl-term, after verifying numerical agreement with

refs. [30, 39], we have made use of the available exact expressions.5 Several other numbers

in this subsection that have been retained in a decimal form can actually be related to

quantities encountered in ref. [43], as described in appendix B.

Let us now list all the lower-order bare contributions that are needed for renormal-

ization. For this purpose, it is convenient to express eq. (1.8) in terms of Ci rather than

Ceff
i , and denote the corresponding interference terms by Ĝ

(n)
ij rather than G̃

(n)
ij . All the

necessary Ĝ
(0)
i7 and Ĝ

(1)bare
i7 read6

Ĝ
(0)
77 =

Γ(2− ǫ) eγǫ

Γ(2− 2ǫ)
,

Ĝ
(0)
47 =

4

3
Ĝ

(0)
37 = − 4

9
Γ(1 + ǫ) eγǫ Ĝ

(0)
77 ,

Ĝ
(0)
67 =

4

3
Ĝ

(0)
57 = 4

(
5− 3 ǫ− ǫ2

)
Ĝ

(0)
47 ,

Ĝ
(1)bare
27 = −6 Ĝ

(1)bare
17 = − 92

81 ǫ
− 1978

243
+

777π2 − 27185

729
ǫ+O(ǫ2),

Ĝ
(1)bare
47 =

16

3 ǫ2
+

3674

243 ǫ
+ 43.76456245573869 + 94.9884724116 ǫ

+κnl

(
− 16

243
+

44π2 − 612

243
ǫ

)
+ nl

(
16

81 ǫ
− 4

243
+

264π2 − 2186

729
ǫ

)

+nb

(
16

81 ǫ
+ 0.04680853247986 + 0.3194493123 ǫ

)
+O(ǫ2),

Ĝ
(1)bare
77 =

4

3 ǫ
+

124

9
− 16

9
π2 +

(
212

3
− 58

9
π2 − 64

3
ζ3

)
ǫ+O(ǫ2),

Ĝ
(1)bare
78 =

16

9 ǫ
+

280

27
− 16

27
π2 +

(
382

9
− 16

9
π2 − 160

9
ζ3

)
ǫ+O(ǫ2),

Ĝ
(1)bare
7(12) = −6 Ĝ

(1)bare
7(11) =

2096

81
+

39832

243
ǫ+O(ǫ2). (2.4)

The last line of the above equation describes contributions from the so-called evanescent

operators that vanish in four spacetime dimensions

Q11 = (s̄Lγµ1γµ2γµ3T
acL)(c̄Lγ

µ1γµ2γµ3T abL)− 16Q1,

5In particular, for the function given in eq. (13) of ref. [39], we have limmc→0 h
(2)
27 (δ = 1) = 41

27
− 2

9
π2.

6Ĝi7 differ from G̃i7 only for i = 3, 4, 5, 6.
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Q12 = (s̄Lγµ1γµ2γµ3cL)(c̄Lγ
µ1γµ2γµ3bL)− 16Q2. (2.5)

In Ĝ
(1)bare
(1,2)7 , the three-particle-cut contributions alone (b → sγg) read

Ĝ
(1)3P
27 = −6 Ĝ

(1)3P
17 = − 4

27
− 106

81
ǫ+O(ǫ2). (2.6)

In addition, several interferences need to be calculated with the b-quark propagators

squared, to account for the renormalization of mb. We find

Ĝ
(1)m
27 = −6 Ĝ

(1)m
17 = − 1

3 ǫ2
− 21 + 4π2

81 ǫ
+

1085

81
− 161

972
π2 − 40

27
ζ3

+

(
59071

486
− 1645

2916
π2 − 65

81
ζ3 −

7

81
π4

)
ǫ+O(ǫ2),

Ĝ
(0)m
47 =

4

3ǫ
+ 2 +

50− 2π2

9
ǫ+

94− 3π2 − 32ζ3
9

ǫ2 +O(ǫ3). (2.7)

Our conventions for their global normalization will become clear through the way they

enter the renormalized NNLO expression in eq. (2.10) below.

Some of the diagrams with Q4 insertions contain b-quark tadpoles that are the only

source of 1/ǫ2 terms in Ĝ
(1)bare
47 , and 1/ǫ terms in Ĝ

(0)m
47 . Such divergences are actually nec-

essary to renormalize the 1/ǫ3 poles in eq. (2.3). These tadpole diagrams have been skipped

in the NLO calculation of ref. [43] because they give no contribution to the renormalized

Ĝ
(1)
47 , i.e. they cancel out after renormalization of mb.

Among all the bare interferences given in this section, not only the NNLO ones are

entirely new, but also Ĝ
(1)bare
7(12) , Ĝ

(1)m
27 and Ĝ

(0)m
47 . The remaining LO and NLO results are ex-

tensions of the known ones by another power of ǫ, as necessary for the current calculation.7

2.2 Renormalization

Our results in the previous subsection contain no loop corrections on external legs in the

interfered amplitudes. Such corrections are taken into account below, with the help of

on-shell renormalization constants for the b-quark, s-quark and gluon fields

ZOS
b = 1− 4

3
α̃s s

ǫ eγǫ Γ(ǫ)
3− 2ǫ

1− 2ǫ
+O(α̃2

s ),

ZOS
s = 1 +O(α̃2

s ),

ZOS
G = 1− 2

3
nb α̃s s

ǫ eγǫ Γ(ǫ) +O(α̃2
s ), (2.8)

where α̃s =
αs
4π = g2s

16π2 and s = 4πµ2

m2
b

e−γ . The QCD coupling gs and the Wilson coefficients

Ci are renormalized in the MS scheme: gbares = Z̄ggs, and Cbare
i =

∑
j CjZ̄ji. The cor-

responding MS renormalization constants can be taken over from the literature (see, e.g.,

7Exceptions are Ĝ
(0)bare
77 Ĝ

(1)bare
77 and Ĝ

(1)bare
78 , for which sufficiently many terms in the ǫ expansions have

been already found in refs. [25, 27, 37]. Our results agree with theirs, barring different conventions for the

global 1 +O(ǫ) normalization factor (see the end of subsection 2.2).
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refs. [17, 19])

Zg=1 + α̃s
ǫ

�
−11

2 + f
3

�
+O(�α2

s ), Z77=1 + 16 α̃s
3 ǫ +O(�α2

s ),

Z11=1− 2 α̃s
ǫ +O(�α2

s ), Z21=
6 α̃s
ǫ +O(�α2

s ),

Z12=
4 α̃s
3 ǫ +O(�α2

s ), Z22=1 +O(�α2
s ),

Z13=�α2
s

�
10

81 ǫ2
− 353

243 ǫ

�
+O(�α3

s ), Z23=�α2
s

�
− 20

27 ǫ2
− 104

81 ǫ

�
+O(�α3

s ),

Z14=−1
6Z24 + �α2

s

�
1
2ǫ2

− 11
12 ǫ

�
, Z24=

2 α̃s
3 ǫ + �α2

s

�
−188+12f

27 ǫ2
+ 338

81 ǫ

�
+O(�α3

s ),

Z15=�α2
s

�
− 1

81 ǫ2
+ 67

486 ǫ

�
+O(�α3

s ), Z25=�α2
s

�
2

27 ǫ2
+ 14

81 ǫ

�
+O(�α3

s ),

Z16=�α2
s

�
− 5

216 ǫ2
− 35

648 ǫ

�
+O(�α3

s ), Z26=�α2
s

�
5

36 ǫ2
+ 35

108 ǫ

�
+O(�α3

s ),

Z17=−1
6Z27 + �α2

s

�
22

81 ǫ2
− 332

243 ǫ

�
, Z27=

116 α̃s
81 ǫ +�α2

s

�
−3556+744f

2187 ǫ2
+ 13610−44f

2187 ǫ

�
+O(�α3

s ),

Z18=
167 α̃s
648 ǫ +O(�α2

s ), Z28=
19 α̃s
27 ǫ +O(�α2

s ),

Z1(11)=
5 α̃s
12 ǫ +O(�α2

s ), Z2(11)=
α̃s
ǫ +O(�α2

s ),

Z1(12)=
2 α̃s
9 ǫ +O(�α2

s ), Z2(12)=O(�α2
s ), (2.9)

where f = nl+nb here, as we have skipped all the charm loops on the gluon lines. For the b-

quark mass renormalization, we use the on-shell scheme everywhere (ZOS
m = ZOS

b +O(�α2
s )),

to get the overall m5
b,pole in eq. (1.8).

With all the necessary ingredients at hand, we can now write an explicit formula for

the renormalized interference terms up to the NNLO (i = 1, 2)8

�αs
�G(1)
i7 +�α2

s
�G(2)
i7 =ZOS

b ZOS
m Z̄77

�
�α2
s s

3ǫ �G(2)bare
i7 +(ZOS

m −1) sǫ
�
Z̄i4 Ĝ

(0)m
47 +�αs s

ǫ Ĝ
(1)m
i7

�

+ �αs (Z
OS
G − 1) s2ǫ Ĝ

(1)3P
i7 + Z̄i7 Z

OS
m

�
Ĝ

(0)
77 + �αs s

ǫ Ĝ
(1)bare
77

�
+ �αs Z̄i8 s

ǫ Ĝ
(1)bare
78

+
�

j=1,...,6,11,12

Z̄ij s
ǫ
�
Ĝ

(0)
j7 + �αs s

ǫ Z̄2
g Ĝ

(1)bare
j7

�


 + O(�α3

s ), (2.10)

where Ĝ
(0)
j7 = 0 for j = 1, 2, 11, 12. Once the above expression is expanded in �αs, and O(�α3

s )

terms are neglected, all the 1/ǫn poles cancel out as they should. Our final renormalized

results at E0 = mc = 0 read

�G(1)
27 = −6 �G(1)

17 = − 1702

243
− 416

81
ln

µ

mb
,

�G(2)
17 = −1

6
�G(2)
27 +

136

27
ln2

µ

mb
+

94 + 8π2

9
ln

µ

mb
+ 22.6049613485,

8Obviously, the renormalized G̃
(n)
i7 remain unchanged after replacing Z̄g → Zg, Z̄ij → Zij and s →

µ2/m2
b on the r.h.s. of eq. (2.10) and inside the on-shell constants (2.8).
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G̃
(2)
27 =

(
11792

729
+

800

243
(nl + nb)

)
ln2

µ

mb
+

(
1.0460332197 +

64

729
κnl

+
2368

243
nl + 9.6604967166nb

)
ln

µ

mb
− 14.0663747289 + 0.1644478609κnl

+

(
54170

6561
+

92

729
π2

)
nl − 1.8324081161nb. (2.11)

They are, of course, insensitive to conventions for the global 1+O(ǫ) normalization factor

in eqs. (2.3)–(2.7), so long as it is the same in all these equations. In particular, it does not

matter that our Ĝ
(0)
77 differs from the one in ref. [25] by an overall factor of Γ(1 + ǫ) eγǫ.

As already mentioned, the nl terms not marked by κ in eq. (2.11) agree with the

previous calculations where both mc �= 0 and mc = 0 were considered. In the case of the nb

terms, the current result extends the published fit (eq. (3.3) of ref. [32]) down to mc = 0.

All the remaining terms are entirely new.

3 Impact of the NNLO corrections to (Q7, Q1,2) interferences on the

branching ratio

In the description of our phenomenological analysis, we shall strictly follow the notation

of ref. [34], where the relevant perturbative quantity

P (E0) =
8∑

i,j=1

Ceff
i (µb) C

eff
j (µb) Kij(E0, µb), (3.1)

has been defined through

Γ[b → Xp
s γ]Eγ>E0

|Vcb/Vub|2 Γ[b → Xp
ueν̄]

=

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2 6αem

π
P (E0). (3.2)

The relation between G̃
(n)
i7 for i = 1, 2 and Ki7 = α̃sK

(1)
i7 + α̃2

sK
(2)
i7 +O(α̃3

s ) is thus very

simple

α̃sK
(1)
i7 + α̃2

sK
(2)
i7 +O(α̃3

s ) =
α̃s G̃

(1)
i7 + α̃2

s G̃
(2)
i7 +O(α̃3

s )

1 + α̃s(50− 8π2)/3 + O(α̃2
s )

, (3.3)

where the denominator comes from the NLO correction to the semileptonic b → Xp
ueν̄

decay rate.

In the following, we shall write expressions for K
(2)
i7 that are valid for arbitrary mc

and E0 but incorporate information from our calculation in the previous section, where

E0 = mc = 0 has been assumed. For this purpose, four functions

fNLO(z, δ) = Re r
(1)
2 (z) + 2φ

(1)
27 (z, δ),

fq(z, δ) = Re r
(2)
2 (z) − 4

3
h
(2)
27 (z, δ),
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fb(z) ≃ −1.836 + 2.608 z + 0.8271 z2 − 2.441 z ln z,

fc(z) ≃ 9.099 + 13.20 z − 19.68 z2 + 25.71 z ln z, (3.4)

of z = m2
c/m

2
b and δ = 1−2E0/mb are going to be useful. Explicit formulae for r

(1)
2 (z) and

Re r
(2)
2 (z) can be found in eq. (3.1) of ref. [43] and eq. (26) of ref. [30], respectively. For

h
(2)
27 (z, δ), we shall use a numerical fit from eq. (13) of ref. [39]. An analytical expression

for φ
(1)
27 (z, δ) for 4z < 1− δ (which is the phenomenologically relevant region) reads

φ
(1)
27 (z, δ) = − 2

27
δ(3− 3δ + δ2) +

4

3
z δ sδ Lδ +

12− 8π2

9
z2δ +

4

3
z(1− 2z)(s0L0 − sδLδ)

+
2π2 − 7

9
zδ(2− δ)− 8

9
z(6z2 − 4z + 1)(L2

0 − L2
δ)−

8

9
zδ(2− δ − 4z)L2

δ , (3.5)

with sδ =
√

(1− δ)(1− δ − 4z), s0 =
√
1− 4z, Lδ = ln

√
1−δ+

√
1−δ−4z

2
√
z

and L0 =

ln 1+
√
1−4z

2
√
z

.

In the δ = 1 case, φ
(1)
27 and h

(2)
27 for z < 1

4 are given by

φ
(1)
27 (z, 1) =− 2

27
+
12−8π2

9
z2+

4

3
z(1−2z)s0L0+

2π2−7

9
z− 8

9
z(6z2−4z+1)L2

0+
4

3
π2z3,

h
(2)
27 (z, 1)≃

41

27
− 2

9
π2 − 2.24 z1/2 − 7.04 z + 23.72 z3/2 + (−9.86 z + 31.28 z2) ln z. (3.6)

The functions fb(z) and fc(z) in eq. (3.4) come from eqs. (3.3) and (3.4) of ref. [32], re-

spectively. These numerical fits (in the range z ∈ [0.017, 0.155]) describe contributions from

three-loop b → sγ amplitudes with massive b-quark and c-quark loops on the gluon lines.

The ratio z = m2
c/m

2
b is defined in terms of the MS-renormalized charm quark mass

at an arbitrary scale µc. In practice, we shall use µc = 2.0GeV as a central value. As far

as the renormalization scheme for mb is concerned, we assume the following relation to the

on-shell scheme
mb,pole

mb
= 1 + α̃sxm +O(α̃2

s ). (3.7)

In the 1S and kinetic schemes, one finds xm = 8
9παΥ and xm = 64µkin

9mb

(
1 + 3µkin

8mb

)
, respec-

tively. In our numerical analysis, the kinetic scheme is going to be used.

Complete expressions for the NNLO quantities K
(2)
17 and K

(2)
27 can now be written as

follows

K
(2)
17 (z, δ) = −1

6
K

(2)
27 (z, δ) +A1 + F1(z, δ) +

(
94

81
− 3

2
K

(1)
27 − 3

4
K

(1)
78

)
Lb −

34

27
L2
b ,

K
(2)
27 (z, δ) = A2 + F2(z, δ)−

3

2
βnl=3
0 fq(z, δ) + fb(z) + fc(z) +

4

3
φ
(1)
27 (z, δ) ln z

+

[
(8Lc − 2xm) z

d

dz
+ (1− δ)xm

d

dδ

]
fNLO(z, δ) +

416

81
xm

+

(
10

3
K

(1)
27 − 2

3
K

(1)
47 − 208

81
K

(1)
77 − 35

27
K

(1)
78 − 254

81

)
Lb −

5948

729
L2
b , (3.8)
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where βnl=3
0 = 9, Lb = ln(µ2

b/m
2
b) and Lc = ln(µ2

c/m
2
c), while the relevant K

(1)
ij are

collected in appendix C.

The expressions Ai+Fi(z, δ) contain all the contributions that are not yet known for

the measured value of mc. They correspond to those parts of the considered interference

terms that are obtained by: (i) setting µb = mb, µc = mc and xm = 0, (ii) removing

the BLM-extended contributions from quark loops on the gluon lines and from b → sqq̄γ

decays (q = u, d, s), except for those given in figure 3b.

We define the constants Ai by requiring that Fi(0, 1) = 0. Then we evaluate Ai

from eq. (2.11) by setting there µ = mb, nb = 0 and κnl = 3. Next, a replacement

nl → nl +
3
2β

nl
0 = 33

2 is done in the remaining nl-terms. Finally, eq. (3.3) is used to find

A1 ≃ 22.605, A2 ≃ 75.603. (3.9)

These two numbers are the only outcome of our calculation in section 2 that is going to be

used in the phenomenological analysis below.

Apart from the condition Fi(0, 1) = 0, everything that is known at the moment about

the functions Fi(z, δ) are their large-z asymptotic forms. They can be derived from the

results of ref. [35].9 Explicitly, we find

F1(z, δ) =
70

27
ln2 z +

(
119

27
− 2

9
π2 +

3

2
φ
(1)
78 (δ)

)
ln z − 493

2916
− 5

54
π2 +

232

27
ζ3 +

5

8
φ
(1)
78 (δ)

−A1 +O
(
1

z

)
,

F2(z, δ) = −4736

729
ln2 z +

{
−165385

2187
+

1186

729
π2 − 2π

9
√
3
+

2

3
Y1 +

4

3
φ
(1)
47 (δ) +

832

81
φ
(1)
77 (δ)

+
70

27
φ
(1)
78 (δ)

}
(ln z + 1)− 956435

19683
− 2662

2187
π2 +

20060

243
ζ3 −

1624

243
φ
(1)
77 (δ)

−293

162
φ
(1)
78 (δ)−A2 +O

(
1

z

)
. (3.10)

The constant Y1 and the necessary φ
(1)
ij functions are given in appendices B and C, respec-

tively.

Let ∆Bsγ denote the contribution from F1,2(z, δ) to Bsγ . Then the relative effect is

given by

∆Bsγ

Bsγ
≃ U(z, δ) ≡ α2

s (µb)

8π2

C
(0)
1 (µb)F1(z, δ) +

(
C

(0)
2 (µb)− 1

6C
(0)
1 (µb)

)
F2(z, δ)

C
(0)eff
7 (µb)

. (3.11)

For µb = 2.0GeV, we have αs(µb) ≃ 0.293, C
(0)
1 (µb) ≃ −0.902, C

(0)
2 (µb) ≃ 1.073, and

C
(0)eff
7 (µb) ≃ −0.385.

9We supplement them now with the previously omitted large-mc contributions from the diagrams in

figure 1 in ref. [35] or, equivalently, figure 3b in the present paper. The effect of such a modification is

numerically very small.
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m m/c b

Figure 4. The interpolating function defined in eq. (3.12) (solid line) and asymptotic behaviour

of the true function U(z, 1) for mc ≫ mb/2 (dashed line). The vertical line corresponds to the

measured value of mc/mb.

We shall estimate the contribution to Bsγ that comes from the unknown U(z, δ) by con-

sidering an interpolation model where U(z, 1) is given by the following linear combination

Uinterp(z, 1) = x1 + x2 fq(z, 1) +

(
x3 + x4 z

d

dz

)
fNLO(z, 1). (3.12)

The numbers xi are fixed by the condition U(0, 1) = 0 as well as by the large-z behaviour

of U(z, 1) that follows from eq. (3.10). This determines xi in a unique manner, namely xi ≃
(−0.0502, 0.0328, 0.0373, 0.0309)i. In figure 4, the function Uinterp(z, 1) is plotted with a

solid line, while the dashed line shows Uasymp(z, 1), i.e. asymptotic large-z behaviour of the

true U(z, 1). Note that
√
z = mc/mb rather than z is used on the horizontal axis. The ver-

tical line corresponds to the measured value of this mass ratio. The plot involves some extra

approximation in the region between
√
z ≃ 0.4 and

√
z ≃ 0.8 where we need to interpolate

between the known small-z and large-z expansions of Re r
(2)
2 (z) (see figure 1 of ref. [34]).

In refs. [34, 42] the uncertainty in Bsγ due to unknown mc-dependence of the NNLO

corrections has been estimated at the ±3% level. The size of the interpolated contribution

in figure 4 implies that no reduction of this uncertainty is possible at the moment. One

might wonder whether the uncertainty should not be enlarged. Our choice here is to leave

it unchanged, for the following reasons:

(i) Our choice of functions for the linear combination in eq. (3.12) is dictated by the

fact, that these very functions determine the dependence on z of the known parts of

K
(2)
17 and K

(2)
27 . The known parts are either those related to renormalization of the

Wilson coefficients and quark masses (in the terms proportional to Lb and Lc) or

the renormalization of αs (the function fq parametrizes the considered correction in

the BLM approximation). It often happens in perturbation theory that higher-order

corrections are dominated by renormalization effects. If this is the case here, the true

U(z, 1) should have a similar shape to Uinterp(z, 1).

(ii) The growth of Uinterp(z, 1) for mc > mb/2 is perfectly understandable. In this region,

logarithms of z from eq. (3.10) combine with Lb from eq. (3.8), and the asymptotic
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large-mc behaviour of K
(2)
(1,2)7 is determined by ln(µb/mc) and ln(µc/mc) only (see

eqs. (5.12) and (5.14) of ref. [35]). Thus, the growth of the correction for large z

can be compensated by an appropriate choice of the renormalization scales, which

means (not surprisingly) that the dangerous large logarithms can get resummed using

renormalization group evolution of the Wilson coefficients, masses and αs.

(iii) Our ±3% uncertainty is going to be combined in quadrature with the other ones,

which means that it should be treated as a “theoretical 1σ error”. To gain higher

confidence levels, it would need to be enlarged.

(iv) In the considered interference terms K17 and K27, the dependence on δ is very weak

in the whole range δ ∈ [0, 1], both at the NLO and in the BLM approximation for the

NNLO corrections. Specifically, changing δ from 1 (E0 = 0) to 0.295 (E0 = 1.6GeV)

results in modifications of fNLO by +0.2% and fq by +1.0%, respectively, for the

measured value of mc. The corresponding changes at mc = 0 amount to −0.7% and

−2.4% only. Thus, our estimates made for δ = 1 are likely to be valid for arbitrary δ.

In the phenomenological analysis below, we shall take K
(2)
17 and K

(2)
27 as they stand in

eq. (3.8), replace the unknown Fi(z, δ) by F interp
i (z, 1) interpolated analogously to eq. (3.12)

F interp
1 (z, 1) = −23.75 +

35

12
fq(z, 1) +

(
2129

936
− 9

52
π2 − 0.84 z

d

dz

)
fNLO(z, 1),

F interp
2 (z, 1) = −3.01 − 592

81
fq(z, 1) +

(
−10.34 − 9.55 z

d

dz

)
fNLO(z, 1), (3.13)

and include a ±3% uncertainty in the branching ratio due to such an approximation.

4 Evaluation of Bsγ in the SM

In the present section, we include all the other corrections to Bsγ that have been evaluated

after the analysis in refs. [34, 42]. Next, we update the SM prediction. To provide infor-

mation on sizes of the subsequent corrections, the description is split into steps, and the

corresponding modifications in the branching ratio central value are summarized in table 2.

The steps are as follows:

1. We begin with performing the calculation precisely as it was described in ref. [34]

but only shifting from B(B̄ → Xsγ) to Bsγ , which amounts to CP-averaging the

perturbative decay widths. No directly CP-violating non-perturbative corrections to

B(B̄ → Xsγ) were considered in ref. [34]. It was not equivalent to neglecting them

but rather to assuming that they have vanishing central values. A dedicated analysis

in ref. [48] leads to an estimate of 0.4± 1.7% for such effects.

2. The input parameters are updated as outlined in appendix D. In particular, we use

results of the very recent kinetic-scheme fit to the semileptonic B decay data [49].
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1 2 3 4 5 6 7 8 9 10 total

−0.6% +1.0% −0.2% +2.0% +1.0% +1.6% +2.1% −0.5% +0.2% −0.4% +6.4%

Table 2. Shifts in the central value of Bsγ for E0 = 1.6GeV at each step (see the text).
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P(2)rem2

m m/c b

Figure 5. Interpolation of P
(2)rem
2 inmc as in figure 2 of ref. [34] but with updated input parameters

and with renormalization scales shifted to (µc, µb) = (2, 2)GeV. In addition, the thick solid (red)

line shows the case with the presently known boundary condition at mc = 0 imposed.

3. Central values of the renormalization scales (µc, µb) are shifted from (1.5, 2.5)GeV

to (2, 2)GeV. Both scales are then varied in the ranges [1.25, 5]GeV to estimate the

higher-order uncertainty. In the resulting range of Bsγ , the value corresponding to

the (2, 2)GeV renormalization scales is more centrally located than the (1.5, 2.5)GeV

one, after performing all the updates 1-10 here. It is the main reason for shifting

the default scales. The (2, 2)GeV choice is also simpler (both scales are equal),

and µc is exactly as in the fit from which we take mc(µc) (appendix D). As far as

µb is concerned, it should be of the same order as the energy transferred to the

partonic system after the b-quark decay. For the leading b → sγ contribution from

the photonic dipole operator P7, this energy equals to 1
2mb which gives 2.3GeV when

one substitutes mb = mb,kin from appendix D.10 Rounding 2.3 to either 2.5 or 2.0

for the default value is equally fine, given that the observed µb-dependence of Bsγ is

weak (see figure 6), and our range for µb is [1.25, 5]GeV.

4. In the interpolation of P
(2)rem
2 (see ref. [34] for its definition), we shift to the so-

called case (c) where the interpolated quantity at mc = 0 was given by the (Q7, Q7)

interference alone.

5. The mc = 0 boundary for P
(2)rem
2 is updated to include all the relevant interferences,

especially the ones evaluated in section 2. The thick solid (red) line in figure 5 shows

the new P
(2)rem
2 in such a case, while the remaining lines are as in figure 2 of ref. [34]

(somewhat shifted due to the parameter and scale modifications only).

10The measured photon spectra are also peaked at around 2.3GeV, which confirms the leading role of

the two-body partonic mode.
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6. At this point, we abandon the approach with mc-interpolation applied to the whole

non-BLM correction P
(2)rem
2 . As before, the penguin operators Q3,...,6 and the CKM-

suppressed ones Qu
1,2 are neglected at the NNLO level. The corrections K

(2)
17 and

K
(2)
27 are treated as summarized at the end of the previous section. For K

(2)
78 , the

complete results from refs. [36, 37] are included. K
(2)
77 is made complete by taking

into account its exact mc-dependence [29, 50], in addition to the previously included

terms. For the NNLO interferences among Q1, Q2 and Q8, only the two-body final

state contributions are present at this step. They are infrared-finite by themselves,

and given by products of the well-known NLO amplitudes r
(1)
i (see eq. (3.1) of ref. [43])

whose imaginary parts matter here, too.

7. Three- and four-body final state contributions to the NNLO interferences among Q1,

Q2 and Q8 are included in the BLM approximation, using the results of refs. [31, 38,

39]. Non-BLM corrections to these interferences remain neglected. The corresponding

uncertainty is going to be absorbed below into the overall ±3% perturbative one.

8. Four-loop Q1,...,6 → Q8 anomalous dimensions from ref. [19] are included in the

renormalization group equations.

9. The LO and NLO contributions from four body final states are included [23, 24].

They are not yet formally complete, but the only neglected terms are the NLO ones

that undergo double (quadratic) suppression either by the small Wilson coefficients

C3,...,6 or by the small CKM element ratio |V ∗
usVub| / |V ∗

tsVtb|. The uncertainty that

results from neglecting such terms is below a permille in Bsγ . As far as the CKM-

suppressed two-body and three-body contributions are concerned, the two-body NLO

one has already been taken into account in ref. [34]. The remaining NLO and NNLO

ones (also those with double CKM suppression) are included at the present step.

Their contribution to Bsγ is below a permille. However, the branching ratio Bdγ [51]

receives around 2% enhancement from them.

10. We update our treatment of non-perturbative corrections. The O
(
αsΛ

2/m2
b

)
correc-

tion to the (Q7, Q7) interference from ref. [40] replaces the previous approximate ex-

pression from ref. [52]. Moreover, we include a similar correction [41, 53] to the charm-

less semileptonic rate that is used for normalization in [P (E0)+N(E0)] (see eqs. (D.2)

and (D.4) in appendix D). In consequence, the previous (tiny) effect in N(E0) gets

reduced by a factor of around 4. Finally, our treatment of non-perturbative effects in

interferences other than (Q7, Q7) gets modified according to ref. [14]. A vanishing con-

tribution to the branching ratio central value from such corrections is assumed, except

for the leading O
(
λ2/m

2
c

)
one [54] where mc is fixed to 1.131GeV. At the same time,

a ±5% non-perturbative uncertainty in the branching ratio is assumed, as obtained in

section 7.4 of ref. [14] by adding the relevant three uncertainties in a linear manner.11

11If their ranges were treated as 1σ ones and combined in quadrature, the uncertainty would go down

to 3.3%.
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Figure 6. Renormalization scale dependence of Bsγ in units 10−4 at the LO (dotted lines), NLO

(dashed lines) and NNLO (solid lines). The upper-left, upper-right and lower plots describe the

dependence on µc, µb and µ0 [GeV], respectively. When one of the scales is varied, the remaining

ones are set to their default values.

Our final result reads

BSM
sγ = (3.36± 0.23)× 10−4 (4.1)

for E0 = 1.6GeV, where four types of uncertainties have been combined in quadrature:

±5% non-perturbative (step 10 above), ±3% from our interpolation of F1,2(z, δ) (section 3),

±2.0% parametric (appendix D), as well as ±3% from higher-order perturbative effects.

The latter uncertainty is assumed to account for approximations made at the NLO and

NNLO levels, too. In the NLO case, it refers to the doubly suppressed terms mentioned in

step 9 above. In the NNLO case, it refers to neglecting the penguin operators at this level,

and using the BLM approximation in step 7 above. If we relied just on the renormalization-

scale dependence in figure 6 (with 1.25GeV < µc, µb < 5GeV), we could reduce this uncer-

tainty to around±2.4%. However, apart from the scale-dependence, one needs to study how

the perturbation series behaves, which is hard to judge before learning the actual contribu-

tions from F1,2(z, δ). Thus, we leave the higher-order uncertainty unchanged with respect

to refs. [34, 42]. Our treatment of the electroweak corrections [55] remains unchanged, too.

The central value in eq. (4.1) is about 6.4% higher than the previous estimate of

3.15 × 10−4 in refs. [34, 42]. Around half of this effect comes from improving the mc-

interpolation. As seen in figure 5, the currently known mc = 0 boundary for the thick line

is close to the edge of the previously assumed range between the curves (a) and (b). It

is consistent with the fact that the corrections in steps 4 and 5 sum up to 3% being the
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previous “1σ” interpolation uncertainty. The mc = 0 boundary has been the main worry

in the past because estimating the range for its location was based on quite arbitrary

assumptions. It is precisely the reason why no update of the SM prediction seemed to

make sense until now, given moderate sizes of the other new corrections.

5 Conclusions

We evaluatedO(α2
s) contributions to the perturbative Γ(b → Xsγ) decay rate that originate

from the (Q7, Q1,2) interference for mc = E0 = 0. The calculation involved 163 four-loop

massive on-shell propagator master integrals with unitarity cuts. Our updated prediction

for the CP- and isospin-averaged branching ratio in the SM reads BSM
sγ = (3.36± 0.23)×

10−4. It includes all the perturbative and non-perturbative contributions that have been

calculated to date. It agrees very well with the current experimental world average Bexp
sγ =

(3.43±0.21±0.07)×10−4. An extension of our analysis to the case of Bdγ and an update of

bounds on the Two Higgs Doublet Model is going to be presented in a parallel article [51].
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A Massless master integrals

In the course of this work, it has been necessary to compute a number of massless scalar

integrals with various unitarity cuts. All of them are depicted in figure 7 and table 3. They

occur after applying the large mass expansion for p2b ≪ m2
b , as well as in the decay rate

calculation itself. Apart from the four-loop diagrams with four-particle cuts, and the four-

loop diagrams 4L3C1, 4L3C2 and 4L3C3 with three-particle cuts, values of all our master

integrals can either be found in the literature [56–60] or obtained using standard techniques

described, for instance, in ref. [64]. Let us note that the results for all the massless propaga-

tor four-loop master integrals in refs. [65, 66] are not sufficient here because they correspond

to sums over all the possible cuts, while certain cuts need to be discarded in our case.

In the following, we explain our computation of the four-particle-cut master integrals

in dimensional regularization with D = 4−2ǫ. The total momentum is q = p1+p2+p3+p4,

and we have p2i = 0 for i = 1, . . . , 4. Moreover, all the internal lines are massless. The
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4L4C1 4L4C2 4L4C3 4L4C4

4L4C5 4L4C6 4L4C7 4L4C8

Figure 7. The massless four-particle-cut diagrams calculated in the course of this work.

momenta are in Minkowski space, and we tacitly assume that all the propagators below

contain an infinitesimal +iη with η > 0. We also define the invariants

sijk... ≡ (pi + pj + pk + . . .)2 . (A.1)

We therefore have s12+s13+s14+s23+s24+s34 = q2 as a constraint from overall momentum

conservation.

Our convention for the loop measure is

∫
[dk] ≡

∫
dDk

i (2π)D
, (A.2)

and we define the prefactor

SΓ ≡ 1

(4π)D/2 Γ(1− ǫ)
. (A.3)

Note that our definition of SΓ is different from the one in eq. (4.13) of ref. [57].

As far as integration over the four-particle massless phase space in D = 4− 2ǫ dimen-

sions is concerned, we closely follow ref. [57]. The phase space measure reads

dPS4 =
dD−1p1

(2π)D−1 2E1
. . .

dD−1p4
(2π)D−1 2E4

(2π)D δ(D)(q − p1 − p2 − p3 − p4) . (A.4)

It can be rewritten in terms of invariants and angular variables according to

dPS4 = (2π)4−3D
(
q2
)1−D

2 21−
D
2 (−∆4)

D−5
2 θ(−∆4) dΩD−1 dΩD−2 dΩD−3

×δ(q2 − s12 − s13 − s14 − s23 − s24 − s34) ds12 ds13 ds14 ds23 ds24 ds34 , (A.5)

with the Gram determinant

∆4 = λ(s12s34, s13s24, s14s23) , λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (A.6)
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2PCuts 3PCuts

1L2C1

2L2C1 2L3C1

3L2C1 3L3C1

4L2C1 4L2C2 4L3C1 4L3C2 4L3C3

4L2C3 4L2C4 4L3C4 4L3C5 4L3C6

4L2C5 4L2C6 4L3C7 4L3C8 4L3C9

Table 3. The massless two- and three-particle-cut diagrams used in the course of this work.

It turns out that integration over angular variables is trivial in all the cases we en-

counter here, and we can use
∫
dΩD =

2πD/2

Γ(D/2)
. (A.7)

Performing the angular integration, and furthermore applying the steps explained in

ref. [57] to factorize the phase space measure, we arrive at

dPS4 =
2π

(
q2
)2−3ǫ

(4π)
3D
2 (1− 2ǫ)Γ(1− ǫ)Γ2(12 − ǫ)

dt dv dχ dz1 dy134 dy1234 δ(1− y1234) (A.8)

t−ǫ (1− t)−ǫ v−ǫ (1− v)−ǫ χ− 1
2
−ǫ (1− χ)−

1
2
−ǫ z−ǫ

1 (1− z1)
1−2ǫ y1−2ǫ

134 (1− y134)
1−2ǫ.
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All the integration variables t, v, χ, z1, y134, and y1234 run from 0 . . . 1 and originate from

sijk... = q2 yijk... , y13 = (y13, b − y13, a)χ+ y13, a ,

y12 = ȳ134 z̄1 t̄ , y13, b/a = B ±
√

B2 − C ,

y23 = ȳ134 z1 , B = y134 (t̄ v̄ + v t z1) ,

y14 = y134 z̄1 v , C = y2134 (t̄ v̄ − v t z1)
2 ,

y24 = ȳ134 z̄1 t ,
√

B2 − C = 2 y134
√
t
√
t̄
√
v
√
v̄
√
z1 ,

y124 = z̄1 (1− y134v̄) , y13, b − y13, a = 2
√
B2 − C , (A.9)

where t̄ = 1− t, and analogously for all the other variables. The substitutions (A.9) should

be done in the integrands, too.

A.1 Results for the four-particle-cut master integrals

We are now in position to present results for the four-particle-cut diagrams depicted in

figure 7. Normalization factors are extracted according to

I4L4Ci = 2π eiπǫ S4
Γ

(
q2
)ai−4ǫ

Ĩ4L4Ci , (A.10)

where the ai follow from dimensional considerations. One finds ai =

(2, 2, 1,−1, 0,−1,−1, 0)i for i = 1, . . . , 8.

We start with I4L4C1,

I4L4C1 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p2)2

=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−ǫ

∫
dPS4 y

−ǫ
12 , (A.11)

which yields

Ĩ4L4C1 =
Γ(ǫ)Γ9(1− ǫ)Γ(1− 2ǫ)Γ(2− 3ǫ)

Γ2(2− 2ǫ)Γ(3− 4ǫ)Γ(4− 5ǫ)
. (A.12)

The next integral to consider is I4L4C2,

I4L4C2 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p2 + p4)2

=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−ǫ

∫
dPS4 y

−ǫ
134 , (A.13)

and we get

Ĩ4L4C2 =
Γ(ǫ)Γ10(1− ǫ)Γ(2− 3ǫ)

Γ2(2− 2ǫ)Γ(3− 3ǫ)Γ(4− 5ǫ)
. (A.14)

We proceed with I4L4C3,

I4L4C3 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p3 + p4)2 (p1 + p2 + p4)2
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=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−1−ǫ

∫
dPS4 y

−ǫ
134 y

−1
124 , (A.15)

and arrive at

Ĩ4L4C3 =
Γ(ǫ)Γ10(1− ǫ)Γ(1− 2ǫ)

Γ3(2− 2ǫ)Γ(4− 5ǫ)
3F2(1, 1− ǫ, 2− 3ǫ ; 2− 2ǫ, 4− 5ǫ ; 1). (A.16)

The expansion of Ĩ4L4C3 in ǫ is conveniently done with the package HypExp [68, 69],

Ĩ4L4C3 =
1

4ǫ
+

(
37

8
−π2

12

)
+

(
809

16
− 35π2

24
−5ζ3

)
ǫ+

(
13677

32
− 253π2

16
− 29π4

144
−71ζ3

)
ǫ2

+

(
198241

64
− 12995π2

96
− 3521π4

1440
− 1287

2
ζ3 +

67

6
π2ζ3 −

315

2
ζ5

)
ǫ3 +

(
2597477

128

−192175π2

192
− 17519π4

960
− 1481π6

6048
− 19139

4
ζ3 +

925

6
π2ζ3 + 170ζ23 − 2049ζ5

)
ǫ4

+O(ǫ5) . (A.17)

We now move to I4L4C4,

I4L4C4 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p3 + p4)2 (p1 + p3)2 (p1 + p2 + p4)2 (p1 + p2)2

=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−3−ǫ

∫
dPS4 y

−ǫ
134 y

−1
124 y

−1
13 y−1

12 , (A.18)

which does not reveal a closed form since we cannot avoid y13 in the integrand. We therefore

compute it from the following two-fold Mellin-Barnes representation [61–64, 67]

Ĩ4L4C4 =
Γ(ǫ)Γ6(1− ǫ)Γ(−ǫ)Γ(1− 3ǫ)

Γ(−2ǫ)Γ2(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

Γ(z1 + z2 − ǫ)Γ(−ǫ− z1 − z2)Γ(z1)

×Γ(1− z1)Γ(1− 2ǫ− z1)

Γ(2− 5ǫ− z1)

Γ(−z2)Γ(1 + z2)Γ(−1− ǫ− z2)Γ(1− ǫ+ z2)

Γ(1− 3ǫ+ z2)Γ(−ǫ− z2)
. (A.19)

The integration contours in the complex plane can be chosen as straight lines parallel to the

imaginary axis. The integral is then regulated [67] for c1 = 1/2, c2 = −1/4, and ǫ = −7/4.

We perform an analytic continuation to ǫ = 0 with the package MB.m [67], which is also

used for numerical cross checks. The expansion of Ĩ4L4C4 in ǫ reads

Ĩ4L4C4 =
1

4ǫ5
+

1

ǫ4
+

(
3− 13π2

24

)
1

ǫ3
+

(
8− 13π2

6
− 33

2
ζ3

)
1

ǫ2
+

(
20− 13π2

2
− 397π4

1440

−66ζ3

)
1

ǫ
+

(
48− 52π2

3
− 397π4

360
− 198ζ3 +

131

4
π2ζ3 −

687

2
ζ5

)

+

(
112− 130π2

3
− 397π4

120
− 24539π6

60480
− 528ζ3 + 131π2ζ3 +

897

2
ζ23 − 1374ζ5

)
ǫ

+O(ǫ2) . (A.20)
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The next integral, I4L4C5, with

I4L4C5 =

∫
dPS4

∫
[dk]

1

k2 (k + p4)2 (k + p1 + p2 + p4)2 (p2 + p3)2
(A.21)

=
eiπǫ Γ(1 + ǫ)Γ(−ǫ)Γ(1− ǫ)

(4π)D/2 Γ(1− 2ǫ)

(
q2
)−2−ǫ

∫
dPS4

1∫

0

dx
1

[y12 + x y14 + x y24]
1+ǫ y23

,

can again be expressed to all orders in ǫ. One first integrates over x, and finally finds

Ĩ4L4C5 = − Γ(ǫ)Γ6(1− ǫ)Γ3(−ǫ)

Γ(2− 5ǫ)Γ(2− 2ǫ)

[
Γ(1− ǫ)

Γ(2− 2ǫ)
3F2(1, 1− ǫ, 1− 2ǫ ; 1 + ǫ, 2− 2ǫ ; 1)

− Γ(1− 3ǫ)

(1− 3ǫ)Γ(1− 4ǫ)
3F2(1, 1− ǫ, 1− 3ǫ ; 1 + ǫ, 2− 3ǫ ; 1)

]
. (A.22)

The expansion of Ĩ4L4C5 in ǫ reads

Ĩ4L4C5 =
2ζ3
ǫ2

+

(
14ζ3 +

31π4

180

)
1

ǫ
+

(
78ζ3 +

217π4

180
− 20

3
π2ζ3 + 114ζ5

)

+

(
406ζ3 +

403π4

60
− 140

3
π2ζ3 + 798ζ5 +

799π6

7560
− 125ζ23

)
ǫ+ O(ǫ2) . (A.23)

Also the next integral, I4L4C6, with

I4L4C6 =

∫
dPS4

∫
[dk]

1

k2 (k − p2)2 (k + p4)2 (k + p1 + p4)2 (p1 + p2)2
(A.24)

=
eiπǫ Γ(2 + ǫ)Γ2(−ǫ)

(4π)D/2 Γ(−2ǫ)

(
q2
)−3−ǫ

∫
dPS4

1∫

0

dx

1∫

0

dy
1

[x y24 + y y14 + xy y12]
2+ǫ y12

,

reveals a closed form which, however, turns out to be more complicated. One first integrates

over x and y, and finally finds

Ĩ4L4C6 =
Γ(ǫ)Γ6(1− ǫ)Γ2(−ǫ)Γ(−1− 3ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(1− 4ǫ)

[
− 3

2
Γ(1− 2ǫ)Γ(ǫ)− 2Γ2(1− 2ǫ)Γ(2ǫ)Γ(1 + ǫ)

−2Γ(1− 2ǫ)Γ(1 + ǫ)
(
ψ(0)(1− ǫ)− ψ(0)(ǫ)− ψ(0)(1− 4ǫ) + 2ψ(0)(1− 2ǫ) + γ

)

−4Γ(−ǫ) 3F2(1,−ǫ,−ǫ ; 1+ǫ, 1−ǫ ; 1)− 4Γ2(−2ǫ)

Γ(−3ǫ)
3F2(−ǫ,−ǫ,−ǫ ; −3ǫ, 1−ǫ ; 1)

+
Γ2(1− ǫ)Γ(1− 4ǫ)

(1 + ǫ)2Γ(1− 3ǫ)Γ(−2ǫ)
4F3(1, 1− ǫ, 1− ǫ, 1 + ǫ ; 2 + ǫ, 2 + ǫ, 1− 3ǫ ; 1)

− Γ2(1− 2ǫ)Γ(1 + ǫ)

Γ(−2ǫ)
4F3(1, 1, 1− 2ǫ, 1− 2ǫ ; 2, 2, 1− 4ǫ ; 1)

]
, (A.25)

where ψ(0)(z) = d
dz ln Γ(z). The expansion of Ĩ4L4C6 in ǫ reads

Ĩ4L4C6 =
5

6ǫ5
− 5

6ǫ4
+

(
35

6
− 79π2

36

)
1

ǫ3
+

(
−65

6
+

79π2

36
− 58ζ3

)
1

ǫ2
+

(
275

6
− 553π2

36
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+
643π4

2160
+58ζ3

)
1

ǫ
+

(
−665

6
+
1027π2

36
− 643π4

2160
−406ζ3+

1301

9
π2ζ3−

2590

3
ζ5

)

+

(
2315

6
− 4345π2

36
+
4501π4

2160
+
63229π6

272160
+754ζ3−

1301

9
π2ζ3+1884ζ23+

2590

3
ζ5

)
ǫ

+O(ǫ2) . (A.26)

The next integral, I4L4C7, has not been necessary for the actual calculation of G̃
(2)
17

and G̃
(2)
27 because it stems from diagrams where the charm quark loop is cut. However, we

still give the result, as it is the most complicated integral, and might be useful for future

computations of other interferences. The difficulty is due to the fact that one cannot avoid

y13 in the integrand, and the resulting Mellin-Barnes representation is four-dimensional.

Starting from

I4L4C7 =

∫
dPS4

∫
[dk]

1

k2 (k − p1)2 (k + p2 + p3 + p4)2 (k + p3 + p4)2 (p1 + p2 + p3)2

=
eiπǫ Γ(2 + ǫ)Γ2(−ǫ)

(4π)D/2 Γ(−2ǫ)

(
q2
)−3−ǫ

×
∫
dPS4

1∫

0

dx

1∫

0

dy
1

[y34 + x (y13+y14)+y (y23+y24)+xy y12]
2+ǫ y123

, (A.27)

we first integrate over x and y, and find the following Mellin-Barnes representation.

Ĩ4L4C7 =
Γ(ǫ)Γ5(1− ǫ)Γ(−ǫ)Γ(1− 3ǫ)

Γ(−2ǫ)Γ(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

×Γ(−ǫ− z1)Γ(1− ǫ+ z1)Γ(1− 3ǫ+ z1 − z2)Γ(1− 2ǫ− z2)Γ(−ǫ− z1 + z2)

Γ(1− z2 − 3ǫ)Γ(1− z2 − 4ǫ)Γ(1 + z2 − ǫ)

×Γ(−z1)Γ(1 + z1)Γ(−z2)Γ(1 + z2)Γ(−z2 − ǫ)Γ(z2 − ǫ)

Γ(1− z1 − 3ǫ)Γ(2 + z1 − 3ǫ)

− 2Γ(ǫ)Γ5(1− ǫ)Γ(−ǫ)Γ2(1− 3ǫ)

Γ(1− 5ǫ)Γ(1− 2ǫ)Γ(−2ǫ)Γ(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

c3+i∞∫

c3−i∞

dz3
2πi

×Γ(−z1)Γ(1 + z1 − z3)Γ(−z2)Γ(1 + z2)Γ(−z1 + z3 − ǫ)Γ(z2 − ǫ)Γ(−z2 − z3 − ǫ)

Γ(1− z1 + z2 + z3 − 4ǫ)Γ(2 + z1 − z3 − 3ǫ)

×Γ(z3)Γ(1− 4ǫ+ z2 + z3)Γ(1− 2ǫ+ z1)Γ(−z1 + z2 + z3 − ǫ)Γ(1− ǫ+ z1 − z3)

Γ(1 + z3 − 3ǫ)Γ(1 + z2 − ǫ)

+
Γ(ǫ)Γ5(1− ǫ)Γ(−ǫ)Γ(1− 3ǫ)

Γ(1− 5ǫ)Γ(1− 2ǫ)Γ(−2ǫ)Γ(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

c3+i∞∫

c3−i∞

dz3
2πi

c4+i∞∫

c4−i∞

dz4
2πi

×Γ(−z3)Γ(z3 − z1)Γ(−z2)Γ(1 + z2)Γ(−z4)Γ(1 + z1 + z4)Γ(z2 − ǫ)

Γ(1− z1 + z2 + z3 − z4 − 4ǫ)Γ(1 + z1 − z3 − ǫ)
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×Γ(1− ǫ+ z1)Γ(z1 − z2 − z3 − ǫ)Γ(−z1 + z3 − z4 − ǫ)Γ(−z1 + z2 + z3 − z4 − ǫ)

Γ(1 + z3 − ǫ)Γ(1 + z2 − ǫ)

×Γ(−z1 − 2ǫ)Γ(1 + z2 + z3 − 2ǫ)Γ(1 + z1 − z3 + z4 − ǫ) . (A.28)

The expansion of Ĩ4L4C7 in ǫ reads

Ĩ4L4C7 = −2π4

45ǫ
+

(
−16π4

45
+ 2π2ζ3 − 58ζ5

)

+

(
−104π4

45
+ 16π2ζ3 − 464ζ5 + 84ζ23 − 1289π6

5670

)
ǫ+ O(ǫ2) . (A.29)

We have also derived an alternative, seven-fold, Mellin-Barnes representation for Ĩ4L4C7

and used it to confirm (A.29) numerically with the help of the code MB.m [67].

The last integral, I4L4C8, reads

I4L4C8 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p2 + p4)2 (k + p1 + p2)2 (p1 + p3 + p4)2
(A.30)

=
eiπǫ Γ(1 + ǫ)Γ(−ǫ)Γ(1− ǫ)

(4π)D/2 Γ(1− 2ǫ)

(
q2
)−2−ǫ

∫
dPS4

1∫

0

dx
1

[y12 + x y14 + x y24]
1+ǫ y134

.

Again, one first integrates over x, and finally finds an expression involving a one-

dimensional Feynman parameter integral

Ĩ4L4C8 =
Γ(1− 3ǫ)Γ(1− 2ǫ)Γ4(1− ǫ)Γ4(−ǫ)Γ(2ǫ)Γ3(1 + ǫ)

Γ(2− 5ǫ)Γ(2− 4ǫ)Γ(2− 2ǫ)Γ(3ǫ)

+
Γ2(1− 3ǫ)Γ(1− 2ǫ)Γ4(1− ǫ)Γ3(−ǫ)Γ2(1 + ǫ)Γ(2ǫ)

Γ(2− 5ǫ)Γ(2− 4ǫ)Γ(2− 2ǫ)

−Γ(1− 3ǫ)Γ5(1− ǫ)Γ4(−ǫ)Γ(1 + ǫ)

2 Γ(2− 5ǫ)Γ(2− 4ǫ)Γ(2− 2ǫ)
3F2(1, 1− ǫ, 2ǫ ; 1 + ǫ, 1 + 2ǫ ; 1)

−Γ(1− 3ǫ)Γ7(1− ǫ)Γ2(−ǫ)Γ(ǫ)

2 Γ(3− 5ǫ)Γ2(2− 2ǫ)Γ(−2ǫ)

×
1∫

0

dt t1−2ǫ (1−t)−ǫ
2F1(1, 2−4ǫ ; 3−5ǫ ; t) 2F1(1, 1−ǫ ; 2−2ǫ ; t) . (A.31)

The expansion of Ĩ4L4C8 in ǫ reads

Ĩ4L4C8 = −ζ3
ǫ
+

(
−11ζ3 −

19π4

360

)
+

(
−83ζ3 +

23π2ζ3
6

− 36ζ5 −
209π4

360

)
ǫ

+

(
−535ζ3+

253π2ζ3
6

+70ζ23−396ζ5−
1577π4

360
+
13π6

378

)
ǫ2+O(ǫ3) . (A.32)

A.2 Results for the three-particle-cut master integrals

In this section, we describe our computation of the three-particle-cut diagrams 4L3C1,

4L3C2 and 4L3C3. Similarly to eq. (A.10), we extract the normalization factors according

to

I4L3Ci = 2π e2πiǫ S4
Γ

(
q2
)bi−4ǫ

Ĩ4L3Ci , (A.33)
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where the bi again follow from dimensional considerations. One finds b1 = 0 and b2 = −1.

For 4L3C3, we have used a different method, as explained below.

The kinematics and the phase space measure are much simpler in the three-particle

case, compared to the four-particle one. The total momentum is q = p1 + p2 + p3, and we

have p2i = 0 for i = 1, . . . , 3. We define the invariants

sijk... ≡ (pi + pj + pk + . . .)2 (A.34)

as before, and have s12+s13+s23 = q2 as a constraint from overall momentum conservation.

The phase space measure

dPS3 =
dD−1p1

(2π)D−1 2E1
. . .

dD−1p3
(2π)D−1 2E3

(2π)D δ(D)(q − p1 − p2 − p3) (A.35)

is again taken over from ref. [57]. After integration over angular variables one finds

dPS3 =
2π S2

Γ Γ
2(1− ǫ)

(
q2
)1−2ǫ

Γ(2− 2ǫ)
dy12 dy13 dy23 y

−ǫ
12 y−ǫ

13 y−ǫ
23 δ(1− y12 − y13 − y23).

The integration variables y12, y13, and y23 run from 0 . . . 1, and originate from sij = q2 yij .

The latter substitutions have to be made in the integrands, as well.

Our first three-particle-cut integral I4L3C1 reads

I4L3C1 =

∫
dPS3

∫
[dk1]

∫
[dk2]

1

k21 (k1 + p1)2 k22 (k2 + p3)2 (k1 + k2 − p2)2
(A.36)

=
e2πiǫ S2

Γ Γ
2(−ǫ)Γ3(1− ǫ)Γ(1 + 2ǫ)

Γ(1− 3ǫ)

(
q2
)−1−2ǫ

×
∫
dPS3

1∫

0

dx

1∫

0

dy
1

[x y12 + x y y13 + y y23]
1+2ǫ .

It can be expressed in a closed form valid to all orders in ǫ. One first integrates over x,

and finally finds

Ĩ4L3C1 = −3Γ(1− 2ǫ)Γ(−3ǫ)Γ2(−ǫ)Γ(ǫ)Γ(2ǫ)Γ(2ǫ+ 1)Γ5(1− ǫ)

2 Γ(2− 5ǫ)Γ(2− 2ǫ)
(A.37)

+
Γ4(−ǫ)Γ(2ǫ)Γ5(1− ǫ)

(2ǫ− 1)2 Γ(2− 5ǫ)Γ(−2ǫ)
3F2(1, 1− ǫ, 1− 2ǫ ; 2− 2ǫ, 1 + ǫ ; 1)

+
Γ2(1− 2ǫ)Γ4(−ǫ)Γ(1 + ǫ)Γ(2ǫ)Γ4(1− ǫ)

Γ(2− 4ǫ)Γ(1− 3ǫ)Γ(2− 2ǫ)
3F2(ǫ, 1− 2ǫ, 1− 2ǫ ; 2− 4ǫ, 1 + ǫ ; 1)

− Γ(1− 2ǫ)Γ5(−ǫ)Γ(2ǫ)Γ5(1− ǫ)

4 Γ(1−3ǫ)Γ(2−3ǫ)Γ(2−2ǫ)Γ(−2ǫ)
4F3(1, 2ǫ, 1−ǫ, 1−ǫ ; 2−3ǫ, 1+ǫ, 1+2ǫ ; 1) .

The expansion of Ĩ4L3C1 in ǫ reads

Ĩ4L3C1 =
2ζ3
ǫ2

+

(
14ζ3 +

π4

9

)
1

ǫ
+

(
78ζ3 +

7π4

9
− 6π2ζ3 + 78ζ5

)
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+

(
406ζ3 +

13π4

3
− 42π2ζ3 + 546ζ5 +

5π6

63
− 140ζ23

)
ǫ+ O(ǫ2) . (A.38)

The next three-particle-cut integral is I4L3C2,

I4L3C2 =

∫
dPS3

∫
[dk1]

∫
[dk2]

1

(k1 + p1 + p2)2 k21 (k1 − k2 + p1)2 (k1 − k2)2 (k2 + p2)2 k22
.

(A.39)

Despite the fact that p3 does not appear in the integrand, the result of the integral is

quite lengthy. In the end, we find the following expression that involves a one-dimensional

Feynman parameter integral:

Ĩ4L3C2 =
Γ(−3ǫ− 1)Γ(−ǫ)Γ(ǫ)Γ6(1− ǫ)Γ3(−2ǫ)Γ2(1 + 2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(−4ǫ)

+
Γ(−3ǫ− 1)Γ2(−ǫ)Γ(2ǫ)Γ7(1− ǫ)Γ(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(1− 4ǫ)Γ(−3ǫ)Γ(2 + 2ǫ)
3F2(1, 1, 1− ǫ ; 1− 4ǫ, 2 + 2ǫ ; 1)

−Γ(−3ǫ− 1)Γ3(−ǫ)Γ2(1 + 2ǫ)Γ7(1− ǫ)Γ2(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(1− 2ǫ)Γ2(−3ǫ)Γ(2 + 2ǫ)
3F2(1, 1, 1− ǫ ; 1− 2ǫ, 2 + 2ǫ ; 1)

+
Γ(−3ǫ− 1)Γ2(−ǫ)Γ(2ǫ)Γ6(1− ǫ)Γ(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ2(−3ǫ)Γ(2 + 2ǫ)

1∫

0

dt t−ǫ (1− t)−3ǫ−1

× [2F1(−2ǫ,−2ǫ ; 1− 2ǫ ; 1− t)− 1] 2F1(1, 1 ; 2 + 2ǫ ; t)

−2Γ(−3ǫ− 1)Γ2(−ǫ)Γ2(1 + 2ǫ)Γ6(1− ǫ)Γ2(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ2(−3ǫ)Γ(2 + 2ǫ)

1∫

0

dt t−ǫ (1− t)−ǫ−1

× [2F1(−2ǫ,−2ǫ ; −3ǫ ; 1− t)− 1] 2F1(1, 1 ; 2 + 2ǫ ; t)

+
Γ(−3ǫ− 1)Γ2(−ǫ)Γ2(1 + 2ǫ)Γ6(1− ǫ)Γ(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ2(−3ǫ)Γ2(2 + 2ǫ)

1∫

0

dt t1+ǫ (1− t)−3ǫ−1

× [2F1(−2ǫ,−2ǫ ; −3ǫ ; 1− t)− 1] [2F1(1, 1 ; 2 + 2ǫ ; t)]2 . (A.40)

The expansion of Ĩ4L3C2 in ǫ reads

Ĩ4L3C2 =
1

3ǫ5
− 1

3ǫ4
+

(
7

3
− 13π2

18

)
1

ǫ3
+

(
13π2

18
− 13

3
− 61

3
ζ3

)
1

ǫ2
+

(
55

3
− 91π2

18
− 11π4

180

+
61

3
ζ3

)
1

ǫ
+

(
169π2

18
− 133

3
+

11π4

180
− 427

3
ζ3 +

353

9
π2ζ3 − 233ζ5

)

+

(
463

3
− 715π2

18
− 77π4

180
+

17π6

140
+

793

3
ζ3 −

353

9
π2ζ3 +

1763

3
ζ23 + 233ζ5

)
ǫ

+O(ǫ2) . (A.41)

For the last integral I4L3C3, we employ a different approach. Due to the structure of

the integrand, it is not possible to find a regulated Mellin-Barnes representation. Therefore,

we begin with evaluating an integral I4L3C3′ defined as

I4L3C3′ =

∫
dPS3

∫
[dk1]

∫
[dk2]

1

[(k1 + k2)2]
2 (k2 + p2)2 k21 (k1 + p3)2 (k1 + p1 + p3)2 s12
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=
e2πiǫ S2

Γ Γ
2(−ǫ)Γ3(1− ǫ)Γ(2 + 2ǫ)Γ(−2ǫ)

Γ(1− 2ǫ)Γ(−3ǫ)

(
q2
)−3−2ǫ

×
∫
dPS3

1∫

0

dx

1∫

0

dy
yǫ

[x y y12 + x y13 + y y23]
2+2ǫ y12

. (A.42)

Again, we extract the normalization factor according to

I4L3C3′ = 2π e2πiǫ S4
Γ

(
q2
)−2−4ǫ

Ĩ4L3C3′ , (A.43)

The above quantity can be expressed in terms of a one-dimensional Feynman parameter

integral as follows:

Ĩ4L3C3′ =
3Γ4(−ǫ)Γ(2ǫ)Γ6(1− ǫ)

4 Γ2(1− 3ǫ)Γ(2− 2ǫ)
− 5Γ2(1− 2ǫ)Γ5(1− ǫ)Γ3(−ǫ)Γ2(2ǫ)Γ(1 + ǫ)

2 Γ(1− 5ǫ)Γ(2− 2ǫ)

+
5Γ4(1− ǫ)Γ5(−ǫ)Γ(1 + 2ǫ)

2 Γ(1− 5ǫ)Γ(2− 2ǫ)
3F2(1,−ǫ,−ǫ ; 1− ǫ, 1 + ǫ ; 1)

+
3Γ6(1− ǫ)Γ3(−ǫ)Γ(2ǫ)

2 Γ(1− 3ǫ)Γ(1− 2ǫ)Γ(2− 2ǫ)

1∫

0

dt t−2ǫ (1− t)−2ǫ−1

× [2F1(1,−5ǫ ; 1− 2ǫ ; 1− t)− 1] 2F1(−ǫ,−2ǫ ; 1− 2ǫ ; t) . (A.44)

The expansion of Ĩ4L3C3′ in ǫ reads

Ĩ4L3C3′ =
1

(1− 2ǫ)

[
− 3

2ǫ5
+

37π2

12ǫ3
+

100ζ3
ǫ2

+
149π4

80ǫ
+ 1727ζ5 −

505

3
π2ζ3

+

(
186493π6

90720
− 2680ζ23

)
ǫ+O(ǫ2)

]
. (A.45)

The original integral I4L3C3 can then be obtained by relating it to I4L3C3′ with the help of

integration-by-parts identities.

B Relation to ref. [43]

Several decimal numbers in subsection 2.1 can be related to the quantities encountered in

ref. [43] as follows. In the finite part of Ĝ
(1)bare
47 in eq. (2.4), we have

43.76456245573869 = Y1 ≡ 19039

486
+

11

27
π2 − π

9
√
3
− 16

27
Xb +

1

6
Re[a(1)− 2b(1)],

0.04680853247986 = Y2 ≡ 2Re b(1)− 4

243
, (B.1)

where

Xb = −9

8
− π2

5
− 2

3
ζ3 +

1

10
ψ(1)

(
1

6

)
,

Re a(1) =
16

3
+

164

405
π2 − 16

9
ζ3 −

300π + 64π3

135
√
3

+
32π

√
3− 72

405
ψ(1)

(
1

6

)
,
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Re b(1) =
320

81
+

632

1215
π2 − 4π

3
√
3
− 8

45
ψ(1)

(
1

6

)
, (B.2)

and

ψ(1)(z) =
d2

dz2
ln Γ(z). (B.3)

The above exact expressions for Xb and Re a(1) are new. They come from the three-fold

Feynman parameter integrals in eqs. (3.2) and (3.3) of ref. [43].

In the 1
ǫ -part of G̃

(2)bare
27 in eq. (2.3), we have

−67.66077706444119 = −2

3
Y1 −

103762

2187
+

44

27
π2 − 160

27
ζ3,

5.17409838118169 = −2

3
Y2 +

11384

2187
. (B.4)

Finally, in the coefficients multiplying ln(µ/mb) in eq. (2.11), we have

1.0460332197 = −4

3
Y1 −

37708

729
+

304

27
π2,

9.6604967166 = −4

3
Y2 +

7088

729
. (B.5)

C NLO results of relevance for section 3

The NLO quantities K
(1)
ij that occur in eq. (3.8) are given by

K
(1)
27 = −6K

(1)
17 = Re r

(1)
2 − 208

81
Lb + 2φ

(1)
27 (δ),

K
(1)
47 = Re r

(1)
4 +

76

243
Lb + 2φ

(1)
47 (δ),

K
(1)
77 = −182

9
+

8

9
π2 − 32

3
Lb + 4φ

(1)
77 (δ),

K
(1)
78 =

44

9
− 8

27
π2 +

16

9
Lb + 2φ

(1)
78 (δ), (C.1)

where r
(1)
2 and r

(1)
4 can be found in eq. (3.1) of ref. [43]. The function φ

(1)
27 has been already

given in eq. (3.5) here. The remaining ones read

φ
(1)
77 = −2

3
ln2 δ − 7

3
ln δ − 31

9
+

10

3
δ +

1

3
δ2 − 2

9
δ3 +

1

3
δ(δ − 4) ln δ,

φ
(1)
78 =

8

9

[
Li2(1− δ)− 1

6
π2 − δ ln δ +

9

4
δ − 1

4
δ2 +

1

12
δ3
]
,

φ
(1)
47 (δ) = φ

(1)A
47 (δ) + φ

(1)B
47 (δ), (C.2)

where12

φ
(1)A
47 (δ) =

1

54
π
(
3
√
3− π

)
+

1

81
δ3 − 25

108
δ2 +

5

54
δ +

2

9

(
δ2 + 2δ + 3

)
arctan2

√
1− δ

3 + δ

12Eq. (3.12) of ref. [34] gives φ
(1)A
47 only, and contains a misprint in the coefficient at limmc→mb

.
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−1

3

�
δ2 + 4δ + 3

�
�

1− δ

3 + δ
arctan

�
1− δ

3 + δ
,

φ
(1)B
47 (δ) =

34 δ2 + 59 δ − 18

486

δ2 ln δ

1− δ
+

433 δ3 + 429 δ2 − 720 δ

2916
. (C.3)

The latter function is a new result from ref. [24] that originates from sqq̄γ final states

(q = u, d, s). Contributions to b → Xp
s γ from such final states at the NLO have been

neglected in the previous literature because they are suppressed by phase space factors and

the small Wilson coefficients C3,...,6.

D Input parameters

In this appendix, we collect numerical values of the parameters that matter for our branch-

ing ratio calculation in section 4. The photon energy cut is set to E0 = 1.6GeV. Our central

values for the renormalization scales are µb = µc = 2.0 GeV and µ0 = 160 GeV.

Masses of the b and c quarks together with the semileptonic B → Xcℓν̄ branching ratio

Bcℓν̄ and several non-perturbative parameters are adopted from the very recent analysis

in ref. [49].13 In that work, fits to the measured semileptonic decay spectra have been

performed with optional inclusion of constraints from the b-hadron spectroscopy, as well

as from the quark mass determinations utilizing moments of R(e+e− → hadrons) [71].

While mc is MS-renormalized, mb and the non-perturbative parameters are treated in

the kinetic scheme. We choose the option where both mb and mc are constrained by

R(e+e− → hadrons), and mc(2GeV) is used in the fit. Once the parameters are ordered

as {mb,kin, mc(2GeV), µ2
π, ρ3D, µ2

G, ρ3LS , Bcℓν̄} (expressed in GeV raised to appropriate

powers), their central values �x, uncertainties �σ, and the correlation matrix R̂ read [53]

�x =
�

4.564 1.087 0.470 0.171 0.309 −0.135 10.67
�
,

�σ =
�

0.017 0.013 0.067 0.039 0.058 0.095 0.16
�
,

R̂ =




1.000 0.461 −0.087 0.114 0.542 −0.157 −0.061

0.461 1.000 −0.002 −0.020 −0.125 0.036 0.029

−0.087 −0.002 1.000 0.724 −0.024 0.049 0.153

0.114 −0.020 0.724 1.000 −0.101 −0.135 0.076

0.542 −0.125 −0.024 −0.101 1.000 −0.011 −0.009

−0.157 0.036 0.049 −0.135 −0.011 1.000 −0.023

−0.061 0.029 0.153 0.076 −0.009 −0.023 1.000




. (D.1)

Apart from the above parameters, the analysis of ref. [49] serves us as a source of a

numerical formula for the semileptonic phase-space factor

C =

����
Vub

Vcb

����
2 Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
, (D.2)

13See also the previous version [70] where more details on the method are given.
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which reads [53]

C = g(z) {0.903− 0.588 [αs(4.6GeV)− 0.22] + 0.0650 [mb,kin − 4.55]

− 0.1080 [mc(2GeV)− 1.05]− 0.0122µ2
G − 0.199 ρ3D + 0.004 ρ3LS

}
, (D.3)

where g(z) = 1 − 8z + 8z3 − z4 − 12z2 ln z and z = m2
c(2GeV)/m2

b,kin. Next, we use C

in the expression [72]

Bsγ(Eγ > E0) = Bcℓν̄

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2 6αem

π C
[P (E0) +N(E0)] , (D.4)

to determine the radiative branching ratio. Known contributions to the non-perturbative

correction N(E0) are given in terms of µ2
π, ρ

3
D, µ

2
G and ρ3LS . The semileptonic branching

ratio Bcℓν̄ is CP- and isospin-averaged analogously to eq. (1.3), while the isospin asymmetry

effects in both decay rates are negligible. Thus, neither the lifetimes nor the production

rates need to be considered among our inputs.

The remaining parameters that are necessary to determine P (E0) and the overall factor

in eq. (D.4) are as follows:

αem(0) = 1/137.036, MZ = 91.1876 GeV, MW = 80.385 GeV [13],

αs(MZ) = 0.1185± 0.0006 [13], mt,pole = (173.21± 0.51± 0.71) GeV [13],

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2

= 0.9626± 0.0012 [73],
mb

mq
∈ (10, 50). (D.5)

For the electroweak and O(Vub) corrections to P (E0), we also need

αem(MZ) = 1/128.940, sin2 θW = 0.23126 [13],

MHiggs = 125.7GeV [13],
V ∗
usVub

V ∗
tsVtb

= −0.0080 + 0.018 i [73]. (D.6)

The quark mass ratio mb/mq (q = u, d, s) in eq. (D.5) serves as a collinear regulator wher-

ever necessary. Fortunately, the dominant contributions to Γ(b → Xp
s γ) are IR-safe, while

all the quantities requiring such a collinear regulator contribute at a sub-percent level only.

They undergo suppression by various multiplicative factors (C3,...,6, Q2
dαs/π, etc.), and by

phase-space restrictions following from the relatively high E0 ∼ mb/3. Changing mb/mq

from 10 to 50 affects the branching ratio by around 0.7% only. We include this effect in our

parametric uncertainty even though the dependence on mb/mq is spurious, i.e. it should

cancel out once the non-perturbative correction calculations are upgraded to take collinear

photon emission into account (see refs. [38, 74, 75]). Thus, the parametric uncertainty due

to mb/mq might alternatively be absorbed into the overall ±5% non-perturbative error [14].

Our range for mb/mq roughly corresponds to the range [mB/mK ,mB/mπ], which is moti-

vated by the fact that light hadron masses are the physical collinear regulators in our case.

All the uncertainties except for those in eq. (D.1) are treated as uncorrelated. One

should remember though that the dependence of C on αs is taken into account via eq. (D.3).
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1 Introduction

By now the LHC experiment has not discovered any new degrees of freedom beyond the

Standard Model (SM). In particular, the measurements of the LHCb experiment and the

B-physics experiments of ATLAS and CMS have confirmed the simple Cabibbo-Kobayashi-

Maskawa (CKM) theory of the SM [1–3]. This corresponds to the general result of the
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B-factories [4, 5] and of the Tevatron B-physics experiments [6, 7] which have not indi-

cated any sizable discrepancy from SM predictions in the B-meson sector (for reviews see

refs. [8–10]).

However, recently the first measurement of new angular observables in the exclusive

decay B → K∗µ+µ− has shown a kind of anomaly [11]. Due to the large hadronic uncer-

tainties it is not clear if this anomaly is a first sign for new physics beyond the SM, or a

consequence of hadronic power corrections; but of course, it could turn out to just be a sta-

tistical fluctuation (see e.g. refs. [12–20]. The LHCb analysis based on the 3 fb−1 dataset is

eagerly awaited to clarify the situation. More recently, another slight discrepancy occurred.

The ratio RK = BR(B+ → K+µ+µ−)/BR(B+ → K+e+e−) in the low-q2 region (q2 being

the di-lepton invariant mass) has been measured by LHCb showing a 2.6σ deviation from

the SM prediction [21]. In contrast to the anomaly in the rare decay B → K∗µ+µ− which

is affected by unknown power corrections, the ratio RK is theoretically rather clean. This

might be a sign for lepton non-universality (see e.g. refs. [22–31]).

The inclusive decay mode B̄ → Xs�
+�− is one of the most important, theoretically

clean modes of the indirect search for new physics via flavour observables (for a review

and updates see refs. [32–34]); especially it allows for a nontrivial crosscheck of the recent

LHCb data on the exclusive mode [18, 35].

The observables within this inclusive mode are dominated by perturbative con-

tributions if the cc̄ resonances that show up as large peaks in the dilepton invari-

ant mass spectrum are removed by appropriate kinematic cuts — leading to so-called

‘perturbative di-lepton invariant mass windows’, namely the low di-lepton mass region

1GeV2 < s = q2 = m2
�� < 6GeV2, and also the high dilepton mass region with

q2 > 14.4GeV2 (or q2 > 14.2GeV2). In these regions a theoretical precision of order

10% is in principle possible.

By now the branching fraction has been measured by Belle and BaBar using the sum-

of-exclusive technique only. The latest published measurement of Belle [36] is based on a

sample of 152 × 106 BB̄ events only, which corresponds to less than 30% of the dataset

available at the end of the Belle experiment. Babar has just recently presented an analysis

based on the whole dataset of Babar using a sample of 471 × 106 BB̄ events [37] which

updated the former analysis of 2004 [38].

In the low- and high-dilepton invariant mass region the weighted averages of the ex-

perimental results read

B(B̄ → Xs�
+�−)explow = (1.58± 0.37)× 10−6 , (1.1)

B(B̄ → Xs�
+�−)exphigh = (0.48± 0.10)× 10−6 . (1.2)

All the measurements are still dominated by the statistical error. The expectation is that

the final word of the present B factories leads to an experimental accuracy of 15 − 20%.

In addition, Belle has presented a first measurement of the forward-backward asym-

metry [39] and Babar a measurement of the CP violation in this channel [37].

The super flavour factory Belle II at KEK will accumulate two orders of magnitude

larger data samples [40]. Such data will push experimental precision to its limit. This is the

main motivation for the present study to decrease the theoretical uncertainties accordingly.
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The theoretical precision has already reached a highly sophisticated level. Let us briefly

review the previous analyses.

• Within the inclusive decay mode B̄ → Xs�
+�− the dominating perturbative QCD

contributions are calculated up to NNLL precision. The complete NLL QCD contri-

butions have been presented [41, 42]. For the NNLL calculation, many components

were taken over from the NLL calculation of the B̄ → Xsγ mode. The additional

components for the NNLL QCD precision have been calculated in refs. [43–55].

• If only the leading operator of the electroweak hamiltonian is considered, one is led to

a local operator product expansion (OPE). In this case, the leading hadronic power

corrections in the decay B̄ → Xs�
+�− scale with 1/m2

b and 1/m3
b only and have

already been analysed [56–61]. Power correction that scale with 1/m2
c [62] have also

been considered. They can be calculated quite analogously to those in the decay

B̄ → Xsγ. A systematic and careful analysis of hadronic power corrections including

all relevant operators has been performed in the case of the decay B̄ → Xsγ [63].

Such analysis goes beyond the local OPE. An additional uncertainty of ±5% has been

identified. The analysis in the case of B̄ → Xs�
+�− is fully analogous and work in

progress. There is no reason to expect any large deviation from the B̄ → Xsγ result.

In the high-q2 region, one encounters the breakdown of the heavy-mass expansion

(HME) at the end point of the dilepton mass spectrum: whereas the partonic contri-

bution vanishes, the 1/m2
b and 1/m3

b corrections tend towards a finite, non-zero value.

Contrary to the end-point region of the photon-energy spectrum in the B̄ → Xsγ

decay, no partial all-order resummation into a shape-function is possible. However,

for the integrated high-q2 spectrum an effective expansion is found in inverse pow-

ers of meff
b = mb × (1 − √

smin) instead of mb [64, 65]. The expansion converges

less rapidly, and the convergence behaviour depends on the lower dilepton-mass cut

smin = q2min/m
2
b [53].

The large theoretical uncertainties could be significantly reduced by normalizing the

B̄ → Xs�
+�− decay rate to the semileptonic B̄ → Xu�ν̄ decay rate with the same s

cut [61]:

R(s0) =

∫ 1

ŝ0

dŝ
dΓ(B̄ → Xs�

+�−)

dŝ
/

∫ 1

ŝ0

dŝ
dΓ(B̄0 → Xu�ν)

dŝ
. (1.3)

For example, the uncertainty due to the dominating 1/m3
b term could be reduced

from 19% to 9% [66].

• In the inclusive decay B̄ → Xs�
+�−, the hadronic and dilepton invariant masses are

independent kinematical quantities. A hadronic invariant-mass cut is imposed in the

experiments. The high-dilepton-mass region is not affected by this cut, but in the

low-dilepton mass region the kinematics with a jet-like Xs and m2
X ≤ mbΛ implies

the relevance of the shape function. A recent analysis in soft-collinear effective theory

(SCET) shows that by using the universality of the shape function, a 10−30% reduc-

tion in the dilepton-mass spectrum can be accurately computed. Nevertheless, the
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ŝ0

dŝ
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• In the inclusive decay B̄ → Xs�
+�−, the hadronic and dilepton invariant masses are

independent kinematical quantities. A hadronic invariant-mass cut is imposed in the

experiments. The high-dilepton-mass region is not affected by this cut, but in the

low-dilepton mass region the kinematics with a jet-like Xs and m2
X ≤ mbΛ implies

the relevance of the shape function. A recent analysis in soft-collinear effective theory

(SCET) shows that by using the universality of the shape function, a 10−30% reduc-

tion in the dilepton-mass spectrum can be accurately computed. Nevertheless, the
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effects of subleading shape functions lead to an additional uncertainty of 5% [67, 68].

A more recent analysis [69] estimates the uncertainties due to subleading shape func-

tions more conservatively. By scanning over a range of models of these functions,

one finds corrections in the rates relative to the leading-order result to be between

−10% to +10% with equally large uncertainties. In the future it may be possible to

decrease such uncertainties significantly by constraining both the leading and sub-

leading shape functions using the combined B̄ → Xsγ, B̄ → Xu�ν̄ and B̄ → Xs�
+�−

data [69, 70]. In [71], B̄ → Xs�
+�− in the presence of a cut on mXs was analysed by

performing the matching from QCD onto SCET at NNLO, and a prediction of the

zero of the forward-backward asymmetry in this semi-inclusive channel was provided.

• As already discussed, the cc̄ resonances can be removed by making appropriate kine-

matic cuts in the invariant mass spectrum. However, nonperturbative contributions

away from the resonances within the perturbative windows are also important. In

the KS approach [72, 73] one absorbs factorizable long-distance charm rescattering

effects (in which the B̄ → Xscc̄r transition can be factorized into the product of s̄b

and cc̄ color-singlet currents) into the matrix element of the leading semileptonic op-

erator O9. Following the inclusion of nonperturbative corrections scaling with 1/m2
c ,

the KS approach avoids double-counting. For the integrated branching fractions one

finds an increase of (1 − 2)% in the low-q2 region due to the KS effect, whereas in

the high-q2 region there is a decrease of ∼ 10%, which is still below the uncertainty

due to the 1/mb corrections.

• The integrated branching fraction is dominated by this resonance background which

exceeds the nonresonant charm-loop contribution by two orders of magnitude. This

feature should not be misinterpreted as a striking failure of global parton-hadron

duality [74], which postulates that the sum over the hadronic final states, including

resonances, should be well approximated by a quark-level calculation [75]. Crucially,

the charm-resonance contributions to the decay B̄ → Xs�
+�− are expressed in terms

of a phase-space integral over the absolute square of a correlator. For such a quantity

global quark-hadron duality is not expected to hold. Nevertheless, local quark-hadron

duality (which, of course, also implies global duality) may be reestablished by resum-

ming Coulomb-like interactions [74].

• Also electromagnetic perturbative corrections were calculated: NLL quantum elec-

trodynamics (QED) two-loop corrections to the Wilson coefficients are of O(2%) [55].

In the QED one-loop corrections to matrix elements, large collinear logarithms of the

form log(m2
b/m

2
� ) survive integration over phase space if only a restricted part of

the dilepton mass spectrum is considered. These collinear logarithms add another

contribution of order +2% in the low-q2 region of the dilepton mass spectrum in

B̄ → Xsµ
+µ− [76]. For the high-q2 region, one finds −8% [66].

Based on all these scientific efforts of various groups, the latest theoretical predictions have

been presented in ref. [66].
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In the present manuscript, we make the effort to provide all missing relevant pertur-

bative contributions to all independent observables in the decay B̄ → Xs�
+�−. As it is

well-known, the angular decomposition of this inclusive decay rate provides three indepen-

dent observables, HT , HA, HL from which one can extract the short-distance electroweak

Wilson coefficients that test for possible new physics [77]:

d2Γ

dq2 dz
=

3

8

[
(1 + z2)HT (q

2) + 2(1− z2)HL(q
2) + 2zHA(q

2)
]
. (1.4)

Here, z = cos θ, where θ is the angle between the �+ and B meson three momenta in the

di-lepton rest frame, HA is equivalent to the forward-backward asymmetry [78], and the

q2 spectrum is given by HT + HL. The observables dominantly depend on the effective

Wilson coefficients corresponding to the operators O7,O9, and O10.

The paper is organized as follows. In section 2 we define the observables which we

consider in the present analysis. In section 3 the derivation of the log-enhanced terms is

presented. Master formulae for our observables are given in section 4, our phenomenological

results in section 5. We briefly discuss the new physics sensitivity of our observables in

section 6. Finally we explore the precise connection between experimental and theoretical

quantities using Monte Carlo techniques in section 7. The latter analysis updates, and

in parts supersedes, our previous statements in ref. [79]. We conclude in section 8. In

the appendices we collect various functions that arise in the computation of QED and

QCD corrections to the observables (appendix A), as well as formulas that parametrise the

observables in terms of ratios of high-scale Wilson coefficients (appendix B).

2 Definition of the observables

The z dependence of the double differential decay distribution presented in eq. (1.4) is ex-

act to all orders in QCD because it is controlled by the square of the leptonic current. The

inclusion of QED bremsstrahlung modifies the simple second order polynomial structure

and replaces it with a complicated analytical z dependence (see eqs. (3.28)–(3.33)). In

particular this implies that, as long as QED effects are observably large, a simple fit to a

quadratic polynomial will introduce non-negligible distorsions in the comparison between

theory and experiment. In this section we explain the procedure that we adopt to con-

struct various q2 differential distributions and suggest that experimental analyses follow

the same prescriptions.

The extraction of multiple differential distributions from eq. (1.4) is phenomenologi-

cally important because the various observables have different functional dependence on the

Wilson coefficients. For instance, at next-to-leading order in QCD and without including

any QED effect, the three HI defined in eq. (1.4) are given by [77]:

HT (q
2) =

G2
Fm

5
b |V ∗

tsVtb|2
48π3

2ŝ(1− ŝ)2
[∣∣∣∣C9 +

2

ŝ
C7

∣∣∣∣
2

+ |C10|2
]
, (2.1)

HL(q
2) =

G2
Fm

5
b |V ∗

tsVtb|2
48π3

(1− ŝ)2
[∣∣C9 + 2C7

∣∣2 + |C10|2
]
, (2.2)

HA(q
2) =

G2
Fm

5
b |V ∗

tsVtb|2
48π3

(−4ŝ) (1− ŝ)2 Re

[
C10

(
C9 +

2

ŝ
C7

)]
. (2.3)
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In the present manuscript, we make the effort to provide all missing relevant pertur-

bative contributions to all independent observables in the decay B̄ → Xs�
+�−. As it is

well-known, the angular decomposition of this inclusive decay rate provides three indepen-

dent observables, HT , HA, HL from which one can extract the short-distance electroweak

Wilson coefficients that test for possible new physics [77]:

d2Γ

dq2 dz
=

3

8

[
(1 + z2)HT (q

2) + 2(1− z2)HL(q
2) + 2zHA(q

2)
]
. (1.4)

Here, z = cos θ, where θ is the angle between the �+ and B meson three momenta in the

di-lepton rest frame, HA is equivalent to the forward-backward asymmetry [78], and the

q2 spectrum is given by HT + HL. The observables dominantly depend on the effective

Wilson coefficients corresponding to the operators O7,O9, and O10.

The paper is organized as follows. In section 2 we define the observables which we

consider in the present analysis. In section 3 the derivation of the log-enhanced terms is

presented. Master formulae for our observables are given in section 4, our phenomenological

results in section 5. We briefly discuss the new physics sensitivity of our observables in

section 6. Finally we explore the precise connection between experimental and theoretical

quantities using Monte Carlo techniques in section 7. The latter analysis updates, and

in parts supersedes, our previous statements in ref. [79]. We conclude in section 8. In

the appendices we collect various functions that arise in the computation of QED and

QCD corrections to the observables (appendix A), as well as formulas that parametrise the

observables in terms of ratios of high-scale Wilson coefficients (appendix B).

2 Definition of the observables

The z dependence of the double differential decay distribution presented in eq. (1.4) is ex-

act to all orders in QCD because it is controlled by the square of the leptonic current. The

inclusion of QED bremsstrahlung modifies the simple second order polynomial structure

and replaces it with a complicated analytical z dependence (see eqs. (3.28)–(3.33)). In

particular this implies that, as long as QED effects are observably large, a simple fit to a

quadratic polynomial will introduce non-negligible distorsions in the comparison between

theory and experiment. In this section we explain the procedure that we adopt to con-

struct various q2 differential distributions and suggest that experimental analyses follow

the same prescriptions.

The extraction of multiple differential distributions from eq. (1.4) is phenomenologi-

cally important because the various observables have different functional dependence on the

Wilson coefficients. For instance, at next-to-leading order in QCD and without including

any QED effect, the three HI defined in eq. (1.4) are given by [77]:

HT (q
2) =

G2
Fm

5
b |V ∗

tsVtb|2
48π3

2ŝ(1− ŝ)2
[∣∣∣∣C9 +

2

ŝ
C7

∣∣∣∣
2

+ |C10|2
]
, (2.1)

HL(q
2) =

G2
Fm

5
b |V ∗

tsVtb|2
48π3

(1− ŝ)2
[∣∣C9 + 2C7

∣∣2 + |C10|2
]
, (2.2)

HA(q
2) =

G2
Fm

5
b |V ∗

tsVtb|2
48π3

(−4ŝ) (1− ŝ)2 Re

[
C10

(
C9 +

2

ŝ
C7

)]
. (2.3)
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We decided to preserve the natural definitions of the differential decay width dΓ/dq2

and of the forward-backward asymmetry dAFB/dq
2:

dΓ

dq2
≡

∫ +1

−1

d2Γ

dq2dz
dz , (2.4)

dAFB

dq2
≡

∫ +1

−1

d2Γ

dq2dz
sign(z)dz , (2.5)

with the understanding that AFB does not coincide with the coefficient of the linear term

in z in the Taylor expansion of d2Γ/dq2dz.

We extract other single-differential distributions by projecting the double-differential

rate onto various Legendre polynomials, Pn(z). These polynomials are orthogonal in the

[−1, 1] interval and are, therefore, ideally suited as angular projectors. In order to make

connection with the existing literature we choose the first two projections in such a way

to reproduce HT and HL in the limit of no QED radiation. For the higher order terms we

simply adopt the corresponding Legendre polynomials. The observables are defined as

HI(q
2) =

∫ +1

−1

d2Γ

dq2dz
WI(z)dz (2.6)

and the weights we use are:

WT =
2

3
P0(z) +

10

3
P2(z) , W3 = P3(z) ,

WL =
1

3
P0(z)−

10

3
P2(z) , W4 = P4(z) ,

WA =
4

3
sign(z) .

(2.7)

Note that WT +WL = P0(z) = 1 implying that the relation dΓ/dq2 = HT +HL is exact.

The unnormalized (defined in eq. (2.5)) forward-backward asymmetry receives contri-

butions form all odd powers of z in the Taylor expansion of the double differential rate and

is given by

dAFB

dq2
=

3

4
HA(q

2) . (2.8)

In the literature the normalized differential and integrated forward-backward asymmetries

are often considered (see for instance ref. [66]):

dAFB

dq2
≡

∫ +1

−1
dz

d2Γ

dq2dz
sign(z)

∫ +1

−1
dz

d2Γ

dq2dz

=
3

4

HA(q
2)

HT (q2) +HL(q2)
, (2.9)

AFB[q
2
m, q2M ] ≡

∫ q2M

q2m

dq2
∫ +1

−1
dz

d2Γ

dq2dz
sign(z)

∫ q2M

q2m

dq2
∫ +1

−1
dz

d2Γ

dq2dz

=
3

4

∫ q2M

q2m

dq2HA(q
2)

∫ q2M

q2m

dq2
[
HT (q

2) +HL(q
2)
] . (2.10)
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p− ≡ p2

p+ ≡ x̄p1

xp1

p1

b

ℓ−

s

ℓ+

p1 ≡ p+

x̄p2 ≡ p−

xp2

p2

b

ℓ−

s

ℓ+

Figure 1. Kinematics of collinear photon radiation. The collinear photon is radiated off �+ (left

panel) and �− (right panel), respectively. The crossed grey circles denote an operator insertion

from the effective weak Hamiltonian. The arrows indicate momentum rather than fermion flow. x

denotes the momentum fraction of the collinear photon.

The new observables H3 and H4 (obtained by employing the weights W3 and W4)

vanish exactly in the limit of no QED radiation but are still potentially important for

phenomenology because of their non trivial dependence on the Wilson coefficients. We

find that projections with even higher Legendre polynomials are suppressed and will not

be considered further.

Note that the expected statistical experimental uncertainties (at a given luminosity) are

well understood in the total width (HT +HL) and forward-backward asymmetry (3/4 HA)

cases. On the other hand, HT , HL, H3 and H4 are obtained by projecting the double

differential rate with weights that (especially for W3 and W4) are essentially arbitrary. As

a consequence a simple rescaling of these weights implies a corresponding rescaling of the

central values we find. In section 6 we show how to use the squared weights (W 2
I ) to assess

the expected Belle II reach for each of these observables.

The experimental procedure that we recommend is to use the weights WI to extract

single-differential distributions and to refrain from attempting polynomial fits to the data.

3 Log-enhanced QED corrections to the double differential decay rate

In this section we work out the formulas for the logarithmically enhanced electromagnetic

corrections of the double differential decay rate d2Γ/(dq2 dz). The operators and Wilson

coefficients of the effective weak Hamiltonian are the same as in [66, 76]. The kinematics

can be inferred from figure 1.

Let us first consider the case without photon radiation. The momenta of the quarks

are labelled pb and ps, respectively. The momenta of �+ and �− are denoted by p1 and

p2, respectively. From momentum conservation we arrive at pb = p1 + p2 + ps. We define

the invariants

sij ≡
2pi pj
m2

b

, i ∈ {1, 2, s, b} . (3.1)

Moreover, we define

y1 ≡
2E1

mb
, y2 ≡

2E2

mb
, (3.2)
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Figure 1. Kinematics of collinear photon radiation. The collinear photon is radiated off �+ (left

panel) and �− (right panel), respectively. The crossed grey circles denote an operator insertion

from the effective weak Hamiltonian. The arrows indicate momentum rather than fermion flow. x

denotes the momentum fraction of the collinear photon.

The new observables H3 and H4 (obtained by employing the weights W3 and W4)

vanish exactly in the limit of no QED radiation but are still potentially important for

phenomenology because of their non trivial dependence on the Wilson coefficients. We

find that projections with even higher Legendre polynomials are suppressed and will not

be considered further.

Note that the expected statistical experimental uncertainties (at a given luminosity) are

well understood in the total width (HT +HL) and forward-backward asymmetry (3/4 HA)

cases. On the other hand, HT , HL, H3 and H4 are obtained by projecting the double

differential rate with weights that (especially for W3 and W4) are essentially arbitrary. As

a consequence a simple rescaling of these weights implies a corresponding rescaling of the

central values we find. In section 6 we show how to use the squared weights (W 2
I ) to assess

the expected Belle II reach for each of these observables.

The experimental procedure that we recommend is to use the weights WI to extract

single-differential distributions and to refrain from attempting polynomial fits to the data.

3 Log-enhanced QED corrections to the double differential decay rate

In this section we work out the formulas for the logarithmically enhanced electromagnetic

corrections of the double differential decay rate d2Γ/(dq2 dz). The operators and Wilson

coefficients of the effective weak Hamiltonian are the same as in [66, 76]. The kinematics

can be inferred from figure 1.

Let us first consider the case without photon radiation. The momenta of the quarks

are labelled pb and ps, respectively. The momenta of �+ and �− are denoted by p1 and

p2, respectively. From momentum conservation we arrive at pb = p1 + p2 + ps. We define

the invariants

sij ≡
2pi pj
m2

b

, i ∈ {1, 2, s, b} . (3.1)

Moreover, we define

y1 ≡
2E1

mb
, y2 ≡

2E2

mb
, (3.2)
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where Ei (i = 1, 2) is the zero-component of pi when evaluated in the rest-frame of the

decaying b-quark. From momentum conservation and by treating all final-state particles

as massless, we obtain the relation y1 + y2 = 1 + s12. This relation also implies

s1s = 1− y2 , s1b = y1 , ssb = 1− s12 ,

s2s = 1− y1 , s2b = y2 .
(3.3)

For the double differential decay rate we also need z ≡ cos θ, where θ is the angle between

the b-quark and the positively charged lepton in the centre-of-mass system (c.m.s.) of the

final-state lepton pair. Hence

z = cos θ =
�p ′
1 · �p ′

b

|�p ′
1 |

∣∣�p ′
b

∣∣ , (3.4)

where all primed momenta are taken in the c.m.s. of the final-state lepton pair. It turns

out that z is simply given by [57]

z =
y2 − y1
1− s12

. (3.5)

At this point we stress that the l.h.s. of this equation is evaluated in the lepton c.m.s.,

whereas its r.h.s. is evaluated in the rest-frame of the decaying b-quark. The connection

between the angle θ and the leponic energy asymmetry has already been emphasized in [57].

We now switch on QED and consider the radiation of a collinear photon off a lepton

leg as shown in figure 1. The momentum of the positively (negatively) charged lepton is

denoted by p1 (p2) before radiation and by p+ (p−) thereafter. If the positively charged

lepton radiates the photon (left panel of figure 1), its momentum p+ after radiation is

given by p+ = x̄p1, where x denotes the momentum fraction of the collinear photon and

x̄ ≡ 1−x. In this case, the momentum of the negatively charged lepton remains unchanged

and hence we have p− = p2. If the negatively charged lepton radiates the photon (right

panel of figure 1), we obviously have p− = x̄p2 and p+ = p1. In analogy to eq. (3.2),

we define

y± ≡ 2E±
mb

, (3.6)

where E± is the zero-component of p±, again evaluated in the rest-frame of the decaying

b-quark. We will also need the definition

s+− ≡ x̄ s12 . (3.7)

As already discussed in refs. [66, 76], the logarithmically enhanced contributions stem-

ming from collinear photon radiation are evaluated by

d2Γcoll

ds dz
=

d2Γcoll,2

ds dz
− d2Γcoll,3

ds dz
, (3.8)

where we stay differential in the double invariant s+− = (p+ + p−)
2 = x̄ s12 and the triple

invariant s12 = (p+ + p− + pγ)
2 = (p1 + p2)

2, respectively. We first consider the case of

the triple invariant, where the formulae look exactly the same as in the case without QED,

since we can lump the lepton and the collinear photon. We therefore arrive at

dΓcoll,3 = PF ds12 dy1 dy2 dx δ(1 + s12 − y1 − y2) f
(m)
γ (x)

[
|A|2 (s12, y1, y2)

]

×θ(y1) θ(1− y1) θ(y2) θ(1− y2) θ(s12) θ(1− s12) θ(x) θ(1− x) . (3.9)
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Here θ denotes the heaviside step-function, PF is the pre-factor

PF =
G2

Fmb|VtbV
∗
ts|2

32π3
, (3.10)

and f
(m)
γ (x) is the mass-regularised splitting function for collinear photon radiation of

which we only keep the logarithmically enhanced part (α̃e = αe/(4π)),

f (m)
γ (x) = 4 α̃e

[1 + (1− x)2]

x
ln

(
mb

m�

)
. (3.11)

The squared matrix elements |A|2 for the different operators read

|A|277 (s12, y1, y2) =
8m4

b

s12
[(1− y2) y1 + (1− y1) y2] ,

|A|279 (s12, y1, y2) = 4m4
b (1− s12) ,

|A|299 (s12, y1, y2) = 4m4
b(1− y1)(1− y2) + 2m4

b s12 (1− s12) ,

|A|2710 (s12, y1, y2) = 4m4
b (y1 − y2) ,

|A|2910 (s12, y1, y2) = 2m4
b s12 (y1 − y2) ,

|A|229 (s12, y1, y2) = α̃e f2(s12) |A|299 (s12, y1, y2) ,

|A|227 (s12, y1, y2) = α̃e f2(s12) |A|279 (s12, y1, y2) ,

|A|222 (s12, y1, y2) = α̃2
e |f2(s12)|2 |A|299 (s12, y1, y2) ,

|A|2210 (s12, y1, y2) = α̃e f2(s12) |A|2910 (s12, y1, y2) . (3.12)

The function f2(s12) denotes the one-loop matrix element of P2 and is given by

f2(s12) =
8

9
ln

(
µ

mc

)
+

8

27
+
4

9
yc (3.13)

−2

9
(2 + yc)

√
|1− yc|





ln

∣∣∣∣
1 +

√
1− yc

1−√
1− yc

∣∣∣∣− iπ, when yc < 1 ,

2 arctan
1√

yc − 1
, when yc ≥ 1 ,

with yc = 4m2
c/(m

2
bs12). f2(s12) is a complex function and therefore the |A|22j with j �= 2

are complex. However, after taking into account the Wilson coefficients and adding the

appropriate complex conjugate expression, the double differential rate turns out to be real,

see eq. (3.28).

Let us now come back to the evaluation of (3.9). After integrating over the δ-function

and changing variables according to eq. (3.5) we arrive at

d2Γcoll,3

ds12 dz
= 2PF

∫ 1

0
dx f (m)

γ (x)

[
|A|2

(
s12,

1 + s12
2

− 1− s12
2

z,
1 + s12

2
+

1− s12
2

z

)]

× 1− s12
2

θ(1− z) θ(1 + z) θ(s12) θ(1− s12) . (3.14)
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Here θ denotes the heaviside step-function, PF is the pre-factor

PF =
G2

Fmb|VtbV
∗
ts|2

32π3
, (3.10)

and f
(m)
γ (x) is the mass-regularised splitting function for collinear photon radiation of

which we only keep the logarithmically enhanced part (α̃e = αe/(4π)),

f (m)
γ (x) = 4 α̃e

[1 + (1− x)2]

x
ln

(
mb

m�

)
. (3.11)

The squared matrix elements |A|2 for the different operators read

|A|277 (s12, y1, y2) =
8m4

b

s12
[(1− y2) y1 + (1− y1) y2] ,

|A|279 (s12, y1, y2) = 4m4
b (1− s12) ,

|A|299 (s12, y1, y2) = 4m4
b(1− y1)(1− y2) + 2m4

b s12 (1− s12) ,

|A|2710 (s12, y1, y2) = 4m4
b (y1 − y2) ,

|A|2910 (s12, y1, y2) = 2m4
b s12 (y1 − y2) ,

|A|229 (s12, y1, y2) = α̃e f2(s12) |A|299 (s12, y1, y2) ,

|A|227 (s12, y1, y2) = α̃e f2(s12) |A|279 (s12, y1, y2) ,

|A|222 (s12, y1, y2) = α̃2
e |f2(s12)|2 |A|299 (s12, y1, y2) ,

|A|2210 (s12, y1, y2) = α̃e f2(s12) |A|2910 (s12, y1, y2) . (3.12)

The function f2(s12) denotes the one-loop matrix element of P2 and is given by

f2(s12) =
8

9
ln

(
µ

mc

)
+

8

27
+
4

9
yc (3.13)

−2

9
(2 + yc)

√
|1− yc|





ln

∣∣∣∣
1 +

√
1− yc

1−√
1− yc

∣∣∣∣− iπ, when yc < 1 ,

2 arctan
1√

yc − 1
, when yc ≥ 1 ,

with yc = 4m2
c/(m

2
bs12). f2(s12) is a complex function and therefore the |A|22j with j �= 2

are complex. However, after taking into account the Wilson coefficients and adding the

appropriate complex conjugate expression, the double differential rate turns out to be real,

see eq. (3.28).

Let us now come back to the evaluation of (3.9). After integrating over the δ-function

and changing variables according to eq. (3.5) we arrive at

d2Γcoll,3

ds12 dz
= 2PF

∫ 1

0
dx f (m)

γ (x)

[
|A|2

(
s12,

1 + s12
2

− 1− s12
2

z,
1 + s12

2
+

1− s12
2

z

)]

× 1− s12
2

θ(1− z) θ(1 + z) θ(s12) θ(1− s12) . (3.14)
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�p2 �p1

�p1 + �p2

x̄�p2
�p1

�p1 + x̄�p2

�p2
x̄�p1

x̄�p1 + �p2

Figure 2. Boosts that have to be performed in order to translate the b rest-frame into the leptonic

c.m.s. Left panel: without QED. Middle panel: radiation off �−. Right panel: radiation off �+.

The factor of two stems from the fact that both diagrams in figure 1 are relevant. Note

that the integral in eq. (3.14) is divergent at x = 0. However, eq. (3.8) is well-behaved

once all expressions on its r.h.s. are plugged in.

We now turn our attention to the more complicated case of the double invariant

d2Γcoll,2/(ds dz), and first address radiation off �−. As can be seen from the middle panel of

figure 2, the boost Λ from the b-quark rest-frame into the leptonic c.m.s. is determined by

�p1 + x̄�p2
Λ−→ 0. (3.15)

After the boost, we compute z = cos θ via

z =
�p ′
+ · �p ′

b∣∣�p ′
+

∣∣ ∣∣�p ′
b

∣∣ =
x̄y2 − y1√

(y1 + x̄y2)
2 − 4x̄s12

, (3.16)

Again, the primed momenta are evaluated in the lepton c.m.s., whereas the r.h.s. of the

equation is evaluated in the rest-frame of the b-quark. The differential decay width reads

dΓ�−
coll,2 = PF ds12 dy1 dy2 dx δ(1 + s12 − y1 − y2) f

(m)
γ (x)

[
|A|2 (s12, y1, y2)

]

×θ(y1) θ(1− y1) θ(y2) θ(1− y2) θ(s12) θ(1− s12) θ(x) θ(1− x) . (3.17)

We first eliminate y1 by integrating over the δ-function. Subsequently, we eliminate y2 in

favour of z according to eq. (3.16). This transformation reads

y
(±)
2 (z) =

(1 + s12)(2− x− xz2)± 2z
√
1− x

√
(1− s12)2x̄− s12x2(1− z2)

x2(1− z2) + 4x̄
. (3.18)

It turns out that this in an injective mapping only for s12 < x̄. For s12 > x̄ we have

to subdivide the y2-interval into two pieces, so that we get a total of three contributions.
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After the additional variable substitution s12 = s+−/x̄ they read

d2Γ�−
coll,2; 1

ds+− dz

= PF

∫ 1−√
s+−

0
dx

f
(m)
γ (x)

x̄

[
∂

∂z
y
(+)
2 (z)

] [
|A|2 (s12, 1 + s12 − y2, y2)

]
∣∣∣∣ y2 = y

(+)
2 (z)

s12 = s+−/x̄

×θ(1− z) θ(1 + z) θ(s+−) θ(1− s+−) , (3.19)

d2Γ�−

coll,2; 2/3

ds+− dz

= ±PF

∫ x−

1−√
s+−

dx
f
(m)
γ (x)

x̄

[
∂

∂z
y
(±)
2 (z)

] [
|A|2 (s12, 1+s12−y2, y2)

]
∣∣∣∣ y2 = y

(±)
2 (z)

s12 = s+−/x̄

×θ(−z) θ(1 + z) θ(s+−) θ(1− s+−) , (3.20)

where

x± =
1− s+−

1∓
√

(1− z2)s+−
. (3.21)

Once the photon is radiated off �+, we apply very similar steps. As can be seen from

the right panel of figure 2, the boost Λ, from the b-quark rest-frame into the leptonic c.m.s.,

is determined by

x̄�p1 + �p2
Λ−→ 0. (3.22)

After the boost, we compute z = cos θ by

z =
�p ′
+ · �p ′

b∣∣�p ′
+

∣∣ ∣∣�p ′
b

∣∣ =
y2 − x̄y1√

(x̄y1 + y2)
2 − 4x̄s12

, (3.23)

We now eliminate y2 by integrating over the δ-function. Subsequently, we eliminate y1 in

favour of z according to eq. (3.23). This transformation reads

y
(±)
1 (z) =

(1 + s12)(2− x− xz2)± 2z
√
1− x

√
(1− s12)2x̄− s12x2(1− z2)

x2(1− z2) + 4x̄
. (3.24)

As mentioned before, this is an injective mapping only for s12 < x̄. For s12 > x̄ we have

to subdivide the y1-interval into two pieces, so that in this case we also get a total of three
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After the additional variable substitution s12 = s+−/x̄ they read

d2Γ�−
coll,2; 1

ds+− dz

= PF

∫ 1−√
s+−

0
dx

f
(m)
γ (x)

x̄

[
∂

∂z
y
(+)
2 (z)

] [
|A|2 (s12, 1 + s12 − y2, y2)

]
∣∣∣∣ y2 = y

(+)
2 (z)

s12 = s+−/x̄

×θ(1− z) θ(1 + z) θ(s+−) θ(1− s+−) , (3.19)

d2Γ�−

coll,2; 2/3

ds+− dz

= ±PF

∫ x−

1−√
s+−

dx
f
(m)
γ (x)

x̄

[
∂

∂z
y
(±)
2 (z)

] [
|A|2 (s12, 1+s12−y2, y2)

]
∣∣∣∣ y2 = y

(±)
2 (z)

s12 = s+−/x̄

×θ(−z) θ(1 + z) θ(s+−) θ(1− s+−) , (3.20)

where

x± =
1− s+−

1∓
√

(1− z2)s+−
. (3.21)

Once the photon is radiated off �+, we apply very similar steps. As can be seen from

the right panel of figure 2, the boost Λ, from the b-quark rest-frame into the leptonic c.m.s.,

is determined by

x̄�p1 + �p2
Λ−→ 0. (3.22)

After the boost, we compute z = cos θ by

z =
�p ′
+ · �p ′

b∣∣�p ′
+

∣∣ ∣∣�p ′
b

∣∣ =
y2 − x̄y1√

(x̄y1 + y2)
2 − 4x̄s12

, (3.23)

We now eliminate y2 by integrating over the δ-function. Subsequently, we eliminate y1 in

favour of z according to eq. (3.23). This transformation reads

y
(±)
1 (z) =

(1 + s12)(2− x− xz2)± 2z
√
1− x

√
(1− s12)2x̄− s12x2(1− z2)

x2(1− z2) + 4x̄
. (3.24)

As mentioned before, this is an injective mapping only for s12 < x̄. For s12 > x̄ we have

to subdivide the y1-interval into two pieces, so that in this case we also get a total of three
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contributions. After the additional variable substitution s12 = s+−/x̄ they read

d2Γ�+

coll,2; 1

ds+− dz

= −PF

∫ 1−√
s+−

0
dx

f
(m)
γ (x)

x̄

[
∂

∂z
y
(−)
1 (z)

] [
|A|2 (s12, y1, 1 + s12 − y1)

]
∣∣∣∣ y1 = y

(−)
1 (z)

s12 = s+−/x̄

×θ(1− z) θ(1 + z) θ(s+−) θ(1− s+−) , (3.25)

d2Γ�+

coll,2; 2/3

ds+− dz

= ∓PF

∫ x−

1−√
s+−

dx
f
(m)
γ (x)

x̄

[
∂

∂z
y
(∓)
1 (z)

] [
|A|2 (s12, y1, 1 + s12 − y1)

]
∣∣∣∣ y1 = y

(∓)
1 (z)

s12 = s+−/x̄

×θ(z) θ(1− z) θ(s+−) θ(1− s+−) . (3.26)

The total contribution in case of the double invariant is now obtained by

d2Γcoll,2

ds+− dz
=

3∑
i=1

[
d2Γ�+

coll,2; i

ds+− dz
+

d2Γ�−
coll,2; i

ds+− dz

]
. (3.27)

We finally identify s12 ≡ s in eq. (3.14) and s+− ≡ s in eq. (3.27) and plug everything

into eq. (3.8). This leads us to the following expression for the logarithmically enhanced

collinear decay width

d2Γcoll

ds dz
=

G2
Fm

5
b |VtbV

∗
ts|2

32π3
α̃e ln

(
m2

b

m2
�

){
|C9|2 ξ(em)

99 (s, z) + |C10|2 ξ(em)
99 (s, z)

+α̃2
e |Ceff

7 |2 ξ(em)
77 (s, z)+α̃e Re

[
Ceff
7 C∗

9

]
ξ
(em)
79 (s, z)+α̃e Re

[
Ceff
7 C∗

10

]
ξ
(em)
710 (s, z)

+Re [C9C
∗
10] ξ

(em)
910 (s, z) + α̃2

e Re
[
(C2 + CFC1)C

eff ∗
7 ξ

(em)
27 (s, z)

]

+α̃e Re
[
(C2 + CFC1)C

∗
9 ξ

(em)
29 (s, z)

]
+ α̃e Re

[
(C2 + CFC1)C

∗
10 ξ

(em)
210 (s, z)

]

+α̃2
e (C2 + CFC1)

2 ξ
(em)
22 (s, z)

}
, (3.28)

where we assumed that the Wilson coefficients C1 and C2 are real, and we neglected

contributions from the penguin operators P3−6 due to their small Wilson coefficients. The

functions ξ
(em)
ij (s, z) are given by

ξ
(em)
77 (s, z) = −

64 p1(s, z)
√
s ln

(√
s

1−z2
−

√
s

1−z2
− 1

)

(z2 − 1)3
√
s+ z2 − 1

+
64 z p2(s, z) ln

(
1−z
z+1

)

s(z2 − 1)3

+
64 p3(s, z) ln

(√
1

s(1−z2)
−

√
1

s(1−z2)
− 1

)

s(z2 − 1)3 (s (z2 − 1) + 1)3/2
+

16 p4(s, z) ln(s)

s(z2 − 1)3

+
4 p5(s, z)

3s (z2 − 1)2 (s (z2 − 1) + 1)
−

16(s− 1)2 p6(s, z) ln
(

2(1−s)√
1−z2

)

s
, (3.29)
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ξ
(em)
99 (s, z) = −

16 s z p7(s, z) ln
(
1−z
z+1

)

(z2 − 1)4
+

4 s p8(s, z) ln(s)

(z2 − 1)4

+
8 s3/2 p9(s, z) ln

(√
s

1−z2
−

√
s

1−z2
− 1

)

(z2 − 1)4 (s+ z2 − 1)5/2
+

p10(s, z)

3(z2 − 1)3 (s+ z2 − 1)2

+4(s− 1)2
(
sz2 + s− z2 + 1

)
ln

(
2(1− s)√
1− z2

)
, (3.30)

ξ
(em)
79 (s, z) = −

64 z p11(s, z) ln
(
1−z
z+1

)

(z2 − 1)3
− 32 p12(s, z) ln(s)

(z2 − 1)3

− 8 p13(s, z)

(z2 − 1)2 (s+ z2 − 1)
+

64
√
s p14(s, z) ln

(√
s

1−z2
−

√
s

1−z2
− 1

)

(z2 − 1)3 (s+ z2 − 1)3/2

+32 (s− 1)2 ln

(
2(1− s)√
1− z2

)
+

64 p15(s, z) ln
(√

1
s(1−z2)

−
√

1
s(1−z2)

− 1
)

(z2 − 1)2
√
s (z2 − 1) + 1

,(3.31)

ξ
(em)
710 (s, z) = −

64 p15(s, z) sign(z) ln

(
−
√
s(z2−1)−

√
z2
√

s(z2−1)+1+1

(
√
s+1)

√
1−z2

)

(z2 − 1)2
√
s (z2 − 1) + 1

−
64 p16(s, z)

√
s sign(z) ln

(
−
√
z2

√
s+z2−1+

√
s−z2+1

(
√
s+1)

√
1−z2

)

(z2 − 1)3 (s+ z2 − 1)3/2

+
32 z p17(s, z) ln

(
1
2 (

√
s+ 1)

√
1− z2

)

(z2 − 1)3
+

8 (
√
s− 1)

2
z p18(s, z)

(z2 − 1)2 (s+ z2 − 1)

−64 s z
(
9sz2 + 7s+ 4z2 − 4

)
ln(s)

(z2 − 1)3
− 32(s− 1)2 z ln

(
1−√

s
)
, (3.32)

ξ
(em)
910 (s, z) = −32 s z p19(s, z) ln(s)

(z2 − 1)4
+

16 s z p20(s, z) ln
(
1
2 (

√
s+ 1)

√
1− z2

)

(z2 − 1)4

+
4s (

√
s−1)

2
z p21(s, z)

(z2 − 1)3 (s+z2−1)2
−

16 p22(s, z) s
3/2sign(z) ln

(
−
√
z2

√
s+z2−1+

√
s−z2+1

(
√
s+1)

√
1−z2

)

(z2 − 1)4 (s+ z2 − 1)5/2

−16(s− 1)2 s z ln
(
1−√

s
)
. (3.33)

The pi(s, z) are polynomials in s and z and are given in appendix A. In case of negative

or complex arguments, the logarithms and square-roots are defined as
√
z =

√
|z| ei/2 arg(z) ,

ln(z) = ln|z| + i arg(z) ,

arg(z) ∈ (−π, π] . (3.34)

The functions ξ
(em)
2x (s, z) with x = 2, 7, 9, 10 cannot be computed analytically since the

squared matrix elements (see eq. (3.12)) are complicated functions of s12. We therefore
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ξ
(em)
99 (s, z) = −

16 s z p7(s, z) ln
(
1−z
z+1

)

(z2 − 1)4
+

4 s p8(s, z) ln(s)

(z2 − 1)4

+
8 s3/2 p9(s, z) ln

(√
s

1−z2
−

√
s

1−z2
− 1

)

(z2 − 1)4 (s+ z2 − 1)5/2
+

p10(s, z)

3(z2 − 1)3 (s+ z2 − 1)2

+4(s− 1)2
(
sz2 + s− z2 + 1

)
ln

(
2(1− s)√
1− z2

)
, (3.30)

ξ
(em)
79 (s, z) = −

64 z p11(s, z) ln
(
1−z
z+1

)

(z2 − 1)3
− 32 p12(s, z) ln(s)

(z2 − 1)3

− 8 p13(s, z)

(z2 − 1)2 (s+ z2 − 1)
+

64
√
s p14(s, z) ln

(√
s

1−z2
−

√
s

1−z2
− 1

)

(z2 − 1)3 (s+ z2 − 1)3/2

+32 (s− 1)2 ln

(
2(1− s)√
1− z2

)
+

64 p15(s, z) ln
(√

1
s(1−z2)

−
√

1
s(1−z2)

− 1
)

(z2 − 1)2
√

s (z2 − 1) + 1
,(3.31)

ξ
(em)
710 (s, z) = −

64 p15(s, z) sign(z) ln

(
−
√
s(z2−1)−

√
z2
√

s(z2−1)+1+1

(
√
s+1)

√
1−z2

)

(z2 − 1)2
√

s (z2 − 1) + 1

−
64 p16(s, z)

√
s sign(z) ln

(
−
√
z2

√
s+z2−1+

√
s−z2+1

(
√
s+1)

√
1−z2

)

(z2 − 1)3 (s+ z2 − 1)3/2

+
32 z p17(s, z) ln

(
1
2 (

√
s+ 1)

√
1− z2

)

(z2 − 1)3
+

8 (
√
s− 1)

2
z p18(s, z)

(z2 − 1)2 (s+ z2 − 1)

−64 s z
(
9sz2 + 7s+ 4z2 − 4

)
ln(s)

(z2 − 1)3
− 32(s− 1)2 z ln

(
1−√

s
)
, (3.32)

ξ
(em)
910 (s, z) = −32 s z p19(s, z) ln(s)

(z2 − 1)4
+

16 s z p20(s, z) ln
(
1
2 (

√
s+ 1)

√
1− z2

)

(z2 − 1)4

+
4s (

√
s−1)

2
z p21(s, z)

(z2 − 1)3 (s+z2−1)2
−

16 p22(s, z) s
3/2sign(z) ln

(
−
√
z2

√
s+z2−1+

√
s−z2+1

(
√
s+1)

√
1−z2

)

(z2 − 1)4 (s+ z2 − 1)5/2

−16(s− 1)2 s z ln
(
1−√

s
)
. (3.33)

The pi(s, z) are polynomials in s and z and are given in appendix A. In case of negative

or complex arguments, the logarithms and square-roots are defined as
√
z =

√
|z| ei/2 arg(z) ,

ln(z) = ln|z| + i arg(z) ,

arg(z) ∈ (−π, π] . (3.34)

The functions ξ
(em)
2x (s, z) with x = 2, 7, 9, 10 cannot be computed analytically since the

squared matrix elements (see eq. (3.12)) are complicated functions of s12. We therefore
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refrain from presenting their explicit expressions. They can easily be computed numerically

by applying the steps outlined above.

A strong cross-check is done if we weight the ξ
(em)
ij (s, z) by unity or by sign(z) and

subsequently integrating over z. After proper normalisation one obtains the functions

ω
(em)
ij (s) from [66, 76]. Note that this cross-check is non-trivial due to the fact that in

our former work we computed the ω
(em)
ij (s) in a different way: since there was no need

to introduce the variable z we performed the calculation entirely in terms of the rescaled

energies yi. Moreover, there was more freedom in choosing the order of integrations since we

were not forced to perform the x-integration immediately after that over the δ-function.

These two simplifications led to significantly simpler variable substitutions and shorter

expressions. With the ability to reproduce them by the more complicated calculation can

therefore be regarded as a non-trivial cross-check.

4 Master formulas for the observables

We start again from the double differential decay width

d2Γ

dz dq2
=

3

8

[
(1 + z2)HT (q

2) + 2zHA(q
2) + 2(1− z2)HL(q

2)
]
, (4.1)

where z = cos θ and θ is the angle between the �+ and the B meson three momenta in the

di-lepton rest frame. This formula is modified once QED corrections are taken into account

(see sections 2 and 3) due to the appearance of higher powers of z. As stated in section 2,

we project out the HI (I = T,A,L) by eq. (2.6) in this case. Then the HI are functions

of the dilepton-invariant mass q2 = m2
��, but obviously not of z. HA is proportional to the

lepton forward-backward asymmetry; the q2-spectrum is given by HT +HL,

dΓ

dq2
=

∫ 1

−1
dz

d2Γ

dz dq2
= HT (q

2) +HL(q
2) , (4.2)

dAFB

dq2
=

∫ 1

−1
dz

d2Γ

dz dq2
sign(z) =

3

4
HA(q

2) . (4.3)

Each of the HI can be expressed as follows (ŝ = q2/m2
b,pole):

HI(q
2) =

G2
Fm

5
b,pole

48π3
|V ∗

tsVtb|2 ΦI
��(ŝ), (4.4)

where the dimensionless functions ΦI
��(ŝ) include both perturbative and non-perturbative

contributions. Moreover, we normalise the observables to the inclusive semi-leptonic

b → Xceν̄ decay. However, the normalisation proceeds in such a way that we insert the

perturbative expansion of the inclusive semi-leptonic b → Xueν̄ decay (including power-

corrections), and also use the ratio [55, 80]

C =

∣∣∣∣
Vub

Vcb

∣∣∣∣
2 Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
, (4.5)
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which was recently reanalysed in [81]. We therefore use C = 0.574±0.019 (see also table 1).

Consequently, our expression of the normalised angular observables HI reads

HI = B(B → Xceν̄)exp

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2 4

C

ΦI
��(ŝ)

Φu
, (4.6)

where Φu is defined by [76]

Γ(B → Xueν̄) =
G2

Fm
5
b,pole

192π3
|Vub|2 Φu. (4.7)

The expansion of Φu is given by

Φu = 1 + α̃sϕ
(1) + κ

[
12

23

(
1− η−1

)]
+ α̃2

s

[
ϕ(2) + 2β

(5)
0 ϕ(1) ln

(
µb

mb

)]
+

λ1

2m2
b

− 9λ2

2m2
b

+O(α̃3
s , κ

2, α̃sκ, α̃sΛ
2/m2

b ,Λ
3/m3

b) ,

ϕ(1) =
50

3
− 8π2

3
,

ϕ(2) = nh

(
−2048ζ3

9
+

16987

54
− 340π2

81

)
+ nl

(
256ζ3
9

− 1009

27
+

308π2

81

)

− 41848ζ3
81

+
578π4

81
− 104480π2

729
+

1571095

1458
− 848

27
π2 ln(2) . (4.8)

As explained in detail in [76], a consistent perturbative expansion in inclusive

B̄ → Xs	
+	− in the presence of QED corrections is done in α̃s = αs(µb)/(4π) and

κ = αe(µb)/αs(µb). We will also briefly sketch the structure of this expansion later below.

In the above equation, the O(κ) is taken from [82], with η = αs(µ0)/αs(µb). There

also exist QED corrections at O(α̃sκ) which could be computed in principle. However,

they are not logarithmically enhanced since the fully integrated B̄ → Xueν̄ rate is an

infrared safe observable with respect to collinear photon radiation. We therefore neglect

this contribution, but include it lateron in the quantity R(s0), where QED logs will be

present in the normalisation.

The two-loop correction of O(α̃2
s ) was taken from [83]. Here, nh and nl are the numbers

of heavy and light quark flavours, respectively, and β
(5)
0 = 23/3 is the one-loop QCD

β-function for five active flavours. The coefficients λ1 and λ2 in the power-suppressed

terms represent the matrix element of the kinetic energy and magnetic moment operator,

respectively, and are defined as

λ1 = 〈B|h̄(iD)2h|B〉/(2MB) ,

λ2 = −〈B|h̄iσµνGµνh|B〉/(12MB) ≈
1

4
(M2

B∗ −M2
B) . (4.9)

As far as the quantity ΦI
��(ŝ) is concerned, we expand it in the following way in terms

of products of the low-scale Wilson coefficients and various functions arising from the

matrix elements,

ΦI
��(ŝ) =

∑
i≤j

Re
[
Ceff
i (µb) C

eff∗
j (µb) H

I
ij(µb, ŝ)

]
, (4.10)
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which was recently reanalysed in [81]. We therefore use C = 0.574±0.019 (see also table 1).

Consequently, our expression of the normalised angular observables HI reads

HI = B(B → Xceν̄)exp

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2 4

C

ΦI
��(ŝ)

Φu
, (4.6)

where Φu is defined by [76]

Γ(B → Xueν̄) =
G2

Fm
5
b,pole

192π3
|Vub|2 Φu. (4.7)

The expansion of Φu is given by

Φu = 1 + α̃sϕ
(1) + κ

[
12

23

(
1− η−1

)]
+ α̃2

s

[
ϕ(2) + 2β

(5)
0 ϕ(1) ln

(
µb

mb

)]
+

λ1

2m2
b

− 9λ2

2m2
b

+O(α̃3
s , κ

2, α̃sκ, α̃sΛ
2/m2

b ,Λ
3/m3

b) ,

ϕ(1) =
50

3
− 8π2

3
,

ϕ(2) = nh

(
−2048ζ3

9
+

16987

54
− 340π2

81

)
+ nl

(
256ζ3
9

− 1009

27
+

308π2

81

)

− 41848ζ3
81

+
578π4

81
− 104480π2

729
+

1571095

1458
− 848

27
π2 ln(2) . (4.8)

As explained in detail in [76], a consistent perturbative expansion in inclusive

B̄ → Xs	
+	− in the presence of QED corrections is done in α̃s = αs(µb)/(4π) and

κ = αe(µb)/αs(µb). We will also briefly sketch the structure of this expansion later below.

In the above equation, the O(κ) is taken from [82], with η = αs(µ0)/αs(µb). There

also exist QED corrections at O(α̃sκ) which could be computed in principle. However,

they are not logarithmically enhanced since the fully integrated B̄ → Xueν̄ rate is an

infrared safe observable with respect to collinear photon radiation. We therefore neglect

this contribution, but include it lateron in the quantity R(s0), where QED logs will be

present in the normalisation.

The two-loop correction of O(α̃2
s ) was taken from [83]. Here, nh and nl are the numbers

of heavy and light quark flavours, respectively, and β
(5)
0 = 23/3 is the one-loop QCD

β-function for five active flavours. The coefficients λ1 and λ2 in the power-suppressed

terms represent the matrix element of the kinetic energy and magnetic moment operator,

respectively, and are defined as

λ1 = 〈B|h̄(iD)2h|B〉/(2MB) ,

λ2 = −〈B|h̄iσµνGµνh|B〉/(12MB) ≈
1

4
(M2

B∗ −M2
B) . (4.9)

As far as the quantity ΦI
��(ŝ) is concerned, we expand it in the following way in terms

of products of the low-scale Wilson coefficients and various functions arising from the

matrix elements,

ΦI
��(ŝ) =

∑
i≤j

Re
[
Ceff
i (µb) C

eff∗
j (µb) H

I
ij(µb, ŝ)

]
, (4.10)
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where Ceff
i (µb) �= Ci(µb) only for i = 7, 8. Here i and j run over all operators of eqs. (15)

and (16) in [76]. Their low-scale Wilson coefficients are also given explicitly (analytically

and numerically) in that paper. For I = T, L the functions HI
ij(µb, ŝ) are given by

HI
ij =




∑ |MN
i |2 SI

NN + Re(M7
i M

9∗
i ) SI

79 +∆HI
ii , for i = j ,

N=7,9,10

∑
2MN

i MN∗
j SI

NN +
(
M7

i M
9∗
j +M9

i M
7∗
j

)
SI
79 +∆HI

ij , for i �= j .
N=7,9,10

(4.11)

For I = A the formula is simpler,

HA
ij =




0 , for i = j ,

∑ (
MN

i M10∗
j +M10

i MN∗
j

)
SA
N10 +∆HA

ij , for i �= j .
N=7,9

(4.12)

The coefficientsMA
i are listed in table 6 of [76]. The building blocks SI

NM have the following

structure,

SINM = σI
NM (ŝ)

{
1 + 8 α̃s ω

(1)
NM,I(ŝ) + 16 α̃2

s ω
(2)
NM,I(ŝ)

}
+

λ1

m2
b

χI
1,NM (ŝ) +

λ2

m2
b

χI
2,NM (ŝ) .

(4.13)

From (4.11) and (4.12) we see that the possible combinations of indices are NM =

77, 79, 99, 1010 for I = T, L and NM = 710, 910 for I = A. Moreover, we have SI
99 = SI

1010

for I = T, L. Explicitly, the phase-space factors σI
NM (ŝ) read

σT
77(ŝ) = 8(1− ŝ)2/ŝ , σL

77(ŝ) = 4(1− ŝ)2 , σA
710(ŝ) = −8(1− ŝ)2 ,

σT
79(ŝ) = 8(1− ŝ)2 , σL

79(ŝ) = 4(1− ŝ)2 , σA
910(ŝ) = −4ŝ(1− ŝ)2 ,

σT
99(ŝ) = 2ŝ(1− ŝ)2 , σL

99(ŝ) = (1− ŝ)2 . (4.14)

The one-loop QCD functions ω
(1)
NM,I(ŝ) can be extracted from [50] and have already

been given in [77]. The two-loop functions ω
(2)
NM,I(ŝ) have so far only been available for the

q2-spectrum [84–87], but not for the double differential rate. Due to a recent calculation

of the double differential rate of the inclusive semi-leptonic b → Xu�ν̄� decay at two loops

in QCD [88], they can be extracted for NM = 99, 1010 and I = T, L as well as for

NM = 910 and I = A. The data to extract these functions was kindly provided by

the authors of [88, 89] and we can therefore present them here for the first time. All

functions ω
(1,2)
NM,I(ŝ) are rather lengthy and we therefore relegate their explicit expressions

to appendix A.

The functions χI
i,NM (ŝ) (i = 1, 2) that accompany the non-perturbative O(Λ2

QCD/m
2
b)

corrections can be obtained from [57] (see also [56, 59]) and were previously computed

in [77]. We confirm their expressions,

χT
1,77(ŝ) =

4

3ŝ
(1− ŝ)(5ŝ+ 3) , χL

1,77(ŝ) =
2

3
(ŝ− 1)(3ŝ+ 13) ,

χT
1,79(ŝ) = 4(1− ŝ)2 , χL

1,79(ŝ) = 2(1− ŝ)2 ,
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χT
1,99(ŝ) = − ŝ

3
(1− ŝ)(3ŝ+ 5) , χL

1,99(ŝ) =
1

6
(1− ŝ)(13ŝ+ 3) ,

χA
1,710(ŝ) = −4

3

(
3ŝ2 + 2ŝ+ 3

)
, χA

1,910(ŝ) = −2

3
ŝ
(
3ŝ2 + 2ŝ+ 3

)
, (4.15)

χT
2,77(ŝ) =

4

ŝ

(
3ŝ2 + 2ŝ− 9

)
, χL

2,77(ŝ) = 2
(
15ŝ2 − 6ŝ− 13

)
,

χT
2,79(ŝ) = 4

(
9ŝ2 − 6ŝ− 7

)
, χL

2,79(ŝ) = 2
(
3ŝ2 − 6ŝ− 1

)
,

χT
2,99(ŝ) = ŝ

(
15ŝ2 − 14ŝ− 5

)
, χL

2,99(ŝ) =
1

2

(
−17ŝ2 + 10ŝ+ 3

)
,

χA
2,710(ŝ) = −4

(
9ŝ2 − 10ŝ− 7

)
, χA

2,910(ŝ) = −2ŝ
(
15ŝ2 − 14ŝ− 9

)
. (4.16)

The quantities ∆HI
ij can be further decomposed into

∆HI
ij = bIij + cIij + eIij . (4.17)

Here the contributions bIij represent finite bremsstrahlung corrections that appear at NNLO.

They are known for the q2-spectrum (i.e. I = T + L) [48] and the forward-backward

asymmetry (equivalent to I = A) [51], but not for the double differential rate. Hence we

only include them for these two cases, but not for HT and HL separately. This is still an

excellent approximation since the effect of finite bremsstrahlung corrections is very small

anyway. The explicit formulas can be found in [48, 51] and will therefore not be repeated.

The coefficients cIij comprise non-perturbative O(Λ2
QCD/m

2
c) contributions and were

calculated in ref. [62] for I = T + L and I = A. Moreover, the coefficients of the double

differential rate can be inferred from that paper. One obtains

cT2j = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)F (r)

[
1

s
M7∗

j +
1

2
M9∗

j

]
, for j �= 1, 2 ,

cT1j = −1

6
cT2j , for j �= 1, 2 ,

cT22 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)F (r)

[
1

s
M7∗

2 +
1

2
M9∗

2

]
,

cT11 = +α̃sκ
4λ2

27m2
c

(1− ŝ)2(1 + 3ŝ)F (r)

[
1

s
M7∗

1 +
1

2
M9∗

1

]
,

cT12 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)

[
F ∗(r)

(
1

s
M7

1+
1

2
M9

1

)
− 1

6
F (r)

(
1

s
M7∗

2 +
1

2
M9∗

2

)]
,

cL2j = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(3− ŝ)F (r)

[
M7∗

j +
1

2
M9∗

j

]
, for j �= 1, 2 ,

cL1j = −1

6
cL2j , for j �= 1, 2 ,

cL22 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(3− ŝ)F (r)

[
M7∗

2 +
1

2
M9∗

2

]
,

cL11 = +α̃sκ
4λ2

27m2
c

(1− ŝ)2(3− ŝ)F (r)

[
M7∗

1 +
1

2
M9∗

1

]
,

cL12 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(3− ŝ)

[
F ∗(r)

(
M7

1 +
1

2
M9

1

)
− 1

6
F (r)

(
M7∗

2 +
1

2
M9∗

2

)]
,
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χT
1,99(ŝ) = − ŝ

3
(1− ŝ)(3ŝ+ 5) , χL

1,99(ŝ) =
1

6
(1− ŝ)(13ŝ+ 3) ,

χA
1,710(ŝ) = −4

3

(
3ŝ2 + 2ŝ+ 3

)
, χA

1,910(ŝ) = −2

3
ŝ
(
3ŝ2 + 2ŝ+ 3

)
, (4.15)

χT
2,77(ŝ) =

4

ŝ

(
3ŝ2 + 2ŝ− 9

)
, χL

2,77(ŝ) = 2
(
15ŝ2 − 6ŝ− 13

)
,

χT
2,79(ŝ) = 4

(
9ŝ2 − 6ŝ− 7

)
, χL

2,79(ŝ) = 2
(
3ŝ2 − 6ŝ− 1

)
,

χT
2,99(ŝ) = ŝ

(
15ŝ2 − 14ŝ− 5

)
, χL

2,99(ŝ) =
1

2

(
−17ŝ2 + 10ŝ+ 3

)
,

χA
2,710(ŝ) = −4

(
9ŝ2 − 10ŝ− 7

)
, χA

2,910(ŝ) = −2ŝ
(
15ŝ2 − 14ŝ− 9

)
. (4.16)

The quantities ∆HI
ij can be further decomposed into

∆HI
ij = bIij + cIij + eIij . (4.17)

Here the contributions bIij represent finite bremsstrahlung corrections that appear at NNLO.

They are known for the q2-spectrum (i.e. I = T + L) [48] and the forward-backward

asymmetry (equivalent to I = A) [51], but not for the double differential rate. Hence we

only include them for these two cases, but not for HT and HL separately. This is still an

excellent approximation since the effect of finite bremsstrahlung corrections is very small

anyway. The explicit formulas can be found in [48, 51] and will therefore not be repeated.

The coefficients cIij comprise non-perturbative O(Λ2
QCD/m

2
c) contributions and were

calculated in ref. [62] for I = T + L and I = A. Moreover, the coefficients of the double

differential rate can be inferred from that paper. One obtains

cT2j = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)F (r)

[
1

s
M7∗

j +
1

2
M9∗

j

]
, for j �= 1, 2 ,

cT1j = −1

6
cT2j , for j �= 1, 2 ,

cT22 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)F (r)

[
1

s
M7∗

2 +
1

2
M9∗

2

]
,

cT11 = +α̃sκ
4λ2

27m2
c

(1− ŝ)2(1 + 3ŝ)F (r)

[
1

s
M7∗

1 +
1

2
M9∗

1

]
,

cT12 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)

[
F ∗(r)

(
1

s
M7

1+
1

2
M9

1

)
− 1

6
F (r)

(
1

s
M7∗

2 +
1

2
M9∗

2

)]
,

cL2j = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(3− ŝ)F (r)

[
M7∗

j +
1

2
M9∗

j

]
, for j �= 1, 2 ,

cL1j = −1

6
cL2j , for j �= 1, 2 ,

cL22 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(3− ŝ)F (r)

[
M7∗

2 +
1

2
M9∗

2

]
,

cL11 = +α̃sκ
4λ2

27m2
c

(1− ŝ)2(3− ŝ)F (r)

[
M7∗

1 +
1

2
M9∗

1

]
,

cL12 = −α̃sκ
8λ2

9m2
c

(1− ŝ)2(3− ŝ)

[
F ∗(r)

(
M7

1 +
1

2
M9

1

)
− 1

6
F (r)

(
M7∗

2 +
1

2
M9∗

2

)]
,
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cA210 = +α̃sκ
4λ2

9m2
c

(1− ŝ)2(1 + 3ŝ)F (r) ,

cA110 = −1

6
cA210 , (4.18)

where r = q2/(4m2
c). The function F (r) can be found in the appendix of [76]. Moreover,

we also include factorisable non-perturbative charm contributions which we implement by

means of the Krüger-Sehgal approach [72, 73]. We elaborated extensively on this approach

and also the formulas by means of which these corrections are taken into account in ref. [66].

Given their length we do not repeat these formulas here but refer the inclined reader to

refs. [66, 72, 73] for all necessary details.

Finally, the coefficients eIij collect the ln(m
2
b/m

2
� )-enhanced electromagnetic corrections

which we calculated in section 3 for the double differential rate. Their contribution to the

HI can be derived from (3.28) by applying the projections given in section 2. One finds

eI77 = 8 α̃3
sκ

3 σI
77(ŝ)ω

(em)
77,I (ŝ) , eI29 = 8 α̃2

sκ
2 σI

99(ŝ)ω
(em)
29,I (ŝ) ,

eI79 = 8 α̃2
sκ

2 σI
79(ŝ)ω

(em)
79,I (ŝ) , eI22 = 8 α̃3

sκ
3 σI

99(ŝ)ω
(em)
22,I (ŝ) ,

eI99 = 8 α̃sκσ
I
99(ŝ)ω

(em)
99,I (ŝ) , eI11 =

16

9
eI22 ,

eI1010 = eI99 , eI12 =
8

3
eI22 ,

eI27 = 8 α̃3
sκ

3 σI
79(ŝ)ω

(em)
27,I (ŝ) , eI1j =

4

3
eI2j , for j = 7, 9 , (4.19)

for I = T, L, while for I = A one gets

eA710 = 8 α̃2
sκ

2 σA
710(ŝ)ω

(em)
710,A(ŝ) , eA210 = 8 α̃2

sκ
2 σA

910(ŝ)ω
(em)
210,A(ŝ) ,

eA910 = 8 α̃sκσ
A
910(ŝ)ω

(em)
910,A(ŝ) , eA110 =

4

3
eA210. (4.20)

The functions ω
(em)
ij,I (ŝ) have again been moved to appendix A.

We consider the observables HI (or equivalently HI) in the low-q2 region only, because

their sensitivity to New Physics is highest in this region [77]. Besides, there are two more

observables which we compute in the low-ŝ region. First, there is the zero crossing q20
of the forward-backward asymmetry, which we extract numerically from HA by means of

the formulas given above. Moreover, there is the branching ratio. In principle, it can be

obtained by taking the sum of HT and HL. Its master formula has already been given

in [76]. We therefore only highlight two small pieces which are available for the branching

ratio only, but not for HT and HL individually. These are only the finite bremsstrahlung

contributions from [48] and the non-log enhanced terms of ω
(em)
99 (ŝ) (see eq. (94) of ref. [76]).

In the high-q2 region we consider two observables. The first one is the branching ratio,

where we include the same terms as in the low-q2 region. As far as QED corrections are

concerned, the functions ω
(em)
99 (ŝ), ω

(em)
1010 (ŝ), ω

(em)
77 (ŝ), and ω

(em)
79 (ŝ) (see eqs. (94) and (100)

– (102) of [76]) are valid in the entire q2-region, while the functions ω
(em)
2x (ŝ) are again

obtained from a numerical fit. To take into account our most recent input parameters (see

– 18 –
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table 1), we re-did the fits and collected the results in appendix A. In addition, the two-

loop QCD matrix element functions F 7
1,2(ŝ) and F 9

1,2(ŝ), which were originally computed

in [53], were given explicitly only in [54]. We implement these formulas in our numerical

code. Moreover, non-perturbative 1/m3
b corrections become sizable in the high-ŝ region.

They were originally computed in [60] and we implement the formulas of refs. [60, 61]. The

second observable is the ratio R(s0) which we have already mentioned in the introduction.

It was proposed in [61]1 and is obtained by normalizing the B̄ → Xs�
+�− decay rate to

the semileptonic B̄0 → Xu�ν̄ rate with the same cut in q2. In this way, large theoretical

uncertainties that stem from poorly known parameters in the 1/m2
b and 1/m3

b power-

corrections can be significantly reduced, as we will see in our numerical analysis in section 5.

In terms of our perturbative quantities, it reads

R(s0) =

∫ 1

ŝ0

dŝ
dΓ(B̄ → Xs�

+�−)

dŝ∫ 1

ŝ0

dŝ
dΓ(B̄0 → Xu�ν)

dŝ

= 4

∣∣∣∣
V ∗
tsVtb

Vub

∣∣∣∣
2
∫ 1
ŝ0
dŝΦ��(ŝ)∫ 1

ŝ0
dŝΦu(ŝ)

. (4.21)

The quantity Φ��(ŝ) is known from the branching ratio. The differential Φu(ŝ) is given by

dΓ(B̄0 → Xu�ν)

dŝ
=

G2
F |Vub|2m5

b,pole

192π3
Φu(ŝ) . (4.22)

We elaborated extensively in ref. [66] about how to obtain the O(1, α̃s, α̃
2
s , 1/m

2
b , 1/m

3
b)

contributions to Φu(ŝ), and will therefore not repeat these formulas. We would rather

like to describe the O(α̃sκ) contribution to Φu(ŝ), which we include in the present work

and which was absent in [66]. Once the integration over ŝ is restricted to the high-q2

region, the corrections of O(α̃sκ) to Φu(ŝ) contain residual terms logarithmically enhanced

by ln(m2
b/m

2
� ). These must be proportional to ω

(em)
99 (ŝ). We take into account that we

only have one charged lepton in the final state, and that the leptonic current is V − A.

Moreover, we average over e and µ, and arrive at

Φu(ŝ)∣∣α̃sκ
= 8 α̃sκ (1− ŝ)2 (1 + 2ŝ)ω

(em)
99 (ŝ)∣∣∣ ln

(
m2

b
m2

�

)
−→ ln

(
m2

b
memµ

) . (4.23)

As in our previous analysis [66] we do not include electromagnetic corrections of order O(κ)

to Φu(ŝ) because they are unknown.

Let us conclude this section by a few remarks on the renormalisation schemes for the

quark masses, as well as on the expansion in α̃s and κ. The pole masses of the b and c quark

that are present in the definition of ŝ and in several loop functions suffer from renormalon

ambiguities [90, 91]. We therefore convert them analytically to short-distance schemes (1S

and MS, respectively) before any numerical evaluation of the observables is carried out. In

our numerical analysis we use the conversion formulas up to order O(α̃2
s ) [92]. As far as

the mass of the top quark is concerned we take the pole mass as input and convert it to

the MS scheme at order O(α̃3
s ) using RunDec [93]. We also take into account electroweak

1Note that we use a different pre-factor here.

– 19 –



229

229

J
H
E
P
0
6
(
2
0
1
5
)
1
7
6

table 1), we re-did the fits and collected the results in appendix A. In addition, the two-

loop QCD matrix element functions F 7
1,2(ŝ) and F 9

1,2(ŝ), which were originally computed

in [53], were given explicitly only in [54]. We implement these formulas in our numerical

code. Moreover, non-perturbative 1/m3
b corrections become sizable in the high-ŝ region.

They were originally computed in [60] and we implement the formulas of refs. [60, 61]. The

second observable is the ratio R(s0) which we have already mentioned in the introduction.

It was proposed in [61]1 and is obtained by normalizing the B̄ → Xs�
+�− decay rate to

the semileptonic B̄0 → Xu�ν̄ rate with the same cut in q2. In this way, large theoretical

uncertainties that stem from poorly known parameters in the 1/m2
b and 1/m3

b power-

corrections can be significantly reduced, as we will see in our numerical analysis in section 5.

In terms of our perturbative quantities, it reads

R(s0) =

∫ 1

ŝ0

dŝ
dΓ(B̄ → Xs�

+�−)

dŝ∫ 1

ŝ0

dŝ
dΓ(B̄0 → Xu�ν)

dŝ

= 4

∣∣∣∣
V ∗
tsVtb

Vub

∣∣∣∣
2
∫ 1
ŝ0
dŝΦ��(ŝ)∫ 1

ŝ0
dŝΦu(ŝ)

. (4.21)

The quantity Φ��(ŝ) is known from the branching ratio. The differential Φu(ŝ) is given by

dΓ(B̄0 → Xu�ν)

dŝ
=

G2
F |Vub|2m5

b,pole

192π3
Φu(ŝ) . (4.22)

We elaborated extensively in ref. [66] about how to obtain the O(1, α̃s, α̃
2
s , 1/m

2
b , 1/m

3
b)

contributions to Φu(ŝ), and will therefore not repeat these formulas. We would rather

like to describe the O(α̃sκ) contribution to Φu(ŝ), which we include in the present work

and which was absent in [66]. Once the integration over ŝ is restricted to the high-q2

region, the corrections of O(α̃sκ) to Φu(ŝ) contain residual terms logarithmically enhanced

by ln(m2
b/m

2
� ). These must be proportional to ω

(em)
99 (ŝ). We take into account that we

only have one charged lepton in the final state, and that the leptonic current is V − A.

Moreover, we average over e and µ, and arrive at

Φu(ŝ)∣∣α̃sκ
= 8 α̃sκ (1− ŝ)2 (1 + 2ŝ)ω

(em)
99 (ŝ)∣∣∣ ln

(
m2

b
m2

�

)
−→ ln

(
m2

b
memµ

) . (4.23)

As in our previous analysis [66] we do not include electromagnetic corrections of order O(κ)

to Φu(ŝ) because they are unknown.

Let us conclude this section by a few remarks on the renormalisation schemes for the

quark masses, as well as on the expansion in α̃s and κ. The pole masses of the b and c quark

that are present in the definition of ŝ and in several loop functions suffer from renormalon

ambiguities [90, 91]. We therefore convert them analytically to short-distance schemes (1S

and MS, respectively) before any numerical evaluation of the observables is carried out. In

our numerical analysis we use the conversion formulas up to order O(α̃2
s ) [92]. As far as

the mass of the top quark is concerned we take the pole mass as input and convert it to

the MS scheme at order O(α̃3
s ) using RunDec [93]. We also take into account electroweak

1Note that we use a different pre-factor here.
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corrections presented in eq. (31) of ref. [94], consistently to the other contributions. Turning

our attention to the expansion in α̃s and κ, we observe that the amplitude has the structure

A = κ
[
ALO + αs ANLO + α2

s ANNLO +O(α3
s)
]

+κ2
[
Aem

LO + αs Aem
NLO + α2

s Aem
NNLO +O(α3

s)
]
+O(κ3) , (4.24)

and that the ratio ΦI
��(ŝ)/Φu in (4.6) has a similar structure to that of the squared amplitude

(up to bremsstrahlung and non-perturbative corrections),

A2 = κ2
[
A2

LO + αs 2ALOANLO + α2
s (A2

NLO + 2ALOANNLO)

+α3
s 2(ANLOANNLO + . . .) +O(α4

s)
]

+κ3
[
2ALOAem

LO + αs 2(ANLOAem
LO +ALOAem

NLO)

+α2
s 2(ANLOAem

NLO +ANNLOAem
LO +ALOAem

NNLO)

+α3
s 2(ANLOAem

NNLO +ANNLOAem
NLO + . . .) +O(α4

s)
]
+O(κ4) . (4.25)

We already argued in refs. [66, 76] that an expansion of this kind up to and including

O(α̃3
sκ

3) also captures the dominant N3LO QCD corrections, since the missing terms

ALOAN3LO, ALOAem
N3LO, and Aem

LOAN3LO (represented by the dots) are small. It is there-

fore justified to refer to the accuracy of our calculations as improved NNLO. Hence we

expand all products in eq. (4.6) (and in all other observables) in α̃s and κ up to the afore-

mentioned order, and neglect all higher terms. The observables are also expanded in the

power-correction parameters λ1,2, ρ1, f
0,±
u , fs up to linear terms. Higher powers as well as

products of these parameters are dropped.

5 Phenomenological results

In this section we give the numerical results of our phenomenological analysis. We use the

input parameters as given in table 1. For each variable we give the integral over bin 1

(1 GeV2 < q2 < 3.5 GeV2), bin 2 (3.5 GeV2 < q2 < 6 GeV2), and the entire low-q2 region

(1 GeV2 < q2 < 6 GeV2). In the high-q2 region we integrate over all q2 > 14.4 GeV2. The

respective q2-interval is indicated by the argument of the observables. We give the numbers

for electron and muon final state separately, and remind the reader that, depending on the

channel and the experimental setup, our numbers have to be modified according to our

Monte Carlo study in section 7.

The quoted uncertainties are the parametric and perturbative ones only. Additional

uncertainties from subleading non-perturbative corrections are not included. In particular,

the O(αs(µb)ΛQCD/mc,b) non-perturbative corrections are estimated to be around ∼ 5%

in the low-q2 region. The individual error bars are obtained by varying the parameters

in the range indicated in table 1, where we assume the errors on C and mc to be fully

correlated. The total error is obtained by adding the individual ones in quadrature. By

default we give two decimal digits. In case this leads to 0.00 we give the number up to the

first significant digit.
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αs(Mz) = 0.1184± 0.0007 me = 0.51099892 MeV

αe(Mz) = 1/127.918 mµ = 105.658369 MeV

s2W ≡ sin2 θW = 0.2312 mτ = 1.77699 GeV

|V ∗
tsVtb/Vcb|2 = 0.9621± 0.0027 [95] mc(mc) = (1.275± 0.025) GeV

|V ∗
tsVtb/Vub|2 = 130.5± 11.6 [95] m1S

b = (4.691± 0.037) GeV [96, 97]

BR(B → Xceν̄)exp = 0.1051± 0.0013 [96] mt,pole = (173.5± 1.0) GeV

MZ = 91.1876 GeV mB = 5.2794 GeV

MW = 80.385 GeV C = 0.574± 0.019 [81]

µb = 5+5
−2.5 GeV µ0 = 120+120

−60 GeV

λeff
2 = (0.12± 0.02) GeV2 ρ1 = (0.06± 0.06) GeV3 [98]

λeff
1 = (−0.362± 0.067) GeV2 [96, 97] f0

u + fs = (0± 0.2) GeV3 [61]

f0
u − fs = (0± 0.04) GeV3 [61] f±

u = (0± 0.4) GeV3 [61]

Table 1. Numerical inputs used in the phenomenological analysis. Unless specified otherwise, they

are taken from PDG [99].

Before presenting our actual results, we would like to comment on the size of QED

corrections. In table 2 the first two columns in each of the three sections are, respectively,

the observable at NNLL and its QED correction expressed as a percentage of the branching

ratio integrated in the whole low-q2 region (B[1, 6]ee). The third column is the relative size

of the QED correction with respect to each NNLL observable.

One can see immediately that the relative size of QED corrections to HT is large,

see third column in each section in table 2. Therefore, a few remarks on this observable

are in order. It turns out that HT is suppressed in the low-q2 region. To see this, let us

look at the tree-level dependence of HT and HL on the Wilson coefficients presented in

eqs. (2.1) and (2.2). The phase space corresponding to |C9|2 is suppressed in HT compared

to HL, whereas that associated to |C7|2 is enhanced. Surprisingly, this leads to a two-fold

suppression of HT . First, there is an additional factor of 2ŝ in the overall phase space w.r.t.

HL. Second, the factor |C9 + 2/ŝ C7|2 is small in the low-q2 region, and even vanishes at

the position of the zero of HA.

The QED corrections to the HI , however, do not follow this pattern of suppression.

In fact, from the inspection of the second columns in each section in table 2 we see that

the absolute values of these corrections are natural in size and that all entries in these

columns have the same order of magnitude. In the case of HT the smallness of the NNLL
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Before presenting our actual results, we would like to comment on the size of QED

corrections. In table 2 the first two columns in each of the three sections are, respectively,

the observable at NNLL and its QED correction expressed as a percentage of the branching

ratio integrated in the whole low-q2 region (B[1, 6]ee). The third column is the relative size

of the QED correction with respect to each NNLL observable.

One can see immediately that the relative size of QED corrections to HT is large,

see third column in each section in table 2. Therefore, a few remarks on this observable

are in order. It turns out that HT is suppressed in the low-q2 region. To see this, let us

look at the tree-level dependence of HT and HL on the Wilson coefficients presented in

eqs. (2.1) and (2.2). The phase space corresponding to |C9|2 is suppressed in HT compared

to HL, whereas that associated to |C7|2 is enhanced. Surprisingly, this leads to a two-fold

suppression of HT . First, there is an additional factor of 2ŝ in the overall phase space w.r.t.

HL. Second, the factor |C9 + 2/ŝ C7|2 is small in the low-q2 region, and even vanishes at

the position of the zero of HA.

The QED corrections to the HI , however, do not follow this pattern of suppression.

In fact, from the inspection of the second columns in each section in table 2 we see that

the absolute values of these corrections are natural in size and that all entries in these

columns have the same order of magnitude. In the case of HT the smallness of the NNLL
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q2 ∈ [1, 6] GeV2 q2 ∈ [1, 3.5] GeV2 q2 ∈ [3.5, 6] GeV2

O[1,6]

B[1,6]

∆O[1,6]

B[1,6]

∆O[1,6]

O[1,6]

O[1,3.5]

B[1,6]

∆O[1,3.5]

B[1,6]

∆O[1,3.5]

O[1,3.5]

O[3.5,6]

B[1,6]

∆O[3.5,6]

B[1,6]

∆O[3.5,6]

O[3.5,6]

B 100 5.1 5.1 54.6 3.7 6.8 45.4 1.4 3.1

HT 19.5 14.1 72.5 9.5 8.8 92.1 10.0 5.4 53.6

HL 80.0 -8.7 -10.9 44.7 -4.7 -10.6 35.3 -4.0 -11.3

HA -3.3 1.4 -43.6 -7.2 0.8 -10.7 4.0 0.6 16.2

Table 2. Relative size of QED effects on b → se+e− at low-q2 (the muon case can be easily obtained

by rescaling). All entries are given in percent. For each of the three bins the first two columns are

the integrated observable and its QED correction normalized to the total low-q2 branching ratio,

respectively (
∫ s2
s1

O/
∫ 6

1
B and

∫ s2
s1

∆O/
∫ 6

1
B). The third column is the relative size of the QED

correction (
∫ s2
s1

∆O/
∫ s2
s1

O). The sum of HT and HL does not exactly reproduce the branching

ratio because in the latter we include finite bremsstrahlung and non-log enhanced QED corrections

that are not available for the first two.

QCD result implies that their relative size is anomalously large (see the third columns

in table 2). However, we emphasize here that this does not indicate a breakdown of the

perturbative series because the large relative size of QED corrections is almost entirely

due to the suppression of the tree-level plus QCD contribution, and not due to a large

absolute value of the QED corrections. To support our analytical findings, we investigated

the situation in a Monte Carlo study (for details, see section 7) and find exactly the same

pattern once we use EVTGEN and PHOTOS, see figures 12 and 13 in section 7.3.

We can even turn the argument around and regard the relative size of QED corrections

in HT as a virtue rather than a drawback, because it offers a good opportunity to be

sensitive to QED corrections even without the pure QED observables H3 and H4 defined

in section 2.

Finally, let us point out that similar large effects on HA (or, equivalently, the forward-

backward asymmetry) integrated in the whole low-q2 region are simply a due to the large

cancellation between the integrated asymmetry in the two bins. This cancellation originates

from the presence of a zero in the differential HA spectrum and is not reproduced in the

pattern of QED corrections. As we see in table 2, the latter imply a positive shift on HA

in both bins.

In the upper panel of figure 3 we show the differential distributions that we obtain

for the various HI in the electron channel; dashed lines are obtained by switching QED

corrections off. In the lower panel of figure 3 we show the log-enhanced QED correction

itself, i.e. the difference between solid and dashed lines in the upper panel.
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Figure 3. Differential distributions for the various observables (upper panel) and their respective

log-enhanced QED correction (lower panel) in units of 10−7. Dashed lines correspond to switching

off all QED corrections. The integrals under the curves reproduce the results presented in section 5

for the electron channel.

5.1 HT and HL

For the quantities HT and HL we find theoretical uncertainties of 6 to 9%. In this sense

the QED corrections listed in table 2 are really significant.

HT [1, 3.5]ee =(2.91± 0.16scale ± 0.03mt ± 0.08C,mc ± 0.02mb

± 0.003αs ± 0.01CKM ± 0.04BRsl
) · 10−7 = (2.91± 0.19) · 10−7 ,

HT [3.5, 6]ee =(2.43± 0.16scale ± 0.04mt ± 0.08C,mc ± 0.05mb

± 0.01αs ± 0.01CKM ± 0.03BRsl
) · 10−7 = (2.43± 0.20) · 10−7 ,

HT [1, 6]ee =(5.34± 0.33scale ± 0.07mt ± 0.16C,mc ± 0.06mb

± 0.01αs ± 0.01CKM ± 0.06BRsl
) · 10−7 = (5.34± 0.38) · 10−7 . (5.1)
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Figure 3. Differential distributions for the various observables (upper panel) and their respective

log-enhanced QED correction (lower panel) in units of 10−7. Dashed lines correspond to switching

off all QED corrections. The integrals under the curves reproduce the results presented in section 5

for the electron channel.

5.1 HT and HL

For the quantities HT and HL we find theoretical uncertainties of 6 to 9%. In this sense

the QED corrections listed in table 2 are really significant.

HT [1, 3.5]ee =(2.91± 0.16scale ± 0.03mt ± 0.08C,mc ± 0.02mb

± 0.003αs ± 0.01CKM ± 0.04BRsl
) · 10−7 = (2.91± 0.19) · 10−7 ,

HT [3.5, 6]ee =(2.43± 0.16scale ± 0.04mt ± 0.08C,mc ± 0.05mb

± 0.01αs ± 0.01CKM ± 0.03BRsl
) · 10−7 = (2.43± 0.20) · 10−7 ,

HT [1, 6]ee =(5.34± 0.33scale ± 0.07mt ± 0.16C,mc ± 0.06mb

± 0.01αs ± 0.01CKM ± 0.06BRsl
) · 10−7 = (5.34± 0.38) · 10−7 . (5.1)
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HT [1, 3.5]µµ =(2.09± 0.10scale ± 0.02mt ± 0.06C,mc ± 0.01mb

± 0.01αs ± 0.01CKM ± 0.03BRsl
) · 10−7 = (2.09± 0.12) · 10−7 ,

HT [3.5, 6]µµ =(1.94± 0.13scale ± 0.03mt ± 0.07C,mc ± 0.05mb

± 0.01αs ± 0.01CKM ± 0.02BRsl
) · 10−7 = (1.94± 0.16) · 10−7 ,

HT [1, 6]µµ =(4.03± 0.23scale ± 0.06mt ± 0.12C,mc ± 0.06mb

± 0.002αs ± 0.01CKM ± 0.05BRsl
) · 10−7 = (4.03± 0.28) · 10−7 . (5.2)

HL[1, 3.5]ee =(6.35± 0.23scale ± 0.08mt ± 0.22C,mc ± 0.08mb

± 0.03αs ± 0.02CKM ± 0.08BRsl
) · 10−7 = (6.35± 0.35) · 10−7 ,

HL[3.5, 6]ee =(4.97± 0.22scale ± 0.06mt ± 0.17C,mc ± 0.04mb

± 0.02αs ± 0.01CKM ± 0.06BRsl
) · 10−7 = (4.97± 0.29) · 10−7 ,

HL[1, 6]ee =(1.13± 0.04scale ± 0.01mt ± 0.04C,mc ± 0.01mb

± 0.01αs ± 0.003CKM ± 0.01BRsl
) · 10−6 = (1.13± 0.06) · 10−6 . (5.3)

HL[1, 3.5]µµ =(6.79± 0.23scale ± 0.08mt ± 0.23C,mc ± 0.09mb

± 0.03αs ± 0.02CKM ± 0.08BRsl
) · 10−7 = (6.79± 0.36) · 10−7 ,

HL[3.5, 6]µµ =(5.34± 0.23scale ± 0.06mt ± 0.19C,mc ± 0.04mb

± 0.03αs ± 0.01CKM ± 0.07BRsl
) · 10−7 = (5.34± 0.32) · 10−7 ,

HL[1, 6]µµ =(1.21± 0.04scale ± 0.01mt ± 0.04C,mc ± 0.01mb

± 0.01αs ± 0.003CKM ± 0.02BRsl
) · 10−6 = (1.21± 0.07) · 10−6 . (5.4)

5.2 HA

For the zero-crossing q20 of HA, which is equivalent to the zero of the forward-backward

asymmetry due to equation (4.3), we find

(q20)ee =(3.46± 0.10scale ± 0.001mt ± 0.02C,mc ± 0.06mb
± 0.02αs) GeV2

=(3.46± 0.11) GeV2 , (5.5)

(q20)µµ =(3.58± 0.10scale ± 0.001mt ± 0.02C,mc ± 0.06mb
± 0.02αs) GeV2

=(3.58± 0.12) GeV2 . (5.6)

We observe that the inclusive zero is in the same region as the semi-inclusive one obtained in

the presence of a cut onmXs [71], but considerably lower than in the exclusive B̄ → K∗�+�−

case [100]. The integrated HA reads

HA[1, 3.5]ee =(−1.03± 0.04scale ± 0.01mt ± 0.02C,mc ± 0.02mb

± 0.01αs ± 0.003CKM ± 0.01BRsl
) · 10−7 = (−1.03± 0.05) · 10−7 ,

HA[3.5, 6]ee =(+0.73± 0.11scale ± 0.01mt ± 0.04C,mc ± 0.05mb

± 0.02αs ± 0.002CKM ± 0.01BRsl
) · 10−7 = (+0.73± 0.12) · 10−7 ,
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HA[1, 6]ee =(−0.29± 0.14scale ± 0.002mt ± 0.02C,mc ± 0.06mb

± 0.03αs ± 0.001CKM ± 0.004BRsl
) · 10−7 = (−0.29± 0.16) · 10−7 .

(5.7)

HA[1, 3.5]µµ =(−1.10± 0.03scale ± 0.01mt ± 0.02C,mc ± 0.02mb

± 0.01αs ± 0.003CKM ± 0.01BRsl
) · 10−7 = (−1.10± 0.05) · 10−7 ,

HA[3.5, 6]µµ =(+0.67± 0.11scale ± 0.01mt ± 0.04C,mc ± 0.05mb

± 0.02αs ± 0.002CKM ± 0.01BRsl
) · 10−7 = (+0.67± 0.12) · 10−7 ,

HA[1, 6]µµ =(−0.42± 0.14scale ± 0.003mt ± 0.01C,mc ± 0.06mb

± 0.03αs ± 0.001CKM ± 0.01BRsl
) · 10−7 = (−0.42± 0.16) · 10−7 .

(5.8)

As far as the total error is concerned, the single bins are much better behaved than the

entire low-q2 region. This is due to the large cancellation of the central values of bin 1 and

bin 2, which is owed to the presence of the zero. The value of the latter happens to be

almost exactly at the position where we subdivide the low-q2 region into bin 1 and bin 2.

5.3 H3 and H4

For the observables H3 and H4, sensitive to QED corrections, we find

H3[1, 3.5]ee =(4.04± 0.64scale ± 0.04mt ± 0.13C,mc ± 0.10mb

± 0.03αs ± 0.01CKM ± 0.05BRsl
) · 10−9 = (4.04± 0.67) · 10−9 ,

H3[3.5, 6]ee =(4.88± 0.50scale ± 0.05mt ± 0.16C,mc ± 0.07mb

± 0.02αs ± 0.01CKM ± 0.06BRsl
) · 10−9 = (4.88± 0.54) · 10−9 ,

H3[1, 6]ee =(8.92± 1.14scale ± 0.10mt ± 0.30C,mc ± 0.16mb

± 0.06αs ± 0.03CKM ± 0.11BRsl
) · 10−9 = (8.92± 1.20) · 10−9 . (5.9)

H3[1, 3.5]µµ =(1.68± 0.26scale ± 0.02mt ± 0.06C,mc ± 0.04mb

± 0.01αs ± 0.005CKM ± 0.02BRsl
) · 10−9 = (1.68± 0.27) · 10−9 ,

H3[3.5, 6]µµ =(2.03± 0.21scale ± 0.02mt ± 0.07C,mc ± 0.03mb

± 0.01αs ± 0.006CKM ± 0.03BRsl
) · 10−9 = (2.03± 0.22) · 10−9 ,

H3[1, 6]µµ =(3.71± 0.47scale ± 0.04mt ± 0.12C,mc ± 0.06mb

± 0.02αs ± 0.01CKM ± 0.05BRsl
) · 10−9 = (3.71± 0.50) · 10−9 .

(5.10)

H4[1, 3.5]ee =(6.23± 0.55scale ± 0.07mt ± 0.21C,mc ± 0.01mb

± 0.02αs ± 0.02CKM ± 0.08BRsl
) · 10−9 = (6.23± 0.60) · 10−9 ,

H4[3.5, 6]ee =(2.19± 0.16scale ± 0.03mt ± 0.07C,mc ± 0.02mb

± 0.006αs ± 0.006CKM ± 0.03BRsl
) · 10−9 = (2.19± 0.18) · 10−9 ,
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HA[1, 6]ee =(−0.29± 0.14scale ± 0.002mt ± 0.02C,mc ± 0.06mb

± 0.03αs ± 0.001CKM ± 0.004BRsl
) · 10−7 = (−0.29± 0.16) · 10−7 .

(5.7)

HA[1, 3.5]µµ =(−1.10± 0.03scale ± 0.01mt ± 0.02C,mc ± 0.02mb

± 0.01αs ± 0.003CKM ± 0.01BRsl
) · 10−7 = (−1.10± 0.05) · 10−7 ,

HA[3.5, 6]µµ =(+0.67± 0.11scale ± 0.01mt ± 0.04C,mc ± 0.05mb

± 0.02αs ± 0.002CKM ± 0.01BRsl
) · 10−7 = (+0.67± 0.12) · 10−7 ,

HA[1, 6]µµ =(−0.42± 0.14scale ± 0.003mt ± 0.01C,mc ± 0.06mb

± 0.03αs ± 0.001CKM ± 0.01BRsl
) · 10−7 = (−0.42± 0.16) · 10−7 .

(5.8)

As far as the total error is concerned, the single bins are much better behaved than the

entire low-q2 region. This is due to the large cancellation of the central values of bin 1 and

bin 2, which is owed to the presence of the zero. The value of the latter happens to be

almost exactly at the position where we subdivide the low-q2 region into bin 1 and bin 2.

5.3 H3 and H4

For the observables H3 and H4, sensitive to QED corrections, we find

H3[1, 3.5]ee =(4.04± 0.64scale ± 0.04mt ± 0.13C,mc ± 0.10mb

± 0.03αs ± 0.01CKM ± 0.05BRsl
) · 10−9 = (4.04± 0.67) · 10−9 ,

H3[3.5, 6]ee =(4.88± 0.50scale ± 0.05mt ± 0.16C,mc ± 0.07mb

± 0.02αs ± 0.01CKM ± 0.06BRsl
) · 10−9 = (4.88± 0.54) · 10−9 ,

H3[1, 6]ee =(8.92± 1.14scale ± 0.10mt ± 0.30C,mc ± 0.16mb

± 0.06αs ± 0.03CKM ± 0.11BRsl
) · 10−9 = (8.92± 1.20) · 10−9 . (5.9)

H3[1, 3.5]µµ =(1.68± 0.26scale ± 0.02mt ± 0.06C,mc ± 0.04mb

± 0.01αs ± 0.005CKM ± 0.02BRsl
) · 10−9 = (1.68± 0.27) · 10−9 ,

H3[3.5, 6]µµ =(2.03± 0.21scale ± 0.02mt ± 0.07C,mc ± 0.03mb

± 0.01αs ± 0.006CKM ± 0.03BRsl
) · 10−9 = (2.03± 0.22) · 10−9 ,

H3[1, 6]µµ =(3.71± 0.47scale ± 0.04mt ± 0.12C,mc ± 0.06mb

± 0.02αs ± 0.01CKM ± 0.05BRsl
) · 10−9 = (3.71± 0.50) · 10−9 .

(5.10)

H4[1, 3.5]ee =(6.23± 0.55scale ± 0.07mt ± 0.21C,mc ± 0.01mb

± 0.02αs ± 0.02CKM ± 0.08BRsl
) · 10−9 = (6.23± 0.60) · 10−9 ,

H4[3.5, 6]ee =(2.19± 0.16scale ± 0.03mt ± 0.07C,mc ± 0.02mb

± 0.006αs ± 0.006CKM ± 0.03BRsl
) · 10−9 = (2.19± 0.18) · 10−9 ,
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H4[1, 6]ee =(8.41± 0.71scale ± 0.10mt ± 0.28C,mc ± 0.02mb

± 0.02αs ± 0.02CKM ± 0.10BRsl
) · 10−9 = (8.41± 0.78) · 10−9 .

(5.11)

H4[1, 3.5]µµ =(2.59± 0.23scale ± 0.03mt ± 0.09C,mc ± 0.006mb

± 0.007αs ± 0.007CKM ± 0.03BRsl
) · 10−9 = (2.59± 0.25) · 10−9 ,

H4[3.5, 6]µµ =(0.91± 0.07scale ± 0.01mt ± 0.03C,mc ± 0.008mb

± 0.002αs ± 0.003CKM ± 0.01BRsl
) · 10−9 = (0.91± 0.075) · 10−9 ,

H4[1, 6]µµ =(3.50± 0.29scale ± 0.04mt ± 0.12C,mc ± 0.01mb

± 0.01αs ± 0.01CKM ± 0.04BRsl
) · 10−9 = (3.50± 0.32) · 10−9 .

(5.12)

5.4 Branching ratio, low-q2 region

The decay width is simply given by the sum of HT and HL and hence can in principle be

derived by the numbers given in the previous subsections. However, we give the numbers

explicitly here, for two reasons. First, the branching ratio is an important quantity, also

experimentally. Second, there are two more contributions which are available only for the

branching ratio, but not for HT or HL individually. These are the finite bremsstrahlung

contributions from [48] and the non-log enhanced terms of ω
(em)
99 (ŝ). Both give only a small

correction, but we include them for the sake of completeness. This yields

B[1, 3.5]ee =(9.26± 0.34scale ± 0.11mt ± 0.30C,mc ± 0.10mb

± 0.02αs ± 0.03CKM ± 0.11BRsl
) · 10−7 = (9.26± 0.49) · 10−7 ,

B[3.5, 6]ee =(7.44± 0.37scale ± 0.10mt ± 0.26C,mc ± 0.08mb

± 0.03αs ± 0.02CKM ± 0.09BRsl
) · 10−7 = (7.44± 0.48) · 10−7 ,

B[1, 6]ee =(1.67± 0.07scale ± 0.02mt ± 0.06C,mc ± 0.02mb

± 0.01αs ± 0.005CKM ± 0.02BRsl
) · 10−6 = (1.67± 0.10) · 10−6 . (5.13)

B[1, 3.5]µµ =(8.88± 0.31scale ± 0.11mt ± 0.29C,mc ± 0.10mb

± 0.02αs ± 0.02CKM ± 0.11BRsl
) · 10−7 = (8.88± 0.46) · 10−7 ,

B[3.5, 6]µµ =(7.31± 0.36scale ± 0.09mt ± 0.25C,mc ± 0.09mb

± 0.03αs ± 0.02CKM ± 0.09BRsl
) · 10−7 = (7.31± 0.47) · 10−7 ,

B[1, 6]µµ =(1.62± 0.07scale ± 0.02mt ± 0.05C,mc ± 0.02mb

± 0.01αs ± 0.005CKM ± 0.02BRsl
) · 10−6 = (1.62± 0.09) · 10−6 . (5.14)

The values are about 2% larger compared to our previous analysis [76]. This is due to

updated input parameters and the inclusion of the Krüger-Sehgal corrections [72, 73].

5.5 Branching ratio, high-q2 region

The branching ratio in the high-q2 region suffers from large uncertainties stemming from

hadronic input parameters in the 1/m2,3
b power-corrections, which results in total error
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bars of O(30%),

B[> 14.4]ee =(2.20± 0.30scale ± 0.03mt ± 0.06C,mc ± 0.16mb
± 0.003αs

± 0.01CKM ± 0.03BRsl
± 0.12λ2 ± 0.48ρ1 ± 0.36fs ± 0.05fu) · 10−7

=(2.20± 0.70) · 10−7 ,

B[> 14.4]µµ =(2.53± 0.29scale ± 0.03mt ± 0.07C,mc ± 0.18mb
± 0.003αs

± 0.01CKM ± 0.03BRsl
± 0.12λ2 ± 0.48ρ1 ± 0.36fs ± 0.05fu) · 10−7

=(2.53± 0.70) · 10−7 . (5.15)

Comparing these results to earlier analyses on the high-q2 branching ratio shows that

our numbers are considerably lower than the ones in [53, 54]. In the following, we show

that this is the result of several effects which all give corrections in the same direction.

Once we turn to the prescriptions given in [53, 54] we reproduce their results, as can be

seen below.

We first perform the comparison to Greub et al. [54]. We start with the above num-

bers and first switch off the ln(m2
b/m

2
� )-enhanced QED corrections, which also removes the

difference between the muon and the electron channel, and yields 2.74 (all numbers that

follow are in units of 10−7). Next, we turn off the finite bremsstrahlung contributions,

which is only a minor effect and does not change the digits given before. Taking out the

Krüger-Sehgal corrections, on the other hand, is a rather large effect in the high-q2 region

and results in 3.05. We also have to remove the 1/m2,3
b and 1/m2

c non-factorisable power-

corrections which further increases the result to 3.36. Switching furthermore off those QED

corrections which are not ln(m2
b/m

2
� )-enhanced, we get 3.56. This shift is rather large, but

we remind the reader that some of these terms are enhanced by m2
t /(M

2
W sin2 θW ). Chang-

ing from four- to two-loop running for αs has again only a minor impact and gives 3.55.

We now switch off the change in renormalisation scheme for the quark masses, i.e. we use

the pole mass for charm and bottom. Furthermore, we use the input parameters from [54].

Both effects taken together give 3.68. We now take into account that the integration in-

terval in [54] is given in the variable ŝ = q2/m2
b . Hence a change in the value for mb

results in the modified lower integration limit q2min = 13.824 GeV2. This effect must not

be underestimated because it brings the branching ratio up to 4.36. We now turn to the

normalisation prescription given in [54], which instead of the factor C from eq. (4.5) and

the perturbative expansion of Γ(b → u e ν̄) makes direct use of the perturbative expan-

sion of Γ(b → c e ν̄), including charm-mass dependent phase-space factors and radiative

corrections. This increases the branching ratio further to 4.57. Finally, we divide by the

experimentally measured semileptonic b → c branching ratio (see table 1) and get 43, which

is precisely the value of Rhigh, pert in eq. (48) of [54].

The comparison to Ghinculov et al. in [53] proceeds along the same lines. The differ-

ences to the analysis by Greub et al. are the Krüger-Sehgal corrections and the 1/m2,3
b ,

1/m2
c power corrections, both are taken into account in [53]. Moreover, different input pa-

rameters are used and the lower integration limit is formulated in q2 rather than in ŝ. To

quantify these effects, we first switch off again ln(m2
b/m

2
� )-enhanced QED corrections and

finite bremsstrahlung effects first and end up with 2.74. We then also remove those QED
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bars of O(30%),

B[> 14.4]ee =(2.20± 0.30scale ± 0.03mt ± 0.06C,mc ± 0.16mb
± 0.003αs

± 0.01CKM ± 0.03BRsl
± 0.12λ2 ± 0.48ρ1 ± 0.36fs ± 0.05fu) · 10−7

=(2.20± 0.70) · 10−7 ,

B[> 14.4]µµ =(2.53± 0.29scale ± 0.03mt ± 0.07C,mc ± 0.18mb
± 0.003αs

± 0.01CKM ± 0.03BRsl
± 0.12λ2 ± 0.48ρ1 ± 0.36fs ± 0.05fu) · 10−7

=(2.53± 0.70) · 10−7 . (5.15)

Comparing these results to earlier analyses on the high-q2 branching ratio shows that

our numbers are considerably lower than the ones in [53, 54]. In the following, we show

that this is the result of several effects which all give corrections in the same direction.

Once we turn to the prescriptions given in [53, 54] we reproduce their results, as can be

seen below.

We first perform the comparison to Greub et al. [54]. We start with the above num-

bers and first switch off the ln(m2
b/m

2
� )-enhanced QED corrections, which also removes the

difference between the muon and the electron channel, and yields 2.74 (all numbers that

follow are in units of 10−7). Next, we turn off the finite bremsstrahlung contributions,

which is only a minor effect and does not change the digits given before. Taking out the

Krüger-Sehgal corrections, on the other hand, is a rather large effect in the high-q2 region

and results in 3.05. We also have to remove the 1/m2,3
b and 1/m2

c non-factorisable power-

corrections which further increases the result to 3.36. Switching furthermore off those QED

corrections which are not ln(m2
b/m

2
� )-enhanced, we get 3.56. This shift is rather large, but

we remind the reader that some of these terms are enhanced by m2
t /(M

2
W sin2 θW ). Chang-

ing from four- to two-loop running for αs has again only a minor impact and gives 3.55.

We now switch off the change in renormalisation scheme for the quark masses, i.e. we use

the pole mass for charm and bottom. Furthermore, we use the input parameters from [54].

Both effects taken together give 3.68. We now take into account that the integration in-

terval in [54] is given in the variable ŝ = q2/m2
b . Hence a change in the value for mb

results in the modified lower integration limit q2min = 13.824 GeV2. This effect must not

be underestimated because it brings the branching ratio up to 4.36. We now turn to the

normalisation prescription given in [54], which instead of the factor C from eq. (4.5) and

the perturbative expansion of Γ(b → u e ν̄) makes direct use of the perturbative expan-

sion of Γ(b → c e ν̄), including charm-mass dependent phase-space factors and radiative

corrections. This increases the branching ratio further to 4.57. Finally, we divide by the

experimentally measured semileptonic b → c branching ratio (see table 1) and get 43, which

is precisely the value of Rhigh, pert in eq. (48) of [54].

The comparison to Ghinculov et al. in [53] proceeds along the same lines. The differ-

ences to the analysis by Greub et al. are the Krüger-Sehgal corrections and the 1/m2,3
b ,

1/m2
c power corrections, both are taken into account in [53]. Moreover, different input pa-

rameters are used and the lower integration limit is formulated in q2 rather than in ŝ. To

quantify these effects, we first switch off again ln(m2
b/m

2
� )-enhanced QED corrections and

finite bremsstrahlung effects first and end up with 2.74. We then also remove those QED
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corrections that are not enhanced by ln(m2
b/m

2
� ), which gives 2.93. Changing from four-

to two-loop running for αs is again only a small effect and gives 2.92. The biggest effect

comes from the change of input parameters and the removal of the renormalisation-scheme

conversion for the quark masses, i.e. we now use the pole mass for charm and bottom.

These two effects taken together result in 3.89. Finally, we switch to the normalisation

that is used in [53] and get 4.02. This number coincides within a fraction of a percent with

the value 4.04 from eq. (6.36) in [53]. The obtained level of accuracy shall be sufficient for

the present check.

5.6 The ratio R(s0)

R(14.4)ee =(2.25± 0.12scale ± 0.03mt ± 0.02C,mc ± 0.01mb
± 0.01αs ± 0.20CKM

± 0.02λ2 ± 0.14ρ1 ± 0.08f0
u+fs ± 0.12f0

u−fs) · 10−3

=(2.25± 0.31) · 10−3 ,

R(14.4)µµ =(2.62± 0.09scale ± 0.03mt ± 0.01C,mc ± 0.01mb
± 0.01αs ± 0.23CKM

± 0.0002λ2 ± 0.09ρ1 ± 0.04f0
u+fs ± 0.12f0

u−fs) · 10−3

=(2.62± 0.30) · 10−3 . (5.16)

We clearly see a reduction of the total error bars from O(30%) in the high-q2 branching

ratio to 14% and 11% in the electron and muon channel of R(s0), respectively. Besides the

uncertainties due to power corrections, also the scale uncertainty gets significantly reduced.

The largest source of error are CKM elements (notably Vub).

6 New physics sensitivities

In this section we present the constraints on the most relevant Wilson coefficients (C9 and

C10) that we obtain using the current experimental results, and investigate the reach of

Belle II with an expected final integrated luminosity of 50 ab−1.

Previous model-independent new physics analyses [77, 101–103], as well as studies in

specific models such as minimal-flavour-violation [104–106], two-Higgs doublet models [107,

108], and supersymmetry [102, 109–115] can be found in the literature.

The weighted averages for the low- and high-q2 branching fractions have been presented

in eq. (1.2). Here we need the results on the individual channels:

B(B̄ → Xs�
+�−)explow =




(
1.493± 0.504+0.411

−0.321

)
× 10−6 (Belle, ��)(

1.93+0.47+0.21
−0.45−0.16 ± 0.18

)
× 10−6 (BaBar, ee)(

0.66+0.82+0.30
−0.76−0.24 ± 0.18

)
× 10−6 (BaBar, µµ)(

1.6+0.41+0.17
−0.39−0.13 ± 0.18

)
× 10−6 (BaBar, ��) ,

(6.1)

B(B̄ → Xs�
+�−)exphigh =





(
0.418± 0.117+0.061

−0.068

)
× 10−6 (Belle, ��)(

0.56+0.19+0.03
−0.18−0.03 ± 0.00

)
× 10−6 (BaBar, ee)(

0.60+0.31+0.05
−0.29−0.04 ± 0.00

)
× 10−6 (BaBar, µµ )(

0.57+0.16+0.03
−0.15−0.02 ± 0.00

)
× 10−6 (BaBar, ��) .

(6.2)
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In each result, the first error is statistical, the second systematics and the third model-

depedent systematics which is included in case of Belle in the second error. Note that the

high-q2 region chosen by BaBar and Belle have a slightly different q2 minimum (14.4 and

14.2 GeV2 for Belle and BaBar, respectively).

In ref. [39] Belle presented a measurement of the normalized forward-backward asym-

metry defined in eq. (2.10) in the low- and high-q2 regions. The binning chosen to present

the measurement (bin1 = [0.2,4.3] GeV2 and bin2 = [4.3,7.3(8.1)] GeV2 for electrons

(muons)) differs from the one proposed in this work. In particular, the larger integration

end-point in the second bin includes a region of the spectrum where sizable interference

from the tail of the J/ψ is present. From ref. [39] we read:

A
exp
FB (B̄ → Xs�

+�−) =

{
0.34± 0.24± 0.02 Belle, bin1

0.04± 0.31± 0.05 Belle, bin2.
(6.3)

In order to preserve the cancellation of systematic uncertainties, Belle averaged the nor-

malized asymmetries in the electron and muon channels; i.e.

AFB(B̄ → Xs�
+�−) =

(
AFB(B̄ → Xse

+e−) +AFB(B̄ → Xsµ
+µ−)

)
/2 . (6.4)

We integrated our differential spectra in the above bins in order to investigate the impact

that this measurement has on the Wilson coefficients, but we caution the reader that the

uncertainties we quote could be underestimated. We find:

AFB(B̄ → Xs�
+�−) =

{
−0.0773± 0.0057 bin1

+0.049± 0.018 bin2.
(6.5)

We define the following ratios of high-scale Wilson coefficients (see [76] for the precise

definitions of the Wilson coefficients),

R7,8 =
C

(00)eff
7,8 (µ0)

C
(00)eff,SM
7,8 (µ0)

and R9,10 =
C

(11)
9,10 (µ0)

C
(11)SM
9,10 (µ0)

. (6.6)

The numerical formulas for all observables in terms of the ratios Ri can be found in

appendix B. We assume that the relative theoretical uncertainty on a given observable

(δO/O) is mostly independent of the precise values of Wilson coefficients and that it can

be extracted from the SM predictions presented in section 5.

We present the bounds on the ratios R9 and R10 under the assumption of no new

physics contributions to the magnetic and chromo-magnetic dipole operators (R7,8 = 1)

in figure 4 (similar analyses were done, e.g., in [77, 101]). The contours are the 95% C.L.

regions allowed by the experimental results in eqs. (6.1), (6.2) and (1.2); two sigma theo-

retical uncertainties are added linearly. In each plot we show the impact of the branching

ratio measurement in the low-q2 (red regions) and high-q2 (green regions) and their overlap

(black regions). The SM corresponds to the point [R9, R10] = [1, 1]. As we discuss below,

the small yellow contours correspond to the Belle II estimated reach, assuming that the

observed central values coincide with our predictions. The top left, top right and lower
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In each result, the first error is statistical, the second systematics and the third model-

depedent systematics which is included in case of Belle in the second error. Note that the

high-q2 region chosen by BaBar and Belle have a slightly different q2 minimum (14.4 and

14.2 GeV2 for Belle and BaBar, respectively).

In ref. [39] Belle presented a measurement of the normalized forward-backward asym-

metry defined in eq. (2.10) in the low- and high-q2 regions. The binning chosen to present

the measurement (bin1 = [0.2,4.3] GeV2 and bin2 = [4.3,7.3(8.1)] GeV2 for electrons

(muons)) differs from the one proposed in this work. In particular, the larger integration

end-point in the second bin includes a region of the spectrum where sizable interference

from the tail of the J/ψ is present. From ref. [39] we read:

A
exp
FB (B̄ → Xs�

+�−) =

{
0.34± 0.24± 0.02 Belle, bin1

0.04± 0.31± 0.05 Belle, bin2.
(6.3)

In order to preserve the cancellation of systematic uncertainties, Belle averaged the nor-

malized asymmetries in the electron and muon channels; i.e.

AFB(B̄ → Xs�
+�−) =

(
AFB(B̄ → Xse

+e−) +AFB(B̄ → Xsµ
+µ−)

)
/2 . (6.4)

We integrated our differential spectra in the above bins in order to investigate the impact

that this measurement has on the Wilson coefficients, but we caution the reader that the

uncertainties we quote could be underestimated. We find:

AFB(B̄ → Xs�
+�−) =

{
−0.0773± 0.0057 bin1

+0.049± 0.018 bin2.
(6.5)

We define the following ratios of high-scale Wilson coefficients (see [76] for the precise

definitions of the Wilson coefficients),

R7,8 =
C

(00)eff
7,8 (µ0)

C
(00)eff,SM
7,8 (µ0)

and R9,10 =
C

(11)
9,10 (µ0)

C
(11)SM
9,10 (µ0)

. (6.6)

The numerical formulas for all observables in terms of the ratios Ri can be found in

appendix B. We assume that the relative theoretical uncertainty on a given observable

(δO/O) is mostly independent of the precise values of Wilson coefficients and that it can

be extracted from the SM predictions presented in section 5.

We present the bounds on the ratios R9 and R10 under the assumption of no new

physics contributions to the magnetic and chromo-magnetic dipole operators (R7,8 = 1)

in figure 4 (similar analyses were done, e.g., in [77, 101]). The contours are the 95% C.L.

regions allowed by the experimental results in eqs. (6.1), (6.2) and (1.2); two sigma theo-

retical uncertainties are added linearly. In each plot we show the impact of the branching

ratio measurement in the low-q2 (red regions) and high-q2 (green regions) and their overlap

(black regions). The SM corresponds to the point [R9, R10] = [1, 1]. As we discuss below,

the small yellow contours correspond to the Belle II estimated reach, assuming that the

observed central values coincide with our predictions. The top left, top right and lower
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C.L. from the present BaBar and Belle experimental branching ratios measurements. In the upper

left (upper right, lower) plot we show the constraints obtained from the measured branching ratios in

the low-q2 and high-q2 region in the electron (muon, electron plus muon) channel. The red and green

regions correspond to the low- and high-q2 regions, respectively. The black region is the overlap of

these two constraints. The dot is the SM expectation ([R9, R10] = [1, 1]). The yellow contour is the

Belle II reach (see figures 5–7). The region outside the dashed (dotted) parabola shaped regions are

allowed by the Belle measurement of the normalized forward-backward asymmetry in bin1 (bin2).

plot consider the B → Xse
+e−, B → Xsµ

+µ− and B → Xs�
+�− cases, respectively. In

the lower plot in figure 4 we include also the 95% C.L. bounds from the Belle measurement

of the normalized forward-backward asymmetry given in eq. (6.3); the region outside the

dashed and dotted parabola shaped regions are allowed by the measurement in bin1 and

bin2, respectively. The resulting picture is in overall agreement with the SM expectations at

the 95% C.L.; though we should note that at the one sigma level there are some statistically

insignificant tensions driven by a disagreement between low- and high-q2 measurements in

the muon channel.

In order to study the expected Belle II reach, we estimate the statistical uncertainties

on the various observables using the squared weight method detailed in ref. [116]. Let us
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[1, 3.5] [3.5, 6] [1, 6] > 14.4

B 3.7 % 4.0 % 3.0 % 4.1%

HT 24 % 21 % 16 % —

HL 5.8 % 6.8 % 4.6 % —

HA 37 % 44 % 200 % —

H3 240 % 180 % 150 % —

H4 140 % 360 % 140 % —

Table 3. Statistical uncertainties that we expect at Belle II with 50 ab−1 of integrated luminosity.

The first row gives the considered q2 bin in GeV2.

consider the following differential quantity:

d2N
dŝdz

=
L σprod
Γtot

d2Γ

dŝdz
(6.7)

where the L is the integrated luminosity, σprod is the production cross section for e+e− →
BB̄ at the B-factories’ center of mass energy, Γtot is the total B decay width and d2Γ/dŝdz

is the double differential B → Xs�
+�− decay rate. The number of events that we expect

to observe in a certain range of ŝ and z is

Nexp =

∫
d2N
dŝdz

dŝ dz , (6.8)

δNexp =
√
Nexp (6.9)

where δNexp is the expected statistical error. If instead of considering simple slices of the

integration region we utilize a weight function W [ŝ, z] to define an observable (that cannot

be anymore interpreted in terms of “number of events”), the above equations generalize to

Oexp =

∫
d2N
dŝdz

W [ŝ, z] dŝ dz , (6.10)

δOexp =

[∫
d2N
dŝdz

W [ŝ, z]2 dŝ dz

] 1
2

. (6.11)

Note that eq. (6.11) reproduces the correct uncertainties for the simple case in which the

weight is a product of theta functions (i.e. the integral is restricted to a certain region of

phase space) and that the relative uncertainty δOexp/Oexp is invariant under rescaling of

the weight function.

In order to asses expected uncertainties on observables corresponding to the weights

given in eq. (2.7) we start from the double differential rate given in eq. (1.4) and use the

expressions for the HI in eqs. (2.1)–(2.3) and use some reference value for the Wilson

coefficients. Next we fix the normalization L σprod/Γtot in such a way to reproduce the

∼ 25% statistical uncertainty that BaBar obtains with an integrated luminosity Lcurrent =
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[1, 3.5] [3.5, 6] [1, 6] > 14.4

B 3.7 % 4.0 % 3.0 % 4.1%

HT 24 % 21 % 16 % —

HL 5.8 % 6.8 % 4.6 % —

HA 37 % 44 % 200 % —

H3 240 % 180 % 150 % —

H4 140 % 360 % 140 % —

Table 3. Statistical uncertainties that we expect at Belle II with 50 ab−1 of integrated luminosity.

The first row gives the considered q2 bin in GeV2.
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Figure 5. Constraints on [R9, R10] that we expect at 95% C.L. from Belle II measurements of the

branching ratio in the low-q2 (left plot) and high-q2 (right plot) regions with 50 ab−1 of integrated

luminosity. For the low-q2 case, the solid and dashed contours correspond to the branching ratio

restricted to the low ([1, 3.5] GeV2) and high ([3.5, 6] GeV2) bin, respectively. The hashed region is

the overlap of the expected constraints from these two bins. The shaded region is the constraint we

obtain by considering the branching ratio integrated in the whole low-q2 region. The black dot is

the SM expectation. The solid red area is the overlap of all constraints we consider (it corresponds

to the yellow contour in figure 4).

Figure 6. Constraints on [R9, R10] that we expect at 95% C.L. from Belle II measurements of

HT (left plot) and HL (right plot) in the low-q2 region with 50 ab−1 of integrated luminosity. See

figure 5 for further details.

0.4242 ab−1 [37]. Finally we rescale the normalization by the factor Lfuture/Lcurrent where

Lfuture = 50 ab−1 is the Belle II expected final integrated luminosity.

This procedure produces acceptable error estimates for HT , HL and HA, while fails

for H3 and H4. The reason is that the integral in eq. (6.10) vanishes when integrated the

simple NLO formula given in eq. (1.4) against the weights W3,4. We bypass this problem by
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Figure 7. Constraints on [R9, R10] that we expect at 95% C.L. from Belle II measurements of HA

(upper plot), H3 (lower left plot) and H4 (lower right plot) in the low-q2 region with 50 ab−1 of

integrated luminosity. See figure 5 for further details.

extractingOexp from the exact results presented in section 5 and using eq. (6.11) to calculate

the error (in fact the weights (W3,4)
2 do not annihilate the NLO differential width).

Following the discussion summarized in section 5 of ref. [18], we add a flat 2% systemat-

ics to the projected statistical errors obtained with the squared weight method and obtain

the low-q2 uncertainties collected in table 3. The expected uncertainty on the high-q2

branching ratio is taken directly from ref. [18]; in fact, near the end-point of the spectrum

our method fails to take into account the improvement in the signal-to-background ratio.

In figures 5, 6 and 7 we show the expected impact of Belle II measurements on the

various observables we consider in the [R9, R10] plane. Each contour is drawn at 95%

C.L. by combining linearly theoretical and experimental uncertainties. In the scenario we

consider the strongest bounds on the Wilson coefficients are driven by measurements of

the low-q2 branching ratio and of HA and HT in the two bins. The latter statement is

– 33 –



243

243

J
H
E
P
0
6
(
2
0
1
5
)
1
7
6

Figure 7. Constraints on [R9, R10] that we expect at 95% C.L. from Belle II measurements of HA

(upper plot), H3 (lower left plot) and H4 (lower right plot) in the low-q2 region with 50 ab−1 of

integrated luminosity. See figure 5 for further details.

extractingOexp from the exact results presented in section 5 and using eq. (6.11) to calculate

the error (in fact the weights (W3,4)
2 do not annihilate the NLO differential width).

Following the discussion summarized in section 5 of ref. [18], we add a flat 2% systemat-

ics to the projected statistical errors obtained with the squared weight method and obtain

the low-q2 uncertainties collected in table 3. The expected uncertainty on the high-q2

branching ratio is taken directly from ref. [18]; in fact, near the end-point of the spectrum

our method fails to take into account the improvement in the signal-to-background ratio.

In figures 5, 6 and 7 we show the expected impact of Belle II measurements on the

various observables we consider in the [R9, R10] plane. Each contour is drawn at 95%

C.L. by combining linearly theoretical and experimental uncertainties. In the scenario we

consider the strongest bounds on the Wilson coefficients are driven by measurements of

the low-q2 branching ratio and of HA and HT in the two bins. The latter statement is
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Figure 8. Pictorial descriptions of the theoretical definition (left) of B̄ → Xs�
+�− and of the

experimental recoil technique.

driven by the assumption that the future experimental central values will coincide with the

respective SM expectations. If deviations are seen, all observables become crucial to pin

down the structure of new physics.

7 On the connection between theory and experiments

7.1 Various experimental settings

Here we discuss how to compare integrated low and high–q2 observables, calculated with

the inclusion of QED corrections, to quantities measured by BaBar, Belle and also by

the future Belle II experiment. As we explain below, we find that our results can be

directly compared to integrated observables measured at BaBar, Belle, and Belle II with

the exception of the di-electron case at BaBar. In the latter case we have to increase our

predictions for the integrated branching ratio in the low (high) q2 region by 1.65% (6.8%),

see eqs. (7.1) and (7.2).

From the theoretical standpoint the Xs system, in the inclusive Xs�
+�− final state,

contains all the electromagnetic radiation produced in the hard interaction, see the diagram

on the left in figure 8. From the experimental point of view there are two distinct techniques

to measure the inclusive B → Xs�
+�− rate: the recoil and sum-over-exclusive methods.

In the recoil technique, whose luminosity requirement makes it viable only at super flavor

factories, one of the B mesons produced in the e+e− hard interaction is tagged using a

semileptonic or hadronic decay and the final state is identified by the two leptons only, see

the diagram on the right in figure 8. In the sum-over-exclusive method, the recoling heavy

meson is not looked at and the decaying B is fully reconstructed in final states with a K(∗)

and up to four pions. The fully inclusive rate is then reconstructed using JETSET [117].

The comparison between the measured branching ratio (BR) and the results of our

inclusive calculations depends critically on the definition of q2. If no photons are included

in the definition of the di-lepton invariant mass (i.e. q2 ≡ (p�+ + p�−)
2) our results can be

used directly in the comparison with experiments. This is the case for the di-muon channel

at both experiments [118, 119] and for the di-electron channel at Belle [118]. This will be

exactly the case in a fully inclusive analysis using the recoil technique at Belle II. However,
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at BaBar photons that belong to a B → Xse
+e− event and that are emitted in a cone of

35 mrad angular opening around either final state electron are included in the calculation

of the q2 [119].

In order to calculate the shift that the latter q2 definition has on to the inclusive theory

prediction we generate inclusive B → Xs�
+�− events using EVTGEN [120], hadronize them

with JETSET and include electromagnetic radiation with PHOTOS [121, 122]. Following

the BaBar and Belle procedure we build a fully inclusive sample in the whole q2 and

mXs phase space by fully inclusive events (parton level supplemented by a Fermi Motion

Model [57]) for mXs > 1.1 GeV with exclusive B → K(∗)�+�− events (to describe the

low mXs region). Using this large event sample we were able to calculate the impact of

including photons emitted in a 35 mrad cone around either electron in the q2 calculation.

We find:

[
Blow
ee

]
q=pe++pe−+pγcoll

[Blow
ee ]q=pe++pe−

− 1 = 1.65% (7.1)

[
Bhigh
ee

]
q=pe++pe−+pγcoll[

Bhigh
ee

]
q=pe++pe−

− 1 = 6.8% . (7.2)

where the suffixes q = pe+ + pe− and q = pe+ + pe− + pγcoll refer to quantities we calculate

and observables measured at BaBar, respectively.

7.2 Validation

The results presented in the previous subsection depend crucially on the reliability of

using PHOTOS to model photon radiation in b → s�+�− decays. In this subsection we

perform several checks to validate this approach; in particular we show that PHOTOS

can be used to reproduce (to a good enough extent) the effects of QED radiation that we

calculate analytically.

As discussed above, we generate inclusive B → Xs�
+�− events using EVTGEN,

hadronize them with JETSET and include electromagnetic radiation with PHOTOS. In

order to obtain a fully inclusive event set we combine K, K∗ and Xs(mXs > 1.1 GeV)

samples. The mXs and q2 spectra that we obtain are presented in figure 9. The relative

weights of the K and K∗ samples with respect to the inclusive (mXs > 1.1 GeV) one have

to be provided externally. The actual weights we adopt are extracted from experimental

results for the exclusive and inclusive modes and their precise values do not impact much

the shape of the q2 spectrum. In fact, as we can see in the plot on the right of figure 9

only the very high di-lepton invariant mass region, q2 > 17 GeV2, is affected.

A point that is important to mention is that PHOTOS generates events with large

photon multiplicity while analytic calculations are confined to a single photon emission.

Obviously the vast majority of photons emitted are soft and/or collinear to the final state

leptons; moreover, only relatively high energy collinear photons can impact the shape of

the q2 spectrum.
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can be used to reproduce (to a good enough extent) the effects of QED radiation that we
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As discussed above, we generate inclusive B → Xs�
+�− events using EVTGEN,
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samples. The mXs and q2 spectra that we obtain are presented in figure 9. The relative

weights of the K and K∗ samples with respect to the inclusive (mXs > 1.1 GeV) one have

to be provided externally. The actual weights we adopt are extracted from experimental

results for the exclusive and inclusive modes and their precise values do not impact much

the shape of the q2 spectrum. In fact, as we can see in the plot on the right of figure 9

only the very high di-lepton invariant mass region, q2 > 17 GeV2, is affected.

A point that is important to mention is that PHOTOS generates events with large

photon multiplicity while analytic calculations are confined to a single photon emission.

Obviously the vast majority of photons emitted are soft and/or collinear to the final state

leptons; moreover, only relatively high energy collinear photons can impact the shape of
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Figure 9. mXs and q2 spectra that we obtain in a B → Xs�
+�− sample generated combining the

exclusive B → K(∗)�+�− modes with a pure inclusive calculation for mXs
> 1.1 GeV.
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Figure 10. Left: distribution of events with nγ ≤ 5. Right: distribution of the most energetic and

second most energetic photons.

In the left panel of figure 10 we show the photon multiplicity we observe in the gener-

ated events. The shaded area corresponds to events for which the most energetic photon

has Eγ < 30 MeV and that, at the experimental level, are identified as purely hadronic

B → Xs�
+�−. As expected there is a very large multiplicity of soft photons. We find that

only 17% of all events (this is the integral of the purple unshaded region) correspond to

final states with at least one photon with energy larger than 30MeV. These photons are

resolved experimentally and need to be included in the hadronic (Xs) or leptonic (�+�−)

system least the event is rejected (cf. also the last paragraph of this subsection).

In the right panel of figure 10 we show the distribution of the most and second most

energetic photon. The integral of the upper (lower) curve over a photon energy range

[Eγ1, Eγ2] yields the percentage of events in which the most (second-most) energetic photon

has energy in that interval. The fraction of events with at least one (two) photons is 58%

(23%), is given by the integral of these curves and can also be easily read off from the

left panel of figure 10. Since the impact of including certain collinear photons in the

definition of the q2 is more pronounced for more energetic photons, we see that these

effects are completely described by a single photon emission: the analytic calculation of

QED radiation is, therefore, completely adequate to discuss this phenomenon.
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Figure 11. Effect of the inclusion of electromagnetic radiation calculated using EVTGEN +

PHOTOS (left) and using analytical methods (right).

Finally, in order to verify whether PHOTOS correctly models photon radiation in this

decay, we need to compare q2 spectra calculated with and without the inclusion of QED

radiation. Therefore, we generated a second set of events in which we switched PHOTOS

off. The result of this analysis is presented in figure 11. In the left and right panels

we show the Monte Carlo study and the result of our analytical calculation, respectively.

Numerically, the relative shifts that we obtain for the branching ratio in the low and high–q2

regions are (in round brackets we present the analytical results):

δBR(B → Xsµ
+µ−) =

{
+1.5%(+2.0%) low q2

−4.4%(−6.8%) high q2
(7.3)

δBR(B → Xse
+e−) =

{
+3.6%(+5.2%) low q2

−12.9%(−17.6%) high q2 .
(7.4)

Given the differences in the techniques used, the agreement is remarkable. We conclude

that the PHOTOS description of electromagnetic radiation is sufficiently close to the exact

calculation to be used to reliably calculate the shifts we presented in eqs. (7.1) and (7.2).

Before concluding this subsection, we would like to stress that validating the use of

PHOTOS is important in its own right because experiments use it to estimate the impact

of missing photons on their efficiencies. Legitimate B → Xs�
+�− events might be rejected

because of two possible reasons. First, if a large number of soft photons (Eγ < 30 MeV

and 20 MeV for BaBar and Belle, respectively) is present, they might push the event out

of the mES ,
2 and ∆E acceptance windows (see, for instance, refs. [36, 38] for a definition

of these kinematical quantities). Second, if a photon with energy larger than 30 (20) MeV

is not identified, most likely the event is discarded because the total momentum fails to

reconstruct a decaying B meson. The latter effect can be quite substantial because, as we

discussed above, about 17% (18%) of all B → Xs�
+�− events have at least one photon

with energy larger than 30MeV (20MeV). The fraction of events that is lost to these two

mechanisms is taken into account, in the calculation of the efficiencies, using PHOTOS.

2Belle names this quantity mbc.
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Figure 11. Effect of the inclusion of electromagnetic radiation calculated using EVTGEN +

PHOTOS (left) and using analytical methods (right).

Finally, in order to verify whether PHOTOS correctly models photon radiation in this

decay, we need to compare q2 spectra calculated with and without the inclusion of QED

radiation. Therefore, we generated a second set of events in which we switched PHOTOS

off. The result of this analysis is presented in figure 11. In the left and right panels

we show the Monte Carlo study and the result of our analytical calculation, respectively.

Numerically, the relative shifts that we obtain for the branching ratio in the low and high–q2

regions are (in round brackets we present the analytical results):

δBR(B → Xsµ
+µ−) =

{
+1.5%(+2.0%) low q2

−4.4%(−6.8%) high q2
(7.3)

δBR(B → Xse
+e−) =

{
+3.6%(+5.2%) low q2

−12.9%(−17.6%) high q2 .
(7.4)

Given the differences in the techniques used, the agreement is remarkable. We conclude

that the PHOTOS description of electromagnetic radiation is sufficiently close to the exact

calculation to be used to reliably calculate the shifts we presented in eqs. (7.1) and (7.2).

Before concluding this subsection, we would like to stress that validating the use of

PHOTOS is important in its own right because experiments use it to estimate the impact

of missing photons on their efficiencies. Legitimate B → Xs�
+�− events might be rejected

because of two possible reasons. First, if a large number of soft photons (Eγ < 30 MeV

and 20 MeV for BaBar and Belle, respectively) is present, they might push the event out

of the mES ,
2 and ∆E acceptance windows (see, for instance, refs. [36, 38] for a definition

of these kinematical quantities). Second, if a photon with energy larger than 30 (20) MeV

is not identified, most likely the event is discarded because the total momentum fails to

reconstruct a decaying B meson. The latter effect can be quite substantial because, as we

discussed above, about 17% (18%) of all B → Xs�
+�− events have at least one photon

with energy larger than 30MeV (20MeV). The fraction of events that is lost to these two

mechanisms is taken into account, in the calculation of the efficiencies, using PHOTOS.

2Belle names this quantity mbc.
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Figure 12. q2-dependence of HT , HL and branching ratio (HT + HL) that we extract from a

B → Xs�
+�− sample generated combining the exclusive B → K(∗)�+�− modes with a pure inclusive

calculation for mXs
> 1.1 GeV. The dotted lines are obtained by switching off QED radiation.
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Figure 13. Differential q2 distributions of the QED corrections to HT , HL and branching ratio

(HT +HL) that we obtain in a B → Xs�
+�− sample generated using EVTGEN and PHOTOS and

combining the exclusive B → K(∗)�+�− modes with a pure inclusive calculation for mXs
> 1.1 GeV.

7.3 Monte Carlo estimate of QED corrections to HT and HL

The results presented in section 5.1 indicate that the relative size of QED corrections to

HT are about an order of magnitude larger than the corresponding corrections to HL and

to the branching ratio. In this section we show that this result is actually reproduced

in our Monte Carlo study. As a first step we plot in figure 12 the q2 spectra for HT ,

HL and the branching ratio with (solid lines) and without (dotted lines) the inclusion of

QED radiation.

Note that the absolute size of QED effects on HT , HL and HT +HL is very similar and

natural in size; in particular, a small positive net contribution to the integrated branching

ratio in the low-q2 region is the sum of a small negative shift on HL and a slightly larger

positive shift on HT . We plot the actual QED corrections to the three observables in

figure 13.
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q2 ∈ [1, 6] GeV2 q2 ∈ [1, 3.5] GeV2 q2 ∈ [3.5, 6] GeV2

O[1,6]

B[1,6]

∆O[1,6]

B[1,6]

∆O[1,6]

O[1,6]

O[1,3.5]

B[1,6]

∆O[1,3.5]

B[1,6]

∆O[1,3.5]

O[1,3.5]

O[3.5,6]

B[1,6]

∆O[3.5,6]

B[1,6]

∆O[3.5,6]

O[3.5,6]

B 100 3.5 3.5 56.5 2.5 4.5 43.5 1.0 2.5

HT 19.0 8.0 43.0 10.0 5.0 48.5 8.5 3.0 36.0

HL 81.0 -4.5 -5.5 46.5 -2.5 -5.0 35.0 -2.0 -6.0

Table 4. Relative size of QED effects at low-q2 that we extract from our Monte Carlo b →
se+e− sample (All entries are given in percent). For each of the three bins the two columns are

the integrated observable and its QED correction normalized to the total low-q2 branching ratio

(
∫ s2
s1

O/
∫ 6

1
B and

∫ s2
s1

∆O/
∫ 6

1
B). The third column is the relative size of the QED correction

(
∫ s2
s1

∆O/
∫ s2
s1

O).

From inspection of the left plot in figure 12 we see that, in the low-q2 region HT is

much smaller than HL. We can understand the origin of this effect by looking at the ratio

HT /HL at leading order:

HT

HL
= 2ŝ

C2
10 +

(
C9 +

2C7
ŝ

)2
C2
10 + (C9 + 2C7)2

. (7.5)

The suppression comes from the small 2ŝ � 1 factor and from the accidental strong can-

cellation between C9 and 2C7/ŝ at low ŝ (in fact, the combination C9 +2C7/ŝ vanishes for

ŝ ∼ 0.15). In the Standard Model C7 is negative; if its sign was reversed we would obtain

C9+2C7/ŝ > C9+2C7 and the integrated HT and HL observables at low-q2 would assume

very similar values.

In table 4 we present the results we obtain by integrating the Monte Carlo gener-

ated b → s�� histograms. For each bin ([s1, s2]) and for each observable O (HT + HL,

HT and HL) we show the total integrated observable (
∫ s2
s1

O/
∫ 6
1 (HT + HL)), the total

integrated QED effect (
∫ s2
s1

∆O/
∫ 6
1 (HT + HL)) and the relative size of the QED correc-

tion (
∫ s2
s1

∆O/
∫ s2
s1

O). We see that the absolute size of QED corrections is very similar

amongst the three observables (with the effect on HT being only slightly larger) and that

the suppression of HT with respect to HL is responsible for very large relative effects in

the 30–50% range.

Finally we must point out that the numerical estimates presented in table 4 are affected

by sizable uncertainties that are hard to quantify and that only the analytical results

presented in table 2 should be utilized. The Monte Carlo study was nevertheless extremely

valuable to build confidence in our study.

8 Conclusion

The inclusive decay B̄ → Xs�
+�− is one of the most important modes in the indirect

search for new physics via quark flavour observables. It is theoretically clean, while the

exclusive mode is affected by unknown power corrections. Thus, besides allowing for a
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C2
10 +

(
C9 +

2C7
ŝ
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Finally we must point out that the numerical estimates presented in table 4 are affected
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nontrivial check of the recent LHCb data on the exclusive mode, it contains complementary

information both in Standard Model predictions and in pinning down new physics. It is

therefore a precious channel to be measured at Belle II, and might be accessible even

at LHCb.

In the present article we perform a complete angular analysis of the inclusive decay

B̄ → Xs�
+�− by taking into account all perturbative and power corrections that are avail-

able to date. We confirm the findings of ref. [77] that a separation of the double differential

decay width into three observables HT,A,L(q
2), as well as subdivision of the low-q2 region

into two bins (see also [66]), provides significantly more information than the branching

ratio or forward-backward asymmetry in the entire low-q2 region alone.

We compute logarithmically enhanced QED corrections to these observables and find

that they do not obey the simple second-order polynomial in z = cos(θ) exhibited by the

double differential decay width in the absence of QED corrections. We therefore propose

to project out HT,A,L(q
2) using weight functions, and argue that the Legendre polynomials

Pn(z) are the optimal choice for the latter. Besides reproducing HT (q
2) and HL(q

2) in

the absence of QED radiation, they allow to construct observables H3,4(q
2) (eq. (2.6))

that vanish if only QCD corrections are taken into account, and are therefore particular

sensitive to QED effects. In view of the benefits of the Legendre weight functions we

urgently recommend the experiments to use the weights (2.6) to extract single-differential

distributions, and to refrain from attempting polynomial fits to the data.

The absolute values of the QED effects that we compute are natural in size. However,

due to the phase-space and Wilson coefficient suppression of HT (q
2) the relative size of the

QED corrections is large in this observable. We argue carefully that this does clearly not

indicate a breakdown of perturbation theory. On the contrary, we can benefit from the

fact that QED corrections lift the smallness of HT (q
2) to a certain extent, which makes it

an observable that is particular sensitive to QED radiation.

To supplement our calculation we carry out a dedicated Monte Carlo study, whose

main purpose is three-fold. First, we investigate how the electromagnetic logarithms are

treated correctly in the presence of angular and energy cuts. We find that our analytical

predictions can be directly applied, with the exception of the electron channel at BaBar,

where our numbers have to be modified according to eqs. (7.1) and (7.2). Second, the size

of the QED corrections, in particular their large relative size in HT (q
2), are confirmed by

the Monte Carlo (cf. tables 2 and 4). Last but not least, it consitutes also a validation

of PHOTOS, which is used by experiments to estimate QED effects in the calculation

of efficiencies.

We update the Standard Model predictions for all angular observables integrated over

two bins in the low-q2 region. The branching ratio and the observable R(s0) are also

evaluated in the high-q2 region. Moreover, we provide our prediction for the zero crossing of

the forward-backward asymmetry (or, equivalently, HA). The parametric and perturbative

uncertainties are in general in the 5 − 15% range, exceptions are HA[1, 6] and the high-q2

branching ratio, where the relative errors are much larger. In the former case the reason

is the zero crossing of HA which entails a cancellation between the central values of the

two bins in the low-q2 region. In the latter case we suffer from poorly known hadronic
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parameters in the 1/m2,3
b power-corrections, a drawback that is circumvented in the ratio

R(s0), which normalizes the B̄ → Xs�
+�− rate to the inclusive B̄0 → Xu�ν rate with the

same cut in q2 [61].

We also study the sensitivity of the B̄ → Xs�
+�− decay to new physics in a model-

independent way. We give all observables in terms of ratios R7,8,9,10 of high-scale Wilson

coefficients, which we assume to be altered by the new interactions. We also study cor-

relations between different observables, bins and channels in the R9 − R10 plane, and

extrapolate to the final Belle II data set of 50 ab−1. We find that HT and HA give the

tightest constraints. On the other hand, if deviations from the Standard Model are seen,

all observables become crucial to pin down the structure of new physics.

In view of the recent measurement by LHCb [21] which reports a value for RK =

BR(B+ → K+µ+µ−)/BR(B+ → K+e+e−) in the low-q2 region that is significantly dif-

ferent from unity, one might wonder whether this sign of lepton non-universality could

be traced back to logarithmically enhanced QED corrections. LHCb uses the PHOTOS

Monte Carlo to eliminate the impact of collinear photon emissions from the final state

electrons. Therefore, the corrections calculated in this paper do not seem to apply to the

ratio RK . Given that the agreement between PHOTOS and our analytical calculations is

not perfect (see e.g. tables 2 and 4), it would be advisable to correct for photon radiation

using data-driven methods that do not rely on PHOTOS.
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A QED and QCD functions

A.1 QED functions for the double differential rate

Here we list the polynomials that appear in the functions ξ
(em)
ij (s, z) of the log-enhanced

QED corrections to the double differential rate in eq. (3.28).

p1(s, z) = 2s2
(
z4 + 6z2 + 1

)
+ s

(
11z4 − 8z2 − 3

)
+

(
z2 − 1

)2
,

p2(s, z) = 4s3
(
z2 + 1

)
+ 3s2

(
z2 − 1

)
− 4s

(
z2 − 1

)
− 9z2 − 7 ,

p3(s, z) = s3
(
z2 − 1

)3
+ s2

(
z2 − 1

)2 (
19z2 + 5

)

+s
(
6z6 + 37z4 − 36z2 − 7

)
+ 5z4 + 24z2 + 3 ,
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A.1 QED functions for the double differential rate

Here we list the polynomials that appear in the functions ξ
(em)
ij (s, z) of the log-enhanced

QED corrections to the double differential rate in eq. (3.28).

p1(s, z) = 2s2
(
z4 + 6z2 + 1

)
+ s

(
11z4 − 8z2 − 3

)
+

(
z2 − 1

)2
,

p2(s, z) = 4s3
(
z2 + 1

)
+ 3s2

(
z2 − 1

)
− 4s

(
z2 − 1

)
− 9z2 − 7 ,

p3(s, z) = s3
(
z2 − 1

)3
+ s2

(
z2 − 1

)2 (
19z2 + 5
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p4(s, z) = s3
(
z8 − 4z6 + 2z4 − 28z2 − 3

)
− 3s2

(
z8 − 4z6 + 8z4 − 4z2 − 1

)

+4s
(
z6 − 5z4 + 3z2 + 1

)
− 2

(
5z4 + 24z2 + 3

)
,

p5(s, z) = s4
(
13z8 − 56z6 + 210z4 − 112z2 − 55

)

+s3
(
−15z8 + 31z6 − 127z4 + 149z2 + 154

)

+3s2
(
5z8 − 9z6 + 55z4 − 31z2 − 84

)

+s
(
−13z8 + 65z6 − 285z4 + 355z2 + 262

)

−13z6 + 37z4 − 299z2 − 109 ,

p6(s, z) = s
(
z2 − 1

)
− z2 − 1 ,

p7(s, z) = s2
(
43z4 + 106z2 + 27

)
+ 24s

(
2z4 − z2 − 1

)
+ 3

(
z2 − 1

)2
,

p8(s, z) = s2
(
−z10 + 3z8 + 32z6 + 364z4 + 289z2 + 17

)

+s
(
3z10 − 19z8 + 106z6 + 102z4 − 173z2 − 19

)

+2
(
−z8 + 7z6 − 9z4 + z2 + 2

)
,

p9(s, z) = 2s4
(
17z6 + 183z4 + 143z2 + 9

)
+ s3

(
77z8 + 922z6 − 92z4 − 842z2 − 65

)

+s2
(
z2 − 1

)2 (
46z6 + 889z4 + 1030z2 + 87

)

+s
(
z2 − 1

)3 (
256z4 + 483z2 + 51

)
+

(
z2 − 1

)4 (
74z2 + 11

)
,

p10(s, z) = −s5
(
13z8 − 66z6 + 1288z4 + 2706z2 + 283

)

+s4
(
−26z10 + 173z8 − 2504z6 − 2098z4 + 7690z2 + 989

)

+s3
(
−13z12 + 122z10 − 1190z8 + 830z6 + 8809z4 − 7288z2 − 1270

)

+s2
(
z2 − 1

)2 (
15z8 − 18z6 + 397z4 + 3716z2 + 706

)

−s
(
z2 − 1

)3 (
15z6 + 19z4 − 403z2 − 143

)
+

(
z2 − 1

)4 (
13z4 − 22z2 + 1

)
,

p11(s, z) = s2
(
5z2 + 3

)
+ z2 − 1 ,

p12(s, z) = s2
(
z6 − 6z4 − 9z2 − 2

)
− s

(
z2 − 1

)3
+ z4 − 1 ,

p13(s, z) = s3
(
z4 + 22z2 + 9

)
+ s2

(
z6 + 11z4 − 33z2 − 11

)

−s
(
2z6 + 17z4 − 24z2 + 5

)
+

(
z2 − 1

)2 (
z2 + 7

)
,

p14(s, z) = s3
(
3z4 + 12z2 + 1

)
+ s2

(
4z6 + 15z4 − 18z2 − 1

)

+s
(
z2 − 1

)2 (
7z2 − 1

)
−

(
z2 − 1

)3
,

p15(s, z) = s
(
z2 − 1

)
+ z2 + 1 ,

p16(s, z) = s3
(
5z4 + 24z2 + 3

)
+ s2

(
6z6 + 37z4 − 36z2 − 7

)

+s
(
z2 − 1

)2 (
19z2 + 5

)
+

(
z2 − 1

)3
,

p17(s, z) = s2
(
z6 − 3z4 + 39z2 + 27

)
− 2s

(
z6 − 3z4 − 5z2 + 7

)
+ z6 − 3z4 + 7z2 − 5 ,

p18(s, z) = s2
(
3z4 − 18z2 − 49

)
− 2s3/2

(
z4 − 10z2 + 9

)
+ 3s

(
z6 − 6z4 − 11z2 + 16

)

−2
√
s
(
z2 − 5

) (
z2 − 1

)2
+

(
z2 − 1

)2 (
3z2 − 7

)
,

p19(s, z) = s2
(
37z4 + 86z2 + 21

)
+ 16s

(
2z4 − z2 − 1

)
+

(
z2 − 1

)2
,

p20(s, z) = s2
(
z8 − 4z6 + 154z4 + 340z2 + 85

)
− 2s

(
z8 − 4z6 − 58z4 + 28z2 + 33

)

+
(
z2 − 1

)2 (
z4 − 2z2 + 5

)
,
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p21(s, z) = s3
(
3z6 − 37z4 − 359z2 − 183

)
− 2s5/2

(
z6 − 35z4 − 5z2 + 39

)

+s2
(
6z8 − 77z6 − 613z4 + 305z2 + 379

)
− 4s3/2

(
z2 − 1

)2 (
z4 − 27z2 − 34

)

+s
(
z2 − 1

)2 (
3z6 − 31z4 − 323z2 − 229

)
− 2

√
s
(
z2 − 1

)3 (
z4 − 14z2 − 29

)

+
(
z2 − 1

)3 (
3z4 − 10z2 − 33

)
,

p22(s, z) = 2s4
(
15z6 + 153z4 + 113z2 + 7

)
+ s3

(
69z8 + 754z6 − 132z4 − 642z2 − 49

)

+s2
(
z2 − 1

)2 (
42z6 + 717z4 + 742z2 + 63

)
+ 5s

(
z2 − 1

)3 (
40z4 + 63z2 + 7

)

+
(
z2 − 1

)4 (
38z2 + 7

)
. (A.1)

A.2 Functions for the QCD corrections to the HI

The one-loop QCD functions [50, 77] can be computed analytically,

ω
(1)
77,T (ŝ) = − 8

3
log

(
µb

mb

)
− (

√
ŝ+ 1)2(ŝ3/2 − 10ŝ+ 13

√
ŝ− 8)Li2(1− ŝ)

6(ŝ− 1)2

+
2
√
ŝ(ŝ2 − 6ŝ− 3)Li2(1−

√
ŝ)

3(ŝ− 1)2
− π2(3ŝ3/2 + 22ŝ+ 23

√
ŝ+ 16)(

√
ŝ− 1)2

36(ŝ− 1)2

+
5ŝ3 − 54ŝ2 + 57ŝ− 8

18(ŝ− 1)2
− log(1− ŝ) +

ŝ(5ŝ+ 1) log(ŝ)

3(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
79,T (ŝ) = − 4

3
log

(
µb

mb

)
− 2

√
ŝ(ŝ+ 3)Li2(1−

√
ŝ)

3(ŝ− 1)2
− π2(16ŝ+ 29

√
ŝ+ 19)(

√
ŝ− 1)2

36(ŝ− 1)2

+
ŝ2 − 6ŝ+ 5

6(ŝ− 1)2
+

(
√
ŝ+ 1)2(8ŝ− 15

√
ŝ+ 9)Li2(1− ŝ)

6(ŝ− 1)2

− (5ŝ+ 1) log(1− ŝ)

6ŝ
+

ŝ(3ŝ+ 1) log(ŝ)

6(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
99,T (ŝ) =

(
√
ŝ+ 1)2(8ŝ3/2 − 15ŝ+ 4

√
ŝ− 5)Li2(1− ŝ)

6(ŝ− 1)2
√
ŝ

− 2(ŝ2 − 12ŝ− 5)Li2(1−
√
ŝ)

3(ŝ− 1)2
√
ŝ

− π2(16ŝ3/2 + 29ŝ+ 4
√
ŝ+ 15)(

√
ŝ− 1)2

36(ŝ− 1)2
√
ŝ

+
(2ŝ2 − 7ŝ− 5) log(ŝ)

3(ŝ− 1)2

+
ŝ2 + 18ŝ− 19

6(ŝ− 1)2
− (2ŝ+ 1) log(1− ŝ)

3ŝ
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
710,A(ŝ) = − 4

3
log

(
µb

mb

)
+

2(4ŝ2 − 13ŝ− 1)Li2(1−
√
ŝ)

3(ŝ− 1)2
− (2ŝ2 − 9ŝ− 3)Li2(1− ŝ)

3(ŝ− 1)2

− (3ŝ2 − 16ŝ+ 13) log(1−
√
ŝ)

3(ŝ− 1)2
+

(4ŝ2 − 13ŝ− 1) log(1−
√
ŝ) log(ŝ)

3(ŝ− 1)2

− (2ŝ2 − 9ŝ− 3) log(1− ŝ) log(ŝ)

3(ŝ− 1)2
+

(ŝ3 − 23ŝ2 + 23ŝ− 1) log(1− ŝ)

6(ŝ− 1)2ŝ

+
(ŝ− 20

√
ŝ+ 5)(

√
ŝ− 1)2

6(ŝ− 1)2
− π2

3
,

ω
(1)
910,A(ŝ) = − 2(ŝ2 − 3ŝ− 1)Li2(1− ŝ)

3(ŝ− 1)2
− 4(5− 2ŝ)ŝLi2(1−

√
ŝ)

3(ŝ− 1)2
− (4

√
ŝ− 3)(

√
ŝ− 1)2

3(ŝ− 1)2
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p21(s, z) = s3
(
3z6 − 37z4 − 359z2 − 183

)
− 2s5/2

(
z6 − 35z4 − 5z2 + 39

)

+s2
(
6z8 − 77z6 − 613z4 + 305z2 + 379

)
− 4s3/2

(
z2 − 1

)2 (
z4 − 27z2 − 34

)

+s
(
z2 − 1

)2 (
3z6 − 31z4 − 323z2 − 229

)
− 2

√
s
(
z2 − 1

)3 (
z4 − 14z2 − 29

)

+
(
z2 − 1

)3 (
3z4 − 10z2 − 33

)
,

p22(s, z) = 2s4
(
15z6 + 153z4 + 113z2 + 7

)
+ s3

(
69z8 + 754z6 − 132z4 − 642z2 − 49

)

+s2
(
z2 − 1

)2 (
42z6 + 717z4 + 742z2 + 63

)
+ 5s

(
z2 − 1

)3 (
40z4 + 63z2 + 7

)

+
(
z2 − 1

)4 (
38z2 + 7

)
. (A.1)

A.2 Functions for the QCD corrections to the HI

The one-loop QCD functions [50, 77] can be computed analytically,

ω
(1)
77,T (ŝ) = − 8

3
log

(
µb

mb

)
− (

√
ŝ+ 1)2(ŝ3/2 − 10ŝ+ 13

√
ŝ− 8)Li2(1− ŝ)

6(ŝ− 1)2

+
2
√
ŝ(ŝ2 − 6ŝ− 3)Li2(1−

√
ŝ)

3(ŝ− 1)2
− π2(3ŝ3/2 + 22ŝ+ 23

√
ŝ+ 16)(

√
ŝ− 1)2

36(ŝ− 1)2

+
5ŝ3 − 54ŝ2 + 57ŝ− 8

18(ŝ− 1)2
− log(1− ŝ) +

ŝ(5ŝ+ 1) log(ŝ)

3(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
79,T (ŝ) = − 4

3
log

(
µb

mb

)
− 2

√
ŝ(ŝ+ 3)Li2(1−

√
ŝ)

3(ŝ− 1)2
− π2(16ŝ+ 29

√
ŝ+ 19)(

√
ŝ− 1)2

36(ŝ− 1)2

+
ŝ2 − 6ŝ+ 5

6(ŝ− 1)2
+

(
√
ŝ+ 1)2(8ŝ− 15

√
ŝ+ 9)Li2(1− ŝ)

6(ŝ− 1)2

− (5ŝ+ 1) log(1− ŝ)

6ŝ
+

ŝ(3ŝ+ 1) log(ŝ)

6(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
99,T (ŝ) =

(
√
ŝ+ 1)2(8ŝ3/2 − 15ŝ+ 4

√
ŝ− 5)Li2(1− ŝ)

6(ŝ− 1)2
√
ŝ

− 2(ŝ2 − 12ŝ− 5)Li2(1−
√
ŝ)

3(ŝ− 1)2
√
ŝ

− π2(16ŝ3/2 + 29ŝ+ 4
√
ŝ+ 15)(

√
ŝ− 1)2

36(ŝ− 1)2
√
ŝ

+
(2ŝ2 − 7ŝ− 5) log(ŝ)

3(ŝ− 1)2

+
ŝ2 + 18ŝ− 19

6(ŝ− 1)2
− (2ŝ+ 1) log(1− ŝ)

3ŝ
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
710,A(ŝ) = − 4

3
log

(
µb

mb

)
+

2(4ŝ2 − 13ŝ− 1)Li2(1−
√
ŝ)

3(ŝ− 1)2
− (2ŝ2 − 9ŝ− 3)Li2(1− ŝ)

3(ŝ− 1)2

− (3ŝ2 − 16ŝ+ 13) log(1−
√
ŝ)

3(ŝ− 1)2
+

(4ŝ2 − 13ŝ− 1) log(1−
√
ŝ) log(ŝ)

3(ŝ− 1)2

− (2ŝ2 − 9ŝ− 3) log(1− ŝ) log(ŝ)

3(ŝ− 1)2
+

(ŝ3 − 23ŝ2 + 23ŝ− 1) log(1− ŝ)

6(ŝ− 1)2ŝ

+
(ŝ− 20

√
ŝ+ 5)(

√
ŝ− 1)2

6(ŝ− 1)2
− π2

3
,

ω
(1)
910,A(ŝ) = − 2(ŝ2 − 3ŝ− 1)Li2(1− ŝ)

3(ŝ− 1)2
− 4(5− 2ŝ)ŝLi2(1−

√
ŝ)

3(ŝ− 1)2
− (4

√
ŝ− 3)(

√
ŝ− 1)2

3(ŝ− 1)2

– 43 –

J
H
E
P
0
6
(
2
0
1
5
)
1
7
6

− 2(2ŝ2 − 7ŝ+ 5) log(1−
√
ŝ)

3(ŝ− 1)2
− 2(ŝ2 − 3ŝ− 1) log(1− ŝ) log(ŝ)

3(ŝ− 1)2

+
(2ŝ3 − 11ŝ2 + 10ŝ− 1) log(1− ŝ)

3(ŝ− 1)2ŝ
+

2ŝ(2ŝ− 5) log(1−
√
ŝ) log(ŝ)

3(ŝ− 1)2
− π2

3
,

ω
(1)
77,L(ŝ) = − 8

3
log

(
µb

mb

)
+

(
√
ŝ+ 1)2(4ŝ3/2 − 7ŝ+ 2

√
ŝ− 3)Li2(1− ŝ)

3(ŝ− 1)2
√
ŝ

− 9ŝ2−38ŝ+29

6(ŝ− 1)2

− 4(ŝ2 − 6ŝ− 3)Li2(1−
√
ŝ)

3(ŝ− 1)2
√
ŝ

− π2(8ŝ3/2 + 13ŝ+ 2
√
ŝ+ 9)(

√
ŝ− 1)2

18(ŝ− 1)2
√
ŝ

− (ŝ3 − 3ŝ+ 2) log(1− ŝ)

3(ŝ− 1)2ŝ
+

2(ŝ2 − 3ŝ− 3) log(ŝ)

3(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
79,L(ŝ) = − 4

3
log

(
µb

mb

)
+

4
√
ŝ(ŝ+ 3)Li2(1−

√
ŝ)

3(ŝ− 1)2
+

(
√
ŝ+ 1)2(4ŝ−9

√
ŝ+3)Li2(1−ŝ)

3(ŝ−1)2

+
7ŝ2 − 2ŝ− 5

6(ŝ− 1)2
− π2(8ŝ+ 19

√
ŝ+ 5)(

√
ŝ−1)2

18(ŝ−1)2
− (2ŝ+ 1) log(1− ŝ)

3ŝ

+
(ŝ− 7)ŝ log(ŝ)

3(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) ,

ω
(1)
99,L(ŝ) = − (

√
ŝ+ 1)2(ŝ3/2 − 8ŝ+ 3

√
ŝ− 4)Li2(1− ŝ)

3(ŝ− 1)2
+

4
√
ŝ(ŝ2 − 12ŝ− 5)Li2(1−

√
ŝ)

3(ŝ− 1)2

− π2(3ŝ3/2 + 20ŝ+
√
ŝ+ 8)(

√
ŝ− 1)2

18(ŝ− 1)2
+

4ŝ3 − 51ŝ2 + 42ŝ+ 5

6(ŝ− 1)2
− log(1− ŝ)

+
8ŝ(2ŝ+ 1) log(ŝ)

3(ŝ− 1)2
+

2

3
log(1− ŝ) log(ŝ) . (A.2)

The two-loop QCD functions [88, 89] are obtained from least-squares fits and are also valid

for all q2. The necessary data was kindly provided by the authors of [88, 89].

ω
(2)
99,T (ŝ) = β

(5)
0 log

(
µb

mb

)
ω
(1)
99,T (ŝ) + 54.919(1− ŝ)4 − 136.374(1− ŝ)3

+ 119.344(1− ŝ)2 − 15.6175(1− ŝ)− 31.1706 ,

ω
(2)
910,A(ŝ) = β

(5)
0 log

(
µb

mb

)
ω
(1)
910,A(ŝ) + 74.3717(1− ŝ)4 − 183.885(1− ŝ)3

+ 158.739(1− ŝ)2 − 29.0124(1− ŝ)− 30.8056 ,

ω
(2)
99,L(ŝ) = β

(5)
0 log

(
µb

mb

)
ω
(1)
99,L(ŝ)− 5.95974(1− s)3 + 11.7493(1− s)2

+ 12.2293(1− s)− 38.6457 . (A.3)

They are given for nh = 2 and nl = 3. β
(5)
0 = 23/3 denotes the one-loop QCD β-function

for five active flavours.
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A.3 Functions for the QED corrections to the HI

The following functions are again obtained by least-squares fits. They are valid in the

low-q2 region (1 GeV2 < q2 < 6 GeV2) only.

ω
(em)
77,T (ŝ) = ln

(
m2

b

m2
�

)
1.54986− 1703.72 ŝ5 + 1653.38 ŝ4 − 683.608 ŝ3 + 179.279 ŝ2 − 35.5047 ŝ

8(1− ŝ)2
,

ω
(em)
77,L (ŝ) = ln

(
m2

b

m2
�

)
9.73761 + 647.747 ŝ4 − 642.637 ŝ3 + 276.839 ŝ2 − 68.3562 ŝ− 1.6755

ŝ

4(1− ŝ)2
,

ω
(em)
99,T (ŝ) = ln

(
m2

b

m2
�

)
2.2596 + 157.984 ŝ4 − 141.281 ŝ3 + 52.8914 ŝ2 − 13.5377 ŝ+ 0.0284049

ŝ

2ŝ(1− ŝ)2
,

ω
(em)
99,L (ŝ) = ln

(
m2

b

m2
�

)
−0.768521− 80.8068 ŝ4 + 70.0821 ŝ3 − 21.2787 ŝ2 + 2.9335 ŝ− 0.0180809

ŝ

(1− ŝ)2
,

ω
(em)
79,T (ŝ) = ln

(
m2

b

m2
�

)
19.063 + 2158.03ŝ4 − 2062.92ŝ3 + 830.53ŝ2 − 186.12ŝ+ 0.324236

ŝ

8(1− ŝ)2
,

ω
(em)
79,L (ŝ) = ln

(
m2

b

m2
�

)
−6.03641− 896.643ŝ4 + 807.349ŝ3 − 278.559ŝ2 + 47.6636ŝ− 0.190701

ŝ

4(1− ŝ)2
,

ω
(em)
27,T (ŝ) = ln

(
m2

b

m2
�

) [
21.5291 + 3044.94ŝ4 − 2563.05ŝ3 + 874.074ŝ2 − 175.874ŝ+ 0.121398

ŝ

8(1− ŝ)2

+ i
2.49475 + 598.376ŝ4 − 456.831ŝ3 + 117.683ŝ2 − 9.90525ŝ− 0.0116501

ŝ

8(1− ŝ)2

]

+
8

9
ω
(em)
79,T (ŝ) ln

( µb

5GeV

)
,

ω
(em)
27,L (ŝ) = ln

(
m2

b

m2
�

) [
−8.01684− 1121.13ŝ4 + 882.711ŝ3 − 280.866ŝ2 + 54.1943ŝ− 0.128988

ŝ

4(1− ŝ)2

+ i
−2.14058− 588.771ŝ4 + 483.997ŝ3 − 124.579ŝ2 + 12.3282ŝ+ 0.0145059

ŝ

4(1− ŝ)2

]

+
8

9
ω
(em)
79,L (ŝ) ln

( µb

5GeV

)
,

ω
(em)
29,T (ŝ) = ln

(
m2

b

m2
�

) [
4.54727+330.182ŝ4−258.194ŝ3+79.8713ŝ2−19.6855ŝ+ 0.0371348

ŝ

2ŝ(1− ŝ)2

+ i
73.9149ŝ4 − 61.1338ŝ3 + 14.6517ŝ2 − 0.102331ŝ+ 0.710037

2ŝ(1− ŝ)2

]

+
16

9
ω
(em)
99,T (ŝ) ln

( µb

5GeV

)
,

ω
(em)
29,L (ŝ) = ln

(
m2

b

m2
�

) [
−2.27221− 298.369ŝ4 + 224.662ŝ3 − 65.1375ŝ2 + 11.5686ŝ− 0.0233098

ŝ

(1− ŝ)2

+ i
−0.666157− 120.303ŝ4 + 109.315ŝ3 − 28.2734ŝ2 + 2.44527ŝ+ 0.00279781

ŝ

(1− ŝ)2

]

+
16

9
ω
(em)
99,L (ŝ) ln

( µb

5GeV

)
,
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A.3 Functions for the QED corrections to the HI

The following functions are again obtained by least-squares fits. They are valid in the

low-q2 region (1 GeV2 < q2 < 6 GeV2) only.

ω
(em)
77,T (ŝ) = ln

(
m2

b

m2
�

)
1.54986− 1703.72 ŝ5 + 1653.38 ŝ4 − 683.608 ŝ3 + 179.279 ŝ2 − 35.5047 ŝ

8(1− ŝ)2
,

ω
(em)
77,L (ŝ) = ln

(
m2

b

m2
�

)
9.73761 + 647.747 ŝ4 − 642.637 ŝ3 + 276.839 ŝ2 − 68.3562 ŝ− 1.6755

ŝ

4(1− ŝ)2
,

ω
(em)
99,T (ŝ) = ln

(
m2

b

m2
�

)
2.2596 + 157.984 ŝ4 − 141.281 ŝ3 + 52.8914 ŝ2 − 13.5377 ŝ+ 0.0284049

ŝ

2ŝ(1− ŝ)2
,

ω
(em)
99,L (ŝ) = ln

(
m2

b

m2
�

)
−0.768521− 80.8068 ŝ4 + 70.0821 ŝ3 − 21.2787 ŝ2 + 2.9335 ŝ− 0.0180809

ŝ

(1− ŝ)2
,

ω
(em)
79,T (ŝ) = ln

(
m2

b

m2
�

)
19.063 + 2158.03ŝ4 − 2062.92ŝ3 + 830.53ŝ2 − 186.12ŝ+ 0.324236

ŝ

8(1− ŝ)2
,

ω
(em)
79,L (ŝ) = ln

(
m2

b

m2
�

)
−6.03641− 896.643ŝ4 + 807.349ŝ3 − 278.559ŝ2 + 47.6636ŝ− 0.190701

ŝ

4(1− ŝ)2
,

ω
(em)
27,T (ŝ) = ln

(
m2

b

m2
�

) [
21.5291 + 3044.94ŝ4 − 2563.05ŝ3 + 874.074ŝ2 − 175.874ŝ+ 0.121398

ŝ

8(1− ŝ)2

+ i
2.49475 + 598.376ŝ4 − 456.831ŝ3 + 117.683ŝ2 − 9.90525ŝ− 0.0116501

ŝ

8(1− ŝ)2

]

+
8

9
ω
(em)
79,T (ŝ) ln

( µb

5GeV

)
,

ω
(em)
27,L (ŝ) = ln

(
m2

b

m2
�

) [
−8.01684− 1121.13ŝ4 + 882.711ŝ3 − 280.866ŝ2 + 54.1943ŝ− 0.128988

ŝ

4(1− ŝ)2

+ i
−2.14058− 588.771ŝ4 + 483.997ŝ3 − 124.579ŝ2 + 12.3282ŝ+ 0.0145059

ŝ

4(1− ŝ)2

]

+
8

9
ω
(em)
79,L (ŝ) ln

( µb

5GeV

)
,

ω
(em)
29,T (ŝ) = ln

(
m2

b

m2
�

) [
4.54727+330.182ŝ4−258.194ŝ3+79.8713ŝ2−19.6855ŝ+ 0.0371348

ŝ

2ŝ(1− ŝ)2

+ i
73.9149ŝ4 − 61.1338ŝ3 + 14.6517ŝ2 − 0.102331ŝ+ 0.710037

2ŝ(1− ŝ)2

]

+
16

9
ω
(em)
99,T (ŝ) ln

( µb

5GeV

)
,

ω
(em)
29,L (ŝ) = ln

(
m2

b

m2
�

) [
−2.27221− 298.369ŝ4 + 224.662ŝ3 − 65.1375ŝ2 + 11.5686ŝ− 0.0233098

ŝ

(1− ŝ)2

+ i
−0.666157− 120.303ŝ4 + 109.315ŝ3 − 28.2734ŝ2 + 2.44527ŝ+ 0.00279781

ŝ

(1− ŝ)2

]

+
16

9
ω
(em)
99,L (ŝ) ln

( µb

5GeV

)
,
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ω
(em)
22,T (ŝ) = ln

(
m2

b

m2
�

) [
2.84257 + 269.974ŝ4 − 194.443ŝ3 + 48.4535ŝ2 − 8.24929ŝ+ 0.0111118

ŝ

2ŝ(1− ŝ)2

+ ln
( µb

5GeV

)4(4.54727+330.182ŝ4−258.194ŝ3+79.8713ŝ2−19.6855ŝ+ 0.0371348
ŝ )

9ŝ(1− ŝ)2

]

+
64

81
ω
(em)
99,T (ŝ) ln

2
( µb

5GeV

)
,

ω
(em)
22,L (ŝ) = ln

(
m2

b

m2
�

) [
−1.71832− 234.11ŝ4 + 162.126ŝ3 − 37.2361ŝ2 + 6.29949ŝ− 0.00810233

ŝ

(1− ŝ)2

+ ln
( µb

5GeV

)8(224.662ŝ3−2.27221−298.369ŝ4−65.1375ŝ2+11.5686ŝ− 0.0233098
ŝ )

9(1− ŝ)2

]

+
64

81
ω
(em)
99,L (ŝ) ln

2
( µb

5GeV

)
,

ω
(em)
710,A(ŝ) = ln

(
m2

b

m2
�

) [
7− 16

√
ŝ+ 9 ŝ

4 (1− ŝ)
+ ln(1−

√
ŝ) +

1 + 3 ŝ

1− ŝ
ln

(
1 +

√
ŝ

2

)
− ŝ ln ŝ

(1− ŝ)

]
,

ω
(em)
910,A(ŝ) = ln

(
m2

b

m2
�

)[
ln(1−

√
ŝ)− 5− 16

√
ŝ+ 11 ŝ

4 (1− ŝ)

+
1− 5 ŝ

1− ŝ
ln

(
1 +

√
ŝ

2

)
− (1− 3 ŝ) ln ŝ

(1− ŝ)

]
,

ω
(em)
210,A(ŝ) = ln

(
m2

b

m2
�

) [−351.322ŝ4 + 378.173ŝ3 − 160.158ŝ2 + 24.2096ŝ+ 0.305176

24ŝ(1− ŝ)2

+i
7.98625 + 238.507 (ŝ− a)− 766.869 (ŝ− a)2

24ŝ(1− ŝ)2
(ŝ− a)2 θ(ŝ− a)

]

+
8

9
ω
(em)
910,A(ŝ) ln

( µb

5GeV

)
, (A.4)

with a = (4m2
c/m

2
b)

2.

The respective high-q2 functions for the branching ratio that are obtained by a least-

squares fit (for fixed values of mb and mc) read

ω
(em)
29 (ŝ) = ln

(
m2

b

m2
�

) [
Σ4(ŝ) + iΣI

4(ŝ)

8(1− ŝ)2(1 + 2ŝ)

]
+

16

9
ω
(em)
1010 (ŝ) ln

( µb

5GeV

)
, (A.5)

ω
(em)
22 (ŝ) = ln

(
m2

b

m2
�

) [
Σ5(ŝ)

8(1− ŝ)2(1 + 2ŝ)
+

Σ4(ŝ)

9(1− ŝ)2(1 + 2ŝ)
ln
( µb

5GeV

)]

+
64

81
ω
(em)
1010 (ŝ) ln

2
( µb

5GeV

)
, (A.6)

ω
(em)
27 (ŝ) = ln

(
m2

b

m2
�

) [
Σ6(ŝ) + iΣI

6(ŝ)

96(1− ŝ)2

]
+

8

9
ω
(em)
79 (ŝ) ln

( µb

5GeV

)
. (A.7)

The functions Σi are polynomials in δ = 1− ŝ and are valid for ŝ > 0.65.

Σ4(ŝ) = −153.673 δ2 + 498.823 δ3 − 1146.74 δ4 + 1138.81 δ5 ,

ΣI
4(ŝ) = −255.712 δ2 + 1139.10 δ3 − 2414.21 δ4 + 2379.91 δ5 ,

Σ5(ŝ) = −220.101 δ2 + 875.703 δ3 − 1920.56 δ4 + 1822.07 δ5 ,

Σ6(ŝ) = −310.113 δ2 + 834.253 δ3 − 2181.94 δ4 + 2133.78 δ5 ,

ΣI
6(ŝ) = −518.180 δ2 + 2047.18 δ3 − 4470.04 δ4 + 4827.74 δ5 . (A.8)
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B New physics formulas

HT [1, 3.5]ee =
[
0.0162226 I(R7R

∗
8) + 0.00186782 I(R7R

∗
9) + 0.00985919 I(R8R

∗
9)

− 0.000201564 I(R8R
∗
10) + 0.0465868 I(R7)− 0.00822885 I(R8)

− 0.0187815 I(R9) + 0.000379966 I(R10) + 0.393156R(R7)

+ 0.0400072R(R8) + 0.0531851R(R9)− 0.0385002R(R10)

+ 0.0458427R(R7R
∗
8)− 0.369964R(R7R

∗
9) + 0.00570607R(R7R

∗
10)

− 0.0369498R(R8R
∗
9) + 0.000616422R(R8R

∗
10)− 0.00978058R(R9R

∗
10)

+ 0.204994 |R7|2 + 0.00230146 |R8|2 + 0.244813 |R9|2

+ 1.74294 |R10|2 + 0.632156
]
× 10−7 , (B.1)

HT [3.5, 6]ee =
[
0.00519889 I(R7R

∗
8) + 0.00141211 I(R7R

∗
9) + 0.00745377 I(R8R

∗
9)

− 0.000152386 I(R8R
∗
10) + 0.0151043 I(R7) + 0.00358335 I(R8)

− 0.0100672 I(R9) + 0.000148662 I(R10)− 0.138516R(R7)

− 0.0131665R(R8) + 0.375959R(R9)− 0.074623R(R10)

+ 0.0143568R(R7R
∗
8)− 0.254325R(R7R

∗
9) + 0.00431139R(R7R

∗
10)

− 0.0260943R(R8R
∗
9) + 0.000467687R(R8R

∗
10)− 0.0157259R(R9R

∗
10)

+ 0.0631028 |R7|2 + 0.000727107 |R8|2 + 0.273706 |R9|2

+ 1.96638 |R10|2 + 0.257773
]
× 10−7 , (B.2)

HT [1, 6]ee =
[
0.0214215 I(R7R

∗
8) + 0.00327993 I(R7R

∗
9) + 0.017313 I(R8R

∗
9)

− 0.000353949 I(R8R
∗
10) + 0.0616911 I(R7)− 0.0046455 I(R8)

− 0.0288487 I(R9) + 0.000528628 I(R10) + 0.25464R(R7)

+ 0.0268407R(R8) + 0.429144R(R9)− 0.113123R(R10)

+ 0.0601994R(R7R
∗
8)− 0.624289R(R7R

∗
9) + 0.0100175R(R7R

∗
10)

− 0.0630441R(R8R
∗
9) + 0.00108411R(R8R

∗
10)− 0.0255065R(R9R

∗
10)

+ 0.268097 |R7|2 + 0.00302857 |R8|2 + 0.518519 |R9|2

+ 3.70932 |R10|2 + 0.889929
]
× 10−7 , (B.3)

HT [1, 3.5]µµ =
[
0.0162226 I(R7R

∗
8) + 0.00186782 I(R7R

∗
9) + 0.00985919 I(R8R

∗
9)

− 0.000201564 I(R8R
∗
10) + 0.0478295 I(R7)− 0.00813434 I(R8)

− 0.0247652 I(R9) + 0.000379966 I(R10) + 0.459563R(R7)

+ 0.0451794R(R8)− 0.155638R(R9)− 0.0385002R(R10)

+ 0.0460521R(R7R
∗
8)− 0.337431R(R7R

∗
9) + 0.00570607R(R7R

∗
10)

− 0.0344757R(R8R
∗
9) + 0.000616422R(R8R

∗
10)− 0.00978058R(R9R

∗
10)

+ 0.206371 |R7|2 + 0.00230943 |R8|2 + 0.179467 |R9|2

+ 1.28881 |R10|2 + 0.436438
]
× 10−7 , (B.4)

HT [3.5, 6]µµ =
[
0.00519889 I(R7R

∗
8) + 0.00141211 I(R7R

∗
9) + 0.00745377 I(R8R

∗
9)

− 0.000152386 I(R8R
∗
10) + 0.0165184 I(R7) + 0.00369089 I(R8)

− 0.0169196 I(R9) + 0.000148662 I(R10)− 0.112376R(R7)
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B New physics formulas

HT [1, 3.5]ee =
[
0.0162226 I(R7R

∗
8) + 0.00186782 I(R7R

∗
9) + 0.00985919 I(R8R

∗
9)

− 0.000201564 I(R8R
∗
10) + 0.0465868 I(R7)− 0.00822885 I(R8)

− 0.0187815 I(R9) + 0.000379966 I(R10) + 0.393156R(R7)

+ 0.0400072R(R8) + 0.0531851R(R9)− 0.0385002R(R10)

+ 0.0458427R(R7R
∗
8)− 0.369964R(R7R

∗
9) + 0.00570607R(R7R

∗
10)

− 0.0369498R(R8R
∗
9) + 0.000616422R(R8R

∗
10)− 0.00978058R(R9R

∗
10)

+ 0.204994 |R7|2 + 0.00230146 |R8|2 + 0.244813 |R9|2

+ 1.74294 |R10|2 + 0.632156
]
× 10−7 , (B.1)

HT [3.5, 6]ee =
[
0.00519889 I(R7R

∗
8) + 0.00141211 I(R7R

∗
9) + 0.00745377 I(R8R

∗
9)

− 0.000152386 I(R8R
∗
10) + 0.0151043 I(R7) + 0.00358335 I(R8)

− 0.0100672 I(R9) + 0.000148662 I(R10)− 0.138516R(R7)

− 0.0131665R(R8) + 0.375959R(R9)− 0.074623R(R10)

+ 0.0143568R(R7R
∗
8)− 0.254325R(R7R

∗
9) + 0.00431139R(R7R

∗
10)

− 0.0260943R(R8R
∗
9) + 0.000467687R(R8R

∗
10)− 0.0157259R(R9R

∗
10)

+ 0.0631028 |R7|2 + 0.000727107 |R8|2 + 0.273706 |R9|2

+ 1.96638 |R10|2 + 0.257773
]
× 10−7 , (B.2)

HT [1, 6]ee =
[
0.0214215 I(R7R

∗
8) + 0.00327993 I(R7R

∗
9) + 0.017313 I(R8R

∗
9)

− 0.000353949 I(R8R
∗
10) + 0.0616911 I(R7)− 0.0046455 I(R8)

− 0.0288487 I(R9) + 0.000528628 I(R10) + 0.25464R(R7)

+ 0.0268407R(R8) + 0.429144R(R9)− 0.113123R(R10)

+ 0.0601994R(R7R
∗
8)− 0.624289R(R7R

∗
9) + 0.0100175R(R7R

∗
10)

− 0.0630441R(R8R
∗
9) + 0.00108411R(R8R

∗
10)− 0.0255065R(R9R

∗
10)

+ 0.268097 |R7|2 + 0.00302857 |R8|2 + 0.518519 |R9|2

+ 3.70932 |R10|2 + 0.889929
]
× 10−7 , (B.3)

HT [1, 3.5]µµ =
[
0.0162226 I(R7R

∗
8) + 0.00186782 I(R7R

∗
9) + 0.00985919 I(R8R

∗
9)

− 0.000201564 I(R8R
∗
10) + 0.0478295 I(R7)− 0.00813434 I(R8)

− 0.0247652 I(R9) + 0.000379966 I(R10) + 0.459563R(R7)

+ 0.0451794R(R8)− 0.155638R(R9)− 0.0385002R(R10)

+ 0.0460521R(R7R
∗
8)− 0.337431R(R7R

∗
9) + 0.00570607R(R7R

∗
10)

− 0.0344757R(R8R
∗
9) + 0.000616422R(R8R

∗
10)− 0.00978058R(R9R

∗
10)

+ 0.206371 |R7|2 + 0.00230943 |R8|2 + 0.179467 |R9|2

+ 1.28881 |R10|2 + 0.436438
]
× 10−7 , (B.4)

HT [3.5, 6]µµ =
[
0.00519889 I(R7R

∗
8) + 0.00141211 I(R7R

∗
9) + 0.00745377 I(R8R

∗
9)

− 0.000152386 I(R8R
∗
10) + 0.0165184 I(R7) + 0.00369089 I(R8)

− 0.0169196 I(R9) + 0.000148662 I(R10)− 0.112376R(R7)

– 47 –

J
H
E
P
0
6
(
2
0
1
5
)
1
7
6

− 0.0111424R(R8) + 0.249027R(R9)− 0.074623R(R10)

+ 0.0146547R(R7R
∗
8)− 0.244671R(R7R

∗
9) + 0.00431139R(R7R

∗
10)

− 0.0253601R(R8R
∗
9) + 0.000467687R(R8R

∗
10)− 0.0157259R(R9R

∗
10)

+ 0.0650616 |R7|2 + 0.000738436 |R8|2 + 0.239011 |R9|2

+ 1.72527 |R10|2 + 0.123204
]
× 10−7 , (B.5)

HT [1, 6]µµ =
[
0.0214215 I(R7R

∗
8) + 0.00327993 I(R7R

∗
9) + 0.017313 I(R8R

∗
9)

− 0.000353949 I(R8R
∗
10) + 0.0643479 I(R7)− 0.00444346 I(R8)

− 0.0416848 I(R9) + 0.000528628 I(R10) + 0.347186R(R7)

+ 0.034037R(R8) + 0.0933889R(R9)− 0.113123R(R10)

+ 0.0607068R(R7R
∗
8)− 0.582101R(R7R

∗
9) + 0.0100175R(R7R

∗
10)

− 0.0598358R(R8R
∗
9) + 0.00108411R(R8R

∗
10)− 0.0255065R(R9R

∗
10)

+ 0.271433 |R7|2 + 0.00304786 |R8|2 + 0.418478 |R9|2

+ 3.01408 |R10|2 + 0.559642
]
× 10−7 , (B.6)

HA[1, 3.5]ee =
[
− 0.0000761415 I(R8R

∗
9) + 0.0259112 I(R8R

∗
10) + 0.0031943 I(R9R

∗
10)

− 0.000083788 I(R8) + 0.00025712 I(R9)− 0.112552 I(R10)

+ 0.0230277R(R7) + 0.00181543R(R8)− 0.0133235R(R9)

− 0.826626R(R10) + 0.00214715R(R7R
∗
9)− 0.849154R(R7R

∗
10)

+ 0.000222401R(R8R
∗
9)− 0.0847389R(R8R

∗
10) + 0.722934R(R9R

∗
10)

− 0.00174093 |R9|2 − 0.0120987 |R10|2 + 0.0121072
]
× 10−7 , (B.7)

HA[3.5, 6]ee =
[
− 0.000057133 I(R8R

∗
9) + 0.0194427 I(R8R

∗
10) + 0.00509883 I(R9R

∗
10)

− 0.000062727 I(R8) + 0.000151953 I(R9)− 0.0912157 I(R10)

+ 0.0172872R(R7) + 0.00136744R(R8)− 0.0259495R(R9)

+ 0.356293R(R10) + 0.00160379R(R7R
∗
9)− 0.605103R(R7R

∗
10)

+ 0.000169807R(R8R
∗
9)− 0.0623319R(R8R

∗
10) + 1.08406R(R9R

∗
10)

− 0.0027675 |R9|2 − 0.0192329 |R10|2 − 0.0115297
]
× 10−7 , (B.8)

HA[1, 6]ee =
[
− 0.000133274 I(R8R

∗
9) + 0.0453539 I(R8R

∗
10) + 0.00829314 I(R9R

∗
10)

− 0.000146515 I(R8) + 0.000409073 I(R9)− 0.203767 I(R10)

+ 0.0403149R(R7) + 0.00318287R(R8)− 0.0392731R(R9)

− 0.470333R(R10) + 0.00375094R(R7R
∗
9)− 1.45426R(R7R

∗
10)

+ 0.000392209R(R8R
∗
9)− 0.147071R(R8R

∗
10) + 1.80699R(R9R

∗
10)

− 0.00450843 |R9|2 − 0.0313316 |R10|2 + 0.000577448
]
× 10−7 , (B.9)

HA[1, 3.5]µµ =
[
− 0.0000761415 I(R8R

∗
9) + 0.0259112 I(R8R

∗
10) + 0.0031943 I(R9R

∗
10)

− 0.000083788 I(R8) + 0.00025712 I(R9)− 0.112552 I(R10)

+ 0.0230277R(R7) + 0.00181543R(R8)− 0.0133235R(R9)

− 0.875607R(R10) + 0.00214715R(R7R
∗
9)− 0.845327R(R7R

∗
10)
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+ 0.000222401R(R8R
∗
9)− 0.0844478R(R8R

∗
10) + 0.694542R(R9R

∗
10)

− 0.00174093 |R9|2 − 0.0120987 |R10|2 + 0.0131242
]
× 10−7 , (B.10)

HA[3.5, 6]µµ =
[
− 0.000057133 I(R8R

∗
9) + 0.0194427 I(R8R

∗
10) + 0.00509883 I(R9R

∗
10)

− 0.000062727 I(R8) + 0.000151953 I(R9)− 0.091289 I(R10)

+ 0.0172872R(R7) + 0.00136744R(R8)− 0.0259495R(R9)

+ 0.318008R(R10) + 0.00160379R(R7R
∗
9)− 0.619516R(R7R

∗
10)

+ 0.000169807R(R8R
∗
9)− 0.063428R(R8R

∗
10) + 1.07786R(R9R

∗
10)

− 0.0027675 |R9|2 − 0.0192329 |R10|2 − 0.0113078
]
× 10−7 , (B.11)

HA[1, 6]µµ =
[
− 0.000133274 I(R8R

∗
9) + 0.0453539 I(R8R

∗
10) + 0.00829314 I(R9R

∗
10)

− 0.000146515 I(R8) + 0.000409073 I(R9)− 0.203841 I(R10)

+ 0.0403149R(R7) + 0.00318287R(R8)− 0.0392731R(R9)

− 0.557599R(R10) + 0.00375094R(R7R
∗
9)− 1.46484R(R7R

∗
10)

+ 0.000392209R(R8R
∗
9)− 0.147876R(R8R

∗
10) + 1.77241R(R9R

∗
10)

− 0.00450843 |R9|2 − 0.0313316 |R10|2 + 0.00181642
]
× 10−7 , (B.12)

H3[1, 3.5]ee =
[
0.0264036 I(R10) + 3.07156R(R10)− 1.74043R(R7R

∗
10)

− 0.132357R(R8R
∗
10) + 2.94364R(R9R

∗
10)− 0.105444

]
× 10−9 , (B.13)

H3[3.5, 6]ee =
[
0.132813 I(R10) + 3.51904R(R10)− 0.913353R(R7R

∗
10)

− 0.0694587R(R8R
∗
10) + 2.4359R(R9R

∗
10)− 0.0872558

]
× 10−9 , (B.14)

H3[1, 6]ee =
[
0.159216 I(R10) + 6.5906R(R10)− 2.65379R(R7R

∗
10)

− 0.201815R(R8R
∗
10) + 5.37954R(R9R

∗
10)− 0.192699

]
× 10−9 , (B.15)

H3[1, 3.5]µµ =
[
0.010976 I(R10) + 1.27946R(R10)− 0.723502R(R7R

∗
10)

−0.0550209R(R8R
∗
10)+1.22368R(R9R

∗
10)−0.0438331

]
× 10−9 , (B.16)

H3[3.5, 6]µµ =
[
0.0552105 I(R10) + 1.46503R(R10)− 0.379682R(R7R

∗
10)

−0.0288741R(R8R
∗
10) + 1.01261R(R9R

∗
10)− 0.0362724

]
× 10−9 , (B.17)

H3[1, 6]µµ =
[
0.0661865 I(R10) + 2.74449R(R10)− 1.10318R(R7R

∗
10)

− 0.083895R(R8R
∗
10) + 2.23628R(R9R

∗
10)− 0.0801055

]
× 10−9 , (B.18)

H4[1, 3.5]ee =
[
− 0.0412679 I(R7)− 0.00313835 I(R8) + 0.200198 I(R9)

− 0.430034R(R7)− 0.034058R(R8) + 1.46516R(R9)

+ 0.0135748R(R7R
∗
8)− 0.361104R(R7R

∗
9)− 0.0274613R(R8R

∗
9)

+ 0.482688 |R9|2 + 0.0892516 |R7|2 + 0.00051617 |R8|2

+ 3.35446 |R10|2 + 1.6742
]
× 10−9 , (B.19)

H4[3.5, 6]ee =
[
− 0.0257056 I(R7)− 0.00195486 I(R8) + 0.127314 I(R9)

− 0.17595R(R7)− 0.0138586R(R8) + 0.528054R(R9)

+ 0.00348411R(R7R
∗
8)− 0.127392R(R7R

∗
9)− 0.00968792R(R8R

∗
9)

+ 0.179914 |R9|2 + 0.0229073 |R7|2 + 0.00013248 |R8|2

+ 1.25032 |R10|2 + 0.529364
]
× 10−9 , (B.20)
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+ 0.000222401R(R8R
∗
9)− 0.0844478R(R8R

∗
10) + 0.694542R(R9R

∗
10)

− 0.00174093 |R9|2 − 0.0120987 |R10|2 + 0.0131242
]
× 10−7 , (B.10)

HA[3.5, 6]µµ =
[
− 0.000057133 I(R8R

∗
9) + 0.0194427 I(R8R

∗
10) + 0.00509883 I(R9R

∗
10)

− 0.000062727 I(R8) + 0.000151953 I(R9)− 0.091289 I(R10)

+ 0.0172872R(R7) + 0.00136744R(R8)− 0.0259495R(R9)

+ 0.318008R(R10) + 0.00160379R(R7R
∗
9)− 0.619516R(R7R

∗
10)

+ 0.000169807R(R8R
∗
9)− 0.063428R(R8R

∗
10) + 1.07786R(R9R

∗
10)

− 0.0027675 |R9|2 − 0.0192329 |R10|2 − 0.0113078
]
× 10−7 , (B.11)

HA[1, 6]µµ =
[
− 0.000133274 I(R8R

∗
9) + 0.0453539 I(R8R

∗
10) + 0.00829314 I(R9R

∗
10)

− 0.000146515 I(R8) + 0.000409073 I(R9)− 0.203841 I(R10)

+ 0.0403149R(R7) + 0.00318287R(R8)− 0.0392731R(R9)

− 0.557599R(R10) + 0.00375094R(R7R
∗
9)− 1.46484R(R7R

∗
10)

+ 0.000392209R(R8R
∗
9)− 0.147876R(R8R

∗
10) + 1.77241R(R9R

∗
10)

− 0.00450843 |R9|2 − 0.0313316 |R10|2 + 0.00181642
]
× 10−7 , (B.12)

H3[1, 3.5]ee =
[
0.0264036 I(R10) + 3.07156R(R10)− 1.74043R(R7R

∗
10)

− 0.132357R(R8R
∗
10) + 2.94364R(R9R

∗
10)− 0.105444

]
× 10−9 , (B.13)

H3[3.5, 6]ee =
[
0.132813 I(R10) + 3.51904R(R10)− 0.913353R(R7R

∗
10)

− 0.0694587R(R8R
∗
10) + 2.4359R(R9R

∗
10)− 0.0872558

]
× 10−9 , (B.14)

H3[1, 6]ee =
[
0.159216 I(R10) + 6.5906R(R10)− 2.65379R(R7R

∗
10)

− 0.201815R(R8R
∗
10) + 5.37954R(R9R

∗
10)− 0.192699

]
× 10−9 , (B.15)

H3[1, 3.5]µµ =
[
0.010976 I(R10) + 1.27946R(R10)− 0.723502R(R7R

∗
10)

−0.0550209R(R8R
∗
10)+1.22368R(R9R

∗
10)−0.0438331

]
× 10−9 , (B.16)

H3[3.5, 6]µµ =
[
0.0552105 I(R10) + 1.46503R(R10)− 0.379682R(R7R

∗
10)

−0.0288741R(R8R
∗
10) + 1.01261R(R9R

∗
10)− 0.0362724

]
× 10−9 , (B.17)

H3[1, 6]µµ =
[
0.0661865 I(R10) + 2.74449R(R10)− 1.10318R(R7R

∗
10)

− 0.083895R(R8R
∗
10) + 2.23628R(R9R

∗
10)− 0.0801055

]
× 10−9 , (B.18)

H4[1, 3.5]ee =
[
− 0.0412679 I(R7)− 0.00313835 I(R8) + 0.200198 I(R9)

− 0.430034R(R7)− 0.034058R(R8) + 1.46516R(R9)

+ 0.0135748R(R7R
∗
8)− 0.361104R(R7R

∗
9)− 0.0274613R(R8R

∗
9)

+ 0.482688 |R9|2 + 0.0892516 |R7|2 + 0.00051617 |R8|2

+ 3.35446 |R10|2 + 1.6742
]
× 10−9 , (B.19)

H4[3.5, 6]ee =
[
− 0.0257056 I(R7)− 0.00195486 I(R8) + 0.127314 I(R9)

− 0.17595R(R7)− 0.0138586R(R8) + 0.528054R(R9)

+ 0.00348411R(R7R
∗
8)− 0.127392R(R7R

∗
9)− 0.00968792R(R8R

∗
9)

+ 0.179914 |R9|2 + 0.0229073 |R7|2 + 0.00013248 |R8|2

+ 1.25032 |R10|2 + 0.529364
]
× 10−9 , (B.20)
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H4[1, 6]ee =
[
− 0.0669735 I(R7)− 0.0050932 I(R8) + 0.327512 I(R9)

− 0.605984R(R7)− 0.0479166R(R8) + 1.99322R(R9)

+ 0.0170589R(R7R
∗
8)− 0.488496R(R7R

∗
9)− 0.0371492R(R8R

∗
9)

+ 0.662601 |R9|2 + 0.112159 |R7|2 + 0.00064865 |R8|2

+ 4.60478 |R10|2 + 2.20357
]
× 10−9 , (B.21)

H4[1, 3.5]µµ =
[
− 0.0171551 I(R7)− 0.00130462 I(R8) + 0.0832226 I(R9)

− 0.179086R(R7)− 0.0141823R(R8) + 0.609926R(R9)

+ 0.00564308R(R7R
∗
8)− 0.150112R(R7R

∗
9)− 0.0114157R(R8R

∗
9)

+ 0.200654 |R9|2 + 0.0371021 |R7|2 + 0.000214573 |R8|2

+ 1.39446 |R10|2 + 0.697498
]
× 10−9 , (B.22)

H4[3.5, 6]µµ =
[
− 0.0106858 I(R7)− 0.000812638 I(R8) + 0.0529245 I(R9)

− 0.0732557R(R7)− 0.00576964R(R8) + 0.219832R(R9)

+ 0.00144835R(R7R
∗
8)− 0.0529571R(R7R

∗
9)− 0.00402729R(R8R

∗
9)

+ 0.0747905 |R9|2 + 0.00952261 |R7|2 + 0.0000550722 |R8|2

+ 0.51976 |R10|2 + 0.22061
]
× 10−9 , (B.23)

H4[1, 6]µµ =
[
− 0.027841 I(R7)− 0.00211725 I(R8) + 0.136147 I(R9)

− 0.252341R(R7)− 0.0199519R(R8) + 0.829758R(R9)

+ 0.00709143R(R7R
∗
8)− 0.203069R(R7R

∗
9)− 0.015443R(R8R

∗
9)

+ 0.275445 |R9|2 + 0.0466247 |R7|2 + 0.000269645 |R8|2

+ 1.91422 |R10|2 + 0.918108
]
× 10−9 , (B.24)

HL[1, 3.5]ee =
[
0.000741931 I(R7R

∗
8) + 0.000952641 I(R7R

∗
9) + 0.0050284 I(R8R

∗
9)

− 0.000102803 I(R8R
∗
10) + 0.00124959 I(R7) + 0.00594309 I(R8)

+ 0.00735758 I(R9)− 0.00113202 I(R10)− 0.194866R(R7)

− 0.0251935R(R8) + 1.42501R(R9)− 0.25154R(R10)

+ 0.00213751R(R7R
∗
8)− 0.136283R(R7R

∗
9) + 0.00300802R(R7R

∗
10)

− 0.0187453R(R8R
∗
9) + 0.000402421R(R8R

∗
10)− 0.0462841R(R9R

∗
10)

+ 0.00589466 |R7|2 + 0.000128527 |R8|2 + 0.575967 |R9|2

+ 4.20578 |R10|2 + 0.806915
]
× 10−7 , (B.25)

HL[3.5, 6]ee =
[
0.000562052 I(R7R

∗
8) + 0.000724099 I(R7R

∗
9) + 0.00382208 I(R8R

∗
9)

− 0.0000781401 I(R8R
∗
10) + 0.00223749 I(R7) + 0.0047901 I(R8)

− 0.00211229 I(R9)− 0.000740423 I(R10)− 0.161117R(R7)

− 0.0192094R(R8) + 1.14892R(R9)− 0.193345R(R10)

+ 0.0017624R(R7R
∗
8)− 0.107501R(R7R

∗
9) + 0.00228636R(R7R

∗
10)

− 0.0136079R(R8R
∗
9) + 0.000286423R(R8R

∗
10)− 0.0355109R(R9R

∗
10)

+ 0.00631092 |R7|2 + 0.0000975709 |R8|2 + 0.439598 |R9|2

+ 3.20293 |R10|2 + 0.701014
]
× 10−7 , (B.26)
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HL[1, 6]ee =
[
0.00130398 I(R7R

∗
8) + 0.00167674 I(R7R

∗
9) + 0.00885049 I(R8R

∗
9)

− 0.000180943 I(R8R
∗
10) + 0.00348707 I(R7) + 0.0107332 I(R8)

+ 0.00524529 I(R9)− 0.00187244 I(R10)− 0.355982R(R7)

− 0.0444029R(R8) + 2.57393R(R9)− 0.444885R(R10)

+ 0.00389991R(R7R
∗
8)− 0.243784R(R7R

∗
9) + 0.00529438R(R7R

∗
10)

− 0.0323532R(R8R
∗
9) + 0.000688843R(R8R

∗
10)− 0.081795R(R9R

∗
10)

+ 0.0122056 |R7|2 + 0.000226098 |R8|2 + 1.01556 |R9|2

+ 7.40871 |R10|2 + 1.50793
]
× 10−7 , (B.27)

HL[1, 3.5]µµ =
[
0.000741931 I(R7R

∗
8) + 0.000952641 I(R7R

∗
9) + 0.0050284 I(R8R

∗
9)

− 0.000102803 I(R8R
∗
10) + 0.000345511 I(R7) + 0.00587433 I(R8)

+ 0.0117155 I(R9)− 0.00113202 I(R10)− 0.217245R(R7)

− 0.0269584R(R8) + 1.53068R(R9)− 0.25154R(R10)

+ 0.00260573R(R7R
∗
8)− 0.153057R(R7R

∗
9) + 0.00300802R(R7R

∗
10)

− 0.0200209R(R8R
∗
9) + 0.000402421R(R8R

∗
10)− 0.0462841R(R9R

∗
10)

+ 0.00897313 |R7|2 + 0.000146331 |R8|2 + 0.609248 |R9|2

+ 4.43707 |R10|2 + 0.914888
]
× 10−7 , (B.28)

HL[3.5, 6]µµ =
[
0.000562052 I(R7R

∗
8) + 0.000724099 I(R7R

∗
9) + 0.00382208 I(R8R

∗
9)

− 0.0000781401 I(R8R
∗
10) + 0.00132426 I(R7) + 0.00472065 I(R8)

+ 0.00235817 I(R9)− 0.000740423 I(R10)− 0.177392R(R7)

− 0.0204867R(R8) + 1.23911R(R9)− 0.193345R(R10)

+ 0.00194094R(R7R
∗
8)− 0.118058R(R7R

∗
9) + 0.00228636R(R7R

∗
10)

− 0.0144108R(R8R
∗
9) + 0.000286423R(R8R

∗
10)− 0.0355109R(R9R

∗
10)

+ 0.00748476 |R7|2 + 0.00010436 |R8|2 + 0.466941 |R9|2

+ 3.39295 |R10|2 + 0.791074
]
× 10−7 , (B.29)

HL[1, 6]µµ =
[
0.00130398 I(R7R

∗
8) + 0.00167674 I(R7R

∗
9) + 0.00885049 I(R8R

∗
9)

− 0.000180943 I(R8R
∗
10) + 0.00166977 I(R7) + 0.010595 I(R8)

+ 0.0140737 I(R9)− 0.00187244 I(R10)− 0.394638R(R7)

− 0.0474451R(R8) + 2.76979R(R9)− 0.444885R(R10)

+ 0.00454667R(R7R
∗
8)− 0.271115R(R7R

∗
9) + 0.00529438R(R7R

∗
10)

− 0.0344317R(R8R
∗
9) + 0.000688843R(R8R

∗
10)− 0.081795R(R9R

∗
10)

+ 0.0164579 |R7|2 + 0.000250691 |R8|2 + 1.07619 |R9|2

+ 7.83003 |R10|2 + 1.70596
]
× 10−7 , (B.30)

B[1, 3.5]ee =
[
0.0169646 I(R7R

∗
8) + 0.00282046 I(R7R

∗
9) + 0.0148876 I(R8R

∗
9)

− 0.000304367 I(R8R
∗
10) + 0.0347138 I(R7)− 0.00283044 I(R8)

+ 0.000660238 I(R9)− 0.00100106 I(R10) + 0.189792R(R7)
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HL[1, 6]ee =
[
0.00130398 I(R7R

∗
8) + 0.00167674 I(R7R

∗
9) + 0.00885049 I(R8R

∗
9)

− 0.000180943 I(R8R
∗
10) + 0.00348707 I(R7) + 0.0107332 I(R8)

+ 0.00524529 I(R9)− 0.00187244 I(R10)− 0.355982R(R7)

− 0.0444029R(R8) + 2.57393R(R9)− 0.444885R(R10)

+ 0.00389991R(R7R
∗
8)− 0.243784R(R7R

∗
9) + 0.00529438R(R7R

∗
10)

− 0.0323532R(R8R
∗
9) + 0.000688843R(R8R

∗
10)− 0.081795R(R9R

∗
10)

+ 0.0122056 |R7|2 + 0.000226098 |R8|2 + 1.01556 |R9|2

+ 7.40871 |R10|2 + 1.50793
]
× 10−7 , (B.27)

HL[1, 3.5]µµ =
[
0.000741931 I(R7R

∗
8) + 0.000952641 I(R7R

∗
9) + 0.0050284 I(R8R

∗
9)

− 0.000102803 I(R8R
∗
10) + 0.000345511 I(R7) + 0.00587433 I(R8)

+ 0.0117155 I(R9)− 0.00113202 I(R10)− 0.217245R(R7)

− 0.0269584R(R8) + 1.53068R(R9)− 0.25154R(R10)

+ 0.00260573R(R7R
∗
8)− 0.153057R(R7R

∗
9) + 0.00300802R(R7R

∗
10)

− 0.0200209R(R8R
∗
9) + 0.000402421R(R8R

∗
10)− 0.0462841R(R9R

∗
10)

+ 0.00897313 |R7|2 + 0.000146331 |R8|2 + 0.609248 |R9|2

+ 4.43707 |R10|2 + 0.914888
]
× 10−7 , (B.28)

HL[3.5, 6]µµ =
[
0.000562052 I(R7R

∗
8) + 0.000724099 I(R7R

∗
9) + 0.00382208 I(R8R

∗
9)

− 0.0000781401 I(R8R
∗
10) + 0.00132426 I(R7) + 0.00472065 I(R8)

+ 0.00235817 I(R9)− 0.000740423 I(R10)− 0.177392R(R7)

− 0.0204867R(R8) + 1.23911R(R9)− 0.193345R(R10)

+ 0.00194094R(R7R
∗
8)− 0.118058R(R7R

∗
9) + 0.00228636R(R7R

∗
10)

− 0.0144108R(R8R
∗
9) + 0.000286423R(R8R

∗
10)− 0.0355109R(R9R

∗
10)

+ 0.00748476 |R7|2 + 0.00010436 |R8|2 + 0.466941 |R9|2

+ 3.39295 |R10|2 + 0.791074
]
× 10−7 , (B.29)

HL[1, 6]µµ =
[
0.00130398 I(R7R

∗
8) + 0.00167674 I(R7R

∗
9) + 0.00885049 I(R8R

∗
9)

− 0.000180943 I(R8R
∗
10) + 0.00166977 I(R7) + 0.010595 I(R8)

+ 0.0140737 I(R9)− 0.00187244 I(R10)− 0.394638R(R7)

− 0.0474451R(R8) + 2.76979R(R9)− 0.444885R(R10)

+ 0.00454667R(R7R
∗
8)− 0.271115R(R7R

∗
9) + 0.00529438R(R7R

∗
10)

− 0.0344317R(R8R
∗
9) + 0.000688843R(R8R

∗
10)− 0.081795R(R9R

∗
10)

+ 0.0164579 |R7|2 + 0.000250691 |R8|2 + 1.07619 |R9|2

+ 7.83003 |R10|2 + 1.70596
]
× 10−7 , (B.30)

B[1, 3.5]ee =
[
0.0169646 I(R7R

∗
8) + 0.00282046 I(R7R

∗
9) + 0.0148876 I(R8R

∗
9)

− 0.000304367 I(R8R
∗
10) + 0.0347138 I(R7)− 0.00283044 I(R8)

+ 0.000660238 I(R9)− 0.00100106 I(R10) + 0.189792R(R7)
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+ 0.0139496R(R8) + 1.46271R(R9)− 0.290285R(R10)

+ 0.0507378R(R7R
∗
8)− 0.506251R(R7R

∗
9) + 0.00871409R(R7R

∗
10)

− 0.0584716R(R8R
∗
9) + 0.00107643R(R8R

∗
10)− 0.0560647R(R9R

∗
10)

+ 0.210889 |R7|2 + 0.0028916 |R8|2 + 0.813297 |R9|2

+ 5.94874 |R10|2 + 1.46402
]
× 10−7 , (B.31)

B[3.5, 6]ee =
[
0.00576094 I(R7R

∗
8) + 0.00213621 I(R7R

∗
9) + 0.0112758 I(R8R

∗
9)

− 0.000230526 I(R8R
∗
10) + 0.0117001 I(R7) + 0.00792519 I(R8)

− 0.000973809 I(R9)− 0.000822616 I(R10)− 0.304197R(R7)

− 0.0338418R(R8) + 1.538R(R9)− 0.268205R(R10)

+ 0.0166482R(R7R
∗
8)− 0.361825R(R7R

∗
9) + 0.00659775R(R7R

∗
10)

− 0.0407383R(R8R
∗
9) + 0.000775603R(R8R

∗
10)− 0.0512368R(R9R

∗
10)

+ 0.0694138 |R7|2 + 0.000881518 |R8|2 + 0.714084 |R9|2

+ 5.16931 |R10|2 + 0.985134
]
× 10−7 , (B.32)

B[1, 6]ee =
[
0.0227255 I(R7R

∗
8) + 0.00495667 I(R7R

∗
9) + 0.0261634 I(R8R

∗
9)

− 0.000534893 I(R8R
∗
10) + 0.0464139 I(R7) + 0.00509475 I(R8)

− 0.000313571 I(R9)− 0.00182368 I(R10)− 0.114406R(R7)

− 0.0198921R(R8) + 3.00071R(R9)− 0.55849R(R10)

+ 0.067386R(R7R
∗
8)− 0.868076R(R7R

∗
9) + 0.0153118R(R7R

∗
10)

− 0.0992099R(R8R
∗
9) + 0.00185203R(R8R

∗
10)− 0.107301R(R9R

∗
10)

+ 0.280302 |R7|2 + 0.00377311 |R8|2 + 1.52738 |R9|2

+ 11.1181 |R10|2 + 2.44915
]
× 10−7 , (B.33)

B[1, 3.5]µµ =
[
0.0169646 I(R7R

∗
8) + 0.00282046 I(R7R

∗
9) + 0.0148876 I(R8R

∗
9)

− 0.000304367 I(R8R
∗
10) + 0.0350544 I(R7)− 0.00280454 I(R8)

− 0.000975567 I(R9)− 0.00100106 I(R10) + 0.233832R(R7)

+ 0.017358R(R8) + 1.35952R(R9)− 0.290285R(R10)

+ 0.0514155R(R7R
∗
8)− 0.490489R(R7R

∗
9) + 0.00871409R(R7R

∗
10)

− 0.0572729R(R8R
∗
9) + 0.00107643R(R8R

∗
10)− 0.0560647R(R9R

∗
10)

+ 0.215344 |R7|2 + 0.00291736 |R8|2 + 0.78123 |R9|2

+ 5.7259 |R10|2 + 1.3762
]
× 10−7 , (B.34)

B[3.5, 6]µµ =
[
0.00576094 I(R7R

∗
8) + 0.00213621 I(R7R

∗
9) + 0.0112758 I(R8R

∗
9)

− 0.000230526 I(R8R
∗
10) + 0.0122024 I(R7) + 0.00796339 I(R8)

− 0.00336638 I(R9)− 0.000822616 I(R10)− 0.29433R(R7)

− 0.0330948R(R8) + 1.50123R(R9)− 0.268205R(R10)

+ 0.0171247R(R7R
∗
8)− 0.362728R(R7R

∗
9) + 0.00659775R(R7R

∗
10)

− 0.040807R(R8R
∗
9) + 0.000775603R(R8R

∗
10)− 0.0512368R(R9R

∗
10)
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+ 0.0725464 |R7|2 + 0.000899635 |R8|2 + 0.706733 |R9|2

+ 5.11822 |R10|2 + 0.940534
]
× 10−7 , (B.35)

B[1, 6]µµ =
[
0.0227255 I(R7R

∗
8) + 0.00495667 I(R7R

∗
9) + 0.0261634 I(R8R

∗
9)

− 0.000534893 I(R8R
∗
10) + 0.0472568 I(R7) + 0.00515885 I(R8)

− 0.00434195 I(R9)− 0.00182368 I(R10)− 0.0604983R(R7)

− 0.0157368R(R8) + 2.86075R(R9)− 0.55849R(R10)

+ 0.0685402R(R7R
∗
8)− 0.853217R(R7R

∗
9) + 0.0153118R(R7R

∗
10)

− 0.09808R(R8R
∗
9) + 0.00185203R(R8R

∗
10)− 0.107301R(R9R

∗
10)

+ 0.287891 |R7|2 + 0.003817 |R8|2 + 1.48796 |R9|2

+ 10.8441 |R10|2 + 2.31673
]
× 10−7 , (B.36)

B[> 14.4]ee =
[
0.000264356 I(R7R

∗
8) + 0.000401975 I(R7R

∗
9) + 0.00161219 I(R8R

∗
9)

− 0.0000328066 I(R8R
∗
10)− 0.0158129 I(R7) + 0.000478008 I(R8)

+ 0.125395 I(R9)− 0.00293188 I(R10)− 0.0723471R(R7)

− 0.00827793R(R8) + 0.511715R(R9)− 0.0806142R(R10)

+ 0.000709678R(R7R
∗
8)− 0.0516424R(R7R

∗
9) + 0.00111614R(R7R

∗
10)

− 0.00651216R(R8R
∗
9) + 0.000119004R(R8R

∗
10)− 0.0168936R(R9R

∗
10)

+ 0.00287361 |R7|2 + 0.0000373632 |R8|2 + 0.211548 |R9|2

+ 1.50748 |R10|2 + 0.200589
]
× 10−7 , (B.37)

B[> 14.4]µµ =
[
0.000264356 I(R7R

∗
8) + 0.000401975 I(R7R

∗
9) + 0.00161219 I(R8R

∗
9)

− 0.0000328066 I(R8R
∗
10)− 0.0175987 I(R7) + 0.000342205 I(R8)

+ 0.134924 I(R9)− 0.00293188 I(R10)− 0.0871863R(R7)

− 0.00943852R(R8) + 0.594393R(R9)− 0.0806142R(R10)

+ 0.000835527R(R7R
∗
8)− 0.0601984R(R7R

∗
9) + 0.00111614R(R7R

∗
10)

− 0.00716282R(R8R
∗
9) + 0.000119004R(R8R

∗
10)− 0.0168936R(R9R

∗
10)

+ 0.00370104 |R7|2 + 0.0000421485 |R8|2

+ 0.234333 |R9|2 + 1.66583 |R10|2 + 0.292268
]
× 10−7 , (B.38)

R(14.4)ee =
[
0.000352294 I(R7R

∗
8) + 0.000544926 I(R7R

∗
9) + 0.00213997 I(R8R

∗
9)

− 0.0000442492 I(R8R
∗
10)− 0.0160419 I(R7) + 0.000523537 I(R8)

+ 0.130938 I(R9)− 0.00323922 I(R10)− 0.0669411R(R7)

− 0.00821459R(R8) + 0.458105R(R9)− 0.0958901R(R10)

+ 0.000807558R(R7R
∗
8)− 0.054864R(R7R

∗
9) + 0.00123432R(R7R

∗
10)

− 0.00734198R(R8R
∗
9) + 0.000139543R(R8R

∗
10)− 0.0189772R(R9R

∗
10)

+ 0.00293717 |R7|2 + 0.0000444449 |R8|2 + 0.228597 |R9|2

+ 1.6322 |R10|2 + 0.174573
]
× 10−3 , (B.39)
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+ 0.0725464 |R7|2 + 0.000899635 |R8|2 + 0.706733 |R9|2

+ 5.11822 |R10|2 + 0.940534
]
× 10−7 , (B.35)

B[1, 6]µµ =
[
0.0227255 I(R7R

∗
8) + 0.00495667 I(R7R

∗
9) + 0.0261634 I(R8R

∗
9)

− 0.000534893 I(R8R
∗
10) + 0.0472568 I(R7) + 0.00515885 I(R8)

− 0.00434195 I(R9)− 0.00182368 I(R10)− 0.0604983R(R7)

− 0.0157368R(R8) + 2.86075R(R9)− 0.55849R(R10)

+ 0.0685402R(R7R
∗
8)− 0.853217R(R7R

∗
9) + 0.0153118R(R7R

∗
10)

− 0.09808R(R8R
∗
9) + 0.00185203R(R8R

∗
10)− 0.107301R(R9R

∗
10)

+ 0.287891 |R7|2 + 0.003817 |R8|2 + 1.48796 |R9|2

+ 10.8441 |R10|2 + 2.31673
]
× 10−7 , (B.36)

B[> 14.4]ee =
[
0.000264356 I(R7R

∗
8) + 0.000401975 I(R7R

∗
9) + 0.00161219 I(R8R

∗
9)

− 0.0000328066 I(R8R
∗
10)− 0.0158129 I(R7) + 0.000478008 I(R8)

+ 0.125395 I(R9)− 0.00293188 I(R10)− 0.0723471R(R7)

− 0.00827793R(R8) + 0.511715R(R9)− 0.0806142R(R10)

+ 0.000709678R(R7R
∗
8)− 0.0516424R(R7R

∗
9) + 0.00111614R(R7R

∗
10)

− 0.00651216R(R8R
∗
9) + 0.000119004R(R8R

∗
10)− 0.0168936R(R9R

∗
10)

+ 0.00287361 |R7|2 + 0.0000373632 |R8|2 + 0.211548 |R9|2

+ 1.50748 |R10|2 + 0.200589
]
× 10−7 , (B.37)

B[> 14.4]µµ =
[
0.000264356 I(R7R

∗
8) + 0.000401975 I(R7R

∗
9) + 0.00161219 I(R8R

∗
9)

− 0.0000328066 I(R8R
∗
10)− 0.0175987 I(R7) + 0.000342205 I(R8)

+ 0.134924 I(R9)− 0.00293188 I(R10)− 0.0871863R(R7)

− 0.00943852R(R8) + 0.594393R(R9)− 0.0806142R(R10)

+ 0.000835527R(R7R
∗
8)− 0.0601984R(R7R

∗
9) + 0.00111614R(R7R

∗
10)

− 0.00716282R(R8R
∗
9) + 0.000119004R(R8R

∗
10)− 0.0168936R(R9R

∗
10)

+ 0.00370104 |R7|2 + 0.0000421485 |R8|2

+ 0.234333 |R9|2 + 1.66583 |R10|2 + 0.292268
]
× 10−7 , (B.38)

R(14.4)ee =
[
0.000352294 I(R7R

∗
8) + 0.000544926 I(R7R

∗
9) + 0.00213997 I(R8R

∗
9)

− 0.0000442492 I(R8R
∗
10)− 0.0160419 I(R7) + 0.000523537 I(R8)

+ 0.130938 I(R9)− 0.00323922 I(R10)− 0.0669411R(R7)

− 0.00821459R(R8) + 0.458105R(R9)− 0.0958901R(R10)

+ 0.000807558R(R7R
∗
8)− 0.054864R(R7R

∗
9) + 0.00123432R(R7R

∗
10)

− 0.00734198R(R8R
∗
9) + 0.000139543R(R8R

∗
10)− 0.0189772R(R9R

∗
10)

+ 0.00293717 |R7|2 + 0.0000444449 |R8|2 + 0.228597 |R9|2

+ 1.6322 |R10|2 + 0.174573
]
× 10−3 , (B.39)
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R(14.4)µµ =
[
0.000352294 I(R7R

∗
8) + 0.000544926 I(R7R

∗
9) + 0.00213997 I(R8R

∗
9)

− 0.0000442492 I(R8R
∗
10)− 0.0181914 I(R7) + 0.000360068 I(R8)

+ 0.142407 I(R9)− 0.00323922 I(R10)− 0.0825154R(R7)

− 0.00943762R(R8) + 0.54544R(R9)− 0.0958901R(R10)

+ 0.000959044R(R7R
∗
8)− 0.0651631R(R7R

∗
9) + 0.00123432R(R7R

∗
10)

− 0.0081252R(R8R
∗
9) + 0.000139543R(R8R

∗
10)− 0.0189772R(R9R

∗
10)

+ 0.00393316 |R7|2 + 0.000050205 |R8|2 + 0.256024 |R9|2

+ 1.82281 |R10|2 + 0.266662
]
× 10−3 . (B.40)
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1 Introduction

The form factors are basic vertex functions, and are as such fundamental ingredients for

many precision calculations in QCD. They couple an external, colour-neutral off-shell cur-

rent to a pair of partons: the quark form factor is the coupling of a virtual photon to a

quark-antiquark pair, while the gluon form factor is the coupling of a Higgs boson to a

pair of gluons through an effective Lagrangian. They appear as virtual higher-order cor-

rections in coefficient functions for the inclusive Drell-Yan process [1–3] and the inclusive

Higgs production cross section [3–12]. In these observables, the infrared poles of the form

factors cancel with infrared singularities from real radiation corrections. Consequently, it is

possible to relate the coefficients of the infrared poles of the form factors to the coefficients

of large logarithmic terms in the corresponding real radiation processes [13–16]. A frame-

work for combining the resummation of logarithmically enhanced terms at all orders with

fixed-order results is provided in an effective field theory expansion [17] of QCD, which

is systematized by soft-collinear effective theory [18–23]. In this context, the pole terms

of the form factors yield the anomalous dimensions of the effective operators, while their

finite terms determine the matching coefficients to a given order [24–27].
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The form factors are actually the simplest QCD objects that display a non-trivial

infrared pole structure. As such, their infrared pole coefficients can be used to extract

fundamental constants: the cusp anomalous dimensions [28] which control the structure

of soft divergences and the collinear quark and gluon anomalous dimensions. While the

cusp anomalous dimensions were first obtained to three loops from the asymptotic be-

haviour of splitting functions [29, 30], it is the calculation [31, 32] of the pole terms of

the three-loop form factors (and finite plus subleading terms in the two-loop and one-loop

form factors [33–37]), which led to the derivation of the three-loop collinear anomalous di-

mensions [31, 38, 39]. An important observation is the agreement (up to an overall colour

factor) of the cusp anomalous dimension for the quark and gluon, the so-called Casimir

scaling [40]. Casimir scaling has been verified to three loops [29, 30], but it is an open ques-

tion whether it holds at four loops and beyond [41]. From non-perturbative arguments,

the Casimir scaling is expected to break down at some loop order [42].

Based on the observation that infrared singularities of massless on-shell amplitudes

in QCD are related to ultraviolet singularities of operators in soft-collinear effective field

theory [28, 43], the pole structure of these amplitudes can be analyzed using operator

renormalization. The singularity structure of arbitrary multi-leg massless QCD amplitudes

is determined by an anomalous dimension matrix. The terms allowed in this anomalous

dimension matrix are strongly constrained by relations between soft and collinear terms,

from non-abelian exponentiation and from soft and collinear factorization. Independently,

Becher and Neubert [39] and Gardi and Magnea [44] have proposed a remarkable all-loops

conjecture that describes the pole structure of massless on-shell multi-loop multi-leg QCD

amplitudes (generalizing earlier results at two [45] and three loops [46]) in terms of the

cusp anomalous dimensions and the collinear anomalous dimensions. In this conjecture,

the colour matrix structure of the soft anomalous dimension generated by soft gluons

is simply a sum over two-body interactions between hard partons, and thus the matrix

structure at any loop order is the same as at one loop. This result builds on the earlier

work of refs. [47, 48] which showed the colour matrix structure of the soft anomalous

dimension at two loops is identical to that at one loop. There may be additional colour

correlations at three loops or beyond, which cannot be excluded at present [49]. However

strong arguments for the absence of these terms are given in refs. [39]. If the all-order

conjecture [39, 44] holds, the calculation of the pole parts of the form factors to a given

loop order (and of the finite and subleading parts at fewer loops) would be sufficient to

determine the infrared poles of all massless on-shell QCD amplitudes to this order.

The calculation of the three-loop form factors requires two principal ingredients: the

algebraic reduction of all three-loop integrals appearing in the relevant Feynman diagrams

to master integrals, and the analytical calculation of these master integrals. The reduction

of integrals to master integrals exploits linear relations among different integrals, and is

done based on a lexicographic ordering of the integrals (the Laporta algorithm [50]). Several

dedicated computer-algebra implementations of the Laporta algorithm are available [50–

53]. The reduction of the integrals relevant to the three-loop form factors is among the most

challenging applications of the Laporta algorithm to date: due to the very large number of

interconnected integrals to be reduced, the linear systems to be solved are often containing

tens of thousand equations with a similar number of unknowns.
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The master integrals in the three-loop form factors were identified already several years

ago [54]. Their analytical calculation proved to be a major computational challenge, which

was completed only in several steps. The one-loop bubble insertions into two-loop vertex

integrals as well as the two-loop bubble insertions into one-loop vertex integrals were derived

using standard Feynman parameter integrals [54], while the genuine three-loop integrals

required an extensive use of Mellin-Barnes integration techniques [55–57].

A first calculation of the three-loop form factors (based in part on numerical results

for some of the expansion coefficients of the master integrals) was accomplished by Baikov

et al. [58] in 2009. The analytical calculation of the last remaining master integrals was

only completed recently [57]. It is the purpose of this paper to validate the three-loop form

factor results of ref. [57, 58] by an independent calculation, and to extend them in in part

to a higher order in the expansion in the dimensional regularization parameter ǫ = 2−d/2.

These further expansion terms will be needed for an extraction of the quark and gluon

collinear anomalous dimensions from the single pole pieces of the four-loop form factors.

We define the quark and gluon form factors in section 2, where we also discuss their

UV-renomalization and summarize existing results at one- and two-loops. The reduction

of the form factors to master integrals is described in section 3, and the three-loop master

integrals are discussed in section 4. Explicit analytical expressions for them are collected

in appendix A. Our results for the three-loop form factors are presented in section 5, and

supplemented by appendix B. The infrared structure of the QCD form factors up to four-

loops is analyzed in section 6. The three-loop hard matching coefficients for Drell-Yan and

Higgs production in soft-collinear effective theory are determined from the form factors in

section 7. An outlook on future applications is contained in section 8.

2 Quark and gluon form factors in perturbative QCD

The form factors are the basic vertex functions of an external off-shell current (with vir-

tuality q2 = s12) coupling to a pair of partons with on-shell momenta p1 and p2. One

distinguishes time-like (s12 > 0, i.e. with partons both either in the initial or in the final

state) and space-like (s12 < 0, i.e. with one parton in the initial and one in the final state)

configurations. The form factors are described in terms of scalar functions by contracting

the respective vertex functions (evaluated in dimensional regularization with d = 4 − 2ǫ

dimensions) with projectors. For massless partons, the full vertex function is described

with only a single form factor.

The quark form factor is obtained from the photon-quark-antiquark vertex Γµ
qq̄ by

Fq = −
1

4(1 − ǫ)q2
Tr

(

p2/ Γµ
qq̄p1/ γµ

)

, (2.1)

while the gluon form factor relates to the effective Higgs-gluon-gluon vertex Γµν
gg as

Fg =
p1 · p2 gµν − p1,µp2,ν − p1,νp2,µ

2(1 − ǫ)
Γµν

gg . (2.2)

The form factors are expanded in perturbative QCD in powers of the coupling constant,

with each power corresponding to a virtual loop. We denote the unrenormalized form

factors by Fa and the renormalized form factors by F a with a = q, g.
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At tree level, the Higgs boson does not couple either to the gluon or to massless quarks.

In higher orders in perturbation theory, heavy quark loops introduce a coupling between

the Higgs boson and gluons. In the limit of infinitely massive quarks, these loops give rise

to an effective Lagrangian [59–62] mediating the coupling between the scalar Higgs field

and the gluon field strength tensor:

Lint = −
λ

4
HFµν

a Fa,µν . (2.3)

The coupling λ has inverse mass dimension. It can be computed by matching [63–65] the

effective theory to the full standard model cross sections [5–9].

Evaluation of the Feynman diagrams, contributing to the vertex functions at a given

loop order yields the bare (unrenormalised) form factors,

Fq
b (αb

s, s12) = 1 +
∞

∑

n=1

(

αb
s

4π

)n (

−s12

µ2
0

)−nǫ

Sn
ǫ Fq

n, (2.4)

Fg
b (αb

s, s12) = λb

(

1 +
∞

∑

n=1

(

αb
s

4π

)n (

−s12

µ2
0

)−nǫ

Sn
ǫ Fg

n

)

, (2.5)

where µ2
0 is the mass parameter introduced in dimensional regularisation to maintain a

dimensionless coupling in the bare Lagrangian density and where

Sǫ = e−ǫγ(4π)ǫ, with the Euler constant γ = 0.5772 . . . (2.6)

The renormalization of the form factor is carried out by replacing the bare coupling

αb with the renormalized coupling αs ≡ αs(µ
2) evaluated at the renormalization scale µ2

αb
sµ

2ǫ
0 = Zαsµ

2ǫαs(µ
2). (2.7)

For simplicity we set µ2 = |s12| so that in the MS scheme [66],

Zαs = S−1
ǫ

[

1 −
β0

ǫ

(αs

4π

)

+

(

β2
0

ǫ2
−

β1

2ǫ

)

(αs

4π

)2

−

(

β3
0

ǫ3
−

7

6

β1β0

ǫ2
+

1

3

β2

ǫ

)

(αs

4π

)3

+ O(α4
s)

]

, (2.8)

where β0, β1 and β2 are [67–73]

β0 =
11CA

3
−

2NF

3
, (2.9)

β1 =
34C2

A

3
−

10CANF

3
− 2CF NF , (2.10)

β2 =
2857C3

A

54
+ C2

F NF −
205CF CANF

18
−

1415C2
ANF

54
+

11CF N2
F

9
+

79CAN2
F

54
. (2.11)

The renormalization relation for the effective coupling λb in the MS scheme is given by,

λb = Zλλ (2.12)
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with

Zλ = 1 −
β0

ǫ

(αs

4π

)

+

(

β2
0

ǫ2
−

β1

ǫ

)

(αs

4π

)2

−

(

β3
0

ǫ3
−

2β1β0

ǫ2
+

β2

ǫ

)

(αs

4π

)3

+ O(α4
s) . (2.13)

The i-loop contribution to the unrenormalized coefficients is Fa
i , while the renormalised

coefficient is denoted by F a
i where a = q, g. If s12 is space-like, the form factors are

real, while they acquire imaginary parts for time-like s12. These imaginary parts (and

corresponding real parts) arise from the ǫ-expansion of

∆(s12) = (−sgn(s12) − i0)−ǫ (2.14)

so that the renormalized form factors are given by,

F q(αs(µ
2), s12, µ

2 = |s12|) = 1 +
∞

∑

n=1

(

αs(µ
2)

4π

)n

F q
n , (2.15)

F g(αs(µ
2), s12, µ

2 = |s12|) = λ

(

1 +
∞

∑

n=1

(

αs(µ
2)

4π

)n

F g
n

)

. (2.16)

Up to three loops, the renormalized coefficients for the quark form factor (with µ2 =

|s12|) are then obtained as,

F q
1 = Fq

1∆(s12),

F q
2 = Fq

2 (∆(s12))
2 −

β0

ǫ
Fq

1∆(s12),

F q
3 = Fq

3 (∆(s12))
3 −

2β0

ǫ
Fq

2 (∆(s12))
2 −

(

β1

2ǫ
−

β2
0

ǫ2

)

Fq
1∆(s12), (2.17)

while those for the gluon form factor are given by,

F g
1 = Fg

1 ∆(s12) −
β0

ǫ
,

F g
2 = Fg

2 (∆(s12))
2 −

2β0

ǫ
Fg

1 ∆(s12) −

(

β1

ǫ
−

β2
0

ǫ2

)

, (2.18)

F g
3 = Fg

3 (∆(s12))
3−

3β0

ǫ
Fg

2 (∆(s12))
2−

(

3β1

2ǫ
−

3β2
0

ǫ2

)

Fg
1 ∆(s12)−

(

β2

ǫ
−

2β1β0

ǫ2
+

β3
0

ǫ3

)

.

Unless explicitly stated otherwise, the renormalized form factors are given in the space-like

case in the following sections.

The one-loop and two-loop form factors were computed in many places in the litera-

ture [31–37]. All-order expressions in terms of one-loop and two-loop master integrals are

given in [37], and are summarized below.
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2.1 Results at one-loop

Written in terms of the one-loop bubble integral, which is normalized to the factor

SΓ =
(4π)ǫ

16π2Γ(1 − ǫ)
, (2.19)

the unrenormalised one-loop form factors are given by

Fq
1/SR = CF B2,1

(

4

(D − 4)
+ D − 3

)

, (2.20)

Fg
1 /SR = CA B2,1

(

4

(D − 4)
−

4

(D − 2)
+ 10 − D

)

, (2.21)

where

SR =
16π2SΓ

Sǫ
=

exp(ǫγ)

Γ(1 − ǫ)
. (2.22)

Eqs. (2.20) and (2.21) agree with eqs. (8) and (9) of ref. [37] respectively.

Inserting the expansion of the one-loop master integrals and keeping terms through to

O(ǫ5), we find that

Fq
1 = CF

[

−
2

ǫ2
−

3

ǫ
+ (ζ2 − 8) + ǫ

(

3ζ2

2
+

14ζ3

3
− 16

)

+ ǫ2
(

47ζ2
2

20
+ 4ζ2 + 7ζ3 − 32

)

+ǫ3
(

141ζ2
2

40
−

7ζ2ζ3

3
+ 8ζ2 +

56ζ3

3
+

62ζ5

5
− 64

)

+ǫ4

(

949ζ3
2

280
+

47ζ2
2

5
−

7ζ2ζ3

2
−

49ζ2
3

9
+ 16ζ2 +

112ζ3

3
+

93ζ5

5
− 128

)

+ǫ5
(

2847ζ3
2

560
+

94ζ2
2

5
−

329ζ2
2ζ3

60
−

28ζ2ζ3

3
−

31ζ2ζ5

5
−

49ζ2
3

6

+32ζ2 +
224ζ3

3
+

248ζ5

5
+

254ζ7

7
− 256

)

]

, (2.23)

Fg
1 = CA

[

−
2

ǫ2
+ ζ2 + ǫ

(

14ζ3

3
− 2

)

+ ǫ2
(

47ζ2
2

20
− 6

)

+ǫ3
(

−
7ζ2ζ3

3
+ ζ2 +

62ζ5

5
− 14

)

+ ǫ4
(

949ζ3
2

280
−

49ζ2
3

9
+ 3ζ2 +

14ζ3

3
− 30

)

+ǫ5
(

47ζ2
2

20
−

329ζ2
2ζ3

60
−

31ζ2ζ5

5
+ 7ζ2 + 14ζ3 +

254ζ7

7
− 62

)

]

(2.24)

where the gluon form factor agrees with eq. (7) of ref. [32] through to O(ǫ4). Note that

at each order in ǫ, the terms of highest harmonic weight are the same for both quark and

gluon form-factor. This is guaranteed by the equivalence of the coefficient of the leading

pole in eqs. (2.20) and (2.21).
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2.2 Results at two-loops

Written in terms of the two-loop master integrals (listed in the appendix), the unrenor-

malised two-loop gluon form factor is given by

Fq
2/S2

R = C2
F

[

B4,2

(

16

(D − 4)2
+

8

(D − 4)
+ D2 − 6D + 17

)

−C4,1

(

7D2

8
−

983D

48
−

565

32(2D − 7)
−

20

9(3D − 8)
−

28

(D − 4)

−
40

(D − 4)2
+

10693

288

)

+B3,1

(

27D2

8
−

1293D

16
+

3955

32(2D − 7)
−

17

2(D − 3)
−

476

(D − 4)

−
456

(D − 4)2
−

288

(D − 4)3
+

581

32

)

−C6,2
D3 − 20D2 + 104D − 176

8(2D − 7)

]

+CF CA

[

−C4,1

(

D2

16
+

77D

32
+

565

64(2D − 7)
+

12

5(3D − 8)
+

23

15(D − 1)

+
8

3(D − 4)
+

16

(D − 4)2
+

163

64

)

−B3,1

(

75D2

16
−

1837D

32
+

3955

64(2D − 7)
+

3

4(D − 3)
−

186

(D − 4)

−
144

(D − 4)2
−

96

(D − 4)3
+

3845

64

)

+C6,2
D3 − 20D2 + 104D − 176

16(2D − 7)

]

+CF NF

[

−C4,1
(D − 2)(3D3 − 31D2 + 110D − 128)

(3D − 8)(D − 4)(D − 1)

]

(2.25)

Fg
2 /S2

R = C2
A

[

B4,2

(

D2 − 20D −
48

(D − 2)
+

32

(D − 4)
+

16

(D − 2)2

+
16

(D − 4)2
+ 100

)

+C4,1

(

27D

2
+

119

48(2D − 5)
+

75

16(2D − 7)
+

10

3(D − 1)
+

80

(D − 2)

+
103

3(D − 4)
−

32

(D − 2)2
+

24

(D − 4)2
−

609

8

)

+B3,1

(

24D +
107

144(2D − 5)
+

525

16(2D − 7)
+

116

9(D − 1)
+

96

(D − 2)

−
2

(D−3)
−

1175

3(D−4)
−

32

(D−2)2
−

1388

3(D−4)2
−

192

(D−4)3
−

1955

8

)

– 7 –



281

281

J
H
E
P
0
6
(
2
0
1
0
)
0
9
4

+C6,2
3(3D − 8)(D − 3)

4(2D − 5)(2D − 7)

]

+CANF

[

C4,1

(

7D

8
+

119

12(2D − 5)
+

35

48(2D − 7)
+

20

3(D − 1)
−

40

3(D − 2)

−
2

(D − 4)
−

45

16

)

−B3,1

(

19D

8
−

107

36(2D − 5)
−

245

48(2D − 7)
−

232

9(D − 1)
+

40

3(D − 2)

−
3

2(D − 3)
+

8

9(D − 4)
−

8

(D − 4)2
−

61

16

)

+C6,2
(2D3 − 25D2 + 94D − 112)(D − 4)

8(D − 2)(2D − 5)(2D − 7)

]

+CF NF

[

−C4,1
(46D4 − 545D3 + 2395D2 − 4606D + 3248)(D − 6)

2(2D − 7)(2D − 5)(D − 4)(D − 2)

+B3,1

(

35D

4
−

107

18(2D − 5)
−

245

24(2D − 7)
+

8

3(D − 2)
−

1

(D − 3)

−
448

9(D − 4)
−

112

3(D − 4)2
−

333

8

)

−C6,2
(2D3 − 25D2 + 94D − 112)(D − 4)

4(D − 2)(2D − 5)(2D − 7)

]

(2.26)

which, after re-expressing in terms of N and NF agrees with eqs. (10) and (11) of ref. [37].

Inserting the expansion of the two-loop master integrals and keeping terms through to

O(ǫ3), we find that

Fq
2 = C2

F

[

2

ǫ4
+

6

ǫ3
−

1

ǫ2

(

2ζ2 −
41

2

)

−
1

ǫ

(

64ζ3

3
−

221

4

)

−

(

13ζ2
2 −

17ζ2

2
+ 58ζ3 −

1151

8

)

−ǫ

(

171ζ2
2

5
−

112ζ2ζ3

3
−

213ζ2

4
+

839ζ3

3
+

184ζ5

5
−

5741

16

)

+ǫ2
(

223ζ3
2

5
−

3401ζ2
2

20
+ 54ζ2ζ3 +

2608ζ2
3

9
+

1839ζ2

8

−
6989ζ3

6
−

462ζ5

5
+

27911

32

)

+ǫ3
(

768ζ3
2

7
+

5488ζ2
2ζ3

15
−

29157ζ2
2

40
+

757ζ2ζ3

3
+

184ζ2ζ5

5
+

2434ζ2
3

3

+
13773ζ2

16
−

58283ζ3

12
−

3251ζ5

5
+

8942ζ7

7
+

133781

64

)

]

+CF CA

[

−
11

6ǫ3
+

1

ǫ2

(

ζ2 −
83

9

)

−
1

ǫ

(

11ζ2

6
− 13ζ3 +

4129

108

)

– 8 –



282

282

J
H
E
P
0
6
(
2
0
1
0
)
0
9
4

+

(

44ζ2
2

5
−

119ζ2

9
+

467ζ3

9
−

89173

648

)

+ǫ

(

1891ζ2
2

60
−

89ζ2ζ3

3
−

6505ζ2

108
+

6586ζ3

27
+ 51ζ5 −

1775893

3888

)

−ǫ2

(

809ζ3
2

70
−

2639ζ2
2

18
+

397ζ2ζ3

9
+

569ζ2
3

3
+

146197ζ2

648

−
159949ζ3

162
−

3491ζ5

15
+

33912061

23328

)

+ǫ3

(

3817ζ3
2

140
−

7103ζ2
2ζ3

30
+

638441ζ2
2

1080
−

4358ζ2ζ3

27
−

497ζ2ζ5

5
−

16439ζ2
3

27

−
2996725ζ2

3888
+

3709777ζ3

972
+

49786ζ5

45
− 372ζ7 −

632412901

139968

)

]

+CF NF

[

1

3ǫ3
+

14

9ǫ2
+

1

ǫ

(

ζ2

3
+

353

54

)

+

(

14ζ2

9
−

26ζ3

9
+

7541

324

)

−ǫ

(

41ζ2
2

30
−

353ζ2

54
+

364ζ3

27
−

150125

1944

)

−ǫ2

(

287ζ2
2

45
+

26ζ2ζ3

9
−

7541ζ2

324
+

4589ζ3

81
+

242ζ5

15
−

2877653

11664

)

+ǫ3

(

−
127ζ3

2

14
−

14473ζ2
2

540
−

364ζ2ζ3

27
+

338ζ2
3

27

+
150125ζ2

1944
−

98033ζ3

486
−

3388ζ5

45
+

53933309

69984

)

]

, (2.27)

which agrees through to O(ǫ2) with eq. (3.6) of ref. [31] and provides the next term in

the expansion.

Similarly we find that the two-loop expansion of the gluon form factor is given by

Fg
2 = C2

A

[

2

ǫ4
−

11

6ǫ3
−

1

ǫ2

(

ζ2 +
67

18

)

+
1

ǫ

(

11ζ2

2
−

25ζ3

3
+

68

27

)

−

(

21ζ2
2

5
−

67ζ2

6
−

11ζ3

9
−

5861

162

)

−ǫ

(

77ζ2
2

60
−

23ζ2ζ3

3
−

106ζ2

9
+

1139ζ3

27
−

71ζ5

5
−

158201

972

)

+ǫ2

(

2313ζ3
2

70
−

1943ζ2
2

60
−

55ζ2ζ3

3
+

901ζ2
3

9
+

481ζ2

54

−
26218ζ3

81
+

341ζ5

15
+

3484193

5832

)

+ǫ3

(

2057ζ3
2

60
+

1291ζ2
2ζ3

10
−

28826ζ2
2

135
+

335ζ2ζ3

9
−

313ζ2ζ5

5
+

5137ζ2
3

27

−
4019ζ2

324
−

397460ζ3

243
−

5963ζ5

45
+

6338ζ7

7
+

70647113

34992

)

]
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+CANF

[

1

3ǫ3
+

5

9ǫ2
−

1

ǫ

(

ζ2 +
26

27

)

−

(

5ζ2

3
+

74ζ3

9
+

808

81

)

−ǫ

(

51ζ2
2

10
+

16ζ2

9
+

604ζ3

27
+

23131

486

)

−ǫ2
(

257ζ2
2

18
−

50ζ2ζ3

3
−

28ζ2

27
+

3962ζ3

81
+

542ζ5

15
+

540805

2916

)

+ǫ3

(

−
253ζ3

2

210
−

103ζ2
2

3
+

380ζ2ζ3

9
+

2306ζ2
3

27

+
3157ζ2

162
−

30568ζ3

243
−

854ζ5

9
−

11511241

17496

)

]

+CF NF

[

−
1

ǫ
+

(

8ζ3 −
67

6

)

+ ǫ

(

+
16ζ2

2

3
+

7ζ2

3
+

92ζ3

3
−

2027

36

)

+ǫ2
(

184ζ2
2

9
−

40ζ2ζ3

3
+

209ζ2

18
+

1124ζ3

9
+ 32ζ5 −

47491

216

)

+ǫ3
(

−
176ζ3

2

35
+

22147ζ2
2

270
−

460ζ2ζ3

9
− 120ζ2

3

+
4273ζ2

108
+

15284ζ3

27
+

368ζ5

3
−

987995

1296

)

]

, (2.28)

which agrees through to O(ǫ2) with eq. (8) of ref. [32] and provides the next term in the

expansion. Expressions for the renormalized one-loop and two-loop form factors, expanded

to the appropriate order in ǫ, can be found in [37].

3 Calculation of the three-loop form factors

To compute the three-loop quark and gluon form factors, we evaluate the relevant three-

loop vertex functions within dimensional regularisation. At this loop order, there are 244

Feynman diagrams contributing to the quark form factor, and 1586 diagrams contributing

to the gluon form factor. We generated these diagrams using QGRAF [74]. After contrac-

tion with the projectors (2.1)–(2.2), each diagram can be expressed as a linear combination

of (typically hundreds of) scalar three-loop Feynman integrals. The three-loop integrals

appearing in the form factors have up to nine different propagators. The integrands can

depend on the three loop momenta, and the two on-shell external momenta, such that 12

different scalar products involving loop momenta can be formed. Consequently, not all

scalar products can be cancelled against combinations of denominators, and we are left

with irreducible scalar products in the numerator of the integrand. We denote the number

of different propagators in an integral by t, the total number of propagators by r and the

total number of irreducible scalar products by s. The topology of each integral is fixed by

specifying the set of t different propagators and subtopologies are obtained by removing

one or more of the propagators.
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AuxTopo 1 AuxTopo 2 AuxTopo3

k2
1 k2

1 k2
1

k2
2 k2

2 k2
2

k2
3 k2

3 k2
3

(k1 − k2)
2 (k1 − k2)

2 (k1 − k2)
2

(k1 − k3)
2 (k1 − k3)

2 (k1 − k3)
2

(k2 − k3)
2 (k2 − k3)

2 (k1 − k2 − k3)
2

(k1 − p1)
2 (k1 − k3 − p2)

2 (k1 − p1)
2

(k1 − p1 − p2)
2 (k1 − p1 − p2)

2 (k1 − p1 − p2)
2

(k2 − p1)
2 (k2 − p1)

2 (k2 − p1)
2

(k2 − p1 − p2)
2 (k1 − k2 − p2)

2 (k2 − p1 − p2)
2

(k3 − p1)
2 (k3 − p1)

2 (k3 − p1)
2

(k3 − p1 − p2)
2 (k3 − p1 − p2)

2 (k3 − p1 − p2)
2

Table 1. Propagators in the three different auxiliary topologies used to represent all three-loop

form factor integrals.

Using relations between different integrals based on integration-by-parts (IBP) [75] and

Lorentz invariance (LI) [76], one can express the large number of different integrals in terms

of a small number of so-called master integrals. These identities yield large linear systems

of equations, which are solved in an iterative manner using lexicographic ordering [50]. To

carry out the reduction in a systematic manner, we introduce so-called auxiliary topolo-

gies. Each auxiliary topology is a set of 12 linearly independent propagators. Within the

auxiliary topology, the integrand of a three-loop form factor integral with (r, s, t) is ex-

pressed by r propagators (with exactly t different propagators) in the denominator, and

s propagators (with at most 12-t different propagators) in the numerator. All three-loop

form factor integrals can be cast into one of three auxiliary topologies, which are listed in

table 1. The first auxiliary topology contains planar integrals only.

Three-loop integrals with 4 ≤ t ≤ 9 and t ≤ r ≤ 9 appear in the form factors. These

come with up to s = 4 irreducible scalar products for the quark form factor and up to

s = 5 for the gluon form factor. For a fixed topology and given (r, s, t), there are in total

Nr,s,t =

(

r − 1

t − 1

) (

11 − t + s

s

)

different integrals.

To obtain a reduction, one has to solve very large systems of equations. Already

for s ≤ 4, the system for a given auxiliary topology contains 900000 equations, and its

solution is feasible only with dedicated computer algebra tools. For this reduction, we used

the Mathematica-based package FIRE [52] and the C++ package Reduze [53], which was

developed most recently by one of us.

With Reduze, the reduction and its performance are as follows. The topologies with

more than 4 propagators are reduced after inserting the results of the sub-topologies into

the system. With increasing t the number of equations decrease as (in general) does the
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Figure 1. One and two-loop master integrals appearing in the quark and gluon form factors.

time taken to solve the system which is in the range of a few days to less than an hour

with the program Reduze on a modern desktop computer. The total computing time for

all the planar diagrams is more than 2 months. However, the parallelization of topologies

with an equal number of propagators reduced the overall reduction time to a few weeks.

The three-loop form factors contain in total 22 master integrals, of which 14 are genuine

three-loop vertex functions, 4 are three-loop propagator integrals and 4 are products of one-

loop and two-loop integrals. They are described in detail in the following section.

4 Three-loop form factor master integrals

Our notation for the master integrals follows [54], and we distinguish three topological

types of master integrals: genuine three-loop triangles (At,i-type), bubble integrals (Bt,i-

type) and integrals that contain two-loop triangles (Ct,i-type). In this notation, the index t

denotes the number of propagators, and i is simply enumerating the topologically different

integrals with the same number of propagators.

The one-loop and two-loop master integrals appearing in the form factors at these loop

orders are displayed in figure 1. Their expansions to finite order have been known for a

long time, all-orders expressions were derived in [37], they can for example be expanded

using HypExp [77]. Bt,i-type and Ct,i-type three-loop integrals are listed in figure 2. The

Bt,i-type integrals were computed to finite order in [75, 78, 79], and supplemented by the

higher order terms in [80]. Finally, the genuine three-loop vertex integrals are shown in

figure 3, their expansions to finite order were derived in [54–57].

The calculation of the nine-line three-loop integrals was the last missing ingredient to

the form factor calculation for a long time. The full result for A9,1 and most of the pole

parts of A9,2 and A9,4 were computed analytically in [56]. Analytical expressions for the

remaining pieces of the latter two integrals were subsequently obtained in [57]. In [56], it

was pointed out that for each of these three integrals one can find an integral from the same

topology with an irreducible scalar product, which has homogeneous transcendentality.
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Figure 2. Three-loop two-point and factorizable three-point integrals.

These integrals were named A9,1n, A9,2n and A9,4n, and are defined in [56]. Compared

to [56] we increased the numerical precision of the remaining coefficients, both for A9,2 and

A9,4, by means of conventional packages like MB.m [81]. We reproduce thirteen significant

digits of the analytic result of [57] in the case of A9,2, and fourteen in the case of A9,4.

We also converted our numerical results for these two integrals into the corresponding

integrals of homogeneous transcendentality, A9,2n and A9,4n. On the coefficients of these

integrals, a PSLQ [82] determination was attempted. For the pole coefficients, the PSLQ

algorithm converged to a unique solution in agreement with [57]. For the finite coefficients,

the numerical precision that we obtained is yet insufficient for PSLQ to yield a unique

solution.

An analytic result for A9,2 and A9,4, derived by purely analytic steps and without

fitting rational coefficients to numerical values, is still a desirable task, and remains to be

investigated in the future. This goal is definitely within reach in the case of A9,4, whereas

the situation is less clear for A9,2.

Expansions of all master integrals to the order in ǫ where transcendentality six first

appears are listed in the appendix.
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Figure 3. Three-point integrals listed in refs. [54–56].
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5 Three-loop form factors

The unrenormalised three-loop form factors can be decomposed into different colour struc-

tures as follows:

Fq
3/S3

R = C3
F Xq

C3

F

+ C2
F CA Xq

C2

F
CA

+ CF C2
A Xq

CF C2

A

+ C2
F NF Xq

C2

F
NF

+CF CANF Xq
CF CANF

+ CF N2
F Xq

CF N2

F

+ CF NF,V

(

N2 − 4

N

)

Xq
CF NF,V

(5.1)

and

Fg
3 /S3

R = C3
A Xg

C3

A

+ C2
ANF Xg

C2

A
NF

+ CACF NF Xg
CACF NF

+ C2
F NF Xg

C2

F
NF

+CAN2
F Xg

CAN2

F

+ CF N2
F Xg

CF N2

F

, (5.2)

where the last term in the quark form factor is generated by graphs where the virtual gauge

boson does not couple directly to the final-state quarks. This contribution is denoted by

NF,V and is proportional to the charge weighted sum of the quark flavours. In the case of

purely electromagnetic interactions, we find,

NF,γ =

∑

q eq

eq
. (5.3)

The coefficient of each colour structure is a linear combination of master integrals,

resulting from the reduction of the integrals appearing in the Feynman diagrams. All

coefficients are listed in appendix B.

Inserting the expansion of the three-loop master integrals and keeping terms through

to O(ǫ0), we find that the three-loop coefficients are given by

Fq
3 = C3

F

[

−
4

3ǫ6
−

6

ǫ5
+

1

ǫ4
(2ζ2 − 25) +

1

ǫ3

(

−3ζ2 +
100ζ3

3
− 83

)

+
1

ǫ2

(

213ζ2
2

10
−

77ζ2

2
+ 138ζ3 −

515

2

)

+
1

ǫ

(

1461ζ2
2

20
−

214ζ2ζ3

3
−

467ζ2

2
+

2119ζ3

3
+

644ζ5

5
−

9073

12

)

+

(

−
53675

24
−

13001ζ2

12
+

12743ζ2
2

40
−

9095ζ3
2

252
+ 2669ζ3 + 61ζ3ζ2

−
1826ζ2

3

3
+

4238ζ5

5

)

]

+C2
F CA

[

11

3ǫ5
+

1

ǫ4

(

−2ζ2 +
431

18

)

+
1

ǫ3

(

−
7ζ2

6
− 26ζ3 +

6415

54

)

+
1

ǫ2

(

−
83ζ2

2

5
+

1487ζ2

36
− 210ζ3 +

79277

162

)

+
1

ǫ

(

−
9839ζ2

2

72
+

215ζ2ζ3

3
+

38623ζ2

108
−

6703ζ3

6
− 142ζ5 +

1773839

972

)
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+

(

37684115

5832
+

664325ζ2

324
−

1265467ζ2
2

2160
−

18619ζ3
2

1260

−
96715ζ3

18
+

46ζ2ζ3

9
+

1616ζ2
3

3
−

46594ζ5

45

)

]

+CF C2
A

[

−
242

81ǫ4
+

1

ǫ3

(

88ζ2

27
−

6521

243

)

+
1

ǫ2

(

−
88ζ2

2

45
−

553ζ2

81
+

1672ζ3

27
−

40289

243

)

+
1

ǫ

(

802ζ2
2

15
−

88ζ2ζ3

9
−

68497ζ2

486
+

12106ζ3

27
−

136ζ5

3
−

1870564

2187

)

+

(

−
52268375

13122
−

767320ζ2

729
+

152059ζ2
2

540
−

6152ζ3
2

189

+
1341553ζ3

486
−

710ζ2ζ3

9
−

1136ζ2
3

9
+

2932ζ5

9

)

]

+C2
F NF

[

−
2

3ǫ5
−

37

9ǫ4
+

1

ǫ3

(

−
ζ2

3
−

545

27

)

+
1

ǫ2

(

−
133ζ2

18
+

146ζ3

9
−

6499

81

)

+
1

ǫ

(

337ζ2
2

36
−

2849ζ2

54
+

2557ζ3

27
−

138865

486

)

+

(

8149ζ2
2

216
−

343ζ2ζ3

9
−

45235ζ2

162
+

51005ζ3

81
+

278ζ5

45
−

2732173

2916

)

]

+CF CANF

[

88

81ǫ4
+

1

ǫ3

(

−
16ζ2

27
+

2254

243

)

+
1

ǫ2

(

316ζ2

81
−

256ζ3

27
+

13679

243

)

+
1

ǫ

(

−
44ζ2

2

5
+

11027ζ2

243
−

6436ζ3

81
+

623987

2187

)

+

(

−
1093ζ2

2

27
+

368ζ2ζ3

9
+

442961ζ2

1458
−

45074ζ3

81
−

208ζ5

3
+

8560052

6561

)

]

+CF N2
F

[

−
8

81ǫ4
−

188

243ǫ3
+

1

ǫ2

(

−
4ζ2

9
−

124

27

)

+
1

ǫ

(

−
94ζ2

27
+

136ζ3

81
−

49900

2187

)

+

(

−
83ζ2

2

135
−

62ζ2

3
+

3196ζ3

243
−

677716

6561

)

]

+CF NF,V

(

N2 − 4

N

)

[

4 −
2ζ2

2

5
+ 10ζ2 +

14ζ3

3
−

80ζ5

3

]

. (5.4)

The pole contributions of Fq
3 are given in eq. (3.7) of ref. [31] while the finite parts of

the N2
F , CANF and CF NF contributions are given in eq. (6) of ref. [32]. The finite NF,V

contribution can be obtained from the δ(1 − x) contribution to the dabcdabc colour factor

in eq. (6.6) of ref. [83]. The remaining finite contributions are given in eqs. (8) and (9) of

ref. [58].
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Similarly, the expansion of the gluon form factor at three-loops is given by

Fg
3 = C3

A

[

−
4

3ǫ6
+

11

3ǫ5
+

361

81ǫ4
+

1

ǫ3

(

−
517ζ2

54
+

22ζ3

3
−

3506

243

)

+
1

ǫ2

(

247ζ2
2

90
+

481ζ2

162
−

209ζ3

27
−

17741

243

)

+
1

ǫ

(

−
3751ζ2

2

360
−

85ζ2ζ3

9
+

20329ζ2

243
+

241ζ3

9
−

878ζ5

15
−

145219

2187

)

+

(

14474131

13122
+

307057ζ2

1458
+

8459ζ2
2

1080
−

22523ζ3
2

270

−
68590ζ3

243
+

77ζ2ζ3

18
−

1766ζ2
3

9
+

20911ζ5

45

)

]

+C2
ANF

[

−
2

3ǫ5
−

2

81ǫ4
+

1

ǫ3

(

47ζ2

27
+

1534

243

)

+
1

ǫ2

(

−
425ζ2

81
+

518ζ3

27
+

4280

243

)

+
1

ǫ

(

2453ζ2
2

180
−

7561ζ2

243
+

1022ζ3

81
−

92449

2187

)

+

(

437ζ2
2

60
−

439ζ2ζ3

9
−

37868ζ2

729
−

754ζ3

27
+

3238ζ5

45
−

10021313

13122

)

]

+CACF NF

[

20

9ǫ3
+

1

ǫ2

(

−
160ζ3

9
+

526

27

)

+
1

ǫ

(

−
176ζ2

2

15
−

22ζ2

3
−

224ζ3

27
+

2783

81

)

+

(

−
16ζ2

2

5
+ 48ζ2ζ3 −

41ζ2

3
+

11792ζ3

81
+

32ζ5

9
−

155629

486

)

]

+C2
F NF

[

2

3ǫ
+

(

296ζ3

3
− 160ζ5 +

304

9

)

]

+CAN2
F

[

−
8

81ǫ4
−

80

243ǫ3
+

1

ǫ2

(

20ζ2

27
+

8

9

)

+
1

ǫ

(

200ζ2

81
+

664ζ3

81
+

34097

2187

)

+

(

797ζ2
2

135
+

76ζ2

27
+

11824ζ3

243
+

1479109

13122

)

]

+CF N2
F

[

8

9ǫ2
+

1

ǫ

(

−
32ζ3

3
+

424

27

)

+

(

−
112ζ2

2

15
−

16ζ2

3
−

704ζ3

9
+

10562

81

)

]

. (5.5)

The divergent parts agree with eq. (8) of ref. [32] while the finite contributions agree

with eq. (10) of ref. [58].

Using our knowledge of the three-loop form factors, we can also write down the O(ǫ)

contributions to the NF parts of the quark and gluon form factors. For the quark form-

factor we find that,

Fq
3 |NF

= CF N2
F ǫ

(

−
2913928

6561
+

2248

135
ζ5 +

2108

27
ζ3 −

24950

243
ζ2 +

68

9
ζ2ζ3 −

3901

810
ζ2
2

)
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+CF CANF ǫ

(

24570881

4374
−

28156

45
ζ5 −

2418896

729
ζ3 +

10816

27
ζ2
3 +

7137385

4374
ζ2

+
2674

27
ζ2ζ3 −

352559

1620
ζ2
2 +

17324

945
ζ3
2

)

+C2
F NF ǫ

(

−
50187205

17496
+

5863

135
ζ5 +

929587

243
ζ3 −

5771

9
ζ2
3 −

1263505

972
ζ2

−
8515

54
ζ2ζ3 +

821749

3240
ζ2
2 −

875381

7560
ζ3
2

)

+CF NF,V

(

N2 − 4

N

)

ǫ

(

170

3
+

752

9
ζ5 +

94

9
ζ3 −

344

3
ζ2
3 +

260

3
ζ2

+30ζ2ζ3 −
196

15
ζ2
2 −

9728

315
ζ3
2

)

, (5.6)

and for the gluon form factor

Fg
3 |NF

= CAN2
F ǫ

(

16823771

26244
+

9368

135
ζ5 +

5440

27
ζ3 −

30283

1458
ζ2 −

988

27
ζ2ζ3 +

14018

405
ζ2
2

)

+C2
ANF ǫ

(

−
48658741

8748
−

10066

45
ζ5 +

349918

729
ζ3 −

11657

27
ζ2
3 +

904045

4374
ζ2

+
791

9
ζ2ζ3 −

34931

1620
ζ2
2 −

52283

1080
ζ3
2

)

+CF N2
F ǫ

(

196900

243
−

800

9
ζ5 −

4208

9
ζ3 − 54ζ2 +

112

3
ζ2ζ3 −

2464

45
ζ2
2

)

+CF CANF ǫ

(

−
10508593

2916
+

17092

27
ζ5 +

240934

243
ζ3 +

4064

9
ζ2
3 +

8869

54
ζ2

+
640

9
ζ2ζ3 +

28823

270
ζ2
2 +

23624

315
ζ3
2

)

+C2
F NF ǫ

(

18613

54
−

3080

3
ζ5 +

10552

9
ζ3 − 272ζ2

3 −
74

3
ζ2

−16ζ2ζ3 +
328

5
ζ2
2 −

35648

315
ζ3
2

)

(5.7)

The UV-renormalization of the form factors is derived in section 2 above. Apply-

ing (2.17) and (2.19) yields the expansion coefficients of the renormalized form factors.

These are in the space-like kinematics:

F q
3 = C3

F

[

−
4

3ǫ6
−

6

ǫ5
+

1

ǫ4
(2ζ2 − 25) −

1

ǫ3

(

3ζ2 −
100ζ3

3
+ 83

)
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+
1

ǫ2

(

213ζ2
2

10
−

77ζ2

2
+ 138ζ3 −

515

2

)

+
1

ǫ

(

1461ζ2
2

20
−

214ζ2ζ3

3
−

467ζ2

2
+

2119ζ3

3
+

644ζ5

5
−

9073

12

)

+

(

−
53675

24
−

13001ζ2

12
+

12743ζ2
2

40
−

9095ζ3
2

252
+ 2669ζ3 + 61ζ3ζ2

−
1826ζ2

3

3
+

4238ζ5

5

)

]

+C2
F CA

[

−
11

ǫ5
−

1

ǫ4

(

361

18
+ 2ζ2

)

+
1

ǫ3

(

−
1703

54
− 26ζ3 +

27ζ2

2

)

+
1

ǫ2

(

6820

81
−

482ζ3

9
+

1487ζ2

36
−

83ζ2
2

5

)

+
1

ǫ

(

374149

486
− 142ζ5 +

215ζ3ζ2

3
−

4151ζ3

6
+

31891ζ2

108
−

2975ζ2
2

72

)

+

(

11169211

2916
−

6890ζ5

9
−

806ζ3ζ2

3
−

19933ζ3

6

+
1616ζ2

3

3
+

537803ζ2

324
−

723739ζ2
2

2160
−

18619ζ3
2

1260

)

]

+CF C2
A

[

−
1331

81ǫ4
+

1

ǫ3

(

2866

243
−

110ζ2

27

)

+
1

ǫ2

(

11669

486
−

902ζ3

27
+

1625ζ2

81
−

88ζ2
2

45

)

+
1

ǫ

(

−
139345

8748
−

136ζ5

3
−

88ζ3ζ2

9
+

3526ζ3

27
−

7163ζ2

243
−

166ζ2
2

15

)

+

(

−
51082685

52488
−

434ζ5

9
+

416ζ3ζ2

3
+

505087ζ3

486

−
1136ζ2

3

9
−

412315ζ2

729
+

22157ζ2
2

270
−

6152ζ3
2

189

)

]

+C2
F NF

[

2

ǫ5
+

35

9ǫ4
+

1

ǫ3

(

139

27
− 3ζ2

)

+
1

ǫ2

(

−
775

81
−

110ζ3

9
−

133ζ2

18

)

+
1

ǫ

(

−
24761

243
+

469ζ3

27
−

2183ζ2

54
−

287ζ2
2

36

)

+

(

−
691883

1458
−

386ζ5

9
+

35ζ3ζ2

3
+

21179ζ3

81
−

16745ζ2

81
−

8503ζ2
2

1080

)

]

+CF CANF

[

484

81ǫ4
+

1

ǫ3

(

−
752

243
+

20ζ2

27

)

+
1

ǫ2

(

−
2068

243
+

212ζ3

27
−

476ζ2

81

)

+
1

ǫ

(

−
8659

2187
−

964ζ3

81
+

2594ζ2

243
+

44ζ2
2

15

)

+

(

1700171

6561
−

4ζ5

3
+

4ζ3ζ2

3
−

4288ζ3

27
+

115555ζ2

729
+

2ζ2
2

27

)

]
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+CF N2
F

[

−
44

81ǫ4
−

8

243ǫ3
+

1

ǫ2

(

46

81
+

4

9
ζ2

)

+
1

ǫ

(

2417

2187
−

8

81
ζ3 −

20

27
ζ2

)

+

(

−
190931

13122
−

416

243
ζ3 −

824

81
ζ2 −

188

135
ζ2
2

)

]

+CF NF,V

(

N2 − 4

N

)

[

4 −
2ζ2

2

5
+ 10ζ2 +

14ζ3

3
−

80ζ5

3

]

, (5.8)

F g
3 = C3

A

[

−
4

3ǫ6
−

55

3ǫ5
−

9079

162ǫ4
+

1

ǫ3

(

5453

486
+

22ζ3

3
+

77ζ2

54

)

+
1

ǫ2

(

−
4277

243
+

2266ζ3

27
−

1393ζ2

81
+

247ζ2
2

90

)

+
1

ǫ

(

−
1307704

2187
−

878ζ5

15
−

85ζ3ζ2

9
+

1814ζ3

9
−

27301ζ2

486
+

12881ζ2
2

360

)

+

(

−
23496187

26244
+

13882ζ5

45
−

1441ζ3ζ2

18
+

24893ζ3

243

−
1766ζ2

3

9
+

118165ζ2

1458
+

126071ζ2
2

1080
−

22523ζ3
2

270

)

]

+C2
ANF

[

10

3ǫ5
+

1780

81ǫ4
+

1

ǫ3

(

2344

243
−

7ζ2

27

)

+
1

ǫ2

(

−
1534

243
+

68ζ3

27
+

169ζ2

81

)

+
1

ǫ

(

854467

4374
+

3002ζ3

81
+

3536ζ2

243
+

941ζ2
2

180

)

+

(

2143537

13122
+

4516ζ5

45
−

301ζ3ζ2

9
+

1414ζ3

9
−

6440ζ2

729
+

527ζ2
2

20

)

]

+CACF NF

[

−
34

9ǫ3
+

1

ǫ2

(

427

27
−

160ζ3

9

)

+
1

ǫ

(

13655

81
−

2600ζ3

27
−

13ζ2

3
−

176ζ2
2

15

)

+

(

284929

972
+

32ζ5

9
+ 48ζ3ζ2 −

14398ζ3

81
−

118ζ2

3
−

928ζ2
2

15

)

]

+C2
F NF

[

−
1

3ǫ
+

(

304

9
− 160ζ5 +

296ζ3

3

)

]

+CAN2
F

[

−
170

81ǫ4
−

998

243ǫ3
+

1

ǫ2

(

92

27
+

2ζ2

27

)

+
1

ǫ

(

−
37133

4374
−

164ζ3

81
−

70ζ2

81

)

+

(

125059

13122
+

952ζ3

243
−

20ζ2

27
−

157ζ2
2

135

)

]

+CF N2
F

[

14

9ǫ2
+

1

ǫ

(

−
212

27
+

16ζ3

3

)

+

(

2881

162
−

152ζ3

9
−

2ζ2

3
+

16ζ2
2

5

)

]

+N3
F

[

8

27ǫ3

]

(5.9)
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The O(ǫ) contributions to the NF parts of the UV-renormalized space-like quark and

gluon form factors are given by,

F q
3 |NF

= +CF N2
F ǫ

(

−
3769249

26244
+

88

135
ζ5 +

2632

243
ζ3 −

5515

81
ζ2 +

8

3
ζ2ζ3 −

952

81
ζ2
2

)

+CF CANF ǫ

(

1552436

729
−

11596

45
ζ5 −

1214351

729
ζ3 +

3988

27
ζ2
3 +

4933141

4374
ζ2

+
1966

27
ζ2ζ3 +

4579

405
ζ2
2 +

2762

945
ζ3
2

)

+C2
F NF ǫ

(

−
15199979

8748
−

10769

135
ζ5 +

553882

243
ζ3 −

6881

27
ζ2
3 −

961699

972
ζ2

−
4627

54
ζ2ζ3 +

94747

3240
ζ2
2 −

425813

7560
ζ3
2

)

+CF NF,V

(

N2 − 4

N

)

ǫ

(

170

3
+

752

9
ζ5 +

94

9
ζ3 −

344

3
ζ2
3 +

260

3
ζ2

+30ζ2ζ3 −
196

15
ζ2
2 −

9728

315
ζ3
2

)

, (5.10)

and for the gluon form factor

F g
3 |NF

= +CAN2
F ǫ

(

6599393

26244
+

1844

135
ζ5 +

8396

81
ζ3 −

25315

1458
ζ2 −

172

27
ζ2ζ3 +

2453

405
ζ2
2

)

+C2
ANF ǫ

(

−
18825781

8748
+

1682

45
ζ5 +

270232

729
ζ3 −

6251

27
ζ2
3 +

867919

4374
ζ2

−
881

9
ζ2ζ3 +

33403

405
ζ2
2 +

133627

7560
ζ3
2

)

+CF N2
F ǫ

(

360181

972
−

224

9
ζ5 −

1960

9
ζ3 −

277

9
ζ2 +

32

3
ζ2ζ3 −

208

15
ζ2
2

)

+CF CANF ǫ

(

−
7017335

5832
+

7588

27
ζ5 −

92894

243
ζ3 +

4064

9
ζ2
3 +

986

54
ζ2

+
1960

9
ζ2ζ3 −

59987

540
ζ2
2 +

23624

315
ζ3
2

)

+C2
F NF ǫ

(

18613

54
−

3080

3
ζ5 +

10552

9
ζ3 − 272ζ2

3 −
74

3
ζ2

−16ζ2ζ3 +
328

5
ζ2
2 −

35648

315
ζ3
2

)

. (5.11)
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6 Infrared pole structure

According to ref. [28, 39], the general infrared pole structure of a renormalised QCD ampli-

tude is related to the ultraviolet behaviour of an effective operator in soft-collinear effective

theory. These poles can therefore be subtracted by means of a multiplicative renormal-

ization factor Z. This means that the finite remainders of a scattering amplitude MF is

obtained from the full amplitude M via the relation,

MF = Z−1M. (6.1)

In general, the scattering amplitude M and Z are matrices in colour space. However, in

the context of the quark and gluon form factors, the colour matrix is trivial. The UV

renormalised amplitudes M and MF have perturbative expansions,

M = 1 +
∑

i=1

(

αs(µ
2)

4π

)i

Mi, (6.2)

MF = 1 +
∑

i=1

(

αs(µ
2)

4π

)i

MF
i , (6.3)

while

log(Z) =
∑

i=1

(

αs(µ
2)

4π

)i

Zi. (6.4)

We can now solve eq. (6.1) order by order in the strong coupling,

Poles(M1) = Z1, (6.5)

Poles(M2) = Z2 +
M2

1

2
, (6.6)

Poles(M3) = Z3 −
M3

1

3
+ M2M1, (6.7)

Poles(M4) = Z4 +
M4

1

4
− M2

1 M2 + M1M3 +
M2

2

2
, (6.8)

Poles(M5) = Z5 −
M5

1

5
+ M3

1 M2 − M2
1 M3 − M1M

2
2 + M1M4 + M2M3. (6.9)

The deepest infrared pole for the i-loop amplitude is ǫ−2i. However, the deepest pole in

the Zi-factor is ǫ−i−1. All of the deepest poles are obtained directly from the lower loop

amplitudes - which must be known to an appropriately high order in ǫ. For example, to

obtain the correct pole structure for Mi, one needs knowledge of M1 through to O(ǫ2i−3).

We find that the infrared pole structure of the renormalised form factors is given by
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(i = q, g and Cq = CF , Cg = CA for the cusp anomalous dimension):

Poles(F i
1) = −

Ciγ
cusp
0

2ǫ2
+

γi
0

ǫ
, (6.10)

Poles(F i
2) =

3Ciγ
cusp
0 β0

8ǫ3
+

1

ǫ2

(

−
β0γ

i
0

2
−

Ciγ
cusp
1

8

)

+
γi

1

2ǫ
+

(

F i
1

)2

2
, (6.11)

Poles(F i
3) = −

11β2
0Ciγ

cusp
0

36ǫ4
+

1

ǫ3

(

5β0Ciγ
cusp
1

36
+

β2
0γi

0

3
+

2Ciγ
cusp
0 β1

9

)

+
1

ǫ2

(

−
β0γ

i
1

3
−

Ciγ
cusp
2

18
−

β1γ
i
0

3

)

+
γi

2

3ǫ
−

(

F i
1

)3

3
+ F q

2 F q
1 . (6.12)

Note that the full (all-orders) expressions for F q
i are recycled on the right-hand-side. The

coefficients of the cusp soft anomalous dimension γcusp
i are known to three-loop order [31]

and are given by:

γcusp
0 = 4 , (6.13)

γcusp
1 = CA

(

268

9
−

4π2

3

)

−
40NF

9
, (6.14)

γcusp
2 = C2

A

(

490

3
−

536π2

27
+

44π4

45
+

88ζ3

3

)

+ CANF

(

−
836

27
+

80π2

27
−

112ζ3

3

)

+CF NF

(

−
110

3
+ 32ζ3

)

−
16N2

F

27
. (6.15)

while the quark and gluon collinear anomalous dimensions γq
i and γg

i in the conventional

dimensional regularisation scheme are also known to three-loop order [38, 39] and are given

by:

γq
0 = −3CF , (6.16)

γq
1 = C2

F

(

−
3

2
+ 2π2 − 24ζ3

)

+ CF CA

(

−
961

54
−

11π2

6
+ 26ζ3

)

+CF NF

(

65

27
+

π2

3

)

, (6.17)

γq
2 = C2

F NF

(

2953

54
−

13π2

9
−

14π4

27
+

256ζ3

9

)

+ CF N2
F

(

2417

729
−

10π2

27
−

8ζ3

27

)

+CF CANF

(

−
8659

729
+

1297π2

243
+

11π4

45
−

964ζ3

27

)

+C3
F

(

−
29

2
− 3π2 −

8π4

5
− 68ζ3 +

16π2ζ3

3
+ 240ζ5

)

+CAC2
F

(

−
151

4
+

205π2

9
+

247π4

135
−

844ζ3

3
−

8π2ζ3

3
− 120ζ5

)

+C2
ACF

(

−
139345

2916
−

7163π2

486
−

83π4

90
+

3526ζ3

9
−

44π2ζ3

9
− 136ζ5

)

, (6.18)

γg
0 = −

11CA

3
+

2NF

3
, (6.19)
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γg
1 = C2

A

(

−
692

27
+

11π2

18
+ 2ζ3

)

+ CANF

(

128

27
−

π2

9

)

+ 2CF NF (6.20)

γg
2 = C3

A

(

−
97186

729
+

6109π2

486
−

319π4

270
+

122ζ3

3
−

20π2ζ3

9
− 16ζ5

)

,

+C2
ANF

(

30715

1458
−

599π2

243
+

41π4

135
+

356ζ3

27

)

+CF CANF

(

1217

27
−

π2

3
−

4π4

45
−

152ζ3

9

)

− C2
F NF

+CAN2
F

(

−
269

1458
+

10π2

81
−

56ζ3

27

)

−
11CF N2

F

9
. (6.21)

Taking this one step further, we find that the pole structure of the renormalised four-

loop quark form factor is given by

Poles(F i
4) =

25β3
0Ciγ

cusp
0

96ǫ5
−

β0(24β2
0γi

0 + 13β0Ciγ
cusp
1 + 40Ciγ

cusp
0 β1)

96ǫ4

+
1

ǫ3

(

7β0Ciγ
cusp
2

96
+

3β1Ciγ
cusp
1

32
+

β2
0γi

1

4
+

β1β0γ
i
0

2
+

5Ciγ
cusp
0 β2

32

)

+
1

ǫ2

(

−
β1γ

i
1

4
−

Ciγ
cusp
3

32
−

β0γ
i
2

4
−

β2γ
i
0

4

)

+
γi

3

4ǫ

+

(

F i
1

)4

4
+

(

F i
1

)2
F i

2 −

(

F i
2

)2

2
− F i

1F
i
3 . (6.22)

In this expression, we assume Casimir scaling of the cusp anomalous dimension to hold at

four loops [39, 40], such that only a universal γcusp
3 appears. If, contrary to expectations,

Casimir scaling should be violated at this order, different γcusp
3 would appear in the double

pole terms of the quark and gluon form factors at four loops.

Eq. (6.22) shows that in order to make use of a calculation of the pole parts of the

four-loop form factors to extract the cusp and collinear anomalous dimensions, one requires

the finite parts of the three-loop form factor for γcusp
3 , and of the subleading O(ǫ) parts

for γq,g
3 . For all colour-factor contributions proportional to NF , these are provided in the

previous section. The required subleading terms in higher orders in ǫ from the one-loop

and two-loop form factors were summarized in section 2 above.

7 Effective theory matching coefficients

It is well known that fixed-order perturbation theory is not necessarily reliable for physical

quantities involving several disparate scales. In such cases, higher-order corrections are

enhanced by large logarithms of scale ratios. Experimentally relevant examples are the

Drell-Yan and Higgs production processes in hadron-hadron colliders. When the phase

space for soft gluon emission is constrained, large logarithmic threshold corrections appear

of the form

αk
s

[

lnm−1(1 − z)

(1 − z)

]

+

, (m ≤ 2k), (7.1)
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where (1−z) is the fraction of centre-of-mass energy of the initial partons available for soft

gluon radiation. These can spoil the convergence of the perturbative series. The resum-

mation of these so-called Sudakov-logarithms has been accomplished to fourth logarithmic

order [84–86], using the exponentiation properties of the coefficient functions in moment

space [87–90].

An alternative resummation framework is provided by soft-collinear effective field the-

ory (SCET), which is based on the idea to split the calculation into a series of single-scale

problems by successively integrating out the physics associated with the largest remaining

scale. The SCET framework [18–23] originated in the study of heavy quarks, and has

been subsequently generalized to massless collider processes [91]. The infrared poles in

the high energy theory (QCD) get transformed into ultraviolet poles in the effective the-

ory [17, 28] and can then be resummed by renormalization-group (RG) evolution from the

larger scales to the smaller ones. Of course the SCET must match precisely onto the high

energy theory, and this is achieved by computing matrix elements in both the SCET and

QCD and adjusting the Wilson coefficients so that they agree. If the matching is performed

on-shell, then the matching coefficients relevant for Drell Yan and Higgs production can

be obtained from the quark and gluon form factors respectively. Therefore, we can utilise

the results presented in the previous sections to compute the matching conditions through

to three-loops. Results up to two loops were obtained previously in [24–27].

The renormalised form-factors are infrared divergent. In the effective field theory,

these infrared divergences are transformed into ultraviolet poles. The matching coefficient

Ci (i = q, g) is obtained by extracting the poles using a renormalisation factor such that,

Ci(αs(µ
2), s12, µ

2) = lim
ǫ→0

Z−1
i (ǫ, s12, µ)F i(ǫ, s12, µ

2). (7.2)

The matching coefficients have the perturbative expansion,

Ci(αs(µ
2), s12, µ

2) = 1 +
∞

∑

n=1

(

αs(µ
2)

4π

)n

Ci
n(s12, µ

2). (7.3)

They are are known to two loop order for Drell-Yan [24, 25] and Higgs [26, 27] production,

Cq
1 = CF

(

− L2 + 3L − 8 + ζ2

)

, (7.4)

Cq
2 = C2

F

(

1

2
L4 − 3L3 +

(

25

2
− ζ2

)

L2 +

(

−
45

2
+ 24ζ3 − 9ζ2

)

L

+
255

8
− 30ζ3 + 21ζ2 −

83

10
ζ2
2

)

+CF CA

(

11

9
L3 +

(

−
233

18
+ 2ζ2

)

L2 +

(

2545

54
− 26ζ3 +

22

3
ζ2

)

L

−
51157

648
+

313

9
ζ3 −

337

18
ζ2 +

44

5
ζ2
2

)

+CF NF

(

−
2

9
L3 +

19

9
L2 +

(

−
209

27
−

4

3
ζ2

)

L +
4085

324
+

2

9
ζ3 +

23

9
ζ2

)

, (7.5)
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Cg
1 = CA

(

− L2 + ζ2

)

, (7.6)

Cg
2 = C2

A

(

1

2
L4 +

11

9
L3 +

(

−
67

9
+ ζ2

)

L2 +

(

80

27
− 2ζ3 −

22

3
ζ2

)

L

+
5105

162
−

143

9
ζ3 +

67

6
ζ2 +

1

2
ζ2
2

)

+CANF

(

−
2

9
L3 +

10

9
L2 +

(

52

27
+

4

3
ζ2

)

L −
916

81
−

46

9
ζ3 −

5

3
ζ2

)

+CF NF

(

2L −
67

6
+ 8ζ3

)

(7.7)

where L = log(−s12/µ2).

Exploiting the expressions for the renormalised quark and gluon form factors given in

eqs. (5.8) and (5.9) respectively, we find that the three-loop matching coefficients are

Cq
3 = C3

F

(

−
1

6
L6+

3

2
L5+

(

−
17

2
+

1

2
ζ2

)

L4+

(

9ζ2+27−24ζ3

)

L3

+

(

102ζ3 −
507

8
−

105

2
ζ2 +

83

10
ζ2
2

)

L2

+

(

− 214ζ3 − 240ζ5 − 8ζ2ζ3 +
357

2
ζ2 +

207

10
ζ2
2 +

785

8

)

L

−
413

5
ζ2
2 +664ζ5−

6451

24
ζ2+

37729

630
ζ3
2−470ζ3+250ζ2ζ3−

2539

12
+16ζ2

3

)

+C2
F CA

(

−
11

9
L5 +

(

299

18
− 2ζ2

)

L4 +

(

−
2585

27
+ 26ζ3 −

1

9
ζ2

)

L3

+

(

206317

648
−

1807

9
ζ3 +

502

9
ζ2 −

34

5
ζ2
2

)

L2

+

(

−
13805

24
+ 120ζ5 +

2441

3
ζ3 −

11260

27
ζ2 − 10ζ2ζ3 +

162

5
ζ2
2

)

L

+
415025

648
−

2756

9
ζ5 −

18770

27
ζ3 +

296

3
ζ2
3 +

538835

648
ζ2 −

3751

9
ζ2ζ3

−
4943

270
ζ2
2 −

12676

315
ζ3
2

)

+C2
F NF

(

2

9
L5 −

25

9
L4 +

(

410

27
+

10

9
ζ2

)

L3 +

(

−
12815

324
+

70

9
ζ3 −

112

9
ζ2

)

L2

+

(

3121

108
−

610

9
ζ3 +

1618

27
ζ2 +

28

5
ζ2
2

)

L

+
41077

972
−

416

9
ζ5 +

13184

81
ζ3 −

31729

324
ζ2 −

38

9
ζ2ζ3 −

331

27
ζ2
2

)

+CF C2
A

(

−
121

54
L4 +

(

2869

81
−

44

9
ζ2

)

L3 +

(

−
18682

81
+ 88ζ3 +

26

9
ζ2 −

44

5
ζ2
2

)

L2

+

(

1045955

1458
+ 136ζ5 −

17464

27
ζ3 +

17366

81
ζ2 +

88

3
ζ2ζ3 −

94

3
ζ2
2

)

L

−
51082685

52488
−

434

9
ζ5 +

505087

486
ζ3 −

1136

9
ζ2
3 −

412315

729
ζ2 +

416

3
ζ2ζ3
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+
22157

270
ζ2
2 −

6152

189
ζ3
2

)

+CF CANF

(

22

27
L4 +

(

−
974

81
+

8

9
ζ2

)

L3 +

(

5876

81
− 8ζ3 +

16

3
ζ2

)

L2

+

(

−
154919

729
+

724

9
ζ3 −

5864

81
ζ2 +

44

15
ζ2
2

)

L

+
1700171

6561
−

4

3
ζ5 −

4288

27
ζ3 +

115555

729
ζ2 +

4

3
ζ2ζ3 +

2

27
ζ2
2

)

+CF N2
F

(

−
2

27
L4 +

76

81
L3 +

(

−
406

81
−

8

9
ζ2

)

L2 +

(

9838

729
+

16

27
ζ3 +

152

27
ζ2

)

L

−
190931

13122
−

416

243
ζ3 −

824

81
ζ2 −

188

135
ζ2
2

)

+CF NF,V

(

N2 − 4

N

)(

4 −
80

3
ζ5 +

14

3
ζ3 + 10ζ2 −

2

5
ζ2
2

)

(7.8)

and,

Cg
3 = C3

A

(

−
1

6
L6 −

11

9
L5 +

(

281

54
−

3

2
ζ2

)

L4 +

(

11

3
ζ2 +

1540

81
+ 2ζ3

)

L3

+

(

143

9
ζ3 −

6740

81
+

685

18
ζ2 −

73

10
ζ2
2

)

L2

+

(

2048

27
ζ3 + 16ζ5 +

34

3
ζ2ζ3 −

13420

81
ζ2 +

176

5
ζ2
2 −

373975

1458

)

L

−
1939

270
ζ2
2 +

2222

9
ζ5 +

105617

729
ζ2 −

24389

1890
ζ3
2 −

152716

243
ζ3 −

605

9
ζ2ζ3

+
29639273

26244
−

104

9
ζ2
3

)

+C2
ANF

(

2

9
L5 −

8

27
L4 +

(

−
734

81
−

2

3
ζ2

)

L3 +

(

377

27
+

118

9
ζ3 −

103

9
ζ2

)

L2

+

(

133036

729
+

28

9
ζ3 +

3820

81
ζ2 −

48

5
ζ2
2

)

L

−
3765007

6561
+

428

9
ζ5 −

460

81
ζ3 −

14189

729
ζ2 −

82

9
ζ2ζ3 +

73

45
ζ2
2

)

+CAN2
F

(

−
2

27
L4 +

40

81
L3 +

(

116

81
+

8

9
ζ2

)

L2 +

(

−
14057

729
−

128

27
ζ3 −

80

27
ζ2

)

L

+
611401

13122
+

4576

243
ζ3 +

4

9
ζ2 +

4

27
ζ2
2

)

+CF N2
F

(

4

3
L2 +

(

−
52

3
+

32

3
ζ3

)

L +
4481

81
−

112

3
ζ3 −

20

9
ζ2 −

16

45
ζ2
2

)

+CF CANF

(

−
8

3
L3 +

(

13 − 16ζ3

)

L2 +

(

3833

54
−

376

9
ζ3 + 6ζ2 +

16

5
ζ2
2

)

L

−
341219

972
+

608

9
ζ5 +

14564

81
ζ3 −

68

9
ζ2 +

64

3
ζ2ζ3 −

64

45
ζ2
2

)
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+C2
F NF

(

− 2L +
304

9
− 160ζ5 +

296

3
ζ3

)

. (7.9)

These matching coefficients allow to perform the three-loop matching of the SCET-based

resummation onto the full QCD calculation.

8 Conclusions

In this paper, we described the calculation of the three-loop quark and gluon form factors

in detail. Our results confirm earlier expressions obtained by Baikov et al. [58], which we

extended by subleading terms in the fermionic corrections.

The form factors are the simplest QCD objects with non-trivial infrared structure.

Recent findings on the relation between massless on-shell QCD amplitudes and operators

in soft-collinear effective theory [43], combined with constraints from factorization, has led

to the conjecture [39] that their pole terms at a given loop level contain all information

needed to predict the pole structure of massless on-shell multi-leg amplitudes at the same

loop order. In particular, the cusp anomalous dimension can be extracted from the double

pole, and the collinear anomalous dimension from the single pole. At a given loop order,

finite and subleading terms from lower loop orders are also required. In this respect, the

finite terms presented here will be instrumental for the extraction of the four-loop cusp

anomalous dimension, while the subleading terms contribute to the four-loop quark and

gluon collinear anomalous dimension.

The three-loop form factors are key ingredients for the fourth order (N3LO) corrections

to the inclusive Drell-Yan and Higgs boson production cross sections. The calculation of

these, at least in an improvement to the soft approximation [14–16, 25], could be envisaged

in future work. In view of this application, we derived the hard matching coefficients of

the SCET operators to this order. Inclusion of these corrections will lead to a further

stabilization of the perturbative prediction under scale variations, and are thus important

for precision physics at hadron colliders.
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A Master integrals for three-loop form factors

In this appendix, we summarize the ǫ-expansions of all master integrals needed for the

three-loop form factors. Our notation for the integrals follows [54], using a Minkowskian

loop integration measure ddk/(2π)d. All master integrals are defined in section 4 above.
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With the normalization SΓ defined in (2.19), all M -loop integrals have an overall

factor of

sn
12

(

iSΓ (−s12 − i0)−ǫ
)M

(A.1)

where n is fixed by dimensional arguments. Unlike refs. [54–56], there is no (−1)n factor.

We expand to the required order for the three-loop form factors (which is typically the

order where transcendentality 6 first appears).

The one-loop master integral is:

B2,1 =
1

ǫ
+ 2 + 4ǫ − ǫ2 (2ζ3 − 8) − ǫ3

(

6ζ2
2

5
+ 4ζ3 − 16

)

−ǫ4
(

12ζ2
2

5
+ 8ζ3 + 6ζ5 − 32

)

−ǫ5

(

16ζ3
2

7
+

24ζ2
2

5
− 2ζ2

3 + 16ζ3 + 12ζ5 − 64

)

(A.2)

+ǫ6

(

128 − 18ζ7 − 24ζ5 − 32ζ3 + 4ζ2
3 −

48

5
ζ2
2 +

12

5
ζ2
2ζ3 −

32

7
ζ3
2

)

+ O(ǫ7) .

The two-loop two-point and three-point master integrals are:

B3,1 = −
1

4ǫ
−

13

8
−

115ǫ

16
+ ǫ2

(

5ζ3

2
−

865

32

)

+ ǫ3
(

3ζ2
2

2
+

65ζ3

4
−

5971

64

)

+ǫ4

(

39ζ2
2

4
+

575ζ3

8
+

27ζ5

2
−

39193

128

)

+ǫ5
(

44ζ3
2

7
+

345ζ2
2

8
−

25ζ2
3

2
+

4325ζ3

16
+

351ζ5

4
−

249355

256

)

+ǫ6

(

−
1555105

512
+

165

2
ζ7+

3105

8
ζ5+

29855

32
ζ3−

325

4
ζ2
3 +

2595

16
ζ2
2−15ζ2

2ζ3+
286

7
ζ3
2

)

+O(ǫ7) , (A.3)

B4,2 = +
1

ǫ2
+

4

ǫ
+ 12 − ǫ (4ζ3 − 32) − ǫ2

(

12ζ2
2

5
+ 16ζ3 − 80

)

−ǫ3

(

48ζ2
2

5
+ 48ζ3 + 12ζ5 − 192

)

−ǫ4

(

32ζ3
2

7
+

144ζ2
2

5
− 8ζ2

3 + 128ζ3 + 48ζ5 − 448

)

+ǫ5
(

1024 − 36ζ7 − 144ζ5 − 320ζ3 + 32ζ2
3 −

384

5
ζ2
2 +

48

5
ζ2
2ζ3 −

128

7
ζ3
2

)

+O(ǫ6) , (A.4)

C4,1 = +
1

2ǫ2
+

5

2ǫ
+

(

ζ2 +
19

2

)

+ ǫ

(

5ζ2 − 4ζ3 +
65

2

)

−ǫ2
(

6ζ2
2

5
− 19ζ2 + 20ζ3 −

211

2

)

−ǫ3
(

6ζ2
2 + 8ζ2ζ3 − 65ζ2 + 76ζ3 + 24ζ5 −

665

2

)
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−ǫ4

(

528ζ3
2

35
+

114ζ2
2

5
+ 40ζ2ζ3 − 16ζ2

3 − 211ζ2 + 260ζ3 + 120ζ5 −
2059

2

)

+ǫ5
(

6305

2
− 156ζ7 − 456ζ5 − 844ζ3 + 80ζ2

3 + 665ζ2 − 48ζ2ζ5 − 152ζ2ζ3 − 78ζ2
2

+
48

5
ζ2
2ζ3 −

528

7
ζ3
2

)

+ O(ǫ6) , (A.5)

C6,2 = +
1

ǫ4
−

5ζ2

ǫ2
−

27ζ3

ǫ
− 23ζ2

2 + ǫ (48ζ2ζ3 − 117ζ5) − ǫ2

(

456ζ3
2

35
− 267ζ2

3

)

+ǫ3

(

6ζ7 + 240ζ2ζ5 +
1962

5
ζ2
2ζ3

)

+ O(ǫ4) . (A.6)

The Bt,i-type and Ct,i-type master integrals read at three loops:

B4,1 =
1

36ǫ
+

71

216
+

3115ǫ

1296
+ ǫ2

(

−
7ζ3

9
+

109403

7776

)

+ ǫ3

(

−
497ζ3

54
−

7π4

540
+

3386467

46656

)

+ǫ4

(

−
21805ζ3

324
− 7ζ5 −

497π4

3240
+

96885467

279936

)

+ǫ5

(

−
765821ζ3

1944
−

497ζ5

6
−

4361π4

3888
−

4π6

243
+

98ζ2
3

9
+

2631913075

1679616

)

+O(ǫ6) , (A.7)

B5,1 = −
1

4ǫ2
−

17

8ǫ
−

183

16
+ ǫ

(

3ζ3 −
1597

32

)

+ ǫ2
(

51ζ3

2
+

π4

20
−

12359

64

)

+ǫ3
(

549ζ3

4
+ 15ζ5 +

17π4

40
−

88629

128

)

+ǫ4

(

4791ζ3

8
+

255ζ5

2
+

183π4

80
+

2π6

63
− 18ζ2

3 −
603871

256

)

+ O(ǫ5) , (A.8)

B5,2 = −
1

3ǫ2
−

10

3ǫ
−

64

3
+ ǫ

(

−112 +
22ζ3

3

)

+ ǫ2

(

−528 +
220ζ3

3
+

11π4

90

)

+ǫ3

(

−2336 +
1408ζ3

3
+ 70ζ5 +

11π4

9

)

+ǫ4

(

352π4

45
+ 2464ζ3 + 700ζ5 −

29824

3
+

94π6

567
−

242ζ2
3

3

)

+ O(ǫ5) , (A.9)

B6,1 =
1

ǫ3
+

6

ǫ2
+

24

ǫ
+

(

80 − 6ζ3

)

+ ǫ

(

240 − 36ζ3 −
π4

10

)

+ǫ2

(

672 − 144ζ3 − 18ζ5 −
3π4

5

)

+ǫ3

(

1792 − 480ζ3 − 108ζ5 −
12π4

5
−

2π6

63
+ 18ζ2

3

)

+ O(ǫ4) , (A.10)

B6,2 =
1

3ǫ3
+

7

3ǫ2
+

31

3ǫ
+

(

8ζ3

3
+

103

3

)

+ ǫ

(

235

3
+

56ζ3

3
+

2π4

45

)

+ǫ2

(

19

3
+ 120ζ5 +

320ζ3

3
+

14π4

45

)
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+ǫ3

(

−
3953

3
+ 840ζ5 +

1832ζ3

3
+

16π4

9
+

176π6

567
−

292ζ2
3

3

)

+ O(ǫ4) , (A.11)

B8,1 = 20ζ5 + ǫ

(

68ζ2
3 + 40ζ5 +

10π6

189

)

+ǫ2

(

136ζ2
3 +

34π4ζ3

15
+ 80ζ5 +

20π6

189
+ 450ζ7

)

+O(ǫ3) , (A.12)

C6,1 =
1

2ǫ3
+

7

2ǫ2
+

1

ǫ

(

π2

6
+

33

2

)

+

(

7π2

6
− 5ζ3 +

131

2

)

+ǫ

(

11π2

2
− 35ζ3 −

π4

20
+

473

2

)

+ǫ2
(

131π2

6
−

5π2ζ3

3
− 165ζ3 − 27ζ5 −

7π4

20
+

1611

2

)

+ǫ3

(

473π2

6
−

35π2ζ3

3
− 655ζ3 − 189ζ5 −

33π4

20
−

61π6

756
+ 25ζ2

3 +
5281

2

)

+O(ǫ4) , (A.13)

C8,1 =
1

ǫ5
+

2

ǫ4
+

1

ǫ3

(

−
5π2

6
+ 4

)

+
1

ǫ2

(

8 −
5π2

3
− 29ζ3

)

+
1

ǫ

(

16 −
10π2

3
− 58ζ3 −

121π4

180

)

+

(

32 −
20π2

3
+

29π2ζ3

3
− 116ζ3 − 123ζ5 −

121π4

90

)

+ǫ

(

58π2ζ3

3
− 232ζ3 − 246ζ5 −

40π2

3
+ 323ζ2

3 −
121π4

45
+ 64 −

163π6

3780

)

+O(ǫ2) . (A.14)

The genuine three-loop vertex integrals are:

A5,1 =
1

24ǫ2
+

19

48ǫ
+

(

233

96
+

π2

24

)

+ ǫ

(

2363

192
+

19π2

48
−

11ζ3

12

)

+ǫ2

(

7227

128
+

233π2

96
+

π4

80
−

209ζ3

24

)

+ǫ3

(

62641

256
+

2363π2

192
+

19π4

160
−

2563ζ3

48
−

11π2ζ3

12
−

35ζ5

4

)

+ǫ4

(

1575481

1536
+

7227π2

128
+

233π4

320
−

919π6

45360
−

25993ζ3

96

−
209π2ζ3

24
+

121ζ2
3

12
−

665ζ5

8

)

+O(ǫ5) , (A.15)

A5,2 = −
1

6ǫ2
−

5

3ǫ
+

(

−
32

3
−

π2

12

)

+ ǫ

(

−56 −
5π2

6
+

11ζ3

3

)

+ǫ2

(

−264 −
16π2

3
+

19π4

720
+

110ζ3

3

)
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+ǫ3

(

−1168 − 28π2 +
19π4

72
+

704ζ3

3
+

11π2ζ3

6
+ 35ζ5

)

+ǫ4

(

−
14912

3
− 132π2 +

76π4

45
+

9011π6

90720
+ 1232ζ3 +

55π2ζ3

3
−

121ζ2
3

3
+ 350ζ5

)

+O(ǫ5) , (A.16)

A6,1 =
1

3ǫ3
+

8

3ǫ2
+

1

ǫ

(

44

3
+

π2

3

)

+

(

8π2

3
+

208

3
−

16ζ3

3

)

+ǫ

(

304 +
44π2

3
+

2π4

15
−

128ζ3

3

)

+ǫ2

(

1280 +
208π2

3
+

16π4

15
−

704ζ3

3
−

16π2ζ3

3
− 56ζ5

)

+ǫ3
(

15808

3
+ 304π2 +

88π4

15
−

55π6

567
−

3328ζ3

3
−

128π2ζ3

3
+

128ζ2
3

3
− 448ζ5

)

+O(ǫ4) , (A.17)

A6,2 =
2ζ3

ǫ
+

(

7π4

180
+ 18ζ3

)

+ǫ

(

7π4

20
+ 122ζ3 −

2π2ζ3

3
+ 10ζ5

)

+ǫ2

(

427π4

180
−

163π6

7560
+ 738ζ3 − 6π2ζ3 − 76ζ2

3 + 90ζ5

)

+ O(ǫ3) , (A.18)

A6,3 =
1

6ǫ3
+

3

2ǫ2
+

1

ǫ

(

55

6
+

π2

6

)

+

(

3π2

2
+

95

2
−

17ζ3

3

)

+ǫ

(

1351

6
+

55π2

6
+

π4

90
− 51ζ3

)

+ǫ2

(

2023

2
+

95π2

2
+

π4

10
−

935ζ3

3
−

10π2ζ3

3
− 65ζ5

)

+ǫ3

(

26335

6
+

1351π2

6
+

11π4

18
−

7π6

54
− 1615ζ3 − 30π2ζ3 +

268ζ2
3

3
− 585ζ5

)

+O(ǫ4) , (A.19)

A7,1 =
1

4ǫ5
+

1

2ǫ4
+

1

ǫ3

(

1 −
π2

6

)

+
1

ǫ2

(

2 −
π2

3
− 10ζ3

)

+
1

ǫ

(

4 −
2π2

3
−

11π4

45
− 20ζ3

)

+

(

−
22π4

45
−

4π2

3
+

14π2ζ3

3
+ 8 − 40ζ3 − 88ζ5

)

+ǫ

(

16 −
8π2

3
−

44π4

45
−

943π6

7560
− 80ζ3 +

28π2ζ3

3
+ 196ζ2

3 − 176ζ5

)

+O(ǫ2) , (A.20)

A7,2 =
π2

12ǫ3
+

1

ǫ2

(

π2

6
+ 2ζ3

)

+
1

ǫ

(

π2

3
+

83π4

720
+ 4ζ3

)
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+

(

2π2

3
+

83π4

360
+ 8ζ3 −

5π2ζ3

3
+ 15ζ5

)

+ǫ

(

4π2

3
+

83π4

180
+

2741π6

90720
+ 16ζ3 −

10π2ζ3

3
− 73ζ2

3 + 30ζ5

)

+O(ǫ2) , (A.21)

A7,3 = +
1

ǫ

(

−
π2ζ3

6
− 10ζ5

)

+

(

−
119π6

2160
−

31ζ2
3

2

)

+ O(ǫ) , (A.22)

A7,4 =
6ζ3

ǫ2
+

1

ǫ

(

11π4

90
+ 36ζ3

)

+

(

216ζ3 − 2π2ζ3 +
11π4

15
+ 46ζ5

)

+ǫ

(

22π4

5
−

19π6

270
+ 1296ζ3 − 12π2ζ3 − 282ζ2

3 + 276ζ5

)

+ O(ǫ2) , (A.23)

A7,5 = +

(

2π2ζ3 + 10ζ5

)

+ ǫ

(

11π6

162
+ 12π2ζ3 + 18ζ2

3 + 60ζ5

)

+ O(ǫ2) , (A.24)

A8,1 = −
8ζ3

3ǫ2
+

1

ǫ

(

−
5π4

27
+ 8ζ3

)

+

(

5π4

9
− 24ζ3 +

52π2ζ3

9
−

352ζ5

3

)

+ǫ

(

−
5π4

3
−

1709π6

8505
+ 72ζ3 −

52π2ζ3

3
+

332ζ2
3

3
+ 352ζ5

)

+ O(ǫ2) . (A.25)

The most complicated three-loop vertex integrals are the nine-line master integrals [57]:

A9,1 = −
1

18ǫ5
+

1

2ǫ4
+

1

ǫ3

(

−
53

18
−

4π2

27

)

+
1

ǫ2

(

29

2
+

22π2

27
− 2ζ3

)

+
1

ǫ

(

−
8π2

3
+

158ζ3

9
−

20π4

81
−

129

2

)

+

(

322π4

405
+ 6π2 −

14π2ζ3

3
+

537

2
−

578ζ3

9
−

238ζ5

3

)

+ǫ

(

−
2133

2
− 4π2 −

302π4

135
−

2398π6

5103
+ 158ζ3 −

26π2ζ3

3
−

466ζ2
3

3
+

826ζ5

3

)

+O(ǫ2) , (A.26)

A9,2 =
2

9ǫ6
+

5

6ǫ5
+

1

ǫ4

(

−
20

9
−

7π2

27

)

+
1

ǫ3

(

50

9
−

17π2

27
−

91ζ3

9

)

+
1

ǫ2

(

4π2

3
−

166ζ3

9
−

373π4

1080
−

110

9

)

+
1

ǫ

(

494ζ3

9
+

179π2ζ3

27
− 167ζ5 −

16π2

9
−

187π4

540
+

170

9

)

+

(

130

9
−

32π2

9
−

1466ζ3

9
+

679π4

540
+

682π2ζ3

27
−

1390ζ5

3
−

59797π6

136080
+

169ζ2
3

9

)

+O(ǫ) , (A.27)
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A9,4 =
1

9ǫ6
+

8

9ǫ5
+

1

ǫ4

(

−1 −
10π2

27

)

+
1

ǫ3

(

−
14

9
−

47π2

27
− 12ζ3

)

+
1

ǫ2

(

17 +
71π2

27
−

200ζ3

3
−

47π4

810

)

+
1

ǫ

(

−84 − π2 +
940ζ3

9
−

671π4

540
+

652π2ζ3

27
−

692ζ5

9

)

+

(

339 − 15π2 −
448ζ3

9
+

2689π4

1620
+

2188π2ζ3

27
− 524ζ5 +

53563π6

102060
+

4564ζ2
3

9

)

+O(ǫ) , (A.28)

where the analytic expressions for A9,1 and for the pole parts of A9,2 and A9,4 were obtained

independently in [56]. For the corresponding integrals with homogeneous transcendentality,

one finds:

A9,1n =
1

36ǫ6
+

π2

18ǫ4
+

14ζ3

9ǫ3
+

47π4

405ǫ2

+

(

85

27
π2ζ3 + 20ζ5

)

1

ǫ
+

1160π6

5103
+

137

3
ζ2
3 + O(ǫ) (A.29)

A9,2n =
2

9ǫ6
−

7π2

27ǫ4
−

91ζ3

9ǫ3
−

373π4

1080ǫ2

+

(

179

27
π2ζ3 − 167ζ5

)

1

ǫ
−

59797

136080
π6 +

169

9
ζ2
3 + O(ǫ) (A.30)

A9,4n = −
1

9ǫ6
+

10π2

27ǫ4
+

12ζ3

ǫ3
+

47π4

810ǫ2

+

(

−
652

27
π2ζ3 +

692

9
ζ5

)

1

ǫ
−

53563

102060
π6 −

4564

9
ζ2
3 + O(ǫ) (A.31)

B Form factors in terms of master integrals

The unrenormalised three-loop form factors can be expressed as a linear combination of

master integrals. In the colour factor decomposition as defined in (5.1) and (5.2), these

coefficients read:
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=
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+
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+
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−
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+

6816654

11(3D−14)
+
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−
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+
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+

643118017984

703125(5D−22)
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The form factors are fundamental ingredients for many precision calculations in QCD.

These basic building blocks describe the coupling of an external, colour-neutral off-shell

particle to a pair of partons: the quark form factor is the coupling of a virtual photon to

a quark-antiquark pair, while the gluon form factor is the coupling of a Higgs boson to a

pair of gluons through an effective Lagrangian.

The form factors are phenomenologically important and appear directly as virtual

higher-order corrections in coefficient functions for the inclusive Drell-Yan process [1–3]

and the inclusive Higgs production cross section [3–13]. The form factors also display a

non-trivial infrared pole structure which is determined by the infrared factorisation for-

mula. This implies that their infrared pole coefficients can be used to extract fundamental

constants such as the cusp anomalous dimensions which control the structure of soft di-

vergences and the collinear quark and gluon anomalous dimensions. In fact, the cusp

anomalous dimensions were first obtained to three loops from the asymptotic behaviour of

splitting functions [14, 15]. However, it was the calculation [16, 17] of the pole terms of

the three-loop form factors (and finite plus subleading terms in the two-loop and one-loop

form factors [18–22]), which led to the derivation of the three-loop collinear anomalous

dimensions [16, 23, 24].

The infrared factorisation formula for a given form factor (or more generally for a given

multi-leg amplitude) at a certain number of loops involves infrared singularity operators

acting on the form factor evaluated with a lower number of loops. These infrared singular-

ity operators contain explicit infrared poles 1/ǫ2 and 1/ǫ. Therefore, the computation of

the finite contribution to any n-loop form factor relies on contributions from (n−m)-loops

evaluated to O(ǫ2m).

At present, the state of the art is at the three-loop level for the massless quark and

gluon form factors. There are 22 master integrals shown in figure 1, of which 14 are genuine

three-loop vertex functions (At,i-type), 4 are three-loop propagator integrals (Bt,i-type) and

4 are products of one-loop and two-loop integrals (Ct,i-type). In this notation, the index t

denotes the number of propagators, and i is simply enumerating the topologically different

integrals with the same number of propagators. Expressions for the form factors in terms

of the 22 independent master integrals, and valid for any value of the dimension D, are

given in ref. [25]. The Bt,i-type integrals were computed to finite order in [26–28] and sup-

plemented by the higher order terms in [29]. Explicit expansions of the At,i-type integrals

were obtained in refs. [30–33] using Mellin-Barnes techniques. They enabled the evaluation

of the three-loop form factors up to and including the finite contributions [25, 33, 34]. The

deepest pole contribution is of O(1/ǫ6). Correspondingly, the finite terms are of at most

transcendentality weight six, that is terms such as π6 (ζ3
2 ) or ζ2

3 .

More recently [35], 20 of the three-loop master integrals have been re-evaluated up to

transcendentality weight eight using dimensional recurrence relations [36, 37] and analytic

properties of Feynman integrals (the DRA method [38]). Expressions for the two remaining

integrals, B8,1 and C8,1, can be obtained from refs. [38] and [22] respectively. Once the same

normalisation and basis set of multiple zeta values is used, ref. [35] confirms the earlier re-

sult of ref. [39] for A6,2. On the other hand, we confirm a certain subset of master integrals

(B6,2, B8,1, A7,3, A7,5, A8,1, A9,1, A9,2, A9,4) from [35, 38] up to coefficients corresponding

– 2 –
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A5,1 A5,2 A6,1 A6,2

A6,3 A7,1 A7,2 A7,3

,2

A7,4 A7,5 A8,1 A9,1

A9,2 A9,4

B4,1 [= A4] B5,2 [= A5,4] B6,2 [= A6,4] B8,1

B5,1 [= A5,3] B6,1 [= A6,6] C6,1 [= A6,5] C8,1

Figure 1. Master integrals for the three-loop form factors. Labels in brackets indicate the naming

convention of ref. [35].

to weight eight numerically to a precision of one per-mille or better using MB.m [40] and

FIESTA [41, 42]. All other of the 22 master integrals we even confirm analytically through

to weight eight by expanding the closed form in terms of hypergeometric functions given

in [30, 31] using the HypExp package [43].

– 3 –
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All master integrals are therefore known up to transcendentality weight eight i.e. terms

including π8 (ζ4
2
), ζ2ζ

2
3
, ζ3ζ5 as well as the multiple zeta value ζ5,3 (or equivalently ζ−6,−2).

The multiple zeta values are defined by (see e.g. [44] and references therein)

ζ(m1, . . . ,mk) =

∞
∑

i1=1

i1−1
∑

i2=1

· · ·

ik−1−1
∑

ik=1

k
∏

j=1

sgn(mj)
ij

i
|mj |

j

. (1)

Specifically, ζ−6,−2 is related to ζ5,3 by [44, 45]

ζ−6,−2 =
9

20
ζ5,3 −

3

2
ζ5ζ3 +

781

4032000
π8. (2)

The numerical values of the transcendental constants up to weight eight are:

ζ3 = 1.2020569031595942854 . . . , ζ5 = 1.0369277551433699263 . . . ,

ζ7 = 1.0083492773819228268 . . . , ζ5,3 = 0.037707672984847544011 . . . .

The new results on the higher order terms in the master integrals enable the computation of

the three-loop form factors through to O(ǫ2) which is an intrinsic component for the four-

loop evaluation of the form factors. This is the topic of this Letter and we give explicit for-

mulae for the O(ǫ) and O(ǫ2) contributions to the unrenormalised three loop form factors.

The form factors are the basic vertex functions of an external off-shell current (with

virtuality q2 = s12) coupling to a pair of partons with on-shell momenta p1 and p2. One

distinguishes time-like (s12 > 0, i.e. with partons both either in the initial or in the final

state) and space-like (s12 < 0, i.e. with one parton in the initial and one in the final state)

configurations. The form factors are described in terms of scalar functions by contracting

the respective vertex functions (evaluated in dimensional regularization with D = 4 − 2ǫ

dimensions) with projectors. For massless partons, the full vertex function is described

with only a single form factor.

The quark form factor is obtained from the photon-quark-antiquark vertex Γµ
qq̄ by

Fq = −
1

4(1 − ǫ)q2
Tr

(

p2/Γµ
qq̄p1/ γµ

)

, (3)

while the gluon form factor relates to the effective Higgs-gluon-gluon vertex Γµν
gg as

Fg =
p1 · p2 gµν − p1,µp2,ν − p1,νp2,µ

2(1 − ǫ)
Γµν

gg . (4)

The form factors are expanded in perturbative QCD in powers of the coupling constant,

with each power corresponding to a virtual loop. We denote the unrenormalized form

factors by Fa and the renormalized form factors by F a with a = q, g.

At tree level, the Higgs boson does not couple either to the gluon or to massless quarks.

In higher orders in perturbation theory, heavy quark loops introduce a coupling between

the Higgs boson and gluons. In the limit of infinitely massive quarks, these loops give rise

to an effective Lagrangian [46–49] mediating the coupling between the scalar Higgs field

and the gluon field strength tensor:

Lint = −
λ

4
HFµν

a Fa,µν . (5)
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The coupling λ has inverse mass dimension. It can be computed by matching [50–52] the

effective theory to the full standard model cross sections [5–9].

Direct evaluation of the Feynman diagrams at the appropriate loop order yields the

bare (unrenormalised) form factors,

Fq
b (αb

s, s12) = 1 +
∞
∑

n=1

(

αb
s

4π

)n (

−s12

µ2
0

)−nǫ

Sn
ǫ Fq

n, (6)

Fg
b (αb

s, s12) = λb

(

1 +

∞
∑

n=1

(

αb
s

4π

)n (

−s12

µ2
0

)−nǫ

Sn
ǫ Fg

n

)

, (7)

where µ2
0 is the mass parameter introduced in dimensional regularisation to maintain a

dimensionless coupling in the bare Lagrangian density and where

Sǫ = e−ǫγ(4π)ǫ, with the Euler constant γ = 0.5772 . . . (8)

The one-loop and two-loop form factors were computed in many places in the liter-

ature [16–22]. All-order expressions in terms of one-loop and two-loop master integrals

are given in [22]. Explicit expressions for the one- and two-loop form factors through to

O(ǫ5) and O(ǫ3) respectively are given already in [25]. To determine the finite piece at the

four-loop level, these form factors are needed to one higher power in ǫ, and for the sake of

completeness, we quote them here. At one-loop,

Fq
1

= Fq
1
| 1

ǫ2
+ · · · + Fq

1
|ǫ5

+CF

[

ǫ6

(

−512 +
381ζ7

7
+

496ζ5

5
+

448ζ3

3
−

434ζ3ζ5

15
−

196ζ2
3

9
+ 64ζ2

−
93ζ2ζ5

10
−

56ζ2ζ3

3
+

49ζ2ζ
2
3

18
+

188ζ2
2

5
−

329ζ2
2ζ3

40
+

949ζ3
2

70
+

55779ζ4
2

11200

)

]

Fg
1

= Fg
1
| 1

ǫ2
+ · · · + Fg

1
|ǫ5

+CA

[

ǫ6

(

−126 +
62ζ5

5
+

98ζ3

3
−

434ζ3ζ5

15
+ 15ζ2 −

7ζ2ζ3

3
+

49ζ2ζ
2
3

18

+
141ζ2

2

20
+

55779ζ4
2

11200

)

]

(9)

and at two-loops

Fq
2

= Fq
2
| 1

ǫ4
+ · · · + Fq

2
|ǫ3

+C2
F

[

ǫ4

(

+
637631

128
− 528ζ5,3 +

27204ζ7

7
−

34001ζ5

10
−

481913ζ3

24
+

33248ζ3ζ5

15

+
36359ζ2

3

9
+

95559ζ2

32
− 198ζ2ζ5 +

2257ζ2ζ3

2
−

4576ζ2ζ
2
3

9
−

248023ζ2
2

80

+
5109ζ2

2ζ3

5
+

55623ζ3
2

140
+

653901ζ4
2

700

)

]

– 5 –
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+CF CA

[

ǫ4

(

−
11630115085

839808
+ 264ζ5,3 −

11980ζ7

21
+

1214029ζ5

270
+

84520897ζ3

5832

−
8266ζ3ζ5

5
−

229042ζ2
3

81
−

58499773ζ2

23328
−

829ζ2ζ5

15
−

94931ζ2ζ3

162
+

3029ζ2ζ
2
3

9

+
14915741ζ2

2

6480
−

66379ζ2
2 ζ3

90
+

4843ζ3
2

30
−

75242ζ4
2

175

)

]

+CF NF

[

ǫ4

(

+
996726245

419904
−

2186ζ7

21
−

42713ζ5

135
−

1951625ζ3

2916
+

4732ζ2
3

81
+

2877653ζ2

11664

−
242ζ2ζ5

15
−

4589ζ2ζ3

81
−

309181ζ2
2

3240
+

533ζ2
2 ζ3

45
−

127ζ3
2

3

)

]

Fg
2

= Fg
2
| 1

ǫ4
+ · · · + Fg

2
|ǫ3

+C2
A

[

ǫ4

(

+
1371828689

209952
− 264ζ5,3 +

56155ζ7

42
−

161266ζ5

135
−

5108944ζ3

729
+

1690ζ3ζ5

3

+
85559ζ2

3

81
−

219275ζ2

1944
−

1001ζ2ζ5

5
+

11858ζ2ζ3

27
−

1547ζ2ζ
2
3

9
−

187733ζ2
2

180

+
22781ζ2

2 ζ3

90
+

123079ζ3
2

1260
+

50419ζ4
2

100

)

]

+CANF

[

ǫ4

(

−
232282297

104976
+

229ζ7

21
−

24518ζ5

135
−

301886ζ3

729
+

22060ζ2
3

81

+
98791ζ2

972
+

342ζ2ζ5

5
+

2978ζ2ζ3

27
−

40148ζ2
2

405
+

517ζ2
2 ζ3

5
+

2167ζ3
2

630

)

]

+CF NF

[

ǫ4

(

−
19296691

7776
− 254ζ7 +

22948ζ5

45
+

192068ζ3

81
− 460ζ2

3 +
75305ζ2

648

−32ζ2ζ5 −
5716ζ2ζ3

27
+

585929ζ2
2

1620
−

6724ζ2
2 ζ3

45
−

2024ζ3
2

105

)

]

(10)

The unrenormalised three-loop quark form factor Fq
3

through to (and including) O(ǫ0)

is given in eq. (5.4) of ref. [25]. The pole contributions of Fq
3

are also given in eq. (3.7)

of ref. [16] while the finite parts of the N2
F , CANF and CF NF contributions are given in

eq. (6) of ref. [17]. The finite NF,V contribution could already be inferred from [53]. The

remaining finite contributions are also given in eqs. (8) and (9) of ref. [34]. The O(ǫ1) and

O(ǫ2) contributions are given by,

Fq
3

= Fq
3
| 1

ǫ6
+ · · · + Fq

3
|ǫ0

+C3
F

[

+ǫ

(

−
343393

48
−

11896ζ7

7
+

22349ζ5

3
+

40835ζ3

6
− 1203ζ2

3 −
105553ζ2

24

−
7858ζ2ζ5

15
+

6083ζ2ζ3

6
+

36693ζ2
2

40
−

3931ζ2
2
ζ3

6
+

321227ζ3
2

840

)

– 6 –
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(
2
0
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0
)
1
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2

+ǫ2

(

−
2512115

96
+

4160ζ5,3

3
+

45168ζ7

7
+

716537ζ5

15
−

137417ζ3

12

−
33148ζ3ζ5

3
+

12749ζ2
3

6
−

797995ζ2

48
−

12361ζ2ζ5

5
+

18469ζ2ζ3

2

+1985ζ2ζ
2
3 +

7653ζ2
2

80
−

15491ζ2
2
ζ3

20
+

1147979ζ3
2

240
−

74208727ζ4
2

50400

)

]

+C2
F CA

[

+ǫ

(

+
783459131

34992
− 1349ζ7 −

1894909ζ5

270
−

1259477ζ3

54
+

85649ζ2
3

18

+
19394303ζ2

1944
+

4851ζ2ζ5

5
−

195175ζ2ζ3

108
−

15062939ζ2
2

6480

+
9751ζ2

2
ζ3

20
−

1811231ζ3
2

15120

)

+ǫ2

(

+
16308475427

209952
−

15472ζ5,3

15
+

415489ζ7

42
−

7913725ζ5

162
−

27356135ζ3

324

+
72904ζ3ζ5

15
+

2174933ζ2
3

108
+

521534243ζ2

11664
+

53128ζ2ζ5

15
−

5620115ζ2ζ3

324

−1425ζ2ζ
2
3 −

161423233ζ2
2

19440
+

1083953ζ2
2 ζ3

180
−

211343621ζ3
2

90720

−
22796551ζ4

2

63000

)

]

+CF C2
A

[

+ǫ

(

−
458292965

26244
−

211ζ7

18
+

15601ζ5

5
+

42813461ζ3

2916
−

71734ζ2
3

27

−
52068575ζ2

8748
−

1568ζ2ζ5

9
+

13139ζ2ζ3

27
+

4467743ζ2
2

3240
−

4408ζ2
2
ζ3

45

−
8009ζ3

2

945

)

+ǫ2

(

−
34868838031

472392
−

3592ζ5,3

45
−

176495ζ7

36
+

18727307ζ5

810
+

405838949ζ3

5832

+
568ζ3ζ5

3
−

820579ζ2
3

54
−

1546106255ζ2

52488
−

23456ζ2ζ5

15
+

2116327ζ2ζ3

324

+
2896ζ2ζ

2
3

9
+

167549ζ2
2

27
− 3805ζ2

2 ζ3 +
201469ζ3

2

216
+

6341548ζ4
2

23625

)

]

+C2
F NF

[

+ǫ

(

−
50187205

17496
+

5863ζ5

135
+

929587ζ3

243
−

5771ζ2
3

9
−

1263505ζ2

972

−
8515ζ2ζ3

54
+

821749ζ2
2

3240
−

875381ζ3
2

7560

)

+ǫ2

(

−
861740653

104976
−

294430ζ7

63
+

167299ζ5

81
+

32307433ζ3

1458
−

208487ζ2
3

54

−
32868205ζ2

5832
+

953ζ2ζ5

15
−

152867ζ2ζ3

162
+

17061119ζ2
2

9720
−

172799ζ2
2 ζ3

180
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−
4769039ζ3

2

6480

)

]

+CF CANF

[

+ǫ

(

+
24570881

4374
−

28156ζ5

45
−

2418896ζ3

729
+

10816ζ2
3

27
+

7137385ζ2

4374

+
2674ζ2ζ3

27
−

352559ζ2
2

1620
+

17324ζ3
2

945

)

+ǫ2

(

+
5509319623

236196
+ 1170ζ7 −

622178ζ5

135
−

79031137ζ3

4374
+

218296ζ2
3

81

+
102669593ζ2

13122
+

3272ζ2ζ5

15
+

11939ζ2ζ3

81
−

3829919ζ2
2

3240
+

9572ζ2
2 ζ3

15

+
74461ζ3

2

5670

)

]

+CF N2
F

[

+ǫ

(

−
2913928

6561
+

2248ζ5

135
+

2108ζ3

27
−

24950ζ2

243
+

68ζ2ζ3

9
−

3901ζ2
2

810

)

+ǫ2

(

−
109448624

59049
+

52828ζ5

405
+

848300ζ3

2187
−

1156ζ2
3

81
−

338858ζ2

729

+
1598ζ2ζ3

27
−

2573ζ2
2

90
+

44651ζ3
2

5670

)

]

+CF NF,V

(

N2 − 4

N

)

×

×

[

+ǫ

(

+
170

3
+

752ζ5

9
+

94ζ3

9
−

344ζ2
3

3
+

260ζ2

3
+ 30ζ2ζ3 −

196ζ2
2

15
−

9728ζ3
2

315

)

+ǫ2

(

+
1460

3
−

4271ζ7

3
+

12970ζ5

27
+

2501ζ3

27
−

748ζ2
3

9
+

4345ζ2

9

−
256ζ2ζ5

3
+

239ζ2ζ3

3
−

3677ζ2
2

45
−

392ζ2
2ζ3

3
+

85244ζ3
2

945

)

]

(11)

Note that last colour factor is generated by graphs where the virtual gauge boson does

not couple directly to the final-state quarks. This contribution is denoted by NF,V and

is proportional to the charge weighted sum of the quark flavours. In the case of purely

electromagnetic interactions, we find,

NF,γ =

∑

q eq

eq
. (12)

The unrenormalised three-loop gluon form factor through to (and including) O(ǫ0) is

given in eq. (5.5) of ref. [25]. The divergent parts are also given in eq. (8) of ref. [17] while

the finite contributions are given in eq. (10) of ref. [34]. The O(ǫ1) and O(ǫ2) contributions

for Fg
3

are given by,

Fg
3

= Fg
3
| 1

ǫ6
+ · · · + Fg

3
|ǫ0
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+C3
A

[

+ǫ

(

+
270573319

26244
−

385579ζ7

126
+

389159ζ5

135
−

3601570ζ3

729
+

74899ζ2
3

54

−
446863ζ2

4374
+

2449ζ2ζ5

9
−

34093ζ2ζ3

54
−

40819ζ2
2

180
−

47803ζ2
2
ζ3

180

+
7200127ζ3

2

15120

)

+ǫ2

(

+
30151577675

472392
+

12392ζ5,3

45
+

2169431ζ7

126
+

3101341ζ5

405
−

59902487ζ3

1458

−
89996ζ3ζ5

15
+

16453ζ2
3

2
−

108299125ζ2

26244
−

6897ζ2ζ5

10
−

80255ζ2ζ3

27

+
7936ζ2ζ

2
3

9
−

34875497ζ2
2

9720
+

714109ζ2
2 ζ3

360
+

12226469ζ3
2

5040
−

1183759981ζ4
2

756000

)

]

+C2
ANF

[

+ǫ

(

−
48658741

8748
−

10066ζ5

45
+

349918ζ3

729
−

11657ζ2
3

27
+

904045ζ2

4374

+
791ζ2ζ3

9
−

34931ζ2
2

1620
−

52283ζ3
2

1080

)

+ǫ2

(

−
15039308929

472392
−

14271ζ7

7
−

391564ζ5

405
+

13422322ζ3

2187
−

76349ζ2
3

81

+
66386911ζ2

26244
+

307ζ2ζ5

5
+

31849ζ2ζ3

81
+

373234ζ2
2

1215
−

104327ζ2
2 ζ3

180

−
6878021ζ3

2

22680

)

]

+CACF NF

[

+ǫ

(

−
10508593

2916
+

17092ζ5

27
+

240934ζ3

243
+

4064ζ2
3

9
+

8869ζ2

54

+
640ζ2ζ3

9
+

28823ζ2
2

270
+

23624ζ3
2

315

)

+ǫ2

(

−
418631245

17496
+

16658ζ7

9
+

386102ζ5

81
+

4492979ζ3

729
+

17176ζ2
3

27

+
163523ζ2

108
− 496ζ2ζ5 +

3500ζ2ζ3

9
+

437599ζ2
2

540
+

3148ζ2
2
ζ3

5

+
157424ζ3

2

315

)

]

+C2
F NF

[

+ǫ

(

+
18613

54
−

3080ζ5

3
+

10552ζ3

9
−272ζ2

3−
74ζ2

3
−16ζ2ζ3+

328ζ2
2

5
−

35648ζ3
2

315

)

+ǫ2

(

+
383765

162
−

8828ζ7

3
−

35956ζ5

9
+

229772ζ3

27
−

6400ζ2
3

3
−

4109ζ2

18

+560ζ2ζ5 − 276ζ2ζ3 + 764ζ2
2 −

1232ζ2
2 ζ3

3
−

796168ζ3
2

945

)

]

– 9 –



346

346
J
H
E
P
1
1
(
2
0
1
0
)
1
0
2

+CAN2
F

[

+ǫ

(

+
16823771

26244
+

9368ζ5

135
+

5440ζ3

27
−

30283ζ2

1458
−

988ζ2ζ3

27
+

14018ζ2
2

405

)

+ǫ2

(

+
1534229129

472392
+

33136ζ5

81
+

1698929ζ3

2187
−

17908ζ2
3

81
−

1822421ζ2

8748

−
15928ζ2ζ3

81
+

20009ζ2
2

135
+

12851ζ3
2

5670

)

]

+CF N2
F

[

+ǫ

(

+
196900

243
−

800ζ5

9
−

4208ζ3

9
− 54ζ2 +

112ζ2ζ3

3
−

2464ζ2
2

45

)

+ǫ2

(

+
6322579

1458
−

17600ζ5

27
−

223756ζ3

81
+

3232ζ2
3

9
−

9626ζ2

27
+

2464ζ2ζ3

9

−
4913ζ2

2

15
+

248ζ3
2

63

)

]

(13)

The renormalised form factors are directly related to the unrenormalised form factors

and details on how to extract the renormalised form factors to this order are given in

section 2 of ref. [25].

In this letter, we computed the three-loop quark and gluon form factors through to

O(ǫ2) in the dimensional regularisation parameter. These contributions are relevant in the

study of the infrared singularity structure at four loops. In particular, the O(ǫ) terms

of the three-loop form factors are required for the extraction of the four-loop quark and

gluon collinear anomalous dimensions. The O(ǫ2) terms contribute to the finite part of

the infrared-subtraction of the form factors at four loops. It is this infrared-subtracted

finite part which is relevant for the study of the next-to-next-to-next-to-next-to-leading

(N4LO) Drell-Yan and Higgs production processes. In particular, the O(ǫ2) three-loop

contributions represent a finite ingredient to these processes at four-loops.
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[43] T. Huber and D. Mâıtre, HypExp, a Mathematica package for expanding hypergeometric

functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122

[hep-ph/0507094] [SPIRES].

[44] J. Blumlein, D.J. Broadhurst and J.A.M. Vermaseren, The multiple zeta value data mine,

Comput. Phys. Commun. 181 (2010) 582 [arXiv:0907.2557] [SPIRES].
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Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
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infrared divergences with the correct values of the three-loop cusp and collinear anomalous
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dimensions, and find unexpected cancellations, resulting in an improved ultraviolet be-
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1 Introduction

In this paper we study the Sudakov form factor in N = 4 super Yang-Mills (SYM) with

gauge group SU(N). Following van Neerven [1], we study the vacuum expectation value of

an operator built from two scalars, inserted into two on-shell states. The operator belongs

to the stress-energy supermultiplet, which contains the conserved currents of N = 4 SYM,

and has zero anomalous dimension. Together with the vanishing β function of N = 4 SYM

this means that the form factor is ultraviolet (UV) finite in four dimensions. Therefore

only infrared (IR) divergences associated to the on-shell states appear, which we regularise

using dimensional regularisation.

Generalisations of the Sudakov form factor to the case of different composite operators,

and more external on-shell legs, have been discussed recently in refs. [2–5]. Form factors

have also been studied within the AdS/CFT correspondence in the dual AdS description,

see refs. [6, 7]. Here we will focus on the perturbative expansion of the form factor of ref. [1].
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Form factors are closely related to scattering amplitudes. For example, planar ampli-

tudes can be factorised into an infrared divergent part, given by a product of form factors,

and an infrared finite remainder (a ‘hard’ function in QCD terminology), see e.g. ref. [8] and

references therein. The infrared divergent part exponentiates and has a simple universal

form. In fact, for four- and five-point scattering amplitudes the exponentiation property

of the divergent part carries over to the finite part as well [8, 9]. This is a consequence of

a hidden dual conformal symmetry of planar scattering amplitudes. The latter relates the

finite part to the infrared divergent part through a Ward identity [10, 11]. The relation to

form factors makes it possible to give an operator definition of the finite remainder. The

scheme independence of the latter was recently checked in a two-loop computation using

dimensional and massive regularisations [12].

Scattering amplitudes inN = 4 SYM have many special properties, and it is interesting

to ask how much of this simplicity carries over to the form factors. For both the planar four-

particle amplitude and the form factor, the general form of the result is known in principle.

For the former, this is due to dual conformal symmetry, and for the latter it is due to the

exponentiation of infrared divergences. However it is quite non-trivial to obtain these a

priori known results from explicit perturbative calculations, evaluating loop integrals. The

simplicity of the final results suggests that there should be more structure hidden in the

loop integral expressions, and by studying them further one might gain insights into better

ways of evaluating them, which is of more general interest.

One might expect that the evaluation of form factors should be simpler than that of

scattering amplitudes, as the former have a trivial scale dependence only, whereas the latter

are functions of ratios of Mandelstam variables, e.g. s/t in the four-point case. Given this,

it is somewhat surprising that less is known about the loop expansion of form factors in

N = 4 SYM than about scattering amplitudes. For example, while the planar four-point

amplitude was evaluated to the four-loop order (in part numerically) [13–15], the form

factor has only been computed to the two-loop order in ref. [1], in a calculation that dates

back to 1986. In the present paper, we extend the calculation of ref. [1] to three loops, and

study which of the properties that have been observed for scattering amplitudes are present.

One fact which makes form factors technically challenging compared to planar ampli-

tudes, however also more interesting, is the following. At leading order in the ‘t Hooft

limit N → ∞, where the coupling λ = g2N is kept fixed, both planar as well as non-planar

integrals appear in the form factor. This is easily understood by the fact that the operator

insertion is a colour-singlet. It is interesting to note that the non-planar diagrams appear-

ing in the form factor are related, through the unitarity technique, to a priori subleading

double trace terms in the four-particle scattering amplitude. Therefore, the form factor at

leading order in N contains information about non-planar corrections to the four-particle

amplitude. The first non-planar diagram, the crossed ladder, appears at the two-loop level.

At three loops, we find five different non-planar diagrams that contribute, i.e. that have

non-vanishing coefficient.

It is an observed, albeit unproven fact that results for scattering amplitudes in N = 4

super Yang-Mills have uniform transcendentality (UT), i.e. can be expressed as linear

combinations of polylogarithmic functions of uniform degree 2L, where L is the loop order,
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with constant coefficients. In ǫ-expansions of dimensionally regularised quantities which

depend only on a single scale, the coefficients of the Laurent expansion in ǫ are real constants

which are in general of increasing transcendentality in the Riemann ζ-function. In this

context uniform transcendentality refers to homogeneity in the degree of transcendentality

(DT ), where the latter is defined as

DT (r) = 0 for rational r

DT (πk) = DT (ζk) = k

DT (x · y) = DT (x) +DT (y) .

In the planar case, the property of UT is even true for individual loop integrals, at least

when they are expressed in an appropriate basis of dual conformal integrals [16, 17]. Inci-

dentally, this also has practical advantages, as these integrals are easier to evaluate [17, 18]

than those in other representations. Dual conformal symmetry is only expected in the

planar case, but what can be said about the transcendentality properties of non-planar

integrals? At four points, the non-planar double ladder integral is not of uniform tran-

scendentality. However, if defined with an appropriate loop-dependent numerator factor,

it does have this property [19, 20]. Changing to a basis involving the latter integral allows

one to understand the UT property of four-point non-planar N = 4 SYM amplitudes [21]

and N = 8 supergravity amplitudes [22, 23]. It also raises the interesting question whether

this is a generic feature.

All planar and non-planar master integrals for form factors in dimensional regularisa-

tion at three loops are known from the computation of the form factor in QCD [24–33], and

some of them have UT, while others do not. It has been observed that some of the inte-

grals do have UT if they are defined with certain (loop-dependent) numerator factors [19].

The latter resemble the numerator factors required by dual conformal symmetry in the

planar case [34]. In this paper, we find similar numerator factors for all topologies with

7, 8, 9 propagators, such that the integrals have UT. Moreover, we find that the complete

three-loop form factor can be written solely in terms of UT integrals.

Finding a representation that has this property required using certain identities for

non-planar form factor integrals that are based on reparametrisation invariances, which we

found as a by-product of our analysis. They generalise an identity found by Davydychev

and Usyukina [35].

As was already mentioned, in N = 4 SYM, scattering amplitudes and the form factors

studied here are UV finite in four dimensions. It is interesting to ask in what dimension,

called critical dimension Dc, they first develop UV divergences. This question is of theoret-

ical interest in the context of the discussion of possible finiteness of N = 8 supergravity, see

e.g. [36–38] and references therein. There are also speculations that maximal SYM in five

dimensions might have better UV behaviour than näıvely expected [39]. More practically,

bounds on the critical UV dimension at a given loop order can also be a useful cross-check

of computations, or constrain the types of loop integrals that can appear. Ultraviolet power

counting, based on the existence of N = 3 off-shell superspace [40], provides a lower bound

for the critical dimension. We analyse the UV properties of the form factor to three loops
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and find that at each loop order, the critical dimension is Dc = 6. This is consistent with

the bound obtained from superspace power counting. We find that the latter bound is

saturated at two loops, while it is too conservative at three loops, where the ultraviolet be-

haviour is better than suggested by the bound. This is the result of a cancellation between

different loop integrals. We find a representation where the UV behaviour is manifest.

This paper is organised as follows. We review the known expression for the form

factor to two loops in section 2. We then discuss identities for non-planar integrals to

three loops in section 3. In section 4, using the unitarity-based method, we derive an

expression for the three-loop form factor in terms of loop integrals. We then evaluate

the latter in section 5 and verify the exponentiation of infrared divergences in section 6.

We then analyse the ultraviolet properties of the form factor to three loops in section 7.

We conclude in section 8. There are several appendices. Appendix A contains the analytic

expressions of the ǫ expansion of the integrals used in the paper, while appendix B contains

the expression of the form factor in terms of conventionally used master integrals. Finally,

appendix C reviews the on-shell four-point amplitude to two loops that is used in the

unitarity calculation in the main text.

2 Form factor to two loops

In order to define the scalar form factor in N = 4 SYM, we start by introducing the bilinear

operator

O = Tr(φ12φ12) , (2.1)

where the scalars φAB are in the representation 6 of SU(4), and φAB = φa
ABTa, with Ta

being the generators of SU(N) in the fundamental representation, normalised according

to Tr(T aT b) = δab. This operator is a particular component of the stress-energy super-

multiplet of N = 4 SYM, and has zero anomalous dimension. We then define the form

factor as the vacuum expectation value of O inserted into two on-shell states in the adjoint

representation,

FS = �φa
34(p1)φ

b
34(p2)O� , (2.2)

with the convention that momentum is outgoing.

Since O is a colour singlet, the form factor must be proportional to Tr(T aT b),

FS = Tr(T aT b)FS . (2.3)

We work in dimensional regularisation with D = 4− 2ǫ dimensions in order to regulate IR

divergences associated with the on-shell legs. We write the form factor as an expansion in

the ’t Hooft coupling [8]

a =
g2N

8π2
(4π)ǫ e−ǫγE , (2.4)

according to

FS = 1 + a xǫ F
(1)
S + a2 x2ǫ F

(2)
S + a3 x3ǫ F

(3)
S +O(a4) . (2.5)
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Here γE is the Euler-Mascheroni constant, γE ≈ 0.5772. We normalized the tree-level

contribution to unity and introduced

x =
µ2

−q2 − iη
, (2.6)

with the infinitesimal quantity η > 0.

We remark that the dependence on the number of colours N in equation (2.5) is exact.

In order to see this, let us show that the three-loop contribution to the form factor must

be proportional to N3 (a similar analysis trivially holds at one and two loops).

The reasoning is as follows. Imagine a generic Feynman diagram contributing to FS .
Without loss of generality, suppose that it is built from three-point vertices, whose colour

dependence is given by the structure constants fa1a2a3 . For each internal line, there is a

sum over adjoint colour indices, with the result being proportional to Tr(T aT b), as stated

in equation (2.3). Our goal is to determine the proportionality factor. In order to do this,

it is convenient to sum also over the free indices a and b,

∑

a,b

δabTr(T aT b) = N2 − 1 . (2.7)

We can then represent each Feynman diagram as a circle with inscribed lines. There are

three inequivalent structures that can appear,

A = fabgf bcgf cdhfedifefiffah ,

B = fabgf bchf cdgfdeifeifffha , (2.8)

C = fabgf bchf cdifdegfehfffia ,

which correspond to the case of zero, one, or two intersections of the inscribed lines,

respectively. Sums over repeated indices are implicit. In order to carry out the sums, it is

convenient to write the structure constants as

fabc = −i/
√
2

(

Tr[T aT bT c]− Tr[T aT cT b]
)

. (2.9)

Using the SU(N) Fierz identities,

∑

a

Tr(AT a)Tr(BT a) = Tr(AB)− 1/N Tr(A) Tr(B) , (2.10)

∑

a

Tr(AT aBT a) = Tr(A) Tr(B)− 1/N Tr(AB) , (2.11)

one easily finds

A = (N2 − 1)N3 , B = −1

2
(N2 − 1)N3 , C = 0 . (2.12)

Taking into account equation (2.7), we see that FS at three loops is proportional to N3,

as claimed.
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Figure 1. Diagrams that contribute to the one-loop and two-loop form factors F (1)
S and F (2)

S in

N = 4 SYM. All internal lines are massless. The incoming momentum is q = p1 + p2, outgoing

lines are massless and on-shell, i. e. p21 = p22 = 0. All diagrams displayed have unit numerator and

exhibit uniform transcendentality (UT) in their Laurent expansion in ǫ = (4−D)/2.

Note that beginning from four loops there can be more than one colour structure,

and in particular the quartic Casimir can appear. An explicit example of this is the four-

loop contribution to the QCD β function [41]. An interesting related question has to do

with the colour dependence of infrared divergences in gauge theories, see e.g. [42], and

references therein.

The form factor to two loops was computed a long time ago [1]. It contains as building

blocks the diagrams displayed in figure 1 and reads

FS = 1 + g2N µ2ǫ · (−q2) · 2D1 + g4N2 µ4ǫ · (−q2)2 · [4E1 + E2] +O(g6)

= 1 + a xǫRǫ · 2Dexp
1 + a2 x2ǫR2

ǫ · [4Eexp
1 + Eexp

2 ] +O(a3) , (2.13)

with

Rǫ ≡
eǫγE

2Γ(1− ǫ)
. (2.14)

The expressions for D1, D
exp
1 , Ei, and Eexp

i are given explicitly in appendix A and result in

F
(1)
S = Rǫ · 2Dexp

1

= − 1

ǫ2
+

π2

12
+

7ζ3
3

ǫ+
47π4

1440
ǫ2 + ǫ3

(

31ζ5
5

− 7π2ζ3
36

)

+ ǫ4
(

949π6

120960
− 49ζ23

18

)

+ǫ5
(

−329π4ζ3
4320

− 31π2ζ5
60

+
127ζ7
7

)

+ ǫ6
(

49π2ζ23
216

− 217ζ3ζ5
15

+
18593π8

9676800

)

+O(ǫ7) , (2.15)

F
(2)
S = R2

ǫ · [4Eexp
1 + Eexp

2 ]

= +
1

2ǫ4
− π2

24ǫ2
− 25ζ3

12ǫ
− 7π4

240
+ ǫ

(

23π2ζ3
72

+
71ζ5
20

)

+ ǫ2
(

901ζ23
36

+
257π6

6720

)

+ǫ3
(

1291π4ζ3
1440

− 313π2ζ5
120

+
3169ζ7
14

)

+ǫ4
(

−66ζ5,3 +
845ζ3ζ5

6
− 1547π2ζ23

216
+

50419π8

518400

)

+O(ǫ5) . (2.16)
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The multiple zeta values ζm1,...,mk
are defined by (see e.g. [43] and references therein)

ζm1,...,mk
=

∞
∑

i1=1

i1−1
∑

i2=1

· · ·
ik−1−1
∑

ik=1

k
∏

j=1

sgn(mj)
ij

i
|mj |
j

. (2.17)

The numerical values of the transcendental constants up to weight eight are:

ζ3 = 1.2020569031595942854 . . . , ζ5 = 1.0369277551433699263 . . . ,

ζ7 = 1.0083492773819228268 . . . , ζ5,3 = 0.037707672984847544011 . . . .

We remark that in order to obtain all finite pieces of the logarithm of the form factor in

section 6 we need the ǫ-expansion through terms of transcendental weight six, i.e. to order

O(ǫ4) at one loop, O(ǫ2) at two loops, and O(ǫ0) later on at three loops. We emphasize that

our expressions contain two more orders in ǫ and therefore contain already all information

required for exponentiation at four loops.

3 Momentum routing invariances of integrals

Before we proceed to calculate the N = 4 SYM form factor to three loops via unitarity cuts,

we want to investigate some of the occurring topologies more closely. In particular, we will

derive identities that relate integrals without uniform transcendentality (UT) to integrals

that do have this property. Since the diagrams that we will obtain from the unitarity

method do not individually have UT, the following relations will be very useful later on

for switching to an integral basis for the form factor in which each building block has UT.

We start with topology F ∗
3 , see figure 2. We label its incoming momentum with

q = p1 + p2, and the outgoing ones with p1 and p2, respectively. The latter are massless

and on-shell, i.e. p21 = p22 = 0. The topology can be parametrised according to

{k1 − k2 , k1 − k3 , k1 − k2 − k3 , k2 , k3 , k1 − q , k2 − q , k3 − q , k2 − p1} , (3.1)

where ki are the loop momenta. It can be seen from figure 2 how the momenta are dis-

tributed among the lines of the diagram F ∗
3 . It turns out that the following reparametriza-

tion of loop momenta,

k1 → q + k2 − k1

k2 → k2

k3 → q − k3 ,

does not only leave the value of the integral invariant, but even its integrand . We can

now apply this transformation to the integral F3 which carries the factor (k2 − k3)
2 as an

irreducible scalar product in its numerator. This yields

(k2 − k3)
2 → (k2 + k3 − q)2

= k22 + k23 + (k2 − q)2 + (k3 − q)2 − (k2 − k3)
2 − q2 . (3.2)
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= −1

2
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F ∗

3

1

2

3

4

5

6

7

8

9

+

Fa1

+

F8

Figure 2. Diagrammatic representation of eq. (3.3). The internal lines of all diagrams are massless.

The incoming momentum is q = p1 + p2, outgoing lines are massless and on-shell, i.e. p21 = p22 = 0.

Diagrams with labels pa and pb on arrow lines have an irreducible scalar product (pa+ pb)
2 in their

numerator (diagrams that lack these labels have unit numerator). The numbers in F ∗

3 indicate the

position of the entries in eq. (3.1). Diagrams F3 and F8 have UT, contrary to F ∗

3 and Fa1.

We can now solve this equation for (k2 − k3)
2 and get the following relation between

integrals,

F3 = −1

2
q2 F ∗

3 + Fa1 + F8 , (3.3)

which is diagrammatically shown in figure 2. We have now decomposed the integral F ∗
3 ,

which does not have UT in its Laurent expansion, into two integrals (F3 and F8) which

indeed do have this property, and the auxiliary integral Fa1, which again does not have

homogeneous transcendental weight, but which will be cancelled later on.

We can apply analogous steps to topology F ∗
4 , see figure 3. The topology can be

parametrised according to

{k1 , k2 , k3 , k1 − k2 , k1 − k3 , k1 − q , k1 − k2 − p2 , k3 − q , k2 − p1} , (3.4)

and the distribution of the momenta among the lines can be seen from figure 3. The

integrand remains invariant under

k1 → q − k1

k2 → p1 − k2

k3 → q − k3 ,

We now apply this transformation to the numerator (k1−p1)
2 of the integral F4. This yields

(k1 − p1)
2 → (k1 − p2)

2

= k21 + (k1 − q)2 − (k1 − p1)
2 − q2 . (3.5)
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Figure 3. Diagrammatic representation of eq. (3.6). All symbols have the same meaning as in

figure 2. The numbers in F ∗

4 indicate the position of the entries in eq. (3.4). Diagram F4 has UT,

contrary to F ∗

4 and Fa2.

We can now solve this equation for (k1 − p1)
2 and get

F4 = −1

2
q2 F ∗

4 + Fa2 , (3.6)

which is diagrammatically shown in figure 3. Again we decomposed the non-homogeneous

integral F ∗
4 into the homogeneous integral F4 and yet another non-homogeneous auxiliary

integral (Fa2) which will be cancelled later on.

We can also decompose the topology F ∗
5 , see figure 4. In this case we cannot find a

relation between integrals which is based on a momentum routing invariance, but a relation

which is simply based on momentum conservation. The topology can be parametrised

according to

{k1 − k2 , k1 − k3 , k1 − k2 − k3 , k2 , k3 , k1 − q , k2 − q , k1 − p1 , k3 − p1} , (3.7)

and we refer to figure 4 for their distributions among the lines. From momentum conser-

vation we get

(k2 − p1)
2 = (k1 − k2)

2 − k21 + k22 + (k1 − p1)
2 − (k1 − k2 − p1)

2 , (3.8)

which results in

F ∗
5 = Fa1 + Fa2 + F9 − F5 − F6 . (3.9)

Hence we decomposed F ∗
5 into the homogeneous-weight diagrams F5, F6, and F9, as well

as the same non-homogeneous diagrams Fa1, and Fa2 which already appeared above.

We see from eqs. (3.3), (3.6), and (3.9) that only two auxiliary diagrams of non-

homogeneous weight, namely Fa1, and Fa2 appear in all these relations. It turns out that

the coefficients obtained from unitarity are precisely such that these integrals cancel in the

expression for the form factor.

We checked all relations between integrals also at the level of their integration-by-parts

(IBP) reduction [44, 45] to master integrals using the implementation of the Laporta algo-

rithm [46] in the REDUZE [47] code. We find that all relations obtained from momentum

routing invariance in this section can actually be reproduced from solving IBP relations,

which is a priori not guaranteed for a general Feynman integral topology. The ǫ-expansions

of all integrals can be found in appendix A.
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Figure 4. Diagrammatic representation of eq. (3.9). All symbols have the same meaning as in

figure 2. The numbers in F ∗

5 indicate the position of the entries in eq. (3.7). Diagrams F5, F6, and

F9 have UT, contrary to F ∗

5 , Fa1, and Fa2.

4 Form factor to three loops from unitarity cuts

Here we use unitarity cuts to derive an expression for the three-loop form factor in terms

of the integrals discussed in the previous section. We will compute the form factor in a

perturbative expansion in the Yang-Mills coupling g, and denote the contribution at order

g0, g2, g4, g6 by F tree
S ,F1−loop

S ,F2−loop
S ,F3−loop

S , respectively, and similarly for FS . Note

that this notation, convenient for the unitarity calculations, differs from the one used in

eq. (2.5).

The essential features of the unitarity-based method [48, 49] that we are going to

use are reviewed in the recent paper [50]. We will employ two-particle cuts, as well as

generalised cuts. The two-particle cuts are very easy to evaluate, and we show an explicit

example below.

In order to evaluate more complicated cuts, with many intermediate state sums to

be carried out, it is extremely useful to employ a formalism that makes supersymmetry

manifest. This can be done by arranging the on-shell states of N = 4 SYM into an on-shell

supermultiplet [51]. The main advantage is that intermediate state sums appearing in the

cuts become simple Grassmann integrals that can be carried out trivially [52–55]. In this

way, following the Lorentz-covariant approach of [52] it is easy to obain compact analytical

expressions for the cuts. In particular, unlike the MHV vertex expansion, the results do

not depend on arbitrary reference spinors.

We follow the notations for unitarity cuts of ref. [56]. We start by reviewing the one-

and two-loop cases as examples.
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F tree Atree
4

(1a)

0 0
p1

p2

ℓ1

ℓ2
F tree A1−loop

4

(2a)

0 1

F1−loop Atree
4

(2b)

1 0

F tree A2−loop
4

(3a)

0 2

F1−loop A1−loop
4

(3b)

1 1

F2−loop Atree
4

(3c)

2 0

Figure 5. Two-particle cuts of form factors up to three loops.

4.1 One-loop form factor from unitarity cuts

As a simple warmup exercise, we rederive the one-loop result from unitarity cuts, see also

ref. [2]. Let us compute the two-particle cut (1a) shown in figure 5. It is given by

F1−loop
S

∣

∣

∣

cut(1a)
=

∫

∑

P1,P2

dDk

(2π)D
i

ℓ22
F tree
S (−ℓ1,−ℓ2)

i

ℓ21
Atree

4 (ℓ2, ℓ1, p1, p2)
∣

∣

∣

ℓ21=ℓ22=0
, (4.1)

where ℓ1 and ℓ2 are the momenta of the cut legs, and the sum runs over all possible particles

across the cut. We may use the on-shell condition ℓ21 = ℓ22 = 0 in the integrand (but not on

the cut propagators), since any terms proportional to such numerator factors would vanish

in the cut. The four-particle tree ampliutde Atree
4 (ℓ2, ℓ1, p1, p2) is given in appendix C. We

use the convention that all momenta are defined as outgoing.

When computing the cut of a form factor (as opposed to a colour-ordered amplitude),

one has to be careful about the overall normalisation, since the possible exchange of external

legs p1 and p2 leads to a factor of 2 in the cuts. When comparing cuts of the form factor

to cuts of integrals, this factor cancels out. In the following we count such contributions

only once.

The two-particle cuts are particularly simple to evaluate. With our choice of external

states, only scalars can appear as intermediate particles, and we therefore do not need to

use the spinor helicity formalism. The tree-level form factor is simply given by

F tree
S (−ℓ1,−ℓ2) = Tr(T aT b) . (4.2)

The necessary four-particle amplitudes are given in appendix C. The colour algebra across

the cut is carried out using the SU(N) Fierz identities, see eqs. (2.10) and (2.11). It is easy
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to see that (4.1) becomes

F1−loop
S

∣

∣

∣

∣

cut (1a)

= g2µ2ǫN s12Tr(T
aT b)

∫

dDk

(2π)D
i

ℓ22

i

ℓ21

( −i

(p1 + ℓ1)2
+

−i

(p2 + ℓ2)2

) ∣

∣

∣

∣

ℓ21=ℓ22=0

=−2 g2µ2ǫN s12Tr(T
aT b)

∫

dDk

i(2π)D
1

k2(k + p1)2(k − p2)2

∣

∣

∣

cut (1a)
, (4.3)

where sij := (pi + pj)
2, and where we have identified the cut of the one-loop form factor

with the cut of the one-loop triangle integral D1, see figure 1,

D1 =

∫

dDk

i(2π)D
1

k2(k + p1)2(k − p2)2
. (4.4)

We can now argue that this result is exact, i.e. that we can remove the “cut (1a)” in

eq. (4.3). In order to do that, we have to make sure that no terms with vanishing cuts are

missed. Such terms having no cuts in four dimensions can be detected in D dimensions.

The two-particle cut calculation we just presented would have gone through unchanged in

D dimensions, since all required amplitudes were those of scalars, and no spinor helicity

identities intrinsic to four dimensions were used. A similar argument was given in ref. [56].

Therefore we conclude that in D dimensions,

F 1−loop
S = g2Nµ2ǫ(−q2)2D1 . (4.5)

4.2 Two-loop form factor from unitarity cuts

We recall that at two loops, the result for the form factor is given by [1],

F 2−loop
S = g4N2µ4ǫ(−q2)2

[

4E1 + E2

]

, (4.6)

where the planar and non-planar ladder diagrams E1 and E2 are shown in figure 1.

Let us now understand this result from unitarity cuts. The unitarity cut (2b) of figure 5

detects the presence of the planar integral E1 only. The calculation is identical to that of

the one-loop case, with the exception that the one-loop form factor as opposed to the

tree-level form factor is inserted on the l.h.s. of the cut.

The unitarity cut (2a) of figure 5 reveals a new feature, that was already mentioned

in the introduction. On the r.h.s. of the cut we now insert the full one-loop four-point

amplitude A1−loop
4 , given explicitly in eq. (C.2), which in addition to single trace terms also

contains double trace terms. The latter would ordinarily be subleading in the expansion of

powers of N , e.g. when computing a four-point amplitude at leading colour using unitarity

cuts. Here, however the colour algebra gives rise to another factor of N for those terms,

so that they can contribute to the form factor at the same order as the single trace terms.

This explains why the non-planar integral E2 can appear in the form factor.

In principle, new terms could appear in the three-particle cut, but this is not the case.

For example, the diagram E3 shown in figure 6 has no two-particle cuts. The absence of

this diagram can be understood by the fact that it has worse UV properties compared to

E1 and E2, as we discuss in section 7. For the same reason, diagrams F7 and F10 from
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Figure 6. Diagrams that do not contribute to the form factor at two (E3) and three loops (F7

and F10), respectively. They have worse UV properties compared to the integrals that do appear

in the form factor. The labels pa and pb on F7 indicate an irreducible scalar product (pa + pb)
2 in

its numerator. The other two diagrams have unit numerator.

figure 6, the latter of which at has no three-particle cuts, will not contribute to the form

factor at three loops, as we will see below.

We have also evaluated the three-particle and a generalised cut, with the result being in

perfect agreement with eq. (4.6). We found it useful to employ a manifestly supersymmetric

version of the unitarity method [52]. The necessary tree-level amplitudes for the local

operator of eq. (2.1) inserted into three on-shell states were computed in refs. [2, 3]. The

analytical calculation is straightforward to perform. We refrain from presenting the details

since it would require introducing spinor helicity and superspace. We refer the interested

reader to refs. [50, 52] for related instructive examples.

4.3 Three-loop form factor from unitarity cuts

We again begin by studying two-particle cuts, which are shown in the second line of figure 5.

Again, all results for the form factors and four-point amplitudes appearing in the unitar-

ity cuts are explicitly known, with the result for the four-point amplitudes summarized

in appendix C.

When evaluating the cuts, one has a certain freedom in rewriting the answer to a given

cut due to the on-shell conditions. Of course, eventually such ambiguities are fixed by the

requirement that the answer must satisfy all cuts. In order to find such an expression that

manifestly satisfies all cuts it is very useful to have an idea about the kind of integrals that

should appear in the answer. We expect that the form factor can be expressed in terms of

the integrals that have UT that were discussed in section 3. This turns out to be a very

useful guiding principle.

The calculation is completely analogous to that at one and two loops. Let us start

with the simplest cut (3c) from figure 5. It is given by

F3−loop
S

∣

∣

∣

cut(3c)
=

∫

∑

P1,P2

dDk

(2π)D
i

ℓ22
F2−loop
S (−ℓ1,−ℓ2)

i

ℓ21
Atree

4 (ℓ2, ℓ1, p1, p2)
∣

∣

∣

ℓ21=ℓ22=0
, (4.7)

The evaluation of the cut is exactly as that considered at one loop, with the difference that

we now insert the two-loop expression for the form factor into the cut, as opposed to the
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tree-level one. One immediately finds

F3−loop
S

∣

∣

∣

cut(3c)
= g6 µ6ǫN3 (−q2)3

[

8F1 + 2F ∗
3

]

∣

∣

∣

cut(3c)
, (4.8)

where F1 is the three-loop ladder integral shown in figure 7, and F ∗
3 is related to F3 in the

same figure via the identity (3.3). In fact, we know from section 3 that F ∗
3 does not have

uniform transcendentality. Since we do expect the final result to have this property, use

eq. (3.3) to eliminate F ∗
3 . When doing so, we note that the contribution of Fa1 in that

equation drops out on the cut (3c), and we have

F 3−loop
S

∣

∣

∣

cut(3c)
= g6 µ6ǫN3 (−q2)2

[

8 (−q2)F1 + 4F3 − 4F8

]

∣

∣

∣

cut(3c)
, (4.9)

i.e. we have succeeded in writing the two-particle cut (3c) in terms of integrals having

UT only.

Similarly, one can show that the two-particle cut (3b) of figure 5 can be written as

F 3−loop
S

∣

∣

∣

cut(3b)
= g6 µ6ǫN3 (−q2)2

[

8 (−q2)F1 + 4F4

]

∣

∣

∣

cut(3b)
. (4.10)

This confirms the coefficient of F1, and introduces a new integral F4, invisible to cut (3c).

Finally, the most interesting two-particle cut is (3a), as it uses the double trace terms

present in A2−loop
4 , see appendix C. Using the identities derived in section 3, we find

F 3−loop
S

∣

∣

∣

cut(3a)
= g6 µ6ǫN3 (−q2)2

[

8 (−q2)F1−2F2+4F3+4F4−4F5−4F6

]

∣

∣

∣

cut(3a)
. (4.11)

Comparing equations (4.9), (4.10), and (4.11) with each other, we see that they are

manifestly consistent with each other, which suggests that we are indeed working with an

appropriate integral basis to describe this problem. We find that the following expression

is in agreement with all two-particle cuts,

F 3−loop
S

∣

∣

∣

2−part. cut
(4.12)

= g6 µ6ǫN3 (−q2)2
[

8 (−q2)F1 − 2F2 + 4F3 + 4F4 − 4F5 − 4F6 − 4F8

]

∣

∣

∣

2−part. cut
.

It is quite remarkable that to three loops the coefficients of all integrals are small inte-

ger numbers.

We could proceed by evaluating three- and four-particle cuts, but we find it technically

simpler to study generalised cuts. To begin with, we perform a cross-check on the two-

particle cut calculation above by evaluating maximal cuts where nine propagators are cut.

We find perfect agreement between the two calculations. Next, we release one cut constraint

to detect integrals having only eight propagators. There are several ways in which this can

be done. For example, cutting all eight propagators present in integral F9 detects this

integral, as well as integrals F5 and F6. Another eight-propagator cut detects integrals

F2, F5, F6 and F7. The latter integral (see figure 6) turns out to have coefficient zero, i.e.

it does not appear.
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We again find perfect agreement with the contributions already known from the two-

particle cuts, and find further contributions not having any two-particle cuts, like F9. The

following expression satisfies all cuts that we have evaluated,

F 3−loop
S = g6 µ6ǫN3 (−q2)2

[

8 (−q2)F1 − 2F2 + 4F3 + 4F4 − 4F5 − 4F6 − 4F8 + 2F9

]

.

(4.13)

We will now argue that eq. (4.13) is the complete result for the three-loop form factor. In

fact, potential corrections to equation (4.13) can come only from seven-propagator integrals

that have vanishing two-particle cuts. An example of such an integral is F10 shown in

figure 6. As we will see in section 7, the appearance of such integrals is highly unlikely due

to their bad UV behaviour, violating a bound based on supersymmetry power counting.

Moreover, in section 6, we will perform an even more stringent check on eq. (4.13) by

verifying the correct exponentiation of infrared divergences. In particular, this means that

any potentially missing terms in equation (4.13) would have to be IR and UV finite, and

vanish in all unitarity cuts that we considered.

5 Final result for the form factor at three loops

In the previous section we obtained the extension of eq. (2.13) to three loops,

FS = 1 + g2N µ2ǫ · (−q2) · 2D1 + g4N2 µ4ǫ · (−q2)2 · [4E1 + E2]

+ g6N3 µ6ǫ · (−q2)2 ·
[

8 (−q2)F1 − 2F2 + 4F3 + 4F4 − 4F5 − 4F6 − 4F8 + 2F9

]

+O(g8)

= 1 + a xǫRǫ · 2Dexp
1 + a2 x2ǫR2

ǫ · [4Eexp
1 + Eexp

2 ]

+a3 x3ǫR3
ǫ · [8F exp

1 − 2F exp
2 + 4F exp

3 + 4F exp
4 − 4F exp

5 − 4F exp
6 − 4F exp

8 + 2F exp
9 ]

+O(a4) . (5.1)

The expressions for Fi, and F exp
i are again given in appendix A. All diagrams are displayed

in figure 7. This yields

F
(3)
S = R3

ǫ · [8F exp
1 − 2F exp

2 + 4F exp
3 + 4F exp

4 − 4F exp
5 − 4F exp

6 − 4F exp
8 + 2F exp

9 ]

= − 1

6ǫ6
+

11ζ3
12ǫ3

+
247π4

25920ǫ2
+

1

ǫ

(

−85π2ζ3
432

− 439ζ5
60

)

−883ζ23
36

− 22523π6

466560
+ ǫ

(

−47803π4ζ3
51840

+
2449π2ζ5

432
− 385579ζ7

1008

)

+ǫ2
(

1549

45
ζ5,3 −

22499ζ3ζ5
30

+
496π2ζ23

27
− 1183759981π8

7838208000

)

+O(ǫ3) . (5.2)

We can make a very interesting observation here. For anomalous dimensions of twist

two operators, there is a heuristic leading transcendentality principle [57–59], which relates

the N = 4 SYM result to the leading transcendental part of the QCD result. We can

investigate whether a similar property holds for the form factor.
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F1

pa

pb

F2

pa

pb

F3

pa

pb

F4

pa

pb

F5

pa

pb

F6

F8 F9

Figure 7. Diagrams of which the three-loop form factor F
(3)
S in N = 4 SYM is built. All internal

lines are massless. The incoming momentum is q = p1+p2, outgoing lines are massless and on-shell,

i.e. p21 = p22 = 0. Diagrams with labels pa and pb on arrow lines have an irreducible scalar product

(pa + pb)
2 in their numerator (diagrams that lack these labels have unit numerator). All diagrams

displayed exhibit uniform transcendentality (UT) in their Laurent expansion in ǫ = (4−D)/2.

For the comparison, we specify the QCD quark and gluon form factor to a super-

symmetric Yang-Mills theory containing a bosonic and fermionic degree of freedom in the

same colour representation, which is achieved by setting CA = CF = 2TF and nf = 1 in

the QCD result [27]. It turns out that with this adjustment the leading transcendentality

pieces of the quark and gluon form factor become equal at one, two, and three loops in

all coefficients up to transcendental weight eight, i.e. O(ǫ6), O(ǫ4), and O(ǫ2) at one, two,

and three loops, respectively. Moreover, the leading transcendentality pieces of the quark

and gluon form factor coincide — up to a factor of 2L (L is the number of loops) which

is due to normalisation — with the coefficients of the scalar form factor in N = 4 SYM

computed in the present work. This again holds true at one, two, and three loops and for

all coefficients up to weight eight, and serves as an important check of our result.
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The question arises if the leading transcendentality principle [57–59] between QCD

and N = 4 SYM carries over to more general quantities like scattering amplitudes, or if it

is a special feature of form factors since they have only two external partons.

In fact, there are counterexamples in the case of scattering amplitudes [19]. For in-

stance, the N = 1 supersymmetric one-loop four-point amplitudes [60] have a leading

transcendentality piece which is not of the N = 4 SYM form, because it has 1/u power-law

factors. This makes the property we have found for the form factor even more surprising.

6 Logarithm of the form factor

The logarithm of the form factor is given by

ln (FS) = ln
(

1 + a xǫ F
(1)
S + a2 x2ǫ F

(2)
S + a3 x3ǫ F

(3)
S +O(a4)

)

= a xǫ F
(1)
S + a2 x2ǫ

[

F
(2)
S − 1

2

(

F
(1)
S

)2
]

+ a3 x3ǫ
[

F
(3)
S − F

(1)
S F

(2)
S +

1

3

(

F
(1)
S

)3
]

+O(a4) , (6.1)

where

F
(1)
S =− 1

ǫ2
+

π2

12
+

7ζ3
3

ǫ+
47π4

1440
ǫ2 + ǫ3

(

31ζ5
5

− 7π2ζ3
36

)

+ǫ4
(

949π6

120960
− 49ζ23

18

)

+ ǫ5
(

127ζ7
7

− 329π4ζ3
4320

− 31π2ζ5
60

)

+ǫ6
(

49π2ζ23
216

− 217ζ3ζ5
15

+
18593π8

9676800

)

+O(ǫ7) , (6.2)

F
(2)
S − 1

2

(

F
(1)
S

)2
=

π2

24ǫ2
+

ζ3
4ǫ

+ ǫ

(

39ζ5
4

− 5π2ζ3
72

)

+ ǫ2
(

235ζ23
12

+
2623π6

60480

)

+ǫ3
(

73π4ζ3
96

− 437π2ζ5
120

+
489ζ7
2

)

(6.3)

+ǫ4
(

−66ζ5,3 +
1119ζ3ζ5

10
− 1351π2ζ23

216
+

127π8

1296

)

+O(ǫ5) ,

F
(3)
S −F

(1)
S F

(2)
S +

1

3

(

F
(1)
S

)3
=− 11π4

1620ǫ2
+

1

ǫ

(

−5π2ζ3
54

− 2ζ5
3

)

− 13ζ23
9

− 193π6

25515

+ǫ

(

−107π4ζ3
1620

+
187π2ζ5
108

− 21181ζ7
144

)

+ǫ2
(

−1421

45
ζ5,3 −

1922ζ3ζ5
3

+
1057π2ζ23

108
− 994807π8

17496000

)

+O(ǫ3) . (6.4)

The poles of the logarithm of the form factor have the generic structure [61]

ln (FS) =
∞

∑

L=1

aL xLǫ

[

− γ(L)

4(Lǫ)2
− G(L)

0

2Lǫ

]

+O(ǫ0) , (6.5)
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with the L-loop cusp γ(L) and collinear G(L)
0 anomalous dimensions [62] given by

γ(a) =
∞

∑

L=1

aLγ(L) = 4a− 4ζ2a
2 + 22ζ4a

3 +O(a4) , (6.6)

G0(a) =

∞
∑

L=1

aLG(L)
0 = −ζ3a

2 +

(

4ζ5 +
10

3
ζ2ζ3

)

a3 +O(a4) . (6.7)

We observe that the vanishing of the O(ǫ0)-term in the logarithm of the two-loop

form factor [1] appears to be a coincidence, which does not reproduce at three loops. The

finite part of the N = 4 form factor does therefore not exponentiate, as could have been

conjectured from the two-loop result.

7 Ultraviolet divergences in higher dimensions

Scattering amplitudes and form factors in N = 4 super Yang-Mills are ultraviolet (UV)

finite in four dimensions. It is interesting to ask in what dimension, called critical dimension

Dc, they first develop UV divergences. This question is of theoretical interest in the context

of the discussion of possible finiteness of N = 8 supergravity, see e.g. [38] and references

therein. More practically, bounds on the critical UV dimension at a given loop order can

also be a useful cross-check of computations, or constrain the types of loop integrals that

can appear.

There is a bound on the critical dimension based on power counting for supergraphs

and the background field method. The one-loop case is special due to some technical issue

with ghosts, but there is a bound for L > 1 loops [63, 64],

Dc(L) ≥ 4 +
2(N − 1)

L
, L > 1 , (7.1)

such that for D < Dc the theory is UV finite. The bound (7.1) depends on the number N of

supersymmetries that can be realized off-shell. The maximal amount of supersymmetry can

be realised using an N = 3 harmonic superspace action for N = 4 super Yang-Mills [40].

Taking thus N = 3 in (7.1) we have

Dc(L) ≥ 4 +
4

L
, L > 1 . (7.2)

Equation (7.1) is a lower bound for Dc, and in some cases it can be too conserva-

tive. For example, in the case of scattering amplitudes, studying and excluding potential

counterterms bounds on the critical dimension can sometimes be improved, see the re-

views [65, 66]. Investigations of UV properties of four-particle scattering amplitudes have

shown that their ultraviolet behaviour is better than expected [67]. Their critical dimen-

sion at two and three loops was shown to be 7 and 6, respectively, suggesting the improved

bound Dc(L) ≥ 4 + 6/L. The one-loop case is exceptional, but for completeness we note

that Dc(L = 1) = 8 for the four-particle scattering amplitude.

We can now study the UV properties for D > 4 of the form factor that we have

computed. There is no statement from eq. (7.2) for the one-loop case, but one can easily
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see that Dc(L = 1) = 6. For the two-loop form factor, the bound (7.2) is actually saturated

since the two-loop form factor develops its first ultraviolet divergence at Dc(L = 2) = 6.

Moreover, it turns out that in D = 6 − 2ǫ dimensions the leading 1/ǫ2 UV-pole is given

by the leading UV-pole of the two-loop planar ladder diagram E1, and that E2 has only a

simple 1/ǫ pole.

At three loops, eq. (7.2) becomes Dc ≥ 16/3. First of all, we see by power counting

that diagrams F7 and F10 (see figure 6) both have a UV divergence inD = 14/3 dimensions,

which would violate the supersymmetry bound (7.2). This comes close to explaining why

their coefficients are zero, and why other integrals having seven or fewer propagators do

not appear. A small caveat is that it may not always be possible to write the answer in

a form such that the UV properties are manifest: one could have a linear combination of

integrals that individually have worse UV properties than expected, but with appropriate

UV behaviour of the linear combination. However, as we will see presently, we can make

the UV properties of the three-loop form factor completely manifest.

At two loops we found that the bound from superspace counting was saturated. We

can ask whether the same happens at three loops, i.e. do we have Dc(L = 3) = 16/3? It

turns out that the three-loop form factor is better behaved in the UV than suggested by

this equation. It is finite in D = 16/3 and only develops a UV divergence at Dc(L = 3) = 6.

In order to see this, we take the three-loop expression (4.13) and trade F3, F4 and F5 for

the non-UT integrals F ∗
3 , F

∗
4 and F ∗

5 by means of eqs. (3.3), (3.6), and (3.9), respectively,

which leads to

F 3−loop
S ∝ (−q2) [8F1 + 2F ∗

3 + 2F ∗
4 ]− 2F2 + 4F ∗

5 − 2F9 . (7.3)

Counting numerators as propagators with negative powers, we see that the three integrals

in the bracket have nine propagators each, whereas the last three integrals have only eight

propagators. Since there are no sub-divergences in D = 16/3 we can calculate the leading

UV pole by simply giving all propagators (and also all numerators1) a common mass m

and by setting the external momenta p1 = p2 = 0. Then the first three integrals are finite

by näıve power counting, and the last three integrals become equal, and cancel due to their

pre-factors. This renders the three-loop form factor finite in D = 16/3 dimensions. One

can see the UV finiteness of the N = 4 SYM form factor in D = 16/3 also in another, more

elegant way. We start again from eq. (7.3), and add zero in the disguise of

+ 2F ∗
7 − 2F ∗

7 , (7.4)

where F ∗
7 is F7 (see figure 6) with unit numerator. This choice is particularly convenient

since F ∗
7 is a subtopology of both, F2 and F ∗

5 . It is obtained from F2 by shrinking the line

labelled pa in figure 7. Alternatively, F ∗
7 is obtained from F ∗

5 by shrinking line number 7

in figure 4. In both cases one subsequently has to set the respective numerator to unity.

Hence we can rewrite (7.3) as

F 3−loop
S ∝ (−q2) [8F1 + 2F ∗

3 + 2F ∗
4 ]− 2 (F2 − F ∗

7 ) + 2 (2F ∗
5 − F ∗

7 − F9) . (7.5)

1Whether or not we give a mass to the numerators changes the expressions only by integrals with nine

propagators each. The latter are finite in D = 16/3 by näıve power counting.
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If we adopt for F2 the parametrisation

{k1 , k1 + p1 , k2 , k2 + p2 , k3 − p2 , k3 + p1 , k1 + k2 , k1 − k3 , k2 + k3 } , (7.6)

and write (F2 − F ∗
7 ) on a common denominator, the numerator of the latter expression

reads

k23 − (k3 − p2)
2 (7.7)

and hence vanishes in the aforementioned UV limit. In complete analogy, we take the

parametrisation (3.7) for F ∗
5 and write (2F ∗

5 − F ∗
7 − F9) on a common denominator, whose

numerator becomes
[

(k2 − p1)
2 − k22

]

+
[

(k2 − p1)
2 − (k2 − p1 − p2)

2
]

, (7.8)

which clearly also vanishes upon taking the UV limit. Hence eqs. (7.3) and (7.5) make the

UV properties of the form factor manifest. This is very similar to how the UV properties

of four-particle amplitudes can be made manifest, see e.g. ref. [67].

It is now interesting to investigate the UV properties of the form factor in D = 6− 2ǫ

dimensions. Since the vanishing of (F2 − F ∗
7 ) and (2F ∗

5 − F ∗
7 − F9) should be independent

of the number of dimensions, we can simply look at the expression

8F1 + 2F ∗
3 + 2F ∗

4 , (7.9)

and the corresponding integrals at one and two loops. Introducing a common propagator

mass and neglecting external momenta one finds

2DUV
1

D=6−2ǫ
= SΓ

[

m2
]−ǫ

{

−1

ǫ
− π2

6
ǫ− 7π4

360
ǫ3 +O(ǫ5)

}

,

4EUV
1 + EUV

2
D=6−2ǫ

= S2
Γ

[

m2
]−2ǫ

{

1

2ǫ2
+

1

2ǫ
+

[

1

2
+

π2

6
− 1

5
aΦ

]

+O(ǫ)

}

,

8FUV
1 + 2F ∗UV

3 + 2F ∗UV
4

D=6−2ǫ
= S3

Γ

[

m2
]−3ǫ

{

− 1

6ǫ3
− 1

2ǫ2

+
1

ǫ

[

ζ3
3

− π2

12
− 13

9
+

1

5
aΦ

]

+O(ǫ0)

}

, (7.10)

where SΓ is defined in appendix A, and (see e.g. [68])

aΦ = Φ(−1
3 , 2,

1
2) +

π ln(3)√
3

, (7.11)

Φ(z, s, a) =
∞

∑

k=0

zk

[(k + a)2]s/2
, (7.12)

Φ(−1
3 , 2,

1
2) = 4

√
3 Im

[

Li2

(

i√
3

)]

= −π ln(3)√
3

+
10√
3
Cl2

(π

3

)

, (7.13)

and Cl2 is the Clausen function. Hence we find that up to three loops the form factor

at each loop-order has Dc = 6. Moreover, it turns out that for D = 6 − 2ǫ the leading

1/ǫL UV-pole is at each loop order given by the leading UV-pole of the respective L-loop

– 20 –



374

374
J
H
E
P
0
3
(
2
0
1
2
)
1
0
1

planar ladder diagram. Since at D = 6 − 2ǫ there might be issues due to the presence of

sub-divergences, we also computed the UV divergences using a different regulator. After

having taken the soft limit, we re-insert some external momentum into the graph to serve

as IR regulator, instead of the mass (essentially, one nullifies one of the pi and takes the

other one off-shell). In this way one obtains massless propagator type integrals which lead

to the following result

2DUV
1

D=6−2ǫ
= SΓ

(

−q2
)−ǫ

{

−1

ǫ
− 2− 4 ǫ+ (2ζ3 − 8) ǫ2 +O(ǫ3)

}

,

4EUV
1 + EUV

2
D=6−2ǫ

= S2
Γ

(

−q2
)−2ǫ

{

1

2ǫ2
+

5

2ǫ
+

[

53

6
− ζ3

]

+O(ǫ)

}

, (7.14)

8FUV
1 +2F ∗UV

3 +2F ∗UV
4

D=6−2ǫ
= S3

Γ

(

−q2
)−3ǫ

{

− 1

6ǫ3
− 3

2ǫ2
+

1

ǫ

[

4ζ3
3

− 79

9

]

+O(ǫ0)

}

.

As expected, the leading ǫ−L divergence at L loops is independent of the regulator, while

the subleading terms are not. However, when considering log(FS) in the UV limit there

are only simple 1/ǫ poles up to three loops. Moreover, these poles are identical in both

regularisation schemes (7.10) and (7.14), and read

ln(FUV
S )

D=6−2ǫ
= −α

ǫ
+

α2

ǫ

1

2
+

α3

ǫ

(

ζ3
3

− 17

18

)

+O(α4, ǫ0) , with α=−q2
g2N

(4π)3
. (7.15)

Let us now discuss this result.

Despite the fact that the form factor is better behaved in the UV than expected,

one may wonder why the four-particle amplitudes at one- and two loops are even better

behaved in the UV than the form factor. This is due to the fact that there are specific

counterterms for the local composite operator O(x) in higher dimensions. Another way of

saying this is in terms of operator mixing. We note that in D dimensions, the coupling

constant g has dimension (4 − D)/2. Therefore, in D = 6, the operator tr (φ2) can mix

at one loop with the operator g2� tr (φ2), and other operators having the same quantum

numbers (we have dropped SU(4) indices for simplicity). Another reason for the better

UV behaviour of the four-point amplitudes, at least in the planar limit, is the fact that

amplitudes have a dual conformal symmetry, which implies that the difference between

the number of propagator factors and numerator factors is four for any loop, whereas form

factors are not dual conformal invariant and therefore can have fewer propagators per loop.

8 Discussion and conclusion

In this paper, we extended the calculation of the two-particle form factor in N = 4 SYM

of ref. [1] to the three-loop order. We employed the unitarity-based method to obtain the

answer in terms of loop integrals. The result contains both planar and non-planar integrals.

The form factor can be expressed in several ways in terms of loop integrals that make

different properties manifest. One way of writing it, eq. (4.13) is in terms of integrals all

having uniform transcendentality (UT). Other forms, eqs. (7.3) and (7.5), do not have this

property, but in turn have the advantage of making the ultraviolet properties of the form
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factor manifest. In order to see the connection between the two representations, we derived

identities between non-planar integrals based on reparametrisation invariances.

We evaluated the form factor in dimensional regularisation by reexpressing the integrals

appearing in it in terms of conventionally used master integrals, c.f. eq. (B.1), whose ǫ

expansion is known. This allowed us to evaluate the form factor to O(ǫ2). We verified the

expected exponentiation of infrared divergences, with the correct values at three loops of

the cusp and collinear anomalous dimensions.

We observed that the heuristic leading transcendentality principle that relates

anomalous dimensions in QCD with those in N = 4 SYM holds also for the form factor.

We checked this principle to three loops, up to and including terms of transcendental

weight eight.

We also studied the ultraviolet (UV) properties of the form factor in higher dimensions.

We found that at three loops the UV behaviour is better than suggested by a supersym-

metry argument. Based on power counting one would expect three-loop integrals having 8

propagators (or nine propagators, and one loop-dependent numerator factor) to diverge in

D = 16/3 dimensions. However, we find that the particular linear combinations of integrals

appearing in the form factor is in fact finite in this dimension, and diverges only in D = 6.

We found a form, eqs. (7.3) and (7.5), where this is manifest, and computed the leading

UV divergence of log(FS) in D = 6− 2ǫ dimensions.

There are a number of interesting further directions.

It is interesting to compare the UV behaviour of the form factor to that of four-particle

scattering amplitudes. While there are differences due to specific counterterms allowed for

composite operators, they both share the property of having better UV behaviour than

expected. It would be interesting if one could understand the UV behaviour of the form

factor a priori, perhaps based on the absence of potential counterterms, or from string

theory arguments.

We remark that the representations of the form factor in terms of UT integrals,

eq. (4.13), or those making its ultraviolet properties manifest, eq. (7.5), are simpler than

that in terms of conventionally used master integrals. This may indicate that, even beyond

N = 4 SYM, there exists a basis of integrals in terms of which the result looks simpler.

Similar observations about the simplicity of loop integrands and integrals in the case of

planar scattering amplitudes were also made in refs. [69] and [17].

A further extension of this work could be to investigate generalised form factors

with more on-shell external legs. At one-loop even all-multiplicity results could be en-

visaged [2–5]. At two loops, at least the three-particle form factors should be computable

in a relatively straightforward manner, since the relevant integrals (two-loop four-point

functions with one external leg off-shell, [70, 71]) are known from the calculation of QCD

amplitudes for the 1 → 3 decay kinematics [72–74].

The form factor studied in this paper has a very rich structure, similar to that of

scattering amplitudes. Planar loop integrands of scattering amplitudes, just like tree am-

plitudes, satisfy powerful recursion relations [69]. It would be extremely interesting to

extend the applicability of recursion relations to the non-planar case, and the form factor

studied here is perhaps the simplest case of this type where non-planar integrals appear.
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A Explicit results of integrals

In this appendix we list explicit expressions of the integrals that appear as building blocks

of the form factor. Our integration measure per loop reads

∫

dDk

i(2π)D
, (A.1)

and we define the pre-factor

SΓ =
1

(4π)D/2 Γ(1− ǫ)
. (A.2)

A generic integral I can be decomposed according to

I = SL
Γ

[

−q2 − iη
]n−Lǫ · Iexp , (A.3)

where L is the number of loops, and the integer n is fixed by dimensional arguments. Iexp

contains the Laurent expansion about ǫ = 0.

We start with the one-loop integral

D1 = SΓ

[

−q2 − iη
]−1−ǫ ·Dexp

1 ,

Dexp
1 = −Γ2(−ǫ)Γ(1− ǫ)Γ(1 + ǫ)

Γ(1− 2ǫ)
. (A.4)

At two loops the integrals read

E1 = S2
Γ

[

−q2 − iη
]−2−2ǫ · Eexp

1 ,

Eexp
1 =

Γ2(1− ǫ)Γ2(ǫ+ 1)Γ4(−ǫ)

Γ2(1− 2ǫ)
− 3Γ(1− ǫ)Γ(2ǫ+ 1)Γ4(−ǫ)

2Γ(1− 3ǫ)

+
3Γ(1− 2ǫ)Γ(ǫ+ 1)Γ(2ǫ+ 1)Γ4(−ǫ)

4Γ(1− 3ǫ)
. (A.5)
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An all-order expression for E2 can be found in [76]. The expansion in ǫ reads

E2 = S2
Γ

[

−q2 − iη
]−2−2ǫ · Eexp

2 ,

Eexp
2 = +

1

ǫ4
− 5π2

6ǫ2
− 27ζ3

ǫ
− 23π4

36
+ ǫ

(

8π2ζ3 − 117ζ5
)

+ ǫ2
(

267ζ23 − 19π6

315

)

+ǫ3
(

109π4ζ3
10

+ 40π2ζ5 + 6ζ7

)

+ ǫ4
(

−264ζ5,3 + 2466ζ3ζ5 − 44π2ζ23 +
1073π8

3024

)

+O(ǫ5) . (A.6)

At three loops the integrals with uniform transcendentality (UT) are shown in figures 6

and 7 and read

F1 = S3
Γ

[

−q2 − iη
]−3−3ǫ · F exp

1 ,

F exp
1 = − 1

36ǫ6
− π2

12ǫ4
− 31ζ3

18ǫ3
− 23π4

216ǫ2
+

1

ǫ

(

−5π2ζ3
6

− 49ζ5
2

)

−43ζ23
18

− 5657π6

68040
+ ǫ

(

227π4ζ3
540

− 7π2ζ5
6

− 139ζ7
3

)

+ǫ2
(

−192ζ5,3 + 3ζ3ζ5 +
47π2ζ23

2
+

959π8

12960

)

+O(ǫ3) . (A.7)

The integral F2 is just A
(n)
9,1 from [26],

F2 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

2 ,

F exp
2 = +

1

36ǫ6
+

π2

18ǫ4
+

14ζ3
9ǫ3

+
47π4

405ǫ2
+

1

ǫ

(

85π2ζ3
27

+ 20ζ5

)

+
137ζ23
3

+
1160π6

5103
+ ǫ

(

829π4ζ3
405

+
719π2ζ5

27
+

6451ζ7
9

)

+ǫ2
(

−1184

9
ζ5,3 + 1250ζ3ζ5 −

712π2ζ23
9

+
593749π8

1224720

)

+O(ǫ3) . (A.8)

Moreover, we have

F3 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

3 ,

F exp
3 = − 1

36ǫ6
+

π2

9ǫ4
+

37ζ3
9ǫ3

+
131π4

540ǫ2
+

1

ǫ

(

145ζ5
3

− 4π2ζ3
9

)

−1352ζ23
9

+
173π6

1215
+ ǫ

(

−253π4ζ3
27

− 62π2ζ5
3

− 525ζ7
2

)

+ǫ2
(

6272

5
ζ5,3 −

4696ζ3ζ5
3

− 712π2ζ23
9

− 1301609π8

1701000

)

+O(ǫ3) , (A.9)

F4 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

4 ,

F exp
4 = − 1

36ǫ6
− π2

12ǫ4
− 55ζ3

18ǫ3
− 11π4

216ǫ2
+

1

ǫ

(

43π2ζ3
6

− 599ζ5
6

)

−307ζ23
18

− 18797π6

68040
+ ǫ

(

−149π4ζ3
108

+
239π2ζ5

2
− 21253ζ7

6

)

+ǫ2
(

8268

5
ζ5,3 +

5569ζ3ζ5
3

− 439π2ζ23
6

− 184873π8

108000

)

+O(ǫ3) , (A.10)
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F5 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

5 ,

F exp
5 = +

1

12ǫ6
+

π2

27ǫ4
+

17ζ3
9ǫ3

+
71π4

540ǫ2
+

1

ǫ

(

71π2ζ3
54

+
13ζ5
3

)

−679ζ23
6

+
3991π6

136080
+ ǫ

(

−2837π4ζ3
540

+
205π2ζ5

9
− 25135ζ7

24

)

+ǫ2
(

4006

3
ζ5,3 − 59ζ3ζ5 −

10π2ζ23
27

− 14156063π8

16329600

)

+O(ǫ3) . (A.11)

The integral F6 is just A
(n)
9,2 from [26],

F6 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

6 ,

F exp
6 = +

2

9ǫ6
− 7π2

27ǫ4
− 91ζ3

9ǫ3
− 373π4

1080ǫ2
+

1

ǫ

(

179π2ζ3
27

− 167ζ5

)

+
169ζ23
9

− 59797π6

136080
+ ǫ

(

7π4ζ3
30

+
850π2ζ5

9
− 18569ζ7

6

)

+ǫ2
(

5188

5
ζ5,3 +

9362ζ3ζ5
3

− 4436π2ζ23
27

− 107881603π8

81648000

)

+O(ǫ3) . (A.12)

Moreover, we have

F7 = S3
Γ

[

−q2 − iη
]−1−3ǫ · F exp

7 ,

F exp
7 = − 1

36ǫ6
− π2

27ǫ4
− 7ζ3

9ǫ3
− π4

36ǫ2
+

1

ǫ

(

20π2ζ3
27

− 13ζ5
3

)

+
226ζ23
9

− 233π6

34020
+ ǫ

(

151π4ζ3
135

+
70π2ζ5

9
− 229ζ7

6

)

+ǫ2
(

248

15
ζ5,3 +

1244ζ3ζ5
3

− 176π2ζ23
27

+
207311π8

20412000

)

+O(ǫ3) , (A.13)

F8 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

8 ,

F exp
8 = +

1

36ǫ6
+

π2

27ǫ4
− 5ζ3

9ǫ3
+

π4

108ǫ2
+

1

ǫ

(

37ζ5
3

− 32π2ζ3
27

)

+
98ζ23
9

+
26π6

8505
+ ǫ

(

−4π4ζ3
15

− 70π2ζ5
9

+
835ζ7
6

)

+ǫ2
(

248

3
ζ5,3 +

124ζ3ζ5
3

+
572π2ζ23

27
− 16159π8

1020600

)

+O(ǫ3) , (A.14)

F9 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

9 ,

F exp
9 = +

1

4ǫ6
− 11π2

54ǫ4
− 74ζ3

9ǫ3
− 43π4

180ǫ2
− 1

ǫ

(

328ζ5
3

− 176π2ζ3
27

)

+128ζ23 − 2951π6

17010
− ǫ

(

−1021π4ζ3
135

− 610π2ζ5
9

+
6149ζ7

6

)

−ǫ2
(

392

3
ζ5,3 −

11504ζ3ζ5
3

+
2876π2ζ23

27
− 85171π8

1020600

)

+O(ǫ3) , (A.15)
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Figure 8. Diagrams which do not have uniform transcendentality. As before, labels pa and pb
on arrow lines indicate an irreducible scalar product (pa + pb)

2 in the respective numerator, and

diagrams that lack these labels have unit numerator.

F10 = S3
Γ

[

−q2 − iη
]−1−3ǫ · F exp

10 ,

F exp
10 =

Γ(1− ǫ)2Γ(−ǫ)5Γ(3ǫ)

12Γ(1− 4ǫ)
. (A.16)

The integrals without homogeneous transcendental weight are collected in figure 8 and

read

F ∗
3 = S3

Γ

[

−q2 − iη
]−3−3ǫ · F ∗ exp

3 ,

F ∗ exp
3 =− 1

9ǫ6
+

4π2

27ǫ4
+

1

ǫ3

(

28ζ3
3

+
2π2

9

)

+
1

ǫ2

(

44ζ3
3

− 8π2

9
+

7π4

15

)

+
1

ǫ

(

−176ζ3
3

+
40π2ζ3
27

+ 72ζ5 +
32π2

9
+

8π4

15

)

− 236ζ5
3

− 2900ζ23
9

+
56π2ζ3

9

+
704ζ3
3

+
158π6

567
− 32π4

15
− 128π2

9
+ ǫ

(

−2816ζ3
3

− 224π2ζ3
9

− 2458π4ζ3
135

−1936ζ23
3

+
944ζ5
3

− 232π2ζ5
9

− 2410ζ7
3

+
512π2

9
+

128π4

15
− 262π6

945

)

+ǫ2
(

35152

15
ζ5,3 −

16082ζ7
3

− 9640ζ3ζ5
3

− 352π2ζ5
3

− 3776ζ5
3

− 5416π2ζ23
27

− 512π4

15

+
7744ζ23

3
− 224π4ζ3

9
+

896π2ζ3
9

+
11264ζ3

3
− 956008π8

637875
+

1048π6

945
− 2048π2

9

)

+O(ǫ3) , (A.17)
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F ∗
4 = S3

Γ

[

−q2 − iη
]−3−3ǫ · F ∗ exp

4 ,

F ∗ exp
4 =− 1

18ǫ6
+

5

18ǫ5
+

1

ǫ4

(

−10

9
− π2

6

)

+
1

ǫ3

(

−55ζ3
9

+
40

9
− 7π2

9

)

+
1

ǫ2

(

−136ζ3
9

− 160

9
+

28π2

9
− 11π4

108

)

+
1

ǫ

(

544ζ3
9

+
43π2ζ3

3
− 599ζ5

3

+
640

9
− 112π2

9
− 17π4

54

)

− 1108ζ5
3

− 307ζ23
9

+
88π2ζ3

9
− 2176ζ3

9
− 18797π6

34020

+
34π4

27
+

448π2

9
− 2560

9
+ ǫ

(

8704ζ3
9

− 352π2ζ3
9

− 149π4ζ3
54

− 7360ζ23
9

+
4432ζ5

3

+239π2ζ5 −
21253ζ7

3
+

10240

9
− 1792π2

9
− 136π4

27
− 3055π6

1701

)

+ ǫ2
(

16536

5
ζ5,3

−17273ζ7 +
11138ζ3ζ5

3
+ 180π2ζ5 −

17728ζ5
3

− 439π2ζ23
3

+
29440ζ23

9
− 4846π4ζ3

135

+
1408π2ζ3

9
− 34816ζ3

9
− 184873π8

54000
+

12220π6

1701
+

544π4

27
+

7168π2

9
− 40960

9

)

+O(ǫ3) , (A.18)

F ∗
5 = S3

Γ

[

−q2 − iη
]−2−3ǫ · F ∗ exp

5 ,

F ∗ exp
5 = − 1

18ǫ6
− 5

36ǫ5
+

1

ǫ4

(

5

9
+

π2

54

)

+
1

ǫ3

(

5π2

18
− 20

9

)

+
1

ǫ2

(

2ζ3
9

+
80

9
− 10π2

9
− π4

40

)

+
1

ǫ

(

−8ζ3
9

− 77π2ζ3
54

+
160ζ5
3

−320

9
+

40π2

9
− 59π4

540

)

+ 224ζ5 +
4003ζ23
18

− 8π2ζ3 +
32ζ3
9

+
16099π6

68040

+
59π4

135
− 160π2

9
+

1280

9
+ ǫ

(

−128ζ3
9

+ 32π2ζ3 +
151π4ζ3

12
+

6584ζ23
9

− 896ζ5

−445π2ζ5
9

+
74815ζ7

24
− 5120

9
+

640π2

9
− 236π4

135
+

2519π6

2430

)

+ ǫ2
(

−12518

5
ζ5,3

+
67901ζ7

6
+ 773ζ3ζ5 −

94π2ζ5
3

+ 3584ζ5 +
1570π2ζ23

27
− 26336ζ23

9
+

4103π4ζ3
135

−128π2ζ3 +
512ζ3
9

+
13248257π8

5832000
− 5038π6

1215
+

944π4

135
− 2560π2

9
+

20480

9

)

+O(ǫ3) , (A.19)

Fa1 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

a1 ,

F exp
a1 = − π2

9ǫ3
+

1

ǫ2

(

4π2

9
− 22ζ3

3

)

+
1

ǫ

(

88ζ3
3

− 16π2

9
− 4π4

15

)

+
118ζ5
3

− 28π2ζ3
9

−352ζ3
3

+
16π4

15
+

64π2

9
+ ǫ

(

1408ζ3
3

+
112π2ζ3

9
+

968ζ23
3

− 472ζ5
3

− 256π2

9

−64π4

15
+

131π6

945

)

+ ǫ2
(

−5632ζ3
3

− 448π2ζ3
9

+
112π4ζ3

9
− 3872ζ23

3
+

1888ζ5
3

+
176π2ζ5

3
+

8041ζ7
3

+
1024π2

9
+

256π4

15
− 524π6

945

)

+O(ǫ3) , (A.20)
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Fa2 = S3
Γ

[

−q2 − iη
]−2−3ǫ · F exp

a2 ,

F exp
a2 = − 5

36ǫ5
+

5

9ǫ4
+

1

ǫ3

(

7π2

18
− 20

9

)

+
1

ǫ2

(

68ζ3
9

+
80

9
− 14π2

9

)

+
1

ǫ

(

−272ζ3
9

− 320

9

+
56π2

9
+

17π4

108

)

+
554ζ5
3

− 44π2ζ3
9

+
1088ζ3

9
− 17π4

27
− 224π2

9
+

1280

9

+ǫ

(

176π2ζ3
9

− 4352ζ3
9

+
3680ζ23

9
− 2216ζ5

3
− 5120

9
+

896π2

9
+

68π4

27
+

3055π6

3402

)

+ǫ2
(

17408ζ3
9

− 704π2ζ3
9

+
2423π4ζ3

135
− 14720ζ23

9
+

8864ζ5
3

− 90π2ζ5 +
17273ζ7

2

+
20480

9
− 3584π2

9
− 272π4

27
− 6110π6

1701

)

+O(ǫ3) . (A.21)

At three loops we also cross-checked the major part of the integrals with the sector decom-

position program FIESTA [77, 78].

B Form factor in terms of master integrals

Just as in QCD, the three-loop scalar form factor in N = 4 can be reduced to master inte-

grals by means of the Laporta algorithm [46], for which we used the program REDUZE [47].

One obtains

F
(3)
S = R3

ǫ

[

+
(3D − 14)2

(D − 4)(5D − 22)
A9,1 − 2(3D − 14)

5D − 22
A9,2 −

4(2D − 9)(3D − 14)

(D − 4)(5D − 22)
A8,1

−20(3D − 13)(D − 3)

(D − 4)(2D − 9)
A7,1 −

40(D − 3)

D − 4
A7,2 +

8(D − 4)

(2D − 9)(5D − 22)
A7,3

−16(3D − 13)(3D − 11)

(2D − 9)(5D − 22)
A7,4 −

16(3D − 13)(3D − 11)

(2D − 9)(5D − 22)
A7,5

− 128(2D − 7)(D − 3)2

3(D − 4)(3D − 14)(5D − 22)
A6,1

−16(2D − 7)(5D − 18)
(

52D2 − 485D + 1128
)

9(D − 4)2(2D − 9)(5D − 22)
A6,2

−16(2D − 7)(3D − 14)(3D − 10)(D − 3)

(D − 4)3(5D − 22)
A6,3

−128(2D − 7)(3D − 8)
(

91D2 − 821D + 1851
)

(D − 3)2

3(D − 4)4(2D − 9)(5D − 22)
A5,1

−128(2D − 7)
(

1497D3 − 20423D2 + 92824D − 140556
)

(D − 3)3

9(D − 4)4(2D − 9)(3D − 14)(5D − 22)
A5,2

+
4(D − 3)

D − 4
B8,1 +

64(D − 3)3

(D − 4)3
B6,1 +

48(3D − 10)(D − 3)2

(D − 4)3
B6,2

−16(3D − 10)(3D − 8)
(

144D2 − 1285D + 2866
)

(D − 3)2

(D − 4)4(2D − 9)(5D − 22)
B5,1

+
128(2D − 7)

(

177D2 − 1584D + 3542
)

(D − 3)3

3(D − 4)4(2D − 9)(5D − 22)
B5,2
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+
64(2D − 5)(3D − 8)(D − 3)

9(D − 4)5(2D − 9)(3D − 14)(5D − 22)

×
(

2502D5 − 51273D4 + 419539D3 − 1713688D2 + 3495112D − 2848104
)

B4,1

+
4(D − 3)

D − 4
C8,1 +

48(3D − 10)(D − 3)2

(D − 4)3
C6,1

]

. (B.1)

Rǫ is given in eq. (2.14). In order to arrive at eq. (5.2) we have to plug in D = 4− 2ǫ and

the ǫ-expansions for the master integrals from eqs. (A.7) – (A.27) of [30], together with

their higher order ǫ-terms from [32].

C Four-point amplitude to two loops

Here we summarise the known four-point amplitude in N = 4 super Yang-Mills to two

loop order. As we have seen in the main text, both leading and subleading terms in colour

are required when computing the form factor at leading colour using unitarity.

We consider four-point amplitudes in SU(N) gauge theories with all particles in the

adjoint representation. Let us review the decomposition of the latter into a trace basis

with partial amplitudes as coefficients [79, 80].

At tree-level, we have

Atree
4 = g2µ2ǫ

∑

σ∈S4/Z4

Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4))Atree
4;1;1(σ(1), σ(2), σ(3), σ(4)) , (C.1)

where sum goes over the six non-cyclic permutations of (1234), i.e. S4/Z4 = {(1234), (2134),
(1243), (2314), (3241), (3214)}. The Atree

4;1;1 are ‘partial amplitudes’. The arguments of A
and A in eq. (C.1) are abbreviations, i.e. 1 stands for a given particle (gluon, fermion, or

scalar) of a given helicity and momentum pµ1 . The T a are the (N2 − 1) matrices in the

fundamental representation of SU(N).

At loop level, double trace terms are present as well. Other possible trace terms vanish

since Tr(T a) = 0 for SU(N). We have, at one loop

A1−loop
4 = g4µ4ǫ

∑

σ∈S4/Z4

N Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4))A1−loop
4;1,1 (σ(1), σ(2), σ(3), σ(4)) (C.2)

+g4µ4ǫ
∑

σ∈S4/Z3
2

Tr(T aσ(1)T aσ(2))Tr(T aσ(3)T aσ(4))A1−loop
4;1,3 (σ(1), σ(2), σ(3), σ(4)) ,

and two loops [56],

A2−loop
4 = g6µ6ǫ

∑

σ∈S4/Z4

Tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4))× (C.3)

×
(

N2A2−loop,LC
4;1,1 (σ(1), σ(2), σ(3), σ(4)) +A2−loop,SC

4;1,1 (σ(1), σ(2), σ(3), σ(4))
)

+g6µ6ǫ
∑

σ∈S4/Z3
2

N Tr(T aσ(1)T aσ(2))Tr(T aσ(3)T aσ(4))A2−loop
4;1,3 (σ(1), σ(2), σ(3), σ(4)) .
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Figure 9. Scalar box integrals appearing in four-particle amplitudes to two loops.

Here S4/Z
3
2 = {(1234), (1324), (1423)}. The double trace terms are subleading in the

expansion in powers ofN . At the two-loop order, we also have the appearence of subleading-

in-N terms in the single trace terms, denoted by the superscript SC, while the leading-in-N

terms have superscript LC.

N = 4 supersymmetric Ward identities imply that for MHV amplitudes the loop-level

amplitudes are proportional to the tree-level ones, for any choice of external particles and

helicities. We have

A1−loop
4;1,1 (1, 2, 3, 4) = −stAtree

4;1,1(1, 2, 3, 4) I1−loop
4 (s, t) , (C.4)

where2

I1−loop
4 (s, t) =

∫

dDk

i(2π)D
1

k2(k − p1)2(k − p1 − p2)2(k + p4)2
, (C.5)

is the one-loop scalar box integral, see figure 9. The remaining subleading colour amplitudes

at one loop are all equal and given by

A1−loop
4;1,3 =

∑

σ∈S4/Z4

A1−loop
4;1,1 (σ(1), σ(2), σ(3), σ(4)) , (C.6)

which is the consequence of a U(1) decoupling identity [79].

At two loops, the partial amplitudes leading in N are given by [56]

A2−loop,LC
4;1,1 (1, 2, 3, 4) = +stAtree

4;1,1(1, 2, 3, 4)
(

sIP
4 (s, t) + stIP

4 (t, s)
)

, (C.7)

where IP
4 (s, t) is the planar double box integral, see figure 9.

The partial amplitudes subleading in N are given by [56]

A2−loop,SC
4;1,1 (1, 2, 3, 4) = 2AP

4 (1, 2; 3, 4) + 2AP
4 (3, 4; 2, 1) + 2AP

4 (1, 4; 2, 3) + 2AP
4 (2, 3; 4, 1)

− 4AP
4 (1, 3; 2, 4)− 4AP

4 (2, 4; 3, 1) + 2ANP
4 (1; 2; 3, 4) + 2ANP

4 (3; 4; 2, 1)

+ 2ANP
4 (1; 4; 2, 3) + 2ANP

4 (2; 3; 4, 1)− 4ANP
4 (1; 3; 2, 4)− 4ANP

4 (2; 4; 3, 1) , (C.8)

and

A2−loop
4;1,3 (1; 2; 3, 4) = 6AP

4 (1, 2; 3, 4) + 6AP
4 (1, 2; 4, 3) + 4ANP

4 (1; 2; 3, 4) + 4ANP
4 (3; 4; 2, 1)

− 2ANP
4 (1; 4; 2, 3)− 2ANP

4 (2; 3; 4, 1)− 2ANP
4 (1; 3; 2, 4)− 2ANP

4 (2; 4; 3, 1) , (C.9)

2Note that our convention of defining loop integrals differs from that of ref. [56] by a factor of i per loop

order, cf. eq. (A.1).
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where

AP
4 (1, 2; 3, 4) ≡ s212s23A

tree
4;1,1(1, 2, 3, 4) IP

4 (s12, s23) , (C.10)

ANP
4 (1; 2; 3, 4) ≡ s212s23A

tree
4;1,1(1, 2, 3, 4) INP

4 (s12, s23) , (C.11)

and where IP
4 and INP

4 are the planar and non-planar double box integral, respectively,

see figure 9.

We remark that the expression for the double trace terms A2−loop
4;1,3 can be obtained

from the single trace terms using identities derived from group theory [80, 81].

The tree-level amplitude we need has external scalars only. It is given by

Atree
4;1,1(φ12(1), φ12(2), φ34(3), φ34(4)) = −i

s12
s23

. (C.12)
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[3] A. Brandhuber, Ö. Gürdoğan, R. Mooney, G. Travaglini and G. Yang, Harmony of super

form factors, JHEP 10 (2011) 046 [arXiv:1107.5067] [INSPIRE].

[4] L.V. Bork, D.I. Kazakov and G.S. Vartanov, On form factors in N = 4 SYM,

JHEP 02 (2011) 063 [arXiv:1011.2440] [INSPIRE].

[5] L.V. Bork, D.I. Kazakov and G.S. Vartanov, On MHV form factors in superspace for N = 4

SYM theory, JHEP 10 (2011) 133 [arXiv:1107.5551] [INSPIRE].

[6] L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT,

JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].

[7] J. Maldacena and A. Zhiboedov, Form factors at strong coupling via a Y-system,

JHEP 11 (2010) 104 [arXiv:1009.1139] [INSPIRE].

[8] Z. Bern, L.J. Dixon and V.A. Smirnov, Iteration of planar amplitudes in maximally

supersymmetric Yang-Mills theory at three loops and beyond, Phys. Rev. D 72 (2005) 085001

[hep-th/0505205] [INSPIRE].

[9] C. Anastasiou, L. Dixon, Z. Bern and D.A. Kosower, Planar Amplitudes in Maximally

Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 91 (2003) 251602 [hep-th/0309040]

[INSPIRE].

[10] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, On planar gluon

amplitudes/Wilson loops duality, Nucl. Phys B 795 (2008) 52 [arXiv:0709.2368] [INSPIRE].

[11] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities

for Wilson loops and a test of the duality with gluon amplitudes,

Nucl. Phys. B 826 (2010) 337 [arXiv:0712.1223] [INSPIRE].

[12] J.M. Henn, S. Moch and S.G. Naculich, Form factors and scattering amplitudes in N = 4

SYM in dimensional and massive regularizations, JHEP 12 (2011) 024 [arXiv:1109.5057]

[INSPIRE].

– 31 –



385

385
J
H
E
P
0
3
(
2
0
1
2
)
1
0
1

[13] Z. Bern, M. Czakon, L.J. Dixon, D.A. Kosower and V.A. Smirnov, Four-loop planar

amplitude and cusp anomalous dimension in maximally supersymmetric Yang-Mills theory,

Phys. Rev. D 75 (2007) 085010 [hep-th/0610248] [INSPIRE].

[14] F. Cachazo, M. Spradlin and A. Volovich, Four-loop cusp anomalous dimension from

obstructions, Phys. Rev. D 75 (2007) 105011 [hep-th/0612309] [INSPIRE].

[15] J.M. Henn, S.G. Naculich, H.J. Schnitzer and M. Spradlin, More loops and legs in

Higgs-regulated N = 4 SYM amplitudes, JHEP 08 (2010) 002 [arXiv:1004.5381] [INSPIRE].

[16] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local integrals for planar

scattering amplitudes, arXiv:1012.6032 [INSPIRE].

[17] J.M. Drummond and J.M. Henn, Simple loop integrals and amplitudes in N = 4 SYM,

JHEP 05 (2011) 105 [arXiv:1008.2965] [INSPIRE].

[18] J.M. Drummond, J.M. Henn and J. Trnka, New differential equations for on-shell loop

integrals, JHEP 04 (2011) 083 [arXiv:1010.3679] [INSPIRE].

[19] L.J. Dixon, private communication.

[20] J.B. Tausk, Non-planar massless two-loop Feynman diagram with four on-shell legs,

Phys. Lett. B 469 (1999) 225 [hep-ph/9909506] [INSPIRE].

[21] S.G. Naculich, H. Nastase and H.J. Schnitzer, Subleading-color contributions to gluon-gluon

scattering in N = 4 SYM theory and relations to N = 8 supergravity, JHEP 11 (2008) 018

[arXiv:0809.0376] [INSPIRE].

[22] S.G. Naculich, H. Nastase and H.J. Schnitzer, Two-loop graviton scattering relation and IR

behavior in N = 8 supergravity, Nucl. Phys. B 805 (2008) 40 [arXiv:0805.2347] [INSPIRE].

[23] A. Brandhuber, P. Heslop, A. Nasti, B. Spence and G. Travaglini, Four-point amplitudes in

N = 8 supergravity and Wilson loops, Nucl. Phys. B 807 (2009) 290 [arXiv:0805.2763]

[INSPIRE].

[24] T. Gehrmann, G. Heinrich, T. Huber and C. Studerus, Master integrals for massless

three-loop form factors: One-loop and two-loop insertions, Phys. Lett. B 640 (2006) 252

[hep-ph/0607185] [INSPIRE].
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Abstract:We study the velocity-dependent cusp anomalous dimension in supersymmetric

Yang-Mills theory. In a paper by Correa, Maldacena, Sever, and one of the present authors,

a scaling limit was identified in which the ladder diagrams are dominant and are mapped

onto a Schrödinger problem. We show how to solve the latter in perturbation theory and

provide an algorithm to compute the solution at any loop order. The answer is written in

terms of harmonic polylogarithms. Moreover, we give evidence for two curious properties

of the result. Firstly, we observe that the result can be written using a subset of harmonic

polylogarithms only, at least up to six loops. Secondly, we show that in a light-like limit,

only single zeta values appear in the asymptotic expansion, again up to six loops. We then

extend the analysis of the scaling limit to systematically include subleading terms. This

leads to a Schrödinger-type equation, but with an inhomogeneous term. We show how its

solution can be computed in perturbation theory, in a way similar to the leading order case.

Finally, we analyze the strong coupling limit of these subleading contributions and compare

them to the string theory answer. We find agreement between the two calculations.
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1 Introduction

The cusp anomalous dimension Γcusp(φ) was originally introduced in [1] as the ultraviolet

(UV) divergence of a Wilson loop with a cusp with Euclidean angle φ. It describes a wide

range of interesting physical situations. It was computed in QCD to the two-loop order in

ref. [2] and rederived and simplified in ref. [3].
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In supersymmetric Yang-Mills theories such as N = 4 super Yang-Mills, one can define

a Wilson loop operator that couples to scalars in addition to the gauge field [4, 5]. It is

natural to consider a loop where the coupling to the scalars is different on the two segments

of the cusp (but constant along each segment). The jump in the internal coupling to the

scalars is characterized by an angle θ. The perturbative calculation of this supersymmetric

cusp anomalous dimension Γcusp(φ, θ) is similar to the QCD case. It has been performed

to two loops in refs. [6, 7]. At strong coupling, it is known to second order in the strong

coupling expansion [7].

Recently, there has been a lot of progress in understanding Γcusp(φ, θ), in various

domains.

In a small angle limit, an exact result was found in [8], based on localization techniques.

The exact formula is in perfect agreement with perturbative results and the result at strong

coupling. The same exact formula has also been obtained in [9].

In ref. [10], a relation of the cusp anomalous dimension to the Regge limit of mas-

sive scattering amplitudes was exploited to compute its three-loop value. The relation to

scattering amplitudes [11], which is valid in the planar limit, implies in particular that

the integrand needed to compute the cusp anomalous dimension can be deduced from the

(in principle known) integrand for planar four-particle scattering amplitudes [12–14], when

appropriately extended to the massive case [11, 15].

Very recently, Thermodynamic Bethe Ansatz (TBA) equations have been derived for

the cusp anomalous dimensions [16, 17], and passed highly non-trivial consistency checks

at the three-loop level [16].

In [10] a new scaling limit involving the complexified angle θ was introduced,

iθ ≫ 1, λ ≪ 1 , with λ̂ = λeiθ/4 finite . (1.1)

Here λ = g2N is the ‘t Hooft coupling. In this limit, the coupling of the loop to the

scalars becomes dominant, and the leading order (LO) contribution is given by simple

ladder diagrams, where the rungs of the ladder are scalar exchanges. It is important to

realize that this is a gauge-invariant statement. The ladder diagrams can be described

conveniently using Bethe-Salpeter equations. The latter are very convenient, since they

provide a simple description. They can be solved exactly in the small angle limit, and it is

easy to extract their strong coupling behaviour, finding agreement with the corresponding

string theory calculation.

In this paper, we continue the analysis of the scaling limit of [10] and initiate a system-

atic study of the subleading contributions. A first question that one faces when computing

Γcusp(φ, θ) in perturbation theory is what functions the result can be expressed in. It is

easy to see that the θ dependence is very simple, and to describe the φ dependence the

variable x = eiφ is useful. Experience shows that in that variable one obtains certain

polylogarithms, multiplied by rational prefactors. In general, it is not known what class of

polylogarithms, or more generally what class of iterated integrals, is sufficient to describe

a given problem.

Similar questions are of great current interest in the understanding of the structure

of scattering amplitudes, a problem that is closely related. To phrase the question in
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that language, given a loop integral depending on n space-time points, what is the set of

functions describing it? On the one hand, one could argue that with increasing loop order,

integrals with some number of external points “know about” lower-loop integrals with more

external points that they contain as subdiagrams (which may e.g. contain elliptic integrals),

making them very complicated, and perhaps requiring a larger functional basis at higher

loops. On the other hand, one might argue that the set of functions should ultimately

be determined by the external kinematics of the problem. An argument in favour of this

point of view is that integrals are determined to a great part by their singularities, and

the location of the latter is intimately tied to the external data. These questions are also

of enormous practical importance, as they sometimes allow to make an ansatz for a given

problem within a restricted class of functions, see [18–20] for recent examples.

In the present case of a single scale problem, it was observed in [10] that all functions

occurring to the three-loop order could be expressed in terms of harmonic polylogarithms,

i.e. in terms of iterated integrals with integration kernels 1/x, 1/(1+x), 1/(1−x). The fact

that this was possible not only for the final answer, but also for individual loop integrals,

and in fact also for all integrals of this type found in the literature, seems to suggest that

this is a more general feature. Can this be proven rigorously? In this paper, we make a

first step into this direction. We show that this property holds for the LO term of Γcusp in

the scaling limit (1.1), and for one of the two contributions at NLO, at any loop order.

We also present an algorithm that determines Γcusp at LO in the scaling limit at any

loop order in terms of harmonic polylogarithms. As an application, we verified the result

of [10] at three loops, and evaluated the four-, five-, and six-loop results, which are new.

These results suggest two further properties. First, we find that at least up to six loops,

one can express the result in terms of harmonic polylogarithms (HPLs) [21] of argument

x2 and indices 0, 1 only. Second, in the x → 0 limit we find that, again up to six loops,

single zeta values and products thereof are sufficient to describe the coefficients of the

asymptotic expansion.

We then discuss NLO terms in the scaling limit. We show that there are two classes of

diagrams that satisfy a slightly modified Bethe-Salpeter equation. For one of the two classes

of integrals, we show how to construct the solution in terms of HPLs at any loop order. For

the second class of integrals, we compute the non-trivial integration kernel, which allows

to express the result in terms of iterated integrals having the correct degree. We leave the

question of whether the latter can be expressed in terms of HPLs to future work.

We also discuss the strong coupling limit of the Bethe-Salpeter equations, and compute

the scaling limit of the corresponding string theory result. Under certain assumptions, we

find perfect agreement between the two calculations.

This paper is organized as follows. We begin by reviewing the definition of the cusp

anomalous dimension and the scaling limit in section 2. Then, in section 3, we present

the perturbative solution at leading order in the scaling limit to any loop order. We prove

that the result can be written in terms of HPLs, and make further observations about their

structure. In section 4, we discuss the NLO Bethe-Salpeter equations. In section 5, we

take the strong coupling limit of the equations, and compare them to the corresponding

string theory calculation. There are several appendices containing technical details.
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(a) (c)(b)

Figure 1. Classes of loop integrals contribution to LO (diagram (a)) and NLO (diagram (b) and

(c)) in the scaling limit (1.1). Each class can have an arbitrary number of rungs. The arrows in (c)

denote a numerator factor (p+ q)2, where pµ and qµ are the momenta along the arrows.

2 General structure of the Bethe-Salpeter equations at LO and NLO

Here we discuss the general structure of the Bethe-Salpeter equations at leading order

(LO) and next-to-leading order (NLO) in the scaling limit. The LO equations were already

discussed in [10]. They are a natural generalization of the equations for the quark-antiquark

potential [22]. Here we briefly review the main points.

We recall the definition of the locally supersymmetric Wilson loop operator in N = 4

super Yang-Mills,

W ∼ Tr[Pei
∮
A·dx+

∮
|dx|�n·�Φ] , (2.1)

where �n is a point on S5. The contour we consider consists of two (infinite) segments

forming a cusp of Euclidean angle φ. We take the coupling to the scalars to be constant

along each segment, but with a jump of angle θ at the cusp, i.e. cos θ = �n · �n′, where �n

and �n′ are the directions of the two segments. Such a cusped Wilson loop in general has a

logarithmic divergence that takes the form

�W � ∼ e
−Γcusp(φ,θ) log

ΛUV
ΛIR , (2.2)

where ΛIR/UV are infrared and ultraviolet cutoffs, respectively. This defines the cusp

anomalous dimension Γcusp(φ, θ).
1

In the scaling limit (1.1), the scalar coupling of the loop becomes dominant. At leading

order (LO) in the limit, the segments of the Wilson loop couple to conjugate scalars, and

we need to consider scalar exchange diagrams only. At next-to-leading order (NLO), we

have mostly scalar exchanges, plus one-loop interaction diagrams.

An analysis of the integrals contributing to the cusp anomalous dimension allows one

to see that the effective diagrams shown in figure 1 are needed at LO and NLO in the

scaling limit. Since only one-loop internal graphs are allowed at NLO order, one can

deduce the all-loop structure of these corrections already from the known three-loop ex-

pression. The fact that one has effective diagrams that arise after cancellations between

1Of course, Γcusp is also a function of the ’t Hooft coupling g2N , and the number of colours N .

– 4 –



394

394
J
H
E
P
1
1
(
2
0
1
2
)
0
5
8

= 1 +

...

...

...

...

...

...

+ +

Figure 2. Bethe-Salpeter equation at LO and NLO. The arrows denote a numerator factor (p+q)2,

with pµ, qµ being the momenta flowing along the arrows (in momentum space).

various gauge-dependent Feynman diagrams2 is intimately related to the similar diagrams

appearing in scattering amplitudes. We illustrate this relation at the level of the loop

integrals/integrands in appendix C.

It is easy to see that the integrals of figure 1 are described by a Bethe-Salpeter equation.

The latter is shown (schematically) in figure 2. This equation sums the diagrams to all

orders in the coupling. At LO in the scaling limit, only the first line contributes, as the

second lines gives contributions of order α = λ/λ̂ and higher. At NLO, we keep the terms

in the second line and compute the answer linear in α. Note that there are also higher-order

terms in α contained in this equation that will only become relevant once we include all

NNLO and higher terms.

We can see that there are two new features w.r.t. LO. First, the first term of the

second line of figure 2 is the starting point for the new infinite class of diagrams shown

in figure 1(b). These terms are absent in the quark-antiquark potential [23]. Second,

there is a new interaction term that is a higher-loop generalization of the simple scalar

exchange at LO.

Let us illustrate the usefulness of the Bethe-Salpether equation by reviewing the LO

case. We denote the sum of the ladder diagrams by F (s, t), where −spµ and tqµ are

positions on the cusp formed by the momenta pµ and qµ. Let us normalize p2 = q2 = 1 for

convenience. Note that F also depends on the angle φ defined by cosφ = p · q. Then F

satisfies the Bethe-Salpeter equation

F (S, T ) = 1 +

∫ S

0
ds

∫ T

0
dt F (s, t)P (s, t) , (2.3)

2In ref. [23], this one-loop calculation was explicitly performed (for the quark-antiquark potential, cor-

responding to φ → π), in agreement with the result here. Integral class (b) discussed here follows from a

boundary term at the cusp that is absent for the quark-antiquark potential.

– 5 –



395

395
J
H
E
P
1
1
(
2
0
1
2
)
0
5
8

where

P (s, t) =
λ̂

4π2

1

s2 + t2 + 2st cosφ
(2.4)

is the propagator corresponding to a scalar exchange. Changing variables according to

s = eσ, t = eτ , this becomes

F (σ, τ) = 1 +

∫ σ

−∞
dσ1

∫ τ

−∞
dτ1 F (σ1, τ1)P (σ1, τ1) , (2.5)

where

P (τ, σ) =
λ̂

8π2

1

cosh(τ − σ) + cosφ
. (2.6)

Differentiating eq. (2.5), we obtain,

∂τ∂σF (σ, τ) = F (σ, τ)P (σ, τ) . (2.7)

Let us change variables y1 = τ − σ and y2 = (τ + σ)/2. We can extract Γcusp from the

large y2 behaviour of F , due to the equivalence of IR and UV divergences, see eq. (2.2).

For large y2, we can make an ansatz

F =
∑

n

e−Ωny2Ψn(y1) . (2.8)

We are interested in the leading term, corresponding to the lowest eigen-energy Ω0. Using

the ansatz (2.8), one finds [10]
[

−∂2
y1 −

λ̂

8π2

1

(cosh y1 + cosφ)
+

Ω2(φ)

4

]

Ψ(y1, φ) = 0 . (2.9)

This is a one-dimensional Schrödinger problem. The ground state energy Ω0 is related to

the cusp anomalous dimension in the scaling limit through Γcusp = −Ω0.

In summary, the Bethe-Salpeter equation has allowed us to conveniently sum an infinite

class of diagrams. As a result, extracting the remaining overall logarithmic divergence could

be done in a simple way, and the remaining calculation does not require any regulator.

Moreover, the structure of the equation allowed us to rewrite the problem in terms of a

linear differential equation.

We will now solve this equation in perturbation theory. In section 4, we will discuss

the effects of the two new features that appear at NLO.

3 Solution to the scaling limit at leading order

3.1 Setup

To obtain the perturbative solution of (2.9), we follow [10] and perform the change of

variables

Ψ(y1) = η(y1)e
−Ω0y1/2 (3.1)
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The exponential factor gives the correct solution as y1 → ∞, and we can normalize η(y1 =

∞) = 1. We can determine Ω0 from η thanks to the boundary condition

∂y1Ψ(y1)|y1=0 = 0 , (3.2)

which follows from the y1 → −y1 symmetry of the problem. Defining a new variable

w = e−y1 , and x = eiφ, the boundary condition (3.2) becomes

Ω0(x) = −2w∂w log η(w, x)|w=1 , (3.3)

and the Schrödinger equation (2.9) reads

∂ww∂wη = −Ω0(x)∂wη + κ̂

[

1

w + x−1
− 1

w + x

]

η , κ̂ =
λ̂ x

4π2(1− x2)
(3.4)

The wavefunction η can be obtained by integrating the Schrödinger equation iteratively in

the coupling, Ω0 = κ̂Ω
(1)
0 + κ̂2Ω

(2)
0 + . . ., and η = 1 + κ̂η(1) + . . .. Let us now analyze in

detail the perturbative solution for η and Ω.

3.2 Iterative solution

It is convenient to introduce an abbreviation for the nested integrals that one encounters

in this problem. In analogy to two-dimensional harmonic polylogarithms (2dHPLs), we

are going to use the self-explanatory notation

HV (w, x) =

∫ 1

0
dw′

[

1

w′ + 1/(wx)
− 1

w′ + x/w

]

, (3.5)

and

H
V,�b

(w, x) =

∫ 1

0
dw′

[

1

w′ + 1/(wx)
− 1

w′ + x/w

]

H�b
(w′w, x) , (3.6)

H
0,�b
(w, x) =

∫ 1

0

dw′

w′ H�b
(w′w, x) . (3.7)

In the following we will sometimes drop the arguments (w, x) for brevity. So in general we

will have H�b
, where the weight vector �b has entries V and 0, with 0 not appearing in the

last entry.

It is straightforward to write the perturbative answer for η in terms of these integrals.

We find

η(1) = H0,V (3.8)

η(2) = H0,V,0,V −H0,0,V Ω
(1)
0 , (3.9)

and so on. Using eq. (3.3) we find

Ω
(1)
0 = −2HV , (3.10)

Ω
(2)
0 = −2HV H0,V − 2HV,0,V , (3.11)

Ω
(3)
0 = −2HV H

2
0,V − 4H2

V H0,0,V − 2H0,V HV,0,V

− 2HV H0,V,0,V − 4HV HV,0,0,V − 2HV,0,V,0,V , (3.12)

– 7 –
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etc. These last relations are understood at w = 1.

In principle, eqs. (3.10), (3.11), (3.12), and their higher-order analogues, together with

Γ = −Ω0, provide formulas for Γ. However, this representation is clearly not an optimal

one. In the following, we will simplify it by converting it to a more appropriate and simpler

class of iterated integrals. This will also allow us to make further observations regarding

the structure of the result.

3.3 Structure of the perturbative result

Here, we first show certain properties of η and Ω0, and then outline an algorithm for

expressing Ω0 in terms of harmonic polylogarithms.

As we show presently, the total differential of η at any loop order is of the form

dη(L) = f1 d log x+ f2 d log(1 + x) + f3 d log(1− x)

+ f4 d log(w + x) + f5 d log(w + 1/x) , (3.13)

with the fi being functions of the same type as η(L), but of degree (i.e. number of iterated

integrals) lowered by one. From equations (3.13) and (3.3) it immediately follows that

dΩ(L) = g1 d log x+ g2 d log(1 + x) + g3 d log(1− x) , (3.14)

with gi being functions of degree lowered by one, and satisfying the same property. This,

implies that at any loop order L, Ω(L) can be expressed in terms of harmonic polylogarithms

(HPLs) of degree (2L− 1).

The latter are defined iteratively by

Ha1,a2,...,an(x) =

∫ x

0
fa1(t)Ha2,...,an(t) dt , (3.15)

where the integration kernels are

f1(x) =
1

1− x
, f0(x) =

1

x
, f−1(x) =

1

1 + x
. (3.16)

The degree-one functions needed to start the recursion are defined as

H1(x) = − log(1− x) , H0(x) = log(x) , H−1(x) = log(1 + x) . (3.17)

The subscript of H is called the weight vector. A common abbreviation is to replace

occurrences ofm zeros to the left of±1 by±(m+1). For example,H0,0,1,0,−1(x) = H3,−2(x).

Note that a corollary of equations (3.13) and (3.14) is that the symbol [24, 25] of η is

constructed from a five-letter alphabet consisting of x, 1±x,w+x,w+1/x. Similarly, the

symbol of Ω0 is constructed from the three-letter alphabet x, 1 ± x. Of course, knowing

the full differential provides us with much more information than just the symbol.

In order to prove the above statements, let us point out a relation of the H�b
(w, x) to

a known, albeit more general class of functions, the Goncharov polylogarithms [26],

G(a1, . . . an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , (3.18)
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with

G(a1; z) =

∫ z

0

dt

t− a1
. (3.19)

In our case, the ai are taken from {0,−x,−1/x} and z = w. For example, we have

HV (w, x) = G(−1/x;w)−G(−x;w) , (3.20)

H0,V (w, x) = G(0,−1/x;w)−G(0,−x;w) , (3.21)

HV,0,V (w, x) = G(−1/x, 0,−1/x;w)−G(−1/x, 0,−x;w)

+G(−x, 0,−x;w)−G(−x, 0,−1/x;w) , (3.22)

and so on. The total differential of a general Goncharov polylogarithm is

dG(a1, . . . an; z) = G(â1, a2, . . . an; z) d log
z − a1
a1 − a2

+G(a1, â2, a3, . . . , an; z) d log
a1 − a2
a2 − a3

+ . . .+

+G(a1, . . . , an−1, ân; z) d log
an−1 − an

an
, (3.23)

where â means that this element is omitted.

Given the possible values of the ai in our case, it is straightforward to verify eq. (3.13).

3.4 Rewriting the expressions for Ω0 in terms of HPLs

We have proven that Ω0 can be written in terms of HPLs. Let us now explain how to find

explicit results in terms of HPLs. We will begin by a simple example, and then outline an

algorithm for doing so in general.

We observed that eq. (3.23), when applied to any functionH�b
(w = 1, x) gives a result of

the form (3.14). Iterating this procedure for the lower degree functions gi in that equation,

together with the fact that at any order we have a boundary condition at w = 1, gives us

the complete information for that function, in a form that makes contact with the definition

of HPLs, see eq. (3.15).

As an example, let us write H0,V (1, x) in terms of HPLs. According to eq. (3.21), we

need to rewrite G(0,−x; 1) and G(0,−1/x; 1) in terms of HPLs. Specializing (3.23) to the

present case we have

dG(0,−x; 1) = −G(−x; 1) d log x

= − log((1 + x)/x) d log x

= − [H−1(x)−H0(x)] d log x . (3.24)

The integration can be done using the definition (3.15),

G(0,−x; 1) = −H0,−1(x) +H0,0(x) + C . (3.25)

It is convenient to relate C to the value at x = 1,

G(0,−x; 1) = −H0,−1(x) +H0,0(x) +
1

2
ζ2 +G(0,−1; 1) , (3.26)

where we used that H0,−1(1) = 1/2ζ2.

– 9 –
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Similarly, we find

G(0,−1/x; 1) = H0,−1(x)− 1
2ζ2 +G(0,−1; 1) . (3.27)

Combining eqs. (3.26) and (3.27) we find

H0,V (1, x) = 2H0,−1(x)−H0,0(x)− ζ2 . (3.28)

By construction, H0,V (1, 1) = 0.

In summary, from this example it becomes clear how to rewrite any of the functions

occurring in our problem in terms of HPLs, using the following steps:

1. Express the functions in terms of Goncharov polylogarithms

2. Use eq. (3.23) in order to compute their (total) differential; since all other variables

are constants, this gives the derivative in x.

3. By iteration, that differential is of the form (3.14), with the gi appearing there being

HPLs. It can therefore be integrated in terms of HPLs, using (3.15).

4. Integrate the equation with the boundary term at x = 1.

5. Add up all terms; the boundary Goncharov polylogarithms at x = 1 do not necessarily

drop out, but they are simple since they correspond to harmonic polylogarithms

evaluated at x = 1.

Using this algorithm, we find e.g. the following expressions that are required to the

three-loop order,

HV (1, x) = H0(x) , (3.29)

HV,0,V (1, x) = −4H−3(x)− ζ2H0(x) + 2H−2,0(x)− 4H2,0(x)−H0,0,0(x)− 2ζ3 , (3.30)

H0,0,0,V (1, x) = −7π4

360
+ 2H−4(x)− ζ2H0,0(x)−H0,0,0,0(x) , (3.31)

H0,V,0,V (1, x) =
19π4

360
− 14H−4(x)− π2H−2(x) +

2

3
π2H2(x) + 8H−3,−1(x)− 4H−3,0(x)

+ 12H−2,−2(x) +
1

6
π2H0,0(x)− 8H2,−2(x)− 6H−2,0,0(x)

+ 4H2,0,0(x) +H0,0,0,0(x) + 2H0(x)ζ3 , (3.32)

HV,0,V,0,V (1, x) = 40H−5(x)−
2π2

3
H−3(x) +

19π4

360
H0(x) +

4π2

3
H3(x) + 24H−4,−1(x)

− 38H−4,0(x)− 16H−3,−2(x)− 24H−2,−3(x)− π2H−2,0(x) + 32H2,−3(x)

+
4π2

3
H2,0(x) + 32H3,−2(x) + 52H4,0(x) + 8H−3,−1,0(x)− 4H−3,0,0(x)

− 16H−3,1,0(x) + 12H−2,−2,0(x)− 24H−2,2,0(x) +
π2

6
H0,0,0(x)

− 16H2,−2,0(x) + 32H2,2,0(x)− 16H3,−1,0(x) + 8H3,0,0(x) + 32H3,1,0(x)

− 6H−2,0,0,0(x) + 8H2,0,0,0(x) +H0,0,0,0,0(x) +
π2ζ3
3

− 12ζ3H−2(x)

+ 16ζ3H2(x) + 2ζ3H0,0(x) + 6ζ5 . (3.33)
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Plugging these formulas into eq. (3.12), we find perfect agreement with the three-loop

result of ref. [10].

In the next section, we show explicit new results that we obtained using this algorithm.

3.5 Explicit new results, and further surprises

Using the method described in the previous section, we explicitly determined Ω
(1)
0 (x) —

Ω
(6)
0 (x) in terms of HPLs. We will show these formulas below.

When analyzing the resulting formulas, in fact we found a further simplification, that

was already noticed in [10] up to the three-loop level. Although results for individual

integrals contain in general HPLs with all possible indices 0,±1, we observe that, at least

up to six loops, it is possible to write the final result in terms of HPLs having indices 0, 1

only, provided that we use x2 as argument instead of x. That property is manifest in the

following formulas. Up to three loops, one finds

Ω
(1)
0 (x) = −H0 , (3.34)

Ω
(2)
0 (x) = 4 ζ3 + 2 ζ2H0 + 2H2,0 +H0,0,0 , (3.35)

Ω
(3)
0 (x) = − 8 ζ2 ζ3 − 12 ζ5 − 12 ζ4H0 − 16 ζ3H2 − 8 ζ2H3 − 4 ζ3H0,0 − 8 ζ2H2,0

− 8H4,0 − 8 ζ2H0,0,0 − 8H2,2,0 − 4H3,0,0 − 8H3,1,0 − 4H2,0,0,0 − 6H0,0,0,0,0 .

(3.36)

Our result at four loops reads

Ω
(4)
0 (x) = 48 ζ3 ζ4 + 24 ζ2 ζ5 + 36 ζ7 + 8 ζ23 H0 + 51 ζ6H0 + 48 ζ2 ζ3H2 + 72 ζ5H2

+ 96 ζ4H3 + 88 ζ3H4 + 80 ζ2H5 + 32 ζ2 ζ3H0,0 + 20 ζ5H0,0 + 72 ζ4H2,0

+ 96 ζ3H2,2 + 48 ζ2H2,3 + 32 ζ3H3,0 + 128 ζ3H3,1 + 64 ζ2H3,2 + 80 ζ2H4,0

+ 48 ζ2H4,1 + 92H6,0 + 114 ζ4H0,0,0 + 24 ζ3H2,0,0 + 48 ζ2H2,2,0 + 48H2,4,0

+ 64 ζ2H3,0,0 + 64 ζ2H3,1,0 + 64H3,3,0 + 80H4,2,0 + 80H5,0,0 + 80H5,1,0

+ 24 ζ3H0,0,0,0 + 48 ζ2H2,0,0,0 + 48H2,2,2,0 + 24H2,3,0,0 + 48H2,3,1,0 + 64H3,1,2,0

+ 32H3,2,0,0 + 64H3,2,1,0 + 64H4,0,0,0 + 24H4,1,0,0 + 48H4,1,1,0 + 92 ζ2H0,0,0,0,0

+ 24H2,2,0,0,0 + 48H3,0,0,0,0 + 32H3,1,0,0,0 + 36H2,0,0,0,0,0 + 92H0,0,0,0,0,0,0 .

(3.37)

At five loops we obtain

Ω
(5)
0 (x) = − 32

3
ζ33 − 144 ζ4 ζ5 − 204 ζ3 ζ6 − 72 ζ2 ζ7 −

340

3
ζ9 − 64 ζ2 ζ

2
3 H0 − 80 ζ3 ζ5 H0

− 620

3
ζ8 H0 − 384 ζ3 ζ4 H2 − 192 ζ2 ζ5 H2 − 288 ζ7 H2 − 96 ζ23 H3 − 612 ζ6 H3

− 576 ζ2 ζ3 H4 − 528 ζ5 H4 − 1776 ζ4 H5 − 1216 ζ3 H6 − 1568 ζ2 H7 − 456 ζ3 ζ4 H0,0

− 144 ζ2 ζ5 H0,0 − 84 ζ7 H0,0 − 64 ζ23 H2,0 − 408 ζ6 H2,0 − 384 ζ2 ζ3 H2,2 − 576 ζ5 H2,2

− 768 ζ4 H2,3 − 704 ζ3 H2,4 − 640 ζ2 H2,5 − 384 ζ2 ζ3 H3,0 − 240 ζ5 H3,0 − 576 ζ2 ζ3 H3,1
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− 864 ζ5 H3,1 − 1152 ζ4 H3,2 − 1056 ζ3 H3,3 − 960 ζ2 H3,4 − 1656 ζ4 H4,0 − 1152 ζ4 H4,1

− 1440 ζ3 H4,2 − 1152 ζ2 H4,3 − 704 ζ3 H5,0 − 1856 ζ3 H5,1 − 1216 ζ2 H5,2 − 1808 ζ2 H6,0

− 960 ζ2 H6,1 − 2144H8,0 − 48 ζ23 H0,0,0 − 948 ζ6 H0,0,0 − 256 ζ2 ζ3 H2,0,0 − 160 ζ5 H2,0,0

− 576 ζ4 H2,2,0 − 768 ζ3 H2,2,2 − 384 ζ2 H2,2,3 − 256 ζ3 H2,3,0 − 1024 ζ3 H2,3,1

− 512 ζ2 H2,3,2 − 640 ζ2 H2,4,0 − 384 ζ2 H2,4,1 − 736H2,6,0 − 1368 ζ4 H3,0,0

− 864 ζ4 H3,1,0 − 1152 ζ3 H3,1,2 − 576 ζ2 H3,1,3 − 384 ζ3 H3,2,0 − 1536 ζ3 H3,2,1

− 768 ζ2 H3,2,2 − 960 ζ2 H3,3,0 − 576 ζ2 H3,3,1 − 1104H3,5,0 − 448 ζ3 H4,0,0

− 384 ζ3 H4,1,0 − 1536 ζ3 H4,1,1 − 768 ζ2 H4,1,2 − 1152 ζ2 H4,2,0 − 576 ζ2 H4,2,1

− 1392H4,4,0 − 1648 ζ2 H5,0,0 − 1216 ζ2 H5,1,0 − 384 ζ2 H5,1,1 − 1648H5,3,0

− 1808H6,2,0 − 2352H7,0,0 − 1568H7,1,0 − 368 ζ2 ζ3 H0,0,0,0 − 152 ζ5 H0,0,0,0

− 912 ζ4 H2,0,0,0 − 192 ζ3 H2,2,0,0 − 384 ζ2 H2,2,2,0 − 384H2,2,4,0 − 512 ζ2 H2,3,0,0

− 512 ζ2 H2,3,1,0 − 512H2,3,3,0 − 640H2,4,2,0 − 640H2,5,0,0 − 640H2,5,1,0

− 288 ζ3 H3,0,0,0 − 288 ζ3 H3,1,0,0 − 576 ζ2 H3,1,2,0 − 576H3,1,4,0 − 768 ζ2 H3,2,0,0

− 768 ζ2 H3,2,1,0 − 768H3,2,3,0 − 960H3,3,2,0 − 960H3,4,0,0 − 960H3,4,1,0

− 1392 ζ2 H4,0,0,0 − 768 ζ2 H4,1,0,0 − 768 ζ2 H4,1,1,0 − 768H4,1,3,0 − 1152H4,2,2,0

− 1184H4,3,0,0 − 1152H4,3,1,0 − 1216H5,1,2,0 − 1376H5,2,0,0 − 1216H5,2,1,0

− 2080H6,0,0,0 − 1440H6,1,0,0 − 960H6,1,1,0 − 2172 ζ4 H0,0,0,0,0 − 192 ζ3 H2,0,0,0,0

− 384 ζ2 H2,2,0,0,0 − 384H2,2,2,2,0 − 192H2,2,3,0,0 − 384H2,2,3,1,0 − 512H2,3,1,2,0

− 256H2,3,2,0,0 − 512H2,3,2,1,0 − 512H2,4,0,0,0 − 192H2,4,1,0,0 − 384H2,4,1,1,0

− 1104 ζ2 H3,0,0,0,0 − 576 ζ2 H3,1,0,0,0 − 576H3,1,2,2,0 − 288H3,1,3,0,0 − 576H3,1,3,1,0

− 768H3,2,1,2,0 − 384H3,2,2,0,0 − 768H3,2,2,1,0 − 768H3,3,0,0,0 − 288H3,3,1,0,0

− 576H3,3,1,1,0 − 768H4,1,1,2,0 − 384H4,1,2,0,0 − 768H4,1,2,1,0 − 960H4,2,0,0,0

− 288H4,2,1,0,0 − 576H4,2,1,1,0 − 1728H5,0,0,0,0 − 1136H5,1,0,0,0 − 192H5,1,1,0,0

− 384H5,1,1,1,0 − 368 ζ3 H0,0,0,0,0,0 − 736 ζ2 H2,0,0,0,0,0 − 192H2,2,2,0,0,0 − 384H2,3,0,0,0,0

− 256H2,3,1,0,0,0 − 288H3,1,2,0,0,0 − 576H3,2,0,0,0,0 − 384H3,2,1,0,0,0 − 1408H4,0,0,0,0,0

− 576H4,1,0,0,0,0 − 384H4,1,1,0,0,0 − 2144 ζ2 H0,0,0,0,0,0,0 − 288H2,2,0,0,0,0,0

− 1104H3,0,0,0,0,0,0 − 432H3,1,0,0,0,0,0 − 736H2,0,0,0,0,0,0,0 − 2680H0,0,0,0,0,0,0,0,0 .

(3.38)

The six-loop result fills several pages and is therefore relegated to appendix D. All HPLs

are understood to have argument x2. Note that all indices are positive, in other words only

the basic indices 0 and 1 appear. This is remarkable, and such a rewriting is in general not

possible for individual terms contributing to (3.34) – (3.38) and (D.1).

It is very remarkable that within each of the equations (3.34) – (3.38) and (D.1) all

terms have the same sign, and the common sign is alternating as the loop order increases.

In fact, there is a sign constraint from the fact that the loop integrals leading to Ω0 should

be positive, at least in the Euclidean region 0 < x < 1. Noting that the ladder diagrams

appear with a factor of (−1)L per loop order, this implies that (−1)LΩ
(L)
0 is positive for

any 0 < x < 1. However, the fact that all signs within each of the above expressions are

identical seems to be a less trivial statement.
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One more check that can be performed on the Ω
(i)
0 is the limit φ → 0, corresponding

to x → 1. In this limit the contribution of the ladders to the cusp anomalous dimension

was derived to all loop orders and to second order in φ in [10] and reads

Γlad =
1−

√
κ+ 1

2
− φ2

16
κ

(

1 +
√
κ+ 1

1 + κ+ 2
√
κ+ 1

)

+O(φ4)

= κ

[

−1

4
− φ2

24

]

+ κ2
[

1

16
+

5φ2

288

]

+ κ3
[

− 1

32
− 43φ2

3456

]

+ κ4
[

5

256
+

211φ2

20736

]

+ κ5
[

− 7

512
− 4387φ2

497664

]

+ κ6
[

21

2048
+

23545φ2

2985984

]

+O(κ7, φ4) , (3.39)

with κ = λ̂/π2. In order to verify this expansion we note that the ladder contribution to

the cusp anomalous dimension is given by

Γlad = −
∑

L≥1

(

λ

8π2

)L (

−ξ

2

)L

Ω
(L)
0 , (3.40)

and that in the limit we are interested in

λ

8π2
ξ → x

2 (x2 − 1)
κ . (3.41)

Taking into account that x = eiφ we expand (3.40) to second order in φ and find perfect

agreement with (3.39) through to six loops. In the next section, we will discuss the limit

x → 0.

3.6 Simplifications in the x → 0 limit

The limit x → 0 is interesting because it connects the velocity-dependent cusp anomalous

dimension discussed here with the light-like cusp anomalous dimension.3

At four loops, taking the x → 0 limit of eq. (3.37) leads to

Ω
(4)
0 (x)

x→0
=

736

315
log7 x+

184π2

45
log5 x+16ζ3 log4 x+

76π4

45
log3 x+

(

32

3
π2ζ3+40ζ5

)

log2 x

+

(

34π6

315
+ 16ζ23

)

log x+

(

8

15
π4ζ3 + 4π2ζ5 + 36ζ7

)

+O(x) . (3.42)

At five loops, we find

Ω
(5)
0 (x)

x→0
= − 2144

567
log9 x− 17152

315
ζ2 log7 x− 1472

45
ζ3 log6 x− 2896

5
ζ4 log5 x

−
(

736

3
ζ2 ζ3 +

304

3
ζ5

)

log4 x− (64 ζ23 + 1264 ζ6) log
3 x

− (912 ζ3 ζ4 + 288 ζ2 ζ5 + 168 ζ7) log
2 x

−
(

128 ζ2 ζ
2
3 + 160 ζ3 ζ5 +

1240

3
ζ8

)

log x

− 32

3
ζ33 − 144 ζ4 ζ5 − 204 ζ3 ζ6 − 72 ζ2 ζ7 −

340

3
ζ9 +O(x) . (3.43)

3Since we have taken the scaling limit we only have a subset of the usual diagrams. However, it is still

interesting to discuss their behaviour.
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Finally, at six loops, one obtains

Ω
(6)
0 (x)

x→0
=

339008

51975
log11 x+

339008

2835
ζ2 log9 x+

4288

63
ζ3 log8 x

+
12800

7
ζ4 log7 x+

(

34304

45
ζ2 ζ3 +

10688

45
ζ5

)

log6 x

+

(

2944

15
ζ23 +

110944

15
ζ6

)

log5 x+ (5792 ζ3 ζ4 + 1376 ζ2 ζ5 + 528 ζ7) log
4 x

+

(

2944

3
ζ2 ζ

2
3 +

2432

3
ζ3 ζ5 +

80048

9
ζ8

)

log3 x

+ (128 ζ33 + 3792 ζ4 ζ5 + 7584 ζ3 ζ6 + 1152 ζ2 ζ7 + 664 ζ9) log
2 x

+ (1824 ζ23 ζ4 + 1152 ζ2 ζ3 ζ5 + 336 ζ25 + 672 ζ3 ζ7 +
8292

5
ζ10) log x

+
256

3
ζ2 ζ

3
3 + 160 ζ23 ζ5 + 612 ζ5 ζ6 + 432 ζ4 ζ7 +

2480

3
ζ3 ζ8

+
680

3
ζ2 ζ9 + 372 ζ11 +O(x) . (3.44)

It is worth noting that in (3.42) – (3.44) certain transcendental constants which corre-

spond to Multiple Zeta Values [27] having negative indices — such as log(2) or Li4(
1
2) —

do not appear. This becomes obvious from eqs. (3.37), (3.38), and (D.1) at four, five, and

six loops, respectively. Moreover, eqs. (3.42) – (3.44) contain only single zeta values and

products thereof. No Multiple Zeta Values of depth 2 or higher appear up to six loops,

although constants like ζ5,3 would be allowed in principle.

We would like to mention that there is a shortcut for obtaining the asymptotic limit,

without having to use the algorithm presented above. It suffices to notice that to logarith-

mic accuracy as x → 0, we can make the following replacement of the integration kernel

appearing e.g. in eq. (3.6),

1

w′ + 1/x
− 1

w′ + x
−→ − 1

w′ + x
. (3.45)

Next, rescaling all integration variables by x, we see that one can write the result in the

small x limit at any loop order in terms of HPLs with indices 0,−1, and argument 1/x.

The latter can be rewritten in terms of HPLs of argument x, and their small x asymptotic

behaviour can be made manifest using algorithms implemented in [28].

4 NLO terms in large ξ limit

4.1 Triangle-ladder diagrams (b)

We now wish to study the sum of the triangle-ladder diagrams shown in figure 1(b) in a

similar way to LO. Let F now denote the sum of the diagrams of figures 1(a,b), starting

with 1 (as at LO). Then F satisfies the Bethe-Salpeter equation of figure 2, with the last

term omitted. (The last term will be discussed in the following section.)

Proceeding as at LO, we obtain the differential equation

∂σ∂τF (σ, τ) = Q(σ, τ) + F (σ, τ)P (σ, τ) . (4.1)
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Here the essential new feature is the appearance of Q(σ, τ). It arises from the first term in

the second line of the r.h.s. of the equation shown in figure 2. It is given by the one-loop

integral

Q(σ, τ) = c λλ̂ e(σ+τ)

∫

d4x1
iπ2

1

x21(x1 − z1)2(x1 − z2)2
= c λλ̂

e(σ+τ)

z212
Φ(1)

(

z21
z212

,
z22
z212

)

, (4.2)

where zµ1 = eσpµ and zµ2 = −eτqµ are points along the Wilson line, and c = 2/(8π2)2.

The function Φ(1) is known analytically, and we will give a useful form for it later in this

section. Plugging in the expressions for zµ1 , z
µ
2 , we have

Q(τ, σ) = c λλ̂
1

cosh(τ − σ) + cosφ
Φ(1)

(

eτ−σ/2

cosh(τ − σ) + cosφ
,

eσ−τ/2

cosh(τ − σ) + cosφ

)

.

(4.3)

Making the same ansatz as at LO, F =
∑

n e
−Ωn(φ)y2Ψn(y1, φ), we obtain

[

−∂2
y1 −

λ̂

8π2

1

(cosh y1 + cosφ)
+

Ω2(φ)

4

]

Ψ(y1, φ) =

= c
λ λ̂

(cosh y1 + cosφ)
Φ(1)

(

ey1/2

cosh y1 + cosφ
,

e−y1/2

cosh y1 + cosφ

)

. (4.4)

We see that the essential new feature w.r.t. the LO case is the appearance of an inhomo-

geneous term. It is important to realize that we would like to solve this equation to all

orders in λ̂, but only to linear order in α = λ/λ̂, corresponding to the NLO case.

For simplicity of notation, let us abbreviate the potential by −λ̂V and the inhomoge-

neous term by αλ̂2Q̃. Then we have

[

−∂2
y1 − λ̂V (y1, φ) +

Ω2(φ)

4

]

Ψ(y1, φ) = α λ̂2Q̃ . (4.5)

Proceeding as in the homogeneous case and setting Ψ = e−Ω/2y1η we have

−∂2
y1η +Ω∂y1η − λ̂V η = α e+Ω/2 y1 λ̂2 Q̃ . (4.6)

Recall that at α = 0, this is just the equation for the ladder diagrams, which we already

solved. We need the solution to order α. We can expand

η = ηladders + α ηα , Ω = Ωladders + αΩα , (4.7)

to obtain, at order α,

−∂2
y1ηα +Ωladders∂y1ηα − λ̂V ηα = ey1Ωladders/2λ̂2Q̃− Ωαη

′
ladders . (4.8)

As before, Ω is obtained by requiring that Ψ′(y1) vanishes at y1 = 0. Therefore we have

Ω = 2∂y1 log η|y1=0 . (4.9)
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At order α, this gives

Ωα = 2∂y1

(

ηα
ηladders

)

|y1=0 . (4.10)

In summary, we have arrived at a differential equation, eq. (4.8), together with (4.10), for

the contribution of the triangle-ladder diagrams shown in figure 1(b).

We will now explain how to solve these equations to any order in λ̂. First of all, it is

clear that we can integrate order by oder in λ̂ just as we did at LO. The main question is

whether we can express the resulting wavefunction at each order in terms of the same set

of iterated integrals as in the previous section. We will now show that this is indeed the

case, and in fact is true also for a more general class of diagrams.

The new feature of eq. (4.8) is the appearance of Q̃, so we need to analyze whether

integrals over Q̃ will be of the same form as at LO. An example will suffice to see that

this is indeed the case. Consider expanding to order λ̂2. Then η(1) ′(w, x) is given by an

integral of the form

∫ ∞

− logw

dy1
(cosh y1 + cosφ)

Φ(1)

(

ey1/2

cosh y1 + cosφ
,

e−y1/2

cosh y1 + cosφ

)

. (4.11)

We will now make use of the fact that Φ(1) is a function with very special properties. In

fact, this allows us to immediately make a generalization where Φ(1) is replaced by Φ(n).

This function is given by a beautiful formula [29],

Φ(n)(x, y) =
1

√

(1− x− y)2 − 4xy
Φ̃(n)(x, y) , (4.12)

where

Φ̃(L)(x, y) =
L

∑

f=0

(−1)f (2L− f)!

L!f !(L− f)!
logf (z1z2) [Li2L−f (z1)− Li2L−f (z2)] , (4.13)

and

x = z1z2 , y = (1− z1)(1− z2) . (4.14)

Changing variables to w′ = e−y1 and x = eiφ, eq. (4.11) becomes, up to a trivial normal-

ization factor,

∫ w

0

dw′

w′ Φ̃(1)

(

1

w′2 + 2w′ cosφ+ 1
,

w′2

w′2 + 2w′ cosφ+ 1

)

. (4.15)

Inspection shows that the variables defined in (4.14) are given by

z1 =
x

x+ w′ , z2 =
1

1 + xw′ . (4.16)

Furthermore, the functions above can be defined using only iterative integrals corresponding

to symbols z1, z2, 1−z1, 1−z2. It is easy to verify that the latter factorize over x,w,w+x, 1+
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wx, and hence are contained in the function class discussed in the previous section. This

implies that we can again perform all iterated integrals within the set of polylogarithms

defined by the same integration kernels/symbols as in the homogeneous case, and therefore

allowing for an algorithmic solution of this problem.

We note that there is an obvious generalization to a class of diagrams where Φ(1) is

replaced by Φ(n), see appendix A of ref. [10]. The perturbative solution for that class of

diagrams can be done in the same way as explained above.

4.2 H-exchange diagrams (c)

The diagrams with H-exchange of figure 1(c) were analyzed in ref. [23] for the quark-

antiquark potential. It was found that the Bethe-Salpeter equation in that case contains a

new term of the form
∫ ∞

0
du

∫ ∞

0
dv e−

Ω0
2
(u+v) f(u, v; y1)Ψ(y1 − u+ v) , (4.17)

so that one has a linear integro-differential equation for Ψ. Their analysis can be adapted

to the present case of general φ, with f now depending on φ.

Although such an equation may seem complicated, it simplifies considerably when

solving it in the small α = λ/λ̂ limit. The reason is that the kernel, the H-exchange

diagram is already of order α, so that we only need the wavefunction at order α0. In other

words, the problem reduces to a differential equation for the wavefunction at order α, with

an inhomogeneous term. This is exactly the case we studied in the previous section.

Having said this, the main difficulty lies in the computation of the H insertion, and in

integrating it when iteratively solving for the wavefunction. From the discussion above it

is clear that we need to understand how to carry out the H-shaped and similar integrals.

Let us therefore start with the basic three-loop integral, which has one H-exchange, and

no additional rungs. It is given by

∫ ∞

0
ds2

∫ s2

0
ds1

∫ ∞

0
dt2

∫ t2

0
dt1 f(−s1p

µ, t1q
µ; t2q

µ,−s2p
µ) . (4.18)

Note that strictly speaking we should introduce IR and UV regulators for this integral, but

since we are only interested in extracting the overall divergence, the details of the cutoffs

are not very important. For the same reason, the H-shaped subintegral can be defined in

exactly four dimensions,

f(x1, x2, x3, x4) = (∂1 + ∂4)
2 h(x1, x2;x3, x4) , (4.19)

h(x1, x2;x3, x4) =

∫

d4x5d
4x6

(iπ2)2
1

x215x
2
25x

2
36x

2
46x

2
56

. (4.20)

Eq. (4.19) defines the function f . Although this is a two-loop integral, f reduces to one-loop

integrals thanks to differential equations it satisfies. We review these differential equations
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in appendix A. Remarkably, they allow us to express f in terms of the one-loop function

Φ(1), the same function that appeared already in integral class (b). Explicitly, we have

f̃ = x224(x
2
12 + x223 − x231) Φ

(1)

(

x212
x213

,
x223
x213

)

+ x213(x
2
12 + x214 − x224) Φ

(1)

(

x212
x224

,
x214
x224

)

+ x224(x
2
14 + x234 − x213) Φ

(1)

(

x234
x213

,
x214
x213

)

+ x213(x
2
23 + x234 − x224) Φ

(1)

(

x234
x224

,
x223
x224

)

+ (x213x
2
24 − x214x

2
23 − x212x

2
34) Φ

(1)

(

x212x
2
34

x213x
2
24

,
x214x

2
23

x213x
2
24

)

, (4.21)

where f̃ = (x212x
2
13x

2
24x

2
34)f . This formula will be very convenient when discussing the

strong coupling limit.

After this digression on h, we can proceed to extract the overall UV divergence and

compute the H-exchange integral. Changing variables according to s1 = x1s2, t1 = x2t2,

and s2 = zρ, t2 = ρz̄, where z̄ = 1− z, and using that h scales as 1/x4, we find
∫ ∞

0

dρ

ρ
H(3) , (4.22)

where

H(3) =

∫ 1

0
dz dx1 dx2 zz̄f(−x1zp

µ,−zpµ;x2z̄q
µ, z̄qµ) . (4.23)

Note that by assumption H(3) is finite (if combined with exponentiated contributions from

lower loops). However, when carrying out the integration in (4.23), care is required, be-

cause the finiteness is not necessarily true for individual terms appearing in (4.21). This

small problem can be avoided by introducing an auxiliary regulator. With the above

parametrization, we have

xµ1 = −x1zp
µ , xµ2 = x2z̄q

µ , xµ3 = z̄qµ , xµ4 = −zpµ , (4.24)

and using p2 = q2 = 1 , p · q = cosφ, we have

x214 = x̄21z
2 , x224 = z2 + x22z̄

2 + x2zz̄2 cosφ , (4.25)

and so on.

In summary, we found a parameter integral, where the number of integrations equals

the expected degree of the function. Just as for integral class (b), higher orders can be

obtained by iteration. However, it is not yet clear that the same class of functions will

be sufficient to evaluate these integrals. Explicit results at three loops motivate that it

might be. We leave this question for future work, and close this section by remarking that

formula (4.13) will certainly be very useful when trying to evaluate this integral and similar

integrals appearing in the iterative solution.

5 Strong coupling limit at LO and NLO

Here we discuss the strong coupling limit of the Bether-Salpeter equations. In this limit,

the calculation of the ground state energy becomes almost trivial. It is straightforward to

extend the analysis of ref. [23], which was done in the anti-parallel lines limit φ → π, to

any angle.
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5.1 Strong coupling limit of Bethe-Salpeter equation

Let us start by discussing diagrams of type (c). First of all, we notice that as in [23],

the Bethe-Salpeter equation for this class of diagrams simplifies dramatically in the strong

coupling limit. The reason is that for Ω0 ∼
√
λ ≫ 1, the region of small u, v will give the

dominant contribution to the integral in eq. (4.17). This implies that the wavefunction

Ψ(y1) can be pulled out of the integral, with the coefficient being an effective potential.

This argument also works for the angle-dependent cusp Wilson loop.

We therefore need to compute the effective potential for general angles. Although

the function h is not known analytically, its derivative f is known, as we saw in the

previous section.

We need the function f(x1, x2;x3, x4) in the limit where x1 → x4 and x2 → x3. Let us

parametrize this limit by x214 = u2, x223 = v2, x212 = x224 = x213 = x234 = 2 cosh y1 + 2 cosφ,

with u, v small. Plugging these values into eq. (4.21), it turns out we only need the following

limit of Φ(1),

Φ(1)(1, ǫ) = − log ǫ+ 2 +O(ǫ) . (5.1)

Using this limit, we obtain

f −→ −4
u2 log u+ v2 log v

(2 cosh y1 + 2 cosφ)3
+O(u2, v2) . (5.2)

We see that this is a generalization of eq. (5.2) of [23] to general angles. One could also

use eq. (4.21) to compute higher order terms in the expansion.

This means that the correct effective potential for the general angle case is obtained by

replacing each (x2 + 1) terms in (5.3) of [23] by (2 cosh y1 + 2 cosφ) for the cusped Wilson

loop. Then we have a Schrödinger equation

[

−∂2
y1 + Veff(y1) +

Ω2

4

]

Ψ(y1) = 0 (5.3)

where the correction to the effective potential comes from the integral

Veff |λλ̂2 ∼
∫ ∞

0

∫ ∞

0
du dv e−

Ω
2
(u+v) f(u, v) . (5.4)

Explicitly, we have

Veff = − λ̂

4π2(2 cosh y1 + 2 cosφ)
+

λλ̂2 log Ω

2π6Ω4(2 cosh y1 + 2 cosφ)3
. (5.5)

At strong coupling, we can focus on λ̂ ≫ 1, y1 ≪ 1, with λ̂(y1)
1/4 fixed. In that regime the

leading term of the Schrödinger equation is

Veff(y1 = 0) +
Ω2
0

4
= 0 . (5.6)
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From this we obtain for the ground state energy,

Γ(a)+(c) = −Ω0 = −
√

λ̂

2π cos φ
2

[

1− 1

2

λ

λ̂
log

λ̂

λ
+O

(

λ

λ̂

)

]

(5.7)

Here the superscript indicates that this is the contribution from the integrals shown in

figures 1(a), (c).

Let us now discuss the integrals of figure 1(b). Here we obtained a Schrödinger equation

with an inhomogeneous term (note that there α = λ/λ̂) that is not multiplied by the wave

function. The latter fact suggests to us that the contribution of this class of diagrams at

strong coupling will not be given by an exponential factor of the type seen for integral

classes (a) and (c). If one assumes the absence of contributions of integral class (b) at

strong coupling, as we will do in the following, then (5.7) is the full answer at LO and NLO

in the scaling limit.

Let us now compare this against the corresponding quantity computed in string theory.

5.2 Scaling limit of the string theory result

The leading term (and first subleading term as well) in the 1/
√
λ expansion at strong

coupling has been computed using string theory in ref. [7]. It is straightforward to expand

their result in the large λ̂ limit that we are interested in. For the LO, this was already

done in ref. [10].

It is easy to take the scaling limit of the formula for Γ given in ref. [7]. The details of

this calculation are presented in appendix B. We find

Γ = −
√

λ̂

2π cos φ
2

[

1− 1

2

λ

λ̂
log

λ̂

λ
+O

(

λ

λ̂

)

]

. (5.8)

As a consistency check, we can take the limit φ = π−δ, δ → 0, where we expect to find the

quark-antiquark potential V . More precisely, Γ ∼ −1/δ V , and indeed we find agreement

with eq. (5.4) of [23].

Let us compare eq. (5.8) to the diagram calculation performed in the previous sub-

section. Comparing to eq. (5.7), we find perfect agreement. Recall that in principle there

could also be a contribution from integrals of type (b) not accounted for in eq. (5.7), but we

argued that this is not the case based on the structure of the Bethe-Salpeter equation for

these integrals. Under this assumption, we see that there is a perfect match between the

field theory calculation in the scaling limit, and the string theory calculation. As pointed

out in [10], this agreement was not guaranteed due to potential order of limits issues.

6 Discussion and conclusion

In this paper we further studied the scaling limit of the cusp anomalous dimension intro-

duced in [10], in several ways.

In the first part of the paper, working at LO we showed that the perturbative solution

at weak coupling can be expressed at any loop order in terms of harmonic polylogarithms,
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and outlined a corresponding algorithm. As illustration, we reproduced the three-loop

result of [10] and computed the four-, five-, and six-loop results, which are new. We also

provide a shortcut for obtaining the x → 0 asymptotics, which corresponds to the light-like

limit of the edges of the Wilson loop.

We observed interesting features of these results. We find that, at least up to six loops,

they can be written in terms of a reduced class of harmonic polylogarithms, with indices

0 and 1 only, when choosing x2 as argument (this feature was already noted in [10] up to

three loops.). Moreover, in the x → 0 limit, again up to six loops, we find that the resulting

asymptotic expansion can be expressed in terms of linear combinations of products of single

zeta values only. Other constants such as log(2), or multiple zeta values of higher depth

were not needed. This is especially interesting in the context of the BES equation for the

closely related light-like cusp anomalous dimension, which has the same property [30].

It would be very interesting if one could prove these properties. Such a proof would

likely shed more light on the structure of the cusp anomalous dimension.

In the second part of the paper, we extended the analysis of [10] to NLO order. The

new feature of the equations is the appearance of an inhomogeneous term. (A similar

analysis was recently done for the quark-antiquark potential [23]). This term does not

alter the perturbative solution, however, and we were able to apply the same strategy as at

LO. We showed how to compute these contributions systematically in perturbation theory.

For one class of integrals, we provided an algorithmic solution at any loop order in terms of

harmonic polylogarithms. For the second class of integrals, we showed how to obtain the

solution in terms of iterated integrals of simple functions. We left the question of whether

the latter can be expressed in terms of HPLs for future work.

Finally, we discussed the strong coupling limit of the equations. We computed the

logarithmically enhanced terms at NLO, and found agreement between the field theory

and the string theory calculation. This generalizes the calculation of [23] to any angle.

Using our formulas, it should be possible to compute the non-logarithmic terms at NLO

as well. We leave this for future work as well.

In ref. [10] the zero angle case was studied, where the Schrödinger potential becomes

the exactly solvable Pöschl-Teller potential. It would be interesting to extend this analysis

to NLO, where the equation is modified by an inhomogeneous term, as discussed in the

present paper.

Our approach also suggests a general strategy for the computation of the cusp anoma-

lous dimension, or related quantities. At a given loop order, there are two sets of contri-

butions. First, there are a number of integrals that have an overall UV divergence. These

diagrams are the “seed” of the Bethe-Salpeter equations and have to be computed. They

correspond to the most complicated part of the calculation. However, the fact that they

have no subdivergences allows one to extract the overall divergence easily, so that one is left

with the calculation of a finite quantity. The latter is sometimes related to four-dimensional

integrals. This observation allowed for example for the computation of an infinite class of

integrals contributing to the cusp anomalous dimension in ref. [10]. Second, there are di-

agrams that do have subdivergences. For these contributions, the resummation technique

via the Bethe-Salpeter equation is very useful, as it automatically takes into account the
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non-Abelian exponentiation. Although these contributions typically give the most compli-

cated contributions as far as the functions involved are concerned [10], the latter have their

origin in simple iterations of diagrams of the first type.

Although our analysis did not rely on the planar limit, non-planar contributions to

Γcusp appear only at four loops, or at higher subleading terms in the scaling limit. It would

be very interesting to compute the first non-planar corrections. We expect that many

observations about the calculation of loop integrals, especially the comments for extracting

overall divergences and using four-dimensional integrals, will be useful in related problems

as well, e.g. as the non-planar integrals discussed in ref. [31].

Our approach can also be extended beyond the NLO. We remark that this does not

require any Feynman graph calculations, as the integrand for the planar Wilson loop can be

obtained from a soft limit of the integrand of a four-particle scattering amplitude [10, 11].

The latter can be obtained through on-shell recursion relations in principle to any loop

order. We give examples of this procedure in appendix C. We hope that this all-loop

knowledge of the Wilson loop integrand gives a good starting point for analyzing further

the properties that we have observed in this paper.

Finally, the scaling limit discussed here might be useful for simplifying the TBA equa-

tions of refs. [16, 17]. It would also be interesting if those equation could shed light on some

of the observations about the perturbative properties of Γcusp that we have made here.
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A Differential equations for two-loop integral h

Here we give the differential equations for the two-loop integral h of eq. (4.20).

The non-trivial differential equation has been written down in ref. [32] and in eq. (A.7)

of ref. [33]. The differential operator we have can be related to the one of eq. (A.7) of [33]

by using translational invariance (
∑4

i=1 ∂i = 0), up to trivial pieces proportional to �i,

where we can use the Laplace equation. Note that all occurring terms can be written in

terms of Φ(1), thanks to eq. (A.5) below.

More explicitly, we have

2(∂1 + ∂4)
2 = −(∂1 − ∂2) · (∂3 − ∂4)− (∂1 + ∂2)

2 +�1 +�2 +�3 +�4 . (A.1)

We have, using eq. (A.7) of ref. [33], up to overall factors,

−(∂1 − ∂2) · (∂3 − ∂4)h =
1

x212x
2
34

[

(x213x
2
24 − x214x

2
23)X1234 + (x214 − x213)X134

− (x224 − x223)X234 + (x232 − x231)X312 − (x242 − x241)X412

]

.

(A.2)
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and, from the Laplace equation,

[

−(∂1+∂2)
2+�1+�2+�3+�4

]

h = −X1234+
1

x212
(X134+X234)+

1

x234
(X123+X124) ,

(A.3)

where

X1234 =

∫

d4xi
iπ2

1

x21ix
2
2ix

2
3ix

2
4i

=
1

x213x
2
24

Φ(1)

(

x212x
2
34

x213x
2
24

,
x214x

2
23

x213x
2
24

)

, (A.4)

X123 =

∫

d4xi
iπ2

1

x21ix
2
2ix

2
3i

=
1

x213
Φ(1)

(

x212
x213

,
x223
x213

)

. (A.5)

Combining differential equations (A.2) and (A.3), and plugging in (A.4) and (A.5), we find

eq. (4.21) given in the main text.

B Details of the strong coupling calculation

Here we show the details of the expansion of the string theory answer for Γ in the scaling

limit. The result of [7] for Γ is parametrized by two parameters p and q = −ir , r > 0,

which are implicitly defined through the angles φ and θ, in the following way

θ =
2bq

√

b4 + p2
K(k2) , (B.1)

φ = π − 2
p2

b
√

b4 + p2

[

Π

(

b4

b4 + p2
, k2

)

−K(k2)

]

, (B.2)

where

b2 =
1

2

(

p2 − q2 +
√

(p2 − q2)2 + 4p2
)

, (B.3)

k2 =
b2(b2 − p2)

b4 + p2
. (B.4)

In terms of these variables, we have

Γ =

√
λ

2π

2
√

b4 + p2

bp

[

(b2 + 1)p2

b4 + p2
K(k2)− E(k2)

]

, (B.5)

where E,K and Π are complete elliptic integrals,

E(k2) =

∫ π
2

0
dt

1
√

1− k2 sin2 t
, (B.6)

K(k2) =

∫ π
2

0
dt

√

1− k2 sin2 t , (B.7)

Π(a2, b2) =

∫ π
2

0
dt

1

(1− a2 sin2 t)
√

1− b2 sin2 t
. (B.8)
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Figure 3. Relation between integrals of the four-point amplitude (first line) and Wilson line

integrals (second line) at one and two loops.

The scaling limit iθ ≫ 1 is reached by letting p → 0. We see that we require the leading

and subleading divergences of Π in the limit where

lim
ǫ→0

Π(1− aǫ, 1− ǫb) =
1

ǫ

π − 2 arcsin
√
a√
b

2
√
a
√
b− a

− 1

4
log(ǫ)

−
√
a

(

π − 2 arcsin
√
a√
b

)

4
√
b− a

− 1

4
log(b) +

1

4
+ log(2) +O(ǫ) . (B.9)

In this way, we obtain, at leading order in
√
λ ≫ 1,

Γ = −r
√
λ

πp

[

1 + p2 log p
(1 + r2)

2r4

]

+O(p) (B.10)

We now convert r and p to their expressions in terms of θ and φ. So we need the

expansions of the latter to the necessary order in p. We find

eiθ/2 =
1

p
4

r2√
1 + r2

+ p log p
3 + r2

r2
√
1 + r2

+O(p) , (B.11)

φ = 2arcsin
1√

1 + r2
− 1

r3
p2 log p+O(p2) , (B.12)

We can see that this is in agreement with equation (5.8) quoted in the main text.

C Relation between integrals for four-particle scattering amplitude and

cusp anomalous dimension

In figures 3 and 4 we illustrate the relation between the integrals contributing to the

four-particle scattering amplitude (odd lines) and the integrals contributing to the cusp

anomalous dimension (even lines) to three loops. The integrals occurring at one and two

loops are shown in figure 3. The three-loop integrals are shown in figure 4. The reason for

this relation [10, 11] is essentially exact dual conformal symmetry [15], together with the

fact that massive scattering amplitudes in soft limits are related to Wilson loops [34].
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Figure 4. Relation between integrals of the four-point amplitude (first and third line) and Wilson

line integrals (second and fourth line) at three loops. Arrows denote internal numerator factors

(pµ + qµ)2, where pµ and qµ are the momenta flowing along the lines with arrows.

D The six-loop function Ω
(6)
0

Here we present the six-loop result Ω
(6)
0 which we relegated from the main text to this

appendix. Again, all HPLs are understood to have argument x2.

Ω
(6)
0 (x) =

256

3
ζ2 ζ

3
3 + 160 ζ23 ζ5 + 612 ζ5 ζ6 + 432 ζ4 ζ7 +

2480

3
ζ3 ζ8 +

680

3
ζ2 ζ9 + 372 ζ11

+ 912 ζ23 ζ4 H0 + 576 ζ2 ζ3 ζ5 H0 + 168 ζ25 H0 + 336 ζ3 ζ7 H0 +
4146

5
ζ10 H0

+
320

3
ζ33 H2 + 1440 ζ4 ζ5 H2 + 2040 ζ3 ζ6 H2 + 720 ζ2 ζ7 H2 +

3400

3
ζ9 H2

+ 1024 ζ2 ζ
2
3 H3 + 1280 ζ3 ζ5 H3 +

9920

3
ζ8 H3 + 9744 ζ3 ζ4 H4 + 3360 ζ2 ζ5 H4

+ 2664 ζ7 H4 + 2176 ζ23 H5 + 20472 ζ6 H5 + 14688 ζ2 ζ3 H6 + 8592 ζ5 H6

+ 55776 ζ4 H7 + 31936 ζ3 H8 + 52928 ζ2 H9 + 64 ζ33 H0,0 + 1896 ζ4 ζ5 H0,0

+ 3792 ζ3 ζ6 H0,0 + 576 ζ2 ζ7 H0,0 + 332 ζ9 H0,0 + 640 ζ2 ζ
2
3 H2,0 + 800 ζ3 ζ5 H2,0

+
6200

3
ζ8 H2,0 + 3840 ζ3 ζ4 H2,2 + 1920 ζ2 ζ5 H2,2 + 2880 ζ7 H2,2 + 960 ζ23 H2,3

+ 6120 ζ6 H2,3 + 5760 ζ2 ζ3 H2,4 + 5280 ζ5 H2,4 + 17760 ζ4 H2,5 + 12160 ζ3 H2,6

– 25 –



415

415
J
H
E
P
1
1
(
2
0
1
2
)
0
5
8

+ 15680 ζ2 H2,7 + 7296 ζ3 ζ4 H3,0 + 2304 ζ2 ζ5 H3,0 + 1344 ζ7 H3,0 + 6144 ζ3 ζ4 H3,1

+ 3072 ζ2 ζ5 H3,1 + 4608 ζ7 H3,1 + 1536 ζ23 H3,2 + 9792 ζ6 H3,2 + 9216 ζ2 ζ3 H3,3

+ 8448 ζ5 H3,3 + 28416 ζ4 H3,4 + 19456 ζ3 H3,5 + 25088 ζ2 H3,6 + 1280 ζ23 H4,0

+ 18696 ζ6 H4,0 + 1728 ζ23 H4,1 + 11016 ζ6 H4,1 + 11904 ζ2 ζ3 H4,2 + 11808 ζ5 H4,2

+ 35040 ζ4 H4,3 + 25664 ζ3 H4,4 + 31744 ζ2 H4,5 + 10944 ζ2 ζ3 H5,0 + 5376 ζ5 H5,0

+ 14208 ζ2 ζ3 H5,1 + 15936 ζ5 H5,1 + 38400 ζ4 H5,2 + 32064 ζ3 H5,3 + 36864 ζ2 H5,4

+ 56232 ζ4 H6,0 + 36960 ζ4 H6,1 + 38976 ζ3 H6,2 + 40128 ζ2 H6,3 + 22400 ζ3 H7,0

+ 45248 ζ3 H7,1 + 39424 ζ2 H7,2 + 67712 ζ2 H8,0 + 29568 ζ2 H8,1 + 84752H10,0

+ 736 ζ2 ζ
2
3 H0,0,0 + 608 ζ3 ζ5 H0,0,0 +

20012

3
ζ8 H0,0,0 + 4560 ζ3 ζ4 H2,0,0

+ 1440 ζ2 ζ5 H2,0,0 + 840 ζ7 H2,0,0 + 640 ζ23 H2,2,0 + 4080 ζ6 H2,2,0 + 3840 ζ2 ζ3 H2,2,2

+ 5760 ζ5 H2,2,2 + 7680 ζ4 H2,2,3 + 7040 ζ3 H2,2,4 + 6400 ζ2 H2,2,5 + 3840 ζ2 ζ3 H2,3,0

+ 2400 ζ5 H2,3,0 + 5760 ζ2 ζ3 H2,3,1 + 8640 ζ5 H2,3,1 + 11520 ζ4 H2,3,2

+ 10560 ζ3 H2,3,3 + 9600 ζ2 H2,3,4 + 16560 ζ4 H2,4,0 + 11520 ζ4 H2,4,1

+ 14400 ζ3 H2,4,2 + 11520 ζ2 H2,4,3 + 7040 ζ3 H2,5,0 + 18560 ζ3 H2,5,1

+ 12160 ζ2 H2,5,2 + 18080 ζ2 H2,6,0 + 9600 ζ2 H2,6,1 + 21440H2,8,0

+ 768 ζ23 H3,0,0 + 15168 ζ6 H3,0,0 + 1024 ζ23 H3,1,0 + 6528 ζ6 H3,1,0

+ 6144 ζ2 ζ3 H3,1,2 + 9216 ζ5 H3,1,2 + 12288 ζ4 H3,1,3 + 11264 ζ3 H3,1,4

+ 10240 ζ2 H3,1,5 + 6144 ζ2 ζ3 H3,2,0 + 3840 ζ5 H3,2,0 + 9216 ζ2 ζ3 H3,2,1

+ 13824 ζ5 H3,2,1 + 18432 ζ4 H3,2,2 + 16896 ζ3 H3,2,3 + 15360 ζ2 H3,2,4

+ 26496 ζ4 H3,3,0 + 18432 ζ4 H3,3,1 + 23040 ζ3 H3,3,2 + 18432 ζ2 H3,3,3

+ 11264 ζ3 H3,4,0 + 29696 ζ3 H3,4,1 + 19456 ζ2 H3,4,2 + 28928 ζ2 H3,5,0

+ 15360 ζ2 H3,5,1 + 34304H3,7,0 + 8128 ζ2 ζ3 H4,0,0 + 3616 ζ5 H4,0,0

+ 6912 ζ2 ζ3 H4,1,0 + 4320 ζ5 H4,1,0 + 10368 ζ2 ζ3 H4,1,1 + 15552 ζ5 H4,1,1

+ 20736 ζ4 H4,1,2 + 19008 ζ3 H4,1,3 + 17280 ζ2 H4,1,4 + 32112 ζ4 H4,2,0

+ 20736 ζ4 H4,2,1 + 28992 ζ3 H4,2,2 + 22272 ζ2 H4,2,3 + 14656 ζ3 H4,3,0

+ 37504 ζ3 H4,3,1 + 23936 ζ2 H4,3,2 + 36544 ζ2 H4,4,0 + 18816 ζ2 H4,4,1

+ 43936H4,6,0 + 51360 ζ4 H5,0,0 + 33984 ζ4 H5,1,0 + 18432 ζ4 H5,1,1

+ 33024 ζ3 H5,1,2 + 23424 ζ2 H5,1,3 + 18048 ζ3 H5,2,0 + 43008 ζ3 H5,2,1

+ 26112 ζ2 H5,2,2 + 42432 ζ2 H5,3,0 + 20352 ζ2 H5,3,1 + 52512H5,5,0

+ 15776 ζ3 H6,0,0 + 21120 ζ3 H6,1,0 + 44160 ζ3 H6,1,1 + 24960 ζ2 H6,1,2

+ 46368 ζ2 H6,2,0 + 19200 ζ2 H6,2,1 + 60576H6,4,0 + 66976 ζ2 H7,0,0

+ 46144 ζ2 H7,1,0 + 13440 ζ2 H7,1,1 + 66976H7,3,0 + 67712H8,2,0

+ 105856H9,0,0 + 52928H9,1,0 + 8688 ζ3 ζ4 H0,0,0,0 + 2064 ζ2 ζ5 H0,0,0,0

+ 792 ζ7 H0,0,0,0 + 480 ζ23 H2,0,0,0 + 9480 ζ6 H2,0,0,0 + 2560 ζ2 ζ3 H2,2,0,0

+ 1600 ζ5 H2,2,0,0 + 5760 ζ4 H2,2,2,0 + 7680 ζ3 H2,2,2,2 + 3840 ζ2 H2,2,2,3

+ 2560 ζ3 H2,2,3,0 + 10240 ζ3 H2,2,3,1 + 5120 ζ2 H2,2,3,2 + 6400 ζ2 H2,2,4,0

+ 3840 ζ2 H2,2,4,1 + 7360H2,2,6,0 + 13680 ζ4 H2,3,0,0 + 8640 ζ4 H2,3,1,0

+ 11520 ζ3 H2,3,1,2 + 5760 ζ2 H2,3,1,3 + 3840 ζ3 H2,3,2,0 + 15360 ζ3 H2,3,2,1

+ 7680 ζ2 H2,3,2,2 + 9600 ζ2 H2,3,3,0 + 5760 ζ2 H2,3,3,1 + 11040H2,3,5,0
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+ 4480 ζ3 H2,4,0,0 + 3840 ζ3 H2,4,1,0 + 15360 ζ3 H2,4,1,1 + 7680 ζ2 H2,4,1,2

+ 11520 ζ2 H2,4,2,0 + 5760 ζ2 H2,4,2,1 + 13920H2,4,4,0 + 16480 ζ2 H2,5,0,0

+ 12160 ζ2 H2,5,1,0 + 3840 ζ2 H2,5,1,1 + 16480H2,5,3,0 + 18080H2,6,2,0

+ 23520H2,7,0,0 + 15680H2,7,1,0 + 5888 ζ2 ζ3 H3,0,0,0 + 2432 ζ5 H3,0,0,0

+ 4096 ζ2 ζ3 H3,1,0,0 + 2560 ζ5 H3,1,0,0 + 9216 ζ4 H3,1,2,0 + 12288 ζ3 H3,1,2,2

+ 6144 ζ2 H3,1,2,3 + 4096 ζ3 H3,1,3,0 + 16384 ζ3 H3,1,3,1 + 8192 ζ2 H3,1,3,2

+ 10240 ζ2 H3,1,4,0 + 6144 ζ2 H3,1,4,1 + 11776H3,1,6,0 + 21888 ζ4 H3,2,0,0

+ 13824 ζ4 H3,2,1,0 + 18432 ζ3 H3,2,1,2 + 9216 ζ2 H3,2,1,3 + 6144 ζ3 H3,2,2,0

+ 24576 ζ3 H3,2,2,1 + 12288 ζ2 H3,2,2,2 + 15360 ζ2 H3,2,3,0 + 9216 ζ2 H3,2,3,1

+ 17664H3,2,5,0 + 7168 ζ3 H3,3,0,0 + 6144 ζ3 H3,3,1,0 + 24576 ζ3 H3,3,1,1

+ 12288 ζ2 H3,3,1,2 + 18432 ζ2 H3,3,2,0 + 9216 ζ2 H3,3,2,1 + 22272H3,3,4,0

+ 26368 ζ2 H3,4,0,0 + 19456 ζ2 H3,4,1,0 + 6144 ζ2 H3,4,1,1 + 26368H3,4,3,0

+ 28928H3,5,2,0 + 37632H3,6,0,0 + 25088H3,6,1,0 + 44064 ζ4 H4,0,0,0

+ 24624 ζ4 H4,1,0,0 + 15552 ζ4 H4,1,1,0 + 20736 ζ3 H4,1,1,2 + 10368 ζ2 H4,1,1,3

+ 6912 ζ3 H4,1,2,0 + 27648 ζ3 H4,1,2,1 + 13824 ζ2 H4,1,2,2 + 17280 ζ2 H4,1,3,0

+ 10368 ζ2 H4,1,3,1 + 19872H4,1,5,0 + 9472 ζ3 H4,2,0,0 + 6912 ζ3 H4,2,1,0

+ 27648 ζ3 H4,2,1,1 + 13824 ζ2 H4,2,1,2 + 22272 ζ2 H4,2,2,0 + 10368 ζ2 H4,2,2,1

+ 27552H4,2,4,0 + 33152 ζ2 H4,3,0,0 + 23936 ζ2 H4,3,1,0 + 6912 ζ2 H4,3,1,1

+ 33152H4,3,3,0 + 36544H4,4,2,0 + 47936H4,5,0,0 + 31744H4,5,1,0

+ 11264 ζ3 H5,0,0,0 + 11968 ζ3 H5,1,0,0 + 6144 ζ3 H5,1,1,0 + 24576 ζ3 H5,1,1,1

+ 12288 ζ2 H5,1,1,2 + 23424 ζ2 H5,1,2,0 + 9216 ζ2 H5,1,2,1 + 30720H5,1,4,0

+ 38208 ζ2 H5,2,0,0 + 26112 ζ2 H5,2,1,0 + 6144 ζ2 H5,2,1,1 + 38208H5,2,3,0

+ 42432H5,3,2,0 + 56896H5,4,0,0 + 36864H5,4,1,0 + 60576 ζ2 H6,0,0,0

+ 40800 ζ2 H6,1,0,0 + 24960 ζ2 H6,1,1,0 + 3840 ζ2 H6,1,1,1 + 40800H6,1,3,0

+ 46368H6,2,2,0 + 65248H6,3,0,0 + 40128H6,3,1,0 + 46144H7,1,2,0

+ 72128H7,2,0,0 + 39424H7,2,1,0 + 102640H8,0,0,0 + 73920H8,1,0,0

+ 29568H8,1,1,0 + 736 ζ23 H0,0,0,0,0 + 27736 ζ6 H0,0,0,0,0 + 3680 ζ2 ζ3 H2,0,0,0,0

+ 1520 ζ5 H2,0,0,0,0 + 9120 ζ4 H2,2,0,0,0 + 1920 ζ3 H2,2,2,0,0 + 3840 ζ2 H2,2,2,2,0

+ 3840H2,2,2,4,0 + 5120 ζ2 H2,2,3,0,0 + 5120 ζ2 H2,2,3,1,0 + 5120H2,2,3,3,0

+ 6400H2,2,4,2,0 + 6400H2,2,5,0,0 + 6400H2,2,5,1,0 + 2880 ζ3 H2,3,0,0,0

+ 2880 ζ3 H2,3,1,0,0 + 5760 ζ2 H2,3,1,2,0 + 5760H2,3,1,4,0 + 7680 ζ2 H2,3,2,0,0

+ 7680 ζ2 H2,3,2,1,0 + 7680H2,3,2,3,0 + 9600H2,3,3,2,0 + 9600H2,3,4,0,0

+ 9600H2,3,4,1,0 + 13920 ζ2 H2,4,0,0,0 + 7680 ζ2 H2,4,1,0,0 + 7680 ζ2 H2,4,1,1,0

+ 7680H2,4,1,3,0 + 11520H2,4,2,2,0 + 11840H2,4,3,0,0 + 11520H2,4,3,1,0

+ 12160H2,5,1,2,0 + 13760H2,5,2,0,0 + 12160H2,5,2,1,0 + 20800H2,6,0,0,0

+ 14400H2,6,1,0,0 + 9600H2,6,1,1,0 + 34752 ζ4 H3,0,0,0,0 + 14592 ζ4 H3,1,0,0,0

+ 3072 ζ3 H3,1,2,0,0 + 6144 ζ2 H3,1,2,2,0 + 6144H3,1,2,4,0 + 8192 ζ2 H3,1,3,0,0

+ 8192 ζ2 H3,1,3,1,0 + 8192H3,1,3,3,0 + 10240H3,1,4,2,0 + 10240H3,1,5,0,0

+ 10240H3,1,5,1,0 + 4608 ζ3 H3,2,0,0,0 + 4608 ζ3 H3,2,1,0,0 + 9216 ζ2 H3,2,1,2,0
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+ 9216H3,2,1,4,0 + 12288 ζ2 H3,2,2,0,0 + 12288 ζ2 H3,2,2,1,0 + 12288H3,2,2,3,0

+ 15360H3,2,3,2,0 + 15360H3,2,4,0,0 + 15360H3,2,4,1,0 + 22272 ζ2 H3,3,0,0,0

+ 12288 ζ2 H3,3,1,0,0 + 12288 ζ2 H3,3,1,1,0 + 12288H3,3,1,3,0 + 18432H3,3,2,2,0

+ 18944H3,3,3,0,0 + 18432H3,3,3,1,0 + 19456H3,4,1,2,0 + 22016H3,4,2,0,0

+ 19456H3,4,2,1,0 + 33280H3,5,0,0,0 + 23040H3,5,1,0,0 + 15360H3,5,1,1,0

+ 8192 ζ3 H4,0,0,0,0 + 5184 ζ3 H4,1,0,0,0 + 5184 ζ3 H4,1,1,0,0 + 10368 ζ2 H4,1,1,2,0

+ 10368H4,1,1,4,0 + 13824 ζ2 H4,1,2,0,0 + 13824 ζ2 H4,1,2,1,0 + 13824H4,1,2,3,0

+ 17280H4,1,3,2,0 + 17280H4,1,4,0,0 + 17280H4,1,4,1,0 + 27552 ζ2 H4,2,0,0,0

+ 13824 ζ2 H4,2,1,0,0 + 13824 ζ2 H4,2,1,1,0 + 13824H4,2,1,3,0 + 22272H4,2,2,2,0

+ 23360H4,2,3,0,0 + 22272H4,2,3,1,0 + 23936H4,3,1,2,0 + 27712H4,3,2,0,0

+ 23936H4,3,2,1,0 + 42368H4,4,0,0,0 + 28608H4,4,1,0,0 + 18816H4,4,1,1,0

+ 52512 ζ2 H5,0,0,0,0 + 30720 ζ2 H5,1,0,0,0 + 12288 ζ2 H5,1,1,0,0 + 12288 ζ2 H5,1,1,1,0

+ 12288H5,1,1,3,0 + 23424H5,1,2,2,0 + 26048H5,1,3,0,0 + 23424H5,1,3,1,0

+ 26112H5,2,1,2,0 + 32256H5,2,2,0,0 + 26112H5,2,2,1,0 + 50304H5,3,0,0,0

+ 32448H5,3,1,0,0 + 20352H5,3,1,1,0 + 24960H6,1,1,2,0 + 35520H6,1,2,0,0

+ 24960H6,1,2,1,0 + 57792H6,2,0,0,0 + 34560H6,2,1,0,0 + 19200H6,2,1,1,0

+ 91392H7,0,0,0,0 + 64064H7,1,0,0,0 + 33600H7,1,1,0,0 + 13440H7,1,1,1,0

+ 8576 ζ2 ζ3 H0,0,0,0,0,0 + 2672 ζ5 H0,0,0,0,0,0 + 21720 ζ4 H2,0,0,0,0,0

+ 3840 ζ2 H2,2,2,0,0,0 + 3840H2,2,2,2,2,0 + 1920H2,2,2,3,0,0 + 3840H2,2,2,3,1,0

+ 5120H2,2,3,1,2,0 + 2560H2,2,3,2,0,0 + 5120H2,2,3,2,1,0 + 5120H2,2,4,0,0,0

+ 1920H2,2,4,1,0,0 + 3840H2,2,4,1,1,0 + 11040 ζ2 H2,3,0,0,0,0 + 5760 ζ2 H2,3,1,0,0,0

+ 1920 ζ3 H2,2,0,0,0,0 + 5760H2,3,1,2,2,0 + 2880H2,3,1,3,0,0 + 5760H2,3,1,3,1,0

+ 7680H2,3,2,1,2,0 + 3840H2,3,2,2,0,0 + 7680H2,3,2,2,1,0 + 7680H2,3,3,0,0,0

+ 2880H2,3,3,1,0,0 + 5760H2,3,3,1,1,0 + 7680H2,4,1,1,2,0 + 3840H2,4,1,2,0,0

+ 7680H2,4,1,2,1,0 + 9600H2,4,2,0,0,0 + 2880H2,4,2,1,0,0 + 5760H2,4,2,1,1,0

+ 17280H2,5,0,0,0,0 + 11360H2,5,1,0,0,0 + 1920H2,5,1,1,0,0 + 3840H2,5,1,1,1,0

+ 5888 ζ3 H3,0,0,0,0,0 + 3072 ζ3 H3,1,0,0,0,0 + 6144 ζ2 H3,1,2,0,0,0 + 6144H3,1,2,2,2,0

+ 3072H3,1,2,3,0,0 + 6144H3,1,2,3,1,0 + 8192H3,1,3,1,2,0 + 4096H3,1,3,2,0,0

+ 8192H3,1,3,2,1,0 + 8192H3,1,4,0,0,0 + 3072H3,1,4,1,0,0 + 6144H3,1,4,1,1,0

+ 17664 ζ2 H3,2,0,0,0,0 + 9216 ζ2 H3,2,1,0,0,0 + 9216H3,2,1,2,2,0 + 4608H3,2,1,3,0,0

+ 9216H3,2,1,3,1,0 + 12288H3,2,2,1,2,0 + 6144H3,2,2,2,0,0 + 12288H3,2,2,2,1,0

+ 12288H3,2,3,0,0,0 + 4608H3,2,3,1,0,0 + 9216H3,2,3,1,1,0 + 12288H3,3,1,1,2,0

+ 6144H3,3,1,2,0,0 + 12288H3,3,1,2,1,0 + 15360H3,3,2,0,0,0 + 4608H3,3,2,1,0,0

+ 9216H3,3,2,1,1,0 + 27648H3,4,0,0,0,0 + 18176H3,4,1,0,0,0 + 3072H3,4,1,1,0,0

+ 6144H3,4,1,1,1,0 + 43936 ζ2 H4,0,0,0,0,0 + 19872 ζ2 H4,1,0,0,0,0 + 10368 ζ2 H4,1,1,0,0,0

+ 10368H4,1,1,2,2,0 + 5184H4,1,1,3,0,0 + 10368H4,1,1,3,1,0 + 13824H4,1,2,1,2,0

+ 6912H4,1,2,2,0,0 + 13824H4,1,2,2,1,0 + 13824H4,1,3,0,0,0 + 5184H4,1,3,1,0,0

+ 10368H4,1,3,1,1,0 + 13824H4,2,1,1,2,0 + 6912H4,2,1,2,0,0 + 13824H4,2,1,2,1,0

+ 19008H4,2,2,0,0,0 + 5184H4,2,2,1,0,0 + 10368H4,2,2,1,1,0 + 35040H4,3,0,0,0,0
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+ 22912H4,3,1,0,0,0 + 3456H4,3,1,1,0,0 + 6912H4,3,1,1,1,0 + 12288H5,1,1,1,2,0

+ 6144H5,1,1,2,0,0 + 12288H5,1,1,2,1,0 + 21312H5,1,2,0,0,0 + 4608H5,1,2,1,0,0

+ 9216H5,1,2,1,1,0 + 41280H5,2,0,0,0,0 + 26688H5,2,1,0,0,0 + 3072H5,2,1,1,0,0

+ 6144H5,2,1,1,1,0 + 78656H6,0,0,0,0,0 + 46080H6,1,0,0,0,0 + 29280H6,1,1,0,0,0

+ 1920H6,1,1,1,0,0 + 3840H6,1,1,1,1,0 + 72000 ζ4 H0,0,0,0,0,0,0 + 3680 ζ3 H2,0,0,0,0,0,0

+ 7360 ζ2 H2,2,0,0,0,0,0 + 1920H2,2,2,2,0,0,0 + 3840H2,2,3,0,0,0,0 + 2560H2,2,3,1,0,0,0

+ 2880H2,3,1,2,0,0,0 + 5760H2,3,2,0,0,0,0 + 3840H2,3,2,1,0,0,0 + 14080H2,4,0,0,0,0,0

+ 5760H2,4,1,0,0,0,0 + 3840H2,4,1,1,0,0,0 + 34304 ζ2 H3,0,0,0,0,0,0 + 11776 ζ2 H3,1,0,0,0,0,0

+ 3072H3,1,2,2,0,0,0 + 6144H3,1,3,0,0,0,0 + 4096H3,1,3,1,0,0,0 + 4608H3,2,1,2,0,0,0

+ 9216H3,2,2,0,0,0,0 + 6144H3,2,2,1,0,0,0 + 22528H3,3,0,0,0,0,0 + 9216H3,3,1,0,0,0,0

+ 6144H3,3,1,1,0,0,0 + 5184H4,1,1,2,0,0,0 + 10368H4,1,2,0,0,0,0 + 6912H4,1,2,1,0,0,0

+ 28096H4,2,0,0,0,0,0 + 10368H4,2,1,0,0,0,0 + 6912H4,2,1,1,0,0,0 + 66560H5,0,0,0,0,0,0

+ 32032H5,1,0,0,0,0,0 + 9216H5,1,1,0,0,0,0 + 6144H5,1,1,1,0,0,0

+ 10720 ζ3 H0,0,0,0,0,0,0,0 + 21440 ζ2 H2,0,0,0,0,0,0,0 + 2880H2,2,2,0,0,0,0,0

+ 11040H2,3,0,0,0,0,0,0 + 4320H2,3,1,0,0,0,0,0 + 4608H3,1,2,0,0,0,0,0

+ 17664H3,2,0,0,0,0,0,0 + 6912H3,2,1,0,0,0,0,0 + 55104H4,0,0,0,0,0,0,0

+ 19872H4,1,0,0,0,0,0,0 + 7776H4,1,1,0,0,0,0,0 + 84752 ζ2 H0,0,0,0,0,0,0,0,0

+ 7360H2,2,0,0,0,0,0,0,0 + 42880H3,0,0,0,0,0,0,0,0 + 11776H3,1,0,0,0,0,0,0,0

+ 26800H2,0,0,0,0,0,0,0,0,0 + 127128H0,0,0,0,0,0,0,0,0,0,0 . (D.1)
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1 Introduction

Wilson loops are very fundamental and important quantities in gauge theories. In this

paper, our main focus will be on their relevance to the description of the infrared (IR)

behavior of scattering amplitudes. We will consider the general massive case, from which

the massless one can be obtained as a limit.

The appearance of Wilson loops in this problem is easy to understand. The infrared

divergences in scattering amplitudes originate from soft regions of loop integration, for

which one can employ the eikonal approximation. In this way, one finds that infrared

divergences of a scattering process are given by a correlation function of Wilson lines, where

the lines in position space point along the momenta of the scattered particles. However, in

taking the eikonal limit, additional ultraviolet (UV) divergences are introduced. They are

equivalent, up to a sign, to the original IR divergences. This allows one to regard the former

as the UV anomalous dimension of Wilson line operators, whose renormalization properties

are well understood [1–3]. Note that the latter depends on the color representation of the

external particles and is in general a matrix in color space. It is known analytically to two
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paper, our main focus will be on their relevance to the description of the infrared (IR)
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divergences of a scattering process are given by a correlation function of Wilson lines, where

the lines in position space point along the momenta of the scattered particles. However, in
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equivalent, up to a sign, to the original IR divergences. This allows one to regard the former
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�n

qµ

pµ

�n′

φ

Figure 1. A Wilson line that makes a turn by an angle φ in Euclidean space. The two segments go

along pµ and qµ, respectively. The vectors �n and �n′ are internal vectors that determine the coupling

to the six scalars �Φ, see eq. (1.1).

loops [4]. The analysis of the general structure of this soft anomalous dimension matrix is

of great interest, with recent studies involving the massless [5–9] and massive [10] case.

In the planar limit, the matrix factorizes into Wilson lines consisting of two segments.

The cusp anomalous dimension associated to two Wilson lines is known in QCD to two

loops [11], and in N = 4 supersymmetric Yang-Mills (SYM) to three loops [12]. In this

paper, we extend the calculation in planar N = 4 SYM to four loops, and, in addition,

compute the non-planar four-loop value in a special scaling limit.

The aim of this paper is to develop methods for the computation of such Wilson

line correlators, planar and non-planar, and to deepen the understanding of the functions

involved. This is closely related to ideas being discussed for understanding the loop cor-

rections to scattering amplitudes. The functions that are typically encountered can be

described by certain classes of iterated integrals. A key problem is to identify which spe-

cific class of functions is required to describe a given scattering process. It was found that

integrals for scattering amplitudes or Wilson loops can be put into a ‘d-log’ form [13–15],

where one can pull out an overall normalization factor, and the remaining integrand is

a differential form. Moreover, such a representation suggests the existence of simple dif-

ferential equations for the integrals. The latter also help to make the transcendentality

properties of the integrals manifest. Recently, evidence was presented that integrals hav-

ing such simple properties are not limited to supersymmetric theories, but can be present

in generic D = 4 − 2ε dimensional integrals [16]. The Wilson line integrals considered in

this paper can be considered as a special, simplifying limit of the more general scattering

amplitude integrals. We will derive ‘d-log’ representations for a wide class of Wilson line

integrals, relevant to the physical problems discussed above, and show how to compute

them using differential equations.

The N = 4 supersymmetric Yang-Mills (SYM) theory is a good testing ground for

exploring such Wilson loops. For the specific Wilson loops studied in this paper, results

can be obtained from various methods such as supersymmetric localization techniques or,

in the planar case, integrability [17, 18]. The AdS/CFT conjecture also allows to compute

Wilson loops at strong coupling.

In N = 4 SYM, it is natural to define the locally supersymmetric Wilson loop opera-

tor [19, 20]

W ∼ Tr

[

P exp

(

i

∮

Aµẋµ +

∮

|dx|�n · �Φ
)]

, (1.1)

– 2 –
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where �n is a vector on S5. It parametrizes the coupling of the Wilson loop to the six scalars
�Φ. We consider as the integration contour a cusp formed by two segments along directions

(momenta) pµ and qµ, and allow the two segments to couple to the scalars through �n and

�n′, see figure 1. Then, the vacuum expectation value 〈W 〉 of the Wilson loop will depend

on the angles

cosφ =
p · q

√

p2q2
, cos θ = �n · �n′ , (1.2)

as well as on the ‘t Hooft coupling λ = g2N , and the number of colors N .

If ΛUV and ΛIR are short and long distance cutoffs, respectively, then the divergent

part of the vacuum expectation value of the Wilson loop takes the form [1, 2]

〈W 〉 ∼ exp

[

− log
ΛUV

ΛIR
Γcusp + . . .

]

. (1.3)

This defines the cusp anomalous dimension Γcusp(φ, θ, λ,N).

Note that the dependence of Γcusp on θ is simple. It can only occur through Wick

contractions of scalars, and because of SO(6) invariance it appears only through �n · �n′ =

cos θ. Therefore, at L loops, Γcusp is a polynomial in cos θ, of maximal degree L. Having

made this observation, we find it convenient to introduce the variable

ξ =
cos θ − cosφ

i sinφ
, (1.4)

where the denominator was chosen for future convenience. When the geometric angle φ

and internal angle θ satisfy φ = ±θ, which corresponds to ξ → 0, the anomalous dimension

vanishes. Thus we expect the following structure in perturbation theory,

Γcusp(φ, θ, λ,N) =

∞
∑

L=1

(

λ

8π2

)L L
∑

r=1

ξr Γ(L;r)(φ, 1/N2) , (1.5)

where λ = g2N is the ‘t Hooft coupling, and g the Yang-Mills coupling. The sum over ξr

starts from r = 1, since ξ = 0 corresponds to a supersymmetric configuration, for which

Γcusp vanishes.

Note that Γcusp has non-planar corrections starting from four loops. We will discuss

the full structure of the color dependence to four loops in sections 2 and 4.

The r = 1 term is known to all loop orders, including the non-planar corrections [21].

In this paper, we will compute the full planar result at four loops, for θ = 0, as well as the

non-planar contribution to Γ(4;4), which is the leading term in the scaling limit ξ → ∞.

This is done by analytically continuing θ and keeping φ as a free parameter. This scaling

limit was introduced in ref. [21] and it was shown that it allows to describe the planar

ladder diagrams in a simple way. This was further developed in [22, 23].

This paper is organized as follows. In section 2 we review the color dependence of Γcusp

to four loops. In section 3 we explain the kinematics and give an overview of the functions

that will appear in Γcusp. In section 4 we discuss the structure of a class of Wilson line

integrals and propose a systematic way of evaluating them. We then apply this to the

– 3 –
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Γcusp + . . .
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. (1.3)

This defines the cusp anomalous dimension Γcusp(φ, θ, λ,N).

Note that the dependence of Γcusp on θ is simple. It can only occur through Wick

contractions of scalars, and because of SO(6) invariance it appears only through �n · �n′ =

cos θ. Therefore, at L loops, Γcusp is a polynomial in cos θ, of maximal degree L. Having

made this observation, we find it convenient to introduce the variable

ξ =
cos θ − cosφ

i sinφ
, (1.4)

where the denominator was chosen for future convenience. When the geometric angle φ

and internal angle θ satisfy φ = ±θ, which corresponds to ξ → 0, the anomalous dimension

vanishes. Thus we expect the following structure in perturbation theory,

Γcusp(φ, θ, λ,N) =

∞
∑

L=1

(

λ

8π2

)L L
∑

r=1

ξr Γ(L;r)(φ, 1/N2) , (1.5)

where λ = g2N is the ‘t Hooft coupling, and g the Yang-Mills coupling. The sum over ξr

starts from r = 1, since ξ = 0 corresponds to a supersymmetric configuration, for which

Γcusp vanishes.

Note that Γcusp has non-planar corrections starting from four loops. We will discuss

the full structure of the color dependence to four loops in sections 2 and 4.

The r = 1 term is known to all loop orders, including the non-planar corrections [21].

In this paper, we will compute the full planar result at four loops, for θ = 0, as well as the

non-planar contribution to Γ(4;4), which is the leading term in the scaling limit ξ → ∞.

This is done by analytically continuing θ and keeping φ as a free parameter. This scaling

limit was introduced in ref. [21] and it was shown that it allows to describe the planar

ladder diagrams in a simple way. This was further developed in [22, 23].

This paper is organized as follows. In section 2 we review the color dependence of Γcusp

to four loops. In section 3 we explain the kinematics and give an overview of the functions

that will appear in Γcusp. In section 4 we discuss the structure of a class of Wilson line

integrals and propose a systematic way of evaluating them. We then apply this to the
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non-planar correction to Γcusp in the scaling limit. In section 5 we give details on how

we compute the planar Γcusp from a massive scattering amplitude, and give the result for

the four-loop cusp anomalous dimension in the planar limit. In section 6 we compare our

results to those at strong coupling. We conclude in section 7. There are two appendices.

In appendix A we collect the contributing diagrams from the scattering amplitude and

discuss their structure, while appendix B contains the analytic continuation of Γcusp to

values beyond threshold.

2 Color structure to four loops

Here we discuss the color dependence of Γcusp to four loops. It is best understood using

results from non-Abelian eikonal exponentiation [24, 25].

We start by setting up our conventions, following [26]. We consider a classical Lie-group

with Lie-commutator

[T a, T b] = ifabc T c , (2.1)

where the generators

T a , a = 1, . . . , NA (2.2)

are taken in the fundamental representation. fabc are the structure constants of the Lie-

algebra, and NA is the number of generators of the group. The quadratic Casimir operators

of the fundamental and adjoint representation of the Lie-algebra are

[T aT a]ij = CF δij , i, j = 1, . . . , NF (2.3)

facdf bcd = CAδ
ab , (2.4)

respectively, where NF is the dimension of the fundamental represenation. The fundamen-

tal generators are normalized by Tr(T aT b) = TF δ
ab.

The computation of color factors requires the evaluation of traces over products of

generators. Up to three loops, at most six generators appear in the traces. Using the above

equations, their result can be entirely expressed in terms of CF and CA (we normalize all

color factors by Tr[1F ] = NF ), e.g. [26]

Tr(T aT bT aT b)/NF = CF (CF − CA/2) , (2.5)

Tr(T aT bT cT aT bT c)/NF = CF (CF − CA)(CF − CA/2) . (2.6)

At four loops the trace over a product of eight generators can — in general — not be

expressed solely in terms of CF and CA, but higher group invariants are required. They

can be expressed in terms of the following fully symmetrical tensors,

dabcdR =
1

6
Tr[T a

RT
b
RT

c
RT

d
R + T a

RT
b
RT

d
RT

c
R + T a

RT
c
RT

b
RT

d
R

+ T a
RT

c
RT

d
RT

b
R + T a

RT
d
RT

b
RT

c
R + T a

RT
d
RT

c
RT

b
R] . (2.7)
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Here R can be either F or A for the fundamental and adjoint representation, respectively,

with [T a
F ]ij ≡ [T a]ij and [T a

A]bc = −ifabc.

Using the Lie-commutator one can show that up to terms proportional to powers of

CF and CA, Tr(T
aT bT cT dT aT bT cT d) is given by Tr(T aT bT cT d)Tr(T a

AT
d
AT

c
AT

b
A), which in

turn is related to dabcdF dabcdA , see table 11 of [26]. Explicitly, we have

Tr(T aT bT cT dT aT bT cT d)/NF =
dabcdF dabcdA

NF
+ CF

[

C3
F − 3C2

FCA +
11

4
CFC

2
A − 19

24
C3
A

]

,

(2.8)

dabcdF dabcdA

NF
= Tr(T aT bT cT d)Tr(T a

AT
d
AT

c
AT

b
A)/NF − 1

12
CFC

3
A . (2.9)

For a general Lie-group the traces over four generators in eq. (2.9) cannot be expressed in

terms of shorter traces which would lead to powers of CF and/or CA. Hence we can consider

CF , CA and the quartic Casimir operator dabcdF dabcdA /NF as independent color structures at

four loops, see ref. [27].

From [24, 25] it follows that Abelian-like terms containing powers of CF cancel in Γcusp,

thanks to the logarithm in its definition, see eq. (1.3). Moreover, an analysis of the possible

color diagrams reveals that the result for Γcusp at one, two, and three loops is proportional

to CF , CFCA, CFC
2
A, respectively. At four loops, two structures appear, which we choose

to be CFC
3
A and the quartic Casimir operator dabcdF dabcdA /NF .

In summary, we have, to four loops

log〈W 〉 = g2CFw1 + g4CFCAw2 + g6CFC
2
Aw3 + g8

[

CFC
3
Aw4a +

dabcdF dabcdA

NF
w4b

]

, (2.10)

where we have chosen the normalization 〈W 〉 = 1+O(g2) . We emphasize that hitherto all

relations are group-independent and apply to any of the classical Lie-groups.

The webs wi in (2.10) correspond to linear combinations of Feynman diagrams. The

explicit expressions are easily obtained by the method of [24, 25]. One advantage of this

formulation is that one can directly compute the logarithm of the Wilson loop correlator,

and that each web only has an overall divergence.1 The latter is easy to remove, so that

in practice one can define Γcusp in terms of finite integrals.

We now specialize the Lie-group to SU(N), where all results can be explicitly written

in terms of their dependence on N . With the standard normalization for the fundamental

generators, we have NF = N and

TF =
1

2
, CA = N , CF =

N2−1

2N
, NA = N2 − 1 ,

dabcdF dabcdA

NF
=

(N2−1)(N2+6)

48
.

(2.11)

Using eq. (2.11), we make the dependence on N of eq. (2.10) manifest. As discussed above,

we have exactly one color structure up to three loops, and two contributions at four loops,

1We tacitly assume that the intrinsic renormalization of the bare parameters of the Lagrangian has

already been carried out.
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color diagrams reveals that the result for Γcusp at one, two, and three loops is proportional

to CF , CFCA, CFC
2
A, respectively. At four loops, two structures appear, which we choose

to be CFC
3
A and the quartic Casimir operator dabcdF dabcdA /NF .

In summary, we have, to four loops

log〈W 〉 = g2CFw1 + g4CFCAw2 + g6CFC
2
Aw3 + g8

[

CFC
3
Aw4a +

dabcdF dabcdA

NF
w4b

]

, (2.10)

where we have chosen the normalization 〈W 〉 = 1+O(g2) . We emphasize that hitherto all

relations are group-independent and apply to any of the classical Lie-groups.

The webs wi in (2.10) correspond to linear combinations of Feynman diagrams. The

explicit expressions are easily obtained by the method of [24, 25]. One advantage of this

formulation is that one can directly compute the logarithm of the Wilson loop correlator,

and that each web only has an overall divergence.1 The latter is easy to remove, so that

in practice one can define Γcusp in terms of finite integrals.

We now specialize the Lie-group to SU(N), where all results can be explicitly written

in terms of their dependence on N . With the standard normalization for the fundamental

generators, we have NF = N and

TF =
1

2
, CA = N , CF =

N2−1

2N
, NA = N2 − 1 ,

dabcdF dabcdA

NF
=

(N2−1)(N2+6)

48
.

(2.11)

Using eq. (2.11), we make the dependence on N of eq. (2.10) manifest. As discussed above,

we have exactly one color structure up to three loops, and two contributions at four loops,

1We tacitly assume that the intrinsic renormalization of the bare parameters of the Lagrangian has

already been carried out.
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which can now be distinguished thanks to their different dependence on N ,

log〈W 〉 = g2
N2 − 1

2N

[

w1 + g2Nw2 + g4N2w3 + g6N3

(

w4a +
1

24
w4b

)

+ g6N
1

4
w4b

]

.

(2.12)

We see that in the large N limit, keeping λ = g2N fixed, only the contribution g6N 1
4w4b

disappears from the R.H.S. of eq. (2.12). In other words, to three loops, it is sufficient to

know the planar result for the Wilson loop in order to restore the full result in eq. (2.10).

At four loops, an additional computation of the diagrams contributing to w4b is required.

In the remainder of this paper, we compute the non-planar contribution w4b in a recently-

introduced scaling limit, as well as the full planar result to four loops.

3 Kinematics and integral functions

As explained in the introduction, we will mainly be interested in the φ dependence of Γcusp.

Here we discuss a convenient kinematical variable, and different physical regions. We also

introduce a class of functions that we find appropriate to express the answer in, and discuss

the branch cut structure of the latter.

3.1 Kinematical structure

It is convenient to introduce a new variable x = eiφ, which in general is complex. The com-

putation we are considering is invariant under φ → −φ. This corresponds to an inversion

symmetry in x.

There are three different kinematical regions that we would like to discuss. It is useful

to recall the relationship of Γcusp to IR divergences of scattering processes involving massive

particles, such as e+(p) → γ∗e+(q), which have the same analytical structure. (See e.g.

refs. [28, 29].) With the on-shell conditions p2 = q2 = m2 (in the mostly-minus metric

+− . . .−), this process is naturally described using the variable s/m2, where s = (p− q)2.

It is related to x via

x =

√

1− 4m2/s− 1
√

1− 4m2/s+ 1
. (3.1)

There we distinguish three kinematical regions, above threshold s > 4m2, below threshold,

0 < s < 4m2, and finally the space-like region s < 0. They correspond to regions III, I ,

and II, respectively, that we now discuss from the Wilson loop viewpoint.

Region I: the first region corresponds to real φ, φ ∈ [0, π]. This means that the absolute

value of x is 1. In this case we have a cusp in Euclidean space, and Γcusp is real. The two

limiting cases are the following: for φ = 0 the contour is a straight line, and Γcusp vanishes

(for θ = 0). The first correction ∼ φ2 in this small angle limit is known exactly in λ and

N [21, 30]. The opposite limit φ → π is related to the quark-antiquark potential. This limit

is subtle and requires a resummation of certain diagrams, see [12, 22, 31–33]. One may

also view the Wilson loop as the eikonal approximation to a form factor of massive quarks.

In that case, this region corresponds to the region below the two-particle threshold.
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Region II: we can analytically continue φ to Minkowskian angles. In that case, x is real

and positive. Because of the inversion symmetry x → 1/x, it is sufficient to take x ∈ [0, 1].

The second endpoint, x = 1, again corresponds to the case of a straight line discussed

above. Near the endpoint x → 0, on the other hand, the cusp anomalous dimension

diverges linearly in log(x), to all orders in the coupling constant [11]. The coefficient of

the linear divergence is the well-studied light-like cusp anomalous dimension; the latter can

also be obtained from the anomalous dimension of high spin operators [34–36]. We may

remark that the Wilson loop approach considered here is a very efficient way of computing

this quantity.

Region III: finally, we have the region above the threshold of creating two massive

particles. This region corresponds to x being real and negative. As before, it suffices to

take x ∈ [−1, 0], because of the inversion symmetry in x. Γcusp has a branch cut along

the negative real axis, and the i0 prescription in the propagators implies that x has a

small imaginary part. For the mostly minus Minkowski-space metric that we are using, the

position-space propagator connecting two segments of the Wilson loop is proportional to

(s2 + t2 + st(x+ 1/x)− i0)−1+ε, where the line parameters s and t are positive, and hence

for x ∈ [−1, 0] we should add a small positive imaginary part to x. In this region, Γcusp

has an imaginary part.

3.2 Harmonic polylogarithms and symbols

What are the functions needed to describe Γcusp? Results at lower loop orders and for

related scattering processes suggest that the class of functions we are seeking are the har-

monic polylogarithms (HPL) [37]. They are generalizations of ordinary polylogarithms,

and appear naturally e.g. within the differential equation technique to evaluate loop inte-

grals, see e.g. [28, 29]. They are also natural from the point of view of the singularity and

branch cut structure described in the previous paragraph, with x = 0,±1 being special

points. They are defined iteratively by

Ha1,a2,...,an(x) =

∫ x

0
fa1(t)Ha2,...,an(t) dt , {a1, a2, . . . an} �= {0, 0, . . . 0} , (3.2)

where the integration kernels are defined as

f1(x) = (1− x)−1 , f0(x) = x−1 , f−1(x) = (1 + x)−1 . (3.3)

The degree (or weight) 1 functions needed to start the recursion are defined as

H1(x) = − log(1− x) , H0(x) = log(x) , H−1(x) = log(1 + x) . (3.4)

There is a special case when all indices are zero, H0, . . . , 0
︸ ︷︷ ︸

n

(x) = 1
n! log

n(x). The subscript

of H is called the weight vector. A common abbreviation is to replace occurrences of m

zeros to the left of ±1 by ±(m+ 1). For example, H0,0,1,0,−1(x) = H3,−2(x).

HPLs have simple properties under certain argument transformations, and one can

use their algebraic properties to make their asymptotic behavior manifest. We refer the
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interested reader to ref. [37]. A very useful computer algebraic implementation has been

given in refs. [38, 39]. For fast numerical evaluation, especially at complex arguments of

the HPLs, we found the C++ implementation in GiNaC [40] very helpful.

As we will describe in the section 5, we compute the planar Γcusp from a massive

scattering amplitude, where at each loop order a certain number of individual integrals

appears. It turns out that each of these integrals can be expressed as a linear combination

of HPLs of argument x where in general all possible weight vectors appear at a given degree.

In the total result, however, we find the simplification that the result can be written in

a compact form when using HPLs of argument 1 − x2, and weight vectors with indices

0, 1 only! The latter property is also present in the four-loop non-planar correction in the

scaling limit, and becomes manifest from the formulas in sections 4 and 5.3.

In the context of the iterated integrals and differential equations studied in section 4,

the notion of the symbol of a transcendental function [41–43] is very useful. It can be

derived recursively for any function fw(x1, . . . , xn) of weight w whose total differential

assumes the form

dfw =
∑

i

fi,w−1 d logRi , (3.5)

where the fi,w−1 are of weight w−1 and the Ri are algebraic functions. The symbol S(fw)
is then defined recursively via

S(fw) =
∑

i

S(fi,w−1) ⊗ Ri , (3.6)

which involves a tensor product over the group of algebraic functions. We emphasize that

eqs. (3.5) and (3.6) make the close connection between the ‘d-log’-representations (to be

discussed in the next section) and the symbol of a function manifest. We also note that

symbols of the HPLs discussed above are built from the alphabet {x, 1± x}. As a specific

example, we have

S(Hn(x)) = S(Lin(x)) = −(1− x) ⊗ x⊗ · · · ⊗ x
︸ ︷︷ ︸

n−1 terms

. (3.7)

4 Iterated Wilson line integrals, and non-planar result in scaling limit

Here we discuss a general method for computing Wilson line integrals in position space.

We then apply it to the computation of the non-planar cusp anomalous dimension in the

scaling limit.

4.1 ‘d-log’ forms for Wilson line integrals

In this section we elaborate on ‘d-log’ forms for integrals, which were introduced in the

context of scattering amplitudes in [13–15]. As an instructive example, let us discuss the

diagram shown in Fig 2. The corresponding integral over the line parameters s and t can

be written as
∫

Λ

ds ∧ dt

s2 + t2 + st(x+ 1/x)
=

x

1− x2

∫

Λ
d log(s+ tx) ∧ d log(t+ sx) , (4.1)
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a

S
s

t
b

T

Figure 2. Propagator-type integral discussed in the main text.

where on the r.h.s. we have dropped differentials involving dx because they do not con-

tribute to the integral, and where the integration region Λ is s ∈ [a, S] and t ∈ [b, T ].

What is gained from writing the integral in this way? We see that a natural normaliza-

tion factor, x/(1−x2), has been pulled out of the integral. Together with trivial prefactors

originating from the Feynman rules, this constitutes the normalization of the diagram. The

remaining integral will give a (generalized) polylogarithmic function, which, in the present

example, has degree 2. It depends on the variables a, b, S, T and x,

f(a, b, S, T, x) =

∫

Λ
d log(s+ tx) ∧ d log(t+ sx) . (4.2)

Integrals of this type satisfy simple differential equations, as we explain below. Let us first

focus on one of the two integration variables, say s, and rewrite the integral in a more

convenient form thanks to the identity [44]

d log(s+ α) ∧ d log(s+ β) = d log
s+ α

s+ β
∧ d log(α− β) . (4.3)

A simple generalization of this identity holds for n-forms. Then, we perform one integration

at a time, in this case starting with the one over s. The main point is that one will always

have an integral of the form

G(α, βi) :=

∫

Λy

d log(y + α)F (y, βi) , (4.4)

where y is the integration variable, and α and βi are parameters, and F is some function.

Then the algorithm outlined in appendix A of ref. [44] can be used to determine the

differential of G. It can be expressed in terms of quantities appearing in the differential

of F . In our example, a short calculation gives

d f(a, b, S, T, x) = d log b log
(b+ ax)(S + bx)

(a+ bx)(b+ Sx)
+ d log a log

(T + ax)(a+ bx)

(b+ ax)(a+ Tx)

+ d logS log
(b+ Sx)(S + Tx)

(S + bx)(T + Sx)
+ d log T log

(T + Sx)(a+ Tx)

(S + Tx)(T + ax)

+ d log x log
(T + ax)(S + bx)(b+ Sx)(a+ Tx)

(b+ ax)(a+ bx)(T + Sx)(S + Tx)
. (4.5)
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Figure 2. Propagator-type integral discussed in the main text.

where on the r.h.s. we have dropped differentials involving dx because they do not con-

tribute to the integral, and where the integration region Λ is s ∈ [a, S] and t ∈ [b, T ].

What is gained from writing the integral in this way? We see that a natural normaliza-

tion factor, x/(1−x2), has been pulled out of the integral. Together with trivial prefactors

originating from the Feynman rules, this constitutes the normalization of the diagram. The

remaining integral will give a (generalized) polylogarithmic function, which, in the present

example, has degree 2. It depends on the variables a, b, S, T and x,

f(a, b, S, T, x) =

∫

Λ
d log(s+ tx) ∧ d log(t+ sx) . (4.2)

Integrals of this type satisfy simple differential equations, as we explain below. Let us first

focus on one of the two integration variables, say s, and rewrite the integral in a more

convenient form thanks to the identity [44]

d log(s+ α) ∧ d log(s+ β) = d log
s+ α

s+ β
∧ d log(α− β) . (4.3)

A simple generalization of this identity holds for n-forms. Then, we perform one integration

at a time, in this case starting with the one over s. The main point is that one will always

have an integral of the form

G(α, βi) :=

∫

Λy

d log(y + α)F (y, βi) , (4.4)

where y is the integration variable, and α and βi are parameters, and F is some function.

Then the algorithm outlined in appendix A of ref. [44] can be used to determine the

differential of G. It can be expressed in terms of quantities appearing in the differential

of F . In our example, a short calculation gives

d f(a, b, S, T, x) = d log b log
(b+ ax)(S + bx)

(a+ bx)(b+ Sx)
+ d log a log

(T + ax)(a+ bx)

(b+ ax)(a+ Tx)

+ d logS log
(b+ Sx)(S + Tx)

(S + bx)(T + Sx)
+ d log T log

(T + Sx)(a+ Tx)

(S + Tx)(T + ax)

+ d log x log
(T + ax)(S + bx)(b+ Sx)(a+ Tx)

(b+ ax)(a+ bx)(T + Sx)(S + Tx)
. (4.5)
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(a) (b) (c)

Figure 3. All diagrams contributing to the quartic Casimir terms at four loops, in the scaling

limit.

This equation determines f up to an integration constant. The latter can be determined,

for example, from the boundary condition that f vanishes at a = S. Note that it is trivial

to read off the symbol of f from eq. (4.5).

In the present example, one can also directly integrate eq. (4.5). The answer obtained

can be written in terms of dilogarithms,

f(a, b, S, T, x) = Li2

(

−T

S
x

)

− Li2

(

−T

S

1

x

)

− Li2

(

−T

a
x

)

+ Li2

(

−T

a

1

x

)

− Li2

(

− b

S
x

)

+ Li2

(

− b

S

1

x

)

+ Li2

(

− b

a
x

)

− Li2

(

− b

a

1

x

)

. (4.6)

This agrees with ref. [45].

In summary, we see that one can always compute the symbol of integrals that are of the

type (4.1), and for generalizations with more propagators, and polylogarithmic functions

inserted into the integrand. In particular, any ladder integral appearing in Γcusp can be

computed in this way. Preliminary results suggest that the generalization to graphs with

interaction vertices is possible. For example, in ref. [23], for two classes of diagrams the

internal integration associated to the interaction vertex could be computed analytically,

with the remaining integral of the form (4.4).

We used this method to compute the non-planar ladder integrals appearing in Γcusp

to four loops. In the next subsection, we discuss which integrals are required, and in the

following subsection the results are reported.

4.2 Non-planar contribution to scaling limit

Here we compute the integrals contributing to w4b of eq. (2.10) in the scaling limit. Thanks

to the scaling limit, we only need to keep ladder diagrams with four rungs between the two

Wilson line segments. Moreover, only diagrams containing the color factor dabcdF dabcdA /NF

are required.2

2Recall that the color dependence of a general four-loop diagram can be expressed in terms of CF , CA,

and dabcdF dabcdA /NF . With our choice of color-basis in section 2, all terms with powers of CF higher than

one cancel in log〈W 〉, as per eq. (2.10).
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It is easy to see that the only ladder type diagrams containing the quartic Casimir

operator are the ones shown in figure 3. Denoting their color factors by Ci and the integral

functions by Ii, with i = a, b, c we have

log〈W 〉g8 ∼ Ca Ia + Cb Ib + 2 Cc Ic + . . . , (4.7)

where the dots represent other diagrams with color factors involving only CF and CA,

and the 2 is a combinatorial factor, due to the fact that figure 3(c) also appears with the

two Wilson lines interchanged. The color factors of these diagrams contain a trace over

eight generators, e.g. Tr(T aT bT cT dT aT bT cT d) in figure 3(a), and similarly for the other

two diagrams. Using the Lie commutator (2.1) one sees that the color factors of the three

diagrams in figure 3 are related. One finds

Ca = Tr(T aT bT cT dT aT bT cT d)/NF , (4.8)

Cc = Ca +
1

2
CFCA(CF − CA/2)(CF − CA) , (4.9)

Cb = Ca +
1

2
CFCA(CF − CA/2)(2CF − 3/2CA) , (4.10)

where we normalize again all color factors by Tr[1F ] = NF . From (4.8) – (4.10) we con-

clude that the three diagrams contribute equally to the color factor dabcdF dabcdA /NF , see

eq. (2.8). Taking this into account, we find that in the scaling limit the term proportional

to dabcdF dabcdA /NF is given by

w4b ∼ Ia + Ib + 2 Ic . (4.11)

Let us discuss the definition of the integrals. They are line integrals of the type

considered in section 4.1. Here a comment on the regularization of the Wilson loop operator

is due. Naively, it has both infrared as well as ultraviolet divergences. We are interested in

the ultraviolet divergences. Γcusp is defined as the coefficient of the ultraviolet divergence.

Since log〈W 〉 only has an overall divergence, it is easy to see how different regularization

procedures are related. The position space calculations above can be formulated e.g. in

cut-off regularization for both IR and UV divergences. Another possibility is to treat the

integrals as in heavy-quark effective theory (HQET), with dimensional regularization.

In both cases, one can make the logarithmic divergence transparent by changing vari-

ables. Let us denote the line parameters on the two lines by si and ti, with i = 1, . . . 4,

respectively. After rescaling all variables si = ρs̃i, ti = ρt̃i, with
∑4

i=1(s̃i + t̃i) = 1, the ρ

integral contains the divergence. When working with cutoffs, this integral takes the form

∫ ΛIR

ΛUV

dρ

ρ
= log

ΛIR

ΛUV
. (4.12)

On the other hand, in HQET with dimensional regularization, one obtains

∫ ∞

0

dρ

ρ1−Lε
e−ρ =

1

Lε
+O(ε0) . (4.13)
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ΛUV

dρ

ρ
= log

ΛIR

ΛUV
. (4.12)

On the other hand, in HQET with dimensional regularization, one obtains

∫ ∞

0

dρ

ρ1−Lε
e−ρ =

1

Lε
+O(ε0) . (4.13)
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In both cases, the coefficient of the ρ integral is the contribution to the cusp anomalous

dimension that we wish to compute, and it is given by convergent integrals.

For concreteness, let us choose the cutoff version of the calculation. In that case, taking

into account the discussion above and writing the integrals in d-log form as in section 4.1,

we have

Ii = log
ΛIR

ΛUV

(

x

1− x2

)4

Ĩi , i = a, b, c . (4.14)

Next, we can use the algorithm of section 4.1 to derive iterative differential equations for

Ĩi. From these equations, we can immediately determine the symbol of these functions as

a corollary. We find that they are given by symbols composed from the alphabet x, 1−x2.

This implies that they can be expressed in terms of a subset of the HPLs discussed in

section 3, namely those with indices drawn from 0, 1, if we choose x2 or 1−x2 as argument

of the HPLs.

In order to determine the full functions from the differential equations, we have to

complement them by boundary conditions. The kinematical point x = 1, or equivalently

φ = 0, is a good boundary condition, where the Feynman integrals are expected to be

regular. However, the prefactor (x/(1−x2))4 in (4.14) diverges in this limit, and hence the

functions Ĩi must have corresponding zeros. We find it likely that a careful investigation of

the iterative differential equations would reveal that this boundary condition fixes all un-

determined constants. We found that simply using the condition of regularity of eq. (4.14)

at x = 1 determined most coefficients, and we computed the remaining ones by considering

asymptotic limits x → 0, which we evaluated using standard Mellin-Barnes techniques.

For more details on such methods, see section 5. In this way, we found

Ĩa =− 6π2H1,1,1,2 + 48H1,1,1,4 − 8π2H1,1,2,1 + 64H1,1,2,3 + 64H1,1,3,2

− 6π2H1,2,1,1 + 48H1,2,1,3 + 48H1,2,2,2 − 10π2H1,1,1,1,1 + 80H1,1,1,1,3

+ 80H1,1,1,2,2 + 24H1,1,1,3,1 + 64H1,1,2,1,2 + 32H1,1,2,2,1 + 32H1,1,3,1,1

+ 48H1,2,1,1,2 + 24H1,2,1,2,1 + 24H1,2,2,1,1 + 62H1,1,1,1,1,2 + 40H1,1,1,1,2,1

+ 22H1,1,1,2,1,1 + 8H1,1,2,1,1,1 + 6H1,2,1,1,1,1 +H1,1,1,1,1,1,1 , (4.15)

Ĩb =− 4π2H1,1,1,2 −
16

3
π2H1,1,2,1 + 16H1,1,2,3 + 32H1,1,3,2 − 4π2H1,2,1,1

+ 16H1,2,1,3 + 16H1,2,2,2 −
20

3
π2H1,1,1,1,1 + 16H1,1,1,1,3 + 24H1,1,1,2,2

+ 24H1,1,2,1,2 + 8H1,1,2,2,1 + 16H1,1,3,1,1 + 16H1,2,1,1,2 + 8H1,2,1,2,1

+ 8H1,2,2,1,1 + 40H1,1,1,1,1,2 + 24H1,1,1,1,2,1 − 8H1,1,2,1,1,1 − 8H1,2,1,1,1,1

+ 4H1,1,1,1,1,1,1 + 48ζ3H1,1,1,1 , (4.16)
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Ĩc =+ 4π2H1,1,1,2 − 12H1,1,1,4 +
16

3
π2H1,1,2,1 − 28H1,1,2,3 − 40H1,1,3,2

+ 4π2H1,2,1,1 − 24H1,2,1,3 − 24H1,2,2,2 +
20

3
π2H1,1,1,1,1 − 32H1,1,1,1,3

− 38H1,1,1,2,2 − 6H1,1,1,3,1 − 34H1,1,2,1,2 − 14H1,1,2,2,1 − 20H1,1,3,1,1

− 24H1,2,1,1,2 − 12H1,2,1,2,1 − 12H1,2,2,1,1 − 38H1,1,1,1,1,2 − 22H1,1,1,1,2,1

− 4H1,1,1,2,1,1 + 2H1,1,2,1,1,1 + 2H1,2,1,1,1,1 + 2H1,1,1,1,1,1,1 − 24ζ3H1,1,1,1 . (4.17)

Here we use the abbreviation Hw = Hw(1 − x2). Recalling eqs. (4.14) and (4.11), this

determines w4b in the scaling limit.

We performed several consistency checks. First, using this algorithm, we reproduced

the analytical result for the three-loop crossed ladder diagram computed in [12]. More-

over, we performed numerical checks on the above results using the explicit line integral

representation of the integrals. Starting from the rescaled variables s̃i and t̃i above, we set

s̃1 = x1x2x3z , s̃2 = x1x2z , s̃3 = x1z , s̃4 = z , (4.18)

t̃1 = y1y2y3z̄ , t̃2 = y1y2z̄ , t̃3 = y1z̄ , t̃4 = z̄ , (4.19)

where z̄ := 1− z, and with Jacobian z3z̄3x21x2y
2
1y2. Then we have, e.g.

Ĩa =
(1− x2)4

x4

∫ 1

0
dz

3
∏

i=1

(dxidyi) z
3z̄3x21x2y

2
1y2×

× P (s̃1, t̃4;x)P (s̃2, t̃3;x)P (s̃3, t̃2;x)P (s̃4, t̃1;x) , (4.20)

where P (s, t;x) := 1/(s2+ t2+st(x+1/x)). We used this formula (and corresponding ones

for Ĩb and Ĩc) to check (4.15) – (4.17) numerically at the sub-per mille level for several values

of x. Analytic checks can be done e.g. by switching to a Mellin-Barnes representation.

5 Planar calculation from massive scattering amplitude

It was shown in ref. [46] that the Regge limit s/m2 � 1 of the planar Coulomb branch

amplitude M(s/m2, t/m2) is governed by the cusp anomalous dimension. This connection

was used in [12] to compute the three-loop value of Γcusp.

The advantage of this approach is that an expression for the integrand of

M(s/m2, t/m2) is already known. It is in the form of a small number of scalar inte-

grals, each of which results from many Feynman diagrams. This simple integrand was

obtained by using generalized unitarity, in conjunction with (extended) dual conformal

symmetry [47, 48]. It has been pointed out that the limit relating the amplitude and Γcusp

also works at the level of the integrand [23]. This implies that one can obtain an efficient

integral representation for Γcusp in this way.

Here we wish to extend the work of [12] to four loops and determine the planar part

of Γcusp from the four-loop scattering amplitude. As a starting point, convenient Mellin-

Barnes representations for the eight contributing integrals are available from [48]. The
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Ĩc =+ 4π2H1,1,1,2 − 12H1,1,1,4 +
16

3
π2H1,1,2,1 − 28H1,1,2,3 − 40H1,1,3,2

+ 4π2H1,2,1,1 − 24H1,2,1,3 − 24H1,2,2,2 +
20

3
π2H1,1,1,1,1 − 32H1,1,1,1,3

− 38H1,1,1,2,2 − 6H1,1,1,3,1 − 34H1,1,2,1,2 − 14H1,1,2,2,1 − 20H1,1,3,1,1

− 24H1,2,1,1,2 − 12H1,2,1,2,1 − 12H1,2,2,1,1 − 38H1,1,1,1,1,2 − 22H1,1,1,1,2,1

− 4H1,1,1,2,1,1 + 2H1,1,2,1,1,1 + 2H1,2,1,1,1,1 + 2H1,1,1,1,1,1,1 − 24ζ3H1,1,1,1 . (4.17)

Here we use the abbreviation Hw = Hw(1 − x2). Recalling eqs. (4.14) and (4.11), this

determines w4b in the scaling limit.

We performed several consistency checks. First, using this algorithm, we reproduced

the analytical result for the three-loop crossed ladder diagram computed in [12]. More-

over, we performed numerical checks on the above results using the explicit line integral

representation of the integrals. Starting from the rescaled variables s̃i and t̃i above, we set

s̃1 = x1x2x3z , s̃2 = x1x2z , s̃3 = x1z , s̃4 = z , (4.18)

t̃1 = y1y2y3z̄ , t̃2 = y1y2z̄ , t̃3 = y1z̄ , t̃4 = z̄ , (4.19)

where z̄ := 1− z, and with Jacobian z3z̄3x21x2y
2
1y2. Then we have, e.g.

Ĩa =
(1− x2)4

x4

∫ 1

0
dz

3
∏

i=1

(dxidyi) z
3z̄3x21x2y

2
1y2×

× P (s̃1, t̃4;x)P (s̃2, t̃3;x)P (s̃3, t̃2;x)P (s̃4, t̃1;x) , (4.20)

where P (s, t;x) := 1/(s2+ t2+st(x+1/x)). We used this formula (and corresponding ones

for Ĩb and Ĩc) to check (4.15) – (4.17) numerically at the sub-per mille level for several values

of x. Analytic checks can be done e.g. by switching to a Mellin-Barnes representation.

5 Planar calculation from massive scattering amplitude

It was shown in ref. [46] that the Regge limit s/m2 � 1 of the planar Coulomb branch

amplitude M(s/m2, t/m2) is governed by the cusp anomalous dimension. This connection

was used in [12] to compute the three-loop value of Γcusp.

The advantage of this approach is that an expression for the integrand of

M(s/m2, t/m2) is already known. It is in the form of a small number of scalar inte-

grals, each of which results from many Feynman diagrams. This simple integrand was

obtained by using generalized unitarity, in conjunction with (extended) dual conformal

symmetry [47, 48]. It has been pointed out that the limit relating the amplitude and Γcusp

also works at the level of the integrand [23]. This implies that one can obtain an efficient

integral representation for Γcusp in this way.

Here we wish to extend the work of [12] to four loops and determine the planar part

of Γcusp from the four-loop scattering amplitude. As a starting point, convenient Mellin-

Barnes representations for the eight contributing integrals are available from [48]. The

– 13 –

J
H
E
P
0
9
(
2
0
1
3
)
1
4
7

strategy of our calculation is the following: First, we use generalized cuts to determine

the power of ξ to which each scattering amplitude integral contributes. Details of this

procedure can be found in appendix A. Next, based on experience from lower loop orders

and the structure observed for the ladder diagrams [23], we make an ansatz subject to

certain assumptions, which we will specify below. This reduces the calculation to the

determination of a certain number of undetermined coefficients. In order to determine the

latter, we analyze both the Mellin-Barnes representations and the ansatz in various limits,

such as x → 0 and x → 1. In this way, we obtain (more than) enough algebraic equations

to determine all coefficients. Moreover, this provides consistency checks for the ansatz.

5.1 Assumptions and classification of HPLs

An analysis of the cuts of the integrals contributing to the scattering amplitude suggests

that the four-loop result for θ = 0, where we have ξ = (1− x)/(1 + x), has the structure

Γcusp|λ4/(8π2)4 =
4

∑

r=1

(

1− x

1 + x

)r

Γ(4;r)(x) +O(1/N2) , (5.1)

where the Γ(4;r)(x) are certain transcendental functions. What can we assume about their

structure? Looking at the results up to three loops we may make a number of observations.

• all results for Γcusp can be written in terms of harmonic polylogarithms

• the degree of transcendentality of the functions involved is uniformly (2L−1), where

L is the loop order

• the subset of HPLs with indices 0, 1 only and argument 1−x2 is sufficient to describe

the answer. In terms of the symbol, this means that only letters x, 1−x2 are required.

In the case of ladder integrals, the first two items can be proved, and the third item is true

at least up to six loops [23]. As we showed in section 4, it is also true in the non-planar

case. We find it reasonable to assume that these properties hold true for the full result at

four loops.

If this assumption is correct, the calculation is reduced to the determination of the

precise linear combination of the allowed functions. Our starting point will be all functions

Hw(1− x2) of weight seven, where the weight vector w is build from entries 0, 1. We also

allow transcendental constants such as ζi, ζiζj , possibly multiplying lower degree functions

to construct a term of total degree seven.

We can restrict and classify these functions according to their symmetry properties. In

fact, Γcusp has to be symmetric under the inversion x → 1/x. This follows from the defini-

tion cosφ = 1/2(x+ 1/x). As a result, Γ(4;r)(x) has to be odd/even under this symmetry

for r odd/even. In this way, we find 51 even and 50 odd functions under this symmetry.

Another simple condition we can impose is that Γ(4;r)(x) should have at least r zeros

as x → 1. The reason is that it is multiplied by the factor ξr, which for θ = π/2 has a

degree r pole at x = 1. But x = 1 corresponds to the straight line case, and this should be

finite for each integral contributing to Γcusp. We will also verify this behavior by expanding

integrals near x → 1.
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In order to further restrict the number of functions, we make two additional observa-

tions about the results at lower loops L ≤ 3, eqs. (5.4)–(5.9). Inspecting them one sees that

in these cases the number of 0’s in the weight vector of the functions Γ(L;r)(x) is always

smaller than r. We will assume this to hold true also at four loops. Moreover, Γ(L;r)(x)

vanishes for L > 1 at x = −1.3 This is required in order to obtain the correct leading order

behavior at x → −1, which corresponds to the quark antiquark potential limit. This limit

will be discussed in more detail at the end of this section.

Imposing all these conditions our ansatz becomes, in summary,

• 12 functions for Γ(4;2)(x), of degree 7, indices 0, 1, even under x → 1/x, at most one 0

entry in weight vector, and vanishing as (1−x)2 as x → 1 and as (1+x)1 as x → −1.

• 21 functions for Γ(4;3)(x), of degree 7, indices 0, 1, odd under x → 1/x, at most two

0 entries in weight vector, and vanishing as (1 − x)3 as x → 1 and as (1 + x)1 as

x → −1.

The terms Γ(4;1) and Γ(4;4) were already computed in refs. [21] and [23], respectively.

5.2 Asymptotic limit of Mellin-Barnes integrals

Let us now explain how to determine the coefficients of the ansatz. By means of the

Mathematica packages MB.m [49] and MBasymptotics.m [50] we perform the asymptotic

expansions of the Mellin-Barnes representations, first about the point x = 0. The expansion

parameter appears in the form xp logq(x), and each of these terms is accompanied by

one or several transcendental constants. For p > 0 these constants are in general not of

homogeneous weight, but the highest transcendentality is always 7 − q.4 We determine

these constants analytically for p = 0, . . . , 6 and q = 3, . . . , 7. For p = 0 we also include

q = 2. It is interesting to note that at most two-dimensional Mellin-Barnes integrals are

required for this calculation at q > 2, and three-dimensional ones at q = 2. After we

computed all relevant constants in this way, we perform the series expansion of our ansatz

to the respective orders in x and log(x), and solve the resulting algebraic equations for the

unknown coefficients appearing in our ansatz. As an illustrating example, take

[

22

9
+

2π2

3

]

x log5(x)
!
=

[(

− 8

27
a1 +

28

9
a2

)

+ π2

(

−1

6
a1 +

1

3
a2

)]

x log5(x) , (5.2)

where the l.h.s. stems from the solution of the Mellin-Barnes integrals at a particular power

in x and log(x), and the r.h.s. stands for the expansion of the ansatz to the same order.

Assuming 1 and π2 to be linearly independent we obtain two algebraic equations, yielding

a1 = −3 and a2 = 1/2.

Since some coefficients in our ansatz appear only at powers q = 1 or q = 0, the above

procedure does yield most, but not all coefficients. In order to determine the remaining

ones we expand the Mellin-Barnes representations about the point x = 1. In this limit the

3In this case one has to rewrite Γ(L;r)(x) in terms of HPLs of argument x. We will discuss the analytic

continuation of Γcusp in the next section and in appendix B.
4Except for q = 6, where it is zero.
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In order to further restrict the number of functions, we make two additional observa-

tions about the results at lower loops L ≤ 3, eqs. (5.4)–(5.9). Inspecting them one sees that

in these cases the number of 0’s in the weight vector of the functions Γ(L;r)(x) is always

smaller than r. We will assume this to hold true also at four loops. Moreover, Γ(L;r)(x)

vanishes for L > 1 at x = −1.3 This is required in order to obtain the correct leading order

behavior at x → −1, which corresponds to the quark antiquark potential limit. This limit

will be discussed in more detail at the end of this section.

Imposing all these conditions our ansatz becomes, in summary,

• 12 functions for Γ(4;2)(x), of degree 7, indices 0, 1, even under x → 1/x, at most one 0

entry in weight vector, and vanishing as (1−x)2 as x → 1 and as (1+x)1 as x → −1.

• 21 functions for Γ(4;3)(x), of degree 7, indices 0, 1, odd under x → 1/x, at most two

0 entries in weight vector, and vanishing as (1 − x)3 as x → 1 and as (1 + x)1 as

x → −1.

The terms Γ(4;1) and Γ(4;4) were already computed in refs. [21] and [23], respectively.

5.2 Asymptotic limit of Mellin-Barnes integrals

Let us now explain how to determine the coefficients of the ansatz. By means of the

Mathematica packages MB.m [49] and MBasymptotics.m [50] we perform the asymptotic

expansions of the Mellin-Barnes representations, first about the point x = 0. The expansion

parameter appears in the form xp logq(x), and each of these terms is accompanied by

one or several transcendental constants. For p > 0 these constants are in general not of

homogeneous weight, but the highest transcendentality is always 7 − q.4 We determine

these constants analytically for p = 0, . . . , 6 and q = 3, . . . , 7. For p = 0 we also include

q = 2. It is interesting to note that at most two-dimensional Mellin-Barnes integrals are

required for this calculation at q > 2, and three-dimensional ones at q = 2. After we

computed all relevant constants in this way, we perform the series expansion of our ansatz

to the respective orders in x and log(x), and solve the resulting algebraic equations for the

unknown coefficients appearing in our ansatz. As an illustrating example, take

[

22

9
+

2π2

3

]

x log5(x)
!
=

[(

− 8

27
a1 +

28

9
a2

)

+ π2

(

−1

6
a1 +

1

3
a2

)]

x log5(x) , (5.2)

where the l.h.s. stems from the solution of the Mellin-Barnes integrals at a particular power

in x and log(x), and the r.h.s. stands for the expansion of the ansatz to the same order.

Assuming 1 and π2 to be linearly independent we obtain two algebraic equations, yielding

a1 = −3 and a2 = 1/2.

Since some coefficients in our ansatz appear only at powers q = 1 or q = 0, the above

procedure does yield most, but not all coefficients. In order to determine the remaining

ones we expand the Mellin-Barnes representations about the point x = 1. In this limit the

3In this case one has to rewrite Γ(L;r)(x) in terms of HPLs of argument x. We will discuss the analytic

continuation of Γcusp in the next section and in appendix B.
4Except for q = 6, where it is zero.
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expansion is purely of the form (x − 1)s, without any logarithms. We include all terms

with s ≤ 4 and determine the coefficients in the same way as above. However, this time

we have to solve Mellin-Barnes integrals that are up to seven-dimensional.

We emphasize that the number of equations this procedure yields is much larger than

the number of undetermined coefficients in our ansatz, such that our system of equations

is largely overconstrained. As a rule of thumb we have about twice as many equations

compared to the number of coefficients. This property is of utmost importance since

otherwise potential inconsistencies in our ansatz could not be revealed.

We also do numerical checks, but only after the application of MBasymptotics.m, i.e.

we check numerically all analogues of the x-independent part of the l.h.s. of eq. (5.2).

Performing numerical checks on the unexpanded expressions is not well suited here since

by construction the integral and the ansatz agree to high powers in x and (x− 1). Hence

the ansatz obtained in this way will agree very well numerically with the integral we are

computing, even if the ansatz was incomplete.

Last but not least we have the algebraic cross-check that the final answer does only

diverge linearly in log(x) as x → 0, see eq. (5.14). This cross-check is non-trivial since it

connects different powers of ξ, each of which diverges with the seventh power of log(x).

5.3 Planar result to four loops

We are now in the position to present the results for the cusp anomalous dimension up to

four loops in the planar limit. We have

Γcusp(x, θ = 0, λ,N) =

4
∑

L=1

(

λ

8π2

)L L
∑

r=1

(

1− x

1 + x

)r

Γ(L;r)(x) +O(λ5, 1/N2) , (5.3)

where

Γ(1;1) =
1

2
H1 , (5.4)

Γ(2;1) = − 1

4
H1,1,1 −

1

6
π2H1 , (5.5)

Γ(2;2) =
1

2
H1,2 +

1

4
H1,1,1 (5.6)

at one and two loops [11, 51–53],

Γ(3;1) =
1

4
π2H1,1,1 +

5

8
H1,1,1,1,1 +

π4

12
H1 , (5.7)

Γ(3;2) = − 3

2
ζ3H1,1 −

1

6
π2H1,2 −

1

3
π2H2,1 −

1

4
π2H1,1,1 −H1,1,1,2 −

3

4
H1,2,1,1

−H2,1,1,1 −
11

8
H1,1,1,1,1 , (5.8)

Γ(3;3) = H1,1,3 +H1,2,2 +H1,1,1,2 +
1

2
H1,1,2,1 +

1

2
H1,2,1,1 +

3

4
H1,1,1,1,1 (5.9)
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at three loops [12], and

Γ(4;1) = − 1

5
π4H1,1,1 − π2H1,1,1,1,1 −

7

2
H1,1,1,1,1,1,1 −

2

45
π6H1 , (5.10)

Γ(4;2) =
45

4
ζ5H1,1 +

2

3
π2ζ3H1,1 + 5ζ3H1,1,1,1 +

1

12
π4H1,2 +

5

18
π4H2,1 +

13

72
π4H1,1,1

+ π2H1,1,1,2 + π2H1,1,2,1 +
3

4
π2H1,2,1,1 +

5

3
π2H2,1,1,1 +

53

24
π2H1,1,1,1,1

+ 5H1,1,1,1,1,2 +
7

2
H1,1,1,1,2,1 +

9

2
H1,1,1,2,1,1 + 3H1,1,2,1,1,1 +

25

8
H1,2,1,1,1,1

+
25

4
H2,1,1,1,1,1 +

203

16
H1,1,1,1,1,1,1 , (5.11)

Γ(4;3) = − 3ζ3H1,1,2 − 4ζ3H1,2,1 − 3ζ3H2,1,1 − 5ζ3H1,1,1,1 −
1

120
π4H1,1,1 −

2

3
π2H1,1,3

− 2

3
π2H1,2,2 − π2H1,3,1 − π2H2,1,2 − π2H2,2,1 −

7

6
π2H1,1,1,2 −

4

3
π2H1,1,2,1

− 5

6
π2H1,2,1,1 − π2H2,1,1,1 −

29

24
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7

2
H1,1,1,2,2

− 3H1,1,2,1,2 − 2H1,1,2,2,1 − 3H1,1,3,1,1 − 5H1,2,1,1,2 − 4H1,2,1,2,1 −
9

2
H1,2,2,1,1

− 3H1,3,1,1,1 − 5H2,1,1,1,2 − 6H2,1,1,2,1 − 5H2,1,2,1,1 − 3H2,2,1,1,1 −
43

4
H1,1,1,1,1,2
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2
H1,1,1,1,2,1 − 8H1,1,1,2,1,1 − 7H1,1,2,1,1,1 −

33

4
H1,2,1,1,1,1 −

19

2
H2,1,1,1,1,1

− 239

16
H1,1,1,1,1,1,1 , (5.12)

Γ(4;4) = 3H1,1,1,4 + 4H1,1,2,3 + 4H1,1,3,2 + 3H1,2,1,3 + 3H1,2,2,2 + 5H1,1,1,1,3 + 5H1,1,1,2,2

+
3
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+
9
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H1,1,1,1,1,1,1 (5.13)

at four loops. As mentioned above, the terms Γ(4;1) and Γ(4;4) were already computed in

refs. [21] and [23], respectively. The remaining terms Γ(4;2) and Γ(4;3) are new. We derived

them analytically, subject to the assumptions discussed in the previous section.

In the above equations Hw := Hw(1−x2), and x = eiφ. The perturbative results given

in this section and in section 4 can be straightforwardly evaluated numerically in the region

II, i.e. 0 < x < 1. Other regions can be reached by analytical continuation, respecting the

branch cut properties discussed in section 3. We collect the relevant formulas in appendix B.

A curious feature of the result up to four loops, already remarked upon in [23], is that

once the result is written in terms of HPLs with argument 1 − x2 as above, all HPLs in

(−1)(r+L)Γ(L;r) come with non-negative coefficients.

In figures 4 and 5 we plot the cusp anomalous dimension in Regions II and I, respec-

tively. From the plots one can see the properties discussed below and in section 3.

We now consider various limits of Γcusp. First, we can use the above results to analyt-

ically compute the light-like cusp anomalous dimension. It is obtained by taking the limit
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Figure 4. Plot of (−1)L+1Γ
(L)
cusp as a function of ϕ = − log(x) with x ∈ [0, 1], i.e. Region II. From

bottom to top the plot shows L = 1, 2, 3, 4. The small and large ϕ behavior is known to all loop

orders: For small ϕ the first term is quadratic, with the coefficient given by the Bremsstrahlung

function. At large ϕ, Γcusp grows linearly, with the coefficient determined by the light-like cusp

anomalous dimension.

x → 0, where Γcusp diverges logarithmically,

lim
x→0

Γcusp = −1

2
log(x) Γ∞ + G0 +O(x) . (5.14)

We find

Γ∞ = 2

(
λ

8π2

)
− π2

3

(
λ

8π2

)2

+
11π4

90

(
λ

8π2

)3

+

(
−2ζ23 − 73π6

1260

)(
λ

8π2

)4

+O(λ5) .

(5.15)

This agrees with previous numerical results at four loops [47, 48, 54, 55], and with the spin

chain prediction from ref. [56]. The behaviour (5.14) can also be seen from figure 4, where

the curves grow linearly for large values of ϕ = − log(x). For G0 we find

G0 =− ζ3

(
λ

8π2

)2

+

(
9ζ5
2

− π2ζ3
6

)(
λ

8π2

)3

+

(
π4ζ3
10

+
11π2ζ5
12

− 85ζ7
4

)(
λ

8π2

)4

+O(λ5, λ4/N2) (5.16)

G0 is related to the collinear anomalous dimension for mass-regulated scattering ampli-

tudes [46]. Unlike Γ∞, this quantity depends on the regularization scheme and takes a

different value in dimensional regularization [57].

Next we consider φ → 0, corresponding to x = eiφ → 1, where we find

Γcusp = φ2

[
−1

2

(
λ

8π2

)
+

π2

6

(
λ

8π2

)2

− π4

12

(
λ

8π2

)3

+
2π6

45

(
λ

8π2

)4
]
+O(φ3) . (5.17)
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Figure 5. The functions (−1)LΓ
(L)
cusp in the interval φ ∈ [0, π], i.e. Region I. From bottom to top

the plot shows L = 1, 2, 3, 4.

This behaviour can be seen from figures 4 and 5, where all curves start quadratically from

the respective origin. The expansion in (5.17) is in perfect agreement with the four-loop

expansion of the exact result in [21, 30].

The third limit to consider is x → −1, which we parameterize by x = eiφ, φ = π − δ,

and δ → 0. We find

ξ Γ(1;1) = − 2π

δ
+O(δ0) , (5.18)

ξ Γ(2;1) = O(δ0) , (5.19)

ξ2 Γ(2;2) = − 8π

δ
Lδ +O(δ0) , (5.20)

ξ Γ(3;1) = O(δ0) , (5.21)

ξ2 Γ(3;2) = − π

δ

[
16π2

3
Lδ + 36ζ3 +

16π2

3

]
+O(δ0) , (5.22)

ξ3 Γ(3;3) = − 8π4

3δ2
− π

δ

[
16L2

δ + 16Lδ − 4π2 − 24
]
+O(δ0) , (5.23)

ξ Γ(4;1) = O(δ0) , (5.24)

ξ2 Γ(4;2) = − π

δ

[
32π2ζ3 − 190ζ5

]
+O(δ0) , (5.25)

ξ3 Γ(4;3) = − 16π6

9δ2
− π

δ

[
64π2

3
L2
δ +

(
96ζ3 +

272π2

3

)
Lδ −

8π4

3
+ 48ζ3 −

208π2

3

]

+O(δ0) , (5.26)
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ξ4 Γ(4;4) =32ζ3
π3

δ3
− π2

δ2

[

64π2

3
L2
δ + 64ζ3 +

16π2

3

]

− π

δ

[

64

3
L3
δ + 64L2

δ

+

(

−112π2

3
− 32

)

Lδ +
32

3
π2ζ3 + 96ζ3 +

16π2

9
− 512

3

]

+O(δ0) , (5.27)

with Lδ = ln(2δ/e). Figure 5 shows the divergences as φ → π.

The limit x → −1 is related to the quark antiquark potential. This limit is subtle.

Due to ultrasoft effects, a resummation is required. This is done by matching fixed order

calculations against an effective field theory calculation. In the context of N = 4 SYM,

this was discussed in ref. [32], and more recently in [33].

We close this section with two remarks. First, note that for θ = 0, we have ξ =

(1 − x)/(1 + x). It is natural to expect that the full θ dependence can be obtained by

replacing ((1− x)/(1 + x))r in eq. (5.3) by ξr, see section 1.

Our second remark concerns the regularization scheme dependence. The above method

assumed a supersymmetric regularization scheme, and therefore we expect our result for

Γcusp to be valid in that scheme. The transition to other schemes, such as MS, is discussed

in ref. [58], and has been explicitly worked out there to two loops.

6 Comparison to strong coupling via AdS/CFT

Can we compare the fixed order perturbative results of section 5.3 to the results available

at strong coupling via the AdS/CFT correspondence? The authors of ref. [59] proposed

such a procedure in the case of the light-like cusp anomalous dimension. They combined

perturbative data with the string theory insight that the strong coupling expansion takes

the form

Γcusp = c
√
λ+ . . . , (6.1)

where c is negative, and we work in the planar limit. In order to incorporate this behavior

they proposed the following ansatz f(λ) for Γcusp

λn =

2n
∑

r=n

Cr [f(λ)]
r , (6.2)

where n is connected to the loop order L via n = L−1. The constants Cr can be fixed using

perturbative information. Of course, one can also use strong coupling data, as in [47], in

order to gain insights on weak coupling. Here we will use the perturbative two-, three-, and

four-loop results for Γcusp in order to determine the coefficient of
√
λ at strong coupling.

Let us give more details about this ansatz in the simplest case, i.e. n = 1. Here the

extrapolation is based on the two-loop perturbative information, i.e.

Γcusp = v1λ+ v2λ
2 +O(λ3) . (6.3)

Then one can determine the coefficients in eq. (6.2) to be C1 = 1/v1, C2 = −v2/v
3
1. The

latter equation then implies that the ansatz for the interpolation function is

f(λ) = − v21
2v2

[

−1 +

√

1− 4λ
v2
v1

]

. (6.4)
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which at strong coupling gives −
√
λ

√

−v31
v2

+ . . .. This procedure can be generalized to

higher loops, where eq. (6.2) implies that one has to solve equations of higher degree,

which can be done numerically.

We then compare this extrapolation to results obtained via the AdS/CFT correspon-

dence. At strong coupling, i.e. λ � 1, Wilson loops are described by minimal surfaces [19].

We have the expansion (6.1), and focus on the case θ = 0. The result for c for region I, i.e.

real angles, is available through implicit equations involving Elliptic integrals from [60]. In

the case of region II, we can use the formulas of [61]. The first subleading coefficient in the

expansion (6.1) is also known [62]. Let us discuss the results of the comparison for the two

regions in turn.

Extrapolation for region I: we used the ansatz of eq. (6.2) in order to extrapolate

the strong-coupling coefficient c in eq. (6.1) from the knowledge of the four-loop data. We

found that the extrapolations based on our four loop results and the
√
λ behavior give

a leading order strong coupling answer that agrees to within 2 per cent for the range of

φ ∈ [0.1, 2.5]. However, for φ > 2.5 the relative error grows significantly. This is not

surprising since there one approaches the quark-antiquark limit φ → π.

Extrapolation for region II: here we find very good agreement between the extrap-

olation based on the four-loop perturbative data, and the strong coupling answer. It is

interesting to note that the relative error to the strong coupling value goes down from

approximately 25%, 3% and under 1.6%, when using two-loop, three-loop and four-loop

data as input, respectively. It is also remarkable that this relative error stays small for all

data points analyzed in the interval x ∈ [0, 1], despite the fact that the leading coefficient

(in front of
√
λ) at strong coupling varies by several orders of magnitude.

Let us comment on the radius of convergence of the expansions. It is known for

the x → 1 and x → 0 limits, respectively. The former is described by the Bremsstrahlung

function [21], whose perturbative series has a radius of convergence of λc ≈ 14.7. The latter

is governed by the light-like cusp anomalous dimension, where the radius of convergence [56]

is λc = π2.

7 Conclusion and outlook

We computed the velocity-dependent cusp anomalous dimension in maximally supersym-

metric Yang-Mills theory to four-loop order. The result can be expressed in terms of

harmonic polylogarithms of degree seven, with argument 1 − x2 and non-negative indices

only. We determine the non-planar correction at four loops in the scaling limit, which

involves quartic Casimir invariants as color factors. The method of ‘d-log’-representations

for iterated Wilson line integrals turns out to be extremely powerful for this purpose. It

allows one to compute the symbol of such functions. If the symbols correspond to a known

class of functions, HPLs in our case, one can integrate back using boundary conditions.

Moreover, we determine the full planar four-loop result from massive scattering ampli-

tudes, where we use asymptotic expansions of Mellin-Barnes integrals to analytically pin

down the coefficients of a well-motivated ansatz. Our analytical result gives the correct
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values of the four-loop light-like cusp anomalous dimension that was previously calculated

only numerically [47, 48, 54, 55].

We also compare our perturbative result to strong coupling, and find that our extrap-

olation agrees to better than two per cent with the corresponding string theory result, over

a wide range of parameters.

Taken together, the only pieces missing to obtain the full — planar and non-planar —

result of the velocity-dependent cusp anomalous dimension to four loops are the non-planar

terms proportional to ξ2 and ξ3. The light-like limit of the non-planar cusp anomalous

dimension is also envisaged in [63] by means of the on-shell form factor. However, we

emphasize that the present approach allows to obtain the full x-dependence, and not just

the light-like limit.

The results we have derived here shed light on the structure of the planar four-particle

amplitude on the Coulomb branch of N = 4 super Yang-Mills. The latter is an infrared

finite function M(s/m2, t/m2). Kinematically it is very similar to light-by-light scattering

via massive particles. It is an interesting open question what class of two-variable func-

tions describe such processes beyond the one-loop order. The integrals we have computed

determine the asymptotic limit of this amplitude as s/m2 � 1.

There are several generalizations to the ‘d-log’-approach discussed in section 4. The

first generalization concerns the Wilson loop contour. While we have focused on a contour

formed by two segments in this paper, it is clear that the technique applies equally to

contours formed by n segments meeting in a point. This is relevant for the description of

infrared divergences of massive scattering amplitudes at the non-planar level, see e.g. [4,

64, 65]. We also wish to emphasize that massless results can be obtained as a corollary.

Another obvious generalization of the applicability of this technique has to do with

the regularization. On physical grounds, at least in principle, one can always choose com-

binations of diagrams that only have a superficial UV divergence. For such quantities, one

can easily switch between regulators. Our method is very naturally formulated in a cut-off

scheme, however it is equally possible to use dimensional regularization. This is straightfor-

ward for integrals that only have a superficial UV divergence. For other integrals, one first

has to identify the integration regions that lead to divergences and perform subtractions.

Finally, whereas we focussed in the present paper on scalar and gluon exchanges,

preliminary results suggest that the generalization to graphs with interaction vertices is

possible [23].
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A Four-loop integrals and generalized cuts / leading singularities

The velocity-dependent cusp anomalous dimension Γcusp(φ) can be obtained from the Regge

limit of massive amplitudes inN = 4 super Yang-Mills [46, 48]. At the four-loop level, there

are eight contributing diagrams, which are depicted in figure 1 of [48]. The corresponding

amplitude is given by eq. (2.8) of that reference. In the Regge limit s → ∞ the logarithm

of the amplitude is given by5

logM s→∞−→ log(−m2/s) Γcusp(−m2/t) , (A.1)

where t is related to x via −m2/t = x/(1− x)2.

We now study the systematics of the Regge limit at the four-loop level [48] by consid-

ering the integrals contributing to the four-loop amplitude. We expect them to have the

general structure

I = I0 × Ĩ , (A.2)

where I0 is an algebraic normalization factor, and Ĩ is a function having degree of tran-

scendentality eight. In the literature, such functions are sometimes referred to as pure

functions.

Generalized cuts or leading singularities are useful in order to test whether (A.2) holds,

and to determine the normalization factor I0.

For example, for the massive box integral at one loop, normalized by st, we have

I0 ∼ 1/
√

1− 4m2/s− 4m2/t . (A.3)

Notice that in the Regge limit, this factor becomes proportional to ξ.

Likewise, we computed the maximal cuts of all integrals up to four loops. The result

is consistent with eq. (A.2), and we find the following behavior of the prefactors as s → ∞
(the superscript “r” means that the integral is rotated, i.e. s ↔ t)

I4a ∼ ξ, Ir4a ∼ ξ4

I4b ∼ ξ2, Ir4b ∼ ξ

I4c ∼ ξ, Ir4c ∼ ξ3

I4d ∼ ξ, Ir4d ∼ ξ3

I4e ∼ ξ, Ir4e ∼ ξ2

I4f ∼ ξ, Ir4f ∼ ξ2

I4d2 ∼ ξ, Ir4d2 ∼ ξ2

I4f2 ∼ ξ2, Ir4f2 ∼ ξ2 . (A.4)

Notice that due to exponentiation, the maximal power of Regge logarithms that a given

integral has is bounded by the power of ξ. Comparing to appendix A of [48], we find that

this is in agreement with the above ξ dependence.

We see that we can classify the contribution of the integrals to Γcusp according to

which power of ξ that they are normalized by. This is a very useful feature, as it allows to

compute the contributions to different powers of ξ independently.

5Note that refs. [46, 48] use different metric conventions.
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A Four-loop integrals and generalized cuts / leading singularities

The velocity-dependent cusp anomalous dimension Γcusp(φ) can be obtained from the Regge

limit of massive amplitudes inN = 4 super Yang-Mills [46, 48]. At the four-loop level, there

are eight contributing diagrams, which are depicted in figure 1 of [48]. The corresponding

amplitude is given by eq. (2.8) of that reference. In the Regge limit s → ∞ the logarithm

of the amplitude is given by5

logM s→∞−→ log(−m2/s) Γcusp(−m2/t) , (A.1)

where t is related to x via −m2/t = x/(1− x)2.

We now study the systematics of the Regge limit at the four-loop level [48] by consid-

ering the integrals contributing to the four-loop amplitude. We expect them to have the

general structure

I = I0 × Ĩ , (A.2)

where I0 is an algebraic normalization factor, and Ĩ is a function having degree of tran-

scendentality eight. In the literature, such functions are sometimes referred to as pure

functions.

Generalized cuts or leading singularities are useful in order to test whether (A.2) holds,

and to determine the normalization factor I0.

For example, for the massive box integral at one loop, normalized by st, we have

I0 ∼ 1/
√

1− 4m2/s− 4m2/t . (A.3)

Notice that in the Regge limit, this factor becomes proportional to ξ.

Likewise, we computed the maximal cuts of all integrals up to four loops. The result

is consistent with eq. (A.2), and we find the following behavior of the prefactors as s → ∞
(the superscript “r” means that the integral is rotated, i.e. s ↔ t)

I4a ∼ ξ, Ir4a ∼ ξ4

I4b ∼ ξ2, Ir4b ∼ ξ

I4c ∼ ξ, Ir4c ∼ ξ3

I4d ∼ ξ, Ir4d ∼ ξ3

I4e ∼ ξ, Ir4e ∼ ξ2

I4f ∼ ξ, Ir4f ∼ ξ2

I4d2 ∼ ξ, Ir4d2 ∼ ξ2

I4f2 ∼ ξ2, Ir4f2 ∼ ξ2 . (A.4)

Notice that due to exponentiation, the maximal power of Regge logarithms that a given

integral has is bounded by the power of ξ. Comparing to appendix A of [48], we find that

this is in agreement with the above ξ dependence.

We see that we can classify the contribution of the integrals to Γcusp according to

which power of ξ that they are normalized by. This is a very useful feature, as it allows to

compute the contributions to different powers of ξ independently.

5Note that refs. [46, 48] use different metric conventions.
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B Analytic continuation of Γcusp

In order to analytically continue Γcusp to regions I and III it is sufficient to apply the

argument transformation 1−x2 → x2 to the HPLs in section 5.3 and subsequently extract

the logarithms explicitly. This gives

Γ(1;1) =− log(x) , (B.1)

Γ(2;1) =+
1

3
log3(x) +

π2

3
log(x) , (B.2)

Γ(2;2) =− 1

3
log3(x)− π2

6
log(x)− log(x)H2(x

2) +H3(x
2)− ζ3 (B.3)

at one and two loops,

Γ(3;1) =− 1

6
log5(x)− π2

3
log3(x)− π4

6
log(x) , (B.4)

Γ(3;2) =− 6H5(x
2) +

2

3
log4(x)H1(x

2)− 1

3
log3(x)H2(x

2) +
2π2

3
log2(x)H1(x

2)

− log2(x)H3(x
2)− π2

3
log(x)H2(x

2) +
9

2
log(x)H4(x

2) + ζ3 log
2(x)

+
11

30
log5(x) +

5π2

9
log3(x) +

5π4

36
log(x) + 6ζ5 , (B.5)

Γ(3;3) =− 2ζ3H2(x
2) +

π2

6
H3(x

2) + 3H5(x
2) + 2H2,3(x

2) + 3H3,2(x
2) + 3H4,1(x

2)

− 2

3
log3(x)H2(x

2) + log2(x)H3(x
2)− π2

3
log(x)H2(x

2)− 2 log(x)H4(x
2)

− 2 log(x)H2,2(x
2)− 2 log(x)H3,1(x

2)− ζ3 log
2(x)− 1

5
log5(x)− 2π2

9
log3(x)

− π4

30
log(x)− 3

2
ζ5 −

π2

6
ζ3 (B.6)

at three loops, and

Γ(4;1) =+
4

45
log7(x) +

4π2

15
log5(x) +

4π4

15
log3(x) +

4π6

45
log(x) , (B.7)

Γ(4;2) =− 29

90
log7(x)− 5

9
H1(x

2) log6(x) +
5

6
H2(x

2) log5(x)− 73

90
π2 log5(x)

− 10

9
π2H1(x

2) log4(x)− 2H3(x
2) log4(x)− ζ3 log

4(x) +
11

9
π2H2(x

2) log3(x)

+
11

6
H4(x

2) log3(x)− 161

270
π4 log3(x)− 5

9
π4H1(x

2) log2(x)− 7

3
π2H3(x

2) log2(x)

+
11

2
H5(x

2) log2(x)− 11

2
ζ5 log

2(x)− 2

3
π2ζ3 log

2(x) +
7

18
π4H2(x

2) log(x)

+
17

6
π2H4(x

2) log(x)− 95

4
H6(x

2) log(x)− 353π6

3780
log(x)− 1

9
π4H3(x

2)

− 2

3
π2H5(x

2) + 35H7(x
2)− 35ζ7 +

2π2ζ5
3

+
π4ζ3
9

, (B.8)
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Γ(4;3) =+
239

630
log7(x) +

38

45
H1(x

2) log6(x)− 1

3
H2(x

2) log5(x) +
4

5
π2 log5(x)

+
11

9
π2H1(x

2) log4(x) + 2H1,2(x
2) log4(x) + 2H2,1(x

2) log4(x) + 2ζ3 log
4(x)

− 2

9
π2H2(x

2) log3(x) + 3H4(x
2) log3(x)− 4

3
H1,3(x

2) log3(x)− 2H2,2(x
2) log3(x)

− 4H3,1(x
2) log3(x) +

4

3
H1(x

2)ζ3 log
3(x) +

47

108
π4 log3(x) +

17

45
π4H1(x

2) log2(x)

+
2

3
π2H3(x

2) log2(x)− 10H5(x
2) log2(x) + 2π2H1,2(x

2) log2(x) + 9H4(x
2)ζ3

+ 2π2H2,1(x
2) log2(x)− 2H2,3(x

2) log2(x)− 2H3,2(x
2) log2(x) + 8ζ5 log

2(x)

+ 2H2(x
2)ζ3 log

2(x) +
4

3
π2ζ3 log

2(x) +
1

90
π4H2(x

2) log(x)− 7

6
π2H4(x

2) log(x)

+ 20H6(x
2) log(x)− 2π2H1,3(x

2) log(x)− 2H1,5(x
2) log(x)− 8

3
π2H2,2(x

2) log(x)

+ 7H2,4(x
2) log(x)− 8

3
π2H3,1(x

2) log(x) + 10H3,3(x
2) log(x) + 16H4,2(x

2) log(x)

+ 22H5,1(x
2) log(x) + 2H1(x

2)ζ5 log(x) + 2ζ23 log(x) + 2π2H1(x
2)ζ3 log(x)

− 4H3(x
2)ζ3 log(x) +

38

945
π6 log(x)− 1

45
π4H3(x

2)− 32H7(x
2) +

2

3
π2H2,3(x

2)

− 10H2,5(x
2) + π2H3,2(x

2)− 13H3,4(x
2) + π2H4,1(x

2)− 18H4,3(x
2)− 28H5,2(x

2)

− 40H6,1(x
2) + 16ζ7 + 10H2(x

2)ζ5 +
π2

2
ζ5 −

2

3
π2H2(x

2)ζ3 +
π4ζ3
45

, (B.9)

Γ(4;4) =− 46

315
log7(x)− 3

5
H2(x

2) log5(x)− 23

90
π2 log5(x) +H3(x

2) log4(x)− ζ3 log
4(x)

− 2

3
π2H2(x

2) log3(x)− 7

3
H4(x

2) log3(x)− 2H2,2(x
2) log3(x)− 8

3
H3,1(x

2) log3(x)

− 19

180
π4 log3(x) +

2

3
π2H3(x

2) log2(x) + 4H5(x
2) log2(x) + 3H2,3(x

2) log2(x)

+ 6H3,2(x
2) log2(x) + 9H4,1(x

2) log2(x)− 5

2
ζ5 log

2(x)− 3H2(x
2)ζ3 log

2(x)

− 2

3
π2ζ3 log

2(x)− 1

10
π4H2(x

2) log(x)− 2

3
π2H4(x

2) log(x)− 4H6(x
2) log(x)

− π2H2,2(x
2) log(x)− 6H2,4(x

2) log(x)− 4

3
π2H3,1(x

2) log(x)− 10H3,3(x
2) log(x)

− 16H4,2(x
2) log(x)− 22H5,1(x

2) log(x)− 6H2,2,2(x
2) log(x)− 6H2,3,1(x

2) log(x)

− 8H3,1,2(x
2) log(x)− 8H3,2,1(x

2) log(x)− 6H4,1,1(x
2) log(x)− ζ23 log(x)

+ 2H3(x
2)ζ3 log(x)−

17π6

2520
log(x) +

1

30
π4H3(x

2) +
1

2
π2H5(x

2) + 8H7(x
2)

+
1

2
π2H2,3(x

2) + 9H2,5(x
2) + π2H3,2(x

2) + 14H3,4(x
2) +

3

2
π2H4,1(x

2)

+ 19H4,3(x
2) + 25H5,2(x

2) + 30H6,1(x
2) + 6H2,2,3(x

2) + 9H2,3,2(x
2) + 9H2,4,1(x

2)
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+ 8H3,1,3(x
2) + 14H3,2,2(x

2) + 14H3,3,1(x
2) + 15H4,1,2(x

2) + 15H4,2,1(x
2)

+ 12H5,1,1(x
2)− 9ζ7

4
− 9

2
H2(x

2)ζ5 −
π2ζ5
4

− 1

2
π2H2(x

2)ζ3 − 4H4(x
2)ζ3

− 6H2,2(x
2)ζ3 − 8H3,1(x

2)ζ3 −
π4

30
ζ3 (B.10)

at four loops. In region III, i.e. x ∈ [−1, 0], the logarithms are the only source of imaginary

parts. Together with the i0-prescription from section 3 the imaginary part can therefore

be extracted explicitly in this region.
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