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Abstract

The Standard Model of particle physics is a successfully tested theory to describe interactions

of elementary particles. However, experimental data hints us at possible new physics beyond Stan-

dard Model should exist. After the discovery of the Higgs boson, measurements of its property and

couplings to other particles are essential to search for new physics.

Multi-Higgs production processes are important to reconstruct the Higgs potential and to study

the mechanism of electroweak symmetry breaking. Possible new physics deviation can be observed

in these processes. We study the multi-Higgs production via gluon-gluon fusion and vector-boson

fusion at hadron collider using an effective Lagrangian to describe potential new physics.

For the multi-Higgs production process via gluon-gluon fusion, we explore the potential for the

discovery of the triple-Higgs signal in the 2b2l±4j + /E decay channel at a 100 TeV hadron col-

lider. Our detector analysis shows that the discovery of Standard Model signals via this channel is a

challenging task for the future hadron collider. Combined with the projected constraints from single

and double Higgs-boson production, the measurement of triple Higgs process can further reduces the

allowed parameter space.

For the multi-Higgs production process via vector-boson fusion, our numerical calculation shows

the energy dependence of the effective parameters. Experimentally, a measurement of triple-Higgs

final state via vector-boson fusion process is very challenging due to its small cross section, even on

future high energy colliders, but the constraints on anomalous couplings should be obtained. Our

numerical results describe the potential for constraining these couplings at the LHC and at future

hadron colliders. We also derive theoretical constraints on the parameter space from the unitarity of

2→ n scattering amplitudes and apply the results to V V → hh and hhh processes.



Zusammenfassung

Das Standard-Modell der Teilchenphysik ist die erfolgreich getestete Theorie zur Beschreibung

von Wechselwirkung von Elementarteilchen. Jedoch deuten Daten aus Experimenten daraufhin, dass

mögliche Physik jenseits des Standard-Modells existiere. Nach der Entdeckung des Higgs-Boson ist

die Bestimmung seiner Eigenschaften sowie Kopplung zu anderen Teilchen essentiell für die Suche

nach neuer Physik.

Multi-Higgs-erzeugende Prozesse sind daher wichtig, um die Form des Higgs-Potential zu rekon-

struieren und um die Wirkungsweise der elektroschwachen Symmetriebrechnnung zu studieren. Wir

untersuchen die Multi-Higgs-Erzeugung durch Gluon-Gluon-Fusion und Vektorboson-Fusion an Hadro-

nen-Kollidern mithilfe einer effektiven Lagrangedichte, welche mögliche neue Physik beschreibt.

Für den Multi-Higgs-erzeugenden Prozess durch Gluon-Gluon-Fusion studieren wir das Poten-

tial zur Entdeckung des dreifachen Higgs-Singal im 2b2l±4j + /E Zerfallskanal bei einem 100 TeV

Hadronen-Kollider. Unsere Detektor-Analyse zeigt, dass die Entdeckung von Standard-Modell Sig-

nalen über diese Produktionskanäle eine herausfordernde Aufgabe für einen zukünftigen Hadronen-

Kollider ist. Zusammen mit den projizierten Randbedingungen aus einfacher und zweifacher Higgs-

Boson-Erzeugung kann die Messung der dreifachen Higgs-Boson-Erzeugung den erlaubten Parame-

terraum weiter einschränken.

Für den Multi-Higgs-erzeugenden Prozess durch Vektorboson-Fusion zeigen unsere numerischen

Berechnungen die Energieabhängigkeit der effektiven Parameter. Experimentell ist die Messung des

dreifachen Higgs-Endzustands über Vektorboson-Fusionsprozesse aufgrund des im Vergleich kleinen

Wirkungsquerschnitt sehr herausfordernd, selbst mit einem zukünftigen Hochenergie-Kollider. Je-

doch sollten Einschränkungen für anomale Kopplungen bestimmbar sein. Unsere Resultate beschreiben

mögliche Einschränkungen für diese Kopplungen am LHC und an einem zukünftigen Hadronen-

Kollider. Wir bestimmen darüber hinaus Bedingungen für den Parameterraum basierend auf der

Unitarität von 2 → n Streuungsamplituden und wende diese auf die Resultate von V → hh und

hhh Prozessen an.
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Chapter 1

Introduction

Modern particle physics suggests that all matter is composed of elementary particles. Three of the

four fundamental interactions (the electromagnetic, weak and strong interactions) between elementary

particles can be described by a quantum field theory, namely the Standard Model (SM). The up-to-

date experimental measurements are consistent with the SM pridictions. In particular, the discovery

of the Higgs boson at Large Hadron Collider (LHC) has completed the picture of the SM [1, 2].

However, it is known that the SM is not a complete theory for our universe. First of all, the

forth kind of fundamental interaction, gravitational interaction, is not included in the SM framework.

The SM also cannot answer some questions, such as dark matter and dark energy, matter-antimatter

asymmetry, and the neutrion oscillations. It is expected that physics beyond SM should exists, namely

New Physics (NP). Searching for NP is the main task for physicists.

Though Higgs boson is discovered, its property is still under investigation. Measurements of

Higgs boson coupling to SM particles are essential for the search for NP. The SM predicts that the

Higgs boson has three types of interaction at tree level: (1) the Yukawa interactions with fermions;

(2) the interaction with electroweak gauge bosons (W± and Z); (3) the triple and quartic Higgs self-

interactions. A measurement of the last type of interaction can provide the knowledge of the Higgs

potential and the electroweak symmetry breaking (EWSB). Furthermore, Higgs self-interactions are

also related to the problems of baryogenesis [3] and vacuum stability [4, 5, 6]. However, any mea-

surement of triple and quartic self-coupling of Higgs involves two or more Higgs boson production

in a collider process. The production rates of these processes are small at the LHC, even if it is up-

graded to 14 TeV. So it is challenging to measure these couplings. At a 100 TeV hadron collider, the

rate for these processes will be enhanced significantly. Accurate measurements of triple and quartic

self-coupling become possible.

In this thesis, we study multi-Higgs production at LHC and a future 100 TeV collider. Two produc-

tion modes are considered: (1) multi-Higgs production via gluon-gluon-fusion (ggF); (2) multi-Higgs

production via vector-boson-fusion (VBF). The computations of cross sections and events generation

of these processes are performed by Monte-Carlo (MC) generator WHIZARD [7] or Madgraph [8].

We analyze these processes in an effective field theory (EFT) framework, and obtain projections for

1



1 Introduction 2

bounds on the parameters.

This thesis is organized as follows. In Chapter 2 we give a brief introduction to the SM. In

Chapter 3 we describe the EFT framework and its parameterization. Chapter 4 presents the project

of the multi-Higgs production via ggF mode. We explore the potential for the discovery of the triple-

Higgs signal in the 2b2l±4j + /E decay channel at a 100 TeV hadron collider. The NP effects are

studied in the EFT framework given in Chapter 3. This chapter is based on our results in Ref. [9].

Chapter 5 shows the results of our analysis for multi-Higgs production via VBF mode. We derive

the unitarity constraints of 2 → n scattering amplitudes and apply the results to V V → hh and hhh

processes. The cross sections are computed numerically with appropriate VBF cuts for 14 TeV, 27

TeV, and 100 TeV, respectively. The projected bounds on the EFT parameters are also obtained. The

results of this chapter are based on our paper [10]. Finally, our conclusion is given in Chapter 6.



Chapter 2

The Standard Model of Particle Physics

The Standard Model (SM) is a quantum field field to describe the electromagnetic, strong and weak

interactions of elementary particles. The elementary particles can be distinguish to fermions and

bosons. The fermions contains 6 quarks and 6 leptons. For the quarks, they are named by up (u),

down (d), strange (s), charm (c), bottom (b) and top (t). The 6 leptons are called electron (e), muon

(µ), tau (τ ) with their corresponding neutrino νe, νµ and ντ . All fermions have their anti-particles

with the same mass and spin but opposite charge. The interactions between fermions is carried by

gauge bosons. Photon (γ) is the carrier of the electromagnetic interactions. The strong interactions

are mediated by gluon (g). The W± and Z boson are the carrier of the weak interactions. Finally, the

Higgs boson is needed in the spontaneous symmetry breaking, and gives the mass of W± and Z. The

properties of these particles are listed in Table. 2.1, where the data are taken from Ref. [11].

After the discovery of the Higgs boson in 2012 [1, 2], the picture of SM is completed. The SM has

been proved to be a good theory to describe the properties of elementary particles. This chapter gives

an overview of the Standard Model of particle Physics. The contents of this chapter can be found in

many textbooks, for example [12, 13, 14].

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the gauge field theory of strong interactions. The symmetry

group of QCD is SU(3)C . The subscript C means color. There are three types of color (usually

labelled by R,G,B) and quarks carry a color charge, while gluons are made by a color charge and an

anti-color charge. We can use qi to represent the quark field with color index i and write down the

QCD Lagrangian

LQCD = −1

4
GaµνG

a,µν +
∑

q=u,d,s,...

q̄i(i /D −mqδij)qj , (2.1)

3
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Class Name Spin Charge Mass

Quark

up(u) 1/2 +2/3 2.2 MeV

down(d) 1/2 −1/3 4.7 MeV

charm(c) 1/2 +2/3 1.275 GeV

strange(s) 1/2 −1/3 95.0 MeV

top(t) 1/2 +2/3 173.0 GeV

bottom(b) 1/2 −1/3 4.18 GeV

Lepton

electron(e) 1/2 −1 0.51 MeV

electron neutrino(νe) 1/2 0 < 2 eV

muon(µ) 1/2 −1 105.66 MeV

muon neutrino(νµ) 1/2 0 < 2 eV

tau(τ ) 1/2 −1 1.777 GeV

tau neutrino(ντ ) 1/2 0 < 2 eV

Gauge boson

photon(γ) 1 0 0

Z boson(Z) 1 0 91.1876 GeV

W boson(W±) 1 ±1 80.379 GeV

gluon(g) 1 0 0

Scalar boson Higgs boson(h) 0 0 125.18 GeV

Table 2.1: The elemental particles in SM and their properties are listed. The numbers are taken from

Ref. [11].

where mq denotes the mass of the corresponding quark. In this Lagrangian, the gluons are described

by the field strength tensor

Gaµν = ∂µG
a
ν − ∂νGaµ − gsfabcGbµGcν , (2.2)

where Gaµ(a = 1, 2, ..., 8) is the gluon field, fabc are the SU(3) structure constants, and gs is the

coupling constant of strong interation. The covariant derivative /D is defined by

/D = γµDµ

= γµ(∂µ − igsGaµ
λa

2
) (2.3)

where λa denotes the Gell-Mann matrices, corresponding to the SU(3) generators.

Eq. 2.1 predicts the quark-gluon vertex and the self-interaction of three or four gluons.

2.2 The electroweak interaction

The electroweak theory is based on an SU(2)L × U(1) gauge group. The electroweak Lagrangian

contains three gauge boson W i(i = 1, 2, 3), associated with the SU(2)L group, and one gauge boson
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B, associated with the U(1) group. Analogy to QCD, the kinetic terms of the gauge bosons can be

written as

LG = −1

4
W i
µνW

i,µν − 1

4
BµνB

µν , (2.4)

where the field strength tensors W i
µν and Bµν are

W i
µν = ∂µW

i
ν − ∂νW i

µ − gW ǫijkW j
µW

k
ν , (2.5)

Bµν = ∂µBν − ∂νBµ, (2.6)

where gW is the SU(2)L gauge coupling and ǫijk is the total antisymmetric tensor. The coupling of

the gauge bosons to fermion is implemented by defining the covariant derivative

Dµ = ∂µ − igWT iW i
µ − iY g′WBµ. (2.7)

T i = σi/2, where σi are the Pauli matrics, are a representation of the SU(2) weak isospin algebra.

Analogy to gW , g′W is the coupling of U(1) group. The U(1) charge Y is called weak hypercharge.

The electric charge, Q, of a elemental particle is always

Q = T 3 + Y (2.8)

The SU(2)L also means only the left-handed fermions transform as a doublet under this symme-

try, while the right-handed fermions transform as a singlet. The fermions field can be written as

ψL = γL





νe

e



 , γL





νµ

µ



 , γL





ντ

τ



 , γL





u

d



 , γL





c

s



 , γL





t

b



 , (2.9)

ψR = γRe, γRµ, γRτ, γRu, γRd, γRc, γRs, γRt, γRb, (2.10)

where the left- and right-handed projectors are

γL =
1

2
(1− γ5) , γR =

1

2
(1 + γ5) . (2.11)

The couplings of fermions to the gauge bosons can be described by the Lagrangian

LF = ψ̄Li /DLψL + ψ̄Ri /DRψR, (2.12)

where /DL = γµ(∂µ − igWT iW i
µ − iYLg′WBµ) and /DR = γµ(∂µ − iYRg′WBµ). This means that

the third projection of isospin T 3 and weak hypercharge Y are different for left- and right-handed

fermions. Table. 2.2 lists the numbers of T 3 and Y for quarks and leptons, so the relation Eq. 2.8 is

always satisfied.
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Fermion T 3
L YL T 3

R YR Q

u, c, t +1
2 +1

6 0 +2
3 +2

3

d, s, b −1
2 +1

6 0 −1
3 −1

3

νe, νµ, ντ +1
2 −1

2 − − 0

e, µ, τ −1
2 −1

2 0 −1 −1

Table 2.2: The weak isospin and hypercharge of left-handed (with subscript L) and right-handed (with

subscript R) fermion.

We can write down a Lagrangian for electroweak interaction now:

L′EW = LG + LF . (2.13)

The mass terms are absent in this Lagrangian, because they are forbidden by the SU(2)L × U(1)

symmetry. However, Table 2.1 shows that fermions and electroweak gauge bosons are massive. It is

necessary to introduce a mechanism of the symmetry breaking which can give mass to these particles.

This mechanism is well known as Higgs mechanism [15, 16], which is explained in the next section.

2.3 Higgs mechanism

In the SM, the SU(2)L × U(1) symmetry is broken by introducing a doublet

H =





φ+

φ0



 . (2.14)

Both φ+ and φ0 are complex. The mechanics of this doublet is described by Lagrangian

LH = (DµH)†(DµH)− V (H†H), (2.15)

where the Dµ is defined by Eq. 2.7. The Higgs potential V (H†H) is

V (H†H) = −µ2(H†H) + λ(H†H)2, (2.16)

where µ2, λ > 0. This potential has a minimum when H†H = 2µ2/λ. The miminal value of the

Higgs doublet can be chosen as

〈H〉 =
1√
2





0

v



 , (2.17)

where v =
√

µ2/λ is called vacuum expectation value (VEV).
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Since φ+ and φ0 are complex, the Higgs doublet has 4 degrees of freedom, we can reparameterize

the Higgs doublet as

H = U−1(ξ)





0

(h+ v)/
√
2



 , (2.18)

U(ξ) = exp
(

−iT iξi/v
)

, (2.19)

where h and ξi(i = 1, 2, 3) are four real degrees of freedom. With this parameterization, we can make

a gauge transformation

H → U(ξ)H, (2.20)

T iW i
µ → UT iW i

µU
−1 +

i

gW
(∂µU)U−1. (2.21)

So the ξi degrees are eliminated, and only the physical degree h is remained. This gauge is called

unitary gauge. In the unitary gauge, the Higgs doublet can be written in the following form

H =
1√
2





0

v + h



 . (2.22)

Now the Lagrangian Eq. 2.15 becomes

LH =
1

2
∂µh∂µh− V

(

(v + h)2

2

)

+
g2W
4

(v + h)2W−
µ W

+,µ +
g2W

8 cos2 θ
(v + h)2ZµZ

µ, (2.23)

where θ is the electroweak mixing angle with definition

cos2 θ =
g2W

g2W + g′W
2 . (2.24)

The physical W± and Z field are mixed by the field strength W i and B:

Zµ = cos θW 3
µ − sin θBµ, (2.25)

W+
µ =

1√
2

(

W 1
µ − iW 2

µ

)

, (2.26)

W−
µ =

1√
2

(

W 1
µ + iW 2

µ

)

. (2.27)

Eq. 2.23 shows that the W± and Z boson can obtain masses

mW =
gW v

2
,mZ =

gW v

2 cos θ
(2.28)
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The remained gauge boson is photon

Aµ = sin θW 3
µ + cos θBµ, (2.29)

which is absent in the Eq. 2.23, so its mass is zero.

The coefficients of hW−
µ W

+,µ term and hZµZ
µ term in the Eq. 2.23 define the couplings of

Higgs boson to gauge bosons pair:

ghWW =
g2W v

2
=

2m2
W

v
, (2.30)

ghZZ =
g2W v

4 cos2 θ
=
m2
Z

v
. (2.31)

Similarly, the quartic couplings of Higgs bosons pair to gauge bosons pair are defined by

ghhWW =
g2W
4

=
m2
W

v2
, (2.32)

ghhZZ =
g2W

8 cos2 θ

m2
Z

2v2
. (2.33)

In the unitary gauge, the Higgs potential Eq. 2.16 is expanded to

V (h) = µ2h2 + λvh3 +
λ

4
h4. (2.34)

This expression defines the Higgs triple and quartic self-coupling:

ghhh = 6λv =
3m2

h

v
, (2.35)

ghhhh = 6λ =
3m2

h

v2
, (2.36)

where mh =
√
2µ =

√
2λv is the mass of Higgs boson. Since v ≈ 246 GeV and the masses of these

particles have been measured in experiments, the parameters in the Eq. 2.23 are completely fixed.

However, the Higgs potential defined by Eq. 2.16 is the simplest form to obtain a VEV. Independent

measurements of these couplings are necessary to understand the shape of the Higgs potential.

2.4 Yukawa interaction

In the SM, the Higgs boson couples to fermions via Yukawa interaction. The Lagrangian of Yukawa

interaction can be written as

LY = −
∑

f

(yf ψ̄f,LHψf,R + h.c.), (2.37)
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where ψf,L is the left-handed doublet of fermion f , while ψf,R is the right-handed singlet. After

spontaneous symmetry breaking, a mass term mf ψ̄f,Lψf,R = yfv/
√
2ψ̄f,Lψf,R is generated. So the

Yukawa coupling is propotional to the fermion mass, yf =
√
2mf/v. Because the wide range of the

fermion mass, it is easy to measure Yukawa coupling of heavy fermions like top quark, but it is very

challenge to measure the light fermions like electron.

2.5 Summary of SM

From the previous sections, we can finally write down the complete Lagrangian for electroweak inter-

action:

LEW = LG + LF + LH + LY . (2.38)

The SM Lagrangian is combined by the LQCD and LEW

LSM = LQCD + LEW . (2.39)

It can describe the strong, electromagnetic and weak interaction of elemental particles. The modern

experiments of particle physics have proved that SM is good model to understand the interaction of

elemental particles. However, the SM cannot answer some quetions, such as

• Why only the left-handed neutrino exists?

• Why the masses of fermions and their Yukawa couplings are required in a wide range?

In addition, the experimental data of Higgs boson is not sufficient to determine its couplings to other

particles or itself. At the LHC, Higgs couplings are measured through the Higgs decays process. The

cross-section measurement of h → WW ∗ and h → ZZ∗ can be found in [17, 18]. The observed

signal strengths are 1.05 ∼ 1.29 times the SM prediction, which gives a strong bound on couplings

ghWW and ghZZ . For the Higgs trilinear self-coupling, it is constrained by measuring double Higgs

production at LHC. Current data give a weak constraint ghhh/g
SM
hhh ∈ [−8.82, 15.04] [19]. Since

Yukawa couplings are proportional to the masses of fermions in the SM, the Yukawa coupling of top

quark is the most easy to be determine. At the LHC, the Yukawa coupling of top quark is measured by

observing the pp → htt̄ process. Data show that the cross section is 1.26+0.31
−0.26 times SM value [20],

which gives a strong constraint on the Yukawa coupling of top quark. The experimental results for

other couplings are not reported in the literature at present.

It is very interesting to study the couplings of Higgs boson and how NP effects can contribute to

the collider process involved Higgs boson.



Chapter 3

The Effective Field Theory

Since the SM cannot answer some quetions in our nature, it suggests that the SM is an effective theory

in the low energy scale. In the high energy, new physics (NP) beyond the SM should exist. Many

NP models predict one or more particles with multi-TeV mass. It is difficult to detect these particles

in current collider experiments. Fortunately, the heavy particles can affect the production rate of

SM particles at collider. To study the NP effects from these heavy partilces, a model independent

method is effective field theory (EFT) [21, 22, 23, 24]. In the language of EFT, the heavy partilces are

integrated out and higher-dimensional operators are remained.

A valid EFT should have following features [25]:

• Any extension of the SM should satisfy the unitarity condition of S-matrix.

• The Lorentz invariance and the SU(3)C × SU(2)L × U(1) symmetry should be conserved.

• The SM should be recovered in an appropritate limit.

• The extended theory should be general enough to describe any physics beyond the SM, but

should lead us to the place where the NP effects probably appear.

• It should be able to calculate the radiative corrections at any order in the SM interactions.

• It should be able to calculate the radiative corrections at any order in the NP interactions.

Generally, the EFT Lagrangian can be written as

LEFT = LSM +
1

Λ

∑

k

c
(5)
k O

(5)
k +

1

Λ2

∑

k

c
(6)
k O

(6)
k + ... (3.1)

where O(n)
k denote the operators with dimension-n, and c

(n)
k are dimensionless coefficients. Λ is the

cutoff scale of the EFT. If c
(n)
k are order one parameters, the EFT is only valid when the energy is

below this scale. In previous chapter, we know that the Lagrangian LSM only includes dimension-2

10
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or dimension-4 operators. In an EFT, one can add the operators with dimension-5 or more. Once the

NP model is specified, the coefficients c
(n)
k are determined by integrating out the heavy particles.

All dimension-5 operators violate the lepton number conservation [26], while all dimension-7

operators violate the baryon number minus lepton number conservation [27]. So it is expected that

the leading NP effects come from dimension-6 operators.

The full set of operators up to dimension-6 was introduced by Buchmuller and Wyler [21], but

many operators are redundant. Many authors published their minimal basis of dimension-6 operators

such as GIMR basis [28] and SILH basis [29].

3.1 EFT Lagrangian of the mass eigenstates

In collider experiment, the coefficients c
(n)
k are translated from the experimental data. It is convenient

to define an EFT Lagrangian of mass eigenstates. In this context, only the interactions relevant to

Higgs boson are considered. After electroweak symmetry breaking and expressed in unitarity gauge,

the EFT Lagrangian can be written as

LEFT = LSM + Lt + Lggh + LV h + LV V h + Lh, (3.2)

where LSM is the SM Lagrangian after removing the Higgs interactions. Lt, Lggh, LV h, LV V h,

and Lh are the terms of the effective Yukawa interactions, Higgs-gluon interactions, SM-like Higgs-

vector-boson interactions, tensor structure interactions of Higgs to vector boson, and Higgs self-

interactions, respectively. If we truncate this Lagrangian at dimension-6, we can obtain relations

of its coefficients to any basis of dimension-6 operators.

The Lt is defined as

Lt = −a1
mt

v
t̄t h− a2

mt

2v2
t̄t h2 − a3

mt

6v3
t̄t h3, (3.3)

where t is the physical field of top quark, and mt is the mass of top quark. In previous chapter, we

know that the couplings of Higgs to fermions are depended on the mass of fermions, so it is reasonable

to consider the Yukawa coupling of top quark only. In the SM, we have a1 = 1 and a2 = a3 = 0.

Principally, one can construct operators with other Lorentz structure, but this is beyond the scope of

this thesis.

The Higgs-gluon interactions term Lggh is

Lggh =
g2s

48π2

(

c1
h

v
+ c2

h2

2v2

)

GaµνG
aµν . (3.4)

In the SM, the couplings of Higgs to gluon is absent at tree level, and c1 = c2 = 0.
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The Higgs boson couplings to a pair of physical vector boson fields are defined by

LV H = gW,a1
2m2

W

v
hW+,µW−

µ + gW,a2
m2
W

v2
h2WµWµ + gW,a3

m2
W

3v3
h3WµWµ

+gZ,a1
m2
Z

v
hZµZµ + gZ,a2

m2
Z

2v2
h2ZµZµ + gZ,a3

m2
Z

6v3
h3ZµZµ + · · · . (3.5)

The SM is recovered when gW,a1 = gW,a2 = gZ,a1 = gZ,a2 = 1 and gW,a3 = gZ,a3 = 0. The

measurements of gW,a2 and gZ,a2 involve double Higgs production, while the triple-Higgs production

is required to determine gW,a3 and gZ,a3. It is challenge at current collider experiment. To study them,

we need to consider a future high energy collider.

The tensor structure couplings of Higgs to vector boson are defined by

LV V h = −
(

gW,b1
h

v
+ gW,b2

h2

2v2
+ gW,b3

h3

6v3
+ · · ·

)

W+
µνW

−µν

−
(

gA,b1
h

2v
+ gA,b2

h2

4v2
+ gA,b3

h3

12v3
+ · · ·

)

AµνA
µν

−
(

gX,b1
h

v
+ gX,b2

h2

2v2
+ gX,b3

h3

6v3
+ · · ·

)

AµνZ
µν

−
(

gZ,b1
h

2v
+ gZ,b2

h2

4v2
++gZ,b3

h3

12v2
+ · · ·

)

ZµνZ
µν (3.6)

This part is absent in the SM.

The Higgs self-interactions are described by

Lh = −λ3
m2
h

2v
h3 − κ5

2v
h∂µh∂µh− λ4

m2
h

8v2
h4 − κ6

4v2
h2∂µh∂µh. (3.7)

When λ3 = λ4 = 1 and κ5 = κ6 = 0, the SM is recovered. The measurement of these couplings

is the most challenge part of the collider experiments. It is expected that the 14 TeV LHC can give a

weak constraint on λ3 [30], but cannot give any meaningful constraint on λ4, κ5 and κ6.

The EFT Lagrangian defined by Eq. 3.2 can be translated to other EFT basis or NP models. Two

examples are introduced in the following sections. In section 3.2, we introduce a basis of dimension-6

operators, which is called Strongly-Interacting Light Higgs (SILH) basis. The relations between the

parameters in Eq. 3.2 and the SILH basis are also obtained. In section 3.3, we connect Eq. 3.2 to a NP

models, namely Higgs inflation model.

3.2 The Strongly-Interacting Light Higgs (SILH)

Couplings power counting is not relied on the choice of basis, so we can related Eq. 3.2 to any basis.

An example is Strongly-Interacting Light Higgs (SILH) basis. The SILH basis charaterized by two



3.2 The Strongly-Interacting Light Higgs (SILH) 13

parameters, the new physics scale mρ and a new coupling gρ. mρ and gρ has relation

mρ = gρf, (3.8)

where f is called σ-model scale [29]. The coupling gρ is required to be gSM . gρ . 4π, where gSM

indicates any SM couplings. The upper bound on gρ ensures that perturbation theory is valid, since

the loop expansion parameter (gρ/4π)
2 is less than unity.

With these definitions, the SILH effective Lagrangian is parameterized as

LSILH =
cH
2f2

∂µ
(

H†H
)

∂µ

(

H†H
)

+
cT
2f2

(

H†←→DµH
)(

H†←→D µH
)

− c6λ

f2

(

H†H
)3

+

(

cyyf
f2

H†Hψ̄f,LHψf,R + h.c.

)

+
cgg

2
s

16π2f2
y2t
g2ρ
H†HGaµνG

aµν

+
icW gW
2m2

ρ

(

H†σi
←→
DµH

)

(DνWµν)
i +

icBg
′
W

2m2
ρ

(

H†←→DµH
)

(∂νBµν)

+
icHW gW
16π2f2

(DµH)†σi(DνH)W i
µν +

icHBg
′
W

16π2f2
(DµH)†(DνH)Bµν

+
cγg

′2
W

16π2f2
g2W
g2ρ
H†HBµνB

µν , (3.9)

where coefficients ci are real numbers of order unity, andH†←→DµH ≡ H†(DµH)−(DµH)†H . Eq. 3.9

includes all independent CP-conserving gauge-invariant operators up to dimension six with all Higgs

interactions. The other operators such asH†HWµνW
µν can be generated by integration by parts from

the operators in Eq. 3.9. In the following text, we use Oi to represent the operator whose coefficient

is proportional to ci.

To find the relation between the SILH Lagrangian and Eq. 3.2, we have to expand the SILH

Lagrangian in unitarity gauge and introduce the physical Higgs field. So the operator OH induces the

following term

OH =
cH
2f2

∂µ
(

H†H
)

∂µ

(

H†H
)

→ cH
2f2

(v + h)2∂µh∂µh. (3.10)

In effect, the kinetic term of the Higgs field is modified to

Lkin(h) =
1

2
(1 + cHξ) ∂

µh∂µh, (3.11)

where ξ ≡ v2/f2. This means that the Higgs field should be rescaled by h → ζhh, where ζh =

(1 + cHξ)
−1/2

. Eq. 3.10 induces two further derivative operators

cHξ

v
ζ3hh∂

µh∂µh, (3.12)

cHξ

2v2
ζ4hh

2∂µh∂µh, (3.13)
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which gives the relation

κ5 = −2cHξ(1 + cHξ)
−3/2, (3.14)

κ6 = −2cHξ(1 + cHξ)
−2, (3.15)

To find the relations for λ3 and λ4, one have to consider the Higgs potential with additional c6

term

V
(

H†H
)

= −µ2
(

H†H
)

+ λ
(

H†H
)2

+
c6λ

f2

(

H†H
)3

(3.16)

In this case the VEV is given by

−µ2 + 2λv2 +
3

4
c6ξλv

2 = 0, (3.17)

and the corresponding Higgs mass is defined by

1

2
m2
h = −1

2
µ2 +

3

2
λv2 +

15

8
c6ξλv

2. (3.18)

After combining Eq. 3.17 and Eq. 3.18 and rescaling the Higgs field, we obtain a modified Higgs mass

m2
h = 2λv2

(

1 +
3

2
c6ξ

)

ζ2h. (3.19)

With these definitions of Higgs field and Higgs mass, we can write down the h3 and h4 terms:

m2
h

2v
ζ
1 + 5c6ξ/2

1 + 3c6ξ/2
h3, (3.20)

m2
h

8v2
ζ2

1 + 15c6ξ/2

1 + 3c6ξ/2
h4. (3.21)

So we obtain the relations for λ3 and λ4:

λ3 = (1 +
5

2
c6ξ)(1 +

3

2
c6ξ)

−1(1 + cHξ)
−1/2, (3.22)

λ4 = (1 +
15

2
c6ξ)(1 +

3

2
c6ξ)

−1(1 + cHξ)
−1. (3.23)

In Eq. 3.9, the subset operators (OH ,O6,OT ,Oy) are not independent. With the equation of

motion (EOM), the operator OT can be eliminated [31]. So the contributions of OT is not considered

in this context.

The Yukawa couplings are modified by the operator Oy, which generates a term

cyyf
f2

H†Hψ̄f,LHψf,R + h.c. → cyyf

2
√
2f2

(v + h)3ψ̄fψf . (3.24)
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This term modifies the fermion mass to

mf =
yfv√
2

(

1− 1

2
cyξ

)

. (3.25)

With this definition, we can obtain the following operators

−mf

v
ζh

1− 3cyξ/2

1− cyξ/2
hψ̄ψ, (3.26)

mf

v2
ζ2h

3cyξ/2

1− cyξ/2
hhψ̄ψ, (3.27)

mf

v3
ζ3h

cyξ/2

1− cyξ/2
hhhψ̄ψ. (3.28)

If only the Yukawa couplings are considered, the a1, a2 and a3 are

a1 = (1− 3

2
cyξ)(1−

1

2
cyξ)

−1(1 + cHξ)
−1/2, (3.29)

a2 = −3cyξ(1−
1

2
cyξ)

−1(1 + cHξ)
−1, (3.30)

a3 = −3cyξ(1−
1

2
cyξ)

−1(1 + cHξ)
−3/2. (3.31)

The relations to c1 and c2 is dervived from operator Og. After the ESWB, one can obtain

c1 = c2 =
1

4
cgξ

y2t
g2ρ
, (3.32)

By using the equation of motion of Wµν and Bµν [28]

(DρWρµ)
i =

gW
2

(

H†iσi
←→
D µH + ψ̄lγµσ

iψl + ψ̄qγµσ
iψq

)

, (3.33)

∂ρBρµ = g′WY H
†i
←→
D µH + g′W

∑

f

yψψ̄fγµψf , (3.34)

one can obtain the expressions of the operators with coefficients cW and cB

icW gW
2m2

ρ

(

H†σi
←→
DµH

)

(DνWµν)
i =

icW
m2
ρ

g2W
4

(

H†σi
←→
D µH

)(

−H†iσi
←→
D µH

)

+ ...

=
cW
m2
ρ

g2W
4

[

− g2W
4 cos2 θ

ZµZµ(v + h)4 − g2W
2
W+µW−

µ (v + h)4
]

+... (3.35)

icBg
′
W

2m2
ρ

(

H†←→DµH
)

(∂νBµν) =
icB
m2
ρ

g′W
2

4

(

H†←→DµH
)

(−H†i
←→
D µH) + ...

=
cB
m2
ρ

g′W
2

4

[

− g2W
4 cos2 θ

ZµZµ(v + h)4
]

+ ... (3.36)
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For the operators with coefficients cHW and cHB , two equations are introduced [32]:

2(DµH)†σi(DνH)W i
µν = H†σi

←→
DµH(DνW i

µν)−H†σi(DµDνH)W i
µν

−(DνDµH)†σiHW i
µν + total derivative

= H†σi
←→
DµH(DνWµν)

i + i
gW
2
H†HW iµνW i

µν

+i
g′W
2
H†σiHBµνW i

µν + total derivative (3.37)

2(DµH)†(DνH)Bµν = H†←→DµH(∂νBµν)−H†(DµDνH)Bµν

−(DνDµH)†HBµν + total derivative

= H†←→DµH∂νBµν + i
gW
2
H†σiHW iµνBµν

+i
g′W
2
H†HBµνBµν + total derivative (3.38)

They are obtained by using relationsDµDν = 1
2 [Dµ, Dν ]+

1
2{Dµ, Dν} and [Dµ, Dν ] = −igW σi

2 W
i
µν−

ig′WY Bµν . {Dµ, Dν} vanishes when it is being contracted with an anti-symmetric tensorW i
µν orBµν .

Expanding OHW in unitarity gauge, we have

icHW gW
16π2f2

(DµH)†σi(DνH)W i
µν =

icHW gW
16π2f2

[

1

2

(

H†σi
←→
DµH

)

(DνWµν)
i

−igW
4
H†HW i

µνW
iµν − ig

′
W

4
H†σiHW i

µνB
µν

]

=
cHW g

2
W

64π2f2

[

− m2
Z

v2
ZµZµ(v + h)4 − 2m2

W

v2
W+µW−

µ (v + h)4
]

+
cHW g

2
W

128π2f2
(v + h)2W i

µνW
iµν +

cHW gW g
′
W

64π2f2
H†σiHW i

µνB
µν

+... (3.39)

Similarly, OHB is expanded to

icHBg
′
W

16π2f2
(DµH)†(DνH)Bµν =

icHBg
′
W

16π2f2

[

1

2

(

H†←→DµH
)

(∂νBµν)

−g
′
W

4
H†HBµνB

µν − igW
4
H†σiHW i

µνB
µν

]

=
cHBg

′
W

2

64π2f2

[

− m2
Z

v2
ZµZµ(v + h)4

]

+
cHBg

′
W

2

128π2f2
(v + h)2BµνB

µν +
cHBgW g

′
W

64π2f2
H†σiHW i

µνB
µν

+... (3.40)
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Equation 3.39, 3.40 and operator Oγ modify the kinetic terms of gauge bosons

Lkin(W±, Z,A) = −1

2

(

1 + cHW
g2W v

2

32π2f2

)

W+µνW−
µν

−1

4

[

1 +
g2W v

2

32π2f2

(

cHW + cHB tan2 θ − 4cγ
g′W

2

g2ρ
sin2 θ

)]

ZµνZ
µν

−1

4

[

gW g
′
W v

2

32π2f2
(cHW − cHB) +

gW g
′
W v

2

16π2f2

(

4cγ
g2W
g2ρ

sin2 θ

)]

ZµνA
µν

−1

4

[

1− g2W v
2

32π2f2

(

4cγ
g′W

2

g2ρ
cos2 θ

)]

AµνA
µν (3.41)

This means the gauge fields are rescaled by

W±
µ =

(

1 + cHW
g2W v

2

32π2f2

)− 1

2

W ′±
µ = ζWW

′±
µ (3.42)

Zµ =

[

1 +
g2W v

2

32π2f2

(

cHW + cHB tan2 θ − 4cγ
g′W

2

g2ρ
sin2 θ

)]− 1

2

Z ′
µ = ζ ′ZZ

′
µ (3.43)

Aµ =

[

1− g2W v
2

32π2f2

(

4cγ
g′W

2

g2ρ
cos2 θ

)]− 1

2

A′
µ = ζAA

′
µ (3.44)

So the Eq. 3.41 is rewritten to

Lkin(W ′±, Z ′, A′) = −1

2
W ′+µνW ′−

µν −
1

4
Z ′
µνZ

′µν − 1

4
A′
µνA

′µν

−1

4
yZAζAζ

′
ZZ

′
µνA

′µν , (3.45)

where

yZA =

[

gW g
′
W v

2

32π2f2
(cHW − cHB) +

gW g
′
W v

2

16π2f2

(

4cγ
g2W
g2ρ

sin2 θ

)]

. (3.46)

To eliminate the ZA mixing term, following linear shift is introduced

A′′
µ = A′′

µ +
yZAζAζ

′
Z

2
Z ′
µ (3.47)

Z ′′
µ =

√

1 +
y2ZAζ

2
Aζ

′2
Z

4
Z ′
µ = ζ−1

Z Zµ. (3.48)

This leads to

Aµ = ζAA
′′
µ −

yZAζ
2
Aζ

′
Z

4
Z ′′
µ = ζAA

′′
µ − ζAZZ ′′

µ (3.49)
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In the final result, all electroweak gauge bosons are canonically normalized, and the primes can be

omitted from the redefined fields. The factors ζh, ζW , ζZ , ζ ′Z , ζA and ζAZ are introduced for conve-

nience.

Eq. 3.35 and Eq. 3.36 also modify the mass terms of gauge boson by

Lmass =
g2W v

2

4

(

1− cW
g2W v

2

2m2
ρ

− cHW
g2W v

2

32π2f2

)

ζ2WW
+µW−

µ

+
g2W v

2

8 cos2 θ

(

1− cW
g2W v

2

2m2
ρ

− cB
g′W

2v2

2m2
ρ

− cHW
g2W v

2

32π2f2
− cHB

g′W
2v2

32π2f2

)

ζ2ZZµZ
µ,

(3.50)

It shifts the W mass and Z mass by

m2
W =

g2W v
2

4

(

1− cW
g2W v

2

2m2
ρ

− cHW
g2W v

2

32π2f2

)

ζ2W , (3.51)

m2
Z =

g2W v
2

4 cos2 θ

(

1− cW
g2W v

2

2m2
ρ

− cB
g′W

2v2

2m2
ρ

− cHW
g2W v

2

32π2f2
− cHB

g′W
2v2

32π2f2

)

ζ2Z . (3.52)

After the redefinition of the gauge fields and their mass, the following relations are obtained

gW,a1 =

[

1−
(

cW
g2W v

2

m2
ρ

+ cHW
g2W v

2

16π2f2

)]

ζhζ
2
W (3.53)

gZ,a1 =

[

1−
(

cW
g2W v

2

m2
ρ

+ cB
g′W

2v2

m2
ρ

+ cHW
g2W v

2

16π2f2
+ cHB

g′W
2v2

16π2f2

)]

ζhζ
2
Z (3.54)

gW,a2 =

[

1− 3

(

cW
g2W v

2

m2
ρ

+ cHW
g2W v

2

16π2f2

)]

ζ2hζ
2
W (3.55)

gZ,a2 =

[

1− 3

(

cW
g2W v

2

m2
ρ

+ cB
g′W

2v2

m2
ρ

+ cHW
g2W v

2

16π2f2
+ cHB

g′W
2v2

16π2f2

)]

ζ2hζ
2
Z (3.56)

gW,a3 = −6
(

cW
g2W v

2

m2
ρ

+ cHW
g2W v

2

16π2f2

)

ζ3hζ
2
W , (3.57)

gZ,a3 = −6
(

cW
g2W v

2

m2
ρ

+ cB
g′W

2v2

m2
ρ

+ cHW
g2W v

2

16π2f2
+ cHB

g′W
2

16π2f2

)

, (3.58)

gW,b1 = cHW
g2W v

2

32π2f2
ζhζ

2
W , (3.59)

gW,b2 = cHW
g2W v

2

32π2f2
ζ2hζ

2
W , (3.60)
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gZ,b1 =
g2W v

2

32π2f2
(cHW + cHB tan2 θ)ζhζ

2
Z − cγ

g2W v
2

8π2f2
g′W

2

g2ρ
cos2 θζhζ

2
AZ

−gW g
′
W v

2

64π2f2

[

(cHW − cHB) + 8cγ
g2W
g2ρ

sin2 θ

]

ζhζAZζZ (3.61)

gZ,b2 =
g2W v

2

32π2f2
(cHW + cHB tan2 θ)ζ2hζ

2
Z − cγ

g2W v
2

8π2f2
g′W

2

g2ρ
cos2 θζ2hζ

2
AZ

−gW g
′
W v

2

64π2f2

[

(cHW − cHB) + 8cγ
g2W
g2ρ

sin2 θ

]

ζhζAZζZ (3.62)

gA,b1 = −cγ
g2W v

2

8π2f2
g′W

2

g2ρ
cos2 θζhζ

2
A (3.63)

gA,b2 = −cγ
g2W v

2

8π2f2
g′W

2

g2ρ
cos2 θζ2hζ

2
A (3.64)

gX,b1 =
gg′v2

64π2f2

[

(cHW − cHB) + 8cγ
g2

g2ρ
sin2 θ

]

ζhζAζZ

+cγ
g2v2

4π2f2
g′2

g2ρ
cos2 θζhζ

2
AZ (3.65)

gX,b2 =
gg′v2

64π2f2

[

(cHW − cHB) + 8cγ
g2

g2ρ
sin2 θ

]

ζ2hζAζZ

+cγ
g2v2

4π2f2
g′2

g2ρ
cos2 θζ2hζ

2
AZ (3.66)

The relations between the parameters of Eq. 3.2 and SILH basis are collected in Table 3.1.

3.3 Higgs-inflation model

In this section, we relate Eq. 3.2 to a specific NP model, namely Higgs-inflation model. The source

of this section is our paper [10].

Our universe is almost flat, homogeneous and isotropic, which is often considered as an argument

that the SM is not complete. One solution of these issues is inflation [33, 34, 35, 36, 37]. The models

of inflation always require an additional scalar, i.e., the inflaton. In many models, the inflaton has a

mass around 1013 GeV, so it is difficult to discover it in current experiment. The idea of Higgs-inflation

model [38, 39] is that Higgs can be treated as inflaton, and couples to gravity by

Linflation = LSM −
M2

2
R− αH†HR, (3.67)

where M is some mass parameter, R is the gravitaional Ricci scalar, and α is a coupling constant.
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SILH

a1 (1− 3
2cyξ)(1− 1

2cyξ)
−1ζh

a2 −3cyξ(1− 1
2cyξ)

−1ζ2h
a3 −3cyξ(1− 1

2cyξ)
−1ζ3h

λ3 (1 + 5
2c6ξ)(1 +

3
2c6ξ)

−1ζh

λ4 (1 + 15
2 c6ξ)(1 +

3
2c6ξ)

−1ζ2h
κ5 −2cHξζ3h
κ6 −2cHξζ4h
gW,a1

[

1−
(

cW
g2v2

m2
ρ
+ cHW

g2v2

16π2f2

)]

ζhζ
2
W

gZ,a1

[

1−
(

cW
g2v2

m2
ρ
+ cB

g′2v2

m2
ρ

+ cHW
g2v2

16π2f2
+ cHB

g′2v2

16π2f2

)]

ζhζ
2
Z

gW,a2

[

1− 3
(

cW
g2v2

m2
ρ
+ cHW

g2v2

16π2f2

)]

ζ2hζ
2
W

gZ,a2

[

1− 3
(

cW
g2v2

m2
ρ
+ cB

g′2v2

m2
ρ

+ cHW
g2v2

16π2f2
+ cHB

g′2v2

16π2f2

)]

ζ2hζ
2
Z

gW,a3 −6
(

cW
g2W v2

m2
ρ

+ cHW
g2W v2

16π2f2

)

ζ3hζ
2
W

gZ,a3 −6
(

cW
g2W v2

m2
ρ

+ cB
g′W

2v2

m2
ρ

+ cHW
g2W v2

16π2f2
+ cHB

g′W v2

16π2f2

)

,

gW,b1 cHW ξ
g2W
32π2 ζhζ

2
W

gW,b2 cHW ξ
g2W
32π2 ζ

2
hζ

2
W

gZ,b1

g2W
32π2 (cHW + cHB tan2 θ)ξζhζ

2
Z − cγξ

g2W
8π2

g′W
2

g2ρ
cos2 θζhζ

2
AZ

−gW g′W
64π2

[

(cHW − cHB) + 8cγ
g2

g2ρ
sin2 θ

]

ξζhζAZζZ

gZ,b2

g2W
32π2 (cHW + cHB tan2 θ)ξζ2hζ

2
Z − cγξ

g2W
8π2

g′W
2

g2ρ
cos2 θζ2hζ

2
AZ

−gW g′W
64π2

[

(cHW − cHB) + 8cγ
g2

g2ρ
sin2 θ

]

ξζhζAZζZ

gA,b1 −cγξ g
2
W

8π2

g′W
2

g2ρ
cos2 θζhζ

2
A

gA,b2 −cγξ g
2
W

8π2

g′W
2

g2ρ
cos2 θζ2hζ

2
A

gX,b1

gW g′W
64π2

[

(cHW − cHB) + 8cγ
g2

g2ρ
sin2 θ

]

ξζhζAζZ

+cγξ
g2W
4π2

g′W
2

g2ρ
cos2 θζhζ

2
AZ

gX,b2

gW g′W
64π2

[

(cHW − cHB) + 8cγ
g2

g2ρ
sin2 θ

]

ξζ2hζAζZ

+cγξ
g2W
4π2

g′W
2

g2ρ
cos2 θζ2hζ

2
AZ

Table 3.1: This table shows how the parameters in SILH are related to the parameters in Eq.3.2. The

extra ζnh , ζnW , ζnZ , ζnA, ζnAZ (which are defined in the Eq. 3.11 and Eq. 3.44∼3.49) are the factors from

the Higgs or gauge bosons wavefuction normalization. ξ ≡ v2/f2 is introduced for convenience.
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Using the unitarity gauge, the Lagrangian in the Jordan frame can be written as

SJordan =

∫

d4x
√−gW

{

− M2 + 2αHH†

2
R− 1

4
W aµνW a

µν −
1

4
BaµνBa

µν

+DµH
†DµH − λ

(

HH† − v2

2

)2
}

. (3.68)

The value of α can vary in the region 1 ≪ √α ≪ 1017, corresponding to M ≃ MP , where MP =

2.4 × 1018 GeV is the Planck scale. To figure out the relations to the parameters of Eq. 3.2, it is

necessary to transform the Lagrangian from the Jordan frame to the Einstein frame

ĝµν = Ω2gµν , Ω2 = 1 +
2αHH†

M2
P

. (3.69)

This transformation leads to a non-minimal kinetic term for the Higgs field. It is convenient to intro-

duce a scalar field

dχ =

√

Ω2 + 12α2HH†/M2
P

Ω4
dh. (3.70)

The action in the Einstein frame is

SE ⊃
∫

d4x
√

−ĝW
{

− M2
P

2
R̂+ ∂µχ∂

µχ− U(χ)

}

(3.71)

where R̂ is calculated by using the metric ĝµν . Note that renormalization-group running effect is

neglected. The effective Higgs potential is

U(χ) =
1

Ω(χ)4
λ

4

(

h(χ)2 − v2

2

)2

(3.72)

In the context of collider physics, for the small field values h ≃ χ and Ω2 ≃ 1, the potential

for the field χ is close to that of the initial Higgs field. Inflation physics is described by the large-

field behavior of the Higgs field. When the Higgs acts as an inflation, we have h ≫ MP /
√
α (or

χ≫
√
6MP ). In this range, we can approximate

h ≃ MP√
α
exp

(

χ√
6MP

)

, U(χ) =
λM4

P

4α2

(

1 + exp

(

− 2χ√
6MP

))−2

(3.73)

The potential is exponentially flat at large h, as appropriate for a model of inflation.

In a collider study, small h field value is the interesting part, and we can replace χ by h again.

Pluging Eq. 3.70 into Eq. 3.71 and omitting higher-order terms, also re-instating the Higgs doublet
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Higgs-inflation

λ3 (1 + 6α2v2/M2
p )

−3/2

λ4 (1 + 6α2v2/M2
p )

−2

κ5 −12v2α2/M2
p (1 + 6α2v2/M2

p )
−3/2

κ6 −12v2α2/M2
p (1 + 6α2v2/M2

p )
−2

gW,a1 (1 + 6α2v2/M2
p )

−1/2

gZ,a1 (1 + 6α2v2/M2
p )

−1/2

gW,a2 (1 + 6α2v2/M2
p )

−1

gZ,a2 (1 + 6α2v2/M2
p )

−1

Table 3.2: This table shows how the parameters in Higgs-inflation model are related to the parameters

in Eq.3.2. The factor (1+ 6α2v2/M2
p )

−1/2 is induced by the Higgs wavefunction normalization. The

other parameters in Eq.3.2 vanish.

notation H , we arrive at

SE =

∫

d4x
√

−ĝW
{

− M2
P

2
R̂+ gauge interactions +

DµHD
µH

Ω2
+

12α2

M2
p

H2∂µH∂
µH

Ω4

− 1

Ω2
λ

(

H2 − v2

2

)2

+
2H2

Ω2
(
M2
W

v2
WµWµ +

M2
Z

v2
ZµZµ)

}

. (3.74)

So the Higgs-inflation model predicts deviations of Higgs-gauge boson couplings and Higgs self-

couplings, and can be related to the parameters in LV h and Lh. The relations of parameters are list in

Table 3.2. The gauge interactions terms are not relevant to Eq. 3.2. The details of these terms can be

found in Ref. [40].



Chapter 4

Multi-Higgs production via gluon-gluon

fusion mode

At a hadron collider, the dominant SM process of multi-Higgs production is gluon-gluon fusion (ggF)

via a heavy top quark loop. Example feynman diagrams for triple-Higgs production are shown in

Fig. 4.1. The feasibility of double-Higgs production at the LHC has become a hot topic [41, 42, 43,

44], since it is an interesting process to probe the Higgs triple self-coupling. Multiple groups have

considered a number of decay channels of the Higgs pair, including WWWW [45, 46], bb̄γγ [31,

47, 48, 49, 50, 51], bb̄WW [52], bb̄ττ [53, 54, 55], bb̄µµ [47], WWγγ [56], and bb̄bb̄ [53, 57, 58].

Beyond the LHC, at a future 100 TeV hadron collider, the double-Higgs production rate is enhance

significantly [49, 59, 60, 61, 62, 63, 64, 65], allowing for a more accurate measurement of the Higgs

triple self-coupling and Higgs potential.

The measurement of quartic Higgs self-coupling involves triple Higgs production. It is very

challenging because the cross section of gg → hhh is only O(0.01) fb [66, 67] at 14 TeV LHC.

The authors of Ref. [68] have considered pp → Zhhh and pp → Whhh, but the cross section is

also tiny. At a 100 TeV hadron collider, triple-Higgs production via ggF is observable in princi-

ple [69, 70, 71, 72, 9, 73]. The cross section of gg → hhh at a 100 TeV hadron collider is estimated

around 5 fb if NLO QCD correction is included [69]. Various decay channels of triple Higgs have been

investigated, such as hhh→ bb̄bb̄γγ [70, 71], hhh→ bb̄bb̄ττ [72, 74] and hhh→ bb̄WW ∗WW ∗ [9].

It is shown that the discovery of this process is strongly depended on the performance of the detector

and analysis.

This chapter introduces our work [9]. In this work, we explore the potential for the discovery of

the triple-Higgs signal in the 2b2l±4j + /E decay channel at a 100 TeV hadron collider. We consider

both the SM and generic NP contributions, described by the effective Lagrangian, Eq. 3.2. In the SM,

we perform a collider simulation. Although the parton-level results are encouraging, the detector-level

results indicate that this decay channel will be really challenging. The contributions from effective

operators can largely increase the cross section and/or modify the kinematics of the Higgs bosons

in the final state. Taking into account the projected constraints from single and double Higgs-boson

23
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production, we propose benchmark points in the NP models for the measurement of the triple-Higgs

boson final state at future collider.

4.1 Analysis of the hhh→ 2b2l±4j + /E decay channel in the SM

The dominant subprocess of pp → hhh signal is gluon-gluon fusion, gg → hhh. This process in-

volves one-loop diagrams. The example Feynman diagrams of this process is plotted in Fig. 4.1. To

perform the Monte-Carlo (MC) simulation, we compute production matrix element at LO with Mad-

Loop/aMC@NLO [75]. The parton distribution functions is taken from CTEQ6l1 [76]. For phase-

space evaluation and exclusive event generation, we interface the matrix element with VBFNLO [77,

78, 79]. We are interested in the hhh → 2b2l±4j + /E decay channel, where one Higgs boson de-

cays into a bb̄ pair while the two other Higgses decay into WW ∗. The semi-virtual W pairs can

subsequently decay semileptonically, h→WW ∗ → lνjj.
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Figure 4.1: The example Feynman diagrams of the process gg → hhh in the SM.

Background event samples are generated by MadGraph5 [8, 80]. Since we require a bb̄ pair, the

dominant background is caused by top-quark pairs associated with Higgs or gauge bosons, namely

pp→ h(WW ∗)tt̄ and pp→ tt̄W−W+. Both classes of processes can lead to the same final state as

the signal. To veto further background from Z bosons, we restrict the analysis to same-sign leptons

in the final state, l+l+ or l−l−.

We ignore the background from h+jets, hh+jets and W±W±+jets, because the cross sections of

these processes are negligible compared to the h(WW ∗)tt̄ background. Furthermore, the total cross

section of the background bb̄W−W+W−W+ is essentially exhausted by the resonant contribution

tt̄W−W+. Therefore, we approximate the former process by the latter with subsequent top-quark

decay, which considerably simplifies the calculation.

Cross sections of signal and backgrounds at 100 TeV are listed in Table 4.1. For the signal, the

K-factor of 2.0 is taken from Ref. [70]. For the h(WW ∗)tt̄ background, we use K = 1.2 [81], while

the K-factor for tt̄W−W+ at 100 TeV is chosen as 1.3, which is used in Ref. [63].

If NP contributes to Higgs sector, the process pp → hhjj can be the background in the SM and

NP models. We have three comments on this background:

• In the SM, the hhjj final state receives contributions from the ggF and the VBF, while the

former is dominant. Currently, the cross section of loop-induced processes with 2 jets can

be calculated by interfacing GoSam [82] or OpenLoops [83] to Madgraph5 or Herwig7 [84].

We use Madgraph5 to compute the cross section of gg → hhjj at a 100 TeV collider. After
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Process σ ×BR (ab) K-factor Expected number of events

Signal 10.71 2.0 642

h(WW ∗)tt̄ 2.55× 105 1.2 9.18× 106

tt̄W−W+ 3.68× 104 1.3 1.55× 106

Table 4.1: Cross sections of signal and background for the 2b2l±4j + /E final state in the SM. The

expected number of events corresponds to 30 ab−1 integrated luminosity.

imposing the MLM matching[85] and applying cuts Pt(j) > 20 GeV and η(j) < 5, we obtain

an inclusive cross section 620 fb, which is around 128 times larger than the cross section σ(hhh)

of the signal process. Meanwhile, by using Madgraph5, we find that the cross section of VBF

with
√
s = 100 TeV is 34 fb.

• It is known that when the b tagging efficiency is taken as 0.7, the rejection rate of light jets can

reach 0.1% or so. Since we required one(two) tagged b jets in our preselection cuts, therefore

the background gg → hh+2jets is suppressed by a factor 10−3 ( 10−6) or so. After imposing b

taggings and the decay branching fraction of h→ bb̄, we find that the signal cross section bb̄hh

is around 0.52(0.29)σ(hhh), while the cross section of background hh+ 2jets is 0.13(0.13×
10−3) × σ(hhh) or so. Obviously, when nb ≥ 2 is imposed, it is safe to neglect this type of

background in the SM.

• In the NP models that we will consider in section 4.2.4, the background process pp→ hhjj can

obtain extra contributions from higher dimensional operators. When the cross section is 2 ∼ 5

magnitude orders smaller than the signal process, we can neglect it safely. In the cases when

such a background is greatly enhanced or in the cases the signal process gg → hhh is greatly

suppressed by the higher dimensional operators to such a degree that the cross sections of them

are comparable, the background of hhjj should be included in the analysis.

Table 4.1 shows that there are 642 signal events in this decay channel for 30 ab−1 integrated

luminosity, while there are ∼ 107 background events. It is a challenge to observe the triple-Higgs

signal in the SM through this channel. The following subsections introduce the selection methods for

further suppressing the background and increasing the significance.

4.1.1 Parton-level analysis

The decay of Higgs bosons is performed by the DECAY package provided by MadGraph5. The

parton shower effects are neglected in this subsection, and will be discussed in subsection 4.1.2.

The transverse momentum (Pt) distributions of the visible particles (b quarks, jets, and leptons) and

missing transverse energy (MET) are plotted in Fig. 4.2. In this figure, the objects are sorted by Pt.

On the one hand, one can expect that the b quarks are harder than the light quarks, since they are
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decayed from a Higgs boson directly. On the other hand, the decay chain h → WW ∗ → jjlν leads

to soft leptons and light jets, especially when they are coming from the off-shell W bosons.

In Fig. 4.2(b) and Fig. 4.2(c), one can observe that the Pt distributions of the softest leptons

and jets have peaks around 10 GeV, which might make it challenging to reconstruct these objects

successfully without a detector with high performance. The signal contains only two neutrinos, so the

MET should not be too large. We observe that MET peaks around 50 GeV in Fig. 4.2(d).
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Figure 4.2: Distributions of (a) the transverse momentum of b quarks, (b) the transverse momentum

of leptons, (c) the transverse momentum of light quarks (labeled by j), and (d) missing transverse

energy in the signal events.

There are two unobservable neutrinos in the final state, and their mothers can be either on-shell

or off-shell W bosons. It is not convenient to fully reconstruct the Higgs bosons. So we consider

a method of partial reconstruction. In order to extract information of Higgs bosons, it is crucial to

combine the decay products correctly. To simplify the problem, we assume that two b quarks are

tagged correctly, so only the light quarks can be reassigned and the ambiguity can be reduced to

6-fold.
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Methods The percentage of correctness

min[∆R1(l,Wjj) + ∆R2(l,Wjj)] 47.0%

min(mvis
h1 +mvis

h2) 61.2%

min(mT2) 66.8%

min |mT2−mh| 99.98%

Table 4.2: Strategies for determining the correct combinations of (l, j, j) and their percentages of

correctness.

To find the correct combination of the visible particles in the final state, we examine the following

four strategies at parton level:

1. The decay chain h→ WW ∗ → jjlν suggests that the lepton and the hadronically decayed W

boson should have a small angular separation ∆R(l,Wjj). Since there are two Higgs bosons

with this decay chain, the sum of ∆R1(l,Wjj) + ∆R2(l,Wjj) should be minimal. The first

strategy is choosing the combination with a minimal of this observable.

2. The semileptonic Higgs invariant masses can be computed from the visible particles. These

observables are labeled as mvis
h1(l, jj) and mvis

h2(l, jj). The second strategy is choosing the

combination which minimizes their sum.

3. We compute the mT2 observable that has been defined in Refs. [86, 87, 88, 89, 90], from the

visible particles that originate from semileptonic Higgs decay. The observable can set an upper

bound on the Higgs mass, so the third strategy is choosing the combination with the minimal of

mT2.

4. The forth strategy is choosing the combination with the minimal of |mT2−mh|, because it is

expected that mT2 have a value close to the Higgs mass mh.

These strategies and their associated percentages of correct assignment in the event samples are

listed in Table 4.2. In a parton-level analysis, the forth strategy that relies on the quantity |mT2 −
mh| has the best performance, approaching 100% probability for correct particle assignment in the

reconstruction.

4.1.2 Detector-level analysis

To obtain the hadronic event samples, we use the parton-shower and hadronization modules of Pythia

6.4 [91]. The jet clustering is performed by the package FASTJET [92] with the anti-kt algorithm [93].

The cone parameter is set toR = 0.5. To veto the large number of soft jets from initial-state radiation,

only jets with Pt > 20 GeV are accepted.

The number of jets (nj) and the Pt distributions of the leading 6 jets are shown in Fig. 4.3. Both

signal and background produce six quarks at parton level, so the peaks of nj are around 6 in Fig. 5.2(a).
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In Fig. 5.2(b), we observe that the 1st to 4th jet has similar distributions as at parton level, but the 5th

and 6th jet Pt distributions have different shapes with respect to their parton-level counterparts.

The reasons of this result are simple. On one hand, the Pt of the softest quark in Fig. 4.2(c) is only

around 10 GeV, but most of the low-Pt jets are vetoed by the Pt > 20 GeV cut. On the other hand,

jets from initial-state radiation can easily be as hard as 20 GeV at a 100 TeV collider. So the 5th and

6th jet are more likely produced by the initial-state radiation rather than the decay of Higgs boson.

Fig. 4.3 illustrates the challenge of reconstructing the soft jets generated by the multi-Higgs signal.
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Figure 4.3: Distributions of (a) the number of jets and (b) Pt of the six leading jets of the signal.

Another important problem is the reconstruction of leptons. We assume that a future detector can

reconstruct leptons with high efficiency (95% for Pt > 5 GeV), so it should be able to find the soft

lepton as shown in Fig. 4.2(b). But a detector also need to isolate the leptons from other objects.

To find a suitable isolation condition, we investigate the angular separations between two leptons

(∆R(l, l)) and between a lepton and a jet (∆R(l, j)), respectively. The distributions of the minimums

of these observables are displayed in Fig. 4.4. On one hand, min∆R(l, l) tends to have a large value,

and only 10% of the events have min∆R(l, l) < 0.5. On the other hand, almost 50% of the events

have min∆R(l, j) < 0.2. This makes it difficult to isolate the leptons from jets.

To study the detector effects, we input the event samples to the package DELPHES [94, 95] to

perform a detector simulation. The setup of DELPHES is similar as in Ref. [71], with the following

modifications:

1. The b-tagging efficiency is assumed to be a constant ǫb = 0.7, and mistagging rates are 0.1 and

0.001 for charm and light jets, respectively. The pseudorapidity for b (c, jet) is required to be

η < 5.0, respectively.

2. As described above, the jets are clustered by FASTJET with a cut Pt(j) > 20 GeV.

3. The efficiency of lepton indentification is assumed to be 95% when Pt(l) > 5 GeV and η(l) <

5.0.
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Figure 4.4: Distributions of (a) the minimum angular separation between two leptons, and (b) the

minimum angular separation between lepton and jet.

4. Isolated leptons are defined by Ref. [95]

I(l) =

∑∆R<R,Pt(i)>Pmin
t

i 6=l Pt(i)

Pt(l)
, (4.1)

where l labels a lepton. The sum in the numerator runs over particles with transverse momenta

above Pmint = 0.1 GeV within a cone with radius R = 0.5, except for l. A lepton is said to be

isolated if I(l) < 0.1.
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Figure 4.5: Distributions of (a) the number of b-tagging jets and (b) the number of leptons.

Fig. 4.5 displays the distributions of number of b jets and isolated leptons after detector simu-

lation. Both signal and backgrounds include two b jets, which leads to the similarity of the shapes

in Fig. 4.5(a). In Fig. 4.5(b), only 10% of the signal events are found to include two leptons, while
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20% of htt̄ events and 30% of tt̄W+W− events include 2 leptons. It is shown that the small value of

min∆R(l, j) makes it difficult to isolate lepton from other objects.
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Figure 4.6: Distributions of important observables at detector level: (a) the invariant mass of bb̄, (b)

the mT2 observable, and (c) & (d) the Higgs masses as reconstructed from visible particles.

To suppress the huge background events, we first apply three preselection cuts:

1. The number of b jets is required to be nb ≥ 1.

2. To veto background from a Z boson, we require two same-sign leptons, as discussed above,

even though it also removes triple-Higgs signal events which decay to opposite-sign leptons.

3. The number of light jets is required to be nj ≥ 4.

And then we consider three observables: (1) the invariant mass of a b-jet pair (mbb), (2) the mT2

variable, and (3) the invariant masses (mvis
h1 and mvis

h2) reconstructed from the visible objects. The

distributions of these observables are displayed in Fig. 4.6. In Fig. 4.6(a), the signal exhibits the

expectedmbb peak around the Higgs mass, while the background is non-resonant. For the observables
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Signal h(WW ∗)tt̄ tt̄W−W+

Preselection 24 9.73× 105 2.59× 106

mT2 < 484 GeV 23 9.40× 105 2.35× 105

|mbb −mh| < 58 GeV 21 6.73× 105 1.42× 105

mvis
h < 482 GeV 21 6.72× 105 1.42× 105

S/B 2.56× 10−5

S/
√
S +B 0.0231

Table 4.3: Efficiencies of cuts as described in the text, for a total integrated luminosity of 30 ab−1..

mT2, mvis
h1, and mvis

h2, they should have a upper bound at the Higgs mass in the SM signal samples.

However, Figs. 4.6(b)–4.6(d) show that they tend to have larger values. As discussed above, the

reconstruction of the softest jet together with missing lepton isolation lead to this effect.

Nevertheless, we can try to suppress background by applying cuts on the above observables. The

efficiencies of each cut are listed in Table 4.3. In the cut-based method, the significance of the signal

finally reachs to 0.02. Obviously, it is much worse than that could be expected from the parton-level

calculation. In the SM, a discovery of signals of triple-Higgs production through this channel will be

extremely challenging.

4.2 Triple-Higgs production in the EFT framework

The observation of triple-Higgs production is challenging in the SM, but the NP contribution may

enhance the production rate of this process. In this section, we discuss the measurements of the

parameters in Eq. 3.2 at a 100 TeV hadron collider.

In the SM, the process gg → hhh involves the Higgs-top coupling, Higgs triple and quartic self-

coupling. Higgs-gluon couplings can appear either from the underlying theory directly or from loop-

diagram renormalization via operator mixing. So the parameters in Lt, Lggh and Lh can contribute to

this process.

Some parameters in Eq. 3.2 also affect other processes such as pp → htt̄ and gg → hh. These

processes are more easily accessible at 100 TeV hadron collider, and they can give some constraints to

the parameters. However, the quartic self-coupling of Higgs bosons is only accessible in triple-Higgs

production. Any actual measurement of the EFT parameters involves a fitting procedure that takes

all available information into account. An independent measurement of triple-Higgs production can

provide essential information for searching NP.

If the triple-Higgs final state become observable, the EFT parameters should modify the ampli-

tudes drastically, at least in the high-energy or high-Pt regions of the phase space. In this case, the

unitarity of the amplitudes and the consistency of the EFT may become a problem. For the ggF pro-

cess, we have to consider the scattering amplitudes of top quarks to multiple Higgs bosons. Though
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the effects of strong rescattering have been widely studied in the linear EFT context for vector-boson

scattering [96, 97], results for processes involving top quarks and Higgs bosons are absent in the lit-

eratures. For the current study, we take the EFT unmodified over the complete parameter space and

defer a study of unitarity to future work.

4.2.1 Calculation

This subsection describes the method for the calculation of ggF process with the new parameters intro-

duced by the effective Lagrangian, Eq. 3.2. We first generate a UFO model file [98] with the effective

Lagrangian Eq. 3.2. And then we interface the model file with the package Madgraph5 [8, 80] for

calculating the loop-induced matrix elements, evaluating phase space and generating event samples.

The program reduces the one-loop Feynman integrals to scalar integrals in four dimensions, by using

the OPP method [99]. The difference between the D-dimensional and 4-dimensional expressions that

arises in the calculation generates additional rational terms [100]. They are identified as R1 terms

associated with D-dimensional denominators, and R2 terms associated with D-dimensional numera-

tors. All R1 terms can be generated automatically as a byproduct of the reduction method, while the

R2 terms must be calculated manually [101]. We have performed this calculation by using the method

of Ref. [102], and supply the results as effective tree-level vertices in the UFO model file.

In particular, we obtain the R2 terms that amount to contact interactions of a pair of gluons with

one to three Higgs bosons:

=− ig
2
sm

2
t δ
abgµ1µ2

8π2v
a1 (4.2)

=− ig
2
sm

2
t δ
abgµ1µ2

8π2v2
(a21 + a2) (4.3)

=− ig
2
sm

2
t δ
abgµ1µ2

8π2v3
(a3 + 3a1a2) (4.4)

The coefficients depend on the EFT parameters a1, a2, and a3. Since these terms are required to

restore the exact QCD symmetries in the calculated amplitude, by themselves they manifestly violate

gauge invariance. We have verified that the complete renormalized one-loop result does respect gauge

invariance, a convenient cross-check of the calculation.

Besides these loop-induced contributions, ggF process also receives contribution from contact

interactions between gluons and Higgs bosons that do not exist in the SM. As mentioned above,
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the inclusion of such contact interactions is required by loop-induced operator mixing in the EFT,

but could also originate from independent BSM contributions. Technically, we implement them as

independent R2 terms, so that Madgraph5 will sum them together with loop-induced contribution.

4.2.2 Cross sections of gg → hhh and Kinematics

The amplitudes of the process gg → hhh are constructed from the Feynman diagrams in Fig. 4.5.

For illustrating the method, we consider the terms that depend on a1, κ5, κ6, λ3 and λ4. Complete

numerical results are given in Appendix A.

∝ a31, ∝ a21λ3/a21κ5,

∝ a1λ23/a1λ3κ5/a1κ25, ∝ a1λ4/a1κ6. (4.5)

The corresponding matrix element can be expanded to

M(gg → hhh) ∝ f1a
3
1 + f2a

2
1λ3 + f3a

2
1κ5 + f4a1λ

2
3 + f5a1λ3κ5

+ f6a1κ
2
5 + f7a1λ4 + f8a1κ6 , (4.6)

where fi are form factors, which depend on the external momenta, partly in form of Higgs-boson

propagators. After squaring the matrix element and integrating over the phase space, the total cross

section can be parameterized as

σ(pp→ hhh) = t1a
6
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2
5 + t7a

4
1λ4 + t8a

4
1κ6 + t9a

3
1λ

3
3 + t10a

3
1λ

2
3κ5

+ t11a
3
1λ3κ

2
5 + t12a

3
1κ

3
5 + t13a

3
1λ3λ4 + t14a

3
1λ3κ6 + t15a

3
1κ5λ4

+ t16a
3
1κ5κ6 + t17a

2
1λ

4
3 + t18a

2
1λ

3
3κ5 + t19a

2
1λ

2
3κ

2
5 + t20a

2
1λ3κ

3
5

+ t21a
2
1κ

4
5 + t22a

2
1λ

2
3λ4 + t23a

2
1λ

2
3κ6 + t24a

2
1λ3κ5λ4 + t25a

2
1λ3κ5κ6

+ t26a
2
1κ

2
5λ4 + t27a

2
1κ

2
5κ6 + t28a

2
1λ

2
4 + t29a

2
1λ4κ6 + t30a

2
1κ

2
6 .

(4.7)

To determine the form factors t1 . . . t30, we calculate the total cross section at 480 selected points

in the space of parameters (a1, λ3, λ4, κ5, κ6), then obtain the numerical values of these coefficients

t1 . . . t30 via linear regression. The results are shown in the Table. 4.4. The complete set of results
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t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

7.57 -7.79 -13.9 4.33 14.7 12.3 0.13 -0.79 -0.95 -7.63

t11 t12 t13 t14 t15 t16 t17 t18 t19 t20

-18.8 -16.4 -0.63 -3.16 -1.07 -6.47 0.09 1.12 5.61 13.6

t21 t22 t23 t24 t25 t26 t27 t28 t29 t30

17.2 0.12 0.55 0.85 5.38 1.34 14.7 0.04 0.54 3.22

Table 4.4: Numerical values of t1 . . . t30 for a 100 TeV hadron collider, for use in Eq. (4.7).

that accounts for all effective operators is provided in the Appendix A.

To reduce the coefficients and study the effects of the Higgs self-interaction, we follow the proce-

dure of [31] and focus on a subset of the dimension-6 operators:

O1 =
f1
Λ2

(DµH)†HH†(DµH), (4.8)

O2 =
f2
2Λ2

∂µ(H†H)∂µ(H
†H), (4.9)

O3 =
f3
3Λ2

(H†H)3, (4.10)

O4 =
f4
Λ2

(DµH)†(DµH)(H†H). (4.11)

The operatorO1 can safely be neglected Ref. [103]. As explained in section 3.2,O4 can be eliminated

by EOM. Thus we only need to consider the operators (O2,O3).

In this case, the subset (a1, λ3, λ4, κ5, κ6) can be expressed in terms of just two independent

parameters:

x̂ = x2ζ
2
h, (4.12)

r̂ = −x3ζ2h
2v2

3m2
h

, (4.13)

where xi = fiv
2/Λ2 (i = 2, 3). With this definition, the rescaling factor ζh can be rewritten as

ζh = (1− x̂)1/2. The parameters relations are listed in the Table. 4.5.

To study the parameter dependence of (r̂, x̂), we parameterize the cross section of gg → hhh to

σ(pp→ hhh) = σhhhSM (1− x̂)3(1 + t̂1x̂+ t̂2r̂ + t̂3x̂
2 + t̂4x̂r̂ + t̂5r̂

2

+ t̂6x̂
3 + t̂7x̂

2r̂ + t̂8x̂r̂
2 + t̂9r̂

3

+ t̂10x̂
4 + t̂11x̂

3r̂ + t̂12x̂
2r̂2 + t̂13x̂r̂

3 + t̂14r̂
4)

(4.14)

The numerical results for t̂1 . . . t̂14 are listed in Table 4.6, and the total cross section has the value

σhhhSM = 5.84 fb. (This includes a K factor of 2.0, following Ref. [69]).
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Our operators Operators in Ref. [31] Relations

−mt

v a1t̄th −mt

v ζt̄th a1 = ζ

−λ3m
2
h

2v h
3 − ζ

2v (1 + r̂)m2
hh

3 λ3 = ζ(1 + r̂)

−λ4m
2
h

8v2
h4 − ζ2

8v2
(1 + 6r̂)m2

hh
4 λ4 = ζ2(1 + 6r̂)

− 1
2vκ5h(∂h)

2 1
v x̂ζh(∂h)

2 κ5 = −2x̂ζ
− κ6

4v2
h2(∂h)2 x̂

2v2
ζ2h2(∂h)2 κ6 = −2x̂ζ2

Table 4.5: Parameter relationship between the convention of Eq. 3.2 and that in Ref. [31].

t̂1 t̂2 t̂3 t̂4 t̂5 t̂6 t̂7 t̂8 t̂9 t̂10 t̂11 t̂12 t̂13 t̂14

6.02 -1.29 3.51 -2.40 0.48 -32.5 8.07 -0.96 0.05 94.20 -37.20 7.69 -0.77 0.03

Table 4.6: Numerical values of integrated form factors in Eq. 4.14.

Fig. 4.7 presents the cross section dependence on the parameters (x̂, r̂). It is shown that the cross

section can exceed the SM value by two orders of magnitude for reasonable variations of (x̂, r̂). In

particular, if r̂ is fixed (Fig. 4.7(a)), the cross section increases in the x̂ < 0 region. In this region,

all of the dependent parameters λ3, λ4, κ5, and κ6 have the same sign, and the derivative couplings

can greatly enhance the cross section. In contrast, in the x̂ > 0 region, the contributions of λ3 and λ4

cancel against the terms with κ5 and κ6.

The complementary plot Fig. 4.7(b) shows the dependence on r̂, with fixed x̂. The cross section

changes only mildly with r̂ as long as x̂ is small or positive, and for r̂ > 0 it actually undershoots the

SM value. It is known that the dominant contribution to triple-Higgs production is the diagram with

a pentagon top-quark loop [71]. This part does not depend on the Higgs self-couplings which enter

the parameter r̂. Only if the Higgs self-couplings become sizable and the interference is constructive,

one can expect a large enhancement of the cross section.
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Figure 4.7: Dependence of the cross section on (a) x̂ and (b) r̂. The other observable is kept fixed, as

indicated by the curve labels.
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Besides the effects on the total cross section, it is also interesting to study distortions of kinemati-

cal distributions. The Pt distributions of the three Higgs bosons are shown in Fig. 4.8(a), Fig. 4.8(b),

and Fig. 4.8(c), for three different values of x̂: −0.5, 0 and +0.5, respectively. We observe that the

distributions change significantly with respect to the SM reference value if x̂ = +0.5, especially in

the large Pt region. The distortion happens in the parameter region where the total cross section is not

enhanced by a large factor, and it is helpful for the reconstruction of the softest jet in the 2b2l±4j+ /E

channel. For x̂ = −0.5, the distributions do not change that much, but the analysis would benefit from

the remarkable enhancement of the cross section in the negative region of x̂. We also show the invari-

ant mass distribution of the three Higgs bosons (Fig. 4.8(d)); this is also modified by the derivative

operator.
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Figure 4.8: Pt distributions of (a) the leading Higgs, (b) the sub-leading Higgs, and (c) the softest

Higgs. In (d), we show the distribution of the invariant mass of the triple-Higgs system. We plot

results for three values of x̂: −0.5, 0 and +0.5, where r̂ is fixed to zero.

In Fig. 4.9, we show the same observables as in Fig. 4.8; this time r̂ is varied and x̂ is fixed to

zero. The distributions do not actually depend on r̂, since the parameter affects only λ3 and λ4, while
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the the distrubutions are affected by the derivative operator.
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Figure 4.9: Pt distributions of (a) the leading Higgs, (b) the sub-leading Higgs, and (c) the softest

Higgs. In (d), we show the distribution of the invariant mass of the triple-Higgs system. We plot

results for three values of r̂: −0.1, 0 and +0.1, where x̂ is fixed to zero.

4.2.3 Correlations between gg → hhh and single and double-Higgs production

The parameters in Eq. 3.2 can not only contribute to triple-Higgs production, but also contribute to

other collider processes. The discussion in Chapter 3 suggests that in typical strongly-interacting

models, all parameters would receive NP contributions. We can expect that a measurement or ex-

clusion limit on the triple-Higgs process would add information to current Higgs-physics data, and

all results should be combined in searching NP. Therefore, in this subsection we study correlations

between gg → hhh and gg → h and gg → hh. The parameters that contribute to single, double, and

triple Higgs production are listed in the Table. 4.7. We consider the following questions:

• To what extent can a1 and c1 be determined by measuring gg → h at the 14 TeV LHC and at a
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gg → h gg → hh gg → hhh

Parameters a1, c1 a1, c1 a1, c1

involved - a2, c2, λ3, κ5 a2, c2, λ3, κ5

- - a3, λ4, κ6

Table 4.7: Parameters that contribute to the particular Higgs-production processes.

Process σ(14 TeV ) (fb) err.[th] err.[exp] σ(100 TeV ) (fb) err.[th] err. [exp]

gg → h 4.968× 104 +7.5%
−9.0% ±1% 8.02× 105 +7.5%

−9.0% ±0.1%
gg → hh 45.05 +7.3%

−8.4% < 120fb 1749 +5.7%
−6.6% ±5%

gg → hhh 0.0892 +8.0%
−6.8% − 4.82 +4.1%

−3.7% < 30fb

Table 4.8: Cross sections of the processes gg → h, gg → hh and gg → hhh at 14 TeV and 100 TeV

hadron colliders, respectively. The 14 TeV cross section of gg → h is taken from Ref. [105]; the other

values are taken from Ref. [64]. The cross sections for gg → h and gg → hh are the NNLO results,

while the cross sections for gg → hhh are the NLO results.

100 TeV collider?

• To what extent can a2, c2, λ3, κ5 be determined by measuring gg → hh at the 14 TeV LHC and

at a 100 TeV Collider?

• To what extent can a3, λ4, κ6 be determined from gg → hhh at a 100 TeV collider, including

other channels of Higgs bosons?

Table 4.8 lists the cross sections of gg → h, gg → hh and gg → hhh with theoretical and pro-

jected experimental uncertainties. The theoretical uncertainties are obtained by summing the squared

uncertainties in parton distribution function (PDF), renormalisation scales, and αs, based on current

knowledge. For the process gg → h, the experimental uncertainties are mainly statistical ones which

pertain to the Higgs decay h → γγ. The projected experimental bound for gg → hh at the LHC

is taken from the studies of the bb̄γγ final state [31] and 3ℓ2j+MET [62]. The experimental bound

for gg → hhh is obtained from the analysis of 4b2γ final states [71] at 100 TeV. These estimates

are derived from phenomenological studies; full simulation and experience gained in the analysis of

actual data may change the conclusions significantly, such as in the expectations for the observation

of Higgs-pair production at the LHC [104].

We first consider Higgs-pair production in ggF. Analogy to the triple-Higgs production, the de-

pendence of the total cross section on the EFT parameters can be written as

σ(pp→ hh) =f1a
4
1 + f2a

3
1λ3 + f3a

3
1κ5 + f4a

2
1λ

2
3 + f5a

2
1λ3κ5

+f6a
2
1κ

2
5 + f7a

2
1a2 + f8a1λ3a2 + f9a1κ5a2 + f10a

2
2 . (4.15)
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f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1.56 -0.94 -2.14 0.18 0.69 0.87 -3.34 1.01 2.77 2.26

Table 4.9: Numerical results for f1 − f10(in pb) at a 100 TeV hadron collider.

f̂1 f̂2 f̂3 f̂4 f̂5

-3.63 -0.72 4.32 1.72 0.23

Table 4.10: Numerical results for f̂1 − f̂5 at a 100 TeV hadron collider.

The numerical values for the form factors f1−f10 at a 100 TeV hadron collider are listed in Table 4.9.

By substituting (a1, λ3, λ4, κ5) into (r̂, x̂) according to Table 4.5, we obtain

σ(pp→ hh) =σhhSM (1− x̂)2(1 + f̂1x̂+ f̂2r̂ + f̂3x̂
2 + f̂4x̂r̂ + f̂5r̂

2), (4.16)

where σhhSM = 1.75 pb (a NNLO K factor of 2.17 [106] is included.). Table 4.10 lists the numerical

results for f̂i.

For the single Higgs process, gg → h, Fig. 4.10 shows projections on the bounds of a1 and c1

at the LHC (14 TeV) and at a 100 TeV collider, respectively. Assuming that a measurement result is

close to the SM prediction, the allowed ranges for a1 and c1 are highly correlated and are confined

to be two narrow bands, one of which containing the SM reference point. The other band includes

a mirror solution a1 = −1, c1 = 0. To distinguish these solutions, we can examine the kinematics

of the Higgs boson in the final state, and add the measurement of gg → hh, which will be explained

later.

At the 14 TeV LHC, both theoretical and experimental (statistical) uncertainties are relevant and

have to be taken into account. At a 100 TeV collider, the statistical uncertainties are expected to be

less than 0.1%, so the main uncertainties will come from theory. Compared with the LHC bounds, the

projected accuracy of a1 and c1 will improve by a factor 2 at a 100 TeV collider.

Fig. 4.11 shows the expected bounds in the a1-c1 plane for both the LHC 14 TeV and a 100 TeV

collider. Combining the measurement of gg → h and gg → hh, the a1-c1 plane is cut down to a

limited region, even for the LHC 14 TeV. At a 100 TeV collider, the degenerate solutions for both

gg → h and gg → hh seperate into four small regions, and it becomes possible to exclude the mirror

solution. We calculate the cross sections of gg → h, gg → hh and gg → hhh in these four regions,

and the results of four bechmark points are listed in the Table. 4.11. It is interesting that the second

point has a production rate for the process gg → hhh that is large enough to be observed.

We now consider the other parameters that enter gg → hh. Fig. 4.12 shows the expected LHC

bounds of those parameters in four planes, namely a2-λ3, c1-λ3, c2-λ3, and κ5-λ3. All bounds are
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Figure 4.10: Upper row: correlations between a1 and c1 extracted from the process gg → h for the

LHC 14 TeV (a) and for a 100 TeV pp collider (b), respectively. Middle row: individual bounds on

a1 (c) and c1 (e) for the LHC 14 TeV (the total uncertainties are assumed to be 10%), respectively.

Lower row: the analogous results for a 100 TeV pp collider (the total uncertainties are assumed to be

5%).
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Figure 4.11: Projected exclusion bounds in a1-c1 plane extracted from the process gg → hh for both

(a) the LHC 14 TeV and (b) a 100 TeV collider. In each plot, the straight lines indicate the solutions

for the cross section of gg → h, assuming a measurement consistemt with the SM. The mirror region

of the SM point, the solution with a1 = −1 and c1 = 0, is denoted by a circle, respectively.

No. a1 c1 σ(gg → h) [pb] σ(gg → hh) [fb] σ(gg → hhh) [fb]

1 0.99 -0.01 771 1710 5.90

2 -0.86 1.94 839.6 1685 29.7

3 0.78 -1.82 763 1747 6.23

4 -0.66 -0.37 817.8 1690 5.74

Table 4.11: Four representative points in the four parameter regions and the corresponding cross

sections for Higgs production at a 100 TeV collider.

obtained by requiring the cross section of gg → hh to be smaller than 140 fb, so the points inside

the exclusion bounds is allowed by the LHC 14 TeV data, if no deviation from the SM is detected.

The SM reference points are also shown. Because we are interested in the correlations between two

parameters, the remaining parameters are set to their SM values.

Similarly, the bounds from the gg → hh data at 100 TeV are plotted in Fig. 4.13. Combining

theoretical and experimental uncertainties, we assume that the cross section of gg → hh can be

measured to a precision of 8%. The allowed parameter regions shrink considerably and become

pinched between two contours, in each plot. Comparing Fig. 4.12 with Fig. 4.13, it is obviously that

a 100 TeV collider can significantly improve the precision on a2, c2, κ5, and λ3.

We also individually project out single-parameter bounds for each of (a2, c2, κ5, λ3), as shown in

Fig. 4.14. We find that the parameters a2, κ5, and λ3 can be determined with a precision close to 10%.

The two-fold ambiguities in the solutions can be removed by using the kinematics of final states, as

demonstrated in Ref. [62]. We also find that the parameter c2 can be determined within the range

[−0.1, 0.4].
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Figure 4.12: Projected exclusion bounds in two-parameter planes between (a2, c1, c2, κ5) and λ3,

extracted from the process gg → hh at the LHC 14 TeV. If the coefficient values are equal to the SM

prediction, parameter values inside the contours are still allowed by the measurement. The exclusion

bounds correpond to a limit of 140 fb for the cross section.

Finally, we consider the remaining parameters that only enter the process gg → hhh. They are

a3, κ6 and λ4. We present two-dimensional bounds for all pairs of these parameters in Figs. 4.15(a)–

4.15(c). The corresponding one-dimensional bounds are given in Figs. 4.15(b)–4.15(d). In this study,

we find that the parameter a3 can be constrained to the range [-0.8,1.2], and the parameter κ6 can

be constrained to the range [-2.3, 1.5]. λ4 is the most difficult parameter to measure. It can only be

determined within a quite wide range [-13,20], as already in Ref. [71].

These results have to be combined with the parameter exclusion regions derived from gg → hh.

In Fig. 4.16, we show the correlations between a3 and the parameters that enter gg → hh (a2, c2,

κ5, λ3). In these plots, we combine the bounds from Higgs-pair production, presented in Fig. 4.14,

and the exclusion limits from triple-Higgs production. The SM prediction is included in the plots

for reference. Clearly, constraints from gg → hhh are weak, but they are nevertheless sensitive to a
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Figure 4.13: Projected exclusion bounds in two-parameter planes between (a2, c1, c2, κ5) and λ3,

extracted from the process gg → hh a 100 TeV pp collider. If the coefficient values are equal to

the SM prediction, parameter values between the two contours are still allowed by the measurement.

The exclusion bounds correspond to a total error of 8% on σ(gg → hh), theoretical and experimental

uncertainties combined.

special combination of parameters and thus cut off part of the two-parameter exclusion regions. As

an example, we indicate that adding in gg → hhh can help in resolving a two-fold ambiguity in the

κ5-a3 plane, cf. Fig. 4.16(c).

Similarly, in Fig. 4.17, we show the correlations between κ6 and parameters set (a2, c2, κ5, λ3).

In Fig. 4.18, we show the correlations between λ4 and the same parameters. In the κ5-λ4 plane

(Fig. 4.18(c)), including triple-Higgs production it becomes possible to separate the κ5 = 0 and

κ5 6= 0 regions.
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Figure 4.14: Projected one-parameter exclusion bounds for a2, c2, κ5 and λ3, extracted from the

process gg → hh. If the coefficient values are equal to the SM prediction, parameter values between

the upper and lower bounds are allowed by the measurement. The exclusion bounds correspond to a

total error of 8% on σ(gg → hh), theoretical and experimental uncertainties combined.

4.2.4 Analysis for models

In this subsection, we adapt the above results to the NP scenarios, which are introduced in Chapter 3.

As we have discussed in the Chapter 3, the parameters in these models can be related to the parameters

of Eq. 3.2. In particular, for a model with a small parameters space, we can recast the analysis to give

a expected bounds to this model, by using the relations in 3.1 or 3.2.

4.2.4.1 Strongly-interacting Higgs models

In the generic dimension-six SILH Lagrangian, there are four free parameters relevant to the multi-

Higgs production, denoted by Cy = cyξ, CH = cHξ, C6 = c6ξ, and c1. In this subsection, we

also consider two more specific composite Higgs models [29, 107], known as MCHM4 and MCHM5,
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Figure 4.15: Projected two-parameter (left) and one-parameter (right) exclusion bounds, extracted

from the process gg → hhh. The left column shows the two-parameter planes a3-λ4, κ6-λ4, and

a3-κ6, while the right column displays a3, κ6, and λ4.
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Figure 4.16: Projected two-parameter exclusion bounds, extracted from the process gg → hhh. The

straight-line pairs indicate the exclusion bounds extracted from gg → hh. The plots show two-

parameter correlations between a3 and a2, c2, κ5, and λ3.

respectively. Both of them result in the SILH Lagrangian as their low-energy EFT. They contain extra

fermions, which are in representations 4 and 5 of an assumed global SO(5) symmetry, respectively.

In these specific models, the SILH coefficient values are [108]

MCHM4: cH = 1, cy = 0, c6 = 1 , (4.17)

MCHM5: cH = 1, cy = 1, c6 = 0 . (4.18)

In these models, there are only two independent parameters, c1 and ξ. We apply the above analysis

to these parameters and conclude that at a 100 TeV collider, data from gg → h and gg → hh can

significantly constrain the allowed parameter space. These bounds are demonstrated by Figs. 4.19(a)–

4.19(b). We expect that data from gg → h will result in an exclusion region bounded by two lines in

the ξ − c1 plane, while data from gg → hh will further reduce the allowed parameter space to two
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Figure 4.17: Projected two-parameter exclusion bounds, extracted from the process gg → hhh. The

straight-line pairs indicate the exclusion bounds extracted from gg → hh. The plots show two-

parameter correlations between κ6 and a2, c2, κ5, and λ3.

small spots in the plane.

To illustrate the constraints from triple-Higgs production, we consider two benchmark points for

MCHM4 and MCHM5 in Table 4.12. For both benchmark points we obtain a large cross section for

the gg → hhh process, actually 80 and 55 times larger than the SM prediction, respectively. These

benchmark points can not only be detected, but also be distinguished from each other at a 100 TeV

collider, assuming that the threshold cross section value of gg → hhh for being sensitive to new

physics is 30 fb or smaller [71].

4.2.4.2 The Gravity-Higgs Model

The Gravity-Higgs model has only two free parameters, x̂ and r̂. The analysis is straightforward, be-

cause single-Higgs production gg → h depends only on parameter x̂, while double-Higgs production
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Figure 4.18: Projected two-parameter exclusion bounds, extracted from the process gg → hhh. The

straight-line pairs indicate the exclusion bounds extracted from gg → hh. The plots show two-

parameter correlations between λ4 and a2, c2, κ5, and λ3.

No. ξ c1 σ(gg → h)[pb] σ(gg → hh) [fb] σ(gg → hhh) [fb]

MCHM4 0.97 0.48 764 1618 321

MCHM5 -0.20 -0.30 817 1854 122

GHM x̂ = 0.02 r̂ = 3.2 816 1786 37.78

Table 4.12: Three representative points for the models MCHM4, MCHM5, and GHM, respectively,

and the corresponding cross sections for Higgs production.
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Figure 4.19: Projected two-parameter exclusion bounds in the ξ − c1 plane, extracted from the pro-

cesses gg → h and gg → hh at a 100 TeV collider for the models MCHM4 and MCHM5, respectively.

constrains the second parameter r̂. The cross section of gg → hhh is completely determined once x̂

and r̂ are detected.

The expected LHC exclusion contours in the x̂ − r̂ plane are depicted in Fig. 4.20(a). From the

process gg → h we obtain a narrow band, and then the result from gg → hh further shrink the

allowed region. The latter constrains the parameter r̂ down to the range [−1.8, 5.0] if we assume that

parameter space with a cross section of σ(gg → hh) larger than 120 fb can be excluded safely.
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Figure 4.20: Comparison of the projected exclusion bounds on x̂− r̂ from the LHC 14 TeV (left) and

a 100 TeV collider (right).

Fig. 4.20(b) shows the analogous results for a 100 TeV collider. The measurements of gg → h and

gg → hh will further constrains the parameters in a small region. From these measurements alone,

the value of r̂ is extracted with a two-fold ambiguity. However, for the solution with the larger value

of r̂ (r̂ ≈ 3), the cross section of gg → hhh is 5 times larger than the region near SM prediction, due
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to the λ43 dependence in the cross section. An benchmark point is listed in Table 4.12. A measurement

of triple-Higgs production could therefore eliminate one of the solutions.



Chapter 5

Multi-Higgs production via vector boson

fusion mode

The subdominant process of multi-Higgs production in hadron collisions is so-called vector-boson-

fusion (VBF) [109], V V → hh and V V → hhh (V = W±, Z), where the vector bosons are

effectively radiated from incoming quarks. In addition to its dependence on Higgs self-couplings, this

process is also sensitive to the hhV V couplings, which is another SM interaction that has not been

accessible by current experiment data. At the LHC, hV V coupling is determined by the measurement

of the decay branching ratios of h → WW ∗ and h → ZZ∗. The current LHC data show that these

branching ratios are consistent to the SM predictions [17, 18]. By constrast, there are no significant

constraints from data on hhV V direct couplings.

The VBF mode of double-Higgs production at hadron colliders has been widely studied [110,

111, 112, 113, 114]. Comparing with ggF process, the NLO QCD correction is less important in VBF

process. It is found that the cross section is enhanced by ∼ 7% [115, 116]. In the high-luminosity

LHC (HL-LHC) with 3000 fb−1 at 14 TeV, the hhV V interaction is expected to be constrained to

20%. A 100 TeV hadron collider has the potential to reduce the uncertainty down to 1% [113]. The

hhWW coupling is also accessible in the W±W±h final state. In Ref. [117] it is found that this

particular final state can constrain this coupling toO(100%) at the HL-LHC, which is reduced to 20%

at a 100 TeV collider.

In analogy to double-Higgs production, the triple-Higgs final state and thus the quartic Higgs

self-coupling can also be examined in the VBF mode. The VBF topology is able to improve the

signal-to-background ratio considerably, since two forward jets can suppress the QCD activity in the

central region. This process is also sensitive to a hhhV V interaction which does not exist in the

SM but should be expected for a strongly interacting Higgs sector [118]. Furthermore, an anomalous

hV V coupling would have a strong impact on triple Higgs production in VBF mode [119].

In this chapter, we study the multi-Higgs production in the VBF mode at the LHC and at future

proton-proton colliders, focusing on the prospects for measurements at 27 TeV and at 100 TeV. As

we have done in Chapter 4, we study the NP effects by using the EFT Lagrangian 3.2. The total cross

51
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sections of pp→ V V → h, pp→ V V → hh, and pp→ V V → hhh are computed numerically, with

appropriate VBF cuts for 14 TeV, 27 TeV, and 100 TeV respectively. The results describe the potential

for constraining NP in the Higgs sector at the LHC and at future hadron colliders. We also derive

theoretical constraints on the parameter space from the unitarity of 2 → n scattering amplitudes and

apply the results to V V → hh and hhh processes. This chapter is based on Ref. [10].

5.1 Constraints on parameters from the unitarity of S matrix

The importance of unitarity in quantum mechanics and quantum field theory has been emphasized in

early literature. In the context of relativistic quantum field theory, unitarity is a constraint on the S
operator as the most generic dynamic observable. The basic idea, which is formulated as the optical

theorem, and its most elementary application to spin-less 2 → 2 scattering are textbook knowledge.

However, the concrete formulation for high-energy 2→ n scattering in the context of the SM and its

extensions is not as familiar as the 2 → 2 case. In this section, we discuss the unitarity conditions

without the restriction to elastic scattering, and apply the generic formalism to the processes that we

are interested in. Further details of the derivation are given in Appendix B. The goal is to determine

energy-dependent constraints on the free parameters of the EFT Lagrangian 3.2.

As introduced in Chapter 3, an EFT with higher-dimensional operators in a local Lagrangian

is a method to generate and parameterize a low-energy expansion of the scattering amplitudes for

unknown high-energy dynamics. A valid quantum field theory underlying any physics beyond the

SM will result in a unitary scattering matrix, but this need not hold for the approximation generated

by the corresponding EFT. In fact, a term of dimension d in the Lagrangian generically generates

uncancelled factors that are proportional to Ed−4, where E is the overall energy scale in a scattering

process [120].

The unitarity requirement for a complete S matrix, evaluated for the set of m → n scattering

amplitudes, relates the forward n → n elastic scattering amplitude to the interference of all m → n

scattering amplitudes, integrated over phase space. In a simplified treatment where we neglect all

n,m > 2, we can use angular-momentum conservation to simplify the scattering matrix to a finite

N × N matrix which may be diagonalized in terms of partial-wave amplitudes, cf., e.g., Ref. [121].

This relation implies a strict upper bound on each partial wave, which can be exploited to derive

energy-dependent constraints on the parameters of an EFT. For parameter values which violate those

constraints, the EFT is invalid as a useful approximation, independent of the true underlying theory.

If we include 2 → n scattering with n > 2, we may apply similar methods and obtain compar-

atively simple constraints if we introduce extra assumptions [122, 123, 124] or neglect spins [125].

Extending these ideas, we consider the generic formalism in its consequences for V V → hh and

V V → hhh, and express the results in the form of inequalities for the EFT parameters.
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5.1.1 General unitarity constraints

Unitarity is equivaltent to the conservation of probability in a quantum theory. The scattering of

observable particles is described by a S operator, which satisfies S†S = 1. Its nontrivial part is

defined by S = 1 + iT , where the T satisfies the universal relation

−i(T − T †) = T †T (5.1)

We are interested in unitarity conditions for matrix elements between asymptotic states which contains

a finite number na of particles with well-defined masses. We use |α,Φa〉 to represent a multi-particle

state with na particles, where Φa is a shorthand for the kinematical configuration of na on-shell

momenta (the phase-space point), and α denotes the set of discrete quantum numbers such as helicity

and color. Furthermore, the total momentum of a multi-particle state a is labeled as pa. With this

notation, the manifold of configurations (α,Φa) becomes a compact manifold for each fixed na.

Because of the momentum conservation, the matrix elements of the scattering amplitude operator

M between the initial state |α,Φa〉 and the final state |β,Φb〉 can be written as

〈β,Φb|T |α,Φa〉 = (2π)4δ(4)(pa − pb) 〈β,Φb|M|α,Φa〉. (5.2)

We can express the matrix elements of the left-handed side of Eq. (5.1) and insert a complete set of

multi-particle states |γ,Φc〉 to the right-handed side, and obtain

−i [〈β,Φb|M|α,Φa〉 − 〈α,Φa|M|β,Φa〉∗]

=
∑

γ

∫

dΦc 〈γ,Φc|M|β,Φb〉∗〈γ,Φc|M|α,Φa〉 (5.3)

where dΦc denotes the phase-space element of the intermediate states. The momentum conservation

requires pc = pa = pb.

For convenience, we introduce a bijective mapping between the unit hypercube in da = 3na − 4

dimensions, {xa ∈ R
da ; 0 < (xa)i < 1} and the manifold {Φa}, for each fixed na. For instance,

we may factorize phase space as a tree consisting of na − 1 momentum splittings of type 1 → 2,

with pa at the root. There are 2(na − 1) angular variables and na − 2 invariant-mass variables. This

mapping introduces a Jacobian Ja(xa) = dΦa/dxa, which should incorporate appropriate symmetry

factors. This construction corresponds to a common method of evaluating phase-space integrals. If

we introduce amplitude functions which include the Jacobian factors as follows,

Mβα(xb, xa) = J
1/2
b (xb) 〈β,Φb(xb)|M|α,Φa(xa)〉 J1/2

a (xa) (5.4)
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Eq. (5.1) can be rewritten to

−i
[

Mβα∗(xb, xa)−Mαβ(xa, xb)
]

=
∑

γ

∫

dxcM
γβ∗(xc, xb)M

γα(xc, xa) (5.5)

If massless particles are involved, the sum over intermediate states is infinite. The matrix elements

contain non-integrable infrared, collinear, and Coulomb singularities, so the integrals do not converge.

To deal with this issue, one method is to introduce some version of phase-space slicing and sum over

nearly degenerate states, which introduces indefinite particle numbers [126, 127]. However, we are

interested in the production of neutral massive bosons. Photons, quarks and gluons are acting as

spectators which are treated in standard QED and QCD perturbation theory. We may ignore this

complication and assume that all relevant states are massive. The sum over intermediate states then is

a finite sum, the matrix elements and the Jacobians are finite, and the integration manifold (the union

of the unit hypercubes for all (na, α) is compact.

In this case, it is possible to introduce a scalar product of square-integrable functions on the

integration manifold and to find a complete basis of functions which are mutually orthonormal with

respect to this scalar product. For instance, choosing the canonical scalar product, we could take a

straightforward Fourier expansion. A more physical choice could involve spherical harmonics for

the normalized angular variables and an arbitrary basis for the invariant-mass variables. In the two-

particle case where there are no free invariant masses, it becomes the standard partial-wave expansion.

We note that for each particle combination a, we may choose a different kind of expansion for the

corresponding phase space Φa(xa).

For simplicity, we adopt the following canonical scalar product and a corresponding orthonormal

basis {Hα
A(xa)} on each α phase space,

∫

dxaH
α∗
A (xa)H

α
B(xa) = δAB, (5.6)

where A is an appropriate (multi-)index which labels the basis functions. The amplitudes can be

expanded as

Mβα(xb, xa) = 2
∑

AB

aαβABH
α
A(xa)H

β∗
B (xb). (5.7)

So the scattering is expressed in terms of an actual matrix with elements aαβAB . (The factor 2 is

introduced for the consistency with the standard two-particle partial-wave expansion.) Explicitly, the

coefficients are

aαβAB =
1

2

∫

dxa dxbH
α∗
A (xa)H

β
B(xb)M

βα(xb, xa). (5.8)

They take complex values and depend only on the total momentum, aαβAB = aαβAB(pa), where pa = pb.

If we choose a phase-space parameterisation which preserves Lorentz invariance, the coefficients
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depend only on s = p2a.

We now obtain a discrete version of Eq. (5.5) [128, 129]:

− i(aαβAB − a
βα∗
BA ) = 2

∑

γ

∑

C

aαγACa
βγ∗
BC , (5.9)

where all coefficients are finite and the sums are convergent if the simplifications regarding massless

states are applied, as described above.

Eq. (5.9) decribes all unitarity relations of the scattering matrix in question. To derive constraints

on individual amplitudes, we need a positivity condition. We may diagonalize the scattering matrix

and obtain exact relations for superpositions of states. Alternatively, we may derive less compre-

hensive but phenomenologically more useful relations by focusing on diagonal matrix elements, i.e.,

α = β and A = B,

−i(aααAA − aαα∗AA ) = 2
∑

γ

∑

C

|aαγAC |2 (5.10)

= 2|aααAA|2 + 2
∑

C 6=A

|aααAC |2 + 2
∑

γ 6=α

∑

C

|aαγAC |2 (5.11)

To cast this in the intuitive geometry of the Argand circle, we rewrite the diagonal amplitude in terms

of its real and imaginary parts:

|Re aααAA|2 + |Im aααAA −
1

2
|2 +

∑

C 6=A

|aααAC |2 +
∑

γ 6=α

∑

C

|aαγAC |2 =
1

4
(5.12)

This means that each complex-valued elastic amplitude aααAA(s) must lie on a circle with radius r

around i/2, where the elastic radius r = 1/2 is reduced by the total contribution of all inelastic

channels.

The exact relation (5.12) yields strict upper bounds for the elastic amplitude as well as for the

total inelastic contribution, which trivially translates into a bound for each individual final state in this

representation. We obtain

|Re aααAA|2 ≤
1

4

|Im aααAA −
1

2
|2 ≤1

4
∑

C 6=A

|aααAC |2 ≤
1

4

∑

γ 6=α

∑

C

|aαγAC |2 ≤
1

4

(5.13)

Examples for the application of these bounds, referring also to the treatments in Refs. [121, 122, 123,

125], can be found in Appendix B.
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The last inequality in Eq. (5.13) gives the unitarity constraints on inelastic scattering, and we note

that it is independent of the basis Hγ . To see this, we define the coefficients bαγA :

bαγA ≡
1

4

∫

dxadxbdxcH
α∗
A (xa)H

α
A(xb)M

γα∗(xc, xb)M
γα(xc, xa), (5.14)

which is clearly independent of Hγ . Using the expansion in Eq. (5.7), we find

bαγA =
∑

C

|aαγAC |2 ≥ 0 (5.15)

Finally, the unitarity constraint for inelastic scattering can be written as

∑

γ 6=α

bαγA ≤
1

4
(5.16)

5.1.2 Unitarity Constraints from V V → hh

In this subsection, we apply the generic formalism to the scattering process W+W− → hh. We

assume that the on-shell approximation is justified for the purpose of deriving unitarity bounds, which

means that incoming vector bosons are on-shell with a pair invariant mass M(WW ) = M(hh) = ŝ.

(In the actual process, the incoming propagators are space-like with a virtuality of O(mW ).)

The W+W− → hh scattering is an inelastic channel. As described above, the unitarity bounds

can be expressed by b-coefficients

bW
+W−→hh

A (ŝ) ≡
∑

C

|aW+W−→hh
AC (ŝ)|2 ≤ 1

4
, (5.17)

where A and C are (multi-)indices for the initial-state and final-state basis, respectively. In this pro-

cess, the initial-state particles carry spin as well as momentum, while the final-state phase space

manifold is trivially given by the unit sphere, for fixed energy
√
ŝ.

(a) W+

W−

h

h

(b)
W+

W−

h

h

(c)
W+

W−

h

h

(d) W+

W−

h

h

Figure 5.1: Four types of Feynman diagrams are shown which contribute to the processes W+W− →
hh.

In the SM, there are four Feynman diagrams which contribute to the W+W− → hh process, as

shown in Fig. 5.1. So we can seperate the amplitudes to four parts:

M(W+W− → hh) =Ms +Mt +Mu +M4. (5.18)
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We refer to these as the s-channel, t-channel, u-channel, and contact-interaction amplitudes, respec-

tively.

In the high energy limit s ≫ m2
W ,m

2
h, the leading contribution in the EFT is proportional to s.

So we expand the amplitudes by the rescaled energy
√

s/v2 as a dimensionless expansion parameter

M(W+W− → hh) =
+∞
∑

i=0

mi(

√
s

v
)2−i, (5.19)

where mi are the coefficients in the expansion. In Table 5.1 we list the prefactors of the leading

contribution for each amplitude in one of the four independent helicity modes. The amplitudes of

all other helicity modes are related to the four modes in the table. All leading contributions are

independent of the kinematics, except the +− of the t/u-channel, so the table entries translate directly

into bounds for amplitude coefficients once a suitable basis has been chosen. We also observe that

only the ++, +−, and 00 modes lead to amplitudes rising proportional to s, so we may focus on these

modes while considering unitarity bounds. For the +0 mode, its leading contribution is proportional

to gW,a1gW,b1
√

s/v2. If gW,a1 is well constrained via the 00 mode and does not deviate grossly from

its SM value, the +0 mode leads to a bound on gW,b1 which has the same s dependence but is weaker

than the constraint that we get from the +− amplitude.

helicity configuration ++ +− 00 +0

s-channel 1
2κ5gW,b1 0 1

2κ5gW,a1 0

t, u-channel 2g2W,b1 O(g2W,b1) −g2W,a1 0

contact interaction gW,b2 0 gW,a2 0

Table 5.1: The leading energy contributionm0 in four independent helicity matrix element for V V →
hh are shown. In this table,O(g2W,b2) means such contribution is non-zero but depends on phase-space

configuration, and proportional to the coupling constants g2W,b2.

Angular-momentum conservation directs the choice of phase-space basis. The final state is de-

scribed by a straightforward partial-wave expansion. For the initial state, we should couple helicity

with orbital angular momentum to total angular momentum j, and adopt the WignerD-matrix formal-

ism which is introduced in Appendix B. We can derive individual bounds for amplitude coefficients

bj(h1h2),

bj(h1h2) ≤
1

4
, where hi = +− 0. (5.20)
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Finally, we obtain the strongest bounds on the EFT parameters:

b0(00) =
s2

512π2v4
|gW,a2 − g2W,a1 +

1

2
κ5gW,a1|2 ≤

1

4
(5.21)

b0(++) =
s2

512π2v4
|gW,b2 + 2g2W,b1 +

1

2
κ5gW,b1|2 ≤

1

4
(5.22)

b2(+−) =
s2

3072π2v4
g4W,b1 ≤

1

4
(5.23)

In particular, the +− mode gives a bound on gW,b1, i.e., the transversal interaction hW+
T W

−
T , which

is independent of the other EFT parameters.
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Figure 5.2: Seven types of Feynman diagrams are shown which contribute to the processes

W+W− → hhh.

In the SM, the helicity amplitudes of W+W− → hhh processes correspond to seven types of

Feynman diagrams, as shown in Fig. 5.2. Analogy to W+W− → hh, in the high energy limit, the

amplitude can be expanded as a series in powers of
√

s/v2

M(W+W− → hhh) =
+∞
∑

i=0

miv
−1(

√
s

v
)2−i (5.24)

The leading term m0 are listed in Table 5.2, for each helicity combination. If a coefficient is phase-

space dependent, we denote it as O(C), where C is a combination of the anomalous couplings. Ta-

ble 5.2 also shows that the +0 helicity mode does not contribute to m0. The unitarity bounds of this

mode result from the m1 terms and are weaker than the remaining ones, as long as gW,a1, gW,a2, κ5

are not far from their respective SM values.

Since this is also an inelastic channel, the unitarity bounds on the b-coefficients are

bW
+W−→hhh

A (ŝ) ≤ 1

4
. (5.25)
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++ +− 00 +0

a gW,b3 0 gW,a3 0

b 1
2gW,b1κ6 0 1

2gW,a1κ6 0

c 3
2gW,b2κ5 0 3

2gW,a1κ5 0

d gW,b1κ
2
5 0 gW,a1κ

2
5 0

e 6gW,b1gW,b2 O(gW,b1gW,b2) −4gW,a1gW,b1 0

f O(g3W,b1) O(g3W,b1) 4g3W,a1 0

g 3g2W,b1κ5 O(g2W,b1κ5) −2g2W,a1κ5 0

Table 5.2: The leading contribution m0 at high energy limit for seven types of Feynman diagrams to

the amplitudes are tabulated.

The b-coefficients are independent of the phase-space parameterisation and the basis functions for

the triple-Higgs system, and only depend on the phase-space parameterisation and the basis functions

for the W -boson pair. As discussed in Appendix B, after choosing the Wigner D-matrix as the basis

for the W+W− state, the b-coefficients are diagonal. We can denoted them as bj(h1h2), where j

represents the total angular momentum, and hi = + − 0 are the helicities of the two W bosons. We

calculate the (reduced) b-coefficients directly by using Eq. (5.14). Although the result is independent

of the phase-space parameterisation for the triple-Higgs system, an explicit expression is required

for phase-space integration. We adopt the form given in App. B.4. We give the results for the three

helicity modes below:

1. For the 00 helicity mode, the amplitude is independent of phase-space parameters. The optimal

choice is given in Appendix B. Since the initial state is a two-particles state, the Wigner D-

matrix as a basis yields this optimal bound,

b0(00) =
s3

49152π4v6
|gW,a3 +

1

2
gW,a1κ6 +

3

2
gW,a2κ5 + gW,a1κ

2
5

− 4gW,a1gW,a2 + 4g3W,a1 − 2g2W,a1κ5|2 ≤
1

4

(5.26)

2. For the ++ helicity mode, the type-f contribution is phase-space dependent, and it yields a

non-zero bj for j > 0. However, we have checked that the dependence is of minor importance,

and the bounds from bj ≤ 1
4 with j > 0 turn out to be much weaker than the bounds from

W+W− → hh. Therefore, we only consider the bound on b0,

b0(++) =
s3

49152π4v6
(|gW,b3 +

1

2
gW,b1κ6 +

3

2
gW,b2κ5 + gW,b1κ

2
5

+ 6gW,b1gW,b2 + f1g
3
W,b1 − 3g2W,b1κ5|2 + f2g

6
W,b1) ≤

1

4

(5.27)

where f1 = 7.49994 ± 0.00005 and f2 = 0.0658 ± 0.0006 are computed by numerical in-

tegration. The negligible f2 reflects the fact that the dependence of g3W,b1 on phase-space is
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Cuts
√
s = 14 TeV

√
s = 27 TeV

√
s = 100 TeV

Pt(j) > 20 GeV > 20 GeV > 30 GeV

∆R(j, j) > 0.8 > 0.8 > 0.8

|η(j)| < 5.0 < 5.0 < 8.0

∆η(j, j) > 3.6 > 3.6 > 4.0

M(j, j) > 500 GeV > 500 GeV > 800 GeV

Table 5.3: Acceptance cuts used for the calculation of VBF Higgs production in pp collision (VBF

cuts), for three different collider energies.

small.

3. For the +− helicity mode, only bj with j = 2, 4, . . . are non-zero, and the leading term is b2,

which is given by

b2(+−) =
s3

49152
√
6π4v6

∣

∣

∣

∣

gW,b1gW,b2 + 2g3W,b1 +
1

2
g2W,b1κ5

∣

∣

∣

∣

2

≤ 1

4
(5.28)

5.2 Multi-Higgs production via VBF processes with dimension-6 oper-

ators

To investigate the sensitivity of LHC and future colliders to NP effects in multi-Higgs production,

we compute the cross sections for the processes pp → hhjj and pp → hhhjj including the full

dependence on the parameters in Lagrangian 3.2. To extract the VBF contribution and suppress the

Z → jj contribution, we apply standard VBF cuts, which are listed in Table (5.3). We compute

results for the pp collider with c.m. energy 14 TeV LHC (the HL-LHC), 27 TeV (the HE-LHC), and

100 TeV.

For the numerical calculations, we implement the Lagrangian 3.2 to automatic Monte-Carlo inte-

gration and simulation packages WHIZARD 2.3 [7] and Madgraph 5 [8]. On one hand, we construct

an appropriate UFO file and interface it with Madgraph 5. On the other hand, since WHIZARD does

not support five-point vertices of the form needed for the EFT calculation, we introduced an auxiliary

field S with a Lagrangian

LS =
1

2
(∂µS)

2 − 1

2
M2S2 − gShhh(∂2S)h3 + gw,a3

2m2
W

v3
SWµWµ −

gw,b3
v3

SWµνWµν .(5.29)

So S only couple to triple-Higgs or W pair, and a Feynman diagram as shown in Fig. 5.3 contributes

to the triple Higgs production process. When M = 0 and gShhh = −1, gw,a3 and gw,b3 become

equivalent to the parameters in Eq. 3.2, and the resulting amplitude expression is identical to the one

that follows from using (3.2) directly. We have cross-checked numerical results from both imple-
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Process σ(14TeV) [fb] σ(27TeV) [fb] σ(100TeV) [fb]

pp→ hjj 1.64× 103 4.87× 103 2.60× 104

pp→ hhjj 1.10 4.32 41.2

pp→ hhhjj 2.73× 10−4 1.73× 10−3 4.50× 10−2

Table 5.4: SM values for the cross sections of the processes pp→ hjj, pp→ hhjj and pp→ hhhjj
with VBF cuts, at three different collider energies.

mentations against each other. As another cross-check, we have validated selected results against the

package VBFNLO [78, 79], with good agreement.

W+

W−

S

h

h

h

Figure 5.3: Triple-Higgs production diagram with a five-point vertex WWhhh effectively generated

by an auxiliary field S.

For the pure SM, the cross sections after VBF cuts are listed in Table 5.4. All numerical results

are computed at leading order in the strong and electroweak perturbative expansions.

It is expected that the q → Wq′ splitting force the remnant jets in VBF process to a back-to-back

configuration, with high energy and moment. The VBF cuts in Table 5.3 can select the events in

this region and reject the jets from Z decay. Due to the finite mass of the vector bosons, the VBF

contribution is maximised for transverse momenta of the order of the W mass. In the numerical

calculation, we apply cut Pt(j) > 20 GeV for 14 and 27 TeV, and 30 GeV for 100 TeV, respectively.

Regarding the transition from LHC kinematics to a 100 TeV collider, our numerical results show

that the forward jets can acquire significantly larger rapidity than that at LHC (Fig. 5.4). Simularly,

the produced Higgs bosons are distributed over a broader η range (Fig. 5.5). Therefore, we assume a

better rapidity coverage for the detector at 100 TeV and have adapted our cuts in Table 5.3 accordingly.

5.2.1 Higgs pair production

For the on-shell process W+W− → hh, we can express the amplitude by the EFT parameters

M(W+W− → hh) = Ms +Mt +Mu +M4 , (5.30)

Ms = S1gW,a1λ3 + S2gw,b1λ3 + S3gW,a1κ5 + S4gW,b1κ5 , (5.31)

Mt = T1g
2
W,a1 + T2gW,a1gW,b1 + T3g

2
W,b1 , (5.32)

Mu = U1g
2
W,a1 + U2gW,a1gW,b1 + U3g

2
W,b1 , (5.33)

M4 = X1gW,a2 +X2gW,b2 , (5.34)
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Figure 5.4: Rapidity distribution (η) of the forward tagging jets at (a) 14 TeV and (b) 100 TeV. Jet 1

(2) labels the harder (softer) jet, respectively.
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Figure 5.5: Rapidity distribution (η) of the Higgs bosons at (a) 14 TeV and (b) 100 TeV. h 1, 2, 3

labels the Higgs particles from hardest to softest one.
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Where we have used the breakdown in terms of 4 types of Feynman diagrams in Fig. 5.1. The

coefficients Si, Ti, Ui, and Xi describe the expansion in terms of anomalous couplings. They include

the SM parts and account for the polarisation wave functions of vector bosons, external momenta,

propagators of internal particles, and the SM interactions.

The full process pp → hhjj can be expande by a similar way, with new coefficients which

incorporate the integration over the PDF of incoming partons and the complete phase space for off-

shell intermediate vector bosons. The total cross section can be written as

σ(pp→ V V jj → hhjj) =
∑

i

F hhi Ai,hh , (5.35)

where Ai,hh denotes second-order polynomials of the parameters gV,a1, gV,b1, λ3, κ5, gV,a2 and gV,b2.

The prefactors F hhi are the integrated form factors and can be computed numerically.

To simplify the expression, we consider the phenomenological information from expected preci-

sion data. For the WWh vertex, it should be strongly constrained by data from the Higgs decay to

WW as well as VBF single-Higgs production. Higgs factories such as the CEPC, the ILC, or the

CLIC collider allow for an absolute model-independent measurement of the WWh interaction with

high precision. With this expectation we can fix gW,a1 and gW,b1 to their SM values. Furthermore, we

assume the custodial-symmetry relations gW,a2 = gZ,a2 and gW,b2 = gZ,b2 whenever contributions of

Z boson are considered. Finally, we can express the cross section as

σ(pp→ hhjj) = K0 +K1gW,a2 +K2g
2
W,a2 +K3gW,b2 +K4gW,a2gW,b2 +K5g

2
W,b2

+K6κ5 +K7gW,a2κ5 +K8gW,b2κ5 +K9κ
2
5 +K10λ3

+K11gW,a2λ3 +K12gW,b2λ3 +K13κ5λ3 +K14λ
2
3 (5.36)

In Chapter 4, we know that the parameters λ3 and κ5 are accessible in the ggF process gg → hh,

which may be measured with greater precision than the VBF mode. In fact, VBF data will primarily

constrain gW,a2 and gW,b2, i.e., the anomalous contact interactions of a longitudinal or transversal W

pair with a Higgs pair, respectively. The numerical calculation has been performed with Madgraph 5,

and the results of the coefficients K0 −K14 are listed in Table 5.5.

By using the cross section expression (5.36), we can derive the bounds on the EFT parameters

which can be achieved at the LHC and a future hadron collider. Fig. 5.6 shows the dependence of the

cross section on the two parameters gW,a2 and gW,b2, respectively, for energy of 14 TeV, 27 TeV,

and 100 TeV. One parameter is varied at a time, while the other parameters are set to their SM

value. The SM value is marked in each plot, and it is close to the minimum of the cross section in all

cases. In the LHC (HE-LHC) plots, the horizontal lines indicate cross section values 10 fb and 30 fb

(5/15 fb), respectively. These values may be expected as realistic bounds if no signal is observed. In

the 100 TeV plots, we show the bounds that result from constraining the cross section to±10 %. (This

is a conservative estimate; the study in Ref. [113] argues that a precision of 1% could be achieved.)
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K0 K1 K2 K3 K4 K5 K6 K7

14 TeV 23.37 -33.33 12.68 -0.88 1.97 106.8 -19.73 14.65

27 TeV 109.1 - 167.2 68.1 -5.27 10.5 1135.2 -94.96 74.48

100 TeV 1760 -3085 1401 -35.75 108.5 54070 -1630 1461

K8 K9 K10 K11 K12 K13 K14

14 TeV 1.16 4.27 -6.39 4.00 0.43 2.70 0.73

27 TeV 7.32 19.40 -23.4 14.99 1.74 10.04 2.61

100 TeV 71.2 384.6 -175.1 121.2 10.33 76.91 16.3

Table 5.5: Coefficients K0 − K14 (in fb) in the expression (5.36) for pp → hhjj at three different

collider energies.

The sensitivity to NP results from putting upper bounds on the cross section. It is clearly that the

sensitivity increases considerably between the LHC and the HE-LHC. At 100 TeV, we expect this

process can be measured within the SM region.

The unitarity bounds for these parameters are shown on the horizontal axis, for each plot. We have

chosen the values 3 TeV, 5 TeV, and 14.5 TeV for the effective energy value that enters the inequal-

ities (5.26-5.27), and apply to a collider energy of 14 TeV, 27 TeV, and 100 TeV, respectively. It is

expected that the cross section of any realistis model curves outside those bounds will flatten out in

order to remain consistent with the optical theorem. This constraining the cross section is not mean-

ingful unless the experimental resolution reaches a certain threshold. Clearly, we can obtain a crude

estimation for the unitarity bounds by inserting a fixed cutoff value Λ. An appropriate framework for

dealing with this problem has been described in Refs. [96, 130, 131].

In Fig. 5.7, we show projections for the correlated bounds in planes gW,a2-gW,b2 and gW,a2-λ3.

The measurement of double-Higgs production in VBF mode at the 14 TeV LHC can determine gW,a2

and gW,b2 with similar precision, while the parameter λ3 is only weakly constrained. Increasing the

energy to 27 TeV and to 100 TeV, the precision improves as expected. The gain in sensitivity is

particularly striking for gW,b2 . This property is evident from the huge value of K5 in Table 5.5.

We note that gW,b2 contributes to the coupling of a Higgs pair to transversal W gauge bosons. The

emission of W bosons with transverse polarization from jets is unsuppressed at asymptotic energy,

while the coupling to longitudinally polarizedW s involves aW mass-mixing interaction and therefore

becomes subleading.

The ultimate precision on the parameters depends on the detector power and the experimental

analysis, which we do not discuss the details in this context. For gW,a2 and gW,b2, we can read off that

the sensitivities are ±10 % from Fig. 5.7. If a boosted-Higgs analysis can constrain the cross section

to ±3 fb and thus gW,a2 to 1 % precision [113], a constraint on gW,b2 of the order ±0.008 can be

obtained analogously. This is within the range of the loop-induced interaction strength for this vertex.

The numerical results also reflect the strong gauge cancellation which occurs between individual

terms of Eq. (5.36) in the SM limit. Some of coefficients Ki, such as K1,K2,K3, are one order of
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Figure 5.6: Total cross section after VBF cuts for the process pp→ hhjj as a function of the WWhh
couplings ga2 (upper row) and gb2 (lower row), for three different collider energies. The vertical lines

are unitarity bounds, which are derived from Eqs. (5.26-5.27) by inserting a specific value for the UV

cutoff ΛUV as marked in the figures.

magnitude larger than the cross section in the SM. Furthermore, in our conventions, all linear terms,

i.e. terms K1 gW,a2 , K3gW,b3 , K6κ5, and K10λ3, are negative. The sign of these interference terms is

retained when the collision energy increases from 14 TeV to 100 TeV.
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Figure 5.7: Projections for correlated bounds in the planes ga2-gb2 , ga2-λ3, from the process pp →
hhjj at three different collider energies.
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5.2.2 Triple Higgs production

For the hhhjj final state, the breakdown of the amplitude in terms of Feynman diagrams, Fig. 5.2, is

expressed as:

M(W+W− → hhh) = M1 +M2 +M3 +M4 +M5 +M6 +M7 (5.37)

M1 = A1gW,a1λ
2
3 +A2gW,a1λ3κ5 +A3gW,a1κ

2
5 +A4gW,b1λ

2
3

+ A5gW,b1λ3κ5 +A6gW,b1κ
2
5 (5.38)

M2 = B1gW,a1λ4 +B2gW,a1κ6 +B3gW,b1λ4 +B4gW,b1κ6 , (5.39)

M3 = C1gW,a2λ3 + C2gW,a2κ5 + C3gW,b2λ3 + C4gW,b2κ5 (5.40)

M4 = D1g
2
W,a1λ3 +D2g

2
W,a1κ5 +D3gW,a1gW,b1λ3

+ D4gW,a1gW,b1κ5 +D5g
2
W,b1λ3 +D6g

2
W,b1κ5 (5.41)

M5 = E1gW,a1gW,a2 + E2gW,a1gW,b2

+ E3gW,a2gW,b1 + E4gW,b2gW,b1 (5.42)

M6 = F1g
3
W,a1 + F2g

2
W,a1gW,b1 + F3gW,a1g

2
W,b1 + F4g

3
W,b1 (5.43)

M7 = G1gW,a3 +G2gW,b3 (5.44)

As we have done for double-Higgs production process, the cross section of the full process pp →
V V jj → hhhjj can be expressed as

σ(pp→ V V jj → hhhjj) =
∑

i

F hhhi Ai,hhh. (5.45)

To simplify the analysis, we assume that gW,a1, gW,a2, λ3 and gW,b1, gWb2, κ5 are known from

the measurements of single-Higgs and double-Higgs production to sufficient precision. We set their

values to their SM values within this section. Considering the parameters that only contribute to

triple-Higgs process, the cross section of the full process can be parameterized as

σ(pp→ V V jj → hhhjj) = C0 + C1gW,a3 + C2g
2
W,a3 + C3gW,b3 + C4gW,a3gW,b3 + C5g

2
W,b3

+ C6κ6 + C7gW,a3κ6 + C8gW,b3κ6 + C9κ
2
6 + C10λ4

+ C11gW,a3λ4 + C12gW,b3λ4 + C13κ6λ4 + C14λ
2
4 (5.46)

The coefficients Ci are computed numerically by WHIZARD. The results are listed in Table 5.6.

The numerical results allow us to derive the projected bounds on these parameters. The depen-

dence of the cross section on gW,a3 and gW,b3 are shown in Fig. 5.8, for the 100 TeV collider. For

reference, these plots also include the unitarity bounds derived from Eqs. (5.26-5.27), by choosing

an effective energy of s = Λ2 = (9 TeV)2. Since the SM cross section of the triple-Higgs process

pp → hhhjj is very small (4.50 × 10−2 fb), experimental data may not provide a measurement, but

an upper bound on the cross section, as well as exclusion limits for the anomalous couplings, should
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Figure 5.8: Total cross section after VBF cuts for the process pp → hhhjj as a function of the

WWhhh couplings ga3 and gb3 , for a 100 TeV collider. The vertical lines are unitarity bounds,

which are derived from Eqs. (5.26-5.27) by assuming the UV cutoff ΛUV = 9 TeV.

C0 C1 C2 C3 C4

14 TeV 6.18× 10−4 -9.42× 10−3 1.99× 10−1 -6.57× 10−4 2.11× 10−2

27 TeV 3.29× 10−3 -7.44× 10−2 2.974 -1.57× 10−2 3.02× 10−1

100 TeV 4.26× 10−2 - 1.74 6.01× 102 -1.96 1.09× 102

C5 C6 C7 C8 C9

14 TeV 4.80 −5.18× 10−3 2.05× 10−1 1.15× 10−2 5.30× 10−2

27 TeV 1.74× 102 -3.92× 10−2 3.02 2.09× 10−1 7.66× 10−1

100 TeV 9.36× 104 -1.13 6.08× 102 1.82× 101 1.53× 102

C10 C11 C12 C13 C14

14 TeV -6.19× 10−4 9.38× 10−3 5.91× 10−4 5.03× 10−2 2.60× 10−4

27 TeV -2.99× 10−3 6.44× 10−2 8.99× 10−3 3.38× 10−2 1.23× 10−3

100 TeV -3.33× 10−2 1.88 1.29 9.75× 10−1 1.47× 10−2

Table 5.6: Coefficients C0 −C14 (in fb) in the expression (5.46) for the process pp→ hhhjj at three

different collider energies.

be obtained. Assuming an experimental sensitivity to a cross section of 10 fb, it is found that in the 00

mode, the result already exceeds the unitarity bound for the chosen effective energy. The measurement

of triple-Higgs production process may not give meaningful constraint on gW,a3. By contrast, for the

++ mode which probes the parameter gW,b3 , the measurement can provide a constraint. As discussed

above, a more quantitative statement near the margin of unitarity saturation would require leaving the

straightforward EFT approximation [96, 130, 131]. This is beyond the scope of the present study.
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EFT projections for correlated bounds in terms of gW,a3-gW,b3 and gW,a3-λ4 can be found in

Fig. 5.9. Obviously, the coupling to transversal W bosons gW,b3 can be constrained more strongly

than the other couplings. The reason is that the numerical result of C5 in Table (5.6) is around 20

times larger than C2, and C2 is around 4 times larger. As described in the double-Higgs case, the

emission of transverse gauge bosons from the incoming partons at high energy is unsuppressed. In

fact, comparing the 14 TeV LHC to a 100 TeV collider, the enhancement factors of the coefficients of

C5 and C9 are 2× 104 and 3× 103, respectively. The leading on-shell amplitudes grow proportional

to s3, eqs. (5.26-5.27). The terms that depend on λ4 are subleading.

For a sensitivity limit of 10 fb at 100 TeV, Fig. 5.9(c) and Fig. 5.9(d) show that the parameter

gW,b3 can be bounded to around 2%, while gW,a3 is constrained to around 20%. This has to be

understood with the caveat of unitarity constraints, as discussed above. The parameter λ4 is also

constrained in Fig. 5.9(d), but this constraint is not expected to be improve on the measurement of

gg → hhh. For 27 TeV, the expected bounds are accordingly weaker.

5.2.3 Multi-Higgs boson production with a strongly-interacting Higgs sector

In the previous sections, we assume that the parameters in Eq. 3.2 can be determined precisely, and

their values are close to the SM predictions. We can derive the bounds on models with strongly-

interacting Higgs sector.

Composite Higgs models allow the hV V couplings (gW,a1 and gW,a2) and the Higgs self-couplings

(λ3, λ4) deviate from their SM values sizablely. In this subsection, we consider a model where these

couplings take arbitrary values, but the other parameters are fixed to their respective SM values,

ga3 = gb1 = gb2 = gb3 = ξ5 = ξ6 = 0, to simplify the interpretation. Data from the measurements

of multi-Higgs production can be a supplementary to the Higgs property obtained from lower-order

processes. This model corresponds to the truncated EFT in the SILH Lagrangian (3.9), without re-

stricting the parameters to small values. The Higgs inflation model which is introduced in Sec. 3.3

leads to an effective model of this class.

The tree-level cross section for pp→ hhjj is parameterized as

σ(pp→ V V jj → hhjj) = D0g
4
W,a1 +D1g

2
W,a1gW,a2 +D2g

2
W,a2

+ D3g
3
W,a1λ3 +D4gW,a1gW,a2λ3

+ D5g
2
W,a1λ

2
3, (5.47)

where Di can be computed numerically, and we have made use of the structure of the tree-level

amplitude to limit the powers of the couplings that can appear.
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Figure 5.9: Projections for correlated bounds in the planes ga3-gb3 , ga3-λ4, from the process pp →
hhhjj at 27 TeV and 100 TeV colliders.

Similarly, the cross section for pp→ hhhjj is parameterized as

σ(pp→ V V jj → hhhjj) = T0g
6
W,a1 + T1g

4
W,a1gW,a2 + T2g

2
W,a1g

2
W,a2

+ T3g
5
W,a1λ3 + T4g

3
W,a1gW,a2λ3 + T5gW,a1g

2
W,a2λ3

+ T6g
4
W,a1λ

2
3 + T7g

2
W,a1gW,a2λ

2
3 + T8g

2
W,a2λ

2
3

+ T9g
3
W,a1λ

3
3 + T10gW,a1gW,a2λ

3
3

+ T11g
2
W,a1λ

4
3

+ T12g
4
W,a1λ4 + T13g

2
W,a1gW,a2λ4

+ T14g
3
W,a1λ3λ4 + T15gW,a1gW,a2λ3λ4

+ T16g
2
W,a1λ

2
3λ4

+ T17g
2
W,a1λ

2
4 . (5.48)
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As before, the coefficientsDi and Ti are computed numerically by WHIZARD. The results are list

in Table 5.7 and Table 5.8, respectively. The numerical values are large and rise rapidly with energy.

In Table 5.7, we observe a cancellation among D0, D1, and D2. These coefficients are independent

of λ3. Another cancellation occurs between D3 and D4. Cancellations between terms also occur in

Table 5.8. In the SM limit, all terms proportional to positive powers of s must be vanish.

To eliminate such partial cancellations, we choose another method to parameterize the cross sec-

tion. Defining δg2 =
g2
g2
1

− 1, we can express the cross section in the following form

σ(pp→ V V jj → hhhjj) = g6W,a1(T
′
0 + T ′

1δgW,a2 + T2δg
2
W,a2)

+ g5W,a1λ3(T
′
3 + T ′

4δgW,a2 + T5δg
2
W,a2)

+ g4W,a1λ
2
3(T

′
6 + T ′

7δgW,a2 + T8δg
2
W,a2)

+ g3W,a1λ
3
3(T

′
9 + T10δgW,a2)

+ g2W,a1λ
4
3T11

+ g4W,a1λ4(T
′
12 + T13δgW,a2)

+ g3W,a1λ3λ4(T
′
14 + T15δgW,a2)

+ g2W,a1λ
2
3λ4T16

+ g2W,a1λ
2
4T17 . (5.49)

It is not necessary to assume the δg values to be small.

The numerical results of the primed coefficients are given in Table 5.9. The cancellations that

we absorb by redefining the coefficients are numerically relevant. Cancellation that occur between

(T0,T1,T2) yields T ′
0, while the cancellation between (T1,T2) yields T ′

1. At the energy of the LHC,

the original coefficient T2 is 8 × 102 larger than T ′
0. At 100 TeV collider, the cancellation removes a

factor of 4.5×104, due to the s3 enhancement of T2. Similar cancellations occur for (T3, T4, T5), (T6,

T7, T8), (T9, T10), (T12, T13) and (T14, T15). Furthermore, we also observe that T2 is 25 times larger

than T ′
1 at 14 TeV, and 600 times larger than T ′

1 at 100 TeV.

From Eq. 5.26 and Eq. 5.27, we know that the amplitudes of the process pp → hhhjj are pro-

portional to s3. So the enhancement of the ratio of leading coefficients T0 − T2 at a 100 TeV and the

LHC 14TeV is around 3000, which is one order magnitude larger than that of D0 −D2 in the process

pp → hhjj, as demonstrated in Tables 5.7 and 5.8, respectively. The coefficients T3 − T5 represent

the subdominant contribution, which is one order of magnitude smaller than T0 − T2.

These results demonstrate the exceptional behavior of the SM as a gauge theory. All positive

powers of s in the amplitude cancel and disappear in the SM limit. For phenomenological estimates

at ultra-high energies, it is important to split off the SM part in such amplitudes and cross sections,

even if the deviation from the SM is not small.

As a final result for this model, Fig. 5.10 shows the contours of constant cross section for pp →
hhjj at the LHC and a 100 TeV collider in the ga1 − ga2 plane, respectively. Similarly, in Fig. 5.11
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√
s D0 D1 D2 D3 D4 D5

14 TeV 24.05 -34.29 13.01 -6.56 4.14 0.75

27 TeV 112.02 -171.54 69.58 -23.84 15.57 2.56

100 TeV 1854.13 - 3237.30 1466.21 -192.03 132.68 18.10

Table 5.7: Coefficients D0 −D5 (in fb) in the expression (5.47) for the process pp → hhjj at three

different collider energies.

T0 T1 T2 T3 T4 T5

14 TeV 3.81 -7.47 3.66 -0.84 1.41 -0.58

27 TeV 5.17× 101 - 1.02× 102 5.08× 101 -5.99 1.04× 101 -4.48

100 TeV 1.00× 104 - 2.00× 104 1.00× 104 -2.02× 102 3.70× 102 -1.69× 102

T6 T7 T8 T9 T10 T11

14 TeV 0.11 -0.14 3.83× 10−2 -9.19× 10−3 5.81× 10−3 3.53× 10−4

27 TeV 5.89× 10−1 -7.66× 10−1 2.28× 10−1 -3.97× 10−2 2.59× 10−2 1.40× 10−3

100 TeV 7.66 - 10.12 2.99 -0.40 2.74× 10−1 1.24× 10−2

T12 T13 T14 T15 T16 T17

14 TeV 4.43× 10−2 - 4.25× 10−2 -9.03× 10−3 6.01× 10−3 5.38× 10−4 2.60× 10−4

27 TeV 2.88× 10−1 -2.80× 10−1 -4.40× 10−2 3.03× 10−2 2.28× 10−3 1.24× 10−3

100 TeV 7.68 - 7.58 -0.53 0.38 2.20× 10−2 1.47× 10−2

Table 5.8: Coefficients T0 − T17 (in fb) in the expression (5.48) for the process pp→ hhhjj at three

different collider energies.

we show the exclusion regions in the ga1 − ga2 and ga1 − λ3 planes that can be derived from a cross

section measurement for pp → hhhjj. We note that there are two points in parameter space whose

cross sections are as small as the SM prediction: the first point corresponds to ga1 ∼ 0; the second

point corresponds to the case g2a1 − ga2 ∼ 0. The first point is inconsistent with the observation of

single-Higgs boson production in VBF, so only the second one is allowed.

For the specific case of the Higgs-inflation model, we compare the ratio of cross sections of

pp → hhjj and pp → hhhjj to their SM prediction at the LHC and a 100 TeV collider. The result

may be expressed in terms of x̂ = 6ξ2v2/M2
p , which is shown in Fig. 5.12.

5.3 Discussion for the backgrounds

An precise determination of the parameters of Eq. 3.2 involves a detail signal-background analysis. In

this section we briefly review the phenomenology of the dominant final states that need to be analyzed

in an experiment.
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T ′
0 T ′

1 T ′
3 T ′

4

14 TeV 4.96× 10−3 -1.45× 10−1 -1.34× 10−2 2.43× 10−1

100 TeV 2.25× 10−1 - 1.64× 101 -5.88× 10−1 3.14× 101

Ratio 45.36 113.10 43.88 129.22

T ′
6 T ′

7 T ′
9 T ′

14

14 TeV 1.12× 10−2 -6.34× 10−2 -3.38× 10−3 -3.02× 10−3

100 TeV 5.24× 10−1 - 4.14 -1.28× 10−1 1.51× 10−1

Ratio 46.79 65.30 37.87 50.00

Table 5.9: Redefined coefficients T ′
0−T ′

17 (in fb) in the expression (5.49) for the process pp→ hhhjj
at two different collider energies.

The decay channels of a triple-Higgs state have been considered in Ref. [71]. In particular, the

decay channels hhh→ bb̄bb̄γγ and hhh→ bb̄WW ∗WW ∗ have been studied for the ggF process [70,

71, 9]. For concreteness, we focus on three final states: 6b, 4b2τ , and 4b2W . We discuss their signal

and background, referring to SM values of branching ratios and cross sections at 100 TeV collider.

The 6b final state, hhh → bb̄bb̄bb̄, has a branching ratio 20.30%. One of the main background

for this final state is pp → htt̄, which can decay to 4b+jets. After applying the VBF cuts, we find

that the σ × BR of this background is 3.48× 104 ab at 100 TeV collider. It is challenging to further

reduce this background by standard b-tagging techniques. The pp → htt̄jj background may become

dominant after applying the VBF cuts. In this case, we consider the invisible decay of Higgs and the

top quarks decay to bb̄+jets. Current data show that the branching ratio of the invisible Higgs decay is

smaller than 24% [11]. We calculate the cross section of this process by Madgraph5. After the VBF

cuts, the maximized σ×BR of this background is 1.06× 106 ab. Assuming the b-tagging effecience

is 70% and the mistagging rate is 10%, this background can be further reduced by two orders of

magnitude. Because of the invisible decay of Higgs, a large missing energy should be observed.

Applying a missing energy cut can further reduce this background. In a realistic collider experiment,

parton shower effects and pileup may lead to hard jets radiation from the signal. In this case, we have

to consider the h → bb̄ decay of the pp → htt̄jj background. This is a complicate problem because

it depends on the power of the future detector and a full detector simulation is necessasry, which is

beyond the scope of current work.

Similarly, for the 4b2τ final state, the process pp → htt̄ is also the main background, whose

branching ratio is 7.16%. This can be suppressed by using 3b-tagging and τ -tagging techniques.

The channel hhh → bb̄bb̄WW ∗ has the largest branching ratio [71]. The preferred decay chan-

nels of the WW ∗ system are the semi-leptonic and fully-leptonic decays, whose branching ratios are

3.21% and 1.01%, respectively. Assuming that at a 100 TeV collider with an integrated luminosity of

30 ab−1, we obtain 44 and 14 signal events, respectively. The dominant backgrounds of this channel

include pp→ htt̄+jets, pp→ Ztt̄+jets, pp→ bb̄tt̄+jets, etc. VBF cuts reduce these backgrounds by

two orders of magnitude, but they are still six orders of magnitude larger than the signal.
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Figure 5.10: Projections for correlated bounds in the planes ga1-ga2 and ga1-λ3, from the process

pp→ hhjj with a strongly interacting Higgs sector at two different collider energies.

We conclude that an unambiguous discovery of a SM triple-Higgs signal in the VBF mode remains

a real challenge. In the presence of new physics, particularly if the Higgs sector is strongly interacting,

cross sections can be enhanced by two orders of magnitude, so in that case the situation is more

promising.
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Figure 5.11: Projections for correlated bounds in the planes ga1-ga2 and ga1-λ3, from the process

pp→ hhhjj at a 100 TeV collider.
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Figure 5.12: Cross section normalized to the SM cross section for the processes pp → hhjj and

pp→ hhhjj, as a function of the parameter x̂ in a Higgs-inflation model.



Chapter 6

Conclusion and Discussion

The SM is proven to be a successful theory to describe elementary particles and their interactions.

However, some experimental measurements also suggest that the SM is not the final answer of our

universe, and new physics beyond SM should exist. After the discovery of Higgs boson, measure-

ments on its property and couplings to SM particles become essential to search for new physics. A

complete knowledge of the Higgs potential and electroweak symmetry breaking cannot be obtained

without the information of Higgs triple and quartic self-couplings. Measurements of these couplings

involve multi-Higgs production processes, whose production rates are small at LHC. The cross sec-

tions of multi-Higgs production processes are enhanced significantly at 100 TeV hadron collider, so it

is interesting to study multi-Higgs production at such machine.

New physics effects may contribute to multi-Higgs production processes and enhance the cross

sections. To study the new physics effects, we introduced an effective Lagrangian, Eq. 3.2. Measure-

ments of multi-Higgs production processes can determine these parameters. The generic Lagrangian

defined by Eq. 3.2 can be related to other models. Strongly-Interacting Light Higgs model and Higgs

inflation model are two examples.

At a hadron collider, gluon-gluon fusion is the dominant process of multi-Higgs production. We

have explored the discovery potential for gg → hhh via the 2b2l±4j + /E decay channel at a 100

TeV hadron collider. Parton-level results show that the mT2 variable is useful to find the correct

combinations of the visible objects that originate from Higgs boson decay, and to suppress background

efficiently. However, once parton shower and detector effects are properly accounted for, extracting

the SM signal becomes a real challenge. Two main problems are that (1) the transverse momentum of

the softest jet from Higgs boson decay is around 10 GeV, which makes it difficult to reconstruct; (2)

since there are six jets in the final state, the lepton isolation condition rejects most of the signal events.

Our effective field theory analysis shows that a sizable coefficient for a derivative operator can

modify the kinematical distributions of the visible objects in the final states. In this case, a reconstruc-

tion of the triple-Higgs signal becomes feasible. We also investigate the potential of such a measure-

ment to improve on constraints which is already obtained from single and double-Higgs production

data. It turns out that while those processes are generally more powerful in constraining parameters
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of Eq. 3.2, the triple-Higgs signal can be a supplementary and reduces the allowed parameter space.

The subdominant process of multi-Higgs production in hadron collisions is vector-boson-fusion.

Even at a 100 TeV hadron collider, observing the multi-Higgs final state via this mode is very difficult

if the SM is valid. Measurement for this process can nevertheless improve our knowledge about

the interactions of the Higgs field. Our numerical results show that anomalous couplings can spoil

the delicate gauge cancellations of the SM, and therefore can lead to an increase in rates of several

orders of magnitude. Turning this around, putting bounds on vector-boson-fusion process does yield

meaningful constraints on parameter space.

We also derive the generic formalism of unitarity to vector-boson-fusion process. Applying the

generic formalism, we can figure out the energy-dependent region of parameter space where the model

can still be considered as valid. We find that couplings of multiple Higgs fields to transverse polarized

vector bosons can be constrained within that region, while constraints on couplings to longitudinally

polarized vector fields become only marginally useful. In that case, for a detailed and quantitative

assessment of the experimental resolution power, the straightforward effective theory approach should

be replaced by parameterized unitary models as a physically more reliable source of simulated data.

For an alternative interpretation of the same measurements, we have investigated two more specific

models. The first one is the Strongly-Interacting Light Higgs effective Lagrangian. The operator series

expansion is truncated at dimension six but the higher-dimensional coefficients are not restricted to

small values. The second one is the Higgs inflation models, which is considered as a connection

between Higgs physics and cosmology. For both models, we perform the numerical computation

of multi-Higgs production process, and show appropriate projections for the achievable bounds in

parameter space at future hadron colliders, namely at the proposed 27 TeV HE-LHC and at a future

100 TeV collider.



Appendix A

Numerical cross sections of gg → h,

gg → hh, and gg → hhh

The cross section of gg → h can be parameterized as

σ(gg → h) = Kh × (
3
∑

i=1

F hi C
i,h) , (A.1)

where the integrated form factors F hi and the coefficients Ci,h are given in Table A.1, andKh denotes

the K-factor. The unit of F hi is pb.

It is found that values of F hi given in Table (A.1) do produce a positive definite cross section of

gg → h.

The cross section of gg → hh at 14 TeV LHC and a 100 TeV collider can be parameterized as

σ(gg → hh) = K2h × (
27
∑

i=1

F 2h
i Ci,2h) , (A.2)

where the integrated form factors F 2h
i and the coefficients Ci,2h are given in Table A.2 and Table

A.3. K2h denotes the K-factor, which is equal to 2.20 for the LHC 14 TeV and 2.17 for the 100 TeV

collision, respectively. The unit of F 2h
i in these two tables is fb.

Kh C1,h = a21 C2,h = a1c1 C3,h = c21

14 TeV 2.85 F h1 = 19.15 F h2 = 36.05 F h3 = 17.14

100 TeV 2.24 F h1 = 357.53 F h2 = 687.04 F h3 = 332.79

Table A.1: The numerical value of F h1 − F h3 at hadron colliders in Eq. (A.1).
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C2h C2h C2h

F 2h
1 = 36.17 a1

4 F 2h
2 = −74.13 a1

2a2 F 2h
3 = 44.58 a2

2

F 2h
4 = −32.32 a1

2c2 F 2h
5 = 43.31 a2c2 F 2h

6 = 23.34 c2
2

F 2h
7 = −48.98 a1

3κ5 F 2h
8 = 56.9 a1a2κ5 F 2h

9 = −22.96 a1
2c1κ5

F 2h
10 = 29.01 a2c1κ5 F 2h

11 = 28.9 a1c2κ5 F 2h
12 = 29.06 c1c2κ5

F 2h
13 = 18.54 a1

2κ5
2 F 2h

14 = 19.78 a1c1κ5
2 F 2h

15 = 9.32 c1
2κ5

2

F 2h
16 = −23.87 a1

3λ3 F 2h
17 = 24.71 a1a2λ3 F 2h

18 = −13.7 a1
2c1λ3

F 2h
19 = 14.78 a2c1λ3 F 2h

20 = 14.53 a1c2λ3 F 2h
21 = 11.36 c1c2λ3

F 2h
22 = 17.28 a1

2κ5λ3 F 2h
23 = 21.3 a1c1κ5λ3 F 2h

24 = 8.19 c1
2κ5λ3

F 2h
25 = 4.94 a1

2λ3
2 F 2h

26 = 6.68 a1c1λ3
2 F 2h

27 = 2.53 c1
2λ3

2

Table A.2: The numerical value of F 2h
1 − F 2h

27 at the LHC 14 TeV in Eq. (A.2).

C2h C2h C2h

F 2h
1 = 1565.1 a1

4 F 2h
2 = −3346.56 a1

2a2 F 2h
3 = 2274.94 a2

2

F 2h
4 = −1232.43 a1

2c2 F 2h
5 = 1790.73 a2c2 F 2h

6 = 2407.17 c2
2

F 2h
7 = −2133.02 a1

3κ5 F 2h
8 = 2781.8 a1a2κ5 F 2h

9 = −857.36 a1
2c1κ5

F 2h
10 = 1174.17 a2c1κ5 F 2h

11 = 1202.36 a1c2κ5 F 2h
12 = 2651.46 c1c2κ5

F 2h
13 = 866.44 a1

2κ5
2 F 2h

14 = 797.2 a1c1κ5
2 F 2h

15 = 745.46 c1
2κ5

2

F 2h
16 = −924.06 a1

3λ3 F 2h
17 = 1014.84 a1a2λ3 F 2h

18 = −494. a1
2c1λ3

F 2h
19 = 567. a2c1λ3 F 2h

20 = 604.62 a1c2λ3 F 2h
21 = 510.85 c1c2λ3

F 2h
22 = 679.86 a1

2κ5λ3 F 2h
23 = 817.06 a1c1κ5λ3 F 2h

24 = 342.33 c1
2κ5λ3

F 2h
25 = 172.4 a1

2λ3
2 F 2h

26 = 232.94 a1c1λ3
2 F 2h

27 = 88.15 c1
2λ3

2

Table A.3: The numerical value of F 2h
1 − F 2h

27 at a 100 TeV collider in Eq. (A.2).

The largest absolute value goes to the coefficient F 2h
2 , which is 74.13 and 3346.56 for either 14

TeV or 100 TeV cases. The minimal absolute value goes to the coefficient F 2h
27 , which is 2.53 for 14

TeV and 88.15 for 100 TeV case.

Compared with those of the 14 TeV case, most of coefficients can be enhanced by a factor around

40 or so for the 100 TeV case. Among them, the coefficients F 2h
6 , F 2h

12 and F 2h
15 have the largest

enhancements from 14 TeV to 100 TeV collisions, and they are 103.1, 91.2, and 79.9, respectively.

In order to guarantee the positive and definite results of the cross section of all points in the

parameter space, the contribution of b quark should be removed from the diagrams. Otherwise, a

more general parameterisation of the cross section should be introduced. Furthermore, we have used

more than 5,000 points in the parameter space of a2, c2, κ5, and λ3 to determine these F 2h
i after taking

into account the constraints on parameters a1 and c1 from the projected precision in the measurement

of σ(gg → h). The positivity and definiteness of the cross sections are examined to be hold in a

random scan in the parameter space of a2, c2, κ5, and λ3 with a total number of points 107. If a1 and

c1 can significantly deviate from the values of the SM, these results might not be valid anymore.
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The cross section of gg → hhh at a 100 TeV collider can be parameterized as

σ(gg → hhh) = K3h × (
154
∑

i=1

F 3h
i Ci,3h) , (A.3)

where the integrated form factors F 3h
i and the coefficients Ci,3h are given in Table A.4 and Table A.5.

K denotes the K-factor which is taken as 2.1. The unit of F 3h
i is fb. We have used more than 12,000

points to determine these F 3h
i .

The largest absolute coefficient is F 3h
30 . In contrast, the smallest absolute coefficients are F 3h

81 and

F 3h
83 .

After taking into account the constraints on parameters a1 and c1 from the projected precision

data of σ(gg → h) and the constraints on parameters a2, c2, λ3 and κ5 from the projected precision

data of σ(gg → hh), the positivity and definiteness of the cross sections are examined to be hold in a

random scan in the parameter space of a3, λ4 and κ6 with a total number of points 107.
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C3h C3h C3h

F 3h
1 = 7.47 a1

6 F 3h
2 = −19.58 a1

4a2 F 3h
3 = 31.31 a1

2a2
2

F 3h
4 = −1.57 a1

3a3 F 3h
5 = −18.57 a1a2a3 F 3h

6 = 11.62 a3
2

F 3h
7 = −13.69 a1

5κ5 F 3h
8 = 38.21 a1

3a2κ5 F 3h
9 = −35.02 a1a2

2κ5

F 3h
10 = −11.93 a1

2a3κ5 F 3h
11 = 40.49 a2a3κ5 F 3h

12 = −12.54 a1
3c2κ5

F 3h
13 = 68.7 a1a2c2κ5 F 3h

14 = −43.97 a3c2κ5 F 3h
15 = 12.32 a1

4κ5
2

F 3h
16 = −48.4 a1

2a2κ5
2 F 3h

17 = 35.74 a2
2κ5

2 F 3h
18 = 28.13 a1a3κ5

2

F 3h
19 = −9.72 a1

3c1κ5
2 F 3h

20 = 46.85 a1a2c1κ5
2 F 3h

21 = −28.8 a3c1κ5
2

F 3h
22 = 44.85 a1

2c2κ5
2 F 3h

23 = −61.34 a2c2κ5
2 F 3h

24 = 935.73 c2
2κ5

2

F 3h
25 = −16.66 a1

3κ5
3 F 3h

26 = 49.63 a1a2κ5
3 F 3h

27 = 30.55 a1
2c1κ5

3

F 3h
28 = −40.08 a2c1κ5

3 F 3h
29 = −33.7 a1c2κ5

3 F 3h
30 = 1244.83 c1c2κ5

3

F 3h
31 = 17.29 a1

2κ5
4 F 3h

32 = −21.77 a1c1κ5
4 F 3h

33 = 414.36 c1
2κ5

4

F 3h
34 = −0.57 a1

4κ6 F 3h
35 = −10.98 a1

2a2κ6 F 3h
36 = 12.06 a1a3κ6

F 3h
37 = −2.73 a1

3c1κ6 F 3h
38 = 20.91 a1a2c1κ6 F 3h

39 = −14.48 a3c1κ6

F 3h
40 = −6.95 a1

3κ5κ6 F 3h
41 = 21.22 a1a2κ5κ6 F 3h

42 = 13.81 a1
2c1κ5κ6

F 3h
43 = −20.28 a2c1κ5κ6 F 3h

44 = −22.57 a1c2κ5κ6 F 3h
45 = 609.84 c1c2κ5κ6

F 3h
46 = 14.81 a1

2κ5
2κ6 F 3h

47 = −25.91 a1c1κ5
2κ6 F 3h

48 = 406.05 c1
2κ5

2κ6

F 3h
49 = 3.17 a1

2κ6
2 F 3h

50 = −7.38 a1c1κ6
2 F 3h

51 = 99.6 c1
2κ6

2

F 3h
52 = −7.66 a1

5λ3 F 3h
53 = 19.44 a1

3a2λ3 F 3h
54 = −15.69 a1a2

2λ3

F 3h
55 = −5.8 a1

2a3λ3 F 3h
56 = 11.98 a2a3λ3 F 3h

57 = −6.43 a1
3c2λ3

F 3h
58 = 13.84 a1a2c2λ3 F 3h

59 = −0.21 a3c2λ3 F 3h
60 = 14.43 a1

4κ5λ3

F 3h
61 = −37.05 a1

2a2κ5λ3 F 3h
62 = 22.98 a2

2κ5λ3 F 3h
63 = 9.86 a1a3κ5λ3

F 3h
64 = −5.78 a1

3c1κ5λ3 F 3h
65 = 10.78 a1a2c1κ5λ3 F 3h

66 = 0.4 a3c1κ5λ3

F 3h
67 = 9.62 a1

2c2κ5λ3 F 3h
68 = 2.49 a2c2κ5λ3 F 3h

69 = 73.58 c2
2κ5λ3

F 3h
70 = −18.8 a1

3κ5
2λ3 F 3h

71 = 35.59 a1a2κ5
2λ3 F 3h

72 = 7.37 a1
2c1κ5

2λ3

F 3h
73 = 3.23 a2c1κ5

2λ3 F 3h
74 = 4.32 a1c2κ5

2λ3 F 3h
75 = 97.65 c1c2κ5

2λ3

Table A.4: The numerical value of F1 − F75 at 100TeV hadron collider in Eq. (A.3).
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C3h C3h C3h

F 3h
76 = 13.75 a1

2κ5
3λ3 F 3h

77 = 4.16 a1c1κ5
3λ3 F 3h

78 = 32.71 c1
2κ5

3λ3

F 3h
79 = −3.37 a1

3κ6λ3 F 3h
80 = 6.86 a1a2κ6λ3 F 3h

81 = 0.01 a1
2c1κ6λ3

F 3h
82 = 0.57 a2c1κ6λ3 F 3h

83 = −0.01 a1c2κ6λ3 F 3h
84 = 22.56 c1c2κ6λ3

F 3h
85 = 5.58 a1

2κ5κ6λ3 F 3h
86 = 1.29 a1c1κ5κ6λ3 F 3h

87 = 14.88 c1
2κ5κ6λ3

F 3h
88 = 4.32 a1

4λ3
2 F 3h

89 = −8.46 a1
2a2λ3

2 F 3h
90 = 5.24 a2

2λ3
2

F 3h
91 = 0.99 a1a3λ3

2 F 3h
92 = −0.53 a1

3c1λ3
2 F 3h

93 = 0.37 a1a2c1λ3
2

F 3h
94 = 0.29 a3c1λ3

2 F 3h
95 = 1.19 a1

2c2λ3
2 F 3h

96 = 2.32 a2c2λ3
2

F 3h
97 = 7.71 c2

2λ3
2 F 3h

98 = −7.67 a1
3κ5λ3

2 F 3h
99 = 11.39 a1a2κ5λ3

2

F 3h
100 = 0.94 a1

2c1κ5λ3
2 F 3h

101 = 3.02 a2c1κ5λ3
2 F 3h

102 = 3.06 a1c2κ5λ3
2

F 3h
103 = 12.29 c1c2κ5λ3

2 F 3h
104 = 5.69 a1

2κ5
2λ3

2 F 3h
105 = 3.39 a1c1κ5

2λ3
2

F 3h
106 = 5. c1

2κ5
2λ3

2 F 3h
107 = 0.58 a1

2κ6λ3
2 F 3h

108 = 0.41 a1c1κ6λ3
2

F 3h
109 = 0.36 c1

2κ6λ3
2 F 3h

110 = −0.96 a1
3λ3

3 F 3h
111 = 1.18 a1a2λ3

3

F 3h
112 = −0.06 a1

2c1λ3
3 F 3h

113 = 0.44 a2c1λ3
3 F 3h

114 = 0.41 a1c2λ3
3

F 3h
115 = 0.69 c1c2λ3

3 F 3h
116 = 1.14 a1

2κ5λ3
3 F 3h

117 = 0.85 a1c1κ5λ3
3

F 3h
118 = 0.6 c1

2κ5λ3
3 F 3h

119 = 0.09 a1
2λ3

4 F 3h
120 = 0.07 a1c1λ3

4

F 3h
121 = 0.04 c1

2λ3
4 F 3h

122 = 0.16 a1
4λ4 F 3h

123 = −1.54 a1
2a2λ4

F 3h
124 = 0.96 a1a3λ4 F 3h

125 = −0.59 a1
3c1λ4 F 3h

126 = 0.9 a1a2c1λ4

F 3h
127 = 0.11 a3c1λ4 F 3h

128 = −1.08 a1
3κ5λ4 F 3h

129 = 1.86 a1a2κ5λ4

F 3h
130 = 0.56 a1

2c1κ5λ4 F 3h
131 = 0.28 a2c1κ5λ4 F 3h

132 = 0.24 a1c2κ5λ4

F 3h
133 = 3.71 c1c2κ5λ4 F 3h

134 = 1.35 a1
2κ5

2λ4 F 3h
135 = 0.47 a1c1κ5

2λ4

F 3h
136 = 2.54 c1

2κ5
2λ4 F 3h

137 = 0.54 a1
2κ6λ4 F 3h

138 = 0.17 a1c1κ6λ4

F 3h
139 = 1.15 c1

2κ6λ4 F 3h
140 = −0.65 a1

3λ3λ4 F 3h
141 = 0.91 a1a2λ3λ4

F 3h
142 = 0.08 a1

2c1λ3λ4 F 3h
143 = 0.28 a2c1λ3λ4 F 3h

144 = 0.22 a1c2λ3λ4

F 3h
145 = 0.85 c1c2λ3λ4 F 3h

146 = 0.83 a1
2κ5λ3λ4 F 3h

147 = 0.48 a1c1κ5λ3λ4

F 3h
148 = 0.68 c1

2κ5λ3λ4 F 3h
149 = 0.11 a1

2λ3
2λ4 F 3h

150 = 0.08 a1c1λ3
2λ4

F 3h
151 = 0.06 c1

2λ3
2λ4 F 3h

152 = 0.04 a1
2λ4

2 F 3h
153 = 0.03 a1c1λ4

2

F 3h
154 = 0.03 c1

2λ4
2

Table A.5: The numerical value of F76 − F154 at 100TeV hadron collider in Eq. (A.3).



Appendix B

Details for the derivation of unitarity

constraints

In this appendix, we provide the explict derivation and its connection to the generic formulas in

Chapter 5. The derivation is not only applied to 2→ 2 scattering, but also to 2→ n scattering.

B.1 2→ 2 scattering

In this section, we derive the unitarity for 2 → 2 scattering. It applys to any combination of two-

particle initial and final states a and b, respectively. For a two-particle state vector |α,Φa〉, working in

the center of mass frame, it is convenient to choose the polar angle θa and azimuthal angle φa as phase-

space parameters. In this case, the normalized kinematics variables are ~xa = (12(cos θa+1), φa2π ). The

Jacobian determinant is given by

Ja =
1

8π

1

Sα
s−1
√

[s− (ma1 +ma2)2][s− (ma1 −ma2)2] (B.1)

where ma1,ma2 are the masses of particles in initial state a. Sα is the symmetry factor that accounts

for identical particles in a with quantum-number combination α: if the two particles are identical then

Sα = 2, otherwise Sα = 1.

Following Ref. [132], in the center of mass frame, the scattering matrix from the two-particle state

|α,Φa〉 to |β,Φb〉 can be written as1

Mβα(xb, xa) ≡J
1

2

b 〈β, θb, φb|M|α, θa, φa〉J
1

2
a

=2
∑

j

(2j + 1)aαβj Dj
λαλβ

(ζ1, ζ2, ζ3)

=2
∑

j,m

(2j + 1)aαβj Dj∗
mλα

(φa, θa, 0)D
j
mλβ

(φb, θb, 0)

(B.2)

1To be consistent with the explicit choice of polarization vector in Eq. B.6, our phase convention differs from Ref. [132].
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where θa (θb) are the polar angles and φa (φb) are the azimuthal angles for the states |α,Φa〉 (|β,Φb〉),
respectively. ζ1, ζ2, and ζ3 denote corresponding Euler angles of the rotation from direction (θa, φa)

to direction (θb, φb). The four-momenta of these particles can be parametrized in terms of polar and

azimuthal angles

pµ = (E, |~p| sin θ cosφ, |~p| sin θ sinφ, |~p| cos θ) (B.3)

When the particle is a massive vector boson, the polarization states are defined as follows:

|p,+〉 = 1√
2
(0, cosφ cos θ + i sinφ, sinφ cos θ − i cosφ,− sin θ) (B.4)

|p,−〉 = 1√
2
(0, cosφ cos θ − i sinφ, sinφ cos θ + i cosφ,− sin θ) (B.5)

|p, 0〉 =(
|~p|
m
,
p0

m
sin θ cosφ,

p0

m
sin θ sinφ,

p0

m
cos θ) (B.6)

where m =
√

E2 − |~p|2.

This expansion suggests that we choose the Wigner D-matrix is an orthonormal basis for the 2-

particle phase spaces,

Hα
jm(~x) =

√

2j + 1Dj∗
mλα

(φa, θa, 0) (B.7)

As a result, in the scattering amplitude between two-particle states the corresponding amplitude a

becomes diagonal and depends only on one index:

aαβjm,j′m′ = δjj′δmm′aαβj (B.8)

where we introduce reduced a-coefficients aαβj .

Similarly, the b-coefficients can be reduced to a one-index version:

bαβjm =
∑

j′m′

|aαβjm,j′m′ |2 = |aαβj |2 (B.9)

So the set of unitarity conditions is thus reduced to

|Re aααj | ≤
1

2
(B.10)

|Im aααj −
1

2
| ≤1

2
(B.11)

∑

β 6=α

bαβj =
∑

β 6=α

|aαβj |2 ≤
1

4
(B.12)

These conditions are equivalent to those in Refs. [121, 133, 134], if only 2→ 2 processes are consid-

ered.
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B.2 2→ n scattering: general idea

The unitarity conditions (5.13) do not depend on the features of the intermediate state c, which can be

any n-particle state. The conditions can be expressed in terms of b coefficients,

bαγA ≡
1

4

∫

dxadxbdxcH
α∗
A (xa)H

α
A(xb)M

γα∗(xc, xb)M
γα(xc, xa) ≤

1

4
(B.13)

which by construction are independent of the phase-space parameterization pertaining to Φc. γ repre-

sent discrete quantum numbers of the intermediate state c.

In analogy to the 2 → 2 case, we may use any orthonormal basis for the initial two-particle state

a. Choosing the same Wigner D-matrix expansion is most convenient. However, due to angular-

momentum conservation, the b coefficients only depend on one index

bαγjm ≡ b
αγ
jm′ ≡ bαγj , (B.14)

but is independent of the complexity of the intermediate states c.

At this point, we may discuss the connection to literature on this subject [122, 123, 125].

• In Refs. [122, 123], unitarity constraints are formulated for the total cross section of 2 → n

scattering with a assumption that the j = 0 partial wave (s-wave) is dominant. This assumption

applies to some subsets of the states that we consider here, but clearly is not justified for the

generic case of polarized vector-boson scattering.

In fact, with our notation, the cross section for a → c with discrete quantum numbers α, γ is

given by:

σαγ(a→ c) =
16πSαs

[s− (ma1 +ma2)2][s− (ma1 −ma2)2]

∑

j

(2j + 1)bαγj (B.15)

where bj are the reduced b-coefficients after choosing the Wigner D-matrix as basis.

Assuming that the j = 0 partial wave dominates in the high-energy limit, we obtain

σαγ(a→ c) ≈ 16πSα
s

bαγ0 ≤
4πSα
s

(B.16)

which is equivalent to the result of Ref. [122, 123]. This inequality applies to any polarized

cross section and could provide a stronger bound than its equivalent for an unpolarized cross

section.

• Ref. [125] considers a more generic case of 2 → n scattering without s-wave dominance,

but restricts the derivation to spin-less particles. In that case, the Wigner D-matrix formalism

collapses to the familiar formalism of Legendre polynomials and spherical harmonics. By the
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general relation

Pl(cos θba) =
4π

2l + 1

l
∑

m=−l

Y m
l (θb, φb)Y

m∗
l (θa, φa), (B.17)

the relative polar angle θba can be determined via

cos θba = cos θb cos θa + sin θb sin θa cos(φb − φa). (B.18)

The Wigner D-matrix reduces to spherical harmonics as follows,

Dj
m0(φ, θ, 0) =

√

4π

2j + 1
Y m∗
l (θ, φ) (B.19)

With these relations, it is easy to verify that our formulas are equivalent to those of Ref. [125]

in the spin-less case.

B.3 Generalized s-wave

For some helicity combinations, the unitarity condition for 2→ n scattering becomes independent of

phase-space parameters in the high-energy limit. This situation was considered in Refs. [122, 123].

In this subsection, we introduce the details for our application.

In the high-energy limit, all external particles can be treated as massless, p2i = 0. The generalized

s-wave condition for scattering a→ c have the form

〈γ,Φc|M|α,Φa〉 ≈ C, (B.20)

where C is a constant with respect to the kinematical parameters, for fixed total four-momentum. In

fact, in the EFT approximation, this situation occurs naturally for some of the terms since the leading

contributions become polynomials of the Lorentz invariants.

(a) For the case of inelastic scattering α 6= γ, the b-coefficients with (multi-)index A take the form

bαγA =
1

4

∫ 1

0
d~xad~xbH

α∗
A (~xa)H

α
A(~xb) J

1

2
α (~xa) J

1

2
α (~xb)

×
∫ 1

0
d~xcJγ(~xc) 〈γ,Φc|M|α,Φb〉∗〈γ,Φc|M|α,Φa〉

=
1

4
|C|2∆γ |FαA |2 (B.21)
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where the total phase-space volume ∆γ is given by [135, 136]

∆γ ≡
∫ 1

0
d ~xcJγ(~xc) =

1

Sγ

1

(2π)3nγ−4

(π

2

)nγ−1 snγ−2

(nγ − 1)!(nγ − 2)!
(B.22)

and the function F is defined as

FαA =

∫ 1

0
d~xaH

α
A(~xa) J

1

2
α (~xa) (B.23)

Using the Cauchy-Schwarz inequality, the orthonormality condition for the basis yields

|FαA |2 ≤
∫ 1

0
d~xa|Hα

~lu
(~xa)|2

∫ 1

0
d~xbJα(~xb) = ∆α (B.24)

Therefore, we obtain

bαγA ≤
1

4
∆α∆γ |C|2 (B.25)

The strongest bound is obtained if the sign applies in Eq. (B.25). The inequality becomes

1

4
∆α∆γ |C|2 ≤

1

4
(B.26)

To realize the optimal bound within a given phase-space parameterization, the following condi-

tion should be satisfied:

Hα
A(~xa)

J
1

2
α (~xa)

= constant (B.27)

The condition can be satisfied if both Hα
A(~xa) and Jα(~xa) are constants. Since a constant basis

function is a member of commonly used orthonormal bases, the condition reduces to the re-

quirement of a constant Jacobian determinant for the phase-space parameterization. Ref. [136]

introduces an algorithm to achieves it.

We observe that the bounds in Eq. (B.26) are symmetric under the exchange α ↔ γ, although

the states a and c may have different number or species of particles. We may exploit this

property by performing polarization sums to either the initial or final state, when applying the

formalism to scattering processes.

(b) In elastic scattering, i.e. α = γ, the unitarity constraint may be expressed in terms of the a-

coefficients rather than b-coefficients. After an analogous derivation, we arrive at the following
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optimal constraint:

|Re 1
2
∆αC| ≤

1

2
(B.28)

0 ≤ |Im 1

2
∆αC −

1

4
| ≤ 1 (B.29)

The above discussion can be also applied to the case that the independence of phase-space param-

eters results from summing over degenerate states (polarization, color, etc.). Explicitly, for a set of

degenerate states S2,

∑

γ∈S

(〈γ,Φc|M|α,Φa〉)∗〈γ,Φc|M|α,Φb〉 = |CS |2 (B.30)

where |CS |2 is independent of the phase-space parameters ~xa, ~xb, ~xc. With an optimal choice of kine-

matic variables and basis we obtain the bound

1

4
∆α∆γ |CS |2 ≤

1

4
(B.31)

B.4 Generic case: recursive kinematics

For the concrete evaluation of unitarity bounds in the generic case where the phase-space parameter

dependence remains nontrivial, we have to choose a specific phase-space parameterization. In our

calculations, we used the standard recursive generation of 2 → n phase space in terms of 2 → 2

scattering followed by a tree of 1 → 2 momentum splittings. The phase-space manifold ultimately

is mapped to the the 3n − 4-dimensional unit hypercube, ~x ∈ [0, 1]3n−4. Below, we review this

construction and provide the detailed formulas.

We denote the n-body phase-space element with total four-momentum Qµ as dΦn{Qµ}.

1. For n > 2, the phase-space element is given by

dΦn{Qµ} = δ(4)(
n
∑

i=1

pµi −Qµ) dΦn

=
d4pn
(2π)3

δ(p2n −m2
n) dΦn−1{Qµ − pµn} (B.32)

2We require all states in S to have indentical particle numbers and symmetry factors.
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Working in the c.m. frame of Qµ where QµCM = (
√

Q2, 0, 0, 0), we obtain:

d4pn
(2π)3

δ(p2n −m2
n) =

d4pn,CM

(2π)3
δ(p2n,CM −m2

n)

=
ρ3(Q2,mn,

∑n−1
i=1 mi)x

2
3n−6 sin θn

8πEn,CM
dx3n−6dx3n−5dx3n−4 (B.33)

where the function ρ is defined by

ρ(s,m1,m2) =
√

[s− (m1 +m2)2][s− (m1 −m2)2] (B.34)

and the four-momentum pn,CM is parameterized to

pµn,CM = (En,CM, ~pn,CM) (B.35)

~pn,CM = x3n−6ρ(Q
2,mn,

n−1
∑

i=1

mi)(sin θn cosφn, sin θn sinφn, cos θn) (B.36)

En,CM =
√

|~pn,CM|2 +m2
n (B.37)

θn = πx3n−5 (B.38)

φn = 2πx3n−4 (B.39)

The corresponding four-momentum in original frame can be obtained by a simple Lorentz

boost:

pµn = Λ(QCM, Q, pn,CM)

= pµn,CM − 2(QµCM +Qµ)
(QCM +Q) · pn,CM

(QCM +Q)2
+ 2Qµ

QCM · pn,CM

Q2

(B.40)

2. For n = 2, working again in the c.m. frame, the formulas simplify accordingly:

dΦ2(Q) = dx1dx2
ρ(Q2,m1,m2) sin θ

128π4
√

Q2
. (B.41)

The corresponding p1,CM and p2,CM can be parametrized to

pµ1,CM = (
√

p2CM +m2
1,−~pCM) (B.42)

pµ2,CM = (
√

p2CM +m2
2, ~pCM) (B.43)

~pCM = ρ(Q2,m1,m2)(sin θ2 cosφ2, sin θ2 sinφ2, cos θ2) (B.44)

θ2 = πx1 (B.45)

φ2 = 2πx2 (B.46)



B.4 Generic case: recursive kinematics 90

Similarly, the corresponding four-momenta in the original frame can be obtained via the Lorentz

boost given in Eq. (B.40).
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