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Zusammenfassung

Die Rekonstruktion des menschlichen Hirnstroms aus Messungen der magnetischen Flussdichte
(MEG) und des elektrischen Potentials (EEG) ist ein wichtiges Mittel, um die Arbeitsweise des
Gehirns zu verstehen und um Krankheiten wie Epilepsie zu diagnostizieren. Die Frage nach
der Nichteindeutigkeit des zugehörigen inversen Problems ist nicht vollständig beantwortet,
obwohl sie ausgiebig diskutiert wird.

Diese Frage wird im Rahmen des Mehrschalenmodells untersucht, welches aus konzentrisch
angeordneten sphärischen Schalen besteht. Wir leiten neue Integralgleichungen für das Modell
her, die weniger A-priori-Voraussetzungen benötigen als bisherige Ansätze. Anstatt nur
gewisser skalarer Anteile, bilden diese den kompletten vektoriellen Hirnstrom auf die Daten
ab. Wir stellen eine neue Entwicklung des Hirnstroms basierend auf einem orthonormalen
Basissystem vor, die zu einer Singulärwertzerlegung mit exponentiell schnell abfallenden
Singulärwerten führt. Damit kann die Frage der Nichteindeutigkeit wie auch die Frage nach
dem messbaren Anteil der Radialkomponente des Stroms vollständig beantwortet werden.
Nur der solenoidale und harmonische Anteil des Hirnstroms kann aus MEG- und EEG-Daten
rekonstruiert werden.

Um beide exponentiell schlecht gestellten Probleme numerisch zu lösen, sind Regularisier-
ungsverfahren notwendig. Neben dem regularisierten Ritz-Verfahren, einer skalaren Spline
Methode und einem speziell für das EEG-Problem auf Basis von reproduzierenden Kernen
entwickelten vektoriellen Spline-Verfahren testen wir den in den letzten Jahren von der
Arbeitsgruppe Geomathematik der Universität Siegen entwickelten regularized functional
matching pursuit (RFMP) und seine Weiterentwicklung, den regularized orthgonal functional
matching pursuit (ROFMP). Wir verbessern die Konvergenzresultate des RFMP und führen
neue Sobolevnormen als Strafterm ein. Mittels vektorieller Splines können gute und stabile
numerische Ergebnisse erzielt werden, die vom ROFMP sowohl bei unverrauschten als auch
bei verrauschten synthetischen Tests übertroffen werden. Abschließend wird der ROFMP für
die Inversion realer Datensätze verwendet.



Abstract

The reconstruction of the neuronal current inside the human brain from magnetic flux density
(MEG) and electric potential (EEG) measurements is an important tool for understanding
the functioning of the brain and for diagnosing brain diseases, such as epilepsy. One
partly unanswered question, which is extensively discussed in the literature, is about the
non-uniqueness of the related inverse problems.
We investigate this question in the context of the multiple-shell model, which assumes

nested spherical geometries. We derive novel integral equations describing the inverse
problems, which require less a-priori assumptions on the current than former approaches
and map the entire vector-valued current onto the data instead of certain scalar functions.
A novel decomposition of the current based on an orthonormal basis system is presented,
which yields singular value decompositions of the integral operators with exponentially fast
decreasing singular values.
Therewith, we complete the existing non-uniqueness considerations, which includes a

characterization of the measurable radial part of the neuronal current: only the harmonic
solenoidal part of the current can be measured via the MEG and EEG devices.
For the numerical solution of these severely ill-posed problems, regularization methods

are required. We use the regularized Ritz method, scalar splines, novel vector reproducing
kernel based splines, and the regularized (orthogonal) functional matching pursuit (ROFMP)
algorithm, which was developed by the Geomathematics Group Siegen within the last years.
We improve convergence results of the RFMP and introduce novel Sobolev norms as penalty
terms. The good and stable numerical results of the vector spline method are outperformed
by the ROFMP in non-noisy and noisy synthetic test cases. Finally, we apply the ROFMP
to real measurement data.
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Chapter 1.

Introduction

The human brain is one of the most complex organized structures known to exist. Even
though it is extensively studied in former and recent research, see, for example, [117, 133, 211],
there are still open questions concerning aspects of neuroscience, such as cartography of the
brain structures, diagnosis and cause of mental and physical brain diseases, and medical
imaging. Different fields of research are concerned with the signal processing and interplay of
neuronal cells in the brain. This interplay is responsible for human behaviour and cognition.
On the other hand, defects in this interplay or the signal processing cause diseases, such as
epilepsy or schizophrenia, see [133].
Today, there are mainly two types of neuroimaging methods available to study the

interaction of brain cells, which are either based on measuring blood flow or electrical activity,
see [122]. The first type exploits that the cerebral blood flow in a region increases if it
is in use. The second type is based on the electrochemical processes that neurons use for
signalling. Whereas blood flow only indirectly relates to cerebral activity, bioelectric activity
is a direct consequence of this activity. From interactions between neurons and the signal
processing occurring therein, an electric current emerges that induces macroscopic electric
potentials and magnetic fields, which are transmitted through the conductive brain tissues,
see [33, 36, 108, 117, 133]. The potentials and fields can be measured outside the head if the
number of simultaneously active neurons is large enough.
In former and recent research, magnetoencephalography and electroencephalography

devices, which measure physical quantities related to the currents caused by brain activity,
have been used for the non-invasive study of (real time) brain processes. These two measuring
methods are of particular interest in neuropsychology since they feature high temporal
resolution on the millisecond scale, which is essential for studying responses on external
stimuli, see [117, 122]. In contrast, methods based on blood flow only achieve temporal
resolutions in the order of seconds, but feature a comparably higher spatial resolution.

For the analysis of the measured data, a relation between the bioelectrical activity and the
measured quantity needs to be known. D.B. Geselowitz and J. Sarvas laid out the foundation
for such relations in [94, 200]. However, the reconstruction of neuronal currents poses certain
challenges. For example, the magnetic field generated by human brain activity is more than
hundred million times smaller than the Earth’s magnetic field. Thus, the signals are faint
and the signal-to-noise ratio may be low. In addition, magnetoencephalographs as well as
electroencephalographs only provide few (about 70 to 300) data points per time step on an
irregularly distributed sensor grid.

Recent magnetoencephalographs measure components of the magnetic flux density outside
the head, which are related to the magnetic potential. Certain devices measure the normal
component of the magnetic field with respect to the sensor surface and two tangential
directional derivatives of the magnetic flux density. Besides, electroencephalographs detect
voltage differences on the scalp, which are differences of two electric potentials. Both
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Chapter 1. Introduction

measurement methods can be performed simultaneously. For this purpose, a human subject
is wearing an electroencephalograph sensor cap inside a magnetoencephalograph. An extensive
survey of magnetoencephalography (MEG) with an insight to electroencephalography (EEG)
and further references can be found in the survey of M.S. Hämäläinen et al. [108].

In order to achieve a reconstruction of the brain activity, a model that relates the vector-
valued neuronal current to the scalar-valued measurements needs to be known. The quasi-
static variant of Maxwell’s equations is commonly used in medical electromagnetism to
model bioelectric activity. In this context, the changes of the current and the electric and
magnetic fields are assumed to be so slow such that they appear to be static. R. Plonsey and
D.B. Heppner prove that the errors made by the quasi-static approach, that is the omission
of propagation, capacitative and inductive effects, and boundary considerations, are clearly
negligible, see [191].

Several approaches, such as LORETA, VARETA, LAURA, FOCUSS, BESA, and MUSIC,
see [99, 117], that are used for solving the quasi-static variants of Maxwell’s equations are
based on a discretize-then-optimize approach. Hence, the neuronal current is discretized
by a finite sum of dipoles and, subsequently, the discretized problem is solved. Thus, the
problem is cast as a finite-dimensional Tikhonov-regularized normal equation. An advantage
of these methods is that they can be combined with real-shaped brain geometries and
structures. Although all of these methods include a minimum-norm approach in order to
achieve uniqueness, these models cannot characterize the parts of the neuronal current that
cannot be detected by magneto-electroencephalographs. Due to the complex geometry,
theoretical studies of the inverse problems, such as a singular value decomposition (SVD), are
impossible. In the case of an anatomically correctly shaped conductor model, the magnetic
field and the electric potential can only be calculated numerically, see [108]. Hence, an
approximation of the brain structure is necessary for analytic non-uniqueness considerations.
In contrast to discretize-then-optimize approaches for solving Maxwell’s equations, there

exist several optimize-then-discretize approaches. In this context, based on modelling the
neuronal currents as continuously distributed currents, the partial differential equations
are solved analytically, see the seminal papers by G. Dassios, A.S. Fokas, and co-authors
[39, 47, 49, 50, 52, 71–75]. For these models, additional knowledge of the structure of the head
and properties of its tissues is required. Besides homogeneous head models (i.e. constant
conductivity in the entire conductor), more realistic models exist, such as the three-shell
model, see [45, 73, 74], the multiple-shell model, see [108, 174], or the ellipsoidal-shell model,
see [39, 46, 54]. The multiple-shell model is also used within this thesis. Within this model,
the cerebrum is represented by a solid ball B%0 with radius %0 and constant conductivity.
Around this ball, there is a finite number of spherical shells modelling various head tissues.
The conductivity on each shell is assumed to be constant, positive, and known.

These continuous methods have in common that integral equations are derived from Max-
well’s equations. For this purpose, the vector-valued neuronal current is decomposed. For
example, the Hodge decomposition is used in [47, 52, 71–75] and the Helmholtz decomposition
is used in [47, 49, 50, 71, 73, 74]. Both decompositions require additional smoothness or bound-
ary conditions on the neuronal current, which is questionable since the actual smoothness
and boundary behaviour of the neuronal current are unknown. These decompositions lead
to integral equations containing a scalar-valued density (somehow related to the neuronal
current) and a scalar-valued integral kernel, which reduces the numerical effort. However,
they only allow an incomplete characterization of the null space of the integral operator
in the sense that a representation of the measurable (radial part of the) neuronal current

10



via an appropriate orthonormal basis on the ball is missing. In addition, in the case of the
EEG problem, it is only known that the orthogonal complement of the operator null space
is contained in a (too large) particular Hilbert space. This also requires further analysis in
order to determine the precise measurable directions. In addition, these decompositions have
mostly advantages for either the MEG or the EEG problem such that a joint inversion of the
data sets and a joint representation of the neuronal current is difficult to handle.

Even though these integral equations and especially the non-uniqueness of their solutions
are discussed extensively in the literature, see the references above, there are still some
open questions concerning the ill-posedness of the inverse MEG and EEG problems for the
spherical multiple-shell model: which direction, especially in the case of the EEG problem, of
the neuronal current is visible for the measurement devices? Can we characterize the radial
part of the neuronal current that affects the measurement via orthonormal basis functions in
an appropriate (weighted) Lebesgue space? When does a solution of the inverse problem
exist?

In order to answer these questions, we derive from the quasi-static Maxwell’s equations two
novel Fredholm integral equations of the first kind relating the vector-valued neuronal current
to the magnetic flux density as well as the electric potential in the case of a continuously
distributed neuronal current in the spherical multiple-shell model. The novelty of these
integral equations consists of two parts. First, we obtain integral equations that map the
entire vector-valued neuronal current to the data instead of mapping only scalar-valued parts
of it. Second, we only require that the neuronal current is an L2(B%0 ,R3)-function and, thus,
reduce the a-priori assumptions on the neuronal current. We no more require smoothness or
boundary assumptions on the current, which are needed, for instance, for the Helmholtz and
the Hodge decomposition. Both integral equations consist of a vector-valued integral kernel
that is represented by a series of vector Legendre polynomials. Especially in the case of the
inverse EEG problem, we are able to add more insight to occurring quantities related to the
multiple-shell model.
In order to solve the inverse MEG and EEG problem simultaneously, we define a class

of vector-valued integral kernels that covers the MEG as well as the EEG integral kernel.
However, this class of integral kernels is not restricted to applications in medical imaging, since
it includes, for example, the integral kernel occurring in the inverse Earth’s magnetization
problem, in which the magnetization inside the Earth’s crust is determined from measurements
of the Earth’s magnetic field, see [15, 93]. Besides the well-definedness of these particular
integral kernels, we analyze the well-definedness of the corresponding integral operator T
in the sense that the potential, that is the function T f for all f ∈ L2(B%0 ,R3), exists. The
relation between the neuronal current and the gradient field of the potential can also be
described by a linear operator Bf := −∇(T f) for all f ∈ L2(B%0 ,R3), where B is also
well-defined.

Based on an appropriate orthonormal basis for L2(B%0 ,R3), which consists of orthogonal
polynomials in the radial part and Edmonds vector spherical harmonics in the angular
part, we can express a function f ∈ L2(B%0 ,R3) by a (generalized) Fourier expansion. This
novel orthonormal basis is developed based on existing scalar-valued orthonormal basis
systems going back to L. Ballani, H.M. Dufour, J. Engels, and E.W. Grafarend, see [13, 59].
The methods used for the constructive approximation on the sphere are mainly based on
the extensive survey of W. Freeden, T. Gervens, and M. Schreiner in [81]. Therewith, we
compute T f and Bf and achieve series representations for the potential and its field, which
solve the direct problem related to the operators T and B. This representation allows a
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Chapter 1. Introduction

precise characterization of the infinite-dimensional spaces (ker T )⊥ and (kerB)⊥ by means
of an orthonormal basis. According to Hadamard, see [106, 107], the corresponding inverse
problems are ill-posed since the solution cannot be unique, which is consistent to earlier
considerations in the particular application of the inverse MEG and EEG problem.

In the context of ill-posed problems, the SVD of an operator is a major tool, which provides
us with a classification of the stability of the problem, Picard’s criterion for the existence of
a solution, the generalized Moore-Penrose inverse operator, and a best-approximate solution
of the problem. This is discussed in detail in the literature, see, for instance, the monographs
of H.W. Engl, M. Hanke, and A. Neubauer [63] or A. Rieder [194]. Unfortunately, we are not
able to find the SVDs of T and B in the general setting, although they exist since T and B
are compact operators. For this purpose, we further restrict the class of integral kernels and
proceed by defining Hilbert spaces with orthonormal basis systems containing either ran T
or ranB. Eventually, this allows us to derive the SVDs of T and B in the restricted case.
For both operators, the singular values decrease exponentially fast to zero, which makes the
corresponding inverse problem severely ill-posed.
After having analyzed the general problem in detail, we come back to the inverse MEG

and EEG problem. Since the MEG kernel is covered by the restricted class of integral kernels,
the results stated above provide us with an SVD of the operator mapping the neuronal
current onto the magnetic field. In contrast, the EEG kernel is not covered by the restricted
class. For this reason, another tailor-made Hilbert space containing the closure of the EEG
operator range with an appropriate orthonormal basis is constructed. Eventually, this leads
to an SVD of the EEG integral operator with exponentially fast decaying singular values.
Concluding, we obtain that the inverse MEG and EEG problems are severely ill-posed with
an infinite-dimensional null space of the corresponding operators, where we now have a
precise characterization of the null spaces by means of an orthonormal basis at hand. The
instability of these problems was conjectured earlier in the literature, see [33, 108, 117], and
is now verified mathematically. In addition, the information of the neuronal current that can
be recovered by MEG and EEG measurements is complementary to each other (in the sense
of L2(B%0 ,R3)-orthogonality), see also [47, 71]. Using the structure of the MEG and EEG
operator null spaces and properties of the unique minimizer of the Tikhonov-regularized
normal equation, we prove that a simultaneous inversion of the MEG and EEG data sets
cannot yield more information on the neuronal current than a combination of the single
inversions.

We extend and complement existing results concerning the non-uniqueness of this problem,
see [47, 50, 71], by using a tailor-made orthonormal basis that leads to an SVD of the operators.
We prove that from the simultaneous MEG and EEG inversion only the harmonic solenoidal
part of the neuronal current can be reconstructed. Besides this, we state additional uniqueness
constraints, for example, the minimum-norm assumption, a harmonicity constraint, and
radial uniqueness constraints on the entire vector-valued current instead of on scalar-valued
parts. These constraints are stated in the general setting as well as for the particular MEG
and EEG problem. Furthermore, we compare our ansatz with existing results in the literature
that are obtained via the Hodge and the Helmholtz decomposition and discuss the advantages
and disadvantages of each method in detail.
Due to the ill-posedness of the inverse MEG and EEG problem, regularization methods

and parameter choice methods are required in order to solve these two problems numerically,
see additionally [192] of R. Ramlau and H.W. Engl for a broad overview of this topic. Within
the last years, a dictionary based regularization method called the Regularized Functional

12



Matching Pursuit (RFMP) algorithm as well as some enhancements called the Regularized
Orthogonal Functional Matching Pursuit (ROFMP) and the Regularized Weak Functional
Matching Pursuit (RWFMP) have been developed, which yield good results in several
numerical applications in the geosciences, see the works of D. Fischer, M. Kontak, V. Michel,
and R. Telschow in [66, 68, 137, 138, 159, 163, 166, 210]. In addition, we firstly apply these
methods to vector-valued problems in medical imaging. We improve existing convergence
results for the RFMP and add novel statements concerning the solution produced by the
algorithm. The RFMP as well as the ROFMP are used for the inversion of synthetic data
sets in the MEG and the EEG problem where we additionally assume that the neuronal
current satisfies the minimum-norm condition in order to achieve uniqueness. For their
implementation, we construct novel vector-valued Sobolev spaces on the ball for the penalty
term and novel vector-valued reproducing kernels as dictionary elements. For each particular
problem, the numerical results from the synthetic test case are compared to other established
reconstruction methods, namely the regularized Ritz method going back to W. Ritz, see
[195], and spline methods. For the MEG, we are able to use a scalar reproducing kernel
based spline method based on the work of A. Amirbekyan, V. Michel, and co-authors, see
[6, 7, 65, 167], that is also used for the MEG inversion in [73]. In [73], based on the Helmholtz
decomposition, a scalar spline method is also employed for the inversion of EEG data. Since
this approach cannot be combined with the minimum-norm assumption on the neuronal
current, which we also prove in this thesis, we construct novel tensor-valued reproducing
kernel based splines on the ball for our numerical investigations.

The considered synthetic test case is constructed via a linear combination of vector-valued
analogues of Abel-Poisson kernels used in [73] for scalar synthetic test cases. We calculate
the corresponding data analytically and add white Gaussian noise for 1% to 10% noise level
to it.

Based on the spline method used in [73], we construct scalar splines in order to reconstruct
a scalar-valued part of the neuronal current obtained by the Helmholtz decomposition. In
contrast to the previous approach, we adapt the radial part of these splines in order to satisfy
the minimum-norm condition on the neuronal current. The scalar reconstructions achieved
via this method are satisfying even for higher noise levels. However, we are interested in
the entire neuronal current. For this purpose, the result of the scalar solution needs to be
transferred to the vector-valued current. Due to an additional damping factor, this yields
additional blurriness of the reconstruction especially for higher noise levels. The novel vector
spline method is applied to the inverse EEG problem and yields adequate numerical results.
Only for 10% noise the solution is fuzzy, which is acceptable since the inverse problem is
severely ill-posed. An advantage of both spline methods is a very small relative residual.
On the other hand, the Ritz method does not work satisfactorily especially for higher noise
levels. The solutions are unstable especially in the inverse MEG problem, where a severe
downward continuation comes into play.
The numerical results obtained by the spline and the Ritz method are outperformed by

the R(O)FMP reconstructions with respect to the approximation error measured via the
normalized root mean square error. More precisely, the results achieved via the ROFMP
outperform the results achieved via the RFMP with respect to the quality and smoothness of
the reconstruction. However, the relative residual obtained by these methods is higher than
for the spline methods. Besides this, we measure the required CPU time for the R(O)FMP
and test several parameter choice methods in order to determine the optimal regularization
parameter.
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Chapter 1. Introduction

This thesis is structured in several parts. In the first part, the magneto-electroencephalo-
graphy problem for the multiple-shell model is derived. For this purpose, some mathematical
foundations are stated in Chapter 2. The modelling of the MEG problem is conducted in
Chapter 3 and the modelling of the EEG problem in Chapter 4.
In the second part of the thesis, the related direct problems are considered. This part

starts with an introduction to certain orthonormal basis systems and vector-valued special
functions on the sphere and on the ball in Chapter 5. Then, the mentioned particular class
of vector Legendre-type integral kernels is analyzed in Chapter 6 and the corresponding
integral operators in Chapter 7. Limitations on the class of integral kernels and its operator
that are required for the construction of a singular system are stated in Chapter 8. This
part concludes with the analysis of the direct MEG problem in Chapter 9 and the direct
EEG problem in Chapter 10.

The third part is devoted to the inverse problems and starts with an introduction to inverse
problems in Chapter 11. Afterwards, the ill-posedness of the general problem is discussed in
detail in Chapter 12 and the ill-posedness of the magneto-electroencephalography problem is
elaborated in Chapter 13.

In the fourth part, the comparison of our approach with previous scalar approaches from
the literature is discussed in Chapter 15. This requires the analysis of a certain class of
scalar-valued integral equations in advance, which is realized in Chapter 14.

In the fifth part, regularization methods are treated. This part consists of an introduction
to the novel vector-valued Sobolev spaces on the ball as well as basics on regularization and
parameter choice methods in Chapter 16. In addition, the RFMP is presented and analyzed
in detail in Chapter 17. We also give some details on the ROFMP.

The sixth part is dedicated to the numerical investigations. For this purpose, a synthetic
test case is constructed in Chapter 18 and foundations for the implementation are given in
Chapter 19. Other reconstruction methods, such as the Ritz method, a scalar spline method,
and the novel vector spline method, are presented in Chapter 20 from the theoretical point
of view. The numerical results in the synthetic test case as well as in the real data situation
obtained by each of the reconstruction methods are presented and discussed in Chapter 21.
In the final part of this thesis, we give a conclusion and an outlook.
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Chapter 2.

Preliminaries

In this preliminary chapter, we introduce the used notations and the basic mathematical
framework. First, the notation used within this thesis is presented in Section 2.1. For the
derivation of an integral equation for the magneto-electroencephalography problem in the
context of a ball-shaped conductor, we require some vector calculus in spherical geometries.
This is summarized in Section 2.3. An important class of special functions in spherical
geometries are (scalar) spherical harmonics. Before we present these particular functions, we
briefly introduce some other special functions, namely the Jacobi and Legendre polynomials,
in Section 2.2. Via the Legendre polynomials, we are able to give a short overview of spherical
harmonics and their properties in Section 2.4. To complete this chapter, we present the basic
principles of distribution theory in Section 2.5, which is required for the derivation of the
electroencephalography integral equation.

2.1. Notation

As usual, the set of positive integers is denoted by N, where N0 := N ∪ {0} . Moreover, Z
is the set of all integers, R represents the set of real numbers, and the set C contains all
complex numbers.
Furthermore, we use the following nomenclature if not stated otherwise:

• Blackboard letters, for example G ⊂ Rd, denote subsets of the Rd with dimension
d ∈ N. As usual, the exponent is omitted in the case d = 1. The token R+ denotes the
set of all positive real numbers and R+

0 := R+ ∪ {0} .

• Capital script-like letters, such as X, denote function spaces.

• Capital calligraphic letters denote functionals and operators, for example PV denotes
the projection operator onto V.

• Bold letters, such as x, denote vectorial quantities.

In addition, the hat above a bold letter represents a unit vector (e.g. x̂), but sometimes,
for the sake of readability, they are denoted by a bold Greek letter (e.g. ε1). We use the
corresponding non-bold letters as the absolute value of the vectors (i.e. x = xx̂, with x ∈ R+

0 )
if not stated otherwise. The Euclidean standard R3-inner product (the so-called dot product)
is denoted by ·, the cross product (also called vector product) by ∧, and the tensor product
by ⊗. They are defined by

x · y :=
3∑
i=1

xiyi, x ∧ y :=

x2y3 − y2x3
x3y1 − y3x1
x1y2 − y1x2

 , x⊗ y :=

x1y1 x1y2 x1y3
x2y1 x2y2 x2y3
x3y1 x3y2 x3y3
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Chapter 2. Preliminaries

with x = (x1, x2, x3)T, y = (y1, y2, y3)T ∈ R3. The norm induced by the Euclidean dot
product is represented by x = |x| :=

√
x · x. The standard Cartesian basis is given by

ε1 := (1, 0, 0)T, ε2 := (0, 1, 0)T, and ε3 := (0, 0, 1)T.
Furthermore, the d-dimensional sphere with radius R is denoted by

SdR :=
{
x ∈ Rd

∣∣∣ x = R
}
,

the corresponding (closed) ball is denoted by

BdR :=
{
x ∈ Rd

∣∣∣ x ≤ R} ,
and the (open) exterior of the ball is denoted by

Bext
R :=

{
x ∈ Rd

∣∣∣ x > R
}
.

For an arbitrary interval I ⊂ R, the d-dimensional spherical shell is defined by

SdI :=
{
x ∈ Rd

∣∣∣ x ∈ I
}
.

In this thesis, mostly three-dimensional spheres and balls are considered. Thus, we neglect
the dimension for the sake of readability in the case of three-dimensional objects. For the
three-dimensional unit sphere and unit ball (i.e. R = 1), we also drop the radius, that is
S := S1 := S3

1, for instance.
Besides this, let G ⊂ Rd with d ∈ N be a measurable set. Then the volume integral of the

function F over G is denoted by
∫
G F (x) dx. If G is bounded, the surface integral over the

surface ∂G is given by
∫
∂G F (x) dω(x) with the surface measure ω. A line integral along

a piecewise smooth curve γ is given by
∫
γ F (x) dσ(x). A standard integral over the real

interval [a, b] ⊂ R with a < b is denoted by
∫ b
a F (x) dx.

Now, we introduce some well-known function spaces.

Definition 2.1 (Lebesgue Spaces, [198]). Let G ⊂ Rd be a region and s ∈ N. The space
Lp(G,Rs) with 1 ≤ p < ∞ includes all measurable (vector-valued) functions f : G → Rs
that have a finite Lebesgue-integral

∫
G|f(x)|p dx <∞. For example, L2(G,Rs) contains the

(vector-valued) square-integrable functions f . In order to obtain a properly normed space, we
define the quotient space Lp(G,Rs) := Lp(G,Rs) \Np(G,Rs), where

Np(G,Rs) :=
{
f ∈ Lp(G,Rs)

∣∣∣∣ ∫
G
|f(x)|p dx = 0

}
.

In the literature, the spaces Lp(G,Rs) and Lp(G,Rs) are distinguished. Thus, we differ
from our nomenclature and denote Lp(G,Rs) with non-script-like letters. Note that Lp(G,Rs)
is a Banach space with the norm

‖f‖Lp(G,Rs) := ‖[f ]‖Lp(G,Rs) :=
(∫

G
|f(x)|p dx

)1/p
,

which is independent of the representative f of the equivalence class [f ], see, for example,
for more details [198].

In the case of s = 3, we use the abbreviation Lp(G) := Lp(G,R3), and in the case of s = 1,
we use non-bold letters according to our notation, that is Lp(G) := Lp(G,R). Note that the
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2.2. Jacobi and Legendre Polynomials

same nomenclature is used for all other function spaces. For p = 2, the space L2(G,Rs) is a
Hilbert space with the inner product

〈f , g〉L2(G,Rs) :=
∫
G
f(x) · g(x) dx, f , g ∈ L2 (G,Rs) .

Definition 2.2 (Weighted Lebesgue Spaces, [158, Def. 3.1]). Let w : [a, b]→ R with
a, b ∈ R and a < b be a continuous function on [a, b] that is positive on (a, b). Then for
all measurable functions F : [a, b] → R with 〈F,wF 〉L2([a,b]) < ∞, we define in analogy to
Definition 2.1 a weighted Lebesgue space with the norm

‖F‖2Lw2 ([−1,1]) := 〈F,wF 〉L2([−1,1]).

Definition 2.3 (Space of k Times Continuously Differentiable Functions). Let
G ⊂ Rd, where d ∈ N, be an open set and let s ∈ N. The set of all k ∈ N times continuously
differentiable functions f : G → Rs is denoted by Ck(G,Rs), for 0 < k < ∞. In the case
k = 0, we use the abbreviation C(G,Rs) for the set of all continuous functions. The set
of all arbitrarily often differentiable functions is denoted by C∞(G,Rs) and they are called
smooth functions, see [123].

In analogy, we define for bounded open sets G and k ∈ N the space Ck(G,Rs) as the
set containing all functions that are k times continuously differentiable in G and for which
these functions and all derivatives up to degree k can be continuously extended to the
boundary ∂G. According to our notation, the set Ck(S,Rs), where k ∈ N0 ∪ {∞} , denotes
the corresponding set of k-times continuously differentiable functions on the sphere S. In
this setting, continuity and differentiability are to be understood in the context of functions
on manifolds, see [143, Def. 1.52].
If U ⊂ X is a subspace of a Banach space, we denote with U its closure. If the closure is

taken with respect to a norm ‖·‖∗ that is different to ‖·‖X, we use the notation U
‖·‖∗ . If U

is a subset of an inner product space H, then we denote the orthogonal complement of U
by U⊥ := {y ∈ H | x ⊥ y for all x ∈ U} , where x ⊥ y ⇔ 〈x, y〉 = 0. Note that U⊥ is always
closed.

2.2. Jacobi and Legendre Polynomials

We will see that spherical harmonics, which are required for the modelling of the magneto-
electroencephalography problem in a ball-shaped conductor setting, are closely connected
with Legendre polynomials. Legendre polynomials are a particular case of Jacobi polynomials,
which are also introduced in this section. For a detailed introduction to orthogonal polynomials
and their identities, see [179, 209] or, more recently, [84]. The results relevant for this thesis
are recapitulated in the following.

Theorem 2.4 (Jacobi Polynomials, [84, Def. 3.3.1]). For fixed α, β > −1, there exists
one and only one unique system of polynomials P (α,β)

m with m ∈ N0 that satisfies the following
conditions:

i) Each P (α,β)
m : [−1, 1]→ R is a polynomial of degree m, that is degP (α,β)

m = m,
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ii) for all m, n ∈ N0 with m 6= n, it holds true that∫ 1

−1
(1− x)α(1 + x)βP (α,β)

m (x)P (α,β)
n (x) dx = 0,

iii) and for each m ∈ N0, we require P (α,β)
m (1) =

(m+α
m

)
.

We call the functions P (α,β)
m Jacobi polynomials of degree m corresponding to the weight

function w(x) := (1− x)α(1 + x)β with x ∈ [−1, 1].
The binomial coefficient is given by

(x
y

)
:= Γ(x+ 1)/(Γ(y + 1)Γ(x− y + 1)) for x, y ∈ R

with x, y > −1 and x > y − 1. Here, Γ denotes the usual Gamma function, see [2]. Note
that this definition coincides with the classical definition via the factorial representation of
the binomial coefficient in the case of x, y ∈ N0.
In this work, there are mainly two particular cases of the Jacobi polynomials of interest.

The polynomials corresponding to the first particular case are called the Legendre polynomials
and are obtained for α = β = 0.
Definition 2.5 (Legendre Polynomials, [84, Rem. 3.3.4]). The Legendre polynomials
of degree m ∈ N0 are defined as Pm := P (0,0)

m , where P (0,0)
m are the Jacobi polynomials for

α = β = 0 from Theorem 2.4. The corresponding weight function reduces to w(x) = 1 with
x ∈ [−1, 1].
The second particular case is detailed in Section 5.1. Now, we sum up some properties

and identities of Jacobi and Legendre polynomials that are required for the analysis and the
numerics of the inverse magneto-electroencephalography problem later. A representation for
the derivatives of Jacobi polynomials is stated in the next theorem.
Theorem 2.6 ([179, Ch. II.5]). For every α, β > −1 and m, k ∈ N0 with k ≤ m, the
following holds true:

dk
dxkP

(α,β)
m (x) = Γ(α+ β +m+ 1 + k)

2kΓ(α+ β +m+ 1) P
(α+k,β+k)
m−k (x), x ∈ [−1, 1].

For the maximal value of the Jacobi polynomials, the following holds true.
Theorem 2.7 ([179, Ch. II.7]). For all α, β > −1 with q := max(α, β) ≥ −1/2 and every
m ∈ N0, the Jacobi polynomials fulfil

max
x∈[−1,1]

∣∣∣P (α,β)
m (x)

∣∣∣ = max
(∣∣∣P (α,β)

m (−1)
∣∣∣ , P (α,β)

m (1)
)

=
(
m+ q

m

)
∈ O(mq)

as m → ∞, where O is the usual Landau symbol, see [139]. In the particular case of the
Legendre polynomials, we get

max
x∈[−1,1]

|Pm(x)| = 1 = Pm(1).

Combining the result of Theorem 2.6 with the previous theorem, we obtain for the first
two derivatives of the Legendre polynomials for all m ∈ N0 and all x ∈ [−1, 1] the estimates

∣∣P ′m(x)
∣∣ = m+ 1

2
∣∣∣P (1,1)
m−1(x)

∣∣∣ ≤ m+ 1
2

(
m

m− 1

)
= m(m+ 1)

2 , (2.1a)

∣∣P ′′m(x)
∣∣ = (m+ 2)(m+ 1)

4
∣∣∣P (2,2)
m−2(x)

∣∣∣ ≤ (m+ 2)(m+ 1)m(m− 1)
8 . (2.1b)

20



2.3. Vector Calculus in Spherical Geometries

In general, for Legendre polynomials with x ∈ [−1, 1] and k ∈ N0 the result∣∣∣∣∣ dk
dxkPm(x)

∣∣∣∣∣ ≤
(

dk
dxkPm(x)

)∣∣∣∣∣
x=1
∈ O(m2k)

as m→∞ holds true. For the construction of complete orthonormal polynomial systems, we
need an appropriate Hilbert space. Since the Jacobi polynomials are only orthogonal with
respect to the weight function, we need to include the weight function into the Hilbert space.
Note that the weighted Hilbert space Lw2 ([−1, 1]) is defined in Definition 2.2. In addition, we
need the corresponding norm of the Jacobi polynomials for its normalization.

Theorem 2.8 ([209, Eq. (4.3.3)]). For every α, β > −1, the Jacobi polynomials P (α,β)
m ,

where m ∈ N0, with the weight function w(x) = (1− x)α(1 + x)β fulfil∥∥∥P (α,β)
m

∥∥∥2

Lw2 ([−1,1])
=
∫ 1

−1
(1− x)α(1 + x)β

(
P (α,β)
m (x)

)2
dx

= 2α+β+1

2m+ α+ β + 1
Γ(m+ α+ 1)Γ(m+ β + 1)

m!Γ(m+ α+ β + 1) .

Using this result, we are able to normalize the Jacobi polynomials from Theorem 2.4.
These normalized polynomials form an Lw2 ([−1, 1])-orthonormal basis.

Theorem 2.9 ([209, Thm. 3.1.5]). Let w(x) := (1− x)α(1 + x)β be the weight function,
then the normalized Jacobi polynomials form an Lw2 ([−1, 1])-orthonormal basis.

A series expansion by means of this basis is often called a generalized Fourier series. For
the derivation of an integral equation for the magneto-electroencephalography problem, a
closed representation of a particular Legendre series is required. It is stated in the next
corollary, which completes this section.

Corollary 2.10 ([81, Eq. (3.2.32)]). For all x, y ∈ R3 with x < y, the following identity
holds true pointwise:

1
|x− y| =

∞∑
m=0

xm

ym+1Pm(x̂ · ŷ). (2.2)

2.3. Vector Calculus in Spherical Geometries

Since we consider a ball-shaped conductor in the multiple-shell model, which is introduced
in Chapter 3, we need polar coordinates as a local coordinate system. In this section, several
properties and identities belonging to the spherical geometry are summed up. They and
their Cartesian counterparts can be found in [88], for example.

Definition 2.11 ([81, Ch. 1.2]). The polar coordinate representation of x ∈ R3 is

x(r, ϕ, t) =

r
√

1− t2 cosϕ
r
√

1− t2 sinϕ
rt

 ,
where r ∈ R+

0 is the distance to the origin, ϕ ∈ [0, 2π) is the longitude, and t ∈ [−1, 1] is the
polar distance.
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Note that the names ‘longitude’ and ‘polar distance’ have their origin in the geosciences.
Since the mathematical formulation of the inverse magneto-electroencephalography problem
is related to the inverse gravimetric problem, we stick to these names. The relation between
these two particular problems is analyzed in more detail in Part IV.

Definition 2.12 ([81, Ch. 1.2]). Three orthonormal vectors εr, εϕ, and εt can be described
in local coordinates by

εr(ϕ, t) :=


√

1− t2 cosϕ√
1− t2 sinϕ

t

 , εϕ(ϕ) :=

− sinϕ
cosϕ

0

 , εt(ϕ, t) :=

−t cosϕ
−t sinϕ√

1− t2

 .
This representation immediately leads to the next corollary.

Corollary 2.13 ([158, p. 89ff.]). Let εr, εϕ, and εt be defined as in Definition 2.12. Then

∂

∂ϕ
εr(ϕ, t) =

√
1− t2εϕ(ϕ, t), ∂

∂t
εr(ϕ, t) = 1√

1− t2
εt(ϕ, t),

∂

∂ϕ
εt(ϕ, t) = −tεϕ(ϕ, t), ∂

∂t
εt(ϕ, t) = − 1√

1− t2
εr(ϕ, t),

∂

∂ϕ
εϕ(ϕ, t) = tεt(ϕ, t)−

√
1− t2εr(ϕ, t).

For the sake of comparability with established literature and for readability, we use the
notation x = rξ with r = |x| and ξ := ξ(ϕ, t) = εr(ϕ, t) ∈ S in this section and beyond.
Usually we neglect the arguments of these three vectors and keep their dependency of ϕ and
t in mind. At every point ξ ∈ S, the vector ξ is the outer unit normal with respect to the
sphere. The remaining two vectors span the tangential plane in this point on the unit sphere.
This set of vectors allows a decomposition of vectors and vector-valued functions into their
radial and angular parts.
For vector fields f : S → R3, we define the corresponding projection operators as follows:

(Pnorf) (ξ) := (ξ · f(ξ))ξ, (Ptanf) (ξ) := f(ξ)− (Pnorf) (ξ) for all ξ ∈ S. (2.3)

In addition, the classical vector analysis differential operators, such as the gradient or the
Laplacian, can be decomposed into their radial and angular parts. The resulting angular
derivative operators are often used within the analysis of functions over the sphere.

Theorem 2.14 ([81, Ch. 1.2]). The classical three-dimensional gradient ∇ can be decom-
posed into

∇x = εr
∂

∂r
+ 1
r
∇∗ξ,

where

∇∗ξ := εϕ
1√

1− t2
∂

∂ϕ
+ εt

√
1− t2 ∂

∂t

is called the surface gradient. The surface curl gradient L∗ is defined by

L∗ξF (ξ) := ξ ∧∇∗ξF (ξ) for all ξ ∈ S
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2.3. Vector Calculus in Spherical Geometries

and F ∈ C1(S). Or, in local coordinates,

L∗ξ = −εϕ
√

1− t2 ∂
∂t

+ εt 1√
1− t2

∂

∂ϕ
.

Finally, the Laplacian has the decomposition

∆x = ∂2

∂r2 + 2
r

∂

∂r
+ 1
r2 ∆∗ξ,

with the (Laplace-)Beltrami operator

∆∗ξ := ∂

∂t

(
1− t2

) ∂

∂t
+ 1

1− t2
∂2

∂ϕ2 .

Obviously, L∗ defined in the foregoing theorem is an operator. However, we do not stick
to our convention and use a non-calligraphic letter for it as it is common in the literature.
An immediate consequence for the surface gradient and surface curl operator, see also [88,
Ch. 2.6] or [81, Ch. 1.2], is

∇∗ξ · ξ = 2, L∗ξ · ξ = 0, ξ ∈ S. (2.4)

In addition, ξ ∧ (ξF (ξ)) = 0 holds true for all F ∈ C(S) and all ξ ∈ S. The Cartesian
counterpart L, which is also denoted by a non-calligraphic letter for the same reason, to the
surface curl gradient can be defined for all F ∈ C1(R3) and all x ∈ R3 by

LxF (x) := x ∧∇xF (x).

With x = rξ, we achieve that L coincides with the surface curl operator, that is

LxF (x) = rξ ∧
(
ξ
∂

∂r
+ 1
r
∇∗
)
F (rξ) = L∗ξF (rξ) for all F ∈ C1

(
R3
)
. (2.5)

This can also be shown by using the local coordinate representation, which results in an easy
but lengthy calculation. We also need the following identities for some calculations.

Theorem 2.15 ([88, Eq. (2.151), Eq. (2.152)]). Let F ∈ C1([−1, 1]) and ξ, η ∈ S.
Then

∇∗ξF (ξ · η) = F ′(ξ · η) (η − (ξ · η)ξ) ,
L∗ξF (ξ · η) = F ′(ξ · η) (ξ ∧ η) = −L∗ηF (ξ · η).

Certain orthogonality results concerning the spherical differential operators are frequently
used within this thesis. For all F ∈ C1(S) and all ξ ∈ S we get

ξ ·
(
∇∗ξF (ξ)

)
= 0, ξ ·

(
L∗ξF (ξ)

)
= 0, (2.6a)

see [88, Eq. (5.28)-(5.29)], and for all F ∈ C2(S) the following useful identities hold true:

L∗ξ ·
(
∇∗ξF (ξ)

)
= 0, ∇∗ξ ·

(
L∗ξF (ξ)

)
= 0, (2.6b)
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see [88, Eq. (2.142)-(2.143)]. As a consequence of the local coordinate expressions from
Theorem 2.14 and the identities in Corollary 2.13, we obtain

∇∗ξ ∧ ξ = 0 for all ξ ∈ S. (2.7)

Furthermore, for all f ∈ C1(S) and F ∈ C1(S) the following product rule holds true

∇∗ξ · (f(ξ)F (ξ)) = F (ξ)
(
∇∗ξ · f(ξ)

)
+ f(ξ) ·∇∗ξF (ξ), (2.8)

see [88, Eq. (2.145)]. The relation between the surface gradient and the Beltrami operator
on the sphere is described in the next theorem.

Theorem 2.16 ([81, Eq. (1.2.47)]). The spherical differentiation operators satisfy

∇∗ ·∇∗ = L∗ ·L∗ = ∆∗.

For certain calculations, we need relations among the introduced spherical operators with
respect to the curl operator. They are stated in the following lemmas.

Lemma 2.17. Let F ∈ C2(S), then it holds true that

∇∗ξ ∧∇∗ξF (ξ) = L∗ξF (ξ) for all ξ ∈ S.

Proof. Let F ∈ C2(S) be given. We define a function G ∈ C2(R3 \ {0} ) by G(x) := F (ξ)
for all x = rξ ∈ R3 \ {0} . According to [79, Eq. (1.88)], the identity

0 =∇x ∧ (∇xG(x))

holds true for all x ∈ R3. Since G has no radial dependency, we get with Theorem 2.14 the
relation

0 =∇x ∧ (∇xF (ξ)) =
(
εr
∂

∂r
+ 1
r
∇∗ξ
)
∧
(1
r
∇∗ξ
)
F (ξ)

= − 1
r2L

∗
ξF (ξ) + 1

r2∇
∗
ξ ∧∇∗ξF (ξ).

Multiplication by r2 yields the desired result.

Lemma 2.18. Let F ∈ C1(S), then the next identity holds true:

∇∗ξ ∧ (ξF (ξ)) = −ξ ∧∇∗ξF (ξ) + F (ξ)∇∗ξ ∧ ξ = −L∗ξF (ξ), ξ ∈ S.

Proof. From [79, Eq. (2.41)], the product rule

∇∗ ∧ (Ff) = (∇∗F ) ∧ f + F (∇∗ ∧ f)

is known for all F ∈ C1(S) and f ∈ C1(S). We use this in the first step of the stated equation
and Eq. (2.7) in the second step.

Lemma 2.19. Let F ∈ C2(R3), then with x = rξ, where ξ ∈ S, we have

∇x ∧LxF (x) = 1
r
ξ∆∗ξF (x)−∇∗ξ

(1
r

+ ∂

∂r

)
F (x).
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Proof. From [79, Eqs. (2.193),(2.195)], we have for all sufficiently often differentiable functions
F and all ξ ∈ S the relations

ξ ∧ (∇∗ξ ∧ ξF (ξ)) =∇∗ξF (ξ),
∇∗ξ ∧ (∇∗ξ ∧ ξF (ξ)) = −ξ∆∗ξF (ξ) +∇∗ξF (ξ).

With the representation of the surface gradient in spherical coordinates, see Theorem 2.14,
Eq. (2.5), Lemma 2.18, and the previous two relations, we get

∇x ∧LxF (x) = −
(
ξ
∂

∂r
+ 1
r
∇∗ξ
)
∧
(
∇∗ξ ∧ (ξF (x))

)
= 1
r
ξ∆∗ξF (x)−∇∗ξ

(1
r

+ ∂

∂r

)
F (x).

Green’s identities are a well-known and powerful tool. In our setting, of course, the surface
versions, more precisely the versions on the sphere, are more useful than the classical versions.

Theorem 2.20 (Green’s Surface Identities). Let D ⊆ S be a subset of the unit sphere with
sufficiently smooth boundary ∂D and corresponding outer unit normal field n. Furthermore,
let F , G ∈ C2(D) be twice continuously differentiable functions. Then the following identities
are valid:

i) Green’s first surface identity, see [88, Eq. (2.156)],∫
D
∇∗ξF (ξ) ·∇∗ξG(ξ) dω(ξ) +

∫
D
F (ξ)∆∗ξG(ξ) dω(ξ) =

∫
∂D
F (ξ) ∂

∂n
G(ξ) dσ(ξ)

and

ii) Green’s second surface identity, see [88, Eq. (2.158)],∫
D

(
F (ξ)∆∗ξG(ξ)−G(ξ)∆∗ξF (ξ)

)
dω(ξ)

=
∫
∂D

(
F (ξ) ∂

∂n
G(ξ)−G(ξ) ∂

∂n
F (ξ)

)
dσ(ξ),

where dω and dσ are the surface and the line measure, respectively.

In particular, for the full sphere S, which has no boundary, we obtain certain other integral
identities, see [88, Eq. (2.159)-(2.164)]. Let f ∈ C1(S), F ∈ C1(S), and G ∈ C2(S) be given,
then ∫

S
f(ξ) ·∇∗ξF (ξ) dω(ξ) = −

∫
S
F (ξ)∇∗ξ · f(ξ) dω(ξ), (2.9a)∫

S
f(ξ) ·L∗ξF (ξ) dω(ξ) = −

∫
S
F (ξ)L∗ξ · f(ξ) dω(ξ), (2.9b)∫

S
∇∗ξG(ξ) ·∇∗ξF (ξ) dω(ξ) = −

∫
S
F (ξ)∆∗ξG(ξ) dω(ξ) (2.9c)

=
∫
S
L∗ξG(ξ) ·L∗ξF (ξ) dω(ξ). (2.9d)
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A particular case of the previous integral equations is given by∫
S
∇∗ξ · f(ξ) dω(ξ) =

∫
S
L∗ξ · f(ξ) dω(ξ) = 0. (2.10)

Besides the stated R3-orthogonality relations, the spherical differentiation operators also
provide us with further orthogonality results with respect to the L2(S)-inner product.

Corollary 2.21. Let F ∈ C1(S) and G ∈ C2(S), then∫
S

(
∇∗ξF (ξ)

)
·
(
L∗ξG(ξ)

)
dω(ξ) = 0,

∫
S

(
L∗ξF (ξ)

)
·
(
∇∗ξG(ξ)

)
dω(ξ) = 0.

Proof. Inserting f = L∗G or f =∇∗G, respectively, into Eq. (2.9) and using Eq. (2.6a), we
obtain the desired result.

2.4. Scalar Spherical Harmonics

Scalar spherical harmonics form the foundation for the analysis of the magneto-electroence-
phalography problem in the context of a ball-shaped conductor. They are used in many
applications, such as in the geosciences or for other medical imaging problems. In addition,
we also need the related inner and outer harmonics, which are introduced briefly. For more
information on these special functions see, for example, [81, 84, 88, 158, 173, 184].

2.4.1. Definition of Spherical Harmonics

In this section, we define the scalar spherical harmonics and state their basic properties.
Some of these properties are going back to the Addition Theorem for spherical harmonics,
which is also stated in this section.

Definition 2.22 (Spherical Harmonics [88, Def. 3.22]). The set of all homogeneous (i.e.
Hn(αx) = αnHn(x)) harmonic polynomials Hn of degree n ∈ N0 is denoted by Harmn(R3).
For the set G ⊂ R3, we define

Harmn(G) :=
{
Hn|G

∣∣∣ Hn ∈ Harmn(R3)
}
, n ∈ N0.

The restriction Yn = Hn|S onto the unit sphere is called a (scalar) spherical harmonic of
degree n and is contained in Harmn(S).

Lemma 2.23 ([81, Lem. 3.1.2]). All spherical harmonics Yn ∈ Harmn(S), where n ∈ N0,
are infinitely often differentiable eigenfunctions of the Beltrami operator ∆∗ to the eigenvalues
−n(n+ 1) =: (∆∗)∧(n), that is

∆∗ξYn(ξ) = (∆∗)∧(n)Yn(ξ), ξ ∈ S.

The sequence {(∆∗)∧(n)}n∈N0 is called the spherical symbol of the Beltrami operator.

Note that Harmn(S) ⊥ Harmm(S) whenever n 6= m, see [88, Thm. 3.15]. Since for all
n ∈ N0 the dimension of this space is given by dim Harmn(S) = 2n+ 1, see [88, Thm. 3.5],
the following definition makes sense.
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Definition 2.24 ([88, Rem. 3.25]). For every fixed n ∈ N0 the set {Yn,j}j=1,...,2n+1 always
denotes an L2(S)-orthonormal set in Harmn(S), where n is called the degree and j is the
order of Yn,j.

As we have already mentioned, the (scalar) spherical harmonics are closely related to the
Legendre polynomials. The important and famous Addition Theorem for spherical harmonics
provides a link to these polynomials.

Theorem 2.25 (Addition Theorem, [81, p. 3.1.3]). If {Yn,j}j=1,...,2n+1 is an L2(S)-
orthonormal set in Harmn(S), where n ∈ N0, then

2n+1∑
j=1

Yn,j(ξ)Yn,j(η) = 2n+ 1
4π Pn(ξ · η)

holds true for all ξ, η ∈ S, where Pn is the Legendre polynomial of degree n, see Definition 2.5.

Via the Addition Theorem, we can derive several useful properties of the spherical harmonics.
For example, an immediate consequence of the Addition Theorem is a closed representation
for the spherical harmonics of degree zero, that is

(Y0,1(ξ))2 =
1∑
j=1

Y0,1(ξ)Y0,1(ξ) = 1
4πP0(1) = 1

4π . (2.11)

This result can, for instance, also be achieved via the normalization property of the spherical
harmonics. In addition, the function on the right-hand side of the Addition Theorem has
the reproducing property, see [88, Lem. 3.29]. For all n, k ∈ N0 and j = 1, . . . , 2k + 1, the
reproducing property is given by

2n+ 1
4π

∫
S
Pn(η · ξ)Yk,j(η) dω(η) = δn,kYn,j(ξ), ξ ∈ S. (2.12)

This property can be easily proved by using Theorem 2.25 and the orthogonality of the
spherical harmonics. By means of this theorem, we also get for all Yn ∈ Harmn(S) with
n ∈ N0 the following useful estimate

‖Yn‖C(S) ≤
√

2n+ 1
4π ‖Yn‖L2(S) , (2.13)

see [88, Lem. 3.31]. Combining the Addition Theorem with Lemma 2.23, we obtain an
identity of the Legendre polynomials, that is

∆∗ξPn(ξ · η) = −n(n+ 1)Pn(ξ · η) (2.14)

for all n ∈ N0 and ξ, η ∈ S, see [88, Lem. 3.29].
Via the Abel-Poisson integral formula, see [88, 158], the next corollary can be proved. This

central corollary is frequently used within this thesis and is essential for the analysis of the
ill-posedness of the inverse magneto-electroencephalography problem.

Corollary 2.26 ([81, Cor. 3.4.3]). The system {Yn,j}n∈N0,j=1,...,2n+1 from Definition 2.24
is closed and represents a complete orthonormal system in L2(S), that is

L2 (S) = span {Yn,j | n ∈ N0, j = 1, . . . , 2n+ 1}‖·‖L2(S) .
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From functional analysis, it is well-known that the statement in Corollary 2.26 is equivalent
to

lim
N→∞

∥∥∥∥∥∥F −
N∑
n=0

2n+1∑
j=1
〈F, Yn,j〉L2(S)Yn,j

∥∥∥∥∥∥
L2(S)

= 0

for all F ∈ L2(S). This convergence, which does not necessarily hold pointwise, is also meant
by the notation

F (ξ) L2(S)=
∞∑
n=0

2n+1∑
j=1
〈F, Yn,j〉L2(S)Yn,j(ξ),

or more shortly,

F =
∞∑
n=0

2n+1∑
j=1
〈F, Yn,j〉L2(S)Yn,j .

The series on the right-hand side is often called a Fourier series. Due to the completeness,
Parseval’s identities, see [142, Ch. 6], [198, Thm. 12.6], or [88, Thm. 3.54], hold true. In the
particular case of functions in the space L2(S), Parseval’s identities are for all F , G ∈ L2(S)
given by

‖F‖2L2(S) =
∞∑
n=0

2n+1∑
j=1
〈F, Yn,j〉2L2(S), (2.15a)

〈F,G〉L2(S) =
∞∑
n=0

2n+1∑
j=1
〈F, Yn,j〉L2(S)〈G, Yn,j〉L2(S). (2.15b)

Remark 2.27. Due to the fact that {Yn,j}n∈N0, j=1,...,2n+1 is an L2(S)-orthonormal basis, it
is easy to verify that, consequently, {R−1Yn,j(R−1·)}n∈N0, j=1,...,2n+1 is an orthonormal basis
for L2(SR).

2.4.2. Inner and Outer Harmonics

In Lemma 2.23, we saw that spherical harmonics are connected with the Beltrami operator.
By means of spherical harmonics, two more systems of functions that are connected to the
Laplacian can be defined, see also [91, 184]. For this purpose, let a function F : BR → R be
defined by the L2(BR)-convergent series

F (x) L2(BR)=
∞∑
n=0

2n+1∑
j=1

Fn,j(r)Yn,j(ξ). (2.16)

For almost all r := |x| ∈ [0, R], the radially-dependent spherical harmonics coefficients are
given by

Fn,j(r) =
∫
S
F (rξ)Yn,j(ξ) dω(ξ), n ∈ N0, j = 1, . . . , 2n+ 1.
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2.4. Scalar Spherical Harmonics

Now, we assume that F is a harmonic function, that is F satisfies ∆F = 0. Together with
Lemma 2.23 (i.e. ∆∗Yn,j = −n(n+ 1)Yn,j for all n ∈ N0, j = 1, . . . , 2n+ 1), we obtain the
ordinary differential equation for the radial part(

∂2

∂r2 + 2
r

∂

∂r
− 1
r2n(n+ 1)

)
Fn,j(r) = 0 (2.17)

for all n ∈ N0, j = 1, . . . , 2n+ 1. The fundamental system yields for all n ∈ N0 the identity

Fn,j(r) = Cnr
−(n+1) +Dnr

n. (2.18)

In the case of the inner problem, that is searching for a harmonic solution inside a medium
BR, we require, at least, the continuity at the origin. Hence, in this particular case, we set
Cn = 0 for all n ∈ N0. In contrast, in the case of the outer problem, one is interested in a
harmonic solution outside of a medium (i.e. Bext

R ) that is regular at infinity. Hence, we set
Dn = 0 for all n ∈ N0 in this particular case.

Before we define the inner and outer harmonics, we introduce the term regularity at infinity
in more detail. A function F : R3 → R is called regular at infinity if |F (x)| ∈ O(x−1) and if
|∇xF (x)| ∈ O(x−2) as x→∞. See, for instance, [88, p. 442] for the definition of regularity
at infinity.
Based on the preliminary consideration, we make the following definition.

Definition 2.28 (Inner and Outer Harmonics). Let BR be a closed ball with radius R
and let x ∈ BR. Then the inner harmonics with respect to the sphere SR of degree n ∈ N0
and order j = 1, . . . , 2n+ 1, see [88, Eq. (10.32)], are defined by

H int
n,j(R;x) := 1

R

(
x

R

)n
Yn,j(x̂).

The outer harmonics, see [88, Eq. (10.36)], of degree n and order j are defined by

Hext
n,j (R;y) := 1

R

(
R

y

)n+1
Yn,j(ŷ)

for all y ∈ R3 \ {0} .

Both sets of functions provides us with several properties.

Corollary 2.29 (Properties of Inner Harmonics, [88, p. 437]). The following prop-
erties hold true:

i) H int
n,j(R; ·) is of class C∞(R3),

ii) H int
n,j(R; ·) is harmonic in R3,

iii) H int
n,j(R; ·)|SR = 1

RYn,j, and

iv) 〈H int
n,j(R; ·)|SR , H int

m,k(R; ·)|SR〉L2(SR) = δn,mδj,k.
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Corollary 2.30 (Properties of Outer Harmonics, [88, p. 438]). The following prop-
erties hold true:

i) Hext
n,j (R; ·) is of class C∞(R3 \ {0} ),

ii) Hext
n,j (R; ·) is harmonic in R3 \ {0} ,

iii) Hext
n,j (R; ·) is regular at infinity,

iv) Hext
n,j (R; ·)|SR = 1

RYn,j, and

v) 〈Hext
n,j (R; ·)|SR , Hext

m,k(R; ·)|SR〉L2(SR) = δn,mδj,k.
The inner and outer harmonics are closely related to the interior and exterior Dirichlet

Problem, respectively. For more information on the Dirichlet Problem, see [79, 88], for
example.
Definition 2.31 (Exterior Dirichlet Problem (EDP), [88, p. 441ff.]). Let G ⊂ Rd be
a region with sufficiently smooth boundary ∂G. Suppose that F ∈ C(∂G) is given. We are
searching for a function U : Rd \G→ R satisfying the following conditions:

i) U is of class C2(Rd \G) ∩ C(Rd \G),

ii) U satisfies Laplace’s equation ∆U = 0 in Rd \G,

iii) U is regular at infinity, and

iv) U |∂G = F .
It is well known that the solution of the (EDP) is uniquely determined. The proof is based

on the Maximum/Minimum Principle for harmonic functions and needs the regularity at
infinity. Furthermore, the solution U can be represented by an outer harmonics expansion if
d = 3 and G = BR, see [88].
Lemma 2.32 ([88, Eq. (10.54)]). Let U be the unique solution of the (EDP) for the region
G = BR with U |SR = F ∈ C(SR). Then it has the expansion

U =
∞∑
n=0

2n+1∑
j=1

〈
F,Hext

n,j (R; ·)|SR
〉

L2(SR)
Hext
n,j (R; ·).

In addition, the series converges absolutely and uniformly on each subset E ⊂ Bext
R with

dist(E, SR) > 0.

2.5. Theory of Distributions

In this section, we summarize central results from the theory of distributions. For a full
overview of the topic and the proofs of the results see, for instance, [123, 131]. The aim of
this survey is to present an approach to solve the distributional Poisson’s equation by means
of convolution with the fundamental solution of Laplace’s equation. This equation occurs, for
instance, in the derivation of an integral equation for the electroencephalography problem.

Since distributions are continuous linear mappings from a function space into the underlying
field (i.e. the set of real numbers R), like functionals, we denote them with capital calligraphic
letters in order to stick to our notation.
We start with some basic definitions and notations in Definition 2.33.
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Definition 2.33 (Distribution). Let G ⊂ Rd, where d ∈ N, be an arbitrary set.

i) If G is open, the set of test functions D(G) is defined by

D(G) := {f : G→ R | f ∈ C∞(G), supp f ⊂ G is compact} ,

see [123, Def. 1.2.1]. In addition, a sequence {ψn}n∈N0 ⊂ D(G) converges to ψ ∈ D(G)
if for all compact sets M ⊂ G and all k ∈ N it holds true that

lim
n→∞ sup

x∈M
|∂α(ψn(x)− ψ(x))| = 0,

where α is a multi-index of order k. For arbitrary subsets G ⊂ Rd, we define D(G) as
the set of elements in D(Rd) with support contained in G, see [123, p. 14].

ii) A distribution V : D(G)→ R is a continuous linear mapping on D(G), that is Vψn →
Vψ if ψn → ψ as n→∞. The set of all distributions is denoted by D′(G), see [123,
Def. 2.2.1].

iii) The space of all locally integrable functions is called L1,loc(G,Rs), where s ∈ N, and is
defined by

L1,loc (G,Rs) := {f : G→ Rs measurable | f |M ∈ L1 (M,Rs) ∀M ⊂ G compact} .

iv) Let g ∈ L1,loc(G), then the distribution

Vgψ :=
∫
Rd
g(x)ψ(x) dx

is called a regular distribution, see [131, Def. 15.1].

v) Let G1, G2 ⊂ Rd be open sets with G2 ⊂ G1. Let V : D(G1)→ R be a distribution, then
the restriction V|G2 : D(G2) → R of V is given by V|G2ψ = VEψ for all ψ ∈ D(G2),
where E : D(G2)→ D(G1) extends a given smooth function compactly supported in G2
by zero to a smooth function compactly supported in G1, see [123, p. 41].

vi) The support of a distribution V, that is suppV, is the set of points in G having no
open neighbourhood to which the restriction of V is zero, see [123, Def. 2.2.1].

vii) The partial differentiation ∂k of a distribution V ∈ D′(G) is understood as

(∂kV)ψ = −V (∂kψ) , k = 1, . . . , d,

see [123, Def. 3.1.1]. According to [123, p. 55], the derivative of the distribution exists
and is unique.

For the solution of Poisson’s equation, we need some particular distributions that are
stated in Example 2.34.
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Example 2.34. Let G ⊂ Rd, where d ∈ N, be given.

i) The Delta distribution, or Dirac distribution, is defined by

δa : D(G)→ R, ψ 7→ ψ(a), a ∈ G,

see [123, Exam. 3.1.2]. It has compact support.

ii) For a multi-index k of order k := |k|, let the linear partial differential operator be given
by ∂k. According to [123, Eq. (3.1.1)’], we define the distribution ∂kV for an arbitrary
distribution V by (

∂kV
)
ψ := (−1)k V

(
∂kψ

)
for all ψ ∈ D (G) .

iii) Let ∂k be given as in the previous item and δ be the Delta distribution, see [123, Exam.
3.1.2], then (

∂kδa
)
ψ = (−1)k

(
∂kψ

)
(a) for all ψ ∈ D (G) .

For solving partial differential equations by means of distribution theory, we have to define
the fundamental solution.

Definition 2.35 (Fundamental Solution, [123, Def. 3.3.1]). A distribution V is called
a fundamental solution of the differential operator P = ∑

k αk∂
k with constant coefficients

αk and multi-index k if PV = δ0.

For the application considered in this thesis, the fundamental solution of the well-known
three-dimensional Laplace’s equation is required.

Lemma 2.36 ([123, Thm. 3.3.2]). Consider Laplace’s equation in three dimensions (i.e.
d = 3). The fundamental solution of the differential equation is given by the regular
distribution generated by

g(x) = 1
4π|x| , x ∈ R3 \ {0} .

In order to obtain a solution of Poisson’s equation from knowledge of the fundamental
solution of Laplace’s equation, we need the tool of convolution. Therefore, we make the
following definitions.

Definition 2.37 ([123, Def. 4.1.1]). Let G ⊂ Rd, where d ∈ N, be given. If V ∈ D′(G)
and ψ ∈ D(G), then the convolution V ∗ ψ ∈ C∞(G) is defined by

(V ∗ ψ)(x) = V(ψ(x− ·)).

Definition 2.38 ([123, Def. 4.2.2]). Let G ⊂ Rd, where d ∈ N, be given. Let V1,
V2 ∈ D′(G) be two distributions, where at least one of them has compact support. The
convolution V1 ∗ V2 of two distributions is defined to be the unique distribution V such that

V1 ∗ (V2 ∗ ψ) = V ∗ ψ for all ψ ∈ D(G).
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Under certain conditions that are stated in the next lemma, the convolution is commutative.

Lemma 2.39 ([123, Thm. 4.2.4]). Let G ⊂ Rd, where d ∈ N, be given. Let V1, V2 ∈ D′(G)
be two distributions, where at least one of them has compact support. Then the convolution
is commutative, that is

V1 ∗ V2 = V2 ∗ V1.

In addition, the differential operator P with constant coefficients can be applied to the
convolution of distributions.

Lemma 2.40 ([131, Thm. 41.3]). Let G ⊂ Rd, where d ∈ N, be given, let V1, V2 ∈ D′(G)
be two distributions, and let P be a differential operator with constant coefficients. Then

P (V1 ∗ V2) = (PV1) ∗ V2 = V1 ∗ (PV2) .

Besides convolution, the translation operator is often used in the context of distributions.

Definition 2.41. Let G ⊂ Rd, where d ∈ N, be given and let h ∈ Rd, ψ ∈ D(G), and
V ∈ D′(G).

i) The translation operator τh for test functions is defined by (τhψ)(x) := ψ(x− h), see
[131, Ch. X.39].

ii) The translation operator τh for distributions is defined by (τhV)ψ := V(τ−hψ) for all
ψ ∈ D(G), see [131, Ch. X.39].

A connection between the convolution, the Delta distribution, and the translation operator
is stated in the next lemma.

Lemma 2.42 ([131, Thm. 40.2]). Let G ⊂ Rd, where d ∈ N, be given and let h ∈ Rd.
Then for V ∈ D′(G), it holds true that

V ∗ δ = V, V ∗ δh = τhV.

Eventually, we are able to solve the distributional Poisson’s equation.

Lemma 2.43 ([131, Thm. 53.1]). For arbitrary distributions V1 with compact support,
the particular solution of the distributional Poisson’s equation ∆V2 = −V1 is given by the
convolution of the distribution V1 and the regular distribution Vg defined by the fundamental
solution g of Laplace’s equation, that is V2 = V1 ∗ Vg.
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Chapter 3.

Modelling the Magnetoencephalography Problem

Magneto- and electroencephalographs are used in medical diagnostics and in recent and former
medical research, see [108, 113] and the references therein. However, their use and resolution
is limited by the capabilities of the devices and the ill-posedness of the corresponding
inverse problems. A mathematical investigation of these inverse problems provides a precise
characterization of the maximal theoretically possible capabilities of these methods.
The aim of the (vectorial) inverse magnetoencephalography (MEG) problem is the re-

construction of the primary current JP, that is the neuronal current inside the cerebrum,
from measured data of the magnetic field B outside the head. The measurements at the
sensors, often called SQUIDs (i.e. superconducting quantum interference device), of the
magnetoencephalograph yield data related to the magnetic field B. A short technical de-
scription of a typical magnetoencephalograph and further references can be found in [33, 172]
and an extensive survey in [108]. SQUIDs are required for the measurement of the human
brain’s magnetic field, which is more than a hundred million times smaller than the Earth’s
magnetic field. Recent magnetoencephalographs can have about 300 sensors, which are
grouped into gradiometers and magnetometers. The about 100 magnetometers measure
the normal component of the magnetic field, that is Bν := ν ·B. Sometimes, this physical
quantity is called the magnetic flux density. The vector field ν is orthogonal to the surfaces
of the sensors but not to the direction of the magnetic field. A schematic diagram of the
installation is given in Fig. 3.1. In contrast to the magnetometers, the gradiometers measure
certain derivatives of the magnetic field. Most magnetoencephalographs provide us with
two planar gradiometer measurements per sensor surface. They yield normal component
measurements of certain derivatives of B in two directions tangential to the sensor surface.
Formulae describing these quantities are derived in Section 9.2 based on the results from this
section. In both cases, the magnetic field B is utilized. Thus, we start with an investigation
of this physical quantity.
In order to reconstruct the primary current and solve this inverse problem, we need a

mathematical relation between the magnetic field and the neuronal current. This relation is
based on the quasi-static approximation of Maxwell’s equations. The quasi-static approach
is commonly used in medical electromagnetism and verified in the work of Plonsey, see [190].
In this context, the changes of the current and the electric and magnetic fields are assumed
to be so slow such that they appear to be static. In [190, 191] the authors show that the
errors made by the quasi-static approach, that is the omission of propagation, capacitative
and inductive effects, and the boundary considerations, are clearly negligible.
A second argument for the quasi-static approach can be found in [108].
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E

JP

EEG

B

MEG

B%L

Figure 3.1: The installation of the
magneto-electroencephalograph. The scalp
(modelled by the yellow surface) separates
the space into the interior B%L that mod-
els the head and the outer space. The
neuronal current JP and its induced mag-
netic (B, purple) and electric fields (E,
blue) are indicated. The electroencephalo-
graph sensors (blue circles) are attached
on the scalp. The magnetoencephalograph
sensors (purple squares) are located in
the exterior and their normal vectors ν
are suggested. Figure kindly provided by
Samuel Leweke [145].

Definition 3.1 (Quasi-static Maxwell’s Equations). In order to compute the magnetic
field B caused by bio-electric sources, such as the primary current inside the brain, we use
the quasi-static approximation of Maxwell’s equations, see [190]:

E = −∇u, ∇ ·B = 0, ∇ ∧B = µ0J
T.

Here, E is the electric field, u is the electric potential, JT = JP + σE is the total current
with the primary current JP and the Ohmic current σE, σ is the conductivity, and µ0 is the
constant permeability in vacuum. Moreover, the electric and magnetic potentials are regular
at infinity.

Note that within this section, JT denotes the vector-valued total current and not the
transposed of a vector J .

The domain of all quantities occurring in the quasi-static Maxwell’s equations is the space
R3. However, the total current has its support inside the cerebrum. Thus, the magnetic
field is irrotational in the exterior of the head, that is ∇ ∧B = 0. Since the exterior of the
head is a simply connected subset of R3, the magnetic field B is a conservative vector field.
Hence, there exists a magnetic potential U such that

B = µ0∇U in Bext, (3.1)

where B models the cerebrum. For the magneto-electroencephalography problem we distin-
guish between the homogeneous and the inhomogeneous case. In the homogeneous case, the
observed medium, that is the head, has a positive constant conductivity σ ∈ R+. In contrast,
the inhomogeneous case allows a spatial dependency of the conductivity of the medium.
In many other publications on this topic, see, for instance, [76, 110, 208], the Biot-Savart

operator is used to describe the relation between the total current JT and the magnetic field
as

B(y) = µ0
4π

∫
B
JT(x) ∧ y − x

|y − x| dx, y ∈ Bext. (3.2)

In the inverse MEG problem, we are interested in reconstructing only the primary current
JP because it is affected by the sources in the brain tissue, see [108, 200]. Due to Maxwell’s
equations, the total current is the sum of the primary current and the secondary, or Ohmic,
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current JT = JP − σ∇u. It is proved in [200] that the total current in Eq. (3.2) reduces to
the primary current in the case of an unbounded homogeneous medium, hence,

B(y) = µ0
4π

∫
B
JP(x) ∧ y − x

|y − x| dx, y ∈ Bext.

Accordingly, in the case of an inhomogeneous medium, the inversion of the Bio-Savart
operator yields a reconstruction of the total current. However, only a reconstruction of the
primary current is desired. If the Biot-Savart operator is used in the inhomogeneous case
misleadingly, one reconstructs parts of the primary and the secondary current, see [76].

Since different parts of the head, for example the cerebrum, the skull, and the scalp, have
different conductivities and since the head is a bounded conductor, we want to use a different
model. For our model, we need the following assumptions.

Assumption 3.2 (Multiple-shell Model). We assume that

• the cerebrum B%0 is a closed ball with radius %0 > 0 and that around this ball there are
L spherical shells S(%l,%l+1] with l = 0, . . . , L− 1 modelling the various head tissues, see
Fig. 3.2. The radii are increasing, that is %l < %l+1 for l = 0, . . . , L− 1, and the sphere
with the largest radius %L models the head boundary;

• the conductivity σ is given as a piecewise constant function, that is

σ(x) :=


σ0 if x ∈ B%0 ,

σl if x ∈ S(%l−1,%l], l = 1, . . . , L,
σL+1 = 0 if x ∈ Bext

%L
.

This implies that the radial and tangential conductivity coincide in each shell. In
addition, the conductivity inside the head is positive, that is σ(x) > 0 for all x ∈ B%L;

• the neuronal current can be described as a continuous dipole distribution;

• the permeability is constant everywhere and equal to µ0, which is the permeability of
the vacuum, see [108];

• the neuronal current is only non-vanishing inside the cerebrum and JP is a function in
L2(B%0).

The conductivity of air is about 3 fSm−1 to 5 fSm−1 whereas the conductivity of the
different tissues is about 0.01 Sm−1 to 1 Sm−1. Thus, the modelling error of assuming that
the conductivity vanishes outside the head is acceptable.
The three-shell model is a common approach to approximate the brain structure, see

[108, 125, 126, 171, 174] and the references therein. Note that also in current research the
three-shell model is still considered to be sufficient, see [45, 71, 73, 74]. It can be obtained
from the multiple-shell model by setting L = 3. The shells in the three-shell model are the
fluid (cerebrospinal fluid (CSF)) S(%0,%1], the bone (skull) S(%1,%2], and the scalp S(%2,%3]. If
L = 0, the head is modelled as one solid spherical conductor with constant conductivity.

In addition, there exist also multiple-shell models in the literature. For example, the scalp
can be divided into a fat layer, the dermis, and the epidermis, or the skull can be split
into three layers. Then the upper and lower layer are made out of bone, which is a bad
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%L
%L−1 %`

%`−1%1%0 B%0 := {x ∈ R3 | x ≤ %0}
S%0 := {x ∈ R3 | x = %0}

S(%0,%1]

S(%l−1,%l]

S(%L−1,%L]

Figure 3.2: The multiple-shell model of the head

conductor, with a highly conductive middle layer in between, see [117]. However, in the
case of spherical shells, their number and their conductivity does not affect the magnetic
potential B in the exterior of the head at all. Note that also single-shell models exist, see
[180]. Alternatively, elliptic-shell models can be used at least for the electroencephalography
problem, see [46, 54, 56, 71, 95] and the references therein. In the case of a more anatomically
correct conductor model, the magnetic field B can only be calculated numerically, see
[108, 174, 182, 217].
We now concentrate our analysis on the multiple-shell model. With the assumptions of

Assumption 3.2, the secondary current in the Biot-Savart law, see Eq. (3.2), does not vanish
and we obtain Geselowitz’ formula, see [94], given by

B(y) = µ0
4π

∫
B%0
JP(x) ∧ y − x

|y − x|3 dx

− µ0
4π

L∑
l=0

(σl − σl+1)
∫
S%l
u(x)n%l(x) ∧ y − x

|y − x|3 dω(x̂), y ∈ Bext
%L
,

where n%l is the unit normal vector of the surface S%l .
In order to analyze the ill-posedness of the MEG problem in detail, we are interested in a

Fredholm integral equation of the first kind as a formulation of the inverse problem. For this
purpose, we modify the derivation found in [73].

In [200], an approach for a ball-shaped conductor with piecewise constant conductivities on
each shell is presented. This approach is used in [73] to eliminate the secondary current and
a simple derivation of the magnetic and electric potentials and their relations to the neuronal
current are given. In this ansatz, the operator that maps the neuronal current onto the
magnetic field data is optimized for a certain decomposition (i.e. the Hodge decomposition,
see Section 15.1) of the neuronal current and for a reconstruction of only a scalar-valued part
of the current. In contrast, we now want to reconstruct the whole vector-valued current as a
vector-valued quantity. This is why we present a slightly different derivation. The advantage
of a vector-valued reconstruction is the possibility to apply certain physical principles to
it, such as Hamilton’s principle, Maupertuis’ principle, or, more generally, the principle of
stationary action; see [70] for details. In contrast, to the knowledge of the author, there is no
indication that the principle of stationary action could be applied to scalar-valued parts of
the current in order to obtain a unique reconstruction.
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According to [42, 73, 200], the relation between the magnetic potential Ud generated by a
single dipole with dipole moment Q(x) at the (fixed) point x ∈ B%0 is given as

4πy∂U
d

∂y
(x,y) = − (Q(x) ∧ x) ·∇x

1
|y − x|

with y ∈ Bext
%L

. Note that y denotes the measurement position of the magnetic potential or
magnetic field, respectively. Using the Legendre expansion for |x− y|−1 with x < y, see
Eq. (2.2), and interchanging the series and the gradient, which is allowed due to [73], we get

4πy∂U
d

∂y
(x,y) = − (Q(x) ∧ x) ·

∞∑
k=0

1
yk+1∇x

(
xkPk(x̂ · ŷ)

)
.

The zeroth summand equals zero because of the derivative. After dividing the equation
by y, we can interchange the integration with respect to y and the series in the occurring
right-hand side as shown in [73]. Finding the antiderivative with respect to y by taking into
account that the magnetic potential vanishes as y →∞, we obtain

4πUd(x,y) = (Q(x) ∧ x) ·∇x
∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ).

Note that the gradient and the series can be interchanged again, due to the same argumenta-
tion as before. Now, JP denotes the primary current, which is the continuous counterpart
of the dipole moment Q. The corresponding magnetic potential U can be obtained via the
magnetic potential Ud of the single dipole, that is

U(y) :=
∫
B%0

Ud(x,y) dx, y ∈ Bext
%L
.

The integration of Ud with respect to the first argument over the cerebrum B%0 yields for all
y ∈ Bext

%L
the identity

U(y) = 1
4π

∫
B%0

(
JP(x) ∧ x

)
·∇x

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ) dx.

Up to this point, the derivation coincides with the one in [73]. Instead of using Gauß’s
Theorem, see [219], as it is done in [73], we use the circular shift of the triple product, that
is (x∧ y) · z = x · (y ∧ z) for all x, y, z ∈ R3, see [141, Sec. 14]. Due to this novel approach,
we do not need the additional assumption JP|S%0 ≡ 0, which is used in [73]. Thus, we obtain
the L2(B%0)-inner product between the primary current JP and our desired integral kernel
for all y ∈ Bext

%L
, that is

U(y) = 1
4π

∫
B%0
JP(x) ·

(
x ∧∇x

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ)
)

dx

= 1
4π

∫
B%0
JP(x) ·

(
Lx

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ)
)

dx

= 1
4π

∫
B%0
JP(x) ·

(
L∗x̂

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ)
)

dx. (3.3)
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Here, we used properties of the surface curl gradient L∗ stated in Eq. (2.5) in the last step.
For the sake of readability, we introduce for all (x,y) ∈ B%0 × Bext

%L
an abbreviation for the

integral kernel, that is

kM(x,y) := 1
4πL

∗
x̂

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ). (3.4)

Eventually, the magnetic potential has the representation

U(y) =
∫
B%0
JP(x) · kM(x,y) dx, y ∈ Bext

%L
.

Via Eq. (3.1), a relation between the neuronal current and the magnetic field can be
found. An immediate consequence is the formal relation between the primary current and
the magnetic flux density Bν := ν ·B in the direction of the normal vector field ν given by

Bν(y) = µ0ν(y) ·∇y
(∫

B%0
JP(x) · kM(x,y) dx

)
, y ∈ Bext

%L
.

At this point, several questions arise: does the series representation of kM converge in an
appropriate sense? If the series is convergent, does the equation in Eq. (3.3) make sense?
Or more precisely, is the occurring integrand an L1(B%0)-function? If the formula for the
magnetic potential is well-defined, can we evaluate U at the measurement positions and can
we apply the gradient onto U? Eventually, can the magnetic flux density be evaluated at the
sensor positions?

Before we give answers to these questions, we derive an integral equation for the electroen-
cephalography problem.
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Chapter 4.

Modelling the Electroencephalography Problem

Similar to the inverse MEG problem, it is the aim of the inverse electroencephalography
(EEG) problem to reconstruct the neuronal current inside the cerebrum. Besides the magnetic
field, the neuronal current JP induces an electric potential u and its field E, respectively. A
schematic diagram of the installation is given in Fig. 3.1. The electric potential difference,
or voltage difference, is measured via the sensors of the electroencephalograph, which is
non-invasively attached on the head. For this purpose, a reference level for the potential by
means of a reference electrode needs to be chosen in advance. For multi-channel recordings,
it is common to substract the average as reference instead of a single reference, see [172] and
the references therein. The sensor cap can generally contain about 70 sensors.
In the multiple-shell model, see Fig. 3.2, the sensors are non-invasively attached on the

outer shell. In the three-shell model, this outer shell represents the scalp and could be split
into more detailed (sub-)shells. It can, for example, be separated into a fat layer, the dermis,
and the (outer) epidermis, see [117]. However, we name the outer shell S[%L−1,%L] the scalp,
even if the scalp tissue is divided into detailed layers.
As proved in the next section, the number of shells, their radii, and conductivities play

an important role in the derivation of the integral equation corresponding to the electric
problem. This stands in contrast to the inverse MEG problem, where these quantities do not
effect the magnetic potential at all under our model assumption stated in Assumption 3.2.
In analogy to the MEG problem, we start the derivation with the quasi-static version of

Maxwell’s equations. Recall the formulae from Definition 3.1:
E = −∇u, ∇ ·B = 0, ∇ ∧B = µ0J

T,

where E is the electric field, B the magnetic field, u the electric potential, JT = JP + σE
the total current, JP the primary current, σE the Ohmic current with the conductivity
σ, and µ0 is the constant permeability in vacuum. In the inverse EEG problem, we are
interested in the reconstruction of the primary current JP from given measurements of the
electric potential u on the scalp. Note that the total current vanishes outside the head.
For the reconstruction, we transform the quasi-static version of Maxwell’s equations to a
vector-valued (Fredholm) integral equation of the first kind. In our setting, Assumption 3.2
is still required to hold true, except that we first assume a single dipole as the neuronal
current for the derivation.
Since the divergence of the curl equals zero, see [141, Sec. 22], we obtain that the total

current is divergence free in R3, that is

0 =∇ · (∇ ∧B) =∇ ·
(
µ0J

T
)
.

Assuming that the conductivity is piecewise constant, see Assumption 3.2, and combining
the formulae involving the electric field and potential, we obtain

0 =∇ · JT =∇ · JP + σ∇ ·E =∇ · JP − σ∆u. (4.1)
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Under the assumption that suppJP ⊆ B%0 , see Assumption 3.2, and in the case of a single
dipole at the (fixed) position x with dipole moment Q, the current can be modelled as a
distribution. For the derivation of the EEG integral operator we, hence, need some basics of
distribution theory, which are summarized in Section 2.5. Thus, we can model the current by

JP(ψ) = Qδx(ψ) for all ψ ∈ D(B%0), (4.2)

where δ is the Dirac distribution, see Example 2.34. The set of all test-functions D(B%0)
is defined in Definition 2.33. In addition, Eq. (4.2) is meant component-wise, since the
dipole moment is a vector-valued quantity, that is Qδx(ψ) = Qψ(x) for all test-functions
ψ ∈ D(B%0). In this setting, we can define the divergence of the distribution by means of the
scalar-valued differential operator D := Q ·∇ = ∑3

k=1Qk∂k with constant coefficients Qk
(i.e. kth component of the dipole moment Q) and partial derivatives ∂k in the kth direction
for k = 1, 2, 3, that is

∇ · (Qδx(ψ)) := Q ·∇δx(ψ) =
3∑

k=1
Qk∂kδx(ψ) = Dδx(ψ).

We follow the approach in [95], where the electric potential u is split into the parts corres-
ponding to the different regions in the three-shell model, and transfer it to the multiple-shell
model, that is for fixed x ∈ B%0 we set

ud(x,y) =


ud

0(x,y) if y ∈ B%0 ,

ud
l (x,y) if y ∈ S(%l−1,%l], l = 1, . . . , L,
ud
L+1(x,y) if y ∈ Bext

%L
.

(4.3)

The superscript d indicates the association of the electric potential to the single dipole
distribution. Recall that L is the number of shells in the multiple-shell model, see Assump-
tion 3.2. Therein, the conductivity σ of the tissues is assumed to be piecewise constant and
equal to σj on the shell S(%l−1,%l] for all l = 1, . . . , L and σ0 inside B%0 . Thus, we obtain the
following system due to the restrictions of the distributions over the particular spaces, see
Definition 2.33. We denote the distributions belonging to the electric potential with U and
further indices. This notation already suggests that the occurring distributions are regular
distributions. They are given by

Uud
0

: D (B%0)→ R, σ0∆Uud
0

= Dδx, (4.4a)

Uud
l

: D
(
S(%l−1,%l]

)
→ R, ∆Uud

l
= 0, (4.4b)

Uud
L+1

: D
(
Bext
%L

)
→ R, ∆Uud

L+1
= 0 (4.4c)

with l = 1, . . . , L. Thus, we obtain L distributional Laplace equations from Eq. (4.4b), that
is one for each shell.
In order to solve Poisson’s equation stated in Eq. (4.4a), we use a classical result from

the theory of distributions. We can apply Lemma 2.43 to Poisson’s equation, that is
∆Uud

0
= σ−1

0 Dδx =: V, since the distributions Uud
0
and V have compact supports. Hence,

the particular solution of the distributional Poisson’s equation is given by Uud
0

= −V ∗ Vg.
Here, Vg is the regular distribution fulfilling ∆Vg = δ0. In our setting, the representation
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g = (4π|·|)−1 for the fundamental solution g of Laplace’s equation is well-known, see also
Lemma 2.36. A closer representation of the distribution Uud

0
is obtained by further calculating

the convolution of the distributions V and Vg, see Definition 2.38.
The Delta distribution and its derivative are distributions with compact support. Hence,

we obtain for the particular solution with Lemma 2.40 and for the convolution with the
Delta distribution, see Lemma 2.42, the representation

Uud
0

= −
( 1
σ0
Dδx

)
∗ Vg = − 1

σ0
D (δx ∗ Vg) = − 1

σ0
D (τxVg) , (4.5)

where τ denotes the usual translation operator (τxV)ψ := V(τ−xψ), see Definition 2.41. For
the distribution on the right-hand side, the following holds true for all ψ ∈ D(B%0) since D is
a differential operator of order 1, see Example 2.34:

−D(τxVg)ψ = Vg(τ−xDψ) =
∫
R3
g(z)(τ−xDψ(z)) dz.

In the next equation, we proceed by manipulating the integral on the right-hand side. We
observe that the distribution on the left-hand side of this equation is regular, thus the
distribution on the left-hand side of Eq. (4.5) is also regular. More precisely, we have∫

R3
g(z)Dψ(z + x) dz = −

∫
R3

(Dg)(z)ψ(z + x) dz

= −
∫
R3

(Dg)(y − x)ψ(y) dy

= −
∫
R3

(
Q ·∇y

1
4π|y − x|

)
ψ(y) dy

=
∫
R3

(
Q ·∇x

1
4π|y − x|

)
ψ(y) dy.

Hence, for an arbitrary x ∈ B%0 , the distribution from Eq. (4.5) is generated by a locally
integrable function that equals the mapping y 7→ (4πσ0)−1Q ·∇x|y−x|−1 almost everywhere.
From the equivalence class of all L1(B%0)-functions generating Uud

0
, we choose the generator

up
0 defined by

σ0u
p
0(x,y) = Q ·∇x

1
4π|y − x| , x, y ∈ B%0 , x 6= y. (4.6)

In the following calculations, up
0 denotes this continuous (except for the singularity) repres-

entative.
For each fixed x ∈ B%0 , the general solution of Poisson’s equation with respect to y ∈ B%0

in Eq. (4.4a) is given by the sum of the particular solution up
0 depending on the right-hand

side of Eq. (4.4a), see [95], and a harmonic function denoted by uh
0 :

ud
0(x,y) = up

0(x,y) + uh
0(x,y), x, y ∈ B%0 . (4.7)

For the sake of comprehensibility, we denote explicitly the dependency of the points x and
y. The harmonic function can be represented by means of a fundamental system of the
Laplacian. The corresponding coefficients can be determined by the boundary conditions,
for which we need a solution of Laplace’s equations on the other shells.
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For Laplace’s equation Eq. (4.4b) we can make the following considerations. The zero
function is a continuous function and Eq. (4.4b) holds true in the sense of the distribution
theory, hence, ud

l is at least twice continuously differentiable for l = 1, . . . , L and the
Laplacian of ud

l exists at every point y ∈ Bext
%0 and is equal to zero, see [90, p. 66]. Hence, the

distributional and the classical solution of the differential equation coincide. Furthermore,
on each particular shell, ud

l is a twice continuously differentiable function for all l = 1, . . . , L.
In addition, we use the widely known transmission conditions stated in [46, 95]. These
Dirichlet and Neumann boundary conditions, considering that in the spherical case the
normal derivative and the radial derivative coincide, are given for all l = 0, . . . , L by

ud
l (x,y) = ud

l+1(x,y), σl
∂ud

l (x,y)
∂y

= σl+1
∂ud

l+1(x,y)
∂y

, y ∈ S%l . (4.8)

This system of partial differential equations and the corresponding Dirichlet and Neumann
boundary conditions are, for instance, given in [45, 71] for the spherical three-shell model.
Due to the Dirichlet condition, the electric potential is continuous in the second argument
on the boundary spheres. Thus, Eq. (4.3) also holds true for the corresponding closed shells.
In order to solve the problem, we expand the classical solutions into series of inner and

outer harmonics since they form a fundamental system for the Laplacian. For the harmonic
part of the solution in the cerebrum, see Eq. (4.7), we obtain

uh
0(x,y) =

∞∑
k=0

2k+1∑
i=1

ᾱ(0)
k,i(x)ykYk,i(ŷ), x, y ∈ B%0

due to its continuity at the origin. We can also give an expansion of the particular solution
in Eq. (4.7) by using the same identity as in Eq. (2.2) and assuming x < y. Thus,

σ0u
p
0(x,y) = 1

4πQ ·∇x
∞∑
k=0

xk

yk+1Pk(x̂ · ŷ)

= Q ·∇x
∞∑
k=0

2k+1∑
i=1

1
2k + 1

xk

yk+1Yk,i(x̂)Yk,i(ŷ)

=
∞∑
k=0

2k+1∑
i=1

Q ·∇x
(
xkYk,i(x̂)

)
2k + 1

1
yk+1Yk,i(ŷ).

The interchanging of the series and the derivative is valid, see [73]. Summing up, the function
ud

0 has for x < y the representation

ud
0(x,y) =

∞∑
k=0

2k+1∑
i=1

ᾱ(0)
k,i(x)yk + 1

σ0

Q ·∇x
(
xkYk,i(x̂)

)
2k + 1

1
yk+1

Yk,i(ŷ). (4.9)

For the sake of readability, we define β̄(0)
k,i(x) := 1/(σ0(2k + 1))Q ·∇x(xkYk,i(x̂)). If L = 0,

that is the case of a single ball-shaped conductor with constant conductivity containing the
dipole, only ᾱ(0)

k,i needs to be determined. This can be calculated straightforward using the
Neumann condition in Eq. (4.8). Here, the conductivity σL+1 vanishes, which implies that
the right-hand side of the Neumann condition equals zero. Hence, we assume that L > 0 for
the next steps of the derivation.
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Since the electric potential is harmonic inside the diverse shells of our model, we can
expand it into the sum of inner and outer spherical harmonics on each region. This is a
particular case of the expansion into interior and exterior ellipsoidal harmonics used in
[43, 95]. For all l = 1, . . . , L+ 1, we obtain

ud
l (x,y) =

∞∑
k=0

2k+1∑
i=1

(
ᾱ(l)
k,i(x)yk + β̄(l)

k,i(x) 1
yk+1

)
Yk,i(ŷ), y ∈ S[%l−1,%l]. (4.10)

For the spherical three-shell model this formula can also be found in [32]. Inserting the
expansions from Eqs. (4.9) to (4.10) into the boundary conditions from Eq. (4.8), we obtain,
for l = 0, . . . , L, the following linear system for the coefficients:

0 = %2k+1
l

(
ᾱ(l)
k,i(x)− ᾱ(l+1)

k,i (x)
)

+ β̄(l)
k,i(x)− β̄(l+1)

k,i (x), (4.11a)

0 = %2k+1
l k

(
σlᾱ

(l)
k,i(x)− σl+1ᾱ

(l+1)
k,i (x)

)
+ (k + 1)

(
σl+1β̄

(l+1)
k,i (x)− σlβ̄(l)

k,i(x)
)
. (4.11b)

For all l = 0, . . . , L, we gain the identities β̄(l)
0,1(x) = 0 and ᾱ(l)

0,1(x) = ᾱ(L+1)
0,1 (x), since

Q ·∇x(xkYk,i(x̂)) vanishes for k = 0. Without additional information, we cannot obtain
a unique solution for the coefficients for k = 0. From Maxwell’s equations, we have the
additional information that the electric potential is regular at infinity, see Definition 3.1.
Thus, limy→∞ ud

L+1(x,y) = 0 and we obtain ᾱ(L+1)
k,i ≡ 0 for all k ∈ N0 and i = 1, . . . , 2k + 1.

Eventually, the zeroth summand in the expansion series of each particular electric potential
vanishes.

Long but straightforward calculations, which are not shown here, lead to the linear
dependency of ᾱ(l)

k,i(x) and β̄(l)
k,i(x) on Q ·∇x(xkYk,i(x̂)) for all k ∈ N, i = 1, . . . , 2n+ 1, and

l = 0, . . . , L, see [45, 95]. Based on this linear dependency, we introduce the abbreviations

ᾱ(l)
k,i(x) =: α(l)

k

(
Q ·∇x(xkYk,i(x̂))

)
,

β̄(l)
k,i(x) =: β(l)

k

(
Q ·∇x(xkYk,i(x̂))

)
for all k ∈ N, i = 1, . . . , 2n+ 1, and all l = 0, . . . , L. In the particular case of l = 0 this leads
for all k ∈ N to

β(0)
k := 1

σ0(2k + 1) . (4.12)

The remaining coefficients α(l)
k and β(l)

k do not depend on x and i anymore for all k ∈ N and
l = 0, . . . , L.

Using the introduced abbreviation, we obtain for y in the particular domains and x ∈ B%0

the following set of equations:

ud
l (x,y) = Q ·

( ∞∑
k=1

2k+1∑
i=1

(
α(l)
k y

k + β(l)
k

1
yk+1

)
∇x

(
xkYk,i(x̂)

)
Yk,i(ŷ)

)
, (4.13)

for l = 0, . . . , L + 1. These equations are also stated in [45] in the case of the three-shell
model.
Since the coefficients are now independent of the order of the spherical harmonics, we

are able to interchange the summation over i with the gradient. Afterwards, we apply the
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Addition Theorem, see Theorem 2.25, to the expression. Independent of l = 0, . . . , L, this
leads for all k ∈ N to the identity

∇x

(
xk

2k+1∑
i=1

Yk,i(x̂)Yk,i(ŷ)
)

= 2k + 1
4π ∇x

(
xkPk(x̂ · ŷ)

)
.

Via Theorem 2.25 and Definition 2.22, we immediately obtain that for fixed y ∈ B%0 the
mapping x 7→ xkPk(x̂ · ŷ) is a non-constant, homogeneous polynomial of degree k ≥ 1.
For different degrees, these polynomials are linearly independent. Thus, for all k ∈ N the
gradients on the right-hand side of the previous equation are linearly independent.
Using the Addition Theorem, we obtain for all l = 0, . . . , L the expansion

ud
l (x,y) = 1

4πQ·
( ∞∑
k=1

(2k + 1)
(
α(l)
k y

k + β(l)
k

1
yk+1

)
∇x

(
xkPk(x̂ · ŷ)

))
. (4.14)

Due to the linear independence with respect to k ∈ N of the functions on the right-hand
side, the transmission conditions in Eq. (4.8) applied to Eq. (4.13) yield for all k ∈ N and
l = 1, . . . , L a system of linear equations for the expansion coefficients. This system can be
obtained in total analogy to the one from Eq. (4.11) and it is given by

%2k+1
0

(
α(0)
k − α

(1)
k

)
− β(1)

k = −1
(2k + 1)σ0

, (4.15a)

%2k+1
0 k

(
σ0α

(0)
k − σ1α

(1)
k

)
+ (k + 1)σ1β

(1)
k = k + 1

2k + 1 , (4.15b)

%2k+1
l

(
α(l)
k − α

(l+1)
k

)
+ β(l)

k − β
(l+1)
k = 0, (4.15c)

%2k+1
l k

(
σlα

(l)
k − σl+1α

(l+1)
k

)
+ (k + 1)

(
σl+1β

(l+1)
k − σlβ(l)

k

)
= 0. (4.15d)

This system is also stated in [45] for the three-shell model. Note that β(0)
k and α(L+1)

k are
already known. Thus, we obtain 2L+2 unknown variables and 2L+2 equations to determine
them for each k ∈ N. Since the electric potential is measured on the scalp, we are mainly
interested in the coefficients α(L)

k and β(L)
k for the representation of ud

L in Eq. (4.14). Thus,
we do not need Eq. (4.15c) in the case of l = L. In addition, the conductivity outside the
brain vanishes. Consequently, Eq. (4.15d) reduces to

α(L)
k = k + 1

k
%
−(2k+1)
L β(L)

k , (4.16)

where the coefficients corresponding to the electric potential ud
L+1 do not appear. Note that

Eq. (4.16) also holds true in the case of L = 0. Thus, the system reduces to a system with
2L+ 1 equations and 2L+ 1 unknown variables.

Up to this point, there exist several strategies to solve the system of linear equations, which
in practice has to be done a large number of times with varying k ∈ N. The straightforward
method is to transfer the system into a matrix-vector representation and apply Gaussian
elimination. In the case of the three-shell model, that is L = 3, it is stated in [73] that this
matrix is ill-conditioned. The size of the corresponding matrix is (2L+ 1)× (2L+ 1). The
classical Gaussian algorithm for solving this linear system requires O((2L+ 1)3) operations,
see [35].
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For the sake of computing effort and stabilization effects, we further analyze this system
of linear equations and present a second approach to solve the system. The aim is to achieve
a tridiagonal matrix. The advantage of a tridiagonal matrix over an arbitrary matrix is the
computational cost for the inversion. The solution of a system of linear equations with a
tridiagonal matrix of size (2L+ 1)× (2L+ 1) can be obtained in O(2L+ 1) operations by
means of the Thomas algorithm, see [35].
By means of rearranging and insertion of Eq. (4.15c) into Eq. (4.15d), we obtain for

Eq. (4.15d) the identity

%2k+1
l k (σl − σl+1)α(l+1)

k + ((k + 1)σl+1 + kσl)β(l+1)
k − (2k + 1)σlβ(l)

k = 0. (4.15d′)

The coefficient β(l+1)
k in Eq. (4.15c) can be eliminated by Eq. (4.15d′). Thus,

%2k+1
l

(
((k + 1)σl+1 + kσl)α(l)

k − (2k + 1)σl+1α
(l+1)
k

)
+ (k + 1) (σl+1 − σl)β(l)

k = 0. (4.15c′)

Similarly, β(1)
k can be eliminated in Eq. (4.15a) by means of Eq. (4.15b), that is

%2k+1
0 ((k + 1)σ1 + kσ0)α(0)

k − %2k+1
0 (2k + 1)σ1α

(1)
k = (k + 1)(σ0 − σ1)

(2k + 1)σ0
. (4.15a′)

Due to Eqs. (4.15b), (4.16), and (4.15a′) to (4.15d′), we can find a tridiagonal matrix Ak
and a right-hand side bk such that Akzk = bk for all k ∈ N. We summarize our results in
the next lemma for the particular case of the three-shell model.

Lemma 4.1. Let L = 3, then the coefficients of the fundamental system expansions of the
electric potential on each particular shell are for all k ∈ N uniquely determined by the solution
of the system of linear equations Akzk = bk. The quantities are defined by

Ak :=

(k+1)σ1+kσ0 −(2k+1)σ1 0 0 0 0 0
kσ0 −kσ1

(k+1)σ1
%2k+1
0

0 0 0 0

0 (k+1)σ2+kσ1
(k+1)(σ2−σ1)

%2k+1
1

−(2k+1)σ2 0 0 0

0 0 −σ1(2k+1)
%2k+1
1

k(σ1−σ2) (k+1)σ2+kσ1
%2k+1
1

0 0

0 0 0 (k+1)σ3+kσ2
(k+1)(σ3−σ2)

%2k+1
2

−(2k+1)σ3 0

0 0 0 0 −σ2(2k+1)
%2k+1
2

k(σ2−σ3) (k+1)σ3+kσ2
%2k+1
2

0 0 0 0 0 %2k+1
3 k −(k+1)


zk :=

(
α(0)
k α(1)

k β(1)
k α(2)

k β(2)
k α(3)

k β(3)
k

)T
,

bk :=
( (k+1)(σ0−σ1)
%2k+1

0 (2k+1)σ0

k+1
%2k+1

0 (2k+1) 0 0 0 0 0
)T

.

Lengthy but easy calculations, which were done with Mathematica [223], show that the matrix
Ak is a full-rank matrix for all k ∈ N. Thus, the system is solvable for each k ∈ N and
we are able to obtain a unique solution for the particular coefficients. However, the matrix
is ill-conditioned, which is also stated in [73]. Due to the previous considerations, we set
α(l)

0 = β(l)
0 = 0 for all l = 0, . . . , 3.
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However, we are neither able to get a handy representation of the coefficients α(L)
k and β(L)

k

by means of the inversion of the matrix Ak nor its non-tridiagonal predecessor. Nevertheless,
for the convergence of the series in ud

L, see Eq. (4.14), we need the asymptotic behaviour of
α(L)
k and β(L)

k as k →∞.
Inspired by an idea of P. Hashemzadeh and A.S. Fokas, and co-authors [49, 114], we can

use a third approach in order to obtain the coefficients. This approach is based on the
ansatz of [171, 174, 175, 226, 227] and the references therein. They use the Wronskian in
order to solve Poisson’s equation in Eq. (4.4a). They separate the sought function into
an angular and a radial part and reduce the differential equation to a second-order linear
ordinary differential equation. Then, they construct two linearly independent solutions of
the homogeneous equation fulfilling the Dirichlet and Neumann boundary conditions stated
in Eq. (4.8). For this construction, they use a 2× 2 matrix to calculate the coefficients in
Eq. (4.14). These two solutions of the homogeneous equation are combined by means of
the Wronskian to construct the unique solution of the inhomogeneous equation fulfilling
Eq. (4.8).
Since we have already solved the inhomogeneous differential equation, we do not need

the part concerning the Wronskian of this ansatz. However, we can use the 2 × 2 matrix
approach to solve Eq. (4.15). For l = 0, . . . , L− 1, the Eqs. (4.15c) and (4.15d) can also be
represented for fixed k ∈ N by(

%2k+1
l 1

%2k+1
l kσl −(k + 1)σl

)(
α(l)
k

β(l)
k

)
=
(

%2k+1
l 1

%2k+1
l kσl+1 −(k + 1)σl+1

)(
α(l+1)
k

β(l+1)
k

)
.

The latter formula is also stated in [32] for the three-shell model. However, in the setting
of [32], the conductivities of the different shells are sought and not the neuronal current.
For this purpose, it is assumed that the neuronal current is made out of a fixed number of
pointwise dipolar sources. For fixed conductivities we are interested in the reconstruction of
the neuronal current, thus, we do not follow [32] in the following calculations.

The inversion of the right-hand side matrix is admissible if %2k+1
l (2k + 1)σl+1 6= 0. This is

the case if the tissue in the (l+ 1)th shell has a positive conductivity, which is fulfilled for all
l = 0, . . . , L− 1 due to Assumption 3.2. Thus, this is equivalent to(

α(l+1)
k

β(l+1)
k

)
= 1

2k + 1

 k + 1 + σl
σl+1

k (k + 1)
(
1− σl

σl+1

)
%
−(2k+1)
l

k
(
1− σl

σl+1

)
%2k+1
l k + (k + 1) σl

σl+1

(α(l)
k

β(l)
k

)
.

Recall that β(0)
k is already known from the particular solution of Poisson’s equation, see

Eq. (4.12), and that the representation of ud
L is sought. Thus, we arrive at(

α(L)
k

β(L)
k

)
= 1

(2k + 1)L

L−1∐
l=0

 k + 1 + σl
σl+1

k (k + 1)
(
1− σl

σl+1

)
%
−(2k+1)
l

k
(
1− σl

σl+1

)
%2k+1
l k + (k + 1) σl

σl+1

(α(0)
k

β(0)
k

)
(4.17)

=: M(L)

(
α(0)
k

β(0)
k

)
.

The matrix product ∐L−1
l=0 is meant as follows: first, the matrix with the lowest index is

stated and then, from the left-hand side, the matrix with the next higher index is multiplied,

48



that is, for example, (∐L−1
l=0 Al)b := AL−1 · · ·A1A0b. The order of multiplication is relevant,

since matrix multiplication is non-commutative. The coefficients α(L)
k and β(L)

k are linearly
dependent, see Eq. (4.16). Hence, we obtain two equations for two unknowns. Let m(L)

i,j

denote the entry in the ith row and the jth column of the matrix M(L). Note that the matrix
M(L) and its entries also depend on the order k, which is omitted in the notation for the
sake of readability. Then

α(L)
k = m(L)

1,1α
(0)
k +m(L)

1,2β
(0)
k , β(L)

k = m(L)
2,1α

(0)
k +m(L)

2,2β
(0)
k .

Using Eq. (4.16), a straightforward calculation yields

β(L)
k

(
k + 1
k

%
−(2k+1)
L −

m(L)
1,1

m(L)
2,1

)
= −

m(L)
1,1m

(L)
2,2 −m(L)

1,2m
(L)
2,1

m(L)
2,1

β(0)
k .

With β(0)
k = (σ0(2k + 1))−1 and the formal identity det(M(L)) = m(L)

1,1m
(L)
2,2 −m(L)

1,2m
(L)
2,1, we

can solve this equation for β(L)
k and get

β(L)
k = k

σ0(2k + 1)
(
km(L)

1,1 − (k + 1)m(L)
2,1%

−(2k+1)
L

) det
(
M(L)) .

The determinant of M(L) is calculated as

det
(
M(L)) = 1

(2k + 1)2L

L−1∏
l=0

((
k + 1 + σl

σl+1
k

)(
k + (k + 1) σl

σl+1

)

−k(k + 1)
(

1− σl
σl+1

)2
)

= 1
(2k + 1)2L

L−1∏
l=0

(2k + 1)2 σl
σl+1

= σ0
σL
.

Thus, we eventually obtain for all k ∈ N the representation

β(L)
k = k

σL(2k + 1)
(
km(L)

1,1 − (k + 1)m(L)
2,1%

−(2k+1)
L

) . (4.18)

Independent of the way of calculating the coefficients, we define for the sake of brevity the
abbreviation

Hk(y) := α(L)
k yk + β(L)

k

1
yk+1 , y ∈ [%L−1, %L], (4.19)

for all k ∈ N. Recall for all k ∈ N the relation between α(L)
k and β(L)

k in Eq. (4.16). Hence,
the function Hk becomes

Hk(y) =
(
k + 1
k

(
y

%L

)2k+1
+ 1

)
β(L)
k

1
yk+1 , y ∈ [%L−1, %L]. (4.20)
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Note that Hk depends on the radius %L of the scalp for all k ∈ N and of the number of
shells L ∈ N. For the sake of readability, we omit this dependency in our notation. Inserting
Eq. (4.20) into the expansion of ud

L from Eq. (4.14), we obtain the representation

ud
L(x,y) = 1

4πQ·
( ∞∑
k=1

(2k + 1)
(
k + 1
k

(
y

%L

)2k+1
+ 1

)
β(L)
k

1
yk+1∇x

(
xkPk(x̂ · ŷ)

))

= 1
4πQ·

( ∞∑
k=1

(2k + 1)Hk(y)∇x
(
xkPk(x̂ · ŷ)

))
.

for the electric potential on the scalp corresponding to a single dipole. Often, in the literature,
for fixed x ∈ B%0 the restriction of ud

L(x, ·) onto the sphere S%L is considered. Using the
abbreviation

Hk := Hk(%L) = β(L)
k

1
%k+1
L

2k + 1
k

, (4.21)

we can represent this restriction by

ud
L(x, %Lŷ) = 1

4πQ·
( ∞∑
k=1

(2k + 1)2

k
β(L)
k

1
%k+1
L

∇x
(
xkPk(x̂ · ŷ)

))
.

For the comparison of our results with previous approaches, we also use the restriction onto
the outer sphere in Chapter 15.
So far, we have derived an expansion for the electric potential corresponding to a single

dipole in inner and outer harmonics based on solutions of distributional Poisson’s and
Laplace’s equations. As we have already pointed out, this expansion coincides with previous
expansions in the literature. In addition, we presented two novel approaches in order to
compute the occurring coefficients. The first approach leads to a tridiagonal matrix, which
reduces the computational cost for the inversion. The second approach is based on existing
ideas for a recursive computation and yields a novel closed formula for the coefficients
{β(L)

k }k∈N . This formula is required to answer the following question: does the series derived
for the electric potential converge?
Obviously, the asymptotic behaviour of Hk(y) as k → ∞ for all y ∈ [%L−1, %L] plays an

important role in order to guarantee the convergence. To this end, we analyze the asymptotic
behaviour of β(L)

k as k →∞ in the next lemma.

Lemma 4.2. Let Assumption 3.2 be fulfilled, let the number of shells L ∈ N0 be fixed, and
let β(L)

k be defined as in Eq. (4.18) for k ∈ N. Then(
k 7→

∣∣∣β(L)
k

∣∣∣) ∈ O(k−1) as k →∞.

In the case of L = 0, we get the representation

β(0)
k = 1

σ0(2k + 1) .

Proof. First, we assume L = 0. In this case, ud
0 can be measured non-invasively and from

Eq. (4.12) we immediately obtain

β(0)
k = 1

σ0(2k + 1) ∈ O(k−1).
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Now, let L > 0. We analyze the matrix entries of M(L) occurring in the denominator of β(L)
k .

Since M(L) is constructed iteratively, we use a mathematical induction over L to prove the
statement. For L = 1, we obtain

M(1) = 1
2k + 1

 k+1+σ0
σ1
k (k+1)

(
1−σ0

σ1

)
%
−(2k+1)
0

k

(
1−σ0

σ1

)
%2k+1

0 k+(k+1)σ0
σ1

 .
Obviously, for a finite real constant C(1) > 0, the following limits hold true, since %0 < %1
and the conductivities on each shell are positive, see Assumption 3.2:

lim
k→∞

∣∣∣m(1)
1,1

∣∣∣ = 1
2

(
1 + σ0

σ1

)
=: C(1),

lim
k→∞

∣∣∣m(1)
2,1%

−(2k+1)
1

∣∣∣ = 0.

Now, we assume for an arbitrary L ∈ N that the entries in the first column of M(L−1) fulfil

lim
k→∞

∣∣∣m(L−1)
1,1

∣∣∣ = C(L−1),

lim
k→∞

∣∣∣m(L−1)
2,1 %

−(2k+1)
L−1

∣∣∣ = 0

for a finite real constant C(L−1) > 0. For M(L), we obtain the representation

M(L) = 1
2k + 1

 k+1+σL−1
σL

k (k+1)
(

1−σL−1
σL

)
%
−(2k+1)
L−1

k

(
1−σL−1

σL

)
%2k+1
L−1 k+(k+1)σL−1

σL

M(L−1).

By performing the matrix multiplication, we get

m(L)
1,1 = 1

2k + 1

((
k + 1 + σL−1

σL
k

)
m(L−1)

1,1 + (k + 1)
(

1− σL−1
σL

)
%
−(2k+1)
L−1 m(L−1)

2,1

)
,

m(L)
2,1 = 1

2k + 1

(
k

(
1− σL−1

σL

)
%2k+1
L−1 m

(L−1)
1,1 +

(
k + (k + 1)σL−1

σL

)
m(L−1)

2,1

)
.

For the limit, we obtain, due to the existence of the limits concerning the matrix entries of
M(L−1), the result

lim
k→∞

∣∣∣m(L)
1,1

∣∣∣ = lim
k→∞

∣∣∣∣( k + 1
2k + 1 + σL−1

σL

k

2k + 1

)
m(L−1)

1,1

+ k + 1
2k + 1

(
1− σL−1

σL

)
%
−(2k+1)
L−1 m(L−1)

2,1

∣∣∣∣
=
∣∣∣∣C(L−1)

(
lim
k→∞

k + 1
2k + 1 + σL−1

σL
lim
k→∞

k

2k + 1

)∣∣∣∣
= 1

2

(
1 + σL−1

σL

)
C(L−1) =: C(L).

The limit exists because the limits of all summands exist. It is a finite and positive constant.
In analogy, we get with %L−1 < %L the identity

lim
k→∞

∣∣∣m(L)
2,1%

−(2k+1)
L

∣∣∣ = lim
k→∞

∣∣∣∣∣
(

k

2k + 1

(
1− σL−1

σL

)(
%L−1
%L

)2k+1
m(L−1)

1,1

+
(

k

2k + 1 + k + 1
2k + 1

σL−1
σL

)
m(L−1)

2,1 %
−(2k+1)
L−1

(
%L−1
%L

)2k+1
)∣∣∣∣∣

= 0.
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This concludes the induction. Finally, we obtain the desired asymptotic behaviour of the
sought coefficients β(L)

k for all L ∈ N, that is

lim sup
k→∞

∣∣∣∣∣β
(L)
k

k−1

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣∣ k

σL
(
km(L)

1,1 − (k + 1)m(L)
2,1%

−(2k+1)
L

) k

2k + 1

∣∣∣∣∣∣
= 1

2σL
lim
k→∞

∣∣∣∣∣∣ 1
m(L)

1,1 − k+1
k m(L)

2,1%
−(2k+1)
L

∣∣∣∣∣∣
= 1

2σL
1

C(L)
<∞.

From the definition of C(1) and C(L) in the last proof, we immediately obtain the next
result.

Corollary 4.3. Let Assumption 3.2 be fulfilled, let the number of shells L ≥ 2 be fixed, let
β(L)
k be defined as in Eq. (4.18) for k ∈ N, and let the sequence {kβ(L)

k }k∈N be monotonically
increasing. Then

sup
k∈N

∣∣∣kβ(L)
k

∣∣∣ ≤ 1
2σL

1
C(L)

,

where the constant is given recursively for L = 2, . . . , L by

C(L) = 1
2L

L∏
l=1

(
1 + σl−1

σl

)
.

For further calculations, we need more properties of the coefficients β(L)
k for all k ∈ N.

Lemma 4.4. Let Assumption 3.2 be fulfilled and let L ∈ N0 be fixed. Then β(L)
k 6= 0 for all

k ∈ N.

Proof. For L = 0, the statement is clear due to the representation of β(L)
k from Lemma 4.2.

The statement for L > 1 remains to be proved. Let us assume that β(L)
k = 0 for an arbitrary

k ∈ N. Then, by means of Eq. (4.16), we get α(L)
k = 0. Inserting this into Eqs. (4.15c)

and (4.15d) for l = L− 1, we obtain two equations for the unknown coefficients β(L−1)
k and

α(L−1)
k , that is

%2k+1
L−1

(
α(L−1)
k

)
+ β(L−1)

k = 0,

%2k+1
L−1 kσL−1α

(L−1)
k − (k + 1)σL−1β

(L−1)
k = 0.

Inserting the first equation into the second, we directly obtain α(L−1)
k = 0 and, thus, β(L−1)

k = 0.
Consequently, this can be done inductively for l = L− 2, . . . , 1 and we obtain α(l)

k = β(l)
k = 0

for all l = 1, . . . , L. Finally, Eqs. (4.15a) and (4.15b) yield

%2k+1
0 α(0)

k = −1
(2k + 1)σ0

,

%2k+1
0 kσ0α

(0)
k = k + 1

2k + 1 .

Both equations cannot be true simultaneously. Hence, we arrived at a contradiction and we
conclude β(L)

k 6= 0 for all k ∈ N.
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After these calculations, we can concentrate our analysis on the derivation of an integral
equation of the first kind for the inverse EEG problem in the case of a continuous dipole
distribution. In Eq. (4.14), we found the electric potential ud

L(x, ·) in the case of a single
dipole located at x. In order to obtain the electric potential in the case of a continuous
dipole distribution, we use the superposition principle and integrate our solution ud

L over the
cerebrum B%0 with respect to the first argument. We concentrate our analysis on the function
ud
L since this is the only part of the electric potential that can be measured non-invasively

by the electroencephalograph. Note that the discrete dipole moment becomes the neuronal
current JP in the transition to the continuous dipole distribution. This nomenclature is
often used in the literature, see, for instance, [73] and the references therein.

Corollary 4.5. Let Assumption 3.2 with L ≥ 2 hold true. The electric potential uL on the
outer shell S[%L−1,%L] is given by

uL(y) :=
∫
B%0

ud
L(x,y) dx =

∫
B%0
JP(x) · kE(x,y) dx. (4.22)

The occurring integral kernel has for all (x,y) ∈ B%0 × S[%L−1,%L] the formal representation

kE(x,y) := 1
4π

∞∑
k=1

(2k + 1)Hk(y)∇x
(
xkPk(x̂ · ŷ)

)
. (4.23)

Here, as in the inverse magnetic case, JP denotes the primary current that is derived from
the integration of terms involving the dipole moment Q.

This integral equation for the EEG problem is also stated in [45, 73] for the restriction of
the electric potential onto the sphere S%L.
In this chapter, we derived a representation of the electric potential in the outer (scalp)

shell induced by a single dipole in the cerebrum. Based on the superposition principle, this
result could be transferred to the continuous dipole distribution. Thus, we achieved an
integral equation relating the neuronal current inside the cerebrum with the electric potential
in the outside of the head.
In analogy to the modelling of the MEG problem, some additional questions arise: does

the series in the representation of kE converge? Is the integrand in Eq. (4.22) integrable?
And can we evaluate the electric potential at the sensor positions?

In order to simultaneously answer the open questions for the MEG and EEG problem,
we introduce a particular class of integral equations with corresponding kernels in the next
part.
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Part II.

Solving the Direct Problem
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Preliminaries

In this part, we solve the direct problem related to the MEG and EEG integral equation,
that is determining the magnetic flux density and the electric potential from a given neuronal
current. For both problems, we have already derived two integral equations relating these
physical quantities with each other in the previous part. In this context, some of the open
questions can be answered: are the two occurring integral kernels, which are stated in Eq. (3.4)
and Eq. (4.23), respectively, and their corresponding integral equations well-defined? Can
we state a formula for the solution of the related direct problem? Is the achieved potential
smooth enough for our application?

In this preliminary chapter, we give an overview over the mathematical foundations that
are required in order to solve the direct MEG and EEG problem. For the answers to these
questions, some special functions are required. We need an orthonormal basis in the vector-
valued space L2(B%0) for analyzing the direct problem. Based on a separation ansatz, this
basis consists of two types of functions. The first type is given by a scalar-valued orthonormal
system on the interval, which is presented in Section 5.1. The second type of functions, which
is presented in Section 5.2, is a vector-valued version of the already introduced spherical
harmonics on the sphere. The vector-valued spherical orthonormal system is also used for
the analysis of the integral kernels. For this purpose, a related vector-valued analogue of the
Legendre polynomials is introduced in Section 5.3 and corresponding inner and outer vector
spherical harmonics are described in Section 5.4. Completing the list of used vector-valued
orthonormal functions, we introduce a (vector-valued) orthonormal basis for L2(B%0) in
Section 5.5.

5.1. Orthonormal Systems on the Interval

We have already introduced some special functions on the interval, namely the Jacobi
polynomials, in Section 2.2. Therein, we stated that within this work mainly two particular
cases of Jacobi polynomials are used. The first particular case is given by the Legendre
polynomials, which are defined in Definition 2.5 and are important functions in the context
of spherical harmonics. The second particular case of Jacobi polynomials considered in this
work is used as the radial part of an orthonormal system on the ball.

The Jacobi polynomials are defined over the interval [−1, 1]. For the construction of
orthonormal basis functions on the ball, a transformation of these polynomials to the interval
[0, R] is required. This particular orthonormal basis is first used by the author in [147, 162]
and includes Jacobi polynomials with α = 0 and β > −1. This basis is also used in
Definition 5.33. There, the historical origin of these functions is stated. Now, we consider
only its radial part and define an abbreviation for these functions.
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Definition 5.1. For R > 0, the functions Q(β)
m (R; ·) of degree m ∈ N0 and β > −1 are

defined by means of the Jacobi polynomials via

Q(β)
m (R; r) :=

√
4m+ 2β + 2

R3

(
r

R

)β−1/2
P (0,β)
m

(
2 r

2

R2 − 1
)
, r ∈ (0, R].

With this definition, we can easily establish completeness and orthonormality of this
system.

Corollary 5.2. For every β > −1 the system {Q(β)
m (R; ·)}m∈N0 from Definition 5.1 forms

an orthonormal basis for Lw2 ([0, R]), where w(r) := r2.

Proof. We start with Theorem 2.8 for the Jacobi polynomials P (0,β)
m and their orthogonality.

Then, we use the substitution x = 2r2/R2 − 1. Thus,

2β+1

2m+ β + 1δm,n =
∫ 1

−1
(1 + x)βP (0,β)

m (x)P (0,β)
n (x) dx

=
∫ R

0

(
2 r

2

R2

)β
P (0,β)
m

(
2 r

2

R2 − 1
)
P (0,β)
n

(
2 r

2

R2 − 1
)

4r
R2 dr

= 2β+2

R2β+2

∫ R

0
r2β+1P (0,β)

m

(
2 r

2

R2 − 1
)
P (0,β)
n

(
2 r

2

R2 − 1
)

dr

= 2β+2
√

4m+ 2β + 2
√

4n+ 2β + 2

∫ R

0
Q(β)
m (R; r)Q(β)

n (R; r)r2 dr.

Concluding, the functions Q(β)
m (R; ·) with m ∈ N0 are Lw2 ([0, R])-orthonormal. Due to

Theorem 2.9, the set of all these functions is a basis for Lw2 ([0, R]).

Lemma 5.3. For all β ≥ 1/2 and all m ∈ N0, we get

max
r∈[0,R]

∣∣∣Q(β)
m (R; r)

∣∣∣ =
√

4m+ 2β + 2
R3

(
m+ β

m

)
≤
√

6R−3/2 (m+ β)m+1/2

m! .

Proof. From [158, Eq. (10.10)], we have the inequality(
m+ β

m

)
≤ (m+ β)m

m!

for all m ∈ N0. By using this estimate and Theorem 2.7, we get

max
r∈[0,R]

∣∣∣Q(β)
m (R; r)

∣∣∣ = max
r∈[0,R]

√4m+ 2β + 2
R3

(
r

R

)β−1/2
∣∣∣∣∣P (0,β)
m

(
2 r

2

R2 − 1
)∣∣∣∣∣


=
√

4m+ 2β + 2
R3

(
m+ β

m

)

≤
√

4m+ 2β + 2
R3

(m+ β)m
m!

≤
√

6R−3/2 (m+ β)m+1/2

m! .

In the last step, we used 2 ≤ 2m+ 4β for all m ∈ N0.
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5.2. Vector Spherical Harmonics

In this section, we give a short overview over two systems of vector-valued spherical harmonics
and their properties. The first system goes back to P.M. Morse and H. Feshbach and is often
used in geomathematics because it separates vector-valued functions into their normal and
tangential parts. In addition, the system going back to A.R. Edmonds is used for problems in
(electro-) magnetism in order to separate vector fields into parts belonging to inner and outer
sources. For more information, see [79, 81, 84, 88], for instance, and the references therein.

5.2.1. Definition of Vector Spherical Harmonics

First, we define an abbreviation for three (differential) operators on the sphere that we use
for the construction of L2(S)-orthonormal vector-valued spherical harmonics systems. The
occurring differential operators are defined in Theorem 2.14.

Definition 5.4 ([88, Eq. (5.17)-(5.19)]). We define the operators o(i) : C1(S) → C0(S)
by

o(1)
ξ F (ξ) := ξF (ξ), o(2)

ξ F (ξ) :=∇∗ξF (ξ), o(3)
ξ F (ξ) := L∗ξF (ξ)

for all F ∈ C1(S) and ξ ∈ S.

The following orthonormal properties of these operators can be shown based on Eq. (2.6a)
and Corollary 2.21.

Lemma 5.5 ([81, Lem. 12.1.1]). Let F , G ∈ C1(S). Then the following statements are
valid:

i) For all ξ ∈ S, we get o(i)
ξ F (ξ) · o(j)

ξ F (ξ) = 0 for all i 6= j with i, j = 1, 2, 3.

ii) If 〈F,G〉L2(S) = 0, then 〈o(i)F,o(j)G〉L2(S) = 0 for all i, j = 1, 2, 3.

For certain statements, the adjoints of the o(i)-operators are needed. For example, for the
calculation of the classical vector-valued reproducing kernels, see [81].

Corollary 5.6 ([88, Eq. (5.25)-(5.27)]). The adjoint operators O(i) : C1(S) → C(S) of
o(i) (with respect to the L2(S)- and L2(S)-inner products, respectively) are represented by

O(1)
ξ f(ξ) = ξ · Pnorf(ξ), O(2)

ξ f(ξ) = −o(2)
ξ · Ptanf(ξ), O(3)

ξ f(ξ) = −o(3)
ξ · Ptanf(ξ)

if ξ ∈ S and f ∈ C1(S). The operators Pnor, Ptan are the projections onto the normal and
tangential part of f , respectively, as defined in Eq. (2.3).

Lemma 5.7 ([88, Lem. 5.1]). Let F ∈ C2(S). Then the following statements hold true:

i) If i, j = 1, 2, 3 with i 6= j, then O(i)
ξ o

(j)
ξ F (ξ) = 0 for all ξ ∈ S.

ii) If i = 1, 2, 3 and ξ ∈ S, then

O(i)
ξ o

(i)
ξ F (ξ) =

{
F (ξ) if i = 1,
−∆∗ξF (ξ) if i = 2, 3.
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With these preliminaries, we define the Morse-Feshbach vector spherical harmonics, see
[169, 170], in analogy to the scalar-valued case.

Definition 5.8 (Morse-FeshbachVector SphericalHarmonics, [81, Ch. 12.2]). Let
Yn ∈ Harmn(S), then the vector field

y(i)
n := o(i)Yn, i = 1, 2, 3, n ∈ N0i

is called a Morse-Feshbach vector spherical harmonics of type i and order n, where

0i :=
{

0 if i = 1,
1 if i = 2, 3

and N0i :=
{
N0 if i = 1,
N if i = 2, 3.

Due to the definition of the o(i)-operators, the vector field y(1)
n is a normal field and the

fields y(2)
n and y(3)

n are tangential vector fields for all n ∈ N0i .
Let the set of scalar-valued spherical harmonics {Yn,j}n∈N0, j=1,...,2n+1 be defined as in

Definition 2.22, then we define the corresponding Morse-Feshbach vector spherical harmonics
by

y(i)
n,j :=

(
µ(i)
n

)−1/2
o(i)Yn,j (5.1)

for i = 1, 2, 3, n ∈ N0i , and j = 1, . . . , 2n+ 1, with the normalization factor

µ(i)
n :=

{
1 if i = 1,
−(∆∗)∧(n) = n(n+ 1) if i = 2, 3.

(5.2)

If {Yn,j}n∈N0, j=1,...,2n+1 is an L2(S)-orthonormal set of (scalar) spherical harmonics, then
{y(i)

n,j}i=1,2,3, n∈N0i , j=1,...,2n+1 is an L2(S)-orthonormal system of vector spherical harmonics,
see Lemma 5.5. Using a linear combination of the Morse-Feshbach vector spherical harmonics,
a second system can be defined, see [61]. First, a related set of operators õ(i) : C1(S)→ C0(S)
for i = 1, 2, 3 is defined, see [88, Ch. 5.13]:

õ(1)
ξ F (ξ) := o(1)

ξ

(
D + 1

2

)
F (ξ)− o(2)

ξ F (ξ),

õ(2)
ξ F (ξ) := o(1)

ξ

(
D − 1

2

)
F (ξ) + o(2)

ξ F (ξ),

õ(3)
ξ F (ξ) := o(3)

ξ F (ξ)

for all F ∈ C1(S), where the pseudodifferential operator D := (−∆∗ + 1/4)1/2 of order 1
is characterized by its infinitely often differentiable eigenfunctions Yn,j to the eigenvalues
n+ 1/2, that is

DYn,j =
(
n+ 1

2

)
Yn,j , n ∈ N0, j = 1, . . . , 2n+ 1.

For more details on the operator and its inverse, the single layer operator, see [91]. Using
the singular values of the operator D, an alternative operator õ(i)

n : C1(S)→ C0(S) for i = 1,
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2, 3 can be defined for all n ∈ N0i , see [81] or [88, Eq. (5.282)-(5.284)], for instance. Let
Yn ∈ Harmn(S), then we define for all n ∈ N0i the operators

õ(1)
n Yn(ξ) := (n+ 1)o(1)

ξ Yn(ξ)− o(2)
ξ Yn(ξ), (5.3a)

õ(2)
n Yn(ξ) := no(1)

ξ Yn(ξ) + o(2)
ξ Yn(ξ), (5.3b)

õ(3)
n Yn(ξ) := õ(3)Yn(ξ) = o(3)

ξ Yn(ξ). (5.3c)

In contrast to the õ(i)-operators, the operator õ(i)
n depends on n ∈ N0i if i = 1 or i = 2.

However, we have õ(i)Yn = õ(i)
n Yn for all i = 1, 2, 3 and n ∈ N0i .

Definition 5.9 (Edmonds Vector Spherical Harmonics, [88, Def. 5.54]). Let Yn ∈
Harmn(S), then the vector field

ỹ(i)
n := õ(i)

n Yn, i = 1, 2, 3, n ∈ N0i

is called an Edmonds vector spherical harmonic of type i and degree n.

Hence, we call a function an Edmonds vector spherical harmonic of type i, degree n, and
order j if it has the representation

ỹ(1)
n,j :=

√
n+ 1
2n+ 1y

(1)
n,j −

√
n

2n+ 1y
(2)
n,j , (5.4a)

ỹ(2)
n,j :=

√
n

2n+ 1y
(1)
n,j +

√
n+ 1
2n+ 1y

(2)
n,j , (5.4b)

ỹ(3)
n,j := y(3)

n,j (5.4c)

for all n ∈ N, see [88, Eq. (5.309)-(5.311)], and we set ỹ(1)
0,1 := y(1)

0,1 for n = 0.

Lemma 5.10 ([88, Thm. 5.56]). The Edmonds vector spherical harmonics of type i, degree
n, and order j are orthogonal in L2(S).

Inverting the system of linear equations given in Eq. (5.4), we get a representation of
the Morse-Feshbach vector spherical harmonics in terms of the Edmonds vector spherical
harmonics for all n ∈ N0i , j = 1, . . . , 2n+ 1, see [88, Eq. (5.312)-(5.314)]:

y(1)
n,j =

√
n+ 1
2n+ 1 ỹ

(1)
n,j +

√
n

2n+ 1 ỹ
(2)
n,j , (5.5a)

y(2)
n,j = −

√
n

2n+ 1 ỹ
(1)
n,j +

√
n+ 1
2n+ 1 ỹ

(2)
n,j , (5.5b)

y(3)
n,j = ỹ(3)

n,j . (5.5c)

Although the two systems are just linear combinations of each other, they possess different
properties. In the next paragraphs, we give a short overview of these properties.
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5.2.2. Orthogonality and Completeness of Vector Spherical Harmonics

In analogy to the scalar-valued case, we consider homogeneous harmonic polynomials.
Definition 5.11 ([81, Def. 12.3.1]). A vector field hn : R3 → R3, n ∈ N0, is called a
homogeneous harmonic vector polynomial of degree n if hn · εi is a homogeneous harmonic
polynomial of degree n for every i = 1, 2, 3.
Using the abbreviation

Harmn(R3)εi :=
{
Hnε

i
∣∣∣ Hn ∈ Harmn(R3)

}
,

we characterize the space of all homogeneous harmonic vector polynomials of degree n by
3⊕
i=1

Harmn(R3)εi.

The restriction of homogeneous harmonic scalar polynomials of degree n to the unit sphere S
is a scalar spherical harmonic by definition. In the vectorial case, however, such a restriction
of homogeneous harmonic vector polynomials of degree n does not yield a Morse-Feshbach
vector spherical harmonic of degree n.
Definition 5.12 ([81, Def. 12.3.2]). For n ∈ N0, Hn ∈ Homn(R3), and i = 1, 2, 3, the
extensions of the operators õ(i)

n : R3 → R3 are defined for x ∈ R3 by

õ(1)
n Hn(x) := ((2n+ 1)x− x2∇x)Hn(x),
õ(2)
n Hn(x) :=∇xHn(x),
õ(3)
n Hn(x) := x ∧∇xHn(x).

In the case of Hn(rξ) = rnYn(ξ), we can see that (õ(i)
n Hn(x))|x=1 coincides with the

previous definition of the õ(i)
n -operators in Eq. (5.3) for i = 1, 2, 3 by using the representation

of the gradient in polar coordinates: let x = rξ, ξ ∈ S, then

∇x (rnYn(ξ)) =
(
ξ
∂

∂r
+ 1
r
∇∗ξ
)

(rnYn(ξ))

= rn−1
(
nξ +∇∗ξ

)
Yn(ξ)

= rn−1
(
no(1)

ξ Yn(ξ) + o(2)
ξ Yn(ξ)

)
= rn−1õ(2)

n Yn(ξ). (5.6)

The relation corresponding to i = 3 can be easily seen by using Eq. (2.5). Hence, regarding
the construction of the Edmonds vector spherical harmonics, we observe that these functions
are restrictions of harmonic polynomials to the unit sphere.
Lemma 5.13 ([81, Lem. 12.3.3]). Let Hn ∈ Harmn(R3), where n ∈ N0. Then õ(i)

n Hn is
a homogeneous harmonic vector polynomial of degree deg(i)(n) (i.e. õ(i)

n Hn is an element of
⊕3
j=1 Harmdeg(i)(n)(R3)εj) for i = 1, 2, 3, where we use the abbreviation

deg(i)(n) :=


n+ 1 if i = 1,
n− 1 if i = 2,
n if i = 3.

If deg(i)(n) < 0, then õ(i)
n Hn = 0.
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In contrast to this result, the Morse-Feshbach vector spherical harmonics of type i = 1,
2 are restrictions of vector polynomials of mixed degree, which is easy to see by using
Lemma 5.13 and Eq. (5.5). Due to this property, we define the vector-valued space harmn(S)
by means of the Edmonds vector spherical harmonics. In contrast to this approach, spaces
by means of the Morse-Feshbach vector spherical harmonics are constructed in [81].

Definition 5.14 (Vector-valued harm(i)
n (S)-Spaces, [88, Ch. 5.14]). Let n ∈ N0, the

set harm(i)
n (S) denotes the set of all Edmonds vector spherical harmonics of type i and order

n. More precisely,

harm0 (S) := harm(1)
0 (S) ,

harmn (S) :=
3⊕
i=1

harm(i)
n (S) , n ≥ 1,

harm(i)
p,...,q (S) :=

q⊕
n=p

harm(i)
n (S) , p, q ∈ N, p ≤ q.

Note that if õ(i)
n Yn ∈ harm(i)

n (S), the n in harm(i)
n (S) represents the degree of the scalar

spherical harmonics Yn and does not represent the degree deg(i)(n) of õ(i)
n Yn before the

restriction onto the unit sphere.
Using the orthogonality of the (scalar) spherical harmonics, Lemma 5.5, and the properties

of the õ(i)
n -operators, it is easy to see that harm(i)

n (S) is L2(S)-orthogonal to harm(i)
m (S) if

n 6= m. In order to expand functions by means of these vector spherical harmonics, we need
the following result.

Theorem 5.15. Let the two sets of vector spherical harmonics {y(i)
n,j}i=1,2,3, n∈N0i , j=1,...,2n+1

and {ỹ(i)
n,j}i=1,2,3, n∈N0i , j=1,...,2n+1 be defined as in Eqs. (5.1) and (5.4), respectively. Then

the following statements are valid:

i) The two systems of vector spherical harmonics are closed in C(S) with respect to the
‖·‖C(S)-norm, see [81, Thm. 12.3.5].

ii) The two systems are complete in L2(S) with respect to the 〈·, ·〉L2(S)-inner product, see
[88, Thm. 5.56].

A more recent proof of the L2(S)-completeness of the Morse-Feshbach system involving
Bernstein’s kernels is given in [83]. Hence, all f ∈ L2(S) have the unique expansions

f =
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

〈
f ,y(i)

n,j

〉
L2(S)

y(i)
n,j =

3∑
i=1

∞∑
n=0i

2n+1∑
j=1

〈
f , ỹ(i)

n,j

〉
L2(S)

ỹ(i)
n,j .

5.2.3. Harmonicity of Vector Spherical Harmonics

Since the Beltrami operator plays an important role in the theory of the scalar-valued
spherical harmonics, we now discuss its role in the vector-valued setting. As usual, the
vector-valued Laplacian is defined as the component-wise application of the (scalar) Laplacian.
Analogously, we define the vectorial Beltrami operator ∆∗. If f ∈ C2(S) is of the form

f(ξ) =
3∑
j=1
εjFj(ξ), ξ ∈ S,
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then, in accordance with [81, Eq. (12.5.1.)], we define

∆∗f(ξ) :=
3∑
j=1
εj∆∗Fj(ξ), ξ ∈ S. (5.7)

We can now apply the vectorial Beltrami operator to Morse-Feshbach vector spherical
harmonics.

Corollary 5.16 ([81, Eq. (12.5.2.)]). If Yn ∈ Harmn(S), then

∆∗o(1)Yn = (−n(n+ 1)− 2)o(1)Yn + 2o(2)Yn,

∆∗o(2)Yn = 2n(n+ 1)o(1)Yn − n(n+ 1)o(2)Yn,

∆∗o(3)Yn = −n(n+ 1)o(3)Yn.

This shows that the Morse-Feshbach vector spherical harmonics are not eigenfunctions
of the (vectorial) Beltrami operator given in Eq. (5.7). However, in [81] another vectorial
differential operator is constructed that has the Morse-Feshbach vector spherical harmonics
as eigenfunctions. Now, we are able to define a new differential operator ∗∆ξ by means of
the vectorial Beltrami operator that has the Morse-Feshbach vector spherical harmonics as
eigenfunctions.

Lemma 5.17 ([81, p. 333]). Let ∗∆ξ be given by

∗∆ξf(ξ) := ∆∗ξf(ξ)− 2L∗ξ ∧ f(ξ)− 2f(ξ)

for all f ∈ C2(S). Then ∗∆ξy
(i)
n,j(ξ) = −n(n + 1)y(i)

n,j(ξ) for all i = 1, 2, 3, n ∈ N0i, and
j = 1, . . . , 2n+ 1.

Lemma 5.18 ([81, Lem. 12.5.3]). If F : S → R and f : S → R3 are sufficiently smooth,
then

∗∆o(i)F = o(i)∆∗F,
O(i) ∗∆f = ∆∗O(i)f

holds for i = 1, 2, 3.

In contrast, the Edmonds vector spherical harmonics are eigenfunctions of the vectorial
Beltrami operator defined in Eq. (5.7), see [88, Thm. 5.56], that is

∆∗õ(1)
n Yn = −(n+ 1)(n+ 2)õ(1)

n Yn, (5.8a)
∆∗õ(2)

n Yn = −n(n− 1)õ(2)
n Yn, (5.8b)

∆∗õ(3)
n Yn = −n(n+ 1)õ(2)

n Yn. (5.8c)

Hence, the vector fields x 7→ õ(i)
n Hn(x) with x ∈ R3 and i = 1, 2, 3 satisfy

∆õ(i)
n Hn = 0, i = 1, 2, 3, (5.9)

where Hn(x) := rnYn(ξ) with x = rξ, see [88, Rem. 5.66].
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5.2.4. Decomposition of L2(S) via Vector Spherical Harmonics

Due to the orthogonality properties, we are able to decompose the space L2(S) by means
of the Morse-Feshbach vector spherical harmonics. Any vector field can be written out as
f(ξ) = ∑3

i=1 o
(i)
ξ Fi(ξ) for ξ ∈ S with uniquely determined functions Fi : S → R, see [81].

Sometimes this decomposition is named after Helmholtz. In [79], it is called the spherical
Helmholtz decomposition.

Theorem 5.19 (Spherical Helmholtz Decomposition, [88, Thm. 12.4.1]). Let the
function f : S → R3 be a continuously differentiable vector field. Then there exist uniquely
determined functions F1 ∈ C1(S), F2, F3 ∈ C2(S) satisfying∫

S
Fi(ξ) dω(ξ) = 0, i = 2, 3

such that f = ∑3
i=1 o

(i)Fi.

Note that without the constraint
∫
S Fi(ξ) dω(ξ) = 0 for i = 2, 3 we only get uniqueness up

to an additional constant for those Fi.
Thus, the Morse-Feshbach vector spherical harmonics yield an orthogonal decomposition

into the normal and the tangential part of a function, see [81, Ch. 12.4], that is

L(i)
2 (S) = {o(i)F | F ∈ C∞(S)}‖·‖L2(S) , (5.10)

L2 (S) = L(1)
2 (S)⊕ L(2)

2 (S)⊕ L(3)
2 (S).

Finally, we can decompose every vector field f ∈ L2(S) into f = ∑3
i=1 f

(i) with f (i) ∈ L(i)
2 (S)

and

f (i) =
∞∑
n=0i

2n+1∑
j=1

〈
f ,y(i)

n,j

〉
L2(S)

y(i)
n,j (5.11)

for i = 1, 2, 3. Here, we used the notation introduced after Corollary 2.26.
The Edmonds vector spherical harmonics, of course, do not provide us with a decomposition

into normal and tangential parts. In contrast, the Edmonds vector spherical harmonics
decompose a harmonic gradient field into parts that are related to the inner harmonics and
parts that are related to the outer harmonics. This can be seen in the following lemma.

Lemma 5.20 ([79, Thm. 2.54]). Let r, R > 0 and x = rξ, ξ ∈ S, then we get

∇xH int
n,j(R;x) = 1

R2

(
r

R

)n−1√
n(2n+ 1)ỹ(2)

n,j(ξ),

−∇xHext
n,j (R;x) = 1

R2

(
R

r

)n+2√
(n+ 1)(2n+ 1)ỹ(1)

n,j(ξ)

for n ∈ N0i, i = 1, 2, respectively, and j = 1, . . . , 2n+ 1.

Every vector field f ∈ L2(S) can also be represented by

f =
3∑
i=1
f̃

(i)
, f̃

(i) =
∞∑
n=0i

2n+1∑
j=1

〈
f , ỹ(i)

n,j

〉
L2(S)

ỹ(i)
n,j , i = 1, 2, 3,

in the L2(S)-sense due to Eq. (5.4), Theorem 5.15, and Lemma 5.10.
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5.3. Vector Legendre Polynomials

In Eq. (3.4) and Eq. (4.23), we show that the integral kernels of the magnetoencephalography
as well as the electroencephalography integral equation are given as the surface curl operator
or the gradient, respectively, applied to (a series of) Legendre polynomials. In addition, in
the previous section, we state that these particular differential operators are closely related
to the Morse-Feshbach and Edmonds vector spherical harmonics. In analogy to the two
systems of vector spherical harmonics, we now define two sets of vector-valued Legendre
polynomials.

Definition 5.21 (Vector Legendre Polynomials [88, Lem. 5.63]). Let ξ, η ∈ S and
Pn be defined as in Definition 2.5, then for i = 1, 2, 3 and n ∈ N0i

p(i)
n (ξ,η) :=

(
µ(i)
n

)−1/2
o(i)
ξ Pn(ξ · η),

p̃(i)
n (ξ,η) :=

(
µ̃(i)
n

)−1/2
õ(i)
ξ Pn(ξ · η)

are called the Morse-Feshbach and Edmonds vector Legendre polynomials, respectively, of
type i and degree n, where

µ̃(i)
n :=


(n+ 1)(2n+ 1) if i = 1,
n(2n+ 1) if i = 2,
n(n+ 1) if i = 3.

Recall that o(i)
ξ is defined as in Definition 5.4 and 0i as in Definition 5.8 for i = 1, 2, 3. In

analogy to Eq. (5.4), vector Legendre polynomials of one type can be represented as linear
combinations of the other type:

p̃(1)
n (ξ,η) =

√
n+ 1
2n+ 1p

(1)
n (ξ,η)−

√
n

2n+ 1p
(2)
n (ξ,η) (5.12a)

p̃(2)
n (ξ,η) =

√
n

2n+ 1p
(1)
n (ξ,η) +

√
n+ 1
2n+ 1p

(2)
n (ξ,η), (5.12b)

p̃(3)
n (ξ,η) = p(3)

n (ξ,η). (5.12c)

For the analysis of the MEG and EEG integral kernels, certain estimates of the vector
Legendre polynomials are required, which are stated below.

Lemma 5.22. Let ξ, η ∈ S, then the vector Legendre polynomials fulfil for all i = 1, 2, 3
and n ∈ N0i the estimates

∣∣p(i)
n (ξ,η)

∣∣ ≤ √µ(i)
n and

∣∣p̃(i)
n (ξ,η)

∣∣ ≤ √µ̃(i)
n .

Proof. The first statement is proved in [88, Lem. 5.23]. Thus, we only prove the inequality
concerning p̃(1)

n because the proof of p̃(2)
n can be obtained equally and the third is clear due
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to p̃(3)
n = p(3)

n . By means of the orthogonality, see Lemma 5.5, we obtain

∣∣p̃(1)
n (ξ,η)

∣∣2 =
∣∣∣∣∣
√
n+ 1
2n+ 1p

(1)
n (ξ,η)−

√
n

2n+ 1p
(2)
n (ξ,η)

∣∣∣∣∣
2

= n+ 1
2n+ 1

∣∣p(1)
n (ξ,η)

∣∣2 + n

2n+ 1
∣∣p(2)
n (ξ,η)

∣∣2
≤ n+ 1

2n+ 1 + n

2n+ 1n(n+ 1) ≤ 2n2(n+ 1)
2n+ 1

≤ (2n+ 1)2(n+ 1)
2n+ 1 = (2n+ 1)(n+ 1).

Corollary 5.23. For all n ∈ N0i and all ξ ∈ S, we get with Lemma 5.22 the estimates∣∣∣∆∗ξp(1)
n (ξ,η)

∣∣∣ ≤ 4n(n+ 1),∣∣∣∆∗ξp(2)
n (ξ,η)

∣∣∣ ≤ 3n3/2(n+ 1)3/2,∣∣∣∆∗ξp(3)
n (ξ,η)

∣∣∣ ≤ n3/2(n+ 1)3/2.

Proof. For n = 0, the estimates are clear. For n ∈ N, we use Corollary 5.16 combined with
Theorem 2.25 that provides us with formulae to interchange the Beltrami operator with
the o(i) operator in the definition of the vectorial Legendre polynomials, see Definition 5.21.
Thus, in the case i = 1, we have∣∣∣∆∗ξp(1)

n (ξ,η)
∣∣∣ ≤ ∣∣(−n(n+ 1)− 2)p(1)

n (ξ,η) + 2p(2)
n (ξ,η)

∣∣ .
Next, we apply the triangle inequality to the right-hand side and Lemma 5.22 to each
summand and obtain the desired estimate, that is∣∣∣∆∗ξp(1)

n (ξ,η)
∣∣∣ ≤ (n(n+ 1) + 2) + 2

√
n(n+ 1)

≤ n(n+ 1) + n+ 1 + 2
√

(n+ 1)(n+ 1)
≤ n(n+ 1) + n(n+ 1) + 2n(n+ 1).

The other two cases can be estimated analogously.

With this preliminary work, we can formulate the Addition Theorem in the vectorial case,
see [88]. This Addition Theorem will be frequently used within this thesis.

Theorem 5.24 (Addition Theorem [88, Thm. 5.46]). Let ξ, η ∈ S and y(i)
n,j be defined

as in Eq. (5.1) for i = 1, 2, 3, n ∈ N0i , and j = 1, . . . , 2n+ 1. Then the following holds true:
2n+1∑
j=1

y(i)
n,j(ξ)Yn,j(η) = 2n+ 1

4π p(i)
n (ξ,η). (5.13)

In accordance with [88, Thm. 5.64], an immediate consequence of this formula is for all
n ∈ N0i the identity

2n+1∑
j=1

ỹ(i)
n,j(ξ)Yn,j(η) = 2n+ 1

4π p̃(i)
n (ξ,η), ξ, η ∈ S. (5.14)
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Thus, we obtain a useful norm estimate for the vector spherical harmonics, which is taken
from [88, Lem. 5.37] in the case of Edmonds vector spherical harmonics and from [88, Lem.
5.38] for Morse-Feshbach vector spherical harmonics.

Corollary 5.25. Let y(i)
n,j be defined as in Eq. (5.1) and ỹ(i)

n,j as in Eq. (5.4) for i = 1, 2, 3,
n ∈ N0i, and j = 1, . . . , 2n+ 1. Then we have

2n+1∑
j=1

∣∣∣y(i)
n,j(ξ)

∣∣∣2 =
2n+1∑
j=1

∣∣∣ỹ(i)
n,j(ξ)

∣∣∣2 = 2n+ 1
4π

and, thus,

∥∥∥y(i)
n,j

∥∥∥
C(S)

≤
√

2n+ 1
4π ,

∥∥∥ỹ(i)
n,j

∥∥∥
C(S)

≤
√

2n+ 1
4π .

Note that the proof in the case of the Edmonds vector spherical harmonics is an immediate
consequence of the Morse-Feshbach proof if the orthogonality of the Morse-Feshbach vector
spherical harmonics is used wisely.
The vectorial Addition Theorem provides us with a kind of reproducing property of the

vector Legendre polynomials.

Corollary 5.26 ([88, Thm. 5.64]). Consider the Morse-Feshbach vector Legendre polyno-
mials, then ∫

S
y(i)
n,j(ξ) · p(ι)

k (ξ,η) dω(ξ) = 4π
2n+ 1Yn,j(η)δn,kδi,ι, η ∈ S,

for all i, ι ∈ {1, 2, 3} , k ∈ N0ι, n ∈ N0i, and j = 1, . . . , 2n+ 1.

Proof. We simply calculate the inner product by means of the vectorial Addition Theorem 5.24
and get for all i, ι ∈ {1, 2, 3} , k ∈ N0ι , n ∈ N0i , and j = 1, . . . , 2n+ 1 the identity

∫
S
y(i)
n,j(ξ) · p(ι)

k (ξ,η) dω(ξ) =
2k+1∑
l=1

4π
2k + 1

∫
S
y(i)
n,j(ξ) · y(ι)

k,l(ξ) dω(ξ)Yk,l(η)

= 4π
2n+ 1Yn,j(η)δn,kδi,ι.

5.4. Vector Outer Harmonics

Gradient fields, such as the magnetic field, of harmonic functions are closely related to
gradients of inner and outer harmonics, which are introduced in Section 2.4.2. Thus, we
can define the vector-valued analogues of outer harmonics by applying the gradient to them.
Due to the usage of the gradient, these vector outer harmonics are related to the Edmonds
vector spherical harmonics. In this section, some properties of vector outer harmonics are
summarized. For the proofs and more details, see [79, 184], for example.

Definition 5.27 (Vector Outer Harmonics [79, Def. 2.55]). The vector outer har-
monics h(i)

n,j(R; ·) of degree n, order j, and type i belonging to the sphere SR are defined
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by

h(1)
n,j(R;x) := 1

R

(
R

x

)n+2
ỹ(1)
n,j(x̂),

h(2)
n,j(R;x) := 1

R

(
R

x

)n
ỹ(2)
n,j(x̂),

h(3)
n,j(R;x) := 1

R

(
R

x

)n+1
ỹ(3)
n,j(x̂)

for n ∈ N0i , j = 1, . . . , 2n+ 1, and x ∈ R3 \ {0} .
Like their scalar-valued analogues, they satisfy the following properties.

Remark 5.28 ([79, Rem. 2.56]). The vector outer harmonics h(i)
n,j(R; ·) satisfy the listed

properties:

• h(i)
n,j(R; ·) is of class C∞(R3 \ {0} ),

• ∆xh
(i)
n,j(R;x) = 0 for x ∈ R3 \ {0} , that is every component function satisfies the

Laplace equation,

• h(i)
n,j(R; ·)|SR = 1

R ỹ
(i)
n,j,

• 〈h(i)
n,j(R; ·)|SR ,h(k)

m,l(R; ·)|SR〉L2(SR) = δi,kδn,mδj,l, and

• |h(i)
n,j(R;x)| ∈ O(x−2) as x→∞.

With these functions, for all x ∈ R3 \ {0} the relation

∇x
( 1
xn+1Yn,j(x̂)

)
= −

√
(2n+ 1)(n+ 1)

xn+2 ỹ(1)
n,j(x̂) (5.15a)

= −
√

(2n+ 1)(n+ 1)
Rn+1 h(1)

n,j(R;x) (5.15b)

holds true, see [79, Eq. (2.233)]. Later, we also need an estimate of the vector outer harmonics
of type 1 for x ≥ r > R, which is derived via Corollary 5.25:∣∣∣h(1)

n,j(R;x)
∣∣∣ =

∣∣∣∣∣Rn+1

xn+2 ỹ
(1)
n,j(x̂)

∣∣∣∣∣ ≤ Rn+1

rn+2

√
2n+ 1

4π . (5.16)

In analogy to Definition 5.14, we introduce the harm(i)
n (Bext

R )-spaces.

Definition 5.29 ([184, Ch. 7.2.1]). Let h(i)
n,j(R; ·) be defined as in Definition 5.27 for

i = 1, 2, 3, n ∈ N0i, and j = 1, . . . , 2n+ 1. Then we define

harm(i)
n

(
Bext
R

)
:= span

{
h(i)
n,j(R; ·)

∣∣∣ j = 1, . . . , 2n+ 1
}
,

for i = 1, 2, 3 and n ∈ N0i, and for n ∈ N we define

harm0
(
Bext
R

)
:= harm(1)

0

(
Bext
R

)
,

harmn

(
Bext
R

)
:=

3⊕
i=1

harm(i)
n

(
Bext
R

)
.
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In addition, we define for i = 1, 2, 3 the spaces

harm
(
Bext
R

)
:= span

{
h(i)
n,j(R; ·)

∣∣∣ i = 1, 2, 3, n ∈ N0i , j = 1, . . . , 2n+ 1
}‖·‖

C(Bext
R

)
,

harm(i)
(
Bext
R

)
:= span

{
h(i)
n,j(R; ·)

∣∣∣ n ∈ N0i , j = 1, . . . , 2n+ 1
}‖·‖

C(Bext
R

)
.

These spaces can also be defined on the exterior of a regular surface, see, for example, [29]
for its definition. Note that a sphere is a particular regular surface.

Definition 5.30 (Regular Surface and Runge Sphere). The set Σ ⊂ R3 is called a
regular surface if it satisfies the following conditions:

i) Σ splits the R3 into the (open) bounded region Σint (inner space) and the (open)
unbounded region Σext (outer space) defined by Σext = R3 \ Σint.

ii) Σ is a closed and compact surface with no double points.

iii) The origin 0 is contained in Σint.

iv) Σ is a C2-surface, that is Σ is locally C2-smooth.

A sphere SR is called a Runge sphere if 0 < R < σ := infx∈Σ x.

Runge spheres are often considered in the context of gravity modelling, see, for instance,
[27]. There, the Runge sphere that is the inner spherical best approximation of the Earth’s
surface is called a Bjerhammar sphere.

Lemma 5.31 ([184, Lem. 7.2.3]). Let Σ be a regular surface and let the vector outer har-
monics h(i)

n,j(R; ·) for i = 1, 2, 3, n ∈ N0i , and j = 1, . . . , 2n+1 be defined as in Definition 5.27.
Then the system {h(i)

n,j(R; ·)|Σ}i=1,2,3, n∈N0i , j=1,...,2n+1 is linearly independent.

Now, a completeness result is of note.

Corollary 5.32 ([184, Thm. 7.2.5]). Let Σ be a regular surface and let SR be a Runge
sphere of this surface. In addition, let {h(i)

n,j(R; ·)}i=1,2,3, n∈N0, j=1,...,2n+1 be a system of vector
outer harmonics as defined in Definition 5.27 . Then the following statements hold true:

i) L2 (Σ) = span
{
h(i)
n,j(R; ·)|Σ

∣∣∣ i = 1, 2, 3, n ∈ N0i , j = 1, . . . , 2n+ 1
}‖·‖L2(Σ),

ii) C (Σ) = span
{
h(i)
n,j(R; ·)|Σ

∣∣∣ i = 1, 2, 3, n ∈ N0i , j = 1, . . . , 2n+ 1
}‖·‖C(Σ).

Hence, we obtain that every function f ∈ L2(Σ) with Σ ⊂ Bext
r has the L2(Σ)-expansion

f =
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

〈
f ,h(i)

n,j(R; ·)
〉

L2(Σ)
h(i)
n,j(R; ·)|Σ.
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5.5. Orthonormal Systems on the Ball

In this section, we define scalar- and vector-valued orthonormal systems on the ball. These
systems are required for decomposing the neuronal current in the analysis of the magneto-
electroencephalography problem using the multiple-shell model. We have already stated
some orthonormal systems on the real line and on the sphere. Now, we combine these results
in order to obtain an orthonormal system on the ball BR with radius R > 0. Thus, we use
the separation ansatz

G(x) = Grad(x)Y (x̂) for all x ∈ BR \ {0} .

This ansatz has an advantage for the construction of the L2(BR)-orthogonality. The occurring
integral can be split into a radial and an angular integral by means of Fubini’s Theorem for
Lebesgue-integrals, see, for example, [19]. On the other hand, this separation might not be
defined at the origin, since the function x 7→ x̂ is not defined at the origin. However, this is
not a problem in the sense of L2(BR).

This separation ansatz is widely used for the construction of orthonormal functions on the
ball, see, for instance, [1, 13, 59, 144, 158, 215]. As in the literature, we choose the spherical
harmonics for the construction of the angular part of the orthonormal system on the ball.
This particular construction yields scalar-valued functions. If vector-valued functions are
required, one can easily substitute the scalar spherical harmonics with a set of vector-valued
spherical harmonics, such as the Edmonds vector spherical harmonics.

Definition 5.33. The following two systems can be defined for m, n ∈ N0, j = 1, . . . , 2n+ 1,
where R is the radius of the ball BR:

GI
m,n,j(R;x) :=

√
4m+ 2n+ 3

R3 P (0,n+1/2)
m

(
2 x

2

R2 − 1
)(

x

R

)n
Yn,j(x̂),

GII
m,n,j(R;x) :=

√
4m+ 3
R3 P (0,2)

m

(
2 x
R
− 1

)
Yn,j(x̂)

for x ∈ (0, R], x̂ ∈ S.

The system {GI
m,n,j(R; ·)}m,n∈N0, j=1,...,2n+1 goes back to L. Ballani, J. Engels, E.W.

Grafarend, and H.M. Dufour, see [13, 59]. Here, the nomenclature introduced in [157, 158] is
used. The other system goes back to C.C. Tscherning, see [215]. Note that the functions
GII
m,n,j(R; ·) have a discontinuity at the origin for all m ∈ N0, n ∈ N, and j = 1, . . . , 2n+ 1.

Corollary 5.34. The two sets of orthonormal functions {GI
m,n,j(R; ·)}m,n∈N0, j=1,...,2n+1

and {GII
m,n,j(R; ·)}m,n∈N0, j=1,...,2n+1 are both complete orthonormal systems in L2(BR).

For our application, we need another orthonormal basis. To this end, we construct a
generalization of the system I.

Definition 5.35. Let R > 0 be the radius of the ball, then the functions Gm,n,j(R; ·) for m,
n ∈ N0, j = 1, . . . , 2n+ 1 are defined for all x ∈ BR \ {0} by

Gm,n,j(R;x) := Q(tn+1/2)
m (R;x)Yn,j(x̂)

=
√

4m+ 2tn + 3
R3 P (0,tn+1/2)

m

(
2 x

2

R2 − 1
)(

x

R

)tn
Yn,j(x̂), (5.17)
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where the polynomials Q(tn+1/2)
m (R; ·) are given in Definition 5.1 with the sequence {tn}n∈N0

satisfying the property infn∈N0 tn > −3/2.

In the particular case tn = n for all n ∈ N0, we immediately obtain Gm,n,j(R; ·) =
GI
m,n,j(R; ·) for all m, n ∈ N0, j = 1, . . . , 2n+ 1. The case tn = n− 1 for all n ∈ N0 is plotted

on the unit sphere in Fig. 5.1 and on a plane in Fig. 5.2. Independent of the choice for the
sequence {tn}n∈N0 , this definition forms an orthonormal and complete system in L2(BR).
This property is proved in the next lemma.

Lemma 5.36. The system {Gm,n,j(R; ·)}m,n∈N0, j=1,...,2n+1 is a complete orthonormal system
in L2(BR).

Proof. With the L2(S)-orthogonality of the spherical harmonics and, according to Corol-
lary 5.2, the Lw2 ([0, R])-orthogonality of the radial orthonormal basis with respect to w(x) = x2

for x ∈ [0, R] we obtain

〈Gm,n,j(R; ·), Gµ,ν,ι(R; ·)〉L2(BR)

=
∫ R

0
Q(tn+1/2)
m (R;x)Q(tn+1/2)

µ (R;x)x2 dx
∫
S
Yn,j(x̂)Yν,ι(x̂) dω(x̂)

= δµ,mδν,nδι,j .

The existence of the integral is guaranteed by the requirement that infn∈N0 tn ≥ −3/2,
which is required for the conditions in Corollary 5.2. Thus, the presented system is an
orthonormal system on the ball. The completeness of the Jacobi polynomials with respect to
the weight function, see Corollary 5.2, and the completeness of the spherical harmonics, see
Corollary 2.26, provides us with the completeness of {Gm,n,j(R; ·)}m,n∈N0, j=1,...,2n+1 . Hence,
{Gm,n,j(R; ·)}m,n∈N0, j=1,...,2n+1 is an orthonormal basis for L2(BR).

For a vector-valued analogue of this orthonormal basis on the ball, we use the Edmonds
vector spherical harmonics, see Definition 5.9, for the angular part of the separation ansatz.
Thus, we obtain the next definition.

Definition 5.37. Let R > 0 be the radius of the ball BR, then the functions g(i)
m,n,j(R; ·) and

g̃(i)
m,n,j(R; ·) for m, n ∈ N0i, j = 1, . . . , 2n+ 1, and i = 1, 2, 3 are defined by

g(i)
m,n,j(R;x) := Q(t(i)n +1/2)

m (R;x)y(i)
n,j(x̂) (5.18a)

=

√
4m+ 2t(i)n + 3

R3 P (0,t(i)n +1/2)
m

(
2 x

2

R2 − 1
)(

x

R

)t(i)n
y(i)
n,j(x̂),

g̃(i)
m,n,j(R;x) := Q(t(i)n +1/2)

m (R;x)ỹ(i)
n,j(x̂). (5.18b)

The polynomials Q(t(i)n +1/2)
m (R; ·) are given in Definition 5.1, where the sequence {t(i)n }n∈N0i

has to fulfil the property infn∈N0i
t(i)n > −3/2.

Plots of some vector-valued orthonormal basis functions can be found in Chapter 19, in
particular in Figs. 19.3 and 19.5. In the next lemma, we expand arbitrary functions of L2(BR)
into the new basis systems from Definition 5.37, which is an application of [198, Thm. 4.18]
for general Hilbert spaces.
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5.5. Orthonormal Systems on the Ball

Lemma 5.38. Both systems of functions {g(i)
m,n,j(R; ·)}i=1,2,3,m∈N0, n∈N0i , j=1,...,2n+1 and

{g̃(i)
m,n,j(R; ·)}i=1,2,3,m∈N0, n∈N0i , j=1,...,2n+1 are complete orthonormal systems in the space

L2(BR). Thus, all f ∈ L2(BR) can be expanded by the Fourier expansions

f =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

f∧(i,m, n, j)g(i)
m,n,j(R; ·), (5.19a)

=
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

f∧[i,m, n, j]g̃(i)
m,n,j(R; ·). (5.19b)

The Fourier coefficients are given by

f∧(i,m, n, j) =
∫
BR
f(x) · g(i)

m,n,j(R;x) dx,

f∧[i,m, n, j] =
∫
BR
f(x) · g̃(i)

m,n,j(R;x) dx.

Proof. The proof is similar to the one of Lemma 5.36, where the required completeness of
the Edmonds vector spherical harmonics is given by Theorem 5.15 and the orthogonality by
Lemma 5.10. Note that a different sequence t(i)n can be chosen for each type i, due to the
orthogonality of Edmonds vector spherical harmonics of different types.

As a particular case of the result stated in [118, Ch. 3], we obtain the next lemma.
Lemma 5.39. Convergence in Eq. (5.19) is unconditional, that is it converges regardless of
the order of summation.

For certain applications, it is interesting which orthonormal basis functions are harmonic.
Due to the construction of the Morse-Feshbach vector spherical harmonics, we cannot expect
harmonicity of most functions g(i)

m,n,j . Thus, we restrict ourselves to the orthonormal basis
based on the Edmonds vector spherical harmonics.
Lemma 5.40. Let the exponents t(i)n for i = 1, 2, 3 and all n ∈ N0i be given by

t(i)n :=


n+ 1 if i = 1,
n− 1 if i = 2,
n if i = 3.

Then the basis functions g̃(i)
m,n,j(R; ·) are harmonic in BR in the following cases:

∆g̃(i)
m,n,j(R; ·) = 0 ⇔ m = 0, n ∈ N0i , and j = 1, . . . , 2n+ 1.

Proof. The calculation is straightforward with the representation of the Laplacian in spherical
coordinates, see Theorem 2.14, and the eigenfunctions of the vectorial Beltrami operator, see
Eq. (5.8).

∆xg̃
(i)
m,n,j(R;x) =

(
∂2

∂x2 + 2
x

∂

∂x
+ ∆∗x

)
Q(t(i)n +1/2)
m (R;x)ỹ(i)

n,j(x̂)

=



(
d2

dx2 + 2
x

d
dx − (n+ 1)(n+ 2)

)
Q

(t(1)
n +1/2)

m (R;x) if i = 1,(
d2

dx2 + 2
x

d
dx − n(n− 1)

)
Q

(t(2)
n +1/2)

m (R;x) if i = 2,(
d2

dx2 + 2
x

d
dx − n(n+ 1)

)
Q

(t(3)
n +1/2)

m (R;x) if i = 3.
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Thus, we obtain three different second-order linear ordinary differential equations for the
radial part. For each fixed n ∈ N0i , their fundamental systems are given by {xn+1, x−(n+2)}
for i = 1, {xn−1, x−n} for i = 2, and {xn, x−(n+1)} for i = 3. Comparing this with the
definition of Q(t(i)n +1/2)

m (R;x), we obtain the stated parameters.

Lemma 5.41. Let the exponents be defined by t(2)
n := n − 1 for all n ∈ N. Then the basis

functions g̃(i)
m,n,j(R; ·) are solenoidal or divergence-free, that is ∇ · g̃(i)

m,n,j(R; ·) = 0 in BR, in
the following cases:

∇ · g̃(i)
m,n,j(R; ·) = 0 ⇔

{
i = 2, m = 0, n ∈ N, j = 1, . . . , 2n+ 1,
i = 3, m ∈ N0, n ∈ N, j = 1, . . . , 2n+ 1.

For arbitrary regions G ⊂ R3, a vector field f ∈ C1(G) is said to be solenoidal if∫
Γ f(x) · ν(x) dω(x) = 0 for every closed and sufficiently smooth surface Γ ⊂ G, see [79,
Def. 5.8]. In the considered case, however, this coincides with the definition of f being
divergence-free due to Gauß’s Theorem.

Proof. The calculation is straightforward with the representation of the divergence in spherical
coordinates, see Theorem 2.14:

∇x · g̃(i)
m,n,j(R;x) =

(
x̂
∂

∂x
+ 1
x
∇∗x̂

)
·
(
Q(t(i)n +1/2)
m (R;x)ỹ(i)

n,j(x̂)
)
.

Due to Eq. (2.6), it is easy to see that this equation is equal to zero if i = 3. In the case i = 1,
we obtain with the relation ỹ(i)

n,j = (µ̃(i)
n )−1/2õ(i)

n Yn,j , Definition 5.9, Eqs. (2.4) and (5.3),
Lemma 2.23, and Theorem 2.16 for all m ∈ N0, n ∈ N0, and j = 1, . . . , 2n+ 1 the differential
equation

∇x · g̃(1)
m,n,j(R;x)

=
(
µ̃(1)
n

)−1/2
(

(n+ 1) ∂
∂x

+ 1
x
∇∗x̂ · ((n+ 1)x̂−∇∗x̂)

)
Q(t(1)

n +1/2)
m (R;x)Yn,j(x̂)

=
(
µ̃(1)
n

)−1/2
(

(n+ 1) ∂
∂x

+ 1
x

(2(n+ 1)−∆∗x̂)
)
Q(t(1)

n +1/2)
m (R;x)Yn,j(x̂)

=
(
µ̃(1)
n

)−1/2
((

(n+ 1) d
dx + 1

x
(n+ 2)(n+ 1)

)
Q(t(1)

n +1/2)
m (R;x)

)
Yn,j(x̂).

Thus, the problem reduces for all n ∈ N0 to a first-order linear ordinary differential equation,
that is (

(n+ 1) d
dx + 1

x
(n+ 2)(n+ 1)

)
Q(t(1)

n +1/2)
m (R;x) != 0. (5.20)

The fundamental system is given by {x−n−2}n∈N0 , which cannot be expressed in terms of
Q

(t(1)
n +1/2)

m (R;x) because these functions consist of Jacobi polynomials of degree m ∈ N0 and
the function x 7→ xt

(1)
n with infn∈N0 t

(1)
n > −3/2. Thus, Eq. (5.20) cannot be fulfilled and,

hence, all orthonormal basis functions corresponding to i = 1 are not solenoidal.
In the case of i = 2, we obtain with a similar calculation for all n ∈ N the first-order linear

ordinary differential equation(
n

d
dx −

1
x
n(n− 1)

)
Q(t(2)

n +1/2)
m (R;x) = 0.

For each n ∈ N, the fundamental system is given by {xn−1} . Combined with t(2)
n = n− 1

for all n ∈ N, this implies m = 0.
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5.5. Orthonormal Systems on the Ball

(a) Gm,n,j(R; ·) for m = 0, n = 0, j = 1 (b) Gm,n,j(R; ·) for m = 0, n = 2, j = 4

(c) Gm,n,j(R; ·) for m = 1, n = 2, j = 4 (d) Gm,n,j(R; ·) for m = 5, n = 5, j = 3

Figure 5.1: The functions Gm,n,j(R; ·) in the case tn := n−1, R = 1 for different parameters
m,n, j are plotted on the unit sphere. For the particular parameters see the respective
caption. The maximum is always yellow and the minimum is blue.
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(a) Gm,n,j(R; ·) for m = 0, n = 0, j = 1 (b) Gm,n,j(R; ·) for m = 0, n = 2, j = 4

(c) Gm,n,j(R; ·) for m = 1, n = 2, j = 4 (d) Gm,n,j(R; ·) for m = 5, n = 5, j = 3

Figure 5.2: The functions Gm,n,j(R; ·) in the case tn := n−1, R = 1 for different parameters
m,n, j are plotted at the plane through the origin with normal vector (1, 1,−1)T. For the
particular parameters see the respective caption. The maximum is always yellow and the
minimum is blue.
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Chapter 6.

Vector Legendre-type Integral Kernels

In this chapter, we define and consider two particular classes of Fredholm integral kernels:
the continuous and the star-shaped vector Legendre-type integral kernels. The classical
Fredholm integral kernels and their equations are discussed, for example, in [77]. Important
integral equations in the context of potential theory are discussed in [135], for instance.
As mentioned before, two vector-valued integral kernels, which lie at the heart of the

magneto-encephalography problem, are defined in Eq. (3.4) and Eq. (4.23). For each
kernel, there is an integral equation relating the neuronal current to the measured quantity,
that is either the magnetic flux density or the electric potential. The aim of the class
of integral kernels introduced in this chapter is to simultaneously cover both magneto-
electroencephalography integral kernels. Thus, the definition of this kernels should be
generalizing on the one side, such that both problems are covered, but also be restrictive
enough to handle the corresponding integral operator.
These kernels are formally defined in Section 6.1 via a series representation. Thus, in

Section 6.1, the convergence of this series in an appropriate sense is analyzed, which yields
the well-definedness of these kernels. The relation between the kernels occurring in the
inverse MEG and EEG problem and this particular class of kernels is analyzed in Section 6.2.
Eventually, we consider in Section 6.3 further properties of this particular class of kernels
that are required for the well-definedness of the corresponding integral equations.

6.1. Definition and Well-definedness

The definition of the continuous vector Legendre-type integral kernel is inspired by the
familiar series of Legendre polynomials previously stated in Eq. (2.2), that is

1
4π|x− y| = 1

4π

∞∑
k=0

xk

yk+1Pk(x̂ · ŷ), x, y ∈ R3, x < y.

This integral kernel occurs, for example, in the inverse gravimetric problem, that is the
reconstruction of the mass density distribution % inside the Earth E by the gravitational
potential V in the outer space. Both quantities are linked by means of Newton’s Law of
Gravitation, whose formula is given by

V (y) = 1
4π

∫
E

%(x)
|x− y| dx, y ∈ R3 \ E.

This famous integral equation is not the only one of this kind. All solutions V of Poisson’s
equation ∆V = % can be represented by such an integral equation. In this context, the
stated integral kernel is called the three-dimensional Newtonian kernel. In Part IV, we come
back to this integral equation. Besides this, Poisson’s equation occurs in diverse surface
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Chapter 6. Vector Legendre-type Integral Kernels

reconstruction problems, in the context of diffusion processes, in electrostatics, and in the
magneto-electroencephalography problem, see, for instance, [64, 79, 117, 204].

As we have already seen, the sought density is a vector-valued quantity in the case of the
magneto-encephalography problem. For this purpose, we need a vector-valued integral kernel
that fits to the vector calculus in spherical geometries. We accomplish this by replacing the
scalar Legendre polynomials with a vectorial counterpart, see Definition 5.21. In addition,
we allow a more general setting for the part that depends on the radius.

We call kernels that fulfil the conditions of the next definition continuous vector Legendre-
type integral kernels (continuous VLI kernels) because the Morse-Feshbach vector Legendre
polynomials build a foundation for these integral kernels. At the end of this chapter, we
see that we can also use the Edmonds vector Legendre polynomials instead of the Morse-
Feshbach vector Legendre polynomials in order to achieve kernels with similar properties. In
addition, in the literature, see [88, 89], the (Morse-Feshbach) vector Legendre polynomials
are sometimes also called vector Legendre kernels. After some analysis of this kernel, we
prove in Corollary 6.12 that the adjective continuous is justified.

Definition 6.1 (Continuous Vector Legendre-type Integral Kernel). Let the inner
set Gin ⊂ R3 be a compact, region containing the origin with supx∈Gin x = R > 0. Moreover,
let the outer set Gout ⊂ R3 \Gin be an unbounded region with infy∈Gout y > R, see Fig. 6.1.
For an arbitrary ι ∈ {1, 2, 3} , we define the kernel k(ι) by

k(ι)(x,y) :=
∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ), (x,y) ∈ Gin ×Gout.

Let the occurring quantities fulfil the following assumptions:

i) The real sequence of exponents {tk}k∈N0ι is bounded from below by zero, that is
infk∈N0ι ,γk 6≡0 tk ≥ 0.

ii) The asymptotic behaviour of {tk}k∈N0ι can be characterized by supk∈N0ι
Rtk−k <∞.

iii) Each function γk is continuous and satisfies for all y ∈ Gout the inequality

|γk(y)| ≤ Γk
yk+1+δ0ι,0δk,0

for all k ∈ N0ι with {Γk}k∈N0ι ⊂ R+
0 . In addition, let M ∈ N0 be fixed such that the

mapping (k 7→ Γk) is an element of O(kM ).

The corresponding integral equation is called the continuous VLI equation.

Note that we often use non-bold letters as the abbreviation for the absolute value of bold
letter quantities. In this particular case, however, k(ι) names the vectorial kernel and k the
summation index of this kernel. Examples of continuous VLI kernels in the context of the
magneto-electroencephalography problem can be found in Section 6.2.
Let us briefly discuss the stated assumptions and their respective aim. The convergence

of the series in the Newtonian kernel is achieved by a dominating convergent power series.
Thus, by means of the asymptotic behaviour of the sequence {tk}k∈N0ι and the upper bound
of {γk}k∈N0ι this convergence is ensured for the continuous VLI kernel. The boundedness
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6.1. Definition and Well-definedness

0R

Gin = BR(0)

Gout

dist (Gin,Gout) = ε > 0

Figure 6.1: The compact inner region Gin in the particular case of Gin := BR and the
unbounded outer region Gout with dist(Gin,Gout) = ε > 0 and infy∈Gout y = R+ ε.

from below of {tk}k∈N0ι is required for certain smoothness results, such as continuity or
integrability. Both statements are proved later.

In certain cases, a moderate degree of smoothness is sufficient. For this purpose, we define
the star-shaped VLI kernel.

Definition 6.2 (Star-shaped VLI Kernel). Let Gstar ⊂ R3 be a compact star domain
with vantage point zero and supx∈Gstar x = R. Let Gout ⊂ R3 \Gstar be an unbounded outer
region with infy∈Gout y > R. For an arbitrary ι ∈ {1, 2, 3} , we define the kernel k(ι) by

k(ι)(x,y) :=
∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ), (x,y) ∈ (Gstar \ {0})×Gout.

The sequences {tk}k∈N0ι and {γk}k∈N0ι fulfil the assumptions of the continuous VLI kernel.
In addition, we enhance the range of the exponent sequence such that

inf
k∈N0ι ,γk 6≡0

tk ≥ −1.

Note that the attribute star-shaped belongs to a property of the region Gstar and is not a
property of the kernel itself.
The domain of the star-shaped VLI kernel is given by domk(ι) = (Gstar \ {0} ) × Gout,

since the origin can be a singularity of k(ι)(·,y) for all y ∈ Gout. However, in the sense of
L2(Gstar ×Gout) this is not a problem.
Comparing the definitions of the continuous VLI and the star-shaped VLI kernel, we

immediately obtain the next corollary.

Corollary 6.3. Let k(ι) be a star-shaped VLI kernel. Then (x,y) 7→ xk(ι)(x,y) is a
continuous VLI kernel for all (x,y) ∈ Gstar ×Gout.
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Chapter 6. Vector Legendre-type Integral Kernels

The star domain can be characterized in spherical coordinates similar to the ball. Each
point depends on the angle and the radius, which for the star domain differs from angle to
angle. More precisely, with a measurable function ζ : S → [0, R] we have

Gstar =
{
x ∈ R3

∣∣∣ x = ζ(x̂)x̂, x̂ ∈ S
}
.

Of course, by a change of variables we obtain for all f ∈ L2(Gstar) the identity∫
Gstar

f(x) dx =
∫
S

∫ ζ(x̂)

0
f(x)x2 dx dω(x̂). (6.1)

Why do we consider two different kinds of integral kernels? The continuous VLI kernel is
regular in Gin, which leads us to its uniform boundedness. This property helps us to handle
the integral kernel by interchanging limits. However, we are ultimately interested in the
corresponding integral equation. In contrast to the continuous VLI kernel, the star-shaped
VLI kernel cannot be handled as easily due to the singularity at the origin. Fortunately,
the Jacobian determinant occurring in the integration over Gstar in Eq. (6.1) flattens the
singularity of the star-shaped VLI kernel. Hence, we are able to weaken the conditions for
the exponent {tk}k∈N0ι for star-shaped domains. Then, by means of Corollary 6.3, we are
able to transfer properties of the continuous VLI kernel to the star-shaped one.

First, we prove that both kernels k(ι) from Definition 6.1 and Definition 6.2 are well-defined,
that is the series of the kernels converge in an appropriate sense. To this end and for the
forthcoming convergence result, we need an essential property of the geometric series, which
is summarized in the next theorem.

Theorem 6.4 (Convergence of the Power Series). Let |q| < 1 and M ∈ R be fixed,
then the series

∞∑
k=0

kMqk <∞

converges absolutely. This also implies limk→∞ kMqk = 0.

Proof. Consider the series as a power series in q with coefficients kM . Its radius of convergence
is given by

1
lim supk→∞

k
√
kM

= 1(
limk→∞

k
√
k
)M = 1.

Thus, the series converges absolutely for all |q| < 1.

The next lemma is a powerful tool for the convergence analysis of the integral kernel and
the well-definedness of its induced integral equation. Its proof is based on the convergence of
the power series stated in the foregoing theorem.

Lemma 6.5. The continuous VLI kernel k(ι) is bounded, that is∣∣k(ι)(x,y)
∣∣ ≤ B for all (x,y) ∈ Gin ×Gout,

where the bound B is defined by

B :=
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=0ι

Γk
√
µ(ι)
k

Rk

(R+ ε)k+1+δ0ι,0δk,0
<∞.
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Proof. Due to the construction of Gin and Gout, there exists an ε > 0 such that 0 ≤ x ≤
supx∈Gin x = R < R+ε ≤ infy∈Gout y ≤ y for all (x,y) ∈ Gin×Gout. In addition, Lemma 5.22
provides us with the estimate ∣∣∣p(ι)

k (x̂, ŷ)
∣∣∣ ≤ √µ(ι)

k

for all k ∈ N0ι and all (x,y) ∈ Gin ×Gout. Thus, under the assumptions in Definition 6.1 we
immediately obtain the estimate

∣∣k(ι)(x,y)
∣∣ =

∣∣∣∣∣∣
∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ)

∣∣∣∣∣∣
≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=0ι

Γk
√
µ(ι)
k

Rk

yk+1+δ0ι,0δk,0

≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=0ι

Γk
√
µ(ι)
k

Rk

(R+ ε)k+1+δ0ι,0δk,0

= B.

The convergence properties of the geometric power series, see Theorem 6.4, the fact that(
k 7→

√
µ(ι)
k Γk

)
∈ O

(
kM+1

)
,

and supk∈N0ι
Rtk−k <∞ ensure the convergence of the series. This implies B <∞.

Using this result, we can establish absolute and uniform convergence of the series in the
continuous VLI kernel.

Theorem 6.6. Let k(ι) be a continuous VLI kernel. The series in its definition, that is
∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ),

converges absolutely and uniformly in Gin ×Gout.

Proof. For the convergence of the series we analyze the following bounding series∣∣∣∣∣∣
∞∑

k=K+1
γk(y)xtkp(ι)

k (x̂, ŷ)

∣∣∣∣∣∣ ≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
√
µ(ι)
k

Rk

(R+ ε)k+1+δ0ι,0δk,0
.

The employed estimate is similar to the one from the foregoing result, see Lemma 6.5. The
power series on the right-hand side converges to 0 as K → ∞, due to the convergence
properties of the geometric series, see Theorem 6.4. The right-hand side is also independent
of (x,y) ∈ Gin ×Gout. Thus, uniform convergence follows.

For the star-shaped VLI kernel, we are able to obtain a comparable result.

Lemma 6.7. The series in the definition of the star-shaped VLI kernel converges absolutely
and pointwise for all (x,y) ∈ (Gstar \ {0} )×Gout.
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Note that we do not obtain the uniform convergence in Gstar in this case, due to the
singularity at the origin.

Proof. Let k(ι) be the star-shaped VLI kernel given by

k(ι)(x,y) =
∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ), (x,y) ∈ Gstar ×Gout.

Then (x,y) 7→ xk(ι)(x,y) is a continuous VLI kernel for all (x,y) ∈ Gstar × Gout, see
Corollary 6.3. Thus, the series

∞∑
k=0ι

γk(y)xtk+1p(ι)
k (x̂, ŷ)

converges absolutely and pointwise for all (x,y) ∈ Gstar ×Gout by means of Theorem 6.6.
For the series of the star-shaped VLI kernel, we obtain for all (x,y) ∈ (Gstar \ {0} )×Gout
the estimate∣∣∣∣∣∣

∞∑
k=K+1

γk(y)xtkp(ι)
k (x̂, ŷ)

∣∣∣∣∣∣ =

∣∣∣∣∣∣1x
∞∑

k=K+1
γk(y)xtk+1p(ι)

k (x̂, ŷ)

∣∣∣∣∣∣
≤ 1
x

(
sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
√
µ(ι)
k

Rk+1

(R+ ε)k+1+δ0ι,0δk,0
.

Here, the right-hand side converges to zero as K →∞.

In the next lemma, we show that the o(ι)
x̂ -operators can be interchanged with the series of

the integral kernel. We use this result when the interchanging of differential operators with
components of the vectorial kernel is analyzed. In addition, we know from Eq. (3.4) that the
integral kernel of the MEG problem is given by the surface curl of a Legendre polynomial
series. In contrast, the EEG integral kernel is given by a series of gradients of Legendre
polynomials, see Eq. (4.23). In order to find a collective representation of both integral
kernels, the interchanging of the differential operators and the series is necessary.

Lemma 6.8. For the continuous VLI kernel k(ι), the following holds true:

• We can interchange the o(ι)
x̂ -operator included in the vectorial Legendre polynomials

with the series, that is

k(ι)(x,y) = o(ι)
x̂

∞∑
k=0ι

(
µ(ι)
k

)−1/2
γk(y)xtkPk(x̂ · ŷ), (x,y) ∈ Gin ×Gout. (6.2)

• The series in Eq. (6.2) converges absolutely and uniformly.

The interchanging also holds true for the star-shaped VLI kernel for all (x,y) ∈ (Gstar \
{0} )×Gout.
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Proof. In the case of ι = 1, there is nothing to prove for the interchanging and the convergence,
since o(1) is only a multiplication operator independent of the summation index k ∈ N0 and
the corresponding normalization factor equals one for all degrees.
In the two other cases, we need to check if the occurring differential operator and the

series can be interchanged. Theorem 6.6 provides us with the uniform convergence of the
term-by-term differentiated series. According to properties of uniformly convergent series,
see [197], the pointwise convergence of the non-differentiated series remains to be shown. For
the non-differentiated series, we get for all (x,y) ∈ Gin ×Gout the estimate∣∣∣∣∣∣

∞∑
k=K+1

(
µ(ι)
k

)−1/2
γk(y)xtkPk(x̂ · ŷ)

∣∣∣∣∣∣
≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
(
µ(ι)
k

)−1/2 Rk

(R+ ε)k+1+δ0ι,0δk,0
.

The right-hand side converges to zero as K →∞ due to the assumptions in Definition 6.1
and Theorem 6.4. Since both series converge uniformly, an interchanging of o(ι)

x̂ and the
series is valid.

Let us now consider the case of the star-shaped VLI kernel. Then, by means of Corollary 6.3,
we get for all (x,y) ∈ (Gstar \ {0} )×Gout the identity

xk(ι)(x,y) = o(ι)
x̂

∞∑
k=0ι

(
µ(ι)
k

)−1/2
γk(y)xtk+1Pk(x̂ · ŷ)

= xo(ι)
x̂

∞∑
k=0ι

(
µ(ι)
k

)−1/2
γk(y)xtkPk(x̂ · ŷ).

Some of the next statements hold true for the continuous VLI kernel as well as the
star-shaped VLI kernel. Thus, we use the notation continuous/star-shaped VLI kernel if a
statement holds true for both kinds of kernels.

Concluding, in this section, we defined the continuous/star-shaped VLI kernels via a series
representation of Morse-Feshbach vector Legendre polynomials. We proved that the series
is well-defined since it converges at least absolutely and pointwise. In addition, we found
a dominating convergent power series for the continuous VLI kernel that is independent
of (x,y) ∈ Gin × Gout. Due to this estimate, the series of the continuous VLI kernel
converges uniformly. Furthermore, the differential operators occurring in the definition of
the Morse-Feshbach vector Legendre polynomials can be interchanged with the series.

6.2. Examples: Magneto-electroencephalography Kernels

So far, we have defined a particular class of integral kernels. In the introduction of this
chapter, we claimed that the integral kernels occurring in the MEG and EEG problem
are kernels of this particular class. Before we further investigate properties of continuous/
star-shaped VLI kernels in Section 6.3, we prove this statement.
We start with the integral kernel corresponding to the MEG problem. In Eq. (3.4), the

representation

kM(x,y) = 1
4πL

∗
x̂

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ), (x,y) ∈ B%0 × Bext
%L
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is derived for this kernel. Recall that we consider the multiple-shell model in the MEG
problem, see Assumption 3.2. According to this model, the inner region of the continuous/
star-shaped VLI is given by the cerebrum that is modelled as a closed ball with radius
%0. Then the MEG integral kernel has for all (x,y) ∈ B%0 × Bext

%L
the following alternative

representations:

kM(x,y) = 1
4πL

∗
x̂

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ) (6.3a)

= 1
4π

∞∑
k=1

xk

yk+1(k + 1)L
∗
x̂Pk(x̂ · ŷ) (6.3b)

= 1
4π

∞∑
k=1

xk
√
k(k + 1)

yk+1(k + 1) p
(3)
k (x̂, ŷ) (6.3c)

= 1
4π

∞∑
k=1

√
k

k + 1
xk

yk+1p
(3)
k (x̂, ŷ). (6.3d)

Note that the interchanging of the differential operator and the series is valid due to Lemma 6.8.
The vector Legendre polynomials are given in Definition 5.21. Thus, we eventually obtain
that the kernel of the inverse MEG problem is a particular case of the continuous/star-shaped
VLI kernel.

Lemma 6.9. Let Assumption 3.2 with L ≥ 1 be fulfilled. The integral kernel kM given by

kM(x,y) = 1
4π

∞∑
k=1

√
k

k + 1
xk

yk+1p
(3)
k (x̂, ŷ), (x,y) ∈ B%0 × Bext

%L
, (6.4)

is a continuous/star-shaped VLI kernel, see Definitions 6.1 and 6.2. In addition, we have
type ι = 3 and the exponents tk := k for all k ∈ N. The corresponding functions {γk}k∈N
given by

γk(y) := Γk
1

yk+1 := 1
4π

√
k

k + 1
1

yk+1 for all y ∈ Bext
%L

satisfy for an ε > 0 the estimates

|γk(y)| ≤ 1
4π

√
k

k + 1
1

yk+1 ,

sup
y∈Bext

%L

∣∣γ′k(y)
∣∣ ≤ 1

4π

√
k(k + 1)(%0 + ε)−(k+2),

sup
y∈Bext

%L

∣∣γ′′k (y)
∣∣ ≤ 1

4π

√
k(k + 1)(k + 2)(%0 + ε)−(k+3).

Finally, we set γ0 := Γ0 := 0.

Proof. By means of the multiple-shell model, we immediately obtain inf
y∈Bext

%L

y ≥ %L > %0,
which satisfies the requirements on the domains. Moreover, we set ι = 3 and determine for
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all k ∈ N the exponent by tk = k ≥ 1. It is easy to verify that supk∈N %k−k0 = 1 < ∞ and
that

|γk(y)| ≤ Γk
yk+1 = Γk

yk+1+δ0ι,0δk,0
for all y ∈ Bext

%L

with (k 7→ Γk :=
√
k/(k + 1)/(4π)) ∈ O(1) as k →∞. Since the origin is not contained in

the outer region, the function γk is an arbitrarily often continuously differentiable function
for all k ∈ N. In addition, there exists an ε := (2(%L − %0))−1 > 0 such that

sup
y∈Bext

%L

∣∣γ′k(y)
∣∣ = sup

y∈Bext
%L

∣∣∣∣−Γk(k + 1)
yk+2

∣∣∣∣ ≤ 1
4π

√
k(k + 1)(%0 + ε)−(k+2),

sup
y∈Bext

%L

∣∣γ′′k (y)
∣∣ = sup

y∈Bext
%L

∣∣∣∣Γk(k + 1)(k + 2)
yk+3

∣∣∣∣ ≤ 1
4π

√
k(k + 1)(k + 2)(%0 + ε)−(k+3).

Now, we consider the integral kernel corresponding to the EEG problem. In Eq. (4.23), a
representation of this kernel is stated, that is

kE(x,y) := 1
4π

∞∑
k=1

(2k + 1)Hk(y)∇x
(
xkPk(x̂ · ŷ)

)
, (x,y) ∈ B%0 × S[%L−1,%L].

In order to fit into the setting of the continuous/star-shaped VLI kernels, further manipulation
of the right-hand side is required. For the gradient term of the right-hand side, we use
Eq. (5.6) since the Legendre polynomials of degree k ∈ N0 are elements of Harmk(S), see
Theorem 2.25. Thus, via Definition 5.21, we get for all k ∈ N the identity

∇x
(
xkPk(x̂ · ŷ)

)
= xk−1õ(2)

n,ξPk(x̂ · ŷ)

=
√
k(2k + 1)xk−1p̃(2)

n (x̂, ŷ).

For k = 0, the gradient of the constant function vanishes. Hence, the integral kernel has for
all (x,y) ∈ B%0 × S[%L−1,%L] several alternative representations:

kE(x,y) = 1
4π

∞∑
k=1

√
k(2k + 1)3Hk(y)xk−1p̃(2)

k (x̂, ŷ) (6.5a)

= 1
4π

∞∑
k=1

(2k + 1)Hk(y)∇x
(
xkPk(x̂ · ŷ)

)
(6.5b)

= 1
4π∇x

∞∑
k=1

(2k + 1)Hk(y)xkPk(x̂ · ŷ), (6.5c)

where the interchanging of the differential operator and the series in the last step is valid
due to Lemma 6.8.

Lemma 6.10. Let Assumption 3.2 be fulfilled, where the multiple-shell model has at least
two shells, that is L ≥ 2. Under this condition, the kernel given by

kE(x,y) = 1
4π

∞∑
k=1

√
k(2k + 1)3Hk(y)xk−1p̃(2)

k (x̂, ŷ) (6.6)
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for all (x,y) ∈ B%0 × S[%L−1,%L] with Hk given as in Eq. (4.20) combined with Eq. (4.18), is a
linear combination of two continuous/star-shaped VLI kernels in the sense of Definition 6.1
or Definition 6.2, respectively. Thus, the series converges uniformly in B%0 × S[%L−1,%L]. In
addition, the series and the differential operator appearing in the vector Legendre polynomial
can be interchanged.

Proof. First, we define for all (x,y) ∈ B%0 × S[%L−1,%L] the two functions

f (1)(x,y) := 1
4π

∞∑
k=1

(2k + 1)kHk(y)xk−1p(1)
k (x̂, ŷ),

f (2)(x,y) := 1
4π

∞∑
k=1

√
µ(2)
k (2k + 1)Hk(y)xk−1p(2)

k (x̂, ŷ).

Second, we prove that these two functions are star-shaped VLI kernels. In both cases, we
obtain that the inner region B%0 is a star-shaped bounded region with supx∈B%0 x = %0 and that
infy∈S[%L−1,%L] y > %L−1 > %0 since L ≥ 2. In addition, we define the exponent by tk := k − 1
for all k ∈ N0, which implies infk∈N0,γk 6≡0 tk ≥ −1. Also, we have supk∈N0 %

tk−k
0 = %−1

0 <∞.
In the case of f (1), we choose the following parameters for k ∈ N0 in order to satisfy

Definition 6.2 for ι = 1. For the sequence of functions {γk}k∈N0 , we choose

γk(y) := k(2k + 1)
4π Hk(y), y ∈ S[%L−1,%L].

Note that γ0 ≡ 0. Hence, we can also start the summation by k = 1 and do not get a
singularity at the origin. By means of Lemma 4.2, we obtain that (k 7→ |β(L)

k |) ∈ O(k−1) if
L ≥ 0. Thus, for its asymptotic behaviour, we obtain for all y ∈ S[%L−1,%L] the estimate

|γk(y)| = k(2k + 1)
4π |Hk(y)|

= k(2k + 1)
4π

∣∣∣∣∣
(
k + 1
k

(
y

%L

)2k+1
+ 1

)∣∣∣∣∣ ∣∣∣β(L)
k

∣∣∣ |y|−(k+1)

≤ (2k + 1)2

4π
∣∣∣β(L)
k

∣∣∣ |y|−(k+1)

=: Γk
yk+1+δ01,0δk,0

with Γk := (2k + 1)2(4π)−1|β(L)
k | ∈ R+

0 . The constant Γk grows polynomially in k with order
1, due to Lemma 4.2. Thus, f (1) is a star-shaped VLI kernel in the sense of Definition 6.2.
Similarly, in the case of f (2), we obtain a star-shaped VLI kernel by choosing the same
parameters and setting γk(y) := (4π)−1(2k + 1)

√
k(k + 1)Hk(y) for k ∈ N and γ0 ≡ 0. Both

functions are also continuous VLI kernels as in Definition 6.1 because the zeroth summand
vanishes and infk∈N0,γk 6≡0 tk = 0.

Recall that the Edmonds and Morse-Feshbach vector Legendre polynomials are related by
Eq. (5.12b), that is

√
µ̃(2)
k p̃

(2)
k =

√
µ̃(2)
k

√ k

2k + 1p
(1)
k +

√
k + 1
2k + 1p

(2)
k


= kp(1)

k +
√
k(k + 1)p(2)

k ,
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where the normalization factor µ̃(2)
k = k(2k + 1) is given for all k ∈ N in Definition 5.21 and

µ(2)
k = k(k+ 1) in Eq. (5.2). Since both series occurring in f (1) and f (2) converge (uniformly),

see Theorem 6.6, the series in kE = f (1) + f (2) converges (uniformly).

Summing up, the representation of kE consists of a linear combination of two continuous/
star-shaped VLI kernels. We analyzed the convergence of the occurring series by taking
into account the asymptotic behaviour of the coefficients β(L)

k stated in Lemma 4.2. The
coefficients depend on the radii of the different shells and their conductivities.

In the frequently used special case of the homogeneous setting, that is the same constant
conductivity on each shell, a closed representation of {Hk}k∈N is known and the convergence
is given, see Example 6.11.

Example 6.11. In the homogeneous case, that is all conductivities are equal (σl = σ0 for
all l = 0, . . . , L), we do not need to distinguish between the different shells. Hence, we can
assume that the number of shells is greater than one and the matrix M(L) equals the identity
matrix, see Eq. (4.17). Thus, via Eq. (4.18) we get that β(l)

k = β(0)
k = (σ0(2k + 1))−1 for all

k ∈ N and all l = 0, . . . , L and, as in the inhomogeneous case, α(0)
0 = β(0)

0 = 0. The integral
kernel is for all (x,y) ∈ B%0 × S[%L−1,%L] (i.e. x ≤ %0 < %L−1 ≤ y) given by

kE(x,y) = 1
4π

∞∑
k=1

√
k(2k + 1)3

(
k + 1
k

(
y

%L

)2k+1
+ 1

)
β(0)
k

xk−1

yk+1 p̃
(2)
k (x̂, ŷ).

Thus, for the homogeneous inverse EEG problem, we also obtain the asymptotic behaviour of
the sequence {β(0)

k }k∈N required for the convergence of the series, see Lemma 4.2. For the
restriction to the sphere S%L, we obtain Hk = (σ0k)−1%

−(k+1)
L , see Eq. (4.21), and

kE(x, %Lŷ) = 1
4πσ0

∞∑
k=1

√
(2k + 1)3

k

xk−1

%k+1
L

p̃(2)
k (x̂, ŷ). (6.7)

6.3. Further Properties

For the analysis of the integral operator induced by the continuous/star-shaped VLI kernel,
we need more properties than the well-definedness of the integral kernel. We start by
establishing the continuity of the continuous VLI kernel using the uniform convergence and
boundedness of the occurring series.

Corollary 6.12. The following statements hold true:

i) The continuous VLI kernel k(ι) is continuous in both arguments.

ii) The star-shaped VLI kernel k(ι)(x,y) is continuous for all (x,y) ∈ (Gstar \ {0} )×Gout.

Proof. i) For each k ∈ N0ι , the function hk : Gin ×Gout → R3 defined by

hk(x,y) := γk(y)xtkp(ι)
k (x̂, ŷ)

is continuous because of the continuity of γk, the fact that infk∈N0ι ,γk 6≡0 tk ≥ 0, and
the properties of the vectorial Legendre polynomials. The uniform convergence of the
series ∑∞k=0ι hk is proved in Theorem 6.6. This yields the desired continuity of the
limit k(ι).
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ii) Due to Corollary 6.3, xk(ι)(x,y) is a continuous VLI kernel for all (x,y) ∈ Gstar×Gout
and, hence, continuous in both arguments by means of the previous item. Thus,
k(ι)(x,y) is continuous for all (x,y) ∈ (Gstar \ {0} )×Gout.

Now, we are interested in integrability results of the continuous/star-shaped VLI kernel
k(ι). An immediate consequence of the continuity of the continuous VLI kernel and the
boundedness of sets Gin and Gstar, respectively, is the next corollary.

Corollary 6.13. The following statements hold true, where B is the upper bound given in
Lemma 6.5:

i) The continuous VLI kernel k(ι)(·,y) is an L2(Gin)-function for all fixed y ∈ Gout
fulfilling ∥∥k(ι)(·,y)

∥∥2
L2(Gin) ≤ B2vol(Gin) <∞.

ii) The star-shaped VLI kernel k(ι)(·,y) is an L2(Gstar)-function for all fixed y ∈ Gout
with ∥∥k(ι)(·,y)

∥∥2
L2(Gstar) ≤ B

24πR3 <∞.

The series of the integral kernels k(ι)(·,y) converge in the L2(Gin)- and L2(Gstar)-sense,
respectively.

Proof. The convergence of the series and the finiteness of the norms can be obtained by the
same estimates. Thus, we restrict ourselves to the calculation of the norms.

i) The region Gin is bounded by Definition 6.1. Due to Corollary 6.12, we have k(ι)(·,y) ∈
C(Gin) ⊂ L2(Gin) for all fixed y ∈ Gout. With the result from Lemma 6.5, we estimate
the norm for all y ∈ Gout by∥∥k(ι)(·,y)

∥∥2
L2(Gin) =

∫
Gin

(
k(ι)(x,y)

)2 dx ≤ B2 vol(Gin) <∞.

ii) For the second statement, we need to estimate the L2(Gstar)-norm of the star-shaped
VLI kernel k(ι)(·,y). For this purpose, we use properties of the vectorial Legendre
polynomials from Definition 5.21 and Lemma 5.22. Thus, for all y ∈ Gout we get the
estimate

∥∥k(ι)(·,y)
∥∥2

L2(Gstar) =
∫
Gstar

 ∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ)

2

dx

≤
∫
Gstar

 ∞∑
k=0ι
|γk(y)|xtk

√
µ(ι)
k

2

dx

=
∫
S

∫ ζ(x̂)

0

 ∞∑
k=0ι
|γk(y)|xtk+1

√
µ(ι)
k

2

dx dω(x̂)

≤
 ∞∑
k=0ι
|γk(y)|Rtk+1

√
µ(ι)
k

2 ∫
S

∫ ζ(x̂)

0
dx dω(x̂)
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≤ 4πR
(

sup
k∈N0ι

Rtk−k
)2
 ∞∑
k=0ι

Γk
√
µ(ι)
k

Rk+1

(R+ ε)k+1+δ0ι,0δk,0

2

= B24πR3 <∞.
The latter estimate is valid due to Lemma 6.5 and Definition 6.2, and properties of the
power series, see Theorem 6.4.

In the continuous/star-shaped VLI equation, the kernel is integrated together with a
function f ∈ L2(G). For later use, we want to interchange the series in the kernel with the
integration. This is permitted by the strong convergence of the series proved in Corollary 6.13,
see, for instance, [225, Ch. V].

Corollary 6.14. Let G ⊆ Gin or G ⊆ Gstar, respectively, be a region inside the inner region
and let f ∈ L2(G). Then the following holds true for the continuous/star-shaped VLI kernel:∫

G
f(x) · k(ι)(x,y) dx =

∞∑
k=0ι

∫
G
f(x) ·

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)

dx.

The integrability of the continuous/star-shaped VLI kernel with respect to the first
argument is a consequence of this corollary. For its proof, the Cartesian unit vectors in R3

are used as the function f .

Corollary 6.15. Let G ⊆ Gin or G ⊆ Gstar, respectively, be a region inside the inner region.
Then we are able to interchange the integration over G with the series in the definition of the
continuous/star-shaped VLI kernel. More precisely, for all y ∈ Gout, we get∫

G
k(ι)(x,y) dx =

∞∑
k=0ι

∫
G
γk(y)xtkp(ι)

k (x̂, ŷ) dx.

The weak convergence of the series in Corollary 6.14 enables us to expand Corollary 6.13
to the second slot of the kernel, that is to establish L2(Gin ×Gout) regularity of k(ι).

Lemma 6.16. The following statements hold true:

i) The continuous VLI kernel k(ι) is an L2(Gin ×Gout)-function.

ii) The star-shaped VLI kernel k(ι) is an L2(Gstar ×Gout)-function.

Proof. Inserting the series representation of the continuous/star-shaped VLI kernel into the
norm and using the weak convergence of the series, see Corollary 6.14, we obtain∫

Gout

∫
Gin

(
k(ι)(x,y)

)2 dx dy

=
∫
Gout

∫
Gin

 ∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ)

2

dx dy

=
∫
Gout

∞∑
k=0ι

∞∑
l=0ι

γk(y)γl(y)
∫
Gin

xtk+tlp(ι)
k (x̂, ŷ) · p(ι)

l (x̂, ŷ) dxdy. (6.8)

If the right-hand side exists, then it equals the L2(Gin ×Gout)-norm of k(ι) to the power of
two. This is obtained by means of Tonelli’s Theorem, see [19, Thm. 23.6]. The latter identity
also holds true in the case of Gstar instead of Gin.

89



Chapter 6. Vector Legendre-type Integral Kernels

i) Using the estimate of the vectorial Legendre polynomials, see Lemma 5.22 and the fact
that x ≤ R since x ∈ Gin, and the assumptions on {γk}k∈N0ι from Definition 6.1, we
obtain the estimate∫

Gout

∫
Gin

(
k(ι)(x,y)

)2 dx dy

≤
∫
Gout

 ∞∑
k=0ι
|γk(y)|Rtk

√
µ(ι)
k

2

vol(Gin) dy

≤
∫
Gout

 ∞∑
k=0ι

Γk
yk+1+δ0ι,0δk,0

Rtk
√
µ(ι)
k

2

vol(Gin) dy

≤ vol(Gin)
∫
Bext
R+ε

 ∞∑
k=0ι

Γk
yk+1+δ0ι,0δk,0

Rtk
√
µ(ι)
k

2

dy

= vol(Gin)
∫
S

∫ ∞
R+ε

 ∞∑
k=0ι

Γk
yk+1+δ0ι,0δk,0

Rtk
√
µ(ι)
k

2

y2 dy dω(ŷ)

= 4π vol(Gin)
∫ ∞
R+ε

 ∞∑
k=0ι

Γk
yk+δ0ι,0δk,0

Rtk
√
µ(ι)
k

2

dy

= 4π vol(Gin)
∫ ∞
R+ε

∞∑
k=0ι

∞∑
l=0ι

ΓkΓl
yk+l+δ0ι,0(δk,0+δl,0)R

tk+tl
√
µ(ι)
k µ

(ι)
l dy.

In the third estimate, we extend the integration region to a region that has a known
parametrization. Eventually, the integral reduces to a one-dimensional integral with
respect to y. In the next step, we want to interchange the series and the integration.
We define the auxiliary functions fk,l : [R+ ε,∞)→ R by

fk,l(y) := ΓkΓly−(k+l+δ0ι,0(δk,0+δl,0))Rtk+tl
√
µ(ι)
k µ

(ι)
l

for all k, l ∈ N0ι . Due to the assumptions on {Γk}k∈N0ι , each function fk,l is non-
negative and fk,l ∈ L2([R+ ε,∞)). For this property of fk,l, the term δ0ι,0(δk,0 + δl,0)
is required to achieve the integrability for k, l = 0. This condition has its origin in
the inequality for γk from Definition 6.1. An immediate consequence of Beppo Levi’s
Theorem for series, see [19, Ch. 15], provides us with the possibility to interchange.
Hence, ∫

Gout

∫
Gin

(
k(ι)(x,y)

)2 dx dy

≤ 4π vol(Gin)
∞∑
k=0ι

∞∑
l=0ι

∫ ∞
R+ε

ΓkΓl
yk+l+δ0ι,0(δk,0+δl,0)R

tk+tl
√
µ(ι)
k µ

(ι)
l dy

= 4π vol(Gin)
∞∑
k=0ι

∞∑
l=0ι

ΓkΓlRtk+tl
√
µ(ι)
k µ

(ι)
l

∫ ∞
R+ε

1
yk+l+δ0ι,0(δk,0+δl,0) dy

= 4π vol(Gin)
∞∑
k=0ι

∞∑
l=0ι

ΓkΓlRtk+tl
√
µ(ι)
k µ

(ι)
l

(R+ ε)−(k+l+δ0ι,0(δk,0+δl,0)−1)

(k + l + δ0ι,0(δk,0 + δl,0)− 1)

90



6.3. Further Properties

= 4π vol(Gin)
∞∑
k=0ι

∞∑
l=0ι

ΓkΓlRtk+tl
√
µ(ι)
k µ

(ι)
l (R+ ε)−(k+l+δ0ι,0(δk,0+δl,0)−1)

≤ 4π vol(Gin)

 ∞∑
k=0ι

Γk
√
µ(ι)
k

Rtk

(R+ ε)k+δ0ι,0δk,0−1/2

2

≤ 4π vol(Gin)
(

sup
k∈N0ι

Rtk−k
)2
 ∞∑
k=0ι

Γk
√
µ(ι)
k

Rk

(R+ ε)k+δ0ι,0δk,0−1/2

2

≤ 4π vol(Gin)B2(R+ ε)3 <∞.

ii) The estimate for the star-shaped VLI kernel is similar to the previous one. For the
inner integral, we obtain∫

Gout

∫
Gstar

(
k(ι)(x,y)

)2 dx dy

=
∫
Gout

∞∑
k=0ι

∞∑
l=0ι

γk(y)γl(y)
∫
Gstar

xtk+tlp(ι)
k (x̂, ŷ) · p(ι)

l (x̂, ŷ) dx dy

=
∫
Gout

∞∑
k=0ι

∞∑
l=0ι

γk(y)γl(y)
∫
S

(∫ ζ(x̂)

0
xtk+tl+2 dx

)
p(ι)
k (x̂, ŷ) · p(ι)

l (x̂, ŷ) dω(x̂) dy

=
∫
Gout

∞∑
k=0ι

∞∑
l=0ι

γk(y)γl(y)
∫
S

1
tk + tl + 3 (ζ(x̂))tk+tl+3 p(ι)

k (x̂, ŷ) · p(ι)
l (x̂, ŷ) dω(x̂) dy

≤
∫
Gout

∞∑
k=0ι

∞∑
l=0ι
|γk(y)| |γl(y)|

∫
S

1
tk + tl + 3R

tk+tl+3
√
µ(ι)
k µ

(ι)
l dω(x̂) dy

≤ 4π
∫
Gout

∞∑
k=0ι

∞∑
l=0ι
|γk(y)| |γl(y)|Rtk+tl+3

√
µ(ι)
k µ

(ι)
l dy.

Now, we can apply the previous estimates to this equation and eventually obtain∥∥k(ι)∥∥2
L2(Gstar×Gout) <∞.

Besides interchanging the series with integration, we are also interested in interchanging
with certain differential operators. If the sequence {tk}k∈N0ι is chosen in such a way that
k(ι)(·,y) is componentwise harmonic for all y ∈ Gout, then based on Harnack’s First Theorem,
see [135, Ch. X.1], the interchanging of the derivatives in the next theorem with respect to x
and the series is valid.

Theorem 6.17. We can interchange the following differential operators with respect to x
with the series in the representation of the continuous VLI kernel k(ι):

i) The surface divergence ∇∗x̂·, the surface curl gradient L∗x̂, and the surface gradient ∇∗x̂
applied to each component (k(ι))j for j = 1, 2, 3 of the kernel

ii) The differential operators ∂
∂x , the divergence if infk∈N0ι ,γk 6≡0 tk ≥ 1 and (k 7→ tk) ∈

O(kM ) for a fixed M ∈ N0, and the gradient applied to each component (k(ι))j of the
kernel for j = 1, 2, 3
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iii) The Beltrami operator ∆∗x̂

iv) The differential operators ∂2

∂x2 and the Laplacian ∆x if infk∈N0ι ,γk 6≡0 tk ≥ 2 and (k 7→
tk) ∈ O(kM ) for a fixed M ∈ N0

In addition, all term-by-term differentiated series converge uniformly.

If the supremum of x over Gin is given by R > 1, we are able to reduce the additional
requirements stated in the foregoing theorem. In this case, the assumption on {tk}k∈N0ι
from Definition 6.1, that is supk∈N0ι

Rtk−k < ∞, already imply the assumed asymptotic
behaviour of the mapping k 7→ tk for all k ∈ N0ι .

Proof. From Theorem 6.6, it is known that the series
∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ)

converges uniformly for all (x,y) ∈ Gin × Gout. Thus, we need to prove for all cases that
the term-by-term differentiated series converge uniformly. For this purpose, we need certain
derivatives. With x̂ = x̂(ϕ, t), fixed y ∈ Gout, and the derivatives from Theorem 2.15, we
get

o(2)
x̂ (x̂ · ŷ) = (ŷ − (x̂ · ŷ)x̂) , (6.9a)

1√
1− t2

∂

∂ϕ
o(2)
x̂ (x̂ · ŷ) = − ((x̂ · ŷ)εϕ + (εϕ · ŷ)x̂) , (6.9b)

√
1− t2 ∂

∂t
o(2)
x̂ (x̂ · ŷ) = −

(
(x̂ · ŷ)εt +

(
εt · ŷ

)
x̂
)
, (6.9c)

and

o(3)
x̂ (x̂ · ŷ) = x̂ ∧ ŷ, (6.9d)

1√
1− t2

∂

∂ϕ
o(3)
x̂ (x̂ · ŷ) = εϕ ∧ ŷ, (6.9e)

√
1− t2 ∂

∂t
o(3)
x̂ (x̂ · ŷ) = εt ∧ ŷ. (6.9f)

i) For the angular derivative, we investigate the case ι = 1 separately. By means of
Lemma 6.8, the abbreviation

k(ι)(x,y) =: o(1)
x̂ H(x,y), (x,y) ∈ Gin ×Gout,

and the product rule, see [141, Sec. 22], we obtain for i = 1, 2, 3 the relation

o(i)
x̂ · k(ι)(x,y) = o(i)

x̂ ·
(
o(1)
x̂ H(x,y)

)
= H(x,y)

(
o(i)
x̂ · x̂

)
+ x̂ · o(i)

x̂ H(x,y).

Both series converge uniformly, due to Theorem 6.6 and Lemma 6.8. This implies
the uniform convergence of the term-by-term differentiated series with respect to the
angular derivatives.
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In the remaining two cases, that is ι = 2, 3, we have to investigate the uniform
convergence of the term-by-term differentiated series manually. Due to the structure
of the surface divergence and surface curl gradients, see Theorem 2.14, we estimate
the following two series. This estimate is also sufficient for the interchanging of the
gradient with each component of the kernel. With the derivatives from Theorem 2.15
and Eq. (6.9), we obtain for all (x,y) ∈ Gin ×Gout the estimate∣∣∣∣∣∣

∞∑
k=K+1

1√
1− t2

∂

∂ϕ

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=K+1

(
µ(ι)
k

)−1/2
γk(y)xtk 1√

1− t2
∂

∂ϕ

(
P ′k(x̂ · ŷ)o(ι)

x̂ (x̂ · ŷ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=K+1

(
µ(ι)
k

)−1/2
γk(y)xtk

(
P ′′k (x̂ · ŷ)(εϕ · ŷ)o(ι)

x̂ (x̂ · ŷ)

+ P ′k(x̂ · ŷ) 1√
1− t2

∂

∂ϕ
o(ι)
x̂ (x̂ · ŷ)

)∣∣∣∣
≤ 2

∞∑
k=K+1

(
µ(ι)
k

)−1/2 ∣∣∣γk(y)xtk
∣∣∣ (∣∣P ′′k (x̂ · ŷ)

∣∣+ ∣∣P ′k(x̂ · ŷ)
∣∣)

≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

(
Γk
(
µ(ι)
k

)−1/2
((k + 2)(k + 1)k(k − 1)

4 + k(k + 1)
)

× Rk

(R+ ε)k+1+δ0ι,0δk,0

)
.

The latter estimate is valid due to Eq. (2.1) and our assumptions. The right-hand side
of this inequality converges to zero as K →∞, see Theorem 6.4. Similarly, we obtain
for all (x,y) ∈ Gin ×Gout the estimate∣∣∣∣∣∣

∞∑
k=K+1

√
1− t2 ∂

∂t

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

(
Γk
(
µ(ι)
k

)−1/2
((k + 2)(k + 1)k(k − 1)

4 + k(k + 1)
)

× Rk

(R+ ε)k+1+δ0ι,0δk,0

)
,

where the right-hand side tends to zero as K →∞, see Theorem 6.4. Summing these
results up, we obtain the uniform convergence of these term-by-term differentiated
series. The desired result follows immediately via the definition of the surface curl and
the surface divergence operators.

ii) In order to interchange the divergence with respect to x and the series, we need
analogous estimates to the ones in the previous item. In contrast, they need to include
the additional factor x−1 caused by the representation of the gradient in spherical
coordinates for the angular part. Thus, we solely investigate for the absolute value of
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x ∈ Gin the estimate ∣∣∣∣1xxtk
∣∣∣∣ = xtk−1 ≤

(
sup
k∈N0ι

Rtk−k
)
Rk−1,

which holds true due to the assumption infk∈N0ι ,γk 6≡0 tk ≥ 1.
We continue with the radial derivative with respect to x. We obtain for ι = 1, 2, 3 and
all (x,y) ∈ Gin ×Gout the estimate∣∣∣∣∣∣

∞∑
k=K+1

∂

∂x

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=K+1
γk(y)tkxtk−1p(ι)

k (x̂, ŷ)

∣∣∣∣∣∣
≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
√
µ(ι)
k tk

Rk−1

(R+ ε)k+1+δ0ι,0δk,0
→ 0 (as K →∞).

In the last step, we used the estimate of the vectorial Legendre polynomials from
Lemma 5.22. The convergence to zero is obtained by the assumptions on the sequences
{Γk}k∈N0ι and {tk}k∈N0ι , and Theorem 6.4. Thus, the uniform convergence of this
series follows, which permits the interchanging of the radial derivative and the series.
Combining this with the results of the previous item and Theorem 2.14, we obtain the
interchanging of the divergence with respect to x and the series.

iii) For the interchanging with the Beltrami operator, we use estimates of |∆∗x̂p
(ι)
k (x̂, ŷ)|

from Corollary 5.23. Hence, we get for the series with the term-by-term angular
derivative the estimate∣∣∣∣∣∣

∞∑
k=K+1

∆∗x̂
(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

≤ 4
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
(
k3/2(k + 1)3/2

) Rk

(R+ ε)k+1+δ0ι,0δk,0
.

The right-hand side converges to zero as K → ∞. Thus, we obtain the sought
convergence, see Theorem 6.4, and we are able to interchange the Beltrami operator
with the series in k(ι).

iv) The representation of the Laplacian in spherical coordinates is given in Theorem 2.14.
For the second-order radial derivative, we immediately obtain the uniform convergence
of the term-by-term differentiated series in Gin ×Gout by∣∣∣∣∣∣

∞∑
k=K+1

∂2

∂x2

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=K+1
γk(y)tk(tk − 1)xtk−2p(ι)

k (x̂, ŷ)

∣∣∣∣∣∣
≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γktk(tk − 1)
√
µ(ι)
k

Rk−2

(R+ ε)k+1+δ0ι,0δk,0
→ 0 (as K →∞),
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due to the assumptions on {Γk}k∈N0ι and {tk}k∈N0ι , see Theorem 6.4. Recall that
infk∈N0ι ,γk 6≡0 tk ≥ 2. Similarly, we obtain an estimate for the first-order radial derivative.
The estimates made in the previous item can be used for the angular derivatives, that
is ∣∣∣∣∣∣

∞∑
k=K+1

1
x2 ∆∗x̂

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

≤ 4
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γkk3/2(k + 1)3/2 Rk−2

(R+ ε)k+1+δ0ι,0δk,0
→ 0 (as K →∞).

The latter estimate is valid, due to Corollary 5.23. Combining these arguments, we
obtain the uniform convergence of the term-by-term differentiated series. Thus, we are
able to interchange the Laplacian with the series in k(ι).

Besides applying differential operators with respect to the first argument of the continuous
VLI kernel, we also want to apply differential operators with respect to the second argument
to the kernel. Here, the results also hold true for the star-shaped VLI kernel.

Theorem 6.18. We can interchange the following differential operators with respect to y
with the series in the representation of the continuous/star-shaped VLI kernel k(ι):

i) The surface divergence ∇∗ŷ·, the surface curl gradient L∗ŷ, and the surface gradient ∇∗ŷ
applied to each component (k(ι))j for j = 1, 2, 3 of the kernel

ii) The differential operators ∂
∂y , the divergence if {γk}k∈N0ι is a sequence of continuously

differentiable functions fulfilling

sup
y∈Gout

∣∣γ′k(y)
∣∣ ≤ Γk(R+ ε)−(k+N1)

with N1 ∈ N0 for all k ∈ N0ι with (k 7→ Γk) ∈ O(kM ) for a fixed M ∈ N0, and the
gradient applied to each component (k(ι))j for j = 1, 2, 3 of the kernel

iii) The Beltrami operator ∆∗ŷ

iv) The differential operators ∂2

∂y2 and the Laplacian ∆y if {γk}k∈N0ι is a sequence of twice
continuously differentiable functions fulfilling

sup
y∈Gout

∣∣γ′k(y)
∣∣ ≤ Γk(R+ ε)−(k+N1),

sup
y∈Gout

∣∣γ′′k (y)
∣∣ ≤ Γk(R+ ε)−(k+N2)

with N1, N2 ∈ N0 for all k ∈ N0ι with (k 7→ Γk) ∈ O(kM ) for a fixed M ∈ N0

Furthermore, under the appropriate conditions, all term-by-term differentiated series converge
uniformly in the case of the continuous VLI kernel and in the L2(Gstar ×Gout)-sense in the
case of the star-shaped VLI kernel.
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Proof. We start with the proof for the continuous VLI kernel.
i) In the case of the surface divergence, we obtain with ŷ = ŷ(ϕ, t) and x̂ independent of

these ϕ, t the identities
1√

1− t2
∂

∂ϕ
o(2)
x̂ (x̂ · ŷ) = εϕ − (x̂ · εϕ)x̂,

√
1− t2 ∂

∂t
o(2)
x̂ (x̂ · ŷ) = εt − (x̂ · εt)x̂.

Thus, the same estimates as in Item i) of Theorem 6.17 concerning the surface divergence
operators with respect to x̂ also hold true in this case.
In the case of the surface curl gradient, the argumentation concerning the angular part
is the same as in Item i) of Theorem 6.17, since L∗ŷPk(x̂ · ŷ) = −L∗x̂Pk(x̂ · ŷ), which
implies

p(3)
k (x̂, ŷ) = −p(3)

k (ŷ, x̂), x̂, ŷ ∈ S.

Eventually, all term-by-term differentiated series with respect to ŷ converge uniformly
and we are able to interchange the surface curl and divergence operator with respect
to ŷ with the series in k(ι).

ii) We split the divergence with respect to y into the radial and angular derivatives,
see Theorem 2.14. For the radial derivative, we investigate the estimate by using
Lemma 5.22 and for all (x,y) ∈ Gin ×Gout obtain∣∣∣∣∣∣

∞∑
k=K+1

∂

∂y

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=K+1
γ′k(y)xtkp(ι)

k (x̂, ŷ)

∣∣∣∣∣∣
≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
√
µ(ι)
k

Rk

(R+ ε)k+N1
→ 0 (as K →∞),

see Theorem 6.4. Hence, the term-by-term differentiated series converges uniformly.
For the angular part, we use the result of the previous item combined with the estimate∣∣∣∣∣γk(y)xtk

y

∣∣∣∣∣ ≤ Γk
Rtk

(R+ ε)k+N1
≤
(

sup
k∈N0ι

Rtk−k
)

Γk
Rk

(R+ ε)k+N1
,

which is valid for all (x,y) ∈ Gin ×Gout. Finally, the uniform convergence allows the
desired interchanging.

iii) For the Beltrami operator with respect to ŷ, we observe that the relation

∆∗ŷp
(ι)
k (x̂, ŷ) =

(
µ(ι)
k

)−1/2 4π
2k + 1

2k+1∑
l=1

o(ι)
x̂ Yk,l(x̂)∆∗ŷYk,l(ŷ)

= − 4π
2k + 1

k(k + 1)√
µ(ι)
k

2k+1∑
l=1

o(ι)
x̂ Yk,l(x̂)Yk,l(ŷ)

= −k(k + 1)p(ι)
k (x̂, ŷ)
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holds true for all x̂, ŷ ∈ S and k ∈ N0ι . This implies the uniform convergence of the
term-by-term differentiated series in analogy to the previous estimates. Together with
Item i) of Theorem 6.17, we obtain the desired interchanging.

iv) We split the Laplacian into its radial derivatives and the Beltrami operator. For the
second-order radial derivative, we get with Theorem 6.4 for all (x,y) ∈ Gin ×Gout the
estimate ∣∣∣∣∣∣

∞∑
k=K+1

∂2

∂y2

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
∞∑

k=K+1
γ′′k (y)xtkp(ι)

k (x̂, ŷ)

∣∣∣∣∣∣
≤
(

sup
k∈N0ι

Rtk−k
) ∞∑
k=K+1

Γk
√
µ(ι)
k

Rk

(R+ ε)k+N2
→ 0 (as K →∞).

The result that concerns the remaining derivative can be proved similarly. For the
angular derivative, we combine the estimate in the previous item with x ≤ R and
obtain the uniform convergence of the term-by-term differentiated series. Finally, we
can interchange the Laplacian with respect to y and the series in k(ι).

Due to Corollary 6.3, the function (x,y) 7→ xk(ι)(x,y) is a continuous VLI kernel for all
(x,y) ∈ Gstar ×Gout if k(ι) is a star-shaped VLI kernel. Let D denote one of the differential
operators stated above. For all (x,y) ∈ (Gstar \ {0} )×Gout, we get the identity

Dyk(ι)(x,y) = 1
x
Dy

∞∑
k=0ι

γk(y)xtk+1p(ι)
k (x̂, ŷ)

=
∞∑
k=0ι

xtkDy
(
γk(y)p(ι)

k (x̂, ŷ)
)
.

Under the stated conditions, the series occurring in the function (x,y) 7→ k(ι)(x,y) can be
interchanged with all the differential operators. Moreover, the non-differentiated and the
term-by-term differentiated series converge uniformly. The convergence is obtained similarly
to the proof of Corollary 6.13 combined with the previous considerations.

Not only these few derivatives are of note in the following investigations. We also need
continuity of the Jacobian matrix of the kernel k(ι) and a bound for its elements.

Lemma 6.19. Let k(ι) be a continuous/star-shaped VLI kernel. In addition, let the sequence
of continuously differentiable functions {γk}k∈N0ι satisfy

sup
y∈Gout

∣∣γ′k(y)
∣∣ ≤ Γk(R+ ε)−(k+N1)

with N1 ∈ N0 for all k ∈ N0ι with (k 7→ Γk) ∈ O(kM ) for a fixed M ∈ N0. Then, for all
x ∈ Gin and all x ∈ Gstar \ {0} , respectively, the mapping

y 7→
(
jacy

(
k(ι)(x,y)

))T
, y ∈ Gout,
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is continuous. The functions in each entry of the occurring matrix are bounded for all l,
j ∈ {1, 2, 3} by ∣∣∣∣(jacy

(
k(ι)(x,y)

))
j,l

∣∣∣∣ ≤ ∞∑
k=0ι

Γ̄k
xtk

(R+ ε)k+N1
,

where {Γ̄k}k∈N0ι is an appropriate sequence with (k 7→ Γ̄k) ∈ O(kM̃ ) for a fixed M̃ ∈ N0.

Proof. First, we assume that k(ι) is a continuous VLI kernel. By (k(ι))j for j = 1, 2, 3 we
denote the jth component of the vector-valued kernel k(ι), that is

(
k(ι)(x,y)

)
j =

∞∑
k=0ι

γk(y)xtk
(
p(ι)
k (x̂, ŷ)

)
j
, (x,y) ∈ Gin ×Gout. (6.10)

Due to the structure of the Jacobian matrix, we get the identity(
jacy

(
k(ι)(x,y)

))T
=
(
∇y

(
k(ι)(x,y)

)
1 ,∇y

(
k(ι)(x,y)

)
2 ,∇y

(
k(ι)(x,y)

)
3
)
.

Thus, we analyze the matrix column by column. According to Theorem 6.18, the gradient
∇y(k(ι)(x,y))j exists for all j = 1, 2, 3. The gradient and the series in the kernel can be
interchanged, where the term-by-term differentiated series also converges uniformly.
In addition, for each for j = 1, 2, 3 the function given by

(x,y) 7→ γk(y)xtk
(
p(ι)
k (x̂, ŷ)

)
j

is, as a composition of continuously differentiable functions in y, continuously differenti-
able. Together with the uniform convergence, we obtain the continuous differentiability of
(k(ι)(x,y))j for all j = 1, 2, 3. Thus, the mapping

y 7→
(
jacy

(
k(ι)(x,y)

))T

is continuous. For l, j ∈ {1, 2, 3} , we obtain via the calculations in the proof of Theorem 6.18
the estimate

∣∣∣(∇y (k(ι)(x,y)
)
j

)
l

∣∣∣ ≤ ∞∑
k=0ι

Γ̄k
xtk

(R+ ε)k+N1
, (x,y) ∈ Gin ×Gin,

where Γ̄k is an appropriate polynomial in k ∈ N0ι . Thus, the functions in each entry of the
Jacobian matrix are bounded by the same bound.

Second, let k(ι) be a star-shaped VLI kernel. Then (x,y) 7→ xk(ι)(x,y) is a continuous
VLI kernel, see Corollary 6.3. Thus,

y 7→
(
jacy

(
k(ι)(x,y)

))T
= 1
x

(
jacy

(
xk(ι)(x,y)

))T

is continuous for all x ∈ Gstar \ {0} . The estimates for the matrix entries are obtained
similarly.
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6.3. Further Properties

The results obtained above for the continuous/star-shaped VLI kernel using the Morse-
Feshbach vector Legendre polynomials can be transferred to a kernel using the Edmonds
vector Legendre polynomials instead. This transfer is of interest since the integral kernel of
the EEG problem consists of Edmonds vector Legendre polynomials, see Eq. (6.4).

Lemma 6.20. Let ι ∈ {1, 2, 3} be fixed, let the quantities {γk}k∈N0ι and {tk}k∈N0ι fulfil
the assumption of Definition 6.1, and let a kernel be defined by

k̃
(ι)(x,y) :=

∞∑
k=0ι

γk(y)xtk p̃(ι)
k (x̂, ŷ), (x,y) ∈ Gin ×Gout, (6.11)

where p̃(ι)
k is defined in Definition 5.21. Then

i) the series is bounded and converges absolutely and uniformly;

ii) it can be represented as a finite linear combination of continuous VLI kernels;

iii) the kernel k̃(ι) is a C(Gin ×Gout)-function and an L2(Gin ×Gout)-function;

iv) due to the linearity of integration and differentiation, the results in Corollary 6.14
and Theorems 6.17 and 6.18 also hold true for k̃(ι).

Proof. i) Using the estimate of Lemma 5.22 for the polynomials p̃(ι)
k for all k ∈ N0ι in the

proof of Theorem 6.6, we immediately obtain the convergence results. With Lemma 6.5,
we achieve the boundedness.

ii) In the case of ι = 3, there is nothing to prove. The other two cases are similar to each
other, which is why we restrict ourselves to the case of ι = 1. Due to the absolute
convergence of the series, we obtain with Eq. (5.12a) for all (x,y) ∈ Gin × Gout the
identity

k̃
(1)(x,y) =

∞∑
k=0

γk(y)xtk p̃(1)
k (x̂, ŷ)

=
∞∑
k=0

γk(y)xtk
√ k + 1

2k + 1p
(1)
k (x̂, ŷ)−

√
k

2k + 1p
(2)
k (x̂, ŷ)


=
∞∑
k=0

γk(y)xtk
√
k + 1
2k + 1p

(1)
k (x̂, ŷ)−

∞∑
k=1

γk(y)xtk
√

k

2k + 1p
(2)
k (x̂, ŷ).

Comparing both series with the definition of the continuous VLI kernel in Definition 6.1,
we get the desired result.

Due to the representation of k̃(ι) by means of a finite linear combination of continuous VLI
kernels and the linearity of differentiation and integration, the remaining two statements are
clear.

Corollary 6.21. Let ι ∈ {1, 2, 3} be fixed, let the quantities {γk}k∈N0ι and {tk}k∈N0ι fulfil
the assumption of Definition 6.2, and let a kernel be defined by

k̃
(ι)(x,y) :=

∞∑
k=0ι

γk(y)xtk p̃(ι)
k (x̂, ŷ), (x,y) ∈ Gstar ×Gout, (6.12)

where p̃(ι)
k is defined in Definition 5.21. Then
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Chapter 6. Vector Legendre-type Integral Kernels

i) the series converges absolutely and pointwise for all (x,y) ∈ (Gstar \ {0} )×Gout;

ii) the kernel can be represented as a finite linear combination of continuous/star-shaped
VLI kernels;

iii) the kernel k̃(ι) is a C((Gstar \ {0} )×Gout)- and an L2(Gstar ×Gout)-function;

iv) due to the linearity of integration, Corollary 6.14 also holds true for k̃(ι).

Proof. The first statement can be proved similarly to Lemma 6.7 via the estimate of the
Edmonds vector Legendre polynomials in Lemma 5.22. The remaining statements can be
proved in analogy to Lemma 6.20.

Since the MEG and EEG kernels are continuous/star-shaped VLI kernels (or at least a
linear combination of these kernels), all proven properties hold also true for kM and kE.
In particular, we are able to interchange all differential operators from Theorem 6.17 and
Theorem 6.18 with their series. For these two particular integral kernels, some of these
derivatives vanish. This is summarized in the next theorems.

Theorem 6.22. For the MEG integral kernel kM, the following statements are true, where
all occurring differential operators can be interchanged with the series:

i) ∇∗x̂ · kM(x,y) =∇x · kM(x,y) = 0 for all y ∈ Bext
%L

,

ii) ∇y · kM(x,y) = 0 for all x ∈ B%0,

iii) ∆ykM(x,y) = 0 for all x ∈ B%0, and

iv) ∆xkM(x,y) = 0 for all y ∈ Bext
%L

.

In addition, kM(x, ·) ∈ C∞(intBext
%L

) for all x ∈ B%0 and kM(·,y) ∈ C∞(intB%0) for all
y ∈ Bext

%L
.

Recall that the vectorial Laplacian in the last two items is meant component-wise, see
Eq. (5.9).

Proof. According to Theorems 6.17 and 6.18, the series of the kernel can be interchanged
with the four differential operators. The assumptions on {γk}k∈N required for this purpose
are fulfilled, see Lemma 6.9. In the case of Item iv), we are able to start the series by k = 2
since ∆x(xp(3)

1 (x̂, ŷ)) = 0. Note that another representation of kM from Eq. (6.3) is used for
the proof depending on the applied differential operator.

i) We get the result since for each summand in Eq. (6.3b) the divergence and the surface
divergence are equal to zero, that is

∇x ·
(
xkL∗x̂Pk(x̂ · ŷ)

)
=
(
kxk−1x̂ ·L∗x̂Pk(x̂ · ŷ) + xk−1∇∗x̂ ·L∗x̂Pk(x̂ · ŷ)

)
= 0

for all k ∈ N and (x,y) ∈ B%0 × Bext
%L

. Here, we used certain orthogonality statements
from Eq. (2.6).
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6.3. Further Properties

ii) Similar to the proof of the foregoing item, we obtain with Eq. (6.3b) the relation

∇y · kM(x,y) = 1
4π

∞∑
k=1
∇y ·

(
xk

yk+1(k + 1)L
∗
x̂Pk(x̂ · ŷ)

)
= 0,

since L∗x̂Pk(x̂ · ŷ) = −L∗ŷPk(x̂ · ŷ) for all (x,y) ∈ B%0 × Bext
%L

.

iii) For all (x,y) ∈ B%0 × Bext
%L

, we get the relation

∆ykM(x,y) = 1
4π∆y

( ∞∑
k=1

xk

yk+1(k + 1)p
(3)
k (x̂, ŷ)

)

= 1
4π

∞∑
k=1

xk

k + 1∆y

(
y−(k+1)p(3)

k (x̂, ŷ)
)

= 1
4π

∞∑
k=1

2k+1∑
j=1

4π
2k + 1

xk

k + 1y
(3)
n,j(x̂)∆y

(
y−(k+1)Yn,j(ŷ)

)
= 0,

where we used the Addition Theorem for vectorial Legendre polynomials, see The-
orem 5.24. The mapping y 7→ y−(k+1)Yn,j(ŷ) is a harmonic function for y 6= 0, see
Corollary 2.30. Thus, each summand of the series vanishes.

iv) In analogy to the previous calculation, we obtain for all (x,y) ∈ B%0 ×Bext
%L

the relation

∆ykM(x,y) = ∆y

∞∑
k=1

Γk
xk

yk+1p
(3)
k (x̂, ŷ)

= −
∞∑
k=1

Γkxk∆y

( 1
yk+1p

(3)
k (ŷ, x̂)

)
.

In the last step, we used Theorem 2.15, which permutes the arguments of the vector
Legendre polynomial and changes the sign. The vector Legendre polynomials of type
3 and order k are eigenfunctions of the vectorial Beltrami operator to the eigenvalue
−k(k + 1), see Corollary 5.16 combined with Theorem 2.25 and Eq. (2.14). Eventually,
we obtain that the function y 7→ y−(k+1)p(3)

k (x̂, ŷ) is harmonic for all x̂ ∈ S.
Summing up, we obtain the harmonicity in the interior, that is ∆ykM(x,y) = 0 for all
x ∈ B%0 .

The stated smoothness of the kernel is a consequence of the harmonicity of the kernel on
this particular region, see [64].

For further analysis of the direct or inverse EEG problem, respectively, we need more
properties of the integral kernel. Due to the particular vector Legendre polynomial occurring
in the integral kernel, we are able to prove certain properties of the kernel kE.

Theorem 6.23. Let the kernel kE be defined as in Lemma 6.10, where L ≥ 2. Then for all
(x,y) ∈ B%0 × S[%L−1,%L] the following statements are true:

i) L∗x̂ · kE(x,y) = 0 for all y ∈ S[%L−1,%L],
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Chapter 6. Vector Legendre-type Integral Kernels

ii) ∇x · kE(x,y) = 0 for all y ∈ S[%L−1,%L],

iii) ∆xkE(x,y) = 0 for all y ∈ S[%L−1,%L],

iv) L∗ŷ · kE(x,y) = 0 for all x ∈ B%0, and

v) ∆ykE(x,y) = 0 for all x ∈ B%0.

Proof. We use the different representations of the kernel collected in Eq. (6.5) for the
proof. All occurring (linear) differential operators can be interchanged with the series in the
representation of kE due to Theorems 6.17 and 6.18 and Lemma 6.20.

i) We immediately obtain

L∗x̂ · kE(x,y) = 1
4π

∞∑
k=1

√
k(2k + 1)3Hk(y)xk−1L∗x̂ · p̃(2)

k (x̂, ŷ) = 0,

since for all F ∈ C2(B%0) the equation L∗x̂ · o(i)
x̂ F (x) = 0 holds true for i = 1, 2, see

Eqs. (2.4) and (2.6).

ii) We interchange the series and the derivative and obtain with ∇ ·∇ = ∆ and the
Addition Theorem, see Theorem 2.25, the identity

∇x · kE(x,y) =
∞∑
k=1

2k+1∑
i=1

Hk(y)∆x

(
xkYk,i(x̂)

)
Yk,i(ŷ) = 0.

iii) With Eq. (5.9) and ∇xxk(Pk(x̂ · ŷ)) = xk−1√µ̃k(2)p̃k
(2), we obtain

∆xkE(x,y) = 1
4π

∞∑
k=1

(2k + 1)Hk(y)∆x

(
∇xxkPk(x̂ · ŷ)

)
= 0.

iv) First, we prove that ‖H ′k‖C([%L−1,%L]) ≤ Γk%−(k+2)
L−1 with some sequence (k 7→ Γk) ∈ O(1)

in order to fulfil the assumptions of Theorem 6.18. That is

∥∥H ′k∥∥C([%L−1,%L]) = sup
y∈[%L−1,%L]

∣∣∣∣∣(k + 1)
((

y

%L

)2k+1
− 1

)∣∣∣∣∣ ∣∣∣β(L)
k

∣∣∣ ∣∣∣∣ 1
yk+2

∣∣∣∣
≤ 2(k + 1)

∣∣∣β(L)
k

∣∣∣ 1
%k+2
L−1

.

Thus, the mapping k 7→ Γk := (k + 1)|β(L)
k | is in O(1). Using Schwarz’s Theorem, see

[197], Theorem 2.15, and Item i), we obtain

L∗ŷ · kE(x,y) = 1
4πL

∗
ŷ ·∇x

∞∑
k=1

(2k + 1)Hk(y)xkPk(x̂ · ŷ)

= 1
4π∇x ·L

∗
ŷ

∞∑
k=1

(2k + 1)Hk(y)xkPk(x̂ · ŷ)

= −L∗x̂ · kE(x,y) = 0.
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6.3. Further Properties

v) In analogy to the previous item, we can prove that the asymptotic behaviour of H ′′k
required in Theorem 6.18 is fulfilled. We immediately obtain from Eq. (4.19) together
with Corollaries 2.29 and 2.30 that ∆y (Hk(y)Yk,i(ŷ)) = 0 for all k ∈ N, i = 1, . . . , 2k+1.
Thus,

∆ykE(x̂,x) =
∞∑
k=1

2k+1∑
i=1

∆y (Hk(y)Yk,i(ŷ))∇x
(
xkYk,i(x̂)

)
= 0.
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Chapter 7.

Vector Legendre-type Integral Operators

In this chapter, we define the integral equation and operator corresponding to the continuous/
star-shaped VLI kernel. In Section 7.1, we state the definition of the integral operator
and some examples. Motivated by these examples, we call the function obtained by the
integration of a vector-valued density and the continuous/star-shaped VLI kernel a potential.
In Section 7.2, we prove that this name is reasonable from a mathematical point of view, since
the resulting function is under certain additional assumptions continuously differentiable.
Eventually, in Section 7.3, we solve the corresponding direct problem via a Fourier series
expansion of the density. For this purpose, we restrict ourselves to the case of ball-shaped
domains.

7.1. Definition of the Integral Operators

We consider the continuous VLI operator of the first kind corresponding to the continuous
VLI kernel from Chapter 6. Recall that the value of ι will be determined by the particular
problem. Integral equations of the first kind are widely discussed in the literature, see, for
instance, [63, 102, 127]. However, in most settings both regions Gint and Gout coincide or the
outer region Gout needs to be compact. Since in our case the compactness of Gout is not
assumed, we cannot come back to these results.

Definition 7.1 (Continuous VLI Operator). The continuous VLI operator T is for all
f ∈ L2(Gin) and y ∈ Gout defined by

(T f)(y) :=
∫
Gin
f(x) · k(ι)(x,y) dx

=
∫
Gin
f(x) ·

 ∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ)

 dx,

where the continuous VLI kernel k(ι) for fixed ι = 1, 2, 3 is defined in Definition 6.1.

In this thesis, we call the function V generated by the continuous VLI operator, that is
V = T f , the (scalar) potential. In Section 7.2, we verify that this notation is meaningful,
since V is a continuously differentiable function and in many applications, such as the inverse
gravimetric problem or the inverse electroencephalography problem, this nomenclature is
established. In addition, we call the function f the density of the scalar potential.
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Chapter 7. Vector Legendre-type Integral Operators

According to Definition 7.1, we can define a star-shaped VLI operator via Definition 6.2.

Definition 7.2 (Star-shaped VLI Operator). The star-shaped VLI operator T is for
all f ∈ L2(Gstar) and y ∈ Gout defined by

(T f)(y) :=
∫
Gstar

f(x) · k(ι)(x,y) dx

=
∫
Gstar

f(x) ·
 ∞∑
k=0ι

γk(y)xtkp(ι)
k (x̂, ŷ)

 dx,

where k(ι) for fixed ι = 1, 2, 3 is defined in Definition 6.2.

For the continuous/star-shaped VLI operator, it is not immediately clear by the definition
of T that the function T f can be evaluated at every position y ∈ Gout. However, within the
next results, we see that this notation makes sense and that the potential can be evaluated
at any of these positions.

It is well known from other integral equations, such as the convolution, that properties of
the kernel can be transferred to the potential. We are mainly interested in results concerning
the smoothness and integrability of T f . For example, the differentiability of the potential is
required in order to calculate a gradient field of it and the L2(Gout)-integrability is required
for embedding the potential into particular Hilbert spaces.
Using the Cauchy-Schwarz inequality, we immediately obtain that T continuously maps

from L2(Gin) or L2(Gstar), respectively, to L2(Gout) if the kernel is an L2-function over its
domain. More precisely, for G ∈ {Gin,Gstar} and f ∈ L2(G) we have

‖T f‖2L2(Gout) =
∫
Gout

(∫
G
f(x) · k(ι)(x,y) dx

)2
dy

≤
∫
Gout

∫
G

(f(x))2 dx
∫
G

(k(ι)(x,y))2 dx dy

= ‖f‖2L2(G)
∥∥k(ι)∥∥2

L2(G×Gout) <∞.
This estimate proves the next corollary.

Corollary 7.3. The function T f is an L2(Gout)-function if

i) f ∈ L2(Gin) and the operator T : L2(Gin)→ L2(Gout) is a continuous VLI operator, or

ii) f ∈ L2(Gstar) and the operator T : L2(Gstar)→ L2(Gout) is a star-shaped VLI operator.

In addition, in these particular cases T is a linear and bounded operator.

Now, we list some applications related to the continuous/star-shaped VLI equation.

Example 7.4 (Magnetoencephalography Problem). Let the MEG integral kernel kM
be defined as in Eq. (3.4). Then we define the corresponding linear and bounded continuous/
star-shaped VLI operator TU : L2(B%0)→ L2(Bext

%L
) by

TUJP :=
∫
B%0
JP(x) · kM(x, ·) dx,

where JP denotes the neuronal current and B%0 models the cerebrum. More details on the
underlying multiple-shell model can be found in Assumption 3.2. In this particular case, the
operator is denoted by TU since it maps the neuronal current onto the magnetic potential U .
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7.2. Continuity and Differentiability of the Potential

Example 7.5 (Electroencephalography Problem). Let the EEG integral kernel kE be
defined as in Eq. (4.23). Then we define the corresponding linear and bounded integral
operator TE : L2(B%0)→ L2(S[%L−1,%L]) by

TEJ
P :=

∫
B%0
JP(x) · kE(x, ·) dx,

where JP denotes the neuronal current, B%0 models the cerebrum, and S[%L−1,%L] is the
outer shell of the multiple-shell head model. The operator TE can be expressed as a linear
combination of two continuous/star-shaped VLI operators, see Lemma 6.10.

Example 7.6 (Earth’s Magnetization). From [15, 28, 93], it is known that the Earth’s
magnetic potential Φ of the crust can be expressed as

Φ(y) = − 1
4π

∫
BR
m(y) · x− y|x− y|3 dx, y ∈ R3, (7.1)

where m ∈ L2(BR) denotes the Earth’s crust magnetization and R > 0 the Earth’s radius.
In addition, the Earth’s crust magnetization has its support inside the Earth’s crust, which
is modelled as a thin spherical shell inside the Earth. If the magnetic potential is measured
in the exterior of the Earth, we can embed this integral equation into the context of the
continuous VLI equation. For all (x,y) ∈ BR × Bext

R+ε with a fixed ε > 0, the corresponding
vector-valued integral kernel is given by

x− y
|x− y|3 = −∇x

1
|x− y|

= −∇x
∞∑
k=0

xk

yk+1Pk(x̂ · ŷ)

= − 1
4π

∞∑
k=0

2k+1∑
i=1

(2n+ 1) 1
yk+1∇x

(
xkYk,i(ŷ)

)
Yk,i(ŷ)

= − 1
4π

∞∑
k=1

2k+1∑
i=1

(2n+ 1)
(
µ̃(2)
k

)1/2 1
yk+1x

k−1Yk,i(ŷ)ỹ(2)
k,i(x̂)

= −
∞∑
k=1

(
µ̃(2)
k

)1/2 xk−1

yk+1 p̃
(2)
k (x̂, ŷ).

We used Corollary 2.10, Lemma 6.20, Theorem 2.25, and Eq. (5.6) in this calculation. Setting
tk := k − 1, γ0 ≡ 0, and γk(y) = (µ̃(2)

k )1/2y−(k+1)/(4π) for all k ∈ N, we immediately obtain
that the kernel in Eq. (7.1) is a continuous VLI kernel. Thus, the operator mapping the
Earth’s crust magnetization onto the potential is a linear and bounded operator mapping
from L2(BR) to L2(Bext

R+ε).

7.2. Continuity and Differentiability of the Potential

In the case of a star-shaped VLI equation, a singularity or discontinuity of the integral kernel
can occur at the origin if at least one exponent tk is negative. For non-singular integral
kernels, a higher smoothness order of the potential V = T f can be achieved a-priori in a
more general context.
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Lemma 7.7. Let k ∈ L2(G1×G2) be an integral kernel with a compact (inner) region G1 ⊂
Rd and a non-empty (outer) region G2 ⊂ Rd, where d ∈ N. In addition, let k(x, ·) ∈ C(G2)
for almost all x ∈ G1. If there exists a constant C ≥ 0 with |k(x,y)| ≤ C < ∞ for all
(x,y) ∈ G1 ×G2, then the operator T : L2(G1)→ C(G2) with T f =

∫
G1
f(x) · k(x, ·) dx is

bounded.

Proof. Let f ∈ L2(G1) be arbitrary. Let {yn}n∈N0 ⊂ G2 be a sequence with limn→∞ yn =
y ∈ G2. We define for all n ∈ N0 and almost all x ∈ G1 a sequence of functions gn by

gn(x) := f(x) · k(x,yn).

The functions fulfil gn ∈ L2(G1) for all n ∈ N0, due to the Cauchy-Schwarz inequality, the
uniform boundedness of the integral kernel k, and the compactness of G1, that is∫

G1
|gn(x)| dx ≤ ‖f‖L2(G1)

(∫
G1
C2 dx

)1/2
= C

√
vol (G1) ‖f‖L2(G1) <∞.

The continuity of k in the second argument yields the limit

lim
n→∞ gn(x) = f(x) · lim

n→∞k(x,yn) = f(x) · k(x,y)

(almost) everywhere. In addition, the estimate

|gn(x)| = |f(x) · k(x,yn)| ≤ |f(x)| |k(x,yn)| ≤ C |f(x)| =: g(x)

holds true (almost) everywhere. The dominating function g is an L2(G1) ⊂ L1(G1)-function,
due to the compactness of G1. Hence, the Dominated Convergence Theorem yields

lim
n→∞

∫
G1
f(x) · k(x,yn) dx =

∫
G1

lim
n→∞f(x) · k(x,yn) dx =

∫
G1
f(x) · k(x,y) dy.

Thus, the continuity of (T f) is given by

lim
n→∞(T f)(yn) = lim

n→∞

∫
G1
f(x) · k(x,yn) dx = (T f)(y).

For the operator norm, we obtain

‖T‖L = sup
f∈L2(G1)
‖f‖L2(G1)=1

sup
y∈G2

|(T f)(y)| ≤ C
√

vol (G1),

which provides us with the continuity of the linear operator.

This lemma can be applied to our particular case in the next theorem.

Theorem 7.8. Let T be the continuous VLI operator from Definition 7.1 and let f ∈ L2(Gin).
Then T f is a continuous function, that is T f ∈ C(Gout). Hence, the identity

(T f)(y) =
∫
Gin
f(x) · k(ι)(x,y) dx

holds pointwise for all y ∈ Gout. In addition, the operator T : L2(Gin)→ C(Gout) is bounded.
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7.2. Continuity and Differentiability of the Potential

Proof. From Lemma 6.5, we immediately obtain the uniform boundedness of the continuous
VLI kernel k(ι) for all (x,y) ∈ Gin ×Gout. Together with Corollary 6.12 and Lemma 6.16 all
assumptions of Lemma 7.7 are fulfilled. Due to this lemma, the continuous VLI operator T
maps from L2(Gin) to C(Gout). This implies the continuity of the function T f .

We now continue with some differentiability considerations of the given continuous VLI
kernel. For this purpose, we state the next general result.

Lemma 7.9 (Differentiability of Fredholm Integral Equations). Let k : G1 ×G2 →
Rd, with d ∈ N, be a kernel function with a compact (inner) region G1 ⊂ Rd and a non-empty
(outer) region G2 ⊂ Rd. We define the integrand function h by

h(x,y) := f(x) · k(x,y), (x,y) ∈ G1 ×G2.

Let Dy be a first-order differential operator with respect to y. If the four conditions

• f ∈ L2(G1),

• k(·,y) ∈ L2(G1) for all y ∈ G2,

• k(x, ·) ∈ C1(G2) for almost all x ∈ G1, and

• there exists a function g ∈ L1(G1) with |Dyh(x,y)| ≤ g(x) for almost all x ∈ G1

are fulfilled, we can interchange the differential operator and the integration, that is

Dy
∫
G1
f(x) · k(x,y) dx =

∫
G1
Dy (f(x) · k(x,y)) dx for all y ∈ G2.

Proof. Applying the theorem of differentiation under the integral sign onto the function h,
see [19, Cor. 16.3], we obtain the desired result.

In addition, we observe that the identity

∇y
(
f(x) · k(ι)(x,y)

)
=
(
jacy

(
k(ι)(x,y)

))T
f(x) (7.2)

holds true for all (x,y) ∈ Gin ×Gout and all f ∈ L2(Gin) if the conditions of Lemma 6.19
are fulfilled. In this case, the kernel k(ι) is continuously differentiable with respect to the
second argument, see Lemma 6.19. The multiplication on the right-hand side is a classical
matrix-vector multiplication. This provides us with the existence of the right-hand side of
this equation.

Lemma 7.10. Let G ∈ {Gin,Gstar} and let k(ι) be a continuous/star-shaped VLI kernel
fulfilling the differentiability conditions from Lemma 6.19. Then there exists a function
g ∈ L1(G) such that for almost all x ∈ G and all y ∈ Gout we have∣∣∣∣(jacy

(
k(ι)(x,y)

))T
f(x)

∣∣∣∣ ≤ g(x).
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Proof. Since all assumptions of Lemma 6.19 are fulfilled, we immediately obtain the continuity
of the Jacobian matrix. For the remaining statement, we consider for almost all x ∈ Gin the
estimate

∣∣∇y (f(x) · k(ι)(x,y)
)∣∣ =

∣∣∣∣∣
3∑
l=1

(f(x))l∇y
(
k(ι)(x,y)

)
l

∣∣∣∣∣
≤

3∑
l=1
|(f(x))l|

∣∣∇y (k(ι)(x,y)
)
l

∣∣
=

3∑
l=1
|(f(x))l|

 3∑
j=1

((
∇y

(
k(ι)(x,y)

)
l

)
j

)2
1/2

≤
( 3∑
l=1
|(f(x))l|2

)1/2 3∑
l=1

3∑
j=1

(
jacy

(
k(ι)(x,y)

))2

l,j

1/2

≤ |f(x)|

 3∑
l=1

3∑
j=1

 ∞∑
k=0ι

Γ̄k
xtk

(R+ ε)k+N1

2


1/2

= 3 |f(x)|
∞∑
k=0ι

Γ̄k
xtk

(R+ ε)k+N1

=: g(x).

Now, we verify that g ∈ L1(Gin). Thus, by means of Theorem 6.4, we obtain the estimate

∫
Gin
|g(x)| dx ≤ 3

(∫
Gin
f(x)2 dx

)1/2
∫

Gin

 ∞∑
k=0ι

Γ̄k
xtk

(R+ ε)k+N1

2

dx


1/2

≤ 3 ‖f‖L2(Gin)

√
vol (Gin) sup

k∈N0ι

(
Rtk−k

) ∞∑
k=0ι

Γ̄k
Rk

(R+ ε)k+N1

 <∞.

It only remains to prove that g ∈ L1(Gstar) in the star-shaped VLI case. Using Theorem 6.4,
we get the estimate

∫
Gstar
|g(x)| dx ≤ 3 ‖f‖L2(Gstar)

∫
S

∫ ζ(η)

0

 ∞∑
k=0ι

Γ̄k
xtk+1

(R+ ε)k+N1

2

dx dω(x̂)


1/2

≤ 3 ‖f‖L2(Gstar)

 ∞∑
k=0ι

Γ̄k
Rtk+1

(R+ ε)k+N1

(∫
S

∫ ζ(η)

0
dx dω(x̂)

)1/2

≤ 6
√
πR ‖f‖L2(Gstar) sup

k∈N0ι

(
Rtk−k

) ∞∑
k=0ι

Γ̄k
Rk+1

(R+ ε)k+N1
<∞.

With these preliminary studies, we are able to prove the existence of the gradient of T f ,
where T is the continuous/star-shaped VLI operator.
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7.2. Continuity and Differentiability of the Potential

Theorem 7.11. Let G ∈ {Gin,Gstar} , f ∈ L2(G), and let k(ι) be the continuous/star-shaped
VLI kernel fulfilling the assumptions of Lemma 7.10. Then the gradient of the potential
corresponding to the continuous/star-shaped VLI operator T f exists and can be interchanged
with the integration for all y ∈ Gout, such that

(∇(T f))(y) =
∫
G

(
jacy

(
k(ι)(x,y)

))T
f(x) dx. (7.3)

Proof. Due to Lemma 7.10, the integral on right-hand side of Eq. (7.3) exists. With Eq. (7.2),
we obtain the existence of the integral given by∫

G
∇y

(
f(x) · k(ι)(x,y)

)
dx.

The assumptions of this theorem and the results in Lemmas 6.16 and 7.10 guarantee that all
conditions of Lemma 7.9 are fulfilled. Hence, we can interchange the integration with the
gradient and obtain

∇y
∫
G
f(x) · k(ι)(x,y) dx =

∫
G
∇y

(
f(x) · k(ι)(x,y)

)
dx.

Eventually, Eq. (7.2) yields the desired result.

Corollary 7.12. If the assumptions of Theorem 7.11 are fulfilled, then ∇(T f) is continuous.

Proof. Let {yn}n∈N0 ⊂ Gout be a convergent sequence with limn→∞ yn = y ∈ Gout. Then
Theorem 7.11 yields

lim
n→∞(∇(T f))(yn) = lim

n→∞

∫
B%0

(
jacy

(
k(ι)(x,yn)

))T
· f(x) dx.

Due to Lemma 7.10 and the Dominated Convergence Theorem, we are able to interchange
the integration and the limit. Thus,

lim
n→∞(∇(T f))(yn) =

∫
B%0

(
lim
n→∞ jacy

(
k(ι)(x,yn)

))T
· f(x) dx

=
∫
B%0

(
jacy

(
k(ι)(x,y)

))T
· f(x) dx

= (∇(T f))(y),

which implies the continuity of the stated function.

For second order derivatives, a similar result can be obtained. We concentrate our
calculations on the Laplacian of T f .

Theorem 7.13. Let G ∈ {Gin,Gstar} , f ∈ L2(G), and let k(ι) be a continuous/star-shaped
VLI kernel, where {γk}k∈N0ι is a sequence of twice continuously differentiable functions
fulfilling

sup
y∈Gout

∣∣γ′k(y)
∣∣ ≤ Γk(R+ ε)−(k+N1),

sup
y∈Gout

∣∣γ′′k (y)
∣∣ ≤ Γk(R+ ε)−(k+N2)
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for all k ∈ N0ι with (k 7→ Γk) ∈ O(kM ) for a fixed M ∈ N0 and N1, N2 ∈ N0. Then the
Laplacian of the corresponding potential, that is T f , exists and can be interchanged with the
integration, such that for all y ∈ Gout we have

(∆(T f))(y) =
∫
G
f(x) · (∆yk

(ι)(x,y)
)

dx. (7.4)

Proof. For the interchanging of the integral and the differential, we observe

(∆(T f))(y) = ∆y

∫
G
f(x) · k(ι)(x,y) dx

=∇y ·∇y
∫
G
f(x) · k(ι)(x,y) dx

=∇y ·
∫
G
∇y

(
f(x) · k(ι)(x,y)

)
dx,

where the interchanging is valid due to Theorem 7.11. Now, we need to check if we can also
interchange the second differential operator with the integration. Thus, we verify that all
assumptions of the theorem of differentiation under the integral sign, see [19, Cor. 16.3], are
fulfilled. We define for almost all (x,y) ∈ G×Gout the auxiliary function

h(x,y) :=∇y
(
f(x) · k(ι)(x,y)

)
.

We immediately obtain h(·,y) ∈ L1(G) via Lemma 7.10. For its derivative, we obtain with
an appropriate polynomial k 7→ Γ̄k and the proof of Theorem 6.18 the estimate

|∇y · h(x,y)| =
∣∣∇y · (∇y (f(x) · k(ι)(x,y)

))∣∣
=
∣∣∆y

(
f(x) · k(ι)(x,y)

)∣∣
=
∣∣(f(x) · (∆yk

(ι)(x,y)
))∣∣

≤ |f(x)|
∣∣∆yk

(ι)(x,y)
∣∣

≤ |f(x)|
∞∑
k=0ι

Γ̄k
xtk

(R+ ε)k+N2

=: g(x).

Here, g is an L2(G)-function. For the case G = Gin, we have

∫
Gin

g(x)2 dx ≤
∫
Gin
|f(x)|2 dx

 ∞∑
k=0ι

Γ̄k
Rtk

(R+ ε)k+N2

2

<∞,

see also the proof of Lemma 7.10 for the detailed estimates. In analogy, we obtain for the
case G = Gstar the estimates

∫
Gstar

g(x)2 dx =
∫
S

∫ ζ(x̂)

0

∣∣∣∣∣∣f(x)
∞∑
k=0ι

Γ̄k
xtk+1

(R+ ε)k+N2

∣∣∣∣∣∣
2

dx dω(x̂) <∞.

The smoothness of h remains to be verified.
First, we investigate the case of the continuous VLI operator. We analyze H(x,y) :=∇y ·

h(x,y) = f(x) ·∆yk
(ι)(x,y) for almost all (x,y) ∈ Gin ×Gout. According to Theorem 6.18,
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the Laplacian with respect to y and the series in k(ι) can be interchanged. In addition, this
second-order term-by-term differentiated series converges uniformly. We obtain the relation

∆yk
(ι)(x,y) =

∞∑
k=0ι

∆y

(
γk(y)xtkp(ι)

k (x̂, ŷ)
)
.

Each summand of this series is continuous as a composition of continuous functions. Due to
the uniform convergence and the fact that f is independent of y, we get H(x, ·) ∈ C(Gout)
for almost all x ∈ Gin. With the often used trick, that is multiplying and dividing H by
x ∈ (0, R], and Corollary 6.3, we immediately obtain that H(x, ·) ∈ C(Gout) if the kernel
k(ι) is the star-shaped VLI kernel. Summing up, h(x, ·) is continuously differentiable for
almost all x on the corresponding domain. Combining these two results with the theorem of
differentiation under the integral sign, we are able to interchange the remaining differential
operator with the integration. Finally, for all y ∈ Gout we obtain the identity

(∆(T f))(y) = ∆y

∫
G
f(x) · k(ι)(x,y) dx

=
∫
G

∆y
(
f(x) · k(ι)(x,y)

)
dx

=
∫
G
f(x) · (∆yk

(ι)(x,y)
)

dx,

since f is independent of y.

7.3. Solution of the Direct Problem

Having defined the continuous/star-shaped VLI equation and analyzed the well-posedness
of the related direct problem, we proceed by solving the corresponding direct problem.
In order to do so, we restrict ourselves to a particular setting that fits to our desired
application, that is Gin := BR. For this purpose, we expand the density f via an appropriate
vector-valued orthonormal basis for L2(BR). We call this expansion the Morse-Feshbach
expansion of f since the orthonormal basis system on the ball using the Morse-Feshbach
vector spherical harmonics is employed, see Definition 5.37. This expansion is used to find a
series representation of the potential. In addition, since in the case of the MEG problem a
relation between the neuronal current and the magnetic field is desired, we also calculate the
series representation for the corresponding gradient field.

Assumption 7.14. Let the inner set Gin := Gstar := BR be a ball with radius R > 0 and let
the function f be expandable into the L2(BR)-convergent series

f(x) L2(BR)=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

f (i)
n,j(x)y(i)

n,j(x̂),

where y(i)
n,j are the Morse-Feshbach vector spherical harmonics from Definition 5.8. Here,

the functions f (i)
n,j with i = 1, 2, 3, n ∈ N0i, and j = 1, . . . , 2n + 1 are defined as the

Morse-Feshbach expansion coefficients at a certain radius, that is

f (i)
n,j(x) :=

∫
S
f(xx̂) · y(i)

n,j(x̂) dω(x̂) for almost all x ∈ [0, R].
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By means of this representation, we are able to calculate the L2(BR)-norm of the function
f , which is useful for forthcoming estimates.

Theorem 7.15. If f ∈ L2(BR), then it holds true that

‖f‖L2(BR) =

 3∑
i=1

∞∑
n=0i

2n+1∑
j=1

∫ R

0

(
xf (i)

n,j(x)
)2

dx

1/2

. (7.5)

Proof. From the strong convergence of the series, we obtain the weak convergence, see, for
instance, [225, Ch. V]. More precisely, we have

3∑
i=1

∞∑
n=0i

2n+1∑
j=1

〈
f (i)
n,j(|·|)y(i)

n,j (̂·) , g
〉

L2(BR)
=
〈 3∑
i=1

∞∑
n=0i

2n+1∑
j=1

f (i)
n,j(|·|)y(i)

n,j (̂·) , g
〉

L2(BR)

for all g ∈ L2(BR). We obtain the desired interchanging for the series with respect to i, n, j
and the integral over BR. Thus, we eventually obtain the relation

‖f‖2L2(BR)

=
∫
BR

(f(x))2 dx =
∫
BR

 3∑
i=1

∞∑
n=0i

2n+1∑
j=1

f (i)
n,j(x)y(i)

n,j(x̂)

2

dx

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

3∑
κ=1

∞∑
m=0κ

2m+1∑
l=1

∫
BR
f (i)
n,j(x)y(i)

n,j(x̂) ·
(
f (κ)
m,l(x)y(κ)

m,l(x̂)
)

dx

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

3∑
κ=1

∞∑
m=0κ

2m+1∑
l=1

∫ R

0
f (i)
n,j(x)f (κ)

m,l(y)x2 dx
∫
S
y(i)
n,j(x̂) · y(κ)

m,l(x̂) dω(x̂)

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

∫ R

0

(
xf (i)

n,j(x)
)2

dx.

Now, we insert the Morse-Feshbach expansion of f from Assumption 7.14 into the continu-
ous/star-shaped VLI equation. Further calculations require to interchange the integration
and the series. First, we prove that this interchanging is valid.

Theorem 7.16. If f fulfils Assumption 7.14, then the continuous/star-shaped VLI operator
for all y ∈ Gout has the representation

(T f)(y) =
∫
BR
f(x) · k(ι)(x,y) dx

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

∞∑
k=0ι

∫
BR
f (i)
n,j(x)y(i)

n,j(x̂) ·
(
γk(y)xtkp(ι)

k (x̂, ŷ)
)

dx.

Proof. The density f fulfils Assumption 7.14, which is equivalent to the strong convergence of
the series. Due to this property, we again obtain the weak convergence. Finally, Corollary 6.14
provides us with the possibility to interchange the integration and the series with respect to
k.

114



7.3. Solution of the Direct Problem

Using this preliminary study, we are able to further simplify the direct operator cor-
responding to the continuous/star-shaped VLI equation, which reduces the integral to a
one-dimensional one.
Corollary 7.17. Let Assumption 7.14 be fulfilled. Then the continuous/star-shaped VLI
operator yields

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ) (7.6)

for all y ∈ Gout.
Proof. Theorem 7.16 provides us with the possibility to interchange the series and the
integration. In the second step, we use a kind of reproducing property of the vectorial
Legendre polynomials, see Corollary 5.26. Eventually, we get the stated relation, that is

(T f)(y) =
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

∞∑
k=0ι

(
γk(y)

∫ R

0
f (i)
n,j(x)xtk+2 dx

∫
S
y(i)
n,j(x̂) · p(ι)

k (x̂, ŷ) dω(x̂)
)

= 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ).

On the right-hand side of Eq. (7.6), a series is stated. We need to examine the type of
convergence of this series. So far, we obtained uniform convergence in the continuous VLI
case and L2(Gout)-convergence in the star-shaped VLI case.
Theorem 7.18. If Assumption 7.14 is fulfilled, then the series on the right-hand side of
Eq. (7.6) converges uniformly in Gout. In addition, the series converges in the L2(Gout)-sense.
Proof. In order to estimate the series, we use the triangle inequality for the absolute value.
Then, we apply the Cauchy-Schwarz inequality twice, first for the integral and second for
the series. In combination with the estimate for the functions γn for n ∈ N0ι , the Addition
Theorem, see Theorem 2.25, and Theorem 7.15 we get for all N ∈ N and (x,y) ∈ BR ×Gout
the estimate∣∣∣∣∣∣

∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)

∣∣∣∣∣∣
≤
∞∑
n=N

2n+1∑
j=1

1
2n+ 1

∣∣∣∣∣
∫ R

0
f (ι)
n,j(x)xtn+2 dx

∣∣∣∣∣ sup
y∈Gout

|γn(y)| |Yn,j(ŷ)|

≤
∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0

(
f (ι)
n,j(x)x

)2
dx
∫ R

0
x2tn+2 dx

)1/2 Γn
(R+ ε)n+1 |Yn,j(ŷ)|

≤
 ∞∑
n=N

2n+1∑
j=1

Γ2
n

(2n+ 1)2(2tn + 3)
R2tn+3

(R+ ε)2n+2 (Yn,j(ŷ))2

1/2

×
 ∞∑
n=N

2n+1∑
j=1

∫ R

0

(
f (ι)
n,j(x)x

)2
dx

1/2

≤
(

sup
n∈N0ι

Rtn−n
)(

R

4π

∞∑
n=N

Γ2
n

(2n+ 1)(2tn + 3)

(
R

R+ ε

)2n+2)1/2

‖f‖L2(BR) .
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Due to the requirements in Definition 6.1 and properties of the power series, see Theorem 6.4,
we obtain the convergence of the right-hand side to zero as N →∞ and, hence, the uniform
convergence of the series. For the convergence in L2(Gout)-sense, we need to verify that

lim
N→∞

∫
Gout

∣∣∣∣∣∣
∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)

∣∣∣∣∣∣
2

dy = 0.

By combining the previous estimates with the ones from the proof of Lemma 6.16, we get
the desired result, that is

∫
Gout

∣∣∣∣∣∣
∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)

∣∣∣∣∣∣
2

dy

≤
∫
Gout

 ∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0

(
f (ι)
n,j(x)x

)2
dx
)1/2(∫ R

0
x2tn+2 dx

)1/2 Γn
yn+1 |Yn,j(ŷ)|

2

dy

≤ 1
4π

∫
Gout

( ∞∑
n=N

Γ2
n

(2n+ 1)(2tn + 3)
R2tn+3

y2n+2

) ∞∑
n=N

2n+1∑
j=1

∫ R

0

(
f (ι)
n,j(x)x

)2
dx

 dy

≤ ‖f‖2L2(BR)

∫ ∞
R+ε

( ∞∑
n=N

Γ2
n

2n+ 1
R2tn+3

y2n

)
dy

= ‖f‖2L2(BR)

(
sup
n∈N

Rtn−n
)2 ∞∑

n=N

Γ2
n

(2n− 1)(2n+ 1)
R2n+3

(R+ ε)2n−1 → 0 (as N →∞).

Theorem 7.8 provides us with the continuity of T f in the case of the continuous VLI
operator. In the case of the star-shaped VLI kernel, which includes infn∈N0ι ,γn 6≡0 tn ≥ −1,
we cannot achieve a uniform bound of the integral kernel due to a possible singularity. By
means of the previous theorem, however, we are able to prove the continuity of T f in the
ball case even if the corresponding integral kernel is not bounded.

Corollary 7.19. Let Assumption 7.14 be fulfilled. Then T f obtained from the continuous/
star-shaped VLI kernel is a continuous function in Gout.

Proof. Due to Theorem 7.18, we get the uniform convergence of

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)

in Gout. Each summand of the series on the right-hand side is continuous in y, due to the
conditions on {γn}n∈N0ι in Definition 6.1 or Definition 6.2, respectively, and the continuity
of the spherical harmonics. Combining these two statements, we get T f ∈ C(Gout).

In certain applications, the function T f on the domain SR is of interest. In this case, we
cannot expect uniform or even pointwise convergence of the series, due to the missing power
series. However, another type of convergence can be proved under certain circumstances.
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Theorem 7.20. Let Assumption 7.14 be fulfilled, which implies

f(x) L2(BR)=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

f (i)
n,j(x)y(i)

n,j(x̂).

In addition, let the sequence of functions {γn}n∈N0i
be evaluable for y = R and let them fulfil

the additional condition

|γn(R)| ≤ ΓnR−(n+1+δ0ι,0δn,0)

for all n ∈ N0i, where for all n ∈ N0i it holds true that

Γn ≤ c
√

(2n+ 1)2(2tn + 3)

with c ∈ R+
0 . Then we can expand and restrict T f obtained from the continuous/star-shaped

VLI operator onto the sphere with radius R. This function is denoted by (T f)|SR . In addition,
the series in (T f)|SR converges in the sense of L2(SR). It is represented by the expression

(T f)(y) L2(SR)= 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(R)Yn,j(ŷ).

Proof. Due to our assumption, the domain of T f can be extended to SR. An immediate
consequence of Corollary 7.17 and the requirements on {γn}n∈N0ι yield the desired rep-
resentation. The convergence in the L2(SR)-sense remains to be proved. Since the set
{R−1Yn,j}n∈N0,j=1,...,2n+1 is an orthonormal basis for L2(SR), we can use a property of
Parseval’s identity, see [198, Thm. 12.6], combined with the Cauchy-Schwarz inequality to
obtain the relation

‖(T f)|SR‖2L2(SR) =
∞∑
n=0

2n+1∑
j=1

〈
(T f)|SR ,

1
R
Yn,j

〉2

L2(SR)

= (4πR)2
∞∑
n=0ι

2n+1∑
j=1

1
(2n+ 1)2

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)2

(γn(R))2

≤ (4πR)2
∞∑
n=0ι

2n+1∑
j=1

Γ2
n

(2n+ 1)2
1

R2n+2+2δ0ι,0δn,0

∫ R

0

(
f (ι)
n,j(x)x

)2
dx
∫ R

0
x2tn+2 dx

≤ (4πR)2
∞∑
n=0ι

2n+1∑
j=1

Γ2
n

(2n+ 1)2(2tn + 3)
R2tn+3

R2n+2+2δ0ι,0δn,0

∫ R

0

(
f (ι)
n,j(x)x

)2
dx

≤ (4π)2 max
{
R3, R

} (
sup
n∈N0ι

Rtn−n
)2 ∞∑

n=0ι

2n+1∑
j=1

Γ2
n

(2n+ 1)2(2tn + 3)

∫ R

0

(
f (ι)
n,j(x)x

)2
dx

≤ (4π)2 max
{
R3, R

}
c2
(

sup
n∈N0ι

Rtn−n
)2 ∞∑

n=0ι

2n+1∑
j=1

∫ R

0

(
f (ι)
n,j(x)x

)2
dx

= (4π)2 max
{
R3, R

}
c2
(

sup
n∈N0ι

Rtn−n
)2

‖f‖2L2(Gin) <∞,

which implies the desired result.
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We have already seen that the gradient with respect to y and the integration over BR in
the definition of T f can be interchanged. Now, we are able to find an explicit representation
of the gradient of T f by means of the Morse-Feshbach expansion of f .

Lemma 7.21. Let Assumption 7.14 be fulfilled and let

sup
y∈Gout

∣∣γ′n(y)
∣∣ ≤ Γn(R+ ε)−(n+N1),

where N1 ∈ N0, for all n ∈ N0ι with (n 7→ Γn) ∈ O(nM ) for a fixed M ∈ N0 hold true.
Then the gradient of the potential achieved via the continuous/star-shaped VLI operator from
Definition 7.1 is given by

(∇(T f))(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
∇y (γn(y)Yn,j(ŷ))

for all y ∈ Gout. In addition, the series on the right-hand side converges uniformly.

Proof. Corollary 7.17 provides us with the identity

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)

for all y ∈ Gout. Theorem 7.18 yields the uniform convergence of the series. Now, we want
to interchange the gradient and the series. For this purpose, the uniform convergence of
the term-by-term differentiated series remains to be proved. First, we separately analyze
the part that depends on y. To this end, we will utilize the Euclidean orthogonality of the
Morse-Feshbach vector spherical harmonics. For all n ∈ N and y ∈ Gout, we get

|∇y (γn(y)Yn,j(ŷ))|2 =
∣∣∣∣(ŷ ∂∂y + 1

y
∇∗ŷ

)
(γn(y)Yn,j(ŷ))

∣∣∣∣2 (7.7)

=
∣∣∣∣γ′n(y)ŷYn,j(ŷ) + γn(y)

y
∇∗ŷYn,j(ŷ)

∣∣∣∣2
=
(
γ′n(y)

)2 ∣∣∣y(1)
n,j(ŷ)

∣∣∣2 + n(n+ 1)γ
2
n(y)
y2

∣∣∣y(2)
n,j(ŷ)

∣∣∣2
≤ Γ2

n

(R+ ε)2n+2N1
(Yn,j(ŷ))2 + n(n+ 1)Γ2

n

(R+ ε)2n+4

∣∣∣y(2)
n,j(ŷ)

∣∣∣2
≤ n(n+ 1)Γ2

n

( 1
(R+ ε)2n+2N1

(Yn,j(ŷ))2 + 1
(R+ ε)2n+4

∣∣∣y(2)
n,j(ŷ)

∣∣∣2) .
For n = 0 and ι = 1, we obtain for all y ∈ Gout the identity

|∇y (γ0(y)Y0,1(ŷ))|2 =
∣∣γ′0(y)ŷY0,1(ŷ)

∣∣2 = 4π
∣∣γ′0(y)

∣∣2 .
Similar estimates as made in the previous uniform convergence statements, the assumption
on {Γn}n∈N0ι , Eqs. (7.5) and (7.7), Theorem 2.25, and Corollary 5.25 are used in the next
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inequality. Thus, with N ∈ N, we get∣∣∣∣∣∣
∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
∇y (γn(y)Yn,j(ŷ))

∣∣∣∣∣∣
≤
∣∣∣∣∣∣
∞∑
n=N

2n+1∑
j=1

1
2n+ 1

(∫ R

0

(
f (ι)
n,j(x)x

)2
dx
∫ R

0
x2tn+2 dx

)1/2

∇y (γn(y)Yn,j(ŷ))

∣∣∣∣∣∣
≤
 ∞∑
n=N

2n+1∑
j=1

1
(2n+ 1)2(2tn + 3)R

2tn+3 |∇y ((γn(y)Yn,j(ŷ))|2
1/2

‖f‖L2(BR)

≤
 ∞∑
n=N

2n+1∑
j=1

n(n+ 1)Γ2
n

(2n+ 1)2(2tn + 3)R
2tn+3

(
(Yn,j(ŷ))2

(R+ ε)2n+2N1
+
|y(2)
n,j(ŷ)|2

(R+ ε)2n+4

)1/2

‖f‖L2(BR)

≤ 1√
4π

( ∞∑
n=N

n(n+ 1)Γ2
n

(2n+ 1)(2tn + 3)

(
R2tn+3

(R+ ε)2n+2N1
+ R2tn+3

(R+ ε)2n+4

))1/2

‖f‖L2(BR)

≤ 1√
4π

(
sup
n∈N0ι

Rtn−n
)( ∞∑

n=N

n(n+ 1)Γ2
n

(2n+ 1)(2tn + 3)

(
R2n+3

(R+ ε)2n+2N1
+ R2n+3

(R+ ε)2n+4

))1/2

‖f‖L2(BR)

which converges to zero as N → ∞. Eventually, the term-by-term differentiated series
converges uniformly and, hence, we are able to interchange the gradient and the series.

For our application, we later need the representation in terms of the radial integral of the
potential T f . However, a closed representation of the potential of the continuous/star-shaped
VLI direct problem can be obtained by expanding the functions f (ι)

n,j that occur in the radial
integral in Eq. (7.6). This allows to fully evaluate the integral∫ R

0
f (ι)
n,j(x)xtn+2 dx. (7.8)

To this end, we employ a generalized Fourier expansion for f (ι)
n,j . Theorem 2.9 provides us

with a variety of complete orthonormal systems for weighted spaces Lw2 ([0, R]). Equation (7.8)
is derived by the integration over a ball and a separation into radial and angular components,
see Assumption 7.14. Due to the Jacobian determinant x2 therein, we choose the weight
function w(x) := x2 for x ∈ [0, R]. This is consistent with our approach for the construction
of an orthonormal basis on the ball from Definition 5.37. Thus, we choose for all m ∈ N0
and all n ∈ N0ι the functions

Q(tn+1/2)
m (R;x) =

√
4m+ 2tn + 3

R3

(
x

R

)tn
P (0,tn+1/2)
m

(
2 x

2

R2 − 1
)
, x ∈ [0, R],

as the basis functions for the space Lw2 ([0, R]), see Corollary 5.2. In addition, for all n ∈ N0ι
with γn ≡ 0, we set tn := 0. Then the condition infn∈N0ι tn > −3/2 is fulfilled for all n ∈ N0ι .

We can now interpret the radial integral in Eq. (7.8) as an inner product in the Hilbert
space Lw2 ([0, R]) for all n ∈ N0ι , j = 1, . . . , 2n+ 1.

Lemma 7.22. Let Assumption 7.14 be fulfilled and let the setting of Definition 7.1 be given.
In addition, we set tn := 0 for all n ∈ N0ι for which γn ≡ 0. Then, we define hn(x) := xtn
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for all x ∈ [0, R] and all n ∈ N0ι. Let the weight function be given by w(x) := x2. Then
f (ι)
n,j and hn are Lw2 ([0, R])-functions for all n ∈ N0ι and j = 1, . . . , 2n+ 1. In addition, the
functions hn have for all n ∈ N0ι the alternative representation

hn =
√
R2tn+3

2tn + 3Q
(tn+1/2)
0 (R; ·) (7.9)

and the following relation holds true

〈
f (ι)
n,j , hn

〉
Lw2 ([0,R])

=
∫ R

0
f (ι)
n,j(x)xtn+2 dx. (7.10)

Proof. If f (ι)
n,j and hn are Lw2 ([0, R])-functions for all n ∈ N0ι and j = 1, . . . , 2n+ 1, then the

formula Eq. (7.10) is clear by the definition of the Lw2 ([0, R])-inner product, see Definition 2.2.
In this case, Eq. (7.8) reduces to

∫ R

0
f (ι)
n,j(x)xtn+2 dx =

∫ R

0
f (ι)
n,j(x)hn(x)x2 dx

=
〈
f (ι)
n,j , hn

〉
Lw2 ([0,R])

.

However, it remains to verify that f (ι)
n,j and hn are Lw2 ([0, R])-functions for all n ∈ N0ι and

j = 1, . . . , 2n+ 1. For the functions f (ι)
n,j , we obtain the estimate

3∑
i=1

∞∑
n=0i

2n+1∑
j=1

∫ R

0

(
xf (i)

n,j(x)
)2

dx <∞,

due to Eq. (7.5) and f ∈ L2(BR). Since the integrands are non-negative, each summand of
the series must be finite. In particular, for all n ∈ N0i , j = 1, . . . , 2n+ 1, and for i = ι, we
have ∥∥∥f (ι)

n,j

∥∥∥2

Lw2 ([0,R])
=
∫ R

0

(
f (ι)
n,j(x)

)2
x2 dx <∞.

Thus, f (ι)
n,j ∈ Lw2 ([0, R]). The remaining function hn with n ∈ N0ι , coincides with a multiple

of the single basis function Q(tn+1/2)
0 (R; ·) ∈ Lw2 ([0, R]), that is

Q
(tn+1/2)
0 (R;x) =

√
2tn + 3
R3

(
x

R

)tn
P

(0,tn+1/2)
0

(
2 x

2

R2 − 1
)

=
√

2tn + 3
R2tn+3 x

tn =
√

2tn + 3
R2tn+3 hn(x).

The latter identity holds true, since the Jacobi polynomial of degree m = 0 is a constant
function equal to one, that is P (0,tn+1/2)

0 (r) ≡ 1 for all r ∈ [−1, 1] independent of tn.

By means of the latter result, we are able to expand the functions f (ι)
n,j for n ∈ N0ι for

which γn 6≡ 0 and j = 1, . . . , 2n+ 1.
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Lemma 7.23. Let the condition of Lemma 7.22 be fulfilled. For each fixed n ∈ N0ι and all
j = 1, . . . , 2n+ 1, the functions f (ι)

n,j can be expanded into a generalized Fourier series, that is

f (ι)
n,j =

∞∑
m=0

f∧{ι,m, n, j}Q(tn+1/2)
m (R; ·), (7.11)

where the series converges strongly in the Lw2 ([0, R])-sense. The corresponding Fourier
coefficients are defined for all m ∈ N0, n ∈ N0ι, and j = 1, . . . , 2n+ 1 by

f∧{ι,m, n, j} :=
〈
f (ι)
n,j , Q

(tn+1/2)
m (R; ·)

〉
Lw2 ([0,R])

. (7.12)

Via this expansion, we are able to calculate the integral in Eq. (7.8) without additional
assumptions on the (generalized Fourier) coefficients f∧{ι,m, n, j}, where m ∈ N0, n ∈ N0ι ,
and j = 1, . . . , 2n+ 1.

Lemma 7.24. If Assumption 7.14 is fulfilled and {tn}n∈N0ι is defined as in Lemma 7.22,
then ∫ R

0
f (ι)
n,j(x)xtn+2 dx = f∧{ι, 0, n, j}

√
R2tn+3

2tn + 3

for all n ∈ N0ι and j = 1, . . . , 2n+ 1.

Proof. Inserting the expansion from Eq. (7.11) in Eq. (7.8), we eventually obtain by means
of Lemma 7.22 and Parseval’s identity, see [142, Ch. 6], the relation∫ R

0
f (ι)
n,j(x)xtn+2 dx =

〈
f (ι)
n,j , hn

〉
Lw2 ([0,R])

=
∞∑
m=0

〈
f (ι)
n,j , Q

(tn+1/2)
m (R; ·)

〉
Lw2 ([0,R])

〈
hn, Q

(tn+1/2)
m (R; ·)

〉
Lw2 ([0,R])

=
∞∑
m=0

f∧{ι,m, n, j}
〈
hn, Q

(tn+1/2)
m (R; ·)

〉
Lw2 ([0,R])

= f∧{ι, 0, n, j}
√
R2tn+3

2tn + 3 (7.13)

for all n ∈ N0ι , j = 1, . . . , 2n + 1. The last step is valid because of Eq. (7.9) and the
orthogonality of the functions Q(tn+1/2)

m (R; ·), where m ∈ N0, that is

〈
hn, Q

(tn+1/2)
m (R; ·)

〉
Lw2 ([0,R])

=
√
R2tn+3

2tn + 3
〈
Q

(tn+1/2)
0 (R; ·), Q(tn+1/2)

m (R; ·)
〉

Lw2 ([0,R])

=
√
R2tn+3

2tn + 3δm,0.

Summing up, we first separated the density f into a radial and an angular part, see
Assumption 7.14. Note that such an ansatz is common in many (scalar-valued) physical prob-
lems, for example the magneto-electroencephalography problems or the inverse gravimetric
problem, which are discussed in more detail in the next chapters. Here, the angular part was

121



Chapter 7. Vector Legendre-type Integral Operators

expanded by means of Morse-Feshbach vector spherical harmonics. Then, we expanded the
radial part into orthogonal functions on [0, R]. Instead of this approach, we could directly
expand the L2(BR)-function f by means of a Fourier series. To this end, we have already
defined an appropriate vector-valued orthonormal bases for L2(BR) in Definition 5.37.

Theorem 7.25. Let f ∈ L2(BR) and let {g(i)
m,n,j(R; ·)}i=1,2,3,m∈N0,n∈N0i ,j=1,...,2n+1 be the

vector-valued orthonormal basis for L2(BR) defined in Definition 5.37, that is

g(i)
m,n,j(R;x) = Q(tn+1/2)

m (R;x)y(i)
n,j(x̂), x ∈ BR

for all i = 1, 2, 3, m ∈ N0, n ∈ N0i for which γn 6≡ 0, and j = 1, . . . , 2n + 1. In the case
γn ≡ 0, we define tn := 0 and get g(i)

m,n,j(R;x) = Q(1/2)
m (R;x)y(i)

n,j(x̂). Then the identity

f∧(i,m, n, j) :=
〈
f , g(i)

m,n,j(R; ·)
〉

L2(BR)
= f∧{i,m, n, j}

holds true for all i = 1, 2, 3, m ∈ N0, n ∈ N0i, and j = 1, . . . , 2n+ 1.

Note that in the general definition of the vector-valued orthonormal basis the sequence
{tn}n∈N0i

also depends on the index i. For the sake of readability, this dependence is
omitted in this section because only one fixed direction i = ι plays a role for the continuous/
star-shaped VLI equation.

Proof. Since f , g(i)
m,n,j(R; ·) ∈ L2(BR), for all i = 1, 2, 3, m ∈ N0, n ∈ N0i , and j =

1, . . . , 2n+ 1 we obtain with Fubini’s Theorem for Lebesgue-integrals the identity〈
f , g(i)

m,n,j(R; ·)
〉

L2(BR)
=
∫
BR
f(x) ·

(
Q(tn+1/2)
m (R;x)y(i)

n,j(x̂)
)

dx

=
∫ R

0

∫
S
f(x) ·

(
Q(tn+1/2)
m (R;x)y(i)

n,j(x̂)
)

dω(x̂)x2 dx

=
∫ R

0
f (i)
n,j(x)Q(tn+1/2)

m (R;x)x2 dx

=
〈
f (i)
n,j , Q

(tn+1/2)
m (R; ·)

〉
Lw2 ([0,R])

= f∧{i,m, n, j},

see Eq. (7.12).

By means of the Fourier expansion of f , we can achieve another representation of the
potential T f generated by the continuous/star-shaped VLI operator.

Theorem 7.26. Let f ∈ L2(BR). This implies Assumption 7.14.

i) Then, for all y ∈ Gout, the continuous/star-shaped VLI operator has the representation

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)γn(y)Yn,j(ŷ). (7.14)

ii) Let the estimate

∣∣γ′n(y)
∣∣ ≤ Γn

yn+1+N1
,
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where N1 ∈ N, hold true for all n ∈ N0ι with (n 7→ Γn) ∈ O(nM ) for a fixed M ∈ N0.
Then, for all y ∈ Gout, the gradient of the continuous/star-shaped VLI operator applied
to the density has the representation

(∇(T f))(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)∇y (γn(y)Yn,j(ŷ)) .

The occurring series converge absolutely and uniformly. In addition, the series converge in
the L2(Gout) or L2(Gout)-sense, respectively.

Proof. We only need to verify that f ∈ L2(BR) implies the Assumption 7.14. Then all
conditions of Corollary 7.17, Theorem 7.18, and Lemma 7.21 are fulfilled. Thus, we can insert
the results of Lemma 7.24 and Theorem 7.25 into the derived representations of T f and
∇(T f). The L2(Gout)-convergence of the series in ∇(T f) can be shown in total analogy to
the L2(Gout)-convergence of the series in Eq. (7.14) from Theorem 7.18 combined with the
estimates in Eq. (7.7).
Since f ∈ L2(BR), we can represent f by the Fourier series

f =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

f∧(i,m, n, j)g(i)
m,n,j(R; ·),

which we will use for calculating f (i)
n,j . Changing the order of summation, see Lemma 5.39,

and inserting Eq. (5.18) into the Fourier series of f , we obtain for almost all x ∈ [0, R] the
relation

f (i)
n,j(x) =

∫
S
f(xx̂) · y(i)

n,j(x̂) dω(x̂)

=
∫
S

 3∑
ĩ=1

∞∑
ñ=0i

2ñ+1∑
j̃=1

( ∞∑
m=0

f∧(̃i,m, ñ, j̃)Q(tñ+1/2)
m (R;x)

)
y

(̃i)
ñ,j̃

(x̂)

 · y(i)
n,j(x̂) dω(x̂)

=
3∑
ĩ=1

∞∑
ñ=0i

2ñ+1∑
j̃=1

∫
S

( ∞∑
m=0

f∧(̃i,m, ñ, j̃)Q(tñ+1/2)
m (R;x)y(̃i)

ñ,j̃
(x̂)
)
· y(i)

n,j(x̂) dω(x̂)

=
3∑
ĩ=1

∞∑
ñ=0i

2ñ+1∑
j̃=1

∞∑
m=0

f∧(̃i,m, ñ, j̃)Q(tñ+1/2)
m (R;x)

∫
S
y

(̃i)
ñ,j̃

(x̂) · y(i)
n,j(x̂) dω(x̂)

=
∞∑
m=0

f∧(i,m, n, j)Q(tn+1/2)
m (R;x).

Hence, the Morse-Feshbach expansion of f from Assumption 7.14 is given by

f(x) L2(BR)=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

( ∞∑
m=0

f∧(i,m, n, j)Q(tn+1/2)
m (R;x)

)
y(i)
n,j(x̂)

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

f (i)
n,j(x)y(i)

n,j(x̂).
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Summing up, we proved that the potential obtained by applying the continuous/star-shaped
VLI operator to the density f ∈ L2(BR) is continuous. In the case of Gin := Gstar := BR,
we could furthermore solve the direct problem related to the continuous/star-shaped VLI
operator of the first kind. We were able to construct an orthonormal basis in the domain
of the continuous/star-shaped VLI operator that allows a precise calculation of the direct
problem. In this case, the image of the star-shaped VLI operator consists of continuous and
differentiable functions, which permits a representation of ∇(T f).

In Chapter 6, we consider an integral kernel containing Edmonds vector Legendre polyno-
mials, see Corollary 6.21. Now, we will see that all results of this section can be transferred
to the following related problem that is based on Corollary 6.21. Recall that the EEG
operator TE for the multiple-shell model is a particular case of the operator defined in the
next theorem.
Theorem 7.27. Let ι ∈ {1, 2, 3} be fixed, let the quantities {γk}k∈N0ι and {tk}k∈N0ι fulfil
the assumption of Definition 6.2, and let a kernel be defined by

k̃
(ι)(x,y) :=

∞∑
k=0ι

γk(y)xtk p̃(ι)
k (x̂, ŷ), (x,y) ∈ Gstar ×Gout, (7.15)

where p̃(ι)
k is defined in Definition 5.21. Let f ∈ L2(BR), then it can be expanded by

f =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

f∧[i,m, n, j]g̃(i)
m,n,j ,

f (i),~
n,j (x) :=

∫
S
f(x) · ỹ(i)

n,j(x̂) dω(x̂)

for almost all x ∈ [0, R]. The potential T̃ f has the representations(
T̃ f

)
(y) :=

∫
BR
f(x) · k̃(ι)(x,y) dx

= 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧[ι,m, n, j]γn(y)Yn,j(ŷ)

= 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι),~
n,j (x)xtn+2 dx

)
γn(y)Yn,j(ŷ).

The series converge absolutely and uniformly.

Proof. In the case of ι = 3, there is nothing to prove since the kernel k̃(ι) is a star-shaped
VLI kernel and the Fourier expansion of f coincides with the Morse-Feshbach expansion.
The two remaining cases can be proved similarly. Hence, we restrict ourselves to the case of
ι = 1 and obtain the relation(

T̃ f
)

(y) =
∫
BR
f(x) · k̃(1)(x,y) dx

=
∫
BR
f(x) ·

( ∞∑
k=0

γk(y)xtk p̃(1)
k (x̂, ŷ)

)
dx

=
∫
BR
f(x) ·

 ∞∑
k=0

γk(y)
√
k + 1
2k + 1x

tkp(1)
k (x̂, ŷ)−

∞∑
k=1

γk(y)
√

k

2k + 1x
tkp(2)

k (x̂, ŷ)

 dx.
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The series can be split into two convergent series, due to Lemma 6.20 or Corollary 6.21,
respectively. Each series in the integral of the right-hand side coincides with a continuous/
star-shaped VLI kernel, where the functions γk for all k ∈ N0ι in Definition 6.1 needs to
be replaced by γk

√
(k + 1)/(2k + 1) and −γk

√
k/(2k + 1), respectively. Thus, by means of

Corollary 7.17 and Theorem 7.26, the linearity of the integration yields(
T̃ f

)
(y)

= 4π
∞∑
n=0

2n+1∑
j=1

∫ R

0

(√
n+ 1

(2n+ 1)3 f
(1)
n,j(x)−

√
n

(2n+ 1)3 f
(2)
n,j(x)

)
xtn+2 dx γn(y)Yn,j(ŷ)

= 4π
∞∑
n=0

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3

(√
n+ 1
2n+ 1f

∧(1, 0, n, j)−
√

n

2n+ 1f
∧(2, 0, n, j)

)
γn(y)Yn,j(ŷ).

Due to the construction of g̃(1)
m,n,j , we obtain

f∧[1, n,m, j] =
〈
f , g̃(1)

m,n,j

〉
L2(BR)

=
√
n+ 1
2n+ 1

〈
f , g(1)

m,n,j

〉
L2(BR)

−
√

n

2n+ 1
〈
f , g(2)

m,n,j

〉
L2(BR)

=
√
n+ 1
2n+ 1f

∧(1,m, n, j)−
√

n

2n+ 1f
∧(2,m, n, j)

and, similarly,

f (1),~
n,j =

√
n+ 1
2n+ 1f

(1)
n,j −

√
n

2n+ 1f
(2)
n,j . (7.16)

The set of orthonormal functions g̃(i)
m,n,j for i = 1, 2, 3, m ∈ N0, n ∈ N0i , and j = 1, . . . , 2n+ 1

is a complete system in L2(BR), just as the system {g(i)
m,n,j}i=1,2,3,m∈N0,n∈N0i ,j=1,...,2n+1 , see

Lemma 5.38. Hence, we obtain the desired result.

After having solved the direct problem related to the continuous/star-shaped VLI equation,
that is the calculation of the potential T f for a given density f , we can proceed by applying
this knowledge to the electroencephalography problem. However, for the analysis of the
magnetoencephalography problem we are interested in further calculating ∇(T f). For this
purpose, we first define a particular class of continuous/star-shaped VLI operators.
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Chapter 8.

A Harmonic Vector Legendre-type Integral
Operator

In Theorems 6.22 and 6.23, we prove that the MEG and EEG integral kernels are harmonic
functions in both arguments. In contrast, the continuous/star-shaped VLI kernel is not
necessarily a harmonic function. This motivates us to define a particular subclass of star-
shaped VLI kernels that are harmonic, which we call the harmonic VLI kernels. However,
this class does not necessarily contain all harmonic star-shaped VLI kernels. This particular
class is of interest, since the kernel occurring in the MEG integral equation is such a harmonic
VLI kernel.

8.1. Definition

The harmonic VLI operator induced by the harmonic VLI kernel has the same structure as
the star-shaped VLI operator from Chapter 6. The reduction in generality is given by a more
precise formulation of the corresponding integral kernel. In addition, we can proceed by
further calculating the gradient field corresponding to the potential obtained by this integral
equation. In the following, we consider the harmonic VLI kernel k(ι) from the next definition.

Definition 8.1 (Harmonic VLI Kernel). Let BR ⊂ R3 be a ball with radius R > 0 and
let Gout ⊂ Bext

R be a region with infy∈Gout y > R. We define the harmonic VLI kernel k(ι)

for an arbitrary ι ∈ {1, 2, 3} by

k(ι)(x,y) :=
∞∑
k=1

Γk
yk+1x

tkp(ι)
k (x̂, ŷ), (x,y) ∈ BR ×Gout.

The occurring quantities fulfil the following assumptions:

i) The real sequence {tk}k∈N is bounded from below by −1, that is infk∈N,Γk 6=0 tk ≥ −1.

ii) The asymptotic behaviour of {tk}k∈N can be characterized by supk∈NRtk−k <∞.

iii) The sequence {Γk}k∈N ⊂ R satisfies (k 7→ |Γk|) ∈ O(kM ) for fixed M ∈ N0.

Note that we only consider this particular case in this chapter. Hence, an additional
distinctive notation for the kernel is not necessary. Obviously, BR is a bounded star domain
with vantage point zero and supx∈BR x ≤ R. In addition, it is easy to verify that the harmonic
VLI kernel is a star-shaped VLI kernel from Definition 6.2.

Lemma 8.2. The kernel defined in Definition 8.1 is a star-shaped VLI kernel with γk(y) :=
Γky−(k+1) for all k ∈ N.
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Chapter 8. A Harmonic Vector Legendre-type Integral Operator

Proof. Obviously, the assumptions of the star-shaped VLI kernel from Definition 6.2 con-
cerning the domain and the asymptotic behaviour of {tk}k∈N are fulfilled. By choosing
γk(y) := Γky−(k+1) for all k ∈ N, the last assumption is satisfied for all y ∈ Gout, since here
we start the summation at k = 1.

Due to the more precise representation of {γk}k∈N , we are able to analyze the behaviour
of the functions at infinity.

Lemma 8.3. There exist an ε > 0 such that for all k ∈ N the functions {γk}k∈N , that
appear in Lemma 8.2 and correspond to the harmonic VLI kernel, satisfy the estimates

sup
y∈Gout

∣∣γ′k(y)
∣∣ ≤ (k + 1) |Γk| (R+ ε)−(k+2),

sup
y∈Gout

∣∣γ′′k (y)
∣∣ ≤ (k + 1)(k + 2) |Γk| (R+ ε)−(k+3).

In addition, we have (k 7→ (k + 1)|Γk|) ∈ O(kM+1) and (k 7→ (k + 1)(k + 2)|Γk|) ∈ O(kM+2)
for a fixed M ∈ N0, respectively.

Proof. We first calculate for all y ∈ Gout, k ∈ N the first- and second-order derivatives of γk,
that is

γ′k(y) = d
dy
(
Γky−(k+1)

)
= −(k + 1)Γky−(k+2),

γ′′k (y) = d2

dy2

(
Γky−(k+1)

)
= (k + 1)(k + 2)Γky−(k+3).

Due to the construction of the regions in Definition 8.1, there exists an ε > 0 such that
supx∈BR = R < R + ε ≤ y for all y ∈ Gout. For the suprema, we obtain for all k ∈ N the
bounds

sup
y∈Gout

∣∣γ′k(y)
∣∣ = (k + 1) |Γk| sup

y∈Gout

∣∣∣y−(k+2)
∣∣∣ ≤ (k + 1) |Γk| (R+ ε)−(k+2),

sup
y∈Gout

∣∣γ′′k (y)
∣∣ ≤ (k + 1)(k + 2) |Γk| (R+ ε)−(k+3).

The asymptotic behaviour of {Γk}k∈N is given by the assumptions in Definition 8.1.

Since the harmonic VLI kernel k(ι) is a star-shaped VLI kernel, we can use the results from
Chapter 7 in order to obtain the potential. In addition, we can use (vector) outer harmonics
to gain another representation of the potential.

Theorem 8.4. Let f ∈ L2(BR) and r > R be arbitrary. Then the following identities
concerning the harmonic VLI operator hold true for all y ∈ Gout:

(T f)(y) = 4π
∞∑
n=1

2n+1∑
j=1

Γn
(2n+ 1)

√
2tn + 3f

∧(ι, 0, n, j)R
tn+3/2

rn
Hext
n,j (r;y)

= 4π
∞∑
n=1

2n+1∑
j=1

Γn
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
1

yn+1Yn,j(ŷ),
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8.1. Definition

(∇(T f)) (y) = −4π
∞∑
n=1

2n+1∑
j=1

Γn
√

n+ 1
(2n+ 1)(2tn + 3)f

∧(ι, 0, n, j)R
tn+3/2

rn+1 h(1)
n,j(r;y)

= −4π
∞∑
n=1

2n+1∑
j=1

Γn

√
n+ 1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
1

rn+1h
(1)
n,j(r;y).

Here, the series converge uniformly in Gout and in the L2(Gout)-sense.

Proof. We start with the representation of T f , which is provided by Corollary 7.17 and The-
orem 7.26, that is

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)γn(y)Yn,j(ŷ).

Inserting the particular set of function {γn}n∈N0ι into this equation, see Lemma 8.2, we
observe that the potential depends on the functions y 7→ y−(n+1)Yn,j(ŷ) for all n ∈ N,
j = 1, . . . , 2n+ 1. In addition, we are able to start the series by n = 1. Furthermore, for all
r > R, n ∈ N, and j = 1, . . . , 2n+ 1 we obtain the relation

1
yn+1Yn,j(ŷ) = 1

rn
Hext
n,j (r;y), y ∈ Gout,

where the scalar-valued outer harmonics Hext
n,j are defined in Definition 2.28. Combining

these thoughts, we get the first relation for the potential T f .
For the gradient of the potential, we make the following considerations. By means of

Lemma 8.3, all assumptions of Lemma 7.21 and Theorem 7.26 Item ii) hold true, which
provides us for all y ∈ Gout with the representation

(∇(T f))(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)∇y (γn(y)Yn,j(ŷ)) .

Now, we need to calculate the gradient of the right-hand side of the previous equation. For
this purpose, we use Eq. (5.15b). Thus, the gradient term is given for all y ∈ Gout, n ∈ N,
and j = 1 . . . , 2n+ 1 by

∇y
( Γn
yn+1Yn,j(ŷ)

)
= −

√
(2n+ 1)(n+ 1)Γn

rn+1 h(1)
n,j(r;y).

Inserting this in the representation of ∇(T f), we arrive at the desired result.
In both cases, we obtain with Lemma 7.24 and Theorem 7.25 the second stated formulae.

The desired convergence is obtained by Theorem 7.26, since γ′n(y) = −(n+ 1)Γny−(n+2) for
all y ∈ Gout (in this case N1 := 1).

For the function T f , we prove the L2(SR)-convergence of its series for the continuous/star-
shaped VLI operator T in Theorem 7.20. However, we could not formulate a corresponding
result for ∇(T f). Eventually, we are able to prove this result in the case of the harmonic
VLI operator.
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Lemma 8.5. Let Assumption 7.14 be fulfilled. In addition, let the estimate

Γn ≤ c
√

(2n+ 1)(2tn + 3)
n+ 1

hold true for all n ∈ N with a constant c ∈ R+
0 . Then we can expand and restrict ∇(T f)

generated by the harmonic VLI kernel onto the sphere with radius R. This function is denoted
by (∇(T f))|SR . In addition, its series converges in the sense of L2(SR). It is represented by
the expression

(∇(T f))(Rŷ) L2(SR)= −4π
∞∑
n=1

2n+1∑
j=1

Γn

√
n+ 1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
1

Rn+1 ỹ
(1)
n,j(ŷ).

Proof. The representation of ∇(T f) from Theorem 8.4 can be formally extended to SR. In
addition, for all n ∈ N0 and j = 1, . . . , 2n+ 1 we have

h(1)
n,j(r;y) =

(
r

R

)n+1
h(1)
n,j(R;y), y ∈ Gout,

which can be obtained from the definition of the vector outer harmonics of type 1, see
Definition 5.27. Thus,

∇(T f) = −4π
∞∑
n=1

2n+1∑
j=1

Γn

√
n+ 1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)(
r

R

)n+1 1
rn+1h

(1)
n,j(R; ·).

We obtain with Remark 5.28, h(1)
n,j(R; ·)|SR = 1

R ỹ
(1)
n,j , and a property of Parseval’s identity,

see [198, Thm. 12.6], a representation for the norm:

‖(∇(T f))|SR‖2L2(SR) = 16π2
∞∑
n=1

2n+1∑
j=1

Γ2
n

n+ 1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)2 1
R2n+2

≤ 16π2
∞∑
n=1

2n+1∑
j=1

Γ2
n

n+ 1
2n+ 1

∫ R

0

(
f (ι)
n,j(x)x

)2
dx
∫ R

0
x2tn+2 dx 1

R2n+2

= 16π2
∞∑
n=1

2n+1∑
j=1

Γ2
n

n+ 1
(2n+ 1)(2tn + 3)

∫ R

0

(
f (ι)
n,j(x)x

)2
dxR2tn−2n+1

≤ 16π2c2R

(
sup
n∈N

Rtn−n
)2

‖f‖2L2(B%0 ) <∞.

In the second step, we used the Cauchy-Schwarz inequality for integrals, and the representation
of the density norm from Eq. (7.5) in the last step.

Having defined the harmonic VLI integral kernel and having analyzed the related direct
problem, we analyze the eponymous property of the harmonic VLI kernels in the next section.
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8.2. Harmonicity of the Kernel and Potential

From Theorem 6.18, we know that many differential operators interchange with the series of
the continuous/star-shaped VLI kernel. In the case of the harmonic VLI kernel, we are able
to explicitly calculate the result with respect to ∆y. Recall that the vectorial Laplacian is
meant component-wise.

Lemma 8.6. For the harmonic VLI kernel k(ι), we have ∆yk
(ι)(x,y) = 0 for all (x,y) ∈

(BR \ {0} )×Gout. In addition, k(ι)(x, ·) ∈ C∞(intGout) for all x ∈ BR \ {0} .
Proof. According to Theorem 6.18, the series of the kernel can be interchanged with the
differential operator. The assumptions on {γk}k∈N required for this purpose are fulfilled, see
Lemma 8.3. For all (x,y) ∈ BR ×Gout, we get the relation

∆yk
(ι)(x,y) = ∆y

∞∑
k=1

Γk
yk+1x

tkp(ι)
k (x̂, ŷ)

=
∞∑
k=1

Γkxtk∆y

(
y−(k+1)p(ι)

k (x̂, ŷ)
)

=
∞∑
k=1

2k+1∑
j=1

4π
2k + 1Γkxtky(ι)

k,j(x̂)∆y

(
y−(k+1)Yk,j(ŷ)

)
= 0,

where we used the Addition Theorem for vectorial Legendre polynomials, see Theorem 5.24.
The mapping y 7→ y−(k+1)Yk,j(ŷ) is a harmonic function for y 6= 0, see Corollary 2.30. Thus,
each summand of the series vanishes. The stated smoothness of the kernel is a consequence
of the harmonicity of the kernel on this particular region, see [64].

By means of the foregoing lemma, we are able to prove one advantage of the harmonic
VLI operator. Based on the integral representation of the forward operator T and the fact
that, under certain assumptions, the Laplacian can be interchanged with the integration, we
can achieve the harmonicity of the potential T f .
Theorem 8.7. The potential T f is a harmonic function in Gout, that is ∆(T f) = 0 for all
f ∈ L2(BR).

Proof. We immediately obtain

(∆(T f))(y) =
∫
BR
f(x) · (∆yk

(ι)(x,y)
)

dx = 0,

due to Theorem 7.13. Note that the assumptions of this theorem are fulfilled by means of
Lemma 8.3. Lemma 8.6 provides us with ∆yk

(ι)(x,y) = 0 for all (x,y) ∈ (BR \ {0} )×Gout.
Thus, the integral vanishes.

Since T f is a harmonic function in the outer region, we want to link the potential obtained
by the harmonic VLI operator to a solution of the exterior Dirichlet problem. For this
purpose, we need the regularity at infinity of T f .
Lemma 8.8. The potential generated by the harmonic VLI operator, that is V = T f , for a
given density f ∈ L2(BR) is regular at infinity.
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Proof. Via Theorem 8.4 and by means of outer harmonics, we obtain a representation of T f
for all y ∈ Gout given by

(T f)(y) = 4π
∞∑
n=1

2n+1∑
j=1

Γn
(2n+ 1)

√
2tn + 3f

∧(ι, 0, n, j)R
tn+3/2

rn
Hext
n,j (r;y).

In addition, the convergence of the series is absolute and uniform in Gout. The outer
harmonics are regular at infinity, see Corollary 2.30. For the regularity at infinity of the
potential, we need to check if T f ∈ O(|·|−1). For this purpose, we analyze the convergence
of the series in (T f)(y)y. We obtain with the Cauchy-Schwarz inequality, Theorem 7.15,
the Addition Theorem 2.25, and the fact that y ≥ R+ ε for all y ∈ Gout the estimate

4π

∣∣∣∣∣∣
∞∑
n=N

2n+1∑
j=1

Γn
(2n+ 1)

√
2tn + 3f

∧(ι, 0, n, j)R
tn+3/2

yn
Yn,j(ŷ)

∣∣∣∣∣∣
≤4π

 ∞∑
n=N

2n+1∑
j=1

Γ2
n

(2n+ 1)2(2tn + 3)
R2tn+3

y2n Yn,j(ŷ)Yn,j(ŷ)

1/2

‖f‖L2(BR) .

≤
√

4π sup
n∈N

(
Rtn−n

)( ∞∑
n=N

Γ2
n

(2n+ 1)(2tn + 3)
R2n+3

(R+ ε)2n

)1/2

‖f‖L2(BR) .

The right-hand side converges to zero as N →∞. Thus, |(T f)(y)y| <∞ uniformly for all
y ∈ Gout and, consequently, lim supy→∞|(T f)(y)y| <∞. With the same estimates and the
representation of the gradient in Theorem 8.4, we obtain lim supy→∞|y2(∇y(T f)(y))| <∞
and, hence, the regularity at infinity.

The harmonicity and regularity at infinity of the potential provide us with the possibility
to use knowledge about the exterior Dirichlet problem in this setting. Summing up, T f
satisfies all assumptions for the corresponding exterior Dirichlet problem.

Lemma 8.9. Let Gout ⊂ R3 be the outer region of the harmonic VLI equation. Consider
the potential V := T f for f ∈ L2(BR). Then

i) V satisfies Laplace’s equation ∆V = 0 in int (Gout),

ii) V is of class C2(int(Gout)) ∩ C(Gout), and

iii) V is regular at infinity.

Proof. i) From Theorem 8.7, we immediately obtain that V is harmonic.

ii) Since V is a harmonic function, it is of class C∞(int(Gout)). Thus, we only need to
verify V ∈ C(Gout), which has already been proved in Theorem 7.8.

iii) This is proved in Lemma 8.8.

Thus, with given boundary values, the potential V generated by the harmonic VLI operator
is the unique solution of the exterior Dirichlet problem. In the particular case of Gout = Bext

r ,
we also obtain the following result.
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Corollary 8.10. Let Gout := Bext
r , where r > R, and let f ∈ L2(BR) be given. Then

V := T f from Lemma 8.9 is the unique solution of the exterior Dirichlet problem, that is
∆V = 0 in Bext

r with boundary values (T f)|Sr , see Definition 2.31. It is given by

V =
∞∑
n=0

2n+1∑
j=1

V ∧(n, j)Hext
n,j (r; ·)

with the abbreviation V ∧(n, j) := 〈(T f)|Sr , Hext
n,j (r; ·)〉L2(Sr). The coefficients satisfy

V ∧(n, j) = 4π Γn
(2n+ 1)

√
2tn + 3

Rtn+3/2

rn
f∧(ι, 0, n, j), (8.1)

for all n ∈ N and j = 1, . . . , 2n+ 1, and V ∧(0, 1) = 0.

Proof. The potential V fulfils all assumptions of a solution of the exterior Dirichlet prob-
lem, see Definition 2.31 and Lemma 8.9. Lemma 2.32 provides us with its representation.
Theorem 8.4 states another expansion of the potential V , which reads

V (y) = 4π
∞∑
n=1

2n+1∑
j=1

Γn
(2n+ 1)

√
2tn + 3f

∧(ι, 0, n, j)R
tn+3/2

rn
Hext
n,j (r;y), y ∈ Gout.

Hence, we can calculate the coefficients V ∧(n, j) for all n ∈ N, j = 1, . . . , 2n+ 1 by means of
Corollary 2.30 and arrive at

V ∧(n, j)

=
〈
V |Sr , Hext

n,j (r; ·)|Sr
〉

L2(Sr)

= 4π Γn
(2n+ 1)

√
2tn + 3f

∧(ι, 0, n, j)R
tn+3/2

rn
.

Now, we have all tools at hand in order to analyze the direct problem of the magneto-
electroencephalography problem.
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Direct Magnetoencephalography Problem

9.1. Measurements from Magnetometers

For the analysis of the direct MEG problem, recall that the multiple-shell model assumptions
from Assumption 3.2 hold true. In Eq. (3.3), a connection between the magnetic potential
and the neuronal current is stated. First, we want to verify that this integral equation is
well-defined and the evaluation of the corresponding potential makes sense. By using the
results on the continuous/star-shaped VLI equation, we immediately obtain that the series in
the MEG integral kernel converges, see Theorem 6.6, and that the integrand in Eq. (3.3) is
integrable over the region B%0 , see Corollary 7.3. Hence, the integral equation is well-defined.
For this result, we use the assumption that the neuronal current is an L2(B%0)-function, see
Assumption 3.2. Accordingly, Eq. (3.3) initially holds true almost everywhere. However,
Chapter 7 provides us with more results concerning the potential

U(y) =
∫
B%0
JP(x) · kM(x,y) dx, y ∈ Bext

%L
.

The magnetic potential is an L2(Bext
%L

)-function, see Corollary 7.3, and the linear operator
TU : L2(B%0)→ L2(Bext

%L
) with TUJP = U is bounded. In addition, U is a C(Bext

%L
)-function, see

Theorem 7.8. In other words, the magnetic potential is a continuous function U : Bext
%L
→ R,

hence Eq. (3.3) holds pointwise for all y ∈ Bext
%L

.
Since the magnetic field B is, in the exterior of the head, given as the gradient of the

magnetic potential U , see, for instance, [73, 200] or Eq. (3.1), that is

B(y) = µ0∇yU(y), y ∈ Bext
%L
,

we still need a higher smoothness of U . This smoothness is obtained by Theorem 7.11. All the
assumptions therein are fulfilled, see Assumption 3.2 and Lemma 6.9. Due to Corollary 7.12,
the magnetic field is a continuous function in Bext

%L
.

An immediate consequence is the relation between the primary current and the magnetic
flux density Bν in the direction of the normal vector field ν given by

Bν(y) = µ0ν(y) ·∇y
(∫

B%0
JP(x) · kM(x,y) dx

)
, y ∈ Bext

%L
. (9.1)

Summing up, we eventually obtain the mathematical formulation of the inverse MEG
problem and its corresponding continuous/star-shaped VLI operator.

Problem 9.1 (The MEG Problem). Let Assumption 3.2 with L ≥ 1 be fulfilled. It is the
aim to reconstruct the primary current JP from a finite set of `M ∈ N0 given measurements
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of Bν , where the relation between those two quantities is given for ` = 1, . . . , `M by

AMJ
P =

`M∑
`=1

Bν(y`)ε` =
`M∑
`=1
ν(y`) ·B(y`)ε`

with the measurement positions {y` | ` = 1, . . . , `M} ⊂ Bext
%L

. Note that ε` for ` = 1, . . . , `M
denotes the standard Cartesian basis in R`M. The MEG forward operator
TM : L2(B%0)→ C(Bext

%L
) and the linear operator AM : L2(B%0)→ R`M are defined by(

TMJ
P
)

(y) := µ0∇y
∫
B%0
JP(x) · kM(x,y) dx, y ∈ Bext

%L
, (9.2a)

AMJ
P :=

`M∑
`=1
ν(y`) ·

(
TMJ

P
)

(y`)ε`. (9.2b)

The corresponding magnetic potential has the form

U(y) =
∫
B%0
JP(x) · kM(x,y) dx, y ∈ Bext

%L
.

Recall that the integral kernel kM is given by

kM(x,y) := 1
4π

∞∑
k=1

√
k

k + 1
xk

yk+1p
(3)
k (x̂, ŷ), (x,y) ∈ B%0 × Bext

%L
.

After formulating the well-defined MEG problem, we consider the solution of the direct
problem. Recall that the occurring MEG kernel kM is a harmonic VLI kernel. Thus, we
can use the results from Chapter 8 in order to solve the direct MEG problem. Eventually,
we obtain a representation of the magnetic field or potential, respectively, generated by the
neuronal current.
Due to Theorem 7.11, we are able to interchange the gradient with the integration. In

the resulting representation in Eq. (9.3), the vector on the left-hand side of the integrand is
called the lead field of the MEG channel measuring the field at location y in direction ν, see
[108, 180] and the references therein. The relation between the magnetic flux density and the
lead field is given by

ν(y) ·B(y) = µ0

∫
B%0

(
ν(y) ·

(
jacy (kM(x,y))

)T
)
· JP(x) dx, y ∈ Bext

%L
. (9.3)

Recall the definition of the vector-valued basis functions on the ball in Definition 5.37 and the
one of the scalar-valued basis functions on the interval [0, %0] in Definition 5.1. In addition,
Edmonds vector spherical harmonics, see Definition 5.9, are used. Note that the sequence
{tn}n∈N0ι also occurs in the definition of the orthonormal basis functions, see Definition 5.37.

Theorem 9.2. Let the neuronal current fulfil Assumption 3.2 with L ≥ 1. Then we can
expand JP as

JP =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

J∧[i,m, n, j]g̃(i)
m,n,j(%0; ·)
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with tn := n and we define for i = 1, 2, 3, n ∈ N0i, and j = 1, . . . , 2n+ 1 the functions

J (i),~
n,j :=

∞∑
m=0

J∧[i,m, n, j]Q(n+1/2)
m (%0; ·).

The uniformly converging series in the representation of the magnetic field and the magnetic
potential, respectively, are given for all y ∈ Bext

%L
and for their restriction onto the sphere S%0

in the sense of L2(S%0) and L2(S%0), respectively, by the expressions

U(y) =
∞∑
n=1

2n+1∑
j=1

√
n√

n+ 1(2n+ 1)

∫ %0

0
J (3),~
n,j (x)xn+2 dx 1

yn+1Yn,j(ŷ), (9.4a)

B(y) = −µ0

∞∑
n=1

2n+1∑
j=1

√
n

2n+ 1

∫ %0

0
J (3),~
n,j (x)xn+2 dx 1

%n+1
0

h(1)
n,j(%0;y). (9.4b)

Proof. We get the representations for U and B from Theorem 8.4 in combination with
Lemma 6.9 and Γn =

√
n/(n+ 1)/(4π). Note that tn = n for all n ∈ N and that the Morse-

Feshbach and Edmonds vector spherical harmonics of type ι = 3 coincide. The convergence
results concerning the magnetic potential in Eq. (9.4a) are proved in Theorems 7.18 and 7.20.
The assumptions therein are fulfilled due to Lemma 6.9 combined with Theorem 7.26. In
order to apply Theorem 7.20 and Lemma 8.5, we need to verify their conditions, that is

|γn(%0)| = Γn%−(n+1)
0 ,

where for all n ∈ N the next estimate holds true:

Γn = 1
4π

√
n

n+ 1 ≤
√

(2n+ 1)(2n+ 3)
n+ 1 ≤

√
(2n+ 1)2(2n+ 3).

The uniform convergence of the series in Eq. (9.4b) holds true because of Lemma 7.21. The
L2(S%0)-convergence is given by Lemma 8.5.

By means of Lemma 7.24 and Theorem 7.25, we obtain for the remaining integration in
Eq. (9.4) the result

∫ %0

0
J (3),~
n,j (x)xn+2 dx = J∧[3, 0, n, j]

√
%2n+3

0
2n+ 3 (9.5)

for all n ∈ N, j = 1, . . . , 2n+ 1. Recall that the approach used in Chapter 7 is based on a
separation of the neuronal current into a radial and an angular part. This kind of separation is
a common approach, which has already been used for certain MEG and EEG decompositions,
see [48, 71, 72], or in other fields, for instance, in the inverse gravimetric problem, see [161],
or the inverse geomagnetic problem, see [12]. However, to the knowledge of the author, for
the first time it is used by means of the Edmonds vector spherical harmonics. Therefore, we
call this separation the Edmonds approach. In the case of the MEG problem, however, these
two approaches coincide. Nevertheless, this nomenclature will make sense when the MEG
problem is combined with the EEG problem. In [48, 71], a decomposition of the current
into complex vector spherical harmonics is used. A comparison between the results in the
literature and the ones from this section is presented in Chapter 15.
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Remark 9.3. For the MEG direct problem, it is irrelevant whether the Morse-Feshbach or the
Edmonds vector spherical harmonics are used for the decomposition of the neuronal current.
Only the part of the neuronal current belonging to the type ι = 3 of the Morse-Feshbach
vector spherical harmonics does contribute to the magnetic potential and its field. This type
coincides with type ι = 3 of the Edmonds vector spherical harmonics.

Now, we find an answer to the question: ‘can we represent (parts of) the neuronal current
if the function describing the magnetic potential or field, respectively, is completely known?’
We solve this task by stating a relation between the Fourier coefficients of the neuronal
current J∧[i,m, n, j] for i = 1, 2, 3, m ∈ N0, n ∈ N0i , and j = 1, . . . , 2n + 1 and some
expansion coefficients of the magnetic potential and the magnetic field, respectively. This
relation is necessary in order to describe the neuronal current by means of the given magnetic
potential. Thus, we are ultimately seeking for a solution of the inverse problem. For this
purpose, we first need suitable expansions for both quantities. In Chapter 8, certain SVDs
for the integral operator were stated. However, we focus on an expansion in (vector-valued)
outer harmonics, in order to compare our results with the literature.

Theorem 9.4. Let the neuronal current fulfil Assumption 3.2 with L ≥ 1,

• then the corresponding magnetic potential U and its outer harmonics coefficients given
by U ∧

%L
(n, j) := 〈U |S%L , H

ext
n,j (%L; ·)|S%L 〉L2(S%L ) are uniquely determined by

U(y) =
∞∑
n=0

2n+1∑
j=1

U ∧
%L

(n, j)Hext
n,j (%L;y), y ∈ Bext

%L
,

U ∧
%L

(n, j) =
√
n

%nL
√
n+ 1(2n+ 1)

∫ %0

0
J (3),~
n,j (x)xn+2 dx

=
√

n%3
0

(n+ 1)(2n+ 1)2(2n+ 3)

(
%0
%L

)n
J∧[3, 0, n, j] (9.6)

for n ∈ N0, j = 1, . . . , 2n+ 1;

• then the corresponding magnetic field B and its vector outer harmonics coefficients
B ∧
%L

(n, j) := 〈B|S%L ,h
(1)
n,j(%L; ·)|S%L 〉L2(S%L ) are uniquely determined by

B(y) =
∞∑
n=0

2n+1∑
j=1

B ∧
%L

(n, j)h(1)
n,j(%L; ·), y ∈ Bext

%L
,

B ∧
%L

(n, j) = − µ0

%n+1
L

√
n

2n+ 1

∫ %0

0
J (3),~
n,j (x)xn+2 dx

= −µ0

√
n%0

(2n+ 1)(2n+ 3)

(
%0
%L

)n+1
J∧[3, 0, n, j]

for n ∈ N0, j = 1, . . . , 2n+ 1.

For all y ∈ Bext
%L

, the occurring series converge absolutely and uniformly in both cases.

Proof. The magnetic potential is regular at infinity and harmonic in the exterior of the head,
see Maxwell’s equations in Definition 3.1:

0 =∇ ·B = µ0∇ ·∇U = µ0∆U in Bext
%L
.

138



9.2. Measurements from Gradiometers

From Lemma 2.32, we obtain the unique outer harmonic representation of U . We use the
relation y−(n+1)Yn,j(ŷ) = %−nL Hext

n,j (%L;y) and the calculations from Theorem 9.2 and Eq. (9.5)
to obtain the desired result. From Eq. (5.15), we relate the gradient of the scalar outer
harmonics to the vector outer harmonics of type i = 1. For the magnetic field we, hence,
obtain with Eq. (3.1) the relation

B ∧
%L

(n, j) = −µ0U
∧
%L

(n, j)
√

(n+ 1)(2n+ 1)
%L

(9.7)

for all n ∈ N, j = 1, . . . , 2n+ 1. This completes the proof.

Thus, by means of Maxwell’s equations and the continuous VLI equation, we are able to
formulate an integral equation modelling the relation between the neuronal current inside the
brain and the measured magnetic potential in the exterior. Moreover, we used an Edmonds
vector spherical harmonics decomposition of the neuronal current in order to solve the direct
problem. A relation between the expansion coefficients of the measured quantities and the
Fourier coefficients of the neuronal current is stated in Theorem 9.4.

9.2. Measurements from Gradiometers

Within our numerical tests with real data, the data is obtained by magnetoencephalographs
that are part of the Elekta Neuromag Vectorview system, see [172]. This system provides us
with additional 204 measurements, see [33, 172]. For each sensor surface, the normal vector
ν is constant and the sensor surface possesses two perpendicular tangential vectors υ1 and
υ2. On each sensor surface, the two directional derivatives (in direction of the tangential
vectors) of the normal component of the magnetic field, Bυ1 and Bυ2 , are measured. They
are defined for all y ∈ Bext

%L
by

Bυ1(y) := υ1 · (∇yBν(y)),
Bυ2(y) := υ2 · (∇yBν(y)).

In order to further manipulate these expressions, we use the representation of the magnetic
field from Theorem 9.4 and get

Bν(y) =
∞∑
n=1

2n+1∑
j=1

B ∧
%L

(n, j)ν(y) · h(1)
n,j(%L;y), y ∈ Bext

%L
, (9.8)

B ∧
%L

(n, j) = − µ0
%Ln+1

√
n

2n+ 1

∫ %0

0
J (3),~
n,j (x)xn+2 dx, (9.9)

where n ∈ N, j = 1, . . . , 2n+ 1. Next, we calculate the gradient of the normal component of
the magnetic field.
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Lemma 9.5. The gradient of the normal component of the magnetic field Bν is given for
all y ∈ Bext

%L
by

∇yBν(y) =
∞∑
n=1

2n+1∑
j=1

B ∧%L(n, j)
(

+
√
n+ 1
2n+ 1ν(y)Yn,j(ŷ)

+ (ν(y) · ŷ)
(
−(n+ 3)

√
n+ 1
2n+ 1y

(1)
n,j(ŷ) + (n+ 2)

√
n

2n+ 1y
(2)
n,j(ŷ)

)

+
√
n(n+ 1)2

2n+ 1 ŷ
(
ν(y) · y(2)

n,j(ŷ)
)
−
√

n

2n+ 1(ν(y) ·∇∗ŷ)y(2)
n,j(ŷ)

))
.

Proof. The detailed proof can be found in the appendix, see Appendix A.

Due to the complicated structure of the function ∇Bν , we are not able to obtain an SVD
of the operator mapping the neuronal current onto Bυ1 or Bυ2 , respectively.
In addition, even with an SVD of these operators more theoretical information on the

neuronal current cannot be obtained (from it) than by means of the full magnetic field. The
reason for this is that ∇yBν depends on the same Fourier coefficients of JP as the magnetic
field itself. Thus, we concentrate our theoretical investigations on the magnetic potential
and its field.

On the other hand, from the numerical point of view, these additional 204 measurements
can help to improve the numerical results by easing the lack of data and stabilizing the
influence of the data noise. Further foundations and calculations that are required for the
implementation of ∇yBν(y) for the representation in Lemma 9.5 can also be found in the
appendix, see Appendix A. However, the implementation itself would exceed the scope of
this thesis and is left for future investigations.
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Direct Electroencephalography Problem

In Eq. (4.23), an integral equation corresponding to the EEG problem for the multiple-shell
model is stated. In Lemma 6.10, it is verified that this integral equation can be constructed
by a linear combination of two continuous/star-shaped VLI kernels. Thus, we can use results
for the continuous/star-shaped VLI operator in order to solve the direct problem related to
the integral equation stated in Eq. (4.22) for the electric potential.
This integral equation for the potential restricted onto S%L can also be found in [45, 73].

Therein, however, Gauß’s Theorem, see [219], for the integration and the Helmholtz decom-
position for the neuronal current is used in order to solve the problem, see also [47, 71]. Now,
for the first time this problem is solved by means of the Edmonds vector spherical harmonics,
which we call the Edmonds approach. A comparison of the different approaches is given in
Chapter 15.
Note that the electroencephalograph measures potential differences, that is

uL(y)− uL(z) =
∫
B%0
JP(x) · (kE(x,y)− kE(x, z)) dx, y, z ∈ S[%L−1,%L].

The integral kernel resulting from the subtraction of kE evaluated at different measurement
positions is often called the EEG lead field, see [181].

For the well-definedness of the EEG problem, two central questions need to be answered.
The first question is whether the integral in Eq. (4.22) exists and the second one is whether
the electric potential can be evaluated at the sensor positions. Due to the considerations
in Lemma 6.10, we can understand the integral kernel kE as a linear combination of two
continuous/star-shaped VLI kernels. The results from Chapter 7 combined with the linearity
of the integration provide us with the answers to these questions.

Corollary 10.1. Let Assumption 3.2 with L ≥ 2 hold true. The electric potential uL on the
scalp given by Eq. (4.22) is well-defined and a C(S[%L−1,%L]) ⊂ L2(S[%L−1,%L])-function.

Proof. The integrability of the function ud
L(·,y) from Lemma 6.10 for all y ∈ S[%L−1,%L] is

given by Lemma 6.20 combined with Lemma 6.10 and the Cauchy-Schwarz inequality. From
Corollary 7.3 and Theorem 7.8, we obtain that the function

u(y) :=
∫
B%0
JP(x) · kE(x,y) dx, y ∈ Bext

%0+ε,

is, as the sum of two potentials obtained by continuous VLI operators, see Lemma 6.10,
an L2(Bext

%0+ε) and a C(Bext
%0+ε)-function with an arbitrary ε > 0. Using ε := %L−1 − %0, its

restriction onto S[%L−1,%L] is also continuous and an L2(S[%L−1,%L])-function since S[%L−1,%L] ⊂
Bext
%0+ε.

Now, we are able to formulate the inverse EEG problem for the multiple-shell model. We
assume that the reference potential for the voltage difference is equal to zero.
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Problem 10.2 (The EEG Problem). Let Assumption 3.2 with L ≥ 2 hold true. In
the inverse EEG problem, one is interested in finding the primary current JP from a
finite set of measurements of the electric potential uL on the scalp at the sensor positions
{y` ∈ S[%L−1,%L] | ` = `M + 1, . . . , `M + `E} . The relation between the neuronal current and
the electric potential is given by

AEJ
P =

`E∑
`=1

uL(y`M+`)ε`.

Note that ε` for ` = 1, . . . , `E denotes the standard Cartesian basis in R`E . The EEG forward
operator TE : L2(B%0)→ C(S[%L−1,%L]) and the corresponding linear operator AE : L2(B%0)→
R`E are defined by(

TEJ
P
)

(y) :=
∫
B%0
JP(x) · kE(x,y) dx, y ∈ S[%L−1,%L], (10.1)

AEJ
P :=

`E∑
`=1

(
TEJ

P
)

(y`M+`)ε`. (10.2)

The occurring kernel is given in Lemma 6.10, that is

kE(x,y) = 1
4π

∞∑
k=1

√
k(2k + 1)3Hk(y)xk−1p̃(2)

k (x̂, ŷ), (x,y) ∈ B%0 × S[%L−1,%L].

Note that the counter for the sensor positions starts at `M + 1, where `M is the number
of MEG measurements, in order to simplify a combination of the inverse MEG and EEG
problem later.

For the next result, recall the definition of the orthonormal vector-valued basis functions
on the ball in Definition 5.37, in which the sequence {tn}n∈N occurs. The used scalar-valued
basis functions on the interval [0, %0] are given in Definition 5.1. In addition, Edmonds vector
spherical harmonics, see Definition 5.9, are used. Now, we are able to present the direct
solution of the EEG problem. Thus, we use the Edmonds approach in order to solve the
EEG problem.
Theorem 10.3. Let Assumption 3.2 with L ≥ 2 be fulfilled. Then JP can be expanded as

JP =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

J∧[i,m, n, j]g̃(i)
m,n,j(%0; ·)

with tn := n− 1 and we define for i = 1, 2, 3, n ∈ N0i, and j = 1, . . . , 2n+ 1 the functions

J (i),~
n,j :=

∞∑
m=0

J∧[i,m, n, j]Q(n−1/2)
m (%0; ·).

In addition, the electric potential on the scalp has for all y ∈ S[%L−1,%L] the representation

uL(y) =
∫
B%0
JP(x) · kE(x,y) dx (10.3a)

=
∞∑
n=1

2n+1∑
j=1

%
n+1/2
0 J∧[2, 0, n, j]

√
nHn(y)Yn,j(ŷ) (10.3b)

=
∞∑
n=1

2n+1∑
j=1

√
n(2n+ 1)Hn(y)

∫ %0

0
J (2),~
n,j (x)xn+1 dxYn,j(ŷ). (10.3c)

The occurring series converges absolutely and uniformly.
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Proof. By means of Theorem 7.27, we define with ι = 2 and for all n ∈ N the quantities
γn(y) := (4π)−1√n(2n+ 1)3Hn(y) and tn := n − 1, where the domain of the former is
y ∈ Bext

%0+ε with ε := %L−1 − %0. Therefore, the equations hold true for all y ∈ S[%L−1,%L] in
particular.

In contrast to the MEG operator from Chapter 9, the EEG operator TE maps into a range
of functions over the spherical shell S[%L−1,%L]. The EEG sensors need to be attached non-
invasively onto the head, since the electric potential cannot be measured in the circumambient
air, which is a really bad conductor. The conductivity of the air is modelled as zero, see also
the note after Assumption 3.2. Note that the outer shell S[%L−1,%L] does not necessarily need
to be the scalp or a part of it. The outer shell can also model a layer of paste used for the
attachment. However, the paste is not attached equally around the entire head which will
then lead to a model error.
In the literature, the electric potential uL is often restricted onto the sphere S%L . In this

case, we get

uL(%Lŷ) =
∞∑
n=0

2n+1∑
j=1

u ∧L (n, j) 1
%L
Yn,j(ŷ), ŷ ∈ S.

Here, the Fourier coefficients are given for all n ∈ N, j = 1, . . . , 2n+ 1 by

u ∧L (n, j) :=
〈
uL|S%L ,

1
%L
Yn,j

〉
L2(S%L )

= %L

√
n(2n+ 1)Hn(%L)

∫ %0

0
J (2),~
n,j (x)xn+1 dx (10.4a)

= %
n+1/2
0
%nL

2n+ 1√
n

β(L)
n J∧[2, 0, n, j] (10.4b)

and u ∧L (0, 1) = 0.
By solving Eq. (10.4b) for β(L)

n for all n ∈ N, we are able to state the next relation for all
n ∈ N, j = 1, . . . , 2n+ 1 by means of Hn from Eq. (4.20), that is

J∧[2, 0, n, j]Hn(y) = J∧[2, 0, n, j]
(
n+ 1
n

(
y

%L

)2n+1
+ 1

)
β(L)
n

1
yn+1

= 1
2n+ 1

(
n+ 1
n

(
y

%L

)2n+1
+ 1

)
1

yn+1

(
%L
%0

)n√ n

%0
u ∧L (n, j).

Due to this formula, we observe that the electric potential in the shell S[%L−1,%L] is completely
known if it is known on the sphere S%L . A similar result is also known for the Earth’s
magnetic field, see [12]. Thus, a consequence of the previous result is the next theorem.

Theorem 10.4. Let the assumptions of Theorem 10.3 be fulfilled. Then the electric potential
has for all y ∈ S[%L−1,%L] the representation

uL(y) =
∞∑
n=0

2n+1∑
j=1

(
n+ 1
2n+ 1

(
y

%L

)2n+1
+ n

2n+ 1

)(
%L
y

)n
u ∧L (n, j)1

y
Yn,j(ŷ) (10.5)
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with u ∧L (0, 1) = 0. For all n ∈ N and j = 1, . . . , 2n+ 1, we have

u ∧L (n, j) = 1
%nL

√
(2n+ 1)3

n
β(L)
n

∫ %0

0
J (2),~
n,j (x)xn+1 dx.

In this part, we defined three particular classes of integral kernels, which are related to
each other, namely the continuous VLI, the star-shaped VLI, and the harmonic VLI kernels.
We analyzed these kernels in detail and defined corresponding integral operators, which are
well-defined. We stated certain examples of these kernels, such as the MEG and EEG integral
kernel, which we are mainly interested in. Eventually, we solved the direct problems related
to these integral equations in the general setting as well as for the particular problems.

Since we have now solved the direct problem, we are interested in a solution of the inverse
problem, that is a solution of the integral equation itself.
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Part III.

Solving the Inverse Problem
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Chapter 11.

Introduction to Inverse Problems

A large class of mathematical and physical problems are the inverse problems. A broad
overview is given in [63, 148, 194], for instance. Whereas direct problems calculate an
effect from a given cause, inverse problems infer the cause from observed effects. Important
examples are the calculation of the evolution backwards in time and the calculation of physical
quantities in some medium by means of knowledge from outside of the medium. The last
problem class includes the inverse gravimetric problem and the inverse electroencephalography
problem, both of which are discussed in this thesis. In all cases, the solution f is mapped
onto the data g by means of the corresponding forward operator T , that is T f = g. The
domain of the operator dom T is a subset of X and the range of the operator ran T is a
subset of Y, where X and Y are certain spaces. We denote the null space of the operator T
by ker T ⊂ X.
Inverse problems are discussed in detail in [34, 63, 100, 102, 127, 136, 148, 193, 194], for

instance. Further foundations of functional analysis can be found in [124, 142, 198]. Here, we
summarize the essential results required for the analysis of the inverse magneto-electroence-
phalography problem.
Most inverse problems have in common that they are ill-posed or improperly posed

problems because of the discontinuity of the mapping from the data to the solution. Other
reasons for the ill-posedness are the non-uniqueness of the solution or the lack of a solution
of the problem. A well-known characterization of ill-posed problems goes back to Hadamard,
see [106, 107].

Definition 11.1 (Ill-Posedness (Hadamard), [148, Def. 1.1.1]). Let X, Y be normed
spaces and let T : X→ Y be a mapping between them. The problem (T ,X,Y) is well-posed if
the following properties hold true:

i) The equation T f = g has a solution f for every g ∈ Y;

ii) the solution f is uniquely determined;

iii) the solution f depends continuously on the data.

If one of these properties is violated, the problem is ill-posed.

In order to solve ill-posed inverse problems, one is interested in a best fitting solution. If
ran T 6= Y, then the equation T f = g does not necessarily have a solution for all g ∈ Y.

Definition 11.2 ([63, Def. 2.1]). Let X, Y be normed spaces and let T : X → Y be a
bounded linear operator.

i) The element f∗ ∈ X is called the least-squares solution of T f∗ = g if

‖T f∗ − g‖X = inf
f∈X
‖T f − g‖X .
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ii) The function f+ is called best-approximate solution of T f+ = g if it is a least-squares
solution with

f+ := inf {‖f‖X | f is a least-squares solution of T f = g} .

The solution f+ is a least-squares solution if and only if it is a solution of the normal
equation, that is T ∗T f+ = T ∗g, see [63, Thm. 2.6]. We will later see, that the best-
approximate solution is unique if g ∈ ran T ⊕ (ran T )⊥. This can be further characterized by
means of the well-known Moore-Penrose inverse operator.

Definition 11.3 (Moore-Penrose Inverse, [63, Def. 2.2]). Let X, Y be Hilbert spaces
and let T : X → Y be a bounded linear operator. Then the generalized inverse or Moore-
Penrose inverse T + of T is defined as the unique linear extension of T̄ −1 to

dom T + := ran T ⊕ (ran T )⊥

with

ker T + = (ran T )⊥ ,

where

T̄ := T |(ker T )⊥ : (ker T )⊥ → ran T .

The Moore-Penrose inverse is closely related to the best-approximate solution and a
least-squares solution.

Theorem 11.4 ([63, Thm. 2.5]). Let g ∈ dom T +. Then T f = g has a unique best-
approximate solution, which is given by f+ = T +g. The set of all least-squares solution is
given by f+ + ker T .

Theorem 11.5 (Properties of the Moore-Penrose Inverse). Let X, Y be Hilbert spaces
and T : X → Y be a bounded linear operator. The Moore-Penrose inverse T + satisfies the
following properties:

i) Let g ∈ dom T +. Then f ∈ X is a least-squares solution of T f = g if and only if the
normal equation T ∗T f = T ∗ holds true, see [63, Thm. 2.6].

ii) The space Y can be decomposed into Y = ran(T )⊕ (ran T )⊥ if and only if the range of
T is closed, see [194, Thm. 2.1.8].

iii) The range of the Moore-Penrose inverse can also be represented by ran T + = (ker T )⊥,
see [63, Prop. 2.3].

iv) The Moore-Penrose inverse T + is continuous and, hence, bounded if and only if the
range of T is closed, see [63, Prop. 2.4].

Based on these properties of the Moore-Penrose inverse, another characterization of ill-
posed problems is given. In [194, Ch. 2.1], it is stated that only the cases remain interesting
where T + is unbounded.
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Definition 11.6 (Ill-Posedness (Nashed), [177]). Let X, Y be normed spaces and let
T : X → Y be a mapping between them. The problem (T ,X,Y) is ill-posed according to
Nashed if ran T 6= ran T .

A large class of inverse problems is generated by compact operators.

Definition 11.7 (Compact Operator [224, Ch. X]). Let X, Y be normed spaces and
let T : X → Y be a linear operator. The operator T is called compact if T BX is relatively
compact in Y, where BX denotes the unit ball in X.

A linear operator T is called compact if the image of every closed ball in X is relatively
compact in Y. By means of basic functional analysis properties, it is easy to verify that
compact operators cannot have a bounded inverse if the range is infinite-dimensional. Thus,
at least one property from Hadamard’s characterization is violated.

Lemma 11.8 ([198, Thm. 4.18]). Let T : X → Y be a compact operator between two
normed spaces. In addition, let X be infinite-dimensional. Then T cannot have a bounded
inverse.

Corollary 11.9 ([63, Prop. 2.7]). Let T : X → Y be a compact operator between two
normed spaces. In addition, let X be infinite-dimensional. Then T + is a densely defined
unbounded linear operator with closed graph.

On the other hand, compact operators between Hilbert spaces provide us with a useful
tool for solving the inverse problem, that is the singular value expansion of an operator
given by the Spectral Theorem. The singular value expansion can be understood as the
infinite-dimensional analogue of the well-known singular value decomposition for matrices.
Therefore, we use SVD as its abbreviation.

Theorem 11.10 (Spectral Theorem, [63, Ch. 2.2]). Let X, Y be Hilbert spaces and
let T : X → Y be a compact operator. Then there exist an orthonormal system {fk}k∈N
of X, an orthonormal system {gk}k∈N of Y, and a decreasing sequence of numbers with
λ1 ≥ λ2 ≥ . . . > 0 and limk→∞ λk = 0 such that

T f =
∞∑
k=1

λk〈f, fk〉Xgk for all f ∈ X. (11.1)

More precisely, λ2
k are the eigenvalues of the self-adjoint operator T ∗T and λk are called

singular values of T . The set {fk, gk;λk}k∈N is called the singular system.

The expansion in Eq. (11.1) is called a singular value decomposition or sometimes a
singular value expansion. Note that the singular values are often assumed to be positive as
in Theorem 11.10. However, for a given expansion as in Eq. (11.1) that also has negative
values of λk for some (or all) k ∈ N, we can always make the singular values positive by
flipping the sign of the corresponding orthonormal basis functions. In addition, {fk}k∈N is
an orthonormal basis in (ker T )⊥ and {gk}k∈N is an orthonormal basis in ran T .

Corollary 11.11 ([63, p. 37]). Let X, Y be Hilbert spaces and let T : X→ Y be a compact
operator with the SVD from Eq. (11.1). Then its adjoint operator T ∗ : Y→ X defined by

〈T f, g〉Y = 〈f, T ∗g〉X for all (f, g) ∈ X× Y
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has the SVD

T ∗g =
∞∑
k=1

λk〈g, gk〉Yfk for all g ∈ Y.

Recall that, according to [198, Thm. 4.12], the range of a bounded, linear operator between
two Hilbert spaces and the null space of its adjoint are related by

ker T ∗ = (ran T )⊥, (ker T )⊥ = ran T ∗. (11.2)

Using the SVD, the Moore-Penrose inverse can be derived by inverting the singular values.

Theorem 11.12 ([63, Thm. 2.8]). Let X, Y be Hilbert spaces and let T : X → Y be
a compact linear operator. Let {fk, gk;λk}k∈N be the corresponding singular system and
g ∈ dom T +. Then the singular value expansion of T + is given by

T +g =
∞∑
k=1

λ−1
k 〈g, gk〉Yfk.

Often, the condition g ∈ ran T is hard to verify. However, g ∈ ran T if and only if g ∈ ran T
and a summability condition called Picard’s criterion is fulfilled.

Theorem 11.13 (Picard’s Criterion, [63, Thm. 2.8]). Let X, Y be Hilbert spaces and
let T : X → Y be a compact linear operator with singular system {fk, gk;λk}k∈N . Then
T f = g has a solution if and only if g ∈ ran T = (ker T ∗)⊥ and Picard’s criterion, that is

∞∑
k=1

λ−2
k |〈g, gk〉Y|2 <∞,

is fulfilled.

If the singular values decay faster, Picard’s criterion forces a stricter condition on the decay
of the Fourier coefficients of g, see, for instance, [63, p. 40]. This allows to characterize the
degree of ill-posedness of the problem T f = g. A problem is called mildly (modestly) ill-posed
if λn ∈ O(n−α) for some α ∈ R+, and severely ill-posed otherwise, that is if λ ∈ O(e−n), see
also [148, 214].
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Chapter 12.

Ill-Posedness of the VLI Problem

12.1. Continuous and Star-shaped Problem

Now, we are interested in the solution of the inverse magneto-electroencephalography problem.
Again, in order to solve the inverse MEG problem as well as the inverse EEG problem at
once, we first consider the ill-posedness of the continuous/star-shaped VLI problem. The
inverse problem induced by the continuous/star-shaped VLI operator is the reconstruction
or calculation of the density f from a given potential V . Definition 11.1 presents a criterion
according to Hadamard to decide whether an inverse problem is ill-posed or not.

By means of the representation of T f in Theorem 7.26, we can prove that the operator T
is compact, even if the region Gout is not compact. In [97], the compactness of a Fredholm
integral operator is shown using certain assumptions that are violated by the continuous/
star-shaped VLI operator. Via the alternative proof of the next theorem, this result can
be conserved due to the special structure of the integral kernel. Consequently, the inverse
problem T f = V is ill-posed.

Theorem 12.1. The continuous/star-shaped VLI operator T : L2(BR)→ L2(Gout) is com-
pact and nuclear.

Proof. Due to [225, Ch. X.2], each nuclear operator is compact. Thus, it remains to prove
that T is a nuclear operator, that is T f has for all f ∈ L2(BR) in L2(Gout) the strongly
convergent representation

T f L2(BR)=
∞∑
l=0

cl〈f ,f l〉L2(BR)gl,

where {f l}l∈N0 ⊂ L2(BR), {gl}l∈N0 ⊂ L2(Gout), and {cl}l∈N0 ⊂ R are sequences fulfilling

sup
l∈N0
‖gl‖L2(Gout) <∞, sup

l∈N0
‖f l‖L2(BR) <∞,

∞∑
l=0
|cl| <∞.

Since L2(BR) is a Hilbert space, the operator T has the required series representation, see
Eq. (7.14). In our particular setting, the above stated conditions can be represented by

• supn,j‖g(ι)
0,n,j‖L2(BR) <∞,

• supn,j‖(n+ 1)2Rnγn(|·|)Yn,j (̂·)‖L2(Gout) <∞, and

• ∑∞n=0ι | Rtn−n+3/2

(n+1)2√2tn+3 | <∞.

151



Chapter 12. Ill-Posedness of the VLI Problem

The first condition is immediately satisfied due to the normalization property of the or-
thonormal basis functions. The second condition is implied by the asymptotic behaviour of
the functions γn, where n ∈ N0ι . The last condition is fulfilled due to the assumptions on
the sequence {tn}n∈N0ι . Finally, the series from Eq. (7.14) has to converge strongly in the
L2(Gout)-topology, which is established by Theorem 7.26.

In order to find a ’solution’, we need to analyze this ill-posedness of the continuous/star-
shaped VLI problem in detail. Such a sought solution could be the best-approximate solution
of the inverse problem, for example. We start with the non-injectivity and characterize the
null space by means of the previous results. Recall the representation of the potential T f
from Eq. (7.14), that is

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)γn(y)Yn,j(ŷ).

Note that the parameter ι is determined by the actual problem at hand. The density f has
the L2(BR)-convergent Fourier expansion

f =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

f∧(i,m, n, j)g(i)
m,n,j(R; ·).

Obviously, only the summands for i = ι and m = 0 occur in the representation of T f .
The other summands have no influence on the potential. Thus, the continuous/star-shaped
VLI operator T : L2(BR) → L2(Gout) is not injective and, hence, ker T 6= {0} . We can
characterize the orthogonal complement of the operator null space as follows.
Lemma 12.2. Let T : L2(BR)→ L2(Gout) be the continuous/star-shaped VLI operator with
Gin := BR, then

(ker T )⊥ = span
{
g(ι)

0,n,j(R; ·)
∣∣∣ n ∈ {n′ ∈ N0ι , γn′ 6≡ 0} , j = 1, . . . , 2n+ 1

}
. (12.1)

Consequently, (ker T )⊥ is a proper subset of L2(BR) and T is not injective.
In order to find a representation of the best-approximate solution, one is interested in

the SVD of the operator T , see Theorem 11.12. The SVD of the continuous/star-shaped
VLI operator exists because T is compact, see Theorem 11.10. However, we are not able
to formulate the SVD in this general setting, but we can consider the restriction of T
to a sphere Sr. This particular case is of interest, since in many applications the data
is collected from (approximately) spherical sensor arrangements, such as satellite orbits,
magnetoencephalography devices, or electroencephalography sensor caps, see [87, 108] and
the references therein.
Definition 12.3. Let r ≥ infy∈Gout y > R be an arbitrary radius. Let for all k ∈ N0ι the
functions γk from Definition 6.1 be continuously extendable for y = r. Then the restricted
operator T |Sr : L2(BR)→ L2(Sr) is defined by

T |Srf :=
(∫

BR
f(x) · k(ι)(x, ·) dx

)∣∣∣∣
Sr
, (12.2)

(T |Srf)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)γn(r)Yn,j(ŷ),

where k(ι) is the continuous/star-shaped VLI kernel from Definition 6.1.
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It is possible that Sr is not a proper subset of Gout. However, for the the calculation of the
direct solution and the convergence statements this is not a problem, since r ≥ infy∈Gout y > R.
Thus, Theorem 7.26 is still valid in this case. This also implies the uniform convergence of
the occurring series, which allows its pointwise evaluation in Definition 12.3. In addition,
the potential (T |Srf)(y) only depends on the angular part of y since y = rŷ for all y ∈ Sr.
Hence, {γn(r)}n∈N0ι is only a sequence of constants depending on n.
By means of this definition, we are able to formulate the SVD of T |Sr .

Theorem 12.4. Let T |Sr : L2(BR) → L2(Sr) be the restricted operator defined in Defini-
tion 12.3. Then

i) the orthogonal complement of the null space (ker T |Sr)⊥ ⊂ L2(BR) is given by

(ker T |Sr)⊥ = span
{
g(ι)

0,n,j(R; ·)
∣∣∣ n ∈ {n′ ∈ N0ι , γn′(r) 6= 0} , j = 1, . . . , 2n+ 1

}
.

ii) {g(ι)
0,n,j(R; ·)}n∈{n′∈N0ι |γn′ (r)6=0} ,j=1,...,2n+1 is an orthonormal basis for the orthogonal

complement of the null space (ker T |Sr)⊥ ⊂ L2(BR),

iii) an orthonormal basis for L2(Sr) is given by {r−1Yn,j}n∈N0,j=1,...,2n+1 , and

iv) the singular values of T |Sr are given for all n ∈ {n′ ∈ N0ι | γn′(r) 6= 0} independent of
j by

λn := 4πr
√

R3

2tn + 3
Rtn

2n+ 1γn(r).

Eventually, we obtain an SVD of T |Sr , that is

T |Srf =
∞∑
n=0ι

2n+1∑
j=1

λn
〈
f , g(ι)

0,n,j(R; ·)
〉

L2(BR)

1
r
Yn,j .

Proof. The first statement is clear by combining the orthonormal basis from Lemma 5.38
with the characterization of the null space of T , see Lemma 12.2. Due to Remark 2.27, an
orthonormal basis for L2(Sr) is given by {r−1Yn,j}n∈N0,j=1,...,2n+1 . The forward operator has
the Fourier series

(T |Srf)(y) = 4π
∞∑
n=0ι

γn(r)6=0

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)γn(r)Yn,j(ŷ)

=
∞∑
n=0ι

γn(r)6=0

2n+1∑
j=1

4πrγn(r) Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)1

r
Yn,j(ŷ).

By means of the Spectral Theorem for T |Sr and the Moore-Penrose inverse, we are able to
further simplify the inverse problem of finding the density f ∈ L2(BR) for a given potential
V ∈ L2(Sr) with V = T |Srf . For this purpose, we investigate the behaviour of the singular
values.
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Chapter 12. Ill-Posedness of the VLI Problem

Corollary 12.5. The singular values {λn}n∈{n′∈N0ι |γn′ (r)6=0} of T |Sr stated in Theorem 12.4
form a sequence of non-zero real numbers converging to zero.

Proof. Obviously, γn(r) 6= 0 for all n ∈ {n′ ∈ N0ι | γn′(r) 6= 0} and R > 0. Thus, each
singular value λn is non-zero for all n ∈ {n′ ∈ N0ι | γn′(r) 6= 0} . Due to the assumptions on
{tn}n∈{n′∈N0ι |γn′ (r)6=0} and R, the estimate

0 ≤ |λn| :=
∣∣∣∣∣∣4π
√

R3

2tn + 3
Rtnr

2n+ 1 |γn(r)|
∣∣∣∣∣∣

≤ 4π
√

R3

2tn + 3
Rtnr

2n+ 1
Γn

rn+1+δ0ι,0δn,0

≤ 4πr sup
n∈N0ι

Rtn−nΓn

√
R3

2tn + 3
Rn

rn+1+δ0ι,0δn,0

holds true for all n ∈ {n′ ∈ N0ι | γn′(r) 6= 0} . The right-hand side converges to zero as R < r,
see Theorem 6.4. Using the Squeeze Theorem, we obtain limn→∞ λn = 0.

By means of the SVD, we immediately obtain a representation of the unique best-
approximate solution of the inverse problem.

Corollary 12.6. According to Theorem 11.12, the unique best-approximate solution f+ of
T |Srf = V for a potential V ∈ dom T |+Sr in the domain of the Moore-Penrose inverse T |+Sr
is given by

f+ = T |+SrV

= 1
4π

∞∑
n=0ι

γn(r)6=0

2n+1∑
j=1

√
2tn + 3
R3

2n+ 1
Rtnrγn(r)

〈
V |Sr ,

1
r
Yn,j

〉
L2(Sr)

g(ι)
0,n,j(R; ·).

Due to the asymptotic behaviour of {λn}n∈{n′∈N0ι |γn′ (r)6=0} , we immediately obtain the lack
of continuity of the operator T |+Sr .

Recall that the domain of T |+Sr is given by dom(T |+Sr) = ran(T |Sr)⊕ (ran T |Sr)⊥.
In order to reconstruct the density f of T |Srf = V , it is necessary and sufficient that the

potential fulfils V ∈ (ker T |∗Sr)⊥ = ran T |Sr and that Picard’s criterion is satisfied.

Lemma 12.7. Picard’s criterion is given by

∞∑
n=0ι

γn(r)6=0

2n+1∑
j=1

λ−2
n

〈
V |Sr ,

1
r
Yn,j

〉2

L2(Sr)
<∞. (12.3)

The problem T |Srf = V has a solution if and only if V ∈ ran T |Sr and Eq. (12.3) holds true.

In this section, we analyzed the null space of the continuous/star-shaped VLI operator and
the SVD of its restriction onto a sphere in the outer region. For a harmonic VLI operator,
we are also able to find an SVD in a larger outer region. This is investigated in the next
section.
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12.2. Harmonic VLI Problem

In the previous section, we found an SVD of the continuous/star-shaped VLI operator
but only for the particular case of its restriction onto a sphere in the outer region. In
Theorem 12.4, the SVD is stated and the convergence of the singular values to zero is proved
in Corollary 12.5. Using the Spectral Theorem, the best-approximate solution f+ is stated
in Corollary 12.6. These results naturally hold true for the harmonic VLI operator by setting
γn(y) := Γny−(n+1) for n ∈ N and γ0 ≡ 0.
In certain applications, it is not sufficient to analyze the restriction of an operator to a

sphere. For example, satellite orbits or the magnetometer sensor positions are not located on
a perfectly shaped sphere. However, in Section 12.1, we were not able to state a result for the
non-restricted operator, since we were not able to find a Hilbert space and an orthonormal
basis system for ran T in this general context, even though such a system must exist due to
the compactness of T , see Theorem 12.1.
Therefore, we now consider the case of the harmonic VLI operator, where the set of

functions {γn}n∈N is determined more precisely. If we additionally restrict ourselves to the
case of Gout := Bext

r with R < r < ∞, we are able to find appropriate orthonormal basis
systems and Hilbert spaces for ran T as well as for the operator mapping f onto the gradient
field of the potential T f , that is ∇(T f).

In order to find the SVD for the non-restricted operator T , we first construct appropriate
Hilbert spaces in the domain and range of the operator. A Hilbert space in the domain of the
operator, that is L2(BR), has already been used for the continuous/star-shaped VLI operator.
For the other Hilbert space, we construct an orthonormal basis by using a definition from
[88, Ch. 10.8] that is repeated in the next lemma.
Lemma 12.8. Let the outer space be given by the exterior of a sphere with radius r > R,
that is Gout := Bext

r with R < r <∞. On the outer space Bext
r , the set of square-integrable

harmonic functions

Harm
(
Bext
r

)
:=
{
F ∈ C2

(
Bext
r

) ∣∣∣∣∣
∫
Bext
r

(F (y))2 dy <∞, ∆F = 0 in Bext
r

}

is a closed subset of L2(Bext
r ). Moreover, the system that is comprised of the functions

Sn,j(r;x) :=
√

2n− 1
r

Hext
n,j (r;x), x ∈ Bext

r

for n ∈ N, j = 1, . . . , 2n+ 1 constitutes a complete orthonormal system in the Hilbert space
(Harm(Bext

r ), 〈·, ·〉L2(Bext
r )).

Proof. The definition of the space Harm(Bext
r ) can also be found in [88, Ch. 10.8]. Therein, it

is stated that the system of outer harmonics {Hext
n,j (r; ·)}n∈N,j=1,...,2n+1 constitutes a complete

orthogonal system in Harm(Bext
r ). Note that the function Hext

0,1 (r; ·) is not an element of the
space Harm(Bext

r ), since it is not square-integrable with a finite norm. Thus, the system only
needs to be normalized. For n,m ∈ N, j = 1, . . . , 2n+ 1, and l = 1, . . . , 2m+ 1 we obtain
the identity〈

Hext
n,j (r; ·), Hext

m,l(r; ·)
〉

L2(Bext
r )

=
∫
S
Yn,j(x̂)Ym,l(x̂) dω(x̂)

∫ ∞
r

rn+m

xn+m+2x
2 dx

= δm,nδj,l
r

2n− 1 .
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Now, we have all components of the SVD at hand.
Theorem 12.9. Let (Harm(Bext

r ), 〈·, ·〉L2(Bext
r )) be defined as in Lemma 12.8. Let the operator

T be given by

T : f 7→
∫
BR
f(x) · k(ι)(x, ·) dx

with the harmonic VLI kernel k(ι) from Definition 8.1. Then
i) T : L2(BR)→ (Harm(Bext

r ), 〈·, ·〉L2(Bext
r )),

ii) an orthonormal basis for the orthogonal complement of the null space (ker T )⊥ ⊂ L2(BR)
is given by {g(ι)

0,n,j(R; ·)}n∈{n′∈N|Γn′ 6=0} ,j=1,...,2n+1 ,

iii) an orthonormal basis for (Harm(Bext
r ), 〈·, ·〉L2(Bext

r )) is given by means of the basis from
Lemma 12.8, that is {Sn,j(r; ·)}n∈N,j=1,...,2n+1 , and

iv) the singular values of T are given for all n ∈ {n′ ∈ N | Γn′ 6= 0} by

λn := 4π Γn
(2n+ 1)

√
(2tn + 3)(2n− 1)

Rtn+3/2

rn−1/2 .

Eventually, we obtain the SVD of the harmonic VLI operator T , that is

T f =
∞∑
n=1

Γn 6=0

2n+1∑
j=1

λn
〈
f , g(ι)

0,n,j(R; ·)
〉

L2(BR)
Sn,j(r; ·).

Proof. i) Theorem 8.7 provides us with the required smoothness and harmonicity of T f .
The integrability is proved in Corollary 7.3.

ii) This statement is obviously fulfilled by Lemmas 5.38 and 12.2. Note that γn 6≡ 0
implies Γn 6= 0 for all n ∈ N since γn(y) = Γny−(n+1) and y > R, see also Lemma 8.2.
Thus, ker T 6= {0} and, hence, T is not injective.

iii) This statement has already been proved in Lemma 12.8.

iv) Due to Corollary 8.10 and Lemma 12.8, we obtain an expansion of T f by

T f =
∞∑
n=1

2n+1∑
j=1

V ∧(n, j)Hext
n,j (r; ·)

=
∞∑
n=1

2n+1∑
j=1

V ∧(n, j)
√

r

2n− 1Sn,j(r; ·).

Note that V ∧(n, j) = 0 for all n ∈ {n′ ∈ N | Γn′ = 0} and j = 1, . . . , 2n + 1. For all
n ∈ {n′ ∈ N | Γn′ 6= 0} and j = 1, . . . , 2n+ 1, the coefficients are given by

〈T f , Sn,j(r; ·)〉L2(Bext
r )

= V ∧(n, j)
√

r

2n− 1

= 4π Γn
(2n+ 1)

√
(2tn + 3)(2n− 1)

Rtn+3/2

rn−1/2

〈
f , g(ι)

0,n,j(R; ·)
〉

L2(BR)
.
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The singular values for all n ∈ {n′ ∈ N | Γn′ = 0} are, via Eq. (8.1), given by

λn = 4π Γn
(2n+ 1)

√
(2tn + 3)(2n− 1)

Rtn+3/2

rn−1/2 ,

which are obviously finite non-zero numbers as infn∈N,Γn 6=0 tn ≥ −1.

Now, let V = T f be the potential of f . Due to Lemma 8.9, V is the unique solution of the
corresponding exterior Dirichlet problem. By means of Lemma 2.32, it can be represented
by an expansion in outer harmonics. Thus, we get

V (y) =
∞∑
n=1

2n+1∑
j=1

V ∧(n, j)Hext
n,j (r;y), y ∈ Gout,

with V ∧(n, j) := 〈V |Sr , r−1Yn,j〉L2(Sr) for all n ∈ N, j = 1, . . . , 2n+ 1. Via Theorem 8.4 and
orthogonality properties of the outer harmonics, the coefficients V ∧(n, j) are given by

V ∧(n, j) =
〈

(T f)|Sr , Hext
n,j (r; ·)|Sr

〉
L2(Sr)

= 4π Γn
(2n+ 1)

√
2tn + 3

Rtn+3/2

rn
f∧(ι, 0, n, j)

=
√

2n− 1
r

λnf
∧(ι, 0, n, j) (12.4)

for all n ∈ N and j = 1, . . . , 2n + 1. In addition, we have an relation between the Fourier
coefficients and the outer harmonics coefficients, that is

〈V, Sn,j(r; ·)〉L2(Bext
r ) =

√
r

2n− 1V
∧(n, j). (12.5)

Furthermore, the SVD of T stated in Theorem 12.9 leads to the next theorem.

Theorem 12.10. Let T : L2(BR)→ (Harm(Bext
r ), 〈·, ·〉L2(Bext

r )) be the harmonic VLI operator
with the integral kernel defined in Definition 8.1. Then the inverse problem T f = V of
finding the density f ∈ L2(BR) to a given potential V ∈ ran T is (severely) ill-posed, since
the singular values of T decay exponentially fast to zero.

Proof. The proof is mainly based on the SVD of T . By means of the singular values λn for
n ∈ {n′ ∈ N | Γn′ 6= 0} and the estimate infn∈N,Γn 6=0 tn ≥ −1, we obtain

0 ≤ |λn| = 4π |Γn|
(2n+ 1)

√
(2tn + 3)(2n− 1)

Rtn+3/2

rn−1/2

≤ 4π
(

sup
n∈N

Rtn−n
)
|Γn|

2n+ 1

√
R3

r(2tn + 3)(2n− 1)
Rn

rn
.

Due to the assumption in Definition 8.1, the mapping n 7→ Γn is of polynomial growth in
n at most. Hence, via the Squeeze Theorem, we get limn→∞ Γn(R/r)n = 0. The singular
values are exponentially decreasing, which implies a severely ill-posed problem.
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Chapter 12. Ill-Posedness of the VLI Problem

The singular values of the Moore-Penrose inverse operator are given by {λ−1
n }n∈N , see

Theorem 11.12, which immediately implies its unboundedness.
By means of the SVD and the adjoint operator T ∗, we are able to further characterize

the closure of the operator range ran T = (ker T ∗)⊥. The adjoint operator of a (Fredholm)
integral operator between two Lebesgue spaces can be easily calculated by using Fubini’s
Theorem. Thus, we obtain the identity

T ∗V =
∫
Bext
r

V (y)k(ι)(·,y) dy.

Alternatively, the representation of the adjoint operator T ∗ given by

T ∗V =
∞∑
n=1

Γn 6=0

2n+1∑
j=1

λn〈V, Sn,j(r; ·)〉L2(Bext
r )g

(ι)
0,n,j(R, ·)

is an immediate consequence of the Spectral Theorem for the SVD of the adjoint operator,
see Corollary 11.11. By means of the last formula, we get

(ker T ∗)⊥ = span {Sn,j(r; ·) | n ∈ {n′ ∈ N | Γn′ 6= 0} , j = 1, . . . , 2n+ 1}. (12.6)

Another consequence of the Spectral Theorem for the operator T is Picard’s criterion, see
Theorem 11.13, which complements the investigation of the SVD.

Corollary 12.11. Let T : L2(BR)→ (Harm(Bext
r ), 〈·, ·〉L2(Bext

r )) be the harmonic VLI operator
with the integral kernel defined in Definition 8.1. In addition, let the potential V ∈ (ker T ∗)⊥
be given. Then the inverse problem T f = V of finding the density f has a unique best-
approximate solution if and only if Picard’s criterion holds, that is

∞∑
n=1

Γn 6=0

2n+1∑
j=1

λ−2
n

∣∣∣〈V, Sn,j(r; ·)〉L2(Bext
r )

∣∣∣2

= 1
16π2

∞∑
n=1

Γn 6=0

2n+1∑
j=1

(2tn + 3)(2n− 1)(2n+ 1)2

Γ2
n

r2n−1

R2tn+3

∣∣∣〈V, Sn,j(r; ·)〉L2(Bext
r )

∣∣∣2 <∞.
Then the solution f+ is given by the Fourier series

f+ = 1
4π

∞∑
n=1

Γn 6=0

2n+1∑
j=1

2n+ 1
Γn

√
(2tn + 3)(2n− 1)

R3
rn−1/2

Rtn
〈V, Sn,j(r; ·)〉L2(Bext

r )g
(ι)
0,n,j(R; ·).

Proof. See Theorem 11.13 for a formulation of Picard’s criterion. Since V ∈ dom T +, we can
apply Theorem 11.12 to obtain the best-approximate solution

f+ =
∞∑
n=1

Γn 6=0

2n+1∑
j=1

λ−1
n 〈V, Sn,j(r; ·)〉L2(Bext

r )g
(ι)
0,n,j(R; ·)

= 1
4π

∞∑
n=1

Γn 6=0

2n+1∑
j=1

2n+ 1
Γn

√
(2tn + 3)(2n− 1)

R3
rn−1/2

Rtn
〈V, Sn,j(r; ·)〉L2(Bext

r )g
(ι)
0,n,j(R; ·).
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12.2. Harmonic VLI Problem

Inserting Eq. (12.5) into the representation of the best-approximate solution f+, we obtain
the identity

f+(x) L2(BR)= 1
4π

∞∑
n=1

Γn 6=0

2n+1∑
j=1

2n+ 1
Γn

√
(2tn + 3)(2n− 1)

R3
rn−1/2

Rtn
V ∧(n, j)

√
r

2n− 1g
(ι)
0,n,j(R;x)

= 1
4π

∞∑
n=1

Γn 6=0

2n+1∑
j=1

2n+ 1
Γn

√
2tn + 3
R3

rn

Rtn
V ∧(n, j)g(ι)

0,n,j(R;x) (12.7)

= 1
4π

∞∑
n=1

Γn 6=0

2n+1∑
j=1

2n+ 1
Γn

2tn + 3
R3

rn

Rtn
V ∧(n, j)

(
x

R

)tn
y(ι)
n,j(x̂)

in the sense of L2(BR). Note that the factor rn/Rtn is related to the downward continuation
of the data from the outer region, where, for example, sensors are located, to the inner region,
where f+ is located. Similar results concerning the Spectral Theorem and the representation
of the unique best-approximate solution can be derived for the operator Bf := −∇(T f) for
all f ∈ L2(B%0). First, we define an appropriate function space for the operator range, see
Definition 5.29.

Definition 12.12. The space of all vector outer harmonics of type 1 that are contained in
L2(Bext

r ) is denoted by

Harm
(
Bext
r

)
:=

∞⊕
n=1

harm(1)
n

(
Bext
r

)‖·‖L2(Bext
r )

and equipped with the 〈·, ·〉L2(Bext
r )-inner product. An orthonormal basis for Harm

(
Bext
r

)
is

then given by

sn,j(r; ·) :=
√

2n+ 1
r

h(1)
n,j(r; ·)

for all n ∈ N and j = 1, . . . , 2n+ 1.

Due to the construction of Harm(Bext
r ), it is clear that {sn,j(r; ·)}n∈N,j=1,...,2n+1 forms

an orthonormal basis for Harm(Bext
r ). The normalization factor can be easily calculated.

For this purpose, let n, m ∈ N, j = 1, . . . , 2n+ 1, and k = 1, . . . , 2m+ 1, then〈
h(1)
n,j(r; ·),h(1)

m,k(r; ·)
〉

L2(Bext
r )

=
∫
Bext
r

h(1)
n,j(r;y)h(1)

m,k(r;y) dy

=
∫
Bext
r

rn+m+2

yn+m+4 ỹ
(1)
n,j(ŷ)ỹ(1)

m,k(ŷ) dy

=
∫ ∞
r

rn+m+2

yn+m+2 dy
∫
S
ỹ(1)
n,j(ŷ)ỹ(1)

m,k(ŷ) dω(ŷ)

=
[

−r2n+2

(2n+ 1)y2n+1

]∣∣∣∣∣
∞

y=r
δn,mδj,k

= r

2n+ 1δn,mδj,k.

Having a suitable basis at hand, we can find the SVD of the operator B.
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Chapter 12. Ill-Posedness of the VLI Problem

Theorem 12.13. Let the operator B : L2(BR)→ Harm(Bext
r ), where r > R, be defined by

Bf := −∇(T f) for all f ∈ L2(B%0) with the harmonic VLI operator T from Theorem 12.10.
Then the operator B has the following properties:

i) B is not injective as

(kerB)⊥ = span
{
g(ι)

0,n,j(R; ·)
∣∣∣ n ∈ {n′ ∈ N | Γn′ 6= 0} , j = 1, . . . , 2n+ 1

}
.

ii) The set {g(ι)
0,n,j(R; ·), sn,j(r; ·);λn}n∈{n′∈N|Γn′ 6=0} ,j=1,...,2n+1 is the corresponding singu-

lar system with the singular values

λn := 4πΓn
√

n+ 1
(2n+ 1)2(2tn + 3)

Rtn+3/2

rn+1/2 .

iii) The corresponding Moore-Penrose inverse operator B+ is unbounded.

iv) The closure of the operator range ranB is given by

ranB = span {sn,j(r; ·) | n ∈ {n′ ∈ N | Γn′ 6= 0} , j = 1, . . . , 2n+ 1}.

v) For given V ∈ ranB, Picard’s criterion is given by

∞∑
n=1

Γn 6=0

2n+1∑
j=1

λ−2
n

∣∣∣∣〈V , s(1)
n,j(r; ·)

〉
Harm(Bext

r )

∣∣∣∣2 <∞.

vi) The unique best-approximate solution f+ of the inverse problem is for all V ∈ ranB
given by

f+ = 1
4π

∞∑
n=1

Γn 6=0

2n+1∑
j=1

λ−1
n

〈
V , s(1)

n,j(r; ·)
〉

Harm(Bext
r )g

(ι)
0,n,j,(R; ·).

Proof. From Theorem 8.4, we get the expansion

Bf = 4π
∞∑
n=1

2n+1∑
j=1

Γn
√

n+ 1
(2n+ 1)(2tn + 3)f

∧(ι, 0, n, j)R
tn+3/2

rn+1 h(1)
n,j(r; ·). (12.8)

i) Due to the construction of B, we immediately obtain {0} 6= ker T ⊂ kerB. Eq. (12.8)
provide us with the representation of the operator null space.

ii) The SVD and the singular values are a direct consequence of the representation in
Eq. (12.8) and the choice of the orthonormal basis. The singular values are obviously
non-zero numbers with limn→∞ λn = 0.

iii) The unboundedness of the Moore-Penrose inverse operator follows immediately from
the SVD and the asymptotic behaviour of the singular values, which converge to zero
as n→∞.
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12.2. Harmonic VLI Problem

iv) This is an immediate consequence of the SVD and the fact that ranB = (kerB∗)⊥.

v) Inserting the SVD in Theorem 11.13, we get the desired result.

vi) The representation of the unique best-approximate solution can be achieved by using
Theorem 11.12 in combination with the SVD.

In Theorem 8.4, the absolute and uniform convergence of the series in Eq. (12.8) is proved.
However, we are able to extend the operator onto SR, where the series converges in the
L2(SR)-sense after all.

Theorem 12.14. Let f ∈ L2(BR) and let the coefficients Γn fulfil

|Γn| ≤ c
√

(2n+ 1)(2tn + 3)
n+ 1

for an arbitrary c ∈ R+
0 and for all n ∈ N. Then (Bf)|SR ∈ L2(SR).

Proof. Via the definition of the vector outer harmonics, see Definition 5.27, we get

1
rn+1h

(1)
n,j(r;y) = 1

Rn+1h
(1)
n,j(R;y)

and h(1)
n,j(R; ·)|SR = 1

R ỹ
(1)
n,j for all n ∈ N and j = 1, . . . , 2n+ 1. Thus,

(Bf)|SR =

4π
∞∑
n=1

2n+1∑
j=1

Γn
√

n+ 1
(2n+ 1)(2tn + 3)f

∧(ι, 0, n, j)R
tn+3/2

rn+1 h(1)
n,j(r; ·)

∣∣∣∣∣∣
SR

L2(SR)= 4π
∞∑
n=1

2n+1∑
j=1

Γn
√

n+ 1
(2n+ 1)(2tn + 3)f

∧(ι, 0, n, j)Rtn−n+1/2 1
R
ỹ(1)
n,j(ŷ).

For the L2(SR)-norm, using a property of Parseval’s identity, see [198, Thm. 12.6], and the
fact that {R−1ỹ(i)

n,j}i=1,2,3,n∈N0i ,j=1,...,2n+1 is an orthonormal basis in L2(SR), we get the
identity

‖(Bf)|SR‖2L2(SR) = 16π2
∞∑
n=1

2n+1∑
j=1

Γ2
n

n+ 1
(2n+ 1)(2tn + 3)

(
f∧(ι, 0, n, j)

)2
R2tn−2n+1

≤ 16π2R

(
sup
n∈N

Rtn−n
)2 ∞∑

n=1

2n+1∑
j=1

Γ2
n

n+ 1
(2n+ 1)(2tn + 3)

(
f∧(ι, 0, n, j)

)2
≤ 16π2c2R

(
sup
n∈N

Rtn−n
)2 ∞∑

n=1

2n+1∑
j=1

(
f∧(ι, 0, n, j)

)2
≤ 16π2c2R

(
sup
n∈N

Rtn−n
)2

‖f‖2L2(BR) <∞.
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Chapter 12. Ill-Posedness of the VLI Problem

12.3. Uniqueness Constraints for the Continuous VLI
Problem

In Section 12.1, we prove that the continuous/star-shaped VLI operator has an infinite-
dimensional null space and formulate its expansion via an orthonormal basis. Indeed, the
null space also remains infinite-dimensional in the case of the harmonic VLI problem or the
scalar-valued analogues considered in Part IV. SVDs of the mentioned integral operators are
stated, which lead to the unique best-approximate solution by means of the Moore-Penrose
inverse operator. However, the best-approximate solution may not be the realistic density of
the problem. In certain applications, structures of the density are known a-priori that may
not be covered by the best-approximate solution. For instance, in Example 7.6, the sought
density has its support only inside a spherical shell.
In this section, we want to achieve a unique solution of the inverse problem by means of

additional constraints. Therefore, a solution of the inverse problem V = T f needs to exist.
Thus, we formulate the next proposition valid for this entire section.

Assumption 12.15. Let T be the vector continuous/star-shaped VLI operator and let the
outer space be given by Gout := Bext

r with r > R := supx∈Gin x. We assume that the potential
V = T f with density f ∈ L2(Gin)

i) restricted to Sr is an L2(Sr)-function,

ii) is harmonic in the outer space, that is ∆V = 0 in Gout,

iii) is regular at infinity, and

iv) satisfies Picard’s criterion.

From Theorem 7.26 and Corollary 7.19, two expansions of the potential are known if the
inner region is given by a ball with radius R; they are

(T f)(y) = 4π
∞∑
n=0ι

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3f
∧(ι, 0, n, j)γn(y)Yn,j(ŷ)

= 4π
∞∑
n=0ι

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (ι)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ).

The spherical harmonics {Yn,j}n∈N0ι ,j=1,...,2n+1 are a set of linearly independent functions.
Hence, the harmonicity constraint on V from Assumption 12.15 can only be fulfilled if for
each n ∈ N0ι , j = 1, . . . , 2n+ 1 the function y 7→ γn(y)Yn,j(ŷ) with y ∈ Gout is a harmonic
function. However, only the inner and outer harmonics can satisfy this requirement. In
addition, V needs to be regular at infinity. We arrive for all n ∈ N0ι at

γn(y) := Γn
yn+1 for all y ∈ Gout

with some sequence {Γn}n∈N0ι ⊂ R. Due to convergence requirements, we need a polynomial
growth condition (n 7→ |Γn|) ∈ O(nM ) for fixed M ∈ N0. This condition is similar to the one
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12.3. Uniqueness Constraints for the Continuous VLI Problem

for the harmonic VLI kernel. On the other hand, V solves the exterior Dirichlet problem,
see Corollary 8.10. It has, hence, the expansion

V =
∞∑
n=0

2n+1∑
j=1

V ∧(n, j)Hext
n,j (r; ·)

in Gout with the abbreviation V ∧(n, j) := 〈V |Sr , r−1Yn,j〉L2(Sr). The coefficients satisfy

V ∧(n, j) = 4π Γn
(2n+ 1)

√
2tn + 3

Rtn+3/2

rn
f∧(ι, 0, n, j), (12.9a)

V ∧(n, j) = 4π Γn
2n+ 1

1
rn

∫ R

0
f (ι)
n,j(x)xtn+2 dx (12.9b)

for all n ∈ N0ι , j = 1, . . . , 2n+ 1 and V ∧(0, 1) = 0 in the case of ι = 2, 3. Vice versa, the
density can be represented by means of the Fourier expansion, that is

f(x) L2(BR)=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

f (i)
n,j(x)y(i)

n,j(x̂) (12.10a)

L2(BR)=
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

f∧(i,m, n, j)g(i)
m,n,j(R;x). (12.10b)

Via Eq. (12.9), only information for i = ι can be obtained. Additional knowledge is required
for the remaining two directions of the density f . To this end, assumptions on the directional
part of the function f are necessary. This will be discussed in Section 12.3.2. On the other
hand, only information for m = 0 is obtained by Eq. (12.9). Therefore, additional uniqueness
constraints for the radial part of f are required.

12.3.1. Radial Uniqueness Constraints

In order to apply radial uniqueness constraints to the problem, we decompose the density
into a radial and an angular part. The angular part is represented by (vector) spherical
harmonics, see Eq. (12.10) or Eq. (14.7). Depending on ι ∈ {1, 2, 3} given by the underlying
problem, the function f (ι)

n,j is only given for n ≥ 0ι. In order to cover both cases for 0ι with
one notation, we introduce the function Dn,j ∈ Lw2 ([0, R]), where w(x) := x2, which is defined
for all n ∈ N0, j = 1, . . . , 2n+ 1 by

Dn,j :=
{
f (ι)
n,j in the vector-valued case for all n ∈ N0ι , j = 1, . . . , 2n+ 1,

0 in the vector-valued case for all i = 2, 3 and (n, j) = (0, 1).
(12.11)

The introduction of this abbreviation has also an other background. In a forthcoming part
of this thesis, we will analyze an integral equation related to the continuous/star-shaped VLI
equation consisting of a scalar-valued density and scalar-valued integral kernel. Then, by
choosing the function Dn,j for all n ∈ N0, j = 1, . . . , 2n + 1 appropriately, the additional
uniqueness constraints from this section can be immediately applied to the scalar-valued
case.
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Chapter 12. Ill-Posedness of the VLI Problem

With the introduced notation, the outer harmonics coefficients of the potential V are
eventually given by

V ∧(n, j) = 4π Γn
2n+ 1

1
rn

∫ R

0
Dn,j(x)xtn+2 dx, (12.12)

where the angular part does not occur. The remaining integral provides us with the part of
Dn,j that is parallel to Q(tn+1/2)

0 (R, ·) since∫ R

0
Dn,j(x)xtn+2 dx =

√
2tn + 3
R2tn+3

〈
Dn,j , Q

(tn+1/2)
0 (R, ·)

〉
Lw2 ([0,R])

.

See the proof of Lemma 7.24 for more details. However, by means of additional radial
uniqueness constraints, we are able to transfer information from the part of Dn,j that is
parallel to Q(tn+1/2)

0 (R, ·) to the orthogonal part. The application of this approach to the
scalar-valued case has already been published by the author in [147, 162].
The occurring radial uniqueness constraints are often motivated by structure-related

constraints. For example, it could be known a-priori that a density or a density deviation
only occurs in a particular layer (spherical shell) of the underlying body BR. Then, it would
be appropriate to assume that this density (deviation) has its support inside this layer. This
directly leads to the layer density constraint, which is a radial uniqueness constraint and is
presented in Example 12.17. However, we first state the general setting.

Lemma 12.16. Let each function Dn,j ∈ Lw2 ([0, R]) with the weight function w(x) := x2 be
a multiple of an Lw2 ([0, R])-function Bn,j, that is

Dn,j := dn,jBn,j ,

with real coefficients dn,j ∈ R for all n ∈ N0, j = 1, . . . , 2n+ 1. Then

V ∧(n, j) = 4πΓndn,j
2n+ 1

1
rn

∫ R

0
Bn,j(x)xtn+2 dx.

The function Dn,j can be represented for almost all x ∈ [0, R] by

Dn,j(x) = 1
4π

2n+ 1
Γn

rnV ∧(n, j)
(∫ R

0
Bn,j(x)xtn+2 dx

)−1

Bn,j(x)

if Bn,j is not Lw2 ([0, R])-orthogonal to Q(tn+1/2)
0 (R, ·).

We obtain a unique representation for f (ι)
n,j and a unique representation for f if the density

with the minimum norm fulfilling Lemma 12.16 is sought. This implies f (i)
n,j = 0 for i 6= ι and

for all n ∈ N0i , j = 1, . . . , 2n+ 1.

Proof. Inserting the identity Dn,j = dn,jBn,j into Eq. (12.12), we get

V ∧(n, j) = 4π Γn
2n+ 1

1
rn

∫ R

0
Bn,j(x)xtn+2 dxdn,j .

Solving this equation for dn,j , we obtain the desired representation for Dn,j .
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A more detailed proof of this lemma for particular functions Bn,j can be found in [162].
In the scalar-valued case, see [147, 161, 162], this approach is used to obtain the harmonic
solution, the quasi-harmonic solution, that is ∆x(F (x)x−p) ≡ 0 for p ∈ R+

0 , a generalization
of the harmonic solution, and a layer-density. These are summarized in the next example.

Example 12.17. A few examples of additional radial uniqueness constraints are listed in
Table 12.1, which is also valid for the scalar-valued case if N0ι is understood as N0.

Constraint Bn,j(x) Conditions Integral

Generalized
Harmon-
icity

:= xκn

Rκn+1 infn∈N0ι κn > −3
2

∫ R
0 Bn,j(x)xtn+2 dx = Rtn+2

κn+tn+3

Minimum
Norm

:= xtn

Rtn+1 infn∈N0ι tn > −1
∫ R
0 Bn,j(x)xtn+2 dx = Rtn+2

2tn+3

Layer Dens-
ity

:= χ[τ,τ+δ](x) τ, τ + δ ∈ [0, R],
δ > 0

∫ R
0 Bn,j(x)xtn+2 dx = (τ+δ)tn+3−τ tn+3

tn+3

Table 12.1: Several radial uniqueness constraints, which only need to hold in the Lw2 ([0, R])-
sense, and their resulting integrals. Note that χ denotes the indicator function, that is
χA(x) = 0 if x 6∈ A and χA(x) = 1 if x ∈ A.

In the case of the generalized harmonicity constraint, the functions Bn,j and, hence, Dn,j

have a singularity at the origin for negative values of κn and at least a discontinuity in the case
of κn = 0. However, in the sense of Lw2 ([0, R]) this is not a problem if infn∈N0 κn > −3/2.

The name of the generalized harmonicity constraint is attributed to the scalar-valued case.
Here, for κn := n for all n ∈ N0, we obtain

F (x) L2(BR)=
∞∑
n=0

2n+1∑
j=1

dn,j
xn

Rn+1Yn,j(x̂),

which is harmonic due to properties of the inner harmonics. In the vector-valued case, the
harmonicity is only obtained for ι = 3, since only these Morse-Feshbach vector spherical
harmonics are eigenfunctions of the Beltrami operator, see Corollary 5.16. The quasi-
harmonic solution in the scalar case is obtained for κn = n + p with fixed p ∈ R+

0 , which
is the background for its name. Here, ∆x(F (x)x−p) ≡ 0 and for p = 0 the density F is
assumed to be harmonic. However, this condition is not sufficient for the harmonicity of a
vector-valued density. This particular case is discussed in more detail in the next section.

The minimum norm condition is closely related to the best-approximate solution. In this
context, we assume that the sought density has the smallest norm among all densities fulfilling
Eq. (12.12). In [161], a descriptively proof for the connection between the minimum norm
condition and the particular radial uniqueness constraint in Table 12.1 is stated.

In addition, a surface density condition is presented in [147], which has its origin in
the scalar inverse gravimetric problem. Therein, time-variable fields with relatively short
time-scales have their main variation on the Earth’s surface or relatively small layers close
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Chapter 12. Ill-Posedness of the VLI Problem

to the Earth’s surface. So far, the volumetric density F of the inverse problem has been
considered. The shift from a volumetric density to a surface density is not as straightforward
as the previous radial uniqueness constraints. For this purpose, the integral equation of
interest has to be understood in a distributional sense. The regular distribution induced by
the density is replaced by a singular distribution similar to the well-known Delta distribution,
that is

(FδSR)ψ := 〈F,ψ〉L2(SR)

for all test functions ψ. Then, again a formula for the coefficients V ∧(n, j) can be found.
However, this approach does not fit perfectly to the context of the VLI equation and has no
relevance for the magneto-electroencephalography problem as our main application. Therefore,
it is not presented here in detail. For more information, see the author’s publication [147].

12.3.2. Directional Uniqueness Constraints

In this section, we concentrate on directional uniqueness constraints. Using knowledge of the
harmonic VLI operator, we obtain

V ∧(n, j) = 4π Γn
2n+ 1

1
rn

∫ R

0
f (ι)
n,j(x)xtn+2 dx

for all n ∈ N0ι , j = 1, . . . , 2n+ 1 via the Fourier expansion of f in Eq. (12.10). Due to the
structure of the continuous/star-shaped VLI kernel, we are only able to obtain information
for f (i)

n,j in the case of i = ι. The other two directions are in the null space of the operator.
Via the minimum norm condition, which yields the best-approximate solution, we can always
achieve a unique solution f+. Then f+ is only non-zero in the direction of i = ι.
By means of additional directional uniqueness constraints, we are, in certain cases, able

to transfer the information obtained for i = ι to other directions. By additional directional
uniqueness constraints we understand assumptions like f is a solenoidal (∇ · f = 0) or
irrotational (∇ ∧ f = 0) vector field if f is sufficiently often differentiable inside BR.
However, these additional directional uniqueness constraints alone do not yield a unique

solution. Since not all parts of f (ι)
n,j(x) for n ∈ N0ι , j = 1, . . . , 2n + 1 can be obtained

by the stated Fourier coefficients relation in Eq. (12.12), we always need additional radial
uniqueness constraints. For the sake of simplicity, we choose the minimum norm condition
as the additional radial uniqueness constraint for all directional constraints. However, it is
possible to replace this constraint with every constraint in Table 12.1 and others.

Theorem 12.18 (Solenoidal). Let the density f ∈ L2(BR) be sufficiently smooth and let
the gradient be interchangeable with the series in Eq. (12.10). Then we can compute a unique
minimum norm solenoidal density fulfilling T f = V .

Proof. First, we observe for each n ∈ N, j = 1, . . . , 2n+ 1 that

0 =∇x ·
( 3∑
i=1

f (i)
n,j(x)y(i)

n,j(x̂)
)

=
3∑
i=1

(
df (i)

n,j(x)
dx x̂ · y(i)

n,j(x̂) +
f (i)
n,j(x)
x
∇∗x̂ · y(i)

n,j(x̂)
)
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=
df (1)

n,j(x)
dx x̂ · y(1)

n,j(x̂) +
2∑
i=1

(
f (i)
n,j(x)
x
∇∗x̂ · y(i)

n,j(x̂)
)

=
(

df (1)
n,j(x)
dx +

2f (1)
n,j(x)
x

−
√
n(n+ 1)f (2)

n,j(x)
x

)
Yn,j(x̂). (12.13)

Here, we used the representation of the gradient in spherical coordinates, see Theorem 2.14,
the orthogonality relation from Eq. (2.6), and the definition of the Morse-Feshbach vector
spherical harmonics in Eq. (5.1). Due to the density being divergence-free, we obtain a relation
between the direction corresponding to the type i = 1 and the direction corresponding to
i = 2, see Eq. (12.13). From the divergence-free condition, we obtain for n = 0 the additional
equation

df (1)
0,1(x)
dx +

2f (1)
0,1(x)
x

= 0, x ∈ (0, R].

This first-order homogeneous differential equation has, with a coefficient c(1)
0,1 ∈ R, the solution

f (1)
0,1(x) =

c(1)
0,1
x2 , x ∈ [0, R].

From the condition f ∈ L2(BR), Fubini’s Theorem, and the Jacobian determinant, we get
f (1)

0,1 ∈ Lw2 ([0, R]) with w(x) := x2. Thus, c(1)
0,1 = 0.

Now, let ι = 1 be given. Then, f (1)
n,j is completely known by T f = V and the minimum

norm condition. Thus, we solve Eq. (12.13) for the unconstrained direction f (2)
n,j . This leads

for all n ∈ N, j = 1, . . . , 2n+ 1 to the relation

f (2)
n,j(x) = 1√

n(n+ 1)

(
x

df (1)
n,j(x)
dx + 2f (1)

n,j(x)
)
. (12.14)

Eventually, if the normal vector field part of f is known, we are able to calculate the functions
f (2)
n,j , which represent one tangential direction of f , from the knowledge of f (1)

n,j via Eq. (12.14).
Vice versa, for given ι = 2, we obtain from Eq. (12.13) a first-order linear ordinary

differential equation for the normal direction of the density. Solving this equation for f (1)
n,j ,

we obtain, with some coefficients c(2)
n,j ∈ R, for all n ∈ N, j = 1, . . . , 2n+ 1 the solution

f (1)
n,j(x) =

c(2)
n,j

x2 +
√
n(n+ 1)
x2

∫ x

0
tf (2)
n,j(t) dt. (12.15)

Due to the minimum norm assumption and T f = V , we already know that

f (2)
n,j(x) = c(3)

n,j

xtn

Rtn+1 , x ∈ [0, R],

with infn∈N0ι ,Γn 6=0 tn > −1 and some constants c(3)
n,j ∈ R for all n ∈ N, j = 1, . . . , 2n + 1,

see Table 12.1. With this representation and a lengthy calculation, we can prove that the
function f (1)

n,j from Eq. (12.15) satisfies f (1)
n,j ∈ Lw2 ([0, R]) if and only if c(2)

n,j = 0 for all n ∈ N,
j = 1, . . . , 2n + 1. Hence, under the assumption that f is the solution of T f = V , that
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is solenoidal with the smallest L2(BR)-norm, the functions f (1)
n,j and f

(2)
n,j are for all n ∈ N,

j = 1, . . . , 2n+ 1 related by

f (1)
n,j(x) =

√
n(n+ 1)
x2

∫ x

0
tf (2)
n,j(t) dt. (12.16)

In the case of ι = 3, we directly obtain the minimum norm solution since the solenoidal
condition does not affect this direction of the density, see Eq. (12.13).

As an immediate consequence, we obtain a comparable result under the assumption that
the vector field f is surface divergence-free, that is ∇∗ · f = 0.

Corollary 12.19 (Surface Divergence-free). Let the density f ∈ L2(BR) be sufficiently
smooth and let the surface gradient be interchangeable with the series in Eq. (12.10). Then
we can compute a unique minimum norm surface divergence-free density.

Proof. The proof is similar to the previous one. Therefore, we only concentrate on the
differences. Again, under the assumption that the differential operator can be interchanged
with the series, we get

0 =∇∗x̂ ·
( 3∑
i=1

f (i)
n,j(x)y(i)

n,j(x̂)
)

=
(

2f (1)
n,j(x)−

√
n(n+ 1)f (2)

n,j(x)
)
Yn,j(x̂).

Hence, we obtain a one-to-one relation between f (1)
n,j and f

(2)
n,j given by

f (1)
n,j =

√
n(n+ 1)

2 f (2)
n,j (12.17)

for all n ∈ N, j = 1, . . . , 2n+ 1 and f (1)
0,1 = 0.

Another tangential differential operator that occurs in the context of vector spherical
harmonics is the L∗ operator. Thus, the additional directional constraint discussed next is
L∗ · f = 0.

Lemma 12.20 (Surface Curl-free). Let the density f ∈ L2(BR) be sufficiently smooth
and let the surface curl be interchangeable with the series in Eq. (12.10). Suppose that
L∗ · f = 0. Then the functions f (3)

n,j vanish for all n ∈ N, j = 1, . . . , 2n + 1 in the cases
ι ∈ {1, 2} and in the case of ι = 3 the problem T f = V does not have a solution.

Proof. Again, under the assumption that the surface curl gradient interchanges with the
series, we obtain with Eqs. (2.4) and (2.6) and Theorem 2.16 that

0 = L∗x̂ ·
( 3∑
i=1

f (i)
n,j(x)y(i)

n,j(x̂)
)

=
3∑
i=1

(
f (i)
n,j(x)L∗x̂ · y(i)

n,j(x̂)
)

= f (3)
n,j(x)L∗x̂ · y(3)

n,j(x̂)

= −
√
n(n+ 1)f (3)

n,j(x)Yn,j(x̂) (12.18)
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for all n ∈ N, j = 1, . . . , 2n+1. Consequently, f (3)
n,j vanishes independent of the former results.

In addition, we neither gain further conditions on f (1)
n,j nor on f

(2)
n,j .

In contrast, by means of the classical curl operator, we can obtain more information on
the density. This is shown in the next theorem for an irrotational, or curl-free, vector field f .

Theorem 12.21 (Irrotational). Let the density f ∈ L2(BR) be sufficiently smooth and
let the curl operator be interchangeable with the series in Eq. (12.10). Then we can obtain
further information of the irrotational density if ι ∈ {1, 2} .

Proof. Due to the allowed interchanging, we obtain by means of Eq. (2.6) and Lemmas 2.17
to 2.19 that

0 =∇x ∧
( 3∑
i=1

f (i)
n,j(x)y(i)

n,j(x̂)
)

=
3∑
i=1

(
∇x ∧

(
f (i)
n,j(x)y(i)

n,j(x̂)
))

=
2∑
i=1

(
df (i)

n,j(x)
dx x̂ ∧ y(i)

n,j(x̂) +
f (i)
n,j(x)
x
∇∗x̂ ∧ y(i)

n,j(x̂)
)

+ 1√
n(n+ 1)

∇x ∧L∗x̂
(
f (3)
n,j(x)Yn,j(x̂)

)
=
(

df (2)
n,j(x)
dx −

√
n(n+ 1)

f (1)
n,j(x)
x

+
f (2)
n,j(x)
x

)
y(3)
n,j(x̂)

−
√
n(n+ 1)
x

f (3)
n,j(x)y(1)

n,j(x̂)−
(
f (3)
n,j(x)
x

+
df (3)

n,j(x)
dx

)
y(2)
n,j(x̂).

Hence, we get for all n ∈ N, j = 1, . . . , 2n+ 1, and x ∈ (0, R] the equations

f (3)
n,j(x) ≡ 0, (12.19a)

f (1)
n,j(x) = 1√

n(n+ 1)

(
x

df (2)
n,j(x)
dx + f (2)

n,j(x)
)

(12.19b)

⇔ f (2)
n,j(x) =

c(3)
n,j

x
+
√
n(n+ 1)
x

∫ x

0
f (1)
n,j(t) dt, (12.19c)

where the constant c(3)
n,j ∈ R needs to be determined by further conditions for all n ∈ N,

j = 1, . . . , 2n + 1. For example, from the continuity of f (1)
n,j at the origin, we immediately

obtain c(3)
n,j = 0 for all n ∈ N, j = 1, . . . , 2n+ 1.

The last presented additional uniqueness constraint for the vector-valued case is neither
a pure radial nor a pure directional uniqueness constraint. In the case of a scalar-valued
density F and the problem SF = V , we have already seen that the harmonicity constraint
for the density reduces to a solely radial constraint, see Example 12.17. This fact is based on
the chosen basis system for the analysis of the forward operator and Eq. (12.12). However,
an additional radial uniqueness constraint alone cannot be enough for the vector-valued
density to be harmonic since the Morse-Feshbach vector spherical harmonics of type i = 1, 2
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are not eigenfunctions of the vectorial Beltrami operator, see Corollary 5.16. In contrast, in
Lemma 5.40 a characterization of the harmonic functions in L2(BR) is given. Now, we discuss
in detail the harmonicity constraint, that is ∆f = 0, for sufficiently smooth f ∈ L2(BR).
The Morse-Feshbach vector spherical harmonics of type i = 3 coincide with the Edmonds
vector spherical harmonics, which are indeed eigenfunctions of the vectorial Beltrami operator.
From the proof of Lemma 5.40, we immediately obtain by means of the fundamental system
that

f (3)
n,j(x) = c(5)

n,jx
−(n+1) + d(5)

n,jx
n,

where c(5)
n,j , d

(5)
n,j ∈ R for all n ∈ N, j = 1, . . . , 2n+ 1. Since f (3)

n,j ∈ Lw2 ([0, R]), we get c(5)
n,j = 0

for all n ∈ N, j = 1, . . . , 2n+ 1. The other coefficients remain to be determined.
Now, let ι = 3 be given and let the density f be harmonic. Then the coefficients
{d(5)

n,j}n∈N,j=1,...,2n+1 of f (3)
n,j , which is given by

f (3)
n,j(x) = d(5)

n,jx
n, (12.20)

are uniquely determined by Eq. (12.12). However, with this approach we are not able to
gain more information about the remaining two directions of the current. Therefore, the
minimum norm condition is additionally required to obtain a unique harmonic solution of
the problem T f = V .

For ι = 1, 2, we can uniquely determine the respective other direction from the information
on f (ι)

n,j obtained from Eq. (12.12). Since the Morse-Feshbach vector spherical harmonics of
type i 6= 3 are not eigenfunctions of the Beltrami operator, we convert the corresponding
density expansion into an expansion based on the Edmonds vector spherical harmonics.
From the proof of Lemma 5.40, a fundamental system for the vector-valued Laplacian is
known, that is {xn+1, x−(n+2)} for i = 1 and {xn−1, x−n} for i = 2. Since the final functions
have to be elements of Lw2 ([0, R]), we can reduce the possible ansatz functions to certain
linear combinations of the fundamental system. For all n ∈ N0, only xn+1 remains for i = 1,
whereas for i = 2 we have xn−1 for n > 1 and {1, x−1} for n = 1. In addition, the function
x 7→ ỹ(2)

n,j(x̂) is only continuous if the angular part is constant, which is not the case for all
n ∈ N, see Eq. (5.4b). The functions x 7→ x−1ỹ(2)

n,j(x̂) are never continuous at the origin.
Thus, the candidates further reduce to xn−1 for i = 2 with n > 1.

It is now the aim to combine the two directions f (1)
n,j(x) and f (2)

n,j(x) in such a way that the
corresponding part of the density f is parallel to an Edmonds vector spherical harmonic for
almost all x ∈ [0, R]. Based on Eq. (5.4), we have two opportunities to combine these two
functions. We first choose for all n ∈ N, j = 1, . . . , 2n+ 1 the relation

f (2)
n,j = −

√
n

n+ 1f
(1)
n,j . (12.21)

Then we get for all n ∈ N, j = 1, . . . , 2n+ 1 the identity

f (2)
n,j(x)y(2)

n,j(x̂) + f (1)
n,j(x)y(1)

n,j(x̂)

= −
√

n

n+ 1f
(1)
n,j(x)y(2)

n,j(x̂) + f (1)
n,j(x)y(1)

n,j(x̂)

=
√

2n+ 1
n+ 1 f

(1)
n,j(x)

(
−
√

n

2n+ 1y
(2)
n,j(x̂) +

√
n+ 1
2n+ 1y

(1)
n,j(x̂)

)
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=
√

2n+ 1
n+ 1 f

(1)
n,j(x)ỹ(1)

n,j(x̂),

where we used Eq. (5.4) in the last step. Based on the preliminary considerations, we
obtain a unique condition for the harmonicity of the right-hand side of the latter equation.
This condition is given for all n ∈ N0 and x ∈ [0, R] by f (1)

n,j(x) = c(5)
n,jx

n+1. The remaining
coefficients {c(5)

n,j}n∈N0,j=1,...,2n+1 are uniquely determined by Eq. (12.12).
On the other hand, there exist a second approach to combine Morse-Feshbach vector

spherical harmonics of type i = 1, 2 to Edmonds vector spherical harmonics. Thus, we choose
for all n ∈ N, j = 1, . . . , 2n+ 1 the relation

f (2)
n,j =

√
n+ 1
n

f (1)
n,j . (12.22)

Then we get for all n ∈ N, j = 1, . . . , 2n+ 1 the identity

f (2)
n,j(x)y(2)

n,j(x̂) + f (1)
n,j(x)y(1)

n,j(x̂)

=
√
n+ 1
n

f (1)
n,j(x)y(2)

n,j(x̂) + f (1)
n,j(x)y(1)

n,j(x̂)

=
√

2n+ 1
n

f (1)
n,j(x)

(√
n+ 1
2n+ 1y

(2)
n,j(x̂) +

√
n

2n+ 1y
(1)
n,j(x̂)

)

=
√

2n+ 1
n

f (1)
n,j(x)ỹ(2)

n,j(x̂),

where again we used Eq. (5.4) in the last step. According to the fundamental system, we
need to choose the function f (1)

n,j(x) = d(5)
n,jx

n−1 for all n ∈ N with n > 1 and x ∈ [0, R] to
obtain harmonicity. Here, the coefficients d(5)

n,j are for all n ∈ N, j = 1, . . . , 2n+ 1 uniquely
determined by Eq. (12.12). This preliminary considerations are summarized in the next
theorem.

Theorem 12.22. Let the continuous/star-shaped VLI operator for ι be given. Let for all
n ∈ N0ι, j = 1, . . . , 2n+ 1 the radial assumptions

f (ι)
n,j(x) = dn,j



xn−1 if ι = 1, or
xn+1 if ι = 1,
xn−1 if ι = 2, or
xn+1 if ι = 2,
xn if ι = 3

be satisfied, where we set dn,j = 0 in the case of xn−1 for n = 1 and ι ∈ {1, 2} . If f is
assumed to be harmonic with minimum norm, then f ∈ L2(BR) is uniquely determined by
the potential.

Proof. We start with the case ι = 3. Then, by means of the radial assumption, each function
x 7→ f (3)

n,j(x)y(3)
n,j(x̂) is harmonic, see Lemma 5.40. The coefficients {dn,j}n∈N0ι ,j=1,...,2n+1

are uniquely determined by Eq. (12.12). Due to the minimum norm assumption and the
L2(BR)-orthogonality of the vector spherical harmonics, we obtain f (1)

n,j = f (2)
n,j = 0 for all

n ∈ N0i , j = 1, . . . , 2n+ 1 and, hence, a unique solution of the inverse problem T f = V .
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Consider the case ι = 1. Then for both stated radial uniqueness constraints, we obtain a
unique representation for the direction corresponding to the Morse-Feshbach vector spherical
harmonics of type ι, that is f (1)

n,j , by means of Lemma 12.16 or Eq. (12.12). If the radial
constraint f (ι)

n,j(x) = dn,jx
n−1 is given, we immediately obtain a unique representation of

f (2)
n,j using Eq. (12.22) such that f is harmonic. On the other hand, if the radial constraint
f (ι)
n,j(x) = dn,jx

n+1 is used, we can calculate f (2)
n,j by Eq. (12.21) in order to achieve a

harmonic density. The additional minimum norm condition yields f (3)
n,j = 0 for all n ∈ N,

j = 1, . . . , 2n+ 1.
Finally, the proof for ι = 2 is the same as the one for ι = 1 with permuted roles of i = 1

and i = 2.

The results achieved within this section are summarized in Table 12.2. Therein, based on
the chosen additional directional uniqueness constraint and the parameter ι corresponding to
the operator T , the directions of the density that are affected by the uniqueness constraints
are listed. For example, if ι = 1 is given by the underlying problem and the current is
assumed to be solenoidal then f (2)

n,j can be calculated from knowledge of f (1)
n,j and their relation

is stated in Eq. (12.16).

Condition ι = 1 ι = 2 ι = 3

∇ · f = 0 f (2)
n,j , Eq. (12.14) f (1)

n,j , Eq. (12.16) –

∇∗ · f = 0 f (2)
n,j , Eq. (12.17) f (1)

n,j , Eq. (12.17) –

L∗ · f = 0 f (3)
n,j = 0, Eq. (12.18) f (3)

n,j = 0, Eq. (12.18) f (3)
n,j = 0, Eq. (12.18)

∇ ∧ f = 0 f (2)
n,j , Eq. (12.19c) f (1)

n,j , Eq. (12.19b) f (3)
n,j = 0 Eq. (12.19a)

f (3)
n,j = 0 Eq. (12.19a) f (3)

n,j = 0 Eq. (12.19a)

∆f = 0 f (2)
n,j , Eq. (12.21) f (1)

n,j , Eq. (12.22)

f (3)
n,j = 0 f (3)

n,j = 0 f (3)
n,j , Eq. (12.20)

Table 12.2: Computable radial functions for given f (ι)
n,j under the respective directional

condition
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Chapter 13.

Inverse Magneto-electroencephalography Problem

In the case of the multiple-shell model, where L is the number of shells, we derive a harmonic
VLI operator for the MEG problem in Chapter 9 as well as a linear combination of continuous
VLI operators for the EEG problem in Chapter 10. Recall that components of the magnetic
field B, such as the magnetic flux density, can be measured by the magnetoencephalograph
outside the head B%L . In addition, electroencephalography electrodes can measure electric
potential differences uL on the scalp. Now, we combine these two problems in order to gain
more information about the neuronal current JP inside the brain B%0 . The corresponding
integral equations are given by

uL(y) =
∫
B%0
JP(x) · kE(x,y) dx, y ∈ S[%L−1,%L],

U(y) =
∫
B%0
JP(x) · kM(x,y) dx, y ∈ Bext

%L
,

B(y) = µ0∇y

(∫
B%0
JP(x) · kM(x,y) dx

)
, y ∈ Bext

%L
.

The precise problems are formulated in Problems 9.1 and 10.2.
We have already analyzed the well-definedness of the two direct problems related to these

integral equations by means of the continuous/star-shaped VLI operator. This includes the
integrability of the integrand and the evaluation of the resulting functions at the sensor
positions. Since a reconstruction of the neuronal current JP is desired, the corresponding
inverse problems are considered. Due to the compactness of the occurring integral operators,
see Theorem 12.1, we already know that these inverse problems are ill-posed. For the first time
this has been realized for general bioelectromagnetic inverse problems in living conductors in
[119]. Therefore, it is sometimes called the Helmholtz principle, see [115]. Since then it has
been extensively discussed in the literature, see [38, 40–42, 44–48, 50, 51, 53, 55, 71–73, 75, 181].
Therein, by means of an inversion of the electric potential or the magnetic field, certain
parts of the neuronal current are reconstructed. The neuronal current itself is assumed to
be a collection of dipoles or a continuous dipole distribution. In [47], a survey over the
non-uniqueness is given. In general, the neuronal current is decomposed into a variety of
ways in order to achieve these results. An overview of these decompositions in comparison to
the Edmonds approach pursued in this thesis is given in Chapter 15.

An often pursued approach is a separation of the neuronal current into an angular and a
radial part. However, we use the Edmonds expansion of the angular part of the neuronal
current, which is new for this problem. This enables a more precise characterization of the
null space of the EEG integral operator and the possibility to combine the results of the
MEG and EEG null space characterizations. Besides a decomposition for the angular part,
we also use a generalized Fourier expansion of the radial part by means of Jacobi polynomials.
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This allows an even more precise characterization of the null spaces of both operators. For
the harmonic VLI operator, a representation of the null space is given in Theorems 12.9
and 12.13. Thereout, two problems concerning the non-uniqueness of the inverse MEG and
EEG problem arise:

(A) Not all directions of the neuronal current can be reconstructed, even if the measured
quantities are completely known;

(B) not all parts of the reconstructable directions can be calculated from the measured
quantities.

In summary, the dimension of the null space is infinite. Besides the non-uniqueness of the
inverse MEG and EEG problem, more challenges for the inversion emerge:

(C) The inversion of the MEG and EEG problem includes a downward continuation, which
makes them severely unstable.

(D) In the real data situation, the continuous fields and potentials cannot be measured as a
whole. Due to the construction of the magneto- and electroencephalograph, only about
170 discrete data points are obtained per measurement time point. This is known as
the lack of data.

(E) The obtained data is noisy. The white noise of the magnetometers and gradiometers
is at most 5 fTHz−1/2 or 5 fT cm−1 Hz−1/2, respectively, in the case of frequencies in
the magnitude of 60 to 70Hz for 96% of the sensors and at most 10 fTHz−1/2 or
10 fT cm−1 Hz−1/2 for all sensors, see [62]. Typical neuromagnetic signals are in the
range 50 to 500 fT, see [108]. A typical adult human EEG signal is about 10 to 50 µV
in amplitude when measured from the scalp, see [10], whereas the root mean square
noise across all EEG sensors is smaller than 0.4 µV, see [62].

(F) Besides technical noise, the measured quantities can be influenced by certain effects,
such as head, eye, jaw, or neck movements, the magnetic fields generated by the heart,
particles attached or implanted to the body, and non-human outer fields and currents,
see [104].

Now, we analyze the ill-posedness in the sense of Hadamard, see Definition 11.1, of the
inverse magneto-electroencephalography problem in detail.

13.1. Non-uniqueness

First, we concentrate on the non-uniqueness of the inverse problem. To this end, we assume
that a solution exists and that the neuronal current fulfils Assumption 3.2 with the multiple-
shell model containing at least two shells. Then we are able to formulate its unique Fourier
series by

JP =
3∑
i=1

∞∑
m=0

∞∑
n=0i

2n+1∑
j=1

J∧[i,m, n, j]g̃(i)
m,n,j(%0; ·), (13.1)

where the occurring vector-valued basis functions are defined in Definition 5.37. They consist
of Edmonds vector spherical harmonics and an orthonormal set of radial basis functions,
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see Definition 5.1. Note that the index i denotes the direction of the current that belongs
to the Edmonds vector spherical harmonics of this type, whereas n is the degree and j
the order of the spherical harmonics. The summation index m belongs to the generalized
Fourier expansion of the radial part. More precisely, with i = 1, 2, 3, m ∈ N0, n ∈ N0i , and
j = 1, . . . , 2n+ 1, we have

g̃(i)
m,n,j(%0;x) := Q(t(i)n +1/2)

m (%0;x)ỹ(i)
n,j(x̂) (13.2)

with

t(i)n :=


n+ 1 if i = 1,
n− 1 if i = 2,
n if i = 3.

(13.3)

Note that the direction corresponding to i = 1 is in the null space of TM as well as in the
null space of TE. However, in order to state a complete orthonormal basis of L2(B%0) and to
expand the neuronal current in Eq. (13.1) we need to determine {t(1)

n }n∈N0 . We chose the
sequence of exponents in such a way that a characterization of the harmonic and anharmonic
orthonormal basis functions based on Lemma 5.40 is possible.
For solving the inverse problems, let us assume that the measured magnetic field B and

the electric potential uL are completely known. Then we get the representations

B(y) =
∞∑
n=0

2n+1∑
j=1

B ∧
%L

(n, j)h(1)
n,j(%L;y),

uL(y) =
∞∑
n=0

2n+1∑
j=1

(
n+ 1
2n+ 1

(
y

%L

)2n+1
+ n

2n+ 1

)(
%L
y

)n
u ∧L (n, j)1

y
Yn,j(ŷ),

where y ∈ Bext
%L

in the case of the magnetic field and y ∈ S[%L−1,%L] in the case of the electric
potential. The expansion coefficients are defined for all n ∈ N0, j = 1, . . . , 2n+ 1 by

B ∧
%L

(n, j) :=
∫
S%L

B(%Lŷ) · h(1)
n,j(%L; %Lŷ) dω(ŷ),

u ∧L (n, j) := 1
%L

∫
S%L

uL(%Lŷ)Yn,j(ŷ) dω(ŷ).

For the neuronal current, we eventually obtain by Theorems 9.4 and 10.3 B ∧
%L

(0, 1) =
u ∧L (0, 1) = 0 and for all n ∈ N, j = 1, . . . , 2n+ 1 the relations

J∧[3, 0, n, j] = − 1
µ0

√
(2n+ 1)(2n+ 3)

n%0

(
%L
%0

)n+1
B ∧
%L

(n, j), (13.4a)

J∧[2, 0, n, j] =
√

n

(2n+ 1)2%0

1
β(L)
n

(
%L
%0

)n
u ∧L (n, j), (13.4b)

where the coefficients β(L)
n are given in Eq. (4.18) for all n ∈ N. Thus, we observe that not

all parts of the neuronal current can be reconstructed, even if the measured quantities are
completely known. Only the part of the neuronal current that belongs to the Edmonds
vector spherical harmonics of type 2 and the toroidal part belonging to the Edmonds vector
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spherical harmonics of type 3 are related to the measured quantities. The portion of the
neuronal current that belongs to the Edmonds vector spherical harmonics of type 1 can
neither be reconstructed from MEG nor EEG data. A comparable result is stated in [47],
wherein a decomposition by means of Morse-Feshbach vector spherical harmonics is used. The
advantage of Edmonds vector spherical harmonics over the Morse-Feshbach vector spherical
harmonics is a more precise characterization of the reconstructable parts, which will become
clear in Chapter 15.

As we have already mentioned, we further improve previous modellings by characterizing
the reconstructable parts by expanding the radial part of the neuronal current via orthonormal
polynomials. We can see in Eq. (13.4) that almost all summands of the series with respect to
m vanish. Only the summand corresponding to m = 0 contributes to the electric potential
and the magnetic field. In this case, the basis function of degree m = 0 for the radial part
reduces to

Q
(t(i)n +1/2)
0 (%0;x) =

√
2t(i)n + 3
%3

0

(
x

%0

)t(i)n
P

(0,t(i)n +1/2)
0

(
2x

2

%2
0
− 1

)

=
√

2t(i)n + 3
%3

0

(
x

%0

)t(i)n
,

since the Jacobi polynomials of degree zero are equal to one. The corresponding orthonormal
basis functions on the ball are for all n ∈ N, j = 1, . . . , 2n+ 1 given by

g̃(2)
0,n,j(%0;x) =

√
2n+ 1
%3

0

(
x

%0

)n−1
ỹ(2)
n,j(x̂), (13.5a)

g̃(3)
0,n,j(%0;x) =

√
2n+ 3
%3

0

(
x

%0

)n
ỹ(3)
n,j(x̂). (13.5b)

Due to Lemma 5.40, these functions are harmonic, that is ∆g̃(2)
0,n,j(%0; ·) = 0 as well as

∆g̃(3)
0,n,j(%0; ·) = 0. Here, the Laplace operator is applied componentwise. Combining

this with the characterization of the solenoidality of the orthonormal basis function from
Lemma 5.40, we obtain the next result. Only the part of the neuronal current that is
solenoidal and harmonic can be reconstructed from MEG and EEG data.

However, based on quasi-static Maxwell’s equations, there is no indication that the neuronal
current is harmonic. We summarize our considerations concerning the non-harmonicity of
the inverse MEG and EEG problem in the case of a multiple-shell model in the next theorem.

Theorem 13.1. Let Assumption 3.2 with L ≥ 2 be fulfilled. Let the neuronal current be
expanded in the orthonormal basis based on the Edmonds vector spherical harmonics in
Eq. (13.2). Then only the part of the neuronal current that is solenoidal and harmonic can
be reconstructed. Hence, the reconstructable part is given by

JP =
3∑
i=2

∞∑
n=1

2n+1∑
j=1

J∧[i, 0, n, j]g̃(i)
0,n,j(%0; ·).

The Fourier coefficients are uniquely determined by Eq. (13.4). This can be formulated, see
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Lemma 12.2, equivalently by

(ker TM)⊥ = span
{
g̃(3)

0,n,j(%0; ·)
∣∣∣ n ∈ N, j = 1, . . . , 2n+ 1

}
,

(ker TE)⊥ = span
{
g̃(2)

0,n,j(%0; ·)
∣∣∣ n ∈ N, j = 1, . . . , 2n+ 1

}
.

The occurring operators are defined in Problems 9.1 and 10.2.

Besides the non-uniqueness of the reconstruction, we need to tackle more problems to
solve the inverse MEG and EEG problem. We have to handle the lack of data. In the case
of the inverse MEG problem, we do not measure the whole magnetic field B but only the
magnetic flux density Bν at a small number of sensor positions. Here, ν is the normal vector
of the sensor surface. Thus, a substantial amount of information on the magnetic field is lost.
In addition, typical MEG devices have about 100 magnetometers, which yield about 100
measurements of Bν . The same problem occurs in the case of EEG measurements, where
the sensor cap provides us with about 70 measurements of the electric potential difference.

13.2. Instability

According to Hadamard’s definition of ill-posedness, an inverse problem is stable if the
solution continuously depends on the data. Since compact operators cannot have a bounded
inverse, this is not fulfilled for the solution of the magneto-electroencephalography problem.
By means of the singular values of a compact operator, we are able to further characterize
the instability.
We have already found a Hilbert space and an orthonormal basis for the orthogonal

complement of the operator null spaces, see Theorem 13.1. For the image of the three
operators TU , TM, and TE, we make the following considerations. The operator TU : L2(B%0)→
Harm(Bext

%L
) mapping JP to the magnetic potential U is a harmonic VLI operator since the

integral kernel kM is a harmonic VLI kernel, see Lemma 6.9. Thus, we can use the results
from Theorem 12.9 with tn := n and Γn := (4π)−1√n/(n+ 1) in order to state an SVD for
TU with the singular values {λUn }n∈N . Since the magnetic field is given by the gradient of the
magnetic potential, that is TMJ

P = µ0∇(TUJP), we can use the results of Theorem 12.13
for its SVD. The corresponding singular values are denoted by {λM

n }n∈N . Here, tn := n
and Γn := µ0(4π)−1√n/(n+ 1). For the operator TE : L2(B%0)→ Z, an SVD remains to be
found. In Theorem 10.4 a first expansion of the electric potential on the outer shell is stated.
This provides us with the idea for the definition of a new Hilbert space with an adequate
orthonormal basis.

Lemma 13.2. For all n ∈ N and j = 1, . . . , 2n+1, let a system of continuously differentiable
functions be given by

Zn,j(y) :=
(
n+ 1
2n+ 1

(
y

%L

)2n+1
+ n

2n+ 1

)(
%L
y

)n 1
y
Yn,j(ŷ), y ∈ S[%L−1,%L].

The space span {Zn,j}n∈N,j=1,...,2n+1 can be equipped with the inner product

〈f, g〉Z :=
〈
f |S%L , g|S%L

〉
L2(S%L )

.
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The completion of span {Zn,j | n ∈ N, j = 1, . . . , 2n+ 1} with respect to the norm induced by
this inner product is the Hilbert space

Z(S[%L−1,%L]) := Z := span {Zn,j | n ∈ N, j = 1, . . . , 2n+ 1}‖·‖Z ,

where {Zn,j}n∈N,j=1,...,2n+1 is an orthonormal basis.

Note that the space Z is isometrically isomorphic to the space L2(S%L).

Proof. It can easily be verified that 〈·, ·〉Z is an inner product on span {Zn,j}n∈N,j=1,...,2n+1 ,
since 〈·, ·〉Z is a symmetric bilinear form over span {Zn,j}n∈N,j=1,...,2n+1 and 〈F, F 〉Z ≥ 0
for all F ∈ span {Zn,j}n∈N,j=1,...,2n+1 . We get for all F ∈ span {Zn,j}n∈N,j=1,...,2n+1 the
representation F = ∑N

n=1
∑2n+1
j=1 cn,jZn,j . From 0 = 〈F, F 〉Z, we immediately obtain 0 ≡

F |S%L = ∑N
n=1

∑2n+1
j=1 cn,j%

−1
L Yn,j . Since the spherical harmonics are linearly independent,

we get cn,j = 0 for all n ≤ N and j = 1, . . . , 2n + 1 and, consequently, F ≡ 0. The
system {Zn,j}n∈N,j=1,...,2n+1 is, due to the construction of Z, obviously a basis. For the
orthonormality, we obtain

〈Zn,j , Zm,k〉Z =
∫
S%L

1
%2
L

Yn,j(ŷ)Ym,k(ŷ) dω(ŷ) = δn,mδj,k.

Note that this is no contradiction to the well-known statements according to which
harmonic functions are uniquely determined by their boundary values. In the case of
harmonic functions over the shell S[%L−1,%L], the fundamental system is given by the set of all
inner and all outer harmonics. The boundary of the shell is given by the two spheres S%L−1
and S%L . However, in the subspace Z the inner and outer harmonics are not independent.
Therefore, the information obtained on one boundary is sufficient to determine a function in
Z.

By means of this Hilbert space, we are able to find an SVD of the EEG forward operator
TE.

Theorem 13.3. The EEG forward operator TE maps from L2(B%0) to Z. In addition,
the singular system of TE is given by {g̃(2)

0,n,j(%0; ·), Zn,j ;λE
n}n∈N,j=1,...,2n+1 with the singular

values

λE
n := λE

n,j := %
n+1/2
0
%nL

2n+ 1√
n

β(L)
n , n ∈ N, j = 1, . . . , 2n+ 1.

Note that β(L)
n 6= 0 due to Lemma 4.4. In addition, limn→∞ λE

n = 0.

Proof. From Theorem 10.3, it is known that only the system {g̃(2)
0,n,j(%0; ·)}n∈N,j=1,...,2n+1

contributes to the electric potential. In addition, Hn 6≡ 0 for all n ∈ N. Thus, the set
{g̃(2)

0,n,j}n∈N,j=1,...,2n+1 is an orthonormal basis for (ker TE)⊥. Eq. (10.5) provides us with a
Fourier expansion of TEJ

P, that is

uL(y) =
∞∑
n=0

2n+1∑
j=1

u ∧L (n, j)Zn,j(y),

where the coefficients are given by means of Eq. (10.4). This eventually yields the desired
representation of the singular values. Since %0 < %L and β(L)

n ∈ O(n−1), we get limn→∞ λE
n = 0

exponentially fast.
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T ONB for (ker T )⊥ ONS for ran T SV λn

TU {g̃(3)
0,n,j(%0; ·)} , tn := n {Sn,j(%L; ·)}

√
n%3

0%L
(n+1)(2n+1)2(2n+3)(2n−1)

(
%0
%L

)n
TM {g̃(3)

0,n,j(%0; ·)} , tn := n {−sn,j(%L; ·)} µ0
√

n%0%L
(2n+1)2(2n+3)

(
%0
%L

)n+1

TE {g̃(2)
0,n,j(%0; ·)} , tn := n− 1 {Zn,j} (2n+ 1)

√
%0
n β

(L)
n

(
%0
%L

)n
Table 13.1: The SVD of the operators occurring in the inverse MEG and EEG problem.
Here, the range of the parameters is n ∈ N and j = 1, . . . , 2n+ 1 in each set.

By means of this SVD, we obtain for the adjoint operator T ∗E : Z→ L2(B%0) the represent-
ation

T ∗EuL =
∫
S%L

uL(y)kE(·,y) dy

=
∞∑
n=1

2n+1∑
j=1

λE
nu
∧
L (n, j)g̃(2)

0,n,j(%0; ·).

This implies by means of λE
n 6= 0 for all n ∈ N that

ran TE = (ker T ∗E )⊥ = Z. (13.6)

For the familiar special case of a homogeneous spherical brain model, we get the next
result.

Example 13.4. In the homogeneous case, see Example 6.11, with the constant conductivity
σ0, we obtain for all n ∈ N, j = 1, . . . , 2n+ 1 the Fourier coefficients

u ∧L (n, j) =
(
%0
%L

)n√%0
n

1
σ0
J∧[2, 0, n, j]

and u ∧L (0, 1) = 0.

Eventually, for the forward operator restricted to the sphere S%L as well as for the operator
mapping onto the electric potential on the shell S[%L−1,%L], we are able to state an SVD. Note
that in all three cases, that is {λUn }n∈N , {λM

n }n∈N , and {λE
n}n∈N the singular values are

independent of the order j. We summarize the SVDs in Table 13.1.
Now, we analyze the asymptotic behaviour of the singular values. Recall that β(L)

n ∈ O(n−1)
as n→∞, see Lemma 4.2. For the inverse MEG and EEG problem, we immediately obtain
with %0 < %L the limits

lim
n→∞λ

U
n = lim

n→∞λ
M
n = lim

n→∞λ
E
n = 0.

Concluding, in all three cases the corresponding Moore-Penrose inverse operator is not
bounded. This is not surprising due to the compactness of the forward operators. However,
the singular values of the three problems all have the factor (%0/%L)n in common. Due to this
factor, the singular values decay to zero exponentially fast. Thus, the corresponding inverse
problems are severely ill-posed. This factor is generated by the upward continuation from the
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T RHS ran T Summability Condition

TU U Harm(Bext
%L

) ∑∞
n=1

∑2n+1
j=1

(
λUn

)−2
〈U, Sn,j(%L; ·)〉2L2(Bext

%L
) <∞

TM B Harm
(
Bext
%L

) ∑∞
n=1

∑2n+1
j=1

(
λM
n

)−2
〈B, sn,j(%L; ·)〉2

Harm(Bext
%L

) <∞

TE uL Z
∑∞
n=1

∑2n+1
j=1

(
λE
n

)−2
〈uL, Zn,j〉2Z <∞

Table 13.2: Picard’s criterion for the continuous magneto-electroencephalography problem.

activity inside the cerebrum with radius %0 to the measurement positions on and outside the
head. Note that in the case of the downward continuation of spaceborne gravity data, the
ratio of the mean radius of Earth’s surface %Earth to the satellite altitude is approximately
%Earth/(%Earth + 450 km) ≈ 0.9340, see, for example, [91]. In contrast, in our synthetic
test case, see Eq. (19.2), the ratio of the approximated scalp radius to the radius of the
cerebrum is %0/%L ≈ 0.8353. In addition, the ratio of the approximated human head radius
to the radius of the magnetoencephalograph sensor Runge sphere SRsen is even worse, that is
%0/Rsen ≈ 0.6676.

Due to the instability of the MEG and EEG operators, the level of noise, see Item (E), and
the defective data, see Item (F) on page 174, have a major impact on the solution. Therefore,
a regularization method is needed to solve the inverse problems properly.

13.3. Existence of a Solution

By means of the Spectral Theorem for linear compact operators, we can use Picard’s criterion
as a necessary and sufficient criterion for the existence of a solution. This criterion consists of
two requirements. First, the measured quantity has to be in the orthogonal complement of the
adjoint operator null space. For the operators of the inverse magneto-electroencephalography
problem, we collect the results from Eqs. (12.6) and (13.6) and Theorem 12.13. Therein,
the closure of the ranges is characterized by the closure of the span of certain orthogonal
basis functions. In addition, the singular values of the operators TU and TM are non-zero for
all n ∈ N. Thus, the span contains all orthogonal basis functions of the particular Hilbert
spaces. Eventually, the closures of the ranges coincide with the whole Hilbert spaces. This is
summarized in Table 13.2. The second requirement of Picard’s criterion is a summability
condition and also listed in Table 13.2. It regulates the asymptotic behaviour of the measured
quantity’s Fourier coefficients. For this purpose, the singular values of the operators are
needed and stated in Table 13.1.

However, this result obtained by Picard’s criterion is merely a theoretical result. We can
only apply Picard’s criterion to our problem if the measured quantities or their Fourier
coefficients, respectively, are completely known. In the actual inverse magneto-electroence-
phalography problem, only a few noisy measurements of the electric potential and the
magnetic field are known, see Problems 9.1 and 10.2.

Concluding, in Sections 13.1 to 13.3 we established that the reconstruction of the neuronal
current by means of MEG and EEG data is severely ill-posed, since the solution is not
unique and the singular values decay exponentially fast to zero. In order to get rid of the
non-uniqueness, certain additional uniqueness constraints are presented in the next section.
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For the purpose of handling the instability, we use regularization methods to solve the inverse
problem. An introduction to the theory of regularization methods is given in Section 16.2.
The regularization methods also help to handle the lack of data and to manage the noise in
the data.

13.4. Additional Uniqueness Constraints

By means of our previous considerations, we see that the reconstruction of the neuronal
current from MEG and EEG data is not unique, see, for example, Theorem 13.1. However,
we obtain a unique best-approximate solution of the inverse magneto-electroencephalography
problem by means of the Moore-Penrose pseudoinverse operator if we restrict the domains of
the operators to the orthogonal complements of their null spaces, if the electric potential and
magnetic field is completely known, and if we assume that Picard’s criterion, see Table 13.2,
is fulfilled. Thus, further solutions of the inverse problem can be generated by adding
elements from the null space to the best-approximate solution. In this setting, two types
of non-uniqueness can be distinguished. First, not all directions of the current can be
reconstructed and second, the reconstructable direction contains silent parts. Thus, we need
additional uniqueness constraints in order to achieve a unique representation. In Section 12.3,
we present additional radial and directional uniqueness constraints for the continuous VLI
equation, which are adjusted to the inverse MEG and EEG problem here.

In the MEG as well as the EEG direct problem, after a separation into an angular and a
radial part of the neuronal current we get for all n ∈ N, j = 1, . . . , 2n+ 1 the integral∫ %0

0
J (i),~
n,j (x)xt

(i)
n +2 dx

with t(i)n given in Eq. (13.3), see Theorems 9.2 and 10.3. In both cases, infinitely many
choices of the function J (i),~

n,j lead to the same value of the integral, see also [161, 162]. Thus,
for each i = 2, 3 we can choose additional radial uniqueness constraints from Table 12.1,
such as the generalized harmonicity constraint or the layer density constraint. In order to
obtain a unique reconstruction, we furthermore need to assume J (1),~

n,j = 0 for all n ∈ N0,
j = 1, . . . , 2n+ 1.

Theorem 13.5. Let Assumption 3.2 with L ≥ 2 be fulfilled. Let the magnetic field and the
electric potential fulfil Picard’s criterion summarized in Table 13.2. Let the neuronal current
be of the form

JP(x)
L2(B%0 )

=
3∑
i=2

∞∑
n=1

2n+1∑
j=1

κ(i)
n,jD

(i)
n,j(x)ỹ(i)

n,j(x̂)

with given functions D(i)
n,j that are not Lw2 ([0, %0])-orthogonal to Q

(t(i)n +1/2)
0 (%0; ·), see also

Eq. (13.2). Then the neuronal current can be uniquely reconstructed from the magnetic field
and the electric potential by

JP(x)
L2(B%0 )

=
∞∑
n=1

2n+1∑
j=1

√
n

(2n+ 1)3
1
β(L)
n
%nLu

∧
L (n, j)

(∫ %0

0
D(2)
n,j(x)xn+1 dx

)−1
D(2)
n,j(x)ỹ(2)

n,j(x̂)

−
∞∑
n=1

2n+1∑
j=1

1
µ0

√
2n+ 1
n

%n+1
L B ∧

%L
(n, j)

(∫ %0

0
D(3)
n,j(x)xn+2 dx

)−1
D(3)
n,j(x)ỹ(3)

n,j(x̂).
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Proof. From Eq. (13.4), we have for all n ∈ N, j = 1, . . . , 2n+ 1 the relations

J∧[2, 0, n, j] =
√

n

(2n+ 1)2%0

1
β(L)
n

(
%L
%0

)n
u ∧L (n, j), (13.7a)

J∧[3, 0, n, j] = − 1
µ0

√
(2n+ 1)(2n+ 3)

n%0

(
%L
%0

)n+1
B ∧
%L

(n, j). (13.7b)

For i = 2, 3, the left-hand sides of these two equations can be reformulated by means of
Eq. (7.13) to

J∧[i, 0, n, j]

√√√√ %2t(i)n +3
0

2t(i)n + 3
=
∫ %0

0
J (i),~
n,j (x)xt

(i)
n +2 dx.

Due to the assumption J (i),~
n,j = κ(i)

n,jD
(i)
n,j , we obtain for the coefficients

κ(i)
n,j =

√√√√ %2t(i)n +3
0

2t(i)n + 3

(∫ %0

0
D(i)
n,j(x)xt

(i)
n +2 dx

)−1
J∧[i, 0, n, j].

Inserting these results into the expansion of the neuronal current, we obtain the stated
result.

The layer density constraint has been used before in the case of the scalar inverse MEG
and EEG problems in [73], that is

D(i)
n,j(x) := χ[τ,τ+δ](x), x ∈ [0, %0]

with [τ, τ + δ] ⊂ [0, %0].
Besides this radial uniqueness constraint, we discuss further additional uniqueness con-

straints, such as the minimum norm approach and the harmonicity constraint.

Minimum-Norm Estimate

The minimum norm solution is a widely discussed approach for several non-unique inverse
problems. It occurs in the inverse gravimetric problem, see, for instance, [161] and the
references therein. Therein, a novel proof for the uniqueness under the minimum-norm
assumption is presented. This approach is transferred by the author in [147, 162] to a more
general setting that also covers the scalar inverse MEG and EEG problems.
A disadvantage of using the minimum norm approach for the scalar MEG and EEG

problem is the lack of a physical or medical indication. Due to the principle of stationary
action, certain physical quantities minimize their action, see [70]. However, this does not
necessarily hold true for certain arbitrary scalar parts of the neuronal current. Therefore,
the minimum-norm estimate (MNE) makes more sense for the vector-valued reconstruction
of the entire neuronal current, which is not a new tool to the MEG and EEG reconstruction,
see [108, 115, 216]. Classically, a discrete problem is analyzed. This can be achieved by
evaluating the lead field at the sensor positions and expanding the neuronal current as a
linear combination of these lead fields. Then, the problem can be reduced to the inversion
of an ` × `-matrix, where ` is the number of measurement positions. Thus, the MNE
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13.4. Additional Uniqueness Constraints

yields the neuronal current with the smallest overall amplitude, see also [109]. This can be
transferred to the continuous setting by searching for the neuronal current with the smallest
L2(B%0)-norm fulfilling the measurements. This situation coincides with the best-approximate
solution, which is obtained by the Moore-Penrose inverse. There also exists a discrete variant
of the Moore-Penrose inverse and the resulting solution is known as the minimum-norm
pseudoinverse (MNP), see [96]. The best-approximate solution obtained from the magnetic
field and the electric potential is stated in the next theorem. Besides this, a variety of
uniqueness approaches exists for the discrete case, such as the weighted MNE, the Tikhonov
regularization, the maximum likelihood approach, and the Backus-Gilbert approach. Without
additional knowledge of the neuronal current, they all result in the MNE solution, see [115]
and the references therein.

Theorem 13.6 (Best-Approximate Solution). Let Assumption 3.2 with L ≥ 2 be fulfilled.
Let the magnetic field and the electric potential fulfil Picard’s criterion summarized in
Table 13.2. Then the unique best-approximate solution J+ of the neuronal current JP is
given by

J+(x)
L2(B%0 )

=
∞∑
n=1

2n+1∑
j=1

√
n

(2n+ 1)√%0β
(L)
n

(
%L
%0

)n
〈uL, Zn,j〉Zg̃

(2)
0,n,j(%0;x)

+
∞∑
n=1

2n+1∑
j=1

√
(2n+ 1)2(2n+ 3)

n%0%Lµ2
0

(
%L
%0

)n+1
〈B, sn,j(%L; ·)〉L2(Bext

%L
)g̃

(3)
0,n,j(%0;x).

Proof. In order to state the best-approximate solution J+ of the joint problem, we define
for (y, z) ∈ Bext

%L
× S[%L−1,%L] the corresponding forward operator by

T : L2 (B%0)→ Harm
(
Bext
%L

)
× Z, (T J) (y, z) := ((TMJ)(y), (TEJ)(z)) .

The space Harm(Bext
%L

) × Z is a Hilbert space equipped with the inner product 〈f , g〉 :=
〈fH , gH〉L2(Bext

r ) + 〈fZ, gZ〉Z for all functions of the form f = (fH , fZ) ∈ Harm(Bext
%L

) × Z.
Orthonormal basis functions are given for all i = 2, 3, n ∈ N, and j = 1, . . . , 2n+ 1 by

W (i)
n,j(y, z) :=

{
(0, Zn,j(z)) if i = 2,
(sn,j(%L;y), 0) if i = 3,

(y, z) ∈ Bext
%L
× S[%L−1,%L].

Thus, based on the results collected in Table 13.1, we obtain an SVD of T by

T J =
3∑
i=2

∞∑
n=1

2n+1∑
j=1

λ(i)
n

〈
J , g̃(i)

0,n,j(%0; ·)
〉

L2(B%0 )
W (i)

n,j ,

where λ(2)
n := λE

n and λ(3)
n := λM

n . Picard’s criterion for the joint problem is fulfilled if
Picard’s conditions for the two problems are fulfilled separately, see Table 13.2. According
to Theorem 11.12, the corresponding Moore-Penrose generalized inverse operator has the
representation

T + (B, uL) =
3∑
i=2

∞∑
n=1

2n+1∑
j=1

λ(i)
n

〈
(B, uL),W (i)

n,j

〉
g̃(i)

0,n,j(%0; ·)

=
∞∑
n=1

2n+1∑
j=1

λ(2)
n 〈uL, Zn,j〉Zg̃

(2)
0,n,j(%0; ·) +

∞∑
n=1

2n+1∑
j=1

λ(3)
n 〈B, sn,j(%L; ·)〉L2(Bext

%L
)g̃

(3)
0,n,j(%0; ·).

183



Chapter 13. Inverse Magneto-electroencephalography Problem

Harmonicity Constraint

In the case of the inverse gravimetric problem, see [161], or the scalar-valued inverse MEG or
EEG problem, see [162], the harmonicity constraint yields a unique reconstruction. In these
cases, the reconstructable quantity is assumed to be harmonic in the interior of the observed
body. However, in the case of the reconstruction of the vector-valued neuronal current, we
are not able to achieve a unique solution by means of the harmonicity constraint alone. In
this case, we assume that the neuronal current is harmonic, that is ∆JP = 0, where the
Laplacian is applied componentwise. The direction of the neuronal current belonging to
the Edmonds vector spherical harmonics of type 1 is silent for the magnetoencephalograph
as well as the electroencephalograph. Due to Lemma 5.40, this direction of the neuronal
current has a harmonic part. Nevertheless, if the harmonicity of the current is assumed, we
cannot reconstruct this part. However, if we additionally assume that the neuronal current is
solenoidal or does not have a direction belonging to the Edmonds vector spherical harmonics
of type 1, we can obtain a unique harmonic reconstruction.

Theorem 13.7 (Harmonicity Constraint). Let Assumption 3.2 with L ≥ 2 be fulfilled.
Let the magnetic field and the electric potential fulfil Picard’s criterion summarized in
Table 13.2. In addition, let the current be solenoidal and harmonic. Then we obtain a unique
reconstruction that coincides with the best-approximate solution given in Theorem 13.6.

Proof. Via Lemma 5.41, we immediately obtain a characterization of the solenoidal basis
functions. We see directly that all orthonormal basis functions corresponding to i = 1 are
not solenoidal. By means of Lemma 5.40, we obtain a relationship between the orthonormal
basis indices and the harmonic basis functions. Thus, only the orthonormal basis functions
from Eq. (13.2) with i = 2, 3 and m = 0 contribute to the harmonic solution. A comparison
with the representation of the neuronal current in Theorem 13.6 yields the desired result.

184



Part IV.

Scalar General Integral Problem
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Chapter 14.

Scalar Continuous VLI Operator

In the previous parts, we studied the vector continuous/star-shaped VLI kernel and its
corresponding integral equation extensively. In contrast, many applications, such as the
inverse gravimetric problem, are given by scalar-valued integral kernels. However, this setting
can easily be covered by the vector-valued case.

For the analysis of the inverse magneto-electroencephalography problem, these correspond-
ing scalar-valued integral operators are also of interest. In the literature, see, for instance,
[47, 48, 50, 71–75], several approaches for solving the inverse magneto-encephalography are
presented. In most of these approaches, the occurring densities and integral kernels reduce
to scalar-valued functions. Since we want to compare our vector-valued approach to these
scalar-valued approaches, further calculations and adaptations of the methods in the literature
are required. This comparison can be found in Chapter 15.
To this end, the analysis of a scalar continuous/star-shaped VLI kernel and its induced

integral equation is necessary. As a welcome side effect, we confirm existing results concerning
the inverse gravimetric problem using this approach, which also validates our results. For
this purpose, we first define the scalar continuous VLI kernel.

Definition 14.1 (Scalar Continuous VLI Kernel). Let Gin ⊂ R3 be a compact (inner)
region containing the origin with supx∈Gin x = R. Let Gout ⊂ R3 \ Gin be the unbounded
outer region with infy∈Gout y > R. The scalar continuous VLI kernel is defined by

K(x,y) :=
∞∑
k=0

γk(y)xtkPk(x̂ · ŷ), (x,y) ∈ Gin ×Gout, (14.1)

where the occurring quantities fulfil the same three assumptions formulated in Definition 6.1:

i) The real sequence of exponents {tk}k∈N0 fulfils infk∈N0,γk 6≡0 tk ≥ 0.

ii) The asymptotic behaviour of {tk}k∈N0 can be characterized by supk∈N0 R
tk−k <∞.

iii) Each function γk with k ∈ N0 is continuous and for all y ∈ Gout it holds that

|γk(y)| ≤ Γk
yk+1+δk,0 ,

where {Γk}k∈N0 ⊂ R+
0 is a sequence of non-negative constants. In addition, let M ∈ N0

be fixed such that (k 7→ Γk) ∈ O(kM ).

Recall that Pk denotes the scalar Legendre polynomial of degree k ∈ N0. In analogy to
the vector-valued case, we can also define a star-shaped version of this kernel.
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Chapter 14. Scalar Continuous VLI Operator

Definition 14.2 (Scalar Star-shaped VLI Kernel). Let Gstar ⊂ R3 be a compact star
domain with vantage point zero and supx∈Gstar x = R. Let Gout ⊂ R3 \Gstar be the unbounded
outer region with infy∈Gout y > R. We define the scalar star-shaped VLI kernel K by

K(x,y) :=
∞∑
k=0

γk(y)xtkPk(x̂ · ŷ), (x,y) ∈ (Gstar \ {0})×Gout.

The sequences {tk}k∈N0 and {γk}k∈N0 fulfil the assumptions of the scalar continuous VLI
kernel. As an extension, the sequence of exponents {tk}k∈N0 is only required to satisfy

inf
k∈N0,γk 6≡0

tk ≥ −1.

In previous works of the author, see [147, 162], a particular case of the scalar star-shaped
VLI kernel formulated in this chapter is used and analyzed in detail. More precisely, the case
γk := Γky−(k+1), where k ∈ N0, is considered therein. Here, we summarize the generalization
of these previous considerations.
However, we start with some examples that demonstrate that scalar continuous/star-

shaped VLI equations of this type arise in different applications. The already mentioned
famous example, the inverse gravimetric problem, of such an integral kernel is presented
first. This problem first appears in [204] and is discussed extensively in the literature
[16, 168, 183, 189, 196, 204, 220]. An overview of potential theory, which is closely related to
the inverse gravimetric problem, can be found in [135], for instance. Of course, this problem
is also covered by our approach in [147, 162].

Example 14.3 (Inverse Gravimetric Problem – Part I). Let γk(y) := γy−(k+1), where
γ > 0 is the gravitational constant, and let tk := k for all k ∈ N0. Using Eq. (2.2), we obtain
for the integral kernel

K(x,y) =
∞∑
k=0

γ
xk

yk+1Pk(x̂ · ŷ)

= γ

|x− y| .

In addition, let Gin be the Earth. Then the gravitational potential V outside the Earth is
given by Newton’s Law of Gravitation, that is

V (y) = γ

∫
Gin

%(x)
|x− y| dx,

with the mass density distribution % ∈ L2(Gin) to be found. Let R be the radius of the Earth’s
Bjerhammar sphere. Then the mapping y 7→ (R/y)k+1 is sometimes called the transfer
function because it transfers information from the Earth’s interior to the measurement
positions.

Now, additional examples of these integral kernels are presented. Two of them are listed
in the next example and discussed in more detail in Chapter 15. Therein, the corresponding
derivations are executed. These integral equations are improvements of results from [73].

Example 14.4. In the context of medical imaging, the following two examples are analyzed,
where parts of the neuronal current inside the brain B%0 are reconstructed from data outside
the head. In both cases, the functions γk are given by γk := Γky−(k+1) for all k ∈ N0.
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i) The inverse MEG problem by means of the Hodge decomposition: Γk := k/(4π) for all
k ∈ N0, tk := k − 1 for all k ∈ N, and t0 = 0. See Theorem 15.3 for more details.

ii) The inverse EEG problem by means of the Helmholtz decomposition: in this case, the
potential consists of the sum of two integral equations, where the first is given by a
scalar continuous VLI equation and the second by a scalar star-shaped VLI equation.
See Eq. (15.14) and Theorem 15.6 for more details.

iii) The homogeneous inverse EEG problem restricted onto the scalp by means of the
Helmholtz decomposition: Γk := (2k+1)/(4πσ0k), where σ0 is the conductivity inside the
cerebrum, tk := k for all k ∈ N and Γ0 = t0 = 0. See Lemma 15.22 and Example 6.11.

The results obtained for the vector continuous/star-shaped VLI kernel can also be trans-
ferred to the scalar continuous/star-shaped VLI kernel. For this purpose, we consider the
vector continuous/star-shaped VLI kernel for the case ι = 1. By applying the o(1)

x̂ -operator,
which is only a multiplication operator, we immediately obtain

o(1)
x̂ · k(1)(x,y) =

∞∑
k=0

γk(y)xtk
(
o(1)
x̂ · p

(1)
k (x̂, ŷ)

)
=
∞∑
k=0

γk(y)xtk
(
µ(1)
k

)−1/2
Pk(x̂ · ŷ)

= K(x,y), (14.2a)
o(1)
x̂ K(x,y) = k(1)(x,y). (14.2b)

Thus, the scalar-valued integral kernel is linked to k(1) via the multiplication with x̂. This
connection immediately yields the following result.

Theorem 14.5. The following results hold true:

i) The scalar continuous VLI kernel is bounded and the occurring series converges abso-
lutely and uniformly in Gin ×Gout.

ii) The series from the scalar star-shaped VLI kernel converges absolutely and pointwise
in (Gstar \ {0} )×Gout.

iii) The scalar continuous/star-shaped VLI kernel is continuous in Gin ×Gout or (Gstar \
{0} )×Gout, respectively.

iv) The scalar continuous/star-shaped VLI kernel is an L2(Gin × Gout)-function, or an
L2(Gstar ×Gout)-function, respectively.

v) The differential operators from Theorems 6.17 and 6.18 can be interchanged with the
occurring series if the assumptions on {tk}k∈N0 , {γk}k∈N0 stated therein are satisfied.

Proof. See Lemmas 6.5, 6.7, and 6.16, Corollary 6.12, and Theorems 6.6 and 6.17 to 6.18
combined with Eq. (14.2) for the proofs.

A scalar-valued counterpart to the continuous/star-shaped VLI operator can easily be
obtained.
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Lemma 14.6. Let G ∈ {Gin,Gstar} , the scalar density F ∈ L2(G), and the scalar continu-
ous/star-shaped VLI kernel K be given. We define the corresponding scalar continuous/
star-shaped VLI operator S : L2(G)→ L2(Gout) by

(SF )(y) :=
∫
G
F (x)K(x,y) dx, y ∈ Gout.

Moreover, we consider the vector-valued analogue, that is k(1)(x,y) = o(1)
x̂ K(x,y), which is

a vector continuous/star-shaped VLI kernel, and we define f(x) := o(1)
x̂ F (x). The relation

between the scalar-valued and the vector-valued integral equation is given by

(SF )(y) = (T f)(y).

Proof. The function f satisfies f ∈ L2(G) if and only if F ∈ L2(G), since

‖f‖2L2(G) =
∫
G
f(x) · f(x) dx

=
∫
G

(x̂F (x)) · (x̂F (x)) dx

=
∫
G
F (x)F (x) dx

= ‖F‖2L2(G) .

Thus, we are able to apply the operator T in the case of ι = 1 from Definition 7.1 or
Definition 7.2 to f . We get

(T f)(y) =
∫
G
f(x) · k(1)(x,y) dx

=
∫
G
o(1)
x̂ F (x) · o(1)

x̂ K(x,y) dx

=
∫
G
F (x)K(x,y) dx

= (SF )(y)

and the range of the operator S coincides with the range of the operator T .

Due to the connection between the operator S corresponding to the scalar-valued case
and the operator T of the vector-valued case, we can transfer properties from one pair of
potential and density to the other.

Corollary 14.7. Let G ∈ {Gin,Gstar} and let the scalar continuous/star-shaped VLI operator
S be given as defined in Lemma 14.6. Then

i) the operator S maps from L2(G) to L2(Gout);

ii) the operator S maps from L2(G) to C(Gout);

iii) S : L2(G)→ L2(Gout) is a bounded and compact operator.

Proof. By means of ranS = ran T , see Lemma 14.6, combined with Corollary 7.3 and Theor-
ems 7.8 and 12.1, we obtain most of the desired result. In order to prove that ranS ⊂ C(Gout)
in the case of the star-shaped VLI, we use the uniform convergence of the series representation
of T f from Theorem 7.26 and the fact that each summand is continuous in Gout.
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Next, we assume that the inner domain is given by the ball BR with radius R. Then a
function F ∈ L2(BR) can be represented by a Fourier series, that is

F (x) =
∞∑
m=0

∞∑
n=0

2n+1∑
j=1

F∧(m,n, j)Gm,n,j(R;x)

=
∞∑
n=0

2n+1∑
j=1

Fn,j(x)Yn,j(x̂) (14.3)

with the abbreviations

F∧(m,n, j) :=
∫
BR
F (x)Gm,n,j(R;x) dx, (14.4a)

Fn,j(x) :=
∫
S
F (x)Yn,j(x) dω(x̂). (14.4b)

For a definition of the used basis functions see Definitions 2.22 and 5.35. The stated Fourier
series can be used for the potential obtained by the operator S. The next corollary is a
generalization of a former result stated in [162]. In the case of the inverse gravimetric
problem, this result is also stated in [79, 85, 154, 155].

Corollary 14.8. Let F ∈ L2(BR), then SF is given by

(SF )(y) = 4π
∞∑
n=0

2n+1∑
j=1

1
2n+ 1

(∫ R

0
Fn,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)

= 4π
∞∑
n=0

2n+1∑
j=1

Rtn+3/2

(2n+ 1)
√

2tn + 3F
∧(0, n, j)γn(y)Yn,j(ŷ)

for all y ∈ Gout. The series converges absolutely and uniformly on Gout and in the sense
of L2(Gout). The series converges in the L2(SR)-sense on SR if the following additional
conditions are fulfilled:

i) The sequence of functions {γn}n∈N0 is evaluable for y = R and

ii) these functions fulfil the additional condition

|γn(R)| ≤ ΓnR−(n+1+δn,0)

where

Γn ≤ c
√

(2n+ 1)2(2tn + 3)

for all n ∈ N0 with a fixed c ∈ R+
0 .

Proof. Corollary 7.17 provides us with the expansion

(T f)(y) = 4π
∞∑
n=0

2n+1∑
j=1

1
2n+ 1

(∫ R

0
f (1)
n,j(x)xtn+2 dx

)
γn(y)Yn,j(ŷ)
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for the operator T . Note that the vector-valued function f and the scalar function F are
related by f(x) := o(1)

x̂ F (x). This implies the case ι = 1. The functions f (1)
n,j are given by

f (1)
n,j(x) =

∞∑
m=0

f∧(1,m, n, j)Q(tn+1/2)
m (R;x)

=
∞∑
m=0

〈
f , g(1)

m,n,j(R; ·)
〉

L2(BR)
Q(tn+1/2)
m (R;x)

=
∞∑
m=0

∫
BR
f(x) · g(1)

m,n,j(R;x) dxQ(tn+1/2)
m (R;x)

=
∞∑
m=0

∫
BR
F (x)Gm,n,j(R;x) dxQ(tn+1/2)

m (R;x)

=
∞∑
m=0
〈F,Gm,n,j(R; ·)〉L2(BR)Q

(tn+1/2)
m (R;x)

=
∞∑
m=0

F∧(m,n, j)Q(tn+1/2)
m (R;x)

=
∫
S
F (x)Yn,j(x) dω(x̂)

= Fn,j(x)

for all n ∈ N0, j = 1, . . . , 2n+ 1. And, hence, f∧(1,m, n, j) = F∧(m,n, j) for all m, n ∈ N0,
j = 1, . . . , 2n + 1. Thus, the last identity of the corollary is obtained by Lemma 7.24
and properties of the scalar basis functions on the ball. The statements concerning the
convergence are proved in Theorems 7.20 and 7.26.

For the characterization of the ill-posedness of the scalar-valued problem, we start with
the uniqueness of the density reconstruction and the null space of the integral operator,
respectively.

Lemma 14.9. Let S : L2(BR)→ L2(Gout) be the scalar continuous/star-shaped VLI operator,
then

(kerS)⊥ = span {G0,n,j(R; ·) | n ∈ {n′ ∈ N0 | γn′ 6≡ 0} , j = 1, . . . , 2n+ 1}. (14.5)

Consequently, S is not injective.

Proof. Lemma 12.2 provides us with a separation of the L2(BR)-orthonormal basis functions
belonging to the null space of T and its complement. Due to the construction of S, we
conclude that Gm,n,j(R; ·) ∈ kerS if and only if g(1)

m,n,j(R; ·) ∈ ker T .

So far, the operator null space has been characterized by means of the orthonormal basis
used in the SVD. However, from certain applications, such as the inverse gravimetric problem,
the null space of such an integral operator can be characterized by means of a differential
operator. Now, we want to transfer this result to the scalar continuous/star-shaped VLI
operator in order to achieve an alternative characterization of the null space. For this purpose,
we consider a particular case of the scalar continuous VLI operator. For the scalar case
considered here, this result has already been published by the author in [147, 162].
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Corollary 14.10. Let γn(y) := Γny−(n+1) with Γn 6= 0 and let tn := n + κ for all n ∈ N0
with arbitrary κ ∈ [−1,∞). We define the differential operator ♦ by

♦xF (x) :=
(
∂2

∂x2 + 2
x

∂

∂x
+ 1
x2 ∆∗x̂

)(
x−κF (x)

)
.

Then the orthogonal complement of the null space of the scalar continuous VLI operator is
equivalent to

(kerS)⊥ = {F ∈ C2(BR) | ♦F = 0}L2(BR)
.

Proof. Let F ∈ C2(BR) ⊂ L2(BR) be given. Then, we get the relation

♦xF (x) =
(
∂2

∂x2 + 2
x

∂

∂x
+ 1
x2 ∆∗x̂

)(
x−κF (x)

)
.

Thus, we obtain for all F ∈ C2(BR) with Theorem 2.14 the equivalence relation

♦xF (x) = 0 ⇔ ∆x
(
x−κF (x)

)
= 0.

Recall that a scalar-valued orthonormal system of L2(BR) is stated in Definition 5.33.
However, we first use the system {Gm,n,j}m,n∈N0,j=1,...,2n+1 defined in Definition 5.35 with
tn := n+ κ for n ∈ N0. It is easy to verify with an appropriate normalization factor cn that

♦xG0,n,j(x) = cn♦x
((

x

R

)n+κ
Yn,j(x̂)

)

= cn∆x

((
x

R

)n
Yn,j(x̂)

)
= 0

for all n ∈ N0, j = 1, . . . , 2n + 1. In the last step, the harmonic property of the inner
harmonics is used, see Corollary 2.29. In addition, the functions {GI

0,n,j(R; ·)}n∈N0,j=1,...,2n+1
form a basis of the space of all harmonic functions on BR. This is, for example, stated in [79,
Rem. 3.68], where the unique solution of the interior Dirichlet problem can be represented
by a Fourier series expansion in terms of inner harmonics. Then, the following equivalence
relation holds true, which has already been published by the author in [162],

0 = ∆x
(
x−κF (x)

)
for all x ∈ BR

⇔ (
x 7→ x−κF (x)

) ∈ span
{
GI

0,n,j(R; ·)
}
n∈N0,j=1,...,2n+1

⇔ (
x 7→ x−κF (x)

) ∈ span
{
x 7→ xn

Rn
Yn,j(x̂)

}
n∈N0,j=1,...,2n+1

⇔ (x 7→ F (x)) ∈ span
{
x 7→ xn+κ

Rn
Yn,j(x̂)

}
n∈N0,j=1,...,2n+1

⇔ F (x) ∈ span {G0,n,j(R; ·)}n∈N0,j=1,...,2n+1 .

Thus, we conclude via the the fact that Γn 6= 0 for all n ∈ N0 and the representation of the
operator null space from Eq. (14.5) the stated result, that is

(ker T )⊥ = {F ∈ C2(BR) | ♦F = 0}.
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Note that we obtain ♦ = ∆ for κ = 0. This case is related to the inverse gravimetric
problem, see Example 14.15. Further interesting differential operators can be obtained by
setting κ = −1, where

♦F (x) =
(
x
∂2

∂x2 + 4 ∂

∂x
+ 2
x

+ 1
x

∆∗x̂

)
F (x),

and κ = 1, where

♦F (x) =
(

1
x

∂2

∂x2 + 1
x3 ∆∗x̂

)
F (x).

For the restriction of the operator S onto a sphere Sr with fixed r > R, we directly obtain
an SVD of S|Sr by means of Theorem 12.4 combined with Lemma 14.6.

Theorem 14.11. Let S|Sr : L2(BR) → L2(Sr) be the operator S with range restricted to
L2(Sr). Then

i) the set {G0,n,j(R; ·)}n∈{n′∈N0|γn′ (r)6=0} ,j=1,...,2n+1 builds an orthonormal basis for the
orthogonal complement of the null space, that is (kerS|Sr)⊥ ⊂ L2(BR),

ii) an orthonormal basis for L2(Sr) is given by {r−1Yn,j}n∈N0,j=1,...,2n+1 , and

iii) the singular values of S|Sr are given for all n ∈ {n′ ∈ N0 | γn′(r) 6= 0} independent of
j by

λn := 4πr
√

R3

2tn + 3
Rtn

2n+ 1γn(r).

Eventually, we obtain an SVD of S|Sr , that is

S|SrF =
∞∑
n=0

2n+1∑
j=1

λn〈F,G0,n,j(R; ·)〉L2(BR)
1
r
Yn,j .

In addition, via the relation f(x) = o(1)
x̂ F (x), we observe for all n ∈ N0 and j = 1, . . . , 2n+1

that ∫ R

0
f (1)
n,j(x)xtn+2 dx =

∫ R

0
Fn,j(x)xtn+2 dx,〈

f , g(1)
0,n,j(R; ·)

〉
L2(BR)

= 〈F,G0,n,j(R; ·)〉L2(BR).

Via Lemma 7.24, we eventually get

∫ R

0
Fn,j(x)xtn+2 dx = F∧(0, n, j)

√
R2tn+3

2tn + 3
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for all n ∈ N0 and j = 1, . . . , 2n+1. Thus, the Fourier coefficients of the potential V = S|SrF
are given by

V ∧(n, j) =
〈
S|SrF,

1
r
Yn,j

〉
L2(Sr)

= 4πr
√

R3

2tn + 3
Rtn

2n+ 1γn(r)〈F,G0,n,j(R; ·)〉L2(BR)

= 4π
2n+ 1γn(r)r

∫ R

0
Fn,j(x)xtn+2 dx. (14.6)

The latter formula has already been stated in [147] for the particular case of γn = Γny−(n+1)

for all n ∈ N0. In analogy to the previous theorem, Theorem 12.9 combined with Lemma 14.6
provides us with the next theorem.

Theorem 14.12. Let (Harm(Bext
r ), 〈·, ·〉L2(Bext

r )) be defined in Lemma 12.8. Let the operator
S be given by

S : F 7→
∫
BR
F (x)K(x, ·) dx

with the scalar continuous/star-shaped VLI kernel K. In addition, let γk := Γky−(k+1) with
Γk ∈ R for all k ∈ N and γ0 ≡ 0. Then

i) S : L2(BR)→ (Harm(Bext
r ), 〈·, ·〉L2(Bext

r )),

ii) an orthonormal basis for the orthogonal complement of the null space is given by
{G0,n,j(R; ·)}n∈{n′∈N|Γn′ 6=0} ,j=1,...,2n+1 ,

iii) an orthonormal basis for (Harm(Bext
r ), 〈·, ·〉L2(Bext

r )) is given by means of the basis from
Lemma 12.8, that is {Sn,j(r; ·)}n∈N,j=1,...,2n+1 ,

iv) the singular values of S are given for all n ∈ {n′ ∈ N | Γn′ 6= 0} by

λn := 4π Γn
(2n+ 1)

√
(2tn + 3)(2n− 1)

Rtn+3/2

rn−1/2 ,

and

v) the closure of the range is given by

ranS = ran T = span {Sn,j(r; ·) | n ∈ {n′ ∈ N | Γn′ 6= 0} , j = 1, . . . , 2n+ 1}.

Eventually, we obtain the SVD of the scalar continuous VLI operator S, that is

SF =
∞∑
n=1

Γn 6=0

2n+1∑
j=1

λn〈F,G0,n,j(R; ·)〉L2(BR)Sn,j(r; ·).

The Fourier series of the unique best-approximate solution F+ of SF = V is given by

F+ =
∞∑
n=1

Γn 6=0

2n+1∑
j=1

λ−1
n 〈V, Sn,j(r; ·)〉L2(Bext

r )G0,n,j(R; ·).
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In Section 12.3, we consider additional uniqueness constraints for the vector-valued equation.
Now, we want to transfer these constraints to the scalar-valued case. The additional radial
uniqueness constraints for certain scalar integral equations have already been published by
the author in [147, 162]. The results are summed up in the next corollary. For this purpose,
we restrict ourselves to a similar setting as in Section 12.3, where we state conditions for
the existence of a solution in Assumption 12.15. Now, let these assumptions also hold true
for the scalar continuous/star-shaped VLI equation. With the same argumentation as in
Section 12.3, we assume that Gout := Bext

r and γn(y) := Γny−(n+1) for all n ∈ N0, where the
sequence has to fulfil the polynomial growth condition (n 7→ |Γn|) ∈ O(nM ) for fixed M ∈ N0.
Note that Corollary 14.8 is used for this argumentation. In addition, the next result is an
immediate consequence of Corollary 14.8 for this particular setting.

Corollary 14.13. Let S be a scalar continuous/star-shaped VLI operator. Let, in addition,
Gout := Bext

r and γn(y) := Γny−(n+1) for all n ∈ N0 be given, where the sequence {Γn}n∈N0

has to fulfil the polynomial growth condition. Then, for the potential V = SF , the following
holds true:

V ∧(n, j) = 4π Γn
(2n+ 1)

√
2tn + 3

Rtn+3/2

rn
F∧(0, n, j),

V ∧(n, j) = 4π Γn
2n+ 1

1
rn

∫ R

0
Fn,j(x)xtn+2 dx

for all n ∈ N0, j = 1, . . . , 2n+ 1, where the density F ∈ L2(BR) satisfies

F (x) L2(BR)=
∞∑
n=0

2n+1∑
j=1

Fn,j(x)Yn,j(x̂) (14.7a)

L2(BR)=
∞∑
m=0

∞∑
n=0

2n+1∑
j=1

F∧(m,n, j)Gm,n,j(R; ·). (14.7b)

If Γn 6= 0 for all n ∈ N0, only additional radial constraints are necessary for the scalar-
valued case. If certain degrees are vanishing in the latter expansion of F and if Γn = 0 for
particular values of n ∈ N0, then also angular constraints can be required.
In this chapter, we only consider radial uniqueness constraints, which are meaningful in

the scalar-valued case as well as in the vector-valued case. For this purpose, we consider the
auxiliary function Dn,j defined in Eq. (12.11) and add another case to it, that is

Dn,j :=


Fn,j in the scalar-valued case for all n ∈ N0, j = 1, . . . , 2n+ 1,
f (ι)
n,j in the vector-valued case for all n ∈ N0i , j = 1, . . . , 2n+ 1,

0 in the vector-valued case for all i = 2, 3, and (n, j) = (0, 1).

With this abbreviation and the observation that the result in Corollary 14.13 is similar to
the one in Eq. (12.9), Lemma 12.16 immediately holds true for the scalar-valued case.
Finally, we can analyze the problems of Example 14.4 more precisely. We are mainly

interested in the two medical imaging examples because they correspond to the main problem
of magneto-electroencephalography.

Example 14.14. By means of the results achieved in this chapter, we can solve the two
examples directly. Here, the radius of the ball modelling the cerebrum is given by %0 and the
potentials are measured on S%L.
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i) The inverse MEG problem by means of the Hodge decomposition yields an integral equa-
tion, see Theorem 15.3, that fits into our general setting. Here, γn(y) := n/(4π)y−(n+1)

and tn := n − 1 for all n ∈ N0. The magnetic potential V is expandable into outer
harmonics since it is the unique solution of the EDP. Thus, we obtain with Eq. (14.6)
the relation

V ∧(n, j) = n

2n+ 1
1
%nL

∫ %0

0
xn+1Fn,j(x) dx

= n

√
%0

(2n+ 1)3

(
%0
%L

)n
F∧(0, n, j).

ii) The homogeneous inverse EEG problem restricted onto the sphere S%L by means of
the Helmholtz decomposition, see Lemma 15.22 and Example 6.11, can also be solved
with this approach. In this case, γn(y) := (2n+ 1)/(4πσ0n)y−(n+1) and tn := n for all
n ∈ N, Γ0 = t0 = 0, and D := ∆Ψ. Thus, we calculate the Fourier coefficients of the
electric potential uL for all n ∈ N and j = 1, . . . , 2n+ 1 as

u ∧L (n, j) = 1
nσ0

√
%3

0
2n+ 3

(
%0
%L

)n
D∧(0, n, j)

and u ∧L (0, 1) = 0. Of course, in this particular case, we expand the potential in outer
harmonics with respect to the surface S%L. This yields the additional damping factor
(%0/%L)n for all n ∈ N. Thus, we obtain a relation between the coefficients of uL and D.
However, we are interested in a relation between the electric potential and the function
Ψ. For this purpose, Poisson’s equation D := ∆Ψ with adequate boundary conditions
remains to be solved. In order to avoid this, another approach for the solution of the
(homogeneous) inverse EEG problem is presented in [71, Prop. 4.1] and will be repeated
in Theorem 15.23.

Finally, the famous inverse gravimetric problem discussed in detail in [161] and summarized
in [160] is also covered by this approach. We include these results in our setting and collect
them in the next example.

Example 14.15 (Inverse Gravimetric Problem – Part II). The problem consists in
finding the mass density distribution % inside the Earth given the gravitational potential V
via the integral equation

V (y) = (S|SrF )(y) = γ

∫
Gin

%(x)
|x− y| dx, y ∈ Sr,

see Example 14.3. The gravitational potential V is a harmonic function in Gout that is
regular at infinity, see Lemma 8.9. The formula for the Fourier coefficients of V is given by

V ∧(n, j) = γ

√
R3

2n+ 3
4π

2n+ 1

(
R

r

)n
〈F,G0,n,j(R; ·)〉L2(BR)

= 4πγ
2n+ 1

1
rn

∫ R

0
Fn,j(x)xn+2 dx,

see also [23, 24, 147, 154, 160–162, 168, 189, 196]. Sometimes, the coefficients V ∧(n, j) are
called Stoke’s coefficients, see, for instance, [26, 30] and the references therein. Obviously,
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(a) PREM density (b) PREM density disturbed by Fdist

Figure 14.1: The PREM model and its disturbance generate the same gravitational potential
S|Sr(FPREM) since Fdist is contained in the null space of S|Sr . Both are plotted on a plane
inside the Earth, see also [147].

the corresponding singular values of the operator S|Sr are exponentially decreasing, which
implies the severe (exponential) ill-posedness of the inverse problem. This damping factor is
often associated with the downward continuation of the satellite data onto the Earth’s surface.
The null space of the operator is given by

kerS|Sr = span {Gm,n,j(R; ·) | m ∈ N, n ∈ N0, j = 1, . . . , 2n+ 1}.

Only the functions

G0,n,j(R;x) = Q
(n+1/2)
0 (R;x)Yn,j(x̂) = GI

0,n,j(R;x) =
√

2n+ 3
R3

(
x

R

)n
Yn,j(x̂),

which are harmonic, are not in the null space of the operator

kerS|Sr =
{
F ∈ C2(BR)

∣∣∣ ∆F = 0
}
⊥,

see Corollary 14.10. Thus, the inverse problem does not have a unique solution or density,
respectively. The non-uniqueness of the density is comprehensively discussed in the literature,
see [13, 14, 16, 154, 161, 188, 204, 206]. For example, let FPREM be the Earth’s density obtained
by the PREM model, see [60], plotted in Fig. 14.1. Let the disturbance Fdist be a linear
combination of orthonormal basis functions Gm,n,j(R; ·) with m ∈ N, n ∈ N0, j = 1, . . . , 2n+1
and arbitrary mounting points zl ∈ BR for all l = 1, 2, 3, more precisely

Fdist(x) :=
3∑
l=1

100∑
n=0

2n+1∑
j=1

(0.95)1+nG1,n,j(R;x)G1,n,j(R; zl), x ∈ BR.

Then the potential generated by FPREM coincides with S|Sr(FPREM + Fdist).

198



By means of the best-approximate solution F+, we immediately obtain that the harmonic
solution of the inverse gravimetric problem is the best-approximate solution, that is

F+(y) = 1
4πγ

∞∑
n=0

2n+1∑
j=1

√
2n+ 3
R3 (2n+ 1)

(
r

R

)n
V ∧(n, j)G0,n,j(R;y)

provided that Picard’s criterion is fulfilled. Due to Kaula’s (empirical) rule of thumb

2n+1∑
j=1

V ∧(n, j)2 ∈ O(qn+1n−3) (as n→∞)

for a constant q ∈ (0, 1] related to the Bjerhammar sphere, Picard’s criterion is satisfied,
see [134, 199]. Hence, the harmonic solution coincides with the minimum norm solution.
Certain satellite missions using satellite-to-satellite tracking like CHAMP and GRACE [132],
or SGG yield data from which derivatives can be derived, such as the negative first radial
derivative of the gravitational potential. The gradient of the gravitational potential is given
via Eq. (5.15), Theorem 7.26, and Lemma 14.6 by

∇y((SF )(y)) = −4πγ
∞∑
n=0

2n+1∑
j=1

√
(n+ 1)R3

(2n+ 1)(2n+ 3)F
∧(0, n, j) R

n

yn+2 ỹ
(1)
n,j(y).

This result is also stated in [156], where a linear combination of the Morse-Feshbach vector
spherical harmonics is used instead of the Edmonds vector spherical harmonics. A similar
result concerning ŷ ·∇y((SF )(y)) can also be found in [155].
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Chapter 15.

Previous Scalar Approaches for the
Magneto-encephalography Problem

In this chapter, we present other decomposition approaches for the MEG and EEG problem
that have been extensively discussed in the literature, see, for instance, [47, 48, 50, 71–75].
We compare these approaches with the Edmonds approach pursued in this thesis in order to
give a broad overview of the magneto-electroencephalography problem. We also discuss the
advantages and disadvantages of the Edmonds ansatz in comparison to the other approaches.

Almost all of these approaches lead to scalar continuous/star-shaped VLI equations, such
that the previous chapter will help us to handle these integral equations.

15.1. Hodge Decomposition

In many other works considering the magnetoencephalography problem, the Hodge decom-
position of the current JP is used instead of the Edmonds expansion, see, for example,
[47, 71–75]. It is given by

JP(x) = Jr(x)x̂+ 1
x

(∇∗x̂G(x) +L∗x̂F (x)) , x ∈ B%0 \ {0} . (15.1)

Here, Jr, G, F : B%0 → R are scalar-valued functions on the ball. The Hodge decomposition
is unique, up to additional constants for G and F , see [75], and is named after W.V.D. Hodge,
because the Hodge star operator is used for its derivation. Sometimes, this spherical
decomposition is named after Hansen because the idea is based on the classical Hansen
decomposition, see [111, 112, 205]. Here, we stick to the mainly used nomenclature and call
the decomposition in Eq. (15.1) the Hodge decomposition. In order to solve the magneto-
electroencephalography problem, we need some assumptions on the scalar-valued functions.
These are in fact stronger conditions on the neuronal current than those required for the
Edmonds approach, which is a disadvantage of the Hodge decomposition.

Assumption 15.1. Let Jr, G, F : B%0 → R be scalar-valued functions with Jr ∈ L2(B%0)
and G, F ∈ C1(B%0). In addition, let a similar normalization assumption as in Theorem 5.19
be fulfilled, that is ∫

S
G(x) dω(x̂) =

∫
S
F (x) dω(x̂) = 0.

Since B%0 ⊂ R3 is compact, we immediately conclude that the neuronal current is an
L2(BR)-function. The possible singularity at the origin occurring in Eq. (15.1) vanishes
by means of the Jacobian determinant for spherical coordinates. Due to the normalization
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assumption, we indeed obtain a unique Hodge decomposition. For the angular functions G
and F , we obtain with the abbreviation H ∈ {F,G} the expansion

H(x)
L2(B%0 )

=
∞∑
n=0

2n+1∑
j=1

Hn,j(x)Yn,j(x̂).

In addition, with Eq. (2.11), we obtain for almost all x ∈ [0, %0] the identity

0 =
∫
S
H(x) dω(x̂)

=
√

4π
∫
S

∞∑
n=0

2n+1∑
j=1

Hn,j(x)Yn,j(x̂)Y0,1(x̂) dω(x̂)

=
√

4πH0,1(x).

15.1.1. Hodge Decomposition for MEG

Especially for the MEG problem, the Hodge decomposition has some advantages. Here, we
use the Hodge decomposition in combination with the multiple-shell model, whereas it is
used in [47, 71–75] for the three-shell model. Inserting the Hodge decomposition presented
in Eq. (15.1) into the formula for the magnetic potential U , see Problem 9.1, we get for all
y ∈ Bext

%L
the identity

U(y) =
∫
B%0

(
Jr(x)x̂+ 1

x
(∇∗x̂G(x) +L∗x̂F (x))

)
· kM(x,y) dx. (15.2)

Due to Eq. (2.6a), the summand depending on Jr vanishes. Applying Eq. (2.9a) to the first
summand and, vice versa, applying Eq. (2.9b) to the second summand, we obtain

U(y) = −
∫
B%0

1
x
G(x)∇∗x̂ · kM(x,y) dx

− 1
4π

∫
B%0

(
L∗x̂ ·L∗x̂

(1
x
F (x)

))( ∞∑
k=1

xk

(k + 1)yk+1Pk(x̂ · ŷ)
)

dx. (15.3)

Note that the integral kernel is sufficiently smooth, which is proved in Theorem 6.22. From
this theorem, we also obtain that the first integral vanishes. Obviously, Assumption 15.1 is
not sufficient for this calculation. This is the reason why we need to assume a higher order
of smoothness, that is F ∈ C2(B%0). Now, we apply Theorem 2.16 to the integrand and
eventually obtain for all y ∈ Bext

%L
the magnetic potential

U(y) = − 1
4π

∫
B%0

(∆∗x̂F (x))
∞∑
k=1

xk−1

(k + 1)yk+1Pk(x̂ · ŷ) dx. (15.4)

This is a slight improvement of the results in [73] because we prove that the zeroth summand
of the kernel does not contribute to the magnetic potential, and, hence, we can neglect the
singularity of the integral kernel at the origin that occurs otherwise.

An advantage of this approach, in the case of the inverse MEG problem, is the reduction
of the vector-valued problem into a scalar-valued one, see Eq. (15.4), which may significantly
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reduce the computational costs. In addition, we can immediately see that the parts of the
current depending on Jr and G are invisible to the magnetoencephalograph. Hence, only the
function F contributes to the magnetic field and potential. A similar result is also obtained
by [72, Eq. (7)], [73], and [162]. It is restated in the next lemma.

Lemma 15.2 (Hodge Decomposition for MEG, [73, Thm. 2.1]). Let the functions
of the Hodge decomposition in Eq. (15.1) fulfil Assumption 15.1. In addition, let the function
F ∈ C2(B%0) be given by the L2(B%0)-convergent series

F (x)
L2(B%0 )

=
∞∑
n=0

2n+1∑
j=1

Fn,j(x)Yn,j(x̂), (15.5)

where the summability condition

∞∑
n=0

2n+1∑
j=1
|Fn,j(x)|n3+ε <∞

for some ε > 0 and for all x ∈ [0, %0] is satisfied. Then for y ∈ Bext
%L

the magnetic potential
is given by

U(y) = − 1
4π

∫
B%0

(∆∗x̂F (x))
∞∑
k=1

xk−1

(k + 1)yk+1Pk(x̂ · ŷ) dx.

In addition, if the magnetic potential is represented by

U(y)
L2(Bext

%L
)

=
∞∑
n=0

2n+1∑
j=1

V ∧(n, j) 1
yn+1Yn,j(ŷ),

then for all n ∈ N, j = 1, . . . , 2n+ 1 the following relations hold true:

(2n+ 1)V ∧(n, j) = n

∫ %0

0
Fn,j(x)xn+1 dx (15.6)

and V ∧(0, 1) = 0.

The summability condition implies Picard’s criterion, but we later see that the summability
condition is unnecessarily strong. The assumption F ∈ C2(B%0) obviously implies F ∈ L2(B%0).
By means of the proof in Theorem 7.26, we immediately obtain the stated spherical harmonics
expansion of F . Recall that this smoothness condition is required in order to derive Eq. (15.4).
We are able to get rid of this strong smoothness condition by using a novel derivation

of the solution via the Hodge decomposition. We also start with Eq. (15.2) and apply the
same integral theorem stated in Eq. (2.9b) but switch the roles of the function L∗F and the
integral kernel. Thus, for all y ∈ Bext

%L
we get

U(y) = − 1
4π

∫
B%0

1
x
F (x)

(
L∗x̂ ·L∗x̂

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ)
)

dx

= − 1
4π

∫
B%0

1
x
F (x)

(
∆∗x̂

∞∑
k=1

xk

(k + 1)yk+1Pk(x̂ · ŷ)
)

dx. (15.7)
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The smoothness of the integral kernel is sufficient and has already been proved in Theorem 6.22.
In addition, this theorem provides us with the possibility to interchange the series with
respect to k and the Beltrami operator. The Beltrami operator applied to the Legendre
polynomials is calculated in Eq. (2.14). Combining these thoughts, we get

U(y) = 1
4π

∫
B%0

F (x)
( ∞∑
k=1

kxk−1

yk+1 Pk(x̂ · ŷ)
)

dx, y ∈ Bext
%L
. (15.8)

The problem stated in Eq. (15.8) yields the same solution as given in Lemma 15.2. We
eventually obtain by means of the scalar continuous VLI operator, see Corollary 14.8, an
outer harmonic expansion of U , that is

U(y) =
∞∑
n=0

2n+1∑
j=1

n

2n+ 1

(∫ %0

0
Fn,j(x)xn+1 dx

) 1
yn+1Yn,j(ŷ).

This is exactly the same result as in Lemma 15.2. Note that this series converges uniformly in
Bext
%L

. This novel proof provides us with two advantages. First, a lower order of smoothness of
the function F is required. Second, we can weaken the summability condition. Accordingly,
we can lessen the requirements of Lemma 15.2 and reformulate the statement.

Theorem 15.3. Let the functions of the Hodge decomposition in Eq. (15.1) fulfil Assump-
tion 15.1. Then, for y ∈ Bext

%L
, the magnetic potential is given by

U(y) = − 1
4π

∫
B%0

F (x) ∂
∂x

1
|x− y| dx

= − 1
4π

∫
B%0

F (x)
∞∑
k=1

kxk−1

yk+1 Pk(x̂ · ŷ) dx.

In addition, if the magnetic potential is represented by

U(y)
L2(Bext

%L
)

=
∞∑
n=1

2n+1∑
j=1

V ∧(n, j) 1
yn+1Yn,j(ŷ),

then for all n ∈ N, j = 1, . . . , 2n+ 1 the following relation holds true:

(2n+ 1)V ∧(n, j) = n

∫ %0

0
Fn,j(x)xn+1 dx. (15.9)

The problem of finding a solution F for given magnetic potential U has a solution if

∞∑
n=0

2n+1∑
j=1

n2 sup
x∈[0,R]

|Fn,j(x)|2 <∞ (15.10)

Proof. We have already derived the integral equation containing the series representation
of the integral kernel in Eq. (15.8). The closed representation of the integral kernel via the
Newtonian kernel is given by the term-by-term derivative of Eq. (2.2) and Theorem 6.22.
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The range of the operator is contained in L2(Bext
%L

) for which an orthonormal basis is stated
in Lemma 12.8. Thus, for all n ∈ N and j = 1, . . . , 2n + 1 we need to calculate the inner
product, which is straightforward and not presented here in detail, and obtain

〈U, Sn,j(%L; ·)〉L2(Bext
%L

) =
√

2n− 1V ∧(n, j)%n−1/2
L

∫ ∞
%L

1
y2n dy

= 1√
2n− 1

V ∧(n, j)%−n+1/2
L .

Inserting this combined with Eq. (15.9) into Picard’s criterion, see Tables 13.1 and 13.2, we
get the condition

∞∑
n=1

2n+1∑
j=1

(n+ 1)(2n+ 1)2(2n+ 3)(2n− 1)
n%3

0%L

(
%L
%0

)2n
〈U, Sn,j(%L; ·)〉2L2(Bext

%L
)

=
∞∑
n=1

2n+1∑
j=1

(n+ 1)(2n+ 1)2(2n+ 3)
n

%−2n−3
0 (V ∧(n, j))2

=
∞∑
n=1

2n+1∑
j=1

n(n+ 1)(2n+ 3)%−2n−3
0

(∫ %0

0
Fn,j(x)xn+1 dx

)2
<∞.

Via the estimate (∫ %0

0
Fn,j(x)xn+1 dx

)2
≤
∫ %0

0
(Fn,j(x))2 dx

∫ %0

0
x2n+2 dx

≤ 1
2n+ 3 sup

x∈[0,R]
|Fn,j(x)|2 %2n+4

0 ,

Picard’s criterion is satisfied if the summability condition in Eq. (15.10) is valid.

Now, we prove that the results in Lemma 15.2 or Theorem 15.3, respectively, coincide
with our result from the previous section, which is stated in Theorem 9.4.

Corollary 15.4. With the requirements from Assumption 15.1, we get

(2n+ 1)V ∧(n, j) = n

∫ %0

0
Fn,j(x)xn+1 dx,

⇔ U ∧
%L

(n, j) =
√
n√

n+ 1(2n+ 1)%nL

∫ %0

0
xn+2J (3),~

n,j (x) dx (15.11)

for all n ∈ N, j = 1, . . . , 2n+ 1.

Proof. First, we calculate J (3),~
n,j for all n ∈ N, j = 1, . . . , 2n+ 1 and for almost all x ∈ (0, %0]

by means of the Hodge decomposition in Eq. (15.1), that is

J (3),~
n,j (x) =

〈
JP(x·), ỹ(3)

n,j

〉
L2(S)

= −1
x

1√
n(n+ 1)

∫
S
F (x)∆∗x̂Yn,j(x̂) dω(x̂)

=
√
n(n+ 1)
x

Fn,j(x). (15.12)
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Here, we used Eq. (2.6a) and Corollary 2.21 in the first step and Lemma 2.23 and the
definition of Fn,j for all n ∈ N, j = 1, . . . , 2n + 1 in the last step. Since we use a slightly
different expansion for the magnetic potential than in [72], we need to transform the related
coefficients. The corresponding representation of the magnetic potential is given by

U(y)
L2(Bext

%L
)

=
∞∑
n=1

2n+1∑
j=1

V ∧(n, j) 1
%nL

%nL
yn+1Yn,j(ŷ).

Comparing this formula with the outer harmonic expansion from Theorem 9.4, we get
U ∧%L (n, j) = V ∧(n, j)%−nL . Inserting the representations of V ∧(n, j) and Fn,j for all n ∈ N,
j = 1, . . . , 2n+ 1 into Eq. (15.6), we get the desired result.

Note that with Eq. (15.12) a one-to-one relation between J (3),~
n,j and Fn,j is given for almost

all x ∈ (0, %0] and all n ∈ N, j = 1, . . . , 2n+ 1.
For the sake of completeness, we state the relation between the vector outer harmonics

coefficients of type 1 of the magnetic field B and the spherical harmonics coefficients of the
function F .

Corollary 15.5. Let the magnetic field B be given as in Theorem 9.4. Let Assumption 15.1
be fulfilled. Then

B ∧
%L

(n, j) = −µ0n

%n+1
L

√
n+ 1
2n+ 1

∫ %0

0
Fn,j(x)xn+1 dx (15.13)

holds true for all n ∈ N, j = 1, . . . , 2n+ 1 and B ∧
%L

(0, 1) = 0.

Proof. The identity can easily be seen by inserting Eq. (15.12) into the representation from
Theorem 9.4.

We directly see that the Hodge decomposition is as good as the Edmonds approach in
the context of uniqueness results. In both cases, there exist infinitely many choices for
the integrands x 7→ Fn,j(x)xn+1 and x 7→ J (3),~

n,j (x)xn+2, respectively, in order to satisfy
Eq. (15.13) if the coefficients B ∧

%L
(n, j) are given for all n ∈ N, j = 1, . . . , 2n+ 1.

15.1.2. Hodge Decomposition for EEG

To the knowledge of the author, the Hodge decomposition has not been used for solving the
inverse EEG problem so far. One possible reason is that the electric potential uL on the
scalp would then depend on a linear combination of Jr and G.

From Eq. (10.1), a continuous/star-shaped VLI equation of the electric potential is known.
Therein, we insert the Hodge decomposition of the neuronal current from Eq. (15.1). For the
next calculation, we use an appropriate representation of the integral kernel from Eq. (6.5).
We split the gradient by means of spherical coordinates, see Theorem 2.14, and use the
orthogonality results in Eq. (2.6) in order to simplify the formula. The integral identity in
Eq. (2.9) combined with properties of the Legendre polynomials in Eq. (2.14) yields for all
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y ∈ S[%L−1,%L] the result

uL(y) =
∫
B%0

(
Jr(x)x̂+ 1

x
(∇∗x̂G(x) +L∗x̂F (x))

)
· kE(x,y) dx

= 1
4π

∫
B%0

Jr(x) ∂
∂x

( ∞∑
k=1

(2k + 1)Hk(y)xkPk(x̂ · ŷ)
)

dx

+ 1
4π

∫
B%0

1
x2∇

∗
x̂G(x) ·∇∗x̂

( ∞∑
k=1

(2k + 1)Hk(y)xkPk(x̂ · ŷ)
)

dx

= 1
4π

∫
B%0

Jr(x)
( ∞∑
k=1

(2k + 1)kHk(y)xk−1Pk(x̂ · ŷ)
)

dx

+ 1
4π

∫
B%0

G(x)
( ∞∑
k=1

(2k + 1)k(k + 1)Hk(y)xk−2Pk(x̂ · ŷ)
)

dx. (15.14)

In analogy to the MEG case, the integrand reduces to a scalar-valued one. In contrast, we
obtain two different scalar star-shaped VLI kernels depending on different components of the
neuronal current. Thus, we cannot separate the parts of the electric potential generated by
Jr from the parts generated by G. A result that is similar to the next is stated in [52] for
the homogeneous spherical head model.

Theorem 15.6. Let JP fulfil Assumption 15.1 and be represented by means of the Hodge
decomposition. In addition, let the electric potential uL be represented by the in S[%L−1,%L]
uniformly convergent series

uL(y) =
∞∑
n=0

2n+1∑
j=1

u ∧L (n, j)
(
n+ 1
2n+ 1

(
y

%L

)2n+1
+ n

2n+ 1

)(
%L
y

)n 1
y
Yn,j(ŷ). (15.15)

Then the relation between the outer harmonics coefficients of the electric potential and the
current is given by u ∧L (0, 1) = 0 and for all n ∈ N, j = 1, . . . , 2n+ 1 by

u ∧L (n, j) =
(∫ %0

0

(
xJrn,j(x) + (n+ 1)Gn,j(x)

)
xn dx

) (2n+ 1)β(L)
n

%nL
. (15.16)

Proof. We start with Eq. (15.14). We define γn(y) := 1
4π (2n+ 1)nHn(y) and tn := n− 1 for

all n ∈ N. Furthermore, we set γ0 ≡ 0. Consequently, the zeroth summand vanishes and the
sequence of exponents fulfils infn∈N,γn 6≡0 tn ≥ −1. Then, Corollary 14.8 yields for the first
integral the expression

∞∑
n=1

2n+1∑
j=1

(∫ %0

0
Jrn,j(x)xn+1 dx

)
nHn(y)Yn,j(ŷ).

For the second integral, we analogously define γ0 ≡ 0, γn(y) := 1
4π (2n+ 1)n(n+ 1)Hn(y) and

tn := n− 2. We obtain infn∈N,γn 6≡0 tn ≥ −1 and

∞∑
n=1

2n+1∑
j=1

(∫ %0

0
Gn,j(x)xn dx

)
n(n+ 1)Hn(y)Yn,j(ŷ).
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Combining these results, we get

uL(y) =
∞∑
n=1

2n+1∑
j=1

(∫ %0

0

(
xJrn,j(x) + (n+ 1)Gn,j(x)

)
xn dx

)
nHn(y)Yn,j(ŷ).

Together with u ∧L (n, j) = 〈uL|S%L ,
1
%L
Yn,j〉Z and the representation of the functions Hn in

Eq. (4.20), we arrive at the desired result.

Theorem 15.7. Let JP decomposed by means of the Hodge decomposition fulfil Assump-
tion 15.1. Then the representation of the electric potential from Theorem 15.6 coincides with
the one obtained by the Edmonds approach presented in Theorem 10.4.

Proof. From Theorem 10.4, we obtain

u ∧L (n, j) = 1
%nL

√
(2n+ 1)3

n
β(L)
n

∫ %0

0
J (2),~
n,j (x)xn+1 dx.

First, we calculate J (2),~
n,j by means of the Hodge decomposition. For almost all x ∈ (0, %0]

and all n ∈ N and j = 1, . . . , 2n+ 1, we get the expression

J (2),~
n,j (x) =

∫
S

(
Jr(x)x̂+ 1

x
(∇∗x̂G(x) +L∗x̂F (x))

)
· ỹ(2)

n,j(x̂) dω(x̂).

Note that for all n ∈ N, j = 1, . . . , 2n+ 1 the Edmonds vector spherical harmonics of type 2
are defined by

ỹ(2)
n,j :=

√
n

2n+ 1y
(1)
n,j +

√
n+ 1
2n+ 1y

(2)
n,j ,

see Eq. (5.4b). Hence, we split the integral into two parts. For calculating both integrals, we
use the orthogonality relations from Eq. (2.6) and Corollary 2.21. The first part is given by∫

S

(
Jr(x)x̂+ 1

x
(∇∗x̂G(x) +L∗x̂F (x))

)
· y(1)

n,j(x̂) dω(x̂)

=
∫
S
Jr(x)x̂ · x̂Yn,j(x̂) dω(x̂)

= Jrn,j(x).

For the second part, we get with Theorem 2.16 and Lemma 2.23 the identity∫
S

(
Jr(x)x̂+ 1

x
(∇∗x̂G(x) +L∗x̂F (x))

)
· y(2)

n,j(x̂) dω(x̂)

= 1
x
√
n(n+ 1)

∫
S

(∇∗x̂G(x)) ·∇∗x̂Yn,j(x̂) dω(x̂)

=
√
n(n+ 1)
x

∫
S
G(x)Yn,j(x̂) dω(x̂)

= 1
x

√
n(n+ 1)Gn,j(x).
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Combining these results, we get for all n ∈ N, j = 1, . . . , 2n+ 1 the relation

J (2),~
n,j (x) =

√
n

2n+ 1

(
Jrn,j(x) + n+ 1

x
Gn,j(x)

)
for almost all x ∈ (0, %0].

Inserting this into the previously stated representation of u ∧L (n, j), we get the same repres-
entation as in Theorem 15.6, that is

u ∧L (n, j) = 1
%nL

(2n+ 1)β(L)
n

∫ %0

0

(
Jrn,j(x) + n+ 1

x
Gn,j(x)

)
xn+1 dx.

Thus, if the functions Jrn,j and Gn,j are given, we can uniquely determine the functions
J (2),~
n,j for all n ∈ N, j = 1, . . . , 2n+ 1 but not vice versa.
Now, we summarize the results obtained by the Hodge decomposition. We see that the use

of this decomposition for the magneto-electroencephalography problem has some advantages
and disadvantages. In both cases, the vector-valued integral operators reduce to scalar-valued
problems, see Lemma 15.2 and Eq. (15.14). This has an advantage in numerical calculations.

In the case of the MEG problem, we are able to weaken the existing assumptions for this
decomposition, which is advantageous since the real smoothness of the neuronal current
is unknown so far. By means of this improvement, this approach yields a result that is
comparable to the result obtained by the Edmonds approach in the context of the uniqueness
considerations. However, for the Edmonds approach we still need less smoothness than
required for the Hodge decomposition.
In the case of the EEG problem, we see that the Hodge decomposition is not as suitable

as the Edmonds approach. The outer harmonics coefficients of the electric potential uL
depend on the spherical harmonics coefficients of Jr and G. Hence, infinitely many different
combinations of these two functions can generate the same electric potential. Accordingly,
the Hodge decomposition is not the first choice decomposition for solving the inverse EEG
problem.

15.2. Morse-Feshbach Vector Approach

The aim of the inverse MEG and EEG problem is a vector-valued reconstruction of the
neuronal current. Hence, only a decomposition of the neuronal current by means of vector-
valued functions yields a direct reconstruction of the current without additional computations.
A possible decomposition is provided by the Morse-Feshbach expansion, which is introduced
in Assumption 7.14. In this setting, the current JP ∈ L2(B%0) has the unique Morse-Feshbach
expansion

JP(x)
L2(B%0 )

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

J (i)
n,j(x)y(i)

n,j(x̂), (15.17)

see Theorem 5.15. A similar decomposition is used in [47, 48] for the reconstruction of the
neuronal current from given values of the magnetic and electric potential. Therein, complex
scalar-valued spherical harmonics are used as a foundation for the Morse-Feshbach vector
spherical harmonics. Based on the definition of the (Edmonds vector) spherical harmonics,
see Definitions 2.22 and 5.9, we can use the real as well as the complex spherical harmonics
for the Edmonds approach. However, in the case of complex spherical harmonics, the used
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R3-inner products must be replaced by C3-inner products. Since the neuronal current is a
real and not a complex current, we stick to the real version of the Morse-Feshbach vector
spherical harmonics.

For the sake of comparability, we need to mention that in [48] a non-normalized version of
the vector spherical harmonics is used. The factor occurring therein (i.e. 4π(n+ j)!/((2n+
1)(n − j)!) with n ∈ N0, j = 1, . . . , 2n + 1) draws through to their result for the Fourier
coefficients.

15.2.1. Morse-Feshbach Approach for MEG

In Chapter 9, we derive a relation between the magnetic field and the neuronal current by
means of the Edmonds approach. We know that only the direction of the neuronal current
belonging to type i = 3 of the Edmonds vector spherical harmonics is not silent for the
magnetoencephalograph, see Theorem 13.1. Due to the definition of the Morse-Feshbach and
Edmonds vector spherical harmonics, see Definitions 5.8 and 5.9, we also know that the type
i = 3 functions of both systems coincide. Eventually, the Edmonds and the Morse-Feshbach
approach are the same for the MEG problem. This has already been mentioned in Remark 9.3.
Both results are comparable with the one in [47, 48] keeping the different normalization factor
in mind.

15.2.2. Morse-Feshbach Approach for EEG

In [48], the complex Morse-Feshbach vector spherical harmonics are also used for the EEG
problem, but only for the homogeneous case. This special case is discussed in Examples 6.11
and 13.4. Keep in mind that in this case the coefficients β(L)

n are given by β(L)
0 = 0 and for

all n ∈ N by

β(L)
n = 1

σ0(2n+ 1) . (15.18)

In addition, in [48] the scalp is only modelled by the sphere S%L . Note that in this reference
a slightly different expansion of the electric potential is used. Their result is summarized in
the next theorem.

Theorem 15.8 ([48, Ch. 5]). Let Assumption 3.2 be fulfilled with constant conductivity
σ0 on each region, that is the homogeneous case. Let the electric potential on the scalp be
given by the L2(S)-convergent series

uL(%Lŷ) L2(S)=
∞∑
n=1

2n+1∑
j=1

v∧(n, j) 1
σ0%

n+1
L

Yn,j(ŷ).

Then for all n ∈ N, j = 1, . . . , 2n+ 1 we get

v∧(n, j) =
∫ %0

0

(
J (1)
n,j(x) +

√
n+ 1
n

J (2)
n,j(x)

)
xn+1 dx.

Now, we can formulate a generalization of this statement. For this purpose, we consider
our case of the multiple-shell model with different constant conductivities on each shell, that
is the inhomogeneous case. Furthermore, we do not restrict the electric potential onto S%L .
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Theorem 15.9. Let Assumption 3.2 with L ≥ 2 be satisfied and let the electric potential on
the scalp be given by means of the Fourier expansion with respect to the orthonormal basis
from Lemma 13.2, that is

uL =
∞∑
n=0

2n+1∑
j=1

u ∧L (n, j)Zn,j .

For all n ∈ N, j = 1, . . . , 2n+ 1 the following relations hold true:

u ∧L (n, j) = 1
%nL

(2n+ 1)β(L)
n

∫ %0

0

(
J (1)
n,j(x) +

√
n+ 1
n

J (2)
n,j(x)

)
xn+1 dx (15.19)

and u ∧L (0, 1) = 0.

Proof. Due to the assumption on JP, the current can be expanded as in Eq. (15.17). From
Theorem 10.4, u ∧L (0, 1) = 0 and a relation between the coefficients u ∧L (n, j) and the Edmonds
coefficients J (2),~

n,j is known for all n ∈ N, j = 1, . . . , 2n + 1. Thus, we calculate J (2),~
n,j in

terms of the Morse-Feshbach coefficients J (1)
n,j and J (2)

n,j . We directly obtain for all n ∈ N,
j = 1, . . . , 2n+ 1 the relation

J (2),~
n,j (x) =

∫
S
JP(x) · ỹ(2)

n,j(x̂) dω(x̂)

=
3∑
i=1

∞∑
k=0i

2k+1∑
l=1

J (i)
k,l(x)

∫
S
y(i)
k,l(x̂) ·

(√
n

2n+ 1y
(1)
n,j(x̂) +

√
n+ 1
2n+ 1y

(2)
n,j(x̂)

)
dω(x̂)

=
√

n

2n+ 1J
(1)
n,j(x) +

√
n+ 1
2n+ 1J

(2)
n,j(x). (15.20)

The interchanging of the series and the integration is allowed due to the strong convergence
of the series in Eq. (15.17). Inserting this into Theorem 10.4, we arrive for all n ∈ N,
j = 1, . . . , 2n+ 1 at

u ∧L (n, j) = 1
%nL

2n+ 1√
n

β(L)
n

∫ %0

0

(√
nJ (1)

n,j(x) +
√
n+ 1J (2)

n,j(x)
)
xn+1 dx.

We continue by restricting our result from Theorem 15.9 to the sphere S%L in order to
obtain a comparable solution. We immediately gain the following corollary.

Corollary 15.10. The result from Theorem 15.9 coincides in the homogeneous case with
the result in [48] repeated in Theorem 15.8.

Proof. The restriction of the electric potential onto the sphere S%L yields, by means of
Theorem 10.4, for all n ∈ N, j = 1, . . . , 2n+ 1 the expansion

uL(%Lŷ) =
∞∑
n=1

2n+1∑
j=1

u ∧L (n, j) 1
%L
Yn,j(ŷ), ŷ ∈ S.

In addition, Theorem 15.9 provides us with

u ∧L (n, j) = 1
%nL

(2n+ 1)β(L)
n

∫ %0

0

(
J (1)
n,j(x) +

√
n+ 1
n

J (2)
n,j(x)

)
xn+1 dx
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and u ∧L (0, 1) = 0. Since we consider the homogeneous case, we obtain with Eq. (15.18) the
relation

u ∧L (n, j) = 1
σ0%nL

∫ %0

0

(
J (1)
n,j(x) +

√
n+ 1
n

J (2)
n,j(x)

)
xn+1 dx. (15.21)

With our notation, we get u ∧L (n, j) = v∧(n, j)σ−1
0 %−nL . Accordingly,

v∧(n, j) =
∫ %0

0

(
J (1)
n,j(x) +

√
n+ 1
n

J (2)
n,j(x)

)
xn+1 dx.

Eventually, the result in Theorem 15.8 coincides with the one in Theorem 15.9.

Thus, we come to the conclusion that the Morse-Feshbach approach is as good as the
Edmonds approach in the case of the MEG problem. Both provide us with the same
appropriate decomposition because they separate the reconstructable direction of the neuronal
current from the directions in the null space of TM.

In contrast, the Morse-Feshbach approach is as inappropriate as the Hodge decomposition
for the inverse EEG problem. The Morse-Feshbach coefficients of the electric potential uL
depend on two radial functions of the neuronal current decomposition. Thus, the part of the
neuronal current reconstructable from electric potential data is in the subspace spanned by
{H (1)

m,n,j(R; ·)y(1)
n,j}m,n∈N0, j=1,...,2n+1 ∪ {H (2)

m,n,j(R; ·)y(2)
n,j}m∈N0,n∈N, j=1,...,2n+1 , where the set

{H (i)
m,n,j(R; ·)}m∈N0,n∈N0i ,j=1,...,2n+1 is a suitable basis for the radial part. The considerable

advantage of the Edmonds approach is a precise characterization of this subspace.

15.3. Helmholtz Representation

Inspired by classical electromagnetism, the Helmholtz decomposition is often used for the
analysis of the inverse EEG problem, see, for instance, [47, 50, 71, 73, 74]. The Helmholtz
decomposition of the current JP ∈ C1(B%0) is given by

JP =∇Ψ +∇ ∧A. (15.22)

The scalar potential Ψ ∈ C2(B%0) is unique up to an additive constant. The induced part
∇Ψ is called the irrotational part. The solenoidal part of the current is given by ∇∧A with
the vector potential A ∈ C2(B%0). If ∇ ·A = 0 and JP(x) ∈ O(x−2) as x→∞, then the
function A is also unique up to an additive constant, see, for instance, [4, 8]. The adjustment
∇ ·A = 0 is sometimes called the Coulomb gauge.
In order to compare this approach with the former ones, we decompose the irrotational

and solenoidal part of the current by means of the o(i)-operators for i = 1, 2, 3. For the
irrotational part, we obtain with Theorem 2.14 the equation

∇xΨ(x) = o(1)
x̂

∂

∂x
Ψ(x) + 1

x
o(2)
x̂ Ψ(x).

For the splitting of the solenoidal part, a few more easy but technical calculations are needed.
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Theorem 15.11. Let the vector potential A ∈ C2(B%0) be represented by

A(x) =
3∑
i=1
o(i)
x̂ A

(i)(x), (15.23)

see Theorem 5.19, then the solenoidal part has the alternative representation

∇x ∧A(x) = 1
x
o(1)
x̂ ∆∗x̂A(3)(x)− o(2)

x̂

(
∂

∂x
+ 1
x

)
A(3)(x)

+ o(3)
x̂

(
−1
x
A(1)(x) +

(
∂

∂x
+ 1
x

)
A(2)(x)

)
.

Proof. For this result, we need to calculate the curl of the vector potential in Eq. (15.23).
Note that this expansion is unique if A(2) and A(3) have no constant parts, see Theorem 5.19.
We start with the first summand. With Lemma 2.18 and x∧x = 0, we get for all x ∈ R3\ {0}
the identity

∇x ∧
(
o(1)
x̂ A

(1)(x)
)

= −1
x
o(3)
x̂ A

(1)(x).

For the second summand, using the definition of the surface curl gradient and Lemma 2.17,
we obtain

∇x ∧
(
o(2)
x̂ A

(2)(x)
)

= o(3)
x̂

∂

∂x
A(2)(x) + 1

x
∇∗x̂ ∧

(
∇∗x̂A(2)(x)

)
= L∗x̂

(
∂

∂x
+ 1
x

)
A(2)(x).

And lastly, for the third summand, we obtain by means of Lemma 2.19 and Eq. (2.5) the
equation

∇x ∧ o(3)
x̂ A

(3)(x) = 1
x
x̂∆∗x̂A(3)(x)−∇∗x̂

(1
x

+ ∂

∂x

)
A(3)(x).

Inserting these calculations into the curl of the vector potential, we obtain the desired
result.

An immediate consequence of Theorem 15.11 is the following representation of the neuronal
current for all x ∈ B%0 \ {0} :

JP(x) = o(1)
x̂

(
∂

∂x
Ψ(x) + 1

x
∆∗x̂A(3)(x)

)
+ o(2)

x̂

(1
x

Ψ(x)−
(
∂

∂x
+ 1
x

)
A(3)(x)

)
+ o(3)

x̂

(
−1
x
A(1)(x) +

(
∂

∂x
+ 1
x

)
A(2)(x)

)
. (15.24)

Now, we further decompose the (scalar-valued) parts of the current into L2(B%0)-convergent
spherical harmonics series.

Assumption 15.12. Let the neuronal current be decomposed by means of the Helmholtz
decomposition, see also Eq. (15.24). In addition, let all parts of the scalar and vector potential
be twice continuously differentiable, that is Ψ ∈ C2(B%0) ⊂ L2(B%0), A(i) ∈ C2(B%0) ⊂ L2(B%0)
for i = 1, 2, 3.
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Due to the square integrability of the particular functions, we can expand them into
spherical harmonics, where we stick to the notation from Eq. (14.3).

Corollary 15.13. Let Assumption 15.12 be satisfied. For all n ∈ N, j = 1, . . . , 2n+ 1, and
x ∈ (0, R], the identities

J (1)
n,j(x) = d

dxΨn,j(x)− n(n+ 1)
x

A(3)
n,j(x),

J (2)
n,j(x) =

√
n(n+ 1)

(1
x

(
Ψn,j(x)−A(3)

n,j(x)
)
− d

dxA
(3)
n,j(x)

)
,

J (3)
n,j(x) =

√
n(n+ 1)

(1
x

(
A(2)
n,j(x)−A(1)

n,j(x)
)

+ d
dxA

(2)
n,j(x)

)
hold true. Furthermore, J (1)

0,1 = Ψ′n,j.

Proof. For all n ∈ N0, j = 1, . . . , 2n + 1, the Morse-Feshbach coefficients of type 1 on the
sphere with radius x ∈ [0, %0] can be calculated with Eq. (2.6) by

J (1)
n,j(x) =

∫
S
JP(x) · y(1)

n,j(x̂) dω(x̂)

=
∫
S

(
∂

∂x
Ψ(x) + 1

x
∆∗x̂A(3)(x)

)
Yn,j(x̂) dω(x̂)

=
∫
S

∂

∂x
Ψ(x)Yn,j(x̂) dω(x̂) + 1

x

∫
S
A(3)(x)∆∗x̂Yn,j(x̂) dω(x̂).

In the last step, Green’s second surface identity for the whole sphere is used, see Theorem 2.20.
In order to calculate the first integral, we interchange the integration and the derivative
with respect to x. The theorem of differentiation under the integral sign, see [19, Cor. 16.3],
provides us with the required tool. The assumptions of this theorem are automatically
fulfilled by Assumption 15.12 and Fubini’s Theorem for Lebesgue-integrals. Thus,

J (1)
n,j(x) = ∂

∂x

∫
S

Ψ(x)Yn,j(x̂) dω(x̂)− n(n+ 1)
x

∫
S
A(3)(x)Yn,j(x̂) dω(x̂)

= d
dxΨn,j(x)− n(n+ 1)

x
A(3)
n,j(x).

For the Morse-Feshbach coefficient of type 2, we obtain for all n ∈ N, j = 1, . . . , 2n+ 1 by
means of Eqs. (2.6) and (2.9) and Corollary 2.21 the identity

J (2)
n,j(x) =

∫
S
JP(x) · y(2)

n,j(x̂) dω(x̂)

=
∫
S
o(2)
x̂

(1
x

Ψ(x)−
(
∂

∂x
+ 1
x

)
A(3)(x)

)
· y(2)

n,j(x̂) dω(x̂)

= − 1√
n(n+ 1)

∫
S

(1
x

Ψ(x)−
(
∂

∂x
+ 1
x

)
A(3)(x)

)
∆∗x̂Yn,j(x̂) dω(x̂)

=
√
n(n+ 1)

(1
x

Ψn,j(x)−
( d

dx + 1
x

)
A(3)
n,j(x)

)
.

The interchanging of the derivative and the integration is valid due to the theorem of
differentiation under the integral sign and the argumentation above. With analogous
calculations and the fact that o(3)Yn,j =

√
n(n+ 1)y(3)

n,j , we obtain the desired result in the
remaining case.
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Since the Helmholtz decomposition is unique by means of the Coulomb gauge, we proceed
by analyzing the gauge condition.

Corollary 15.14. Let Assumption 15.12 hold true. Then the Coulomb gauge ∇ ·A = 0
implies

∆∗x̂A(2)(x) = −
(
x
∂

∂x
+ 2

)
A(1)(x), x ∈ B%0 \ {0} . (15.25)

Consequently, it yields for all n ∈ N, j = 1, . . . , 2n+ 1 the identity

A(2)
n,j(x) = x

n(n+ 1)
d

dxA
(1)
n,j(x) + 2

n(n+ 1)A
(1)
n,j(x).

Proof. With Eqs. (2.4), (2.6), and (2.8), we immediately obtain for all x ∈ B%0 \ {0} the
relation

∇x ·A(x) =
(
x̂
∂

∂x
+ 1
x
∇∗x̂

)
·
(
o(1)
x̂ A

(1)(x) + o(2)
x̂ A

(2)(x) + o(3)
x̂ A

(3)(x)
)

= ∂

∂x
A(1)(x) + 1

x

(
∇∗x̂ ·

(
x̂A(1)(x) +∇∗x̂A(2)(x)

))
= ∂

∂x
A(1)(x) + 1

x

(
2A(1)(x) + ∆∗x̂A(2)(x)

)
= 0.

This is equivalent to the first statement of this corollary. Furthermore, we get with the same
argumentation as in the proof of Corollary 15.13 that∫

S

1
x
A(2)(x)∆∗x̂Yn,j(x̂) dω(x̂) = − ∂

∂x

∫
S
A(1)(x)Yn,j(x̂) dω(x̂)

− 2
x

∫
S
A(1)(x)Yn,j(x̂) dω(x̂)

⇒ −n(n+ 1)
x

A(2)
n,j(x) = − d

dxA
(1)
n,j(x)− 2

x
A(1)
n,j(x)

for all n ∈ N, j = 1, . . . , 2n+ 1. Solving the equation for A(2)
n,j , we obtain the final result.

Thus, due to the fact that A is assumed to be divergence free, we immediately obtain that
∆∗A(2) ∈ C1(B%0) if A(1) ∈ C2(B%0).

As the previous corollary shows, the Coulomb gauge affects only the parts of type 1 and 2
of the vector potential. Combining this result with the one from Corollary 15.13, we see that
the adjustment only affects the MEG reconstructable part of the current JP, see Theorem 9.4.
Hence, for the EEG problem this adjustment is dispensable.

15.3.1. Helmholtz Decomposition for MEG

The Helmholtz decomposition is first used in [50] for the MEG problem and a characterization
of the Fourier coefficients of the magnetic field is given in [71]. By using the adjustment
∇ · A = 0, one can only achieve a relation between the radial component of the vector
potential A of the neuronal current and the magnetic field or magnetic potential, respectively,
see Theorem 15.15.
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First, we present a simplified integral equation for the MEG problem using the Helm-
holtz decomposition. The advantage of this decomposition is then easy to see. The MEG
problem, that is the reconstruction of the neuronal current from given values of the normal
component of the magnetic field, reduces to a scalar-valued problem. The normal component
of the magnetic field only depends on the radial component of the solenoidal part of the
neuronal current. Note that, in this particular case, we observe the radial component y ·B(y)
with respect to the magnetic field at the sensor position y, not the normal component
ν ·B with respect to the sensor surface of the magnetoencephalograph, which is actually
measured. Thus, this approach does not fit as well to the multiple-shell model as the previous
decompositions.

Theorem 15.15. Let the current JP be decomposed by means of Eq. (15.22) under the
Coulomb gauge and let Assumption 15.12 be fulfilled. Then the radial component of the
magnetic field has the representation

y ·B(y) = −µ0
4π

∫
B%0

(
∆x

(
xA(1)(x)

)) 1
|x− y| dx, y ∈ Bext

%L
.

Proof. We introduce an abbreviation for the integral kernel by

KM(x,y) := 1
4π

∞∑
k=1

xk

yk+1(k + 1)Pk(x̂ · ŷ), (x,y) ∈ B%0 × Bext
%L
.

Using the alternative representations of the integral kernel from Eq. (3.4), for the magnetic
potential we get the integral equation

U(y) =
∫
B%0
JP(x) ·L∗x̂KM(x,y) dx.

We insert the representation from Eq. (15.24) into the integrand. Using the orthogonality
relations in Corollary 2.21, Eq. (2.9b) in the first step, and Theorem 2.16 in the second step,
we arrive at the representation

U(y) = −
∫
B%0

(
L∗x̂ ·

(
o(3)
x̂

(
−1
x
A(1)(x) +

(
∂

∂x
+ 1
x

)
A(2)(x)

)))
KM(x,y) dx (15.26)

= −
∫
B%0

∆∗x̂
(
−1
x
A(1)(x) +

(
∂

∂x
+ 1
x

)
A(2)(x)

)
KM(x,y) dx.

Note that, theoretically, we need a higher order of smoothness of A(2) in this case. This is in
fact satisfied with the assumed Coulomb gauge, see Eq. (15.25). In this case, ∆∗A(2) ∈ C1(B%0)
if A(1) ∈ C1(B%0). Inserting this into the previous calculations and using Theorem 2.14, we
obtain for the magnetic potential the expression

U(y) =
∫
B%0

(1
x

∆∗x̂ +
(
∂

∂x
+ 1
x

)(
x
∂

∂x
+ 2

))
A(1)(x)KM(x,y) dx

=
∫
B%0

(
1
x

∆∗x̂ + x
∂2

∂x2 + 4 ∂

∂x
+ 2
x

)
A(1)(x)KM(x,y) dx

=
∫
B%0

(
∆x

(
xA(1)(x)

))
KM(x,y) dx. (15.27)
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For the radial component of the magnetic field, we need to interchange a differential operator
with the integration. This is valid due to Theorem 7.11 combined with Lemma 14.6.
Afterwards, we interchange this differential operator with the series of the integral kernel
due to Theorem 14.5. It follows that

y ·B(y) = µ0y
∂

∂y
U(y)

= −µ0
4π

∫
B%0

(
∆x

(
xA(1)(x)

)) ∞∑
k=1

xk

yk+1Pk(x̂ · ŷ) dx.

Due to Eq. (2.10), the identity in Eq. (15.26) also holds true if the summation of the kernel
KM is started by zero. All further calculations in order to achieve the latter representation
for y ·B(y) are independent of KM. Thus, it holds also true if the summation is started by
k = 0. With the closed representation from Eq. (2.2) of the last series, we obtain the desired
result.

The operator derived in Theorem 15.15 is the one used in [71], where another derivation is
presented. An enhancement of this integral equation for the case that the brain is modelled
by a bounded domain with sufficiently smooth boundary is also stated in [47] but not solved.
In addition, A.S. Fokas proves the following result in [71].

Theorem 15.16 ([71, Prop. 4.1]). Let the current JP be given by the Helmholtz decom-
position in Eq. (15.22) and let Assumption 15.12 be fulfilled. Then the radial component of
the magnetic field has the representation

y ·B(y) = −µ0

∞∑
n=1

2n+1∑
j=1

%n+2
0

2n+ 1

(
%0

dA(1)
n,j

dx (%0)− (n− 1)A(1)
n,j(%0)

)
Yn,j(ŷ)
yn+1 ,

where the series is L2(Bext
%L

)-convergent.

In order to prove that this result coincides with the previous one, we need to calculate the
integral occurring in Theorem 9.4. Differentiating the last identity in Corollary 15.14 with
respect to x, we get

d
dxA

(2)
n,j(x) = 3

n(n+ 1)
d

dxA
(1)
n,j(x) + x

n(n+ 1)
d2

dx2A
(1)
n,j(x).

Inserting these representations into the expression for J (3)
n,j(x)xn+2 from Corollary 15.13, we

obtain the identities

J (3)
n,j(x)xn+2 =

√
n(n+ 1)

(1
x

(
A(2)
n,j(x)−A(1)

n,j(x)
)

+ d
dxA

(2)
n,j(x)

)
xn+2

= xn+2√
n(n+ 1)

(
1
x

(2− n(n+ 1))A(1)
n,j(x) + 4 d

dxA
(1)
n,j(x) + x

d2

dx2A
(1)
n,j(x)

)

= 1√
n(n+ 1)

(
d2

dx2

(
A(1)
n,j(x)xn+3

)
− 2(n+ 1) d

dx
(
A(1)
n,j(x)xn+2

))
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for all n ∈ N, j = 1, . . . , 2n+ 1. Regarding the complete integral, we obtain∫ %0

0
J (3)
n,j(x)xn+2 dx

= 1√
n(n+ 1)

∫ %0

0

d2

dx2

(
A(1)
n,j(x)xn+3

)
− 2(n+ 1) d

dx
(
A(1)
n,j(x)xn+2

)
dx

= 1√
n(n+ 1)

( d
dx
(
A(1)
n,j(x)xn+3

)
− 2(n+ 1)

(
A(1)
n,j(x)xn+2

))∣∣∣∣%0

x=0

= 1√
n(n+ 1)

(
dA(1)

n,j

dx (x)xn+3 − (n− 1)A(1)
n,j(x)xn+2

)∣∣∣∣∣
%0

x=0

= 1√
n(n+ 1)

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)
%n+2

0 . (15.28)

Corollary 15.17. If Assumption 15.12 is satisfied, then the solution of the inverse MEG
problem obtained by the Edmonds approach stated in Theorem 9.4 coincides with the one in
[71], which is repeated in Theorem 15.16.

Proof. From Theorem 9.4, a representation of B ∧
%L

(n, j) given by the vector outer harmonics
expansion is known, that is

B ∧
%L

(n, j) = −µ0

%n+1
L

√
n

2n+ 1

∫ %0

0
J (3)
n,j(x)xn+2 dx.

With the results from Eq. (15.28), we get

B ∧
%L

(n, j) = −µ0%0

√
1

(2n+ 1)(n+ 1)

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)(
%0
%L

)n+1
. (15.29)

Hence,

y ·B(y) =
∞∑
n=1

2n+1∑
j=1

B ∧
%L

(n, j)y · h(1)
n,j(%L;y)

=
∞∑
n=1

2n+1∑
j=1

B ∧
%L

(n, j)y · 1
%L

(
%L
y

)n+2
ỹ(1)
n,j(ŷ)

=
∞∑
n=1

2n+1∑
j=1

B ∧
%L

(n, j) 1
%L

(
%L
y

)n+2
y ·
(√

n+ 1
2n+ 1y

(1)
n,j(ŷ)−

√
n

2n+ 1y
(2)
n,j(ŷ)

)

=
∞∑
n=1

2n+1∑
j=1

B ∧
%L

(n, j)
√
n+ 1
2n+ 1

%n+1
L

yn+1Yn,j(ŷ)

and with Eq. (15.29) we eventually arrive at

y ·B(y) = −µ0

∞∑
n=1

2n+1∑
j=1

1
2n+ 1

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)
%n+2

0
yn+1Yn,j(ŷ).
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For the sake of completeness, we summarize the result for the magnetic potential obtained
via Eq. (9.7), that is

U ∧%L (n, j) = %2
0

(n+ 1)(2n+ 1)

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)(
%0
%L

)n
(15.30)

for all n ∈ N, j = 1, . . . , 2n+ 1.
Now, we are able to generalize this result. We analyze the normal component of the

magnetic field with respect to the sensor surface, that is ν ·B, with the aid of the results
from the Edmonds approach. Starting with Eq. (15.29), we immediately obtain

ν(y) ·B(y) =
∞∑
n=1

2n+1∑
j=1

B ∧
%L

(n, j)ν(y) · h(1)
n,j(%L;y)

= −µ0%0

∞∑
n=1

2n+1∑
j=1

√
1

(2n+ 1)(n+ 1)

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)(
%0
%L

)n+1

× ν(y) · h(1)
n,j(%L;y). (15.31)

As a generalization, we can choose to neglect the Coulomb gauge. This allows to combine the
Helmholtz decomposition with alternative gauges, such as the Lorentz gauge, the Weyl gauge,
or the multipolar gauge, in order to solve the inverse MEG problem. Unfortunately, this
generalization has one disadvantage. The (vector) spherical harmonics coefficients depend on
two components of the solenoidal part, the functions A(1) and A(2). However, this may be
fixed by another gauge. For instance, the multipolar gauge, sometimes called the Poincaré
gauge, that is x ·A(x) = 0 for all x ∈ B%0 , implies A(1) ≡ 0.

Theorem 15.18. Let Assumption 15.12 be fulfilled. Then the (vector) outer harmonics
coefficients of the magnetic potential and field, respectively, have for all n ∈ N0, j =
1, . . . , 2n+ 1 the representations

U ∧
%L

(n, j) = n

%nL(2n+ 1)

(
−
∫ %0

0

(
A(1)
n,j(x) + (n+ 1)A(2)

n,j(x)
)
xn+1 dx+A(2)

n,j(%0)%n+2
0

)
,

B ∧
%L

(n, j) = µ0n

%n+1
L

√
n+ 1
2n+ 1

(∫ %0

0

(
A(1)
n,j(x) + (n+ 1)A(2)

n,j(x)
)
xn+1 dx−A(2)

n,j(%0)%n+2
0

)
.

Proof. Theorem 9.4 implies U ∧%L (0, 1) = B ∧
%L

(0, 1) = 0. For all n ∈ N and j = 1, . . . , 2n+ 1,
the insertion of Corollary 15.13 into the integrands in Theorem 9.4 yields

1√
n(n+ 1)

∫ %0

0
J (3),~
n,j (x)xn+2 dx =

∫ %0

0

(1
x

(
A(2)
n,j(x)−A(1)

n,j(x)
)

+ d
dxA

(2)
n,j(x)

)
xn+2 dx.

In addition, it holds true that

d
dx
(
A(2)
n,j(x)xn+2

)
=
( d

dxA
(2)
n,j(x) + n+ 2

x
A(2)
n,j(x)

)
xn+2.
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Thus, ∫ %0

0

(1
x

(
A(2)
n,j(x)−A(1)

n,j(x)
)

+ d
dxA

(2)
n,j(x)

)
xn+2 dx

= −
∫ %0

0

(
A(1)
n,j(x) + (n+ 1)A(2)

n,j(x)
)
xn+1 dx

+
∫ %0

0

(
n+ 2
x

A(2)
n,j(x) + d

dxA
(2)
n,j(x)

)
xn+2 dx

= −
∫ %0

0

(
A(1)
n,j(x) + (n+ 1)A(2)

n,j(x)
)
xn+1 dx+

∫ %0

0

d
dx
(
A(2)
n,j(x)xn+2

)
dx

= −
∫ %0

0

(
A(1)
n,j(x) + (n+ 1)A(2)

n,j(x)
)
xn+1 dx+A(2)

n,j(%0)%n+2
0 .

Inserting this into the formula for the coefficients from Theorem 9.4, we obtain the desired
result.

An immediate consequence of this general result is a relation of the Fourier coefficients in
the case of the Poincaré gauge.
Corollary 15.19. Let Assumption 15.12 and the Poincaré gauge, that is x ·A(x) = 0 for all
x ∈ B%0 , be fulfilled. Then the (vector) outer harmonics coefficients of the magnetic potential
and field, respectively, have for all n ∈ N0, j = 1, . . . , 2n+ 1 the representations

U ∧
%L

(n, j) = n

%nL(2n+ 1)

(
−(n+ 1)

∫ %0

0
A(2)
n,j(x)xn+1 dx+A(2)

n,j(%0)%n+2
0

)
,

B ∧
%L

(n, j) = µ0n

%n+1
L

√
n+ 1
2n+ 1

(
(n+ 1)

∫ %0

0
A(2)
n,j(x)xn+1 dx−A(2)

n,j(%0)%n+2
0

)
.

We saw before that a unique reconstruction of the neuronal current can be obtained if
JP ∈ (ker TM)⊥. Now, we analyze the behaviour of the functions occurring in the Helmholtz
decomposition under this assumption.
Theorem 15.20. Let the neuronal current JP be decomposed by the Helmholtz decomposition,
see Eq. (15.22), and let Assumption 15.12 be fulfilled. In addition, let the neuronal current
fulfil JP ∈ (ker TM)⊥. Then the neuronal current is given by

JP(x)
L2(B%0 )

=
∞∑
n=1

2n+1∑
j=1

cn,j

√
%3

0
2n+ 3g

(3)
0,n,j(%0;x).

Coulomb Gauge: A one-to-one relation between the coefficients {cn,j}n∈N,j=1,...,2n+1 and the
magnetic potential coefficients is given for all n ∈ N, j = 1, . . . , 2n+ 1 by

U ∧
%L

(n, j) = %3
0
√
n(n+ 1)cn,j

(n+ 1)(2n+ 1)(2n+ 3)

(
%0
%L

)n
.

The radial components of the scalar and vector potential of the Helmholtz decomposition
are given for all n ∈ N, j = 1, . . . , 2n+1 by Ψn,j(x) = ψn,jx

n, A(3)
n,j(x) = ψn,jx

n/(n+1),
and

A(1)
n,j(x) = an,j

(
x

%0

)n−1
+
√
n(n+ 1)cn,j%0

2(2n+ 3)

(
x

%0

)n+1
. (15.32)

The coefficients {ψn,j}n∈N,j=1,...,2n+1 and {an,j}n∈N,j=1,...,2n+1 remain to be determined.
Due to the chosen gauge, A(2)

n,j is given via Corollary 15.14.
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Poincaré Gauge: A relation between the coefficients {cn,j}n∈N,j=1,...,2n+1 and the magnetic
potential coefficients is given by

U ∧
%L

(n, j) = cn,j

√
n(n+ 1)

(n+ 1)(2n+ 1)(2n+ 3)
%n+3

0
%nL

.

The radial components of the scalar and vector potential of the Helmholtz decomposition
are given for all n ∈ N, j = 1, . . . , 2n + 1 by Ψn,j(x) = ψn,jx

n, A(1)
n,j ≡ 0, A(3)

n,j(x) =
ψn,jx

n/(n+ 1), and

A(2)
n,j(x) = cn,j%0√

n(n+ 1)
1

n+ 2

((
x

%0

)n+1
− %0
x

)
+ %0
x
an,j .

The coefficients {ψn,j}n∈N,j=1,...,2n+1 and {an,j}n∈N,j=1,...,2n+1 remain to be determined.

Corresponding to the solution of A(1) achieved by the Helmholtz decomposition for the
MEG problem, we can always find functions Ψ, A(2), and A(3) such that the resulting neuronal
current satisfies the condition JP ∈ (ker TM)⊥.

Proof. Due to Theorem 13.1, the condition JP ∈ (ker TM)⊥ can be split into the three
conditions J (1)

n,j = J (2)
n,j ≡ 0 and J (3)

n,j(x) = cn,j(x/%0)n for all n ∈ N, j = 1, . . . , 2n + 1, and
x ∈ [0, %0]. From the requirements on J (1)

n,j and Corollary 15.13, we immediately get for all
n ∈ N, j = 1, . . . , 2n+ 1 the relation

A(3)
n,j(x) = x

n(n+ 1)
d

dxΨn,j(x).

Inserting this into the condition for the function J (2)
n,j , we obtain the Euler-Cauchy differential

equation

0 = 1
x

Ψn,j(x)− 1
n(n+ 1)

d
dxΨn,j(x)− 1

n(n+ 1)
d

dxΨn,j(x)− x

n(n+ 1)
d2

dx2 Ψn,j(x),

⇔ 0 = x2 d2

dx2 Ψn,j(x) + 2x d
dxΨn,j(x)− n(n+ 1)Ψn,j(x).

The fundamental system of this second-order homogeneous linear ordinary differential
equation with variable coefficients is given by Ψn,j(x) = ψn,jx

n + ψ̄n,jx
−(n+1), see [11, Thm.

5.18]. Via Assumption 15.12, we obtain ψ̄n,j = 0 for all n ∈ N, j = 1, . . . , 2n + 1. Thus,
Ψn,j(x) = ψn,jx

n and A(3)
n,j(x) = ψn,jx

n/(n+ 1) for all n ∈ N, j = 1, . . . , 2n+ 1.
From the third condition, which affects the function J (3)

n,j , we get

√
n(n+ 1)

(1
x

(
A(2)
n,j(x)−A(1)

n,j(x)
)

+ d
dxA

(2)
n,j(x)

)
= cn,j

(
x

%0

)n
. (15.33)
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i) By means of the Coulomb gauge and Corollary 15.14, the left-hand side of this identity
reduces to

cn,j√
n(n+ 1)

(
x

%0

)n
= 1
x

(
x

n(n+ 1)
d

dxA
(1)
n,j(x) + 2− n(n+ 1)

n(n+ 1) A(1)
n,j(x)

)
+ d

dx

(
x

n(n+ 1)
d

dxA
(1)
n,j(x) + 2

n(n+ 1)A
(1)
n,j(x)

)
= 4
n(n+ 1)

d
dxA

(1)
n,j(x) + 2− n(n+ 1)

n(n+ 1)x A(1)
n,j(x) + x

n(n+ 1)
d2

dx2A
(1)
n,j(x).

Eventually, Eq. (15.33) is equivalent to

x2 d2

dx2A
(1)
n,j(x) + 4x d

dxA
(1)
n,j(x) + (2− n(n+ 1))A(1)

n,j(x) = cn,j

√
n(n+ 1)x

n+1

%n0
,

which is a second-order inhomogeneous linear ordinary differential equation with variable
coefficients. According to [11, Thm. 5.18], we solve this Euler-Cauchy equation trough change
of variables. Thus, the characteristic polynomial corresponding to the homogeneous Euler-
Cauchy equation has two distinct real roots, which are n−1 and −(n+2). A particular solution
of the inhomogeneous differential equation is given by

√
n(n+ 1)cn,j/(2(2n + 3)%n0 )xn+1.

Eventually, we have

A(1)
n,j(x) = an,j

(
x

%0

)n−1
+ ān,j

(
x

%0

)−(n+2)
+
√
n(n+ 1)cn,j%0

2(2n+ 3)

(
x

%0

)n+1
.

For the spherical harmonics expansion of the scalar-valued functions A(i) based on Eq. (14.3),
it is necessary that A(i) ∈ L2(B%0) for i = 1, 2, 3. This implies ān,j = 0 for all n ∈ N,
j = 1, . . . , 2n+ 1. Thus, we obtain

A(1)
n,j(x) = an,j

(
x

%0

)n−1
+
√
n(n+ 1)cn,j%0

2(2n+ 3)

(
x

%0

)n+1
.

According to Eq. (15.30), the corresponding magnetic potential coefficients for all n ∈ N,
j = 1, . . . , 2n+ 1 have the form

U ∧%L (n, j) = %2
0

(n+ 1)(2n+ 1)

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)(
%0
%L

)n
= %2

0
(n+ 1)(2n+ 1)

(
%0
%L

)n
×
(
an,j(n− 1) +

√
n(n+ 1)3cn,j%0

2(2n+ 3) − (n− 1)
(
an,j +

√
n(n+ 1)cn,j%0

2(2n+ 3)

))

= %3
0
√
n(n+ 1)cn,j

(n+ 1)(2n+ 1)(2n+ 3)

(
%0
%L

)n
.

ii) By means of the Poincaré gauge, that is 0 = x · A(x) = A(1)(x) for all x ∈ B%0 , the
identity in Eq. (15.33) reduces to√

n(n+ 1)
(1
x
A(2)
n,j(x) + d

dxA
(2)
n,j(x)

)
= cn,j

(
x

%0

)n
.
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A formula for the solution of a first-order inhomogeneous linear differential equation with
some boundary conditions is stated in [29, Sec. 10.3.3]. With the arbitrary boundary condition
A(2)
n,j(%0) = an,j for all n ∈ N, j = 1, . . . , 2n+ 1, we get in our particular case the solution

A(2)
n,j(x) = exp

(
−
∫ x

%0

1
t

dt
)(∫ x

%0

cn,j√
n(n+ 1)

(
t

%0

)n
exp

(∫ t

%0

1
s

ds
)

dt+ an,j

)

= %0
x

(
cn,j√
n(n+ 1)

∫ x

%0

(
t

%0

)n+1
dt+ an,j

)

= %0
x

(
cn,j√
n(n+ 1)

1
n+ 2

(
xn+2

%n+1
0
− %0

)
+ an,j

)

= cn,j%0√
n(n+ 1)

1
n+ 2

((
x

%0

)n+1
− %0
x

)
+ an,j

%0
x
.

Now, we calculate the auxiliary integral∫ %0

0
A(2)
n,j(x)xn+1 dx =

∫ %0

0

(
cn,j%0√
n(n+ 1)

1
n+ 2

((
x

%0

)n+1
− %0
x

)
+ an,j

%0
x

)
xn+1 dx

=
∫ %0

0

cn,j%0√
n(n+ 1)

1
n+ 2

(
x2n+2

%n+1
0

− %0x
n

)
+ an,j%0x

n dx

=
(

cn,j%0√
n(n+ 1)

1
n+ 2

( 1
2n+ 3 −

1
n+ 1

)
+ an,j
n+ 1

)
%n+2

0

=
(
− cn,j%0√

n(n+ 1)3
1

2n+ 3 + an,j
n+ 1

)
%n+2

0 .

Via Corollary 15.19, we get the identity

U ∧%L (n, j) = n

%nL(2n+ 1)

(
−(n+ 1)

∫ %0

0
A(2)
n,j(x)xn+1 dx+A(2)

n,j(%0)%n+2
0

)
= n

%nL(2n+ 1)

√
n+ 1
n

cn,j%0
(2n+ 3)(n+ 1)%

n+2
0 .

The representation of the neuronal current follows immediately with Definition 5.37.

The essential statement of the foregoing theorem is the following: if the magnetic potential
is completely known, then under the assumption that JP ∈ (ker TM)⊥ the neuronal current
can be completely reconstructed, see also Theorem 13.6, but the measurable components of
the Helmholtz decomposition cannot be determined uniquely without additional assumptions.
This can be seen in Eq. (15.32), where the coefficients {an,j}n∈N,j=1,...,2n+1 cannot be
determined by the data. To the opinion of the author, this is a disadvantage of the Helmholtz
decomposition. Note that the same statement can be made if the magnetic field is known
completely, due to the relation in Eq. (9.7).

Via the Helmholtz decomposition, we are able to decompose the neuronal current into parts
belonging to a scalar and a vector potential, where only the vector potential contributes to the
magnetic potential or field, respectively. This approach is often used in the literature, see, for
instance, [71] and the references therein, since the direct problem reduces to a scalar-valued
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problem, see Theorem 15.15. In addition, for the direct problem an integral-free relation
between the spherical harmonics coefficients of the magnetic field and the reconstructable part
of the neuronal current, see Eq. (15.29) and Theorem 15.16, can be achieved. The integral-free
representation reveals the non-uniqueness of the solution, since only values of A(1) and its
derivative at the boundary of the cerebrum influence the magnetic field. This problem could
be solved by additionally assuming that A(1) is a harmonic function, but this assumption
has no physical or medical indication. Eventually, the Helmholtz decomposition only allows
a reconstruction of scalar-valued parts of the vector potential. If a reconstruction of the
whole vector-valued current is desired, a (numerical) differentiation is required afterwards.
However, for the Helmholtz decomposition of vector fields and for the derivation of the scalar
MEG forward operator in this case, a higher order of smoothness for the neuronal current,
see Assumption 15.12, is required than for the Edmonds approach, where JP ∈ L2(B%0) is
sufficient.
In addition, we generalize the existing results of [47, 71] in two aspects. First, we can

transfer the existing results for the function y ·B(y) to the magnetic flux density ν ·B,
which fits better to the multiple-shell model. Second, in [47, 71] the Coulomb gauge is used.
Now, we are able to state a more general relation between the (vector) outer harmonics
coefficients of the magnetic field or potential, respectively, and parts of the vector potential
A. This relation is derived by means of a gauge-free ansatz. This enables us to choose a
gauge, which is required for a unique Helmholtz decomposition, afterwards. An example of
another gauge is given in Corollary 15.19, where the Poincaré gauge is applied. Note that
the reconstructable part depends on the chosen gauge.

15.3.2. Helmholtz Decomposition for EEG

The Helmholtz decomposition is often used in the analysis of the EEG problem. In order to
compare our calculations with the ones in [47, 50, 71, 73, 74], we need to consider the same
assumptions as therein. The authors in the previous references use Gauß’s Theorem, see
[219], in order to obtain an integral equation for the electric potential. To get rid of the
occurring boundary term, they make the following assumption.

Assumption 15.21. In addition to Assumption 15.12, we assume that

∂

∂x
Ψ(x) + 1

x
∆∗x̂A(3)(x) = 0 for all x ∈ S%0 .

Lemma 15.22. If Assumption 15.21 holds true, then the EEG integral equation for the
electric potential from Eq. (10.1) can be written as

uL(y) = − 1
4π

∫
B%0

(∆xΨ(x))
∞∑
k=1

(2k + 1)Hk(y)xkPk(x̂ · ŷ) dx, y ∈ S[%L−1,%L].

Proof. Using Gauß’s Theorem for the integral in Eq. (10.1), we get for all y ∈ S[%L−1,%L] the
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representation

uL(y) =
∫
B%0
JP(x) ·∇x

∞∑
k=1

2k + 1
4π Hk(y)xkPk(x̂ · ŷ) dx

= − 1
4π

∫
B%0

(
∇x · JP(x)

) ∞∑
k=1

Hk(y)(2k + 1)xkPk(x̂ · ŷ) dx

+ 1
4π

∫
S%0

(
x̂ · JP(x)

) ∞∑
k=1

Hk(y)(2k + 1)xkPk(x̂ · ŷ) dω(x̂).

The divergence of the current is given by ∇ · JP = ∆Ψ, see Eq. (15.22). Using Eq. (15.24),
the expression x̂ · JP(x) reduces for all x ∈ B%0 to

x̂ · JP(x) = ∂

∂x
Ψ(x) + 1

x
∆∗x̂A(3)(x).

The restriction of this identity onto the sphere S%0 and Assumption 15.21 provide us with
the desired result.

Note that with the abbreviation sn := (2n+ 1)Hn(%L) for all n ∈ N the integral equation
in Lemma 15.22 coincides with the one in [71]. Therein, the following result is stated.

Theorem 15.23. [71, Prop. 4.1] If Assumption 15.21 holds true, then the electric potential
on the sphere S%L has the representation

uL(%Lŷ) = −
∞∑
n=1

2n+1∑
j=1

sn
2n+ 1%

n+1
0

(
%0

dΨn,j

dx (%0)− nΨn,j(%0)
)
Yn,j(ŷ), ŷ ∈ S.

Eventually, we obtain for the EEG problem combined with the Helmholtz decomposition
the following result.

Theorem 15.24. Let Assumption 15.21 be fulfilled. Then the result in Theorem 15.23 from
[71] coincides with the result obtained by the Edmonds approach restricted to the sphere
S%L. The corresponding spherical harmonics coefficients of the electric potential have the
representation

u ∧L (n, j) = 2n+ 1
n

β(L)
n

(
nΨn,j(%0)− %0

dΨn,j

dx (%0)
)
%n+1

0
%nL

(15.34)

for all n ∈ N, j = 1, . . . , 2n+ 1 and u ∧L (0, 1) = 0.

Proof. This result can also be proved by using the Edmonds approach. We calculate the
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integral from Theorem 10.4 by means of Eq. (15.20) and Corollary 15.13:∫ %0

0
J (2),~
n,j (x)xn+1 dx

=
∫ %0

0

(√
n

2n+ 1J
(1)
n,j(x) +

√
n+ 1
2n+ 1J

(2)
n,j(x)

)
xn+1 dx

=
√

1
n(2n+ 1)

∫ %0

0

[
n

( d
dxΨn,j(x)− n(n+ 1) 1

x
A(3)
n,j(x)

)
+ n(n+ 1)

(1
x

Ψn,j(x)−
(1
x

+ d
dx

)
A(3)
n,j(x)

)]
xn+1 dx

=
√

1
n(2n+ 1)

∫ %0

0
n

d
dx
(
Ψn,j(x)xn+1

)
− n(n+ 1) d

dx
(
A(3)
n,j(x)xn+1

)
dx

=
√

1
n(2n+ 1)

(
nΨn,j(%0)− n(n+ 1)A(3)

n,j(%0)
)
%n+1

0 . (15.35)

For the next step, we use Assumption 15.21 and get for all points on the sphere with radius
%0, that is x ∈ S%0 , the relation

0 = ∂

∂x
Ψ(x) + 1

x
∆∗x̂A(3)(x)

=
∞∑
n=0

2n+1∑
j=1

( dΨn,j

dx (%0) + 1
%0
A(3)
n,j(%0)∆∗x̂

)
Yn,j(x̂).

Thus, we get for all n ∈ N, j = 1, . . . , 2n+ 1 the equation

0 = dΨn,j

dx (%0)− n(n+ 1)
%0

A(3)
n,j(%0). (15.36)

Inserting this identity into Eq. (15.35), we eventually obtain for the coefficients from The-
orem 10.4 the relation

u ∧L (n, j) = 2n+ 1
n

β(L)
n

(
nΨn,j(%0)− %0

dΨn,j

dx (%0)
)
%n+1

0
%nL

.

This result coincides with the one in Theorem 15.23 if the potential uL is restricted onto the
sphere S%L using the fact that

sn = (2n+ 1)Hn(%L) = (2n+ 1)2

n
β(L)
n

1
%n+1
L

(15.37)

for all n ∈ N, where the formula for Hn can be found in Eq. (4.21).

We already know that the inverse EEG problem is not uniquely solvable, see Theorem 13.1,
and that the minimum norm assumption on the neuronal current JP is a quite natural
condition in order to obtain uniqueness, see Theorem 13.6. Therefore, we analyze whether
the minimum norm assumption is consistent with the result obtained by the Helmholtz
decomposition.
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Theorem 15.25. Let the neuronal current JP be given by the Helmholtz decomposition from
Eq. (15.22). In addition, let the neuronal current, the scalar potential Ψ, and the vector
potential A fulfil the following conditions:

i) The neuronal current fulfils JP ∈ (ker TE)⊥;

ii) the conditions of Lemma 15.22 are fulfilled, that is the neuronal current is sufficiently
smooth such that Gauß’s Theorem can be applied and the boundary condition

∂

∂x
Ψ(x) + 1

x
∆∗x̂A(3)(x) = 0 for all x ∈ S%0

is satisfied.

Then JP ≡ 0.

Proof. Recall that we can expand the neuronal current in terms of our orthonormal basis
system such that

JP(x)
L2(B%0 )

=
3∑
i=1

∞∑
n=0i

2n+1∑
j=1

J (i),~
n,j (x)ỹ(i)

n,j(x̂).

Now, we start with the condition JP ∈ (ker TE)⊥ from Item i). Based on Theorem 13.1, this
condition can be subdivided as follows:

i.a) J (1),~
n,j = 0,

i.b) J (3),~
n,j = 0, and

i.c) J (2),~
n,j (x) = cn,j(x/%0)n−1 with some constants cn,j ∈ R for all n ∈ N, j = 1, . . . , 2n+ 1.

From Corollary 15.13, we obtained a relation for all n ∈ N0i , j = 1, . . . , 2n+ 1 between the
function J (i)

n,j and the functions Ψn,j and A(i)
n,j for i = 1, 2, 3.

Note that J (3),~
n,j = J (3)

n,j . Thus, we immediately obtain via Item i.b) a constraint for the
functions A(1)

n,j and A
(2)
n,j . Note that these functions only affect J (i),~

n,j for i = 3. Thus, without
impact on the other directions, we can choose A(1)

n,j = A(2)
n,j ≡ 0 in order to fulfil Item i.b).

However, other choices for A(1)
n,j and A

(2)
n,j are also valid as long as they satisfy the differential

equation √
n(n+ 1)

(1
x

(
A(2)
n,j(x)−A(1)

n,j(x)
)

+ d
dxA

(2)
n,j(x)

)
= 0.

For the condition in Item i.a), we use the relation stated in Eq. (7.16) and obtain the
equivalent condition

J (1)
n,j(x) =

√
n

n+ 1J
(2)
n,j(x)
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for almost all x ∈ [0, %0] and all n ∈ N0, j = 1, . . . , 2n+ 1. Inserting Corollary 15.13 into this
equation, we get for almost all x ∈ (0, %0] the differential equation

d
dxΨn,j(x)− n(n+ 1)

x
A(3)
n,j(x) = n

(1
x

(
Ψn,j(x)−A(3)

n,j(x)
)
− d

dxA
(3)
n,j(x)

)
,

⇔ d
dxΨn,j(x)− n

x
Ψn,j(x) = n2

x
A(3)
n,j(x)− n d

dxA
(3)
n,j(x).

This equation can be transformed into two first-order inhomogeneous ordinary differential
equations with variable coefficients. Hence, we formulate for all n ∈ N, j = 1, . . . , 2n + 1,
and some Fn,j ∈ C((0, %0]) the conditions

d
dxΨn,j(x) = n

x
Ψn,j(x) + Fn,j(x), (15.38a)

d
dxA

(3)
n,j(x) = n

x
A(3)
n,j(x)− 1

n
Fn,j(x). (15.38b)

The solution of these differential equations is uniquely determined under the boundary
conditions Ψn,j(%0) = ψn,j ∈ R and A(3)

n,j(%0) = an,j ∈ R for all n ∈ N, j = 1, . . . , 2n + 1.
According to [29, Sec. 10.3.3], it is given by

Ψn,j(x) = exp
(∫ x

%0

n

t
dt
)(∫ x

%0
Fn,j(t) exp

(
−
∫ t

%0

n

s
ds
)

dt+ ψn,j

)
=
(
x

%0

)n (∫ x

%0
Fn,j(t)

(
%0
t

)n
dt+ ψn,j

)
, (15.39a)

A(3)
n,j(x) = exp

(∫ x

%0

n

t
dt
)(
−
∫ x

%0

1
n
Fn,j(t) exp

(
−
∫ t

%0

n

s
ds
)

dt+ an,j

)
=
(
x

%0

)n (
− 1
n

∫ x

%0
Fn,j(t)

(
%0
t

)n
dt+ an,j

)
. (15.39b)

If Ψn,j and A(3)
n,j are chosen according to Eq. (15.39), then Item i.a) is fulfilled. Consequently,

using Eq. (15.20) we get for the remaining function J (2),~
n,j the identity√

2n+ 1
n

J (2),~
n,j (x) = J (1)

n,j(x) +
√
n+ 1
n

J (2)
n,j(x)

= d
dxΨn,j(x) + n+ 1

x
Ψn,j(x)− (n+ 1)2

x
A(3)
n,j(x)− (n+ 1) d

dxA
(3)
n,j(x)

= 2n+ 1
x

Ψn,j(x)− (n+ 1)(2n+ 1)
x

A(3)
n,j(x) + 2n+ 1

n
Fn,j(x)

= 2n+ 1
x

(
x

%0

)n (∫ x

%0
Fn,j(t)

(
%0
t

)n
dt+ ψn,j

)
+ 2n+ 1

n
Fn,j(x)

− (n+ 1)(2n+ 1)
x

(
x

%0

)n (
− 1
n

∫ x

%0
Fn,j(t)

(
%0
t

)n
dt+ an,j

)
= 2n+ 1

nx

(
(2n+ 1)

(
x

%0

)n (∫ x

%0
Fn,j(t)

(
%0
t

)n
dt
)

+
(
x

%0

)n
(nψn,j − n(n+ 1)an,j) + xFn,j(x)

)
.
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In the first step, we used the relation between J (2),~
n,j and J (1)

n,j and J
(2)
n,j . In the second step, we

used Corollary 15.13 and replaced the occurring derivatives in the third step via the relations
in Eq. (15.38). In the last step, we used the solution of the ordinary differential equation from
Eq. (15.39). According to Item i.c), we have the requirement J (2),~

n,j (x) = c̃n,j(x/%0)n−1 with
some constants c̃n,j ∈ R for all n ∈ N, j = 1, . . . , 2n+ 1. Thus, with c̃n,j =

√
n/(2n+ 1)cn,j ,

we get

cn,j

(
x

%0

)n−1
= 2n+ 1

nx

(
(2n+ 1)

(
x

%0

)n (∫ x

%0
Fn,j(t)

(
%0
t

)n
dt
)

+
(
x

%0

)n
(nψn,j − n(n+ 1)an,j) + xFn,j(x)

)
.

This is equivalent for all x ∈ (0, %0] to

(2n+ 1)
(∫ x

%0
Fn,j(t)

(
%0
t

)n
dt
)

+ (nψn,j − n(n+ 1)an,j) + %n0
xn−1Fn,j(x) = ncn,j%0

2n+ 1 .

This equation can also be transformed into a first-order linear ordinary differential equation
with variable coefficients:

(n+ 2)%
n
0
xn
Fn,j(x) + %n0

xn−1F
′
n,j(x) = 0, x ∈ (0, %0].

The solution of this homogeneous differential equation is given by

Fn,j(x) = fn,j

(
%0
x

)n+2
, (15.40)

where the coefficients {fn,j}n∈N,j1,...,2n+1 ⊂ R remain to be determined by additional condi-
tions. In order to insert Eq. (15.40) into the representation of J (2),~

n,j , we first calculate the
integral∫ x

%0
Fn,j(t)

(
%0
t

)n
dt = fn,j

∫ x

%0

(
%0
t

)2n+2
dt = − fn,j%0

2n+ 1

((
%0
x

)2n+1
− 1

)
. (15.41)

Consequently, we have

J (2),~
n,j (x) =

√
2n+ 1
n

(
−fn,j

((
%0
x

)n+2
−
(
x

%0

)n−1
)

+ 1
x

(
x

%0

)n
(nψn,j − n(n+ 1)an,j) + fn,j

(
%0
x

)n+2
)

=
√

2n+ 1
n

(
x

%0

)n−1 (
fn,j + nψn,j − n(n+ 1)an,j

%0

)
.

Eventually, the condition in Item i) is satisfied and the neuronal current has the representation

JP(x)
L2(B%0 )

=
∞∑
n=1

2n+1∑
j=1

√
%3

0
n

(
fn,j + nψn,j − n(n+ 1)an,j

%0

)
g̃(2)

0,n,j(%0;x). (15.42)
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Now, we need to determine the constants fn,j , ψn,j , and an,j for all n ∈ N, j = 1, . . . , 2n+ 1.
To this end, we analyze Item ii). For the boundary condition, we need a representation of
Ψn,j , which according to Eqs. (15.39) to (15.41) is given by

Ψn,j(x) =
(
x

%0

)n (∫ x

%0
Fn,j(t)

(
%0
t

)n
dt+ ψn,j

)
= − fn,j%0

2n+ 1

((
%0
x

)n+1
−
(
x

%0

)n)
+ ψn,j

(
x

%0

)n
. (15.43)

In the proof of Theorem 15.24, more precisely Eq. (15.36), it is shown that the boundary
condition reduces for all n ∈ N, j = 1, . . . , 2n+ 1 to

0 = dΨn,j

dx (%0)− n(n+ 1)
%0

A(3)
n,j(%0). (15.44)

Thus, the derivative of Ψn,j is required, which is given by

d
dxΨn,j(x) = fn,j%0

2n+ 1

(
(n+ 1) 1

%0

(
%0
x

)n+2
+ n

%0

(
x

%0

)n−1
)

+ nψn,j
%0

(
x

%0

)n−1

= fn,j
2n+ 1

(
(n+ 1)

(
%0
x

)n+2
+ n

(
x

%0

)n−1
)

+ nψn,j
%0

(
x

%0

)n−1
.

We insert this representation into Eq. (15.44) and use the fact that A(3)
n,j(%0) = an,j for all

n ∈ N, j = 1, . . . , 2n+ 1 to obtain

0 = fn,j + nψn,j − n(n+ 1)an,j
%0

.

Inserting this into Eq. (15.42), we eventually obtain JP ≡ 0.

The essential result of Theorem 15.25 is that an almost everywhere non-vanishing neuronal
current obtained by the Helmholtz decomposition cannot fulfil the minimum norm condition.
In other words, every neuronal current JP obtained via the Helmholtz decomposition under
the model assumptions of Theorem 15.24, or [71, Prop. 4.1] repeated in Theorem 15.23, has
parts in the null space of TE. In the opinion of the author, this is a profound disadvantage of
this method.

As in the MEG case, the EEG direct problem reduces to a scalar-valued integral equation of
the first kind by means of the Helmholtz decomposition, see Lemma 15.22. For the derivation
of this integral equation, however, a higher order of smoothness of the neuronal current is
required than by the Edmonds approach. Furthermore, an additional boundary condition is
required for this derivation. The electric potential is only affected by the scalar potential
of the Helmholtz decomposition. Therefore, the result can be obtained independently of
the chosen gauge. Similar to the MEG case, there is an integral-free representation of the
direct problem available, see Theorem 15.23. Note that, in this section, we generalized the
representation of the electric potential derived in [71] from the sphere S%L to the scalp shell
S[%L−1,%L].
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Chapter 16.

Preliminaries

In Chapter 13, we analyze the ill-posedness of the electroencephalography and the magneto-
encephalography problem in detail. We discusse the non-uniqueness of the solution of both
problems as well as their instability. Due to the exponential decay of the corresponding
singular values, small variations of the measured data have a major influence on the recon-
structed current. In Items (E) and (F) on page 174, we mentione that the data obtained by
the magnetoencephalograph and the electroencephalograph is noisy due to several reasons.
For ill-posed problems, the best-approximate solution obtained from the noisy data is not
suitable for the reconstruction, since the Moore-Penrose generalized inverse is unbounded if it
exists, see [63, Ch. 3.1] or Corollary 11.9. In particular, numerical algorithms for the inversion
become unstable if the solution does not continuously depend on the data, see Definition 11.1.
This can be handled by regularization methods, see the monographs [63, 102, 148, 194], and
[192] for a short overview including the references therein.
Before we give a broad overview of regularization methods in Section 16.2, we introduce

vector-valued Sobolev spaces over the ball in Section 16.1. The concept of Sobolev spaces is
required for an aspect of regularization methods presented in Section 16.2. In Section 16.2,
we see that regularization parameters play an important role in the context of regularization
methods. Thus, the choice of these parameters is momentous. Therefore, we present several
parameter choice methods in Section 16.3.

16.1. Sobolev Spaces on the Ball

In Chapter 5, we introduce several orthonormal bases for a variety of Lebesgue spaces. Formal
orthogonal expansions converge only in the according strong sense. However, by means of
Sobolev’s Embedding Theorem, certain formal orthogonal expansions converge uniformly to
a function in the ordinary sense. This can be characterized by means of certain Sobolev and
reproducing kernel Hilbert spaces (RKHS). Scalar, vectorial, and tensorial Sobolev spaces
on the sphere are analyzed in detail in [81]. Scalar Sobolev spaces are generally introduced
in [6]. Scalar Sobolev spaces for functions on the ball are also considered in [3, 158]. This
is adapted by the author to the basis functions from Definition 5.35 in [162]. Here, we are
mainly interested in vector Sobolev spaces on the ball. Therefore, we construct a Hilbert
space H(BR) as a subspace of L2(BR), where the topology on H(BR) affects the decay of
the Fourier coefficients. In Definition 5.37, two possible basis systems for the construction of
Sobolev spaces are presented. Here, we use the Morse-Feshbach vector spherical harmonics
since this system is more common. However, the construction by means of the Edmonds
counterpart is straightforward.
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16.1.1. Definition and Basic Properties

The idea of vector Sobolev spaces on the ball presented in this thesis is based on vector
Sobolev spaces on the sphere, see [80], and scalar ones on the ball, see [3, 6, 158], or more
adapted to our particular setting [162]. Based on [81, Ch. 12.4], we split the space of
all vector-valued arbitrarily often continuously differentiable functions on the ball, that is
C∞(BR) = ⊕3

i=1C(1),∞(BR), into three (orthogonal) subspaces. In this context, orthogonal
is meant with respect to the 〈·, ·〉L2(BR)-inner product. To this end, based on Eq. (2.3)
and Corollary 5.6, we define the spaces

C(1),∞ (BR) := {f ∈ C∞ (BR) | Ptanf = 0} ,
C(i),∞ (BR) :=

{
f ∈ C∞ (BR)

∣∣∣ O(j)
x̂ f(x) = 0 if i 6= j

}
, i = 2, 3.

The idea behind this decomposition is the spherical Helmholtz decomposition, see The-
orem 5.19.

Definition 16.1 (Sobolev Space). Let R > 0 be a given radius, i ∈ {1, 2, 3} be fixed, and
let a := {a(i)

m,n}m∈N0,n∈N0i
be a given real sequence. We define a functional E : C(i),∞(BR)→ R

by

E(f) :=
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

)2 〈
f , g(i)

m,n,j(R; ·)
〉2

L2(BR)

and, consequently, the space E(i) (a,BR) is given by

E(i) (a,BR) :=
{
f ∈ C(i),∞ (BR)

∣∣∣∣ 〈f , g(i)
m,n,j(R; ·)

〉
L2(BR)

= 0, if a(i)
m,n = 0, and E(f) <∞

}
.

The space is equipped with the inner product defined for all f , h ∈ E(i) (a,BR) by

〈f ,h〉
H(i) :=

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

)2〈
f , g(i)

m,n,j(R; ·)
〉

L2(BR)

〈
h, g(i)

m,n,j(R; ·)
〉

L2(BR)
.

We call the completion of E(i) (a,BR) with respect to ‖·‖
H(i) the Sobolev space H(i) (a,BR),

that is

H(i) (a,BR) := E(i) (a,BR)
‖·‖

H(i)
.

In addition, we define

H (a,BR) :=
3⊕
i=1

H(i) (a,BR) .

The double series in the definition of the space E(i) (a,BR) has to converge absolutely,
which is fulfilled automatically if the series converges. Thus, by means of Cauchy’s theorem
of double series, the two corresponding iterated series also converge absolutely.
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Lemma 16.2 (Cauchy’s Theorem of Double Series, [120, Thm. 45.2]). Let the
sequence {am,n}m,n∈N0 be a double sequence. If one of the iterated series

∞∑
m=0

( ∞∑
n=0

am,n

)
,

∞∑
n=0

( ∞∑
m=0

am,n

)

converges absolutely, then the other iterated series and the double series∑
(m,n)∈N0×N0

am,n

also converge absolutely. In addition, it holds true that

∑
(m,n)∈N0×N0

am,n =
∞∑
m=0

( ∞∑
n=0

am,n

)
=
∞∑
n=0

( ∞∑
m=0

am,n

)
.

In other words, the double series can be split into an iterated series and the summation
order can be interchanged. Note that in the general setting of scalar Sobolev spaces on the
sphere the occurring sequence is allowed to depend on the order j. However, in this thesis
the singular values of all considered operators are independent of the order j. Thus, the
restriction to sequences independent of j is sufficient for our requirements.

With the same ansatz, scalar-valued Sobolev spaces on the ball can be defined, where the
basis functions Gm,n,j(R; ·) from Definition 5.35 are used. More details on these scalar-valued
Sobolev spaces are stated by the author in [162].

Remark 16.3. A second set of vector-valued Sobolev spaces on the ball called H̃
(i)(a,BR) is

based on the Edmonds vector spherical harmonics g̃(i)
m,n,j and can be defined analogously to

H(i)(a,BR):

H̃ (a,BR) =
3⊕
i=1

H̃
(i) (a,BR) .

If the sequence a is independent of i, then H̃ (a,BR) = H (a,BR).

An already known Sobolev space is obtained if each element of the sequence a equals one,
that is a(i)

m,n = 1 for all i = 1, 2, 3, m ∈ N0, and n ∈ N0i . In this case, we get the identity
H ({1} ,BR) = L2(BR).
The next corollary transfers a relation between two sequences to their induced Sobolev

spaces. It can be proved by estimating one norm with the other.

Corollary 16.4. Let i = 1, 2, 3 be arbitrary. Let a := {a(i)
m,n} and b := {b(i)

m,n} be two real
sequences with a(i)

m,n ≤ b(i)
m,n and a(i)

m,n 6= 0 6= b(i)
m,n for all m ∈ N0 and n ∈ N0i. Then

H(i) (b,BR) ⊂H(i) (a,BR) .

For the construction of reproducing kernel Hilbert spaces later, we need to classify whether
a sequence is summable in an appropriate sense or not. Therefore, we lean on the definition
of summable sequences from [81]. However, we need to adapt this definition since we
consider vector-valued Sobolev spaces on the ball. For all i = 1, 2, 3, m ∈ N0, n ∈ N0i , and
j = 1, . . . , 2n+ 1, the function g(i)

m,n,j(R; ·) depends on an arbitrary real sequence {t(i)n }n∈N0i
with infn∈N0i

t(i)n > −3/2, which is reflected in the next definition.
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Definition 16.5. Let a := {a(i)
m,n}m∈N0,n∈N0i

and b := {b(i)
m,n}m∈N0,n∈N0i

be two given real
sequences. The sequence a is said to be b-summable with respect to {t(i)n }n∈N0i

if

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

(
b(i)
m,n

a(i)
m,n

)2 (2n+ 1)
(
m+ t(i)n + 1

2

)2m+1

(m!)2 <∞.

In the case b(i)
m,n = 1 for all m ∈ N0, n ∈ N0i, and j = 1, . . . , 2n + 1, we also say a is

summable with respect to {t(i)n }n∈N0i
.

A comparable definition of summability for scalar-valued Sobolev spaces on the ball is
stated by the author in [162].

Now, we prove Sobolev’s Embedding Theorem for the vector-valued Sobolev spaces on the
ball. The proof is based on its scalar-valued counterpart on the sphere, see [81, Lem. 5.2.2].

Theorem 16.6. Let the sequence a be b-summable with respect to {t(i)n }n∈N0i
for each i = 1,

2, 3. In addition, let b(i)
m,n 6= 0 for all (m,n) ∈ N0 ×N0i , t(i)n > 0 for all n ∈ N0i , and t

(1)
0 ≥ 0.

Then each function f ∈H(a/b,BR) is also continuous.

In this context, the quotient a/b is understood as the elementwise division of the sequences
a and b, that is a/b := {a(i)

m,n/b
(i)
m,n}m∈N0,n∈N0i

.

Proof. Each function f ∈H(a/b,BR) can be represented by a Fourier series converging with
respect to the ‖·‖H-norm. Recall that this norm is given by

‖f‖2H =
3∑
i=1

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

b(i)
m,n

)2 〈
f , g(i)

m,n,j

〉2

L2(BR)
<∞.

The next estimate proves that the iterated Fourier series also converges uniformly, due to the
Cauchy-Schwarz inequality for series, a corollary of the Addition Theorem, see Corollary 5.25,
and properties of the radial part of the orthonormal basis functions, see Lemma 5.3. Thus,
the following estimate holds true for each i = 1, 2, 3 and all x ∈ BR:∣∣∣∣∣∣∣∣∣

∞∑
m=M
a

(i)
m,n 6=0

∞∑
n=0i

2n+1∑
j=1

〈
f , g(i)

m,n,j

〉
L2(BR)

g(i)
m,n,j(R;x)

∣∣∣∣∣∣∣∣∣
2

≤


∞∑

m=M
a

(i)
m,n 6=0

∞∑
n=0i

2n+1∑
j=1

(
a(i)
m,n

b(i)
m,n

)2 〈
f , g(i)

m,n,j

〉2

L2(BR)



×


∞∑

m=M
a

(i)
m,n 6=0

∞∑
n=0i

2n+1∑
j=1

(
b(i)
m,n

a(i)
m,n

)2 ∣∣∣g(i)
m,n,j(R;x)

∣∣∣2
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≤‖f‖2H


∞∑

m=M
a

(i)
m,n 6=0

∞∑
n=0i

2n+ 1
4π

(
b(i)
m,n

a(i)
m,n

)2 (
Q(t(i)n +1/2)
m (R;x)

)2



≤‖f‖2H

 6
R3

∞∑
m=M
a

(i)
m,n 6=0

∞∑
n=0i

2n+ 1
4π

(
b(i)
m,n

a(i)
m,n

)2 (m+ t(i)n + 1/2)2m+1

(m!)2

 .

The right-hand side converges to zero as M →∞ due to the summability condition. Hence,
this iterated series converges uniformly and each summand is continuous in BR as a com-
position of continuous functions. This implies the continuity of the limit function. This
estimate also implies the absolute convergence of the iterated series. Due to Cauchy’s theorem
of double series, the absolute convergence of the iterated series suffices for the absolute
convergence of the double series, see Lemma 16.2, and their limits coincide. This implies the
continuity of f .

16.1.2. Reproducing Kernel Hilbert Spaces on the Ball

A particular case of these Sobolev spaces are the RKHSs, which are widely discussed in the
literature, see, for instance, [9, 57]. For an introduction to scalar reproducing kernels and
scalar reproducing kernel Hilbert spaces on the ball, see [6, 7].
Besides the pointwise evaluability of functions in such reproducing kernel Hilbert spaces,

the RKHSs have another valuable property. They provide us with the existence of reproducing
kernels. The classical definition of a reproducing kernel is as follows, see [9]. Let X(G)
be a scalar-valued Hilbert space over a region G ⊂ Rd, then a kernel K : G × G → R is a
reproducing kernel if K(x, ·) ∈ X(G) for all x ∈ G and 〈K(x, ·), F 〉X = F (x) for all x ∈ G
and F ∈ X. In this case, the Hilbert space X(G) is called an RKHS. If {Gk}k∈N0 is a complete
orthonormal system in X fulfilling a summability condition, then the reproducing kernel is
given for all x, y ∈ G by Mercer’s expansion, that is K(x,y) = ∑∞

k=0K
∧(k)Gk(x)Gk(y),

see [158, Thm. 6.2].
In vector-valued Hilbert spaces, this definition leads to a problem. If a kernel k(x, ·) is a

function of this Hilbert space, then the inner product of k(x, ·) with another function of the
Hilbert space yields a scalar-valued quantity. Therefore, the definition of reproducing kernels
needs to be adapted for vector-valued Hilbert spaces. Scalar-valued RKHSs on the sphere
are, for instance, presented in [81] and generalized to vector-valued RKHSs. Therein, the
reproducing kernel k is constructed by the tensor product of Morse-Feshbach vector spherical
harmonics. Then by means of the adjoint operators in Corollary 5.6, a reproducing property
is formulated.

However, we want to use the reproducing kernels in the numerical implementation. More
precisely, the reproducing kernels are used as trial functions for a reconstruction. For
this purpose, we want to avoid tensor-valued kernels and work with vector-valued ones.
The construction of vector-valued RKHSs presented here is based on the vector kernels in
[20, 21, 25].

237



Chapter 16. Preliminaries

Definition 16.7 (Reproducing Kernel). Let i = 1, 2, 3 be fixed. A function k
H(i) : BR×

BR → R3 is called a reproducing kernel of H(i)(a,BR) if

i) the kernel is an element of the Hilbert space for every fixed y ∈ BR, that is kH(i)(·,y) ∈
H(i)(a,BR), and

ii) the reproducing property

O(i)
ŷ f(y) =

〈
k
H(i)(·,y),f

〉
H(i)

holds for all y ∈ BR and every f ∈H(i)(a,BR).

If such a kernel exists, the space H(i)(a,BR) is called a reproducing kernel Hilbert space.

Note that, in the context of the reproducing property for scalar-valued reproducing kernels,
the reproducing kernel is often placed in the second argument of the inner product. However,
due to the symmetry of the real-valued inner product, the arguments of the inner product can
be switched. In contrast to scalar-valued reproducing kernels, where the kernel is symmetric,
that is K(x,y) = K(y,x) for all x, y ∈ G, the order of the arguments of the vector-valued
reproducing kernels has a major effect. Thus, we need to distinguish between the first and
second argument of the reproducing kernel. An analogon of the symmetry property is found
in the next corollary.

Corollary 16.8 (Symmetry). Let i = 1, 2, 3 be fixed and let k
H(i) be a reproducing kernel

according to Definition 16.7. Then k
H(i) is symmetric in the sense that O(i)

x̂ kH(i)(x,y) =
O(i)
ŷ kH(i)(y,x) for all x, y ∈ BR.

Proof. Due to the first condition for reproducing kernels, we have k
H(i)(·,x) ∈H(i)(a,BR)

for all x ∈ BR. Thus, due to the symmetry of the inner product and the reproducing property,
we get for all x, y ∈ BR the identity

O(i)
ŷ kH(i)(y,x) =

〈
k
H(i)(·,y),k

H(i)(·,x)
〉
H(i)

=
〈
k
H(i)(·,x),k

H(i)(·,y)
〉
H(i)

= O(i)
x̂ kH(i)(x,y).

Lemma 16.9. If H(i)(a,BR) is an RKHS, then the reproducing kernel is unique.

Proof. For the classical scalar reproducing kernel, this statement is proved in [9, Ch. I.2].
However, it is an immediate consequence of the reproducing property and can directly be
applied in this context. Let k

H(i) and h
H(i) be two different reproducing kernels of the same

Hilbert space H(i)(a,BR). With y ∈ BR, we arrive at a contradiction by

0 <
∥∥k

H(i)(·,y)− h
H(i)(·,y)

∥∥2
H(i)

=
〈
k
H(i)(·,y)− h

H(i)(·,y),k
H(i)(·,y)− h

H(i)(·,y)
〉
H(i)

=
〈
k
H(i)(·,y),k

H(i)(·,y)− h
H(i)(·,y)

〉
H(i) −

〈
h
H(i)(·,y),k

H(i)(·,y)− h
H(i)(·,y)

〉
H(i)

= O(i)
ŷ

(
k
H(i)(y,y)− h

H(i)(y,y)
)−O(i)

ŷ

(
k
H(i)(y,y)− h

H(i)(y,y)
)

= 0.

For classical scalar-valued reproducing kernel Hilbert spaces, Aronszajn’s Theorem is
well-known. In this context, a scalar-valued Hilbert space is an RKHS if and only if the
evaluation functional is continuous, see [9]. Now, we adapt this result to the vector-valued
case.
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Theorem 16.10 (Vector-valued Aronszajn’s Theorem). For fixed i = 1, 2, 3, let the
space H(i)(a,BR) be a Sobolev space from Definition 16.1. Then H(i)(a,BR) is an RKHS if
and only if the evaluation at all positions x ∈ BR of the O(i)-operator applied to an element
of the Sobolev space, that is

Lx : H(i)(a,BR)→ R, Lxf :=
(
O(i)
ŷ f(y)

)
y=x

,

is continuous.

Proof. The proof is similar to the proof in the scalar-valued case, see [9, Item I.2.(2)]. We
start with the first direction of the proof, that is we assume that H(i)(a,BR) is an RKHS
and prove that Lx is continuous. Due to the construction of the O(i) operator, Lx is linear.
Thus, via

sup
f∈H(i)

f 6=0

|Lxf |
‖f‖

H(i)
= sup
f∈H(i)

f 6=0

|〈k
H(i)(·,x),f〉

H(i) |
‖f‖

H(i)

≤
∥∥k

H(i)(·,x)
∥∥
H(i) =

(
O(i)
ŷ kH(i)(y,x)

)
y=x

<∞

we obtain the boundedness of Lx and, hence, its continuity.
Vice versa, let Lx be continuous. Then Lx : H(i)(a,BR)→ R is an element of the dual space

of H(i)(a,BR) since it is a linear and continuous functional. Due to Riesz’ representation
theorem, see [225, Ch. III.6], there exists, for each x ∈ BR, an element gx ∈H(i)(a,BR) such
that (

O(i)
ŷ f(y)

)
y=x

= Lxf = 〈f , gx〉H(i) .

We define k
H(i)(·,x) := gx and the latter property of gx yields the two conditions required

for k
H(i) being a reproducing kernel, see Definition 16.7.

Lemma 16.11. For fixed i = 1, 2, 3, let the sequence a be {(µ(i)
n )1/2} -summable with respect

to {t(i)n }n∈N0i
, where infn∈N0i

t(i)n ≥ 0, and let a(i)
m,n ≥ 1 for all m ∈ N0, n ∈ N0i. Then the

space H(i)(a,BR) is an RKHS and the (unique) reproducing kernel is given for all x, y ∈ BR
by

k
H(i)(x,y) =

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

)−2√
µ(i)
n g

(i)
m,n,j(R;x)Gm,n,j(R;y), (16.1)

where both types of basis functions are defined with respect to the same sequence of exponents
{t(i)n }n∈N0i

, see Definitions 5.35 and 5.37.

In [150, 152] so-called vector-product kernels are defined by the series over a symbol of the
vector product kernel and the multiplication with a scalar- and a vector-valued orthonormal
basis system. However, these vector-product kernels are used for the construction of vector
scaling functions and vector wavelets.

Proof. We only need to verify that the kernel stated in Eq. (16.1) fulfils the properties of
Definition 16.7.
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i) First, we calculate the L2(BR)-inner product of the kernel and an orthonormal basis
function via Eq. (16.1) for all y ∈ BR, that is〈

k
H(i)(·,y), g(i)

m,n,j(R; ·)
〉

L2(BR)
=
(
a(i)
m,n

)−2√
µ(i)
n Gm,n,j(R;y).

Thus, with Definition 16.1, Theorem 2.25, and Lemma 5.3, we get for all y ∈ BR the
estimate∥∥k

H(i)(·,y)
∥∥2
H(i) =

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

)2〈
k
H(i)(·,y), g(i)

m,n,j(R; ·)
〉2

L2(BR)

=
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

)−2
µ(i)
n (Gm,n,j(R;y))2

=
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

(
a(i)
m,n

)−2
µ(i)
n

2n+ 1
4π

(
Q(t(i)n +1/2)
m (R; y)

)2

≤ 3
2πR3

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

µ(i)
n (2n+ 1)(m+ t(i)n + 1/2)2m+1(

a(i)
m,n

)2
(m!)2

<∞

since {a(i)
m,n} is {(µ(i)

n )1/2} -summable with respect to {t(i)n }n∈N0i
.

ii) The reproducing property remains to be proved. Each element a(i)
m,n is greater than

one. Thus, every function f ∈H(i)(a,BR) ⊂ L2(BR) can be represented by

f =
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

2n+1∑
j=1

f∧(i,m, n, j)g(i)
m,n,j(R; ·), (16.2)

where the Fourier coefficient is meant with respect to the L2(BR)-inner product.
The series converges uniformly due to a(i)

m,n ≥ a(i)
m,n(µ(i)

n )−1/2, the embedding of the
Sobolev spaces H(i)(a,BR) ⊂H(i)({a(i)

m,n(µ(i)
n )−1/2} ,BR), see also Corollary 16.4, the

{(µ(i)
n )1/2} -summability of the sequence a, and Theorem 16.6. In addition, the identity

O(i)
x̂ g

(i)
m,n,j(R;x) =

√
µ(i)
n Gm,n,j(R;x), m ∈ N0, n ∈ N0i , j = 1, . . . , 2n+ 1

holds true for all x ∈ BR, see Lemma 5.7 and Definitions 5.35 and 5.37. For all x ∈ BR,
we obtain the absolute convergence of the series via the estimate∣∣∣∣∣∣∣∣∣∣

∑
(m,n)∈N0×N0i

a
(i)
m,n 6=0

2n+1∑
j=1

f∧(i,m, n, j)O(i)
x̂ g

(i)
m,n,j(R;x)

∣∣∣∣∣∣∣∣∣∣
≤ 3

2πR3 ‖f‖H(i)
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

µ(i)
n

(2n+ 1) (m+ t(i)n + 1/2)2m+1(
a(i)
m,n

)2
(m!)2

<∞.
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Here, the {(µ(i)
n )1/2} -summability and Lemma 5.3 are used. Hence, for all x ∈ BR the

O(i)
x̂ -operator and the series in Eq. (16.2) can be interchanged. Eventually, we get the

relation〈
k
H(i)(·,y),f

〉
H(i)

=
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

2n+1∑
j=1

(
a(i)
m,n

)2〈
k
H(i)(·,y), g(i)

m,n,j(R; ·)
〉

L2(BR)

〈
f , g(i)

m,n,j(R; ·)
〉

L2(BR)

=
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

2n+1∑
j=1

f∧(i,m, n, j)
√
µ(i)
n Gm,n,j(R;y)

=
∑

(m,n)∈N0×N0i
a

(i)
m,n 6=0

2n+1∑
j=1

f∧(i,m, n, j)O(i)
ŷ g

(i)
m,n,j(R;y)

=O(i)
ŷ f(y).

Examples of reproducing kernels on BR × BR with R = 0.71 are depicted in Fig. 16.1.
Therein, we chose i = 3, t(3)

n := n for all n ∈ N, and a(3)
m,n := (n(n+ 1))1/4 h−n/2δm,0 for all

(m,n) ∈ N0×N and h ∈ (0, 1). The sequence is {(n(n+ 1))1/2} -summable due to properties
of the power series and

∑
(m,n)∈N0×N
a

(3)
m,n 6=0

µ(3)
n (2n+ 1)(m+ t(3)

n + 1/2)2m+1(
a(3)
m,n

)2
(m!)2

= 1
2

∞∑
n=1

hn(2n+ 1)2
√
n(n+ 1) <∞. (16.3)

In Fig. 16.1, the absolute values of the reproducing kernels are plotted and the directions of
the functions at several points are illustrated. This reveals that these reproducing kernels
are solenoidal. In addition, the parameter h can be understood to control localization, since
the kernel gets more and more localized if h increases. The functions are plotted on a sphere
with radius 0.95R. More examples of reproducing kernels can be found in Chapter 19.

16.2. Basics of Regularization Methods

In order to handle this situation, we make the following considerations, see [63, Ch. 3.1].
Let A : X→ Y be a bounded linear operator between two arbitrary Hilbert spaces X and Y.
Let the problem (A,X,Y) be ill-posed according to Nashed, see Definition 11.6, that is the
range of A is not closed. The exact data g ∈ Y is unknown. In contrast, we can observe the
approximation gδ with ∥∥∥gδ − g∥∥∥

Y
≤ δ

for a noise level δ > 0. We call gδ the noisy data. Due to Theorem 11.5, the Moore-
Penrose inverse is unbounded, which is why even small changes in the data can substantially
affect the reconstruction. Therefore, we want to replace the Moore-Penrose inverse by an
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Figure 16.1: Reproducing kernels k
H(3)(·, z) on BR × BR to the sequence a(3)

m,n :=
(n(n+ 1))1/4 h−n/2δm,0 with centre z = R(−0.9511, 0, 0.3090)T and parameter h = 0.7
(left) and h = 0.95 (right) are plotted on S0.95R

appropriate bounded operator. As a regularization of the unbounded Moore-Penrose operator
we understand a family {Rτ}τ of continuous operators converging to A+ pointwise, see
[192].

Definition 16.12 ([63, Def. 3.1]). Let A : X → Y be a bounded linear operator between
two Hilbert spaces, and let τ0 ∈ R+ be fixed. For every τ ∈ (0, τ0) let

Rτ : Y→ X

be a continuous (not necessarily linear) operator. The family {Rτ}τ is called a regularization
for A+ if for all g ∈ domA+ there exists a parameter choice rule τ : R+ × Y→ (0, τ0) such
that the limit

lim
δ→0

sup
{∥∥∥Rτ(δ,gδ)g

δ −A+g
∥∥∥
Y

∣∣∣ gδ ∈ Y,
∥∥∥gδ − g∥∥∥

Y
≤ δ

}
= 0 (16.4)

holds true. Furthermore, we require that

lim
δ→0

sup
{
τ
(
δ, gδ

) ∣∣∣ gδ ∈ Y,
∥∥∥gδ − g∥∥∥

Y
≤ δ

}
= 0. (16.5)

The parameter τ is called a regularization parameter. For a specific g ∈ domA+, a pair
(Rτ , τ) is called a (convergent) regularization method (for solving Af = g) if Eqs. (16.4)
and (16.5) hold true.

If τ is independent of gδ, then we call τ an a-priori parameter choice rule and write
τ = τ(δ). Otherwise, we call τ an a-posteriori parameter choice rule, see [63, Def. 3.2]. If a
function is obtained via a regularization method corresponding to the data gδ, we will often
use the notation f δ

τ(δ,gδ) := Rτ(δ,gδ)g
δ.
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Lemma 16.13 ([63, Prop. 3.4]). Let the (possibly nonlinear) operators Rτ be continuous
for all τ > 0. Then the family {Rτ}τ is a regularization for A+ if Rτ converges pointwise
on domA+ to A+ as τ converges to zero. In this case, there exists for every g ∈ domA+ an
a-priori parameter choice rule τ such that (Rτ , τ) is a convergent regularization method for
solving Af = g.

We can characterize all linear convergent regularizations by two limit conditions.

Lemma 16.14 ([63, Prop. 3.7]). Let {Rτ}τ be a linear regularization. Let τ : R+ → R+

be an a-priori parameter choice rule for every g ∈ domA+. Then (Rτ , τ) is a convergent
regularization method if and only if

lim
δ→0

τ(δ) = 0 and lim
δ→0

δ
∥∥∥Rτ(δ)

∥∥∥
L(Y,X)

= 0.

Naturally, the speed of convergence of the regularization method is of interest, since
a regularization method can converge arbitrarily slowly, see [192]. For this purpose, a
smoothness condition is introduced.

Definition 16.15 ([63, Ch. 8.5]). If the best-approximate solution f+ is an element of
ran((A∗A)ν) for some ν > 0, then f+ fulfils the Hölder-type source condition.

If the Hölder-type source condition is fulfilled, then a regularization method is called order
optimal if for a given parameter choice rule τ = τ(δ, gδ) the relation∥∥∥f+ − f δτ(δ,gδ)

∥∥∥
X
∈ O

(
δ2ν/(2ν+1)

)
(as δ → 0) (16.6)

holds true for ‖gδ − g‖Y ≤ δ and there exists a fixed H ∈ R+ such that

f+ ∈ {f ∈ X | f = (A∗A)νh and ‖h‖X ≤ H} ,

see [63, 192, 194].
As seen before, a particular class of operators causing ill-posed problems are the compact

operators, which possess an SVD, see Theorem 11.10. For these operators, a particular class
of regularization methods exists.

Definition 16.16 ([148, Def. 3.3.2]). Let A : X → Y be a compact operator with the
singular values {λk}k∈N and let A+ be the generalized Moore-Penrose inverse. A function
υτ : R→ R is called a regularizing filter for A+ if there exists a constant c ∈ R+ such that
for all k ∈ N and all τ > 0 the following relation holds true:

sup
k∈N

∣∣∣λ−1
k υτ (λk)

∣∣∣ <∞, |υτ (λk)| ≤ c, lim
τ→0

υτ (λk) = 1.

Theorem 16.17 ([148, Thm. 3.3.3]). Let A : X → Y be a compact operator with the
singular system {fk, gk;λk}k∈N and let υτ be a regularizing filter for τ > 0. Let the family
of operators {Rτ}τ be defined by

Rτgδ :=
∞∑
k=1

λ−1
k υτ (λk)

〈
gδ, gk

〉
Y
fk, gδ ∈ Y.

Then {Rτ}τ is a regularization of A+.
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Several regularizing filters exist in the literature, see, for example, [148, 194]. Now, we
consider some particular regularizing filters in detail.

Example 16.18 (Truncated Singular Value Decomposition, [148, Ch. 4.1]). Let
A : X→ Y be a compact operator with the singular system {fk, gk;λk}k∈N . Let τ > 0 and let
the regularizing filter be defined by

υτ (λ) :=
{

1 if λ ≥ τ,
0 if λ < τ.

In Theorem 11.10, we assumed that the singular values are sorted descending. Then there
exists K := max {k ∈ N | λk ≥ τ} and for all gδ ∈ Y a regularization of A+ is given by

Rτgδ :=
K∑
k=1

λ−1
k

〈
gδ, gk

〉
Y
fk.

This series is often called the truncated singular value decomposition (TSVD) of A+.

Remark 16.19. The TSVD from Example 16.18 can be interpreted as a projection onto
a finite-dimensional subspace of Y that is spanned by a finite number of orthonormal basis
functions gk, see [63, Sec. 3.3, Exam. 4.8]. Alternatively, we can apply the projection onto
a subspace Vm ⊂ X with dimension m ∈ N in the preimage space X. This is equivalent
to replacing A with a finite rank approximation Am that is a restriction of A onto the
finite-dimensional subspace Vm for all m ∈ N, which means Am := A|Vm.
Suppose that Vm := span {fk}k=1,...,m , then the sequence of finite-dimensional subspaces
{Vm}m∈N increases and their union is dense in X, that is ∪∞m=1Vm = X. It is easy to see
that a regularization is given by

R1/mg
δ := A+

mg
δ =

m∑
k=1

λ−1
k

〈
gδ, gk

〉
Y
fk

with the regularizing filter

υ1/m(λ) :=
{

1 if λ ≥ λm,
0 if λ < λm.

Under certain conditions, it can be proved that (R1/m,m) is a convergent regularization
method for m→∞, see [102, Thm. 4.1.1]. In this context, note that g ∈ domA+ is always
an element of domA+

m since Am is a finite rank operator.
Concluding, we see that this approach also leads to the TSVD, see [63, Sec. 3.3, Exam.

4.8].

Another class of regularizing filters can be constructed similarly to wavelets and scaling
functions, which are used for multi-scale approximations, see [82], for instance. Note that we
restrict ourselves to scalar-valued Hilbert spaces in the next example. However, this method
is also presented for vector- and tensor-valued Hilbert spaces in [155].

Example 16.20 (Scaling Functions, [155]). Let A : X → Y be a linear and continuous
operator between two scalar-valued Hilbert spaces X := X(G) with G ⊂ Rd, d ∈ N, and Y.
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Suppose its (possibly unbounded) inverse operator exists and let the singular system of A be
given by {fk, gk;λk}k∈N . Now, we can define a regularizing filter by

υ1/J(λk) := λkΦ ∧J (k), J ∈ Z, k ∈ N,

where the used symbols {Φ ∧J (k)}J∈Z of the product kernel ΦJ : G×G→ R have to satisfy
the following conditions:

i) {Φ ∧J (k)}J∈Z is monotonically increasing for every k ∈ N,

ii) limJ→∞Φ ∧J (k) = λ−1
k for every k ∈ N,

iii) limJ→−∞Φ ∧J (k) = 0 for every k ∈ N, and

iv) for each J ∈ Z the sequence {Φ ∧J (k)}k∈N is square-summable.

Then the family of corresponding product kernels {ΦJ}J∈Z is called (scale discrete) scaling
functions (with respect to the operator A). Note that the product kernel and its symbols are
related by

ΦJ(x,y) =
∞∑
k=1

Φ ∧J (k)fk(x)fk(y), x, y ∈ G.

For all g ∈ Y and J ∈ Z, we define an operator

R1/Jg := ΦJ ∗ g :=
∞∑
k=1

Φ ∧J (k)〈g, gk〉Yfk.

Then, according to [155, Thm. 2.4.5], the pair (R1/J , 1/J) satisfies

lim
J→∞

∥∥∥R1/Jg −A+g
∥∥∥ = 0, g ∈ ranA.

In addition, see [155, Thm. 2.4.12], the operator R1/J : ranA → X is continuous.
In the literature, there exist a variety of different scaling functions, see, for instance,

[82, 155] and the references therein. Examples are the Shannon, the de la Vallé-Poussin,
the cubic polynomial, and the Abel-Poisson scaling function. Note that the Shannon scaling
function is closely related to the TSVD.

The next filter considered in this thesis is the Tikhonov-regularization, which is a widely
used and analyzed tool for solving inverse problems such as integral equations of the first
kind, see, for instance, [63, 102, 136, 148, 178, 192] and the references therein.

Example 16.21 (Tikhonov-Philips Regularization, [148, Ch. 4.2]). First, we intro-
duce for given data gδ ∈ Y and for the regularization parameter τ > 0 the Tikhonov-Philips
functional

Jτ (f) =
∥∥∥Af − gδ∥∥∥2

Y
+ τ$(f)2,

where the penalty term is defined by a strongly convex function $ : X→ R+. Note that for
the classical Tikhonov regularization [213], the penalty term coincides with the norm in X,
and with the norm of the second-order derivative of f in the case of the classical Philips
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regularization, see [187]. In addition, the penalty term can be induced by an appropriate
densely defined pseudodifferential operator B : (kerA)⊥ → X, that is

Jτ (f) =
∥∥∥Af − gδ∥∥∥2

Y
+ τ ‖Bf‖2X . (16.7)

Then the unique minimizer of the Tikhonov-Philips functional is given by f δτ := Rτgδ, where
the regularization operator Rτ has the representation

Rτ = (A∗A+ τB∗B)−1A∗.

Let A : X→ Y be a compact operator with the singular system {fk, gk;λk}k∈N . If there exists
β > 0 such that ‖Bf‖X ≥ β‖f‖X for all f ∈ (kerA)⊥ and if there are coefficients {βk}k∈N
such that

B∗Bf =
∞∑
k=1

β2
k〈f, fk〉Yfk,

then the operator (B∗B)−1 : (kerA)⊥ → X is bounded. In this case, we get

‖Bf‖2X =
∞∑
k=1

β2
k〈f, fk〉2Y.

Thus, the domain of the operator is given by

domB =
{
f ∈ X

∣∣∣∣∣
∞∑
k=1

β2
k〈f, fk〉2Y <∞

}
,

which is dense in X.
Let the non-negative real sequence {βk}k∈N fulfil β2

k ≥ cλk with a constant c > 0. Then a
regularization Rτ is given by Theorem 16.17 and f δτ := Rτgδ is the unique minimizer of the
Tikhonov functional from Eq. (16.7), see also [193].

In Section 16.1, we have already seen spaces like domB given in the previous example
if X = L2(BR). In this context the domain of B coincides with the the pre-Hilbert space
⊕3
i=1E

(i)({βk}k∈N ,BR).

Theorem 16.22 ([136, Thm. 2.11]). Let A : X → Y be a linear and bounded operator
between two Hilbert spaces, let gδ ∈ Y and τ > 0. Then the classical Tikhonov functional Jτ
has a unique minimizer fτ ∈ X that is the unique solution of the so-called Tikhonov-regularized
normal equation, that is

(A∗A+ τI)fτ = A∗gδ.

Consequently, for all τ > 0 the following identity holds true:

fτ = (A∗A+ τI)−1A∗gδ.

Now, we can combine the Tikhonov regularization with the projection onto a finite-
dimensional subspace. The resulting method is called the regularized Ritz method and goes
back to [195]. For more details on the method and its theoretical properties, see [176, Sec.
5.2], [101–103], for example.
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Example 16.23 (Regularized Ritz Method, [102, Ch. 4.2]). Let an expanding sequence
of finite-dimensional subspaces Vm with m ∈ N of X be given as in Remark 16.19. Now, we
are interested in finding a minimizer f1/m,τ of the classical Tikhonov functional, that is

Jτ (f) =
∥∥∥Af − gδ∥∥∥2

Y
+ τ ‖f‖2X ,

over the finite-dimensional subspace Vm. Then, according to Theorem 16.22, this minimizer
can be represented by

f1/m,τ = (A∗mAm + τIm)−1A∗mgδ,

where Im is the identity operator on Vm and Am := A|Vm for all m ∈ N.
The next statement can be proved, see [102, Thm. 4.2.17]: let the finite space dimension

m = m(δ) and the regularization parameter τ = τ(m(δ)) satisfy a certain dependency on the
noise level δ. If f+ ∈ ran(A∗), then the regularized Ritz method is a convergent regularization
method with ‖f δ1/m,τ − f+‖X ∈ O(δ1/2) as δ → 0.

More details on regularization methods, parameter choice rules, and order optimality can
be found, for instance, in [63, 136, 148, 192–194] and the references therein.

16.3. Parameter Choice Methods

As we have already seen in Lemma 16.14, every regularization method requires an appropriate
parameter choice method for its convergence. A result with respect to the Tikhonov
regularization has already been known.

Lemma 16.24 ([193, Prop. 2.14, 2.18]). The Tikhonov regularization combined with a
parameter choice rule that either satisfies

i) τ(δ, gδ)→ 0 and δ2/τ(δ, gδ)→ 0 as δ → 0, or

ii) τ(δ, gδ) chosen such that ‖gδ −Af δτ ‖Y = mδ for fixed m > 1 (discrepancy principle)

is a regularization method. In addition, the Tikhonov regularization together with the dis-
crepancy principle is order optimal for some 0 < ν ≤ 0.5 (see [192, p. 1235]) occurring in
the Hölder-type source condition, see Definition 16.15.

Based on the forthcoming regularization method, we are interested in the particular case
of a Hölder-type source condition with ν = 1. However, for this source condition, it is
verified in [194, p. 75f.] that the discrepancy principle is not appropriate for the Tikhonov
regularization, since it does not result in an order optimal convergence rate. The discrepancy
principle requires exact knowledge (and control) of the uncertainty δ in the measurements.
For real data obtained from real measurements, this information is not available exactly
and control of the measurement noise is impossible. Therefore, we proceed by presenting
selected parameter choice methods that are suitable in the context of our application and
the algorithms applied in this thesis, which are closely related to Tikhonov regularization.

In [17, 18], the parameter choice methods presented in the following and other additional
methods are tested for Tikhonov regularization as well as TSVD with both white and coloured
stochastic noise. In [17], the methods are tested for the downward continuation occurring in
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many geoscientific applications, such as the inverse gravimetric problem, see Example 14.15.
However, the downward continuation problem is also a part of the inverse MEG and EEG
problem as we have already seen in Section 13.2. In [105], these methods are tested for the
downward continuation problem solved by an algorithm called the regularized functional
matching pursuit algorithm (RFMP) as well as the regularized orthogonal functional matching
pursuit algorithm (ROFMP), which we will also use to solve the inverse MEG and EEG
problem numerically, see Chapter 17.
For two Hilbert spaces X and Y, let the inverse problem (A,X,Y) be given, where the

data gδ ∈ Y can also be noisy and f δτj is obtained via the regularization method, that is
f δτj = Rτjgδ. For example, the applied regularization method can be Tikhonov regularization,
TSVD, or the RFMP. Furthermore, let us assume that an SVD of A with the singular
values {λk}k is available. Here, depending on the problem, k can either be an element of a
countably infinite index set or of a finite index set. First, we define a finite monotonically
decreasing sequence of regularization parameters {τj}j . The range of the regularization
parameter depends on the underlying problem and the regularization term. According to
[105], we calculate the variance propagation factor of the Tikhonov solution in the case of
white noise by

%2(j) =
∑
k

λ2
k

(λ2
k + τj)2 ,

where {λk}k are the singular values of the considered operator A : X→ Y. The restriction
to white noise is reasonable since we will use white noise in the synthetic test cases and
in the real data situation the technical noise is also assumed to be white, see Item (E) on
page 174. Note that most of the considered parameter choice methods need Y = R`. Before
applying the parameter choice method, we remove the regularization parameters causing
high variances by limiting the index set of {τj}j to the upper bound J given by

J := max
{
j
∣∣∣ %(j) < 0.5

(
max
n

%(n)
)}

.

Based on the results of [105], we consider the following parameter choice methods:

L-curve Method (LC) The relative residual is plotted against the X-norm of the approx-
imation. The resulting parametric log-log plot is called the L-curve, since the plot is
often L-shaped. Then, the regularization parameter τj∗ that corresponds to the point
near the corner of the L-curve is chosen. Thus, a parameter is sought that keeps the
relative residual small as well as the norm of the approximation, see [63, p. 108f.]. A
disadvantage of this method is that the parameter τj∗ has to be chosen manually. We
also call this method the manual L-curve method (LCM). In contrast, a variation that
can be calculated automatically (LCA) is known in the literature and also stated in
[105], that is

j∗ = arg min
j≤J

{∥∥∥Af δτj − gδ∥∥∥R` ∥∥∥f δτj∥∥∥X} .
There exist first rigorous optimality results for the L-curve method, see [17, 149].

Generalized Cross Validation (GCV) According to [17], the GCV is best suited to
stochastic white noise and discrete data, which will be used in the forthcoming synthetic

248



16.3. Parameter Choice Methods

test cases. However, according to [105], the best results can be obtained with a regularly
distributed data grid, which is not given in our application. Here, the selection criterion
for the regularization parameter is given by

j∗ = arg min
j≤J

 ‖Af δτj − gδ‖2R`(
`−1 tr(I − AR̄τj )

)2

 ,

where the linear regularization operator R̄τj : R` → X is defined by

R̄τj := (A∗A+ τjI)−1A∗. (16.8)

The trace tr(I − AR̄τj ) can be calculated by

tr(I − AR̄τj ) =
∑
k

(
1− λ2

k

λ2
k + τj

)
,

see [142, Ch. 30.3]. According to [63, p. 106], it is a disadvantage of this method that
detailed information about the singular values of A are required for the analytical
calculation of the trace term expression. However, in our application we will use a
numerical approximation of these singular values.

Robust GCV (RGCV) The RGCV method is a further development of the GCV in order
to overcome the instability of the GCV, see [17]. To this end, a robustness parameter
γ ∈ (0, 1) is introduced. In the case of γ = 1, the RGCV coincides with the GCV.
Using the regularization operator from Eq. (16.8), the selection criterion is given by

j∗ = arg min
j≤J

 ‖Af δτj − gδ‖2R`(
`−1 tr(I − AR̄τj )

)2

(
γ + (1− γ)`−1 tr

((
AR̄τj

)2
)) . (16.9)

We will choose γ = 0.1 for the RGCV. The RGCV yields good results for Tikhonov
regularization with solutions of lowest smoothness, see [17]. The remaining trace can
be calculated by

tr
((
AR̄τj

)2
)

=
∑
k

(
λ2
k

λ2
k + τj

)2

.

Strong RGCV (SRGCV) The SRGCV is a particular case of the RGCV, where the
robustness parameter is chosen near to one. We use γ = 0.95 in Eq. (16.9).

Modified GCV (MGCV) Another modification of the GCV is given by the MGCV, which
is designed to stabilize the GCV. Here, the selection criterion for the regularization
index is given by

j∗ = arg min
j≤J

 ‖Af δτj − gδ‖2R`(
`−1 tr

(
I − cAR̄τj

))2

 ,

where the regularization operator is given as in Eq. (16.8) and the stabilization parameter
c > 1 needs to be chosen. We choose c = 3 for our calculations.
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Residual Method (RM) The aim of the RM is to minimize a weighted form of the R`-
norm of the residuals. The weighting should penalize under-smoothing parameter
values, see [17]. The parameter choice rule is given by

j∗ = arg min
j≤J

 ‖Af
δ
τj − gδ‖R`(

tr(B∗τjBτj )
)1/4

 ,

where the occurring operator Bτj : X→ R` is defined with the regularization operator
R̄τj from Eq. (16.8) by

Bτj := A
(
I − R̄τjA

)
.

The corresponding trace is given by

tr(B∗τjBτj ) =
∑
k

(
λk

(
1− λ2

k

λ2
k + τj

))2

.

For several parameter choice methods, such as the (strong) RGCV and the MGCV, additional
parameters need to be determined. In these cases, we chose the same parameters as in [105].
More information on the different parameter choice methods and their advantages and

disadvantages can be found in [17, 18, 105] and the references therein.
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Regularized Functional Matching Pursuit
Algorithm

17.1. Algorithm and Properties

In this chapter, we present an algorithm for solving (ill-posed) inverse problems that is
called the regularized functional matching pursuit algorithm (RFMP). The RFMP was
originally invented for the inversion of gravitational data and normal mode anomalies, see
[66]. Especially for the inversion of gravitational data, several different approaches with
different function systems and bases exist, for instance, spherical harmonics, wavelets, Slepian
functions, and splines. Since each of these systems has advantages but also disadvantages,
an algorithm was sought that enables the possibility to combine several different function
types. This leads to a dictionary that may contain linearly dependent functions and may be
redundant. The aim of this method is to acquire all the advantages of the different systems
and to reduce the disadvantages.
Several variants of the RFMP are presented in the literature starting from [23] and are

applied to several ill-posed inverse problems in the geosciences, see [66–69, 86, 159, 165, 166].
They are based on a greedy algorithm introduced in [151] and enhanced in [218] which is
called the matching pursuit algorithm. This algorithm is an approximation method. In
[66, 67], the functional matching pursuit algorithm was developed, which is used for the
reconstruction of functions. Due to the additional regularization, see also [159], the RFMP is
applicable to ill-posed inverse problems. In [66], convergence results of the RFMP are stated
for the first time. In the setting used in [66], only operators mapping from L2(G) to R` are
considered, where G ⊂ Rd is a compact region. The convergence results of the RFMP consist
of two statements: the sequence of approximations produced by the RFMP converges and the
RFMP is a convergent regularization method. The convergence result was transferred to an
arbitrary separable Hilbert space as the domain of the operator in [163, 210]. In this context,
the statement concerning the convergence of the sequence of approximations produced by
the RFMP was improved by the author in [163]. In [137, 138], the RFMP was considered as
a particular case of the so-called regularized weak functional matching pursuit (RWFMP).
Therein, the RFMP for operators between two (infinite-dimensional) Hilbert spaces was

considered for the first time. This approach yields a characterization of the convergence
order of the regularization induced by the RFMP. However, the convergence result follows
as a corollary since the RFMP is a particular case of the RWFMP. Here, we present an
alternative approach to achieve this convergence result without the technique required for
the RWFMP. The transition to the infinite-dimensional setting in the operator range requires
only a small adjustment of the proof stated in [163]. We consider the following setting, which
perfectly fits to the inverse magneto-electroencephalography problem.
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Problem 17.1. Let X and Y be two (infinite-dimensional) Hilbert spaces. Let g ∈ Y be the
given data (function) and A : X→ Y be a given linear and continuous operator. The task is
to find a solution f ∈ X such that

Af = g.

We proceed by considering the RFMP iteration in detail, which constructs a sequence
{fk}k∈N ⊂ X of approximations to the (unknown) solution f . The elements fk are linear
combinations of elements from a so-called dictionary D, which is a subset of X containing
possibly useful trial functions. Thus, in the kth step we have already calculated the
approximation fk and we are searching for a tuple (αk+1, dk+1) ∈ R × D containing the
best-fitting next dictionary element and its coefficient. In this context, best-fitting element
is meant as the minimizer of the resulting regularized Tikhonov-functional, that is

(αk+1, dk+1) = arg min
(α,d)∈R×D

Jτ (g, fk, d, α),

Jτ (g, f, d, α) := ‖g −A(f + αd)‖2Y + τ ‖f + αd‖2X .

Assume that the next chosen dictionary element dk+1 has already been known. Then the
optimal coefficient αk+1 can be calculated as the root of the derivative with respect to α of
this regularized Tikhonov-functional, see [66]. In addition, the second derivative with respect
to α of the regularized Tikhonov-functional is non-negative, that is

∂2

∂α2

(
‖g −A(fk + αdk+1)‖2Y + τ ‖fk + αdk+1‖2X

)
= 2 ‖Adk+1‖2Y + 2τ ‖dk+1‖2X ≥ 0.

Thus, the regularized Tikhonov-function is convex as a function in α and the optimal
coefficient αk+1 is unique. This greedy procedure leads to the next algorithm.

Algorithm 17.2 (RFMP, [163, Algo. 2]). Let A and g be given as in Problem 17.1.
Choose a dictionary D ⊂ X \ {0} , an initial approximation f0 ∈ X, for example f0 = 0, and
a regularization parameter τ ∈ R+

0 .

i) Initialize the step counter to k := 0, define the residual r0 := g −Af0, and choose a
stopping criterion.

ii) Find

dk+1 := arg max
d∈D

(〈rk,Ad〉Y − τ〈fk, d〉X)2

‖Ad‖2Y + τ‖d‖2X
(17.1)

and set

αk+1 := 〈rk,Adk+1〉Y − τ〈fk, dk+1〉X
‖Adk+1‖2Y + τ‖dk+1‖2X

(17.2)

as well as fk+1 := fk + αk+1dk+1 and rk+1 := g −Afk+1 = rk − αk+1Adk+1.

iii) If the stopping criterion is fulfilled, then fk+1 is the output. Otherwise, increase k by 1
and go to step ii).
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Several properties required for the convergence theorem of the RFMP are analyzed in
[66, 159] and summarized in this thesis. In order to accelerate the algorithm, several quantities
can be calculated in a preprocessing step, such as the inner products between the dictionary
elements or the forward operator action Ad for all dictionary elements d ∈ D.
In practice, the algorithm will be stopped when some stopping criterion is satisfied, see,

for example, [159]. The stopping criterion can, for instance, be a (relative) bound for the
residual or an upper bound for the number of iterations. However, we neglect the stopping
criterion for the analysis of the convergence of the sequence produced by the algorithm.

Lemma 17.3 ([163, Lem. 3]). The sequences {fk}k∈N ⊂ X and {rk}k∈N ⊂ Y of the
RFMP satisfy

‖rk‖2Y + τ ‖fk‖2X = ‖rk−1‖2Y + τ ‖fk−1‖2X −
(〈rk−1,Adk〉Y − τ〈fk−1, dk〉X)2

‖Adk‖2Y + τ‖dk‖2X
(17.3)

for all k ∈ N. Hence, the sequence {‖rk‖2Y + τ‖fk‖2X}k∈N is monotonically decreasing,
bounded from below by zero, and convergent.

The next lemmas are parts of [163, Thm. 4], which are separated here for the sake of
structure. Note that the condition of the next lemma implies 0 6∈ D in the regularized case
and kerA ∩D = ∅ in the non-regularized case.

Lemma 17.4 ([163, Thm. 4]). If the dictionary fulfils

c1 := inf
d∈D

(‖Ad‖2Y + τ ‖d‖2X) > 0,

then the sequence {αk}k∈N produced by the RFMP is square summable and, consequently, a
null sequence.

In Problem 17.1, the considered operator A is assumed to be continuous, which means that
the operator norm ‖A‖L := supf∈X,f 6=0‖Af‖Y/‖f‖X is finite. We make use of this continuity
in combination with Eq. (17.1) in the next lemma.

Lemma 17.5 ([163, Thm. 4]). If the dictionary is bounded (i.e. c2 := supd∈D‖d‖X <∞),
then the sequence of coefficients {αk}k∈N produced by the RFMP fulfils for all k ∈ N and all
d ∈ D the estimate

α2
k+1 ≥

1
(‖A‖2L + τ)‖dk+1‖2X

(〈rk,Adk+1〉Y − τ〈fk, dk+1〉X)2

‖Adk+1‖2Y + τ‖dk+1‖2X

≥ 1
(‖A‖2L + τ)c2

2

(〈rk,Ad〉Y − τ〈fk, d〉X)2

‖Ad‖2Y + τ‖d‖2X
.

The convergence theorem presented in this thesis requires a semi-frame condition for the
dictionary, which is stated below.

Assumption 17.6 (Semi-frame Condition). There exists a constant c3 > 0 and an
integer M ∈ N such that for all expansions h = ∑∞

k=1 βkdk with βk ∈ R and dk ∈ D, where
the dk are not necessarily pairwise distinct but |{j ∈ N | dj = dk}| ≤M for each k ∈ N, the
following inequality is valid:

c3 ‖h‖2X ≤
∞∑
k=1

β2
k.
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The following theorems published by the author in [163] improve the results from [66, Thm.
3.5], [67, Thm. 4.5], [159, Thm. 2], and [165, Thm. 6.3]. In [163], the result is formulated for
the case of a finite-dimensional Hilbert space Y. However, the proof of this result is in fact
independent of the structure of the operator range and the space Y. Thus, the next theorem
is also valid in the context of infinite-dimensional Hilbert spaces Y.

Theorem 17.7 (Convergence Theorem, [163, Thm. 4]). Let the setting of Problem 17.1
and an arbitrary regularization parameter τ ∈ R+

0 be given. Let the dictionary D ⊆ X satisfy
the semi-frame condition from Assumption 17.6 and the conditions of Lemmas 17.4 and 17.5.

If the sequence {fk}k∈N is produced by the RFMP and no dictionary element is chosen
more than M times, then {fk}k∈N converges in X to f∞ := f0 +∑∞

k=1 αkdk ∈ X and the
sequence of residuals {rk}k∈N converges in Y.

Proof. We can define f∞ := f0 +∑∞n=1 αndn, which is an element of X due to the semi-frame
condition and Lemma 17.4. These two properties also reveal that the sequence {fk}k∈N
converges to f∞ in the strong sense, that is

lim
k→∞

‖f∞ − fk‖2X = lim
k→∞

∥∥∥∥∥∥
∞∑

n=k+1
αndn

∥∥∥∥∥∥
2

X

≤ 1
c3

lim
k→∞

∞∑
n=k+1

α2
n = 0.

Since A is continuous, {rk}k∈N = {g −Afk}k∈N must converge (strongly) in Y.

The semi-frame condition is not easy to handle. It is hard to verify that a chosen dictionary
fulfils this condition. In [137], a first step is taken in order to get rid of this semi-frame
condition. Therein, the convergence of the residuals {rk}k∈N could be proved without using
the semi-frame condition. In addition, there exist first considerations by M. Kontak in order
to get rid of the semi-frame condition also for the convergence in the domain.

Theorem 17.8 ([163, Thm. 4]). Let the conditions of Theorem 17.7 be satisfied and let
the span of the dictionary be dense in X. Then for all gδ ∈ Y the function f∞ obtained by
the RFMP solves the Tikhonov-regularized normal equation

(A∗A+ τI)f∞ = A∗gδ, (17.4)

where A∗ is the adjoint operator of A and I is the identity operator on X.

Proof. Since A is continuous, the sequences {Afk}k∈N , {rk}k∈N , and {A∗rk}k∈N must
converge (strongly), too. Due to Lemma 17.4, limk→∞ αk = 0. An immediate consequence
of the estimate in Lemma 17.5 is the relation

〈rk,Ad〉Y − τ〈fk, d〉X = 〈A∗rk − τfk, d〉X → 0 (as k →∞) (17.5)

for all d ∈ D. Due to the bilinearity of the inner product and the algebraic limit theorem,
we also have

〈A∗rk − τfk, d〉X → 0 (as k →∞)

for all d ∈ spanD. As we derived above, {A∗rk − τfk}k∈N is a strongly convergent and,
thus, bounded sequence.
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Now, let h ∈ X be arbitrary. Since the span of the dictionary is dense in X, there
exists a sequence {hm}m∈N ⊂ spanD such that ‖hm − h‖X → 0 as m → ∞. Then the
Cauchy-Schwarz inequality yields

|〈A∗rk − τfk, hm − h〉X| ≤ ‖A∗rk − τfk‖X ‖hm − h‖X

≤
(

sup
k∈N0

‖A∗rk − τfk‖X
)
‖hm − h‖X

→ 0 (as m→∞).

Since this convergence for m to infinity is uniform with respect to k, we get, by applying the
Moore-Osgood double limit theorem, for all h ∈ X the identity

lim
k→∞

〈A∗rk − τfk, h〉X = lim
k→∞

lim
m→∞ 〈A

∗rk − τfk, hm〉X
= lim

m→∞ lim
k→∞

〈A∗rk − τfk, hm〉X
= 0.

This shows that the sequence {A∗rk}k∈N weakly converges to τf∞ in X (and, due to the
considerations above, also strongly). Consequently, using the identity A∗rk = A∗gδ −A∗Afk
and again the continuity of A, we obtain that

A∗gδ −A∗Af∞ = τf∞,

which is equivalent to the Tikhonov-regularized normal equation, see Theorem 16.22.

It is a basic result of Tikhonov regularization, see Example 16.21, that every solution
of Eq. (17.4) minimizes the regularized Tikhonov-Philips functional. If τ > 0, then this
minimizer and the solution of the Tikhonov-regularized normal equation are both uniquely
determined by

f∞ = (A∗A+ τI)−1A∗gδ, gδ ∈ Y.

The next result is stated in [210] in the case of Y = R`. However, the proof is based on
Eq. (16.7) and can be applied one-to-one to the case of an infinite-dimensional operator
range.

Lemma 17.9 ([210, Lem. 4.2.5]). Under the assumptions of Theorem 17.7, the function
f∞ produced by the RFMP is contained in the orthogonal complement of the operator null
space, that is f∞ ∈ (kerA)⊥.

Due to this result, the denseness of the span of the dictionary D in X in the convergence
theorem is an unnecessarily strong condition. We are able to weaken this condition in the
next corollary.

Corollary 17.10. Let the conditions of Theorem 17.7 be fulfilled except that the span of the
dictionary D only has to be dense in (kerA)⊥. Then f∞ obtained by the RFMP solves the
Tikhonov-regularized normal equation

(A∗A+ τI) f∞ = A∗gδ, gδ ∈ Y.
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Proof. This proof is based on the one of Theorem 17.8. Since (kerA)⊥ is a closed subspace
of the Hilbert space X, the space ((kerA)⊥, 〈·, ·〉X) is a (complete) Hilbert space. We define
the operators

A(kerA)⊥ := AP(kerA)⊥ : X→ Y,

A∗(kerA)⊥ =
(
AP(kerA)⊥

)∗
= P(kerA)⊥A∗ = A∗,

where the last equation is due to ranA∗ = (kerA)⊥, see Eq. (11.2). Let f∞,(kerA)⊥ ∈ (kerA)⊥
solve the Tikhonov-regularized normal equation in ((kerA)⊥, 〈·, ·〉X), that is(

A∗A(kerA)⊥ + τI(kerA)⊥
)
f∞,(kerA)⊥ = A∗gδ.

In addition, we have Af = A(kerA)⊥f for all f ∈ X. Thus, we arrive at(
A∗A+ τI(kerA)⊥

)
f∞,(kerA)⊥ = A∗gδ.

Via Lemma 17.9, we obtain that the solutions of the Tikhonov-regularized normal equations
in ((kerA)⊥, 〈·, ·〉X) and in X coincide.

If the smoothness of the function f is unknown, it can be necessary to regularize with
certain different norms that are generated by a pseudodifferential operator, see Example 16.21.
By means of the pseudodifferential operators, we are able to define a function space similar
to the Sobolev spaces on the ball defined in Definition 16.1.

Definition 17.11. Let B : (kerA)⊥ → X be a densely defined pseudodifferential operator
with ‖Bf‖X ≥ β‖f‖X for a β > 0 and all f ∈ domB. Furthermore, let its singular system
(fk, gk;βk) be given such that

B∗Bf =
∞∑
k=1

β2
k〈f, fk〉Xfk.

With the definition

E :=
{
f ∈ (kerA)⊥

∣∣∣∣∣
∞∑
k=1

β2
k〈f, fk〉2X <∞

}

we get domB = E, which is dense in X with respect to the X-norm. In addition, with the
inner product

〈f, h〉H :=
∞∑
k=1

β2
k〈f, fk〉X〈h, fk〉X = 〈Bf,Bh〉X,

the space H := E
‖·‖H is a Hilbert space, see also Example 16.21.

Theorem 17.12. Let (A,X,Y) be given as in Problem 17.1, let H ⊂ X as in Definition 17.11,
and let gδ ∈ Y. Then the solution of the RFMP with respect to the Tikhonov-functional

Jτ (f) =
∥∥∥Af − gδ∥∥∥2

Y
+ τ ‖f‖2H
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converges to f∞ ∈ H fulfilling

(PHA∗A+ τB∗B)f∞ = PHA∗gδ

if the conditions of Theorem 17.7 with respect to the topology in H are fulfilled. Note that B∗
is the adjoint operator of B with respect to the topology in X.

Proof. In order to apply Theorem 17.7 to the problem (AH,H,Y) with AH := A|H, we need
the continuity of AH, which is given by

‖AH‖L(H,Y) = sup
f∈H,f 6=0

‖AHf‖Y
‖f‖H

= sup
f∈H,f 6=0

‖Af‖Y
‖f‖H

≤ sup
f∈H,f 6=0

‖A‖L(X,Y)‖f‖X
‖f‖H

≤ 1
β
‖A‖L(X,Y) <∞.

Here, we used that A : X→ Y is a bounded linear operator and ‖f‖H ≥ β‖f‖X for a β > 0.
Thus, the sequence produced by the RFMP converges to f∞ ∈ H, which fulfills

(A∗HAH + τIH)f∞ = A∗Hgδ, (17.6)

see Theorem 17.7. Note that the adjoint operator A∗H of AH is subject to the H-inner
product. For all f ∈ H, gδ ∈ Y, we also get the relations〈

f,A∗Hgδ
〉
H

=
〈
AHf, g

δ
〉
Y

=
〈
Af, gδ

〉
Y

=
〈
f,A∗gδ

〉
X
,〈

f,A∗Hgδ
〉
H

=
〈
Bf,BA∗Hgδ

〉
X

=
〈
f,B∗BA∗Hgδ

〉
X
.

Thus, 〈
f,B∗BA∗Hgδ −A∗gδ

〉
X

= 0 for all f ∈ H,

which implies B∗BA∗H − PHA∗ ∈ H⊥ = {0} since H is dense in X and ranB∗ = (kerB)⊥ =
domB ⊂ H. Accordingly, we get B∗BA∗H = PHA∗. Due to Example 16.21, the operator B∗B
has a bounded inverse. Thus, for the adjoint operator A∗H, the identity A∗H = (B∗B)−1PHA∗
holds true. Inserting this into Eq. (17.6), we immediately get

((B∗B)−1PHA∗AH + τIH)f∞ = (B∗B)−1PHA∗gδ,
⇔ (PHA∗A+ τB∗B)f∞ = PHA∗gδ.

If more knowledge on the operator A is available, for instance an SVD {fk, gk;λk}k∈N ,
then the spanning condition for the dictionary in Theorem 17.8 can be weakened.

Theorem 17.13 ([163, Thm. 6]). Let gδ ∈ Y and A be given as in Problem 17.1 where
additionally A is assumed to be a compact operator with singular system {fk, gk;λk}k∈N . Let
the conditions of Theorem 17.8 be fulfilled, except that the dictionary is only a spanning set
for V := span {fk}k∈J , where J ⊂ N is a countable index set.
Then the solution f∞,V ∈ V produced by the RFMP and the unique solution of the Tikhonov-

regularized normal equation f∞ ∈ X satisfy

(A∗A+ τI)f∞,V = (A∗A+ τI)PVf∞.

If τ > 0, then the operator A∗A+ τI is one-to-one and we obtain f∞,V = PVf∞.
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Proof. (V, 〈·, ·〉X) is a Hilbert space since V ⊂ X is closed. The operator AV := APV is a
bounded operator AV : X → R` and, hence, its restriction AV|V : V → R` is also bounded,
where AV|V = A|V. We can apply Theorem 17.7 to this setting and obtain the solution
f∞,V ∈ V produced by the RFMP, which due to Theorem 17.8 solves the Tikhonov-regularized
normal equation in V, that is

(A∗VAV + τIV)f∞,V = A∗Vgδ.

In order to prove that f∞,V is the best approximation of f∞ in V, it remains to show that
f∞,V = PVf∞. For this purpose, we study the singular system {fk, gk;λk}k∈N of A, which
exists because of the compactness of A. Due to the construction of V, we obtain for each
k ∈ N that fk is either in V or in V⊥. Hence, A∗A and PV commute, that is

PVA∗Af =
∞∑
k=1
fk∈V

λ2
k〈f, fk〉Xfk = A∗APVf for all f ∈ X.

Due to AV = APV, see also [102, p. 79], we immediately obtain A∗V = PVA∗. For f∞,V, we
get

(A∗A+ τI) f∞,V =
(
A∗AP2

V + τPV
)
f∞,V = (PVA∗APV + τPV) f∞,V

= (A∗VAV + τPV) f∞,V = A∗Vgδ = PVA∗gδ
= PV ((A∗A+ τI) f∞) = (A∗A+ τI)PVf∞.

Via Theorem 16.22, the last statement can be proved by applying the inverse operator
(A∗A+ τI)−1 to the last equation.

Besides the presented convergence statements in the regularized case, we are also able to
achieve a result in the unregularized case, that is τ = 0. The next theorem is a generalization
to the infinite-dimensional Hilbert space Y of the result presented by the author in [163, Cor.
5].

Theorem 17.14. Let the conditions of Theorem 17.7 be satisfied with τ = 0 (no regulariza-
tion) and let W := span {Ad | d ∈ D} . Then f∞ obtained by the RFMP solves Af∞ = P

W
gδ,

where P
W

is the orthogonal projection onto the closed space W and gδ ∈ Y.

Proof. Due to the continuity of A, the sequence {rk}k∈N converges strongly, that is r∞ =
limk→∞ rk = limk→∞(g −Afk). This is inferred from Theorem 17.7, which also holds true
for τ = 0. We recall the estimate of Lemma 17.5 with τ = 0, that is

0 ≤ 1
c2

2‖A‖2L
〈rk,Ad〉2Y
‖Ad‖2Y

≤ α2
k+1 → 0 (as k →∞).

With the Squeeze Theorem, we directly obtain limk→∞ 〈rk,Ad〉Y = 0 for all d ∈ D. Con-
sequently, due to the bilinearity of the inner product and the algebraic limit theorem, we obtain
limk→∞ 〈rk, h〉Y = 0 for all h ∈ W. Since AD is dense in the closed space W, there exists
for all h ∈W a strongly convergent sequence {hm}m∈N ⊂ AD with limm→∞‖hm − h‖Y = 0.
With Lemma 17.3, we conclude that

0 ≤ |〈rk, hm − h〉Y| ≤ ‖rk‖Y ‖hm − h‖Y ≤ ‖r0‖Y ‖hm − h‖Y → 0 (as m→∞),
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where the convergence in m is uniform with respect to k. Thus, using the Moore-Osgood
double limit theorem, we obtain for all h ∈W the limit

lim
k→∞

〈rk, h〉Y = lim
k→∞

lim
m→∞ 〈rk, hm〉Y = lim

m→∞ lim
k→∞

〈rk, hm〉Y = 0.

Since W is closed, we can decompose Y = W⊕W⊥. The residual has the unique representation
rk = P

W
rk + P

W
⊥rk, where 〈P

W
⊥rk, h〉Y = 0 for all h ∈W. Thus,

0 = lim
k→∞

〈rk, h〉Y = lim
k→∞

〈P
W
rk, h

〉
Y

=
〈P

W
r∞, h

〉
Y
,

where we used the continuity of the orthogonal projection P
W
. Concluding, {P

W
rk}k∈N

weakly converges to zero in W. Due to the uniqueness of the limit, we obtain P
W
r∞ = 0.

Eventually, we conclude

0 = P
W
r∞ = P

W

(
gδ −Af∞

)
= P

W
gδ −Af∞.

If the dictionary fulfils R` = span {Ad | d ∈ D} for a surjective operator A with finite-
dimensional range, then the previous theorem coincides with the results in [66, Thm. 3.5],
[67, Thm. 4.5], [159, Thm. 2], and [165, Thm. 6.3].
For a fixed regularization parameter τ > 0, we have already seen that the limit of the

sequence {fk}k∈N of approximations obtained by the RFMP converges to f∞, which is the
unique minimizer of the Tikhonov-Philips functional. This is an indicator for the RFMP
inducing a regularization in the sense of Definition 16.12.
In [210, Thm. 4.2.7], this is proved for the case of a finite range operator without a

convergence order. In [137], this is generalized to the setting of Problem 17.1 under appropriate
assumptions. In addition, the statement in [137] takes into account that the RFMP stops
after a finite number of iterations K.

Theorem 17.15 ([137, Thm. 9.35]). Let {f δτ,k}k∈N0 be the sequence of iterations of the
RFMP to the inverse problem Af = gδ with gδ ∈ Y fulfilling ‖g − gδ‖Y ≤ δ using the
regularization parameter τ > 0. We assume that

• the dictionary is normalized in the sense that ‖Ad‖2Y + ‖d‖2X = 1 for all d ∈ D,

• the best-approximate solution f+ fulfils a Hölder-type source condition for ν = 1, see
also Definition 16.15,

• the function |f δτ,k|D is uniformly bounded with respect to τ , where |·|D is a certain
measure for the sparsity, see [137, Lem. 9.30], and

• there exist constants m1, m2 > 0 such that τ(δ) = m1δ2/3 and K(δ) = m2δ−6.

Then there exists a constant C > 0 such that∥∥∥f δτ,K(δ) − f+
∥∥∥
X
≤ Cδ2/3.

Eventually, this theorem shows that the RFMP has a convergence rate of δ2/3 for δ → 0+
and that this rate can even be retained when only a finite number of iterations is used, see
[137, p. 160].
This convergence rate is not surprising, since the order of convergence of the Tikhonov

regularization is also δ2/3. This order of convergence is optimal with respect to the source
condition, see Eq. (16.6).
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17.2. Regularized Functional Matching Pursuit Algorithm
for Simultaneous Inversion

The RFMP can be used for a simultaneous joint inversion of several data types. This can
be reasonable if a source induces several physical quantities that can be measured. Then
a joint inversion of these quantities can yield more information about the source than the
single inversion of each data set. For example, the RFMP has been used before for a joint
inversion of gravitational data and normal mode anomalies in order to reconstruct the mass
density inside the Earth, see [66]. Hence, the question arises whether a joint inversion of
MEG and EEG data also exhibits this advantage when reconstructing the neuronal current.
Due to the structure of the MEG and EEG null spaces, we are able to prove in this section
that a joint inversion cannot yield more details of the neuronal current than independent
single inversions.
For this purpose, we define for each i = 1, 2, 3 the Hilbert space

L̃(i)
2 (B%0) :=

{
x 7→ õ(i)

x̂ F (x)
∣∣∣ F ∈ C∞(B%0)

}‖·‖L2(B%0 )
,

which is a similar construction to the vector-valued Hilbert space on the sphere from Eq. (5.10).
Recall that more details of the inverse MEG and EEG problem can be found in Problems 9.1
and 10.2.

Problem 17.16 (Joint Inversion of MEG and EEG Data). In all three cases, we want
to solve Problem 17.1 by means of the RFMP, where the occurring quantities are determined
in the following. In addition, we choose the same regularization parameter τ > 0 for the
RFMP in all three cases.

MEG: Let XM :=
(
L̃(3)

2 (B%0), 〈·, ·〉L2(B%0 )
)
and let YM := R`M with an `M ∈ N. Let the data

vector gM ∈ R`M be given. Then the forward operator is given by

AM : XM → R`M , AMJ
P :=

`M∑
`=1

(
ν(y`) ·

(
TMJ

P
)

(y`)
)
ε`,

where ε` is the `th canonical unit vector. In addition, let the span of the dictionary
DM be dense in (kerAM)⊥, bounded, and satisfy the semi-frame condition in XM as
well as the condition in Lemma 17.4.

EEG: Let XE :=
(
L̃(2)

2 (B%0), 〈·, ·〉L2(B%0 )
)
and let YE := R`E with an `E ∈ N. Let the data

vector gE ∈ R`E be given. Then the forward operator is given by

AE : XE → R`E , AEJ
P :=

`E∑
`=1

(
TEJ

P
)

(y`M+`)ε`.

In addition, let the span of the dictionary DE be dense in (kerAE)⊥, bounded, and
satisfy the semi-frame condition in XE as well as the condition in Lemma 17.4.

Joint: Let X be defined by the internal direct sum, that is X := XM ⊕ XE, let Y := R`Σ with
`Σ := `M + `E, let the data be given by gT := (gT

M, g
T
E) ∈ R`Σ, and let the operator
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A : X→ R`Σ for the RFMP be given by

AJP :=
((
AM

(
PXMJ

P
))T

,
(
AE

(
PXEJ

P
))T

)T
. (17.7)

For the dictionary, we choose D = DM ∪DE.

In this setting, we can prove that no more information can be obtained by a simultaneous
joint inversion based on the RFMP than by the independent inversion of both data sets.
Note that the precise representation of AM and AE is not necessary for the proof.

Theorem 17.17. Let the setting of Problem 17.16 be given, let a fixed regularization para-
meter τ > 0 be chosen for all three cases. Then the RFMP solution of the joint case f∞
coincides with the sum of the solutions independently obtained by the RFMP in the MEG
and EEG case, that is f∞ = fM,∞ + fE,∞.

Proof. Note that Problem 17.16 implies all conditions of Theorem 17.8. Thus, we immediately
obtain that the two solutions of the independent cases fulfil

(A∗MAM + τIXM)fM,∞ = A∗MgM, in XM, (17.8a)
(A∗EAE + τIXE)fE,∞ = A∗EgE, in XE. (17.8b)

In the joint case, we also obtain a Tikhonov-regularized normal equation in X. In addition,
ranA∗M = (kerAM)⊥ ⊂ XM ⊥ XE ⊃ (kerAE)⊥ = ranA∗E, see also Eq. (11.2). This
complementarity of the orthogonal complements of the operator null spaces is essential
for this proof. In order to prove the statement, we first calculate the adjoint operator
A∗ of the joint operator A in X. It has to fulfil 〈A∗h,f〉X = 〈h,Af〉R`Σ for all f ∈ X,
h ∈ R`Σ . The vector h can be decomposed into hT = (hT

M,h
T
E) with hM := ∑`M

`=1(h)`ε` and
hE := ∑`E

`=1(h)`M+`ε
`. Thus, via Eq. (17.7) we get

〈h,Af〉R`Σ = 〈hM,AMPXMf〉R`M + 〈hE,AEPXEf〉R`E
= 〈A∗MhM,PXMf〉XM

+ 〈A∗EhE,PXEf〉XE

= 〈A∗MhM,PXMf〉X + 〈A∗EhE,PXEf〉X
= 〈A∗MhM,f〉X + 〈A∗EhE,f〉X
= 〈A∗MhM +A∗EhE,f〉X.

The last step is valid due to the orthogonality and structure of the occurring spaces. Even-
tually, we obtain A∗h = A∗MhM +A∗EhE for all h ∈ R`Σ , in particular for h = g. Setting
h = Af∞, we immediately arrive at

A∗Af∞ = A∗MAMPXMf∞ +A∗EAEPXEf∞.

Thus, for the Tikhonov-regularized normal equation in X, we obtain the identity

A∗MgM +A∗EgE = A∗g = (A∗A+ τI)f∞
= (A∗MAM + τIXM)PXMf∞ + (A∗EAE + τIXE)PXEf∞.
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The complementarity of the adjoint operator ranges allows to split the last equation into a
system of two equations, that is

A∗MgM = (A∗MAM + τIXM)PXMf∞, in XM,

A∗EgE = (A∗EAE + τIXE)PXEf∞, in XE.

With Eq. (17.8), we get

(A∗MAM + τIXM)fM,∞ = (A∗MAM + τIXM)PXMf∞,

(A∗EAE + τIXE)fE,∞ = (A∗EAE + τIXE)PXEf∞.

The two occurring operators are one-to-one since τ > 0, see Theorem 16.22. Thus, fM,∞ =
PXMf∞ and fE,∞ = PXEf∞.

Note that this property holds true in a more general setting.

Remark 17.18. The statement of theorem is achieved without particular properties of the
RFMP. If the three solutions f∞, fM,∞, and fE,∞ are just the unique solutions of the re-
spective Tikhonov-regularized normal equations corresponding to the setting of Problem 17.16,
then f∞ = fM,∞ + fE,∞.

Since the solution obtained by the simultaneous inversion of both data sets equals the sum
of the solutions obtained by the independent inversion of each single data set, no additional
information is gained.
Furthermore, the separated inversion is more efficient than the simultaneous one for the

following reasons. For the RFMP, the inner products between all dictionary elements are
required, see Eq. (17.1). Thus, finding the maximum in Eq. (17.1) can be accelerated
by splitting the inversion since the memory capacity requirement for storing these inner
products grows quadratically with the amount of dictionary elements. Another problem
in the simultaneous inversion of two different data sets emerges if the magnitude of the
data differs, see [66]. Therein, the data sets have to be weighted in order to obtain a good
reconstruction. This is unnecessary in the case of a split inversion. Additionally, a split
inversion provides us with the possibility to fit the regularization parameter to the particular
problems without a modification of the RFMP algorithm and its implementation. This
statement holds true for all problems where the operator A consists of a finite amount of
operators Ai with (kerAi)⊥ ⊥ (kerAj)⊥ for i 6= j.

17.3. Regularized Orthogonal Functional Matching Pursuit
Algorithm

A problem of the RFMP occurring in numerical tests is that certain dictionary elements
may be chosen repeatedly. This can be understood as a correction for some previously
chosen coefficients α1, . . . , αk. A reason for this phenomenon is that the residual rk is not
orthogonal to the image of the span of the previously chosen dictionary elements, that
is span {Ad1, . . . ,Adk} . In order to get rid of this unwanted effect, an enhancement of
the RFMP is developed in [210]. Therein, an orthogonalization step based on the idea of
[186, 218] is introduced. The final algorithm is called the regularized orthogonal functional
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matching pursuit algorithm (ROFMP) and is stated in [166, 210]. A short overview of the
ROFMP can also be found in [86].
Unfortunately, at the state of art the ROFMP is only analyzed in the case of a finite-

dimensional space Y. Therefore, Y coincides with the R` for an ` ∈ N. According to our
notation, elements of this space are denoted by bold letters. However, for a consistent
notation to Algorithm 17.2 we use non-bold letters in this Section 17.3.
Algorithm 17.19 (ROFMP, [86, Algo. 8]). Let A and g be given as in Problem 17.1
with Y := R` and ` ∈ N. Choose a stopping criterion, a dictionary D ⊂ X, an initial
approximation f0 ∈ X, and a regularization parameter τ ∈ R+

0 .
i) Initialize the step counter to k := 0, define the residual r0 := g − Af0, set V0 := ∅,

W0 := V⊥0 , and B0(d) := IX.
ii) Find

dk+1 := arg max
d∈D

(〈rk,PWk
(Ad)〉R` + τ〈fk,Bk(d)− d〉X)2

‖PWk
(Ad)‖2R` + τ‖Bk(d)− d‖2X

(17.9)

and set

αk+1 := 〈rk,PWk
(Adk+1)〉R` + τ〈fk,Bk(dk+1)− dk+1〉X

‖PWk
(Adk+1)‖2R` + τ‖Bk+1(dk+1)− dk+1‖2X

. (17.10)

iii) For all d ∈ D, define the mappings

β
(k)
k (d) :=

〈Ad,PWk−1Adk〉R`
‖PWk−1Adk‖2R`

,

β
(k)
i (d) = β

(k−1)
i (d)− β(k)

k (d)β(k−1)
i (dk) for i = 1, . . . , k − 1,

Bk(d) :=
k∑
i=1

β
(k)
i (d)di.

iv) Update the coefficients as follows:

α
(k+1)
i = α

(k)
i − αk+1β

(k)
i (dk+1) for i = 1, . . . , k,

α
(k+1)
k+1 = αk+1

and set fk+1 := ∑k+1
i=1 α

(k+1)
i di as well as rk+1 := g −Afk+1. Update the spaces such

that

Vk+1 := span {Ad1, . . . ,Adk+1} , Wk+1 = V⊥k+1.

v) If the stopping criterion is satisfied, then use fk+1 as an approximate solution to
Af = g. Otherwise, increase k by 1 and go to step ii).

The functionals β(k)
i are used for the projection of Ad onto Vk, since the images of the

dictionary elements under A are not necessarily orthogonal, that is

Afk+1 =
k∑
i=1

(
α

(k)
i − αk+1β

(k)
i (dk+1)

)
Adi + αk+1Adk+1.

These functionals are used to correct the dictionary elements by means of the operator Bk.
This correction is sometimes called backfitting.
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Theorem 17.20 ([210, Thm. 4.3.6]). Let span {Ad | d ∈ D} = R` and τ = 0. Then
V` = R` and there exists a number L ∈ {1, . . . , `} such that A(∑L

i=1 α
L
i di) = g and,

consequently, rL = 0.

However, this result cannot be transferred to the regularized case. Indeed, the sequence of
residuals obtained by the ROFMP stagnates starting from a specific step.

Theorem 17.21 ([210, Thm. 4.3.9]). Let ` be the dimension of the data space. Moreover,
let functions from D and corresponding coefficients be chosen according to Algorithm 17.19.
Then there exists a number K := K(τ) ≥ ` such that

rk = rK for all k ≥ K.

In order to obtain convergence of the ROFMP, an iterative refinement is necessary. In this
case, after a certain number of steps K ∈ N the algorithm is restarted with g −AfK as the
new data vector. It may be useful to keep the previous approximation in the penalty term,
see [86, 210].

Theorem 17.22 (Convergence of the Iterated ROFMP, [210, Thm. 4.3.13]). Let
A and g be given as in Problem 17.1 with Y := R` and ` > 0. Furthermore, let 0 < K <∞
be a fixed integer and let

• the span of the dictionary be dense in X,

• there be a constant c1 ∈ R+ such that for every 0 < n < K and every choice of
dictionary elements d1, . . . , dn ∈ D, we have dist(d, span {d1, . . . , dn} ) ≥ c1 for all
d ∈ D \ {d1, . . . , dn} , where dist(d,V) := inff∈V ‖d− f‖H,

• the dictionary fulfil c2 := supd∈D‖Ad‖R` <∞,

• the dictionary fulfil, for a constant c3 > 0, the condition c2
3
∑K
i=1 γ

2
i ≤ ‖

∑K
i=1 γiAdi‖2R`

for all finite linear combinations with γi ∈ R, and

• the dictionary fulfil the semi-frame condition 17.6.

Then the sequence {fk}k∈N produced by the iterated ROFMP converges to f∞ ∈ X.
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Part VI.

Numerical Solution of the MEG and EEG
Problem
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In this part, the regularization method called the RFMP and its enhancement, the ROFMP,
will be tested for the inverse MEG and EEG problem. In addition, the results of these
algorithms will be compared to existing methods, such as a spline approach or a regularized
Ritz method. For a fair comparison of these methods, a synthetic test case, where the
exact solution is known, is constructed in Chapter 18. Afterwards, some foundations for the
implementation with focus on the RFMP are presented in Chapter 19. However, some of these
foundations are also required for the other reconstruction methods. Parts of the theoretical
background of these further reconstruction methods are presented in Chapter 20. Having
the implementation at hand, the RFMP, the ROFMP, the regularized Ritz method, and
some spline methods are used for the reconstruction of the neuronal current from non-noisy
and noisy synthetic data in Chapter 21. Therein, the results achieved via the different
reconstruction methods are also compared in Section 21.5. Finally, the ROFMP is used for
the inversion of real data, see Section 21.6.

All computations in this part are performed on a single node of the HorUS cluster of the
University of Siegen. Each node is equipped with 48GiB memory and two Intel Xeon X5650
CPUs running at 2.66GHz having a total of 12 (physical) CPU cores. Due to the memory
requirements of the methods, we do not share the compute node with other users of the
cluster during our computations.

The reconstruction methods considered in this thesis are implemented in Matlab [212] using
highly vectorized and parallelized code. In order to accelerate the preprocessing, the inner
products of the reproducing kernels in the RFMP preprocessing are calculated by a C++
code, see [207], using OpenMP, see [185]. Matlab code for the evaluation of fully normalized
Morse-Feshbach vector spherical harmonics was kindly provided by C. Gerhards, see [92],
and Matlab code for the generation of a modified Reuter grid on the ball was kindly provided
by A. Ishtiaq, see [128]. In addition, sensor positions of the electro-magnetoencephalography
device and real data were provided by O. Hauk, see [116].
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Chapter 18.

Synthetic Test Case

In order to validate the results obtained by the reconstruction methods, we construct a
synthetic test case similar to the one in [73]. We construct synthetic test currents for the
MEG as well as the EEG case separately since both problems are solved independent of
each other. In each case, the corresponding synthetic test current is assumed to be in the
orthogonal complement of the operator null space in order to handle the non-uniqueness of
the ill-posed problems. In order to gain information about the instability of the problems,
we generate non-noisy and noisy data from the synthetic test case.

18.1. Synthetic Test Current

First, we need to determine the synthetic test current that we want to reconstruct. We avoid
the current to have parts in the null spaces of the forward operators TM or TE, respectively,
in order to get a unique reconstruction. Thus, the synthetic current is assumed to fulfil
the assumptions of Theorem 13.7. This implies that the synthetic current is harmonic and
solenoidal. The current is based on the classical Abel-Poisson kernel, which is also used in
[73] for building an appropriate test case. However, it needs to be adapted in order to obtain
a vector-valued current. The classical Abel-Poisson kernel is given by the next theorem.

Theorem 18.1 ([81, Lem. 3.2.5]). For all h ∈ (−1, 1) and all t ∈ [−1, 1], the so-called
Abel-Poisson kernel is given by the following Legendre series with closed representation:

1
4π

1− h2

(1 + h2 − 2ht)3/2 =
∞∑
n=0

2n+ 1
4π hnPn(t).

Now, we assume that the neuronal current is given as a (linear combination of some)
vectorial generalization of the Abel-Poisson kernel. In the case of the inverse MEG problem,
we generate this vectorial kernel by means of the L∗ operator since the test current is
supposed not to lie in the null space of the MEG operator. In analogy, in the case of the
inverse EEG problem, the test current is supposed to be generated by the gradient. Thus,
the synthetic currents are of the following form.

Definition 18.2. Let h ∈ [0, 1) be fixed and z ∈ B%0 be given. Then the synthetic MEG
current IM and the synthetic EEG current IE are for all x ∈ B%0 defined by

IM(x;h, z) := L∗x̂

( ∞∑
n=1

2n+ 1
4π

(
hxz

%2
0

)n
Pn(x̂ · ẑ)

)
,

IE(x;h, z) :=∇x
( ∞∑
n=1

2n+ 1
4π

((
hxz

%2
0

)n
Pn(x̂ · ẑ)

))
.
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Chapter 18. Synthetic Test Case

In a first step, we need to verify that the synthetic currents do not have parts in the null
spaces of the respective forward operators.

Theorem 18.3. Let the synthetic currents be defined as in Definition 18.2. Then for all
h ∈ [0, 1) and all z ∈ B%0 we have IM(·;h, z) ∈ (ker TM)⊥ and IE(·;h, z) ∈ (ker TE)⊥.

Proof. Since the Legendre polynomials are bounded, see Theorem 2.7, and since (hxz)/%2
0 < 1,

the series occurring in the synthetic currents can be estimated by convergent power series.
Thus, the series and its derivatives converge uniformly and we are able to interchange the
gradient and the L∗ operator with the respective series.

Now, we start with the MEG case. We interchange the differential operator with the series,
use the definition of the Morse-Feshbach vector Legendre polynomials, and Theorem 5.24.
Hence, for all x ∈ B%0 we get the identity

IM(x;h, z) =
∞∑
n=1

2n+ 1
4π

(
hxz

%2
0

)n
L∗x̂Pn(x̂ · ẑ)

=
∞∑
n=1

2n+ 1
4π

√
µ(3)
n

(
hxz

%2
0

)n
p(3)
n (x̂; ẑ)

=
∞∑
n=1

2n+1∑
j=1

(
hxz

%2
0

)n√
µ(3)
n y

(3)
n,j(x̂)Yn,j(ẑ)

= %3
0

∞∑
n=1

2n+1∑
j=1

hn
√
n(n+ 1)
2n+ 3 g(3)

0,n,j(%0;x)G0,n,j(%0; z).

In the last step, we used Definition 5.35 for the scalar basis functions with m = 0, tn = n
and Definition 5.37 for the vectorial basis functions with m = 0, t(3)

n = n.
In the EEG case, we analogously obtain with Eq. (5.6) and Definitions 5.21 and 5.35, but

for m = 0 and t(2)
n = n−1 in the vector-valued basis functions and tn = n in the scalar-valued

basis functions, for all x ∈ B%0 the representation

IE(x;h, z) =
∞∑
n=1

2n+ 1
4π ∇x

((
hxz

%2
0

)n
Pn(x̂ · ẑ)

)

=
∞∑
n=1

2n+ 1
4π

√
µ̃(2)
n

(
hz

%2
0

)n
xn−1p̃(2)

n (x̂; ẑ)

= %2
0

∞∑
n=1

2n+1∑
j=1

hnQ
(n+1/2)
0 (%0; z)Q(n−1/2)

0 (%0;x)
√

n

2n+ 3 ỹ
(2)
n,j(x̂)Yn,j(ẑ)

= %2
0

∞∑
n=1

2n+1∑
j=1

hn
√

n

2n+ 3 g̃
(2)
0,n,j(%0;x)G0,n,j(%0; z).

Eventually, Theorem 13.1 provides us with the desired result.

For the implementation of the synthetic current, the series representation is not appropriate
since a required truncation of the series will always result in approximation errors. In order
to avoid these additional errors, we calculate the closed representations of the synthetic
currents.
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18.1. Synthetic Test Current

Lemma 18.4. Let the synthetic current IM be defined as in Definition 18.2 and q := (hxz)/%2
0

for all h ∈ [0, 1) and z ∈ B%0. Then

IM(x;h, z) = 3
4π

(
1− q2) q

(1 + q2 − 2q(x̂ · ẑ))5/2 (x̂ ∧ ẑ), x ∈ B%0 .

Proof. We start with the definition of the synthetic current from Definition 18.2, use the
closed representation of the Abel-Poisson kernel from Theorem 18.1, and use the fact that
L∗1 = 0. Thus, with q := (hxz)/%2

0 we get for all h ∈ [0, 1) and z ∈ B%0 the identity

IM(x;h, z) = 1
4πL

∗
x̂

( ∞∑
n=0

(2n+ 1)qnPn(x̂ · ẑ)− 1
)

= 1
4πL

∗
x̂

1− q2

(1 + q2 − 2q(x̂ · ẑ))3/2 .

The variable q is independent of the angular part of x. We obtain with Theorem 2.15 and
the quotient rule the desired representation.

Lemma 18.5. Let the synthetic current IE be defined as in Definition 18.2 and let abbre-
viations be given by r := x̂ · ẑ and q := q(x) := (hxz)/%2

0 for all h ∈ [0, 1) and z ∈ B%0.
Then

IE(x;h, z) = q2 (−5 + q2 + 4qr
)
x̂+ 3

(
1− q2) qẑ

x (1 + q2 − 2qr)5/2 , x ∈ B%0 .

Proof. We start with the same considerations as in Lemma 18.4 and immediately get

IE(x;h, z) = 1
4π∇x

1− q(x)2

(1 + q(x)2 − 2q(x)(x̂ · ẑ))3/2 .

Due to Theorem 2.14, the gradient can be split into a radial and an angular derivative. Then
we obtain with Theorem 2.15 and the quotient rule the representation

4πIE(x;h, z) =
(
x̂
∂

∂x
+ 1
x
∇∗x̂

) 1− q(x)2

(1 + q(x)2 − 2q(x)(x̂ · ẑ))3/2

= x̂
∂

∂x

1− q(x)2

(1 + q(x)2 − 2q(x)(x̂ · ẑ))3/2 + 3
x

(
1− q(x)2) q(x)

(1 + q(x)2 − 2q(x)(x̂ · ẑ))5/2 (ẑ − (x̂ · ẑ)x̂) .

In addition, again with the quotient rule, q′(x) = q(x)/x, and the abbreviation for r, we get

∂

∂x

1− q(x)2

(1 + q(x)2 − 2q(x)r)3/2 = q(x)
x

−2q(x)
(
1 + q(x)2 − 2q(x)r

)− 3(1− q(x)2) (q(x)− r)
(1 + q(x)2 − 2q(x)r)5/2

= q(x)
x

−5q(x) + q(x)3 + q(x)2r + 3r
(1 + q(x)2 − 2q(x)r)5/2 .
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Chapter 18. Synthetic Test Case

Inserting this into the formula for the synthetic current, we get with q := q(x) the stated
result, that is

IE(x;h, z) = q2 (−5 + q2 + qr
)

+ 3qr
x (1 + q2 − 2qr)5/2 x̂+ 3

(
1− q2) q

x (1 + q2 − 2qr)5/2 (ẑ − rx̂)

= q2 (−5 + q2 + qr
)

+ 3qr − 3qr + 3q3r

x (1 + q2 − 2qr)5/2 x̂+ 3
(
1− q2) q

x (1 + q2 − 2qr)5/2 ẑ

= q2 (−5 + q2 + 4qr
)
x̂+ 3

(
1− q2) qẑ

x (1 + q2 − 2qr)5/2 .

An example of a linear combination of these synthetic currents for the inverse MEG as
well as for the inverse EEG problem is shown in Figs. 18.1 and 18.2. Therein, we choose

JM :=
2∑
l=1

κlIM(·;hl, zl), JE :=
2∑
l=1

κlIE(·;hl, zl). (18.1)

In addition, the radius of the cerebrum is given as in Eq. (19.2), that is %0 = 0.071 m. In
both cases, the occurring parameters are chosen according to Table 18.1. In Section 21.6,
we use some real data for the ROFMP for which the visual cortex of the human brain is
supposed to be active. A visualization of human brain lobes is also given in Fig. 21.36 in
Section 21.6. The visual cortex is an area of the brain which is located near the boundary of
the brain, thus, we locate our synthetic tests current also near the boundary. Note that in
Figs. 18.1 and 18.2 and in the following plots, the unit of the axes is given in dm.

l κl hl zl ẑl

1 1 0.9 0.85%0 (0,−2, 1)T/
√

5
2 1.5 0.8 0.9%0 (−1, 1, 1)T/

√
3

Table 18.1: Chosen parameters for the synthetic test current from Eq. (18.1) for the inverse
MEG and EEG problem

18.2. Synthetic Data

Now, we generate the synthetic data induced by the synthetic test current from Eq. (18.1),
which will be used within our numerical tests. For this purpose, we need to apply the MEG
and EEG operator introduced in Problem 17.16, which are repeated below, to the synthetic
currents from Eq. (18.1). The action of the operators on the synthetic test currents are given
by

AMJM =
`M∑
`=1

(
ν(y`) ·

( 2∑
l=1

κlTM (IM(·;hl, zl)) (y`)
))

ε`, (18.2)

AEJ
P =

2∑
l=1

κl

`E∑
`=1

(TE (IE(·;hl, zl))) (y`M+`)ε`, (18.3)
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18.2. Synthetic Data

(a) MEG synthetic test current

(b) EEG synthetic test current

Figure 18.1: The absolute value of the synthetic currents given in Eq. (18.1) with parameters
from Table 18.1 for the inverse MEG (top) and EEG (bottom) plotted on a cutout of the
ball B%0 with directions of the current superimposed
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Chapter 18. Synthetic Test Case

Figure 18.2: The absolute value of the synthetic currents given in Eq. (18.1) with parameters
from Table 18.1 for the inverse MEG (left) and EEG (right) plotted on the sphere with
radius 0.95%0 with directions of the current superimposed

where the occurring parameters κl, hl, and zl for l = 1, 2 will be given according to Table 18.1
in the numerical tests. For this purpose, the two forward operators TM and TE need to be
applied onto the synthetic test currents. This result will be stated in the next theorem.

Theorem 18.6. Let y ∈ Bext
%L

in the MEG case and let y ∈ S[%L−1,%L] in the EEG case. Then
we get

(TMJM) (y) = −µ0
4π%

3
0

2∑
l=1

κl

∞∑
n=1

√
n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hlzl)n
yn+2 p̃

(1)
n (ŷ; ẑl),

(TEJE) (y) = %0
4π

2∑
l=1

κl

∞∑
n=1

β(L)
n

(hlzl)n
yn+1 (2n+ 1)

(
(n+ 1)

(
y

%L

)2n+1
+ n

)
Pn(ẑl · ŷ)

with κl ∈ R, hl ∈ [0, 1), and zl ∈ B%0 for l = 1, 2.

Proof. Via Theorem 9.4 in the MEG case and Table 13.1 in the EEG case, which holds true
on the assumed domains, we get

TMJM = −µ0

∞∑
n=1

2n+1∑
j=1

√
n%0

(2n+ 1)(2n+ 3)

(
%0
%L

)n+1
JM
∧[3, 0, n, j]h(1)

n,j(%L; ·),

TEJE =
∞∑
n=1

2n+1∑
j=1

(2n+ 1)
√
%0
n
β(L)
n

(
%0
%L

)n
JE
∧[2, 0, n, j]Zn,j .

Only the calculation of the Fourier coefficients remains to be done. Since JM and JE are
linear combinations of IM(·, h,z) or IE(·, h,z), respectively, with some parameters h ∈ [0, 1)
and z ∈ B%0 , we calculate the Fourier coefficients for these functions and then use the linearity
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18.2. Synthetic Data

of TM and TE in order to obtain the result for JM and JE, respectively. By means of the
representation of the synthetic current from the proof of Theorem 18.3 for h ∈ [0, 1), z ∈ B%0 ,
and tn = n, we obtain for all n ∈ N, j = 1, . . . , 2n+ 1 the identities

IM
∧[3, 0, n, j] = %3

0h
n

√
n(n+ 1)
2n+ 3 G0,n,j(%0; z), t(3)

n = n,

IE
∧[2, 0, n, j] = %2

0h
n
√

n

2n+ 3G0,n,j(%0; z), t(2)
n = n− 1.

In the MEG case, we then obtain with h ∈ [0, 1) and z ∈ B%0 that

TM (IM(·;h, z)) = −µ0

∞∑
n=1

2n+1∑
j=1

√
n2(n+ 1)%0

(2n+ 1)(2n+ 3)3

(
%0
%L

)n+1
%3

0h
nG0,n,j(%0; z)h(1)

n,j(%L; ·).

Using Definitions 5.27 and 5.35 and Theorem 5.24, we obtain for h ∈ [0, 1), z ∈ B%0 , and all
y ∈ Bext

%L
the relation

TM (IM(·;h, z)) (y) = −µ0%
3
0

∞∑
n=1

2n+1∑
j=1

√
n2(n+ 1)

(2n+ 1)(2n+ 3)2
(hz)n
yn+2 Yn,j(ẑ)ỹ(1)

n,j(ŷ)

= −µ0
4π%

3
0

∞∑
n=1

√
n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hz)n
yn+2 p̃

(1)
n (ŷ; ẑ).

In the EEG case, we obtain with Lemma 13.2 for all y ∈ S[%L−1,%L] the result

(TEIE(·;h, z)) (y) =
∞∑
n=1

2n+1∑
j=1

β(L)
n

%
n+5/2
0
%nL

hn

√
(2n+ 1)2

2n+ 3 G0,n,j(%0; z)Zn,j(y)

= %0
4π

∞∑
n=1

β(L)
n

hnzn

yn+1 (2n+ 1)
(

(n+ 1)
(
y

%L

)2n+1
+ n

)
Pn(ẑ · ŷ).

Unfortunately, we are neither able to find a closed representation of TM (IM(·;h, z)) nor of
(TEIE(·;h, z)). Therefore, we need to truncate the series for the computation of the synthetic
data. Thus, we are interested in a bound for the truncation error.

Lemma 18.7. For all h ∈ [0, 1), z ∈ B%0, y ∈ Bext
%L

, and N ∈ N, the following estimate
holds true:

%3
0

∣∣∣∣∣∣
∞∑

n=N+1

√
n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hz)n
yn+2 p̃

(1)
n (ŷ; ẑ)

∣∣∣∣∣∣ ≤ %3
0
%2
L

(
h%0
%L

)N+1
(N + 2)2

(1− h%0
%L

)3
.

In addition, for all h ∈ [0, 1), z ∈ B%0, y ∈ S[%L−1,%L], and N ∈ N, we get

%0

∣∣∣∣∣∣
∞∑

n=N+1
β(L)
n

hnzn

yn+1 (2n+ 1)
(

(n+ 1)
(
y

%L

)2n+1
+ n

)
Pn(ẑ · ŷ)

∣∣∣∣∣∣
≤ 9%0

2σL%L−1C(L)

(
h%0
%L−1

)N+1
(N + 1)(

1− h%0
%L−1

)2 ,

where C(L) is given in Corollary 4.3 if {nβ(L)
n }n∈N is monotonically increasing.
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Note that the condition on {nβ(L)
n }n∈N is fulfilled in our particular numerical setting, see

Eq. (19.2).

Proof. From Theorem 18.6, Lemma 5.22, and Definition 5.21, we get for the truncation error

µ0
4π%

3
0

∣∣∣∣∣∣
∞∑

n=N+1

√
n2(n+ 1)(2n+ 1)

(2n+ 3)2
(hz)n
yn+2 p̃

(1)
n (ŷ; ẑ)

∣∣∣∣∣∣ ≤ µ0
4π

%3
0
%2
L

∞∑
n=N+1

n(n+ 1)
(
h%0
%L

)n
.

We define q := h%0/%L ∈ [0, 1) and obtain with the closed representation of the power series
and some lengthy calculations, the estimate

∞∑
n=N+1

n(n+ 1)
(
h%0
%L

)n
= qN+1 (−q2N2 + 2qN2 −N2 − q2N + 4qN − 3N − 2

)
(q − 1)3

= qN+1 (−(q − 1)N((q − 1)N + q − 3)− 2)
(q − 1)3

= qN+1 ((1− q)N((1− q)N − q + 3) + 2)
(1− q)3

≤ qN+1 ((1− q)N(N + 3) + 2)
(1− q)3

≤ qN+1(N + 2)(N + 1)
(1− q)3 ,

where N ∈ N. Vice versa from Theorem 18.6 with Corollary 4.3, the abbreviation q :=
h%0/%L−1 ∈ [0, 1), and the inequality (2n+ 1)2 ≤ 9n2 for all n ∈ N, we similarly obtain for
all N ∈ N the estimate

%0
4π

∣∣∣∣∣∣
∞∑

n=N+1
β(L)
n

hnzn

yn+1 (2n+ 1)
(

(n+ 1)
(
y

%L

)2n+1
+ n

)
Pn(ẑ · ŷ)

∣∣∣∣∣∣
≤ %0

4π

∞∑
n=N+1

∣∣β(L)
n

∣∣ hn%n0
%n+1
L−1

(2n+ 1)2

≤ 9%0
8πσL%L−1C(L)

∞∑
n=N+1

nqn

= 9%0
8πσL%L−1C(L)

qN+1 ((1− q)N + 1)
(1− q)2

≤ 9%0
8πσL%L−1C(L)

qN+1(N + 1)
(1− q)2 .

If a maximal truncation error, for example the machine precision, is desired, then the results
stated in Table 18.2 yields the required number of summands depending on the parameter h.
According to the results from Table 18.2, which were also obtained via Mathematica [223],
we choose NM = 177 and NE = 237.

In addition, numerical summation always implies a numerical error due to the finite
precision of the floating point numbers. In order to reduce the truncation and round-off error
incurred by the summation, we use the Kahan summation algorithm, see [121], for the MEG
forward operator. From the results stated in Table 18.2, we can deduce that NMeps ≤ 1,
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where eps is the machine precision. Thus, the error of compensated summation is effectively
O(eps), which is independent of N , see [121]. For the calculation of the electric potential, we
use the Clenshaw algorithm for the summation of Legendre polynomials, see [31] or [158, p.
48].

error h NM NE

10−4 0.8 48 62
10−4 0.9 74 103
10−5 0.8 54 69
10−5 0.9 83 114
10−16 0.8 121 149
10−16 0.9 177 237

Table 18.2: Number of summands NM for the truncated series in Theorem 18.6 and NE for
the series in Theorem 18.6 depending on h for a given maximal truncation error. The shell
radii and conductivities are chosen according to Eq. (19.2), which implies C(L) ≈ 4.6495,
see Corollary 4.3.

Besides non-noisy data, we want to generate noisy data for the synthetic tests. For this
purpose, we use additive white Gaussian noise. In this case, let {yi}1≤i≤N be the data. Then
the additive noise for each component yi of the data vector is normally distributed with zero
mean and standard deviation δ|yi|, where δ ∈ [0, 0.1] is the (relative) noise level.
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Chapter 19.

Foundation for Implementation

For the implementation of the RFMP and ROFMP algorithm, several quantities are necessary,
see Algorithms 17.2 and 17.19, such as the forward operators, appropriate Hilbert spaces,
a penalty term, a dictionary, and an initial approximation. In Problem 17.16, the forward
operators considered for the implementation are stated:

AMJ
P =

`M∑
`=1

(
ν(y`) ·

(
TMJ

P
)

(y`)
)
ε`, AEJ

P =
`E∑
`=1

(
TEJ

P
)

(y`M+`)ε`. (19.1)

For the implementation, we need to consider a particular instance of the multiple-shell
model. We assume that L = 3, that is the three-shell model, with the following radii and
conductivities:

%0 = 0.071 m, %1 = 0.072 m, %2 = 0.079 m, %3 = 0.085 m, (19.2a)
σ0 = 0.330 S m−1, σ1 = 1.000 S m−1, σ2 = 0.042 S m−1, σ3 = 0.330 S m−1. (19.2b)

Note that this model coincides with the one in [73] and is partially based on results stated in
[117, Ch. 9.3]. In our implementation, we calculated in fact in dm. Note that the values of
the conductivities for the brain, the skull, and the scalp shell correspond to the one chosen
in [32] for their forward model. For the sensor positions of the magnetoencephalography
device and the electroencephalography cap, we have

‖y`‖R3 ∈ [1.4978%L, 2.0522%L] for all ` = 1, . . . , `M, (19.3)
‖y`‖R3 ∈ [%L−1, %L] for all ` = `M + 1, . . . , `M + `E. (19.4)

The precise positions of the sensors in our synthetic test case as well as in the real data
situation is visualized in Fig. 19.1 and provided by [116]. In this case, we have `M = 102 and
`E = 70.
As we can see in Fig. 19.1, both sets of positions are irregularly distributed with major

gaps, for example in the region of the face.
In Problem 17.16, the Hilbert spaces for domain and range of the operators have already

been defined. For the domain, we choose vectorial Lebesgue spaces with p = 2 on the ball,
where we only need to consider the directions that are not in the null space of the respective
operator, that is L̃(i)

2 (B%0) with i = 2 for EEG and i = 3 for MEG. Based on the results of
Theorem 17.12, we can use a variety of norms for the penalty term. Here, we choose several
Sobolev norms for the penalty term based on Definition 16.1 with the sequence depending
on a parameter s ∈ R+

0 , that is

a(i)
m,n := a(i)

n δm,0 =


(
n+ 1

2

)s (
n+ 1

2

)s
δm,0 if i = 2,(

n+ 1
2

)s (
n+ 3

2

)s
δm,0 if i = 3.

(19.5)
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Figure 19.1: Position of the MEG (left) and EEG (right) sensors around a ball with radius
%0 modelling the cerebrum

The corresponding Sobolev space will be denoted by H̃
(i)
s (B%0). For the parameter s, we

choose s ∈ {0, 1, 2} within our numerical tests.
In [162], we construct scalar-valued Sobolev spaces Hs(B%0) on the ball. The scalar-valued

Sobolev space belonging to the sequence chosen above is a particular case of these spaces. In
addition, using this sequence we construct a second order differential operator ∗∗∆. The scalar
orthonormal basis functions defined in Definition 5.35 are eigenfunctions of this differential
operator, such that ‖∗∗∆F‖Hs−2(B%0 ) = ‖F‖Hs(B%0 ). Thus, the Hs(B%0)-norm seems to be a
measure for the smoothness of a function with respect to the differential operator ∗∗∆. In
some first numerical tests with the ROFMP, which are not shown here, we considered the
scalar problem that arises from the Helmholtz decomposition of the inverse MEG problem
from Theorem 15.3. In this setting, a penalty term corresponding to Hs(B%0) yielded good
numerical results. Based on these results, we also use this sequence for the construction
of the vector-valued Sobolev spaces on the ball, even though we have not found a closed
representation of the corresponding operator in this case.

Now, we introduce the abbreviation • ∈ {M,E} that will be used if a quantity can either
be used for the MEG or the EEG case. Based on Algorithm 17.2, an initial approximation
has to be chosen before starting the algorithm. Since we do not have a-priori knowledge of
the neuronal current at hand, we chose the zero-function to be the initial approximation.
Recall that in each step of the RFMP we are searching for the maximizer of

dk+1 := arg max
d∈D•

(〈rk,A•d〉R`• − τ〈fk,d〉X•)2

‖A•d‖2R`• + τ‖d‖2X•
, (19.6)

where the given data comes into play in the form of r0 := gδ• . Here, we have X• = H̃
(i)
s (B%0)

with i ∈ {2, 3} according to the respective problem and parameter s. Thus, some more
quantities need to be determined further.
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19.1. The Dictionaries

We start with the construction of the dictionaries D•. The elements of the dictionary have to
be chosen in such a way that they are not in the null space of the forward operators TM and
TE. For N•, I•, L• ∈ N with I• := {zl ∈ B%0 | l = 1, . . . , L•} and a discrete set H• ⊂ [0, 1),
we choose the dictionary

D•(N•, H•, I•) =
{
g̃(i)

0,n,j(%0; ·)
}
n=1,...,N•,j=1,...,2n+1

∪
{
k̃

(i)
h (·, zl)

}
h∈H•,l=1,...,L•

, (19.7)

where i = 2, 3 depending on the particular problem. Here, the global orthonormal basis
functions are given as in Eqs. (13.2) and (13.3). Besides these functions, we use localized
reproducing kernels from Lemma 16.11. The kernels are of the form

k̃
(i)
h (x, z) :=

∑
(m,n)∈N0×N0i

k
(i)
m,n 6=0

2n+1∑
j=1

(
k(i)
m,n

)−2√
µ̃(i)
n g̃

(i)
m,n,j(%0;x)Gm,n,j(%0; z)

with x, z ∈ B%0 . The sequence {k(i)
m,n}(m,n)∈N0×N0i

is defined by

k(i)
m,n := h−n/2

(
µ̃(i)
n

)1/4
δm,0, h ∈ (0, 1),

and vanishes for all m 6= 0. Note that the radial part of the function Gm,n,j depends on a
sequence {tn}n∈N0i

that was originally defined independent of i = 1, 2, 3. However, for the
construction of reproducing kernels, it is necessary that this sequence coincides with the
sequence {t(i)n }n∈N0i

from the vector-valued orthonormal basis. Thus, the kernel reduces for
all x, z ∈ B%0 and i 6= 1 to

k̃
(i)
h (x, z) := 1

4π

∞∑
n=1

(2n+ 1)hnQ(t(i)n +1/2)
0 (%0;x)Q(t(i)n +1/2)

0 (%0; z)p̃(i)
n (x̂, ẑ)

= 1
4π%3

0


∑∞
n=1(2n+ 1)2hn

(
xz
%2

0

)n−1
p̃(2)
n (x̂, ẑ) if i = 2,∑∞

n=1(2n+ 3)(2n+ 1)hn
(
xz
%2

0

)n
p̃(3)
n (x̂, ẑ) if i = 3.

Note that the sequence of the kernel {k(i)
m,n}(m,n)∈N0×N0i

does not need to coincide with the
sequence of the Sobolev space H̃(i)

s (B%0). Thus, within our dictionary we can use reproducing
kernels based on several different sequences. This is an advantage in comparison to a spline
approach, where for an interpolation or approximation only one fixed sequence can be used.

In order to use the theoretical convergence result of the ROFMP from Theorem 17.7, the
conditions of this statement need to be verified. This involves two estimates. The first one is
given by

c1 := inf
d∈D•

(‖A•d‖2R`• + τ ‖d‖2
H̃

(i)
s

) > 0,

which is immediately fulfilled since the dictionary elements are contained in (kerA•)⊥ and
non-zero. The second estimate, that is the boundedness of the dictionary, is naturally fulfilled,
since the finite dictionary is contained in the Hilbert space, that is D• ⊂ H̃

(i)
s . The latter

statement becomes more clear with Theorem 19.2 from the next section. The semi-frame
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MEG EEG
h error k̃(3)

h error TMk̃
(3)
h error k̃(2)

h error TEk̃
(2)
h

0.80 1.9104 · 10−25 1.3107 · 10−36 8.6759 · 10−26 1.0741 · 10−28

0.90 1.8955 · 10−13 1.1575 · 10−24 8.6079 · 10−14 1.1719 · 10−16

0.95 6.7759 · 10−8 3.7216 · 10−19 3.0769 · 10−8 4.3234 · 10−11

0.99 1.2855 · 10−3 6.1445 · 10−15 5.8372 · 10−4 8.2779 · 10−7

Table 19.1: A maximal upper bound for the truncation error of the reproducing kernels and
their forward solutions depending on the parameter h ∈ (0, 1) after N = 230 summands

condition for this particular dictionary needs to be verified. However, this is not done in this
thesis. Since there exist first unpublished results of M. Kontak and V. Michel to prove the
convergence theorem of the RFMP without this condition, this is not crucial to the opinion
of the author. For the proof of Theorem 17.8, we need another assumption, which is violated
in our particular case: the implemented dictionary is only a finite set of functions, thus its
span cannot be dense in H̃

(i)
s . The numerical results suggest that in this setting the solution

obtained by the RFMP still converges to the unique minimizer of the Tikhonov-regularized
normal equation, but the proof of this statement is still an open question. On the other
hand, the conditions of Theorem 17.15, which states that the RFMP is a regularization
method, are not verified for our particular setting and its verification would exceed the scope
of this part. One crucial problem is to verify that the best-approximate solution satisfies the
Hölder-source condition, since in our application the operator A∗• and hence ran(A∗•A•) is
unknown.
For the implementation of the kernels, we need to truncate the occurring series. Based

on the results of Table 18.2, where the truncation error of the series expansion of the
synthetic test current is listed, we decided to truncate all further implemented series after
230 summands. Some estimates for the corresponding maximal truncation errors depending
on the parameter h ∈ (0, 1) are listed in Table 19.1. The truncation error of k̃(3)

h for h = 0.99
seems to be high, but the actual value of this quantity is around 3.5 · 103, which implies a
relative error in the order of 10−6. Therefore, the truncation error is still acceptable. The
same holds true for the kernel k̃(2)

h .
From Lemmas 5.40 and 5.41 and the summability condition verified in Eq. (16.3), we

immediately obtain that all dictionary elements are harmonic and solenoidal. Thus, the
additional uniqueness constraints are not violated by our dictionary. In addition, we need to
fix the centres of the kernels. For this purpose, we need a suitably distributed grid on the
ball. Here, we use a modified Reuter grid on the ball presented in [129, 130] with a parameter
P . The grid corresponding to P = 8, which yields 289 different grid points, is plotted in
Fig. 19.2.
In some first numerical tests of the RFMP, a third type of dictionary elements was used.

These functions were vector-valued radially invariant functions similar to the scalar-valued
radially invariant functions used in [73] in order to solve the scalar inverse MEG problem
discussed in Lemma 15.2. For 0 < a ≤ x ≤ b < %0, the functions were of the form

f (i)
n,j(x) := χ[a,b](x)ỹ(i)

n,j(x̂), n ∈ N0i , j = 1, . . . , 2n+ 1.

However, no dictionary element of this type was chosen in any numerical test. In Theorem 13.7,
we showed that the harmonicity constraint in combination with the solenoidal condition is
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Figure 19.2: Modified Reuter grid on the ball for P = 8

sufficient for a unique solution of the inverse problem. This unique solution coincides with
the best-approximate solution stated in Theorem 13.6. In addition, the sequence obtained by
the RFMP converges under certain conditions to the best-approximate solution of the inverse
problem, see Theorem 17.8. Based on the definition of the radially invariant functions, the
harmonicity constraint ∆f (i)

n,j = 0 inside the entire ball B%0 is never fulfilled. This can be a
possible reason for the RFMP not to choose these radially invariant functions.

19.2. The Preprocessing

In the case of the R(O)FMP, the preprocessing is an excellent way to accelerate the algorithm,
especially if a single dictionary is used for several R(O)FMP runs. Quantities that are
frequently used within the algorithm, such as inner products of the dictionary elements
and the application of the forward operator to the dictionary elements, are calculated for
all dictionary elements in advance. Then, for a fixed regularization parameter, due to the
linearity of the inner product and the update of the approximation, all quantities occurring
in Eq. (19.6) are known. Thus, searching the maximizer of Eq. (19.6) among all dictionary
items reduces to finding the maximal entry of a vector whose length equals the amount of
dictionary elements. This search can easily be parallelized. The same holds true for the
ROFMP, since the additional backfitting consists of linear combinations of inner products of
the dictionary elements.
In addition, parts of this preprocessing can also be used for the implementation of other

reconstruction methods, which will be presented in Chapter 20.
For the preprocessing of the R(O)FMP, we start with the calculation of the application of

the operators AM and AE, respectively, to the corresponding dictionary elements. For this
purpose, we state the next theorem.
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Theorem 19.1. Let TM and TE be given as in Problems 9.1 and 10.2. Then the forward
operator maps the orthogonal basis functions to

(
TMg̃

(3)
0,n,j(%0; ·)

)
(y) = −µ0

√
n%0

(2n+ 1)(2n+ 3)

(
%0
%L

)n+1
h(1)
n,j(%L;y),

(
TEg̃

(2)
0,n,j(%0; ·)

)
(y) = 1√

n%0
β(L)
n

(
(n+ 1)

(
y

%L

)2n+1
+ n

)(
%0
y

)n+1
Yn,j(ŷ),

where n ∈ N, j = 1, . . . , 2n + 1. For the reproducing kernels, we get for all h ∈ (0, 1),
zl ∈ B%0, and with the abbreviation tl := ŷ · ẑl for all l = 1, . . . , L• the identities

(
TMk̃

(3)
h (·, zl)

)
(y) = −µ0

4π

∞∑
n=1

√
n

n+ 1
(hzl)n
yn+2

(
(n+ 1)ŷPn(tl)− (ẑl − tlŷ)P ′n(tl)

)
,

(
TEk̃

(2)
h (·, zl)

)
(y) = 1

4π

∞∑
n=1

hn

√
(2n+ 1)3

n
β(L)
n

(
(n+ 1)

(
y

%L

)2n+1
+ n

)
zn−1
l

yn+1Pn(tl).

Proof. The first two identities concerning the orthonormal basis functions g̃(i)
0,n,j(%0; ·) for

i = 2, 3 and for all n ∈ N, j = 1, . . . , 2n + 1 are based on the results of the SVD of TM
and TE summarized in Table 13.1. Note that a relation between the orthonormal basis
{sn,j(%L; ·)}n∈N,j=1,...,2n+1 stated in Table 13.1 and the vector outer harmonics is given in
Definition 12.12. In addition, we insert the definition of the orthonormal basis functions Zn,j
for all n ∈ N, j = 1, . . . , 2n+ 1 from Lemma 13.2 for i = 2.
With the representation of the kernel k̃(3)

h and the results from Eqs. (5.12a) and (5.14)
and Definitions 5.1 and 5.27, we obtain for all h ∈ (0, 1), l = 1, . . . , lM, tn = n, and zl ∈ B%0

the identity

(
TMk̃

(3)
h (·, zl)

)
(y) = −µ0

∞∑
n=1

2n+1∑
j=1

hn
√

n%0
(2n+ 1)(2n+ 3)

(
%0
%L

)n+1
h(1)
n,j(%L;y)G0,n,j(%0; zl)

= −µ0

∞∑
n=1

2n+1∑
j=1

hn
√

n%0
(2n+ 1)(2n+ 3)

%n+1
0
yn+2Q

(n+1/2)
0 (%0; zl)Yn,j(ẑl)ỹ(1)

n,j(ŷ)

= −µ0
4π

∞∑
n=1

hn
√
n(2n+ 1) znl

yn+2 p̃
(1)
n (ŷ, ẑl)

= −µ0
4π

∞∑
n=1

hn
znl
yn+2

(√
n(n+ 1)p(1)

n (ŷ, ẑl)− np(2)
n (ŷ, ẑl)

)
.

For the implementation, we can also insert Definition 5.21 and Theorem 2.15 and obtain for
all n ∈ N and ŷ, ẑl ∈ S with l = 1, . . . , lM the identities

p(1)
n (ŷ, ẑl) = ŷPn(ŷ · ẑl), p(2)

n (ŷ, ẑl) = 1√
n(n+ 1)

(ẑl − (ŷ · ẑl)ŷ)P ′n(ŷ · ẑl).

Similarly, we use Eqs. (5.17) and (13.3), Theorem 2.25, and Lemma 13.2 and get for the
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kernel k̃(2)
h the identity

(
TEk̃

(2)
h (·, zl)

)
(y)

=
∞∑
n=1

2n+1∑
j=1

hn(2n+ 1)
√
%0
n
β(L)
n

(
%0
%L

)n
Zn,j(y)G0,n,j(%0; zl)

= 1
4π

∞∑
n=1

hn

√
(2n+ 1)3

n
β(L)
n

(
(n+ 1)

(
y

%L

)2n+1
+ n

)
zn−1
l

yn+1Pn(ŷ · ẑl)

for all h ∈ (0, 1), l = 1, . . . , lE, and zl ∈ B%0 . Note that in this case the sequence {tn}n∈N
occurring in the functions G0,n,j(%0; ·) is given by tn := n− 1 for all n ∈ N.

Examples of orthonormal basis functions and their induced magnetic fields or electric
potentials are plotted in Figs. 19.3 and 19.5 for both problems. The same is shown for
reproducing kernels in Figs. 19.4 and 19.6.
In the MEG case, we observe that vortices of the current generate sources and sinks of

the magnetic field, see Figs. 19.3 and 19.4. In the EEG case, we can see that outbound
currents generate a positive electric potential whereas inbound currents generate a negative
electric potential, see Fig. 19.5. In Figs. 19.4 and 19.6, the influence of the damping factor of
the singular values can be seen, since reproducing kernels with strongly varying amplitudes
generate magnetic fields or electric potentials of the same order of magnitude. The damping
factors are based on the quotients %0/%L = 0.8353 for the MEG and %0/%L−1 = 0.8987 for
the EEG, respectively.

Besides the application of the forward operators to the dictionary elements, we can calculate
the inner products of the dictionary elements with each other in the preprocessing and store
them in the computer. Recall that the inverse MEG and EEG problem are solved separately.
Thus, we only need to calculate the inner products between all dictionary elements belonging
to the same type i.

Theorem 19.2. Let i ∈ {2, 3} be fixed. Then we get for all n, n̄ ∈ N, j = 1, . . . , 2n + 1,
j̄ = 1, . . . , 2n̄+ 1, h, h′ ∈ (0, 1), and zl, zk ∈ B%0 with l, k = 1, . . . , L• the following inner
products between two dictionary functions:〈
g̃(i)

0,n,j(%0; ·), g̃(i)
0,n̄,j̄(%0; ·)

〉
H̃

(i)
s

=
(
a(i)
n

)2
δn,n̄δj,j̄ ,

〈
k̃

(i)
h (·, zl), g̃(i)

0,n,j(%0; ·)
〉
H̃

(i)
s

=
√

2t(i)n + 3
%3

0

(
a(i)
n

)2
hn
(
zl
%0

)t(i)n
Yn,j(ẑl),

〈
k̃

(i)
h (·, zl), k̃(i)

h′ (·, zk)
〉
H̃

(i)
s

= 1
4π%3

0

∑
n∈N
a

(i)
n 6=0

(
a(i)
n

)2 (hh′)n(2n+ 1)(2t(i)n + 3)
(
zlzk
%2

0

)t(i)n
Pn(t),

where t := ẑl · ẑk ∈ [−1, 1]. Recall that the Sobolev space H̃
(i)
s is defined with respect to the

sequence {a(i)
m,n}m∈N0,n∈N0i

in Eq. (19.5).
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(a) g̃(3)
0,1,1(%0; ·) (b) TMg̃

(3)
0,1,1(%0; ·)

(c) g̃(3)
0,5,3(%0; ·) (d) TMg̃

(3)
0,5,3(%0; ·)

Figure 19.3: The absolute value and the directions of some (vector-valued) orthonormal
basis functions g̃(3)

m,n,j(%0; ·) plotted on the sphere S0.95%0 (left) and the absolute value and
the directions of their generated magnetic field plotted on the sphere S1.7%L (right)
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(a) k̃(3)

0.8(·,z) (b) TMk̃
(3)

0.8(·, z)

(c) k̃(3)

0.9(·, z) (d) TMk̃
(3)

0.9(·, z)

Figure 19.4: The absolute value and the directions of some (vector-valued) reproducing
kernels k̃(3)

h (·, z) localized in z = %0(−0.9511, 0, 0.3090)T plotted on the sphere S0.95%0 (left)
and the absolute value and the directions of their generated magnetic field plotted on the
sphere S1.7%L (right)
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(a) g̃(2)
0,1,1(%0; ·) (b) TEg̃

(2)
0,1,1(%0; ·)

(c) g̃(2)
0,5,3(%0; ·) (d) TEg̃

(2)
0,5,3(%0; ·)

Figure 19.5: The absolute value and the directions of some (vector-valued) orthonormal
basis functions g̃(2)

m,n,j(%0; ·) plotted on the sphere S0.95%0 (left) and their generated electric
potential plotted on the sphere S%L (right)
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(a) k̃(2)

0.8(·,z) (b) TEk̃
(2)

0.8(·, z)

(c) k̃(2)

0.9(·, z) (d) TEk̃
(2)

0.9(·,z)

Figure 19.6: The absolute value and the directions of some (vector-valued) reproducing
kernels k̃(2)

h (·, z) localized in z = %0(−0.9511, 0, 0.3090)T plotted on the sphere S0.95%0 (left)
and their generated electric potential plotted on the sphere S%L (right)
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Proof. For the orthonormal basis functions, we get for all n, n̄ ∈ N, j = 1, . . . , 2n+ 1, and
j̄ = 1, . . . , 2n̄+ 1 via Parseval’s identity and Eq. (19.5) the relation〈

g̃(i)
0,n,j(%0; ·), g̃(i)

0,n̄,j̄(%0; ·)
〉
H̃

(i)
s

=
∑

(m′,n′)∈N0×N
a

(i)
m′,n′ 6=0
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)2 〈
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×
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(
a(i)
n

)2
δn,n̄δj,j̄ .

In order to calculate the H̃(i)
s (a,B%0)-inner product of reproducing kernels localized in zl ∈ B%0

for l = 1, . . . , L• with other dictionary elements, we compute an auxiliary inner product. For
all n ∈ N, j = 1, . . . , 2n+ 1, and h ∈ (0, 1), we have〈

k̃
(i)
h (·, zl), g̃(i)

0,n,j(%0; ·)
〉

L2(B%0 )
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= hnG0,n,j(%0; zl).

Eventually, we obtain via Parseval’s identity and Definition 5.35 for all zl ∈ B%0 , l = 1, . . . , L•,
h ∈ (0, 1), n ∈ N, and j = 1, . . . , 2n+ 1 the relation〈
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Finally, for two kernel functions with centres zl, zk ∈ B%0 where l, k ∈ {1, . . . , L•} and
parameters h, h′ ∈ (0, 1), we get with Eq. (5.17) the result〈

k̃
(i)
h (·, zl), k̃(i)

h′ (·, zk)
〉
H̃

(i)
s
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=
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The inner products between all dictionary elements can be stored in a (large) matrix. For
the sake of memory reduction, we only save a linearization of the lower diagonal matrix in a
vector, which is sufficient because of the symmetry of the matrix.

19.3. The Visualization

For a visualization of the numerical results, the approximations are plotted on a spherical
point grid within the cerebrum B%0 . The radius of this sphere is typically chosen as 0.95%0.
More precisely, we use the equiangular Driscoll-Healy grid introduced in [58], see also [158,
Exam. 5.35]. For t, s ∈ N with 1 ≤ s, t ≤ 60, it is given by

ϕt = 2π
60 t, ϑs = 2π

60 s, (19.8a)

xt,s = 0.95%0 sin(ϑs) cos(ϕt), yt,s = 0.95%0 sin(ϑs) sin(ϕt), (19.8b)
zt,s = 0.95%0 cos(ϑs). (19.8c)

The resulting grid with 3600 points is plotted in Fig. 19.7.
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Figure 19.7: Driscoll-Healy grid with 3600 points from Eq. (19.8)
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Chapter 20.

Other Reconstruction Methods

20.1. Regularized Ritz Method

As we saw in Remark 16.19 and Example 16.23, the idea behind this method is to minimize
the Tikhonov-Philips functional on a finite-dimensional subspace. In Example 16.23, a
representation of the resulting minimizer is stated. For this representation, we need to
calculate the restriction of A• with • ∈ {M,E} onto this finite-dimensional subspace. Recall
that the operators are stated in Eq. (19.1). Then each restricted operator, as a mapping
between two finite-dimensional spaces, can be represented by a matrix. In order to do
so, we assume that the finite-dimensional subspace is spanned for fixed i ∈ {2, 3} by the
orthonormal basis functions g̃(i)

0,n,j(%0; ·) up to degree N• ∈ N. More precisely, we choose
N := N• := 100 within our numerical tests. The corresponding finite-dimensional subspace
in the domain of the operator is for i = 2, 3 given by

VN•(N•+2) := span
{
g̃(i)

0,n,j(%0; ·)
∣∣∣ 1 ≤ n ≤ N•, j = 1, . . . , 2n+ 1

}
.

The dimension of this space is N•(N• + 2). For the next identities, we set i = 3 in the case
of the inverse MEG problem and i = 2 in the case of the inverse EEG problem.

In the finite-dimensional subspace VN•(N•+2), the current is given by

JN• =
N•∑
n=1

2n+1∑
j=1

J•n,j g̃
(i)
0,n,j(%0; ·), (20.1)

which coincides with the orthogonal projection of JP onto VN•(N•+2) if the coefficients J•n,j
are chosen accordingly. The restricted linear mapping

A•|VN•(N•+2) : VN•(N•+2) → R`• , A•|VN•(N•+2)f = A•f for all f ∈ VN•(N•+2)

can be represented by an `• ×N•(N• + 2)-matrix. We denote the corresponding matrix by
A• = (A•k,l)k,l and the vector containing the coefficients J•n,j by f•. For constructing this
matrix, we define a mapping of the basis function index tuple (n, j) with degree n and order
j onto a single index l = 1, . . . , N•(N• + 2) by

n(l) =
⌊√

l
⌋
, j(l) = l − (n(l))2 + 1.

Then, the entries of the matrix and the vector are for all k = 1, . . . , `• and l = 1, . . . , N•(N•+2)
given by

AM
k,l :=

(
ν(yk) · TMg̃

(3)
0,n(l),j(l)(%0; ·)

)
(yk), (20.2a)

AE
k,l :=

(
TEg̃

(2)
0,n(l),j(l)(%0; ·)

)
(y`M+k), (20.2b)

f• := (J•n(l),j(l))l=1,...,N•(N•+2). (20.2c)
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For the implementation of these matrices, we can use the result stated in Theorem 19.1 for
the forward operator action.
According to the Ritz method, see Example 16.23, we calculate our approximation by

f δ•N•,τ =
(
(A•)TA• + τIN•

)−1 (
(A•)Tgδ•

)
,

where IN• is the identity matrix in RN•(N•+2). This is the unique minimizer of the Tikhonov-
Philips functional, see Example 16.21, with the norm of the domain space as penalty term.

Now, we go a step further and allow different norms in the regularization term. This leads
to

f δ•N•,τ =
(
(A•)TA• + τB∗•B•

)−1 (
(A•)Tgδ•

)
, (20.3)

where the regularization matrix B• will be a diagonal matrix containing the Sobolev sequence
a(i)

0,n(l) for l = 1, . . . , N•(N• + 2), see Eq. (19.5), on its diagonal.
In our numerical test, the same three sequences were used for the regularization as for the

construction of the H̃
(i)
s -spaces used for the regularization term of the RFMP, see Eq. (19.5),

that is s ∈ {0, 1, 2} . The case s = 0 implies a(i)
0,n(l) = 1 for all l = 1, . . . , N•(N• + 2). Thus,

B• is the identity matrix and the regularization corresponds to the L2(B%0)-regularization.
Otherwise, the regularization corresponds to the H̃

(i)
s -regularization due to Example 16.21.

Note that B∗•B• is the Gramian matrix of the inner product of this Sobolev space.
Eventually, we denote the neuronal current corresponding to the vector f δ•N•,τ by Jδ•N,τ ,

which is obtained via Eq. (20.1).

20.2. Scalar Spline Method

Scalar spline methods are widely used in approximation and inverse problems. The method
and properties of the spline functions are discussed and analyzed in the literature, see
[6, 7, 158, 160], for instance. In the context of medical imaging, it is used for the reconstruction
of scalar parts of the neuronal current inside the cerebrum B%0 in [73].

We first give a short overview of a reproducing kernel based spline method on the ball in
Section 20.2.1. Within this section a spline method is always meant as this reproducing kernel
based spline method on the ball. Then, in Section 20.2.2, we adapt this general setting to the
scalar MEG problem considered in Section 15.3. Besides solving the scalar MEG problem
via this particular spline method, we are interested in comparing the spline approximation
with the reconstruction of the neuronal current achieved via the R(O)FMP. Unfortunately,
the particular scalar spline used in [73] does not satisfy this requirement since the resulting
neuronal current has parts in the null space of the operator TM and the R(O)FMP will
not reconstruct these parts. This will also be further discussed in Section 20.2.2. After
constructing appropriate scalar splines for the scalar MEG problem, we will use them for the
inversion of our synthetic test case from Chapter 18. In Section 20.2.3, we calculate the scalar
part of the synthetic test current that will be reconstructed by the scalar spline method in
order to get the exact reference solution for this test case. Eventually, in Section 20.2.4, we
present a formula that allows the conversion from the scalar spline solution to the entire
vector-valued neuronal current reconstruction. Lastly, we discuss some aspects of the scalar
spline method for the inverse EEG problem from [73] in Section 20.2.4.
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20.2. Scalar Spline Method

20.2.1. Scalar Splines

Let the data g = (g1, . . . , g`)T ∈ R` with ` ∈ N be given. For the scalar spline approach, we
split the operator A into its rows, that is

g = AF ⇔ gk = AkF, k = 1, . . . , `.

Here, the operator A is defined via some auxiliary continuous linear functionals, that is
A := (A1, . . . ,A`)T, where each functional Ak for k = 1, . . . , ` maps from an appropriate
Sobolev space H := H({κn}n∈N0 ;B%0) onto R. In this setting, the function F ∈ H is the
desired quantity. Scalar Sobolev spaces on the ball are, for example, defined in [3, 158]. They
can be defined similar to Definition 16.1. In this case, the vector-valued orthonormal basis
needs to be replaced by the scalar-valued one from Definition 5.35. In addition, the sequence
{κn}n∈N of the Sobolev space is assumed to be chosen in such a way that H ⊂ L2(B%0).
For example, in [158, Thm. 10.4], scalar reproducing kernels over the ball based on the

orthonormal system from Definition 5.33 are introduced. In our application, however, these
orthonormal bases are not necessarily the first choice since we do not know a-priori which of
these functions are in the null space of the operator and which are not. For this purpose, we
use the more general definition of the scalar reproducing kernel over the ball from [73, Eq.
(40)], that is

K(x, z) =
∑
n∈N0
κn 6=0

2n+1∑
j=1

κ−2
n Gn(x)Gn(z)Yn,j(x̂)Yn,j(ẑ), x, z ∈ B%0 , (20.4)

where the functions Gn for all n ∈ N0 are normalized with respect to the Lw2 ([0, %0])-inner
product corresponding to the weight function w(x) := x2 with x ∈ [0, %0]. The functions Gn
can be chosen based on the problem of interest.
According to [73, Eq. (41)], the corresponding (scalar) spline function is of the form

S(x) =
∑̀
k=1

akAkzK(x, z) (20.5a)

=
∑̀
k=1

ak
∑
n∈N0
κn 6=0

2n+1∑
j=1

κ−2
n Gn(x)Yn,j(x̂)Akz(Gn(z)Yn,j(ẑ)), x ∈ B%0 . (20.5b)

The spline function and the data are for all l = 1, . . . , ` connected by

gl = AlxS(x) =
∑̀
k=1

akAlxAkzK(x, z), (20.6)

see [73, Eq. (42)]. It is well-known, see [6, 73, 158], that a spline function has the following
properties:

i) For given data g ∈ R` and continuous linear functionals Ak for k = 1, . . . , `, the
interpolation problem in Eq. (20.6) is uniquely solvable if and only if the functionals
Ak are linearly independent, see [158, Thm. 10.10].

ii) Among all solutions F interpolating the data, that is AkF = gk for k = 1, . . . , `, the
spline function is the solution with minimal H-norm, see [158, Thm. 10.13].
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iii) The spline function satisfies a best-approximation property, see [158, Thm. 10.14].

In addition, in the regularized case the following theorem holds true.

Theorem 20.1 (Spline Approximation, [158, Thm. 6.40]). Let g ∈ R` and a regular-
ization parameter τ > 0 be given. If the vector a = (ak)k=1,...,` is the solution of((

AlxAkz (K(x, z))
)
l,k=1,...,`

+ τIR`×`
)
a = g, (20.7)

then the spline function given by Eq. (20.5b) with Eq. (20.6) is the unique minimizer of the
corresponding Tikhonov functional, that is

S = min
F∈H

(
‖g −AF‖2R` + τ ‖F‖2H

)
.

20.2.2. Scalar Splines for the MEG Problem

In order to apply the scalar splines to the MEG problem, we need to consider an inverse
problem with a scalar density. For this purpose, we use the Helmholtz decomposition of
the neuronal current from Eq. (15.22) combined with the Coulomb gauge. In addition, we
assume that Assumption 15.12 holds true, which implies a certain smoothness of the current
and the functions of the Helmholtz decomposition. Then, according to Eq. (15.31), we get a
relation between the scalar part A(1) of the neuronal current and the magnetic flux density.
Recall that the function A(1) equals the radial component of the vector potential of the
Helmholtz decomposition, see Eq. (15.23). For given data g ∈ R`M , we consider the problem

AkA(1) = gk for all k = 1, . . . , `M.

The related functionals Ak are for all k = 1, . . . , `M defined by

AkA(1) := −µ0%0

∞∑
n=1

2n+1∑
j=1

√
1

(2n+ 1)(n+ 1)

(
dA(1)

n,j

dx (%0)%0 − (n− 1)A(1)
n,j(%0)

)(
%0
%L

)n+1

× ν(yk) · h(1)
n,j(%L;yk),

where the abbreviation A(1)
n,j , firstly introduces in Eq. (14.4) for arbitrary L2(B%0)-functions,

is used and where yk are the measurement positions according to Problem 9.1.
In fact, scalar splines are used in [73] for solving this particular problem. For the spline

method, the functions Gn occurring in Eq. (20.4) remain to be determined for all n ∈ N.
Note that degree n = 0 is in the null space of the functional. In [73, Eq. (53)], they are
chosen for all n ∈ N and a particular r ∈ (0, %0) as

Gn(x) =
√

3
1− r3χ[r,%0](x), x ∈ [0, %0].

Due to the non-uniqueness issue of the inverse MEG problem, these functions are chosen
to accomplish an additional non-uniqueness constraint, namely the layer density constraint,
see Table 12.1. However, from Theorem 15.20 it is known that with these functions the
minimum norm assumption, which is used as the additional uniqueness constraint in the
previous considerations for the R(O)FMP, cannot be fulfilled. Therefore, we need to adapt
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the setting from [73] in order to achieve a comparable setting for both methods. Hence, we
choose the function Gn for all n ∈ N0 to be

Gn(x) :=
√

2n+ 5
%3

0

(
x

%0

)n+1
, x ∈ [0, %0]. (20.8)

Thus, the considered reproducing kernel has the form

K(x, z) =
∑
n∈N0
κn 6=0

2n+1∑
j=1

κ−2
n

2n+ 5
%3

0

(
xz

%2
0

)n+1
Yn,j(x̂)Yn,j(ẑ)

= 1
4π%3

0

∑
n∈N0
κn 6=0

κ−2
n (2n+ 5)(2n+ 1)

(
xz

%2
0

)n+1
Pn(x̂ · ẑ), x, z ∈ B%0 .

Note that the Addition Theorem, see Theorem 2.25, was used in the latter step. In order to
construct the scalar spline, we need to apply the functionals Ak for all k = 1, . . . , `M to the
reproducing kernel. Eventually, we get the identity

Akz(Gn(z)Yn,j(ẑ)) = −µ0ν(yk) ·
(
G′n(%0)%0 − (n− 1)Gn(%0)√

(2n+ 1)(n+ 1)

(
%0
yk

)n+2
ỹ(1)
n,j(ŷk)

)
δn,0,

where we have additionally used the definition of the vector outer harmonics from Defini-
tion 5.27. The precise function Gn and its derivative have for all n ∈ N the following values
at the boundary:

Gn(%0) =
√

2n+ 5
%3

0
, G′n(%0) =

√
2n+ 5
%3

0

n+ 1
%0

.

Hence, we get for all n ∈ N the identity

G′n(%0)%0 − (n− 1)Gn(%0) = 2
√

2n+ 5
%3

0
. (20.9)

Eventually, for all k = 1, . . . , `M the functional applied to the reproducing kernel has the
representation

AkzK(x, z)

= −µ0ν(yk) ·

∑
n∈N
κn 6=0

2n+1∑
j=1

G′n(%0)%0 − (n− 1)Gn(%0)√
(n+ 1)(2n+ 1)

κ−2
n Gn(x)

(
%0
yk

)n+2
Yn,j(x̂)ỹ(1)

n,j(ŷk)



= −µ0

2π%3/2
0
ν(yk) ·

∑
n∈N
κn 6=0

√
(2n+ 1)(2n+ 5)

n+ 1 κ−2
n Gn(x)

(
%0
yk

)n+2
p̃(1)
n (ŷk, x̂)



= −µ0
2π%2

0
ν(yk) ·

∑
n∈N
κn 6=0

√
(2n+ 1)(2n+ 5)2

n+ 1 κ−2
n

xn+1

yn+2
k

p̃(1)
n (ŷk, x̂)

 . (20.10)
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In the first step, we used Eq. (20.9) and the Addition Theorem for Edmonds vector spherical
harmonics, see Eq. (5.14). In the second step, we inserted Eq. (20.8). For the numerical
implementation, it is necessary to further expand the Edmonds vector Legendre polynomials.
Thus, we use Eq. (5.12a) and Theorem 2.15 and obtain for all n ∈ N and all ξ, η ∈ S the
identity

p̃(1)
n (ξ,η) =

√
n+ 1
2n+ 1p

(1)
n (ξ,η)−

√
n

2n+ 1p
(2)
n (ξ,η)

=
√
n+ 1
2n+ 1Pn(ξ · η)ξ −

√
1

(2n+ 1)(n+ 1)P
′
n(ξ · η)(η − (ξ · η)ξ).

Eventually, we obtain with the abbreviation tk := ŷk · x̂ for k = 1, . . . , `M for the spline
function for all x ∈ B%0 the representation

S(x) = −µ0
2π%2

0

`M∑
k=1

akν(yk) ·

∑
n∈N
κn 6=0

2n+ 5
κ2
n

xn+1

yn+2
k

(
Pn(tk)ŷk −

1
n+ 1P

′
n(tk)(x̂− tkŷk)

) .
In addition, we need to calculate the corresponding spline matrix from Eq. (20.7). Each
entry of the matrix is given for all l, k = 1, . . . , `M by

AlxAkzK(x, z) (20.11)

= µ2
0
%3

0

∑
n∈N
κn 6=0

2n+1∑
j=1

4(2n+ 5)
(n+ 1)(2n+ 1)κ2

n

(
%2

0
ykyl

)n+2 (
ν(yk) · ỹ(1)

n,j(ŷk)
) (
ν(yl) · ỹ(1)

n,j(ŷl)
)
.

The expression on the right-hand side can be further expanded by using some basic mathem-
atical techniques and the Addition Theorem for scalar- as well as vector-valued spherical
harmonics, see [73, Ch. 3.5]. In the end, we arrive at an expression that essentially involves
only Legendre series and series with derivatives of Legendre polynomials up to second order.
Hence, variants of the Clenshaw algorithm can be used to evaluate the matrix entries. In
numerical experiments conducted with Matlab [212], however, the computational time de-
creased when directly using Kahan summation for the expression in Eq. (20.11) instead. For
the computation via the Kahan summation 5.5623 · 103 s of CPU time are required whereas
the Clenshaw algorithms need 5.8179 · 103 s. The relative deviation of the two matrices
in the 2-matrix norm is given by 7.2180 · 10−13. Therefore, we choose to use Eq. (20.11)
combined with the Kahan summation within our numerical tests and do not proceed by
further expanding this expression here.

20.2.3. Scalar Synthetic Test Current

Now, we want to use the described scalar spline method for reconstructing the function A(1)

from given values of the magnetic flux density. Due to Theorem 15.20 and the choice of the
radial functions, this approach can be combined with the minimum norm condition in order
to achieve uniqueness. For this purpose, we can use the data obtained within the synthetic
test case from Section 18.1. However, the corresponding exact scalar solution is required for
a qualification of the numerical results obtained via the scalar spline.
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Thus, we need to convert the vector-valued synthetic test current to this scalar func-
tion. Using Eq. (18.1) combined with the calculations from the proof of Theorem 18.3, a
representation of the synthetic test current for x ∈ B%0 is given by

JM(x) = %3
0

2∑
l=1

κl

∞∑
n=1

2n+1∑
j=1

hnl

√
n(n+ 1)
2n+ 3 g(3)

0,n,j(%0;x)G0,n,j(%0; zl)

=
∞∑
n=1

2n+1∑
j=1

√%3
0

2∑
l=1

κlh
n
l

√
n(n+ 1)
2n+ 3 G0,n,j(%0; zl)

√ %3
0

2n+ 3g
(3)
0,n,j(%0;x),

where the parameters κl ∈ R, hl ∈ (0, 1), zl ∈ B%0 are chosen for l = 1, 2 according to
Table 18.1. Note that in this section concerning the scalar synthetic test current, κl for
l = 1, 2 is used as the parameter for the linear combination. This should not be confused
with the sequence {κn}n∈N occurring in the definition of the reproducing kernel from the
previous section. Using the representation of the neuronal current from Theorem 15.20, that
is

JP(x)
L2(B%0 )

=
∞∑
n=1

2n+1∑
j=1

cn,j

√
%3

0
2n+ 3g

(3)
0,n,j(%0;x),

we immediately obtain in the case of the synthetic test current that

cn,j =
√
%3

0

2∑
l=1

κlh
n
l

√
n(n+ 1)
2n+ 3 G0,n,j(%0; zl)

for all n ∈ N, j = 1, . . . , 2n + 1. Then, Theorem 15.20 provides us for all x ∈ B%0 with a
representation of the radial component of the vector potential. We will denote the exact
synthetic test solution by A(1)

M . It is given by

A(1)
M (x)

L2(B%0 )
=

∞∑
n=1

2n+1∑
j=1

A(1)
n,j(x)Yn,j(x̂)

=
∞∑
n=1

2n+1∑
j=1

√
n(n+ 1)cn,j%0

2(2n+ 3)

(
x

%0

)n+1
Yn,j(x̂).

Note that a second sequence of parameters that needs to be determined originally appears in
Eq. (15.32). In our test case, we chose this remaining sequence of parameters to be equal to
zero since it has no effect on the neuronal current. Inserting the representation of cn,j for
all n ∈ N, j = 1, . . . , 2n+ 1 into this equation and using Definition 5.35 with tn := n for all
n ∈ N, which is determined in Theorem 18.3, we get the expansion

A(1)
M (x)

L2(B%0 )
= %

5/2
0

∞∑
n=1

2n+1∑
j=1

n(n+ 1)
2(2n+ 3)3/2

2∑
l=1

κlh
n
l G0,n,j(%0; zl)

(
x

%0

)n+1
Yn,j(x̂)

=
∞∑
n=1

2n+1∑
j=1

n(n+ 1)
2(2n+ 3)

2∑
l=1

κlh
n
l

znl x
n+1

%2n
0

Yn,j(ẑl)Yn,j(x̂)

= 1
8π

∞∑
n=1

n(n+ 1)(2n+ 1)
2n+ 3

2∑
l=1

κlh
n
l

znl x
n+1

%2n
0

Pn(ẑl · x̂), x ∈ B%0 .
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Figure 20.1: Exact scalar solution A(1)
M plotted on an upper hemisphere with radius 0.95%0

A visualization of the exact solution is shown in Fig. 20.1. It reveals that this scalar function
has the same structure as the absolute value of the vector-valued test current concerning the
active regions.

20.2.4. Corresponding Vector-Valued Neuronal Current

At this point, we have all tools required for the solution of the synthetic test case via scalar
splines at hand. However, we want to compare the result obtained by this method with
the reconstruction by means of the R(O)FMP. For this purpose, we need to calculate the
vector-valued neuronal current corresponding to the scalar spline solution. There exist several
strategies in order to obtain the neuronal current from the function A(1). For example, it is
possible to use further assumptions on the functions Ψ, A(2), and A(3) that appear in the
Helmholtz decomposition of the neuronal current. Then the gradient and the curl operator
can be applied (at least numerically) to the scalar and vector potential.
However, in order to avoid additional numerical errors caused by the differentiation, we

instead want to use some knowledge of the relation between the neuronal current and the
function A(1) stated in Theorem 15.20. Therein, it is stated that if the function A(1) of the
Helmholtz decomposition combined with the Coulomb gauge is given by

A(1)
n,j(x) =

√
n(n+ 1)cn,j%0

2(2n+ 3)

(
x

%0

)n+1
, x ∈ B%0 (20.12)

with a sequence of coefficients {cn,j}n∈N,j=1,...,2n+1 , then the corresponding neuronal current
has the representation

JP(x)
L2(B%0 )

=
∞∑
n=1

2n+1∑
j=1

cn,j

√
%3

0
2n+ 3g

(3)
0,n,j(%0;x), x ∈ B%0 . (20.13)

Recall that, based on the calculations in Eq. (20.10), the scalar spline solution is for all

300



20.2. Scalar Spline Method

x ∈ B%0 of the form

S(x) = −2µ0

%
3/2
0

∑
n∈N
κn 6=0

2n+1∑
j=1

(√
2n+ 5

(n+ 1)(2n+ 1)κ
−2
n Gn(x)

×
 `M∑
k=1

(
%0
yk

)n+2
akν(yk) · ỹ(1)

n,j(ŷk)

Yn,j(x̂).

Here, the sequence {κn}n∈N belongs to the sequence occurring in the representation of the
reproducing kernel from Eq. (20.4). Thus, we calculate the spherical harmonics coefficients
depending on the radius of the spline evaluation point x ∈ [0, %0]. Using Eq. (20.8), we get
for all n ∈ N with κn 6= 0 and j = 1, . . . , 2n+ 1 the function

Sn,j(x)

=
∫
S
S(x)Yn,j(x̂) dω(x̂)

= −2µ0

%
3/2
0

√
2n+ 5

(n+ 1)(2n+ 1)κ
−2
n

 `M∑
k=1

(
%0
yk

)n+2
akν(yk) · ỹ(1)

n,j(ŷk)

Gn(x)

= −2µ0
%3

0

2n+ 5√
(n+ 1)(2n+ 1)

κ−2
n

 `M∑
k=1

(
%0
yk

)n+2
akν(yk) · ỹ(1)

n,j(ŷk)

( x
%0

)n+1
.

We can insert this expression into the left-hand side of Eq. (20.12) and solve the resulting
equation for cn,j for all n ∈ N, j = 1, . . . , 2 + 1. Then we get for all n ∈ N with κn 6= 0 and
j = 1, . . . , 2 + 1 the identity

cn,j = −4µ0
%4

0

(2n+ 3)(2n+ 5)
(n+ 1)

√
n(2n+ 1)

κ−2
n

 `M∑
k=1

(
%0
yk

)n+2
akν(yk) · ỹ(1)

n,j(ŷk)

 . (20.14)

Eventually, using Eq. (20.13), we obtain for the neuronal current JS corresponding to the
spline S for all x ∈ B%0 the identity

JS(x) = −4µ0
%2

0

∑
n∈N
κn 6=0

2n+1∑
j=1

(2n+ 3)(2n+ 5)
(n+ 1)

√
n(2n+ 1)

κ−2
n

 `M∑
k=1

ak
xn

yn+2
k

ν(yk) · ỹ(1)
n,j(ŷk)

y(3)
n,j(x̂).

Again, in the numerical implementation, we will use Kahan summation for the (truncated)
series. Thus, we are able to directly calculate the neuronal current from the coefficients
a = (ak)k=1,...,`M computed by the spline method from Eq. (20.6).

20.2.5. Scalar Splines for the EEG Problem

Besides the derivation of a scalar MEG problem based on the Helmholtz decomposition,
Section 15.3 also provides us with a scalar formulation of the inverse EEG problem. For this
particular problem, scalar splines are also constructed in [73].
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In this context, Theorem 15.23 is used in order to formulate the continuous linear functionals
Ak for k = 1, . . . , `E mapping the scalar potential Ψ of the Helmholtz decomposition onto
the electric potential on the boundary of the scalp uL|S%L , that is

AkΨ := −
∞∑
n=1

2n+1∑
j=1

sn
2n+ 1%

n+1
0

(
%0

dΨn,j

dx (%0)− nΨn,j(%0)
)
Yn,j(ŷk). (20.15)

Here, %Lŷk ∈ S%L are the sensor positions for k = 1, . . . , `E. The occurring sequence
{sn}n∈N only depends on the fixed radii of the shells from the multiple-shell model and the
corresponding conductivities. This sequence has no radial dependency, hence it is independent
of y ∈ [%L−1, %L]. We saw in Problem 10.2 that the electric potential on the entire shell
S[%L−1,%L] depends on functions Hn with n ∈ N, which indeed have a radial dependency
on y ∈ [%L−1, %L]. A relation between the sequences {sn}n∈N and {Hn}n∈N is stated in
Eq. (15.37) and for all n ∈ N given by

sn = (2n+ 1)Hn(%L).

The functions {Hn}n∈N are stated in Eq. (4.20), that is

Hn(y) =
(
n+ 1
n

(
y

%L

)2n+1
+ 1

)
β(L)
n

1
yn+1 , y ∈ [%L−1, %L]

with some coefficients {β(L)
n }n∈N . Contradicting their own theoretical result, a radius

dependent formula for the electric potential is used in [73, Eq. (55)] for the numerical
considerations. This radial dependency is introduced by the additional factor (%L/y)n used
in the spherical harmonics expansion from Eq. (20.15). Due to the previous considerations
and the representation of the functions Hn with n ∈ N, see Eq. (4.20), this formula can only
hold true on the boundary S%L . However, in [73] this formula is used inside the entire shell
S[%L−1,%L] for the computations, due to the positions of the sensors yk for k = 1, . . . , `E. This
introduces some modelling error.

In addition, in [73, p. 22] the sequence occurring in the reproducing kernels from Eq. (20.4)
is chosen to be κn := hn(n+1)/2 for all n ∈ N with h ∈ (0, 1). According to Corollary 16.4,
which analogously holds true for scalar Sobolev spaces, see [158, p. 272], we get by means of
the zero-sequence {κn}n∈N that L2(B%0) ( H({κn}n∈N ,B%0). This is a direct contradiction
to the assumption that H({κn}n∈N ,B%0) ⊂ L2(B%0), see [73, p. 11]. This particular choice
of {κn}n∈N leads to a divergent series representation of the underlying reproducing kernel.
This would also yield divergent representations of the scalar spline in Eq. (20.5b) and of
the interpolation problem in Eq. (20.6). However, this is not crucial for the numerical
implementation since therein bandlimited functions are considered.
We are able to correct these errors and present the improved numerical results in Sec-

tion 21.3.2. To this end, we need some preliminary calculations. We use the reproducing
kernels defined in Eq. (20.4) combined with the radial ansatz functions from [73, p. 22] for
all n ∈ N, which are given by

Gn(x) = γn

( 1
n
− ln

(
x

%0

))
xn, x ∈ [0, R].

Since we assumed that the functionsGn are normalized, we have to calculate the normalization
factor γn corresponding to Gn for all n ∈ N, which can also be found in [73, p. 22]. By
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solving

1 = γ2
n

∫ %0

0
x2Gn(x)2 dx

= γ2
n

∫ %0

0

( 1
n
− ln

(
x

%0

))2
x2n+2 dx

= γ2
n

9 + 2n(9 + 5n)
n2(2n+ 3)3 %2n+3

0

for γ2
n, we obtain for all n ∈ N the identity

γ2
n = n2(2n+ 3)3

9 + 2n(9 + 5n)%
−(2n+3)
0 .

The continuous linear functionals required for the construction of the splines for this particular
problem are stated in Theorem 10.4 combined with Eqs. (4.20) and (15.34). Thus, for all
k = 1, . . . , `E we achieve

AkΨ :=
∞∑
n=0

2n+1∑
j=1

n

2n+ 1(β(L)
n )−1%nLu

∧
L (n, j)Yn,j(ŷk)

=
∞∑
n=0

2n+1∑
j=1

Hn(yk)
(
nΨn,j(%0)− %0Ψ′n,j(%0)

)
%n+1

0 Yn,j(ŷk).

The use of this forward operator allows to evaluate the potential at the given sensor positions
and not only on the sphere S%L .

For the construction of the spline function, we have to calculate for all n ∈ N the expressions

d
dx

(
xn
( 1
n
− ln

(
x

%0

)))
= nxn−1 ln

(
%0
x

)
,

%0G
′
n(%0)− nGn(%0) = −

√
n2(2n+ 3)3

9 + 2n(9 + 5n)%
−3/2
0 .

Eventually, the scalar spline is given for x ∈ B%0 by

S(x) =
`M∑
k=1

akAkzK(z,x)

=
`M∑
k=1

ak

∞∑
n=1
κn 6=0

2n+1∑
j=1

√
n2(2n+ 3)3

9 + 2n(9 + 5n)%
n−1/2
0 κ−2

n Gn(x)Yn,j(x̂)Hn(yk)Yn,j(ŷk).

Accordingly, we can calculate for each k, l = 1, . . . , `E the entries of the corresponding
spline matrix by

AlxAkzK(z,x) =
∞∑
n=1
κn 6=0

2n+1∑
j=1

n2(2n+ 3)3

9 + 2n(9 + 5n)%
2n−1
0 κ−2

n Hn(yl)Hn(yk)Yn,j(ŷl)Yn,j(ŷk). (20.16)

However, we are not able to compare results obtained with the R(O)FMP to results
obtained with the scalar spline method for the EEG problem. The reason for this lack of
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comparability is stated in Theorem 15.25. Therein, we proved that the neuronal current
can only satisfy the conditions of Theorem 15.23, which are required for the formulation of
the continuous linear functionals Ak for k = 1, . . . , `E, simultaneously to the condition that
JP ∈ (ker TE)⊥, which is required for the R(O)FMP, if and only if JP ≡ 0. Therefore, we
are not able to construct a fair EEG test case that is applicable to both the R(O)FMP and
the scalar spline method. To conclude, we are not able to use the scalar spline method for
the inversion of the EEG synthetic test case in Chapter 18.

20.3. Vector Spline Method

In the previous section, we realized that we cannot use the scalar spline method for the
inverse EEG problem if the minimum norm condition is required. However, we still want to
compare our numerical results achieved by means of the R(O)FMP with a spline method.
For this purpose, we construct vector-valued splines as an analogue of the scalar splines.
Note that the spline method developed in this section is not limited to the EEG problem,
but could be easily applied to other problems as well, such as the MEG problem.

We have already constructed reproducing kernels based on our vector-valued orthonormal
basis system in Definition 16.7. In this context, we pointed out that this definition does not
follow the setting of [81], since we want the reproducing kernel to be a vector-valued function
in order to use it as a trial function in the dictionary. However, for a vectorial spline method
we in fact need another type of reproducing kernels. For this method, the reproducing kernel
is constructed via the tensor product of vector-valued orthonormal basis functions. This
approach has already been used in [80, 81] for vector-valued splines on the unit sphere.
Another construction of tensor-valued reproducing kernels is stated in [22, 24]. Here, the

reproducing kernels can be represented by 3× 3-dimensional diagonal matrices. In this case,
they only satisfy a certain reproducing property on vector-valued Sobolev spaces that are
product spaces of scalar Sobolev spaces. The Sobolev space considered in our problem, that
is H̃(i) := H̃

(i)({κ(i)
m,n}(m,n)∈N0×N0i

,B%0), does not provide us with this particular structure,
see Definition 16.1 and Remark 16.3.

Following the approach of [80, 81], the reproducing kernel k(i) : B%0×B%0 → R3×3 considered
in this section depends on i = 1, 2, 3 and is defined for all x, y ∈ B%0 by

k(i)(x,y) :=
∑

(m,n)∈N0×N0i
κ

(i)
m,n 6=0

2n+1∑
j=1

(
κ(i)
m,n

)−2
g̃(i)
m,n,j(%0;x)⊗ g̃(i)

m,n,j(%0;y). (20.17)

Reproducing kernels of this kind are also introduced in [20, 25] and used for the con-
struction of interpolating vector splines and vector-valued wavelets on the sphere. For
more details on vector-valued reproducing kernels, such as the reproducing property, we
refer to [80] since the conversion from the spherical case to the ball case is straightfor-
ward. Note that the results of this section still hold true if the employed orthonormal
basis {g̃(i)

m,n,j(%0; ·)}(m,n)∈N0×N0i ,j=1,...,2n+1 is replaced by an arbitrary orthonormal basis of
L2(B%0). Furthermore, we assume that the sequence {κ(i)

m,n}(m,n)∈N0×N0i
is given in such a

way that H̃(i) ⊂ L2(B%0).
The spline constructed in [20, 80] is used for an interpolation problem. In contrast, we

want to use the spline for approximating the solution of an inverse problem. Having the
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vector-valued reproducing kernels at hand, we develop in the following a novel approach to
vector-valued splines for inverse problems.

In [78], a concept for spline approximation on the sphere is presented where the data
g = (g1, . . . , g`) ∈ R` is of the form

g = Af ⇔ gk = Akf , k = 1, . . . , `

with the operator A := (A1, . . . ,A`)T, the functionals Ak : H̃(i) → R for all k = 1, . . . , `, and
the (sought) quantity f ∈ H̃

(i). In [158, Ch. 6.4., Ch. 10], this method is extended to a
scalar spline approximation on the ball. Thus, we call a function of the form

s(x) =
∑̀
k=1

akAkz
(
k(i)(z,x)

)
, x ∈ B%0 (20.18)

with the coefficients a = (ak)k=1,...,` ∈ R` a spline function in H̃
(i) subject to A. For

this definition to make sense, we need to define what we understand by applying the
functional Ak to a tensor product of two vector-valued functions. For two functions f ,
h = (h1, h2, h3)T : B%0 → R3, we define

Akz (f(z)⊗ h) = Akz (f(z)h1,f(z)h2,f(z)h3)

:=
((
Akzf(z)

)
h1,

(
Akzf(z)

)
h2,

(
Akzf(z)

)
h3
)T

=
(
Akzf(z)

)
h. (20.19)

Eventually, the vector-valued spline function has the representation

s(x) =
∑̀
k=1

ak
∑

(m,n)∈N0×N0i
κ

(i)
m,n 6=0

2n+1∑
j=1

(
κ(i)
m,n

)−2
g̃(i)
m,n,j(%0;x)Akzg̃(i)

m,n,j(%0; z), x ∈ B%0 .

This approach is novel in two aspects. First, we define tensor-valued reproducing kernels on
the ball in Eq. (20.17) as a generalization of tensor-valued reproducing kernels on the sphere
from [80, 81]. Second, we combine this definition with the approach for the construction
of splines used for the approximation from [158, Ch. 6.4., Ch. 10] in order to achieve the
novel vector splines subject to the operator A. These vector splines are different from the
ones stated in [22, 24]. The splines from [22, 24] are only defined for particular structures
of the underlying Hilbert space, where the tensor-valued reproducing kernel is given by a
3× 3-diagonal matrix containing classical scalar-valued reproducing kernels in each entry.

Several useful properties of (scalar) splines (over the ball) have already been known. For
example, in [158, Thm. 10.13-14], two minimum properties of scalar splines over the ball are
proved. These statements also hold true in the vector-valued case, which is proved for the
particular setting of H̃(i) being the product space of two scalar Sobolev spaces in [22, 24]
using tensor-valued reproducing kernels. Now, we adapt these statements to our setting. For
this purpose, three central properties need to be verified.
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Lemma 20.2. Let the reproducing kernel be given as in Eq. (20.17), then

i) a kind of reproducing property holds true for all k = 1, . . . , `, that is〈
Akx

(
k(i)(x, ·)) ,f〉

H̃
(i) = Akf ,

for all f ∈ H̃
(i),

ii) a vector-valued spline function s ∈ H̃
(i) subject to A satisfies the relation

〈s,f〉
H̃

(i) =
∑̀
k=1

akAkf (20.20)

for all f ∈ H̃
(i), and

iii) for all k, l = 1, . . . , ` the following relation holds true:

AlxAkzk(i)(x, z) =
〈
Akxk(i)(·,x),Akzk(i)(·, z)

〉
H̃

(i) .

Proof. We start with the proof of the first item. Then, we obtain with the definition of the
reproducing kernel form Eq. (20.17) the identity〈

Akx
(
k(i)(x, ·)) ,f〉

H̃
(i)

=
∑

(m,n)∈N0×N0i
κ

(i)
m,n 6=0

2n+1∑
j=1

(
κ(i)
m,n

)−2 〈
Akx

(
g̃(i)
m,n,j(%0;x)⊗ g̃(i)

m,n,j(%0; ·)
)
,f
〉
H̃

(i) .

Now, we use Eq. (20.19), properties of the H̃
(i)-inner product, see Definition 16.1, and the

linearity and continuity of Ak and get〈
Akx

(
k(i)(x, ·)) ,f〉

H̃
(i)

=
∑

(m,n)∈N0×N0i
κ

(i)
m,n 6=0

2n+1∑
j=1

(
κ(i)
m,n

)−2
Akx

(
g̃(i)
m,n,j(%0;x)

) 〈
g̃(i)
m,n,j(%0; ·),f

〉
H̃

(i)

=
∑

(m,n)∈N0×N0i
κ

(i)
m,n 6=0

2n+1∑
j=1
Akx

(
g̃(i)
m,n,j(%0;x)

) 〈
g̃(i)
m,n,j(%0; ·),f

〉
L2(B%0 )

= Akx


∑

(m,n)∈N0×N0i
κ

(i)
m,n 6=0

2n+1∑
j=1

g̃(i)
m,n,j(%0;x)

〈
g̃(i)
m,n,j(%0; ·),f

〉
L2(B%0 )


= Akf .

The last step is valid since H̃
(i) ⊂ L2(B%0) and, hence, f can be represented by the Fourier

series.
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For the proof of the second statement, we only need to use the representation of the
vector-valued spline from Eq. (20.18) and the linearity of the inner-product. Eventually, the
third item is a particular case of the first with f = Akzk(i)(·, z).

With this preliminary work, the original proofs of the next statements are still valid in the
vector-valued case.

Theorem 20.3 ([158, Thm. 10.10]). Let g ∈ R` be the given data and the spline function
s ∈ H̃

(i) be unknown. Then the spline interpolation problem Aks = gk for all k = 1, . . . , ` is
uniquely solvable if and only if the functionals Ak for k = 1, . . . , ` are linearly independent.

An immediate consequence of Lemma 20.2 is that the matrix corresponding to the spline
functions stated in the following theorem is as a Gramian matrix positive definite if the
functionals Ak for k = 1, . . . , ` are linearly independent.

Theorem 20.4 (Minimum Property, [158, Thm. 10.13-14]). Let H̃(i) ⊂ L2(B%0) be a
given Sobolev space and Ak : H̃(i) → R be bounded linear functionals for all k = 1, . . . , ` that
are linearly independent. Then the following properties hold true:

i) If g ∈ R` is a given vector and the spline s is given by Aks = gk for all k = 1, . . . , `,
then s is the unique solution of

‖s‖
H̃

(i) = min
{
‖f‖

H̃
(i)

∣∣∣ f ∈ H̃
(i) with Akf = gk for all k = 1, . . . , `

}
.

ii) If f ∈ H̃
(i) is a given function and the spline s is defined by Aks = Akf for all

k = 1, . . . , `, then s is the unique solution of

‖f − s‖
H̃

(i) = min
{
‖f − s̄‖

H̃
(i)

∣∣∣ s̄ ∈ H̃
(i) is a spline function s.t. A

}
.

The proof of the following theorem is identical to the one in [158, Thm. 10.16], where
again Eq. (20.20) comes into play.

Theorem 20.5 ([158, Thm. 10.16]). Let g ∈ R` and a regularization parameter τ > 0
be given. Let the bounded linear functionals Ak : H̃(i) → R, with k = 1, . . . , `, be linearly
independent. If the vector a = (ak)k=1,...,` is the solution of((

AlxAkz
(
k(i)(z,x)

))
l,k=1,...,`

+ τIR`×`
)
a = g, (20.21)

then the spline function given by Eq. (20.18) is the unique minimizer of the corresponding
Tikhonov-functional, that is

s = min
f∈H̃(i)

(
‖g −Af‖2R` + τ ‖f‖2

H̃
(i)

)
.

An entry of the spline matrix occurring in Eq. (20.21) has for all x, z ∈ B%0 the represent-
ation

AlxAkz
(
k(i)(z,x)

)
=

∑
(m,n)∈N0×N0i

κ
(i)
m,n 6=0

2n+1∑
j=1

(κ(i)
m,n)−2

(
Alxg̃(i)

m,n,j(%0;x)
) (
Akzg̃(i)

m,n,j(%0; z)
)
.
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The presented vectorial spline method will be tested for the inverse EEG problem. Thus, for
the numerical implementation of this spline method, we need to calculate the spline function
and the corresponding matrix in this particular setting. Here, the operator A is given in
Eq. (19.1) and we choose the sequence

κ(2)
m,n := κ(2)

n δm,0 for all n ∈ N,

which fits to the null space of the operator TE. The precise orthonormal basis is stated in
Eq. (13.5a), for example. Due to Theorem 19.1, the spline matrix can be assembled with the
functions

Akzg̃(2)
0,n,j(%0; z) = 1√

n%0
β(L)
n

(
(n+ 1)

(
yk
%L

)2n+1
+ n

)(
%0
yk

)n+1
Yn,j(ŷk).

Recall that yk for all k = 1, . . . , `E denotes the sensor positions of the electroencephalograph.
Hence, the entries of the matrix are given for all l, k = 1 . . . , `E by

AlxAkz
(
k(2)(z,x)

)
=

∑
n∈N
κ

(2)
n 6=0

(
κ(2)
n

)−2
2n+1∑
j=1

(β(L)
n )2

n%0

(
%2

0
ylyk

)n+1(
(n+ 1)

(
yl
%L

)2n+1
+ n

)

×
(

(n+ 1)
(
yk
%L

)2n+1
+ n

)
Yn,j(ŷl)Yn,j(ŷk)

= 1
4π

∑
n∈N
κ

(2)
n 6=0

(
κ(2)
n

)−2 2n+ 1
n%0

(
β(L)
n

)2( %2
0

ylyk

)n+1(
(n+ 1)

(
yl
%L

)2n+1
+ n

)

×
(

(n+ 1)
(
yk
%L

)2n+1
+ n

)
Pn(ŷl · ŷk).

Note that the Addition Theorem, see Theorem 2.25, is used in the last step. The Legendre
series can be efficiently evaluated using the Clenshaw algorithm.
We calculate the following expression for the representation of the corresponding spline:

Akzk(2)(z,x)

=
∑
n∈N
κ

(2)
n 6=0

2n+1∑
j=1

(
κ(2)
n

)−2
g̃(2)

0,n,j(%0;x)Akzg̃(2)
0,n,j(%0; z)

=
∑
n∈N
κ

(2)
n 6=0

2n+1∑
j=1

(
κ(2)
n

)−2
g̃(2)

0,n,j(%0;x) 1√
n%0

β(L)
n

(
(n+ 1)

(
yk
%L

)2n+1
+ n

)(
%0
yk

)n+1
Yn,j(ŷk)

=
∑
n∈N
κ

(2)
n 6=0

2n+1∑
j=1

(
κ(2)
n

)−2
√

2n+ 1
n%4

0

xn−1

%n−1
0

β(L)
n

(
(n+ 1)

(
yk
%L

)2n+1
+ n

)(
%0
yk

)n+1
ỹ(2)
n,j(x̂)Yn,j(ŷk)

=
∑
n∈N
κ

(2)
n 6=0

2n+1∑
j=1

(
κ(2)
n

)−2
√

2n+ 1
n

xn−1

yn+1
k

β(L)
n

(
(n+ 1)

(
yk
%L

)2n+1
+ n

)
ỹ(2)
n,j(x̂)Yn,j(ŷk)
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= 1
4π

∑
n∈N
κ

(2)
n 6=0

(
κ(2)
n

)−2 (2n+ 1)3/2
√
n

xn−1

yn+1
k

β(L)
n

(
(n+ 1)

(
yk
%L

)2n+1
+ n

)
p̃(2)
n (x̂; ŷk).

For the implementation of the spline function, we can further expand the Edmonds vector
Legendre polynomial. For all ξ, η ∈ S, the following identity holds true, see also Eq. (5.12a):

p̃(2)
n (ξ,η) =

√
n

2n+ 1p
(1)
n (ξ,η) +

√
n+ 1
2n+ 1p

(2)
n (ξ,η)

=
√

n

2n+ 1Pn(ξ · η)ξ +
√

1
(2n+ 1)nP

′
n(ξ · η)(η − (ξ · η)ξ).

Eventually, the spline function is given by

s(x) = 1
4π

`E∑
k=1

ak
∑
n∈N
κ

(2)
n 6=0

(
κ(2)
n

)−2 (2n+ 1)x
n−1

yn+1
k

β(L)
n

(
(n+ 1)

(
yk
%L

)2n+1
+ n

)

×
(
Pn(x̂ · ŷk)x̂+ 1

n
P ′n(x̂ · ŷk)(ŷk − (x̂ · ŷk)x̂)

)
.

Again, this expression can be evaluated using the Clenshaw algorithm and its variant for the
first derivatives of the Legendre polynomials.
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Chapter 21.

Numerical Results

21.1. Regularized (Orthogonal) Functional Matching Pursuit

We use the abbreviation R(O)FMP if a statement holds true for the RFMP as well as for the
ROFMP. For the numerical solution of the synthetic test cases by means of the R(O)FMP,
we used the following dictionaries:

DM(5, {0.8, 0.9, 0.95, 0.99} , 12 655), DE(5, {0.8, 0.9, 0.95, 0.99} , 12 655).

See Eq. (19.7) for the definition of DM and DE. Each of these dictionaries contains 35
different orthonormal basis functions from degree 1 up to degree 5 and 50 620 reproducing
kernels, which have 12 655 different centres within the ball and four different values for the
parameter h ∈ {0.8, 0.9, 0.95, 0.99} . Hence, each dictionary consists of 50 655 dictionary
elements. The choice of the dictionary has an influence on the reconstruction since we can
only use a finite amount of dictionary elements in the actual computation. Thus, the choice
of the dictionary can also be understood as a regularization. For example, numerical tests
showed that more orthonormal basis functions with a maximal degree higher than n = 5
yield poorer results, since the RFMP tries to reconstruct details and delicate structures with
these high-degree orthonormal basis functions instead of using the localized reproducing
kernels. This contradicts former numerical experiments in the geosciences. A reason for this
behaviour may be the few (up to about 100) data given in our particular problems, whereas,
for example, in [210] 8500 data points where used in a synthetic downward continuation.
Thus, the few data points in our particular problem can also be interpolated with these
basis functions. On the other hand, for the sake of computation time we removed dictionary
elements that were almost never chosen, such as reproducing kernels with a parameter h
smaller than 0.8. However, these refinements are done by trial and error.

In an ongoing research, see [201], a Learning Regularized (Orthogonal) Functional Matching
Pursuit Algorithm (LR(O)FMP) will be constructed. The aim of the LR(O)FMP is to build,
based on a large initial dictionary, a smaller learned dictionary containing the best-fitting
dictionary elements. The learned dictionary is not necessarily a subset of the initial dictionary.
In an optimization step, it can generate new dictionary elements of existing types. First
numerical tests using the RFMP showed that the learned dictionary yielded more accurate
and sparser results than a manually chosen larger one. And it does so in a fraction of
computational time. In this context, a reconstruction is said to be sparser if fewer dictionary
elements are required for its representation.
Let again the parameter • ∈ {M,E} be chosen according to the considered problem.

In both synthetic test cases, the R(O)FMP is tested for several noise levels, that is δ• ∈
{0, 0.01, 0.05, 0.1} , and three different regularization terms. The regularization terms are
given by the vectorial Sobolev spaces over the ball induced by the sequence from Eq. (19.5)
for the parameters s ∈ {0, 1, 2} , see Definition 16.1.
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For judging the quality of the reconstruction obtained by the R(O)FMP, we consider the
next quantities. The R(O)FMP returns the residual of the approximation, see Algorithms 17.2
and 17.19. For the sake of comparability, we normalize the residual with respect to the data
gδ• . Let Jδ•τ denote the solution obtained via the R(O)FMP from the data gδ• ∈ R`• \ {0}
with regularization parameter τ > 0. Then the relative residual is given by

rel. residual :=

∥∥∥A•Jδ•τ − gδ•∥∥∥R`•
‖gδ•‖R`•

.

Based on Algorithms 17.2 and 17.19, we have to define a stopping criterion for both
algorithms. The RFMP is stopped after a fixed amount of 600 iterations. The maximal
number of iterations for the ROFMP is 250, where the algorithm is restarted after 25 steps.
However, due to the fast decrease of the relative residual in the ROFMP, we additionally
stop the algorithm if the relative residual after a restart is smaller than or equal to 2 %, that
is rel. residual ≤ 0.02.

The evolution of the relative residual during the R(O)FMP is shown in Fig. 21.1 for both
synthetic test cases with δ• = 0.05 and s = 1. In the EEG case, the relative residual drops
below 5 % after the first few iterations, which is desired for the noise level of 5 % according to
the discrepancy principle, see [18, 63, 192] and the references therein. More precisely, 5 % are
reached after six iterations in the case of the RFMP and after four iterations in the case of
the ROFMP. Similar observations can be made for the other noise levels and regularization
terms, which are not shown here. Thus, regarding the relative residual, the RFMP works
as it should. Although the curve of the relative residual in the MEG case is qualitatively
similar to the curve in the EEG case, the decay is significantly slower. The RFMP needs
282 iterations and the ROFMP needs 32 iterations for the relative residual to fall below 5 %.
One possible reason for this behaviour is the severe ill-posedness of the problems and the
faster decay of the MEG singular values.
For a qualification of the approximation, we calculate the normalized root mean square

difference from the reconstruction to the synthetic test current from Eq. (18.1) on the
3600-points Driscoll-Healy grid given in Eq. (19.8). The normalized root mean square error
(NRMSE) is defined by

RMSE :=

√√√√∑60
t=1

∑60
s=1

(
Jδ•τ (xt,s, yt,s, zt,s)− J•(xt,s, yt,s, zt,s)

)2

3600 , (21.1)

NRMSE := RMSE
max1≤t,s≤60 J•(xt,s, yt,s, zt,s)−min1≤t,s≤60 J•(xt,s, yt,s, zt,s)

. (21.2)

According to the setting of the parameter choice methods from Section 16.3, the R(O)FMP
is started with 100 to 300 different regularization parameters τ . First, we try to find the
optimal regularization parameter τk∗ that minimizes the NRMSE. Corresponding to this
regularization parameter, the values of the approximation norm, the NRMSE, and the relative
residual obtained via the R(O)FMP are listed for all MEG test cases in Table 21.1 and for
all EEG test cases in Table 21.2.
Since the inverse MEG and EEG problems are severely ill-posed problems, it is not

surprising that the approximation error, which is represented by the NRMSE, is larger than
the relative residual and the noise level throughout almost all numerical tests.
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Figure 21.1: Evolution of the relative residual during the R(O)FMP iterations for δ• = 0.05
and s = 1 for the synthetic EEG test case (solid blue) the MEG test case (dashed red) and
the 5 % line (solid black)
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Chapter 21. Numerical Results

Based on Tables 21.1 and 21.2, we can conclude that in the MEG and EEG synthetic tests
the regularization term with s = 0, that is the L2(B%0)-regularization, yields the highest
values for the NRMSE for all noise levels and, consequently, the most inexact approximations
of J•. Consequently, we neglect this regularization term in the following discussion.
In the MEG case solved with the RFMP, the smallest NRMSE values are achieved via

the regularization term corresponding to s = 1 except for δM = 0.1, where s = 2 yields a
significantly better result. For all reconstructions via the ROFMP, the regularization term
with s = 2 yields the best results concerning the NRMSE. Furthermore, throughout all noise
levels and s ∈ {1, 2} , the ROFMP yields more accurate results than the RFMP. This may
be coherent with the additional residual based stopping criterion for the ROFMP and the
differing allowed maximal steps for the algorithms. For a more fair comparison of these two
methods, a discrepancy based stopping rule for both algorithms could be used, which is
left for future investigations. However, the difference in the NRMSE between the RFMP
and the ROFMP decreases as the noise level increases. This can also be seen in Figs. 21.2
and 21.3, which shows the deviation of the reconstruction from the exact test current for the
MEG. The corresponding approximations can be found in Figs. 21.4 and 21.5. Note that the
colour bars in Figs. 21.2 and 21.3 have different scales and recall that the exact synthetic
test current is plotted in Fig. 18.2. The maximal value of the synthetic current on the test
grid is 4.9188, whereas the maximal deviation obtained with the RFMP for non-noisy data
is 4.1409. However, the ROFMP is able to reduce this deviation by an order of magnitude.
This effect is also observed for the other noise levels but, as pointed out before, much less
pronounced as the difference between the maximal deviations of the RFMP and ROFMP
shrinks with increasing noise level. In addition, the RFMP produces some artefacts in the
case of higher noise levels, whereas the reconstruction via the ROFMP is more accurate.
One of these artefacts can be seen in the case of 5% noise on the data in Fig. 21.3a, where a
structure resembling an isolated reproducing kernel appears on the middle of the right-hand
side. We conclude that the ROFMP with s = 2 yields the best results among the tested
cases for the reconstruction of the synthetic test current JM.
In the EEG case, the interpretation of Table 21.2 is not as simple as in the MEG case.

Both regularization terms, that is s = 1 and s = 2, yield good results. Using the RFMP,
the smallest NRMSE throughout the noise levels δE = {0, 0.01, 0.05} is obtained for s = 2.
However, with 10% noise on the data, the regularization term corresponding to s = 1 yields
a slightly smaller NRMSE. If the ROFMP is used, s = 2 yields better results on non-noisy
data and for δE = 0.1, whereas s = 1 yields smaller NRMSEs for the other noise levels.
Thus, the regularization terms with s ∈ {1, 2} should be preferred to s = 0 in the EEG case
since we cannot find a clear winner. Figure 21.6 clearly shows the superior quality of the
reconstructions with higher smoothness parameter s in the case of non-noisy data. Note that
the colour bars of the plots of the deviation change their scale with different parameters s.
For reference, recall that the exact solution of the synthetic test case is plotted in Fig. 18.2.
Figures 21.3, 21.5, and 21.7 show that the reconstruction of the synthetic MEG and

EEG currents is still good even for 10% noise. The active regions are well identifiable
and the reconstruction is not too blurry, which is quite good for such a severely ill-posed
problem. In the MEG case, however, the severe influence of the damping factor is visible for
δM = 0.1, since the original order of magnitude of one kernel cannot be reconstructed and
the corresponding kernel looks damped.

Eventually, for two particular cases, we also visualize the reconstruction and its difference
to the exact solution on a cutout of the cerebrum modelled by the ball B%0 , see Figs. 21.8
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21.1. Regularized (Orthogonal) Functional Matching Pursuit

(a) RFMP, δM = 0 (b) ROFMP, δM = 0

(c) RFMP, δM = 0.01 (d) ROFMP, δM = 0.01

Figure 21.2: Deviation of the approximation from the exact current JδMτ∗ − JM obtained
from magnetic flux data with different noise levels via the RFMP (left column) and via the
ROFMP (right column) for the regularization term with parameter s = 2 plotted on an
upper hemisphere with radius 0.95%0
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(a) RFMP, δM = 0.05 (b) ROFMP, δM = 0.05

(c) ROFMP, δM = 0.1 (d) ROFMP, δM = 0.1

Figure 21.3: Deviation of the approximation from the exact current JδMτ∗ − JM obtained
from magnetic flux data with different noise levels via the RFMP (left column) and via the
ROFMP (right column) for the regularization term with parameter s = 2 plotted on an
upper hemisphere with radius 0.95%0
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(a) RFMP, δM = 0 (b) ROFMP, δM = 0

(c) RFMP, δM = 0.01 (d) ROFMP, δM = 0.01

Figure 21.4: Approximation from the exact current JδMτ∗ obtained from magnetic flux data
with different noise levels via the RFMP (left column) and via the ROFMP (right column)
for the regularization term with parameter s = 2 plotted on an upper hemisphere with
radius 0.95%0

319



Chapter 21. Numerical Results

(a) RFMP, δM = 0.05 (b) ROFMP, δM = 0.05

(c) RFMP, δM = 0.1 (d) ROFMP, δM = 0.1

Figure 21.5: Approximation from the exact current JδMτ∗ obtained from magnetic flux data
with different noise levels via the RFMP (left column) and via the ROFMP (right column)
for the regularization term with parameter s = 2 plotted on an upper hemisphere with
radius 0.95%0
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(a) Approximation, s = 0 (b) Deviation, s = 0

(c) Approximation, s = 1 (d) Deviation, s = 1

(e) Approximation, s = 2 (f) Deviation, s = 2

Figure 21.6: Approximation JδEτ∗ of the neuronal current from electric potential data obtained
by the ROFMP from non-noisy data for different regularization terms with parameter s
(left column) and its deviation from the exact solution (right column), see Fig. 18.2, plotted
on an upper hemisphere with radius 0.95%0
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(a) Approximation, δE = 0.01 (b) Deviation, δE = 0.01

(c) Approximation, δE = 0.1 (d) Deviation, δE = 0.1

Figure 21.7: Approximation JδEτ∗ of the neuronal current from electric potential data obtained
by the ROFMP with parameter s = 1 for different noise levels δE (left column) and its
deviation from the exact solution (right column), see Fig. 18.2, plotted on an upper
hemisphere with radius 0.95%0
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to 21.11. These figures reveal that the quality of the reconstruction inside the cerebrum is
comparable to the quality of the reconstruction on the single sphere S0.95%0 . In addition,
in the region around the origin no activity is expected, which is well reconstructed within
the synthetic test case. Besides, one can observe that the deviation of the approximation
from the exact solution has its maximum at the boundary. This is not surprising, since
the synthetic test case as well as the reconstruction of the neuronal current are harmonic
functions. The harmonicity is given by the fact that these functions are elements of the
orthogonal complements of the respective operator null spaces.

In addition, the NRMSE listed in Table 21.2 reveals that, independent of the regularization
term, the ROFMP produces better reconstructions of the synthetic test current than the
RFMP if δE < 0.1. For δE = 0.1, both algorithms yield comparable results concerning
the NRMSE. However, the ROFMP has the advantage that it needs a smaller amount of
dictionary elements for the reconstruction, which can be seen in Table 21.3. Thus, the
solution obtained via the ROFMP is analytically sparser. Recall that the RFMP uses 600
iterations independent of noise level and regularization term.

Iterations
δ• s EEG MEG
0 0 25 25
0 1 25 25
0 2 25 25
0.01 0 25 25
0.01 1 25 25
0.01 2 25 25

Iterations
δ• s EEG MEG
0.05 0 25 250
0.05 1 75 250
0.05 2 50 250
0.1 0 75 250
0.1 1 250 250
0.1 2 250 250

Table 21.3: Number of ROFMP iterations in the synthetic test cases depending on noise
level and regularization term

Combining all these numerical results, we conclude that the ROFMP with regularization
term s = 2 generates good reconstructions for the synthetic MEG test case with noisy data.
Therefore, we choose this regularization term for the inversion of real magnetic flux data. For
the inversion of the real electric potential data, we will additionally take the regularization
term s = 1 into account.

Now, we have a closer look at one particular RFMP and ROFMP run for each problem in
order to analyze the behaviour of the algorithm. For this particular study, we choose the
noise level δ• = 0.05 and the regularization parameter producing the smallest NRMSE. In
the MEG case, we choose the penalty term belonging to s = 2 and for the EEG we choose
s = 1. According to Table 21.3, the ROFMP requires 250 iterations for the MEG problem
and 75 iterations for the EEG problem. Both RFMP runs are stopped after 600 iterations.
In Table 21.4, the number of chosen orthonormal basis functions and reproducing kernels
is listed. In this particular experiment with the ROFMP, about 9% to 11% of the chosen
dictionary elements are orthonormal basis function. This is also observed for the other noise
levels, whose data are not shown here. On the other hand, the RFMP picks an unsteady
amount of orthonormal basis functions, which is also shown in these two particular runs
(remaining data not shown).
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(a) Approximation

(b) Difference

Figure 21.8: Reconstruction of the neuronal current JδMτ∗ (top) from synthetic magnetic
flux density data with δM = 0.01 via the ROFMP with s = 2 and its deviation from the
exact solution (bottom) plotted on a cutout of the ball B%0
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(a) Approximation

(b) Difference

Figure 21.9: Reconstruction of the neuronal current JδMτ∗ (top) from synthetic magnetic
flux density data with δM = 0.05 via the ROFMP with s = 2 and its deviation from the
exact solution (bottom) plotted on a cutout of the ball B%0
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(a) Approximation

(b) Difference

Figure 21.10: Reconstruction of the neuronal current JδEτ∗ (top) from synthetic electric
potential data with δE = 0.01 via the ROFMP with s = 1 and its deviation from the exact
solution (bottom) plotted on a cutout of the ball B%0
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(a) Approximation

(b) Difference

Figure 21.11: Reconstruction of the neuronal current JδEτ∗ (top) from synthetic electric
potential data with δE = 0.05 via the ROFMP with s = 1 and its deviation from the exact
solution (bottom) plotted on a cutout of the ball B%0
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MEG EEG
RFMP ROFMP RFMP ROFMP

g̃(i)
0,n,j(%0, ·) 20 8 112 23
k̃

(i)
h (·, z) 580 67 488 227

Table 21.4: Number of chosen dictionary elements for δ• = 0.05 and H̃
(2)
1 - or H̃

(3)
2 -penalty

term, respectively
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Figure 21.12: Chosen dictionary elements by the RFMP for s = 2 in the MEG case (left)
and for s = 1 in the EEG case (right) depending on the iterations

From some applications in the geoscience, it is known that the R(O)FMP tends to
first approximate coarse structures with global functions, such as the orthonormal basis
functions, and afterwards it reconstructs details with the more localized trial functions, see
[66, 68, 165, 210]. This trend can also be observed in the EEG test case, see Fig. 21.12. Here,
orthonormal basis functions and reproducing kernels with a broader width, for instance
corresponding to h = 0.8, are mainly only chosen at the beginning of the algorithm. The
influence of the parameter h ∈ [0, 1) on the width of the reproducing kernel, which is
understood as the region significantly differing from zero, can be seen in Figs. 19.4 and 19.6.
Afterwards, more localized kernels are chosen. In addition, from former tests it is also known
that the R(O)FMP increasingly often chooses reproducing kernels near or in regions that are
rich of structure. In the test case, the centres of the reproducing kernels are predominantly
chosen close to the active regions. This is visualized in Fig. 21.13 for the RFMP and in
Fig. 21.14 for the ROFMP. Especially for the ROFMP, the sparsity of the solution highlights
the active regions. For a coarse image of the active regions, it is, hence, sufficient to only
know the chosen centres. This can be interesting if an outline of the active regions is desired,
which can also be produced in a fractional amount of time, instead of the precise structure
of the neuronal current.

21.1.1. Performance Benchmark

Although the ROFMP requires much less iterations than the RFMP, it is, with few exceptions,
the slower algorithm due to the required backfitting steps. The CPU time is visualized
in Fig. 21.15 in the form of a boxplot. Therein, boxes are plotted for each combination
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Figure 21.13: Centres of chosen reproducing kernels by the RFMP for s = 2 in the MEG
case (left) and s = 1 in the EEG case (right). The colour represents the distance of the
kernel centres from the origin.

of noise level and regularization term. For each test case and parameter combination, the
R(O)FMP is started with 100 different regularization parameters and the required CPU
time is recorded. The box contains the timings that are greater than 25% and smaller than
75% of all 100 observed values. The horizontal lines inside the boxes mark the median of
the CPU times. Finally, the ‘whiskers’, which are the very first and last horizontal lines,
represent the minimum and maximum of the measured timings. In addition, the time
required for the regularization parameter with minimal NRMSE is marked with ∗. The
boxes corresponding to the RFMP are significantly smaller than the ones belonging to the
ROFMP. The reason for this behaviour is that the ROFMP stops depending on the relative
residual, which causes inconsistent timings. In the underregularized case, for example, the
ROFMP stops after less iterations due to Theorem 17.20, which accelerates the algorithm.
The number of iterations for the RFMP is constant, which leads to small variations in the
required computation time. In the EEG inversion, however, the ROFMP run with the
actually chosen regularization parameter is sometimes faster than the corresponding RFMP
run although the required computation time also varies with the regularization term for the
ROFMP. However, due to the ROFMP approximations being significantly sparser than the
RFMP ones, the postprocessing accelerates. For example, the time required for plotting the
approximation depends almost linearly on the amount of chosen dictionary elements.

21.1.2. Evaluation of Parameter Choice Methods

In contrast to the synthetic test case, we cannot determine the optimal regularization
parameter via the NRMSE in a real data situation as an exact reference solution is not
available. Hence, we have to resort to parameter choice methods, which are presented in
Section 16.3. Since the choice of the regularization parameter is essential for the quality of
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Figure 21.14: Centres of chosen reproducing kernels by the ROFMP for s = 2 in the MEG
case (left) and s = 1 in the EEG case (right). The colour represents the distance of the
kernel centres from the origin.

the result obtained by the R(O)FMP, we compare several parameter choice methods using
the synthetic data in order to select suitable methods for the problem at hand.
In Section 16.3, it is specified that most parameter choice methods require the singular

values of the operator A• : spanD• → R`• . In the case of the inverse MEG and EEG
problem, however, we only know the singular values of the related (continuous) operator
T• : L2(B%0) → ran T• and not of the (discrete) operator A•. Still, we can calculate the
singular values of the discrete operators numerically with the aid of Matlab, see [212]. To
this end, we compute the action of the respective operator on the corresponding orthonormal
basis functions up to degree N = 230. Since the series of the reproducing kernels are also
truncated at N = 230, see Section 19.1, these basis functions effectively span the dictionary.
We collect the actions of the operator in a rectangular matrix of size `• × 53 360, which
represents the (discrete) operator. The singular values of this matrix are plotted in the case
of the MEG operator in Fig. 21.17a and in in the case of the EEG operator in Fig. 21.17b.
Based on these singular values, we are able to calculate all quantities required for the

parameter choice methods from Section 16.3. In the MEG case, the results are listed in
Table 21.5. This table reveals that the modified generalized cross validation and the automatic
L-curve method yield the best results for noise levels below 5%. However, these methods fail
for the inversion of 5%-noisy data. The remaining parameter choice methods yield better
but not good results for this noise level since the corresponding NRMSEs are 2 to 3 times
as high as with the optimal parameter. The generalized cross validation and the (strong)
robust generalized cross validation yield the smallest NRMSEs among all parameter choice
methods for δM = 0.1, but the error is twice as high as with the optimal parameter.

The evaluation of the parameter choice methods for the EEG problem via the ROFMP with
s = 1 are presented in Table 21.6. Here, the manual L-curve method is the parameter choice
method with the best approximation error except for non-noisy data, where the modified
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Figure 21.15: Boxplots of the required CPU time for the MEG (first row) and EEG (second
row) with the RFMP (left column) and the ROFMP (right column) problem in seconds.
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Parameter Choice δM = 0 δM = 0.01 δM = 0.05 δM = 0.1

NRMSE NRMSE 0.006 47 0.010 79 0.046 95 0.060 43
Rel. residual 0.003 45 0.012 83 0.037 49 0.076 37

GCV NRMSE 0.111 72 0.113 77 0.110 40 0.12078
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

MGCV NRMSE 0.01089 0.03635 0.403 17 0.427 26
Rel. residual 0.001 36 0.005 35 0.017 78 0.026 78

RGCV NRMSE 0.111 72 0.113 77 0.110 40 0.12078
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

SRGCV NRMSE 0.111 72 0.113 77 0.110 40 0.12078
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

RM NRMSE 0.111 72 0.113 77 0.110 40 0.12078
Rel. residual 0.043 08 0.041 08 0.070 69 0.103 40

LCA NRMSE 0.01089 0.03635 0.433 89 0.495 96
Rel. residual 0.001 36 0.005 35 0.018 07 0.027 82

LCM NRMSE 0.024 06 0.063 90 0.07857 0.209 37
Rel. residual 0.006 10 0.020 12 0.031 34 0.040 74

Table 21.5: NRMSE and relative residual achieved by JδMτ∗ (MEG) via the ROFMP with
s = 2, where τ∗ is chosen according to different parameter choice methods. Best methods
are marked in bold.
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Parameter Choice δE = 0 δE = 0.01 δE = 0.05 δE = 0.1

NRMSE NRMSE 0.003 64 0.006 45 0.013 75 0.050 41
Rel. residual 0.001 47 0.009 89 0.019 81 0.041 51

GCV NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

MGCV NRMSE 0.00596 0.012 84 0.046 64 0.111 27
Rel. residual 0.001 35 0.002 60 0.007 47 0.011 34

RGCV NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

SRGCV NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

RM NRMSE 0.042 58 0.057 26 0.052 32 0.072 23
Rel. residual 0.016 91 0.018 64 0.019 46 0.048 45

LCA NRMSE 0.011 56 0.024 12 0.030 97 0.070 07
Rel. residual 0.017 94 0.013 73 0.019 67 0.015 42

LCM NRMSE 0.006 18 0.00869 0.02233 0.05867
Rel. residual 0.004 51 0.004 26 0.011 69 0.033 11

Table 21.6: NRMSE and relative residual achieved by JδEτ∗ (EEG) via the ROFMP with
s = 1, where τ∗ is chosen according to different parameter choice methods. Best methods
are marked in bold.
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Parameter Choice δE = 0 δE = 0.01 δE = 0.05 δE = 0.1

NRMSE NRMSE 0.002 40 0.006 51 0.016 11 0.045 22
Rel. residual 0.003 89 0.004 86 0.017 54 0.059 49

GCV NRMSE 0.029 98 0.018 52 0.057 78 0.05561
Rel. residual 0.019 48 0.017 05 0.021 34 0.087 25

MGCV NRMSE 0.00859 0.011 24 0.02610 0.069 39
Rel. residual 0.002 43 0.003 08 0.009 11 0.047 23

RGCV NRMSE 0.029 98 0.018 52 0.057 78 0.05561
Rel. residual 0.019 48 0.017 05 0.021 34 0.087 25

SRGCV NRMSE 0.029 98 0.018 52 0.057 78 0.05561
Rel. residual 0.019 48 0.017 05 0.021 34 0.087 25

RM NRMSE 0.029 34 0.018 52 0.057 78 0.064 96
Rel. residual 0.018 17 0.017 05 0.021 34 0.073 58

LCA NRMSE 0.00859 0.011 24 0.02610 0.062 89
Rel. residual 0.002 43 0.003 08 0.009 11 0.071 20

LCM NRMSE 0.029 98 0.00934 0.039 49 0.062 41
Rel. residual 0.019 48 0.007 07 0.024 83 0.052 02

Table 21.7: NRMSE and relative residual achieved by JδEτ∗ (EEG) via the ROFMP with
s = 2, where τ∗ is chosen according to different parameter choice methods. Best methods
are marked in bold.
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Figure 21.16: L-curve plot in the case of the MEG inversion (left) and the EEG inversion
(right) for s = 2 and noise level δ• = 0.05 using the RFMP with the chosen regularization
parameter marked by a red square

generalized cross validation yields a slightly smaller NRMSE. Note that the deviation in
NRMSE between the optimal parameter and the chosen one is generally smaller than for the
MEG problem.
Table 21.7 shows the results of the parameter choice methods for EEG in the case s = 2.

In this scenario, the automatic/manual L-curve method as well as the MGCV yield small
approximation errors, which are the closest to the optimal values within all noise levels. For
δE = 0.05 and s = 2, the corresponding reconstructions obtained via the ROFMP using the
optimal NRMSE method and the MGCV are plotted in Fig. 21.18 and the reconstructions
obtained via the LCM and the RM are plotted in Fig. 21.19. Note that the colour bar of the
deviation plots changes its scale from one parameter choice method to another.

By means of each of the four parameter choice methods, the active regions can be visualized.
The reconstruction is not too blurry and the round shape of the activity is reconstructed.
However, especially for the LCM and the RM method, the amplitudes of the active regions
cannot be reconstructed adequately, at least for the lower one. In addition, the active regions
are not as well separated as for the other two methods.
The corresponding L-curve and its analogue for a magnetic flux inversion is plotted in

Fig. 21.16. Especially for the MEG data, the inflexion point of the L-curve is clearly visible.
Based on the plots in Figs. 21.18 and 21.19 and the results in Tables 21.5 and 21.6, we

conclude that how to find the best or even a good regularization parameter for the R(O)FMP
combined with the inverse MEG and EEG problem depend on the noise level and is still
an open question. Solving this problem would exceed the scope of this thesis and is left for
future research.
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Figure 21.17: Singular values of the operator A• restricted to a finite-dimensional subspace
spanning the dictionary
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(a) Approximation, NRMSE (b) Deviation, NRMSE

(c) Approximation, MGCV (d) Deviation, MGCV

Figure 21.18: Approximation JδEτ∗ of the neuronal current from electric potential data
obtained by the ROFMP, where τ∗ is chosen according to the respective parameter choice
method, with parameter s = 2 and noise levels δE = 0.05 (left column) and its deviation
from the exact solution (right column), see Fig. 18.2, plotted on an upper hemisphere with
radius 0.95%0
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(a) Approximation, LCM (b) Deviation, LCM

(c) Approximation, RM (d) Deviation, RM

Figure 21.19: Approximation JδEτ∗ of the neuronal current from electric potential data
obtained by the ROFMP, where τ∗ is chosen according to the respective parameter choice
method, with parameter s = 2 and noise levels δE = 0.05 (left column) and its deviation
from the exact solution (right column), see Fig. 18.2, plotted on an upper hemisphere with
radius 0.95%0
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21.2. Regularized Ritz Method

In Section 20.1, the regularized Ritz method is presented. Therein, we mentioned that the
number of summands N• in the finite Fourier series equals 100 in the MEG case as well as in
the EEG case. Therewith, the matrix A• defined in Eq. (20.2) is an `•×10 200-matrix. Recall
that `M = 102 and `E = 70. Besides using the classical Ritz method from Example 16.23
based on minimizing the classical Tikhonov-functional, we also used a variant where the
Tikhonov-Philips functional is minimized instead. In this case, the regularization matrix B•
in Eq. (20.3) is chosen according to the H̃

(i)
s -regularization.

The system of linear equations in Eq. (20.3) is solved for each parameter s ∈ {0, 1, 2} and
each noise level δ• ∈ {0, 0.01, 0.05, 0.1} using 300 different regularization parameters. Then,
the regularization parameter that yields the smallest NRMSE among all tested parameters
is chosen. Eventually, the corresponding NRMSE and the relative residual are listed in
Table 21.8 depending on the noise level and the chosen regularization sequence.

According to Table 21.8, we clearly see that the regularization with s = 0 yields the best
results independent of the noise level for the MEG and the EEG problem. The NRMSEs
for s = 0 are the lowest among all tested regularization norms. For all three regularization
terms, the relative residual decreases with the noise level in the MEG case. In the EEG case,
the relative residual is comparatively robust with respect to the noise level. Due to these
observations, we fix s = 0 for the rest of this section.

The approximation and its deviation from the synthetic test current are plotted in Fig. 21.20
for the MEG and in Fig. 21.21 for the EEG problem. In the MEG case, the reconstruction
obtained via the Ritz method is very blurry even for small noise levels. The round-shaped
structure of the synthetic test current cannot be recovered. In particular, the reconstructed
active regions shade into non-active regions if the noise level increases.

The same is observed in the EEG case, see Fig. 21.21. In this case, however, the fuzziness
is not as strong as in the MEG case but the active regions are still not localized very well.
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(a) Approximation, δM = 0.01 (b) Deviation, δM = 0.01

(c) Approximation, δM = 0.05 (d) Deviation, δM = 0.05

(e) Approximation, δM = 0.1 (f) Deviation, δM = 0.1

Figure 21.20: Approximation JδM100,τ∗ of the neuronal current from magnetic flux data
obtained by the regularized Ritz method with parameters s = 0 for different noise levels
δM (left column) and its deviation from the exact solution (right column), see Fig. 18.2,
plotted on an upper hemisphere with radius 0.95%0
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(a) Approximation, δE = 0.01 (b) Deviation, δE = 0.01

(c) Approximation, δE = 0.05 (d) Deviation, δE = 0.05

(e) Approximation, δE = 0.1 (f) Deviation, δE = 0.1

Figure 21.21: Approximation JδE100,τ∗ of the neuronal current from electric potential data
obtained by the regularized Ritz method with parameters s = 0 for different noise levels
δE (left column) and its deviation from the exact solution (right column), see Fig. 18.2,
plotted on an upper hemisphere with radius 0.95%0
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MEG EEG
δ• s NRMSE rel. residual NRMSE rel. residual

0.00 0 5.7664 · 10−2 3.7803 · 10−13 9.2598 · 10−2 7.8985 · 10−2

0.00 1 6.8290 · 10−2 4.4447 · 10−12 1.2408 · 10−1 5.9080 · 10−2

0.00 2 1.1149 · 10−1 9.8826 · 10−4 1.5666 · 10−1 6.9919 · 10−2

0.01 0 7.9113 · 10−2 2.3378 · 10−3 9.3978 · 10−2 7.8122 · 10−2

0.01 1 9.0074 · 10−2 3.3097 · 10−3 1.2516 · 10−1 5.7168 · 10−2

0.01 2 1.1951 · 10−1 6.6637 · 10−3 1.5678 · 10−1 6.9657 · 10−2

0.05 0 1.1603 · 10−1 2.9661 · 10−2 8.9989 · 10−2 8.0846 · 10−2

0.05 1 1.2529 · 10−1 3.5705 · 10−2 1.1958 · 10−1 6.1897 · 10−2

0.05 2 1.5048 · 10−1 4.0998 · 10−2 1.5247 · 10−1 7.3621 · 10−2

0.10 0 1.1695 · 10−1 5.5270 · 10−2 9.9934 · 10−2 1.2196 · 10−1

0.10 1 1.2654 · 10−1 5.6537 · 10−2 1.4147 · 10−1 9.5631 · 10−2

0.10 2 1.4543 · 10−1 5.9161 · 10−2 1.7923 · 10−1 1.0279 · 10−1

Table 21.8: Relative residual and NRMSE of the approximation Jδ•100,τ∗ with the smallest
NRMSE obtained by the regularized Ritz method depending on the noise level δ• and the
chosen regularization sequence with parameter s

21.3. Scalar Splines

21.3.1. Scalar Splines for MEG

We have already mentioned in Section 20.2 that in [73] a scalar spline method is used for the
reconstruction of scalar-valued parts of the neuronal current. Therein, a good and stable
approximation can be obtained by means of this numerical method.
However, in Section 20.2.2 we have also pointed out that the spline method used in [73]

does not fit to our minimum norm assumption and, hence, we adapted the spline method to
this setting. Using this adapted spline, we now reconstruct the scalar-valued part A(1) of the
neuronal current in the case of the synthetic problem from Chapter 18 for different noise
levels, that is δM ∈ {0, 0.01, 0.05, 0.1} .

The sequence occurring in the definition of the reproducing kernel, see Eq. (20.4), remains
to be chosen. In our particular application, we choose

κn := h−n
2/2√n, n ∈ N, h = 0.99.

Among all tested sequences, this one yields the best results. In order to solve the interpolation
problem from Eq. (20.6), a regularization is necessary since the corresponding scalar spline
matrix is ill-conditioned with a condition number of 1.7748 · 108, see Theorem 20.1 for the
regularized spline approximation. The matrix is visualized in Fig. 21.22.

For each noise level, we start the spline method for 1000 different regularization parameters
τ ∈ [0, 1020]. Then, we choose the regularization parameter that results in the reconstruction
with the smallest NRMSE. The results are presented in Table 21.9 and Fig. 21.24. Recall
that the exact solution is depicted in Fig. 20.1. We conclude that a higher regularization of
the problem is needed with decreasing noise level. Due to the regularization and the higher
noise levels, the reconstructions become more damped.
A comparison of the scalar spline method with the regularized Ritz method and the

ROFMP is given in Table 21.10. For this purpose, the corresponding vector-valued current
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Figure 21.22: Entries of the scalar spline matrix for the MEG problem

δM τ∗ scalar NRMSE rel. residual vector NRMSE

0.00 3.8422 · 104 2.2641 · 10−2 7.4822 · 10−7 1.2718 · 10−1

0.01 1.0448 · 1013 3.0243 · 10−2 3.4608 · 10−3 8.6959 · 10−2

0.05 8.8705 · 1015 4.0909 · 10−2 4.1975 · 10−2 1.0082 · 10−1

0.10 4.0608 · 1016 4.6126 · 10−2 8.1716 · 10−2 1.0919 · 10−1

Table 21.9: NRMSE for the scalar- as well as the corresponding vector-valued reconstruction
and the relative residual corresponding to the approximation with the smallest NRMSE,
that is JδMτ∗ , for different noise levels δM ∈ {0, 0.01, 0.05, 0.1} for the scalar synthetic MEG
test case achieved via the spline method

is calculated from the scalar part A(1) as described in Section 20.2.4. For the two presented
scalar results in Figs. 21.23 and 21.24, the corresponding vector-valued approximation and its
deviation from the vector-valued reference current is plotted in Figs. 21.25 and 21.26. These
plots reveal the same result as Table 21.9: the NRMSE and the quality of the approximation
are worsened by the translation from the scalar-valued solution to the vector-valued solution.
One possible reason for this effect can be found in Eq. (20.14). Therein, the coefficients cn,j
are related to the spline coefficients ak by means of an additional damping factor (%0/yk)n
for all n ∈ N, j = 1, . . . , 2n+ 1, and k = 1, . . . , `.

343



Chapter 21. Numerical Results

(a) Approximation, δM = 0 (b) Deviation, δM = 0

(c) Approximation, δM = 0.01 (d) Deviation, δM = 0.01

Figure 21.23: Approximation of the part A(1) of the neuronal current (left column) and its
deviation from the synthetic test solution (right column) depending on the noise level δM
plotted on an upper hemisphere with radius 0.95%0

344



21.3. Scalar Splines

(a) Approximation, δM = 0.05 (b) Deviation, δM = 0.05

(c) Approximation, δM = 0.1 (d) Deviation, δM = 0.1

Figure 21.24: Approximation of the part A(1) of the neuronal current (left column) and its
deviation from the synthetic test solution (right column) depending on the noise level δM
plotted on an upper hemisphere with radius 0.95%0
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(a) Approximation, δM = 0 (b) Deviation, δM = 0

(c) Approximation, δM = 0.01 (d) Deviation, δM = 0.01

Figure 21.25: Vector-valued approximation of the neuronal current achieved via approxim-
ating the scalar part A(1) (left column) and its deviation from the vectorial synthetic test
current (right column) depending on the noise level δM plotted on an upper hemisphere
with radius 0.95%0
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(a) Approximation, δM = 0.05 (b) Deviation, δM = 0.05

(c) Approximation, δM = 0.1 (d) Deviation, δM = 0.1

Figure 21.26: Vector-valued approximation of the neuronal current achieved via approxim-
ating the scalar part A(1) (left column) and its deviation from the vectorial synthetic test
current (right column) depending on the noise level δM plotted on an upper hemisphere
with radius 0.95%0
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21.3.2. Scalar Splines for EEG

We have already pointed out in Section 20.2.5 that the scalar spline approach is not appropriate
for the inversion of the synthetic test case from Chapter 18. However, we found some errors
in [73] that have a significant effect on some of their numerical results. Therefore, we present
the corrected numerical results in this section.
For the implementation of all tested methods for the inversion of the EEG problem,

the precise coefficients {β(L)
n }n∈N that, for example, appear in the forward operators from

Theorem 19.1 are required. In Chapter 10, we discussed several methods for computing these
coefficients. First, we derived for each n ∈ N a system of linear equations in Eq. (4.15). In
the particular case of the three-shell model, which is used in our numerical computations, we
also stated a corresponding tridiagonal matrix in Lemma 4.1 such that the inversion of this
matrix reduces the computational costs. In addition, we stated a formula for the coefficients
β(L)
n in Eq. (4.18), which can be achieved for each n ∈ N by recursion over the shells. For

the latter method, no inversion is required. This is an advantage since the two mentioned
matrices are ill-conditioned and the condition number increases as n increases. For example,
the condition is about 1.4413 · 1062 for n = 200.
The inversion of the matrix, the inversion of the tridiagonal matrix, and the recursive

method all yield the same results. The maximal deviation among these methods up to
degree n = 500 is 2.6645 · 10−15, which means an agreement of about 12 digits. Note that
the inversions are conducted with Matlab, see [212]. However, all three approaches have
in common that the coefficients β(L)

n for n ∈ N need to be calculated for each degree n
separately. Besides these approaches, we solved the system of linear equations from Eq. (4.15)
symbolically via Mathematica, see [223]. The advantage of this method is that all required
degrees can be calculated simultaneously, which accelerates the calculations. On the other
hand, numerical tests showed that for higher degrees, that is n ≥ 220, this symbolic method
is highly unstable and yields not-a-number results. However, up to this degree this method
yields the same results as the three previous described methods.

In addition, we implemented a fifth method for the calculation of these coefficients, namely
the method described in [73]. This method is based on solving Eq. (4.15). Since the matrix is
ill-conditioned, the authors regularize the system by adding a ‘trial-and-error-value’ of 10%
of the maximal absolute entry to the diagonal, see [73, p. 22]. Since by now, the methods
described previously are available, the results obtained via the inversion of the regularized
matrix seem unreliable. This is visualized in Fig. 21.27.
In Eq. (20.16), we have already stated a formula for the calculation of the spline matrix.

Only the sequence {κn}n∈N from the reproducing kernel remains to be determined. We
choose

κn := h−n(n+1)/2, h = 0.99,

which leads to convergent series in Eq. (20.16) as well as in the representation of the
corresponding scalar spline function.

The spline matrix is visualized in Fig. 21.28 and its condition number is given by 133.3776.
Thus, the inversion of this matrix is stable enough without additional regularization.

In addition, the spline approach is compared to a spherical harmonics ansatz in [73]. For
this ansatz, the electric potential uL is expanded into a finite Fourier series. In analogy to
the regularized Ritz method, one achieves a system of linear equations with the potential
data as the given right-hand side. This system is solved with an additional regularization.
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Figure 21.27: The coefficients β(3)
n for the setting from Eq. (19.2) calculated with several

methods depending on the degree 1 ≤ n ≤ 250: via the inversion of the regularized matrix
(blue), the unregularized matrix (green), and the tridiagonal matrix (brown), via a symbolic
expression (orange), and via recursion (red)

Afterwards, Eq. (15.34) is used in order to determine the coefficients of Ψ from the Helmholtz
decomposition. In [73, Fig. 10], it is shown that this method does not provide us with a
suitable result. To the opinion of the author, the reason for the failure of this method is the
inaccurate calculation of the coefficients β(L)

n . The results with the corrected coefficients as
well as the scalar spline reconstruction are presented in Fig. 21.29. Therein, we used the
synthetic test current presented in [73] and not the current constructed in Chapter 18, which
is used in all other numerical tests.
Due to the adjustments of the presented methods, we are able to improve the results in

[73] in the case of the scalar spline method, see Fig. 21.29. The root mean square error for
the spline reduces from 0.009 573 8 to 0.000 395 6. In contrast, we were able to profoundly
improve the spherical harmonics approach. In this case, the root mean square error reduces
from 306.1623 to 0.003 970 8, which is about 6 orders of magnitude. However, the spline
method still yields the better reconstruction, which can also be seen in Fig. 21.29.
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Figure 21.28: Entries of the scalar spline matrix for the EEG problem
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(a) Scalar synthetic test current Ψ

(b) Approximation by scalar splines (c) Deviation of the spline solution

(d) Approximation via spherical harmonics ap-
proach

(e) Deviation of the spherical harmonics result

Figure 21.29: Reconstructions of the scalar synthetic test function Ψ stated in [73, p. 23]
(first row) via the scalar spline approach (second row) and a spherical harmonics ansatz
(third row) from non-noisy data plotted on an upper hemisphere with radius 0.8451%0
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21.4. Vector Splines for EEG

In Section 20.3, we introduce a vector spline method. Therein, we construct splines as
vector-valued functions via tensor-product based reproducing kernels, see Eq. (20.18). In this
section, we apply this method to the inverse electroencephalography problem. In contrast
to the MEG case, we cannot employ a scalar spline method for the EEG problem using
the Helmholtz decomposition since this would be incompatible with the minimum norm
constraint. This fact has already been pointed out in Section 20.2, which motivated us to
develop a vector-valued spline method. For comparison, we now apply this vector spline
method to the EEG problem.

For this purpose, we set i = 2 and define the sequence of the reproducing kernel occurring
in Eq. (20.17) as

κ(2)
n := h−n/2 for all n ∈ N

with h = 0.9.
Based on the calculation in Section 20.3, we calculate the EEG spline matrix. This matrix

is visualized in Fig. 21.30. In this precise application with the parameters from Eq. (19.2),
the condition number of the matrix is given by 1755.3073. Thus, the inversion of the matrix
is stable such that additional regularization is not necessary.
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Figure 21.30: Entries of the vector spline matrix for the EEG problem

The reconstruction of the EEG synthetic test current by means of this vector-valued spline
method is presented in Figs. 21.31 and 21.32 for several noise levels. Within these plots, we
see that the quality of the reconstruction is relatively robust for noise levels up to δE = 0.05.
The active regions are localized and their round-shaped structure is reconstructed. However,
the amplitude of at least one activity cannot be recovered very well. This leads to high
maximal deviations of the vector spline reconstruction from the exact solution. In addition,
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21.4. Vector Splines for EEG

the quality of the reconstruction is blurry for 10% noise on the data. The fuzziness can
be reduced by an additional regularization of the spline matrix inversion, as presented in
Theorem 20.5. Numerical tests showed that the approximation error increases with additional
smoothness of the reconstruction. Thus, we decided not to regularize in this particular
case. The NRMSE of the approximations and the corresponding relative residual is listed in
Table 21.11. Therein, we can also see that the approximation error is relatively constant
up to the noise level of 5%. Even though the NRMSE for 10% noise on the data is nearly
double as high as for the lower noise levels, the reconstruction is still acceptable. In addition,
the relative residual of all reconstructions is very small. More precisely, it is in the range of
3 · 10−14 to 8 · 10−14.
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(a) Approximation, δE = 0 (b) Deviation, δE = 0

(c) Approximation, δE = 0.01 (d) Deviation, δE = 0.01

Figure 21.31: Approximation JδEτ∗ of the neuronal current from electric potential data
obtained by the unregularized vector spline method for different noise levels δE (left column)
and its deviation from the exact solution (right column), see Fig. 18.2, plotted on an upper
hemisphere with radius 0.95%0
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(a) Approximation, δE = 0.05 (b) Deviation, δE = 0.05

(c) Approximation, δE = 0.1 (d) Deviation, δE = 0.1

Figure 21.32: Approximation JδEτ∗ of the neuronal current from electric potential data
obtained by the unregularized vector spline method for different noise levels δE (left column)
and its deviation from the exact solution (right column), see Fig. 18.2, plotted on an upper
hemisphere with radius 0.95%0
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21.5. Comparison of the Numerical Methods

After solving the inverse MEG and EEG problem with each of the three different recon-
struction methods, that is the R(O)FMP, the regularized Ritz method, and the scalar or
vector spline method, we now compare the results. The numerical results of each method are
separately discussed in detail in the foregoing sections. If several parameters are tested for a
particular regularization method, we now choose the parameter setting that yields the best
results concerning the NRMSE. The particular parameters can be found in the corresponding
captions of Tables 21.10 and 21.11.
First, we consider the MEG problem. A comparison of the NRMSEs and the relative

residuals among the results achieved via the ROFMP, the regularized Ritz method, and the
scalar spline method is given in Table 21.10. The corresponding regularization parameters
are listed in Table 21.1 for the ROFMP method and in Table 21.9 for the spline method.
The comparison of the three reconstruction methods reveals that the ROFMP yields the
smallest NRMSE in the synthetic MEG test case for all noise levels. The Ritz method
yields comparable results to the scalar spline method with respect to the NRMSE but with
higher relative residuals. Thus, in the spline method we gain accuracy in the data space at
the cost of accuracy in the domain when compared to the ROFMP result. However, the
approximation quality of the ROFMP cannot be reached by either of these two methods.

ROFMP Spline Ritz
δM NRMSE rel. residual NRMSE rel. residual NRMSE rel. residual

0.00 6.4770 · 10−3 3.5960 · 10−3 1.2718 · 10−1 7.4822 · 10−7 9.2598 · 10−2 7.8985 · 10−2

0.01 1.0797 · 10−2 1.2831 · 10−2 8.6959 · 10−2 3.4608 · 10−3 9.3978 · 10−2 7.8122 · 10−2

0.05 4.6956 · 10−2 3.7493 · 10−2 1.0082 · 10−1 4.1975 · 10−2 8.9989 · 10−2 8.0846 · 10−2

0.10 6.0430 · 10−2 7.6376 · 10−2 1.0919 · 10−1 8.1716 · 10−2 9.9934 · 10−2 1.2196 · 10−1

Table 21.10: NRMSE and relative residual for different noise levels δM ∈ {0, 0.01, 0.05, 0.1}
achieved by the ROFMP (s = 2), the regularized scalar spline method, and the regularized
Ritz method (s = 0) for the synthetic MEG test case

For the inverse EEG problem, a comparison of the ROFMP, the regularized Ritz method,
and the vectorial spline method is given in Table 21.11. The table reveals that the NRMSE
achieved by the ROFMP has at least one order of magnitude less than the NRMSE obtained
by the other two methods if the noise level is small, that is δE ≤ 0.01. While this discrepancy
reduces for higher noise levels, the NRMSE achieved by the ROFMP is still smaller than for
the other methods. For small noise levels, the vector spline method and the Ritz method
yield comparable results. In contrast, for higher noise levels, the vector spline method is
better than the Ritz method with respect to the NRMSE. In addition, the spline method
yields the smallest relative residuals among all tested methods.

Now, we conclude the results of Tables 21.10 and 21.11. The ROFMP yields the best
results among all tested methods for both problems. This accuracy in the reconstruction
is at the expense of computation time. In the case of the vector spline method, the
time required for assembling the spline matrix is (10.5175± 0.2399) s. However, the spline
matrix corresponding to one problem only needs to be calculated once. Afterwards, only
the inversion of the (regularized) matrix is necessary. The CPU time required for the
inversion is (90.0000± 3.8299) · 10−4 s tested among 10 000 inversions. With a CPU time of
(10.5175± 0.2399) s for the inversion of the EEG data throughout our numerical experiments,
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the regularized Ritz method is slower than the vector spline method but still fast when
compared to the ROFMP. Note that the CPU time required for inversion of the MEG data
is at least as high as for the EEG, since more data is available. The computational time
required for the R(O)FMP is plotted in Fig. 21.15 and is at least five times as high as the
previously mentioned timings, but usually more than tenfold. That does not include the
time required for the preprocessing of the dictionary, see Section 19.2, which is around 6000 s
(wall clock time) for both problems using a parallelized and vectorized code on 12 CPU cores.

ROFMP Spline Ritz
δE NRMSE rel. residual NRMSE rel. residual NRMSE rel. residual

0.00 3.4866 · 10−3 1.5125 · 10−3 4.1598 · 10−2 3.4573 · 10−14 5.7664 · 10−2 3.7803 · 10−13

0.01 6.4613 · 10−3 9.0329 · 10−3 4.2126 · 10−2 3.7071 · 10−14 7.9113 · 10−2 2.3378 · 10−3

0.05 1.5962 · 10−2 1.7879 · 10−2 4.6886 · 10−2 3.5985 · 10−14 1.1603 · 10−1 2.9661 · 10−2

0.10 4.6999 · 10−2 3.8657 · 10−2 8.6227 · 10−2 8.3282 · 10−14 1.1695 · 10−1 5.5270 · 10−2

Table 21.11: NRMSE and relative residual for different noise levels δE ∈ {0, 0.01, 0.05, 0.1}
achieved by the ROFMP (s = 1), the vectorial spline method, and the Ritz method (s = 0)
for the synthetic EEG test case

A visualization of the comparison can also be found in Fig. 21.33 for the MEG problem.
Comparing the reconstruction of the Ritz method to the ROFMP reconstruction, the active
regions produced by the Ritz method are not localized anymore, which is outperformed
by the results obtained with the ROFMP, see Figs. 21.4, 21.5, and 21.20. In addition, the
maximal deviation of the ROFMP solution from the exact solution is only 16.8% as high
as the deviation of the spline reconstruction, see Figs. 21.2, 21.3, and 21.26. Concluding,
we clearly see that structure, localization, and order of magnitude of the approximation
obtained by the ROFMP are closest to the synthetic test current from Fig. 18.2 among all
tested methods.
For the EEG problem, the results are shown in Fig. 21.34. In comparison to the results

obtained by the ROFMP from Fig. 21.7, we observe that the amplitudes of the reconstruction
via the spline method are slightly smaller than the one of the ROFMP. Particularly, for
small noise levels, the maximal deviation from the exact solution is up to 6.39 times higher
than with the ROFMP reconstruction, see Figs. 21.7 and 21.21. In the case of the vector
spline method, we see that the amplitudes of the spline reconstruction are smaller than the
one of the ROFMP and the active regions are more spread out. In addition, the maximal
deviation of the vector spline method for the EEG case is up to 6.93 times higher than with
the ROFMP in the case of δE = 0.01, see Figs. 21.7 and 21.31. This can also be seen in
the NRMSE in Table 21.11. This table additionally reveals that the relative residual of
the spline method is substantially smaller than the one of the ROFMP. In contrast to the
spline solution, which is still localized to some extent, the Ritz method yields an even less
localized reconstruction. The active regions are much larger than the exact solution and
their amplitudes do not match either. Concluding, the ROFMP again provides the best
reconstruction in terms of structure, localization, and order of magnitude among all tested
methods.
Naturally, the question arises whether some methods yield better reconstructions than

others. For the regularized Ritz method, the Tikhonov-regularized normal equation is
solved over a finite-dimensional subspace. In this thesis, we use a subset of the orthonormal
basis system for spanning this subspace, which means that the solution vector contains the
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(a) Exact solution (b) ROFMP

(c) Scalar spline (d) Ritz method

Figure 21.33: Approximation of the neuronal current from magnetic flux data with 5%
noise obtained by the ROFMP (s = 2), the scalar spline method, and the regularized Ritz
method (s = 0) in comparison to the exact test current plotted on an upper hemisphere
with radius 0.95%0
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(a) Exact solution (b) ROFMP

(c) Vector spline (d) Ritz method

Figure 21.34: Approximation of the neuronal current from electric potential data with 5%
noise obtained by the ROFMP (s = 1), the vector spline method, and the regularized Ritz
method (s = 0) in comparison to the exact test current plotted on an upper hemisphere
with radius 0.95%0
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orthonormal basis coefficients of the approximation. Thus, local effects, such as certain
outliers in the data or locally higher noise levels, have a global impact on the reconstruction.
This leads to a general blurriness in the reconstructions for higher noise levels even in the
regions where no activity is presumed. In addition, such ‘global’ methods often experience
difficulties with irregularly distributed data grids, which are also found in our application.
This behaviour is typical for approximation methods based on orthonormal basis functions,
see also the discussion in [158, Sec. 5.3].
The spline based methods are interpolation methods that satisfy a best-approximation

property. In the regularized case, which is used for the MEG scalar spline method, the
solution of this approach is the unique solution of the Tikhonov-regularized normal equation
in a certain Sobolev space, see Theorem 20.1. The results of the scalar reconstruction in
Fig. 21.23 and Section 20.2.2 suggest that this Sobolev space is chosen appropriately. However,
via the transformation to the vector-valued case, structure and quality of the approximation
get lost, see Fig. 21.25, which has already been discussed earlier. Thus, the lack of quality of
the vector-valued reconstruction presumably originates from the Helmholtz decomposition
approach. For this purpose, a direct reconstruction of the vector-valued current should be
preferred. This can also be seen in the vector spline method used for the EEG. This spline
method, which is stated in Section 21.4, is used without regularization. Thus, the spline is
the unique solution of the interpolation problem, see Theorem 20.3. In Fig. 21.34, we see
that this method works well if the activity is near the data points, which is the case for the
activity in the upper left region of the plot. In contrast, the second active region lies in the
middle of a sensor gap, which results in a too flat approximation even in the case of non-noisy
data, see Fig. 21.31. This is a known disadvantage of interpolation based approximation
methods.
However, these methods also have advantages. The reconstructions obtained via splines

are robust with respect to the noise level. In addition, coarse structures can be reconstructed
quickly with the regularized Ritz method, since only few basis functions are required for this
purpose.
The RFMP as well as its enhancement, the ROFMP, combine the advantages of these

methods. Due to the reproducing kernels in the dictionary, which are related to splines, the
R(O)FMP is robust with respect to the noise level and can also handle irregularly distributed
point grids. Coarse structures can be reconstructed with only few dictionary elements using
the additional orthonormal basis functions. This also results in a sparse solution, especially
for lower noise levels, which can be seen in Table 21.3. Using the penalty term of the
R(O)FMP, the smoothness of the reconstruction can be controlled, similar to the spline
methods. In contrast to the spline methods, the R(O)FMP is not an interpolation method,
which results in a better handling of the lack of data. Finally, the R(O)FMP is directly
used for the reconstruction of the entire vector-valued neuronal current, which is more stable
than a reconstruction of scalar-valued parts that are transferred to the vector-valued current
afterwards.

21.6. Inversion of Real Data

After having tested the R(O)FMP extensively within our synthetic test case, we complete this
chapter by reconstructing neuronal currents from real data. For this purpose, a set of real data
was given to the author by O. Hauk, see [116]. In this setting, a subject wearing an EEG sensor
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Figure 21.35: Recordings of the magnetic flux density (left) and the electric potential (right)
for the VR data set

cap was placed in an MEG device. The device used for this study is installed at the MRC
Cognition and Brain Sciences Unit, Cambridge, UK. It is a 306-channel Vectorview system
(Elekta Neuromag R©, Helsinki, Finland), see [172], which combines 204 planar gradiometers,
102 magnetometers, and 62 to 124 EEG channels providing comprehensive high-density
coverage of electromagnetic brain activity. However, for the recording of the provided data
set 70 EEG channels were used.

In our particular setting, a visual stimulus in form of a chequered pattern is given to the
subject. For this data set, the chequered pattern is presented from the right-hand side (VR,
visual right). Then, the brain activity is measured for a short time frame. The magnetic
flux density and the electric potential are plotted in Fig. 21.35 for a 184ms recording, where
the time starts when the stimulus is applied. In the case of the magnetic flux density, 102
channels are plotted and in the case of the electric potential, 70 channels are visualized.
After a delay of approximately 75ms to 80ms, the brain activity increases as well as the
magnetic flux density and the electric potential. For the inversion, we choose the measurement
corresponding to the point of time with the highest values of the measured quantity. In our
case, we choose the data belonging to the point of time 89ms for both inversions, which will
also allow a combination of the inversions in the postprocessing.

For the inversion of the magnetic flux density as well as the electric potential, we use the
same dictionary as within the synthetic test case, see Section 19.1. In both cases, we apply
the ROFMP algorithm since it yielded the best approximation results within the synthetic
test cases, see Figs. 21.33 and 21.34 and Tables 21.10 and 21.11. In the MEG case, we use
the norm corresponding to s = 2 for the penalty term. In the EEG case, we test the H̃

(2)
1 - as

well as the H̃
(2)
2 -norm.

In all cases, the absolute value of the neuronal current is plotted on the sphere with radius
0.95%0. For the inversion of one data set, two images of the neuronal current are presented.
One as viewed from the back of the head (always on the left column) and one from the
front (right column). Note that different angles of view are chosen for the reconstructions
belonging to the VR data set. Since the optical nerve fibers associated to the nasal side of
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Figure 21.36: Lobes of the human brain with visual cortex marked in red, figure taken from
[222]

the retinas cross each other in the optic chiasm, the brain activity should be maximal at the
contralateral visual cortex, see [133]. This means that, for example, a visual right stimulus
mainly induces brain activity in the left visual cortex and vice versa. The visual cortex itself
is located at the back of the brain, see Fig. 21.36.
In the case of our three-shell model, the medial longitudinal fissure separating the two

brain hemispheres is located in the yz-plane. On the other hand, the position of the face is
reflected in the round-shaped gap in the sensor positions on the front side of the head in the
direction of (0, 1, 0)T.
In order to get an impression of the quality of the reconstruction, the absolute value of

the measured data is superimposed in each figure. Therefore, each plot has two different
colour bars. The upper colour bar always belongs to the neuronal current, whereas the lower
colour bar belongs to the measurement. In contrast to previous plots, we decide not to show
the direction of the neuronal current in order not to overload the plots.
The regularization parameter is determined via the parameter choice methods presented

in Section 16.3. To this end, the ROFMP is started with 500 to 750 different regularization
parameter values. After applying all parameter choice methods to the results, we manually
select the reconstruction that best fits the data in the following way: as realized within the
test of the parameter choice methods in Section 21.1.2, these methods in some cases choose
regularization parameters that yield strongly over- or underregularized solutions. Thus, we
eliminate these results in a first step. Afterwards, all remaining reconstructions selected by
the parameter choice methods are plotted in combination with the absolute value of the
measured data. We choose the reconstruction that visually fits best to the data based on
the empirical knowledge from the synthetic test case. The parameter choice method that
produced the shown result is stated in the respective caption.

In the case of the real data, also the L-curve method yields a good result. The corresponding
L-curve for this data set is plotted in Fig. 21.37.
In the case of the MEG recordings, numerical results are depicted in Fig. 21.38. On the

back of the head, we see that activity in the contralateral left visual cortex is reconstructed,
which fits to the recorded data, the experiment, and the theory. However, to the opinion
of the author, some artefacts are reconstructed in the front of the brain. These artefacts
are more or less pronounced depending on the chosen regularization parameter. In the case
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Figure 21.37: Relative residual plotted against the H
(3)
2 (B%0)-norm of the reconstruction

for 727 regularization parameter values with the chosen parameter marked in red

where the regularization parameter is chosen according to the LCM, we see that this artefact
is located in the data gap in the area of the face.
Concluding, the MEG real data inversions yield activity in the desired regions. However,

in certain cases artefacts arise, especially near the data gap, which may correspond to an
insufficient regularization or an inappropriate penalty term.
According to O. Hauk [116], the brain activity should be bipolar in the case of the EEG

recordings, that is a positive brain activity at the back results in a (smaller) negative brain
activity at the front. Inversions of the real EEG data are visualized in Fig. 21.39. The
activity of the visual cortex on the left-hand side is clearly recognizable and only small
activity at the front is reconstructed. In the case of H̃(2)

1 -regularization, however, no tested
parameter choice method yields a suitable result such that the regularization parameter is
chosen manually.
Now, we further investigate the ROFMP runs belonging to the presented parameters for

the VR data set. In Fig. 21.40a, the chosen dictionary elements depending on the number
of iterations is visualized. One can see a trend in the choice of the dictionary elements. In
the first 75 iterations, mainly orthonormal basis functions and reproducing kernels with
a larger width, that is h = 0.8 and sometimes h = 0.9, are chosen. Afterwards, smaller
reproducing kernels belonging to h ∈ {0.9, 0.95} are chosen primarily. In the end, the very
fine reproducing kernels belonging to h = 0.99 are chosen increasingly. This trend is more
pronounced in the real data case as in the synthetic test case, which could be attributed to
the structure of the real neuronal current and the synthetic test current. In Fig. 21.40b, the
centres belonging to the chosen reproducing kernels are plotted. We observe that mainly
reproducing kernels located in an outer shell of the cerebrum are chosen. This corresponds
to the structure of the brain and the location of the visual cortex. In addition, there are
significant accumulation points of centres in the left visual cortex, which fits to the presumed
active region.
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(a) Back view, s = 2, LCM (b) Front view, s = 2, LCM

Figure 21.38: Neuronal current reconstruction from real magnetic flux density data (VR)
plotted on a sphere with radius 0.95%0. The result is obtained via the ROFMP for different
parameter choice methods. The upper colour bar denotes magnitude of the current, whereas
the lower colour bar belongs to the measurement.
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(a) Back view, s = 2, MGCV (b) Front view, s = 2, MGCV

(c) Back view, s = 1, Manual (d) Front view, s = 1, Manual

Figure 21.39: Neuronal current reconstruction from real electric potential data (VR) plotted
on a sphere with radius 0.95%0. The result is obtained via the ROFMP for different penalty
term parameters s and parameter choice methods. The upper colour bar denotes magnitude
of the current, whereas the lower colour bar denotes the absolute value of the measurement.
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Figure 21.40: Chosen dictionary elements and reproducing kernel centres by means of the
ROFMP depending on the number of iterations. The colour in the right figure represents
the distance of the kernel centres from the origin.

For the inversion of the real electric potential data, we conclude that the ROFMP is able
to reconstruct a reasonable neuronal current, which can especially be verified in Fig. 21.39.
However, depending on the data set and the chosen penalty term, it is hard to find an
appropriate regularization parameter. In contrast, in some tests activity is reconstructed
in areas where no activity is recorded, such as in the case of Fig. 21.38. It is standing to
reason that this activity is an artefact fostered by the lack of data. This could be solved, for
instance, by adapting the dictionary. One could think of removing reproducing kernels from
the dictionary that are located in the regions of the face, in the bottom of the ball-shaped
brain model, or in parts of the brain where no activity is presumed.

We chose the same point of time for the reconstruction of both measurements, which
enables us to combine the MEG and EEG reconstruction to a simultaneous inversion. For
this purpose, we choose the MEG reconstruction obtained via the regularization parameter
obtained by the L-curve method. For the reconstruction of the neuronal current from EEG
data, we take the manually chosen regularization parameter with regularization term s = 1.
Eventually, the joint inversion of the two separate inversion from Figs. 21.38 and 21.39 is
given in Fig. 21.41. The plotted reconstruction on the sphere in Figs. 21.41b and 21.41c
reveals some activity on the bottom of the cerebrum, which seems to be unreliable and can
be attributed to the missing sensor positions in this area. Besides, Fig. 21.41c reveals some
small activity in the frontal lobe, which is anticipated due to the bipolar behaviour of the
neuronal current. The main activity of the brain is located in the visual left cortex as it
should be, see Fig. 21.41b. In the visualization of the neuronal current on a cutout of the
ball, one can additionally observe that most of the activity is located in the outer region of
the ball, which corresponds to the structure of the visual cortex. Concluding, the ROFMP
solution for this joint data set yields a plausible reconstruction of the neuronal current.
The presumed active regions are clearly reconstructed and the visualization of the neuronal
currents fits to the data. Artefacts, which especially occur in the MEG reconstruction, can
be smoothed by the joint inversion.
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(a) Back view

(b) Back view (c) Front view

Figure 21.41: Neuronal current reconstruction from real magnetic flux density and electric
potential data (VR) plotted on a cutout of the cerebrum viewed from the back (top) and on
a sphere with radius 0.95%0 (bottom)
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Based on the review of the executed real date inversions, the results of the ROFMP can
still be optimized. This enhancement can be performed on different levels.

First, from the implementation point of view, several extensions are reasonable. The lack
of data in the MEG case can be reduced by including the additional 204 gradiometer meas-
urements into the R(O)FMP algorithm. The theoretical foundation for the implementation
can be found in Appendix A. The dictionary, which is required for the ROFMP, consists
of orthonormal basis functions and particular reproducing kernels in our numerical tests.
Besides these two sets of trial functions, we could add more different types of functions
into the dictionary. For example, wavelet-based reconstructions and multiresolution analysis
yield good results in spherical applications, see, for example, [20, 25, 150, 153] for vectorial
cases. The construction of appropriate wavelets as dictionary elements for the inverse MEG
and EEG problem is not such challenging, since we have already found the corresponding
SVDs which are required for the construction of adequate scaling functions. Note that
the usage of wavelets as dictionary elements differs from the previously mentioned wavelet
method for the inversion of ill-posed problems. Therefore, it is reasonable to include them
as trial functions for the inverse MEG and EEG problem. Furthermore, Slepian functions,
as particular linear combinations of the used vector-valued orthonormal basis functions,
yield good spatial localization, see [5, 37, 140, 202, 203, 221]. Thus, Slepian functions could be
constructed for particular regions of the brain, such as the real-shaped visual cortex or even
smaller parts of it. A foundation for this approach is presented by V. Michel, N. Schneider
and the author in [146], where vector-valued Slepian functions for certain regions on the ball
are constructed. However, in the construction of these Slepian functions only a localization
property with respect to the region is incorporated. In [164], an approach is presented which
enables to construct Slepian functions in relation to an inverse problem. For this approach
the singular values of the underlying operator are required, which is not a problem in the
inverse MEG and EEG problem for the multiple-shell model.
Besides an enlargement of the dictionary, we could additionally test regularization terms

that also take the time dependency of the data into account. Instead of only penalizing
the approximation in a certain norm, we could additionally penalize its deviation from the
one of the previous time step. By means of this approach, we can take advantage of the
time dependency of the data that is not yet taken into account in the current investigations.
Additionally, many more data points would become available. This idea could be taken
further to a postprocessing step that penalizes the deviation from the previous and the
next approximation after all single time points have been inverted independently. Of course,
different Sobolev norms that have not been tested yet as penalty terms for the inverse MEG
and EEG problem could also improve the results.

Second, from the algorithmic side, we could also try several enhancements of the R(O)FMP.
For instance, in [137, 138], a massively accelerated variant of the algorithm called the
regularized weak functional matching pursuit algorithm (RWFMP) is developed, which
yielded good results in the considered numerical test cases. Due to the acceleration of
the algorithm, more iterations in a shorter period of time are realizable, which is generally
desirable. Moreover, in a forthcoming work, see [201], a learned-dictionary-based enhancement
of the RFMP will be presented, which may improve the numerical results by adapting the
used dictionary.
Third, a reason for the discrepancy between the quality of the results obtained in the

synthetic test case and in the real data situation may be grounded in an insufficient modelling
of the brain. In the case of the used multiple-shell model, we assume that the conductivities
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are known and constant on each particular shell. Instead of setting the conductivities on
each shell based on values stated in [117], novel approaches for their inference can be used,
see [32]. In addition, one could allow different radial and tangential conductivities, which is
considered in [174], for instance. Another reason for the inferiority of the real data results
might be the multiple-shell model itself, since the real structure of the brain is inherently
non-spherical. In order to overcome this model error, other geometries could be used, such
as the elliptical-shell model, see [39, 54, 95]. In this case, however, more research concerning
the theory of the inverse MEG and EEG problem is required. Although real-shaped brain
models cannot be used to achieve theoretical knowledge of the null spaces of the operators,
they may well be used in the numerics. For this purpose, the derived integral equations
modelling the inverse MEG and EEG problem need to be adapted.
Lastly, an additional difficulty in the real data situation is that, besides technical noise,

one has to handle supplementary human-driven noise. In order to handle this situation,
additional postprocessing of the real data could be helpful according to [116]. Alternatively,
the R(O)FMP could be further tested with some benchmark data sets as provided in [98].
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Chapter 22.

Conclusion and Outlook

Solving the (inverse) MEG and EEG problem for the spherical multiple-shell model from the
theoretical as well as the numerical point of view was the main task of this work. For this
purpose, we first derived in Part I an integral equation connecting the sought neuronal current,
which we model as a continuous dipole distribution, with the measured magnetic flux density
in the exterior of the head and the electric potential on the scalp. These derivations were
based on the quasi-static version of Maxwell’s equations and used the spherical multiple-shell
model. In accordance with the literature, the EEG model includes a sequence of coefficients
{β(L)

k }k∈N depending on the degree k, the radii of the various shells in the multiple-shell
model, and their conductivities. The novel analysis of the asymptotic behaviour of these
coefficients was crucial for the well-definedness, which implies the convergence of the integral
kernel series representation of the EEG problem. In addition, for both problems, the a-priori
assumptions on the neuronal current in our derivation could be substantially reduced in
comparison to other derivations in the literature.

Via the extensive analysis of more general classes of integral kernels, such as the continuous,
the star-shaped, and the harmonic vector Legendre-type integral (VLI) kernels, and their
corresponding integral operators in Part II, results concerning the inverse MEG and EEG
problem could be achieved. Besides, the different VLI operators are not limited to MEG
and EEG, but also cover other problems occurring, for example, in the geosciences, such as
the inverse Earth’s crustal magnetization problem or the inverse gravimetric problem in the
scalar case.

Based on the definition of ill-posed problems according to Hadamard [106, 107], we analyzed
three aspects of the inverse MEG and EEG problem in Part III:

Non-uniqueness Even though the non-uniqueness of the inverse MEG and EEG problem
is extensively discussed in the literature, see [47, 71–75, 108], there are still some open
questions, which we were able to answer within this work. We expanded the neuronal
current by means of a tailor-made orthonormal basis for the space L2(B%0). This basis
consists of Edmonds vector spherical harmonics in the angular part. These particular
basis functions allowed to characterize precisely which direction of the neuronal current
can be detected by the measurement devices. The part belonging to the Edmonds
type i = 2 functions can be measured by the electroencephalograph, whereas the part
belonging to type i = 3 is detected by the magnetoencephalograph. In addition, the
part belonging to type i = 1 is silent for both devices. Thus, the information that
can be obtained by the two measurement methods is complementary. This improves
and concretizes the results of, for instance, [47]. As a novelty, we also expanded the
radial part of the neuronal current by means of an appropriate orthonormal basis on
the interval. In combination with the derived singular value decomposition (SVD) of
the MEG and EEG operators, we could characterize their null spaces precisely. For the
joint inversion, we concluded that only the harmonic solenoidal part of the neuronal
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current can be reconstructed from magneto-electroencephalography data. In addition,
we stated several additional uniqueness constraints to overcome this non-uniqueness.
The most natural condition seems to be the minimum-norm condition on the entire
vector-valued neuronal current, due to the principle of stationary action, see [70].

Instability The instability of the inverse MEG and EEG problem is presumed in former
research, see [33, 108, 117]. In this work, we provided a mathematical foundation for
this instability. Based on the derived SVDs for both operators, the exponentially fast
decay of the singular values to zero is proved, which implies the severe ill-posedness of
the two problems, see [148, 214].

Existence of a Solution Via the SVDs of the two operators, we formulated Picard’s
criterion for these problems in order to guarantee the existence of a solution.

Besides this, the SVD provided us with a representation of the best-approximate solution.
In addition to the comprehensive analysis of the derived integral equation and operator, we

compared our approach with former approaches from the literature. Most existing methods
for continuous dipole distributions in spherical geometries further decompose the neuronal
current. Preceding decompositions are the Hodge and the Helmholtz decomposition used
in [47, 50, 71–75], which both yield integral equations relating some scalar-valued parts of
the neuronal current to the measured quantities. These decompositions are insufficient for
a precise characterization of the reconstructable parts of the neuronal current, since, for
example, an orthonormal basis decomposition for the radial part of the neuronal current is
missing. Furthermore, they can only be combined with additional uniqueness constraints
in some cases. For instance, we proved that the Helmholtz decomposition for the EEG
problem always produces parts of the neuronal current that cannot be measured by the
electroencephalograph. Thus, the Helmholtz decomposition cannot be combined with the
minimum-norm condition of the neuronal current. The detailed comparison among these
approaches and further improvements of the existing methods were presented in Chapter 15.

In Part V, we presented the regularized functional matching pursuit (RFMP) algorithm and
its enhancement, the regularized orthogonal functional matching pursuit (ROFMP) algorithm,
see [66, 68, 137, 138, 159, 163, 166, 210]. We improved some of the existing convergence results
on the RFMP and analyzed further properties of the solution obtained by the algorithm.
Afterwards, in Part VI, we applied these two algorithms to the inverse MEG and EEG

problem in order to solve them numerically. For this purpose, we constructed a synthetic test
case with known solution that satisfies the minimum-norm condition as additional uniqueness
constraint. The instability of the problems was handled by the Tikhonov-regularization
term occurring in the RFMP as well as the ROFMP. For appropriate penalty terms, we
constructed novel vector-valued Sobolev spaces on the ball. We conducted the synthetic
tests for non-noisy data as well as for noisy data with 1% to 10% additive white Gaussian
noise. Besides difficulties attributed to the ill-posedness of the problems, we also needed to
handle the lack of data. Each measurement device only provides 70 to 102 measurements per
time step at irregularly distributed sensor positions. Nevertheless, the RFMP yielded good
reconstruction results concerning the normalized root mean square error of the approximation
as well as concerning the visual representation of the reconstruction itself. In addition, the
RFMP was outperformed by the ROFMP with respect to reconstruction quality and sparsity
of the solution. In order to compare these two algorithms with established methods, we also
implemented the regularized Ritz method as well as two different spline methods. We used the
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scalar spline method from [73] for the inverse MEG problem as well as a novel tensor-valued
reproducing kernel based spline method on the ball for the inverse EEG problem. Whereas
the Ritz method generally produced comparably poor results, the two spline methods yielded
good numerical results, which are stable with respect to increasing noise level, but still
inferior compared to the ROFMP solution. Another disadvantage of the scalar spline method
is given by the transformation of the good scalar reconstruction to the vector-valued density.
Within this transformation, accuracy of the scalar spline reconstruction is lost due to the
additional damping term. Concluding, the ROFMP yielded the best results among all tested
methods independent of the noise level and resulted in satisfactory reconstructions of the test
current. Furthermore, we solved some issues from [73] concerning the scalar spline method
for the EEG problem.
We completed this part with the inversion of real MEG and EEG data from a visual

stimulus experiment. The results of the real data inversion, especially for the combination of
the MEG and EEG inversion, were satisfying and the ROFMP worked as it should. However,
some artefacts in the reconstructions were observed. This opens up directions for future
research.
For further investigations, the ROFMP could be applied to more realistic benchmark

problems for which the exact solution or at least an approximation of the solution is available.
Such benchmarks are included in the MNE software package, for example, see [98]. In
addition, the approximation power of the R(O)FMP could be enhanced by adding further
types of functions to the dictionary, such as vector-valued wavelets, see [20, 25, 150, 153], or
Slepian functions that can be concentrated on particular real-shaped brain regions, such as the
visual cortex or even the entire human brain, see [146, 164]. Eventually, the numerical tests
could be accelerated by using the regularized weak functional matching pursuit algorithm
instead, see [137, 138].
Besides this, we could improve on the model itself and the constants involved. The

determination of the conductivities required for the multiple-shell model could be more
sophisticated. For example, the method developed in [32] could be used for the determination
of the conductivities. In addition, the multiple-shell model could be extended by allowing
different radial and tangential conductivities, see [174]. Of course, the same analysis that is
carried out in this thesis would be required for the extended model. A further step could be
the analysis of the ellipsoidal-shell model, see [39, 95], for which certain forward solutions
exist. However, finding a singular system in this particular case seems challenging since the
angular and the radial part of an expansion into ellipsoidal harmonics are not decoupled.
Another, more radical, possibility would be to drop the quasti-static approach and to

analyze the time-dependent Maxwell’s equations because the measurements are also dependent
on time. In this context, novel integral or integro-differential equations need to be derived
for the multiple-shell model. However, finding the corresponding operators and their singular
systems seems to be very challenging. Alternatively, the time dependency could be included
in the regularization of the quasi-static approach by using spatio-temporal regularizations.
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Appendix A.

Supplementary Calculations for the MEG
Gradiometer

In Section 9.2, we investigate the quantity measured by the MEG gradiometers, that is a
tangential derivative of the magnetic flux density. The following result is stated in Lemma 9.5
with the proof omitted. Now, we present the missing proof and some lengthy auxiliary
calculations.

Lemma A.1. The gradient of the magnetic flux density Bν is given for y ∈ Bext
%L

by

∇yBν(y) =
∞∑
n=1

2n+1∑
j=1

B ∧r (n, j)
(

+
√
n+ 1
2n+ 1ν(y)Yn,j(ŷ)

+ (ν(y) · ŷ)
(
−(n+ 3)

√
n+ 1
2n+ 1y

(1)
n,j(ŷ) + (n+ 2)

√
n

2n+ 1y
(2)
n,j(ŷ)

)

+
√
n(n+ 1)2

2n+ 1 ŷ
(
ν(y) · y(2)

n,j(ŷ)
)
−
√

n

2n+ 1(ν(y) ·∇∗ŷ)y(2)
n,j(ŷ)

))
.

Proof. Keep in mind within this proof that y ∈ Bext
%L

. For the gradient of the investigated
quantity, we obtain

∇yBν(y) =∇y (ν(y) ·B(y)) . (A.1)

We use the product rule for the gradient, see [141, Sec. 22], that is the identity

∇(f · g) = f ∧ (∇ ∧ g) + g ∧ (∇ ∧ f) + (f ·∇) g + (g ·∇)f

for all f , g ∈ C(R3), in order to further expand the expression in Eq. (A.1). This leads to

∇y (ν(y) ·B(y)) = (ν(y) ·∇y)B(y) + (B(y) ·∇y)ν(y)
+ ν(y) ∧ (∇y ∧B(y)) +B(y) ∧ (∇y ∧ ν(y)) .

Since the normal vector ν(y) ≡ ν is constant on each sensor surface, the second and the last
summand vanish. Hence, the formula reduces to

∇y (ν ·B(y)) = (ν ·∇y)B(y) + ν ∧ (∇y ∧B(y)) .

For the last summand, we keep the derivation of the magnetic field B in mind, which is
generated by the gradient of the scalar magnetic potential in the exterior of the head. Since
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conservative (i.e. gradient) fields are always irrotational and y ∈ Bext
%L

, the last summand in
the previous equation also vanishes. Thus, with r ≥ %L, we get

∇y (ν ·B(y)) = (ν ·∇y)B(y)

= (ν ·∇y)

 ∞∑
n=1

2n+1∑
j=1

B ∧r (n, j)h(1)
n,j(r;y)

 .
The series representation of the magnetic field is valid, see Theorem 9.4. The derivative and
the series of B can be interchanged due to Theorems 8.7 and 9.4 and the fact that the MEG
integral kernel is a harmonic VLI kernel. Hence, using y = yŷ, we can apply the derivative
term-by-term. For this purpose, we use Theorem 2.14 for the representation of the gradient
and obtain for all n ∈ N, j = 1, . . . , 2n+ 1 the identity

(ν ·∇y)h(1)
n,j(r;y) =

(
ν ·
(
ŷ
∂

∂y
+ 1
y
∇∗ŷ

))
h(1)
n,j(r; yŷ)

= (ν · ŷ) ∂
∂y
h(1)
n,j(r; yŷ) + 1

y

(
ν ·∇∗ŷ

)
h(1)
n,j(r; yŷ). (A.2)

In order to calculate the two remaining summands of the right-hand side of Eq. (A.2), we
first use Definition 5.27 to expand the vector outer harmonics into

h(1)
n,j(r;y) = 1

r

(
r

y

)n+2
ỹ(1)
n,j(ŷ) (A.3a)

= 1
r

(
r

y

)n+2
(√

n+ 1
2n+ 1y

(1)
n,j(ŷ)−

√
n

2n+ 1y
(2)
n,j(ŷ)

)
. (A.3b)

Hence, inserting Eq. (A.3a) into Eq. (A.2), the first summand reduces to

(ν · ŷ) ∂
∂y
h(1)
n,j(r; yŷ) = (ν · ŷ) ∂

∂y

1
r

(
r

y

)n+2
ỹ(1)
n,j(ŷ)

= −(n+ 2)(ν · ŷ)r
n+1

yn+3 ỹ
(1)
n,j(ŷ).

For the second summand in Eq. (A.2), we obtain using the representation in Eq. (A.3b) the
identity

1
y

(
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)
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n,j(r; yŷ) = rn+1

yn+3

(
ν ·∇∗ŷ

)(√ n+ 1
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)

= rn+1

yn+3

(√
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2n+ 1(ν ·∇∗ŷ) (ŷYn,j(ŷ))−

√
n

2n+ 1(ν ·∇∗ŷ)y(2)
n,j(ŷ)

)
.

We expand the first summand on the right-hand side. Recall that ŷ depends on the longitude
ϕ and the polar distance t, see Definition 2.11. By means of the coordinate representation of
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the surface gradient, see Theorem 2.14, we get the representation

(ν ·∇∗ŷ) (ŷYn,j(ŷ)) = Yn,j(ŷ)(ν ·∇∗ŷ)ŷ + ŷ(ν ·∇∗ŷ)Yn,j(ŷ)

= Yn,j(ŷ)
(
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√
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√
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)
,

where we used the identities of Corollary 2.13 in the last step. Inserting these results into
Eq. (A.2), we obtain

(ν ·∇y)h(1)
n,j(r;y)

= (ν · ŷ) ∂
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)
−
√

n

2n+ 1(ν ·∇∗ŷ)y(2)
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We further analyze the first two summands. Since ν can also be represented in the local
basis, that is ν = (ν · εϕ)εϕ + (ν · εt)εt + (ν · ŷ)ŷ, we use Eq. (A.3b) to obtain
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Inserting the last two results into Eq. (A.1), we obtain the desired result:

∇yBν(y) = (ν ·∇y)

 ∞∑
n=1

2n+1∑
j=1

B ∧r (n, j)h(1)
n,j(r;y)


=
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n=1

2n+1∑
j=1

B ∧r (n, j)
(
rn+1

yn+3

(
− (n+ 2)(ν · ŷ)ỹ(1)

n,j(ŷ)
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+
√
n+ 1
2n+ 1Yn,j(ŷ)

(
(ν · εϕ) εϕ +

(
ν · εt

)
εt
)

+
√
n(n+ 1)2

2n+ 1 ŷ
(
ν · y(2)

n,j(ŷ)
)
−
√

n

2n+ 1(ν ·∇∗ŷ)y(2)
n,j(ŷ)

))

=
∞∑
n=1

2n+1∑
j=1

B ∧r (n, j)
(

+
√
n+ 1
2n+ 1νYn,j(ŷ)

+ (ν · ŷ)
(
−(n+ 3)

√
n+ 1
2n+ 1y

(1)
n,j(ŷ) + (n+ 2)

√
n

2n+ 1y
(2)
n,j(ŷ)

)

+
√
n(n+ 1)2

2n+ 1 ŷ
(
ν · y(2)

n,j(ŷ)
)
−
√

n

2n+ 1(ν ·∇∗ŷ)y(2)
n,j(ŷ)

))
.

For numerical implementation, further calculations of the term (ν ·∇∗)y(2)
n,j are required.

Lemma A.2. The identity

(ν·∇∗ŷ)∇∗ŷYn,j(ŷ) = (ν · εϕ) 1√
1− t2

(
tL∗ŷ − ŷ

∂

∂ϕ
+∇∗ŷ

∂

∂ϕ

)
Yn,j(ŷ)

+ (ν · εt)
(√

1− t2
(
−ŷ +∇∗ŷ

) ∂

∂t
− t√

1− t2
∇∗ŷ + 2t

1− t2ε
ϕ ∂

∂ϕ

)
Yn,j(ŷ) (A.4)

holds true for all n ∈ N, j = 1, . . . , 2n+ 1.

Proof. We use the product rule for the derivatives combined with Corollary 2.13 and obtain

(ν ·∇∗ŷ)∇∗ŷYn,j(ŷ)

=
(
ν ·
(
εϕ

1√
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∂
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The last step can be verified by inserting the definition of the surface curl and the surface
gradient into the equation from Theorem 2.14, which results into a lengthy calculation.
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